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Abstract. Fatigue load assessment of floating offshore wind turbines poses new challenges on the feasibility of
numerical procedures. Due to the increased sensitivity of the considered system with respect to the environmental
conditions from wind and ocean, the application of common procedures used for fixed-bottom structures results
in either inaccurate simulation results or hard-to-quantify conservatism in the system design. Monte Carlo-based
sampling procedures provide a more realistic approach to deal with the large variation in the environmental
conditions, although basic randomization has shown slow convergence. Specialized sampling methods allow
efficient coverage of the complete design space, resulting in faster convergence and hence a reduced number
of required simulations. In this study, a quasi-random sampling approach based on Sobol sequences is applied
to select representative events for the determination of the lifetime damage. This is calculated applying Monte
Carlo integration, using subsets of a resulting total of 16 200 coupled time–domain simulations performed with
the simulation code FAST. The considered system is the Danmarks Tekniske Universitet (DTU) 10 MW reference
turbine installed on the LIFES50+ OO-Star Wind Floater Semi 10 MW floating platform. Statistical properties
of the considered environmental parameters (i.e., wind speed, wave height and wave period) are determined
based on the measurement data from the Gulf of Maine, USA. Convergence analyses show that it is sufficient
to perform around 200 simulations in order to reach less than 10 % uncertainty of lifetime fatigue damage-
equivalent loading. Complementary in-depth investigation is performed, focusing on the load sensitivity and
the impact of outliers (i.e., values far away from the mean). Recommendations for the implementation of the
proposed methodology in the design process are also provided.

1 Introduction

The site-specific design (or site-specific design verification)
of floating offshore wind turbines (FOWTs) requires the
structure to withstand both the ultimate and fatigue limit
states (ULS, FLS). While ULS loads represent worst-case
scenarios that can be described by discrete combinations of
extreme environmental conditions, the fatigue evaluation is
more complex. This is due to the required consideration of
two major tasks:

1. Damage assessment through time–domain simulations.

Due to the simultaneous occurrence of wind, wave and
current loads as well as the complex structural interac-
tions of the components within the system (i.e., rotor–

nacelle assembly (RNA), tower, substructure and sta-
tion keeping system) and the fact that the system be-
havior changes with the wind speed due to controller
actions, simplified methods (i.e., uncoupling of turbine
and substructure or frequency domain analysis) are not
recommended for the fatigue damage assessment. In-
stead, fully coupled time–domain simulations are com-
monly performed for the fatigue evaluation in the certi-
fication process. For fatigue analysis on a system level,
rain flow counting and the Palmgren–Miner assump-
tion (Fatemi and Yang, 1998) are typically applied in
a post-processing step to determine the cumulated dam-
age on a considered component. Compared to bottom-
fixed offshore wind turbines the simulation time is in-
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creased due to (1) added complexity of hydrodynamics
(floating body and mooring system) and (2) increased
simulation time (3× 1 h rather than 6× 10 min simula-
tions is common due to the increased impact of the wave
environment).

2. Consideration of a complete characterization of the en-
vironment.

For fatigue load assessment it is not sufficient to cal-
culate the loads during extreme events only, as the na-
ture of fatigue is the accumulation of the damage over
time. This requires the consideration of all relevant load
scenarios over the expected lifetime of the system and
typically this means a thorough investigation of the en-
vironmental conditions of the considered site. Environ-
mental conditions that may affect fatigue loads of prin-
cipal FOWT components are

– wind direction, wind speed, turbulence intensity,
wind shear;

– wave direction, wave height, wave period;

– wind–wave misalignment, yawed inflow;

– current direction, current speed;

– ice, marine growth, etc.

It is clear that certain environmental conditions will
have a larger impact on the fatigue loading. However, it
is difficult to know this information a priori if no sensi-
tivity study is performed for the considered structure.
This can be carried out in several ways which consider
non-monotonous impact of independent parameters
such as decision trees, neural networks, chi-square
tests, regression analyses, variance-based analyses or
extended Fourier amplitude tests, as used in Kusiak
and Zhang (2010), Faerron Guzmán et al. (2018),
Müller et al. (2016), Hübler et al. (2017), and McKay
et al. (2014).

Compared to bottom-fixed offshore wind turbines
the sensitivity of the system with respect to environ-
mental conditions is increased, meaning that a larger
number of environmental conditions needs to be con-
sidered with a sufficiently high resolution. In particular
the importance of wave period and directionality is
increased.

