
System-Theoretic Safety Analysis in

Agile Software Development

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Yang Wang
aus Shanghai, China

Hauptberichter: Prof. Dr. Stefan Wagner

Mitberichter: Prof. Dr. Casper Lassenius

Tag der mündlichen Prüfung: 2018-10-17

Institut für Softwaretechnologie

2018

Acknowledgement

First and foremost, I would like to express my sincerest gratitude to my
advisor Prof. Dr. Stefan Wagner.

He gives me the opportunity to work with him and within his group. He
helps me to apply a scholarship for supporting my study. He motivates,
guides and supports me for taking my first step in research and this area. He
opens my mind and stays be with me to find the way and pursue the success
at each stage. He makes my dream to write this dissertation possible and
my future with many more possibilities. I am grateful for his patience and
understanding in these three years.

I would also like to express my deepest gratitude to:

Prof. Dr. Steffen Becker. I got known of him from the beginning of writ-
ing my dissertation. He helps me and gives me a lot of valuable suggestions.
His suggestions make me writing this dissertation with a much clearer mind,
especially when I am confused about the motivation as well as the final
evaluation of this dissertation.

Dr. Ivan Bogicevic. He is the first colleague that I met at our group. During

3

these three years, he helped me through each daily work at the same office.
Especially, we had a great cooperation with a publication in the year 2017
concerning the 5th chapter in this dissertation. In addition, he helps me
reviewing the whole dissertation word-by-word in the end.

Dr. Daniel Graziotin. I really want to thank this Italien. Especially, we
had a great cooperation when I am finishing my PhD concerning the 7th
chapter in this dissertation. This cooperation helps me understanding more
about academic writing and lighting my passion for the further research.

Dr. Geir Kjetil Hanssen. When I started my research, I noticed the rigorous
work in this research area about "Safe Scrum" from him and his colleagues.
I feel so lucky that we got known of each other in the year 2016. I wrote
this dissertation following the guidance from him, as well as "Safe Scrum".
We discussed each year in his workshop (ASCS) align with the conference
agile software development (XP), which keeps me running in the right way
until finishing this dissertation.

Prof. Dr. Casper Lassenius and Prof. Dr. Ralf Küster for their sincere and
valuable suggestions and opinions during the reviewing process and the
coming defence.

My warm thanks go to the XP conferences for these three years and a
lot of friends that I met there, who lighted the ideas in my dissertation: Kent
Beck, Dr. Steven Fraser, Prof. Dr. Juan Garbajosa, Dr. Xiaofeng Wang, Prof. Dr.
Laurie Williams etc. In addition, many thanks to the friends, Prof. Dr. Nancy
Leveson, Dr. John Thomas, Prof. Dr. Robert Jan de Boer, Martin Rejzek etc.,
in STAMP conferences, who provide me a deep understanding and touch
with STPA.

I am grateful to the current researchers and employees in the software
engineering group that I collaborate with them in daily work: Dr. Ivan
Bogicevic, Wolfgang Fechner, Dr. Daniel Graziotin, Verena Käfer, Daniel Kulesz,

4

Kornelia Kuhle, Kai Mindermann, Rainer Niedermayr, Dr. Jasmin Ramadani,
Horst Vöhringer, Marvin Wyrich, Erica Weilemann. Especially, I would like to
thank Jonas Fritzsch for reviewing the german language part.

Special thanks to the researchers and employees at Robert Bosch GmbH,
Stefan Kriso etc., Hans-Leo Ross etc., and Yun Jiang etc., for providing me the
opportunity to work with them and help me to conduct research in industry.

Last but not least, my sincerest gratitude goes to my family, Prof. Dr. Lei
Wang, Changxia Ma, Chunlai Wang, Yuanxi Wang, and little Kasi Wang. I am
grateful for their assistance, encouragement and bringing me happiness in
every second of my life.

This dissertation would not have been possible without the support from my
family, advisors, colleagues, industrial researchers and friends.

All the names are listed by alphabetical order of the surnames without
prioritisation.

Stuttgart, October 2018
Yang Wang

5

List of Abbreviations

APS Autonomous Parking System

ASD Agile Software Development

ASIL Automotive Safety Integrity Level

ATDD Acceptance Test-Driven Development

BDD Behaviour-Driven Development

CI Continuous Integration

CSGS Crossroad Stop and Go System

CTL Computation Tree Logic

DSDM Dynamic System Development Method

E/E/PE Electrical/Electronic/Programmable Electronic

EUC Equipment Under Control

FAA Federal Aviation Administration

FASIC Firing Application Specific Integrated Circuit

7

FET Field Effect Transistor

FMEA Failure Mode and Effect Analysis

FTA Fault Tree Analysis

GSA Group Safety Analysis

HIS High-Integrity Systems

ICAO International Civil Aviation Organisation

IDE Integrated Development Environment

IF-FMEA Input-Focused FMEA

IoT Internet of Things

LTL Linear Temporal Logic

MAD Median Absolute Deviation

QA Quality Assurance

RAMS Reliability, Availability, Maintainability and Safety

R&D Research and Development

RPN Risk Priory Number

RUP Rational Unified Process

SCS Safety-Critical Systems

SIL Safety Integrity Level

SMV Symbolic Model Verifier

STPA System-Theoretic Process Analysis

TDD Test-Driven Development

8

UAT User Acceptance Testing

UCA Unsafe Control Action

XP Extreme Programming

9

Zusammenfassung

Agile Software Entwicklung (ASD) hat seit vielen Jahren den Ruf erworben,
höhere Kundenzufriedenheit, geringere Fehlerraten und schnellere Entwick-
lungszeiten zu erzielen und gilt als etablierte Vorgehensweise für sich schnell
ändernde Anforderungen. Aufgrund sich permanent ändernder Märkte sowie
kundenspezifischer Anforderungen weckt ASD daher aktuell das Interesse
der Industrie im sicherheitskritischen Anwendungsbereich.
Die Nutzung von ASD zur Entwicklung sicherheitskritischer Systeme (SCS)

wird jedoch kontrovers diskutiert. Die meisten Experten in diesem Bereich
ziehen es in der Praxis vor, traditionelle Entwicklungsprozesse zusammen
mit einem standardisierten Prozess für Sicherheitsaspekte zu verwenden,
indem sie Normen wie die IEC 61508 erfüllen. Die bestehende Forschung
strebt nach einer Konsistenz mit der Normen oder einem hybriden Modell
zwischen ASD und den Normen. Die traditionellen Sicherheitstechniken
können jedoch ohne eine solide Architektur des Systems nicht verlässlich
funktionieren. ASD erlaubt eine sich ständig adaptierende Architektur, was
die Integration traditioneller Sicherheitstechniken in ASD, insbesondere die
Durchführung von Sicherheitsanalysen, zu einer Herausforderung macht.
In dieser Dissertation schlagen wir das Prozess-Modell S-Scrum vor, das

hauptsächlich auf der Integration einer systemtheoretischen Prozessanalyse
(STPA) basiert, um den sich ändernden Architekturen beim Einsatz von ASD

11

in der Entwicklung von SCS zu begegnen.
Die Forschungsstrategie dieser Dissertation lautet wie folgt: (1) Wir ent-

werfen eine theoretische Grundlage, ein vorläufiges S-Scrum Modell durch
die Integration von STPA in Safe Scrum. Dieses vorläufige S-Scrum unter-
suchen wir anhand einer (in 2016 durchgeführten) Fallstudie basierend
auf einem Studentenprojekt mit 14 Teilnehmern. (2) Wir verbessern die
Sicherheitsverifikation, indem wir STPA-BDD vorschlagen (BDD steht für
Behaviour-Driven Development). Durch ein kontrolliertes Experiment mit
insgesamt 55 Teilnehmern validieren wir STPA-BDD. (3) Wir verbessern
die Dokumentation, indem wir drei Dokumente für das vorläufige S-Scrum
entwickeln und adaptieren. Diese Dokumente validieren wir anhand einer
Fallstudie während eines einjährigen Studentenprojekts mit 14 Teilnehmern.
(4)Wir verbessern die Kommunikation für das vorläufige S-Scrum. Es werden
die bestehenden Kommunikationskanäle, ihre Ziele und Herausforderungen
bei der Sicherheitsanalyse und -verifikation untersucht. Hierzu führen wir
eine Fallstudie in sieben sicherheitskritischen Unternehmen mit 60 Experten
durch. (5)Wir verbessern die Gruppenarbeit durch Vermeidung von Gruppen-
denken bei der Durchführung von Sicherheitsanalysen und -verifikationen
im vorläufigen S-Scrum. Unsere Lösungen untersuchen wir im Rahmen der
Durchführung einer industriellen Fallstudie in sieben sicherheitskritischen
Unternehmen mit 39 Experten. (6) Resultierend schlagen wir ein finales
S-Scrum Modell vor. Wir evaluieren dieses Modell durch informelles Review
und Walkthrough mit weiteren 15 Befragungen von Sicherheitsexperten aus
sechs großen sicherheitskritischen Unternehmen.
Die Ergebnisse dieser Dissertation sind: (1) Das vorläufige S-ScrumModell

verbessert die Möglichkeiten zur Gewährleistung der Sicherheit, die Agilität
wird dabei jedoch leicht reduziert. Wir haben die großen Herausforderungen
bei der Priorisierung, Kommunikation, Planung und Verifikation von Anforde-
rungen untersucht. Hierfür schlagen wir erste Lösungsansätze vor, beispiels-
weise einen internen und externen Sicherheitsexperten. (2) Das STPA-BDD
für die Sicherheitsanalyse und -verifikation stellt eine effektive Lösung hin-
sichtlich Produktivität, Testdurchgängigkeit, Fehlererkennungseffektivität
und Kommunikationseffektivität dar. (3) Die verbesserte Dokumentation mit

12

Safety-Stories und Safety-Epics wirkt sich positiv auf die Kommunikation
aus. Der agile Sicherheitsplan unterstützt hier bei der Planung und Zertifizie-
rung. (4) Die vorrangig genutzten Kommunikationskanäle sind regelmäßige
Meetings, die meisten von ihnen werden 1-4 mal pro Woche durchgeführt.
Wir haben 28 Zielsetzungen wie beispielsweise Sicherheitsanforderungen
für die Übertragung identifiziert, sowie die 10 größten Herausforderungen
in diesem Kontext, wie sensible und vertrauliche Informationen überwachen.
(6) Gruppendenken gibt es bei der Durchführung von Sicherheitsanalysen
und Verifizierungen sowohl in unseren Forschungskontexten, als auch im
vorläufigen S-Scrum Modell. Das Wichtigste der 10 gefundenen Phänomene
des Gruppendenkens ist Manager planen zu optimistisch. Wir konnten Grün-
de hierfür identifizieren, z.B. hohe Kohäsion des Teams und entsprechende
Lösungen z.B. Einladung externer Experten vorschlagen, um Gruppenden-
ken zu vermeiden. (6) Das finale S-Scrum zeigt eine gute Fähigkeit zur
Gewährleistung der Sicherheit nach ISO 26262. Nach unserer Analyse kann
S-Scrum 97.3% der Anforderungen nach ISO 26262 mit ASIL A und ASIL B
erreichen (ASIL steht für Automotive Safety Integrity Level).
Zusammenfassend ist S-Scrum eine mögliche Variante der ASD in der

Entwicklung von SCS, sowohl für akademische als auch für industrielle
Projekte der Klassen ASIL A und ASIL B.
Diese Dissertation bietet Hilfestellungen für Praktiker, z.B. (1) einen rea-

lisierbaren Weg zur Entwicklung von SCS im Rahmen des ASD, (2) die
Verwendung von individuellen Techniken wie STPA und BDD in ASD, (3)
die Unterstützung des Sicherheitsmanagements, z.B. durch eine verbesser-
te Formulierung der Dokumentation, sowie eine effektive Kommunikation
und Gruppenarbeit während der Sicherheitsanalyse und -verifizierung. Für
Forscher bedeutet diese Dissertation (1) die Erschließung neuer Wege, Tech-
niken für die Sicherheit wie STPA und BDD innerhalb des ASD nutzbar zu
machen, (2) eine mögliche Forschungsrichtung durch die Erprobung neuer
Techniken im Gegensatz zur Verwendung traditioneller Vorgehensweisen
auf Basis bestehender Normen, sowie (3) die gesonderte Berücksichtigung
der Aspekte menschlicher Interaktion im Sicherheitsmanagement, z.B. Grup-
pendenken und Kommunikationskanäle.

13

Dennoch besitzt das S-Scrum Modell Einschränkungen: (1) S-Scrum wur-
de nicht in einem realen industriellen Projekt evaluiert. (2) Fahrzeugsysteme
auf Basis der Risiko-Klassen ASIL C und ASIL D sollten die Verwendung von S-
Scrum vermeiden (bei Verwendung von S-Scrum sollte eine Abkehr von ASIL
in Betracht gezogen werden). (3) Hardwarenahe oder Embedded-Systeme
mit einer hohen Hardware-Kohäsion sind für S-Scrum nicht geeignet. (4)
Großangelegte oder verteilte Teams sollten bei der Einführung von S-Scrum
mit Bedacht vorgehen oder dieses durch ggf. erforderliche Erweiterungen
anpassen.
Für Folgearbeiten wird empfohlen, die Einschränkungen der in dieser

Dissertation erforschten Konzepte zu reduzieren, z.B. durch die verstärkte
Betrachtung der Umsetzung von S-Scrum im Automotive-Sektor. Um die
heutigen Probleme bei der Entwicklung sicherheitskritischer Systeme zu be-
wältigen, könnten in diesem Zusammenhang auch andere kritische Aspekte
wie Informationssicherheit Berücksichtigung finden.

14

Abstract

Agile software development (ASD) has gained a good reputation for a number
of years due to its higher customer satisfaction, lower defect rates, faster
development times and as a solution to rapidly changing requirements. Thus,
ASD arouses interests from safety-critical industries due to a fast changing
market and upcoming customised requirements.
However, applying ASD to develop safety-critical systems (SCS) is contro-

versial. Most of practitioners in SCS prefer using traditional development
processes together with a standardised safety assurance process by satisfying
the norms, such as IEC 61508. Existing research is striving for a consistency
or a hybrid model between ASD and norms. However, the traditional safety
assurance cannot work well without a stable architecture. ASD has a con-
stantly changing architecture, which makes the integration of traditional
safety assurance in ASD a bottleneck, especially the execution of safety
analysis.
In this dissertation, we aim to propose a process model called S-Scrum,

which is mainly based on integrating a System-Theoretic Process Analysis
(STPA) to face the changing architectures when using ASD for developing
SCS.
The research strategy of this dissertation is: (1) We build a theoretical

foundation, a preliminary S-Scrum, through integrating STPA in Safe Scrum.

15

We explore the preliminary S-Scrum by conducting a case study in a one-year
student project with 14 participants. (2) We improve the safety verification
by proposing STPA-BDD. We validate STPA-BDD by conducting controlled
experiments with overall 55 participants. (3) We improve the documentation.
We adapt and develop three documents for the preliminary S-Scrum. We
validate them in a one-year student project by conducting a case study with
14 participants. (4) We improve the communication. We investigate the
existing communication channels, their purposes and challenges during
safety analysis and verification by conducting a case study in 7 safety-critical
companies with 60 experts. (5) We improve group work through avoiding
groupthink when performing safety analysis and verification in ASD. We
investigate the solutions by conducting an industrial case study in the same
7 safety-critical companies with 39 experts. (6) To this end, we generate a
final S-Scrum. We evaluate it by conducting one round of informal review,
one round of walkthrough, together with 15 interviews with senior-level
safety experts from 6 large safety-critical companies.
The results of this dissertation are: (1) The preliminary S-Scrum enhances

the possibilities to ensure safety, yet the agility is slightly reduced. We
explored major challenges in requirements prioritisation, communication,
planning and verification. We propose initial solutions, such as adding an
internal and external safety expert. (2) STPA-BDD for safety analysis and ver-
ification seems effective on productivity, test thoroughness, fault detection
effectiveness and communication effectiveness. (3) The improved docu-
mentation, namely safety story and safety epic, have a positive effect on
communication. Agile safety plan supports more on planning and certifi-
cation. (4) The most popular communication channel is "formal meetings".
Most of them happen 1-4 times per week. We found 28 purposes like "trans-
fer safety requirements" and the Top 10 challenges like "monitor sensitive
and confidential information". (5) Groupthink does exist when performing
safety analysis and verification in our research contexts as well as in S-Scrum.
The Top 10 phenomena of groupthink include "managers are too optimistic
on the plan". We investigate reasons like "high cohesiveness of the team"
and propose solutions like "inviting external expert" to avoid groupthink.

16

(6) The final S-Scrum shows a good capability on safety assurance for de-
veloping SCS according to ISO 26262. S-Scrum can achieve 97.3% of the
requirements from the ISO 26262 for the SCS with ASIL A and ASIL B.
In conclusion, to some extent, S-Scrum is a possible ASD for developing

academic and automotive industrial projects with ASIL A and ASIL B.
This dissertation provides implications for practitioners, such as (1) a

feasible ASD development process for developing SCS, (2) the use of indi-
vidual techniques, such as STPA and BDD in ASD, (3) the support for safety
management, such as the formulation of documentation, facilitating an
effective communication and group work during safety analysis and verifica-
tion. For researchers, this dissertation implies (1) new techniques including
STPA and BDD for safety assurance in ASD, (2) a possible research direction
through investigating new techniques rather than purely using the traditional
techniques from norms, (3) the specific consideration of human aspects in
safety-critical system’s organisation management, such as groupthink and
communication channels.
Nevertheless, S-Scrum has limitations: (1) S-Scrum has not been evaluated

in a real-world industrial project. (2) Automotive systems with ASIL C and
ASIL D should avoid adopting S-Scrum (when using S-Scrum, a degradation
of ASIL should be considered). (3) Hardware systems or embedded systems
with a high hardware cohesion are not suitable for S-Scrum. (4) Large-scale
or distributed teams should take special care or extend S-Scrum with possible
variations when adopting S-Scrum.

In the future, the immediate work is to narrow down the limitations in this
dissertation, such as implementing S-Scrum in a (more) automotive project(s).
On the other hand, to face today’s SCS, other critical aspects can be taken
into account, such as information security.

17

Contents

1 Introduction 25
1.1 Motivation . 26
1.2 Problem Statement . 27
1.3 Research Objective . 28
1.4 Contribution . 29
1.5 List of Publications . 30
1.6 Outline . 31

2 Background 33
2.1 Agile Software Development . 34

2.1.1 General Agile Software Development 34
2.1.2 Scrum . 35

2.2 System-Theoretic Safety Analysis 36
2.2.1 General Safety Analysis 36
2.2.2 STPA . 37

2.3 Safety Verification . 39
2.3.1 General Safety Verification 39
2.3.2 BDD . 40

2.4 Safety Management . 41
2.4.1 General Safety Management 41

19

2.4.2 Documentation . 42
2.4.3 Communication . 43
2.4.4 Groupthink . 45

3 State of the Art 49
3.1 Existing Scrum in SCS . 50
3.2 Safety Analysis in ASD . 51
3.3 Safety Verification in ASD . 52
3.4 Safety Documentation in ASD 53
3.5 Safety Communication in ASD 54
3.6 Groupthink in ASD for SCS . 56

4 A Preliminary S-Scrum 59
4.1 Concept . 61

4.1.1 Safety-Guided Design . 61
4.1.2 The Preliminary S-Scrum Process Model 61

4.2 Example . 64
4.2.1 System Overview . 64
4.2.2 A Preliminary S-Scrum in Airbag System 64

4.3 Evaluation . 68
4.3.1 Context . 68
4.3.2 Research Question . 69
4.3.3 Case Study 1 . 70
4.3.4 Results 1 . 72
4.3.5 Case Study 2 . 78
4.3.6 Results 2 . 80
4.3.7 Discussion . 82
4.3.8 Threats to Validity . 84

4.4 Conclusion . 86

5 Safety Verification in S-Scrum 87
5.1 Concept . 89

20 Contents

5.2 Evaluation: STPA-BDD . 91
5.2.1 Context . 91
5.2.2 Hypotheses . 93
5.2.3 Variables . 93
5.2.4 Pilot Study . 94
5.2.5 Experiment Operation 94
5.2.6 Results . 96
5.2.7 Discussion . 99
5.2.8 Threats to Validity . 102

5.3 A Semi-Automated Tool . 104
5.4 Evaluation: Semi-Automated Tool 105

5.4.1 Replicated Experiment 106
5.4.2 Results . 107
5.4.3 Discussion . 110
5.4.4 Threats to Validity . 111

5.5 Conclusion . 111

6 Documentation in S-Scrum 113
6.1 Concept . 115

6.1.1 Safety Epic . 115
6.1.2 Safety Story . 115
6.1.3 Agile Safety Plan . 116

6.2 Evaluation . 116
6.2.1 Case Study . 116
6.2.2 Results . 117

6.3 Conclusion . 124

7 Communication in S-Scrum 125
7.1 Theoretical Lens . 127
7.2 Case Study . 128

7.2.1 Context . 129
7.2.2 Research Question . 130
7.2.3 Data Collection . 131

Contents 21

7.2.4 Data Analysis . 133
7.2.5 Results . 135
7.2.6 Discussion . 155
7.2.7 Limitations . 160

7.3 Mapping Communication in S-Scrum 161
7.4 Conclusion . 163

8 Groupthink in S-Scrum 165
8.1 Case Study . 167

8.1.1 Context . 167
8.1.2 Research Question . 168
8.1.3 Data Collection . 168
8.1.4 Data Analysis . 169
8.1.5 Results . 170
8.1.6 Discussion . 183
8.1.7 Threats to Validity . 184

8.2 Mapping Groupthink in S-Scrum 186
8.3 Conclusion . 191

9 S-Scrum 193
9.1 Activities . 196

9.1.1 Prerequisite . 196
9.1.2 SSRS 1-4 with STPA . 197
9.1.3 Pre-Planning Meeting . 197
9.1.4 Sprint Planning Meeting 198
9.1.5 STPA . 198
9.1.6 Daily Scrum Meeting . 199
9.1.7 BDD . 199
9.1.8 Regular Safety Meeting 200
9.1.9 Sprint Review Meeting 200
9.1.10 Sprint Retrospective Meeting 201
9.1.11 Final STPA Validation . 202
9.1.12 Follow-Up Activities . 202

22 Contents

9.1.13 *Cross-Functional Meeting 202
9.1.14 *Second-Chance Meeting 203

9.2 Roles . 203
9.2.1 Developers . 203
9.2.2 Scrum Master . 204
9.2.3 Product Owner . 205
9.2.4 Safety Manager . 205
9.2.5 External Safety Expert 205
9.2.6 Internal Safety Expert . 206
9.2.7 Business Analyst . 206
9.2.8 Suppliers . 206
9.2.9 Cross-Functional Members 207
9.2.10 Customers . 207

9.3 Documents . 207
9.3.1 Story Map . 207
9.3.2 Safety Epic . 208
9.3.3 Safety Story . 209
9.3.4 Safety Product Backlog 209
9.3.5 Safety Plan . 209
9.3.6 STPA Report . 210
9.3.7 BDD Report . 210
9.3.8 Internal Safety Report and External Safety Report . . 210

9.4 Evaluation . 211
9.4.1 An Overview of ISO 26262 211
9.4.2 Results . 213

9.5 Conclusion . 215

10 Discussion and Conclusion 217
10.1 Discussion . 219
10.2 Implications . 223
10.3 Limitations . 225
10.4 Future Work . 227

Contents 23

Bibliography 229

List of Figures 247

List of Tables 249

24 Contents

C
h
ap

te
r 1

Introduction

In this chapter, we describe the motivation, problem statement, research objec-
tive, contribution, list of publications as well as the outline of this dissertation.

25

1.1 Motivation

Agile software development (ASD) brings a lot of benefits to modern software
engineering, such as fast delivered products, fast feedback, fast responding to
change and enhanced communication and cooperation [Coc02]. It contains
software development methodologies, development processes, as well as
other techniques under agile values and principles including requirements
specification or business development and management, such as Extreme
Programming (XP) [Bec00], Scrum [Sch95], Rational Unified Process (RUP)
[Kru04], Dynamic Systems Development Method (DSDM) [Sta97], Fea-
ture Driven Development (FDD) [PF01] and Lean Software Development
[Pop07].
Safety-critical systems (SCS) perform safety assurance following norms1

[Bow93], such as IEC 61508 [Com11a] in general Electrical/Electronic/Pro-
grammable Electronic (E/E/PE) safety-related systems, ISO 26262 [Sta11]
in automotive systems and DO-178 B/C [Aer12] in avionic systems. These
norms regulate safety assurance activities covering the whole product de-
velopment lifecycle together with recommended techniques. The industries
are trying to satisfy these requirements to reach a high degree of safety
assurance capability for certification.
However, traditional development processes contain drawbacks in devel-

oping SCS and further lead to a lot of potential costs, such as to manage
requirements volatility, when introducing emerging technologies as well
as producing and maintaining documentation [GPM10]. ASD becomes a
possible solution.
To implement ASD in SCS, researchers prefer seeking a consistency or a

combination between ASD and norms. Safe Scrum [SMH12] is representa-
tive in combining scrum with IEC 61508. The model adds traditional safety
assurance activities into scrum outside each iteration. They increase docu-
ments including agile safety plan and safety product backlog as well as a role
like safety expert. However, few current research focuses on safety assurance
inside each iteration due to a changing architecture [Kni02]. Safety analysis

1In the dissertation, we use "norm" and "standard" synonymously.

26 1 | Introduction

seems difficult to work.
The norms recommend techniques and organisational management of

safety analysis. The popular techniques include Failure Mode and Effect
Analysis (FMEA) [Sta03a] and Fault Tree Analysis (FTA) [Lar74]. FMEA is
a table-based technique, while FTA derives a figure called fault tree. The
models need a detailed architecture to start their analyses. They are based
on reliability theory, which considers that the hazards are raising from
single component’s or function’s failure. However, today’s software-intensive
sociotechnical systems are becoming sophisticated, hazards are caused more
from component interactions, cognitively complex human decision-making
errors and social, organisational and management factors [Lev11]. We need
to analyse safety based on systems theory.
System-Theoretic Process Analysis (STPA) is a new safety analysis tech-

nique proposed by Leveson in 2012 [Lev11], which is based on systems
theory. STPA considers the accidents are caused by unsafe control actions
(UCAs). It has been successfully used in a lot of domains, such as medi-
cal devices [Ant13], air traffic management [FL15] and railway systems
[Fan+15]. In addition, STPA supports safety-guided design. The UCA can be
derived from a high-level architecture. Hence, we start this dissertation by
integrating STPA in scrum.

1.2 Problem Statement

Current safety assurance in ASD for developing SCS is still immature. The
existing research prefers using hybrid models by combining ASD with tradi-
tional development processes based on norms. Yet, the norms are not totally
suitable for regulating and guiding the ASD, since there is a lack of suitable
safety analysis techniques to face the changing architectures.
In addition, safety analysis needs safety verification to ensure that the

safety requirements have been implemented in the systems. The traditional
safety verification, such as model checking, is not suitable in ASD. First, it
needs a model, which does not exist in ASD. Second, the formal specification

1.2 | Problem Statement 27

increases the difficulties to communicate, which should not be neglected
when developing SCS [MG17].

More than that, practitioners need special considerations on the changed
safety management from traditional development processes to ASD with
integrated systems theory-based safety analysis and verification. It includes:
(1) Documentation. The norms regulate a huge amount of documents,
whereas ASD advocates lightweight documents. It seems to be a weakness
for keeping traceability. (2) Communication. ASD supports communication.
Yet, the communication during systems theory-based safety analysis and
verification encompasses challenges, such as a misunderstanding between
safety expert and development team. An ineffective communication among
group members negatively influences their execution. (3) Group work.
systems theory-based safety analysis and verification in ASD have more
group works than in traditional development processes. These group works
happen among multiple functional departments. An inappropriate control
might lead to an ineffective group work. During the execution of systems
theory-based safety analysis and verification, the occurrence of groupthink
might cause a sub-optimal or an unsafe design decision.

1.3 Research Objective

This dissertation aims at proposing a scrum development process, S-Scrum,
based on systems theory to apply ASD in SCS. From the technique viewpoint,
we integrate STPA and BDD in an existing scrum development process for
SCS, which is called Safe Scrum. From the management viewpoint, we
improve documentation, communication and group work through avoiding
groupthink when performing STPA and BDD. To this end, we evaluate our
final S-Scrum by reviewing ISO 26262 to make S-Scrum applicable both in
academia and industry.

28 1 | Introduction

1.4 Contribution

This dissertation provides four contributions:

- We propose a preliminary S-Scrum by integrating STPA. To solve
the problem concerning a lack of safety analysis in ASD, we propose
a preliminary S-Scrum by integrating a new systems theory-based
safety analysis technique, STPA, in an existing scrum development
process, Safe Scrum. The preliminary S-Scrum covers documents, roles
and activities. We illustrate the preliminary S-Scrum with a running
example - Airbag System. We explore the preliminary S-Scrum in a
one-year student project - "Smart Home" with 14 participants. The
results show that the preliminary S-Scrum has a good capability on
ensuring safety and agility, while challenges exist.

- We improve the preliminary S-Scrum by proposing STPA-BDD. To
improve the challenges concerning verification and communication
in the preliminary S-Scrum, we propose STPA-BDD. We validate it
in two controlled experiments with 55 participants. Through devel-
oping a semi-automated tool, STPA-BDD shows a good capability on
productivity (7 times greater), test thoroughness (1.5 times greater),
fault detection effectiveness (2 timers greater) and communication
effectiveness compared with STPA-UAT.

- We enhance the safety management of the preliminary S-Scrum
concerning documentation, communication, group work through
avoiding groupthink. To improve the challenges concerning documen-
tation (planning), communication and group work to avoid groupthink
(requirements prioritisation) in the preliminary S-Scrum. We adapt
and develop three documents: Safety epic; Safety story; Agile safety
plan. We evaluate them by conducting a case study in a one-year stu-
dent project with 14 participants. In addition, we investigate existing
communication channels, their purposes and their challenges during
safety analysis and verification in 7 safety-critical companies with 60
experts. We further map our results in S-Scrum. Finally, we notice the

1.4 | Contribution 29

negative influences of groupthink in safety analysis and verification.
We conduct a case study in the same 7 safety-critical companies and
find the Top 10 phenomena together with their reasons and solutions
in our research context as well as in S-Scrum.

- Wepropose and evaluate the final S-Scrum by reviewing ISO 26262.
To evaluate the applicability of the final S-Scrum in both academia
and industry, we conduct one round of informal review by the author
and one round of walkthrough by one certified safety expert and one
safety expert with more than 20 years working experiences in the area
of functional safety. More than that, 15 interviews are conducted with
senior-level safety experts in 6 safety-critical companies. S-Scrum is
evaluated to be a possible ASD for developing SCS in both academic
projects and partially industrial projects assigned an ASIL A or ASIL B.

1.5 List of Publications

This dissertation is based on the following publications where I am the first
author:

- Yang Wang, Stefan Wagner. Toward Integrating a System Theoretic
Safety Analysis in an Agile Development Process, published in the Pro-
ceeding of the 2016 Software Engineering Conference (CSE, SE 2016).

- YangWang, StefanWagner. Towards Applying a Safety Analysis and Veri-
fication Method Based on STPA to Agile Software Development, published
in the Proceeding of the 2016 International Conference of Software
Engineering (CSED, ICSE 2016).

- Yang Wang, Jasmin Ramadani, Stefan Wagner. An Exploratory Study
of Applying a Scrum Development Process for Safety-Critical Systems,
published in the Proceeding of the 2017 International Conference on
Product-Focused Software Process Improvement (PROFES 2017).

- Yang Wang, Ivan Bogicevic, Stefan Wagner. A Study of Safety Documen-
tation in a Scrum Development Process, published in the Proceeding

30 1 | Introduction

of the 2017 International Conference on Agile Software Development
(ASCS, XP 2017).

- Yang Wang, Stefan Wagner. Combining STPA and BDD for Safety Analy-
sis and Verification in Agile Development, published in the 2018 STAMP
Conference, MIT (STAMP 2018).

- Yang Wang, Stefan Wagner. Combining STPA and BDD for Safety Anal-
ysis and Verification in Agile Development: A Controlled Experiment,
published in the Proceeding of the 2018 International Conference on
Agile Software Development (XP 2018).

- Yang Wang, Daniel Ryan Degutis, Stefan Wagner. Speed up BDD for
Safety Verification in Agile Development: A Partially Replicated Controlled
Experiment, published in the Proceeding of the 2018 International
Conference on Agile Software Development (ASCS, XP 2018).

- Yang Wang, Stefan Wagner. Combining STPA and BDD for Safety Anal-
ysis and Verification in Agile Development, published in the Proceeding
of the 2018 International Conference on Software Engineering Com-
panion (ICSE 2018).

- Yang Wang, Stefan Wagner. On Groupthink in Safety Analysis: An Indus-
trial Case Study, published in the Proceeding of the 2018 International
Conference on Software Engineering (ICSE-SEIP 2018).

- Yang Wang, Daniel Graziotin, Stefan Wagner. An Industrial Case Study
on Communication Channels in Safety Analysis, submitted to Journal of
Systems and Software (JSS 2018).

1.6 Outline

The remainder of this dissertation is organised as follows: In Chapter 2, we
present the background of this dissertation, including: (1) General agile
development and especially scrum; (2) General safety analysis techniques
and especially STPA; (3) General safety verification techniques and especially
BDD; (4) General safety system management concerning documentation,

1.6 | Outline 31

communication and groupthink. The state of the art is presented in Chapter
3. In Chapter 4, we present our preliminary S-Scrum. The improvement by
integrating BDD in S-Scrum is presented in Chapter 5. Chapter 6 presents
the improved documentation, while Chapter 7 presents the communication
channels. In Chapter 8, we improve the group work in S-Scrum through
avoiding groupthink. In Chapter 9, we propose the final S-Scrum and evalu-
ate it by reviewing ISO 26262. In Chapter 10, we conclude this dissertation
with a discussion of implications as well as limitations and propose future
work.

32 1 | Introduction

C
h
ap

te
r 2

Background

In this chapter, we provide an overview of the background to this disserta-
tion. The topics are ASD, safety analysis, safety verification, documentation,
communication and groupthink.

33

2.1 Agile Software Development

2.1.1 General Agile Software Development

ASD was introduced around the year 1990 [CLC04]. Agile Alliance [All]
defines ASD as "the ability to create and respond to change in order to succeed
in an uncertain and turbulent environment." Many practitioners provide their
understandings, such as Ericksson et al. [ELS05] think ASD as "a way to
strip away as much of the heaviness, commonly associated with the traditional
software development methodologies, as possible to promote quick response
to changing environments, changes in user requirements, accelerated project
deadlines and the like;" Williams and Cockburn [WC03] consider ASD as
"embracing rather than rejecting fast feedback and higher rates of change."
In 2001, 17 signatories proclaimed an "Agile Manifesto" [All01], which

encompasses 12 principles within 4 core values. These are individuals and
interactions over processes and tools, working software over comprehen-
sive documentation, customer collaboration over contract negotiation and
responding to change over following a plan.
In Table 2.1, we summarise the main agile methods. Extreme Program-

ming (XP) was developed in 1999 by Kent Beck [Bec00]. It encompasses
a set of agile practices derived from four basic activities: Coding, such as
pair programming; Testing, such as TDD; Listening, such as planning game;
Designing, such as refactoring. XP advocates the agile principles includ-
ing feedback, assuming simplicity, and embracing change. Scrum [SB02]
is a development process for project management including roles like a
scrum master, workflows including daily scrum meeting, artifacts including
product backlog and tools including Jira. Kanban [Bre15] is a specific visu-
alized scheduling system by using mainly a board. DSDM [Sta97] covers the
whole development lifecycle. It uses "MoSCoW" prioritisation with "musts",
"shoulds", "coulds" and "won’t haves" to adjust the project to meet the time
constraint. Feature Driven Development (FDD) blends a number of industry-
recognised best practices, which are driven from a client-valued functionality
(feature) perspective to develop an overall model, build feature list, plan

34 2 | Background

by feature, design by feature and build by feature [PF01]. Lean software
development adapts seven principles from production system to software
development including eliminate waste, amplify learning, decide as late as
possible, deliver as fast as possible, empower the team, build integrity, and
see the whole [Pop07].
During the last three decades, the research in ASD has come from practical

applications. The domains span the spectrum from pure software-intensive
systems to sophisticated cyber-physical systems. Dybå and Dingsøyr [DD08]
offer a currently representative picture by conducting a systematic literature
review to summarise recent research on ASD. The results show that ASD can
enhance productivity and satisfaction from both developers and customers.
Gregory et al. [Gre+16] propose further challenges of ASD in terms of
organisation, sustainability, culture and teams. Another recurring practical
challenge in ASD is how to handle human and social factors [GN16].

Table 2.1: Main Agile Methods
Agile Method Major Area Example Reference

XP Agile practice

Pair programming
TDD
Planning game
Refactoring

[Bec00] [Bec04]

Scrum Project management
Scrum master
Daily scrum meeting
Product backlog

[SB02] [Rub12]

DSDM Development lifecycle
Timeboxing
MoSCoW [Sta97] [Sta03b]

FDD Requirements specification
Domain object modelling
Developing by feature [PF01]

Lean
Production
Software development Lean principles [Pop07]

Kanban Agile practice Kanban board [HS14] [Bre15]

2.1.2 Scrum

In this dissertation, we mainly use scrum development process. Scrum was
firstly published by Ken Schwaber at OPPSLA 1995 [Sch95]. Since then,
several scrum-specific publications have appeared [SB02] [Sch04] [SS11].

2.1 | Agile Software Development 35

Scrum is a development process, which adopts agile values and principles
for organising and managing work. It advocates honesty, openness, courage,
respect, focus, trust, empowerment and collaboration [Rub12].
Scrum consists of one or more scrum teams including three scrum roles:

product owner, scrum master and development team. The product owner
is responsible for what will be developed and in what order, while the
scrum master is responsible for guiding the team in creating and following
the scrum framework. The development team is self-organised and cross-
functional including coding, testing, design and so on. The scrum workflow
includes: sprint, sprint planning meeting, daily scrum meeting, sprint review
meeting and sprint retrospective meeting. Other extended activities like
progress refinement for understanding the product backlog or two-part
sprint planning for planning product backlog items in details are also used
in practice. The scrum artifacts are: product backlog and sprint backlog.
The product backlog comprises an ordered list of requirements that a scrum
team maintains for a product, while the sprint backlog is the list of work the
development team must address during the coming sprint. Other extensions
like story map for an overview of the product and burn-down chart for
controlling the process are also popular.

2.2 System-Theoretic Safety Analysis

2.2.1 General Safety Analysis

Safety analysis is important in safety assurance [Eri15]. IEC 61508-1: 2011
defines safety analysis as being used "to determine the hazards, hazardous
events and hazardous situations relating to the Equipment Under Control (EUC)
and the EUC control system; to determine the event sequences leading to the
hazardous events; to determine the EUC risks associated with the hazardous
events". ISO 26262-1: 2011 defines safety analysis as being used "to identify
and categorise hazard events of items and to specify safety goals and Automotive
Safety Integrity Level (ASILs) related to the prevention or mitigation of the
associated hazards in oder to avoid unreasonable risk." Leveson [Lev11] defines

36 2 | Background

safety analysis as being used "to identify potential causes of accidents, that is,
scenarios that can lead to losses." as well as mentioning the importance "to
investigate an accident before damage occurs."
The most popular safety analysis techniques are Failure Mode and Effect

Analysis (FMEA) and Fault Tree Analysis (FTA) [Eri15].
FMEA was proposed by the U.S. military for weapons systems in 1949. It

is used to define, identify, and eliminate known and/or potential failures,
problems, errors, and so on from the system, design, process and/or service
before they reach the customer. FMEA analysis involves three steps: (1)
Identify known and potential failure modes; (2) Identify the causes and
effects of each failure mode; (3) Prioritise the identified failure modes
according to the RPN - the product of frequency of occurrence, severity, and
detection; (4) Provide for problem follow-up and corrective action [Sta03a].
FTA was proposed in 1961 for the Air Force for evaluation of the Min-

uteman Launch Control System. It is a logic diagram used for analysing,
visualising and evaluating failure paths in a system [Lar74]. FTA analysis
involves five steps: (1) Define the undesired event to study; (2) Obtain an
understanding of the system; (3) Construct the fault tree; (4) Evaluate the
fault tree; (5) Control the hazards identified.

2.2.2 STPA

In this dissertation, we propose to use System-Theoretic Process Analysis
(STPA) for performing safety analysis in ASD.

STPA [Lev11] is a relative new safety analysis technique based on Systems-
Theoretic Accident Model and Process (STAMP) causality model. STAMP
is built on three basic concepts: (1) Safety constraints; (2) A hierarchical
safety control structure; (3) Process models. In STAMP, systems are viewed as
interrelated components kept in a state of dynamic equilibrium by feedback
control loops. An accident occurs, because either the safety constraints were
not enforced by the controller, or appropriate control actions were provided
but not followed [Lev11].

2.2 | System-Theoretic Safety Analysis 37

STPA aims to identify potential causes of accidents and eliminate and
control in design or operations before damage occurs. The execution of STPA
consists of two main steps: (1) Identify the potential for inadequate control
of the system that could lead to a hazardous state; (2) Determine how each
potentially hazardous control action identified in step 1 could occur. Before
safety analysis starts, we identify accidents and hazards at the system-level.
To apply STPA, we start from a control structure of the system1. Based on
the control structure, we evaluate each control action against four general
types of hazardous behaviour: (1) A control action required for safety is not
provided; (2) An unsafe action is provided; (3) A potentially safe control
action is provided too early, too late or out of sequence; (4) A safe control
action is stopped too soon or applied too long. Then we derive the initial
safety requirements from the UCA. By using STPA step 2, we focus on causal
factors for the UCA of step 1. We identify a process model and variables
that affect the safety of the control actions and include them in the software
controller in the control structure diagram to document how each UCA
could occur. The process model contains three types of variables: Internal
variables of the software controller; Interaction interface variables, which
receive data/command of the environmental components; Environmental
variables of other components in the system interacting with the software
controller. After that, we identify detailed software safety requirements to
constrain the unsafe combinations of process variables.
In comparison with FMEA and FTA, STPA is based on systems theory rather

than reliability theory. In reliability theory, accidents are caused by single
component’s and function’s failures in a chain of events. However, due to an
increasing complexity of systems, accidents are more often resulted from
inadequate control actions among multiple dysfunctional failures, as well
as human-machine interactions and organisational management [Lev11].
To ensure the safety of today’s sophisticated SCS, safety analysis should be
based on systems theory.
In addition, FMEA and FTA need a big design upfront, whereas STPA can

1Before performing STPA, we assume that system design exists.

38 2 | Background

start from a high-level architecture to guide design. The modern market
for SCS is fast-changing. A big design upfront seems too heavyweight to
face the increasing number of customised requirements. The rework on a
detailed architecture after safety analysis requires much more effort, while
process-end safety analysis relevant activities are easy to cut when facing a
strict time limitation on delivery. Thus, safety analysis needs to be able to
start from a high-level architecture, as well as happen before, or in parallel
with, development, especially in ASD, to avoid the effort on reworking and
an added-on safety assurance.

2.3 Safety Verification

2.3.1 General Safety Verification

Safety verification is used for verifying safety requirements, which are de-
rived from safety analysis. Safety verification is defined in IEC 61508-1:
2011 as a process "to demonstrate, for each phase of the overall, E/E/PE system
and software safety lifecycle (by review, analysis and/or tests), that the outputs
meet in all respects the objectives and requirements specified for the phase."
ISO 26262-1: 2011 defines safety verification as a process "to determine the
completeness and correct specification or implementation of requirements from
a phase or sub-phase."
Most of the practitioners mix unit test, integration test, system test,

field test and user acceptance testing (UAT) to verify safety requirements
[CHR17]. These existing methods perform safety verification either through
reviewing requirements in a meeting, or mixing with functional testing
during development. However, according to systems theory, safety require-
ments constrain system behaviours. Thus, safety verification should focus
on verifying system behaviours.
Formal methods [Bow93] are popular for safety verification, such as model

checking [CGP99] by using Cadence SMV in the nuclear power domain
[YJC09] or temporal logic LTL/CTL in the automotive domain [AW14].
Model checking consists of three steps: (1) Formulating safety requirements

2.3 | Safety Verification 39

by using formal language; (2) Modeling source code as an input model;
(3) The safety requirements specification and the input model are verified
by using a model checker. In this way, the safety requirements of system
behaviours can be generated into formal language and verified within a
source code model. However, model checking is a kind of black-box mode.
When using model checking in ASD, it shows weaknesses to guide design as
well as an effective communication among team members.

