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1. Introduction

In 1889 Svante Arrhenius (*1859 - †1927) first proposed a physically justified model to
describe the temperature dependence for the rate constants of chemical reactions. The
Arrhenius’s Law provides an empirical equation which was improved by a statistical
mechanics approach in 1935 by Henry Eyring (*1901 - †1981), using what was then
called an activated complex approach. Nowadays, the activated complex is known as
the Transition State (TS). Transition State Theory (TST) was further developed by
Hans Kramers (*1894 - †1952), where he investigated diffusion in chemical reactions
with his seminal work in 1940. Forty years later, the applicability of TST was expanded
by the Grote-Hynes Theory, which is based on the generalized Langevin Equation.

Nowadays, any theory that works under the assumption that there exists a Dividing
Surface (DS) in phase space that divides reactants from products and is only crossed by
reactive trajectories is referred to as TST [1–13]. The DS serves as tool to identify the
exact time when a particle can be considered to have reacted. As such, by measuring
the flux through the DS, one can determine the reaction rate of the system, as well as
the rate of change for the concentration of particle species. For that measurement to be
as accurate as possible, it is imperative that the DS is free of recrossings.

1.1. Introduction to Reaction Dynamics

The study of Chemical Kinetics involves itself with describing the process of chemical
reactions. An important measure for these reactions is the Rate Law, since it determines
the speed at which reactants are transformed into products. To better understand how
the Rate Law depends on species concentration and the temperature of the system, we
will provide a short introduction to the appropriate models used in chemistry.

1.1.1. Stoichiometry

To describe the transformation of reactants into products, one can use balanced stoi-
chiometric equations. These equations describe how the ratios between reactant concen-
trations and product concentrations are distributed. Consider the equation

aA + bB→ cC + dD , (1.1)

where the lowercase letters are constant integer values, while the uppercase letters are
particle species. This equation expresses how a molecules of species A and b molecules
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1. Introduction

of species B are required to create c molecules of C and d of D. For instance, we can
express the reaction of hydrogen and oxygen into water as

2H2 + O2 → 2H2O , (1.2)

where two H2 molecules and one O2 molecule are required to form two H2O molecules.
The stoichiometry therefore describes relationships between the concentration of species
involved in a reaction.

1.1.2. Rates and Rate Laws

The Rate Law for a reaction describes the time-dependent change for the concentra-
tion [A] of any species A. By considering the stoichiometry of a reaction, we can find
relationships between the concentrations of reactants and products

1

a
[A](t) +

1

b
[B](t) =

(
1

a
[A](0) +

1

b
[B](0)

)
− 1

c
[C](t)− 1

d
[D](t) . (1.3)

A single reactant’s concentration cannot change without affecting the other reactants’
concentration. Therefore, if no other processes take place in the reaction, the stoi-
chiometry also provides a relationship limited to the species of reactants and products
respectively

1

a

∂[A]

∂t
=

1

b

∂[B]

∂t
, (1.4)

1

c

∂[C]

∂t
=

1

d

∂[D]

∂t
. (1.5)

By taking the time derivative of Eq. (1.3) and applying our findings for concentration
changes in Eqs. (1.4) and (1.5) we can find that the rate of change for a single species
describes the rates of change for any other related species

1

a

∂[A]

∂t
=

1

b

∂[B]

∂t
= −1

c

∂[C]

∂t
= −1

d

∂[D]

∂t
. (1.6)

The Rate Law is often given for the product of interest in the reaction. In general,
it can be an arbitrarily complicated function of the species concentrations and other
environmental factors. However, it is often expressed in simplified form as a power law

1

c

∂[C]

∂t
= k[A]m[B]n[C]o[D]p , (1.7)

where k is called the rate constant, which may depend on environmental factors such as
temperature and pressure. The order of the reaction is given by the sum of the powers
r = m+n+o+p. Note that in general, the stoichiometry of a reaction does not provide
any indication for the order r of the reaction. As such, the powers m, n, o and p have to
be determined from measurements. This is can be achieved by analyzing how the Rate
Law scales with the initial concentrations of the involved species.
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1.1. Introduction to Reaction Dynamics
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Figure 1.1.: The Arrhenius’s Law for k as a function of T (left) and ln (k) as a function
of 1/T (right). On the left, we can determine the high-temperature limit
A from the asymptotic behavior of the curve. On the right, however, one
can determine both A and the activation energy Ea from the ln (k)-axis
interception and the slope of the straight line respectively.

1.1.3. Arrhenius’s Law of Rate Constants

Before Arrhenius’s Law was published, it was already known that the Rate Constant k
grows with the temperature T of the reaction. As a rough estimate, it was said that
the Rate Constant is doubled for every 10 K. Arrhenius’s Law however, provides a more
accurate estimate

k = A exp

(
− Ea
kBT

)
, (1.8)

where kB is Boltzmann’s constant, A is the high-temperature limit of the Rate Constant
and Ea the activation energy. In general, neither the high-temperature limit, nor the
activation energy are known beforehand. Arrhenius’s Law may also be expressed in
logarithmic form

ln (k) = ln (A)− Ea
kBT

. (1.9)

As a function of the inverse temperature 1/T the logarithmic Arrhenius’s Law takes
the form of a straight line. In this form, one can visually determine both the high-
temperature limit A, as well as the activation energy Ea. A comparison of both expres-
sions is shown in Fig. 1.1.
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1. Introduction

1.2. Motivation

It stands to reason that the Rate Law for the synthesis of certain substances should
be controlled for optimized production. However, finding an optimal Rate Law is time
consuming, since the rate constant of a reaction depends on a variety of environmental
factors, such as external driving forces, temperature, dissipation, and pressure. We be-
lieve that a numerical model of chemical reactions may prove beneficial to investigate the
Rate Law’s dependence on such environmental parameters. As such, we investigate ex-
ternally driven chemical reactions under thermal noise. We aim to find a time-dependent,
recrossing-free DS in phase space, which will allow us to accurately determine when a
trajectory in the molecular system transitions from a reactant configuration to a prod-
uct configuration. This in turn allows us to calculate the Rate Law by using the DS
to determine the time-dependent flux of reactants into products. We apply and provide
methods based on TST to find the Rate Law of a classical model in the hopes to make
this field of research more approachable.

1.3. Outline of this Thesis

The structure of this thesis is as follows. Chapter 2 covers the basics of the atomistic
modeling used to describe chemical reactions via molecular dynamics. We describe the
classical approximations used for the dynamics of an otherwise quantum mechanical
system. The minimum energy path approach is also covered in these discussions, as it is
a common approach in the TST for static potentials. We describe a potential to model
time-dependent energy barriers of reactions, as well as the Langevin Equation, which is
used to model thermal noise and other stochastic influences.

Chapter 3 covers the theoretical foundation for the TST of time-dependent systems.
We discuss the use of invariant manifolds around hyperbolic fixed points and their higher-
dimensional generalizations to classify reactive trajectories. Methods to reveal invariant
manifolds in phase space are discussed, as well as the use of these invariant manifolds to
construct recrossing-free DSs.

Chapter 4 introduces numerical methods and algorithms that are used for the inves-
tigation our system. It covers the computation of points on the normally hyperbolic
invariant manifold, the use of such points to obtain a smooth approximation of the man-
ifold, as well as the computation of reaction rates. We introduce the binary contraction
method, which is a robust and exponentially fast converging algorithm to find points
on normally hyperbolic invariant manifold. The algorithm is based on geometric ob-
servations of the stable and unstable invariant manifolds [14–16] in planes of the phase
space and makes use of trajectory classifications. We discuss the use of artificial neural
networks to approximate the DSs, introduced in chapter 3, from points computed via
the binary contraction.

Chapter 5 investigates a model system under Langevin dynamics. The models and
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1.3. Outline of this Thesis

methods introduced in the previous chapters are applied to investigate the dynamics of
the system, and the influence of both friction and noise. The rate laws are computed
and analyzed for different sets of parameters.
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2. Atomistic Models of Chemical
Reactions

2.1. Potential Energy Surfaces

To investigate the dynamics of a molecule’s nuclei during a reaction, one could use a
quantum mechanical approach. However, even with today’s computers, such an ap-
proach is enormously time consuming, especially for large molecules. There are methods
to alleviate this issue and allow us to investigate approximations of these dynamics clas-
sically. The systems discussed in this section are given by the Newtonian equations of
motion

ẋ = v , (2.1)

v̇ = −∇V (x) , (2.2)

where V is the potential energy, x the positional coordinates and v the corresponding
velocities. For the sake of simplicity, we assume that all masses are unity.

2.1.1. Born-Oppenheimer Approximation

The Born-Oppenheimer approximation states that the dynamics of the nuclei is consid-
erably slower than the dynamics of the electrons. This is derived from the observation,
that the mass of a proton is roughly 1837 times larger than the mass of an electron.
The approximation implies that, aside from external influences, the forces acting from
the electron clouds onto the nuclei are purely dependent on the spatial coordination of
the nuclei x, as the configuration of the electrons can be assumed to be fully relaxed for
any nuclei configuration. However, even with this approximation, we require quantum
mechanical computations to determine the ground state of the electrons for any given
nuclei configuration. This approximation can then be used to integrate the nuclei dy-
namics as if they were classical equations of motion. Integrating nuclei dynamics with
energy surfaces obtained from electron ground states is referred to as Born-Oppenheimer
Molecular Dynamics (BOMD).

For the purpose of applying TST to multidimensional systems, the BOMD method
is still too slow. We can speed up the trajectory integration by introducing another
approximation. By only calculating the ground state energy of the electrons for a small
set of nuclei configurations, we can use adequate fitting and interpolation methods to
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2. Atomistic Models of Chemical Reactions

provide a classical potential V (x). With a fully classical description of the potential, we
can treat the systems that we are investigating as classical, Hamiltonian systems.

2.1.2. Minimum Energy Path and the Transition State of Static
Potentials

With a classical model of a chemical reaction, we are now able to investigate the reaction
path. Given prior knowledge about a molecular system, we can differentiate between re-
actant configurations and product configurations. With this, we can investigate whether
or not trajectories of this system are reactive by determining which trajectories tran-
sition from reactants to products. This investigation alone, however, is not sufficient,
as it is ignorant towards the path of the reaction and therefore ignorant towards the
specific transition from reactant to product. To determine accurate reaction rates, we
need to investigate at which specific time in the reaction a particle transitions from a
reactant configuration into a product configuration. This Transition State (TS) is not
known beforehand, but can be derived from the potential.