With these requirements the basic problem for fatigue eval-
uation of floating wind turbines can be summarized with the
so-called curse of dimensionality: even though existing tools,
based on engineering models, are capable of calculating the
coupled structural loads of FOWT within a reasonable simu-
lation time, the sheer number of simulations that need to be
carried out in order to consider all possible events makes it
unfeasible to follow such a brute-force approach. As an ex-
ample, a resolution of 2 m s−1 for wind speeds is typically

required in design guidelines, leading to around 10 simu-
lations for this dimension. If we consider this to be a rea-
sonable resolution for each environmental dimension, the
number of simulations to be carried out would be, follow-
ing the formula nsim = 10nenvCond , 1000 simulations by only
considering the most relevant parameters: the wind speed,
the wave height and the wave period. This problem already
exists for the fixed-bottom offshore turbines and can lead to
conservative estimates of the environment, i.e., the so-called
lumping of load cases (Kühn, 2001) or the use of damage-
equivalent wave heights (Passon, 2015; Passon and Bran-
ner, 2016; Krieger et al., 2015), which have found their way
into common guidelines (Det Norske Veritas, 2014). The ap-
proach is also considered state of the art for floating wind
turbines (Ramachandran et al., 2017). Simplified approaches
impose a reduced environmental model on the design (typi-
cally wave periods are considered a function of wave heights,
which in turn depend on the wind speed) and hence may not
be able to represent the observed spread of loads of the real
turbine (Müller et al., 2016). In particular for floating wind
turbines, as described above, the longer simulation times and
the increased number of simulations increase the importance
of simplified approaches. However, due to the increased di-
mensionality of the problem, the use of simplified assump-
tions may lead to excessive conservatism or the overlook-
ing of important impacts of the environment on the struc-
ture. For a more accurate, fully probabilistic design an ap-
proach is required which considers the load uncertainties im-
posed by the varying environmental conditions. In Müller
and Cheng (2016) we indicated that a simple lumping of load
cases as performed in standard procedures may miss impor-
tant load variation which is observed on the real turbine. In
a follow-up presented in Müller et al. (2016) we showed that
the spreading of full-scale environmental fatigue loads can be
reproduced by state-of-the-art simulation tools when using
appropriate methods for the selection of the environmental
combinations. For the consideration of variations in environ-
mental conditions, two general approaches are possible.

1. Determine a representative set of environmental condi-
tions which represents the actual probabilistic environ-
ment with sufficient accuracy. The resulting represen-
tative set of loads can be used directly for the damage
evaluation. The Monte Carlo method applied in the form
of probability-based sampling best summarizes this ap-
proach. The initial idea of Monte Carlo integration is to
replace the continuous average by discrete approxima-
tions of the average (Robinson and Atcitty, 1999).

2. Establish a surrogate model based on a predetermined
set of environmental conditions, which describes the
load behavior of the considered system for all relevant
environmental conditions. From the surrogate model, a
Monte Carlo set resembling the occurrence probability
can be determined efficiently for the damage integra-
tion. The main task of this approach is to determine a
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response function through regression analysis. A chal-
lenge is the determination of relevant points for the re-
gression.

Some experience with both approaches has already been es-
tablished in the past: Graf et al. (2016) performed an in-depth
comparison between simple Monte Carlo sampling and grid-
based analysis. Choe et al. (2015) investigated new sampling
methods for reliability analysis with black box stochastic
simulation tools (e.g., FAST) of wind turbine loads. Stew-
art (2016) has looked into simplification methods for two
different floating wind concepts, investigating bin reduction
methods, probability-based sampling, surrogate models and
genetic programming. Further work on surrogate models was
performed in Zwick and Muskulus (2016) and Müller et
al. (2017), where simulations based on Latin hypercube sam-
pling (LHS) were used as input for neural network models.
Guanche et al. (2013) used a maximum dissimilarity algo-
rithm for design point selection and radial basis functions to
determine a surrogate.

While the problem of dimensionality in accurate fatigue
calculations has been addressed in different ways, a feasi-
ble universal procedure has not been presented up to this
point (i.e., robust, efficient and accurate for major float-
ing wind turbine components). In this way, suggested sam-
pling procedures typically lead to unacceptably large simu-
lation effort (especially with increasing dimensionality) and
proposed surrogate models are either lacking accuracy or
are tailored for a particular condition. The commonly used
binning–gridding approach of environmental parameters ei-
ther leads to a large simulation effort or overly conservative
design (which still requires substantial insight into the sen-
sitivity of component loads to different environmental con-
ditions that is obtained or documented by further simulation
studies).

To test a universal and feasible solution for accurate fa-
tigue calculation via Monte Carlo integration, this paper fo-
cusses on the determination of representative sets via sam-
pling techniques and in particular on so-called quasi-random
sampling. The general workflow is summarized in Fig. 1. As
described above, the bottleneck for the applicability of this
procedure is the large number of dimensions in the environ-
mental condition that need to be considered. In simulation
applications, this is typically mitigated by using stratified
(like LHS) or quasi-random sampling.

