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Summary

Eye tracking, i.e., the detection of gaze points, becomes increasingly popular in nu-
merous research areas as a means to investigate perceptual and cognitive processes.
In comparison to other evaluation methods, eye tracking provides insights into the
distribution of attention and sequential viewing behavior, which are essential for many
research questions. For visualization research, such insights help assess a visualization
design and identify potential flaws. Gaze data coupled with a visual stimulus poses a
complex analysis problem that is approached by statistical and visual methods. Sta-
tistical methods are often limited to hypothesis-driven evaluation and modeling of
processes. Visualization is applied to confirm statistical results and for exploratory data
analysis to form new hypotheses. Surveying the state of the art of visualizations for eye
tracking shows a deficiency of appropriate methods, particularly for dynamic stimuli
(e.g., videos).

Video visualization and visual analytics provide methods that can be adapted to perform
the required analysis processes. The automatic processing of video and gaze data is
combined with interactive visualizations to provide an overview of the data, support
efficient browsing, detect interesting events, and annotate important parts of the data.
The techniques developed for this thesis focus on the analysis of videos from remote
and from mobile eye tracking. The discussed remote eye-tracking scenarios consist of
one video that is investigated by multiple participants. Mobile eye tracking comprises
scenarios in which participants wear glasses with a built-in device to record their gaze.
Both types of scenarios pose individual challenges that have to be addressed for an
effective analysis. In general, the comparison of gaze behavior between participants
plays an important role to detect common behavior and outliers.

This thesis addresses the topic of eye tracking and visualization bidirectionally: Eye track-
ing is applied in user studies to evaluate visualization techniques beyond established
performance measures and questionnaires. The current application of eye tracking in
visualization research is surveyed. Further, it is discussed how existing methodology can
be extended to incorporate eye tracking for future analysis scenarios. Vice versa, a set
of new visualization techniques for data from remote and mobile eye-tracking devices
are introduced that support the analysis of gaze behavior in general. Here, techniques
for raw data and for data with annotations are introduced, as well as approaches to
perform the tedious annotation process more efficiently.



Zusammenfassung

Eye-Tracking, d.h., die Erkennung und Verfolgung von Blickpunken, wird in zahlreichen
Forschungsbereichen immer beliebter, um Wahrnehmungs- und kognitive Prozesse zu
untersuchen. Im Vergleich zu anderen Evaluationsmethoden gewahrt Eye-Tracking Ein-
blicke in die Aufmerksamkeitsverteilung und in sequenzielles Blickverhalten, welche fiir
viele Forschungsfragen unerlasslich sind. In der Visualisierungsforschung helfen solche
Einblicke, ein Visualisierungsdesign zu bewerten und mogliche Schwéchen zu iden-
tifizieren. Blickdaten kombiniert mit einem visuellen Stimulus stellen ein komplexes
Analyseproblem dar, welches mit statistischen und visuellen Methoden angegangen
wird. Statistische Methoden beschranken sich oft auf die hypothesengetriebene Auswer-
tung und Modellierung von Prozessen. Visualisierung wird zur Bestatigung statistischer
Ergebnisse und zur explorativen Analyse fiir die Formulierung neuer Hypothesen einge-
setzt. Der aktuelle Stand der Technik von Eye-Tracking-Visualisierungen weist einen
Mangel an geeigneten Methoden auf, insbesondere fiir dynamische Stimuli (z.B. Videos).

Videovisualisierung und visuelle Analytik bieten Methoden, die an die benétigten Ana-
lyseprozesse angepasst werden kénnen. Die automatische Verarbeitung von Video- und
Blickdaten wird kombiniert mit interaktiven Visualisierungen, um einen Uberblick iiber
die Daten zu erhalten, effizientes Durchsuchen zu unterstiitzen, interessante Ereignisse
zu erkennen und wichtige Teile der Daten zu annotieren. Die Techniken, welche in
dieser Dissertation entwickelt wurden, fokussieren sich auf die Analyse von Videos von
Remote- und mobilem Eye-Tracking. Die besprochenen Remote-Szenarien beinhalten
ein Video, das von mehreren Teilnehmern betrachtet wird. Mobiles Eye-Tracking
umfasst Szenarien, in denen die Teilnehmer eine Brille mit einem eingebauten Geréat
tragen, um ihren Blick aufzunehmen. Beide Arten von Szenarien stellen individuelle
Herausforderungen dar, die fiir eine effektive Analyse angegangen werden miissen. Im
Allgemeinen spielt der Vergleich des Blickverhaltens zwischen den Teilnehmern eine
wichtige Rolle um Gemeinsamkeiten und Ausreifier zu erkennen.

Diese Arbeit beschéftigt sich mit dem Thema Eye-Tracking und Visualisierung in beide
Richtungen: Eye-Tracking wird in Nutzerstudien eingesetzt, um Visualisierungstech-
niken iiber etablierte Leistungsmafistibe und Fragebogen hinaus zu bewerten. Die
aktuelle Anwendung von Eye-Tracking in der Visualisierungsforschung wird unter-
sucht. Dariiber hinaus wird diskutiert, wie bestehende Methoden erweitert werden
konnen, um Eye-Tracking in zukiinftige Analyseszenarien zu integrieren. Umgekehrt
werden eine Reihe neuer Visualisierungstechniken fiir Daten von Remote- und mobilen
Eye-Trackern vorgestellt, welche die Analyse des Blickverhaltens im Allgemeinen un-
terstiitzen. Hierbei werden Techniken fiir Rohdaten und fiir Daten mit Annotationen
vorgestellt, sowie Ansétze, die den mithsamen Annotationsprozess effizienter gestalten.
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CHAPTER

Introduction

Eye tracking is the process of capturing viewing behavior of people watching and
eventually interacting with a visual stimulus, for example, a video or a computer
application. Revealing where persons looked at provides valuable insights into their
perceptional and cognitive processes. Apart from the common application for marketing
purposes (How interesting is a specific product to a test group?), eye tracking is applied in
psychology and in numerous other research fields for the evaluation of gaze behavior
under the conditions of a stimulus. The difficulty in analyzing such data increases when
comparing multiple participants and in cases where the stimulus changes dynamically.

Visualization research aims to depict data in perceivable ways to help with the analysis
for a human interpreter. Showing data with visual representations instead of numbers
helps make sense of measurements and facilitates the detection of patterns in the data.
Video visual analytics strives to enhance and abstract video data with visualization
in combination with automatic processing and interaction, so an analyst can more
effectively examine the data for important events instead of having to investigate the
whole material.

The combination of eye tracking and visualization offers two research directions:

» Evaluation of visualization with eye tracking: Visualization design is guided
by heuristics based on human perception and cognition. However, for a new
visualization, evaluation is often necessary to confirm if initial assumptions are
valid and the technique serves its purpose. Eye tracking assists as one means
to evaluate how participants investigate a visualization. For example, one can
find out if important visual components were ignored by participants and might
require more emphasis in the visualization. Furthermore, visual strategies can
be observed that provide a glimpse into the cognitive processes of a participant
solving a task. Eye tracking can be integrated easily into evaluation methodology
for visualization and provides a valuable addition to existing approaches.
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» Visualization of eye-tracking data: Visualization is applied to support the
analysis of eye-tracking data. Established statistical methods for the evaluation of
gaze data are not sufficient to cover a thorough analysis. Visualizations provide
support to confirm statistical results and help explore the data for the formaliza-
tion of new hypotheses. Especially in the case where temporal changes in viewing
behavior are important, visualization becomes a necessity for the analysis process.
Knowledge from visualizations for video content can be adapted to design new
approaches tailored to the requirements of eye-tracking analysis.

The work presented in this thesis covers research in both directions and is motivated by
the observation that there is a deficiency of techniques for eye-tracking data analysis.
Chronologically, the first publications comprise work on video visualization where
surveillance videos were visually enhanced to support human inspection tasks. Among
other methods, eye tracking was applied to evaluate the influence of the visualizations
on gaze distributions. For the analysis of recorded data, existing techniques were not
sufficient. Surveying the state of the art of visualizations for eye tracking revealed that
further research is required, especially for techniques with a focus on video stimuli and
eye tracking with mobile glasses. Hence, the technical contributions in this thesis have
the main focus on the combination of video visual analytics with eye-tracking data.
Both data sources introduce individual challenges and are addressed by techniques
that require human interpretation. To ease this task, complementary visualization
techniques for data summarization, comparison, and exploration are necessary and will
be discussed in the course of this thesis.

1.1 Research Questions

The structure of this thesis is based on three main components: (1) video visualization
and visual analytics, (2) evaluation for visualization, and (3) visual analytics for eye
tracking with a focus on video stimuli (Figure 1.1). First, it will be discussed how
video analysis can be supported by visualization. Second, evaluation methodology for
visualization and its application in this thesis are discussed. Knowledge from the first
two components is combined to develop new techniques to analyze eye-tracking data.
Accordingly, the research questions are framed.

Video Visualization and Visual Analytics The interpretation of video data is a
complex task that can be supported by computer vision. However, high-level semantic
interpretations and decision making are typically left to the human analyst. The combi-
nation of computational methods and appropriate, interactive visual representation of
the results eases the analytical reasoning, even for large datasets.
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Figure 1.1: Thesis structure: The visual-
ization techniques developed in this work
are based on the principles of video visual
) analytics. Evaluation methodology for vi-
Visual Analytics sualization includes the application of eye
of Eye-Tracking i tracking, which requires new techniques
and Video Data ' for the analysis of complex gaze data in
combination with dynamic stimuli. Visual
analytics for eye-tracking and video data
incorporates knowledge from both fields to
Y4 fo,. Eye Trac¥™® provide the required techniques.

Research Question 1

How can we enhance/abstract video material to support specific tasks?

This question focuses on alternative representations for video content, emphasiz-
ing specific aspects and incorporating additional data sources (e.g., eye tracking).
The techniques developed in this thesis present multiple levels of abstraction
from the video content, covering a wide range of possible application scenarios.

Evaluation for Visualization The evaluation of visualization techniques plays an
important role in identifying perceptual and cognitive issues with a specific technique,
but also in deriving general guidelines for visualization design. In this thesis, multiple
user studies for the comparison of visualization techniques were conducted, and differ-
ent methodological approaches were applied to gain insights into visualization design.
Eye tracking is a powerful evaluation technique, as it provides insights that are hard to
achieve with other established methods.

Research Question 2

How can we leverage eye tracking to evaluate visualization techniques?

This thesis comprises an overview of user studies including eye tracking in
visualization research. Visualization approaches are surveyed and a taxonomy
for existing techniques is discussed. Furthermore, multiple eye-tracking studies
were conducted to evaluate how participants perceive visualization.
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Visual Analytics for Eye Tracking There is a demand for techniques combining
automatic data processing and interactive visualization for interpretation and explo-
ration. Hence, the concepts of video visual analytics are applied to improve eye-tracking
analysis. The new techniques developed in this thesis can be separated into two cate-
gories, i.e., approaches for single videos that were presented to multiple participants
and approaches for mobile eye tracking with individual videos from each participant.

Research Question 3

How can we improve the state of the art of visualizations for eye tracking?

With the systematic review of existing techniques to analyze eye-tracking data,
a general need for new techniques for dynamic stimulus analysis was identified.
With respect to the first question, this thesis introduces new approaches or
extends existing techniques for the analysis of video and eye-tracking data.

1.2 OQutline and Contributions

This section outlines the structure of the thesis and conveys the topics of each chapter.
For the majority of the publications, I am the first author and developed the respective
software prototypes. Collaborations with other authors and projects under my supervi-
sion are also discussed in the following. My supervisor Daniel Weiskopf was involved
in all publications as a co-author and contributed his experience to each paper.

Chapter 2 - Visual Support for Video Analysis This chapter summarizes the
foundations of computer vision and visualization for this thesis. The applied concepts
are exemplified by respective publications. The provided example of video visual-
ization [12] builds on the work of my Studienarbeit, supervised by Markus Hoferlin.
For the respective publication, I implemented new visualizations and conducted an
eye-tracking study. FlowBrush [28] is included as an example of video-based graphics.
Michael Stoll and Andrés Bruhn provided their expert knowledge on visual computing
and co-authored this publication. The main example, visual movie analytics [25], is
based on Paul Kuznecov’s B.Sc. thesis, supervised by Markus John, Florian Heimerl,
and me. I supervised the visualization concept and techniques for low-level computer
vision. This approach was later extended for multiple movies [9].

Chapter 3 - User-Based Evaluation of Visualization The next chapter provides
an overview of evaluation methodology and techniques that are applied in this thesis
to evaluate visualization. I discuss the repertory grid as a method to extend existing
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methodology [19] for which I also implemented an interface to conduct interviews.
Furthermore, the application of eye tracking to evaluate visualization is discussed. I
surveyed existing user studies to provide an overview of the current state of the art.
Michael Burch contributed his expertise on eye-tracking studies to these publications.
Thies Peiffer co-authored one publication, providing his expertise for eye tracking in
virtual reality [14]. Brian Fisher contributed his expertise in cognitive science [21, 22],
allowing us to provide a glimpse into the possible future of eye tracking for visualization
and visual analytics. As an example, the evaluation of speaker-following subtitles with
eye tracking is presented [27]. Emine Cetinkaya conducted and evaluated the study
under my supervision as part of her B.Sc. thesis. Yongtao Hu and Wenping Wang
provided their expertise and the visual stimuli for the study.

Chapter 4 - Visualization of Eye-Tracking Data This chapter describes how vi-
sualization is applied to analyze gaze data. First, visual analysis is discussed from a
task-based perspective [26]. This publication is based on the common expertise from my
co-authors Michael Burch, Tanja Blascheck, Gennady Andrienko, Natalia Andrienko,
and me. The current state of the art of visualization techniques for eye tracking is
summarized from the respective publications [1, 4]. Tanja Blascheck and I conducted
the main research for these literature surveys. I surveyed the techniques related to
dynamic stimuli. The resulting taxonomy was derived in collaboration with Michael
Raschke and Michael Burch. I further supervised the creation of a benchmark dataset
containing videos and eye tracking data [20]. Fabian Bopp, Jochen Bissler, and Felix
Ebinger recorded the data as part of their Projekt INF.

Chapter 5 - Analyzing a Single Video and Multiple Participants The fifth chap-
ter presents techniques for the analysis of gaze data from multiple participants, all of
them investigating the same video stimulus. I developed a visual analytics approach
with a space-time cube visualization and motion-compensated heat maps [16]. This
framework was later named ISeeCube and extended with methods based on areas of
interest for analysis [13, 15]. Florian Heimerl implemented the string-based comparison
methods for this framework. Image-based visualization for gaze data is introduced as
a promising direction for future research. The gaze stripes [24] and their extension
fixation-image charts [23] were developed together with Marcel Hlawatsch, Florian
Heimerl, and Michael Burch. I implemented both approaches, and Florian Heimerl
contributed the comparison methods for gaze stripes. Marcel Hlawatsch and Michael
Burch helped develop the concept and design. I further introduced the concept of
gaze-guided slit-scans [18], an image-based approach that was extended [10] by Maurice
Koch for his B.Sc. thesis under my supervision.
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Chapter 6 — Visual Analytics for Mobile Eye-Tracking This chapter concerns
how visual analytics can be applied to data from eye-tracking glasses. First, it is
discussed how pervasive eye-tracking could be applied for personal visual analytics [17].
In collaboration with Christof Seeger from the Stuttgart Media University, who provided
us with data and feedback on the visualization design, we developed a visual analytics
approach, applying the image-based visualization technique from the previous chapter
for labeling and analyzing mobile eye-tracking data [29]. Marcel Hlawatsch and I
conceptualized the design, and he implemented a timeline overview.

The final chapter concludes my work, providing a summarization and overarching
discussion of this thesis. The research questions are discussed with respect to the
developed techniques and future research directions are outlined.

Materials from the publications [8, 14, 16, 17, 18, 24, 25, 29] are under copyright of
IEEE and reused with kind permission of IEEE under the agreement for reuse in this
dissertation. Materials from the publications [10, 15, 20, 21, 23, 27, 28] are under
copyright of ACM and reused with kind permission of ACM under the agreement for
reuse in this dissertation. Materials from the publications [4, 12, 19] are under copyright
of John Wiley and Sons and reused with kind permission of John Wiley and Sons under
the agreement for reuse in this dissertation. Materials from the publication [26] are
under copyright of Springer Nature and reused with kind permission of Springer Nature
under the agreement for reuse in this dissertation. Materials from the publication [22]
are under copyright of Sage Publishing and reused with kind permission of Sage
Publishing under the agreement for reuse in this dissertation. Materials from the
publication [13] are reused with kind permission of the Canadian Human Computer
Communications Society (CHCCS) under the agreement for reuse in this dissertation.

I was further involved in other publications which are not part of this thesis, mainly
considering my expertise in eye tracking. I was involved in the conceptualization of an
eye-tracking study for metro maps [6, 5, 30], a visual analytics approach that combines
eye tracking, interaction logs, and think aloud [3]. Furthermore, I provided my expertise
for the visual comparison of gaze data with multiple sequence alignment [7] and visual
analytics for video applications [31]. Together with Tanja Blascheck, I supervised Stefan
Strohmaier’s diploma thesis which was later published [2]. The developed space-time
cube was also applied to visualize indoor event data [11].
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Overall Contributions

This thesis has novel contributions in the field of visualization under numerous aspects:

» Evaluation methodology for visualization: This thesis discusses the reper-
tory grid as a promising qualitative evaluation method for visualization re-
search [19]. Related work considered only partial aspects while the presented
work provides a holistic view of the method and possible application scenarios.
For quantitative evaluation, the current application and the potential for future
extensions of eye tracking in the context of visualization and visual analytics
are discussed [14, 21, 22]. To this point, a systematic review of eye-tracking
applications in visualization did not exist. Furthermore, eye tracking is applied to
evaluate visualizations for attention guidance [12] and label placement [27]. The
results provide new knowledge about the influence of visualization techniques on
the distribution of attention and support related work with empirical evidence.

» Visualization of eye-tracking and video data: The presented approach for
video analysis [9, 25] introduces the concepts of visual analytics in the context of
feature films and text. In contrast to related work, the human user is an essential
part of the concept to bridge the gap between automatic processing of the data
and high-level semantic interpretations. Elements of the applied algorithms are
also deployed to create artistic content [28]. Furthermore, this thesis contributes
solutions to the coupled data analysis of eye tracking and video. The respective
literature surveys [1, 4, 26] comprise the state of the art in this research field
and indicate a lack of appropriate techniques for this type of data. A benchmark
dataset was created [20] to foster the development of new techniques, that, in
contrast to existing datasets, is tailored to contain eye movements specific to
dynamic stimuli. The presented research prototype ISeeCube [13, 15, 16] is a visual
analytics framework that combines existing and new visualization approaches
for an efficient interpretation of gaze data from multiple participants recorded
with remote eye tracking. It includes established methods for automatic scanpath
comparison and supports their interpretation by an appropriate representation of
the results. The image-based techniques [10, 18, 23, 24] contribute a new approach
to the comparison and interpretation of gaze data from multiple participants. The
image-based approach is also integrated into a visual analytics concept for the
annotation and interpretation of data from mobile eye tracking [29]. In contrast
to the established annotation procedure, the presented method proves to be more
efficient and easy to apply. Also in the context of mobile eye tracking, this thesis
contributes a discussion of mobile eye tracking for personal visual analytics and
a visualization concept for convenient data exploration [17].
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Awards

The following publications received an award at the respective venue:

» T. Blascheck, M. John, K. Kurzhals, S. Koch, and T. Ertl. “VA2: A Visual Analytics
Approach for Evaluating Visual Analytics Applications”. In: IEEE Transactions
on Visualization and Computer Graphics 22.1 (2016), pp. 61-70 — received an
honorable mention at IEEE VIS 2015.

» K. Kurzhals, M. Hlawatsch, M. Burch, and D. Weiskopf. “Fixation-Image Charts”.
In: Proceedings of the ACM Symposium on Eye Tracking Research and Applications
(ETRA). 2016, pp. 11-18 — received the visual saliency award at ETRA 2016.

» K. Kurzhals, M. Stoll, A. Bruhn, and D. Weiskopf. “FlowBrush: Optical Flow Art”.
In: Proceedings of the Symposium on Computational Aesthetics. 2017, 1:1-1:9 —
was rewarded as one of four best papers at Expressive 2017.

» K. Kurzhals and D. Weiskopf. “Exploring the Visualization Design Space with
Repertory Grids”. In: Computer Graphics Forum 37.3 (2018), pp. 133-144 — received
an honorable mention at EuroVis 2018.



CHAPTER

2

Visual Support for
Video Analysis

The analysis of video material plays an important role in numerous application and
research domains. Popular examples include Closed Circuit Television (CCTV), sports
events, eye tracking, and the analysis of movie content. Based on the analysis task, a
problem can be solved automatically or requires human interpretation. This results
mainly from the fact that some problems are well-defined, while others are not. Many
low-level computer vision tasks are well-defined and can be solved automatically with
high accuracy (e.g., the detection and recognition of faces [278]) with state-of-the-art
techniques. In contrast, the analysis of semantics in video content (e.g., construing
metaphorical imagery in movies) is sometimes ambiguous and worthy of discussion
between human domain experts. These issues are part of what is commonly known as
the semantic gap:

€€ The semantic gap is the lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same
data have for a user in a given situation. 9

Smeulders et al. [266]

Figure 2.1 depicts the mentioned examples, ordered by the degree of automation and
human interpretation. In all of the presented example scenarios, problems exist that
are automatically solvable, as well as problems that require interpretation. The order is
based on current practice with existing methods:

CCTV Recorded videos from surveillance cameras comprise hours of material for
an individual camera. Complex systems of numerous cameras (e.g., [317]) create a
vast amount of data that requires support by computer systems to provide an efficient
sighting of events of interest. Object detection and recognition algorithms with high
efficiency were developed to support the search for specific events. Deep Learning is
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Human Interpretation

CCTV Sport Events | Eye Tracking | Movie Analysis

Figure 2.1: Example scenarios for video analysis: With an increasing degree of semantic
abstraction, a human analyst is required to interpret the data.

currently applied in many computer vision scenarios to train computers how to react
live to visual input [239]. However, detecting untrained and unexpected events still
requires a human to provide labels for classification.

Sport Events Similar to the CCTV scenario, the analysis of sport events, for example,
soccer games [91], poses challenges of individual player detection and tracking. In
addition, the rules of the specific game have to be considered for a thorough analysis.
To this point, most existing analysis approaches require human annotation to process
complex analysis tasks.

Eye Tracking The application of eye tracking to visual stimuli [99] for the analysis
of a participant’s perceptual and cognitive processes introduces an additional data
channel. In such cases, the combined analysis of video and gaze data is necessary to
understand events that cause a specific effect in the data. With the complexity of an
additional data source, the automated detection of relevant events in the data becomes
difficult, and the final interpretation of the results requires a human analyst.

Movie Analysis With increasing abstraction of the insights derived from the data,
human interpretation is required. Questions like, “How did the depiction of women
smoking in Hollywood movies change over the last decades?” [106], require a high degree
of abstraction from automatically detectable visual features. For many research ques-
tions, the social and historical context when a video was created is also important for
interpretation, which is highly reliant on expert knowledge.

This thesis covers work that aims to support a human analyst in such analysis tasks that
cannot be solved automatically to this point. The presented work comprises research
on visual support for CCTV and movie analysis. However, the main focus of this thesis
lies on video data in combination with eye tracking. To achieve this goal, the concept of
visual analytics [171] is applied, combining automatic data processing with interactive
visualization for analytical reasoning.
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This chapter is partly based on the following publications:

« K. Kurzhals, M. Hoferlin, and D. Weiskopf. “Evaluation of Attention-Guiding Video Visualization”. In: Computer
Graphics Forum 32.3 (2013), pp. 51-60 [12]

« K. Kurzhals, M. John, F. Heimerl, P. Kuznecov, and D. Weiskopf. “Visual Movie Analytics”. In: IEEE Transactions
on Multimedia 18.11 (2016), pp. 2149-2160 [25]

« M.John, K. Kurzhals, S. Koch, and D. Weiskopf. “A Visual Analytics Approach for Semantic Multi-Video Annotation”.
In: Proceedings of the 2nd Workshop on Visualization for the Digital Humanities. 2017, pp. 1-5 [9]

« K. Kurzhals, M. Stoll, A. Bruhn, and D. Weiskopf. “FlowBrush: Optical Flow Art”. In: Proceedings of the Sympo-
sium on Computational Aesthetics. 2017, 1:1-1:9 [28]

The remainder of this chapter summarizes the foundations of applied video processing
steps (Chapter 2.1), visualizations for video data (Chapter 2.2), and video visual analytics
(Chapter 2.2.4). As an example of the application of the concepts of video visual analytics,
a developed approach for the analysis of movies is presented (Chapter 2.3).

2.1 Low-Level Computer Vision

Established techniques for low-level computer vision tasks are utilized to derive infor-
mation from the data to visualize. The work in this thesis mainly relies on techniques
for image comparison and optical flow. It should be mentioned that the discussed
approaches are often interchangeable with alternative techniques, as they are mainly
part of pre-processing stages and therefore open for future work that improves the
results. Since the development of new computer vision techniques is not the focus of
this thesis, it is referred to the literature on the foundations of computer vision [59,
136] and the main techniques applied in multiple projects are briefly discussed.

2.1.1 Image Comparison

Numerous tasks in image processing require quantification of the similarity between
two pictures. In this thesis, similarity measures based on color and feature histograms
are mainly applied for clustering and search queries.

Histogram-based

An image can be expressed by a distribution of its components. One basic approach is the
representation by color histograms, showing the distribution of all pixel contributions
in a specific color space. Figure 2.2 shows an example of two images, taken from a
magazine with a glossy surface. The left image shows some light reflections. Comparing
the histograms of different color channels, the similarity of images can be determined.
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Figure 2.2: Histogram comparison of two images with (left) and without (right) a light reflection
on the glossy surface. The color histograms for RGB and the CIE L*a*b* color space are shown.

If the standard RGB histogram is used, one can see that the light reflection has a strong
influence on all three channels red, green, and blue. In the CIE L*a*b* histograms, the
reflection has only a strong influence on the channel for lightness (L*), the a* and b*
channels remain more robust. Hence, image comparisons in this thesis are performed
in color spaces where the lightness channel is excluded to provide more stable results.

To quantify the similarity, the histograms (Hj,H>) consisting of B bins are compared
using the Pearson correlation coefficient p:

> (Hi(n) - Fy) (Ha(n) - )
p(Hi, Hy) = ;:1 =
\/El(Hl(n) - Hy)? n;(Hz(n) - Hy)?

with

He=g > (Hi(m))
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In some implementations, the Bhattacharya distance [51] is also applied to compare
histograms. From the vast number of available similarity measures [75], these two
are chosen as representative measures with good results for the tested datasets. The
scenarios in this thesis include images from the same (Chapter 5.3) or a similar video
stimulus (Chapter 6.2). Accordingly, the histogram-based similarity is applied for
unsupervised clustering and segmentation of time spans with constant image content.

Bag of Features

Color histograms are suitable for image content that does not change significantly in
color distribution. However, this approach is sensitive to changes of the distributions,
for example, due to different crop margins around an object. Hence, alternative image
features are often more reliable for comparison tasks.

For histogram-based representation, approaches that create codebooks of visual fea-
tures [168] are often applied for texture analysis and scene classification tasks. Scale-
Invariant Feature Transform (SIFT) [197] is one popular approach to detect image
features that are extracted and clustered to create a codebook, or bag of features, for a
set of images. From this codebook, a feature histogram can be derived for each input
image. In this thesis, the feature histograms are applied to derive similarity measures
for unsupervised clustering. Further details are discussed in Chapter 6.2.

2.1.2 Optical Flow

In video analysis, the motion between consecutive video frames is important for numer-
ous reasons. For example, motion information can improve the tracking of objects [276],
image stabilization [76], and enables the calculation of in-between frames, e.g., for
frame rate up-conversion [311].

Optical flow describes the spatial correspondence between pixels in consecutive video
frames. To calculate the optical flow between adjacent frames I and I**! with N pixels,
a dense variational method [63] is applied, provided by OpenCV with CUDA support.
The displacement for each pixel i (with i € {1,---, N}) at position x; is denoted by

w' (x;) = (u' (%), v" (x:))"

where u’(x;) is the horizontal displacement and v?(x;) is the vertical displacement.
In this thesis, tracking of specific semantically coherent regions (e.g., objects) is not
applied. Instead, flow information is used to identify shots in edited video content, shot
comparison based on motion, and to assemble motion paths for creating artistic output
images. Optical flow is also applied to calculate motion-compensated heat maps for
eye-tracking data on video stimuli. This technique is described in detail in Chapter 5.1.1.
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Figure 2.3: Shot detection based on difference D of the forward and backward optical flow
field of consecutive frames.

Shot Detection

Optical flow information is applied for shot detection in edited video content. This
approach is based on the assumption that the continuity of the flow is disrupted by
abrupt cuts between video shots.

Temporal discontinuities in the optical flow, caused by cuts at shot boundaries result in
high differences in the flow fields in forward and backward direction:

w(tﬁff(xi) = wad(xi) - wﬁwd(xi)

Only the magnitude of the difference vector is used, independent of the direction:

f(wg(xi) = |wgg(xi) ]2

For shot detection, the normalized difference D between the displacement vectors in
both directions is calculated:

N

D:%;v(wéﬁ(m)”

Here the L norm is applied because it is robust against outliers. In general, if a shot
appears, D will be significantly larger compared to a context with regular motion,
where the flow calculation in both directions yields to similar results. For the detection
of shots, an adaptive threshold [135] is applied based on a time window of 30 frames.
Depending on the frame rate of the movie, this corresponds to an approximate time
span of one second. Figure 2.3 shows an example of calculated values for the first 2000
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Figure 2.4: FlowBrush video processing steps: (1) the optical flow is calculated, (2) the pixel
displacement is rendered as a trajectory into a temporary image, and (3) compositing of the
temporary image and the output from the previous time step is performed.

frames of the Big Buck Bunny ! video. Temporal discontinuities result in high peaks of
the difference values that can be detected easily. Note that the motion-based algorithm
is not only chosen due to its performance on shot detection [55] but also to extract the
motion fields that are required for other analysis steps. This technique is applied for
movie analysis (Chapter 2.3) and eye tracking of videos (Chapter 5.1).

Motion Similarity

With the optical flow available, a similarity metric for scenes based on motion is
calculated. The motion histogram for Hp ; for a frame ¢ contains a number of bins B.
The binning is calculated for the angle of the motion vectors. The length of the vector
is included as a weighting factor (similar to Schoffman et al. [258]). The histograms are
compared using the Pearson correlation coefficient p, as described before.

Art with Optical Flow

Optical flow information is also utilized to depict video motion in artistic representations
with an approach named FlowBrush [28]. The technical procedure to create an image
with FlowBrush is based on three steps, depicted in Figure 2.4: (1) calculation of the
optical flow, (2) particle steering, and (3) compositing. Trajectories for individual video
pixels are directly rendered on the canvas, the artist can influence the compositing by
an additional bilateral filter step and by adjusting parameters to change the depiction
of the trajectories.

U http://www.bigbuckbunny.org, last checked: October 13, 2018
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In the following, let I* be a series of input images at time steps k and let I¥(x;) denote
the color of pixel i (with i € {1,---, N}) at location x; in the input coordinate system.
Furthermore, let J* be a series of output images, where J! is a blank image, and let T
be a temporary image.

Each pixel i from the input coordinate system is assigned a particle in the output
coordinate system. Hence, there are N particles. At the beginning, all particles reside in
a common seed point a. Afterward, particle i is steered by the displacements w*(x;)
that are estimated in each time step k at the fixed location x;. These displacements
usually do not form the trajectory of any object in the input images but belong to
different objects that move through location x; over time. The trace of particle i
in the output image at time step ¢ is the aggregation of the independent motions
w'(x;), -, w'1(x;) at location x; in the input image.

More formally: Using the seed point a in the output image, the origin is set yl.1 :=aofall
visualized traces of the particles i. For each time step t, the displacement vectors w’(x;)
for all pixels 7 in the input are calculated, and for each i, they are finally aggregated in
an output pixel position buffer:

t t

yi o=y Tty w T (x)

-1
= yley S wh()
k=1

where y is an amplification weight. The temporary image T is initialized with J*~1 and
afterward the path increment of particle i is rendered into T by a line between the
positions yl.t’1 and y/. The color of the line is determined by the color I'~1(x;). The
procedure is depicted in Figure 2.5, where red boxes correspond to x; and blue boxes
correspond to yl.k at the respective time steps k.

Let us have a look at time step ¢ =2 in Figure 2.5. The temporary image T is initialized
with the blank output image J!'. The motion w! between the first two input images
at the pixel with the red box is now considered. As it moves upright and its color in
the first image is blue, a blue line is rendered upright starting at the seed point in the
temporary image T. Afterward, T is blended with J! giving J2. At the next time step
t=3, T is initialized with J2. The red-boxed pixel is orange and moves left by 2 pixels
(w?). Hence, an orange line is drawn into T going to the left by 2 pixels and starting at
the end of the last line. Finally, T is blended with J2, creating J3.

The displacements only affect the output image while the positions x; in the input
remain unaltered (see red box in Figure 2.5). Since both coordinate systems are different,
the resolution of the output image is independent from the input. Hence, the presented
approach can generate high-resolution images from low-resolution input.
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Figure 2.5: Particle trace for one pixel of the original video (red border) and its corresponding
particle (blue border). If an object moves through this pixel position, the displacement is drawn
as a line with the current color of the pixel.

The compositing step blends the previous output image J*~! with the adjusted tempo-
rary image T from the current step

J'=aT+(1-a)J"!

with a blending weight a € [0, 1]. This iterative alpha blending approach is also applied
for interactive vector field visualizations. Only the previous and the current time
step are required for computation, which makes this method efficient for real-time
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(a) “Nodding Starfish”

Figure 2.6: Two examples created with the FlowBrush technique. Depending on the video input,
the user has countless possibilities to create a unique picture from the derived motion patterns.

applications [304]. Figure 2.6 shows two examples of resulting pictures from FlowBrush.
Both pictures were created using a webcam. Influenced by the motion and objects with
different colors, the results represent individual artwork created by the user.

2.2 Visualization of Video Data

Processed video data in semi-automatic systems requires an appropriate representation
of results for human interpretation. Statistics and automatically generated textual
summarizations provide valuable information but often require experienced users to
interpret the results. Hence, visualization can provide effective representations of
important features to make sense of the data. In the following, established principles of
the visualization reference model and the sensemaking process are discussed for video
visualization and video visual analytics.

2.2.1 Visualization Reference Model

The process from raw data to task-specific data visualization for analysis purposes
is depicted in Figure 2.7. Following the visualization reference model described by
Card and colleagues [70], raw data in idiosyncratic format is transformed to relational
data tables extended to include metadata (e.g., optical flow). A visual mapping step
transforms these data tables in visual structures (e.g., arrow glyphs) consisting of
spatial substrates, marks, and graphical properties [200]. View transformations such
as positioning, scaling, and clipping mark the final step to provide the views a human
can interpret and interact with. Interaction with the different transformation steps is
crucial for data exploration and analytical reasoning.
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Figure 2.7: Reference model for visualization according to Card et al. [70].

The presented reference model provides a simplified overview of the principles of data
visualization. Since the main purpose of visualization is to derive insight from data, the
sensemaking process has to be considered as well.

2.2.2 Sensemaking Process

One of the main goals of visualization is to make data understandable to the human
user through visual representations. Therefore, sensemaking plays an important role
in the design of new visualizations and analytical frameworks. In this context, it can be
defined as follows:

¢ Sensemaking is the process of searching for a representation and encoding
data in that representation to answer task-specific questions. b))

Russel et al. [249]

Such representations are realized by visualization. One important scenario of sense-
making in computer science is intelligence analysis. In the context of this scenario, the
sensemaking process can be summarized as a sequence [234]:

Information — Schema — Insight — Product

Information is gathered and summarized in a representation schema for analysis support.
Through manipulation of this representation, insight is derived and summarized in a
knowledge product. Within this sequence, sensemaking consists of cyclic procedures of
searching for representations and encoding information in these representations [249].
Figure 2.8 depicts the notional model of the sensemaking process consisting of bottom-
up processes that are often data-driven (e.g., search and filter, read and extract) and
top-down processes, driven by the analyst’s knowledge (e.g., reevaluate, search for
support). The whole process is framed by two main loops, the foraging loop and the
sensemaking loop [234].
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Structure

Reevaluate
Search for Support Are we sure?

How do we know?

Search for Evidence
What does it have to do with
the problem at hand?

e . Schema
(10
Evidence File *e

Search for Relations
How are they related?

Search for Information
Who and what?

Tell Story

(&)

Sensemaking Loop
Build Case
Multiple hypotheses,

Shoeb Schematize hypothesis generation, order
oebox i ’
Holding _mﬂnm. structure, bias, source tracking
overview

External Data

@ Sources

Foraging Loop

Read and Extract
Skimming, finding info,
volume

Search and Filter
Finding neg. evidence,
volume

Effort

Figure 2.8: Sensemaking process for intelligence analysis according to Pirolli and Card [234].
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Foraging Loop This loop involves information seeking and filtering to derive a
schema. Analogous to the data transformation step in the visualization reference model,
raw data from external sources is reduced to a smaller subset, the shoebox, for processing.
The evidence file consists of extracted information from the shoebox items.

Sensemaking Loop This loop concerns the building of a mental model from the
schema fitting the evidence. By structuring the information of the evidence file, a
schema is derived to draw conclusions. Hypotheses summarize these conclusions with
supporting arguments and are finally condensed in a presentation.

Although it focuses on the analysis of text documents for intelligence analysis, this
model was partially adapted for numerous data domains. Visualization plays an im-
portant part for the development of schemata and the presentation of results, but can
also help identify important information in the foraging loop. This thesis presents
numerous approaches based on the principles of the visualization reference model
and the sensemaking process focusing on the data domain of video and eye tracking.
Examples comprise the analysis of movies (Chapter 2.3) and a model for the visual
analysis of eye-tracking data (Chapter 4.1).

2.2.3 Video Visualization

Visual representations derived from video material as an input can be divided into
video-based graphics that mainly focus on the artistic manipulation and rendering of
videos, and video visualization. While the presented FlowBrush approach (Chapter 2.1.2)
is an example of video-based graphics, video visualization focuses on data analysis:

€€ Video visualization is concerned with the creation of a new visual repre-
sentation from an input video to reveal important features and events in
the video. It typically extracts meaningful information from a video and
conveys the extracted information to users in abstract or summarized visual
representations. 99

Borgo et al. [57]

Video visualization is an emerging research field that focuses on analysis tasks that
cannot be solved by automatic processing solely. According to Daniel and Chen [92],
two problems remain for automatic processing:

» Communication of results: If decision making is in the responsibility of a hu-
man operator, processing results have to be communicated accordingly. Statistical
results require training to understand, and sequential viewing of results might be
time-consuming, revoking the advantage of efficient automatic processing.



22 Chapter 2 e Visual Support for Video Analysis

» Reliability under changing circumstances: Automatic approaches that adapt
to changes, for example, changing light conditions or unexpected behavior, are
hard to implement and often restricted to specific scenarios.

Visualizations in this category ease the analysis of video data without the need to skim
through each video. This concept is not restricted to surveillance videos [92, 146], it is
also applied in many other domains, e.g., for sports [145, 185] and movie analysis [163].
This thesis extends the application scenarios for video visualization by the analysis
of eye-tracking data. To depict gaze and video data together in interpretable visual
summarizations, existing techniques such as space-time cubes [42] and slit-scans [282]
are extended to meet domain-specific requirements. Furthermore, new visualizations
emphasize the connection of eye-tracking data and the underlying visual stimulus.

Examples

To further exemplify the application of video visualization, two implemented approaches
are briefly discussed. The fast-forward visualizations [8] represent video content at
increased playback rates and were implemented and evaluated as part of my diploma
thesis. The second example, the attention-guiding visualizations [12] aim for a directed
distribution of attention and were developed in the context of this thesis. Both examples
are applied to the i-LIDS dataset?, showing everyday traffic on a street.

