Chem. Ber. 110, 181-198 (1977)

Aminobenzole, XII^{1a)}

Kinetik und Mechanismus der Alkylierung von 1,3,5-Tripyrrolidinobenzol^{1b)}

Peter Fischer, Karl Ernst Mack²⁾, Ellen Mössner und Franz Effenberger*

Institut für Organische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80

Eingegangen am 20. April 1976

Bei der Umsetzung von 1,3,5-Tripyrrolidinobenzol (1) mit Alkyliodiden werden neben N-Alkylammoniumsalzen $3\mathbf{a} - \mathbf{c}$ isolierbare σ -Komplexe $2\mathbf{a} - \mathbf{c}$ gebildet. Für diesen ersten (geschwindigkeitsbestimmenden) Schritt der elektrophilen aromatischen Substitution ist sowohl durch die Formalkinetik wie durch die Reaktivitätsabstufung $CH_3 > C_2H_5 > CH(CH_3)_2$ (28.5:1.0:0.12) ein S_N 2-Mechanismus gesichert. Die Aktivierungsparameter für die Bildung des Methyl- σ -Komplexes $2\mathbf{a}$ sind ebenfalls charakteristisch für eine klassische S_N 2-Reaktion. Bei der Isopropylierung konkurriert ein S_N 1-Prozeß mit der bimolekularen Substitution. Benzylhalogenide dagegen geben ausschließlich C-Reaktion zu den σ -Komplexen $2\mathbf{e} - \mathbf{k}$; dabei wird unabhängig vom *p*-Substituenten (OCH₃ \rightarrow NO₂) nur S_N 2-Reaktion gefunden. Die Korrelation von lg *k* mit Hammettschen σ -Konstanten zeigt einen nicht-linearen Verlauf (bei insgesamt nur geringer Substituenten hängigkeit).

Aminobenzenes, XII^{1a)}

Alkylation of 1,3,5-Tripyrrolidinobenzene - Kinetics and Mechanism^{1b}

Upon reaction of 1,3,5-tripyrrolidinobenzene (1) with alkyl iodides, stable σ complexes $2\mathbf{a} - \mathbf{c}$ are formed besides quaternary N-alkylammonium salts $3\mathbf{a} - \mathbf{c}$. Both by the formal kinetics of the reaction and reactivity gradation $CH_3 > C_2H_5 > CH(CH_3)_2$ (28.5:1.0:0.12), an $S_N 2$ mechanism is established for this first (rate limiting) step of electrophilic aromatic substitution. Likewise, activation parameters characteristic of a typical $S_N 2$ reaction are found for the methyl σ complex formation (2a). In the case of isopropyl iodide, an $S_N 1$ process complexes ($2\mathbf{e} - \mathbf{k}$); the C-reaction proceeds solely by an $S_N 2$ mechanism independent of the *p*-substituent ($OCH_3 \rightarrow NO_2$). The correlation of $\lg k$ with Hammett's σ constants shows a non-linear relationship, with an alltogether small substituent dependency.

Im allgemeinen erlaubt die geringe Nucleophilie aromatischer Substrate die Reaktion mit Alkylierungsmitteln nicht ohne den Zusatz von Katalysatoren zur Steigerung des elektrophilen Potentials. Durch die aktivierende Komplexierung des Elektrophils wird damit jedoch gleichzeitig die

 ¹⁾ ^{1a} XI. Mitteil.: F. Effenberger, K. E. Mack, K. Nagel und R. Niess, Chem. Ber. 110, 165 (1977), vorstehend. – ^{1b} 3. Mitteil. über Konformation und Reaktivität bei elektronenreichen π-Systemen; 2. Mitteil.: P. Fischer, W. Kurtz und F. Effenberger, Chem. Ber. 107, 1305 (1974).

²⁾ Teilweise aus der Dissertation K. E. Mack, Univ. Stuttgart 1974.

Reaktion auf einen S_N 1-Mechanismus hin verschoben. Brown und Mitarb.³⁻⁵⁾ haben aus Konkurrenzreaktionen gerade unter solchen Bedingungen geschlossen, daß sich primäre und sekundäre Alkylhalogenide mit Aromaten nach S_N 2, tertiäre dagegen nach S_N 1 umsetzen. In anderen Fällen wurde bei vergleichbarer Aktivierung und unter ähnlichen Reaktionsbedingungen bereits für sekundäre Alkylierungsagentien ein S_N 1-Mechanismus gefunden⁶⁾.

1,3,5-Tripyrrolidinobenzol (1) hingegen, das reaktivste bislang bekannte Benzolderivat⁷⁾, setzt sich aufgrund seiner extrem hohen Nucleophilie bereits ohne Katalysatoren glatt mit Alkylhalogeniden um^{1a, 8)}. In 1 steht damit eine Modellverbindung zur Verfügung, die es erlaubt, unter analogen Bedingungen wie für aliphatische Substrate nun auch die direkte Reaktion von Aromat und alkylierendem Agens kinetisch zu verfolgen und mechanistisch aufzuhellen.

1. Die Produkte der direkten Alkylierung von 1,3,5-Tripyrrolidinobenzol (1)

Da bei der Kernsubstitution von 1 stabile σ -Komplexe 2 entstehen, läßt sich die σ -Komplexbildung als der für elektrophile Aromatensubstitutionen mit spätem Übergangszustand geschwindigkeitsbestimmende Schritt für 1 isoliert untersuchen, ohne daß (störende) Folgereaktionen wie Deprotonierung oder Zweitalkylierung berücksichtigt zu werden brauchten. (Man wird wohl mit Sicherheit davon ausgehen können, daß bei der Umsetzung von 1 mit Alkylhalogeniden, die nicht durch Friedel-Crafts-Katalysatoren aktiviert sind, der Übergangszustand für die Kernsubstitution relativ spät auf der Reaktionskoordinateliegt und die σ -Komplexbildung daher den geschwindigkeitsbestimmenden Teilschritt darstellt.)

Trotz seiner hohen C-Reaktivität liefert Tripyrrolidinobenzol bei der Umsetzung mit einfachen aliphatischen Alkyliodiden (Methyl, Ethyl, Isopropyl) ein Produktgemisch aus σ -Komplex (2a-c) und quartären N-Alkylammoniumverbindungen (3a-c); Allylbromid sowie unterschiedlich *p*-substituierte Benzylbromide dagegen reagieren mit 1 unter

	х	R		х	R
8	I	CH ₃	f	Br	p-CH ₃ -C ₆ H ₄ -CH ₂
b	Ι	C_2H_5	g	Br	C ₆ II ₅ -CH ₂
c	I	(CH ₃) ₂ CH	h	Br	p-Cl-C ₆ H ₄ -CH ₂
d	Br	CH ₂ =CH-CH ₂	i	\mathbf{Br}	p-NO ₂ -C ₆ H ₄ -CH ₂
e	Br	<i>p</i> -СН ₃ О–С ₆ Н ₄ –СН ₂	k	I	C ₆ H ₅ -CH ₂

³⁾ H. C. Brown und H. Jungk, J. Amer. Chem. Soc. 78, 2182 (1955).

- 6) A. Streitwieser und P. J. Stang, J. Amer. Chem. Soc. 87, 4953 (1965).
- ⁷⁾ F. Effenberger und R. Niess, Chem. Ber. 101, 3787 (1968).
- ⁸⁾ F. Effenberger, K. Nagel und R. Niess, Tetrahedron Lett. 1968, 4265.

⁴⁾ H. C. Brown und H. Jungk, J. Amer. Chem. Soc. 78, 2185 (1955).

⁵⁾ G. U. Choi und H. C. Brown, J. Amer. Chem. Soc. 85, 2596 (1963).

gleichen Bedingungen ausschließlich zu σ -Komplexen $(2d-i)^{1a}$. Auch intermediär lassen sich, wenn man die Reaktion NMR-spektroskopisch verfolgt, keine N-Benzylverbindungen 3 identifizieren: Eineeventuelle N-Reaktion müßte demnach rasch reversibel sein, und zudem müßte das Gleichgewicht 1 + RBr \leftrightarrow 3 weitgehend auf der Seite der Ausgangsverbindungen liegen.

Das Verhältnis 2/3 bleibt über die gesamte Reaktionszeit konstant und verändert sich auch für unterschiedliche Reaktionstemperaturen und selbst bei Umsetzung mit 80 fachem Überschuß an Alkylierungsmittel nicht signifikant (Tabb. 1, 2). Dies zeigt eindeutig, daß Kern- und N-Alkylierung hinsichtlich des Alkylhalogenids derselben Reaktionsordnung folgen. Nachdem die Entalkylierung der N-Alkylammoniumverbindungen 3 intermolekular über einen S_N2-Mechanismus verläuft^{1a}), ist nach dem Prinzip der mikroskopischen Reversibilität auch die Umsetzung von 1 mit Methyliodid zu 3a als S_N2-Prozeß gesichert. Bei der kinetischen Untersuchung der Alkylierung kann die Rückreaktion aufgrund ihrer wesentlich höheren Aktivierungsschwelle^{1a}) allerdings außer Betracht bleiben.