1.1 Monte Carlo integration

Fatigue damage assessment may be formulated as an integra-
tion problem, if the lifetime damage is defined as the accu-
mulated (or integrated) damage over all load events that oc-
cur in the systems’ lifetime. A continuous integration of the
damage then requires an analytical function of the system re-
sponse, which may be determined by regression analysis. In
this work, a numerical integration over the design space is

performed by using the approximation of the continuous in-
tegration as defined in the Monte Carlo method (Metropolis
and Ulam, 1949). The Monte Carlo integration replaces the
integral by averaging the results of discrete evaluation points:

s∫
[0,1]

f (x)dx ≈
1
N

N∑
i=1

f (ξi) , (1)

where ξi ε [0,1]s is each of the N random, independent sam-
ples in the s-dimensional unit hypercube. A transformation
with varying statistical distributions and ranges in each di-
mension is possible, which makes the method applicable for
FOWT fatigue calculations.

Two approaches exist to describe the convergence and er-
ror behavior for the Monte Carlo integration.

The first one is based on the variance of the integrand
f (ξi). Through the central limit theorem, the root mean
square error of the Monte Carlo method can be shown to be

σMC→
σ (f )
√
N

for N→∞, (2)

which shows the convergence rate of the Monte Carlo ap-
proach of N−1/2. The relation of the error variance to the
smoothness of the integrands has led to the variance reduc-
tion techniques such as importance sampling, LHS, stratified
sampling, etc. (Singhee and Rutenbar, 2010; Owen, 2013).

In a second approach, it can be shown that the root mean
square error of the Monte Carlo method behaves according
to the Koksma–Hlawka inequality (Wang, 2001):

s∫
[0,1]

f (x)dx−
1
N

N∑
i=1

f (ξi)≤ V (f )D∗N,s, (3)

where V (f ) is the Hardy and Krause variation of f (x) (i.e.,
the integral of the absolute value of the gradient of f ) and
D∗n is the star discrepancy of the random samples. The star
discrepancy is a measure of “the uniformity of distribution of
a finite point set” (Wang, 2001).

The useable implication from Eq. (3) is that point sets with
a small star discrepancy are preferable. Based on the goal of
finding low-discrepancy point sets, infinite sequences in the
s-dimensional hypercube space have been constructed in the
past. These lead to integration error bounds of the order of
O(N−1logsN ) and are weakly dependent on the dimension-
ality (Wang, 2001).

1.2 Quasi-random sampling

In this work, we will investigate the use of so-called quasi-
random sampling techniques for the determination of a rep-
resentative set of environmental conditions. The name quasi-
random results from the fact that the design points are taken
from sequences based on deterministic rather than random al-
gorithms (primary motivation is to reduce discrepancy rather
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Figure 1. Workflow for FOWT damage assessment via sampling techniques.

Figure 2. Exemplary presentation of samples based on Sobol se-
quences with sample sizes 10, 50 and 1000. Red dots highlight
points from the previous sample set.

than variance of the integrand). They have shown better per-
formance compared to LHS (Singhee and Rutenbar, 2010)
and allow adding samples one at a time (Romero et al., 2003),
which is useful for convergence studies. The quasi-random
sampling procedures covered here are the Sobol sequences
(Sobol, 1967), which can be described as low-discrepancy
sequences, discrepancy being a measure of the uniformity of
distribution of points across the unit hypercube. The algo-
rithm used is based on the MATLAB implementation based
on Bratley and Fox (2003). Figure 2 shows exemplary points
in a unit square with an increasing number of samples based
on the sampling implementation used in this work. Other se-
quences, such as Halton, Faure and Niederreiter sequences,
some of which perform better than Sobol and may also be
interesting in future applications, have been defined. The in-
terested reader is referred to Niederreiter (1992) for a more
detailed description of the definition of quasi-random se-
quences.

1.3 Considered system

The FOWT system considered in this study is the LIFES50+
public model of the Olav Olsen floater as presented in Yu
et al. (2018) and Pegalajar-Jurado et al. (2018); see Fig. 3.
It is designed for the DTU 10 MW reference turbine (Bak
et al., 2013), which is positioned on a redesigned tower. As
part of LIFES50+ efforts, platform and tower were designed
for the medium-severity site in the Gulf of Maine, which
is presented in Krieger et al. (2015) and Ramachandran et
al. (2017) and described in detail below.

Simulations are carried out with FAST8v12 by NREL, us-
ing blade element momentum theory for aerodynamic forces
and first-order potential-flow theory as well as Morison drag
forces for hydrodynamics. The linear potential-flow prob-
lem was solved for the equilibrium position (with a draft of
22 m) prior to the present work using the panel code AN-
SYS AQWA (ANSYS AQWA, 2018), resulting in the lin-
ear frequency-dependent hydrodynamic coefficients. Moor-
ing line forces are determined dynamically using NREL’s
lumped mass mooring line modeler MoorDyn. Regarding the
environmental conditions, the Kaimal spectrum and, for the
wave input, the JONSWAP spectrum were applied.

1.4 Considered environment

Environmental parameters are based on Site B (medium-
severity site, reference site: Gulf of Maine, USA) as pro-
vided by the design basis of LIFES50+ (Krieger et al., 2015).
Three environmental conditions are considered in this study:
wind speed, wave height and wave period. Wind and wave
data are taken from measurement data from the NOAA buoy
data network as was presented by Stewart et al. (2016).
Hub height wind speeds are calculated using the power law
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Figure 3. Sketch of the LIFES50+ public model of the Olav Olsen
floater as used in this study.