2.3.2 BDD

Code

Test

Code

Refactor

Test Refactor

Code

Test Refactor

Failing
acceptance
tests

Implementing
acceptance
testsIdentifying

conditions of
satisfaction

Selecting a
user story

Customer
acceptance

Refactoring
acceptance
tests

Passing
acceptance
tests

TDDATDD

Figure 2.1: TDD and ATDD [Coh10]

In this dissertation, we propose using BDD for performing safety verifica-
tion in ASD.
BDD is an agile method for automated testing. BDD is in the family of

test-driven development (TDD) and acceptance test-driven development
(ATDD). As we can see in Figure 2.1, ATDD is on the left side for verifying
user stories, while TDD is on the right side for verifying functional units.
BDD, however, starts with a failing acceptance test to describe the behaviour
of a system in scenarios. BDD implements and passes the acceptance test
further. Additionally, BDD can work from outside-in to write a failing unit
test and pass the failing unit test through coding and refactoring.

40 2 | Background

BDD rethinks TDD and ATDD by using natural language or domain-specific
language to describe system behaviours. BDD specifies that business analysts
and developers should collaborate in this area and should specify behaviour
in terms of user stories, which supports an effective communication.
BDD is executed by implementing a template to describe scenarios and

generate test cases with three main steps: Given[Context], When[Event],
Then[Outcome]. The context describes pre-conditions or system states,
the event describes a trigger event, and the outcome is an expected or
unexpected system behaviour. The descriptions in square brackets are in
ubiquitous language. The business analyst, QA and developer merge the
scenarios in a "3 Amigos Meeting" [WH12]. The problems, possible scenarios,
solutions and test cases are generated from business-level to development-
level.
In summary, (1) BDD aims to test system behaviours; (2) BDD performs

testing before development; (3) BDD uses natural language or domain-
specific language to support an effective communication between developers
and business analysts.

2.4 Safety Management

2.4.1 General Safety Management

An effective execution of safety analysis and verification is correlated with
its relevant management.
Safety management was originally popular used in aviation systems. The

Federal Aviation Administration (FAA) defines safety management as "a
formal, top-down, organisation-wide approach to managing safety risk and as-
suring the effectiveness of safety risk controls. It includes systematic procedures,
practices, and policies for the management of safety risk." The International
Civil Aviation Organisation (ICAO) defines safety management as "safety
management identifies hazards with the potential to adversely affect safety.
It provides effective and objective mechanisms to assess the risk presented by
hazards and implement ways to eliminate these hazards or mitigate the risks

2.4 | Safety Management 41

associated with them." Recently, E/E/PE safety-related industry [Com11a],
automotive industry [Sta11] and airborne industry [Aer12] has established
safety management in their own organisations.
Safety management consists of commitment and responsibility, account-

abilities, appointment of key safety personnel, coordination of emergency
response planning, documentation, risk identification, assessment and mit-
igation, safety monitoring and measurement, change management, con-
tinuous improvement, safety training and education, and communication
[Org13].
ASD promotes self-organised and adaptive management. The core values

of ASD have conflicts with the traditional safety management, such as a
huge amount of requirements on documentation [BT05]. Documents in
traditional safety management are important for keeping traceability as well
as certification. Yet, ASD generates documents for supporting communica-
tion and collaboration in a lightweight way. In addition, safety analysis and
verification are performed across multiple functional departments due to
the complex SCS. Communication occurs frequently, such as through formal
meetings or emails. When using ASD, communication happens even through-
out daily work. The management of communication influences the quality of
safety analysis and verification. Moreover, group works are becoming more
numerous than before when using ASD. The team members have diverse
knowledge backgrounds. An effective group work among them influences
decision making. We notice that groupthink is the most notorious.
Therefore, we investigate safety management in ASD through improving

documentation, enhancing communication and avoiding groupthink in group
work in this dissertation. We illustrate them in detail in the following sections.

2.4.2 Documentation

Documentation is important for keeping traceability and providing evidence
for certification of safety management [Com11a]. The norms concerning
functional safety, such as ISO 26262, regulate documentation throughout
the overall project lifecycle as work products. These work products provide

42 2 | Background

not only the proof that the safety management is in place, but also the
review and understanding of the documentation, which provide a continuous
improvement of the system.
The documentation in safety management includes: (1) The documenta-

tion required by the policy, which is generated before establishing a project.
(2) The documents concerning legal applicability of regulations, which is
generated during the setting of a project. (3) The documentation for or-
ganisational structure and responsibilities, which is generated during the
planning of a project. (4) The documentation of the objective and goal
of the system, such as functional safety concept, which is generated when
performing system analysis. (5) The documentation concerning process
activities, such as a safety plan, which is generated when performing high-
level safety analysis. (6) The documentation of data and measures, such
as functional safety assessment/audit plan, which is generated after per-
forming the high-level safety analysis. (7) The documentation of change
management, such as a change report, which is generated whenever there
are changing requirements during development. (8) The documentation of
review, such as a verification report, which is generated after the execution
of safety verification. (9) The documentation supporting maintenance, such
as a documentation management report, which can be generated before
delivering a product or at the beginning of a project. Modern software
development including ASD prefers to use lightweight documents, such as
"user stories" for recording requirements and "story map" for planning. The
practitioners use them also for QA documents including safety.

2.4.3 Communication

Communication has implications from a philosophical perspective, such as
a system theoretical approach, which depicts communication messages as
being created, delivered and received in a complex web of relationships
(safety analysis happens in a complex environment in industry), as well as a
critical culture perspective, which points out that critical culture encourages
the exploration of alternative communication channels (safety analysis, as a

2.4 | Safety Management 43

critical factor, is greatly influenced by safety culture1) [Key17].
In practice, communication channels are used with diverse taxonomies,

such as verbal or nonverbal, synchronous or asynchronous and internal or
external. Johnson et al. [Joh+94] illustrated the use of communication
channels in different taxonomies through 380 respondents of surveys in a
large midwestern state governmental agency. The authors mentioned that
choosing between formal or informal communication channels, perceived
applicability, output’s effect and cultural norms are three possible criteria.
Traditional safety-critical systems have a preference for formal communi-
cation to ensure preciseness [BS93]. Yet, many informal communication
channels arise in modern software development.
Modern software development advocates face-to-face conversation as the

best form of communication [All01]. The practical activities encompass pair
programming [WK02] to enhance communication between developers or
stand up meetings [SB02] to enhance communication among team members.
Developing SCS encompasses specific communication challenges. For ex-

ample, Dobson, Moors and Norris [DMN14] illustrate the tragic loss in an
Esso gas plant explosion in 2001, which includes the hazard from a combina-
tion of ineffective communication and inadequate hazard assessment. They
pointed out that: (1) There is a link between communication and safety;
(2) There are a range of mechanisms by which communication can fail; (3)
There are a range of factors that shape the safety of communications; (4)
Formal communication is most effective but needs to be used appropriately.
Possible communication problems in SCS include missing, unnecessary,

inaccurate, poor quality and ambiguous information. Improvements might
be a careful specification, the utilisation of aids such as logs, the development
of communication skills and the setting of standards for effective and safe
communication [Pri10]. Some instinct causalities of communication problems
in SCS can be classified into internal and external causalities. Internal
causalities can be attributed to characteristics of individuals, while external

1Safety culture is the attitude, beliefs, perceptions and values that employees share in
relation to safety in the workplace. Safety culture is a part of organisational culture, and has
been described by the phrase "the way we do things around here".

44 2 | Background

causalities can be attributed to environments. The recommendations for
improving communication in SCS are mentioned as explicitness, timing and
assertiveness [FOC08].

2.4.4 Groupthink

Groupthink [Jan08] is a psychological phenomenon. It was introduced by
Janis in 1972. People under groupthink try to minimise conflicts and reach
a consensus decision without critical evaluation of alternative viewpoints.
As we can see in Figure 2.2, Janis summarised a linear model of how seven
antecedents, which are cohesion, group insulation, an impartial leader, lack
of norms, homogeneous, high stress from external threats and temporarily
low-self esteem, increase the likelihood of groupthink, which leads to eight
psychological symptoms, which are illusion of invulnerability, collective ra-
tionalisations, belief in the inherent morality of the group, stereotypes of
out-groups, direct pressure on dissenters, self-censorship, illusion of unanim-
ity and self-appointed mindguards. These result in nine recommendations,
which are assign critical evaluator, make key member impartial, establish
multiple groups, discuss the group’s ideas with trusted people outside of
the group, invite external experts, assign devil’s advocate, devote a block
time to discuss conflict and provide alternative scenarios, split the group
and provide a second-chance meeting [Mul+94].
Groupthink was initially investigated in the political area [TH90] and

military contexts [Kra98] as a causal factor for a defective decisions during a
military engagement, such as the "Bay of Pigs" [Kra98], or a political event,
such as the "Watergate Event" [Rav98]. The recent research covers case
studies, experiments, literature reviews, applications and modifications of
groupthink. The application areas are extended to jury decision-making or
ice hockey team performance [Ros11].
In modern software engineering, practitioners have noticed groupthink

[Bro14], such as the phenomenon about "dream team" (illusion of invulner-
ability) and "managers have not taken employees’ preferences into account"
(illusion of unanimity) on groupthink when performing project planning and

2.4 | Safety Management 45

• Illusion of invulnerability

• Collective rationalisations

• Belief in inherent morality of the group

• Stereotypes of out-groups

• Direct pressure on dissenters

• Self-censorship

• Illusion of unanimity

• Self-appointed mindguards

Antecedents

Symptoms

• Cohesion

• Group insulation

• Impartial leader

• Lack of norms

• Homogeneous

• High stress from external threats

• Temporarily low self-esteem

Recommendations

• Leader should assign each member the role of "critical evaluator"

• Making key members impartial

• The organisation should establish multiple groups

• Each member should discuss the group’s ideas with trusted people outside of the group

• The group should invite external experts into meetings

• At least one group member should be assigned the role of devil’s advocate

• The organisation should devote a block time to discuss conflict and provide alternative

scenarios

• The organisation could split the group

• The organisation should provide a second chance meeting

Concurrence-seeking
Groupthink

Figure 2.2: Groupthink Model [Jan08]

46 2 | Background

scheduling [DSVWJ11], as well as a negative impact on market success from
"cohesion". The possible causalities of groupthink in software engineering
include concepts such as "clan culture" or "political dominance" [Bro+10].

2.4 | Safety Management 47

C
h
ap

te
r 3

State of the Art

In this chapter, we provide an overview of the closely related work to this
dissertation, such as Safe Scrum, R-Scrum, IF-FMEA, model checking in ASD
and existing communication challenges, groupthink problems in ASD for SCS.

49

3.1 Existing Scrum in SCS

There are several proposed ASD for developing SCS [Fit+13] [GPM10]
[Vuo11]. Safe Scrum [SMH12] and R-Scrum are the two most popular
scrum development processes for developing SCS.
Safe Scrumwas proposed to make scrum a certifiable process in developing

SCS. Safe Scrum is based on the original IEC 61508-3:2010 and expanded
to IEC 60880 [SKM13], EN50128 [MSL15] and DO-178 B/C [HWS17]. It
considers change impact analysis [Stå+14], quality assurance [Han+16]
and documentation [Myk+14]. Safe Scrum puts all the safety analyses at the
system-level outside the iterations including specifying the SIL. Before an it-
eration, the system description and concept, overall scope definitions, hazard
and risk analysis and overall safety requirements (SSRS) phases 1-4, which
are required by IEC 61508, are performed to derive safety requirements
at the system-level. After an iteration, the final validation is performed as
Reliability, Availability, Maintainability, Safety (RAMS) validation. RAMS val-
idation is also performed at the end of the whole project. During an iteration,
a safety product backlog is proposed for keeping traceability and maintain-
ability. It solves the interdependencies between functional requirements and
safety requirements. Test-driven development (TDD) is recommended to
motivate developers considering design before implementation. In addition,
TDD provides low-level documents to satisfy the requirements from norms.
Safe Scrum uses a role named safety expert to take responsibilities for safety
issues. The aforementioned introduction pertains to the basic Safe Scrum.
The Safe Scrum is still under development [MS18].
R-Scrum is a scaled scrum development process for developing SCS in

regulated environments, such as the automotive and the aviation [Fit+13].
R-Scrum summarises the core characteristics of complying ASD with regu-
lated development processes, which are quality assurance (QA), safety and
security, effectiveness, traceability, verification and validation. The authors
conducted an industry case study in a real project called Quality and Com-
pliance Management Software Solutions for Life Sciences (QUMAS) and
compared the core characteristics with their own experiences. For instance,

50 3 | State of the Art

"safety and security are system-level characteristics, and as such must be
built-in from the start and not considered after the fact." In QUMAS, they
used continuous compliance, and considered regulations at the beginning
as well as performing an audit at the end to avoid risks. However, R-Scrum
is an individual case based on a practical experience. The challenges are
worth noticing, yet the solutions have not been evaluated empirically, nor
have they been generalised.
To compare this dissertation with Safe Scrum, we propose the use of

systems theory-based safety assurance methods in ASD. We fill the gap of
Safe Scrum about a lack of integrated safety analysis and verification to
face the problem concerning the changing architecture. To compare this
dissertation with R-Scrum, we propose a general scrum development process
with individual methods rather than a specific case, together with empirical
evaluations, to face the challenges in R-Scrum.

3.2 Safety Analysis in ASD

To the best of our knowledge, the only research in performing safety analysis
in ASD is the input-focused FMEA (IF-FMEA) [SM16a].
In 2016, Stålhane and Myklebust proposed IF-FMEA to handle the fre-

quently changing requirements in ASD when performing safety analysis.
Compared to a standard FMEA, IF-FMEA includes the inputs to the com-
ponent under analysis as a list of inputs field in the table. By using these
inputs, the changing parts of systems from user stories become clear. The
other informations in the IF-FMEA table include component, user story ID,
result, failure mode, input deviation, component failure, suggested barriers
and new requirement.
The safety analyst performs IF-FMEA when there is a user story to be

inserted or reinserted into the product backlog. IF-FMEA is started by
checking the generic hazards list to see whether a new hazard is introduced
or the existing hazards are affected. The new requirements from IF-FMEA
might be new user stories.

3.2 | Safety Analysis in ASD 51

IF-FMEA, as an extension of FMEA, is considered easy to learn in practice
and to be able to handle changing requirements. However, there is still a
need for a detailed architecture to start the safety analysis. In addition,
IF-FMEA is based on reliability theory. Therefore, from our viewpoint, STPA,
which is based on systems theory, is more suitable to perform safety analysis
in ASD in today’s sophisticated SCS.

3.3 Safety Verification in ASD

In most industries, safety verification in ASD is performed by testing [AD17],
either mixed with functional testing or as UAT, which causes the safety
verification to always be delayed, together with other challenges, such as
methods’ appropriateness, establishment and effectiveness.
Recent research proposes using formal methods in ASD. Shafig and Min-

hans [SM14] proposed integrating formal verification from requirements
specification. Ghezzi et al. [Ghe+13] suggested an agile verification envi-
ronment "AGAVE" that enables developers to use model checking. However,
formal methods are not suitable in ASD due to the need for a model from
source code, which does not exist. In addition, formal verification is exe-
cuted in a kind of blackbox mode, which causes difficulties in communication
among stakeholders [MG17].
TDD and ATDD are two agile testing methods proposed for safety verifica-

tion [RR08]. TDD is used to test technical-level requirements, while ATDD
happens at the end of each iteration by inviting experts to test high-level re-
quirements. Stålhane and Myklebust combined TDD with IF-FMEA [SM16a].
They start the IF-FMEA as soon as they have selected a user story and de-
cided which components to develop. The inputs and outputs are identified
based on the relevant stubs, fakes or mocks. The IF-FMEA table can then be
used both for safety analysis, as well as identifying new test cases. TDD fits
well with IF-FMEA, since they consider safety more on single component’s
or function’s failures. However, from our viewpoint, either safety analysis
or safety verification should consider systems theory. Safety requirements

52 3 | State of the Art

are derived for constraining system behaviours. Safety verification should
include verifying system behaviours between TDD and ATDD.

3.4 Safety Documentation in ASD

The safety documentation in ASD shows challenges in a lot of articles [SH11]
[Sel09] [Voi+16]. Paige et al. [Pai+11] found that a lack of explicit docu-
mentation limits agile practices’ applicability to High-Integrity Systems (HIS)
development. Heeager and Nielsen [NH17] explored their ASD project at
a Danish pharmaceutical company. Their experience showed that most of
the activities need to be recorded but the team members pay little atten-
tion, which causes a big mess in the project. Vuori [Vuo11] pointed out
in his technical report that safety documentation in ASD should consider
communication and relevant analysis.
In 2012, a safety product backlog was proposed in Safe Scrum [SMH12].

In 2016, Stålhane and Myklebust proposed other three safety-related docu-
ments in a scrum development process, namely an agile safety plan [MSL16],
safety epic pattern [MS16], and safety story pattern [MS16], which have
been suggested with reference to the norm EN 50126 [Sta06], respectively.
Safety epics illustrate high-level safety requirements: To satisfy <the over-

all safety needs> the system must <always be able to reach a safe state>.
Safety stories record safety requirements, which are either from norm re-
quirements or the safety analysis: To keep <function> safe, the system must
<achieve or avoid something>. They suggest using an agile safety plan in
achieving the certification. The agile safety plan follows requirements from
EN 50126 clause 6.2.3.4 and E.1 in EN 50129.
However, the safety documentation should consider the relevant safety

analysis techniques. These three documents are primarily used for FMEA. In
this dissertation, we use STPA. An adaption is necessary.
In 2017, Jane Cleland-Huang [CH17] proposed five safety story formats

depending on various behaviours:

1. Ubiquitous: The <component name> shall <response>;

3.4 | Safety Documentation in ASD 53

2. Event driven: When <trigger>, the <system name> shall <system
response>;

3. State driven: While <in a specific state>, the <system name> shall
<system response>;

4. Optional: Where <feature is included>, the <system name> shall
<system response>;

5. Unwanted: If <optional preconditions><trigger>, the <system name>
shall <system response>.

Since these five safety story formats were proposed after our evaluation, we
leave this as future work to extend our safety documents in this dissertation
with various behaviours.

3.5 Safety Communication in ASD

As far as we know, there has been little research concerning communication
in ASD for developing SCS. Yet, some problems have been mentioned in
recent articles.
Communication shows its importance in the second version (draft) of the

norm ISO 26262 to be published in 2018, and in particular, when the safety
issues encompass more information security issues, an effective communica-
tion between safety departments and information security departments in
organisation has become increasingly important.
Leveson [Lev11] mentioned that the establishment of an appropriate

communication and feedback channel is important when performing safety
analysis. It should cover the knowledge sharing from organisation to opera-
tion or maintenance, as well as the implementation of hazards and safety
requirements at the system-level or at the development-level.
Vilela et al. [Vil+17] conducted a systematic literature review with 57

papers to investigate the communication between requirements engineering
and safety engineering (including safety analysis). The research questions
concern the activities, techniques, information artifacts, tools and benefits of

54 3 | State of the Art

performing safety analysis in connection with requirements engineering. 36
activities were listed by the authors. They mentioned that during these activ-
ities, no unified vocabulary among stakeholders hampers the communication.
The techniques are illustrated by taxonomies, such as inductive/deductive
and qualitative/quantitative. These taxonomies are considered to reduce
the gap in communication between requirements engineering and safety
engineering. To promote an effective communication, practitioners should
create an agreed-upon vocabulary and semantic structure containing all the
relevant concepts, their relations and axioms within the safety domain for
the purpose of exchanging information and facilitating reasoning.
Thus, we agree with Vilela et al.’s opinions that it is worth noticing and

establishing effective communication channels in safety analysis to reduce
errors in requirements specification, improve system safety, help design,
reduce costs and time, improve cooperation, enhance traceability, better
present safety information, reduce workload, reduce interface faults, increase
confidence and allow user feedback.
Pikkarainen et al. [Pik+08] conducted a case study in F-Secure with

two agile software development projects. The authors pointed out that
there are challenges in communication among team members and between
team members and customer, management, support group, enterprise staff.
The existing challenges include a lack of coordination [MPB16] and a non-
deterministic decision-making process [DGCA17].
Hummel, Rosenkranz and Holten [HRH13] conducted a systematic litera-

ture review with 333 relevant papers on agile software development and
communication. The authors noted that the project domain poses specific
issues on communication channels, such as safety or security-critical systems
which rely on documentation, yet the changing requirements are not well
documented. Moreover, when developing complex systems, there are lapses
of memory which negatively influence communication.
Communication occurs more frequently when using ASD for developing

SCS. Especially during safety analysis and verification, the challenges in com-
munication have a directly negative impact on the effectiveness of execution
and quality of results.

3.5 | Safety Communication in ASD 55

3.6 Groupthink in ASD for SCS

Similar to the research on groupthink in ASD for SCS is scarce. It appears in
accident reports, such as "Columbia Space Shuttle Disaster" [FC03] as well
as in norms, such as in ISO 26262, "groupthink" is an indicator of a poor
safety culture. Yet, the influence of groupthink has not been investigated in
safety engineering, especially during safety analysis and verification.
Ferraris and Carveth [FC03] explained how groupthink led to a faulty

decision-making, and further caused the "Columbia Space Shuttle Disaster".
Due to a common organisational change, more complex communication
issues arise from trying to keep to an on-time delivery. Some groupthink
symptoms appeared in a real Columbia investigation, such as "some people
are reluctant to raise certain issues of importance". The problems are clear,
yet the solutions have not been raised.
Schiano and Weiss [SW06] focused on groupthink in security-critical

systems. The solutions include "the norm security must be integrated into
meetings". As security-critical systems show similarities with SCS in terms
of organisation management, the problems can be considered, such as "not
following norms" and "just doing what the business asked for".
Gren, Torkar and Feldt [GTF17] conducted a qualitative and quantitative

investigation of eight large companies through surveys and interviews con-
cerning group development and maturity when building agile teams. They
pointed out the importance of considering group psychology in ASD, such as
the increase in job satisfaction and personality. Groupthink has been found
as a negative aspect for group maturity.
Coyle, Conboy and Acton [CCA13] mentioned that groupthink is promi-

nently a significant counter-arguments. Groupthink causes group process
losses in agile software development. Other findings, such as "group member
domination" and "members afraid to speak up" are also related to groupthink.
McAvy and Butler [MB09] collected a number of groupthink symptoms

during a longitudinal case study over two agile teams. Due to the cohesive
agile teams, groupthink has a negative impact on decision-making. The
authors suggested that the project manager should take a devil role to

56 3 | State of the Art

reduce this phenomenon.
In conclusion, researchers in SCS as well as in ASD have both noticed

groupthink. In SCS, groupthink causes disasters, while in ASD, groupthink is
a normal phenomenon that causes faulty decision-making. When using ASD
to develop SCS, especially to execute safety analysis and verification in this
dissertation, groupthink occurs more frequently and becomes dangerous.

3.6 | Groupthink in ASD for SCS 57

C
h
ap

te
r 4

A Preliminary S-Scrum

In this chapter, we begin this dissertation by integrating a system-theoretic
process analysis (STPA) in a scrum development process for facing the problem
of lacking an integrated safety analysis during each iteration due to a changing
architecture. We name it a preliminary "S-Scrum".

59

The main contributions of this chapter are:

- We propose a preliminary S-Scrum. We integrate STPA into an exist-
ing scrum development process, Safe Scrum.

- We illustrate the preliminary S-Scrum by using an example - Airbag
System. The illustration shows a detailed execution of STPA in the pre-
liminary S-Scrum with simple examples of system safety goals, accidents,
hazards and safety requirements.

- We validate and explore the preliminary S-Scrum in a one-year
student project. We ran the preliminary S-Scrum in a one-year student
project with 14 participants. The results demonstrate that, to some
extent, the preliminary S-Scrum can ensure safety, while agility is slightly
reduced. Challenges exist. We propose further initial solutions. After that,
both safety and agility have been enhanced.

60 4 | A Preliminary S-Scrum

4.1 Concept

4.1.1 Safety-Guided Design

The major part of the preliminary S-Scrum is to integrate STPA in iterations
to perform safety-guided design.
As we can see in Figure 4.1, Leveson describes: "Most of the time, hazard

analysis is done after the major design decisions have been made. But STPA can
be used in a proactive way to help guide the design and system development,
rather than as simply a hazard analysis technique on an existing design."
At the beginning of a project, hazards and system-level safety requirements

are identified either from safety norms or from customers. A high-level
architecture exists between the development team and the customers. Then,
the safety-guided design can start. During an iteration, a safety expert
together with the development team eliminate hazards or potential hazards
from the high-level architecture. They create a system control structure and
assign responsibilities for enforcing safety requirements. The safety expert
refines the requirements by: (1) Identifying potentially hazardous control
actions that would violate system requirements; (2) Determining the factors
which could lead to a violation of safety requirements; (3) Augmenting and
providing information and basic design decisions to the development team
to eliminate or control potentially UCAs. During the iteration, the safety
expert communicates with the development team and decides if the existing
architecture needs to perform STPA again.

4.1.2 The Preliminary S-Scrum Process Model

As we can see in Figure 4.2, we extend Safe Scrum and propose the prelimi-
nary S-Scrum in three aspects: (1) During each sprint we integrate STPA
as safety-guided design; (2) At the end of each sprint, we use STPA on
the product instead of an RAMS validation; (3) We replace the final RAMS
validation with STPA. The other safety analysis, such as in SSRS phase 1-4,
is also possible to use STPA. The other parts which are kept consistent to
Safe Scrum are: (1) The environment description and the SSRS phases 1-4;

4.1 | Concept 61

Hazard
Analysis
(STPA)

Design
Decisions

Figure 4.1: Safety-Guided Design [Lev11]

(2) TDD; (3) Safety product backlog; (4) A safety expert.
In STPA, the accidents are regarded as resulting from inadequate control.

Thus, a control structure is generated from the architecture, which is consid-
ered as the crosspoint between STPA and Safe Scrum. This control structure
can be reused in the following STPA safety analysis.
Pre-steps We start STPA from a general description of the environment

and initial systems through SSRS phases 1-4. Approximate safety goals and
requirements are determined in the sprint planning meeting. The develop-
ment team and the safety expert generate a high-level system architecture
based on the system requirements.
STPA step 1 After the sprint planning meeting, the safety expert begins

to perform STPA step 1 including investigating the control actions with four
unsafe modes and setting constraints on the unsafe modes. These constraints
are translated as safety requirements for the following architecture design.
STPA step 2 The safety expert begins to perform STPA step 2. The causal

factors that could lead to violate the safety constraints are determined
through analysing the process variables and algorithms in the process model
of the control system. More detailed safety requirements are to be elicited
depending on the stepwise system design. These safety requirements from

62 4 | A Preliminary S-Scrum

STPA step 1 and step 2 are provided to the development team and im-
plemented into the system under design and development by using TDD.
When the new architecture of code is formulated by the development team,
they can inquire the safety expert to perform STPA step 1 and step 2 again.
The new architecture spans from an easy improvement of a single function
module to a whole restructured system architecture.
Post-steps After each sprint, a deliverable product is prepared. We finally

perform STPA step 1 and step 2 on it for the reasons: (1) Getting a final
safety assessment; (2) Combining with safety verification at the system-level;
(3) Driving the next sprint development. All the safety analysis activities are
performed by a safety expert and the results are documented in the safety
product backlog.

Figure 4.2: The Preliminary S-Scrum

4.1 | Concept 63

4.2 Example

We demonstrate the preliminary S-Scrum through an illustrative example -
Airbag System.

4.2.1 System Overview

Airbag system is equipped as one of the SCS in modern cars to protect
the occupants from fatal injuries [Alj+09]. According to the ISO 26262, a
new airbag system has to comply with ASIL D for unintended deployment
of the airbag. An airbag system can be divided into three major parts:
Sensors; Crash evaluation; Actuators. Once an impact happens, it would be
detected by acceleration sensors and pressure sensors. Rollover accidents
are typically detected by roll rate sensors. Through the sensor information,
micro-controllers decide whether the sensed acceleration corresponds to a
crash situation or not. The deployment of the airbags is activated if there
was indeed a critical crash. Using airbags can protect the passengers from
critical injury.

4.2.2 A Preliminary S-Scrum in Airbag System

Pre-steps We analyse the airbag system at the system-level.
System safety goal: During a critical crash, the airbag system should protect
the passengers from being injured.
Accident: The occupants in the target vehicle are injured when a traffic
accident occurred.
Hazard 1: The airbag is not ignited even though a critical crash occurred.
Hazard 2: The airbag is deployed unintentionally, which means that it is
ignited even though no crash at all or only a non-critical crash has occurred.
Hazard 3: The airbag is ignited after T = 45ms.
The highest-level safety requirements transform directly from the identified
hazard for the system.
System safety requirements 1: If a critical crash occurred, the airbag must be
ignited.

64 4 | A Preliminary S-Scrum

Process Model

• Acceleration sensors

[front, rear, side]

• Pressure sensors

• Driver seat pressure sensors

• Roll rate sensors

Control Unit

Actuator

FET and FASIC

Vehicle

Airbag

• Acceleration sensors

• Pressure sensors

• Roll rate sensors

Driver seat pressure

sensor

Fire command

Fire command

Disturbance

• Accelerate speed

• Pressure data

• Roll rate

Estimate condition

• Accelerate speed

• Pressure data

• Roll rate

Figure 4.3: Airbag System Control Structure

System safety requirements 2: If there was no crash or only a non-critical
crash, the airbag must not be ignited.
System safety requirements 3: If a critical crash occurred, the airbag must be
ignited before T = 45ms.
The hazard and related safety requirements must be recorded in the safety

product backlog in the first sprint planning meeting and taken as reference
throughout the whole development process.
STPA step 1 We draw a control structure in Figure 4.3. The control

structure depicts not only the components at a high-level of airbag system,
but also the main interconnections. There should be two micro-controllers
for decreasing the hazard of unintended airbag deployment. Due to the

4.2 | Example 65

same functions (one of them is for redundancy), we integrate them into one
micro-controller in the control structure diagram. The deployment (actor)
of the airbag is secured by two protection mechanisms, the Field Effect
Transistor (FET) controls the power supply. The Firing Application Specific
Integrated Circuit (FASIC) controls the airbag squib. Only if the control unit
receive the signals from the sensors and FET has enough electrical power,
the FASIC will ignite the airbag squib. The sensors we considered in the
architecture are: (1) Two acceleration sensors and two pressure sensors to
detect front or rear crashes (x direction and -x direction acceleration); (2)
Driver seat pressure sensor to detect the present of occupants; (3) Angular
rate or roll rate sensors to detect rollover accidents. The input of this step is
a certain amount software code with architecture during sprint. The output
is a control structure diagram with a process model.
As shown in Table 4.1, we identify each control action into four general

hazardous types, which is shown in Section 2.2.2. In Table 4.2, we formulate
the safety requirements from UCAs. The input of this step is the control
structure diagram with control actions. The output is the initial safety
requirements based on UCAs.

Table 4.1: Airbag System - UCAs
Not provided Provided Too soon or late Too long or short

UCA.1: Not sending
fire command
is hazardous
if there was
a critical crash.

UCA.2: A fire
command is
needlessly sent
to FET and
FASIC, thus causing
an unintended
deployment of
the airbag.

UCA.3: The fire
command for the
airbag in case of
a crash is delayed,
thus causing the airbag
to be ignited too late.

/

STPA step 2 As shown in Table 4.3, we identity each UCA with the causal
factors, which could violate the safety requirements of each UCA from STPA
step 1.
In the micro-controller process model of the airbag system, we formulate

four types of interface variables that can affect the safety of these control

66 4 | A Preliminary S-Scrum

Table 4.2: Airbag System - Safety Requirements
1. The airbag system control unit shoud provide fire command when there was a critical
crash.
2. The airbag system control unit must not send fire command when there was no crash
or non-critical crash.
3. The airbag system control unit must send fire command T <= 45ms, when there was
a critical crash.

actions: (1) Acceleration speed; (2) Pressure intensity; (3) Driver seat
pressure intensity; (4) Roll rate. We determine the status of each variable,
which could lead to the UCA. From the control unit viewpoint, the causal
factors might be: (1) Airbag system control unit does not detect the driver
is present, thus the airbag system control unit does not been enable. (2)
Acceleration threshold is incorrect and allows the vehicle get an abnormal
acceleration without sending a signal. From the sensor viewpoint, the causal
factors might be: (1) Pressure sensor is unable to detect pressure due to road
and weather conditions. (2) Noise is not adequately filtered and a rapidly
acceleration is not real-time detected. The post-step is to be performed after
several iterations of STPA in a sprint and to be happened at the end of the
project among all the stakeholders.

Table 4.3: STPA Step 2 - Causal Factors for UCA.1

Process Model
ABS Enabled: [Y, N]
Driver Present: [Y, N]
Acceleration Speed >= T: [Y, N]
Roll Rate >= T: [Y, N]

1. Airbag system control unit does not detect the
driver is present, thus the airbag system control unit
does not been enable.
2. Acceleration threshold is incorrect and allows the
vehicle get an abnormal acceleration without
sending a signal.

Sensor
Acceleration Sensors
Pressure Sensors
Driver Seat Pressure sensor
Roll Rate Sensors

1. Pressure sensor is unable to detect pressure
due to road and weather conditions
2. Noise is not adequately filtered and a rapidly
acceleration is not real time detected.

4.2 | Example 67

4.3 Evaluation

In this section, we aim to evaluate the preliminary S-Scrum. We validate
the agility and safety of the preliminary S-Scrum as well as explore the
challenges and their relevant optimisations in a one-year student project
called "Smart Home". We conduct this study following the guideline by
Runeson [RH09] and Yin [Yin13]. We design this case study with a multi-
staged procedure. Each stage has different objectives and research questions.
We explore challenges and optimisations in the preliminary S-Scrum in stage
1, while we validate the optimised preliminary S-Scrum in stage 2.

4.3.1 Context

The case study, including stage 1 and stage 2, was performed in a project
developing the SCS, "Smart Home", between March, 2016 and March, 2017
at the Institute of Software Technology, University of Stuttgart. The project
had 400 planned working hours per head with a headcount of 14 students.
The students have taken part in a training program for ASD and STPA be-
fore joining the project and a course on automation systems during the
project. The scrum master was one research assistant with experienced
project management background, while the product owner and safety ex-
pert was another research assistant majoring in using ASD for SCS. All the
students were supervised by three research assistants.
As we can see in Figure 4.4, the project was to work on an IoT based smart

home with a smart coffee machine, smart light alarm system, autonomous
parking system, door open system, and smoke detector alarm system through
the IoT server - KAA1. The smart home contains individual SCS, such as
autonomous parking system and smoke detector alarm system, while an
non-intentional interaction among these individual systems will also cause
hazards. For example, when the door is forced open during the night, but
the light alarm system does not work. That causes dangerous for residents.

1https://www.kaaproject.org/overview/

68 4 | A Preliminary S-Scrum

Figure 4.4: "Smart Home" Project

We open the project "Smart Home" in GitHub1.

4.3.2 Research Question

We formulate four research questions to steer the design of our study, as
shown in Table 4.4.

Table 4.4: Research Questions
RQ 1 How does the preliminary S-Scrum handle agility and safety in SCS?
RQ 2 What are the challenges of the preliminary S-Scrum in such a context?
RQ 3 How could the preliminary S-Scrum be optimised to overcome the challenges?
RQ 4 What are the effects of the optimised preliminary S-Scrum on safety and agility?

1https://github.com/ISTE/student-project—Smart-Home

4.3 | Evaluation 69

4.3.3 Case Study 1

The objective of stage 1 is to validate the safety and agility of the preliminary
S-Scrum and optimise it. In stage 1, we focus on answering RQ 1, RQ 2, and
RQ 3. The general research strategy in stage 1 is shown in Table 4.5.

Table 4.5: Research Strategy in Stage 1

Time
Sprint 1
to sprint 5

Sprint 6
to sprint 7 Sprint 8 Sprint 9

Process Scrum Preliminary
S-Scrum

Preliminary
S-Scrum

Preliminary
S-Scrum

Data
collection

Participant
observation;
Scrum
artifacts;
Documentation
review.

Participant
observation;
Scrum
artifacts;
Documentation
review.

Questionnaires
Semi-
structured
interviews

Participants
Developers
Stakeholders

Developers
Stakeholders 13 Developers 5 Developers

1 Scrum master
Data
types Quantitative Quantitative Quantitative Qualitative

Analysis Sum Sum
Median
MAD Coding

Output No safety data
Safety data:
M16.1-M16.3
M17.1-M17.3

Agility data:
M1-M15

Challenges
and
optimisations

4.3.3.1 Data Collection 1

Stage 1 spans from sprint 1 to sprint 9. Each sprint lasts three weeks. The
agility related quantitative data, M1 to M15 (as illustrated in 4.3.3.2), were
collected through 13 questionnaires1. We conducted participant observa-
tions as product owner, scrum master, and customer. The safety related
data, M16.1 to M16.3 and M17.1 to M17.3 (as illustrated in 4.3.3.2), were
quantitatively collected during sprint 6 and sprint 7. From sprint 1 to sprint
5, we executed normal scrum without safety analysis for the adaptation and
preparation for the project. The STPA was performed by the safety expert

1The questionnaire is available: https://zenodo.org/record/439696#.WODCovl96Uk

70 4 | A Preliminary S-Scrum

and recorded privately by using the STPA tool, XSTAMPP1, while the hazards
and safety requirements were recorded in the safety product backlog in Jira.
Based on the quantitative data for agility and safety, we then designed

semi-structured interviews with 6 voluntary participants from the develop-
ment team, including the scrum master and five developers. The interviews
lasted 270 minutes overall. The questions began with a specific set of ques-
tions regarding the observations. Further, we asked about the causalities.
Finally, the optimisations were collected in an open-ended mode. The inter-
view guideline2 was provided before each interview. We recorded interview
data in field notes and we used audio recordings for text transcription.

4.3.3.2 Data Analysis 1

We analysed the data using the combination of two classic approaches
to generate software metrics, which are Goal Structuring Notation (GSN)
[KW04] and Goal Question Metric (GQM) [Bas92] referring partially to an
SCS evaluation framework - VMF [CMS09], as shown in Figure 4.5. The
data are from two aspects: agility (S1) and safety (S2). To evaluate and
optimise agility (S1), we set 15 goals (G1 to G15) considering Comparative
Agility Survey [WRC10]. They are: G1 (Team work composition); G2 (Team
work management); G3 (Communication); G4 (Requirement emergency);
G5 (Technical design); G6 (Planning levels); G7 (Critical variables); G8
(Progress tracking); G9 (Sources of dates and estimates); G10 (When do
we plan); G11 (Customer acceptance test); G12 (Timing); G13 (Quality
focus); G14 (Reflection); G15 (Outcome measure). To reach G1 to G15,
we analysed M1 to M15 indirectly by setting sub-metrics. For example, M1
(Team work composition) was analysed by M1.1 (Team members are kept as
long as possible), M1.2 (Specialists are willing to work outside their specialty
to achieve team goals), M1.3 (Everyone required to go from requirements
to finished system is on the team), and M1.4 (People are no more than two
teams). Each sub-metric was analysed on an ordinal scale of 5 (e.g., from 1

1http://www.xstampp.de/
2The interview guideline is available: https://zenodo.org/record/439696#.WODCovl96Uk

4.3 | Evaluation 71

to 5 means "Negative", "More negative than positive", "Neither negative nor
positive", "More positive than negative", and "Positive"). To investigate the
in-depth challenges, we selected either the negative values of the results or
the significant differences between the normal scrum and the preliminary
S-Scrum to formulate further interview questions. To analyse the interview
results, we used NVivo11 for text encoding [SC97]. We start with open
coding to record the answers line by line. Then, we use selective coding
to derive the relevant answers. Finally, we use axial coding to relate the
challenges with their possible solutions. Concerning safety, G16 is extended
with 3 questions together with 3 metrics including: Number of software
hazards (M16.1); Number of software safety requirements (M16.2); Number
of safety requirements traceable to hazards (M16.3). G17 is extended to be
evaluated by: Number of mitigated hazards (M17.1); Number of accepted
safety requirements (M17.2) in the present sprint; Number of rejected safety
requirements (M17.3) in the project.

4.3.4 Results 1

4.3.4.1 RQ 1: How does the preliminary S-Scrum handle agility and safety
in safety-critical systems?

We investigate the effect on agility by comparing the normal scrum and
the preliminary S-Scrum according to the 15 metrics in Figure 4.6. From
the general overview, we can conclude that most of the values regarding
agility in preliminary S-Scrum are slightly worse than those in the normal
scrum, while one metric shows strongly negative values ("when do we plan").
We discussed the results with the technical support from the Comparative
Agility Survey and got the feedback: "When most of the values are more
positive than negative (more than 3), we could say that the process is agile
enough." Moreover, most values show relatively small differences between
normal scrum and preliminary S-Scrum. Thus, we consider the agility of
the preliminary S-Scrum to be acceptable. Yet, optimisations are needed.
Regarding the safety of the preliminary S-Scrum, we performed STPA two

72 4 | A Preliminary S-Scrum

Figure 4.5: General Data Analysis Strategy

rounds in sprint 6. We found 6 software hazards (M16.1) and 15 safety
requirements (M16.2), which can all be traced back to software hazards
(M16.3). Three hazards were mitigated (M17.1), while 14 safety require-
ments were accepted (M17.2). In sprint 7, we performed two rounds of STPA
analysis. We found 10 software hazards (M16.1) and 24 safety requirements
(M16.2), which can also all be traced back to software hazards (M16.3).
Six hazards were mitigated (M17.1), while 23 safety requirements were
accepted (M17.2). Each sprint has 1 rejected safety requirement due to
hardware limitation (M17.3).

4.3 | Evaluation 73

Figure 4.6: Boxplots for General Agility Comparison between Normal Scrum
and Preliminary S-Scrum ("1" to "5" mean "Less Agile" to "More
Agile")

4.3.4.2 RQ 2 & RQ 3: What are the challenges of the preliminary S-Scrum
in such context? & How could the preliminary S-Scrum be
optimised to overcome the challenges?

To optimise preliminary S-Scrum, we derived six challenges1 from the six
abnormal values (as shown in Section 4.3.3.2) from the sub-metrics inside
these 15 metrics.

Challenge 1: The priority management of safety requirements and functional
requirements has conflict. In the normal scrum, the management and devel-
opment team determine the sprint backlog with functional requirements in
the sprint planning meeting. All the team members have a clear overview
of and commitment to the sprint plan with relatively high-level features.

1In the following chapters, we summarise these six challenges into four major challenges:
Requirements prioritisation; Communication; Planning; Verification.

74 4 | A Preliminary S-Scrum

The developers accomplish each item with their own detailed tasks. The
requirements from the management and the concrete realisations from the
developer reach a consensus during each sprint. In preliminary S-Scrum,
the integrated STPA and the safety requirements break the balance. The
functional requirements are correlated with the safety requirements. How-
ever, some developers thought: "Functional requirements are more important
than safety requirements." It was found that the need for long-term quality
was given a lower priority than the need for short-term progress [MAD12].
Moreover, the safety expert spent a relatively short time working with the
team members which influences also the decision making. As one developer
mentioned: "The safety expert is not working in the same room with the devel-
opment team and has an inconsistent working time." Thus, a lack of an in-time
decision maker on the safety requirements together with the ignorance of
safety requirements in the development team cause the conflict.
To face this challenge, a safety culture should be integrated into a light-
weight development process. We suggest to include an internal safety
expert in the development team to: (1) Spread the safety culture; (2) In-
crease the safety expert’s working time with the team members; (3) Clarify
the bewilded safety requirements. An external safety expert is necessary to
communicate with other stakeholders. To fill the gap between the external
safety expert and the development team, the development team suggests
that the external safety expert should join at least once the weekly scrum
meeting. The discussion between the management, the external safety
expert and the internal safety expert could strive a fresh balance on the
priorities.

