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Abstract

Both E-Voting and blockchain are popular topics these years. Although a blockchain seems to be
a promising surrounding for E-Voting systems, there are only a few E-Voting systems based on
Blockchain nowadays. Especially Ethereum, which is famous for its decentralized smart contract
execution, provides interesting possibilities if one wants to build up a (partly) decentralized E-Voting
system. In this thesis, we propose a new Privacy-preserving Ethereum-based E-Voting System
(PEES) that provides accuracy, verifiability and privacy. Not like many other Blockchain based
E-Voting systems that only saves encrypted votes on-chain to protect Voter’s privacy only against
the public, PEES uses Zero-Knowledge Proofs to break the connection between a Voter and his
vote, to achieve a stronger privacy protection. With a small precondition, PEES protects Voter’s
privacy not only against the public but also against potential malicious election organizers — a
group of people who has the decryption keys for the election.
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1 Motivation

A free and fair election has always been the cornerstone of democracy. Nowadays, more and more
government try to bring digitalization into traditional voting systems. For example, Estonia has
begun to hold nation-wide elections via internet since 2005 [Est]. In our daily lives, there are also
more and more websites or apps such like Doodle [Doo] or VoxVote [Vox] which is helping people
to hold their own voting. Electronic Voting (E-Voting) refers to vote using a standalone electronic
voting machines or to cast a ballot via the internet remotely like what Estonia does. In this thesis,
E-Voting refers to the second scenario, that is, an E-Voting is a process that allows voters to cast
their ballots via the internet from any location in the world.

Although E-Voting has brought us many conveniences, it is hard to keep an E-Voting system as
secure as a traditional voting system. Generally, the most desired properties for any voting systems
are 1) accuracy: all ballots should be correctly recorded and counted, 2) verifiability: any ballots
shouldn’t be manipulated without any detection and 3) privacy and anonymity of voters [MAAS13].
However, attacks like hardware Trojan which can totally tamper a voting results [ZAAA+14] and
clash attack that allows the voting authorities to replace ballots without being detected [KTV12] are
violating those secure requirements of an E-Voting system.

For these attacks, the newly introduced technology Blockchain seems to be a very promising
solution. Known as the public ledger, everything that is recorded on a Blockchain is usually public
and basically unchangeable, which makes it a perfect tool to record ballots in an E-Voting system.
However, as a Blockchain keeps everything public, it badly hurts the voter’s privacy, since everyone
can easily get the choice of a voter from the Blockchain. One may want to solve this problem by
first encrypting the ballot and then save it on a Blockchain, yet the party who has the decryption key
(usually the election organizers) can still get access to the choices of every voter, which violates the
voter’s privacy as well.

Inspired by Zcash, a Blockchain based digital currency that keeps user’s personal and transaction
data confidential [SCG+14], we propose PEES as a solution to that problem above. PEES is an
E-Voting system that uses Blockchain as the ballots recording tool and protects Voter’s privacy
against both public and election organizers. As an E-Voting system, PEES is expected to provide
accuracy, verifiability and privacy (for more explanation please see Section 4.2).

In PEES, all participants can be divided into two parties, namely Voters and EA. Voters is a group
of people who are eligible to vote for an election and EA is a group of Admins who are responsible
to organize an election. In an election, each eligible Voter will first get a VC, which is similar to a
zerocoin in Zcash, from EA. By showing that he has such a VC through a zero-knowledge Proof,
each Voter can cast his ballot on the Blockchain privately. After the election has ended, EA is
responsible to calculate and publish the result on the Blockchain. Along with the result, a valid
proof that shows EA has correctly calculated the result should be published as well, without that,
the result should be considered as invalid.
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1 Motivation

We use Ethereum as the underlying Blockchain since the Smart Contract it provides not only allow
us to save each ballot on Blockchain but also enable us to check zero-knowledge Proofs on-chain. In
the following, I’ll first explain the relevant cryptographic primitives in Chapter 2. An introduction
to Blockchain related knowledges, Smart Contract from Ethereum and the creation and usage of
zerocoins from Zcash can be found in Chapter 3. Then, I’ll explain the details of PEES in Chapter 4.
After that I’ll introduce the implementation of a PEES demo in Chapter 5. At the end, I’ll give an
informal security analysis in Chapter 6 and conclude this thesis with Chapter 7.
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2 Cryptographic Primitives

For better understanding the details of PEES, some cryptographic primitives and schemes should
be explained first. In the following, I’ll shortly explain the cryptographic hash function, public
key encryption, signature scheme, commitment scheme, secret sharing and zero-knowledge proof.
Some of these primitives are building blocks of other schemes, together, they made it possible to
protect Voter’s privacy on Blockchain. A concrete algorithm or protocol won’t be provided in this
thesis, for those detailed information, please refer to [KL07] and [IOSGI06].

2.1 Cryptographic Hash Function

A hash function is a function that transform an input data x of arbitrary size to a hash value hx

of fixed size. The output hash value is usually interpreted as a hexadecimal string or digest. A
cryptographic hash function is a special kind of hash functions that is collision resistant.

A hash function h is collision resistant if no one should be able to find a pair of input data x, x ′

with x , x ′ such that the hashes of these two inputs are the same, i. e., h(x) = h(x ′). Notice that
collision resistance implicitly indicates that the hash function h is also pre-image resistant, which
means, given a hash value hx , it is not possible to find an input data x such that h(x) = hx .

The output of a hash function is usually patternless. A small change in the input date may
result in a huge difference in the output hash value. For example, the hash value of “I
have a dog” is 19d7bd46fcdf09f7faaf34dbb7a865bc875709953879c19c61dd55bcc4d2d7ab. With
the change of only one letter in the previews input, the result hash may change completely,
e. g., if the letter “d” is changed to “c”, the hash value of “I have a cog” will be changed to
019e58fe7618631c120b2d97a97c432679189e040a06ae853e2f0d845dbdc07a.

In practice, a cryptographic hash function can be used to shorten the input, protect data integrity or
as a building block for some other schemes or structures such as commitment scheme in Section 2.4
or Merkle Tree in Section 2.5.

2.2 Public-Key Encryption

An Encryption scheme is aimed to provide data confidentiality. After a message is encrypted, only
the party who has a corresponding key can decrypt the message. Public Key Encryption (PKE), also
known as asymmetric encryption, is a type of encryption scheme that uses a pair of keys (pk, sk)
for encryption and decryption respectively. Unlike private key encryption, or symmetric encryption,
where one uses the same key for both encryption and decryption, PKE demands people to use
different keys for encrypt and decrypt.

15



2 Cryptographic Primitives

In PKE, each party or participant has its own public/secret key pair. As the key’s name indicates,
the public key can be widely spread while the secret key should be kept only to the owner himself.
When sending a message from one party to another, the sender must encrypt the message under the
receiver’s public key so that the receiver can decrypt the message using his secret key.

As any encryption schemes, PKE is expected to ensure data confidentiality and the correctness of the
decryption. Besides that, since the public key is usually widely spread or even known to everyone,
PKE is also expected to prevent one to derive the secret key from the public key, otherwise the
encryption is useless. Hence, PKE are usually based on some well-known mathematical problems,
such as factoring the product of two large primes for RSA [RSA78] or computing discrete logarithms
for ElGamal [ElG85].

In PEES, we use RSAES-OAEP [KS98] to encrypt a Voter’s vote under the public key from EA so
that no one can read the votes directly from the Blockchain.

2.3 Digital Signature

Like a handwritten signature, a digital signature is aimed to provide authenticity of digital messages.
A digital signature scheme is also a asymmetric scheme like PKE, whereas a sender S uses his secret
key Ssk to sign on a message and the receiver verifies the signature using S’s public key Spk .

A secure digital signature is expected to be unforgeable, that means, any party should not be able to
sign on messages in others name, as long as they don’t have other party’s secret key. Besides that, a
valid digital signature is also expected to insure the receiver that (1) the sender cannot deny that he
has sent the message (non-repudiation), and (2) the message hasn’t been manipulated during the
transmission (integrity). However, a digital signature itself doesn’t provide data confidentiality.

In PEES, a digital signature scheme is used to issue tokens that are signed by EA to eligible Voters.
Later, when the Voter uses this token to generate VC, the Blockchain just needs to check the validity
of the signature but doesn’t need to interact with EA.

2.4 Commitment Scheme

A commitment scheme allows a user committing a certain value or statement without revealing it
to the public until he later opens the commitment himself. Additionally, a commitment scheme
guarantees that it is impossible for a user to commit to one value but opens it to another one.
Typically, a commitment scheme consists of a commit phase and an open phase.

In commit phase, the sender first chooses a randomness r for value v that he wants to commit.
Then he calculates the commitment c for v under the randomness r . At the end, he sends only the
commitment c to the receiver. Later in the open phase, the sender opens his commitment by simply
sending the committed value v and the randomness r to the receiver. Upon receiving v and r , the
receiver first recalculates the commitment c′ himself and then checks the equality of c and c′.

As mentioned above, a commitment scheme is expected to keep the committed value secret before
it is opened, and it should prevent the sender committing to one value but opening it to another
one. To that end, the hiding and binding properties must be achieved. More formally speaking, the

16



2.5 Merkle Tree and Merkle Proof

hiding property requires that upon receiving a commitment c, the receiver shouldn’t be able to find
a pair of v and r such that the commitment of v under r equals to c. In the meantime, the binding
property demands that after the sender commits a value v to c under the randomness r , he shouldn’t
be able to open it to a different value-randomness pair.

Actually, a cryptographic hash function has already met these two requirements. The pre-image
resistance guarantees that the receiver shouldn’t be able to recover the value x from its hash value
h(x), which is exactly what hiding property requires. For binding property, the collision resistance
insures that the sender should not be able to find two different value-randomness pairs such that the
hash of these two pairs are the same, i. e., the sender could not commit to one value but open to a
different one.

Therefore, in PEES, a cryptographic hash function is used as a commitment scheme. That means,
every time one wants to commit a value v under randomness r , he calculates the hash of v concatenate
with r , i. e., c := h(v | |r), and sends the commitment c to the receiver.

2.5 Merkle Tree and Merkle Proof

In cryptography, a Merkle Tree (MT) is a hash-based data structure. It is usually implemented as a
binary tree, but it is also possible to be generalized to a n-nary tree. A MT is usually built upon a
certain data set. As shown in Figure 2.1, the value of each node is the hash value of its two children
whereas the value of leaf node is the hash of a certain data-block. In the end, we have just one hash
value in the root node, which is called root hash. In practice, a MT, especially the root hash r , of a
data set is usually publicly known and trusted.

Figure 2.1: A binary Merkle Tree [But15]

A typical usage of MT is to verify whether a given data-block has been included in a particular data
set or not. Thanks to MT, we don’t have to download the whole data set and go through it to see
whether the given data-block is in there or not. To do that, we just need a MT over that particular
data set and a so-called Merkle Proof.

17



2 Cryptographic Primitives

A Merkle proof consists of a hash value h of a given data-block and a Merkle Authentication Path,
which consists of all the hashes going up along the path from h to the root [But15]. Assume there
are m hashes in the Authentication Path path, to check the validity of the given proof, we first
compute the hash of h concatenated with the first hash from path and save the new hash in h1, i. e.,
h1 := hash( h | | path[1] ). Then we compute the hash of h1 concatenated with the second hash
from path and save it in h2 and so on, till we get the final hash: hm := hash( hm−1 | | path[m] ). At
last, we compare hm with the root hash of that particular data set.

Suppose we want to proof that the fourth data-block is in a data set, whose MT is shown in Figure 2.1,
a sample Merkle proof is then illustrated in Figure 2.2. The green block represents the hash value
of the given data-block, the yellow blocks (from bottom to top) builds up the Merkle Authentication
Path and the brown blocks (from bottom to top) are all intermediate hashes h1 to h3 respectively.

Figure 2.2: A sample Merkle Proof [But15]

With hm equaling to the root hash of the data set, the probability that the given data-block isn’t a
member of the data set is the same as the probability to find a collision in the cryptographic hash
function that is used in MT. Hence, as long as the using cryptographic hash function is secure, the
Merkle proof is unforgeable.

In PEES, we adapt the usage of MT and Merkle proof from Zcash. After Registration has ended
and all VCs are generated, a MT will be constructed over all VCs and the root hash of that MT will
be saved on the Blockchain. Later, when a Voter wants to vote using his VC, a Merkle proof will be
given to prove that the given VC is one of the valid VCs.

2.6 Secret Sharing

Secret sharing is a method that can be used to split a given secret into several parts. Each part is
called a share and they will be given to different participants so that each participant just has his
own unique share. To reconstruct the secret, sufficient shares are required. The minimum number
of shares that are needed to reconstruct a secret is called threshold. In practice, the threshold is
usually bigger than 2 so that each share itself are of no use.

18



2.7 Zero-Knowledge Proof

A secret sharing scheme is secure, if no one can recover the secret with a number of shares,
that is smaller than the threshold and the secret will always be successfully reconstructed with
enough shares. Notice that a secret sharing scheme cannot prevent the case when a share-holder is
corrupted and gives his share away. Hence, it is not recommended to use a very small number as
the threshold.

In PEES, Shamir’s Secret Sharing Scheme [Sha79] is used to split the decryption key of EA to
a group of admins, so that each admin himself cannot decrypt votes that have been recorded on
Blockchain while the election is still running. The concrete protocol of Shamir’s Secret Sharing
Scheme is not part of this thesis, for those details please refer to [Sha79].

2.7 Zero-Knowledge Proof

A Zero-Knowledge Proof (ZK-Proof) of a statement is a proof that does not reveal anything except
for showing that the statement is true [HL10]. It is not like a mathematical proof that convinces
someone by establishing the validity of a statement but a proof of the possession of some specific
values that fulfil some certain conditions. In general, any NP-statement like the following can be
proven in zero-knowledge.

• “given a n2 · n2 Sudoku S, there is a solution to S”

• “given a Cryptographic hash function h and a hash value hx , there is a input data x such that
h(x) = hx”

• “given a root hash r of a MT and a hash value h, there exist a Merkle Authentication Path
that shows h is a leaf value of that MT”

The satisfying input or assignment, e. g., the solution to S or the input data x, are called witness.
Knowing the witness to a statement, a prover can exchange messages with a verifier to convince the
verifier that he possesses the very witness to the statement but without revealing it to the verifier.
The method that the prover and the verifier followed to exchange messages is called Zero-Knowledge
Proof or Zero-Knowledge protocol. The term “Zero-Knowledge” means, on verifying the proof, the
only thing that a verifier can learn is that the statement is true, any other information, especially the
witness of the statement is still remain secret to the verifier. More formally speaking, the process of
the message exchange between a prover and a verifier is zero-knowledge, if there exists a simulator,
which has no knowledge of the witness, but can still simulate the message exchange process such
that the probability, that the verifier is convinced in the simulator is the same as the probability in
real message exchange process.

If a malicious prover wants to prove a statement to be true while the statement is actually false,
ZK-Proof should guarantee that, the verifier should only accept the proof with a very small
probability Pf . On the other hand, when a prover proves a true statement, the verifier should accept
the proof with a much higher probability Pt . In general, we only demand a clear difference between
Pt and Pf , i. e., Pt > Pf . The probability can be increased (for Pt ) / decreased (for Pf ) by repeatedly
proving.
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2 Cryptographic Primitives

A Zero-Knowledge proof of Knowledge is a special case of ZK-Proof. It proves the statement that
only consist of the fact that the prover possesses some secret knowledge but not the knowledge
itself. In addition, ZK-Proof can be divided into two types, namely non-interactive and interactive.
While an interactive ZK-Proof requires interaction between a prover and a verifier during a prove,
non-interactive ZK-Proof doesn’t need any. Therefore, if a prover wants to prove the same statement
to different verifiers, he has to prove multiple times with an interactive ZK-Proof but he just needs
to generate the proof once and sends it to all verifiers in a non-interactive ZK-Proof. Due to the
simplicity and efficiency, zk-SNARK, an example of non-interactive ZK-Proof, is used in PEES.

2.7.1 zk-Snark

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-SNARK) is an efficient
variant of a zero-knowledge proof of knowledge. The meaning of “Zero-Knowledge” and “Non-
Interactive” is as described above, “Succinct” means that the generated Proof is small (usually
a few hundred bytes) and is easy to verify. As mentioned above, a zero-knowledge proof of
knowledge only proofs the statement which states, the prover possesses some certain knowledge
or secret information. While pure ZK-Proof proofs statements about properties of some secret,
zero-knowledge proof of knowledge proofs the possession of that very secret of provers. As the
name indicates, this kind of proof is also zero-knowledge, i. e., the verifier won’t learn anything
about the secret but that the prover possesses such a secret. Argument of knowledge is similar to
Proof of knowledge, but it only protects the verifier against a computationally limited prover. That
means, if a prover has unbounded computational power, he can fake proofs for any false statement
without being noticed [Rei16]. As most of the computer in practice has only limited computational
power, it is enough to use Argument of knowledge in PEES.

zk-SNARK is used for some NP-complete languages. That means, any statement that a prover wants
to proof must be first converted to the specific NP-complete languages that zk-SNARK supports. In
the implementation of PEES, libsnark, a C++ implementation of zk-SNARK schemes, is used.
This library supports several NP-complete languages such as R1CS, BACS or USCS [Laba]. For
the demo of PEES implemented in Chapter 5, we use Rank-1 Constraint Systems (R1CS) as the
underlying NP-complete language for libsnark. An instance of R1CS is a set of equations over
a prime field F in the following form: < A , x > ∗ < B , x >=< C , x >, where A, B, C are
three vectors in field F, x represents a vector of variables and < , > donates the dot product of two
vectors [Vit].
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Figure 2.3: A satisfying R1CS instance [Vit]

Figure 2.3 shows a satisfying R1CS instance. The triple (A ,B ,C) builds a constrain for the variable
vector x. In libsnark, to check whether a statement is fulfilled is equals to check whether every
constrains in the corresponding constrain system is satisfied for the given solution (witness and
public inputs). Further technical details of how zk-SNARK works is out of scope for this thesis, for
those information please see [BCCT11], [BCI+12] and the references therein, for more information
about libsnark please see Section 5.1.

In PEES, zk-SNARK is used to let Voter prove that he possesses a specific VC, which shows his
eligibility to vote for a certain election. As the VC is related to a certain Voter, revealing the detail
of a VC equals to expose the identity of a Voter to the public, especially the election organizer.
Thus, to protect Voter’s privacy, the possession of VC must be proven in zero-knowledge. Apart
from this proof, zk-SNARK is also used in the result computation part to show that, EA possesses
the correct decryption key for the election and it has decrypted all recorded votes and calculated
the result correctly without revealing the decryption key. We don’t want the decryption key to be
revealed to the public even after the election is because that if an attacker somehow gets to know
the identity of a Voter, there still is this decryption key that prevents the attacker of knowing that
Voter’s exact vote, hence, this key must be well protected.
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Before getting into details of PEES, one more fundamental building block, Blockchain, should be
explained. In this chapter, I’ll first introduce Bitcoin, where Blockchain has first been implemented
and widely used, in Section 3.1. In Section 3.2, I’ll explain the Smart Contract from Ethereum,
which enables Turing-complete programming on Blockchain. Finally, I’ll introduce Zcash and its
privacy providing methods Mint and Pour in Section 3.3.

3.1 Bitcoin

Blockchain was first conceptualized by a person known as Satoshi Nakamoto for the cryptocurrency,
Bitcoin, in 2008. Bitcoin is a decentralized peer-to-peer electronic cash system [NBF+16]. The
underlying cryptocurrency, i. e., the electronic cash, is also called Bitcoin. Decentralization indicates
that there is no single administrator such like a central bank that has to be trusted or relied on in
this system. In this case, all transactions are directly sent from one user to another user in the
peer-to-peer network. If a transaction is verified to be valid, i. e., the sender is the owner of the
Bitcoins that he tries to send, and he has enough money on his account, then this transaction will be
recorded on a public distributed ledger that is also known as the Blockchain. The public ledger is
designed in such a way that any recorded transactions are unchangeable, and it is public to everyone
in the network. To get a current account balance of a user, one just need to go through every record
on the public ledger which are related to the desired user and then calculate the current account
balance.

In following, I’ll explain some basic concepts such like user, miner, and some fundamental building
blocks of Bitcoin system. This section is aimed to explain the concept and ideas of Bitcoin system,
technical details are not included, for those details, please see [Nak08] and [NBF+16].