(Gomez et al., 2015) for the wind shear. Wind and wave di-
rections are assumed to be co-aligned. Turbulence intensity
is set according to IEC class C (International Electrotechni-
cal Commission, 2005). Hourly measurements were evalu-
ated between 2003 and 2015, resulting in an overall database
of 103 282 useable measurement points.

2 Simulation setup

2.1 Definition of sampling points

When using probabilistic samples, it is necessary to use a
probability model of the considered environment. In this
work, the samples are determined applying the idea of
the Nataf transformation (Der Kiureghian and Liu, 1986),
describing the environment by the linear correlation and
marginal distributions of the considered variables. While this
model may not be suitable for all sites, it is considered as ad-
equate here for determining the performance of the presented
procedure.

In a first step, n sample points in three-dimensional space
are defined based on the Sobol sequence as described above
and stored in the Matrix M ∈ Rn×3. This provides data in the
unit cube as shown in Fig. 4, left. In the next step, the quasi-
random data are transformed into standard Gaussian space by
using the inverse cumulative distribution function (CDF) of
a standard Gaussian distribution with zero mean µ= 0 and
unit standard deviation σ = 1 (Fig. 4, center).

N= φ−1(M) ∈ Rn×3 (4)

The new sample matrix N has the empirical correlation
matrix R ∈ R3×3. Subsequently, the environmental data are
evaluated for the three considered environmental conditions
wind speed, wave height and wave period. For this purpose,
the correlation matrix ρ ∈ R3×3 and the marginal distribu-
tions for each of the parameters are determined. Afterwards,
the Cholesky factorization can be applied for ρ and R to map
the correlation of the measurement data to the sampled data:

Figure 4. Exemplary definition of environmental sample points
based on 100 samples.

O= B−1AN ∈ Rn×3, (5)

where A ∈ Rn×3 and B ∈ Rn×3 are the upper triangle ma-
trices resulting from the Cholesky factorization of the cor-
relation matrices ρ and R, respectively. In the final step, the
marginal distributions of the measurement data are applied to
obtain the final sampling data points x′i ∈ Rn×1 by using the
cumulative distribution function for each of the parameters.

x′i = F
−1
i (φ (xi)), (6)

where xi are the sampled values from O, and F−1
i is the in-

verse marginal cumulative distribution function of the con-
sidered dimension (Fig. 4, right).

Figure 5 shows the resulting sampling data compared to
the baseline measurements and Fig. 6 indicates the distribu-
tion of samples across the considered environmental param-
eters. It is noted that some error is introduced in this step
due to the introduction of an environmental model (e.g., un-
realistically small periods for large wave heights). For the
current work, the environmental model is assumed accurate,
although other models may be more accurate (see, e.g., Graf
et al., 2016). Future studies need to determine the impact of
errors introduced due to environmental modeling.

2.2 Simulation settings

In this study a total of 5400 environmental points are used,
which are considered to be sufficient for the convergence of
the results (see, e.g., Graf et al., 2016; Müller et al., 2017).
For each environmental point, three different wind and wave
seeds are applied, resulting in a total of 16 200 simulations.
The total simulation length considered for each environmen-
tal point is set to 3 h (three seeds of 1 h simulation time each)
as required by the LIFES50+ design basis (Ramachandran et
al., 2017). Each seed is composed of a random wave field of
1 h length and a periodic wind seed of 10 min length, which
is repeated six times to obtain a 1 h long wind field. Using
repeated 10 min wind fields based on 10 min environmental
measurements leads to slightly conservative results, as the
10 min measured mean wind speed is assumed to be equal to
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Figure 5. Sampled environmental conditions and baseline measurements.

Figure 6. Histograms indicating marginal distributions of sampled
environmental conditions.

the hourly mean (however, the hourly mean should be lower
than the 10 min mean). A run-in time of 600 s is added to
each simulation in order to mitigate influences of transients
at the beginning of the simulations. In addition, wind-speed-
dependent initial conditions for the simulations (e.g., rotor
speed), are determined previously using still water condi-
tions. The considered run-in time is based on a previous in-
vestigation of the time series, the added use of initial condi-
tions and common values used in literature; see, e.g., Haid et
al. (2013). Note that some (possibly significant) uncertainty
is added to the obtained load response by using only a lim-
ited number of seeds. The resulting uncertainty from using
a limited number of wind and wave seeds is investigated in
Müller et al. (2018). Generally, any uncertainty can be com-
pensated for by considering a higher percentile (e.g., 75th) of
the considered seeds in order to obtain conservative results.
In this exemplary study, simply the mean value of the results
from the different seeds is used for the analysis. Also, com-
pared to state-of-the-art simulation, a much higher resolution
of both wind speed (0.1 m s−1) and wave height (0.1 m) is
possible and implemented; hence the simulation uncertainty
consideration is generally improved.