Fast-Forward Video Visualization [8] Video recordings (e.g., from CCTV) require
much effort to investigate in cases when an automatic analysis is not possible or not
trustworthy enough. In such cases, a human expert has to watch the video to find
and interpret important events. To solve this task more efficiently, videos are typically
watched in fast-forward with increased playback rates. Visualization can be applied to
enhance the information depicted in the video. Figure 2.9 shows four different methods
for fast-forward in videos: (a) Frame skipping depicts original frames from the video
without changes, it reduces the number of shown images by skipping frames, according
to the desired playback rate. (b) Temporal blending summarizes frames between the
depicted ones, causing a motion blur effect. (c) Object trails improve on the blending
approach by preserving the current time step and showing past motion with a ghosting
effect. (d) Predictive trajectories are the most abstracted visualization added to the
video, showing past and future motion with trail and arrow glyphs.

Attention-Guiding Video Visualization [12] In the second example, the visual-
ization aims to influence the distribution of attention. In search tasks, important events

2 Imagery Library for Intelligent Detection Systems (i-LIDS), https://www.gov.uk/guidance/imagery-
library-for-intelligent-detection-systems, last checked: October 13, 2018
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(a) frame skipping (b) temporal blending

(c) object trails (d) predictive trajectories

Figure 2.9: Four visualization techniques for fast-forward in videos. In addition to established
techniques (a,b), alternative visualizations such as (c) object trails and (d) predictive trajectories
depict information about past and future movement without obscuring the current image.

might be missed due to issues with inattentional and change blindness [241]. Such
effects happen if a person focuses too much on one specific object, or does not pay
attention at all. For this scenario, the attention-guiding visualizations emphasize po-
tential objects of interest to distribute the users’ attention equally among the objects.
Hence, four different approaches were implemented (Figure 2.10): (a) Bounding boxes of
appearing objects highlight where the user should look at. (b) This approach is further
extended by equalizing the area size of all objects to reduce the visual saliency due to
the size of an object. Potential overlaps of bounding boxes are solved by a force-directed
approach that slightly shifts objects away from their original position until the overlap
issue is solved. (c) The top-down view replaces the background with a static map and
applies a perspective transformation. (d) All annotated objects are separated from the
video and placed in a separate grid. Each object receives an individual border for a fast
recognition in the original video.
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(a) bounding boxes

(c) top-down (d) grid

Figure 2.10: Attention-guiding video visualizations. (a) Bounding boxes emphasize objects
while the background is faded out. (b) Objects are equalized in area size and overlaps are solved
with a force-directed approach. (c) With a perspective transformation, objects are projected on
a top-down map. (d) Objects are represented in a compact grid above the video.

In Chapter 3.2, it is further discussed how these visualization techniques influence the
performance of participants looking for a specific target. Both publications focus on the
direct enhancement of video material, interaction with the visualization is not required.
The results are rendered into a new video of either shorter, or the same length as the
original. In cases where interaction and automatic processing are applied together with
the video visualization, the field of visual analytics is entered.
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2.2.4 Video Visual Analytics

With appropriate representations for video analysis, it becomes necessary to interact
with the visualization for exploration and reasoning purposes. Visual analytics aims to
fuse algorithmic processing, interaction, and visualization for analytical reasoning:

(49

Visual analytics is the science of analytical reasoning facilitated by inter-
active visual interfaces. People use visual analytics tools and techniques
to synthesize information and derive insight from massive, dynamic, am-
biguous, and often conflicting data; detect the expected and discover the
unexpected; provide timely, defensible, and understandable assessments;
and communicate assessment effectively for action. 99

Thomas and Cook [285]

To this point, visualization in video applications was discussed as compensation for
the issues of automatic processing. With visual analytics, the advantages of automatic
processing and visualization can be harnessed through tight interactive coupling of
both aspects. This influences the aforementioned sensemaking, as presented in the
visual analytics process model presented by Keim and colleagues [171] that explicitly
integrates data mining and interaction techniques in the sensemaking process. In the
context of video visual analytics, the foraging and the sensemaking loop are supported
by three knowledge extraction methodologies [144]:

» Exploratory Data Analysis (EDA) [296] In contrast to experiments that apply

data analysis for statistical hypothesis testing, exploratory data analysis focuses
on the generation of hypotheses through identifying and describing patterns in
the data. Interactive visualization supports such exploration in numerous ways.

Knowledge Discovery in Databases (KDD) [110] From a data-driven perspec-
tive, KDD processes aim to apply data mining techniques to extract patterns
or models from the data to assist an analyst with extracting knowledge. Such
patterns require appropriate visual representations for interpretation and for
providing feedback to the processes to refine the underlying models.

Information Retrieval (IR) [262] Information retrieval techniques allow the
analyst to bring existing knowledge into the analysis. Popular techniques in
combination with visualization are search queries, either by filter rules (e.g.,
keywords) or similarity search (e.g., query by example). This approach can be
applied for exploration and confirmation purposes.

EDA and KDD processes work on a data-driven basis (bottom-up) while IR can be
described as knowledge-driven (top-down). By combining the support of all these
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methodologies, visual analytics provides powerful means to solve a multitude of ana-
lytical tasks. Video analysis tasks (e.g., object annotation) require much time and effort,
even for short time spans under investigation. Harnessing the advantages of automatic
processing and interactive visualization, many tasks can be solved more efficiently, or a
task becomes possible to solve in the first place. As an example, it is demonstrated how
text processing, video feature analysis, and interactive visualization can be combined
in a visual analytics approach for the semantic annotation of feature films.

2.3 Example: Visual Movie Analytics

Apart from the entertainment value of full-length feature films, the analysis of their
content and inherent structure plays an important role. Be it to teach aspiring film
students [250] the principles of basic techniques (e.g., shot composition, narrative) or
for the analysis of the depiction of social and historical events (e.g., the portrayal of
conflicts) for research purposes. In general, the presented approach addresses expert
analysts with basic knowledge in movie content analysis as potential users.

The direct approach to such content analysis is watching the movie and taking notes.
However, with the technological advances in the last decades, there are numerous semi-
and fully automatic systems to help with the annotation and summarization of movies.
For searching video content in large databases, retrieval systems based on different
similarity metrics exist. Such systems help the analyst identify similar content based on
reference videos to formulate a query. These approaches often require users to know
in advance what exactly to look for. Other approaches that summarize video content,
for example with storyboards [56, 119, 120] or short video skims [190, 267], provide an
overview of specific content. They help analysts search for interesting time spans.

Video summarization should be based on four aspects: who (W1), what (Wy2), where
(W3), and when (W) [78, 195]. These aspects provide spatial and temporal information
in the context of personal constellations and events in a movie. In other words, the
summarization should enable the analyst to answer questions about “who was involved
in a scene?”, “what happened in the scene?”, “where does the scene take place?”, and
“when does the scene take place?” In the presented approach, the composition of scenes
is interpreted as a linear order of time. Consequently, answers to when questions relate
to the position of the scene within the movie. Flashbacks or temporally resorted scene
structures as in the movie Pulp Fiction will have to be annotated by the analyst to refer
to the temporal order of the content itself.

Furthermore, the four aspects can be combined and descriptive features might be derived
to identify relevant scenes. Hence, a comprehensive approach to analyzing the content
of a movie should provide both, an overview of important descriptive features and
an integrated query interface to search for potentially interesting scenes with similar
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content. To define descriptive features, the data is interpreted on two different levels:
the image and the semantic level.

Image Level Movie content can be described by structural image and video features.
Quantitative measures, such as shot frequencies or motion vectors, can be applied
to compare time spans of a movie without providing much information to the four
questions discussed above. However, for analyses that consider, for example, stylistic
elements (e.g., camera motion), this is valuable information that is also used by most
retrieval systems.

Semantic Level The semantic level refers directly to the four questions mentioned
above. For a thorough analysis of a movie, the interpretation of what is happening is
crucial. Although some of the four questions might be answered with computer vision
(e.g., recognizing who is in a scene), the semantic gap [266] is a barrier that prevents
an analysis solely based on video content. To bridge this semantic gap, two additional
text-based data sources are included: the movie script and the movie’s subtitles. In
contrast to subtitles, a movie script contains not only spoken dialogs, but also scene
descriptions, information about locations, and typically a detailed list of characters in
a scene. Without the temporal alignment between the script and the final movie, the
semantic information can only be interpreted on a textual level. A comparison between
the movie script and the subtitles is applied to perform this alignment.

With visual analytics, it is possible to create an analytical environment that supports
knowledge discovery on multiple levels of abstraction, i.e., on an image and a seman-
tic level. By incorporating information from multiple text sources, valuable meta-
information about person constellations, scene descriptions, and semantic frames is
derived for movie scenes. In contrast to existing approaches, the analytical reasoning
process is supported by an iterative annotation and analysis concept. Explorative and
query-based analysis strategies are supported by multi-layer timelines that depict the
data on different levels of detail and allow to compare multiple scenes directly.

2.3.1 Related Work

According to a recent survey on video interaction tools [257], existing approaches can be
classified for video annotation, browsing/navigation, editing, recommendation, retrieval,
and summarization. The presented approach combines features from summarization,
browsing, retrieval, and annotation. One of the major issues to address is that many of
the summarization and retrieval approaches focus on automatic algorithms alone to
provide results, neglecting the human user. Answers to what the user wants typically
depend on the task and cannot be fit by a single retrieval model [310]. Combining the



28 Chapter 2 o Visual Support for Video Analysis

principles of visual analytics and multimedia analysis [84], the approach aims to ease
the investigation of movie content for various analysis tasks.

Video Summarization

Over the last decades, many systems were developed to browse large databases with
image and video content [152, 314]. For summarization of the video content, there are
representations by keyframes or short video skims that provide an overview of the
data and represent query results by video abstraction [190, 293]. A general overview of
video summarization techniques is given by DelFabro and Boszérmenyi [93] and Money
and Agius [213]. The latter ones differentiate between external, internal, and hybrid
summarization techniques. External techniques use information that is not derived
directly from the video stream, internal techniques use image, audio, and text features
directly related to the video. For example, Janicke et al. [163] analyze the audio structure
of movies to extract specific events and visualize them on a SoundRiver. Hence, the
presented approach can be interpreted as a hybrid: for internal summarization image-
(e.g., [104, 120]) and text-based (e.g., [191, 267]) techniques are applied, and for external
summarization, semantic information derived from the movie script is included. Audio
data is not included so far, but due to the generic approach, it could be included along
with other features without much effort.

Video and Text

The detection of scenes in a movie is typically performed in two ways: either by the
analysis of image/video content (e.g., [79, 189, 300, 306]) or by including external
information, typically text. The second approach is chosen due to the rich semantic
information provided by movie scripts. Wactlar et al. [267, 299] use textual term
frequencies along with audio and visual features to create video skims. Their approach
focuses on the creation of the skims for browsing video databases. However, interactive
incorporation of the human user for analysis purposes is not supported. Sang and
Xu [254] describe how to extract and summarize characters from the script and movie
data. The summarized data is also represented by video skims. Cour et al. [89] propose
a method to align video and movie script text, using closed captions as anchor points.
They depict extracted scenes and keyword search-queries by thumbnails as storyboards.
Lienhart et al. [193] describe a concept to combine visual and audio features to higher-
level operators, to formulate new queries (e.g., for finding commercial breaks). The
authors do not include textual information for semantic features.

The ideas of these approaches are extended by (1) increasing the scalability through
multi-level abstraction of extracted content information, (2) a more in-depth content
analysis by semantic frames, and (3) including the human user into the analysis process
through interactive annotation of query results.
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Video and Visualization

For a visual representation, basic techniques for video visualization [57] based on
timelines are applied. The content is abstracted on multiple layers with different levels
of detail (Chapter 2.3.4). Scenes and shots are depicted by timelines with color-coded
bars, indicating the presence of a feature over time. Keyframes, as in a storyboard
visualization, provide a glimpse into the movie content on the finest level. Similar
depictions of multivariate content information can be found in other work: Liu et
al. [196, 195] present a hierarchical framework for movie analysis based on interactive
combinations of features for search queries. The authors depict shots and scenes by
thumbnails. However, depicting only thumbnails can lead to scalability issues for
showing the content of a complete movie. Their approach is adapted to integrate
the expert user in the analysis process to answer questions concerning who (Wy),
what (W3), where (W3), and when (W4). With the multi-layer abstraction of results,
better scalability is provided considering the temporal depiction of multiple descriptive
features for a more efficient analysis of the movie.

Ponceleon and Dieberger [235] depict multivariate features of videos as a matrix on
multiple hierarchy levels or so-called movieDNA. Matrix cells display either binary or
quantitative information of a feature’s appearance by color coding. This concept is
adopted for the overview of selected features and fast navigation in the video. However,
the authors mainly focus on navigation aspects and do not include an advanced query
and annotation process for analytical reasoning. Schoffmann et al. [258] provide an
interactive system to browse and search multiple videos for similar content, based on
image and motion features. The authors do not include a comparison of content on a
semantical level. The approach in this thesis applies a similar depiction of motion over
time as one descriptive feature in the visualization.

Related to the presented work are systems for annotating videos (e.g., [134, 176]). These
approaches are typically generic, allowing the user to annotate time spans with self-
defined concepts, often not restricted to the video content only [114]. However, due to
this generic approach, the overview and navigation on unannotated time spans are less
supported, and the user has to annotate the data before it can be browsed efficiently.
The presented approach in this thesis aims to maintain the generality for annotation but
improves the possibilities to identify relevant events more efficiently without having to
perform a sequential search through the complete video.

In summary, this thesis presents a visual analytics approach that combines automatic
algorithms for text and video analysis with interactive visualization. It includes an
overview and details for query results to better analyze, compare, and annotate the
structure and content of movies.
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Figure 2.11: Pre-processing is performed automatically on the video and text data to provide
an overview of extracted low-level content. Analytical reasoning is then performed in a loop
by combining search queries and annotated element tags of different types (e.g., keywords,
similarities) to derive higher-level insights.

2.3.2 Visual Analytics Approach

To derive insights from movie content, an analytical approach is proposed that takes
advantage of automatic data processing to support the analyst. The reasoning process
is supported by an analytics environment that allows for an interactive investigation
and comparison of movie scenes. The analysis process is depicted in Figure 2.11.

Data Types In the current implementation, the data types relevant for the analysis
are the video itself, the corresponding subtitles, and the movie script. The first two
data types are typically available to the analyst. Movie scripts are available for a wide
range of popular movies. However, for specific movies, this data source might be not
obtainable. In these cases, the approach could also be applied, but without valuable
information about scene boundaries.

Data Pre-Processing As a pre-processing step, the data is analyzed automatically
to summarize information for visualization. Video (e.g., shot detection) and text (e.g.,
extracting scenes from the script) are processed separately and fused in a consecutive
processing step for alignment of scenes extracted from the script and the video.
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Visual Elements The result of the pre-processing is a set of elements that are in-
cluded in the visualization to provide answers to the relevant analysis aspects (W1-Wy).
The video itself provides the most detailed level of information and should always be
available in the visualization. The temporal dimension of the video is now segmented
by scenes and can be represented by an appropriate visual metaphor. Extracted element
tags (e.g., persons in a scene) convey relevant information about who (W1) appeared
when (Wy) in the movie. Semantic frames [113] are relevant because they provide
information about what (W3) and where (W3) something happened.

Analytical Reasoning The extracted information from the pre-processing step (e.g.,
scenes, characters) is presented in a visual analytics environment that provides an
overview of the data and allows the analyst to formulate search queries and annotate
the results for an iterative extraction and documentation of insights. The possibility
to search directly for extracted information (e.g., keywords) is included for single or
combined features, or a similarity search on textual and visual features can be performed.

Knowledge Extraction By combining search queries and including the annotated
results back in the analysis process, higher-level insights (e.g., identifying conflicts) can
be derived that provide the analyst with detailed knowledge about the movie.

In the following, it is further outlined how the pre-processing of video and text data is
performed, how the visual analytics environment is designed, and how the analytical
reasoning process is supported by the approach.

2.3.3 Data Pre-Processing

The accessed data is split into the two main categories of image-based and text-based
data. Optical flow calculation and shot detection are performed as described in Chap-
ter 2.1.2. The text-based information requires additional processing to retrieve semantic
content. The main motivation here is to fuse the data sources, harnessing the informa-
tion from both sources to complement each other.

Element Extraction Text-based data comes from two different sources: the subtitles
from the movie and a descriptive movie script. Figure 2.12 shows an example of how a
movie script section with various structural elements looks like. The () scene heading
describes the location and time of a scene, providing answers to the where and when
questions. For example, the abbreviation “Int” stands for interior and means that
the scene acts in a closed room, “Ext.” marks outdoor scenes. The (B) action element
describes the narrative description of the events of a scene. The next elements provide
information about the (C) acting characters and their (D) dialogs. Optionally, there are
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(A)[INT. CAR]

(8)[John drives the car and Barbara sits next to him.]

© (30

(D)(Two_more hours until we arrive.]

John looks at his wristwatch and shows it to Barbara.

BARBARA (®)

Yes, but you know mother cannot drive this
long to visit us.

Figure 2.12: Example of a movie script including: (A) heading, (B) narrative description, (C) char-
acter, (D) dialog, and (E) shot details.

extensions, placed after the character’s name, to indicate how the voice will be heard
onscreen. For example, if a character is speaking as a voice-over, it would appear as
“V.0, or if the character is not visible as (&) off-screen “0.S”. Movie scripts consist of
plain text and there are no standardized formatting rules. However, they have a similar
inherent structure, which allows automated processing of the script.

Text Alignment After the subtitles and the movie script have been successfully
parsed, the next step is to synchronize both. Comparing the two text sources, two
differences are apparent: the order of words or whole sentences can vary, and the script
can contain scenes that do not exist in the movie and vice versa. Natural language
processing methods are applied to extract the contained meta data and match between
the text sources. For matching, each subtitle is assigned to a script dialog according to
the highest similarity between text passages, based on string matching and the term
frequency—inverse document frequency (tf-idf) weighting scheme [251].

Scene Detection With shot detection, the first abstraction layer is derived from the
original video frames. The movie script contains the information which sentences
belong to a scene but has no temporal information. The subtitles contain sentences
with temporal information, but only for the time span they are displayed. Hence, the
shots are summarized into scenes, based on the matches between subtitles and movie
script, as depicted in Figure 2.13. The subtitle sentences are matched to the script so
the first and last time stamp of a scene can be identified based on the shot boundaries.

Semantic Frame Analysis In cases where not the same words are chosen to express
something semantically similar, an alternative measure is necessary. To achieve this,
semantic frames [113] are applied. Semantic frames are a concept from linguistics that
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#104
EXT. ROAD M
BARBARA 00:05:34-> 00:05:37 | | | I | |
Please turn on the radio. Snchronzaion  Oh, please turn on the radio. l

Scene Start

Figure 2.13: Data fusion for script/movie alignment: First, the script is matched with the
subtitles. The corresponding time stamp of the subtitle in the video helps then identify the
detected shot that marks the beginning of a scene.

describes prototypical situations described by words such as verbs, nouns, or adjectives.
This approach provides a set of such situations (e.g., shoot_projectiles) for each scene.
Comparing the overlap of two sets provides the second similarity measure.

The pre-processing provides a set of transformed data extracted from the raw data, the
so-called data tables, according to the visualization reference model [70] (Chapter 2.2).
For further details on the text processing, it is referred to the respective publication [25].

2.3.4 Analytics Environment

After the pre-processing stage, a set of visual elements is obtained that are incorporated
in the final visualization: the video, detected scenes, element tags, and semantic frames.
The main visualization consists of multi-layer timelines that represent this data on
different levels of detail. This structure corresponds to the inherent hierarchy of a
movie itself, from scenes to shots.

Visualization Design

The extracted elements are represented by individual timelines (Figure 2.14). A color and
a label are assigned to each element. For the depiction of search results and annotations,
this simple timeline visualization is proposed for two main reasons: (1) familiarity and
(2) visual scalability. A timeline visualization is easy to interpret, as it is established in
everyday life, e.g., in the form of schedules and requires only few screen space.

» Layer 1 shows segmented timelines according to the length of the corresponding
scenes. For scenes that could not be matched between the movie and the script, a
dashed rectangle with a fixed width is included in the timeline to indicate that
there is content relative to the previous and following scene matches.

» Layer 2 can be displayed for multiple selected scenes. In general, the selection of
a scene in Layer 1 creates a new layer that is stretched to screen width, enabling
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( Label ) [ Scene ) ( ElementTag ) ( Unmatched Scene )
Layer 1
Scenes

Layer 2

Shots
-~

)

Layer 3

Frames
|

[ Additional timelines from multiple selections in Layer 1 ]

Figure 2.14: Multi-layered timelines: each labeled element’s appearance in scenes is depicted
on an individual timeline in Layer 1. Selecting a scene creates a second layer that shows the shot-
based appearance of elements. The third layer depicts movie content directly by corresponding
frames. Selecting multiple scenes creates additional instances of Layer 2 to support comparisons.

a comparison of different scenes in relative time. In Layer 2, the segmentation of
the timeline is based on the detected shot boundaries.

» Layer 3 is an optional component that shows video content directly by example
frames in a storyboard representation. The depicted frames are uniformly sampled
from the corresponding time span.

In each timeline, element tags are displayed when the corresponding element appears in
a scene. In the simplest representation, this can be achieved by coloring the correspond-
ing part of the timeline. However, the visualization of timelines with rectangular shapes
provides the possibility to encode additional information inside the scene rectangles.
Figure 2.15 shows a set of possible visual encodings, suitable for numerous analysis
tasks. Categorical tags can depict simple characteristics such as the occurrence of a
person in a scene. Similarity tags depict the accordance of scenes with a selected one.
Distribution tags depict quantities that may change over time, for example, the mag-
nitude of motion over time. Event tags mark specific points in time when something
happened (e.g., the beginning of a shooting).

The implemented prototype includes three visual encodings to depict different proper-
ties of the processed data:



2.3 o Example: Visual Movie Analytics 35

0:00:00 0:45:00 1:30:00
| | | | | | | | | | | | | | | |

[ Categorial }

EraE o e

[ Distribution J

low I high

[ et || |ee ® © |e® |®» ¢ @ |®
() Conflict

Figure 2.15: A tagline visualization offers numerous possible encodings of relevant data.
Examples comprise categorial, similarity, distribution, and event tags.

Categorial/Occurrence Tags This kind of tag represents when an element appears
in a scene. Additionally, the height is adjusted to depict the relative frequency of an
element’s appearance. Consequently, if a person in a scene has many lines to speak, the
height of the occurrence tag will increase. If binary tagging is used, it shows whether
an element appears, or not.

Similarity Tags Based on the described similarity metrics for motion and text (Chap-
ter 2.3.3), the analyst can select a reference scene and compare it with the other scenes.
In this case, a new timeline with the resulting normalized similarities will be created.
For the depiction of the values, a sequential color map is applied.

Distribution Tags For the visualization of the extracted motion field, the average
length, and direction of the motion vectors is calculated and the values are displayed
on a separate timeline. The length of the motion vector is decoded by the height of the
bar, direction by color. Figure 2.16 shows three examples of different camera motions.
With this representation, similar panning and zooming motions of the camera can
be identified visually in the timeline. Although the focus of this work is more on the
semantic analysis of movie content, this feature is incorporated to provide a glimpse in
further possibilities for movie analysis and how simple they can be integrated.

Implemented Framework

Figure 2.17 shows an overview of the resulting analytical environment. At the top, the
(®) multiple timelines with the different tags are displayed. Selected scenes are stacked
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Figure 2.16: An example of a distribution/motion tag is the average motion over time calculated
from the optical flow. The color coding for directions makes different camera motions visible.

below Layer 1. To improve the vertical scalability in order to compare more scenes
at once, Layer 2 can be reduced to a (B) compact representation and also (C) Layer 3
can be removed. The (D) video player provides regular playback options for the video.
Additionally, the analyst can create new elements for tagging, annotate the appropriate
time spans, and write notes about specific findings. The (E) script viewer displays the
text of the script with additional annotations of element labels and reference matches
with the movie. In the list in the bottom-right corner, all (F) elements are shown. The
analyst is free to select the elements to display as needed. Also, query results and
manual annotations are appended to the list as new elements. In an additional list, all
extracted semantic frames can be selected for a query search.

2.3.5 Analytical Reasoning

With the multi-layer timelines (Figure 2.17), the user has the advantage to investigate
movie scenes in detail, while keeping the overview of all scenes available. However, to
analyze and explore the structure of a movie, more interaction concepts are required
than a static representation of scene timelines. Two main operations, identify and
compare, have to be supported by the system for exploratory data analysis [41].

Identify In general, the identification of relevant elements for the questions (W;—
W,) is important. Although a compact overview of individual elements is included,
the analyst should be able to filter the data and group elements that belong together.
To filter the data, queries on the extracted elements can be formulated. An additional
search for keywords in the script is also possible. Query results are represented as new
timelines integrated in the overview (Layer 1). By this approach, derived insight can
be assessed for further analysis.

Compare The second important operation is the comparison of task-relevant scenes.
Relations between scenes are typically investigated by similarities of certain aspects. Let
us assume the analyst identifies an important scene and wants to find other scenes that
are similar. In this case, an additional query dialog is provided that allows specifying
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Figure 2.17: Analytics environment: (4) Timeline overview (Layer 1) on extracted movie
scenes showing the appearance of individual element tags and the results from similarity
queries. & (B2) Details about selected scenes (Layer 2) are displayed on separate timelines.
(©) A storyboard representation of individual scenes (Layer 3) shows the movie content directly.
Two linked views, (D) the video player and (E) the script viewer allow for detailed content
analysis. (F) All defined elements are listed in the bottom-right corner.

the features on which the similarity between scenes can be determined. The dialog
currently offers three methods to compare scenes. One of them compares scenes based
on their motion histograms. The second method is based on the text similarity between
the scripts and the subtitle. Finally, the third method compares the semantic frames
of the scenes. Selecting multiple methods simultaneously aggregates the individual
results with equal weights. Detailed comparisons of multiple scenes are also possible
by multi-selections that will create new instances of Layer 2. The selected scenes can
then be compared visually.

With the application of search queries and scene comparisons, the presented approach
provides automatic mechanisms that aid to identify scenes of potential interest for a
wide range of possible analysis questions. An analyst can formulate different queries,
either based on specific knowledge (e.g., investigate all scenes with two important
characters) or look for similarities, based on a reference (e.g., investigate all scenes
that contain similar semantic frames as a selected scene). With the manual annotation
function, the analyst can finally note derived insights from the assessed data on new
timelines. An annotation can be performed by creating new element tags and marking
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the corresponding time spans. Since this new tag is included in the element list, it can
be used in new search queries for an interactive analysis loop (Figure 2.11). By this,
higher-level insights and content summarizations can be extracted from the data.

This concludes the example of visual analytics for videos. By combining multiple estab-
lished techniques from computer vision and natural language processing, an interactive
visualization framework was created that supports the annotation and interpretation
of movies. Further details and use cases are included in the publication [25].



CHAPTER

3

User-Based Evaluation of
Visualization

Effective visualization design is based on numerous factors. Along with best practice
advice, many design aspects are derived from theoretical frameworks with respect to
human perception and cognition. Nevertheless, evaluation is often necessary to provide
empirical evidence for the effectiveness and efficiency of a visualization. Evaluation
can be applied in different stages of development and deployment.

Typical scenarios in visualization research are divided into the evaluation of data
analysis processes and the evaluation of the visualizations themselves [182]:

» Evaluation of processes: The goal of such evaluation procedures is to provide a
holistic view of the experience and the role that visualizations play in an analysis
scenario. These scenarios comprise understanding environments and work prac-
tices, evaluating visual data analysis and reasoning, evaluating communication
through visualization, and evaluating collaborative data analysis.

» Evaluation of the visualization: For testing of design decisions and usability, as
well as for comparison with other techniques, the visualization itself is evaluated.
Typical scenarios in this category comprise evaluating user performance, user
experience, and visualization algorithms.

In the context of this thesis, both types of evaluation were performed. For the evaluation
of processes, often including questions about how and why some behavior is observed,
eye tracking provides new possibilities to gain insights in contrast to classic performance
studies. The evaluation of video visualizations in this thesis is focused on the techniques
themselves and on user performance.

This chapter provides a general overview of user-based evaluation methodology for
visualization (Chapter 3.1). Furthermore, evaluation techniques that are applied in the
context of this thesis are discussed, i.e., quantitative performance studies (Chapter 3.2),
interviews based on the repertory grid (Chapter 3.3), and eye tracking (Chapter 3.4).
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This chapter is partly based on the following publications:
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2017, pp. 6559-6568 [27]
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Visualization 15.4 (2016), pp. 340-358 [22]
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3.1 Methodology

The evaluation of visualization design has become increasingly important, including
different methodologies and guidelines when a method should be applied. Isenberg et
al. [161] review evaluation methods applied in visualization research, based on a coding
scheme by Lam et al. [182]. Sedlmair et al. [263] present a methodological framework
and practical guidance for conducting design studies. Brehmer et al. [61] discuss pre-
design empirical methods for information visualization. Munzner [214] provides a
four-level nested model for visualization design and validation. She also discusses
when different evaluation methods should be applied. This model was further extended
by McKenna et al. [207] and Meyer et al. [211]. In all these models and taxonomies,
quantitative and qualitative evaluation methods are listed to provide further insights
into the visualization design process.

3.1.1 Quantitative Evaluation

A typical example of quantitative evaluation in visualization is the analysis of user
performance. This performance is often measured through the number of errors and the
completion time a participant needs to solve a specific task. By comparing visualization
techniques, this measure provides empirical evidence if one visualization is better than
another under the experimental conditions.

The general experimental procedure is depicted in Figure 3.1. First, the research ques-
tion and appropriate hypotheses have to be defined. Independent variables mark the
aspects that are studied and manipulated to inspect their influence on the results. The
complexity of independent variables can become high, for example, in complex visual
analytics applications. Hence, typical laboratory studies focus on a low number of
dependent variables for precise results.
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Consequently, other factors have
to be eliminated or kept con-
stant. Dependent variables com-
prise observations and measure-
ments. These variables are investi-
gated for changes as a consequence
of manipulations on the indepen-
dent variables. The application of
statistics provides further informa-
tion on the influence of indepen-
dent on dependent variables, for
Result example, by statistical inference
(i.e., finding significant differences
between the results of two condi-
tions) and correlation analysis.
The validity of results can be compromised by issues concerning conclusion—, internal-,
construct—, external-, and ecological validity [72]. Conclusion validity pertains the
relation between independent and dependent variables. Typical issues arise from Type I
errors (false negative) and Type II errors (false positive) considering a null hypothesis
Hy (no difference between two measures). Internal validity describes the causality of
the relations. This is an important factor for correlation analysis where high correla-
tions might occur without a reasonable relationship between the measures (e.g., high
correlations between the stork population and human birth rate [205]). Construct- and
external validity concern the generalizability with respect to the intended question
(construct) and the applicability of the results to other groups/situations (external).
The ecological validity of study results is about the relation between the experimental
setting and a real-world application. One major issue of quantitative evaluation is
the fact that complete validity for all of the mentioned aspects is often not possible.
Experiments are usually designed to ensure conclusion validity by restricting the setting
to a small number of controlled variables. This contradicts a real-world application in
which numerous other factors can influence a study participant.

\ Hypothesis development /
Identification/control of indep.
variables, elimination of
complexity
Observation, measurement
of dependant variables

Application of
statistics

Figure 3.1: Experimental procedure for quantitative
evaluation, according to Carpendale [72].

In this thesis, quantitative analysis is applied for traditional performance studies. For
different video visualizations, participants identify specific search targets. Error rates
and the time between onset of a target until reaction are measured. The user studies
were conducted under laboratory conditions, excluding confounding factors in order
to measure the best possible gain of the investigated visualizations. Additionally, eye-
tracking metrics are applied for an extended analysis of how the participants’ gaze
behavior changes under different visualization conditions. Furthermore, not all aspects
of visualization can be measured with quantitative methods. If the evaluation aims to
better understand the user experience, subjective impressions, and analysis processes,
qualitative methods provide additional means to be included in a user study.
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3.1.2 Qualitative Evaluation

Qualitative evaluation comprises observation and interview techniques [72]. Obser-
vations are less obtrusive and often result in notes and recordings of a participants
behavior using a visualization. Interviews require the person leading the interview to
interact with the participant, providing a more target-oriented method where questions
can be asked directly, but possibly influencing the results. From the numerous methods
for qualitative evaluation, the work in this thesis focuses on think-aloud protocols,
questionnaires, and interviews. Qualitative evaluation is mainly conducted for expert
feedback on implemented visualization techniques.

Think Aloud This method [105] encourages participants to verbalize their thoughts
during the interaction with a visualization. Audio and written protocols are captured
and can be annotated with an appropriate coding scheme to help identify common
strategies or issues with the visualization. One issue with this method is that loud
speaking while solving a task is an atypical situation for most participants and their
workflow might be different to a real situation.

Questionnaires Questionnaires are capable of capturing subjective opinions on a
topic [225]. Qualitative feedback is often collected by free-text forms, or with Likert
scales [194]. The advantages of questionnaires are that for many visualization and
usability-related questions, standardized questionnaires exist (e.g., the Questionnaire
for User Interface Satisfaction (QUIS) [83]). Additionally, online surveys can be created
to collect a large number of participants’ opinions.

Expert Interviews Asking domain and visualization experts in an interview about
their opinion can help to identify flaws that were not considered by the person who
designed a visualization. As a specific type of interview, expert reviews [290] are often
applied in which visualization experts evaluate a design based on heuristics.

In cases where free-text reports are the result of the evaluation procedure, further anno-
tation of the data based on grounded theory [77] is necessary to identify commonalities
between participants. For questionnaires with Likert scales, this scheme is predefined,
but for all verbal statements recorded with these methods, one has to read through
the protocols and annotate the text accordingly. Hence, an alternative approach is
presented that provides qualitative research results in a structured, quantified form
(Chapter 3.3). As an example of the application of multiple evaluation techniques, Chap-
ter 6.2 describes a visual analytics approach for the annotation of eye-tracking data. The
approach allows one to solve annotation tasks in multiple ways. With a combination of
performance analysis, questionnaires, and think aloud, different analysis strategies and
their efficiency are determined.
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3.2 User Performance Studies

Evaluation based on user performance provides objective measures, typically in the
form of error rates and completion times. According to Lam et al. [182], the two types of
goals for such studies are: (1) Finding the limitations of visual perception and cognition
for visual encodings or interaction techniques and (2) comparing different visualizations
based on human performance. For the first case, experiments for the identification
of Just Noticeable Differences (JND) [275] are a popular method to identify thresholds
for visualization parameters that influence performance. For the second case, the user
performance for the different visualizations is compared. As an example of typical user
performance studies in controlled lab experiments, the video visualizations introduced
in Chapter 2.2 are evaluated. In both cases, it is important to find out if the visualization
impairs detection tasks, which are typically performed on such video material.

User studies were conducted to compare
how participants perform detection tasks
with the different visualizations. The task
for both studies is identical: A cartoon char-
acter (Figure 3.2) is edited into video mate-
rial from surveillance cameras and partici-
pants have to search for this figure. In the
fast-forward videos, the character appears
as an individual, in the attention-guiding
videos, the character fades in and out on
existing persons and in cars.

Figure 3.2: The cartoon character appears
multiple times and participants have to con-
firm each detection by pressing a button.

Fast-Forward Video Visualization In
measured effectiveness the fast-forward study, cartoon figures ap-

" o B - ‘ pear at fast playback rates, exacerbating
08y T - : s perfect detection rates for all video visual-

o 064 [ . & izations. Temporal blending and predictive
éi 0al : - . trajectories result in detection rates signifi-
5 2 cantly lower than with frame skipping and

027 - object trails (Figure 3.3). The results sup-
014 ' port the assumption that frame blending,
frame skipping temporal blending often applied as an alternative to frame

object trails B predictive trajectories skipping, impairs search tasks for video

surveillance. Although the detection rate
Figure 3.3: Performance for fast-forward vi- for predictive trajectories is reduced, the
sualizations [8]. subjective impression of perceived motion
is better than with frame skipping.
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measured effectiveness

1.01 e — - - ‘ Attention-Guiding Video Visualiza-
4 4 e = tion In contrast to the fast-forward

0.8 l : . o Vvideos, the stimuli are played back at regu-

v 0.6 - kK %  lar speed. The cartoon character fades in
g ' " and out, so participants have to overview
? 4l < all objects in the scene. Only the top-down
. % approach performs significantly worse
0.2 than the normal video representation

' (Figure 3.4). The performance in this task

0.0 is of less priority because the distribution
normal b1 roeed of gaze is the focus of this user study. The

o> grid gaze distribution is measured with eye

tracking and evaluated separately, see the

Figure 3.4: Performance for attention- respective publication [12] for details.

guiding visualizations [12].

Both examples provide insights into how video visualizations influence object detection
tasks. In cases where a technique impairs the task, a trade-off between performance
and other advantages (e.g., an even distribution of attention) has to be made.

In addition to the performance analysis, the attention-guiding video visualizations aim to
distribute the user’s gaze more evenly between the appearing objects. This is measured
with eye tracking. The bounding boxes, the top-down view, and the grid achieve a more
even gaze distribution. To collect information about the subjective experience with the
visualization, questionnaires were handed out. As an alternative qualitative evaluation
step, the repertory grid poses a good means to assess the individual experience.

3.3 Repertory Grids for Visualization

As a contribution to extending the set of methodologies for qualitative evaluation in
visualization research, the repertory grid is discussed in the following. The repertory
grid is an interview technique with its origin in psychology. It allows researchers to
quantify objective and subjective features in a setting that does not dictate specific
terms for rating. The interviewee is free to formulate individual opinions in a structured
grid. This chapter discusses the methodological approach of this technique, which has
been applied in numerous research fields, but, to this point, is rarely utilized in the
context of visualization design. The repertory grid technique is based on the personal
construct theory developed by Kelly [172]. This theory essentially says that how a
person construes the world depends on a large set of personal constructs that can be
expressed with bipolar terms. With the repertory grid technique, individual constructs
can be elicited and related to specific visualization features.
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Figure 3.5: Repertory grid technique applied to information visualization: (A) Construct elic-
itation by formulating bipolar terms to describe the visualizations. (B) Each visualization is
assessed according to the formulated terms. (C) Qualitative and quantitative analysis methods
provide insights into important factors for visualization design.

For example, Figure 3.5 (4) shows a set of visualizations used in a showcase interview.
The construct good comprehensibility — bad comprehensibility is elicited with two stream
graphs (good) and one visualization containing several pictograms (bad). (B) After elic-
iting constructs, each visualization is assessed individually. (C) The resulting matrix
can be analyzed, for example with clustering to identify commonalities between visual-
izations. Depending on the set of elements and the research questions, this technique
can be applied in different scenarios to evaluate visualization design. This chapter first
discusses the repertory grid and how it can be applied, followed by a general discussion
of the technique in the context of visualization. Due to its maturity as a methodology
and versatile applicability, the repertory grid has the potential to serve as a means of
evaluating visualization during the design and the application stage.

3.3.1 The Repertory Grid Technique

The assumption of the personal construct theory is that every person creates “own ways
of seeing the world” [172]. Construing the world is performed by building personal
constructs. These constructs can be expressed on bipolar axes with opposing terms on
both ends (e.g., ugly — beautiful), based on the assumption that whenever we affirm
one thing, we simultaneously deny another thing. Thus, an object cannot be beautiful
and ugly at the same time. To elicit these constructs, the theory is accompanied by
a methodological procedure (Figure 3.6). The repertory grid is a form of a structured
interview [115] that can help explore and formalize another person’s construct system.
In a conversation about the investigated topic, the interviewee formulates constructs to
assess the topic, while the interviewer tries to understand what the construct terms
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Individual terms and

Bipolar aspect to

Construct Elicitation
(e.g., triad selection)

describe elements
(e.qg., colorful-monochromatic,
trustworthy-unreliable)

topics of interest
(e.g., different designs, visualization
components, interaction concepts)

Relating all elements
to the constructs
(e.g., binary classifications,
comparisons, rating scales)

Figure 3.6: Procedure of the repertory grid technique. From a set of elements, constructs are
elicited and assessed on a scale.

mean to the interviewee. Initially developed for psychotherapeutic application, this
technique has been extended to numerous research fields since.