Challenge 2: The communication between team members and safety expert is
disturbed. To start with, the unclear safety-related documentation influences
an effective communication. The team members mentioned: "It is difficult to
comprehend the purpose of the safety expert and integrate into our daily work
from the existing documents." Moreover, a lack of safety-related knowledge
of the development team influences the discussion concerning safety issues.
Finally, the insufficient time spent between safety expert and development

4.3 | Evaluation 75

team causes also a poor communication. Without a non-obstacle work place
to communicate within the team about the work progress, the safety assur-
ance could either be a superficial decoration or even worse, a roadblock
during fast product delivery.
To face this challenge, in addition to the separated internal safety expert
and external safety expert, a weekly safety meeting is suggested by an
interviewee: "The internal safety expert and external safety expert should meet
each other at least once a week to exchange the status of the development team.
Because the discussion should be deep in the safety area, it is not supposed to
be established during the normal weekly scrum meeting." Last but not least, we
improve our safety epics and safety stories to support an effective commu-
nication, as shown in Section 4.3.4.1.

Challenge 3: The safety requirements are not determined early enough to
appropriately influence design and testing. In sprint 6 and sprint 7, the safety
requirements were determined by the development team and the safety
expert together in the sprint planning meeting. However, as one interviewee
mentioned: "The determination of safety requirements from the safety product
backlog is too late to avoid a conflict between the functional requirements and
their suitability for the coming sprint." Thus, sometimes the functional design
and testing have to start without the in-time safety requirements.
To face this challenge, we propose a pre-planning meeting for solving the
time pressure problem. First, the internal, external safety experts and prod-
uct owner discuss the safety product backlog and the functional product
backlog in the pre-planning meeting. Then they brainstorm the results with
the whole development team in the sprint planning meeting to gather more
ideas and make each safety requirement clear.

Challenge 4: The planning at the start of each iteration is insufficient. In
the normal scrum, the development team and the product owner plan the
upcoming sprint in the sprint planning meeting by formulating the sprint
backlog with estimated items, which makes the development team suffi-
ciently confident about their plan. However, the estimation and planning for

76 4 | A Preliminary S-Scrum

the safety product backlog seem not ideal, as well as the interconnection with
the functional product backlog, which make an in-time identification of the
sprint backlog difficult. An interviewee said: "It is difficult to determine the
safety requirements when the development team has not planned the functional
requirements for the coming sprint."
To face this challenge, we suggest and adapt an agile safety plan [MSL16]
to perform planning of safety activities iteratively, in connection with the
pre-planning meeting to increase the understanding of safety issues and
enhance confidence. In our project, the results of STPA are part of the agile
safety plan.

Challenge 5: The time to perform upfront planning is late. A team mem-
ber said: "The pre-planning meeting for safety issues should start before the
sprint planning meeting. But the concrete time should be decided between the
external safety expert, the internal safety expert and the product owner." Based
on the experience of the previous sprints, it is better to start upfront planning
one week before the sprint planning meeting (3 weeks/sprint). The time
could be changed depending on the sprint length. More explanations are in
challenge 4.

Challenge 6: The safety requirements lack well-defined completion criteria.
In the normal scrum, we have various testing methods to determine the
completion of each feature such as unit testing, system testing, regression
testing, and acceptance testing, which are promoted to be automated in an
agile context. However, few agile testing methods are suitable for validat-
ing safety requirements, as the safety requirements are either from norm
requirements or the safety analysis, which differentiates safety testing and
functional testing. In preliminary S-Scrum, we use UAT (User Acceptance
Testing) for validating safety requirements. Thus, a suitable safety criterion
becomes important.
To face this challenge, we use a "Given-When-Then" format [WH12] as safety
requirements’ criteria. The development team suggest that the external
safety expert could decide the safety stories’ criteria and the internal safety

4.3 | Evaluation 77

expert could decide the safety tasks’ criteria. The whole development team
could brainstorm both criteria. To this end, the product owner and safety
expert perform the acceptance testing.

4.3.5 Case Study 2

After the optimisations described above, the objective of stage 2 is to validate
the safety and agility of the optimised preliminary S-Scrum and discuss it in
industry. We focus on answering the RQ 4 together with some discussion
from industry. The general research strategy in stage 2 is shown in Table 4.6.

Table 4.6: Research Strategy in Stage 2
Time Sprint 10 - Sprint 11 Sprint 12 Sprint 13

Process Optimised prelimi-
nary S-Scrum

Optimised prelimi-
nary S-Scrum

Optimised prelimi-
nary S-Scrum

Data collection

Participant
observation;
Scrum
artifacts;
Documentation
review.

Questionnaires
Semi-
structured
interviews

Participants
Developers
Stakeholders

8 Voluntary
developers

1 PO (from EPLAN)
1 SM (from EPLAN)

Data types Quantitative Quantitative Qualitative
Analysis Sum Median and MAD Coding

Output
Safety data:
M16.1-M16.3
M17.1-M17.3

Agility data:
M1-M15

Preliminary
discussion
in industry

4.3.5.1 Optimised Preliminary S-Scrum

To have a clear overview, we compare the optimised preliminary S-Scrum to
the normal scrum and the preliminary S-Scrum in our project respectively in
Table 4.7. In the optimised preliminary S-Scrum, we differentiate between
an internal safety expert and an external safety expert. A pre-planning
meeting and weekly safety meetings are established between safety experts.
We include the safety epics, to satisfy <the overall safety needs>, the system
must <always be able to reach a safe state> [MS16], in the story map. The

78 4 | A Preliminary S-Scrum

safety product backlog is improved with optimised safety story: To keep
<control action> safe, the system must <achieve or avoid something>. An
agile safety plan based on STPA technology is suggested for a clear overview.
The safety culture is expected to be enhanced by the additional activities.

Table 4.7: Normal Scrum, Preliminary S-Scrum and Optimised Preliminary
S-Scrum in "Smart Home"

Normal
Scrum

14 DLs
1 SM
1 PO

Sprint planning meeting
Weekly scrum meeting
(2 times/week)
Sprint review meeting
Sprint retrospective meeting

Story map
PB

Preliminary S-Scrum

14 DLs
1 SM
1 PO
1 SE

Sprint planning meeting
(with safety planning)
Weekly scrum meeting
(2 times/week)
(with safety discussion)
Sprint review meeting
(with safety review)
Sprint retrospective meeting

Story map
Functional PB
Safety PB

Optimised
Preliminary S-Scrum

13 DLs
1 SM
1 PO
1 external SE
1 internal SE

Pre-planning meeting
Sprint planning meeting
(brainstorming
requirements/criteria)
Weekly scrum meeting
(2 times/week)
Weekly safety meeting
(1 time/week)
Sprint review meeting
(with safety review)
Sprint retrospective meeting

Story map
(with safety epics)
Functional PB
Safety PB
(with safety stories)
Safety plan

4.3.5.2 Data Collection 2

Stage 2 is from sprint 10 to sprint 13. The safety related data, M16.1 to
M16.3 and M17.1 to M17.3, were collected in the same way as in stage 1.
The safety results were collected by both internal and external safety experts.
The agility related data, M1 to M15, were collected by the second round

4.3 | Evaluation 79

questionnaires1. We further discussed the optimised preliminary S-Scrum
by conducting 2 semi-structured interviews with one scrum master and one
product owner from EPLAN GmbH, Germany. The interview lasted 2 hours.
We formulated questions about the status of the scrum development process
in the company projects, the feasibility of the optimised preliminary S-Scrum
in industry, and further suggestions from the industrial perspective. A project
background illustration was provided before the interviews, together with
the interview guidelines2. The field notes, interview transcripts, and voice
recordings were all preserved for backup.

4.3.5.3 Data Analysis 2

The quantitative data were compared with the numbers in stage 1. The inter-
view results from the industry were text encoded with: Status; Challenges;
Possible solutions; Feasibility of preliminary S-Scrum.

4.3.6 Results 2

4.3.6.1 RQ 4: What are the effects of the optimised preliminary S-Scrum
on safety and agility?

As shown in Figure 4.7, most of the evaluated agility aspects sustained a
good level of satisfaction with little variance. However, the "technical design"
is slightly reduced. Due to the new role, the collaborative part of design
between safety work and development work fell on the internal safety expert.
The personal capability is becoming important. To improve the technical
design, cooperation should increase between the external safety expert and
the development team. In addition, the team members are still confused
about how to conduct design in ASD.
Regarding the safety of optimised preliminary S-Scrum, as we can see in

Figure 4.8, safety aspects improved (M16.1, M16.2, M16.3, M17.1, M17.2).
We also rejected few safety requirements (M17.3): 1 (sprint 6), 1 (sprint 7),

1The questionnaire is available: https://zenodo.org/record/439696#.WODCovl96Uk
2The interview guideline is available: https://zenodo.org/record/439696#.WODCovl96Uk

80 4 | A Preliminary S-Scrum

Figure 4.7: Boxplots for Agility Comparison between Preliminary S-Scrum
and Optimised Preliminary S-Scrum ("1" to "5" means "Less Agile"
to "More Agile")

0 (sprint 10), 2 (sprint 11). We can conclude that, in general, the optimised
preliminary S-Scrum has better safety assurance capabilities. However, there
are still some abnormal values in sprint 7. The number of safety requirements,
the number of safety requirements traceable to hazards and the number of
accepted safety requirements in sprint 7 are more than in sprint 10. This may
be traced back to the fitting-in phase of the optimised preliminary S-Scrum.
Since the training of STPA for the internal safety expert, we finished STPA
in sprint 10 only once. In sprint 6, sprint 7, and sprint 11, we finished STPA
twice. After the adaption of the new role, the safety data rose in sprint
11. Another reason of the rising data in sprint 11 might be the increasing
complex system, which contains more possible hazards as well as safety
requirements.

4.3 | Evaluation 81

Figure 4.8: Safety Data Comparison between Preliminary S-Scrum and Op-
timised Preliminary S-Scrum

4.3.7 Discussion

To strength the study further, we discussed our results preliminarily in in-
dustry. For Challenge 1, the conflict between functional requirements and
non-functional requirements seems not obvious. As one interviewee men-
tioned: "Since we have a relative small amount of non-functional requirements,
the priorities are always determined by the product owner together with the
discussion with some external experts." For Challenge 2, one interviewee men-
tioned: "To enhance the communication between the team members and the
experts, we have a technical meeting before each sprint planning meeting. The
product owner sends the emails to the relevant experts depending on the goals
of each sprint. The experts are welcomed to join the daily stand-up meetings."
Thus, the experts have sufficient time to keep up with the development team,
while the technical knowledge is deeply discussed in the technical meeting
before the sprint planning meeting. The project has also a good knowledge
sharing mechanism to support the communication during each sprint. One
interviewee mentioned: "We use pair programming, formal guidelines to teach
new colleagues, chat clients, and screen sharing. When the team includes ex-
perts, the product owner will contact 2-3 colleagues to discuss technical stuff,

82 4 | A Preliminary S-Scrum

who will inform other colleagues." A hierarchical communication mode is
preferred for a multi-expert team. For Challenge 3, the industrial projects
have also mentioned this problem: "Internal user stories are used to record
the non-functional requirements. The execution of internal user stories is up to
the team."
For Challenge 4, the two teams execute a sufficient planning. An intervie-

wee mentioned: "We have a refinement time slot to get all product backlog
items approved (each team member has understood) and not so much discus-
sion in the sprint planning meeting." The team members are beginning the
refinement in the present sprint for the user stories in the next sprint. In
scrum, not all requirements have to be at the same level of detail at the same
time [Rub12]. The progressive refinement could be further extended for
the safety planning and assessment to: (1) Avoid a premature development
decision from the high-level safety requirements; (2) Reserve sufficient time
for managing priorities between safety requirements and functional require-
ments; (3) Increase the rework possibilities; (4) Enhance the likelihood of
using conversation to clarify safety requirements. That could also illustrate
the Challenge 5. For Challenge 6, the refinement phase helps building a
pre-understanding of each requirement and reaching a common criterion in
the sprint planning meeting.
The external expert is a regular member in industry. An interviewee men-

tioned: "We prefer some experts with deep knowledge in the team, but the
arrangement of an internal expert has to take more issues into account, such
as training, responsibility, and even personal development." An external safety
consultant to test the products and delivered trainings and an internal safety
initiative [Pol+17] to promote safety practices across groups in industry
could be align with our internal and external safety expert. Safety culture
in industry is enhanced either by setting the regulations or by the estab-
lished organisational structure and activities. An agile safety plan is also
required from some norms. They draw the safety plan either in the technical
meeting or in parallel with the refinement. The technical meeting suggested
in industry could also be considered as an extra (weekly) safety meeting.
The pre-planning meeting seems to be a suitable form for realising progres-

4.3 | Evaluation 83

sive refinement in industry. This alignment motivates more combinations
between our optimisations and existing industrial practices. All the require-
ments and acceptance criteria are retrieved by brainstorming. An effective
communication plays a vital role in executing acceptance testing.

4.3.8 Threats to Validity

4.3.8.1 Construct validity

The first threat to construct validity is the general data analysis framework.
To apply scrum for SCS, we focus primarily on safety aspect and agility aspect
in our exploratory study. In terms of agility, we referred to an official agility
comparative survey [WRC10] for ensuring the coverage of measurement. In
terms of safety, preliminary S-Scrum was extended from Safe Scrum, which
was originally developed in accordance with the general functional safety
norm IEC 61508. Thus, the validation regarding to the consistency with IEC
61508 has not been included in the framework. Furthermore, in preliminary
S-Scrum we mainly integrate STPA. We aim to validate the enhanced safety
concerning the integrated safety analysis technique. Thus, the safety assur-
ance technique’s capability and the deliverable products’ safety are set as two
relevant goals. Yet, the goals and metrics seem not enough and the validation
framework is possible to be extended. The second threat to construct validity
is the validation periods for preliminary S-Scrum and optimised preliminary
S-Scrum are shorter than our expectations. We executed the normal scrum
in the first five sprints to strengthen students’ background knowledge of
agile methods and prepare the detailed organisational structure , which took
us a lot of time.

4.3.8.2 Internal validity

The first threat to internal validity is the arrangement of team roles. One of
the authors acted as the product owner and the safety expert concurrently in
sprint 6 and sprint 7. To avoid this threat in alignment with the optimisations
in sprint 10 and sprint 11, the product owner acted further as an external

84 4 | A Preliminary S-Scrum

safety expert. An internal safety expert has been arranged in the development
team. The second threat to internal validity exists in the qualitative data
from the semi-structured interviews. The interviews have been performed
by one of the authors together with the audio record. The language we used
has also partial German. To avoid subjective and language bias, the audio
recording has been transcribed independently by two researchers (one is a
native German speaker) and compared to formulate a final result.

4.3.8.3 External validity

A student project is different from an industrial project. However, Höst et al.
[HRW00], Tichy, Kitchenham et al. [Tic00] proposed that students could
be acceptable. To consider this debatable issue, we mainly referred to an
empirical study conducted by Falessi in 2017 [Fal+18a]. 16 statements are
provided by 65 empirical researchers. They mentioned: "Conducting experi-
ments with professionals as a first step should not be encouraged unless high
sample sizes are guaranteed or performing replicas is cheap." In our research,
there exists few industrial projects for developing SCS fully adopted a scrum
development process according to the preliminary research [The+15]. Pre-
liminary S-Scrum was also proposed in 2016 as a high-level process model.
In addition, the long learning cycles and a new technology are two hesita-
tions for using professionals. STPA was developed in 2012. In industry, there
is still a lack of experts. Thus, we believe that in our research area, a student
project is a relative suitable way to aggregate contributions. Even though,
the generalisability is considered critical when evaluation processes for SCS
due to the various SIL.

4.3.8.4 Reliability

The student project is a suitable way for a first validation. Yet, the results
from the students are limited by their personal experience. Besides, the
"grading power" of the researchers may influence the results. We separated
our research work from the final examination of the product to mitigate this

4.3 | Evaluation 85

threat.

4.4 Conclusion

In this chapter, (1) we propose a preliminary S-Scrum by integrating STPA
into Safe Scrum. To face a changing architecture in ASD, STPA seems
to be a possible technique to be integrated into each iteration to perform
safety-guided design. (2) The illustrative example, airbag system, provides
us a clear picture and shows the feasibility of performing STPA iteratively.
(3) We evaluate the preliminary S-Scrum concerning safety and agility in
a student project "Smart Home". The measures are in a moderate-level
with six challenges, which are safety requirements’ acceptance criteria,
priority management, communication, time pressure on determining safety
requirements, safety planning. We propose further initial solutions include
the split of the safety expert, pre-planning meeting, regular safety meeting,
improved safety epics, STPA-based safety stories and an agile safety plan.
Safety and agility of the preliminary S-Scrum are greatly improved. For
further research, we summarise these six challenges into fourmajor aspects in
the following chapters: Verification; Planning; Communication; Requirements
prioritisation.

86 4 | A Preliminary S-Scrum

C
h
ap

te
r 5

Safety Verification in
S-Scrum

In this chapter, to face two of the four challenges (verification, planning, commu-
nication and requirements prioritisation) in preliminary S-Scrum concerning
"verification" and "communication", we propose STPA-BDD in the prelimi-
nary S-Scrum.

87

The main contributions of this chapter are:

- We propose STPA-BDD in S-Scrum. We propose to use BDD combining
with STPA for safety analysis and verification based on systems theory in
ASD.

- We develop a semi-automated tool to speed up BDD. The tool sup-
ports generating BDD test scenarios and test cases partially by clicking
one bottom rather than writing full test suites.

- We evaluate STPA-BDD as well as a semi-automated tool by con-
ducting controlled experiments with overall 55 participants. The
results show that STPA-BDD is an effective method concerning commu-
nication effectiveness, while the semi-automated tool promotes a high
productivity, test thoroughness and fault detection effectiveness when
performing STPA-BDD.

88 5 | Safety Verification in S-Scrum

5.1 Concept

unsafe
control
actions

process
variables &
algorithms

STPA safety analysis

BDD safety verification

passed
test cases

pending
test cases

failed
test cases

unsafe
scenarios

modify

STPA safety report

selective

safe
scenarios

test
cases

Safety
analyst

(QA)

3 Amigos
Meeting

Developer

Business
analyst

Safety
analyst

(QA)

Developer

STPA Safety analysis

BDD Safety verification

others

Step 1 Step 2

Figure 5.1: STPA-BDD Concept

STPA is evaluated to be suitable for performing safety analysis during
each iteration in a scrum development process. However, the derived safety
requirements from STPA need verification, which should be in accordance
with systems theory. We propose to use BDD in combination with STPA for
safety verification based on the following reasons: (1) BDD is able to guide
design at an early stage; (2) BDD strengthens communication; (3) BDD
focuses on verifying system behaviour.
As we can see in Figure 5.1, STPA-BDD has two main parts: STPA safety

analysis and BDD safety verification. A safety analyst or a QA expert starts
performing STPA safety analysis when there is a sufficient amount of code
after the discussion with development team. STPA is executed by firstly
identifying potentially hazardous control actions, and secondly determining
how UCA could occur. STPA derives the safety requirements, which con-
straint the UCAs, as well as system behaviours. Additionally, it explores the
causal factors in scenarios for each UCA. The output from the safety analyst
(the QA expert) is an STPA safety report with system description, control

5.1 | Concept 89

structure, accidents, hazards, UCAs, corresponding safety requirements,
process variables and algorithms.
In BDD safety verification, to generate test scenarios, the UCAs (in STPA

step 1), process variables and algorithms (in STPA step 2) from the STPA
safety report are needed. Wewrite other data into "others" in Figure 5.1. BDD
safety verification has two steps: In step 1, the business analyst, the safety
analyst (the QA expert) and the developer establish a "3 Amigos Meeting"
to generate test scenarios. In a BDD test scenario, we write the possible
trigger event for the UCA in When [Event]. The other process variables and
algorithms are arranged in Given [Context]. Then [Outcome] presents the
expected behaviour - A safe control action. In Figure 5.2 (a), we present an
example. The safety analyst (the QA expert) has provided a UCA as: During
auto-parking, the autonomous vehicle does not stop immediately when there is
an obstacle upfront. One of the process variables with relevant algorithms
detects the forward distance by using an ultrasonic sensor. The developer
considers a possible trigger as the ultrasonic sensor provides the wrong
feedback. Thus, a BDD test scenario should test: If the ultrasonic sensor
provides the feedback that the forward distance <= threshold (means there
is an obstacle upfront) and whether the vehicle stops. They write this after
When. The context could be: The autonomous vehicle is auto-parking. We
write them after Given. Then constraints the safe control action as the
autonomous vehicle stops immediately. More possible triggers are expected
to be generated after When to test them. We illustrate a BDD test scenario
using only three basic steps "Given" "When" "Then". More annotations, such
as "And", can also be added. In step 2, after the three amigos discuss and
determine the test scenarios, the developer starts generating them into test
cases, as shown in Figure 5.2 (b). BDD test cases use annotations such as
@Given,@When, and@Then to connect the aforementioned test scenarios
with real code. The developer produces code to fulfill each annotation. We
can identify unsafe scenarios when the test cases fail. We correct the trigger
event to pass the test cases to satisfy the safety requirement.

90 5 | Safety Verification in S-Scrum

(a) Test scenario example (b) Test case example

Figure 5.2: BDD Safety Verification Example

5.2 Evaluation: STPA-BDD

We conduct a controlled experiment following the guideline by Wohlin et al.
[Woh+12]. The goal is:
Analyse BDD and UAT1 for safety verification.
For the purpose of comparing their effect.
With respect to productivity by measuring the number of implemented
(tested) user stories per minute; test thoroughness by measuring line cov-
erage; fault detection effectiveness by measuring a mutation score indicator;
communication effectiveness by conducting a post-questionnaire.
From the point of view of the developers and business analysts.
In the context of B.Sc students majoring in software engineering or other
related majors executing acceptance testing.

5.2.1 Context

Participants: The experiment ran off-line in a laboratory setting in an "In-
troduction to Software Engineering" course at the University of Stuttgart.
Since the course includes teaching BDD and UAT technology, the students
are suitable subjects for our experiment. We arrange them based on Java pro-

1To execute UAT, we mainly refer to [CG09] with fictional business analysts.

5.2 | Evaluation: STPA-BDD 91

gramming experiences (not randomly). According to a pre-questionnaire1,
88.6% of the students are majoring in software engineering. We conclude
from Table 5.1 that they have attended relevant lectures and handled prac-
tical tasks relating to Java programming, acceptance testing, SCS (with a
median value >= 3 on a scale from 1 to 5). The agile techniques show less
competency (with a median value of 2 on a scale from 1 to 5). We provide a
1-to-1 training, which lasts 44 hours overall, to reduce the weaknesses.
Development environment: We use a simplified Java code with mutants from
a Lego Mindstorms based Autonomous Parking System (APS) and Crossroad
Stop and Go System (CSGS). These two systems are comparable by lines
of code and number of functional modules1. To ease writing test cases, we
use a lejo TDD wrapper, Testable Lejos2 to remove deep dependencies to
the embedded environment. The BDD groups (Group A1 and Group A2)
operate in an Eclipse IDE together with a JBehave plug-in (based on JUnit)3.
We use Eclipse log files and JUnit test reports for calculating the number of
implemented (tested) user stories. Finally, we use PIT Mutation Testing4 to
assess line coverage and a mutation score indicator. The UAT groups (Group
B1 and Group B2) write the test cases in Microsoft Word.

Table 5.1: Medians of the Student’s Background
Area Group A1 Group A2 Group B1 Group B2
Java programming 3 3 3 3
Acceptance testing 4 5 3 3
Safety-critical systems 3 4 4 4
Agile techniques 3 3 3 2

Note: "1" to "5" mean "Non-experienced" to "Experienced".

1https://doi.org/10.5281/zenodo.846976
2http://testablelejos.sourceforge.net/
3http://jbehave.org/eclipse-integration.html
4http://pitest.org/

92 5 | Safety Verification in S-Scrum

5.2.2 Hypotheses

We formulate the null hypotheses as:
H0 PROD: There is no difference in productivity between BDD and UAT.
H0 T HOR: There is no difference in test thoroughness between BDD and UAT.
H0 FAU L: There is no difference in fault detection effectiveness between BDD
and UAT.
H0 COM E: There is no difference in communication effectiveness between
BDD and UAT.
The alternative hypotheses are:
H1 PROD: BDD is more productive than UAT when producing safety test cases.
H1 T HOR: BDD yields better test thoroughness than UAT.
H1 FAU L: BDD is more effective regarding fault detection than UAT.
H1 COM E: BDD is more effective regarding communication than UAT.

5.2.3 Variables

The independent variables are the acceptance testing techniques. The de-
pendent variables are: (1) Productivity (PROD). It is defined as output per
unit effort [EMT05]. In our experiment, the participants test the user stories
in the STPA safety report and produce safety test cases. We assess it via the
number of implemented (tested) user stories per minute (NIUS) [EMT05];
(2) Test thoroughness (THOR). Code coverage is an important measure for
the thoroughness of test suites including safety test suites [Mar99]. Consid-
ering a low complexity of our provided systems, line coverage (LC) [Mad10]
is more suitable than branch coverage (BC); (3) Fault detection effectiveness
(FAUL). Mutation testing [Ham77] is powerful and effective to indicate the
capability at finding faults [Mad10]. In our experiment, we measure how
well a safety test suite is able to find faults at the code-level. We assess this
via a Mutation Score Indicator (MSI) [Mad10]; (4) Communication effective-
ness (COME). We assess this via a post-questionnaire with 11 questions for
developers covering topics like understandability and 13 questions for busi-

5.2 | Evaluation: STPA-BDD 93

ness analysts covering topics like confidentiality according to Adzic [Adz09].
The results are in a 5-point scale from -2 (negative) to +2 (positive).

5.2.4 Pilot Study

Six master students majoring in software engineering took part in a pilot
study. We arranged a four-hour training program. The first author observed
the operation and concluded as follows: (1) The STPA safety report was
too complicated to be used by inexperienced students. We used a compre-
hensive STPA report by using XSTAMPP1 in the pilot study. However, a lot
of unnecessary data, such as accidents, hazards and safety requirements
at the system-level, influenced the understanding. It costs too much time
to capture the information. Thus, we simplified the STPA report with the
process variables, algorithms, and UCAs. (2) We used the original Java
code from a previous student project. The complex code affected the quick
understanding. After the pilot study, we simplified it. (3) Training is impor-
tant. In the pilot study, one participant had not taken part in the training
program, which led to his experiment being unfinished. We provide a textual
tutorial and system description for each participant as a backup. (4) We have
only used an experiment report to record the measures. However, the pure
numbers sometimes cannot show clear causalities. Thus, we use a screen
video recording in parallel with the experiment report.

5.2.5 Experiment Operation

As we can see in Figure 5.3, we divide the 44 participants into 4 groups. We
provide 2 systems and evaluate 2 acceptance testing methods. Group A1
uses BDD for system 1. Group A2 uses BDD for system 2. Group B1 uses
UAT for system 1. Group B2 uses UAT for system 2. We use two systems to
evaluate the communication between developers and business analysts. The
developers are the participants in each group, while the fictional business

1http://www.xstampp.de/

94 5 | Safety Verification in S-Scrum

Group

A1
system 1
APS

B1
system 1
APS

A2
system 2
CSGS

B2
system 2
CSGS

Preparation
(~44 hours)

Training

1st 30 minutes 2nd 30 minutes 3rd 30 minutes

BDD
unsafe

scenarios

UAT
acceptance

criteria
Training

Training

Training

Execute and
modify BDD
test cases

Execute UAT
test cases

Execute UAT
test cases

Review Review

Questionnaire Operation report

*Switch roles as
business analysts
in the first 15
minutes

*Switch roles as
business analysts
in the second 15
minutes

*Switch roles as
business analysts
in the first 15
minutes

*Switch roles as
business analysts
in the second 15
minutes

Operation

Pre

Pre

Pre

Pre

Post

Post

Post

Post
UAT

acceptance
criteria

BDD
unsafe

scenarios

Execute and
modify BDD
test cases

Figure 5.3: Experiment Operation

analysts are portrayed by the participants in the other group using various
testing methods and systems.
The experiment consists of 2 phases: preparation and operation. The

preparation was run 2 weeks before the experiment to perform the pre-
questionnaire and training. The operation consists of three sessions (30
minutes/session). In the 1st session, four groups write acceptance test cases.
Group A1 (BDD) and Group A2 (BDD) write test scenarios in Eclipse with
the Jbehave plug-in as a story file. Group B1 (UAT) and Group B2 (UAT)
write acceptance criteria in plaintext. We provide 30 UCA (UCAs) in an STPA
safety report. When the students finish all the 30 UCAs in 30 minutes, they
record the time in minutes. After the 1st session, the participants record
the NIUS and the time in the operation report. In the 2nd session, Group
A1 (BDD) and Group A2 (BDD) write each test scenario into a test case
and run the test case. If it fails, they should modify the trigger (code) and
pass the test case. Group B1 (UAT) and Group B2 (UAT) review Java code,
execute the test cases manually and complete their acceptance test report.
At the end of the 2nd session, they run PIT mutation testing. The LC and

5.2 | Evaluation: STPA-BDD 95

MSI are generated automatically in the PIT test report. They write down the
results in the operation report. In the 3rd session, the participant portrays
as a developer for 15 minutes and a business analyst for 15 minutes. The
developer is expected to explain his/her testing strategy as clearly as possible,
while the fictional business analyst should try to question the developer. To
this end, they answer a post-questionnaire.

5.2.6 Results

5.2.6.1 Descriptive Statistic

In Table 5.2, we summarize the descriptive statistics of the gathered mea-
sures1. To sum up, the results from the two systems in one treatment are
almost identical. BDD and UAT have only small differences regarding NIUS
and MSI. However, COME in BDD (Mean = 1.27, 1.18; Std.Dev = 0.81, 0.70)
and UAT (Mean = -0.05, 0.01; Std.Dev = 1.20, 1.13) differ more strongly.
LC has a small difference. In Figure 5.4, we show a clear comparison and can
see some outliers concerning LC. In Figure 5.5, we use an alluvial diagram
to show COME. We can conclude that BDD has a better communication effec-
tiveness than UAT from the perspective of developers and business analysts
respectively (depending on the length of black vertical bar on the right side
of Figure 5.5 (a) and Figure 5.5 (b). On the left side, we list 24 sub-aspects
of assessing the communication effectiveness. The boldness of the colorful
lines indicates the degree of impact. A thicker line has a larger impact on
each aspect. We can see six noteworthy values from Fig. 5 (a) that BDD
is better than UAT: (4) Test cases have a clear documentation. (5) They
could flush out the functional gaps before development. (6) They have a
good understanding of business requirements. (7) Test cases have a good
organisation and structure. (8) Realistic examples make them think harder.
(11) There is an obvious glue between test cases and code. From Fig. 5 (b),
five noteworthy values show that BDD is better than UAT: (6) The developers
consider safety requirements deeply and initially. (8) It is easy to identify

1Raw data is available online: https://doi.org/10.5281/zenodo.1154350

96 5 | Safety Verification in S-Scrum

conflicts in business rules and test cases. (9) They are confident about the
test cases. (12) They are clear about the status of acceptance testing. (13)
They could spend less time on sprint-end acceptance testing but more in
parallel with development. In addition, the other aspects show also slightly
better results when using BDD than UAT.

Table 5.2: Descriptive Statistic
Measure Treatment Experiment Mean St.Dev Min Median Max 95% CI lower 95% CI upper
NIUS BDD Group A1 0.52 0.24 0.26 0.45 1.20 0.37 0.66

Group A2 0.69 0.19 0.42 0.65 1.00 0.58 0.80
UAT Group B1 0.58 0.22 0.33 0.57 1.00 0.45 0.71

Group B2 0.67 0.29 0.27 0.60 1.20 0.50 0.84
LC BDD Group A1 0.02 0.01 0.01 0.02 0.05 0.02 0.03

Group A2 0.02 0.01 0.01 0.02 0.04 0.02 0.03
UAT Group B1 0.02 0.01 0.01 0.01 0.03 0.01 0.02

Group B2 0.02 0.01 0.01 0.01 0.03 0.01 0.02
MSI BDD Group A1 0.90 0.38 0.36 1.00 1.33 0.67 1.13

Group A2 0.93 0.49 0.44 0.83 2.17 0.63 1.22
UAT Group B1 0.89 0.36 0.42 0.88 1.56 0.67 1.10

Group B2 0.85 0.46 0.30 0.65 1.63 0.58 1.12
COME BDD Group A1 1.27 0.81 -2.00 1.50 2.00 0.79 1.75

Group A2 1.18 0.70 -1.00 1.00 2.00 0.76 1.58
UAT Group B1 -0.05 1.20 -2.00 0.00 2.00 -0.75 0.66

Group B2 0.01 1.13 -2.00 0.50 2.00 -0.67 0.67

Note: St. Dev means norm deviation; CI means confidence interval. NIUS means number of implemented (tested) user stories per minute. LC
means line coverage. MSI means mutation score indicator. COME was assessed via questionnaire with the results in a 5-point scale from -2
(negative) to +2 (positive).

(a) NIUS (b) LC (c) MSI

Figure 5.4: Boxplot for PROD, THOR and FAUL

5.2 | Evaluation: STPA-BDD 97

(a) Developer’s perspective (b) Business analyst’s perspective

Figure 5.5: Alluvial diagram for communication effectiveness

5.2.6.2 Hypothesis Testing

As we can see in Table 5.3, to start with, we evaluate the pre-questionnaire.
No statistically significant differences between BDD and UAT groups are
found concerning Java programming, acceptance testing, knowledge on SCS
and agile techniques (t-test, α = 0.05, p > 0.05 for all test parameters).
Furthermore, we test the normality of the data distribution with Kolmogorov-
Smirnov and Shapiro-Wilk tests at α = 0.05. The results show that the data
for NIUS in Group A1, for LC in Group A1, A2, B2 and for MSI in Group
A1, A2 are not normally distributed. Thus, we use non-parametric tests in
the analysis. In addition to the use of p-values for hypotheses testing (α =
0.05, one-tailed) from the Mann-Whitney test, Wilcoxon test and ANOVA
test, we include the effect size Cohen’s d. Since we expect BDD to be better
than UAT, we use one-tailed tests. NIUS is not significantly affected by using
the BDD or the UAT approach (system 1: p=0.206; system 2: p=0.359,
non-significant). LC is not significantly affected by using BDD or UAT (system
1: p=0.057; system 2: p=0.051, non-significant). MSI shows no statistically
significant difference between using BDD or UAT (system 1: p=0.472; system

98 5 | Safety Verification in S-Scrum

2: p=0.359, non-significant). However, COME is significantly different
(system 1: p<0.00001; system 2: p<0.00001, significant). We accept the
alternative hypothesis that BDD shows better communication effectiveness
than UAT. Cohen’s d shows the values around 0.2, which signifies small
effects, around 0.5 stands for medium effects and around 0.8 for large
effects. Thus, for COME, system 1 shows a large effect (d = 2.908). For LC
we have both medium effects (system 1: d = 0.684; system 2: d = 0.662).
The rest of the effects are small, as shown in Table 5.3.

Table 5.3: Hypothesis Testing
System Hypothesis Testing U p-value Z W F Effect size d Reject H0 or not
System 1 NIUS 47.5 0.206 -0.821 25 0.394 0.257 Not reject

PPAT 11 0.001 3.218 0 19.322 2.003 Reject
LC 36 0.057 1.576 18 2.341 0.684 Not reject
MSI 59 0.472 0.066 32.5 0.007 0.027 Not reject

COME 2.5 < 0.00001 5.877 0 97.276 2.908 Reject

System 2 NIUS 54.5 0.359 0.361 29.5 0.043 0.082 Not reject
PPAT 28 0.018 2.101 1 11.693 1.551 Reject
LC 35 0.051 1.642 12 2.192 0.662 Not reject
MSI 54.5 0.359 0.361 24 0.138 0.168 Not reject

COME 28 < 0.00001 5.351 3 71.208 0.238 Reject

Note: We compare Group A1 and B1 in system 1 and Group A2 and B2 in system 2. U is from Mann-Whitney testing, W is Wilcoxon W, F is
ANOVA F.

5.2.7 Discussion

The main benefit of STPA-BDD is the support for communication effectiveness.
The other measures show also some remarkable results. The productivity has
no statistically significant difference between BDD and UAT. That contradicts
our original expectation. We would expect BDD, as an automated testing
method, to be more productive than manual UAT. Yet, as the students are
not experts in our experiment, they need considerable time to get famil-
iar with the BDD tool. The students use Jbehave to write BDD test cases
in our experiment, which has strict constraints on hierarchy and naming
conventions to connect test scenarios with test cases. UAT should be easier
to learn. We therefore analysed our video recordings and found that BDD
developers use nearly 25% to 50% of their time to construct the hierarchy
and naming. Scanniello et al. [Sca+16] also mentioned this difficulty when
students apply TDD. In the future, we plan to use skilled professionals in

5.2 | Evaluation: STPA-BDD 99

test automation to replicate this study. This could lead to different results.
The test thoroughness and fault detection effectiveness show a non-significant
difference between BDD and UAT. We could imagine that our provided Java
code is too simplified to show a significant difference. The mutants are easily
found with a review. These aspects need further research.
The communication effectiveness shows better results by using BDD than

UAT on 24 aspects. We highlight 11 significant aspects. The developers
found that: BDD has a clear documentation. A clear documentation of
acceptance test cases is important for communication [HS12]. The scenarios
are written in plain English with no hidden test instrumentation. The given-
when-then format is clear for describing test scenarios for safety verification
based on system theory. The developers using BDD could flush out func-
tional gaps before development. The communication concerning safety
could happen at the beginning of the development. They discuss safety
requirements with the business analysts and spot the detailed challenges
or edge cases before functional development. UAT happens mostly at the
end of the development. It makes the rework expensive and is easy to be
cut in SCS. The developers using BDD have a good understanding of
the business requirements. A good understanding of safety requirements
helps an effective communication. They could build a shared understanding
in the “3 Amigos Meeting" to ensure that their ideas about the safety require-
ments are consistent with the business analysts. The developers using UAT
might understand safety requirements with a possible bias. BDD test cases
have a good organisation and structure. This makes the test cases easy
to understand, especially during maintenance. They include strict naming
conventions and a clear hierarchy to manage test scenarios and test cases.
Realistic examples in BDD make the developers think harder. The safety
requirements are abstract with possibly cognitive diversity, which leave a lot
of space for ambiguity and misunderstanding. That negatively influences
effective communication. Realistic examples give us a much better way to
explain how safe scenarios really work than pure safety requirements do.
There is an obvious glue between BDD test cases and code. There is glue
code in BDD safety verification, which allows an effective separation between

100 5 | Safety Verification in S-Scrum

safety requirements and implementation details. This glue code supports
the understanding and even communication between business analysts and
developers. In addition, it ensures the bidirectional traceability between
safety requirements and test cases. The business analysts thought that: The
developers using BDD consider the safety requirements deeply and ini-
tiatively. The collaboration promotes a sense of ownership of the deliverable
products. That increases an initiative communication. Instead of passively
reading the documents, the developers participate in the discussion about
writing test scenarios and are more committed to them. The business ana-
lysts are more confident about the BDD test cases. Confidence promotes
effective communication [Adl77]. The business analysts could give a big
picture with safety goals to the developers. Feedback from developers and
their realistic unsafe scenarios give the business analysts confidence that
the developers understand the safety goals correctly. It is easy to identify
conflicts in business rules and test cases when using BDD. BDD has a set
of readable test scenarios focusing on business rules (safety requirements).
Each test scenario and test case are directly connected to the code. The
business analysts can pull out test cases related to a particular business
rule. This helps communication, especially when there is a changing request.
The business analysts are clear about the status of acceptance testing
when using BDD. It promotes a state-of-art communication. That can be
attributed to the automated test suites, which might be connected with a
continuous integration server and a project management tool to receive a
verification report automatically. The business analysts could spend less
time on sprint-end acceptance tests but more in parallel with develop-
ment. They can verify the safety requirements periodically and therefore
enhance communication throughout the project.

5.2 | Evaluation: STPA-BDD 101

5.2.8 Threats to Validity

5.2.8.1 Internal validity

First, note that we have four groups in our experiment. To avoid a multiple
group threat, we prepare a pre-questionnaire to investigate the students’
background knowledge. The results of the t-tests show no statistically sig-
nificant differences among the groups concerning each measure. Second,
concerning the instrument, UAT is faster to learn than BDD regarding the
use of tools. Even though we provide a training to narrow the gap, the
productivity might have been influenced, since the students have to get fa-
miliar with the hierarchy of writing test suites in a BDD tool. The artifacts,
such as tutorials and operation report, are designed respectively with the
same structure to avoid threats. In addition to the observation, we save the
participants’ workspaces after the experiment and video recordings for deep
analysis. Third, the students majoring in software engineering might identify
more with the developer role than the business analyst role. Thus, we design
two comparable systems. The students in each pair use different systems
and test approaches to reduce the influence of prior knowledge. Moreover,
we provide a reference [Gre12] on how to perform as a business analyst in
an agile project. We also mention their responsibilities in the training.

5.2.8.2 Construct validity

First, the execution of BDD is a variant. BDD should begin with writing
tests before coding. However, in our experiment, we use BDD for test-last
acceptance testing rather than test-driven design. Thus, we provide source
code with mutants. The measures we used could be influenced. In BDD
test-first, we write failing test cases first and work on passing all of them
to drive coding. According to [HH09] [RM13], BDD test-first might be as
effective as or even more effective than BDD test-last. Second, the evaluation
concerning productivity, test thoroughness, fault detection effectiveness and
communication effectiveness does not seem to be enough. As far as we
know, our study is the first controlled experiment on BDD. We can base our

102 5 | Safety Verification in S-Scrum

measurement (PROD, THOR, FAUL) mainly on TDD controlled experiments
and some limited experiments on safety verification. There might be better
ways to capture how well safety is handled in testing.

5.2.8.3 Conclusion validity

First, concerning violated assumptions of statistical tests, the Mann-Whitney
U-test is robust when the sample size is approximately 20. For each treat-
ment, we have 22 students. Moreover, we use Wilcoxon W test as well as
Z to increase the robustness. Nevertheless, under certain conditions, non-
parametric rank-based tests can themselves lack robustness [Kit+17]. Second,
concerning random heterogeneity of subjects, we arranged them based on
the Java programming experience. According to the pre-questionnaire, the
students are from the same course and 88.6% of them are in the same major.

5.2.8.4 External validity

First, the subjects are students. Although there are some skilled students who
could perform as well as experts, most of them lack professional experience.
This consideration may limit the generalisation of the results. To consider
this debatable issue in terms of using students as subjects, we refer to
[Fal+18a]. STPA was developed in 2012, so there is still a lack of experts on
the industrial level. BDD has not been used for verifying safety requirements.
Thus, we believe that using students as subjects is a suitable way to aggregate
contributions in our research area. We also refer to a study by Cleland-Huang
and Rahimi, which successfully ran an SCS project with graduate students
[CHR17]. Second, the simplicity of the tasks poses a threat. We expect to
keep the difficulty of the tasks in accordance with the capability of students.
Nevertheless, the settings are not fully representative of a real-world project.

5.2 | Evaluation: STPA-BDD 103

5.3 A Semi-Automated Tool

Based on the results of the previous controlled experiment on STPA-BDD,
we develop a semi-automated tool to speed up the execution of the second
part of STPA-BDD, BDD for safety verification.
Compared with manual BDD, semi-automated BDD is sped up in two steps,

as shown in the grey boxes in Figure 5.6. The first step is to generate test
scenarios, while the second step is to generate test cases. The automatically
generated test scenarios need manual revision to remove the unrealistic or
overlapping scenarios. Nevertheless, a lot of time has been saved by these
two steps. The selection of UCA is done by the three amigos depending on
the progress of project and the requirements of each iteration, which needs
human to be the decision makers. The writing of code in test cases is also
done manually by developers, since there is a need to understand the test
scenarios in natural language and call the relevant source code.
The semi-automated tool called TESTS4JBEHAVE. The input for using

this tool is an STPA safety report (from STPA for safety analysis) including
UCA, process variables and algorithms. The STPA safety report needs to be
recorded in .csv files. The selection of generation tools is not restricted. We
use XSTAMPP1 with some modifications2. We trigger TESTS4JBEHAVE by
running Java command line code3. After that, all the test scenarios for the
selected UCA are shown in a specific folder, while the test cases are shown
in another specific folder.