The Minimum Energy Path (MEP) [17] is an exceptional path in the space of the
positional coordinates x along the time-independent potential surface V (x). The path
connects the reactant configuration with the product configuration and passes through
three equilibrium points of the system, which are defined as coordinates which satisfy

∂V (x)

∂xi
= 0 . (2.3)

MEP-based approaches assume that reactant and product configuration are equilibrium
points. It passes through a third equilibrium point along the way, which is known as
the TS, but is sometimes referred to as the Activated Complex. In the MEP approach,
the TS is also the lowest energy barrier that needs to be passed to reach the product
configuration. This is not to say that the energy of the TS is below the energy of the
reactant or product configuration. On the contrary, the TS has a higher energy than
either of the two, as is illustrated in Fig. 2.1. This means in both directions along the
MEP, there is a descend in the potential surface at the TS. Additionally, as it is also
the lowest energy barrier in the system, there is a potential ascend in the directions
orthogonal to the MEP. This means that the energy barrier that separates reactant and
product configuration is, in general, a saddle point potential.

The MEP can be found through various approaches, for example through gradient
descent methods. As the MEP can be found via methods that neglect the dynamics
of the system, it is, in general, not a valid trajectory. This also implies that reactive
trajectories may not even cross the TS directly, since they are not required to follow the
MEP. It is however the path of least resistance through a reaction and can be used to
investigate the transition of particles into the product region.

12



2.1. Potential Energy Surfaces

Reaction Coordinate

En
er

gy

Reactants

Products

MEP
Transition State

Figure 2.1.: The energy of the MEP along its parametrization for an exothermic reaction.
The TS is highlighted by a dot at the energy barrier.

2.1.3. Reaction and Bath Coordinate of Static Potentials

To easily follow the transition of a molecular system from reactant configuration to
product configuration, it is beneficial to express the dynamics in a coordinate system that
is best suited to highlight the transition. This coordinate system should have one reaction
coordinate, from which one can determine how far the reaction has progressed towards
a product configuration. The corresponding velocity to the reaction coordinate has a
special standing, as it is directly involved in the dynamics of the reaction coordinate. It
is referred to as the reaction velocity. Any coordinate, which is coupled to the dynamics
of the reaction coordinate is called a bath coordinate.

Even though the MEP neglects the dynamics of the system, its parametrization is still
suited to be used as a reaction coordinate, as it not only passes through the TS, but
it does so by directly connecting it to the known reactant and product configurations.
One can then characterize a particle as having transitioned, if its reaction coordinate
passes the reaction coordinate of the Transition State. However, the dynamics of all
coordinates, including the bath coordinates, are relevant to determine the exact time of
the transition and need to be included when investigating reactive trajectories.

13



2. Atomistic Models of Chemical Reactions

2.2. Time-Dependent Systems

To control the reaction rate, one can apply external influences to the system. By intro-
ducing an external driving force, the potentials of the system become time-dependent.
Although interesting, the dynamics of time-dependent systems are more difficult to han-
dle. Modeling the external perturbations with time-dependent potentials may be easy,
however handling the dynamics of such systems is challenging. The MEP approach is
no longer sufficient to determine the TS, not only because it is now time-dependent as
well, but also because the dynamics of the system is relevant for the transition. With the
time-dependent motion of the energy saddle, the energy barriers of the time-independent
MEPs differ for different moments in time, see Fig. 2.2. However, if one uses the moving
energy barrier of the MEPs to identify the transition of a reactive particle, one would
run into two inherent problems. First, due to the motion of the MEP, the reaction
coordinate system would have to be time-dependent. Second, the faux transition would
happen several times, as the particle has inertia, but the MEP does not. Due to these
reasons, an MEP approach would not only be cumbersome, but would also lead to wrong
results.

Reaction Coordinate

En
er

gy

time-dependent

Reactants

Products

MEP
Barrier top

Figure 2.2.: MEPs of a time-dependent potential at different times. The motion of the
energy barrier does not follow the path of a trajectory, since a particle with
inertia would immediately find itself subject to a repulsive force if the saddle
is moving.
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2.2. Time-Dependent Systems

x
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Figure 2.3.: Saddle potential given in Eq. (2.4) for parameters Eb = 2, ωx = π, ωy = 2
and a = 1 at t = 0. The color code is a visual aid for the potential, dark
colors represent a small value, bright colors represent a high value.

2.2.1. Model: Driven Rank-1 Saddle Potential

As the energy barrier of the underlying potential is the bottleneck of the reaction, we
expect the relevant dynamics to occur in the saddle region. To investigate the dynamics
of a chemical reaction with time-dependent potentials, we model the energy barrier
between reactant and product regions with a driven rank-1 saddle potential. The rank-1
saddle is a saddle point with one unstable coordinate, i.e. the potential surface descends
in either direction of the coordinate, and an arbitrary number of stable coordinates.
Without the MEP approach, we will use the coordinate which is strongly coupled to
the instability of the saddle as the reaction coordinate, as this has been shown to be
an effective coordinate to classify the transition. Specifically we investigate the two-
dimensional model potential that is used in Ref. [18]

V (x, y, t) = Eb exp
(
−a[x− x̂ sin (ωxt)]

2)+
ω2
y

2

(
y − 2

π
arctan (2x)

)2

, (2.4)

where x is the reaction coordinate, whose dynamics is non-linearly coupled to the bath
coordinate y. A snapshot of this potential is illustrated in Fig. 2.3. The saddle point
for this model potential oscillates in time with the angular frequency ωx, which ensures
that the time-dependency of the potential has a noticeable impact on the dynamics in
the vicinity of the saddle point. In addition to ωx, the constants ωy, Eb, and a are all
external parameters to tune the potential.
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2. Atomistic Models of Chemical Reactions

2.3. Langevin Equation

The Langevin equation is a stochastic differential equation that describes a system under
external influences whose microscopic dynamics is unknown. It is commonly used to
describe a particle in a thermal environment. The dynamics of a Langevin system are
often governed by a random force, together with a friction term that is coupled to the
velocity of the particle.

The Langevin equation can be used to model the dynamics of Brownian motion. This
motion was first discovered through the erratic movement of pollen in water. It was
further investigated in Einstein’s seminal paper in 1905 [19], where it was shown that
there is an intrinsic relationship between friction and noise.

The Langevin equation provides equations of motion similar to Eqs. (2.1) and (2.2).
However, here, the acceleration is given by

ẍ = −γv + f(t) , (2.5)

where γ is the friction coefficient, while the mass m = 1 and the potential V (x, t) are
omitted. The function f(t) is a random force that follows

〈f(t)〉 = 0 , (2.6)

〈f(t) · f(t′)〉 = dξδ(t− t′) , (2.7)

where d is the number of kinetic degrees of freedom, δ(t− t′) is the Dirac delta function
and ξ is a constant measuring the intensity of the random force. The symbols 〈 · 〉 denote
the expectation value of the random functions.

To find the relationship between friction γ and the intensity ξ, we first solve Eq. (2.5)
to find an expression for ẋ = v

v(t) = exp (−γt)
(
v0 +

∫ t

0

exp (γt′)f(t′) dt′
)
. (2.8)

From Eq. (2.8) we can see that for positive friction coefficients γ the contribution of the
initial velocity v0 loses its influence on the dynamics for long times. If the friction is
large, we can expect that the inertia of the particle plays a small role in the dynamics.
The dynamics is instead dominated by the stochastic force. To gain an additional insight
from this expression, we have to use it to compute a known value. For this, we compare
it to the average kinetic energy of an ideal gas

1

2

〈
v(t)2

〉
=
d

2
kBT , (2.9)

as a model of a system subject to thermal noise, where T is the temperature of the
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2.3. Langevin Equation

system and kB is Boltzmann’s constant. We evaluate this expression by computing

〈
v(t)2

〉
=

〈
exp (−2γt)

(
v2
0 +

∫ t

0

exp (γt′)f(t′) dt′
(

2v0 +

∫ t

0

exp (γt′′)f(t′′) dt′′
))〉

= exp (−2γt)

(〈
v2
0

〉
+

∫ t

0

∫ t

0

exp (γ(t′ + t′′)) 〈f(t′)f(t′′)〉 dt′′ dt′
)

=
dξ

2γ
+ exp (−2γt)

(
v2
0 −

dξ

2γ

)
. (2.10)

By inserting this into Eq. (2.9) we find for large times and positive friction γ

lim
t→∞

1

2

〈
v(t)2

〉
=
dξ

4γ
=
d

2
kBT , (2.11)

and simplifying this, we obtain
ξ

2γ
= kBT, (2.12)

which is called the Einstein relation. With this, we have found a relationship between
temperature T , friction γ and fluctuating forces ξ. The Einstein relation is a special
case of the Fluctuation-Dissipation Theorem, which states that if an observable can be
dissipated as heat, then the observable itself must fluctuate thermally. Here, the kinetic
energy of a system can be transformed into heat via the friction coefficient. This in turn
implies that the kinetic energy must fluctuate by virtue of a proportional, stochastic
force accelerating the particle.
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3. Invariant Manifolds and Dividing
Surfaces

3.1. Dynamics in the Vicinity of Fixed Points

In a dynamical system, a fixed point is a set of coordinates in phase space which are
not propagated further by the equations governing the dynamics. Interesting behavior
is found in trajectories approaching these fixed points, as some of them are repulsed,
others attracted, and others may even express a combination of both phenomena. By
classifying the fixed points, we can determine the trajectory behavior in their vicinity.
In this section, we will provide an overview and interpretation of the subject matter
covered in Ref. [20].

3.1.1. Fixed Points

Consider the two-dimensional system

ẋ = λx− xy , (3.1)

ẏ = x2 − y . (3.2)

Here, λ denotes some real value. To find the fixed points of this system, we need to find
coordinates which are not propagated any further, i.e. solve the governing equations for
ẋ = ẏ = 0. We find that the coordinates (0, 0) fulfill these conditions trivially, as well as
(±
√
λ, λ).