Elements According to Kelly [172], “the things or events which are abstracted by a
construct are called elements”. In the specific case of visualization, these can be different
types of visualizations, components of a visualization, or interaction techniques. The
interviewer either provides elements or the interviewee formulates them. Which
approach fits best depends on the research question. For an assessment of different
design approaches for a specific task, the interviewer provides the elements. For the
general exploration of design possibilities, questions are provided (e.g., “how would you
visualize multivariate data?”) and the interviewee decides on the elements.

Constructs In other approaches such as questionnaires or interviews with predefined
questions, the interviewer’s assumptions influence the results. Eliciting constructs from
the interviewee provides the possibility to identify aspects that are not expected by
the interviewer. Established methods for elicitation are the selection of dyads or triads.
Dyads require a selection of two elements and the interviewee states how these elements
differ. For the triad approach, three elements are presented to the interviewee and
(s)he has to name some aspect that two of them have in common. This is the term for
one pole of the construct. For the other pole, the interviewer either asks what makes
the third element different or asks for the opposite of the stated aspect. In general,
the following assumptions are made for elicited constructs [115]: (1) They should be
permeable, this means being applicable to new elements, as well as to the elements from
which the construct has been elicited. (2) Pre-existing constructs with a certain degree
of permanence will mainly be used; occasionally, new constructs could arise during the
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elicitation process. (3) Constructs should be labeled with communicable verbalizations;
the interviewer should discuss the meaning of labels with the interviewee without
implying specific answers.

Element Assessment Elicited constructs are already interesting to identify impor-
tant aspects of visualization, but the repertory grid further provides the possibility
to relate all investigated elements to the constructs. Different methods have been
proposed, most common are binary assignments of elements to one of the poles of a
construct, ranking, and rating of elements. For visualization, binary classifications are
appropriate for many aspects (e.g., temporal — nontemporal data), but some constructs
also require a more differentiated rating of elements (e.g., aesthetic — ugly).

3.3.2 Related Work

Since Kelly’s introduction of the methodology, the repertory grid interview was modified
and applied in many different application scenarios. Apart from its use in psychotherapy,
it was applied, for example, to management studies [74], product evaluation [117, 148],
software engineering [94, 101, 286, 287], information systems [208, 280], and design
studies in human-computer interaction (HCI). Since the latter topic is most similar to
visualization, the discussion is focused on related work in this context.

Repertory Grids in Visualization

Hogan et al. [147] discuss the elicitation interview, a qualitative technique for a non-
inductive but directive interview approach that requires additional coding (e.g., based
on grounded theory [88]). The important difference to the repertory grid is that
the elicitation interview aims to describe subjective aspects in the experience with a
visualization, explicitly avoiding judgments and rationalizations, whereas the repertory
grid technique provides a quantified representation of the relation between elicited
constructs and the investigated visualization elements. Other comparison methods for
visualization techniques apply a ranking of elements according to predefined criteria
(e.g., Lawonn et al. [183]). Similarly, a ranking scheme can be incorporated for repertory
grids by adjusting the assessment phase.

There is some work that either discusses repertory grids as a possible evaluation method
or applies it in a visualization context. Mayr et al. [206] discuss measures and evaluation
procedures for mental models. They list the repertory grid, together with sketching
and concept maps, as suitable for understanding content, structure, and coherence
of mental maps. Compared to the other mentioned techniques, the repertory grid is
more structured and provides quantifiable results that are easier to compare between
participants. Meng [210] mentions the repertory grid as a means to capture personal
preferences and personally perceived characteristics of geo-visualizations. McNamara
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and Orlando-Gay [209] apply comparison-contrast debriefing questions derived from
the repertory grid method to investigate how intelligence analysts analyze documents.
Baum [45] presents the application of the repertory grid in the context of aesthetics
criteria for software visualizations. The author focuses on the qualitative summarization
of constructs in a categorization scheme for software structures. Ab Aziz [32] evaluates
the user experience of visualizations for navigation purposes. She argues that analyzed
grid data can provide groupings of constructs for the classification of visualization
features, for example, to derive design guidelines.

The above papers are the first concrete examples of how the repertory grid can be
applied to visualization techniques. In contrast, this thesis discusses the general con-
siderations of the repertory grid’s application for visualization in detail, as well as
the possible application scenarios. Furthermore, a general comparison with other
established methods for qualitative research is provided.

Repertory Grids in Other Research Fields

Hassenzahl et al. discuss and apply the repertory grid technique for the evaluation of
the parallel design of prototypical interfaces [139] and websites [138]. Van Gennip et
al. [123] investigate the design space of technologies for supporting remembering, Métus
et al. [199] the aesthetics of interaction, and Kwak et al. [181] the design space of shape-
changing interfaces. Fallman and Waterworth [108, 109] examine the user experience
of using mobile information technology. Hogan and Hornecker [148] propose a blended
approach for repertory grids with focus groups, comparing visual, auditory, and haptic
interfaces. The authors focus on the categorization of elicited constructs and establish
clustering and projection methods to investigate the data. This categorization method
is adopted in this work for visualization-specific context, identifying overlaps and
differences between categories. This thesis also discusses how to further evaluate the
data with descriptive statistics and visualization-specific modifications of the method.

3.3.3 Visualization-Specific Requirements

Given the assumption that elements and constructs have a range of convenience [172],
it has to be considered how familiar interviewees are with a specific visualization. If
a person does not understand how a visualization displays underlying data, certain
constructs will not be applicable to elements or constructs will become superficial.
Therefore, an initial training phase for the applied visualization elements is important,
as well as a documentation of the interviewee’s subjective assessment of understanding.

Visualization inherently requires the inclusion of visual aspects in the interview. Ab-
stract concepts (e.g., multi-dimensional data representation) can be applied in the
context of visualization, but often the interviewee will require a visual representation
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of an element. If interaction and dynamically changing components are involved, a
simple textual representation is cumbersome to convey the required information about
elements to elicit meaningful constructs. Consequently, a visual interface for the con-
duction of a grid interview was developed to provide visual representations of the
elements, help with data collection, and provide grid data ready for analysis.

The random selection of elements for construct elicitation is also applicable to visualiza-
tion. However, especially for the exploration of the design space, it is important that all
included elements are involved in the elicitation phase. As systematic randomization
of dyad or triad combinations would require far too many participants, a modification
of the full context form [115] is suggested where all elements are available and the
interviewee can decide which elements to pick for a construct. With this approach,
counting the frequency of an element’s application provides potential information
about its significance (Was an element frequently involved in construct elicitation? Was it
related to positive or negative terms?). In order to cover all elements, the visual interface
indicates which elements have already been used and highlights unused elements.

3.3.4 How to Conduct the Interview

Conducting the grid interview can be learned quite quickly. Important steps are outlined
in Figure 3.7 for the conduction, analysis, and dissemination of the interview. Similar
to Hogan et al’s [147] description for the elicitation interview, five steps necessary to
conduct and analyze a repertory grid can be formulated. Furthermore, it is discussed
how documentation, computer support, and the interviewer influence individual steps.

Informed Consent

As with any other user-centered evaluation, participants have to be informed about
the conditions, restrictions, and confidentiality of the procedure. A static document
providing everyone with identical information is required.

Task Description, Tutorial

It is also important to make the interviewee familiar with the procedure, explaining
it in detail and how data will be acquired. If examples are provided, it is possible
that these examples might influence the type of elicited constructs [115]. Here, the
interviewer also has to specify the research question for the elicitation procedure. If
different visualizations are used, especially when comparing visualizations containing
multiple views, some time to familiarize the interviewee with the elements is necessary.
Because all information has to be provided consistently between interviewees, a static
document is the preferred means of communication.
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o Informed Consent

» Consider ethics and regulatory guidelines
for user studies.

» Provide the interviewees with information
about the interview procedure in general
and the possiblity to quit whenever they
feel uncomfortable.

o Task Description, Tutorial -

» Provide detailed information about the
interview (e.g., how to use the Ul)

» Clearly state the research question

» Provide examples of constructs (may
influence interviewee), test constructs

e Interview Procedure

» Provide elements or ask for elements
» Construct elicitation

» Guide the interview, but do not imply ==
certain answers
» Let interviewee assess all elements |.|
(4
Analyze with emipirical research
methods. Examples: D
» Categorization of constructs iocuo)
» Correlation analysis, intensity ®
» Clustering of elements and constructs |.|

Documentation of results, support
for qualitative interpretation:

» Descriptive statistics

» Visualization for matrix/clustering

> Projection methods
E Document D Con.1puter o Interviewer
Aided [ ]

Figure 3.7: Important steps to conduct,
analyze, and disseminate a repertory
grid. The icons indicate which steps are
conducted by a protocol document, with
computational/interactive aid, and with
guidance from the interviewer.

i0)

Interview Procedure

The repertory grid technique can be applied ac-
cording to the elicitation and assessment proce-
dure. The goal of the interview is to understand
how the interviewee construes the topic. Inter-
viewees are the experts for their subjective point
of view and interviewers are the experts for the
methodological procedure [116]. Therefore, the
interviewer has to guide the interviewee, help
elicit constructs by reminding about the rules,
and ask for the meaning of constructs. The inter-
view procedure is a social situation that requires
the interviewer to comply with some rules to
guarantee the freedom of articulation for the
interviewee [116]:

» Avoid contentual judgment: Negative
and positive assessment of stated constructs
(This is a very nice/bad term...) does not apper-
tain to the interviewer and has to be avoided.

» Avoid surrogate wording: Providing alter-
native terms (Did you mean ....7) undermines
the expert role of the interviewee. Instead,
the interviewer can ask for examples to help
articulate.

» Be open for corrections: The articulation
should be subjectively satisfying for the in-
terviewee. Different tryouts and revisions of
construct terms should be possible.

» Adjust to the tempo of the interviewee:
The time, especially during the elicitation,
can vary between interviewees. Some con-
structs come up spontaneously, others re-
quire time to think.

» Adjust to the mood of the interviewee:
Exhaustion, tiredness, and a changing state
of concentration during the interview might
require some breaks the interviewer should
be aware of.
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Furthermore, the interviewer asks for the specific meaning of terms to understand their
subjective meaning to the interviewee. To help elicit new constructs, laddering [115] can
be applied. With this approach, the interviewer asks the interviewee to further evaluate
on a pole of a construct (You have formulated the construct “beautiful — ugly”. What
exactly makes a visualization beautiful/ugly for you?), which leads to new constructs.
Asking for new constructs that explain why a term was chosen provides deeper insight
into potential issues of a visualization.

A grid interview can be performed simply with a pen and paper. An interactive,
digital version has some advantages over its analog counterpart: The collection and
analysis of data is simplified, measures such as completion times and use frequencies for
individual elements can be captured, information about the elements can be integrated,
a visualization can be explored in detail, and constructs, as well as ratings, can be edited
without effort.

Some software suites (e.g., GridSuite!, Idiogrid?) have been introduced to perform the
interview digitally. However, these applications are often only commercially available
or support a subset of the functionalities required for the application to visualization.
Hence, an open-source visual interface is provided, similar to a paper-based version of
the test including the advantages mentioned before.

Figure 3.8 shows how to apply the repertory grid with the developed interface. First,
the interviewee is asked to select two visualizations that have something in common by
drag-and-drop interaction (Figure 3.8a). Then, one visualization that differs is dropped
in the second area (Figure 3.8b). For both poles, verbalizations are entered in a text field.
The second text field is for documenting the meaning of the terms. The interviewer asks
specifically for explanations (What does this term mean to you?) that help understand
the subjective view of the interviewee. The repertory grid with all elicited constructs is
displayed on demand for the rating of elements (Figure 3.8c).

Analysis

The analysis of the captured grid data can be performed qualitatively and quantitatively.
One important first step is the summarization of the dimensions describing the design
space. Constructs can be categorized and counted to provide an overview of the
dimensions and their importance. To this point, this procedure requires the interviewer—
or optimally multiple analysts for inductive coding [284]—to interpret the similarities
between constructs. Here, the descriptions for individual terms are crucial to identify
how different interviewees interpreted the visualizations.

1 http://www.gridsuite.de, last checked: October 13, 2018
2 http://www.idiogrid.com, last checked: October 13, 2018
3 http:/go.visus.uni-stuttgart.de/repgrid, last checked: October 13, 2018
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(a) Selection of two elements that have some- (b) Selection of one element different from
thing in common. the previously selected.

(c) The repertory grid can be displayed on demand, elements are rated according to the defined
constructs.

Figure 3.8: Visual interface for conducting a repertory grid interview.

Descriptive statistics on the grid data can be generated automatically and typical matrix
analysis methods such as clustering and correlation analysis can be applied. Multidi-
mensional scaling [170] and Principal Component Analysis (PCA) [230] are established
methods to help interpret construct dimensions. Further information can be found in
Fransella et al. [115] and Fromm [116], providing a general overview and discussion of
how to interpret grid data.

Dissemination

For the dissemination of the results, documentation is the main way of distribution.
Categorization tables, matrix visualizations, and two-dimensional projection methods
are established methods to support statistics. Statistical software like R* provides basic
visualization techniques for repertory grids. Since the resulting data is a quantity
matrix, additional visualization techniques for such data could be potentially helpful to
communicate insights. For example, Onoue et al. [223, 224] present a graph layout that
is suitable to analyze the hierarchical structure of constructs resulting from laddering.

* https://www.r-project.org/, last checked: October 13, 2018
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Table 3.1: Comparison of qualitative evaluation methods. The criteria are rated as (O) not
supported, (©) partially supported, and (@) supported for each method accordingly.

No Extra Quantitative Comparability Objectivity Exploration
Coding Analysis
Observations @) O © © [ ]
Think Aloud @) O © © [ ]
Questionnaire [ ) o o [ O
Expert Review @) O © [ ] (@)
Repertory Grid © (] © © ([ ]

A showcase interview that exemplifies the elicitation and analysis of a repertory grid is
discussed in the respective publication [19]. It is compared how experts and non-experts
describe important visualization aspects based on objective and subjective criteria.

3.3.5 Comparison with other Qualitative Methods

Qualitative studies are often conducted as part of the design process to derive design
and evaluative criteria. Based on the qualitative evaluation approaches discussed
by Carpendale [72] (Chapter 3.1.2), the repertory grid is compared with methods
typically applied in experiments with a similar purpose (Table 3.1). The criteria consider
how coding is handled, if direct quantitative analysis is possible from the data, how
comparable results between participants are, to which degree objectivity of the results
is possible, and if an exploration of the design space is supported by the method.

No Extra Coding Post-test open coding is often necessary to systematically catego-
rize the content of observations or verbal statements (e.g., statements from a think-aloud
session). This is often one of the most time-consuming parts in the analysis proce-
dure. In comparison, a questionnaire based on Likert scales is designed with a specific
coding scheme in advance, restricting answers to the determined aspects. The main
advantage of the repertory grid lies in the coding scheme that is directly established
during the test. Structuring expressions according to the rules of the method, provides
constructs that can be summarized into concepts, or construct categories, more easily
than interpretations of verbal statements.

Quantitative Analysis Most of the qualitative approaches require an additional
coding phase to structure and count specific aspects of the participants’ statements.
The structure of the repertory grid provides quantitative results. Not only countable
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constructs but also element assessments from participants are immediately available
because the rating scheme is often identical with Likert scales in a questionnaire.

Comparability The standardization of answers, necessary for a direct comparison
between participants, is only attainable with a questionnaire. All other methods require
coding of answers to compare them. In the repertory grid, coding is performed by
the participants and the interviewer identifies groups of constructs. With the other
approaches, protocols have to be interpreted and coded by the interviewer to achieve a
similar degree of comparability.

Objectivity Observations, think-aloud protocols, and repertory grids include sub-
jective results, resulting from the interviewee’s statements and the interviewer’s in-
terpretations. With the use of heuristics, derived from studies and expert knowledge,
objectivity can be increased, primarily in questionnaires and expert reviews.

Exploration The detection of unexpected aspects of a visualization is an important
feature for the exploration of the design space. In comparison to questionnaires and ex-
pert reviews, the other techniques support this exploration by putting fewer restrictions
on the terms how participants can express their opinions.

Although a questionnaire supports the majority of the mentioned aspects (Table 3.1),
it lacks options for exploration. In practice, multiple techniques (e.g., think aloud and
questionnaires) are often applied together to combine the presented aspects. However,
due to their different structures, merging the resulting findings requires additional
effort. The repertory grid provides comprehensive results for all mentioned aspects.
Additionally, the elicited constructs can be applied to derive new elements for a ques-
tionnaire. In summary, the repertory grid introduces a structured scheme for the results
that other methods can only achieve by extensive coding of observations or recordings
after the experiment. The element assessment with respect to the elicited constructs
allows quantitative analysis that is otherwise only achievable by questionnaires with
Likert scales. The interviewee is free to formulate individual opinions, which supports
the exploration of design aspects without the restrictive properties of the questionnaire.
Hence, the advantages of the repertory grid render it a versatile tool for the application
in the design process.

3.3.6 Application Scenarios

Munzner [214] describes the design process by four nested layers: domain problem
characterization, data/operation abstraction design, encoding/interaction technique
design, and algorithm design. Arising threats can be validated by immediate and
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downstream approaches. The repertory grid can be integrated into multiple stages of
this model, for exploration and validation purposes, except for algorithm design.

Domain Problem Characterization A new visualization has to address the appro-
priate problem. As mentioned by Munzner, immediate validations are mostly qualitative,
including semi-structured interviews and grounded evaluation [160]. The repertory
grid interview fits in this category and has also been applied for requirements analysis
in other fields [219, 220]. Possible scenarios could provide a set of important aspects
as elements, or let the target user define important elements that specify the prob-
lem. For example, the interviewee is asked to state a set of important analysis tasks
a visualization should support for a dataset. Incorporating these tasks as elements in
the grid interview might provide further insights into their relevance for the domain
problem. Downstream validation is achieved by letting the user rate the same grid from
the immediate phase after the deployment of the visualization.

Data/Operation Abstraction Design Identifying if the chosen operations and data
types solve a problem properly is, according to Munzner, mainly restricted to down-
stream validation because target users must test a system first. The repertory grid can
be applied as a downstream validation, helping the user structure experiences with a
system, and it can help formulate and quantify insights for a specific analysis task (e.g.,
using different levels of data aggregation or filtered datasets as elements).

Encoding/Interaction Technique Design Visual encoding is the stage with the
most useful application of the repertory grid because it supports expert reviews and
decisions based on guidelines. Different visualization designs can be used as elements
and design guidelines formulated as constructs to help a visualization designer justify
the decisions in a structured, replicable way. As another example, different visualization
designs can be compared with respect to their suitability to solve the identified relevant
analysis tasks from the domain problem characterization stage.

To this point, the focus was mainly on the investigation of commonalities of the in-
terpretation of visualization design between participants. However, in cases where
multiple techniques can be applied to solve a problem, individual differences in experi-
ence and other factors exacerbate decisions that declare one visualization technique as
generally better than another. Hence, an application scenario respecting the individual
preferences of a user is worthwhile inspecting.

Visualization Recommendation System If the repertory grid is regarded as the
personality test it originally was, the application as a recommendation system for
visualization is conceivable. For a set of visualization designs and an analysis task,
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individual preferences might be different. One user prefers Scatterplot Matrices (SPLOM),
the second parallel coordinates, the third a glyph approach, and so on. If a pool of
constructs is available from earlier interviews, the user can either perform a rating of
the grid or select personally important aspects to identify the best-suited visualization.
Although for some users this might be a clear choice in the first place, the repertory
grid helps them structure the reasons why they prefer one visualization over another.

In summary, the methodological approach of the repertory grid interview provides new
means for evaluation in the context of visualization. This approach can be applied in
multiple stages of the design and deployment of new visualization techniques. Due to
the relatively small number of required interviewees to cover the majority of constructs
of a domain, the repertory grid is suitable to evaluate rapid prototypes and design
concepts, but it is also useful in later stages of evaluation. The interview can provide
insight into possible design flaws, acceptance of techniques, and it helps explore the
design space for specific visualization problems. The individual freedom of interviewees
to formulate constructs can reveal potential objective and subjective factors that should
be considered when designing a visualization. Elicited constructs can be used to design
questionnaires for new studies on the topic.

3.4 Eye Tracking for Visualization

In addition to the established methods for quantitative and qualitative evaluation, the
inclusion of eye tracking became popular over the years. Known from applications in
psychology and marketing [99], the eye-tracking methodology was adapted in other
research areas such as visualization. As mentioned in the beginning of this chapter,
evaluation beyond regular performance analysis requires methods that provide more
information on task-solving processes during the use of visualization. Statistics of
measured gaze data provide detailed information about which part of a visualization
was investigated for how long, how often participants switched between different areas,
and if important parts have been ignored. Furthermore, investigating recorded gaze
data as spatio-temporal sequences provides insights into visual task-solving strategies
which is otherwise hard to achieve.

3.4.1 Foundations of Eye Tracking

One important assumption for the analysis of gaze data is the eye-mind hypothesis [169]
derived from experiments on reading behavior. It states that what people look at has
a strong correlation to what they think of. While this assumption has some limita-
tions, e.g., for cognitive retrieval processes [37], it is commonly accepted for most
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(a) remote eye tracker (b) eye-tracking glasses

Figure 3.9: Eye-tracking devices used in this thesis: (a) remote eye tracker for showing stimuli
with constant conditions; (b) eye-tracking glasses for mobile applications.

application scenarios. Hence, detected fixations in gaze data are often interpreted as an
approximation for visual attention.

The recording of gaze data, typically accompanied by mapping the gaze to a specific
coordinate system (e.g., monitor coordinates) is achieved by different devices, nowadays
often with video-based detection systems. All these systems have in common that a
video image of the eye is recorded and computer vision is applied to detect the pupil
and the orientation of the eye. Figure 3.9 depicts two video-based devices that are used
to record the data for this thesis:

» A remote eye tracker (Figure 3.9a) attached to a monitor records gaze data for
scenarios in which participants watch or interact with stimuli under controlled
conditions. For the data presented in this thesis, remote eye tracking is mainly
applied to present videos. Data recorded with such an experimental setting results
in an easier comparison between participants than with data from mobile devices.

» Mobile eye-tracking glasses (Figure 3.9b) count into the category of head-mounted
devices. In addition to cameras that recorded the eyes of a participant, a world
camera covers the current field of view onto which the gaze can be mapped.
Wearable devices ease the application for unconstrained real-world experiments,
but the data is difficult to analyze due to the high variability between recordings.

Next, some basic terminology is introduced, before it is discussed how eye tracking is
included in evaluation methodology and what it is used for in visualization research.
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Terminology

Recorded and mapped raw gaze data is further processed to detect a set of common
types of eye movements: fixations, saccades, glissades, smooth pursuit, microsaccades,
tremor, and drift [149]:

Fixations A fixation summarizes a time span (200-300 ms) when the eye remains
relatively still. Although micro-movements happen, the respective gaze points are
usually summarized for this time span. Fixation detection is supported by most software
suites provided by the hardware vendor. Detection algorithms are often based on spatial
or velocity thresholds [253].

Saccades Between consecutive fixations, the eye performs rapid jumps to adjust
the gaze to a new position. It is assumed that people are temporarily blind during
a saccade. Post-saccadic eye movements that adjust the eye to the target are called
glissades. The typical duration of a saccade is between 30-80 ms. Due to their increased
speed, saccades are easier to detect with high sampling rates of the recording device.

Smooth Pursuit Smooth pursuits happen in situations when the eye follows a mov-
ing stimulus, for example, an object in a video. The detection of smooth pursuits for
eye-tracking hardware with different sampling rates is still an important research topic.
The investigated data in this thesis recorded from video is visualized with raw data, if
not stated otherwise, to maintain the visual structures of smooth pursuits.

Microsaccades, tremor, and drifts are summarized as micro-movements that are not con-
sidered in the context of this thesis. Furthermore, some additional terms are repeatedly
used in the following chapters:

Scanpath In the following chapters, the full sequence of fixations and saccades is
referred to as scanpath. Since the applied detection algorithms are based on the detection
of fixations, saccades are approximated by the spatio-temporal gaps between fixations.

Area of Interest Semantic regions on a stimulus can be annotated as Areas of Interest
(AOIs). With AQIs available, comparisons between participants become easier because
the scanpath is further abstracted to sequential visits on different AOIs. The annotation
of AOIs is a time-consuming step in the analysis process that requires human input. An
automatic solution of this task is only possible in a few scenarios (e.g., in marker-based
environments [232, 233]).
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User Study Data Analysis

Research Question

Stimulus Standard Statistical
Information Vis. completion time descriptive
Scientific Vis. error rate inferential
Visual Analytics protocol analysis modeling

Task Eye Tracking

spatio-temporal data
physiological data

explorative search
visual analytics

Dependent Variables

search & report
interpretation

Cognitive Models

Figure 3.10: Evaluation pipeline depicting a regular laboratory experiment (gray) with visual-
ization. Eye tracking is easily integrable into the procedure (blue).

Independent Variables

Eye tracking can be included in many established evaluation procedures. For standard
desktop visualization systems, a remote eye tracker requires only minor effort to
calibrate before the experiment. Even collaborative scenarios can be solved by using
multiple head-mounted eye trackers. In the following, the integration of eye tracking
in evaluation methodology is further discussed.

3.4.2 Including Eye Tracking in Evaluation Methodology

Embedding eye tracking into existing evaluation procedures can be achieved without
significant changes on the procedure itself. A typical user study for visualization tech-
niques is described by the pipeline in Figure 3.10 (gray parts). A controlled laboratory
experiment is assumed, even though many aspects carry over to other variants of
user studies. The visual stimuli and choice of tasks serve as independent variables of
the study. In this context, different visualization techniques and/or variations of one
technique provide the basis for the visual stimuli. The task often requires the user to
search and report certain aspects, or interpret the stimulus. The performance with the
task is assessed in the form of dependent variables. The data acquired through the
dependent variables is analyzed, eventually leading to conclusions regarding the study.

With eye tracking, the evaluation pipeline is extended (Figure 3.10, blue). The recorded
gaze data provides additional dependent variables, in particular, spatio-temporal in-
formation about the participant’s viewing behavior or physiological data by the pupil
diameter, which can be an indicator of cognitive load [36, 177]. In visualization and vi-
sual analytics systems, the analyst is typically confronted by a difficult task that consists



60 Chapter 3 e User-Based Evaluation of Visualization

of several stages and subtasks, demanding interaction with one or more visualizations.
Consequently, the traditional error rates and completion time variables are insufficient
for a thorough analysis of viewing behavior.

This thesis targets the upper part of the pipeline from Figure 3.10 for the classical
evaluation of visualization techniques. For future evaluation of visual analytics, the
more complex distributive cognitive system that includes the user and the machine needs
to be assessed as well. To this end, cognitive modeling of the user has to be considered
in future work. Cognitive models will have an influence on the task design and the
stimuli, which will have to fit the properties of the underlying models. Additionally,
the cognitive models will influence the data analysis in both directions, as models can
be derived as well as be evaluated with data analysis. With raw and processed gaze
data available, the analysis of viewing behavior can be separated into two different
approaches: statistical and visual analysis.

Statistical Analysis

An important class of analysis approaches is based on eye-tracking metrics computed
from the (pre-processed) gaze data. With AOIs, fixation data can be mapped to the
areas and individual statistics can be calculated for each AOI The common eye tracking
metrics can be separated into three categories, according to Poole and Ball [237]:

Fixation-Derived Metrics Fixations with or without AOI information can be pro-
cessed. A common metric is defined by the number of fixations per AOIL which indicates
the relevance of the AOI for the participants. To compare the distribution of attention
between AOIs, the sum of fixation durations may be used.

Saccade-Derived Metrics The characteristics of the saccades may indicate the qual-
ity of visual cues in the stimulus or the extent of visual searching. For example, large
saccade amplitudes can indicate meaningful cues that draw the attention from a distance,
or a high frequency of saccades could come from much visual searching. Therefore,
saccade-derived metrics can serve to indicate difficulties with the visual encoding.

Scanpath-Derived Metrics The scanpath consists of the full sequence of fixations
and saccades. Therefore, scanpath-derived metrics can acquire information about visual
reading strategies or pinpoint specific problems with the visualization design during
the task. The transition matrix is the common approach to analyzing transition patterns
between AOQIs, albeit it does not represent the full sequence but only the collection of
pairs of fixations from the sequence.
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Once values from any of these metrics are available, statistical methods are applied
directly, including inferential or descriptive statistics as well as statistical modeling.
Therefore, these metrics can serve as a basis for hypothesis testing.

Eye-tracking data contains much more information than represented by the above,
aggregated metrics. Statistical analysis can also be applied to data that is closer to the
original gaze data. In particular, statistical modeling to predict and classify scanpaths
on stimuli provides a promising approach for a more complete analysis of visualization
stimuli. Here, one issue is to generate the appropriate model for the scanpath (e.g.,
define important AOIs) and employ the appropriate statistical methods. In this context,
one can use data-mining techniques such as scanpath clustering [124], layered hidden
Markov models [90], or measures for the similarity between aggregated scanpaths [129].
Additionally, the evaluation of the participants’ experience and gain of insight plays
an important role [221]. From this perspective, other quantitative measures derived
from eye tracking (e.g., cognitive load [177]) could help quantify complex cognitive
aspects [36]. The metrics summarized in this chapter are just the most common that
can be found in the evaluation procedures for visualization. For the evaluation of
visual analytics, some metrics provide valuable information, such as the distribution of
attention between multiple views, but none of them alone captures all the cognitive
processes that are involved. Therefore, cognitive models for visual analytics will be
required. Which metrics are suitable for the application to visual analytics and the
development of new models is still an open research topic.

Eye-tracking metrics have to be interpreted with caution because they can be ambiguous
indicators for certain characteristics of cognitive or perceptual processing. In fact, they
provide a rather coarse and aggregated perspective on a participant’s viewing behavior.
Hence, metrics are best accompanied by complementary indicators such as visualization.

Visual Analysis

Visualization complements statistical analysis by providing confirmatory and addi-
tional insight into the data by exploratory search, helping with hypothesis building,
or presenting analysis results [261]. The same is true in the case of eye-tracking data
analysis. In particular, visualization is a good means of examining the spatial, temporal,
and spatio-temporal aspects of the data [4].

The most common visualization techniques are heat maps (Figure 3.11a) and gaze
plots (Figure 3.11b). Heat maps display the spatial distribution of eye-tracking data
on a stimulus. The data can be aggregated over time for one participant or multiple
participants. Although heat maps can provide a good overview of important AOIs on
a static stimulus, the temporal component of the data is lost. In contrast, gaze plots
provide a spatio-temporal perspective on fixation sequences and can be investigated to
identify potential reading strategies. With increasing length of the scanpath, or with
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(a) heat map (b) gaze plot

Figure 3.11: Standard methods for visual analysis: (a) The heat map shows the aggregated gaze
distribution of multiple participants. (b) Gaze plots depict the scanpaths of individuals.

scanpaths from multiple participants, the visualization becomes cluttered and hard to
interpret. Alternatively, transition matrices are applied to analyze gaze patterns but
lack the interpretation of longer transition sequences (beyond just pairs of fixations).
In summary, the traditional visualization techniques are well prepared to provide a
qualitative picture of the gaze distribution aggregated over time (heat maps) or of the
short scanpath of a single participant (gaze plot)—both for static stimuli. In these cases,
they can also be used for eye-tracking experiments with visualization or visual analytics,
in particular, for exploratory data analysis and hypothesis building.

Scanpath Comparison

One important question for eye-tracking analysis considers how similar the viewing
behavior between participants is. A typical example is the comparison of experts and
novices [164]. For such comparisons, the combination of algorithmic processing and
visualization for the interpretation of results is efficient. Established approaches to
determine the similarity of two scanpaths can be separated in either trajectory-based
or AOI-based methods [38].

Trajectory-Based Comparison

Based on the sampled gaze data, several metrics can be derived. For example, fixation
overlap and spatio-temporal correlation of gaze points are automatically computable
without AOIs. Furthermore, scanpaths and geo-trajectories have many properties in
common. Both consist of a temporal sequence of locations, either on a visual stimulus
or in real-world coordinates. Due to this similarity, comparison methods applied to
geo-trajectories can also be used for gaze data. Techniques such as Dynamic Time
Warping (DTW) [47] and the Fréchet distance [35] are two popular examples that have
been applied for scanpath comparison.
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As an additional approach, this thesis compares image-based metrics derived from
attended stimulus regions with the established metrics (Chapter 5.3.3), contributing a
novel approach for scanpath comparison without annotation [10].

AOI-Based Comparison

Methods based on AOQIs all utilize a string representation of scanpaths. String edit-
ing methods such as the Levenshtein distance [187] and the Needleman-Wunsch algo-
rithm [216] are popular approaches to compare scanpaths. Furthermore, methods based
on the gaze distribution and on pairwise transitions between AOIs are applicable for
comparing viewing behavior [15] (Chapter 5.2.2).

» Sequential: Levenshtein’s algorithm calculates a distance between two strings
by counting edit operations to transform one string into the other. These edit
operations are (1) insertion, (2) deletion, and (3) substitution of a character. In
the Needleman-Wunsch algorithm, this approach is extended by a weight matrix
to penalize edit operations differently. The Levenshtein-based similarity measure
focuses on local and temporal coherence of the scanpath strings and penalizes
similar object transitions that have a low temporal correlation.

» Gaze distribution: The second similarity measure puts no emphasis on tempo-
ral coherence and focuses on the gaze distribution of each viewer. This measure
aggregates the overall gaze distribution of each participant on the AOIs by count-
ing the number of video frames during which a participant was looking at the
respective AOL It then normalizes this value with the maximum of all AOIs.
To quantify the difference between the resulting attention maps the squared
difference between each of the components is calculated, which is normalized
with the overall number of AOIs and subtracted from 1 to obtain a normalized
similarity value. A similar measure for the attention map difference for still
images is mentioned by Holmgqvist et al. [149].

» Transitions: The third similarity measure focuses entirely on pairwise transi-
tions between AOQIs. Similar to the gaze distribution method, a transition matrix
is calculated for each participant. In addition to the transition between two AOIs,
two special states are added: the initial and the final state. This has the effect
that the initial and the final AOI of a scanpath are incorporated in the measure.
Each of the values of the transition map is normalized by the maximal number
of transitions for a pair of AOIs. Again, the similarity is quantified by the sum
of squares of pairwise differences in normalized transition frequency, which is
normalized with the overall number of pairs of AQOIs.
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(a) regular subtitles (b) speaker-following subtitles

Figure 3.12: Regular subtitles are presented at the center-bottom of the screen. Speaker-
following subtitles are displayed with speech bubbles sensitive to the current speaker’s position.

Eye-tracking analysis provides numerous challenging research questions, especially
the ones involving video stimuli and many participants. To address these questions,
neither statistical nor visual approaches are sufficient on their own. Consequently, this
thesis contains improved visual analytics approaches (Chapters 5, 6), combining both
aspects to advance the current state of the art in eye-tracking analysis.

To further exemplify how a classical eye-tracking experiment looks like, a user study
conducted in the context of this thesis is briefly discussed [27]. It examines the influence
of an alternative subtitle layout for videos on the user’s gaze distribution.

3.4.3 Example: Evaluation of Subtitle Layouts

Subtitles in multimedia such as movies and TV shows are important to communicate
content for hearing-impaired persons and as an affordable method to translate infor-
mation into other languages (see also Chapter 2.3). Established approaches present
subtitles at the center-bottom of the screen (Figure 3.12a). This position leads to a high
visual angle between the subtitle text and the image content, i.e., the current speaker.
As a consequence, people watching a video with subtitles constantly have to switch
their focus between text and image, leading to increased eye strain and higher chances
to miss important content.

This issue is addressed by speaker-following subtitles [153], a technique that displays
subtitles sensitive to the presented content (Figure 3.12b). Incorporating automatic
speaker detection and positioning constraints, it is possible to rearrange subtitle text
in speech bubbles close to the speaker, similar to representations in comic books. As
a contribution to this thesis, a user study was conducted that compares how viewing
behavior changes between regular and speaker-following subtitles [27].
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User Study

The user study was conducted, applying eye tracking as an objective measurement of
gaze distribution, and a questionnaire to evaluate the subjective impressions of the
participants. The study summarizes the results of 40 participants (17 female, 23 male)
with an average age of 23 years.

The participant’s task was to watch 10 videos (between 1-3 minutes) with alternating
layout and summarize the content after each video was over. This task served as
motivation to read the subtitles and all participants were able to recapitulate the content
in 2-3 sentences. To ensure that all participants would solve the task by reading the
subtitles and not by listening, the audio track was removed from the videos.

The study was designed to investigate six hypotheses derived from a preliminary pilot
study. Within the scope of this example, two of the hypotheses are discussed in detail.
Please note that for this example, the numbering of the hypotheses has been changed.

H; The average saccade length for regular subtitles is higher. This results
from the distance between text and image. When participants switch between
text and image, they have to overcome longer viewing distances. Longer saccades
(increased amplitude) are an important factor in causing fatigue effects.

H; The average fixation count on faces is higher with speaker-following
subtitles. With subtitles being close to the speaker, the participants can better
focus on the image content. As a consequence, the fixation count on the speaker
should increase.

Results

The results (Figure 3.13) support both hypotheses. With significant differences in
saccade length between the layouts, hypothesis Hy is supported. The viewing angle
between subtitles and important image content is decreased with the speaker-following
subtitles. Also, the subjective impression of the participants was that they could
investigate the content better with speaker-following subtitles. Considering the fixation
counts on AOIs showing subtitles and faces, significant differences could be found
that support hypothesis Hz. Vice versa, a significant decrease of fixations on subtitles
was identified for the alternative layout. The speaker-following subtitles change the
gaze distribution in favor of the image content. This means that participants spent
more attention on the scene, as they would if they were watching a movie with regular
subtitles. Their subjective impressions also reflect that fact. Although less attention was
spent on the subtitles, the participants did not have the impression that the readability
was impaired in the alternative layout.
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(a) Average saccade length (in pixels): speaker-  (b) Average fixation count on faces: speaker-
following (median = 157.0, mean = 156.1,sd =  following (median = 88.0, mean = 88.6, sd =
18.5), regular (median = 188.0, mean = 187.4,  31.9), regular (median = 54.0, mean = 58.0, sd
sd = 24.9). Significant difference according to = 26.3). Significant difference according to U-
t-test (t(398) = -14.3, p < 0.01), H; supported.  test (U=9269, N =200, p < 0.01), Hy supported.

Figure 3.13: Resulting boxplots of the measures for (a) saccade length and (b) fixation count.

(a) regular subtitles (b) speaker-following subtitles

Figure 3.14: Heat maps of approximately 10 seconds of a video. (a) Regular subtitles show
many gaze points on a horizontal line at the bottom (2); the face (1) is investigated occasionally.
(b) Speaker-following subtitles show fewer gazes on the text and the two hot spots are closer.

To support the statistical results by visualization, Figure 3.14 shows two heat maps that
depict how the gaze distribution changes for one shot with respect to the subtitle layout.
Regular subtitles show a typical horizontal pattern for text reading at the bottom. For
speaker-following subtitles, this horizontal extent is reduced and consists of fewer gaze
points. The heat maps summarize only a short time span of the investigated video.
To visualize the change of gaze distribution over time, an alternative visualization is
necessary. Chapter 5.1.3 presents this data in a space-time cube, showing that the
depicted heat map patterns are representative for the general viewing behavior.

This concludes the example of a classical evaluation for eye-tracking data. The inves-
tigated subtitle layouts pose a common visualization issue related to label placement.
The next section discusses other scenarios in visualization and related research where
eye tracking was applied.
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Figure 3.15: Histogram of all 368 publications from visualization and related communities.

3.4.4 Eye-Tracking Evaluation in the Visualization Community

This chapter aims to provide an overview of the current application of eye tracking in
visualization research, which is important with respect to the second research question
on how to leverage eye tracking to evaluate visualization techniques. Furthermore,
future research directions for the evaluation of complex visual analytics frameworks
are discussed. Based on a systematic review of publications from the main journals and
conferences on visualization [22], as well as related fields from HCI and eye tracking,
an increasing number of papers including eye tracking as an evaluation methodology
was discovered. Note that also publications in the visualization community exist that
apply eye tracking for interactions with applications. These papers investigate how
gaze data can be used as an input device, e.g., to replace mouse input. Figure 3.15 shows
a histogram of all investigated publications, displaying the increasing importance
of this research field. The surveyed publications investigate different visualizations.
Based on the established statistical and visual analysis methods for eye tracking data, all
publications contain at least one of the aforementioned methods. Hence, the approaches
can be summarized, based on the investigated metrics. Three main approaches to
evaluate visualizations are identified: evaluating the distribution of visual attention,
evaluating sequential characteristics of eye movements, and comparing the viewing
behavior of different participant groups.