1http://www.xstampp.de
2We add a new class for calling process variables and their values in the open source tool:

XSTAMPP.
3A possible Java command line code is: java -jar

tests4jbehave/tests4jbehave-1.0.0-SNAPSHOT-jar-with-dependencies.jar -j res/imports.txt -k
res/declarations.txt -r workspace/autonomous-parking-system/src/test/ -s
java/com/bddexperiment/jbehave/ -p com.bddexperiment.jbehave -v res/variable-types.csv -x
res/xstampp-all.csv -z res/variables-values.csv -u res/uca-id-list.csv -e pairwise.

104 5 | Safety Verification in S-Scrum

Figure 5.6: Comparison between Manual BDD and Semi-Automated BDD

5.4 Evaluation: Semi-Automated Tool

We evaluate TESTS4JBEHAVE by conducting a replicated experiment. We
refer to [Kit08] and [Shu+08]. Besides a new treatment that we use BDD
with the semi-automated tool (TESTS4JBEHAVE), other materials as well as
experiment operation are kept as same as possible to our original experiment.
In this evaluation, we aim to:
Analyse semi-automated BDD (BDD-R), manual BDD and manual UAT for
safety verification.
For the purpose of comparing their impacts.
With respect to productivity by measuring the number of implemented
(tested) user stories per minute; test thoroughness bymeasuring line coverage;
fault detection effectiveness by measuring a mutation score indicator.
From the point of view of developers.
In the context of B.Sc students majoring in software engineering or other
related majors executing BDD and UAT.

5.4 | Evaluation: Semi-Automated Tool 105

5.4.1 Replicated Experiment

The context is as same as the original experiment with 11 additional partici-
pants from a "Program Development" course at the University of Stuttgart.
We use the same questionnaire to test the participants’ background.

As we can see in Table 5.4, the participants in BDD-R handle the relevant
knowledge with a median value of 3. In terms of acceptance testing, Group
A1 and Group B1 are selected from the course "Introduction to Software En-
gineering", which encompasses teaching BDD, while Group A1-R is selected
from "Program Development", which does not contain the introduction of
BDD. Thus, we provide the 1-to-1 training to Group A1-R, as same as what we
facilitated to Group A1 and Group B1 in the original controlled experiment.
The development environment is almost the same settings. Only Group A1-R
has a semi-automated tool, which is developed as a plug-in in Eclipse. They
need to import the requirements files and trigger the semi-automated tool.
The test suites are generated automatically. Then, they run the test suites as
same as Group A1.

Table 5.4: Medians of the Students’ Background
UAT BDD BDD-R

Area Group B1 Group A1 Group A1-R
Java programming 3 3 3
Acceptance testing 3 4 3
Safety-critical systems 4 3 3
Agile techniques 3 3 3

Note: From "1" to "5" mean "Non-experienced" to "Experienced".

The variables are the same, while the operation period is reduced to 1
hour with 2 sessions. One week before the replicated experiment operation,
we prepare a training and pre-questionnaires. In the first session, Group
A1-R selects the UCA (safety requirements) and generates test scenarios
automatically, which happens only several seconds. After that, they revise
the generated test scenarios and remove the unrealistic and overlapped
scenarios. When the students finish the UCA (safety requirements) in 30

106 5 | Safety Verification in S-Scrum

minutes, they record the number of implemented (tested) user stories and
time in minutes. In the second session, Group A1-R generates test scenarios
into test cases automatically by using the semi automated tool. The other
steps are in the same as Group A1. The null hypotheses H0 and the alternative
hypotheses H1 are as follows:
H0 PROD−BDD: There is no difference in productivity between BDD-R and
BDD.
H0 T HOR−BDD: There is no difference in test thoroughness between BDD-R
and BDD.
H0 FAU L−BDD: There is no difference in fault detection effectiveness between
BDD-R and BDD.
H0 PROD−UAT : There is no difference in productivity between BDD-R and UAT.
H0 T HOR−UAT : There is no difference in test thoroughness between BDD-R
and UAT.
H0 FAU L−UAT : There is no difference in fault detection effectiveness between
BDD-R and UAT.
H1 PROD−BDD: BDD-R is more productive than BDD when producing safety
test cases.
H1 T HOR−BDD: BDD-R yields better test thoroughness than BDD.
H1 FAU L−BDD: BDD-R is more effective regarding fault detection than BDD.
H1 PROD−UAT : BDD-R is more productive than UAT when producing safety
test cases.
H1 T HOR−UAT : BDD-R yields better test thoroughness than UAT.
H1 FAU L−UAT : BDD-R is more effective regarding fault detection than UAT.

5.4.2 Results

5.4.2.1 Descriptive Statistic

As we can see in Table 5.5, we summarise the descriptive statistics of the
gathered measures, namely mean, norm deviation, minimum, median, max-
imum, 95% lower confidential intervals and upper confidential intervals.

5.4 | Evaluation: Semi-Automated Tool 107

To illustrate our replicated experiment clearly, we compare the results of
BDD-R, BDD and UAT. Three measures between BDD-R and BDD, as well as
BDD-R and UAT, show statistically significant differences.
We describe the mean values. In terms of NIUS, BDD-R tests 3.72 user

stories per minute, while BDD tests 0.52 user stories per minute and UAT
tests 0.58 user stories. In terms of LC, BDD-R covers 7.85 lines of code, while
BDD covers 4.83 lines of code and UAT covers 3.44 lines of code. In terms
of MSI, BDD-R can find 1.95 mutants, while BDD can find 0.9 mutants and
UAT can find 0.89 mutants. In Figure 5.7, we can have a clear comparison
on their intervals as well as some outliers. NIUS has two outliers, LC has two
outliers and MSI has three outliers. The quality of test cases highly depend
on the individual capability.

Table 5.5: Descriptive Statistic
Measure Treatment Mean St. Dev Min Median Max 95% lower

CI
95% upper
CI

NIUS UAT 0.58 0.22 0.33 0.57 1.00 0.45 0.71
BDD 0.52 0.24 0.26 0.45 1.20 0.37 0.66
BDD-R 3.72 1.16 1.20 4.00 5.67 3.03 4.40

LC UAT 3.44 1.78 1.53 3.06 7.70 2.39 4.49
BDD 4.83 2.26 2.64 4.00 11.00 3.50 6.17
BDD-R 7.85 1.86 5.64 6.92 11.43 6.74 8.95

MSI UAT 0.89 0.36 0.42 0.88 1.56 0.67 1.10
BDD 0.90 0.38 0.36 1.00 1.33 0.67 1.13
BDD-R 1.95 0.67 0.99 1.98 3.63 1.56 2.34

Note: St. Dev means norm deviation; CI means confidence interval. NIUS means number of implemented (tested) user stories per minute. LC means line
coverage. MSI means mutation score indicator.

5.4.2.2 Hypothesis Testing

As we can see in Table 5.6, we start by evaluating the pre-questionnaires. The
11 new participants and the 22 original participants show small differences
with respect to Java programming, acceptance testing, knowledge on SCS
and agile techniques (t-test, α=0.05, p > 0.05 for all test parameters). Then,
since we used Kolmogorov-Smirnov and Shapiro-Wilk tests (α = 0.05) in
our original experiment and the data for NIUS in Group A1 are not normally
distributed, we use non-parametric tests in our replicated experiment. Finally,
we use p-values for hypotheses testing (α = 0.05, one-tailed). In addition,
the Mann-Whitney test, Wilcoxon test, ANOVA test and the effect size Cohen’s

108 5 | Safety Verification in S-Scrum

(a) NIUS (b) LC

(c) MSI

Figure 5.7: Boxplot for PROD (NIUS), THOR (LC) and FAUL (MSI)

d are included. Since we expect BDD-R to be better than BDD and UAT, we
use one-tailed tests. NIUS (p < 0.05), LC (p < 0.05) and MSI (p < 0.05)
show statistically significant differences.
We accept the alternative hypotheses that BDD-R is more productive than

BDD and UAT when producing safety test cases; BDD-R yields better test
thoroughness than BDD and UAT. BDD-R is more effective regarding fault
detection than BDD and UAT. Cohen’s d shows the values around 0.2, which
signifies small effects, around 0.5 stands for medium effects and around 0.8
for large effects. Thus, all the results show large effects (d = 3.817, d =
1.459, d= 1.924, d = 3.761, d = 2.422 and d = 1.971).

5.4 | Evaluation: Semi-Automated Tool 109

Table 5.6: Hypothesis Testing
Treatment Hypothesis

Testing
Mann-
Whitney
U

p-value Z Wilcoxon
W

ANOVA F Effect
size d

Reject
H0 or
not

BDD and BDD-R NIUS 0.5 < 0.05 -3.907 0 72.918 3.817 Reject
H0

LC 14 < 0.05 -3.021 3 10.595 1.459 Reject
H0

MSI 14 < 0.05 -3.021 1 18.619 1.924 Reject
H0

UAT and BDD-R NIUS 0 < 0.05 -3.940 0 70.512 3.761 Reject
H0

LC 6 < 0.05 -3.546 0 29.270 2.422 Reject
H0

MSI 8 < 0.05 -3.415 1.5 19.672 1.971 Reject
H0

Note: NIUS means number of implemented (tested) user stories per minute. LC means line coverage. MSI means mutation score indicator.

5.4.3 Discussion

STPA-BDD is sped up concerning productivity, test thoroughness and fault
detection effectiveness by using this semi-automated tool. We evaluate it by
replicating our original experiment with 11 new participants (33 subjects
overall).
In terms of productivity, first, STPA safety analysis results can be auto-

matically generated into test scenarios. Second, developers can construct
the hierarchy and name test cases by clicking only one button to trigger the
semi-automated tool. Even though the generated test scenarios need human
decision makers (3 amigos) to revise and the test code needs human beings
(developers) to write. It saves much more time than generating test suites
totally manually. More specifically, this semi-automated tool poses a small
step of realising continuous test automation [BH06] when using STPA safety
analysis and BDD safety verification in agile development. In terms of test
thoroughness and fault detection effectiveness, the automatically generated
test scenarios provide more comprehensive test sets based on the provided
UCA (safety requirements), process variables and algorithms. Additionally,
generating test suites automatically can avoid human errors to a great extent,
which enhances the quality of safety test suites.

110 5 | Safety Verification in S-Scrum

5.4.4 Threats to Validity

The replicated experiment is conducted around four months after the original
experiment. To ensure the completeness of this partially replication, we
recorded the details of our original experiment in an article [WW18a]. The
other threats to validity remain the same as our original experiment.

5.5 Conclusion

In conclusion, STPA-BDD is a possible solution for facing the challenge in
the preliminary S-Scrum in terms of "verification" and "communication". It
supports an effective communication. By developing the semi-automated
tool, we speed up BDD. The productivity, test thoroughness and fault detec-
tion effectiveness of STPA-BDD with the semi-automated tool shows positive
results (7 times greater concerning productivity, 1.5 times greater concerning
test thoroughness, 2 times greater concerning fault detection effectiveness)
by comparing with UAT. In the future, our research context is expected to
be extended to real-world industrial project settings.

5.5 | Conclusion 111

C
h
ap

te
r 6

Documentation in S-Scrum

In this chapter, to face two of the four challenges (verification, planning, commu-
nication and requirements prioritisation) in preliminary S-Scrum concerning
"planning" and "communication", we improve documentation in the prelimi-
nary S-Scrum.

113

The main contributions of this chapter are:

- We adapt and develop three documents in S-Scrum. We adapt three
safety documents’ patterns and develop them for our S-Scrum, namely
safety epic, safety story and agile safety plan.

- We evaluate these three documents in a one-year student project
with 14 participants. The project uses these three documents in two
months. The results from interviews and questionnaires show that safety
epics and safety stories have a good capability to support communication,
while the agile safety plan supports planning and certification.

114 6 | Documentation in S-Scrum

6.1 Concept

6.1.1 Safety Epic

Safety epics illustrate the high-level safety requirements, which are produced
mostly by the discussion between users and technical developers rather than
analysing the system structures and functions. Few difference between
various safety analysis techniques was found in the format of safety epics.
Thus, we implement directly the safety epic pattern from [MS16] without
modifications:
To satisfy <the overall safety needs> the system must <always be able to
reach a safe state>.

6.1.2 Safety Story

Safety stories record the safety requirements, which are either from norm
requirements or safety analysis [SM16b]. Since different projects use vari-
ous safety analysis techniques, the expressions of safety stories seem to be
different. Safe Scrum uses IF-FMEA for safety analysis, while preliminary
S-Scrum uses STPA inside each sprint. FMEA is based on reliability theory,
which believes that accidents are caused by single component’s or function’s
failures, whereas STPA is developed on the systems theory, which believes
that accidents are caused by the unsafe control actions (UCA). In the systems
theory, accidents occur when component failures, external disturbances,
and/or dysfunctional interactions among system components are not ade-
quately controlled, rather than single causal variables or factors [Lev11].
Thus, the safety requirements need to be formulated from the UCA. For
this reason, we modify the safety story pattern: To keep <function> safe,
the system must <achieve or avoid something> to: To keep <the control
action> safe, the system must <achieve or avoid something>.

6.1 | Concept 115

6.1.3 Agile Safety Plan

Referring to the norms, Safe Scrum suggests using an agile safety plan to
have an overview of the whole safety assurance outside the iterations and
further to support certification. In project "Smart Home", due to the dis-
turbed communication between the safety expert and the development team,
the insufficient planning and the conflict of priorities between safety and
functional development, we implemented an agile safety plan. Preliminary
S-Scrum advocates integrating STPA safety analysis into agile development.
Hence, the STPA related information has to be integrated into the agile
safety plan. Furthermore, due to the iterative safety analysis, except the
part of a comprehending overview for certification, some parts of the agile
safety plan pattern need to be updated iteratively. We aim to balance the up-
front and just-in-time planning, and stepwise realise a continuous planning
in preliminary S-Scrum. For this reason, we complement step f.2: hazard
identification and analysis with the steps of STPA. We take an STPA-based
safety test plan format [Mon16] as reference. The parts purely related to
test in [Mon16] are still in research. As a result, we added: (1) Summary of
Changes; (2) Overview of Findings; (3) Safety Requirements; (4) Types of
Tests on the agile safety plan pattern. This part is expected to be updated
during each sprint by the safety expert. Step f.1, f.3, f.4 in the agile safety
plan pattern will not be included, as the risk analysis and management parts
have been covered by STAMP [Lev11] [Mon16] as well as STPA. Other steps
in the agile safety plan pattern are kept the same.

6.2 Evaluation

6.2.1 Case Study

The validation process is following Runeson et al.’s case study guidelines
[RH09]. The data collection period concentrating on agile safety documenta-
tion was between 2017-01 and 2017-02 in the student project "Smart Home"
at the University of Stuttgart, Germany. The project has been organised

116 6 | Documentation in S-Scrum

Figure 6.1: Result Analysis Framework

as a regular part of the software engineering curriculum for bachelor stu-
dents. The students have joined a training for agile development and safety
background knowledge before joining the project. During the project, they
have also joined the courses such as automation system and programming
language. We collected the data through participant observation, scrum ar-
tifacts, documentation review and questionnaires combined with interviews.
We use a scale of 5 (from "-2" to "+2" means from "negative" to "positive"
effect) and calculate Median and Median Absolute Deviation (MAD) to anal-
yse the quantitative results. Qualitative results have been coded by two
researchers.

6.2.2 Results

As shown in Figure 6.1, we discuss the results of each document mainly in
line with the enhancement of internal communication and external communi-

6.2 | Evaluation 117

cation. We use the definition in [Pik+08]. Internal communication highlights
the communication within the software development team, whereas external
communication in our context means the communication between develop-
ment team and product owner, scrum master, safety expert and the customer
in our context. The internal communication and external communication are
further investigated in sprint planning meetings, daily scrums, development,
and sprint review meetings. We use quantitative data to show the general
effect on communication. The safety culture has also been analysed by quan-
titative data. Afterwards, detailed observations are derived by qualitative
data.

6.2.2.1 Safety Story

Internal
discussion in
sprint backlog

refinement

External
discussion in
sprint backlog

refinement

Internal
discussion in
development

External
discussion in
development

Internal
discussion in
sprint review

meeting

External
discussion in
sprint review

meeting

Safety
culture

+2

+1

0

-1

-2

positive
effect

negative
effect

 STORY EPIC

 STORY EPIC

 STORY EPIC

 STORY EPIC

 STORY EPIC

 STORY EPIC

 STORY EPIC

no
effect

Figure 6.2: Effect on Communication of Safety Story and Safety Epic

As shown in Figure 6.2, the safety story pattern in our context shows
positive values, together with little fluctuation between each respondent.
Only the external communication in the sprint review meetings and safety
culture reveal some doubts.

Positive effect on communication: In the sprint planning meetings, some
developers said: "The safety stories specify a good structure with a clear pur-
pose, which is a basement for the internal discussion." Furthermore, they said:
"The safety stories reflect safety concerns and wishes in a clear manner, which
allows a constructive safety discussion with safety expert." In daily scrum: "It
helps the developers driving an initial idea." As the safety story pattern focuses
on "what" rather than "how", it does not interfere the concrete developing

118 6 | Documentation in S-Scrum

tasks and motivates various ideas and discussions in the development team.
Moreover, the developers prefer more communication with the safety expert
to clarify their execution tactics. To compare with the functional user story
pattern, a safety story is mostly produced by an objective safety analysis or
norm requirements. A purpose-go-first expression can better reflect safety
requirements’ properties.
The safety culture shows a positive value by using the safety story pattern.

The developers thought that: "Safety stories are the most detailed unit of
safety features."Without a clear format of the most detailed unit, it is difficult
to integrate safety culture into concrete development.

Negative effect on communication: In our project, we used Jira as the
issue tracking tool. Some developers mentioned that: "Several safety stories
seem still too long to be caught in the backlog page." The safety story pat-
tern is explicit. However, safety background knowledge in the development
team, which helps writing safety stories, could help to hinder some excessive
detailed explanation. The comment block in Jira could be fully utilised.
The product owner mentioned also that: "There is no specific place in Jira
for a safety product backlog". A Jira plug-in could be helpful in the future.
Moreover, based on the safety story pattern, a constructive discussion in the
development team is still the main purpose. People should not neglect an
efficient communication and only rely on the existing safety story pattern.
Finally, some developers reflected that: "The commitment of requirements
between the safety expert and the development team has been improved, yet
the commitment of accepting each requirement has not been focused on." The
need for an acceptance criterion has been mentioned, yet an explicit pattern
is still lacking [Rub12]. Thus, an acceptance criteria pattern would help to
improve the external communication in the sprint review meeting.

General impact: Except the effect on communication, the safety expert
gave also the feedback that: "The safety story pattern did help to have a
commitment between the safety expert and the product owner." Before the
implementation of the safety story pattern, there were a lot of conflicts and

6.2 | Evaluation 119

interrelations between functional user stories and safety stories. With an
explicit "what" focused safety story, the functional user stories not only have
less conflicts to safety stories, but also can be linked with each safety story
in Jira. Last but not least, the safety story pattern shows an easy adaptation
into other safety analysis techniques, such as STPA in our context.

6.2.2.2 Safety Epic

As shown in Figure 6.2, all the values about safety epics are on a relatively
positive level, whereas "external discussion in sprint review meeting" and
"safety culture" have more variance.

Positive effect on communication: In a sprint planning meeting, we got
the feedback that: "We have more material support for a safety plan and
for starting a discussion." It also helps to clarify confusing safety stories
between safety expert and development team. Since some safety stories
seem similar, a lack of a clear description about the system background will
cause misunderstandings. Furthermore, because of the increasing amount
of requirements, safety stories are necessary to be grouped, especially in
complex system, such as Internet of Things (IoT). It helps the discussion
in each sub-group and enables a clear identification of the safety scope in
different sub-systems. The pre-planned safety epics ensure that the safety
consideration has been put into the agenda, which motivates the develop-
ment team to think about safety from the beginning of the project.

Negative effect on communication: However, during the daily scrum, sev-
eral people have not reviewed the safety epics again. Some developers said:
"The safety epics do not affect the daily development in a critical manner, be-
cause they show only a rough idea and are not really helpful to the internal
discussion." The safety stories have been tailored into detailed tasks during
development. The team members focus more on the development of detailed
tasks. That causes some doubts on communication in development. In the
sprint review, the safety epics seem also not frequently used. "Everything

120 6 | Documentation in S-Scrum

in the review is mostly focused on the safety stories." However, for a better
understanding of the status and planning for the next sprint, we need indeed
some discussions about the status of safety epics rather than a temporary
discussion in the review meetings. To add a time slot on sprint review meet-
ings for safety epics’ discussion could keep the information of safety epics
spread throughout the development team, the same as in the sprint backlog
refinement.

General impact: From the product owner and safety expert viewpoint,
a structured safety epic helps the priority management for the backlogs. The
separation of safety requirements depending on the various sub-systems and
different sources could help managers decide which safety stories should
be put into the current sprint. Furthermore, a clear, structured, concrete
safety goal has been integrated into system development. A safety epic helps
the spread of safety culture in the middle-level, which fills the gap between
detailed safety tasks and the generally overall system safety goals.

6.2 | Evaluation 121

Table 6.1: Effect of Safety Documents
Documentation Positive effect on communication Negative effect on communication General Impact

Safety story

1. A clear purpose
2. An explicit structure
3. A quick overview
4. Reflect safety concerns
and wishes clearly
5. Help building initial idea
for further discussion
6. A "what" focused mode motivates
more external communication
7. A "what" focused mode does not
interfere the development

1. In Jira, some safety stories
are still too long to be caught
in the backlog page
2. For a better external
communication, the description block
in Jira could be used
3. No place in Jira
for safety product backlog
4. A structured communication
based on the initial idea is
more important
5. An acceptance criteria
format is needed

1. More clear for safety expert
and development team to have
a commitment when writing them
2. No difficulty to adapt to
an other safety analysis method (STPA)
3. Safety culture has been enhanced

Safety epic

1. More material support in sprint
planning meeting
2. Group safety stories
3. Great help for complex system
(IoT) development
4. Help the discussion about safety stories

1. During development,
the use of safety epics is low
2. In sprint review, no planned
time slot for safety epics’ discussion
3. Difficult to inform
the development team
when a safety epic is updated

1. Help managing the priorities
2. Give a clear structure of the
integrated safety
3. Spread safety culture in the
middle-level

Agile safety plan Need further research

1. A huge gap between
the high-level plan
and concrete development
2. The developers prefer
a direct communication
with the safety expert
rather than looking through the plan
3. Possible to be replaced by other documents

1. A clear overview and evidence
of the process
2. Delivered safety report
3. Help solving conflicts between
safety goals and functional goals
4. Backup knowledge
for development team

122
6

|D
ocum

entation
in

S
-S

crum

6.2.2.3 Agile Safety Plan

Negative effect on communication: Regarding communication, most of
the students cannot give a value for evaluation. We summarise the causalities
as follows: First, during the sprint, few developer looked at the agile safety
plan. They mentioned that: "At the beginning, we got a basic idea and
description of the safety plan, but later it did not have a major influence on
our development." Second, there is still a huge gap between the safety plan
and detailed development tasks. As one of the interviewee said that: "We
could have a clear overview of the safety in the project, but have no idea about
how to integrate this into our daily work." Third, the developers prefer more
communication with the safety expert rather than review the agile safety
plan when needed. The interviewee said: "The plan is well structured and
with not so many pages, but when a problem occurred, we would like to talk to
the safety expert directly." One of the original ideas in preliminary S-Scrum
was using an agile safety plan to help developers solving unclear safety issues.
We added STPA technique’s information to it. However, the feedback shows
communication is a more effective way. This seems not to be contradictory
to our main purpose.
The agile safety plan supports a planned safety process and the certifi-

cation body and to some extent strengthen the communication with the
safety expert and/or the certification [MSL16]. Our intention of adding an
agile safety plan and integrating parts of STPA information is because of
a weak planning level in preliminary S-Scrum and the conflicts in priority
management. Thus, although we failed the investigation of communication
effectiveness from the agile safety plan in our case, the general impacts
could also help the organisation deciding if an agile safety plan is necessary
for its project. For example, using an agile safety plan as a deliverable part
of the safety-critical product; capturing the important discussion, decision,
or agreement between safety expert and development team to have a clear
recollection; helping new team members come up to speed quickly with
safety knowledge; and when there is a regulatory requirement for some
certain safety-related documents [Rub12].

6.2 | Evaluation 123

General impact: We derived the values of an agile safety plan from the
interviews: For the scrum master, an agile safety plan provides an overview
and evidence of the safety process. For the product owner, it is helpful for a
continuous planning. For the customers, they are more clear and confident
about the safety assurance of their products, and could have additionally a
delivered safety report for the invisible safety artefact. For the safety expert,
it is easier to have a commitment to the priorities of safety stories and func-
tional user stories for each sprint. For development team, they mentioned
that: "Because of a plan, the developers have a complete safety knowledge as a
backup, when safety expert is unavailable.". A summarised result is depicted
in Table 6.1.

6.3 Conclusion

In this chapter, we solve the problems concerning "planning" and "commu-
nication" in the preliminary S-Scrum. We adapt and develop three safety
documents for S-Scrum. We evaluate them in a one-year student project
with 14 participants. The using period of these documents is two months.
The data collection lasts one sprint. The results show that safety epic and
safety story have a positive effect on internal and external communication,
while agile safety plan supports more on planning and certification. In terms
of the support for communication of agile safety plan, we need to pursue
it in different contexts, especially in industry. In addition, the evaluation
period is too short, which may cause limitations to our results.

124 6 | Documentation in S-Scrum

C
h
ap

te
r 7

Communication in S-Scrum

In this chapter, to face one of the four challenges (verification, planning, commu-
nication and requirements prioritisation) in preliminary S-Scrum concerning
"communication", we improve communication in the preliminary S-Scrum.

125

The main contributions of this chapter are:

- We investigate communication during safety analysis. We investi-
gate specifically communication channels during safety analysis in the
preliminary S-Scrum. We point out the importance of clear communica-
tion purposes, as well as the possible challenges.

- We find 9 communication channels during safety analysis. We
design a theoretical lens, survey 39 experts and interview 21 experts in 7
safety-critical companies. We find 9 communication channels.

- We summarise 28 communication purposes and highlight the im-
portance of "what" to communication. The communication purposes
are the major contribution of our study. We explore 28 communication
purposes within the 9 communication channels to provide practitioners a
possible way to select the suitable communication channels.

- We explore the Top 10 challenges during safety analysis. We derive
Top 10 challenges from 21 interviews. We map them further with the 28
communication purposes. We believe that the challenges are highly corre-
lated with the communication purposes rather than the using channels.

- We investigate the communication channel, "meeting" and "docu-
mentation", in S-Scrum further. Comparing with the other 7 com-
munication channels, such as emails or telephone, S-Scrum differs itself
mainly from the increased number of meetings, as well as different types of
documentation. We find that the communication channels in S-Scrum can
achieve 10 more communication purposes than in our research context.

126 7 | Communication in S-Scrum

7.1 Theoretical Lens

We define a theoretical lens of communication in safety analysis. We refer to
the norms ISO 26262, ISO 14971 and IEC 60601 concerning the execution
of safety analysis in SCS, as well as several internal safety analysis norms.
Safety analysis happens primarily in four stages in the development of SCS.

(1) At the beginning, a safety expert (he or she could be a functional safety
manager, external safety expert or internal safety expert) together with
other project members, who are responsible for facing customer projects,
derive system-level safety requirements. Popular techniques are Hazard
and Operability Analysis (HAZOP), Hazard Analysis and Risk Assessment
(HARA) and Fault Tree Analysis (FTA). (2) After architectural design, the
safety expert, development teams and other stakeholders derive detailed
safety requirements and implement them in development. Popular tech-
niques are Failure Mode and Effect Analysis (FMEA) for software and Failure
Modes, Effects and Diagnostic Analysis (FMEDA) for hardware. (3) A verifi-
cation, such as model checking, is necessary for testing the detailed safety
requirements. (4) A validation, such as a review, is done by the deployment
department or customers to test the system-level safety requirements. In
addition to these four stages, safety analysis might happen during change
impact analysis when there is a changing request. The concrete execution of
safety analysis depends on whether they aim to develop a new product or
reuse a product.
The theoretical lens is shown in Figure 7.1. The communication encom-

passes internal communication and external communication. We simplify
the roles in the development team with one internal safety expert, who
mainly performs safety analysis, and other team members, which include ar-
chitects, developers, testers and so on. The internal communication happens
between the internal safety expert and other team members. Besides the
development team, the industries also establish a functional safety depart-
ment, which takes responsibility for the whole functional safety issues at
the company level. In the functional safety department, a functional safety
manager fixes mainly the external affairs and monitoring the execution

7.1 | Theoretical Lens 127

Figure 7.1: Theoretical Lens of Communication Channels

of norms, while an external safety expert keeps contact with the internal
safety expert to conduct training or knowledge sharing. In industry, the
safety analysis related collaborative activities, such as execution and review,
are guided by a safety analysis moderator, who is from a technical support
department. The moderator ensures an official procedure to perform safety
analysis. To ensure the safety assurance capability concerning process execu-
tion, the industries perform safety audit/assessment periodically by a safety
auditor or assessor. It happens two to three times per year, especially when
there is a deliverable product. The communication happens also between the
development team and project manager, customers, suppliers and other
non-functional departments, when the safety analysis issues concerning
project-level, product-level, purchasing, sales and so on.

7.2 Case Study

We chose an exploratory case study design as proposed by Runeson et al.
[Run+12]. We conducted this case study in an inductive way by designing a

128 7 | Communication in S-Scrum

theoretical lens in Figure 7.1. The reasons are: (1) There is no existing the-
ory on communication channels during safety analysis, such as the possible
channels and using regulations. (2) The exploration scope is indeterministic
in terms of communication channels in safety analysis due to an omnico-
operation. (3) The boundaries of safety analysis activities need to be clear
for investigating communications, since some of them are blurred within
development activities. This theoretical lens can provide us a clear boundary
of our article and lay a foundation for our results.

7.2.1 Context

Table 7.1: Research Context
Company Size Location Domain Main products Employees Participants
A Large Germany Automotive Automotive parts; Power

tools; Electronics; Mo-
torised bicycle motors.

400,500 3

A1 Medium China Automotive Automotive parts; Power
tools; Electronics; Mo-
torised bicycle motors.

59,000 26

A2 Medium China Automotive Gasoline engine manage-
ment systems; Transmis-
sion control system; Hy-
brid and electric drive con-
trol system.

9,400 19

A3 Medium China Automotive Diesel systems for passen-
ger cars, light and heavy
commercial vehicles.

1,800 3

B Large Germany Medical
Equipment

CT/SPECT scanner; An-
giography; X-ray products;
Molecular diagnostics.

372,000 4

C Medium Germany
(Italy)

Automotive Automotive lighting; Pow-
ertrain; Suspension sys-
tems; Motorsport.

43,000 3

D Small Germany Industrial
4.0 Based
Product
System

Technical strategy for pro-
duction; ICT for manu-
facturing; Communication
for factories; Process plan-
ning.

Less than
100 (unsta-
ble)

2

We conducted a multiple case study in seven safety-critical companies
(three of which are the subsidiaries of company A), as we can see in Table
7.1. We selected company A, together with A1, A2 and A3, as our biggest
sample (with overall 51 participants). To cover different sizes of companies,
we included company C (medium) and company D (small). To expand our
research domains (company A is an international automotive industry), we
included company B (an international medical equipment industry) and
company D (a local industry 4.0 based production system). The duration of

7.2 | Case Study 129

the investigated projects varies from 6 months to 3 years. The safety assur-
ance processes of them follow ISO 26262 (automotive), VDA (automotive),
Automotive SPICE, ISO 14971 (medical equipment), ISO 15004 (medical
equipment) and IEC 60601 (medical equipment). The safety analysis is
following the internal norms of FMEA, FTA and HAZOP. The investigated
projects encompass functional development of ECU (Electronic Control Unit),
NCU (New energy Control Unit) and body electronic control units, remote
monitoring of CT machines, software services for smart factories and so on.
We have in total 60 participants. 39 participants took part in the surveys,

while the other 21 participants took part in the interviews. We asked the 21
interviewees before the interviews to ensure that they have not answered
the surveys before. Their working experiences in safety-critical companies
range from 1 to 23 years. As shown in Figure 7.2, most participants are
quality assurance engineers and managers. 17 participants are from the
quality assurance (QA) department. 10 participants are from the functional
safety department. There are 23 managers and 3 experts. Other roles are
9 developers, 1 analyst and 2 leaders, as well as 1 participant in sales, 1
participant in purchasing and 1 participant in production department.

Figure 7.2: Participants

7.2.2 Research Question

The research goal is to investigate communication channels during safety
analysis. We formulate four research questions to steer the design of our
study, as shown in Table 7.2.

130 7 | Communication in S-Scrum

Table 7.2: Research Questions
RQ 1 Which communication channels are adopted for safety analysis?
RQ 2 How frequently used are safety analysis communication channels?
RQ 3 Which are the purposes of safety analysis communication channels?
RQ 4 Which are the challenges when using safety analysis communication channels?

7.2.3 Data Collection

As we can see in Figure 7.3, we conducted three rounds of data collection
incrementally. In the first round, we ran surveys in seven companies between
2017-09-01 and 2017-10-31 to investigate the existing communication chan-
nels as well as their usage frequencies. In the second round, we conducted
semi-structured interviews and documentation reviews in seven companies
separately between 2017-09-01 and 2017-10-31 and between 2017-12-01
and 2018-01-31 to investigate their purposes and challenges. In the third
round, from 2017-12-18 to 2018-01-05, the first author participated in
several safety analysis meetings and the daily work in a functional safety
department (foundation of theoretic software group). The duration of partic-
ipant observation is three weeks in company A2. Before data collection, we
pre-interviewed several experts from four companies, either by telephone or
by a face-to-face introductory meeting, to look through the organisational
structure , decide on a common objective, establish agreements and help
designing the surveys and interview questions. Each interview lasted one
hour. These experts were further arranged to be the representative of each
company.
In the first round, we used a survey to collect both qualitative and quanti-

tative data, which cover the participant’s background (positions, working
years, the descriptions and durations of the running projects), the existing
communication channels and the frequencies of using each communication
channel. We sent the link to each representative via email, as well as the
survey in electronic form to ensure that all the participants receive them.
Since the investigation including the questions and predictable answers are
sensitive in SCS, we decided to hand out the surveys through a company

7.2 | Case Study 131

representative. This leads to a limited number of participants, which poses
a challenge. During these two months, the first author checked the progress
every two weeks through communicating with the representatives by video-
phone regarding the distribution of the surveys, as well as problems and
feedback.
In the second round, we used semi-structured interviews to investigate the

purposes and challenges of the communication channels. We selected firstly
the communication channels from the results in the first round. We asked
the interviewees to indicate possible additional communication channels
as the first question. Moreover, we asked for the possible purposes of each
communication channel. We went deeper to gain some real examples. The
results may refer to product and customers’ information, we keep them
confidential. Lastly, we inquired about the challenges. We explained that
the challenges they found could be specific to one communication channel,
or in a general way across multiple channels. To make each challenge clear,
we asked further in-depth sub-questions depending on participants’ answers,
such as “Who are the senders and receivers?", “What are the possible effects?",
“How serious are the effects?", “What are the causal factors?", “How do you
treat or fix this challenge?". We listed some possible in-depth sub-questions
in the interview guide. Meanwhile, the first author reviewed the documents,
which are related to the communication that happens during safety anal-
ysis, such as R&D process instruments including safety analysis activities
or interfaces in R&D process, product development reports including the
safety part of product development and quality management reports includ-
ing safety quality management, quality management handbooks, R&D risk
management instructions, FMEA, FTA and HAZOP guidelines and working
instructions, decision analysis and making reports and technical review re-
ports. We inspected their contents, structures and relevant senders (editors)
and receivers (readers or users) to analyse aspects such as “Are the contents
fully written and could they be easy to understand by the receivers (readers
and users)?", “Are they clearly structured by the senders (editors)?" and “How
long do the documents need to be looked through and be used?"
In the third round, the first author conducted a direct observation in

132 7 | Communication in S-Scrum

company A2. The first author took part in several team meetings such as
a meeting concerning a comparison between the existing safety analysis
procedure and a new version of ISO 26262, a meeting to discuss how safety
analysis is executed in software and hardware development and how to
coordinate with cyber-physical security. The first author observed the daily
work in a functional safety department (she sat near to an internal safety
expert who performed the safety analysis). Apart from the regular processes
such as “How frequently has the internal safety expert been using for communi-
cation by using different channels?" The first author observed also the internal
safety expert’s verbal communication with the functional safety manager,
developers and stakeholders in non-functional departments, as well as the
non-verbal communication, such as the internal safety expert’s field notes,
which recorded some outputs from communication. In the following section,
we present how we analyse our data.

Pre-Interviews Surveys

Interviews Interviews

Documentation review

Participant
observation

2017-08-01 2017-10-012017-09-01 2017-11-01 2017-12-01 2018-01-01 2018-02-01

Figure 7.3: Timeline of Data Collection

7.2.4 Data Analysis

To start answering our research questions, we investigate the participants’
qualifications, such as positions, working experiences and running projects.
For qualitative data, we consider basic coding steps and follow the logic

of grounded theory coding [SC94]. To start with, we conduct open coding
to keep initial coding open-ended, which without having any preconceived
concepts. Since the topic concerning communication channels has a wide

7.2 | Case Study 133

range, even in safety analysis activities, open coding seems the most ap-
propriate way to record transcripts line-by-line. Furthermore, based on
an initial coding process, we get some preconceived categories. We list a
preliminary category and conduct a selective coding. We focus on the codes
relating to complementing the existing communication channels for RQ 1
and complementing the frequencies of using each communication channel,
their purposes for RQ 3 as well as their challenges for RQ 4. The selective
coding process is emergent and iterative. We compare the codes and refine
our preconceived categories. For example, in terms of RQ 1, some intervie-
wees mentioned that the communication channels lack a clear clarification,
such as “If a personal meeting with two people is a formal meeting or personal
discussion?" We discuss the bias separately with an expert in company A to
complement the results. In terms of RQ 2, after the first round of selective
coding, some purposes show similarities, such as “We use email to inform a
temporary meeting" and “We call the colleagues to fix an emergent complaint",
we group them as “A real-time notification". In addition, there is one sentence
of code that encompasses two or more sub-purposes, such as “We go directly
to the sales or deployment (the contact person) to organise a meeting when
there comes a temporary but emergent customer’s complaint". It is divided
into “Fix customers’ complaints" and “Cooperate among multiple functional
departments". We conduct a second round of selective coding to group similar
purposes and divide mixed purposes. The same is held for RQ 4 concerning
challenges.
Lastly, to connect our results concerning the four RQs coherently, we

conduct axial coding for RQ 1, RQ 3 and RQ 4. We link the existing commu-
nication channels with their purposes. We link the Top 10 challenges with
their purposes as well. We demonstrate an example of our coding phase
including interview snippet, open coding, selective coding and axial coding
in Table 7.3.
For quantitative data concerning RQ 1, we choose pure numbers of par-

ticipants to represent the utilisation of each communication channel. For
quantitative data concerning RQ 2, in the first round, the participants scored
the frequencies of the occurrences of each communication channel. The

134 7 | Communication in S-Scrum

Table 7.3: Example of Coding Phase
Interview snippet Open coding Selective coding

(possibly iterative)
Axial coding

Q: “What are the common
purposes to facilitate com-
munication concerning
safety analysis?"
A: “...we have to ex-
change (safety analysis)
information with our
parent company...but the
documents are always
missing ... The functions
are inherited, detailed
architecture design docu-
ments are kept by them ...
safety analysis cannot be
done without considering
interfaces with original
products ..."

We exchange safety analysis informa-
tion with our parent company. The doc-
uments are missing. The functions are
inherited. Detailed architecture design
documents are kept by them. Safety
analysis cannot be done without consid-
ering interfaces with the original prod-
ucts.

Channels: Documenta-
tion.
Purposes: Derive safety
requirements.
Share knowledge.

CHANNEL_Documentation
< −>
PURPOSES_Derive safety require-
ments_Share knowledge.

Q: “Have you noticed
some challenges in these
communication chan-
nels?"
A: “...more importantly,
we do care about the confi-
dentiality. We categorised
the data related to safety
analysis with different
confidential levels. High
confidential data requires
relevant authorities to
read or transmit ..."

We care about confidentiality problem.
We categorise the safety analysis re-
lated information with different confi-
dential levels. High confidential levels’
data need authorities to read and trans-
mit.

Purposes: Transfer safety
requirements.
Challenges: Transmission
of confidential informa-
tion.
Authority problems.

PURPOSES _Transfer safety require-
ments
< −>
CHALLENGE_Confidential informa-
tion_Authority problems.

scale ranges from 1-4 times per day to 1-4 times per year. We consider that
only the pure numbers in the surveys might show memory lapses [HRH13],
the same as by asking the interviewees, a direct observation is necessary to
validate the results.

7.2.5 Results

7.2.5.1 RQ1: Which communication channels are adopted for safety
analysis?

As we can see in Figure 7.4, we find 9 communication channels during safety
analysis, which are meetings, personal discussion, internal communication
software (private), email, telephone, documentation, project coordination
tools, training (including tutorial) and boards. Few participants mentioned
the use of social communication software. However, considering that it is a

7.2 | Case Study 135

Figure 7.4: Communication Channels in Safety Analysis

rare and non-regulated case1, we discussed with an expert in company A
and decided not to include it in our results. We summarise the results as
follows:
Meeting: All the 39 participants (100%) mentioned meeting as a main
communication channel during safety analysis. A meeting is defined as a
gathering of two or more people that has been convened for the purpose of
achieving a common goal through verbal communication, such as sharing
information or reaching an agreement. It may take the form of face-to-face
or virtually, as mediated by communications technology, such as a telephone
conference call, a Skype conference call or a video conference [Ols+92]
[Cut+02]. When performing safety analysis, the meetings include planning
meetings, review meetings and requirements audit/assessment meetings.
The joined members are invited by a meeting organiser, such as a safety
analysis moderator. The communication might produce work products as
outputs, such as relevant documentation including safety plan or safety

1We consider that it is due to a culture difference between Europe and Asia. More
descriptions are shown in Section 7.2.7.

136 7 | Communication in S-Scrum

requirements implementation decisions.
Project coordination tool: 37 participants (94.9%)mentioned using project
coordination tools as a main communication channel during safety analy-
sis. Project coordination tools aim to increase group awareness of current
tasks and issues and provide a means for tracking progress and discussing
next steps [Sto+17]. Jira is the most popular one in our research context,
together with the interfaces to other requirements management tools like
Doors to keep the multiple levels and the traceability of safety requirements.
Company A, company A1, company A2 and company A3 are using an Ap-
plication Lifecycle Management (ALM) of IBM Rational Team Concert1. In
daily work, employees can trace the progresses of safety analysis transpar-
ently and provide feedback or comments timely. In other communication
channels, such as meetings or personal discussion, project coordination tools
provide an up-to-date information, such as the implementation of a safety
requirement.
Documentation: 36 participants (92.3%) mentioned documentation as
a main communication channel during safety analysis. According to the
functional safety norms, safety analysis requires a large amount of documen-
tation, such as safety analysis instrumentations, safety analysis execution
plans and safety analysis audit/assessment reports. To record processes
and results of safety analysis clearly, the employees have to rely on these
documents.
Telephone: 33 participants (84.6%) mentioned the use of the traditional
telephone. Even though other modern communication software is springing
up, most of the employees believe that telephone is more reliable for local
communication and just as easy to use as in daily life [BZL04] [KS92]. We
obtained a novel channel calling a telephone call via Skype in our research
context. Company A links the telephone numbers with the Skype accounts. It
enhances the working efficiency. For example, when someone is on the way
among different working places, he or she can keep the communication via
various mobile terminals, such as mobile phone or tablet personal computer.

