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Abstract

This monograph deals with the description of mechanical systems having
finitely many degrees of freedom using the language of global differential
geometry. The mechanical systems may be explicitly time-dependent and
involve nonpotential forces. The focus is on the mathematically rigorous
formulation of the physical theory dealing with the aforementioned mechan-
ical systems with the objective to introduce the involved physical quantities
as well-defined mathematical objects.

The geometric presentation of the physical theory is erected upon a gen-
eralized space-time known as Galilean manifold. The state space of a
mechanical system is defined as an affine subbundle of the tangent bundle
of its associated Galilean manifold. The system’s motion is considered to be
an integral curve of a second-order vector field on the state space. With the
coordinate-free characterization of the motion in terms of second-order vec-
tor fields, differential forms appear on stage. A one-to-one correspondence
between second-order vector fields and action forms is established. Action
forms are differential two-forms with additional properties. The definition
of action forms and the derivation of this bijective relation relies on the ge-
ometry of double tangent bundles, in which vector bundle homomorphisms
and their differential concomitants play an important role.

A coordinate-free definition of forces is given and different geometric
interpretations are discussed. With the definition of kinetic energy and of
potential forces, the equations of motion are postulated in a coordinate-free
way using the action form of the mechanical system. Lagrange’s, Hamel’s,
and Hamilton’s equations become local representations of this postulate
in terms of a respective chart of the state space. Moreover, the connection
between action forms and the concept of virtual work is established. This
allows to obtain Lagrange’s and Hamel’s central equation. This variational
perspective is pursued by showing that motions characterized by an exact
action form satisfy Hamilton’s principle. For this purpose, a coordinate-free
definition of the action integral is given.

Finally, constraints are defined as distributions compatible with the time
structure of the Galilean manifold on which they are defined. Consequently,
the distinction between holonomic and nonholonomic constraints is made
using the Frobenius theorem.
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Zusammenfassung

Diese Monographie befasst sich mit der Beschreibung von mechanischen
Systemen mit endlich vielen Freiheitsgraden mittels globaler Differential-
geometrie. Die mechanischen Systeme dürfen explizit zeitabhängig sein und
können Nichtpotentialkräfte beinhalten. Das Hauptaugenmerk liegt auf der
mathematischen Durcharbeitung der zugrunde liegenden physikalischen
Theorie. Die benötigten physikalischen Größen werden als wohldefinierte
mathematische Objekte eingeführt.

Die geometrische Formulierung der physikalischen Theorie baut auf einer
verallgemeinerten Raumzeit auf, die als Galilei-Mannigfaltigkeit bekannt
ist. Der Zustandsraum eines mechanischen Systems wird als affines Un-
terbündel des Tangentialbündels der zugehörigen Galilei-Mannigfaltigkeit
eingeführt. Die Bewegung eines mechanischen Systems wird als Integralkur-
ve eines Zweitordnungsvektorfeldes auf dem Zustandsraum aufgefasst. Die
koordinatenfreie Charakterisierung von Bewegungen durch Zweitordnungs-
vektorfelder ermöglicht eine Beschreibung mit Hilfe von Differentialformen.
Eine eineindeutige Beziehung zwischen Zweitordnungsvektorfeldern und
sogenannten Wirkungsformen wird bewiesen. Wirkungsformen sind Zwei-
formen mit zusätzlichen Eigenschaften. Die Definition von Wirkungsformen
und das Aufstellen dieser bijektiven Beziehung basiert auf der Geometrie
von Doppeltangentialbündeln, in der Vektorbündelhomomorphismen und
deren differentielle Begleiterscheinungen eine zentrale Rolle spielen.

Kräfte werden koordinatenfrei definiert und verschiedene geometrische
Interpretationen werden diskutiert. Nach der Einführung der kinetischen
Energie und von Potentialkräften werden die Bewegungsgleichungen mit
Hilfe der Wirkungsform des mechanischen Systems auf eine koordinaten-
freie Weise postuliert. Die Lagrange’schen, die Hamel’schen und die Ha-
milton’schen Gleichungen sind als lokale Darstellungen dieses Postulates
bezüglich einer entsprechenden Karte des Zustandsraumes aufzufassen.
Ferner wird die Beziehung zwischen Wirkungsformen und dem Konzept
der virtuellen Arbeit untersucht. Dies führt sowohl zur Lagrange’schen
wie auch zur Hamel’schen Zentralgleichung. Diese variationelle Sichtweise
wird fortgesetzt indem gezeigt wird, dass eine Bewegung, welche durch eine
exakte Wirkungsform charakterisiert ist, das Prinzip von Hamilton erfüllt.
Hierfür wird das Wirkungsintegral koordinatenfrei definiert.

Schließlich werden Bindungen als mit der Zeitstruktur verträgliche Dis-
tributionen auf der Galilei-Mannigfaltigkeit des mechanischen Systems ein-

xi



Zusammenfassung

geführt. Folglich wird das Unterscheiden zwischen holonomen und nichtho-
lonomen Bindungen zu einer Anwendungen des Satzes von Frobenius.

xii



Introduction1
Die Technik kann ihre theoretischen
Bewegungsprobleme nicht nach
Belieben stellen, wie die rationelle
Mechanik ihre Übungsbeispiele.

— Karl Heun

This monograph deals with the mathematical description of mechanical
systems having finitely many degrees of freedom. The considered mechan-
ical systems may be explicitly time-dependent and involve nonpotential
forces.1 The focus lies on the presentation of a theory dealing with the
aforementioned mechanical systems in the language of contemporary dif-
ferential geometry. This approach allows the formulation of a theory for
finite-dimensional mechanical systems in which the involved physical quan-
tities are well-defined mathematical objects.

1.1. Motivation

Traditionally, the dynamics of finite-dimensional mechanical systems can be
attributed to the area of analytical mechanics which goes back to Lagrange
1788. For many years, analytical mechanics was a field of research for
mathematicians. Until the comprehensive treatment of the subject in the
book Hamel 1949, the research in mechanics appears to have been rather
uniform in the sense that the results have been published in one scientific
community.

At some point, engineers started with the aim of making the results from
analytical mechanics usable for technical applications. The resulting field is
referred to as technical mechanics (or engineering mechanics). The advent
of technical mechanics created a new branch of research activities carried
out by engineers. Roughly speaking, mathematicians worked on the math-
ematical foundations of the mechanical theory. Physicists were driven by
their interest to understand and describe physical effects that had not been
understood before. Engineers worked on finding an efficient way to system-
atically derive mechanical models for a broad range of technical applications.

1. A nonpotential force is a force that cannot be written as the derivative of a potential.
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Chapter 1: Introduction

With differential geometry, mathematicians developed a language that lends
itself perfectly to the description of physics. Einstein’s general theory of
relativity is a prominent example of a theory written in this language. The
efforts made by mathematicians to reformulate classical mechanics in the
language of differential geometry led to the field of geometric mechanics.
While geometric mechanics was driven by the motivation to make a progress
in mathematics, technical mechanics had the main objective to develop
mechanics in order to solve engineering problems thereby using results
from analytical mechanics. In this respect, the study of mechanical systems
composed of multiple rigid bodies revealed to be particularly fruitful.

The research activities in geometric and technical mechanics were not
only driven by diverging objectives, but also by scientists with a different
educational background. The consequence is that nowadays geometric
and technical mechanics have drifted widely apart by their underlying
mathematical language. Geometric mechanics is based upon contemporary
differential geometry, while the mathematics behind technical mechanics
dates back to the first half of the twentieth century. Both engineers and
mathematicians may encounter severe difficulties in assimilating the results
from geometric and technical mechanics, respectively. Engineers usually
receive only a shallow formation in mathematics such that it is a huge effort2

for them to get acquainted with differential geometry. Mathematicians
may master their own discipline, but they often ignore the needs arising
from practical applications. In the context of finite-dimensional mechanical
systems, these are the ability to treat problems involving nonpotential forces
and to describe systems that depend explicitly on time. Indeed, in the field
of geometric mechanics it is quite common to exclude time-dependence
and/or nonpotential forces from the beginning. This monograph tries to
bridge the divide between geometric and technical mechanics concerning
the description of finite-dimensional mechanical systems.

1.2. An overview of geometric mechanics

In order to give an overview of the different existing approaches in geomet-
ric mechanics, we boil the mathematical description of finite-dimensional
mechanical systems down to the study of second-order differential equations
of the form

𝐌(𝑡, 𝐱)𝐱̈−𝐡(𝑡, 𝐱, 𝐱̇) = 𝟎. (1.1)

2. This hurdle is also identified in Chapter 15 of Glocker 2001.
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1.2. An overview of geometric mechanics

If the mechanical system has 𝑛 degrees of freedom, then 𝐱=(𝑥1, … , 𝑥𝑛) is an
ℝ𝑛-tuple3 characterizing its position. The components 𝑥𝑖 = 𝑥𝑖(𝑡) are known
as generalized coordinates. They are real-valued functions that depend
on time 𝑡. The time-derivative 𝐱̇ of the position coordinates 𝐱 describes
the velocity of the mechanical system. Its acceleration is characterized by
the ℝ𝑛-tuple 𝐱̈ and 𝐌(𝑡, 𝐱) denotes the symmetric, positive definite mass
matrix, which may depend on the time 𝑡 and the position coordinates 𝐱. The
equation of motion (1.1) can be rewritten in first-order form

𝐱̇ = 𝐮,
𝐌(𝑡, 𝐱)𝐮̇ = 𝐡(𝑡, 𝐱, 𝐮).

(1.2)

Inspired by Newton’s second law, we call the function 𝐡(𝑡, 𝐱, 𝐮) a force until
we give a precise definition in Section 4.7. The forces may be split into three
terms as

𝐡(𝑡, 𝐱, 𝐮) = 𝐠(𝑡, 𝐱, 𝐮)+𝐟p(𝑡, 𝐱, 𝐮)+𝐟np(𝑡, 𝐱, 𝐮),
where 𝐠 gathers the gyroscopic forces, 𝐟p contains the potential forces and
𝐟np stands for the remaining part, which is referred to as ℝ𝑛-tuple of non-
potential forces. At this stage the reader should not stumble across the
velocity-dependence of 𝐟p. We will see in Section 4.9, that a certain type of
velocity-dependent forces may be included in the description using a vector
potential.

In geometric mechanics, authors often limit their study to mechanical
systems that do not depend explicitly on time and/or to systems that comprise
only a certain type of potential forces. The mathematical consequence is
that the resulting theory is formulated on different mathematical spaces.
In the following, we try to give an overview on different existing approaches
by squeezing the respective equations of motion into matrix notation. We
start with time-independent systems.

Time-independent mechanical systems

For mechanical systems that do not depend on time explicitly, the equations
of motion (1.2) reduce to

𝐱̇ = 𝐮,
𝐌(𝐱)𝐮̇ = 𝐡(𝐱, 𝐮),

(1.3)

with
𝐡(𝐱, 𝐮) = 𝐠(𝐱, 𝐮)+𝐟p(𝐱)+𝐟np(𝐱, 𝐮).

3. The ℝ𝑛-tuples in (1.1) have to be read as column vectors according to Appendix A.

3



Chapter 1: Introduction

Figure 1.1.: Example of a pendulum consisting of a point mass 𝑚 which
moves at distance 𝑙 around the point 𝑂. The unit circle 𝑆1 can
be considered as its configuration manifold. The velocities are
represented by tangent vectors to 𝑆1. The angle 𝑥 between the
massless rod of the pendulum and the vertical is a generalized
coordinate, which locally describes the circle.

It is well-known4 that the kinetic energy of such a time-independent
system has the form

𝑇 = 1
2𝐮T𝐌(𝐱)𝐮, (1.4)

with a symmetric, positive definite mass matrix 𝐌 = 𝐌(𝐱) that may depend
on the position 𝐱. It is common to denote the generalized coordinates by 𝐪
instead of 𝐱. They can be interpreted as being the local description of an
abstract space of positions. This space is assumed to be a differentiable
manifold 𝑄 and it is referred to as the configuration manifold of the mechan-
ical system because each point in 𝑄 corresponds to a different configuration
of the mechanical system. A standard example is given by the pendulum
from Figure 1.1, which consists of a point mass 𝑚 that moves in the plane
keeping a constant distance 𝑙 to the point 𝑂. We assume that this is realized
by hinging the mass to the point 𝑂 by a massless rod. The unit circle

𝑆1 ≔ {(𝑎, 𝑏) ∈ ℝ2 ∣ 𝑎2 +𝑏2 = 1}

can be considered as configuration manifold of the pendulum, i.e., 𝑄 = 𝑆1.
Indeed, each point of a circle can be uniquely related to one possible con-
figuration of a pendulum. The velocity of the point mass can be seen as
a tangent vector to the configuration manifold as suggested by the right-
hand side of Figure 1.1. We will see in Section 3.2, that at each point 𝑝 of
a differentiable manifold 𝑄 a vector space 𝑇𝑝𝑄 can be defined, called the
tangent space. It represents the abstract space of velocities at a given con-
figuration. We will see with Definition 3.19 that the idea of considering the
configuration manifold 𝑄 together with all these vector spaces can be made

4. See p. 266 in Hamel 1949.
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1.2. An overview of geometric mechanics

Figure 1.2.: The state space of a time-independent mechanical system is
given by the tangent bundle 𝑇𝑄 of its configuration manifold 𝑄.
For the pendulum from Figure 1.1, this space is denoted by 𝑇𝑆1

and it consists of the circle 𝑆1 as space of positions together
with all lines tangent to that circle as one-dimensional vector
spaces containing the velocities.

mathematically precise by defining the tangent bundle 𝑇𝑄 of the manifold
𝑄. The tangent bundle is said to be the state space of the mechanical system.
Figure 1.2 visualizes the tangent bundle of the configuration manifold 𝑆1 of
a pendulum.

In general, the mass matrix 𝐌 of a time-independent mechanical system
endows the configuration manifold 𝑄 with a Riemannian metric5 and the
kinetic energy (1.4) is a real-valued function 𝑇∶ 𝑇𝑄 → ℝ on the tangent bun-
dle of the configuration manifold. The definition of a Lagrangian 𝐿∶ 𝑇𝑄 → ℝ
of the local form

𝐿(𝐱, 𝐮) = 𝑇(𝐱, 𝐮)−𝑉(𝐱) = 1
2𝐮T𝐌(𝐱)𝐮−𝑉(𝐱) (1.5)

and the matrix notations from Appendix A allow us to write the equations
of motion (1.3) as

⎡⎢⎢⎢
⎣

𝜕2𝐿
𝜕𝐱𝜕𝐮 − 𝜕2𝐿

𝜕𝐱𝜕𝐮
T 𝜕2𝐿

𝜕𝐮𝜕𝐮

− 𝜕2𝐿
𝜕𝐮𝜕𝐮

T 𝟎𝑛×𝑛

⎤⎥⎥⎥
⎦

⎡⎢
⎣

𝐱̇
𝐮̇

⎤⎥
⎦

=
⎡⎢⎢⎢
⎣

𝜕𝐿
𝜕𝐱

T− 𝜕2𝐿
𝜕𝐱𝜕𝐮

T𝐮

− 𝜕2𝐿
𝜕𝐮𝜕𝐮

T𝐮

⎤⎥⎥⎥
⎦

+⎡⎢
⎣

𝐟np(𝐱, 𝐮)
𝟎

⎤⎥
⎦

. (1.6)

The real-valued function 𝑉(𝐱) in the Lagrangian (1.5) is a scalar potential
of the potential forces in (1.3) such that

𝐟p(𝐱) = −𝜕𝑉
𝜕𝐱

T

. (1.7)

5. See Section 3.10 for the definition.
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Chapter 1: Introduction

Because of the local form (1.5), the matrix

𝜕2𝐿
𝜕𝐮𝜕𝐮 = 𝐌(𝐱)

is regular and, therefore, the matrix on the left-hand side of (1.6) is the local
representation of a symplectic form.6

The dynamics of a time-independent mechanical system can equally well
be studied on the cotangent bundle7 𝑇∗𝑄 of the configuration manifold 𝑄.
This leads to a description of the mechanical system in terms of position and
momentum coordinates. The cotangent bundle is said to be the system’s
phase space. With a Hamiltonian 𝐻∶ 𝑇∗𝑄 → ℝ of the local form

𝐻(𝐱, 𝐩) = 1
2𝐩T𝐌−1(𝐱)𝐩+𝑉(𝐱) (1.8)

the equations of motion (1.3) can be expressed as

⎡⎢⎢
⎣

𝟎𝑛×𝑛 𝐈𝑛×𝑛

−𝐈𝑛×𝑛 𝟎𝑛×𝑛

⎤⎥⎥
⎦

⎡⎢
⎣

𝐱̇
𝐩̇

⎤⎥
⎦

=
⎡
⎢⎢⎢
⎣

−𝜕𝐻
𝜕𝐱

T

−𝜕𝐻
𝜕𝐩

T

⎤
⎥⎥⎥
⎦

+⎡⎢
⎣

𝐟np(𝐱, 𝐩)
𝟎

⎤⎥
⎦

. (1.9)

Again, we observe that the matrix on the left-hand side of (1.9) respresents a
symplectic form. This is not astonishing because we will see that the tangent
and cotangent bundles of a Riemannian manifold 𝑄 are isomorphic8 bundles.
As before, the real-valued function 𝑉(𝐱) in the Hamiltonian (1.8) is a scalar
potential such that the potential forces are given by (1.7). The restriction to
time-independent mechanical systems allows a geometric treatment of the
subject within the field of symplectic geometry.

For completeness, we note that there exist alternative approaches to
symplectic geometry that can be used for the geometric description of time-
independent mechanical systems. The Levi-Civita connection associated
with the Riemannian metric defined by the mass matrix 𝐌(𝐱) can be used to
define the equations of motion in a coordinate-free way. For this approach we
refer the reader to Bullo et al. 2004 and references therein. An alternative
view on the Lagrangian picture results from choosing Hamilton’s principle9

as starting point for the description of time-independent mechanical systems
involving only potential forces. See for example Section 19 in Arnold 1989
or Theorem 3.8.3 in Abraham and Marsden 1987.

6. Symplectic forms on a differentiable manifold are introduced in Section 3.10.
7. The cotangent bundle of a differentiable manifold is defined by Definition 3.20.
8. See Sections 3.4 and 3.10 as well as equation (3.71).
9. Hamilton’s principle is also known as principle of stationary action.
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1.2. An overview of geometric mechanics

A comparison of equations (1.6) and (1.9) shows that the Hamiltonian for-
mulation appears easier. Indeed, the symplectic form that is represented by
the constant matrix on the left-hand side of equation (1.9) is the canonical10

two-form on the cotangent bundle 𝑇∗𝑄, while the symplectic form on the
tangent bundle 𝑇𝑄 depends on the choice of a Lagrangian. Therefore, the
Hamiltonian side is often preferred to the Lagrangian picture because of its
brevity and “mathematical elegance”.11

In the local expressions (1.6) and (1.9), the nonpotential forces stand on
the right-hand side. These forces can be defined in a coordinate-free way12

as so-called semi-basic differential forms on the respective bundle. However,
there are many authors that refrain from dealing with nonpotential forces.
The Hamiltonian and Lagrangian picture without nonpotential forces can be
found in Chapters 5 and 7 of Marsden et al. 1999, respectively. Alternatively,
the reader is referred to Chapter 3 of Abraham and Marsden 1987.

In the recent book Bloch 2015, the author claims in the preface that:
Mechanics has traditionally described the behaviour of free and interacting
particles and bodies, the interaction being described by potential forces. This
statement is not only highly questionable, but it implies severe restrictions
for the mechanical theory. As an example, we consider the damped harmonic
oscillator from Figure 1.3a. It consists of a block with mass 𝑚 that is attached
to a vertical wall by a spring with stiffness 𝑘 and by a damper with damping
coefficient 𝑐. The linear displacement of the block with respect to the wall
is described by the coordinate 𝑥. The spring is undeformed for 𝑥 = 0. Its
motion, which is governed by the second-order differential equation

𝑚 ̈𝑥+𝑐 ̇𝑥+𝑘𝑥 = 0, (1.10)

cannot be described within a time-independent geometric theory that ex-
cludes nonpotential forces. The examples from Figures 1.3b and 1.3c go
beyond the scope of the theory even with 𝑐 = 0 because of their explicit
time-dependence.

In classical books such as Hamel 1949 or in the famous work by Landau
and E. M. Lifshitz 1969, finite-dimensional mechanical systems may depend
on time explicitly. The author thinks that geometric descriptions of finite-
dimensional mechanical systems that are limited to the time-independent
case have to be seen critically because a modern presentation of a subject
should not have a reduced scope compared to more classical treatments.

10. See p. 84 for the definition of the canonical two-form on the cotangent bundle 𝑇∗𝑄.
11. See the introduction of Crampin 1983.
12. We refer to Chapters X and XI in Godbillon 1969 for a treatment of the subject on the

tangent bundle.
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(a) No excitation (b) Kinetic excitation 𝑓 (𝑡) (c) Kinematic excitation 𝑠(𝑡)

Figure 1.3.: Three examples of a damped harmonic oscillator (mass 𝑚,
spring stiffness 𝑘, and damping coefficient 𝑐).

Time-dependent mechanical systems

It is well-known that the questions of explicit time-dependence and the
appearance of nonpotential forces are related to the definition of the system
boundaries.13 Indeed, if all the bodies of the universe would be included
to the model, there would be no need to study (time-dependent) external
forces at all. The description of such a time-independent isolated system
would not require nonpotential forces in its description.

Souriau gives the following example. Studying the motion of a projec-
tile, air resistance can be taken into account as a velocity-dependent force.
But Souriau argues14 that the consideration of air resistance as a velocity-
dependent force acting on the projectile has to be seen as an empirical
approximation which is meant to replace a detailed study of the mechanics of
the atmosphere itself. This observation may be correct, but the exclusion of
these “empirical” types of forces, which are common in technical mechanics,
artificially reduces the scope of the theory. To underpin this viewpoint, let
us consider an example from automotive industry: the dimensioning of a
wheel suspension which cushions the shocks caused by potholes. This task
can be treated within classical mechanics if the hydraulic shock absorbers
that are typically used in such a construction can be approximated as being
linear dampers as in the example from Figure 1.3. A complete physical
modelling as suggested by Souriau would lead to a model involving fluid
mechanics. However, provided that velocity-dependent forces may be dealt
with, this engineering problem can be attacked by studying the solutions of
a linear ordinary differential equation such as (1.10).

A straightforward approach to incorporate explicit time-dependence is to
consider the extended state space given by the Cartesian product ℝ×𝑇𝑄
with the Lagrangian 𝐿(𝑡, 𝐱, 𝐮) depending explicitly on time or to extend the

13. See p. 9 in Arnold 1989.
14. See page 139 in Souriau 1997.
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1.2. An overview of geometric mechanics

phase space as ℝ×𝑇∗𝑄 with the Hamiltonian 𝐻(𝑡, 𝐱, 𝐩). With ̇𝑡 = 1, the
equations of motion (1.2) can be written as

⎡
⎢⎢⎢⎢⎢⎢
⎣

0 𝜕𝐿
𝜕𝐱 − 𝜕2𝐿

𝜕𝑡𝜕𝐮
T−𝐮T 𝜕2𝐿

𝜕𝐱𝜕𝐮 −𝐮T 𝜕2𝐿
𝜕𝐮𝜕𝐮

−𝜕𝐿
𝜕𝐱

T+ 𝜕2𝐿
𝜕𝑡𝜕𝐮 + 𝜕2𝐿

𝜕𝐱𝜕𝐮
T𝐮 𝜕2𝐿

𝜕𝐱𝜕𝐮 − 𝜕2𝐿
𝜕𝐱𝜕𝐮

T 𝜕2𝐿
𝜕𝐮𝜕𝐮

𝜕2𝐿
𝜕𝐮𝜕𝐮

T𝐮 − 𝜕2𝐿
𝜕𝐮𝜕𝐮

T 𝟎𝑛×𝑛

⎤
⎥⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢
⎣

1
𝐱̇
𝐮̇

⎤
⎥⎥⎥
⎦

= 𝟎

and
⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 −𝜕𝐻
𝜕𝐱 −𝜕𝐻

𝜕𝐩
𝜕𝐻
𝜕𝐱

T
𝟎𝑛×𝑛 𝐈𝑛×𝑛

𝜕𝐻
𝜕𝐩

T
−𝐈𝑛×𝑛 𝟎𝑛×𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢⎢⎢
⎣

1
𝐱̇
𝐩̇

⎤
⎥⎥⎥
⎦

= 𝟎, (1.11)

respectively. Equation (1.11) corresponds to the local expression of Theorem
5.1.13 in Abraham and Marsden 1987. Alternatively, it can be also found
on pp. 236–237 in Arnold 1989. Note that these descriptions do not include
nonpotential forces. Moreover, the physical interpretation of the spaces
ℝ×𝑇𝑄 and ℝ×𝑇∗𝑄 is problematic because their structure as Cartesian
product assumes the existence of an absolute space (independent of time).
The same holds for a formulation of the dynamics on 𝑇(ℝ×𝑄) or 𝑇∗(ℝ×𝑄).
The core assumption behind (generalized) space-time in classical mechanics
(in contrast to the relativistic case) is that we are able to distinguish whether
two events happen at the same time or not. As we will see, in time-dependent
mechanics a generalized space-time manifold 𝑀 can be used as underlying
space instead of a time-independent configuration manifold 𝑄.

The reader should be aware that there is no general agreement about
the terminology: state space, phase space, extended state space, and ex-
tended phase space. While we refer to the space ℝ×𝑇∗𝑄 as extended phase
space, the equivalent space 𝑇∗𝑄 × ℝ is called state space in Section 6.6
of Bishop et al. 1980. If we page forward in the mentioned reference, a
similar remark concerning the existing geometric approaches to the dy-
namics of finite-dimensional mechanical systems can be made. Indeed,
Proposition 6.7.1 formulates the mechanics of time-independent mechanical
systems on the space 𝑇∗𝑄×ℝ. With 𝑇∗𝑄×ℝ, Bishop et al. 1980 work on a
space that includes time. However, the authors present a theory limited
to time-independent mechanics because in their work neither the kinetic
energy, nor the forces may depend on time such that the resulting theory
does not include the description of time-dependent mechanical systems.

As suggested in Loos 1982, we formulate a mechanical theory for finite-
dimensional mechanical systems on a so-called Galilean manifold that was

9



Chapter 1: Introduction

introduced by Dombrowski et al. 1964a. This will allow us to deal with
potential and nonpotential forces. The resulting theory allows the descrip-
tion of time-dependent mechanical systems whose motion is governed by an
equation of the form (1.1). In particular, this means that the three examples
from Figure 1.3 can be described. The motion of the kinetically and the
kinematically excited oscillators from Figures 1.3b and 1.3c is respectively
governed by

𝑚 ̈𝑥+𝑐 ̇𝑥+𝑘𝑥 = 𝑓 (𝑡).

and
𝑚 ̈𝑥+𝑐 ̇𝑥+𝑘𝑥 = −𝑚 ̈𝑠(𝑡).

Some authors present a geometric blend of the time-independent with
the time-dependent case without giving much comments. In Talman 2007,
the kinetic energy is defined for time-independent systems on p. 106. In the
course of page 176, the time-dependence then silently creeps into the kinetic
energy and the Lagrangian. A similar approach can be found in the fifth
chapter of Scheck 2007, where the Lagrangian as well as the energy are
introduced in Sections 5.5.1 and 5.6.3, respectively, as real-valued functions
on the tangent bundle 𝑇𝑄 of a time-independent configuration manifold 𝑄.
However, the chart representations of these functions erroneously present
an explicit time-dependence (see p. 299 and p. 323 in Scheck 2007).

1.3. Aim and scope

The aim of this research monograph is threefold. First, it provides a geo-
metric description of finite-dimensional mechanical systems that does not
involve restrictive assumptions such as the limitation to time-independent
systems or the exclusion of nonpotential forces. The presented coordinate-
free treatment of finite-dimensional mechanical systems, which does not
involve restrictions that are considered too restrictive in the field of techni-
cal mechanics, should lead to a rapprochement of geometric and technical
mechanics as described in Section 1.1. Chapters 2 and 3, which introduce
the required mathematical objects, are written in the spirit of this objec-
tive. They should allow the reader to get acquainted with the mathematical
foundations of Chapter 4, which constitutes the core of this work.

Second, this work aims to introduce the involved physical quantities as
mathematically well-defined objects, starting with the notion of space and
time. The resulting “heavy” mathematical machinery pays off because we
are able to give a precise definition of forces in Section 4.7, which was
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identified by Hamel as the chief difficulty15 in mechanics.
Third, this work has the intention to unify some classical results about

finite-dimensional mechanical systems by deriving them from one com-
mon starting point (Postulate 4.8). These are in the order of appearance:
Lagrange’s equations (4.111), Hamel’s equations (4.150), Hamilton’s equa-
tions (4.162), the virtual work (4.183), Lagrange’s central equation (4.190),
Hamel’s central equation (4.192), and Hamilton’s principle (Section 4.11.3).
In the proposed mechanical theory Lagrange’s, Hamel’s, and Hamilton’s
equations are just different coordinate representations of the differential
equations that determine the motion of a given mechanical system. In the
usual presentations of time-independent mechanics, the Lagrangian and
the Hamiltonian side often appear as “separate” worlds.

Finally, as a byproduct, the geometric treatment of the subject allows us
to define constraints in a coordinate-free manner in Section 4.12 such that
the distinction between holonomic and nonholonomic constraints becomes
an application of the Frobenius theorem. This topic often led to confusion16

in the literature. Neĭmark et al. 1972 give an overview on the different clas-
sical approaches to describe finite-dimensional mechanical system involving
nonholonomic constraints.

1.4. Literature and its state

In Section 1.2, we tried to give the reader an overview of existing approaches
in geometric mechanics. We have already observed that different authors
differ by fundamental assumptions concerning the types of forces/systems
they study. Moreover, we observed strong differences in terminology. This
makes it a hopeless task to provide a meaningful overview on the available
literature on geometric mechanics by using the organization from Section 1.2.
Instead, we will present the literature that deals with the description of
time-dependent mechanical systems and comment about the underlying
results from differential geometry that cannot be considered elementary.

The main reference of this work, Loos 1982, is a typescript related to a
seminar that was held in the winter semester 1981/1982 by Ottmar Loos
and Josef Rothleitner at the university of Innsbruck in Austria. Since the
script was never officially published, it can only be found at an antiquarian
bookseller. The declared objective of the script, which is written in German,

15. In 1952, Hamel wrote in a letter to Truesdell that in the concept of force lies the chief
difficulty in the whole of mechanics. See pp. 523–524 in Truesdell 1984.

16. Wrong definitions of nonholonomic constraints can be found on p. 19 in Päsler 1968 and
p. 96 in Roberson et al. 1988. Section 2.2 of Papastavridis 2014 confronts the reader with a
terminological flood that does not ease comprehension.
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Chapter 1: Introduction

is to make the results known in the French school of mechanics available to
the German-speaking scientific community. However, the typescript written
by Loos is more than a mere translation. Besides other results, part of the
script is contained in the paper Loos 1985 that is written in English. Until
the publication of this work in 2019, the latter paper has been ignored.17

Because of the reduced availability of Loos 1982, the author was forced to
restate many of the results it contains.

In the retrospective, it is more than amazing in which way the French
school of mechanics systematically opened up the mathematical landscape
behind finite-dimensional mechanical systems. The general approach can
be traced back to Élie Cartan’s lectures on integral invariants (Cartan 1922).
The work of Gallissot 1952, suggests to characterize the motion of finite-
dimensional mechanical systems using differential two-forms. Including
the study of bilaterally and unilaterally constrained mechanical systems,
Gallissot demonstrates that the use of differential two-forms leads to a
far-reaching approach in the description of finite-dimensional mechanical
systems. By his “Maxwell’s” principle, Souriau 1970 focusses on the study
of mechanical systems that are only subjected to potential forces. Souriau’s
book clearly continues on the way pursued by Élie Cartan and François
Gallissot. Indeed, the link can be formally made because the work of Gallis-
sot is one of the few references given by Souriau. Godbillon 1969 develops
the description of time-independent mechanical systems including nonpo-
tential forces by studying the geometry of the double tangent bundle18 of
the configuration manifold. Much of the mathematical structures exposed
by Godbillon reappear in the description of time-dependent systems. The
works of Lichnerowicz 1945 and of his student Klein 1962 deal with the
description of mechanical systems involving nonpotential forces within the
calculus of variations.

In the typescript Loos 1982, Loos brought together the generalized space-
time developed by Dombrowski et al. 1964a for finite-dimensional mechani-
cal systems and the French results we have just discussed. Loos does not
only work out a theory for the description of time-dependent mechanical
systems including nonpotential forces that provides the equations of mo-
tion, but he is able to give a precise definition of forces. To the best of the
author’s knowledge, the work of Loos has almost fallen into oblivion. This
may be due to several reasons. The English translation Souriau 1997 of
the book Souriau 1970 being the exception, many of the cited publications
are only available in French or German. The book by Souriau is not only
unorthodox by its notation but also by its economy of references. Even if

17. According to Google Scholar it has been cited only twice until May 2019.
18. The double tangent bundle of a manifold is the tangent bundle of its tangent bundle.
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the notion of force introduced by Loos is officially published in Loos 1985, it
appears as a side result that is not recognizable in the title: Automorphism
Groups of Classical Mechanical Systems. To the author’s knowledge, the
discussed results have only partly made their way into the English literature
centered around the standard textbook Abraham and Marsden 1987 and the
English references therein. Most of the mathematical results are available
in English in Libermann et al. 1987 and Morandi et al. 1990. More recent
publications on the subject such as Marsden et al. 1999, Oliva 2002, Bullo
et al. 2004, Scheck 2007, Bloch 2015 or Cortés et al. 2017 ignore the contri-
butions of Loos. It is not astonishing that one can find recent publications
such as Bravetti et al. 2017, which claim to extend the theory while ignoring
the existing results.

Because one objective of this work is to bridge the gap between technical
and geometric mechanics, the mathematical foundations are presented in
Chapters 2 and 3 before finite-dimensional mechanical systems are studied
in Chapter 4. Chapter 4 includes many references back to the previous
chapters such that readers may dare a direct jump to the mechanical part
of the story. For the convenience of the reader, we give a brief overview
on the mathematical literature underlying this work. For the algebra be-
hind Chapter 2, we refer to Lang 2005, Artin 2011 and Hornfeck 1969. For
linear algebra we refer to Fischer 2010, Hoffman et al. 1971, Lang 2004,
and Roman 2008. Multilinear algebra can be found in Bishop et al. 1980,
Jeffrey M. Lee 2009, John M. Lee 2013, and Spivak 1999a. For the intro-
duction to affine spaces we refer the reader to Crampin and Pirani 1987.
The results from topology are taken from Munkres 2000. For a general
introduction to differential geometry, the reader is referred to John M. Lee
2013, Jeffrey M. Lee 2009, and Lang 2001. A compact presentation of the
subject is found in Aubin 2001. The five volumes Spivak 1999a, Spivak
1999b, Spivak 1999c, Spivak 1999d, and Spivak 1999e provide a compre-
hensive treatment of differential geometry including comments about the
historical development of differential geometry and the different notations
used by physicists and mathematicians. At some points we will need the
more specialised books: Abraham, Marsden, and Ratiu 1988, Gallot et al.
1990, Golubitsky et al. 1973, Hermann 1988, and Yano et al. 1973. Results
are referenced at their first appearance.
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All kinds of algebra2
By relieving the brain from all
unnecessary work, a good notation
sets it free to concentrate on more
advanced problems.

— Alfred North Whitehead

The present chapter deals with some algebraic concepts that are essential
in mechanics. Readers which are familiar with groups, vector spaces, affine
spaces, and tensors may skip this chapter. The algebraic part of the presen-
tation is based on Lang 2005 and Artin 2011. References are indicated at
the place where they are used.

2.1. Groups

A law of composition on a set 𝐺 is any rule for combining pairs 𝑎, 𝑏 of
elements of 𝐺 to get another element, denoted 𝑎∗𝑏, of 𝐺. Formally, a law of
composition is a map

∗∶ 𝐺×𝐺 → 𝐺, (𝑎, 𝑏) ↦ 𝑎∗𝑏. (2.1)

We call (𝐺, ∗) a group if the law of composition (2.1) satisfies the following
axioms:
G 1. For all 𝑎, 𝑏, 𝑐 ∈ 𝐺, we have associativity, namely

(𝑎∗𝑏)∗𝑐 = 𝑎∗(𝑏∗𝑐).

G 2. There exists an element 𝑒 of 𝐺 such that 𝑒∗𝑎 = 𝑎∗𝑒 = 𝑎 for all 𝑎 ∈ 𝐺.

G 3. If 𝑎 is an element of 𝐺, then there exists an element 𝑏 of 𝐺 such that
𝑎∗𝑏 = 𝑏∗𝑎 = 𝑒.

If it holds for all pairs 𝑎, 𝑏 in 𝐺 that 𝑎∗𝑏 = 𝑏∗𝑎, we call 𝐺 a commutative
or abelian group.

Depending on the group that is being considered, we may also use, instead
of 𝑎∗𝑏, the multiplicative notations

𝑎𝑏, 𝑎⋅𝑏,
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or the additive notation
𝑎+𝑏

for the law of composition. We speak of a multiplicative or an additive
group, respectively.

The element 𝑒 of 𝐺 whose existence is asserted by G 2 is uniquely deter-
mined. Indeed, if 𝑒 and 𝑒′ both satisfy this condition, then 𝑒′ = 𝑒∗𝑒′ = 𝑒. For
a multiplicative group, 𝑒 is called the unit element, while it is referred to
as the zero element for an additive group.

The element 𝑏 from G 3 is also uniquely determined as can be seen from
the following consideration. If 𝑐∗𝑎 = 𝑎∗𝑐 = 𝑒, then

𝑐 = 𝑒∗𝑐 = (𝑏∗𝑎)∗𝑐 = 𝑏∗(𝑎∗𝑐) = 𝑏∗𝑒 = 𝑏.

We call 𝑏 the inverse of 𝑎. We denote it by 𝑎−1 in the multiplicative case
and by −𝑎 in the additive case.

Example 2.1. The set of real numbers with the addition as law of composi-
tion is a group (ℝ, +).

Example 2.2. The set of complex numbers

{𝑧 ∈ ℂ ∣ 𝑧𝑛 = 1}

obtained by taking the 𝑛-th roots of unity forms a group with the multipli-
cation of complex numbers as law of composition.

Example 2.3. The general linear group1 over the real numbers is the
group of all 𝑛-by-𝑛 invertible matrices with real entries. It is denoted by
𝐺𝐿(𝑛, ℝ). The law of composition is the matrix multiplication.

A subset 𝐻 of a group 𝐺 is called a subgroup if it contains the unit
element, and if, whenever 𝑎, 𝑏 ∈ 𝐻, then 𝑎𝑏 and 𝑎−1 are also elements of 𝐻
(resp. 𝑎+𝑏 ∈ 𝐻 and −𝑎 ∈ 𝐻 in the additive case).

Example 2.4. The orthogonal group is defined as

𝑂(𝑛, ℝ) ≔ {𝐀 ∈ 𝐺𝐿(𝑛, ℝ) ∣ 𝐀T𝐀 = 𝐈},

where 𝐈 denotes the 𝑛-by-𝑛 identity matrix and 𝐀T is the transposed matrix
of 𝐀. It can be easily checked that the orthogonal group is a subgroup of
𝐺𝐿(𝑛, ℝ).

1. Matrix groups can be endowed with the additional structure of a differentiable manifold,
which makes them Lie groups. For details, we refer to Hall 2015 or Kühnel 2011.
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Example 2.5. The special orthogonal group, denoted by 𝑆𝑂(𝑛, ℝ), is
given by the orthogonal matrices 𝐀 in 𝑂(𝑛, ℝ) with det 𝐀 = 1, i.e.,

𝑆𝑂(𝑛, ℝ) ≔ {𝐀 ∈ 𝑂(𝑛, ℝ) ∣ det 𝐀 = 1}.

For 𝑛 = 3, this group is referred to as the rotation group because its
elements describe all possible rotations around the origin of the three-dimen-
sional space ℝ3. It is often simply denoted by 𝑆𝑂(3) instead of 𝑆𝑂(3, ℝ).

Among all the maps between two groups (𝐺, ∗) and (𝐺′, ⋆), there are
maps which preserve the group structure. We call these maps homomor-
phisms. A (group) homomorphism 𝑓 ∶ 𝐺 → 𝐺′ is a map that satisfies

𝑓(𝑎∗𝑏) = 𝑓(𝑎)⋆𝑓(𝑏), (2.2)

for all 𝑎, 𝑏 in 𝐺. If the map 𝑓 is bijective, i.e., if it is a bijective homomorphism,
then it is called a (group) isomorphism.

Let 𝑒 and 𝑒′ denote the respective unit element of (𝐺, ∗) and (𝐺′, ⋆),
then it holds for any group homomorphism 𝑓 ∶ 𝐺 → 𝐺′ that 𝑒′ = 𝑓 (𝑒) and
𝑓(𝑎−1) = 𝑓 (𝑎)−1 for all 𝑎 ∈ 𝐺. To prove the first statement, we consider that

𝑓 (𝑒) = 𝑓 (𝑒∗𝑒) = 𝑓 (𝑒)⋆𝑓 (𝑒),

from which the desired result is obtained by multiplying both sides with
𝑓 (𝑒)−1. The second assertion follows from the first since

𝑓 (𝑎)⋆𝑓 (𝑎)−1 = 𝑒′ = 𝑓 (𝑒) = 𝑓(𝑎∗𝑎−1) = 𝑓 (𝑎)⋆𝑓(𝑎−1).

The kernel of a group homomorphism 𝑓 ∶ 𝐺 → 𝐺′ is the set

ker 𝑓 ≔ {𝑎 ∈ 𝐺 ∣ 𝑓 (𝑎) = 𝑒′}, (2.3)

where 𝑒′ ∈ 𝐺′ denotes the unit (respectively the zero) element of 𝐺′.

2.2. Action of a group on a set

We consider a set 𝑀. A bijective mapping 𝑓 ∶ 𝑀 →𝑀 is called a permutation
of 𝑀. The set of all permutations of 𝑀, denoted Perm(𝑀), is a group,2 the
law of composition being the composition of mappings. The action of a
group 𝐺 on a set 𝑀 is a homomorphism

𝜑∶ 𝐺 → Perm(𝑀), 𝑔 ↦ 𝜑𝑔 ,

2. See Lang 2005, Proposition 2.1 on p. 30.

17



Chapter 2: All kinds of algebra

with 𝜑𝑔 ∈ Perm(𝑀), i.e., 𝜑𝑔 ∶ 𝑀 → 𝑀. Let 𝐺 act on a non-empty set 𝑀. For
𝑝 ∈ 𝑀, we consider the subset of 𝑀 consisting of all elements 𝜑𝑔(𝑝) with
𝑔 ∈ 𝐺, i.e.,

Orb(𝑝) ≔ {𝑚 ∈ 𝑀 ∣ 𝑚 = 𝜑𝑔(𝑝), with 𝑔 ∈ 𝐺}

and call it the orbit of 𝑝 under 𝐺. An action of 𝐺 on 𝑀 is said to be transitive
if there is only one orbit. The statement that 𝑀 consists of a single orbit is
equivalent to the statement that for each pair 𝑝, 𝑝′ in 𝑀 there exists a 𝑔 in
𝐺 such that 𝜑𝑔(𝑝) = 𝑝′. The action of 𝐺 on 𝑀 is called simply transitive if
for every two 𝑝, 𝑝′ in 𝑀 there exists precisely one 𝑔 in 𝐺 such that 𝜑𝑔(𝑝)=𝑝′.

Example 2.6. An important3 example is given by the permutations of a
set of 𝑘 elements 𝐼𝑘 = {1, … , 𝑘}. A permutation 𝑠 ∈ 𝑆𝑘 ≔ Perm(𝐼𝑘) can be
represented in the form

[ 1 2 ⋯ 𝑘
𝑠(1) 𝑠(2) ⋯ 𝑠(𝑘)] .

The group 𝑆𝑘 is called the symmetric group. A transposition is a per-
mutation which interchanges two numbers and leaves the others fixed. An
arbitrary permutation can be represented as a sequence of transpositions.4
A given permutation allows for infinitely many representations by trans-
positions. But all these representations either consist of an even or an
odd number 𝑛 of transpositions such that a given permutation is either
even or odd. This lets us introduce the sign of the permutation 𝑠 as
sgn(𝑠) = (−1)𝑛.

We consider the illustrative example of 𝐼3 = {1, 2, 3}. For three num-
bers there are six possible permutations. The three even permutations (or
permutations with positive sign) can be written as

𝑛=0

[1 2 3
1 2 3],

𝑛=2

[1 2 3
2 3 1],

𝑛=2

[1 2 3
3 1 2] .

The three odd ones read
𝑛=1

[1 2 3
2 1 3],

𝑛=1

[1 2 3
1 3 2],

𝑛=1

[1 2 3
3 2 1] .

3. This group will be used in Section 2.11 to define alternating tensors by its action on
covariant tensors.

4. For the proof we refer to Lang 2005, Theorem 6.1, p. 59.
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2.3. Real vector spaces

2.3. Real vector spaces

A (real) vector space 𝑉 is a set 𝑉 together with two laws of composition:

(i) addition of elements from the set 𝑉:

∔∶ 𝑉 ×𝑉 → 𝑉, (𝑣, 𝑤) ↦ 𝑣∔𝑤,

(ii) scalar multiplication of elements from 𝑉 by real numbers:

⋅ ∶ ℝ×𝑉 → 𝑉, (𝛼, 𝑣) ↦ 𝛼⋅𝑣.

The addition and the scalar multiplication are required to satisfy a number
of axioms. In the list below, let 𝑢, 𝑣 and 𝑤 be arbitrary elements of 𝑉 and 𝛼,
𝛽 be real numbers:

V 1. 𝑢∔(𝑣∔𝑤) = (𝑢∔𝑣)∔𝑤,

V 2. There exists an element 𝟢 of 𝑉 such that 𝑣∔𝟢 = 𝑣 for all 𝑣 ∈ 𝑉,

V 3. There exists an element −𝑣 of 𝑉 such that 𝑣∔(−𝑣) = 𝟢 for all 𝑣 ∈ 𝑉,

V 4. 𝑣∔𝑤 = 𝑤∔𝑣,

V 5. 𝛼⋅(𝛽 ⋅𝑣) = (𝛼𝛽)⋅𝑣,

V 6. 1⋅𝑣 = 𝑣 for all 𝑣 ∈ 𝑉,

V 7. 𝛼⋅(𝑣∔𝑤) = 𝛼⋅𝑣∔𝛼⋅𝑤,

V 8. (𝛼+𝛽)⋅𝑣 = 𝛼⋅𝑣∔𝛽⋅𝑣.

Since we will only consider real vector spaces in this work, we will simply
speak of vector space and omit the word real. Elements of a vector space are
called vectors. Real numbers are called scalars. The vector 𝟢 is referred to
as zero vector. We have used the symbol 𝟢 to make a notational distinction
from the real number 0. It is instructive to show that 0⋅𝑣 = 𝟢 for any 𝑣 in a
vector space 𝑉. Indeed, the following holds

0⋅𝑣 = (0+0)⋅𝑣 = 0⋅𝑣∔0⋅𝑣

and 𝟢 is the only vector for which holds that 𝟢 = 2⋅𝟢.
We have used the symbol ∔ to distinguish between the addition defined

on the vector space 𝑉 from the addition of real numbers defined on ℝ (see
axiom V 8). For the multiplication, we have paid attention to denote the

19
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multiplication between a scalar and a vector by ⋅, while the multiplication
between two scalars comes without a symbol (see V 5).

Axioms V 1 – V 3 correspond to axioms G 1 – G 3 from Section 2.1 and,
therefore, require the set 𝑉 to have the structure of an additive group. The
axiom V 4 requires the additive group to be commutative. Axioms V 5 – V 8
require the two addition and the two multiplication operations to be mutually
compatible, respectively. The requirement V 5 guarantees the compatibility
of the multiplication between scalars and vectors with the one between
scalars. Axiom V 6 makes the identity element of the multiplication on ℝ
also the identity element of the scalar multiplication (ii). The distributivity
of scalar multiplication with respect to vector addition is required by V 7
and the one with respect to the addition on ℝ by V 8.

A subset 𝑊 of a vector space 𝑉 is a subspace of 𝑉 if the following three
conditions are satisfied for all 𝑣, 𝑤 ∈ 𝑊 and all 𝛼 ∈ ℝ:

(i) 𝑣∔𝑤 ∈ 𝑊,

(ii) the zero vector 𝟢 ∈ 𝑉 is also element of 𝑊,

(iii) 𝛼𝑣 ∈ 𝑊.

Conditions (i) and (ii) are equivalent to the claim that 𝑊 is a subgroup of
the additive group 𝑉. Moreover, 𝑊 is a vector space5 with the addition and
scalar multiplication which are induced on 𝑊 by the algebraic structure of
the surrounding space 𝑉.

As we did for groups in Section 2.1, we can now define homomorphisms
for the algebraic structure of a vector space. A (vector space) homomor-
phism (or linear map) from a vector space 𝑉 to a vector space 𝑉 ′ is a map
𝑓 ∶ 𝑉 → 𝑉 ′ that is compatible with the two laws of composition (addition and
scalar multiplication) of the vector spaces, i.e.,

𝑓 (𝑣+𝑤) = 𝑓 (𝑣)+𝑓 (𝑤) and 𝑓 (𝛼𝑣) = 𝛼𝑓 (𝑣), (2.4)

for all 𝑣 and 𝑤 in 𝑉 and all 𝛼 ∈ ℝ. Again, a bijective vector space homomor-
phism is referred to as (vector space) isomorphism. Vector spaces which
are related by an isomorphism are said to be isomorphic. The diligent
reader may have noticed that in (2.4), we made no notational distinction
between the addition on 𝑉 and the one on 𝑉 ′, neither did we for the scalar
multiplication. Equation (2.4) is structurally similar to equation (2.2). On
the left-hand side of the equations stands the operation which is declared
on the domain of the homomorphism, that is on 𝑉. On the right-hand side
of the equations, it is the one defined on the image of the homomorphism,

5. The proof can be found in any book on linear algebra, for example in Fischer 2010, p. 78.
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that is on 𝑉 ′. Therefore, there is no danger of causing confusion by using
the same notation for both additions and the scalar multiplications.

Let 𝑆 and 𝑇 be subspaces of a vector space 𝑉. We define the sum of 𝑆 and
𝑇 to be the subset of 𝑉 consisting of all sums 𝑢+𝑣 with 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇. This
sum is denoted 𝑆+𝑇 and it is a subspace6 of 𝑉. If it holds that 𝑆+𝑇 = 𝑉
and if 𝑆∩𝑇 = {𝟢}, then we write

𝑉 = 𝑆⊕𝑇

and we say that 𝑉 is the direct sum of 𝑆 and 𝑇. If 𝑉 = 𝑆⊕𝑇, then 𝑇 is
called a complement of 𝑆 in 𝑉. Of course, the notion of sum and direct sum
can be extended to several terms. For this we refer to Chapter 1 in Roman
2008.

2.4. Equivalence relations and quotient sets

An equivalence relation on a set 𝑀 with elements 𝑎, 𝑏, 𝑐, … is a relation
that holds between certain pairs of elements of 𝑀. We may write it as
𝑎 ∼ 𝑏 and speak of it as equivalence of 𝑎 and 𝑏. An equivalence relation is
required to satisfy the axioms:

ER 1. If 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑐, then 𝑎 ∼ 𝑐.

ER 2. If 𝑎 ∼ 𝑏, then 𝑏 ∼ 𝑎.

ER 3. For all 𝑎 ∈ 𝑀, 𝑎 ∼ 𝑎.

Suppose an equivalence relation ∼ is declared on a set 𝑀. Then given an
element 𝑎 of 𝑀, we consider the subset of 𝑀

[𝑎] ≔ { 𝑝 ∈ 𝑀 ∣ 𝑎 ∼ 𝑝}

that consists of all elements of 𝑀 which are equivalent to 𝑎. Because of
ER 3, the set [𝑎] is non-empty. Moreover, it follows from the properties
ER 1–3 that all elements of [𝑎] are equivalent to one another. Each set [𝑎]
is referred to as equivalence class. Each element of a class is called a
representative of the class.

For any pair of elements 𝑎, 𝑏 ∈ 𝑀, it either holds that [𝑎] = [𝑏] or the sets
[𝑎] and [𝑏] have no element in common. An equivalence relation ∼ on a set
𝑀 determines a decomposition of 𝑀 into disjoint equivalence classes. These
equivalence classes are considered to be elements of a new set

𝑀/∼ ≔ {[𝑝] ∣ 𝑝 ∈ 𝑀 } (2.5)

6. See Lang 2004, p. 19.
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that is called the quotient set of 𝑀 by ∼. By assigning to any element
𝑝 ∈ 𝑀 its equivalence class [𝑝] ∈ 𝑀/∼, we obtain a canonical map

𝑓 ∶ 𝑀 → 𝑀/∼, 𝑝 ↦ [𝑝]. (2.6)

Now, we will study a particular example of a quotient set (2.5) in the
context where the set 𝑀 is a group (𝑀, ∗). If (𝑁, ∗) is a subgroup7 of
(𝑀, ∗), then an equivalence relation can be declared on (𝑀, ∗) as

𝑎 ∼ 𝑏 ⇔ ∃𝑛 ∈ 𝑁∶ 𝑏 = 𝑎∗𝑛. (2.7)

The equivalence classes defined by the equivalence relation (2.7)

[𝑎] = {𝑎∗𝑛 ∣ 𝑛 ∈ 𝑁 } ≕ 𝑎∗𝑁

are referred to as left cosets. By swapping 𝑎 and 𝑛 in the definition (2.7),
we obtain the equivalence relation

𝑎∼̂𝑏 ⇔ ∃𝑛 ∈ 𝑁∶ 𝑏 = 𝑛∗𝑎 (2.8)

that comes with the equivalence classes

̂[𝑎] = {𝑛∗𝑎 ∣ 𝑛 ∈ 𝑁 } ≕ 𝑁 ∗𝑎,

which are called right cosets. Obviously, the equivalence relations (2.7)
and (2.8) agree if the group (𝑀, ∗) is commutative.

A subgroup 𝑁 of 𝑀 for which the left and right cosets are identical, i.e.,

𝑎∗𝑁 = 𝑁 ∗𝑎 (2.9)

for all 𝑎 ∈ 𝑀, is referred to as normal subgroup of 𝑀. In this case, the
quotient set (2.5) can be endowed with a group structure.

Theorem 2.7. Let (𝑀, ∗) be a group and (𝑁, ∗) be a normal subgroup of
𝑀. The set

𝑀/∼ = {𝑎∗𝑁 ∣ 𝑎 ∈ 𝑀 } = {𝑁 ∗𝑎 ∣ 𝑎 ∈ 𝑀 } = 𝑀/∼̂ (2.10)

of cosets8 defined by the normal subgroup 𝑁 is a group with the law of
composition ⋆ such that

(𝑎∗𝑁)⋆(𝑏∗𝑁) ≔ (𝑎∗𝑏)∗𝑁. (2.11)

7. The definition is given on p. 16.
8. The left and right cosets agree because 𝑁 is required to be a normal subgroup of 𝑀.

Therefore, we simply speak of cosets.
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For the proof, we refer the reader to Theorem 4.5 in Lang 2005. The set of
cosets (2.10) is referred to as quotient group of 𝑀 by 𝑁 and is often denoted
by 𝑀/𝑁. This notation is preferable to 𝑀/∼ or 𝑀/∼̂ because it involves the
normal subgroup 𝑁 instead of suggesting that the quotient group would
result from choosing the equivalence relation that appears in the notation
rather than the other. The unit element of the group 𝑀/𝑁 is given by the
normal subgroup 𝑁. Indeed, we see from the law of composition (2.11) that

𝑁 ⋆(𝑏∗𝑁) = (𝑒∗𝑁)⋆(𝑏∗𝑁) = (𝑒∗𝑏)∗𝑁 = 𝑏∗𝑁.

For the quotient group, the canonical map (2.6) is the map

𝑓 ∶ (𝑀, ∗) → (𝑀/𝑁, ⋆) (2.12)

which to each 𝑎 ∈ 𝑀 associates the coset 𝑓 (𝑎) = 𝑎 ∗ 𝑁. It can be easily
verified that (2.12) is a (group) homomorphism when the quotient set 𝑀/𝑁
is equipped with the group structure from Theorem 2.7. Therefore, the
map (2.12) is called the canonical homomorphism of (𝑀, ∗) onto the
quotient group (𝑀/𝑁, ⋆).

It holds that the kernel9 of 𝑓 ∶ (𝑀, ∗) → (𝑀/𝑁, ⋆)

ker 𝑓 ≔ {𝑎 ∈ 𝑀 ∣ 𝑓 (𝑎) = 𝑁 }

is just the normal subgroup 𝑁. We start by showing first that

𝑁 ⊆ ker 𝑓 (2.13)

and then we convince ourselves that

ker 𝑓 ⊆ 𝑁.

Let 𝑛 be an arbitrary element of the normal subgroup 𝑁, then it holds
by the definition of a subgroup that 𝑓 (𝑛) = 𝑛∗𝑁 = 𝑁 which proves (2.13).
Conversely, consider an arbitrary element 𝑎 ∈ 𝑀 for which 𝑓 (𝑎) = 𝑎∗𝑁 is
the unit element of 𝑀/𝑁, i.e., 𝑓 (𝑎) = 𝑁, so 𝑎∗𝑁 = 𝑁. The latter condition
can be rewritten as 𝑎∗𝑛 ∈ 𝑁, for all 𝑛 ∈ 𝑁 and by choosing 𝑛 = 𝑒, it implies
that 𝑎 ∈ 𝑁, which completes the proof.

We have shown that 𝑁 = ker 𝑓 which says that the normal subgroup 𝑁 is
just the kernel of the homomorphism (2.12). So given a normal subgroup 𝑁
of a group 𝑀, we know that there is a group homomorphism such that 𝑁 is
the kernel of that homomorphism. The converse is also true, i.e., the kernel
of any group homomorphism ℎ∶ (𝑀, ∗) → (𝐺, ⋅) of 𝑀 into some group 𝐺 is
a normal subgroup of 𝑀.

9. See equation (2.3) for the definition.
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Let 𝐾 denote the kernel of the homomorphism ℎ∶ 𝑀 → 𝐺. By definition,
ℎ satisfies

ℎ(𝑎∗𝐾 ∗𝑎−1) = ℎ(𝑎)⋅ℎ(𝐾)⋅ℎ(𝑎−1) = 𝑒,

ℎ(𝑎−1 ∗𝐾 ∗𝑎) = ℎ(𝑎−1)⋅ℎ(𝐾)⋅ℎ(𝑎) = 𝑒,

where 𝑒 denotes the unit element of the group (𝐺, ⋅). The first equation
implies that 𝑎∗𝐾 ∗𝑎−1 ⊆ 𝐾, while the second implies that 𝑎−1 ∗𝐾 ∗𝑎 ⊆ 𝐾 ⇔
𝐾 ⊆ 𝑎∗𝐾 ∗𝑎−1. Hence 𝑎∗𝐾 ∗𝑎−1 = 𝐾, which proves the kernel 𝐾 to be a
normal subgroup (see equation (2.9)) of (𝑀, ∗).

Let 𝑎 ∈ 𝑀, then it holds for all 𝑘 ∈ 𝐾 that

ℎ(𝑎∗𝑘) = ℎ(𝑎)⋅ℎ(𝑘) = ℎ(𝑎)⋅𝑒 = ℎ(𝑎)

or stated equivalently
ℎ(𝑎∗𝐾) = ℎ(𝑎).

This means that all elements in a (left) coset have the same image under the
homomorphism ℎ. These observations lead us to the first isomorphism
theorem for groups.

Theorem 2.8 (Lang 2005, Corollary 4.7). Let ℎ∶ (𝑀, ∗) → (𝐺, ⋅) be a ho-
momorphism, and let 𝐾 be its kernel. Then the association

𝑎∗𝐾 ↦ ℎ(𝑎∗𝐾)

is an isomorphism
𝑀/𝐾 ≅ im ℎ

of 𝑀/𝐾 with the image of ℎ.

In Section 2.3, we saw that the vector space axioms V 1–V 4 require a
vector space to be a commutative additive group. Therefore, similar results
can be stated for vector spaces. Let 𝑉 be a vector space and 𝑊 be a subspace
of 𝑉. Then the equivalence relation (2.7) reads in additive notation

𝑢 ∼ 𝑣 ⇔ ∃𝑤 ∈ 𝑊∶ 𝑣 = 𝑢+𝑤
⇔ 𝑣−𝑢 ∈ 𝑊.

