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Abstract 

 

Data increases tremendously with respect to volume, velocity, and variety. Nowadays, most of 
these data are unstructured like text documents, images, videos, Internet of Things (IoT) data, 
etc. Especially in enterprises, the analysis of semi-structured and unstructured data together with 
traditional structured data can add value. For example, semi-structured email data can be 
combined with structured customer data to keep a complete record of all customer information. 
Likewise, unstructured IoT data can be combined with structured machine data to enable 
predictive maintenance. Thereby, heterogeneous data need to be efficiently stored, integrated, 
and analyzed to derive useful business insights. 

The traditional modeling techniques like Kimball’s approach and Inmon’s approach are 
primarily focused on modeling structured data. Due to vast amounts of data being collected and 
agile project execution, scalability and flexibility become more essential characteristics in data 
modeling. However, especially regarding flexibility, the traditional data modeling approaches 
used in data warehousing face some limitations. Therefore, Data Vault modeling was developed 
to overcome these limitations. However, the Data Vault model was designed for structured data. 
To combine these structured data with semi-structured and unstructured data, the Data Vault 
model therefore needs to be adapted. However, there exists no comprehensive approach to do 
so for both semi-structured and unstructured data. 

This thesis, therefore, focuses on developing various modeling approaches to integrate semi-
structured and unstructured data along with structured data into the Data Vault model. To this 
end, multiple use cases from different areas like Customer Relationship Management (CRM), 
Manufacturing, and Autonomous Car Testing that produce and use heterogeneous data are taken 
into consideration. Using examples from these areas, the different approaches are implemented 
and their advantages and disadvantages are discussed. In addition, the developed concepts are 
evaluated to check whether they fulfill the Data Vault characteristics. 
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1 Introduction 

Data are considered as a collection of information, which can be in the form of personal data, 
transactional data, web data, sensor data, etc. In recent days, the technology has increased 
tremendously and as a result, the data generated from various sources as well increases. 
Especially enterprises face the problem of heterogeneous sources, as data are produced by 
Enterprise Resource Planning (ERP) systems, CRM, Manufacturing Execution Systems (MES) and 
IoT. However, these data can be processed to identify useful business insights, such as customer 
preferences or behavior [MT16]. Thus, analyzing these data have more benefits.  

Traditionally, the data were collected and organized in the data warehouse. Data Warehouses 
are considered to be a repository of historical data and are mainly for structured data. According 
to Bill Inmon, the data warehouse is defined as “a subject-oriented, integrated, time-variant and 
non-volatile collection of data to enable the decision-making process” [H02]. Data Warehouses 
can be modeled using various modeling techniques but Kimball’s approach and Inmon’s 
approach are the two widely used modeling techniques for data warehouses [B04] [PP12]. 
Kimball’s approach is also known as dimensional modeling whereas Inmon’s approach is also 
known as Third Normal Form (3NF). Fact table and dimensional table are the two key 
components of dimensional modeling like star schema. In 3NF model, the data are split into 
different entities as a relational table. Even though these data warehouse modeling techniques 
have been successful, they have limitations like reengineering, flexibility, and scalability. To 
overcome these limitations, Data Vault modeling was developed by Linstedt et al. [L016]. 

Data Vault model is a combination of star schema and 3NF. The main advantages of the Data 
Vault model are flexibility and scalability, because of which they are highly liked to be used in 
industry practices. However, through novel techniques, not only the amounts of data increases 
but also their complexity. The data coming from various sources are heterogeneous like 
structured, unstructured and semi-structured data. According to Gartner Group statistics, 80 
percent of today’s data are unstructured [LLY+11]. Therefore, in addition to structured data, the 
semi-structured and unstructured data also need to be stored and organized.  

For a complete analysis of all enterprise data, the semi-structured and unstructured data need to 
be integrated along with the structured data. For example, data lakes can be used to store all 
these data together in one place. In order to understand these data, the data lake needs to be 
modeled [S14]. However, the Data Vault does not support the integration of semi-structured and 
unstructured data with structured data i.e., semi-structured and unstructured data that have to 
be integrated along with structured data in the Data Vault model, which is yet to be modeled. 

1.1 Task 

The Data Vault model is well suited for modeling structured data as there are some well-defined 
approaches to integrate structured data in the Data Vault. However, the question on how to 
integrate semi-structured and unstructured data into the Data Vault model without 
compromising its advantages is neither completely nor partially answered. To integrate semi-
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structured data into the Data Vault, there exist some approaches, but there are no approaches 
for unstructured data.  

The aim of the work is to define a modeling concept to integrate semi-structured and 
unstructured data into the Data Vault model. To this end, suitable modeling techniques for semi-
structured data will be discussed, and a new concept will be developed for both semi-structured 
and unstructured data. This concept is applied to multiple real-world use cases, which uses 
heterogeneous data. A prototype is implemented to prove the functionality of the concept, and 
later the concept is evaluated to check whether it still fulfills the Data Vault characteristics. 

1.2 Structure 

This thesis is segmented into the following chapters: 

Section 2 - Related Work: This chapter discusses the various modeling techniques for structured, 
semi-structured and unstructured data. Additionally, some details about how to integrate 
unstructured data in the data warehouse are given. 

Section 3 - Use Cases: This chapter discusses use case scenarios from the areas of CRM, 
Manufacturing and Autonomous Car Testing to show the need of integrating semi-structured 
and unstructured data into the Data Vault model.  

Section 4 - Data Vault Model: This chapter discusses about the Data Vault with basic entities and 
the rules involved in the Data Vault modeling. Later describes the components of the Data Vault 
architecture and the comparison between the two existing versions of the Data Vault.  

Section 5 - Existing Approaches to Integrate Semi-Structured Data in the Data Vault: This 
chapter discusses about the existing approaches to integrate JavaScript Object Notation (JSON) 
and Extensible Markup Language (XML) schema in the Data Vault. 

Section 6 - Proposed Ideas to Integrate Semi-Structured and Unstructured Data in the Data Vault: 
This chapter presents a new approach on how to integrate semi-structured and unstructured 
data into the Data Vault model with different use cases like CRM, Manufacturing and 
Autonomous drive testing. 

Section 7 - Implementation: This chapter shows the prototypical implementation of different 
approaches using various use cases.  

Section 8 - Evaluation: This chapter compares the different approaches with their alternatives 
along with their advantages and disadvantages.  

Section 9 - Summary and Future Work: This chapter discusses the outcome of this thesis and the 
possible future work. 
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2 Related Work 

Data modeling is a communication tool for the business end users to present the information, 
which is captured. The goal of the data model is to fully and accurately represent all the data 
objects that are essential for the business. For instance, with the help of the data model, we can 
easily describe the key elements like tables, keys (primary and foreign keys), which are necessary 
for the design of the data structure for the structured data [BFG+06]. 

In this chapter, we will discuss about the various modeling techniques for structured data (in 
Subsection 2.1), semi-structured data (in Subsection 2.2), and unstructured data (in Subsection 
2.3). Later in Subsection 2.4, we will discuss the integration of the unstructured data in data 
warehouses. 

2.1 Modeling Techniques for Structured Data 

Structured data has a well-defined format and is therefore typically organized in tables with a 
fixed set of columns. 3NF model, Dimensional modeling, and Data Vault model are some of the 
data modeling techniques for structured data based on the following references [PP12] [YL16] 
[KR13]. 

a) 3NF model - Inmon pioneered the Corporate Information Factory (CIF) as integrated 
data warehouse architecture to represent the data using the 3NF modeling technique 
[KR13]. ER model is a high-level conceptual data model to simplify database design by 
capturing the relationship that exists between different entities. ER model was introduced 
by Chen in 1976 to model the data warehouse [C76].  

 
ER model is defined with the help of entities, relationships, and attributes as shown in 
Figure 2.1. The entity represents the real-world objects like Product or Customer and is 
denoted in a rectangle symbol. The relationship describes the connection that exists 
between two or more instances of one or more entities. For example, Order defines the 
relationship between the Customer entity and Product entity. The relationship is denoted 
by the diamond symbol. The attribute represents the properties that define the entities, 
and it is denoted by the oval symbol. For example, Product Name and Product Price are 
some of the attributes of the entity Product [KR13].  
 

 
Figure 2.1: Example for ER Model 
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b) Dimensional modeling technique was introduced by Kimball to design the data 
warehouse. The degree of normalization is the major difference between 3NF model and 
dimensional model [KR13]. This modeling technique is proposed to improve the query 
performance when dealing with large queries, which is a major issue in 3NF [BFG+06].  

 
Dimensional modeling consists of fact table and dimension table. Fact table stores the 
numerical measures about the particular business process like Sales revenue and the 
dimension table represents the facts that can be aggregated along the dimensions. For 
example, as shown in Figure 2.2, Fact_Sales represent the fact table with measures like 
Sales, Product and it stores the foreign keys (FK) like Customer ID and Product ID, which 
reference the primary keys of the dimensional tables. Dim_Customer, Dim_Product, etc. 
are the dimensional tables, which are connected to the fact table Fact_Sales. Each 
dimensional table like Dim_Customer has a primary key Customer ID and the descriptive 
information like Customer Name, Customer Phone. Dimensional model contains a large 
amount of data in the single fact table, and unlike the ER model, it contains more 
redundant data [BFG+06].  
 
Star model, snowflake model, and multi-star model are the three types of dimensional 
models. Star schema comprises of one fact table and numerous dimensional tables, but 
the dimensional tables are not further divided (denormalized). If we further split the 
dimensional table of the star schema, it is known as snowflake schema. If multiple fact 
tables are combined with the help of dimension tables, then it is known as multi-star 
model [BFG+06].  

 
Figure 2.2: Example for Dimensional Model  
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c) Data Vault model - When a business requirement changes, both of these traditional 
data modeling techniques face limitations like traceability, scalability, and flexibility. In 
spite of the many solutions proposed to overcome these limitations especially for 
dimensional modeling, these solutions tend to decrease the data warehouse performance 
[NJ16]. To overcome all these challenges faced by traditional modeling techniques to 
implement the data warehouse in an agile way, the Data Vault modeling technique that 
accepts changes can be an alternative solution [NJ16] [BB13]. We will discuss in detail 
about the Data Vault modeling technique in chapter 4. 

2.2 Modeling Techniques for Semi-Structured Data 

With the evolution of the Internet, semi-structured data has become popular. Semi-structured 
data has some structure, but they do not have a well-defined format to represent the data i.e., a 
fixed schema is not known in advance. Examples for semi-structured data are Extensible Markup 
Language (XML), JavaScript Object Notation (JSON), etc. There are various modeling techniques 
for semi-structured data like Semi-Structured Schema graph (S3-Graph), Conceptual-Model (CM) 
Hypergraph & Schema Tree, Extended Entity Relationship (EER) model & XGrammar and Object-
Relationship-Attribute model for Semi-Structured data (ORA-SS). We will now discuss S3-Graph, 
CM Hypergraph & Schema Tree, ORA-SS model in this Subsection based on [LWD+05]. 

a) According to [LLL+99], normal form for the S3-Graph was proposed and the data 
redundancy problem in the semi-structured database can be solved with the help of S3-
Graph. It is defined as a directed graph with nodes and edges. Here, each node can be an 
entity node or a reference node. An entity node also known as leaf node represents an 
entity of atomic or complex datatype, whereas a reference node represents a node that 
refers to another entity node.  Each edge has a tag to represent the relationship between 
the nodes and sometimes tag has a suffix ‘*’ to signify that the element can have many 
child elements relationship. There are three types of edges like component edge, 
referencing edge and root edge. The component edge is represented by a solid arrow line 
whereas referencing edge is represented by a dashed arrow line. The root edge has no 
source node, and it is represented by a solid arrow line.  
 
S3-Graph illustrates the hierarchical structure of the elements, but it is difficult to 
differentiate the attributes of relationship sets and entity sets. With this graph, it is 
possible to represent binary relationship sets like 1:1 and 1: N relationship but it is not 
possible to express the ternary relationship sets (association among three different 
entities) [LWD+05]. As shown in Figure 2.3, node #1 represents an entity node, which 
represents the entity customer; node #3 represents an entity node, which holds a string 
representing the name of the customer. It means that any name entity will have the data 
of string type. The directed edge between node #1 and node #3 denotes that “each 
customer has at most one name”. Node #4’ represents a reference node, and it references 
the phone entity node. In this case, node #4’ signifies the same entity node #4. The edge 
that connects node #1 and node #4’ signifies that “a customer has many phone numbers”. 
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Figure 2.3: S3-Graph for an XML Document 

b) Embley and Mok defined the CM Hypergraph and Schema Tree data model separately 
for designing a schema for semi-structured data in 2001 [LWD+05]. The CM Hypergraph 
consists of object sets/element sets denoted in a rectangle with a label. The participation 
constraints (N:N, N:1, 1:1, optional) of relationship sets are represented by the edges as 
follows: 

o N:N relationship – denoted by an edge without arrowheads  
o N:1 relationship –indicated by one arrowhead edge 
o 1:1 relationship – denoted by two arrowheads at both ends  
o Optional – denoted with symbol ‘o’ on the edge 

 
In Figure 2.4, customer, id, name, etc. are object sets. The customer has a unique id, which 
is represented as 1:1 relationship. Likewise, the customer has one or more phone numbers 
represented as 1:N relationship. The edge between the customer and the title represents 
the relationship is optional. With the help of CM hypergraph, it is possible to express the 
binary and higher level (ternary, n-ary) relationships. In CM hypergraph the attributes 
and objects are not differentiated, the graph becomes complex.  