3.1.1 User and Miner

In Bitcoin, a user is represented by a pair of signing keys (pk , sk) as described in Section 2.3. The
public key pk is like a bank accounts in real life, if a user wants to send a transaction to another one,
the receiver’s public key must be first known to the sender. The secret key sk is like the password to
the bank account, i. e., only with the corresponding secret key, a user can send money from that
account. Since there is no central party that records which account belongs to which user, it is
important that a user should never reveal his secret key to any other people, otherwise he could be
easily impersonalized.
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Miner is a special kind of people that group pending transactions and build up blocks from those
transactions (this action is also called mining) based on the consensus algorithm of Bitcoin system
(for more explanation please see Section 3.1.4). For every valid Block that the miner has added to the
current Blockchain (public ledger), he will be rewarded with all transaction fees from transactions
that he has grouped in that Block and a block reward.

Miner and user are two different roles in the Bitcoin system and they should not be confused. A
participant in the Bitcoin system can be a miner and a user at the same time, if he mines the blocks
and sends transactions as well. A participant can also just be a user who only uses this system but
not making any contribution to the public ledger.

3.1.2 Transaction

On a high level, each Bitcoin can be considered as a tuple of a value v and a public key pk that
indicates the ownership of the Bitcoin. Assume a user Alice wants to send a Bitcoin with value
3 to another user Bob, a transaction as described in the next paragraph will be constructed and
then broadcasted to all nodes in the peer-to-peer network, so that everyone gets this update of her
account. A node in peer-to-peer network represents a participant in the network, in the following,
these two words will be used interchangeably.

A transaction in Bitcoin system consist of a unique identifier, input Bitcoins, output Bitcoins and a
digital signature of the sender, in the example above, a digital signature of Alice. The input Bitcoins
were got from some earlier transactions where other users sent to Alice. One output Bitcoin has
a value of 3 and the public key of the receiver, Bob. This is the Bitcoin that Alice wants to send
to Bob. Usually, there will be another output Bitcoin which has a value equals to the amount of
all input Bitcoins minus 3 and the transaction fee, and a public key of Alice herself. This Bitcoin
is generated when the sum of all input Bitcoins has a much higher value of the desired output
Bitcoin. As Bitcoins cannot be split, to refund herself of unspent Bitcoins, Alice has to generate
this new Bitcoin as a output Bitcoin as well. At the end, to authorize this transaction, Alice has to
use her secret key to sign on this transaction. With this signature verified as valid, everyone in the
Bitcoin system will be convinced that Alice has indeed authorized this transaction, otherwise this
transaction will be discarded and never be added to a block.

A transaction must be first verified and then be added to a block. Only after a transaction is added
to a block, it will be considered as executed. To verify a transaction, the following requirements
must be checked:

• the input Bitcoins are valid, i. e., Signatures on transactions where input Bitcoins are generated,
are valid, and

• the values of all input Bitcoins are bigger than the values of all output Bitcoins, and

• the signature on the transaction is valid

The difference between the values of all input Bitcoins and the values of all output Bitcoins is the
transaction fee. Due to internet delay, when transactions are being broadcasted to all nodes in
the network, they usually won’t arrive at the same order as they have been broadcasted. Hence,
transactions that will be grouped in the new blocks by miners are not based on transaction orders
but miner’s preference. Thus, a transaction with high transaction fee are always preferred.
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3.1.3 Blockchain

In the Bitcoin system, the public ledger is implemented as a Blockchain. As its name indicated,
a Blockchain is a sequence (chain) of blocks as shown in Figure 3.1. Each block consists of a
block-header and a list of valid transactions. The block-header includes different variables, the most
important ones are the parent block hash, the current block hash and a nonce Nonce. The current
block hash is simply the hash of all data, i. e., the block header and all transactions that grouped in
the current block. As shown in Figure 3.1, the parent block hash, which is the current block hash
of the previews block, is contained in the current block-header. That means, when calculating the
current block hash, the parent block hash will be included as the hash input as well. Notice that the
the parent block hash is the only thing that connects different blocks to a chain.

Figure 3.1: An example of Blockchain [ZXD+17]

In Bitcoin system, a Blockchain is valid iff all blocks on the chain are valid. A block is called valid,
if its block-header is valid and all transactions that have been grouped in that block are valid. When
broadcasting a newly generated block to all nodes in a peer-to-peer network, the message may not
arrive at each block on the same time. Thus, it is normal that two (or more) miners have mined a
new block almost simultaneously but contain different transactions. As shown in Figure 3.2, assume
the two new blocks based on B3 are block B4 and block U4. Since miners choose transactions
based on their preference, it is highly possible that the transactions included in B4 and U4 are
different. This situation is known as a fork of a Blockchain. In this case, both new blocks will be
currently considered as valid till one chain has been extended longer than the other, then only the
longest chain will be considered as valid. This is known as the “longest chain” rule.
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Figure 3.2: An example of fork in a Blockchain [ZXD+17]

For example, after B4 and U4 has been broadcast in the network, miners will randomly choose a
block as the previews block to mine new blocks. After some time, assume a new block B5 has been
mined based on B4 and there are still no new blocks mined based on U4, as shown in Figure 3.2,
then the chain with block U4 will be considered as invalid and all miners will switch to the valid
chain with block B5. As long as most miners stick to the longest chain rule, the Blockchain won’t
diverse.

3.1.4 Consensus Algorithm

The longest chain rule has prevented a Blockchain from diverging, however, the longest chain rule
has also made Blockchain vulnerable to Double Spending Attacks. In a double spending attack,
an attacker is trying to spend one Bitcoin to two or more users. With the longest chain rule, this
attack can be easily done as following:

Consider the Blockchain shown in Figure 3.2, assume blocks B1 to B3 are already mined

1. An Attacker sends one Bitcoin to Alice as payment for some item in real life in a transaction
Tran

2. The attacker mines block U4 that contains Tran

3. Alice sees that Tran is in a block on the chain, she then sends an item to the attacker in real
life, as they earlier agreed

4. After that the attacker gets the item, he sends the same Bitcoin to Bob in Tran’

5. The attacker mines block B4 with Tran’ in it, and he keeps mining new blocks based on B4

As soon as the lower chain in Figure 3.2 is longer than the upper chain, the transaction Tran’ will
be considered as executed and Tran will be considered as not executed, i. e., Alice didn’t get the
payment, but the attacker already got the item from Alice.
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In this case, a consensus algorithm will be needed to prevent any nodes in the network to attack the
network. A consensus algorithm is aimed to help untrustworthy nodes to reach a consensus. In a
decentralized network like Bitcoin system, a consensus algorithm is used to decide which node
could propose a new block. In Bitcoin, the consensus algorithm Proof of Work (PoW) is used. The
basic idea of PoW is that each block can only be proposed if a lot of work has been put to generate
that block. The term “work” here means computer calculations, more precisely hash calculations
[ZXD+17].

In Section 3.1.3, we mentioned that in each block, there is a variable called “current block hash” in
the block header. PoW then requires that this hash value should be smaller than a certain value
otherwise the mined block is invalid. To do that, the variable Nonce in the block header should be
changed, so that the current block hash meets the requirements. As a cryptographic hash function is
pre-image resistance (Section 2.1), the best way to find a satisfying hash value is to brute-force,
i. e., constantly change the value of Nonce, till the result hash meets the requirement. Hence, with
PoW, every node in the network is theoretically possible to propose a new block. However, the
probability is based on the hash power it has.

Apart from PoW, there are other consensus algorithms such like Proof of Stake (PoS) where the
participant with high account balance will be selected to propose a new block. It is believed
that participants with more currencies are less likely to attack the network. For more consensus
algorithms, please see [ZXD+17].

3.1.5 Security Analysis

In this section, I’ll informally explain why transactions on a Blockchain are unchangeable and how
it prevents double spending.

Assume we have a Blockchain of length n, and all honest miners are currently mining new blocks
based on Bn. An attacker wants to change a transaction in block Bi with i < n. Then, after the
attacker has changed the transaction in Bi (we use B′i to donate the changed block), he has to
recalculate the current block hash of B′i and resolve the PoW problem for B′i to make this block
valid. Since the data in Bi and B′i are different, the current block hash of these two blocks won’t
be the same. Therefore, the block Bi+1 and all blocks behind will still be considered as linked to
block Bi while B′i will be considered as a fork of the original Blockchain as shown in Figure 3.2.
Because of the longest chain rule, this fork will not be considered as valid as long as it is shorter
than the original Blockchain. The attacker may try to mine more blocks based on B′i so that this fork
is longer. However, PoW guarantees that if the hash power of all honest miner is bigger than the
attacker, it’s almost impossible for the attacker to catch up to the original chain. Thus, transactions
that has been recorded on a Blockchain is unchangeable.

As for the double spending attack that described in Section 3.1.4, it is almost the same with the
setting above. However, in the double spending attack, if Alice sends the item to the attacker as
soon as she sees the transaction has been recorded in a block, the attacker may have only few blocks
to catch up with. In this case, if an attacker is lucky, i. e., solve a PoW problem with just few tries,
he may actually make the fork chain longer than the original one. Hence, it is recommended to trust
a transaction to be actually executed when there are 6 more blocks that have been mined based on
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the block that recorded that transaction. This is the so called “6-block” rule. With 6 blocks ahead, it
is almost impossible for the attacker to generate a fork for double spending and catch up with the
original Blockchain.

However, if an attacker has more than half hash powers of the whole network, PoW can no longer
protect the network from any attacks that have been described above. Since the attacker has more
hash power than the rest of the network, he could always catch up the original Blockchain, the only
variants here is when he will catch up and exceed the original Blockchain. This is known as the
51% attack [51a]. Theoretically this attack works, but in practice, it takes a lot of time and money
to have more than half hash power of the whole network. Hence, in general, especially for PEES,
we will consider the Blockchain as a secure data structure to keep recorded data unchangeable and
prevent of double spending attacks.

3.2 Ethereum

Ethereum is also a Blockchain based decentralized system. Unlike Bitcoin system which is aimed
to provide an alternative electronic payment system, Ethereum attempts to establish a decentralized
software platform that enables Smart Contract and Distributed Application (Dapp). Although the
technical details of the Blockchain that used in Bitcoin and Ethereum differs from many aspects,
the basic ideas and concepts remain the same.

In the following, I will focus on the unique feature, Smart Contracts, that provided by Ethereum.
I’ll first explain what a Smart Contract is and then describe how it should be used in Ethereum.

3.2.1 Smart Contract

In general, a Smart Contract is a digitization of a legal contract whereas in Ethereum, a Smart
Contract is a piece of executable code that is implemented, deployed and executed within Ethereum
environment [Mod18].

After a Smart Contract is deployed in Ethereum, i. e., been recorded on the Blockchain, anyone in
the network can use the functionality of this Smart Contract. A function in a Smart Contract can be
called either by a user in the network or by another deployed Smart Contract. To do that, a trigger
such like a transaction from a user or a message (will be explained in Section 3.2.2) from another
Smart Contract is needed. After successfully executing the function, the state and the storage of the
Smart Contract will be updated and be recorded on the Blockchain.

Ensured by the Blockchain, any deployed Smart Contracts are also unchangeable. On the one hand,
this is good for Dapp developers, since they don’t have to worry about any other party manipulating
their applications. However, if they found any bugs in their Dapp after they deployed the Smart
Contract, they could not simply fix it in the original Smart Contract but deploy a new one.
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3.2.2 Externally Owned Account and Contracts Account

Different from the Bitcoin system, there are two kinds of accounts in Ethereum, namely Externally
Owned Account (EOA) and Contract Account [BS18].

An EOA is similar to a user account in Bitcoin. Each EOA is represented by a pair of keys (pk, sk).
Like Bitcoin system, an EOA can send transactions that transfer Ether, the underlying cryptocurrency
in Ethereum, to another EOA or Smart Contract. Apart from that, an EOA can also deploy or
interact with Smart Contracts through transactions.

In Ethereum, each deployed Smart Contract is also considered to have an account, namely the
Contract Account. A contract account is identified by an unique contract id that is generated when
the Smart Contract is first deployed to the Blockchain. There is no public/secret key pair for a
contract account, since these keys have to be stored in the corresponding Smart Contract on the
Blockchain and hence is public to everyone in the network. A contract account also keeps the Ether
balance as an EOA, besides that, the associated code, current state and the storage of the Smart
Contract is stored in the contract account as well.

However, as a contract account doesn’t have a private key, it is not possible for this kind of account
to sign on any transactions, thus a contract account is not able to send any transactions as an EOA.
As an alternative, contract accounts send messages to other Smart Contracts to invoke functions they
provide. A message between Smart Contracts is similar to a function call, but unlike a transaction,
they exist only in the Ethereum execution environment and won’t be recorded on the Blockchain
[BS18].

3.2.3 Transactions

As mentioned in Section 3.2.2, a transaction can only be sent from an EOA. Based on the receiver
and the purpose, transactions can be divided in 3 different kinds.

The first kind of transaction is the Payment transaction. This kind of transaction is used to transfer
Ether from one EOA to another. A Payment transaction is similar to a transaction in Bitcoin system,
it consists of a receiver, the amount of the Ether that sender wants to transfer, a transaction fee and a
signature of the sender.

The second kind of transaction is called Contract Creation transaction. This kind of transaction is
sent to an empty address with the code of a Smart Contract as data. Apart from that, the sender also
has to pay for the execution and sign on this transaction to show that he really intended to create this
Smart Contract [JW17].

The last kind of transaction is used to invoke a function of a Smart Contract. This kind of transaction
is sent from an EOA to a Smart Contract. Instead of using the public key to identify the receiver, the
Smart Contract’s id is used. In addition, the function name and input parameters should be included
in the transaction data as well. It is also possible to send Ether to a Smart Contract, and like a
Contract Creation transaction, the sender has to pay for the execution and sign on the transaction.

The execution in the last two kinds of transactions are executed when miners mining new blocks.
Similar to the Bitcoin system, before a transaction is record to a block, it first needs to be verified.
The verification for the Payment transaction is the same as the verification for transactions in Bitcoin
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system. However, the verification for the last two kinds of transactions is a little bit different. Except
from verifying the signature, miners have to either execute the contract creation function provided
by Ethereum to initialize a Smart Contract [Woo14] or execute the called function with given input
parameters and update Smart Contract’s state and storage. Only after the signature has been verified
as valid and the execution ended without errors, the transaction will be recorded into a block. Notice
that the function call might be verified on different computers, but the result needs to be the same
for all different runs, therefore, all functions in Smart Contract should be deterministic, i. e., no true
randomness can be invoked in Smart Contract.

3.2.4 Concept of Gas

Ethereum provides a Turing-complete program language, known as solidity, for Smart Contracts.
As solidity is a Turing-complete language, it is possible that a function will never end. Then,
when miners executing this function call, they will never halt and hence no blocks will be further
generated. Since the halting problem is undecidable, it is not possible to tell whether a function
will halt or not when creating the Smart Contract or before a function call. To solve this problem,
Ethereum introduced the concept of Gas.

In Ethereum, Gas refers to fees that the sender pays for the execution in a transaction [BS18].
Each execution step will be broken down to fundamental operators and each of these operators
have a fixed price. When sending a transaction which invokes a Smart Contract, the sender has
to specify the amount of Gas he’s willing to pay for the execution and a gasPrice in Ether. Then,
when verifying such a transaction, miners will use the Gas provided by the sender to execute each
operation. As soon as the Gas is used out the execution is stopped. With this mechanism, every
function in a Smart Contract will stop after finite steps.

During an execution, if a transaction uses less Gas than the sender provided, the sender will get
a refund of remaining Gas in Ether. However, if executing a transaction needs more Gas than
the sender provided, the execution will be stopped when the Gas ran out and all state or storage
changes during this execution will be reverted as this execution has never been started. Although
the execution is reverted, the transaction itself is still valid and the fee will also be collected by the
miner. Thus, it is recommended to estimate the Gas cost before sending a transaction.

3.3 Zcash

Zerocash protocol is aimed to bring privacy in digital currencies like Bitcoin [SCG+14]. The
full-fledged digital currency of this protocol is called Zcash [BACa]. Unlike Bitcoin where every
user’s payment history is recorded directly on the Blockchain, Zerocash hides the amount of the
payment and the identity of the receiver under encryption and proof the correctness of a transaction
using ZK-Proof. To reach this goal, Zerocash protocol introduced a new anonymous coin, zerocoin,
to distinguish with non-anonymous coins (also called basecoin) such as Bitcoin. When using the
Zcash, a user first has to convert some of his basecoin to the same amount of zerocoin using the
function Mint. After that, he can make private payment using zerocoin and function Pour so that
everyone in the network doesn’t know to whom and how much he has paid. The function pour also
allows a user to split his zerocoin or to convert it back to basecoin.
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In The following, I’ll describe how Zcash represents a user in Section 3.3.1, and then explain how
mint and pour function works in Section 3.3.2 and Section 3.3.3. At the end, I’ll give a security
analysis of privacy in Section 3.3.4.

3.3.1 User Account

Unlike a user in Blitcoin system or in Ethereum, a user in Zcash is represented by two pairs of keys.
The first pair of keys (apk,ask) is called address key pair. Key apk represents the identity of a user
and it is also associated to all zerocoin that belongs to this user. To spend a zerocoin, the user has to
show that he has the knowledge of the corresponding ask . apk and ask are not chosen randomly but
generated using a so called Pseudorandom function (PRF).

A PRF is a function with values seemingly chosen randomly within its range in cryptography
[GGM84]. Zcash uses collision resistant PRFs, similar to a cryptographic hash function, it is
infeasible to find two different inputs such that they result in the same output of a PRF.

To generate an address key pair, a user first sample a random seed ask , and use it to select a PRF
from the Pseudorandom function family addr. The value of the output of this PRF on input 0 is apk ,
i. e., apk := PRFaddr

ask
(0)

The other key pair (pkenc, skenc) is the encryption key pair. It should be generated according to the
underlying PKE. It is used to encrypt transaction data, so that they are not public on the Blockchain.
Together, the key pair (apk, pkenc) is the public key pair of a user and the key pair (ask, skenc) is
the secret key pair.

3.3.2 Mint

In Zcash, the Mint function is used to convert basecoins to zerocoins. To convert v basecoins, the
user first has to deposit that much basecoin to a backing escrow pool [SCG+14], after that, the user
should generate a zerocoin with the value v and send the transaction txMINT to the Blockchain to
indicate that he has minted a new zerocoin c.

As shown in Figure 3.3 (b), a zerocoin consists of a user’s public key pair (apk, pkenc), a value v,
three randomness ρ, r, s and the coin commitment cm. After a Mint transaction txMINT has been
verified as valid, the coin commitment cm of the new coin will be saved in a MT as illustrated in
Figure 3.3 (a).
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Figure 3.3: Mint [SCG+14]

To generate a new zerocoin c with value v, a user with public key pair (apk, pkenc) should execute
the Mint function off-chain. On receiving v and ask , the Mint function does the following steps
[SCG+14]:

Mint(v, ask) :

1. calculate apk from ask as described in Section 3.3.1.

2. sample the serial number randomness ρ.

3. sample a commitment randomness r , then compute the first commitment
k := Commr (apk | | ρ).

4. sample another commitment randomness s, then compute the coin commitment
cm := Comms(v | | k).

5. compute the serial number of c using a PRF chosen from Pseudorandom function family sn
based on ask , i. e., sn := PRFsn

ask
(ρ).

6. broadcast Mint transaction txMINT := (v, k, s, cm) to Blockchain.

7. return c := ( (apk, pkenc), v, ρ, r, s, cm ) and sn.

The relation between ask, apk, ρ, r, s, v and cm is illustrated in Figure 3.3 (c) and (d). The first
commitment is aimed to bind the coin with its owner’s address public key apk and to connect the
coin commitment cm and the corresponding serial number sn through the serial number randomness
ρ. The second commitment, i. e., the coin commitment, is a commitment over the value of the coin
v and the result of the first commitment k. Instead of using just one commitment over all values v,
apk and ρ, Zcash uses two hierarchies of commitment to hide ρ from the public, otherwise when
including all committed value in txMINT the public will know which zerocoin has been used by
which user (for more explanation see Section 3.3.4).

To verify the validity of a Mint transaction, a miner first needs to check whether the sender has
deposited v basecoins, if he hasn’t deposit that many basecoins, this Mint transaction will be
considered as invalid and discarded. If the same amount of basecoins have been deposited to
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a backing escrow pool, the miner will continue checking the transaction by computing the coin
commitment himself using v, k, s and comparing the result with the given value cm. If this check
passes, the Mint transaction will be grouped to a block.

Notice that, in txMINT , only the value that related to the coin commitment cm is revealed to the
public, the sender should still keep other randomness r , especially ρ and the serial number sn secret,
otherwise the privacy might be leaked.

3.3.3 Pour

The Pour function is used to spend zerocoins. In general, a Pour function is expected to consume
two zerocoins c1, c2 and generate two new zerocoins c′1, c′2 for the receiver with the total value of c1
and c2 equals to the total value of c′1, c′2. If a user wants to consume more zerocoins or transfer to
more receivers, he can call Pour function multiple times and if he only wants to spend one zerocoin
to one receiver, he can set c2 and c′2 to NULL. Thus, we will only consider the Pour function with two
in/output coins in the following.