(2.14)

Since, a vector space is a commutative additive group, the equivalence
relations (2.7) and (2.8) agree. The equivalence classes defined by (2.14) are
given by

[𝑢] ≔ {𝑢+𝑤 ∣ 𝑤 ∈ 𝑊 } = 𝑢+𝑊

and they are called cosets again. The quotient set of 𝑉 by ∼ can be equipped
with the structure of a vector space.
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Theorem 2.9 (Roman 2008, Theorem 3.1). Let 𝑉 be a vector space and 𝑊
be a subspace 𝑉. The set

𝑉/∼ = 𝑉/𝑊 = {[𝑢] ∣ 𝑢 ∈ 𝑉 } = {𝑢+𝑊 ∣ 𝑢 ∈ 𝑉 }

of cosets defined by the subspace 𝑊 is a vector space with the laws of compo-
sition

(𝑢+𝑊)+(𝑣+𝑊) = (𝑢+𝑣)+𝑊
and

𝛼⋅(𝑢+𝑊) = (𝛼⋅𝑢)+𝑊.
The zero vector in 𝑉/𝑊 is the coset 𝟢+𝑊 = 𝑊.

The vector space 𝑉/𝑊 from Theorem 2.9 is called the quotient space of
𝑉 by 𝑊. As a quotient set, the quotient space 𝑉/𝑊 comes with the canonical
map (2.6), i.e.,

𝑓 ∶ 𝑉 → 𝑉/𝑊, 𝑢 ↦ [𝑢] = 𝑢+𝑊 (2.15)
which sends each vector to the coset containing it. Similar to the situation for
groups. The map (2.15) can be shown to be a (vector space) homomorphism,
when the quotient set 𝑉/𝑊 is endowed with the vector space structure
from Theorem 2.9. Therefore, the map (2.15) is again called canonical
homomorphism. Moreover, the kernel of 𝑓 ∶ 𝑉 → 𝑉/𝑊 is nothing but the
subspace 𝑊. For the proof of the previous two statements, the reader is
referred to Theorem 3.2 in Roman 2008. Finally, we can state the first
isomorphism theorem for vector spaces that is the analogue result for
vector spaces as Theorem 2.8 was for groups.
Theorem 2.10 (Roman 2008, Theorem 3.5). Let ℎ∶ 𝑉 →𝑇 be a (vector space)
homomorphism, and let 𝐾 be its kernel. Then the association

𝑢+𝐾 ↦ ℎ(𝑢+𝐾)
is an isomorphism

𝑉/𝐾 ≅ im ℎ
of 𝑉/𝐾 with the image of ℎ.

Let 𝑆 be a subspace of a vector space 𝑉. The first isomorphism theorem
can be used to show10 that whenever

𝑉 = 𝑊 ⊕𝑇,
then it holds that

𝑇 ≅ 𝑉/𝑊. (2.16)
This means that all complements of 𝑊 in 𝑉 are isomorphic to 𝑉/𝑊 and
hence to each other.

10. See Theorem 3.6 in Roman 2008.
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2.5. Basis of a vector space

So far, we have considered sets endowed with some additional algebraic
structure. In a set, the order of elements does not matter. If we are given
two vectors 𝑣, 𝑤 from a vector space 𝑉, then the sets {𝑣, 𝑤} and {𝑤, 𝑣} are
equal because they contain the same elements. Now, we consider tuples of
vectors, i.e., collections of objects where the order matters. Consequently,
the tuples (𝑣, 𝑤) and (𝑤, 𝑣) are not equal. In this work, we use the term
tuple to designate any ordered collection of objects. A typical example is
given by the elements of ℝ𝑛, which are 𝑛-tuples of real numbers.

Let 𝑉 be a vector space and let 𝑆 = (𝑣1, … , 𝑣𝑛) be an 𝑛-tuple of elements
of 𝑉. A linear combination of 𝑆 is a vector of the form

𝑤 = 𝛼1 ⋅𝑣1 ∔⋯∔𝛼𝑛 ⋅𝑣𝑛 = 𝛼𝑖 ⋅𝑣𝑖,

with 𝛼𝑖 ∈ ℝ. The last equality follows by adopting Einstein’s summation
convention, which says that a summation is understood over any index
appearing once as a lower and once as an upper index. The latin index 𝑖
thereby runs from 1 to 𝑛. Let 𝑊 be the set of all such elements 𝛼𝑖 ⋅𝑣𝑖 with
𝛼𝑖 ∈ ℝ. It can be easily verified that 𝑊 is a subspace of 𝑉. We say that 𝑊 is
the subspace spanned by the vectors 𝑣1, … , 𝑣𝑛 and write

𝑊= span{𝑣1, … , 𝑣𝑛}.

A vector space 𝑉 is finite-dimensional if some finite set of vectors spans 𝑉.
Otherwise, 𝑉 is infinite-dimensional. We say that 𝑣1, … , 𝑣𝑛 are linearly
dependent if there exist elements 𝛼1, … , 𝛼𝑛 not all equal to 0 such that

𝛼𝑖 ⋅𝑣𝑖 = 𝛼1 ⋅𝑣1 ∔⋯∔𝛼𝑛 ⋅𝑣𝑛 = 𝟢.

If no such elements do exist, then we qualify the vectors 𝑣1, … , 𝑣𝑛 to be
linearly independent.

A basis of a vector space 𝑉 is a tuple 𝐵 = (𝑒1, … , 𝑒𝑛) of linearly inde-
pendent vectors 𝑒𝑖 from 𝑉 that generate 𝑉, i.e., 𝑉= span{𝑒1, … , 𝑒𝑛}. The
dimension of a finite-dimensional vector space 𝑉 is the number 𝑛 of vectors
in a basis. It is denoted by dim 𝑉. The choice of a basis in a vector space 𝑉
provides a one-to-one correspondence between vectors and 𝑛-tuples of real
numbers. Each element 𝑣 ∈ 𝑉 can be written as linear combination

𝑣 = 𝑥𝑖 ⋅ 𝑒𝑖 = 𝑥1 ⋅ 𝑒1 ∔⋯∔𝑥𝑛 ⋅ 𝑒𝑛

of the basis vectors 𝑒1, … , 𝑒𝑛. The 𝑛-tuple of real numbers (𝑥1, … , 𝑥𝑛)
gathers the coordinates of 𝑣 with respect to the basis 𝐵. In other words,
each element 𝑣 of the vector space can be uniquely represented by an element
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𝐱 ≔ (𝑥1, … , 𝑥𝑛) of ℝ𝑛. This one-to-one correspondence can be formally
written as a linear bijective map called chart or coordinate map

𝜙∶ 𝑉 → ℝ𝑛, 𝑣 ↦ 𝜙(𝑣) = (𝑥1, … , 𝑥𝑛), (2.17)

with 𝑣 = 𝑥𝑖 ⋅ 𝑒𝑖. If we consider another basis 𝐵′ = (𝑒′
1, … , 𝑒′

𝑛), then we get
another 𝑛-tuple of real numbers (𝑦1, … , 𝑦𝑛) as representation of the vector 𝑣

𝑣 = 𝑦𝑖 ⋅ 𝑒′
𝑖 = 𝑦1 ⋅ 𝑒′

1 ∔⋯∔𝑦𝑛 ⋅ 𝑒′
𝑛

in ℝ𝑛. The corresponding chart is given by

𝜓∶ 𝑉 → ℝ𝑛, 𝑣 ↦ 𝜓(𝑣) = (𝑦1, … , 𝑦𝑛). (2.18)

Given the charts (2.17) and (2.18), we can perform a change of coordi-
nates, that is, given the coordinates of a vector with respect to the basis 𝐵,
we can compute its coordinates with respect to the basis 𝐵′. The change of
coordinates from the basis 𝐵 to the basis 𝐵′ is given by the map

𝜓∘𝜙−1 ∶ ℝ𝑛 → ℝ𝑛, (𝑥1, … , 𝑥𝑛) ↦ (𝑦1, … , 𝑦𝑛),

which is a linear bijective map.
The space ℝ𝑛 can be endowed with the component-wise addition

𝐯+𝐰 ≔ (𝑣1 +𝑤1, … , 𝑣𝑛 +𝑤𝑛) (2.19)

and the scalar multiplication

𝛼•𝐯 = 𝛼𝐯 ≔ (𝛼𝑣1, … , 𝛼𝑣𝑛), (2.20)

which have to hold for all 𝐯, 𝐰 ∈ ℝ𝑛 and all 𝛼 ∈ ℝ. The zero vector is
defined as 𝟎 ≔ (0, … , 0) and the inverse element of a vector 𝐯 = (𝑣1, … , 𝑣𝑛)
is declared as −𝐯≔(−𝑣1, … , −𝑣𝑛). It is easy to verify that ℝ𝑛 endowed with
the zero vector, the inverse element and with the laws of composition (2.19)
and (2.20) is indeed a vector space. With the vector space structure on ℝ𝑛,
the coordinate maps (2.17) and (2.18) become isomorphisms between the
vector spaces 𝑉 and ℝ𝑛. This means that the two diagrams

𝑉 ×𝑉 ℝ𝑛 ×ℝ𝑛

𝑉 ℝ𝑛

(𝜙, 𝜙)

∔ +
𝜙

ℝ×𝑉 ℝ×ℝ𝑛

𝑉 ℝ𝑛

(idℝ, 𝜙)

⋅ •
𝜙
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Figure 2.1.: The vector space of arrows in the plane and its coordinate rep-
resentation on ℝ2.

commute, that is
+∘(𝜙, 𝜙) = 𝜙∘∔

and
•∘(idℝ, 𝜙) = 𝜙∘⋅ ,

where idℝ ∶ ℝ → ℝ, 𝛼 ↦ 𝛼 denotes the identity map on ℝ and ∘ the compo-
sition of mappings.

So far, we have used ∔ to denote the addition on the vector space 𝑉 and an
ordinary plus symbol to denote the addition (2.19) defined on ℝ𝑛. The scalar
multiplication on 𝑉 is denoted by ⋅, while the one on ℝ𝑛 is written as •. From
now on, this didactically motivated distinction will be dropped because it
will always be clear from the objects that are to be added/multiplied, which
operation is to be used.

Example 2.11. To become familiar with the concepts from Section 2.3, we
consider the vector space of arrows that can be drawn in the plane. We
endow this set with an addition and a scalar multiplication that make it a
real two-dimensional vector space. The addition of two arrows 𝑣 and 𝑤 can
be defined graphically using the “parallelogram rule” as shown in Figure 2.1.
The sum 𝑣+𝑤 is the arrow that starts from the same point 𝟢 as 𝑣 and 𝑤
and that ends in the opposite corner of the parallelogram spanned by 𝑣
and 𝑤. The scalar multiplication of an arrow 𝑣 by 𝛼 is given graphically by
constructing an arrow 𝛼𝑣 which is stretched by the factor 𝛼 ∈ ℝ compared
to 𝑣. The choice of a basis (𝑒1, 𝑒2) provides a coordinate map from the space
of arrows to ℝ2. The component-wise addition on ℝ2 is compatible with the
addition declared on the space of arrows. In other words, the corresponding
diagram commutes. The same holds for the scalar multiplications.
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2.6. The dual space of a vector space

Let 𝑉 be a real vector space. The set 𝑉∗ of all linear maps from 𝑉 to ℝ is the
dual space of 𝑉. An element 𝜌 ∈ 𝑉∗ is called a covector. The dual space
𝑉∗ itself becomes a real vector space if it is equipped with the following
two laws of composition defining addition and scalar multiplication. The
addition +∶ 𝑉∗ ×𝑉∗ → 𝑉∗ is declared such that for all 𝜌, 𝜎 ∈ 𝑉∗ and 𝑣 ∈ 𝑉

(𝜌+𝜎)(𝑣) ≔ 𝜌(𝑣)+𝜎(𝑣).

The scalar multiplication is defined by

(𝛼𝜌)(𝑣) ≔ 𝛼𝜌(𝑣),

for all 𝜌 ∈ 𝑉∗, 𝑣 ∈ 𝑉, and 𝛼 ∈ ℝ. The definitions of these composition laws
rely on the addition and multiplication of real numbers and on the definition
of covectors as linear maps of vectors to the real numbers.

If the vector space 𝑉 is finite-dimensional with basis (𝑒1, … , 𝑒𝑛), then 𝑉∗

has the same dimension11 as 𝑉, i.e., dim 𝑉 =dim 𝑉∗ =𝑛. A basis (𝑒1, … , 𝑒𝑛)
of 𝑉∗ is called the dual basis of the basis (𝑒1, … , 𝑒𝑛) of 𝑉 if

𝑒𝑖(𝑒𝑗) = δ𝑖
𝑗 ≔

⎧{
⎨{⎩

1 if 𝑖 = 𝑗,
0 otherwise,

with 𝑖, 𝑗 = 1, … , 𝑛. The symbol δ𝑖
𝑗 is known as Kronecker delta. Using the

dual basis, a covector 𝜌 can be expressed as

𝜌 = 𝜌𝑖 𝑒𝑖, (2.21)

with 𝜌𝑖 = 𝜌(𝑒𝑖) as can be seen by applying 𝜌 to the primal basis vectors
𝑒1, … , 𝑒𝑛.

The bidual space 𝑉∗∗ ≔ (𝑉∗)∗ is the space of linear real-valued maps
on the dual space 𝑉∗. In the case where 𝑉 is finite-dimensional, the vector
spaces 𝑉∗∗ and 𝑉 are canonically isomorphic in the sense that the spaces
are related by the following vector space isomorphism12

𝜄 ∶ 𝑉 → 𝑉∗∗, 𝑣 ↦ 𝜄𝑣 with 𝜄𝑣(𝜌) ≔ 𝜌(𝑣) ∀𝜌 ∈ 𝑉∗, (2.22)

which relates vectors 𝑣 ∈ 𝑉 to elements 𝜄𝑣 ∈ 𝑉∗∗. We identify 𝑉∗∗ with 𝑉
and write 𝑣(𝜌) = 𝜌(𝑣). This justifies the dot notation

𝑣⋅𝜌 = 𝜌⋅𝑣 = 𝑣(𝜌) = 𝜌(𝑣), (2.23)

to which we refer as duality pairing.

11. The proof can be found in Bishop et al. 1980, Proposition 2.7.1 on p. 75.
12. See Theorem 2.9.1 in Bishop et al. 1980 for the proof that (2.22) defines an isomorphism.
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A subspace 𝑊 of the vector space 𝑉 defines the subspace

𝑊∘ ≔ {𝜌 ∈ 𝑉∗ ∣ 𝜌(𝑤) = 0, for all 𝑤 ∈ 𝑊} (2.24)

in 𝑉∗ that is called the annihilator of 𝑊. Note that the dimension13 of 𝑊∘

is given by
dim 𝑊∘ = dim 𝑉 −dim 𝑊. (2.25)

2.7. Bilinear forms

A bilinear form on a real vector space 𝑉 is a real-valued map

𝐵∶ 𝑉 ×𝑉 → ℝ (2.26)

that is linear in each argument separately such that

𝐵(𝛼𝑢+𝛽𝑣, 𝑤) = 𝛼𝐵(𝑢, 𝑤)+𝛽𝐵(𝑣, 𝑤),
𝐵(𝑢, 𝛼𝑣+𝛽𝑤) = 𝛼𝐵(𝑢, 𝑣)+𝛽𝐵(𝑢, 𝑤),

for all vectors 𝑢, 𝑣, 𝑤 ∈ 𝑉 and real numbers 𝛼, 𝛽 ∈ ℝ. The bilinear form
𝐵∶ 𝑉 ×𝑉 → ℝ is said to be non-degenerate if

𝐵(𝑢, 𝑣) = 0, ∀𝑣 ∈ 𝑉 ⇒ 𝑢 = 𝟢. (2.27)

The bilinear form 𝐵∶ 𝑉 ×𝑉 → ℝ is called symmetric if 𝐵(𝑣, 𝑤) = 𝐵(𝑤, 𝑣)
for all 𝑣, 𝑤 ∈ 𝑉 and it is said to be alternating (or skew-symmetric) if
𝐵(𝑣, 𝑤) = −𝐵(𝑤, 𝑣) for all 𝑣, 𝑤 ∈ 𝑉. Among all possible bilinear forms, the
symmetric and alternating forms are the ones that have a predictable be-
haviour if their arguments are interchanged.

Symplectic vector space

A symplectic form on a real vector space 𝑉 is a real-valued map

ω ∶ 𝑉 ×𝑉 → ℝ (2.28)

that satisfies the following four axioms for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and all 𝛼, 𝛽 ∈ ℝ:

SF 1. ω(𝑢+𝑣, 𝑤) = ω(𝑢, 𝑤)+ω(𝑣, 𝑤),

SF 2. ω(𝛼𝑣, 𝑤) = 𝛼ω(𝑣, 𝑤),

SF 3. ω(𝑣, 𝑤) = −ω(𝑤, 𝑣),

13. See Fischer 2010, pp. 333–334 for the proof.
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SF 4. ω(𝑣, 𝑤) = 0 for all 𝑤 ∈ 𝑉 ⇒ 𝑣 = 𝟢.

By axioms SF 1 – SF 3, the map ω ∶ 𝑉 ×𝑉 → ℝ is an alternating bilinear
form that has to be non-degenerate by axiom SF 4. A real vector space 𝑉
together with a symplectic form (2.28) is a symplectic vector space.

Inner product space

A real vector space 𝑉 can be equipped with an inner product,14 which is a
real-valued map

⟨⋅, ⋅⟩ ∶ 𝑉 ×𝑉 → ℝ (2.29)

that satisfies the following four axioms for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and all 𝛼, 𝛽 ∈ ℝ:

IP 1. ⟨𝑢+𝑣, 𝑤⟩ = ⟨𝑢, 𝑤⟩+⟨𝑣, 𝑤⟩,

IP 2. ⟨𝛼𝑣, 𝑤⟩ = 𝛼⟨𝑣, 𝑤⟩,

IP 3. ⟨𝑣, 𝑤⟩ = ⟨𝑤, 𝑣⟩,

IP 4. ⟨𝑣, 𝑣⟩ > 0 if 𝑣 ≠ 𝟢.

Axioms IP 1 – IP 3 require the inner product to be a symmetric bilinear form
that is non-degenerate by axiom IP 4. A real vector space 𝑉 together with
an inner product (2.29) is an inner product space.

An inner product allows to define the length of a vector 𝑣 ∈ 𝑉 as

‖𝑣‖ ≔ √⟨𝑣, 𝑣⟩

and the angle ∡(𝑣, 𝑤) that is spanned by a pair of nonzero vectors 𝑣, 𝑤 ∈ 𝑉
as

cos ∡(𝑣, 𝑤) ≔ ⟨𝑣, 𝑤⟩
‖𝑣‖‖𝑤‖ . (2.30)

Example 2.12. On the vector space ℝ𝑛, the inner product that is defined
for all 𝐯, 𝐰 ∈ ℝ𝑛 as

⟨𝐯, 𝐰⟩ ≔
𝑛

∑
𝑖=1

𝑣𝑖𝑤𝑖

is called the standard inner product of ℝ𝑛.

14. See Hoffman et al. 1971, p. 271.
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Orthogonal complement

Inspired by the notion of angle (2.30), we define the set of vectors that
are orthogonal to a given subspace 𝑊 of a vector space 𝑉. However, we
generalize the concept from an inner product on 𝑉 to an arbitrary (possibly
degenerate) bilinear form 𝐵 on 𝑉 that is either symmetric or alternating.
The orthogonal complement of 𝑊 is the set

𝑊⟂ ≔ {𝑣 ∈ 𝑉 ∣ 𝐵(𝑣, 𝑤) = 0, for all 𝑤 ∈ 𝑊}.

If the bilinear form 𝐵 is given by an inner product, i.e., if 𝐵 is symmetric
and positive definite (and thereby non-degenerate), then 𝑊 ∩𝑊⟂ = {𝟢} and
𝑉 = 𝑊 ⊕𝑊⟂ and obviously

dim 𝑉 = dim 𝑊 +dim 𝑊⟂. (2.31)

Let
𝐵∣𝑊 ∶ 𝑊 ×𝑊 → ℝ

denote the restriction of the bilinear form (2.26) to the subspace 𝑊. Indeed,
the intersection 𝑊 ∩𝑊⟂ = {𝟢} if and only if 𝐵∣𝑊 is non-degenerate. In
particular, the bilinear form 𝐵 is non-degenerate if and only if 𝑉⟂ = {𝟢}.
The dimension formula (2.31) is generalized to the case of a possibly non-
degenerate bilinear form by the following proposition.

Proposition 2.13. Let 𝑉 be a real vector space and 𝑊 ⊆ 𝑉 be a subspace
in 𝑉. Let 𝑉 be equipped with a symmetric or alternating bilinear form
𝐵∶ 𝑉 ×𝑉 → ℝ. Then

dim 𝑊 +dim 𝑊⟂ = dim 𝑉 +dim 𝑊 ∩𝑉⟂.

In particular, if 𝐵 is non-degenerate, then

dim 𝑊 +dim 𝑊⟂ = dim 𝑉.

Proof. Consider the linear map

𝑓 ∶ 𝑉 → 𝑉∗, 𝑣 ↦ 𝐵(𝑣, ⋅)

induced by the bilinear form 𝐵∶ 𝑉 ×𝑉 → ℝ and let

𝑔 ≔ 𝑓 ∣𝑊 ∶ 𝑊 → 𝑉∗, 𝑤 ↦ 𝐵(𝑤, ⋅)

denote its restriction to 𝑊 ⊆ 𝑉. By the rank-nullity theorem, it holds that

dim 𝑊 = dim ker 𝑔+dim im 𝑔. (2.32)
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By comparing
ker 𝑔 = {𝑤 ∈ 𝑊 ∣ 𝑔(𝑤) = 𝟢 ∈ 𝑉∗}

and
𝑉⟂ = {𝑣 ∈ 𝑉 ∣ 𝐵(𝑣, 𝑤) = 0, for all 𝑤 ∈ 𝑉}

= {𝑣 ∈ 𝑉 ∣ 𝐵(𝑣, ⋅) = 𝟢 ∈ 𝑉∗},

we see that
ker 𝑔 = 𝑊 ∩𝑉⟂.

By (2.24), the annihilator of im 𝑔 is given by

(im 𝑔)∘ = {𝑣 ∈ 𝑉 ∣ 𝜌(𝑣) = 0, for all 𝜌 ∈ im 𝑔}

because we identified 𝑉∗∗ with 𝑉. Every 𝜌 ∈ im 𝑔 is of the form 𝜌 = 𝐵(𝑤, ⋅)
for some 𝑤 ∈ 𝑊 and, therefore,

(im 𝑔)∘ = {𝑣 ∈ 𝑉 ∣ 𝐵(𝑤, 𝑣) = 0, for all 𝑤 ∈ 𝑊} = 𝑊⟂,

where the last equality follows by the (skew)-symmetry of the bilinear form
since it implies that 𝐵(𝑤, 𝑣) = 𝐵(𝑣, 𝑤) (respectively 𝐵(𝑤, 𝑣) = −𝐵(𝑣, 𝑤)).
Hence, it follows by the dimension formula (2.25) that

dim im 𝑔 = dim 𝑉∗ −dim (im 𝑔)∘ = dim 𝑉 −dim 𝑊⟂

and, by (2.32), we conclude that

dim 𝑊 = dim 𝑊 ∩𝑉⟂ +(dim 𝑉 −dim 𝑊⟂).

2.8. Lie algebra

A Lie bracket on a real vector space 𝑉 is a law of composition

[⋅, ⋅] ∶ 𝑉 ×𝑉 → 𝑉, (𝑢, 𝑣) ↦ [𝑢, 𝑣]

that satisfies the following axioms for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and all 𝛼, 𝛽 ∈ ℝ:

LB 1. (Bilinearity)
[𝛼𝑢+𝛽𝑣, 𝑤] = 𝛼[𝑢, 𝑤]+𝛽[𝑣, 𝑤],
[𝑢, 𝛼𝑣+𝛽𝑤] = 𝛼[𝑢, 𝑣]+𝛽[𝑢, 𝑤],

LB 2. (Anticommutativity)
[𝑢, 𝑣] = −[𝑣, 𝑢],
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LB 3. (Jacobi identity)

[𝑢, [𝑣, 𝑤]]+[𝑣, [𝑤, 𝑢]]+[𝑤, [𝑢, 𝑣]] = 0.

A vector space 𝑉 together with a Lie bracket [⋅, ⋅] is called a Lie algebra. A
subspace 𝑊 ⊆𝑉 of a Lie algebra (𝑉, [⋅, ⋅]) is a Lie subalgebra if 𝑊 is closed
under the law of composition defined by the Lie bracket, i.e., if [𝑢, 𝑣] ∈ 𝑊
for all 𝑢, 𝑣 ∈ 𝑊.

Example 2.14. The vector space ℝ3 (component-wise addition (2.19) and
scalar multiplication (2.20)) becomes a Lie algebra when it is equipped with
the cross product as Lie bracket such that for 𝐮, 𝐯 ∈ ℝ3 with

[𝐮, 𝐯] ≔ 𝐮×𝐯 =
⎡⎢⎢
⎣

𝑢1

𝑢2

𝑢3

⎤⎥⎥
⎦

×
⎡⎢⎢
⎣

𝑣1

𝑣2

𝑣3

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

𝑢2𝑣3 −𝑢3𝑣2

𝑢3𝑣1 −𝑢1𝑣3

𝑢1𝑣2 −𝑢2𝑣1

⎤⎥⎥
⎦

.

The reader might easily check that 𝐮×𝐯 satisfies the axioms LB 1–LB 3 and
that every one-dimensional subspace of ℝ3 (lines through the origin) is a
Lie subalgebra of ℝ3.

2.9. Affine spaces

If we try to use a two-dimensional real vector-space to make a mathematical
abstraction of a piece of paper on which we have drawn the arrows from
Example 2.11, then we might stumble on finding the origin. Indeed, among
all the material points of the sheet, there is no isolated outsider which could
be identified as the origin. However, as soon as we have designated one
material point 𝑝 as origin we can identify any other point of the sheet with
the arrow that points from the origin to this particular point (see Figure 2.2).
If we put it differently, an arrow 𝑣 can be “applied” to each point of the sheet
such that this point is translated by the arrow (of course some points may
be mapped outside of the sheet). The underlying algebraic structure is the
one of an affine space.

A set 𝐴 is called an affine space15 modelled on the real vector space 𝑉 if
there is a map, called an affine structure,

𝐴×𝑉 → 𝐴, (𝑝, 𝑣) ↦ 𝑝+̂𝑣 (2.33)

that satisfies the following axioms:

15. See Crampin and Pirani 1987, p. 9.
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Figure 2.2.: Two-dimensional affine space modelled over the vector space of
arrows in the plane from Example 2.11.

A 1. (𝑝+̂𝑣)+̂𝑤 = 𝑝+̂(𝑣+𝑤) for all 𝑝 ∈ 𝐴 and all 𝑣, 𝑤 ∈ 𝑉,

A 2. 𝑝+̂𝟢 = 𝑝 for all 𝑝 ∈ 𝐴, where 𝟢 ∈ 𝑉 is the zero vector,

A 3. for any pair of points 𝑝, 𝑝′∈ 𝐴 there is a unique element of 𝑉, denoted
𝑝′−̂𝑝, such that 𝑝+̂(𝑝′−̂𝑝) = 𝑝′.

If dim 𝑉 = 𝑛, then we say that the affine space 𝐴 is of dimension 𝑛.
The diligent reader may have observed that the map (2.33) together with

axioms A 1 and A 2 defines the action16 of 𝑉 on 𝐴 as an additive group. The
map 𝜑𝑣 ∈ Perm(𝐴) is given by 𝜑𝑣 ∶ 𝐴 → 𝐴, 𝑝 ↦ 𝜑𝑣(𝑝) = 𝑝+̂𝑣. Axiom A 3
requires the group action of 𝑉 on 𝐴 to be simply transitive.

2.10. Tensors

In Section 2.3, we saw that linear maps between vector-spaces are special
because they are compatible with the algebraic structure of the spaces they
relate. This section studies maps from Cartesian products of vector spaces
to the real numbers that are linear in each argument. Our first contact
with this species called tensor takes place in the protected area of finite
dimensional vector spaces. In Chapter 3, we will see that these animals can
be resettled point by point to a differentiable manifold.

Let 𝑉1, … , 𝑉𝑘 and 𝑊 be vector spaces. A map 𝑓 ∶ 𝑉1 ×…×𝑉𝑘 → 𝑊 is mul-
tilinear if it is linear in each argument, i.e.,

𝑓(1𝑣, … , 𝛼 𝑖𝑣+𝛽 𝑖𝑢, … , 𝑘𝑣) = 𝛼𝑓(1𝑣, … , 𝑖𝑣, … , 𝑘𝑣)+𝛽𝑓(1𝑣, … , 𝑖𝑢, … , 𝑘𝑣),

16. The action of a group on a set is defined in Section 2.2.
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for all 𝛼, 𝛽 ∈ ℝ and 𝑖 = 1, … , 𝑘. Let 𝐿(𝑉1, … , 𝑉𝑘; 𝑊) denote the set of all
multilinear maps from 𝑉1, … , 𝑉𝑘 to 𝑊. It becomes a real vector space when
endowed with the laws of composition declared such that

(𝑓 +𝑔)(1𝑣, … , 𝑘𝑣) ≔ 𝑓(1𝑣, … , 𝑘𝑣)+𝑔(1𝑣, … , 𝑘𝑣),
(𝛼𝑓 )(1𝑣, … , 𝑘𝑣) ≔ 𝛼𝑓(1𝑣, … , 𝑘𝑣),

for all 𝑓 , 𝑔 ∈ 𝐿(𝑉1, … , 𝑉𝑘; 𝑊) and all 𝛼 ∈ ℝ.
If 𝑊 = ℝ, then a map 𝑓 ∈ 𝐿(𝑉1, … , 𝑉𝑘; ℝ) is called a 𝑘-form, a tensor

of 𝑘-th order or simply a tensor. Let 𝑉1, … , 𝑉𝑘 and 𝑊1, … , 𝑊𝑙 be vector
spaces. If 𝑓 ∈ 𝐿(𝑉1, … , 𝑉𝑘; ℝ) and 𝑔 ∈ 𝐿(𝑊1, … , 𝑊𝑙; ℝ) are two tensors,
then the tensor product of 𝑓 and 𝑔 is the real-valued function

𝑓 ⊗𝑔∶ 𝑉1 ×⋯×𝑉𝑘 ×𝑊1 ×⋯×𝑊𝑙 → ℝ (2.34)

defined by

𝑓 ⊗𝑔(1𝑣, … , 𝑘𝑣, 1𝑤, … , 𝑙𝑤) ≔ 𝑓(1, … , 𝑘𝑣)𝑔(1𝑤, … , 𝑙𝑤).

It holds that 𝑓 ⊗𝑔 is a tensor, i.e., 𝑓 ⊗𝑔 ∈ 𝐿(𝑉1, … , 𝑉𝑘, 𝑊1, … , 𝑊𝑙; ℝ).

Theorem 2.15 (John M. Lee 2013, Proposition 12.4). Let 𝑉1, … , 𝑉𝑘 be
vector spaces of the respective dimension 𝑛1, … , 𝑛𝑘. For 𝑗 = 1, … , 𝑘, let

( 𝑗𝑒1, … , 𝑗𝑒𝑛𝑗)

be a basis of 𝑉𝑗 and let
( 𝑗𝑒1, … , 𝑗𝑒

𝑛𝑗)

designate the corresponding dual basis17 of 𝑉∗
𝑗 . Then the set

𝐵 ≔ {1𝑒𝑖1 ⊗⋯⊗𝑘𝑒𝑖𝑘 ∣ 1 ≤ 𝑖1 ≤ 𝑛1, … , 1 ≤ 𝑖𝑘 ≤ 𝑛𝑘}

is a basis of 𝐿(𝑉1, … , 𝑉𝑘; ℝ) and, therefore, has the dimension 𝑛1 ⋯ 𝑛𝑘.

Using the multi-index 𝐼 ≔ (𝑖1, … , 𝑖𝑘), a tensor 𝑓 ∈ 𝐿(𝑉1, … , 𝑉𝑘; ℝ) can
be written as

𝑓 =
𝑛1

∑
𝑖1=1

⋯
𝑛𝑘

∑
𝑖𝑘=1

𝑓𝑖1,…,𝑖𝑘 1𝑒𝑖1 ⊗⋯⊗𝑘𝑒𝑖𝑘

= ∑
𝐼

𝑓𝐼 1𝑒𝑖1 ⊗⋯⊗𝑘𝑒𝑖𝑘,

with 𝑓𝐼 = 𝑓𝑖1,…,𝑖𝑘
≔ 𝑓(1𝑒𝑖1, … , 𝑘𝑒𝑖𝑘

).

17. The dual basis to a given basis of a vector space is defined in Section 2.6.
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Proof. We consider arbitrary vectors

𝑗𝑣 =
𝑛𝑗

∑
𝑖𝑗=1

𝑗𝑣
𝑖𝑗

𝑗𝑒𝑖𝑗 ∈ 𝑉𝑗

with 𝑗 = 1, … , 𝑘 and a tensor 𝑓 ∈ 𝐿(𝑉1, … , 𝑉𝑘; ℝ). The following holds

𝑓(1𝑣, … , 𝑘𝑣) =
𝑛1

∑
𝑖1=1

⋯
𝑛𝑘

∑
𝑖𝑘=1

1𝑣𝑖1 ⋯ 𝑘𝑣𝑖𝑘 𝑓(1𝑒𝑖1, … , 𝑘𝑒𝑖𝑘
) (2.35)

because 𝑓 is multilinear. We assume that

𝑓 = ∑
𝐼

𝑓𝐼 1𝑒𝑖1 ⊗⋯⊗𝑘𝑒𝑖𝑘. (2.36)

In this case, it holds that

𝑓(1𝑣, … , 𝑘𝑣) = ∑
𝐼

𝑛1

∑
𝑗1=1

⋯
𝑛𝑘

∑
𝑗𝑘=1

𝑓𝐼 1𝑒𝑖1(1𝑣 𝑗11𝑒 𝑗1
) ⋯ 𝑘𝑒𝑖𝑘(𝑘𝑣 𝑗𝑘𝑘𝑒 𝑗𝑘

)

= ∑
𝐼

𝑛1

∑
𝑗1=1

⋯
𝑛𝑘

∑
𝑗𝑘=1

𝑓𝐼 1𝑣 𝑗1 ⋯ 𝑘𝑣 𝑗𝑘 δ𝑖1
𝑗1

⋯ δ𝑖𝑘
𝑗𝑘

= ∑
𝐼

𝑓𝐼 1𝑣𝑖1 ⋯ 𝑘𝑣𝑖𝑘.

(2.37)

Comparing expressions (2.35) and (2.37), it follows that 𝑓 has the form (2.36)
if and only if 𝑓𝐼 = 𝑓(1𝑒𝑖1, … , 𝑘𝑒𝑖𝑘

). Thus, 𝐵 spans 𝐿(𝑉1, … , 𝑉𝑘; ℝ).
We still need to show the linear independence of the 1𝑒𝑖1 ⊗⋯⊗𝑘𝑒𝑖𝑘. For

this, we set
𝑓 = ∑

𝐼
𝑓𝐼 1𝑒𝑖1 ⊗⋯⊗𝑘𝑒𝑖𝑘 != 0,

that is
𝑓(1𝑣, … , 𝑘𝑣) = ∑

𝐼
𝑓𝐼 1𝑒𝑖1 ⊗⋯⊗𝑘𝑒𝑖𝑘(1𝑣, … , 𝑘𝑣) != 0,

for all 𝑗𝑣 ∈ 𝑉𝑗 with 𝑗 = 1, … , 𝑘. By equation (2.37), this implies that

𝑓𝐼 = 0,

for all multi-indices 𝐼 and this proves that the 1𝑒𝑖1 ⊗⋯⊗𝑘𝑒𝑖𝑘 are linearly
independent. Thus 𝐵 is a basis. The number of elements in 𝐵 corresponds
to the dimension, therefore,

dim (𝐿(𝑉1, … , 𝑉𝑘; ℝ)) = 𝑛1 ⋯ 𝑛𝑘.
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Now, we consider the special case where the vector spaces 𝑉1, … , 𝑉𝑘 and
𝑊1, … , 𝑊𝑙 are replaced by 𝑘 copies of the dual space 𝑉∗ and by 𝑙 copies of
the vector space 𝑉 itself, respectively. The space of mixed tensors on V
of type (𝑘, 𝑙) is the vector space

𝑘
𝑙 𝑉 ≔ 𝐿( 𝑉∗, … , 𝑉∗⏟⏟⏟⏟⏟

𝑘
, 𝑉, … , 𝑉⏟⏟⏟⏟⏟

𝑙
; ℝ) ≕ 𝑉 ⊗⋯⊗𝑉⏟⏟⏟⏟⏟

𝑘
⊗ 𝑉∗ ⊗⋯⊗𝑉∗⏟⏟⏟⏟⏟⏟⏟

𝑙
. (2.38)

An element 𝑓 ∈ 𝑘
𝑙 𝑉 is a (𝑘, 𝑙)-tensor. There exist other definitions of

tensors for which we refer to Chapter 7 in Jeffrey M. Lee 2009. In the finite-
dimensional case, these definitions are equivalent because the different
tensor spaces are isomorphic. Note that the position of the asterisks in
equation (2.38) is correct. By definition, elements from 𝑉∗ are linear real-
valued maps on 𝑉 and because of the isomorphism 𝑉 ≅ 𝑉∗∗ from (2.22),
vectors from 𝑉 are identified as linear real-valued maps on 𝑉∗ (i.e., as
elements of 𝑉∗∗).

The two special cases 𝑘 = 0 and 𝑙 = 0 play an important role and, there-
fore, have own names. For 𝑙 = 0, the resulting space of contravariant
𝑘-tensors on 𝑉 is written as

𝑘𝑉 ≔ 𝑘
0𝑉 = 𝐿( 𝑉∗, … , 𝑉∗⏟⏟⏟⏟⏟

𝑘
; ℝ) = 𝑉 ⊗⋯⊗𝑉⏟⏟⏟⏟⏟

𝑘
.

An element 𝑓 ∈ 𝑘𝑉 is called a contravariant 𝑘-tensor or a contravari-
ant tensor of rank 𝑘. For 𝑘 = 0, the space of covariant 𝑙-tensors on 𝑉
is denoted by

𝑙𝑉∗ ≔ 0
𝑙 𝑉 = 𝐿( 𝑉, … , 𝑉⏟⏟⏟⏟⏟

𝑙
; ℝ) = 𝑉∗ ⊗⋯⊗𝑉∗⏟⏟⏟⏟⏟⏟⏟

𝑙
.

An element 𝑓 ∈ 𝑙𝑉∗ is referred to as covariant 𝑙-tensor or as covariant
tensor of rank 𝑙. The bilinear forms from Section 2.7 are covariant tensors
of rank two.

A covariant 𝑙-tensor 𝑓 on a vector space 𝑉 assigns a real number to 𝑙
elements of 𝑉. Among these tensors, two special types of tensors can be
singled out, the symmetric and the alternating tensors. The tensor 𝑓 is
symmetric if its value remains unchanged by interchanging any pair of its
arguments, i.e.,

𝑓(𝑣1, … , 𝑣𝑖, … , 𝑣𝑗, … , 𝑣𝑙) = 𝑓(𝑣1, … , 𝑣𝑗, … , 𝑣𝑖, … , 𝑣𝑙),

whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑙 and for all 𝑣1, … , 𝑣𝑙 ∈ 𝑉. The tensor 𝑓 is alternating
(antisymmetric or skew-symmetric) if it changes sign whenever two of
its arguments are interchanged. This means that

𝑓(𝑣1, … , 𝑣𝑖, … , 𝑣𝑗, … , 𝑣𝑙) = −𝑓(𝑣1, … , 𝑣𝑗, … , 𝑣𝑖, … , 𝑣𝑙),
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whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑙 and for all 𝑣1, … , 𝑣𝑙 ∈ 𝑉. The common property of
symmetric and alternating tensors is that their value changes predictably
if their arguments are rearranged.

It can be shown that the sets of symmetric and alternating tensors of
order 𝑙 constitute respective subspaces of the tensor space 𝑙𝑉∗. This
means in particular that the sum of two symmetric (alternating) tensors is
a symmetric (alternating) tensor. There are natural projections on these
two subspaces. We will see that tensors and, especially tensor fields, play
an eminent role in mechanics. We continue our study by focussing on
alternating tensors.

2.11. Alternating forms and their exterior algebra

First, we want to state the projection map which projects a covariant tensor
𝑓 ∈ 𝑙𝑉∗ to its alternating part. The symmetric group 𝑆𝑙, which we studied
in Example 2.6, reveals to be useful in this context. We define the action
of a permutation on a tensor 𝑓 ∈ 𝑙𝑉∗ as the new tensor 𝜑𝑠 𝑓 ∈ 𝑙𝑉∗

that is given by

𝜑𝑠 𝑓 ∶ (𝑣1, … , 𝑣𝑙) ↦ 𝑓(𝑣𝑠(1), … , 𝑣𝑠(𝑙)).

We can think of 𝑓 and 𝜑𝑠 𝑓 as the same animals with 𝑙 mouths to eat the
vectors 𝑣1, … , 𝑣𝑙. Only, their eating habits may differ in the way which
vector is fed to which mouth depending on the element 𝑠 ∈ 𝑆𝑙.

An alternating 𝑙-form on 𝑉 is an alternating covariant tensor of rank 𝑙

𝜔∶ 𝑉 ×⋯×𝑉⏟⏟⏟⏟⏟
𝑙

→ ℝ,

where 𝑙 is called the degree of the form. The set of alternating 𝑙-forms
on V, denoted by 𝑙 𝑉∗, is a vector subspace of 𝑙𝑉∗. For any 𝜂 ∈ 𝑙𝑉∗ we
define the alternation of 𝜂 as

Alt(𝜂) ≔ 1
𝑙! ∑

𝑠∈𝑆𝑙

sgn(𝑠)𝜑𝑠𝜂. (2.39)

By the linearity of the summation and by straightforward computation, it
can be seen that the alternation (2.39) is linear. Additionally, it has the
following properties.

Theorem 2.16 (Spivak 1999a, Proposition 1, p. 203).

(i) If 𝜂 ∈ 𝑙𝑉∗, then Alt(𝜂) ∈ 𝑙 𝑉∗.
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(ii) If 𝜔 ∈ 𝑙 𝑉∗, then Alt(𝜔) = 𝜔.

(iii) If 𝜂 ∈ 𝑙𝑉∗, then Alt(Alt(𝜂)) = Alt(𝜂).

To tame these alternating animals and to clarify the use of (2.39), we have
a look at the following example.
Example 2.17. Let us consider a covariant 2-tensor 𝜂 ∈ 2𝑉∗ on a two-
dimensional vector space 𝑉, i.e., 𝑙 = 2 and dim 𝑉 = 2. Let (𝑒1, 𝑒2) be a basis
of 𝑉∗, then the tensor 𝜂 can be written as

𝜂 = 𝜂11 𝑒1⊗𝑒1 +𝜂12 𝑒1⊗𝑒2 +𝜂21 𝑒2⊗𝑒1 +𝜂22 𝑒2⊗𝑒2,

according to Theorem 2.15. We can calculate Alt(𝜂) as

Alt(𝜂) = 𝜂11 Alt(𝑒1⊗𝑒1)+𝜂12 Alt(𝑒1⊗𝑒2)
+𝜂21 Alt(𝑒2⊗𝑒1)+𝜂22 Alt(𝑒2⊗𝑒2)

= 𝜂11
1
2(𝑒1⊗𝑒1 −𝑒1⊗𝑒1)+𝜂12

1
2(𝑒1⊗𝑒2 −𝑒2⊗𝑒1)

+𝜂21
1
2(𝑒2⊗𝑒1 −𝑒1⊗𝑒2)+𝜂22

1
2(𝑒2⊗𝑒2 −𝑒2⊗𝑒1)

= 1
2(𝜂12 −𝜂21)(𝑒1⊗𝑒2 −𝑒2⊗𝑒1).

The alternation (2.39) and the tensor product (2.34) allow to define a
product that assigns an alternating (𝑘+𝑙)-form to a pair consisting of an
alternating 𝑘-form and an alternating 𝑙-form. The wedge product (or
exterior product) of two alternating forms 𝜂 ∈ 𝑘 𝑉∗ and 𝜔 ∈ 𝑙 𝑉∗ is
defined as

𝜂∧𝜔 ≔ (𝑘+𝑙)!
𝑘! 𝑙! Alt(𝜂⊗𝜔) (2.39)= 1

𝑘! 𝑙! ∑
𝑠∈𝑆𝑘+𝑙

sgn(𝑠)𝜑𝑠(𝜂⊗𝜔), (2.40)

with 𝜂∧𝜔∈ 𝑘+𝑙 𝑉∗. The set of alternating forms of arbitrary degree,
denoted by ⋆𝑉∗, becomes an exterior algebra (Graßmann Algebra) when
endowed with the wedge product.
Example 2.18. It is easy to see that the alternation (2.39) maps covectors
to themselves, such that the spaces 1𝑉∗ and 1 𝑉∗ are identical and the
terms covector and 1-form are synonyms. We consider the wedge product of
the basis (co-)vectors from Example 2.17, i.e.,

(𝑒1∧ 𝑒2)(𝑣1, 𝑣2) (2.40)= (𝑒1⊗𝑒2)(𝑣1, 𝑣2)−(𝑒1⊗𝑒2)(𝑣2, 𝑣1)

= (𝑒1⊗𝑒2 −𝑒2⊗𝑒1)(𝑣1, 𝑣2).

We see that the tensor Alt(𝜂) from Example 2.17 is given by

Alt(𝜂) = 1
2(𝜂12 −𝜂21) 𝑒1∧ 𝑒2.
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Proposition 2.19 (Properties of the wedge product). For all 𝜉, 𝜂, 𝜔 ∈ ⋆𝑉∗

and all real numbers 𝑎, 𝑏 ∈ ℝ, the wedge product satisfies

(i) (𝜉 ∧𝜂)∧𝜔 = 𝜉 ∧(𝜂∧𝜔),

(ii) (𝑎𝜉 +𝑏𝜂)∧𝜔 = 𝑎𝜉 ∧𝜔+𝑏𝜂∧𝜔,

(iii) (𝜂∧𝜔) = (−1)𝑘𝑙(𝜔∧𝜂), when 𝜂 ∈ 𝑘 𝑉∗ and 𝜔 ∈ 𝑙 𝑉∗,

(iv) 𝜔∧𝜔 = 0, whenever the degree of 𝜔 is odd.

The proof18 of these properties is left to the reader. We introduce the
following shorthand notation for the wedge product between basis vectors.
Let 𝐼 = (𝑖1, … , 𝑖𝑘) be a multi-index and let (𝑒1, … , 𝑒𝑛) be a basis of 𝑉∗, then
we define

𝑒𝐼 = 𝑒(𝑖1,…,𝑖𝑘) ≔ 𝑒𝑖1∧ ⋯ ∧ 𝑒𝑖𝑘 (2.40)= 𝑘! Alt(𝑒𝑖1⊗ ⋯ ⊗𝑒𝑖𝑘).

The following theorem states that the vector space 𝑘 𝑉∗ is spanned by the
vectors 𝑒𝐼 with increasing multi-indices 𝐼.

Theorem 2.20. Let 𝑉 be a vector space with basis (𝑒1, … , 𝑒𝑛) and 𝑉∗ be
its dual space with the dual basis (𝑒1, … , 𝑒𝑛). Then, the set

𝐵 = {𝑒𝐼 = 𝑒𝑖1∧ ⋯ ∧ 𝑒𝑖𝑘 ∣ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘}

is a basis of 𝑘 𝑉∗ for 𝑘 ≤ 𝑛. Thus, the dimension of 𝑘 𝑉∗ is given for 𝑘 ≤ 𝑛
by

dim 𝑘 𝑉∗ = (𝑛
𝑘) = 𝑛!

𝑘!(𝑛−𝑘)! .

Before we prove Theorem 2.20, we define the Kronecker delta for multi-
indices. The determinant of a real 𝑛-by-𝑛 matrix 𝐀 is defined as

det 𝐀 ≔ ∑
𝑠∈𝑆𝑛

sgn(𝑠) 𝐴𝑠(1)
1 ⋯ 𝐴𝑠(𝑛)

𝑛 = ∑
𝑠∈𝑆𝑛

sgn(𝑠) 𝐴1
𝑠(1) ⋯ 𝐴𝑛

𝑠(𝑛) .

With this definition, it is easy to see that

𝑒𝐼(𝑣1, … , 𝑣𝑘) = det
⎡
⎢⎢⎢⎢
⎣

𝑣𝑖1
1 ⋯ 𝑣𝑖1

𝑘
⋮ ⋱ ⋮

𝑣𝑖𝑘
1 ⋯ 𝑣𝑖𝑘

𝑘

⎤
⎥⎥⎥⎥
⎦

,

18. The proof can be found in John M. Lee 2013, Proposition 14.11.
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with 𝑒𝐼 ∈ 𝑘 𝑉∗ and 𝑣𝑗 = 𝑣𝑖
𝑗 𝑒𝑖 ∈ 𝑉 with 𝑗 = 1, … , 𝑘 and 𝑖 = 1, … , dim 𝑉. We

define the Kronecker delta for multi-indices as

δ𝐼
𝐽 ≔ 𝑒𝐼(𝑒𝑗1, … , 𝑒𝑗𝑘

) = det
⎡
⎢⎢⎢⎢
⎣

δ𝑖1
𝑗1

⋯ δ𝑖1
𝑗𝑘

⋮ ⋱ ⋮
δ𝑖𝑘

𝑗1
⋯ δ𝑖𝑘

𝑗𝑘

⎤
⎥⎥⎥⎥
⎦

=
⎧{
⎨{⎩

sgn(𝑠) if no repeated indices in
𝐼, 𝐽 and ∃ 𝑠∶ 𝑠(𝐼) = 𝐽,

0 otherwise.

Proof. Since 𝑘 𝑉∗ ⊂ 𝑘𝑉∗, an alternating 𝑘-form 𝜔 ∈ 𝑘 𝑉∗ can be ex-
pressed with respect to the basis 𝑒𝑖1⊗ ⋯ ⊗𝑒𝑖𝑘 of 𝑘𝑉∗ as

𝜔 = ∑
𝐼

𝜔𝐼 𝑒𝑖1⊗ ⋯ ⊗𝑒𝑖𝑘.

By the second property from Theorem 2.16, we know that

𝜔 = Alt(𝜔) = Alt( ∑
𝐼

𝜔𝐼 𝑒𝑖1⊗ ⋯ ⊗𝑒𝑖𝑘)

= ∑
𝐼

𝜔𝐼 Alt(𝑒𝑖1⊗ ⋯ ⊗𝑒𝑖𝑘)

= 1
𝑘! ∑

𝐼
𝜔𝐼 𝑒𝐼.

At this point, it is reasonable to introduce a summation over increasing
multi-indices. If we write a summation symbol that is decorated with an
arrow ↗, then there is only a summation over multi-indices 𝐼 = (𝑖1, … , 𝑖𝑘)
for which holds 𝑖1 < ⋯ < 𝑖𝑘. This summation allows us to write

𝜔 = Alt(𝜔) = 1
𝑘! ∑

𝐼
𝜔𝐼 𝑒𝐼 = 1

𝑘!

↗
∑

𝐼
∑

𝑠∈𝑆𝑘

𝜔𝑠(𝐼) 𝑒𝑠(𝐼)

=
↗

∑
𝐼

1
𝑘! ∑

𝑠∈𝑆𝑘

𝜔𝑠(𝐼) sgn(𝑠)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕ 𝜔̃𝐼

𝑒𝐼.

Note that 𝑒𝐼 = 0 if the multi-index 𝐼 contains repeated indices (see Exam-
ple 2.21). Moreover, it holds that 𝑒𝑠(𝐼) = sgn(𝑠)𝑒𝐼.
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To prove linear independence of the 𝑒𝐼 with increasing multi-indices 𝐼, we
consider that

↗
∑

𝐼
𝜔𝐼 𝑒𝐼 != 0 ⇔

↗
∑

𝐼
𝜔𝐼 𝑒𝐼(𝑣1, … , 𝑣𝑘) != 0, ∀𝑣𝑗 ∈ 𝑉. (2.41)

Equation (2.41) implies that

↗
∑

𝐼
𝜔𝐼 𝑒𝐼(𝑒𝑗1, … , 𝑒𝑗𝑘

)⏟⏟⏟⏟⏟⏟⏟
δ𝐼

𝐽

= 𝛼𝐽
!= 0,

for all 𝐽 = (𝑗1, … , 𝑗𝑘) with 𝑗1 < ⋯ < 𝑗𝑘. This proves the linear independence
of the vectors 𝑒𝐼 with increasing multi-indices 𝐼.

Since the space 𝑘 𝑉∗ is spanned by the vectors 𝑒𝐼 with increasing multi-
indices 𝐼, the computation of its dimension boils down to the combinatorial
question: How many different ways do exist of picking 𝑘 different indices
from a index set of 𝑛 elements (without putting back and ignoring the order)?
As is well-known from elementary combinatorics, the answer is given by

(𝑛
𝑘) = 𝑛!

𝑘!(𝑛−𝑘)!

such that dim 𝑘 𝑉∗ = (𝑛
𝑘).

Example 2.21. To complete the section, let us have a look at the space of
alternating second-order tensors 2 𝑉∗ ⊂ 2𝑉∗ on a 3-dimensional vector
space 𝑉 (i.e., 𝑘 = 2 and 𝑛 = 3). We start with a covariant 2-tensor 𝜔 ∈ 2𝑉∗

that is given by

𝜔 = 𝜔11 𝑒1⊗𝑒1 +𝜔12 𝑒1⊗𝑒2 +𝜔21 𝑒2⊗𝑒1 +𝜔22 𝑒2⊗𝑒2 +𝜔13 𝑒1⊗𝑒3

+𝜔31 𝑒3⊗𝑒1 +𝜔23 𝑒2⊗𝑒3 +𝜔32 𝑒3⊗𝑒2 +𝜔33 𝑒3⊗𝑒3.

Considering that Alt(𝑒𝑖⊗𝑒 𝑗) = 1
2!𝑒

𝑖𝑗, we can write

Alt(𝜔) = 1
2(𝜔11 𝑒11 +𝜔12 𝑒12 +𝜔21 𝑒21 +𝜔22 𝑒22 +𝜔13 𝑒13

+𝜔31 𝑒31 +𝜔23 𝑒23 +𝜔32 𝑒32 +𝜔33 𝑒33).
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Chapter 2: All kinds of algebra

Taking into account that 𝑒11 = 𝑒22 = 𝑒33 = 0 (see Example 2.17), we write

Alt(𝜔) = 1
2 ∑

𝐼
𝜔𝐼 𝑒𝐼 with 𝐼 ∈ {12, 21, 13, 31, 23, 32}

= 1
2(𝜔12 −𝜔21)⏟⏟⏟⏟⏟⏟⏟

𝜔̃12

𝑒12 + 1
2(𝜔13 −𝜔31)⏟⏟⏟⏟⏟⏟⏟

𝜔̃13

𝑒13 + 1
2(𝜔23 −𝜔32)⏟⏟⏟⏟⏟⏟⏟

𝜔̃23

𝑒23

=
↗

∑
𝐼

∑
𝑠∈𝑆2

1
2! 𝜔𝑠(𝐼)sgn(𝑠)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜔̃𝐼

𝑒𝐼

= ∑
𝐽

∑
𝑠∈𝑆2

1
2! 𝜔𝑠(𝐽)sgn(𝑠)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜔̃𝐽

𝑒𝐽 with 𝐽 ∈ {12, 13, 23}.
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Differential geometry3
[…] no one denies that modern
definitions are clear, elegant, and
precise; it’s just that it’s impossible
to comprehend how any one ever
thought of them.

— Michael Spivak

This chapter deals with differential geometry. It presents the mathematical
foundation of the next chapter that deals with finite-dimensional mechan-
ical systems. For the topological concepts, we refer to Part I in Munkres
2000. As general references for differential geometry, we recommend the
books: Jeffrey M. Lee 2009, John M. Lee 2013, and Spivak 1999a. The more
elaborate geometric concepts that we introduce are referenced at the place
of appearance.

3.1. Differentiable manifolds

Definition 3.1. A topology on a set 𝑀 is a collection1 T of subsets of 𝑀
having the following properties:

T 1. ∅ and 𝑀 are in T .

T 2. The union of the elements of any subcollection of T is in T .

T 3. The intersection of the elements of any finite subcollection of T is
in T .

A set 𝑀 for which a topology has been specified is called a topological
space.

If 𝑀 is a topological space with topology T , then a subset 𝑈 is said to be
open whenever 𝑈 ∈T and it is said to be closed if 𝑀\𝑈 is open.2 Therefore,
the choice of a topology on a set 𝑀 specifies which subsets of 𝑀 are open
and which are closed sets.

1. A set whose elements are sets is referred to as a collection. Here T is just a subset of
P(𝑀) (the power set of 𝑀, i.e., the set of all subsets of 𝑀) that satisfies axioms T 1–T 3.

2. 𝑀\𝑈 denotes the set difference, i.e., the set {𝑥 ∈ 𝑀 ∣ 𝑥 ∉ 𝑈}.
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Chapter 3: Differential geometry

Figure 3.1.: Three different topologies for a set of three elements. The trivial
topology is shown on the left. The right diagram depicts the
discrete topology, which has the maximal number of elements.
The middle diagram visualizes a topology which is finer than
the trivial topology but coarser than the discrete topology.

Example 3.2. Depending on their number of elements, topologies can be
finer or coarser. The coarsest possible topology on a set 𝑀 is known as the
trivial topology of 𝑀. It consists of the two elements ∅ and 𝑀, which are
required by property T 1. The finest possible topology on 𝑀, known as the
discrete topology, is given by the powerset P(𝑀), i.e., by the set of all
subsets of 𝑀. The check that both topologies satisfy axioms T 1–T 3 is left
to the reader. These topologies are represented schematically for a set of
three elements by the left and right diagram in Figure 3.1.

Let 𝑀 be a topological space with topology T . If 𝑉 is a subset of 𝑀, the
collection

T𝑉 ≔ {𝑉 ∩𝑈 ∣ 𝑈 ∈ T }

is a topology3 on 𝑉, called the subspace topology.
An important class of topological spaces is given by the metric spaces. A

metric space (𝑀, 𝑑) is a set 𝑀 together with a distance function

𝑑∶ 𝑀 ×𝑀 → ℝ

having the following properties:

D 1. 𝑑(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑀; equality holds if and only if 𝑥 = 𝑦.

D 2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑀.

D 3. 𝑑(𝑥, 𝑦)+𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑀.

Let 𝐵(𝑥, 𝑟) be the ball around 𝑥 with radius 𝑟 > 0 defined as subset of 𝑀 by

𝐵(𝑥, 𝑟) ≔ {𝑦 ∈ 𝑀 ∣ 𝑑(𝑥, 𝑦) < 𝑟}.

3. The proof of this statement can be found in Munkres 2000, §16, p. 89.
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3.1. Differentiable manifolds

The open sets, i.e., the elements of the topology, are then defined as follows.
A subset 𝑈 of 𝑀 is called open if and only if

∀𝑥 ∈ 𝑈, ∃ 𝑟 > 0, such that 𝐵(𝑥, 𝑟) ⊂ 𝑈.

This topology is called the metric topology induced by 𝑑. Since the norm
on a normed vector space induces a metric, the normed vector spaces are
topological spaces.

Example 3.3. The standard topology on ℝ𝑛 is given by the metric topol-
ogy that uses the balls

𝐵(𝐱, 𝑟) ≔ {𝐲 ∈ ℝ𝑛 ∣ ‖𝐱−𝐲‖2 < 𝑟}. (3.1)

around 𝐱 ∈ ℝ𝑛 with radius 𝑟 > 0. The distance function in (3.1) is the
Euclidean distance

𝑑(𝐱, 𝐲) = ‖𝐱−𝐲‖2, with ‖𝐳‖2 ≔ √(𝑧1)2 +⋯+(𝑧𝑛)2 ,

for all 𝐱, 𝐲, 𝐳 ∈ ℝ𝑛. Note that the norm ‖ ⋅‖2 is just the norm that is induced
by the standard inner product from Example 2.12.