3.1.2. Linear Stability Analysis

For systems with non-vanishing linear terms, we can determine the behavior of trajec-
tories in the vicinity of fixed points by analyzing the dynamics in a first-order approxi-
mation. Consider the fixed point (0, 0) of Eqs. (3.1) and (3.2). In the vicinity of these
fixed points, we find, that the dynamics is governed by the following approximations

ẋ = λx , (3.3)

ẏ = −y . (3.4)

The solutions are x = x0 exp (λt) and y = y0 exp (−t). From this, we can find that for
any coordinate (x0, y0) in the close vicinity of (0, 0), the y coordinate contracts towards
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3. Invariant Manifolds and Dividing Surfaces

the fixed point. Whether or not the x coordinate contracts towards the fixed point
depends on the value of λ. For λ < 0 we have contraction and for λ > 0 we have a
repulsion of the x coordinate. Note that for λ = 0 we have vanishing linear terms for
the dynamics in ẋ with finite non-linear terms. Meaning, this approach does not suffice
to describe the dynamics for λ = 0. When trajectories contract towards a fixed point,
regardless of their incoming direction, the fixed point is described as stable. When there
are contracting and repulsing directions present, the fixed point is called hyperbolic.
When it is purely repulsive, it is called unstable.

3.1.3. Invariant Manifold Approach

An invariant manifold is a manifold in the phase space of a dynamical system which does
not change its shape when all of its points are propagated. Trajectories, for instance,
are invariant manifolds by construction, because they are a collection of points in phase
space that result from a single propagated point. Due to their property, any point in
phase space that propagates through an invariant manifold is part of that manifold.
Because of this, trajectories cannot cross through invariant manifolds that do not fully
contain them.

To investigate the dynamics in the vicinity of fixed points, it is helpful to expose
invariant manifolds that contain them. To illustrate this, we solve Eqs. (3.1) and (3.2)
for two cases around the fixed point (0, 0). These solutions enable us to find results
which are more accurate than the ones provided by the stability analysis.

First, by taking another look at Eq. (3.1) we can see that for x = 0 we find ẋ = 0 for
any y. This means any trajectory that finds itself on the y-axis of the system cannot
leave that axis. To be more formal, the collection of points

Ms = {(0, y)|y ∈ R} , (3.5)

is an invariant manifold of the system. Since this manifold is a fairly simple one, it is
possible to investigate the dynamics of any trajectory that it contains. In this particular
case, all we need is to solve Eq. (3.2) for x = 0, which evaluates to

ẏ = −y , (3.6)

and is equivalent to the dynamics of the linearized system. From this, we find that even
with the full dynamics of the system, any point on the manifold Ms contracts towards
the fixed point (0, 0) at an exponential pace. An invariant manifold with such properties
is called a stable manifold of the fixed point.

The second approach is more involved, as we cannot find a condition which is as simple
to solve as the one for the stable manifoldMs. We can, however, use an approach based
on the implicit function theorem to find a local solution of y which depends on x and λ.
Suppose the function y = h(x;λ) solves the equations in the vicinity of the fixed point
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Figure 3.1.: Velocity field of Eqs. (3.1) and (3.2). (a): We see a system with λ = 1
whereMh is an unstable manifold and (0,0) is a hyperbolic fixed point. (b):
λ = −2, where Mh and (0,0) are stable. We can see in both cases that
the trajectories for these systems follow the path laid out for them by the
invariant manifolds.

(0, 0). From that, we find

ẋ = λx− xh , (3.7)

ẏ = −h+ x2 = ẋ
∂h

∂x
, (3.8)

which yields
∂h

∂x
x(λ+ h) = x2 − h . (3.9)

We can use Eq. (3.9) to solve h with a power series at x = 0

h(x;λ) =
∞∑
n=0

hn(λ)xn . (3.10)

This yields an approximation of the function h. By enforcing the boundary condition
h0 = 0, the series approach yields(

∞∑
n=1

nhnx
n

)(
λ−

∞∑
n=0

hnx
n

)
= −

∞∑
n=0

hnx
n + x , (3.11)
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3. Invariant Manifolds and Dividing Surfaces

by comparing the powers up until the 6th order, we find

h0 = h1 = h3 = h5 = 0 , (3.12)

h2 =
1

2λ+ 1
, h4 =

2h22
4λ+ 1

, h6 =
6h2h4
6λ+ 1

. (3.13)

One can continue this approach to find higher order terms. For our purposes, however,
this is sufficient. By plugging in Eqs. (3.12) and (3.13) into Eq. (3.10), we find

h(x;λ) = h2x
2 + h4x

4 + h6x
6 +O(x7) , (3.14)

which is a symmetric polynomial of 6th order. Since the function h(x;λ) is compliant
with the dynamics of our system, the set

Mh = {(x, h(x;λ))|x ∈ R} (3.15)

provides an approximation of a trajectory, which is accurate in the vicinity of the fixed
point (0, 0). This result differs from the result found with the linearized approach for
the stability analysis, as the analysis could not predict the long-term behavior of the
trajectory, which we can see in Fig. 3.1.

The dynamics on Mh is given by the dynamics of x confined on the graph of y =
h(x;λ). We find it by plugging Eq. (3.14) into Eq. (3.1)

ẋ = λx− xh(x;λ) , (3.16)

which still evaluates to ẋ = 0 for x = 0. However, we are interested in the dynamics in
the vicinity of the fixed point for small values of x. By determining the slope of ẋ at
x = 0, we can find the sign of ẋ at x = ±ε, where ε is a sufficiently small, positive real
value. We find

∂ẋ

∂x
(x) = λ− 3h2x

2 − 5h4x
4 − 7h6x

6 (3.17)

⇒ ∂ẋ

∂x
(0) = λ , (3.18)

which implies for λ < 0 that

ẋ(ε) < 0 , ẋ(−ε) > 0 , (3.19)

and for λ > 0
ẋ(ε) > 0 , ẋ(−ε) < 0 . (3.20)

We can see that for λ < 0, values of x that are slightly above zero drift towards the
fixed point x = 0. The same holds for values slightly below zero. For λ > 0 we find
the inverse, any value of x in close vicinity of the fixed point drift further away from it.
These results are consistent with the stability analysis, where we find stability for λ < 0
and instability for λ > 0. The difference here is, however, that the invariant manifold
Mh gives us a more accurate picture of the dynamics in that region.
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3.1. Dynamics in the Vicinity of Fixed Points

3.1.4. Classifying Reactive Trajectories using Invariant Manifolds

As TST is interested in the long-term behavior of trajectories in the vicinity of a saddle
region, the dynamics around hyperbolic fixed points and Normally Hyperbolic Invariant
Manifolds (see Sec. 3.3) is useful to investigate the construction of recrossing-free DSs
in phase space. Hyperbolic fixed points with both stable and unstable manifolds provide
us with information about the origin of a trajectory, as well as the general direction
of their long-term destination. In TST this information is especially useful as it allows
us to classify whether or not a trajectory is reactive based solely on where its initial
conditions are in relation to the invariant manifolds.

IV

III

II

I

x

v
x

xr xp

Figure 3.2.: Sketch of the phase space for a classical, one-dimensional system with reac-
tion coordinate x and a hyperbolic fixed point, as well as known reactant
and product configurations xr and xp. The associated stable and unstable
manifolds are shown to separate the phase space into four regions, enumer-
ated by roman numerals. The arrows indicate the heading of trajectories
within these regions.

Since the stable and unstable manifold associated to a hyperbolic fixed point are
invariant manifolds –which means that trajectories cannot cross them– they divide the
phase space in four distinct regions. As already seen in an example system in Fig. 3.1
(a), the manifolds divide the phase space in the vicinity of the fixed point (0,0) into an
upper left, upper right, lower left and lower right quadrant. The trajectories from these
quadrants approach and leave the fixed point from different directions, depending on
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3. Invariant Manifolds and Dividing Surfaces

which region contains the trajectories.
Consider a one-dimensional, reactive system with its reaction coordinate x and its

corresponding reaction velocity vx. Then the regions in phase space, that are bordered
by the invariant manifolds of the hyperbolic fixed point, help us to identify reactive
trajectories. This can be seen in Fig. 3.2, where these regions are referred to as region
I, II, III, and IV. One can see that trajectories from region I originate from the reactant
configuration xr and return to it. Trajectories from region II originate from the product
configuration xp and are heading towards xr. Region III is the product analogue to region
I and trajectories from region IV are moving from xr to xp. We can conclude from this
observation, that the only trajectories that play a role in determining the reaction rate
are the reactive (and back-reactive) trajectories in regions II and IV, while regions I and
IV would contribute to erroneous recrossings of any DS, see Sec. 3.3.2

3.2. Lagrangian Descriptors to Reveal Stable and
Unstable Manifolds

Lagrangian Descriptors (LDs) [21–24] provide us with a method to reveal the stable and
unstable manifolds without relying on a series expansion. By extracting a scalar value
from the trajectories of a system, we can determine whether or not these trajectories are
on a stable or unstable manifold of a fixed point. This is especially useful in handling
multidimensional systems, as the LDs can be extracted from numerically integrated tra-
jectories. We first discuss the LDs in a more general sense, applied to the n-dimensional
system

ẋ = f(x, t) , (3.21)

afterwards we will provide a more detailed description by applying them to the system
that we have investigated in Section 3.1.3.

3.2.1. Lagrangian Descriptors

Consider the function

F : Rn → R+ , (3.22)

which is a positive, scalar valued function that maps the phase space of Eq. (3.21). An
LD is a function

Lτ : Rn × R→ R+ , (3.23)

which maps the initial conditions x0 and t0 of a trajectory x to a positive, scalar value.
The LD is the evaluation of the integral

Lτ (x0, t0) =

∫ t0+τ

t0−τ
F(x(t′)) dt′ , (3.24)
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where 2τ signifies the size of the time interval the integral covers. Depending on the
choice of F , it is useful to split the LD into forward and backward time components
Lτ = Lτ,f + Lτ,b, given by

Lτ,f (x0, t0) =

∫ t0+τ

t0

F(x(t′)) dt′ , (3.25)

Lτ,b(x0, t0) =

∫ t0

t0−τ
F(x(t′)) dt′ . (3.26)

The significance of the LD relies wholly on the function F used, as this function needs
to measure a property of the trajectory that describes the phase space geometries we
want to investigate. A common approach is to use the norm of the velocity field,

Lτ (x0, t0) =

∫ t0+τ

t0−τ
|ẋ(t′)| dt′ , (3.27)

as this indicates the arc length of the trajectory, which in turn is an indicator to the
stability of the trajectory in that region, since the longer the distance a trajectory
travels for a given set of initial conditions, the more unstable are the initial conditions.
For Hamiltonian systems H in particular, when we are more interested describing the
positional degrees of freedom q, we can determine their arc length with the momenta p

Lτ ((q0,p0), t0) =

∫ t0+τ

t0−τ

∣∣∣∣∂H(q(t′),p(t′), t′)

∂p

∣∣∣∣ dt′ . (3.28)

A special type of LD, which we will call the Time Descriptor (TD), can be applied
to investigate trajectories in the vicinity of NHIMs (see Sec. 3.3). The TD tracks the
amount of time a trajectory spends in the saddle region, which is confined by the reactant
configuration xr and the product configuration xp of the reaction coordinates. For any
initial condition (x0, t0) in the saddle region, we integrate the trajectories forward and
backward in time and determine at which time tf (x0, t0) the trajectory leaves the saddle
region and at which time t = tb(x0, t0) it enters. From this, we can compute the TD and
its components

TD(x0, t0) = tf (x0, t0)− tb(x0, t0) , (3.29)

TDf(x0, t0) = tf (x0, t0)− t0 , (3.30)

TDb(x0, t0) = t0 − tb(x0, t0) . (3.31)

The TD is especially useful for the purposes of TST, as it is a direct measure of the time
a particle lingers in the saddle region.