In CM Hypergraph it is challenging to represent the hierarchical relationship, it is 
expressed with the help of the schema tree [LWD+05]. Schema tree is used to describe 
the hierarchical structure of the element sets, here the edges denote the relationship 
between element and sub-element. In Figure 2.4, customer and id are at the root; name, 
phone no, and address are nested within customer; street and city are nested within address 
forms the hierarchical structure. 
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Figure 2.4: CM Hypergraph and Schema Tree for an XML Document 

c)  According to [WLL+02], it is difficult to represent the semantics for the current semi-
structured databases. In order to represent the semantically rich data model mainly for 
semi-structured data, ORA-SS data model was introduced. The objects, attributes, and 
relationships are the three basic concepts of ORA-SS data model [DWL+00]. With the 
help of these concepts, four ORA-SS diagrams like instance diagram (similar to Document 
Object Model tree), schema diagram (similar to CM hypergraph), functional dependency 
diagram and inheritance diagram can be designed [DWL+00]. In ORA-SS data model, 
labeled rectangle denotes objects, and the labeled circle indicates attributes with its value.  

ORA-SS instance diagram [LWD+05] was designed to show the instance and the 
difference among objects and attributes. It consists of internal and leaf nodes. Internal 
nodes represent the objects like address is signified with the labeled rectangle, whereas 
leaf nodes represent the attributes like id, name, street are denoted as labeled circles with 
a value 101, Jim, abc street as shown in Figure 2.5 (a).  

In ORA-SS schema diagram as shown in Figure 2.5 (b) was designed to differentiate 
among objects, attributes, and relationships. In addition to that, it shows the degree of 
the relationship, whether an attribute belongs to the relationship or an object. Attributes 
can be single-valued or multivalued, and it can be made mandatory or optional for the 
object class or relationship type as shown below [LWD+05]: 

o The filled circle denotes that the attribute is a unique identifier (Example: id). 
o If the circle contains ‘?’, it means that attribute is optional and single-valued 

(Example: title). 
o If the circle does not contain anything, then it means that attribute is mandatory 

and single-valued (Example: name, street). 
o If the circle contains ‘*’, then it means that attribute is optional and multi-valued. 

(Example: Job). 
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o If the circle contains ‘+’, then it means that attribute is mandatory and multi-
valued. 

o The labeled rectangle represents the object class like the customer, and the 
relationship type between two object classes are defined by ‘relationship 
name:degree of relationship:parent object class participant constraint:child object 
class participation constraint’ (Example: ad, 2, 1:N, 1:1). 

o Relationship name is ad, and the degree of relationship represents a binary 
relationship (2) between the two object classes customer and address.  

o 1:N is a parent object class participant, which defines that the parent object class 
customer can have one or more addresses  

o 1:1 is a child object class participant, which specifies that the child object class 
address belongs to one and only customer.  

 
Figure 2.5: ORA-SS Instance and Schema Diagram 

With these modeling techniques, we better understand the schema for semi-structured data like 
XML and JSON. However, they do not allow to integrate unstructured data and do not fit a data 
warehouse. Therefore, we need to develop new approaches to integrate the semi-structured and 
unstructured data into the Data Vault model, which will be discussed in chapter 6. 

2.3 Modeling Techniques for Unstructured Data 

Unstructured data like text in emails, text files, audio, video, images, IoT data, social media feeds 
do not have any structure i.e., it does not have a pre-defined data model. Hence, it is difficult to 
use it directly without knowing the schema. Unstructured data are classified as non-textual 
unstructured data and textual unstructured data [VNR14]. The unstructured textual data can be 
understood with the help of data modeling techniques like Semantic Web and Ontology, Text 
Mining, Natural Language Processing (NLP), Information Extraction models, which we will discuss 
below in this Subsection.  
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a) Text Mining is used as a modeling technique in the paper [LKL+15] to develop the 
methodology to handle the unstructured data efficiently. It is used to extract the useful 
features from the text and to make the computers understand the meaning. This modeling 
is well suitable for textual unstructured data like a text document, pdf, etc. Data 
preparation, text processing, are some steps to perform text mining. Text processing 
involves sentence segmentation, tokenization, stop word removal and further processing 
like classification, association, etc. 
 

b) NLP is used as a modeling technique in the paper [BH15] to automatically extract the 
information from unstructured data, which is stored in the natural language text. The 
main idea is to automatically generate the ER elements like entities, attributes and 
relationships from natural language specifications with the help of a Heuristics-based 
approach. According to this approach, entities are the nouns specified in the system 
requirements, and verbs are the relationships. Sentence segmentation, Tokenization, 
Tagged Parts of Speech, Chunking and Parsing are some of the processes involved in 
generating ER from NLP. 
 

c) Information Extraction [GM16] is to automatically extract the structured information 
from the unstructured or semi-structured data sources. It is a challenging task to retrieve 
the information from textual unstructured data without changing its meaning. There are 
various techniques like Semantic Web to provide a solution to perform this challenging 
task [GM16]. Semantic web technology is an extension of World Wide Web (WWW), 
which is used to provide well-defined meaning for the data from various web sources, to 
make the machines to understand these data to deliver the exact answer for the web users 
request.  

 
Semantic Web uses the graph-based data model to store the data. Even though there are 
many techniques, Resource Description Framework (RDF) and Web Ontology Language 
(OWL) are the standard formats to represent the semantic data [QS13]. RDF is used to 
describe the different type of data that is available on the web with its own vocabularies. 
The basic building blocks of RDF are subject, predicate, and object, which are collectively 
known as RDF triples. RDF triples are denoted in the form of a graph where nodes 
represent the subject and object, whereas the directed edges represent the predicates 
(relationship). OWL is used to identify the nature of the resources and their relationships. 
OWL uses an ontology to express the semantic web information.  

In the next Subsection, we will discuss the integration of unstructured data in the data 
warehouse. 

2.4 Integration of Unstructured Data in the Data Warehouse 

For complete analytics, the structured warehouse data need to be integrated with unstructured 
content to derive new insights. Integrating the semi-structured and unstructured data in a 
distinctive data warehouse is difficult because the traditional DWH is focused on structured data. 
A new form of data warehouse known as Deep Data Warehouse (DeepDWH) was introduced in 



2. Related Work 

19 
 

[GSM14] to provide flexible integration and enhancement of structured warehouse data and 
unstructured content.  

Between unstructured content items and warehouse structured elements, the instance-level links 
are created. DeepDWH depends on these instance-level links, which are illustrated in a graph-
based structure. From the simple graph, RDF graph and property graph, the property graph is 
used to illustrate the storage of non-DWH links. The reason is that the property graph model 
allows mapping a link information directly with the help of properties on edges [GSM14].  

The unstructured data items stored in a Content Management System (CMS) and structured 
warehouse data stored in a Data Warehouse (DWH) are uniformly accessed in DeepDWH 
architecture.  

Link-oriented concepts 

Links can be created manually or generated automatically. However, generation of links 
automatically is an issue because there is no generic mechanism defined for automatic link 
extraction since the techniques are more dependent on the data source formats like images, text 
files, etc. This paper [GSM14] explains how to model and store the links, and also to define a 
unified link view to allow querying of data in the DeepDWH. The generic linking model 
represents the link approach, which is described at the meta-model level as shown in Figure 2.6.  

 
Figure 2.6: Generic Logical Schema for Links [GSM14] 

A “Node” in the graph schema represents the element, which can be structured DWH elements or 
unstructured content items. The mandatory node properties shown in Figure 2.6 are as follows: 

• The “Source” property is to identify the type of source system in which the respective 
element is available. The source can be either CMS for the content item or DWH for 
DWH element respectively. 

• The property “LocalElementID” refers to the element identifier in the respective source 
system. LocalElementID for DWH element and content item are primary key attributes 
with its values and file object identifier respectively. 

• The “Type” property refers to a special type of element. Type for DWH element and 
content item can be table name and text document respectively. 
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An “Edge” in the graph schema represents a link. Links are created by a “generator”, and they 
are defined to be as directed, binary, typed and attributed relationship between elements 
[GSM14]. A link relates exactly two elements, where one element acts as a source, and other 
element acts as a target. The various link properties shown in Figure 2.6 are as follows: 

• The properties like “sourceSubElements” and “targetSubElements” are optional and they 
are used to refine the relationship that exists between elements. In a DWH element, they 
denote the table attribute name whereas, in the content item, it refers to a specific file 
type like XQuery expression for an XML. 

• A “LinkType” property represents the semantics of a link. For example, link types can be 
“Explains, IsExpertOn, refersTo, ExpressSentiment” [GSM14].   

• A LinkType has various “LinkType attributes” to give additional information about a link. 
These link type and link type attributes are used to provide flexible relationship 
information. 

• “GeneratorType” property specifies the link origin, i.e. whether a link is generated 
manually or automatically.  Like link type attributes, the generator type also has 
generator type attributes. 

If we model our DWH in the Data Vault, we want to keep the characteristics of the Data Vault. 
Therefore, we use the DeepDWH and the links as a base to investigate further and create 
modeling techniques in the Data Vault. 
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3 Use Cases 

In this chapter, we will investigate some use cases that necessitate the integration of 
heterogeneous data. These use cases originate from the areas like CRM (Subchapter 3.1), 
Manufacturing (Subchapter 3.2) and Autonomous Car Testing (Subchapter 3.3). Problems related 
to the integration of heterogeneous data are discussed with the help of these use cases. 

3.1 Customer Relationship Management  

CRM is an enterprise approach that allows a business to improve the relationship with the 
customer, partners, and suppliers. The aim is to improve the business relationship with existing 
or potential customers. CRM collects data from various communication channels ranging from 
the website of the company, phone calls, live chat, email conversation and recently through 
social media [P14]. The data acquired through these channels are heterogeneous as characterized 
below: 

• Customer data like Customer ID, Name, Address and Product data like Product ID, 
Product Name, etc. are structured data. 

• An email is a semi-structured data. 
• Phone calls (Audio), Product defect photo (Image) are unstructured data. 

Example: A customer buys a product X from the Enterprise website. After the product delivery, 
the customer notices a defect in the product. Now, the customer can either register a complaint 
in an email with the images of a defective product or else; he can register a complaint to the 
enterprise customer care through a phone call. The data generated in both of these modes of 
complaint have to be stored in the enterprise for the effective analysis of the issue claimed by 
the customer. In this case, all these additional data like emails, pictures of defects received 
through email from each customer need to be stored and linked to the customer data, which are 
structured. This enables to later retrieve the information on the customer who registered the 
complaint.  

This huge flow of data has to be effectively stored and handled in-order to attain the objective 
of CRM such as an increase in profit, revenue and satisfaction of the customer.  The Data Vault 
provides a solution for achieving the goal of a CRM. 

3.2 Manufacturing 

Manufacturing is the process to convert raw materials or parts into completed goods according 
to the customer’s specifications or expectations. Usually, manufacturing takes place on a large-
scale production line of machinery and skilled workers. Nowadays, automation is important in 
increasing productivity. Thus, it is essential to define an optimum manufacturing process and to 
manage it effectively. MES are dynamic information systems that serve the effective execution 
of manufacturing operations with the help of current and precise data on the plant activities as 
and when they occur. Product data like Product ID, Product Name, etc. and machine data like 
Machine ID, Machine Name, etc. from MES are structured. However, the images of the Computer 
Aided Design (CAD) files, IoT that enables the supervision of the production process [CGP16] 
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and sensor data like temperature, pressure, image, etc. from the machines in the production plant 
are unstructured.  

Example: In a production plant, Machine M is designated to manufacture the product X. To 
ensure that the machine works properly, the associated sensors to the machine has to be properly 
monitored. After the product X is manufactured, the finished product has to be then compared 
with its linked CAD file to ensure that the product manufactured is same as desired.  The data 
generated from sensors like video, image, etc. has to be linked to the machine data, which is 
structured. For instance, this helps us to identify the machines that malfunctions.  

A large-scale industry would comprise of many such machines, which will produce a huge 
amount of heterogeneous data, which has to be effectively handled to increase the productivity, 
quality of the product and to reduce the cost of manufacturing. 