A Pour function is also executed off-chain. It takes two generated zerocoins cold1 , cold2 and their
corresponding serial number snold1 , snold2 , the value of two new zerocoins vnew1 and vnew2 , the public
key pair of two receiver (anew

pk ,1, pknew
enc,1) and (anew

pk ,2, pknew
enc,2), and the root hash of the MT that saves

all coin commitment rt as its input and does the following [SCG+14]:

Pour(cold1 , cold2 , snold1 , snold2 , vnew1 , vnew2 , anew
pk ,1, anew

pk ,2, pknew
enc,1, pknew

enc,2, rt) :

1. for i ∈ {1,2} : sample randomness ρnewi , rnewi , snewi separately.

2. for i ∈ {1,2} : compute knew
i := Commrnewi

(anew
pk ,i
| | ρnewi ).

3. for i ∈ {1,2} : compute cmnew
i := Commsnewi

(vnewi | | knew
i ).

4. for i ∈ {1,2} : assign cnewi := ( (anew
pk ,i

, pknew
enc,i), v

new
i , ρnewi , rnewi , snewi , cmnew

i ).

5. for i ∈ {1,2} : encrypt the new generated zerocoin under receiver’s encryption public key,
i. e., Ci = Encpknewenc ,i

(cnewi ).

6. generate a ZK-Proof πPOUR for the following statement:
“for i ∈ {1,2} : Given the MT root hash rt, the serial number snoldi , and the coin commitment
cmnew

i , I (sender) know zerocoins coldi , cnewi and address secret keys aold
sk ,i

such that:

• for i ∈ {1,2} : the zerocoins coldi , cnewi are well formed, i. e., for each zerocoin, the two
commitments that described in Section 3.3.2 is valid.

• for i ∈ {1,2} : the address secret key matches the address public key, i. e., aold
pk ,i

:=
PRFaddr

aold
sk ,i

(0).

• for i ∈ {1,2} : the correctness of serial number computation of consumed zerocoins,
i. e., snoldi := PRFsn

aold
sk ,i

(ρoldi ).

• for i ∈ {1,2} : the coin commitment cmold
i is a leaf of a MT with root hash rt.

• The values add up: vnew1 + vnew2 = vold1 + vold2 .”
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7. broadcast txPOUR := (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , πPOUR, C1, C2) to the Blockchain.

The steps 1 to 4 is used to generate new zerocoins, the step 5 encrypts the detail of new generated
zerocoins under the corresponding receiver’s encryption public key, so that only the receivers of
these zerocoins are allowed to know the associated randomness. Thus, these zerocoins can only be
spent by their owner. Since only the serial number of consumed zerocoins and the coin commitment
of the new generated zerocoins is revealed to the public, a ZK-Proof (generated by step 6) is needed
to show the correctness of this transaction.

To verify a Pour transaction, a miner first checks whether the given serial numbers snold1 and snold2
have been published before or not. If a serial number has occurred in an earlier transaction, which
means the current transaction is double spending a used zerocoin, thus the current transaction
will be considered as invalid and be abandoned. On the other hand, if a serial number has not
occurred before, the miner will continue to check the validity of the ZK-Proof πPOUR with the
given values rt, snold1 , snold2 , cmnew

1 , cmnew
2 . If this proof has been checked to be correct, then

the corresponding Pour transaction is valid and will be eventually grouped in a block. The coin
commitment of new zerocoins cmnew

1 , cmnew
2 will be saved in the MT as well, so that the receiver

can generate a valid ZK-Proof later, when they use the new zerocoins.

As mentioned in the beginning of this chapter, the Pour function can be used to split zerocoins to
zerocoins with new values and convert zerocoins back to basecoins. To split zerocoins, the sender
just needs to specify the receiver as himself, and select values for new zerocoins as he wishes.
However, to convert zerocoins back to basecoins, the Pour function needs a little modification.

To enable the conversion, new public outputs vpub and info are needed. The value vpub indicates
how many zerocoins the sender wants to convert back to basecoins and the the sender can specify
the target of these basecoins in variable info. Along with these changes, the last requirement in
the ZK-Proof statement should be changed to vnew1 + vnew2 + vpub = vold1 + vold2 as well. The
two public outputs vpub and info should be added to txPOUR, since the basecoin doesn’t provide
privacy, any changes of basecoins should be recorded on the Blockchain.

3.3.4 Security Analysis

Zcash is aimed to hide the original coins that have been spent and the new coins that have been
generated in a transaction from both the public and the sender. That means, the public should
only learn the serial number sn of a spent zerocoin but not the very coin and especially the coin
value v that has been spent, i. e., the public shouldn’t be able to connect the corresponding coin
commitment cm to sn. As for the sender, although he has generated the new zerocoin for the
receiver, he shouldn’t be able to tell that if a spent coin is generated from him or not, otherwise, the
sender will know the value of that spent zerocoin. Apart from these privacy requirements, Zcash
should also guarantee that only the owner of a zerocoin can spend it, otherwise the fundamental
requirement of a cryptocurrency system is broken.

In the following, I’ll explain how Zcash guaranteed these requirements using Mint and Pour
functions.

Start with Pour transaction txPOUR := (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , πPOUR, C1, C2). For an
attacker from the network, if the used commitment scheme, PKE and the ZK-Proof is secure,
then it is infeasible for him to retrieve the value of new generated zerocoins from cmnew

i , or any
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details of new generated zerocoins from Ci, for i ∈ {1,2}. As for the consumed zerocoins, if the
underlying PRF PRFsn is secure, then it is also impossible for an attacker to retrieve the serial
number randomness ρ from the revealed sn. Hence, an attacker cannot connect a serial number
sn to its corresponding coin commitment cm and therefore he cannot know the value of the spent
zerocoin. Analogous, if the using ZK-Proof is secure, then the attacker cannot get any information
about both consumed zerocoins and newly generated zerocoins from πPOUR.

As for the creator of new zerocoins in a Pour function, although he knows all randomness ρ, r and s
for new zerocoins, as long as he doesn’t know the address secret key ask of the receiver, he can’t
know which serial number sn corresponding to the coin commitment cm that he has computed for
new zerocoins. Thus, the creator has no idea when the receiver has used these zerocoins. For the
same reason, since the creator (and also the attacker from the network) doesn’t know the address
secret key ask of the owner of a zerocoin, he could not generate a valid ZK-Proof as described in
Pour function step 6. Thus, no one except the owner of a zerocoin can use it.

However, any transactions regarding to basecoins are public and to create zerocoins one first needs
to deposit the same amount of basecoins to backing escrow pool, it is not hard to find out the
value of the first zerocoin that a user spent. Therefore, it is recommended to split a newly minted
zerocoin into new zerocoins using Pour function instead of directly using it, so that the value of
split zerocoins are hidden from the public.
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4 Privacy Preserving Ethereum-based E-Voting
System

PEES is an Ethereum based, privacy preserving E-Voting system. It uses Smart Contracts to record
ballots, so that no one can manipulate them once they are saved on the Blockchain. PEES also uses
ZK-Proof to protect Voter’s privacy against both public and EA. In the following, I’ll first give an
overview of PEES in Section 4.1 and then explain the security goals of PEES on an informal level
in Section 4.2. In Section 4.3, I will explain the adopted mint and pour functions, ZK-Proofs and
Smart Contracts that are used in PEES in detail. Finally, I will describe the full protocol of PEES in
Section 4.4.

4.1 PEES Overview

Figure 4.1 shows all components and the relations between these components in PEES. As shown
in Figure 4.1, PEES runs the two web servers: Admin Server and Client Server. These two servers
are configured by PEES and the source code should be published, so that everyone can check that
these two servers do the exact thing that they are expected to do. Although all ballots are saved on
Blockchain, PEES still uses a shared database to save information such like election configurations,
so that each web server has access to it. During an election, EA can interact with Admin Server to
configure and control the pace of an election, and Voters are able to interact with the Client Server
to get needed information for voting. The two Smart Contract: Registration Smart Contract and
Voting Smart Contract are generated during an election by Admin Server. In the following, I will
explain each component with more details.

Figure 4.1: PEES overview
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Admin Server
a web server that interacts with EA through their browser. It enables EA to configure an
election and authorize result computation. The configuration of an election will be saved in a
shared database, so that the Client Server also has access to it. The result computation is
completely done on the server-side. After EA authorized the result computation, this server
will collect all ballots from the Blockchain, calculate the result, prepare a ZK-Proof of the
correctness of this result and publish the result and the proof on the Blockchain.

Client Server
a web server that Voters can interact with through their browser. It checks the eligibility of
Voters and provides a voting interface as well. This server will provide each eligible Voter
a unique token to mint the VC that will be consumed when the Voter casts a ballot. As for
the voting interface, this server only provides the candidates list to the Voter’s browser, the
generation and minting of VCs and ballots casting are all done locally on Voter’s browser but
not through this server.

The connection between these two servers is a shared database. In this shared database, only the
configuration of elections is saved, all ballots are still saved in Smart Contract on a Blockchain.
During an election, two Smart Contracts will be generated by Admin Server and will be deployed
on the Blockchain. These Smart Contracts are election related and are used to save VCs and record
ballots. The following description explains the functionalities of these two Smart Contracts.

Registration Smart Contract
is used to check the validity of minted VCs. Only valid VCs will be saved in this Smart
Contract. When the registration time is over, a MT of all VCs will be generated, and the root
hash of that MT will be saved in this Smart Contract as well.

Voting Smart Contract
is used to check the format of cast ballots. Similar to the Registration Smart Contract, only
the valid ballots should be saved in this Smart Contract. In addition, the final result of the
election and its related ZK-Proof is also saved here, so that everyone can check it later.

There are two types of participants in PEES, namely Voters and EA. As an election organizer, EA
has the full control of one election, i. e., it provides candidates list, authentication information for
all eligible Voters and determines the time period of registration and voting phases. In addition, EA
has the ability to manually end any phase of an election earlier than the expected time. However,
both EA and Admin Server don’t have to be trusted. The result published by the Admin Server
should only be considered as valid, when the ZK-Proof of the result is checked to be valid.

To hold an election using PEES, EA first needs to configure it through the Admin Server and
then open it for Voters. While opening an election, the encryption key and the decryption key
of that election will be generated. The encryption key is then saved in the shared database, but
the description key will be split using a secret sharing scheme to a subgroup of Admins from EA.
During the election, Admin Server will deploy the Smart Contracts for this election. Then, when
the election is ended, the subgroup of Admins which contains a share of the decryption key is asked
to upload their shares to Admin Server and combine the decryption key within the Admin Server.
After that, EA needs to authorize the result computation.
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As for Voters, after the election is open, they first need to register to this election and then cast their
vote. As mentioned above, if a person is eligible to vote for an election, he will be given a token
from the Client Server that shows his eligibility to the election. Then, he needs to mint a VC locally
and send a transaction along with his token to Registration Smart Contract. Later in the voting
phase, each Voter can cast his ballot to Voting Smart Contract by consuming a valid VC. The VCs
are consumed in private using ZK-Proof. This is aimed to protect Voter’s privacy. The created
ZK-Proof is also sent to Voting Smart Contract, so that the validity of the consumed VC can be
checked.

After the result of an election is published in Voting Smart Contract, everyone can check it through
the Client Server or directly from Blockchain. By receiving a request for the result, Client Server
will return both the result and the validity of its ZK-Proof to the sender. As mentioned before, this
result should only be trusted when its ZK-Proof is valid.

4.2 Security Goals

PEES assumes that every messages in the internet and on the Blockchain that is not encrypted
are public. That means, the transactions Voters sent to Smart Contracts or VCs and ballots that
saved on Blockchain is public to everyone especially to any attacker. In addition, if a party has the
decryption key for the encrypted messages, then these messages are considered to be public to that
party as well. This means, although the encrypted vote on the Blockchain is not public to everyone
in the internet, but they are public to the malicious EA, who tries to combine the decryption key
outside of the Admin Server. Then for honest Voters who don’t deviate from the protocol, PEES is
expected to achieve following security goals:

accuracy
in PEES, accuracy demands that every recorded ballot should be correctly counted. That
means, during the result computation, no one should be able to add, delete or manipulate any
recorded ballots and the computation itself is also correct. As there are attacks on Blockchain
that blocks a user from sending any transactions to Blockchain, PEES can’t guarantee that
every cast ballot will be correctly counted.

verifiability
verifiability ensures that no one should be able to manipulate any ballots without being noticed.
This property also enables Voters to check whether their ballots have been manipulated during
the election or not.

privacy against public
in PEES, privacy against public means that the vote of a Voter is kept secret from the public
(i. e., from anyone that is neither a member of Voters nor a member of EA), unless the Voter
himself voluntarily discloses his vote. Notice that the Voter’s identity is not protected by this
property as for many elections, it won’t be a problem, if the identity of a Voter is revealed, as
long as others don’t know the exact vote of this Voter.

conditional privacy against EA
Analogously, privacy against EA means that the vote of a Voter is kept secret from the EA
unless the Voter himself voluntarily disclose his vote. The condition here is that a Voter
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must send his mint transaction and his ballot cast transaction from two different Ethereum
accounts. As EA knows both the identity of the Voter and the decryption key to the ballot,
EA can easily connect the decrypted vote to the original Voter, if the Voter uses the same
account for both transactions.

4.3 PEES in Detail

In this section, I will explain the mint and pour functions adopted from Zcash, ZK-Proofs and Smart
Contracts in detail, the whole protocol of PEES is listed in Section 4.4.

4.3.1 Mint and Pour in PEES

Before goes into details of mint and pour function in PEES, I will first explain the token and VCs
from PEES.

The token is a digital signature that is sent from the Client Server to a Voter after his authentication.
If a person is eligible to vote for an election, the Client Server will compute an election related
token and then send it back to him. To compute this token, the Client Server first hashes the
Voter’s Id id concatenated with the election Id eid, and then signs on this message. The message
and the signature on this message are the token that the Client Server sends back, i. e., token
:= (Hash(id | | eid), Sign(Hash(id | | eid))).

VCs are similar to zerocoins (see Section 3.3). Analogy to Zcash, a VC is generated using mint
function and is consumed using pour function. Recall that with mint and pour, only the serial
number sn of a zerocoin is revealed when consuming that zerocoin, the very identity of that zerocoin,
especially the coin commitment cm remains in secret. PEES adapts this feature to break the
connection of a Voter and its vote from EA’s point of view. According to the security assumption,
the token that sent from the Client Server to a Voter is known to EA. Hence, if a Voter uses this
token to show his eligibility when he votes, a malicious EA will know exactly, to whom this Voter
has voted. In order to hide this connection, the token must be first converted into a VC.

In PEES, a VC can be considered as an anonymous token that shows the eligibility of a Voter,
therefore, each VC should be only used once, when the Voter casting his ballot. Unlike zerocoins,
which are still a type of digital currency, VCs are not used in any payment, thus, the value of VCs is
useless and there is no need to create new VCs for any receiver when one is consumed. Under these
observations, we simplified zerocoin to the form that showed in Figure 4.2.
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Figure 4.2: VC - simplified zerocoin

Compared to the format of a zerocoin in Figure 3.3, we delete the value v of the coin. In addition,
as a sender does not have to create new coins for the receiver, we don’t need the secret key ask for
the serial number calculation as well (recall that in zerocoin the secret key of a coin owner is used
in serial number calculation to prevent the coin creator to use this coin). Then, the serial number
calculation is simplified to the hash of the serial number randomness ρ. Furthermore, recall that the
commitment of the public key apk in a zerocoin is used to guarantee that only the actual owner of
the secret / public key pair can generate a valid ZK-Proof when using this coin. Since we don’t
need the secret key ask for the serial number calculation of a VC, we don’t need to commit the
corresponding public key apk in the first commitment as well.

The new form of a coin (ρ, r, s, cm) is the VC that is used in PEES. As the form of the coin has
changed, the mint and pour function must be adapted as well. In PEES, Mint function is defined as
following:

Mint(token, eid):

1. sample the serial number randomness ρ.

2. sample a commitment randomness r , then compute the first commitment
k := Commr (ρ).

3. sample another commitment randomness s, then compute the coin commitment
cm := Comms(k).

4. compute the serial number
sn := Hash(ρ).

5. send Mint transaction txMINT := (eid, token, k, s, cm) to Registration Smart Contract.

6. return vc := (ρ, r, s, cm) and sn.
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The token here is like the basecoin in Zcash. Only with a valid token, a new VC can be created.
While the mint transaction contains the token in plaintext and is directly sent to the network, it
might happen that an attacker may steal the token from other Voters to generate his own VC. To
prevent this from happening, a eligible Voters’ account list can be saved in the Registration Smart
Contract, so that the Registration Smart Contract will only accept mint transactions from these
account. On the other hand, one can hide this token using a ZK-Proof as well.

As for the Pour function in PEES, it gets a VC vc, a serial number sn, a Voter’s vote v, an election
encryption key key and a MT root hash rt as input, and then creates a ballot which contains the
encrypted vote and a corresponding ZK-Proof. At last, this function sends the ballot to Voting
Smart Contract:

Pour(eid, vc, sn, v, key, rt) :

1. encrypt v under encryption key key: VE := Enckey(v)

2. generate a ZK-Proof πPOUR for the following statement:
“ Given the MT root hash rt, the serial number sn, the encrypted vote VE and an encryption
key key, I (Voter) know a valid VC vc and the vote v is well formed. ”

3. assign VE and πPOUR to ballot b, i. e., b := (VE, πPOUR).

4. send Pour transaction txPOUR := (eid, rt, sn, b) to Voting Smart Contract.

As mentioned above, the Pour function in PEES does not create new VCs but create a ballot instead.
As the ballot is directly sent to the Blockchain, it must not contain a vote v in plaintext, otherwise
the vote is leaked to the public. In the description above, we only give an idea what the ZK-Proof
πPOUR needs to prove, the concrete constriction such as the definition of a valid VC can be found in
next section.

4.3.2 ZK-Proofs in PEES

There are two different ZK-Proofs in PEES. The first one is the ZK-Proof of Pour that was already
mentioned in Section 4.3.1. This ZK-Proof is created when a Voter consumes his VC and casts his
ballot. It proves in Zero-Knowledge (ZK) that the Voter knows the detail of a valid VC that he minted
before, i. e., the Voter knows the corresponding randomness’s ρ, r, s and its coin commitment cm
and serial number sn. In addition, it proves that the Voter’s vote is well-formed, i. e., he didn’t vote
for anyone who is not on the candidates list and didn’t vote for more than one candidate. Formally
speaking, the ZK-Proof of Pour πPOUR is a ZK-Proof for the following statement:

“ Given the MT root hash rt, the serial number sn, the encrypted vote VE and an encryption key
key, I (Voter) know VC vc := (ρ, r, s, cm), vote v, such that:

• the VC vc is well formed, i. e., the two commitments k := Commr (ρ) and cm := Comms(k)
are valid.

• the serial number calculation of consumed VC is correct, i. e., sn := Hash(ρ).

• the coin commitment cm is a leaf of a MT with root hash rt.

• let m be the number of all candidates, the vote v is well formed, i. e., v contains only one
choice and 1 ≤ v ≤ m.
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• the encryption of vote v is correct, i. e., VE := Enckey(v) ”

The root hash rt refers to the root hash of the MT over all VCs. This is saved in Registration Smart
Contract, hence, when verifying the proof, the public input rt should be get from the Registration
Smart Contract. If this input is not directly got from the Registration Smart Contract, one should
first check the equality of these two root hashes. Analogue, the other public input key should also
be the same as the encryption key saved in the election configuration. With these inputs equal to
their required values, the first three requirements guaranteed that the Voter knows the very detail of
the VC he’s about to spend and this VC is a VC that saved in the Registration Smart Contract which
indicates the eligibility of the Voter. The last two requirements are aimed to ensure that the vote v is
valid and VE is indeed the ciphertext of this vote.

The other ZK-Proof in PEES is the ZK-Proof of result computation πresult. This ZK-Proof is
generated after the Admin Server has computed the result of an election and it’s aimed to show
the correctness of the result computation without revealing the decryption key to the public. To
show the correctness of the result computation, Admin Server has to show that it has decrypt every
vote correctly and every vote has been counted correctly, i. e., πresult is a ZK-Proof for the following
statement:

“ Given ciphertext V1,V2, . . . ,Vn and result (r1, r2, . . . , rm) with ri represents number of votes that
candidate i received, I (Admin Server) know decryption key key and plaintext v1, v2, . . . , vk , such
that:

• all ciphertexts are decrypted, i. e., k = n.

• each ciphertext is decrypted correctly, i. e., ∀i ∈ {1,2, . . . ,n} : vi := Deckey(Vi).