Let 𝑓 ∶ 𝑀 → 𝑁 be a function between two sets 𝑀 and 𝑁. If the sets are
endowed with respective topologies T𝑀 and T𝑁, then we can define the
notion of continuity for the function 𝑓. A function 𝑓 ∶ 𝑀 → 𝑁 between two
topological spaces 𝑀 and 𝑁 is said to be continuous if for each open subset
𝑉 of 𝑁, the set 𝑓 −1(𝑉) is an open subset of 𝑀. The set

𝑓 −1(𝑉) ≔ {𝑚 ∈ 𝑀 ∣ 𝑓 (𝑚) ∈ 𝑉}

is called the preimage of 𝑉 under 𝑓.

Example 3.4. The trivial and the discrete topology from Example 3.2 serve
as illustrative examples. If the set 𝑀 is equipped with the discrete topology,
then all functions 𝑓 ∶ 𝑀 → 𝑁 are continuous irrespective of the topology on 𝑁.
The discrete topology declares any possible subset of 𝑀 to be open. Similarly,
if 𝑁 is endowed with the trivial topology, then all functions are continuous
irrespective of the topology on 𝑀. With the trivial topology on 𝑁, only
𝑓 −1(∅)= ∅ and 𝑓 −1(𝑁)= 𝑀 need to be open sets of 𝑀 and they are (for any
topology on 𝑀) by axiom T 1. This example illustrates that the concept of
continuity of a function is an interplay of the topologies on the domain and
on the codomain of the function.

We have seen that functions between topological spaces are continuous
with respect to the specific topologies of these spaces. Therefore, continuous
functions may serve to relate topological spaces.
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Chapter 3: Differential geometry

Definition 3.5. Let 𝑀 and 𝑁 be topological spaces and let 𝑓 ∶ 𝑀 → 𝑁 be a
bijective map. If both the function 𝑓 and the inverse function 𝑓 −1 ∶ 𝑁 → 𝑀
are continuous, then 𝑓 is called a homeomorphism.

In Chapter 2, we introduced isomorphisms between groups and isomor-
phisms between vector spaces (see Sections 2.1 and 2.3, respectively). We
have seen that an isomorphism is a bijective correspondence between two
algebraic objects and that it is compatible with the algebraic structure of
the objects that it relates. In topology, a homeomorphism is the analogue; it
is a bijective correspondence which is compatible with the topologies on the
spaces it relates.

Let 𝑥 be a point in a topological space 𝑀. A neighbourhood of 𝑥 is
an open subset of 𝑀 containing 𝑥. A topological space 𝑀 is said to be
separated if for each pair 𝑥1, 𝑥2 of distinct points of 𝑀, there exist disjoint
neighbourhoods 𝑈1 and 𝑈2 of 𝑥1 and 𝑥2, respectively. Separated topological
spaces are also known as Hausdorff spaces. Among the topologies depicted
in Figure 3.1, only the discrete topology shown on the right yields a separated
topological space.

A collection A of subsets of a space 𝑀 is said to cover 𝑀, or to be a
covering of 𝑀, if the union of the elements of A is equal to 𝑀. It is called
an open covering of 𝑀 if its elements are open subsets of 𝑀. A space
𝑀 is said to be compact if every open covering A of 𝑀 contains a finite
subcollection that also covers 𝑀.

Let 𝑀 be a topological space. A collection A of subsets of 𝑀 is said to be
locally finite in 𝑀 if every point of 𝑀 has a neighbourhood that intersects
only finitely many elements of A.

Let A be a collection of subsets of the space 𝑀. A collection B of subsets of
𝑀 is said to be a refinement of A (or is said to refine A) if for each element
𝐵 of B, there is an element 𝐴 of A containing 𝐵. If the elements of B are
open sets, we call B an open refinement of A. A space 𝑀 is paracompact
if every open covering A of 𝑀 has a locally finite open refinement B that
covers 𝑀.

Definition 3.6. An 𝑛-dimensional topological manifold 𝑀 is a para-
compact separated topological space 𝑀 such that every point 𝑝 of 𝑀 has a
neighbourhood that is homeomorphic to an open subset of ℝ𝑛. The local
homeomorphisms 𝜙𝛼 ∶ 𝑀 ⊇ 𝑈 → 𝑉 ⊆ ℝ𝑛 are called charts. A set A of charts
(𝑈𝛼, 𝜙𝛼) that cover 𝑀 is called atlas.

If we are given two charts (𝑈𝛼, 𝜙𝛼) and (𝑈𝛽, 𝜙𝛽) with 𝑈𝛼∩𝑈𝛽 ≠ ∅, then
the chart transition map 𝜙𝛼𝛽 is defined as

𝜙𝛼𝛽 ≔ 𝜙𝛽 ∘𝜙−1
𝛼 ∶ 𝜙𝛼(𝑈𝛼∩𝑈𝛽) → 𝜙𝛽(𝑈𝛼∩𝑈𝛽). (3.2)
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3.1. Differentiable manifolds

Figure 3.2.: Illustration of the chart transition map between the charts
(𝑈𝛼, 𝜙𝛼) and (𝑈𝛽, 𝜙𝛽) of a topological manifold 𝑀.

Chart transition maps are homeomorphisms between open subsets of ℝ𝑛.
The inverse function of 𝜙𝛼𝛽 is

𝜙𝛽𝛼 = 𝜙−1
𝛼𝛽 = 𝜙𝛼 ∘𝜙−1

𝛽 .

For the author it has revealed beneficial to draw sketches such as Figure 3.2
to memorize the concepts.

Let 𝑀 be an 𝑚-dimensional and 𝑁 be an 𝑛-dimensional topological man-
ifold. Because 𝑀 and 𝑁 are topological spaces, we know the concept of
continuity for a map 𝑓 ∶ 𝑀 → 𝑁. If we are given respective charts (𝑈, 𝜙) and
(𝑉, 𝜓) of 𝑀 and 𝑁, then we can consider the chart representation

𝐟 ≔ 𝜓∘𝑓 ∘𝜙−1 ∶ ℝ𝑚 ⊇ 𝜙(𝑓 −1(𝑉)∩𝑈) → 𝜓(𝑉) ⊆ ℝ𝑛 (3.3)

of the map 𝑓 (see Figure 3.3). Because the charts 𝜙 and 𝜓 are homeomor-
phisms, the topologies on the spaces 𝑀 and ℝ𝑚 respectively on 𝑁 and ℝ𝑛

are compatible. Therefore, the function 𝑓 ∶ 𝑀 → 𝑁 is continuous if and only
if its chart representation (3.3) is.

Two particular types of functions 𝑓 ∶ 𝑀 → 𝑁, which will become important
in what follows, are curves (𝑀 = 𝐼 ⊆ ℝ) and real-valued functions (𝑁 = ℝ).
Figure 3.4 shows a visualization thereof. A curve 𝛾 on 𝑁 is a map from a
subset 𝐼 of the real numbers to the manifold 𝑁, that is

𝛾∶ ℝ ⊇ 𝐼 → 𝑁, 𝜏 ↦ 𝛾(𝜏). (3.4)

A (real-valued) function 𝑓 on the manifold 𝑀 is a map

𝑓 ∶ 𝑀 → ℝ. (3.5)
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Chapter 3: Differential geometry

Figure 3.3.: A map 𝑓 between two topological manifolds 𝑀 and 𝑁 and its
chart representation 𝜓∘𝑓 ∘𝜙−1.

The chart representation (3.3) of the curve (3.4) with respect to the chart
(𝑉, 𝜓) is given by

𝐱 ≔ 𝜓∘𝛾∶ 𝐼 ∩𝛾−1(𝑉) → 𝜓(𝑉) ⊆ ℝ𝑛.

The chart representation (3.3) of the function (3.5) with respect to the chart
(𝑈, 𝜙) reads

𝑓 ∘𝜙−1 ∶ ℝ𝑚 ⊇ 𝜙(𝑈) → ℝ. (3.6)

The next step is to endow the topological manifolds 𝑀 and 𝑁 with a
differentiable structure that allows to study the differentiability of functions
𝑓 ∶ 𝑀 → 𝑁.

Definition 3.7. A bijective map 𝑓 ∶ ℝ𝑛 ⊇ 𝑈 → 𝑉 ⊆ ℝ𝑛 between open subsets
𝑈 and 𝑉 of ℝ𝑛 is said to be a diffeomorphism if both the function 𝑓 and
its inverse function 𝑓 −1 are infinitely differentiable.

An atlas of a topological manifold 𝑀 for which all chart transition maps4

are diffeomorphisms is said to be a smooth atlas. Two smooth atlases are
said to be equivalent if their union is again a smooth atlas.

Definition 3.8. An 𝑛-dimensional differentiable manifold is a topolog-
ical manifold of dimension 𝑛 together with an equivalence class of smooth
atlases.

4. See equation (3.2) for the definition.
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3.1. Differentiable manifolds

(a) A curve 𝛾∶ ℝ ⊇ 𝐼 → 𝑁 on a topological manifold 𝑁 and its chart rep-
resentation 𝜓∘𝛾∶ 𝐼 ∩𝛾−1(𝑉) → ℝ𝑛.

(b) A function 𝑓 ∶ 𝑀 → ℝ on a topological manifold 𝑀 and its chart
representation 𝑓 ∘𝜙−1 ∶ ℝ𝑚 ⊇ 𝜙(𝑈) → ℝ.

Figure 3.4.: Curve and function on a differentiable manifold.

An equivalence class of smooth atlases is also called a differentiable
structure. Differentiable manifolds are also referred to as smooth mani-
folds.

Example 3.9. Every open subset 𝑈 ⊆ ℝ𝑛 is an 𝑛-dimensional differentiable
manifold. A smooth atlas is given by

A = {(𝑈, idℝ𝑛)}.

Example 3.10. The 𝑛-sphere

𝑆𝑛 ≔ {𝐱 ∈ ℝ𝑛+1 ∣ ⟨𝐱, 𝐱⟩ = 1}

with two different stereographic projections5 as charts is an 𝑛-dimensional
differentiable manifold. Note that ⟨⋅, ⋅⟩ denotes the standard inner product
of ℝ𝑛+1 from Example 2.12.

Now, we are ready to study differentiable maps. Let 𝑀 and 𝑁 be differen-
tiable manifolds of the respective dimensions 𝑚 and 𝑛. A map 𝑓 ∶ 𝑀 → 𝑁 is
said to be differentiable (or smooth) if for each 𝑝 ∈ 𝑀 there exist charts

5. See John M. Lee 2013, Problem 1-7, p. 30.
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(𝑈, 𝜙) around 𝑝 and (𝑉, 𝜓) around 𝑓(𝑝) such that the chart representation
of 𝑓 given by

𝜓∘𝑓 ∘𝜙−1 ∶ 𝑊 → 𝜓(𝑉),

which is defined on a neighbourhood 𝑊 ⊆ 𝜙(𝑓 −1(𝑉) ∩ 𝑈) around 𝜙(𝑝),
is infinitely differentiable (see Figure 3.3). We denote the set of differen-
tiable maps 𝑓 ∶ 𝑀 → 𝑁 by 𝐶∞(𝑀; 𝑁). In the special case of smooth functions
𝑓 ∶ 𝑀 → ℝ, we will use the abbreviation 𝐶∞(𝑀) instead of writing 𝐶∞(𝑀; ℝ).

Definition 3.11. A diffeomorphism 𝑓 ∶ 𝑀 → 𝑁 is a homeomorphism for
which the bijective function 𝑓 and its inverse function 𝑓 −1 are both differ-
entiable. In this case, the differentiable manifolds 𝑀 and 𝑁 are said to be
diffeomorphic.

3.2. Tangent and cotangent space

When it comes to the concept of tangent vectors to a differentiable manifold,
several definitions exist (see for example Chapter 3 in John M. Lee 2013).
The author thinks that the most intuitive approach is to relate tangent
vectors with curves. People aware of elementary physics would not feel
any discomfort in saying that the velocity of a particle moving in space can
be represented by a vector that is tangent to the time-parametrized curve
describing the motion of the particle. Therefore, we will start by introducing
the tangent vectors as equivalence classes of curves. However, it is the
algebraic definition of tangent vectors as derivations on smooth functions
that reveals to be the work horse in doing computations such that we cannot
pass over this interpretation.

Tangent vectors as equivalence classes of curves

Two curves6 𝛾1, 𝛾2 ∶ ]−𝑟, 𝑟[→ 𝑀 with 𝛾1(0) = 𝛾2(0) = 𝑝 ∈ 𝑀 and 𝑟 > 0 are
said to be equivalent,

𝛾1 ∼𝑝 𝛾2, (3.7)

if it holds for some chart (𝑈, 𝜙) around 𝑝 that

d
d𝜏∣

𝜏=0
(𝜙∘𝛾1)(𝜏) = d

d𝜏∣
𝜏=0

(𝜙∘𝛾2)(𝜏). (3.8)

We can easily see that the equivalence criterion (3.8) is chart independent,
i.e., if it holds for one chart, then it holds for every chart around 𝑝. To see

6. See equation (3.4).
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this, we consider a second chart (𝑉, 𝜓) around 𝑝. Then, for any 𝑝 ∈ 𝑈 ∩𝑉,
it holds that 𝜙∘𝛾𝑖 = (𝜙∘𝜓−1)∘𝜓∘𝛾𝑖 with 𝑖 = 1, 2 and therefore

d
d𝜏∣

𝜏=0
(𝜙∘𝛾𝑖)(𝜏) =

𝜕𝜙∘𝜓−1

𝜕𝑥 𝑗 ∣
𝜓(𝑝)

d
d𝜏∣

𝜏=0
(𝜓 𝑗 ∘𝛾𝑖)(𝜏)

=
𝜕𝜙∘𝜓−1

𝜕𝐱 ∣
𝜓(𝑝)

d
d𝜏∣

𝜏=0
(𝜓∘𝛾𝑖)(𝜏),

(3.9)

where 𝜓 𝑗 ∶ 𝑉 → ℝ denotes the 𝑗-th coordinate function of the chart

𝜓∶ 𝑀 ⊇ 𝑉 → ℝ𝑛.

The last equality in (3.9) follows by using matrix notation (see Appendix A).
Since the chart transition map 𝜙∘𝜓−1 is a diffeomorphism, the linear map
given by the matrix

𝜕𝜙∘𝜓−1

𝜕𝐱 ∣
𝜓(𝑝)

is a vector space isomorphism of ℝ𝑛. Therefore, it is clear that if the equal-
ity (3.8) holds in one chart of an atlas A, then it holds in every chart of A
that has 𝑝 in its domain.

Definition 3.12. Let 𝑀 be a differentiable manifold. Tangent vectors to
𝑀 at a point 𝑝 ∈ 𝑀 are equivalence classes with respect to ∼𝑝 of curves in 𝑀
through 𝑝. The tangent space of 𝑀 in 𝑝 is the set of all these equivalence
classes

𝖳𝑝𝑀 ≔ {𝛾∶ ]−𝑟, 𝑟[→ 𝑀 differentiable, 𝛾(0) = 𝑝}/∼𝑝 .

As introduced in Section 2.4, we use [𝛾] to denote the equivalence class of
a curve 𝛾∶ ]−𝑟, 𝑟[→ 𝑀 with respect to (3.7). So far, the tangent space 𝖳𝑝𝑀
is just a set. But it can be endowed with the structure of a real vector space
of the same dimension than the manifold 𝑀.

Theorem 3.13. Let 𝑀 be an 𝑛-dimensional differentiable manifold. Then
the tangent space 𝖳𝑝𝑀 at some point 𝑝 ∈ 𝑀 is a real 𝑛-dimensional vector
space.

Proof. Let (𝑈, 𝜙) be a chart around 𝑝, then we define the map

dϕ𝑝 ∶ 𝖳𝑝𝑀 → ℝ𝑛, [𝛾] ↦ d
d𝜏∣

𝜏=0
(𝜙∘𝛾)(𝜏). (3.10)
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Figure 3.5.: Construction of curves through the point 𝑝 ∈ 𝑀.

The idea is to prove that dϕ𝑝 is a bijective map, which then can be used to
import the vector space structure7 from ℝ𝑛 to the tangent space.

The map (3.10) is injective by the definition of the equivalence relation.
Indeed, the function dϕ𝑝 maps elements of 𝖳𝑝𝑀 to the real numbers that
have been used to divide the curves into equivalence classes. To prove
surjectivity, we define the curve

𝛾(𝜏) ≔ 𝜙−1(𝜙(𝑝)+𝜏𝐮) (3.11)

for arbitrary 𝑛-tuples 𝐮 ∈ ℝ𝑛 (see Figure 3.5). For the curves (3.11), we can
calculate

dϕ𝑝([𝛾]) = d
d𝜏∣

𝜏=0
𝜙∘𝜙−1(𝜙(𝑝)+𝜏𝐮)

= d
d𝜏∣

𝜏=0
(𝜙(𝑝)+𝜏𝐮) = 𝐮,

which proves the surjectivity of dϕ𝑝 because we have shown that the whole
ℝ𝑛 can be reached. The addition and scalar multiplication that endow 𝖳𝑝𝑀
with the structure of a vector space are defined as

[𝛾1]+[𝛾2] ≔ dϕ−1
𝑝 (dϕ𝑝([𝛾1])+dϕ𝑝([𝛾2])),

𝛼[𝛾1] ≔ dϕ−1
𝑝 (𝛼dϕ𝑝([𝛾1])),

(3.12)

for all [𝛾1], [𝛾2] ∈ 𝖳𝑝𝑀 and all 𝛼 ∈ ℝ. Note that on the right-hand side of
these definitions stands the addition (2.19) and scalar multiplication (2.20)
of ℝ𝑛.

7. See equations (2.19) and (2.20).
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3.2. Tangent and cotangent space

Figure 3.6.: Basis vectors of the tangent space 𝑇𝑝𝑀 that are induced by the
chart (𝑈, 𝜙) of the differentiable manifold 𝑀.

Tangent vectors as derivations

The algebraic approach to tangent vectors of a differentiable manifold 𝑀 is
to consider them as operators on the set of smooth functions 𝐶∞(𝑀) on 𝑀.
A linear map 𝑢𝑝 ∶ 𝐶∞(𝑀) → ℝ is said to be a derivation in 𝑝 ∈ 𝑀 if it has
the two properties:

D 1. Locality: For all open subsets 𝑈 ⊆ 𝑉 of 𝑀 with 𝑝 ∈ 𝑈 and functions
𝑓 ∈ 𝐶∞(𝑉)

𝑢𝑝[𝑓] = 𝑢𝑝[𝑓 ∣𝑈],

where 𝑓 ∣𝑈 denotes the restriction of the function 𝑓 ∶ 𝑉 → ℝ to the
neighbourhood 𝑈 ⊆ 𝑉.

D 2. Product rule: Let 𝑓 , 𝑔 ∈ 𝐶∞(𝑀), 𝑝 ∈ 𝑀, then

𝑢𝑝[𝑓 𝑔] = 𝑓(𝑝)𝑢𝑝[𝑔]+𝑔(𝑝)𝑢𝑝[𝑓],

where 𝑓 𝑔 ∶ 𝑀 → ℝ, 𝑝 ↦ 𝑓(𝑝)𝑔(𝑝).

The concept of a derivation in 𝑝 is an abstraction of the derivative operator.
Property D 1 guarantees that the derivation is a local operator similar to
the derivative. From the locality property, it follows that

𝑓 ∣𝑈 = 𝑔∣𝑈 ⇒ 𝑢𝑝[𝑓] = 𝑢𝑝[𝑓 ∣𝑈] = 𝑢𝑝[𝑔∣𝑈] = 𝑢𝑝[𝑔].

Note that we used square brackets in D 1 and D 2 to denote the function ar-
gument of the map 𝑢𝑝 ∶ 𝐶∞(𝑀)→ℝ. This notation should not be confounded
with the one used for equivalence classes.
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Figure 3.7.: Visualization of Lemma 3.16 for the scalar case.

Definition 3.14. Let 𝑀 be a differentiable manifold. The set 𝑇𝑝𝑀 of deriva-
tions in 𝑝 ∈ 𝑀 is said to be the tangent space at the point 𝑝. A derivation
𝑢𝑝 ∈ 𝑇𝑝𝑀 is called tangent vector at the point 𝑝.

We will show in Theorem 3.17 that the sets 𝖳𝑝𝑀 and 𝑇𝑝𝑀 from Defini-
tions 3.12 and 3.14 are isomorphic vector spaces. Therefore it make sense
to use the same terminology for these spaces.

Theorem 3.15. Let 𝑀 be an 𝑛-dimensional differentiable manifold and
let (𝑈, 𝜙) be a chart of 𝑀 such that 𝜙∶ 𝑝 ↦ 𝜙(𝑝) = (𝑥1, … , 𝑥𝑛). The tan-
gent space 𝑇𝑝𝑀 in 𝑝 ∈ 𝑈 ⊆ 𝑀 is an 𝑛-dimensional real vector space. The
derivations

𝜕
𝜕𝑥𝑖 ∣

𝑝
[𝑓] ≔ 𝜕

𝜕𝑥𝑖 ∣
𝜙(𝑝)

(𝑓 ∘𝜙−1), (3.13)

with 𝑓 ∈ 𝐶∞(𝑀) form a basis of 𝑇𝑝𝑀 such that a tangent vector 𝑢𝑝 ∈ 𝑇𝑝𝑀
can be written as

𝑢𝑝 = 𝑢𝑝[𝜙𝑖] 𝜕
𝜕𝑥𝑖 ∣

𝑝
. (3.14)

Theorem 3.15 is depicted in Figure 3.6. Its proof relies on the following
lemma, which is visualized for the scalar case in Figure 3.7.

Lemma 3.16. Let ℎ∈𝐶∞(ℝ𝑛), then there exist functions 𝑔1, … , 𝑔𝑛∈𝐶∞(𝑉)
with8 𝑉 = 𝐵(𝐱0, 𝑟) ⊂ ℝ𝑛 such that the function ℎ∶ 𝐱 ↦ ℎ(𝐱) can be locally
written as

ℎ(𝐱) = ℎ(𝐱0)+(𝑥𝑖 −𝑥𝑖
0) 𝑔𝑖(𝐱) ∀𝐱 ∈ 𝑉,

with
𝑔𝑖(𝐱0) = 𝜕ℎ

𝜕𝑥𝑖 (𝐱0). (3.15)

8. 𝐵(𝐱0, 𝑟) denotes the open ball with radius 𝑟 > 0 centered at the point 𝐱0 in ℝ𝑛 as defined
in (3.1).
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Proof of Lemma 3.16. The lemma follows from the fundamental theorem of
calculus, by which we can write

ℎ(𝐱)−ℎ(𝐱0) = ℎ(𝑡𝐱+(1−𝑡)𝐱0)∣
𝑡=1

𝑡=0

= ∫
1

0
d
d𝑡ℎ(𝑡𝐱+(1−𝑡)𝐱0)d𝑡

= ∫
1

0
𝜕ℎ
𝜕𝑥𝑖 (𝑡𝐱+(1−𝑡)𝐱0)(𝑥𝑖 −𝑥0)d𝑡

= (𝑥𝑖 −𝑥0) ∫
1

0
𝜕ℎ
𝜕𝑥𝑖 (𝑡𝐱+(1−𝑡)𝐱0)d𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑔𝑖(𝐱)

.

Finally, we can convince ourselves that with this definition of 𝑔𝑖(𝐱)

𝑔𝑖(𝐱0) = ∫
1

0
𝜕ℎ
𝜕𝑥𝑖 (𝐱0)d𝑡 = 𝜕ℎ

𝜕𝑥𝑖 (𝐱0).

Proof of Theorem 3.15. We start with a list of what needs to be shown:

1. The objects 𝜕⁄𝜕𝑥𝑖|𝑝 are derivations.
2. The derivations 𝜕⁄𝜕𝑥𝑖|𝑝 are linearly independent.
3. A tangent vector 𝑢𝑝 ∈ 𝑇𝑝𝑀 can be written as

𝑢𝑝 = 𝑢𝑝[𝜙𝑖] 𝜕
𝜕𝑥𝑖 ∣

𝑝
.

To prove 1, we show that 𝜕⁄𝜕𝑥𝑖|𝑝 are linear real-valued maps on 𝐶∞(𝑀) and
that they have properties D 1 (locality) and D 2 (product rule). Let 𝛼, 𝛽 ∈ ℝ
and 𝑓 , 𝑔 ∈ 𝐶∞(𝑀). To show linearity, we consider

𝜕
𝜕𝑥𝑖 ∣

𝑝
[𝛼𝑓 +𝛽𝑔] = 𝜕

𝜕𝑥𝑖 ∣
𝜙(𝑝)

((𝛼𝑓 +𝛽𝑔)∘𝜙−1)

= 𝛼 𝜕
𝜕𝑥𝑖 ∣

𝜙(𝑝)
(𝑓 ∘𝜙−1)+𝛽 𝜕

𝜕𝑥𝑖 ∣
𝜙(𝑝)

(𝑔∘𝜙−1)

= 𝛼 𝜕
𝜕𝑥𝑖 ∣

𝑝
[𝑓]+𝛽 𝜕

𝜕𝑥𝑖 ∣
𝑝
[𝑔],

which proves linearity. Property D 2 is induced by the product rule of partial
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differentiation on ℝ𝑛 as follows

𝜕
𝜕𝑥𝑖 ∣

𝑝
[𝑓 𝑔] = 𝜕

𝜕𝑥𝑖 ∣
𝜙(𝑝)

((𝑓 𝑔)∘𝜙−1)

= 𝜕
𝜕𝑥𝑖 ∣

𝜙(𝑝)
((𝑓 ∘𝜙−1)(𝑔∘𝜙−1))

= 𝑔(𝑝) 𝜕
𝜕𝑥𝑖 ∣

𝜙(𝑝)
(𝑓 ∘𝜙−1)+𝑓(𝑝) 𝜕

𝜕𝑥𝑖 ∣
𝜙(𝑝)

(𝑔∘𝜙−1)

= 𝑔(𝑝) 𝜕
𝜕𝑥𝑖 ∣

𝑝
[𝑓]+𝑓(𝑝) 𝜕

𝜕𝑥𝑖 ∣
𝑝
[𝑔].

Hence 𝜕⁄𝜕𝑥𝑖|𝑝 is a derivation because property D 1 is induced by the locality
of the partial derivative on ℝ𝑛.

To prove 2, we need to check that for all 𝛼𝑖 ∈ ℝ with 𝑖 = 1, … , 𝑛 the claim

𝛼𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑝

!= 0 ⇔ 𝛼𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑝
[𝑓] != 0 ∀𝑓 ∈ 𝐶∞(𝑀) (3.16)

implies 𝛼𝑖 = 0. Equation (3.16) needs to hold in particular for 𝑓 = 𝜙 𝑗 with
𝑗 = 1, … , 𝑛, that is

0 != 𝛼𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑝
[𝜙 𝑗] = 𝛼𝑖 𝜕

𝜕𝑥𝑖 ∣
𝜙(𝑝)

(𝜙 𝑗 ∘𝜙−1) = 𝛼𝑖δ 𝑗
𝑖 = 𝛼 𝑗

for 𝑗 = 1, … , 𝑛. Therefore, the 𝜕⁄𝜕𝑥𝑖|𝑝 are linearly independent.
To prove 3, we start by showing that the derivation of a constant function

vanishes. Let 𝑢𝑝 ∈ 𝑇𝑝𝑀 and 𝑐𝛼 ∶ 𝑀 → ℝ, 𝑝 ↦ 𝛼, then we can calculate

𝑢𝑝[𝑐1] = 𝑢𝑝[𝑐1𝑐1] = 1 𝑢𝑝[𝑐1]+𝑢𝑝[𝑐1] 1 = 2 𝑢𝑝[𝑐1] ⇒ 𝑢𝑝[𝑐1] = 0

and
𝑢𝑝[𝑐𝛼] = 𝑢𝑝[𝛼 𝑐1] = 𝛼 𝑢𝑝[𝑐1] = 0. (3.17)

Let (𝑈, 𝜙) be the given chart and let 𝑓 ∈ 𝐶∞(𝑀) be a smooth function
on 𝑀 (see Figure 3.8). The set 𝜙(𝑈) is open in ℝ𝑛 endowed with the
standard topology because the map 𝜙∶ 𝑈 → 𝜙(𝑈) is a homeomorphism
(see Definition 3.5), i.e., it maps open sets to open sets. By the definition
of the metric topology (see p. 47), there exists an open set around 𝜙(𝑝), a
ball 𝑉 = 𝐵(𝜙(𝑝), 𝑟) ⊆ 𝜙(𝑈). We consider the chart representation of the
function 𝑓 ∶ 𝑀 → ℝ (see equation (3.6)), that is

ℎ ≔ 𝑓 ∘𝜙−1 ∶ ℝ𝑛 ⊇ 𝜙(𝑈) → ℝ, 𝐱 ↦ ℎ(𝐱).
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Figure 3.8.: Representation of the sets used in the proof of Theorem 3.15.

According to Lemma 3.16, the function 𝐱 ↦ ℎ(𝐱) can be written on 𝑉 as

ℎ(𝐱) = ℎ(𝜙(𝑝))+(𝑥𝑖 −𝜙𝑖(𝑝)) 𝑔𝑖(𝐱) (3.18)

for all 𝐱0 ∈ 𝑉. Thus, 𝑓 can be written on 𝜙−1(𝑉) as

𝑓 (𝑞) = ℎ∘𝜙(𝑞) (3.18)= ℎ(𝜙(𝑝))+(𝜙𝑖(𝑞)−𝜙𝑖(𝑝)) 𝑔𝑖(𝜙(𝑞)) (3.19)

for all 𝑞 ∈ 𝜙−1(𝑉). Next, we apply a tangent vector 𝑢𝑝 ∈ 𝑇𝑝𝑀 at the point
𝑝 ∈ 𝑀 to the function 𝑓 as follows

𝑢𝑝[𝑓] D 1= 𝑢𝑝[𝑓 ∣𝜙−1(𝑉)]
(3.19)= 𝑢𝑝[ℎ(𝜙(𝑝))]+𝑢𝑝[(𝜙𝑖(⋅)−𝜙𝑖(𝑝)) 𝑔𝑖(𝜙(⋅))]
(3.17)= 𝑢𝑝[(𝜙𝑖(⋅)−𝜙𝑖(𝑝)) 𝑔𝑖(𝜙(⋅))]
D 2= 𝑔𝑖(𝜙(𝑝))⋅𝑢𝑝[𝜙𝑖(⋅)−𝜙𝑖(𝑝)]+(𝜙𝑖(𝑝)−𝜙𝑖(𝑝))⋅𝑢𝑝[𝑔𝑖(𝜙(⋅))]

= 𝑔𝑖(𝜙(𝑝))⋅𝑢𝑝[𝜙𝑖(⋅)]
(3.15)= 𝑢𝑝[𝜙𝑖(⋅)] 𝜕ℎ

𝜕𝑥𝑖 ∣
𝜙(𝑝)

(3.19)= 𝑢𝑝[𝜙𝑖(⋅)] 𝜕
𝜕𝑥𝑖 ∣

𝜙(𝑝)
(𝑓 ∘𝜙−1)

(3.13)= 𝑢𝑝[𝜙𝑖(⋅)] 𝜕
𝜕𝑥𝑖 ∣

𝑝
[𝑓].

Hence the derivations 𝜕⁄𝜕𝑥𝑖|𝑝 with 𝑖=1, … , 𝑛 generate the vector space 𝑇𝑝𝑀,
which therefore has dimension 𝑛.
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Let (𝑈, 𝜙) and (𝑉, 𝜓) be two charts around a point 𝑝 ∈ 𝑀 such that
𝜙∶ 𝑝 ↦ 𝜙(𝑝) = 𝐱 and 𝜓∶ 𝑝 ↦ 𝜓(𝑝) = 𝐲. Both charts provide a respective
basis of the tangent space 𝑇𝑝𝑀 that is given by the induced derivations
𝜕⁄𝜕𝑥1|𝑝, … , 𝜕⁄𝜕𝑥𝑛|𝑝 and 𝜕⁄𝜕𝑦1|𝑝, … , 𝜕⁄𝜕𝑦𝑛|𝑝, respectively. If we are given a
tangent vector 𝑢𝑝 ∈ 𝑇𝑝𝑀, then by (3.14) it can be represented with respect
to both bases as

𝑢𝑝 = 𝑢𝑝[𝜙𝑖] 𝜕
𝜕𝑥𝑖 ∣

𝑝
= 𝑢𝑝[𝜓 𝑗] 𝜕

𝜕𝑦 𝑗 ∣
𝑝
. (3.20)

Considering (3.20) for 𝑢𝑝 = 𝜕⁄𝜕𝑥𝑖∣𝑝, we find that the basis vectors are related
by

𝜕
𝜕𝑥𝑖 ∣

𝑝
= 𝜕

𝜕𝑥𝑖 ∣
𝑝
[𝜓 𝑗] 𝜕

𝜕𝑦 𝑗 ∣
𝑝
. (3.21)

Inserting the transformation rule (3.21) into equation (3.20), it follows that

𝑢𝑝[𝜓 𝑗] =
𝜕(𝜓 𝑗 ∘𝜙−1)

𝜕𝑥𝑖 ∣
𝜙(𝑝)

𝑢𝑝[𝜙𝑖].

Relation between the two notions of tangent vectors

For both definitions9 of tangent vectors, we showed that the respective
tangent spaces 𝖳𝑝𝑀 and 𝑇𝑝𝑀 can be endowed with the structure of a vector
space of the same dimension than the manifold 𝑀 (Theorems 3.13 and 3.15).
The tangent spaces 𝖳𝑝𝑀 and 𝑇𝑝𝑀 are related by a vector space isomorphism.
Let [𝛾] ∈ 𝖳𝑝𝑀 and 𝑓 ∈ 𝐶∞(𝑀). The Lie derivative of 𝑓 in the direction
[𝛾] is defined as

𝐿[𝛾]𝑓 ≔ d
d𝜏∣

𝜏=0
𝑓 ∘𝛾(𝜏). (3.22)

The reader may easily convince himself that the Lie derivative

𝐿[𝛾] ∶ 𝐶∞(𝑀) → ℝ

is a derivation and, therefore, it holds that 𝐿[𝛾] ∈ 𝑇𝑝𝑀 for all [𝛾] ∈ 𝖳𝑝𝑀.

Theorem 3.17. Let 𝑀 be a differentiable manifold and let 𝑝 be a point of
𝑀. The map

𝖳𝑝𝑀 ∋ [𝛾] ↦ 𝐿[𝛾] ∈ 𝑇𝑝𝑀 (3.23)

defines a vector space isomorphism between the tangent spaces 𝖳𝑝𝑀 and
𝑇𝑝𝑀, i.e., 𝖳𝑝𝑀 ≅ 𝑇𝑝𝑀.

9. See Definitions 3.12 and 3.14.
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Proof. Consider a chart (𝑈, 𝜙) around 𝑝 ∈ 𝑀. Let [𝛾] ∈ 𝖳𝑝𝑀 be a tangent
vector. For a function 𝑓 ∈ 𝐶∞(𝑀), it follows by the chain rule that

𝐿[𝛾]𝑓 = d
d𝜏 ∣

𝜏=0
(𝑓 ∘𝜙−1 ∘𝜙∘𝛾)(𝜏)

= d
d𝜏∣

𝜏=0
(𝜙𝑖 ∘𝛾)(𝜏)⋅

𝜕𝑓 ∘𝜙−1

𝜕𝑥𝑖 ∣
𝜙(𝛾(0))

.

The first factor of each summand is just a real number, i.e.,

ℝ ∋ 𝑢𝑖
𝑝 ≔ d

d𝜏∣
𝜏=0

(𝜙𝑖 ∘𝛾)(𝜏).

Because 𝛾(0) = 𝑝, the second factor in each term can be recognized as basis
vectors (3.13) being applied to 𝑓 such that

𝐿[𝛾]𝑓 = 𝑢𝑖
𝑝

𝜕𝑓 ∘𝜙−1

𝜕𝑥𝑖 ∣
𝜙(𝑝)

= 𝑢𝑖
𝑝

𝜕
𝜕𝑥𝑖 ∣

𝑝
[𝑓]. (3.24)

The injectivity of the map (3.23) can be seen from equation (3.24). If 𝐿[𝛾] = 0
for all 𝑓 ∈ 𝐶∞(𝑀), then it holds in particular for 𝑓 = 𝜙 𝑗 with 𝑗 = 1, … , 𝑛
from which follows that 𝑢 𝑗

𝑝 = 0 for 𝑗 = 1, … , 𝑛. Because the tangent spaces
𝖳𝑝𝑀 and 𝑇𝑝𝑀 have the same dimension, the surjectivity of the map (3.23)
follows from its injectivity by the rank-nullity theorem of linear algebra.
Therefore, the map (3.23) is bijective. The linearity of (3.23) follows from
the definition (3.12) and the linearity of differentiation.

Similar to the map (3.10), we define the map
d𝜙𝑝 ∶ 𝑇𝑝𝑀 → ℝ𝑛,

𝑢𝑝 = 𝑢𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑝
↦ d𝜙𝑝(𝑢𝑝) ≔ 𝐮 = (𝑢1, … , 𝑢𝑛).

(3.25)

The map (3.25) is bijective because its inverse can be written explicitly with
𝐱 ≔ 𝜙(𝑝) as

d𝜙−1
𝑝 (𝐮) = 𝑢𝑖 𝜕

𝜕𝑥𝑖 ∣
𝜙−1(𝐱)

.

Theorem 3.17 tells us that the diagram

𝖳𝑝𝑀 𝑇𝑝𝑀

ℝ𝑛

[𝛾] ↦ 𝐿[𝛾]

dϕ𝑝 d𝜙𝑝

commutes, i.e., that dϕ𝑝 = d𝜙𝑝 ∘𝐿(⋅). In what follows, we will mainly focus
on the algebraic view of tangent vectors as derivations.
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Chapter 3: Differential geometry

Figure 3.9.: The differential of the function 𝑓 ∶ 𝑀 → 𝑁 at the point 𝑝 maps
the tangent space 𝑇𝑝𝑀 at the point 𝑝 of 𝑀 to the tangent space
𝑇𝑓(𝑝)𝑁 at the point 𝑓(𝑝) of 𝑁.

The differential of a map between manifolds

The tangent vector to a curve is just a linear approximation of the curve.
In this sense, the tangent space to a differentiable manifold at some point
𝑝 ∈ 𝑀 can be seen as a linear approximation of the manifold around the
point 𝑝. Now, we study the linear approximation of differentiable maps
𝑓 ∶ 𝑀 → 𝑁 between two differentiable manifolds 𝑀 and 𝑁 (see Figure 3.9).
The differential of 𝑓 in 𝑝 ∈ 𝑀 is the map

D𝑓𝑝 ∶ 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁, 𝑢𝑝 ↦ D𝑓𝑝𝑢𝑝 (3.26)

that is defined by
D𝑓𝑝𝑢𝑝[𝑔] ≔ 𝑢𝑝[𝑔∘𝑓 ]

for all 𝑔 ∈ 𝐶∞(𝑁).

Proposition 3.18 (John M. Lee 2013, Proposition 3.6). Let 𝑀, 𝑁, and 𝑃
be differentiable manifolds, let 𝑓 ∶ 𝑀 → 𝑁 and 𝑔∶ 𝑁 → 𝑃 be differentiable
functions, let 𝑝 ∈ 𝑀.

(i) D𝑓𝑝 ∶ 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁 is linear.

(ii) D(𝑔∘𝑓)𝑝 = D𝑔𝑓(𝑝) ∘D𝑓𝑝 ∶ 𝑇𝑝𝑀 → 𝑇𝑔∘𝑓(𝑝)𝑃.

(iii) D(id𝑀)𝑝 = id𝑇𝑝𝑀 ∶ 𝑇𝑝𝑀 → 𝑇𝑝𝑀.

(iv) If 𝑓 is a diffeomorphism, then the linear map D𝑓𝑝 ∶ 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁 is
an isomorphism, and (D𝑓𝑝)−1 = D(𝑓 −1)𝑓(𝑝).

The cotangent space

In Section 2.6, we introduced the dual space 𝑉∗ of a vector space 𝑉. If we
take 𝑉 to be the tangent space 𝑇𝑝𝑀 of a differentiable manifold 𝑀 at some
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point 𝑝 ∈ 𝑀, then we can define the cotangent space of 𝑀 at 𝑝, denoted
by 𝑇∗

𝑝𝑀, to be the dual space of the tangent space, that is

𝑇∗
𝑝𝑀 ≔ (𝑇𝑝𝑀)∗. (3.27)

The dual basis (d𝑥1
𝑝, … , d𝑥𝑛

𝑝) to the basis (𝜕⁄𝜕𝑥1|𝑝, … , 𝜕⁄𝜕𝑥𝑛|𝑝) of the tan-
gent space is defined by

d𝑥𝑖
𝑝( 𝜕

𝜕𝑥 𝑗 ∣
𝑝
) != δ𝑖

𝑗, (3.28)

such that a covector 𝜔 ∈ 𝑇∗
𝑝𝑀 can be written as

𝜔 = 𝜔𝑖 d𝑥𝑖
𝑝.

3.3. Immersions, submersions and embeddings

Let 𝑓 ∶ 𝑀 → 𝑁 be a differentiable map between two differentiable manifolds
𝑀 and 𝑁. The rank of 𝑓 at 𝑝 is defined as the rank of the differential of 𝑓 in
𝑝, i.e., as the rank of the linear map D𝑓𝑝 ∶ 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁. If 𝑓 has the same
rank 𝑟 at every point 𝑝 ∈ 𝑀, we say that it has constant rank and we write
rank 𝑓 = 𝑟. The rank of a linear map is never higher than the dimension of
either its domain or codomain. The most important maps of constant rank
are those of maximal rank, i.e., for which rank 𝑓 = min {dim 𝑀, dim 𝑁}. We
say that a differentiable map 𝑓 ∶ 𝑀 → 𝑁 is a submersion if its differential in
𝑝 is surjective for each 𝑝 ∈ 𝑀 (or equivalently, if rank 𝑓 = dim 𝑁). We call it
an immersion if its differential in 𝑝 is injective for each 𝑝∈𝑀 (equivalently,
rank 𝑓 = dim 𝑀). If 𝑓 ∶ 𝑀 → 𝑁 is not only an immersion but also a topological
embedding, i.e., a homeomorphism onto its image 𝑓(𝑀) ⊆ 𝑁 in the subspace
topology (see p. 46), then it is called an embedding of 𝑀 into 𝑁.

An immersed submanifold of 𝑁 is a subset 𝑀 ⊆ 𝑁 endowed with a
topology (not necessarily the subspace topology) with respect to which it
is a topological manifold, and with a differentiable structure with respect
to which the inclusion map10 𝜄 ∶ 𝑀 ↪ 𝑁 is an immersion. An embedded
submanifold of 𝑁 is a subset 𝑀 ⊆ 𝑁 that is a manifold in the subspace
topology, endowed with a differentiable structure with respect to which the
inclusion map 𝜄 ∶ 𝑀 ↪ 𝑁 is an embedding. If 𝑀 ⊆ 𝑁 is a submanifold of
𝑁 (immersed or embedded), then we call the difference dim 𝑁 −dim 𝑀 the
codimension of 𝑀 in 𝑁. For a detailed treatment of submanifolds, we
refer to Chapter 5 in John M. Lee 2013.

10. If 𝐴 is a subset of 𝐵, then the identity map 𝑥 ↦ 𝑥 for all 𝑥 ∈ 𝐴 viewed as a mapping
𝐴 → 𝐵 is called inclusion map. It is usually denoted by 𝜄∶ 𝐴 ↪ 𝐵, 𝑥 ↦ 𝜄(𝑥) = 𝑥 (see p. 28
of Lang 2005).
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3.4. Vector bundles

In Section 3.2, we saw that the tangent space 𝑇𝑝𝑀 at an arbitrary point 𝑝
of a differentiable manifold 𝑀 is a vector space of the same dimension as
the manifold 𝑀. Moreover, we introduced the cotangent space 𝑇∗

𝑝𝑀 as the
dual space of the tangent space 𝑇𝑝𝑀. Now, we consider the differentiable
manifold 𝑀 together with all its tangent, respectively cotangent spaces.
This leads us to the following two definitions.

Definition 3.19. The tangent bundle 𝑇𝑀 of a differentiable manifold 𝑀
is the disjoint union of all tangent spaces 𝑇𝑝𝑀, i.e.,

𝑇𝑀 ≔ ⋃
𝑝∈𝑀

({𝑝}×𝑇𝑝𝑀).

Definition 3.20. The cotangent bundle 𝑇∗𝑀 of a differentiable manifold
𝑀 is the disjoint union of all cotangent spaces 𝑇∗

𝑝𝑀, i.e.,

𝑇∗𝑀 ≔ ⋃
𝑝∈𝑀

({𝑝}×𝑇∗
𝑝𝑀).

A point 𝑢 in the tangent bundle 𝑇𝑀 has the form

𝑢 = (𝑝, 𝑢𝑝) with 𝑝 ∈ 𝑀 and 𝑢𝑝 ∈ 𝑇𝑝𝑀, (3.29)

while a point 𝜎 in the cotangent bundle 𝑇∗𝑀 is given by

𝜎 = (𝑝, 𝜎𝑝) with 𝑝 ∈ 𝑀 and 𝜎𝑝 ∈ 𝑇∗
𝑝𝑀.

By definition, the sets 𝑇𝑀 and 𝑇∗𝑀 come with the natural projections

𝜋𝑇𝑀 ∶ 𝑇𝑀 → 𝑀, (𝑝, 𝑢𝑝) ↦ 𝑝. (3.30)

and
𝜋𝑇∗𝑀 ∶ 𝑇∗𝑀 → 𝑀, (𝑝, 𝜎𝑝) ↦ 𝑝, (3.31)

respectively. We will see that 𝑇𝑀 and 𝑇∗𝑀 can be endowed with a vector
bundle structure that can be constructed from the differentiable structure
of the base manifold 𝑀 using the natural projections (3.30) and (3.31), re-
spectively.

Definition 3.21. Let 𝐸, 𝐹, and 𝑀 be smooth manifolds and let 𝜋∶ 𝐸 → 𝑀
be a differentiable surjective map. The quadruple (𝐸, 𝜋, 𝑀, 𝐹) is called a
fibre bundle11 if for each point 𝑝 ∈ 𝑀 there is an open set 𝑈 containing 𝑝
and a diffeomorphism 𝜃∶ 𝜋−1(𝑈) → 𝑈 ×𝐹 such that the diagram
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𝜋−1(𝑈) 𝑈 ×𝐹

𝑈

𝜃

𝜋 pr1

commutes, i.e., if pr1∘𝜃=𝜋. The diffeomorphism 𝜃∶ 𝜋−1(𝑈)→𝑈×𝐹 is called
local trivialization and 𝜋∶ 𝐸 → 𝑀 is said to be the bundle projection.
The manifolds 𝐸, 𝐹, and 𝑀 are called total space, typical fibre, and base
manifold, respectively. The projection pr1 ∶ 𝑈 × 𝐹 → 𝑈 is referred to as
natural projection on the first factor. The set 𝐸𝑝 ≔ 𝜋−1(𝑝) is called
the fibre over 𝑝.

A fibre bundle is trivial if there exists a global trivialization such that
the diagram

𝐸 𝑀 ×𝐹

𝑀

𝜃

𝜋 pr1

commutes.
Definition 3.22. A (real) vector bundle11 of rank 𝑘 over 𝑀 is a fibre
bundle (𝐸, 𝜋, 𝑀, ℝ𝑘) with typical fibre ℝ𝑘 such that:

(i) for each 𝑝 ∈ 𝑀 the fibre 𝐸𝑝 = 𝜋−1(𝑝) over 𝑝 is endowed with the
structure of a 𝑘-dimensional real vector space.

(ii) for each 𝑝 ∈ 𝑈, the restriction of 𝜃 to 𝐸𝑝

𝜃∣
𝐸𝑝

∶ 𝐸𝑝 → 𝑈 ×ℝ𝑘

is a vector space isomorphism from 𝐸𝑝 to {𝑝}×ℝ𝑘 ≅ ℝ𝑘.

A vector bundle (𝐷, 𝜋𝐷, 𝑀, ℝ𝑙) of rank 𝑙 over 𝑀 is said to be a subbundle
of a vector bundle (𝐸, 𝜋𝐸, 𝑀, ℝ𝑘) of rank 𝑘 ≥ 𝑙 over 𝑀 if 𝐷 is an embedded
submanifold of 𝐸 and the bundle projection 𝜋𝐷 ∶ 𝐷 → 𝑀 is the restriction of
𝜋𝐸 ∶ 𝐸 → 𝑀 to 𝐷, such that for each 𝑝 ∈ 𝑀, the subset 𝐷𝑝 = 𝐷∩𝐸𝑝 is a vector
subspace of 𝐸𝑝, and the vector space structure on 𝐷𝑝 is the one inherited
from 𝐸𝑝.

A vector bundle homomorphism12 between two vector bundles (𝐸1,
𝜋1, 𝑀1, ℝ𝑘) and (𝐸2, 𝜋2, 𝑀2, ℝ𝑙) is a pair ( ̂𝑓 , 𝑓) of differentiable maps

̂𝑓 ∶ 𝐸1 → 𝐸2 and 𝑓 ∶ 𝑀1 → 𝑀2, such that the diagram

11. See Chapter 6 in Jeffrey M. Lee 2009 for a detailed treatment of fibre and vector bundles.
12. See Definition 6.25 in Jeffrey M. Lee 2009.

65



Chapter 3: Differential geometry

𝐸1 𝐸2

𝑀1 𝑀2

̂𝑓

𝜋1 𝜋2
𝑓

commutes, i.e., 𝑓 ∘𝜋1 = 𝜋2 ∘ ̂𝑓 and where the restrictions to the fibres
̂𝑓 ∣𝜋−1

1 (𝑝) ∶ 𝜋−1
1 (𝑝) → 𝜋−1

2 (𝑓(𝑝)) (3.32)

are vector space homomorphisms, i.e., linear maps for all 𝑝 ∈ 𝑀1. If ̂𝑓 is a
diffeomorphism such that its inverse is also a vector bundle homomorphism,
then it is called a vector bundle isomorphism.

We define the rank of ̂𝑓 at 𝑝 for each 𝑝 ∈ 𝑀1 as the rank of the linear
map (3.32). If the rank is the same for all points 𝑝 ∈ 𝑀1, then ̂𝑓 is said to
have constant rank. Vector bundle homomorphisms define subbundles
according to the following proposition.
Proposition 3.23 (Golubitsky et al. 1973, Proposition 5.14, p. 26). Let
( ̂𝑓 , 𝑓) be a vector bundle homomorphism between the two vector bundles
(𝐸1, 𝜋1, 𝑀1, ℝ𝑘) and (𝐸2, 𝜋2, 𝑀2, ℝ𝑙). Suppose that ̂𝑓 has constant rank.
Then

ker ̂𝑓 ≔ ⋃
𝑝∈𝑀1

({𝑝}×ker ̂𝑓𝑝)

is a subbundle of 𝐸1.
If the vectors bundles 𝐸1 and 𝐸2 have the same base space 𝑀, then

the above considerations can be specialized to 𝑓 = id𝑀 and we call the map
̂𝑓 ∶ 𝐸1→𝐸2 a vector bundle homomorphism over 𝑀, respectively vector

bundle isomorphism over 𝑀 if ̂𝑓 is a diffeomorphism such that its inverse
is also a vector bundle homomorphism over 𝑀.

The following theorem shows that the tangent bundle of a differentiable
manifold 𝑀 that we defined in Definition 3.19 is a vector bundle.
Theorem 3.24. The tangent bundle 𝑇𝑀 of an 𝑛-dimensional differentiable
manifold 𝑀 is a vector bundle (𝑇𝑀, 𝜋𝑇𝑀, 𝑀, ℝ𝑛) of rank 𝑛 over 𝑀.

For the proof, we refer to John M. Lee 2013, Propositions 3.18 and 10.4.
Lee proves that the tangent bundle is a smooth manifold by constructing an
atlas of 𝑇𝑀 that is induced by the atlas (𝑈𝛼, 𝜙𝛼) of the base manifold 𝑀.
For this purpose he uses the map (3.25) to define the charts (𝜋−1(𝑈𝛼), 𝛷𝛼)
of 𝑇𝑀

𝛷𝛼 ∶ 𝜋−1(𝑈𝛼) → 𝜙𝛼(𝑈𝛼)×ℝ𝑛 ⊆ ℝ2𝑛,

(𝑝, 𝑢𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑝
) ↦ (𝜙𝛼(𝑝), d𝜙𝛼𝑝(𝑢𝑝)) = (𝐱, 𝐮)
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with 𝑝 ∈ 𝑈𝛼 and 𝑢𝑝 ∈ 𝑇𝑝𝑀 (see equation (3.29)). The projection (3.30) is
differentiable because all of its chart representations

𝜙𝛼 ∘𝜋𝑇𝑀 ∘𝛷−1
𝛼 (𝐱, 𝐮) = 𝐱

are differentiable (see p. 51). Since the tangent spaces 𝑇𝑝𝑀 are isomorphic
to ℝ𝑛, the typical fibre is ℝ𝑛. In the proof of Proposition 10.4, Lee shows
that the maps defined as

𝜃𝑇𝑀 ∶ 𝑇𝑀 → 𝑈𝛼 ×ℝ𝑛

(𝑝, 𝑢𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑝
) ↦ (𝑝, d𝜙𝛼𝑝(𝑢𝑝)) = (𝑝, 𝐮)

(3.33)

for all 𝑝 ∈ 𝑈𝛼 are indeed local trivializations. Note that the fibre over 𝑝 ∈ 𝑀
is given by 𝐸𝑝 = 𝜋−1

𝑇𝑀(𝑝) = {𝑝}×𝑇𝑝𝑀. Let 𝑒𝑝 = (𝑝, 𝑣𝑝) and 𝑒′
𝑝 = (𝑝, 𝑣′

𝑝) be
two elements of 𝐸𝑝. Then 𝑣𝑝 and 𝑣′

𝑝 are tangent vectors from 𝑇𝑝𝑀. If ∔
denotes the addition on 𝐸𝑝 and + the one on 𝑇𝑝𝑀, then

𝑒𝑝 ∔𝑒′
𝑝 = (𝑝, 𝑣𝑝)∔(𝑝, 𝑣′

𝑝) = (𝑝, 𝑣𝑝 +𝑣′
𝑝).

The respective scalar multiplications • and ⋅ of 𝐸𝑝 and 𝑇𝑝𝑀 are related as

𝛼•𝑒𝑝 = 𝛼•(𝑝, 𝑣𝑝) = (𝑝, 𝛼⋅𝑣𝑝),

for all real numbers 𝛼. A similar construction of charts and local trivializa-
tions can be used to endow the cotangent bundle 𝑇∗𝑀 of an 𝑛-dimensional
differentiable manifold with the structure of a vector bundle of rank 𝑛 over
𝑀.

The results from Sections 2.10 and 2.11 can be used to introduce tensor
bundles. We define the bundle of mixed tensors of type (𝑘, 𝑙) as

𝑘
𝑙 𝑇𝑀 ≔ ⋃

𝑝∈𝑀
({𝑝}× 𝑘

𝑙 𝑇𝑝𝑀), (3.34)

the bundle of covariant 𝑙-tensors as
𝑙𝑇∗𝑀 ≔ ⋃

𝑝∈𝑀
({𝑝}× 𝑙𝑇∗

𝑝𝑀) (3.35)

and the bundle of alternating 𝑙-forms on 𝑀 as
𝑙𝑇∗𝑀 ≔ ⋃

𝑝∈𝑀
({𝑝}× 𝑙𝑇∗

𝑝𝑀). (3.36)

Such as 𝑇𝑀 and 𝑇∗𝑀, the bundles (3.34), (3.35) and (3.36) are vector
bundles. Their respective atlas can be constructed similarly to the one
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Designation Vector bundle Set of sections

Vector field 𝑇𝑀 Γ(𝑇𝑀), Vect(𝑀)
Covector field 𝑇∗𝑀 Γ(𝑇∗𝑀), 𝛺1(𝑀)
(𝑘, 𝑙)-tensor field 𝑘

𝑙 𝑇𝑀 Γ( 𝑘
𝑙 𝑇𝑀)

Covariant 𝑙-tensor field 𝑙𝑇∗𝑀, 0
𝑙 𝑇𝑀 Γ( 𝑙𝑇∗𝑀), Γ( 0

𝑙 𝑇𝑀)
Differential 𝑙-form 𝑙𝑇∗𝑀 Γ( 𝑙𝑇∗𝑀), 𝛺𝑙(𝑀)

Table 3.1.: Smooth sections of tensor bundles.

of the tangent bundle by using the chart of the base manifold to repre-
sent the points 𝑝 ∈ 𝑀 together with its induced bases (𝜕⁄𝜕𝑥1|𝑝, … , 𝜕⁄𝜕𝑥𝑛|𝑝)
and (d𝑥1

𝑝, … , d𝑥𝑛
𝑝) for the representation of the tensor at each point. The

local trivializations can be deduced from the ones of the tangent bundle
(see equation (3.33)) in an analogue way. Roughly speaking, the charts
and the trivialization simply “readout” the coefficients of the tensor from
its representation with respect to the coordinates that are induced by the
charts of the base manifold 𝑀.

A tensor field on a differentiable manifold 𝑀 is just a smooth assignment of
a tensor to each point 𝑝 of 𝑀. This concept can be defined in general for fibre
bundles as follows. A (smooth) section of a fibre bundle (𝐸, 𝑀, 𝜙, 𝐹) is
a smooth map 𝑠 ∶ 𝑀 ⊇ 𝑈 → 𝐸 such that

𝜋∘𝑠 = id𝑈, (3.37)

i.e., 𝜋(𝑠(𝑝)) = 𝑝 for all 𝑝 ∈ 𝑈. The set of all sections of 𝐸 is denoted
by Γ(𝐸). The criterion (3.37) guarantees that a point 𝑝 is mapped to a
pair (𝑝, 𝑓𝑝) ∈ 𝜋−1(𝑝), i.e., to an element of the fibre over 𝑝. We can define
sections through the different bundles that we have seen so far. The result
is summarized in Table 3.1.

3.5. Vector fields

A vector field 𝑣 ∈ Γ(𝑇𝑀) on a differentiable manifold 𝑀 is a section of the
tangent bundle 𝑇𝑀, i.e., a map

𝑣∶ 𝑀 ⊇ 𝑈 → 𝑇𝑀, 𝑝 ↦ (𝑝, 𝑣𝑝),

with 𝑣𝑝 ∈ 𝑇𝑝𝑀 according to (3.37). The set of vector fields on 𝑀, denoted by
Vect(𝑀) ≔ Γ(𝑇𝑀), is an (infinite-dimensional) vector space in virtue of the
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3.5. Vector fields

addition and scalar multiplication defined point by point as

(𝑢+𝑣)(𝑝) ≔ (𝑝, 𝑢𝑝 +𝑣𝑝),
𝛼𝑢(𝑝) ≔ (𝑝, 𝛼𝑢𝑝),

(3.38)

for all 𝑢, 𝑣 ∈ Vect(𝑀), all 𝛼 ∈ ℝ and all 𝑝 ∈ 𝑀. Additionally to the multipli-
cation by real numbers from (3.38), the set of vector fields can be equipped
with a multiplication between real-valued functions and vector fields. Let
𝑓 ∈ 𝐶∞(𝑀) and 𝑣 ∈ Vect(𝑀), then this multiplication is defined as

(𝑓 𝑣)(𝑝) ≔ (𝑝, 𝑓(𝑝)𝑣𝑝) (3.39)

for all points 𝑝 ∈ 𝑀.
Analogously, a covector field 𝜌 ∈ Γ(𝑇∗𝑀) on a differentiable manifold

𝑀 is a section of the cotangent bundle 𝑇∗𝑀, i.e., a map

𝜌∶ 𝑀 ⊇ 𝑈 → 𝑇∗𝑀, 𝑝 ↦ (𝑝, 𝜌𝑝),

with 𝜌𝑝 ∈ 𝑇∗
𝑝𝑀 according to (3.37). The set of covector fields on 𝑀, which

is also denoted by 𝛺1(𝑀) ≔ Γ(𝑇∗𝑀), can be endowed with a vector space
structure by defining

(𝜌+𝜎) ≔ (𝑝, 𝜌𝑝 +𝜎𝑝),
𝛼𝜌(𝑝) ≔ (𝑝, 𝛼𝜌𝑝)

(3.40)

for all 𝛼 ∈ ℝ and all 𝜌, 𝜎 ∈ 𝛺1(𝑀) with 𝜌(𝑝) = (𝑝, 𝜌𝑝) and 𝜎(𝑝) = (𝑝, 𝜎𝑝).
For covector fields, the analogue to multiplication (3.39) is defined as follows.
Let 𝑓 ∈ 𝐶∞(𝑀) and 𝜌 ∈ 𝛺1(𝑀), then

(𝑓 𝜌)(𝑝) ≔ (𝑝, 𝑓(𝑝)𝜌𝑝) (3.41)

for all points 𝑝 ∈ 𝑀. The operation of a covector field 𝜌 ∈ 𝛺1(𝑀) on a vector
field 𝑣 ∈ Vect(𝑀) is denoted by

𝜌(𝑣) = 𝜌⋅𝑣 = 𝑣⋅𝜌 (3.42)

and it is defined using the pointwise duality pairing (2.23) as

(𝜌(𝑣))(𝑝) ≔ 𝜌𝑝 ⋅𝑣𝑝.