1https://arcadsoftware.de/produkte/rtc-rational-team-concert/

7.2 | Case Study 137

Email: 32 participants (82.1%) mentioned the use of email. As an asyn-
chronous communication channel, when the issues are not emergent and
might involve not only one person, email provides time to structure the in-
formation for communication [Dab+05]. Concerning safety analysis, email
threads and the contents of emails are traceable. The traceability constitutes
an advantage of using email. However, using email is not fully positive
during safety analysis. Email can record the process of discussion, yet the
practitioners during safety analysis do not prefer recording their discussion,
rather only documenting their results. In addition, although using emails
seems traceable, there needs a lot of efforts to search for the relevant infor-
mation.
Personal discussion: 28 participants (71.8%) mentioned personal discus-
sion as a communication channel during safety analysis. Personal discussion
is a form of informal face-to-face communication. It happens spontaneously
and less supported by communication technology [Kra+90]. When perform-
ing safety analysis, an internal communication prefers mostly using personal
discussions. It can ensure a correct understanding and a timely feedback.
To perform safety analysis in modern software development, personal dis-
cussion needs attentions and the effectiveness of it will influence the quality
of safety analysis to a great extent.
Training (including tutorial): 19 participants (48.7%) mentioned training
including tutorials as a communication channel. Training is a traditional way
to enhance personal competence and share knowledge in industries [SB06].
In terms of safety analysis, the education institutes sometimes lack such
courses, especially the practical experiences in developing SCS. A training
of safety analysis or functional safety norms is a normal way to cultivate
employees. However, some of the employees are already experts from other
relevant positions or departments in industries, such as product development
or quality assurance departments. They have already a deep experience.
Thus, not all the participants have to take part in the training.
Internal communication software (private): 15 participants (38.5%)men-
tioned internal communication software as a communication channel. We
consider only the internal communication software that features a private

138 7 | Communication in S-Scrum

chat, since not all the software featuring group or public chats in our research
context (company A uses Skype that supports public chat, while company
A2 uses Microsoft Office Communicator (OCS) that does not support public
chat). It is a relative new communication channel popularising in the last
decade. It integrates functions like a real-time notification, documents trans-
formation and even meeting organisation [Sto+10]. Even though, the results
indicate that internal communication software is not as much used during
safety analysis as in other areas, such as software development [Sto+17].
We speculate that concerning each single function, the employees still have
a better choice for achieving the purposes of safety analysis, such as for a
real-time communication, telephone is more reliable to get in touch.
Boards: 6 participants (15.4%) mentioned the use of boards. Boards, as
communication channels, have been popularly used in industries and are
becoming a tool during project management, such as whiteboards [Che+07],
in modern development processes. They are placed near the working areas.
Some of them demonstrate the state-of-the-art or contributions in terms
of safety analysis, such as a process flowchart of safety analysis in product
development or the developed interfaces in safety analysis and relevant
tools. In particular, when external experts or customers come to visit the
company, boards are an intuitive way to show competitiveness.

7.2.5.2 RQ2: How frequently used are safety analysis communication
channels?

As we can see in Figure 7.5, meetings are mostly held ranging from 1-4 times
per week (18 out of 39 respondents, 46.2%) to 1-4 times per month (18
out of 39 respondents, 46.2%). Personal discussion happens 1-4 times per
week (18 out of 27 respondents, 66.7%). Internal communication software
is used mostly 1-4 times per week (11 out of 15 respondents, 73.3%). Email
(18 out of 32 respondents, 56.3%) and telephone (23 out of 33 respondents,
69.7%) are also frequently used 1-4 times per week. Documentation is
written, read or managed 1-4 times per week (27 out of 36 respondents,
75%). Project coordination tools are in use 1-4 times per day (36 out of 37

7.2 | Case Study 139

respondents, 97.3%). Training is established 1-4 times per year with 100%
respondents’ rate. Boards are possibly to be noticed 1-4 times per week
(4 out of 6 respondents, 66.7%). In summary, most of the communication
channels (7 out of 9) are in use for safety analysis at least every week. Project
coordination tools are in use for safety analysis everyday, while training
(including tutorial) concerning safety analysis is mostly held every year. In
particular, a same number of participants (18 participants) mentions that
the meetings are held between 1-4 times per week and 1-4 times per month.
We discuss this point with an expert in company A and consider the reason
as the distribution of company. For local projects, it is possible to establish
necessary meetings. However, the distributed projects occupy also a large
percentage in our research context. It is almost impossible for the employees,
who are in distributed locations, to find a common time slot, such as in
Germany, China, and USA. In these cases, meetings cannot be so frequently
held at a 1-4 times per week rate and other communication channels are in
use instead.

Figure 7.5: Usage Frequencies of the 9 Communication Channel

140 7 | Communication in S-Scrum

7.2.5.3 RQ 3: Which are the purposes of safety analysis communication
channels?

We address overall 28 purposes of 9 communication channels during safety
analysis, as we can see in Table 7.4.
1. Transfer safety requirements (in). To transfer safety requirements inter-
nally, the employees use meetings, documentation and project coordination
tools. They discuss safety requirements in the form of meetings to keep it
formal and possible to be established among multiple functional departments.
They record the safety requirements in official documentation and project
coordination tools to support daily communication.
2. Transfer safety requirements (ex). To transfer safety requirements exter-
nally, meetings and documentation are implemented. However, contrary
to the internal transfer of safety requirements, project coordination tools
mostly have a limitation on permissions to external members. Some of the
customers send the safety requirements per email, which seems to be non-
regulated due to a lack of format of constructing safety requirements and
an acceptance process of safety requirements.
3. Derive safety requirement. A formal and thorough discussion is necessary
to derive correct and complete safety requirements. Thus, meeting is the
most effective way with respect to the number of participants and time.
4. Clarify safety requirements internally. Many communication channels are
applicable to clarify safety requirements internally, which include meetings,
personal discussion, internal communication software (private), telephone,
documentation and project coordination tools. It depends on the impact
degree and scope of misunderstandings. A meeting is ideal for clarifying
safety requirements with a severe impact. Personal discussion, internal
communication software (private) and telephone are better for an individual
clarification. Documentation is used to record an official clarification, while
project coordination tools are specific for a clarification in an open mode.
5. Clarify safety requirement externally. An official and reliable communica-
tion channel is extremely important to clarify safety requirements externally.
Thus, meetings and documentation are the most appropriate channels. Email

7.2 | Case Study 141

has also been used for an explanation at an early stage.
6. Implement safety requirements. The developers should implement safety
requirements to their development. In terms of accountability, they prefer
to execute it through meetings and documentation. The generation of ideas
may happen through personal discussion.
7. Trace safety requirements (bi). According to the norms, safety require-
ments should satisfy a bi-directional traceability [Com11b]. Project coordi-
nation tools give the employees a direct overview. However, to preserve them
long-term, documentation is needed. In addition, some project coordination
tools do not support multiple level safety requirements, such as Jira.
8. Planning. To perform safety analysis planning, a planning meeting is a
popular way, together with a safety plan as a work product. The execution
process is shown in a project coordination tool.
9. Regular discussion. It includes regular meetings in the development team
or personal discussion among team members. Sometimes the team members
use internal communication software.
10. Demonstrate periodic analysis results. The safety analysis results should
be demonstrated periodically to promote development. The results are trans-
mitted automatically in the project coordination tools. The safety analysts
demonstrate the results via the meeting and record them in the documenta-
tion.
11. Demonstrate periodic V&V results. It is the same way with purposes 10.
The acceptance criteria for safety verification and validation are recorded in
the documentation and the review process is running in a meeting with a
record in the project coordination tools.
12. Review. There is a regular review meeting held at the end of a project.
The results are recorded in the review report and in a project coordination
tool at the same time.
13. Monitor the status. Some practitioners facilitate communication for mon-
itoring the status of safety analysis. The project coordination tool is the best
way for monitoring the status in terms of a convenience and completeness
overview.
14. Fix resources/supply problems. Safety analysis sometimes faces the prob-

142 7 | Communication in S-Scrum

lems concerning a lack of resources or supply. The resources or suppliers are
inside the company, yet among different subsidiaries or multiple functional
departments. Meeting and personal discussion are the normal ways to fix
such official but less frequent issues.
15. Fix customers’ complaints. The employees receive the customers’ com-
plaints mostly through emails. Solving the problems is achieved through
meetings.
16. Establish commitments and make decisions. The commitments are es-
tablished among various roles, while the decisions are made in a formally
strategic way. Meeting is the most suitable method.
17. Improve processes and techniques. The processes and techniques of safety
analysis are continuously developed. No matter how subtle the changes are,
these changes have to be considered and discussed systematically and trans-
parently [PGP08]. Meeting can gather omnifarious opinions and perform
allocations from an overall perspective.
18. Fix temporary problems, conflicts and obstacles. There are many un-
foreseeable and even tiny problems, conflicts and obstacles during safety
analysis, possible communication channels are meeting, personal discussion,
internal communication software, email and telephone. The selection of the
channels depends on concrete issues.
19. Cooperate among multiple functional departments. A meeting is possible
to be organised across multiple functional departments. The employees
might also communicate through personal discussion, when they have a
good relationship privately. The employees are also using internal commu-
nication software, email and telephone to communication with multiple
functional departments.
20. Help to understand the norms. The activities and artifacts of performing
safety analysis have to satisfy the norms. Not everyone has a solid back-
ground. To understand the norms, safety managers might introduce briefly
in a meeting. More than that, the employees could ask relevant experts
through personal discussion. To this end, training is popular in safety-critical
companies to illustrate the norms systematically.
21. Realise real-time notifications. Some issues related to safety analysis are

7.2 | Case Study 143

emergent, such as a serious customers’ complaint, which might influence
an ongoing delivery. In this case, the employees usually go directly to find
the colleague (personal discussion), using internal communication software
or telephone. Some project coordination tools provide a timely notification
function in connection with email.
22. Provide feedback and comments. The employees are able to provide a
timely feedback or comments through personal discussion, internal commu-
nication software, and telephone. Email is better for a clear explanation,
while project coordination tools make the feedback and comments open to
other employees.
23. Enhance group cohesion. Some communication channels among safety
analysis and other stakeholders enhance safety-critical industries’ cohesion,
such as internal communication software and project coordination tools.
Training is especially useful for new employees.
24. Discuss bordered or off topics. The contents of bordered or off topics
might influence the safety analysis positively or negatively. The employees
mainly use internal communication software or directly personal discussion.
25. Share knowledge. Knowledge sharing is considered important in SCS
[NG14], such as general safety knowledge or in-depth safety analysis infor-
mation. It occurs through meeting, personal discussion, telephone, docu-
mentation, training and boards.
26. Transfer documents or links. The safety analysis related documents are
mostly saved on a server. Yet, a small change of information management
system as well as the complicated hierarchy of folders make some documents
more difficult to be found or take more time than asking the responsible col-
league. Thus, the employees might use communication channels to transfer
them or their link. Internal communication software is a convenient way to
share a link or an address, while email is able to send chunky files and keep
track of the documents.
27. Enhance safety culture. Safety culture reflects the general attitude and
approaches to safety and risk management [Lev11]. Safety culture is difficult
to evaluate [Gul00]. Documents are required by the norms. The satisfaction
of such requirements of documents determines the organisation’s safety

144 7 | Communication in S-Scrum

assurance capability. It influences the safety culture. Responsibilities of
specific roles, such as safety manager, are important to meeting the norms.
Thus, a training of norms is necessary for remaining a good safety culture.
Some participants mentioned boards as a good way to enhance safety culture
through daily work, such as hanging out recent contributions.
28. Demonstration (external). Boards are also popular to demonstrate the
safety analysis capability of the organisations to external experts or cus-
tomers. An intentional demonstration for a possible cooperation is conducted
in meetings.

Table 7.4: Purposes
Meeting Personal

dis-
cus-
sion

Csw. Email Tel. Doc. Project
coor-
dina-
tion
tool

Training Boards

1. Transfer safety requirements (in) Ø Ø Ø
2. Transfer safety requirements (ex) Ø Ø Ø
3. Derive safety requirements Ø
4. Clarify safety requirements (in) Ø Ø Ø Ø Ø Ø
5. Clarify safety requirements (ex) Ø Ø Ø
6. Implement safety requirements Ø Ø Ø
7. Trace safety requirements (bi) Ø Ø
8. Planning Ø Ø Ø
9. Regular discussion Ø Ø Ø
10. Demonstrate periodic analysis results Ø Ø Ø
11. Demonstrate periodic V&V results Ø Ø Ø
12. Review Ø Ø Ø
13. Monitor the status Ø
14. Fix resources/supply problems Ø Ø
15. Fix customers’ complaints Ø Ø
16. Establish commitments and make decisions Ø
17. Improve processes or techniques Ø
18. Fix temp. problems, conflicts and obstacles Ø Ø Ø Ø Ø
19. Cooperate among multiple functional departments Ø Ø Ø Ø Ø
20. Help to understand the norms Ø Ø Ø
21. Realise real-time notifications Ø Ø Ø Ø
22. Provide feedback and comments Ø Ø Ø Ø Ø
23. Enhance group cohesion Ø Ø Ø
24. Discuss bordered or off topics Ø Ø
25. Share knowledge Ø Ø Ø Ø Ø Ø
26. Transfer documents or links Ø Ø
27. Enhance safety culture Ø Ø Ø
28. Demonstration (external) Ø Ø

Csw. is internal communication software. Tel. is telephone. Doc. is documentation. V&V is verification and validation. In means internal,
while ex means external. Bi means bi-direction.

7.2 | Case Study 145

7.2.5.4 RQ4: Which are the challenges when using safety analysis
communication channels?

7.2.5.5 The Top 10 Challenges

We derive the Top 10 challenges across 9 communication channels from
interviews and check the results by a safety expert in company A. We list
them as follows.

1. The communication of sensitive or confidential information should be
monitored.

The results of safety analysis are mostly sensitive and confidential, since they
encompass products in details, which influence a safe operation and end-use
of products. Communication channels have to keep the information confi-
dential, which includes ensuring that sensitive and confidential information
is properly stored, maintained, secured, and accessible to those who need it
[Ban+12] [Luc04]. One interviewee mentioned: “We categorised the data
(information) related to safety analysis with different confidentiality levels.
Higher confidential data (information) requires relevant authorities to read and
transmit. Yet, we do not regulate the verbal communication, including using
social communication software to discuss the information. These information is
not under monitor and control."We note one factor concerning initiative leak-
age (a lack of regulations) of sensitive or confidential information through
communication channels rather than passive leakage (a poor security and
privacy assurance mechanism). As one participant mentioned: “We always
avoid some non-regulated channels to transmit confidential and sensitive data
(information), such as using e-mail to send safety requirements, even though
some customers do this. We actually do not know clearly what is such regula-
tions, just following our experiences." To face this factor, organisation should
establish relevant regulations on the communication channels, especially
on the verbal channels, when performing safety analysis. The employees
can understand clearly which sensitive and confidential information is able
to transmit by which communication channels. Moreover, an alternative to

146 7 | Communication in S-Scrum

verbal communication is recommended when performing safety analysis,
such as text transmission.

2. Some safety analysis information is fragmented.

The fragmentation will cause misunderstandings on safety analysis infor-
mation. This happens particularly in text-based communication channels,
such as safety analysis related-documentation and internal communication
software. As one interviewee mentioned: “Mostly we can find out the safety-
analysis relevant documents on the server. But sometimes the information is
difficult to be understood or also possibly lacking some critical information,
maybe not updated. The files are uploaded by authors themselves with no more
reviews and even regular maintenance." There is a specific role responsible for
technical documents’ maintenance in industries. However, the maintenance
for online documents seems weak. Moreover, for the synchronous commu-
nication channels like internal communication software. One interviewee
said: “To save time, there are too many personal abbreviations. That makes us
confused and influences some emergent issues."

3. Some safety analysis information is inconsistent.

The tools such as project coordinate tools and safety analysis tools are
updated frequently. However, other recordings do not keep the same space.
As one interviewee mentioned: “In Jira and Doors, which we are using for
recording safety requirements, there are all the updated safety requirements.
But sometimes we use also doc files to record the results from safety analy-
sis firstly and do not use those directly. The update (of official requirements
documents) has a determined time point, which is not in a timely manner." A
real-time consistency seems important for the set of safety analysis related
tools. In this paragraph, we focus on the contents, while the forth challenge
focuses on the trigger time.

7.2 | Case Study 147

4. Some communication channels concerning safety analysis are asyn-
chronous, when they should be synchronous.

Some communication channels are considered to be synchronous, such
as Skype or telephone. However, they are not in our case. One interviewee
mentioned: “When there is a temporary meeting, I will check if this colleague
is online (Skype), then call him (or her). It works mostly. But once, I got an
emergent customer complaint regarding our safety analysis, we need to find a
colleague immediately, he was not online and could not be reached by telephone.
I decided to go directly to his office and found him." The asynchronous channels
will hinder some emergent issues such as production and delivery and might
cause fatalities.

5. The communication channels concerning safety analysis lack tool sup-
port.

Tools often put a limit to the strategies that can be adopted [Lev11]. For ef-
fective communications, tools are important, especially the interfaces among
different tools. When performing safety analysis, non-verbal communication
takes an increasingly major part of it. An effective tool chain ensures the
information’s correctness, clearness, completeness and synchronous. How-
ever, the integration between safety analysis and functional development
still lacks tool supports. Various organisational structures have various com-
munication channels and tools. The new techniques are changing too fast
to arrange an immediately effective use of them. As one interviewee said:
“We start to use ALM (from IBM) for project management, but the interfaces
(with the existing management tools) are not finished. The traceability is too
poor." The company has to consider an immediately developed interface with
other safety analysis tools, when they introduce a new project management
tool. Otherwise, when buying a new tool, a feasible interface to the existing
toolchain should be considered by the compnay. As one interviewee men-
tioned: “APIS IQ-FMEA is a powerful tool that we used for performing FMEA.
We have used it for many years and believe in it. Currently, we are considering

148 7 | Communication in S-Scrum

to use a safety information and activity management tool. A lot of companies
have introduced their tools. But our first criteria is if it has a feasible interface
with APIS IQ-FMEA."

6. Developers might misunderstand the information from safety experts.

When the products to be developed have novel functions, there will be
misunderstandings between functional developers and safety experts. One
interviewee said: “It is no problem when developing old functions like ECU
(electronic control unit). But these years we are starting a new functional
module NCU (new energy control unit). The traditional safety experts, who
have functional development experiences only on developing ECU, lack the new
knowledge to understand detailed development." The communication channels
which support knowledge sharing might be helpful in this case.

7. There are language, geographic and culture barriers in the communica-
tion channels.

In terms of language, most of the companies in our context use English
as the official language. Nevertheless, some professional terms concerning
safety analysis are not uniform, such as incorrect verbs like operate safety
analysis instead of perform safety analysis. This happens in the text-based as
well as verbal communication channels. In terms of geographic, distributed
locations interfere experience sharing. As one interviewee mentioned: “We
send our colleagues, who perform safety analysis to other countries once a year
to enhance communication and collaboration, but it works better for new em-
ployees. They want to learn new techniques and former experiences. For safety
experts, we prefer that the execution of safety analysis should be suitable for our
own environment or context. Different countries have different requirements
and problems." The basic knowledge has been well transmitted. However, the
practical experiences are less shared and worse discussed. The knowledge
sharing of safety analysis should not stop in the technique level, rather with
more real-life cases. In terms of culture, distributed companies keep detailed

7.2 | Case Study 149

safety analysis results and avoid to communicate them. There is a lack of
trust among different cultures [Hol+06]. The parent company keeps some
details, such as architecture design, of development and even safety analysis.
When the subsidiaries inherit some function modules, they lack such details
to perform a thorough and systematic safety analysis. Regulations among
different countries might be a reason.

8. The members from functional departments are unwilling to share safety
knowledge with non-functional departments.

Functional (including functional safety) departments believe in their knowl-
edge on development and safety of products. As one expert from the func-
tional department said: “We don’t see the necessity to do this." We call this
stereotype in groupthink theory1. This challenge exists during safety analy-
sis and is specifically important for developing and ensuring a safe product
[WW18b]. An interviewee said: “We do not think that other departments like
purchasing or sales could help us a lot on developing a safe product. We know
more and detailed on the product. For one project, we were required to train
them with some general safety knowledge. We do not know how much it works.
They also look unwilling." In terms of safety knowledge sharing, the func-
tional departments (including functional safety) should appreciate the needs
and expectation of other job roles. In addition, a lack of continuous learning
and personal development processes reduce the passions of non-functional
departments’ employees to learn safety-analysis related knowledge, as one
interviewee mentioned: “Safety analysis is not my main job, if just for this
project and it does not help for future, we actually do not want to use too much
time on it." To this end, we should notice if the information is spread widely
enough. As one expert said: “Sometimes the employees are forced to share the
safety knowledge." A lack of initiative makes the knowledge sharing becoming

1Groupthink is a psychological phenomenon, which was introduced by Janis in 1971 [Jan71]. It is a
linear model of how seven antecedents (cohesion, group insulation, impartial leader, lack of norms,
homogeneous, high stress from external threats, temporarily low self-esteem) increase the likelihood of
premature concurrence seeking, which leads to eight psychological symptoms (illusion of invulnerability,
collective rationalisations, belief in inherent morality of the group, stereotypes of out-groups, direct
pressure on dissenters, self-censorship, illusion of unanimity, self-appointed mindguards).

150 7 | Communication in S-Scrum

superficial.

9. The storage, authority, regulation and monitoring problems on the
transmitted safety analysis information.

In terms of the storage of safety analysis information, one interviewee men-
tioned: “We have a central information management system on the server, but
the safety analysis data (information) or files are not clearly classified. Some
(of them) are mixed with other process documents." The quality of transmitted
information interleaves with the effectiveness of communication channels.
The company should consider to establish a safety information management
system to be separated with other information. In addition, the tools of
information storage are important. An expert said: “The process of our data
(information) storage is following the tools, not using tools to support process."
Thus, a suitable tool for safety information storage is needed, especially for
modern SCS with a huge amount of data. As one interviewee mentioned:
“The simulation data for autonomous driving system are thousands of giga
bytes. It is relative difficult to find them when there is a migration happened 10
years before." In terms of authority, one interviewee said: “In the information
management system, we classify the files into different levels of authorities.
But it is difficult to divide levels of safety requirements in Jira." The authority
should be noticed not only in the information management system, but also
in the project management tool. In terms of regulation, some feedback are:
“We are not clear about the regulations, just big sizes of files cannot be sent
privately." We notice that there are some hidden regulations on transmitting
safety sensitive information. However, these regulations are not clearly and
obviously announced. In terms of monitoring problems, the safety analysis
information are monitored by an IT department as the same with other
company level sensitive information. As one interviewee mentioned: “We do
have a monitor group that monitors and controls the transformation of marked
files. The high severity files have different kinds of mark. It could be traced by
IT department." The monitor of safety analysis information does work inside
the company, but still needs enhancement.

7.2 | Case Study 151

10. There is a lack of technical documentation to support communication.

Safety analysis should be performed at the system-level [Lev11]. The de-
tailed system description documents are necessary but sometimes not avail-
able. One interviewee mentioned: “Some products are developed on the basis
of the original product. The functions are inherited. The detailed architecture
design documents are kept by the original company or department. The exe-
cution of safety analysis cannot only be performed on new function modules
without considering interfaces with original products. A systematic impact
causes risks." This might be caused by the culture (as we indicate in challenge
7), the authority problem (as we mentioned in challenge 9) of subsidiaries,
or an incomplete and fragment record of safety analysis information (as we
mention in challenge 2). Nevertheless, safety analysis related documentation
should consider communication [WBW17].

7.2.5.6 A Mapping between Purposes and Challenges

We map the purposes with challenges, as shown in Table 7.5. The first line
depicts the numbers of the Top 10 challenges, while the first column depicts
the purposes.
Considering challenge 1: The communication of sensitive or confidential infor-
mation should be monitored. It happens often when the practitioners transfer
and demonstrate safety analysis related information (purpose 1, 2, 24, 26,
28). The practitioners, who use the communication channels for achieving
these purposes, should notice challenge 1. Other communication channels
are better to avoid transferring sensitive or confidential information.
Considering challenge 2: Some safety analysis information is fragmented.
The incomplete and fragment information occur through almost all the 9
communication channels, especially for demonstrating information (purpose
10, 11). Documentation, project coordination tools, email and internal
communication software should keep safety analysis related information as
complete as possible. When facing resource or supply problems, the provided

152 7 | Communication in S-Scrum

Table 7.5: Purposes versus Challenges
Purposes vs. Challenges 1 2 3 4 5 6 7 8 9 10

1. Transfer safety requirements (in) Ø Ø
2. Transfer safety requirements (ex) Ø Ø
3. Derive safety requirements Ø Ø Ø
4. Clarify safety requirements (in) Ø Ø
5. Clarify safety requirements (ex) Ø Ø Ø
6. Implement safety requirements Ø Ø
7. Trace safety requirements (bi) Ø
8. Planning Ø
9. Regular discussion Ø
10. Demonstrate periodic analysis results Ø Ø
11. Demonstrate periodic V&V results Ø Ø
12. Review Ø
13. Monitor the status Ø Ø
14. Fix resources / supply problems Ø
15. Fix customers’ complaints Ø Ø
16. Establish commitments and make decisions Ø Ø
17. Improve processes or techniques Ø
18. Fix temp. problems, conflicts and obstacles Ø
19. Cooperate among multiple functional departments Ø Ø
20. Help to understand the norms Ø Ø
21. Realise real-time notification Ø
22. Provide feedback and comments Ø Ø
23. Enhance group cohesion Ø
24. Discuss boards line or off topics Ø
25. Share knowledge Ø Ø
26. Transfer documents or links Ø Ø
27. Enhance safety culture Ø
28. Demonstration (external) Ø

In. csw (private) is internal communication software. Tel. is telephone. Doc. is documentation. V&V is verification and validation. In means
internal, while ex means external.

information from them should notice completeness (purpose 14).
Considering challenge 3: Some safety analysis information is inconsistent.
When the practitioners clarify the safety requirements (purpose 3, 4, 5)
or demonstrate the results (purpose 10, 11), the communication channels
should keep consistent information to avoid misunderstandings. Thus, the
consistency among the recordings of meetings, the archived documentation
and the project coordination tools seem important.
Considering challenge 4: Some communication channels concerning safety
analysis are asynchronous, when they should be synchronous. It is extremely
important when there is a need for real-time notification and timely monitor-
ing (purpose 13, 15, 22). Thus, telephone, internal communication software
should be able to reach a specific person when he/she is on-site.
Considering challenge 5: The communication channels concerning safety anal-
ysis lack tool support. A tool is necessary for tracing safety requirements
(purpose 7), monitoring status (purpose 13) and providing feedback (pur-
pose 22). The temporary problems necessitate tools to support recordings

7.2 | Case Study 153

(purpose 18). We should arrange or design efficient tools and their interfaces
as well.
Considering challenge 6: Developers might misunderstand the information
from safety experts. The misunderstanding might occur between developers
and safety experts when they use communication channels internally to
derive, clarify, implement, discuss, review and share the safety analysis
related information (purpose 3, 4, 6, 9, 12, 25). The understanding with
respect to norms show also bias (purpose 20). The practitioners need to
consider the understandability and an obstacle-free communication among
multiple functional departments.
Considering challenge 7: There are geographic, language and culture barriers
in the communication channels. When the industries aim to enhance group
cohesion and share safety knowledge (purpose 24, 26), the communication
channels, such as internal communication software, training and boards,
might reduce the interferences from geographic, language and culture bias.
To face customers or clarify safety analysis externally, it might happen in a
multiple geographical distribution (purpose 5, 15). The relevant communi-
cation channels, such as meeting, should consider it.
Considering challenge 8: The members from functional departments are
unwilling to share safety knowledge with non-functional departments. The
communication channels regarding the cooperation among multiple func-
tional departments (purpose 20) should avoid this challenge. For example,
during meetings, a friendly environment for discussion is necessary. Personal
discussion, such as by using internal communication software, email and
telephone, is encouraged among multiple functional departments. When
clarifying safety requirements externally (purpose 5), this challenge may
happen due to a diverse knowledge background. When planning safety
analysis (purpose 8), non-functional departments are keeping silence, as
well as when improving processes or techniques (purpose 17). To enhance
safety culture (purpose 27), non-functional departments should be included.
Considering challenge 9: The storage, authority, regulation and monitoring
problems on the transmitted safety analysis information. To transfer safety
requirements (purpose 1, 2, 26), storage, authority, regulation and monitor-

154 7 | Communication in S-Scrum

ing are necessary. To establish commitment and make decisions (purpose
16), relevant regulations are needed. The fulfillment of norms should follow
regulations (purpose 20). The feedback and comments need to be stored
(purpose 22).
Considering challenge 10: There is a lack of technical documentation to sup-
port communication. The derive, implementation and decision making of
safety requirements need a clear documentation to be understood by multi-
ple functional departments and support an effective communication among
them (purpose 3, 6, 16, 19).

7.2.6 Discussion

The main benefit of our article is that we investigate the general topic
concerning communication channels in a concrete context concerning the
execution of safety analysis. We aim to arouse the awareness of practitioners
concerning safety analysis on their communication. The results are multiple:
(1) we find 9 communication channels during safety analysis; (2) most of
them happens 1-4 times per week; (3) we investigate 28 purposes of these
9 communication channels and (4) the Top 10 challenges across these 9
communication channels.
To compare with the related works, Storey et al. [Sto+17] found around

twenty communication channels during software development. When per-
forming safety analysis, the number of communication channels are smaller.
We conjecture that (1) safety analysis is an activity within software develop-
ment, (2) the confidentiality concerning sensitive safety-related data limit
the number of possible using communication channels, especially informal
communication channels. Kraut et al. [Kra+90] mentioned that the usage
frequency can show the importance of communication. In this article, we
calculate the usage frequencies of the 9 communication channels during
safety analysis to raise the importance of communication during safety anal-
ysis. Vilela et al. [Vil+17] proposed more than 11 pros that an effective
communication in safety analysis can bring, such as reducing errors in re-
quirements specification or helping design. However, to achieve an effective

7.2 | Case Study 155

communication, the realisation of communication purposes is first and fore-
most. The existing research concerning communication purposes seems
poor. We conjecture the reason might be that the general communication
purposes distribute too wide-ranging. However, during safety analysis, the
communication purposes can be accounted. The challenges of communica-
tion concerning safety issues were mentioned in a plenty of studies, which
are either as accident reports [DMN14] or in terms of general organisational
management [HRH13]. The summarised communication challenges in soft-
ware development are more than twenty [Sto+17]. However, to the best
of our knowledge, little research focuses on the communication challenges,
which might cause unsafe issues, during the execution of safety analysis in
organisation management.

“Being a good communicator is one thing. Knowing what to communicate is
much more important." [Con+11] (P. 52, Conboy et al.)

To see the results in this article, given the aforementioned opinion, we
highlight the major contribution of our results as communication purposes
(RQ 3). During our research, a lot of the popular communication channels
are used across various areas, not only for safety analysis. The challenges
are summarised with similar manifestations, such as incomplete information
and asynchronous implementation, but they are totally different in essence
in terms of causalities, effects as well as solutions. Some of the challenges
cannot map into safety analysis directly. We believe that a purpose during the
communication in safety analysis determines why and what to communicate.
Communication makes sense when the people achieve their communication
purpose.
Thus, in this article, first, we map the 9 communication channels (RQ

1) with the 28 purposes. Within these 28 purposes, each one has 1 to 6
possible selections of communication channels to achieve it. For instance,
to derive safety requirements (purpose 3), to establish commitments and

156 7 | Communication in S-Scrum

make decisions (purpose 16) and to improve processes and techniques (pur-
pose 17), the practitioners show only the use of meetings. To clarify safety
requirements internally (purpose 4) and to share knowledge (purpose 25),
each purpose has 6 communication channels as possible selections in practice.
Second, we map the Top 10 challenges (RQ 4) with their 28 purposes. The
challenges rely heavily on their purposes and have different manifestations
on each channel. For instance, “the communication of sensitive and confiden-
tial information should be monitored" (challenge 1) when “transfer safety
requirements" (purpose 1, 2), as shown in Table 7.5, rather than whether the
practitioners use meetings, email, documentation or project coordination
tools, as shown in Table 7.4.
In addition to the major contribution on communication purposes, we

demonstrate firstly the state-of-the-art in terms of the types (RQ 1) of the ex-
isting communication channels. The number is not huge comparing with ex-
isting communication channels in other areas such as social media [Sto+10].
Meeting is a dominant one during safety analysis, which is able to achieve

20 out of 28 purposes. Especially, three purposes (3, 16, 17) can only be
reached by meetings. The practitioners prefer to use meetings in traditional
development processes which advocate formality as well as in modern de-
velopment processes which aim to increase cooperation and communication.
Meetings are possible for them both.
Project coordination tool, documentation, telephone and email are four

popular communication channels in organisation management, as well as
when performing safety analysis. They are able to reach 11 purposes, 12
purposes, 6 purposes and 7 purposes in safety analysis, respectively.
The importance of personal discussion is an outstanding result in our study.

71.8% participants mentioned that they are using it during safety analysis. It
can achieve 11 out of 28 purposes. Based on our original conjecture, personal
discussion might happen occasionally and especially rarely during safety
analysis. Safety analysis is considered to be a technical in-depth activity,
which needs an official communication or at least, more time to prepare.
Comparing with other 8 communication channels, personal discussion seems
to be the most unregulated one, which is extremely difficult to control,

7.2 | Case Study 157

monitor and trace. We missed noticing its necessity. Yet, the results caught
our attention.
Internal communication software is a novel channel since last decade. Even

though it has been moderately mentioned in our context, the results show
still its powerful functionalities that it can reach 9 purposes during safety
analysis.
Training is a concentrated way to enhance communication concerning

safety analysis. It can reach 4 purposes. Apart from the basic training for new
employees, some specific training programs, or even expert-level training,
should be arranged.
Boards are familiar for industries. It can achieve 3 purposes. Due to the

modern development processes, such as whiteboards [Che+07] from Kan-
ban, the practitioners could consider extending the boards’ functionalities,
particularly during safety analysis.
To strength the existing communication channels further, the usage fre-

quencies (RQ 2) in practice can demonstrate their importances. We set 4
scales including 1-4 times per day, 1-4 times, per week, 1-4 times per month
and 1-4 times per year. Generally, 7 out of 9 communication channels are
used 1-4 times per week. Project coordination tools are used 1-4 times per
day. We discussed it with a safety expert and he said: “To start an (safety
analysis) activity, we check the state as the first step, because we just switched
from other tasks. Project coordination tool (Jira) is convenient, complete and
intuitive." A general overview is necessary before facilitating an issue. The
project coordination tool is easy to use and it provides almost all the informa-
tion or ways to get these information in a project. Training concerning safety
analysis happens 1-4 times per year. From our viewpoint, it is reasonable.
As an initial step to investigate communication channels during safety

analysis, we concentrate on the Top 10 challenges (RQ 4) based on analysing
our qualitative data and a final check by an expert in company A. Several of
them show similar problems as in general communication channels, such
as incomplete and fragmented information. Yet, during safety analysis, we
notice that the fragmentation of information are in high severities and may
cause fatalities. The completeness is not dominant. As one expert mentioned:

158 7 | Communication in S-Scrum

“ 90% (incomplete) information sometimes is fully sufficient for solving the
problems during safety analysis. But when the information is complete but
fragmented, such as safety cases, which are spread over different tools, that
seems serious." Geographical problems are also popular in general communi-
cation channels. Developers cannot get in touch to exchange states. However,
during safety analysis, it influences not only the information transmission,
but also safety knowledge sharing. These challenges need separate consid-
erations. Other challenges are specifically existing in the communication
channels during safety analysis, such as confidentiality concerning safety
analysis information and groupthink including unwillingness to share safety
analysis information with non-technical members.
For theory, RQ 1, RQ 2 and RQ 3 might provide implications, since as far

as we know, there are still no reported results on the existing communication
channels as well as their usage frequencies and purposes during safety
analysis. The communication in safety-critical industries should arouse
attentions. We believe that in developing SCS, the practitioners are not keen
on enriching the amount of channels, rather, solving the challenges on the
existing communication channels to ensure a safe development process and
a safe product. Thus, the 9 communication channels during safety analysis
are convincing. Most of the communication channels are frequently used
per week. In addition, RQ 3 provides 28 purposes of communication during
safety analysis. It seems to be a rich result to draw researchers’ attentions.
In the future, we expect that the researchers could expand this study to
more safety-critical companies, domains and countries to check and enrich
our initial results on the number of communication channels, their usage
frequencies and purposes. Depending on the sizes of companies, there might
be various answers.
For practitioners, RQ 4 might arouse more interests. Practitioners in

safety-critical industries may have these problems in their running projects.
However, we do not provide any solutions to each specific challenge in this
article, since we believe that the contexts and tools of each communication
channel are changing, the challenges may remain challenges in the future but
with different manifestations. The solutions should be derived in a specific

7.2 | Case Study 159

way. Moreover, the mappings between RQ 1 and RQ 3 as well as between
RQ 3 and RQ 4 seem practically useful. For achieving the communication
purposes during safety analysis, the practitioners can select the possible
channels from Table 7.4 and know the possibly relevant challenges from
Table 7.5. In the future, we expect that the practitioners could propose more
challenges that they have met as well as solutions, either in a general way
or specifically in a context.

7.2.7 Limitations

We believe that three major limitations threaten the results of our study.
Our sample might not cover all possible roles during safety analysis; the

results could be biased by an over-representation of medium sized companies,
and we could not cover all possible domains where safety analysis is critical
(e.g., aerospace). Finally, the sample could cover only companies from three
countries. We believe, however, that the sample is rich and meets a high
norm for qualitative case studies. Our sample of 60 participants covers all
possible company sizes (small, medium, and large), offers data from two
geographically and culturally diverse zones (Germany/Italy and China),
and considers three different domains of interest (automotive, medical,
and industry 4.0). For a stronger generalization of our results, we call for
survey studies between companies to go wide where we could go deep within
companies.
Communication occurs frequently and often spontaneously, so it is chal-

lenging to observe it directly. In our case study, while we could perform
direct observation sessions, we mostly collected perceptions and experiences
of participants. Memory recalling and other cognitive biases could over
or under-represent certain communication channels and their usage fre-
quency. This is a typical issue of observation studies, questionnaires, and
interview-based designs [Cre09] that we wish to recall nonetheless.
Furthermore, causality chains (e.g., those in RQ 3 and RQ 4) are harder

to empirically demonstrate as there was no controlled experiment testing
the claims. There is an open debate on whether causality can be inferred

160 7 | Communication in S-Scrum

from research approaches other than controlled experiments [Cre09; DN02;
GL13]. We agree with several authors, e.g., Gläser et al. [GL13], take the
stance that qualitative data analysis can be used to infer causality from the
experience of participants, provided that there is a strong methodology for
data gathering and analysis. We claim that our methodology is robust. We
have employed data triangulation validation whenever possible, for example
by adding a three weeks long direct observation to validate the results and
by offering our results to a senior functional safety expert from company A
to check. Still, given the lack of prior literature, we deem our study to be
exploratory in its nature, not confirmatory. We call for future research to
empirically demonstrate the relationship chains that we uncovered.

7.3 Mapping Communication in S-Scrum

Table 7.6: A Comparison of Reached Communication Purposes from Meeting
and Documentation

Meetings Meetings in S-Scrum Documentation Documentation in S-Scrum

1. Transfer safety requirements (in) Ø Ø Ø Ø
2. Transfer safety requirements (ex) Ø Ø Ø Ø
3. Derive safety requirements Ø Ø Ø
4. Clarify safety requirements (in) Ø Ø Ø Ø
5. Clarify safety requirements (ex) Ø Ø Ø Ø
6. Implement safety requirements Ø Ø
7. Trace safety requirements (bi) Ø Ø
8. Planning Ø Ø Ø Ø
9. Regular discussion Ø Ø Ø
10. Demonstrate periodic analysis results Ø Ø Ø Ø
11. Demonstrate periodic V&V results Ø Ø Ø Ø
12. Review Ø Ø Ø Ø
13. Monitor the status Ø Ø
14. Fix resources/supply problems Ø Ø
15. Fix customers’ complaints Ø Ø
16. Establish commitments and make decisions Ø Ø Ø
17. Improve processes or techniques Ø Ø
18. Fix temp. problems, conflicts and obstacles Ø Ø
19. Cooperate among multiple functional departments Ø Ø Ø
20. Help to understand the norms Ø Ø
21. Realise real-time notifications
22. Provide feedback and comments Ø Ø
23. Enhance group cohesion Ø Ø
24. Discuss bordered or off topics
25. Share knowledge Ø Ø Ø Ø
26. Transfer documents or links
27. Enhance safety culture Ø Ø Ø
28. Demonstration (external) Ø Ø Ø

To map the results of communication channels in our research context to
S-Scrum, the other seven communication channels, namely personal discus-

7.3 | Mapping Communication in S-Scrum 161

sion, communication software, email, telephone, project coordination tool,
training and boards, show few differences regarding their usage frequencies,
purposes and challenges.
S-Scrum differs itself strongly from meetings and documentation. S-

Scrum, as an approach extending from Scrum, promotes more meetings
than traditional development processes, while S-Scrum adds the value of
communication on documentation to fulfill agile principles. Thus, we con-
sider that the meeting and documentation in S-Scrum can satisfy different
communication purposes. The possible communication channels and chal-
lenges can be further derived from Table 7.4 and Table 7.5.
As we can see in Table 7.6, the meetings in S-Scrum can satisfy almost all

the purposes of the meetings in our research context, aside from the one
"implement safety requirements" (purpose 6). The development team and
safety analysts discuss the implementation of safety requirements throughout
the development rather than establishing a meeting. Therefore, although
meetings in S-Scrum, as a communication channel, fails to reach purpose 6,
which can be realised throughout the daily communication.

However, meetings in S-Scrum can achieve more communication purposes
than meetings in our research context, which are "provide feedback and
comments" (purpose 22), "enhance group cohesion" (purpose 23) and "en-
hance safety culture" (purpose 27). The short iterations in S-Scrum provide
a regular time for feedback and comments. The "daily scrum meeting" gives
the developers chances to provide feedback and comments on each working
day, while the "regular safety meeting" deems on the feedback and comments
concerning safety-related issues. Group cohesion is enhanced through the
continuous daily scrum meetings. Safety culture is integrated into each
meeting in S-Scrum, such as in pre-planning meeting or sprint planning
meeting, we design the safety plan.
The documentation in S-Scrum also fails to achieve purpose 6 "implement

safety requirements". The reason remains the same that most of the im-
plementation of safety requirements are facilitated during development in
S-Scrum through discussion without documentation.
However, the documentation in S-Scrum can achieve more communica-

162 7 | Communication in S-Scrum

tion purposes than the traditional documentation, which are "derive safety
requirements" (purpose 3), "monitor the status" (purpose 13), "establish
commitments and make decisions" (purpose 16), "cooperate among multiple
functional departments" (purpose 19), "provide feedback and comments"
(purpose 22), "enhance group cohesion" (purpose 23) and "demonstration
(external)" (purpose 28). STPA safety analysis is a cooperative activity in
S-Scrum. We make the execution processes as well as the results as trans-
parent as possible. The derivation of safety requirements (purpose 3) is
recorded in an STPA safety report. The documentation, such as a story
map or sometimes product backlogs, can be open in the working place to
monitor the status (purpose 13). The documentation in S-Scrum advocates
openness, transparentness and a support of communication. Thus, no matter
the internal or external stakeholders or the members in multiple functional
departments are possible to discuss the contents in the documentation of
S-Scrum. The discussion can achieve purpose 16, purpose 19, purpose 22,
purpose 23 and purpose 28.

7.4 Conclusion

In this chapter, we solve the problems concerning "communication" during
safety analysis in the preliminary S-Scrum. We firstly conducted an indus-
trial exploratory case study in 7 safety-critical companies with overall 60
participants to investigate the communication channels during the existing
safety analysis. We used surveys, interviews, documentation review and
participant observation in a large automotive company (with three medium
subsidiaries), a large medical equipment company, a medium automotive
company and a small industrial 4.0 based production line company. During
three rounds of data collection, we found 9 communication channels during
safety analysis. Most of them happen 1-4 times per week. We summarised
28 purposes of these 9 communication channels and the Top 10 challenges
across these 9 communication channels. We highlight the importance of
communication purposes and map them with the existing channels and

7.4 | Conclusion 163

challenges.
S-Scrum differs itself from our research context mainly on two commu-

nication channels, which are meetings and documentation. We investigate
them in S-Scrum further and find that they can achieve 3 more purposes
and 7 more purposes, respectively. Yet, two channels fail to achieve 1 pur-
pose of "implementing safety requirements", which is realised through daily
communication in S-Scrum.
Communication is important during safety analysis. S-Scrum shows an

absolute advantage on supporting communication through achieving more
communication purposes based on the existing communication channels, in
particular, meetings and documentation.