Distribution of Visual Attention The investigated visualizations are static node-
link graphs [156, 217], matrices [174], parallel coordinates [265], 3D meshes with various
rendering styles [175], and different user interfaces [277]. For dynamic stimuli, eye
tracking is applied to measure the distribution of attention on objects with different
video visualizations [12], and to create perceptual motion blur for rendered scenes [274].
The visualization techniques are compared by fixation metrics for the attention on
different regions to investigate how the techniques are perceived and to identify possible
usability issues. Heat maps are applied to visualize the spatial distribution of attention
on the stimuli and support the statistical results. The majority of these publications
investigates the spatial distribution of attention directly on the stimulus. If applied,
AOQIs are defined for rather coarse regions on the screen (i.e., multiple views). For
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visualizations that contain small regions of interest (e.g., nodes in a graph), the definition
of AOIs can be difficult since the accuracy of current eye tracking hardware might be
insufficient to retrieve such small areas. Therefore, the person evaluating a study of a
complex visual analytics system has to decide if it is reasonable to investigate small
visual components or to consider a coarser scale (e.g., individual views).

Sequential Characteristics of Eye Movements The analyzed stimuli include node-
link diagrams [65, 67, 157, 167], linear and radial charts [126], and visualizations
with multiple coordinated views [128, 290]. In addition to fixation-related metrics on
AOIs, the transition frequencies between AQOIs with transition matrices [67], transition
graphs [290], and visual scanpath analysis [126] were analyzed to gain insights into
how users investigate a visualization (e.g., as an explanation for a decrease in task
performance). Also, gaze analysis by visual analytics was applied to identify reading
strategies in tree diagrams [65]. As mentioned above, the definition of AOIs in complex
visual analytics systems might be problematic but is often necessary to perform most of
the analysis related to sequential characteristics. For multiple views, the view itself can
be considered an AOL but also the content of a view could contain multiple AOIs. For
such complex structures, the definition of hierarchical AOIs [2] could be considered to
investigate the behavior between and within different views. Since many visualizations
consist of rendered content with known geometry, the definition of potential AOIs
based on this content can be considered.

Comparison Between User Groups The visual stimuli in this category are vir-
tual character models [46] and cross-sectional medical images [270]. Complementary
to the previous two points, the distribution of attention between different groups is
investigated. Group comparisons are performed between healthy and mentally dis-
ordered persons, or between novice and expert groups. Comparisons are based on
a statistical analysis of AOI fixation metrics [46] or visual comparison of gaze point
distributions [270]. For visualization analysis tasks, the expertise of a participant also
plays an important role. For the application to visual analytics, one point that should
be considered more in the future is the influence of the visual span of participants. For
example, Reingold et al. [240] investigate the viewing behavior of chess players with
different levels of expertise. As a result, they observe that novice players fixated more
on individual pieces, whereas expert players have a greater proportion of fixations
between chess pieces, indicating a larger visual span to investigate more pieces at
once. For visualizations, this behavior needs to be investigated in more detail. As a
consequence of an increased visual span, the accuracy of the eye-tracking device is less
problematic, because a much larger area on the screen with potential AOIs has to be
considered. Approaches that count fixation hits on AOIs might not be sufficient for
evaluations with expert participants. Therefore, an uncertainty factor could be applied
to distribute the visual attention between potential AQOIs.
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These eye-tracking studies mainly rely on the statistical analysis of AOI-based fixation
metrics. The main focus of these studies is on static visualizations where the definition of
AOIs is less complicated than with dynamic content. As discussed, the proper definition
of AOIs and the influence of the visual span are two important points that have to be
considered during the design process of a study. If performed, visual data analysis is
often limited to the investigation of heat maps and gaze plots. For the identification
of visual reading strategies, more advanced visual analytics techniques are applied.
However, none of the above studies investigate the full sequence length of scanpaths
or any complex spatio-temporal characteristics of eye tracking for dynamic stimuli,
let alone any cognitive aspects related to the mixed-initiative distribution of cognition
in visual analytics. Considering the applied hardware, the main part of the studies is
conducted with a remote eye-tracking system, which should be sufficient for studies
with one participant. In collaborative scenarios, for example, a visualization expert
working with a domain expert, the application of wearable eye-tracking glasses for each
expert are required to capture eye movements from both participants. In addition to
these important points, related communities are inspected to obtain further inspiration
of how eye-tracking evaluation of visual analytics might be performed in the future.

Related Communities

Publications of the Conference on Human Factors in Computing Systems (CHI) and
the Symposium on Eye Tracking Research and Applications (ETRA) provide extended
evaluation methods using eye tracking. Technically, not only video-based eye tracking,
but also electrooculography and head tracking are applied to estimate a participant’s
point of regard. Because these approaches are of limited suitability for an application
to visual analytics scenarios, this survey focuses on the video-based systems.

In the CHI literature, eye tracking is applied for two main reasons: hands-free interac-
tions with computers and for usability testing. Evaluations mainly focus on websites,
text, and graphical user interfaces. Also, gaze behavior during driving simulations, on
mobile devices, and in code programming is investigated several times.

The ETRA literature contains publications with similar research because various authors
publish work at both conferences. Investigated stimuli comprise those from CHI with
more work investigating videos and photographies, as well as artificial stimuli from
psychological research. The evaluation of standard metrics can be found in most of
these publications. In addition to these metrics, further purposes and approaches were
presented to analyze eye-tracking data. Those could also be beneficial for the evaluation
of visualizations.
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Cognitive Modeling and Machine Learning Eye-tracking data is analyzed to infer
statistical models to predict and classify human behavior. Examples comprise research
to identify time spans of visual search and reading behavior, as well as visual saliency
models that predict regions of interest in interactive environments [68, 102, 151, 231,
252]. Similar approaches can also be found in smaller numbers in the visualization
community [142]. Such models could also be applied to visual analytics. A predictive
model could influence the design process of a system, telling the developer how the
layout of visual components could be optimized. Additionally, it could be used during
the analysis to guide attention to relevant parts of a visualization.

Correlation of Gaze and Mouse Data Another important aspect of usability eval-
uation with eye tracking is to find out how mouse input and visual attention work
together in different scenarios and tasks. The main focus of these publications is on the
interaction behavior with websites [130, 155]. The application to complex graphical
user interfaces such as visual analytics systems is limited to a single publication [54]
and will provide a challenge for future research.

Pupil Dilation Measurements Physiological data from pupil dilation is often avail-
able from the recorded eye-tracking data. The identified work on this topic considers
the data as an indicator for cognitive load, arousal, and vigilance [159, 227, 229]. A
direct application of these measurements to other stimuli seems reasonable, but to this
point, such evaluation procedures are seldom in the visualization community [112].

Retrospective Think Aloud As a variant of think aloud, eye-tracking data is in-
cluded in a retrospective analysis (RTA) [103, 131]. Gaze data is either displayed to
the participants as visual cue during the replay of their task performance or applied
to check the validity of protocols. Although this combination still requires further
investigation, a general application of the RTA method to a visual analytics context
might be a good approach to produce reliable results, since eye-tracking data and task
performance are influenced by the think-aloud method if performed during the task.

CHI and ETRA publications contain much more work on the sequential analysis of
scanpaths. Here, the quantitative analysis of common transition sequences between
AOIs and similar scanpath patterns is also applied for the analysis of viewing strategies.

Future Directions

With the availability of cheap eye-tracking hardware and its ease of use, there are no
longer any technological obstacles for using eye tracking in user-based evaluation; in
particular, in controlled laboratory studies, gaze data can essentially be recorded for
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free, along with any traditional study procedure that aims to test task performance.
Therefore, the big overall challenge is to make sense out of the eye-tracking data and
relate this data to something we want to learn about the visualization tested and the
cognitive processes involved. As discussed before, there are already several examples
of eye-tracking studies in visualization: they mostly work with statistical analysis of
aggregated data, for well-defined hypotheses, and with traditional visual analysis by
heat maps and gaze plots. In fact, many other laboratory studies could adopt these
approaches to testing and data evaluation, adding a better understanding of reasons for
task performance. Therefore, the general recommendation is that eye tracking should
be considered as a testing method whenever a laboratory study is planned and designed.

However, the real value of eye tracking goes beyond what is possible now. Based on the
reflections on the state of the art, relevant directions for future research on evaluation
methodology are discussed, beginning with more technologically oriented research
questions asking for short term action, and ending with long term grand challenges.

Study Design

The study design for future evaluation procedures in visual analytics will have to con-
sider some changes for the applied stimuli and tasks. The visual stimuli (i.e., interactive
visual analytics systems) should include the possibility to produce data to identify AOIs
on the screen. Given that the rendered content is known, dynamic changes of position
and size of a visual component can be tracked and logged. This preparation step will
help increase the efficiency of the evaluation. The study design should already consider
the granularity and type of potential AOIs. For future research, the classical task perfor-
mance analysis will not be sufficient to evaluate the insight gain of a participant using
a visualization or visual analytics system [221]. Referring to the evaluation pipeline
(Figure 3.10), this means that the task section will significantly differ from classical
performance analysis. New classes of tasks will be required that are less restrictive than
classical search & report tasks. Approaches that leave more freedom to the participant
to explore a dataset increase the difficulty for the evaluation later on. In addition to the
qualitative, open-ended protocol approach suggested by North et al. [221], the analysis
of eye-tracking data, for example, the identification of reading strategies, could provide
a quantitative component on the way to measure insight.

Exploratory Data Analysis and Hypothesis Building

Statistical methods can be applied once clearly defined hypotheses exist and an eye-
tracking experiment was set up accordingly. The interesting question is how such
an eye-tracking experiment can be designed, in particular, for the complex visual
representations and tasks in applications of visualization and visual analytics. Here,
great potential lies in improved data analysis methods that could work on eye-tracking
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data acquired in less constrained preliminary studies. Visual analytics will certainly
play a major role here [40], in particular, for the complex spatio-temporal nature of
the eye-tracking data and the (dynamic) stimulus data, and by combining data mining,
statistical, and interactive visualization methods.

Scanpath Comparison One analysis aspect is most relevant, albeit difficult: im-
proved scanpath analysis. So far, the studies in the visualization community focused
mainly on the spatial aspect of the recorded gaze data. Temporal aspects of the data,
such as AOI sequences, provide important information about reading strategies but
were often neglected entirely or only partially covered through transition matrices.
More work in this field was performed in related communities, often applying algo-
rithms for statistical analysis. For a full understanding of common scanpath patterns, a
combination of automatic algorithms for processing these patterns and visualizations
for interpreting the patterns could be the best solution. Therefore, better visual analysis
techniques for long sequence information are required. Because gaze plots tend to cause
visual clutter with an increasing number of participants and scanpath length, a visual
comparison becomes problematic with standard approaches. Hence, a visual analytics
approach seems to fit best for analyzing eye-tracking data recorded from using visual
analytics systems.

Data Fusion A third aspect is the combination of eye-tracking data with additional
time-oriented data. For example, the temporal evolution of the dynamic stimuli needs
to be understood to build the context for the gaze data. Or, the eye-tracking data
can be combined with information about logged interactions such as mouse or key-
stroke data, to obtain deeper insights into the usability of interactive visualization
and visual analytics systems. The evaluation of interactive systems solely based on
gaze data and performance measurements might lack details for a full interpretation
of the participants’ cognitive processes. Continuing the preliminary work from other
communities, the fusion of multiple data sources (e.g., eye tracking with interaction
logs [3, 52]) could provide this missing data for the interpretation. In the field of
visual analytics, in which evaluated systems are often far more complex than simple
menus and websites, this approach opens a new research field were only a few works
exist to this end. Another trend is to include other physiological measures into an
eye-tracking experiment. For example, electroencephalography (EEG) measures can
already be included in the software suites of known eye-tracking vendors. Including
such measures could help to understand the interrelation between these components.
Because pupil dilation is already recorded by many eye-tracking devices as an additional
measurement, current research from other communities could also be applied for the
evaluation of visual analytics and visualization techniques. For example, in long testing
sessions when using a complex analysis tool, participants could get tired and time spans
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when they just stare at the screen might occur. During these time spans, long fixations
would be identified without any cognitive processing of the participants. Hence, a
temporal measure for vigilance and cognitive load would increase the reliability of the
gaze analysis afterward.

Evaluation Tools A practical aspect is concerned with making the newly developed
analysis methods available to other researchers. Reflecting a general discussion in
the visualization community, disseminating codes, tools, and systems is necessary so
that improved analysis can be adopted quickly. One way is to have advanced analysis
methods included in professional software by the vendors of eye-tracking hardware;
however, this approach might not always work due to the latency in the software
development process and because not all visualization-related analysis problems will
be sufficiently relevant for the broader eye-tracking audience. Therefore, there should
also be dissemination of software (prototypes) developed, including complete analysis
systems but also partial codes.

In conclusion, eye tracking becomes increasingly important as a means for evaluation
in many areas, including visualization research. The high complexity of gaze data
recorded from dynamic stimuli such as videos requires new approaches for an effective
analysis of data from multiple participants. Hence, the following chapters will discuss
how visualization and visual analytics can provide such approaches and present the
technical contributions of this thesis for the analysis of eye-tracking data.






CHAPTER

4

Visualization of
Eye-Tracking Data

The previous chapter mentioned eye tracking as a means for the evaluation of visual-
ization and visual analytics. Vice versa, visualization and visual analytics help interpret
gaze data from user-based evaluation. The main contributions in this thesis focus on the
development of new techniques to support a better understanding of eye-tracking data,
especially in the context of dynamic stimuli. Based on extensive literature review, the
state of the art for the visualization of gaze data is surveyed and a taxonomy is derived
under the aspects of common analysis tasks [26] and technical aspects of visualization
approaches [1, 4].

This chapter discusses eye tracking in the context of the visualization pipeline (Chap-
ter 4.1). It further presents a taxonomy for eye-tracking visualizations (Chapter 4.2),
derived from the current state of the art. The techniques developed in this thesis are
categorized with respect to the taxonomy (Chapter 4.3). Furthermore, the technical
contributions in this thesis are mainly presented with a benchmark dataset (Chapter 4.4)
for eye tracking and visualization.

This chapter is partly based on the following publications:

« T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and T. Ertl. “State-of-the-Art of Visualization for Eye
Tracking Data”. In: Proceedings of EuroVis State of the Art Reports. 2014, pp. 63-82 [1]

« T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and T. Ertl. “Visualization of Eye Tracking Data: A
Taxonomy and Survey”. In: Computer Graphics Forum 36.8 (2017), pp. 260-284 [4]

« K. Kurzhals, C. F. Bopp, J. Bissler, F. Ebinger, and D. Weiskopf. “Benchmark Data for Evaluating Visualization and
Analysis Techniques for Eye Tracking for Video Stimuli”. In: Proceedings of the Workshop Beyond Time and Errors:
Novel Evaluation Methods for Visualization (BELIV). 2014, pp. 54-60 [20]

+ K. Kurzhals, M. Burch, T. Blascheck, G. Andrienko, N. Andrienko, and D. Weiskopf. “A Task-Based View on the Vi-
sual Analysis of Eye-Tracking Data”. In: Eye Tracking and Visualization — Foundations, Techniques, and Applications
(ETVIS 2015). Ed. by M. Burch, L. Chuang, B. Fisher, A. Schmidt, and D. Weiskopf. Springer, Cham Switzerland, 2017,
pp. 3-22 [26]
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Figure 4.1: Extended visualization pipeline for eye-tracking data: The recorded data passes
multiple transformation steps before knowledge is extracted. Each step from data acquisition,
processing, mapping, interpretation, to gaining insight is influenced by the analysis task.

4.1 Eye-Tracking Visualization Pipeline

From a data perspective, eye-tracking recordings primarily consist of spatio-temporal
information, optionally enhanced by the semantics of the stimulus and complementary
data sources. The visualization reference model can be interpreted in the context of
gaze data. From the data acquisition to the extracted knowledge from the data, the
analysis task influences the choice of appropriate visualization techniques.

The procedure from conducting an eye-tracking experiment to gaining insight can be
generalized in the form of a pipeline (Figure 4.1) that is an extended version of the
generic visualization reference model (Figure 2.7). The acquired data consists of eye
movements and complementary data. It is processed and optionally annotated before
the visual mapping step. As discussed in Chapter 2.2, by interacting with the data and
the visualization, two loop processes are started: a foraging loop to explore the data
and a sensemaking loop to interpret it and to confirm, reject, or build new hypotheses
from where knowledge can be derived [234]. For all steps, the analysis task plays an
important role, determining which actions to take and which visualization fits best.

Data Acquisition

Eye tracking combines several data dimensions. It comprises dimensions directly
stemming from the recorded eye movements (raw gaze, physiological measures) and
additional data sources serving as complementary data that can help achieve more
reliable analysis results when combined with gaze data. The displayed stimuli are an
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additional data source that is often included in the analysis. Other data sources provide
complementary data such as verbal feedback, EEG data, and keypress protocols. The
analysis task defines how the experiment is designed and which data will be recorded.
Most scenarios predefine also the visual stimulus. Exceptions are, for example, in-the-
wild experiments with mobile eye tracking where it becomes more difficult to control
the experiment parameters.

Processing and Annotation

From the time-varying sequence of raw gaze points, more data constructs can be
derived in a processing step. Automatic data-mining algorithms are applied to filter and
aggregate the data. Clustering and classification are prominent processing steps. For
example, raw gaze points are clustered into fixations and labeled. As another example,
the convex hull of a subset of gaze points can be extracted to identify AOIs automatically.
In general, the annotation of AOIs plays an important role in this step. Especially for
video sequences, this annotation is a time-consuming step that often takes more effort
than the rest of the whole analysis process. Recorded protocols and log files are derived
from the additional data sources. It should be noted that each additional data source
requires synchronization with the recorded gaze data, which can be difficult considering
different sampling rates and not regularly sampled data (e.g., think aloud) [3]. The
processed data is finally mapped to a visual representation.

The analysis task influences what filters are applied to the data and what AOIs are
annotated. For explorative scenarios in the context of visual analytics, the visualization
and the processing are tightly coupled in a foraging loop, where the analyst can identify
relevant data artifacts through interaction with the visualization.

Mapping

The mapping step projects the analysis data to a visual representation. According
to the introduced taxonomy (Chapter 4.2), the main categories of state of the art
visualization techniques for eye tracking are spatial, temporal, and relational data
representations. Therefore, this task categorization follows a similar scheme and
appropriate visualizations are selected according to the main data dimension that is
required to perform the corresponding task. It may be noted that only a few visualization
techniques for gaze data also take into account the additional data sources for an
enhanced visual design in order to explore the data. Those data sources may build
meaningful input for sophisticated data analyses if they are combined with gaze data.

The analysis task plays the most important role in choosing the appropriate visualization
technique. In the foraging, as well as the sensemaking loop, the visualization has to
convey the relevant information and should provide enough interaction supported by
automatic processing to adjust the visualization to the specific needs of a task.
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Interpretation

Two strategies can be distinguished for the interpretation of the visualization: (1) Ap-
plying visualization to support statistical measures and (2) performing an explorative
search. In the first case, hypotheses are typically defined before the data is even
recorded. Therefore, inferential statistics are calculated on appropriate eye-tracking
metrics, providing p-values to either support or reject hypotheses. Here, visualization
has the purpose to support these calculations additionally. In the second case, the
explorative search, hypotheses might be built during the exploration process. Filtering
and re-clustering data, adjusting the visual mapping and reinterpreting the visualization
can lead to new insights that were not considered during the data acquisition. This
explorative approach in the context of eye-tracking studies is particularly useful to
analyze data from pilot studies. Building new hypotheses, the experiment design can
be adjusted and appropriate metrics can be determined for hypothesis testing in the
final experiment. The interpretation of the data strongly depends on the visualization.

With a single visualization, only a subset of possible analysis tasks can be covered. For
an explorative search where many possible data dimensions might be interesting, a
visual analytics system providing multiple different views on the data can be beneficial.

Gaining Insight

As aresult of the analysis process, knowledge depending on the analysis task is extracted
from the data. As discussed before, this knowledge could be insights that allow the
researchers to refine a study design or conduct an entirely new experiment. In the
cases where visualization has the main purpose to support statistical analysis, it often
serves as dissemination of the findings in papers or presentations. In many eye-tracking
studies, this is typically the case when inferential statistics are performed on metrics
and heat maps are displayed to help the reader better understand the statistical results.

4.2 Taxonomy

With respect to the presented visualization pipeline, a taxonomy is derived to classify
existing techniques. Accordingly, the two main categories separate task-related and
technical aspects of a visualization (Figure 4.2). Task-related aspects consider the possi-
ble research question a visualization tries to answer. The technical category comprises
aspects of the gaze data, the visualization, and the stimulus. Both categories comple-
ment each other and are essential for the choice of an appropriate technique to address
a research question. However, a single technique often provides answers to multiple
questions and is therefore difficult to categorize from a task-related perspective. Hence,
the tasked-related categories are discussed first, including examples of appropriate
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Figure 4.2: Main categories of the taxonomy of visualization for eye tracking, consisting of
task-related (orange) and technical categories (blue).

visualization techniques. Then, the technical categories are discussed. These categories
were applied to survey the current state of the art.

4.2.1 Task-Related Categories

The visualization pipeline for eye-tracking data (Figure 4.1) shows the steps in which
analysis tasks play an important role. For the experienced eye-tracking researcher, the
first two steps—data acquisition and processing—are usually routine in the evaluation
procedure. In the context of this chapter, mapping is the most important step in which
the analysis task has to be considered. When the analysis task is clear, the chosen
visualization has to show the relevant information. Hence, a categorization of analysis
tasks is necessary to help with the choice of an appropriate visualization. The main
properties of the involved data constructs are discussed as well as typical measures
for these questions. To provide a systematic overview of typical analysis tasks, the
three independent data dimensions (following the questions discussed in Chapter 2.3)
in eye-tracking data are:

» Where? For these tasks, space is the most relevant data dimension. Typical
questions in eye-tracking experiments consider where a participant looked at.

» When? Tasks in which time plays the most important role. A typical question
for this dimension is: when was something investigated the first time?

» Who? Questions that investigate participants. Typical eye-tracking experiments
involve multiple participants and it is important to know who shows a certain
viewing behavior.

With these three independent dimensions, visualizations is applied to display dependent
data constructs (e.g., fixation durations). Since many visualization techniques are not
restricted to just one of these dimensions but facilitate different combinations between
them, categories are discussed with the techniques where the name-giving dimension
can be considered as the main dimension for the visualization.
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Additionally, the data is related to general analytical operations that can be found in
other taxonomies (e.g., the KDD process [111]):

» Compare: Questions considering comparisons within one data dimension.
» Relate: Questions considering relations between data dimensions and constructs.

» Detect: Questions about summarizations and deviations in the data.

This categorization is based on the surveys written in the context of this thesis [4,
22] and the work of Andrienko et al. [40]. An overview of current state-of-the-art
visualization and visual analytics approaches for the analysis of eye-tracking data is
presented after the task categorization.

Where? — Space-Based Tasks

Typical questions considering the spatial component of the data are often concerned
with the distribution of attention and saccade properties. Statistical measures such as
standard deviations, nearest neighbor index, or the Kullback-Leibler divergence provide
an aggregated value about the spatial dispersion of gaze or fixation points. If a saccade
is interpreted as a vector from one fixation to another, typical where questions can also
be formulated for saccade directions. With AOIs, measures such as the average dwell
time on each AOI can be calculated and represented by numbers or in a histogram.

Space-based tasks for dynamic stimuli, such as videos and interactive user interfaces
require a visualization that takes the temporal dimension into account, also considering
the changes of the stimulus over time. With AOIs, questions about when and where are
tightly coupled. An example of a visualizations with focus on spatio-temporal analysis,
i.e., a space-time cube [16] is presented in Chapter 5.1.2.

When? — Time-Based Tasks

Gaze data has a spatio-temporal nature often demanding for a detailed analysis of
changes in variables over time. Questions in this category typically focus on a certain
event in the data (e.g., smooth pursuits) and aim at answering when this event happened.
Considering the detection of specific events over time, many automatic algorithms
can be applied to identify these events. Automatic fixation filtering [253], for example,
calculates when a fixation started and ended. For semantic interpretations, AOIs are
included to answer questions when was what investigated.

Without AOI information, the visual analysis of the temporal dimension is rather limited.
Statistical plots over variables such as the x- and y-component [125], or acceleration of
the eye can provide useful information about the physiological eye-movement process.
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However, combined with the semantic information from AOIs, visualizations help to
better understand when attention changes appear over time. Timeline visualizations
are a good choice to answer questions related to this category. Chapter 5.2.2 discusses
an approach where multiple timelines for different AOIs are stacked on top of each
other [15]. Colored bars on the timelines indicate when an AOI was visible. Alternatively,
this binary decision could also be applied to depict whether a participant looked at the
AOI [273, 303]. In general, timeline representations depict an additional data dimension,
allowing one to combine relevant data its temporal progress.

Who? - Participant-Based Tasks

Typical questions raised when looking at recorded participants’ data can be categorized
into those concerning only a single individual or a larger group of people. Inspecting
the viewing behavior of participants provides insights into the visual task solution
strategies applied by them [65]. Generally, most visualization techniques for multiple
participants work fine also for an individual participant. Comparisons are facilitated
by similarity metrics. To interpret the results, a visual scanpath representation that
supports the similarity measure is helpful. For visualization, timelines for individual
participants with color-coded time spans can be created, commonly known as scarf
plots [15, 242] (Chapter 5.2.2).

Compare

Comparison, in general, can be seen as one of the elementary analysis operations per-
formed during the evaluation of eye-tracking experiments. In fact, statistical inference
is calculated by comparing distributions of a dependent variable. However, inferential
statistics can only provide the information that a difference exists. To identify what the
difference between the conditions is, a visual comparison is usually a good supplement
to the statistical calculations.

Comparison tasks are typically supported by small multiples visualizations. An example
of such visual comparisons can be found in a seminal eye-tracking experiment conducted
by Yarbus [312], in which participants investigated the painting The unexpected visitor.
To compare the different viewing behavior during alternating tasks, the resulting gaze
patterns were depicted by rudimentary gaze plots, allowing an easy interpretation of
how the task influenced the eye movements. A more direct and supportive way to
perform comparison tasks is by the principle of agglomeration. In this concept, two or
more data instances are first algorithmically compared and the result is encoded in a
suitable visual metaphor, for example with a dendrogram. This approach was applied
in multiple techniques presented in this thesis (Chapters 5.2.2, 5.3.1).
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Relate

In most analysis scenarios, not only a single dimension is in the research focus. Correla-
tions between data dimensions in eye-tracking research are often analyzed statistically,
while the interpretation of the data can be achieved visually. Typical examples are
scatter plots or parallel coordinate plots.

Investigating relations between AOQIs is another important analysis task. Relations
between AOIs are often examined by counting transitions between them. Transition
matrices or Markov models provide valuable insights into the search behavior of a
participant [149]. Alternative techniques for showing relations between elements are
graphs and trees. A transition graph depicts AOIs or meta information about AOIs
as nodes and transitions as links [53]. Trees are typically used to depict the sequence
of transitions [2]. These trees can also be used to visually compare the sequences of
different participants and depict common strategies in a visual form [13, 294, 307]. A
tree-based approach to analyze sequential visits of AOIs is discussed in Chapter 5.2.3.

Detect

Detecting patterns of common viewing behavior is often achieved by summarization of
the data. Calculating the average fixation duration, the variance of saccade amplitudes
or the mean scanpath length are some examples. Box plots are typically used to
represent these values and depict outliers as a simple-to-understand graph. Summaries
can be created for the raw data points, for aggregated data using AOIs, or for the
participants. Some visualizations are specially designed, or suitable, for detecting
outliers and deviations in the data. Here, timeline visualizations [129, 24] showing one
data dimension over time can be applied. As an alternative, an image-based technique
for this task is presented in Chapter 5.3.1.

AQIs may also be used to find deviations in the data. For example, an AOI may not
have been looked at during the complete experiment by one or multiple participants.
This may be an indicator that the AOI was not needed to perform the experiment
task or participants missed important information. AOI timelines can help answer this
question. Presenting AOIs next to each other [238, 174] allows a direct comparison to
inspect which AOIs have been looked at or not. Furthermore, individual participants
may show different strategies, which can be found with scanpath comparison.

4.2.2 Technical Categories

With the increasing number of eye-tracking studies conducted, the need for new analy-
sis techniques emerged. Visualization supports the aforementioned analysis tasks to
help communicate results, extract insights efficiently, or provide answers to a research
question in the first place. Even in scenarios where the stimulus does not change,
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Figure 4.3: Visualizations for eye-tracking data can be classified by three main categories:
aspects of gaze data, the visualization itself, and the stimulus.

complex questions (e.g., regarding relations between AOIs and participants) are hard to
solve with basic techniques. Changes on the stimulus, as occurring in videos or interac-
tive applications require one to watch a stimulus replay with the basic visualizations
superimposed. One can imagine, if The unexpected visitor [312] were a video and not a
painting, the comparison of different tasks would have been far more difficult. Due to
changing positions of persons or motion that attracts attention, a representation by gaze
plots would be less expressive than for the static picture. Consequently, the importance
of visualization in eye-tracking research increased, yielding new data representations
and modifying existing ones. Based on an extensive literature review [1, 4], visual
representations for gaze data are investigated and categorized. The resulting taxonomy
differentiates between three categories, i.e., aspects of the gaze data, the visualization,
and the stimulus (Figure 4.3).

Gaze-Related Categories

Techniques are based on the type of investigated data, which is either point-based,
AOQI-based, or a combination of both. The multiple dimensions of gaze data concern
temporal and spatial data, 2D/3D coordinates, and single or multiple participants.

Point-based/AOI-based Point-based data concerns raw data points and aggregated
data (e.g., fixations), often mapped to the coordinate system of the stimulus. The spatial
context of the stimulus plays an important role in such visualizations, as it is necessary
for an interpretation of the results. Annotated data provides semantic information that
can be utilized to create visualizations that abstract from the spatial context.
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Temporal/spatial/spatio-temporal Analysis solely based on the spatial dimension,
namely the x-, y-, and z-dimension, mainly considers the distribution of gaze points. The
temporal dimension of gaze data allows the inspection of changes. Hence, a combined
analysis of spatial changes over time is often preferable in visualization techniques.

2D/3D The spatial dimensionality of gaze data may vary between 2D and 3D. In most
settings with a regular monitor, a 2D mapping on a plane is sufficient. Coupled with
the dimensionality of the stimulus, an experiment might also require a calculation of
3D gaze positions as it is necessary in virtual and mixed reality [232, 233].

Single/multiple participants Depending on the task, the analysis of a single partic-
ipant is often not sufficient. For comparisons and summarizations of viewing behavior,
data from multiple participants is required. One issue with many visualizations depict-
ing multiple participants is the increase of visual clutter [248].

Visualization-Related Categories

Taxonomies for visualization either consider data dimension or type [81, 288], inter-
action techniques [264, 313], task [60], or visualization types [69, 184]. However, for
the specific case of eye-tracking visualization, these taxonomies are too general or
restricted. Hence, the considered aspects for the visualization are:

Animated/static Static visualizations handle data based on a time-to-space mapping.
This is often worthwhile to provide an overview without interaction necessary. Without
AOQIs, static visualizations with semantic context are hard to achieve. Animations use a
time-to-time mapping, representing the data sequentially. If animated visualizations
are designed as an overlay, the data and visualization are kept in the same domain.

2D/3D visualization The combination of visualized data dimensions in 2D provides
multiple variations. The x- and y-coordinates of the data can be represented directly, as
displayed in heat maps. Another possibility is the representation of time on one axis,
and showing one of the remaining data dimensions on the other axis. Similarly, the
extension to 3D does not necessarily require a representation of all spatial dimensions
of the gaze data. For example, a space-time cube visualization [16] represents the x-
and y-axis of the stimulus and adds time as the third dimension.

In-context/not in-context Visualizations that show the context of the stimulus
are often designed as a visual overlay that requires animation for inspection. AOI-
based representations usually abstract this context and do not depict it directly. Such
abstractions might not show important details of an AOL
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Interactive/not interactive An interactive visualization enables the analyst to ad-
just parameters and views. With basic interactions such as zooming and filtering, data
exploration becomes possible. For dissemination, a fixed parameter set can be used to
extract static images for a protocol or publication. In this context, the term interactive
mainly concerns techniques that actively support data exploration.

Stimulus-Related Categories

In addition to recorded gaze data, the stimulus provides important information. Tightly
coupled with the other categories, the following aspects are differentiated:

Static/dynamic Static images played an important role for many years in eye tracking
research. Dynamic content from watching videos or real-world scenarios is far more
complex and poses new challenges for the visualization. Generally, a visualization
developed for dynamic stimuli can also be applied to static content.

2D/3D stimulus As discussed for the gaze data, if a 2D coordinate system is sufficient
for analysis purposes, the gaze data is typically mapped into the coordinate system of
the stimulus. In scenarios where depth is important (e.g., stereoscopic displays, mixed
reality), the third spatial dimension has to be considered.

Passive/active content This aspect considers the participant’s mode of interaction.
Participants can watch stimuli passively, for example, pictures or videos. With active
content, each participant influences the stimulus individually. Examples are recordings
of mobile eye tracking or interactions with a desktop application. Due to individual
differences between recordings, a comparison is more difficult than with passive content.

4.3 Categorization of Visualization Techniques

With the presented technical categorization (Section 4.2.2), existing techniques can be
classified. In the following, a summarization of existing techniques is discussed and
how the techniques developed in this thesis fit in the classification scheme.

4.3.1 State of the Art

The first separation is made between point-based and AOI-based approaches. Figure 4.4
presents a summarization of all publications investigated in the survey [4] excluding
the publications from this thesis.
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Figure 4.4: Summarization of categorized publications presented in Blascheck et al. [4] for
techniques that are point-based, AOI-based, or both.

Gaze Data The categories related to gaze data show in total a similar number of
techniques representing temporal and spatial aspects with slightly more techniques for
single participants. In detail, the point-based approaches often consider spatio-temporal
aspects and AOI-based techniques focus on either the spatial or the temporal dimension.

Visualization The visualization categories show a strong preference of static over
animated techniques. This seems reasonable since animation for eye-tracking data is
important to see details, but not for an overview of the data. Similarly, 2D visualizations
were preferred over 3D techniques, mainly because the spatial domain of the stimulus
was also often investigated in 2D. The total sum of techniques shown in-context of
the stimulus and not in-context is equal, but with a clear preference of in-context for
point-based techniques and not in-context for AOI-based techniques. The majority of
investigated techniques were classified as non-interactive, meaning that interaction was
often reduced to parameter adjustment while interactive approaches provided support
for data exploration.

Stimulus Regarding the stimulus, more techniques focused on static stimuli, regard-
less if they were point-based or AOI-based. Passive content was primarily investigated,
containing static and dynamic stimuli. In most techniques, a 2D stimulus was used. In
cases where 3D stimuli were analyzed, AOIs also played an important role.
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Some aspects that were less prominent in the classification have been neglected for good
reasons. For example, animated visualization is often sufficient with a video replay of
heat maps or gaze plots and 3D visualizations are typically not necessary for a 2D spatial
domain. In contrast, the lack of interactive techniques with support for dynamic, active,
and 3D stimuli can be interpreted as possible white spots in research. Furthermore, the
combination of individual aspects plays also an important role, because depending on
the supported aspects, different analysis tasks can be solved.

4.3.2 Contributed Techniques

The following techniques were developed during this thesis and will be further discussed
in the Chapters 5 and 6. This chapter aims to provide an overview of developed
techniques and how they fit into the presented taxonomy. The techniques cover different
aspects of this taxonomy, mainly focusing on the support of interactive data exploration
and dynamic stimulus analysis.

Space-Time Cube [16] The space-time cube rep-
resents spatio-temporal gaze data. The 2D spatial
gaze information is extended by time as the third di-
mension and data from multiple participants can be
displayed. It provides a static overview of the data in
3D, but the context of the stimulus is only visible by
temporal skimming. Interactive kernel adjustment
and clustering support an explorative analysis. The
space-time cube is applied to dynamic stimuli with
min mmax  passive content.

Motion-Compensated Heat Map [16] Motion-
compensated heat maps present an approach to de-
pict gaze data from dynamic stimuli on a static 2D
heat map with no further interaction support. Opti-
cal flow is used to move gaze points with the objects
the eyes are following.
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AOI Timelines and Scarf Plots [15] The visualiza-
tion is AOI-based and depicts the temporal sequence
of visited AQOIs for multiple participants. A 2D static
overview shows color-coded AOI visits not in-context
for interactive analysis. The techniques are devel-
oped for dynamic 2D stimuli with passive content.
AQI timelines summarize the overall gaze distribu-
tion of all participants and the scarf plots depict each
participant individually.

AOI Transition Trees [13] As another AOI-based
technique, the transition trees depict temporal se-
quences of AOI visits from multiple participants.
The specifications are identical to the AOI timelines.
In contrast to the AOI timelines, the visualization
depicts sequence frequencies of arbitrary length to
identify common patterns.

Gaze Stripes and Fixation-Image Charts [23, 24]
These two techniques are point-based for data from
multiple participants and aim to preserve the spatio-
temporal context of the data by incorporating thumb-
nails of the stimulus. Both visualizations are static 2D
representations in-context of the stimulus and sup-
port interactive analysis. Gaze stripes focus on anno-
tations of thumbnails for storytelling in eye-tracking
protocols, fixation-image charts provide interactive
filtering to detect and annotate patterns.

Gaze-Guided Slit-Scans [10, 18] Slit-scans are also
point-based techniques with strong emphasis on im-
age content of the regarded stimulus. Individual
slit-scans show the scanpath of a single participant.
However, similar to the other visualizations based on
timelines, multiple participants can be compared by
sorting of the timelines and dendrograms. Here, the
interaction focuses on the exploration of different
comparison metrics.
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AOI Clouds [17] The last two techniques focus on a
combination of two aspects that provide the biggest
challenge in eye-tracking analysis: the examination
of active stimulus content from multiple participants.
AOI clouds provide a simple visualization of the time
an AOI was watched in different recordings. Interac-
tion is limited to fast navigation for all included data
sources to watch the videos of important time spans.

Visual Analytics for Mobile Eye Tracking [29]
While the former technique is based on AOIs, this
approach aims at efficient annotation of AOIs, based
on thumbnails. This is a point-based technique with
image context, applied to active content from multi-
ple participants. Interactive labeling is coupled with
a direct analysis of the annotated results.

For the majority of the presented techniques, dynamic stimuli with passive content
were investigated. Those techniques focus on different analysis tasks (Chapter 4.2.1).
To provide a common dataset for the evaluation of new analysis techniques, a set of
benchmark videos was recorded together with gaze data of people watching the videos.

4.4 Benchmark Data for Visualization Techniques

A benchmark of 11 videos was created to provide a dataset for the development and
comparison of new visualization techniques [20]. As presented, the data analysis of
spatio-temporal eye-tracking data in combination with video content was missing
effective approaches for several analysis tasks. With this benchmark, data for research
in this field is provided to the visualization community without needing an eye-tracking
device to record new data. The content of the videos and the tasks are designed to
induce typical viewing patterns. In this way, the benchmark data is designed to test
a variety of analysis goals that one typically wants to perform with dynamic gaze
data. To evoke these patterns, the content of the stimuli and the viewing tasks were
controlled and a user study was conducted. In summary, the data suite consists of (a) 11
videos containing cars, persons, and card games, (b) raw gaze data from 25 participants,
recorded with specific viewing tasks, and (c) AOI annotations for important objects in
the videos with semantic naming.
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Other Datasets

Outside the visualization and visual analytics community, there are some publicly
available collections of datasets that contain stimulus material with eye-tracking data.