3.3 Autonomous Car Testing 

Autonomous cars are otherwise known as self-driving cars, which sense its environment and 
drive with less or no human input. In order to perceive their surroundings, a combination of 
various sensors [Tha17] such as Light Detection and Ranging (LIDAR), Radio Detection and 
Ranging (RADAR), Camera, Global Position System (GPS) and Inertial Measurement Units (IMU) 
are used. The data coming from each sensor has to be rightly interpreted to command the car to 
navigate in the right path and to instruct the car to maneuver or brake when an obstacle is 
detected. Due to this high complexity, vast amounts of data are generated every 1 km of the 
drive. According to Intel CEO Brian Krzanich1, for every 8 hours of driving, every autonomous 
car will consume and generate approximately 40 Terabytes. Some of the heterogeneous data 
received during the testing activity are listed below: 

• Car data like Car ID, Car Name, etc. and test drive data like test-drive ID, location, climate, 
etc. are structured.  

• Test drive video data, camera sensor data, LIDAR data, etc. are unstructured. 

Example: An autonomous car A is subjected to drive test for X hours on a highway. As mentioned 
earlier, the sensor in the autonomous car produces a tremendous amount of data per second. 
Along with these data from sensors, let us assume that there is also a video camera to monitor 
the performance of the car during the test drive, which has to be as well saved for later analysis. 
Here, the information related to the vehicle and the test case would be structured data, but 
whereas, the data from sensors and video files are unstructured data. These heterogeneous data 
have to be rightly linked for us to retrieve any information related to the performance of cars of 
a particular series. Thus, it is essential to handle these heterogeneous data properly. 

 

                                                             
1 https://www.networkworld.com/article/3147892/internet/one-autonomous-car-will-use-4000-gb-of-
dataday.html  

https://www.networkworld.com/article/3147892/internet/one-autonomous-car-will-use-4000-gb-of-dataday.html
https://www.networkworld.com/article/3147892/internet/one-autonomous-car-will-use-4000-gb-of-dataday.html
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4 Data Vault Modeling  

In this chapter, we will discuss the Data Vault modeling in detail to gain a better understanding 
of the basics. Data Vault is used to model the Enterprise Data Warehouse (EDW), which provides 
the aggregated, summarized, and consolidated data [LO16]. Data Vault is defined as “a detail-
oriented, historical tracking and uniquely Linked set of normalized tables (Hub, Link, and 
Satellite) that support one or more functional areas of business” [LO16].  

Data Vault (DV) is a hybrid combination of star schema (dimensional modeling) and 3NF; these 
are the two traditional techniques for modeling the data warehouse [KR13]. Listed below are the 
advantages of the Data Vault modeling over traditional data warehouse modeling approaches 
[LO16]:   

• It provides full agility and accessibility to data in one place. 
• Reengineering, which is considered as a massive problem in the data warehouse is 

avoided.  
• It helps to get the data quickly from different data sources and makes it accessible for end 

users at the earliest possibility. 
• It is flexible and provides high scalability. 
• It also enables consistency of data and also provides fault tolerance. 
• It can be completely automatable. 

Data Vault consists of three basic core entities as shown in Figure 4.1. Hubs consist of business 
keys to represent the business objects. Links denotes the relationship between two or more 
Hubs. Satellites contain the descriptive information, and it is connected to a single Hub and/or 
Link.  

 
Figure 4.1: Data Vault Entities 

Next, we will see in detail about the Data Vault entities in Subsection 4.1, Data Vault architecture 
in Subsection 4.2 and the difference between Data Vault (DV) 1.0 and Data Vault (DV) 2.0 in 
Subsection 4.3.  
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4.1 Data Vault Entities 

Data Vault model is made up of three basic entities such as Hubs, Links, and Satellites. The 
contents of this Subsection are based on various Data Vault references [F14] [H12] [LO16]. 

4.1.1 Hubs 

Hub entities are defined as a collection of unique business keys like customer_id, product_id, etc. 
to represent the core business objects such as customer, product, etc. Whenever a new instance 
of the business key is introduced to the EDW, a new Hub is generated. Business keys are very 
helpful to integrate, identify and track the business information in the systems. Hubs contain 
only business keys, and they do not store any descriptive information. Hubs do not possess any 
foreign key and are considered to be as a parent table for all other entity tables. As shown in 
Figure 4.2, a Hub table structure has additional metadata elements.  

 
Figure 4.2: Hub Entity Structure and Hub Example  

The mandatory elements in a Hub structure are: 
• Primary Key - In the past, a primary key field represents the sequence number, but now 

it represents a hash key. 
• Business Keys - The business key plays a vital role in a Hub because it is the key, which 

business uses to identify identities. In Figure 4.2, Customer ID is the business key (BK) for 
the Customer business object. It is not the sequence number from a source system, but a 
comprehensible key. In addition to that, the business key can be a natural key or a 
composite key. 
o Natural key is the business key if it is unique and provides meaning on its own 

without adding additional information i.e., email address, social security number are 
some of the examples for a natural key.   

o If the business key of an entity is composed of more than one data field, then it is 
called a composite key. A composite key is also known as a smart key or intelligent 
key. For example, Vehicle Identification Number (VIN) combine different sections 
like a World Manufacturer Identifier (WMI) code, a Vehicle Descriptor Section (VDS) 
and a Vehicle Identifier Section (VIS) [LO16]. 
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• Load Date - This field describes when the business key first arrived in the data 
warehouse. This load date is a system generated field in the data warehouse. It indicates 
a constant timestamp view of the data as it appears in the data warehouse and this should 
never be altered. 

• Record Source - It identifies the original source system of the business key. This is a 
key attribute in maintaining the auditability in the data warehouse.  

The optional element in a Hub structure is: 
• Last Seen Date - It represents when the business key was seen for the last time in the 

source system. This field gets updated when the business key is seen in the source system. 
It can be used to identify when the business key is deleted from the source system. For 
example, business keys with a last seen date of more than a year ago can be deleted from 
the Data Vault. 

4.1.2 Links 

A Link represents the relationship or association between two or more business objects (Hubs) 
or the same Hub twice.  A Link entry is established for the first time when a new unique 
relationship appears in the EDW. A Link contains primary key and foreign keys, but it does not 
have any descriptive data. In addition to that, Links make the Data Vault model more flexible 
i.e., to add new functionality to the model; it would only require to add new Hubs to the model 
and connect them using Links to the existing Hubs in the model. As shown in Figure 4.3, a 
relationship known as Link_Order exists between two Hubs namely Hub_Customer and 
Hub_Product.  

 
Figure 4.3: Example for a Link Entity 

Similar to the Data Vault Hub, a Link table structure has additional metadata elements as shown 
in Figure 4.4.  



4. Data Vault Modeling 

26 
 

 
Figure 4.4: Link Entity Structure 

Many-to-Many Relationship 

Even though relationships can be one-to-one, one-to-many or many-to-many, the Data Vault 
Links can be expressed only as a many-to-many relationship in order to increase flexibility, 
scalability, etc. Next, we will see in detail how many-to-many relationship provides flexibility 
and scalability. 

 
Figure 4.5: Link Modeled as a Many-to-Many Relationship to Provide Flexibility [GL11] 

a) Flexibility 

To explain how a Link supports flexibility, a scenario is considered (see Figure 4.5 on the left), 
where a business rule is defined today as: “one machine can produce many products, but each 
product must be produced by only one machine”, and the system supports only this business 
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rule. Everything runs smoothly until in future it is decided to modify a business rule as: “2 or 3 
machines can produce more products”. In this case, data warehouses face a problem because the 
structure remains rigid when modeled as a one-to-one relationship [LO16]. To adapt to the new 
business rules, the data warehouse has to be re-engineered. To provide a solution to this problem 
in the Data Vault, a Link is introduced and modeled as a many-to-many relationship (see Figure 
4.5 on the right). The Link entities, which are expressed as a many-to-many relationship, help 
the physical design to handle the changes in a business rule and data, in such a way that the 
existing datasets or processes remain unaffected. Therefore, with the help of a Link entity with 
regards to cardinalities, the change of business rules in the present, past and future can be 
handled without re-engineering.  

b) Scalability 

Links provide scalability in the Data Vault model and to understand it, we will take the reference 
of the model as shown in Figure 4.3, to extend this small model into a larger model by adding 
more Hubs and Links based on the use case. As shown in Figure 4.6, a new Hub known as 
Hub_Supplier can be added to the existing Hub Hub_Product with the help of a new Link 
Link_Supply without modifying the existing model. Thus, scalability is achieved.   

 
Figure 4.6: Example to Show that a Link Provides Scalability 

The mandatory elements in a Link structure are: 
• Primary Key - It is similar to a primary key field in a Hub entity structure. A hash key 

for a Link is generated from the referenced business key i.e., from the business keys of 
the Hubs a link is connected. Considering that the Link_Order refers to two Hub tables, 
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the hash keys of these two Hub tables are stored as foreign keys in a Link table. The hash 
key Order HK is then generated from the referenced business key. 

• Foreign Keys - This field contains the hash keys of the Hubs to which a Link is 
connected. Usually, it contains two or more foreign keys because, in most of the cases, a 
Link is connected to two or more Hubs. Even if a Link is connected to only one Hub, it 
does contain at least two foreign keys. For example, in the social network, User A can be 
a friend of User B. In Figure 4.7, Facebook User is considered to be a Hub and to show the 
relationship between Facebook users, Link_Friends is established twice between the 
Hub_Facebook User. The Link_Friends possess two foreign keys User HK.  
 

 
Figure 4.7: Example for a Link that is Connected to Only One Hub 

• Load Date - It is similar to the load date in a Hub entity structure to identify when the 
data/association was first loaded. 

• Record Source - It is similar to the record source in a Hub entity structure to identify 
from where the data are coming. 

The optional elements in a Link structure are: 
• Last Seen Date - It is similar to the last seen date in a Hub entity structure. 
• Dependent Child Key - This field gives meaning when it is combined with other key 

information like business keys. Dependent child key in link structure is used as an 
identifying element. To highlight the need of a dependent child key, an extreme case 
scenario is considered where the same product occurs twice in a sale due to different 
discounts. In such case, the dependent child key is used in a Link to differentiate the two 
products from each other. If a dependent child key is present in a Link structure, then a 
hash key in a Link is generated from that dependent child key and the referenced hub 
business keys. For example, in Figure 4.8 below, Product and Invoice as Hubs and the 
relationship between these two hubs as Invoice Order. Here, Line Item Number is a 
dependent child key since it is dependent on the business key Product ID. Thus, a hash 
key Order HK for a Link is generated from Invoice No, Product ID and Line Item Number.  



4. Data Vault Modeling 

29 
 

 
Figure 4.8: Example for a Dependent Child Key 

 
Table 4.1: Link Table with Dependent Child Key 

4.1.3 Satellites 

Satellites are used to store attributes/descriptive data of Hubs or Links. The primary purpose of 
a Satellite is to track the changes in the system by capturing all the changes happening in the 
descriptive data. If the data in the source system changes, a new entry is added as we need to 
preserve the history of the data using a Satellite. A Satellite can be attached to either a Hub or a 
Link, but on any case, it should have only one parent table. Furthermore, a parent table can have 
one or more Satellites, but a Satellite cannot be a parent to any other table, and due to this reason, 
they don’t generate hash keys. 

Similar to a Hub and a Link in the Data Vault, a Satellite table structure has additional metadata 
elements as shown as in Figure 4.9.  

 
Figure 4.9: Satellite Entity Structure 
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Splitting Satellites 

It is possible to store all the descriptive data of a business object in the attributes of one satellite, 
but this is not our aim. As an alternative, it is suggested to split the data among different 
satellites. It is recommended to split the raw data by source system initially and then if the tables 
are big, we can further split it by frequency of change. For example, the Product attributes are 
added to a single satellite table as shown in Figure 4.10. Here, the attributes of Product like Name, 
and Description do not often change, whereas the attributes like Quantity, and Price change often. 
If we store all the attributes in one Satellite then in-case if there exists an attribute that changes 
frequently, a new record will be produced each time when the attribute changes. This new record 
would as well consist of non-changing attributes in a Satellite to track the changes as shown in 
Table 4.2 (b). This results in consumption of additional memory and this problem can be solved 
by splitting the data by the rate of change and adding the attributes that changes often to one 
Satellite and the attributes that do not often change to another Satellite. 

 
Figure 4.10: Example for Satellite (Split Based on Source System) 

 
Table 4.2: Satellite Data with Change in Frequency are Split by Source System  
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In Figure 4.11, it can be seen that Satellites are split based on the frequency of change in product 
attributes, i.e. Product attributes like Name, and Description that does not change often are added 
in one Satellite and the product attributes like Quantity, and Price that often changes into another 
Satellite. Thus, whenever new records are produced for Quantity and Price, only that particular 
table is updated. With this approach, the data replication of column data can be avoided and also 
the row size can also be reduced as shown in Table 4.3 (b).  