In Section 3.2, we saw that a tangent vector at some point 𝑝 of a differen-
tiable manifold 𝑀 can operate as a derivation in 𝑝13 on a function 𝑓 ∈𝐶∞(𝑀).
This pointwise property can be transferred to vector fields. A linear map

13. See p. 55 for the definition.
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𝐷∶ 𝐶∞(𝑀) → 𝐶∞(𝑀) is said to be a derivation if it fulfils the product rule,
i.e., if

𝐷[𝑓 𝑔] = 𝑓 𝐷[𝑔]+𝑔𝐷[𝑓 ]

for all 𝑓 , 𝑔, ∈ 𝐶∞(𝑀). Vector fields 𝑣 ∈ Vect(𝑀) operate pointwise on func-
tions 𝑓 ∈ 𝐶∞(𝑀) as

(𝑣[𝑓 ])(𝑝) ≔ 𝑣𝑝[𝑓 ], (3.43)

with 𝑣(𝑝) = (𝑝, 𝑣𝑝) because of (3.29). In particular, because of the locality
property D 1 of 𝑣𝑝 as derivation in 𝑝, it holds that

𝑣[𝑓 ]∣𝑉 = 𝑣[𝑓∣𝑉]

for all open subsets 𝑉 ⊂ 𝑈 ⊆ 𝑀.

Theorem 3.25 (John M. Lee 2013, Proposition 8.15). Let 𝑀 be a differen-
tiable manifold. Then, the derivations on 𝐶∞(𝑀) can be identified with the
vector fields Vect(𝑀) on 𝑀.

If we are given two derivations 𝐷1 and 𝐷2 on 𝐶∞(𝑀) and two functions
𝑓 , 𝑔 ∈ 𝐶∞(𝑀), then we know that 𝐷1[𝑓] ∈ 𝐶∞(𝑀). The question arises
whether the concatenation 𝐷2𝐷1 of two derivations is a derivation. The
answer is no, as the following calculation shows:

𝐷2𝐷1[𝑓 𝑔] = 𝐷2[𝑓 𝐷1[𝑔]+𝑔𝐷1[𝑓]]
= 𝑓 𝐷2𝐷1[𝑔]+𝐷2[𝑓]𝐷1[𝑔]+𝑔𝐷2𝐷1[𝑓]+𝐷2[𝑔]𝐷1[𝑓]
≠ 𝑓 𝐷2𝐷1[𝑔]+𝑔𝐷2𝐷1[𝑓].

(3.44)

However, we may observe from (3.44) that 𝐷2𝐷1−𝐷1𝐷2 satisfies the product
rule and, therefore, is a derivation.

Theorem 3.25 allows us to transfer this observation to the space Vect(𝑀)
of vector fields on 𝑀. For any two vector fields 𝑢, 𝑣 ∈ Vect(𝑀), we define the
vector field ⟦𝑢, 𝑣⟧ ∈ Vect(𝑀) by its operation on functions 𝑓 ∈ 𝐶∞(𝑀) as

⟦𝑢, 𝑣⟧[𝑓] ≔ 𝑢[𝑣[𝑓]]−𝑣[𝑢[𝑓]]. (3.45)

The reader may check that the bracket (3.45) satisfies axioms LB 1–LB 3
from the definition of a Lie bracket on p. 33. The vector space Vect(𝑀)
becomes a Lie algebra when it is considered together with the Lie bracket
from (3.45).

In Section 3.2, we saw that if we are given a differentiable map 𝑓 ∶ 𝑀 → 𝑁
between two differentiable manifolds 𝑀 and 𝑁, then the differential of 𝑓 in a
point 𝑝 of 𝑀 (3.26) maps the tangent space 𝑇𝑝𝑀 to the tangent space 𝑇𝑓(𝑝)𝑁.
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3.5. Vector fields

Figure 3.10.: The differential of the function 𝑓 ∶ 𝑀 → 𝑁 maps tangent vectors
on 𝑀 to tangent vectors on 𝑁.

This pointwise map can be extended to the tangent bundles 𝑇𝑀 and 𝑇𝑁.
The differential of 𝑓 is defined as the map

D𝑓∶ 𝑇𝑀 → 𝑇𝑁, (𝑝, 𝑢𝑝) ↦ (𝑓(𝑝), D𝑓𝑝𝑢𝑝).

The differential of 𝑓 can be used to relate vector fields on 𝑀 with vector
fields on 𝑁 (see Figure 3.10). We say that the vector fields 𝑣 ∈ Vect(𝑀) and
𝑤 ∈ Vect(𝑁) are 𝑓-related if

𝑤∘𝑓(𝑝) = D𝑓 𝑣(𝑝) for all 𝑝 ∈ 𝑀

or, equivalently, if

𝑤[𝑔]∘𝑓 = 𝑣[𝑔∘𝑓] for all 𝑔 ∈ 𝐶∞(𝑁).

In the case where 𝑓 ∶ 𝑀 → 𝑁 is a diffeomorphism, it induces the map

𝑓 ∶ Vect(𝑀) → Vect(𝑁), 𝑣 ↦ 𝑓 (𝑣)

that is defined by

(𝑓 𝑣)(𝑞) ≔ D𝑓𝑓 −1(𝑞)𝑣(𝑓 −1(𝑞)) = D𝑓 𝑣∘𝑓 −1(𝑞),

for all 𝑞 ∈ 𝑁. The vector field 𝑓 (𝑣) ∈ Vect(𝑁) is called the pushforward
of the vector field 𝑣 ∈ Vect(𝑀) with f. The inverse of the map 𝑓 ∶ 𝑀 → 𝑁
allows to define the pullback 𝑓 of a vector field 𝑤 ∈ Vect(𝑁) with 𝑓 as
the vector field

𝑓 𝑤 ≔ (𝑓 −1) 𝑤

on 𝑀. Overloading notation, we consider the map

𝑓 ∶ 𝛺1(𝑁) → 𝛺1(𝑀), 𝜌 ↦ 𝑓 𝜌,

defined using the diffeomorphism 𝑓 ∶ 𝑀 → 𝑁 by

(𝑓 𝜌)(𝑣) ≔ 𝜌(𝑓 𝑣)
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for all 𝜌 ∈ 𝛺1(𝑁) and all 𝑣 ∈ Vect(𝑀). The covector field 𝑓 𝜌 ∈ 𝛺1(𝑀) is
called the pullback of the covector field 𝜌 ∈ 𝛺1(𝑁) with 𝑓. Finally, the
pushforward of the covector field 𝜎∈𝛺1(𝑀) with 𝑓 is the covector field
on 𝑁 that is given by

𝑓 𝜎 ≔ (𝑓 −1) 𝜎.

Note that a vector field 𝑣 ∈ Vect(𝑀) and its pushforward 𝑓 𝑣 are 𝑓-related.
The 𝑓-relation of vector fields is compatible with the Lie algebra structure
on Vect(𝑀) and Vect(𝑁) according to the following theorem.
Theorem 3.26 (John M. Lee 2013, Proposition 8.30). Let 𝑣𝑖 ∈ Vect(𝑀) and
𝑤𝑖 ∈ Vect(𝑁) with 𝑖 = 1, 2 such that 𝑣𝑖 and 𝑤𝑖 are 𝑓-related for all 𝑖. Then
the Lie brackets ⟦𝑣1, 𝑣2⟧ and ⟦𝑤1, 𝑤2⟧ are also 𝑓-related, i.e.,

⟦𝑤1, 𝑤2⟧∘𝑓(𝑝) = D𝑓 ⟦𝑣1, 𝑣2⟧(𝑝) for all 𝑝 ∈ 𝑀.

The coordinate fields induced by a chart (𝑈, 𝜙) of a differentiable
manifold 𝑀 with 𝜙∶ 𝑝 ↦ 𝜙(𝑝) = (𝑥1, … , 𝑥𝑛) are defined as the sections

𝜕
𝜕𝑥𝑖 ∶ 𝑈 → 𝑇𝑀, 𝑝 ↦ (𝑝, 𝜕

𝜕𝑥𝑖 ∣
𝑝
). (3.46)

By equations (3.38), (3.39), (3.43), and (3.46), every vector field 𝑣 ∈ Vect(𝑀)
can be locally written as

𝑣 = 𝑣[𝜙𝑖] 𝜕
𝜕𝑥𝑖 (3.47)

because
𝑣(𝑝) = (𝑝, 𝑣𝑝[𝜙𝑖] 𝜕

𝜕𝑥𝑖 ∣
𝑝
)

for all 𝑝 ∈ 𝑈 ⊆ 𝑀.
The dual coordinate fields on 𝑀 induced by the chart (𝑈, 𝜙) are de-

fined to be the sections

d𝑥𝑖 ∶ 𝑈 → 𝑇∗𝑀, 𝑝 ↦ (𝑝, d𝑥𝑖
𝑝), (3.48)

where the basis covectors (d𝑥1
𝑝, … , d𝑥𝑛

𝑝) are defined by equation (3.28).
With equations (2.21), (3.40), (3.41), (3.42), and (3.48), every covector field
𝜌 ∈ 𝛺1(𝑀) can be locally expressed as

𝜌 = 𝜌( 𝜕
𝜕𝑥𝑖 )d𝑥𝑖, (3.49)

because
𝜌(𝑝) = (𝑝, 𝜌𝑝( 𝜕

𝜕𝑥𝑖 ∣
𝑝
)d𝑥𝑖

𝑝)

for all 𝑝 ∈ 𝑈 ⊆ 𝑀.
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3.6. Flow of a vector field

In Definition 3.12, we used equivalence classes of curves to define the tan-
gent space 𝖳𝑝𝑀 to a differentiable manifold 𝑀 at some point 𝑝 ∈ 𝑀. With
Definition 3.14 we saw that tangent vectors in 𝑝 ∈ 𝑇𝑝𝑀 can operate on
functions 𝑓 ∈ 𝐶∞(𝑀) as derivations in 𝑝. Theorem 3.17 tells us that both
definitions are equivalent because the resulting tangent spaces 𝖳𝑝𝑀 and
𝑇𝑝𝑀 are isomorphic.

In this section, we change our perspective. Instead of considering a single
point 𝑝 ∈ 𝑀, we are interested in all the points which lie along some curve
𝛾∶ ℝ ⊃ 𝐼 → 𝑀, 𝜏 ↦ 𝛾(𝜏) that passes through 𝑝 such that 𝛾(𝜏0) = 𝑝 ∈ 𝑀. At
each point of the curve, we consider the tangent vector defined by the curve
in that point. If 0 ∈ 𝐼, then the tangent vector defined by the curve 𝛾 is
just [𝛾] (the equivalence class of 𝛾), which is an element of 𝖳𝛾(0)𝑀. The
tangent vector defined by 𝛾 for any other value 𝜏∗ ∈ 𝐼 with 𝜏∗ ≠ 0 is defined
to be the equivalence class of the curve 𝛾𝜏∗(𝜏) ≔ 𝛾(𝜏+𝜏∗), i.e., the tangent
vector [𝛾𝜏∗] ∈ 𝖳𝛾(𝜏∗)𝑀. Note that the equivalence relation (3.7) is defined
for curves with intervals 𝐼 =]−𝑟, 𝑟[ centred around 0. Given an arbitrary
curve 𝛾∶ ℝ ⊃ 𝐼 → 𝑀 and some point 𝑞 ∈ 𝛾(𝜏∗) on it, the reparametrized
curve 𝛾𝜏∗ satisfies 𝛾𝜏∗(0) = 𝑞.

With this construction, we get a vector field along the curve 𝛾, called
the tangent field along 𝛾, that we denote by 𝛾̇. By Theorem 3.25, the
tangent field along 𝛾 can operate as derivation on functions 𝑓 ∈ 𝐶∞(𝑀).
The operation is defined pointwise according to (3.43) as

(𝛾̇[𝑓])(𝛾(𝜏∗)) = 𝛾̇𝛾(𝜏∗)[𝑓] (3.23)= 𝐿[𝛾𝜏∗]𝑓
(3.22)= d

d𝜏∣
𝜏=0

(𝑓 ∘𝛾𝜏∗)(𝜏)

= d
d𝜏∣

𝜏=𝜏∗
(𝑓 ∘𝛾)(𝜏).

(3.50)

Let 𝛾∶ ℝ ⊃ 𝐼 → 𝑀 be a curve passing through 𝑝 ∈ 𝑀. If we are given a
vector field 𝑣 on 𝑀, then we can check whether or not the tangent field 𝛾̇
along the curve 𝛾 corresponds to the vector field 𝑣 evaluated along the curve.
If this is the case, i.e., if

𝛾̇(𝛾(𝜏)) = 𝑣(𝛾(𝜏)), (3.51)

then the curve 𝛾(𝜏) is said to be an integral curve of the vector field 𝑣
through 𝑝 (see Figure 3.11). Let (𝑈, 𝜙) be a chart that contains part of
the curve, i.e., 𝛾(𝜏) ∈ 𝑈 for all 𝜏 ∈ 𝐼 ∩ 𝛾−1(𝑈) ≠ ∅. Let the vector field
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Figure 3.11.: An integral curve of a vector field passing through the point 𝑝.

𝑣 ∈ Vect(𝑀) have the local expression

𝑣 = 𝑣𝑖 𝜕
𝜕𝑥𝑖 ,

with 𝑣𝑖 ∈ 𝐶∞(𝑈). Equation (3.51) can be expressed with respect to the chart
(𝑈, 𝜙) according to (3.47) as

𝛾̇[𝜙𝑖](𝛾(𝜏)) = 𝑣[𝜙𝑖](𝛾(𝜏)), (3.52)

with 𝑖 = 1, … , dim 𝑀. With equation (3.50), we recognize that (3.52) defines
the following system of ordinary differential equations in the chart (𝑈, 𝜙)

d
d𝜏(𝜙𝑖 ∘𝛾)(𝜏) = 𝑣𝑖(𝛾(𝜏)). (3.53)

The determination of an integral curve 𝛾 that passes through a given
point 𝑝 ∈ 𝑀 boils down to solving the system of ordinary differential equa-
tions (3.53) with the initial condition

𝛾(𝜏0) = 𝑝. (3.54)

Therefore, many results about ordinary differential equations can be applied
to integral curves. The theorem of Picard-Lindelöf guarantees that for each
initial condition (3.54) there is some value 𝑟 > 0 such that there exists
a unique solution 𝛾(𝜏) to the initial value problem (3.53)–(3.54) on the
interval ]𝜏0 −𝑟, 𝜏0 +𝑟[ that passes through 𝑝 for 𝜏 = 𝜏0. In particular, this
means that integral curves do not intersect. Let 𝛾𝑝 ∶ ]𝜏0 −𝑟, 𝜏0 +𝑟[ → 𝑀
be the integral curve of a vector field 𝑣 ∈ Vect(𝑀) that passes through
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𝑝 ∈ 𝑈 ⊆ 𝑀. The map

𝜑∶ ]𝜏0 −𝑟, 𝜏0 +𝑟[×𝑈 → 𝑀,
(𝜏, 𝑝) ↦ 𝜑(𝜏, 𝑝) ≔ 𝛾𝑝(𝜏).

(3.55)

with 𝑈 ⊆ 𝑀 is said to be the (local) flow of 𝑣. The local flow of 𝑣 provides
the map

𝜑𝜏 ∶ 𝑈 → 𝑀,
𝑝 ↦ 𝜑𝜏(𝑝) ≔ 𝛾𝑝(𝜏).

(3.56)

defined on a neighbourhood of 𝑝.

Theorem 3.27. The maps (3.56) are local diffeomorphisms and it holds
that

𝜑𝜏1+𝜏2 = 𝜑𝜏1 ∘𝜑𝜏2

for all parameters 𝜏1, 𝜏2 for which 𝜑𝜏1, 𝜑𝜏2, and 𝜑𝜏1+𝜏2 are defined. The
set {𝜑𝜏} is a one-parameter group of local diffeomorphisms.

Proof. It follows from the definition (3.56) that

𝜑𝜏1+𝜏2(𝑝) = 𝜑(𝜏1 +𝜏2, 𝑝) = 𝛾𝑝(𝜏1 +𝜏2)
= 𝛾𝛾𝑝(𝜏2)(𝜏1) = 𝜑𝜏1(𝛾𝑝(𝜏2)) = 𝜑𝜏1 ∘𝜑𝜏2(𝑝).

(3.57)

In particular, we can see from (3.57) that id𝑈 = 𝜑0 = 𝜑𝜏+(−𝜏) = 𝜑𝜏 ∘𝜑−𝜏
and, therefore, 𝜑−1

𝜏 = 𝜑−𝜏. Hence, the map 𝜑𝜏 is invertible and its inverse
map 𝜑−1

𝜏 is differentiable such that 𝜑𝜏 is a local diffeomorphism.

3.7. Tensor fields

A tensor field of type (𝑘, 𝑙)

𝐺 ∈ Γ( 𝑘
𝑙 𝑇𝑀)

is a section such that

𝐺(𝑝) = (𝑝, 𝐺𝑝) with 𝐺𝑝 ∈ 𝑘
𝑙 𝑇𝑝𝑀.

Its application to 𝑘 covector fields and 𝑙 vector fields is defined point by point
as

𝐺(1𝜎, … , 𝑘𝜎, 1𝑢, … , 𝑙𝑢)(𝑝) ≔ 𝐺𝑝(1𝜎𝑝, … , 𝑘𝜎𝑝, 1𝑢𝑝, … , 𝑙𝑢𝑝) (3.58)

for all 𝛼𝜎 ∈ Γ(𝑇∗𝑀) = 𝛺1(𝑀) with 𝛼 = 1, … , 𝑘, all 𝛽𝑢 ∈ Vect(𝑀) = Γ(𝑇𝑀)
with 𝛽 = 1, … , 𝑙, and all 𝑝 ∈ 𝑀. The set of tensor fields of type (𝑘, 𝑙) can be
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endowed with the structure of a vector space by defining the addition and
scalar multiplication point by point for all 𝑝 ∈ 𝑀 as

(𝐺+𝐻)(𝑝) ≔ (𝑝, 𝐺𝑝 +𝐻𝑝),
𝛼𝐺(𝑝) ≔ (𝑝, 𝛼𝐺𝑝),

(3.59)

for all
𝐺, 𝐻 ∈ Γ( 𝑘

𝑙 𝑇𝑀)

and all 𝛼 ∈ ℝ. Furthermore, we define a multiplication between functions
𝑓 ∈ 𝐶∞(𝑀) and tensor fields 𝐺 as

(𝑓 𝐺)(𝑝) ≔ (𝑝, 𝑓(𝑝)𝐺𝑝) (3.60)

for all points 𝑝 ∈ 𝑀. The vector space structures of Vect(𝑀) and 𝛺1(𝑀)
that are declared respectively by equations (3.38) and (3.40) are special
cases of (3.59). Similarly, the multiplications (3.39) and (3.41) follow from
the general definition (3.60).

In Section 2.10, we defined the tensor product with equation (2.34). Theo-
rem 2.15 tells us that this tensor product can be used to construct a basis of
a given tensor space. The tensor product can be extended to tensor fields.
Let

𝐹 ∈ Γ( 𝑘
𝑙 𝑇𝑀),

𝐺 ∈ Γ( 𝑟
𝑠𝑇𝑀)

be two tensor fields with

𝐹(𝑝) = (𝑝, 𝐹𝑝) with 𝐹𝑝 ∈ 𝑘
𝑙 𝑇𝑝𝑀,

𝐺(𝑝) = (𝑝, 𝐺𝑝) with 𝐺𝑝 ∈ 𝑟
𝑠𝑇𝑝𝑀.

The tensor product of the tensor fields 𝐹 and 𝐺 is the map

𝐹 ⊗𝐺∶ 𝑊 ×⋯×𝑊⏟⏟⏟⏟⏟
𝑘

× 𝑉 ×⋯×𝑉⏟⏟⏟⏟⏟
𝑙

× 𝑊 ×⋯×𝑊⏟⏟⏟⏟⏟
𝑟

× 𝑉 ×⋯×𝑉⏟⏟⏟⏟⏟
𝑠

→ 𝐶∞(𝑀),

with 𝑉 = Vect(𝑀) and 𝑊 = 𝛺1(𝑀) that is defined by

𝐹 ⊗𝐺(𝜌1, … , 𝜌𝑘, 𝑢1, … , 𝑢𝑙, 𝜎1, … , 𝜎𝑟, 𝑣1, … , 𝑣𝑠)(𝑝)
≔ (𝑝, 𝐹𝑝(𝜌1𝑝, … , 𝜌𝑘𝑝, 𝑢1𝑝, … , 𝑢𝑙𝑝)𝐺𝑝(𝜎1𝑝, … , 𝜎𝑟𝑝, 𝑣1𝑝, … , 𝑣𝑠𝑝))

for all 𝜌𝛼, 𝜎𝛾 ∈ 𝛺1(𝑀) with 𝛼 = 1, … , 𝑘, 𝛾 = 1, … , 𝑟, all 𝑢𝛽, 𝑣𝛿 ∈ Vect(𝑀)
with 𝛽 = 1, … , 𝑙, 𝛿 = 1, … , 𝑠, and all 𝑝 ∈ 𝑀.

Because of this pointwise construction, the coordinate fields (3.46) and the
dual coordinate fields (3.48) can be used together with the tensor product to
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construct a basis of the space of tensor fields in a way that is analogue to
Theorem 2.15. A similar reasoning can be used to define the wedge product14

of tensor fields.
By their point-by-point operation on vectors and covectors, smooth tensor

fields define maps on the corresponding spaces of vector and covector fields
on 𝑀 that are multilinear over 𝐶∞(𝑀). Because we are primarily interested
in covariant tensor fields, we state the following lemma.

Lemma 3.28 (John M. Lee 2013, Lemma 12.24). A map

𝐴∶ Vect(𝑀)×⋯×Vect(𝑀)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑙 copies

→ 𝐶∞(𝑀),

is induced by a smooth covariant 𝑙-tensor field as above if and only if it is
multilinear over 𝐶∞(𝑀).

Pushforward and pullback of tensor fields

On pages 71–72, we defined the pushforward and pullback of vector and
covector fields. These concepts can be used to define the pushforward and
the pullback for arbitrary tensor fields. Let 𝑓 ∶ 𝑀 → 𝑁 be a diffeomorphism
between the manifolds 𝑀 and 𝑁. The pullback of a (𝑘, 𝑙)-tensor field 𝐺
on 𝑁 is the tensor field 𝑓 𝐺 on 𝑀 defined by

(𝑓 𝐺)(𝜌1, … , 𝜌𝑘, 𝑣1, … , 𝑣𝑙) ≔ 𝐺(𝑓 𝜌1, … , 𝑓 𝜌𝑘, 𝑓 𝑣1, … , 𝑓 𝑣𝑙),

with 𝜌1, … , 𝜌𝑘 ∈ 𝛺1(𝑀) and 𝑣1, … , 𝑣𝑙 ∈ Vect(𝑀) such that

𝑓 ∶ Γ( 𝑘
𝑙 𝑇𝑁) → Γ( 𝑘

𝑙 𝑇𝑀).

In the opposite direction, the pushforward of a (𝑘, 𝑙)-tensor field 𝐹 on
𝑀 is the tensor field 𝑓 𝐹 on 𝑁 defined by

(𝑓 𝐹)(𝜎1, … , 𝜎𝑘, 𝑤1, … , 𝑤𝑙) ≔ 𝐹(𝑓 𝜎1, … , 𝑓 𝜎𝑘, 𝑓 𝑤1, … , 𝑓 𝑤𝑙),

with 𝜎1, … , 𝜎𝑘 ∈ 𝛺1(𝑁) and 𝑤1, … , 𝑤𝑙 ∈ Vect(𝑁) such that

𝑓 ∶ Γ( 𝑘
𝑙 𝑇𝑀) → Γ( 𝑘

𝑙 𝑇𝑁).

14. See equation (2.40) on p. 40.
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3.8. Differential forms

Equation (3.36) defines the bundle of alternating 𝑙-forms on a differentiable
manifold 𝑀. A differential 𝑙-form on 𝑀 is a section of the bundle of
alternating 𝑙-forms, i.e., a map

ω ∶ 𝑀 → 𝑙𝑇∗𝑀,

with 𝜋∘ω = id𝑀. For 𝑙 = 0, we define 𝛺0(𝑀) ≔ 𝐶∞(𝑀) and denote the set
of differential forms of arbitrary degree on 𝑀 by

𝛺⋆(𝑀) ≔
dim 𝑀
⨁
𝑙=0

𝛺𝑙(𝑀).

The differential forms of degree 𝑙 > dim 𝑀 are zero. This can be easily seen
from Proposition 2.19(iv) because in the local expression of such a differential
𝑙-form with respect to a chart (𝑈, 𝜙) of 𝑀 at least one of the basis covector
fields d𝑥1, … , d𝑥𝑛 would appear more than once.

A differential 𝑙-form ω∈𝛺𝑙(𝑀) induces a 𝐶∞(𝑀)-multilinear, alternating
map

𝜔∶ Vect(𝑀)×⋯×Vect(𝑀) → 𝐶∞(𝑀), (𝑣1, … , 𝑣𝑙) ↦ 𝜔(𝑣1, … , 𝑣𝑙)

that is defined point by point as

𝜔(𝑣1, … , 𝑣𝑙)(𝑝) ≔ ω(𝑝)(𝑣1(𝑝), … , 𝑣𝑙(𝑝)).

The converse turns out to be also true15 such that there is a one-to-one
correspondence between differential forms and the 𝐶∞(𝑀)-multilinear, al-
ternating maps on vector fields. In what follows, we will make no notational
distinction between differential forms and the map they induce on vector
fields.

Let 𝑓 ∶ 𝑀 → 𝑁 be a smooth map between the differentiable manifolds 𝑀
and 𝑁 and let ω ∈ 𝛺𝑙(𝑁) be a differential 𝑙-form on 𝑁. The pullback
𝑓 ω ∈ 𝛺𝑙(𝑀) of ω with 𝑓 is the differential 𝑙-form on 𝑀 defined by

(𝑓 ω)
𝑝
(𝑣1, … , 𝑣𝑙) = ω𝑓(𝑝)(D𝑓𝑝(𝑣1), … , D𝑓𝑝(𝑣𝑙)), (3.61)

for all 𝑣1, … , 𝑣𝑙 ∈ Vect(𝑀). Note that the map 𝑓 ∶ 𝑀 → 𝑁 does not need to
be a diffeomorphism. In the case where 𝑓 ∶ 𝑀 → 𝑁 is a diffeomorphism, this
definition agrees with the pullback of a (𝑘, 𝑙)-tensor field for 𝑘 = 0 defined
earlier.

15. See Lemma 3.28.
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We consider the map

d∶ 𝛺0(𝑀) → 𝛺1(𝑀),
𝑓 ↦ d𝑓

that is defined by the operation of d𝑓 on vector fields

d𝑓 ∶ Vect(𝑀) → 𝐶∞(𝑀),
𝑣 ↦ d𝑓 (𝑣) ≔ 𝑣[𝑓].

(3.62)

We want to extend the map d to differential forms of arbitrary degree such
that we get a sequence of maps

𝛺0(𝑀) d⟶ 𝛺1(𝑀) d⟶ 𝛺2(𝑀) d⟶ ⋯ .

Theorem 3.29 (Gallot et al. 1990, Theorem 1.119, p. 43). Let 𝑀 be a differ-
entiable manifold. For any 𝑙 ∈ ℕ, there exists a unique local operator d from
𝛺𝑙(𝑀) to 𝛺𝑙+1(𝑀), called the exterior derivative such that

ED 1. for 𝑙 = 0, the map d∶ 𝛺0(𝑀) → 𝛺1(𝑀) is defined by (3.62),

ED 2. it holds that d2 = d∘d = 0,

ED 3. for α ∈ 𝛺𝑙(𝑀) and β ∈ 𝛺⋆(𝑀)

d(α∧β) = dα∧β+(−1)𝑙α∧dβ.

Let us come back to pullbacks of differential forms. The exterior derivative
has the important feature that it commutes with all pullbacks. This property
is referred to as naturality of the exterior derivative.

Proposition 3.30 (John M. Lee 2013, Proposition 14.26). Let 𝑓 ∶ 𝑀 → 𝑁 be
a smooth map between the differentiable manifolds 𝑀 and 𝑁. Then for each
𝑙 ∈ ℕ the pullback 𝑓 ∶ 𝛺𝑙(𝑁) → 𝛺𝑙(𝑀) commutes with d: for all ω ∈ 𝛺𝑙(𝑁)

𝑓 (dω) = d(𝑓 ω).

Moreover, pullbacks of differential forms have the following properties.

Proposition 3.31 (John M. Lee 2013, Lemma 14.16). Suppose 𝑓 ∶ 𝑀 → 𝑁
to be a smooth map between the differentiable manifolds 𝑀 and 𝑁, then the
following properties hold:

(i) The map 𝑓 ∶ 𝛺𝑙(𝑁) → 𝛺𝑙(𝑀) is linear over ℝ.
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(ii) The pullback commutes with the wedge product, i.e.,

𝑓 (α∧β) = 𝑓 (α)∧ 𝑓 (β).

(iii) In any smooth chart,

𝑓 ( ∑↗
𝐼 ω𝐼 d𝑥𝑖1 ∧⋯∧d𝑥𝑖𝑙) = ∑↗

𝐼 (ω𝐼 ∘𝑓) d(𝑥𝑖1 ∘𝑓)∧⋯∧d(𝑥𝑖𝑙 ∘𝑓).

We say that a differential 𝑙-form ω ∈ 𝛺𝑙(𝑀) is closed if dω = 0. It is
called exact if it can be written as ω = dα with α ∈ 𝛺𝑙−1(𝑀). By ED 2, we
know that d∘d = 0 and, therefore, the condition of being closed is necessary
for a differential form to be exact. In general, the converse is not true and
the extent to which it fails is a topological property of the manifold. The
study of this question leads to the de Rham cohomology for which we refer
to Chapter 10 in Jeffrey M. Lee 2009. However, there is the following local
result due to Poincaré which says that locally, every closed form is exact.

Lemma 3.32 (Poincaré lemma). Let 𝐵 be an open ball in ℝ𝑛 and let ω be
a differential 𝑙-form on 𝐵 with 𝑙 ≥ 1 such that dω = 0. Then there exists a
differential form α on 𝐵 such that ω = dα.

Lemma 3.32 corresponds to Theorem 4.1 in Lang 2001 to which we refer
for the proof. The lemma is formulated for differential forms on an open
ball in ℝ𝑛. However, it directly transfers to locally defined forms on an
𝑛-dimensional differentiable manifold 𝑀 because of Proposition 3.30.

3.9. The Lie derivative

On page 71, we saw that (local) diffeomorphisms induce a pullback map on
vector fields. From Section 3.6, we know that the local flow (3.55) of a vector
field 𝑣 ∈ Vect(𝑀) provides the local diffeomorphism (3.56) from 𝑀 to itself.
The pullback that comes with this map can be used to relate tangent vectors
from two separate tangent spaces at two distinct points 𝑝 and 𝑞 lying on the
same integral curve of 𝑣 as shown in Figure 3.12.

By Theorem 3.25, we know that vector fields can be applied as derivations
to smooth real-valued functions on a manifold. The above considerations al-
low us to define a derivative for tensors of arbitrary type along a given vector
field. We start with vector fields. The Lie derivative16 𝔏𝑣𝑤 ∈ Vect(𝑀) of

16. It can be shown that 𝔏𝑣𝑤 is indeed a smooth vector field (see John M. Lee 2013,
Lemma 9.36, pp. 228–229).
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Figure 3.12.: Pullback map of vector fields induced by the flow of a vector
field on a differentiable manifold 𝑀.

a vector field 𝑤 ∈ Vect(𝑀) along a vector field 𝑣 ∈ Vect(𝑀) is defined for
all points 𝑝 ∈ 𝑀 as

𝔏𝑣𝑤(𝑝) ≔ d
d𝜏∣

𝜏=0
((𝜑𝜏) 𝑤)(𝑝), (3.63)

where 𝜑𝜏(𝑝) = 𝛾𝑝(𝜏) is the flow of 𝑣 through the point 𝑝 with 𝛾𝑝(0) = 𝑝.

Theorem 3.33 (John M. Lee 2013, Theorem 9.38). If 𝑣, 𝑤 ∈ Vect(𝑀) are
smooth vector fields on a differentiable manifold 𝑀, then it holds that

𝔏𝑣𝑤 = ⟦𝑣, 𝑤⟧.

Theorem 3.34 (John M. Lee 2013, Theorem 9.44). Let 𝑣, 𝑤 ∈ Vect(𝑀) be
smooth vector fields on a differentiable manifold 𝑀 with respective local
flows 𝜑𝑣

𝜏1 and 𝜑𝑤
𝜏2. Then the vector fields commute if and only if their flows

commute, i.e.,
⟦𝑣, 𝑤⟧ = 0 ⇔ 𝜑𝑣

𝜏1 ∘𝜑𝑤
𝜏2 = 𝜑𝑤

𝜏2 ∘𝜑𝑣
𝜏1.

Equation (3.63) defines the Lie derivative of a vector field. The extension
of the definition to arbitrary tensor fields is straightforward. The Lie
derivative 𝔏𝑣 𝐹 of a (𝑘, 𝑙)-tensor field 𝐹 on a differentiable manifold 𝑀
along a vector field 𝑣 ∈ Vect(𝑀) is defined for all points 𝑝 ∈ 𝑀 as

𝔏𝑣 𝐹(𝑝) ≔ d
d𝜏∣

𝜏=0
((𝜑𝜏) 𝐹)(𝑝), (3.64)

where 𝜑𝜏(𝑝) = 𝛾𝑝(𝜏) is the flow of 𝑣 through the point 𝑝 with 𝛾𝑝(0) = 𝑝.
The definition (3.64) includes the Lie derivative of a vector field 𝑤 because

a vector field is just a (1, 0)-tensor field. Moreover, it also comprises the
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derivative of a smooth function if the latter is interpreted as a tensor field
of type (0, 0). The following proposition gathers some properties of the Lie-
derivative (3.64). For the proof of these properties, we refer to Sections 5.3
and 5.4 of Abraham, Marsden, and Ratiu 1988.

Proposition 3.35. Let 𝑀 be a differentiable manifold and 𝑣 ∈ Vect(𝑀) be
a vector field on 𝑀. Suppose 𝑓 ∈ 𝐶∞(𝑀) is a real-valued function on 𝑀
(regarded as (0, 0)-tensor field). Let 𝐺 ∈ Γ( 𝑘

𝑙 𝑇𝑀) and 𝐻 ∈ Γ( 𝑚
𝑛 𝑇𝑀)

be a (𝑘, 𝑙)- and a (𝑚, 𝑛)-tensor field on 𝑀, respectively. Let α ∈ 𝛺𝑘(𝑀)
be a differential 𝑘-form and β ∈ 𝛺𝑙(𝑀) a differential 𝑙-form. Then the Lie
derivative (3.64) has the following properties:

(i) 𝔏𝑣 𝑓 = 𝑣[𝑓],

(ii) 𝔏𝑣(𝑓 𝐺) = 𝔏𝑣(𝑓)𝐺+𝑓 𝔏𝑣𝐺,

(iii) 𝔏𝑣(𝐺⊗𝐻) = (𝔏𝑣𝐺)⊗𝐻 +𝐺⊗𝔏𝑣𝐻,

(iv) 𝔏𝑣(α∧β) = (𝔏𝑣α)∧β+α∧𝔏𝑣β,

(v) Let 𝑤1, … , 𝑤𝑙 ∈ Vect(𝑀) and 𝐺 ∈ Γ( 0
𝑙 𝑇𝑀), then

𝔏𝑣(𝐺(𝑤1, … , 𝑤𝑙)) = (𝔏𝑣𝐺)(𝑤1, … , 𝑤𝑙)

+𝐺(𝔏𝑣𝑤1, 𝑤2, … , 𝑤𝑙)

+⋯+𝐺(𝑤1, … , 𝑤𝑙−1, 𝔏𝑣𝑤𝑙).

Let ω ∈ 𝛺𝑘(𝑀) and 𝑣 ∈ Vect(𝑀), then the interior product of ω and 𝑣
is defined as the map

𝑖𝑣 ∶ 𝛺𝑘(𝑀) → 𝛺𝑘−1(𝑀), ω ↦ 𝑖𝑣ω, (3.65)

with

𝑖𝑣ω ≔
⎧{
⎨{⎩

0, if 𝑘 = 0,
ω(𝑣, ⋅, … , ⋅⏟

𝑘−1
), if 𝑘 > 0.

The interior product decreases the degree of a differential form by one, while
the exterior derivative increases it by one. Let α ∈ 𝛺𝑙(𝑀), β ∈ 𝛺⋆(𝑀) and
𝑣 ∈ Vect(𝑀), then the interior product has the property17 that

𝑖𝑣(α∧β) = (𝑖𝑣α)∧β+(−1)𝑙α∧(𝑖𝑣β).

17. See Proposition 8.53 in Jeffrey M. Lee 2009.
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Another common notation for the interior product reads 𝑣 ω = 𝑖𝑣ω. The
symbol is particularly useful for inline formulas since it does not ruin the
line spacing, while the 𝑖𝑣 is more suitable to express concatenations of maps.
With the interior product (3.65), the exterior derivative can be related to
the Lie derivative18 by Cartan’s magic formula19

𝔏𝑣 = d∘𝑖𝑣 +𝑖𝑣 ∘d . (3.66)

3.10. Bilinear forms on the tangent spaces

In Section 2.7, we saw that a vector space can be equipped with a non-
degenerate bilinear form. If we want to endow each tangent space 𝑇𝑝𝑀 of a
differentiable manifold 𝑀 with such a structure, then this can be realized
by suitable tensor fields.

Symplectic Form

A symplectic form on a differentiable manifold 𝑀 is a differential 2-form
ω ∈ 𝛺2(𝑀), that is closed and non-degenerate. A differential two-form on
𝑀 is said to be non-degenerate if for all points 𝑝 ∈ 𝑀 the evaluation of ω
in a point 𝑝 ∈ 𝑀 yields a bilinear form on the tangent space 𝑇𝑝𝑀

ω(𝑝)∶ 𝑇𝑝𝑀 ×𝑇𝑝𝑀 → ℝ (3.67)

that is non-degenerate according to condition (2.27). It can be readily verified
that the bilinear forms (3.67) satisfy SF 1–4 for all 𝑝 ∈ 𝑀 and therefore
let the respective tangent space of 𝑀 become symplectic vector spaces. A
differentiable manifold 𝑀 together with a symplectic form ω is referred to
as symplectic manifold (𝑀, ω).

The most prominent example of a symplectic manifold is given by the
cotangent bundle 𝑇∗𝑄 of a differentiable manifold 𝑄 (see Definition 3.20).
The cotangent bundle 𝑇∗𝑄 comes with a natural projection (3.31)

𝜋𝑇∗𝑄 ∶ 𝑇∗𝑄 → 𝑄, (𝑝, 𝜎𝑝) ↦ 𝑝.

The differential of the natural projection

D𝜋𝑇∗𝑄 ∶ 𝑇(𝑇∗𝑄) → 𝑇𝑄

can be used to define the canonical one-form 𝛩 ∈ 𝛺1(𝑇∗𝑄) by requiring
that

𝛩(𝑤𝜎𝑝) != 𝜎𝑝((D𝜋𝑇∗𝑄)
𝜎𝑝

𝑤𝜎𝑝),

18. The definition of the Lie derivative from p. 81 holds in particular for differential forms.
19. For the proof of this formula, we refer to John M. Lee 2013, Theorem 14.35.
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where 𝜎𝑝 ∈ 𝑇∗
𝑝𝑄 and 𝑤𝜎𝑝 ∈ 𝑇𝜎𝑝(𝑇∗𝑄). One can show20 that the canonical

two-form ω defined by
ω ≔ −d𝛩

is a symplectic form such that the cotangent bundle (𝑇∗𝑄, ω) is a symplectic
manifold.

Let 𝜙∶ 𝑄 ⊇ 𝑈 → ℝ𝑛, 𝑝 ↦ (𝑞1, … , 𝑞𝑛) be a chart of 𝑄. The covector field
𝜎 ∈ 𝛺1(𝑄) can be locally expressed as

𝜎 = 𝑝𝑖d𝑞𝑖

where d𝑞1, … , d𝑞𝑛 denote the dual coordinate fields (3.48) on 𝑄 induced by
the chart (𝑈, 𝜙). This defines a chart of 𝑇∗𝑄 as

𝛷∶ 𝑇∗𝑄 ⊇ 𝜋−1
𝑇∗𝑄(𝑈) → ℝ2𝑛,

(𝑝, 𝜎𝑝 = 𝑝𝑖d𝑞𝑖
𝑝) ↦ 𝛷(𝑝, 𝜎𝑝) ≔ (𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛).

(3.68)

This chart induces the dual coordinate fields d𝑞1, … , d𝑞𝑛, d𝑝1, … , d𝑝𝑛 on
𝑇∗𝑄. It follows by straightforward computation that 𝛩 ∈ 𝛺1(𝑇∗𝑄) is given
by

𝛩 = 𝑝𝑖d𝑞𝑖

and, consequently,
ω = d𝑞𝑖∧d𝑝𝑖. (3.69)

Coordinates of a symplectic manifold, in which the symplectic form ω takes
the simple form (3.69) are called canonical coordinates. The existence
of canonical coordinates is guaranteed by Darboux’s theorem.21

Riemannian metric

Let 𝑀 be a differentiable manifold and let 𝑔 ∈ Γ( 2𝑇∗𝑀) be a covariant
2-tensor field with 𝑔(𝑝)=(𝑝, 𝑔𝑝). If, for all 𝑝∈𝑀, the tensor 𝑔𝑝 is symmetric

𝑔𝑝(𝑢𝑝, 𝑣𝑝) = 𝑔𝑝(𝑣𝑝, 𝑢𝑝), for all 𝑢𝑝, 𝑣𝑝 ∈ 𝑇𝑝𝑀

and positive definite

𝑔𝑝(𝑢𝑝, 𝑢𝑝) > 0, for all 0 ≠ 𝑢𝑝 ∈ 𝑇𝑝𝑀,

then 𝑔 is called a Riemannian metric. A differentiable manifold 𝑀 to-
gether with a Riemannian metric is referred to as Riemannian manifold

20. See Abraham and Marsden 1987, Theorem 3.2.10.
21. See Theorem 22.13 in John M. Lee 2013.
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(𝑀, 𝑔). The operation of a Riemannian metric 𝑔 as a covariant 2-tensor
field is defined by equation (3.58) as

𝑔(𝑢, 𝑣)(𝑝) = (𝑢⋅𝑔 ⋅𝑣)(𝑝) = 𝑢𝑝 ⋅𝑔𝑝 ⋅𝑣𝑝

for all 𝑢, 𝑣 ∈ Vect(𝑀) and all 𝑝 ∈ 𝑀.
A Riemannian metric 𝑔 on a manifold 𝑀 endows each tangent space with

the inner product22 given by

⟨⋅, ⋅⟩𝑝 ∶ 𝑇𝑝𝑀 ×𝑇𝑝𝑀 → ℝ,

(𝑢𝑝, 𝑣𝑝) ↦ ⟨𝑢𝑝, 𝑣𝑝⟩𝑝 ≔ 𝑔𝑝(𝑢𝑝, 𝑣𝑝).
(3.70)

Indeed, it can be easily seen that the map (3.70) fulfils axioms IP 1–4. Given
a chart (𝑈, 𝜙), the Riemannian metric 𝑔 can be expressed using the dual
basis (3.48) as

𝑔 = 𝑔𝑘𝑙 d𝑥𝑘 ⊗d𝑥𝑙.

Its application to vector fields 𝑢, 𝑣 ∈ Vect(𝑀) can be written using the local
expressions 𝑢 = 𝑢𝑖𝜕⁄𝜕𝑥𝑖 and 𝑣 = 𝑣 𝑗𝜕⁄𝜕𝑥 𝑗 as

𝑔(𝑢, 𝑣) = 𝑢⋅𝑔 ⋅𝑣 = 𝑔𝑖𝑗𝑢𝑖𝑣 𝑗.

Moreover, the Riemannian metric provides at each point 𝑝 ∈ 𝑀 the linear
map

𝑔𝑝⋅ ∶ 𝑇𝑝𝑀 → 𝑇∗
𝑝𝑀,

𝑢𝑝 ↦ 𝑔𝑝 ⋅𝑢𝑝,

which is an isomorphism between the tangent and the cotangent space at
the point 𝑝. Actually, the isomorphism does not only hold point by point but
a Riemannian metric defines a vector bundle isomorphism over 𝑀

𝑔⋅∶ 𝑇𝑀 → 𝑇∗𝑀,
(𝑝, 𝑢𝑝) ↦ (𝑝, 𝑔𝑝 ⋅𝑢𝑝).

(3.71)

As a covariant 2-tensor field, a Riemannian metric defines a 𝐶∞(𝑀)-multilin-
ear map on vector fields by Lemma 3.28, which defines a linear, bijective
map on sections

𝑔⋅ ∶ Vect(𝑀) → 𝛺1(𝑀).

For details we refer to John M. Lee 2013, pp. 341–343.

22. See Section 2.7.
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3.11. The Frobenius theorem

This section gives a brief account of the Frobenius theorem that is one of the
central theorems in the theory of differentiable manifolds. Our presentation
closely follows Chapter 19 of John M. Lee 2013 and we omit proofs because
a comprehensive presentation of the subject would go beyond the scope of
this work. The brevity comes at the price that this section may be difficult
to understand because, by omitting the proofs, we renounce to present a
substantial amount of mathematical reasoning that underpins the subject.
For a detailed presentation, we suggest John M. Lee 2013, Chapter 19,
Spivak 1999a, Chapter 6, or Jeffrey M. Lee 2009, Chapter 11.

Let 𝑀 be a differentiable manifold. A distribution 𝛥 of rank 𝑙 on 𝑀 is
a subbundle of rank 𝑙 of the tangent bundle 𝑇𝑀. This means that for each
point 𝑝 ∈ 𝑀 an 𝑙-dimensional (vector) subspace 𝛥𝑝 ⊆ 𝑇𝑝𝑀 of the tangent
space 𝑇𝑝𝑀 is given that smoothly depends on the point 𝑝.

A straightforward approach to define a distribution of rank 𝑙 on a differen-
tiable manifold 𝑀 is to specify an 𝑙-dimensional (vector) subspace 𝛥𝑝 ⊆ 𝑇𝑝𝑀
at each point of 𝑀 and to let

𝛥 ≔ ⋃
𝑝∈𝑀

({𝑝}×𝛥𝑝). (3.72)

If each point of 𝑀 has a neighbourhood 𝑈 on which there are smooth vec-
tor fields 𝖇1, … , 𝖇𝑙 ∶ 𝑈 → 𝑇𝑀 such that for all 𝑞 ∈ 𝑈 the tangent vectors
(𝖇1|𝑞, … , 𝖇𝑙|𝑞) form a basis of 𝛥𝑞, then (3.72) defines indeed a subbundle
of 𝑇𝑀 according to Theorem 3.24 and Lemma 3.36. We say that the vector
fields 𝖇1, … , 𝖇𝑙 (locally) span the distribution.

Lemma 3.36 (John M. Lee 2013, Lemma 10.32). Let (𝐸, 𝜋, 𝑀, ℝ𝑘) be a
vector bundle of rank 𝑘 over 𝑀, and suppose that for each 𝑝 ∈ 𝑀 we are
given an 𝑙-dimensional (vector) subspace 𝐷𝑝 ⊆ 𝐸𝑝. Then

𝐷 ≔ ⋃
𝑝∈𝑀

({𝑝}×𝐷𝑝)

is a subbundle of 𝐸 if and only if each point of 𝑀 has a neighbourhood
𝑈 on which there exist smooth local sections 𝖇1, … , 𝖇𝑙 ∶ 𝑈 → 𝐸 such that
(𝖇1|𝑞, … , 𝖇𝑙|𝑞) forms a basis for 𝐷𝑞 at each point 𝑞 ∈ 𝑈.

Suppose 𝛥 ⊆ 𝑇𝑀 is a distribution. A non-empty immersed submanifold
𝑁 ⊆ 𝑀 with inclusion map 𝜄 ∶ 𝑁 ↪ 𝑀 for which

D𝜄𝑝(𝑇𝑝𝑁) = 𝛥𝑝, for all 𝑝 ∈ 𝑁 (3.73)
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is called an integral manifold of 𝛥. Let 𝑢 and 𝑣 be smooth local sections of
𝛥, i.e., local vector fields 𝑢∶ 𝑈 → 𝛥 and 𝑣∶ 𝑈 → 𝛥 defined on an open subset
𝑈 ⊆ 𝑀 such that 𝑢𝑝, 𝑣𝑝 ∈ 𝛥𝑝 for each 𝑝 ∈ 𝑈. We say that 𝛥 is involutive if
given any pair of local sections 𝑢 and 𝑣 of 𝛥, their Lie bracket ⟦𝑢, 𝑣⟧ is also
a local section of 𝛥. Figure 3.13 shows two distributions of rank two on ℝ3.
The left one is involutive, the right one is not.

The following lemma simplifies the check whether a given distribution of
rank 𝑙 is involutive or not. It says that not every pair of smooth sections of
the distribution has to be checked, but that it is sufficient to check only a set
of local sections that span the distribution in a neighbourhood of each point.

Lemma 3.37 (John M. Lee 2013, Lemma 19.4). Let 𝛥⊆𝑇𝑀 be a distribution
on a differentiable manifold 𝑀. If in a neighbourhood 𝑈 of every point of 𝑀
there exist local sections 𝑣1, … , 𝑣𝑙 ∶ 𝑈 →𝛥 such that for all 𝑞∈𝑈 the tangent
vectors (𝑣1|𝑞, … , 𝑣𝑙|𝑞) form a basis of 𝛥𝑞 and for which ⟦𝑣𝐼, 𝑣𝐽⟧ is a section
of 𝛥 for each 𝐼, 𝐽 = 1, … , 𝑙, then 𝛥 is involutive.

Instead of characterizing a distribution of rank 𝑙 on an 𝑛-dimensional
differentiable manifold 𝑀 by local vector fields, it can equivalently be defined
using differential forms. If around each point of 𝑀 there is an open subset
𝑈 ⊆ 𝑀 and 𝑛−𝑙 linearly independent differential one-forms α1, … , α𝑛−𝑙,
then these one-forms define a distribution 𝛥 ⊆ 𝑇𝑀 of rank 𝑙 by

𝛥𝑞 ≔ ker α1∣
𝑞

∩⋯∩ker α𝑛−𝑙∣
𝑞
, (3.74)

for all 𝑞∈𝑈. The one-forms α1, … , α𝑛−𝑙 are called locally defining forms
for 𝛥.

We say that an 𝑟-form β ∈ 𝛺𝑟(𝑀) with 0 ≤ 𝑟 ≤ 𝑛 annihilates the distri-
bution 𝛥 if

β(𝑣1, … , 𝑣𝑟) = 0
whenever 𝑣1, … , 𝑣𝑟 are local sections of 𝛥. In the case 𝑟 = 0, only the zero
function annihilates 𝛥. Locally defining forms for 𝛥 annihilate the dis-
tribution by definition. Now, the criterion whether a given distribution is
involutive or not can be formulated in terms of differential forms.

Theorem 3.38 (John M. Lee 2013, Theorem 19.7). Suppose 𝛥 is a distribu-
tion. Then 𝛥 is involutive if and only if the following condition is satisfied:
For each one-form α ∈ 𝛺1(𝑈) defined on an open subset 𝑈 ⊆ 𝑀 that an-
nihilates the distribution, the form dα also annihilates the distribution
on 𝑈.

As for the Lie bracket condition for involutivity, the condition from Theo-
rem 3.38 needs only to be checked for a particular set of smooth defining
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(a) An involtive distribution. (b) A non-involutive distribution.

Figure 3.13.: Two different distributions of rank two on ℝ3.

forms in a neighbourhood of each point. So we get the following proposition
as equivalent to Lemma 3.37 for differential forms.

Proposition 3.39 (John M. Lee 2013, Proposition 19.8). Let 𝛥 be a dis-
tribution of rank 𝑙 on an 𝑛-dimensional differentiable manifold 𝑀 and let
α1, … , α𝑛−𝑙 be locally defining forms for 𝛥 on an open subset 𝑈 ⊆ 𝑀. Then
the distribution 𝛥 is involutive on 𝑈 if and only if the forms dα1, … , dα𝑛−𝑙

annihilate 𝛥.

Let 𝛥 be a distribution of rank 𝑙 on an 𝑛-dimensional differentiable mani-
fold 𝑀. We say that the distribution 𝛥 is integrable if each point of 𝑀 is
contained in an integral manifold of 𝛥.

Proposition 3.40 (John M. Lee 2013, Proposition 19.3). Every integrable
distribution is involutive.

We know from (3.46), that a chart (𝑈, 𝜙) of 𝑀 induces coordinate fields
that locally span the tangent bundle 𝑇𝑀. Now, we call a chart (𝑈, 𝜙) flat
for 𝛥 if 𝜙(𝑈) is a cube in ℝ𝑛, and if at points of 𝑈, the distribution 𝛥 is
spanned by the first 𝑙 coordinate fields 𝜕⁄𝜕𝑥1, … , 𝜕⁄𝜕𝑥 𝑙. In any such chart,
each slice of the form 𝑥𝑙+1 = 𝑐𝑙+1, … , 𝑥𝑛 = 𝑐𝑛 for constants 𝑐𝑙+1, … , 𝑐𝑛 is an
integral manifold of 𝛥. This is the nicest possible local situation for integral
manifolds. We say that a distribution 𝛥 ⊆ 𝑇𝑀 is completely integrable
if there exists a flat chart for 𝛥 in a neighbourhood of each point of 𝑀. Obvi-
ously, every completely integrable distribution is integrable and therefore
involutive by Proposition 3.40. In summary, this means that

completely integrable ⇒ integrable ⇒ involutive.
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The Frobenius theorem (see John M. Lee 2013, Theorem 19.12) says that
the implications are actually equivalences, such that

completely integrable ⇔ integrable ⇔ involutive.

Theorem 3.41 (Frobenius). Every involutive distribution is completely
integrable.

Considering all the maximal integral manifolds of an involutive distri-
bution of rank 𝑙 on a differentiable manifold 𝑀, we obtain a partition of 𝑀
into 𝑙-dimensional submanifolds that “fit together” locally like the slices in a
flat chart. To express more precisely what we mean by “fitting together,” we
need to extend our notion of a flat chart slightly. Let 𝑀 be an 𝑛-dimensional
differentiable manifold, and let 𝔉 be any collection of 𝑙-dimensional subman-
ifolds of 𝑀. A chart (𝑈, 𝜙) of 𝑀 is said to be flat for 𝔉 if 𝜙(𝑈) is a cube
in ℝ𝑛, and each submanifold in 𝔉 intersects 𝑈 in either the empty set or a
countable union of 𝑙-dimensional slices of the form 𝑥𝑙+1 = 𝑐𝑙+1, … , 𝑥𝑛 = 𝑐𝑛.
We define a foliation of dimension 𝑙 on 𝑀 to be a collection 𝔉 of disjoint,
connected, nonempty, immersed 𝑙-dimensional submanifolds of 𝑀 (called
the leaves of the foliation), whose union is 𝑀, and such that in a neigh-
bourhood of each point 𝑝 ∈ 𝑀 there exists a flat chart for 𝔉. The involutive
distribution shown in Figure 3.13a defines a two-dimensional foliation on
ℝ3. One of its leafs is depicted in dark grey.

There is a one-to-one correspondence between involutive distributions
and foliations. One direction is expressed by the following proposition.

Proposition 3.42 (John M. Lee 2013, Proposition 19.19). Let 𝔉 be a folia-
tion on a differentiable manifold 𝑀. The collection of tangent spaces to the
leaves of 𝔉 forms an involutive distribution on 𝑀.

The converse is provided by the global Frobenius theorem (see Theo-
rem 19.21 in John M. Lee 2013).

Theorem 3.43 (Global Frobenius). Let 𝛥 be an involutive distribution on a
differentiable manifold 𝑀. The collection of all maximal connected integral
manifolds of 𝛥 forms a foliation of 𝑀.
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Finite-dimensional mechanical systems4
Theorien sind nicht verifizierbar;
aber sie können sich bewähren.

— Karl Popper

This chapter presents a physical theory for the description of mechanical
systems with finitely many degrees of freedom. The presentation is based
on Gallissot 1952, Godbillon 1969, Souriau 1970, Dombrowski et al. 1964a,
Dombrowski et al. 1964b, Loos 1982 and Loos 1985. The first part of the
presentation strongly follows Loos 1982.

4.1. On axioms, postulates and the role of experiments

We try to achieve a clear distinction between the three fields: mathematics,
mechanics (or physics in general), and experiments, that is, the observa-
tion of certain phenomena in the real world. So far, we have introduced
mathematical terminology in the Chapters 2–3 and we hope that the reader
digested it well. We use the language of differential geometry to formulate a
physical theory that can describe finite-dimensional mechanical systems. In
our presentation, we pay attention not to overload terminology in the sense
that one designation may refer to multiple objects from different fields. An
example for this common practice is given by the overloaded use of ‘axiom’.
In mathematics, axiom designates an unprovable statement that serves as
the basis for mathematical reasoning. In physics, axiom is used to designate
a physical law that is placed at the basis of a physical theory and whose
validity relies on the fact that is has not (yet) been proved wrong by an
experiment.1 The notion of axiom in physics differs from its counterpart in
mathematics by the fact that physical axioms are constantly put to the test
by experiments, while the validity of axioms is meaningless in mathemat-
ics. In mechanics, for example, one speaks of Newton’s axioms2 of motion.
However, in the domain of physics, we prefer the word ‘postulate’ to ‘axiom’.
We use axiom only in the context of mathematics.

1. Following Popper 1935, an experiment cannot prove a physical theory to be true; but the
latter can be falsified by an experiment.

2. See p. 19 of Newton 1729 — the English translation of Newton’s Principia.
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(a) Layout of the laboratory with the exper-
imental setup.

(b) Motion of the oscillator expressed
in the (𝐴, 𝐞𝐼

1, 𝐞𝐼
2)-coordinate sys-

tem defined by the lower left cor-
ner 𝐴 of the clamping table and by
the directions 𝐞𝐼

1 and 𝐞𝐼
2 defined

by the edges of the table that join
in 𝐴.

(c) Motion of the oscillator expressed in the (𝐴, 𝐞𝐾
1 , 𝐞𝐾

2 )-coordinate
system defined by the lower left corner 𝐴 of the clamping table and
by the body-fixed directions 𝐞𝐾

1 and 𝐞𝐾
2 rotating with the disc record.

Figure 4.1.: Example an experimental setup consisting of a mass-spring-
oscillator mounted on a clamping table.
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Concerning the question whether a certain physical theory is correct
or not, the best we can do is to carry out experiments within the domain
for which the theory is devised. The theory is considered to be valid as
long as the predictions it provides are in accordance with the experimental
observations. This means that in contrast to pure mathematics, in a physical
theory the interpretation of the involved mathematical objects in regard to
experiments needs to be specified.