Winkler and Subrama-
60 — nian [308] provide an
° overview of such data,
oDIEM summarizing 28 datasets of
which 11 include video data
presentedo with correlated eye-tracking
Actions data. Figure 4.5 displays how
the presented dataset can
0 be compared to these other
° . ' |0g1‘12(# Sﬁmj“) e ? *  video datasets regarding
the number of stimuli and
participants. These datasets
were created with different
intentions and objectives
than the ones in this thesis.
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Figure 4.5: An overview of available datasets that include
video stimuli and corresponding eye-tracking data (accord-
ing to Winkler and Subramanian [308]).

For example, the datasets were designed for research on visual saliency [71, 204],
video quality [34], and the natural viewing behavior for everyday video material [133,
212]. The tasks in these datasets include either one specific task per dataset and/or a
free-viewing task. All datasets include gaze data from between 8 to 54 participants (Gaze-
Com [96]). One exception is the DIEM dataset!: since the overview of the datasets [308]
was created, the number of records increased for some videos to more than 200 partici-
pants. The datasets Actions in the Eye [204] (1857 videos) and USC CRCNS MTV [71]
(523 videos) contain the largest number of stimuli.

In the visualization and visual analytics community, two major datasets with gaze
data were published: (1) Eye-tracking data for a user study on the readability of tree
diagrams [67] and (2) a large dataset containing 393 different visualizations?. However,
this data is restricted to static stimuli and does not cover the dynamic content provided
by the presented benchmark.

Viewing Patterns

The videos and tasks for the eye-tracking experiment were designed to evoke 3 different
patterns that are most common in dynamic stimuli. These patterns either emerge from
gaze distributed between different AOIs, or from gaze focused on individual AOIs.

! http://thediemproject.wordpress.com, last checked: October 13, 2018
2 http://massvis.mit.edu, last checked: October 13, 2018
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Table 4.1: The recorded stimuli with a description of the stimulus settings, the given tasks, and

eye movement patterns that could be observed.

ID Stimulus Setting Task Induced Patterns
S1 Car Pursuit Panning camera follows a red car Follow the red car. Potential smooth pursuit
(0:25 min) while it was going through a with long time spans of
roundabout. attentional synchrony on
the red car.
S2 Turning Car Camera follows turning car. The Recognize the shape that Attentional synchrony on
(0:28 min) movement of the car describes the is described by the the car with potential smooth
shape of an eight. movement of the car. pursuit eye movement.
S3 Dialog Two persons talk to each other in Follow the dialog Switching focus between the
(0:19 min) front of the camera. attentively. faces of both persons. Label
on shirt (right person) attracts
additional attention.
S4 Thimblerig A thimblerig with three cups and a Find the cup with the Attentional synchrony
(0:30 min) marble. marble. mainly on the cup with the
marble.
S5 Memory A 4 x4 memory game. Pairwise After one card is flipped, Increasing attention on
(2:28 min) flipping of cards is performed until focus on the matching cards after several
all pairs are found. corresponding card of the turns and switching focus
pair. during the search.
S6 UNO Two persons play UNO card game For each player’s turn, Switching focus and
(2:01 min) until the right player wins. focus on the playable attention mainly distributed
cards on the hand. between both hands and the
stack of played cards.
S7 Kite Person on a meadow steers a kite. Follow the flight path of Smooth pursuit if the kite is
(1:37 min) The kite repeatedly leaves the field the kite if possible. visible. Otherwise, the
of view. participants either tried to
estimate the position of the
kite, or focused on the person.
S8 Case- Various persons crossing the field Task is provided by the Attentional synchrony on
Exchange of view while a text ribbon in the text ribbon: Look for the text ribbon until the metal
(0:27 min) lower part is showing further metal case. case appears and the task is
information. readable.
S9 Ball Game Three players with orange shirts Task group A: Count ball Attentional synchrony
(0:31 min) and one player with a white shirt contacts of the white often on the ball, independent
pass a ball around. player. Task group B: from the task.
Count passes between
orange players.
Bag Search Various persons carrying different Look for a specific bag. Switching focus on new
S10 (2:13 min) bags are crossing the field of view. Two groups (A,B) with bags in the scene. Depending
two different search on the group, the search
targets, presented before targets attract more attention.
the video started.
Person People with different clothing Task group A: Find the Switching focus on new
S11 Search cross the field of view. person with a hooded persons. After identification,
(2:52 min) sweater. Task group B: search targets become less

Find the person with a
red shirt and a headgear.

important than new persons.
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» Switching focus: The participants have to attend to various AOIs simultaneously.
Since the task requires to distribute the gaze, the participants continuously switch
their focus between AOIs. Although tracking of multiple objects is possible [73],
retaining visual features is limited in this case and for identification tasks, the
participants still have to focus on single objects.

» Attentional synchrony: The stimulus contains time spans with one AOI that
attracts the attention of all participants, even if their eyes have been tracked
separately. Attentional synchrony has been investigated for static and dynamic
stimuli [268]; due to the high saliency of movement, it can frequently appear in
dynamic scenes.

» Smooth pursuit: A moving AOI in the stimulus attracts the attention of the
participants, causing them to follow its movement. In these time spans, smooth
pursuit eye movement [149] can be present.

The above viewing patterns are canonical patterns that may occur in gaze data for
dynamic stimuli. Since the induced patterns are often guided by the tasks given to the
participants of the experiment, the effect of task dependency is also included:

» Task groups: The participants can be separated into groups of similar viewing
behavior by assigning them different tasks. This type of pattern is of special inter-
est for new methods that compare scanpaths to identify clusters of participants.
Differences between groups may also be based on the participants’ background
or condition (not included in the dataset); for example, one could investigate
differences in the scanpaths of healthy and mentally disordered persons.

To induce these viewing patterns, video scenarios with according viewing tasks were
designed. Table 4.1 summarizes the stimuli settings and tasks, as well as the patterns
produced. The stimuli from this dataset are applied for showcasing the techniques
presented in Chapter 5. For the visualizations designed for active stimulus content,
additional datasets are investigated that fit the requirements.



CHAPTER

5

Analyzing a Single Video and
Multiple Participants

This chapter covers contributed techniques for mainly dynamic stimuli without the
active intervention of the participants. This means that people sat in front of a monitor
and watched a video. They could not intervene with the stimulus. After recording, the
data was synchronized with the presented video to provide the data for analysis.

For the support of the analysis tasks discussed in Chapter 4.2, a set of visualization
techniques was developed. According to the taxonomy for eye-tracking visualizations,
the techniques are either point-based or AOI-based. For a visual analytics approach
on eye-tracking analysis, the techniques are combined in the ISeeCube framework to
provide a comprehensive view of the data from different perspectives.

» The point-based techniques (Chapter 5.1) presented in this chapter focus on
the overview of commonalities in eye-tracking datasets. With respect to analysis
tasks considering where and when, the visualizations help identify attentional
synchrony and interpret the overall gaze distributions.

» The AOI-based techniques (Chapter 5.2) complement these visualizations by
views that provide details about individual AOIs and participants. For visual
analytics support, all visualizations are linked and provide automatic processing
methods to emphasize specific aspects of the data.

Although not included in ISeeCube, the third category of techniques provides a comple-
mentary view on the data that is worthwhile investigating:

» The image-based techniques (Chapter 5.3) contribute to a specific type of
point-based visualizations that take the image content of single video frames into
account. The techniques aim to provide more contextual information than other
point-based methods.
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This chapter is partly based on the following publications:

K. Kurzhals and D. Weiskopf. “Space-Time Visual Analytics of Eye-Tracking Data for Dynamic Stimuli”. In: IEEE
Transactions on Visualization and Computer Graphics 19.12 (2013), pp. 2129-2138 [16]

K. Kurzhals, F. Heimerl, and D. Weiskopf. “ISeeCube: Visual Analysis of Gaze Data for Video”. In: Proceedings of
the ACM Symposium on Eye Tracking Research and Applications (ETRA). 2014, pp. 43-50 [15]

K. Kurzhals and D. Weiskopf. “AOI Transition Trees”. In: Proceedings of the Graphics Interface Conference. 2015,
pp. 41-48 [13]

K. Kurzhals, M. Hlawatsch, F. Heimerl, M. Burch, and D. Weiskopf. “Gaze Stripes: Image-Based Visualization of Eye
Tracking Data”. In: IEEE Transactions on Visualization and Computer Graphics 22.1 (2016), pp. 1005-1014 [24]

K. Kurzhals, M. Hlawatsch, M. Burch, and D. Weiskopf. “Fixation-Image Charts”. In: Proceedings of the ACM Sym-
posium on Eye Tracking Research and Applications (ETRA). 2016, pp. 11-18 [23]

K. Kurzhals and D. Weiskopf. “Visualizing Eye Tracking Data with Gaze-Guided Slit-Scans”. In: Proceedings of the
IEEE Second Workshop on Eye Tracking and Visualization (ETVIS). 2016, pp. 45-49 [18]

M. Koch, K. Kurzhals, and D. Weiskopf. “Image-Based Scanpath Comparison with Slit-Scan Visualization”. In: Pro-
ceedings of the ACM Symposium on Eye Tracking Research and Applications (ETRA). 2018, 55:1-55:5 [10]

5.1 Point-Based Visualization of Gaze Distributions

For a first overview of the data, point-based techniques have the advantage to be directly
applicable, without annotations necessary. For this purpose, two developed techniques
summarize gaze data of dynamic stimulus content: (1) Motion-compensated heat maps
summarize gaze points adjusted to the motion of an object the gaze was following.
(2) The space-time cube provides an overview of the data that facilitates understanding
the spatio-temporal gaze distribution. While motion-compensated heat maps are meant
to summarize short time spans, the space-time cube can be applied to long durations,
as shown for trajectories [297] and video analysis [245].

5.1.1 Motion-Compensated Heat Map

Motion-compensated heat maps introduce a new approach to summarize eye-tracking
data of dynamic stimuli. A motion-compensated heat map shows high values for
observed objects in motion. For example, imagine an object moving through the video
from the left to the right side. Assuming all viewers would always observe the object,
the resulting heat map of this time span would show a uniform distribution along the
movement trail of the object. This is helpful to visualize trajectories, but it conceals
the fact that all gaze points were on the object while it was moving. In contrast, the
motion-compensated heat map would show high values only on the object that was
observed, indicating the high amount of attention spent on it. The creation of a motion-
compensated heat map can be described by particle tracing in a time-dependent vector
field [305] as follows:
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Figure 5.1: Schematic example of a moving target followed by a gaze point. In a conven-
tional heat map, all gaze points are aggregated at the positions they appear. With a motion-
compensated approach, the gaze points move with the target, creating a hotspot on the target.

1. The optical flow between consecutive frames in the video is calculated. It is
described by a time-dependent vector field.

2. The analyst defines a time span to summarize.

3. A keyframe within this time span is picked. It defines the end for the particle
tracing and serves as a representative for the sequence.

4. Each gaze point within the time span is traced along the flow until the keyframe
position is reached. If the keyframe is not the last frame of the selected time span,
the tracing is performed backward until the keyframe is reached.

5. The traced end positions are used to create a heat map that is blended together
with the representative keyframe.

Figure 5.1 depicts an example of a sequence of four time steps. A target object moves
from the left side of the screen to the right and a gaze point follows this object with
a smooth pursuit. For simplicity, the last time step t4 is also assumed to be the repre-
sentative keyframe, so no backward tracing is necessary. In a conventional heat map,
gaze points are distributed along the trajectory the eyes move. As a result, the heat
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Figure 5.2: A conventional heat map (left) and a motion-compensated heat map (right) of a red
circle that moves from right to left.

Figure 5.3: A car drives from the tower to the left side of the screen. The conventional heat
map (left) provides only little useful information about the dynamic AOIs and could lead to
misinterpretations because the hot spot lies on two persons. The motion-compensated heat
map (right) conveys the information on which object (the car) most of the attention was spent.

map shows the gaze distribution but does not emphasize the fact that all gaze points
focus on the object. In the motion-compensated heat map, this effect is emphasized by
moving the gaze points with the motion of the object.

For a video example, Figure 5.2 shows a comparison between a conventional and a
motion-compensated heat map. In the video, a red circle moved from right to left. The
participants were asked to follow the circle during its movement. The measured data is
distributed along the motion path and heat map values on the circle are low, showing
no hotspots. The motion-compensated heat map transports the majority of the data
points along the optical flow, showing the hotspot with the highest value on the circle
itself. The motion path can still be recognized, providing summarizing information
about the movement and which object was attended to.

Figure 5.3 shows a real-world example: Both heat maps represent a short sequence
(about 7 sec) with a driving car and five persons in the background. In this sequence,
the car receives most of the attention. Due to the dynamic changes in the scene, the
conventional heat map is hard to interpret and the existing hotspot seems to lie on the
background, which would be a misinterpretation. The motion-compensated heat map
adjusts the data points along with the object movement, the hotspot lies on the car.
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5.1.2 Space-Time Cube

A space-time cube (STC) describes a three-dimensional space, consisting of two data
dimensions and time as the third dimension. In most scenarios, the data dimensions
comprise a 2D spatial context. In the case of eye tracking, this is the coordinate system
of a stimulus. The STC is used in various fields of research. Gatalsky et al. [122] describe
its application to event data in a geographical context. Chen et al. [80] and Botchen et
al. [58] represent video content in 3D to depict individual motion events. This thesis
adopts the representation of videos in a STC and adds visualizations for gaze data.

In the context of eye tracking, Li et al. [188] describe the use of the STC to visualize
eye trajectories. The authors focus on the analysis of static stimuli. For the appli-
cation to dynamic stimuli, Duchowski and McCormick [100] describe a space-time
representation of volumes of interest for aggregated gaze trajectories. The presented
approach in this thesis extends the concept for dynamic stimuli and provides different
data representations in addition to the mentioned eye trajectories.

The approach applies the clustering of gaze points and a 3D representation of cluster
hulls in the STC. This helps find important AOIs and interpret dynamic changes in
the distribution of gaze points. Clustering of eye-tracking data is already used when
fixations are identified in raw data. Salvucci and Goldberg [253] describe a taxonomy
for different fixation identification algorithms. For the clustering of multiple user gaze
data, Sawahata et al. [256] and Mital et al. [212] use a Gaussian Mixture Model. The
presented approach uses the mean shift algorithm for the clustering of gaze data [255]
because it is robust to noise and does not require a preset number of clusters. If available,
the approach respects shot boundaries from a shot detection algorithm.

The key contribution of this work is a unified analysis approach for gaze data in the
spatio-temporal context of the stimulus. The presented approach includes means to
ease the analysis of eye-tracking data in the STC, i.e., gaze point representation with
color-coded highlighting of attentional synchrony; shot-based navigation through the
STC for edited video content; and cluster analysis for the efficient identification of
potential AQOIs.

STC Visualization

Gaze data is depicted with different representations. Since the focus of this work is on
the overview of the data, suitable summarizing visualizations are necessary. Figure 5.4
shows three techniques that are implemented to represent scanpath trajectories, raw
gaze data, and clustered gaze points.
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(a) scanpath trajectory of one participant (b) scanpath trajectories of 30 participants

(c) gaze point representation of scanpaths (d) gaze points with wall projections

(e) cluster representation of scanpaths (f) cluster with wall projections

Figure 5.4: Depiction of gaze data from a video with three moving dots in the space-time cube.
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Scanpath Trajectory

The scanpath of an individual participant is depicted by a 3D trajectory in the STC
(Figure 5.4a). The comparison of a few participants can be performed this way, but
with an increasing number of scanpaths, this technique tends to create visual clutter
(Figure 5.4b). For the investigation of individual participants, there are more efficient
visualizations that will be discussed in the following chapters. For an overview, a
representation of raw gaze points with additional filter options is more convenient.

Gaze Points

In 2D, the simplest representation of gaze data on the stimulus is the bee swarm. It
shows individual points superimposed on the video. Translating this visualization
in the STC results in a 3D point cloud (Figure 5.4c) that gives an impression of the
data distribution including the attentional synchrony between participants. To further
highlight such time spans, the distance d of each point to the center of mass per frame
is determined to calculate the value v:

v(d)= e‘0'5(3)2 €[0,1]

The value v defines the transparency and the color of a data point. By reducing the
kernel size o in the parameter controls, sparse data points in the space-time visualization
fade out, facilitating the identification of dense regions. Data points with a red color
indicate a distance close to their frame’s center of mass. When many viewers looked
simultaneously at a small area, a large number of data points appear red and remain
even when the kernel size is reduced. This representation can also reveal motion
patterns of objects tracked by several viewers, for example, in cases where participants
follow moving dots as depicted in Figure 5.4.

3D visualizations can be afflicted with perceptual issues resulting from occlusion,
distortion, and inaccurate depth perception. To address these problems, the scene
camera is adjustable in order to resolve possible occlusions in the STC. Further, the idea
of 2D wall projections (Figure 5.4d) was adapted from ExoVis, introduced by Tory and
Swindells [289]. With an adjustable scale and distance to the STC, the walls represent
2D overviews of the data without being occluded by the main visualization.

Clustering

In contrast to clustering algorithms for the detection of fixations from a single partici-
pant, clustering data from multiple participants helps identify interesting regions (i.e.,
AOIs) in a dataset. A clustering algorithm should fulfill the following requirements for
the detection of potential AOIs:
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» Unknown number of clusters: The number of data points to cluster can vary,
depending on two factors: the number of participants for whom data was recorded;
and the length of the stimulus presentation. Defining a proper number of clusters
is not intuitive, even if these factors are known.

» Parameterization: A parameterizable clustering approach allows the user to
define the granularity of the clusters. Hence, the adjustable parameters have to
be intuitively understandable. The algorithm should depend on two controllable
parameters that determine the spatial and temporal extents of the clusters.

The mean shift algorithm performs without a preset number of clusters and can be
parametrized in space and time independently. Therefore, it fits the requirements and
is suitable for clustering the data. Mean shift clustering is widely used for feature space
analysis in the field of computer vision [86]. Santella and DeCarlo [255] introduced its
application to eye-tracking data.

The algorithm by Santella and DeCarlo is adopted and extended to take into account
shot boundaries. The viewers’ gaze direction can be influenced by abrupt cuts [71,
295]. Hence, the detection algorithm described before in Chapter 2.1.2 is applied to
identify these boundaries and clustering is handled separately for each shot. In its basic
implementation, the mean shift algorithm moves points towards local centers of mass
until convergence. If applied to spatio-temporal data, this can interrupt the temporal
coherence of sequences such as smooth pursuits. Hence, moving points is only applied
in the spatial dimension, resulting in better separable patterns that are clustered with
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [107], with a fixed
parameter set for distance and neighborhood values.

Cluster hulls (Figure 5.4e, 5.4f) depict the extracted clusters. Axis-aligned boxes around
all data points of a cluster for every time step represent the most common convention for
AOI representation. The boxes are connected after applying an exponentially weighted
moving average [158] to their size, in order to provide a smooth transition between time
steps. The boxes create a hull around the data points in a cluster. The spatial extent
provides information about changes in the spatial distribution of points over time:
“thick” cluster hulls correspond to a wide spread of points and, thus, low density—and
vice versa. By projecting the cluster hull of a time step to the corresponding video
frame, dynamic AOIs provide information about the distribution of gaze on different
regions or objects. The cluster size is measured by the number of data points it contains.
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Figure 5.5: ISeeCube: The viewer controls adjust the size and content of the video preview and
the wall projections. Video controls support the navigation. The parameter controls allow filtering
of data points, cluster results, and individual scanpaths of participants.

Visual Analytics Framework: ISeeCube

The designed approach comprises a main view showing the STC and a video preview
(Figure 5.5) in the framework ISeeCube. Additional control panels for the visualization,
video navigation, and parameters are freely arrangeable around the main view. A video
plane along the spatial dimensions inside the STC represents the current video frame. It
is freely rotatable and movable to investigate the data around it. With the video controls,
the analyst can navigate through the video with the time slider, frame-wise navigation,
shot-boundary frames, or the playback function. Changing the frame position translates
the STC relative to the video plane along the time axis, providing an easy method to
analyze selected time spans. In the context of video analysis, the time axis typically
shows the highest visual expansion. Therefore, scaling the time axis enables the user to
explore the data as an overview as well as in detail. Shot boundaries are depicted by red
arrowheads on the time axis of the STC. In the video controls, a keyframe represents the
boundary. By picking one of the keyframes, the space-time visualization jumps to the
corresponding position on the time axis, providing an efficient method to examine shot
changes. This design supports multiple coordinated views [244] to show the different
aspects of spatio-temporal eye-tracking and stimulus data. AOI-based implementations
to extend ISeeCube will be discussed in Chapter 5.2.
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(b) speaker-following subtitles

Figure 5.6: STC comparison of two subtitle layouts and their influence on gaze distribution.

5.1.3 Example: Subtitle Layouts

Coming back to the eye-tracking study described in Chapter 3.4.3, it was shown that
speaker-following subtitles significantly influence the gaze distribution on text and
faces in comparison to regular subtitles. With heat maps, some exemplary shots can be
compared for the subtitle layouts, but the general overview of the data is missing.

Figure 5.6 depicts both layouts in the corresponding STC visualization, showing the
gaze data from 20 participants each. Regular subtitles (Figure 5.6a) evoke a specific
pattern that is clearly visible over the whole time. Since participants have to look at the
bottom of the screen and read one or multiple lines of text, horizontal patterns arise.
These patterns remain if the data is filtered for attentional synchrony of all participants.
The upper parts of the video with the actual image content is less visited and gaze points
show not much synchrony. In contrast, the speaker-following subtitles (Figure 5.6b)
lead to a shift of gaze points to the upper part of the image. Due to the proximity of
speech bubbles and faces, participants can switch more efficiently between both AOIs,
which leads to significant changes in the statistical measures. Occasional appearances
of gaze points at the bottom result from subtitles that could not be presented by speech
bubbles due to an off-screen speaker.
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(a) regular subtitles (b) speaker-following subtitles

Figure 5.7: Regular subtitles lead to flat clusters at the bottom, with few clusters on faces. For
the alternative layout, clusters on faces and subtitles are closer and evener.

Regarding the clusters derived from both layouts, the differences also become obvious
(Figure 5.7). The horizontal pattern in the regular subtitles leads to long and flat cluster
hulls at the bottom of the scene (Figure 5.7a). The small number of gaze points on
the faces results in scattered clusters with short temporal coherence. With speaker-
following subtitles, the clusters on faces and subtitles are close to each other (Figure 5.7b).
Due to the increased number of gaze points on face regions, clusters show a larger
extent along the temporal axis. These changes in the cluster structure help identify face
AOQIs by one cluster, while regular subtitles often lead to several clusters for one AOL

For this example, the STC supports statistical results by showing that the measured
differences are also apparent in the resulting visual patterns. Especially for the analysis
of pilot studies, exploration in this way helps formulate hypotheses for a user study.

5.1.4 Discussion

Applying the gaze point and cluster visualization, important analysis tasks can be
covered, mainly considering where and when questions (Chapter 4.2.1). The motion-
compensated heat map focuses on the aspect where participants looked and aims to
compensate temporal changes for a static result picture. Except for the compensation of
temporal changes, the visualization has the same shortcomings as regular heat maps. In
particular, the heat map shows a strongly aggregated view on the dataset that limits the
application to other analysis tasks. The STC improves on the data overview by explicitly
showing the temporal dimension in a static visualization. Spatio-temporal patterns can
be identified and investigated directly, without the need to watch the whole video again.
The temporal scalability of the approach is sufficient even for long-term eye-tracking
data. Since the publication of this work, the approach was also extended to another



104 Chapter 5 e Analyzing a Single Video and Multiple Participants

Figure 5.8: Volume visualization of
the Car Pursuit video. The wall pro-
jections show the calculated density
field and slices of the stimulus are
displayed in the space-time volume.
Such a representation provides a
spatio-temporal overview and helps
identify what happened faster than
the point-based representation.

data domain with a larger dataset than the presented eye-tracking experiments. The
STC was included as a complementary view for the analysis of visitor behavior for
indoor event management, handling geo-located data from multiple days [11].

Volume Visualization for Eye Tracking One shortcoming of the presented space-
time cube is the missing context of the stimulus. Although interesting time spans are
easy to spot, the analyst has to adjust the slider to see the respective frame from the
video. This can be compensated by combining techniques from volume visualization
with the presented image-based techniques (Figure 5.8). A dynamic heat map can be
interpreted as a spatio-temporal volume that consists of calculated gaze point densities.
Representing this volume directly would provide information similar to the point
representation. Mapping the density to alpha values for slices of the stimulus results in
a visualization that shows when many participants looked at the same region and what
they were looking at. This work could be further extended by reviewing techniques
for volume visualization (e.g., transfer functions, segmentation algorithms) and their
applicability to videos with eye-tracking data.

For questions considering who showed interesting behavior and for comparison tasks,
AQIs are necessary. Although clusters could be used as AOIs, a semantically rich
analysis requires more annotation of the data.

5.2 AOI-Based Scanpath Analysis

Based on the visual analytics approach of ISeeCube, AOI annotations expand the analysis
framework with a multitude of new possibilities to answer questions that are hard
or impossible to investigate with point-based techniques only. In particular, with
the advantage of multiple coordinated views, timelines with information about AOIs
(Chapter 5.2.2) and participants’ scarf plots (Chapter 5.2.2) can be synchronized with
other visualizations such as the STC. Furthermore, AOI transition trees (Chapter 5.2.3)



5.2 o AQOI-Based Scanpath Analysis 105

v« <« | »» 124}

Figure 5.9: Editor for the definition of dynamic, axis-aligned AQOIs. Individual categories allow
for a semantic differentiation of annotated objects. In the presented example, the AOIs are
categorized as left hand, right hand, covered stack, and uncovered stack.

provide an overview of AOI transition patterns coupled with scarf plots to highlight
selected patterns in the scanpaths. For AOI annotations in the video, ISeeCube contains
an editor to define rectangular bounding boxes for important objects in a video.

5.2.1 AOI Editor

For dynamic stimuli, the definition of AOIs that adjust to the changes of moving
objects becomes an important step in the analysis process. For the presented examples
in this thesis, an editor (Figure 5.9) was developed that allows for the definition of
dynamic, axis-aligned bounding boxes to mark AOIs and define categories to specify
the analysis. With the information provided by cluster analysis, the analyst can identify
the most important objects and areas in a video and annotate them with the editor. The
analyst creates new AOIs by drawing bounding boxes in the video at key positions
during playback. Between key positions, the bounding boxes are interpolated linearly.
Successive IDs are used for new AOIs, independent from their category.

The STC can also show selected AOIs (Figure 5.10). In contrast to the depiction of
clusters as solid hulls, the changes of an AOI are depicted by space-time trajectories
at the four corner points of the bounding box. In combination with the data points or
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Figure 5.10: The AOI of a driving car in the STC. The spatio-temporal changes in position and
size are visible by the shape that is formed by the outlines. With the data points, it is easy to
spot when participants looked at the AOL

clusters, one can see when participants looked at the AOI by investigating data that lies
inside the spatio-temporal shape. Vice versa, position offsets due to calibration issues
are easy to spot because they would result in data points close to the AOI shape, but not
inside of it. If a data point lies inside an AOI, a label is assigned for further processing.
Such labeled data will be applied for the following visualizations.

5.2.2 AOI Timelines and Scarf Plots

The representation of AOIs in the STC provides valuable information about the spa-
tiotemporal extent of individual objects. However, due to occasional overlaps, displaying
all AOI representations simultaneously leads to visual clutter. With AOIs, quantitative
research on the data can be supported by alternative visualizations that abstract from
spatio-temporal information and represent gaze data with semantic meaning.

Related Work

With timelines, the clutter problem is reduced by abstracting the visualization to the
temporal component of the data and providing the spatial information only on demand
in the STC. Timeline representations are a common method to visualize the temporal
progression of events. André et al. [39] designed detailed timelines for hierarchies,
relationships, and scale. This principle is adapted to provide additional AOI information
on demand and adjust the presented information to the special requirements of gaze data
recorded from videos. In the field of eye tracking, Andrienko et al. [40] use horizontal
segmented bars in a temporal view to visualize the distance of eye trajectories to selected
AOIs of static graphs. Ristovski et al. [243] show fixation time series with a highlighting
function for fixations on the same AOL These papers focus on static stimuli.
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building 15

Figure 5.11: With the category tree (left), individual AOIs can be removed from the visualization.
AOIs are presented on separate timelines (right) ordered by their first appearance. Colored bars
with histograms indicate when an AOI was visible and how many participants looked at it.

For the analysis of dynamic stimuli, Richardson et al. [242] used scarf plots to visualize
the recurrence of eye movements between two persons. Weibel et al. [303] integrate
mobile eye-tracking data in ChronoViz, a tool to visualize multiple streams of time series
data simultaneously. They use separate scarf plots for individual AOIs and concentrate
their analysis on individual viewers; a similar approach is presented by Lessing and
Linge [186]. Stellmach et al. [273] introduce a models-of-interest timeline that shows a
viewer’s gaze distribution between various 3D objects in a virtual environment with
individually selectable colors for each object. In their work, the main focus lies on the
visualization of a single viewer’s gaze data over time with a constant set of objects.

In the presented approach, two types of timelines are derived from the data, one that
focuses on the AOIs themselves, and scarf plots that focus on individual participants.
AOQI timelines convey the information of the chronological appearance of AOIs and the
temporal distribution of attention.

AOI Timeline Visualization

Similar to the STC visualization, the AOI timeline provides an overview of the complete
dataset, but without the spatial information (Figure 5.11). All AOIs are represented by
rows, ordered by their first appearance in the video. The first column shows the name
and a representative image of each AOI. The second column shows a colored bar for
each time span in which the AOI exists. A histogram in the colored bar shows the gaze
distribution of all participants. To distinguish between different AOIs, a qualitative
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Figure 5.12: The overview provides a film strip of the selected AOI and histograms for viewers’
gaze distribution, size, and X-/Y-position.

color scheme of 11 colors [137] was used. A color is locked to an AOI as long as the AOI
exists and can be mapped to another one as soon as the respective AOI disappears. This
strategy ensures an unambiguous mapping from AOIs to colors, as long as there are
fewer than 12 AOIs with overlapping life spans. For additional AOIs, the color scheme
is repeated and possible ambiguities have to be solved by looking at the histograms
and the video preview.

Ordering the AOIs by their first appearance results in a timeline where early appearing
objects are placed in upper rows and late-appearing objects in lower rows. This leads
to problems when objects appear early and reappear several times in the video. In this
case, a gap of empty rows occurs between the late appearing objects at the lower rows
and the reappearing object in the upper row. Comparing the histograms of the involved
AOIs becomes more difficult the farther the rows are apart. To solve this problem, a tree
view left to the AOI timeline (Figure 5.11) shows all objects ordered by their category.
Either the complete category or individual objects can be disabled to hide them in the
timeline. With this approach, users can exclude all objects that are not present in the
currently investigated time span to concentrate on the relevant information.

To obtain additional AOI information on demand, each row can be selected individually
to show an overview (Figure 5.12). Each overview is presented in a separate window
and can be activated as needed. The information provided by the overview consists
of a filmstrip and four histograms. The filmstrip shows representative frames from
the time span of the marked AOIL The frames are chosen by dividing the time span
into four equal parts. If an AOI does not exist in one of the inner frame positions, the
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parts are further divided until a valid frame is reached. The histograms show the gaze
distribution, AOI size, and AOI position:

» Gaze distribution: The histogram is the same as in the timeline. The numbers
mark the position of the frames from the filmstrip.

» Size: The size of an AOI is measured as area size relative to the video resolution.
In Figure 5.12, the size histogram shows several time spans where the size of the
AOIl increases at the end of a shot. In combination with the information provided
by the position histograms, one can interpret that the car was moving close to
the camera in these situations.

» Positions: X- and Y-coordinates are measured at the bottom-center point of the
AOQL In the histograms, high values represent a position in the right part of the
scene and in the upper part, respectively.

This visualization provides an overview of the temporal distribution of gaze points on
the AOIs. It is an aggregated representation of all participants’ viewing behavior. For
the comparison of individual participants, additional information is required. Hence,
the scarf plot visualization is incorporated as an additional view, synchronized and
linked with the AOI timelines.

Scarf Plots

The scarf plot of a participant is created by investigating the individual scanpath. If a
gaze point in a frame is considered to be in an AO]I, the corresponding color of the AOI
is used to mark this frame in the plot. If either no gaze point is available, or cannot be
assigned to an AOI, the frame is marked black (Figure 5.13). A gaze point is assigned to
an AOI when it lies inside the bounding box of the AOI in the respective frame. Due to
the dynamic content of video stimuli, overlaps between AOIs are often inevitable. Two
common methods to handle this problem are either to distribute the value between the
overlapping AOISs, or to calculate the distances between the gaze point and the involved
AOQI centers and assign the point to the AOI with the shortest distance [149]. In the
presented work, the latter method is applied, since ambiguities are not supported by
the common string comparison algorithms that are used for scanpath analysis.

The AOI timeline and the scarf plots are synchronized and the user can see directly
which AQIs are involved in the current time span and what object they represent. As
performed for string representations of scanpaths, each participant in the dataset is
represented by a mapping of the gaze data to the annotated AOIs. These strings can be
used for interactive scanpath analysis, whereas the scarf plot visualization allows for
an easy interpretation of the results.
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Figure 5.13: Scarf plots of 25 participants watching the video of a UNO card game. The
individual viewing behavior of each participant is visualized by colored timelines that indicate
which of the four AOIs was investigated at the current point in time.

Scanpath Comparison and Cluster Analysis

ISeeCube integrates automatic processing of eye-tracking data to assess the similarity
of scanpaths. Three different similarity functions can be applied with agglomerative
hierarchical clustering to identify groups of similar behavior. Users can thus explore
different facets of the dataset and select the distance function that fits their objectives and
analytical goals best. The similarity functions available are the Levenshtein distance,
a function based on gaze distribution, and one that is based on transition matrices
(Chapter 3.4.1). They are comparable to applied measures in other works [243].

One challenge of scanpath comparison is that viewing behavior individually changes
with increasing scanpath duration. Hence, comparisons become more meaningful for
shorter time spans. In videos, this could be for example a specific shot, or the time
span an important AOI was visible. To support such variable time span analysis, the
user is free to set the beginning and end of a time interval. Based on this selected time
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Figure 5.14: The original scanpath, represented by a scarf plot, is reduced by removing consec-
utive symbols of the same AOL Blank regions mark time spans with no AOI-relevant data. The
resulting sequence is used for the analysis of transition patterns.

span, a hierarchical clustering algorithm [140] calculates groups of similar scanpaths
according to the chosen similarity measure. Hierarchical clustering has the advantage
that it avoids the decision about the optimal number of clusters. The clustering is
visualized as a dendrogram to the left of the scarf plots and provides an overview of all
similarities. Hierarchical clustering starts out with a maximal number of clusters, with
each scanpath forming its own cluster. The clusters are then merged consecutively,
with the pair of most similar clusters being merged at each iteration of the algorithm.
Average linkage is used to measure cluster similarity, i.e., the arithmetic mean of all
pairs of instances in two different clusters. An example is discussed in Chapter 5.2.4.

To investigate changes in gaze behavior between AOIs, an overview of common transi-
tion patterns would be helpful. To achieve this, the AOI transition trees were developed.

5.2.3 AOI Transition Trees

The transition between AOIs marks an important step in the analysis of viewing
behavior. It is often an indicator of attention shifts between different stimulus regions.
To emphasize transitions, the earlier presented scarf plots can be abstracted even more
by reducing the represented string to single AOI visits and the transitions between
them. Figure 5.14 exemplifies this idea. While the scarf plot is based on data samples,
e.g., one sample per frame, the reduced string is compressed to single dwells on AOIs
where transitions become more obvious.

With such a reduced representation, the identification of common transition patterns is
still cumbersome, especially when comparing sequences from many participants. Hence,
the main goal of this visualization is to provide an overview of transition patterns of
variable length with respect to the most common patterns but also including outliers. In
the context of edited video content, the visualization emphasizes transition sequences
within shots and the transitions between shots. An icicle plot helps achieve this goal.
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Related Work

Considering the hierarchical structure of sequential visits on AQOIs, generic visualization
approaches for this type of data could be applied. An overview of such techniques is
provided by Graham and Kennedy [127], Herman et al. [141], and Schulz et al. [260].
According to the design choices of this approach related work focuses on publications
applying icicle plots to hierarchical/sequential data. Wongsuphasawat et al. [309]
present an interactive icicle plot to display event sequences in hospital departments and
millions of user action sequences from twitter. Triimper et al. [292] apply an icicle plot
visualization similar to an AOI transition tree for the visualization of execution traces in
software development. Telea and Auber [283] use a cushioned icicle plot to visualize the
evolution of source code. Two linked icicle plots can be applied to compare hierarchical
structures such as folders in file systems [150]. A sunburst visualization [272] uses a
circular layout of icicle plots and can be used to visualize hierarchical data in general.
However, all of these approaches do not include multiple linked trees and are not
designed to fit the changing information of AOIs in a video.

Tsang et al. [294] visualize fixation sequences with a Word Tree [302], using AOI text
labels for sequences with a maximal length of 5 for dynamic stimuli. The presented
approach shares the same principal idea: sequences are represented by trees; branching
into different AOIs along the timeline of the sequence corresponds to branching in
the tree. However, there are several important differences as well. First, other than
Tsang et al. [294], transitions between AOIs are visualized and not fixation sequences,
to achieve a higher degree of data summarization. Second, the Word Tree is replaced
by an extended version of a space-filling icicle plot [179] that allows the integration of
thumbnails for an intuitive mental linking between visualization and stimulus. With the
icicles, quantitative assessment of transition frequencies is better supported than by the
text font size in the Word Tree. Third, an overview representation of multiple transition
trees is introduced based on shot boundaries, leading to better scalability with stimulus
length and number of AOIs in the full stimulus. Additionally, Tsang et al. [294] and
West et al. [307] focus on the analysis of scenarios that contain a static set of few AOIs.
With the presented visualization approach, changing AOI constellations are handled
with thumbnails and transition sequences of arbitrary length can be displayed.

Visualization Requirements

Depending on the analysis task, stimulus, and recorded eye-tracking data, different
requirements need to be met for an appropriate visualization of the data. In this case,
the analysis task is to identify common transition patterns in gaze data from multiple
participants watching video. Such patterns can reveal potential solution strategies for a
given task, for example, how people examine a metro map to find the way from a start
to a target location [30]. The following requirements and characteristics are relevant
for the visualization and analysis:
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Analysis of transition sequences and transition frequencies The visualization
needs to display AOI transition sequences, not just transitions between pairs of AOIs.
The visual salience of important transitions and their frequencies should become acces-
sible by the visualization.

Subsequences of linear, ordinal scale time The temporal aspect of the data in the
case of transition analysis focuses on the ordinal time scale of visited AOIs, arranged
along linear time [33]. Furthermore, identical patterns of linear transition subsequences
in the data should become visible, regardless of their exact temporal position; i.e.,
subsequences of patterns should be identified anywhere along the timeline.

Temporal division of the stimulus In contrast to unedited videos (e.g., from head-
mounted eye tracking), edited material often contains intentional cuts that divide a
video into scenes and shots that lead to abruptly changing AOI constellations over time.
With these shot boundaries, a divide-and-conquer approach that splits the recorded data
into semantic coherent sections can be applied. The advantage is that by dividing the
data, consecutive transition sequences become shorter and therefore easier to interpret.
In general, even unedited material can often be divided into parts of semantic coherence,
e.g., by different events that happen.

Scalability Scalability with respect to the length of a video is not a critical aspect:
video shots can be seen as individual units, and from the vast number of AOIs in a
video, only those that exist in the current and the directly adjacent shots are important
for the visualization of the transition tree. Scalability, in this case, concerns the number
of recorded participants that have to be compared and the length of the transition
sequences. Visualization techniques that display participants individually (e.g., scarf
plots) tend to become harder to interpret with an increasing number of participants.
Therefore, the visualization needs an aggregated representation of the participants,
independent from their number. Although the frequency of transition patterns decreases
with increasing sequential length, the visualization should show transition patterns of
variable length, until the patterns become unique.