164 7 | Communication in S-Scrum

C
h
ap

te
r 8

Groupthink in S-Scrum

In this chapter, to face one of the four challenges (verification, planning, com-
munication and requirements prioritisation) in preliminary S-Scrum concern-
ing "requirements prioritisation", we improve group work through avoiding
groupthink1 in the preliminary S-Scrum.

1The definition is shown in Section 2.4.4

165

The main contributions of this chapter are:

- We investigate groupthink during safety analysis. To face the chal-
lenges concerning "requirements prioritisation", together with general
group work in the preliminary S-Scrum, we investigate groupthink and
provide possible solutions to avoid groupthink.

- We provide the Top 10 phenomena of groupthink in seven GSA.
The Top 10 phenomena of groupthink do exist throughout the seven GSA
and negatively influence the execution and results of GSA. We derive them
from 17 interviews as well as 39 surveys.

- We investigate possible reasons for the Top 10 phenomena. We in-
vestigate reasons referring to Janis’s seven antecedents from 17 interviews.
Six of seven antecedents have been found in our study.

- We propose solutions on how to handle the Top 10 phenomena in
SCS management. We propose solutions referring to Janis’s nine rec-
ommendations from 17 interviews. Eight of nine recommendations were
mentioned in our study, together with two additional recommendations
concerning communication channels and regulations of procedures.

- Wemap the Top 10 phenomena in S-Scrum and propose solutions.
We find the Top 10 phenomena in S-Scrum and propose solutions, such
as "second-chance meeting" or "cross-functional meeting", to be generated
into our final S-Scrum.

166 8 | Groupthink in S-Scrum

8.1 Case Study

We conduct a case study following the guideline from Runeson et al. [RH09]
and Yin [Yin13].

8.1.1 Context

We conduct a case study in the same companies as chapter 7 but with different
number of participants. The context is shown in Figure 7.1. In this study,
we have 56 participants (17 participants took part in the interviews), who
contribute to this chapter, as we can see in Figure 8.1. The main participants
are from the quality assurance area. They are quality managers to guide
the safety analysis. More than half of the members are from a functional
safety department. However, other roles like developer, analyst and leader,
as well as the members in the area of sales, purchasing and production are
also included.

Figure 8.1: Participants

8.1 | Case Study 167

8.1.2 Research Question

The research goal is to investigate groupthink in GSA. We formulate four
research questions to steer the design of our study, as shown in Table 8.1.

Table 8.1: Research Questions

RQ 1 What are the current practices in GSA?
RQ 2 What are the symptoms of groupthink during GSA?
RQ 3 How could these symptoms occur?
RQ 4 How to handle groupthink during GSA?

8.1.3 Data Collection

We conducted three rounds of data collection, which took a period of three
months involving the conduction of surveys, semi-structured interviews,
direct observations and documentation review.
Before data collection, we pre-interviewed five experts from four compa-

nies by telephone to decide on a common objective, establish agreements
and help designing the survey. Each interview lasted one hour. These five
experts were further arranged to be the representative of each company.
In the first round, we used a survey1 to collect both qualitative and quan-

titative data. The qualitative data cover the participant’s background and
the description of phenomena. The quantitative data cover the participant’s
background and the frequency of the occurrence of phenomena in GSA. The
survey was running for two months. We sent the link to each representative
via email, as well as the survey in electronic version to ensure that all the
participants are able to receive them. During these two months, the first
author checked the progress every two weeks through communicating with
the representatives by videophone. The content included the distribution
and the respondent’s rate from the surveys, as well as the problems and
feedback.

1https://zenodo.org/record/885231#.We2tEFuCyUk

168 8 | Groupthink in S-Scrum

In the second round, we used semi-structured interviews to investigate
the in-depth reasons and solutions. We selected the subjects based on the
results from the first round survey.
Meanwhile, the first author reviewed a wide range of documents including

R&D process development instrument, product development and process
development quality management procedure, quality management hand-
book, R&D risk management instruction, FMEA/FTA guideline/working
instruction, decision analysis and resolution in quality management and
technical review. Other informal documents, such as screen-shot of the
project management tool and message items, such as email or internal apps,
were also reviewed.

The first author conducted also a direct observation in the safety analysis
process and team meetings in company A. Beside the regular processes, the
first author observed the verbal communication temporarily, as well as the
members’ field notes. In the third round, we designed a final interview with
the specific experts to perform the validation of the solutions.

8.1.4 Data Analysis

We use qualitative data for RQ 1, RQ 2, RQ 3, and RQ 4. We analyse the
data by using the coding approach of Grounded Theory [SC97], since it is
especially appropriate for investigating human aspects of software engineer-
ing. We use open coding to record the transcript line-by-line. After that, we
use selective coding to choose the code related to groupthink. Finally, we
use axial coding to relate the symptoms, reasons and solutions.
We use quantitative data for RQ 2 to show the occurrence of each group-

think symptom in each GSA in Figure 8.2. In the survey, the participants
could select the symptom that they noticed in the seven GSA and give the
number of frequency ("1", "2" and "3" mean "low", "medium" and "high"). We
use the Shapiro-Wilk test for a normal distribution. Since the data are all
non-normally distributed, we use Pearson’s r to show the degree of correla-
tion between each symptom and GSA, as shown in Table 8.2. To this end,
we summarize the most frequent symptoms in each GSA, from which we

8.1 | Case Study 169

investigate further to generate the Top 10 phenomena in Table 8.3.

8.1.5 Results

8.1.5.1 RQ 1: What are the current practices in GSA?

FTA internal standard* FMEA internal standard* Risk management internal standard*

International Functional Safety Standards

System level hazard
analysis and risk

assessment

Safety
analysis

GSA 6. Safety
verification

Safety analysis activities

GSA 1.
Preparation/Plan

GSA 2. System/
Function/Structure

analysis

GSA 3. Hazard/Risk/Safety
analysis execution

GSA 4. Solution,
optimisation,

action, monitoring
and control

GSA 5.
Approval,

documentation
and release

Groupthink

GSA 7. Safety
validation

Concept
phase

Product
development

Figure 8.2: Group Safety Analysis

As we can see in Figure 8.2, we reviewed the norms like ISO 26262, ISO
14971 and IEC 60601, as well as FMEA, FTA and risk management internal
norms. We divide the safety analysis activities to seven general GSA. We
reviewed these seven GSA together with our industrial partners from the
primary company A. Below, we introduce these GSA in detail:

1. Hazard/Risk/Safety analysis preparation and plan. This is the first step
in safety analysis including making technical decisions and a safety analysis
schedule. The processes and results of safety analysis must be proven for
all the products and the production processes. Project manager should de-
cide the moderator, contract and plan. The safety analysis plan (including
updated plan) should be created with a specific tool (at least an English

170 8 | Groupthink in S-Scrum

version). Cross-functional departments should join this step. The safety
analysis might include customers, a general negotiation has to be conducted.

2. System/Function/Structure analysis. This is the second step in safety
analysis including determining the scope of the system (system limits, in-
terfaces and boundary conditions), specifying the system (random) failures
and type of the analysis for the systems (both qualitative and quantitative).
The system determinations and boundary conditions shall be acknowledged
by the customer.

3. Hazard/Risk/Safety analysis execution. This is the primary step of safety
analysis. Depending on the different techniques, the execution is different.
The most popular techniques are FTA, FMEA and HAZOP. FTA is a top-down
method, which starts from identifying the top events and goes deeper to find
causalities. The safety analyst draws the fault trees. FMEA is a bottom-up
method, which finds and evaluates failure concerning the severity (S), prob-
ability of occurrence (O) and probability of detection (D). The safety analyst
records the failures and effects, as well as measures the risks to provide solu-
tions. HAZOP is a systematic risk analysis method, which identifies, assesses
and manages risks at a system-level. It happens mostly at the beginning of
the projects and is combined with FMEA or FTA for analysing the systems.

4. Solution, optimisation, action, monitoring and control. This is the forth
step in safety analysis. Following the investigation of causal factors includ-
ing qualitative and quantitative interpretation, a decision can be made,
which could be a solution for development, an action for operation or the
monitoring and control for a risk. The moderator provides support in the
interpretation.

5. Approval, documentation and release. This is the fifth step in safety anal-
ysis. The safety analysis execution process and results must be documented.
The diagrams, tables and interpretations are necessary to be understood
and evaluated. The results are diverse, such as the depth and scope of safety

8.1 | Case Study 171

analysis. The documents should focus on providing recommendations rather
than requirements. The structure of a safety analysis report includes system
overview, participants, detailed results, descriptions, list of assumptions,
sources and attachments. The release has to be determined by customers to
ensure that it includes no sensitive data.

6. Safety verification. After the execution of safety analysis. The require-
ments are to be verified. The purpose of the verification is to demonstrate
that the embedded software satisfies its requirements in the target environ-
ment [Sta11]. In the design phases, verification is the evaluation of safety
requirements from safety analysis.

7. Safety validation. After the safety verification, the requirements need a
validation at the system-level. The first purpose of the safety validation is to
provide evidence of compliance with the safety goals and that the functional
safety concepts are appropriate for the functional safety of the item, while
the second purpose is to provide evidence that the safety goals are correct,
complete and fully achieved.

8.1.5.2 RQ 2: What are the symptoms of groupthink during GSA?

This section has both quantitative data and qualitative data.
Janis’s groupthink symptoms in safety analysis. Groupthink has eight symp-
toms. Yet, different GSA encompasses different symptoms, as shown in
Figure 8.3. We list GSA 1 to GSA 7 on the left side and eight symptoms on
the right side. The widths of the lines show the occurrence of each symptom.
The thicker lines mean that the symptoms occur more in the GSA. In GSA 1
(hazard/risk/safety analysis plan and preparation), 56.4% of the participants
mentioned the "invulnerability", while 56.4% of the participants mentioned
"direct pressure". In GSA 2 (system/function/structure analysis), 41% of the
participants saw the "stereotypes", while 35.9% of the participants saw the
"morality". In GSA 3 (safety analysis execution), 59% of the participants
found the "self-censorship", while 56.4% of the participants found the "una-

172 8 | Groupthink in S-Scrum

Figure 8.3: Janis’s Groupthink Symptoms in GSA

nimity". In GSA 4 (solution, optimisation, action, monitoring and control),
51.3% of the participants mentioned the "direct pressure", while 43.6% of the
participants mentioned the "morality". In GSA 5 (approval, documentation
and release), 48.7% of the found the symptom "mindsguard", while 43.6%
of the mentioned about the "rationale". In GSA 6 (safety verification), 38.5%
of the participants saw the "invulnerability", while 28.2% of the participants
saw the "rationale". In GSA 7 (safety validation), 59% of the participants
found the "direct pressure", while 53.8% of the found the "rationale". The
other symptoms show less importance in each GSA.
We statistically calculate the symptoms and show the first two most fre-

quent symptoms in GSA 1 to GSA 7 in Table 8.2. Pearson’s r shows the
correlations between each symptom and each GSA. The values are between
0 to 1, which indicate a positive linear relationship. The "unanimity" has
the most positive relationship with GSA 3, while "rationale" has the worst
positive relationship with GSA 7.
The Top 10 groupthink phenomena in safety analysis. As we can see in Table

8.1 | Case Study 173

Table 8.2: Statistic Descriptive on the Occurrence and Influential of Janis’s
Groupthink Symptoms in GSA

GSA Symptoms N Mean St. Dev St. Error Min Median Max 95% CI lower 95% CI upper r
1 Direct pressure 22 2.091 0.848 0.136 1 2 3 1.737 2.445 0.654

Invulnerability 22 2.045 0.928 0.149 1 2 3 1.658 2.433 0.712
2 Stereotypes 16 2.750 0.559 0.090 1 3 3 2.476 3.024 0.440

Morality 14 2.500 0.732 0.117 1 3 3 2.117 2.883 0.622
3 Self-censorship 23 2.696 0.621 0.099 1 3 3 2.442 2.949 0.886

Unanimity 22 2.727 0.617 0.099 1 3 3 2.470 2.985 0.978
4 Direct pressure 20 1.900 0.831 0.133 1 2 3 1.536 2.264 0.928

Morality 17 1.471 0.696 0.111 1 1 3 1.140 1.801 0.897
5 Mindguards 19 2.421 0.815 0.131 1 3 3 2.054 2.788 0.833

Rationale 17 2.824 0.513 0.082 1 3 3 2.580 3.067 0.725
6 Invulnerability 15 2.000 0.894 0.143 1 2 3 1.547 2.453 0.814

Rationale 11 1.455 0.498 0.080 1 1 2 1.160 1.749 0.400
7 Direct pressure 23 2.565 0.712 0.114 1 3 3 2.274 2.856 0.483

Rationale 21 2.952 0.213 0.034 2 3 3 2.861 3.043 0.370

Table 8.3: The Top 10 Groupthink Phenomena
The Top 10 groupthink phenomena in GSA

1. The managers do not plan safety analysis activities in detail.
2. The technical members overestimate their capability in functional development and ignore the importance of safety analysis.
3. During system/function/structure analysis, the non-functional departments are under stereotype and are always absent.
4. During safety analysis, beside developers and safety experts, the other members keep silence.
5. During safety analysis, the team members always keep consistence with the opinions from senior safety experts.
6. When providing safety analysis solutions, the team members prefer explaining the rationality of the existing solutions.
7. The safety analysts spontaneously freeze the internal safety-related documents.
8. During safety verification, the safety analysts set themselves as a "police" to blame the development team.
9. During safety validation, the internal safety expert takes the role as a "lawyer" to rationalise their safety assurance to a third party.
10. The team performs safety analysis aiming to provide the required evidence for certification (paperwork culture).

8.3, based on the quantitative data of the fourteen symptoms in Table 8.2,
we summarise the Top 10 groupthink phenomena in GSA. One phenomenon
might cover two to three symptoms in each GSA.

8.1.5.3 RQ 3 & RQ 4: How could the Top 10 phenomena in groupthink
occur and how to handle them?

1. The managers do not plan safety analysis activities in detail.

Description In GSA 1, the project managers plan the safety analysis fol-
lowing norms. All the members believe that they have a process to ensure
safety and do not show more concerns on achieving safety goals. Yet, the
norm needs a detailed adaption in different projects. That causes the group-
think symptoms "direct pressure" from the project manager on discussing
the detailed plan and "invulnerability" on the existing plan from norms or

174 8 | Groupthink in S-Scrum

procedures. One interviewee mentioned: "Basically, we refer to the norms
and internal procedures. The concrete execution shall have been described in
the procedure documents by the procedure design department."
Reasons and solutions Reason 1: Lack of norm concerning the implementa-
tion and execution procedure. The industries rely on norms for functional
safety assurance. Thus, the project manager do not place emphasis on plan-
ning and preparing the implementation and execution activities. When we
ask them: "How do you perform safety analysis", they answered: "We have the
norms. Yet, the implementation and execution are depending on the projects."
Solution 1: Assign critical roles. A minimum implementation and execution
of the requirements in norms shall be established into each critical role or
department. Each role or department has its responsibilities, authorities,
execution methodology and the corresponding accountability [Lev11]. Solu-
tion 2: Provide a second-chance meeting. The arrangement of responsibilities
or tasks could be established in a second meeting. That will not influence
the original structure of the meetings. It aims to implement, update and
enforce the execution of norms. Solution 3: Invite external expert. The plan
and preparation of safety analysis could invite experts from the procedure
design department. It helps the design on performing safety analysis in
a specific project, whereas the specific project helps the procedure design
department to make a general procedure for future work.

2. The technical members overestimate their capability in functional
development and ignore the importance of safety analysis.

Description In GSA 1, some technical members are function-oriented and
are kind of "super stars". They believe in their function development ex-
periences, which could avoid risks. The voice concerning safety analysis is
ignored, which causes groupthink symptom "invulnerability" on the capabil-
ity of functional development. One interviewee mentioned: "The functions
can bring the largest profits. We have worked in this area many years and are
able to avoid some basic risks. We have still safety testing in the end."
Reasons and solutions Reason 1: Cohesion. In most safety-critical industries,

8.1 | Case Study 175

the employee’s mobility is relatively low. Most employees have been working
for a long time in the same area and company. That increases cohesion.
However, the cohesion decreases the capability to face change and accept
outside suggestions, such as the suggestions from safety experts. Solutions 1:
Split groups. More working groups could provide more ideas. The members
in each group should be heterogeneous. In a small group, performing safety
analysis is more productive than in a large group [Whe09]. In addition, the
competitive mechanism could stimulate passions. Reason 2: Lack of norms
concerning the interface between functional development and safety analysis.
Safety analysis and functional development shall be concurrent. Yet, the
execution lacks a clear definition on the interfaces between them. One
developer mentioned: "In the project plan, we follow the functional safety
norm. But the establishment is separated from us (development)." Solution 2:
Invite external expert. Some safety experts could be invited to the internal
meetings of development teams. One solution that has not been mentioned
by Janis but specific for SCS is that an effective communication channel
between functional development and safety analysis has to be designed in
the safety analysis plan and preparation.

3. During system/function/structure analysis, the non-functional depart-
ments are under stereotype and are always absent.

Description In GSA 2, the non-functional departments like sales or pur-
chasing are always absent. They do not provide suggestions and follow the
technical members. This is a groupthink symptom called "stereotype" on the
non-functional departments. As one system developer mentioned: "We invite
them to the meetings to analyse the system, but they always give some reasons
like "I have not received the emails" and not take part in them. They said "I
have no idea about development" and let us make decisions."
Reasons and solutions Reason 1: Group insulation. Safety system working
groups operate at different levels of organisation [Lev11]. The safety analy-
sis concerning system/function/structure should not stop at the functional
level. However, the safety analysis among groups is always isolated, which

176 8 | Groupthink in S-Scrum

includes working places, tasks, responsibilities and organisation/personal
development management, which causes too many excuses on not taking
part in the GSA 2. It seems a lack of conscientiousness. Solution 1.1: Invite
external expert. In industry, the employees do not prefer working on the tasks
that goes beyond the working scope. Some members are not full-time on
safety analysis. The invitations are sometimes personal and non-regulated.
As far as we know, these invitations happens mostly occasionally. As one
interviewee mentioned: "Before the meeting, we send the email to a sales
manager. But we got no feedback." The time, the channel and the complemen-
tary methodology are all indeterminate. The cross-functional departments
should facilitate interactions and build connections, such as communication
channels and interaction patterns. Solution 1.2: Establish multiple groups.
All the departments including non-functional departments are able to pro-
vide suggestions on the system/function/structure from their perspectives.
Reason 2: Lack of norms concerning the requirements on joined departments.
The cooperation among groups could be improved by personally inviting
external experts. However, to be more efficient, the practitioners should rely
on some regulations. The existing procedures include few requirements on
joined departments. Solution 2: The requirements on joined departments
could be written into the procedures to normize GSA.

4. During safety analysis, beside developers and safety experts, the other
members keep silence.

Description In GSA 3, only developers and safety experts join the discussion.
This is called "self-censorship" in groupthink. One sales manager mentioned:
"They have more expertise and take the responsibility for this." Hence, the sales
manager follows other technical members.
Reasons and solutions Reason 1: Temporarily low self-esteem. Safety anal-
ysis is a window into systems, everyone could see and connect hazards in
the daily work. The members from the sales department have more prac-
tical experiences on products. They can see the possible hazards from the
end-users’ viewpoint. The members from the purchasing department know

8.1 | Case Study 177

more about the purchased components from suppliers. The possible hazards
from these components and purchasing procedures could cause further ac-
cidents during the development. However, most employees, especially in
functional safety, QA or functional development department, think safety
analysis more technical in-depth. The non-technical members are not con-
fident. One production manager said: "What we mentioned during safety
analysis is too high-level, which cannot really help the development of products
and even the safety analysis. Even more, what they talked is apart from our
knowledge areas." Solution 1.1: Assign critical evaluators. Each one should
be given his/her responsibilities to raise questions in his/her specific areas.
Everyone’s voice deserves respect. An "ad-hoc" brainstorming sessions are
possible. Solution 1.2: Provide a second-chance meeting or feedback channels.
Someone, who does not want to raise questions in the meetings, could have
a second chance through trustful feedback channels to provide suggestions.
Reason 2: High stress from external threats. A non-professional voice will
raise doubts on the employee’s core competence. People like to join the
discussion in his or her area of expertise. Especially the employees who are
already in the senior level. The fresh man also does not want to show his
cons in front of his or her leader and other colleagues. Solution 2: Improve
feedback channels. One interviewee mentioned: "It would be great, if we could
provide suggestions anonymously." For example, an anonymous mailbox has
been tried by some departments.

5. During safety analysis, the team members always keep consistence
with the opinions from senior safety experts.

Description In GSA 3, at the beginning, almost all the members join the
discussion. When senior managers or safety experts express their ideas or
suggestions, they seek consistence with them. It is called "unanimity" in
groupthink.
Reasons and solutions Reason 1: Impartial leader. The execution of safety
analysis is guided by a moderator, who guides the procedures as well as
controls the time. Mostly, to limit the discussion about safety analysis, the

178 8 | Groupthink in S-Scrum

senior managers or safety experts stand out and express their opinions to
end the discussion. It makes the decision-making procedures partial. As
one moderator mentioned: "Sometimes there is a tough discussion between
different opinions, we have to stop them, because of the time plan. I try to get in
touch with some leaders or experts maybe through eye contact. They will provide
a decision and we use it to finish this part." That causes the decision overly
relying on personal decision-making capability and integrating more non-
technical considerations from managers, such as cost and schedule. Solution
1: Make key member impartial. First, a normized safety analysis procedure
with a defined, transparent and explicit decision-making procedure helps
the moderator and experts to be impartial. One moderator suggested: "We
always like to use "high-risk priority" principle rather than directly adopting
key member’s decision." That could avoid the bias from positions and thus
concentrate on risks. Second, we have to ensure that those who are making
safety-related decisions are fully informed and skilled [Lev11]. Third, the
decision could be assessed and improved. Reason 2: Cohesion. This cohesion
is between team members and senior managers or safety experts. Some
team members were hired by the senior managers. They have been working
for him or her for a long time and give the same voice with their managers.
Solution 2: Split groups. The practitioners could spit the high-cohesive mem-
bers into separate groups when performing safety analysis.

6. When providing safety analysis solutions, the team members prefer
explaining the rationality of the existing solutions.

Description In GSA 4, the team members prefer using existing solutions for
mitigating risks. As one interviewee said: "When we got a risk, we would like
to use the existing methods from the former projects or similar products. It saves
more efforts and is more reliable to validate its feasibility of the existing one
rather than to propose a new one." We can see three groupthink symptoms
from this case: "rationale", "morality" and "direct pressure".
Reasons and solutions Reason 1: Lack of norms on change management
procedure. We reviewed an internal change management manual and ad-

8.1 | Case Study 179

vised one senior quality manager. He mentioned: "We do the impact analysis
when performing change management. Most of the time, we concentrate on
the changed parts. Based on the experiences and expert opinions, we analyse
the possible impacts. In safety analysis, we notice the requirements on change
management in ISO 26262-8, part 8, but there is no mention of systematic
technique." The members believe in the morality of the former solutions for
the unchanged parts and try to rationalise them. Solution 1: Enhance change
management. Establishing the management of change requirements for eval-
uating all changes for their impacts on safety systematically. Reason 2: High
stress from external threats. The delivery deadline cases stress. That causes
the team members using the existing solutions for mitigating risks and trying
to rationalise them. One interviewee said: "Before a deadline, we won’t switch
to developing new solutions. That increases risks on delivery. When we have an
existing solution, we use it. The worst case, we could write the possible risks
on the internal (for developers) or external (for customers) reports." It shows
that the existence of a solution is more important than the effectiveness of a
solution under delivery pressure. Solution 2: Devote a block of time to provide
alternative scenarios. Some alternatives or new solutions could be reserved
and reconsidered. Reason 3: Temporarily low self-esteem. The team members
are afraid of undertaking responsibilities. They do not believe in their capa-
bility to propose a better solution than the former one. Furthermore, they
have to invest more effort for new solutions. When there is an accident dur-
ing the execution, they have to be responsible for it. A "blame culture" exists.
Solution 3: (Refer to solution 2) Devote a block of time to provide alternative
scenarios. In addition, the proposal of the opinions and the execution of them
shall be divided. After accepting the new solutions, the team members shall
share responsibilities. To this end, the practitioners need consider anonymity.

7. The safety analysts spontaneously freeze the internal safety-related
documents.

Description In GSA 5, the safety analysts take the responsibility for the
documents and freeze them to avoid review and modification. One intervie-

180 8 | Groupthink in S-Scrum

wee mentioned: "Sometimes I have a question about the results what we have
discussed in the meeting. Later, I am not able to open such files anymore. When
I ask the relevant person, he said that we have already discussed and decide in
the meeting. The results are documented. If there are questions, I should ask
other people." That is called "mindguards" in groupthink symptoms.
Reasons and solutions Reason 1: Lack of norms on the authority of safety-
related documents. The norms require a lot of documents for each activity.
Yet, there is no description of authority. The documentation engineers protect
the documents by themselves as to protect the decisions of groups. Solution
1: Make key members impartial. The generation of documents should be
transparent. The documents should be appropriately open. To manage
safety, there is a safety information system including safety analysis related
documentation. They are not only for maintenance, but also for guiding
safety audit and assessment. Reason 2: Group insulation. The management of
safety-related documents including project related documents, organisation
related documents and process management documents is separate. That
causes too many limitations on authority. Solution 2: Discuss with trusted
people. In documentation management, the industry could consider some
online documents management tools. The non-confidential documents are
preferred to be open to project-related people.

8. During safety verification, the safety analysts set themselves as a
"police" to blame the development team.

Description In GSA 6, the safety analysts sometimes overestimate their
authority on a "police" role and neglect their responsibility as a "teacher" or
a "doctor". They shall work on finding safety vulnerabilities and guide the
development to ensure the safety. However, some of them are concerned
only with finding vulnerabilities and even blaming. As one developer men-
tioned: "They always point out our failures. That gives us a bad mood. When
we ask further for a suggestion, they said that they are not clear about the
detailed development, they care about if the development can satisfy these
safety requirements. We cannot get any help." It shows a groupthink symptom

8.1 | Case Study 181

"invulnerability".
Reasons and solutions Reason 1: Group insulation. The functional safety
department and the development team are isolated. Solution 1: Invite exter-
nal expert. The safety verification is preferred to be happening during the
development phase. The development team could invite relevant members to
take part in their meetings or daily work. Effective communication channels
and feedback channels are useful. Reason 2: Temporarily low self-esteem. A
strong attitude and blame are sometimes because of lacking confidence. The
reason of the safety analysts taking the role as police to blame could be that
they temporarily lack technical capability to teach and cure them. Solution
2: Devote a block time to discuss the solutions. A preparation time slot and a
harmonious environment for cross-functional communication are vital.

9. During safety validation, the internal safety expert takes the role as a
"lawyer" to rationalise their safety assurance to a third party.

Description In GSA 7, the internal safety expert shows partiality as a lawyer.
He or she sometimes does not aim to find the hazards rather to rationalise
the safety assurance capability and pass a third party validation. That is a
symptom called "rationale" in groupthink.
Reasons and solutions Reason: Cohesion. The internal safety expert is a
member in the company. As one safety expert said: "I am working for the
company, what I should do is to validate that our process is safe enough to
deliver a safe product." The organisational cohesiveness changes the objec-
tiveness of safety validation. Solution: Invite external expert. One senior
manager suggested inviting an external safety expert to validate the process
and product before third party validation. The external safety expert should
be independent and might come from the same company, but different sub-
sidiaries.

10. The team performs safety analysis aiming to provide the required
evidence for certification (paperwork culture).

Description During the whole GSA, the team members perform safety anal-

182 8 | Groupthink in S-Scrum

ysis aiming to provide evidence for certification. That is called "rationale" in
groupthink.
Reasons and solutions Reason: Impartial leader. The leader takes safety
superficially. That causes the groupthink symptom that no other member is
concerned with it. As one senior manager mentioned: "We do safety analysis
is because the norm requires it. By following the norms, we can get a certifica-
tion in parallel with our products. That helps us to sale more products." Another
feedback from the developers is: "We have no idea about the norms. We just
follow the requirements from our leader. He takes care about the norm-related
issues." However, employees need to feel that they will be supported if they
show concern for safety.
Solution: Make key members impartial. A manager’s open and sincere con-
cern for safety in everyday can have a major impact on the reception given
to safety analysis [Lev11]. First, open norm is important, as well as open
communication on the norms. Each team member needs to know "how" and
even "what". "Leadership-collaboration" should replace "command-control
management" [Coc02]. Second, a thorough integration of safety culture is
necessary from three levels: Surface level cultural artifacts; Organisational
rule, values, practices; Values and deep cultural assumptions [Sch10]. The
surface level includes everyday practices. In the middle, it states the rules like
policy, norms and guidelines. Lastly, values and deep cultural assumptions is
used for making leaders with more emphasis on safety.

8.1.6 Discussion

We note the consideration on groupthink in safety analysis. From our view-
point, the occurrence of conflict, together with an effective decision-making,
is positive for safety analysis. However, the occurrence of groupthink is
potentially fatal. We investigate seven GSA according to the norms. We
calculate the occurrence and frequential of groupthink symptoms in the
GSA. We propose Top 10 phenomena, which happen in safety analysis and
cause the results lacking group considerations. We find out the possible rea-
sons and solutions which are specific for safety analysis to avoid groupthink

8.1 | Case Study 183

referring to Janis’s seven antecedents and nine recommendations. Eight
symptoms have all been found in our Top 10 phenomena. Six of seven
antecedents are found with a specific form in GSA. "Lack of norms" con-
cerning various aspects is the most proposed cause, which has been five
times mentioned in the Top 10 phenomena. "Cohesion", "Group insulation"
and "Temporarily low self-esteem" show three times. Yet, "homogeneous"
has not been found in our cases. "Homogeneous" means the similarities of
members’ social backgrounds and ideology. In most safety-critical industries,
they have a normised organisation development procedure. They have a
regular hiring process according to the requirements from organisational
structure . The phenomenon of a "homogeneous" team is rare. They range
the members from new employees to experts. The knowledge background is
also diverse. We map eight of the nine recommendations in the proposed
solutions. "Invite external expert" is the most popular one, while "make key
members impartial" shows also its importance. Only the recommendation
on "setting a devil role" has not been mentioned by the interviewees. It has
some difficulties. Each one has his core area. The devil role is hard to cover a
wide range of topics. In addition, the interviewees show also unwillingness.
More than that, the interviewees mentioned two other suggestions: Improve
the communication/feedback channels and regular procedure requirements
on joined members or departments and a systematical change management.

8.1.7 Threats to Validity

8.1.7.1 Internal Validity

First, the seven GSA cover only the major parts of safety analysis activities.
We walked-through the norms and relevant literature to summarise the GSA
that happen in a group. Yet, such activities were observed more than thirty
types [Vil+17]. Some of them are integrated into the development process.
Thus, we use five main activities when performing safety analysis by using
various techniques and two activities including safety verification and safety
validation, which are directly relevant to the safety analysis. Other activities

184 8 | Groupthink in S-Scrum

like safety audit, which concerns more on the safety assurance process, is not
included in this article. Second, the survey questions could be incomplete.
Groupthink is not a popular word in software engineering. To make it more
understandable to the participants, we simplified the original descriptions
from Janis and set the questions in an easy way. Thus, we propose the survey
available online for review. During the interviews, it was possible to explain
them in-depth. Third, the influence from culture can be a limitation. We
performed the survey in four Europe companies. Two of them are interna-
tional companies covering Asia subsidiaries. The participants are from both
Europe and Asia. However, it is not enough to generalise the result. We hope
to expand this study in a wider scope.

8.1.7.2 Construct Validity

First, since the interviews were conducted with industries, the audio record-
ings were not allowed. We recorded the results only relying on the transcript
by the first author. Concerning some missing points and confidentiality, we
contacted the participants again and provided our protocol to ensure the
results. Second, the results have many inconsistent terminologies. Some
of them are internal terms in each company. We discussed our results and
determined them with the primary company A.

8.1.7.3 External Validity

First, the primary company is in the automotive industry. We generated our
results for RQ 1 mainly from the automotive area functional safety norms
ISO 26262. We referred to the safety norms ISO 14971 and IEC 60601 in
medical equipment area as well. However, these two areas cannot stand for
all the safety-critical industries. Second, the attitudes toward groupthink
also rely on different roles. We aim to cover as many roles as possible. Most
of the participants are from quality assurance departments, development

8.1 | Case Study 185

teams and relevant managers. Some of them are from sales, purchasing and
production. The amount of participation is limited.

8.1.7.4 Reliability

Some contents concerning groupthink are sensitive, such as "impartial lead-
ership". We designed and collected the survey anonymously. Yet, the partici-
pants may also reserve some results.

8.2 Mapping Groupthink in S-Scrum

System level hazard
analysis and risk

assessment
Safety analysis GSA 6. Safety verification

GSA 1. Hazard/Risk
/Safety analysis

preparation and plan

GSA 2. System/
Function

/Structure analysis

GSA 3. Hazard/Risk
/Safety analysis

execution

GSA 4. Solution,
optimisation, action,

monitoring and control

GSA 5. Approval,
documentation and

release

Top 10 Groupthink Phenomena

GSA 7. Safety validation

STPA in S-Scrum BDD in S-Scrum

Figure 8.4: The Top 10 Phenomena in Preliminary S-Scrum

Now we describe how the aforementioned Top 10 phenomena occur in the
preliminary S-Scrum. As we can see in Figure 8.4, GSA 1 to GSA 5 happen
during STPA safety analysis, while GSA 6 and GSA 7 happen during BDD
safety verification. In these Top 10 groupthink phenomena, phenomenon
1 and phenomenon 2 happen in GSA 1, phenomenon 3 happens in GSA 2,
phenomenon 4 and phenomenon 5 happen in GSA 3, phenomenon 6 happens

186 8 | Groupthink in S-Scrum

in GSA 4 and phenomenon 7 happens in GSA 5. When performing BDD in
preliminary S-Scrum, we should consider phenomenon 8 and phenomenon
9. During the whole preliminary S-Scrum, we should consider phenomenon
10. Now we describe them in detail.

1. The managers do not plan safety analysis activities in detail.

In preliminary S-Scrum, safety planning is facilitated in pre-planning meet-
ing and sprint planning meeting, which is insufficient concerning the techni-
cal in-depth considertations. To overcome this phenomenon, (1) S-Scrum
should assign responsibilities, authorities, execution methodologies and
corresponding accountability of the internal and external safety expert con-
cerning safety planning. (2) S-Scrum could establish a two-part sprint
planning [Rub12]. The first part focuses on "what", while the second part
focuses on "how". (3) Preliminary S-Scrum prefers the invitation of external
experts, such as external safety experts. Here we recommend that S-Scrum
could invite experts from the procedure design department to take part in the
sprint planning meeting to help the plan of safety analysis and verification.

2. The technical members overestimate their capability in functional
development and ignore the importance of safety analysis.

In preliminary S-Scrum, the developers given a higher priority to functional
development than safety analysis and verification. Preliminary S-Scrum
prefers that the team members are kept as long as possible [Coh10]. A
negative organisation cohesion exists. This makes the team members over
believing in their team capability. To overcome this phenomenon, (1) S-
Scrum could split the discussion of safety analysis in small groups. (2)
The interfaces between functional development and safety analysis are
important in S-Scrum. Besides an invitation of external safety expert, an
effective communication channel should be determined in the sprint plan-
ning meeting, such as the execution of daily chats or regular safety meetings.

8.2 | Mapping Groupthink in S-Scrum 187

3. During system/function/structure analysis, the non-functional depart-
ments are under stereotype and are always absent.

In preliminary S-Scrum, this phenomenon might happen throughout daily
work. The non-functional departments should take part in the daily or
weekly scrum meeting. Yet, it happens occasionally. To overcome this phe-
nomenon, (1) S-Scrum should regulate responsibility, time, channel and
complementary methods to invite non-functional members in or before the
sprint planning meeting. (2) S-Scrum should regulate joined departments
in some key milestones.

4. During safety analysis, beside developers and safety experts, the other
members keep silence.

In preliminary S-Scrum, discussion happens frequently between developers
and safety experts. However, the safety experts guide the discussion most of
time. In addition, the product owner, scrum master and other stakeholders
prefer keeping silence and not expressing their own opinions. To overcome
this phenomenon, (1) S-Scrum should assign critical responsibilities for each
person to express his viewpoint in his area. For example, the product owner
could express his opinions concerning the relation between safety analysis
and products, while scrum master gives the opinions on the execution of
safety analysis. (2) S-Scrum could set an anonymous feedback channel, such
as an anonymous mailbox.

5. During safety analysis, the team members always keep consistence
with the opinions from senior safety experts.

In preliminary S-Scrum, the team members prefer keeping consistence
with the opinions of product owner or safety experts. To overcome this
phenomenon, (1) S-Scrum should regulate a procedure with a defined,
transparent, explicit and professional decision-making mechanism. That
helps the managers to be impartial. (2) S-Scrum could also split the high
cohesion people in different groups. This step is able to be combined with

188 8 | Groupthink in S-Scrum

safety analysis discussion in the solution 1 of phenomenon 2.

6. When providing safety analysis solutions, the team members prefer
explaining the rationality of the existing solutions.

In preliminary S-Scrum, the safety requirements, which have existing solu-
tions, are given a higher priority. For example, "Smart Home" has similar
sub-systems. Some safety requirements are similar with a same solution. To
overcome this phenomenon, (1) STPA is a system-theory based safety analy-
sis method, which analyses the whole system rather than the single changing
part. Thus, the existing solutions cannot be used for new requirements. A
rational changing management procedure exists in preliminary S-Scrum.
(2) When there is an alternative solution, S-Scrum should provide a block of
time to consider it. The block of time can be several hours to several days
depending on the length of each iteration. (3) Each team member could
provide solutions. When the solution is accepted, the whole team should
share responsibilities.

7. The safety analysts spontaneously freeze the internal safety-related
documents.

In preliminary S-Scrum, the safety product backlog with safety stories and
story map with safety epics are open in Jira. Yet, the execution documents
of STPA are kept privately by safety experts. To overcome this phenomenon,
(1) the permission of safety documents in S-Scrum should be determined.
(2) Transparency is important in ASD [Rub12]. S-Scrum encourages to make
the documents as transparent as possible. The STPA report and the agile
safety plan could be internally open online.

8. During safety verification, the safety analysts set themselves as a
"police" to blame the development team.

In preliminary S-Scrum, the external safety expert and product owner re-
view the product in the sprint review meeting. The examination occupies

8.2 | Mapping Groupthink in S-Scrum 189

more time than providing guidances. Yet, preliminary S-Scrum integrates
safety analysis and verification in short iterations, which supports guid-
ing the development rather than only examining the products at the end
of the sprint. In addition, an effective communication between the inter-
nal safety expert and the external safety expert in regular safety meetings
enhances the understanding of the deliverable product, which reduces the
possibility of misunderstandings on the product, which might cause blaming.

9. During safety validation, the internal safety expert takes the role as a
"lawyer" to rationalise their safety assurance to a third party.

Preliminary S-Scrum has not been used in a real-world industrial project
with a third party assessment or audit. Yet, we facilitated an assessment
by walking through the norm ISO 26262 by an independent safety expert.
This phenomenon occurred. However, when the purpose of such assessment
changes from process assessment to process improvement, we are able to
avoid trying to rationalise the process, rather, to find out problems.

10. The team performs safety analysis aiming to provide the required
evidence for certification (paperwork culture).

In preliminary S-Scrum, we reduce this phenomenon effectively. Safety
analysis and verification are integrated into iterations and happen in parallel
with the development. Preliminary S-Scrum does not produce additional
documents to satisfy the requirements from norms, rather using existing
scrum artifacts to, on the one side, fulfill the requirements from norms, on
the other side, to support communications. However, to satisfy the certi-
fication, some documents are still necessary, such as an agile safety plan.
The improvements of other documentation in S-Scrum remain as the future
work.

190 8 | Groupthink in S-Scrum

8.3 Conclusion

In this chapter, we solve the problem concerning requirements prioritisation
in the preliminary S-Scrum through improving group work and avoiding
groupthink. We investigate groupthink in safety analysis and verification,
and map the findings into S-Scrum. We conduct a case study in seven safety-
critical companies. We investigate seven GSA concerning groupthink. We
statistically summarise the most frequent symptoms through 39 surveys. We
investigate further the Top 10 groupthink phenomena through 17 interviews.
We investigate and map the reasons with Janis’s theory. We generate further
the solutions combining Janis’ theory and safety system management. We
find that the groupthink does exist in safety analysis. The practitioners
should find phenomena and consider solutions. We map the phenomena,
reasons into S-Scrum and propose solutions, "second-chance meeting" and
"cross-functional meeting", in the final S-Scrum. Our studies show limitations
mainly on the research domains and countries.

8.3 | Conclusion 191

C
h
ap

te
r 9

S-Scrum

In this chapter, after fixing the four challenges in the preliminary S-Scrum
(verification, planning, communication and requirements prioritisation), we
summarise and propose a final "S-Scrum".

193

The main contributions of this chapter are:

- We propose the final S-Scrum. We propose the final S-Scrum in Figure
9.1 and illustrate it in this chapter.

- We illustrate S-Scrum from 3 dimensions: Activities; Roles; Doc-
umentation. These 3 dimensions are further divided into 3, 2 and 2
sub-dimensions respectively. Activities are described from tasks, input
and output, and communication. Roles are described from responsibil-
ities and competences. Documentation is described from contents and
communication.

- We evaluate S-Scrum by reviewing the norm ISO 26262 in auto-
motive area. We conducted 3 rounds of evaluation. First, we evaluate
S-Scrum informally by reviewing ISO 26262 by the author. Second, we
interview 15 senior-level experts to evaluate S-Scrum in practical safety-
critical industries. Third, we do a walkthrough based on ISO 26262
formally by one certified safety expert and one safety expert with more
than 20 years working experiences in safety-critical industries.

194 9 | S-Scrum

Role Chapter

Developer C - 2

Scrum Master C - 2

Product
Owner C - 2

Safety
Manager C - 7

Internal
Safety Expert C - 4

External
Safety Expert C - 4

Business
Analyst C - 5

Cross-
Functional
Member

C - 8

Customer C - 2

Document Chapter

 Story Map C - 4

Functional
Epic C - 2

Safety
Epic C - 6

Functional
Product
Backlog

C - 2

Safety
Product
Backlog

C - 6

Safety Plan C - 6

STPA Report C - 5

BDD
Report C - 5

Internal
Safety Report C - 8

External
Safety Report C - 8

SSRS 1-4 with STPAC - 4

Pre-Planning MeetingC - 5

Sprint Planning
MeetingC - 2

STPAC - 4

Daily Scrum Meeting

TDD/BDD/CI

Regular Safety MeetingC - 2

C - 5

C - 4

Sprint Review MeetingC - 2

Sprint Retrospective
MeetingC - 2

Cross-Functional
Meeting

Second Chance
Meeting

C - 8

C - 8

Final STPA ValidationC - 4

Communication
& Feedback

Channel
C - 7

Follow-Up ActivitiesC - 9

PrerequisiteC - 9

Figure 9.1: S-Scrum

8.3 | Conclusion 195

9.1 Activities

As we can see in Figure 9.2, we illustrate the activities in S-Scrum in 3
sub-dimensions: Tasks; Input and output; Communication1.

9.1.1 Prerequisite

Before starting S-Scrum, the organisation should have the following prereq-
uisites: (1) An operational quality management system complying with a
quality management norm, such as ISO/TS 16949, ISO 9001 or equivalent.
(2) When the functional safety concepts rely on other technologies or exter-
nal measures, they should be discussed referring to ISO 26262-3, 8.4.3.2 and
8.4.3.3. (3) Configuration management should be according to ISO 26262-6,
Annex C and ISO 26262-8, 7.4. (4) Embedded software in terms of ASIL
definition should refer to ISO 26262-6, 7.4.10, 7.4.11 and 7.4.17. (5) When
the project includes distributed development, ISO 26262-8, 5.4.3 and 5.4.4

Figure 9.2: Dimensions to describe Activities in S-Scrum

1We explain only the major communication purpose and challenges. Other communication
purposes may also occur throughout the iterations.

196 9 | S-Scrum

should be followed. (6) Functional safety assessment and functional safety
audit should have been done for suppliers before starting S-Scrum. (7) The
"confidence in the use" of software tools is prepared. (8) The qualification
of reused software components is prepared.