 
Figure 4.11: Example for Satellite (Split Based on Rate of Change) 

 
Table 4.3: Satellite Data Split by Rate of Change 
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The mandatory elements in a Satellite structure are: 
• Foreign Key - This field contains the hash key of the parent table. Here, a parent table 

can be a Hub or a Link depending on to which a Satellite is attached to.  
• Load Date - It is similar to the load date in a Hub and a Link entity structure. In a Satellite 

structure, load date and parent hash key together form a primary key. A parent hash key 
and load date will be helpful in tracking the historical data. 

• Record Source - It is similar to the load date in a Hub and a Link entity structure. 
• Load End Date - This field is used to represent the date and time after which the entries 

in a Satellite are not valid. When the new entry has a current load date, the last satellite 
entry that was valid just before the loading of the new entry is updated to reflect the new 
load end data. Load end date is the only field, which can be updated in a Satellite entity. 
For example in Table 4.2 (b) it can be seen that the Column Load End Date has a value 
that overlaps the column Load Date. This field is used in a Satellite to improve the 
performance while extracting the data from Data Vault. 

• Attributes - These fields store the descriptive data of a Hub or a Link.  

The optional elements in a Satellite structure are: 
• Extract Date - It represents the date and time when the attribute was extracted from the 

source system. 
• Hash Difference - It represents the hash value generated for all the attributes in the 

Satellites. This field will be beneficial to identify the changes (if any) in the attributes 
easily and add the new attributes when there is a change in a Satellite. In this way, we 
can avoid comparing each attribute separately to identify whether there was any change 
or not. 

4.1.4 Rules for Modeling the Data Vault Entities 

There are some sets of rules for modeling Hubs, Links and Satellites, which need to be taken into 
consideration while designing the Data Vault model. Some of the important rules listed below 
are based on various references [F14] [L18] [LO16]: 

Hub Rules 

• It is necessary for a Hub to have at least one unique business key. 
• Direct Hub-to-Hub relationship is not allowed. Hubs should be connected only through 

a Link. 
• A Hub should have at least one Satellite. A Hub without a Satellite does not give any 

meaning, and this practice should be avoided. 
• A Hub’s load date should be a metadata element in a Hub; it should never be the part of 

a Hub’s primary key. 
• A Hub’s record source cannot be a part of a Hub’s primary key. 

Link Rules 

• A Link table solves recursive relationship problems. 
• Satellites are optional for a Link structure. 
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• A Link’s load date should be a metadata element in a Link; it should never be the part of 
a Link’s primary key. 

• A Link can be defined as a relationship, hierarchy or transaction. 

 Satellite Rules 

• A Satellite cannot be a parent table to any other table. 
• A Satellite cannot have its own key. It has a parent table key as a foreign key, which is 

also a part of primary key. 
• A Satellite’s load date is a part of Satellite’s primary key. 
• A Satellite’s main purpose is to store the historical data. A Satellite can be split or 

combined at any time without changing or losing the historical data. 
 

4.2 Data Vault 2.0 Architecture 

Two well-known ways to build the data warehouse are Kimball and Inmon’s approach [KR13]. 
Kimball’s approach is based on a two-layer architecture consisting of the staging area and the 
data warehouse area. Inmon’s approach is based on a three-layer architecture consisting of the 
staging area, the data warehouse area, and the data access area. These approaches are not 
optimal concerning extensibility, and they lack as well in various dimensions of scalability like 
workload, data complexity, query complexity, availability. The Data Vault 2.0 architecture 
provides a solution to these problems by modifying the Inmon’s data warehouse architecture, 
which will be discussed in detail in this chapter. The Data Vault 2.0 architecture is designed in 
such a way to support the Relational Database Management System (RDBMS) and NoSQL (Not 
Only SQL).  

The goal of this architecture is to move the business rules, which are used between the source 
and the data warehouse towards the end user. The advantage of having this type of structure is 
to ensure quick adaption to changes. The Data Vault 2.0 architecture comprises three layers: the 
staging layer, the enterprise data warehouse layer, and the information delivery layer as shown 
in Figure 4.12 [LO16].   

• Staging layer - The structured data from various sources are fed into the staging area. 
To load the batch data into the data warehouse, staging layer is used. In the staging area; 
the data that are collected from different sources are kept in the raw (original) format, 
and no historical information is stored. The primary purpose of the staging area is to 
reduce the load on the source system. Hard business rules are applied to the incoming 
data, which is extracted from the source system and loaded into the staging area. Hard 
business rules do not change the meaning of the data but only change the way on how 
the data are stored. Let us assume that the data received to the target column (INTEGER) 
from the source system exceeds its predefined size. In this case, the hard business rule 
will change the data type of INT (integer) to BIGINT. Metadata are important to load the 
data into the enterprise data warehouse layer, and hence it has to be added in advance to 
the staging layer. Sequence number, timestamp/load data, record source, hash 
key/sequence number are the metadata fields, which need to be included.  
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Figure 4.12: Data Vault 2.0 Architecture [LO16] 

• Enterprise data warehouse layer - The EDW layer is the second layer in the Data 
Vault 2.0 architecture, which the end users cannot access directly. This layer is also 
known as Raw Data Vault layer, which is modeled after the Data Vault 2.0 modeling 
technique [LO16]. Its primary purpose is to hold the historical data at the granular level 
received from the source system. The data in this layer is nonvolatile, and the changes in 
the source system are tracked with the help of Data Vault structure using business keys. 
As said earlier, the batch data are loaded to EDW layer from the staging area, but in case 
of the real-time data, it is loaded directly into EDW layer with the help of Enterprise 
Service Bus (ESB). In the Data Vault, there are three components: Operational Vault, 
Business Vault, and Metric Vault.  

o Operational Vault is used to store the raw data, which is fed into the data 
warehouse from the staging layer. Operational Vault is directly accessed by 
operational systems, and Data Vault tables (Hubs, Links and Satellites) are 
modeled.  

o Business Vault is an intermediate layer between the Data Vault (EDW layer) and 
the information delivery layer where the soft business rules are applied. Soft 
business rules enforce the information requirements of the business as stated by 
business users. By applying the soft business rules, the meaning of the data 
changes into useful information for the business. To consolidate the data from 
different sources (or) aggregation of data into categories based on age group are 
an example of soft business rules. Business Vault has the Point in Time (PIT) table 
and Bridge table and known as query assistance tables, which help to speed up the 
extraction process from the Data Vault.  
PIT table is a modified version of a Satellite table, and it is created from a single 
Hub or a Link. A PIT table is introduced in the Data Vault model to improve the 

performance of a Hub or a Link, whenever its query performance is low. A PIT 
table stores a hash key of a Hub/Link, load date of all Satellites and the snapshot 
date of the PIT table. To identify when the specific record was loaded into the PIT 
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table, the snapshot date attribute is used. Unlike Satellites, PIT table does not store 
the descriptive attributes. It is used to figure out, which version is valid on a 
specific date. Here, we consider that a Hub Customer contains multiple Satellites. 
Each PIT table may have several versions of a particular data with different load 
dates. In Table 4.4, it can be seen that the valid versions for the Customer hash 
key dfdfjk11 on 2010-04-01 are 2009-11-11 for Sat1, 2006-02-01 for Sat2 and 2000-
03-01 for Sat3. 
Bridge table is considered as a special link table, created from multiple Hubs and 
Links. It stores hash keys of Hubs and Links that are often queried together with 
the snapshot date. In addition to this, it can also have the business keys.  
With the help of PIT table and Bridge table, we can reduce the required joins 
needed for the query, and this leads to improve the performance of queries on the 
Raw vault.  

 
Figure 4.13: Structure for PIT Table and Bridge Table 

 

Table 4.4: Example for PIT Table 

o In Metrics Vault, runtime information is captured and recorded including 
process metrics, technical metrics and run history such as usage of RAM, load in 
CPU. It is a component that is very helpful with error inspection, root cause 
analysis, and performance evaluation. Like the EDW layer, metrics vault is 
modeled only after modeling the Data Vault 2.0. 



4. Data Vault Modeling 

36 
 

• Information delivery layer - This is the layer, which end users can access via data 
marts and from here, they derive the business insights in the way they want. The  data 
in these data marts are aggregated, subject-oriented, flat and highly indexed, completely 
prepared for a specific use case. The data drawn from data marts using Online Analytical 
Processing (OLAP) cubes are used for decision-making, prediction, artificial intelligence, 
and machine learning. Apart from this, the quality of data are ensured, and poor/faulty 
data are stored in an error mart for further analysis.  

In Data Vault 2.0 architecture, the staging layer, the EDW Layer and the Information delivery 
layer are mandatory, and the optional extensions are the Operational Vault, the Business Vault 
and the Metric Vault. 

4.3 Data Vault 1.0 vs. Data Vault 2.0 

Data Vault 1.0 was introduced by Linstedt in 1990, it is very much focused on the Data Vault 
modeling i.e. a commitment to the logical and physical data models that build the raw enterprise 
data warehouse whereas Data Vault 2.0 was introduced by Linstedt in 2013 as an extension that 
possesses several of the necessary components for the achievement in the field of business 
intelligence and data warehousing [LO16]: 

• DV 2.0 Modeling: Changes to the model to interact with NoSQL and Big data systems to 
improve performance and scalability. 

• DV 2.0 Methodology: Following Agile and Scrum best practices. 
• DV 2.0 Architecture: Handles unstructured data and big data integration using NoSQL 

and big data systems. 
• DV 2.0 Implementation: Focuses on pattern based, automation, generation, and 

Capability Maturity Model Integration (CMMI) level 5.  

The main difference between Data Vault 1.0 and Data Vault 2.0 is the replacement of sequence 
number with hash key [L14]. It is important to know why this change was introduced. In Data 
Vault 1.0, sequence number is used as a primary key to identify the business objects. The 
sequence number has various limitations like [LO16]: 

• In Data Vault 1.0, a primary key field represents the sequence number. A sequence 
number is a unique number assigned to recognize the order of records in the source 
system. These numbers are generated in the data warehouse, which is used to identify 
and refer the records in other tables in the traditional data warehouse. These sequence 
numbers cause dependencies in the loading process because all related dependencies 
must be loaded first before loading the destination. These dependencies will impact the 
performance of the loading process by making it slow. For example, in order to load a 
table, which stores the address of the customer, the customer table has to be loaded first. 
Thus, being able to use the sequence number to identify a particular customer. Data Vault 
2.0 overcomes these dependencies by substituting the sequence number with a hash key. 
This hash key is generated from the business key using hash algorithms such as Secure 
Hash Algorithm-1 (SHA-1), Message-Digest Algorithm (MD5).  
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• Sequence numbers are generated using sequence generator. These numbers need to be 
synchronized to avoid any duplication. This synchronization can be difficult in big data 
environments as data are coming at high volume and velocity.  

• The sequence number must be same as before when restoring a parent table. If not, the 
references in Link and Satellite will either be invalid or wrong, i.e. if the parent table gets 
deleted and when later retrieved, it should possess the same sequence number as before. 

• It is easy to use sequence numbers but they are limited by its space and this causes 
scalability issues. 

• The sequence number must be avoided for data distribution and partitioning in Massively 
Parallel Processing (MPP) for the reason that the queries can result in hot spots in MPP 
environments when obtaining the data out of it i.e., one area is accessed multiple times 
within short duration. MPP is nothing but to process many operations in parallel, which 
are done by many processing units at the same time.  

To overcome these limitations, hash keys were introduced in the Data Vault 2.0, and its 
advantages over sequence numbers are: 

• Since hash keys are autonomously calculated in the process of loading, it is not needed 
to have a lookup into other Data Vault entities. In general, Input/Output (I/O) 
performance is needed for a lookup into another table to obtain the sequence number for 
a certain business key. However, only CPU performance is required to compute a hash 
key, which is frequently preferred over I/O performance since it results in better resource 
consumption and better parallelization. 

• Hash functions are used to generate hash keys, which ensures that the same hash key 
gets produced for the same input.  