Semantic interpretation of AOIs Video stimuli can contain a vast number of AOIs
that appear during different time spans in the video. Color mapping of AOIs is a common
approach to make AOIs distinguishable (e.g., [66, 294]). For a semantic interpretation
of an AQI, additional labels are necessary. A visualization with text labels can be the
best choice if only a few AOIs exist and unambiguous labels can be given. In the case
of edited video stimuli, however, a large number of AOIs can appear, making it tedious
to find an appropriate label name for every AOL
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(a) stimulus with scarf plots (b) transition matrix (c) transition tree

Figure 5.15: Creation of a transition tree. (a) In the example, three AOIs are visible: a logo, a
car, and a person. The scarf plots show the scanpaths of 16 participants. (b) Pairwise transitions
from one AOI to another can be visualized with a transition matrix. (c) The resulting transition
tree shows the same information as the matrix on the first level (1), but can be further extended
to depict how the sequence continued (2). The transition tree can then be used to highlight
sequences in the scarf plots (green).

To meet these requirements, an enhanced icicle plot visualization—the AOI transition
tree—was developed that displays the hierarchical structure of transition sequences.
The area of individual nodes can be utilized for the color coding and labeling with
thumbnails. The scalability of this visualization approach is improved by shot-based
division of the stimulus and aggregation of sequence frequencies between participants.

Visualizing Transition Sequences by Extended Icicle Plots

The visualization is based on the reduced strings of all included scanpaths. Adopting
Tsang et al. [294], the reduced strings are interpreted as a tree. In contrast to their
approach, all subsequences are placed into the tree representation: regardless of when
the subsequence occurs in the string, it is placed, beginning at the root of the tree.
In this way, the requirement for subsequence analysis is met. In detail, transition
sequences are represented by a multi-rooted tree, single nodes represent AOIs in a
transition subsequence, the levels of the tree correspond to the length of a subsequence.
In addition, nodes are assigned a numerical attribute that represents the frequency of
visits to the corresponding AOIL With this interpretation of the scanpath data, the task
is designing a visualization for a tree of varying depth and with one numerical attribute;
the attribute has the property that the sum of the children’s attributes is equal or less
than the value of the attribute of the node itself because there cannot be more visits to
subsequent AOIs than to the current AOI of a sequence. With this abstraction in mind,
there are many potential visualization techniques (see Ward et al. [301] for a recent
textbook presentation). The icicle plot [179] was chosen from this list of candidate
techniques because it best meets the requirements.
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Figure 5.15c¢ shows an example of a transition tree derived from an example (Fig-
ure 5.15a). The transition sequences are represented by an icicle plot with horizontal
orientation, i.e., the time axis is along the standard left-to-right reading direction in
English. Single nodes of AQOIs are displayed by rectangular boxes in the icicle plot. The
height of the box indicates the frequency of AQOI visits. Data from several participants
is easily aggregated by adding up transition frequencies for the respective icicle boxes.
The boxes are sorted according to descending height. Finally, the boxes need to be
visually associated with respective AOIs. The color coding approach from ISeeCube is
applied to color a box in the icicle plot.

The interpretation of the transition tree in Figure 5.15¢ can be explained by traversing
the icicle plot from left to right:

» The first level of the tree (leftmost column) shows the dwell distribution to AOIs,
aggregated from the full sequence. In the example, 10 participants started by
looking at the car, the logo was visited 10 times, and the person was looked at 11
times. This level can be interpreted as a vertically stacked histogram.

» On the second level, transitions between two AOIs are displayed. The second
level of a transition tree shows the same information as a transition matrix (see
Figure 5.15b), representing the frequency of transitions between two AOIs. In
the transition tree, the frequency can also be read off from the height of the box
in the second level.

» Starting with the third level, the advantage of the transition tree representation
becomes clear: sequences are interpreted identical to the second level, by travers-
ing the transition tree from left to right. Other than with the transition matrix,
sequences of arbitrary length can be identified efficiently. Since all appearing
subsequences are displayed, patterns are possible to appear in other branches of
the tree, showing which AOIs were visited before the sequence started.

Sequence of AOI Transition Trees

So far, the transition trees are applied to a defined time span in a video. If the time
span includes several shots, the first level of the transition tree will include more AQOIs
that appeared in the video and individual scanpaths become visible with increasing
length of transition subsequences. The temporal division of the stimulus allows for an
approach that creates a sequence of smaller transition trees, instead of just a single,
very large tree for the complete video. Figure 5.16 shows an example of a sequence of
transition trees. For an individual AOI transition tree, absolute time is not considered.
Still, additional information about the duration of a shot is important to find out if
long transition sequences in a tree result from a long shot, or from diverging viewing
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Figure 5.16: Shot sequence with three AQOI transition trees depicted by a film strip metaphor.
AOIs that continue a sequence in the following shot are connected by lines.

behavior of the participants. Therefore, a film strip metaphor is applied to facilitate
a qualitative assessment of the length of a shot. Film strips that represent the video
shots are concatenated horizontally, forming a horizontal timeline summarization of
the complete video stimulus. Logarithmic scaling is applied to ensure that transition
trees fit even in short shots. The transition trees are then positioned on the film strip in
the corresponding shot.

To connect the AOIs of two consecutive trees, all transition sequences are extended
by an additional level of AOIs after the end of a sequence. These additional AOIs
are the next elements in the transition subsequences that continue in the consecutive
shot. Here, an arrow shape is applied to emphasize the transition to the next shot. If a
sequence is shortened due to filtering, no additional AOI is added since the sequence is
not continued in the next shot. Finally, lines connect corresponding AOI boxes.

AOI Thumbnails

To this point, the transition trees consist of boxes with individual colors that represent
the AOIs but the semantic interpretation of the AOIs has to be facilitated. Labels
are a good way of building the link between the icicle box and the corresponding
AOL Text labels provide information about an AOI, but assigning meaningful labels
becomes tedious with an increasing number of AOIs and often depends on subjective
interpretations. Furthermore, text labels require relatively wide (horizontal) space.
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Figure 5.17: AQI thumbnail creation. The image is processed by multiple filtering steps,
resulting in an abstracted representation of the AOL

As an alternative, pictorial labels can be applied. To this end, AOI thumbnails were
used: small images that show the object of the AOI in an abstracted representation,
and that preserve the color assigned to the icicle box of the AOIL The AOI thumbnail is
placed inside the icicle box to illustrate the AOI’s object. A schematic representation
with enhanced feature lines, adjusted lightness contrast, less image detail, and color
modification is created for each AOL The color is changed so that it matches the hue of
the icicle box to maintain the color patterns of the AOI transition tree. This abstracted,
non-photorealistic representation was chosen because it can be made readable even
when shown as small picture. With this approach, labels are less dependent on subjective
annotations of the labeling person, and interpretations of the AOIs that are involved in
a time span become simpler, even without knowing the stimulus.

Figure 5.17 illustrates the image processing steps required to create an AOI thumbnail.
First, a valid frame from the life span of an AOI is chosen. By mean shift filtering, image
details are reduced and compositing with the AOI color can be performed on areas
with a consistent lightness. Important edges are emphasized in the resulting image to
provide the analyst with enough structural information of an object for its recognition.
To this end, Canny edge detection is performed on the gray-scale version of the original
image. For final compositing, the resulting images from mean shift filtering and edge
detection are combined, taking into account the color of the AOI Image compositing is
performed in the perceptually linear CIE L*a*b* color space. The final image is obtained
by compositing the lightness of the images and the AOI color. The thumbnail is finally
inserted into the corresponding boxes of an AOI in the transition tree.
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Figure 5.18: AOI timelines for the UNO dataset. High peaks on the left or the right hand are
often followed by a peak on the uncovered stack (yellow). The covered stack is investigated
only four times in the video (white).

Figure 5.19: The AOI transition tree shows frequent sequences in the data. (4) One common
pattern is from one player over the uncovered stack to the other player. Selecting the
transition from the covered stack to one of the players reveals when they had to draw a card.

5.2.4 Example: UNO Card Game

All of the presented techniques were integrated into ISeeCube, providing a system of
linked views for visual analytics on eye-tracking data. By the combination of different,
interactive visualizations and automatic processing, a wide range of analysis tasks can
be covered. This chapter aims to provide an example of how the combination of the
presented techniques helps interpret the data.

For this example, the UNO video from the benchmark dataset (Chapter 4.4) is examined
more closely. Figure 5.18 depicts the AOI timelines of the four AOIs in this video.
Looking at the gaze distribution over time, it is clearly visible when the majority of
the participants looked at the left and the right players. Attentional synchrony on one
of the players is typically followed by a look a the uncovered stack and then on the
opposite player. This represents the main pattern in this dataset: one player puts a card
on the uncovered stack, the participants follow this card and then look at the other
player to consider the next move. Investigating the timeline for the covered stack, only
four time spans can be found that seem to draw attention. All of them are related to
the event when one of the players has to draw new cards.
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A general overview of these patterns is provided by the AOI transition tree (Figure 5.19).
Selecting one of the aforementioned two patterns, e.g., left hand — uncovered stack —
right hand (&), shows that the selected transition sequence appears multiple times in the
scarf plots, as expected from the AOI timelines. As mentioned, the four events when
all participants looked at the covered stack marks the time when one of the players
had to draw a new card. Using the AOI transition tree, it is easy to determine which
player had to draw. (B) Selecting all sequences from covered stack — left hand shows a
clear majority of this sequence at the first two draw events. The second event in the
middle shows this pattern multiple times since the left player had to draw four new
cards at once. This is also indicated by the four peaks in the second event (Figure 5.18).
(© Selecting the sequence covered stack — right hand shows that the last two draw
events are performed by the right player.

For a detailed look at a draw event and how it is attended by the participants, Figure 5.20
depicts the first of the four events. The corresponding time span is selected and scanpath
clustering is performed. From the time span shown in the AOI timelines and the scarf
plots, three example frames were extracted to explain what happened in the video:

(D The player on the right places the red card with the number 1 on the uncovered
stack. The player on the left has no valid card to play and is forced to draw a
new card from the covered stack. Participants watching this video have different
reaction times to realize that a new card will be drawn.

(2) The participants 8, 3, and 4 are the fastest to look at the covered stack in anticipa-
tion that the next action will take place there. This indicates that they followed
the game attentively and anticipated the next move correctly. However, the gaze
of participant 4 moved back to the hand of the right player, leaving the possibility
that the look at the covered stack was unconscious.

(3) The player on the left draws the new card from the covered stack. When the
hand moves towards the covered stack, the majority of the participants move
their gaze on this AOI Such behavior can be just a reaction to the motion in the
video, indicating that some of the participants did not follow the game attentively,
either because they were bored, or did not fully understand the rules of the game.

The dendrogram in Figure 5.20 shows the clustering based on the Levenshtein distance.
The first big cluster (Viewer 10 — Viewer 23) consists of participants who mainly looked
at the covered stack after the hand of the left player was moving towards it. Within
this cluster, many participants were looking at the uncovered stack when the red 1 was
played. After that, their gaze moved back to the right player, although this was not
necessary to anticipate the next move. In this example, the right player could also have
played a red 7, which could be the reason for some of the participants to look back.



120 Chapter 5 e Analyzing a Single Video and Multiple Participants

Figure 5.20: Scanpath comparison based on Levenshtein distance and clustering incorporated
in the scarf plots by a dendrogram on the side. The participants in the lower cluster (Viewer
8-6) recognized earlier that the left player has to draw a card from the covered stack.

Viewer 1, 17, 22, and 23 moved their gaze immediately to the cards on the left, staying
there until the new card was drawn. The second cluster contains all participants that
looked at the uncovered stack before the hand was reaching for the card. Viewer 4 and
6 show some kind of outlier behavior. As mentioned before, Viewer 4 looks early at
the covered stack and switches between the right hand and the stack. Viewer 6 shows
more inconsistent viewing behavior, constantly switching between all AOIs.

5.2.5 Discussion

The AOI-based methods, i.e., the AOI timelines, scarf plots, and AOI transition trees extend
the range of solvable analysis tasks. Each visualization by itself is valuable, but their
combination helps investigate data more efficiently. Participant-related questions and
comparisons can be investigated with the first two visualizations while the transition
trees provide an overview for relations between AOIs in form of transition patterns.
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The example shows how AOI-based visual analytics can be applied with a drill-down
strategy. First, the overview by the AOI timelines and transition trees is investigated.
After identifying important events, i.e., drawing of cards, the user can investigate
individual events in detail in the scarf plots and the video. Vice versa, it is also possible
to explore the data for events and then look at the overview to find similar patterns.
To further improve this aspect, searching for similar patterns could be improved by
automatically calculated suggestions. Future work could incorporate a query interface
similar to the one presented for movie analysis (Chapter 2.3) to achieve this.

The presented techniques require AOIs that have to be tediously annotated first. Hence,
this thesis further contributes some work on alternative, image-based approaches for
gaze visualization. By incorporating stimulus content in a point-based visualization,
the definition of AOIs becomes easier, or even unnecessary for some scenarios.

5.3 Image-Based Eye-Tracking Visualization

To this point, gaze data was interpreted based on spatio-temporal patterns or visited
AOIs. The investigated visual stimulus was often only visible by representative screen-
shots or video playback. The idea of image-based eye-tracking visualization is that the
visual content of a stimulus is represented directly in the context of the gaze data. For
video, this provides faster interpretations of what happened and image processing can
be incorporated in visual analytics approaches. As with the other presented techniques,
the main goal of the visualization is to provide an abstract overview of the dynamic data
that reduces video skimming and supports an efficient interpretation of gaze behavior.
To achieve this goal, this chapter discusses two approaches that cut out image content
from the respective video at gaze positions:

» Gaze stripes: This approach takes the current gaze position of a participant
and creates a thumbnail of the foveated video content. The images are placed
on a horizontal timeline, representing a scanpath as a sequence of thumbnails.
Multiple participants’ sequences are stacked vertically for comparison. Different
annotations on the gaze stripes [24] provide means to create a visual protocol
for communicating study results. With fixation-image charts [23], this concept
is further extended by a glyph-based representation and visual analytics for
annotation purposes.

» Gaze-guided slit-scans: Slit-scans are static representations of video content
created by placing vertical slices from the video next to each other over time. By
adjusting the position of a slice to the current gaze position, an individual slit-
scan is created, representing a visual fingerprint of a scanpath [18]. Image-based
metrics are applied to perform scanpath comparison without AOIs [10].
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Both techniques provide effective analysis methods without AOIs. By incorporating
the stimulus content in the visualization, synchronized participant data becomes easy
to compare in the search for commonalities and outliers.

5.3.1 Gaze Stripes

Gaze stripes are a visualization technique for passive stimulus content. This type of
data has the advantage that it can be synchronized between participants and patterns
over time become visible in the visualization.

Related Work

The presented technique displays the gaze data from multiple participants by stacking
individual timelines on top of each other. This approach is visually similar to the work
by Andrienko et al. [40] who visualize the distances to selected points of interest with
color coding, similar to the scarf plots discussed earlier. Although visually similar,
their technique depends on annotated eye-tracking data. The main advantage of the
presented approach is that the definition of AOIs is not required.

Fixation data can be mapped individually to AOI labels without actually defining
boundary shapes. A semi-automatic approach for such annotation can be found in
SemantiCode [236], which uses image thumbnails based on fixation positions from a
video stimulus to let the user define to which AOI they belong. This information is then
applied to create a classification scheme for the remaining fixations in the data. Ishiguro
and Rekimoto [162] also extract gaze data this way to represent video life-log recordings.
These approaches are similar to the presented in terms of interpreting gaze data by
image thumbnails. However, SemantiCode applies this principle for annotation only
and further analysis by statistical or visual techniques is still required to interpret the
data. Also, in dynamic stimuli, the changing conditions require the analyst to perform
manual annotations. With gaze stripes, the gaze data can be interpreted directly by the
analyst, while automatic processing of the image data can be applied on demand to
further support the interpretation of selected time spans.

Manovich [202] discusses thumbnail-based visualizations to summarize video data. The
author describes an approach to stack key frames of video gameplay of a user, as well as
of multiple video sequences (see also Takahashi et al. [279] and Christel and Martin [85]).
In these publications, only complete frames are visualized to summarize the content
of a video without the spatio-temporal eye-gaze information of multiple participants.
With the work in this thesis, this principle is extended by a gaze data-driven selection
of the sub-scene context to create thumbnails for an arbitrary number of participants
that can then be compared with each other. By applying a sequence of thumbnails
with adjustable crop size, occlusion-free stripes display the participants’ eye gazes with
stimulus information.
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Figure 5.21: Gaze stripes in comparison with scarf plots. With stimulus information in the gaze
stripes, it is easy to identify why participants investigated a region simultaneously (yellow).

Gaze Stripes Visualization

The visualization of data from multiple participants with gaze stripes is based on two
data sources: the visual stimulus that was investigated and the spatio-temporal point-
based gaze information that was recorded by an eye tracker. This means that a coupled
data analysis problem has to be solved and the resulting visualization should help
answer questions about time, space, context, and individual participants.

Figure 5.21 describes in detail how gaze stripes are created. The example shows a scene
divided into three parts: the beach, the sea, and the sky. Two exemplary scanpaths are
shown with a gaze plot. For each gaze point, a thumbnail image with the local context
of the stimulus is cut out and stacked along the timeline. Invalid sample points (e.g., due
to missing eye detections) are not drawn, leaving an empty field for this time step to
keep the data synchronized. This approach maps participants and time in a similar way
as scarf plots, i.e., time along the x-axis and participants along the y-axis. In comparison,
the amount of details visible in the scarf plots strongly depends on the defined AOIs. On
a coarse scale with 3 AOIs as in Figure 5.21, the scarf plots provide only the information
that the participants first looked at the sky (time step 1), then at the sea (time step 2).
In the gaze stripes, one can directly see that both participants did not just look at the
sea, but at the same boat in time step 2. To acquire this information with scarf plots,
either a definition of more AOIs or additional visualizations are required.

Raw gaze data coordinates, as well as filtered data (i.e., fixations), can be analyzed with
gaze stripes. For fixation data, microsaccadic eye motions are filtered and identical
thumbnails tend to recur more often. However, it could be more difficult to detect certain
viewing behavior with filtered data, for example, smooth pursuits when the participant
follows objects. If fixation filtering is applied, the thumbnails can be summarized into
one image per fixation, but this would impair the comparability of synchronized time
steps. This idea was reconsidered for the fixation-image charts (Chapter 5.3.2). Since
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Figure 5.22: Gaze stripes of the Kite video from the benchmark dataset.

the investigated video stimuli contain sequences of smooth pursuit eye movements
that are not fully covered by current fixation algorithms, the visualization based on raw
gaze data is preferred.

Figure 5.22 displays an example of the technique applied to the Kite video (Chapter 4.4).
The gaze stripes for the participants are displayed in a stacked manner. On the overview
level, patterns and outliers can be detected and a general impression of the scene
is provided. For instance, all participants followed the motion of the yellow kite.
Zooming-in allows a more detailed analysis of the eye-tracking data, demonstrated
with the close-up images: (1) different participants focused on different parts of the
kite; (2) while most of the participants focused on the kite, one participant looked at the
person controlling the kite; the changing orientation of the kite is clearly visible.

For a first impression of the data, this visualization is already helpful. To further
communicate findings with the visualization, different complementary views on the
data are available that can be used by the analyst to annotate important time spans.
The approach allows a detailed analysis of the data without the need to define AOIs or
apply complex algorithms. The visualization is occlusion-free and easy to understand,
even for non-experts.

Complementary Views

Besides zooming and panning the gaze stripes, the analyst can select time steps and
time spans of single or multiple participants’ data by simple mouse dragging. A zoom
lens (Figure 5.23 (G)) can be activated on demand to enlarge the local neighborhood
of the currently hovered thumbnail. For every selection, a new view can be created,
showing specific aspects of the data. These views are attached to the gaze stripes as
annotation items. The global context is displayed in a video player with a bee swarm.
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Figure 5.23: Gaze stripes can be enriched by several complementary views that provide the
global context of the stimulus. Time spans can be annotated with (4) colored area markers,
annotation notes, (C) gaze plots, (D) dispersion histograms, and (E) a hierarchical clustering
of the participants. (F) A linked video player plays back the stimulus with gaze information.
(G) An interactive zoom lens facilitates a detailed analysis without leaving the overview.

The different annotation items are area marker, note, gaze plot, dispersion histogram,
and hierarchical clustering. Each item is freely scalable, movable, and individual colors
can be applied to support visual grouping of items. All items that refer to single time
steps or time spans set markers on the timeline in their corresponding color.

Figure 5.23 displays the UNO dataset in a time span that comprises the event when
the right player has to pick up a new card from the uncovered stack of cards. The
figure shows a screenshot created completely with the implementation (except for the
enumeration symbols (4)—(6)). All applied items describe the viewing behavior of the
participants during this event:

(®) Area marker: Selected regions of the gaze stripes can be highlighted by a
colored frame around the involved thumbnails. Individual participants or groups
of participants can be marked for annotation with the other items.

Annotation note: Note items provide the analyst a free-text field to annotate
events of special interest or comment on other items. This allows for a detailed
description of the data to communicate the visualization.

(©) Gaze plot: Depending on the analyst’s selection, gaze plots can be created for
single time steps or over longer time spans. If only one time step is selected, all
participants’ gaze positions included in the selection are rendered into the video
frame @ If a time span is selected, the last video frame is used to provide the
scene context and the spatio-temporal development of the participants’ scanpaths
is depicted by the gaze plots @
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(D) Dispersion histogram: The visual similarity of regions in the stimulus can lead
to similar thumbnails in the gaze stripes. Although this is an advantage for some
cases, other situations require the analyst to know if the participants were looking
synchronously at a particular region, or if their gaze was distributed between
similar looking objects. Therefore, the intersubject dispersion metric D; [222]
for N participants is included:
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function g;(x, y) is defined as:
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The gaze positions (x;, y;) from N participants at time ¢, are replaced by the
Gaussian function:
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In the equations, g/, max and g avg denote the maximum and average of g;(x,y)

with i’ denoting that the i-th gaze position is excluded from g;l(x, ). The value
o =40 pixels is chosen according to the visual angle at a distance of 64 cm, the
standard setting for the recorded data. Higher values of D; indicate that the
participants’ gaze data was distributed more widely over the scene, and lower
values indicate time spans of attentional synchrony [268].

() Hierarchical clustering: Since similar viewing behavior can occur between
arbitrary participants, a new ordering of the gaze stripes is required to obtain
better visual coherence between neighboring stripes. Therefore, the selected
time span can be duplicated and clustered based on the scanpath comparison
with a modified Levenshtein distance for image histograms. The result of the
hierarchical clustering is then displayed as an item attached to the timeline.

(¥) Video player: The video player shows a gaze replay of the recorded eye move-
ments. For video stimuli, the animated content is displayed, for static stimuli,
only the gaze replay is presented on the image. For the gaze replay, the borders
of the thumbnails for each participant are shown in the stimulus.

(6) Zoom lens: With the zoom lens, single thumbnails and their neighborhood can
be investigated without leaving the overview.
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(a) (b)

Figure 5.24: (a) Example clustering of a short sequence of gaze stripes from the Car Pursuit
dataset. Two major clusters are visible: (1) participants focusing on the moving red car, and
(2) participants shifting their gaze to the appearing white car. (b) Gaze plot from the video of
the scene in which the white car suddenly appears from the left.

Scanpath Clustering

To allow analysts to identify structures of selected gaze sequences based on their
similarity, hierarchical clustering similar to the approach described in Chapter 5.2.2
is included. Since no AOIs are used, the comparison is performed with a modified
Levenshtein distance based on the image histograms. Such an image-based comparison
has the advantage that it is not depending on a common coordinate system for all
participants, as it is the case for trajectory-based comparisons. For thumbnail sequences,
rather than counting the number of exchange operations, the costs of each of these
operations are quantified by the distance between both thumbnails. The thumbnail
distance is measured by the correlation of hue and saturation histograms of two images.
Only the hue and saturation channels are used to reduce problems with shadows
in the scene [315]. The Pearson correlation coefficient py, g, is applied to measure
the similarity between two histograms (Chapter 2.1). The modified implementation
of Levenshtein’s string distance measure uses d = (1 - pp,,1,) as the distance for
two images. This method for calculating image sequence distance is akin to the one
presented by Tan et al. [281], which was developed to compare long video sequences.
Histogram correlation works well as an image distance measure for the tested datasets,
but using the Levenshtein algorithm as a sequence distance measure is flexible enough
to accommodate any other image comparison method in case they are better suited for
particular datasets.

The clustering item shows the result as a dendrogram allowing for an in-depth analysis
of scanpath similarities. The selected sequences form the leaf nodes of the dendrogram,
including the IDs of the respective participants. An example is depicted in Figure 5.24.
The clustering shows a sequence from the Car Pursuit data in which the camera follows
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a red car moving from right to left. Suddenly, a white car appears from the left, and
some participants shift their gaze to it. A clustering of the gaze stripes from the point
at which the white car appears is depicted in Figure 5.24a, while Figure 5.24b contains
a gaze plot of this sequence. The clustering shows the different reactions to the sudden
appearance of the white car. While the six participants in the top cluster kept their
eyes on the red car (P2, P3, P4, P7, P8, P9), the two participants in the lower cluster
immediately shifted their gaze to the white car (P5, P6). In the upper cluster, the white
car only appears in the thumbnails when it starts occluding the red one. Two of the
participants in the center cluster (P0, P1) can be considered as outliers, as they get
merged late in the clustering process. This is due to the fact that both participants were
keeping their eyes on the side window of the red car rather than on its body, which
differs in terms of the color palette.

The gaze stripes provide an easy-to-interpret visualization for the first look on recorded
data. With the annotation items, visual protocols can be created for dissemination
purposes. Since the horizontal scalability depends on the number of samples, an
approach that shows only fixations would drastically reduce the horizontal extent of
the visualization. For this purpose, fixation-image charts were developed.

5.3.2 Fixation-Image Charts

The advantage and also the main issue of gaze stripes is the fact that they rely on
the synchronous comparison of data samples. It is easy to spot similar thumbnails
and outliers over time. However, for an average frame rate of 30 Hz, less than one
second of recorded data can be displayed in original resolution on a regular screen
without zooming out. For the gaze stripes, this issue is handled by uniform skipping of
samples to reduce the number of thumbnails. If fixations are available, the according
time span can be summarized with a single thumbnail. This idea is incorporated into a
glyph-based visualization approach.

Visualization Components

Fixation-image charts consist of (1) representative fixation images to display the context
of the underlying stimulus, (2) distance bars as an indicator for saccade lengths between
consecutive fixations, and (3) time streams to maintain the temporal synchronization
between participants. Figure 5.25a shows a single glyph and Figure 5.25b shows how
the glyphs are displayed in sequence.
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Figure 5.25: (a) Multiple fixation metrics can be encoded in one glyph. (b) The fixation-image
charts represent the scanpaths of participants and can be compared with each other. (Stimulus:
Wikipedia Arecibo Message')

Fixation Images

The fixation image is extracted as described for the gaze stripes. This image provides
information where the participant was looking. To encode the duration of a fixation,
the height and width of the image are adjusted accordingly (Figure 5.25a). The fixation
duration is normalized by the longest fixation of all participants. This approach has the
benefit that longer fixations also receive more space in the visualization. To emphasize
the differences between low values and assure the linear growth of areas, the square root
of the values is used. A scanpath is visualized by placing the corresponding images next
to each other (Figure 5.25b). If single fixations are selected, a compact representation of
the results is shown under the timelines. In this case, the consecutive fixation is placed
under the distance bar, indicating the target position of a saccade.

Distance Bars

Below each fixation image, a distance bar indicates the distance between consecutive
fixations (Figure 5.25a). Although not calculated explicitly by algorithm, this distance is
often applied as an implicit indicator for saccade length. The height of the bar describes
the Euclidean distance between two consecutive fixations, normalized by the maximum
distance within all participants’ fixations. This representation is similar to a time plot of
this metric that is common in eye-tracking research and is easy to interpret by experts.

The distance bars are color-coded by saccade direction to show even more information
about the spatial relation between two fixations. The angle between the horizontal
and the connection line between two fixations is used to obtain the color from the

1 http://en.wikipedia.org/wiki/Arecibo message, last checked: October 13, 2018
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Figure 5.26: Time streams starting from fixed timeline intervals and comprising all fixation
images that lie within the interval.

color-legend wheel (Figure 5.25a). By this approach, it is easy to detect bars of similar
length and color, which can indicate repetitive behavior (e.g., reading from left to right).
However, the direction-to-color encoding requires some practice for interpretation.
Therefore, the color legend was integrated directly to a corresponding filter dial to help
with the interpretation of directions.

Time Streams

Since the number and length of individual fixations vary for each participant, the
depicted image sequences have different element counts and consequently varying
width. For displaying such sequences on a timeline, there are two options: showing the
images on an absolute time scale or showing the images stacked next to each other. The
first approach preserves the synchronization between participants, but the resulting
timeline would create gaps between fixations and the horizontal scalability would be
impaired. Therefore, the second approach is applied, neglecting absolute temporal
position of fixations. This approach creates a dense representation of all fixations in
their sequential order, requiring less space on the horizontal axis. However, it results in
asynchronous timelines due to the varying number of fixations, impairing an efficient
comparison between participants.

To compensate the asynchronicity between participants, time streams for equidistant
time intervals (see Figure 5.26) were included. For each time stream interval, the stream
passes the fixation images with the respective time stamps. The resulting segments are
finally combined to a set of Bézier curves that mark the corresponding time spans for
all participants. The time streams are rendered in the background of the fixation images
with an alternating color scheme that can be adjusted individually. With these time
streams, the asynchronicity can be compensated and the timelines remain comparable.
The user can adjust the selected time span interval.
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Figure 5.27: Visualization overview: (A) Fixation-image charts, filter query interface,
(©) query results, (D) label editor, (E) stimulus view. (Stimulus: UAD Infographic?)

Interaction

Like the gaze stripes, the fixation-image chart displays an overview of consecutive
fixations without overlap. It would be possible to incorporate annotation items here
as well. However, under the aspect of visual analytics, the focus of this work is to
improve the visual search for important events in eye-tracking data with additional
processing and interaction techniques. Therefore, a stimulus view that displays the
data with established scanpath visualizations, filter options to fade out fixation images
unimportant for the current analysis, and a labeling function for selected fixations
were implemented (Figure 5.27). The fixation-image charts (&) and currently selected
elements (C) are in the center view.

Stimulus View

The additional view shows the complete stimulus (Figure 5.27 (£)). A gaze replay of
selected participants is displayed during the playback of the recorded data. The linking
between the stimulus view and the visualization is bidirectional. Changing the time in
the stimulus view selects the respective fixation images in the visualization. Selecting a
fixation image in the visualization sets the stimulus view to the according time stamp.
The video player shows a gaze plot of selected time spans. As it is common practice, the
fixation duration is encoded by the radius of individual fixations. Additionally, labels
are rendered into the visualization during playback, allowing for the verification of the
labeling process. By selecting consecutive fixations of a participant, the respective part
of the scanpath is also highlighted in the stimulus view.

2 https://www.stopalcoholabuse.gov/resources/Infographics/share.aspx?info=6,
last checked: October 13, 2018
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Filtering

From the experience with the gaze stripes, providing just an overview of the data is
not sufficient for some tasks. Automatic highlighting and selection based on different
properties can support the visual analysis. With such support, it becomes easy to inves-
tigate fixations and label them. Therefore, an interactive query interface (Figure 5.27 (&)
allows one to filter the data, according to the following categories:

» Filter by fixation data: The properties fixation duration, fixation distance, and
saccade direction can be applied as filter criteria for selecting fixation glyphs.
Hence, knowledge about certain eye movements can be applied to highlight
corresponding fixations.

» Filter by image similarity: The analyst can select a reference image from the
visualization and retrieve similar images. To this end, two similarity measures are
included. The first is based on the detection and matching of SIFT features [197]
between the reference and the fixation images. To normalize the similarity
measure, the number of matching features between the reference image with
itself is used. The second similarity measure is based on a histogram comparison
with the Bhattacharyya distance [51] between the images. These two measures
are chosen because of their applicability to different analysis tasks. Regions with
a similar structure can be identified with SIFT features, whereas regions with
similar color can be identified with histograms.

All filters can be enabled and adjusted individually by separate dials (Figure 5.27 ().
Enabled filters are concatenated by a logical AND connection. Fixation images outside
of the selected ranges will be faded out in the visualization, highlighting only the
currently relevant images.

Labeling

As support for dissemination and automatic processing (e.g., classifier training) the
analyst can specify labels that can be assigned to fixations (Figure 5.27 (). In contrast
to intersection tests with AOIs, labels can describe more than just regions or objects,
e.g., task-specific events. Labels are visible in the visualization through their assigned
color and in the stimulus view through their name.

For example, Figure 5.28 shows the fixation-image charts for the Memory dataset
(Chapter 4.4). Since the participants should watch the game attentively and anticipate
where the matching card for each turn is, one can assume that they fixate a covered
card longer when they think it matches to the current one. Hence, the filter for fixation
duration is activated to show only fixations longer than 3.5 seconds. With this threshold,



5.3 e Image-Based Eye-Tracking Visualization 133

Figure 5.28: Labeling example for the Memory dataset. Only fixations with the longest durations
are highlighted by the selected filter. Except for two of them, all images (bottom) show an event
where participants fixate a covered card because they assumed the matching card there. All
fixations can be labeled at once and individually validated in the video.

the filtered data shows 29 fixation images that display the backside of the memory cards
and two on uncovered cards. One can select all backside images and label them, here
with the label match detected. From the large number of fixations in the dataset, this
already reduces the search time for events when participants thought they identified the
correct match. Investigating the labels individually helps identify which participants
are correct (Figure 5.28, P18 left) and who fixated the wrong card (Figure 5.28, P4 right).
That way, top-down analysis with existing knowledge about the data is supported.

Fixation-image charts can also be used to label static stimuli. The respective publica-
tion [23] contains an additional example that demonstrates how prior knowledge about
reading behavior can be applied to label a dataset of participants looking at a website.

With the step from thumbnails of raw data (as performed with gaze stripes) to the
extraction of images based on fixations, the required screen space for the visualization
is significantly reduced. Gaze-guided slit-scans further reduce the required screen space
down to one pixel per depicted time step.

5.3.3 Gaze-Guided Slit-Scans

One important aspect of image-based eye-tracking visualization is the question: How
much image content is necessary for an effective analysis of the data? For gaze stripes and
fixation-image charts, the choice of thumbnails is motivated by the foveated area on the
screen. With slit-scans, the image content per time step is reduced to a scanline. In the
following, it is analyzed how well the visualization is suited for scanpath comparison.
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Related Work

The slit-scan technique is popular for artworks depicting video motion either in a static
picture or in a new abstracted video sequence3. Early examples can be found in Stanley
Kubrick’s 2001: A Space Odyssey in the star-gate sequence, and in the adaption of the
technique for computer graphics [228].

In research, slit-scans are an effective method to summarize long video sequences
for visual inspection. For example, Martinho and Chambel [203] and Schoeffmann et
al. [258] apply slit-scans as timeline visualization for fast video browsing. For automatic
video analysis, slit-scans are often referred to with the term visual rhythm [82, 173] and
used for various purposes: Motiongrams [166] focus only on the motion in the video,
reducing the visual complexity of the resulting visualization. Bezerra and Lima [49]
extract descriptors for soccer analysis tasks and for shot detection [50] based on slit-
scans from recorded videos. Based on these experiences from other research fields,
there is much potential for slit-scan analysis for eye-tracking videos.

Tang et al. [282] extend the concept by allowing the user to define arbitrary scanline
orientations to investigate specific regions in video sources. Based on the idea of
flexible scanlines, this chapter introduces the concept of gaze-guided slit-scans [25]. By
including the technique in a visual analytics approach [10], an alternative method for
scanpath comparison is provided and shows that an image-based metric for slit-scans
provides promising results that are more similar to measures from annotated data, than
trajectory-based alternatives.

The presented approach is a new scanpath representation based on the slit-scan tech-
nique, creating an individual visual fingerprint for each participant’s scanpath. The
resulting images can be compared with established methods for image comparison and
based on scanpath metrics. By integrating the slit-scans in a visual analytics system
that supports different metrics, interactive support for multiple metric comparisons
is achieved. The proposed image-based metrics for the slit-scan provide results that
correlate stronger with AOI-based measures than trajectory-based metrics.

Visualization Components

Figure 5.29 shows how the slit-scan technique works. In the example, a vertical scanline
is extracted from each frame of the video (a) and placed next to the previous time step,
one from the left (b), the center (c), and the right part of the image (d). Each scanline
results in a different image. The video contains two camera panning motions, the first
from left to right and the second from right to left. This camera motion visible in all
three images (b—d) independent from the position of the scanline. When the camera

3 Levin, Golan. An Informal Catalogue of Slit-Scan Video Artworks, 2005-2015,
http://www.flong.com/texts/lists/slit_scan, last checked: October 13, 2018
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(a) Car pursuit video with three different scanlines (left, center, right).

(b) left

(c) center

(e) gaze-guided slit-scan

Figure 5.29: The slit-scan technique demonstrated on the car pursuit video. Depending on the
position of the scanline, the resulting image differs (b)-(d). Moving objects appear mirrored
in the visualization. Adjusting the scanline to the gaze position results in a slit-scan (e) that
contains information about all attended content.
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Figure 5.30: The slit-scan (VC;) is enriched with information about the absolute gaze position.
The horizontal position is mapped to a color map (VC;). The vertical position is depicted by an
alpha map (VCs).

moves, the image content is reconstructed. If the camera remains static, a repeating
pattern of the background becomes visible that is only disturbed by objects moving
through the scanline. If the scanline is placed at the wrong position, some important
objects might be missed in the visualization summary, e.g., the red car is not visible
in (d). Hence, this idea is extended by incorporating the gaze position to dynamically
change the position of the scanline, according to the current point of interest. That way,
the image content always includes information about important AOIs. For example, in
Figure 5.29 the red car is always visible in the gaze-guided slit-scan.

To this point, the resulting image of a gaze-guided slit-scan contains no information
about the absolute horizontal and vertical position of a gaze point. However, this
information is necessary to interpret the content of the visualization in the context of
the whole stimulus. To compensate for this shortcoming, two additional visualization
components are derived from the gaze position (Figure 5.30):

» Horizontal position map: To avoid visual clutter, the x-coordinate is repre-
sented as a separate timeline with a corresponding color-mapping. This timeline is
attached on top of the slit-scan, providing an effective visual comparison between
the scanpaths of multiple participants.

» Vertical position map: The y-coordinate of the gaze point is used to create an
alpha map with full opacity at the gaze point and a gradual fade to transparency.
The resulting visualization is superimposed with the slit-scan and depicts the
stimulus and the vertical gaze distribution.
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Table 5.1: Comparison of implemented scanpath similarity metrics. The criteria are rated as
(O) not supported and (@) supported for each method accordingly.

Measure Abbr. Temporal Annotation- Semantics
Order free
Levenshtein Distance [187] LD o O o
Needleman-Wunsch [216] NW ) O [
g Dynamic Time Warping [47] DTW ] o O
E Fréchet Distance [35] FD ) o O
% Bhattacharyya [51] BD O L L
8 Chi-Square [95] CD O [ ) [

In the presented examples, slit-scans depict raw data to support the depiction of possible
smooth pursuits. Analogous to the fixation-image charts, the approach can also be
applied to fixation data, resulting in longer time spans with a consistent visual pattern.

Visual Analytics Framework

Participants who looked at the same objects will create slit-scans that visually resemble
each other. Hence, an automatic comparison based on the resulting images seems
reasonable. Furthermore, traditional metrics as discussed before in Chapter 3.4.2 (e.g.,
Levenshtein distance) can be interpreted with the slit-scans. To foster the advantages
of visual analytics, the visualization and the metrics are combined in an interactive
framework. A set of established metrics (Table 5.1) is included to provide support
for scanpath comparison. The metrics are chosen as representatives for either AOI-,
trajectory-, or image-based similarity measures. Depending on the metric, some support
the temporal order in a scanpath and some require no annotations on the data. Assuming
that both aspects are desirable, the trajectory-based metrics are promising. However,
the AOI-based methods are more reliable in the context of semantic interpretation.
Hence, an annotation-free metric with results similar to the AOI-based metrics would
be best. This assessment will be discussed in the next section.

