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Scale-up of gas fermentations - Modelling tools for risk minimisation

by Flora SIEBLER

The reduction of greenhouse gas emissions is a global endeavour supported
by society, politics and industry. In recent years, circular economy, reducing
the exploitation of fossil energy sources, have increased the demand for
new solutions when producing commodities and fine chemicals. Caboxy-
dotrophic fermentations with acetogenic bacteria are potential processes in
order to reach these goals. They convert gaseous substrates such as CO, and
CO2/H2 mixtures. However, gases as sole substrate are rather challenging,
not only in small lab-scales but especially in large-scale. Transferring an
efficient fermentation process from experimental to industrial scales often
results in unpredictable performance losses.

This study presents an in silico concept minimising possible risks in
gas fermentations up-scaling. First, the economical feasibility of various
fermentation methods is investigated. Then, two computational tools are
presented using Clostridium ljungdahlii as model organism and synthesis gas
as substrate in a 125 m3 bubble column reactor. While conceptual design
approaches can search through parameter spaces of putative operational
windows in very short time, computational fluid dynamics (CFD) approaches
provide valuable insight in bacterial behaviour when confronted with stress
conditions such as substrate gradients. The latter is currently limited by
the available computing power making the interaction of both modelling
approaches essential but also a valuable trade-off.

The one-dimensional spatial and temporal discretised approach (1D)
shows that proper consideration of gas holdup is key when predict biological
performance. An optimum reactor operation mode is identified and further
investigated in a high resolution CFD study. Besides precise flow pattern,
mixing and circulation times are calculated. Statistical lifeline analysis reveal
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possible short- and long-term responses of the organism as well as maximum
retention times in limitation zones. In addition, intrinsic bias of 1D models
can be adapted and compensated by the results of the CFD simulation.

The combination of economical investigation with modelling tools show
high potential for successful scale-up of gas fermentations. With this concept
feasibility, reactor design, operation mode and general risk minimisation can
be analysed and specified.
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Zusammenfassung
Ein globales Anliegen der Gesellschaft, der Politik und der Industrie ist die
Reduktion der Treibhausgasfreisetzung. Im selben Zug verlangt die Kreis-
laufwirtschaft, welche die Ausbeutung von fossilen Rohstoffen reduziert, in
den letzten Jahren nach neuen Lösungen zur Herstellung von Grundstoffen
und Feinchemikalien. Carboxydotrophe Fermentationen mit acetogenen
Bakterien sind potentielle Prozesse, um dieses Ziel zu erreichen. Dabei
werden gasförmige Substrate wie CO und CO2/H2 verstoffwechselt. Gase
als reine Substratquelle stellen jedoch eine Herausforderung nicht nur in
kleinen Laborumgebungen sondern speziell in großen Anlagen dar. Das
Transferieren eines effizienten Fermentierungsprozesses von Labor zum
Industriemaßstab führt häufig zu unvorhergesehenen Leistungsverlusten.

In dieser Studie wird ein in silico Konzept vorgestellt, das mögliche
Risiken beim Hochskalieren von Gasfermentationen reduziert. Zuerst wird
die ökonomische Umsetzbarkeit von verschiedenen Fermentierungsmeth-
oden untersucht. Anschließend werden zwei rechnergestützte Hilfsmittel
präsentiert, wobei Clostridium ljungdahlii als Modellorganismus und Synthe-
segas als Substrat in einem 125 m3 Blasensäulenreaktor fungiert. Während
konzeptionelle Planungsansätze in kurzer Zeit durch Parametervariatonen
von vermeintliche Betriebsfenstern suchen können, bieten Methoden der
numerischen Strömungsmechanik (engl. CFD) wertvolle Einblicke in das
Verhalten von Bakterien unter Stressbedingungen wie zum Beispiel Substrat-
gradienten. Letztere Methode ist derzeit vor allem durch die vorhandene
Rechenleistung limitiert, welches die Wechselwirkung beider Modelle essen-
tiell macht, gleichzeitig aber auch ein nützlicher Kompromiss ist.

Die eindimensionale, räumlich und zeitlich diskretisierte Methode (1D)
zeigt, dass eine angemessene Betrachtung des Gasrückhalts eine zentrale
Rolle bei der Vorhersage der biologischen Leistungsfähigkeit spielt. Ein opti-
maler Betriebsmodus des Reaktors wurde identifiziert und anschließend in
einer hochauflösenden CFD Berechnung weiter untersucht. Neben präzisen
Strömungsmustern wurden auch Misch- und Zirkulationszeiten berech-
net. Statistische Analysen von Lebenslinien deckten sowohl Kurz- und
Langzeitreaktionen der Organismen sowie maximale Aufenthaltszeiten in
Grenzbereichen auf. Zusätzlich konnten innenwohnende Fehler des 1D
Modells durch Lösungen der CFD Berechnung angepasst und kompensiert
werden.

Die Kombination aus ökonomischen Untersuchungen in Verbindung
mit Modellierungshilfsmitteln weist ein hohes Potential zur erfolgreichen
Hochskalierung von Gasfermentationen auf. Mit diesem Konzept können
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Umsetzbarkeit, Reaktordesign, Betriebsmodus und generelle Risikomin-
imierung analysiert und spezifiziert werden.
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Chapter 1

Introduction

1.1 Challenges of waste gas recycling

In 2015 the United Nations Framework Convention on Climate Change
(UNFCCC) signed The Paris Agreement, which was enforced on the 4th of
November in 2016. This agreement is built on scientific theories of climate
change and the fact that ambitious efforts are necessary to combat these
changes as well as to support developing countries to do so. Similar to the
Kyoto Protocol of 1992, one of these efforts is reducing man-made greenhouse
gas emission. Primarily the release of carbon dioxide has been increasingly
moving into political and economic focus (Philip, 2018).

CO2 emissions are reduced further by the ongoing depletion of fossil re-
sources (Takors et al., 2018). In order to assure the future demand of oil-based
industries as well as the supply of transportation fuel, new strategies for
carbon-based chemicals and energy sources have to be developed (Phillips et
al., 2017). Combining both emission reduction and recirculation of precious
carbon would be the best solution and should be the aspiration for future
processes (Bengelsdorf and Dürre, 2017). In doing so the climate agreement
goals of The Paris Agreement can be met, costly payments for CO2 emission
certificates prevented and carbon recycled.

One way of this so-called circular economy idea uses lignocellulosic waste
as renewable resource, which can be converted to biorefinery chemicals such
as biofuels or fine chemicals (Liguori and Faraco, 2016). Lignocellulosic
feedstock can be agri-residue, agri-processing by-products and energy crops.
To make the carbon-based energy available, either fungal, bacterial or enzy-
matic treatments are used (Liguori and Faraco, 2016). The process itself is
technologically and economically very challenging. Industrial scale-up and
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microbial performance are key difficulties which need to be dealt with and
overcome.

Conventional gasification of biomass (Griffin and Schultz, 2012) or fast
pyrolysis (Pfitzer et al., 2016; Arnold et al., 2017) are well applicable processes
to use lignocellulosic sources and to produce synthesis gas or short syngas.
Another source is the exhaust gas of the steel industry. The main components
of this gas mixture are carbon monoxide, carbon dioxide and hydrogen but
also hold unwanted compounds such as H2S or NH3. Syngas is a common
source in chemical processes but can only be exploited in certain composition
ratios and without any impurities. Furthermore, these processes demand
high temperatures and pressures.

Instead of being used in the chemical applications, syngas can also be
converted in bioreactors with fermentative microorganism. Via hydrogenesis,
methanogenesis or acetogenesis these bacteria can grow on CO, CO2 and H2
and produce economically interesting by-products (Latif et al., 2014; Diender
et al., 2015). In general, microbial fermentations are moderate processes
which demand usually only low temperatures and pressures, less ecological
harmful acids or bases, let alone the use of heavy metals.

For the moderate and ecologically friendly recycling of important carbon
sources and the fixation of CO2, preferably in form of valuable carbohydrates,
syngas fermentations with acetogenic microorganism are very promising
(Dürre, 2016). However, to be economically superior to conventional chem-
ical approaches, further improvements are needed. This thesis focusses
on different aspects of efficient syngas fermentation. In this chapter the
motivation and addressed tasks are introduced.

1.2 Motivation of this thesis

In general, gas fermentations mainly need to overcome two limiting fac-
tors: (i) low gas solubility and (ii) efficient mass transfer from gas to liquid
phase. Aerobic fermentations need oxygen as electron acceptor in the energy
metabolism and the carbon source is usually provided in form of a sugar-
solutions. In contrast, the carbon source of synthesis gas fermentations is
introduced via the gas phase. On the downside, the gas components are only
available in their dissolved form making the limiting factors (i) and (ii) even
more essential.

This thesis is not only motivated by the previously mentioned physical
but also by economic challenges in respect to the desired products and
their titres. The profitability of the process sets the framework for potential
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scale-up. Product complexity, quantity, purity and stock price are key in
this matter which are investigated first. An initial economic assessment of
the process narrows down the reactor type and gives information about
its general feasibility. However, the first potential assessment is based on
assumptions which, if carried out in a reasonable manner, is very helpful.

Scale-up especially for challenging processes such as gas fermentations
should be approached from more than one angle. If the economic assessment
shows potential for the process, possible maximum titres can be approxi-
mated. For this purpose, different in silico simulations can be performed
to rule out any risks in process up-scaling. As mentioned before, gas fer-
mentations are very difficult to predict since simulating the gas-liquid mass
transfer is still very imprecise and thus an estimate. Nevertheless, modelling
large-scale fermentations can predict the presumably best operation mode
and identify possible inefficiencies in advance.

Spatial resolution is a key aspect in modelling flow behaviours. A re-
actor can be seen as one evenly mixed vessel or partitioned into several
smaller volumes to reflect different spatial properties. The latter allows solv-
ing physical flow equations and transport between the reactor partitions.
Consequently, the higher the resolution the more information about the
process can be derived. Concerning gas fermentations, the complexity for
modelling escalates to a multi-phase problem with gas and liquid phase and
the above-mentioned crucial mass transfer between these phases.

While the spatial discretisation increases the resolution, an increase can
also be seen for the required computing power and solution time. While
the general computing power has been changing for the better over the last
years high resolution multiphase simulations are still limited. Above all, the
chosen simulation approach is specifically tailored to solve a distinct aspect
of the system. While dynamic analysis with adequate model assumptions
can be executed in rather coarse discretised models, biological impacts due to
possible gradient formations require state of the art refinements. Especially
in case of synthesis gas fermentations with debated profitability, preliminary
studies are advisable. However, only few investigations with regards to in
silico analysis have been undertaken.

The presented thesis with the title "Scale-up of gas fermentations - Modelling
tools for risk minimisation" targets the above-mentioned challenges with an
overall concept to minimise the risks in scale-up of synthesis gas fermenta-
tions by performing essential preliminary investigations as well as pursuing
different modelling approaches. The detailed strategy of the objectives and
thesis outline can be found in the last section of the introduction.
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1.3 Objectives, strategy and thesis outline

The previously mentioned challenges are further described in form of distinct
objectives for which solution strategies are introduced (Chapter 1 - Introduc-
tion). The objectives are formulated as research questions (RQs) alongside
which the structure of this thesis is presented. In general, the risk minimisa-
tion concept motivated by the up-scaling of synthesis gas fermentations is
divided into three parts: a pre-evaluation of reactor geometries and assess-
ment of potential of synthesis gas fermentations (A), a fast low-resolution
1-dimensional (1D) approach (B) and a high-resolution computational fluid
dynamic (CFD) approach (C). A schematic overview is given in Figure 1.1.
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Figure 1.1: Schematic overview of the thesis structure. The thesis is grouped in the evaluation
and assessment of industrial reactor geometries (A), and mathematical approaches. The latter
are divided in a 1-dimensional approach (B) and computational fluid dynamics (CFD) approach
(C).
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In Chapter 2 - Information concerning synthesis gas fermentation an
overview of the state of the art of gas fermentation is given. It includes com-
mon information on production, composition and application of synthesis
gas, the introduction of strains and metabolism as well as information on
the general challenge of gases as substrate. The first part of this thesis, the
pre-evaluation section pictured in Figure 1.1 (A), is presented in Chapter 3 -
Evaluation and assessment of industrial reactors and targets the following
research questions (numbering corresponds to the sections of this thesis):

RQ3.1 Which reactor geometries are suitable for synthesis gas fermenta-
tions?

RQ3.2 Is the industrial application of synthesis gas fermentations eco-
nomically feasible?

Answering RQ3.1 was possible by summarising conventional and non-
conventional reactor geometries and comparing them with regard to presum-
able reactor performance and scale-up costs. The objective of this question
is a reactor pre-selection for further in silico analysis. The second research
question (RQ3.2) addresses an assessment of potential. Product stock prices
and maximal plant budgets are calculated to assess the profitability of the
process.

With the information of the pre-evaluation (A), the modelling parts (B)
and (C) are investigated. The model approaches hold the largest share of this
study and are organised in three chapters. While Chapter 4 - Challenges,
mathematical methods and approaches introduces the chosen approaches,
Chapter 5 - Programs and set-up gives background information concerning
programs, simulation parameters and the models. Finally, the results of
the simulations are placed in the overall context in Chapter 6 - Modelling
results and discussion. In the thesis part (B) and (C), the following main
research questioned are processed:

RQ4.1 What main characteristics of the chosen reactor must be kept in
mind when modelling the process?

RQ4.2 Which models are chosen and why?
RQ4.3 How can a 1-dimensional (1D) model with focus on gas holdup

be derived?
RQ4.4 Which numerical approaches are appropriate for modelling mul-

tiphase computational fluid dynamics?

RQ6.1 What information is gained by the 1D approach?
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RQ6.2 Which statements can be made regarding the computational fluid
dynamics results?

RQ6.3 How can the model approaches be complementary?

Detailed background research presented in chapter 4.1 provides an ad-
equate answer to RQ4.1. On the other hand, RQ4.2 is motivated by state
of the art models, their application possibilities and desired results. The
concept of synthesis gas risk minimisation is built on the development of ap-
propriate modelling tools answering the key issue RQ4.3, RQ4.4, RQ6.1 and
RQ6.2. Deriving of the 1-dimensional model (RQ4.3) investigations of pos-
sible diffusion limitations follow. In addition, it includes the development
of a small kinetic correlation to model microbial growth and production.
Since anaerobic acetogenic bacteria are the most researched and promising
choice for syngas conversion, a representative acetogenic model strain is
used in all approaches. As indicated in Figure 1.1 (B), the main objective of
the 1D approach is a parameter space probing (RQ6.1) to find a reasonable
starting point for the more detailed computational fluid dynamic approach
(Figure 1.1 (B) and RQ4.4/RQ6.3). The CFD approach settings (RQ4.4) are
derived from the 1D results, extensive literature research and practicability
within the constraints of available computing power. Besides higher levels
of detail, the objective of the CFD approach (see also Figure 1.1 (C) and
RQ6.2) is predicting cell behaviour in large scales gas gradients aiming for
the biological impacts of possible substrate insufficiencies. While the CFD
model is partially built on the 1D model, the latter can also benefit from the
high-resolution results (RQ6.3).

Chapter 7 - Conclusion and outlook concludes all findings and state-
ments of the developed risk minimisation concept and provides suggestions
for future work in up-scaling of synthesis gas fermentations.
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Chapter 2

Information concerning
synthesis gas fermentation

This chapter gives necessary background information on the production
and composition of synthesis gas and its general application, either chem-
ical or biochemical. Additionally, synthesis gas digesting strains and their
exceptional Wood-Ljungdahl pathway are introduced as well as possible fer-
mentation products. Finally, the general challenges according to the substrate
availability is highlighted in respect to gas-liquid mass transfer.

2.1 Production and composition of synthesis gas

The production of synthesis gas short syngas shows a tremendous feed-
stock flexibility (Daniell et al., 2012), which leads to a broad variety in the
composition of industrial generated syngas (see Table 2.1).Wood, dedicated
energy crops, grain wastes, manufacturing or municipal wastes, natural gas,
petroleum and chemical wastes, lignin, coal and tires are used as feedstock
materials (Phillips et al., 2017). These carbon-rich materials can be gasified to
syngas with its main fractions: CO, CO2 and H2. The water-gas-shift (WGS)
reaction (see equation (2.1)) converts CO and H2O into CO2 and H2 under
high pressure and high temperatures and is hereby the key transformation
(Takors et al., 2018).

CO + H2O ⇀↽ CO2 + H2 ∆H0
R = −41 kJ mol−1 (2.1)

Depending on the type of pollution and its quantity share, potential
accumulation of impurities in the fermentation media and associated effects
such as cell toxicity, enzymatic inhibition and product distribution can occur
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(Xu et al., 2011). Impurities can be H2S, CH4, COS, etc. These are summarised
as N2 in Table 2.1. To simplify further steps, the N2-impurity will have
no impact on the fermentation except reducing the other syngas fractions.
Nevertheless, impurity effects should be kept in mind if it comes to industrial
fermentation processes. Depending on the used syngas, an upstream clean-
up process is advisable (Xu et al., 2011) but also an additional source for
manufacturing cost.

Table 2.1: Synthesis gas composition. Synthesis gas fractions produced in industrial scale
(derived from Wang et al., 2009; U.S. Department of Energy, 2015) and for lab scale purposes
(see gas composition in Appendix of Manuscript II).

CO2 CO H2 N2

industry vol.-% 10-15 35-65 27-30 0-5
mass.-% 12-25 28-68 2 0-5

laboratory vol.-% 5 55 30 10
mass.-% 10 73 3 13

There is another source for syngas, too. It is also produced in large
volumes as by-product of divers industries for example by the steel industry.
During the metallurgical production process (see Figure 2.1), three different
gas types are released.

coke oven battery blast furnace converter

coal coke
pig
iron steel

iron
ore

coke gas:
50-70% H2

25-30% CH4

blast furnace gas:
5% H2

20% CO

converter gas:
60% CO~~

~

Figure 2.1: Off-gases from metallurgical production process (derived from Clarke Energy®,
2018). The process is divided into three stages with three different off-gas compositions.

Coke gas is produced in the coke oven battery by high-temperature
pyrolytic distillation of coking coal. Besides high hydrogen amounts, large
quantities of methane gas are produced. In the second process step blast
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furnace gas is formed by reducing iron ore with the previous produced coke
to metallic pig iron. In the final step the pig iron is converted into the actual
steel releasing the converter gas. Is the final step the most common Linz-
Donawitz process the converter gas consists of about 65% carbon monoxide,
15% carbon dioxide, 15% nitrogen and small amounts of hydrogen and
methane (Clarke Energy®, 2018).

While coke gas is usually recycled in internal processes furnace and
converter have low heating values and are difficult and less economical to be
completely recycled. Despite the low remaining energy, syngas from the steel
industry is a carbon source of the third generation. Energy from substrates
of the first generation would be for example sugar and starch which also
competes with the food industry. The above-mentioned feedstock for syngas
generation would be of the second generation not directly competing with
the world’s food supply. Feedstock materials such as wood or straw, however,
have already important purposes, e.g. paper industry and animal feed, and
are therefore also controversially discussed (Basile et al., 2019, p. 320-323).
Although carbon sources of the third generation are low in available energy,
they are less questionable and often seen as economic burden in terms of
CO2 emission (Takors et al., 2018). For these reasons this thesis addresses
mainly the processing of synthesis gas generated by the steel industry.