In the following, we will study the illustrative example of Simon’s3 labora-
tory. It allows to reflect on the relation between an abstract mathematical
model and its physical interpretation. Figure 4.1a shows the layout of the
laboratory in which Simon studies the motion of an oscillator that consists
of a block of mass 𝑚 that is mounted on a rail such that it can move trans-
lationally with negligible friction. The mass is attached to a support by
a spring with stiffness 𝑘. Simon can measure time using a chronometer
and he is able to measure distances. He wants to study the motion of the
oscillator. For this purpose, he initially pulls the mass 𝑚 to the right from
its equilibrium position and lets it go. At the moment he releases the mass
with no velocity, Simon starts the chronometer to measure time. Since
the oscillator has only one degree of freedom, its motion can be captured
by observing the point 𝐶 on the moving block. Simon decides to describe
the position of 𝐶 with respect to the clamping table on which the oscillator
is mounted. He chooses the lower left corner (point 𝐴) as reference point
and measures parallelly to the edges of the table that intersect in 𝐴 (the
𝐼-frame in Figure 4.1a). At each time instant at which Simon measures, he
determines two real numbers 𝑥1 and 𝑥2 such that the relative position of
the point 𝐶 with respect to 𝐴 is given by

𝐫𝐴𝐶 = 𝑥1𝐞𝐼
1 +𝑥2𝐞𝐼

2. (4.1)

Figure 4.1b shows a visualization of his measurements 𝑥1 and 𝑥2 with
respect to the (𝐴, 𝐞𝐼

1, 𝐞𝐼
2)-coordinate system. Instead of referring his position

measurements to the 𝐼-frame, Simon could have used the 𝐾-frame fixed to
the disc record he is playing while doing his measurements to express the
relative position of the point 𝐶 with respect to 𝐴 as

𝐫𝐴𝐶 = 𝑦1𝐞𝐾
1 +𝑦2𝐞𝐾

2 . (4.2)

The coordinate systems (𝐴, 𝐞𝐼
1, 𝐞𝐼

2) and (𝐴, 𝐞𝐾
1 , 𝐞𝐾

2 ) are related as follows:

𝐞𝐾
1 = cos(𝛺𝑡+𝜑0)𝐞𝐼

1 −sin(𝛺𝑡+𝜑0)𝐞𝐼
2,

𝐞𝐾
2 = sin(𝛺𝑡+𝜑0)𝐞𝐼

1 +cos(𝛺𝑡+𝜑0)𝐞𝐼
2,

(4.3)

3. Simon was the most popular name during my time at the Institute for Nonlinear Mechanics.
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where 𝛺 = 10/9𝜋 rad/s denotes the constant rotational speed of the record4

and 𝜑0 is the angle describing the orientation of the 𝐼-frame with respect to
the 𝐾-frame at the beginning of Simon’s measurements (i.e., at time 𝑡 = 0).
By equation (4.3), it holds that

̄𝑡 = 𝑡,
𝑦1 = 𝑥1 cos(𝛺𝑡+𝜑0)−𝑥2 sin(𝛺𝑡+𝜑0),
𝑦2 = 𝑥1 sin(𝛺𝑡+𝜑0)+𝑥2 cos(𝛺𝑡+𝜑0).

(4.4)

Figure 4.1c depicts the corresponding results obtained with respect to the
coordinate system (𝐴, 𝐞𝐾

1 , 𝐞𝐾
2 ).

We observe from the example that time can only be measured relatively
with respect to some chosen reference (the instant when Simon starts the
chronometer). A first assumption underlying classical mechanics is that by
our time measurements, we are able to decide whether two events happen
at the same time or not irrespective of our motion as observer (in contrast to
Einstein’s theory of special relativity). Therefore, we can consider at each
instant of time the set of synchronous events happening at that specific
moment. In a laboratory, spatial measurements of distances and angles are
realized between synchronous events (at the instant of measurement). These
measurements allow the characterization of synchronous events relative
to each other. It is not possible to relate events happening at different
instants of time by spatial measurements. In a space-time context, the
points 𝐴 and 𝐶 have to be seen as a collection of events such that for each
time 𝑡 (respectively ̄𝑡), we get a pair 𝐴 and 𝐶 of synchronous events at time 𝑡
(respectively ̄𝑡). At a given time 𝑡, the corresponding pair of synchronous
events 𝐴 and 𝐶 is related by the vector 𝐫𝐴𝐶(𝑡) from equation (4.1) or (4.2).
Therefore, the tuples (𝑥1, 𝑥2) and (𝑦1, 𝑦2) are local coordinates on the space
of synchronous events. The number 𝑡 (respectively ̄𝑡) obtained by reading the
chronometer can be considered as an additional (independent) coordinate
describing time.

Our objective is to mathematically describe finite-dimensional mechanical
systems in order to predict their motion accurately with respect to exper-
iments. For the example, this means that we want to derive equations
which describe the evolution over time of the tuples (𝑥1, 𝑥2) or (𝑦1, 𝑦2),
respectively. The resulting equations should be formulated independently of
the choice of a particular set of coordinates. We start with a mathematical
abstraction of the notion of space and time.

4. Another One Bites the Dust by Queen on a 16 inch, 331/3 rpm disc.
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4.2. Space-time

4.2. Space-time

In the example, we only considered two spatial dimensions instead of three
because otherwise Figures 4.1b and 4.1c would have become four-dimen-
sional and thus impossible to visualize. In general, however, we know that a
spatial point in a laboratory can be described using three local coordinates
(real numbers). If we want to keep track of time, we need to add a fourth
coordinate. We model space-time as a four-dimensional smooth manifold
S . Points in S are referred to as events.

In mathematical terms, our observation that the relative time between
two events can be measured means that a real number, the time duration,
can be associated to each pair (𝑝, 𝑞) of events 𝑝, 𝑞 ∈ S (see Dombrowski
et al. 1964a). This can be modelled by postulating the existence of a function

𝛥∶ S ×S → ℝ, (𝑝, 𝑞) ↦ 𝛥(𝑝, 𝑞) (4.5)

which satisfies
𝛥(𝑝, 𝑞)+𝛥(𝑞, 𝑟) = 𝛥(𝑝, 𝑟) (4.6)

for all events 𝑝, 𝑞, 𝑟 ∈ S . If we choose an event 𝑝 ∈ S as reference,5 we can
use (4.5) to define a temporal distance to all other events 𝑞 ∈ S , i.e., a map

𝑡𝑝 ∶ S → ℝ, 𝑞 ↦ 𝑡𝑝(𝑞) ≔ 𝛥(𝑝, 𝑞). (4.7)

The map (4.7) provides a (global) time coordinate. Its kernel

ker 𝑡𝑝 ≔ {𝑞 ∈ S ∣ 𝑡𝑝(𝑞) = 0}

is the set of all events happening at the same time as the event 𝑝. For each
value of the time coordinate 𝑡, we have defined the space of synchronous
events at 𝑡. By property (4.6), the time coordinates of two events 𝑞 and 𝑟
differ only by an additive constant. Therefore, the time coordinate (globally)
defines the one-form ϑ ≔ d𝑡, where d denotes the exterior derivative, and
the function (4.5) is given by

𝛥(𝑝, 𝑞) = ∫
𝑞

𝑝
ϑ,

which is independent of the path of integration between 𝑝 and 𝑞. We refer
to Chapter 16 in John M. Lee 2013 for the theory about integration on
manifolds.

Following Dombrowski et al. 1964a, we generalize the above considera-
tions to finite-dimensional mechanical systems with 𝑛 degrees of freedom.

5. For example, the event where Simon starts the chronometer.
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Therefore, we consider an (𝑛+1)-dimensional manifold 𝑀 instead of the
four-dimensional space-time S . Rather than postulating the existence of
an analogue function as (4.5) on 𝑀, we assume 𝑀 to be endowed with a
one-form ϑ which is closed and nowhere zero. We refer to the one-form ϑ
as time structure on 𝑀. The time structure defines local time functions
𝑡 ∶ 𝑀 ⊇ 𝑈 → ℝ such that d𝑡 = ϑ∣𝑈. Their existence around each point of
𝑀 is guaranteed by the Poincaré lemma (see Lemma 3.32). The temporal
distance of two events 𝑝, 𝑞 ∈ 𝑈 is given by 𝑡(𝑞)−𝑡(𝑝). The requirement that
ϑ is nowhere zero means that the local time functions have no stationary
points such that time “passes”. Note that the naive approach of defining the
time function to be the first coordinate in a given local chart of 𝑀 does not
provide a definition that is invariant under changes of coordinates.

Let (𝑈, 𝜙) be a chart of 𝑀, such that

𝜙∶ 𝑀 ⊇ 𝑈 → ℝ𝑛+1, 𝑝 ↦ 𝜙(𝑝) = (𝑥0, … , 𝑥𝑛). (4.8)

We say that the chart (4.8) is adapted to the time structure if ϑ∣𝑈 = d𝑥0. In
this case, the coordinate 𝑥0 is a local time coordinate and we will often use
𝑡 instead of 𝑥0 to denote it. In what follows, we will restrict our considerations
to adapted charts. The existence of adapted charts is guaranteed by the
existence of time functions and the fact that ϑ does not vanish. Therefore,
the adapted charts provide an atlas of 𝑀. Let

𝜙∶ 𝑀 ⊇ 𝑈 → ℝ𝑛+1, 𝑝 ↦ (𝑥0, … , 𝑥𝑛) (4.9)

and
𝜓∶ 𝑀 ⊇ 𝑉 → ℝ𝑛+1, 𝑝 ↦ (𝑦0, … , 𝑦𝑛)

be two adapted charts of 𝑀 with 𝑈 ∩𝑉 ≠ ∅, then their coordinate change

𝜓∘𝜙−1 ∶ 𝜙(𝑈 ∩𝑉) → 𝜓(𝑈 ∩𝑉)

is given by
𝑦0 = 𝑥0 +const.,
𝑦𝑖 = 𝜓𝑖 ∘𝜙−1(𝑥0, … , 𝑥𝑛), 𝑖 = 1, … , 𝑛,

where 𝜓𝑖 ∶ 𝑉 → ℝ denotes the 𝑖-th coordinate function of the chart 𝜓. Com-
ing back to Simon’s oscillator, we observe that the coordinates (𝑡, 𝑥1, 𝑥2) and
( ̄𝑡, 𝑦1, 𝑦2) from Figures 4.1b and 4.1c can be interpreted as being provided
by two adapted charts of a three-dimensional space-time manifold.

The (𝑛+1)-dimensional manifold 𝑀 is foliated6 by the time structure.
Indeed, the time structure can be used to single out spacelike tangent

6. See p. 89 for the definition of a foliation.
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Figure 4.2.: Foliation of a (2+1)-dimensional manifold 𝑀 by its time struc-
ture ϑ. At each point 𝑝 ∈ 𝑀, the time structure defines the sub-
space 𝐴0𝑝𝑀 and the affine subspace 𝐴1𝑝𝑀 of the tangent space
𝑇𝑝𝑀.

vectors, i.e., tangent vectors 𝑣𝑝 ∈ 𝑇𝑝𝑀 that do not have a component in
time direction such that ϑ𝑝(𝑣𝑝) = 0. We introduce the space of spacelike
vectors in 𝑝 ∈ 𝑀 as

𝐴0
𝑝𝑀 ≔ ker ϑ𝑝 = {𝑣𝑝 ∈ 𝑇𝑝𝑀 ∣ ϑ𝑝(𝑣𝑝) = 0} ⊂ 𝑇𝑝𝑀 (4.10)

and the corresponding subbundle of the tangent bundle 𝑇𝑀 to the general-
ized spacetime 𝑀 as

𝐴0𝑀 ≔ ⋃
𝑝∈𝑀

({𝑝}×𝐴0
𝑝𝑀) ⊂ 𝑇𝑀 (4.11)

and we call it the spacelike bundle. Indeed, it holds by Lemma 3.36 that
𝐴0𝑀 is a subbundle of the vector bundle7 𝑇𝑀 because each chart (𝑈, 𝜙) of
an adapted atlas of 𝑀 induces the smooth local sections

𝜕
𝜕𝑥1 , … , 𝜕

𝜕𝑥𝑛 ∶ 𝑈 → 𝑇𝑀

that provide a basis for 𝐴0
𝑞𝑀 at each 𝑞 ∈ 𝑈. Therefore, 𝐴0𝑀 is a distribution

of rank 𝑛 defined by the time structure ϑ. This distribution is involu-
tive by Theorem 3.38 because dϑ = 0 annihilates the distribution trivially.

7. The tangent bundle 𝑇𝑀 is a vector bundle according to Theorem 3.24.
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Chapter 4: Finite-dimensional mechanical systems

By the Frobenius theorem (Theorem 3.41), the distribution (4.11) is com-
pletely integrable. Moreover, 𝐴0𝑀 defines a foliation according to the global
Frobenius theorem (Theorem 3.43). The leafs of this foliation are just the
submanifolds with codimension8 one of synchronous events that can be
distinguished in classical mechanics. See Figure 4.2 for a visualization of
the (2+1)-dimensional case.

At each point 𝑝 ∈ 𝑀, the basis vectors

𝜕
𝜕𝑥1 ∣

𝑝
, … , 𝜕

𝜕𝑥𝑛 ∣
𝑝

(4.12)

induced by an adapted chart such as (4.9) form a basis of 𝐴0𝑝𝑀. Note that
any adapted chart induces such a basis of 𝐴0𝑝𝑀. We equip the bundle 𝐴0𝑀
with a bundle metric

𝑔 = 𝑔𝑖𝑗 d𝑥𝑖 ⊗d𝑥 𝑗, with 𝑔𝑖𝑗 = 𝑔( 𝜕
𝜕𝑥𝑖 , 𝜕

𝜕𝑥 𝑗 ), (4.13)

i.e., the tensor 𝑔𝑝 is symmetric and positive definite for each 𝑝 ∈ 𝑀. In
Section 3.10, we saw that a Riemannian metric on a manifold endows the
tangent spaces with an inner product. Now, if the fibres of a vector bundle
are equipped with an inner product that smoothly depends on the point in
the base manifold, one speaks of a bundle metric.9 A bundle metric is the
generalization of a Riemannian metric on a manifold to arbitrary vector
bundles. Indeed, a Riemannian metric on a manifold is just a bundle metric
on its tangent bundle. For this reason some authors10 designate a bundle
metric as Riemannian metric. We abstain from doing so since it might lead
to confusion.

We remind the reader that by Einstein’s summation convention a sum-
mation from 1 to 𝑛 is understood in (4.13) over the repeated indices 𝑖 and 𝑗
that appear once as a lower and once as an upper index. The d𝑥𝑘 in (4.13)
denote the dual vectors to the basis vectors 𝜕⁄𝜕𝑥𝑙 such that

d𝑥𝑘( 𝜕
𝜕𝑥𝑙 ) = δ𝑘

𝑙 ,

where δ𝑘
𝑙 denotes the Kronecker delta that equals one if 𝑘 = 𝑙 and is zero

else (see p. 29). The above construction can be summarized in the following
definition.

8. See Section 3.3.
9. See Definition 1.8.11 in Jost 2008.
10. See Definition 6.42 in Jeffrey M. Lee 2009 or p. 308 in Spivak 1999a.

98



4.3. State space and motion

Definition 4.1 (Loos 1982, pp. 5–6). An (𝑛+1)-dimensional smooth man-
ifold 𝑀 with a time structure ϑ and a bundle metric 𝑔 that endows the
subspaces 𝐴0𝑝𝑀 with an inner product for all 𝑝 ∈ 𝑀 is called a Galilean
manifold and it is denoted (𝑀,ϑ, 𝑔).

4.3. State space and motion

In each point 𝑝 ∈ 𝑀, the affine space11 of time-normalized vectors in
𝑝 (see Figure 4.2) is defined as

𝐴1
𝑝𝑀 ≔ {𝑣𝑝 ∈ 𝑇𝑝𝑀 ∣ ϑ𝑝(𝑣𝑝) = 1} ⊂ 𝑇𝑝𝑀. (4.14)

While 𝐴0𝑝𝑀 is a vector subspace of 𝑇𝑝𝑀, the set 𝐴1𝑝𝑀 is an affine subspace
of 𝑇𝑝𝑀 such that the resulting bundle

𝐴1𝑀 ≔ ⋃
𝑝∈𝑀

({𝑝}×𝐴1
𝑝𝑀) ⊂ 𝑇𝑀 (4.15)

is an affine subbundle of 𝑇𝑀. The affine bundle (4.15) of time-normalized
vectors is referred to as state space.12

The coordinate fields induced by an adapted chart 𝜙∶ 𝑝 ↦ (𝑥0, … , 𝑥𝑛)
(with 𝑥0 = 𝑡) as the one from (4.9) can be used to express a time-normalized
vector 𝑣𝑝 ∈ 𝐴1𝑝𝑀 as

𝑣𝑝 = 𝜕
𝜕𝑡 ∣

𝑝
+𝑢𝑖 𝜕

𝜕𝑥𝑖 ∣
𝑝
. (4.16)

Therefore, any adapted chart 𝜙∶ 𝑀 ⊇ 𝑈 → ℝ𝑛+1 induces a corresponding
natural chart of the state space 𝐴1𝑀 as

𝛷∶ 𝐴1𝑀 ⊇ 𝜋−1(𝑈) → ℝ2𝑛+1,
(𝑝, 𝑣𝑝) ↦ (𝑡, 𝑥1, … , 𝑥𝑛, 𝑢1, … , 𝑢𝑛),

(4.17)

where
𝜋∶ 𝐴1𝑀 → 𝑀, (𝑝, 𝑣𝑝) ↦ 𝑝 (4.18)

denotes the natural projection of the affine bundle 𝐴1𝑀. Note that the state
space 𝐴1𝑀 is canonically endowed with the time structure

≔ 𝜋 ϑ (4.19)

11. See Section 2.9.
12. See Section 1.2 for a comment about alternative designations.
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Chapter 4: Finite-dimensional mechanical systems

that is the pullback of the time structure of 𝑀 with the natural projec-
tion (4.18). The natural chart (4.17) is an adapted chart with respect to the
time structure (4.19) of 𝐴1𝑀 because it holds that

∣𝜋−1(𝑈) = d𝑡.

A curve
𝛾∶ ℝ ⊇ 𝐼 → 𝑀, 𝜏 ↦ 𝛾(𝜏) (4.20)

in the Galilean manifold (𝑀,ϑ, 𝑔) is just a smooth sequence of events. We
call the curve (4.20) time-parametrized if ϑ(𝛾̇) = 1, where 𝛾̇ denotes the
tangent field13 along 𝛾. The local time coordinate 𝑡 increases monotonically
along a time-parametrized curve because locally

1 = ϑ(𝛾̇) = d𝑡(𝛾̇) = 𝛾̇[𝑡] = d
d𝜏(𝑡∘𝛾(𝜏)). (4.21)

Therefore, time does not decrease along a time-parametrized curve (see
Figure 4.3). Condition (4.21) means the time-evolution along the motion is
an affine function of the curve parameter 𝜏, i.e.,

𝑡∘𝛾(𝜏) = 𝜏+𝜏0,

where 𝜏0 ∈ ℝ is a constant. In words, a change in the parameter 𝜏 corre-
sponds to the change in the time function 𝑡 along the time-parametrized
curve.

By its tangent field

𝛾̇ ∶ 𝐼 → 𝐴1𝑀, 𝜏 ↦ 𝛾̇(𝜏) = (𝛾(𝜏), 𝛾̇𝛾(𝜏)) (4.22)

a time-parametrized (w.r.t. ϑ) curve 𝛾∶ ℝ ⊇ 𝐼 → 𝑀 defines a curve in the
state space 𝐴1𝑀 that consists of the curve 𝛾∶ 𝐼 → 𝑀 together with the vector
field (of time-normalized vectors) it induces along 𝛾(𝐼). The curve (4.22) is
a special type of curve in 𝐴1𝑀 to which we refer as second-order curve
or motion of a mechanical system.

To arrive at a coordinate-free characterization of second-order curves, we
consider that an arbitrary curve

𝛽∶ 𝐼 → 𝐴1𝑀, 𝜏 ↦ 𝛽(𝜏)

through the state space 𝐴1𝑀 defines, by projection, a curve

𝛼 ≔ 𝜋∘𝛽∶ 𝐼 → 𝑀 (4.23)

13. See Section 3.6.
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Figure 4.3.: While the curve 𝛾∶ 𝜏 ↦ 𝛾(𝜏) is time-parametrized, the curve
𝜁∶ 𝜏 ↦ 𝜁(𝜏) is not because 𝑡∘𝜁 is not monotonically increasing
as required by (4.21).

in the base manifold 𝑀. Now, the curve 𝛽∶ 𝐼 → 𝐴1𝑀 is a second-order curve
if it is time-parametrized (with respect to ) and satisfies the condition

𝛽 != ̇𝛼 = (𝜋∘𝛽). (4.24)

such that the curve 𝛽∶ 𝐼 → 𝐴1𝑀 corresponds to the (time-normalized) tan-
gent field along its (time-normalized) projection (4.23) onto the base manifold
𝑀. By condition (4.24) it follows that

𝛽 = ̇𝛼∶ 𝐼 → 𝐴1𝑀, 𝜏 ↦ (𝛼(𝜏), ̇𝛼𝛼(𝜏)).

Condition (4.24) can be expressed in the local coordinates of the natural
chart (4.17), as

𝛷∘𝛽(𝜏) != 𝛷((𝜋∘𝛽).(𝜏)) = 𝛷(𝜋∘𝛽(𝜏), (𝜋∘𝛽).𝜋∘𝛽(𝜏))

and, consequently,

(𝑡(𝜏), 𝐱(𝜏), 𝐮(𝜏)) != (𝑡(𝜏), 𝐱(𝜏), 𝐱̇(𝜏)), (4.25)

where the coordinates 𝑥1, … , 𝑥𝑛 and 𝑢1, … , 𝑢𝑛 are gathered as ℝ𝑛-tuples
𝐱 ≔ (𝑥1, … , 𝑥𝑛) and 𝐮 ≔ (𝑢1, … , 𝑢𝑛), respectively.

An arbitrary curve 𝛽∶ 𝐼 → 𝐴1𝑀 in the state space 𝐴1𝑀 is the integral
curve14 of a vector field 𝑋 ∈ Vect(𝑊) defined on a neighbourhood 𝑊 ⊆ 𝐴1𝑀
if

̇𝛽(𝛽(𝜏)) = 𝑋(𝛽(𝜏)). (4.26)

14. See Section 3.6.
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Equation (4.26) is just an ordinary differential equation in first-order form,
which reads in the natural chart (4.17) as

̇𝑡(𝜏) = 𝑎(𝑡(𝜏), 𝐱(𝜏), 𝐮(𝜏)),
𝐱̇(𝜏) = 𝐀(𝑡(𝜏), 𝐱(𝜏), 𝐮(𝜏)),
𝐮̇(𝜏) = 𝐁(𝑡(𝜏), 𝐱(𝜏), 𝐮(𝜏)).

(4.27)

In equation (4.27), aside from the local coordinates 𝑥1, … , 𝑥𝑛 and 𝑢1, … , 𝑢𝑛

we have also gathered the chart representations of the coefficient functions
𝑎, 𝐴1, … , 𝐴𝑛, 𝐵1, … , 𝐵𝑛 ∈ 𝐶∞(𝑊) of the vector field

𝑋 = 𝑎 𝜕
𝜕𝑡 +𝐴𝑖 𝜕

𝜕𝑥𝑖 +𝐵𝑖 𝜕
𝜕𝑢𝑖 (4.28)

as tuples 𝐀 ≔ (𝐴1, … , 𝐴𝑛) and 𝐁 ≔ (𝐵1, … , 𝐵𝑛), respectively.
The integral curve 𝛽∶ 𝐼 → 𝐴1𝑀 is time-parametrized, i.e., ( ̇𝛽) = 1 if the

vector field satisfies (𝑋) = 1. This means that 𝑎 = 1 in (4.27) and (4.28).
If an integral curve 𝛽∶ 𝐼 → 𝐴1𝑀 of a local vector field 𝑍 ∈ Vect(𝑊) with
𝑊 ⊆ 𝐴1𝑀, i.e.,

̇𝛽(𝛽(𝜏)) = 𝑍(𝛽(𝜏)) (4.29)
should be a second-order curve, then the vector field 𝑍 cannot be arbitrary.
First, the latter needs to be time-normalized such that

(𝑍) = 1. (4.30)

Second, the vector field 𝑍 needs to obey the second-order condition

D𝜋∘𝑍 = id𝑊. (4.31)

Indeed, condition (4.24) together with (4.29) lead to

𝛽 = (𝜋∘𝛽).= D𝜋∘ ̇𝛽 = D𝜋∘𝑍∘𝛽, (4.32)

where D𝜋∶ 𝑇(𝐴1𝑀) → 𝑇𝑀 denotes the differential15 of the natural projec-
tion (4.18). Because condition (4.32) has to hold for arbitrary integral curves
𝛽∶ 𝐼 → 𝐴1𝑀, the second-order condition (4.31) follows.

A vector field 𝑍 ∈ Vect(𝑊) on 𝑊 ⊆ 𝐴1𝑀 that satisfies conditions (4.30)
and (4.31) is called a second-order (vector) field. Second-order fields can
be equivalently characterized using local coordinates by saying that a vector
field 𝑍 ∈ Vect(𝑊) on 𝑊 ⊆ 𝐴1𝑀 is a second-order field if it can be expressed
in every natural chart (4.17) with 𝑊 ∩𝜋−1(𝑈) ≠ ∅ as

𝑍∣𝑊∩𝜋−1(𝑈) = 𝜕
𝜕𝑡 +𝑢𝑖 𝜕

𝜕𝑥𝑖 +𝑍𝑖 𝜕
𝜕𝑢𝑖 , (4.33)

15. See p. 71 for the definition.
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with 𝑛 smooth real-valued functions 𝑍𝑖 defined on 𝑊 ∩ 𝜋−1(𝑈). It can
be seen from the local expression (4.33), that second-order fields can only
differ by the coefficients of their 𝜕⁄𝜕𝑢𝑖 part. Moreover, the differential equa-
tion (4.29) related to a second-order field is a second-order differential equa-
tion in first-order form

̇𝑡(𝜏) = 1,
𝐱̇(𝜏) = 𝐮(𝜏),
𝐮̇(𝜏) = 𝐁(𝑡(𝜏), 𝐱(𝜏), 𝐮(𝜏)).

(4.34)

The first equation of (4.34) can be solved to

𝑡(𝜏) ≔ 𝑡∘𝛽(𝜏) = 𝜏+𝜏0, (4.35)

where 𝜏0 ∈ ℝ denotes again a constant. The second and third equation
of (4.34) are equivalent to the second-order differential equation

𝐱̈(𝜏) = 𝐁(𝑡(𝜏), 𝐱(𝜏), 𝐱̇(𝜏)).

In the study of finite-dimensional mechanical systems, we are interested
in modelling the second-order field 𝑍 rather than its integral curves (4.29).
Indeed, if a vector field is determined, all its integral curves are known for
arbitrary initial conditions. Differential forms are particularly useful for
the characterization of vector fields. With the time structure ϑ, we have
already used a differential one-form to define the sets of spacelike (4.10)
and of time-normalized vectors (4.14) on 𝑀, respectively. Furthermore,
we have used the pullback of the time structure ϑ on 𝑀 to characterize
time-normalized vector fields on 𝐴1𝑀 (see equation (4.30)). From the local
expression (4.33), we deduce a characterization of second-order fields using
differential forms. We define the local one-forms θ1, … , θ𝑛 ∈ 𝛺1(𝜋−1(𝑈))
as

θ𝑖 ≔ d𝑥𝑖 −𝑢𝑖d𝑡, with 𝑖 = 1, … , 𝑛 (4.36)
and formulate the second-order condition as

𝑍 ∈ ker (θ1)∩⋯∩ker (θ𝑛) and (𝑍) = 1,

i.e., on 𝜋−1(𝑈) ⊆ 𝐴1𝑀 the vector field 𝑍 needs to be time-normalized and it
has to lie in the distribution defined16 by the differential one-forms (4.36).
The remaining 𝑛 free coefficients in the local representation of 𝑍 can be
prescribed by requiring 𝑍 to lie in the distribution defined by the 𝑛 one-forms

λ𝑖 ≔ d𝑢𝑖 −𝑍𝑖d𝑡, with 𝑖 = 1, … , 𝑛.

16. The concept of defining forms of a distribution is treated on p. 87.
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Vector and covector fields (or one-forms) on the state space 𝐴1𝑀 are sections
of the bundles 𝑇(𝐴1𝑀) and 𝑇∗(𝐴1𝑀), respectively. Therefore, we start by
studying the geometric structure of these two vector bundles following Loos
1982.

4.4. Galilean manifolds and their related bundles

The differential of the natural projection (4.18), D𝜋∶ 𝑇(𝐴1𝑀)→𝑇𝑀, defines
the subbundle17

Ver(𝐴1𝑀) ≔ ker D𝜋 = ⋃
𝑎∈𝐴1𝑀

({𝑎}×ker D𝜋𝑎) (4.37)

of the tangent bundle 𝑇(𝐴1𝑀) that we call the vertical bundle. For any
point 𝑎 ∈ 𝐴1𝑀 the space of vertical vectors in 𝑎 is given by

Ver𝑎(𝐴1𝑀) ≔ ker D𝜋𝑎 = {𝑤 ∈ 𝑇𝑎(𝐴1𝑀) ∣ D𝜋𝑎(𝑤) = 0}. (4.38)

A section
𝑉 ∈ Γ(Ver(𝐴1𝑀))

of the vertical bundle is called a vertical vector field. By definition (4.37),
a vertical vector field is a vector field on 𝐴1𝑀 which is 𝜋-related to the zero
vector field on 𝑀. Let (𝑈, 𝜙) be an adapted chart of 𝑀 and consider the
corresponding natural chart (4.17) on the neighbourhood 𝜋−1(𝑈) of 𝐴1𝑀.
Then a vertical vector field 𝑉 can be expressed on 𝜋−1(𝑈) with respect to
the coordinate fields induced by the natural chart as

𝑉 = 𝑉 𝑖 𝜕
𝜕𝑢𝑖 .

Indeed, for points 𝑎 ∈ 𝜋−1(𝑈) ⊆ 𝐴1𝑀, the vectors

𝜕
𝜕𝑢1 ∣

𝑎
, … , 𝜕

𝜕𝑢𝑛 ∣
𝑎

(4.39)

provide a basis of Ver𝑎(𝐴1𝑀) and, therefore, it holds that

Ver𝑎(𝐴1𝑀) = span{ 𝜕
𝜕𝑢1 ∣

𝑎
, … , 𝜕

𝜕𝑢𝑛 ∣
𝑎
}.

17. Indeed, by Theorem 3.24 the tangent bundles 𝑇(𝐴1𝑀) and 𝑇𝑀 are vector bundles.
The pair of maps (D𝜋, 𝜋) provides a vector bundle homomorphism of constant rank between
𝑇(𝐴1𝑀) and 𝑇𝑀 because the projection is a surjective submersion. Therefore, the vertical
bundle is a subbundle of 𝑇(𝐴1𝑀) by Proposition 3.23.
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The vertical subbundle (4.37) naturally appears in the study of second-order
fields because the difference of two second-order fields is always a vertical
vector field as can be seen from the local expression (4.33) of a second-order
field.

By the first isomorphism theorem for vector spaces,18 it holds that

𝑇𝑎(𝐴1𝑀)/Ver𝑎(𝐴1𝑀) ≅ 𝑇𝜋(𝑎)𝑀 (4.40)

for all 𝑎 ∈ 𝐴1𝑀 because the natural projection 𝜋∶ 𝐴1𝑀 → 𝑀 is a surjec-
tive submersion. The space Ver𝑎(𝐴1𝑀) is the tangent space at the point
𝑎 ∈ 𝐴1𝑀 to 𝐴1

𝑝𝑀 with 𝑝=𝜋(𝑎). The set 𝐴1𝑝𝑀 is the affine hyperplane in 𝑇𝑝𝑀
defined by the equation ϑ𝑝(𝑣) = 1 for all 𝑣 ∈ 𝑇𝑝𝑀. Therefore, the tangent
space Ver𝑎(𝐴1𝑀) can be identified with ker ϑ𝑝 = 𝐴0𝑝𝑀 (see equation (4.10)).
This results in the pointwise isomorphism

Ver𝑎(𝐴1𝑀) ≅ 𝐴0
𝜋(𝑎)𝑀 (4.41)

for all 𝑎 ∈ 𝐴1𝑀. The isomorphism (4.41) can be locally expressed as

𝜕
𝜕𝑢𝑖 ∣

𝑎
↦ 𝜕

𝜕𝑥𝑖 ∣
𝜋(𝑎)

(4.42)

using the basis vectors from (4.39) and (4.12). By the isomorphism (4.41),
the bundle metric (4.13) on the bundle 𝐴0𝑀 of spacelike vectors induces a
bundle metric on the bundle Ver(𝐴1𝑀) of vertical vectors that is defined as

̂𝑔𝑎( 𝜕
𝜕𝑢𝑖 ∣

𝑎
, 𝜕

𝜕𝑢 𝑗 ∣
𝑎
) ≔ 𝑔𝜋(𝑎)( 𝜕

𝜕𝑥𝑖 ∣
𝜋(𝑎)

, 𝜕
𝜕𝑥 𝑗 ∣

𝜋(𝑎)
), (4.43)

for all 𝑎 ∈ 𝐴1𝑀. According to equation (4.13), the bundle metric 𝑔 on 𝐴0𝑀
can be written as

𝑔 = 𝑔𝑖𝑗 d𝑥𝑖 ⊗d𝑥 𝑗

and by (4.43) it follows that

̂𝑔 = 𝑔𝑖𝑗 ∘𝜋 d𝑢𝑖 ⊗d𝑢 𝑗. (4.44)

We will often write 𝑔𝑖𝑗 instead of 𝑔𝑖𝑗 ∘𝜋 for the coefficients in (4.44).
Let 𝑤 ∈ 𝑇𝑎(𝐴1𝑀) be an arbitrary tangent vector at some point 𝑎 ∈ 𝐴1

𝑝𝑀,
then

𝐷𝜋𝑎(𝑤)−ϑ𝑝(D𝜋𝑎(𝑤))𝑎 (4.45)

18. See Theorem 2.10 on p. 25.
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is a spacelike vector at the point 𝑝. To see this, we need to check if (4.45)
lies in the kernel of the time structure ϑ. Therefore, we calculate that

ϑ𝑝(𝐷𝜋𝑎(𝑤)−ϑ𝑝(D𝜋𝑎(𝑤))𝑎) = ϑ𝑝(𝐷𝜋𝑎(𝑤))−ϑ𝑝(D𝜋𝑎(𝑤))ϑ𝑝(𝑎) = 0

because ϑ𝑝(𝑎) = 1. Using the isomorphism (4.41), we can define a vector
bundle homomorphism over 𝐴1𝑀 (see p. 66 for the definition)

𝜇∶ 𝑇(𝐴1𝑀) → Ver(𝐴1𝑀), (4.46)

which we call the vertical homomorphism of the state space 𝐴1𝑀. Its
local expression with respect to the natural chart (4.17) is given by

𝜇∣𝜋−1(𝑈) = 𝜕
𝜕𝑢𝑖 ⊗θ𝑖 = 𝜕

𝜕𝑢𝑖 ⊗(d𝑥𝑖 −𝑢𝑖d𝑡),

where the θ𝑖 are the one-forms from (4.36). Apparently, the map (4.46) is
surjective and it holds that 𝜇(𝑉) = 0 for all local sections 𝑉 of Ver(𝐴1𝑀)
and 𝜇(𝑍) = 0 for all second-order fields 𝑍.

A theory for time-independent mechanical systems can be formulated on
the tangent bundle of a time-independent configuration manifold. We refer
to Godbillon 1969 for such a presentation. Godbillon uses a similar homo-
morphism as (4.46) that canonically exists on the double tangent bundle19

of any differentiable manifold. It is known as the vertical endomorphism
of the double tangent bundle (see Godbillon 1969, Chapter X or Morandi
et al. 1990, Section 2). It is clear that (4.46) defines an endomorphism of
the bundle 𝑇(𝐴1𝑀) when considered as map

𝜇∶ 𝑇(𝐴1𝑀) → 𝑇(𝐴1𝑀).

There is no canonically defined ‘horizontal’ subbundle

Hor(𝐴1𝑀) ≔ ⋃
𝑎∈𝐴1𝑀

({𝑎}×Hor𝑎(𝐴1𝑀)) ⊂ 𝑇(𝐴1𝑀) (4.47)

that would complement the vertical bundle Ver(𝐴1𝑀) such that the tangent
bundle 𝑇(𝐴1𝑀) would split as

𝑇(𝐴1𝑀) = Hor(𝐴1𝑀)⊕Ver(𝐴1𝑀)

≔ ⋃
𝑎∈𝐴1𝑀

({𝑎}×(Hor𝑎(𝐴1𝑀)⊕Ver𝑎(𝐴1𝑀))).

19. The double tangent bundle of a manifold is the tangent bundle of its tangent bundle.

106
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The definition of a horizontal subbundle (4.47) allows to write the tangent
space at each point 𝑎 ∈ 𝐴1𝑀 as the direct sum

𝑇𝑎(𝐴1𝑀) = Hor𝑎(𝐴1𝑀)⊕Ver𝑎(𝐴1𝑀).

In the study of tangent bundles (and double tangent bundles), it is well-
known that the choice of a particular second-order field induces such a
splitting.20 There are several ways to define the horizontal bundle that
results from the selection of a second-order field 𝑍 ∈ Vect(𝐴1𝑀). A straight-
forward approach is to define 𝑛 horizontal basis fields

𝐻𝑖 ≔ 𝜕
𝜕𝑥𝑖 + 1

2
𝜕

𝜕𝑢𝑖 [𝑍 𝑗] 𝜕
𝜕𝑢 𝑗 (4.48)

for each natural chart (𝜋−1(𝑈), 𝛷) that is induced by an atlas of 𝑀. We
drop the somewhat clumsy notation with square brackets for the application
of a vector field on a real-valued function. Instead of (4.48), we write

𝐻𝑖 ≔ 𝜕
𝜕𝑥𝑖 + 1

2
𝜕𝑍 𝑗

𝜕𝑢𝑖
𝜕

𝜕𝑢 𝑗 . (4.49)

The coefficients 𝑍 𝑗 in (4.49) denote the defining coefficient functions in the
local expression of the second-order field

𝑍 = 𝜕
𝜕𝑡 +𝑢 𝑗 𝜕

𝜕𝑥 𝑗 +𝑍 𝑗 𝜕
𝜕𝑢 𝑗 .

Next, we define

Hor𝑎(𝐴1𝑀) ≔ span{𝑍∣𝑎, 𝐻1∣𝑎, … , 𝐻𝑛∣𝑎}

and use Lemma 3.36 to argue that (4.47) defines a smooth subbundle.
However, there is a coordinate-free alternative to this argumentation that

makes use of Proposition 3.23. Following Loos 1985, p. 280, we consider the
vector bundle homomorphism over 𝐴1𝑀

𝜂∶ 𝑇(𝐴1𝑀) → 𝑇(𝐴1𝑀) (4.50)

that is defined as

𝜂(𝑋) ≔ 1
2(⟦𝑍, 𝜇⋅𝑋⟧−𝜇⋅⟦𝑍, 𝑋⟧+𝑋 − (𝑋)𝑍)

for all 𝑋 ∈ Vect(𝐴1𝑀). Indeed, one easily verifies that

𝜂(𝑓 𝑋 +𝑔𝑌) = 𝑓 𝜂(𝑋)+𝑔𝜂(𝑌)

20. See for example Yano et al. 1973 or Morandi et al. 1990.
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for all 𝑓 , 𝑔 ∈ 𝐶∞(𝐴1𝑀) and all 𝑋, 𝑌 ∈ Vect(𝐴1𝑀) such that (4.50) defines
a vector bundle homomorphism over 𝐴1𝑀. The local coordinate expression
of 𝜂 reads

𝜂 = 𝜕
𝜕𝑢𝑖 ⊗η𝑖 = 𝜕

𝜕𝑢𝑖 ⊗(d𝑢𝑖 −𝑍𝑖d𝑡− 1
2

𝜕𝑍𝑖

𝜕𝑢 𝑗 (d𝑥 𝑗 −𝑢 𝑗d𝑡)),

where we have introduced the one-forms

η𝑖 = d𝑢𝑖 −𝑍𝑖d𝑡− 1
2

𝜕𝑍𝑖

𝜕𝑢 𝑗 (d𝑥 𝑗 −𝑢 𝑗d𝑡).

The one-forms d𝑡, θ1, … , θ𝑛, η1, … , η𝑛 (see equation (4.36)) are just the
dual fields to the vector fields 𝑍, 𝐻1, … , 𝐻𝑛, 𝜕⁄𝜕𝑢1, … , 𝜕⁄𝜕𝑢𝑛 on 𝐴1𝑀, i.e.,

d𝑡(𝑍) = 1, d𝑡(𝐻𝑖) = 0, d𝑡( 𝜕
𝜕𝑢𝑖 ) = 0, (4.51)

θ 𝑗(𝑍) = 0, θ 𝑗(𝐻𝑖) = δ 𝑗
𝑖 , θ 𝑗( 𝜕

𝜕𝑢𝑖 ) = 0,

η 𝑗(𝑍) = 0, η 𝑗(𝐻𝑖) = 0, η 𝑗( 𝜕
𝜕𝑢𝑖 ) = δ 𝑗

𝑖 . (4.52)

Note that the d𝑡 is just the chart representation of the time structure (i.e.,
locally = d𝑡). It follows from (4.52), that

Hor(𝐴1𝑀) = ker 𝜂

and that
𝜂∣Ver(𝐴1𝑀) = idVer(𝐴1𝑀).

Hence, it holds that 𝜂∘𝜂 = 𝜂 such that 𝜂 is a projection onto Ver(𝐴1𝑀) and
consequently

𝑇(𝐴1𝑀) = ker 𝜂⊕Ver(𝐴1𝑀) = Hor(𝐴1𝑀)⊕Ver(𝐴1𝑀).

One can easily convince oneself, that ker 𝜇∩ker 𝜂 is a line bundle that is
spanned by the second-order field 𝑍.

4.5. Basic and semi-basic differential forms

We have already seen that differential forms can be used to characterize
vector fields. There are two types of differential forms that will reveal
useful in the definition of forces, the so-called basic and semi-basic forms.
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The natural projection 𝜋∶ 𝐴1𝑀 → 𝑀 is a surjective submersion. As such it
defines an injection (see Section 3.8)

𝜋 ∶ 𝛺⋆(𝑀) → 𝛺⋆(𝐴1𝑀)

of the differential forms on 𝑀 to those on 𝐴1𝑀. These forms on 𝐴1𝑀 that
are given by im 𝜋 ⊂ 𝛺⋆(𝐴1𝑀) are called basic differential forms. These
forms are said to be basic because they result from pulling differential forms
on the base manifold 𝑀 back to 𝐴1𝑀.

A differential 𝑙-form ω on 𝐴1𝑀 is called semi-basic if ω(𝑉1, … , 𝑉𝑙)=0 as
soon as one of the vector fields 𝑉𝑖 is vertical,21 i.e., if the interior product22

𝑉 ω = 0 for any vertical vector field 𝑉. An equivalent statement is that
the local representation of ω with respect to the dual basis induced by the
natural chart (4.17) does not contain terms in d𝑢1, … , d𝑢𝑛, while the chart
representations of the coefficients of the basis vectors d𝑡 and d𝑥1, … , d𝑥𝑛

may depend on 𝑡, 𝐱 and 𝐮. Note that basic forms are semi-basic.
The vertical homomorphism (4.46) allows us to define a differentiation

operation23 on differential forms on 𝐴1𝑀 with the property that the subal-
gebra of semi-basic forms is closed under its operation. First, we define the
derivation

D𝜇 ∶ 𝛺⋆(𝐴1𝑀) → 𝛺⋆(𝐴1𝑀)

using the vertical homomorphism as

(D𝜇ω)(𝑉1, … , 𝑉𝑙) ≔
𝑙

∑
𝑖=1

ω(𝑉1, … , 𝜇(𝑉𝑖), … , 𝑉𝑙). (4.53)

The operator D𝜇 is linear, does not alter the degree of the form and satisfies:

D𝜇 𝑓 = 0, (𝑓 smooth function on 𝐴1𝑀)
D𝜇(α∧β) = (D𝜇α)∧β+α∧(D𝜇β),
D𝜇(d𝑥𝑖) = D𝜇(d𝑡) = 0,
D𝜇(d𝑢𝑖) = d𝑥𝑖 −𝑢𝑖d𝑡.

21. See p. 104 for the definition.
22. See p. 82 for the definition.
23. The vertical homomorphism is an example of a vector-valued differential form. It holds

in general that vector-valued differential forms come along with certain derivations. We refer
to Frölicher et al. 1956 for the general theory. We will make use of the differential concomitant
of the vertical homomorphism (4.46) while in time-independent mechanics, the differential
associate of the vertical endomorphism of the double tangent bundle is of interest (see Godbillon
1969, Chapters X and XI as well as Morandi et al. 1990, Section 2). See also Klein 1963.
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Using (4.53) and the exterior derivative d, we define the linear operator

𝛛 ≔ D𝜇 ∘d−d∘D𝜇.

The operator 𝛛 increases the degree of a form by one and obeys the following
rules:

𝛛𝑓 = 𝜕𝑓
𝜕𝑢𝑖 (d𝑥𝑖 −𝑢𝑖d𝑡), (𝑓 smooth function on 𝐴1𝑀)

𝛛(α∧β) = 𝛛α∧β+(−1)𝑙α∧𝛛β, (α is 𝑙-form on 𝐴1𝑀)
𝛛(d𝑥𝑖) = 𝛛(d𝑡) = 0,
𝛛(d𝑢𝑖) = d𝑢𝑖 ∧d𝑡.

(4.54)

Moreover, it holds that
𝛛∘d = −d∘𝛛 (4.55)

because of d2 = 0. However, 𝛛2 ≠ 0 but

𝛛2ω = ∧𝛛ω, (4.56)

where denotes the time structure on 𝐴1𝑀. From the rules (4.54), it
becomes obvious that 𝛛 maps semi-basic forms to semi-basic forms.

Let 𝑍 be a second-order field and let ω be a semi-basic 𝑙-form. Then 𝑍 ω
is a semi-basic (𝑙−1)-form that is independent on the specific choice of 𝑍.
Indeed, if 𝑍′ denotes another second-order field, then it holds that 𝑍′ = 𝑍+𝑉
where 𝑉 is a vertical vector field and consequently 𝑉 ω = 0 because ω is
semi-basic. The following formula holds

𝛛(𝑍 ω)+𝑍 𝛛ω+ ∧(𝑍 ω) = 𝑙ω. (4.57)

To prove (4.57), one considers that the left-hand and the right-hand side
represent derivations of the algebra of semi-basic differential forms that
agree on the semi-basic zero-forms (smooth functions) and on the semi-basic
one-forms and, therefore, are equal.

4.6. Action form of a second-order field

The projection 𝜂∶ 𝑇(𝐴1𝑀) → 𝑇(𝐴1𝑀) defines a surjective vector bundle
homomorphism over 𝐴1𝑀 when considered as map 𝜂∶ 𝑇(𝐴1𝑀)→Ver(𝐴1𝑀)
onto its image, which is the vertical subbundle Ver(𝐴1𝑀). We denote this
map again by 𝜂.

As it was suggested by Loos 1982, p. 20, the surjective vector bundle
homomorphisms 𝜂∶ 𝑇(𝐴1𝑀) → Ver(𝐴1𝑀) and 𝜇∶ 𝑇(𝐴1𝑀) → Ver(𝐴1𝑀)
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together with the bundle metric (4.43) can be used to define a differential
two-form Ω on 𝐴1𝑀 as

Ω(𝑋, 𝑌) ≔ ̂𝑔(𝜂(𝑋), 𝜇(𝑌))− ̂𝑔(𝜂(𝑌), 𝜇(𝑋)), (4.58)

for all 𝑋, 𝑌 ∈Vect(𝐴1𝑀). Because 𝜂 depends on the choice of a second-order
field 𝑍, we call Ω the action form of 𝑍. The local expression of the action
form (4.58) reads

Ω∣𝜋−1(𝑈) = 𝑔𝑖𝑗 η𝑖 ∧θ 𝑗

= 𝑔𝑖𝑗(d𝑢𝑖 −𝑍𝑖d𝑡− 1
2

𝜕𝑍𝑖

𝜕𝑢𝑘 (d𝑥𝑘 −𝑢𝑘d𝑡))∧(d𝑥 𝑗 −𝑢 𝑗d𝑡).
(4.59)

The properties of the action form (4.58) can be summarized in a theorem.

Theorem 4.2 (Loos 1982, p. 21). Let (𝑀,ϑ, 𝑔) be a Galilean manifold and
let 𝑍 be a second-order field on its state space 𝐴1𝑀, the corresponding action
form Ω has the following properties:

(i) Ω vanishes on ker 𝜇. In particular, Ω∣𝐴1𝑝𝑀 = 0 for any 𝑝 ∈ 𝑀.

(ii) Ω determines the metric 𝑔 by

𝑔𝑖𝑗 = Ω( 𝜕
𝜕𝑢𝑖 , 𝜕

𝜕𝑥 𝑗 ).

(iii) Ω determines the second-order field 𝑍. In fact, 𝑍 is the only vector
field on 𝐴1𝑀 for which it holds that

𝑍 Ω = 0, (𝑍) = 1.

Proof. Property (i) is clear by definition (4.58) and because

𝑇𝑎(𝐴1
𝑝𝑀) = Ver𝑎(𝐴1𝑀) ⊂ ker 𝜇𝑎.

Property (ii) follows directly from the local expression (4.59). Finally, prop-
erty (iii) remains to be shown. With the interior product, a two-form Ω
defines the map between vector and covector fields that is given by

̂𝑓 ∶ 𝑋 ↦ 𝑋 Ω. (4.60)

The mapping (4.60) is a vector bundle homomorphism over 𝐴1𝑀 between
𝑇(𝐴1𝑀) and 𝑇∗(𝐴1𝑀). First, we show that (4.60) has constant rank24 2𝑛.

24. The rank of a vector bundle homomorphism is defined on p. 66.
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For this we observe that the 2𝑛 one-forms 𝜕⁄𝜕𝑢𝑖 Ω, 𝜕⁄𝜕𝑥𝑖 Ω are linearly
independent because by (i) and (ii) it follows from 𝑎𝑖𝜕⁄𝜕𝑢𝑖 Ω+𝑏𝑖𝜕⁄𝜕𝑥𝑖 Ω=0
that

0 = (𝑎𝑖 𝜕
𝜕𝑢𝑖 Ω) ( 𝜕

𝜕𝑢 𝑗 )+𝑏𝑖 ( 𝜕
𝜕𝑥𝑖 Ω) ( 𝜕

𝜕𝑢 𝑗 )

= 𝑎𝑖 Ω ( 𝜕
𝜕𝑢𝑖 , 𝜕

𝜕𝑢 𝑗 )+𝑏𝑖 Ω ( 𝜕
𝜕𝑥𝑖 , 𝜕

𝜕𝑢 𝑗 ) = 0−𝑏𝑖𝑔𝑖𝑗,

i.e., that 𝑏𝑖 = 0, and thereby that

0 = (𝑎𝑖 𝜕
𝜕𝑢𝑖 Ω) ( 𝜕

𝜕𝑥 𝑗 ) = 𝑎𝑖 Ω ( 𝜕
𝜕𝑢𝑖 , 𝜕

𝜕𝑥 𝑗 ) = 𝑎𝑖𝑔𝑖𝑗,

i.e., that 𝑎𝑖 = 0. Therefore, the homomorphism (4.60) has rank 2𝑛 because
it cannot have full rank by property (i). For reasons of brevity, we also say
that Ω has rank 2𝑛. Consequently,

ker Ω ≔ ker ̂𝑓 = {(𝑎, 𝑋𝑎) ∈ 𝑇(𝐴1𝑀) ∣ 𝑋𝑎 Ω𝑎 = 0},

where 𝑋𝑎 ∈𝑇𝑎(𝐴1𝑀) and Ω(𝑎)=(𝑎, Ω𝑎) for all 𝑎∈𝐴1𝑀, is a line bundle. By
equation (4.58), ker 𝜂∩ker 𝜇 ⊆ ker Ω and equality follows for dimensional
reasons. Because the vector field 𝑍 is the uniquely defined intersection of
ker 𝜂∩ker 𝜇 with (𝑍) = 1, the assertion follows.

We want to establish a one-to-one correspondence between second-order
fields and their action forms. The question is under which conditions a
given differential two-form is the action form of a second-order field. It is not
sufficient to require properties (i)–(iii) from Theorem 4.2. Indeed, there are
other25 two-forms than Ω from (4.58) that satisfy these properties. Consider
for example the locally defined two-form

Ω′ = 𝑔𝑖𝑗(d𝑢𝑖 −𝑍𝑖d𝑡)∧(d𝑥 𝑗 −𝑢 𝑗d𝑡).

Similar forms can be found in Gallissot 1952, p. 153, and Souriau 1970,
p. 132 (respectively on p. 129 of Souriau 1997). Souriau suggested to impose
the condition

dΩ != 0 (4.61)

in order to get rid of the ambiguity in the choice of Ω. Souriau refers to
condition (4.61) as Maxwell’s principle and he mentions26 that this closure
condition imposes restrictions on the second-order field 𝑍. Loos27 suggests

25. This is pointed out by Loos 1985, pp. 281–282.
26. See p. 143 of Souriau 1970 or p. 139 of the translation Souriau 1997.
27. See Loos 1982, p. 24 or Loos 1985, p. 281.
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to use the assignment 𝑍 ↦ Ω given by equation (4.58) together with the
weaker closure condition

𝛛Ω != 0. (4.62)

Condition (4.62) resolves the ambiguity without imposing restrictions on
𝑍. One readily checks that the action form (4.58) does indeed satisfy (4.62)
using the local expression (4.59) and the rules (4.54). With the closure
condition (4.62) we can formulate the following theorem that establishes a
bijective relation between action forms and second-order fields.

Theorem 4.3 (Loos 1982, p. 24). Let (𝑀, ϑ) be a manifold with time struc-
ture. A two-form Ω on 𝐴1𝑀 is the action form of a second-order field 𝑍 if
and only if it satisfies the following conditions:

(i) Ω vanishes on ker 𝜇, i.e.,

Ω(𝑋, 𝑌) = 0

for all 𝑋, 𝑌 with 𝜇(𝑋) = 𝜇(𝑌) = 0.

(ii) Ω induces a bundle metric 𝑔 on 𝐴0𝑀, i.e., the matrix

𝑔𝑖𝑗 = Ω( 𝜕
𝜕𝑢𝑖 , 𝜕

𝜕𝑥 𝑗 )

is symmetric and positive definite for all charts.

(iii) 𝛛Ω = 0.

The second-order field 𝑍 is the only vector field on 𝐴1𝑀 for which holds

𝑍 Ω = 0, (𝑍) = 1.

Proof. The necessity of conditions (i) and (ii) follows from Theorem 4.2.
Direct calculation with (4.59) and the rules (4.54) shows that 𝛛Ω = 0. To
prove sufficiency, assume that the conditions (i), (ii), and (iii) are satisfied.
We know from the proof of Theorem 4.2, that conditions (i) and (ii) imply that
the rank of Ω is 2𝑛. Let 𝑎∈𝐴1𝑀 and 0≠𝑣∈ker Ω𝑎. Then 𝑣∈ker 𝜇𝑎 because
ker 𝜇𝑎 ⊆ ( ker 𝜇𝑎)⟂ (orthogonal complement with respect to the bilinear
form Ω𝑎 as defined in Section 2.7) by (i). Moreover, dim ker 𝜇𝑎 = 𝑛+1 and
so it follows by Proposition 2.13 that

dim (ker 𝜇𝑎)⟂ = dim 𝑇𝑎(𝐴1𝑀)+dim ker 𝜇𝑎 ∩(𝑇𝑎𝐴)⟂ −dim ker 𝜇𝑎
= (2𝑛+1)+1−(𝑛+1) = 𝑛+1.
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and, consequently,

ker 𝜇𝑎 = (ker 𝜇𝑎)⟂ ⊇ (𝑇𝑎(𝐴1𝑀))
⟂

= ker Ω𝑎.

By (ii), 𝑣 cannot be a vertical vector, i.e., 𝑣 ∉ Ver𝑎(𝐴1𝑀). A vertical vector
can be expressed as a linear combination of 𝜕⁄𝜕𝑢𝑖∣𝑎. But Ω is forbidden to
vanish on vectors 𝜕⁄𝜕𝑢𝑖∣𝑎 by (ii). Since ker 𝜇𝑎 is spanned by Ver𝑎(𝐴1𝑀)
and 𝜕⁄𝜕𝑡∣𝑎 +𝑢𝑖(𝑎)𝜕⁄𝜕𝑥𝑖∣𝑎, there exists a unique element 𝑍𝑎 in ker Ω𝑎 of the
form

𝑍𝑎 = 𝜕
𝜕𝑡 ∣

𝑎
+𝑢𝑖(𝑎) 𝜕

𝜕𝑥𝑖 ∣
𝑎

+𝑍𝑖(𝑎) 𝜕
𝜕𝑢𝑖 ∣

𝑎
.

The element 𝑍 is the second-order field on 𝐴1𝑀 that is uniquely character-
ized by 𝑍 Ω = 0 and (𝑍) = 1.

It remains to be shown that Ω is the action form of the second-order field
𝑍 defined by (4.58). For this, we consider the basis 𝑍, 𝜕⁄𝜕𝑥𝑖, 𝜕⁄𝜕𝑢𝑖 and its
dual one-forms d𝑡, θ𝑖 = d𝑥𝑖 −𝑢𝑖d𝑡, λ𝑖 = d𝑢𝑖 −𝑍𝑖d𝑡 induced by an adapted
chart. By (i) and (ii), Ω has the form

Ω = Ω( 𝜕
𝜕𝑢𝑖 , 𝜕

𝜕𝑥 𝑗 )(d𝑢𝑖 −𝑍𝑖d𝑡)∧(d𝑥 𝑗 −𝑢 𝑗d𝑡)

+ 1
2Ω( 𝜕

𝜕𝑥𝑖 , 𝜕
𝜕𝑥 𝑗 )(d𝑥𝑖 −𝑢𝑖d𝑡)∧(d𝑥 𝑗 −𝑢 𝑗d𝑡)

= 𝑔𝑖𝑗(d𝑢𝑖 −𝑍𝑖d𝑡)∧(d𝑥 𝑗 −𝑢 𝑗d𝑡)

+ 1
2Ω( 𝜕

𝜕𝑥𝑖 , 𝜕
𝜕𝑥 𝑗 )(d𝑥𝑖 −𝑢𝑖d𝑡)∧(d𝑥 𝑗 −𝑢 𝑗d𝑡).

Direct calculation of 𝛛Ω = 0 shows that

Ω( 𝜕
𝜕𝑥𝑖 , 𝜕

𝜕𝑥 𝑗 ) = 1
2(𝑔𝑖𝑘

𝜕𝑍𝑘

𝜕𝑢 𝑗 −𝑔𝑗𝑘
𝜕𝑍𝑘

𝜕𝑢𝑖 )

and, by (4.59), proves the assertion.

4.7. Forces

In the previous section, we saw that to any second-order field 𝑍1 on the state
space 𝐴1𝑀 an action form Ω1 can be uniquely associated and vice-versa.
Moreover, we know that if we consider another second-order field 𝑍2 with
action form Ω2, then it can only differ from 𝑍1 by a vertical vector field, i.e.,
it holds that

𝑍2 = 𝑍1 +𝑉,
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where 𝑉 is a smooth section of the vertical bundle Ver(𝐴1𝑀). Let us consider
the differential two-form Φ by which the action forms Ω1 and Ω2 differ, i.e.,

Ω2 = Ω1 +Φ. (4.63)
It is clear that 𝛛Φ = 0 because 𝛛Ω1 = 𝛛Ω2 = 0.

In terms of the coordinate fields induced by a natural chart, the two
second-order fields 𝑍1 and 𝑍2 can be written as

𝑍1 = 𝜕
𝜕𝑡 +𝑢𝑖 𝜕

𝜕𝑥𝑖 +𝑍𝑖
1

𝜕
𝜕𝑢𝑖 and 𝑍2 = 𝜕

𝜕𝑡 +𝑢𝑖 𝜕
𝜕𝑥𝑖 +𝑍𝑖

2
𝜕

𝜕𝑢𝑖 , (4.64)

respectively. Using (4.59) and (4.64), the two-form Φ is given as
Φ = Ω2 −Ω1 = 𝑔𝑖𝑗(𝑍𝑖

2 −𝑍𝑖
1)d𝑥 𝑗 ∧d𝑡

+ 1
2 𝑔𝑖𝑗(

𝜕𝑍𝑖
2

𝜕𝑢𝑘 −
𝜕𝑍𝑖

1
𝜕𝑢𝑘 )(d𝑥 𝑗 −𝑢 𝑗d𝑡)∧(d𝑥𝑘 −𝑢𝑘d𝑡)

= 𝑔𝑖𝑗(𝑍𝑖
2 −𝑍𝑖

1)d𝑥 𝑗 ∧d𝑡

+ 1
2

𝜕
𝜕𝑢𝑘 (𝑔𝑖𝑗(𝑍𝑖

2 −𝑍𝑖
1))(d𝑥 𝑗 −𝑢 𝑗d𝑡)∧(d𝑥𝑘 −𝑢𝑘d𝑡),

(4.65)

where the last equality uses that the coefficients 𝑔𝑖𝑗 = 𝑔𝑖𝑗 ∘𝜋 are independent
of 𝑢1, … , 𝑢𝑛. The local expression shows that the two-form Φ is semi-basic
(see Section 4.5).