3.2.2. Identifying Stable and Unstable Manifolds

To identify the invariant manifolds of the previously solved system in Eqs. (3.1) and
(3.2), we numerically compute the LDs in the phase space near the fixed point (0, 0)
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Figure 3.3.: LDs of the system given by Eqs. (3.1) and (3.2), for λ = 0.3. The minima
of the forward time component (a) highlight stable manifolds, while the
backwards time component (b) highlights unstable manifolds.

for λ = 0.3. The results are shown in Figs 3.3a,b. For the forward time component in
Fig. 3.3a we find minima of the LD in the region of Ms, which is consistent with the
observation thatMs is a stable manifold. Additionally, we find minima in the vicinity of
the fixed points (

√
0.3, 0.3), which is to be expected, as trajectories at fixed points have

no arc length. For the backward time component in Fig. 3.3, we find minima consistent
with Mh for λ = 0.3. We can identify this manifold to be unstable, as it is a minimum
of the backwards time component of the LDs and in backwards time any stable manifold
in phase space is unstable in the proper time direction.

For TST, experience shows that the use of TDs to reveal the manifolds of interest is
the most reliable approach [25]. As particles in the vicinity of the stable and unstable
manifold linger inside the saddle region for at least one direction of integration, we can
expect one of the components TDf or TDb to be extremal on these manifolds. Specifi-
cally, particles near the stable manifold provide a large contribution towards the forward
time component, while particles near the unstable manifold do so for the backward time
component. Particles close to the NHIM provide large contributions to both components,
due to their vicinity to both stable and unstable manifold. Ideally, particles that are
exactly on the invariant manifolds stay inside the saddle region indefinitely for at least
one component of the TD. However, when using numerical integration, even trajectories
that are on these manifolds may leave the saddle region in finite time, due to the errors
introduced by the integration.
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3.3. Normally Hyperbolic Invariant Manifolds and
Dividing Surfaces

Until now, we have discussed extraordinary invariant manifolds that are attached to fixed
points in phase space. Now we invert our approach and use our knowledge of stable and
unstable manifolds to find another extraordinary manifold, the Normally Hyperbolic
Invariant Manifold (NHIM). This manifold is given by the intersection of the closures
between a stable and an unstable manifold. Since this makes the NHIM a focal point of
both stable and unstable manifolds, it is an invariant manifold by itself. This allows us
to interpret the NHIM as a higher-dimensional generalization of hyperbolic fixed points
that is capable of containing several different trajectories at once. By using what we
know about these manifolds and the trajectories in their vicinity, we can find the NHIM
of a system. Knowing the NHIM, we can then use our understanding of hyperbolic fixed
points and apply it to trajectories in the vicinity of the NHIM, which in turn allows us
to find a recrossing-free DS.

3.3.1. Dimensionality of Normally Hyperbolic Invariant Manifolds

For a classical system, defined in Eqs. (2.1) and (2.2), with n spatial coordinates and 2n
coordinates in phase space, we can determine the dimensionality of the NHIM. When
examining a view of the reaction coordinate x and its corresponding velocity vx in phase
space, as is illustrated in Fig. 3.2, we can expect the invariant manifolds to intersect in
only one point of a xvx-plane. This observation is backed by the fact that the reaction
velocity is coupled to the dynamics of the reaction coordinate.

Given a large positive value of vx, one can expect the reaction coordinate x to grow,
as the kinetic energy will eventually grow much larger than any potential energy barrier
of the system. The same can be said for large negative values of vx and the decrease of
x. Given this guaranteed behavior in the limits of large velocity values, we can conclude
that the general shape of the invariant manifolds in any xvx-plane is that of a cross,
if there is only one potential energy barrier present. The shape and the position of
the cross, however, is generally distorted by the underlying potential and the initial
conditions of the bath coordinates (y,vy). Since this cross exists for every set of bath
coordinates, we can express the NHIM as the set

N (t) = {(xNHIM(y,vy, t), v
NHIM
x (y,vy, t))|(y,vy) ∈ R(2n−2)} , (3.32)

where xNHIM and vNHIM
x are the reaction coordinates of the NHIM for the given bath co-

ordinates and time. As we can map the bath coordinates to a set of reaction coordinates
on the NHIM, N (t) is (2n− 2)-dimensional, barring its time-dependent shape.
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Figure 3.4.: Sketch of the stable and unstable invariant manifolds in a xvx-plane. Lines
1., 2., and 3. show possible DSs for the system. Lines 1. and 2. pass through
the NHIM and avoid regions I and III, while line 3. does not pass through the
NHIM and crosses into region III. Crossings of trajectories are highlighted
by small circles, while recrossings are highlighted by small crosses. We can
see, that given the behavior of trajectories in regions II and IV, lines 1. and
2. serve as recrossing-free DSs. However, line 3. is recrossed by trajectories
of region III.

3.3.2. Attaching a Dividing Surface to the NHIM

Since we know how to classify trajectories with the NHIM, as shown in Fig. 3.2, we can
use that knowledge to attach a DS to it that is free of recrossing. Consider Fig. 3.4,
it shows three lines that could be used to define a DS. These lines all have in common
that they project the reaction velocity vx onto the reaction coordinate x in a certain
way. This allows us to define a DS that is (2n − 1)-dimensional in phase space. If we
were to chose a DS that passes through region III, i.e. through a region of non-reactive
trajectories, as seen in Fig. 3.4 line 3., we would count erroneous crossings from particles
that ultimately do not react. We can easily see in that sketch, that only if the DS is
attached to the NHIM, we can minimize the number of recrossing trajectories. However,
even though we attach the DS to the NHIM, there is still a freedom of choice. Since we
know that the only trajectories that affect the reaction rate are the reactive and back-
reactive trajectories from regions IV and II, the DS has to pass through these regions.
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How the DS passes through these regions, however, is up for debate.
In general, our knowledge of the trajectories’ exact heading is only accurate close to

the NHIM and the stable and unstable manifolds. This means that, in theory, we do
not know if the DS is truly recrossing-free for indefinitely large vx values. It might even
be the case, that a straight projection of the DS into the vx coordinate, as shown in
Fig. 3.4 for line 1., might not be recrossing-free in the close vicinity of the NHIM, when
one investigates the system numerically. However, experience shows that even with the
naive approach to project the vx coordinate directly onto the NHIM, as seen in Fig. 3.4
line 1., we find a small amount of recrossings [26].
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4. Numerical Methods to Determine
Rate Laws

Here, we discuss the numerical methods used to compute the reaction rates. This chapter
covers the computation of discrete points on the NHIM, the use of neural networks to
interpolate a smooth DS from the NHIM and the computation of the rate laws by
propagating an ensemble of trajectories through the DS.

4.1. Binary Contraction towards Points on the NHIM

For the sake of numerically constructing a recrossing-free DS in phase space, it is neces-
sary to compute a large amount of points on the NHIM. This purpose necessitates the
development of an efficient algorithm that is capable of computing these points accu-
rately. One of the results of this thesis was the development of the binary contraction
method [27], which fulfills these requirements. Here, we will discuss how the algorithm
works and show how it can be understood from what we know about the NHIM.

4.1.1. Main Algorithm

The binary contraction method is based on the observations made in Sec. 3.1.4. In Fig.
3.2 we can see, that the four regions in phase space that classify trajectories as either
non-reactive, reactive or back-reactive, can only be arbitrarily close to each other in the
vicinity of the NHIM. We will use this knowledge to our advantage and provide a method
that converges towards the juncture of these regions.

By integrating trajectories forward and backward in time we determine from which
side particles enter and leave the saddle region. This allows us to classify the initial
conditions of the trajectory to one of these regions. Using that information, we can
construct a quadrangle in the xvx-plane for a set of bath coordinates, with each vertex
in one of the four regions. We then use an easy scheme to contract that quadrangle
towards the juncture of the four regions, i.e. a point on the NHIM. The algorithm is as
follows:

1. Construct a quadrangle with each of its vertices in one of the four regions bordered
by the stable and unstable manifold.

2. Determine the midpoint between two adjacent vertices of the quadrangle.
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Figure 4.1.: The contraction is applied four times, once to each edge of the initial quad-
rangle. If the midpoint between two vertices is identified to be in the same
region of either of the two, then the vertex it corresponds to is moved to-
ward the midpoint. This contracts the quadrangle considerably towards the
juncture of the regions.
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3. Determine which region the midpoint corresponds to.

4. Use the new vertex to replace the vertex in the same region.

5. Repeat steps 2–4 for all edges, e.g., in a counter-clockwise manner as in Fig. 4.1,
until the longest edge of the quadrangle is below a desired error tolerance.

Fig. 4.1 illustrates one pass of the algorithm along all edges of a quadrangle. Every
time a vertex is moved, the length of the corresponding edge is halved. This causes the
edges to contract exponentially fast with repeated application of the algorithm, which in
turn causes this method to converge rapidly towards the juncture of the regions, which
is part of the NHIM.

4.1.2. Efficient Initialization

For the binary contraction to work, it is important to construct a proper, initial quad-
rangle whose vertices are uniquely placed in one of the four regions. This could be
accomplished in many ways, using approaches such as the TDs to scout for the invari-
ant manifolds. However, methods of initialization that are computationally taxing are
counter-productive, since they could overshadow the speed of the binary contraction.
Therefore, initialization of the contraction needs to be handled efficiently.