2.2 General application and advantages

In this section, the chemical application of synthesis is stated, directly fol-
lowed by the recent biochemical application. For the latter, companies are
introduced which have already started syngas fermentation in large scales.

2.2.1 Chemical application

As discussed in the previous chapter syngas can be produced from var-
ious sources and is also a by-product of diverse industrial off-gases. In
the chemical industry syngas is an important intermediate resource for the
production of hydrogen and ammonia via the water-gas-shift reaction, syn-
thetic hydrocarbon fuels via the Fischer-Tropsch synthesis (FTS) and the
production of dimethylether via methanol synthesis (van de Loosdrecht
and Niemantsverdriet, 2012, p. 443-458). All these processes are strongly
endothermic and energy-intensive with pressures of 20-300 bar and tempera-
tures of 200-350 ◦C (Takors et al., 2018). Additionally, impurities have to be
removed and for optimum FTS conversion specific H2 to CO ratios (>2) need
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to be achieved (Abubackar et al., 2011; Griffin and Schultz, 2012). The FTS
reaction (see equation (2.2)) is catalysed by metal catalysts such as cobalt,
iron and ruthenium.

n CO + (2n + 1) H2O→ CnH2n+2 + n H2O (2.2)

Even though there is a tremendous amount of mechanistic complexity
involved the overall reaction is quite straightforward (van de Loosdrecht
and Niemantsverdriet, 2012). The oxygen atom is removed from the CO by
forming water. For the methanol production a specific ratio of CO2, CO and
H2 is needed.

CO2 + H2 ⇀↽ CH3OH + H2O ∆H0
R = −47 kJ mol−1 (2.3)

CO + 2H2 ⇀↽ CH3OH ∆H0
R = −91 kJ mol−1 (2.4)

Equation (2.3) shows the predominant reaction and equation (2.4) the
combination of equation (2.1) and (2.3).

An alternative and more moderate syngas application is the fermentative
microbial conversion. Nature provides a bunch of these microorganisms
which can convert CO2, CO and H2 via hydrogenesis, methanogenesis or
acetogenesis (Latif et al., 2014; Diender et al., 2015). Especially acetogen or-
ganisms are promising for industrial application and potentially economical
superior to chemically conversion.

2.2.2 Companies exploring syngas gas fermentation

Until 2012, there were three companies dealing with the commercialisation
of synthesis gas fermentation: INEOS Bio, Coskata and LanzaTech (Daniell
et al., 2012). Some vanished and some succeeded. This chapter introduces all
current industrial initiatives and their main products. Gaddy and Clausen
(1992) of the University of Arkansas filed the first patents in this area. INEOS,
a major multinational chemical firm, acquired Gaddy’s industrial scale-up
transfer in 2008 (Daniell et al., 2012).

INEOS Bio (2013) is a subsidiary of INEOS which uses proprietary isolates
of Clostridium ljungdahlii as biocatalyst. Their pilot plant reports a production
rate of 380 L (100 gallons) ethanol per dry ton of feedstock. The feedstock (see
chapter 2.1) is gasified to syngas and then fermented to bioethanol (Gaddy
et al., 2012). Nowadays, INEOS Bio build two commercial scale plants in the
United States (Daniell et al., 2012).
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Another company was Coskata (2006) which used technology and or-
ganism Clostridium ragsdalei and Clostridium carboxidivorans licences from
Oklahoma. An additional strain, Clostridium coskatii, was used for ethanol
production. Coskata also produced about 380 L of ethanol per dry ton of soft-
wood in Madison, Pennsylvania. Synata Bio (2016) acquired the technology
in 2015 when Coskata went out of business.

LanzaTech (2005) focusses not only on ethanol but on 2,3-butanediol
production, too. Besides synthesis gas also CO-rich industrial off-gases are
used. To produce chemicals, such as 2,3-butanediol and butanol as well as
traditional fuels like ethanol by gas fermentation, is a unique selling point of
this company. A pilot plant can be found in Auckland, New Zealand, and a
pre-commercial demonstration plant in partnership with BaoSteel is located
in Shanghai, China. This demonstration plant produces 380 L ethanol per
year from steel mill off-gases. Commercial scale facilities can be found in
Caofeidian (China) since 2017 with 16 M gallons per year and in Gent (Bel-
gium) with ArcelorMittal since 2018 with 21 M gallons per year(LanzaTech,
2018). Three additional commercial scale project in South Africa (Swayana)
with ferroalloy off-gases, in India (IndianOil) with refinery off-gases and
in Colifornia (Aemetis) with gasified orchard wood and nutshells (Teixeira
et al., 2018).

In 2012, the start-up White Dog Lab (2016) was founded, focussing on
mixotrophic fermentation. They use sugars and syngas/CO to produce
acetone and isopropanol. The production of both products has also been
demonstrated by LanzaTech (2017).

Although there are already existing syngas fermenting companies, effi-
ciency and profitability are not necessarily given and further improvement is
advisable. One possibility could be new fermentation products with higher
market prices, another would be a more cost-saving scale-up. There is high
potential in synthesis gas fermentation with an ever-growing market.

2.3 Synthesis gas digesting strains

In this section the main gas digesting strains are introduced and the specific
characteristics of the Wood-Ljungdahl pathway are explained. Finally, the
recent main products and their applications are listed.
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2.3.1 Acetogenic strains and application

The most relevant syngas digesting strains are acetogenic bacteria. Aceto-
gens can be found in soils, sediments, sludge an intestinal tracts of many
animals and are thus anaerobic mircroorganisms (Drake et al., 2008). There
are numerous known acetogens but only few serve as model organisms
and industrial workhorses (see Table 2.2)). Using the reductive acetyl-CoA
pathway, they produce naturally mainly acetate, 2,3-butanediol and ethanol
(Daniell et al., 2012). CO and H2 serve as electron donors enabling the growth
on CO2/H2, CO or CO/H2. As the microorgnisms can switch between their
educts, they are more flexible and therefore potentially superior to conven-
tional Fisher-Tropsch processes (Munasinghe and Khanal, 2010a; Griffin
and Schultz, 2012). Nevertheless, occurrence of off-gas impurities such as
sulphur dioxide and hydrogen sulphide may hamper cellular performances
(Munasinghe and Khanal, 2010a). Eventually, better fermentation results
will be obtained if the fermentation gas is free of impurities and provides a
high CO concentration (see also chapter 2.3.2).

In general, the optimal fermentation conditions of acetogenic strains are
quite moderate with optimal pH around 7 and usually temperature of 30 ◦C
and 37 ◦C (see Table 2.2). Thermophilic bacteria such as Moorella thermoacetica
have much higher optimal operation temperatures, however, not as high as
chemical syngas processes (see chapter 2.2.2).

Table 2.2: Main acetogenic model organisms and industrial workinghorses (derived from
Takors et al., 2018). DT stands for autotrophic doubling time. If data is not available (n.a.) it
is marked as such. References: Balch et al. (1977) [1], Bache and Pfennig (1981) [2], Sharak
Genthner and Bryant (1982) [3], Schink and Stieb (1983) [4], Poehlein et al. (2012) [5], Abrini
et al. (1994) [6], Köpke et al. (2011) [7], Brown et al. (2014) [8], Tanner et al. (1993) [9], Köpke et al.
(2010) [10], Fontaine et al. (1942) [11], Kerby and Zeikus (1983) [12], Andreesen et al. (1973) [13],
Daniel et al. (1990) [14], Parekh and Cheryan (1991) [15], Gößner et al. (1999) [16], Bengelsdorf
et al. (2015) [17], Poehlein et al. (2015) [18].

Species name Substrate(s) Product(s) Optimum DT Ref.temp. pH (CO)

Acetobacterium woodii H2+CO2 acetate 30 ◦C 7.6 n.a. [1]-[5]DSM 1030
Clostridium autoethano- H2+CO2, 2,3-butanediol, 37 ◦C 5.8-6.0 4 h [6]-[8]genum DSM 10061 CO acetate, ethanol
Clostridium ljungdahlii H2+CO2, 2,3-butanediol, 37 ◦C 6.0 3.8 h [7],[9],

DSM 13528 CO acetate, ethanol [10]
Moorella thermoacetica H2+CO2, acetate 55 ◦C 6.9 9-16 h [11]-[18]DSM 2955 CO

Table 2.2 also lists autotrophic doubling times (DT), which are compared
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to for example Echerichia coli (Gibson et al., 2018) with up to 20 min and
Vibrio natriegens with 9.4 min (Hoffart et al., 2017) quite slow. CO is very low
in energy compared with other carbon sources. Some reduced sugars offer
much more energy and are also digestible by the afore mentioned acetogens.
In this thesis, one of the most researched strains, Clostridium ljungdahlii, was
used as model organism.

Figure 2.2: Clostridium ljungdahlii sp. nov. by Tanner et al. (1993). Picture shows a transmis-
sion electron micrograph of the acetogenic strain.

C. ljungdahlii (see Figure 2.2) is anaerobic, rod-shaped, motile, endospore-
forming, gram-positive bacterium (Tanner et al., 1993) and highly promising
to access not only native products (ethanol, acetate or 2,3-butanediol) but also
recombinant compounds such as acetone, butanol etc. (Takors et al., 2018).
The organism is completely sequenced and genetically accessible, which
was shown by Köpke et al. (2010), who constructed a recombinant butanol
producing strain. C. ljungdahlii is a model acetogen for proton bioenergetics
and CO utilization. With the help of a proton gradient, energy in form of ATP
(adenosine triphosphate) can be generated. The following chapter discusses
in detail how syngas is metabolised and energy generated.

2.3.2 Wood-Ljungdahl pathway

Acetogens can ferment CO and/or CO2 and H2 into acetyl-CoA. The reduc-
tive acetyl-CoA pathway is also known as the Wood-Ljungdahl pathway. CO
and H2 are used by these organisms as energy source and CO2 as an electron
acceptor (Daniell et al., 2012). Carbon monoxide enters the Wood-Ljungdahl
pathway through two routes and is preferred for electron production over
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H2 (Hu et al., 2011). Phillips et al. (1994) postulate that higher CO concentra-
tion result in more product formation (here ethanol and acetate) as well as
biomass production.

The two routes are also known as the methyl (eastern) and carbonyl
(western) branches. As mentioned before, either CO or CO2 can serve as
carbon source, which can be seen in Figure 2.3 highlighted in blue. When CO
is used, it is first oxidised to CO2 utilising ferredoxin (Fd). Via the methyl
branch, CO2 is then reduced to formate, which is coupled to the coenzyme
tetrahydrofolate (CHO-THF) spending one ATP (highlighted in red). After
the reduction to methyl-tetrahydrofolate (CH3-THF), acetyl-CoA is formed
with another CO of the carbonyl branch. CO dehydrogenase (CODH) is
the key enzyme which catalyses the reaction shown in equation (2.5) and
represents the biological version of the water-gas-shift reaction mentioned in
chapter 2.1 equation (2.1).

CO + H2O + A→ CO2 + AH2 (2.5)

CODH can covert the CO2 to CO and vis versa and also combines the
methyl group of CH3-THF and the carbonyl group into acetyl coenzyme A
(short acetyl-CoA in first and last reaction in Figure 2.3 blue highlighting).
In general, the carbonyl or western branch can only be found in anaerobic
microorganisms (Ragsdale, 1997). Acetyl-CoA is further metabolised to ac-
etate which yields in one ATP and consequently the preferred by-product
(Figure 2.3 yellow highlighting). One ATP is used in the methyl branch
and one produced in acetate production leaving no energy for growth so
far. Here comes the afore mentioned RNF-complex into focus. RNF comes
from Rhodobacter nitrogen fixation, which forms with reduced ferredoxin:
NAD+ oxidoreductase a complex and produces as membrane-bound pro-
tein a proton gradient. Together with the also membrane-bound ATPase,
ADP can be recycled to ATP, which is indicated in Figure 2.3 (highlighted in
grey). The coupling with reduction equivalents (Fdred/Fdox, NAD+/NADH,
NADP+/NADPH) is quite complex and catalysed by the bifurcating hydro-
genesis. This enzyme oxidise two H2 and reduce both ferredoxin and NAD+

(Figure 2.3 in violet). Alcohols such as ethanol (green) and 2,3-butanediol
(orange) are produced, too, which generates NAD+. Lactate (pink) is an over-
flow product and can only be found in traces. The formation of by-product
is needed to keep the RNF-complex running to generate ATP via the ATPase
which is needed for growth.
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Figure 2.3: Main biochemical pathways of C. ljungdahlii. Simplified Wood-Ljungdahl path-
way is highlighted in blue. Hydrogenesis reaction to utilise H2 is highlighted in violet while
membrane-bound RNF-complex and ATPase for proton gradient and energy supply is indi-
cated in grey. Important intermediates such as acetyl-CoA and pyruvate are highlighted in red.
Product pathways for biomass, lactate, 2,3-butanediol (BuOH), acetate and ethanol (EtOH), are
coloured in brown, pink, orange, yellow and green.

How every reaction is intertwined is not completely understood but
cell growth depends strongly on the energy providing proton gradient and
therefore also on the overall redox potential. Stoichiometric models can
give important insight in this matter. There is one genome scale model of
C. ljungdahlii available so far (Nagarajan et al., 2013). In general, genome
scale models are often used for metabolic flux analysis (MFA), an analysis
to gain information of the internal fluxes and how to optimise the strain.
As mentioned before C. ljungdahlii is genetically well accessible giving the
opportunity to produce recombinant strains to get new products. Which
natural products can be produced with syngas fermentation and are desired
by the chemical industry, is discussed in the next chapter.

2.3.3 Possible fermentation products

The most common natural by-product of synthesis gas fermentation is ac-
etate due to the energy generated during the process (see Figure 2.3 in
chapter 2.3.2). Acetate is mostly used in the production of polymers, in the
textile industry for dyeing and as well as solvent (Cheung et al., 2005). In
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many cases, ethanol and 2,3-butanediol are produced, too (see for example
Table 2.2 in chapter 2.3.1). Up to 2 mM can be generated by these bacteria
from steel mill waste as substrate (Köpke et al., 2011). Ethanol can be used,
amongst other things, as precursor of ethyl halides and esters, as biofuel or
solvent (Köpke et al., 2010). In addition to acetate, Clostridium formicoaceticum,
Clostridium methoxybenzovorans and Eubacterium aggregans produce formate
(Andreesen et al., 1970; Lux and Drake, 1992; Mechichi et al., 1998; Mechichi
et al., 1999). Acetonema longum, Clostridium drakei, Clostridium scatologenes
and Oxobacter pfennigii produce innately butyrate (Kane et al., 1991; Chen
et al., 2011; Küsel et al., 2000; Liou et al., 2005; Gößner et al., 2008; Jeong et al.,
2014; Zhu et al., 2015; Krumholz and Bryant, 1985), which is a precursor
in the production of plastics and lacquers, but serves as food flavour, too.
(Riemenschneider, 2005). Butyribacterium methylotrophicum and Clostridium
carboxidovorans are able to form butanol (Zeikus et al., 1980; Lynd et al., 1982;
Liou et al., 2005), which can be used for surface coatings, plastic produc-
tion and herbicide esters (Han et al., 2005). Hexanol is naturally formed by
Clostridium caboxidivorans (Phillips et al., 2015).

Besides these natural products, some strains have been successfully modi-
fied to form more desired by-products. New pathways have been introduced
via metabolic engineering for butanol and acetone. While C. ljungdahlii can-
not form butanol naturally Köpke et al. (2010) indicated that 2 mM can be
formed after recombinant modifications. Further modifications revealed
even higher product yields for C. ljungdahlii and C. autoethanogenum, which
was patented by LanzaTech in 2012 (Daniell et al., 2012; Köpke and Liew,
2012).

This chapter gives only a short overview about synthesis gas fermen-
tation products and their application. In general, strain development and
modification will improve production yields and the by-product spectrum
in the future. Desired products are mostly determined by their price on the
market and application purposes, which is listed in Table 3.1 chapter 3.2.1.
Product ratios and titres are influenced by the availability and composition
of the educts. Physical challenges for syngas fermentation are summarised
in the following chapter.

2.4 General challenges of gas as a substrate

For microorganisms gases are only available in their dissolved form. In syn-
gas fermentations the carbon source is introduced by the gas phase, therefore
mass transfer and solubility of the components need to be considered. In this
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chapter, biological availability, physical parameters as well as the importance
of mass transfer and its modelling approaches are outlined. By comparing
different experiments found in literature the specificity and variability of this
parameter is indicated.

2.4.1 Solubility and biological availability

While the solubility of CO2 is rather good, due to its dissociation into car-
bonic acid, CO and H2 dissolve poorly which is also indicated by the Henry
coefficient and solubility in Table 2.3.

Table 2.3: Physical parameters for synthesis gas components in water. Values are given for
ambient pressure (1 atm). Reference temperature is indicated as well as calculated values (calc.)
or other sources: Sander (2015) [1], Cussler (2009, p. 127) [2], Fernández-Prini et al. (2003) [3]
and Dean (1999, p. 377) [4].

Description Unit Temp. CO2 CO H2 Ref.

density ρG kg m−3 37 ◦C 1.71 1.11 7.97 e−2 calc.
molecular weight M kg mol−1 − 0.044 0.028 0.002 −
Henry constant Hcp mol Pa−1 37 ◦C 2.14 e−2 7.73 e−4 7.16 e−4 [1]
diffusion coefficient D m2 s−1 25 ◦C 1.95 e−9 a) 2.03 e−9 a) 4.50 e−9 b) a)[2],b)[3]
solubility in water s kg m−3 35 ◦C 1.11 2.23 e−2 1.43 e−3 [4]

The Henry coefficient Hcp is a function of the liquid gas concentration c∗L
at the interface and the partial pressure p and can be written as

Hcp =
c∗L
p

. (2.6)

The expression in equation (2.6) is valid for equilibrium conditions. The
partial pressure is described by Dalton’s law. It states that the sum of all
partial pressures of the individual gases i in the mixture results in the total
pressure of the mixture

P =
N

∑
i=1

pi with i = 1, 2, ..., N. (2.7)

The ideal gas law is applicable for most gases, relating the pressure P, gas
volume V, temperature T and number of moles of gas n using the ideal gas
constant R = 8.314 J mol−1 K−1. It concludes the here presented relations

PV = nRT. (2.8)
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The fermentation conditions determine to which degree these physical
values can be influenced. While the temperature should be kept in the range
of the organism’s optimum (see chapter 2.3.1), the partial pressure and total
pressure can be varied to a certain amount. In doing so, the solubility of the
gases (Najafpour and Younesi, 2006; Mohammadi et al., 2014) as indicated in
equation (2.6) is increased.

The overall volumetric mass transfer rate ṅ is a function of the the volu-
metric mass transfer coefficient kLa and the concentration gradient as driving
force ∆c which is also known as oxygen transfer rate (OTR) as global average
mass transfer rate:

ṅ = kLa∆c. (2.9)

The concentration gradient ∆c = (c∗L − cL) gives the difference between
saturated gas/liquid interface concentration c∗L and bulk phase concentration
cL. The efficiency of gas-liquid mass transfer in chemical and bioprocess
engineering is usually expressed by the volumetric mass transfer coefficient
kLa. This transfer is highly specific and mainly depends on medium proper-
ties (surface tension, density, viscosity, etc.) as well as on the gas hold-up,
flow regime and bubble size. It consists of the liquid mass transfer coefficient
kL and the specific interfacial area:

a =
∑ AB

VL
=

Aeff
VL

. (2.10)

The specific interfacial area a relates the total surface area of all bubbles
∑ AB to the liquid volume VL. As a result, the bubble shape, diameter and
number impact the total mass transfer. When this value is modelled, either
each bubble can be simulated individually or clustered in different diameter
classes. The latter represents bubble size distributions of which a Sauter
mean diameter can be derived. Additional population balance models are
necessary (Hagesaether et al., 2002; Kumar and Ramkrishna, 1996). On
the contrary, in single bubble simulations, coalescence and breakage are
calculated individually. However, the mass transfer coefficient kL is always
approximated by a model.