Tab. 1. Ausbeute und Produktverteilung bei der äquimolaren Umsetzung von 1 mit verschiedenen Alkylierungsmitteln RI (Komponenten jeweils ca. 0.1 M in absol. Ethanol)

n	Des dulats	Reaktionst	emp. 25 °C	Reaktionstemp. 78°C	
ĸ	Produkte	ReaktZeit (h)	Ausb. (%)	ReaktZeit (h)	Ausb. (%)
CH3	2a + 3a	18	56:24	2	70:30
C ₂ H ₅	2b + 3b	700	55:24	8	73:27
CH(CH ₃) ₂	2c + 3c	700	Spuren	16	90:10

Tab. 2. C/N-Produktverhältnis für die Umsetzung von 1 mit RI im Molverhältnis 1:80 in Acetonitril (30°С, Reaktionszeit 3 h, 0.01 м bezogen auf 1)

R	Produkte	Produktver experimentell um	hältnis (%) ger. auf 100% Umsatz
CH ₃	2a + 3a	73:27	73:27
C ₂ H ₅	2b + 3b	55:22	72:28
CH(CH ₃) ₂	2c + 3c	27:3	90:10

2. Kinetik der Umsetzung von 1 mit aliphatischen Alkyliodiden

Auf einen S_N^2 -Mechanismus für den nucleophilen Angriff des Tripyrrolidinobenzols am Alkylhalogenid deutet neben den bislang angeführten Befunden bereits eine qualitative Abschätzung der Reaktivität von RX^{1a}), die recht gut mit k_{rel} -Daten übereinstimmt, wie sie *Streitwieser*⁹⁾ für einen gesicherten S_N^2 -Prozeß angibt. Der kinetische Ansatz für die Umsetzung von 1 mit RX kann demnach primär gemäß einem S_N^2 -Mechanismus formuliert werden. Zur sicheren Bestimmung der Reaktionsordnung muß die Umsetzung jedoch über mehrere Halbwertszeiten hinweg verfolgt werden; für einen bimolekularen Prozeß bedeutet dies bei äquimolarem Ansatz sehr lange Reaktionszeiten (sechs Halbwertszeiten entsprechen 98.4% Umsatz) und damit eine vor allem gegen Ende erhöhte Gefahr von Fehlmessungen aufgrund störender Nebenreaktionen. Wir haben die kinetischen

⁹⁾ A. Streitwieser, Chem. Rev. 56, 571 (1956).

Messungen daher ausnahmslos mit einem hohen Überschuß an Alkylierungsmittel, d. h. als quasi-monomolekulare Reaktionen, ausgeführt. Eine NMR-spektroskopische Verfolgung der Kinetik verbietet sich dabei von selbst, zumal bei hohen Umsätzen die Intensitätsverhältnisse (z. B. 5:95) eine hinreichend genaue Integration der NMR-Signale nicht mehr zulassen. Bei einer UV-spektroskopischen Analyse dagegen ist die erforderliche Präzision selbst bei 10000 fachem RI-Überschuß und extremen Produktverhältnissen gewährleistet.

Die Elektronenspektren aller σ -Komplexe 2 sind durch drei Banden bei 245, 315 und 400 nm charakterisiert, deren molare Extinktion bei 20000-30000 liegt. Die 245-nm-Bande findet sich (mit verdoppelter Intensität) auch bei den N-Salzen 3 sowie beim Tripyrrolidinobenzol selbst; die mittlere Bande erscheint bei 3a - c gegenüber den σ -Komplexen zwar um etwa 10 nm zu längeren Wellen verschoben, in der Intensität jedoch auf ein Sechstel reduziert. Die langwellige Absorption ist damit allein für die Pentadienylium-Struktur charakteristisch, frei von Überlagerung durch Restabsorption anderer Banden; zugrunde liegt wahrscheinlich eine π - π *-Anregung in das freie nicht-bindende MO des C₅-Systems (Tab. 3).

Tab. 3. UV-Daten der σ-Komplexe 2a-c und der N-Alkylpyrrolidinium-Salze 3a-c sowie von Tripyrrolidinobenzol 1 (in CH₃CN, 20°C)

				λ _{max} [nr	n] $(\varepsilon_{max})^{a}$			
2a	244.5	(32400)	311.0	(33500)			399.0	(18450)
3a	246.0	(63600) ^{b)}			321.0	(5470)		
2 b	245.5	(31500)	314.0	(33000)			401.5	(17450)
3b	246.5	(65300) ^{b)}			322.5	(5520)		
2c	246.5	(30800)	317.5	(32100)			408.0	(15500)
3c	246.0	(62000) ^{b)}			324.0	(5430)		
1	244.0	(54800) ^{b)}			≈320	(≈2000)		

^{a)} Mittelwerte aus jeweils drei Bestimmungen an ca. 1.0×10^{-4} und 5.0×10^{-5} M Lösungen. ^{b)} Bestimmt an 2.5×10^{-5} M Lösungen.

An Testgemischen von 2 und 3 unterschiedlicher Zusammensetzung haben wir überprüft, daß aus der Extinktion der Bande bei 400 nm auch bei hohem Überschuß an Alkyliodid in der Meßlösung sicher auf die σ -Komplexkonzentration zurückgerechnet werden kann. Die längstwellige σ -Komplex-Absorptionsbande erfüllt somit alle Voraussetzungen, um an ihr die Bildung von 2 aus 1 und RI kinetisch zu verfolgen. Gleichung (1) gibt das allgemeine Reaktionsschema hierfür an:

$$N \stackrel{k_N}{\longleftarrow} RI + Pyr \stackrel{k_\sigma}{\longrightarrow} \sigma \tag{1}$$

([Pyr], $[\sigma]$ und [N] stehen im folgenden jeweils für die Konzentrationen an 1, 2 bzw. 3, die Indices sind die in der Reaktionskinetik allgemein gebräuchlichen.)

Aufgrund der Entalkylierungsbefunde^{1a)} ist nach dem Prinzip der mikroskopischen Reversibilität für die N-Alkylierung ein S_N2-Mechanismus gesichert; für die C-Reaktion lassen qualitative Messungen (s. o.) eine solche Annahme als gerechtfertigt erscheinen. Unter diesen Voraussetzungen ergibt sich a, der Quotient der Geschwindigkeitskonstanten für N- und C-Reaktion, direkt aus dem Produktverhältnis 3:2 (Gleichung (2)).

$$a = \frac{k_{\rm N}}{k_{\sigma}} = \frac{[{\rm N}]_{\infty}}{[\sigma]_{\infty}} = \frac{[{\rm Pyr}]_0}{[\sigma]_{\infty}} - 1$$
(2)

Das Geschwindigkeitsgesetz für die Konkurrenzreaktionen in Schema (1) lautet damit:

$$\frac{\mathrm{d}[\mathrm{Pyr}]}{\mathrm{d}t} = -(k_{\sigma} + k_{\mathrm{N}})[\mathrm{RI}][\mathrm{Pyr}] = -k_{\sigma}(1 + a)[\mathrm{RI}][\mathrm{Pyr}]$$
(3)

Bei quasi-monomolekularer Reaktionsführung ([RI] ist um $10^2 - 10^4$ mal höher als [Pyr]) ergibt die Integration von (3):

$$\ln \frac{[\operatorname{Pyr}]_{t}}{[\operatorname{Pyr}]_{0}} = -k_{\sigma}(1+a)[\operatorname{RI}]t$$
$$\ln \left[1 - (1+a)\frac{[\sigma]_{t}}{[\operatorname{Pyr}]_{0}}\right] = -k_{\sigma}(1+a)[\operatorname{RI}]t$$
(4)

Für den logarithmischen Ausdruck in (4) erhält man durch Einsetzen von (2)

$$1 - (1 + a) \frac{[\sigma]_{t}}{[Pyr]_{0}} = 1 - \frac{[\sigma]_{t}}{[\sigma]_{\infty}} = 1 - \frac{E_{t}}{E_{\infty}^{\alpha}}$$
$$\ln \left[1 - \frac{E_{t}}{E_{\infty}^{\alpha}}\right] = -k't$$
(5)

Die In-Funktion im integrierten Geschwindigkeitsgesetz (5) enthält nur noch Meßgrößen; die experimentelle Geschwindigkeitskonstante k' steht-für das Produkt $k_{\sigma}^{II}(1 + a)$ [RI]. k' wird nun für verschiedene Alkyliodid-Konzentrationen bestimmt, wobei [RI] in der Regel etwa über den Bereich einer Zehnerpotenz hinweg variiert wird. Durch Auftragen von k' oder von k'/(1 + a) gegen [RI] erhält man als Steigung der Korrelationsgeraden $k_{\sigma}^{II}(1 + a)$ bzw. direkt k_{σ}^{II} , d. h. die wahre bimolekulare Geschwindigkeitskonstante für die C-Alkylierung. Während das N/C-Produktverhältnis a zur Auswertung der einzelnen quasi-monomolekularen Kinetik nicht erforderlich ist, muß also zur Ermittlung von k_{σ}^{II} der Wert von a bekannt sein; er läßt sich nach Gleichung (6) aus dem Endextinktionswert für den σ -Komplex E_{∞}^{II} berechnen.

$$a = (\varepsilon^{\sigma} [\operatorname{Pyr}]_0 / E_{\infty}^{\sigma}) - 1 \tag{6}$$

3. Kinetik der Umsetzung von 1 mit aliphatischen Alkyliodiden – Ergebnisse

Als Lösungsmittel für die kinetischen Messungen haben wir in Analogie zu den NMR-Untersuchungen^{1a)} absol. Acetonitril gewählt. Um auch die Reaktion mit Isopropyliodid innerhalb vernünftiger Zeiten bis zu einem hinreichend hohen Umsatz verfolgen zu können, wurden für den Reaktivitätsvergleich $CH_3: C_2H_5: CH(CH_3)_2$ Umsetzungen bei 40°C herangezogen. Eine höhere Temperatur erschien wegen des hohen Dampfdrucks der Alkyliodide und wegen der Gefahr beginnender Entalkylierung gegen Ende der Reaktion nicht ratsam (gerade auf Fehler in den Meßwerten bei hohen Umsätzen reagiert k' besonders empfindlich).