The metrics provide a single value indicating the degree of similarity between two
scanpaths. Combined with gaze-guided slit-scans, the presented visual analytics ap-
proach helps interpret the discussed measures and compare the results between metrics.
Figure 5.31 depicts an overview of the implemented visual analytics framework.
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Figure 5.31: Overview of the approach for interpretation and comparison of eye-tracking
data based on scanpath metrics. The investigated data shows four participants of the Kite
dataset. (A) Scanpath representation based on slit-scans; (B) gaze replay; (C) metric selection;
(D) participant selection; (E) history of comparison results.

@

Slit-scans: The slit-scans for the different participant are vertically stacked,
facilitating the comparison of scanpaths over time. Selected scanpaths are ordered
according to the results of agglomerative hierarchical clustering, based on the
currently selected metric. This representation resembles the dendrograms applied
to scarf plots and gaze stripes.

Gaze replay: The vertical scanlines forming a slit-scan can partially convey the
context of the stimulus. For a detailed view on specific time spans, the slit-scans
are linked with a video player that shows a bee-swarm visualization.

Filter selections: An editable list of metrics is displayed to select the measure
for performing the clustering. Data from participants can be de-/selected for the
analysis. The result is displayed in the slit-scan view.

History: An important part of the presented approach is the possibility to com-
pare the impact of the applied metric on the results of the clustering. Results of a
clustering step are saved as small dendrograms in the history view. Depending
on the applied metric, clusters might change for a selected time span. If a den-
drogram in the history view is selected, its similarity to the other dendrograms
is displayed based on cophenetic correlation [269]. This idea was not included
in the former approaches and provides quantitative and qualitative information
about the applied metrics.
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Figure 5.32: Matrix overview of
multiple metrics. An individual
cell shows the pairwise similar-
ity based on selected metrics. The
symmetrical pattern in the matrix
is slightly impaired because the
order of metrics in a cell is not ro-
tated accordingly to keep the in-
terpretation consistent. Cells can
be selected to investigate the cor-
responding slit-scans in detail.

In addition, an overview of all selected metrics is available in a separate matrix view
(Figure 5.32). Pairwise similarity values are color-coded in the cells of the matrix.
Selecting a cell displays the corresponding slit-scans of the pair for direct comparison.
With this view, correlations between measures can be investigated in detail.

Assessment of Image-Based Measures

To compare the image-based similarity of slit-scans with established metrics, three
synthetic video stimuli are assessed with recorded eye tracking data. The dataset
contains smooth pursuit patterns that define different groups of viewing behavior.

Scanpath Patterns

Following the approach presented by Haass et al. [132], three artificial stimuli were
created to evoke different smooth pursuit patterns. Each stimulus video contains three
colored dots (blue, black, and green) that follow different motion paths, as illustrated in
Figure 5.33. Ten participants were recorded with the instruction to follow a specific dot
color with their eyes. The task was repeated with all colors for each participant (nine
tasks per participant), resulting in 30 scanpaths per stimulus. The order of colored dots
to follow was counter-balanced between participants using a Latin Square design. As a
consequence, the resulting scanpaths of the same task should be more similar to each
other than the scanpaths from another task. An appropriate metric would result in
clearly separable clusters for the different patterns in a stimulus.
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(a) Sy, Pattern 1 (b) Sy, Pattern 2 (c) Sy, Pattern 3
(d) So, Pattern 1 (e) Sy, Pattern 2 (f) Sy, Pattern 3
(g) S3, Pattern 1 (h) Ss, Pattern 2 (i) S3, Pattern 3

Figure 5.33: Recorded gaze point examples from smooth pursuit patterns for the stimuli S; (a—c),
So (d—f), and S3 (g—i).

Experimental Setting

All three stimuli were presented with a resolution of 1920 x 1080 and 25 frames per
second. Their respective lengths were 23, 30, and 23 seconds. A centered black cross
was presented before each task to start all participants from the center of the screen.
All similarity values between participants were computed based on the raw gaze data.
String encodings and trajectories are based on raw gaze points instead of fixations,
due to smooth pursuits. The image-based measures use the distribution of hue and
saturation values within the slit-scans. The range of the hue and saturation values is
divided into 30 equally sized bins.

Results

For each stimulus, hierarchical agglomerative clustering (average linkage) is applied to
the recorded scanpaths. This is done for all listed measures in Table 5.1. In order to
retrieve the three largest clusters from the hierarchy, the resulting trees are flattened
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in a top-down manner. Then the Fi-scores are calculated for each of the measures,
according to the task category the scanpath should belong to:

Precision-Recall

Fy =2 —
Precision+ Recall

Table 5.2 shows the averaged F;-scores over the stimuli Sq, S9, and S3. The AOI-based
approaches result in a correct clustering of all scanpaths for each task category. From the
trajectory-based approaches, the dynamic time warp distance (DTW) can also clearly
separate the clusters, the Fréchet distance (FD) results in numerous misclassifications.
The image-based measures provide correct results for Bhattacharyya (BD), Chi-Square
(CD) results in some misclassifications.

The F;-scores show the overall accuracy of the used measures, but do not provide infor-
mation on how the calculated metrics relate to each other. Hence, the rank correlations
between the similarity values are calculated (Table 5.3). The AOI-based approaches are
the reference for the other measures that do not rely on annotation. Consequently, a
high correlation to Levenshtein (LD) and Needleman-Wunsch (NW) indicates a better
correspondence between the similarity metric and semantically interesting stimulus
regions. The Bhattacharyya distance (BD) shows the highest correlation values in
comparison with the other metrics, indicating that by including stimulus content into
the metric, results comparable to algorithms with annotated data can be achieved.

Table 5.2: Averaged F;-scores over the stimuli Sy, S, and Ss.

Measure Category F1-score
(LD) Levenshtein Distance String-based 1.00
(NW) Needleman-Wunsch String-based 1.00
(DTW) Dynamic Time Warping Trajectory 1.00
(FD) Fréchet Distance Trajectory 0.50
(BD) Bhattacharyya Distance Image-based 1.00
(CD) Chi-Square Distance Image-based 0.96

Table 5.3: Averaged Spearman correlations of similarity values over the three stimuli.

LD NwW DIwW FD BD CD
LD 1.00 099 0.67 0.23 076 0.6
NwW 0.99 1.00 0.67 0.23 0.76 0.6
DTW 0.67 0.67 1.00 047 0.72 0.58
FD 0.23 0.23 047 1.00 0.33 0.19
BD 0.76 0.76 0.72 033 1.00 0.6
CD 0.6 0.6 0.58 0.19 06 1.00
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(a)

(b) (c)

Figure 5.34: (a) Slit-scans of participants watching the Memory video clustered in three groups.
Group A fixates the uncovered card at the bottom-right corner. Group B fixates the correct
covered card at the center. Group C keeps on switching between two different cards. (b) Dendro-
grams show the clustering results with different metrics. (c) Metric results can be investigated
in detail with the comparison matrix.

Example: Memory Game

The approach is demonstrated on the Memory dataset. For this video, it is shown how
the comparison between metrics can be performed interactively. Figure 5.34 shows a
scene from the video. In the presented time span, the card in the bottom-right corner (a
Ferris wheel) is the last uncovered card and the corresponding card is located at the
center. As illustrated in Figure 5.34, the participants in Group B correctly fixate the
covered counterpart card, whereas the participants of Group A fixate the last turned
card, and Group C fixates the wrong covered card. The identified patterns for Group A
and C indicate difficulties in remembering the correct card.
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Figure 5.34 (top) also shows the slit-scans of ten participants assigned to the respective
groups according to their viewing behavior, as identified by clustering with the metrics
LD, NW, DTW, and BD. Especially high correlations can be observed between BD and
DTW, as well as between LD and NW (Figure 5.34b). All four metrics could correctly
separate between the Groups A, B, and C. The main difference between the metrics
appears in the later merging steps of these groups. BD and DTW merge B and C first,
whereas the AOI-based metrics merge A and C first. This can be explained by the nature
of AOI-based metrics. Participants of Group C partially fixate a covered card that is
different to the covered card fixated by Group B, leading to small similarity (due to
different AOIs). In contrast, BD and DTW find similarities between the covered cards
due to image content and spatial proximity.

For a full overview of the results, the comparison matrix view can be investigated
(Figure 5.34c). Interactive filtering helps explore correlations between metrics indicated
by similar colors within the blocks of the matrix. High similarity values for all applied
metrics are apparent in the cluster of Group B, where participants could identify
the position of the correct card. Selecting a specific cell in the matrix displays the
corresponding slit-scans of the participants to help interpret the metric results.

5.3.4 Discussion

Image-based representations of scanpaths provide much potential for comparison tasks
and the detection of deviations from regular patterns. All presented techniques do not
require AOIs and are applied directly to the recorded data. Gaze stripes and fixation-
image charts show an overview of the data for sequences shorter than one minute.
Although adjusting the sampling rate and zooming and panning provides leeway for
longer sequences, the temporal scalability of both approaches is limited. In contrast,
gaze-guided slit-scans reduce the width of one time step down to one pixel, which allows
one to display much longer sequences (e.g., Last Clock [87]). However, the interpretation
of details in the stimulus is often harder to achieve than with the other two techniques.

For future work, the extension to long-term recordings such as feature-length movies
should be considered with a combination of slit-scan and thumbnail-based techniques.
The slit-scans may provide an overview of the dataset and thumbnails of selected
time spans summarize the gaze data to provide more details without frame-wise skim-
ming. The application of image-based visualization to mobile eye tracking is another
research topic that provides much potential for future research. The first step in this
direction is discussed in Chapter 6.2.

To this point, all examples were based on a single stimulus that was watched by multiple
participants. In the following chapter, the analysis of data from mobile eye tracking
is discussed. In this case, multiple participants create their individual stimulus videos,
which further complicates data analysis for more than one person.






CHAPTER

Visual Analytics for Mobile
Eye Tracking

This chapter covers research on the analysis of eye-tracking data with dynamic stimuli
and participants who actively influence the stimulus. In general, this category is split
into two types of experiments:

» Desktop scenarios: Examples that comprise experiments that utilize a remote
eye-tracking setup. Participants are typically asked to interact with an application
on a desktop computer (e.g., a visual analytics tool [3]). Each participant performs
individual interactions, needs different time to solve the task, and finally records
an individual video with gaze data.

» Mobile eye tracking: The second category comprises experiments conducted
with a head-mounted eye tracker. A world-view camera records a stimulus video
onto which gaze data is mapped. This setup allows the participant to perform
tasks requiring mobility that cannot be achieved with a remote setup. With this
high degree of freedom for in-the-wild studies, the difficulty for the analysis of
the data increases.

Applying point-based techniques to such data is limited to scenarios where gaze co-
ordinates can be transformed into a joint coordinate system. For desktop scenarios,
this can be achieved by accessing the screen coordinates of individual components. For
mobile eye-tracking, optical markers are often used [232]. However, markers restrict
the number of applications for mobile eye tracking. In highly dynamic scenarios, for
example, in pervasive eye tracking over long time spans, it is simply not possible to
prepare the environment with artificial markers. As an alternative, approaches based on
Simultaneous Localization And Mapping (SLAM) map gaze data directly to reconstructed
3D surfaces [226]. Such approaches seem promising for future research, especially in
combination with mixed reality applications incorporating eye tracking.
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This chapter is partly based on the following publications:

« K. Kurzhals and D. Weiskopf. “Eye Tracking for Personal Visual Analytics”. In: IEEE Computer Graphics and Ap-
plications 35.4 (2015), pp. 64-72 [17]

« K. Kurzhals, M. Hlawatsch, C. Seeger, and D. Weiskopf. “Visual Analytics for Mobile Eye Tracking”. In: IEEE Trans-
actions on Visualization and Computer Graphics 23.1 (2017), pp. 301-310 [29]

For the majority of scenarios, semantic interpretation and therefore the annotation
of AOQIs is often necessary to make existing techniques applicable. Since numerous
AQI-based techniques can be applied once the annotation is done, this chapter focuses
on two other important aspects of mobile eye tracking:

» How can eye tracking be applied in the context of personal visual analytics?
This scenario is particularly interesting because it includes long time spans of
data from an individual person that have to be presented in a casual way.

» How can the annotation of gaze data be improved with image-based techniques?
Since AOIs have to be identified in each individual video source, the annotation
effort increases significantly in comparison to the scenarios described in the pre-
vious chapter. The concept of the presented image-based approaches is extended
to improve the annotation of gaze data and provide an in-situ analysis during the
annotation phase.

The investigation of data from mobile eye tracking is one of the most challenging
scenarios for gaze behavior analysis. A wide range of experiments can be covered due
to the high degree of freedom with this setup. Hence, it is important to develop methods
to handle the resulting data efficiently.

6.1 Personal Visual Analytics

Eye tracking is becoming more affordable for consumers. As an example, games can
be interacted with by gaze using low-cost remote eye tracking!. It is reasonable to
assume that soon, the hardware development will advance to provide consumer glasses
that allow for pervasive eye tracking [64]. This provides numerous applications for
gaze-based interaction with the surrounding world. In general, the application of eye
tracking for human-computer interaction is categorized by four groups: explicit eye
input, attentive user interfaces, gaze-based user modeling, and passive eye monitoring.
The categories reach from overt/intentional to covert/unintentional systems [201]:

! https://tobiigaming.com/, last checked: October 13, 2018
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» Explicit eye input: Gaze is used to interact consciously with a computer system
for controlling purposes. For example, by replacing the mouse with gaze positions.

» Attentive user interfaces: Such interfaces do not rely on gaze as an explicit
input. The gaze information is rather used implicitly, e.g., for gaze contingent
displays that adjust the render quality according to the user’s eye movements.

» Gaze-based user modeling: In contrast to the previous groups, modeling ap-
proaches aim to understand and formalize human gaze behavior and cognitive
processes. The detection and prediction of specific behavior (e.g., being attentive
while driving) can be used as meta information for further processing.

» Passive eye monitoring: Monitoring comprises scenarios when gaze data is
only recorded for later processing without a direct influence on the surroundings.
This provides useful information for diagnostic purposes or other scenarios such

as life logging.

Mainly scenarios in which data has to be investigated retrospectively benefit from
visualization and visual analytics. Hence, this chapter focuses on the passive monitoring
of gaze data. In particular, the potential of this technique in the context of personal
visual analytics and personal eye tracking is discussed:

How can users of eye-tracking glasses recapitulate on their viewing behavior, understand
interactions with others and the environment, or just have fun with their personal data?

The possible application scenarios for personal eye tracking cover diverse fields. With
the additional information about the user’s gaze, important events in the video database
can be extracted to facilitate re-experiencing these events. Possible scenarios comprise
applications to support self-reflection and self-insight [143] by video analysis with
gaze information. This could be the analysis of interaction logs for personal relations
with others, vigilance optimization during driving situations, or cognitive activity
recognition that can be applied for quantified-self scenarios [180]. For example, users
could monitor their reading behavior and time spent on reading texts; a goal might be to
read at least 10.000 words a day. Also, catalogs of interest could be generated, depending
on objects that attracted the user’s attention to serve as recommender systems. For
example, the viewing behavior could be analyzed to present similar suggestions for
future media consumption. The time spent on a personal visual analytics application
strongly depends on the scenario. For example, users who benefit from the analysis for
health or social reasons will be more motivated to spend time with the application than
users who browse recorded data just for fun.

This chapter further discusses how personal eye tracking can be categorized in the gen-
eral context of personal visual analytics and what special requirements and challenges
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have to be considered for applications. As one example of the visualization of personal
eye-tracking data, a new approach, the AOI cloud, is presented to display information
about the gaze distribution across multiple videos. With this technique, annotated AOIs
such as persons can be displayed in an overview by a representation similar to a tag
cloud. Additional rings on the AOIs allow for easy navigation through several videos
to examine time spans that received the user’s attention.

6.1.1 Eye Tracking in the Context of Personal Visual Analytics

Personal visualization and personal visual analytics concern the application of existing
and the development of new techniques for data representations and interactions in a
personal context. The main question in this context is:

€¢  How can the power of visualization and visual analytics be made appro-
priate for use in personal contexts—including for people who have little
experience with data, visualization, or statistical reasoning? 9

Huang et al. [154]

The design dimensions of personal visual analytics are investigated first and it is
discussed how an application for personal eye tracking fits in. In particular, an example
case of personal encounter analysis is classified according to these specifications. To this
end, the classification introduced by Huang et al. [154] is examined, which consists of
four categories with dimensions considering the data, context, interaction, and insight:

Data The scope of the recorded data is a combination of data about oneself and data
about other people. Data about oneself is recorded by gaze information and by the
video camera of the eye-tracking device that captures data about the environment. This
data is very personal and has to be handled with care. Under the assumption that eye-
tracking devices will become more and more comfortable in the future and comparable
to the regular experience of wearing glasses, the effort to record data will be reduced to
sensor recording only. Current eye-tracking devices still require elaborate calibration
procedures that increase the effort to record data. Regarding the controllability of the
data acquisition, the user has partial control whether to record the surrounding.

Context The influence context of mobile eye-tracking analysis is mainly personal to
inform the user wearing the device. However, since other people will often be involved
in the recorded data, the user could communicate extracted events through social media
to involved persons, for example, to recapitulate parts of a conversation. The design
context of an application depends on the scenario. In the example case for browsing
encounters with other people (Chapter 6.1.3), the application to examine the recorded



6.1 e Personal Visual Analytics 149

data is designed by the researcher. However, the components of the visualization are
freely organizable, allowing the user to arrange groups of persons and extract and
summarize important personal events in an easily accessible visual representation.
For scenarios with automatic data analysis (e.g., recommender systems), predefined
representations of the results should be sufficient.

Interaction The degree of attentional demand for interaction also depends on the
scenario. In case the analysis is performed automatically and the user has to choose
between different results (e.g., recommended media), the attentional demand will be
low. For the analysis of personal encounters, the user has to focus on the visualization
to investigate interesting events. Hence, high attentional demand is required. High
explorability of the data in the application allows users to investigate multiple video
streams simultaneously for interesting events that received much attention.

Insight Apart from technical issues, fully automatic analysis of the data can only
be applied in a subset of scenarios and for pre-processing. An analysis of subjective
events cannot be automated and requires the user to make conclusions of the data. Also,
the degree varies to which extracted insight from the application can influence future
actions. In the best case, the examination of the recorded data leads to an identification
of self-defined misbehavior that can be avoided in future actions. For example, a person
who is considered a close friend received less attention than the user would consider
appropriate. Being aware of this situation, the user can then spend more time with this
person to strengthen their friendship.

In addition to these general design dimensions, some specific requirements for mobile
eye tracking have to be considered. These requirements relate to common issues with
this technique and to the specific personal context.

6.1.2 Special Requirements

For the personal analysis of eye-tracking data, certain aspects that differentiate personal
from professional visual analytics have to be considered. The following characteristics
and requirements of personal eye tracking are identified as most relevant.

Accuracy Inprofessional eye tracking, high accuracy of the analysis is critical because
research results, product design, security-relevant decisions, or others rely on the quality
of the analysis. Fortunately, personal eye tracking is less critical in terms of analysis
accuracy. Therefore, there is some leeway in designing personal visual analytics.
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Time spans and reasoning artifacts Personal eye tracking will cover much longer
time spans than traditional eye-tracking experiments, requiring more time-compressed
visual representations. Similarly, different reasoning artifacts are relevant [285]. For
example, patterns in the transitions between fixations are of lesser interest than events
or objects extracted from the data (such as people with whom the person interacted).
Specific aspects of tasks for personal eye tracking will be complemented by general
observations for casual visualization [271].

Semantic information and combination with other information Since personal
eye tracking focuses on identifying relevant events or objects, it benefits from linking
those to semantic information and embedding them into the context of outside infor-
mation. For example, people identified as being important could be associated with
information from their web profile.

Visual interface and application scenario Like any personal visual analytics ap-
plication, the design of the visual interface has to be easy to use for non-expert users
and avoid a steep learning curve. The automatic processing for the analysis should
be robust so that there is little or no need for the user to interfere and fine-tune the
underlying data mining or computer vision techniques. Similar to many of the apps in
mobile personal use on smartphones, visual analytics software for personal eye-tracking
will most likely be application-specific. In contrast, professional tools tend to be generic
so that they can work with any study setup.

Privacy Personal visual analytics has to incorporate mechanisms to protect privacy
because potentially sensitive information is recorded from the environment. Therefore,
the analysis needs to be designed to work with the principle of data minimization (e.g.,
to work with video recordings in which faces of persons or license plates of cars are
modified to make them unrecognizable). Also, high data security of the personal gaze
data of the user is required [192].

The above aspects will be critical in (1) the design of appropriate visual interfaces, and
(2) the development of automatic analysis techniques to be integrated within visual
analytics. In summary, it is expected that personal eye tracking will come with many
challenging research questions related to design, interaction techniques, visualization,
computer vision, pattern recognition, and semantic modeling. While there is substantial
research in these areas, the personal perspective will require researchers to devise new
variants of existing techniques or develop completely new ones. To illustrate the
possibilities of personal eye tracking, a prototype was implemented for a commonly
representative scenario: the analysis of personal encounters of a user.
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6.1.3 Example: Personal Encounters Analysis

The analysis of interactions between persons plays an important role in psychological
and cognitive science (e.g., for joint attention [215]). For a private user, the analysis
of personal encounters can also be interesting, be it a self-reflection of social behavior
or just for re-experiencing situations that received much attention. In this example
scenario, the user was wearing eye-tracking glasses during a recurring event over one
week: the coffee break. During the coffee breaks, a group between 3-6 people, including
the person wearing the eye-tracking glasses, gathered to discuss miscellaneous topics.
The recordings during these breaks lasted between 3-9 minutes with a varying set
of participants. All participants agreed to be recorded on video if their faces would
be anonymized. Considering the privacy issues discussed in Section 6.1.2, this was
an important prerequisite for all participants. Also, the recorded audio should not be
included in any form of publication of the data. One participant (P1) of a coffee break
did not agree to be recorded in any form, so P1 sat next to the person wearing the
eye-tracking glasses, being not visible to the camera. This situation exemplifies the
issues that occur when other people are recorded on video and have to be considered
for the application of personal eye tracking.

Automatic pre-processing of this data requires an algorithm to detect faces in the videos,
store them in a database, and recognize the faces when they reappear. In this scenario,
the faces are AOIs. Compared to other tasks in computer vision, this can be performed
without much user interaction, since there is no semantic gap that requires human
interpretation of situations. The user might identify a person once, while the rest of
the data is processed automatically. With the information what faces can be seen in
the videos and where they appear, a gaze distribution can be calculated by the AOIs of
faces and the eye-tracking data. Although computer vision approaches can nowadays
be applied for automatic segmentation and classification of such events (e.g., Jasinschi
et al. [165]), this example is showcased with manually annotated data since current
automatic approaches often face difficulties with changing environmental conditions
as in the presented case and ground truth data was preferred to show the visualization.

AOI Cloud Visualization

To show the gaze distribution on AQOIs, common visualization principles such as an
overview and interactive filtering of the data have to be available. For personal eye-
tracking data, the overview of all AOIs and how much attention they received plays an
important role. The interactive visualization has to meet the requirements for personal
eye tracking and enable the user to browse the recorded video data for events and time
spans when a specific object was looked at.

Figure 6.1 shows the implemented visualization approach. The annotated persons
(more general: AQOIs) are represented as circles consisting of a representative image
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Figure 6.1: Visualization of one AOL:
(A) representative image with a label,
the radius indicates the attention spent
on the person; (B) inner ring with seg-
ments for all videos the person ap-
peared in; @ the outer ring shows the
currently selected video; (D) reference
images with markers on the outer ring.

() and an inner (8) and outer (C) ring. Reference images () help browse the content of
multiple videos. Radial visualization approaches are applied in cases where hierarchical
structures, relationships among disparate entities, or as in this case time series data,
have to be displayed in a dense representation [97]. The presented radial approach was
chosen due to its compact representation of the temporal dimension on the rings that
can be interpreted by using a clock metaphor, the accessibility for novices [98], and
its possibilities for fast interactions. The radius of the circle can be determined by an
appropriate eye-tracking metric. In this example, the total amount of gaze points on the
person from all videos was calculated. Other metrics such as transition counts between
AOQIs or fixation durations could also be applied, depending on the analysis question.
Hence, the visualization approach is independent of the applied metric.

Since some persons appear only in one video and others in three, the difference between
the gaze points on the AOI with the lowest value and the AOI with the highest value
can be high. This leads to extreme differences in the size of the circles, resulting in the
problem that at least one of the AQOIs is either too small or too big to be readable. Hence,
logarithmic scaling of the metric was applied to adjust the visualization for a better
representation of all AOIs. The representative image of a person is determined by the
first appearance in the data. Alternative approaches could determine the representative
image based on a special event in the data or a profile image from social networks.

The inner ring consists of segments that each represent a video containing the AOL
Hence, the inner circle contains all the videos where the AOI appeared, and the size of
a segment is determined by the relative length of the corresponding video. Segments in
the inner ring are connected to the outer ring by identical colors. To visualize when an
AOI was looked at, an approach similar to AOI timeline visualizations was used. Time
spans without gaze on the AOI are displayed darker, whereas time spans with gaze
points are displayed with full brightness. This way, important events can be identified
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Figure 6.2: The touch-friendly design
of the AOI cloud allows for an analysis
of the data on mobile devices such as
tablets. The user can arrange the visu-
alization individually and explore the
data in everyday situations.

efficiently by directly selecting the emphasized time spans. Typical approaches with
AOQI timelines consider only one video. Here, multiple video stimuli are combined in
one visualization to investigate the data more efficiently.

By selecting a segment of the inner ring, a second ring appears outside, representing the
selected segment zoomed over the whole ring. Timescales for start and end of the video
as well as for the quarters help the user to navigate clockwise through the video. Initially,
one marker is available on the rim of the outer ring. It can be moved around the ring to
navigate through the video. A thumbnail image next to the marker shows the currently
selected frame as a reference to the video content. By clicking on the thumbnail, the
corresponding video appears in a separate player window and can be played back
directly at the selected position. The user can also create additional markers to select
multiple events of potential interest to compare them, or just summarize the gist of
important interactions with the person in this video. With this approach, interesting
events can be assessed simply by clicking on the thumbnails that represent them.

The complete dataset can finally be visualized by items for each AOI that can be arranged
in a layout similar to a tag cloud [298]. Important AOIs are placed in the center of
the cloud while less important AOIs appear in the outer regions. With this analogy,
the accessibility of the visualization is supported, since tag clouds are familiar to most
users and already established in everyday life. From that point on, the user is free
to rearrange all items to build groups or rankings of persons, based on subjective
criteria. As an example, the user could rank the persons based on friendship relations
and investigate if their received attention relates to this ranking (Figure 6.2). Time
spans when a person received attention are easily accessible by the inner and outer
rings. With this approach, the exploration of multiple video sources is simplified in an
easy to understand interactive visualization. Due to the touch-friendly design of the
visualization, users can examine their data on mobile devices. This design enables easier
integration of the application into the everyday life of the user which is important for
long-term use.
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Figure 6.3: AOI cloud for eight persons over four videos. The items are freely arrangeable by
the user. In this example, three groups are created: Group 1 (Dylan, Russel), who received the
least gaze points; Group 2 (Anya, John, Steve) with medium amount; and Group 3 (Jack, Oliver,
Chris) with the highest amount of gaze points.

Analyzing the Coffee Break

Figure 6.3 shows a summarization of four videos from the coffee break dataset. Two
videos (yellow, green) are from the same session because the person constellation
changed after the first record ended. Altogether, eight individual persons participated
in the breaks and received different amounts of gaze from the user wearing the eye-
tracking glasses. The user organized the participants in three groups, based on the
number of gaze points they received:

Group 1 Dylan and Russel appeared just once in different videos. Both were looked
at less than the others, especially Russel, who was sitting next to the user, was looked
at only when he was talking, since the user had to turn the head to look at him. Dylan
was also watched when he was not talking since he was sitting in front of the user.
Both persons could have received a similar amount of attention as in Group 2, if they
appeared in another video and Russel was seated in a better position.

Group 2 Anya, John, and Steve appeared in two videos and were watched occasionally
by the user. Steve could also be shifted to Group 1 since he was looked at only a few
times during his attendance in the coffee break.

Group 3 Jack, Oliver, and Chris received most of the gaze points, although the
distribution highly depends on the constellation of persons. As an example, Oliver was
looked at much in video 3 (yellow), where he, Chris, and Steve were present. During
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this coffee break, Chris left the room for half of the time (see markers at 00:02:34 and
00:06:00) where the main focus was on Oliver. In video 2 (red), Oliver received fewer
gazes. In this video, as well as in video 1 (blue), Jack was the attention catcher. Since he
talked most of the time in both videos, the user looked often at Jack. Hence, he received
most of the gaze points although he was only present in two videos.

How much attention a person received in this coffee break example strongly depends
on the position of the person, their active participation in discussions, and who else
was present. Persons that talked less and required the user to turn the head received
fewer gazes, especially when an attention-catching person was present. In conclusion,
if the user would like to spend more attention on some of the persons from Group 1 or
Group 2, talking with these people outside the coffee breaks when Jack is not present
to capture the attention might be an option.

6.1.4 Discussion

The AOI cloud provides an accessible approach to investigate the personal distribution
of attention over several videos. The visualization approach is not restricted to persons
and could be applied to an arbitrary set of objects, assumed that an annotation of the
objects is possible. Although the most important AOIs will always be in the center of
the initial cloud, a large number of AOIs and videos might reduce the readability of the
visualization. Therefore, the scalability of this approach can be improved by additional
filtering, concerning the number of AOIs and video segments. By thresholding gaze-
related metrics, AOIs that received fewer gaze points could be removed from the
visualization. The same approach could be applied to the video segments of an AOL

The presented visualization focuses on the analysis of individual relations between a
person and the user. For future extensions, an analysis of group interactions would
be beneficial for a reflection on personal social activity. A comprising set of personal
analysis interests could be covered by adding new possibilities to examine the switching
focus of attention on different persons and how it correlates with their activities.

Perspectives

This chapter presented a glimpse into the future of mobile eye tracking for personal
scenarios. With the presented visualization approach, personal encounters can be
analyzed in an easy, accessible way. Mobile eye tracking comprises most scenarios
that can be achieved with head-mounted cameras or head tracking. Its main advantage
lies in the additional gaze information. In all cases where multiple objects are in the
center area of the recorded image, detailed information about the current point of
regard on an object can be derived. A typical example is a person looking at a picture
collection where the identification of the currently focused picture is not possible
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without determining the gaze position. Regarding the visual design of applications,
the focus lies on personal scenarios. Hence, designing interfaces to combine mobile
eye-tracking data with existing applications for personal visual analytics would be
desirable. To extend the possibilities of personal eye tracking in the near future, the
challenges linked to the requirements have to be addressed.

Data acquisition To increase the accuracy and accessibility, self-calibrating ap-
proaches need to be developed. Current techniques rely on calibration procedures
not feasible for a personal application. Also, managing the influence of uncontrolled
lighting conditions in the environment bears problems that require further research.

Automatic detection of objects of interest Defining areas or objects of interest
solely relying on computer vision might be hard to achieve in the near future. Arbitrary
user-defined queries (e.g., searching all cars in the videos of the database that the user
looked at) are required to process the recorded data to its full extent. With the advances
in computer vision research, this can be achieved already for low-level semantics (this
is a car). For high-level semantics (this is my car), semi-automatic approaches and
crowdsourcing could bridge the semantic gap that is apparent in automatic approaches.
Hence, visual analytics fits well to support such semi-automatic analysis.

Cognitive activity recognition Additionally, the interpretation of the gaze data
itself, regarding cognitive processes, has to be considered. Current approaches using
cognitive modeling and machine learning to predict and classify gaze behavior (e.g.,
detecting arousal or vigilance) need further development to provide more information
than just distributions of attention. In the example, this information could be applied
to weight the AOI circles. Additional information from measured pupil dilation can be
included since current eye-tracking devices already record this data and preliminary
work to correlate pupil changes with emotional states already exists. Supplementary
sensors (e.g., heart rate sensors) can also provide such information and are already
combined with mobile eye tracking nowadays.

With currently existing methods, one of the biggest challenges is still the annotation of
AQIs in the data. The following section will outline how image-based visual analytics
can ease this task and increase the efficiency in comparison to polygon-based bounding
shapes annotated by drawing in the video.
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6.2 Image-Based Visual Analytics for Mobile
Eye Tracking

For most analysis scenarios of mobile eye-tracking data, the annotation of AOIs is
inevitable. This often proves to be the most cumbersome process of the analysis
phase of an experiment. Every video has to be investigated and coherent AOIs have
to be labeled in all of them. Once this troublesome step is taken, a wide range of
AOQI-based techniques [4] can be applied (Chapter 5.2). For that reason, the visual
analytics approach presented in this section focuses on the efficient labeling of gaze
data. It simplifies the complex annotation process by reducing the problem to an image-
sorting task supported by automatic image analysis. The concept extends on the ideas
and experiences with gaze stripes [24] and fixation-image charts [23] for single video
scenarios (Chapter 5.3). To ease the labeling of thumbnails, unsupervised clustering of
the data is performed in a pre-processing step. The resulting clusters can be explored
with different strategies to identify and label AOI-relevant clusters. To support the
search for misclassified elements, different image queries can be applied to retrieve
the missing thumbnails and assign them to the correct label. This approach does not
rely on the definition of bounding shapes, where the defined shapes might be very
different between annotators. Reasons for a low inter-annotator agreement [44] can be
investigated easily by looking at all thumbnails misclassified by the annotators.

The remainder of this chapter outlines how this approach relates to other work in
this field, what the visualization requirements are, and how they are approached. The
approach is evaluated in two ways:

» The labeled results from this approach were compared with the results obtained
by a collaboration partner for the same real-world dataset (Chapter 6.2.5).

» Additionally, an expert user study was conducted at an eye-tracking conference to
collect feedback about the usability of the visual analytics system and to identify
the applied strategies during the use of the application prototype (Chapter 6.2.6).

6.2.1 Related Work

The annotation of AOIs can be performed either by annotating the stimulus content
directly or by labeling the recorded gaze data.

For direct video annotation, manual and automatic approaches exist to extract objects as
AOIs. In the best cases, semi-automatic tracking [48, 259] or automatic approaches with
markers [233] and without markers [62, 291] facilitate the detection of AOIs. Tracking
can improve the annotation speed, but initial definitions and corrections of bounding
shapes are still required.
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Fully automatic identification of AOIs without markers requires an algorithm to detect
and recognize the corresponding objects. This is a common problem in computer vision
that can usually be solved for specific scenarios (e.g., mobile text recognition [178]),
but typically, a training phase with all involved AOQIs is required. This prerequisite
impairs the application of an automatic approach to solve annotation issues for arbitrary
experiments. In contrast, the presented approach requires no initial training phase and
can be applied to eye-tracking experiments in general.

Labeling the gaze data itself often provides more accurate information about AOIs,
since gaze points that were not in an AOI but close to it, for example, due to calibration
issues, can be identified and corrected. Therefore, each measured gaze point, or in
the aggregated case each fixation, has to be investigated in the video to assign the
correct label. This annotation approach is in most cases far more time-consuming
than the definition of bounding shapes. For example, Tsang et al. [294] depict fixations
labeled this way also by thumbnails. As the authors mention: “This process constitutes
a significant amount of time and effort if the number of fixations is large [294]”. Netzel
et al. [218] report an average annotation speed of 5 fixations per minute by a similar
approach, leading to 140 hours spent on about 40.000 fixations for an experiment. There
is some work that improves the annotation step by semi-automatic algorithms. Pontillo
et al. [236] present an image-based approach to label fixations by showing images of
fixated regions to the analyst for semi-automatic classification of fixated areas. However,
the authors apply this approach only to assign fixations to labels, further analysis with
statistical or visualization techniques is still required for this annotated data. Also, their
approach requires step-wise labeling of the data, while here, automatic clustering of
the images in a pre-processing step is applied, which reduces the number of images to
investigate.

There are numerous methods to depict large collections of video data, e.g., Luo et
al. [198] analyze and visualize news video collections according to an interestingness
measurement. The cluster editor view of the approach is similar to storyboard vi-
sualizations that depict keyframes of videos in a grid (e.g., the work by Bailer and
Thallinger [43], Furini et al. [119]). Fu et al. [118] use a similar concept to visualize
multi-view videos that show the same scene from different views. In the presented
technique, images can be assigned to AOI labels by dragging and dropping on their
representative pictograms. This approach is similar to MediaTable by Rooij et al. 246,
247]. The authors use a bucket-based workflow to categorize videos. Buckets represent
media categories and videos are displayed by representative images. However, their
application was developed only for video content without any eye tracking information.
The principles of their workflow are adapted to provide an efficient means of labeling
AOQIs with pre-processed data.

This section discusses a new visual analytics approach that allows the efficient compari-
son of data from multiple videos acquired during experiments with mobile eye tracking.
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By including unsupervised clustering techniques in the pre-processing and interactive
image queries in the labeling step of the analysis process, annotation results comparable
to current state-of-the-art techniques can be achieved, but with far less human effort
due to a more efficient annotation process.

6.2.2 Domain-Specific Analysis Process

In order to design a visual analytics approach that facilitates the analysis of the data,
the requirements have to be identified first. Based on this, the changes in the analysis
process in comparison to a traditional procedure are defined. Although this approach
is designed with a specific application scenario in mind, the derived analysis questions
apply to a multitude of possible mobile eye-tracking experiments.

Domain Problem Characterization and Design Process

The development of the technique was accompanied by discussions with a collaboration
partner. He is an experienced eye-tracking researcher (8 years at the time this work
was published) at the Stuttgart Media University in the field of print media. Following
the principles of user-centered design [214], the domain problem characterization was
addressed and the requirements of the collaboration partner were identified. In an
iterative process, the visualization design was discussed, adjusted, and improved. For
the domain problem characterization, the following points were identified as the main
analysis questions to be answered:

Q1 What was the distribution of attention between AOIs?
Q2 When was a specific AOI investigated for the first time?

Qs In which order did the participants look at the AOIs?

These are three basic questions for eye-tracking analysis tasks (Chapter 4.2.1), which
allow the application of established visualization techniques and descriptive statistics to
present the extracted information in an appropriate way. To answer the first question,
a gaze histogram is applied, showing the average gaze duration of all participants in
relative time. This representation is consistent with the one used by the collaboration
partner. The inclusion of additional metrics would be possible to address further
research questions. For the other questions, scarf plots for all participants are included.
Choosing suitable visualization techniques for interpreting the labeled data was a minor
issue during the design process of the visual analytics approach because established
methods were identified to be appropriate.
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Figure 6.4: Analysis process for mobile eye-tracking data (red): AOIs can be defined by anno-
tating the video (gray) or the gaze data (orange). The annotation based on gaze data is facilitated
by automatic pre-processing and reduced to an interactive image labeling task. For the analysis
of mapped gaze data on AOIs (blue), common visualization techniques such as histograms and

cluster identification

scarf plots can be applied.

Analysis Process

With the domain problem characterization and requirements analysis, the typical
workflow associated with mobile eye-tracking studies was investigated. Here, AOI
labeling was identified as the most time-consuming step. Therefore, the main focus of
this work is on making the labeling process more efficient.

For this purpose, the common process for annotating eye-tracking videos with AOIs is
changed. In the traditional annotation process, the video is investigated and dynamic
AOIs have to be defined on the video image (Figure 6.4, gray). This procedure has to be
repeated for each video (i.e., each participant) recorded in the experiment. Furthermore,
consistent labeling of AOIs is critical for the analysis. Gaze points are mapped to the
AOQIs by automatic hit detection; the analyst is usually not involved in this mapping pro-
cess. Consequently, errors from imprecise bounding shapes or offsets in the calibration
of the eye tracker might be missed.

By investigating the image content of fixated regions directly, the analyst has the
possibility to decide whether a gaze point was on an AOI or not. However, looking
at the image content of each measured gaze sample individually would need much
more time than the definition of dynamic AOIs. Therefore, the analysis process is split
into two stages (Figure 6.4, orange): (1) a pre-processing step that can be performed
automatically and clusters gaze data based on the investigated stimulus content, and
(2) the subsequent analysis of these clusters itself. The analysis can be interpreted as a
loop between the interactive labeling of the clusters and the coupled interpretation of
the results with the provided visualization techniques: all changes in the labeling can
be directly interpreted with the other visualizations. Then, the other clusters can be
investigated based on the insights derived from the visualizations.
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6.2.3 Pre-Processing

As illustrated in Figure 6.4, eye-tracking data has to be recorded and pre-processed
before the interactive labeling step. For the examples, the SensoMotoric Instrument
(SMI) head-mounted Eye Tracking Glasses 2.0 were used. However, the visual analytics
method does not make use of any specific characteristics of the SMI glasses. Therefore,
it works with any eye-tracking device that provides gaze coordinates of fixations and a
video of the stimulus. The pre-processing phase is separated in four steps: thumbnail
extraction, video segmentation, image comparison, and clustering. Figure 6.5 shows an
overview of the pre-processing steps.