2.4.2 Mass transfer coefficient

According to Huang et al. (2010), there are four categories of kL-models:
(i) correlations derived from dimensional analysis and adjusted by exper-
iments, (ii) spatial models such as the film model, (iii) time models such
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as the Higbie’s penetration model (Higbie, 1935) and (iv) combined film
penetrations models. This work mainly focusses on the most commonly
used kL-correlations derived from Higbie’s penetration model:

kL =
2√
π

√
D

te
. (2.11)

The diffusion coefficient D describes the diffusivity of gas in liquid (see
also Table 2.3). The main parameter te describes the surface renewal time.
Generally, two major approaches are considered. The first relates contact
time and bulk liquid flow around the bubble by using the bubble diameter dB
and bubble rise velocity vT, also referred to as terminal velocity (te = dB/vT):

kL =
2√
π

√
D vT

dB
. (2.12)

This first approach is introduced by Higbie. In contrast, the second ap-
proach is refined twice. Firstly, the average surface renewal rate results
from exposure to eddies with variable contact time as suggested by Danck-
werts (1951) leading to kL =

√
Ds. Secondly, the fractional rate of surface

replacement s is calculated as proposed by Lamont and Scott (1970). Their
approach uses an eddy cell model and they found that the mass transfer
coefficient mainly depends on the motion of small-scale eddies which are
in the dissipation range of the spectrum. Considering the Kolmogorov time
scale τ = (ν/ε)0.5 for te, the mass transfer coefficient can be formulated:

kL = C
√
D
( ε

ν

)0.25
. (2.13)

This isotropic turbulence driven version includes the turbulent energy
dissipation rate ε, kinematic viscosity ν and a specific constant C. While
equation (2.12) is independent from the energy dissipation rate, the bub-
ble diameter and rise velocity is of utmost importance. In contrast to that,
equation (2.13) indicates a decisive influence of the turbulent energy dissi-
pation while being independent of the bubble diameter. While developing
reactors, both approaches are considered depending on the type of reactor.
In unstirred fermenters such as bubble columns, mainly equation (2.12) is
considered. For highly turbulent agitated reactors, equation (2.13) is applied.
Both correlations are experimentally validated depending on whether tur-
bulence is generated solely by bubble motion or the existence of another
turbulence source (Alves et al., 2006). A downside to equation (2.13) is the
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specific constant C which depends on reactor design and set-up. This poses
a challenge in respect to mass transfer modelling, because preliminary exper-
imental investigations are required. Especially when scaling up reactors, this
is not feasible.

Using published data, Munasinghe and Khanal (2010a) compared dif-
ferent reactor configurations as operation modes for synthesis gas fermen-
tations. In addition, they conducted own experiments (Munasinghe and
Khanal, 2010b) providing data for better comparison. The correlation be-
tween reactor configuration and parameters such as agitation speed affect
the mass transfer rates as listed in Table 2.4.

Table 2.4: Synthesis gas mass transfer rates for different reactor configurations (derived from
Munasinghe and Khanal, 2010a). Original sources are indicated as follows: Charpentier (1981)
[1], Bouaifi et al. (2001) [2], Datar et al. (2004) [3], Bredwell and Worden (1998) [4], Fadavi and
Chisti (2005) [5] and Wu et al. (1992) [6].

Reactor configuration kL a in h−1 Parameter of interest Ref.

stirred tanks 10−500 agitation speed, gas flow rate [1]
bubble columns 18−860 gas flow rate, bubble size [1]-[3]
packed bubble columns 18−430 packing media properties, liquid [1]

and gas flow rate
packed columns co-current flow 1.5−3670 packing media, liquid and gas [1]

flow rate
packed columns trickled flow 36−360 packing media, liquid and gas [1]

flow rate
microbubble sparged bubble column 200−1800 bubble size [4]
internal loop airlift reactor 140−220 aeration rate, pumped liquid flow rate [5]
airlift reactor with net draft tube 18−160 superficial air velocities, reactor [6]

pressure

While stirred tanks are influenced by agitation speed and gas flow rate,
bubble columns only depend on gas flow rate and the sparging systems.
Nevertheless, the presented research indicates that bubble columns can reach
higher kLa-values than agitated systems. Furthermore, it can be seen that
combining them with microbubble generators can enhance the mass transfer.
In general, Table 2.4 and the work of Munasinghe and Khanal (2010b) stresses
the significance of reactor configuration and also give kLa ranges for better
categorisation. Choosing the most suitable reactor configurations is a crucial
step in scale-up and needs to be assessed carefully, which is done in the next
chapter in detail.
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Chapter 3

Evaluation and assessment
of industrial reactors

In this chapter, potential reactor geometries are evaluated and the profitabil-
ity of synthesis gas fermentations is highlighted. In general, successful,
large scale synthesis gas processes need to account for the following main
challenges:

• High mass transfer rates respectively high specific bubble surface area
(see chapter 2.4.2)

• Evenly distributed gas concentrations reducing substrate gradients

• Preferably simple process transfer into large scale

• Low energy, building and maintenance costs

Since process parameters are dedicated by the biological terms of the mi-
croorganism they cannot be influenced (see chapter 2.3.1). Nevertheless,
there are some generally valid rules when designing gas fermentation pro-
cesses: using continuous mode, sparger gassing systems, gas recirculation,
additional pressure and surfactants in the medium. Higher mass transfer
is reached by reducing the bubble size which increases the specific surface
area, as described in chapter 2.4.2. For systems with short retention times, a
recirculation of gas may be required, as investigated by Klasson et al. (1991).

3.1 Reactor geometries for gas fermentation

For synthesis gas fermentations, several reactor geometries are worth consid-
ering. In Figure 3.1, a collection of common and unconventional geometries



22 Chapter 3. Evaluation and assessment of industrial reactors

is shown. For each reactor type their advantages and disadvantages are
shortly outlined and compared to each other.

Figure 3.1: Possible reactor geometries for syngas fermentation. Schematically pictured are:
stirred tank reactor (STR), micro bubble reactor combined with STR, Taylor-Couette vortex
reactor (TC), bubble column reactor (BCR), air lift reactor (ALR), membrane bioreactor (MBR),
moving bed biofilm reactor (MBBR), trickled bed bioreactor (TBR) and torus reactor.

The energy requirement of stirred tank (STR) or the Taylor-Couette (TC)
reactors, especially in large scales, is very high making the fermentation pro-
cess very expensive. In addition, it could be necessary to dissipate the heat
generated by the power input. In order to reduce the energy consumption,
Bredwell and Worden (1998) describe a technique for microbubble formation
to overcome the mass transfer limitation of syngas fermentations. Thereby,
the average initial bubble diameter is 60 µm and the kLa ranged from 200 h−1

to 1,800 h−1, which is two to three times higher than common reactor systems
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(see Table 2.4 in chapter 2.4.2 for comparison). This generated microbub-
bles by using a spinning disk apparatus and the surface-active substance
Tween 20. With such a set-up, the overall energy needed is 100 times less
while scaling up STR. Furthermore, the microbubble generator can enhance
other reactors.

A rather unusual bioreactor is the Taylor-Couette vortex reactor. Usually,
this reactor type is used for mammalian cells and enzymatic reactions. It
consists of two cylinders, of which at least one is rotating. These reactors
show extraordinary flow patterns that depend on their rotational speed.
If Taylor–Couette vortices are formed, higher bubble retention times in
comparison to bubble columns can be expected. Ramezani et al. (2015)
obtained kLa-values of about 180 h−1 at azimuthal Reynolds numbers Rea of
143. Another advantage of this reactor type is the possibility to immobilise
microorganisms at the inner cylinder wall. This is discussed more in detail
while introducing the membrane bioreactors.

Unstirred systems such as bubble column (BCR) and airlift reactors (ALR)
have very low scale-up costs due to their simple architecture. The greatest
disadvantage of these reactor types is bubble coalescence which reduces
mass transfer rates. Their risk to form unwanted gradients (substrate, pH,
etc.) is higher than in stirred systems which can decrease biomass and
product yields. Mixing in ALR set-ups with riser and downcomer velocity
profiles is usually better than in BCRs. The liquid velocity increase causing a
decrease in gas holdup in these set-ups needs to be accounted for. Between
both, a perfect balance has to be found. For each reactor type, a long and
narrow column allows for longer retention times of the gas phase and higher
pressure at the bottom of the reactor.

Membrane bioreactors (MBRs) have two additional performance proper-
ties. First, a much easier product recovery. Second, very high microorganism
concentrations can be obtained in a continuous fermentation mode. Due to
these advantages, cell recycling becomes redundant and the costs for down-
stream processing is reduced. For synthesis gas fermentations, a moving bed
biofilm reactor (MBBR) is introduced by Qureshi et al. (2005). They claim
that using carrier materials (plastic nets) increases turbulence and better
disperses the gases. They combine a STR with moving biofilm devices and
hence achieve ethanol concentrations of 30 g L−1 with Clostridium ragsdalei
in an 18 m3 fermentation vessel. However, a precondition for membrane
bioreactors and MBBRs is that the microorganisms can be immobilised and
that they can form biofilms. Nevertheless, the usage of membranes and
biofilm carriers can lead to higher acquisition costs.

The next reactor shown in Figure 3.1 is the trickling bed reactor (TBR).
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This type is often used for anaerobic processes and has very low cultivation
costs. Due to the closely packed beds, a longer gas holdup is obtained and
higher cell concentrations can be achieved. Since the organisms are retained
in the reactor bed, there is less filter clogging and fewer separation steps are
needed. In addition, co-current flow towards the gas flow results in higher
kLa-values. These benefits have to be weighted with some disadvantages.
Such reactors have a poor gas distribution, can form unwanted gas channel
and tend to organism overgrowth. During syngas fermentation, acetic acid
is always produced to meet the internal energy demand of the cells (see
chapter 2.3.2). In a TBR this acid is more likely to accumulate.

One of the most unconventional reactor geometries is the torus reactor.
Similar reactor geometries have been used for methane production by Nor-
Ferm (nowadays part of the company Equinor ASA). Recently, Kaiser et al.
(2013) introduced an annular shaped travelling wave bioreactor, which is
mixed by a shaking platform. This reactor was designed to provide low
shear stresses while providing enough oxygen for mammalian cells. As the
name implicates, the medium moves through the reactor in waves without
additional gassing or optional circular arranged baffles. In the case of syn-
thesis gas fermentation, the torus reactor would be a combination of the
NorFerm methane and the travelling wave reactor. The annual shape is very
robust and can resist high internal pressures. In addition to that, the gas
distribution is very good due to the round shape and its flow field. Like
stirred reactors, the greatest disadvantage is the high energy input caused by
the agitator.

In general, the most effective syngas bioreactor is one that achieves high
cell concentrations, mass transfer rates (Klasson et al., 1991) and additionally
has low purchase and operating cost. In order to evaluate synthesis gas
reactors, a ranking system is developed. It rates reactor performance and
scale-up costs. In Figure 3.2 (A) all requirements for good fermentation
results are listed, while in Figure 3.2 (B) the assumed scale-up and process
costs are shown. The latter is based on the work of Li et al. (2011) who did an
economic assessment of astaxanthin production scale-up including detailed
cost predictions. The rating system allows a detailed comparative evaluation
including all important strategic matters.

For evaluation, all reactors are compared according to their performance
(Figure 3.2 (A)) and rated from low to very good (legend values 0 to 3). The
scale-up cost approximation (Figure 3.2 (B)) instead is rated with negative
values from -3 to 0 (high to low costs). For both evaluation and each reactor,
the total score is calculated leading to positive values for (A) and negative
values for (B). To compare each score, they were additionally ranked with
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stars while three stars indicated the best reactors of (A) and (B).

B STR
micro 

bubble
TC BCR ALR MBR MBBR TBR torus

land acquisition and improvements 1 1 1 1 1 1 1 1 1

building area 1 2 1 1 1 1 1 1 2

laboratory instruments 1 1 1 0 0 1 1 1 1

large scale bioreactor system 3 2 3 0 0 3 2 2 2

medium supply station 1 1 1 1 1 1 1 1 1

pressure air supply 1 0 1 2 2 1 1 1 0

starter culture cultivation tank 1 1 1 1 1 1 1 1 1

immobilisation material 0 0 3 0 0 3 3 2 0

product purification 3 0 0 3 3 0 0 1 3

product storage tank 1 1 1 1 1 1 1 1 1

centrifuge (foam) 3 3 2 1 1 1 2 0 1

pumps, valves, piping and control 2 3 3 2 2 2 2 1 2

electrical 3 3 3 0 0 0 3 0 3

engineering and supervision 1 2 2 1 1 1 1 1 1

construction expenses 3 2 3 0 0 0 2 1 3

* ** * *** *** ** ** *** *

score -25 -22 -26 -14 -14 -17 -22 -15 -22

legend -3 -2 -1 0

A STR
micro 

bubble
TC BCR ALR MBR MBBR TBR torus

distribution 3 2 2 1 2 1 3 0 3

high bubble breakage 3 3 2 0 1 1 3 0 3

high bubble retention times 2 3 3 1 1 2 1 3 3

high mass transfer rates 3 3 2 2 2 0 2 2 3

low production costs 0 1 0 3 3 0 0 1 1

low energy costs 0 1 0 3 3 2 0 2 0

high pressure 1 1 1 2 2 1 1 1 3

low contamination risks 2 1 2 2 2 2 2 2 2

low heat dissipation 0 1 0 2 2 2 0 2 0

microorganism yields 1 1 2 1 1 3 2 3 1

production yields 2 3 2 1 1 2 3 2 2

easy product recovery 0 0 0 0 0 3 3 1 0

long running times 1 1 1 1 1 2 2 2 1

possible kLa values 2 3 2 1 1 2 2 2 3

* *** * * ** ** *** ** ***

score 20 24 19 20 22 23 24 23 25

legend 3 2 1 0

Figure 3.2: Reactor performance (A) and scale-up costs (B) evaluation system (derived from
Li et al., 2011). Colour legend is displayed on the bottom of each chart while reactor performance
factors rate positive (0-3 from low to very good) and scale-up costs rate negative (-3-0 high
to low costs). The score is calculated by the representing value and ranked with stars (*) to
indicate the best performing reactors and highest scale-up costs. The reactor abbreviations used
correspond to: stirred tank reactor (STR), combination of stirred tank with micro bubble reactor
(micro bubble), Taylor-Couette reactor (TC), bubble column reactor (BCR), airlift reactor (ALR),
membrane bioreactor (MBR), moving bed biofilm reactor (MBBR), trickled bed reactor (TBR)
and torus reactor (torus).
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Due to the evaluation system, the best performing reactors for gas fermen-
tations (see Figure 3.2 (A)) are: the micro bubble STR combination, MBBR
and torus reactor. The most cost-efficient reactors in scale-up, on the other
hand, are BCR, ALR and TBR (see Figure 3.2 (B)). Since both ratings com-
bined give the most efficient gas fermentation reactors, the difference of both
is estimated and the offset graphically displayed in Figure 3.2. Accordingly,
the most suitable reactor designs for syngas fermentations are BCR, ALR,
MBR and TBR.
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Figure 3.3: Rating results of reactor performance and scale-up costs evaluation (see Fig-
ure 3.2). Both scores are of Figure 3.2 (A) and (B) are graphically displayed and their offset
illustrated as bars. The reactor abbreviations used correspond to: stirred tank reactor (STR),
combination of stirred tank with micro bubble reactor (micro bubble), Taylor-Couette reactor
(TC), bubble column reactor (BCR), airlift reactor (ALR), membrane bioreactor (MBR), moving
bed biofilm reactor (MBBR), trickled bed reactor (TBR) and torus reactor (torus).

This assessment system is chosen to get a rough direction for possible
and feasible synthesis gas bioreactors and to explore and evaluate alternative
structural shapes as well as operation modes. The bubble column reactor is
chosen due to the fact that it is the second best reactor result of the evaluation.
It is already used in industrial plants (see chapter 2.2.2) and a lot of published
literature is available for this reactor type. If high operating costs are justified,
depends strongly on the product and yield. This aspect is highlighted in the
next chapter.
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3.2 Assessment of potential of synthesis gas fer-
mentation

A first possible evaluation of a syngas-based production is a general assess-
ment of its potential with the goal to predict the overall margin and plant
cost. With this initial investigation the competitiveness, especially when
compared with well-established thermochemical conversion routes, can be
determined. The first part focuses on the stock prices and application of
the products, the second part demonstrates a way to approximate unknown
carbon market values and the last part gives an example of maximal budget
calculation for industrial plants.

3.2.1 Stock prices and application of fermentation products

Due to energy and redox limitations, C. ljungdahlii and other anaerobic ace-
togenic microorganism are forced to produce large amounts of by-products
(see chapter 2.3.2). On the one hand this leads to low growth rates and on the
other hand to high product formation. Depending on length and complexity
of the carbohydrates, the market prices of the fermentation products show
high differences. Table 3.1 lists the most common by-products (Liu et al.,
2014a; Liu et al., 2014b; Köpke et al., 2011; Dürre, 2016; Hu et al., 2016) and
their stock prices. Ethanol and acetate as C2-body are mainly produced
in syngas fermentation and have the lowest market value. They are much
cheaper and easier produced in other fermentative processes with organisms
like yeasts and acetic acid bacteria of the genus Acetobacter.

Nevertheless, first efforts have been made to genetically modify anaerobic
acetogenic microorganism towards more attractive product formation (see
chapter 2.3.3). Alcohols such as n-butanol are traded with a price of 1.75 USD
per kg which is 12 times higher than the ethanol price. Consequently, this
product provides a higher financial flexibility for plant design and up-scaling.
The more complex the products get, the more profitable they can be traded.
Butanediol with two hydroxy groups is a very attractive biocommodity. As
C4-body they are often used to produce polyester or epoxy resins.

All in all, the market price depends on the complexity of the manufac-
turing process and if there are alternative competing processes. Most of the
listed molecules can be produced chemically, too. Furthermore, the purity of
the product has a great impact on the price as well. The less effort for purifi-
cation is needed the cheaper the process. Since biological fermentations are
quite moderate compared to chemical processes, purification can be easier.
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Table 3.1: Possible synthesis gas fermentation products and their prices on the market.
Listed are the most common by-products (Liu et al., 2014a; Liu et al., 2014b; Köpke et al.,
2011; Dürre, 2016; Hu et al., 2016). The publicly accessible internet sources for the stock prices
can be found at the bottom. Some applications of the products are mentioned in the last column.