Let us assume that we are given Ω1 and Φ in equation (4.63). We observe
that to any semi-basic and 𝛛-closed two-form Φ we get a different action form
Ω2. In particular, it holds for Φ=0 that Ω1 =Ω2 and, therefore, that 𝑍1 =𝑍2.
The semi-basic differential two-forms Φ with 𝛛Φ = 0 have the character of
a force because the choice of an other Φ implies a different action form Ω2
and thereby a different vector field 𝑍2 defining the motion. We refer to
semi-basic differential two-forms Φ with 𝛛Φ = 0 as force two-forms.

The coefficients of (4.65) depend on the difference 𝑔𝑖𝑗(𝑍𝑖
2 − 𝑍𝑖

1). This
observation lets us come to another view on forces. By equation (4.44), the
bundle metric ̂𝑔 on the vertical bundle Ver(𝐴1𝑀) has the local expression

̂𝑔 = 𝑔𝑖𝑗 d𝑢𝑖 ⊗d𝑢 𝑗.
By the coordinate expression (4.64), the vertical vector field 𝑉 locally reads

𝑉 = (𝑍𝑖
2 −𝑍𝑖

1) 𝜕
𝜕𝑢𝑖 = 𝑉 𝑖 𝜕

𝜕𝑢𝑖 ,

where 𝑉 𝑖 ≔ 𝑍𝑖
2 −𝑍𝑖

1. The metric ̂𝑔 defines a vector bundle isomorphism over
𝐴1𝑀

̂𝑔⋅ ∶ Ver(𝐴1𝑀) → Ver∗(𝐴1𝑀),

𝑉 = 𝑉𝑘 𝜕
𝜕𝑢𝑘 ↦ ̂𝑔 ⋅𝑉 = 𝑔𝑖𝑗 𝑉 𝑗 d𝑢𝑖
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between the vertical bundle Ver(𝐴1𝑀) and its dual bundle28 Ver∗(𝐴1𝑀).
Analogously to a Riemannian metric (see Section 3.10), the bundle metric ̂𝑔
also induces a linear bijective map on sections that we denote by the same
symbol, i.e., we write

̂𝑔⋅ ∶ Γ(Ver(𝐴1𝑀)) → Γ(Ver∗(𝐴1𝑀)). (4.66)

The map (4.66) establishes a one-to-one correspondence between smooth
sections of the bundle Ver∗(𝐴1𝑀) and the set of differences between second-
order fields, the vertical vector fields. Therefore, we call a smooth section
of the bundle Ver∗(𝐴1𝑀) a force. As a section of Ver∗(𝐴1𝑀), a force is a
linear form on Ver(𝐴1𝑀), i.e., a linear form

𝐹∶ Ver(𝐴1𝑀) → ℝ (4.67)

that induces a 𝐶∞(𝐴1𝑀)-linear map

𝐹∶ Γ(Ver(𝐴1𝑀)) → 𝐶∞(𝐴1𝑀)

on the space of vertical vector fields.
If we consider that the Galilean metric models the mass of a finite-dimen-

sional mechanical system and if we interpret vertical vector fields as (rela-
tive) accelerations, then with

̂𝑔 ⋅𝑉 = 𝐹 (4.68)

we are facing Newton’s second law that says “mass×(relative) acceleration
= force”. The following theorem establishes a bijective relation between
forces (4.67) and force two-forms (4.65).

Theorem 4.4 (Loos 1982, p. 32). The following formulae define bijections
between

(i) the forces, i.e., the linear forms 𝐹∶ Ver(𝐴1𝑀) → ℝ,

(ii) the semi-basic one-forms 𝜑 with 𝑍 𝜑 = 0,

28. Equation (4.38) defines a vector space Ver𝑎(𝐴1𝑀) at each point 𝑎 ∈ 𝐴1𝑀. In
analogy to the notation (3.27) used for the cotangent space, we denote its dual space by
Ver∗

𝑎(𝐴1𝑀) ≔ (Ver𝑎(𝐴1𝑀))∗. Finally, we define the bundle

Ver∗(𝐴1𝑀) ≔ ⋃
𝑎∈ 𝐴1𝑀

({𝑎}×Ver∗
𝑎(𝐴1𝑀)).
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(iii) the force two-forms, i.e., the semi-basic two-forms Φ with 𝛛Φ = 0:

𝜑 = 𝐹 ∘𝜇,
𝜑 = −𝑍 Φ,
Φ = −1

2(𝛛𝜑+ ∧𝜑).

In local coordinates, it holds that

𝐹 = 𝐹𝑖d𝑢𝑖, (4.69)
𝜑 = 𝐹𝑖(d𝑥𝑖 −𝑢𝑖d𝑡), (4.70)

Φ = 𝐹𝑖d𝑥𝑖 ∧d𝑡+ 1
2

𝜕𝐹𝑖
𝜕𝑢 𝑗 (d𝑥𝑖 −𝑢𝑖d𝑡)∧(d𝑥 𝑗 −𝑢 𝑗d𝑡). (4.71)

Proof. Because of 𝜇(Ver(𝐴1𝑀)) = 𝜇(𝑍) = 0, 𝐹 ∘𝜇 is a semi-basic one-form
with 𝑍 (𝐹 ∘ 𝜇) = 0. Conversely, a semi-basic one-form 𝜑 with 𝑍 𝜑 = 0
vanishes on ker 𝜇 and, therefore, defines a linear form on

𝑇(𝐴1𝑀)/ ker 𝜇 ≅ Ver(𝐴1𝑀). (4.72)

The isomorphism (4.72) follows by Theorem 2.10 and equation (4.46). This
proves the bijection between (i) and (ii). According to the properties (4.54)
and (4.56), it holds that

𝛛(𝛛𝜑+ ∧𝜑) = 𝛛𝛛𝜑+𝛛 ∧𝜑− ∧𝛛𝜑
= ∧𝛛𝜑− ∧𝛛𝜑 = 0

and 𝑍 (−𝑍 Φ) = −Φ(𝑍, 𝑍) = 0. Finally, it holds that

−𝑍 (− 1
2(𝛛𝜑+ ∧𝜑)) = 1

2(𝑍 𝛛𝜑+(𝑍 )∧𝜑− ∧(𝑍 𝜑))

= 1
2(𝑍 𝛛𝜑+𝜑) = 𝜑,

by the rule (4.57) applied to ω = 𝜑 and

−1
2(𝛛(−𝑍 Φ)+ ∧(−𝑍 Φ)) = 1

2(𝛛(−𝑍 Φ)+ ∧(𝑍 Φ)) = Φ,

again by (4.57) applied to ω = Φ. This proves the assertion. The coordinate
expressions (4.69) to (4.71) follow by straightforward computation.

Theorem 4.5 (Loos 1982, p. 25). Let Ω denote the action form of a mechani-
cal system, let 𝑍 be its related second-order field and let 𝐹 be a force. By the
one-to-one correspondence (4.68), 𝐹 is associated to a vertical vector field 𝑉.
Moreover, 𝐹 can be uniquely related to a force two-form Φ by Theorem 4.4.
It then holds that the vector field 𝑍′ = 𝑍+𝑉 is the second-order field related
to the action form Ω′ = Ω+Φ.
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Proof. One easily verifies that Ω′ = Ω + Φ is an action form, i.e., that it
respects the properties from Theorem 4.3. Furthermore, one observes that
Ω′ and Ω induce the same Galilean metric 𝑔. It remains to be shown that
𝑍′ Ω′ = (𝑍+𝑉) (Ω+Φ) = 0. Because 𝑍 Ω = 0 and 𝑉 Ω = 0, it holds that

𝑍′ Ω′ = (𝑍+𝑉) (Ω+Φ) = 𝑉 Ω+𝑍 Φ.

By definition (4.58), it holds for 𝑉 Ω that

(𝑉 Ω)(𝑌) = ̂𝑔(𝜂(𝑉), 𝜇(𝑌))− ̂𝑔(𝜂(𝑌), 𝜇(𝑉)) = ̂𝑔(𝑉, 𝜇(𝑌)) = 𝐹 ∘𝜇(𝑌),

where we used the properties 𝜇(𝑉) = 0 and 𝜂(𝑉) = 𝑉 of the vector bundle
homomorphisms 𝜇 and 𝜂. The last equality follows by equation (4.68). By
Theorem 4.4, it holds that 𝑍 Φ = −𝐹 ∘𝜇. Thus, it follows that

𝑍′ Ω′ = 𝑉 Ω+𝑍 Φ = 0.

4.8. Modelling inertia — the kinetic energy

We learned from the example of Simon’s oscillator at the beginning of this
chapter that motion can only be characterized with respect to a certain ref-
erence event and relatively to chosen reference directions. Let (𝑀,ϑ, 𝑔) be
a Galilean manifold. We define a reference field to be a time-normalized
vector field 𝑅 defined on a neighbourhood 𝑈𝑅 of 𝑀, i.e.,

𝑅∶ 𝑀 ⊇ 𝑈𝑅 → 𝐴1𝑀

with 𝜋 ∘ 𝑅 = id𝑀. In Section 4.3, we defined the motion of a mechanical
system to be a second-order curve 𝛾̇ ∶ 𝐼 → 𝐴1𝑀, i.e., a curve which has the
special form

𝛾̇ ∶ 𝐼 → 𝐴1𝑀, 𝜏 ↦ (𝛾(𝜏), 𝛾̇𝛾(𝜏)), (4.73)

where 𝛾∶ 𝐼 → 𝑀 denotes a time-parametrized curve in the Galilean manifold
(𝑀,ϑ, 𝑔).

We define the relative velocity of the motion (4.73) at time 𝑡(𝜏) = 𝑡∗

with respect to the reference field 𝑅 as the spacelike vector

𝛾̇𝛾(𝜏) −𝑅𝛾(𝜏) ∈ 𝐴0
𝛾(𝜏)𝑀,

where
𝑅(𝛾(𝜏)) = (𝛾(𝜏), 𝑅𝛾(𝜏)).
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The tangent vector 𝛾̇𝛾(𝜏) is an element of the affine space

𝐴1
𝛾(𝜏)𝑀 ⊂ 𝑇𝛾(𝜏)𝑀.

It is only after choosing the reference element 𝑅𝛾(𝜏) in the affine space
that we can associate 𝛾̇𝛾(𝜏) with an element of a vector space. Because the
Galilean metric endows this vector space with an inner product, the notions
of length and angle are available for relative velocities.

For an adapted chart 𝜙∶ 𝑀 ⊇ 𝑈 → ℝ𝑛+1, 𝑝 ↦ 𝜙(𝑝) = (𝑥0, … , 𝑥𝑛), the
reference field 𝑅 = 𝜕⁄𝜕𝑥0 is said to be the resting field induced by the
chart. In the other direction, we call the chart (𝑈, 𝜙) the resting chart of
some given reference field 𝑅 = 𝜕⁄𝜕𝑦0 +𝑅𝑖𝜕⁄𝜕𝑦𝑖 that is defined with respect to
the local coordinates (𝑦0, … , 𝑦𝑛) of an adapted chart if its expression with
respect to the coordinates induced by the chart (𝑈, 𝜙) takes the simple
form 𝑅 = 𝜕⁄𝜕𝑥0.

Let us come back to the example of Simon’s oscillator. Figure 4.1b visual-
izes the relative motion of the oscillator with respect to the clamping table.
The curve 𝐼𝐫𝐴𝐶 can be regarded as the chart representation of a curve 𝛾 in
a three-dimensional Galilean manifold (𝑀,ϑ, 𝑔), i.e.,

(𝑡, 𝐼𝐫𝐴𝐶) = 𝜙∘𝛾∶ ℝ ⊇ 𝐼 → ℝ3,

where 𝜙∶ 𝑀 → ℝ3, 𝑝 ↦ (𝑡, 𝑥1, 𝑥2) is the (global) chart that corresponds
to the (𝐴, 𝐞𝐼

1, 𝐞𝐼
2)-system. Consequently, the tangent field along 𝛾 can be

locally expressed as

𝛾̇(𝜏) = (𝛾(𝜏), 𝜕
𝜕𝑡 ∣

𝛾(𝜏)
+ ̇𝑥1(𝜏) 𝜕

𝜕𝑥1 ∣
𝛾(𝜏)

+ ̇𝑥2(𝜏) 𝜕
𝜕𝑥2 ∣

𝛾(𝜏)
).

The resting field induced by the chart (𝑀, 𝜙) is given by 𝑅 = 𝜕⁄𝜕𝑡.
Figure 4.1c shows the motion of the oscillator in the coordinates ( ̄𝑡, 𝑦1, 𝑦2)

corresponding to the reference system (𝐴, 𝐞𝐾
1 , 𝐞𝐾

2 ). The resulting curve
𝐾𝐫𝐴𝐶 can be interpreted as chart representation of the same curve 𝛾 with
respect to an other (global) chart 𝜓∶ 𝑀 → ℝ3, 𝑝 ↦ ( ̄𝑡, 𝑦1, 𝑦2) that is defined
by the reference system (𝐴, 𝐞𝐾

1 , 𝐞𝐾
2 ), i.e.,

( ̄𝑡, 𝐾𝐫𝐴𝐶) = 𝜓∘𝛾∶ ℝ ⊇ 𝐼 → ℝ3.

Again, the tangent field along 𝛾 can be locally expressed with respect to the
chart 𝜓∶ 𝑀 → ℝ3 as

𝛾̇(𝜏) = (𝛾(𝜏), 𝜕
𝜕 ̄𝑡 ∣

𝛾(𝜏)
+ ̇𝑦1(𝜏) 𝜕

𝜕𝑦1 ∣
𝛾(𝜏)

+ ̇𝑦2(𝜏) 𝜕
𝜕𝑦2 ∣

𝛾(𝜏)
).

The chart (𝑀, 𝜓) induces the resting field 𝑅̃ = 𝜕⁄𝜕 ̄𝑡.
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Figure 4.4.: Visualization of the reference fields 𝑅 and 𝑅̃ with respect to the
chart (𝑀, 𝜓), respectively the (𝐴, 𝐞𝐾

1 , 𝐞𝐾
2 ) reference system

from Figure 4.1a.

However, in his study Simon has decided to study the motion of the oscil-
lator with respect to the clamping table (not with respect to the vinyl disc).
Therefore, Simon uses the reference field 𝑅 and not 𝑅̃. The transformation
rules (3.21) together with the coordinate transformations (4.4) allow him to
express the reference field 𝑅 with respect to the coordinate fields induced
by the chart 𝜓 as

𝑅 = 𝜕
𝜕𝑡 = 𝜕

𝜕 ̄𝑡 −𝛺𝑦2 𝜕
𝜕𝑦1 +𝛺𝑦1 𝜕

𝜕𝑦2 .

The reference fields 𝑅 and 𝑅̃ are depicted in Figure 4.4.
We have already mentioned in Section 4.7 that the mass of a mechanical

system is modelled by the Galilean metric 𝑔 that comes with the system’s
Galilean manifold (𝑀,ϑ, 𝑔). Consequently, we define the kinetic energy
with respect to the reference field 𝑅∶ 𝑀 ⊇ 𝑈𝑅 → 𝐴1𝑀 as the function

𝑇𝑅 ∶ 𝜋−1(𝑈𝑅) → ℝ,
(𝑝, 𝑣𝑝) ↦ 1

2 𝑔𝑝(𝑣𝑝 −𝑅𝑝, 𝑣𝑝 −𝑅𝑝),
(4.74)

with 𝑣𝑝 ∈ 𝐴1
𝑝𝑀 and 𝑅(𝑝) = (𝑝, 𝑅𝑝). The kinetic energy of the motion (4.73)

with respect to the reference field 𝑅 is then given by

𝑇𝑅(𝛾̇(𝜏)) = 1
2 𝑔𝛾(𝜏)(𝛾̇𝛾(𝜏) −𝑅𝛾(𝜏), 𝛾̇𝛾(𝜏) −𝑅𝛾(𝜏)).

Let (𝑈, 𝜙) be an adapted chart of 𝑀 and let us assume for simplicity
that 𝑈 ⊆ 𝑈𝑅. Let 𝑅 = 𝜕⁄𝜕𝑡 + 𝑅𝑖𝜕⁄𝜕𝑥𝑖 be an arbitrary reference field and
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𝑣 = 𝜕⁄𝜕𝑡 + 𝑢𝑖𝜕⁄𝜕𝑥𝑖 a time-normalized vector field on 𝑀. Then the kinetic
energy (4.74) locally reads

𝑇𝑅 = 1
2𝑔𝑖𝑗𝑢𝑖𝑢 𝑗
⏟⏟⏟⏟⏟

𝑇𝑅,2

−𝑔𝑖𝑗𝑢𝑖𝑅 𝑗
⏟⏟⏟⏟⏟

𝑇𝑅,1

+ 1
2𝑔𝑖𝑗𝑅𝑖𝑅 𝑗
⏟⏟⏟⏟⏟

𝑇𝑅,0

, (4.75)

where we used the local expression of the metric (4.13) and the symmetry of
𝑔, i.e., that 𝑔𝑖𝑗 = 𝑔𝑗𝑖. By equation (4.75), the kinetic energy is the sum of

𝑇𝑅,2 ≔ 1
2𝑔𝑖𝑗𝑢𝑖𝑢 𝑗, 𝑇𝑅,1 ≔ −𝑔𝑖𝑗𝑢𝑖𝑅 𝑗, and 𝑇𝑅,0 ≔ 1

2𝑔𝑖𝑗𝑅𝑖𝑅 𝑗.

The number in the subscript describes the respective degree of positive
homogeneity29 of each term with respect to 𝐮 = (𝑢1, … , 𝑢𝑛). In the special
case where 𝑅 is a resting field (i.e., 𝑅 = 𝜕⁄𝜕𝑡), the local expression of the
kinetic energy (4.75) reduces to

𝑇𝑅(𝑝, 𝑣𝑝) = 1
2𝑔𝑖𝑗𝑢𝑖𝑢 𝑗.

Postulate 4.6. Let (𝑀,ϑ, 𝑔) be the Galilean manifold of a finite-dimen-
sional mechanical system. The force-free motion of the mechanical system
with respect to the reference field 𝑅 is defined by the action form

Ω𝑅 ≔ d(𝑇𝑅 +𝛛𝑇𝑅), (4.76)

where 𝑇𝑅 denotes the kinetic energy (4.74) relative to 𝑅.
The postulate is motivated by the following proposition.

Proposition 4.7 (Loos 1982, p. 35). The differential two-form Ω𝑅 defined
by (4.76) is indeed an action form that induces a bundle metric 𝑔 on 𝐴0𝑀.
The difference between an (arbitrary) action form Ω and Ω𝑅 is a force two-
form Φ𝑅 ≔ Ω−Ω𝑅.
Proof. To check that (4.76) defines an action form, we have to check the
properties (i) to (iii) from Theorem 4.3. According to the rules (4.54), (4.55),
and (4.56) of 𝛛, it holds that

𝛛Ω𝑅 = −d(𝛛𝑇𝑅 ∧ +𝛛𝛛𝑇𝑅) = −d(𝛛𝑇𝑅 ∧ + ∧𝛛𝑇𝑅) = 0,

which shows that Ω𝑅 enjoys property (iii). To establish properties (i) and (ii),
we consider the local expression (4.75) of the kinetic energy and we calculate
using the rules (4.54) that

𝑇𝑅 +𝛛𝑇𝑅 = 𝑇𝑅d𝑡+ 𝜕𝑇𝑅
𝜕𝑢𝑖 (d𝑥𝑖 −𝑢𝑖d𝑡)

= −(𝑇𝑅,2 −𝑇𝑅,0)d𝑡+𝑝𝑖d𝑥𝑖,
(4.77)

29. Let 𝑓 ∶ ℝ𝑛 → ℝ be differentiable. The function 𝑓 is called positively homogeneous of
degree 𝑘 if 𝑓 (𝛼𝐱) = 𝛼𝑘𝑓 (𝐱) for all 𝛼 ∈ ℝ+

0 and all 𝐱 ∈ ℝ𝑛.
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where we defined 𝑝𝑖 ≔ 𝜕𝑇𝑅/𝜕𝑢𝑖 and we used the positive homogeneity of
the terms 𝑇𝑅,2, 𝑇𝑅,1, and 𝑇𝑅,0 that compose the kinetic energy (4.75). By
Euler’s theorem, we know that a function 𝑓 ∶ ℝ𝑛 → ℝ that is homogeneous
of degree 𝑘 satisfies

𝑥𝑖 𝜕𝑓
𝜕𝑥𝑖 = 𝑘𝑓 .

Consequently, it holds that

𝑝𝑖𝑢𝑖 = 2𝑇𝑅,2 +𝑇𝑅,1.

The exterior derivative of (4.77) can be written in terms of the basis covector
fields d𝑡, d𝑥1, … , d𝑥𝑛, d𝑝1, … , d𝑝𝑛 as

Ω𝑅 = (d𝑝𝑖 + 𝜕𝐾
𝜕𝑥𝑖 d𝑡)∧(d𝑥𝑖 −𝑢𝑖d𝑡), (4.78)

with 𝐾 ≔𝑇𝑅,2−𝑇𝑅,0. It is clear from the expression (4.78) that Ω𝑅 vanishes
on ker 𝜇. Moreover, it follows that

Ω𝑅( 𝜕
𝜕𝑢 𝑗 , 𝜕

𝜕𝑥𝑖 ) = d𝑝𝑖(
𝜕

𝜕𝑢 𝑗 ) = 𝜕𝑝𝑖
𝜕𝑢 𝑗 = 𝜕2𝑇𝑅

𝜕𝑢 𝑗𝜕𝑢𝑖 = 𝑔𝑖𝑗.

A comparison of the local expression (4.78) with (4.59) shows that Ω−Ω𝑅
is semi-basic. The assertion that Φ𝑅 = Ω−Ω𝑅 is a force two-form follows
because 𝛛(Ω−Ω𝑅) = 𝛛Ω−𝛛Ω𝑅 = 0.

Postulate 4.6 defines the action form Ω𝑅 that describes the motion with
respect to the field 𝑅 of a mechanical system which is not subjected to forces
(i.e., Φ𝑅 = 0). Proposition 4.7 tells us that a given arbitrary action form Ω
decomposes as Ω=Ω𝑅+Φ𝑅. If Φ𝑅 =0, then we say that Ω defines a force-free
motion with respect to the reference field 𝑅. We say that Φ𝑅 is the force
two-form that appears with respect to the reference field 𝑅.

4.9. Classification of forces

4.9.1. Inertia forces

Let 𝑅 and 𝑅̃ be two reference fields and Ω be a given action form. By
Proposition 4.7, we know that Ω decomposes as

Ω = Ω𝑅 +Φ𝑅 = Ω𝑅̃ +Φ𝑅̃

and, therefore,
Ω𝑅̃ −Ω𝑅 = Φ𝑅 −Φ𝑅̃.
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Being the difference of two forces Φ𝑅 and Φ𝑅̃, the two-form Ω𝑅̃ −Ω𝑅 is a
force two-form that we call

Ψ𝑅,𝑅̃ ≔ Ω𝑅̃ −Ω𝑅 (4.79)

the inertia force two-form between the reference fields 𝑅 and 𝑅̃. The
force Φ𝑅 with respect to 𝑅 is composed of the force Φ𝑅̃ with respect to 𝑅̃
and of the inertia force two-form (4.79). As force two-form, the latter is a
kinematic quantity because it does not depend on the motion 𝑍. It depends
only on the Galilean manifold (𝑀,ϑ, 𝑔) and on the reference fields 𝑅 and 𝑅̃,
as can be seen from the following considerations.

Because the inertia force two-form (4.79) is given by the difference of two
exact two-forms, it is exact. This means that there exists a one-form 𝑅,𝑅̃
such that

Ψ𝑅,𝑅̃ = Ω𝑅̃ −Ω𝑅 = d 𝑅,𝑅̃.

By definition (4.76) and the linearity of the differential operators d and 𝛛,
we know that

𝑅,𝑅̃ = (𝑇𝑅̃ −𝑇𝑅) +𝛛(𝑇𝑅̃ −𝑇𝑅).

Let the reference field 𝑅 be defined on 𝑈𝑅 such that 𝑅 = 𝜕⁄𝜕𝑡+𝑅𝑖𝜕⁄𝜕𝑥𝑖 and
let the field 𝑅̃ be given by 𝑅̃ = 𝜕⁄𝜕𝑡+𝑅̃𝑖𝜕⁄𝜕𝑥𝑖 on 𝑈𝑅̃ such that 𝑈𝑅 ∩𝑈𝑅̃ ≠ ∅.
Equations (4.75) and (4.77) lead to

𝑅,𝑅̃ = (𝑇𝑅̃ −𝑇𝑅) +𝛛(𝑇𝑅̃ −𝑇𝑅)

= 1
2𝑔𝑖𝑗(𝑅̃𝑖𝑅̃ 𝑗 −𝑅𝑖𝑅 𝑗)d𝑡+𝑔𝑖𝑗(𝑅 𝑗 −𝑅̃ 𝑗)d𝑥𝑖.

(4.80)

on 𝜋−1(𝑈𝑅)∩𝜋−1(𝑈𝑅̃). The local expression (4.80) reveals that 𝑅,𝑅̃ is
a basic form. This motivates the following alternative definition of the
one-form 𝑅,𝑅̃. Indeed, let α𝑅,𝑅̃ be the one-form on 𝑈𝑅 ∩𝑈𝑅̃ defined by
requiring

α𝑅,𝑅̃(𝑅) != 1
2𝑔(𝑅−𝑅̃, 𝑅−𝑅̃),

α𝑅,𝑅̃(𝑣) != 𝑔(𝑣, 𝑅−𝑅̃)

for all spacelike vector fields 𝑣, i.e., for all local sections of the spacelike
bundle 𝐴0𝑀. Then the one-form 𝑅,𝑅̃ is the pullback of α𝑅,𝑅̃ with the
natural projection, i.e.,

𝑅,𝑅̃ = 𝜋 (α𝑅,𝑅̃).

This shows that the inertia force two-form (4.79) for the reference fields
𝑅 and 𝑅̃ does indeed depend only on the Galilean manifold (𝑀,ϑ, 𝑔) and,
therefore, is a kinematic quantity.
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If in classical mechanics the motion of a particle is studied with respect
to a non-inertial frame of reference,30 additional force effects appear in the
equations of motions. These forces that result from the use of a non-inertial
frame of reference instead of an inertial one are referred to as fictitious,
apparent or as inertia forces. Two examples are the Coriolis force and the
centrifugal force. In our presentation, these forces are provided by the
inertia force two-form (4.79).

4.9.2. Potential forces

We say that a force 𝐹𝑅 is a potential force if the related (see Theorem 4.4)
force two-form Φ𝑅 is closed, i.e., if

dΦ𝑅 = 0. (4.81)

According to the Poincaré lemma (see Lemma 3.32) there exists a neigh-
bourhood 𝑊 ⊆ 𝐴1𝑀 and a one-form β defined on 𝑊 such that

Φ𝑅∣
𝑊

= dβ𝑅. (4.82)

The closedness (exactness) of the force two-form implies the closedness
(exactness) of the action form. Indeed, with Proposition 4.7, we saw that
an action form is the sum of an exact form (see equation (4.76)) and the
force two-form. Therefore, it makes sense to speak of a closed (exact)
mechanical system if the force two-form is closed (exact).

Let us venture into the calculation of the coordinate expression of a closed
two-form Φ𝑅 by applying condition (4.81) to expression (4.71) such that

0 != dΦ𝑅

= d[(−𝐹𝑖 + 1
2𝑢 𝑗(𝜕𝐹𝑖

𝜕𝑢 𝑗 −
𝜕𝐹𝑗
𝜕𝑢𝑖 ))d𝑡∧d𝑥𝑖 + 1

2
𝜕𝐹𝑖
𝜕𝑢 𝑗 d𝑥𝑖 ∧d𝑥 𝑗]

= (− 𝜕𝐹𝑖
𝜕𝑥𝑘 + 1

2
𝜕2𝐹𝑖

𝜕𝑡𝜕𝑢𝑘 + 1
2𝑢 𝑗( 𝜕2𝐹𝑖

𝜕𝑥𝑘𝜕𝑢 𝑗 −
𝜕2𝐹𝑗

𝜕𝑥𝑘𝜕𝑢𝑖 ))d𝑡∧d𝑥𝑖 ∧d𝑥𝑘

+(− 𝜕𝐹𝑖
𝜕𝑢𝑘 + 1

2( 𝜕𝐹𝑖
𝜕𝑢𝑘 − 𝜕𝐹𝑘

𝜕𝑢𝑖 )+ 1
2𝑢 𝑗( 𝜕2𝐹𝑖

𝜕𝑢𝑘𝜕𝑢 𝑗 −
𝜕2𝐹𝑗

𝜕𝑢𝑘𝜕𝑢𝑖 ))d𝑡∧d𝑥𝑖 ∧d𝑢𝑘

+ 1
2

𝜕2𝐹𝑖
𝜕𝑥𝑘𝜕𝑢 𝑗 d𝑥𝑖 ∧d𝑥 𝑗 ∧d𝑥𝑘 + 1

2
𝜕2𝐹𝑖

𝜕𝑢𝑘𝜕𝑢 𝑗 d𝑥𝑖 ∧d𝑥 𝑗 ∧d𝑢𝑘,

where we dropped the 𝑅 by writing 𝐹 instead of 𝐹𝑅 for notational convenience.
The above condition leads to restrictions on the real-valued functions 𝐹𝑖.

30. See Section 39 in Landau and E. M. Lifshitz 1969 or Sections IV.4–5 in Lanczos 1952.
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The last term disappears if and only if

𝐹𝑖(𝑡, 𝐱, 𝐮) = 𝐸𝑖(𝑡, 𝐱)+𝐵𝑖𝑗(𝑡, 𝐱)𝑢 𝑗. (4.83)

The vanishing of the d𝑡∧d𝑥𝑖∧d𝑢𝑘-term requires that

𝐵𝑖𝑗 = −𝐵𝑗𝑖.

The annihilation of the d𝑥𝑖∧d𝑥 𝑗∧d𝑥𝑘-term leads to

∑
cyclic

𝜕𝐵𝑖𝑗
𝜕𝑥𝑘 = 0. (4.84)

Finally, the annihilation of the first term imposes that

𝜕𝐵𝑖𝑗
𝜕𝑡 = 𝜕𝐸𝑖

𝜕𝑥 𝑗 −
𝜕𝐸𝑗
𝜕𝑥𝑖 (4.85)

Consequently, a closed two-form Φ𝑅 has the local form

Φ𝑅 = 𝐸𝑖d𝑥𝑖 ∧d𝑡+ 1
2𝐵𝑖𝑗d𝑥𝑖 ∧d𝑥 𝑗. (4.86)

The suggestive use of the letters 𝐵 and 𝐸 lets us identify (4.84) and (4.85)
as a generalized version of Maxwell’s equations. We see from the local
expression (4.86) that a closed force two-form is basic. Therefore, as a
one-form β𝑅 satisfying (4.82), we consider the locally defined basic one-form

β𝑅 = −𝑉𝑅(𝑡, 𝐱)d𝑡+𝐴𝑅
𝑖 (𝑡, 𝐱)d𝑥𝑖

= (−𝑉𝑅(𝑡, 𝐱)+𝐴𝑅
𝑖 (𝑡, 𝐱)𝑢𝑖)d𝑡+𝐴𝑅

𝑖 (𝑡, 𝐱)(d𝑥𝑖 −𝑢𝑖d𝑡)

= (−𝑉𝑅 +𝐴𝑅
𝑖 𝑢𝑖)d𝑡+𝛛(−𝑉𝑅 +𝐴𝑅

𝑖 𝑢𝑖).
(4.87)

The second and third equality follow by telescopic expansion and by the
rules (4.54), respectively. In the last line, we omitted the function arguments
for brevity. In the context of a charged particle moving in an electromagnetic
field the function 𝑉𝑅 is known as scalar potential31 of the field and the
ℝ3-tuple (𝐴𝑅

1 , 𝐴𝑅
2 , 𝐴𝑅

3 ) is said to be its vector potential.31 With the one-
form (4.87) it holds that

𝐸𝑖 = −(𝜕𝑉𝑅
𝜕𝑥𝑖 +

𝜕𝐴𝑅
𝑖

𝜕𝑡 ), 𝐵𝑖𝑗 = 2
𝜕𝐴𝑅

𝑗
𝜕𝑥𝑖 .

It is important to notice that the Poincaré lemma guarantees the existence
of a one-form β𝑅 and not its uniqueness. Indeed, two one-forms β𝑅 and β′

𝑅

31. See p. 45 in Landau and E. Lifshitz 1971.
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that differ by the differential d𝑓 of a function 𝑓 = 𝑓 (𝑡, 𝐱) lead to the same
force two-form (4.82) because d∘d = 0. With

d𝑓 = 𝜕𝑓
𝜕𝑡d𝑡+ 𝜕𝑓

𝜕𝑥𝑖 d𝑥𝑖,

this implies that the coefficient functions of β𝑅 from (4.87) are related to
those of

β′
𝑅 = β𝑅 +d𝑓 = −𝑉 ′d𝑡+𝐴′

𝑖d𝑥𝑖

by
𝑉 ′ = 𝑉 − 𝜕𝑓

𝜕𝑡 , and 𝐴′
𝑖 = 𝐴𝑖 + 𝜕𝑓

𝜕𝑥𝑖 , (4.88)

without changing the resulting force two-form Φ𝑅. Note that we dropped
the letter 𝑅 in equation (4.88) for notational convenience. The invariance
property (4.88) of the coefficient functions of the one-form β𝑅 is known as
gauge invariance.32

In classical mechanics (no electromagnetism), one assumes 𝐵𝑖𝑗 = 0 such
that the coefficient functions (4.83) are independent of 𝑢1, … , 𝑢𝑛. In this
case, the closed force two-form (4.86) reduces to

Φ𝑅 = 𝐸𝑖d𝑥𝑖 ∧d𝑡.

Accordingly, the one-form β𝑅 from (4.87) reduces to

β𝑅 = −𝑉𝑅(𝑡, 𝐱)d𝑡+𝐴𝑅
𝑖 (𝑡)d𝑥𝑖.

Because of the gauge invariance (4.88), we can add a differential d𝑓 without
changing the resulting force two-form. We choose 𝑓 (𝑡, 𝐱) = −𝐴𝑅

𝑖 (𝑡)𝑥𝑖 such
that

β′
𝑅 = β𝑅 +d𝑓 = (−𝑉𝑅 −

d𝐴𝑅
𝑖

d𝑡 𝑥𝑖)d𝑡 ≕ −𝑉 ′
𝑅d𝑡.

This proves that in classical mechanics the force two-form of a potential
force can be derived from a one-form

β′
𝑅 = −𝑉 ′

𝑅(𝑡, 𝐱)d𝑡 (4.89)

without loss of generality. The coefficient function 𝑉 ′
𝑅 in (4.89) is known

as potential energy with respect to the reference field 𝑅. In what follows,
we will consider one-forms of the form (4.87) because they comprise the
form (4.89) used in classical mechanics.

32. See Section 18 in Landau and E. Lifshitz 1971.
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4.9.3. Nonpotential forces

The previous considerations allow us to split a given force two-form

Φ𝑅 = Φp
𝑅 +Φnp

𝑅

into a part Φp
𝑅 = dβ𝑅 that is defined by a one-form (4.87) and the remaining

part Φnp
𝑅 which we will refer to as nonpotential force two-form. By com-

paring equations (4.76) and (4.87), it is clear that the sum Ω𝑅 +Φp
𝑅 can be

written as

Ω𝑅 +Φp
𝑅 = Ω𝑅 +dβ𝑅 = d[(𝑇𝑅 −𝑉𝑅 +𝐴𝑅

𝑖 𝑢𝑖) +𝛛(𝑇𝑅 −𝑉𝑅 +𝐴𝑅
𝑖 𝑢𝑖)]

= d(𝐿𝑅 +𝛛𝐿𝑅),

with 𝐿𝑅 ≔ 𝑇𝑅 −𝑉𝑅 +𝐴𝑅
𝑖 𝑢𝑖. This brings us to the following generalization of

Postulate 4.6.

Postulate 4.8. Let (𝑀,ϑ, 𝑔) be the Galilean manifold of a finite-
dimensional mechanical system. The motion of the mechanical system
with respect to the reference field 𝑅 under the influence of the force
Φ𝑅 = Φp

𝑅 +Φnp
𝑅 is defined33 by the action form

Ω ≔ Ωp
𝑅 +Φnp

𝑅 (4.90)

where
Ωp

𝑅 ≔ Ω𝑅 +Φp
𝑅 = Ω𝑅 +dβ𝑅 = d(𝐿𝑅 +𝛛𝐿𝑅), (4.91)

with the Lagrangian

𝐿𝑅 ≔ 𝑇𝑅 −𝑉𝑅 +𝐴𝑅
𝑖 𝑢𝑖 (4.92)

that is defined with respect to the reference field 𝑅.

The one-form defined by the Lagrangian as

ω𝑅 ≔ 𝐿𝑅 +𝛛𝐿𝑅 (4.93)

that is used in equation (4.91) is referred to as Cartan one-form. The
Cartan one-form determines the Lagrangian by

𝐿𝑅 = 𝑋 ω𝑅, (4.94)

33. The motion of a mechanical system is an integral curve of the second-order field associated
with the action form Ω of the mechanical system. The second-order field is uniquely defined
according to Theorem 4.3.
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where 𝑋 is the unique34 vector field determined by

𝑋 Ω = 0 and (𝑋) = 1. (4.95)

In the local coordinates induced on the neighbourhood 𝜋−1(𝑈) ⊆ 𝐴1𝑀 by
the natural chart (4.17), the Cartan one-form reads

ω𝑅 = 𝐿𝑅d𝑡+ 𝜕𝐿𝑅
𝜕𝑢𝑖 (d𝑥𝑖 −𝑢𝑖d𝑡), (4.96)

where we will suppress the letter 𝑅 on many occasions for ease of notation.
The exterior derivative establishes an assignment ω↦Ωp between Cartan

one-forms and the set of action forms (i.e., differential two-forms having the
properties specified by Theorem 4.3). This map is not surjective because
action forms that are not closed cannot be reached. The assignment is not
injective either. Indeed, if two Cartan one-forms ω1 and ω2 define the same
action form

Ω = dω1 = dω2,

they may still differ by the differential of a function 𝑓 ∈ 𝐶∞(𝐴1𝑀), i.e.,

ω2 −ω1 = d𝑓 (4.97)

because d∘d = 0. Since the difference ω2 −ω1 is semi-basic, the function 𝑓
in (4.97) needs to satisfy

𝑓 = 𝜋 𝑔 = 𝑔∘𝜋

for some function 𝑔 ∈ 𝐶∞(𝑀). The non-uniqueness of the Cartan one-form
transfers to the Lagrangians by equation (4.94). The Lagrangians 𝐿1 and
𝐿2 defining the Cartan one-forms ω1 and ω2 can locally differ by

𝐿2 −𝐿1 = 𝑍 d𝑓 = 𝜕𝑓
𝜕𝑡 +𝑢𝑖 𝜕𝑓

𝜕𝑥𝑖 (4.98)

and still define the same action form Ω. If the difference (4.98) is evaluated
along a second-order curve 𝛾̇, then we get by (4.25) that

(𝐿2 −𝐿1)(𝛾̇(𝜏)) = ( 𝜕
𝜕𝑡[𝑓 ]+𝑢𝑖 𝜕

𝜕𝑥𝑖 [𝑓 ])∘𝛾̇(𝜏)

= (𝜕𝑓 ∘𝛷−1

𝜕𝑡 +𝑢𝑖(𝜏)𝜕𝑓 ∘𝛷−1

𝜕𝑥𝑖 )(𝑡(𝜏), 𝐱(𝜏), 𝐱̇(𝜏)),

34. According to Theorem 4.2(iii), the vector field 𝑋 obeying (4.95) is indeed uniquely
determined.
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from which we retrieve the classical statement35 that (the chart representa-
tions of) the Lagrangians L1 ≔ 𝐿1 ∘𝛷−1(𝑡, 𝐱, 𝐮) and L2 ≔ 𝐿2 ∘𝛷−1(𝑡, 𝐱, 𝐮)
may differ by the total derivative with respect to 𝑡 of a function f (𝑡, 𝐱), which
depends on time 𝑡 and the positions 𝐱.

The following considerations allow us to pin down the form of Lagrangians.
First, a Lagrangian needs to define the bundle metric by

𝑔𝑖𝑗 = Ω( 𝜕
𝜕𝑢𝑖 , 𝜕

𝜕𝑥 𝑗 ) = 𝜕2𝐿
𝜕𝑢𝑖𝜕𝑢 𝑗 ,

according to Theorem 4.3(ii). Because it holds for the bundle metric that
𝜕𝑔𝑖𝑗/𝜕𝑢𝑘 = 0, the Lagrangian needs to satisfy

𝜕3𝐿
𝜕𝑢𝑘𝜕𝑢𝑖𝜕𝑢 𝑗 = 0,

and it therefore has the local form

𝐿 = 1
2𝑔𝑖𝑗𝑢𝑖𝑢 𝑗 +𝑎𝑖𝑢𝑖 +𝑎0 (4.99)

on 𝜋−1(𝑈), with coefficients 𝑎0, … , 𝑎𝑛 that do not depend on 𝑢1, … , 𝑢𝑛.
This means that there are functions ̄𝑎0, … , ̄𝑎𝑛 ∶ 𝑈 → ℝ defined on the neigh-
bourhood 𝑈 such that

𝑎𝛼 ≔ 𝜋 ( ̄𝑎𝛼), = ̄𝑎𝛼 ∘𝜋

with 𝛼 = 0, … , 𝑛. With the local expression (4.75) of the kinetic energy the
Lagrangian (4.92) can be written as

𝐿𝑅 = 𝑇𝑅 −𝑉𝑅 +𝐴𝑅
𝑖 𝑢𝑖 = 1

2𝑔𝑖𝑗𝑢𝑖𝑢 𝑗 +(𝐴𝑅
𝑖 −𝑔𝑖𝑗𝑅 𝑗)𝑢𝑖 + 1

2𝑔𝑖𝑗𝑅𝑖𝑅 𝑗 −𝑉𝑅.

The comparison with (4.99) leads to the equalities

𝑎0 = 1
2𝑔𝑖𝑗𝑅𝑖𝑅 𝑗 −𝑉𝑅,

𝑎𝑖 = 𝐴𝑖 −𝑔𝑖𝑗𝑅 𝑗,
(4.100)

with 𝑖 = 1, … , 𝑛.
The case of classical mechanics where the one-form β𝑅 reduces to (4.89)

can be studied by setting 𝐴𝑖 = 0. It follows from equation (4.100) that the
reference field 𝑅 and the potential 𝑉𝑅 can be determined from the coefficients
𝑎0, … , 𝑎𝑛 of a given Lagrangian (4.99) as

𝑅𝑖 = −𝑔𝑖𝑗𝑎𝑗 (4.101)

35. See Landau and E. M. Lifshitz 1969 p. 4.
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and
𝑉𝑅 = 1

2 𝑔𝑖𝑗 𝑅𝑖𝑅 𝑗 −𝑎0.

The coefficients 𝑔𝑖𝑗 in equation (4.101) are given by the inverse matrix to
the coefficient matrix of the Galilean metric 𝑔,

[𝑔𝑖𝑗] = [𝑔𝑖𝑗]
−1

,

such that 𝑔𝑖𝑗𝑔𝑗𝑘 = δ𝑖
𝑘.

4.10. Lagrangian and Hamiltonian mechanics

As a differentiable manifold, the state space 𝐴1𝑀 allows a local description
using charts. This means that Postulate 4.8 can be expressed with respect
to different sets of local coordinates. We show that Lagrange’s, Hamel’s
as well as Hamilton’s equations are different coordinate representations of
Postulate 4.8.

4.10.1. Lagrange’s equations of the second kind

We start by using the local coordinates provided by the natural chart (4.17).
By equation (4.91) and the rules (4.54), the action form Ωp

𝑅 is locally given
by

Ωp
𝑅 = d𝐿∧d𝑡+d( 𝜕𝐿

𝜕𝑢𝑖 )∧(d𝑥𝑖 −𝑢𝑖d𝑡)− 𝜕𝐿
𝜕𝑢𝑖 d𝑢𝑖 ∧d𝑡 (4.102)

and, by equation (4.71), the nonpotential force Φnp
𝑅 in (4.90) reads

Φnp
𝑅 = 𝐹𝑖 d𝑥𝑖 ∧d𝑡+ 1

2
𝜕𝐹𝑖
𝜕𝑢 𝑗 (d𝑥𝑖 −𝑢𝑖d𝑡)∧(d𝑥 𝑗 −𝑢 𝑗d𝑡). (4.103)

Note that we lightened the notation by suppressing the reference field 𝑅
when writing the Lagrangian in (4.102).

By Theorem 4.2(iii), we know that the action form Ω=Ωp
𝑅+Φnp

𝑅 determines
the vector field 𝑋 ∈ Vect(𝐴1𝑀) that describes the motion by

(𝑋) = 1, (4.104)
𝑋 Ω = 0. (4.105)

Condition (4.104) requires the vector field 𝑋 to be time-normalized such that
it can be locally written as

𝑋 = 𝜕
𝜕𝑡 +𝐴𝑖 𝜕

𝜕𝑥𝑖 +𝐵𝑖 𝜕
𝜕𝑢𝑖 , (4.106)
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where the coefficients 𝐴𝑖 and 𝐵𝑖 with 𝑖 = 1, … , 𝑛 are smooth real-valued
functions defined on the neighbourhood 𝜋−1(𝑈) ⊆ 𝐴1𝑀. Condition (4.105)
can be rewritten as

0 = 𝑋 Ω = 𝑋 Ωp
𝑅 +𝑋 Φnp

𝑅 . (4.107)

Using equations (4.102), (4.103), (4.106), property (i) from Proposition 3.35
as well as the definition (3.62) of the exterior derivative of a real-valued
function, we compute both terms separately as

𝑋 Ωp
𝑅 = 𝔏𝑋 𝐿d𝑡−d𝐿+𝔏𝑋( 𝜕𝐿

𝜕𝑢𝑖 )(d𝑥𝑖 −𝑢𝑖d𝑡)−d( 𝜕𝐿
𝜕𝑢𝑖 )(𝐴𝑖 −𝑢𝑖)

−𝐵𝑖 𝜕𝐿
𝜕𝑢𝑖 d𝑡+ 𝜕𝐿

𝜕𝑢𝑖 d𝑢𝑖

= [𝔏𝑋 𝐿− 𝜕𝐿
𝜕𝑡 −𝑢𝑖𝔏𝑋( 𝜕𝐿

𝜕𝑢𝑖 )− 𝜕2𝐿
𝜕𝑡𝜕𝑢𝑖 (𝐴𝑖 −𝑢𝑖)−𝐵𝑖 𝜕𝐿

𝜕𝑢𝑖 ]d𝑡

+[𝔏𝑋( 𝜕𝐿
𝜕𝑢𝑖 )− 𝜕𝐿

𝜕𝑥𝑖 − 𝜕2𝐿
𝜕𝑥𝑖𝜕𝑢 𝑗 (𝐴 𝑗 −𝑢 𝑗)]d𝑥𝑖

+ 𝜕2𝐿
𝜕𝑢𝑖𝜕𝑢 𝑗 (𝑢 𝑗 −𝐴 𝑗)d𝑢𝑖

(4.108)

and
𝑋 Φnp

𝑅 = [𝐴𝑖𝐹𝑖 − 1
2𝑢𝑖(𝐴 𝑗 −𝑢 𝑗)(

𝜕𝐹𝑗
𝜕𝑢𝑖 − 𝜕𝐹𝑖

𝜕𝑢 𝑗 )]d𝑡

+[−𝐹𝑖 + 1
2(𝐴 𝑗 −𝑢 𝑗)(

𝜕𝐹𝑗
𝜕𝑢𝑖 − 𝜕𝐹𝑖

𝜕𝑢 𝑗 )]d𝑥𝑖.
(4.109)

By equation (4.107), the sum of (4.108) and (4.109) has to vanish. In partic-
ular, the d𝑢𝑖-component of (4.108) must be zero. This implies that

𝐴 𝑗 = 𝑢 𝑗 for 𝑗 = 1, … , 𝑛 (4.110)

because the matrix
[ 𝜕2𝐿

𝜕𝑢𝑖𝜕𝑢 𝑗 ] = [𝑔𝑖𝑗]

is positive definite and thus has full rank. Equation (4.110) requires the
vector field 𝑋 to be a second-order field as we saw in (4.33). The annihilation
of the d𝑥𝑖-part of the sum (4.107) together with (4.110) leads to Lagrange’s
equations of the second kind

𝔏𝑋( 𝜕𝐿
𝜕𝑢𝑖 )− 𝜕𝐿

𝜕𝑥𝑖 = 𝐹𝑖. (4.111)
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Let us consider a time-parametrized integral curve 𝛽∶ 𝐼 → 𝐴1𝑀, 𝜏 ↦ 𝛽(𝜏)
of the vector field 𝑋 defined by equation (4.111), i.e., a curve for which holds

̇𝛽(𝜏) = 𝑋(𝛽(𝜏)). (4.112)

Since 𝑋 is a second-order field by (4.110), we know by equation (4.34) that

𝐱̇(𝜏) = 𝐮(𝜏). (4.113)

The integral curve 𝛽 defined by (4.112) needs to satisfy equation (4.111)
such that

d
d𝜏( 𝜕𝐿

𝜕𝑢𝑖 ∘𝛽(𝜏))− 𝜕𝐿
𝜕𝑥𝑖 ∘𝛽(𝜏) = 𝐹𝑖 ∘𝛽(𝜏) (4.114)

by definition (3.22) of the Lie derivative (see p. 60). By the definition of
vector fields as derivations on 𝐶∞(𝐴1𝑀) (see equations (3.13) and (3.43))
together with equation (4.113), we recognize (4.114) as Lagrange’s equations
of the second kind in their classical form36

d
d𝜏( 𝜕L

𝜕𝑢𝑖 (𝑡(𝜏), 𝐱(𝜏), 𝐱̇(𝜏)))− 𝜕L
𝜕𝑥𝑖 (𝑡(𝜏), 𝐱(𝜏), 𝐱̇(𝜏)) = F𝑖( … ),

where the upright letters L ≔ 𝐿∘𝛷−1 and F𝑖 ≔ 𝐹𝑖 ∘𝛷−1 denote the repre-
sentations of the Lagrangian 𝐿 and of the coefficient functions 𝐹1, … , 𝐹𝑛
with respect to the natural chart (4.17). We abridged the function argu-
ments on the right-hand side by dots to avoid a line break. The function
𝑡(𝜏) = 𝑡∘𝛽(𝜏) from (4.35) is an affine function of the parameter 𝜏 because
of equations (4.104) and (4.112).

4.10.2. Hamel’s equations

In the previous section, we showed that Postulate 4.8 directly leads to
Lagrange’s equations of the second kind when the involved objects are ex-
pressed in the natural chart (4.17). By equation (4.113), the representation
of the motion with respect to the local coordinates of the natural chart (4.17)
satisfies

𝐱̇(𝜏) = 𝐮(𝜏),

which is just the local expression of the second-order condition (4.24) as we
saw with (4.25). This means that the velocity coordinates of the motion

𝑢1(𝜏) = 𝛷𝑛+1 ∘𝛽(𝜏), … , 𝑢𝑛(𝜏) = 𝛷2𝑛 ∘𝛽(𝜏)

36. See Lagrange 1780, p. 25 or Landau and E. M. Lifshitz 1969, p. 3.
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provided by the natural chart correspond to the derivatives with respect to
𝜏 of the position coordinates

𝑥1(𝜏) = 𝛷1 ∘𝛽(𝜏), … , 𝑥𝑛(𝜏) = 𝛷𝑛 ∘𝛽(𝜏).

Now, for some applications, e.g., the formulation of constraints (see Sec-
tion 4.12), it may be beneficial to describe the motion using a different set of
velocity parameters, i.e., to consider another chart of the state space than
the natural chart. In this section, we will derive the equations of motion
that appear in place of Lagrange’s equations (4.111) if we consider such an
alternative chart in which the velocity coordinates 𝑢1, … , 𝑢𝑛 are replaced
by a set of parameters 𝑣1, … , 𝑣𝑛 that result from the 𝑢1, … , 𝑢𝑛 by an affine
transformation (see equation (4.127)).

The generalized velocities 𝑢1, … , 𝑢𝑛 were introduced in (4.16) as the pa-
rameters that uniquely define a time-normalized vector 𝑣𝑝 ∈ 𝐴1

𝑝𝑀 at some
point 𝑝 ∈ 𝑈 ⊆ 𝑀

𝑣𝑝 = 𝜕
𝜕𝑡 ∣

𝑝
+𝑢𝑖 𝜕

𝜕𝑥𝑖 ∣
𝑝
. (4.115)

The basis vectors of 𝑇𝑝𝑀 that are used in (4.115) are those induced by an
adapted (𝑥0 = 𝑡) chart

𝜙∶ 𝑀 ⊇ 𝑈 → ℝ𝑛+1, 𝑝 ↦ (𝑥0, … , 𝑥𝑛) (4.116)

of the Galilean manifold (𝑀,ϑ, 𝑔). We take a step back and consider an
arbitrary tangent vector 𝑤𝑝 ∈ 𝑇𝑝𝑀 at some point 𝑝 ∈ 𝑀 given by

𝑤𝑝 = 𝑢𝜈 𝜕
𝜕𝑥𝜈 ∣

𝑝
, (4.117)

where 𝜈 = 0, … , 𝑛. In what follows, we use lowercase Greek letters to denote
indices that range from 0 to 𝑛, while lowercase Latin letters stand for indices
between 1 and 𝑛. The tangent space 𝑇𝑝𝑀 is a vector space of dimension
𝑛+1.37 It is reasonable to study the set of velocity coordinates that originate
from the 𝑢0, … , 𝑢𝑛 by a linear transformation (see Section 2.3). We define a
set of new basis vectors

𝖇𝜎∣𝑝 ≔ 𝐵𝜈
𝜎

𝜕
𝜕𝑥𝜈 ∣

𝑝
, (4.118)

where 𝜎 = 0, … , 𝑛 and the coefficients 𝐵𝜈
𝜎 form a regular (𝑛+1)-by-(𝑛+1)

matrix. The tangent vector 𝑤𝑝 from (4.117) can be represented as

𝑤𝑝 = 𝑣𝜎 𝖇𝜎∣𝑝 = 𝐵𝜈
𝜎 𝑣𝜎 𝜕

𝜕𝑥𝜈 ∣
𝑝
,

37. See Theorem 3.15 for the proof.
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with
𝑢𝜈 = 𝐵𝜈

𝜎 𝑣𝜎. (4.119)

We assume that the coefficients 𝐵𝜈
𝜎 smoothly depend on the point, i.e., that

they are smooth real-valued functions defined on the manifold 𝑀

𝐵𝜈
𝜎 ∶ 𝑀 → ℝ, 𝑝 ↦ 𝐵𝜈

𝜎(𝑝),

which satisfy
det [𝐵𝜈

𝜎(𝑝)] ≠ 0 (4.120)

for all 𝑝 ∈ 𝑀. In the context of principal bundles the basis (𝖇0∣𝑝, … , 𝖇𝑛∣𝑝)
could be defined as a section of the so-called bundle of frames of 𝑀. However,
we abstain from introducing the theory of principal bundles and refer the
interested reader to Chapter 8 in Spivak 1999b.

With assumption (4.120), the point-by-point requirement (4.118) defines
local basis fields

𝖇𝜎 ∶ 𝑀 ⊇ 𝑈 → 𝑇𝑀, 𝑝 ↦ 𝖇𝜎(𝑝) = (𝑝, 𝖇𝜎∣𝑝).

The fact that the chart (4.116) is adapted implies for its induced basis vectors
𝜕⁄𝜕𝑥0, … , 𝜕⁄𝜕𝑥𝑛 that

ϑ( 𝜕
𝜕𝑥0 ) = d𝑡( 𝜕

𝜕𝑡) = 1

and that
ϑ( 𝜕

𝜕𝑥𝑖 ) = d𝑡( 𝜕
𝜕𝑥𝑖 ) = 0,

with 𝑖 = 1, … , 𝑛. The analogue requirement for the basis fields (𝖇0, … , 𝖇𝑛)
reads

ϑ(𝖇0) != 1 and ϑ(𝖇𝑖)
!= 0, for 𝑖 = 1, … , 𝑛 (4.121)

and imposes the restrictions

𝐵0
0 = 1 and 𝐵0

𝑖 = 0, for 𝑖 = 1, … , 𝑛 (4.122)

on the (𝑛 + 1)2 coefficients functions 𝐵𝜈
𝜎 ∶ 𝑀 → ℝ. Therefore, the linear

transformation (4.118) is restricted to

𝖇0 = 𝜕
𝜕𝑥0 +𝐵𝑖

0
𝜕

𝜕𝑥𝑖 = 𝜕
𝜕𝑡 +𝑏𝑖 𝜕

𝜕𝑥𝑖 ,

𝖇𝑖 = 𝐵 𝑗
𝑖

𝜕
𝜕𝑥 𝑗

(4.123)
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if it should be adapted to the time structure. Note that we introduced
𝑏𝑖 ≔ 𝐵𝑖

0 in the first equation for notational convenience. The coefficient
functions 𝐵𝜈

𝜎 from (4.123) can be written in matrix form as

[𝐵𝜈
𝜎] =

⎡
⎢
⎢
⎢
⎣

1 0 ⋯ 0
𝑏1 𝐵1

1 ⋯ 𝐵1
𝑛

⋮ ⋮ ⋱ ⋮
𝑏𝑛 𝐵𝑛

1 ⋯ 𝐵𝑛
𝑛

⎤
⎥
⎥
⎥
⎦

.

By using the rule for expansion of a determinant38 according to the first
row, we obtain for the regularity condition that

det [𝐵𝜈
𝜎] ≠ 0 ⇔ det [𝐵𝑖

𝑗] ≠ 0. (4.124)

Therefore, the linear coordinate changes on the tangent space of 𝑀 that
are compatible with the time structure are given by choosing 𝑛2 coefficient
functions 𝐵𝑖

𝑗 ∶ 𝑀 → ℝ defining a regular 𝑛-by-𝑛 matrix for each point 𝑝 ∈ 𝑀
and by 𝑛 functions 𝑏𝑖 ∶ 𝑀 → ℝ. We have already observed that the state
space 𝐴1𝑀 is an affine subbundle (see Section 4.3) of the tangent bundle
𝑇𝑀 and, therefore, it is not surprising that the transformations (4.123)
compatible with the time structure are affine transformations.

It can be readily observed from the transformation rule (4.119) that the
restrictions (4.122) imply that 𝑢0 = 𝑣0. The basis fields (4.123) complying
with the time structure can be used to express a time-normalized 𝑣𝑝 ∈ 𝐴1

𝑝𝑀
as

𝑣𝑝 = 𝖇0∣𝑝 +𝑣𝑖 𝖇𝑖∣𝑝. (4.125)

The adapted chart (4.116) together with the basis fields 𝖇0, … , 𝖇𝑛 define a
chart on the state space 𝐴1𝑀 by

𝛹∶ 𝐴1𝑀 ⊇ 𝜋−1(𝑈) → ℝ2𝑛+1,
(𝑝, 𝑣𝑝) ↦ ( ̄𝑡, ̄𝑥1, … , ̄𝑥𝑛, 𝑣1, … , 𝑣𝑛),

(4.126)

where the coordinates 𝑣1, … , 𝑣𝑛 are the coefficients from (4.125) that satisfy

𝑢𝑖 = 𝐵𝑖
𝑗 𝑣 𝑗 +𝑏𝑖 (4.127)

because of the transformation rules (4.123). The first 𝑛 + 1 coordinates
̄𝑡, ̄𝑥1, … , ̄𝑥𝑛 are provided by the adapted chart (4.116) of the base manifold

𝑀. Therefore, they are equal to the coordinates 𝑡, 𝑥1, … , 𝑥𝑛 provided by the
natural chart (4.17). The bars on 𝑡 and the 𝑥𝑖 shall allow to distinguish both

38. See Theorem 2.4 in Lang 2004.
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sets of coordinates in calculations. Please be aware that ̄𝑡 = 𝑡 and ̄𝑥𝑖 = 𝑥𝑖

imply d ̄𝑡 = d𝑡 and d ̄𝑥𝑖 = d𝑥𝑖, but that in general 𝜕⁄𝜕 ̄𝑡 ≠ 𝜕⁄𝜕𝑡 and 𝜕⁄𝜕 ̄𝑥𝑖 ≠ 𝜕⁄𝜕𝑥𝑖.
By the regularity condition (4.124), the coefficient matrix [𝐵𝑖

𝑗] is invertible
and we denote its inverse matrix by [𝐴 𝑗

𝑘] such that

𝐵𝑖
𝑗 𝐴 𝑗

𝑘 = δ𝑖
𝑘.