• each vote has been counted correctly, i. e., ∀i ∈ {1,2, . . . ,m} : there are exact ri votes voted
for candidate i and k =

∑m
i=1 ri ”

Similar to the ZK-Proof of Pour, all ciphertexts are encrypted votes and they should be retrieved
from Voting Smart Contract or at least be checked to be the same as all the encrypted votes that
were saved in Voting Smart Contract. Without this guarantee, one may generate a valid proof with
all votes being manipulated during the result computation.

4.3.3 Smart Contracts in PEES

During an election, two election related Smart Contracts will be generated, namely Registration
and Voting Smart Contract. The Registration Smart Contract can also be seen as a VC pool where
all VCs of eligible Voters are saved. This Smart Contract provides two main functions, Mint and
GenerateMT as shown in Figure 4.3.

When generating Registration Smart Contract, three variables should be hard-coded, namely eid,
EA_account and reg_time. As mentioned before, each Smart Contract is election related, therefore
it needs the variable eid, which indicates to which election this Smart Contract belongs to. The
reg_time is a variable, that is specified by EA and indicates the registration end time. Every
mint-transaction that arrives after this time will be considered as invalid and the coin commitment
in this transaction will not be saved in this Smart Contract. The last hard-coded variable is EA’s
Ethereum account. This variable is used to guarantee that only EA can authorize the MT generation
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over all saved VCs. Apart from these hard-coded variables, there are three other variables that
save coin commitments, used tokens and the root hash of the MT over all saved coin commitments
respectively. The states of these variables may change when one of the functions from this Smart
Contract is successfully executed.

Registration Smart Contract

variables: eid: election Id
EA_account: Ethereum account of EA
reg_time: end time of the registration phase of the election
leafs[]: an array that saves all minted VCs
tokens[]: an array that saves all used tokens
rt: the root hash of the MT over all VCs saved in leafs[]

Mint: Upon receiving (eid, token, k, s, cm) from a Voter:
check time-stamp of the received transaction is earlier than reg_time

check eid = eid
check token is not a member of tokens[]

verify the signature of token
check the commitment cm, i. e., cm := Comms(k)
if all above checks passes:

save cm to leafs[]

save token to tokens[]

indicate sender the VC is successfully saved
else:

indicate sender the VC is not saved

GenerateMT: Upon receiving transaction (eid) from an Ethereum account acc:
check EA_account = acc
check eid = eid
if above check passes:

set reg_time to current time
generate a MT over all coin commitments that saved in leafs[]

save the root hash of generated MT in rt

indicate sender the MT is successfully generated
else:

indicate sender checks failed and no MT is generated

Figure 4.3: Variables and functions in Registration Smart Contract

Mint function is used to convert a valid token to an anonymous VC. This function receives a mint
transaction as described in Section 4.3.1, it then checks the arrival time and the election Id of this
mint transaction to make sure that this transaction arrives within the registration time period and
is targeting the right Smart Contract. After that, Mint function checks the validity of the digital
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signature from token and makes sure that this token has not been used before. At last it checks
the correctness of the coin commitment cm by recalculation the commitment cm’ using k and s
and check the equality of cm’ and cm. If all those checks pass, Mint function will save the coin
commitment cm in leafs[], the corresponding token in tokens[] and indicates the sender that he
has successful minted a VC, otherwise it will indicate the sender that one of the checks is failed and
the VC is not saved.

Recall that in Zcash, each minted zerocoin should have some deposit basecoins with the same value,
in PEES, the Client Server signed token can be considered as the basecoin for VC. However, as
VC doesn’t have value, the only “value” that has been converted from the basecoin token to the
anonymous VC is the eligibility of the Voter. Thus, the successful save of the coin commitment of a
VC in Registration Smart Contract with hard-coded eid means that the owner of the VC is eligible
to vote for the election with Id equals to eid. Therefore, when the Voter casts his ballot, he will use
the anonymous VC instead of the token to show his eligibility.

The other function GenerateMT in Registration Smart Contract provides the interface for EA to
generate the MT over all saved coin commitments in leafs[]. As this function directly ends the
registration time, it should only accept transactions from EA, thus, the sender’s account must be
compared with the hard-coded EA_account at the beginning. When calling this function, an election
Id should also be given as the input and it should be checked with the hard-coded eid to avoid the
case that EA has send the transaction to a wrong Smart Contract.

If the above checks pass, the registration phase will be ended, and the MT will be generated as well.
Due to the costly write operations, the full MT will not be saved in the Registration Smart Contract,
but only its root hash will be saved in rt. Recall that the root hash of a MT is basically the hash
value of all its leafs, it is enough to only save the root hash of the generated MT to prevent anyone
to alter the saved coin commitments. However, as EA is the only party who can call this function, it
should be implemented such that the EA can only call it once. Otherwise, a malicious EA could
just manipulate some coin commitments and then regenerate the MT.

The other Smart Contract that will be generated during an election is the Voting Smart Contract.
This Smart Contract is used to verify the Pour ZK-Proof as described in Section 4.3.2, and record
ballots. In addition, the final result and the ZK-Proof of result computation is also saved or verified
in this Smart Contract.

Similar to the Registration Smart Contract, Voting Smart Contract also has hard-coded eid,
EA_account and vote_time. Additionally, it hard codes the encryption key in key, so that this Smart
Contract doesn’t need to interact with any party to get this key when verifying the ZK-Proof πPOUR
as described in Section 4.3.2. Apart from these four hard-coded variables, there are two arrays
ballots[] and VCs[] that save the cast ballots (only the ciphertext of a vote) and the serial numbers
of used VCs respectively. The variable result is used to save the final result of an election. The
variable ResIsValid is a boolean that indicates the validity of the ZK-Proof πresult. This variable is
default set to false and it can be only set to true iff the ZK-Proof πresult is verified to be valid. The
variables and functions from Voting Smart Contract is listed in Figure 4.4.

Recall that to cast his ballots, a Voter needs to send a Pour transaction (eid, rt, sn, b) to Voting
Smart Contract. More precisely, this transaction is targeting the Pour function in Voting Smart
Contract. When receiving such a transaction, the Pour function first checks the transaction arrive
time, election Id and the double usage of sn similar to what Mint function does in Registration Smart
Contract. It also checks the equality of received rt and the root hash rt saved in Registration Smart
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Contract as mentioned in Section 4.3.2. Then, it phases the encrypted vote VE and the ZK-Proof
πPOUR from ballots b and verifies the πPOUR. If all these checks and verification pass, the Pour
function will save VE to ballots[] and the serial number sn to VCs[], otherwise, it indicates the
sender, his vote failed.

Voting Smart Contract

variables: eid: election Id
EA_account: Ethereum account of EA
vote_time: end time of the voting phase of the election
key: vote encryption key of the election
ResIsValid: a boolean that shows the validity of the result
ballots[]: an array that saves all minted VCs
VCs[]: an array that saves all used VCs
result: saves the election result

Pour: Upon receiving (eid, rt, sn, b) from a Voter:
check time-stamp of the received transaction is earlier than vote_time

check eid = eid
check rt the same as the root hash saved in Registration Smart Contract
check sn is not a member of VCs[]

let ciphertext = b.VE

let πPOUR = b.πPOUR
verify the ZK-Proof πPOUR with public input rt, sn, ciphertext, key
if all above checks pass:

save ciphertext to ballots[]

save sn to VCs[]

indicate sender the ballot is successfully recorded
else:

indicate sender the vote failed

saveResult: Upon receiving transaction (eid, result, πresult) from an Ethereum account acc:
check EA_account = acc
check eid = eid
if above check passes:

set vote_time to current time
verify the ZK-Proof πresult with public inputs ballots[] and result
if πresult is valid:

set ResIsValid to true
save result to result

indicate sender result have been saved

Figure 4.4: Variables and functions in Voting Smart Contract
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Notice that, the ZK-Proof πPOUR only proves that the sender of the transaction (Voter) has a valid
VC but cannot prove that this VC hasn’t been used, thus, the revealed serial number sn must be
saved after spending the VC so that it will be detected when someone is trying to use the same VC
to vote again.

Similar to GenerateMT function in Registration Smart Contract, saveResult can only be called from
EA as well, since it also ends the voting phase immediately. After the regular EA account and
election Id checks, the saveResult function will end the current voting phase (if it is not ended)
and begin to verify the ZK-Proof πresult. Notice that all encrypted votes which are a set of the
public inputs for πresult are directly obtained from the variable ballots[]. As these data are saved
on Blockchain, it prevents EA from manipulating the votes and providing a false proof by giving
altered encrypted votes as public inputs.

The saveResult function will always save the result in result no matter the ZK-Proof πresult is valid
or not, however the variable ResIsValid can only be set true iff the ZK-Proof is valid. The purpose
of this construction is to provide public a result no matter EA is malicious or not. However, one
should only trust this result if the variable ResIsValid is set to true.

Unlike GenerateMT function from Registration Smart Contract, the saveResult can be called multiple
times from EA as long as the variable ResIsValid remain private to Voting Smart Contract. This
means, a malicious EA could try to generate as many false ZK-Proofs as he can and send it to
saveResult, but as long as EA can’t change the value of ResIsValid directly, the probability that EA
convinces the public, that it has calculated the result correctly, should be the same as the probability
that anyone could forge a valid ZK-Proof with invalid inputs.

4.4 PEES Protocol

PEES is an E-Voting system that can be used for any elections. The protocol that described in this
section is the protocol of an election using PEES. The process of an election can be divided into 4
phases, apart from phase 0, each phase requires the participants of both Voters and EA. The detail
of each phases is listed below and a sequence diagram of the process of one election can be found
in Figure 4.5.

• Phase 0: set-up
This phase requires only the participants of EA. In set-up phase, the party EA is asked to
initialize and open an election. That is, prepare the questions and candidates, decide a list
of eligible Voters and generate the encryption / decryption key pairs for the election. This
information will be saved in the shared data bank through Admin Server but the decryption
key will be split in shares and be given to a subgroup of EA.

• Phase 1: registration
To begin phase 1, EA has to first determine a time period for registration phase. After
receiving the time period, the Admin Server will generate a Registration Smart Contract as
described in Section 4.3.3 and deploy it on Blockchain. In addition, the registration time
period will also be saved in the election configuration in the shared database so that Client
Server knows in which phase the current election is in.
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Within the registration time period, each Voter is asked to authenticate himself to the Client
Server. As mentioned before, if a Voter is eligible to vote for the election, he will receive a
token from Client Server. After receiving the token, it is recommended that each Voter mints
his VC immediately using the Mint function that has been introduced in Section 4.3.1. Voters
can decide to mint their VCs afterwards, in that case, they need to face the risk that their
mint-transactions may arrive later than the registration time period and therefore not be saved
in Registration Smart Contract.

• Phase 2: voting
Similar to phase 1, EA has to determine a time period for voting phase to start phase 2. Notice
that the start time of voting phase doesn’t have to be later than the end time of the registration
end time, i. e., EA can end phase 1 earlier than it is scheduled, but this is not recommended.

On receiving the time period for voting phase, the Admin Server first sends a transaction
to Registration Smart Contract to issue the MT generation. After that, the Admin Server
generates a Voting Smart Contract as described in Section 4.3.3 and then deploys it on the
Blockchain. At last, the Admin Server saves the voting time period in the shared Database.

When the voting time periods begins, each Voter is able to get the candidates list from Client
Server. After a Voter has selected his preferred candidate, he then prepare the public inputs
(rt, sn, VE , key) and corresponding witness (vc := (ρ, r, s, cm), v) for the ZK-Proof πPOUR
and using the pour function that has been described in Section 4.3.1 to generate this ZK-Proof
and send the Pour transaction to Voting Smart Contract.

Notice that all these computations are done locally on Voter’s computer and are directly
sent to the Smart Contract. That means, the Client Server will not learn any information,
especially the witness, from the Voter.

• Phase 3: compute result
When EA wants to close an election (same as in phase 2, EA could close an election earlier
but is not recommended), each Admin is asked to upload his share of the decryption key to
the Admin Server. When there are enough shares, the decryption key will be combined, and
EA can then authorize the result computation.

On receiving the authorization to calculate the result, the Admin Server will first get all
saved ballots from the Voting Smart Contract and then compute the result. After the result
computation, the Admin Server needs to create a ZK-Proof πresult as described in Section 4.3.2
and publish the result along with the ZK-Proof to the Voting Smart Contract. At last, the
Admin Server will change the election state in the shared database so that the Client Server
knows that the result is already calculated.

After the result of an election is published, there are two ways to check it. On the one hand,
one can get the result through the Client Server, which provides an interface to show both the
election result and the validity of the corresponding ZK-Proof. On the other hand, one can
also directly interact with the Blockchain to retrieve the result and the validity of the proof.
There is no big difference between these two methods, no matter which method one uses to
get the result, he should always keep in mind, that the result should only be trusted when the
corresponding ZK-Proof πresult is valid.
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Figure 4.5: The entire process of an election in PEES
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5 Implementation

In this section, I will introduce an implementation of the demo of PEES. This demo contains
an implementation of two web servers, two Smart Contracts and ZK-Proof generators for πPOUR
and πResult. The connection of the web servers and Smart Contracts are the same as described in
Section 4.3. For the ZK-Proof generators, they expected a file that contains the public inputs and
prover witnesses as the input and output the generated proof in another file. This file will be later sent
to Smart Contract for a verification. In the following, I will first introduce the program languages
that are used to implement this demo and the dependency of this implementation in Section 5.1.
Then, I will give the concrete implementations of ZK-Proof generators, Smart Contracts and web
servers from Section 5.3 to Section 5.4.

5.1 Program Languages and Dependency

5.1.1 Program Languages

JavaScript

JavaScript is a well-known script language for Web pages [Kam18]. It is mainly used in browsers,
but many non-browser environments also use it, such as Node.js [Fou]. PEES uses JavaScript
to implement front-end functions and uses the Express Framework [Str] provided by Node.js to
develop Admin Server and Client Server. In addition, PEES uses Web3 [Eth], a JavaScript API
provided by Ethereum to interact with Smart Contracts from both front-end and back-end.

Solidity

Solidity is a contract-oriented language for implementing Smart Contracts on Ethereum [CAa]. It
was influenced by C++, Python and JavaScript. Each Smart Contract in Solidity is like a Class

in Java, it has its own state variables and functions. Recall that functions of Smart Contracts are
executed when miners start mining the block that contains these functions. Therefore, the function
call of functions in Smart Contract is usually asynchronous. To get the result of the function
call, Ethereum provides a mechanism called Event. An Event is trigged when the function that
contains this Event is executed and when it is triggered, it will deliver the desired values back to the
transaction sender. For more information about Solidity please refer to [CAa].
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5.1.2 Dependency

Libsnark

libsnark is a C++ implementation of zk-SNARK schemes [Laba]. This library implements a
preprocessing zkSNARK (ppzkSNARK) scheme. The term “preprocessing” means that before a
proof of a NP-statement can be created and verified, one needs to first represent this NP-statement
as a constrain system or circuit and then run a generator algorithm to create corresponding public
parameters. Briefly speaking, using libsnark includes following steps: express the desired NP-
statement as R1CS (or any other languages that libsnark supports), run libsnark’s generator
algorithm to create public parameters, run libsnark’s prover algorithm to create proofs of satisfying
input for the desired NP-statement and finally, run libsnark’s verifier algorithm to check the
proofs.

To express NP-statements as R1CS, libsnark provides gadget library for gadget creating. Gadgets
are sets of constrains that interprets some basic functions. The gadget library already provides
some gadgets for basic functions such like hash function or Merkle Authentication Path calculation.
Using these gadgets and other basic constrains, one can create complex gadget for NP-statements he
wants to prove.

Jsnark

Jsnark is a circuit building library for preprocessing zkSNARK [Kos]. It is a Java library for
building circuit, which is another NP-language that libsnark supports, according to pinocchio
system [PHGR16]. Jsnark uses libsnark as the backend for the generated circuit. It provides a C++

interface that uses libsnark to read the generated circuit, generate the corresponding proof and
verify the proof (if needed).

The reason that PEES not only uses libsnark but also Jsnark is that this library provides an
implemented Modulus gadget, which is important for RSA encryption and decryption circuit
generation. With RSA encryption and decryption being two important components in ZK-Proofs
πPOUR and πResult, Jsnark enables an easier circuit generation when implementing the ZK-Proof
generators for these two proofs.

Other Library

The main dependency of PEES are libsnark and Jsnark. Apart from that, it also uses following
libraries:

Jsoncpp [BC]
JSON (JavaScript Object Notation) is a lightweight data-interchange format that is wildly
used in JavaScript. This library simplifies the reading and creating of JSON objects within
C++. Using this library, one can create or read JSON objects similar to JavaScript.
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jsbn [Tom]
jsbn library is a fast, portable implementation of large-number math in pure JavaScript. This
library is designed for use in browser and it also provides a RSA interface for encryption /
decryption.

node-bignumber [Lau]
This library is a packaging of the original code from jsbn for a use case in Node.js.

ssss-js [Gab]
This library is a JavaScript version of Shamir’s Secret Sharing Scheme [Sha79]. It can be used
with Node.js to split secrets in multiple shares and recombine the secret through a number of
shares that are bigger than the pre-determined threshold. This library only supports splitting
hex-strings, if a secret is not represented as a hex-string, this library provides a str2hex

function to convert the secret into a hex-string.

5.2 Zero-Knowledge Proof Generator

This section contains the implementations of two ZK-Proof generators. Each generator takes the
corresponding public inputs and prover witnesses as input and generates ZK-Proofs as described in
Section 4.3.2. Using libsnark as the underlying library for zk-SNARK, each statement that needs
to be proved must be first interpreted as an instance of a NP-language that libsnark supports. Then
a set-up phase for each instance is needed. During the set-up phase, a proving key and a verifying
key that related to the instance will be generated. The proving key is needed for provers to generate
proofs and the verifying key is used by verifier to check the corresponding proof. As mentioned
above, these two keys are related to the instance, i. e., related to the statement that needs to be proven.
This means, for the same statement but with different inputs and witnesses, the prover can use the
same proving key to generate different proofs and the verifier can using the same verifying key to
verify these proofs.

In the following, I will introduce the implementation for ZK-Proof πPOUR in Section 5.2.1 and the
implementation for ZK-Proof πResult in Section 5.2.2.

5.2.1 Generator of Pour Proof πPOUR

Recall the statement of ZK-Proof of Pour πPOUR from Section 4.3.2. In the implementation of the
demo, this ZK-Proof is split into two parts, where the first part only proves the format of a VC and
the second parts proves the correctness of the vote. The first parts of the πPOUR is called Proof of
Coin (πCoin) and it proofs the following statement:

“ Given the MT root hash rt and the serial number sn, I (Voter) know VC vc := (ρ, r, s, cm), such
that:

• the VC vc is well formed, i. e., the two commitments k := Commr (ρ) and cm := Comms(k)
are valid.

• the serial number calculation of consumed VC is correct, i. e., sn := Hash(ρ).

• the coin commitment cm is a leaf of a MT with root hash rt. ”
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The second part of πPOUR is called Proof of Vote Format (πVote) and it proofs the following
statement:

“ Given the encrypted vote VE and an encryption key key, I (Voter) know vote v such that:

• let m be the number of all candidates, the vote v is well formed, i. e., v contains only one
choice and 1 ≤ v ≤ m.

• the encryption of vote v is correct, i. e., VE := Enckey(v) ”

The reason that πPOUR is split into two proofs is that the library libsnark doesn’t provide a RSA
encryption gadget, which is crucial for πVote. Another library, Jsnark, provides the needed RSA
encryption gadget, but the performance is not as good as libsnark. Thus, we have implemented
πCoin in C++ using libsnark and πVote in Java using Jsnark.

Both generators reads the same JSON-file vote_witness.json as the input, but they generate different
ZK-Proofs. Listing 5.1 shows the format of the input JSON-file. It contains an election Id eid,
the ciphertext of the encrypted vote vote_ct and a set of witness. The first two sets of witness:
coin_witness and auth_path are necessary for generating πCoin while the third set of witness:
vote_witness and vote_ct are needed for generating πVote.

Listing 5.1 Format of vote_witness.json

{

"eid" : "...",

"vote_ct" : "0x...",

"witness" : {

"coin_witness": {...},

"auth_path": {...},

"vote_witness": {...}

}

}

Notice that although it is called “witness”, the corresponding public inputs are also contained in
coin_witness, auth_path and vote_witness for better grouping. The concrete variables of this 3
witness sets will be introduced below.

Proof of Coin πCoin

As mentioned above, the implementation of πCoin is in C++ using libsnark. The program expected
an eid and two JSON objects: coin_witness and a auth_path from vote_witness.json as input.