Name Formula M Ox. Red. USD Applications
g mol−1 state level per kg

ethanol C2H6O 46.07 6 6 0.141) precursor of ethyl halides,
diethyl ether, acetic acids,
medical, fuel, solvent usage

acetate C2H3O –
2 59.04 6 2 0.052) textile industry (dyeing),

rubber production, concrete
sealant, food, flavouring,

n-butanol C4H10O 74.12 -2 6 1.753) precursor of butyl esters,
acetates, pharmaceuticals,
polymers, plastics, herbicides

isobutanol C4H10O 74.12 -2 6 1.654) food flavour, plasticizer,
extractant, gasoline additive

1,4-butanediol C4H10O2 90.12 -1.5 5.5 2.525) polyester resins, plasticizer,
α-ketobutyric acid
(amino acids precursor)

2,3-butanediol C4H10O2 90.12 -1.5 5.5 15.795) polyurethane production,
solvent, glycerine substitute,
sanitary products, resins

butyrate C4H7O –
2 87.10 -1.67 5 n.a. feed supplement, food flavour

hexanol C6H14O 102.18 -2 6 1.505) solvent, shellac, resins,
hormones

1,6-hexandiol C6H14O2 118.18 -1.67 5.7 n.a. polyester, polyurethane
production, acrylics,
adhesives and dyestuff

1)Börse-Online (2018), 2)acetic acid (Nasdaq, 2016), 3)OrbiChem (2013), 4)GevoTM (2011), 5)PR Newswire (2012), not available (n.a.)

All listed by-products show high levels of reduction and therefore high
energy levels (Table 3.1). Except acetate with a level of reduction of 2, all
other products are highly energetic with values between 5 and 6. This is
noteworthy, since the synthesis gas components have very little energy which
is discussed in the next paragraph.

3.2.2 Approximation of carbon monoxide price

In this economical approach of synthesis gas as educt, only the carbon
sources are considered. Usually, syngas is produced for chemical processes
(see chapter 2.2.1), this is why this study focusses on waste gases such as the
off-gas of the steel industry. Moreover, reduction of carbon dioxide emission
has a positive effect on the ecological reflection.

The stock prices of the educts in the form of synthesis gas are difficult to
find. In order to approximate these values, a look at other more common
resources can be taken. The idea is to calculate its value by using the available



3.2. Assessment of potential of synthesis gas fermentation 29

market prices of other reduced carbon compounds such as crude oil, natural
gas or glucose (Table 3.2).

For glucose the market price is about 0.353 USD per kg and the level of
reduction per c-mol at complete combustion to H2O and CO2 is 4 (Takors,
2014, p. 79). If 1 kg glucose is equivalent to 5.55 mol glucose, thus 1 c-mol
glucose costs about 0.0106 USD. That means a C-source with the reduction
degree per c-mol of 4 is worth about 0.0106 USD per c-mol, too. CO has a
level of reduction of 2 and would consequently costs 0.0053 USD per c-mol.
This results in 0.189 USD per kg.

Table 3.2: Calculation of carbon monoxide costs via the glucose stock price. The publicly
accessible internet sources for the stock prices can be found at the bottom.

Name Formula Ox. Red. M USD USD USD
state level g mol−1 per kg per mol per c-mol

glucose C6H12O6 0 4 180.16 0.3531) 0.0636 0.0106
carbon CO 2 2 28.01 0.189 0.0053 0.0053
monoxide
carbon CO2 4 0 44.01 0.0302) 0.0013 0.0007
dioxide
1)stock price: 0.35 USD per 1 kg sugar (Investing, 2018), 2) emission certificate 26 EUR per 1 t (EEX, 2019)

CO2-emissions certificates have to be bought by European companies in
order to restrict the annual release of greenhouse gases. The price per kg CO2
depends on the number of certificates sold by the European Union Emissions
Trading System (EU ETS) and how large the demand for certificates is. At
present (23/09/2019) it is around 0.03 USD per kg CO2-emission with rising
trend and ecological importance. Compared to 2014 the price is five times
higher than today. This fact will reduce the reactant price especially in
Europe.

As mentioned in the previous section 3.2.1, there is not necessarily a linear
price trend for the products. Figure 3.4 illustrates the connection between
price per kg and energy value in form of reduction level and oxidation state
for educts and products. Figure 3.4 (A) shows the oxidation states of the
different carbon compounds, which differ between -2 and 4. The lower
the oxidation state the more the molecule can be oxidized and therefore
energy is set free. The same can be said about the reduction level, the higher
the better (Figure 3.4 (B)). It can be assumed that the stored energy of a
carbon molecule determines the value of the chemical. Furthermore, the
complexity of the compound, the purity, demand on the market as well as
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the manufacturability plays an important role when it comes to calculating
the price (see also Table 3.1).

Figure 3.4: Oxidation state (A) and level of reduction (B) as function of USD per kg. Accord-
ing to Table 3.1 and 3.2 the stock prices in USD per kg are graphically shown.

With this stock price research and educt calculations the maximum price
range for industrial plant design and scale up can be approximated, which
will be exemplary shown in the final sub-chapter of this section.

3.2.3 Maximal budget for industrial plant

The maximum price ranges for the plant and maintenance cost for each
product are calculated by the consumption of CO and CO2. Whereby, carbon
monoxide costs as substrate and carbon dioxide does not, due to the CO2
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emission certificate needed in Europe (see section 3.2.2). The costs for the
certificates can vary as well, but the tendency is that they will be more
expensive in the future, which is advantageous for the whole process and
makes synthesis gas fermentations far more attractive.

Exemplary, by taking a closer look at LanzaTech (see also chapter 2.2.2), a
synthesis gas fermenting company with an annual production of 60 M gallon
ethanol in its biggest plant, a maximum income of 6.4 Mio to 109.2 Mio USD
per year can be expected. If the plant, staff and maintenance costs are now
subtracted from this value, the profit of this process can be calculated.

From the biotechnological point of view, fermentations with synthesis gas
are so far very slow, unproductive and therefore very ineffective. In summary,
the performed assessment is a good strategy to make a rough estimation of
the economic efficiency of a process. In addition, we know which goal we
have to achieve to make these fermentations profitable respectively feasible.
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Chapter 4

Challenges, mathematical
methods and approaches

4.1 Characteristics of bubble column reactors

In the chemical and biochemical industry bubble columns are widely used
due to their simple construction and high energy efficiency according to mass
transfer (see also chapter 3.1). Usually, low viscosity fluids are required to
assure sufficient mixing, which is the case for the synthesis gas fermentation
broth.

Physical parameters such as viscosity have a great impact on performance
of the bubble column reactor (BCR), which is schematically shown in Fig-
ure 4.1. All these variables interact strongly and can have different impacts
on the outcome. For better understanding, these interrelated processes are
grouped into three subcategories: (I) given and configurable parameters,
(II) dependencies of parameters and (III) effects on important performance
parameters.

(I) Specified and configurable parameters: Technical configurations such
as sparger type, length and width of the column and other internal in-
stallations (e.g. concentric tubes) have a great effect on the whole system.
However, these configurable parameters have the advantage to be easily
adjustable if needed. Likewise, the superficial gas velocity is adjustable.
Medium properties such as liquid density, kinematic viscosity, surface ten-
sion and liquid phase diffusivity are not or barely modifiable.
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(II) Dependencies of parameters: The interconnectedness of all important
factors is complex. Very important are initial bubble sizes and bubble size
distributions in the column. They directly depend on the given and config-
urable parameters as well as the flow regime (Figure 4.2). The latter can be
described as a function of superficial gas velocity and column diameter (Fig-
ure 4.3 (A)). Ideal is a homogeneous bubbly flow, offering the largest specific
surface. Bubble rise or terminal slip velocity together with the mass transfer
coefficient depend on the bubble size in the column. In contrast to that,
the gas holdup and liquid circulation velocity depend on every condition
previously mentioned (Figure 4.3 (B)).

liquid mixing gas mixing heat transfer mass transfer gas phase 

separation

𝑘𝐿𝑎𝐷eff,G𝐷eff,L
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Figure 4.1: Schematic drawing of interrelated processes in a bubble column (derived from
Heijnen and Van’t Riet, 1984). Artificially divided in three subcategories: (I) specified and con-
figurable parameters, (II) dependencies of parameters and (III) effects on important performance
parameters.
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(III) Effects on important performance parameters: Reactor performance
depends on liquid and gas mixing, heat transfer, mass transfer and gas phase
separation. In fact, the first four performance parameters are affected by
every other parameter. Various correlations and dependencies have been
investigated in the past for certain gas-liquid constellations, which are further
described in chapter 6.1.2 (Choosing reasonable parameter ranges).

Several flow regimes for bubble columns have been described. Depend-
ing on gassing rate, gassing system and column geometry, two main flow
regimes can be observed (Figure 4.2). Perfect bubbly and imperfect bubbly
flow are part of the homogeneous flow regime while churn-turbulent and
slug flow are defined as heterogeneous flow regime.

Figure 4.2: Homogeneous and heterogeneous flow regimes. Sown are perfect bubbly flow
as most desired homogeneous flow with the transition of imperfect bubbly flow to the most
common churn-turbulent flow. Slug flow appears only in smaller columns (derived from
Kantarci et al., 2005; Bouaifi et al., 2001; Deckwer et al., 1980).

Perfect bubbly flow can only be achieved in non-coalescent fluids and
low column heights. More likely are imperfect bubbly flows with a constant
bubble size range and churn-turbulent flows with larger bubbles in the
reactor centre. The latter leads to large scale circulation patterns of both
liquid and gas (Heijnen and Van’t Riet, 1984). Slug flow is only observed in
very narrow bubble columns (Figure 4.3 (A)) and is a very particular form
of heterogeneous flow, which is not considered further. Between these two
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classifications lie a transition area, which varies due to liquid properties,
column and sparger configurations.

S

S

G

R

Figure 4.3: Flow regime correlations between superficial gas velocity and column diameter
(A) as well as gas holdup (B). In (A) the flow regimes as a function of superficial gas velocity
and column diameter for a water/air system is shown (Kantarci et al., 2005; Deckwer et al.,
1980). Similar to (A) and for larger column diameters, the homogeneous and heterogeneous flow
regimes are illustrated in (B) as well as the transition area of imperfect bubbly flow indicated
(Krishna and Sie, 2000).

The gas holdup is a very crucial parameter and can be used to describe
the BCR performance. It has a great impact on the mass transfer (implied in
Figure 4.1). Additionally, it correlates with the superficial gas velocity, which
is outlined in Figure 4.3 (B). Additionally, the flow regimes are indicated
in this picture as well. The gas holdup slope decreases significantly in
heterogeneous churn-turbulent flows, which occur at high superficial gas
velocities. Bailey and Ollis (1986, p. 611) stated that in a water-air system
coalescence and therefore heterogeneous flow can be expected when the gas
holdup reaches a critical value of εcrit = 0.3. This is an estimated value and
differs according to medium properties.

To cover all interrelated processes in a bubble column, high computa-
tional power is needed. Moreover, not all interactions are physically de-
scribed and have to be modelled. However, with higher complexity usually
comes a higher need of computing power and simulation time. Two mod-
elling approaches with different resolutions are investigated in this study.
Their advantages and disadvantages are discussed in the next chapter.
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4.2 Modelling approaches in comparison

Numerous modelling approaches are known for predicting the outcome of
bioreactors. The straightforward model would be to assume that everything
is well mixed without any spatial differences. In this case, one compartment
respectively discretisation volume needs to be considered and temporally
solved. This is a valid method for stirred or shaken lab scale scenarios. In
scale-up, physical properties such as pressure or power input for sufficient
mixing gets more important. Especially for gas fermentations in a bubble
column, the hydrostatic pressure can be very advantageous while mixing
and circulations times will most likely increase.

As mentioned in the previous chapter, the interrelated processes of a
bubble column reactor are very complex and influence each other strongly.
For this study two modelling approaches of varying complexity have been
chosen. Each model serves a different purpose. In Table 4.1 both approaches
are compared to work out their possible application range.

Table 4.1: 1-dimensional approach and computational fluid dynamics in comparison. NSE
is short for Navier–Stokes equations. (This table is a reprint of the supplementary files of Siebler
et al. (2020) respectively Manuscript III.)

Comparison 1-dimensional approach Computational fluid dynamics

general level of detail low high

solving complex fluid simple one-dimensional can solve three dimensional
phenomena transport equation for NSE and turbulence as well

both phases as complex gas transport

incorporation of kinetics up to genome-scale models while unstructured model with few
solving temporal concentration kinetic equations

additional bacteria phase not applicable in one-dimensional possible for statistical
flow field statements

computational effort adequate (in minutes) high (in weeks)

applicability and validity dynamic steady state simulations physical properties such as flow
to find optimal operation field, fermentation ’snap-shots’
parameter and to predict cell behaviour

In this case, the 1-dimensional (1D) approach can approximate the pres-
sure gradient in a column. It is easily spatially discretised and allows to
solve complex kinetics. Gomez et al. (2014) also combines this approach
with genome-scale kinetic models, which was later adapted by Chen et al.
(2015) with a C. ljungdahlii model. This approach solves in each discretisation
volume the genome-scaled model while performing dynamic flux balance
analysis (FBA). These models are strongly underestimated and usually need
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a lot of constraints to be applicable. With the help of a lexicographical op-
timisation Gomez et al. (2014) is able to solve this issue. Lexicographic (in
order, alphabetically) optimisation means that successively several FBAs are
performed with changing optimisation targets. The first target would be to
optimise for maximum growth rate with a certain C-source uptake rate as
constraint. Afterwards, the growth rate is set as additional boundary condi-
tion for the following optimisation (e.g. production rate). This is repeated
for all important rates, which finally leads to a more constrained and pre-
dictable FBA. This method works fine for well-investigated organisms such
as Escherichia coli or Saccharomyces cerevisiae but is rather imprecise for less
researched stoichiometric models such as the C. ljungdahlii model. This was
also indicated by the findings of Chen et al. (2015). For deriving production
kinetics this approach is not suitable, therefore another correlation needs to
be found.

The biggest advantage of the 1D model is the short simulation time
and the fact that whole fermentation processes can be solved temporally.
Hence, it is possible to run various fermentation scenarios with different
start conditions. If the optimal result is approximated, the findings can be
used for the computational fluid dynamic (CFD) set-up.

zz

y
x

Figure 4.4: Degree of discretisation in case of the applied 1-dimensional approach (A)
and computational fluid dynamics approach (B). The 1-dimensional approach (A) is one-
dimensional with only linear flow and the computational fluid dynamics approach (B) three-
dimensional allowing the resolution of turbulent flow patterns. (Reprinted from Siebler et al.,
2020, with permission of © Wiley-VICH Engineering in Life Science.)

In contrast to the dynamic 1-dimensional approach, the CFD approach
results in more detailed flow predictions and allows more precise gas holdup
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and mass transfer simulations due to the implementation of bubble breakup
and coalescence. Figure 4.4 schematically shows the discretisation differences
between both approaches. With the three-dimensional discretisation of the
CFD approach not only a detailed reproduction of the flow field is possible
but also a more profound prediction of the gas phase. Forces, such as drag
and lift, can be implemented, too. Additionally, a three-dimensional resolved
flow field and gas gradient allow to track massless Lagrange trajectories
which represent bacterial lifelines. As the bacteria travel along these lifelines,
possible stress conditions can be statistically identified.

The requirement of high computing power as well as rather long simula-
tion times (in the range of weeks) are major disadvantages of CFD simula-
tion. Only simulations of pseudo-stationary gradients which constitute as
fermentation ’snap-shot’ in combination with statistical lifeline analysis are
applicable for the scope of this thesis.

Nevertheless, both methods combined can help to understand and pre-
dict the outcome of industrial bioreactors. Therefore, risks in scale-up can
be minimised as well as trouble shooting in already existing fermenters can
be conducted. The two approaches are introduced in more detail in the
following chapters.

4.3 1-dimensional approach

In the 1-dimensional (1D) approach chapter a kinetic correlation is presented,
which is derived from element balances. This correlation is also used in
the evaluation of the computational fluid dynamics model. Moreover, the
possible diffusion limitation is investigated as well as the reactor set-up and
operation mode are discussed. Partial and ordinary equations are derived
accordingly. Finally, discretisation methods and boundary conditions are
outlined. The chapters concerning the 1-dimensional approach are published
in Siebler et al. (2020) and chapter 4.3.1 in Siebler et al. (2019). In order to
follow the thesis structure and allow important cross references, some of the
content is recited and is stated as such.

4.3.1 Deriving a kinetic correlation from element balances

As mentioned before this chapter was published in Siebler et al. (2019) and
is recited with the permission of © Elsevier Chemical Engineering Science.

While fermenting Clostridium ljungdahlii with synthesis gas as sole carbon
source, the following products are formed: carbon dioxide, acetate, ethanol,
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2,3-butanediol, traces of lactate and of course biomass. The formation of
by-products is quite high, since their biochemical pathway recycles required
electron carriers respectively redox equivalents and ATP is produced when
acetate is formed (see chapter 2.3.2 Figure 2.3). For this simple kinetic corre-
lation approach, lactate production is neglected. A simple net equation can
be formulated as follows:

1 CO︸ ︷︷ ︸
qc

+YH+ ,CO H+

︸ ︷︷ ︸
qh+

⇀↽ YX,CO CH1.8O0.5︸ ︷︷ ︸
qx

+YAc,CO CH1.5O︸ ︷︷ ︸
qa

+ YEtOH,CO CH3O0.5︸ ︷︷ ︸
qe

+Y2,3But,CO CH2.5O0.5︸ ︷︷ ︸
qb

+ YCO2,CO CO2︸ ︷︷ ︸
qc2

+YH2O,CO H2O︸ ︷︷ ︸
qw

.

(4.1)

Analogously to the yields Y per c-mol CO, the uptake rates are indicated
at the bottom with the consumption rate of CO qc, the production rates
for CO2 qc2, acetate qa, ethanol qe and 2,3-butanediol qb and the biomass
qx. Water and H+ ions are used for oxygen and hydrogen compensation.
The equation is formulated per c-mol, which leads to the system of element
balances:

C :
H :
O :




1 0 1 0 1 1 1 1
0 1 0 2 1.8 1.5 3 2.5
1 0 2 1 0.5 1 0.5 0.5







qc
qh+

qc2
qw
qx
qa
qe
qb




= 0̄. (4.2)

This system of equation is four times under-determined (qc is given).
Therefore, the solution space is restricted as follows:

lb = (qc −100 qc/1.7 −100 0 0 0 0)
ub = (qc 100 qc/1.7 100 2.5 100 100 100).

(4.3)

The lower (lb) and upper bound (ub) are described in the same order as
the element balance in equation (4.2). Fermentation results with synthesis
gas and CO/CO2 gas mixtures show that always around half of the carbon
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source CO is converted into CO2 (data not shown). In this case, the dividing
factor is around 1.7, which gives the ratio for CO2 production rate per CO
consumption rate. Maximum growth for C. ljungdahlii is not known and
therefore set to µ = 0.06 h−1, which is slightly higher than the experimental
measured rates. The by-products can only be produced while H2O and H+

can also be consumed.
To get the most realistic correlation of the solution space, the optimisation

function maximises the sum of all relevant products:

f (q) = max (qx + qa + qe + qb) . (4.4)

None of the element balances are violated and the results for carbon
monoxide uptakes up to −40 mmol g−1

CDW h−1 are shown in Figure 4.5.
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Figure 4.5: Optimisation results for kinetic correlation (A) and comparison with experimen-
tal data (B). In (A) the maximisation for product formation results are graphically shown for
several possible CO uptake rates qc. The production rates for acetate qa, ethanol qe and 2,3-
butanediol qb are shown as well as the growth rate µ on the left side. The simulation outcome
(qsim and µsim) was compared with experimental data (qexp and µexp) in (B). All experimental
rates were kindly provided by M. Hermann who performed a synthesis gas fermentation with a
gas composition of 55/30/5/10% for CO/H2/CO2/Ar. More details on the experimental set-up
can be found in the supplementary of Manuscript II. (Reprinted from Siebler et al., 2019, with
permission of © Elsevier Chemical Engineering Science.)