2.3 Post processing: damage-equivalent loads

For the considered locations (blade root flap-wise bending
moment, tower base fore–aft bending moment, leading fair-
lead tension), rain flow counting was applied to obtain the
distribution of the load amplitudes 1L for each time se-
ries and the Palmgren–Miner linear damage accumulation
law was used to calculate damage-equivalent load ampli-
tudes 1LDE (commonly known as damage-equivalent loads
or DELs) of the obtained 1 h time series:

1LDE, Simulation =

(∑ 1Lmi · ni

Nref, Simulation

) 1
m

, (7)

where 1Li are the load amplitudes of the time series pro-
cessed by rain flow counting, ni are the number of occur-
rences of the detected load cycles, Nref, Simulation is the refer-
ence cycle number applied for each simulation (set to 2×106

in this study) andm is the slope of the SN curve. In this study,
m= 4 was assumed for all evaluated positions. This may not
be adequate for all positions (in particular for composite ma-
terials typically m= 10 is used; Det Norske Veritas, 2013),
but is regarded as sufficient for the demonstration purpose of
the method.

After obtaining DELs for all the time series, the mean of
common seeds was determined in order to obtain represen-
tative DELs for each combination of environmental param-
eters. Finally a lifetime equivalent DEL may be calculated
based on all the considered samples:

1LDE, Lifetime =

(
Nref, Lifetime

Nref, Simulation

nsamples∑
i=1

1LmDE,i

) 1
m

, (8)

where Nref, Lifetime is the reference cycle number for the
full lifetime of the system. Nref, Lifetime is calculated by
weighting each simulation according to its relative occur-
rence probability over the entire lifetime: Nref, Lifetime =
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Figure 7. Histograms of simulated DELs for different positions.

wsim ·Nref, Simulation. When performing a Monte Carlo-type
evaluation, the weighting factor is given by the ratio between
simulation and overall lifetime, i.e., wsim =

1
nsamples

·
tlife

tsimulation
,

with tlife = 20 years in this study.
For more detailed DEL analysis, we may introduce the

sum of all contributing DELs,

SDEL =

nsamples∑
i=1

1LmDE,i, (9)

which may be regarded as the variable term of the DEL defi-
nition in this work. This value is later used for normalization
to investigate the impact of single large DELs on the lifetime
DEL.

3 Results

In this study, the evaluated positions are the single sim-
ulation and lifetime DELs (subscripts DE and DELT) for
the blade root flap-wise bending moment (1MDE, BRF and
1MDELT, BRF ) given in kN·m, the tower base fore–aft
bending moment (1MDE, TBFA and 1MDELT, TBFA) given in
kN·m and the fairlead tension of the leading mooring line
(1FDE, FL1T and 1FDELT, FL1T) given in newtons. The posi-
tions are considered to provide a good overview of the load-
ing across the overall system, with representative loads for
the main system components, i.e., the rotor–nacelle assem-
bly, the tower and the mooring line system.

Figure 7 shows a histogram of the resulting DELs from
the simulation study for the different load positions. It can
be observed that for both the tower base and the mooring
lines, converged statistics have been obtained (Fig. 7, cen-
ter and right; shape of histogram not expected to change by
adding additional simulations). For the blade root loads, the
controller has a significant impact with respect to the result-
ing distribution of DELs, which can be observed through
the large isolated peaks in the histogram (Fig. 7, left). All
three positions show distributions of the loading with mul-
tiple peaks. The origin of this is discussed further below as
well.

Using the resulting sets of DELs, the lifetime equivalent
DEL can be calculated as described above. In order to eval-

uate the convergence of the applied process, the number of
considered samples nsamples has been varied. The Sobol se-
quence allows us to consider only a subset of the complete
set of simulations while maintaining the good space-filling
properties of the sampling procedure. For this purpose, the
number of considered samples is reduced and the resulting
subsequence of considered samples is shifted along the origi-
nal Sobol sequence. The resulting data are processed through
a quasi-random bootstrap analysis based on all possible com-
binations available for each number of considered simula-
tions (resulting in 4920–5400 samples). The bootstrap anal-
ysis provides statistical information of the uncertainty of the
lifetime damage for different numbers of samples, and is pre-
sented in Fig. 8.

The results show a fast convergence of the lifetime DEL
calculation; with about 140 samples it is possible to obtain
a 99 % confidence limit within the 10 % error margin. As
mentioned further below, for the damage assessment, to be
below 10 % error a total of 200–500 samples are necessary,
depending on the considered component. The results also
show that an underestimation of the damage is slightly more
likely than an overestimation when considering a small num-
ber of samples (median below 1 for small number of consid-
ered simulations), which may result from the impact of large
DELs and could be of interest to investigate in a follow-up
study. However, a significant overestimation (> 10 % error)
is much more likely than a significant underestimation (first
percentile greater than 0.9 for all considered positions and
number of considered samples), which makes the procedure
conservative overall.