Listing 5.2 Format of coin_witness and auth_path
"coin_witness" : {

"cm": {...},

"k": {...},

"s": {...},

"rho": {...},
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"r": {...},

"sn": {...} //public input

}

"auth_path" : {

"tree_depth": {...},

"path": [...],

"address_bits": {...},

"address": {...},

"root": {...} //public input

}

Listing 5.2 shows the format of these two JSON objects. Except the variables that are marked as
public input, all other variables are prover witnesses to πCoin. The meaning and relationship of
variables cm, k, s, rho, s, sn are the same as all components in a VC as shown in Figure 4.2. For
JSON object auth_path, it contains the necessary witnesses and public inputs for the third statement
of πCoin, which is a Merkle Proof as explained in Section 2.5. The variable tree_depth donates
the depth of the MT with root hash root. The variable path is an array that contains a merkle
authentication path as defined in Section 2.5. The address_bits is a binary representation of the
integer value address. Each bit of address_bits indicates the position of a corresponding hash
value from path. The bit 1 means the corresponding hash value in path is on the left (i. e., the hash
value is from a node that is the leftchild with respect to its parent) when rebuilding the branch from
a leaf to the root of a MT, while bit 0 means the hash is on the right.

As libsnark takes care of the verifying / proving key generation and proof generation, the main
work to generate a ZK-Proof using libsnark is to interpret the NP-statement as a NP-language
that libsnark supports. The NP-language used in this ZK-Proof generator is R1CS. To do that,
libsnark provides a library gadgetlib1, which contains pre-implemented gadgets for some basic
functions such like Merkle Proof, for programmers to implement their own constrain systems. In
this ZK-Proof generator, to express the constrain system of πCoin, two gadgets are needed. The first
gadget is called coin_gadget, it builds up a constrain system that checks the format of a VC, i. e., the
first two statements in πCoin. The second gadget is called complete_coin_gadget which adds the
constrains of the third statement in πCoin to the constrain system built by coin_gadget. In addition, a
coin_wrapper_gadget is needed. This gadget wraps complete_coin_gadget so that it can be used
more easier in the main function.

Each these gadgets are inherited from the class gadget provided by gadgetlib1. As the inherited
class, two functions of class gadget must be implemented individually. The first function is called
generate_r1cs_constraints, this function is used to generate the concrete constrain system of that
defined by a gadget. The second function is called generate_r1cs_witness, this function assigns the
inputs or witnesses to the corresponding variables, and if a variable does not have an assignment,
a corresponding value will be evaluated based on the constrain system and the values of other
variables.

Listing 5.3 Constructor of coin_gadget
1 coin_gadget(protoboard<FieldT> &pb,

2 const digest_variable<FieldT> &sn, const digest_variable<FieldT> &rho,

3 const digest_variable<FieldT> &r, const digest_variable<FieldT> &k,
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4 const digest_variable<FieldT> &s, const digest_variable<FieldT> &cm,

5 const std::string &annotation_prefi) :

6 gadget<FieldT>(pb, annotation_prefi), sn_var(sn), rho_var(rho),

7 r_var(r), k_var(k), s_var(s), cm_var(cm)

8 {

9 block1_digest.reset(new digest_variable<FieldT>(pb, sha256_512digest_len, "block1"));

10 block2_digest.reset(new digest_variable<FieldT>(pb, sha256_512digest_len, "block2"));

11
12 // Initialize the hash gadget

13 h1_gadget.reset(new sha256_256_bits_gadget<FieldT>(

14 this->pb, rho_var, sn_var, "sn == hash(rho)"));

15 h2_gadget.reset(new sha256_512_bits_gadget<FieldT>(

16 this->pb, *block1_digest, k_var, "k == hash(rho || r)"));

17 h3_gadget.reset(new sha256_512_bits_gadget<FieldT>(

18 this->pb, *block2_digest, cm_var, "cm == hash(k || s)"));

19 }

Listing 5.3 shows the constructor of coin_gadget. It takes all 6 variables from coin_witness and a
protoboard as input and checks the connection of these variables as illustrated in Figure 4.2. The
protoboard is a class provided by gadgetlib1 where all gadgets are connected to build one bigger
constrain system. The block1_digest and block2_digest are two shared pointer that points to two
digest_variables, which serves as temporary variables that save the concatenations rho||r and k||s

respectively. The 3 hash function gadgets h1_, h2_ and h3_gadget are used to check the correct hash
calculation according to SHA256 [FIP95] with different input length. As the default hash gadget
provided by gadgetlib1 only takes care of hash compression function [MVO96] with input length
512 bits, we first implement two gadgets: sha256_256_bits_gadget and sha256_512_bits_gadget

that deal with different input length and add the finalizing step according to SHA256 protocol to
the hash gadget provided by gadgetlib1. Each self-implemented hash gadget builds up a group
of constrains that checks the validity of a hash calculation. That means, for the given input x and
hash value h, it checks whether h = SH A256(x). The exact equation that is checked is annotated
in Listing 5.3 as the annotation string for each hash gadget. Together, these gadgets build up a
constrain system that checks all 3 hash calculations for each component of a VC.

Listing 5.4 Other functions of coin_gadget
1 void generate_r1cs_constraints()

2 {

3 //ensure the hashes validate

4 h1_gadget->generate_r1cs_constraints();

5 h2_gadget->generate_r1cs_constraints();

6 h3_gadget->generate_r1cs_constraints();

7
8 }

9
10 void generate_r1cs_witness()

11 {

12 block1.reset(new block_variable<FieldT> (this->pb, {rho_var.bits, r_var.bits}, "rho||r"));

13 block2.reset(new block_variable<FieldT> (this->pb, {k_var.bits, s_var.bits}, "k||s"));

14
15 block1_digest->generate_r1cs_witness(block1->get_block());
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16 block2_digest->generate_r1cs_witness(block2->get_block());

17
18 //generate r1cs witness for hash compression func

19 h1_gadget->generate_r1cs_witness();

20 h2_gadget->generate_r1cs_witness();

21 h3_gadget->generate_r1cs_witness();

22 }

To generate the constrain system that coin_gadget built, one needs to call the generate_r1cs_constraints
function from an instance of coin_gadget. As shown in Listing 5.4, this function recursively calls
the generate_r1cs_constraints function from all gadgets that is used in coin_gadget. As this
function is called from an instance of coin_gadget, the generated constrain system is saved in the
protoboard that is used to initialize this instance.

In the other function generate_r1cs_witness, the given witnesses and public input will be assigned
to the corresponding variables. As shown in Listing 5.4, the concatenations of rho||r and k||s will
be assigned to variables block1_digest and block2_digest respectively. Then the value of other
variables that are needed for the hash validity check will be evaluated by line 19 to line 21. With
every variable being assigned to a value, the protoboard can check whether the constrain system is
fulfilled or not.

The second gadget complete_coin_gadget is similar to coin_gadget. Listing 5.5 shows the constructor
of complete_coin_gadget. The c_gadget is an instance of coin_gadget, the mtcr_gadget is a
merkle_tree_check_read_gadget that is provided by gadgetlib1, which checks whether a given value
(here cm_var) is a leaf of the MT with root hash root_var. As this gadget is provided by libsnark, we
refer readers to their documentation [Laba] for more details of this gadget. In complete_coin_gadget,
the constrains of coin_gadget and the constrains of merkle_tree_check_read_gadget will be grouped
together on the protoboard that is used to initialize the complete_coin_gadget. Together, these
constrains represents all 3 statement in πCoin.

The generate_r1cs_constraints and generate_r1cs_witness functions of complete_coin_gadget

are similar to the same functions in coin_gadget, it recursively calls the generate_r1cs_constraints

and generate_r1cs_witness of the gadgets that is used in complete_coin_gadget.

Listing 5.5 Constructor of complete_coin_gadget
1 complete_coin_gadget(protoboard<FieldT> &pb, const digest_variable<FieldT> &sn,

2 const digest_variable<FieldT> &rho, const digest_variable<FieldT> &r,

3 const digest_variable<FieldT> &k, const digest_variable<FieldT> &s,

4 const digest_variable<FieldT> &cm, const digest_variable<FieldT> &root,

5 const merkle_authentication_path_variable<FieldT, HashT> &path,

6 const pb_variable_array<FieldT> &address_bits, const size_t tree_depth,

7 const pb_variable<FieldT> &flag, const std::string &annotation_prefi) :

8 gadget<FieldT>(pb, annotation_prefi), sn_var(sn), rho_var(rho), r_var(r),

9 k_var(k), s_var(s), cm_var(cm), root_var(root), path_var(path),

10 address_bits_var(address_bits), tree_depth(tree_depth), flag(flag)

11 {

12 // Initialize the coin_gadget

13 c_gadget.reset(new coin_gadget<FieldT>(this->pb, sn_var, rho_var, r_var,

14 k_var, s_var, cm_var, "coin_gadget"));
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15
16 // Initialize the merkle_tree_check_read_gadget

17 mtcr_gadget.reset(new merkle_tree_check_read_gadget<FieldT, HashT>(

18 this->pb, tree_depth, address_bits_var, cm_var,

19 root_var, path_var, flag, "merkle_tree_check_read_gadget"));

20 }

Although the complete_coin_gadget already builds up the whole constrain system for πCoin, to
generate a ZK-Proof from that, we still need to tell the program which variables are witnesses that
need to be hide, and which variables are public inputs. This is done in the coin_wrapper_gadget.

Listing 5.6 Constructor of coin_wrapper_gadget
1 coin_wrapper_gadget(protoboard<FieldT> &pb, const size_t &tree_depth) :

2 gadget<FieldT>(pb, "test_vote_gadget"), tree_depth(tree_depth)

3 {

4 // Allocate space for the verifier input.

5 const size_t input_size_in_bits = sha256_256digest_len * 2;

6
7 {

8 // We use a "multipacking" technique which allows us to constrain

9 //the input bits in as few field elements as possible.

10 const size_t input_size_in_field_element =

11 div_ceil(input_size_in_bits, FieldT::capacity());

12 input_as_field_elements.allocate(pb, input_size_in_field_element,

13 "input_as_field_elements");

14 this->pb.set_input_sizes(input_size_in_field_element);

15 }

16
17 // Public inputs:

18 sn_var.reset(new digest_variable<FieldT>(this->pb, sha256_256digest_len, "sn_var"));

19 root_var.reset(new digest_variable<FieldT>(this->pb, sha256_256digest_len, "root_var"));

20
21 input_as_bits.insert(input_as_bits.end(), sn_var->bits.begin(), sn_var->bits.end());

22 input_as_bits.insert(input_as_bits.end(), root_var->bits.begin(), root_var->bits.end());

23
24 // Multipacking

25 assert(input_as_bits.size() == input_size_in_bits);

26 pack_inputs.reset(new multipacking_gadget<FieldT>(this->pb, input_as_bits,

27 input_as_field_elements, FieldT::capacity(),

28 FMT(this->annotation_prefix, "pack_inputs")));

29
30 // Prover inputs:

31 rho_var.reset(new digest_variable<FieldT>(this->pb, sha256_256digest_len, "rho_var"));

32 r_var.reset(new digest_variable<FieldT>(this->pb, sha256_256digest_len, "r_var"));

33 k_var.reset(new digest_variable<FieldT>(this->pb, sha256_256digest_len, "k_var"));

34 s_var.reset(new digest_variable<FieldT>(this->pb, sha256_256digest_len, "s_var"));

35 cm_var.reset(new digest_variable<FieldT>(this->pb, sha256_256digest_len, "cm_var"));

36 path_var.reset(new merkle_authentication_path_variable<FieldT, HashT>(this->pb,

37 tree_depth, "path_var"));

38 address_bits_var.allocate(this->pb, tree_depth, "address_bits");
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39 flag.allocate(this->pb, "flag");

40
41 // initialize vote_gadget

42 cc_gadget.reset(new vote_gadget<FieldT, HashT>(this->pb, *sn_var, *rho_var, *r_var,

43 *k_var, *s_var, *cm_var, *root_var, *path_var,

44 address_bits_var, tree_depth, flag,

45 "complete_coin_gadget"));

46 }

As shown in Listing 5.6, coin_wrapper_gadget only gets tree_depth as input and implement other
variables such like sn and root as attribute. In the constructor, it first allocates the storage place
for public inputs (line 5 to line 15) and then initialize the pointers that points to the public input
variables, in this case, variable sn and root. Then it packs these two variables into input_as_bits so
that the program knows which variables are public inputs. Then coin_wrapper_gadget initializes the
pointers that point to all other witnesses variables and at last, it initializes the complete_coin_gadget.
Similar to the other 2 gadgets, the generate_r1cs_constraints of coin_wrapper_gadget uses the
generate_r1cs_constraints of complete_coin_gadget to generate the constrain system. As for
generate_r1cs_witness function, it takes exact values of all witnesses and public input variables,
then assigns them to the corresponding variables in coin_wrapper_gadget, after that, it calls the
generate_r1cs_witness function of complete_coin_gadget to assign the values to the variables in
complete_coin_gadget.

Listing 5.7 main function for πCoin

1 int main(int argc, char* argv[]) {

2 string read_file, write_file;

3 if (argc != 3){

4 cout << "incorrect argument number, Programm will exit without doing anything" << endl;

5 return 0;

6 }else{

7 string default_path = "...";

8 read_file = default_path + argv[1];

9 write_file = default_path + argv[2];

10 }

11
12 default_r1cs_ppzksnark_pp::init_public_params();

13 typedef Fr<default_r1cs_ppzksnark_pp> FieldT;

14 protoboard<FieldT> pb;

15
16 string eid;

17 bit_vector sn, root;

18 bit_vector rho, r, k, s, cm;

19
20 std::vector<merkle_authentication_node> path;

21 bit_vector address_bits;

22 size_t address, tree_depth;

23
24 get_data(eid, sn, root, rho, r, k, s, cm, address,

25 tree_depth, address_bits, path, read_file);

26
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27 coin_wrapper_gadget<FieldT, sha256_merkle_hash_gadget<FieldT> > coin(pb, tree_depth);

28 coin.generate_r1cs_constraints();

29 const r1cs_constraint_system<FieldT> constraint_system = pb.get_constraint_system();

30
31 auto keypair = r1cs_ppzksnark_generator<default_r1cs_ppzksnark_pp>(constraint_system);

32 auto proof = generate_proof<default_r1cs_ppzksnark_pp, sha256_merkle_hash_gadget<FieldT>>

33 (keypair.pk, pb, vote, sn, root, rho, r, k, s, cm, address, tree_depth, address_bits, path);

34
35 const r1cs_ppzksnark_proof<default_r1cs_ppzksnark_pp> proof_data = *proof;

36 const r1cs_ppzksnark_verification_key<default_r1cs_ppzksnark_pp> vk = keypair.vk;

37 const r1cs_primary_input<FieldT> input_as_field_elements = l_input_map<FieldT>(sn,root);

38
39 generate_proof_file<default_r1cs_ppzksnark_pp, FieldT>(vk, proof_data,

40 input_as_field_elements, eid,

41 bit_string_to_hex_string(bit_vector_to_bit_string(sn)), write_file);

42
43 return 0;

44 }

As all constrains are implemented and wrapped by other gadgets, it is relatively easy to implement
the main function. The main function is shown in Listing 5.7, it first read vote_witness.json file
to get the data of eid and all values from coin_witness and an auth_path. Then it initializes the
coin_wrapper_gadget and generate the constrain system. When the constrain system is generated,
it uses the r1cs_ppzksnark_generator (line 31) to create the verifying and proving keys for this
constrain system. After that it calls generate_proof on the proving key and all values read from
vote_witness.json file to generate the ZK-Proof. Notice that this proof will only be generated,
when the constrain system is fulfilled with the given input. At the end, it writes the verifying key,
the generated proof and the public input for the proof to the file coin_proof.json, so that it can be
later uploaded to Blockchain.

Notice that the constrain system for πCoin is actually the same for each Voter and each election. As
long as VC doesn’t change its format, each Voter (of any election) can generate his πCoin proof by
just giving his witnesses and public inputs to the program. As mentioned at the beginning of this
section, since the constrain system remains the same, the proving key and the constrain system
can be hard-coded in the program / Smart Contract to increase performance, however, this is not
implemented in this demo due to simplicity and testability.

Proof of Vote Format πVote

The ZK-Proof generator of πVote is implemented in Java using library Jsnark. Jsnark is an external
circuit building library for libsnark. It is used to represent NP-statement as circuit that supported by
libsnark. Similar to libsnark, Jsnark also has a class Gadget. Any class that extends Gadget needs
to implement the buildCircuit function. Similar to generate_r1cs_constraints, this function is
used to build the circuit of a gadget.

The wrapper gadget in libsnark is implemented as class CircuitGenerator. Similar to the protoboard
in libsnark, this class is used to combine the circuit from different gadgets. For any class that extend
CircuitGenerator, two function needs to be override. The first one is also called buildCircuit,
in this function not only the circuit will be generated but also the public inputs and witnesses
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variables will be identified. The second function is called generateSampleInput and it is similar to
generate_r1cs_witness in libsnark. In this function, the values of public inputs and witnesses will
be assigned to the corresponding variables.

In addition, Jsnark provides a RSAEncryptionV1_5_Gadget that implements the RSA PKCS# 1 v1.5
encryption scheme according to [Labb]. However, this implementation assumes a fixed public
exponent of value 0x10001. As we don’t want to restrict our encryption key with a fixed encryption
key, we first adjust it a little to suit for a more generalized purpose.

Listing 5.8 adjustment for RSAEncryptionV1_5_Gadget
1 int l = this.exponent.length() - 1;

2 LongElement h = new LongElement(new BigInteger[] {BigInteger.ONE});

3 LongElement k = paddedMsg;

4 while( l >= 0) {

5 if(this.exponent.charAt(l) == '1') {

6 h = h.mul(k);

7 h = new LongIntegerModGadget(h, modulus, false).getRemainder();

8 }

9 k = k.mul(k);

10 k = new LongIntegerModGadget(k, modulus, false).getRemainder();

11 l--;

12 }

13
14 h = new LongIntegerModGadget(h, modulus, true).getRemainder();

15 // return the cipher text as byte array

16 ciphertext = h.getBits(rsaKeyBitLength).packBitsIntoWords(8);

Listing 5.8 shows the adjustment for a RSA encryption gadget with an arbitrary public exponent.
This new gadget is called RSAEncryptionV1_5_Gadget_Free_Exponent. Unlike a fixed exponent,
this.exponent is given as a binary string of an arbitrary public exponent. To calculate xe mod n,
with x represents the padded message according to RSA PKCS# 1 v1.5, e represents the public
exponent and n represent the RSA modulus, we implement the fast modular exponentiation algorithm
according to [Eli]. The variable h and k are used to save interim result. The multiplication and
modulo calculation are done using the function mul and gadget LongIntegerModGadget provided
by Jsnark. Notice that the code segment listed in Listing 5.8 not actually calculate the ciphertext
but generate the corresponding circuit for the calculation. When the input variables in this
circuit are assigned, the ciphertext will be evaluated through this circuit. The other parts of
RSAEncryptionV1_5_Gadget_Free_Exponent are exactly the same as RSAEncryptionV1_5_Gadget

provided by Jsnark. As this gadget is provided by Jsnark, we refer readers to their documentation
[Kos] for more details of this gadget.

Listing 5.9 Format of vote_witness
"vote_witness":{

"pt":"0001000",

"r":"...",

"n":"...", //public input

"e":"..." //public input

}
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To actually generate a ZK-Proof πVote, a class RSAV1_5_Enc that extends CircuitGeneration should
be implemented. An instance of this class is expected to get vote_ct and all variables from
vote_witness as input and generate the corresponding circuit that represents all statement in πVote.

Listing 5.9 shows the format of vote_witness. It is the third witness set from vote_witness.json

file and contains two witnesses and two public inputs. The public inputs n and e are a RSA public
key pair. The witness pt contains the plaintext of vote_ct. It is also the plaintext of a Voter’s
vote. The content of this variable is a sting representation of an unit vector. An unit vector is a
vector that contains only 0s and 1s, and the sum of all element in an unit vector is always equal
to 1. The dimension of the unit vector in pt (i. e., the length of pt) equals to the number of all
candidates. The value of each element in pt corresponding to the vote for that candidate. For
example, the plaintext 0001000 in Listing 5.9 means a Voter has chosen the 4-th candidate. The last
witness r is the randomness that is used in RSA encryption. As RSA PKCS# 1 v1.5 standard is
non-deterministic, to check the correctness of the encryption, one has to provide the randomness
that is used during the encryption, otherwise it is impossible to reproduce the same result.