The initialization of the quadrangle is handled in two steps. First, for a set of bath
coordinates (y,vy), the reaction coordinates of the NHIM are guessed. With knowledge
over the structure of the invariant manifolds (see Sec. 3.3), one can then construct a
quadrangle from the guess (x0, vx0). To accomplish this, apply constant shifts onto the
guess for the reaction coordinates (x0 ± ∆x0, vx0 ± ∆vx0) to construct four vertices in
the xvx-plane. These shifts are by themselves educated guesses taken from the predicted
structure of the invariant manifolds and the size of the saddle region. If these four
vertices are uniquely placed in the four regions, we have found a valid quadrangle from
which we can start the iteration. This method works well, if the shifts are chosen to be
large enough. Considering, that the algorithm converges exponentially fast, choosing a
large initial quadrangle does not make a large impact on the computational time.

The guess for the reaction coordinates (x0, vx0) on the NHIM for a given set of bath
coordinates can be taken from a set of already known points. One can use a lightweight
extrapolation method to determine rough approximations from points of neighboring
bath coordinates. By combining these extrapolation methods with additional bookkeep-
ing that varies the shifts ∆x0 and ∆vx0 and keeps track of multiple vertices for each
direction, one can construct a fast and robust initialization method for the quadrangle.

4.1.3. Convergence for Edge Cases

Another item to consider is the possibility of a failed contraction. A situation like this
may occur when the hyperbolic point is not contained inside the quadrangle, although

33



4. Numerical Methods to Determine Rate Laws

I

II

III

IV

x

v x

Figure 4.2.: Edge case scenario. Vertices of regions I and IV should be contracted, how-
ever their midpoint lies in region III. The failure occurs because the juncture
of the four regions is not contained in the quadrangle. This problem is solved
by shifting the midpoint perpendicular to the connecting line, moving it into
region IV.

all vertices are still in unique regions. Fig. 4.2 shows a contraction failure when the
invariant manifolds are heavily distorted. This is problematic, as the contraction method
discussed is purely inclusive, meaning that it can only contract towards a quadrangle
that is contained in the previous quadrangle.

The solution to this problem is also illustrated in Fig. 4.2. When a contraction failure is
detected, the midpoint is shifted outwards, perpendicular to the connecting line between
the vertices. This expansion has two effects. First, we increase our chances of finding a
vertex inside a region that allows for contraction. Second, it allows the contraction to
expand into an area that was not contained by the original quadrangle, thus allowing
it to actively center itself around the juncture. As long as the perpendicular shift is
chosen small enough, a net contraction can still be observed for the affected iteration
step. Although this procedure requires more computational effort, we observe that, on
average, the computational time required is smaller than before. This is due to the fact
that by using this procedure, we avoid costly convergence failures that run until the
iteration limit is reached.
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4.2. Artificial Neural Networks

An artificial Neural Network (NN) is an algorithmic approach inspired by biological
nervous systems. The approach mimics the way neurons in a biological system are
interconnected and activated via signals passing through their synapses. Formally, a NN
is a function that maps a certain set of input data supplied to via its input neurons,
propagates the input through a set of neuron layers and finally yields the result with its
output layer. In computing applications, NNs have been used to classify large sets of
otherwise unwieldy data, as well as the interpolation of multi-variable functions whose
values are cumbersome to compute. Here, we use NNs to approximate NHIMs and
construct DSs [26] from training points obtained via the binary contraction.

4.2.1. Structure of a Neural Network

A feed-forward NN is a NN that only propagates its inputs forward through itself, i.e.
it avoids cycling results back into previous layers. The structure of such a network is
shown in Fig. 4.3, where we can see that neurons from any layer are always connected
to all neurons in the following layer, except for the neuron in the output layer, as it is
the last layer of the network. The value y

(n)
j of neuron j from layer n can be expressed

as

y
(n)
j = a(n)

(∑
i

w
(n)
ij y

(n−1)
i + b

(n)
j

)
, (4.1)

where w
(n)
ij are called the weights of the layer, which determine how the outputs of the

neurons from the previous layer are weighted for the activation of the current neuron,
b
(n)
j is the bias value for the current neuron and a(n)( · ) is the activation function of the

current layer. Of course, for the input layer n = 0 the values of the neurons are given
by the input data x of the NN. This makes the NN a function composition of N layers
to produce the output

y(x) = (y(N) ◦ y(N−1) ◦ ... ◦ y(1))(x) . (4.2)

We can see, that the activation function of the layers play a crucial role for the function
of the NN. In general, it is necessary to use non-linear activation functions, otherwise
the NN could be simplified to a linear map of the input data. If a differentiable NN is
desired, one can choose differentiable activation functions to guarantee that property.

4.2.2. Training a Neural Network

Finding the right weights and biases for Eqs. (4.1) and (4.2) to fulfill the purpose of
the NNs, is an involved process. To accomplish this, one typically uses an optimization
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4. Numerical Methods to Determine Rate Laws

Figure 4.3.: Taken from [28]. The structure of a feed-forward NN with m input neurons
and n output neurons and arbitrary hidden layers with activation function
a( · ).

process that minimizes the NNs deviation for a given set of training data. The deviation
from the data is given by a scalar cost function

C(x0,y0) =
1

2
‖y(x0)− y0‖2 , (4.3)

where y0 is the training value for input x0. The exact definition of the cost function
may vary, but as long as it is positive definite, differentiable and zero if y(x0) = y0, it
can be used for optimization based on gradient descent methods.

Typically, a stochastic gradient descent method is used to optimize the weights and
biases of a NN. For every step in the training process, the weights and biases are shifted
via the gradients of the cost function

ŵ
(n)
ij = w

(n)
ij − η

∂C

∂w
(n)
ij

, (4.4)

b̂
(n)
j = b

(n)
j − η

∂C

∂b
(n)
j

, (4.5)

where η is the learning rate, i.e. the rate at which the gradient of the cost function affects
the new weights ŵ

(n)
ij and biases b̂

(n)
j . Evaluating the gradients for every component of

the cost function is computationally expensive for large NNs. Therefore, to alleviate
the computational cost, the stochastic gradient descent method only evaluates random
components of the gradients for every training iteration. Even though this approach
only approximates a gradient descent method, the stochastic gradient descent method
has been shown to converge towards local minima, and in some cases even global minima.

36



4.3. Computing Reaction Rates

4.2.3. Using Neural Networks to Approximate NHIMs

Given a discrete subset Ñ (t) of the NHIM N (t), defined in Eq. (3.32), for discrete
intervals of t, we can optimize the weights and biases of a NN to approximate the
complete set N (t), for any time t. In theory, we can approximate every differentiable
NHIM with a NN, however in practice, the accuracy of the approximation relies heavily
on the layer geometry, the type, and activation functions of the NN, as well as the
optimization algorithm used, not to mention the shape of the training data. If, for
instance, the NHIM N (t) contains erratically moving structures, then it is necessary
to both provide training data with sufficient resolution in these areas and use a layer
geometry with sufficient complexity to approximate these structures.

For TST, we use NN approximations of the NHIM to construct DSs for rate calcula-
tions. This is done in order so save unnecessary computational effort in calculating the
NHIM at an extremely high resolution. In practice, the NNs are trained to compute
points on the NHIM as functions of the bath coordinates and time. This means that
for a system with n spatial coordinates, the NN would require (2n − 1) input neurons,
(2n−2) for the bath coordinates and 1 for the time t. Depending on the choice of the DS,
the requirements for the output neurons differ. For instance, if one were to choose line 2.
in Fig. 3.4 as a DS, one would need both the reaction coordinate and its corresponding
velocity on the NHIM to construct the DS. However, if one were to choose line 1. in the
same figure, then the only output that is required of the NN is the reaction coordinate
x.

For the time-dependent potential shown in Fig. 2.3 and Eq. (2.4), experience shows
that a NN with only one output neuron for the reaction coordinate x converges much
faster than a NN with two outputs. Specifically, a NN with 3 input neurons, followed by
a hidden layer with 40 and 10 neurons, as well as one output neuron, shows promising
results [28]. All layers, except for the last layer, use the inverse tangent as activation
function

a(x) = arctan(x) , (4.6)

while the last layer produces a linear combination of the previous neurons’ values.

4.3. Computing Reaction Rates

With a NN that can approximate the reaction coordinate of the NHIM for any given
bath coordinate and time, we can now compute reaction rates.

4.3.1. Tracking Particle Distance from DS

By tracking the distance of a particle to the DS, i.e. the difference between the reaction
coordinate of the particle and the NHIM, we can determine on which side of the DS the
particle is located. This allows us to determine whether or not the particle is a reactant
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4. Numerical Methods to Determine Rate Laws

or product for every time step of the integration. Furthermore, given an ensemble of
particles, this allows us to track the number of reactants Nr(t).

Not only is the distance of the particle relevant, but also the number of times the
particle crosses the DS. This can be observed in the number of times the distance changes
its sign. Ideally, we only want the particle to cross the DS once, as recrossings of the DS
would result in the overestimation of the reaction rate. However, since the usage of a
NN based approach is a compromise between performance and accuracy, we may expect
some amount of recrossing caused by errors in approximating the NHIM.

4.3.2. Obtaining Rate Laws and Constants for Unimolecular
Reactions

When investigating a unimolecular reaction, knowing Nr(t) is enough to characterize the
rate law of the reaction, since the number of products takes the form

Np(t) = Nr(0)−Nr(t) . (4.7)

For the rate law, this means that

∂Np

∂t
(t) = −∂Nr

∂t
(t) . (4.8)

Given what we know about rate laws (see Eq. (1.7)), we expect to find a single rate
constant for the reaction. For a first order reaction, the rate law would take the form

∂Np

∂t
(t) = kNr(t) , (4.9)

with Eq. (4.8) this would mean that Nr is an exponential function of the form

Nr(t)−Nr(∞) = Nr,0 exp (−kt) , (4.10)

whereNr(∞) is the integration constant, signifying the number of reactants that have not
reacted and Nr,0 is the number of initial reactants that are going to react. A positive rate
constant k implies that the number of reactants in the system would decay exponentially.