The reason why dependencies are avoided in the Data Vault 2.0 is that the foreign keys for the 
links and satellites that refer to the hubs can be calculated beforehand, meaning that a Hub entity 
does not have to be inserted to know its key as is the case with sequence numbers as shown in 
Figure 4.14 and Figure 4.15. Instead, when knowing the business key of a Hub entity, a hash key 
can be calculated and added to a Link/Satellite. Likewise, with respect to Link entities, when the 
hash keys for the Hubs to which a Link connects are known, the key of a Link can be calculated 
and a Satellite can refer to this key. A hash key allows the EDW to be used in multiple 
environments like on-premise databases, Hadoop and in Cloud storage environment because 
those don’t support sequence numbers [LO16]. 
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Figure 4.14: Data Vault 1.0 Loading Process with the Sequence Number [L016] 

 
Figure 4.15: Data Vault 2.0 Loading Process with a Hash Key [L016] 
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5 Existing Approaches to Integrate Semi-Structured Data into the Data 

Vault Model 

Till now we have seen the fundamentals of the Data Vault and how to model the structured data 
in the Data Vault. However, the presented use cases have semi-structured and unstructured data 
as well. Therefore, in this chapter, we will look into some of the existing approaches to integrate 
semi-structured data into the Data Vault model. It should be observed that there are some 
approaches to integrate semi-structured data in the Data Vault, but it does not cover all aspects 
of semi-structured data. Also, there are no existing approaches to express how to integrate 
unstructured data. Here, we will discuss how to transform JSON data to Data Vault in Subsection 
5.1 and the process for creating an XML schema represented as the Data Vault model in 
Subsection 5.2. 

5.1 Translation Rules for JSON Data into the Data Vault 

To integrate the data from various data sources into the Data Vault model and to keep track of 
changes in relational and NoSQL systems, Cernjeka et al. have developed a metamodel to 
translate a NoSQL document store that uses JSON data as shown in Figure 5.1 into the Data Vault 
model [CJJ18]. In general, a metamodel is a model by itself that describes only about the structure 
but not about the content of another model. NoSQL document stores are based on the key-value 
concept, and the data are stored in a document structure. JSON and Binary JSON (BSON) are the 
formats used to represent the data in the document stores. Some of the document stores are 
MongoDB, CouchDB, etc. The focus of the paper [CJJ18] mainly lies on Mongo DB. 

The main entities of MongoDB are collection, document, field, and database. It is essential to 
understand the terminologies used in MongoDB in relation to the relational database 
terminologies, which are described below [CJJ18]: 

• The term ‘table’, which consists of row and column in the relational database represents 
‘collection’ in MongoDB. 

• The term ‘record’, which represents a row in the relational database and ‘document’ in 
MongoDB.  

• The term ‘document’ represents the ‘field and value’ data structure. Document ‘field’ 
represents the ‘column’ and document ‘value’ denotes the intersection of row and column 
of ‘actual data’ in a relational model.   

‘Field and value’ in document store are very similar to the term ‘key and value’ pairs used in key-
value stores. In the key-value store, ‘key’ represents the unique field, which will be helpful to 
identify the ‘value’. Likewise, in the document store, ‘field’ represents the unique id like 
document_id and ‘value’ can be documents, arrays or array of documents.  

Due to the complex structure of the data, instead of representing the data in tables it is expressed 
as JSON documents. JSON documents2 are easy to read and write because it is a language 
independent and it is written in text format. JSON document has the following structure as 
shown in Figure 5.1. 

                                                             
2 https://www.json.org/index.html     

https://www.json.org/index.html
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• Each JSON document is considered to be as an object, which is enclosed between ‘{‘ and 
‘}’. Key-Value pairs are represented between these curly brackets.  

• Each key/field is separated from the value by ‘:’ and if there are subsequent values they 
are separated by “,”. For example, FirstName is the Key and Thomas is the value for that 
key. 

 
Figure 5.1: JSON Structure 

The relationship explains how the data in JSON documents are connected to each other.  The 
following are the two ways to represent JSON document relationships [CJJ18]: 

• Embedded documents show the relationship between the data in a single JSON document 
structure and this kind of relationship can be seen in denormalized models. They 
represent one-to-one, one-to-many and many-to-one relationships. The embedded 
document requires fewer reads but more writes, and also it redundantly stores data to 
reduce the number of documents to be accessed. For example, in Figure 5.2, Contact 
details are embedded within the Customer document. 

• Reference documents are also known as normalized data models, which show the 
relationship between data by using links or references between the documents. They 
represent many-to-many relationships, and when compared to embedded documents 
they are more flexible because it requires more reads and less writes. For example, in 
Figure 5.3, Customer document is referenced by Contact document with the help of 
Customer_id.  

 
Figure 5.2: Embedded JSON Document 
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Figure 5.3: Reference JSON Document 

In the paper [CJJ18], a set of translation rules has been defined to transform JSON data into the 
Data Vault. These translation rules were used in the integration process.  

Translation Rule 0 (TR0): MongoDB document database has a collection of documents that 
are represented as a JSON object. Hence, collections are the starting point, which needs to be 
translated into the Data Vault entities such as Hubs, Links and Satellites [CJJ18]. 

According to TR0, the MongoDB document represented as a JSON object for example Customer 
document consists of various field-value pairs like FirstName as field and Thomas as value as 
shown in the above Figure 5.1.  

Translation Rule 1 (TR1): Each document_id in JSON document is translated into the business 
key, while a hash key is generated from the business key and added to a Hub [CJJ18]. 

According to TR1, document_id is created for every document, and it helps to identify each 
document uniquely. Therefore, this document_id (Cust_id) is translated into Hub_id (business 
key) in the Data Vault model. Based on this rule, a Hub Customer is created with cust_id as the 
business key, and with the help of the business key, a hash key Customer HK is generated as 
shown in Figure 5.4. 

 
Figure 5.4: For JSON Data - Hub Entity is Created According to TR1 
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Translation Rule 2 (TR2): The other non-id fields of the documents are transformed as 
attributes of a Satellite entity [CJJ18]. 

According to TR2, the non-id fields like FirstName and LastName in the document are 
represented as attributes in a satellite entity as shown in below Figure 5.5. 

 
Figure 5.5: For JSON Data - Satellite Entity is Created According to TR2 

Translation Rule 3 (TR3): A document reference to another document is transformed into a 
Data Vault Link entity relating the current Hub (document) and the parent Hub (referenced 
document) [CJJ18].  

Applying TR3 to Figure 5.3, the parent document (Customer document) and the current document 
(Contact document) are created as Hubs, and they are connected with the help of reference value 
(Customer_id) in the current document, which acts as a data vault link between both Hubs. As 
shown in Figure 5.6, the current Hub (Hub_Contact) is connected through Link entity 
(Link_Customer Contact) with the parent Hub (Hub_Customer).  

 
Figure 5.6: For JSON Data - Link Entity is Created According to TR3 
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Translation Rule 4 (TR4): An embedded document is transformed into a Data Vault Satellite 
entity, which is connected to the current Hub (parent document). In that circumstance, TR1 To 
TR3 are applied accordingly [CJJ18].   

As shown in Figure 5.2, if Contact details like Phone and Email (non-key id fields) are embedded 
within the parent document (Customer document) then according to TR2, that embedded 
document is translated into a Data Vault Satellite. All the descriptive attributes of a business 
object (Hub_Customer) are stored in one Satellite. Later, after splitting a Satellite by source 
system as shown in Figure 5.7 (a), a Satellite can be split based on the rate of change, which is 
not a part of TR4. Let us assume, Name attributes won’t change frequently, and attributes of 
Contact details may change often, so we have split a Satellite into two Satellites as 
Satellite_Customer and Satellite_Contact as shown in Figure 5.7 (b).  

 
Figure 5.7: For JSON Data - Satellite Entity is Created According to TR4 

JSON Arrays 

JSON array3 represents the ordered collection of values of various datatypes like the number, 
string, object, etc. JSON arrays are needed to group the data together when we are dealing with 
a large amount of data. Array values are represented between “[“ and “]”. If there are more values, 
then they are separated by “,”. As shown in Figure 5.8, Contact array has two objects, and each 
of these objects have properties Phone and Email. These objects are ordered, i.e. in the Contact 
array, the first object is indexed “zero” and the second object is indexed “one”. The Contact array 
values are represented between “[“ and “]” and the values are separated by “,”. 

                                                             
3 https://www.json.org/index.html 

https://www.json.org/index.html
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Figure 5.8: Example for JSON Array 

While arrays are an essential part of the JSON structure, there are no details discussed in the 
paper [CJJ18] on how to handle the JSON array based on these translation rules.  

5.2 Xml Schema into the Data Vault 

XML makes use of own tags to describe the data. In XML documents structure, content and 
semantics are defined with the help of XML Schema Definition (XSD). XSD is similar to 
Document Type Definition (DTD), but it has more control over the XML structure. XML 
documents refer to DTD or XSD to define its structure.  

Curtis et al. have described the process involved in the creation of an XML schema from the Data 
Vault model [KJ13]. Curtis et al. paper define the schema to link the Data Vault model and fully-
temporalized database. Temporal databases are used to store the data, which changes over time. 
Valid time and the transaction time are the two different time notations used in the temporal 
database. Valid time denotes the time period, when the data are considered as real whereas 
transaction time means the time period of data are stored in the database [PG12].  For example, 
if David worked in a company X from 1990-01-01 to 2000-12-01, if this information was entered 
in the database on 1990-05-01 and this data was deleted from the database on 2001-02-15, then 
this time period is the transaction time. This can be represented in the temporal database as 
shown in Table 5.1. The temporal data, which are loaded into the data warehouse is addressed 
by the Data Vault modeling technique. To exchange the temporalized data in structured XML 
format with different systems, the Data Vault metamodel was generated, and it is mapped with 
a general XML schema. 
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Table 5.1: Example for Temporal Database 

The components of the Data Vault metamodel needs to be identified before developing the 
standard XSD for the Data Vault schema. The components of the Data Vault model as used in 
Curtis et al. paper [KJ13] as follows: 

• Data type and Time type represents data values and time values respectively. 
• Hub, Link, and Satellite 
• Hub_Satellite and Link_Satellite are the Satellites related to Hubs and Links respectively. 
• Reference Table has a set of values, which are fixed and are used frequently. These tables 

are used to avoid unnecessary links and satellites. According to Linstedt [LO16], the 
reference table is another type of entity in the Data Vault. It is mainly used to store the 
data that is frequently used to give context and to define other business keys like standard 
codes and description. For example, the foreign key State_ID in a Satellite table 
Sat_Supplier references a primary key State_ID of the reference table Reftable_States as 
shown in Figure 5.11 (a), but they can also be used along with other Business Vault 
entities.  

• Sometimes, more than one Hub, Link or reference table can appear in a relationship. 
These then have different roles, and these roles are realized as following like Hub Role, 
Reference Role, and Link Role. Hub Role is an entity that is used to identify, which Hub 
has associated through a Link with other Hubs. Link Role is an entity that is used to 
determine, which Links are linked to another Link. Reference Role is an entity that is 
used to identify, which reference table values are linked with a Link. A role is created, to 
lodge all these roles. To lodge all these roles, Role is created.  

Hub, Link, Satellite, Hub_Satellite, Link_Satellite, and Reference table are the necessary 
components of the Data Vault as said in the paper [KJ13].  The relationships in the Data Vault 
model are expressed using cardinality.  

XML schema document consists of various components like: 
• Tag - It is a name which is enclosed between ‘<’ and ‘>’. For example, an item is 

considered as a tag when it is written as <item>. There are two types of tags like opening 
tag <item> and the closing tag </item>. 

• Attributes - It is a key-value pair represented inside the opening element. The attribute 
values are specified within single quotes or double quotes. Attributes are the metadata 
which describes an element. 

• Element - Elements are the data which are produced by an application. It includes every 
content, which is represented between the opening tag and matching closing tag. Even 
opening and closing tag is also an element.  If the element does not contain any data, it 
is said to be as an empty element. The elements can have text, attributes, other elements 
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or a combination of all. Elements have relationships, which are represented as a parent 
element, child element, and sibling’s element. Elements will specify the type (simple or 
complex) and occurrences (maximum Occurrences or minimum Occurrences) when it is 
included in a series. The sequence states that the child elements need to appear in a 
sequence. The element type can be either simple or complex. If an element has only text 
and it does not comprise any other elements or attributes, then it represents a simple type. 
If an element contains other elements/attributes, then it is said to be as a complex type. 
By default, attributes are optional, by assigning use= “mandatory”, attributes can be made 
mandatory.  

• Namespace - Elements or attributes in an XML document may have the same names 
(tag names) even though the content is different. In this case, to avoid name conflicts, 
XML namespace mechanism was introduced, and it is optional. The namespace is defined 
in the start element tag by using prefix name and xmlns attribute. The syntax for defining 
Namespace is: <xs:schema xmlns:xs= “URI”> where xmlns denotes the XML namespace, 
xs is the namespace prefix and Uniform Resource Identifier (URI) denotes where the 
definition of tags are stored. 

Here, we consider the essential Data Vault components and transform it into an XML schema: 
a) Hubs - In an XML schema, a hub is defined as a complex type with attributes like name, 

hubKey, busKey etc. Inside a Hub, minOccurs=”1” and maxOccurs=”unbounded” for a 
satellite sequence specifies that a Hub should have at least one Satellite as shown in Figure 
5.9.  