As indicated in Figure 4.5 (A), the by-product formation rates show very
similar behaviour. In general, acetate has the highest production rate corre-
lation, then ethanol followed by 2,3-butanediol. The growth rate increases
steadily until the maximum growth is reached. All simulation results are in
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good agreement with experimental data (Figure 4.5 (B)), hence the correla-
tion between CO consumption rate and production rates will be used for the
parameter study.

4.3.2 Investigation of diffusion limitation

Parts of this chapter are recited from the supplementary files of Siebler et al.
(2020) with permission of © Wiley-VICH Engineering in Life Science.

In the following chapter, the mass transfer from bubble to cell is analysed.
In this context especially the kinetic uptake is compared while possibly being
limited by diffusion. As shown in Figure 4.6, diffusion occurs at the laminar
layer around a cell or a cell structure. For Clostridium ljungdahlii an uptake
kinetic with substrate inhibition was determined by Mohammadi et al. (2014).
In this chapter, the limitation by diffusive transport is investigated. As a
result, a possible uptake kinetic considering both diffusion and the inhibition
is derived and presented.

L,CO
L,CO

G,CO

Figure 4.6: Schematic diagram of gas transport from bubble to cell. Modified version of
Hass and Pörtner (2011, p. 17) with cG,CO as the gaseous CO concentration, c∗L,CO as the liquid
interfacial area concentration and the liquid concentration cL,CO.

If the volumetric mass transfer rate kLa from the gas to liquid phase is the
limiting factor as described by the experiments of Mohammadi et al. (2014)
the CO mass transfer rate or uptake rate can be expressed as follows:

dcG,CO

dt
= kLa c∗L,CO. (4.5)
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The CO concentration in the gas phase cG,CO depends on the equilibrium
concentration of CO at the interface c∗L,CO and the liquid concentration cL,CO.
Furthermore, the consumption rate of carbon monoxide in the liquid phase
due to the bacteria can be written as:

qc =
1
cX

dcL,CO

dt
. (4.6)

Mohammadi et al. (2014) conducted several syngas fermentations under
different pressures. They found that the modified Monod uptake kinetic
proposed by Andrews could be fitted in the linear and quadratic regression
form with a coefficient of determination of R2 = 0.97:

c∗L,CO

qc
=

KCO

qc,max
+

c∗L,CO

qc,max
+

c∗L,CO
2

qc,maxKI
. (4.7)

The special case of uncompetitive inhibition of the uptake kinetic of
CO is in very good agreement with the data of their shaking flasks exper-
iments when growing on CO. Besides the maximum specific uptake rate
qc,max = 34.36 mmol g−1

CDW h−1 they obtained the Monod constant KCO =

0.02 mmol g−1
CDW and the CO inhibition constant KI = 0.55 mmol g−1

CDW which
led to the final formulation:

qc =
qc,max c∗L,CO

KCO + c∗L,CO +
c∗L,CO

2

KI

. (4.8)

To describe the transport from the liquid phase over the effective mass
transfer area A into the microorganisms, the mass transfer rate qdiff can be
formulated:

qdiff = βA∆c. (4.9)

Equation (4.9) includes also β as the transfer coefficient and ∆c as con-
centration difference. The transfer coefficient can be derived from the di-
mensionless Sherwood number Sh = βdO/D (also called the mass transfer
Nusselt number Nu). It represents the ratio of the convective mass transfer
to the rate of diffusive mass transport.

Besides the transfer coefficient, dO as the characteristic length or in this
case diameter of the organism and D as the mass diffusivity are included.
According to Ranz and Marshall (1952), the Nusselt number for spheres is 2.
When microorganisms are assumed to have spherical shapes equation (4.9)
can be combined with the Sherwood equation to a derivation of Fick’s first
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law:
qdiff =

2D
dO

A∆c. (4.10)

This equation is similar to passive membrane transport formulations but
in this case specific for spherical microorganisms and their effective mass
transfer area.

In order to decide, whether the gas transport is diffusion limited or
limited by internal kinetic reactions, the maximum possible concentration
difference should be investigated. All other relevant parameters for carbon
monoxide and values for C. ljungdahlii are listed in Table 4.2.

Table 4.2: Parameters for carbon monoxide and C. ljungdahlii. Poudyal and Adhikari (2014)
[1], Tanner et al. (1993) [2] and Mohammadi et al. (2014) [3]. (Reprinted from Siebler et al., 2020,
with permission of © Wiley-VICH Engineering in Life Science.)

Parameter Value Unit Description Reference

DCO 2 e−9 m2 s−1 mass diffusivity of CO in water [1]
dO 2 e−6 m diameter of the organism [2]
AO 1.26 e−11 m2 surface of the organism [2]
VO 4.2 e−18 m3 volume of the organism [2]
VL 5 e−5 m3 working volume [3]
∆cmax 0.8 mol m−3 max. concentration difference [3]
cX,max 0.1 kg m−3 cell density at max. CO conc. [3]
ρw 1000 kg m−3 density of water/ organism −

The effective mass transfer area can be calculated as described in equa-
tions (4.11) - (4.13):

VO,all =
cX,max

ρw
VL = 5e−9 m3 (4.11)

Ns =
VO,all

VO
= 1.2e9 (4.12)

A = Ns AO = 1.5e−2 m2. (4.13)

VO,all is the volume of all cells, VL the working volume. It is assumed
that the cell density is similar to water. This leads to the total cell number
Ns = 1.2 e9. The effective mass transfer area is subsequently 1.5 e−2 m2

which leads to qdiff = 2.4 e−5 mol s−1. The effective maximum uptake rate
qc,max,eff = 24.87 mmol g−1

CDW h−1 as derived by Mohammadi et al. (2014) can
be converted as in equation (4.14) assuming the cell dry weight is ten times
higher than the aqueous weight.
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qc,max = 24.87
1e−3

3.6e3 · 1e−3
mol

kgCDW s
5e−5 m3 · 1kgCDW

m3

= 3.45e−7 mol
s

(4.14)

In this case, qCO at a maximum concentration difference of ∆cmax =
0.8 mol m−3 is about 102 times slower than diffusion, the diffusion is not
limiting under these conditions. However, the CO mass transfer rate for the
measured cell density is limited by diffusion at a concentration difference ∆c
of 0.016 mol m−3. The higher the cell density the higher the effective mass
transfer area and therefore diffusion rate. The concentration difference ∆c at
which diffusion will limit the mass transfer to the cell is lower.

After all, the carbon monoxide uptake can be affected by diffusion. The
switch between kinetic uptake as described in equation (4.8) and ’diffusive
uptake’ in equation (4.10) can be combined to express the shift between both
limitations. In doing so, the mass transport in the surrounding fluid of the
microorganism is examined. The fluid is assumed to be unbounded and not
turbulent containing the concentration c of liquid CO, CO2 and H2 (see also
Figure 4.7).

r

R

c∞

c(r)

c(R)

bulk

cell

Figure 4.7: Mass transfer of bulk concentration to cell surface. Cell radius R, radial distance
r and the bulk concentration c∞ are given.

In this case, the diffusive mass transport is derived using CO as an
example. Starting with Fick’s second law in three dimensions with the
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Laplace operator (here ∆ = ∇2):

∂c
∂t

= D∆c. (4.15)

The diffusion coefficient D is isotropic and constant. At steady state
conditions (∂c/∂t = 0), the Laplace equation is derived as ∆c = 0.

Moreover, the problem is assumed to be spherically symmetric, therefore
in a spherical polar coordinate system there are no gradients in polar angular
and azimuthal coordinates (θ,φ). Consequently, the scalar Laplace equation
in spherical coordinates can be simplified to

∆c =
1
r2

∂

∂r

(
r2 ∂c

∂r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂c
∂θ

)
+

1
r2 sin2θ

∂2c
∂φ2 = 0

∆c =
1
r2

∂

∂r

(
r2 ∂c

∂r

)
=

∂2c
∂r2 +

2
r

∂c
∂r

= 0,
(4.16)

and be written in its two equivalent forms. The radial distance r is defined
as shown in Figure 4.7. In order to solve this differential equation, two
boundary conditions (BC) are needed. With ∂c/∂r = u the first integration
results in

∂u
∂r

+
2
r

u = 0
∫ 1

u
∂u =

∫
−2

r
∂r

lnu = −2lnr + ã

u r2 = eã = a

u =
a
r2 .

(4.17)

The integration constant is given with a. The second inner derivative is
integrated as follows:

∫
∂c =

∫ a
r2 ∂r

c(r) = − a
r
+ b.

(4.18)
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Here, b is the second integration constant which can be solved using the
first BC where r → r∞:

c(r∞) = c∞ = − a
r∞

+ b

b = c∞.
(4.19)

The integration constant a is derived applying Fick’s first law and the
surface reaction at the boundary condition r = R respectively the cell surface
(see Figure 4.7).

J = D
∂c
∂r

∣∣∣∣
r=R

= γc

D
∂
(
c∞ − a

R
)

∂r

∣∣∣∣∣
r=R

= γ
(

c∞ −
a
R

)

γ =
D a

R2

c∞ − a
R

J = D
∂c
∂r

= γc =
D a

R2

c∞ − a
R

(
c∞ −

a
R

)

a =
R2 J
D

γ =
J

c∞ − RJ
D

(4.20)

The surface reaction includes the reaction rate γ and concentration c. The
flux J can be expressed as the mass flux dM/dt divided by cell number Ns
and surface AO:

J = D
∂c
∂r

∣∣∣∣
r=R

=
dM
dt

Ns AO
. (4.21)

The volumetric mass flux divided by the cell density cX gives the biomass
specific gas uptake rate qc and vice versa:

qccX =
dM
dt
VL

. (4.22)

The uptake rate, respectively volumetric mass flux, is also the sink term in
the CO balance equation described in the following chapter 4.3.4 (Derivation
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of partial differential equations). Rearranging equation (4.21) and (4.22) in
combination with the cell number calculation leads to:

Ns = VL
cX

mcell

mcell = VOρw

qccXVL =
dM
dt

= JNs AO = JVL
cX

mcell
AO

J(γ,D, a, c∞) = qc
mcell
AO

.

(4.23)

VL is the reaction volume and VO the volume of the organism. The cell
mass mcell is calculated via the cell density, which is assumed to be similar
to the density of water ρw. Finally, the flux is expressed through the uptake
kinetic introduced by Mohammadi et al. (2014).

c =
(

1− a
r

)
c∞

J = D
d
((

1− a
r
)

c∞
)

dr

∣∣∣∣∣
r=R

= D
c∞a
R2

JAO
Ns

VL
= J4πR2 cX

mcell
= D

c∞a
R2 4πR2 cX

mcell
=

34.36c∞

0.02 + c∞ + c∞2

0.55

cX

Da4π
1

mcell
=

34.36

0.02 + c∞ + c∞2

0.55

a =
34.36

0.02 + c∞ + c∞2

0.55

mcell
D4π

(4.24)

J = D
∂c
∂r

= D
c∞a
R2 = γ

(
1− a

r

)
c∞

γ =
Da

R(R− a)

(4.25)

With c∗L,CO = c∞, the combination of equation (4.20) and the boundary
condition in equation (4.23), the uptake rate describing inhibition kinetic and
limitation by diffusion can now be expressed as

qc =
AO

mcell
J =

AO

mcell
γc. (4.26)
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Finally, the new uptake kinetic is plotted over the bulk concentration to
display the effect of diffusion in comparison to the previous kinetic as shown
in Figure 4.8. Furthermore, the reaction rate γ shows, that diffusion has the
highest impact at low gas concentrations as previously indicated.

L,CO L,CO L,CO

q

q

q

q

Figure 4.8: Volumetric uptake kinetic with diffusion limitation. Volumetric uptake rate qc
over concentration c∗L,CO (A). Dotted line shows Monod-like kinetic as relation to inhibition
kinetic (black line) by Mohammadi et al. (2014) and the new uptake rate including limitation
by diffusion (red line). Reaction rate γ as a function of c∗L,CO (B) as well as the dimensionless
correlation of diffusion coefficient, radius and γ (C).

The here presented derivation is duo to equation (4.19) similar to the one
used for the Thiele module. Likewise, a dimensionless number can be for-
mulated with D/(R γ). The closer it is to zero the more impact diffusion has
on the new reaction rate γ. The final impact of possible diffusion limitation
is discussed in chapter 6.1.3 (Steady state results) in greater detail.

4.3.3 Reactor set-up and operation mode

As established in chapter 3 (Evaluation and assessment of industrial re-
actors), the bubble column reactor is chosen for economical synthesis gas
fermentation. The 1-dimensional approach is developed for a cylindrical
reactor with a liquid height of 25 m and diameter of DR = 2.52 m resulting
in a HL/DR-ratio of around 10. With this set-up a high hydrostatic pressure
gradient is achieved.
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Figure 4.9: Bubble column reactor set-up. Bubble column reactor in continuous counter current
mode with liquid recycling and medium feed. Synthesis gas is provided by a gas compressor at
the bottom of the reactor.

As described in Figure 4.9, the bubble column was simulated in a contin-
uous counter current mode with liquid recycling and medium feed at the
top of the reactor. Synthesis gas is continuously provided at the bottom of
the reactor via the whole cross-sectional area AR. No additional pressure is
applied, the optimum temperature of Clostridium ljungdhalii is used and the
medium density equals the density of water (see also Table 4.3).

Table 4.3: Reactor dimensions and physical properties. Liquid height and physical properties
are assumed to be constant during the fermentation.

Parameter Value Unit Description

AR 5 m2 cross sectional area of the reactor
DR 2.52 m diameter of the reactor
HL 25 m liquid height
VR 125 m3 liquid volume of the reactor
P 1.013 25 e5 Pa operation pressure equals ambient pressure
T 310.15 K operation temperature
ρL 1000 kg m−3 density equals density of water
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These physical properties as the liquid height are assumed to not change
during the fermentation. All other changing values as for example the
gassing rate are described in chapter 6.1.2 (Choosing reasonable parameter
ranges).

The most important values such as gas concentrations and gas holdup
are partially differentiated. The derivation of these equations is presented in
the following chapter.

4.3.4 Derivation of partial differential equations

The derivation of the 1-dimensional approach is published in Siebler et al.
(2020) and is recited in this chapter to follow the thesis structure and allow
important cross-references.

According to the previously outlined reactor set-up, partial differential
equations (PDE) and ordinary differential equations (ODE) are derived.
Dissolved and gaseous synthesis gas components and the gas holdup are
local and time dependent variables serving as input values for calculating
dynamics of growth and product formation.

L,slip

G,slip

G

G
L

L

L

S

Figure 4.10: Schematic drawing of compartments and volume fractions. For better under-
standing the liquid vL and superficial gas velocity vS, slip velocity vG/L,slip, volume fractions
εG/L, the cross-sectional area of the reactor AR = AL + AG, direction z and discretisation volume
height ∆z are visualised. (Reprinted from Siebler et al., 2020, with permission of © Wiley-VICH
Engineering in Life Science.)

The mass balance for the liquid phase in one discretisation volume is
derived including convective and diffusive transport, phase-to-phase mass
transfer and consumption terms. The volume of each compartment is ∆VL =
∆zAL with ∆z as compartment height and AL as liquid surface area between
the compartments. The cross-sectional area of the reactor AR is the sum of
AL and the gaseous interface AG (see Figure 4.10). The gaseous and liquid
volume fractions are indicated by εG and εL. It follows
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∆z
dcL AL

dt
= ALcLvL,slip

∣∣∣
z+∆z

− ALcLvL,slip

∣∣∣
z︸ ︷︷ ︸

transport

+ AslicekL (c∗L − cL)︸ ︷︷ ︸
mass transfer

− ∆zALqcX︸ ︷︷ ︸
consumption

+ DL AL
dcL

dz

∣∣∣∣
z+∆z

− DL AL
dcL

dz

∣∣∣∣
z︸ ︷︷ ︸

diffusion

(4.27)

with Aslice as the mass transfer area between the liquid and gaseous
phase, which leads to a = Aslice/(∆zAL) and the well-known kLa term for
modelling the mass transfer term with the equilibrium concentration c∗L and
the soluble gas concentration cL. The liquid slip velocity vL,slip multiplied
by εL = 1− εG provides the liquid velocity vL, which can be assumed to be
constant. The diffusion term with the liquid phase dispersion coefficient DL
is included as well as the consumption term consisting of the uptake kinetic
qc and biomass concentration cX. By dividing equation (4.27) by AR and ∆z
and using the correlation 1− εG = AL/AR the final PDEs for the dissolved
gases (m ∈ [CO,CO2,H2]) can be formulated:

∂cL,mεL

∂t
=vL,slip

∂cL,mεL

∂z
+ kL,ma

(
c∗L,m − cL,m

)

− qmcXεL +DL
∂2cL,mεL

∂z2 .
(4.28)

Each balance of the gas phase only needs to consider convective mass
transport and phase-to-phase mass transfer, which leads to the following
equation:

∂cG,mεG

∂t
= vG,slip

∂cG,mεG

∂z
− kL,ma

(
c∗L,m − cL,m

)
. (4.29)

Because the gas phase is compressible, the gas holdup depends on the
local pressure which correlates εL and εG with the liquid height HL. The total
molar density ρ∗ is introduced using the ideal gas law PV = nRT and the
hydrostatic pressure PH = P0 + ρgh with h = HL − z leading to

ρ∗ =
3

∑
m=1

ρm(z)
Mm

=
P0 + (HL − z)gρLεL

RT
(4.30)
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with the gravitational acceleration g, liquid density ρL, universal gas
constant R and the operating temperature T. The index m = 1, 2, 3 always
represents the synthesis gas composition with CO, CO2 and H2. Considering
the total molar gas density, the following equation can be derived:

∂εGρ∗

∂t
= vG,slip

∂εGρ∗

∂z
−

3

∑
m=1

kL,ma
(
c∗L,m − cL,m

)
. (4.31)

It is further assumed that the number density nG, i.e. the number of
bubbles NB divided by the reactor volume VR, only depends on convection:

∂nG

∂t
= vG,slip

∂nG

∂z

nG (t, z) =
NB

VR
=

εG
4
3 πR3

B
.

(4.32)

No further bubble breakage or coalescence occurs. Nevertheless, the
bubble radius RB is a function of the gas hold-up and hydrostatic pressure.
If the number of bubbles in a discretisation volume i is multiplied with the
bubble volume VB,i, the gas holdup εG,i is derived. Therefore, all balance
equations are intertwined by the gas hold-up. Noteworthy, this also affects
the volumetric surface area a

a =
∑ AB

VR
=

3
RB

εG (4.33)

which is the sum of all bubble surfaces AB divided by the reactor volume
(see also equation (2.10)).

Product formation and growth are formulated as ordinary differential
equations

dcX

dt
= µcX − DcX

dck
dt

= MkqkcX − DcL,k

(4.34)

using the growth rate µ and the dilution rate D = 0.055 h−1.
Because biomass and product concentrations ck are in g L−1, the molecu-

lar weight Mk is needed with k ∈ [acetate, ethanol, 2,3-butanediol]. For the
sake of simplicity, individual production rates qk represent mean values of
the compartment-specific qk,i, which consider local gas uptake kinetics qm,i
(see chapter 4.3.1).