Trägt man – gemäß Gleichung (5) – für eine bestimmte Umsetzung $\ln(1 - E_t^{\sigma}/E_{\infty}^{\sigma})$ gegen t auf, so fügen sich, wie Abb. 1 zeigt, die Punkte bis zu etwa 90 % Umsatz glatt einer linearen Beziehung; erst die Werte für höhere Umsätze zeigen eine stetig zunehmende Abweichung nach oben (bzw. in anderen Fällen nach unten): gegen Ende der Reaktion wird die Differenz $(1 - E_t/E_{\infty})$ immer kleiner, da der Quotient gegen 1 geht, so daß selbst ein geringer Fehler in der experimentellen Bestimmung von E_{∞} eine zunehmende Abweichung von der linearen Korrelation verursacht. Die o-Komplex-Endabsorption wird daher für jede Kinetik mit Hilfe einer Regressionsrechnung auf geringste Abweichung von der Linearität im $\ln(1 - E_t/E_{\infty})/t$ -Diagramm hin optimiert. (Die genaue Ausführung jeder Einzelkinetik sowie das Verfahren zur numerischen Optimierung sind im experimentellen Teil im Detail beschrieben.) Teilweise liegen die Punkte bereits beim direkt bestimmten Wert so gut, daß sich E_{∞} bei der Optimierung kaum mehr verändert. Doch selbst bei dem Beispiel in Abb. 1, wo die Abweichung ganz offenkundig ist, vermindert sich die Endabsorption lediglich von 1.216 auf 1.2006, d. h. noch innerhalb der Fehlergrenze für die UV-spektrometrische Intensitätsbestimmung. Das Diagramm zeigt zugleich, wie stark die Steigung einer nicht-optimierten Geraden davon abhängt, bis zu welchem Umsatz man die Meßwerte in die Korrelation mit einbezieht. Mit der numerischen Analyse dagegen läßt sich selbst ein Meßwert für 98.9 % Umsatz noch sicher und ohne subjektive Auswahlkriterien erfassen¹⁰⁾.

Abb. 1. $\ln(1 - E_t/E_{\infty})/t$ -Diagramm für die Umsetzung von 1 mit CH₃I in absol. CH₃CN bei 40°C ([1] = 0.9979 × 10⁻⁴ mol/Liter, [CH₃I] = 4.972 × 10⁻² mol/Liter, Molverhältnis ≈1:500): a) mit dem experimentell bestimmten Wert für die Endabsorption der langwelligen σ-Komplexbande (399.0 nm) E_{∞}^{σ} = 1.216 (+) b) mit dem optimierten Endabsorptionswert E_{∞}^{σ} = 1.2006 (°) [Steigung k' = (6.20 ± 0.03) 10⁻⁴ (s⁻¹)]¹⁰

¹⁰) Der hohe Regressionskoeffizient von 0.9998_8 und die engen Fehlergrenzen von $\pm 0.5\%$ spiegeln zwar nur die Güte der statistischen Auswertung und nicht die absolute Genauigkeit der Messung wider, doch haben wir auch für die Reproduzierbarkeit von k' bei gleicher RI-Konzentration $\pm 0.5 - 1.0\%$ gefunden (s. auch Tab. 8).

				5	5		
$[CH_31]$ $(10^{-2} \text{ mol/Lite})$	er) ^{nb)}	Umsatz (%)°)	r ^{d)}	$k' (10^{-4} s^{-1})$	a ^{c)} (3a/2a)	% 2a	
9.912	8	98.8	0.99993	12.40 ± 0.06	0.3907	71.9	
7. 9 43	10	98.2	0.9999 ₅	9.65 ± 0.03	0.4067	71.1	
6.463	12	99.5	0.99981	8.48 ± 0.05	0.4150	70.7	
4.972 ^{f)}	11	98.9	0.99988	6.20 ± 0.03	0.4479	69.1	

 $4.45_0 \pm 0.02_5$

2.473 + 0.007

Tab. 4. Quasi-monomolekulare Geschwindigkeitskonstanten k' (Gl. (5)) und N/C-Produktverhältnis für die Umsetzung von 1^{a)} mit CH₃I in absol. CH₃CN bei 40°C

^{a)} Konzentration von Tripyrrolidinobenzol 1 jeweils $\approx 1.0 \times 10^{-4}$ mol/Liter.

0.9998

0.99994

^{b)} Zahl der in die Regressionsanalyse einbezogenen Meßwerte.

97.6

94.9

^{c)} Umsatz an 1 beim letzten in der Auswertung erfaßten Meßpunkt.

^{d)} Regressionskoeffizient der linearen Regressionsanalyse.

^{e)} Berechnet aus [Pyr]₀ und E_{∞}^{σ} nach Gl. (6).

14

19

^{f)} S. Abb. 1.

3.484

1.987

Nach Gl. (5) ist die Steigung der Regressionsgeraden direkt gleich k'. Die so ermittelten k'-Werte für 40°-Umsetzungen von 1 mit Methyliodid bei verschiedenen RI-Konzentrationen sind in Tab. 4 zusammengestellt, desgleichen die nach (6) aus dem optimierten E_{∞}^{ϵ} und $[Pyr]_{0}$ berechneten *a*-Werte für das N/C-Produktverhältnis. Die Regressionskoeffizienten sind ausnahmslos besser als 0.9998, obgleich die Umsetzungen zumeist bis 98-99% Umsatz ausgewertet wurden: die Meßpunkte fügen sich also selbst nach sechs Halbwertszeiten noch glatt dem Geschwindigkeitsgesetz (5) ein. Die Werte für den Anteil des gebildeten σ -Komplexes 2a streuen etwas (70.1 \pm 1.1 %), doch ist zu berücksichtigen, daß bei dieser Art der Auswertung alle Einzelfehler (Konzentration, Temperatur etc.) in a konzentriert werden. Auf den ersten Blick scheint der σ -Komplex-Anteil mit steigendem [RI] zuzunehmen; dabei handelt es sich aber wahrscheinlich um ein Artefakt, da Messungen bei anderen Temperaturen für denselben RI-Konzentrationsbereich diesen Effekt nicht zeigen.

In Abb. 2a sind die modifizierten quasi-monomolekularen Geschwindigkeitskonstanten k'/(1 + a) (s. Tab. 4) gegen [CH₃I] aufgetragen; die Steigung der Korrelationsgeraden ist gleich der bimolekularen Geschwindigkeitskonstanten der σ -Komplexbildung k_{α}^{II} (Liter/mol s) bei 40°C. Da hierbei natürlich nicht optimiert wird und Einzelfehler, vor allem wohl in der Methyliodid-Konzentration, voll zur Wirkung kommen, ist die Korrelation weniger gut als bei der Bestimmung von k' direkt aus den Meßdaten, mit r = 0.9982aber immer noch ausgezeichnet. Die Ergebnisse dieser Rückrechnung auf k_{σ}^{II} sind in Tab. 5 zusammengefaßt.

Um bei der Umsetzung von 1 mit Ethyliodid in 6-8 h annähernd quantitativen Umsatz zu erreichen, muß die C_2H_5I -Konzentration etwa zehnmal höher gewählt werden als bei Methyliodid, was gut mit der NMR-spektroskopisch bestimmten Reaktivitätsabstufung übereinstimmt. Die Linearität der Korrelation zur Ermittlung von k' aus den Meßdaten nach Gl. (5), wiederum bis $\approx 99\%$ Umsatz, ist – sofern diese Feststellung bei derart hohen Regressionskoeffizienten noch sinnvoll ist - besser als für die CH₃I-Reaktionen; der S_N2-Mechanismus kann also auch für die Kern-Ethylierung als gesichert gelten. Der nach Gl. (6) berechnete Prozentsatz an σ -Komplex variiert zwar stärker als bei den Um-15 Chemische Berichte Jahrg. 110

0.4541

0.4444

187

68.8

69.2

setzungen mit Methyliodid, wobei [2b] mit steigender C_2H_5I -Konzentration abzunehmen scheint, doch liegt der Anteil an Ethyl-o-Komplex 2b im Mittel wie bei den präparativen Ansätzen^{1a)} etwas höher als für die Methylierung.

Tab. 5. Bimolekulare Geschwindigkeitskonstanten k_{σ}^{II} und N/C-Produktverhältnis für die Umsetzung von 1 mit aliphatischen Alkyliodiden RI in absol. CH₃CN bei 40°C

R	CH ₃	C ₂ H ₅	CH(CH ₃) ₂
[RI]-Bereich ^{a)} (mol/Liter)	$(1.987 - 9.912)10^{-2}$	$(1.940 - 8.985)10^{-1}$	(0.7934 - 1.3775)10°
m ^{a)}	6	7	3
ā ^{b)} ([N]/[σ])	0.4265	0.3859	0.2119 ^{d)}
% õ ^{b)}	70.1 ± 1.1	72.2 ± 2.0	82.5 ± 1.5^{d}
r ^{c)}	0.9982	0.9998	<u> </u>
k_{σ}^{II} (Liter/mol · s)	$(9.03 \pm 0.27)10^{-3}$	$(3.17 \pm 0.03)10^{-4}$	$(3.82 \pm 0.10)10^{-5}$
k ^{II} _{rel}	28.5	1.0	0.12

^{a)} Extremwerte der [RI]-Konzentration – bei insgesamt m quasi-monomolekularen Einzelkinetik-Meßreihen - für die Bestimmung der k'-Werte in Abhängigkeit von [RI].

^{b)} Mittleres N/C-Produktverhältnis bzw. mittlerer σ -Komplex-Anteil (%) für die m quasi-monomolekularen Kinetik-Meßreihen.