Listing 5.10 buildCircuit from class RSAV1_5_Enc

1 @Override

2 protected void buildCircuit() {

3 inputMessage = createProverWitnessWireArray(plainTextLength); // in bytes

4 for(int i = 0; i < plainTextLength;i++){

5 inputMessage[i].restrictBitLength(8);

6 }

7
8 //check vote format => only 1 occurs (as ascii code)

9 Wire sum = zeroWire;

10 for(int i =0; i<inputMessage.length; i++) {

11 sum = sum.add(inputMessage[i]);

12 }

13 addAssertion(sum, oneWire, oneWire.mul(48*inputMessage.length).add(1));

14
15 randomness = createProverWitnessWireArray(RSAEncryptionV1_5_Gadget_Free_Exponent

16 .getExpectedRandomnessLength(rsaKeyLength, plainTextLength));

17
18 rsaModulus = createLongElementInput(rsaKeyLength);

19
20 rsaEncryptionV1_5_Gadget = new RSAEncryptionV1_5_Gadget_Free_Exponent(rsaModulus,

21 new BigInteger(this.exponent, 16).toString(2),

22 inputMessage, randomness, rsaKeyLength);

23
24 rsaEncryptionV1_5_Gadget.checkRandomnessCompliance();

25
26 Wire[] cipherTextInBytes = rsaEncryptionV1_5_Gadget.getOutputWires(); // in bytes

27
28 //constrains to check the ciphertext is the expected ciphertext

29 correct_ciphertext_in_bytes = createInputWireArray(cipherTextInBytes.length);

30 for(int i = 0; i<cipherTextInBytes.length; i++ ) {

31 addAssertion(cipherTextInBytes[cipherTextInBytes.length-1-i], oneWire,

32 correct_ciphertext_in_bytes[i]);

33 }
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34
35 // do some grouping to reduce VK Size

36 cipherText = new WireArray(cipherTextInBytes).packWordsIntoLargerWords(8, 30);

37 makeOutputArray(cipherText, "Output cipher text");

38 }

The buildCircuit function from class RSAV1_5_Enc builds a circuit to check the format of the vote
and the correctness of the encryption. As shown in Listing 5.10, it first initializes inputMessage as a
witness variable and builds the necessary constrains to check the byte-length. In line 9 to line 13, it
checks the format of the plaintext, i. e., whether the Voter has chosen and only chosen one candidate.
As the plaintext is given as a string of the unit vector, the value that saved in inputMessage are
not 0 or 1 but the integer value of char ’0’ or ’1’ according to ASCII. Thus, instead of checking
whether the sum of all elements equals to 1, we need to check whether the sum of all elements
equal to inputMessage.length∗48 + 1, since the ASCII code for ’0’ or ’1’ are 48 and 49 respectively.
After that, buildCircuit initializes the variables for randomness and RSA modulus, then it creates
an instance of RSAEncryptionV1_5_Gadget_Free_Exponent to build the circuit for RSA encryption.
The ciphertext evaluated by this circuit is saved in cipherTextInBytes. To compare the ciphertext
provided by Voter and the evaluated ciphertext, we use the circuit segment built by line 29 to line
33. These lines build equation constrains for each byte between the Voter provided ciphertext and
the evaluated ciphertext. If these constrains pass, one can believe that the Voter has encrypted his
vote correctly. Together, buildCircuit builds a circuit for both statements in πVote.

In generateSampleInput, the given values will be assigned to the corresponding variables for the
circuit that is generated by buildCircuit. As the Voter provided ciphertext and r are given as
hex-string, it first needs to be converted to a byte array using hexStringToByteArray as shown in
Listing 5.11 line 5 and line 6. The RSA modulus n is interpreted as a BigInteger, and each char in
plaintext string pt will be assigned to the variable inputMessage as an integer according to its ASCII

code value. The assignment is done through a CircuitEvaluator. It is a class provided by Jsnark

that records all assignment and evaluates the circuit according to these assignments.

Listing 5.11 generateSampleInput from class RSAV1_5_Enc

1 @Override

2 public void generateSampleInput(CircuitEvaluator evaluator) {

3
4 BigInteger modulus = new BigInteger(this.modulus, 16);

5 byte[] sampleRandomness = hexStringToByteArray(this.rand);

6 byte[] voter_given_ct = hexStringToByteArray(this.ciphertext);

7
8 for (int i = 0; i < inputMessage.length; i++) {

9 evaluator.setWireValue(inputMessage[i], this.plaintext.charAt(i));

10 }

11
12 evaluator.setWireValue(this.rsaModulus, modulus, LongElement.BITWIDTH_PER_CHUNK);

13
14 for (int i = 0; i < sampleRandomness.length; i++) {

15 evaluator.setWireValue(randomness[i], (sampleRandomness[i]+256)%256);

16 }

17
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18 for (int i = 0; i < soll_ct.length; i++) {

19 evaluator.setWireValue(correct_ciphertext_in_bytes[i], (soll_ct[i]+256)%256);

20 }

21 }

As shown in Listing 5.12, the main function of πVote is similar to the main function of πCoin. It first
reads all needed inputs from vote_witness.json file (line 7 to line 28) and uses them to create the
instance generator of class RSAV1_5_Enc (line 33 - 34). After that, we only need to call 4 functions
of generator in sequence to create the ZK-Proof πVote. The first function generateCircuit will call
the buildCircuit function of generator to generate the whole circuit for πVote, the second function
evalCircuit will use generateSampleInput to evaluate the whole circuit and checks whether the
circuit is fulfilled or not. If it is fulfilled, the third function prepFiles will be called, which generates
two files that contains the coded circuit and all inputs (public inputs and witnesses) in a way that
libsnark understands. Otherwise, an exception will be thrown and the program will be stopped. At
the end, the program calls the fourth function runlibsnark that runs libsnark on the circuit and
all inputs from the newly generated files. Jsnark provides an interface for calling libsnark within
the java program, we added the same code as in Listing 5.7 line 35 to line 41 to that interface, so
that the generated ZK-Proof, the public input of the proof and the verifying key will be saved to
vote_proof.json file for later use.

Listing 5.12 main function for πVote

1 public static void main(String[] args) throws Exception {

2
3 String pt="", n="", e="", r="", ct="", eid="";

4 int msgLength = 0;

5 int keyLength = 1024;

6
7 JSONParser parser = new JSONParser();

8 try {

9 Object obj = parser.parse(new FileReader("path/to/vote_witness.json"));

10 JSONObject jsonObject = (JSONObject) obj;

11 eid = (String) jsonObject.get("eid");

12 ct = (String) jsonObject.get("ciphertext");

13 ct = ct.substring(2);

14 JSONObject witness = (JSONObject) jsonObject.get("witness");

15 JSONObject vote_witness = (JSONObject) witness.get("vote_witness");

16
17 pt = (String) vote_witness.get("pt");

18 n = (String) vote_witness.get("n");

19 e = (String) vote_witness.get("e");

20 r = (String) vote_witness.get("r");

21
22 } catch (FileNotFoundException e1) {

23 e1.printStackTrace();

24 } catch (IOException e1) {

25 e1.printStackTrace();

26 } catch (ParseException e1) {

27 e1.printStackTrace();

28 }
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29
30 msgLength = pt.length();

31 keyLength = n.length() * 4;

32
33 TestRSAV1_5_Enc generator = new TestRSAV1_5_Enc(

34 "Vote_zkp_generator", keyLength, msgLength, pt, n, e, r, ct);

35 generator.generateCircuit();

36 generator.evalCircuit();

37 generator.prepFiles();

38 generator.runLibsnark(eid, ct);

39 }

Notice that the code provided in Listing 5.8 enables Voter to validate a RSA encryption using
arbitrary public exponent, however, this exponent is implemented as a part of the circuit but not
given as a public input. That means, if the public exponent of the RSA encryption key is different
in each election, the program has to generate the circuit and the corresponding public parameters
(proving key and verifying key) for each different election. In this case, the constrain system and
the verifying key will not be able to be hard-coded in the program or Smart Contract.

5.2.2 Generator of result computation Proof πResult

The ZK-Proof generator of πResult is also implemented in Java using Jsnark. As the origi-
nal Jsnark library only provides RSA encryption gadget, we first have to implement a gad-
get for RSA decryption according to RSA PKCS# 1 v1.5 standard. The decryption gadget
RSADecryptionV1_5_Gadget_Free_Exponent is very similar to the encryption gadget since the main
computation of RSA decryption is also a computation of modular exponentiation. The implemen-
tation of decryption gadget uses lots of code from encryption gadget RSAEncryptionV1_5_Gadget
only with different variable names. For the exponentiation parts, we use the same code as listed in
Listing 5.8 since the exponent in the decryption key varies from election to election. Lastly, the
output of the generated circuit is not ciphertext but the decrypted plaintext.

Due to the similarity, the code for RSA decryption gadget will not be listed again. Analogy to the
class RSAV1_5_Enc, a similar class that extends CircuitGenerator should be implemented for πResult
as well. In the following, I’ll focus on explaining the class Result_zkp_generator, whose instance
is responsible for generating the whole constrain system for πResult.

An instance of Result_zkp_generator is expected to get RSAmodulus, private exponent, cipherTexts,
plainTexts and result as input. The parameter RSAmodulus and private exponent are similar to n

and e in Section 5.2.1. The parameter cipherTexts is a set of ciphertext that contains all encrypted
vote from Blockchain. The parameter plainTexts is a set of plaintext decrypted from the ciphertexts
above by Admin server. Notice that if the decryption is correct, each plaintext should have the same
length as the length of the candidate list. The last parameter result is an integer array of length
equals to the length of the candidate list, the value of each entry of the array represents the final
votes the corresponding candidate got in the election.
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Listing 5.13 buildCircuit function for Result_zkp_generator
1 @Override

2 protected void buildCircuit() {

3 correct_plaintexts_in_bytes = createProverWitnessWireArray(

4 plainTextLength * num_plainText);

5 for(int i = 0; i < plainTextLength;i++){

6 correct_plaintexts_in_bytes[i].restrictBitLength(8);

7 }

8
9 cipherTexts = createInputWireArray(this.rsaKeyLength / 8 * num_cipherText);

10 for(int i = 0; i < this.rsaKeyLength / 8;i++){

11 cipherTexts[i].restrictBitLength(8);

12 }

13
14 w_result = createInputWireArray(plainTextLength);

15 addAssertion(w_num_plainText, oneWire, w_num_cipherText);

16 for(int i = 0; i < plainTextLength; i++ ) {

17 Wire sum = zeroWire;

18 for(int j = 0; j < num_plainText; j++) {

19 sum = sum.add(correct_plaintexts_in_bytes[i+j*plainTextLength]);

20 }

21 addAssertion(sum, oneWire, oneWire.mul(48*num_plainText).add(w_result[i]));

22 }

23
24 rsaModulus = createLongElementInput(rsaKeyLength);

25
26 for(int i = 0; i < num_cipherText; i++) {

27 rsaDecryptionV1_5_Gadget = new RSADecryptionV1_5_Gadget_Free_Exponent(

28 rsaModulus, new BigInteger(this.exponent, 16).toString(2),

29 getWireSegment(this.cipherTexts, i*this.rsaKeyLength/8, (i+1)*this.rsaKeyLength/8),

30 rsaKeyLength);

31
32 Wire[] plainTextInBytes = rsaDecryptionV1_5_Gadget.getOutputWires(); // in bytes

33
34 //constrains to check the ciphertext is decrypted to expected plaintext

35 for(int j = 0; j<this.plainTextLength; j++ ) {

36 addAssertion(plainTextInBytes[j], oneWire,

37 correct_plaintexts_in_bytes[this.plainTextLength * (i+1) - 1 - i]);

38 }

39
40 addZeroAssertion(plainTextInBytes[this.plainTextLength]);

41 addZeroAssertion(plainTextInBytes[plainTextInBytes.length - 1]);

42 addAssertion(plainTextInBytes[plainTextInBytes.length - 2], oneWire,

43 createConstantWire(2));

44 }

45 }

Listing 5.13 shows the buildCircuit function of Result_zkp_generator. Similar to the buildCircuit

in Listing 5.10, line 3 to line 12 restricts input plainTexts / cipherTexts as byte array. Notice
that the plainTexts is implemented as a prover witness and cipherTexts is considered to be a
public input. Then line 15 checks that the number of all given ciphertexts equals to the number
of all given plaintexts. This constrain donates the first statement of πResult, i. e., all recorded
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votes are decrypted. After that line 16 to line 22 check the correctness of the result computation
by recomputing the result from the given plainTexts and comparing it with the given result.
Notice that the plainTexts are still given as String, thus, the sum of all plainTexts on a certain
position doesn’t equal to the integer value from the result on the same position. Hence, we need
a conversion between these two values similar to line 13 in Listing 5.10. At the end, for each
ciphertext a RSADecryptionV1_5_Gadget_Free_Exponent will be used to generate circuit for a correct
decryption. Line 32 to line 38 shows that, for each ciphertext in cipherTexts, we get the plaintext
from RSADecryptionV1_5_Gadget_Free_Exponent gadget and compare it with the corresponding
plaintext from plainTexts. If it is the same, the decryption is then correct. The last three lines in
the outer for-loop (line 40 to line 42 ) is used to check the padding of decrypted plaintext.

The generateSampleInput of Result_zkp_generator is also similar to the generateSampleInput

of RSAV1_5_Enc. In this function, the values that are used to initialize the instance of
Result_zkp_generator will be assigned to corresponding variables for circuit evaluation. Analo-
gously, in the main function of πResult ZK-Proof generator, the expected input will be read from
a file and be used to initialize the instance of Result_zkp_generator, after that, four functions
generateCircuit, evalCircuit, prepFiles and runLibsnark will be called in sequence to generate
the πResult ZK-Proof with given inputs.

In the testing phase, we noticed that to generate a πResult which involves only one decryption with
RSA key length 1024 bits already takes nearly half an hour. This is because the private exponent is
usually much bigger than the public exponent. As we use RSA with key length 2048 bits in Admin
server and it takes hours to generate a πResult that involves only one decryption with 2048 bits key
length, we decided not to integrate this part to the demo. That means, in this demo, after Admin
server decrypts all votes and computes the result, it won’t generate a ZK-Proof and the result will be
simply saved in the shared database but not on the Blockchain.

A big drawback of these 3 ZK-Proof generators is that, the public input in the xxxx_proof.json file,
which is produced by libsnark, represents the public input as field elements that libsnark supports.
This leads to the problem that to check whether the public input is the desired input as described
in Section 4.3.2, one needs to convert the original public input values to the corresponding field
elements or vice versa to do the comparison. This conversion is however not implemented in this
demo, as it requires too much effort to do this conversion outside libsnark. This is a huge security
vulnerability for this demo, since a Voter could then use a single valid proof for multiple elections
or an attack can even provide valid proofs for false statements. Thus, this demo is not suitable for
practice use and to use PEES in practice, one must implement this conversion in Smart Contract so
that the public input variables of a ZK-Proof can be compared with the values that have been saved
on the Blockchain before the verification begins.

5.3 Smart Contract

Smart Contracts in PEES are written in solidity as they will be deployed on Ethereum by Admin
server during an election. The following implementation servers as the template for Registration
Smart Contract and Voting Smart Contract. The hard-coded values such as election Id eid will be
set during the election. In the following, I will focus on the main functions in both Smart Contracts,
functions like standard getter are omitted in this section.
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5.3.1 Registration Smart Contract

Listing 5.14 shows the variables in Registration Smart Contract. Client_server_addr and
Admin_server_addr are two variables that save the Ethereum account of the Client server and
Admin server respectively. In solidity, it is saved as address type. As mentioned in Section 4.3.3,
eid represents the election Id and it will be set to the corresponding value during the election by
Admin server. The type bytes32 in solidity is an alternative to type string as it uses less gas.

Listing 5.14 Registration Smart Contract: Variables
1 address Client_server_addr;

2 address Admin_server_addr;

3 bytes32 eid;

4
5 bytes32[] leafs;

6 bytes32[] used_tokens;

7 bytes32 public root_hash;

8
9 bool reg_is_end = false;

10 uint reg_end_time;

The array leafs and used_tokens are two arrays of bytes32 that save the valid coin commitment
of VCs and checked token respectively. root_hash saves the root hash value of the MT over all
saved coin commitments, i. e., over all element saved in leafs. It is set to be public, which means
everyone has the access of the value of this variable.

The last two variables are used to control the time period of registration phase. The variable
reg_end_time saves the end time of the registration phase in an integer as the number of seconds
since 1970-01-01. The other variable reg_is_end is a boolean that enables EA to end the registration
phase earlier than the previously set end time. This variable can be only set to true by the function
as shown in Listing 5.15. Line 2 in Listing 5.15 guarantees that function endReg can only be called
from EA’s Ethereum account. As soon as this variable is set to true, the Registration Smart Contract
will no longer save any incoming VCs.

Listing 5.15 Registration Smart Contract: function endReg

1 function endReg() public {

2 require(msg.sender == EA_server_addr);

3 reg_is_end = true;

4 }

The main functions in Registration Smart Contract are Mint and GenerateMT as shown in Listing 5.16
and Listing 5.17. Listing 5.16 takes the election Id (eid), variables that are related to the coin
commitment (cm, k, s), the token issued from Client server (tokenHash) and the signature on
the token (sign_v, sign_r, sign_s) as input and verifies the validity of the input as described in
Section 4.3.3. It first recalculates the coin commitment using received k and s (line 4). Then, it
checks the validity of the signature using function checkSignature. In order to check the signature
in Smart Contract, we use the signature scheme provided by Ethereum to sign on the token and
use the corresponding verify function to verify the signature. The token is signed by Client server
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using its Ethereum account, later when verifying the signature, the verify function will return an
Ethereum account. If the returning account is the same as the Ethereum account that is used to sign
the token, the signature is valid. The calling of the verifying function and the comparison of the
returning account and the previous hard-coded Client_server_addr are all done within function
checkSignature, it only returns a boolean to indicate the validity of the signature. After that, function
Mint checks whether the received tokenHash is already used or not using function checkToken. On
receiving tokenHash, checkToken checks whether tokenHash is a member of used_tokens or not and
if it is not, checkToken will save tokenHash to used_tokens and return true, otherwise, it will return
false.

Listing 5.16 Registration Smart Contract: function Mint

1 function Mint(bytes32 election_id, bytes32 cm, bytes32 k, bytes32 s,

2 bytes32 tokenHash, uint8 sign_v, bytes32 sign_r, bytes32 sign_s) public{

3
4 bytes32 cm_check = sha256(abi.encodePacked(k, s));

5 bool verifiedSign = checkSignature(tokenHash, sign_v, sign_r, sign_s);

6 bool tokenIsNotUsed = checkToken(tokenHash);

7
8 if( !reg_is_end && now < reg_end_time){

9 if(eid == election_id){

10 if(verifiedSign){

11 if(tokenIsNotUsed){

12 if(cm == cm_check){

13 leafs.push(cm);

14 emit leafCreated(true, "Save successful");

15 }else{

16 emit leafCreated(false, "Save failed : invalid Commitment");

17 }

18 }else{

19 emit leafCreated(false, "Save failed : invalid Token");

20 }

21 }else{

22 emit leafCreated(false, "Save failed : invalid Signature");

23 }

24 }else{

25 emit leafCreated(false, "Save failed : Wrong election");

26 }

27 }else{

28 emit leafCreated(false, "Save failed : Registration time ended");

29 }

30
31 }

When all checks are done, Mint will emit the event leafCreated to the transaction sender based
on the check result. If all checks pass, the received coin commitment cm will be saved in array
leafs and the sender will be informed that the VC has been successfully minted. If one of the
checks is invalid, the coin commitment will not be saved and the sender will be informed of the
corresponding error message.
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Listing 5.17 Registration Smart Contract: function GenerateMT

1 function GenarateMT(bytes32 election_id) public {

2 require(msg.sender == EA_server_addr);

3 bytes32 parent;

4 bytes32 padding = 0x0000000000000000000000000000000000000000000000000000000000000000;

5
6 if(eid == election_id){

7 if (leafs.length > 1){

8 bytes32[] memory temp_nodes;

9 bytes32[] memory parents;

10 temp_nodes = leafs;

11 uint end;

12 uint parent_length;

13
14 do{

15 if(temp_nodes.length % 2 == 0){

16 end = temp_nodes.length;

17 parent_length = end / 2;

18 }else{

19 end = temp_nodes.length - 1;

20 parent_length = (end / 2) + 1;

21 }

22 parents = new bytes32[](parent_length);

23 uint j = 0;

24
25 for(uint i = 0; i < end; i=i+2){

26 parent = sha256(abi.encodePacked(temp_nodes[i], temp_nodes[i+1]));

27 parents[j] = parent;

28 j++;

29 }

30 if(end < temp_nodes.length){ //there is one nodes left

31 parent = sha256(abi.encodePacked(temp_nodes[end], padding));

32 parents[j] = parent;

33 }

34 temp_nodes = parents;

35
36 }while (parents.length > 1);

37
38 root_hash = parents[0];

39 emit treeGenerated(true, "Generation successful");

40 }else if (leafs.length == 1){ //if there is only one leaf

41 parent = sha256(abi.encodePacked(leafs[0], padding));

42 root_hash = parent;

43 emit treeGenerated(true, "Generation successful");

44 }else{ //leafs.length == 0, i.e. no Leaf

45 emit treeGenerated(false, "Generation failed : there is no registered voter");

46 }

47 }else{

48 emit treeGenerated(false, "Generation failed : Wrong election");

49 }

50
51 }
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Similar to function endReg, line 2 in GenerateMT guarantees that this function can only be called from
EA’s Ethereum account. Upon receiving the transaction from EA with the same eid as hard-coded
in the Smart Contract, GenerateMT begins to generate the MT over all commitments that saved in
array leafs till the time it is called. To generate the MT, we differ from 3 situations:

leafs has more than 2 members
In this case, GenerateMT generates the MT for all coin commitments in leafs from bottom to
top with the same sequence as the coin commitment is saved. Each new node (parent) has
two children nodes from the previous layer and it contains the hash value of its children. If the
number of all nodes in previous layer is odd, there will be a node in current layer that only has
one child. In this case, the hash value of this node is the hash value of its child concatenate
with padding. The variables temp_nodes and parents are two temporary arrays that save the
interim results. The key word memory explicitly indicates that these two variables exist only in
function GenerateMT, once the function call is ended, the storage of these variables are freed.