One thing to consider when investigating the rate law is the settling time of the
reaction. The rate law at the start of the reaction may not reflect the rate law for the
majority of the time. This settling time at the beginning may be a consequence of the
initial ensemble of particles propagated for the reaction. Due to this, it may be useful to
investigate how Nr(t) behaves at different times of the reaction. When expecting a first
order reaction, for instance, investigating Nr(t) on a logarithmic scale will reveal regimes
of exponential decay as straight lines. By identifying such regimes, one can determine
the rate constant of the first order reaction by fitting Eq. (4.10) to the measurements.
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5. Investigating a Model System under
Langevin Dynamics

We investigate the invariant manifolds of a model system under Langevin Dynamics,
compute points on the NHIM, determine a DS, and calculate the rate law. By inves-
tigating the effects of friction and temperature on trajectories of the system as well as
the NHIM we will try to understand the difficulties that we might encounter. By ap-
proximating the NHIM, we construct a smooth DS to extract the rate constant for the
system under different friction and temperature parameters.

5.1. Preliminary Investigation without Langevin
Dynamics

To acquire a preliminary understanding of the results that we should expect, we first
investigate the model system without Langevin Dynamics, i.e. without friction and noise.
We choose a parameter set where Eq. (2.4) takes the form

V (x, y, t) = 2 exp
(
−[x− 0.4 sin (πt)]2

)
+ 2

(
y − 2

π
arctan (2x)

)2

, (5.1)

in simulation units. With these parameters, the saddle oscillates with a period of T = 2.
For this potential, we investigate the saddle region x ∈ [−1.5, 1.5].

5.1.1. Time Descriptors of the Saddle Region

To reveal the stable and unstable invariant manifolds for a certain set of bath coordinates
(y, vy), we compute the TDs (see Sec. 3.2) in the plane of the reaction coordinate and
its velocity (x, vx) within the saddle region. Figs. 5.1 (a) and (b) show the backward and
forward time component of the TDs, respectively. This allows us to identify that the
line of maxima depicted in Fig. 5.1 (a) is the unstable manifold and Fig. 5.1 (b) depicts
the stable manifold. Knowing which of the manifolds are stable and unstable allows us
to identify the heading of trajectories close to these manifolds.

Fig. 5.2 (a) shows the complete TD of the saddle region for y = vy = 0 and t =
0. We can clearly see the shape of a cross, which splits the plane in four distinct
regions. Together with the results depicted in Figs. 5.1 (a) and (b), we can determine
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Figure 5.1.: TD components for bath coordinates y = vy = 0 and time t = 0. Dark
colors signify small values, bright colors large values. The backwards time
component (a) reveals the unstable manifold and forward time component
(b) reveals the stable manifold.
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Figure 5.2.: (a): Complete TD from the components of Figs. 5.1 (a) and (b). Their
intersection highlights the point on the NHIM for bath coordinates y = vy =
0 at time t = 0. (b): Region mapping of the same plane in phase space,
highlighting different types of trajectories. The mapping was calculated
independent from the TD method, to verify the results.
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Figure 5.3.: Time-dependent motion of the NHIM in the (x, vx) plane for t ∈ [0, T ].
A mapping of the TDs at time t = 0 is shown in the backgrounds. The
movement of the NHIM forms a closed loop with the oscillation of the saddle.
Results in (a) were computed for bath coordinates y = vy = 0, results in
(b) were computed for bath coordinates y = 0.5, vy = 2. The extents of the
coordinate axes are intentionally chosen to be the same for both plots.

the classifications of the trajectories from the TDs, as depicted in the sketch Fig. 3.2.
We find, that the trajectories from the upper region are reactive, the trajectories from
the lower region are back-reactive, and the trajectories in the left and right regions do
not react at all. The classifications have been verified in the direct calculation of the
trajectories depicted in Fig. 5.2 (b). We can see the four different regions in phase
space, whose trajectories have been classified independently of the invariant manifolds.
Trajectories were integrated forward and backward in time for every coordinate in the
highlighted region and were classified according to which direction they entered and left
the saddle region. As we can see, the shapes of the regions depicted in Fig. 5.2 (b)
match the regions bordered by the maxima of the TDs in Fig. 5.2 (a). The trajectory
headings determined from the invariant manifold approach match the results from the
direct computation as well.

5.1.2. Time-Dependent Motion of the NHIM

By revealing the invariant manifolds for a few bath coordinates, we now know where
to expect reactive and back-reactive trajectories. With this knowledge we can safely
construct good initial conditions for the Binary Contraction (see Sec. 4.1.1), even for
bath coordinates that have not been explored with the TDs. Here, we use the Binary
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5. Investigating a Model System under Langevin Dynamics

Contraction to compute the NHIM for several times t ∈ [0, T ] over the oscillation period
of the potential.

The time-dependent motion of the NHIM is shown in Figs. 5.3 (a) and (b), for two
different bath coordinates. In both figures we can see that the NHIM forms a closed loop
in the xvx-plane for the corresponding bath coordinates. This is to be expected, as the
underlying potential for the system is periodic. In Fig. 5.3 (a) we can see a symmetric
path of the NHIM around the origin of the xvx-plane. In Fig. 5.3 (b) we can see that
this is not the general case, as the path of the NHIM does not circle the origin, nor
does it possess an obvious symmetry. Keep in mind that even though the NHIM itself
is an invariant manifold, the paths shown in Figs. 5.3 (a) and (b) are, in general, not
trajectories of the system. They are just a view of the NHIM for a fixed set of bath
coordinates.

5.1.3. Interpolating the NHIM

Using the Binary Contraction, we computed a total of roughly 10, 000 points on the
NHIM, for bath coordinates in the interval y ∈ [−4, 4], vy ∈ [−8, 8] and time coordinates
in the interval t ∈ [−0.5, 2.5]. These points were used to train a NN with three input
neurons, followed by a hidden layer of 60 neurons and one with 20 neurons. The net
had only one output neuron and was trained to approximate the reaction coordinate
x. The training iterated over the training data roughly 10, 000 times, which is a very
short training time for NNs. Regardless, this amount of training was already enough to
provide the necessary accuracy to minimize the recrossings during rate calculations.

As the NHIM for any given bath coordinate moves in a smooth, closed loop, the
time-dependent motion of the NHIM was not hard to approximate by the NN. This is
the reason why a fairly small set of training data was enough to train a small NN to
approximate the NHIM. The NHIM at t = 0, computed with the Binary Contraction, can
be seen in Fig. 5.4. The color coding shows the local deviation of the NN approximation
from the real data. We find that the errors are largest in areas where the NHIM is
strongly warped. This is to be expected, given that the training data provided the same
resolution of points for the highly warped regions near the origin and the less warped
regions. This means that areas which are harder to interpolate were weighted as much
in the training as areas that are easier to interpolate.

5.2. The Effects of Langevin Dynamics on the NHIM

In this section we investigate how friction γ and temperature kBT , introduced in Eqs.
(2.5) and (2.9), affect the dynamics of our model system and the time-dependent motion
of the NHIM. To this end, we investigate the invariant manifolds using the same ap-
proaches that we have used in the previous section 5.1 to investigate our model system
without Langevin dynamics.
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Figure 5.4.: NHIM for the noise- and frictionless model system given in Eq. (5.1) for
t = 0. The reaction coordinate x is shown as a function of the bath coordi-
nates y and vy. The reaction velocity vx has been omitted for visualization
purposes. The face colors of the surface represent the deviation of the NN
approximation from points computed via Binary Contraction.

5.2.1. Effects of Friction on Time Descriptors

Fig. 5.5 shows the TDs in the xvx-plane for the bath coordinates at y = vy = 0 and
time t = 0, for the model system under Langevin dynamics. In this particular case, we
are investigating the TDs at a temperature of kBT = 0 with friction coefficients γ ∈
{0, 0.3, 0.8, 2.0}. Fig. 5.5 (a) shows a reference system without Langevin dynamics, while
Figs. 5.5 (b), (c), and (d) show how different values of friction influence the invariant
manifolds.

By looking at the scale to the right of these each figures, we can see that the TD values
of the stable manifolds increase with friction. This can be explained with the influence
of the friction on the forward and backward time components of the TDs. In forward
time, the friction reduces the initial velocities of the trajectories, as well as the influence
of the particle’s inertia towards the dynamics. This causes the particle to stay inside the
saddle region for a much longer than usual. This is especially true for trajectories near
the stable manifold. In backwards time, the effects of friction are reversed. Instead of
dampening the initial velocities, we find that the friction causes the velocities to increase
exponentially (see Eq. (2.8) for reference). This causes trajectories in backwards time
to escape the saddle region much faster, which in turn implies that the backward time
component of the TDs is smaller than usual.
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Figure 5.5.: TDs of the xvx-plane for bath coordinate y = vy = 0 and time t = 0, for
increasing friction coefficients. We can clearly see crosses for all friction
values, indicating the stable and unstable manifolds.
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We also observe, that the invariant manifolds shift with increasing friction. For a small
friction value, as depicted in Fig. 5.5 (b), the invariant manifolds do not change much.
However, for medium frictions, as shown in Fig. 5.5 (c), we see that the stable manifold
is straightened out for larger |x| and its slope becomes steeper, while the slope of the
unstable manifold decreases. This occurrence can also be observed for a high friction
coefficient, illustrated in Fig. 5.5 (d). However, even though the invariant manifolds shift
noticeably, their intersection is only shifted slightly.

5.2.2. TDs and Erratic Motion of NHIMs under Noise

For non-zero temperatures, the dynamics of the system changes considerably. Not only
do the coordinates of the NHIM change, their time-dependent motion is also highly
erratic under certain circumstances. This is illustrated in Fig. 5.6, where we see the
time-dependent motion of the NHIM over the period of the underlying potential, for four
different sets of temperature and friction. For these particular calculations, the same
sequence of fluctuating forces was used, aside from their intensity ξ, which depends on
temperature and friction (see Eq. (2.12)).

For low temperatures and friction, as seen in Fig. 5.6 (a), we find that the NHIM’s
movement still roughly resembles a closed loop. Note that the time-dependent motion
of the NHIM is not periodic, since the fluctuating force is not periodic. The influences of
stochastic forces are clearly visible, as we can see the fluctuation in the path of the NHIM.
By increasing the friction, as seen in Fig. 5.6 (b), we find that the small fluctuation has a
much higher impact on the path of the NHIM. This can be explained due to the fact that
a high friction coefficient reduces the contribution of a particles inertia to the dynamics.
Therefore, the path that trajectories take through the system are much more influenced
by the acting force. This, of course, also affects the NHIM, as the fluctuating force in
the vicinity of the potential saddle can decide whether or not a particle is reactive. The
same can be seen in Fig. 5.6 (c), where we observe the NHIM for high temperatures and
low friction. In this case, the high intensity of the fluctuating force causes the NHIM
to move erratically, similar to the previous case with low temperature and high friction.
Unsurprisingly, for high temperature and friction we find an extremely erratic NHIM,
as can be seen in Fig. 5.6 (d).