^{c)} Regressionskoeffizient für die Korrelation k'/(1 + a)/[RI] zur Bestimmung von k_0^{II} ; bei CH₃ und C_2H_5 ist als Fehler für k_{σ}^{II} die Standardabweichung für die Steigung der Regressionsgeraden angegeben, bei CH(CH₃)₂ die Abweichung vom arithmetischen Mittelwert. ^{d)} N/C-Produktverhältnis bzw. % σ -Komplex nur für die S_N2-Reaktion.

Abb. 2. k'/(1 + a)/[RI]-Diagramm für die Umsetzung von 1 mit CH₃I in absol. CH₃CN ([1] jeweils $\approx 1.0 \times 10^{-4}$ mol/Liter) a) bei 40.0 \pm 0.1 °C (O), b) bei 20.0 \pm 0.1 °C (\oplus)

Bei den Umsetzungen mit Isopropyliodid weichen die Punkte für die rohen Meßdaten im $\ln(1 - E_t/E_{\infty})/t$ -Diagramm von Beginn an vom linearen Verlauf ab. Wenn man den Wert für die σ -Komplex-Endabsorption E_{∞}^{α} wie oben beschrieben auf beste Linearität hin optimiert, so stellt man fest, daß das experimentelle E_{∞}^{α} um mehr als 25% erhöht werden müßte, um eine annähernd lineare Korrelation zu erreichen; dies kann keinesfalls mehr auf dem unvermeidlichen Fehler in der experimentellen Bestimmung von E_{∞}^{α} beruhen¹¹¹. Die Abweichung von der Linearität im second order plot (zu negativeren ln-Werten) steigt mit zunehmendem Umsatz – demnach wird mehr bzw. rascher σ -Komplex gebildet, als für einen bimolekularen Mechanismus zu erwarten wäre. Der gegenüber C₂H₃I nochmals verlangsamten S_N2-Reaktion ist also offensichtlich ein S_N1-Prozeß überlagert; damit ließe sich auch der, verglichen mit Methyl und Ethyl, deutlich höhere σ -Komplexanteil bei der Isopropylierung deuten, der bereits bei den präparativen Ansätzen aufgefallen war^{1a}). Das mechanistische Schema (1) wäre unter dieser Annahme wie folgt zu erweitern (7):

$$N^{II} \stackrel{k_{N}^{II}}{\longleftarrow} Pyr + (CH_{3})_{2}CHI \stackrel{k_{\sigma}^{II}}{\longrightarrow} \sigma^{II} \qquad (7)$$

$$\downarrow k_{\sigma}^{I}$$

Wie im experimentellen Teil gezeigt wird, läßt sich der kinetische Ansatz, der diesem Reaktionsschema entspricht, bei quasi-monomolekularer Reaktionsführung in geschlossener Form integrieren; für das Geschwindigkeitsgesetz ergibt sich als Steigung wie bei der ungestörten S_N2-Reaktion (Gl. (4)) $k_{\sigma}^{II}(1 + a)[RI]$. Der In-Ausdruck enthält allerdings noch das N/C-Produktverhältnis *a* für die bimolekularen Teilschritte sowie den Quotienten $k_{\sigma}^{I}/k_{\sigma}^{II}$ als unbekannte Größen. Mit einem "trial and error"-Verfahren gelingt es jedoch, diese beiden Größen so anzupassen, daß die experimentellen Extinktionswerte bis über 98 % Umsatz der angegebenen linearen Beziehung (exp. Teil, Gl. (19)) genügen (*r* jeweils > 0.9999).

Bei der sehr hohen Konzentration an Isopropyliodid, die für einen annähernd vollständigen Umsatz in 8–10 h erforderlich ist, kann [RI] nur mehr über einen schmalen Bereich variiert werden. Wir haben daher nur drei quasi-monomolekulare Kinetik-Meßreihen durchgeführt; die Geschwindigkeitskonstante k_{σ}^{II} für Isopropyliodid, die in Tab. 5 aufgeführt ist, wurde aus den einzelnen k'-Werten durch Division mit (1 + a)[RI] und anschließende arithmetische Mittelung erhalten. Trotz dieser vereinfachten Auswertung zeigen die k_{σ}^{II} -Einzelwerte ausgezeichnete Übereinstimmung; die Konstanten für die monomolekulare C-Alkylierung dagegen sinken von $8.6_5 \times 10^{-10} \text{ s}^{-1}$ bei einer Isopropylkonzentration von 0.8 mol/Liter auf $5.7_5 \times 10^{-10} \text{ s}^{-1}$ bei 1.4 mol/Liter, wahrscheinlich aufgrund des unterschiedlichen Ionisierungsvermögens der wechselnden CH₃CN/ (CH₃)₂CHI-Gemische.

¹¹⁾ Wenn man E^σ_∞ hinreichend hoch macht und die Meßdaten damit zu immer niedrigeren Umsätzen verschiebt, so kann man – eine in der Reaktionskinetik wohlbekannte Schwierigkeit – die Meßpunkte stets auf eine Gerade zwingen, gleich welche Reaktionsordnung tatsächlich vorliegt.

Nach den Befunden für die Isopropylierung ist bei der Umsetzung mit tert-Butyliodid mit einer völligen Verdrängung der S_N^2 - durch die S_N^1 -Reaktion zu rechnen. Durch die starke Base Tripyrrolidinobenzol wird dabei aus dem (CH₃)₃C[⊕]-Kation ein Proton eliminiert unter Bildung des H-o-Komplexes, so daß ein tert-Butyl-o-Komplex nie isoliert werden konnte^{1a)}.

Im folgenden sind unsere k_{n}^{II} -Werte relativen bimolekularen Geschwindigkeitskonstanten gegenübergestellt, die Brown und Mitarbb. für die Umsetzung von Alkyliodiden mit verschiedenen tertiären Aminen jeweils in Nitrobenzol als Lösungsmittel bestimmt haben^{12,13}). Diese Reaktionen sind sowohl hinsichtlich der Solvenspolarität wie von der sterischen und elektronischen Struktur des Substrats her am ehesten mit der Alkylierung von Tripyrrolidinobenzol zu vergleichen, die ja unter gleichzeitigem Angriff von RI am aromatischen C-Atom zum σ -Komplex und am Aminstickstoff ebenfalls zu quartären Ammoniumsalzen führt.

CH 3	C ₂ H ₅	$CH(CH_3)_2$
129	1.0	0.011
30	1.0	0.022
14.2	1.0	0.061
28.5	1.0	0.12
30	1.0	0.025
	CH ₃ 129 30 14.2 28.5 30	$\begin{tabular}{ c c c c c c c } \hline CH_3 & C_2H_5 \\ \hline 129 & 1.0 \\ 30 & 1.0 \\ 14.2 & 1.0 \\ 28.5 & 1.0 \\ 30 & 1.0 \\ \hline \end{tabular}$

Außer durch die Formalkinetik ist damit auch durch die Reaktivitätsabstufung ein S_N 2-Mechanismus für den ersten Schritt der elektrophilen aromatischen Substitution von 1,3,5-Tripyrrolidinobenzol mit Alkyliodiden (σ-Komplexbildung) gesichert. Der im Vergleich zu den zitierten Daten etwas zu hohe Wert für (CH₃)₂CHI ist möglicherweise auf die mathematisch nicht streng exakte Auswertung dieser Messungen (s. o.) zurückzuführen. Daß wir andererseits für die Isopropyl-Umsetzung bereits merkliche Beteiligung der S_N 1-Reaktion nachweisen konnten, macht für die Alkylierung weniger aktivierter Aromaten mit sekundären Halogeniden in Gegenwart von Friedel-Crafts-Katalysatoren einen über Carbeniumionen verlaufenden Mechanismus sehr wahrscheinlich.

Um die S_N 2-Alkylierung von Tripyrrolidinobenzol auch in ihrem Übergangszustand mit bekannten bimolekularen nucleophilen Substitutionsreaktionen vergleichen zu können, haben wir für die Methylierung zusätzlich die Aktivierungsparameter bestimmt. Dabei sind, wie oben ausgeführt, 40 °C als Obergrenze für eine analytisch-kinetische Verfolgung der Reaktion anzusehen; sofern die CH₃I-Konzentration in annähernd derselben Größenordnung gehalten werden soll, liegt aufgrund der starken Temperaturabhängigkeit die untere Schwelle bei etwa 20°C. Die Temperatur im thermostatisierten Küvettengehäuse wurde zwischen diesen Grenzen in 5°-Schritten variiert; die Ergebnisse sind in Tab. 6 zusammengestellt. (Da sie lediglich zu einer vergleichenden Betrachtung herangezogen werden sollen, erscheint das schmale Temperaturintervall vertretbar.) Für die Umsetzungen

¹²⁾ H. C. Brown und N. R. Eldred, J. Amer. Chem. Soc. 71, 445 (1949).

¹³⁾ H. C. Brown und A. Cahn, J. Amer. Chem. Soc. 77, 1715 (1955).
¹⁴⁾ Diese k_{rel}-Daten wurden von Streitwieser⁹⁾ als Mittelwerte für eine Reihe unterschiedlicher S_N^2 -Reaktionen bestimmt; sie geben grob die erwartete Reaktivitätsabstufung für eine bimolekular verlaufende nucleophile Substitution an.