9.1.2 SSRS 1-4 with STPA

The detailed description is shown in Chapter 4.
Tasks: SSRS 1-4 is a set of classic activities in functional safety norm IEC
61508 [Com11b]. It includes: (1) Item definition; (2) Initiation of safety
lifecycle; (3) Hazard analysis and risk assessment; (4) Functional safety
concept. S-Scrum uses the pre-steps of STPA including system description
and control structure to perform hazard analysis. HARA is used for classifying
hazardous events.
Input and output: The input is a general overview of the system. The
outputs are the descriptions of the system functional goal, system safety
goal, system scope, safety scope, system requirements, hazards and safety
requirements.
Communication: In SSRS 1-4 with STPA, the team members communicate
primarily for deriving high-level safety issues. The communication challenge
can be a lack of documentation to support communication concerning STPA
and HARA.

9.1.3 Pre-Planning Meeting

The detailed description is shown in Chapter 4.
Tasks: A pre-planning meeting is arranged before the sprint planning meet-
ing. It includes: (1) Change impact analysis; (2) Tailoring of safety activities;
(3) Decomposition of ASIL; (4). Defining tools, methods and languages in
each lifecycle phase; (5) Supplier and customer relationship; (6) Solving
conflicts between safety requirements and functional requirements, as well
as their acceptance criteria (including HW and SW interfaces), for the com-
ing sprint.

9.1 | Activities 197

Input and output: The inputs are: (1) The output from the former activity;
(2) A project plan; (3) A safety plan; (4) A functional product backlog; (5)
A safety product backlog. The outputs are (1) A revised safety plan; (2) A
revised functional product backlog; (3) A revised safety product backlog; (4)
Team members’ competence evaluation (team velocity and team capability).
Communication: In the pre-planning meeting, the team members com-
municate primarily for planning and solving conflicts. The communication
challenge can be a lack of opinions from multiple functional departments
and recording processes with appropriate tools.

9.1.4 Sprint Planning Meeting

The detailed description is shown in Chapter 2.
Tasks: The sprint planning meeting is a regular activity in normal scrum.
The team agrees on a goal. In addition, the team performs safety planning
concerning the determination of safety product backlog items, which can be
aligned with safety goals, together with the determination of their accep-
tance criteria.
Input and output: The input is: (1) The output from the previous activity.
The outputs are: (1) A sprint backlog; (2) A revised safety plan.
Communication: In the sprint planning meeting, in addition to planning,
the members aim to establish commitments for realising safety goals in
the coming sprint. The storage of the recording documents for commit-
ments remains challenges. The These recording documents should support
communication as well.

9.1.5 STPA

The detailed description is shown in Chapter 4.
Tasks: STPA is performed iteratively and incrementally in parallel with the
development to derive safety requirements for the safety-guided design. The
safety experts and developers execute STPA step 1 and step 2 through a
constant communication and cooperation during development.

198 9 | S-Scrum

Input and output: The inputs are: (1) The outputs from the previous
activity; (2) An incremental system architecture. The outputs are: (1)
Incrementally derived accidents, hazards, UCA and safety requirements; (2)
System design decisions. (3) An STPA report.
Communication: During STPA safety analysis, the team aims to derive and
implement safety requirements. The communication challenge can be "a
misunderstanding of the safety requirements between developers and safety
analysts".

9.1.6 Daily Scrum Meeting

The detailed description is shown in Chapter 2.
Tasks: The daily scrum meeting is a regular activity in normal scrum. It
focuses on getting people together and sharing the big picture of what is
happening among team members. Additionally, in S-Scrum, the internal
safety expert is a member in the development team. He or she should join
the daily scrum meeting and answer three questions. Safety-related issues
are discussed during daily scrum meeting in S-Scrum.
Input and output: The inputs are: (1) The outputs from the previous
activity; (2) Individual work state. (3) Possible conflicts, obstacles and
problems during development. The outputs are: (1) A transmitted state
of work of each team member; (2) Possibly fixed conflicts, obstacles and
problems.
Communication: In the daily scrum meeting, the communication occurs as
a regular discussion or monitoring the status. The primary challenge can
be "a misunderstanding during the discussion among multiple functional
members or between safety experts and developers".

9.1.7 BDD

The detailed description in shown in Chapter 5.
Tasks: BDD is performed iteratively and incrementally in parallel with the
STPA and the development during each iteration. It needs the decision on

9.1 | Activities 199

acceptance criteria for the safety requirements in the pre-planning meeting .
The execution of BDD is combined with TDD and CI.
Input and output: The inputs are (1) The outputs from the previous activi-
ties; (2) Source code. The outputs are (1) BDD test suites; (2) Safe code
snippets; (3) A BDD report.
Communication: During the BDD safety verification, the team aims to de-
rive test suites for verifying safety requirements and implementing them in
the code. The challenge can be "a misunderstanding among business analyst,
developer and safety analyst when generating test scenarios".

9.1.8 Regular Safety Meeting

The detailed description is shown in Chapter 4.
Tasks: In the regular safety meeting, the internal safety expert and external
safety expert exchange their state and incoming requirements of safety is-
sues. External experts can be invited when there are other specific issues
related to safety issues.
Input and output: The inputs are (1) The outputs from the previous ac-
tivities; (2) Safety-related work state; (3) Possible safety-related conflicts,
obstacles and problems. The outputs are (1) An exchanged work state; (2)
Fixed safety-related conflicts, obstacles and problems.
Communication: In the regular safety meeting, the members aim to monitor
the state of safety issues and share safety knowledge. The different knowl-
edge backgrounds of customers (transferred through the external safety
expert) and developers (transferred through the internal safety expert)
might cause misunderstandings on the exchanged information.

9.1.9 Sprint Review Meeting

The detailed description is shown in Chapter 2.
Tasks: The sprint review meeting is a regular activity in normal scrum. In
the sprint review meeting, the practitioners inspect and adapt the results
of the work or the potentially shippable product increment. The additional

200 9 | S-Scrum

tasks in S-Scrum include the review for safety product backlog items and
their acceptance criteria. A periodical safety assessment on the shippable
product can be performed in a specific milestone.
Input and output: The inputs are: (1) The outputs from the previous
activities; (2) A shippable product; (3) An STPA report; (4) A BDD report.
The outputs are (1) A safe shippable product; (2) A closed sprint backlog;
(3) Unfinished user stories for the coming sprints.
Communication: In the sprint review meeting, the team members aim to
demonstrate their results. The challenge is the possibly fragmented and
inconsistent information during demonstration.

9.1.10 Sprint Retrospective Meeting

The detailed description is shown in Chapter 2.
Tasks: The sprint retrospective meeting is a regular activity in normal scrum.
The team has an opportunity to examine what is happening, analyse the
way they work, identify ways to improve and make plans to implement these
improvements. The additional tasks include the retrospective concerning
safety assurance processes. A periodical safety audit can be performed
before and discussed in a sprint retrospective meeting in a specific milestone
depending on the project plan.
Input and output: The inputs are: (1) The outputs from the previous
activities; (2) An executed sprint. The output is: (1) Possible improvements
on the processes.
Communication: In the sprint retrospective meeting, the teammembers aim
to improve the processes and techniques. The safety experts and developers
are expected to share their knowledge with non-functional departments,
so that the members in non-functional departments can contribute to the
improvement.

9.1 | Activities 201

9.1.11 Final STPA Validation

The original description is shown in Chapter 4.
Tasks: The final STPA validation is a replacement of the original RAMS
validation from the functional safety norm EN 50128 [MSL15] and focuses
on safety validation. The safety experts perform STPA step 1 and step 2 on
the final product.
Input and output: The inputs are: (1) The outputs from the previous
activities; (2) A final product. The outputs are: (1) A safe product; (2) An
internal safety report; (3) An external safety report.
Communication: In the final STPA validation, the team members aim to
review their product and demonstrate their results. The challenge can
be "the fragmented and inconsistent information in the high-level safety
requirements when generating internal safety report and external safety
report".

9.1.12 Follow-Up Activities

The follow-up activities are not regular activities in S-Scrum. The practition-
ers can use them according to the specific project settings. They include:
(1) Confirmation review. (2) Functional safety audit. (3) Functional safety
assessment.

9.1.13 *Cross-Functional Meeting

This meeting is an optional activity in S-Scrum. We describe it in chapter
8. S-Scrum recommends a cross-functional meeting to enhance the coop-
eration among multiple functional departments. It is scheduled after the
pre-planning meeting and before the sprint planning meeting. The safety
experts have a commitment concerning the initial plan. The members or
representatives from multiple functional departments will participate in
and provide suggestions for this initial plan before the starting of a sprint.
In principle, the inputs for the sprint planning meeting, such as an initial

202 9 | S-Scrum

plan or product backlog, should have been discussed by multiple functional
departments.

9.1.14 *Second-Chance Meeting

This meeting is an optional activity in S-Scrum. We describe it in chapter 8. S-
Scrum recommends a second-chance meeting to enhance an insufficient plan.
It is scheduled after the sprint planning meeting and before the execution
of the sprint. There are practitioners who use two-staged sprint planning
meetings. The second-chance meeting can be combined with the second
stage of a two-staged sprint planning meeting. The tasks should include
the assignment of responsibilities and the distribution of detailed tasks. In
principle, all the team members should be clear about "what to do" and "how
to do" after the second-chance meeting.

9.2 Roles

As we can see in Figure 9.3, we illustrate the roles in S-Scrum in 2 sub-
dimensions: Responsibilities and competences. We describe the roles, which
are already in normal scrum as well due to the mixed responsibilities and
competences.

9.2.1 Developers

The detailed description is shown in Chapter 2.
Responsibilities: (1) The developers should perform the creative work of
designing, building1, integrating and testing (HW and SW interfaces are
included). (2) Assisting safety experts for safety-related issues including
safety analysis, safety verification, safety validation, allocation of safety
requirements to functional development. (3) Writing BDD test cases. (4)
Participating in organisation activities, such as planning, grooming the prod-
uct backlog, inspecting and adapting the product and process.

1To support the correctness of the design and implementation, the design principles and
coding guidelines should be used.

9.2 | Roles 203

Figure 9.3: Dimensions to describe Roles in S-Scrum

Competences: (1) Domain knowledge. (2) Expertise in common safety
practices and cross-functionality skills. (3) The capability for team work
including self-organisation and transparent communication. (4) Knowledge
of functional safety practices.

9.2.2 Scrum Master

The detailed description is shown in Chapter 2.
Responsibilities: (1) Assisting the product owner and safety experts to
facilitate and maintain the functional backlog and the safety backlog to
ensure all the user stories can be understood. (2) Coaching, promoting and
educating the team and stakeholders within scrum principles and functional
safety norms. (3) Helping the team to avoid or remove impediments to its
functional goals and safety goals. (4) Helping the team to follow a regular
process. (5) Coaching and guiding multiple functional departments.
Competences: (1) Expertise in a scrum master role including characteristics
and skills. (2) Expertise in domain-specific SCS development processes.

204 9 | S-Scrum

9.2.3 Product Owner

The detailed description is shown in Chapter 2.
Responsibilities: (1) Arranging the project plan. (2) Ensuring that the
products satisfy customers’ requirements. (3) Updating work products. (3)
Demonstrating the products. (4) Cooperating with team members. (5)
Negotiating the priorities between the functional product backlog and the
safety product backlog. (6) Controlling the scope, economics and schedule
of the project. (7) Defining the SIL with safety experts. (8) Collaborating
with stakeholders.
Competences: (1) Expertise in domain and product knowledge. (2) Ex-
pertise in management including people skills, decision-making skills and
accountability skills. (3) Knowledge of functional safety.

9.2.4 Safety Manager

The detailed description is shown in Chapter 8.
Responsibilities: (1) Planning functional safety activities. (2) Coordinating
functional safety activities. (3) Maintaining the safety plan. (4) Monitoring
the progress of safety activities. (5) Ensuring compliance with ISO 26262.
(6) Planning the resources for supporting functional safety activities. (7)
Confirming the safety plan.
Competences: (1) Expertise in functional safety and QA. (2) Expertise in
domain and product knowledge. (3) Expertise in management.

9.2.5 External Safety Expert

The detailed description is shown in Chapter 4.
Responsibilities: (1) The safety manager can take over the role of external
safety expert in certain circumstances. (2) Transferring business values from
safety manager to development team. (3) Planning the safety product back-
log. (4) Cooperating with internal safety expert. (5) Reviewing the safety
product backlog. (6) Planning the resources for functional safety activities.
(7) Managing the confirmation review, safety audit and safety assessment.

9.2 | Roles 205

(8) Tailoring safety requirements and allocating safety requirements into
functional development. (9) Collaborating with safety manager.
Competences: (1) Expertise in functional safety and QA. (2) Product and
domain knowledge.

9.2.6 Internal Safety Expert

The detailed description is shown in Chapter 4.
Responsibilities: (1) Performing STPA. (2) Performing BDD. (3) Planning,
managing and maintaining safety product backlog. (4) Negotiating the
priorities between the functional product backlog and the safety product
backlog. (5) Tailoring safety requirements and allocating safety require-
ments to software components. (6) Cooperating with development team in
terms of designing, building, integrating and testing (HW and SW interfaces
are included). (7) Generating and maintaining STPA and BDD reports.
Competences: (1) Expertise in STPA. (2) Expertise in BDD. (3) Expertise
in domain and product knowledge. (4) Capability for team work.

9.2.7 Business Analyst

The detailed description is shown in Chapter 5.
Responsibilities: (1) Transferring business value. (2) Performing BDD. (3)
Cooperating and communicating with the safety manager or the external
safety expert.
Competences: (1) Knowledge of domain and product. (2) Knowledge of
safety verification. (3) Expertise in marketing and business values develop-
ment.

9.2.8 Suppliers

The detailed description is shown in Chapter 7.
Responsibilities: (1) Providing evidence of the execution of safety assurance
on the products, components and services. (2) Cooperating and communi-
cating with the safety manager or the external safety expert.

206 9 | S-Scrum

Competences: (1) Capability to provide safe products, components and
services. (2) A professional safety assurance process in the organisation. (3)
A strong capability for market competition.

9.2.9 Cross-Functional Members

The original description is shown in Chapter 8.
Responsibilities: (1) Providing safety information from their knowledge
areas, such as sales, purchasing or production. (2) Cooperating and commu-
nicating with the safety manager or the external safety expert.
Competences: (1) Expertise in specific aspects of products. (2) Knowledge
of functional safety.

9.2.10 Customers

The original description is shown in Chapter 7.
Responsibilities: (1) Providing clear and reliable requirements. (2) Possi-
bility to be "on-site" and keep constant communication with development
team.
Competences: (1) A higher reliability. (2) Accountability.

9.3 Documents

As we can see in Figure 9.4, we illustrate the documents in S-Scrum in 2
sub-dimensions: Contents and communication. We exclude the documents
which are already described in normal scrum. They are: Functional product
backlog; Sprint backlog; Functional epics; Functional user stories.

9.3.1 Story Map

The detailed description is shown in Chapter 2.
Contents: A story map consists of ordered user stories along two indepen-
dent dimensions. The horizontal axis represents ordered user activities as

9.3 | Documents 207

Figure 9.4: Dimensions to describe Documents in S-Scrum

functional epics, while the vertical axis represents an increasingly sophisti-
cated implementation as functional user stories. We add additional items
on the horizontal axis as safety epics, while after each safety epic, we write
safety stories. We assign SIL for each safety epic and safety story referring
to at least one safety goal.
Communication: A story map can be used for transferring safety require-
ments to the external stakeholders with a clear overview. Thus, the sensitive
and confidential information should be avoided showing in the story map.

9.3.2 Safety Epic

The detailed description is shown in Chapter 6.
Contents: The safety epic represents high-level safety requirements in the
form of: To satisfy <the overall safety needs>, the system must <always be
able to reach a safe state>. SIL can be recorded in each safety epic.
Communication: Safety epics are used primarily for clarifying, implement-
ing, planning and tracing safety requirements. These safety epics show
the safety requirements between high-level and low-level. Thus, a shared

208 9 | S-Scrum

understanding between customers and developers is important.

9.3.3 Safety Story

The detailed description is shown in Chapter 6.
Contents: The safety story represents low-level safety requirements in the
form of: To keep <the control action> safe, the system must <achieve or avoid
something>. SIL is recorded in each safety story.
Communication: The safety story is mainly for transferring and imple-
menting low-level safety requirements. The storage and the monitoring of
technical in-depth information should be ensured.

9.3.4 Safety Product Backlog

The detailed description is shown in Chapter 4.
Contents: A safety product backlog represents a list of safety stories with
prioritisation. Each change request is recorded with a unique identifier, date,
reason and description.
Communication: A safety product backlog is used for planning the coming
sprint. Multiple functional departments should participate in the discussion
of the safety product backlog.

9.3.5 Safety Plan

The detailed description is shown in Chapter 6.
Contents: A safety plan is used for managing and guiding the execution
of safety activities in a project including dates, milestones, tasks, deliver-
ables, responsibilities and resources. The safety analysis plan and safety
verification plan are included. The added contents are: (1) Summary of
changes. (2) Tailoring of safety activities. (3) Overview of findings. (4)
Safety requirements. (5) Test suites.
Communication: The safety plan is proposed for planning. Its contents
should be transparent, open and easy to understand to relevant members.

9.3 | Documents 209

9.3.6 STPA Report

The detailed description is shown in Chapter 5.
Contents: An STPA report is generated after the execution of the STPA safety
analysis including system descriptions, system goals, safety goals, accidents,
hazards, safety requirements, UCA and unsafe scenarios.
Communication: An STPA report aims for demonstrating safety analysis
results. Fragmented and inconsistent information should be avoided. More
importantly, the contents should be easy to understand by non-safety experts.

9.3.7 BDD Report

The detailed description is shown in Chapter 5.
Contents: A BDD report is generated after the execution of the BDD safety
verification including test scenarios, test cases, test results and code. The
test scenarios, test cases and test results include unique identifiers.
Communication: The BDD report aims for demonstrating safety V&V results.
Fragmented and inconsistent information should be avoided. The test suites
should support communication among stakeholders.

9.3.8 Internal Safety Report and External Safety Report

The original description is shown in Chapter 8.
Contents: An internal safety report records the final results of safety ac-
tivities during projects, while an external safety report provides additional
guidelines for customers or end-users to keep a safe operation.
Communication: The internal safety report aims for tracing safety require-
ments and sharing safety knowledge. A suitable tool is necessary to maintain
the internal safety report. The contents should be easy to understand after a
long time, especially among different cultures and languages. The external
safety report aims for external demonstration. Sensitive and confidential
information should be recorded appropriately.

210 9 | S-Scrum

9.4 Evaluation

The evaluation of the final S-Scrum is according to an iterative review of ISO
26262. We choose the automotive domain for the final evaluation.

9.4.1 An Overview of ISO 26262

Initiation safety lifecycle3 - 6

Hazard analysis and
risk assessment3 - 7

Functional safety
concept3 - 8

Product development at the
system level

4

Safety validation4 - 9

Functional safety
assessment4 - 10

Release for production4 - 11

Other
technologies

Production7 - 5

Operation, service and
decommissioning7 - 6

Item definition3 - 5

5 HW 6 SW

Controllability

External measures

Planning production

Planning operation

7 - 5

7 -6

Concept phase

Product development

After the release for production

Figure 9.5: An Overview of ISO 26262

ISO 26262, Road vehicles - Functional safety, is an international norm for
functional safety of electrical and/or electronic systems in the production of
automobiles defined by ISO in 2011. The norm ISO 26262 is an adaptation

9.4 | Evaluation 211

of the Functional Safety norm IEC 61508 for Automotive Electric/Electronic
Systems. ISO 26262 defines functional safety for automotive equipment
applicable throughout the lifecycle of all automotive electronic and electrical
safety-related systems.
The goals of ISO 26262 are: (1) To provide an automotive safety lifecycle

(management, development, production, operation, service, decommission-
ing) and to support tailoring the necessary activities during these lifecycle
phases. (2) To cover the functional safety aspects of the entire development
process (including such activities as requirements specification, design, im-
plementation, integration, verification, validation, and configuration). (3)
To provide an automotive-specific risk-based approach for determining ASILs.
(4) To use ASILs for specifying the item’s necessary safety requirements
for achieving an acceptable residual risk. (5) To provide requirements for
validation and confirmation measures to ensure a sufficient and acceptable
level of safety is achieved.
ISO 26262 consists of ten parts: (1) Vocabulary. (2) Management of func-

tional safety. (3) Concept phase. (4) Product development at the system-level.
(5) Product development at the hardware level. (6) Product development at
the software level. (7) Production and operation. (8) Supporting processes.
(9) ASIL-oriented and safety-oriented analysis. (10) Guideline on ISO 26262.
We demonstrate it partially in Figure 9.5.
We review S-Scrum through part 2, part 3, part 6, part 8 and part 9.

S-Scrum is not yet suitable for the hardware level as well as the system-level.
S-Scrum is used for software development and not extended to production
and operation. Thus, we exclude part 4, part 5 and part 7.

9.4.1.1 Operation

As we can see in Figure 9.6, we conducted an informal review of ISO 26262.
Second, we conducted 15 interviews with senior-level experts in diverse
safety-critical domains including Bosch (Germany), Roche (Germany), Daim-
ler (Germany), General Motors (USA), Boeing (USA), Continental (Ger-

212 9 | S-Scrum

many). Third, we conducted a walkthrough by one TÜV Rheinland1 certified
safety expert and one safety expert who has more than 20 years working
experiences concerning ISO 26262.

Round 1: Informal
review Round 2: Interviews Round 3: Walkthrough

Part 2
• 24 “ok”
• 1 “not ok”
• 21 “NFI”

Part 3
• 27 “ok”
• 0 “not ok”
• 19 “NFI”

Part 6
• 31 “ok”
• 4 “not ok”
• 21 “NFI”

Part 8
• 53 “ok”
• 1 “not ok”
• 37 “NFI”

Part 9
• 20 “ok”
• 0 “not ok”
• 3 “NFI”

• Safety experts and product owner
should add responsibilities.

• Confirmation review; Safety audit;
Safety assessment.

• Impact analysis.
• Evaluation of RPN.
• Definition of ASIL.
• External measures and other

technologies.

• Coding guidelines and design
principles.

• Interfaces between HW and SW.
• Safety experts should add

responsibilities.
• Architecture static verification.
• Integration testing.

• Suppliers’ responsibilities.
• Safety audit and assessment.
• Record ASIL.
• Configuration management.
• Confidence in the use of SW tools.
• Qualification of SW components.

• ASIL decomposition.

• 45 “ok”
• 0 “not ok”
• 1 “NFI”

Part 2

• 46 “ok”
• 0 “not ok”
• 0 “NFI”

Part 3

• 52 “ok”
• 3 “not ok”
• 1 “NFI”

Part 6

• 91 “ok”
• 0 “not ok”
• 0 “NFI”

Part 8

• 21 “ok”
• 0 “not ok”
• 2 “NFI”

Part 9

Figure 9.6: Evaluation Results

9.4.2 Results

As we can see in Figure 9.6, we generate the review results from 3 stages. In
terms of round 1 and round 3, we compare S-Scrum with each item in ISO
26262 to check if they are "ok", "not ok" and "need further investigation". We
derive unclear topics from round 1 and design them as interview questions
in round 2. Based on the recommendations from round 2, we revise S-
Scrum and evaluate it using the same metrics "ok", "not ok" or "need further
investigation".
In round 1, 154 (59.2%) items are "ok", 6 (2.3%) items are "not ok", and

1TÜV is a technical inspection association in Germany established in 1800, which provides
inspection and product certification services.

9.4 | Evaluation 213

102 (38.9%) items "need further investigation".
In round 2, we summarise the vague issues: (1) Blurred/Missed responsi-

bilities of the product owner and safety experts. (2) No action of confirma-
tion review, safety audit and safety assessment. (3) Missed consideration of
"change impact analysis". (4) No methods to evaluate RPN. (5) No definition
of ASIL. (6) No consideration of external measures or other technologies. (7)
No clear requirements on the use of code guidelines and design principles.
(8) No specific actions on HW/SW interfaces. (9) The difficulty to perform
architecture static verification. (10) No consideration of integration testing.
(11) No definition about suppliers’ responsibilities. (12) No recordings of
ASIL in documentation. (13) No consideration of configuration management.
(14) Lack of the way to perform "confidence in use of SW tools". (15) Lack
of the way to perform "qualification of SW components". (16) No specific
time to perform ASIL decomposition.
Based on the results from the interviews, we investigate the existing

solutions in industry and map them into our S-Scrum. For (1), they do
split responsibilities for product owners and safety experts, since the safety
experts are not full-time employed in one project. The product owner has
more responsibilities. For (2), they perform confirmation review, safety
audit and safety assessment before a product delivery, normally 2 to 3
times per year. The execution does not rely on iterations. For (3), they
perform impact analysis before starting the development. For (4) and (5),
a combination of STPA and HARA is proposed to possibly define RPN. For
(6), (7) and (8), we can directly assign them in S-Scrum. For (9) and (10),
S-Scrum, at this stage, has no solutions. This remains as a limitation in
S-Scrum. For (11), since the investigated industries are large companies
with a lot of distributed projects and various suppliers, the responsibilities
must be clear when establishing a project. For (12), ASIL is labeled in
each safety requirement. For (13), CI is preferred in some agile projects
for configuration management with appropriate tools, such as Jenkins. For
(14), the practitioners evaluate "confidence in use" whenever there is a new
tool in use. Between projects, they change the tools slightly. For (15), few
companies do that in our investigated context. Only one OEMmentioned that

214 9 | S-Scrum

the suppliers will perform the qualification of SW themselves with provided
evidence. For (16), the development team conducts the decomposition under
the guidance of the safety expert.
In round 3, we revise our S-Scrum with the aforementioned recommen-

dations. The evaluation results show that 255 (97.3%) items are "ok", 3
(1.1%) items are "not ok" and 4 (1.5%) items "need further investigation".
The "not ok" items are the architecture design as well as the execution of
static architecture analysis and verification. In addition, "Does ISO 26262
have to be based on the reference model (V-model)?" and "how to use STPA
for performing quantitative analysis for HW parts in embedded systems?"
need further investigation. We consider them as our future work.
The evaluation of S-Scrum excludes the requirements that are highly

correlated with hardware as well as the specific requirements for the systems
with ASIL C and ASIL D.

9.5 Conclusion

In this chapter, we propose the final S-Scrum. We describe it in 3 dimensions:
Activities; Roles; Documentation. We integrate our results from group-
think into S-Scrum activities, while we enhance communication channels by
analysing the communication purposes and paying attention to their chal-
lenges. The evaluation is based on ISO 26262 in automotive industries, while
the senior expert-level interviews are conducted in 6 large SCS companies.
After revising S-Scrum, the formal review shows a positive result by achieving
97.3% requirements from ISO 26262. However, there are three limitations:
(1) Our evaluation does not contain the automotive systems with ASIL C
and ASIL D. (2) Hardware systems and embedded software systems with
highly correlated hardware are not suitable for S-Scrum. (3) Large-scale
or distributed projects may use S-Scrum, but extensions are necessary. The
evaluation in other safety-critical domains as well as using S-Scrum in real
automotive industrial projects are our potential future work.

9.5 | Conclusion 215

C
h
ap

te
r 10

Discussion and Conclusion

In this chapter, we summarise this dissertation with implications, limitations
and future work.

217

The main contents of this chapter are:

- We summarise this dissertation. We provide a short summary of this
dissertation concerning the methods we used and the results we obtained.

- We highlight the implications of this dissertation. S-Scrum shows
implications for practitioners concerning a possible process together with
individual techniques and for researchers concerning a new way to inves-
tigate ASD for developing SCS.

- We identify limitations of S-Scrum and its overall research. Al-
though we believe that the research of S-Scrum is based on robustly
empirical results, several known limitations cannot be avoided in this
dissertation.

- We propose future work. On one hand, the immediate indication
for further research is to narrow down our limitations. For example, to
evaluate S-Scrum in a real automotive project or to expand the evaluation
in other safety-critical domains. On the other hand, we expect to open up
avenues for research to face today’s complex SCS, such as a consideration
of other critical aspects including information security.

218 10 | Discussion and Conclusion

10.1 Discussion

In this dissertation, we propose an S-Scrum to apply ASD for developing
SCS. However, we recommend practitioners and researchers focusing more on
our standalone chapter’s contributions rather than this entire S-Scrum.
Despite S-Scrum is proposed as a general development process, the im-

plementation of an entire ASD process, in developing SCS, still has some
context-specific problems. Currently, to facilitate individual techniques in
the existing processes seems more feasible than an entire process.
In Chapter 4, we begin this dissertation by proposing the use of STPA in

a scrum development process and name it "S-Scrum". We aim to face the
changing architectures in ASD when performing safety analysis. We demon-
strate our concept of the use of STPA, illustrate the concept with an example
- Airbag System, and investigate it in a one-year student project "Smart
Home" with 14 participants. The preliminary S-Scrum contains challenges in
requirements prioritisation, communication, planning and verification. Some
initial solutions are proposed through interviews and questionnaires, such
as a pre-planning meeting or separated safety experts. We facilitate the
initial optimisations in the preliminary S-Scrum within the same project.
The process is more agile, while the products are safer than before.

The results show a possibility to use STPA in a scrum development process,
as well as the feasibility of this preliminary S-Scrum. Even though the agility
reduces slightly compared with original scrum, team members can derive
safety requirements during development and implement safety requirements
in the product. However, the initial solutions remain in organisation man-
agement. A technical in-depth investigation of these challenges is necessary.
Thus, we improve our preliminary S-Scrum with Chapter 5, Chapter 6, Chapter
7 and Chapter 8.
In Chapter 5, we propose the use of BDD in S-Scrum. It aims to face the

challenges in verification and communication in S-Scrum. The preliminary
S-Scrum uses UAT for safety verification. However, UAT works well for high-
level requirements and is not specific for safety verification. In addition, UAT
does not support an effective communication between technical members

10.1 | Discussion 219

and customers. BDD relies on verifying system behaviours. Safety is to
ensure a safe behaviour. Therefore, we believe that BDD is suitable for
verifying safety requirements. In addition, BDD is an agile technique. It
generates test suites in natural language with a clear glue for tracing the
relevant safety requirements.
We combine BDD with STPA in S-Scrum and conduct a controlled experi-

ment with 44 participants to evaluate the use of BDD. The participants are
assigned in 4 groups relying on 2 different methods (BDD and UAT) and 2
systems (APS and CSGS). They portray as a developer and a customer in 3
sessions (30 minutes/session). The measures we used are productivity, test
thoroughness, fault detection effectiveness and communication effectiveness,
as well as other test-driven development experiments.
Only the communication effectiveness shows a significant difference be-

tween BDD and UAT. All other measures show no statistically significant
differences. That contradicts our original opinion that BDD should show
better effects. We observe that the arrangement of hierarchy and name
conventions when writing BDD cost too much time. Therefore, we develop a
semi-automated tool for helping to generate BDD test suites. We replicate
the experiment with 11 additional participants using BDD with the semi-
automated tool in APS system. The productivity is 7 times greater, the test
thoroughness is 1.5 times greater and the fault detection effectiveness is
2 times greater than the use of BDD without the semi-automated tool and
UAT. In conclusion, the results support the use and show the effectiveness of
using BDD for safety verification in S-Scrum.
In Chapter 6, we adapt and develop three documents in S-Scrum, namely

safety story, safety epic and agile safety plan. We aim to face the challenges
in communication as well as planning. We adapt three templates from Safe
Scrum with an integration of STPA. Since the safety analysis method differs
from FMEA in Safe Scrum to STPA in S-Scrum, the safety stories are changing
from restricting function’s and component’s failures to UCA. Also, the agile
safety plan needs the consideration on the plan as well as outputs from
STPA.
To evaluate these three documents, we use them in S-Scrum as a case study

220 10 | Discussion and Conclusion

in the one-year student project with 14 participants. By using questionnaires
and interviews, we obtain the results that safety story and safety epic can
support an effective communication, while the agile safety plan contributes
more to planning and certification, such as safety process overview, priority
management, providing safety backup knowledge as well as having a safety
assessment report.
In Chapter 7, we investigate communication channels during safety anal-

ysis and verification in 7 small to large safety-critical industries with 39
experts. We aim to face the challenges specifically on communication. We
found 9 popular communication channels when performing safety analysis
and verification. The practitioners have normally 28 purposes for communi-
cation, while we explored Top 10 challenges in communication. We highlight
the importance of communication purposes - what or why to communicate.
In S-Scrum, when performing safety analysis and verification, meetings
and documentation can achieve more communication purposes than in our
research context. For instance, "daily scrum meeting" and "regular safety
meeting" in S-Scrum can achieve an additional communication purpose
"provide feedback and comments". In the demonstration of S-Scrum, we
include clear communication purposes in each activity, based on our results,
the practitioners can select possible channels, be clear about the challenges
and avoid the challenges in specific contexts.
In Chapter 8, we explore groupthink during safety analysis and verification

in 7 small to large safety-critical industries with 60 experts. We aim to
face the challenge primarily on requirements prioritisation, together with
group work. We notice that there do exist groupthink during safety analysis
and verification. We list the Top 10 phenomena. The antecedents and
recommendations are proposed specifically based on Janis’s psychological
theory model. "Lack of norms" is the most proposed antecedent, while "invite
external experts" is the most popular recommendation.
In S-Scrum, safety analysis and verification happen with an increasing

amount of group work, the Top 10 phenomena do exist in S-Scrum and hap-
pen more frequently in short iterations. Based on the proposed recommenda-
tions in our research context, "cross-functional meeting" and "second-chance

10.1 | Discussion 221

meeting" are possibly to be established in S-Scrum to avoid groupthink
during safety analysis and verification.
In Chapter 9, we generate our final S-Scrum by including the overall tech-

nical in-depth optimisations, such as the basic optimisations from Chapter 4,
the use of BDD from Chapter 5, the safety story, safety epic and agile safety
plan from Chapter 6, enhanced communication channels from Chapter 7, a
second-chance meeting and cross-functional meeting from Chapter 8.
Finally, we allocate S-Scrum to the automotive domain and evaluate the

consistency of the final S-Scrum with an automotive functional safety norm -
ISO 26262. We conduct 3 rounds of evaluations, i.e. one round of informal
review by the author, one round of interviews with senior-level experts and
one round as a formal walkthrough by one certified safety expert and one
safety expert with more than 20 years’ experience on functional safety in
the automotive area. The results are increasing from a satisfaction rate of
59.2% (the first round of informal review) to 97.3% (the third round of
formal walkthrough) to the norm based on experts’ recommendations (the
second round of interviews). So far, S-Scrum is validated to be feasible for
both student projects and projects in automotive companies with ASIL A
and ASIL B.
In summary, the contributions of S-Scrum are from two sides. From the

technical side, we notice the importance of a lack of integrated safety analysis
and verification in the existing ASD due to a lack of a stable architecture. STPA
and BDD can solve these challenges and are thought to be more suitable for
today’s sophisticated SCS. From the management side, we notice the conflicts
between communication and documentation, as well as an increasing number
of group work, which increases the risk of the occurrence of groupthink. We
adapt and develop three documents in S-Scrum to support communication
and investigate challenges when using existing communication channels
in S-Scrum. We investigate reasons and propose solutions in S-Scrum to
avoid groupthink by referring to a psychological theory model. To this end,
we summarise the existing activities, responsibilities and documents, as a
comprehensive S-Scrum, to achieve a norm’s requirements.

222 10 | Discussion and Conclusion

10.2 Implications

Currently, most of the existing studies prefer a hybrid model to integrate
ASD with traditional development processes. Safe Scrum is a representative,
which is initially proposed in 2012 [SMH12] and successfully used in 2018
[MS18], while the HELENA survey [Kuh+17] is another research group
investigating ASD in SCS with a focus on a hybrid model. The HELENA
survey research group starts publishing results from 2017. They seek consis-
tency with the functional safety norms and keep using the traditional safety
assurance activities.
Safe Scrum has been reviewed by several domain norms and been allocated

to railway and the metro domains with complaints to the norm EN 50129
(IEC 62425). Safe Scrum proposes to use such as SSRS phase 1-4 and RAMS
validation outside the iteration, and add a role with safety responsibilities as
well as documents based on agile artifacts. However, Safe Scrum is mainly
developed aiming to satisfy norms. It either uses recommended techniques
or organisational management from norms in scrum. The running of a sprint
is considered as a mini Waterfall or mini V-model.
The HELENA survey puts its emphasis on hybrid methods between tradi-

tional development processes and ASD from practice. It starts from indus-
trial experiences to investigate the state-of-the-art about the use of hybrid
methods. Based on the recent results [Kuh+17], the HELENA survey has
addressed six major motivations to use hybrid methods rather than pure
ASD, such as a need for a stepwise transition or client constraints. Since
the HELENA survey has just started one year ago and is mainly spreading
in European countries, it is still at the stage of exploring motivations and
problems rather than proposing solutions.
We believe in the value of the HELENA survey for enhancing the chain

of evidence of using ASD in SCS within a large scope, S-Scrum, however,
provides solutions, together with evaluations. Compared with Safe Scrum,
S-Scrum advocates the use of systems theory (or systems theory-based methods),
which promotes the system thinking in ASD.
For researchers, we have three major implications. (1) The first implication

10.2 | Implications 223

lies in the novel technique in S-Scrum, STPA-BDD. It successfully solved the
problem of a lack of safety analysis and verification during each iteration.
(2) The second implication is that we propose another possible way for the
researchers in the area of using ASD for development SCS: We claim that
seeking for using traditional safety assurance techniques (or purely following
norms) in ASD is not the only way to make ASD applicable for developing
SCS. To investigate some good (agile) practices, which are satisfied with agile
principles, is more effective to solve the root problems, which may be caused by
the nature of ASD that has an instinct conflict with traditional safety assurance.
(3) The third implication is that our research links safety assurance in process
management with an attention on human aspects. We notice that there are rich
studies of process improvement in safety or (x)-critical domains. They either
put their attention on norms, such as CMM and ISO, or derive experiences
through specific project settings. On the other hand, human aspects in
organisational management arouse increasingly more attention in software
engineering, such as "agile methods", "behaviour software engineering" or
"psychoempirical software engineering". Yet, in safety or (x)-critical domains,
human aspects in organisational management might produce various effects,
as well as encompass diverse causalities. For instance, "groupthink" and
"communication channels" seem to have normal effects in regular projects.
Yet, in SCS, they are dangerous.
For practitioners, we have three major implications. (1) We propose an

executable process "S-Scrum" both for academic and automotive industrial
projects with ASIL A and ASIL B. It includes a general execution process
with descriptions of activities, roles and documents, which can be used in
practice. (2) In addition, when the project already has a running process,
we recommend the use of individual techniques and artifacts, such as STPA
and BDD and their relevant documents to face the probable challenges. (3)
Our results have implications for safety management. In SCS, we provide
recommendations for managing an effective group work during safety anal-
ysis and verification in order to avoid groupthink. Also, we propose the
existing challenges in communication when performing safety analysis and
verification that the management should notice. S-Scrum compensates the

224 10 | Discussion and Conclusion

weakness of the conflicts between documentation and communication when
performing STPA and BDD. Finally, S-Scrum is evaluated at the management
level to be satisfied with the functional safety norm ISO 26262 and validated
as a feasible ASD in the automotive domains for developing the systems with
ASIL A and ASIL B.
In this dissertation, we argue that no matter practitioners or researchers,

in the area of using ASD for development SCS, should jump out of the
framework of norms, but still not deviate from norms.

10.3 Limitations

As a dissertation in terms of process improvement, we agree with the opin-
ions of Humphrey [Hum89] and Dybå [Dyb05] concerning the importance of
specific contexts and specific business values. However, given the context in
SCS, we have the limitation on the evaluation in a real-world industrial
project, as same as other research [GPM10], which remains in theory. The
practical evaluation is a challenge for investigating ASD in SCS. More impor-
tantly, SCS projects have different SIL. Even though the evaluation could be
facilitated in a project developing SCS, the results are not generalisable.
In 2017, Francisco et al. [Vas+17] conducted a systematic literature

review about the approaches to software process improvement. Academic
validation is supported by recent research [Gor+06] [Fal+18b], which we
used for Chapter 4, Chapter 5 and Chapter 6. Static validation in industries
is also postponed, such as interviews, surveys and norm reviews, which we
used for Chapter 7, Chapter 8 and Chapter 9. However, dynamic validation
has not been found in recent studies. It shows the gap in recent empirical
methods for evaluating software process.
In our research context, we conjecture the reason as the motivation (of

using ASD for development SCS) is still not strong enough to persuade industrial
practitioners to take risks. The running projects are working, even with some
delays, overspending or dissatisfaction of customers. Yet, a use of a new
process, which is still immature and incomplete, might cause even worse

10.3 | Limitations 225

results. Changing a process seems taking over more responsibilities and
needs more efforts than a technique. A stepwise transition is preferable.
That is the reason why we notice the HELENA survey, which starts from
2017, and consider how to push S-Scrum further and meet industrial needs.
Therefore, we recommend the practitioners noticing our standalone chap-

ter’s contributions with individual techniques. The evaluation of the individ-
ual techniques is based on method triangulation, such as case studies in a
student project, controlled experiments in academic settings and industrial
case studies. The limitations are discussed at the end of each chapter.
Nevertheless, S-Scrum is entirely evaluated through reviewing the norm.

For an entire process, a norm review is preferable and reliable before a
real-world implementation [SG+17] [SMH12]. To enhance the robustness,
we conducted one round of informal review, one round of formal review,
together with interviews with senior-level experts. Thus, although we lack
an evaluation of S-Scrum in a real-world industrial project, we encompass
as many empirical evaluation methods as possible to validate S-Scrum as a
whole as well as each technique individually.

In addition,we allocate the SCS domain of S-Scrum only in automotive
industry. There are scarce studies addressing domain-specific challenges in
terms of the use of ASD in SCS. To strengthen S-Scrum further in industry,
we must determine a domain to go deeper. Besides the equivalent motivations
and the state-of-the-art about using ASD in recent SCS, such as smart home,
automotive, medical equipment or aviation, we decide to use S-Scrum in the
automotive domain due to an easy-to-get resource (location and cooperation
possibilities).
The evaluation shows that S-Scrum can achieve the automotive systems

with ASIL A and ASIL B, which actually encompass 80% of automotive sys-
tems. Additionally, given that the evaluation of S-Scrum is through reviewing
norms, we can also easily extend S-Scrum to other safety-critical domains,
since the domain-specific norms show similarities [Bau+10].
Furthermore, S-Scrum, at the current stage, is not suitable for devel-

oping hardware systems, as well as highly hardware-correlated embedded
systems. This is due to a historical problem - the limitations of original scrum.

226 10 | Discussion and Conclusion

The practitioners show difficulties in adopting scrum for developing hard-
ware systems, due to a high cost of changing or managing dependencies of
hardware components as well as a time limitation for customers to approve
prototypes [BHL17]. Thus, we propose S-Scrum only for software systems
and embedded software systems.
Finally, S-Scrum has not been evaluated for large-scale or distributed

organisations. This might cause worries for practitioners in SCS. The or-
ganisation of SCS is possible on a large-scale with distributed locations and
management. A scrum team seems more popular for small organisations.
However, recent studies show the possible way with a plenty of evidence
to organise scrum in large-scale or distributed projects [EP17] [KLM17]
[Din+17], such as a use of "scrum of scrums" [All17]. Thus, we strongly
believe in the possibilities to extend S-Scrum into large-scale or distributed
organisations.

10.4 Future Work

The research area of using ASD in developing SCS is novel in this decade
and contains many uncultivated lands in the future.
On the one hand, to narrow down the limitations of this dissertation is

our immediate future work. (1) We expect to execute S-Scrum in one (or
more) real-world project(s) in automotive industry. Some research or platform
projects assigned with low ASIL and on a small scale can be considered rather
than customer projects with high ASIL. (2) S-Scrum can be evaluated through
other domain-specific norms by domain experts as a pre-step to strengthen S-
Scrum into wide-ranging safety-critical domains. Domain-specific differences
can be used for extending S-Scrum. (3) Theoretical research on a large-scale
or distributed S-Scrum may arouse interest. The cooperation among cross
functional departments, especially in different time zones, seems important
in industry.
On the other hand, to use ASD for developing SCS, safety assurance should

consider other critical aspects, which may influence the safety of systems and

10.4 | Future Work 227

indirectly cause hazards. Information security is the most influential, such as
in autonomous driving, smart home or aviation management. To consider
information security when performing safety analysis is important for today’s
SCS. STPA can encompass information security causalities, which lead to an
unsafe event. Yet, information security itself also causes serious losses. To
perform security analysis interleaved with safety analysis in S-Scrum is more
suitable for today’s SCS. A combination between existing security analysis
and safety analysis methods are more practical in industries to pursue than
an integrated safety and security method.