54 Chapter 4. Challenges, mathematical methods and approaches

Finally, four (m = 1) to eight (m = 1, 2, 3) PDEs (equations (4.28), (4.29)
and (4.31)) and four ODEs (equation (4.34)) are derived. They are spatially
and temporally discretised and their start and boundary conditions are
chosen, which is described in the following subsection.

4.3.5 Spatial and temporal discretisation

The spatial and temporal discretisation is published in Siebler et al. (2020)
and is recited in this chapter. In general, similar discretisation methods as
described by Chen et al. (2016; 2018) are applied.

In order to solve the partial differential equations numerically, spatial
and temporal discretisation methods have to be chosen. For this reason,
the bubble column reactor is divided into N compartments with n = N + 1
interpolation points of the liquid height HL = ∆zN (see Figure 4.11). In each
discretisation volume the balance equations (4.28), (4.29), (4.31) and (4.34)
are solved temporally.

S

L

L

R

Figure 4.11: Scheme of discretisation steps and back flow. The column is fragmented in N
compartments with n = N + 1 numerical volumes. Back flow QR, media flow QL, liquid vL and
superficial gas velocity vS are depicted.

For the liquid phase PDE (see equation (4.28)) a first order upwind scheme
is depicted
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∂cLεL(t, zn)

∂z
= 0

∂cLεL(t, zn-1)

∂z
≈ cLεL(t, zn)− cLεL(t, zn-1)

∆z
...

∂cLεL(t, zi)

∂z
≈ cLεL(t, zi+1)− cLεL(t, zi)

∆z
...

∂cLεL(t, z3)

∂z
≈ cLεL(t, z4)− cLεL(t, z3)

∆z
∂cLεL(t, z2)

∂z
≈ cLεL(t, z3)− cLεL(t, z2)

∆z
∂cLεL(t, z1)

∂z
≈ cLεL(t, z2)− cLεL(t, z1)

∆z
,

(4.35)

and a central difference approximation with second order accuracy for
the diffusion term. An upwind finite difference approximation with third
order accuracy is chosen for the convection term in the case of the gas phase
PDE (see equation (4.29)), which is described as follows for each node point:

∂cGεG(t, zn)

∂z
≈ cGεG(t, zn)− cGεG(t, zn-1)

∆z
∂cGεG(t, zn-1)

∂z
≈ 2cGεG(t, zn) + 3cGεG(t, zn-1)− 6cGεG(t, zn-2) + cGεG(t, zn-3)

6∆z
...

∂cGεG(t, zi)

∂z
≈ 2cGεG(t, zi+1) + 3cGεG(t, zi)− 6cGεG(t, zi-1) + cGεG(t, zi-2)

6∆z
...

∂cGεG(t, z3)

∂z
≈ 2cGεG(t, z4) + 3cGεG(t, z3)− 6cGεG(t, z2) + cGεG,in

6∆z
∂cGεG(t, z2)

∂z
≈ cGεG(t, z2)− cGεG,in

∆z
∂cGεG(t, z1)

∂z
= 0.

(4.36)

At the reactor boundaries, a first order backward difference approxima-
tion is set. The accuracy of the chosen discretisation methods is tested in a
mesh refining study in which the compartment number N is varied between
3 and 200. Incoming and outgoing mass is compared in a scenario without
any organism and consumption term (see chapter 6.1.1). Starting values and
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boundary conditions are discussed in the next subchapter.

4.3.6 Start values and boundary conditions

A start biomass concentration cX(t0) of 0.1 g L−1 and a start product concen-
tration ck(t0) of 0.0 g L−1 are chosen. The PDEs described in chapter 4.3.2
equation (4.28) and (4.29) are initialised with the following correlation based
on the absolute pressure P (ambient pressure plus hydrostatic pressure),
Henry coefficient Hcp

m and gas fraction ym (m = 1, 2, 3 respectively CO, CO2
and H2 fraction):

cG,mεG (t0, z) =
ymP(z)εG,0

RT

cL,mεL (t0, z) =
cG,mεG (t0, z)

εG,0
RTHcp

m
1000

1.01325e5 εL.
(4.37)

The bubble column reactor is used in counter current mode and with a
liquid recycling port (see chapter 4.3.3). Hence, a Robin boundary condition
is implemented at the top of the reactor for the liquid phase:

vL,slipcL,mεL(t, zn) +DL
∂cL,mεL

∂z
(t, zn) = vL,slipcL,mεL(t, z1)α

cL,mεL(t, zn) =
∆z
DL

vL,slipcL,mεL(t, z1)α− cL,mεL(t, zn-1)

∆z
DL

vL,slip − 1
.

(4.38)

As indicated in Figure 4.11 the fermentation broth is continuously recy-
cled with the back flow QR, which also comprises media. The back flow and
media flow QL are combined in α = QR/(QR + QL). A zero slope bound-
ary condition with a constant gas feed cG,mεG,in(t, z1) = ymP(z1)εG,0/(RT)
is set at the bottom of the reactor (see also equation (4.36)). The initial
number density nG(t0, z) is derived from equation (4.32) with initial gas
holdup εG,0 and bubble radius RB,0, which accounts for the start gas holdup
εGρ∗(t0, z) = εG,0ρ∗(z) as well. In that regard, the liquid dispersion coeffi-
cient DL is set to 4.5 m2 h−1 and the liquid phase velocity vL to 50 m h−1.

The initial values of y, RB,0, kL, εG,0 and superficial gas velocity vS are
varied as discussed in chapter 6.1.2 (Choosing reasonable parameter ranges).
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4.4 Computational fluid dynamics

While the 1-dimensional approaches (Chen et al., 2015; Vrábel et al., 2001;
Heins et al., 2015; Pigou and Morchain, 2015) inherently offer high simulation
speed even in combination with complex kinetics (Mantzaris et al., 1999;
Henson, 2003), computational fluid dynamics allows higher resolution in
flow behaviour and mass transfer approximations by including important
bubble effects. Some 1-dimensional approaches even need general informa-
tion of the flow behaviour obtained from CFD (Pigou and Morchain, 2015).
CFD offer for each level of complexity a computing solution which solves
the basic flow equations in combination with different modelled values. In
this chapter, the governing equations are pointed out as well as which val-
ues are approximated by models. The importance of bubble breakage and
coalescence is noted as well as forces which act on bubbles are mentioned.
All effects are crucial to get a reliable gas gradient and finally investigate the
impact of microbial activity as they impose fluctuating concentration in the
cell environment. In this chapter parts of Manuscript I are presented and
summarised. The research of Kuschel et al. (2017) is conducted in a collabo-
rative effort and presents the Lagrange trajectory method for a large-scale
Pseudomonas putida fermentation.

4.4.1 Turbulent incompressible flow

In the early 19th century, Claude Louis Marie Henri Navier, Siméon Denis
Poisson, Barré de Saint-Venant and George Gabriel Stokes independently
formulated the principle of linear momentum of Newtonian fluids and
thereby completed the Eulerian equations of motion. The resulting Navier-
Stokes equations (NSE) include five non-linear partial differential equation:
the continuity equation (4.39), three impulse equations (4.40) in each direction
in space x, y, z and the energy conservation equation (4.41). The NSE are
given for incompressible fluids.

The three dimensional velocity u, v, w is part of each term, whereby the
impulse equations also include the fluid density ρ, pressure P and dynamic
viscosity η. In the energy conservation equation the specific thermal capacity
cT, temperature T and thermal conductivity λ are needed. However, the
process is assumed to be isothermal, thus equation (4.41) will be neglected
from now on.
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∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (4.39)
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∂x
+ η

(
∂2u
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∂2u
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(
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ρ

(
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

)
= −∂p

∂z
+ η

(
∂2w
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∂2w
∂y2 +

∂2w
∂z2
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ρ · cT

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

)
= λ

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
(4.41)

The incompressible NSE with constant liquid properties and gravity gi
(g1 = g2 = 0 and g3 = −9.81 m s−1) can under isothermal conditions be
simplified in tensor form as shown in equation (4.43). The notation implies
summation over the indices i, j = 1, 2, 3 analogous to x, y, z respectively
u, v, w:

∂ui
∂xi

= 0 (4.42)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= gi −
∂p
∂xi

+ η
∂

∂xj

∂ui
∂xj

. (4.43)

A bubble column has a turbulent flow pattern. Turbulence is three dimen-
sional and transient. It also consists of strongly fluctuating vortex structures
with large and small eddies (see Figure 4.12). When geometry and Reynolds
number are not changing, the image of a turbulent flow is only in average
the same. The instantaneous images on the other hand can differ a lot. Only
a Direct Numerical Simulation (DNS) with a sufficient fine grid can solve
the accurate eddy structure but is usually not suitable in most cases (see
Figure 4.12 (A)). DNS is primarily used for academic purposes to validate
averaged model approaches such as Large-Eddy-Simulations (LES) and the
Reynolds-averaged Navier-Stokes (RANS) method (Figure 4.12 (B) and (C)).
LES models eddy structures which are smaller in size than the mesh size
(sub-grid scale modelling) and directly solves for the dynamics of those
structures that can be resolved spatially by the employed mesh. For the
RANS approach the vortex structure is not resolved. In general, the higher
the resolution the more computing power and time is needed. In the case of



4.4. Computational fluid dynamics 59

an industrial scale bubble column reactor (see Figure 4.10), a RANS approach
for turbulence is chosen due to time efficiency and sufficient accurate results.

Figure 4.12: Resolution of turbulence with three mesh sizes according to their approach
(derived from Paschedag, 2004, p. 33). In (A) Direct Numerical Simulation (DNS) with a
very fine grid, solving each eddy. The Large-Eddy-Simulation approach (LES) in (B) solves
only the large eddies directly, therefore showing a coarser grid, while the Reynolds-averaged
Navier-Stokes (RANS) method uses the average of turbulence fluctuations.

In the RANS approach, it is assumed that the time scales of the main flow
and the turbulent transport differ strongly from each other. For this reason,
the temporal average value ui and fluctuation u′i can be defined with u′i = 0.
Potential temporal fluctuations of the main flow are covered by the average
value, while oscillation caused by turbulence are given by the fluctuation
variable ui = ui + u′i. This averaged expression ui + u′i can now be inserted
into equation (4.42) and (4.43) and transformed to the following equations:

∂ui
∂xi

= 0 (4.44)

ρ
∂ui
∂t

+
∂uiuj

∂xj
= gi −

∂p
∂xi

+
∂

∂xj

(
η

∂ui
∂xj
− ρu′iu

′
j

)
. (4.45)

Calculating two times the average leads to ui = ui and uiuj = uiuj

However, it is different for u′iu
′
j = u′iu

′
j and uiu′j = 0. As a result, the

product of fluctuations does not disappear and lead to the introduction of
six Reynolds stress terms τRe

ij = −ρu′iu
′
j (i, j = 1, 2, 3). These fluctuations are

unknown and have to be modelled.
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There are several classic model approaches which can be grouped by the
number of employed modelling equations:

• Zero equation model: mixing length model

• One equation model: Spalart-Almaras model

• Two equation models: k-ε style models, k-ω model and algebraic stress
model

• Seven equation model: Reynolds stress model.

If the model is more complex, additional partial differential equations
need to be solved. The underlined models can predict the turbulent (re-
spectively eddy) viscosity µt, which can be linked with the Reynolds stress
terms:

τRe
ij = −ρu′iu

′
j = µt

(
∂ui
∂xi

+
∂uj

∂xj

)
. (4.46)

Equation (4.46) is based on the Boussinesq eddy viscosity assumption
and only valid for incompressible fluids.

The standard k-ε-model by Launder and Spalding (1974) is briefly in-
troduced due to its reasonable predictions for certain cases and stable cal-
culation. It is a model which renders the characteristics for turbulent flow
conditions by means of two transport equations. As the name implies, the
first transported variable is the turbulent kinetic energy k and the second the
dissipation rate of turbulent energy ε:

∂ρk
∂t

+
∂ρkui
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(4.48)

Both equations include the component of deformation rate Eij and the
eddy viscosity with µt = ρCµk2/ε. The adjustable constants have been
derived from numerous iterations of data fitting for a wide range of flows
with σk = 1.00, σk = 1.30, Cµ = 0.09, C1ε = 1.44 and C2ε = 1.92.

Not all kinds of turbulence can be reliably modelled by the standard
k-ε-model. For special fields of application, derivations of the standard form
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are available. The RNG (Re-Normalisation Group) k-ε-model, for example,
is very stable even for strongly bent streamlines and high stress gradients.
Another derivation would be the realisable k-ε-model which improves, for
example, solving planar and round jets or boundary layers. The final choice
of turbulent a model depends on the purpose and also simulation stability.

Since the governing equations for turbulent flow have been shortly intro-
duced, the next chapter addresses the complexity of multiphase flows.

4.4.2 Modelling two-phase flow

The continuous phase is usually simulated as Eulerian phase while for the
disperse phase either an Eulerian or a Lagrangian approach can be chosen.
While the Euler-Euler approach treats the different phase mathematically as
interpenetrating continua, the Euler-Lagrange approach treats the dispersed
gas phase as Lagrangian elements by individually tracking them on their
way through the reactor. Both multiphase approaches and their variations
are summarised in Figure 4.13.

Euler-Lagrange 
approach

DPM

Euler-Euler 
approach

VOF model mixture model Eulerian model

Figure 4.13: Two approaches for the numerical calculation of multiphase flows in ANSYS
Fluent. For the Euler-Lagrange approach a discrete phase model (DPM) for the disperse
Lagrange phase is available and for the Euler-Euler approach the volume of fluid (VOF),
mixture and Eularian model can be chosen.

Even though, there are various two-phase systems the main focus in
this thesis will be on gas-liquid bubbly flow. This excludes volume of fluid
(VOF) simulations, which are often used for free-surface flows. Commercial
computational fluid dynamic tools such as ANSYS Fluent offer besides the
VOF model, simple mixture, Eulerian and discrete phase models (DPM). The
mixture model solves only one momentum equation for n phases while the
Eulerian multiphase model solves N momentum equations for n phases,
which requires for the latter more computing power. They also address the
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interaction between the phases differently. While the mixture model uses a
simple algebraic relationship, the Eulerian multiphase model incorporates
source terms which contain, for example, a drag function of usually empirical
nature.

As the following chapter points out, forces such as the drag force are
important for realistic bubble column calculations which limit the available
models to Eulerian and DPM. In respect to the specific interfacial area (see
chapter 2.4.1) and therefore volumetric mass transfer rate, the Eulerian model
allows to solve bubble sizes as distributions and the Lagrange approach can
solve each bubble individually. However, to apply the DPM formulation,
the discrete phase, here gas phase, must be present at a rather low volume
fraction with usually less than 10-12%. Since gas volume fractions up to 30%
are to be expected, the Eulerian multiphase approach is used.

4.4.3 Forces acting on a bubble

As introduced in chapter 2.4.2, a critical variable is the specific interfacial
area a. The more and smaller the bubbles the higher the effective surface and
therefore desired mass transfer from gas to liquid. For this reason, bubble
breakage and coalescence are the most important bubble effects, dictating
this value. Both effects are not completely understood and various models
are available on this subject. Nevertheless, bubbles not only coalesce and
break but can also change their shape or move according to different forces
acting on them.

𝑢L

𝑢B

𝐹B

𝐹G

𝐹D

𝑢rel

𝐹L

Figure 4.14: Forces acting on a bubble. The relative velocity urel is the difference between
bubble velocity uB and liquid velocity uL. In opposite to the relative velocity is the drag force
FD which is orthogonal to the lift force FL.
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One of these forces is the drag force FD acting opposite to the relative
bubble motion urel, which is also graphically shown in Figure 4.14. The lift
force FL acts perpendicularly to this fluid resistance. Together, they build
the total hydrodynamic force. Both forces depend strongly on the form of
the bubble. The drag and lift coefficient are also values which need to be
modelled.

To classify the bubble from, three dimensionless numbers have to be
introduced. The bubbles Reynolds number Re, giving the ratio between
inertia and viscosity force (equation (4.49)), then the Eötvös number Eo,
describing the ratio of buoyancy to surface tension (equation (4.50)), and the
Morton number Mo, which characterises the properties of the two phases
(equation (4.51)):

Re =
ρLvTdB

η
(4.49)

Eo =
g (ρL − ρG) d2

B
σ

(4.50)

Mo =
gη4 (ρL − ρG)

ρ2
Lσ3

. (4.51)

Of importance are the gravitational acceleration g, characteristic length
or in this case bubble diameter dB, surface tension σ, density of liquid ρL and
gas phase ρG, velocity of the fluid with respect to the object, here terminal
velocity vT and dynamic viscosity of the fluid η. With various experiments,
correlations between all three dimensionless numbers have been derived in
respect to their bubble shape, which is shown in Figure 4.15.

In general, for low Reynolds and Eötvös numbers spherical bubbles can
be assumed. While higher Reynolds and Eötvös numbers show ellipsoidal
and wobbling shapes, low Reynolds and high Eötvös numbers have skirted
and dimpled bubble shapes. Spherical-caps are formed when both Reynolds
and Eötvös numbers are very high. As the equations indicate, the Morton
number only depends on material properties and does not vary as much
as equation (4.49) and (4.50). In bioreactors, bubble diameter and terminal
velocity vary with a wider range affecting both Reynolds and Eötvös number.
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Figure 4.15: Graphical correlation between dimensionless numbers and bubble shape (de-
rived from Grace, 1973). Reynolds number Re, Eötvös number Eo and Morton number Mo
determine the bubble shape in liquid flow.

To get back to the point, the specific interfacial area a also shifts according
to the bubble shape because the surface to volume ratio changes. All in all,
drag and lift force are very important, especially in unstirred systems such
as bubble columns.

4.4.4 Pseudo-stationary gas gradient

As mentioned before, the occurrence of substrate gradients is inevitable
in process scale-up (Enfors et al., 2001). These gradients can be modelled
to locate process inefficiencies and possible heterogeneity formations to
finally guide design changes and reduce performance losses in up-scaling
(Kuschel et al., 2017; Haringa et al., 2016; Haringa et al., 2018a). While
gradients for highly soluble substrates like glucose can easily be simulated in
a single phase CFD approach, gases as substrate require more complex and
computationally expensive multiphase approaches (see also chapter 4.4.2).
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Figure 4.16: Pseudostationary glucose gradient of an industrial fed batch fermentation (de-
rived from Kuschel et al., 2017). The averaged substrate gradient is colour by regime classifi-
cations (standard S, transient T and multifork M) which were set according to the replication
strategy of Pseudomonas putida (A). Additionally, the averaged flow field is shown in (B). The
stirred tank reactor had four baffles and a stirrer with two Rushton agitators installed. Aeration,
gas transfer, and oxygen uptake were neglected. (Reprinted and modified from Kuschel et al.,
2017, with permission of © MDPI Bioengineering.)