Using the newly defined coefficient functions 𝐴 𝑗
𝑘, the coordinate change

from (4.127) can be rewritten as

𝑣𝑖 = 𝐴𝑖
𝑗(𝑢 𝑗 −𝑏 𝑗 ). (4.128)

With equations (4.127) and (4.128), the change of coordinates between the
natural chart (4.17) and the chart (4.126) is given by

𝑡 = ̄𝑡,
𝑥𝑖 = ̄𝑥𝑖,
𝑢𝑖 = 𝐵𝑖

𝑗 𝑣 𝑗 +𝑏𝑖
(4.129)

and
̄𝑡 = 𝑡,

̄𝑥𝑖 = 𝑥𝑖,
𝑣𝑖 = 𝐴𝑖

𝑗(𝑢 𝑗 −𝑏 𝑗 ),
(4.130)

respectively. The chart (4.126) induces the basis fields

𝜕
𝜕 ̄𝑡 , 𝜕

𝜕 ̄𝑥1 , … , 𝜕
𝜕 ̄𝑥𝑛 , 𝜕

𝜕𝑣1 , … , 𝜕
𝜕𝑣𝑛 ,

which are local vector fields on 𝜋−1(𝑈) ⊆ 𝐴1𝑀. From the chart representa-
tion of the natural projection 𝜋∶ 𝐴1𝑀 → 𝑀 (see equation (4.18))

𝜙∘𝜋∘𝛹−1 ∶ ℝ2𝑛+1 ⊇ 𝛹(𝜋−1(𝑈)) → 𝜙(𝑈) ⊆ ℝ𝑛+1,
( ̄𝑡, ̄𝑥1, … , ̄𝑥𝑛, 𝑣1, … , 𝑣𝑛) ↦ (𝑡, 𝑥1, … , 𝑥𝑛) = ( ̄𝑡, ̄𝑥1, … , ̄𝑥𝑛),

we can see that for all points 𝑎 ∈ 𝜋−1(𝑈) the vector fields

𝜕
𝜕𝑣1 , … , 𝜕

𝜕𝑣𝑛 ,

provide a basis of Ver𝑎(𝐴1𝑀) = ker D𝜋𝑎 ⊂ 𝑇𝑎(𝐴1𝑀) and, therefore,

Ver𝑎(𝐴1𝑀) = span{ 𝜕
𝜕𝑣1 ∣

𝑎
, … , 𝜕

𝜕𝑣𝑛 ∣
𝑎
}.
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Moreover, it holds that

𝑇𝑎(𝐴1𝑀) = span{ 𝜕
𝜕 ̄𝑡 ∣

𝑎
, 𝜕

𝜕 ̄𝑥1 ∣
𝑎
, … , 𝜕

𝜕 ̄𝑥𝑛 ∣
𝑎
}⊕Ver𝑎(𝐴1𝑀)

and by the isomorphism (2.16), we know that

span{ 𝜕
𝜕 ̄𝑡 ∣

𝑎
, 𝜕

𝜕 ̄𝑥1 ∣
𝑎
, … , 𝜕

𝜕 ̄𝑥𝑛 ∣
𝑎
} ≅ 𝑇𝑎(𝐴1𝑀)/Ver𝑎(𝐴1𝑀).

Finally, using the isomorphism (4.40), we conclude that

span{ 𝜕
𝜕 ̄𝑡 ∣

𝑎
, 𝜕

𝜕 ̄𝑥1 ∣
𝑎
, … , 𝜕

𝜕 ̄𝑥𝑛 ∣
𝑎
} ≅ 𝑇𝜋(𝑎)𝑀. (4.131)

Since
𝑇𝜋(𝑎)𝑀 = span{ 𝜕

𝜕𝑡 ∣
𝜋(𝑎)

, 𝜕
𝜕𝑥1 ∣

𝜋(𝑎)
, … , 𝜕

𝜕𝑥𝑛 ∣
𝜋(𝑎)

},

the isomorphism (4.131) can be expressed as

𝜕
𝜕 ̄𝑥𝜈 ∣

𝑎
↦ 𝜕

𝜕𝑥𝜈 ∣
𝜋(𝑎)

. (4.132)

After the identification of these bases, equation (4.123) defines the basis
vectors

𝖇′
0∣𝑎 ≔ 𝜕

𝜕 ̄𝑡 ∣
𝑎

+𝑏𝑖 ∘𝜋(𝑎) 𝜕
𝜕 ̄𝑥𝑖 ∣

𝑎
,

𝖇′
𝑖∣𝑎 = 𝐵 𝑗

𝑖 ∘𝜋(𝑎) 𝜕
𝜕 ̄𝑥 𝑗 ∣

𝑎

(4.133)

on the neighbourhood 𝜋−1(𝑈) ⊆ 𝐴1𝑀. It can be easily verified that the 𝖇′
𝜈

are compatible (see equation (4.121)) with the time structure of the state
space (see equation (4.19)). We will drop the prime in the notation of the
basis vectors (4.133) because the distinction remains possible via the point of
evaluation similar to the basis vectors in (4.132). Moreover, we refrain from
denoting the coefficient functions in (4.133) by 𝐵̂ 𝑗

𝑖 = 𝐵 𝑗
𝑖 ∘𝜋 and 𝑏̂𝑖 = 𝑏𝑖 ∘𝜋,

as we did for the coefficients of ̂𝑔 in (4.44). Because this notation would
be to heavy, we use the same symbol for both types of coefficient functions
𝐵 𝑗

𝑖 ∶ 𝑀 ⊇ 𝑈 → ℝ𝑛+1 and 𝐵 𝑗
𝑖 = 𝐵 𝑗

𝑖 ∘𝜋∶ 𝜋−1(𝑈) → ℝ2𝑛+1. The vectors

𝖇0∣𝑎, … , 𝖇𝑛∣𝑎, 𝜕
𝜕𝑣1 ∣

𝑎
, … , 𝜕

𝜕𝑣𝑛 ∣
𝑎

(4.134)

provide a basis of 𝑇𝑎(𝐴1𝑀) for all points 𝑎 ∈ 𝜋−1(𝑈) ⊆ 𝐴1𝑀.
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Let (𝖇0, … , 𝖇𝑛, d𝑣1, … , d𝑣𝑛) denote the local covector fields that are dual
to the basis fields (4.134) such that

𝖇𝜈(𝖇𝜎) != δ𝜈
𝜎, d𝑣𝑖(𝖇𝜎) != 0

𝖇𝜈( 𝜕
𝜕𝑣 𝑗 ) != 0, d𝑣𝑖( 𝜕

𝜕𝑣 𝑗 ) != δ𝑖
𝑗,

with 𝜈, 𝜎 = 0, … , 𝑛 and 𝑖, 𝑗 = 1, … , 𝑛. For calculations in local coordinates it
is helpful to express the covector fields 𝖇0, … , 𝖇𝑛, d𝑣1, … , d𝑣𝑛 in terms of
the dual coordinate fields d ̄𝑡, d ̄𝑥1, … , d ̄𝑥𝑛, d𝑣1, … , d𝑣𝑛 and d𝑡, d𝑥1, … , d𝑥𝑛,
d𝑢1, … , d𝑢𝑛 induced by the chart (4.126) and the natural chart (4.17), re-
spectively. Straightforward computation leads to

𝖇0 = d ̄𝑡 = d𝑡,
𝖇𝑖 = 𝐴𝑖

𝑗(d ̄𝑥 𝑗 −𝑏 𝑗d ̄𝑡) = 𝐴𝑖
𝑗(d𝑥 𝑗 −𝑏 𝑗d𝑡),

d𝑣𝑖 = (
𝜕𝐴𝑖

𝑗
𝜕𝑡 (𝑢 𝑗 −𝑏 𝑗)−𝐴𝑖

𝑗
𝜕𝑏 𝑗

𝜕𝑡 )d𝑡+(
𝜕𝐴𝑖

𝑗
𝜕𝑥𝑘 (𝑢 𝑗 −𝑏 𝑗)−𝐴𝑖

𝑗
𝜕𝑏 𝑗

𝜕𝑥𝑘 )d𝑥𝑘 +𝐴𝑖
𝑗d𝑢 𝑗,
(4.135)

where the last line is obtained by taking the exterior derivative of the
coordinate functions (4.128). Using the relations (4.135) and the exterior
derivative of the expression (4.127), it follows that

d𝑡 = d ̄𝑡 = 𝖇0,
d𝑥𝑖 = d ̄𝑥𝑖 = 𝐵𝑖

𝑗𝖇 𝑗 +𝑏𝑖𝖇0,

d𝑢𝑖 = [𝑣 𝑗(
𝜕𝐵𝑖

𝑗
𝜕 ̄𝑡 +𝑏𝑘 𝜕𝐵𝑖

𝑗
𝜕 ̄𝑥𝑘 )+ 𝜕𝑏𝑖

𝜕 ̄𝑡 +𝑏𝑘 𝜕𝑏𝑖

𝜕 ̄𝑥𝑘 ]𝖇0 +𝐵𝑘
𝑙 (𝑣 𝑗 𝜕𝐵𝑖

𝑗
𝜕 ̄𝑥𝑘 + 𝜕𝑏𝑖

𝜕 ̄𝑥𝑘 )𝖇𝑙 +𝐵𝑖
𝑗d𝑣 𝑗.

(4.136)

By Theorem 4.2(iii), we know that the action form Ω=Ωp
𝑅+Φnp

𝑅 determines
the vector field 𝑋 ∈ Vect(𝐴1𝑀) that describes the motion by

(𝑋) = 1, (4.137)
𝑋 Ω = 0. (4.138)

Equation (4.137) requires the vector field 𝑋 to be time-normalized. Because
of 𝖇0 = d𝑡 (see equation (4.135)), it locally holds that = 𝖇0 and therefore
the time-normalized vector field 𝑋 (satisfying (4.137)) can be locally written
as

𝑋 = 𝖇0 +𝐶𝑖𝖇𝑖 +𝐷𝑖 𝜕
𝜕𝑣𝑖 . (4.139)

This time-normalized vector field is then uniquely determined by condi-
tion (4.138) that can be written as

0 = 𝑋 Ω = 𝑋 Ωp
𝑅 +𝑋 Φnp

𝑅 , (4.140)
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where Ωp
𝑅 = dω𝑅 with ω𝑅 = 𝐿𝑅 +𝛛𝐿𝑅 according to Postulate 4.8. As before,

we drop the letter 𝑅 that stands for the reference field wherever it becomes a
notational impediment. First, we inspect the term 𝑋 Ωp

𝑅=𝑋 dω𝑅 in (4.140).
For this we express

ω𝑅 = 𝐿 +𝛛𝐿 = 𝐿d𝑡+ 𝜕𝐿
𝜕𝑢𝑖 (d𝑥𝑖 −𝑢𝑖d𝑡)

in terms of the coordinates ̄𝑡, ̄𝑥1, … , ̄𝑥𝑛 and the covector fields 𝖇0, … , 𝖇𝑛 as

ω𝑅 = 𝐿𝖇0 + 𝜕𝐿
𝜕𝑣𝑖 (𝖇𝑖 −𝑣𝑖𝖇0), (4.141)

where we used equations (4.129), (4.136) and that

𝜕
𝜕𝑣𝑖 = 𝜕

𝜕𝑣𝑖 [𝑡] 𝜕
𝜕𝑡 + 𝜕

𝜕𝑣𝑖 [𝑥 𝑗] 𝜕
𝜕𝑥 𝑗 + 𝜕

𝜕𝑣𝑖 [𝑢 𝑗] 𝜕
𝜕𝑢 𝑗 = 𝐵 𝑗

𝑖
𝜕

𝜕𝑢 𝑗 . (4.142)

Taking the exterior derivative of the Cartan one-form (4.141) yields

dω𝑅 = d𝐿∧𝖇0 +d( 𝜕𝐿
𝜕𝑣𝑖 )∧(𝖇𝑖 −𝑣𝑖𝖇0)+ 𝜕𝐿

𝜕𝑣𝑖 (d𝖇𝑖 −d𝑣𝑖 ∧𝖇0) (4.143)

and this leads to

𝑋 Ωp
𝑅 = 𝑋 dω𝑅

= 𝑖𝑋(d𝐿∧𝖇0)+𝑖𝑋 ∘d( 𝜕𝐿
𝜕𝑣𝑖 )(𝖇𝑖 −𝑣𝑖𝖇0)

−d( 𝜕𝐿
𝜕𝑣𝑖 )𝑖𝑋(𝖇𝑖 −𝑣𝑖𝖇0)+ 𝜕𝐿

𝜕𝑣𝑖 (𝑖𝑋 ∘d𝖇𝑖 −𝑖𝑋(d𝑣𝑖 ∧𝖇0)).

(4.144)

We digest expression (4.144) term by term. The first one can be readily
expressed as

𝑖𝑋(d𝐿∧𝖇0) = 𝔏𝑋 𝐿𝖇0 −d𝐿 = (𝔏𝑋 𝐿−𝖇0[𝐿])𝖇0 −𝖇𝑖[𝐿]𝖇𝑖 − 𝜕𝐿
𝜕𝑣𝑖 d𝑣𝑖

using the definition (3.62) of the exterior derivative of a real-valued function.
By the same argument,

𝑖𝑋 ∘d( 𝜕𝐿
𝜕𝑣𝑖 ) = 𝔏𝑋( 𝜕𝐿

𝜕𝑣𝑖 )

and the second term can be rewritten as

𝑖𝑋 ∘d( 𝜕𝐿
𝜕𝑣𝑖 )(𝖇𝑖 −𝑣𝑖𝖇0) = 𝔏𝑋( 𝜕𝐿

𝜕𝑣𝑖 )(𝖇𝑖 −𝑣𝑖𝖇0).
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With the local expression (4.139) of the vector field 𝑋, the third term of
equation (4.144) becomes

−d( 𝜕𝐿
𝜕𝑣𝑖 )𝑖𝑋(𝖇𝑖 −𝑣𝑖𝖇0) = −d( 𝜕𝐿

𝜕𝑣𝑖 )(𝐶𝑖 −𝑣𝑖),

with
d( 𝜕𝐿

𝜕𝑣𝑖 ) = 𝖇0[ 𝜕𝐿
𝜕𝑣𝑖 ]𝖇0 +𝖇𝑗[

𝜕𝐿
𝜕𝑣𝑖 ]𝖇 𝑗 + 𝜕

𝜕𝑣 𝑗 [ 𝜕𝐿
𝜕𝑣𝑖 ]d𝑣 𝑗.

The final term
𝜕𝐿
𝜕𝑣𝑖 (𝑖𝑋 ∘d𝖇𝑖 −𝑖𝑋(d𝑣𝑖 ∧𝖇0))

needs a bit more care. By equation (4.135), we know that

𝖇𝑖 = 𝐴𝑖
𝑗(d𝑥 𝑗 −𝑏 𝑗d𝑡)

and consequently

d𝖇𝑖 = d(𝐴𝑖
𝑗(d𝑥 𝑗 −𝑏 𝑗d𝑡))

= d𝐴𝑖
𝑗 ∧(d𝑥 𝑗 −𝑏 𝑗d𝑡)−𝐴𝑖

𝑗 d𝑏 𝑗∧d𝑡

= 𝐵 𝑗
𝑘d𝐴𝑖

𝑗 ∧𝖇𝑘 −𝐴𝑖
𝑗 d𝑏 𝑗∧𝖇0,

where in the last line we made use of (4.136). Therefore, the interior product
𝑖𝑋 ∘d𝖇𝑖 can be expressed using the local expression (4.139) of the vector field
𝑋 as

𝑖𝑋 ∘d𝖇𝑖 = 𝑖𝑋(𝐵 𝑗
𝑘d𝐴𝑖

𝑗 ∧𝖇𝑘 −𝐴𝑖
𝑗 d𝑏 𝑗∧𝖇0)

= 𝐵 𝑗
𝑘𝔏𝑋 𝐴𝑖

𝑗 𝖇𝑘 −𝐵 𝑗
𝑘𝐶𝑘(𝖇0[𝐴𝑖

𝑗]𝖇0 +𝖇𝑙[𝐴𝑖
𝑗]𝖇𝑙)

−𝐴𝑖
𝑗(𝔏𝑋 𝑏 𝑗 −𝖇0[𝑏 𝑗])𝖇0 +𝐴𝑖

𝑗𝖇𝑘[𝑏 𝑗]𝖇𝑘

= −(𝐵 𝑗
𝑘𝐶𝑘𝖇0[𝐴𝑖

𝑗]+𝐴𝑖
𝑗(𝔏𝑋𝑏 𝑗 −𝖇0[𝑏 𝑗]))𝖇0

+(𝐵 𝑗
𝑘𝔏𝑋 𝐴𝑖

𝑗 −𝐵 𝑗
𝑙 𝐶𝑙𝖇𝑘[𝐴𝑖

𝑗]+𝐴𝑖
𝑗𝖇𝑘[𝑏 𝑗])𝖇𝑘.

(4.145)

The interior product −𝑖𝑋(d𝑣𝑖 ∧𝖇0) lets us recover our breath. Indeed, using
the local expression (4.139) of the vector field 𝑋, it readily follows that

−𝑖𝑋(d𝑣𝑖 ∧𝖇0) = −𝐷𝑖𝖇0 +d𝑣𝑖,

such that

𝑖𝑋 ∘d𝖇𝑖 −𝑖𝑋(d𝑣𝑖 ∧𝖇0) = −(𝐵 𝑗
𝑘𝐶𝑘𝖇0[𝐴𝑖

𝑗]+𝐴𝑖
𝑗(𝔏𝑋𝑏 𝑗 −𝖇0[𝑏 𝑗])+𝐷𝑖)𝖇0

+(𝐵 𝑗
𝑘𝔏𝑋 𝐴𝑖

𝑗 −𝐵 𝑗
𝑙 𝐶𝑙𝖇𝑘[𝐴𝑖

𝑗]+𝐴𝑖
𝑗𝖇𝑘[𝑏 𝑗])𝖇𝑘 +d𝑣𝑖.
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Finally, we can gather our results and restate (4.144) with respect to the
basis covector fields 𝖇0, … , 𝖇𝑛, d𝑣1, … , d𝑣𝑛 as

𝑋 Ωp
𝑅 = [𝔏𝑋 𝐿−𝖇0[𝐿]−𝑣𝑖𝔏𝑋( 𝜕𝐿

𝜕𝑣𝑖 )−𝖇0[ 𝜕𝐿
𝜕𝑣𝑖 ](𝐶𝑖 −𝑣𝑖)

− 𝜕𝐿
𝜕𝑣𝑖 (𝐵 𝑗

𝑘𝐶𝑘𝖇0[𝐴𝑖
𝑗]+𝐴𝑖

𝑗(𝔏𝑋𝑏 𝑗 −𝖇0[𝑏 𝑗])+𝐷𝑖)]𝖇0

+[𝔏𝑋( 𝜕𝐿
𝜕𝑣𝑘 )−𝖇𝑘[𝐿]−𝖇𝑘[ 𝜕𝐿

𝜕𝑣𝑖 ](𝐶𝑖 −𝑣𝑖)

+ 𝜕𝐿
𝜕𝑣𝑖 (𝐵 𝑗

𝑘𝔏𝑋 𝐴𝑖
𝑗 −𝐵 𝑗

𝑙 𝐶𝑙𝖇𝑘[𝐴𝑖
𝑗]+𝐴𝑖

𝑗𝖇𝑘[𝑏 𝑗])]𝖇𝑘

+[ 𝜕2𝐿
𝜕𝑣 𝑗𝜕𝑣𝑖 (𝑣𝑖 −𝐶𝑖)]d𝑣 𝑗.

(4.146)

With (4.146), we have derived the first term of the sum (4.140). In order to
express the second term 𝑋 Φnp

𝑅 , we start by expressing the two-form Φnp
𝑅

modelling the nonpotential forces with respect to the basis covector fields
𝖇0, … , 𝖇𝑛, d𝑣1, … , d𝑣𝑛 using the coordinate transformation rules (4.129),
(4.136) and (4.142) as

Φnp
𝑅 = 𝐹𝑖 d𝑥𝑖 ∧d𝑡+ 1

2
𝜕𝐹𝑖
𝜕𝑢 𝑗 (d𝑥𝑖 −𝑢𝑖d𝑡)∧(d𝑥 𝑗 −𝑢 𝑗d𝑡)

= 𝐵𝑖
𝑗 𝐹𝑖 𝖇 𝑗 ∧𝖇0 + 1

2 𝐵𝑖
𝑗

𝜕𝐹𝑖
𝜕𝑣𝑘 (𝖇 𝑗 −𝑣 𝑗𝖇0)∧(𝖇𝑘 −𝑣𝑘𝖇0)

= ̄𝐹𝑗 𝖇 𝑗 ∧𝖇0 + 1
2

𝜕 ̄𝐹𝑗
𝜕𝑣𝑘 (𝖇 𝑗 −𝑣 𝑗𝖇0)∧(𝖇𝑘 −𝑣𝑘𝖇0),

(4.147)

where we have introduced ̄𝐹𝑗 ≔ 𝐵𝑖
𝑗 𝐹𝑖. Consequently, we obtain

𝑋 Φnp
𝑅 = [𝐶 𝑗 ̄𝐹𝑗 − 1

2𝑣 𝑗(𝐶𝑘 −𝑣𝑘)(𝜕 ̄𝐹𝑘
𝜕𝑣 𝑗 −

𝜕 ̄𝐹𝑗
𝜕𝑣𝑘 )]𝖇0

+[− ̄𝐹𝑗 + 1
2(𝐶𝑘 −𝑣𝑘)(𝜕 ̄𝐹𝑘

𝜕𝑣 𝑗 −
𝜕 ̄𝐹𝑗
𝜕𝑣𝑘 )]𝖇 𝑗.

(4.148)

We immediately notice the apparent similarity with the one-form (4.109).
By equation (4.140), the sum of (4.146) and (4.148) needs to vanish, i.e.,

each component with respect to the basis 𝖇0, … , 𝖇𝑛, d𝑣1, … , d𝑣𝑛 needs to be
zero separately. From the components in d𝑣1, … , d𝑣𝑛 it follows that

𝐶𝑖 = 𝑣𝑖 (4.149)
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for 𝑖 = 1, … , 𝑛, because the matrix

𝜕2𝐿
𝜕𝑣 𝑗𝜕𝑣𝑖 = 𝐵𝑙

𝑗 𝑔𝑙𝑘 𝐵𝑘
𝑖

is positive definite and, therefore, has full rank. With the kinematic condi-
tion (4.149), the annihilation of the 𝖇1, … , 𝖇𝑛 components of the sum (4.140)
leads to Hamel’s equations

𝔏𝑋( 𝜕𝐿
𝜕𝑣𝑘 )−𝖇𝑘[𝐿]+ 𝜕𝐿

𝜕𝑣𝑖 (𝐵 𝑗
𝑘𝔏𝑋 𝐴𝑖

𝑗 −𝐵 𝑗
𝑙 𝑣𝑙𝖇𝑘[𝐴𝑖

𝑗]+𝐴𝑖
𝑗𝖇𝑘[𝑏 𝑗])= ̄𝐹𝑘. (4.150)

For the case of a linear transformation 𝑏𝑖 = 0 depending only on the
generalized coordinates 𝑥1, … , 𝑥𝑛 and not on 𝑥0 = 𝑡, i.e.,

𝐵 𝑗
𝑖 ∘𝜙−1(𝑡, 𝑥1, … , 𝑥𝑛) = 𝐵 𝑗

𝑖 ∘𝜙−1(𝑥1, … , 𝑥𝑛),

the resulting equations were studied in Hamel 1904a, § 5. In the context of a
geometric treatment of time-independent mechanics, Bloch 2015, Section 3.8
refers to these equations as Hamel’s equations. The author decided to follow
this suggestion.

However, the difficulties that arise in naming equations should not go
unmentioned. On the one hand, there is the observation that in our geomet-
ric formulation of the mechanics of finite-dimensional mechanical systems
(Postulate 4.8) Lagrange’s equations of the second kind (4.111) and Hamel’s
equations are “just” different chart representations of the same geometric
objects. With this view, one would rather avoid different names. On the
other hand, by scientific probity, equations should be attributed to the sci-
entist that derived them first. However, this question is by far not easy
because there are always fine nuances in the presentations. In the field
of technical mechanics, Bremer 1988, p. 47 refers to Hamel’s equations in
their variational form as Hamel–Boltzmann equations. Hamel39 refers to
the equations as Lagrange–Euler equations since they include Lagrange’s
equations of the second kind as well as Euler’s equations describing the
rotation of a rigid body. The author thinks that this designation might easily
lend to confusion with the Euler–Lagrange equations that appear as the
stationarity condition in the calculus of variations. The study of Volterra
1898, led the author and his coworkers suggest the designation as Volterra–
Hamel–Boltzmann equations (see Winandy et al. 2018). However, this name
is not only somewhat clumsy but it ignores the work of Voronets 1901, whose
contribution is recognized by Hamel 1904b, footnote on p. 424. We refer to
Chapter III of Neĭmark et al. 1972 for a presentation of the contribution of
the different authors.

39. See pp. 480–481 of Hamel 1949.
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4.10.3. Hamilton’s equations

We introduce the coordinates

𝑝𝑖 ≔ 𝜕𝐿𝑅
𝜕𝑢𝑖 = 𝑔𝑖𝑗(𝑢 𝑗 −𝑅 𝑗 )+𝐴𝑅

𝑖 , (4.151)

to which we refer as generalized momentum coordinates. The last equal-
ity follows by equations (4.92) and (4.75) together with 𝜕𝑉𝑅/𝜕𝑢𝑖 = 0. The
full rank of the matrix [𝑔𝑖𝑗] guarantees that the relation (4.151) can be
resolved for 𝑢1, … , 𝑢𝑛 as

𝑢𝑖 = 𝑔𝑖𝑗(𝑝𝑗 −𝐴𝑅
𝑗 )+𝑅𝑖, (4.152)

where 𝑔𝑖𝑘𝑔𝑘𝑗 = δ𝑖
𝑗. Therefore, the coordinate functions

̃𝑡 = 𝑡,
̃𝑥𝑖 = 𝑥𝑖,

𝑝𝑖 = 𝑔𝑖𝑗(𝑢 𝑗 −𝑅 𝑗 )+𝐴𝑅
𝑖

with 𝑖 = 1, … , 𝑛 define the chart

𝛷̃ ∶ 𝐴1𝑀 ⊇ 𝜋−1(𝑈) → ℝ2𝑛+1,
(𝑝, 𝑣𝑝) ↦ ( ̃𝑡, ̃𝑥1, … , ̃𝑥𝑛, 𝑝1, … , 𝑝𝑛)

(4.153)

on 𝜋−1(𝑈). The chart (4.153) results from the natural chart (4.17) by us-
ing the coordinates 𝑝1, … , 𝑝𝑛 instead of 𝑢1, … , 𝑢𝑛 for the representation of
time-normalized vectors. We refer to ( ̃𝑡, ̃𝑥1, … , ̃𝑥𝑛, 𝑝1, … , 𝑝𝑛) as canonical
coordinates.40 As before, the tildes on 𝑡 and the 𝑥𝑖 allow the distinc-
tion between the canonical coordinates and those provided by the natural
chart (4.17).

It is by representing the objects from Postulate 4.8 in canonical coordinates
that we obtain Hamilton’s equations. We rewrite the Cartan one-form (4.96)
as

ω𝑅 = (𝐿𝑅 −𝑢𝑖 𝜕𝐿𝑅
𝜕𝑢𝑖 )d𝑡+ 𝜕𝐿𝑅

𝜕𝑢𝑖 d𝑥𝑖 = −𝐻𝑅d ̃𝑡+𝑝𝑖d ̃𝑥𝑖, (4.154)

where we used that d𝑡=d ̃𝑡 and d𝑥𝑖 =d ̃𝑥𝑖 for 𝑖=1, … , 𝑛. Moreover, we defined

40. These coordinates are by no means canonically defined since they depend on the choice
of a reference field 𝑅. Physically, the quantities 𝑝1, … , 𝑝𝑛 are generalized momenta. In
the context of time-independent mechanics playing on the cotangent bundle 𝑇∗𝑄 of a time-
independent configuration manifold 𝑄, the position and generalized momentum coordinates
provided by the chart (3.68) are canonical coordinates according to the Darboux theorem (see
p. 84). Moreover, Hamilton’s equations are also referred to as canonical equations (see Landau
and E. M. Lifshitz 1969, p. 132). So we use the adjective canonical because of tradition.
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the Hamiltonian as

𝐻𝑅 ∶ 𝐴1𝑀 ⊇ 𝜋−1(𝑈) → ℝ, 𝑎 ↦ 𝐻𝑅(𝑎) ≔ −(𝐿𝑅 −𝑢𝑖 𝜕𝐿𝑅
𝜕𝑢𝑖 )(𝑎),

which is a local function defined on the neighbourhood 𝜋−1(𝑈). It follows
by Euler’s theorem41 that

𝐻𝑅 = 𝑢𝑖 𝜕𝐿𝑅
𝜕𝑢𝑖 −𝐿𝑅 = 𝑇𝑅,2 −𝑇𝑅,0 +𝑉𝑅, (4.155)

where the last equality uses (4.75) and (4.92). We compute Ωp
𝑅 by taking

the exterior derivative of the Cartan one-form (4.154) as

Ωp
𝑅 = dω𝑅 = −d𝐻 ∧d ̃𝑡+d𝑝𝑖 ∧d ̃𝑥𝑖

= −𝜕𝐻
𝜕 ̃𝑥𝑖 d ̃𝑥𝑖 ∧d ̃𝑡− 𝜕𝐻

𝜕𝑝𝑖
d𝑝𝑖 ∧d ̃𝑡+d𝑝𝑖 ∧d ̃𝑥𝑖,

(4.156)

where we stuck to our policy of dropping the letter 𝑅 whenever it is hindering.
We use (3.47) to express the basis vectors 𝜕⁄𝜕𝑢𝑖 induced by the natural

chart (4.17) with respect to the basis vectors induced by the chart (4.153) as

𝜕
𝜕𝑢𝑖 = 𝜕

𝜕𝑢𝑖 [ ̃𝑡] 𝜕
𝜕 ̃𝑡

+ 𝜕
𝜕𝑢𝑖 [ ̃𝑥 𝑗] 𝜕

𝜕 ̃𝑥 𝑗 + 𝜕
𝜕𝑢𝑖 [𝑝𝑗]

𝜕
𝜕𝑝𝑗

= 𝑔𝑗𝑖
𝜕

𝜕𝑝𝑗
.

With this relation and equation (4.152), the nonpotential force Φnp
𝑅 adopts

the local form

Φnp
𝑅 = 𝐹𝑖 d ̃𝑥𝑖 ∧d ̃𝑡+ 1

2 𝑔𝑟𝑗
𝜕𝐹𝑖
𝜕𝑝𝑟

[d ̃𝑥𝑖 −(𝑔𝑖𝑘(𝑝𝑘 −𝐴𝑅
𝑘 )+𝑅𝑖)d ̃𝑡]

∧[d ̃𝑥 𝑗 −(𝑔 𝑗𝑙(𝑝𝑙 −𝐴𝑅
𝑙 )+𝑅 𝑗)d ̃𝑡]

because d𝑡 = d ̃𝑡 and d𝑥𝑖 = d ̃𝑥𝑖 for 𝑖 = 1, … , 𝑛.
The time-normalized field 𝑋 from (4.106) that describes the motion can

be locally expressed as

𝑋 = 𝜕
𝜕 ̃𝑡

+𝐴𝑖 𝜕
𝜕 ̃𝑥𝑖 +𝐸𝑖

𝜕
𝜕𝑝𝑖

, (4.157)

where we adopted the convention that a lower index appearing in the de-
nominator is considered to be an upper index. By Theorem 4.2(iii) the
time-normalized vector field 𝑋 is uniquely determined by

0 = 𝑋 Ω = 𝑋 Ωp
𝑅 +𝑋 Φnp

𝑅 ,

41. See the proof of Proposition 4.7.
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where Ω = Ωp
𝑅 +Φnp

𝑅 is the action form from Postulate 4.8. As before, we
compute 𝑋 Ωp

𝑅 and 𝑋 Φnp
𝑅 separately. With the local expressions (4.156)

and (4.157), we get

𝑋 Ωp
𝑅 = −(𝐴𝑖 𝜕𝐻

𝜕 ̃𝑥𝑖 +𝐸𝑖
𝜕𝐻
𝜕𝑝𝑖

)d ̃𝑡+(𝜕𝐻
𝜕 ̃𝑥𝑖 +𝐸𝑖)d ̃𝑥𝑖 +( 𝜕𝐻

𝜕𝑝𝑖
−𝐴𝑖)d𝑝𝑖 (4.158)

and

𝑋 Φnp
𝑅 = [𝐴𝑖𝐹𝑖 − 1

2(𝑔𝑖𝑘(𝑝𝑘 −𝐴𝑅
𝑘 )+𝑅𝑖)(𝐴 𝑗 −𝑔 𝑗𝑙(𝑝𝑙 −𝐴𝑅

𝑙 )−𝑅 𝑗)

⋅(𝑔𝑟𝑖
𝜕𝐹𝑗
𝜕𝑝𝑟

−𝑔𝑟𝑗
𝜕𝐹𝑖
𝜕𝑝𝑟

)]d ̃𝑡

+[−𝐹𝑖 + 1
2(𝐴 𝑗 −𝑔 𝑗𝑙(𝑝𝑙 −𝐴𝑅

𝑙 )−𝑅 𝑗)(𝑔𝑟𝑖
𝜕𝐹𝑗
𝜕𝑝𝑟

−𝑔𝑟𝑗
𝜕𝐹𝑖
𝜕𝑝𝑟

)]d ̃𝑥𝑖.

(4.159)

The one-form 𝑋 Ω = 𝑋 Ωp
𝑅 +𝑋 Φnp

𝑅 is zero if each component vanishes.
Since the coefficient of the d𝑝𝑖-component in (4.158) has to vanish, it follows
that

𝐴𝑖 = 𝜕𝐻
𝜕𝑝𝑖

(3.13)= 𝜕𝐻 ∘𝛷̃−1

𝜕𝑝𝑖
∘𝛷̃ = 𝑔𝑖𝑗(𝑝𝑗 −𝐴𝑅

𝑗 )+𝑅𝑖 (4.160)

because by (4.155), (4.75), and (4.152)

𝐻 ∘𝛷̃−1( ̃𝑡, 𝐱̃, 𝐩̃) = 1
2 𝑔𝑖𝑗(𝑝𝑖 −𝐴𝑅

𝑖 )(𝑝𝑗 −𝐴𝑅
𝑗 )+𝑅 𝑗(𝑝𝑗 −𝐴𝑅

𝑗 )+𝑉.

With equation (4.160), the annihilation of the d ̃𝑥𝑖-component of 𝑋 Ω implies
that

𝐸𝑖 = −𝜕𝐻
𝜕 ̃𝑥𝑖 +𝐹𝑖. (4.161)

Finally, it is by considering a time-parametrized integral curve (see equa-
tion (4.26)) of the vector field 𝑋 determined by equations (4.160) and (4.161)
that we obtain Hamilton’s equations42

̇ ̃𝑥𝑖(𝜏) = 𝜕H
𝜕𝑝𝑖

( ̃𝑡(𝜏), 𝐱̃(𝜏), 𝐩(𝜏)),

𝑝̇𝑖(𝜏) = −𝜕H
𝜕 ̃𝑥𝑖 ( ̃𝑡(𝜏), 𝐱̃(𝜏), 𝐩(𝜏))+F𝑖( ̃𝑡(𝜏), 𝐱̃(𝜏), 𝐩(𝜏)),

(4.162)

where we used upright letters H ≔ 𝐻 ∘𝛷̃−1 and F𝑖 ≔ 𝐹𝑖 ∘𝛷̃−1 to denote the
representation of the Hamiltonian 𝐻 and of the functions 𝐹𝑖 with respect to
the chart (4.153). Note that the time function ̃𝑡(𝜏) = ̃𝑡∘𝛽(𝜏) evaluated along
the motion is affine in 𝜏 because 𝛽 is an integral curve of a time-normalized
vector field.

42. See p. 132 of Landau and E. M. Lifshitz 1969.
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4.11. The variational approach

In Section 4.2, we saw that the time structure ϑ of a Galilean manifold
(𝑀,ϑ, 𝑔) allows to single out spacelike tangent vectors to 𝑀 (see equa-
tion (4.10)). The same can be done with tangent vectors to the state space
𝐴1𝑀 that is endowed with the time structure = 𝜋 ϑ induced by ϑ. At each
point 𝑎 ∈ 𝐴1𝑀, the space of spacelike vectors on 𝐴1𝑀 is the set

𝐴0
𝑎(𝐴1𝑀) ≔ ker 𝑎 = {𝑧 ∈ 𝑇𝑎(𝐴1𝑀) ∣ 𝑎(𝑧) = 0} ⊂ 𝑇𝑎(𝐴1𝑀).

Similar to (4.11), we define the corresponding subbundle of the tangent
bundle 𝑇(𝐴1𝑀) of the state space 𝐴1𝑀 as

𝐴0(𝐴1𝑀) ≔ ker = ⋃
𝑎∈𝐴1𝑀

𝐴0
𝑎(𝐴1𝑀) ⊂ 𝑇(𝐴1𝑀).

A virtual displacement field 𝑌 is a smooth section of this bundle, i.e.,

𝑌∶ 𝐴1𝑀 → 𝐴0(𝐴1𝑀), 𝑎 ↦ 𝑌(𝑎),

with 𝜋̄ ∘𝑌 = id𝐴1𝑀 and where 𝜋̄ ∶ 𝑇(𝐴1𝑀) → 𝐴1𝑀 denotes the natural pro-
jection of the tangent bundle 𝑇(𝐴1𝑀).

In Section 4.10, we introduced different sets of local coordinates that are
related to an adapted chart (𝑈, 𝜙) of the Galilean manifold (𝑀,ϑ, 𝑔). These
coordinates can be used for the local expression of the virtual displacement
field 𝑌 on the neighbourhood 𝜋−1(𝑈) ⊆ 𝐴1𝑀 as

𝑌 = δ𝑥𝑖 𝜕
𝜕𝑥𝑖 +δ𝑢𝑖 𝜕

𝜕𝑢𝑖

= δ𝑠𝑖𝖇𝑖 +δ𝑣𝑖 𝜕
𝜕𝑣𝑖

= δ ̃𝑥𝑖 𝜕
𝜕 ̃𝑥𝑖 +δ𝑝𝑖

𝜕
𝜕𝑝𝑖

.

(4.163)

where the respective coefficients are smooth real-valued functions defined on
the neighbourhood 𝜋−1(𝑈). The choice of the peculiar notation will become
clear in the following.

With equations (4.106), (4.139) and (4.157), we have seen that a time-
normalized vector field 𝑋 can be locally written as

𝑋 = 𝜕
𝜕𝑡 +𝐴𝑖 𝜕

𝜕𝑥𝑖 +𝐵𝑖 𝜕
𝜕𝑢𝑖

= 𝖇0 +𝐶𝑖𝖇𝑖 +𝐷𝑖 𝜕
𝜕𝑣𝑖

= 𝜕
𝜕 ̃𝑡

+𝐴𝑖 𝜕
𝜕 ̃𝑥𝑖 +𝐸𝑖

𝜕
𝜕𝑝𝑖

.
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According to Theorem 4.2(iii), the requirement

𝑋 Ω != 0, (4.164)

for a given action form Ω uniquely determines a time-normalized vector
field 𝑋. Condition (4.164) is equivalent to demanding that

𝑌̄ (𝑋 Ω) = Ω(𝑋, 𝑌̄) != 0, (4.165)

for all 𝑌̄ ∈ Vect(𝐴1𝑀). Equation (4.165) is referred to as variational
form of condition (4.164). In Section 4.10.1, the vanishing of the d𝑥𝑖- and
d𝑢𝑖-components of the one-form 𝑋 Ω was sufficient to derive Lagrange’s
equations of the second kind. In Section 4.10.2 the annihilation of the 𝖇𝑖-
and d𝑣𝑖-components of the form 𝑋 Ω implied Hamel’s equations. Finally,
Hamilton’s equations followed by exploiting (only) that the d ̃𝑥𝑖- and the
d𝑝𝑖-part of the form 𝑋 Ω need to vanish. This means that, it is sufficient to
exploit condition (4.165) for spacelike vector fields on 𝐴1𝑀, i.e., for virtual
displacement fields 𝑌̄ =𝑌. This observation is not astonishing since we know
from Section 4.6 that the action form has rank 2𝑛 and that it is blind on the
line bundle over 𝐴1𝑀 spanned by the time-normalized vector field 𝑋 that sat-
isfies (4.164). Now, because of (𝑋) = 1 (see equation (4.51)) and (𝑌) = 0,
virtual displacement fields 𝑌 can be used to test the 2𝑛 complementary
directions to span{𝑋}.

4.11.1. Variational families of curves

In its development, classical mechanics has been intimately related to
the calculus of variations and variational principles such as Hamilton’s
principle.43 The classical notion of a virtual displacement has to be seen
as a vector field along the curve that is to be varied. By adopting this
perspective we are able to make the link with classical results such as the
principle of virtual work, the two central equations of Lagrange and Hamel
as well as Hamilton’s principle.

We start with a smooth two-parameter map

𝜅∶ ]−𝑟, 𝑟[×𝐼 → 𝐴1𝑀,
(𝜀, 𝜏) ↦ 𝜅(𝜀, 𝜏),

(4.166)

that we assume to be an injective immersion for some 𝑟 > 0. As such, the
map (4.166) defines a two-dimensional submanifold that is parametrized

43. Section 4.11.3 is concerned with Hamilton’s principle.
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by 𝜀 and 𝜏. Moreover, the map (4.166) defines the two curves (immersed
one-dimensional submanifolds)

𝜅𝜀 ∶ 𝐼 → 𝐴1𝑀,
𝜏 ↦ 𝜅𝜀(𝜏) ≔ 𝜅(𝜀, 𝜏)

(4.167)

and
𝜅𝜏 ∶ ]−𝑟, 𝑟[ → 𝐴1𝑀,

𝜀 ↦ 𝜅𝜏(𝜀) ≔ 𝜅(𝜀, 𝜏)
(4.168)

in the state space 𝐴1𝑀. The curve (4.167) results from (4.166) by consider-
ing fixed values of the parameter 𝜀, while the curve (4.168) is engendered
by (4.166) in keeping 𝜏 fixed. We call the set of all curves (4.167) a vari-
ational family of curves. The map (4.166) is required to contain the
time-parametrized curve

𝛽∶ 𝐼 → 𝐴1𝑀 (4.169)

such that
𝛽(𝜏) != 𝜅0(𝜏) = 𝜅(0, 𝜏) (4.170)

for all 𝜏 ∈ 𝐼. The chart representation44 of the map (4.166) with respect to
the coordinates of the natural chart (4.17) has the form

𝛷∘𝜅 = (𝑡(𝜀, 𝜏), 𝐱(𝜀, 𝜏), 𝐮(𝜀, 𝜏)). (4.171)

For simplicity we assume im 𝜅 ⊆ 𝜋−1(𝑈) such that we do not need to split
the map 𝜅 into components lying in the different neighbourhoods 𝜋−1(𝑈𝛼)
provided by an atlas (𝑈𝛼, 𝜙𝛼) of the manifold 𝑀. Technically, this can be
realized by considering the restrictions

𝜅∣𝑈𝛼
∶ 𝜅−1(𝑈𝛼)∩(]−𝑟, 𝑟[×𝐼) → 𝐴1𝑀.

for all charts (𝑈𝛼, 𝜙𝛼).
The chart representation of the curve (4.169) is 𝛷∘𝛽 = (𝑡(𝜏), 𝐱(𝜏), 𝐮(𝜏)).

By equations (4.170) and (4.171), it holds that

𝑡(0, 𝜏) = 𝑡(𝜏), 𝐱(0, 𝜏) = 𝐱(𝜏), 𝐮(0, 𝜏) = 𝐮(𝜏).

Classically, one considers variations of the curve 𝛽 that keep time fixed such
that the chart representation (4.171) reduces to

𝛷∘𝜅 = (𝑡(𝜏), 𝐱(𝜀, 𝜏), 𝐮(𝜀, 𝜏)). (4.172)

44. The chart representation of a map is defined in equation (3.3).
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4.11. The variational approach

A coordinate-free definition of the restricted variational family from (4.171)
is given by

(δ𝜅𝜏) != 0, (4.173)

where δ𝜅𝜏 denotes the tangent field along the curve 𝜅𝜏 from (4.168). We
have used a δ to denote differentiation with respect to the curve parameter
𝜀, while in equation (3.50) we denoted the derivative with a dot because
there the curve parameter is 𝜏. Condition (4.173) requires the tangent field
along the curve 𝜅𝜏 to be spacelike. Indeed, by equation (3.47), the local
representation of the tangent field δ𝜅𝜏 is given by

δ𝜅𝜏(𝜀) = δ𝜅𝜏[𝑡](𝑝) 𝜕
𝜕𝑡 ∣

𝑝
+δ𝜅𝜏[𝑥𝑖](𝑝) 𝜕

𝜕𝑥𝑖 ∣
𝑝

+δ𝜅𝜏[𝑢𝑖](𝑝) 𝜕
𝜕𝑢𝑖 ∣

𝑝
, (4.174)

with 𝑝 = 𝜅𝜏(𝜀) and condition (4.173) can be locally written as

0 != (δ𝜅𝜏) = d𝑡𝜅𝜏(𝜀)(δ𝜅𝜏∣𝜅𝜏(𝜀)) = δ𝜅𝜏∣𝜅𝜏(𝜀)[𝑡] = d
d ̄𝜀 ∣

̄𝜀=𝜀
𝑡∘𝜅𝜏( ̄𝜀).

Accordingly, the chart representation (4.171) of 𝜅 is indeed restricted to the
form (4.172) by condition (4.173). The local description of the tangent field
δ𝜅𝜏 from (4.174) reduces to the one of a virtual displacement field, i.e.,

δ𝜅𝜏(𝜀) = δ𝑥𝑖(𝑝) 𝜕
𝜕𝑥𝑖 ∣

𝑝
+δ𝑢𝑖(𝑝) 𝜕

𝜕𝑢𝑖 ∣
𝑝
, (4.175)

with 𝑝 = 𝜅𝜏(𝜀) and where we have introduced the short-hand notations

δ𝑥𝑖(𝑝) = d
d ̄𝜀 ∣

̄𝜀=𝜀
𝑥𝑖 ∘𝜅𝜏( ̄𝜀) = d

d ̄𝜀 ∣
̄𝜀=𝜀

𝑥𝑖( ̄𝜀),

δ𝑢𝑖(𝑝) = d
d ̄𝜀 ∣

̄𝜀=𝜀
𝑢𝑖 ∘𝜅𝜏( ̄𝜀) = d

d ̄𝜀 ∣
̄𝜀=𝜀

𝑢𝑖( ̄𝜀)

relying on (4.172). In an analogue way, we use a dot to denote the tangent
field along the curve 𝜅𝜀(𝜏) as

̇𝜅𝜀(𝜏) = 𝜕
𝜕𝑡 ∣

𝑝
+ ̇𝑥𝑖(𝑝) 𝜕

𝜕𝑥𝑖 ∣
𝑝

+𝑢̇𝑖(𝑝) 𝜕
𝜕𝑢𝑖 ∣

𝑝
,

with 𝑝 = 𝜅𝜀(𝜏). The two-parameter map 𝜅 defines the two local vector fields

𝑋∶ 𝜅(]−𝑟, 𝑟[×int 𝐼) → 𝑇(𝐴1𝑀)

and
𝑌∶ 𝜅(]−𝑟, 𝑟[×int 𝐼) → 𝑇(𝐴1𝑀)
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by the respective differentiation with respect to the parameters 𝜏 and 𝜀, i.e.,

𝑋(𝜅(𝜀, 𝜏)) ≔ ̇𝜅𝜀(𝜏) (4.176)

and
𝑌(𝜅(𝜀, 𝜏)) ≔ δ𝜅𝜏(𝜀). (4.177)

In equation (4.176), the right-hand side denotes the time-normalized tangent
vector that is defined at the point 𝜅(𝜀, 𝜏) by the curve 𝜅𝜀 ∶ 𝐼 → 𝐴1𝑀. Because
of condition (4.173), the vector field 𝑌 is a virtual displacement field.

The local vector fields

𝑋 = 𝜕
𝜕𝑡 + ̇𝑥𝑖 𝜕

𝜕𝑥𝑖 +𝑢̇𝑖 𝜕
𝜕𝑢𝑖

and
𝑌 = δ𝑥𝑖 𝜕

𝜕𝑥𝑖 +δ𝑢𝑖 𝜕
𝜕𝑢𝑖 (4.178)

defined by equations (4.176) and (4.177) commute, i.e., their Lie bracket45

vanishes. To see this we consider a smooth function 𝑓 ∈ 𝐶∞(𝐴1𝑀) and we
compute

⟦𝑋, 𝑌⟧[𝑓 ](𝜅(𝜀, 𝜏)) = 𝑋[𝑌[𝑓]](𝜅(𝜀, 𝜏))−𝑌[𝑋[𝑓]](𝜅(𝜀, 𝜏))

= 𝜕2(𝑓 ∘𝜅)
𝜕𝜏𝜕𝜀 (𝜀, 𝜏)− 𝜕2(𝑓 ∘𝜅)

𝜕𝜀𝜕𝜏 (𝜀, 𝜏) = 0

using equations (3.22), (4.176), and (4.177). Therefore, the vanishing of their
Lie bracket is a necessary condition for two vector fields to be induced by a
variational family of curves. Moreover, by construction, the vector field 𝑋 is
time-normalized and 𝑌 is a virtual displacement field by condition (4.173).
According to the Frobenius theorem from Section 3.11, the vector fields 𝑋
and 𝑌 span an involutive distribution of which im 𝜅 ⊂ 𝐴1𝑀 is the integral
manifold. The curves (4.167) and (4.168) are integral curves of the vector
fields 𝑋 and 𝑌, respectively. Let

𝜑∶ ]−𝑟, 𝑟[ × im 𝜅 → 𝐴1𝑀

denote the flow46 of the vector field 𝑌. Then it holds by definition of the
vector field 𝑌 that

𝜅(𝜀+𝜀′, 𝜏) = 𝜑(𝜀, 𝜅(𝜀′, 𝜏))

45. See equation (3.45).
46. See Section 3.6 and in particular equations (3.55) and (3.56).
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for all values 𝜏 ∈ 𝐼 and 𝜀, 𝜀′ ∈]−𝑟, 𝑟[ for which 𝜀+𝜀′ ∈]−𝑟, 𝑟[. In particular,
for 𝜀′ = 0 this means that

𝜅(𝜀, 𝜏) = 𝜑(𝜀, 𝜅(0, 𝜏)) = 𝜑(𝜀, 𝛽(𝜏)) (4.179)

and
𝜅𝜀(𝜏) = 𝜑𝜀 ∘𝛽(𝜏).

Therefore, we can see a variational family of curves as being the result of
dragging the time-parametrized curve 𝛽 using the flow of a vector field 𝑌. If
the vector field 𝑌 is a virtual displacement field (i.e., if 𝑌 is spacelike), then
the resulting variational family contains only time-parametrized curves
because the curve 𝛽 is time-parametrized.

We refer to a variational family in which the curves (4.167) are not only
time-parametrized but second-order curves as a variational family of
second-order curves. By condition (4.24), this means that

𝜅𝜀 = (𝜋∘𝜅𝜀).

and, therefore, the curves can be constructed from a two-parameter map

𝛼∶ ]−𝑟, 𝑟[×𝐼 → 𝑀,
(𝜀, 𝜏) ↦ 𝛼(𝜀, 𝜏)

for which we assume that the variational family

𝛼𝜀 ∶ 𝐼 → 𝑀,
𝜏 ↦ 𝛼𝜀(𝜏) ≔ 𝛼(𝜀, 𝜏).

(4.180)

it induces in the Galilean manifold (𝑀,ϑ, 𝑔)consists of time-parametrized
curves. As before, the curve 𝛽 from (4.169) that we now assume to be a
second-order curve should be contained in the variational family such that

𝛼(0, 𝜏) != 𝜋∘𝛽(𝜏)

for all 𝜏 ∈ 𝐼. The two parameter map 𝛼 defines the curve

𝛼𝜏 ∶ ]−𝑟, 𝑟[ → 𝑀,
𝜀 ↦ 𝛼𝜏(𝜀) ≔ 𝛼(𝜀, 𝜏)

such that the restriction to variations that keep time fixed can be formulated
as

ϑ(δ𝛼𝜏) != 0,
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Figure 4.5.: The left side of the picture shows a family of time-parametrized
curves in 𝐴1𝑀, while the right side depicts a family of second-
order curves in 𝐴1𝑀 that is induced by a family 𝛼𝜀 of time-
parametrized curves in 𝑀.

which is an analogue condition to (4.173). As we did in Section 4.3, we
denote by

̇𝛼𝜀 ∶ 𝐼 → 𝐴1𝑀,

𝜏 ↦ ̇𝛼𝜀(𝜏) = (𝛼𝜀(𝜏), ̇𝛼𝜀∣𝛼𝜀(𝜏))

the second-order curve given by the tangent field along the curve (4.180) for
a fixed value of 𝜀. Finally, we obtain a variational family of second-order
curves by considering the two-parameter map that is defined as

𝜅∶ ]−𝑟, 𝑟[×𝐼 → 𝐴1𝑀,
(𝜀, 𝜏) ↦ 𝜅(𝜀, 𝜏) ≔ ̇𝛼𝜀(𝜏).

(4.181)

For of a variational family of second-order curves, the vector field 𝑋 from
equation (4.176) is a second-order field, i.e., ̇𝑥𝑖 = 𝑢𝑖 such that

𝑋 = 𝜕
𝜕𝑡 +𝑢𝑖 𝜕

𝜕𝑥𝑖 +𝑢̇𝑖 𝜕
𝜕𝑢𝑖

because its integral curves 𝜅𝜀= ̇𝛼𝜀(𝜏) are second-order curves by assumption.
The vector field 𝑌 is spacelike and it needs to satisfy ⟦𝑋, 𝑌⟧ = 0. Therefore,
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it has the local form
𝑌 = δ𝑥𝑖 𝜕

𝜕𝑥𝑖 +𝔏𝑋δ𝑥𝑖 𝜕
𝜕𝑢𝑖 . (4.182)

In the view of equation (4.179), this means that in order to guarantee that a
second-order curve 𝛽 is dragged to a second-order curve 𝜑𝜀∘𝛽 the generating
vector field 𝑌 of the flow 𝜑𝜀 needs to have the form (4.182). Figure 4.5 shows
an attempt to visualize both types of variational families.

4.11.2. Virtual work and the central equation

We saw that it is sufficient to exploit the variational form (4.165) using
virtual displacement fields only. Actually, even less is required if we consider
from the beginning that the vector field 𝑋 that is determined by

𝑋 Ω = 0, (𝑋) = 1.

is a second-order field. The real-valued function given by the variational
form Ω(𝑋, 𝑌), where the vector field

𝑋 = 𝜕
𝜕𝑡 +𝑢𝑖 𝜕

𝜕𝑥𝑖 +𝐵𝑖 𝜕
𝜕𝑢𝑖

= 𝖇0 +𝑣𝑖𝖇𝑖 +𝐷𝑖 𝜕
𝜕𝑣𝑖

= 𝜕
𝜕 ̃𝑡

+(𝑔𝑖𝑗(𝑝𝑗 −𝐴𝑅
𝑗 )+𝑅𝑖) 𝜕

𝜕 ̃𝑥𝑖 +𝐸𝑖
𝜕

𝜕𝑝𝑖
.

is a second-order field and where 𝑌 is a virtual displacement field, is known
as virtual work.

Using the local descriptions of the virtual displacement field 𝑌 from
equation (4.163), we obtain the following expressions for the virtual work

Ω(𝑋, 𝑌) = [𝔏𝑋( 𝜕𝐿
𝜕𝑢𝑖 )− 𝜕𝐿

𝜕𝑥𝑖 −𝐹𝑖]δ𝑥𝑖

= [𝔏𝑋( 𝜕𝐿
𝜕𝑣𝑘 )−𝖇𝑘[𝐿]− ̄𝐹𝑘

+ 𝜕𝐿
𝜕𝑣𝑖 (𝐵 𝑗

𝑘𝔏𝑋 𝐴𝑖
𝑗 −𝐵 𝑗

𝑙 𝑣𝑙𝖇𝑘[𝐴𝑖
𝑗]+𝐴𝑖

𝑗𝖇𝑘[𝑏 𝑗])]δ𝑠𝑘

= [𝐸𝑖 + 𝜕𝐻
𝜕 ̃𝑥𝑖 −𝐹𝑖]δ ̃𝑥𝑖,

(4.183)

where we made use of our previous results (4.108), (4.109), (4.146), (4.148),
(4.158), and (4.159).
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A well-known tool for the formulation of mechanical theories is the so-
called principle of virtual work which says that the virtual work vanishes
for all virtual displacements. The principle of virtual work may be chosen
as postulate for the formulation of a physical theory for finite-dimensional
mechanical systems, i.e., one could postulate the virtual work (4.183) and
require it to vanish for all virtual displacements δ𝑥𝑖, δ𝑠𝑘, respectively for all
δ ̃𝑥𝑖. In our presentation that is based on Postulate 4.8 the observation that
the virtual work vanishes is a theorem rather than a principle. Nevertheless,
we speak of the principle of virtual work in order to relate our presentation
to classical approaches. The observation that Postulate 4.8 generalizes the
principle of virtual work can be found in the book by Souriau, where he
writes that the virtual work is a truncated47 version of the action form Ω.

We pursue our endeavour to establish a firm link to the classical results
by deriving Lagrange’s central equation and Hamel’s generalized version of
it. We consider the virtual work that results from feeding the action form Ω
from Postulate 4.8 with a second-order field 𝑋 and a virtual displacement
field 𝑌

Ω(𝑋, 𝑌) = Ωp
𝑅(𝑋, 𝑌)+Φnp

𝑅 (𝑋, 𝑌) = dω𝑅(𝑋, 𝑌)+Φnp
𝑅 (𝑋, 𝑌), (4.184)

where
dω𝑅 = d𝐿∧d𝑡+d( 𝜕𝐿

𝜕𝑢𝑖 )∧(d𝑥𝑖 −𝑢𝑖d𝑡)− 𝜕𝐿
𝜕𝑢𝑖 d𝑢𝑖 ∧d𝑡

and
Φnp

𝑅 = 𝐹𝑖d𝑥𝑖 ∧d𝑡+ 1
2

𝜕𝐹𝑖
𝜕𝑢 𝑗 (d𝑥𝑖 −𝑢𝑖d𝑡)∧(d𝑥 𝑗 −𝑢 𝑗d𝑡),

as we know from (4.102) and (4.103). Postulate 4.8 requires the virtual
work (4.184) to vanish. Considering that 𝑋 (d𝑥𝑖 −𝑢𝑖d𝑡) = 0 because 𝑋 is a
second-order field and that 𝑌 d𝑡 = 0 since 𝑌 is a virtual displacement field,
it follows that

0 != Ω(𝑋, 𝑌) = −𝔏𝑌 𝐿+𝔏𝑋( 𝜕𝐿
𝜕𝑢𝑖 )δ𝑥𝑖 + 𝜕𝐿

𝜕𝑢𝑖 δ𝑢𝑖 −𝐹𝑖δ𝑥𝑖, (4.185)

for all coefficient functions δ𝑥𝑖, δ𝑢𝑖 ∈ 𝐶∞(𝜋−1(𝑈)). Note that we used the
local expression (4.178) of the virtual displacement field 𝑌 to derive equa-
tion (4.185). Using the product rule for the differentiation of real-valued

47. Footnote 2 on p. XVII of Souriau 1970 reads: Le principe des travaux virtuels classique
n’est qu’une forme tronquée de cette formule (XI). In Souriau 1997, the English translation of the
book, one finds in footnote 6 on p. XX the infelicitous translation that: The classical principle
of virtual work is only an abbreviated form of formula (XI).
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functions by vector fields, the principle of virtual work (4.185) can be rewrit-
ten as

0 != 𝔏𝑋( 𝜕𝐿
𝜕𝑢𝑖 δ𝑥𝑖)−𝔏𝑌 𝐿−𝐹𝑖δ𝑥𝑖 + 𝜕𝐿

𝜕𝑢𝑖 (δ𝑢𝑖 −𝔏𝑋δ𝑥𝑖), (4.186)

for all δ𝑥𝑖, δ𝑢𝑖 ∈ 𝐶∞(𝜋−1(𝑈)). Equation (4.186) reduces to

0 != 𝔏𝑋( 𝜕𝐿
𝜕𝑢𝑖 δ𝑥𝑖)−𝔏𝑌 𝐿−𝐹𝑖δ𝑥𝑖, (4.187)

for all δ𝑥𝑖, δ𝑢𝑖 ∈ 𝐶∞(𝜋−1(𝑈)) if one considers only virtual displacement
fields of the form (4.182).