228 10 | Discussion and Conclusion

Bibliography

[AD17] J. D. Arthur, J. B. Dabney. “Applying standard independent verification
and validation (IV&V) techniques within an agile framework: Is there
a compatibility issue?” In: Proceedings of the Annual IEEE International
Systems Conference. 2017, pp. 1–5 (cit. on p. 52).

[Adl77] R. B. Adler. Confidence in communication: A guide to assertive and social
skills. Harcourt School, 1977 (cit. on p. 101).

[Adz09] G. Adzic. Bridging the communication gap: Specification by example and
agile acceptance testing. Neuri Limited, 2009 (cit. on p. 94).

[Aer12] R. T. C. for Aeronautics. “Software considerations in airborne systems
and equipment certification.” In: DO-178C (2012) (cit. on pp. 26, 42).

[Alj+09] H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner-Fischer, S. Leue.
“Safety analysis of an airbag system using probabilistic FMEA and
probabilistic counterexamples.” In: Proceedings of the 6th International
Conference on Quantitative Evaluation of Systems. 2009, pp. 299–308
(cit. on p. 64).

[All] A. Alliance. What is agile software development? 2013. Retrieved 2015.
(cit. on p. 34).

[All01] A. Alliance. “Agile manifesto.” In: http://www.agilemanifesto.org 6.1
(2001) (cit. on pp. 34, 44).

[All17] A. Alliance. Scrum of scrums. 2017 (cit. on p. 227).

229

[Ant13] B. Antoine. “Systems-theoretic hazard analysis (STPA) applied to the
risk review of complex systems: An example from the medical device
industry.” PhD thesis. Massachusetts Institute of Technology, 2013
(cit. on p. 27).

[AW14] A. Abdulkhaleq, S. Wagner. “A software safety verification method
based on system-theoretic process analysis.” In: Proceedings of the
International Conference on Computer Safety, Reliability, and Security.
2014 (cit. on p. 39).

[Ban+12] A. Banerjee, K. K. Venkatasubramanian, T. Mukherjee, S. K. S. Gupta.
“Ensuring safety, security, and sustainability of mission-critical cyber-
physical systems.” In: Proceedings of the IEEE 100.1 (2012), pp. 283–
299 (cit. on p. 146).

[Bas92] V. R. Basili. Software modeling and measurement: The Goal/Question/-
Metric paradigm. Tech. rep. 1992 (cit. on p. 71).

[Bau+10] P. Baufreton, J. Blanquart, J. Boulanger, H Delseny, J. Derrien, J Gassino,
G Ladier, E Ledinot, M Leeman, P Quéré, et al. “Multi-domain com-
parison of safety standards.” In: Proceedings of the 5th International
Conference on Embedded Real Time Software and Systems. Toulouse,
France, 2010, pp. 13–25 (cit. on p. 226).

[Bec00] K. Beck. Extreme programming explained: Embrace change. Canada:
Addison-Wesley, 2000 (cit. on pp. 26, 34, 35).

[Bec04] K. Beck. Extreme programming explained: Embrace change. Canada:
Second Edition, Addison-Wesley, 2004 (cit. on p. 35).

[BH06] J. Bowyer, J. Hughes. “Assessing undergraduate experience of contin-
uous integration and test-driven development.” In: Proceedings of the
28th International Conference on Software Engineering. 2006, pp. 691–
694 (cit. on p. 110).

[BHL17] A. I. Böhmer, P. Hugger, U. Lindemann. “Scrum within hardware
development insights of the application of scrum for the development
of a passive exoskeleton.” In: Proceedings of the International Conference
on Engineering, Technology and Innovation. IEEE. 2017, pp. 790–798
(cit. on p. 227).

230 Bibliography

[Bow93] J. Bowen. “Formal methods in safety-critical standards.” In: Proceedings
of the Software Engineering Standards Symposium. 1993, pp. 168–177
(cit. on pp. 26, 39).

[Bre15] E. Brechner. Agile project management with kanban. Pearson Education,
2015 (cit. on pp. 34, 35).

[Bro+10] B. K. Brockman, M. E. Rawlston, M.A. Jones, D. Halstead. “An ex-
ploratory model of interpersonal cohesiveness in new product devel-
opment teams.” In: Journal of Product Innovation Management 27.2
(2010), pp. 201–219 (cit. on p. 47).

[Bro14] M. Brown. “Groupthink in software engineering.” In: 5 (2014) (cit. on
p. 45).

[BS93] J. Bowen, V. Stavridou. “Safety-critical systems, formal methods and
standards.” In: Software Engineering Journal 8.4 (1993), pp. 189–209
(cit. on p. 44).

[BT05] B. Boehm, R. Turner. “Management challenges to implementing agile
processes in traditional development organisations.” In: IEEE Software
22.5 (2005), pp. 30–39 (cit. on p. 42).

[BZL04] N. K. Baym, Y. B. Zhang, M.-C. Lin. “Social interactions across media:
Interpersonal communication on the internet, telephone and face-
to-face.” In: New Media & Society 6.3 (2004), pp. 299–318 (cit. on
p. 137).

[CCA13] S. Coyle, K. Conboy, T. Acton. “Group process losses in agile software
development decision making.” In: International Journal of Intelligent
Information Technologies 9.2 (2013), pp. 38–53 (cit. on p. 56).

[CG09] L. Crispin, J. Gregory. Agile testing: A practical guide for testers and
agile teams. Pearson Education, 2009 (cit. on p. 91).

[CGP99] E.M. Clarke, O. Grumberg, D. Peled. Model checking. Cambridge, MA:
MIT Press, 1999 (cit. on p. 39).

[CH17] J. Cleland-Huang. “Safety stories in agile development.” In: IEEE
Software 34.4 (2017), pp. 16–19 (cit. on p. 53).

Bibliography 231

[Che+07] M. Cherubini, G. Venolia, R. DeLine, A. J. Ko. “Let’s go to the white-
board: How and why software developers use drawings.” In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems.
2007, pp. 557–566 (cit. on pp. 139, 158).

[CHR17] J. Cleland-Huang, M. Rahimi. “A case study: Injecting safety-critical
thinking into graduate software engineering projects.” In: Proceedings
of the 39th International Conference on Software Engineering: Software
Engineering and Education Track. 2017, pp. 67–76 (cit. on pp. 39,
103).

[CLC04] D. Cohen, M. Lindvall, P. Costa. “An introduction to agile methods.”
In: Advances in Computers 62.03 (2004), pp. 1–66 (cit. on p. 34).

[CMS09] K. J. Cruickshank, J. B. Michael, M.-T. Shing. “A validation metrics
framework for safety-critical software-intensive systems.” In: Proceed-
ings of the IEEE International Conference on System of Systems Engineer-
ing. 2009, pp. 1–8 (cit. on p. 71).

[Coc02] A. Cockburn. Agile software development. Boston, MA: Addison-Wesley,
2002 (cit. on pp. 26, 183).

[Coh10] M. Cohn. Succeeding with agile: Software development using scrum.
Pearson Education, 2010 (cit. on pp. 40, 187).

[Com11a] I. E. Commission. “Functional safety of electrical/electronic/programmable
electronic safety related systems.” In: IEC 61508 (2011) (cit. on pp. 26,
42).

[Com11b] I. E. Commission. IEC 61508: Functional safety of electrical/electron-
ic/programmable electronic safety-related systems. International Elec-
trotechnical Commission, 2011 (cit. on pp. 142, 197).

[Con+11] K. Conboy, S. Coyle, X. Wang, M. Pikkarainen. “People over process:
Key challenges in agile development.” In: IEEE Software 28 (July 2011)
(cit. on p. 156).

[Cre09] J.W. Creswell. Research design: Qualitative, quantitative, and mixed
method approaches. 3rd ed. Vol. 2. Thousand Oaks, California: Sage
Publications, Thousand Oaks, California, 2009 (cit. on pp. 160, 161).

232 Bibliography

[Cut+02] R. Cutler, Y. Rui, A. Gupta, J. J. Cadiz, I. Tashev, L. He, A. Colburn,
Z. Zhang, Z. Liu, S. Silverberg. “Distributed meetings: A meeting cap-
ture and broadcasting system.” In: Proceedings of the 10th International
Conference on Multimedia. 2002, pp. 503–512 (cit. on p. 136).

[Dab+05] L. A. Dabbish, R. E. Kraut, S. Fussell, S. Kiesler. “Understanding email
use: Predicting action on a message.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 2005, pp. 691–
700 (cit. on p. 138).

[DD08] T. Dybå, T. Dingsøyr. “Empirical studies of agile software development:
A systematic review.” In: Information and Software Technology 50.9-10
(2008), pp. 833–859 (cit. on p. 35).

[DGCA17] M. L. Drury-Grogan, K. Conboy, T. Acton. “Examining decision charac-
teristics & challenges for agile software development.” In: Journal of
Systems and Software 131 (2017), pp. 248–265 (cit. on p. 55).

[Din+17] T. Dingsøyr, K. Rolland, N. B. Moe, E. A. Seim. “Coordination in multi-
team programmes: An investigation of the group mode in large-scale
agile software development.” In: Procedia Computer Science 121 (2017),
pp. 123–128 (cit. on p. 227).

[DMN14] K. Dobson, A Moors, B. Norris. “Literature review of safety critical
communication methodologies.” In: ERA 01 (2014) (cit. on pp. 44,
156).

[DN02] Y. K. Djamba, W. L. Neuman. “Social research methods: Qualitative
and quantitative approaches.” In: Teaching Sociology 30.3 (July 2002),
p. 380 (cit. on p. 161).

[DSVWJ11] C. De Snoo, W. Van Wezel, R. J. Jorna. “An empirical investigation of
scheduling performance criteria.” In: Journal of Operations Manage-
ment 29.3 (2011), pp. 181–193 (cit. on p. 47).

[Dyb05] T. Dybå. “An empirical investigation of the key factors for success in
software process improvement.” In: IEEE Transactions on Software
Engineering 31.5 (2005), pp. 410–424 (cit. on p. 225).

[ELS05] J. Erickson, K. Lyytinen, K. Siau. “Agile modelling, agile software
development, and extreme programming: The state of research.” In:
Journal of Database Management 16.4 (2005), p. 88 (cit. on p. 34).

Bibliography 233

[EMT05] H. Erdogmus, M. Morisio, M. Torchiano. “On the effectiveness of the
test-first approach to programming.” In: IEEE Transactions on Software
Engineering 31.3 (2005), pp. 226–237 (cit. on p. 93).

[EP17] C. Ebert, M. Paasivaara. “Scaling agile.” In: IEEE Software 34.6 (2017),
pp. 98–103 (cit. on p. 227).

[Eri15] C. A. Ericson. Hazard analysis techniques for system safety. NJ, USA:
John Wiley & Sons, 2015 (cit. on pp. 36, 37).

[Fal+18a] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
M. Oivo. “Empirical software engineering experts on the use of stu-
dents and professionals in experiments.” In: Empirical Software Engi-
neering 23.1 (2018), pp. 452–489 (cit. on pp. 85, 103).

[Fal+18b] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
M. Oivo. “Empirical software engineering experts on the use of stu-
dents and professionals in experiments.” In: Empirical Software Engi-
neering 23.1 (2018), pp. 452–489 (cit. on p. 225).

[Fan+15] Y. Fan, Z. Li, J. Pei, H. Li, J. Sun. “A system-theoretic analysis of the
"7.23" Yong-Tai-Wen railway accident.” In: Safety Science 76 (July
2015) (cit. on p. 27).

[FC03] C. Ferraris, R. Carveth. “NASA and the Columbia disaster: Decision-
making by groupthink?” In: Proceedings of the 2003 Association for
Business Communication Annual Convention. 2003, p. 12 (cit. on p. 56).

[Fit+13] B. Fitzgerald, K.-J. Stol, R. O’Sullivan, D. O’Brien. “Scaling agile meth-
ods to regulated environments: An industry case study.” In: Proceed-
ings of the 35th International Conference onSoftware Engineering. IEEE.
2013, pp. 863–872 (cit. on p. 50).

[FL15] Including safety during early development phases of future air traffic
management concepts. Lisbon, Portugal, 2015 (cit. on p. 27).

[FOC08] R.H. Flin, P. O’Connor, M. Crichton. Safety at the sharp end: A guide
to non-technical skills. Ashgate Publishing, 2008 (cit. on p. 45).

[Ghe+13] C. Ghezzi, C. Menghi, A.M. Sharifloo, P. Spoletini. “On requirements
verification for model refinements.” In: Proceedings of the 21st IEEE
International Requirements Engineering Conference. 2013 (cit. on p. 52).

234 Bibliography

[GL13] J Gläser, G Laudel. “Life with and without coding: Two methods
for early-stage data analysis in qualitative research aiming at causal
explanations.” In: Forum: Qualitative Social Research 14 (Mar. 2013)
(cit. on p. 161).

[GN16] T. J. Gandomani, M. Z. Nafchi. “Agile transition and adoption human-
related challenges and issues: A grounded theory approach.” In: Com-
puters in Human Behaviour 62 (2016), pp. 257–266 (cit. on p. 35).

[Gor+06] T. Gorschek, P. Garre, S. Larsson, C. Wohlin. “A model for technology
transfer in practice.” In: IEEE Software 23.6 (2006), pp. 88–95 (cit. on
p. 225).

[GPM10] X. Ge, R. F. Paige, J. A. McDermid. “An iterative approach for develop-
ment of safety-critical software and safety arguments.” In: Proceedings
of the Agile Conference. 2010, pp. 35–43 (cit. on pp. 26, 50, 225).

[Gre+16] P. Gregory, L. Barroca, H. Sharp, A. Deshpande, K. Taylor. “The chal-
lenges that challenge: Engaging with agile practitioners’ concerns.” In:
Information and Software Technology 77 (2016), pp. 92–104 (cit. on
p. 35).

[Gre12] D.D. Gregorio. “How the business analyst supports and encourages
collaboration on agile projects.” In: Proceedings of the International
Systems Conference. 2012, pp. 1–4 (cit. on p. 102).

[GTF17] L. Gren, R. Torkar, R. Feldt. “Group development and group maturity
when building agile teams: A qualitative and quantitative investigation
at eight large companies.” In: Journal of Systems and Software 124
(2017), pp. 104–119 (cit. on p. 56).

[Gul00] F.W. Guldenmund. “The nature of safety culture: A review of theory
and research.” In: Safety Science 34.1-3 (2000), pp. 215–257 (cit. on
p. 144).

[Ham77] R.G. Hamlet. “Testing programs with the aid of a compiler.” In: IEEE
Transactions on Software engineering 4 (1977), pp. 279–290 (cit. on
p. 93).

Bibliography 235

[Han+16] G. K. Hanssen, B. Haugset, T. Stålhane, T. Myklebust, I. Kulbrandstad.
“Quality assurance in scrum applied to safety-critical software.” In:
Proceedings of the 17th International Conference on Agile Software
Development. 2016, pp. 92–103 (cit. on p. 50).

[HH09] L. Huang, M. Holcombe. “Empirical investigation towards the effec-
tiveness of test-first programming.” In: Information and Software Tech-
nology 51.1 (2009), pp. 182–194 (cit. on p. 102).

[Hol+06] H. Holmstrom, E.Ó. Conchúir, J Agerfalk, B. Fitzgerald. “Global soft-
ware development challenges: A case study on temporal, geographical
and socio-cultural distance.” In: Proceedings of the International Con-
ference on Global Software Engineering. 2006, pp. 3–11 (cit. on p. 150).

[HRH13] M. Hummel, C. Rosenkranz, R. Holten. “The role of communication
in agile systems development.” In: Business & Information Systems
Engineering 5.5 (2013), pp. 343–355 (cit. on pp. 55, 135, 156).

[HRW00] M. Höst, B. Regnell, C. Wohlin. “Using students as subjects - A compar-
ative study of students and professionals in lead-time impact assess-
ment.” In: Empirical Software Engineering 5.3 (2000), pp. 201–214
(cit. on p. 85).

[HS12] B. Haugset, T. Stalhane. “Automated acceptance testing as an agile
requirements engineering practice.” In: Proceedings of the 45th Hawaii
International Conference on System Science. 2012, pp. 5289–5298 (cit.
on p. 100).

[HS14] M. Hammarberg, J. Sunden. Kanban in action. Manning Publications
Co., 2014 (cit. on p. 35).

[Hum89] W. S. Humphrey. Managing the software process. Boston, MA, USA:
Addison-Wesley, 1989 (cit. on p. 225).

[HWS17] G. K. Hanssen, G. Wedzinga, M. Stuip. “An assessment of avionics
software development practice: Justifications for an agile development
process.” In: Proceedings of the 18th International Conference on Agile
Software Development. 2017 (cit. on p. 50).

[Jan08] I. L. Janis. “Groupthink.” In: IEEE Engineering Management Review 36.1
(2008), p. 36 (cit. on pp. 45, 46).

236 Bibliography

[Jan71] I. L. Janis. “Groupthink.” In: Psychology Today 5.6 (1971), pp. 43–46
(cit. on p. 150).

[Joh+94] J. D. Johnson, W. A. Donohue, C. K. Atkin, S. Johnson. “Differences be-
tween formal and informal communication channels.” In: The Journal
of Business Communication 31.2 (1994), pp. 111–122 (cit. on p. 44).

[Key17] J. Keyton. “Communication in organisations.” In: Annual Review of
Organisational Psychology and Organisational Behaviour (2017) (cit.
on p. 44).

[Kit+17] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton, S. Char-
ters, S. Gibbs, A. Pohthong. “Robust statistical methods for empirical
software engineering.” In: Empirical Software Engineering 22.2 (2017),
pp. 579–630 (cit. on p. 103).

[Kit08] B. Kitchenham. “The role of replications in empirical software engi-
neering? A word of warning.” In: Empirical Software Engineering 13.2
(2008), pp. 219–221 (cit. on p. 105).

[KLM17] Y. Khmelevsky, X. Li, S. Madnick. “Software development using agile
and scrum in distributed teams.” In: Proceedings of the Annual IEEE
International Systems Conference. IEEE. 2017, pp. 1–4 (cit. on p. 227).

[Kni02] J. C. Knight. “Safety-critical systems: Challenges and directions.” In:
Proceedings of the 24th International Conference on Software Engineer-
ing. 2002, pp. 547–550 (cit. on p. 26).

[Kra+90] R. E. Kraut, R. S. Fish, R.W. Root, B. L. Chalfonte. “Informal communi-
cation in organisations: Form, function, and technology.” In: Human
Reactions to Technology: Claremont Symposium on Applied Social Psy-
chology. 1990, pp. 145–199 (cit. on pp. 138, 155).

[Kra98] R.M. Kramer. “Revisiting the Bay of Pigs and Vietnam decisions 25
years later: How well has the groupthink hypothesis stood the test
of time?” In: Organizational Behavior and Human Decision Processes
73.2-3 (1998), pp. 236–271 (cit. on p. 45).

[Kru04] P. Kruchten. The rational unified process: An introduction. Addison-
Wesley Professional, 2004 (cit. on p. 26).

Bibliography 237

[KS92] S. Kiesler, L. Sproull. “Group decision making and communication tech-
nology.” In: Organisational Behaviour and Human Decision Processes
52.1 (1992), pp. 96–123 (cit. on p. 137).

[Kuh+17] M. Kuhrmann, P. Diebold, J. Münch, P. Tell, V. Garousi, M. Felderer,
K. Trektere, F. McCaffery, O. Linssen, E. Hanser, et al. “Hybrid software
and system development in practice: Waterfall, scrum, and beyond.”
In: Proceedings of the International Conference on Software and System
Process. ACM. 2017, pp. 30–39 (cit. on p. 223).

[KW04] T. Kelly, R. Weaver. “The goal structuring notation - A safety argument
notation.” In: Proceedings of the Dependable Systems and Networks.
2004, p. 6 (cit. on p. 71).

[Lar74] W. Larsen. “Fault Tree Analysis.” In: (1974, Retrieved 2014) (cit. on
pp. 27, 37).

[Lev11] N. Leveson. Engineering a safer world: Systems thinking applied to safety.
Cambridge, MA: MIT Press, 2011 (cit. on pp. 27, 36–38, 54, 62, 115,
116, 144, 148, 152, 175, 176, 179, 183).

[Luc04] T. Lucey. Management information systems. London: Thomson Learn-
ing, 2004 (cit. on p. 146).

[Mad10] L. Madeyski. “The impact of test-first programming on branch cover-
age and mutation score indicator of unit tests: An experiment.” In:
Information and Software Technology 52.2 (2010), pp. 169–184 (cit. on
p. 93).

[MAD12] N. B. Moe, A. Aurum, T. Dybå. “Challenges of shared decision-making:
A multiple case study of agile software development.” In: Information
and Software Technology 54.8 (2012), pp. 853–865 (cit. on p. 75).

[Mar99] B. Marick. “How to misuse code coverage.” In: Proceedings of the 16th
International Conference on Testing Computer Software. 1999, pp. 16–
18 (cit. on p. 93).

[MB09] J. McAvoy, T. Butler. “The role of project management in ineffective
decision making within agile software development projects.” In: Euro-
pean Journal of Information Systems 18.4 (2009), pp. 372–383 (cit. on
p. 56).

238 Bibliography

[MG17] L. E. Martins, T. Gorschek. “Requirements engineering for safety-
critical systems: Overview and challenges.” In: IEEE Software 34.99
(Jan. 2017), pp. 49–57 (cit. on pp. 28, 52).

[Mon16] D. R. Montes. “Using STPA to inform developmental product test-
ing.” PhD thesis. Massachusetts Institute of Technology, 2016 (cit.
on p. 116).

[MPB16] A. Martini, L. Pareto, J. Bosch. “Amultiple case study on the inter-group
interaction speed in large, embedded software companies employing
agile.” In: Journal of Software: Evolution and Process 28.1 (2016),
pp. 4–26 (cit. on p. 55).

[MS16] T. Myklebust, T. Stålhane. “Safety stories - A new concept in agile devel-
opment.” In: Proceedings of the International Conference on Computer
Safety, Reliability, and Security. 2016 (cit. on pp. 53, 78, 115).

[MS18] T. Myklebust, T. Stålhane. The Agile safety case. Switzerland: Springer,
2018 (cit. on pp. 50, 223).

[MSL15] T. Myklebust, T. Stålhane, N. Lyngby. “Application of an agile develop-
ment process for EN 50128/railway conformant software.” In: Safety
and Reliability of Complex Engineered Systems (2015) (cit. on pp. 50,
202).

[MSL16] T. Myklebust, T. Stålhane, N. Lyngby. “The agile safety plan.” In:
PSAM13 (Oct. 2016) (cit. on pp. 53, 77, 123).

[Mul+94] B. Mullen, T. Anthony, E. Salas, J. E. Driskell. “Group cohesiveness and
quality of decision making: An integration of tests of the groupthink
hypothesis.” In: Small Group Research 25.2 (1994), pp. 189–204 (cit.
on p. 45).

[Myk+14] T. Myklebust, T. Stålhane, G. Hanssen, T Wien, B Haugset. “Scrum,
documentation and the IEC 61508-3: 2010 software standard.” In:
Proceedings of the International Conference on Probabilistic Safety As-
sessment and Management. 2014 (cit. on p. 50).

[NG14] T. Nesheim, L. J. Gressgård. “Knowledge sharing in a complex organi-
sation: Antecedents and safety effects.” In: Safety Science 62 (2014),
pp. 28–36 (cit. on p. 144).

Bibliography 239

[NH17] P. A. Nielsen, L. T. Heeager. “The dynamics of agile practices for safety-
critical software development.” In: Proceedings of the XP2017 Scientific
Workshops. 2017, p. 21 (cit. on p. 53).

[Ols+92] G.M. Olson, J. S. Olson, M.R. Carter, M. Storrosten. “Small group
design meetings: An analysis of collaboration.” In: Human Computer
Interaction 7.4 (1992), pp. 347–374 (cit. on p. 136).

[Org13] I. C. A. Organisation. “Safety management manual.” In: SMM (2013)
(cit. on p. 42).

[Pai+11] R. F. Paige, A. Galloway, R. Charalambous, X. Ge, P. J. Brooke. “High-
integrity agile processes for the development of safety critical soft-
ware.” In: International Journal of Critical Computer-Based Systems 2.2
(2011), pp. 181–216 (cit. on p. 53).

[PF01] S. R. Palmer, M. Felsing. A practical guide to feature-driven development.
Pearson Education, 2001 (cit. on pp. 26, 35).

[PGP08] F. J. Pino, F. García, M. Piattini. “Software process improvement in
small and medium software enterprises: A systematic review.” In:
Software Quality Journal 16.2 (2008), pp. 237–261 (cit. on p. 143).

[Pik+08] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, J. Still. “The
impact of agile practices on communication in software development.”
In: Empirical Software Engineering 13.3 (2008), pp. 303–337 (cit. on
pp. 55, 118).

[Pol+17] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, K. Kinder-Kurlanda. “Can se-
curity become a routine?: A study of organisational change in an agile
software development group.” In: Proceedings of the 20th ACM Confer-
ence on Computer-Supported Cooperative Work and Social Computing.
2017, pp. 2489–2503 (cit. on p. 83).

[Pop07] M. Poppendieck. “Lean software development.” In: Proceedings of the
29th International Conference on Software Engineering Companion.
2007, pp. 165–166 (cit. on pp. 26, 35).

[Pri10] S. Prineas. “Safety-critical communication.” In: Handbook of communi-
cation in anaesthesia & critical care: A practical guide to exploring the
art (2010), p. 189 (cit. on p. 44).

240 Bibliography

[Rav98] B.H. Raven. “Groupthink, bay of pigs, and watergate reconsidered.” In:
Organizational Behavior and Human Decision Processes 73.2-3 (1998),
pp. 352–361 (cit. on p. 45).

[RH09] P. Runeson, M. Höst. “Guidelines for conducting and reporting case
study research in software engineering.” In: Empirical Software Engi-
neering 14.2 (2009), p. 131 (cit. on pp. 68, 116, 167).

[RM13] Y. Rafique, V. B. Mišić. “The effects of test-driven development on exter-
nal quality and productivity: A meta-analysis.” In: IEEE Transactions
on Software Engineering 39.6 (2013), pp. 835–856 (cit. on p. 102).

[Ros11] J. D. Rose. “Diverse perspectives on the groupthink theory - A literary
review.” In: Emerging Leadership Journeys 4.1 (2011), pp. 37–57 (cit.
on p. 45).

[RR08] P. A. Rottier, V. Rodrigues. “Agile development in a medical device
company.” In: Proceedings of the Agile Conference. 2008 (cit. on p. 52).

[Rub12] K. S. Rubin. Essential scrum: A practical guide to the most popular agile
process. Michigan, USA: Addison-Wesley, 2012 (cit. on pp. 35, 36, 83,
119, 123, 187, 189).

[Run+12] P. Runeson, M. Höst, A. Rainer, B. Regnell. Case study research in
software engineering: Guidelines and examples. Hoboken, New Jersey:
John Wiley & Sons, 2012 (cit. on p. 128).

[SB02] K. Schwaber, M. Beedle. Agile software development with scrum. Vol. 1.
Upper Saddle River, New Jersey: Prentice Hall, 2002 (cit. on pp. 34,
35, 44).

[SB06] A.M. Saks, M. Belcourt. “An investigation of training activities and
transfer of training in organisations.” In: Human Resource Management
45.4 (2006), pp. 629–648 (cit. on p. 138).

[SC94] A. Strauss, J. Corbin. “Grounded theory methodology.” In: Handbook
of Qualitative Research 17 (1994), pp. 273–285 (cit. on p. 133).

[SC97] A. Strauss, J. Corbin. Grounded theory in practice. Sage, 1997 (cit. on
pp. 72, 169).

Bibliography 241

[Sca+16] G. Scanniello, S. Romano, D. Fucci, B. Turhan, N. Juristo. “Students’
and professionals’ perceptions of test-driven development: A focus
group study.” In: Proceedings of the 31st Annual ACM Symposium on
Applied Computing. 2016, pp. 1422–1427 (cit. on p. 99).

[Sch04] K. Schwaber. Agile project management with scrum. Microsoft Press,
2004 (cit. on p. 35).

[Sch10] E.H. Schein. Organisational culture and leadership. Vol. 2. John Wiley
& Sons, 2010 (cit. on p. 183).

[Sch95] K. Schwaber. “Scrum development process.” In: OOPSLA’95 Workshop
on Business Object Design and Implementation. 1995, pp. 117–134
(cit. on pp. 26, 35).

[Sel09] B. Selic. “Agile documentation, anyone?” In: IEEE software 26.6 (2009)
(cit. on p. 53).

[SG+17] M.-L. Sanchez-Gordon, A. de Amescua, R. V. Oconnor, X. Larrucea.
“A standard-based framework to integrate software work in small
settings.” In: Computer Standards & Interfaces 54 (2017), pp. 162–175
(cit. on p. 226).

[SH11] C. J. Stettina, W. Heijstek. “Necessary and neglected? An empirical
study of internal documentation in agile software development teams.”
In: Proceedings of the 29th ACM International Conference on Design of
Communication. 2011, pp. 159–166 (cit. on p. 53).

[Shu+08] F. J. Shull, J. C. Carver, S. Vegas, N. Juristo. “The role of replications
in empirical software engineering.” In: Empirical software engineering
13.2 (2008), pp. 211–218 (cit. on p. 105).

[SKM13] T. Stålhane, V. Katta, T. Myklebust. “Scrum and IEC 60880.” In: En-
larged Halden Reactor Project Meeting. Storefjell, Norway, 2013 (cit. on
p. 50).

[SM14] S. Shafiq, N.M. Minhas. “Integrating formal methods in XP - A con-
ceptual solution.” In: Journal of Software Engineering and Applications
7.04 (2014), p. 299 (cit. on p. 52).

[SM16a] T. Stålhane, T. Myklebust. “Agile safety analysis.” In: ACM SIGSOFT
Software Engineering Notes (2016) (cit. on pp. 51, 52).

242 Bibliography

[SM16b] T. Stålhane, T. Myklebust. “Early safety analysis.” In: Proceedings of
the 17th International Conference on Agile Software Development. 2016,
pp. 1–6 (cit. on p. 115).

[SMH12] T Stålhane, T. Myklebust, G. Hanssen. “The application of Safe Scrum
to IEC 61508 certifiable software.” In: Proceedings of the 11th Interna-
tional Probabilistic Safety Assessment and Management Conference and
the Annual European Safety and Reliability Conference. 2012, pp. 6052–
6061 (cit. on pp. 26, 50, 53, 223, 226).

[SS11] K. Schwaber, J. Sutherland. “The scrum guide.” In: Scrum Alliance
268 (2011) (cit. on p. 35).

[Sta03a] D.H. Stamatis. Failure mode and effect analysis: FMEA from theory to
execution. Milwaukee, WI: ASQ Quality Press, 2003 (cit. on pp. 27,
37).

[Sta03b] J. Stapleton. DSDM: Business focused development. Pearson Education,
2003 (cit. on p. 35).

[Sta06] E. Standards. “Railway applications - The specification and demon-
stration of reliability, availability, maintainability and safety.” In: EN
50126 (2006) (cit. on p. 53).

[Sta11] I. O. for Standardisation. “Functional safety of electrical and/or elec-
tronic systems in production automobiles.” In: ISO 26262 (2011) (cit.
on pp. 26, 42, 172).

[Sta97] J. Stapleton. DSDM, dynamic systems development method: The method
in practice. Cambridge University Press, 1997 (cit. on pp. 26, 34, 35).

[Sto+10] M.-A. Storey, C. Treude, A. van Deursen, L.-T. Cheng. “The impact
of social media on software engineering practices and tools.” In: Pro-
ceedings of the FSE/SDP Workshop on Future of Software Engineering
Research. 2010, pp. 359–364 (cit. on pp. 139, 157).

[Sto+17] M.-A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer, D.M. German.
“How social and communication channels shape and challenge a par-
ticipatory culture in software development.” In: IEEE Transactions on
Software Engineering 43.2 (2017), pp. 185–204 (cit. on pp. 137, 139,
155, 156).

Bibliography 243

[Stå+14] T. Stålhane, G. K. Hanssen, T. Myklebust, B. Haugset. “Agile change
impact analysis of safety-critical software.” In: Proceedings of the Inter-
national Conference on Computer Safety, Reliability, and Security. 2014,
pp. 444–454 (cit. on p. 50).

[SW06] W. Schiano, J.W. Weiss. “Y2K all over again: How groupthink perme-
ates IS and compromises security.” In: Business Horizons 49.2 (2006),
pp. 115–125 (cit. on p. 56).

[TH90] P. T Hart. Groupthink in government: A study of small groups and policy
failure. Swets & Zeitlinger Publishers, 1990 (cit. on p. 45).

[The+15] G. Theocharis, M. Kuhrmann, J. Münch, P. Diebold. “Is water-scrum-
fall reality? On the use of agile and traditional development practices.”
In: Proceedings of the International Conference on Product-Focused Soft-
ware Process Improvement. 2015, pp. 149–166 (cit. on p. 85).

[Tic00] W. F. Tichy. “Hints for reviewing empirical work in software engineer-
ing.” In: Empirical Software Engineering 5.4 (2000), pp. 309–312 (cit.
on p. 85).

[Vas+17] F. J. Vasconcellos, G. B. Landre, J. A. O. Cunha, J. L. Oliveira, R. A. Fer-
reira, A.M. Vincenzi. “Approaches to strategic alignment of software
process improvement: A systematic literature review.” In: Journal of
Systems and Software 123 (2017), pp. 45–63 (cit. on p. 225).

[Vil+17] J. Vilela, J. Castro, L. E. G. Martins, T. Gorschek. “Integration between
requirements engineering and safety analysis: A systematic literature
review.” In: Journal of Systems and Software 125 (2017), pp. 68–92
(cit. on pp. 54, 155, 184).

[Voi+16] S. Voigt, J. von Garrel, J. Müller, D. Wirth. “A study of documentation
in agile software projects.” In: Proceedings of the 10th International
Symposium on Empirical Software Engineering and Measurement. 2016,
p. 4 (cit. on p. 53).

[Vuo11] M. Vuori. “Agile development of safety-critical software.” In: Tampere
University of Technology 14 (2011) (cit. on pp. 50, 53).

[WBW17] Y. Wang, I. Bogicevic, S. Wagner. “A study of safety documentation in
a scrum development process.” In: Proceedings of the XP 2017 Scientific
Workshops. 2017, p. 22 (cit. on p. 152).

244 Bibliography

[WC03] L. Williams, A. Cockburn. “Agile software development: It’s about
feedback and change.” In: Computer 36.6 (2003), pp. 39–43 (cit. on
p. 34).

[WH12] M. Wynne, A. Hellesoy. The cucumber book: Behaviour-driven devel-
opment for testers and developers. Pragmatic Bookshelf, 2012 (cit. on
pp. 41, 77).

[Whe09] S. A. Wheelan. “Group size, group development, and group produc-
tivity.” In: Small Group Research 40.2 (2009), pp. 247–262 (cit. on
p. 176).

[WK02] L. Williams, R. Kessler. Pair programming illuminated. Boston, MA,
USA: Addison-Wesley, 2002 (cit. on p. 44).

[Woh+12] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén.
Experimentation in software engineering. Springer Science & Business
Media, 2012 (cit. on p. 91).

[WRC10] L. Williams, K. Rubin, M. Cohn. “Driving process improvement via
comparative agility assessment.” In: Proceedings of the Agile Conference.
2010, pp. 3–10 (cit. on pp. 71, 84).

[WW18a] Y. Wang, S. Wagner. “Combining STPA and BDD for safety analysis
and verification in agile development: A controlled experiment.” In:
Proceedings of the 19th International Conference on Agile Software
Development. 2018, pp. 37–53 (cit. on p. 111).

[WW18b] Y. Wang, S. Wagner. “On groupthink in safety analysis: An industrial
case study.” In: Proceedings of the 40th International Conference on
Software Engineering. 2018 (cit. on p. 150).

[Yin13] R. K. Yin. Case study research: Design and methods. Sage, 2013 (cit. on
pp. 68, 167).

[YJC09] J. Yoo, E. Jee, S. Cha. “Formal modeling and verification of safety-
critical software.” In: IEEE software 26.3 (2009), pp. 42–49 (cit. on
p. 39).

Bibliography 245

List of Figures

2.1 TDD and ATDD [Coh10] . 40
2.2 Groupthink Model [Jan08] . 46

4.1 Safety-Guided Design [Lev11] . 62
4.2 The Preliminary S-Scrum . 63
4.3 Airbag System Control Structure 65
4.4 "Smart Home" Project . 69
4.5 General Data Analysis Strategy . 73
4.6 Boxplots for General Agility Comparison between Normal

Scrum and Preliminary S-Scrum ("1" to "5" mean "Less Agile"
to "More Agile") . 74

4.7 Boxplots for Agility Comparison between Preliminary S-Scrum
and Optimised Preliminary S-Scrum ("1" to "5" means "Less
Agile" to "More Agile") . 81

4.8 Safety Data Comparison between Preliminary S-Scrum and
Optimised Preliminary S-Scrum 82

5.1 STPA-BDD Concept . 89
5.2 BDD Safety Verification Example 91
5.3 Experiment Operation . 95

247

5.4 Boxplot for PROD, THOR and FAUL 97
5.5 Alluvial diagram for communication effectiveness 98
5.6 Comparison between Manual BDD and Semi-Automated BDD 105
5.7 Boxplot for PROD (NIUS), THOR (LC) and FAUL (MSI) 109

6.1 Result Analysis Framework . 117
6.2 Effect on Communication of Safety Story and Safety Epic . . . 118

7.1 Theoretical Lens of Communication Channels 128
7.2 Participants . 130
7.3 Timeline of Data Collection . 133
7.4 Communication Channels in Safety Analysis 136
7.5 Usage Frequencies of the 9 Communication Channel 140

8.1 Participants . 167
8.2 Group Safety Analysis . 170
8.3 Janis’s Groupthink Symptoms in GSA 173
8.4 The Top 10 Phenomena in Preliminary S-Scrum 186

9.1 S-Scrum . 195
9.2 Dimensions to describe Activities in S-Scrum 196
9.3 Dimensions to describe Roles in S-Scrum 204
9.4 Dimensions to describe Documents in S-Scrum 208
9.5 An Overview of ISO 26262 . 211
9.6 Evaluation Results . 213

248 List of Figures

List of Tables

2.1 Main Agile Methods . 35

4.1 Airbag System - UCAs . 66
4.2 Airbag System - Safety Requirements 67
4.3 STPA Step 2 - Causal Factors for UCA.1 67
4.4 Research Questions . 69
4.5 Research Strategy in Stage 1 . 70
4.6 Research Strategy in Stage 2 . 78
4.7 Normal Scrum, Preliminary S-Scrum and Optimised Prelimi-

nary S-Scrum in "Smart Home" . 79

5.1 Medians of the Student’s Background 92
5.2 Descriptive Statistic . 97
5.3 Hypothesis Testing . 99
5.4 Medians of the Students’ Background 106
5.5 Descriptive Statistic . 108
5.6 Hypothesis Testing . 110

6.1 Effect of Safety Documents . 122

249

7.1 Research Context . 129
7.2 Research Questions . 131
7.3 Example of Coding Phase . 135
7.4 Purposes . 145
7.5 Purposes versus Challenges . 153
7.6 A Comparison of Reached Communication Purposes fromMeet-

ing and Documentation . 161

8.1 Research Questions . 168
8.2 Statistic Descriptive on the Occurrence and Influential of Janis’s

Groupthink Symptoms in GSA . 174
8.3 The Top 10 Groupthink Phenomena 174

250 List of Tables

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Objective
	1.4 Contribution
	1.5 List of Publications
	1.6 Outline

	2 Background
	2.1 Agile Software Development
	2.1.1 General Agile Software Development
	2.1.2 Scrum

	2.2 System-Theoretic Safety Analysis
	2.2.1 General Safety Analysis
	2.2.2 STPA

	2.3 Safety Verification
	2.3.1 General Safety Verification
	2.3.2 BDD

	2.4 Safety Management
	2.4.1 General Safety Management
	2.4.2 Documentation
	2.4.3 Communication
	2.4.4 Groupthink

	3 State of the Art
	3.1 Existing Scrum in SCS
	3.2 Safety Analysis in ASD
	3.3 Safety Verification in ASD
	3.4 Safety Documentation in ASD
	3.5 Safety Communication in ASD
	3.6 Groupthink in ASD for SCS

	4 A Preliminary S-Scrum
	4.1 Concept
	4.1.1 Safety-Guided Design
	4.1.2 The Preliminary S-Scrum Process Model

	4.2 Example
	4.2.1 System Overview
	4.2.2 A Preliminary S-Scrum in Airbag System

	4.3 Evaluation
	4.3.1 Context
	4.3.2 Research Question
	4.3.3 Case Study 1
	4.3.4 Results 1
	4.3.5 Case Study 2
	4.3.6 Results 2
	4.3.7 Discussion
	4.3.8 Threats to Validity

	4.4 Conclusion

	5 Safety Verification in S-Scrum
	5.1 Concept
	5.2 Evaluation: STPA-BDD
	5.2.1 Context
	5.2.2 Hypotheses
	5.2.3 Variables
	5.2.4 Pilot Study
	5.2.5 Experiment Operation
	5.2.6 Results
	5.2.7 Discussion
	5.2.8 Threats to Validity

	5.3 A Semi-Automated Tool
	5.4 Evaluation: Semi-Automated Tool
	5.4.1 Replicated Experiment
	5.4.2 Results
	5.4.3 Discussion
	5.4.4 Threats to Validity

	5.5 Conclusion

	6 Documentation in S-Scrum
	6.1 Concept
	6.1.1 Safety Epic
	6.1.2 Safety Story
	6.1.3 Agile Safety Plan

	6.2 Evaluation
	6.2.1 Case Study
	6.2.2 Results

	6.3 Conclusion

	7 Communication in S-Scrum
	7.1 Theoretical Lens
	7.2 Case Study
	7.2.1 Context
	7.2.2 Research Question
	7.2.3 Data Collection
	7.2.4 Data Analysis
	7.2.5 Results
	7.2.6 Discussion
	7.2.7 Limitations

	7.3 Mapping Communication in S-Scrum
	7.4 Conclusion

	8 Groupthink in S-Scrum
	8.1 Case Study
	8.1.1 Context
	8.1.2 Research Question
	8.1.3 Data Collection
	8.1.4 Data Analysis
	8.1.5 Results
	8.1.6 Discussion
	8.1.7 Threats to Validity

	8.2 Mapping Groupthink in S-Scrum
	8.3 Conclusion

	9 S-Scrum
	9.1 Activities
	9.1.1 Prerequisite
	9.1.2 SSRS 1-4 with STPA
	9.1.3 Pre-Planning Meeting
	9.1.4 Sprint Planning Meeting
	9.1.5 STPA
	9.1.6 Daily Scrum Meeting
	9.1.7 BDD
	9.1.8 Regular Safety Meeting
	9.1.9 Sprint Review Meeting
	9.1.10 Sprint Retrospective Meeting
	9.1.11 Final STPA Validation
	9.1.12 Follow-Up Activities
	9.1.13 *Cross-Functional Meeting
	9.1.14 *Second-Chance Meeting

	9.2 Roles
	9.2.1 Developers
	9.2.2 Scrum Master
	9.2.3 Product Owner
	9.2.4 Safety Manager
	9.2.5 External Safety Expert
	9.2.6 Internal Safety Expert
	9.2.7 Business Analyst
	9.2.8 Suppliers
	9.2.9 Cross-Functional Members
	9.2.10 Customers

	9.3 Documents
	9.3.1 Story Map
	9.3.2 Safety Epic
	9.3.3 Safety Story
	9.3.4 Safety Product Backlog
	9.3.5 Safety Plan
	9.3.6 STPA Report
	9.3.7 BDD Report
	9.3.8 Internal Safety Report and External Safety Report

	9.4 Evaluation
	9.4.1 An Overview of ISO 26262
	9.4.2 Results

	9.5 Conclusion

	10 Discussion and Conclusion
	10.1 Discussion
	10.2 Implications
	10.3 Limitations
	10.4 Future Work

	Bibliography
	List of Figures
	List of Tables