In the case of high friction and high temperature, the TDs may indicate that there
might be more than one stable and unstable manifold. This can be seen in Figs. 5.6
(b), (c), and (d), where one can see sharp gradients in the TDs other than the most
prominent ones. This is especially true for Fig. 5.6 (d), as one can easily discern a
second cross next to the NHIM. These additional crosses and their edges should not be
mistaken for invariant manifolds, as their edges are not local maxima of the TD. Rather,
they are edges of plateaus in the TD values. This is further illustrated in Figs. 5.7 (a)
and (b). These figures show both the TD values for high temperature and friction, as
well as the trajectory regions, classifying trajectories as either non-reactive, reactive or
back-reactive. We can clearly see that only the local maxima of the TDs indicate the
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Figure 5.6.: TDs of the xvx-plane for bath coordinates y = vy = 0 and t = 0, for different
combinations of temperature and friction. The plotted line indicates the
time-dependent motion of the NHIM over the period of the saddle potential.
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Figure 5.7.: (a): TDs of the xvx-plane for bath coordinates y = vy = 0 and time t = 0 for
high temperature and friction. One can see the cross of the local maxima,
indicating the stable and unstable manifold, as well as several crosses of
plateau borders. (b): Region mapping of the same plane, showing that only
the cross of the local maxima in (a) border any significant region in phase
space.

borders of these trajectory regions.

5.2.3. Interpolating Noisy NHIMs

Due to the erratic nature of a NHIM’s time-dependent motion, interpolating the NHIM
under Langevin dynamics requires far more computational effort to produce accurate
results. To train a NN that could accurately approximate the reaction coordinate for a
given set of bath coordinates and time, we used approximately 120, 000 data points to
train a net with three hidden layers and (60, 140, 60) neurons respectively.

Using this configuration, we trained the net to approximate the NHIM of a system
with high temperature and friction kBT = γ = 1. This can be seen in Fig. 5.8. For small
bath coordinates we find that the NHIM is warped in a different way than it was in the
case of zero friction and noise, shown in Fig. 5.4. Interestingly, even though the NHIM’s
time-dependent motion is highly erratic for these parameters, its shape in phase space
is similarly smooth compared to the NHIM of the noiseless system. This observation
helped to determine, that the training set for the NN should be optimized for a higher
resolution in time, rather than bath coordinates.
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Figure 5.8.: NHIM for a system subject to Langevin dynamics for t = 0, γ = 1, and
kBT = 1. The reaction coordinate x is shown as a function of the bath coor-
dinates y and vy. The reaction velocity vx has been omitted for visualization
purposes. The face colors of the surface represent the deviation of the NN
approximation from points computed via Binary Contraction.

5.3. Rate Calculation

Now that we have investigated the dynamics of the system thoroughly and determined
how to approximate the NHIM and the DS efficiently, we can calculate the rate laws. To
accomplish this, we will investigate trajectories crossing a DS constructed by projecting
the reaction velocity onto the reaction coordinate.

5.3.1. Investigating the Reaction Coordinate of a Single Trajectory

A single trajectory is considered to have crossed the DS if its reaction coordinate has
crossed the reaction coordinate of the NHIM associated to it. That is to say that when
propagating the trajectory, the reaction coordinate of the NHIM corresponding to the
bath coordinates and time of the trajectory will be approximated and compared to the
reaction coordinate of the trajectory. If the reaction coordinate is lower than that of the
NHIM for the same bath coordinates, then the particle will be considered a reactant.
If it is larger, it will be considered a product. The reaction coordinate of a reactive
trajectory and the corresponding coordinate on the NHIM can be seen in Fig. 5.9 for
a system subject to Langevin dynamics. Note that although the trajectory crosses the
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Figure 5.9.: Plot of the reaction coordinate for a single trajectory over time, together
with the reaction coordinate of the NHIM for the bath coordinates of the
trajectory at that time. We can see the trajectory crossing the DS at a time
of roughly t = 0.6, transitioning from reactant to product.

NHIMs reaction coordinate for its corresponding bath coordinates, it does not cross the
NHIM, as the reaction velocities differ.

5.3.2. Tracking of Crossings and Extraction of Rate Constants

By propagating a canonical ensemble from the reactant region and measuring the flux
through the DS, we can determine the rate law. To do so, we tracked the crossings of
every trajectory and measured the time of the first crossing. As discussed in Sec. 4.3,
we extract the rate law of first order reactions from these measurements.

The time-dependent number of reactants Nr(t) is shown in Fig. 5.10 for a system with
temperature kBT = 0.4 and friction γ = 0.1. The logarithmic plot was chosen to reveal
the predominantly exponential decay over time. A settling time of the reaction can be
seen in the first 1.5 time units, where the reactants Nr(t) settle into an exponential
decay. For long times we can see discretization errors that occur due to the discrete
number of reactants. This causes function Nr(t) to seem more erratic than it actually
is. The problem can be dealt with by simulating a vast amount of reactants to smooth
out these sudden jumps. In this particular case, a total of 2, 000, 000 trajectories were
computed. The high number of trajectories was necessary to obtain reliable results for
the rate constants. An exponential fit of the function Nr(t)−Nr(inf) = Nr(0) exp (−kt)
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Figure 5.10.: Plot of the number of reactants over time, where the number of reactants
is shown on a logarithmic scale. The dashed line indicates an exponential
fit f(t) = N0 exp (−kt), where the results are N0 = 68, 494 and k = 2.901.
The crosses indicate the region where the fit was made.

was performed in the region of exponential decay, between the settling period and the
region of large discretization errors. In this regime, the rate constant was determined
for the first order reactions. From the fit, we find that the rate constant is k = 2.901.
Note, that this is the result for a single stochastic force sequence and not an ensemble
average of the thermalized system.

To verify that the number of recrossings is negligible, we counted the number crossings
for every trajectory individually. The results are shown in Fig. 5.11, where we can see the
number of recrossing trajectories compared to the number of trajectories that only cross
once. In this case, the number of recrossing trajectories is negligible compared to the
reactive trajectories. Considering that the approximation of the NHIM, and therefore
the construction of the DS, is not exact, we can safely attribute these recrossings of the
particles to numerical errors.

5.3.3. Effects of Erratic NHIM on the Rate Calculation

When friction and temperature are chosen to produce a NHIM with erratic, time-
dependent motion, it is possible to find a noticeable amount of recrossings in the rate
calculations. As was shown Sec. 5.2.2, the time-dependent motion of the NHIM can
become highly erratic in systems with high friction and temperature.
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Figure 5.11.: Bar plot comparing the number of single crossings with the number of
recrossing trajectories for a system with γ = 0.1 and kBT = 0.4. For 1298
crossing trajectories, we have found only 7 recrossing trajectories. The bar
representing the recrossings is barely discernible.

An example of such a case is shown in Fig. 5.12 (b), where we can see roughly 8%
of all crossing particles are recrossing, for a system with γ = 1 and kT = 2.0. Conse-
quently, the number of reactants Nr(t) measured may be erroneous. In this case, even by
discarding all recrossing trajectories in Nr(t), we cannot observe a regime of consistent,
exponential decay. Although this might imply that this is not a first order reaction, the
high number of recrossings make any speculation over the rate law moot. What increases
the difficulty of interpreting the rate law even further is the fact that a high friction co-
efficient significantly reduces the amount of particles that can cross the energy barrier.
The reduction in the number of reacting particles implies that the likelihood of finding
a regime of exponential decay decreases even further, as it is possible for discretization
errors to become relevant during the settling time of the reaction.

As it stands, the large number of recrossings make it difficult to investigate the rate
law in a high friction regime. The highly erratic motion of the NHIM prevent the NN
to provide an adequate approximation. This can be seen, when comparing Figs. 5.4 and
5.8, where the approximations of the NHIM is shown for a noiseless system and a system
subject to high friction and temperatures. Even when using a significantly larger NN
and a much larger set of training data for the Langevin system, we can see that the
errors of the approximation are roughly an order of magnitude larger compared to the
noiseless system. The errors in the approximation in turn introduces large errors in the
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Figure 5.12.: Results of the rate calculation for a system with high friction γ = 1 and
temperature kBT = 2. The number of reactants over time Nr(t), as seen
in (a) shows, that the reactants do not reach a regime of exponential decay
during the course of the reaction. Due to the high friction and temperature,
a lot of recrossings are observed, as shown in (b).

time-dependent motion of the constructed DS. Due to the errors introduced to the DS
used to count the crossings of trajectories, this causes recrossings in our calculations.
This effect is compounded by the effect of high friction, which biases the dynamics of
the system towards smaller velocities. This causes trajectories to linger in the saddle
region and near the DS, which opens up opportunities to count erroneous recrossings if
the DS is inaccurate.

5.3.4. Temperature Dependence of Rate Constants for Low Friction

For small friction, we can reliably obtain the rate constants of the first order reaction.
To investigate the temperature dependence, we computed the rate constants for systems
with friction γ = 0.1, for many temperatures. To obtain reliable results for the rate
constants, we propagate ensembles of several million particles. This had the consequence,
that for every set of temperature and friction, the rate constant was computed with a
single noise sequence. Note, that to obtain a statistically sound result, however, the
rate constants need to be averaged over several noise sequences to obtain the ensemble
average.