Thumbnail extraction Each gaze point provides an x- and y-coordinate mapped
to the corresponding video recorded by the scene camera of the eye tracking glasses.
Around the gaze position, a thumbnail is cut out of the video image, representing the
currently watched region. This step is identical with the procedure for gaze stripes
described in Chapter 5.3. In general, an increased crop area for the thumbnail is
advantageous for the detection of image features, but impairs the interpretation of what
was investigated by the participant during the experiment.

Video segmentation This step describes the temporal segmentation of the video.
First, the number of relevant images is reduced by taking advantage of the temporal
coherence of the underlying video and gaze data. Fixations on a specific area typically
result in a sequence of images that are similar. Therefore, a comparison of thumbnails
from subsequent video frames is performed and the images are aggregated until they
drop below a similarity threshold. Depending on the applied similarity measure, the
threshold can be adjusted to achieve longer or shorter segments. For the applied
measure (see next paragraph), a threshold of 0.4 still provided good segmentation results
without aggregating different stimulus regions (Figure 6.6). This aggregated sequence of
thumbnails is referred to as segment in the following. A segment is represented by the
first thumbnail of the sequence. The aggregation is stopped for a segment when more
than two frames are missing in the gaze data between consecutive thumbnails. This
can happen when the eyes are not recognized for a short time span by the eye-tracking
device. For the investigated data, this segmentation step reduces the number of images
for the subsequent clustering step to approximately 10% of the original thumbnails,
removing redundant images from fixations on the same regions. Other experiments
that involve smooth pursuit eye movements should aim for smaller segments, since
the motion of the underlying stimulus content might be hard to interpret when it is
represented only by a single image [23].

Image comparison As described above, thumbnail similarity is compared for two
reasons: (1) segmentation of the image sequences and (2) clustering of the remaining
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Figure 6.5: Overview of the video segmentation and image clustering process: Thumbnails are extracted from all videos and temporally
aggregated. The segment representatives are compared using a bag-of-features approach. Clustering is performed on the resulting
similarity matrix.
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Figure 6.6: Segmentation of a thumbnail sequence: Changes in the image sequence lead to
similarity values below the threshold (1) (3) and start a new segment. Smaller changes due to
short saccades or head movement are aggregated in the same segment (2). The first element of
a segment is chosen as representative (yellow border).

segments. From the numerous possibilities to compare images, two approaches are
combined that require only a few parameters and can be applied to arbitrary image
sequences (Figure 6.5). The first similarity value is calculated from extracted SIFT
features [197] using a bag-of-features approach [168]. The features are extracted from
each thumbnail and create a feature vocabulary, using k-means clustering. For the tested
examples, a set of maximal 200 features per image and a vocabulary size of k = 500 led
to good results for the segmentation. In general, the size of the vocabulary depends on
the number of regions to differentiate. It has to be considered that a large vocabulary
size might cause overfitting. With the vocabulary, feature histograms can be derived
for every image. At this point, this approach is typically applied to train a classifier for
a specific image category. Since this would already require ground truth data for the
AOIs, the similarity between the feature histograms of two images is calculated using
the inverted Bhattacharyya distance [51]. The extraction of SIFT features depends on
the quality of the investigated images; some of the analyzed thumbnails provide only a
few or no features to extract. To compensate for that, a second image similarity measure
is included, based on color histogram comparison. Both similarity values, feature-based
and histogram-based, are aggregated equally. In the case that the feature recognition of
an image fails due to a low number of recognized features, only the color histogram
value is applied.

Clustering Unsupervised clustering of the thumbnails is performed on their simi-
larity matrix, using self-tuning spectral clustering [316] that only needs a maximum
number of clusters as a parameter. For the pre-processing, this should be at least
the number of required AOIs. Since irrelevant regions and large AOIs will lead to
sub-clusters, the maximum number of clusters should be adjusted accordingly. For
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Figure 6.7: The main view consists of four different elements: (&) The cluster view lists all
clusters sorted by their accumulated duration. To the left of each cluster representative,
the cluster elements are displayed. To the right, histograms for the clusters are shown.
The total gaze duration on the labeled clusters is displayed in the histogram on the left.
The timeline overview at the top presents the clusters that are viewed by the majority of the
participants. (C) The scarf plots display for each participant which clusters were investigated.
(D) A tooltip shows additional information when hovering over scarf plot segments.

the experiments, 50 clusters separated the images sufficiently to initialize the labeling
process. For each cluster, a representative is determined by calculating the thumbnail
that is most similar to the other thumbnails in a cluster.

The similarity measures could be replaced by others that apply better to the specific
requirements of the recorded data. Therefore, it is referred to Smeulders et al. [266] for an
overview of other possible image-retrieval techniques. As a result of the pre-processing,
a list of clustered thumbnails and the calculated similarity matrix are acquired.

6.2.4 Analytics Environment

The analytics environment was designed in a way that the analysis process is effectively
supported (see Figure 6.4) and that the questions (Q1—Qj3) of the collaboration partner
can be efficiently answered. For this, a number of components (see Figure 6.7) were
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implemented which allow an effective analysis of the data and provide important infor-
mation related to these questions. The analysis is performed on the clustering results
from the pre-processing step. So far, the clustered data does not contain any semantic
interpretation of AOIs and misclassified segments can appear in the clusters. Therefore,
the analytics environment supports an intuitive labeling process, the detection of falsely
clustered elements, and the modification of clusters.

Main View

The main view allows performing all AOI analysis tasks and parts of the interactive
labeling. To further improve the annotation, additional views are provided: the cluster
editor to inspect, modify, create, or delete clusters; the video player to investigate the
video stimuli and gaze behavior of individual participants and to search for segments by
defining AOIs directly on the video. With these different views, it is possible to apply
different strategies to label and analyze the data.

Cluster view The central component is the cluster view (Figure 6.7 0). It lists the
clustered segments of the eye-tracking data. Each cluster is depicted by a cluster
representative computed during the clustering process, which is shown enlarged on a
vertical axis. To the left of each cluster representative, all segments inside the cluster
are shown . They are sorted according to their similarity. The initial view shows the
thumbnails with the lowest similarity on the left. In this way, the user gets an impression
of the quality of the cluster and mismatching thumbnails might be found directly without
additional exploration. To the right, a histogram shows the occurrence of the cluster
accumulated over all participants , i.e., the histogram value is determined by the
number of participants that looked at the respective segments contained in the cluster.
Since the recorded videos have different durations, the timeline representations are
calculated in relative time in order to make the data comparable between participants.
To provide a quick overview of the potentially most important parts of the data, the
cluster list is sorted according to the accumulated gaze duration of the clusters.

The cluster view serves as a starting point for the analysis by allowing the investigation
and labeling of the pre-computed clusters; label colors and names can be assigned
to the clusters in this view. It is also possible to modify the clusters in this view by
dragging individual elements to other clusters. However, if the clustering quality is
not satisfactory and larger modifications are required, this is better performed in the
cluster editor, which can be opened by simply double-clicking on cluster representatives.
Coupled with the interactive labeling process, the components for the AOI analysis
are updated accordingly. The histograms (A2) can help partially answer the question
when an AOI was visited the first time (Q2). However, this visualization is better suited
to find out if there were time spans during the experiment when many participants
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looked at the same AOI (e.g., reading the caption of an article only in the beginning). An
even more aggregated histogram is shown on the left . It shows the average relative
gaze duration of all labeled clusters. One can directly see which AOIs received most
attention by the participants (Qq). In general, additional descriptive statistics could be
integrated into this view. These histograms do not allow solving all of the mentioned
analysis questions efficiently. For this, two additional views are integrated into the
framework, i.e., the timeline overview and the scarf plots.

Timeline overview The timeline overview is displayed on top of the framework
(Figure 6.7 (8)). This view shows a cluster representative on the timeline if the number
of participants looking at the cluster segments is above a user-defined threshold. In this
way, the timeline overview presents a summary of what the majority of participants
looked at, i.e., it can be seen as an accumulated histogram showing only the clusters
with much attention over time. The part of the timeline that is currently shown is also
marked in the other views with a red box so that the user can analyze how this summary
correlates with the cluster histogram and the scarf plot on the bottom. Furthermore,
label colors are also shown to ease the identification of clusters and the temporal
position is displayed as a percentage of the relative video length. With the timeline
overview, answers for questions Qy and Q3 in terms of an average scanpath can be easily
found by looking for the first appearance of a cluster or by investigating the order of
the clusters on the timeline. While vertically stacking the cluster representatives for the
same time would ease the interpretation, they are stacked horizontally to keep the view
compact and avoid vertical scrolling. However, since the feedback from the user study
(Chapter 6.2.6) showed that users had problems with this view, this component should
be improved in the future with a better design. Furthermore, the timeline provides
only information accumulated over all participants; a detailed analysis of individual
participants is not possible with it. For such an analysis, scarf plots are integrated.

Scarf plots The scarf plots at the bottom show the data of individual participants
(Figure 6.7 (©). The length of a block corresponds to the duration of a segment, i.e.,
how long a participant looked at a specific region. Initially, different shades of gray
are automatically assigned to the clusters. These are replaced by the label color when
the user assigns a label to the cluster. By double-clicking on a specific segment in the
scarf plot, the cluster editor opens the corresponding cluster the segment belongs to.
The analyst can then label the cluster and its segments will appear in the color of this
label in the scarf plots. Gray segments between segments of the same color can be an
indicator of faults in the clustering results. The analyst can investigate these segments
and label the respective clusters, coloring the scarf plots iteratively with every new
cluster. Hence, the loop between the labeling and the direct analysis of the labeled data
can be repeated until all relevant information is found or the complete dataset is labeled.
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Figure 6.8: The cluster editor al-
lows editing, merging, and delet-
ing individual clusters. It shows a
list of all clusters and in the center
the elements of the selected clus-
ters. By dragging and dropping
cluster elements, they can be as-
signed to other clusters or deleted.
Labeled clusters and their elements
are shown with the label color.
When hovering an element with
the mouse, a tooltip shows the full
video frame with the gaze point
and thumbnail border marked.

With the scarf plots, it is easy to see when and how long different participants looked
at specific clusters, providing detailed information to answer the questions Q3 and Q3.
When hovering with the mouse over a block of the scarf plots, additional information
are provided (D): an image showing what the participant looked at, the duration of
the block in milliseconds, the label, and the name of the corresponding video. With
this view, it is possible to see how the gaze of individual participants moved between
different AOIs. Viewing behavior can also be compared between participants to detect
outliers or common patterns, comparable to the techniques described in Chapter 5.2.

Cluster Editor

The effectiveness of the analysis with the main view strongly depends on the quality of
the clusters, i.e., how well they represent specific AOIs in the stimuli. The results are
only meaningful if a cluster contains all relevant elements of an individual AOI. Since
the clustering algorithms are not perfect, manual verification and modification of the
clusters are necessary. For this, the cluster editor (Figure 6.8) was developed. The cluster
editor is divided into three parts: a list of labeled clusters at the top, a list of non-labeled
clusters on the left, and the segments of a selected cluster in the center. Clusters are
selected by clicking on them; their elements are then shown. Unwanted elements of a
cluster can be deleted (by dragging the element on the garbage can symbol) or moved
to other clusters (by dragging the element on a cluster representative).

Dragging an element onto the desk symbol allows collecting different thumbnails of
potential interest (e.g., ambiguous thumbnails) for further inspection later on. Integrated
image search further supports editing the clusters. It is possible to select a thumbnail
and let the system search for similar thumbnails in the same cluster, in the other clusters,
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Figure 6.9: (1) Gaze positions are
marked with a yellow square and bound-
ing box. (2) A polygonal area can be
marked (red) in the video frame to search
for all similar looking thumbnails.

in all clusters, or in unlabeled clusters. The found thumbnails are then ordered according
to the image similarity, derived directly from the similarity matrix.

Image queries can be processed efficiently by sorting the row of the similarity matrix
of the currently searched thumbnail. With this function, it is quite easy to find similar
thumbnails in other clusters or perform cluster corrections, e.g., splitting a cluster into
two clusters: a thumbnail with the specific content for the new cluster is selected and
used for image search. The thumbnails are then ordered according to image similarity
allowing an easy rubber band selection to create a new cluster. In some cases, it is hard
to decide from the thumbnails alone if a certain element belongs to a cluster because
the surrounding context of the thumbnail is missing. Therefore, the complete video
frame is shown when hovering with the mouse over a thumbnail in the cluster editor.
In the video frame, the gaze position and the thumbnail bounding box are marked. This
eases the interpretation of thumbnails by providing the full context of the stimulus.

Video Player

Without knowing the content of the stimuli, it is difficult to understand the data and
what the clusters and thumbnails represent. Therefore, it is possible to watch the
recordings of individual participants in a video player. The video player (Figure 6.9)
shows the video recorded by the eye-tracking hardware together with the respective
gaze positions (Figure 6.9 (1). This supports not only the general understanding of the
data by showing the stimulus content, but also allows following the gaze movements
of an individual participant. Furthermore, it is possible to select a polygonal area in the
video frame (Figure 6.9 (2)) and perform an image search with the selected area. The
thumbnails that are most similar to the selected region are then shown in the cluster
editor. In this wayj, it is possible to create clusters by drawing AOIs in the video as in
the traditional approach.
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Figure 6.10: (a) Visual stimulus from the investigated user study. (b) Annotated regions on the
stimulus represent the labels of the relevant AOIs.

6.2.5 Example: Print Media Study

To evaluate the method on eye-tracking data from a real experiment, the technique
was applied to the data from the collaboration partner. This particular dataset was
recorded for an eye-tracking experiment in a hardware store. The experiment was part
of a research project at the Stuttgart Media University. The question was how different
designs of printed advertisements affect the perception of viewers. Since the evaluation
of the experiment was also performed by the collaboration partner with traditional
methods, a comparison of the annotation time and the results of the study is possible.

Design of the Eye-Tracking Experiment

The stimuli were categorized in three sections of intentional dimensions: Sale, Image,
and Event. For each of these dimensions, two different design categories were tested
with eye tracking in a between-subject design and an additional post-test interview
to compare the gaze distribution on the different stimuli. The first category was a
positive design according to the intention, the second category was not. The entire
experiment took place at the point of sale in a hardware store, where regular customers
were faced with one stimulus after they agreed to be a part of the experiment. In total,
90 persons participated in the experiment. For the comparison, one of the six stimuli
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(Figure 6.10) was investigated. It is defined as a design with the intention Event but also
consists of other design objects, like prices and product pictures. 15 participants looked
at this stimulus for approximately 20 seconds each, two of them were removed due to
calibration issues.

Comparison

The traditional analysis procedure of eye-tracking data, including the annotation of
dynamic AOQIs directly in the videos, was performed by a group of four students using
the SMI software BeGaze. To achieve comparable results between the approaches, the
same stimulus regions were defined as AOI labels (Figure 6.10b) and the extracted
segments were assigned accordingly. The labeling process was performed by two devel-
opers, providing an impression of how efficient trained users can apply the technique.
Figure 6.11 shows the resulting annotation times. For dynamic AOIs, each video has
to be investigated individually and the consistency of the annotated areas has to be
considered. This requires concentrated drawing and correction of polygons over time.
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In comparison to this traditional approach, the annotation process could be reduced to
approximately 17%-30% of this time, depending on the applied annotation strategy.

Annotator 1 used direct searches of areas by drawing query regions in the video. Since
these searches required time to process, the annotation was slower. Annotator 2 iterated
through the clusters, using the pre-processed similarities between thumbnails to search
segments belonging to an AOI which provided almost instantaneous query results.
Since a non-optimized algorithm was used to search for the arbitrary image queries,
Annotator 1 would also have finished earlier if the calculations were more efficient.

In Chapter 6.2.2, the requirements and research questions for the visual analytics
approach were discussed. First, the gaze distribution on different AOIs (Q1) has to be
derived. Since this was also the main question of the collaboration partner, their results,
derived by dynamic AOIs, can be compared with the presented approach. Figure 6.12
shows the average relative gaze duration on the different AOIs.

In summary, congruent results could be achieved with the image-based approach with
differences between 0.4%-6% in comparison to dynamic AOIs. For an average video
duration of 20 seconds, the maximum difference between the calculated gaze duration
on the AOI Product is 1.2 seconds. Between the two annotators who applied the new
approach, the differences are between 0.1%-2.6%. Especially fixations in border regions
lead to variations in the annotation results. Depending on the size of the drawn AOlIs,
some fixations might be neglected even if an annotating human user might assign it
to the corresponding label. With the image-based approach, such difference in the
inter-annotator agreement could be solved by displaying the issued thumbnails in the
editor view and let the user decide where a segment belongs to.

To answer the other two questions from Chapter 6.2.2, when AOIs were watched (Q3)
and in which order (Qs), the annotated scarf plots (Figure 6.13) can be interpreted.
For example, it can be identified which participants focused more on the images (red,
orange) and when participants started to read the image text (long yellow segments).
The black areas indicate that the segments were moved to the garbage can, since they
did not belong to any AOL

6.2.6 Expert User Study

The example showed how trained users can apply the technique. To gather qualitative
feedback how untrained but eye-tracking experienced researchers can work with the
new technique, a user study was conducted at the Symposium on Eye Tracking Research
and Applications (ETRA 2016). Due to temporal restrictions, a smaller dataset was used
in this study: the dataset consists of three videos with the participant standing in front
of four magazines, looking at the covers and picking up one of them to browse through
(Figure 6.9). All three videos have an approximate length of 30 seconds. The four
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Figure 6.13: Scarf plots of 13 participants labeled with our approach. Black areas depict segments that were removed due to gaze
points outside the AOIs.
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Figure 6.14: Scarf plots of the data that was analyzed in the expert user study. A yellow segment (marked dark blue) was misclassified
by two participants.

Figure 6.15: Timeline overview showing the longest time interval when two participants looked at the same AOL
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magazine covers are the AOIs, starting with AOI; in the upper-left corner and ending
with AOI4 in the lower-right corner. The data was recorded with a free-viewing task as
a showcase for the expert study.

Six experts (age 28-40 years) with different degrees of experience in eye tracking (5-10
years) were asked to use the technique to label the four AOIs. Their research fields were
psychology, software engineering, virtual reality, and spatial cognition. Additionally, a
freelance developer of eye-tracking applications participated. The study took about 45
minutes on average, including an introduction and a demonstration of how to use the
different components. Each expert was introduced to the software by a two-sided sheet,
explaining the main functions and views. As an example, one cluster from the dataset
(not relevant for the following task) was labeled and analyzed to show all functionalities.
Then, the experts were free to apply all available functions to label the four AOIs, in
order to answer three questions: about (1) the order in which participants looked at the
AOIs, (2) the gaze distribution, and (3) the longest common time span two participants
spent on the same AOL

The experts were asked to start with defining the labels of all four AOIs to proceed with
the labeling in parallel, in order to prevent that they are slowed down by a sequential
search of individual AOIs. An additional questionnaire was handed out to rate the
visualization components and collect qualitative feedback about the approach.

Results

First, the results for the three questions, that the experts answered by interpreting the
different visualization views, were investigated:

Table 6.1: Which was the order the participants looked at AOI; — AOIL,?

Participant Correct Order
Py AQI; - AQIL, - AQlL; — AQI3
P, AQl; - AQIL, - AQI; - AQOI3
P3 AOIg g AOI4 - AOIZ g AOIl

For the first task (Table 6.1), Figure 6.14 shows the scarfs plot of the data. The four
task-relevant clusters were labeled, the other clusters were removed. For Ps, all experts
answered correctly, for Py, all but one answers were correct. For P,, two experts gave the
wrong answer. In this case, the segment from AOI; between 10% and 20% (Figure 6.14)
was not labeled correctly.

For the second task (Table 6.2), the gaze distribution indicates that the attention on AOI;
and AQOI; was higher than on the other two AOIs. For AOI; and AOIs, the standard
deviation is zero, since all relevant images were labeled by the experts identically.
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Table 6.2: What was the average relative gaze duration on AOI; — AOI,?

AOI Mean Standard Deviation

AOL; 15.68% 0.95%
AOI, 6.87% 0.00%
AOI; 16.34% 0.00%
AOL; 6.91% 0.86%

Differences in the labeling result from gaze points in border regions, for which it is
difficult to decide if they belong to an AOL

Table 6.3: What is the longest time interval with two participants looking at the same AOI?

Correct AOI Correct Time Interval

AOL, 20%-29%

The third task (Table 6.3) could be solved with the timeline overview (Figure 6.15). How-
ever, it was observed that the interpretation of this view was not clear at the beginning.
In combination with this concrete question and a repetition of the explanation from
the beginning, the experts claimed that they finally understood how the view works.
Hence, the resulting intervals were correct for all experts.

Questionnaire

The experts were asked to rate the visualization components on a Likert scale from 1
(not helpful) to 6 (very helpful) with the option to give no rating. The questionnaire also
contained free-text questions about the used strategies to solve the task and suggestions
for improving the visualization and the analysis process.

Table 6.4 shows the results of the questions about the visualization components. The
overall system was rated very useful; especially the cluster editor turned out to be
the most useful component to solve the given tasks. All experts stated that they can
imagine using the technique for their experiments—except for one expert who stated
that their experiments are very standardized and therefore the technique would not
be directly applicable. However, some of the components were less used by some of
the experts. Two experts did not rate the video player since they did not use it except
for some initial testing. One expert rated the timeline overview as not helpful, since
the task could also be solved with the other visualization components. Another expert
rated the cluster view as less helpful, since the complete time for the annotation was
spent in the cluster editor.
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Table 6.4: Answers to the question: How useful was the visualization component?
1 (not helpful) — 6 (very helpful).

Visualization Component Mean Standard Deviation

Cluster View 4.5 1.5
Scarf Plots 5.8 0.4
Timeline Overview 4.3 1.7
Cluster Editor 6.0 0.0
Video Player 5.3 1.0
Overall System 5.6 0.5

From the free-text comments, additional suggestions could be derived to improve
the usability and the visual representation. In general, the need for more convenient
interaction techniques in the cluster editor was stated by most of the experts. For
example, the experts missed hot-keys to interact quickly with the editor and order the
clusters individually. In the current implementation, the clusters are always sorted
in decreasing order of their total duration. Two experts mentioned that the timeline
overview might be replaced by a Gantt chart [121], since people might be more familiar
with such a representation. Two experts also mentioned that the main cluster view
contained too much information. Since the segments of a cluster were also represented
in the editor, they stated that the left part of the visualization (Figure 6.7 ) was not
important to them and could be removed from the visualization. One expert missed the
information to which video a thumbnail belongs. As a suggestion, another label on the
thumbnail showing the video ID could be included.

Applied Strategies

In order to solve the task, the experts applied different strategies. Given the set of
described possibilities, the following labeling and analysis strategies were identified:

Video Investigation The video stimulus was relevant to the experts in two situations:
(1) for the initial search for the AOIs and (2) for the interpretation of thumbnails in the
context of the video. Although it was possible to perform search queries by drawing
AOQIs in the video (like in the traditional analysis approach), the experts used this
function just at the beginning of the task. The main purpose of the video player was to
investigate the context of a segment. The experts often selected one of the segments and
looked at it in context of the whole video image. Typically, only a couple of consecutive
frames were investigated for ambiguous gaze point positions. Except during the initial
demonstration, the video player was not used to play longer time spans of one of the
involved videos.
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Segment Similarity Search Experts using mainly the cluster editor picked images
from the clusters to search for similar images in all other or unlabeled clusters. This
was usually performed by searching for specific thumbnails of a labeled cluster, either
very similar or very dissimilar to the current representative. Query results were then
investigated and corresponding thumbnails that belonged to the searched AOI, as
well as unlabeled segments that belonged to one of the other AOIs were labeled in
parallel. Searching for similar thumbnails just in unlabeled clusters results in an iterative
reduction of the set of thumbnails that have to be investigated.

Sequential Cluster Browsing One expert followed the systematic approach to select
each cluster after the other to either decide if its content belongs to one of the AOIs
or can be removed from the data. All irrelevant clusters were placed in the garbage
can. This approach was also followed by Annotator 2 in the use case (Chapter 6.2.5).
Although it might seem costly to have to look through all clusters and images, each
image is typically investigated only once. In tasks were every segment requires a label
and not only a subsection of the images needs to be labeled, this approach can be very
efficient. This approach requires the analyst to know the AOIs and which segments
can be discarded, which is typically the case in hypothesis-driven experiment settings.

Scarf Plot Annotation One expert mainly focused on identifying long segments
in the scarf plots. By selecting one of the unlabeled segments, the editor showed the
corresponding cluster. Labeling and correcting this cluster led to the colorization of the
respective segments in the scarf plots showing other time spans with attention on this
specific AOI With this approach, the annotation time is reduced by focusing on the
most relevant long segments first. In many cases, small segments of the same AOI as
the investigated long segment are labeled as well, without the analyst having to look at
them again.

In summary, the experts applying the last two strategies were the most efficient ones.
In a thorough analysis scenario, it is suggested to identify all relevant AQOIs at the
beginning and then proceed through the clusters or scarf plots to either assign the
correct labels or mark the thumbnails as irrelevant for the analysis.

6.2.7 Discussion

The presented technique provides eye-tracking experts with an overview of the gaze
distribution on different AOIs, even for multiple videos with unconstrained conditions
from different participants. The example showed that the annotation with the presented
technique is far more efficient than the common state-of-the-art approaches based
on dynamic AOIs. Annotation results could be further improved by letting multiple
annotators label the data. Issues in the inter-annotator agreement can then be checked
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by looking at ambiguous segments again. This approach could be integrated into the
cluster editor by adjusting the borders of ambiguous thumbnails with the colors of
the different AOIs they have been assigned to. The user could then filter for the most
ambiguous elements and decide where they belong to.

Because of the user-centered design of this approach, the main focus lies on the analysis
of hypothesis-driven experiments with predefined AOIs. For an application to uncon-
strained scenarios, such as the one presented in Chapter 6.1.3 for personal encounters,
interesting areas have to be discovered during the analysis. With the presented ap-
proach, clusters could be identified if the participant attended to an object. If no gaze
was spent on potentially interesting objects, the current approach would exclude this
data. With more specific knowledge about the environment, the approach could also
be adapted to include clusters where no gaze was spent on an interesting area. This
would require additional visual coding of these elements. In general, the approach could
be applied to any time-dependent image series to identify and label similar content,
provided that the applied similarity metric is appropriate for the comparison.

For future work, an extension of the approach to long-term experiments should be
considered. For example, scenarios such as car-driving where long video sequences
with some static (i.e., the dashboard elements) and some highly dynamic AOIs have
to be analyzed. This is especially challenging since the dynamic content (e.g., a short
moment without attention) can be hard to identify in the recorded data.

To further improve the scalability, the technique can be extended by an interactive
classification component. When a sample of the recorded data has been labeled, the
applied bag-of-features approach can directly be used to train a Support Vector Machine
(SVM) classifier with the labeled segments as positives and the other clusters as negative
samples. Time segments from new participants could then be analyzed by the trained
classifiers and depicted in the editor before assigning them to the labels. With an
appropriate sample size, this idea could be further extended by deep learning methods
which provide currently good results for classification tasks.






CHAPTER

7

Conclusion

In this thesis, the principles of visual analytics were applied to video and eye-tracking
data in order to improve the coupled analysis of these data sources. To achieve this, the
thesis combines knowledge from video visualization and evaluation methodology as
follows:

» Video visualization: Visualization techniques for attention-guidance and movie
analysis provide ideas on how to display video data in an abstracted way to analyze
it in combination with gaze data.

» Evaluation of visualization: The evaluation of visualization techniques plays
an important role in validating developed concepts. Including eye tracking into
the methodology provides new possibilities to gain insights into participants’
behavior during a user study.

» Visual analytics for eye tracking: The technical contributions focus on new
approaches for the analysis of gaze data and videos with and without AOI annota-
tions. The investigated scenarios mainly comprise the analysis of a single stimulus
watched by multiple participants and the efficient annotation and examination of
mobile eye-tracking data.

This chapter summarizes the thesis and provides an outlook on how the presented
work can be applied for further research. First, the previous chapters are summarized
(Chapter 7.1), concluding with an overarching discussion (Chapter 7.2), and future
directions for research (Chapter 7.3).
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7.1 Summary of Chapters

This thesis comprises work on visualization techniques and evaluation methodology
with a special focus on eye tracking. The topic is investigated in both directions: eye
tracking to evaluate visualization and applying visualization to analyze eye-tracking
data. This approach covers the topic more thoroughly than unilateral research.

Visual Support for Video Analysis The low-level computer vision techniques (im-
age comparison, optical flow, shot detection) described in Chapter 2 were combined
with interactive visualizations to provide effective means for video visual analytics.
Techniques for exploratory data analysis (EDA), knowledge discovery in databases
(KDD), and information retrieval (IR) facilitate analytical reasoning for the support of
existing, or the formalization of new hypotheses. As an example, an approach developed
for visual movie analytics was presented. It showcased how data from video and text
sources can be abstracted on hierarchical timelines to support the annotation of time
spans in movies with high-level semantics. In the subsequent chapters, similar concepts
were applied to depict annotated gaze data.

User-Based Evaluation of Visualization As discussed in Chapter 3, established
qualitative methods such as think aloud, questionnaires, and expert reviews were applied
to evaluate the implemented work in this thesis. Furthermore, the repertory grid was
discussed as a complementary means to extend the methodology. Quantitative research
was performed with performance studies quantifying error rates. Eye tracking extends
the quantitative methods by providing spatio-temporal measures of gaze positions. It
was discussed how eye tracking can be integrated in existing evaluation procedures and
how it is currently applied in visualization research. The depiction of speaker-following
subtitles was compared with traditional subtitles. In this case, eye tracking shows that
with speaker-following subtitles, significantly less attention is spent on text and more
on the actual content, making it a promising alternative for future applications.

Visualization of Eye-Tracking Data Chapter 4 discussed the state of the art for
the visualization of eye tracking data. A taxonomy of visualization techniques was
presented, considering the analysis task and categories related to gaze data, the visu-
alization, and the stimulus. According to the analysis task, existing approaches are
applied to answer questions categorized in: where, when, who, compare, relate, and
detect. With respect to this taxonomy, existing techniques lacked methods for dynamic
stimuli, especially for data from mobile eye tracking. Hence, the techniques discussed in
the following chapters contributed to advance the current state of the art. Furthermore,
a benchmark dataset was presented to test new visualization techniques.
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Analyzing a Single Video and Multiple Participants Chapter 5 focused on tech-
niques for the analysis of a single stimulus and data from multiple participants. The
presented space-time cube and motion-compensated heat maps provide static overviews
of the spatio-temporal data. With shot-sensitive clustering of gaze points, potential AOIs
are identified without the need to skim through the video. The implemented ISeeCube
framework was extended by techniques for AOI-based analysis, i.e., AOI timelines, scarf
plots, and AOI transition trees. The presented image-based techniques, i.e., gaze stripes,
fixation-image charts, and gaze-guided slit-scans aim at providing rich information
about a dynamic stimulus for point-based visualization. The presented techniques are
suitable for an overview without annotations and for scanpath comparisons based on
image similarities.

Visual Analytics for Mobile Eye Tracking Chapter 6 considered the scenario of
mobile eye tracking. It was discussed how pervasive eye tracking could be applied in the
future for personal visual analytics scenarios. The presented AOI cloud is a visualization
for the overview of AOIs and fast navigation through multiple videos. Furthermore,
an approach for the efficient annotation and analysis of mobile eye-tracking data from
multiple participants was presented. The visual analytics approach is based on the
image-based techniques applied in the previous chapter. It was evaluated in two ways:
a comparison with the annotation procedure from an established software suite and
with an expert user study conducted with external eye-tracking experts. The results
showed that with significantly less time and effort, annotation results comparable to
established methods can be achieved.

7.2 Overarching Discussion

To draw meaningful conclusions, it is necessary to evaluate the presented work in the
context of the research questions stated in Chapter 1. Hence, the three questions are
addressed in this thesis as follows:

7.2.1 Research Question 1

How can we enhance/abstract video material to support specific tasks?

Research Question 1 poses a general question that applies to all implemented techniques
related to video content. Here, we can differentiate between the techniques for videos
without and with eye tracking. The techniques in Chapter 2 focus on video without
eye tracking. The attention-guiding visualizations improve video material and render
a new video as a result, wherein interaction with the visualization is not necessary.
The results provide valuable insights into how to distribute attention between multiple
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objects in a video. The potential of video visual analytics is presented for the analysis
of movies with subtitles and script text. The developed multi-level timelines summarize
semi-automatic annotations for multiple hours of video. The rich semantic information
provided by movie scripts restricts this approach to a subset of possible video stimuli.
Hence, a direct application to eye-tracking data is limited. However, the presented
concept provides visual abstractions that are modified and applied in techniques such
as the AQI timelines and scarf plots (Chapter 5.2.2). The discussion on videos with
eye-tracking data is covered under Research Question 3.

The visual analytics techniques presented in this thesis follow the information seeking
mantra [264], providing an overview and multiple levels of detail, always including the
video stimulus as the highest level of detail. This facilitates all analysis tasks discussed
in Chapter 4.2.1, because one can investigate the visualization, identify potentially
important time spans, and analyze those in detail. The abstraction of the video material
is based on complementary data sources such as text and gaze data.

7.2.2 Research Question 2

How can we leverage eye tracking to evaluate visualization techniques?

Research Question 2 is approached by surveying current applications of eye tracking
in visualization research (Chapter 3.4.4). This research shows that eye tracking is
used to examine the distribution of visual attention, sequential characteristics of eye
movements, and for the comparison of gaze sequences and participant groups. The work
from other research fields related to eye tracking shows that additional methods such
as cognitive modeling, data fusion with other time-oriented sources, and retrospective
think aloud might also be beneficial for visualization research in the future. Hence,
eye tracking should be incorporated into existing methodology, as suggested by the
presented evaluation pipeline (Chapter 3.4.2). Furthermore, exploratory data analysis
for hypothesis building becomes more important if applied to eye tracking of complex
visual analytics frameworks. As a consequence, it is necessary to further extend the
pool of existing techniques with new visual analytics approaches for the analysis of
complex gaze data.

7.2.3 Research Question 3

How can we improve the state of the art of visualizations for eye tracking?

Research Question 3 concerns in particular techniques for the analysis of video with eye-
tracking data. To answer this question, this thesis surveys current methods (Chapter 4.3)
and identifies important but less represented categories of a taxonomy. According to the
presented taxonomy, a lack of interactive techniques for dynamic stimuli with active
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and passive content becomes notable. The techniques in Chapter 5 provide interactive
techniques for dynamic stimuli without active content changes. The presented space-
time cube, motion-compensated heat map, and the image-based techniques provide
the means for exploratory data analysis without AOIs. With semantic annotations on
important objects and regions of a stimulus, the AOI-based techniques can be applied.
AOI timelines provide an overview when an AOI was visible and when participants
looked at it. Scarf plots, in combination with interactive comparison methods, support
the identification of common and outlier behavior. For dynamic stimuli with active
content, data from mobile eye-tracking is analyzed (Chapter 6). The important difference
for such data is the fact that each recorded participant records an individual video that
is hard to compare with point-based methods. Consequently, AOIs are necessary and
often, manual annotation is required for each individual video. The developed visual
analytics approach supports an efficient annotation of thumbnails on gaze positions.
Once the data is annotated, existing analysis techniques, for example, the presented
AOI Cloud can be applied.

To prove their applicability, the developed techniques were also applied to investigate
data from conducted user studies. For example, ISeeCube was used during the evaluation
of subtitles (Chapter 3.4.3) for exploratory data analysis: A pilot study was conducted
and the hypotheses were derived based on statistical results and on patterns identified
with the visualization. Space-time cubes were also included in the publication to
communicate the results.

This thesis covers all three questions for the type of data that was investigated. Eye
tracking of videos without interaction plays an important role in controlled lab studies
with predefined stimulus properties. The presented techniques help investigate the
results of automatic processing steps and visualize the combination of video and gaze
data on different levels of abstraction. For the evaluation of visualizations on a per-
ceptual level, current and future experiments will generate data that can be analyzed
with the proposed techniques. For experiments including interaction with the stimulus,
techniques such as the STC are less suitable. Although not tested, the image-based
methods might be more appropriate to be adapted for interactive stimuli. For example,
gaze stripes provide much information about the stimulus even when recordings of
participants cannot be synchronized. Generally, mobile eye tracking covers the ma-
jority of scenarios, because the experimental setting emulates a natural interaction of
the participant with the environment. However, for the analysis of visualization and
visual analytics in desktop environments, a remote setup with additional measures (e.g.,
interaction logs) is more reasonable. But for the increasing count of mobile applications
and for collaborative scenarios, the inclusion of mobile eye tracking is necessary.

The topic provides opportunities for future research directions that were not fully
addressed in the focus of this work. These directions will be discussed in the following.



184 Chapter 7 o Conclusion

7.3 Future Directions

As stated in the introduction, this thesis focuses on eye tracking and visualization in two
directions: (1) eye tracking for the evaluation of visualization and (2) visualization/visual
analytics for the analysis of eye tracking. Both directions have great potential for future
work that can build on the findings from this thesis.

Extending Evaluation Methodology

As discussed in Chapter 3.4.4, existing evaluation methodology should be further
extended with eye tracking. For example, events such as the BELIV workshop! foster
the development of new evaluation procedures for visualization beyond traditional
methods. Since the beginning of this workshop, numerous papers on eye-tracking
methodology for visualization have been presented there. This can be seen as an
indicator for both, the interest of applying eye tracking for evaluation, and for the
potential of extending existing methodology in the context of visualization and visual
analytics. One important part of this process is an interdisciplinary collaboration to
gather expertise and findings from empirical studies to advance from the investigation
of gaze distributions and scanpath sequences to deriving models for complex visual
analysis scenarios. Such models could also serve as simulations for user behavior to
improve visualization design.

This thesis provides methods for the extraction of findings and surveys the current
state of the art of this topic. Future work should extend the techniques with respect
to exploratory data analysis for hypothesis building, data fusion with complementary
measures, the dissemination of insights, and the availability of tools for researchers
without a background in computer science.

Pervasive Eye-Tracking Analysis

Mobile eye-tracking data was declared as one of the most complicated scenarios to
analyze. The presented approaches focused more on the examination of multiple
short videos than on the analysis of long-term recordings. Under the assumption
that eye tracking will become ubiquitous, it is necessary to extend existing analysis
techniques accordingly. Machine learning will play a significant role in such scenarios
for the automatic processing of video and gaze data. As stated in Chapter 1, human
interpretation will be necessary for some of the discussed analysis tasks (Chapter 4.2). It
is reasonable to assume that future computer vision approaches will be able to provide
answers to questions considering where, when, and who for trained scenarios. Automatic
comparison, relation, and the detection of similarities and outliers is also possible, but
the final reasoning step, concluding why some effect occurred, will often be left to a

1 https://beliv-workshop.github.io, last checked: October 13, 2018
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human analyst. This is especially the case for untrained scenarios with unexpected
events. Hence, future work should aim at automatic processing to ease the reasoning
for the analyst as much as possible.

The first step in this direction is the automatic detection of AOIs. For example, the visual
analytics approach for the annotation of gaze data (Chapter 6.2) is conceptualized to be
extended by automatic classifiers. Hence, the analyst could begin the annotation process
while a classifier is trained the background with the input from the analyst. The visual
analytics framework could be extended to suggest classifications for new elements that
are easy to verify with the visualization. Such an approach could iteratively improve
the quality of the automatic processing with the help from a visual interface.

In summary, if evaluation methodology for visualization and visual analytics is extended
by eye tracking and visual analytics is also applied to evaluate the data, insights can be
derived that surpass what is currently possible with existing methods. One important
step is the automation of parts of the analysis process. Here, image-based techniques
have much potential because they provide input for computer vision techniques and
are easily interpretable for a human analyst.
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