The number of required samples for fatigue load as-
sessment is roughly one order higher than common ap-
proaches for fatigue assessment, which would require a to-
tal of 48 samples (considering wind speeds from 4–20 m s−1

with 2 m s−1 resolution, one representative wave height per
wind speed and three representative wave periods per wave
height). This is however a minimum effort estimate which
also does not include consideration of a separate sensitivity
analysis, which is required with this approach.

Looking from the application perspective, a safety factor
would be required due to the possible underestimation of the
lifetime DEL. If the goal of the evaluation is to provide a
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Figure 8. Bootstrap analysis of resulting lifetime DEL with an increasing number of considered samples and simulations. Results are
normalized with the resulting value based on 5400 samples. Box plots indicate first and 99th percentile values (whiskers), 10th and 90th
percentiles (box frames), and median values (red lines). Grey boxes indicate results from individual evaluations (baseline data for statistical
evaluation).

Figure 9. First percentile (dashed lines) and 99th percentile
(straight lines) of the computed lifetime DEL for different load lo-
cations as a function of considered samples and simulations. Results
are normalized with the resulting value based on 5400 samples.

sufficiently conservative estimate of the lifetime DEL, 20
samples with a safety factor of 1.1 seem to be a reasonable
choice from the presented results. However, this could lead
to very conservative results, with estimated lifetime DELs up
to 30 % larger than the actual one. Thus, increasing the num-
ber of considered samples reduces the required safety factor
as well as the conservatism in the design.

Figure 9 shows the summary first and 99th load percentiles
for the different load locations, indicating both the required
safety factors (based on the first percentile) and the maxi-
mum possible overestimation (99th percentile) as a function
of considered samples.

An issue that arises is the origin for the uncertainty when
only a small number of samples are considered. This is quite
different for the different locations (i.e., from around 40 %
range for 1MDE, BRF up to almost 40 % for 1FDELT, FL1T)
and is closely linked to the most extreme DEL values that
were simulated (similar to large load values observed in mea-
surements). The reduced impact of these extreme values with
increasing number of simulations is further addressed in the
discussion section below.

4 Discussion

This section will address two topics which were highlighted
before:

1. influence of environmental parameters on the DEL dis-
tribution.

2. influence of large simulated DELs on the lifetime dam-
age value.
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Figure 10. Histograms of simulated DELs across different wind speed ranges for different load positions.

4.1 Impact of environmental parameters

As mentioned before, the distributions of the sampled DELs
in Fig. 7 indicate multiple peaks. Typically, multiple peaks
in distributions may originate from overlapping single-peak
distributions. Figure 10 shows histograms of the different po-
sitions after binning the data into three distinctive wind speed
regions. It is visible how different wind speed domains result
in a different single-peak load distribution across the whole
system. Fatigue assessment needs to be able to take this vary-
ing load behavior into account. Well-distributed samples are
able to capture this, while it is hard to predict analytically.

Additionally, the influence on the DEL from different en-
vironmental conditions can be investigated through scatter
plots as presented in Fig. 11. It is clearly visible how the in-
fluence of the wind speed is reduced with decreasing height
of the observed position (decreasing slope, Fig. 11, left col-
umn). On the contrary, the influence of the wave height in-
creases with decreasing height of the observed position (in-
creasing slope, Fig. 11, center column). No general trend of
impact of the wave period can be observed for any of the
observed positions.

However, distinctive DEL peaks are present at position-
specific wave periods. This has been investigated in a related
study, which was based on the same system and environment
but focused in particular on the sensitivity of DELs to dif-
ferent environmental conditions. Figure 12 shows the results
of this study regarding sensitivity to wave height and pe-

riod. The plots show that for large wave heights, distinctive
wave periods can lead to maximum fatigue loads. A closer
look on the hydrodynamics in Fig. 13 reveals the close con-
nection of this effect to the wave excitation magnitude. The
peak in the wave excitation magnitude is around the same pe-
riod as observed from the simulation results at the tower base
(i.e., 0.65 rad s−1 or 9.67 s). However, this period is not ex-
actly equal for the tower base and blades (around 7–8 s; see
Fig. 12) and in particular not for the observed mooring line
(around 5–6 s; see Fig. 12). This indicates that the increased
model fidelity in coupled time–domain simulations can lead
to a different period for maximum loads than the period de-
rived from the panel code frequency domain results suggest,
which are based only on the floating platform (neglecting the
RNA, tower and mooring lines). This effect is in particular
of interest for the state-of-the-art fatigue design approach, in
which particular periods, which are expected to lead to in-
creased loading, need to be selected in order to reach con-
servative results. The results from this study show that there
are periods that can lead to increased fatigue loading. These
periods are linked to, but not equal to, peaks from the hy-
drodynamic wave excitation of the platform. It was observed
that an analysis with unit waves of changing periods may
provide a correct indication of where the periods leading to
possible maximum loads are. They are position dependent
and are expected to be – as the hydrodynamic wave exci-
tation – direction dependent as well. Even though this ef-
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Figure 11. Scatter plots of simulation results showing influence of different environmental positions on the DEL at different positions.

fect does not have a significant influence on the loads shown
in this study, the importance of this effect may increase at
more severe sites, with larger waves. Fatigue analysis based
on well-distributed samples may be able to consider this ef-
fect by definition due to the high resolution for each envi-
ronmental condition. Grid-based procedures are only able to
capture this effect if the grid is given an adequate resolution,
which significantly increases the simulation effort. Simpli-
fied grids based on occurrence probability of certain wave
periods (e.g., considering three wave periods for each wave
height only) are likely to ignore this effect because they do
not take into consideration the component sensitivity to dis-
tinctive wave periods.