 
Figure 5.9: Data Vault to XML Schema - Hub 

b) Satellites - In an XML schema, a satellite is defined as a Complex Type (CT) with 
Attributes (A) like name, hubkey, recSource, etc. The attribute value denotes the string 
value, which is nonreferenced. i.e. SName in Sat_Supplier Name. The attribute refvalue 
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indicates the value, which is referenced for example, State_ID in Sat_Supplier. The value 
and refvalue attributes are optional in Satellites, which are stated using use=”optional” as 
shown in Figure 5.10.  
 

 
Figure 5.10: Data Vault to XML Schema – Satellite 

c) Reference Table - In Data Vault model, a Satellite Supplier has a reference table 
Reftable_States, which stores the frequently accessed static data. The reference table has 
attributes like State_ID, State_ Abbreviation and State_Name. In XML schema, reftable is 
defined as a CT and their attributes (A) like name, identity etc. are defined as string type 
and use=”required” specifies that the attribute is mandatory as shown in Figure 5.11.  

 

Figure 5.11: Data Vault to XML Schema - Reference Table 
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d) Links - In XML schema a link has hubRole, refRole and linkRole as shown in Figure 5.12. 
Inside the hubRole sequence minOccurs=”2” and maxOccurs=”unbounded“ specifies that a 
Link should have at least two Hub elements whereas refRole/linkRole elements can have 
zero or any number in a Link. Along with these elements, Links have attributes like 
loadDate and recSource. To fit Hub Roles, Link Roles and Reference Roles,  
 
Role was defined as complex type. Role has attributes like name, role and identifier. The 
name denotes the component name, which is modeled; role specifies the relationship of 
the component with other components in a Link. The identifier is an optional attribute 
with type as boolean, indicating either true or false based on the fact if the object is a part 
of the unique identifier or not in a link.  
 

 
Figure 5.12: XML Schema for Link and Role 

This paper [KJ13] gives an idea of how an XML schema is formed from the Data Vault model. 
Next step is to think of how to transform the XML data into the Data Vault model. 
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6 Proposed Ideas to Integrate Semi-Structured and Unstructured Data 

into the Data Vault Model 

The previous chapter provides the insight on the possibilities to integrate semi-structure data 
into the Data Vault model, but it does not cover everything on semi-structured data. Therefore, 
this chapter presents the newly developed approaches to integrate semi-structured data and 
unstructured data into the Data Vault model.  

6.1 Approaches to Integrate Semi-Structured Data into the Data Vault 

Model 

In this Subsection, we will discuss how to integrate JSON array data into the Data Vault model 
and how to integrate XML data into the Data Vault model. 

6.1.1 JSON Array data in the Data Vault 

Cernjeka et al. have explained the translation rules (TR0 to TR4) to integrate JSON document to 
the Data Vault model, but there are no rules to describe how to manage the array structure in 
JSON document [CJJ18]. As an extension of that work, we propose Translation Rule (TR5) to 
handle the JSON array data.  

Translation Rule (TR5): JSON array structure is translated to the Data Vault model based on 
Multi-Active Satellite. In this case, TR1 to TR4 are applied accordingly. 

JSON array data can be handled with one of the Satellite applications called “Multi-Active 
Satellites” [LO16] [L18]. Multi-Active Satellites are used to store multiple child values, and the 
child values do not have the business key on its own. Some examples are customer having 
multiple addresses, multiple phone numbers, which are active at the same time and these records 
are descriptive attributes. In this case, add a sequence identifier/number as an ordering attribute, 
which acts as an index to identify the multiple values in a Satellite, and it is made as a part of a 
primary key. As shown in Figure 6.3 and Table 6.1, Sat_Customer Contact explains the use of the 
Sequence Number in Multi-Active Satellites. For example, the JSON document has an id field 
Customer_id and non-id field Customer Name. In addition to that, it has a Contact JSON array 
data embedded to a parent document. Based on this information: 

Step 1 is to apply TR1 and create a Data Vault Hub with the business key Customer_id and a 
hash key Customer HK, which is calculated from the business key as shown in Figure 6.1. 
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Figure 6.1: For JSON Array Data - Hub Entity is Created According to TR1 

Step 2 is to apply TR2 and create a Data Vault Satellite with a descriptive attribute Customer 
Name as shown in Figure 6.2. 

 
Figure 6.2: For JSON Array Data - Satellite Entity is Created According to TR2 

Step 3 is to handle the embedded document and according to TR4, the embedded document can 
be translated into a Data Vault Satellite. However, in this case, the embedded document has array 
data Phone No. Therefore, we apply TR5, and those entries that are in the array get their Satellite, 
as a Multi-Active Satellite as shown in Figure 6.3. The Sequence Number along with other primary 
keys Customer HK and Load Date act as an index in a Satellite Sat_Customer Contact to identify 
multiple phone numbers as shown in Table 6.1.  
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Figure 6.3: For JSON Array Data - Multi-Active Satellite Entity is Created According to TR5 

 
Table 6.1: Satellite Data and Multi-Active Satellite Data 

6.1.2 XML Data Modeled into the Data Vault 

Knowles et al. have explained how to map the Data Vault to an XML schema [KJ13]. As an 
extension of this work, we propose the idea to integrate an XML data into the Data Vault model.  

XML data are stored as a text entity or an attribute of an XML node, whereas JSON data are 
stored as key-value pairs [N13]. XML documents are said to be well-formed when it has a single 
root element and when it is properly nested (every opening tag has a matching closing tag).  
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The proposed idea is to integrate XML data into the Data Vault model using these two steps: 

Step 1: Apply the transformation rules to transform an XML document to JSON data. 
Step 2: Apply the translation rules to transform JSON document into the Data Vault model. 

Step 1: Transform the XML data to JSON data based on the transformation rules 

A set of rules has to be followed to transform XML data into JSON data based on various 
references [KJ13] [N13] [BGM+11]. 

Rule 1: XML structure needs to be preserved when transforming the data into JSON.  

Figure 6.4 (a) is a well-formed XML document because it has a single root element customer and 
all the opening and closing tags are properly nested. Figure 6.4 (b) is not a well-formed XML 
document because the closing tag of name is not properly nested. So according to Rule 1, Figure 
6.4 (a) can be transformed into JSON data. 

 
Figure 6.4: XML Document a) Well-formed b) Not Well-formed 

Rule 2:  XML namespace is not supported in JSON. 

Rule 3: Element or attribute names in an XML are converted to JSON object names. 

According to Rule 3, XML elements like customer, name, street are represented as JSON object 
names within double quotes as shown in red in Figure 6.5. Similarly, XML attribute names like 
number and date are converted to JSON object names are shown in red color in below Figure 6.6. 
The symbol ‘@’ is used to differentiate between the attribute name and element name in JSON. 

 
Figure 6.5: Rule 3 to Transform XML Element Names to JSON Object Names 
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Figure 6.6: Rule 3 to Transform XML Attribute Names to JSON Object Names 

Rule 4: Text nodes in an XML are changed into JSON simple values. 

According to Rule 4, text nodes of elements like Disc CD,30 and attributes like 1 in an XML, are 
represented as JSON values within double quotes as shown in red in Figure 6.7. 

 
Figure 6.7: Rule 4 to Transform Text Nodes to JSON Values 

Rule 5: The child elements in an XML with the same parent will become JSON object fields or 
names. 

As shown in Figure 6.8, customer_order is the parent or root element for the child elements 
product and customer. In other words, elements product and customer have the same parent 
element customer_order. Likewise, the parent element product has child elements like name and 
price. According to Rule 5, the child elements with the same parent are transformed to JSON 
object names as shown in red in Figure 6.8.  
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Figure 6.8: Rule 5 to Transform the Child Elements to JSON Object Names 

Rule 6: XML data with multiple child elements with the same name are transformed to JSON 
array elements. 

As shown in Figure 6.9, an XML parent element products has multiple child elements with same 
name product. These child elements are represented as JSON array element product between 
opening ‘[‘and closing ‘]’. 

 
Figure 6.9: Rule 6 to Transform Multiple Child Elements with the Same Name to JSON Array 

Elements 
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Step 2: Apply the Translation Rules to transform the JSON document to the Data Vault 

model  

The next step is to apply the translation rules (TR0 to TR5) to transform JSON document to the 
Data Vault model as discussed earlier. Here, we will discuss how to use the translation rules 
accordingly to transform some XML documents into the Data Vault model. 

Example 1 

For instance, an XML document, which has an id field as the number and has child elements like 
product and customer data, which are embedded within the customer_order document. Based on 
this information: 

Step 1 is to transform an XML element like customer_order and attribute like number to JSON 
object names and then apply TR1 to create a Data Vault Hub with the business key Customer 
number and a hash key Customer HK is calculated from the business key as shown in Figure 6.10.  

From this, we can deduce that an XML element customer_order, which has an id attribute number 
can be transformed to a Data Vault Hub Hub_customer_order. The attribute which is unique 
forms the business key Customer number. 

 
Figure 6.10: XML to JSON to Data Vault- Hub Entity is Created According to TR1 

Step 2 is to transform XML child elements of customer_order like the product, customer and 
grandchild elements of customer_order like price, city, etc. as JSON object names. Then apply 
TR4 and translate the embedded sub-documents like the product, customer to a Data Vault 
Satellite Sat_customer_order, which are connected to the parent Hub Hub_customer_order as 
shown in Figure 6.11. 

From this, we can deduce that XML child elements of customer_order like product and customer 
are transformed to a Data Vault Satellite Sat_customer_order if they do not have an id field. Then, 
XML child elements with text node like name, price form the descriptive attributes of a Satellite.  
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Figure 6.11: XML to JSON to Data Vault- Satellite Entity is Created According to TR4 

Example 2 

For instance, an XML document, which has an id field as number and XML child elements with 
same name product. Based on this information:  

Step 1 is to transform XML elements like customer_order, product, name, etc. and attribute of 
customer_order like number to JSON object names. Later apply TR1 and create a Data Vault Hub 
with the business key Customer number and a hash key is calculated from the business key as 
shown in Figure 6.12. 

 
Figure 6.12: XML to JSON Array Data to Data Vault- Hub Entity is Created According to TR1 
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Step 2 is to transform multiple child elements with the same name into JSON array elements. 
For example, orders element has various child elements with same name product are changed to 
JSON array element. Later apply TR5 and translate the embedded array data product into a Data 
Vault Satellite based on Multi-Active satellites as shown in Figure 6.13. 

From this, we can deduce that XML child elements that do not have an id field and have the same 
element name like product can be transformed to a Data Vault Multi-Active Satellite 
Sat_customer_orders. 

  
Figure 6.13: XML to JSON Array Data to Data Vault- Hub Entity is Created According to TR5 

Till now we have seen, how an XML document can be transformed into the Data Vault model 
with the help of intermediate steps i.e., XML to JSON and JSON to the Data Vault model. Now 
we will define the rules that allow us to directly transform an XML document to the Data Vault 
model. 

Example 3 

For instance, an XML document, which has attributes like ID and IDREF (ID Reference). The ID 
is used to identify elements, and IDREF is used to refer to other elements. As shown in Figure 
6.14:  

Step 1: To transform XML child elements product, customer with attribute id to Hubs namely 
Hub_product and Hub_customer. 

Step 2: XML elements having attribute types like ID and IDREF are transformed into a Data 
Vault Link. XML child elements having attribute name idref with values c1 and c2 that refers to 
ID attribute name and value customer id c1 and customer id c2 are transformed to a Data vault 
Link Link_order. 
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Step 3: XML child elements of customer_order like the product, customer are transformed into a 
Data Vault Satellites Sat_customer and Sat_product. Then, XML child elements with text node 
like name, price, city form the descriptive attributes of a Satellite. 

 
Figure 6.14: XML to Data Vault Link Entity According to Rule 4 

From the above examples, we can infer the following rules to transform XML data into the Data 
Vault Model: 

Rule 1: An XML first element that is highest in the hierarchy and has an id attribute is 
transformed into a Data Vault Hub. The id attribute forms the business key. 

Rule 2: XML child elements without an id attribute can be transformed into a Data Vault 
Satellite, and the text nodes (for example, in Figure 6.14 like Disc CD, 95) form the descriptive 
attributes of a Satellite. 

Rule 3: If XML child elements are embedded and if they have a unique id field, then they are 
transformed into Hubs, and a Data Vault Link is added between a Hub of the parent XML element 
and a Hub of the embedded element. 

Rule 4: XML multiple child elements with the same name can be transformed into a Data Vault 
Multi-Active Satellite.  

Rule 5: XML document elements using attribute types of ID and IDREF are transformed to a 
Data Vault Link. References between XML elements (indicated by the attribute types ID or 
IDREF) are transformed into a Data Vault Link between the respective Hubs. 
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6.2 Approaches to Integrate Unstructured Data into the Data Vault Model 

Before we discuss the various approaches to integrate unstructured data into the Data Vault 
model that are developed in this thesis, it is necessary to understand the problems in 
unstructured data and how they can be solved. 