After the MT is generated, GenerateMT saves the hash value of root node in root_hash

and emits the event treeGenerated to the transaction sender to indicate that MT has been
successfully generated.

leafs has only 1 member
This case handles the situation that only one Voter has registered to the election during the
registration phase. In this case, GenerateMT directly calculates the root_hash as the hash value
of the single member from leafs concatenated with the padding and then emit the sender that
MT has been successfully generated.

leafs is empty
This case handles another special situation where on one has registered to the election during
the registration phase. In this case, GenerateMT does nothing and emits the sender that MT
generation has failed due to 0 registered Voter.

Notice that the generated MT is not saved in Registration Smart Contract as the writing operation
on Ethereum is too expensive. The only value that is saved in this Smart Contract is the root hash of
the MT. In order to generate the ZK-Proof, one needs to download all coin commitments from leafs

and rebuild the MT locally. To check whether the same MT is generated, one needs to compare the
root hash he calculated with the root hash saved in root_hash.

GenerateMT should be called after the registration phase is ended. If the MT of all saved coin
commitment are generated, but this Smart Contract kept receiving and saving new incoming VCs,
no one can generate valid ZK-Proofs for these new VCs, as they are not contained in the MT.

5.3.2 Voting Smart Contract

All ZK-Proofs are verified in Voting Smart Contract. To verify a zk-SNARK proof, we use the
pairing library from [Chr], which provides the necessary functions to verify the proof.
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Listing 5.18 Voting Smart Contract: Variables
1 address Client_server_addr;

2 address Admin_server_addr;

3 bytes32 eid;

4
5 bytes[] votes;

6 bytes32[] used_coins;

7 bool vote_is_end = false;

8 uint vote_end_time;

9
10 mapping (address => bool) vote_format;

11 VerifyingKey vk;

12 bool public verifyingKeySet = false;

Listing 5.18 shows all variables that are used in Voting Smart Contract. Similar to Registration
Smart Contract, Voting Smart Contract has variables Client_server_addr, Admin_server_addr
and eid that will be hard-coded by Admin server during an election. The two arrays votes and
used_coins are used to save the encrypted vote and the serial number of the VCs respectively.
The variables vote_is_end and vote_end_time are also similar to the variables reg_is_end and
reg_end_time from Registration Smart Contract. For vote_is_end, there is a function endVote

similar to endReg that can only be called from EA’s Ethereum account and set vote_is_end to
true.

As mentioned in Section 5.2, the ZK-Proof πPOUR is split into two proofs. As solidity doesn’t support
giving too many parameters (limit is around 16 parameters) to a function, these two proofs must be
verified separately. Hence, to connect the result of these two proof verifications, we need a variable
vote_format to save the verification result of the vote-format proof for the transaction sender, so
that when the same sender verifies his coin proof, the Smart Contract knows his verification result
for vote-format proof. The type mapping is like the HashMap in Java, it takes an account address as
the key and the verification result of the vote-format proof as the value.

The variable vk of type VerifyingKey saves the corresponding verifying key of the proof temporarily.
The variable verifyingKeySet indicates whether a verifying key is correctly set or not. It is set to
be public so that everyone can check before verifying the proof. In this demo, a Voter is asked to
first set the verification key, then upload the proof to verify. As vote-format proof and coin proof
have fixed constrain systems, the verifying keys can be hard-coded in the Smart Contract to reduce
transactions needed to cast a vote. However, as the result computation proof πResult doesn’t have a
fixed constrain system, to verify such a proof, EA must first set the verifying key. Another constrain
in this demo is that, we only consider the case that at the same time only one Voter tries to verify his
ZK-Proofs. If it is not the case, the verifying could went wrong as it may happen that Voter 1 has
set his verifying key and then Voter 2 uploaded his proof. To avoid this conflict, it is recommended
to hard code the verifying keys for vote-format proof and coin proof in the Smart Contract.

Listing 5.19 Voting Smart Contract: function checkVote

1 function checkVote(uint[2] a, uint[2] a_p, uint[2][2] b, uint[2] b_p, uint[2] c,

2 uint[2] c_p, uint[2] h, uint[2] k, uint[] input) public{

3 bool vote_well_formed = verifyProof(a, a_p, b, b_p, c, c_p, h, k, input);

4 if (vote_well_formed){
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5 vote_format[msg.sender] = true;

6 }else{

7 vote_format[msg.sender] = false;

8 }

9 }

We use the same setVerifyingKey and verifyTx (renamed to verifyProof in PEES) functions from
[CS] to set a verifying key and verify the proof. Listing 5.19 shows the function checkVote that
checks the vote format proof. This function assumes that the corresponding verifying key is already
set. The parameters a, a_p, b, b_p, c, c_p, h and k are concrete component of a zk-SNARK
proof, the parameter input is the public input for the proof. Upon receiving the proof, checkVote
checks the validity of the proof and then saves the result in mapping vote_format for later use.

After the vote format proof is checked, a Voter then calls the Pour function (as shown in Listing 5.20)
to verify his coin proof. Pour function also assumes that the corresponding verifying key is already
set.

Listing 5.20 Voting Smart Contract: function Pour

1 function Pour(bytes32 election_id, bytes32 sn, bytes enc_vote, uint[2] coin_a,

2 uint[2] coin_a_p, uint[2][2] coin_b, uint[2] coin_b_p, uint[2] coin_c,

3 uint[2] coin_c_p, uint[2] coin_h, uint[2] coin_k, uint[] coin_input) public{

4 bool coinIsNotUsed = checkCoin(sn, coin_a, coin_a_p, coin_b, coin_b_p,

5 coin_c, coin_c_p, coin_h, coin_k, coin_input);

6 bool voteIsWellFormed = vote_format[msg.sender];

7
8 if(!vote_is_end && now < vote_end_time){

9 if(eid == election_id){

10 if(coinIsNotUsed){

11 if(voteIsWellFormed){

12 votes.push(enc_vote);

13 emit voted(true, "Vote successful");

14 }else{

15 emit voted(false, "Vote failed : invalid Vote (Coin is consumed)");

16 }

17 }else{

18 emit voted(false, "Vote failed : invalid Vote coin");

19 }

20 }else{

21 emit voted(false, "Vote failed : Wrong election");

22 }

23 }else{

24 emit voted(false, "Vote failed : Voting time ended");

25 }

26
27 }

The Pour function takes eid, VC’s serial number sn, encrypted vote enc_vote and the coin proof,
which is similar to the vote format proof, as input. It then checks the coin proof using checkCoin.
This function is similar to checkVote, it checks the coin proof and then saves the serial number to
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used_coins and return true if the proof is valid, otherwise, it sn won’t be saved and false will
be returned. After Pour gets the validity of coin proof, it retrieves the validity of the vote format
proof of the same Voter from vote_format. Then based on the validity of both proofs, Pour emit the
transaction sender (i. e., the Voter) the corresponding message for vote casting result.

Notice that the enc_vote will only be saved when both proofs are valid, and it is cast during the
voting phase. If any proof fails, the enc_vote won’t be saved and if a Voter provides a valid VC but
casts an invalid vote (i. e., coin proof is valid but vote format proof is invalid), the enc_vote will not
be saved but the serial number of the VC will be saved to used_coins as the punishment for the
dishonest Voter.

Due to technical problems (solidity not allow putting both proofs and verifying keys as the input
parameters for one function) and simplicity, the Pour function described in Section 4.3.3 are spilt
into three functions in this implementation. The correct sequence of the function calls is: call
setVerifyingKey to set verifying key for vote format proof, call checkVote to verify vote format
proof, call setVerifyingKey to set verifying key for coin proof and finally call Pour to verify coin
proof and cast vote.

In this demo, the saveResult function mentioned in Section 4.3.3 is not implemented, as the
generation of ZK-Proof πResult takes too much time and the verifying key is also too big. The
ZK-Proof πResult is only verified locally in this demo. The implementation of saveResult should
be similar to function checkVote, where the ZK-Proof should be verified and not only the validity
of πResult is saved but the result of the election is also saved in an array. The implementation of
saveResult may come up in the later updates of this demo.

5.4 Web Servers

PEES provides two web servers: Admin server and Client server. These two servers are configured
by PEES, which means that EA and Voters can only interact with the server but not be able to change
how these servers behave. The code of these two servers should be public so that everyone can
check the behavior of the servers. In the following, I’ll first introduce the implementation of Admin
server in Section 5.4.1 and then describe the implementation of Client server in Section 5.4.2.

5.4.1 Admin Server

Admin server in PEES is a web server that EA uses to configure and control the election. It is
connected to the shared database. In this implementation, we use MangoDB [DED] as the shared
database and we assume that the configuration of the election is already saved in this database.
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Figure 5.1: Login button

To make sure that only members of EA have access to Admin Interface of an election, there is a
Login as Admin button for each election (Figure 5.1). After a user has logged in to an election
as Admin, he can see all possible actions in this Admin Interface (Figure 5.2). Each option
represents a phase from Section 4.4, where Set up stands for phase 1, Result shows the result of the
selected election and Log out is used to let an Admin sign out. In the following, I’ll explain the
implementation of the Admin server according to different phases.

Figure 5.2: Admin Interface

Phase 0: Set up

After an Admin clicked Set up button, the server first checks whether the selected election has
already been set up or not. If it is not, the Admin is then asked to give a number of shares that the
decryption key will be split to and the threshold for recombination in a html-form. After Admin
Server received share number and threshold, it executes the following codes.

Listing 5.21 Admin Server: Set up
1 let result = await db.collection('Elections').find({id :id}).toArray();

2 if(result.length === 0){ //if no Election with given id is found

3 let errmessage = encodeURIComponent('Election not found');
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4 return res.redirect('/admin/?err=' + errmessage);

5 }else{

6 let election = result[0];

7 let key = new rsa.Key();

8 key.generate(1024, "10001"); //set public key exponent to a fixed exponent of "0x10001"

9
10 let encryptionKey = {

11 n : key.n.toString(16),

12 e : key.e.toString(16)

13 };

14
15 let decryptionKey = {

16 n: key.n.toString(16),

17 e: key.e.toString(16),

18 d: key.d.toString(16),

19 p: key.p.toString(16),

20 q: key.q.toString(16),

21 dmp1: key.dmp1.toString(16),

22 dmq1: key.dmq1.toString(16),

23 coeff : key.coeff.toString(16)

24 };

25
26 let toSplit = secrets.str2hex(JSON.stringify(decryptionKey));

27
28 //Shamir's threshold secret sharing scheme -- split decryption key

29 let shares = secrets.share(toSplit, Number(num_shares), Number(threshold));

30
31 await db.collection('Elections').updateOne({id :id},

32 {$set: {encryptionKey: encryptionKey, threshold : threshold, state : 0}});

33
34 //send share to admins through email

35 let admins = election.admins;

36 let contentstr = 'Admin <b><%= generator%></b> just authorized key generation for Election

37 <b><%= electionname%></b>' +

38 '<br>id: <%= id%>' +

39 '<br><br>' +

40 ' your share for the decryption key is:\n' +

41 '<br><br>' +

42 ' <%= shares%>' +

43 '<br><br>' +

44 'please save it <b>carefully</b>,

45 it will be later needed to regenerate the key.'

46
47 let titlestr = 'Encryption Key for <%= electionname%> is generated';

48
49 let adminsHasShare =[];

50 for(let i=0; i<num_shares; i++){

51 let title = ejs.render(titlestr, {electionname: election.title});

52 let content = ejs.render(contentstr,{generator: sess.user,

53 electionname:election.title, id:election.id, shares:shares[i]});

54 sendEmail(admins[i].email,title,content);

55 adminsHasShare.push(admins[i].email);

56 }
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57
58 db.collection('Elections').update({id:id}, {$set: {admins_with_share : adminsHasShare}});

59
60 return res.render('setup/generated', {electionname:election.title, id:election.id,

61 numshares : num_shares, admin: sess.user, already:false, loggedin : true});

First of all, it gets the selected election from shared database (Line 1 to Line 6), then it generates
a RSA encryption / decryption key pair for the election (Line 7 to Line 24). As we have to save
the RSA modulus and public exponents for ZK-Proof generation, we use the library from [Lau] to
generate the RSA keypair as this library provides a simple interface to get all details of encryption /
decryption keys. After that Admin server splits the decryption key into desired number of shares
and sets the threshold as the given threshold according to Shamir’s threshold secret sharing scheme
[Sha79] using library [Gab]. Then the shares will be sent to corresponding Admins. In this
implementation, the shares will be sent to first n (n represents the number of shares) Admins from
the Admin list of the configuration for this election, this can be implemented using a given order as
well. At the end, the Admin server saves the encryption key and a list of Admins, who have a share,
to the shared database and render the success page for the Admin who issued this set up phase.

Phase 1: Initializing Registration

Similar to Set up, after an Admin clicked Phase 1 button, the server first checks whether phase 1
of the selected election has been already initialized or not. If it is not, the Admin is asked to give
the begin data and the end data for the registration phase. The given data is then sent to Admin
server and it will be hard-coded to the template of Registration Smart Contract, which is defined in
Section 5.3.1, using the code from line 1 to line 4 in Listing 5.22. The election Id eid will also
be hard-coded in Registration Smart Contract (line 5 to line 6), after that the Registration Smart
Contract will be compiled using solc, a compiler for solidity, provided by Ethereum.

Listing 5.22 Admin Server: phase 1
1 let rsc_source = fs.readFileSync("path/to/Registration.sol", 'UTF-8');

2
3 let sc_reg_end_time_str = 'uint reg_end_time = ' + Date.parse(end)/1000 + ';';

4 rsc_source = rsc_source.replace('uint reg_end_time;', sc_reg_end_time_str);

5 let eid_str = 'bytes32 eid = 0x' + id + ';';

6 rsc_source = rsc_source.replace('bytes32 eid;', eid_str);

7
8 console.log('++ Compiling Registration Smart Contract...');

9 let rsc_compiled = solc.compile(rsc_source, 1);

10 console.log('++ Done');

11
12 let contractName = ':Registration';

13 let rsc_bytecode = rsc_compiled.contracts[contractName].bytecode;

14 let rsc_abi = JSON.parse(rsc_compiled.contracts[contractName].interface);

15 let accounts = await web3.eth.getAccounts();

16 let addr = accounts[8];

17 let contract = new web3.eth.Contract(rsc_abi, null, {data: '0x' + rsc_bytecode});

18 let instance = await contract.deploy().send({from: addr, gas: 1000000});
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19 let rsc_addr = instance.options.address;

20 console.log("++ Contract mined at " + rsc_addr);

21
22 let rsc = {

23 abi : rsc_abi,

24 addr : rsc_addr

25 };

26
27 await db.collection('Elections').updateOne({id :id}, {$set: {reg_begin : beginstr,

28 reg_end : endstr, rsc : rsc, state : 1}});

After the compilation, Admin server has to extract the ABI of the Registration Smart Contract and
use EA’s Ethereum account to deploy it to Ethereum Blockchain (line 12 to line 18). If Registration
Smart Contract has been successfully deployed to the Blockchain, an instance of that Smart Contract,
which contains the contract address, will be returned. The contract address and the contract ABI are
important for those who want to call functions from this Smart Contract. Hence, these two values
will be saved to the shared database so that Client server can retrieve them and pass them to Voters.
At the end, a success page will be returned to the Admin.

Phase 2: Initializing Voting

Admin Server handles this phase very similar to phase 1. It first checks whether voting phase has
been already initialized or not and if not, it will hard-code the eid and the given start / end date
of voting phase in the Voting Smart Contract, then compiles and deploys the Smart Contract on
the Blockchain, at last saves the needed data to the shared database as described above. The only
difference between these two phases is that, before an Admin submits the start / end date of voting
phase to the Admin server, he first needs to generate the MT over all received VCs and end the
registration phase (if it is not ended) through Registration Smart Contract.

Listing 5.23 Admin Server: phase 2 - generate MT
1 await contract.endReg();

2 contract.GenarateMT(eid);

To end the registration phase and generate the MT, one just needs to call the endReg and GenarateMT

functions in sequence from the Registration Smart Contract as shown in Listing 5.23. Notice that
contract in Listing 5.23 refers to the Registration Smart Contract of the selected election. The
endReg is a synchronous function call, which means the code after this function call will first be
executed when this function call is ended. However, the GenarateMT function call is asynchronous,
to know the result of the MT generation, one has to wait until the event treeGenerated that is defined
in Registration Smart Contract is triggered.

Listing 5.24 Admin Server: phase 2 - EventListener for treeGenerated
1 let treeGenerated = contract.treeGenerated();

2 treeGenerated.watch(function(error, result){
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3 if (!error){

4 if(result.args.successful){

5 console.log(result.args.info);

6 document.getElementById('vote-date').submit();

7 }else{

8 console.log(result.args.info);

9 errinfo.innerHTML = result.args.info;

10 errinfo.style.display = "block";

11 errinfodiv.style.display = "block";

12 }

13 } else {

14 console.log(error);

15 }

16 });

Listing 5.24 shows the event listener for event treeGenerated. The result contains the desired
values that are sent back by treeGenerated. If the MT has been successfully generated, the form that
contains the voting phase data will be submitted to the Admin server, otherwise an error information
will be displayed to the Admin and the Admin has to resubmit the form.

Phase 3: Compute Result

Again, after an Admin clicked Phase 3 button, the server first checks whether phase 3 of the selected
election has been already done or not. If it is not, Admin server then checks whether the requested
Admin is in the admin list, which records all Admins that have a share of the decryption key. If it is
the case, the requested Admin is then asked to upload his share, otherwise the requested Admin has
the ability to inform other Admins that he wants to start phase 3.

Listing 5.25 Admin Server: phase 3 - Combine Decryption Key
1 if (shares.length >= threshold){ //if the server has enough shares

2 //to regenerate the decryption key

3
4 //Shamir's threshold secret sharing scheme -- combine decryption key

5 let combinedDecryptionKey = JSON.parse(secrets.hex2str(secrets.combine(shares)));

6
7 await db.collection('Elections').updateOne({id :id}, {$set: {shares:shares,

8 admin_uploaded: uploadedAdmins, decryptionKey : combinedDecryptionKey, state : 3}});

9 return res.render('phase3/combkey/combined', {electionname:election.title,

10 id:election.id, already:false, loggedin : true});

11 }

After Admin server collects enough shares from Admins, it uses line 5 in Listing 5.25 to combine the
decryption and saves this key to the shared database. When the decryption key has been combined,
there will be a new button Authorize Result Calculation (as shown in Figure 5.3) available for
Admins. The Admin can choose to compute the result immediately or later.
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Figure 5.3: When decryption key has been combined

When an Admin authorizes Admin server to compute the result, it first ends voting phase (if it is
not ended) in the same way as it ends registration phase in phase 2. After that, Admin server uses
the getter for array votes from Voting Smart Contract to get all cast ballots from Blochchain (line
1 in Listing 5.26) and uses the combined decryption key to decrypt them (line 15 to line 17 in
Listing 5.26). Then Admin server calculates the result of the election by adding every decrypted
vote and saves the result in shared database.