T (°C) 20.0 ± 0.1^{d_1} 25.0 ± 0.1^{d_1} 30.0 ± 0.1^{d_1} 35.0 ± 0.1^{d_1} 40.0 ± 0.1^{d_1} $[CH_3I]$ -Bereich * $3.991 - 14.06_5$ $4.974 - 50.18_2$ $1.975 - 9.887$ $1.998 - 9.906$ $1.987 - 9.906$ m^{a_1} 5 5 6 5 6 $\bar{a}^{b_1}([\mathbf{N}]/[\sigma])$ 0.4494 0.4503 0.4068 0.4122 0.4265 \circ_{α} $\bar{\sigma}^{b_1}$ 69.0 ± 0.5 69.0 ± 0.2 71.1 ± 0.4 70.8 ± 0.9 70.1 ± 1.1 r^{c_1} 0.9986 0.9999_8 0.9988 0.9997 0.9982 k_{σ}^n (10^{-3} Liter/ mol · s) (2.97 ± 0.09) (3.19 ± 0.01) (5.24 ± 0.13) (7.21 ± 0.10) (9.03 ± 0.16)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T (°C)	1 ^{d)} 25.	5.0 ± 0.1^{d}	30.0 ± 0.1^{d}	35.0 ± 0.1^{d}	40.0 ± 0.1
m^{a_1} 55656 $\bar{a}^{b_1}([\mathbf{N}]/[\sigma])$ 0.44940.45030.40680.41220.4265 ${}_{\alpha}^{\circ} \bar{\sigma}^{b_1}$ 69.0 ± 0.569.0 ± 0.271.1 ± 0.470.8 ± 0.970.1 ± 1.1 r^{c_1} 0.99860.9999 ₈ 0.99880.99970.9982 $k_m^{c_1}(10^{-3} \text{ Liter}/ mol \cdot s)$ (2.97 ± 0.09)(3.19 ± 0.01)(5.24 ± 0.13)(7.21 ± 0.10)(9.03 ± 0.10)	³ I]-Bereich ^{a)}) ⁻² mol/Liter)	.06 ₅ 4.97	74 – 50.18 ₂	1.975 - 9.887	1.998 - 9.906	1.987 - 9.912
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5		6	5	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[N]/[σ])	0.45	503	0.4068	0.4122	0.4265
$k_{\sigma}^{II} (10^{-3} \text{ Liter}/$ (2.97 \pm 0.09) (3.19 \pm 0.01) (5.24 \pm 0.13) (7.21 \pm 0.10) (9.03 \pm 0. mol·s)	ь)	69.0 0.99	0 <u>+</u> 0.2 999 ₈	71.1 ± 0.4 0.9988	70.8 ± 0.9 0.9997	70.1 ± 1.1 0.9982
	0 ⁻³ Liter/ ol · s)	09) (3.1	19 ± 0.01)	(5.24 ± 0.13)	(7.21 ± 0.10)	(9.03 ± 0.27)
$\ln k_{\sigma}^{II}$ -5.82 -5.75 -5.25 -4.93 -4.71	I	-5	5.75	- 5.25	-4.93	- 4 .71
$1/T (10^{-3}K^{-1})$ 3.411 3.354 3.299 3.245 3.193	$(10^{-3}K^{-1})$	3.35	54	3.299	3.245	3.193

bei 20 °C ist die Regressionsgerade zur Ermittlung von k_{σ}^{11} aus den quasi-monomolekularen Geschwindigkeitskonstanten k' in Abb. 2b wiedergegeben.

Tab. 6. Bimolekulare Geschwindigkeitskonstanten k_{σ}^{II} und N/C-Produktverhältnis für die Umsetzung von 1 mit CH₃I in absol. CH₃CN in Abhängigkeit von der Temperatur

^{a-c)} S. Fußnoten^{a-c)} zu Tab. 5.

^{d)} Die Auswertung der quasi-monomolekularen Einzelkinetik-Meßreihen für 20.0-35.0°C erfolgte analog zu dem für die Messungen bei 40 °C beschriebenen Verlahren (s. Tab. 4).

Im Arrhenius-Diagramm (Abb. 3) fällt lediglich der Wert für 25 °C etwas aus der linearen Korrelation heraus, obwohl bei seiner Bestimmung der weiteste CH₃I-Konzentrationsbereich überstrichen und der mit Abstand beste Regressionskoeffizient erzielt wurde

Abb. 3. ln k_{σ}^{II}/T^{-1} -Diagramm zur Bestimmung der Aktivierungsparameter für die Reaktion von 1 für 25°C)

(s. Tab. 6). – Die Standardabweichung für die Aktivierungsparameter¹⁵⁾ liegt aber noch innerhalb der Vertrauensgrenzen, wie sie für eine derart unprätentiöse Bestimmung anzusetzen sind. Zugleich zeigt die Gegenüberstellung mit den Daten, die *Brown* und *Eldred*¹²⁾ für die Umsetzung von Methyliodid mit Triethylamin angeben, auch für die Aktivierungsparameter eine weitgehende Übereinstimmung zwischen S_N2-Reaktionen von aliphatischen und aromatischen Substraten.

	$CH_3I + 1/CH_3CN$	$CH_{3}I + (C_{2}H_{5})_{3}N/C_{6}H_{5}NO_{2}^{12}$
E _a	11.1 ± 1.3	9.7 (kcal/mol)
$\Delta G_{293.2}^{*}$	20.6	(kcal/mol)
ΔS^{*}	- 34.5	-34.7 (cal/grad · mol)

4. Kinetik der Umsetzung von 1 mit Benzylhalogeniden

Wie die Reaktion mit Isopropyliodid zeigt, können bei der Umsetzung von 1 mit RX sterische Faktoren die bimolekulare Substitution so sehr verlangsamen, daß der S_N1-Mechanismus einen erheblichen Anteil am Gesamtreaktionsgeschehen gewinnt. Umgekehrt ist im Falle der Benzylhalogenide – aufgrund der besseren Stabilisierung des Carbeniumions – eine S_N1-Reaktion besonders begünstigt. Daher muß hier im Prinzip ebenfalls mit einem mit der S_N2-Substitution konkurrierenden oder gar überwiegenden S_N1-Prozeß gerechnet werden; die geringe Abhängigkeit der Reaktionsgeschwindigkeit vom *p*-Substituenten (NO₂ \rightarrow OCH₃) bereits bei kinetischen Vorversuchen macht jedoch deutlich, daß die Benzylierung entgegen den Erwartungen ausschließlich als bimolekulare nucleophile Substitution verläuft.

Die p-substituierten Benzyl- σ -Komplexe sind in Lösung wesentlich weniger stabil als die Alkylanaloga 2a-c; wir haben deshalb die entsprechenden Benzylbromide eingesetzt und die Reaktionen bei 20°C und in absol. Methylenchlorid durchgeführt, wo die Produkte sich weniger zersetzungsanfällig zeigen als in Acetonitril. Die kinetischen Meßreihen werden wiederum nach quasi-erster Ordnung ausgeführt, wobei aufgrund der höheren Reaktivität der Benzylhalogenide der Überschuß an Alkylierungsmittel erheblich niedriger gewählt werden kann (mit dem 20–120 fachen der Tripyrrolidinobenzol-Konzentration liegt er aber noch hoch genug für eindeutige quasi-erste Ordnung).

Daß bei den präparativen Umsetzungen von 1 mit unterschiedlich *p*-substituierten Benzylhalogeniden nur σ -Komplexbildung beobachtet wird^{1a}), kann entweder auf tatsächlich ausschließlicher *C*-Alkylierung beruhen oder aber auf einer rasch reversiblen *N*-Reaktion. Eine Übertragung des Benzylrestes von einem *N*-alkylierten auf ein freies Tripyrrolidinobenzol ist dabei wegen der extrem niedrigen Substratkonzentrationen unter den Bedingungen der UV-Kinetik (10^{-4} M) auszuschließen; eine Rückbildung von 1 und Benzylhalogenid andererseits würde sich – in Form eines vorgelagerten Gleichgewichts – im kinetischen Ansatz lediglich in einer Verminderung der freien Tripyrrolidinobenzol-Konzentration auswirken. Unter dieser Prämisse (*a* gleich oder nahezu gleich Null) vereinfacht sich das Geschwindigkeitsgesetz (4) für konkurrierende *N*- und *C*-Reaktion zu (8):

$$\ln(1 - [\sigma]_{t} / [\operatorname{Pyr}]_{0}) = -k_{\sigma}^{\mathrm{II}} [\mathbf{RX}]t$$
(8)

Bei ausschließlicher C-Reaktion zum σ -Komplex 2 ist $[Pyr]_0 = [\sigma]_{\infty}$; damit läßt sich (8) zu (9) bzw. (10) umformen.