Problem: For unstructured data, the filename is the only possibility to have as the business key, 
as it helps to identify the file uniquely. However, it cannot be considered as the business key 
because the name of the file is dynamic. Therefore, unstructured data like images, videos and 
audios do not have a proper business key [Lin17].  

Solution: As discussed earlier in the Subsection 4.1.1, in some cases these composite/smart key 
provides a solution to this problem. The composite business key is a combination of more than 
one business key. For example, if we want to store the image of the product, the composite 
business key can be formed by combining the business key of a product, i.e. Product ID (PID) 
with the business key of the image, i.e. Image ID (ImID). Thus, more than one fields are combined 
to form the composite business key i.e. PID_ImID for the product image as shown in Table 6.2. 

 
Table 6.2: Composite Business Key for Image 

However, in some cases, the image might not have the business key on its own. This might 
happen when the image is sent as an attachment in an email. In this case, the email has a unique 
business key, i.e. Email id (EmID) but the image does not have the business key on its own. In 
this case, a composite business key cannot be formed as image do not have the business key on 
its own i.e., Image exists only in the context of an email. 

To discuss the various approaches, here we consider unstructured data like images/videos/ audio 
(in Subsection 6.2.1) and IoT data (in Subsection 6.2.2), which are produced through various use 
cases. The overview of the several approaches to integrate unstructured data into the Data Vault 
model is shown in Figure 6.15. 

6.2.1 Image/ Video/ Audio Data 

For simplicity, we will consider the image data in the following discussion. However, the 
approaches provided below are also suitable for audio and video data.  
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Figure 6.15: Various Approaches to Integrate Unstructured Data into the Data Vault Model 

Approach 1.1 [AP 1.1]: Unstructured data with the business key 

In some cases, unstructured data like image, audio or video has the composite business key. 
Therefore, it can be modeled as a Hub with a Satellite. As shown in Figure 6.16, CID_PID_ImID 
represent the business key for a Hub_Image. 

 
Figure 6.16: Image Modeled as a Hub  

Alternative 1 [AL 1]: File in a Satellite  

These image files are stored directly in a Satellite table. As shown in Figure 6.17, the image 
attributes like Image Name, Timestamp and Image File are stored directly in a Satellite Sat_Image.  
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Figure 6.17: Image Files are Stored Directly in a Satellite  

Alternative 2 [AL 2]: Path to an External System 

These image files are not stored directly in a Satellite table, instead it is stored in an external 
system suited for the management of such data (e.g., Hadoop Distributes File System (HDFS)) 
and a Satellite contains the path to the actual file i.e., the location of the file where it is stored in 
an external system. As shown in Figure 6.18, the image attributes like Image Name, Timestamp 
are stored directly in a Satellite, and the image file is stored in the external system, and the path 
of that file is stored in a Sat_Image. 

 
Figure 6.18: Satellite Attributes Stored Using an External Link 

If we model an image as a Hub, we have the advantage of adding a Satellite to a Hub as shown 
in above Figure 6.18. In addition to that, we can also add new Hubs to the existing model with 
the help of a Link, which shows that the Data Vault model provides flexibility. As shown in 
Figure 6.19, Hub_Image can be extended to store the product image with Hub_Product, which is 
linked to existing Hub_image with the help of Link_Product Image.  
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Figure 6.19: Image Hub Extended with the Help of a Link 

Therefore, AP 1.1 has the great benefit that a Hub can be linked to other Hubs and also has the 
advantage of adding more Satellites to a Hub. 

Approach 1.2 [AP 1.2]: Unstructured data without the business key 

In some cases, unstructured data do not have the business key on its own. So, it can be modeled 
as a Satellite, which is linked to a Hub that it belongs to. For example, images are added as an 
attachment to an email. Here, an email is modeled as a Hub with Email ID as the business key, 
and the image, which does not have the business key is modeled as a Satellite Sat_Image, and it 
is attached to Hub_Email as shown in Figure 6.20. 

 
Figure 6.20: Image Modeled as a Satellite 
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Alternative 1 [AL 1]: File in a Satellite 

These image files are stored directly in a Satellite table. As shown in Figure 6.21, the image 
attributes like Image Name, Timestamp and Image File are stored directly in a Satellite Sat_Image. 

 
Figure 6.21: Image Files are Stored Directly in a Satellite  

Alternative 2 [AL 2]: Path to an External System 

These image files are not stored directly in a Satellite table. Instead, it is stored in an external 
system, and a Satellite contains the path to the actual file i.e., the location of the file where it is 
stored in an external system. As shown in Figure 6.22, email details like From, To, Timestamp, 
etc. are modeled as a Satellite namely Sat_Email and Image attributes Image Name, Timestamp, 
are modeled as a Satellite namely Sat_Image. The image file in the Sat_Image is stored in an 
external system, and the path of that file is stored in a Sat_Image. 

 
Figure 6.22: Image Files are Stored Using an External Link 

In this case, if we model the image as a Satellite then we cannot extend the model i.e., we cannot 
link it to other Hubs. So, it is beneficial to model the image as a Hub as said in AP 1.1 to support 
the flexibility in the Data Vault model. 
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6.2.2 IoT data 

IoT data enables supervising the production process and plays a significant role in the 
Autonomous Car Testing use case.  

There are various ways how these unstructured data (IoT) data can be stored in the Data Vault 
model and these approaches are explained below.   

Approach 2.1 [AP 2.1]: IoT data added to Transactional Link 

Transactional Link is one of the applications of a Link. Transactional link also known as 
NonHistorized link, states there are two ways to model transactional links in the Data Vault 
model.  

Option1: Along with a standard Link entity, we can add a Satellite, but that Satellite does not 
contain the load end date attribute.  

Option2: At times, the transaction attributes are added directly to a Link structure, because of 
which Satellites are not added. This option needs to be avoided because it will completely change 
the Data Vault model design because the descriptive attributes are added only to a Satellite in 
the Data Vault model. 

According to Linstedt [LO16], IoT data can be modeled as a transactional link as these data are 
not altered. A Link always has at least two Hubs (maybe same Hub twice), but in the case of IoT 
data in a transactional link, it would be hard to say what the two hubs would be. This highly 
depends on the business case and may not always be the best possible solution. Therefore, we 
present alternative approaches to this problem. 

Approach 2.2 [AP 2.2]: IoT data added to a Sensor Hub 

The devices that generate the IoT data are modeled as a Hub. As shown in Figure 6.23, Sensor ID 
is the business key for a Hub_Sensor. The advantage of modeling the sensor as a Hub is that we 
can add any number of satellites to it.  

 
Figure 6.23: Sensor Modeled as a Hub 

The temperature sensor data can be stored in a normal Satellite. As shown in Figure 6.24, 
Sat_Temp_data store the attributes like Value, Timestamp, Max range, etc. Here, Load End date 
represents the date and time after which the entries in a Satellite are not valid. In this case, the 
Load End date is filled based on when the entry is added, and as we know, it will expire after a 
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particular period. For instance, a temperature sensor sends a new value every minute, and we 
capture an entry at timestamp 08:00:00, then we can set the Load End date to 08:00:59, since we 
know that there will be a new entry at 08:01:00. Nevertheless, the main problem in this approach 
is that we need to update the Load End date each time when the new entry comes from the source 
system, which is not a good idea for the IoT data. Therefore, the Load End date is left out for IoT 
data, as IoT data are only valid when it was captured. 

 
Figure 6.24: IoT Temperature Data Stored in a Satellite 

Alternative 1 [AL 1]: IoT data in a Satellite 

Based on the idea of Transactional Links along with the business logic, we do not add a Satellite 
(without a load end date) to a Link but instead, add it to a Hub. Following this, IoT data can be 
stored in a Satellite without load end date along with a Hub. This approach provides an 
alternative solution to AP 2.1. 

  
Figure 6.25: Temperature and Pressure Sensor Data Stored in a Special Satellite 

As shown in Figure 6.25, Hub_Sensor is connected to two satellites namely Sat_Pressure_data and 
Sat_Temp_data. These two special satellites store attributes like Timestamp, Max Range and Min 
Range without Load End Date. 
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Alternative 2 [AL 2]: Path to an External System 

Until now we have seen the approaches that store IoT data directly in a satellite. However, it is 
also possible to store IoT data as JSON in an external system (HDFS, MongoDB, etc.) and store 
the path to the actual file in a Satellite. As shown in Figure 6.26, Hub_Sensor has two satellites 
namely Sat_Temp_data and Sat_Pressure_data. These satellite values are stored as JSON data in 
an external system, and the path to that file is stored in that Satellite. 

 
Figure 6.26: IoT Data Stored Using an External Link 

Approach 2.3 [AP 2.3]: IoT data added to a Business Object Hub 

The business objects like machine, product, production process can be modeled as a Hub. In Figure 
6.27, the production process is modeled as a Hub namely Hub_Production with Production ID and 
Line number as composite business keys.  

 
Figure 6.27: Production Process Modeled as a Hub 
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Alternative 1 [AL 1]: IoT data in a Satellite 

Here, the business object is modeled as a Hub_Production and is connected to two Satellites that 
possess IoT data namely Sat_Pressure_data and Sat_Temp_data. These two special Satellites store 
attributes like Timestamp, Max Range and Min Range without Load End Date as shown in Figure 
6.28. 

 
Figure 6.28: Temperature and Pressure Data Added to a Production Process Hub 

Alternative 2 [AL 2]: Path to an External System 

It is possible to store IoT data as JSON in an external system (HDFS, MongoDB, etc.) and store 
the path to the actual file in a Satellite. As shown in Figure 6.29, Hub_Production has two special 
Satellites namely Sat_Temp_data, and Sat_Pressure_data without Load End Date. The values of 
Sat_Temp_data and Sat_Pressure_data are stored as JSON data in an external system and the path 
to that file is stored in that Satellite. 

 
Figure 6.29: IoT Data Stored Using an External Link  
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Example  

Let us use the approaches explained above to model the Data Vault for the use case “Autonomous 
Car Testing” described in Subsection 3.3. In this use case, we integrate structured and 
unstructured data into the Data Vault model. 

Car, Test drive and Sensor Hub are identified as core business objects with unique business keys. 
Hence, they are modeled as Hubs. As shown in Figure 6.30, Hub_Car has the business key Car 
ID. Likewise, Hub_Testdrive has the business key Testdrive ID, and Hub_Sensor has the business 
key Sensor ID. 

 
Figure 6.30: Hub Entities in Autonomous Car Testing 

Next step is to find the relationship between Hubs. Link_Car Testdrive exists between Hub_Car 
and Hub_Testdrive. Similarly, Link_Car Sensor exists between Hub_Car and Hub_Sensor as shown 
in Figure 6.31. 
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Figure 6.31: Link Entities in Autonomous Car Testing 

Next step is to store the descriptive attributes of Hub_Car and Hub_Testdrive in separate 
Satellites. The most interesting part is to know how unstructured data like IoT data can be 
modeled based on the already discussed approaches.  

The sensor image data like Timestamp, Image Name, Image File are stored directly in a Satellite 
Sat_Image based on AP 1.2 - AL 1. The video files are stored in an external system, and the 
location is stored in a Satellite Sat_Video based on AP 1.2 - AL 2 and the IoT temperature data 
are stored directly in a Satellite Sat_Temp_data based on AP 2.2 - AL 1 as shown in Figure 6.32.  

 
Figure 6.32: IoT Data Modeled as a Satellite 
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The IoT data generated during the Autonomous Car Testing is enormous. Therefore, it should 
be decided whether to store the IoT data attributes directly in a Satellite based on AP 2.2 - AL 1 
or to store the IoT data in an external system based on AP 2.2 - AL 2, which is illustrated in 
Figure 6.33. 

 
Figure 6.33: IoT Data Modeled as a Satellite Using Two Different Approach 
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7 Implementation 

In this chapter, we will see the prototypical implementation of some of the integration 
approaches using multiple use cases from different areas like CRM, Manufacturing, and 
Autonomous Car Testing. Hadoop and Hive are used to implement the use cases.  

Hadoop4 is used to store and process the large volume of data reliably with HDFS and Map Reduce 
respectively. HDFS supports to store files of any format like images, JSON, audios, videos, etc. 
Hadoop is chosen to implement our work due to the following reasons: 

• It can handle heterogeneous data especially unstructured data. 
• It supports hash keys. 
• It supports the storage of structured data in table structures via its relational extensions, 

e.g., Hive and HBase. 