The virtual work expression from (4.187) is invariant under coordinate
changes from 𝑡, 𝑥1, … , 𝑥𝑛, 𝑢1, … , 𝑢𝑛 with coordinate fields

𝜕
𝜕𝑡 , 𝜕

𝜕𝑥1 , … , 𝜕
𝜕𝑥𝑛 , 𝜕

𝜕𝑢1 , … , 𝜕
𝜕𝑢𝑛 ,

to ̄𝑡, ̄𝑥1, … , ̄𝑥𝑛, 𝑣1, … , 𝑣𝑛 together with the basis vector fields

𝖇0, … , 𝖇𝑛, 𝜕
𝜕𝑣1 , … , 𝜕

𝜕𝑣𝑛 .

To see this, we need to derive the transformation rules between these basis
vector fields. The following consideration allows us to make use of the
transformation rules between the dual bases d𝑡, d𝑥1, … , d𝑥𝑛, d𝑢1, … , d𝑢𝑛

and 𝖇0, … 𝖇𝑛, d𝑣1, … , d𝑣𝑛 that we know from Section 4.10.2. Let 𝑤 be a
vector field on an 𝑛-dimensional differentiable manifold 𝑀. Then 𝑤 can be
expressed with respect to given basis vector fields 𝔢1, … , 𝔢𝑛 as

𝑤 = 𝔢𝑖(𝑤)𝔢𝑖,

where 𝔢1, … , 𝔢𝑛 denote the corresponding dual fields of 𝔢1, … , 𝔢𝑛 defined by
𝔢𝑖(𝔢𝑗) = δ𝑖

𝑗. Consequently, it holds for the virtual displacement field

𝑌 = δ𝑥𝑖 𝜕
𝜕𝑥𝑖 +δ𝑢𝑖 𝜕

𝜕𝑢𝑖 = δ𝑠𝑖𝖇𝑖 +δ𝑣𝑖 𝜕
𝜕𝑣𝑖

from (4.163) that

δ𝑠𝑖 = 𝖇𝑖(𝑌) = 𝑌 (𝐴𝑖
𝑗(d𝑥 𝑗 −𝑏 𝑗d𝑡)) = 𝐴𝑖

𝑗δ𝑥 𝑗 (4.188)

and

δ𝑣𝑖 = d𝑣𝑖(𝑌) = (
𝜕𝐴𝑖

𝑗
𝜕𝑥𝑘 (𝑢 𝑗 −𝑏 𝑗)−𝐴𝑖

𝑗
𝜕𝑏 𝑗

𝜕𝑥𝑘 )δ𝑥𝑘 +𝐴𝑖
𝑗δ𝑢 𝑗, (4.189)

155



Chapter 4: Finite-dimensional mechanical systems

where we used the transformation rules from (4.135). Note that equa-
tion (4.189) corresponds exactly to what we would obtain if we would carry
out the variation, i.e., apply δ as derivative with respect to 𝜀 on the coordinate
change

𝑣𝑖(𝜀, 𝜏) = 𝐴𝑖
𝑗(𝑡(𝜏), 𝐱(𝜀, 𝜏))(𝑢 𝑗(𝜀, 𝜏)−𝑏 𝑗(𝑡(𝜏), 𝐱(𝜀, 𝜏))),

from (4.130). We know that
𝜕

𝜕𝑣𝑖 = 𝐵 𝑗
𝑖

𝜕
𝜕𝑢 𝑗

from (4.142) and it follows by equation (4.147) together with (4.188) that

𝐹𝑖δ𝑥𝑖 = ̄𝐹𝑖δ𝑠𝑖.

Therefore, the principle of virtual work (4.187) can be rewritten as

0 != 𝔏𝑋( 𝜕𝐿
𝜕𝑣𝑖 δ𝑠𝑖)−𝔏𝑌 𝐿− ̄𝐹𝑖δ𝑠𝑖, (4.190)

for all smooth functions δ𝑠𝑖 and δ𝑣𝑖 defined on the neighbourhood 𝜋−1(𝑈).
Equation (4.190) is known as Lagrange’s central equation.48

To emphasize its significance, we apply the product rule to the first term
and we express the second term using the local expression (4.163) of 𝑌 as

0 != (𝔏𝑋( 𝜕𝐿
𝜕𝑣𝑖 )−𝖇𝑖[𝐿]− ̄𝐹𝑖)δ𝑠𝑖 + 𝜕𝐿

𝜕𝑣𝑖 (𝔏𝑋δ𝑠𝑖 −δ𝑣𝑖), (4.191)

for all δ𝑠𝑖, δ𝑣𝑖∈𝐶∞(𝜋−1(𝑈)). Equation (4.191) can be found in Bremer 1988,
p. 47. It directly leads to Hamel’s equations (4.150) if we consider the δ𝑠𝑖

given by (4.188) and use the δ𝑣𝑖 from (4.189) together with the assumption
that the vector fields 𝑋 and 𝑌 are induced by a variational family of second-
order curves (4.181) (i.e., δ𝑢𝑖 = 𝔏𝑋δ𝑥𝑖 by equation (4.182)). Note that we
have already used the latter assumption in the derivation of (4.191) at the
transition from (4.186) to (4.187). We observe that starting from Lagrange’s
central equation the derivation of Hamel’s equations is not difficult. In
the classical view, Lagrange’s equations are considered to be a special case
of (4.191) with δ𝑠𝑖 = δ𝑥𝑖 and δ𝑣𝑖 = δ𝑢𝑖.

In order to derive Hamel’s generalized central equation that does not rely
on the assumption δ𝑢𝑖 = 𝔏𝑋δ𝑥𝑖, we solve (4.189) for 𝐴𝑖

𝑗δ𝑢 𝑗 such that

𝐴𝑖
𝑗δ𝑢 𝑗 = δ𝑣𝑖 −(

𝜕𝐴𝑖
𝑗

𝜕𝑥𝑘 𝐵 𝑗
𝑙 𝑣𝑙 −𝐴𝑖

𝑗
𝜕𝑏 𝑗

𝜕𝑥𝑘 )𝐵𝑘
𝑟 δ𝑠𝑟,

48. See Hamel 1904a, p. 15, Bremer 1988, p. 47, or Bremer 2008, p. 21.
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where we used that 𝑢 𝑗 − 𝑏 𝑗 = 𝐵 𝑗
𝑙 𝑣𝑙 and that δ𝑥𝑘 = 𝐵𝑘

𝑟 δ𝑠𝑟. Moreover, we
calculate

𝔏𝑋δ𝑥𝑖 = 𝔏𝑋(𝐵𝑖
𝑗δ𝑠 𝑗) = 𝐵𝑖

𝑗𝔏𝑋δ𝑠 𝑗 +δ𝑠 𝑗𝔏𝑋 𝐵𝑖
𝑗

such that we can rewrite the principle of virtual work (4.186) as

0 != 𝔏𝑋( 𝜕𝐿
𝜕𝑣𝑖 δ𝑠𝑖)−𝔏𝑌 𝐿− ̄𝐹𝑖δ𝑠𝑖 + 𝜕𝐿

𝜕𝑣𝑖 (δ𝑣𝑖 −𝔏𝑋δ𝑠𝑖)

+ 𝜕𝐿
𝜕𝑣𝑖 (𝔏𝑋 𝐴𝑖

𝑘 −(
𝜕𝐴𝑖

𝑗
𝜕𝑥𝑘 𝐵 𝑗

𝑙 𝑣𝑙 −𝐴𝑖
𝑗

𝜕𝑏 𝑗

𝜕𝑥𝑘 ))𝐵𝑘
𝑟 δ𝑠𝑟,

(4.192)

for all δ𝑠𝑖, δ𝑣𝑖 ∈ 𝐶∞(𝜋−1(𝑈)). Equation (4.192) is known as Hamel’s gen-
eralized central equation.49

Instead of carrying out a coordinate transformation of (4.186), Hamel’s
generalized central equation can also be derived using the results from
Section 4.10.2. We evaluate the virtual work (4.184) using the local expres-
sions (4.143) and (4.147) as

Ω(𝑋, 𝑌) = −𝔏𝑌 𝐿+𝔏𝑋( 𝜕𝐿
𝜕𝑣𝑖 )δ𝑠𝑖 + 𝜕𝐿

𝜕𝑣𝑖 (d𝖇𝑖(𝑋, 𝑌)−d𝑣𝑖 ∧𝖇0)− ̄𝐹𝑖δ𝑠𝑖.

The term d𝖇𝑖(𝑋, 𝑌) can be evaluated using (4.145) with the second-order
condition 𝐶𝑙 = 𝑣𝑙. Using the product rule of differentiation, the principle of
virtual work can be stated as

0 != 𝔏𝑋( 𝜕𝐿
𝜕𝑣𝑖 δ𝑠𝑖)−𝔏𝑌 𝐿+ 𝜕𝐿

𝜕𝑣𝑖 (δ𝑣𝑖 −𝔏𝑋δ𝑠𝑖)− ̄𝐹𝑖δ𝑠𝑖

+ 𝜕𝐿
𝜕𝑣𝑖 (𝐵 𝑗

𝑟𝔏𝑋 𝐴𝑖
𝑗 −𝐵 𝑗

𝑙 𝑣𝑙𝖇𝑟[𝐴𝑖
𝑗]+𝐴𝑖

𝑗𝖇𝑟[𝑏 𝑗])δ𝑠𝑟,
(4.193)

for all δ𝑠𝑖, δ𝑣𝑖 ∈ 𝐶∞(𝜋−1(𝑈)). Equation (4.193) is just Hamel’s generalized
central equation (4.192) because by (4.133)

𝖇𝑟[𝐴𝑖
𝑗] = 𝐵𝑘

𝑟
𝜕

𝜕 ̄𝑥𝑘 [𝐴𝑖
𝑗] = 𝐵𝑘

𝑟
𝜕

𝜕𝑥𝑘 [𝐴𝑖
𝑗]

and
𝖇𝑟[𝑏 𝑗] = 𝐵𝑘

𝑟
𝜕

𝜕 ̄𝑥𝑘 [𝑏 𝑗] = 𝐵𝑘
𝑟

𝜕
𝜕𝑥𝑘 [𝑏 𝑗]

because 𝐴𝑖
𝑗 =𝐴𝑖

𝑗 ∘𝜋 and 𝑏 𝑗 =𝑏 𝑗∘𝜋 do not depend on the coordinates 𝑢1, … , 𝑢𝑛

respectively 𝑣1, … , 𝑣𝑛.
Hamel’s generalized central equation allows to derive Hamel’s equation

without the restriction δ𝑢𝑖 = 𝔏𝑋δ𝑥𝑖 to variational families of second-order

49. See Hamel 1904b, p. 424.
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curves. The third term of expression (4.193) drops out if we apply the product
rule of differentiation to its first term and if we express its second term
using the local expression (4.163) of 𝑌. The remaining part can then be
recognized as variational form of Hamel’s equations.

4.11.3. Hamilton’s principle

We saw in the previous section that the explicit consideration of the kine-
matics (i.e., of the second-order condition) allows to arrive at the notion of
virtual work. In this section, we will see that the action integral on which
Hamilton’s principle50 is based in classical texts appears as the restriction
to second-order curves of a more general action integral. Moreover, we will
show that for exact mechanical systems, Hamilton’s principle becomes a
theorem of Postulate 4.8.

On page 124, we saw that the action form of a mechanical system with
Galilean manifold (𝑀,ϑ, 𝑔) is exact if the mechanical system is only sub-
jected to potential forces. By Postulate 4.8, the action form of an exact
mechanical system can be defined using a Lagrangian and its related Car-
tan one-form (4.93). Using the Cartan one-form ω = 𝐿 +𝛛𝐿 from (4.93),
we define the action51 of a mechanical system as the functional on time-
parametrized curves 𝛽∶ 𝐼 → 𝐴1𝑀 that is given by the integral52

𝐴[𝛽] ≔ ∫
𝛽(𝐼)

𝜄 ω, (4.194)

where we dropped the letter 𝑅 denoting the reference field. In the integral
expression (4.194),

𝜄 ∶ 𝛽(𝐼) ↪ 𝐴1𝑀 (4.195)

denotes the inclusion map53 of the subset 𝛽(𝐼) of 𝐴1𝑀. The set 𝛽(𝐼) ⊂ 𝐴1𝑀
is an immersed submanifold of 𝐴1𝑀. Indeed, the map 𝛽∶ 𝐼 → 𝐴1𝑀 is an
injective immersion because of equation (4.35) and since the tangent vector
of a time-parametrized curve does never vanish. The action (4.194) can be
rewritten as

𝐴[𝛽] = ∫
𝐼

𝛽 ω

= ∫
𝐼

(𝛽 ω)(𝜕⁄𝜕𝜏)d𝜏

= ∫
𝐼

ω𝛽(𝜏)(D𝛽𝜏(𝜕⁄𝜕𝜏))d𝜏,

(4.196)

50. See p. 2 of Landau and E. M. Lifshitz 1969.
51. See Section 8.3 of Loos 1982.
52. We refer to Chapter 16 in John M. Lee 2013 for the theory about integration on manifolds.
53. See footnote on p. 63.
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where we used the definition of the integral, equation (3.49) and the defini-
tion (3.61) of the pullback of the one-form ω with the map 𝛽∶ 𝐼 → 𝐴1𝑀. For
the natural chart (4.17), it holds that 𝛷∘𝛽 = (𝑡(𝜏), 𝐱(𝜏), 𝐮(𝜏)), such that

D𝛽𝜏(𝜕⁄𝜕𝜏) = 𝜕
𝜕𝑡 ∣

𝛽(𝜏)
+ ̇𝑥𝑖(𝜏) 𝜕

𝜕𝑥𝑖 ∣
𝛽(𝜏)

+𝑢̇𝑖(𝜏) 𝜕
𝜕𝑢𝑖 ∣

𝛽(𝜏)

and
ω = 𝐿d𝑡+ 𝜕𝐿

𝜕𝑢 𝑗 (d𝑥 𝑗 −𝑢 𝑗d𝑡).

Therefore, the integrand in (4.196) is given by

ω𝛽(𝜏)(D𝛽𝜏(𝜕⁄𝜕𝜏)) = 𝐿(𝛽(𝜏))+ 𝜕𝐿
𝜕𝑢 𝑗 ∣

𝛽(𝜏)
( ̇𝑥 𝑗(𝜏)−𝑢 𝑗(𝜏)). (4.197)

If the action (4.194) is evaluated on a second-order curve 𝛾̇ ∶ 𝐼 → 𝐴1𝑀 (see
equation (4.22)), it reads

𝐴[𝛾̇] = ∫
𝐼

𝐿(𝛾̇(𝜏))d𝜏 = ∫
𝐼

L(𝑡(𝜏), 𝐱(𝜏), 𝐱̇(𝜏))d𝜏, (4.198)

because the second term in (4.197) vanishes along second-order curves. Note
that, we used again the upright L ≔ 𝐿∘𝛷−1 introduced on p. 132 to denote
the chart representation of the Lagrangian 𝐿∶ 𝐴1𝑀 → ℝ. The right-hand
side of (4.198) is the action integral as it can be found in classical texts.54

The classical version of Hamilton’s principle states that between two
events 𝑝 and 𝑞 with 𝑡(𝑞) > 𝑡(𝑝) the motion of a mechanical system makes
the integral (4.198) stationary. Classically, the stationarity is studied for
variational families of second-order curves. The integral (4.194) can be
found in Cartan 1922. That is why the one-form ω is referred to as Cartan
one-form. The observation that (4.194) comprises the classical action (4.198)
when evaluated along second-order curves can be found on page 17 of Cartan
1922.

In our context, this principle can be reformulated as follows: For exact
mechanical systems a motion 𝛽 (i.e., an integral curve of the vector field
𝑋 ∈ Vect(𝐴1𝑀) that is determined by 𝑋 dω = 0 and (𝑋) = 1) relates two
events 𝑝 and 𝑞 if it is an extremal of the variational problem defined by
the action (4.194) for fixed position endpoints, which shall mean that the
variational family is such that for 𝐼 = [𝜏0, 𝜏1]

δ𝜅𝜏0(𝜀 = 0) ∈ Ver𝛽(𝜏0)(𝐴1𝑀) (4.199)

54. See for example Landau and E. M. Lifshitz 1969, p. 2, or Hamel 1949, p. 235.
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and
δ𝜅𝜏1(𝜀 = 0) ∈ Ver𝛽(𝜏0)(𝐴1𝑀). (4.200)

We can see from the local expression (4.175) that the conditions (4.199)
and (4.200) mean that the position coordinates at the endpoints are kept
fixed while the velocity parameters may be varied.

We define55 the first variation of the action (4.194) as

δ𝐴[𝑌] ≔ 𝜕
𝜕𝜀 ∣

𝜀=0
∫

𝜑𝜀∘𝛽(𝐼)
𝑖 ω,

where 𝑖 ∶ 𝜅𝜀(𝐼) ↪ 𝐴1𝑀 denotes the inclusion map of the subset 𝜅𝜀(𝐼) ⊂ 𝐴1𝑀
and 𝜑 is the flow of the vector field 𝑌 ∈ Vect(𝐴1𝑀). The first variation can
be rewritten as

δ𝐴[𝑌] = 𝜕
𝜕𝜀 ∣

𝜀=0
∫

𝛽(𝐼)
𝜄 ((𝜑𝜀) ω)

= ∫
𝛽(𝐼)

𝜕
𝜕𝜀 ∣

𝜀=0
𝜄 ((𝜑𝜀) ω)

= ∫
𝛽(𝐼)

𝜄 (𝔏𝑌ω),

(4.201)

where 𝜄 denotes the inclusion map (4.195). In equation (4.201), we used
definition (3.64) of the Lie derivative and that differentiation and integration
can be interchanged. Finally, by Cartan’s magic formula (3.66), 𝔏𝑌ω can
be written as

𝔏𝑌ω = 𝑖𝑌 ∘dω+d∘𝑖𝑌ω

such that the first variation (4.201) becomes

δ𝐴[𝑌] = ∫
𝛽(𝐼)

𝜄 (𝑖𝑌 ∘dω+d∘𝑖𝑌ω)

= ∫
𝛽(𝐼)

𝜄 (𝑖𝑌 ∘dω)+∫
𝜕𝛽(𝐼)

ι (𝑖𝑌ω),
(4.202)

where we used Stoke’s theorem.56 In equation (4.202), 𝜕𝛽(𝐼) denotes the
boundary of the interval 𝐼, i.e., for 𝐼 = [𝜏0, 𝜏1]

∫
𝜕𝛽(𝐼)

ι (𝑖𝑌ω) = [(𝑖𝑌ω)∘𝛽]
𝜏1

𝜏0
= (𝑖𝑌ω)∘𝛽(𝜏1)−(𝑖𝑌ω)∘𝛽(𝜏0). (4.203)

Moreover, the upright iota denotes the inclusion map ι ∶ 𝜕𝛽(𝐼) ↪ 𝛽(𝐼) of
the boundary 𝜕𝛽(𝐼) of the one-dimensional manifold 𝛽(𝐼). For variations
of the curve 𝛽 with fixed position endpoints, the integral (4.203) vanishes
because the Cartan one-form is semi-basic as can be easily seen from its

55. This definition follows Hermann 1988.
56. See Theorem 16.11 of John M. Lee 2013.
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expression (4.96) in local coordinates and, therefore, it vanishes when it
is evaluated on the vertical vectors (4.199) and (4.200) at the respective
points 𝛽(𝜏0) and 𝛽(𝜏1). Consequently, the first variation (4.202) of the
action (4.194) can be written as

δ𝐴[𝑌] = ∫
𝛽(𝐼)

𝜄 (𝑖𝑌 ∘dω)

= ∫
𝐼

𝛽 (𝑖𝑌 ∘dω)(𝜕⁄𝜕𝜏)d𝜏

= ∫
𝐼

dω(𝑌, 𝑋)∘𝛽(𝜏)d𝜏,

(4.204)

where the vector field 𝑋 satisfies ̇𝛽 = 𝑋(𝛽). We say that the first variation
vanishes if δ𝐴[𝑌]=0 for all vector fields 𝑌 ∈Vect(𝐴1𝑀). We see from (4.204)
that Postulate 4.8 implies δ𝐴[𝑌] = 0 for all vector fields 𝑌. The first varia-
tion (4.204) vanishes in particular for virtual displacement fields and for
virtual displacement fields of the form (4.182). Thus, we have proved the
following theorem.

Theorem 4.9 (Hamilton’s principle). Let Ω = dω denote the action form of
an exact mechanical system provided by Postulate 4.8. Then the integral
curves ̇𝛽 = 𝑋(𝛽) of the vector field 𝑋 ∈ Vect(𝐴1𝑀) determined by (𝑋) = 1
and 𝑋 Ω = 0 make the action (4.194) stationary.

4.12. Constraints

In Section 4.2, we saw that the configuration of a mechanical system at a
particular instant of time can be seen as a point in the Galilean manifold
(𝑀,ϑ, 𝑔) of the system (see Definition 4.1). This means that the manifold 𝑀
defines the kinematics of the mechanical system under study. For technical
applications, it is useful if one is able to subject an initially free system to
additional constraints. Let us consider the example of a point mass moving
freely in the plane (see Figure 4.6a) that should be restricted to keep a
constant distance 𝑙 to the point 𝑂. This restriction can be expressed in
terms of the coordinates 𝑥 and 𝑦 as

𝑔(𝑥, 𝑦) ≔ 𝑥2 +𝑦2 −𝑙2 != 0. (4.205)

Another example is the ice skate from Figure 4.6b whose position can be
described by the coordinates 𝐪 = (𝑥, 𝑦, 𝛼, 𝛽). The characteristic property
of an ice skate is that its blade does only slide in longitudinal direction.
Mathematically, this condition can be written as

ℎ(𝐪, ̇𝐪) ≔ − ̇𝑥 sin 𝛼+ ̇𝑦 cos 𝛼 != 0. (4.206)
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(a) A point mass that is con-
strained to move on a circle.

(b) An ice skate modelled as a rigid body that slides
on a horizontal plane.

Figure 4.6.: Two examples of mechanical systems involving constraints.

This section deals with the description of finite-dimensional mechan-
ical systems that are subjected to algebraic restrictions such as (4.205)
or (4.206). Note that condition (4.205) constrains the position of the point
mass, while (4.206) restricts the translational velocity of the ice skate. How-
ever, the restriction (4.205) can be brought to velocity level by differentiating
it with respect to time, i.e.,

d𝑔
d𝑡 (𝑥, 𝑦, ̇𝑥, ̇𝑦) = 2𝑥 ̇𝑥+2𝑦 ̇𝑦 = 0. (4.207)

We observe from (4.207) that both restrictions (4.205) and (4.206) are linear
in the velocity parameters, when expressed on velocity level. Therefore, the
following definitions seem reasonable.

Let (𝑀,ϑ, 𝑔) with dim 𝑀 = 𝑛+1 be the Galilean manifold of a mechanical
system with 𝑛 degrees of freedom whose motion is given by the action
form Ω. Let 𝛥 be a distribution of rank 𝑙 < 𝑛+1 on 𝑀. We say that 𝛥 is
compatible with the time structure ϑ if around each point 𝑝 of 𝑀 there
is a neighbourhood 𝑈 ∈ 𝑀 such that

𝐴1
𝑞𝑀 ∩𝛥𝑞 ≠ ∅ (4.208)

for all 𝑞 ∈ 𝑈. The distribution given by the spacelike bundle 𝐴0𝑀 is an
example of a distribution that is not compatible with ϑ. Our aim is to impose
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restrictions on the spatial directions in which a given mechanical system
can move. The compatibility requirement (4.208) avoids that we impose
restrictions in time direction.

We define a constraint to be a distribution 𝛥 of rank 𝑙 on 𝑀 that is
compatible with the time structure and that comes with a constraint force
two-form Φc which guarantees that the vector field 𝑍c defined by

(𝑍c) = 1,
𝑍c (Ω+Φc) = 0,

(4.209)

satisfies
D𝜋𝑎(𝑍c

𝑎) ∈ 𝛥𝜋(𝑎) (4.210)

for all 𝑎 ∈ 𝑊 ⊆ 𝐴1𝑀, where 𝑊 denotes the neighbourhood on which the
motion is studied. This means that the integral curves of 𝑍c lie in the
distribution 𝛥. For a given constraint distribution of rank 𝑙, the force two-
form Φc and thereby the vector field 𝑍c is by no means uniquely defined.
For this, further restrictions need to be imposed.

One fruitful approach is to assume that the constraint forces are ideal.
The principle of d’Alembert/Lagrange says that a constraint force is ideal if
it does not produce any virtual work for compatible virtual displacements
(see Glocker 2001, p. 48). The following considerations allow us to recast
this principle for our purposes. A compatible virtual displacement means a
spacelike vector 𝑣𝑝 ∈ 𝐴0

𝑝𝑀 that is compatible with the constraint distribu-
tion in the sense that 𝑣𝑝 ∈ 𝛥𝑝 for all 𝑝 ∈ 𝑀. Therefore, compatible virtual
displacements are elements from the intersection

𝐴0
𝑝𝑀 ∩𝛥𝑝, (4.211)

which is a (vector) subspace of 𝐴0
𝑝𝑀. Consequently, a field of compatible

virtual displacements is a smooth local section 𝑣 of 𝐴0𝑀 defined on an open
subset 𝑈 of 𝑀 that satisfies 𝑣𝑝 ∈ 𝛥𝑝 for all 𝑝 ∈ 𝑈. Equation (4.67) defines
forces as linear forms on the space of vertical vector fields. By the pointwise
isomorphism (4.41), any local section 𝑢∶ 𝑈 → 𝐴0𝑀 defines a local section
𝑢̂ ∶ 𝜋−1(𝑈) → Ver(𝐴1𝑀). This holds in particular for fields of compatible
virtual displacements. In the coordinates of a chart (𝑈, 𝜙) of 𝑀 and of its
corresponding natural chart (𝜋−1(𝑈), 𝛷) of 𝐴1𝑀, these sections read

𝑢 = 𝑢𝑖 𝜕
𝜕𝑥𝑖 ∶ 𝑈 → 𝐴0𝑀

and
𝑢̂ = 𝑢𝑖 ∘𝜋 𝜕

𝜕𝑢𝑖 ∶ 𝜋−1(𝑈) → Ver(𝐴1𝑀),
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respectively. According to (4.42), the coordinate fields are related as

𝜕
𝜕𝑢𝑖 ∣

𝑎
↦ 𝜕

𝜕𝑥𝑖 ∣
𝜋(𝑎)

,

for all 𝑎 ∈ 𝜋−1(𝑈) ⊆ 𝐴1𝑀. A constraint force

𝐹c ∈ Γ(Ver∗(𝐴1𝑀))

is said to be ideal if
𝐹c ⋅ 𝑣̂ = 0, (4.212)

for all (local) sections 𝑣 of the bundle of compatible virtual displacements
𝐴0𝑀 ∩ 𝛥. The corresponding two-form Φc follows then by the bijective
relation

Φc = −1
2(𝛛(𝐹c ∘𝜇)+ ∧(𝐹c ∘𝜇))

established by Theorem 4.4. A constraint for which the constraint forces
are assumed to be ideal is called an ideal constraint.

Let us study the situation in local coordinates. An adapted chart (𝑈, 𝜙)
on 𝑀 provides the coordinates (𝑡, 𝑥1, … , 𝑥𝑛) and according to (3.74) a distri-
bution of rank 𝑙 on 𝑀 can be locally defined by 𝑛−𝑙 linearly independent
differential one-forms

α𝜈 = 𝐻𝜈
𝑖 d𝑥𝑖 +𝑐𝜈d𝑡

with 𝜈 = 1, … , 𝑛−𝑙 as

𝛥𝑞 ≔ ker α1∣
𝑞

∩⋯∩ker α𝑛−𝑙∣
𝑞
,

for all 𝑞 ∈ 𝑈. The compatibility condition (4.208) requires the sets

𝐴1
𝑞𝑀 ∩𝛥𝑞 = { 𝜕

𝜕𝑡 +𝑢𝑖 𝜕
𝜕𝑥𝑖 ∈ 𝑇𝑞𝑀 ∣ 𝐻1

𝑖 𝑢𝑖 +𝑐1 = 0, … , 𝐻𝑛−𝑙
𝑖 𝑢𝑖 +𝑐𝑛−𝑙 = 0}

to be non-empty for all points 𝑞 ∈ 𝑈. This is the case if the coefficient matrix
𝐇(𝑞) = [𝐻𝜈

𝑖 (𝑞)] has rank 𝑛−𝑙 for each point 𝑞 ∈ 𝑈 because then the linear
equation

𝐇𝐮+𝐜 = 𝟎

has at least one solution 𝐮 for a given value of 𝐜. This means that the
differential one-forms α1, … , α𝑛−𝑙, and d𝑡 are linearly independent. The
spaces of compatible virtual displacements (4.211) are then given by

𝐴0
𝑞𝑀 ∩𝛥𝑞 = {𝑣𝑖 𝜕

𝜕𝑥𝑖 ∈ 𝑇𝑞𝑀 ∣ 𝐻1
𝑖 𝑣𝑖 = 0, … , 𝐻𝑛−𝑙

𝑖 𝑣𝑖 = 0},
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for each 𝑞 ∈ 𝑈, respectively by

𝐇𝐯 = 𝟎 (4.213)

in matrix notation. Under the isomorphism (4.42), equation (4.213) defines
the subspace of vertical vectors on which an ideal constraint force needs to
vanish in order to be ideal.

Indeed, by condition (4.212), at any point 𝑎 ∈ 𝜋−1(𝑈) ⊆ 𝐴1𝑀, an ideal
constraint force must satisfy

𝐹c ⋅ 𝑣̂(𝑎) = (𝐹c
𝑖 (𝑎)d𝑢𝑖

𝑎)⋅(𝑣𝑖 ∘𝜋(𝑎) 𝜕
𝜕𝑢𝑖 ∣

𝑎
) = 0, (4.214)

whenever the 𝑣𝑖 ∘𝜋(𝑎) = 𝑣𝑖(𝑝) satisfy equation (4.213). If 𝐅c denotes the
ℝ𝑛-tuple that gathers the coefficients 𝐹c

1, … , 𝐹c
𝑛, then condition (4.214) can

be expressed in matrix notation as

(𝐅c)T𝐯 = 0,

for all 𝐯 ∈ ℝ𝑛 that satisfy equation (4.213). In other words, condition (4.212)
requires 𝐅c to lie in the annihilator space57 of ker 𝐇, i.e.,

𝐅c ∈ (ker 𝐇)∘ = {𝐅 ∈ ℝ𝑛 ∣ 𝐅T𝐰 = 0, for all 𝐰 ∈ ker 𝐇}

in order to define an ideal constraint force.
The constraint force is ideal if and only if it has the form

𝐹c = 𝐹c
𝑖 d𝑢𝑖 = 𝐻𝜈

𝑖 𝜆𝜈 d𝑢𝑖, (4.215)

with 𝑛−𝑙 coefficients 𝜆1, … , 𝜆𝑛−𝑙 (instead of 𝑛 for an arbitrary force). Let 𝝀
denote the ℝ𝑛−𝑙-tuple gathering the coefficients 𝜆1, … , 𝜆𝑛−𝑙, then (4.215)
can be expressed as

𝐅c = 𝐇T𝝀 (4.216)

in matrix notation. First, we observe that tuples 𝐅c of the form (4.216)
vanish on the directions defined by ker 𝐇 and, therefore, are elements of
(ker 𝐇)∘. We still need to show the reverse direction, i.e., that all elements
from (ker 𝐇)∘ can be written as 𝐇T𝝀 for some 𝝀 ∈ ℝ𝑛−𝑙. By the dimension
formula (2.25), it holds that dim (ker 𝐇)∘ = dim ℝ𝑛 −dim ker 𝐇. From the
rank-nullity theorem, we know that dim ker 𝐇 = 𝑛−dim im 𝐇 = 𝑙 because
dim im 𝐇=rank 𝐇=𝑛−𝑙. Therefore, dim (ker 𝐇)∘ =dim im 𝐇=𝑛−𝑙 which
proves the assertion.

57. See equation (2.24) for the definition.
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As the diligent reader might have expected, the results from Section 3.11
can be used to determine whether a constraint distribution is involutive or
not. Constraints for which the constraint distribution is involutive are said
to be holonomic constraints and those for which it is not involutive are
referred to as nonholonomic constraints.

The defining one-forms corresponding to the respective restriction of the
pendulum (4.205) and the ice skate (4.206)) are given by

α𝑔 = d𝑔 = 2𝑥d𝑥+2𝑦d𝑦 (4.217)

and
αℎ = − sin 𝛼d𝑥+cos 𝛼d𝑦, (4.218)

respectively. We check the involutivity of both forms according to Proposi-
tion 3.39. As expected, the one-form α𝑔 is involutive on the punctured plane
ℝ2\{𝟎} because dα = d∘d𝑔 = 0. We need to exclude the origin since there
the kernel of α𝑔 is degenerate. Let us consider the chart 𝜓∶ ℝ2\{𝟎} → ℝ2,
𝑝 ↦ 𝜓(𝑝) = (𝜑, 𝑟) that describes the punctured plane using polar coordi-
nates (in reversed order). The coordinate change between the (𝑥, 𝑦)- and
(𝜑, 𝑟)-coordinates is given by

𝑥 = 𝑟 cos 𝜑,
𝑦 = 𝑟 sin 𝜑.

The chart 𝜓∶ ℝ2\{𝟎} → ℝ2 is flat58 for the distribution defined by α𝑔. In-
deed, it holds that

α𝑔 = 2𝑟d𝑟 = d(𝑟2)

and, therefore, the distribution is spanned by the coordinate field 𝜕⁄𝜕𝜑 (see
Figure 4.7). In polar coordinates, the integral manifolds of the distribution
defined by α𝑔 are given by the slices 𝑟 = ̄𝑟 for constant values ̄𝑟 > 0.

Let us come to the one-form αℎ from (4.218). Its exterior derivative is
given by

dαℎ = − ̇𝛼 cos 𝛼d𝑡∧d𝑥− ̇𝛼 sin 𝛼d𝑡∧d𝑦.

Let 𝑢, 𝑣 be local sections of the distribution defined by αℎ, then it locally
holds that

𝑢 = 𝑎𝑡
𝑢

𝜕
𝜕𝑡 +𝑎𝑥

𝑢
𝜕
𝜕𝑥 +𝑎𝑦

𝑢
𝜕
𝜕𝑦 +𝑎𝛼

𝑢
𝜕

𝜕𝛼 +𝑎𝛽
𝑢

𝜕
𝜕𝛽

𝑣 = 𝑎𝑡
𝑣

𝜕
𝜕𝑡 +𝑎𝑥

𝑣
𝜕
𝜕𝑥 +𝑎𝑦

𝑣
𝜕
𝜕𝑦 +𝑎𝛼

𝑣
𝜕

𝜕𝛼 +𝑎𝛽
𝑣

𝜕
𝜕𝛽

58. See p. 88 for the definition.
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Figure 4.7.: Polar coordinates correspond to a flat chart of the distribution
defined by the one-form α𝑔 from (4.217) on the punctured plane
ℝ2\{𝟎}.

with the restrictions
−𝑎𝑥

𝑢 sin 𝛼+𝑎𝑦
𝑢 cos 𝛼 = 0,

−𝑎𝑥
𝑣 sin 𝛼+𝑎𝑦

𝑣 cos 𝛼 = 0.
The evaluation of the involutivity condition from Proposition 3.39 for vector
fields 𝑢, 𝑣 ∈ ker αℎ yields

dαℎ(𝑢, 𝑣) = − ̇𝛼 cos 𝛼(𝑎𝑡
𝑢𝑎𝑥

𝑣 −𝑎𝑡
𝑣𝑎𝑥

𝑢)− ̇𝛼 sin 𝛼(𝑎𝑡
𝑢𝑎𝑦

𝑣 −𝑎𝑡
𝑣𝑎𝑦

𝑢)
= −𝑎𝑡

𝑢 ̇𝛼(𝑎𝑥
𝑣 cos 𝛼+𝑎𝑦

𝑣 sin 𝛼)+𝑎𝑡
𝑣 ̇𝛼(𝑎𝑥

𝑢 cos 𝛼+𝑎𝑦
𝑢 sin 𝛼),

which is clearly non-zero such that αℎ defines a nonholonomic constraint.
Ideal holonomic constraints reveal to be a special case of a more general

situation. Let (𝑀,ϑ, 𝑔) be a Galilean manifold and Ω be an action form
on 𝐴1𝑀. Let 𝑓 ∶ 𝑀′ → 𝑀 be an immersion from a manifold 𝑀′ to 𝑀. We
say that 𝑓 is compatible with the time structure if ϑ′ ≔ 𝑓 ϑ defines a time
structure on 𝑀′. In this case the Galilean metric 𝑔 induces a Galilean metric
𝑔′ ≔ 𝑓 (𝑔), i.e.,

𝑔′(𝑢, 𝑣) = 𝑔(D𝑓 (𝑢), D𝑓 (𝑣)),

for all 𝑢, 𝑣 ∈ Γ(𝐴0𝑀′) and 𝐷𝑓∶ 𝑇𝑀′ → 𝑇𝑀 maps the affine subbundle 𝐴1𝑀′

to 𝐴1𝑀.

Theorem 4.10 (Loos 1982, p. 50). The differential two-form Ω′ ≔ (D𝑓) Ω is
an action form on 𝐴1𝑀′ that induces the Galilean metric 𝑔′. If Ω is closed
then Ω′ is also closed. If dΩ is basic then dΩ′ is also basic.

Proof. D(D𝑓) maps the bundle Ver(𝐴1𝑀′) to Ver(𝐴1𝑀) and it commutes
with the vertical homomorphisms 𝜇′ and 𝜇, i.e.,

𝜇∘D(D𝑓) = D(D𝑓)∘𝜇′. (4.219)
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Furthermore, it holds that if 𝜎 ∈ 𝛺⋆(𝐴1𝑀) is basic, respectively semi-basic,
then its pullback (D𝑓) 𝜎 ∈ 𝛺⋆(𝐴1𝑀′) is also basic, respectively semi-basic
and the pullback (D𝑓) commutes with the differentiation operators d and
𝛛, which proves the assertion.

Because of Theorem 4.10, we call the Galilean manifold (𝑀′,ϑ′, 𝑔′) to-
gether with the action form Ω′ the mechanical system on 𝑀′ induced
by 𝑓. In the case of holonomic constraints, 𝑀′ denotes the integral manifold
of the distribution 𝛥 of the constraint and 𝑓 is the inclusion map 𝜄 ∶ 𝑀′ ↪ 𝑀.
Locally, 𝑀′ can be described by 𝑛−𝑙 equations

𝑔𝜈(𝑡, 𝑥1, … , 𝑥𝑛) = 0,

where 𝜈 = 1, … , 𝑛−𝑙. The one-forms

𝛼𝜈 ≔ d𝑔𝜈 = 𝜕𝑔𝜈

𝜕𝑥𝑖 d𝑥𝑖 + 𝜕𝑔𝜈

𝜕𝑡 d𝑡

are defining forms of the distribution 𝛥. As we have seen, the compatibility
with the time structure (4.208) requires the differentials d𝑡, d𝑔1, … , d𝑔𝑛−𝑙

to be linearly independent or, equivalently, the coefficient matrix

[𝜕𝑔𝜈

𝜕𝑥𝑖 ]

needs to have rank 𝑛−𝑙. In this case, the time structure ϑ′ =𝜄 ϑ corresponds
to the restriction

ϑ′ = 𝜄 ϑ = ϑ∣𝑀′.

The spacelike bundle 𝐴0𝑀′ and state-space 𝐴1𝑀′ of the integral manifold
𝑀′ are given by

𝐴0𝑀′ = 𝐴0𝑀 ∩𝑇𝑀′ = ⋃
𝑝∈𝑀′

({𝑝}×(𝐴0
𝑝𝑀 ∩𝑇𝑝𝑀′))

and
𝐴1𝑀′ = 𝐴1𝑀 ∩𝑇𝑀′ = ⋃

𝑝∈𝑀′
({𝑝}×(𝐴1

𝑝𝑀 ∩𝑇𝑝𝑀′)),

respectively. Note that by equation (3.73) it holds that

D𝜄𝑝(𝑇𝑝𝑀′) = 𝛥𝑝,

for all 𝑝 ∈ 𝑀′. The action form Ω′ on the submanifold 𝐴1𝑀′ is given by the
restriction of Ω to the state-space 𝐴1𝑀′, i.e.,

Ω′ = (D𝜄) Ω = Ω∣𝐴1𝑀′.
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4.12. Constraints

Let 𝑍′ denote the vector field on 𝐴1𝑀′ that is uniquely determined by

ϑ′(𝑍′) = 1, 𝑍′ Ω′ = 0.

We will show that for a mechanical system that is subjected to an ideal
holonomic constraint with integral manifold 𝑀′, the vector field 𝑍′ cor-
responds to the restriction to 𝐴1𝑀′ of the vector field 𝑍c determined by
equations (4.209) and (4.210), i.e.,

𝑍′ = 𝑍c∣𝐴1𝑀′.

Condition 𝑍′ Ω′ = 0 is equivalent to the variational form

Ω′
𝑎(𝑍′

𝑎, 𝑌 ′
𝑎) = 0, (4.220)

for all 𝑌 ′
𝑎 ∈ 𝑇𝑎(𝐴1𝑀′) and all 𝑎 ∈ 𝐴1𝑀′. Since Ω′ is the pullback of Ω with

the differential of the inclusion map 𝜄 ∶ 𝑀′ ↪ 𝑀, condition (4.220) can be
written as

Ω𝑎(D(D𝜄)𝑎(𝑍′
𝑎), D(D𝜄)𝑎(𝑌 ′

𝑎)) = 0, (4.221)

for all 𝑌 ′
𝑎 ∈ 𝑇𝑎(𝐴1𝑀′) and all 𝑎 ∈ 𝐴1𝑀′. Let 𝑍 denote the second-order field

of the unconstrained system, i.e., the vector field that is uniquely defined by

ϑ(𝑍) = 1, 𝑍 Ω = 0.

We know from Section 4.7 that for all points 𝑎 ∈ 𝐴1𝑀′

D(D𝜄)𝑎(𝑍′
𝑎) = 𝑍𝑎 +𝑉𝑎,

for some vertical vector 𝑉𝑎 ∈ Ver𝑎(𝐴1𝑀) such that condition (4.221) yields

Ω𝑎(𝑍𝑎 +𝑉𝑎, D(D𝜄)𝑎(𝑌 ′
𝑎)) = 0,

for all 𝑌 ′
𝑎 ∈ 𝑇𝑎(𝐴1𝑀′) and all 𝑎 ∈ 𝐴1𝑀′. Using that 𝑍𝑎 Ω𝑎 = 0 it follows

with the definition (4.58) of the action form that

̂𝑔(𝜂𝑎(𝑉𝑎), 𝜇𝑎 ∘D(D𝜄)𝑎(𝑌 ′
𝑎))− ̂𝑔(𝜂𝑎 ∘D(D𝜄)𝑎(𝑌 ′

𝑎), 𝜇𝑎(𝑉𝑎)) = 0

for all 𝑌 ′
𝑎 ∈ 𝑇𝑎(𝐴1𝑀′) and all 𝑎 ∈ 𝐴1𝑀′. We saw on p. 106 that the vertical

homomorphism 𝜇𝑎 vanishes on vertical vectors and on p. 108 that 𝜂𝑎 is a
projection onto Ver𝑎(𝐴1𝑀). Consequently, it follows that

̂𝑔(𝑉𝑎, 𝜇𝑎 ∘D(D𝜄)𝑎(𝑌 ′
𝑎)) = ̂𝑔(𝑉𝑎, D(D𝜄)𝑎 ∘𝜇′

𝑎(𝑌 ′
𝑎)) = 0,

for all 𝑌 ′
𝑎 ∈ 𝑇𝑎(𝐴1𝑀′) and all 𝑎 ∈ 𝐴1𝑀′, where 𝜇′ ∶ 𝑇(𝐴1𝑀) → Ver𝑎(𝐴1𝑀)

denotes the vertical homomorphism on 𝐴1𝑀′. The second equality follows
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because D(D𝜄) commutes with 𝜇 according to (4.219). Since 𝜇′ is surjective,
it holds that

̂𝑔(𝑉𝑎, D(D𝜄)𝑎𝑌𝑎) = 𝐹𝑎(D(D𝜄)𝑎𝑌𝑎) = 0, (4.222)

for all 𝑌𝑎 ∈Ver𝑎(𝐴1𝑀′) and all 𝑎∈𝐴1𝑀′, where we identified the constraint
force 𝐹𝑎 ≔ ̂𝑔 ⋅𝑉𝑎 according to Section 4.7. Because the differential

D(D𝜄)∣𝐴1𝑀′ ∶ 𝐴1𝑀′ → 𝐴1𝑀

maps Ver(𝐴1𝑀′) to Ver(𝐴1𝑀), the differential D(D𝜄)𝑎 in 𝑎 is just the
inclusion map of the vector subspace Ver𝑎(𝐴1𝑀′) ⊂ Ver𝑎(𝐴1𝑀). Thus,
condition (4.222) agrees with (4.212) and the constraint force 𝐹𝑎 is ideal.
Condition (4.222), which can be rewritten as

̂𝑔(D(D𝜄)𝑎(𝑍′
𝑎)−𝑍𝑎, D(D𝜄)𝑎𝑌𝑎) = 0,

for all 𝑌𝑎 ∈ Ver𝑎(𝐴1𝑀′) and all 𝑎 ∈ 𝐴1𝑀′, uniquely defines the vector field
𝑍′. To see this, we consider another 𝑍″

𝑎 ∈ 𝑇𝑎(𝐴1𝑀′) with D𝜋𝑎(𝑍″
𝑎) = 𝑎 and

̂𝑔(D(D𝜄)𝑎(𝑍″
𝑎)−𝑍𝑎, D(D𝜄)𝑎𝑌𝑎) = 0,

for all 𝑌𝑎 ∈ Ver𝑎(𝐴1𝑀′) and all 𝑎 ∈ 𝐴1𝑀′. Since

D(D𝜄)𝑎(𝑍″
𝑎)−D(D𝜄)𝑎(𝑍′

𝑎) ∈ Ver𝑎(𝐴1𝑀′),

it follows that

̂𝑔(D(D𝜄)𝑎(𝑍″
𝑎)−D(D𝜄)𝑎(𝑍′

𝑎), D(D𝜄)𝑎𝑌𝑎) = ̂𝑔∣𝐴1𝑀′(𝑍″
𝑎 −𝑍′

𝑎, 𝑌𝑎) = 0,

for all 𝑌𝑎 ∈ Ver𝑎(𝐴1𝑀′) and all 𝑎 ∈ 𝐴1𝑀′. It follows that 𝑍′
𝑎 = 𝑍″

𝑎 because
the restriction of ̂𝑔 to Ver(𝐴1𝑀′) is non-degenerate.
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Conclusion5
Science did not progress by that
harmonious path, the illusion of
which is easily created after the
event.

— René Dugas

This thesis presents a description of finite-dimensional mechanical systems
that may be explicitly time-dependent and include nonpotential forces. The
language of contemporary differential geometry allowed us to define the
involved physical quantities as coordinate-free objects.

Chapter 1 reveals the different viewpoints adopted in geometric and tech-
nical mechanics. The presented comparison of coordinate-free approaches
for the description of finite-dimensional mechanical systems not only illus-
trates the different underlying assumptions but it highlights the restrictions
they imply for the resulting physical theory.

Compared to Loos 1982, the structure of this presentation is reorganized
such that forces take the centre stage. In the author’s eyes, this choice
brings the geometric presentation closer to more classical texts that are
based on the principle of virtual work. The thesis bridges the divide be-
tween geometric and technical mechanics by establishing a firm link to
classical results. First, Lagrange’s, Hamel’s and Hamilton’s equations are
put on an equal footing by showing that each set of equations can be de-
rived from Postulate 4.8 by choosing a respective chart of the state space.
While Lagrange’s and Hamilton’s equations can be found in Loos 1982, the
author could not find the presented derivation of Hamel’s equations in the
literature. The explicit elaboration of the link between Postulate 4.8 and
the principle of virtual work identified by Souriau led us to the respective
central equation of Lagrange and Hamel. These equations, as suggested
by their name, are at the heart of many classical works on the dynamics
of finite-dimensional mechanical systems. To the author’s knowledge no
coordinate-free formulation of mechanics exists in which the connection
with these classical results is made.

The study of Hamilton’s principle allowed us to establish the link to
the calculus of variations. Classically, Hamilton’s principle postulates the
stationarity of the action for variational families of second-order curves. We
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saw that by using the Cartan one-form, this principle can be “generalized”
to an action for which the stationarity is postulated for variational families
of arbitrary1 time-parametrized curves. The principle of virtual work is
an expression that “looks like” the stationarity condition of a variational
principle. If the different virtual work contributions (the forces) can be
obtained from a potential, then there exists a corresponding variational
principle (the classical form of Hamilton’s principle). In our geometric
approach, the stationarity condition reads

𝑋 Ω != 0

and there exists a corresponding variational principle (Hamilton’s principle)
if the action form Ω can be locally derived from a potential, i.e., if Ω is
closed meaning that dΩ = 0. With the comparison of Postulate 4.8 and the
principle of virtual work, we have pointed out the structural equivalence of
both approaches.

Section 4.12 gives a coordinate-free definition of constraints as a distri-
bution on 𝑀 that is compatible with the time structure ϑ. This definition
not only allows to distinguish between holonomic and nonholonomic con-
straints using the Frobenius theorem, but it shows that a theory built upon
Postulate 4.8 may be used for the description of constrained mechanical
systems.

Finally, this work makes part2 of the results from Loos 1982 available in
English and, thereby, may prevent this major contribution from falling into
oblivion. Moreover, the unified reformulation of classical results around
Postulate 4.8 allows a critical retrospective on the development of classical
mechanics and the theory for finite-dimensional systems in particular. We
consider two excerpts that underline the pioneering role played by Georg
Hamel and Élie Cartan. On page 416 of Hamel 1904b, one can read:

So fruchtbringend nun auch die Verknüpfung der Mechanik mit der
Variationsrechnung gewesen ist (Lagrange, Hamilton, Jacobi), so läßt
sich doch nicht leugnen, daß die [obige] Auffassungsweise der virtuellen
Verschiebungen einseitig ist und ihrer mechanischen Bedeutung nicht
voll entspricht; daß sie namentlich der Anknüpfung weiterer, außerhalb
des Gesichtskreises der Variationsrechnung liegender Beziehungen im
Wege steht. Auch die merkwürdige, in der Literatur weitverbreitete Mei-
nung, als ob das Wesen der allgemeinen Lagrangeschen Mechanik in den

1. The adjective arbitrary means that there is no restriction to variational families of
second-order curves.

2. The typescript Loos 1982 contains results that surpass the author’s current mathematical
competencies by far. An example of such a result is given by the proof of the statement that to
any exact action form Ω there is a semi-basic one-form ω such that Ω = dω (See pp. 61–62 in
Loos 1982).
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sogenannten Variationsprinzipien stecke, scheint mir in jenem Dogma
ihre Wurzeln zu haben.

Hamel’s statement can be translated into English as:

As fruitful as the connection of mechanics with the calculus of varia-
tions has been (Lagrange, Hamilton, Jacobi), it cannot be denied that
the [above] interpretation of the virtual displacements is one-sided and
does not fully correspond to their mechanical meaning; that it impedes,
in particular, the connection to results that do not lie within the scope
of variational calculus. Likewise it appears to me that the roots of the
strange, widespread opinion in the literature that the essence of gen-
eral Lagrangian mechanics can be found in the so-called variational
principles lie in that dogma.

With the results of Section 4.11 in mind, the extensive insight of Hamel
becomes apparent. Élie Cartan writes on page 17 of Cartan 1922:

16. Nous avons vu que l’action élémentaire d’Hamilton pouvait s’ob-
tenir en supposant que dans l’expression

ωδ = ∑ 𝑝𝑖δ𝑞𝑖 −𝐻δ𝑡,

on a
δ𝑞𝑖 = 𝑞′

𝑖δ𝑡.
Il est remarquable que les trajectoires d’un système matériel réalisent

encore l’extremum de l’intégrale

𝑊 = ∫
𝑡1

𝑡0
∑ 𝑝𝑖δ𝑞𝑖 −𝐻δ𝑡,

en supposant simplement que les 𝑞𝑖 et les 𝑞′
𝑖 sont des fonctions quel-

conques des 𝑡 assujetties aux seules conditions que les 𝑞𝑖 prennent des
valeurs données à l’avance aux limites. On ne suppose donc plus, comme
dans le principe d’Hamilton, que les 𝑞′

𝑖 soient les dérivées des 𝑞𝑖 par
rapport au temps. On peut même plus généralement supposer que les
𝑞𝑖, 𝑞′

𝑖 et 𝑡 sont des fonctions d’un même paramètre 𝑢 variant de 0 à 1, les
quantités 𝑞𝑖 et 𝑡 prenant aux limites des valeurs données.

A translation into English of the previous excerpt is given as:

16. We have seen that the elementary action of Hamilton can be ob-
tained from the expression

ωδ = ∑ 𝑝𝑖δ𝑞𝑖 −𝐻δ𝑡,

by supposing that
δ𝑞𝑖 = 𝑞′

𝑖δ𝑡.
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It is remarkable that the trajectories of a material system still realize
an extremum of the integral

𝑊 = ∫
𝑡1

𝑡0
∑ 𝑝𝑖δ𝑞𝑖 −𝐻δ𝑡,

by simply supposing that the 𝑞𝑖 and 𝑞′
𝑖 are arbitrary functions of 𝑡 sub-

jected to the sole conditions that the 𝑞𝑖 take values given in advance at
the limits. Thus, one does not suppose anymore, as with Hamilton’s
principle, that the 𝑞′

𝑖 are the derivatives of the 𝑞𝑖 with respect to time.
One can even more generally suppose that the 𝑞𝑖, 𝑞′

𝑖 and 𝑡 are functions
of a common parameter 𝑢 running from 0 to 1, the quantities 𝑞𝑖 and 𝑡
taking given values at the limits.

This observation is precisely what we have worked out in Section 4.11 for
the Cartan one-form (4.93). Élie Cartan’s elementary action of Hamilton cor-
responds to the local expression (4.154) of the Cartan one-form in canonical
coordinates. The above two extracts give an impression of the far-sightedness
of Hamel and Cartan.

Élie Cartan is considered to be the father of differential forms. It is aston-
ishing to see that almost a century after Cartan 1922 differential forms have
not found their way into classical mechanics. The literature survey about
the central position that is still given to the classical version of Hamilton’s
principle in modern textbooks about finite-dimensional mechanical systems
is left to the reader.

Compared to Georg Hamel and Élie Cartan, Ottmar Loos had the language
of contemporary differential geometry at his disposal. Indeed, we saw in
Section 4.7, that it is by giving a coordinate-free definition of the action
form (4.58) that Loos was able to arrive at his definition of forces. Hence,
in the case of finite-dimensional mechanical systems, Loos is able to give
a final answer to the fundamental question about the definition of forces.
This key result directly relies on the methods of global differential geometry.
The same holds for the characterization of action forms (see Theorem 4.3).
Indeed, it is hard to see how one could come up with the closure condition
𝛛Ω = 0 using only local coordinates and index calculus. Loos’ contributions
to mechanics confirm once more that there is a firm link between mechanics
and mathematics.

We already observed in Section 1.4 that the literature on the mathematical
foundations of the physical description of finite-dimensional mechanical
systems is not in an as good condition as it might be expected. A pessimist
could object that many recently published textbooks have not even digested
the knowledge from Hamel’s and Cartan’s era.

We have seen that Postulate 4.8 can be used as foundation of a coordinate-
free physical theory dealing with finite-dimensional mechanical systems.
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We demonstrated that classical principles such as the principle of virtual
work and Hamilton’s principle seamlessly fit in the coordinate-free picture
as theorems. Therefore, an obvious continuation of this work lies in the inte-
gration of existing results as theorems of Postulate 4.8. From our discussion
of Hamilton’s principle in Section 4.11.3, we have learned that this process
is more demanding than a mere reorganization of existing results. Indeed,
concerning Hamilton’s principle, we saw that it is the coordinate-free defini-
tion of a “generalized” action that lets the classical version of Hamilton’s
principle dovetail with the geometric description. Other coordinate-free con-
siderations reveal to be less expedient. The classical action (4.198) can for
example be interpreted as a real-valued function on the infinite-dimensional
manifold of curves in 𝑀 as suggested in Chapter 8 of Marsden et al. 1999.
However, with the adoption of this view, we leave the (finite-dimensional) ap-
plication area of differential geometry. This observation clearly underlines
that the embedding of existing results into a coordinate-free formulation of
mechanics is an intellectually demanding process.

A practically relevant class of finite-dimensional mechanical systems is
given by multibody systems, which consist of rigid bodies interrelated by
ideal constraints and by scalar force laws such as springs and dampers. A
coordinate-free presentation of this subject from engineering mechanics
would be a further contribution to the desired rapprochement of geometric
and technical mechanics.

In view of teaching, the focus is shifted towards a didactic treatment of
the subject. While geometric mechanics dissects the mathematical concepts
underlying the description of finite-dimensional mechanical systems, tech-
nical mechanics has the objective to impart theoretical knowledge in view
of applications. Because technical mechanics prescribes an economic use of
mathematical concepts, the adaptation of a geometric description for engi-
neering purposes is identified as an important but particularly challenging
task.
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Calculus on ℝ𝑛 A
We briefly summarize matrix notations that make calculus on ℝ𝑛 more
comfortable. An element 𝐱∈ℝ𝑛 is an 𝑛-tuple 𝐱=(𝑥1, … , 𝑥𝑛) of real numbers.
To ease calculations, it may be re-interpreted as column vector

𝐱 =
⎡⎢⎢
⎣

𝑥1

⋮
𝑥𝑛

⎤⎥⎥
⎦

.

The corresponding row vector is denoted by

𝐱T = [𝑥1 ⋯ 𝑥𝑛] .

For a vector-valued function 𝐟 ∶ ℝ𝑛 → ℝ𝑚, 𝐱 ↦ 𝐟(𝐱), we define

𝜕𝐟
𝜕𝐱 ≔

⎡
⎢⎢⎢⎢⎢
⎣

𝜕𝑓 1

𝜕𝐱
⋮

𝜕𝑓 𝑚

𝜕𝐱

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

𝜕𝑓 1

𝜕𝑥1 ⋯ 𝜕𝑓 1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓 𝑚

𝜕𝑥1 ⋯ 𝜕𝑓 𝑚

𝜕𝑥𝑛

⎤
⎥⎥⎥⎥⎥
⎦

. (A.1)

In the case 𝑚=1 of a real-valued function 𝑓 ∶ ℝ𝑛→ℝ, 𝐱↦𝑓 (𝐱), equation (A.1)
reduces to the row vector of length 𝑛

𝜕𝑓
𝜕𝐱 ≔ [ 𝜕𝑓

𝜕𝑥1 ⋯ 𝜕𝑓
𝜕𝑥𝑛 ] .

For a real-valued function 𝐿∶ ℝ𝑛 ×ℝ𝑚 → ℝ, (𝐱, 𝐮) ↦ 𝐿(𝐱, 𝐮), we define the
second-derivatives as the 𝑚-by-𝑛 matrix

𝜕2𝐿
𝜕𝐱𝜕𝐮 ≔ 𝜕

𝜕𝐱(𝜕𝐿
𝜕𝐮

T

)

and the 𝑚-by-𝑚 matrix

𝜕2𝐿
𝜕𝐮𝜕𝐮 ≔ 𝜕

𝜕𝐮(𝜕𝐿
𝜕𝐮

T

).
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