¹⁵⁾ J. F. Bunnett, From Kinetic Data to Reaction Mechanism, S. 402 ff., in E. S. Lewis, Investigation of Rates and Mechanism of Reactions, Part I, IIIrd Edition (Techniques of Chemistry, Vol. VI), Wiley-Interscience, New York 1974.

$$\ln(1 - [\sigma]_t / [\sigma]_{\infty}) = -k_{\sigma}^{II} [RX]t$$
⁽⁹⁾

$$\ln(1 - E_t^{\sigma}/E_{\infty}^{\sigma}) = -k''t \tag{10}$$

Wie Gl. (5) enthält (10) außer der zu ermittelnden quasi-monomolekularen Geschwindigkeitskonstanten $k'' = k_{\sigma}^{II}[RX]$ nur noch Meßgrößen. Analog zu den Umsetzungen mit Methyl- und Ethyliodid wird das experimentell bestimmte E_{∞}^{σ} über eine lineare Regressionsanalyse auf beste Korrelation gemäß Gl. (10) optimiert. Die so ermittelten k''-Werte für die einzelnen Messungen sind in Tab. 8 (s. exp. Teil), die daraus über eine k''/[RX]-Korrelation gewonnenen Geschwindigkeitskonstanten k_{σ}^{II} für die bimolekulare Substitution in Tab. 7

Tab. 7. Bimolekulare Geschwindigkeitskonstanten k_{σ}^{II} für die Umsetzung von 1 mit *p*-substituierten Benzylhalogeniden R - C₆H₄ - CH₂X in absol. CH₂Cl₂ bei 20°C

x	(p)-R	$ \begin{bmatrix} R - C_6H_4 - CH_2X \end{bmatrix} - \\ Bereich^{a} \\ (10^{-3} \text{ mol/Liter}) $	m ²⁾	% Umsatz ^{b)}	۶ ^{۳ с)}	r ^{d)}	$k_{\sigma}^{\rm II}$ (10 ⁻¹ Liter/mol · s)
Br	NO ₂	5.004 - 11.996	6	98.4	13780 ± 40	0.9982	1.35 ± 0.04
	Cl	$3.941 - 10.02_2$	7	98.0	15650 ± 90	0.9927	1.80 ± 0.10
	Н	$3.993 - 10.98_8$	8	97.5	15350 ± 230	0.9981	0.640 ± 0.015
	CH3	$4.000 - 11.00_5$	7	98.3	15150 ± 90	0.9991	1.42 ± 0.03
	OCH ₂	2.053 - 6.993	8	98.4	15270 ± 200	0.9986	5.79 ± 0.13
1	Н	3.000 - 8.996	7	98.3	15350 ± 250	0.9954	5.11 ± 0.22

^{a, d)} S. Fußnoten^{a, c)} zu Tab. 5.

^{b)} $_{co}^{\circ}$ Umsatz beim letzten in die Regressionsrechnung zur Bestimmung der quasi-monomolekularen Geschwindigkeitskonstante k'' mit einbezogenen Meßpunkt (berechnet als $E_t^{\sigma}/\epsilon_{opt}[Pyr]_o \cdot d)$ – Mittelwert für die *m* Einzelbestimmungen.

e' "Optimierter" molarer Extinktionskoeffizient für die σ -Komplexe 2e - k (berechnet als $\varepsilon_{opt} = E_{\infty}^{opt} [Pyr]_{\sigma} \cdot d$ aus dem über die lineare Regressionsanalyse optimierten Endabsorptionswert E_{∞}^{σ}) – Mittelwert für die *m* Einzelbestimmungen.

zusammengestellt. In jedem Fall ist das Geschwindigkeitsgesetz für eine Reaktion zweiter Ordnung bis $\approx 98\%$ Umsatz ausgezeichnet erfüllt (Tab. 8). Aus dem optimierten Endabsorptionswert E_{∞}^{opt} läßt sich über

$$\varepsilon^{\sigma} = E_{\infty}^{\text{opt}} / [\sigma]_{\infty} d = E_{\infty}^{\text{opt}} / [\text{Pyr}]_{0}$$
(11)

der molare Extinktionskoeffizient für die verschiedenen Benzyl- σ -Komplexe berechnen. Bei diesem Verfahren werden alle Meßfehler zwangsläufig in ε^{σ} konzentriert; die Streubreite von ε^{σ} für die einzelnen quasi-monomolekularen Kinetik-Meßreihen ist daher ein Maß für die Genauigkeit unserer Messungen. Wie Tabb. 7 und 8 zeigen, sind die Schwankungen mit $\pm 1\%$ in der Tat nur sehr gering.

Elektronenabgebende Substituenten in *p*-Position verändern die Reaktivität der Benzylbromide gegenüber 1 nur wenig; so erhöht CH_3 die Reaktionsgeschwindigkeit um das 2.5 fache, OCH₃ etwa um den Faktor 9. *Streitwieser*¹⁶ gibt für gesicherte S_N2-Reaktionen folgende Abstufungen an:

¹⁶⁾ Lit.⁹⁾, S. 591 (Table 8).

Anilin + RBr/90% wäßr. Ethanol	$H \rightarrow CH_3$	2.48
RBr + Br $^{\Theta}$ /Glycoldiacetat	$H \rightarrow OCH_3$	6.2

Diese Übereinstimmung bestätigt nochmals den reinen S_N^2 -Charakter der Kernalkylierung von Tripyrrolidinobenzol. Noch deutlicher wird dies durch die Tatsache, daß auch elektronenabziehende Substituenten (Cl, NO_2) die Reaktion beschleunigen¹⁷⁾ (Tab. 7). Wie Swain und Langsdorf gezeigt haben¹⁸⁾, ergibt sich für bimolekulare Substitutionen in einem Hammett-Diagramm in der Tat häufig nicht lineare, sondern parabolische Korrelation.

Ein Vergleich der k^{II} -Werte für die Reaktion von 1 mit Methyliodid in Acetonitril und mit Benzyliodid in Methylenchlorid jeweils bei 20°C ergibt für das Verhältnis k_{benzyl}/k_{methyl} 170:1, während *Streitwieser* nur 4:1 angibt¹⁹. Ob dies auf dem Wechsel des Lösungsmittels beruht oder doch eine gewisse Partialladung im Übergangszustand widerspiegelt, läßt sich aufgrund unserer Befunde nicht entscheiden.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser Dank für die Förderung dieser Arbeit.

5. Experimenteller Teil

Für die UV-Messungen wurde ein Cary 14-Spektrometer benutzt, das mit einer getrennten Thermostatisierung (± 0.1 °C) für die Küvettenummantelung und für die Wände des Küvettenraums ausgerüstet ist; alle Messungen wurden in 10-mm-Küvetten mit Stöpselverschluß durchgeführt. Die eingesetzten Alkyl- und Benzylhalogenide sowie 1,3,5-Tripyrrolidinobenzol (1) wurden nach bekannten Vorschriften dargestellt und entweder bis zu konstantem Brechungsindex unter Stickstoff fraktionierend destilliert oder bis zu konstantem Schmelzpunkt umkristallisiert. Die Lösungsmittel CH₃CN und CH₂Cl₂ waren Uvasol-Qualität der Fa. Merck; die für die Messungen benötigten Mengen wurden zusätzlich jeweils über Nacht mit aktiviertem Molekularsieb Merck 3 bzw. 4 Å getrocknet.

Die Lösungen der Reaktanden (1 bzw. RX) wurden bei 20°C in der doppelten für die Messung erforderlichen Konzentration eingestellt (1 z. B. $\approx 2.0 \times 10^{-4}$ M); bei den konzentrierten Alkyliodidlösungen wurde dabei eine eingewogene Menge RI im Meßkölbchen mit Lösungsmittel aufgefüllt. Die Reaktionslösungen wurden durch rasches Mischen gleicher Volumina von Tripyrrolidinobenzol- und RX-Lösung zum Zeitpunkt t = 0, die zur Kompensation der Eigenabsorption des Alkyl- bzw. Benzylhalogenids benötigte Lösung für die Vergleichsküvette wurde durch Verdünnen der RX-Lösung mit dem gleichen Volumen reinen Solvens hergestellt. (Eine evtl. Volumenänderung beim Mischen der 2 $\times 10^{-4}$ M Lösung von 1 bzw. des reinen Solvens mit den schr viel konzentrierteren RX-Lösungen haben wir vernachlässigt.) Die Mischung erfolgte noch bei Raumtemp.; die Vergleichsküvette wurde aber jeweils 15 min vor Meßbeginn im Küvettenraum thermostatisiert.

Die Reaktionslösung wurde sofort nach dem Mischen in die Probenküvette gefüllt und in den Meßraum gebracht, so daß beim ersten Meßpunkt (t in der Regel 5-10 min) bereits annähernd thermisches Äquilibrium angenommen werden konnte.

Die optische Nullinie wurde – bei der jeweiligen Reaktionstemp. – mit RX-Lösungen im Referenz- und Probenstrahleingestellt, deren Alkylhalogenidkonzentration gleich der in den entsprechenden Reaktionslösungen war. Bei der kinetischen Verfolgung der einzelnen Umsetzungen wurden je-

¹⁷⁾ K. D. Holtz und L. M. Stock, J. Amer. Chem. Soc. 87, 2404 (1965).

¹⁸⁾ C. G. Swain und W. P. Langsdorf, J. Amer. Chem. Soc. 73, 2813 (1951).

¹⁹⁾ Lit.⁹⁾, S. 585 (Table 5).

weils die vollen UV-Spektren von 560 – 360 nm bzw. bei langsameren Reaktionen von 560 – 260 nm geschrieben, um das Maximum der langwelligen σ -Komplex-Absorptionsbande exakt erfassen sowie das Auftreten störender Nebenreaktionen an einer nicht mehr stetigen Änderung des Gesamtspektrums und/oder einer Abweichung bei isosbestischen Punkten sicher erkennen zu können.

Die experimentelle σ -Komplex-Endabsorption E_{∞}^{e} wird 4–6 h, nachdem keine Extinktionszunahme der langwelligen Bande bei ≈ 400 nm (s. Tab. 3) mehr festzustellen ist und demnach kein nennenswerter Umsatz mehr erfolgt, als Mittelwert aus je 3–5 Einzelmessungen bestimmt.