The results for γ = 0.1 are shown in Fig. 5.13, where we obtained an activation
energy of Ea ≈ 0.3482 and a high-temperature limit for the rate constant of A ≈ 4.42.
What is evident from the fit is that the measured rate constants, especially at higher
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Figure 5.13.: Rate constants k computed for a system with friction γ = 0.1 over the
temperature. The constants obtained here are not ensemble averages, but
computed with a single, identical noise sequence. The fit of Arrhenius’s
equation resulted in an activation energy of Ea ≈ 0.3482 and a high-
temperature limit of A ≈ 4.42.

temperatures, deviate in both directions around the fit. This is to be expected, as the
rate constants that are computed are not ensemble averages, but rather result from a
single computation. However, these results suggest that the rate constants may follow
Arrhenius’s law.
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6. Conclusion and Outlook

In this work, we have introduced a numerical process on how to obtain rate constants
for a time-dependent, rank-1 saddle potential under Langevin dynamics. An algorithm
was introduced which is efficient in computing points on the time-dependent, normally
hyperbolic invariant manifold of a system. These points are then used to train a neural
network to provide a smooth approximation of that manifold. This in turn allowed us
to construct a recrossing-free dividing surface in phase space, for which we could mea-
sure the time-dependent particle flux of reactants transitioning into products. From the
time-dependent reaction rate we could then extract the rate constant of the reaction.
This was done for systems subject to Langevin dynamics. It was shown that the rate
constants obtained from this method follow Arrhenius’s law, which provides a tempera-
ture dependent description of rate constants. Furthermore, the time-dependent motion
of the invariant manifolds was investigated for different sets of friction and temperature.

When investigating the reactions of systems under high friction, we have found that
the approximation with the neural network approach produces recrossings in the particle
transitions. We suspect that this is due to the highly erratic, time-dependent motion of
the normally hyperbolic invariant manifold, which seems to be difficult to approximate
by the neural networks. This issue needs to be addressed in the future, if one aims to
compute rate constants for systems with strong dissipation.

Furthermore, even though the binary contraction significantly reduces the computa-
tional time in the process of obtaining rate constants, obtaining a statistically sound
rate constant would still entail the computation of several hundreds of rate constants
for different noise sequences. As it stands, computing a rate constant for a single noise
sequence requires roughly one CPU day of computational time. Meaning, that to obtain
an adequate ensemble average over several noise sequences for a single friction and tem-
perature combination, one needs to invest several hundreds of CPU days. Although this
could be accomplished in a short amount of time by a medium-sized compute cluster,
one would need to have these kinds of computational resources readily available to do
so for a large set of potential parameters. The current bottle neck in the computation
is the rate calculation itself, as it requires a large neural network to approximate the
DS under Langevin dynamics. If one could find a way to obtain a reliable rate constant
without the integration of several millions of trajectories, the computational effort could
be reduced by an order of magnitude.
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A. The Velocity-Verlet Integrator

Symplectic integrators are integrators that are optimized to solve Hamiltonian equations
of motion. The properties of these integrators ensure, that certain properties of Hamilto-
nian systems are conserved. This includes properties derived from the symmetries of the
system, such as energy and momentum conservation laws. Phase space geometries that
are related to the dynamics of the system are also simulated accurately, such as the in-
variant manifolds. Due to these properties, it is important to use symplectic integrators
when investigating these manifolds.

The Velocity-Verlet Integrator is a symplectic, second-order integrator that finds wide-
spread application in most Molecular Dynamics applications. Even though it is a sym-
plectic integrator, it can be derived from the Newtonian equation of motion, if we assume
a velocity independent force F . It can be derived through the Taylor expansion of the
position x(t) and velocity v(t)

x(t+ h) = x(t) + ẋ(t)h+
ẍ(t)

2
h2 +O(h3) , (A.1)

v(t+ h) = v(t) + v̇(t)h+
v̈(t)

2
h2 +O(h3) . (A.2)

With the equations of motion

ẋ = v , v̇ = F (x)/m , (A.3)

(A.4)

where m is the inertial mass, we find

x(t+ h) = x(t) + v(t)h+
F (x(t))

2m
h2 +O(h3) , (A.5)

v(t+ h) = v(t) +
F (x(t))

m
h+

v̈(t)

2
h2 +O(h3) . (A.6)

All that is left to do is to find an expression for v̈(t) that satisfies the order of the
expansion. To this end, we perform a first-order expansion of v̇(t)

v̇(t+ h) = v̇(t) + v̈(t)h+O(h2) . (A.7)

By multiplying Eq. (A.7) with h, applying the equations of motion and rearranging to
solve for v̈(t) we find

v̈(t)

2
h2 =

h

2m
(F (x(t+ h))− F (x(t))) +O(h3) . (A.8)
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A. The Velocity-Verlet Integrator

Finally, by replacing the expansion parameter h with the time step ∆t of the integration
and substituting Eq. (A.8) into Eq. (A.6), we find

x(t+ ∆t) = x(t) + v(t)∆t+
F (x(t))

2m
(∆t)2 +O((∆t)3) , (A.9)

v(t+ ∆t) = v(t) +
∆t

2m
[F (x(t)) + F (x(t+ ∆t))] +O((∆t)3) , (A.10)

which are the equations of the Velocity-Verlet integrator.
From the derivation it is evident that these equations provide trajectories that are

accurate up to second-order terms in the time step ∆t.
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B. Zusammenfassung in deutscher
Sprache

Diese Arbeit befasst sich mit der numerischen Anwendung der Transition State The-
ory zum Berechnen der Reaktionsraten von zeitabhängigen, mehrdimensionalen, Rang-1
Sattelpotentialen. Um dies zu bewerkstelligen, wird eine zeitabhängige Trennfläche im
Phasenraum konstruiert, welche von jeder reaktiven Trajektorie genau einmal durch-
quert wird. Dies erlaubt es uns zu jedem Zeitpunkt der Reaktion die Zahl der Edukte
und Produkte zu kennen.

Kapitel 2 befasst sich mit den theoretischen Grundlagen für die physikalische Model-
lierung chemischer Reaktionen. Hierbei werden Methoden der Molekulardynamik ver-
wendet. Zunächst beschreiben wir, wie man aus einem quantenmechanischen System
eine klassische Approximation der Dynamik erhält. Anschließend wird diskutiert, wie
man mit der Methode des minimum energy paths Reaktionen auf statischen Potentialen
beschreibt. Ein Potentialmodell wird eingeführt, mit dem typische Potentiale einer Reak-
tion modelliert werden können. Zusätzlich wird die Langevin Gleichung vorgestellt,
welche verwendet wird um die Kopplung an ein Wärmebad zu simulieren, sowie der
Einfluss von stochastischen Phänomenen.

Kapitel 3 stellt die theoretischen Grundlagen der Transition State Theorie für zeitab-
hängige Systeme vor. Anhand eines Beispielmodells werden hyperbolische Fixpunkte
vorgestellt, sowie die invarianten Mannigfaltigkeiten der Dynamik. Eine höherdimension-
ale Verallgemeinerung der hyperbolischen Fixpunkte wird vorgestellt, sowie Methoden,
welche benutzt werden können um invariante Mannigfaltigkeiten zu finden. Desweit-
eren wird diskutiert, wie man invariante Mannigfaltigkeiten dazu benutzen kann um
Trennflächen zu konstruieren, welche nur einmal von reaktiven Trajektorien durchquert
werden.

Kapitel 4 stellt numerische Methoden und Algorithmen vor, welche für die Unter-
suchung unserer Systeme verwendet werden. Es deckt die Berechnung von Punkten
auf den normal hyperbolischen invarianten Mannigfaltigkeiten ab, sowie das Verwenden
dieser Punkte um glatte Näherungen der gesamten Mannigfaltigkeit zu erhalten. Die
binäre Kontraktionsmethode zum Erhalten dieser Punkte wird eingeführt, welche eine
robuste und exponentiell schnell konvergierende Methode ist. Dieser Algorithmus basiert
auf geometrischen Beobachtungen zu den invarianten Mannigfaltigkeiten im Phasenraum
und benutzt Trajektorienklassifizierungen um seine Arbeit zu leisten. Wir diskutieren
das Verwenden von neuronalen Netzwerken um aus den Punkten, welche mit der binären
Kontraktion berechnet wurden, die Trennflächen zu approximieren, welche in Kapitel 3
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B. Zusammenfassung in deutscher Sprache

vorgestellt worden.
In Kapitel 5 untersuchen wir ein Modellsystem unter Langevindynamik. Die Modelle

und Methoden, welche in den vorherigen Kapiteln vorgestellt wurden, werden angewen-
det um die Dynamik des Systems zu untersuchen, sowie den Einfluss von Reibung und
Temperatur. Die Ratengesetze wurden für verschiedene Parametersätze ausgerechnet
und ausgewertet.

Es wurde gezeigt, dass die Ratenkonstanten des untersuchten Systems der Arrhe-
nius Gleichung folgen, welche eine temperaturabhängige Beschreibung dieser Konstan-
ten liefert. Desweiteren wurde die zeitabhängige Bewegung der Mannigfaltigkeiten in
Abhängigkeit mit der Reibung und Temperatur untersucht.

Beim Untersuchen der Reaktionen in Systemen mit hoher Reibung fiel auf, dass die
Näherungen der neuronalen Netzwerke dazu führen, dass einige Trajektorien mehrfach
die Trennfläche durchqueren. Wir vermuten, dass die erratische, zeitabhängige Bewe-
gung der Mannigfaltigkeiten zu den großen Fehlern in der Approximation geführt hat.
Dieses Problem muss behandelt werden, falls man in Zukunft an den Ratenkonstanten
von System mit hoher Dissipation interessiert ist.

Obwohl die binäre Kontraktion den Rechenaufwand für das Berechnen der Ratenkon-
stanten signifikant gesenkt hat, sind für das Erhalten von statistisch signifikanten Ra-
tenkonstanten der thermalisierten System immernoch mehrere hundert Ratenrechnungen
für verschiedene Rauschsequenzen notwendig. Zur Zeit benötigt eine Ratenrechnung ca.
einen CPU-Tag an Rechenzeit. Dies bedeutet, dass das Berechnen einer Ratenkonstante
über mehrere Rauschsequenzen hinweg hunderte von CPU-Tagen in Anspruch nehmen
kann. Obwohl dies in relativ kurzer Zeit von einem mittelgroßen Rechencluster bewerk-
stelligt weden kann, müssen diese Rechankapazitäten frei zur Verfügung stehen um diese
Rechnungen für einen großen Parametersatz durchzuführen. Zur Zeit ist das Propagieren
eines Trajektorienensemble, zum Berechnen des Ratengesetzes, das größte Nadelöhr, da
das neuronale Netzwerk für die Trennflächenapproximation sehr groß sein muss unter
Langevindynamik. Wenn ein Weg gefunden werden könnte, mit dem man die Raten-
konstanten ohne das Integrieren von mehreren millionen Trajektorien bestimmen kann,
könnte man den Rechenaufwand um eine Größenordnung vermindern.
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