4.2 Damage contribution from high DEL events
(impact of outliers)

This section addresses the large damage contribution of large
DEL events. These are rare combinations of environmen-
tal variables which result in large DELs and thus effec-
tively may have an increased impact on the fatigue loading
than more likely events which appear more often but have a
much smaller damage contribution. The term outlier is cho-
sen here to highlight the very small probability of occurrence
rather than indicating an error (which sometimes is used in
analysis of measurement data). This is closely linked to the
Palmgren–Miner rule as summarized in Eq. (7). In it, the
DEL from a single event is elevated to the exponent of the
SN curve slope m before being included in the overall sum
of single DELs. This leads to a higher weighting of larger
DELs and lower weighting of events with a small DEL con-
tribution. This effect is investigated more closely here, as
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Figure 12. DEL contour plots for blade root flap-wise bending moment, tower base fore–aft bending moment and fairlead 1 tension.
Plotted for all load ranges and showing channel-specific excitation periods. Red dots indicate performed simulations. Results are obtained
independent of wind speed.

Figure 13. Wave excitation magnitudes for roll (X4), pitch (X5)
and yaw (X6) degree of freedom for the considered platform and
considered direction (Yu et al., 2017).

this can affect the applicability of the presented methodology
(due to the possibility of “missing” important (damaging)
events through the chosen sampling procedure). It is high-
lighted that based on the results presented above, there is no
evidence that such outliers can have a significant effect when
sufficiently large sample sizes are considered and this is elab-
orated further here below.

Following the definition for DELs in Eq. (7), the impact
of single events may be determined through normalizing the
single DELs with the overall sum of all the events, i.e., by
defining a normalized DEL-contribution variable:

C∗DE,i =
1LmDE,i

SDEL
. (10)

Note that the sum of all normalized DEL contributions∑
iC
∗

DE,i is equal to 1. C∗DE is useful to give an indication
of the relative contribution of a single DEL to the sum of
all DELs, which was defined as the variable part of the DEL
definition in Eq. (9). This simplification does not take into
account the summation rules for DEL values.

Additionally, we may define two DELs 1LDE,1,
1LDE,2 = f (1LDE,i), which are composed of a num-

ber of DELs 1LDE,i . Suppose that 1LDE,1 considers
an additional DEL with a large magnitude 1LDE,1 =

f (1LDE,i,1LDE, large). Then, the ratio between the DELs
is defined as

r1LDE12 =
1LDE,1

1LDE,2
=

(
1+

1LmDE, large

SDEL

) 1
m

. (11)

Note the similar expression of the second summand on the
right-hand side compared to the definition of a normalized
DEL in Eq. (10). Equation (11) lets us evaluate the impact of
a single large DEL on the lifetime DEL.

Based on these definitions, it is possible to analyze the im-
pact of large, singular DELs on the lifetime DEL with an
increasing number of considered samples and simulations.
For this purpose, the largest singular DEL from the results
was taken and added to the DEL sets of varying sample size.
Hence, the effect of considering an increasing number of
simulations could be evaluated. Figure 14 shows the accumu-
lation of normalized DEL contributions as defined in Eq. (10)
towards the full sum of contributions as described in Eq. (9)
(Fig. 14, left). In this plot, the contributions are sorted by size
(starting with the smallest contribution) and the accumulated
DEL contribution is plotted for increasing indices. This way,
the contribution of the final (largest) DEL becomes obvious:
it can be seen most clearly for nsim = 10, where adding the
final DEL leads to more than quadrupling of the accumulated
DEL (increase by 80 % when increasing the index from 9 to
10 or normalized index from 0.9 to 1.0). The relative contri-
bution of the largest DEL varies with the considered set of
chosen DELs. The statistics of this, dependent on the num-
ber of considered samples are shown in the next plot (Fig. 14,
center).