5.1. Kinetik der Umsetzungen von 1 mit Methyl- und Ethyliodid

Wird mit dem experimentell ermittelten E_{∞}^{σ} -Wert (s. o.) für die einzelnen Meßpunkte gemäß Gl. (5) $\ln(1 - E_t^{\sigma}/E_{\infty}^{\sigma})$ zur Zeit t_i berechnet und gegen die Zeit aufgetragen, so ergibt sich zumeist eine Abweichung von der Linearität (zu positiveren bzw. negativeren ln-Werten hin). Für alle Punkte, bei denen diese Divergenz noch eine stetige Zunahme mit steigendem Umsatz zeigt (s. Abb. 1), werden die E_t^{σ}/t -Wertepaare zur Bestimmung einer Regressionsgeraden mit einbezogen. Dann wird E_{∞}^{σ} zuerst in größeren, zum Schluß in Schritten von 0.0001 Extinktionseinheiten solange variiert, bis der beste (größte) Regressionskoeffizient für die lineare Regressionsrechnung erreicht ist. (Das gesamte Optimierungsverfahren haben wir für einen Tischrechner Wang 600-14 TP mit Magnetkassette programmiert und dadurch bis auf die Eingabe der Wertepaare E_t^{σ}/t weitgehend automatisiert.) Beim Auftragen der mit E_{∞}^{opt} ermittelten Punkte in einem $\ln(1 - E_t/E_{\infty})/t$ -Diagramm zeigt sich manchmal, daß ein Punkt relativ stark aus der linearen Korrelation herausfällt oder daß sich ein Punkt bei noch höherem Umsatz, der anfangs nicht berücksichtigt wurde, recht gut einfügt. In diesen Fällen wird mit dem geänderten Satz von Wertepaaren erneut optimiert.

In Tab. 4 sind für eine Reaktionstemperatur von 40 °C die quasi-monomolekularen Geschwindigkeitskonstanten k' für die Einzelmessungen, die man direkt als Steigung der (optimierten) Regressionsgeraden erhält, in Abhängigkeit von der RI-Konzentration zusammengestellt; sie stehen repräsentativ für alle RI-Umsetzungen (s. Tabb. 5, 6). Um über eine k'/[RI]-Korrelation aus k' die wahren bimolekularen Geschwindigkeitskonstanten k_{σ}^{II} zu bestimmen, wird noch das N/C-Produktverhältnis a für die jeweilige Einzelkinetik benötigt, das nach Gl. (6) aus E_{∞}^{opt} , der Tripyrrolidinobenzol-Anfangskonzentration [Pyr]₀ und ε^{σ} ermittelt werden muß. Da die Lösungen der beiden Komponenten 1 und RI jeweils bei 20 °C eingestellt werden, die Messungen jedoch meist bei höherer Temperatur, d. h. bei vergrößertem Lösungsvolumen und entsprechend verminderter Molarität erfolgen, muß jeweils ein "scheinbarer" molarer Extinktionskoeffizient ε' für die σ -Komplexe **2a** - c in Abhängigkeit von der Küvettentemperatur bestimmt werden (20-40 °C).

5.2. Kinetik der Umsetzung von 1 mit Isopropyliodid

Dem Reaktionsschema (7) für diese Umsetzung entspricht der kinetische Ansatz (12); durch Einführung des Quotienten *a* (Gl. (2)), der das Geschwindigkeitsverhältnis zwischen der bimolekularen N- und C-Reaktion angibt, und unter Berücksichtigung der faktischen Konstanz von [RI] bei quasi-monomolekularen Bedingungen läßt sich (12) zu (13) umformen und in dieser Form integrieren.

$$\frac{d[\mathbf{Pyr}]}{dt} = -(k_{\mathbf{N}}^{\mathbf{I}} + k_{\sigma}^{\mathbf{I}})[\mathbf{Pyr}][\mathbf{RI}] - k_{\sigma}^{\mathbf{I}}[\mathbf{RI}]$$
(12)

$$\frac{d[\operatorname{Pyr}]}{dt} = -k_{\sigma}^{\mathrm{H}}(1+a)[\operatorname{RI}]([\operatorname{Pyr}] + k_{\sigma}^{\mathrm{I}}/k_{\sigma}^{\mathrm{H}}(1+a))$$
(13)

$$\int_{[\operatorname{Pyr}]}^{[\operatorname{Pyr}]} \frac{d[\operatorname{Pyr}]}{[\operatorname{Pyr}] + k_{\sigma}^{l}/k_{\sigma}^{l}(1+a)} = -k_{\sigma}^{ll}(1+a)[\operatorname{RI}]\int_{0}^{l} dt$$
$$\ln([\operatorname{Pyr}] + k_{\sigma}^{l}/k_{\sigma}^{ll}(1+a)) = -k_{\sigma}^{ll}(1+a)[\operatorname{RI}]t + \ln([\operatorname{Pyr}]_{0} + k_{\sigma}^{l}/k_{\sigma}^{ll}(1+a))$$

$$\ln\left(\frac{[\operatorname{Pyr}]}{[\operatorname{Pyr}]_{0}} + k_{\sigma}^{\mathrm{l}}/k_{\sigma}^{\mathrm{ll}}(1+a)[\operatorname{Pyr}]_{0}\right) = -k_{\sigma}^{\mathrm{ll}}(1+a)[\operatorname{RI}]t + \ln(1+k_{\sigma}^{\mathrm{l}}/k_{\sigma}^{\mathrm{ll}}(1+a)[\operatorname{Pyr}]_{0}) \quad (14)$$

Wie im Falle einer reinen S_N 2-Reaktion ergibt sich $k_{\sigma}^{I}(1 + a)[RI] = k'$ als Steigung für das Geschwindigkeitsgesetz (14), zu dessen analytischer Lösung allerdings noch die unbekannte Größe [Pyr], mit dem experimentell alleine bestimmbaren E_t^{σ} verknüpft werden muß. Dies gelingt über die Stoffbilanz (17); die Konzentration an σ -Komplex, der über den S_N 1-Prozeß gebildet worden ist, zur Zeit t wird – bei Quasikonstanz von [RI] – gegeben durch

$$[\sigma]_{l}^{l} = k_{\sigma}^{l}[\mathbf{R}I]t \tag{15}$$

bzw.
$$E_t^{\sigma^1} = \varepsilon^{\sigma} k_{\sigma}^{I} [\mathbf{R}I] t$$
 (16)

$$[Pyr] = [Pyr]_0 - [\sigma]^{II} - [N]^{II} - [\sigma]^{I}$$
(17)

$$\frac{[\operatorname{Pyr}]}{[\operatorname{Pyr}]_{0}} = 1 - (1 + a) \frac{[\sigma]^{\operatorname{II}}}{[\operatorname{Pyr}]_{0}} - \frac{k_{\sigma}^{\operatorname{I}}[\operatorname{RI}]}{[\operatorname{Pyr}]_{0}} t$$

$$(1 + a) = 1 + \frac{[\operatorname{N}]^{\operatorname{II}}_{\infty}}{[\sigma]^{\operatorname{II}}_{\infty}} = \frac{[\sigma]^{\operatorname{II}}_{\infty} + [\operatorname{N}]^{\operatorname{II}}_{\infty}}{[\sigma]^{\operatorname{III}}_{\infty}} = \frac{[\operatorname{Pyr}]_{0} - [\sigma]^{\operatorname{II}}_{\infty}}{[\sigma]^{\operatorname{III}}_{\infty}}$$

$$\frac{[\operatorname{Pyr}]}{[\operatorname{Pyr}]_{0}} = 1 - \frac{[\operatorname{Pyr}]_{0} - [\sigma]^{\operatorname{II}}_{\infty}}{[\operatorname{Pyr}]_{0}} \frac{[\sigma]^{\operatorname{III}}_{\infty}}{[\sigma]^{\operatorname{III}}_{\infty}} - \frac{k_{\sigma}^{\operatorname{I}}[\operatorname{RI}]}{[\operatorname{Pyr}]_{0}} t$$
(18)

Einsetzen von (18) und von $[\sigma]^{II}/[\sigma]^{II}_{u} = E_t^{\sigma II}/E_{\sigma}^{\sigma II}$ in (14) liefert das Geschwindigkeitsgesetz für die Isopropylierungsreaktion gemäß Schema (7) in seiner endgültigen Form (19):

$$\ln\left(1 - \frac{\left[\operatorname{Pyr}\right]_{0} - \left[\sigma\right]_{\infty}^{l}}{\left[\operatorname{Pyr}\right]_{0}} \frac{E_{t}^{\sigma^{ll}}}{E_{\infty}^{\sigma^{m}}} - \frac{k_{\sigma}^{l}\left[\operatorname{RI}\right]}{\left[\operatorname{Pyr}\right]_{0}}t + k_{\sigma}^{l}/k_{\sigma}^{ll}(1+a)\left[\operatorname{Pyr}\right]_{0}\right) = -k't + \text{const.}$$
(19)

Bei der Auswertung der Meßdaten nach (19) sind wir wie folgt vorgegangen: Zuerst wird für den Proportionalitätsfaktor $\varepsilon^{\alpha}k_{\sigma}^{\dagger}[RI]$ in (16) ein bestimmter Wert, x_1 , angenommen, mit dem für jeden Meßpunkt (zur Zeit t_i) $E_t^{\sigma^{\dagger}}$ und hieraus $E_t^{\sigma^{\parallel}} = E_t^{\sigma} - E_t^{\sigma^{\dagger}}$ berechnet werden. In einem $E^{\sigma^{\parallel}}/t$ -Diagramm wird sodann graphisch auf $E_{\infty}^{\sigma^{\parallel}}$ extrapoliert. Da $[\sigma]_{\infty}^{\dagger} = (E_{\infty}^{\sigma} - E_{\infty}^{\sigma^{\parallel}})/\varepsilon^{\sigma}$ und $k_{\sigma}^{\dagger}[RI] = x/\varepsilon^{\sigma}$ ist und zudem $[Pyr]_0$ wie ε^{σ} (s. Tab. 3) ihrem Wert nach bekannt sind, lassen sich die beiden ersten Faktoren im ln-Ausdruck berechnen. Für den dritten und letzten Faktor dagegen, in dem primär das (unbekannte) Verhältnis $k_{\sigma}^{\dagger}/k_{\pi}^{\Pi}$ steckt, muß wiederum ein Zahlenwert, y, angenommen werden. Damit läßt sich für jedes $E_t^{\sigma^{\Pi}}$ der numerische Wert des ln-Ausdrucks ermitteln und für die Korrelation ln() gegen t die Regressionsgerade berechnen. Nun wird y solange variiert, bis eine optimale lineare Korrelation (maximaler Regressionskoeffizient) erreicht ist.