In Figure 4.16 an exemplary glucose gradient is depicted as the corre-
sponding flow field (Kuschel et al., 2017). It is a pseudo-stationary substrate
gradient in a stirred tank reactor. The gradient is simulated by setting a
constant mass flow at the top of the reactor as feed and in each numerical
cell a sink term as glucose uptake rate. However, aeration, gas transfer,
and oxygen uptake, are neglected in this case. Pseudo-stationary gradient
means that only a time point respectively ’snap-shot’ of a real large-scale
simulation is chosen with a temporary constant biomass concentration. No
cell multiplication is considered. This assumption can be made since mixing
and mass flow (feed) are much smaller than time scales for bacterial growth.

The procedure is similar to simulating a gas gradient. However, the feed
source would be the gas liquid mass transfer mentioned in chapter 2.4.1 and
2.4.2. In order to simulate realistic gas to liquid mass transfers, a valid two-
phase approach should be chosen as well as important bubble effects such as
breakage and coalescence enabled. As examined in chapter 4.4.2 and 2.4.1,
an Euler-Euler approach is advisable combined with a population balance
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model (PBM). The latter allows the modelling of bubble size distributions
(BSD) caused by bubble expansion due to hydrostatic pressure, breakage
and coalescence. As mentioned in chapter 2.4.1, the BSD has a great effect
on the specific interfacial area a and therefore the overall mass transfer. The
impact on the gas transfer can be pictured by looking at the change in the
surface size with increasing depth. This correlates with the rising interfacial
area concentration at the gas side as well as the resulting mass transfer.
Figure 4.17 shows these effects for three different bubble diameters. The
greater the bubble the more significant is the impact of hydrostatic pressure.
Smaller bubbles with a diameter of for example 2.5 mm seem not to be
affected by rising pressure while the mass transfer of bubbles with large
diameters are strongly influenced by hydrostatic pressure.
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Figure 4.17: Effects on mass transfer by increasing hydrostatic pressure. For three diameters
of spherical bubbles the bubble surface (A), interfacial concentration (B) and mass transfer
correlation (C) are plotted over the depth of water.

For breakage and coalescence several models are available, which are
more or less applicable depending on their scope. Since these are only mod-
elled dimensions, they serve only as approximations. Often cited and applied
models are derived from Luo (1993) and Luo and Svendsen (1996), but there
are many more. Usually, they strongly depend on the energy dissipation,
which is also modelled by the k-ε-model (see chapter 4.4.1). Nevertheless,
they give a adequate prediction of a possible large-scale gas gradients, which
is more accurate than assuming no breakage and coalescence at all.

4.4.5 Lagrange trajectories as bacterial lifelines

Gradients impact the microbial activity as they impose fluctuating concentra-
tion in the cell environment. One way to investigate this issue is the bacterial
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’lifeline’-analysis. First introduced by Lapin et al. (2004), this method has
gained momentum in numerous continuing works (Haringa et al., 2016;
Kuschel et al., 2017; Haringa et al., 2018a; Siebler et al., 2019). Besides the
Euler-Euler phases a third phase, the bacteria phase is introduced as mass-
less Lagrange particles. The Euler-Euler phase is not further simulated and
set as ’frozen’ while a statistically relevant amount of Lagrange particles
representing the bacteria is tracked. The particle ID, corresponding substrate
concentration and position are recorded for further analysis.

Before the statistical conclusions of the Lagrange trajectories are listed,
the general principle of ergodicity is explained. If the trajectories are ergodic,
a statistically relevant number of lifelines has been tracked. The average of
a dynamic system is ergodic when its time average is the same as its space
average or average over the probability space. In this case the bubble column
can be divided into smaller volumes to check if each location of the reactor
was crossed by the bacteria with the same probability. Additionally, the
average continuum concentration can be compared to the average Lagrange
concentration, which should also be the same. In other words, it does not
matter if only one bacteria is tracked for a very long time or if millions are
tracked for a short time period (at least twice the circulation time). How
many massless Lagrange particles are recorded and for how long, depends
on the computing power and time as well as the chosen computational fluid
dynamic program.

In Figure 4.18 (A) 2,000 magnified bacteria are shown for a random
time point in a 54 m3 stirred tank reactor. They are a proportion of the
30,000 Lagrange particles originally introduced at a vertical line and coloured
in shades of grey according to their ID to indicate their even distribution
(Kuschel et al., 2017). To display the movement, two lifelines are depicted in
Figure 4.18 (B). They are tracked for 20 s respectively the average mixing-time
of the reactor. While the black lifeline is located between the two Rushton
turbines, the light grey transverses the reactor from the top to the bottom
stirrer.

While the glucose gradient (see Figure 4.16 (A)) gives the volume fraction
of each critical substrate amount, the analysis of the Lagrange trajectories
takes the flow field (see Figure 4.16 (B)) and individual bacteria movement
into account (see Figure 4.18 (B)). Information about the concentration fluc-
tuations a bacteria endures and for how long they are exposed to this critical
environment can be derived. On this basis, statistical and spacial predictions
of bacterial behaviour can be made to identify insufficiencies and maybe
adapt the industrial set-up.
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A B

Figure 4.18: Lagrange trajectories for bacterial ’lifeline’-analysis (derived from Kuschel et
al., 2017). Representative magnified bacteria particles (around 2,000) at a certain time step in
(A). Examples for two bacterial lifelines are depicted in (B). Starting positions are indicated by
grey circles. (Reprinted and modified from Kuschel et al., 2017, with permission of © MDPI
Bioengineering.)

These kinds of in silico analyses need scale-down experiments or ade-
quate mostly literature-based assumptions. Usually, critical concentrations
which are linked to metabolic or transcriptional changes of the organism are
needed to make reliable statements. These changes can be triggered by phys-
ical forces (e.g. shear stress), extremes in pH, oxygen, temperature, nutrient
concentration and toxic compounds (Neubauer et al., 2013). Besides the fast
metabolic and transcriptional responses long time adaptation to repeated ex-
poser can occur as well (Neubauer and Junne, 2010; Löffler et al., 2016). The
more biological data is available for a strain the more beneficial and faster
the scale-up. As listed in Neubauer and Junne (2010), possible scale-down
devices are single pulse simulators with (i) rapid sampling device after a
pulse addition into the bioreactor or (ii) with a stop-flow sampling device
(plug-flow) with different sampling positions which represent different incu-
bation times. Furthermore, there are experiments with permanent changes
such as (iii) oscillatory feeding or two compartment reactors with (iv) two
stirred tank reactors, with (v) a simple plug-flow reactor or with (vi) a plug-
flow reactor which contains static mixers which can be aerated (Neubauer
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and Junne, 2010). Usually, the samples taken are examined for changes in the
metabolome and the transcriptome of the organism. The gathered data give
for example insight in threshold values for cell adaptation and critical expo-
sure times as well as concentrations. Unfortunately, complex processes such
as the anaerobic fermentation of C. ljungdahlii are only basically researched
and still in the early stages of development. Nevertheless, data of other
comparable strains can be used for early bioprocess development (Neubauer
et al., 2013) and first in silico approximations or scale-up risk minimisation.

To investigate possible insufficiencies in syngas fermentations with C. ljung-
dahlii on a cellular level, the bacterial ’lifeline’-analysis with Lagrange tra-
jectories is chosen and applied for a pseudo-stationary carbon monoxide
gradient.
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Chapter 5

Programs and set-up

This chapter combines all further model set-ups and is divided into four
sections. The optimisation tool and setting for the kinetic correlation derived
in chapter 4.3.1 is outlined directly followed by the 1-dimensional model
and computational fluid dynamics set-ups. The latter is divided into the
Euler-Euler settings to generate a pseudo-stationary gas gradient and the
integration of Lagrange trajectories as bacterial lifelines. The settings for
the statistical evaluation of such lifelines is then further explained in the
final chapter. All simulations were performed on a local tower PC with
the following specifications: Intel i7-5820K (six cores), 32GB RAM, NVIDIA
GeForce GT 730, ASRock X99M Extreme4, Windows 7 64 Bit.

5.1 Optimisation approach for substrate kinetics

The optimisation function described in chapter 4.3.1 equation (4.4) was
constrained by the element balances, lower and upper bounds for each flux
and finally solved with the commercially available modelling tool MATLAB®

version R2016b (file name: fluxopt_fmincon.m). MATLAB® offer diverse
functions for optimisation. In this case fmincon was chosen which finds the
minimum of nonlinear multivariable function. As optimisation algorithm
sqp for sequential quadratic programming was set. As indicated in Figure 4.5,
optimisations for different possible carbon monoxide uptake rates (0 ≤
qc ≤ −40) are solved and the c-balance checked. The results are saved
as matrix q_opt.mat which serves as lookup table and can be interpolated
with interp1. This is a one-dimensional interpolation function provided by
MATLAB®.
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5.2 1-dimensional model

All partial (PDE) and ordinary differential equations (ODE) of chapter 4.3.4
were temporally solved with the stiff ODE solver ode15s of MATLAB®

version R2016a (file name: main_eG.m). A simple backward Euler method,
the BDF1 (backward differentiation formula of first order), was used with
variable step size and absolute and relative tolerance of 1 e−4. To assure that
the concentrations are not smaller than zero the ode15s option NonNegative

for each differential equation was enabled.

Table 5.1: 1-dimensional approach set-up for parameter study. Listed are boundary condi-
tions, physical properties, initial values and parameter ranges of A to F also described in
chapter 6.1.2.

Boundary condition Equation

bottom Robin boundary for liquid phase (4.38)
constant gas feed (4.36)

top Robin boundary for liquid phase (4.38)
zero slope for gas phase (4.36)

Physical properties Unit

column diameter DR 2.5 m
column height HR 25 m
media surface tension σL 0.072 N m−1

liquid phase dispersion coefficient DL 4.5 m2 h−1

ambient pressure Hcp
CO 7.73 e−4 mol L−1 atm−1

media density ρL 1,000 kg m−3

gas density ρG 1.1 kg m−3

temperature T 310.15 K
ambient pressure P 1.01325 e−5 Pa

Initial values Unit

liquid phase velocity uL 50 m h−1

dilution rate D 0.055 h−1

biomass concentration cX(t0) 0.1 g L−1

product concentration ck(t0) 0.0 g L−1

initial gas cG,mεG (t0, z) and liquid by hydrostatic pressure gradient mmol L−1

concentration cL,mεL (t0, z) described in equation (4.37)

Variable parameters Reference

CO gas fraction yCO 0 ≤ yCO ≤ 0.9 A
different gassing rates vS 0.004 ≤ vS ≤ 0.063 m s−1 B
initial kL a 40 ≤ kL a ≤ 180 h−1 C

100 ≤ kL a ≤ 425 h−1 F
initial gas holdup (kL a = const) 0.02 ≤ εG,0 ≤ 0.19 D
initial gas holdup (variable kL a) 0.02 ≤ εG,0 ≤ 0.19 E

The code for the spatial discretisation of the PDEs can be found in
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DRHS_eG.m and the production rate interpolation mentioned in the pre-
vious chapter in RHS_eG.m. Since diffusion limitation occurs as described
in chapter 4.3.2, a modified version of the latter function can be found
in RHS_eG_diff.m. The final results are plotted with the plotting func-
tion also embedded in the main file (file name: plotting.m). About 120
different start parameters were simulated and their steady state results
compared with the Microsoft Office program EXCEL (file name: varia-
tions_steady_state_fixC.xlsx).

Table 5.1 summarises the general 1-dimensional approach set-up as well
as parameter variations. The sensitivity of this model was analysed in EXCEL
(file name: sensitivity_analsysis.xlsx), too. Variations in total production
biomass yields, carbon fixation, bubble number density, overall gas holdup,
mass transfer and mean bubble diameter were compared. Each value was
normalised to the overall maximum (1) and minimum (-1).

5.3 Computational fluid dynamics

This chapter is based on Siebler et al. (2019) and recited with the permission
of © Elsevier Chemical Engineering Science.

The multiphase approach was conducted by an Euler-Euler simulation
and solved with the commercial computational fluid dynamics (CFD) pro-
gram ANSYS Fluent 18.0. The reactor volume of 125 m3 was discretised into
125,000 numerical cells. By solving the Reynolds-averaged Navier-Stokes
equations (RANS) combined with the RNG (Re-Normalization Group) k-ε-
model the gas gradient was approximated. ANSYS Fluent states that the
RNG model is the most suitable turbulence model for bubble column simu-
lation. All simulations were calculated on four cores with double precision.
The flow field in a bubble column is only developed when liquid and dis-
persed phase are coupled and a bubbly flow is reproduced. Coupling is
achieved through the pressure and interphase exchange coefficients set by
the chosen phase interaction correlations. The ideal gas law was applied. All
other settings are listed in Table 5.2.

The flow equations were solved every 10 ms and the maximum iterations
per time step were set to 25. However, only ten or less iterations per time
step were needed. The gas holdup was tracked via the simple output file
UDF_Execute1.c which was execute at the end of each time step. After 1,000 s
a constant gas holdup was reached which corresponds to approximately
10 simulation days. Likewise, the mass balance of gas in- and outflow
converged in a steady state and the second modelling set-up was started.
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Table 5.2: Computational fluid dynamics simulation set-up for pseudo-stationary gas gradi-
ent. Listed are boundary conditions, physical properties, phase set-up and solution methods.
Details on the mesh can be found in chapter 6.2.1. (Reprinted from Siebler et al., 2019, with
permission of © Elsevier Chemical Engineering Science.)

Boundary condition Unit

inlet velocity inlet with 0.0625 m s−1 (εG = 1) m s−1

outlet degassing
wall non-slip conditions
initial bubble size 4 mm

Physical properties Unit

column diameter DR 2.5 m
column height HR 25 m
media viscosity ηL 0.001 Pa s−1

media surface tension σL 0.072 N m−1

media density ρL 1,000 kg m−3

gas density ρG 1.1 kg m−3

temperature T 310.15 K
CO/N2 composition 55/45 vol-%

Models and phase set-up Reference

multiphase Euler-Euler (implicit)
population balance model discrete with 16 bins and a diameter

range of 0.001 ≤ dB ≤ 0.032 m
turbulence RNG k-ε-model

+ differential viscosity model
phase interactions drag Grace drag force or universal

drag law (Clift et al., 1978)
lift Tomiyama et al. (2002)
wall Lubrication Antal et al. (1991)
turbulent Dispersion (cd = 0.8) Burns et al. (2004)
turbulent Interaction Sato and Sekoguchi (1975)
surface tension coefficient specified

Solution methods

pressure-velocity coupling phase coupled SIMPLE
spatial discretisation gradient least square cell based

momentum QUICK
volume fraction QUICK
turbulent kinetic energy first order upwind
turbulent dissipation rate first order upwind
phase 1 (liquid) and 2 (gas) species first order upwind
phase 2 bin first order upwind

transient formulation bounded second order implicit
under-relaxation factors between 0.3 and 1 (mostly default)
transient regime time step size 0.01 s

iterations per time step maximum 25 (usually >10)
simulation time flow field 1,000 s

gradient 500 s
Lagrange trajectories 500 s

The computational fluid dynamics mesh of the 125 m3 bubble column
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reactor was also generated with the commercial program ANSYS Fluent 18.0.
Therefore, the reactor was divided into three parts: the inner rectangular
section with uniform grid cells, the outer cylinder cut with inflating grid
cells as well as the area in-between both geometries. Mainly rectangular grid
cells are generated giving a good minimal orthogonal quality of 0.66 and
maximum aspect ratio of 4.1. All in all, about 125,000 numerical cells are
used for the simulation (approx. 1,000 per 1 m3).

Simulations with higher spatial resolution (250,000 and 1,000,000 nu-
merical cells) and the same set-up repeatedly revealed severe numerical
instabilities. Solving Euler-Euler multiphase combined with population bal-
ance model turned out to be not only computationally intensive but also
very sensitive with respect to the multiphase interactions per cell. Poor
approximations of the flow dynamics in a single cell turned out to be easily
propagated (and amplified) to other cells finally causing cessation of the
whole simulation. Nevertheless, this set-up ensured that global parameters
such as gas holdup are within the expected range of heterogeneous churn-
turbulent bubbly flows (Krishna and Sie, 2000). Besides, satisfying flow
fields and gas gradients were achieved giving a first glimpse on their effect
on bacterial movements and lifelines.

In general, it should be stated that the k-ε-model represents a promis-
ing, commonly applied approach for estimating turbulent flow. However,
because of its basic nature, non-accuracies of turbulence predictions may
propagate further, e.g. affecting bubble breakage when applying the Luo
models (Luo, 1993; Luo and Svendsen, 1996). Furthermore, Haringa et al.
(2018b) indicated that 1st order upwind has the tendency of under-estimating
turbulence quantities which may further affect the discrepancy between e.g.
power input estimations using superficial gas velocity measurements and
k-ε-derived predictions.

5.3.1 Pseudo-stationary gas gradient

This chapter is based on Siebler et al. (2019) and recited with the permission
of © Elsevier Chemical Engineering Science. Modifications have been made
to relate to the attached simulation scripts indicated in bold letters.

The next step to reach a pseudo-stationary gas gradient is to include
breakage, coalescence and bubble expansion. Therefore, different bubble
sizes were introduced by the population balance model (PBM) also avail-
able in ANSYS Fluent 18.0. All in all, 16 bubble classes with a diameter
range of 0.001 m ≤ dB ≤ 0.032 m were chosen and for both - breakage and
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coalescence - the Luo-model (Luo, 1993; Luo and Svendsen, 1996) was ap-
plied. In addition, two user defined functions (UDF) for mass transfer (file
name: UDF_Mass_Transfer.c) and the dissolved carbon monoxide uptake
(file name: UDF_Reaction.c) were included. For the simulation of mass
transfer from gas to liquid phase in non-agitated bubble column reactors,
the conform Higbie correlation (see also chapter 2.4.2 equation (2.12)) for the
mass transfer rate kL was chosen and solved in each numerical cell (Higbie,
1935). Instead of the bubble diameter dB the Sauter mean bubble diameter
d32 was used, a diffusion coefficient of CO DCO = 2 e−9 m2 s−1 and relative
bubble velocity vrel (respectively terminal velocity vT) of the numerical cell.
While the Sauter mean bubble diameter is applied, the effects of PBM bubble
distribution is neglected in this case. Henry’s law was used to estimate
solubility with the coefficient Hcp

CO = 7.7 e−4 mol L−1 atm−1. The pressure
gradient was also accounted for in this UDF (UDF_Mass_Transfer.c), giving
the equilibrium concentration of carbon monoxide c∗L,CO. The interfacial
area concentration a is calculated assuming a spherical bubble shape which
finally leads to the expression

ṁGL = kL
(
c∗L,CO − cL,CO

) 6εG

d32
(5.1)

for the mass transfer ṁGL solved at each time step in each discretisation
volume.

The Higbie correlation for the mass transfer and spherical bubble shapes
are rough simplifications. The reader must be aware that dimensionless
numbers for the bubbles, such as Eötvös (≈ 60), Morton (log(Mo) = -10) and
Reynolds number (≈ 5,000) rather pinpoint to transient wobbling to spherical
cap geometries (see chapter 4.4.3 equations (4.49) - (4.51) and Figure 4.15).
Additionally, gas holdup and superficial gas velocity also indicate transition
between homogeneous bubbly flow to heterogeneous churn-turbulent flow
(see chapter 4.1 Figure 4.2 and 4.3). Nevertheless, the Higbie correlation was
used, not only for the sake of simplicity but also because profound mass
transfer studies with the said biological matrix would have been needed
which are far beyond the scope of this lifeline analysis.