Now, the determined possible contribution to the sum of
DELs has to be evaluated taking into account the complete
definition of DEL as defined in Eq. (8). This can be carried
out by assuming a relative increase in the sum of DELs as
presented in Fig. 14, center, and evaluating the relative in-
crease in lifetime DELs according to Eq. (11). The inverse is

www.wind-energ-sci.net/3/149/2018/ Wind Energ. Sci., 3, 149–162, 2018



160 K. Müller and P. W. Cheng: Application of a Monte Carlo procedure for probabilistic fatigue design

Figure 14. Cumulative normalized DEL contribution (C∗DE,i ) for different numbers of considered simulations, exemplary results for one
sample (a), contribution of the largest DEL to the normalized DEL with increasing number of considered simulations, showing median,
10th and 90th percentiles (b), and impact of increase in the normalized DEL on lifetime DEL (c). Plots show results for tower base fore–
aft bending moment. Dotted lines indicate connection between center and right plot. Normalized DEL index used in the left plot to allow
showing varying number of DELs.

shown below (Fig. 14, right), in order to allow a visual trans-
fer of the results from the central plot to the right plot. It can
be seen that even though a single large DEL may lead to a
change of 20 % of the total sum of DELs, the effect on the
lifetime DEL is only around 5 %. Based on the results from
Fig. 14, with only 50 simulations it is sufficient to reach a
maximum impact of the largest DEL of 10 % (i.e., 10 % rel-
ative increase in DEL=> ca. 45 % increase in normalized
DEL=> ca. 50 simulations; see dotted lines in Fig. 14),
which is well within the uncertainty limits for simulation
studies on fatigue analysis. In order to mitigate any possi-
ble errors due to missing significant severe events, an addi-
tional safety factor may be applied. The decreasing impact
of large DELs with increasing number of considered simu-
lations explains the fast conversion of the lifetime DEL ob-
tained through the sampling procedure in this study. It also
indicates a quite robust behavior of damage towards extreme
(i.e., rare and severe) environmental conditions if a sufficient
number of samples are considered.

On a final note, it needs to be added that in this study, a
focus was put on investigating DELs and not the resulting
damage, which might be more interesting from an industrial
point of view. Due to the characteristics of the SN curve used
it can be shown that, considering the same component and
equal number of reference cycles, any increase in the DEL
has an effect on the final damage according to

D1

D2
=

(
1LDE,1

1LDE,2

)m
. (12)

Exemplary, a DEL increase of 5 % then leads to an in-
crease in damage of about 21.6 %. Hence, if looking at dam-
age contribution the results of this study have to be adjusted
accordingly and lead to a slower convergence. In Müller and
Cheng (2016), we obtained a damage uncertainty (range of
95 percentiles for different wind speeds) for fixed bottom
offshore fatigue simulations according to International Elec-
trotechnical Commission (2009) between 10 and 20 %. To

reach the same uncertainty in this study, 200–500 samples
are required (see Fig. 14, center).

5 Summary, conclusions and outlook

The present study shows a probabilistic fatigue analysis of
floating wind turbines based on Monte Carlo integration.
Based on the assumptions used in this work regarding sys-
tem setup and environmental modeling, the use of Sobol se-
quences as a quasi-random sampling method provides satis-
factory convergence of the lifetime damage estimate for the
analyzed load positions located in the RNA, tower and moor-
ing system. The applied sampling method inherently allows a
convergence study through the definition of the chosen low-
discrepancy sequence. This is a significant advantage over
stratified sampling methods like the well-known LHS which
require resampling for changing numbers of samples. The
uncertainty in lifetime DEL reduces rapidly, reaching a satis-
factory level between 100 and 200 samples (or 200–500 sam-
ples when considering overall damage). The knowledge of
the quantified uncertainty depending on the number of con-
sidered simulations may be used in the future for the defini-
tion of safety factors. This enables the designer the chance to
decide on (1) a fast approach, using a small number of simu-
lations with larger safety factors, or (2) a detailed approach,
using a large number of simulations with small safety factors.
In-depth analysis of the results shows the high potential for
design sensitivity studies. Also, the ability to consider vary-
ing importance of environmental parameters for different po-
sitions is given by the sampling procedure. The possibility
to consider the full spectrum of all relevant environmental
parameters is one major advantage of sampling procedures
compared to state-of-the-art procedures. The state-of-the-art
methods rely on arbitrary experience of the engineers with
respect to the most severe loading conditions and can lead
to inaccurate and inconsistent results. Results from sampling
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procedures may be treated similar to measurements, which
can lead to a more realistic representation of the system be-
havior. A minimum number of simulations is required in or-
der to reduce the potentially larger influence of extreme val-
ues that can lead to overestimation of lifetime damage. The
required number of samples found in this study lies well
within the limits of feasibility for fatigue load analysis and
may be accompanied by further safety factors if seen fit.
More experience is needed to achieve resilient safety factors
for different floaters and components, and number of simula-
tions, number and type of environmental conditions.

Further work will focus on more extensive fatigue evalu-
ations, taking into account more environmental parameters.
Furthermore, the quality of the environmental model and the
sampling procedure may be developed further. Sequential
sampling may be interesting to further reduce the simula-
tion effort without sacrificing the accuracy of the estimate.
Finally, the procedure needs to be applied for different load-
ing environments and FOWT systems in order to verify the
general applicability of the procedure.
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