Soweit wurden x und y frei gewählt, doch sind beide Größen, wie Gl. (20) zeigt, in Wirklichkeit nicht unabhängig voneinander, sondern vielmehr über k', die Steigung der Regressionsgeraden, miteinander verknüpft.

$$k' \cdot y = \frac{k_{\sigma}^{\mathrm{II}}(1+a)[\mathrm{RI}] \cdot k_{\sigma}^{\mathrm{I}}}{k_{\sigma}^{\mathrm{II}}(1+a)[\mathrm{Pyr}]_{0}} = \frac{k_{\sigma}^{\mathrm{I}}[\mathrm{RI}]}{[\mathrm{Pyr}]_{0}} \stackrel{!}{=} \frac{x}{[\mathrm{Pyr}]_{0}\varepsilon^{\sigma}}$$
(20)

$$k' y [\mathbf{Pyr}]_0 \varepsilon^{\sigma} \stackrel{!}{=} x \tag{21}$$

x	(<i>p</i>)-R ($\frac{[RC_6H_4CH_2X]}{10^{-3} \text{ mol/Liter}}$.n ^{b)}	ε _{opt} c)	k'' (10 ⁻² min ⁻¹)	r ^{d)}	 Umsatz•۱
Br	NO ₂	5.004 6.505 7.518 9.975 10.499 11.996	22 18 19 15 13 15	13820 13720 13780 13740 13740 13850	$\begin{array}{c} 4.23 \pm 0.02 \\ 5.43 \pm 0.02 \\ 6.33 \pm 0.02 \\ 8.49 \pm 0.03 \\ 8.80 \pm 0.03 \\ 9.74 \pm 0.04 \end{array}$	0.9997 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999	98.3 98.5 98.6 99.6 96.5 99.1
Br	Cl	3.941 4.747 6.003 7.002 7.996 8.996 10.022	29 26 23 21 19 17 17	15720 15490 15600 15740 15660 15720	$\begin{array}{r} 3.59 \pm 0.01 \\ 3.75 \pm 0.01 \\ 5.46_{s} \pm 0.01_{s} \\ 6.10 \pm 0.02 \\ 7.86 \pm 0.04 \\ 8.73 \pm 0.02 \\ 9.79 \pm 0.03 \end{array}$	0.9999 0.9999 0.9999 0.9999 0.9998 0.9999 ₈ 0.9999 ₈	97.8 97.4 98.5 97.6 98.3 97.7 98.9
Br	Н	3.993 5.006 5.993 8.025 8.127 8.993 9.980 10.988	31 31 27 26 25 25 25 22 23	15570 15060 15580 15360 15230 15340 15340	$\begin{array}{c} 1.40_{0} \pm 0.00_{5} \\ 1.85_{5} \pm 0.00_{5} \\ 2.08 \pm 0.01 \\ 2.88 \pm 0.02 \\ 2.95_{0} \pm 0.00_{5} \\ 3.27 \pm 0.01 \\ 3.66 \pm 0.01 \\ 4.15 \pm 0.02 \end{array}$	0.9998 0.9998 0.9999 0.9996 0.9999 ₅ 0.9999 0.9999 0.998	96.8 98.0 97.4 97.1 97.2 98.1 97.0 98.1
Br	CH3	4.000 4.000 5.414 6.982 8.002 10.043 11.005	23 25 20 19 17 17 15	15190 15070 15240 15200 15180 15020	$\begin{array}{c} 3.59 \pm 0.02 \\ 3.51_5 \pm 0.01 \\ 4.74_5 \pm 0.01_5 \\ 6.35 \pm 0.03 \\ 7.00 \pm 0.03 \\ 8.70 \pm 0.08 \\ 9.53 \pm 0.06 \end{array}$	0.9998 0.9999 0.9999 0.9998 0.9999 0.9994 0.9997	97.3 97.6 99.1 98.4 98.2 99.2 98.5
Br	OCH3	2.053 2.997 3.503 4.000 4.992 5.512 6.009 6.993	20 16 20 12 15 15 15 15 12	15360 15260 15460 15150 15350 15050	$\begin{array}{c} 6.86 \ \pm \ 0.03 \\ 9.65 \ \pm \ 0.05 \\ 12.13 \ \pm \ 0.05 \\ 13.44 \ \pm \ 0.08 \\ 17.41 \ \pm \ 0.07 \\ 18.43 \ \pm \ 0.07 \\ 20.32 \ \pm \ 0.05 \\ 24.08 \ \pm \ 0.15 \end{array}$	0.9999 0.9998 0.9998 0.9998 0.9999 0.9999 0.9999 0.99995	98.5 99.5 98.3 97.9 97.1 98.9 98.8 98.8
I	Н	3.000 4.002 5.008 6.491 7.493 7.997 8.996	22 17 17 14 13 12 10	15370 15120 15450 15590 15270 15620	$\begin{array}{c} 9.23 \pm 0.02 \\ 12.46 \pm 0.04 \\ 16.25 \pm 0.05 \\ 18.75 \pm 0.05 \\ 23.6 \pm 0.2 \\ 24.6 \pm 0.2 \\ 27.9 \pm 0.3 \end{array}$	0.9999 0.99995 0.99995 0.99995 0.9997 0.9998 0.9996	98.8 97.8 98.9 99.0 98.4 97.2 98.3

Tab. 8. Quasi-monomolekulare Geschwindigkeitskonstanten k'' (Gl. 10) für die Umsetzung von 1^a) mit *p*-substituierten Benzylhalogeniden $R - C_6H_4 - CH_2X$ (20.0 ± 0.1 °C in absol. CH₂Cl₂)

^{a)} Konzentration von 1,3,5-Tripyrrolidinobenzol (1) jeweils $\approx 1.0 \times 10^{-4}$ mol/Liter.

^{b.d)} S. Fußnoten^{b,d)} zu Tab. 4.

c) "Optimierter" molarer Extinktionskoeffizient für die σ-Komplexe 2e-k, berechnet als ε_{opt} = E^{opt}/[Pyr]₀ · d aus dem über die lineare Regressionsanalyse für die einzelne Kinetik optimierten Endabsorptionswert E_∞^α. Da E_∞[∞] rechnerisch auf 0.0001 Extinktionseinheiten optimiert wurde, ergibt sich ε_{opt} im Prinzip ebenfalls auf fünf Stellen genau; die Angaben in der Tabelle sind aber auf volle Zehnerstellen abgerundet.

e) ${}_{0}^{\circ}$ Umsatz beim letzten in die Regressionsrechnung mit einbezogenen Meßpunkt, berechnet als $E_{t}^{\circ}/\epsilon_{opt} \cdot [Pyr]_{0} \cdot d$.

Daher wird man, wenn man den x-Wert, wie er sich nach (21) aus k' und y für die optimierte Gerade errechnet, mit dem tatsächlich zu Beginn der Analyse angenommenen Wert vergleicht, keine Übereinstimmung finden. Man muß somit einen neuen Wert x_2 (größer oder kleiner x_1) für $\varepsilon^{\sigma} k_{\sigma}^{l}[RI]$ wählen, die gesamte Prozedur wie beschrieben wiederholen und erneut das aus den Koeffizienten k' und y für die optimierte Regressionsgerade bestimmte x dem frei gewählten x_2 gegenüberstellen. Dabei wird sofort offenkundig, ob sich durch die Änderung $x_1 \rightarrow x_2$ die Diskrepanz zwischen angenommenem und zurückgerechnetem x-Wert vergrößert oder vermindert hat und in welche Richtung sich somit die weitere Anpassung bewegen muß.

Wir haben für jede der drei untersuchten Kinetik-Meßreihen x solange variiert, bis der primär zur Separierung von mono- und bimolekularer Reaktion angenommene Wert auf ± 1 % mit dem aus den Koeffizienten der Regressionsrechnung berechneten übereinstimmte. Dieses "trial and error"-Verfahren läßt sich als solches zwar nicht programmieren, aber dennoch mit vertretbarem Aufwand durchführen, weil für die einzelnen Umformungen wie für die Regressionsrechnungen jeweils der Tischrechner eingesetzt werden kann. Für die σ -Komplex-Endabsorption muß hierbei der experimentelle E_{∞}^{σ} -Wert ohne Optimierung übernommen werden; eine weitere Unsicherheit stellt die Annahme dar, daß die S_N 1-Reaktion ausschließlich zur σ -Komplexbildung führt. Trotz der ganz ausgezeichneten Korrelationen gemäß Gl. (19) sind daher die Vertrauensgrenzen für k_{0}^{π} bei der Isopropylreaktion mit Sicherheit erheblich weiter zu stecken als für die Umsetzungen mit Methyl- oder Ethyliodid.

5.3. Kinetik der Umsetzung von 1 mit Benzylhalogeniden

Durchführung und Auswertung dieser Reaktionen erfolgen genau wie bei Methyl- und Ethyliodid beschrieben. Eine unabhängige Bestimmung von σ -Komplex-Molarextinktionen entfällt jedoch, da ε^{α} für die Ermittlung von k_{μ}^{μ} nicht benötigt wird (s. Gl. (10)). Die über die Regressionsanalyse optimierten quasi-monomolekularen Geschwindigkeitskonstanten k'' für die Einzelmessungen sind in Tab. 8 zusammengestellt.

[162/76]