Hive5 is a tool for the data warehouse infrastructure built on top of Hadoop, and it is designed to 
load and transform heterogeneous data into HDFS. Hive is used to analyze and query the data. 
It makes use of Hive Query language (HiveQL), which is similar to Structured Query Language 
(SQL). Hive queries are translated into Map Reduce jobs, which are later submitted to Hadoop 
cluster. Hive separates the schema and data; schema is stored inside a database and data are 
stored inside the HDFS. The reasons to choose Hive are: 

• It is extensible and scalable. 
• It will enable us to write simple queries to perform map reduce jobs. 
• Hive integrates well with HDFS. 
• Data can be loaded directly into HDFS or in a Hive table. 

For various use cases, the Data Vault tables like Hubs, Links and Satellites are created with 
different fields based on the suitable approaches and metadata elements of the Data Vault entities 
as shown in the Tables 7.1 and 7.2 (For simplicity, only the tables, which are necessary to 
implement different approaches are taken into consideration). As discussed earlier in Subsection 
6.2, there are different approaches to integrate unstructured data into the Data Vault model. 
Among these, some of the approaches are implemented here. 

To implement AP 1.1 - AL 2 

Here, CRM is used as an example area, though the approach would be applicable to any area. For 
instance, a customer ordered a product and then sent a complaint email that contains an image. 
This approach is primarily for unstructured data like image/audio/video that has the business 
key. In this case, the image has a composite business key CID_PID_ImID and hence the image is 
modeled as a Hub table Hub_image along with its descriptive attributes stored in a Satellite table 
S_image. The mandatory attributes of satellites like hash key image_HK, loaddate and along with 
the other attributes date_time, image_name are stored directly in a Satellite. However, the image 
file attribute is stored in HDFS, and the actual path is stored in the S_image table with the 
attribute name path_to_HDFS. The tables are created and data are loaded into them from Comma 

                                                             
4 https://hadoop.apache.org/   
5 https://cwiki.apache.org/confluence/display/Hive/  

https://hadoop.apache.org/
https://cwiki.apache.org/confluence/display/Hive/
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Separated Values (CSV) files. Figure 7.1 shows the queries to create the tables and add the data 
to HDFS. 

 
Table 7.1: Data Vault Tables for CRM 

To implement AP 1.2 - AL 2 

This approach is primarily for unstructured data like image/audio/video that do not have the 
business key on its own. Using the same CRM scenario as above, the image is modeled as a 
Sat_Image, and it is linked to a Hub it belongs to, i.e. Hub_Email. However, the image file is 
stored externally in HDFS, and the actual path is stored in the Sat_Image table with the field 
name path_to_HDFS. The tables are created and data are loaded into them from CSV files.  

To implement AP 2.2 - AL 1   

Here, Manufacturing is used as an example area, though the approach would be applicable to 
any area. For instance, we assume a machine with a temperature and pressure sensor that sends 
values are used to monitor the performance of the machine. This approach is mainly for the 
unstructured IoT data, which stores these data directly in a Satellite table. The sensor with the 
business key is modeled as a Hub Hub_Sensor and the IoT values like pressure and temperature 
data with attributes datetime, maxvalue and minvalue are directly stored in the Satellites namely 
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S_Temperature and S_Pressure. The tables are created and data are loaded into them from CSV 
files.  

To implement AP 2.2 - AL 2 

This approach is mainly for the unstructured IoT data, which are stored in an external system. 
Using the same CRM scenario as above, the sensor with the business key is modeled as a Hub 
Hub_Sensor. The IoT values like pressure and temperature data with attributes datetime, 
maxvalue and minvalue are stored in HDFS, and the actual path is stored in the Satellites namely 
S_Temperature and S_Pressure. The tables are created and data  loaded into them from CSV files. 

 
Figure 7.1: Sample Queries in Hive and Hadoop 
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Table 7.2: Data Vault Tables for Manufacturing 

Sample Queries 

These are some of the sample queries to retrieve the data that are implemented based on the 
various approaches with its alternatives as shown in Figure 7.2.   

a) To retrieve the image name and path of the image in a Satellite for a particular image id 
‘C100_P100_Im100’ based on AP 1.1 - AL 2. 

b) To retrieve the image name and path of the image in a Satellite for a particular email_id 
‘E3211’ based on AP 1.2 - AL 2. 
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c) To retrieve the sensor_id, value of the IoT pressure data whose value are above the max 
value or below the min value based on AP 1.1 - AL 1. It helps to identify the machines, 
which are not in the normal state.  

d) To retrieve the sensor_id and the path of the IoT pressure data in a Satellite with the help 
of sensor_id ‘S102’ based on AP 2.2 - AL 2. 

e) To retrieve the sensor_id, the value of the IoT pressure and temperature data whose value 
are above the max value or below the min value based on AP 1.1 - AL 1. It helps to 
identify the machines, which are not in the normal state.  

 
Figure 7.2: Sample Queries to Retrieve the Data Implemented Based on Various Approaches 

Hence from the prototypical implementation, it provides a proof of concept that with the help 
of these approaches we can integrate unstructured data into the Data Vault model.  
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8 Evaluation 

In this chapter, we will discuss the technical evaluation (in Subsection 8.1) and theoretical 
evaluation (in Subsection 8.2) by comparing the various approaches with its alternatives. 

8.1 Technical Evaluation 

Storage Space 

The term storage space refers to how much memory each table takes to store the data in it. Here, 
a sensor Hub table, temperature Satellite tables, and pressure Satellite tables, which are needed 
to perform the approach AP 2.2 are considered.   

All the tables consist of 100 entries and the size of a sensor Hub table that stores the sensor data 
are 5092 bytes. The size of a table that stores the temperature data and pressure data directly in 
the Satellites based on AP 2.2 - AL 1 are 7492 and 7792 bytes respectively. Likewise, the size of a 
table that stores the temperature data and pressure data in HDFS with the actual path stored in 
the Satellites based on AP 2.2 - AL 2 are 9392 and 9092 bytes.  

The Satellite tables that store the path consumes more memory because for each entry a path is 
added in a Satellite table. However, the benefit of the adding path would be that one path could 
reference one document that contains hundreds or thousands of measurement values. Therefore, 
in order to massively reduce the storage, the alternative idea is to store a path that reference a 
document.  

Time Complexity 

Time complexity refers to how much time it takes to produce the result for each query. To 
evaluate the time taken to retrieve the data based on AP 2.2 - AL 1 and AP 2.2 - AL 2, we have 
considered the queries (c) and (d), which are implemented in Section 7. The Satellite tables 
consist of 100 datasets, which are queried 20 times and the time taken to retrieve the data are 
noted down as shown in Table 8.1.  

For query (c), the average time to retrieve the IoT data stored directly in a Satellite (AP 2.2 - AL 
1) is 88.3569 seconds and for the query (d) the average time to retrieve the path stored in a 
Satellite (AP 2.2 - AL 2) is 89.38025 seconds. From this evaluation, it is evident that AP 2.2 - AL 
1 takes less time to retrieve the data when compared to AP 2.2 - AL 2. Furthermore, based on AP 
2.2 - AL 2, if we want to retrieve the data, additionally we need to go to HDFS and retrieve the 
data, which would take a longer time than this. 

Query Complexity 

From the database user’s perspective, query complexity is measured with the help of various 
metrics like [VJ16]: 

• Number of tables used in a query 
• Number of columns in a query 
• Length of a query 
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• Number of operators like Joins, Scans in a query 
• The number of expression operators involved in the query like less than, greater than, 

equal to, OR, AND etc. 

 
Table 8.1: Time Complexity of AP 2.2 - AL 1 and AP 2.2 - AL 2 

Taking all these metrics into consideration, the query is said to be more complex when the query 
involves more tables, referenced columns, operators, expression operators, length and runtime. 
To measure the query complexity of AP 2.2, we have considered the queries (c), (d) and (e), which 
are implemented in Section 7.  

Query (c) based on AP 2.2 - AL 1 involves two tables namely sensor Hub table and pressure 
Satellite table, one join, one referenced column and three expression operators ‘>’, ‘<’, ‘OR’. 
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Query (d) based on AP 2.2 - AL 2 involves two tables namely sensor Hub table and pressure 
Satellite table, one join, one referenced column, and one expression operator ‘=’.  

Query (e) based on AP 2.2 - AL 1 involves three tables namely sensor Hub table, pressure Satellite 
table, and temperature Satellite table, two joins, two referenced columns and three expression 
operators ‘>’, ‘<’, ‘OR’ used twice. 

On evaluation, we notice that the query complexity of query (c) and (d) are both equally complex. 
However, for query (d) we also have to retrieve the data from HDFS, which adds complexity. 
Therefore, AL 1 is less complex. 

8.2 Theoretical Evaluation 

Advantages and Disadvantages of Various Approaches 

The developed approaches described in Subsection 6.2, to integrate unstructured data into the 
Data Vault model are compared to the rules for modeling the Data Vault entities discussed in the 
Subsection 4.1.4. This comparison helps to determine whether the developed approaches 
conform to the modeling rules of Data Vault. From this comparison, it is clear that all these 
approaches (AP 1.1, AP 1.2, AP 2.2, AP 2.3) with their alternatives (AL 1 and AL 2) are modeled 
adhering to the rules.  

Below, we have compared the various approaches to list out the advantages and disadvantages 
of each approach. 

AP 1.1: Unstructured data like image/audio/video are modeled as a Hub. 
+ A Hub can be linked to other Hubs easily with the help of a Link, which provides 

flexibility.  
+ We can easily add more Satellites to a Hub, which provides scalability. 
- It is not possible to use this approach if unstructured data does not have the business key. 

AP 2.2: Unstructured IoT data added to a Satellite. 
+ IoT data added to a Satellite without the load end date do not need an additional effort of 

updating the load end date, and it is a suitable approach for the IoT data as the data are 
valid only for that particular time. 

- IoT data can be added to a normal Satellite, but it needs an additional effort to update the 
load end date whenever a new value arrives.  

AL 1: File in a Satellite 

+ Time taken to retrieve the data are faster when compared to AL 2, the reason is that 
the data can be directly accessed. 

- As the data are directly stored in a Satellite table, it is not flexible to add the data from 
other tables easily. Also, the Satellites will become big rather quickly. 
 
 



8. Evaluation 

79 
 

AL 2: Path to an external system 
+ If there are lots of measurements, one path can reference a document that contains a 

few hundreds or thousands of references. This reduces the table storage space. 
- Performance is less when compared to AL 1, which are measured based on time 

complexity. The reason is that to retrieve the data from a Satellite table; it involves a 
two-step process, i.e. from a Satellite table and then from HDFS. 

From these comparisons, it is evident that if we want to retrieve the data faster irrespective of 
the memory consumption of the table, then it is a good option to use AP 2.2 - AL 1. However, if 
we want to store a large amount of data with less memory consumption irrespective of the 
performance, then it is a good option to use AP 2.2 - AL 2.  
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9 Summary and Future Work 

Hubs, Links, and Satellites form the basic entities of the Data Vault model. Similar to the 
traditional modeling techniques like Kimball’s approach and Inmon’s approach, the Data Vault 
model is mainly focused on modeling structured data. In recent days, the data produced by the 
real-world use cases such as in the fields of CRM, Manufacturing and Autonomous Car Testing 
are heterogeneous. In such cases, there are no well-defined approaches to integrate unstructured 
and semi-structured data into the Data Vault model.  

There exist few approaches to integrate semi-structured data into the Data Vault model. 
However, there are no approaches to integrate unstructured data into the Data Vault model. 
Therefore, in this thesis, we have developed various approaches to integrate unstructured data 
into the Data Vault model using examples from CRM, Manufacturing and Autonomous Car 
Testing. For both unstructured image/audio/video data and IoT data, two alternative approaches 
were proposed and discussed. Data in these alternatives are either stored directly in the Data 
Vault model, or stored in an external system and accessed via links. We have implemented some 
use cases from CRM, and Manufacturing for the various approaches along with their two 
alternatives. 

For evaluation, we have compared the advantages and disadvantages of these approaches and 
also discussed the storage space, time complexity, and query complexity to retrieve the IoT data 
using AP 2.2 - AL 1 and AP 2.2 - AL 2. The choice of the correct alternative depends on the use 
case. Thus, using the approaches defined in this thesis, we can integrate the unstructured and 
semi-structured data along with the structured data into the Data Vault model by satisfying the 
Data Vault characteristics.  

Future Work 

The approaches discussed in this thesis to integrate unstructured and semi-structured data into 
the Data Vault model can be used in the future to validate it with other use cases. Another idea 
is to identify if there is an alternative way to store unstructured data using an external system. 
In this thesis, we have measured the performance of the approaches to retrieve the IoT data. In 
the future, it would be interesting to implement the approaches to store image/video/audio data 
directly in a Satellite table and measure the performance by comparing it with the 
image/video/audio data that are stored in an external system. Also, it would be interesting to see 
how much longer it takes actually to retrieve the data from an external system and how exactly 
storing the data externally affects storage space. 
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