Listing 5.26 Admin Server: phase 3 - Compute Result
1 let votes = await getVotes(contract);

2 let votes_decrypted;

3 let combinedDecryptionKey = election.decryptionKey;

4
5 let privKey = new rsa.Key();

6 privKey.n = new rsa.BigInteger(combinedDecryptionKey.n,16);

7 privKey.e = new rsa.BigInteger(combinedDecryptionKey.e,16);

8 privKey.d = new rsa.BigInteger(combinedDecryptionKey.d,16);

9 privKey.p = new rsa.BigInteger(combinedDecryptionKey.p,16);

10 privKey.q = new rsa.BigInteger(combinedDecryptionKey.q,16);

11 privKey.dmp1 = new rsa.BigInteger(combinedDecryptionKey.dmp1,16);

12 privKey.dmq1 = new rsa.BigInteger(combinedDecryptionKey.dmq1,16);

13 privKey.coeff = new rsa.BigInteger(combinedDecryptionKey.coeff,16);

14
15 if(votes !== null){

16 votes_decrypted = decrypt(votes, privKey);

17 }

18
19 if(votes_decrypted !== null && votes_decrypted.length >0){

20 for(let i = 0; i<votes_decrypted.length; i++){

21 if(votes_decrypted[i] < vote_result.length){

22 vote_result[votes_decrypted[i]] ++;

23 }

24 }

25 }

26
27 await db.collection('Elections').updateOne({id :id},
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28 {$set: {result:vote_result, state : 4}});

As mentioned in Section 5.2.2, the ZK-Proof generator for πResult is not integrated in this demo
since it takes too long time to generate a proof. Thus, the result is only saved in the shared database
for everyone to check but not on the Blockchain as described in the protocol. This is the drawback
of this implementation. Should PEES protocol be used in practice, the ZK-Proof generator provided
in Section 5.2.2 must be integrated.

Result

As the computed result is not in a human readable manner, the Admin server provides a template
to display the result in an understandable manner. A sample result of an election is shown in
Figure 5.4.

Figure 5.4: Result of an election

5.4.2 Client Server

Client server is used to interact with Voters. As mint VCs and generate ZK-Proofs are done on
Voters browser and computers, the main functionality of Client server is to provide needed interface
and JavaScript code for Voters so that every Voter is using the same code in an election. Similar to
Admin server, I will introduce the implementation of the Client server according to Voters view of
different phases in an election.
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Phase 0: Set up

When an election is still waiting for EA to set up or to initialize the registration phase, Client server
will return a page as shown in Figure 5.5 to interested Voters. Voters can see the description or
introduction of the selected election, but as the election is not yet opened, they can’t sign up to the
election or vote.

Figure 5.5: An election waiting to be opened

Phase 1: Registration Phase

After registration phase of an election is initialized, the view of Voters to that election will change
to Figure 5.6. The registration time period is given under the election title and there will be a Sign

up button at the bottom for Voters to sign up for this election. After a Voter clicked this button, he is
asked to authenticate to Client server. In this implementation, the Voter is asked to give his email to
Client server and the Client server is set to accept everyone who wants to vote, as long as he hasn’t
voted before.

Figure 5.6: After registration phase of an election is initialized
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Hence, after the Client server received the email from a Voter, it first checks whether this email has
already been used to sign up for the selected election or not (line 1 to line 2 in Listing 5.27). If it
is not, it generates a signature on the hash of the email address using sign function provided by
web3. Then the Client server group the hash of the email address and the signature together as the
token, and send it back to the Voter. In the meantime, the Client server saves the email and the
corresponding token to the shared database to prevent a double sign up.

Listing 5.27 Client Server: phase 1 - Sign on Token
1 let savedemail = await db.collection(collection).find({email : email}).toArray();

2 if( savedemail.length === 0 ){ // email not registered before

3 let hash = cryptofunc.hashUTF8(email);

4 let signature = await web3.eth.sign(hash, addr);

5
6 //generate token that signed by Registration Server

7 let token = {

8 nonce : hash,

9 signature : signature

10 };

11
12 let data = {

13 email : email,

14 token : token

15 };

16
17 try{

18 await db.collection(collection).insertOne(data);

19 return res.render('registration/reg2', {electionname: election.title, id : id,

20 token : token, email:email, contract: rsc});

21 }catch(error){

22 console.log(err);

23 return res.render('registration/reg1', {electionname: election.title, id : id,

24 error : "Sign-up failed, please try again"});

25 }

After the Voter’s browser received the token from Client server, it uses generateCoin provided by
Client server (Listing 5.28) to create a VC as described in Figure 4.2. Then in mint function, which
is also provided by Client server, it extracts the needed variables from signature and calls the Mint

function of Registration Smart Contract with the signature and cm, k, s from the newly generated
VC for verification.

Listing 5.28 Voter’s Browser: mint VC
1 function generateCoin(token){

2 let rho = nonce(32);

3 let r = nonce(32);

4 let k = hash("SHA-256", "HEX", rho + r, "HEX");

5 let s = nonce(32);

6 let cm = hash("SHA-256", "HEX", k + s, "HEX");
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7
8 let coin = {cm:"0x" + cm, k:"0x" + k, s:"0x" + s};

9 witness = {cm:"0x" + cm, k:"0x" + k, s:"0x" + s, rho:"0x" + rho, r:"0x" + r};

10
11 mint(coin, token);

12 }

13
14 function mint(coin, token, account){

15 let eid = '0x' + document.getElementById("eid").innerHTML.substr(5);

16 let msg = token.nonce;

17 let msg_to_hash = "\x19Ethereum Signed Message:\n" +msg.length.toString() + msg;

18 let hashed_msg = web3.sha3(msg_to_hash);

19
20 let signature = token.signature.substr(2);

21 let r = '0x' + signature.slice(0, 64);

22 let s = '0x' + signature.slice(64, 128);

23 let v = '0x' + signature.slice(128, 130);

24 let v_decimal = web3.toDecimal(v) + 27;

25
26 contract.Mint(eid, coin.cm, coin.k, coin.s, hashed_msg, v_decimal, r, s,

27 {from: web3.eth.accounts[0], gas: 150000}, function (error, result) {

28 if (error)

29 console.error(error);

30 });

31 }

After that, the browser waits for the leafCreated event that is defined in Registration Smart Contract
to get the result of mint of the newly generated VC. If it is successful, i. e., the newly generated VC
is saved in the Registration Smart Contract, a json file vote_coin.json that contains the very detail
of the generated VC will be generated for Voters to download and the same information will be
saved in the browser’s localStorage as a backup. If the VC is not saved in the Registration Smart
Contract, the Voter will be informed of the error and he can try to re-mint it later.

Notice that function listed in Listing 5.28 are provided by Client server but executed locally on
Voters browser. That means, the Client server has no access to the details, especially the exact
values of rho and r, of the generated VC.

Phase 2: Voting Phase

Similar to phase 1, after voting phase of an election is initialized, the voting time period is given
under the election title. Figure 5.7 shows the Voter’s view during the voting phase. Different to the
view for phase 1, there are two buttons here. The first button Generate vote witness is used to
generated vote_witness.json file that is needed for πPOUR ZK-Proof generator.
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Figure 5.7: After voting phase of an election is initialized

After a Voter clicked Generate vote witness button, he is asked to upload his vote_coin.json

file to the browser. If the Voter is using the same browser that he generated his VC, he has the
chance to get his VC from browser’s localStorage. In order to make sure that Voter uploaded a
valid vote_coin.json file, the format of the VC in this file will first be validated. If the file has a
correct format, Client server will provide the candidate list to the Voter as shown in Figure 5.8.

Figure 5.8: Candidate list

In this page, Voter should choose his preferred candidate and if he wants to abstain from the election,
he can chose the option at the bottom which indicates his abstention. When the Voter has made up
his mind, he should then click vote button. However, this button will not submit his vote directly,
but generates the needed witnesses and public inputs for the Voter to download. As the browser
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now has the uploaded VC, the encryption key of the election from Client server and the Voter’s
choice, it first encrypts the Voter’s vote to obtain vote_ct, then it calculates the sn of the VC using
the value rho from the upload file, and lastly computes the Merkle Authentication Path as listed in
Listing 5.29.

Listing 5.29 Voter’s Browser: calculate Merkle Authentication Path
1 async function generate_merkle_authentication_path(leaf_hash){

2 let path = new Array();

3 let address_bits = new Array();

4
5 try{

6 let merkle_tree = await rebuild_merkle_tree();

7 let check = await check_root(merkle_tree.root);

8
9 if(check){

10 let node = find_leaf_with_hash(leaf_hash, merkle_tree.leafs);

11 let tree_depth=0;

12
13 while(!node.isRoot){

14 let sibling_hash = node.sibling.value;

15 path.unshift(sibling_hash);

16 address_bits.push(node.addr);

17 tree_depth++;

18 node = node.parent;

19 }

20 }

21
22 let address = compute_address(address_bits);

23 return {root: merkle_tree.root, tree_depth: tree_depth, path: path,

24 address_bits : address_bits, address : address};

25 }catch(err){

26 vote_failed = true;

27 failed('generate');

28 let text = document.getElementById("download-fail-text");

29 text.style.display = "block";

30 let download = document.getElementById('download');

31 download.style.color = 'grey';

32 document.getElementById("hint").innerHTML = 'looks like something has went wrong,

33 please try again later';

34 console.log(err);

35 }

36 return null;

37 }

Recall that in Registration Smart Contract, the actual MT is not saved but only its root hash root_hash.
Hence, to compute the Merkle Authentication Path for coin commitment cm and root_hash, the
corresponding MT should be regenerated using the original data (i. e., coin commitments of all
valid VCs) that are saved in Registration Smart Contract. After the MT is rebuilt (line 6), the root
hash of the rebuilt MT should be compared with the root hash saved in Registration Smart Contract
to see whether the same MT is generated. If it is the case, this function then finds the position of
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given cm (i. e., leaf_hash in Listing 5.29) in the rebuilt MT and gets the Merkle Authentication Path
from bottom up. The value of address and address_bits will also be computed during Merkle
Authentication Path computation.

When all witnesses and public inputs are prepared, the browser will group them into different
witnesses sets as listed in Listing 5.1, Listing 5.2, Listing 5.9 and prepare vote_witness.json file for
Voters to download. After that, Voters are asked to run two ZK-Proofs generators that are mentioned
in Section 5.2.1. With two generated ZK-Proofs, Voter can cast his vote through Submit vote as
shown in Figure 5.7.

Listing 5.30 Voter’s Browser: submit vote
1 async function submitVote(){

2 let coin_vk = proof.coin_proof.vk;

3 let coin_proof = proof.coin_proof.proof;

4 let coin_pub_input = proof.coin_proof.pub_input;

5
6 let vote_vk = proof.vote_proof.vk;

7 let vote_proof = proof.vote_proof.proof;

8 let vote_pub_input = proof.vote_proof.pub_input;

9
10 await contract.setVerifyingKey(vote_vk.A, vote_vk.B, vote_vk.C, vote_vk.gamma,

11 vote_vk.gamma_beta_1, vote_vk.gamma_beta_2, vote_vk.Z, vote_vk.IC,

12 {from : web3.eth.accounts[1], gas : 9007199254740991});

13
14 await contract.checkVote(vote_proof.A_g, vote_proof.A_h, vote_proof.B_g, vote_proof.B_h,

15 vote_proof.C_g, vote_proof.C_h, vote_proof.H, vote_proof.K, vote_pub_input,

16 {from : web3.eth.accounts[1], gas : 9007199254740991})

17
18 console.log("vote_format_checked");

19
20 await contract.setVerifyingKey(coin_vk.A, coin_vk.B, coin_vk.C, coin_vk.gamma,

21 coin_vk.gamma_beta_1, coin_vk.gamma_beta_2, coin_vk.Z, coin_vk.IC,

22 {from : web3.eth.accounts[1], gas : 9007199254740991});

23
24 contract.vote("0x"+proof.eid, "0x"+proof.sn, "0x" + proof.vote_ct,

25 coin_proof.A_g, coin_proof.A_h, coin_proof.B_g, coin_proof.B_h,

26 coin_proof.C_g, coin_proof.C_h, coin_proof.H, coin_proof.K, coin_pub_input,

27 {from : web3.eth.accounts[1], gas : 9007199254740991 }, function(err, res){

28 if(err){

29 console.log(err);

30 }

31 });

32 }

When Voters upload his ZK-Proofs πCoin and πVoin, the browser again checks the format of these
two proofs. If the format is valid, the browser then extracts verifying keys, public inputs and proofs
from both proof files (line 2 to line 8 in Listing 5.30). Recall that the Voting Smart Contract is
implemented in this demo in such a way that only after the verifying key of a proof has been set, the
corresponding proof can be verified. Hence, there are two sets of function calls in Listing 5.30 that
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first set the verifying key and then verifies the proof using the function provided by Voting Smart
Contract. As mentioned in Section 5.3.2, the πVoin ZK-Proof should be first verified, no matter πVoin
is valid or not, πCoin will be sent to Voting Smart Contract after the verification of πVoin is done,
since Voting Smart Contract guarantees that the encrypted vote will only be saved to the Smart
Contract when both ZK-Proofs are valid.

Again, the functions listed in Listing 5.29, Listing 5.30 and other actions described above are
executed locally on Voter’s browser but are provided by Client server.

Phase 3: Result Ready

When the election is over or closed by EA and the result is calculated, Voters will have the chance to
see the result using Result button as shown in Figure 5.9. The result page for Voters is the same as
the result page for EA (Figure 5.4). In this implementation, the ZK-Proof of Result is not integrated,
hence there are no options for Voters to check the validity of the result.

Figure 5.9: Result is ready
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6 Security Analysis

Recall that the goal of PEES is to provide accuracy, verifiability and privacy against both public and
EA. In this chapter, I’ll explain how PEES achieves these security goals. A formal security analysis
is out of the scope of the thesis, and the security analysis in this chapter is based on the protocol
itself but not the implementation in Chapter 5.

Accuracy

According to the protocol, Registration Smart Contract guarantees that each Client Server issued
token can only be converted to one valid VC. The Voter is asked to consume this VC when casting
his vote. Thus, it is guaranteed that only eligible Voters can cast votes to an election. Since the
spending of VCs are saved on Blockchain, the prevention of double spending mechanism provided
by Blockchain also guarantees that each eligible Voter can only cast one vote to an election.

Then for each saved votes on Blockchain, the demands of accuracy are what ZK-Proof πResult proofs.
As long as the ZK-Proof πResult of an election is valid and every interested party follows the rule,
that result of an election can only be trusted when the corresponding ZK-Proof is valid, then the
accuracy is achieved. It is not demanded that PEES should only produce accurate result, as if the
result is incorrect, it cannot provide a valid ZK-Proof that convinces everyone to believe it.

Verifiability

Using Blockchain as the underlying technique makes the verifiability of PEES easy to achieve.
As a Voter knows his encrypted vote, he can simply download all saved votes from Voting Smart
Contract after an election is over and checks whether his vote is in the recorded votes or not. If it
is not in there, the Voter knows that his vote has been altered during the election. However, as it
is hard to find which node in the Blockchain network actually mined the Block that contains this
Voters voting transaction, it is not impossible to identify which party is responsible for this data
manipulation.

Privacy

In this section, the privacy against public and against EA will be analyzed together. Recall that the
privacy that PEES guarantees isn’t equal to the anonymity. This means, it is not demanded that the
identity of a Voter should be hide from the public. The privacy guarantees only, that the exact vote
of a Voter is kept in secret to the Voter himself during and after an election. To do that we consider
the views of the public and of EA during an election as shown in Figure 6.1.
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Figure 6.1: Views of the public and of EA during an election

According to the assumption in Section 4.2, the tokeni from the registration phase is public, which
means everyone in the network has access to that value. As this value is sent from Client server
back to a VoterVi , we conclude that everyone in the network knows that a Voter has received tokeni
during the registration phase and for the view of EA, it knows that the Voter Vi has received tokeni
during the registration phase as EA knows the identity of each Voter.

Then after Vi generated his VC locally, he sends a mint transaction that contains eid, tokeni, k, s
and cm to Registration Smart Contract. This is again considered to be public. Since the same tokeni
appeared in this transaction, everyone in the network now has the knowledge that a Voter with his
Ethereum account V1

i has minted a VC with coin commitment cm. Again, as EA knows each Voter’s
authentication data, it can additionally connect the Voter’s identity Vi with his Ethereum account
V1
i .

After that, Voter Vi will cast his vote v encrypted on Blockchain using pour transaction through
his another Ethereum account V2

i . Notice that pour transaction doesn’t contain any values that
appeared before (except eid which contains no information about the Voter). In addition, it is not
possible to retrieve the cm from sn and the public doesn’t have the decryption key for the encrypted
vote Enc(v), we conclude that everyone in the network only knows that, a Voter with his Ethereum
account V2

i has cast his vote, but the exact vote v and whether V2
i and V1

i belongs to the same Voter
is not known.
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To only protect privacy against public, a Voter can use the same Ethereum account for mint
transaction and pour transaction, since the public can’t decrypt the votes on Blockchain and they
don’t know the identity of a Voter anyway. However, to protect the privacy against EA, a Voter
must use two different Ethereum accounts. Recall that PEES split the decryption key of an election
into multiple shares so that one single Admin from EA can’t decrypt any vote from Blockchain.
However, we can’t rule out the case that more than n Admins from EA are malicious, where n
represents the threshold of the secret sharing scheme. In this case, these Admins could combine the
decryption key outside of Admin server and hence they could decrypt any encrypted votes from the
Blockchain. Notice that these Admins already knows that Voter Vi has Ethereum account V1

i from
registration phase, thus, although the ZK-Proof breaks the connection of cm and sn, these malicious
Admins can still connect the actual vote v to the Voter Vi through his Ethereum account, if Voter Vi

uses the same Ethereum account in both registration and voting phases. Therefore, we conclude
that the privacy against EA can only be achieved, when Voters use different Ethereum accounts for
registration and voting phases respectively.
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7 Conclusion and Further works

E-Voting and Blockchain have been popular topics these years. There are some researches that
build up E-Voting systems using Blockchain, however, as Blockchain keeps every recorded data
public, it is hard to bring privacy, especially the privacy against election organizers, into E-Voting
systems using Blockchain. In this thesis, we proposed a new E-Voting system PEES that is based
on Blockchain and still provides privacy for Voters. With the help of ZK-Proof πPOUR, PEES not
only provides privacy on-chain, and also provides the privacy against election organizers. With
another ZK-Proof πResult, PEES proofs to every interested party that the accuracy of an election
holds. Using Blockchain as the underlying technology, PEES also provides verifiability, which
allows Voters to check, whether their votes have been manipulated during the election or not.

Apart from the protocol of PEES, this thesis also provides a demo of PEES. In this demo, the
fundamental part of PEES protocol is implemented, some code segments such like the code segment
for Voter authentication can be changed to other specific rules for certain elections. However, this
demo is not complete, as the generation of a ZK-Proof πResult takes too much time, this part is not
integrated in the demo. In addition, πCoin and πVote are developed in different program languages
using different libraries, it requires a Voter to call two different programs during an election to
generate needed ZK-Proofs, which makes this demo very inconvenient to use in practice. Another
drawback of PEES is that, to verify a ZK-Proof on Ethereum Blockchain costs lots of Ether. If
Voters don’t get refund from EA, Voters might get less motivated to attend to an election.

Further works

The current demo of PEES still has many places that can be improved. For ZK-Proof generators,
the constrain system of πCoin can be hard-coded in the program and the corresponding verification
key can be hard-coded in the Voting Smart Contract. As for ZK-Proofs πVote, πResult that involve
constrains of RSA encryption and decryption, the demo has built the exponent e directly into
constrain system but if it can be given as a public input (for encryption) or witness (for decryption),
then the constrain system of these two ZK-Proofs can also be fixed and therefore be hard-coded into
the program.

By the time this thesis is written, there are no other libraries apart from libsnark and Jsnark that
can be used to generate ZK-Proofs from zk-SNARK. If the generation of ZK-Proofs can be provided
by Ethereum, js/node.js or other back-end / front-end program languages, the proof generation can
be embedded into the current implementation so that Voters don’t have to run an external proof
generator during an election.

ZoKrates, A toolbox for zk-SNARK on Ethereum [ETa] provides a high-level language for generating
ZK-Proofs of computations and to verify those proofs in Solidity. Currently, it only has a proof-of-
concept implementation [ETb], when all the testing of ZoKrates are done, one can consider using
ZoKrates as the ZK-Proof generator for PEES.
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In the current PEES protocol, the deployed two Smart Contracts are election related. This is aimed
to separate the storage of minted VCs and recorded ballots from different elections. However, It
is not compared with the approach that uses only two Smart Contracts for all elections and store
the minted VCs and recorded ballots under different variables. One main aspect that needs to be
compared is the overall Ether spent during an election. For the later approach, the maximal storage
of a Smart Contract might also be a constrain, since if the maximum storage of a Smart Contract is
reached, a new Smart Contract should be deployed as the replacement of the former one.
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