The reaction UDF (UDF_Reaction.c) was written to describe the CO up-
take kinetic qc of C. ljungdahlii described in equation (4.8) in chapter 4.3.2
(Investigation of diffusion limitation). The dissolved carbon monoxide up-
take takes place in each numerical cell at each time step. After another 500 s
a new steady state for the gas hold-up and dissolved CO concentration was
reached which does not account for the constantly changing periodic flow
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field (tracked via UDF_Execute2.c). Pseudo-stationary gradient means that
only a time point respectively ’snap-shot’ of a real large scale simulation is
chosen with a temporary constant biomass concentration of 10 g L−1 and no
cell multiplication. This assumption can be made since mixing and mass
transfer time scales are much smaller than time scales for bacterial growth.
The second simulation part lasted more than ten simulation days since 16
bubble classes instead of one, breakage, coalescence, bubble expansion, mass
transfer and a reaction needed to be solved as well. Detailed changes in the
volumetric mass transfer rate after 1,000 s and 1,500 s can be found in the
Appendix of Manuscript II (Siebler et al., 2019).

5.3.2 Lagrange trajectories

This chapter is based on Siebler et al. (2019) and recited with the permission
of © Elsevier Chemical Engineering Science. Modifications have been made
to relate to the attached simulation scripts indicated in bold letters.

The final CFD simulation uses the generated pseudo-stationary gas gradi-
ent and flow field to analyse cell lifelines, movement patterns and circulation
time. Beside the Euler-Euler phases, a third phase, the bacteria, were intro-
duced as massless Lagrange particles as well as the discrete random walk
(DRW) model was enabled. The DRW model was used to superimpose tur-
bulent motions on the convective velocity (Haringa et al., 2016). The gradient
and flow field were set as frozen and not further calculated. With another
user defined function every 30 ms, the particle ID, the corresponding CO con-
centration and position were recorded (file name: UDF_Execute_Bacteria.c).
In total, 120,000 bacteria were tracked for 500 s. More precisely, four simu-
lations were started with 30,000 mass less Lagrange particles to speed the
simulations process up. The trajectories were checked for ergodicity (see
chapter 4.4.5). The results can be found in chapter 6.2.3. Further evaluations
of the lifelines were conducted with the program MATLAB®.

5.4 Statistical evaluation of Lagrange trajectories

About 70,000 (teilchen_bacteria_*.txt) files are generated by ANSYS Flu-
ent described in the previous chapter. These files need to be loaded and
processed. MATLAB® version R2016b offers big data functions such as
datastore which reads the files and creates a datastore for the accumulated
information too large to fit in memory (file name: cs_read_tex_files_cs.m).
With this script, a rearranged and sorted matrix cs_all_*.mat is generated,
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which is in this case 30,000 particle IDs long and 16,670 time steps wide. The
statistical relevance can be checked by the quality_evaluation.m script (see
also chapter 6.2.3. How the cs_all_*.mat matrices can be further analysed is
described in the following chapters.

5.4.1 Evaluation of regime transition events

This chapter is based on Siebler et al. (2019) and slightly modified to relate to
the attached simulation scripts indicated in bold letters.

For the evaluation of the regime transition events (see chapter 4.4.5 and
6.2.3) the evaluation_script_main.m script is needed with the sub-functions
move_av.m, kinetic.m, sort_reg.m and reg_class.m.

As described in Kuschel et al. (2017), the moving-average filter was ap-
plied to erase unrealistic, turbulent fluctuations caused by the standard
discrete random walk (DRW) model. With the kinetic.m function the CO
concentration is directly translated into CO uptake rate (see equation (4.8)
in chapter 4.3.2) and then sorted with sort_reg.m according to the result-
ing product biomass yield (see equation (6.4) in chapter 6.2.2). Finally,
the regime transition events and their duration time are counted with the
reg_class.m function and saved as Sim*.mat. With evaluation_tau_main.m
and plot_tau.m all four Sim1.mat-Sim4.mat are collected and plotted. Ad-
ditionally, total frequency of the six regime transition events, average and
maximum retention times are calculated, too (results are shown in Figure 6.18
and Table 6.1 in chapter 6.2.4).

5.4.2 Evaluation of short- and long-term responses

This chapter is based on Siebler et al. (2019) and recited with the permission
of © Elsevier Chemical Engineering Science.

With the short_long_term.m script short- and long-term responses can
be investigated (see Figure 6.19 and 6.20 in chapter 6.2.5). The concentration
profiles cL,CO(t) of the bacterial lifelines were processed according to the
Nassi-Shneiderman diagram in Figure 5.1 for each critical time periods
τcrit = 10 s, τcrit = 40 s and τcrit = 70 s.

If both thresholds, ccrit
L,CO and τcrit, are true, the average concentration

respectively uptake rate (see equation (4.8) in chapter 4.3.2) of the real time
period is calculated. Mean concentration and retention time are saved in two
arrays cvec

L,CO and ∆tvec. For each critical time period the resulting arrays were
clustered into histograms with 100 bins and normalized to the highest total
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percentage of the average occurrence (τcrit = 10 s). To take the actual dura-
tion of each average concentration respectively uptake rate into account, his-
tograms with weighted distribution (weighting factor ατi = ∆tvec

i / ∑ ∆tvec)
are also visualised (see Figure 6.19 in chapter 6.2.5).

for 𝒊 from 𝟎 to 𝒏

true false

𝒄𝐋,𝐂𝐎 𝒊 ≤ 𝒄𝐋,𝐂𝐎
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true false

𝚫𝒕 ≥ 𝝉𝐜𝐫𝐢𝐭

𝚫𝒕 = 𝚫𝒕 + 𝟏

𝒄𝐋,𝐂𝐎
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𝐦𝐞𝐚𝐧 =

𝒄𝐋,𝐂𝐎
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𝒄𝐋,𝐂𝐎
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𝚫𝒕𝐯𝐞𝐜 = 𝚫𝒕𝐯𝐞𝐜 𝚫𝒕

Figure 5.1: Nassi-Shneiderman diagram of short- and long-term response evaluation. For
three critical periods τcrit = 10 s, τcrit = 40 s and τcrit = 70 s the evaluation of the concentration
profiles cL,CO(t) was performed. As a result, the averaged concentrations cmean

L,CO and correspond-
ing time periods ∆t are summarised in two arrays cvec

L,CO and ∆tvec. (Reprinted from Siebler et al.,
2019, with permission of © Elsevier Chemical Engineering Science.)
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Chapter 6

Modelling results and
discussion

6.1 1-dimensional approach

The 1-dimensional (1D) approach was performed to get a feeling about the
behaviour of gas fermentation in a large scale bubble column reactor. Due to
its simplicity, most parameter have to be set in advance. These parameters
should be chosen carefully and according to values in published literature
which is done in the first part of this section. Mesh study, steady state results,
sensitivity investigations and final simulation set-up is also shown.

Most of the results mentioned in chapter 6.1 are published in Siebler et al.
(2020). The following sub-chapters are either a summary or contain more
detailed unpublished results. The structure deviates from Siebler et al. (2020)
and all recited pictures, listings and tables are stated as such.

6.1.1 Mesh refinement study

In order to get reasonable and sufficient flow results, the spatial discretisation
respectively the mesh has to be fine enough but not too highly resolved.
The finer the discretisation the more time consuming but accurate the flow
prediction. There are several ways to verify the mesh quality. In any case,
the mass needs to be conserved. The numerical approximation not always
reaches the true physical value. However, the error should be negligible
small (at least smaller than 5%).

The mass balances for different spatial discretisations with compartment
slices N between 3 and 200 steps were monitored. As described in chap-
ter 4.3.2, equations (4.28), (4.29) and (4.31) were solved for each refinement.
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In Figure 6.1 the results for four spatial discretisation steps (N = 10, 20, 100
and 200) are shown.

spatial discretisation N

Figure 6.1: Compartment refinement study. In (A) and (B) the gaseous and dissolved (liquid)
mass of CO over times is shown. Exemplary, four discretisation steps are depicted N = 10, 20,
100 and 200. In (C) the relation between total CO leaving and entering the column is illustrated
revealing that N = 100 closes the mass balance with less than 5% gap. (Reprinted from Siebler
et al., 2020, with permission of © Wiley-VICH Engineering in Life Science.)

In Figure 6.1 (C) it can be seen that the mass balance for the chosen
discretisation steps does not completely close. Nevertheless, results for
N ≥ 100 are adequate with an imbalance of even less than 3%. In respect to
computational efforts, increasing N from 100 to 200 (respectively 4 min to
20 min simulation time) is not in relation to the gained accuracy, therefore all
1-dimensional simulations were performed with N = 100. More information
on this topic can be found in Siebler et al. (2020).

6.1.2 Choosing reasonable parameter ranges

As mentioned in chapter 4.1 the initial gassing rate respectively superficial
velocity, gas composition, liquid velocity, initial bubble diameter, mass trans-
fer coefficient and initial gas holdup need to be set for the 1-dimensional
approach. All these parameters strongly interact with each other (see chap-
ter 4.1, Figure 4.1) and not all of these interrelated processes are implemented
in the dynamic model. Nevertheless, key impact factors defining the perfor-
mance of a biotechnological bubble column need to be specified.



6.1. 1-dimensional approach 83

C
D
E

E

C, D

B B

G

G

G

Figure 6.2: Mass transfer rate, bubble diameter and gas holdup correlation. The Higbie mass
transfer rate kL to bubble diameter dB correlation (A) is valid in the range of 2 e−3 ≤ dB ≤ 10−3m
when using the terminal bubble velocity vT = 0.23 m s−1 described in Tomiyama et al. (1998). (B)
According to kLa and εG,0 variations the initial bubble diameter dB,0 and mass transfer coefficient
kL can be adjusted.

The well-known Higbie correlation (Higbie, 1935) is used for estimating
kL as described in chapter 2.4.2 equation (2.12) and graphically shown in
Figure 6.2 (A) which is valid for bubbles larger than 2 e−3 m. It can be
assumed that the bubble surface is always mobile and surface active materials
have no influence (Heijnen and Van’t Riet, 1984). According to Tomiyama
et al. (1998) the steady-state uprising bubble velocity vT can be estimated as

vT =
√

2

(
σg (ρL − ρG)

ρ2
L

)0.25

(6.1)

which accounts for 2 e−3 ≤ dB ≤ 10 e−3 m and an Eötvös number Eo≤ 16
(see equation (4.50) in chapter 4.4.3).

The measured surface tension σ of the cultivation medium is 0.0724
± 0.0063 N m (identified via bubble pressure tensiometer), the medium den-
sity ρL is 1,000 kg m−3 and the air density ρG is 1.2 kg m−3. The bubble
velocity with 0.23 m s−1 is calculated and very similar to the distilled water
value with vT = 0.25 m s−1 (Heijnen and Van’t Riet, 1984). The interfacial
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area concentration a was estimated assuming spherical bubbles:

a =
6

dB
εG. (6.2)

For spherical bubbles the specific surface a correlates directly with the
diameter and gas holdup. Three variation scenarios can be derived from this
interaction (Figure 6.2 (B)). Changes in the kLa value by adjusting dB,0 and
kL, varying the εG,0 range and keeping the kLa constant by also adjusting
dB,0 and kL and finally only adjusting εG,0 by keeping dB,0 and kL constant at
an average initial kLa of 110 h−1.

However, not only initial diameter and gas holdup need to be set in
the model but also the gassing rate and gas composition. Schügerl et al.
(1977) tested several liquid compositions according to their gas holdup be-
haviour by applying different superficial gas velocities (selection shown in
Figure 6.3 (A)). Due to similar properties of the medium to water another
correlation was chosen as reference (Figure 6.3, dashed lines). In the case
of distilled water and a bubble diameter larger than 10 e−3 m the following
equation can be used with vT = 0.25 m s−1 (Heijnen and Van’t Riet, 1984):

εG =
vS

vT
. (6.3)

By applying equation (6.3) a superficial gas velocity of 0.025 m s−1 respec-
tively 0.06 vvm equals a mean gas holdup εG of around 10% (Figure 6.3 (A),
dashed lines). Combining the gas velocity with kLa and again consider water
as reference (Figure 6.3 (C) dashed lines) a kLa of around 130 h−1 can be
assumed. This is in accordance with the interrelation by Akita and Yoshida
(1973) illustrated in Figure 6.3 (C) and (D). They found for a certain bubble
column diameter (DR > 0.08 m) the mass transfer rate correlates linearly
with the gas holdup and has always a slope of one.

While taking a closer look at Figure 6.3, a grey overlay is used to highlight
the parameter ranges chosen for this study. The superficial gas velocity
range is set in order to assure homogeneous bubbly flow (see chapter 4.1,
Figure 4.2). However, superficial gas velocities above 0.05 m s−1 reach into
the transition area with different bubble behaviour. Nevertheless, this range
is set to show the limits of this simple model compared with the more
detailed computational fluid dynamics approach.

Also the gas holdup range is chosen according to literature with 30% as
maximum gas holdup which can not be achieved with a pure demineralised
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water system as shown in Figure 6.3 (A). On the contrary, yeast and alcohol
solutions decrease the surface tension and therefore bubble diameter as
well as bubble rise velocity (interaction illustrated in chapter 4.1 Figure 4.1)
which results in higher gas holdups. The ethanol plot of Figure 6.3 (A) is
chosen since C. ljungdahlii additionally produces alcohols such as ethanol
and 2,3-butanediol.

G

G

S

S

G

D
D
D

D
D
D

Figure 6.3: Comparing parameter variation ranges with literature. (A) Gas holdup in relation
to superficial gas velocity for demineralised water, yeast solution and ethanol solution (Schügerl
et al., 1977). (B) and (D) Mass transfer correlated with gas holdup for different column diameters
(Akita and Yoshida, 1973). (C) Mass transfer rate over superficial gas velocity for water-slat
solution, pure water and water detergent mix (Heijnen and Van’t Riet, 1984). Highlighted
in grey are the parameter variation areas, in red the additional kLa range due to gas holdup
variations with variable mass transfer (red dots and balance line in (D)). Dashed black line
indicates the first fix parameter set. Sole red dot in (A) to (C) is the final parameter set after
the variation study with the red line accentuating the second kLa variation study. (Reprinted
and modified from Siebler et al., 2020, with permission of © Wiley-VICH Engineering in Life
Science.)
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The final reference settings (Figure 6.3, dashed black line) are: yCO = 0.55,
0.06 vvm, εG = 0.1 (εG,0 = 0.06) and kLa = 130 h−1 (kLa = 90 h−1 with dB,0 =
5 e−3 m and kL = 3.4 e−3 m s−1). The simulation scenarios A – E (Figure 6.3,
grey highlighting) are performed using the following settings (list is recited
from Siebler et al., 2020):

A: Variation in CO gas fraction with 0 ≤ yCO ≤ 0.9
B: Different gassing rates with 0.004 ≤ vS ≤ 0.063 m s−1 (0.01 - 0.15 vvm,

15 ≤ V̇G ≤ 225 m3 s−1)
C: Variations of kLa (εG = const.) with initial settings of 40 - 180 h−1

resulting in mean steady state values (kLa) of 60 - 250 h−1

D: Variation in initial gas holdup 0.02 ≤ εG,0 ≤ 0.19 with a fixed kLa
resulting in 0.03 ≤ εG ≤ 0.31 (and variable dB, see Figure 6.4 for
explanation)

E: Same variation as in D but considering variable kLa yielding equal εG
as in D and constant dB (see Figure 6.4 for explanation)

F: Final parameter study with new reference set-up according to findings
in A to E: yCO = 0.55, 0.15 vvm and εG = 0.31 (εG,0 = 0.19). initial kLa
settings ranged from 100 h−1 to 425 h−1 finally reaching mean steady
state kLa between 140 h−1 to 580 h−1

For the final parameter study F, the reference setting is adjusted according
to the results of A – E, which will be described in chapter 6.1.5 in detail. As
the previous Figure 6.2, Figure 6.4 helps to understand how variations D and
E affect different parameters and why a differentiation for the gas holdup
variation was made in the first place.

D (varying 𝜀G,0 but keeping 𝑘𝐿𝑎 = constant)

E (varying 𝜀G,0 but 𝑘𝐿 = 3.7 10-4 m s-1; 𝑑B,0 = 4.3 10-3 m; 𝑘𝐿𝑎 = variable)

𝜀G,0 𝑑B,0 𝑘𝐿

𝜀G,0 𝑎 𝑘𝐿𝑎

Figure 6.4: Analysing the impact of gas holdup on simulation performance. D: Yielding to
keep constant kLa while increasing gas holdup εG,0 leads to increasing bubble diameters and
lowering kL values. E: Increasing gas holdup εG,0 with constant kL and dB immediately increases
a = 6εG/dB proportionally which leads to increasing kLa values. (Reprinted from Siebler et al.,
2020, with permission of © Wiley-VICH Engineering in Life Science.)
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The gas fraction variation range is chosen according to Clarke Energy®

(2018) syngas composition as described in chapter 2.1 and the laboratory
gas mixture with yCO of 0.55 (also reference value). For the final parameter
study F the CO fraction is not adjusted since this value is rarely exceeded.
The red overlay in Figure 6.3 (B) to (D) indicates that the resulting kLa range
was wider, due to variation E which had a great effect on the mass transfer
rate. The final kLa values of study E are illustrated in Figure 6.3 (D) as red
dots. As the first reference set-up is graphically displayed with black dashed
lines, the final result of study F is marked with a red dot in Figure 6.3 (A) to
(C). In addition, the last variation F is also indicated by the red line. With
this appropriate parameter variation set-up, the simulations were performed
and the results are shown in the following subsections.

Further informations on the parameter ranges can be found in Manuscript
III under 3.2. Probing the parameter space.

6.1.3 Steady state results

The 1-dimensional model solves five partial differential equations (CO and
CO2 in gas and liquid phase as well as the gas holdup) and four ordinary
differential equations (see equation (4.28) and equation (4.29) in chapter 4.3.4).
After 800 h a steady state is reached for all simulations.

To compare the outcome for every variation, the steady state results
are shown in Figure 6.5. Each point is the result of one simulation run.
Figure 6.5 (A) shows the concentrations of products and gases for different
CO gas fractions, which let to a wash-out scenario when the CO share is
less den 10 vol-%. In general, the higher the CO fraction the more product
is produced. The soluble CO gas increases as well. The grey symbols in
Figure 6.5 (A) are the results without the implementation of a liquid diffusion
therm (see chapter 4.3.2). Especially in the second picture the effect is clearly
visible and a diffusion limitation can be observed. For every further study
the limitation therm of equation (4.26) is included.

Variations in gassing rate (Figure 6.5 (B)) show at low superficial gas
velocities less CO2 removal and therefore higher concentrations. This gas
accumulation effect decreases the higher the gas throughput is. With this
simulation set-up and by increasing the gassing rate even further, the product
formation is relatively unaffected. In this context it should be stated that
at very high superficial gas velocities the assumption of a homogeneous
flow regime in a bubble column is probably not supported anymore (see
chapter 4.1 Figure 4.3).
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Figure 6.5: Steady state results of parameter study. Variation results are shown as follows:
Variation in (A) gas composition, in (B) gassing rate, of (C) initial kLa value, of (D) initial gas
holdup εG,0 with constant kLa value and of (E) initial gas holdup εG,0 with variable kLa value.
Grey points in (A) are simulation results without consideration of diffusion. (Reprinted from
Siebler et al., 2020, with permission of © Wiley-VICH Engineering in Life Science.)
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By increasing the kLa value (Figure 6.5 (C)), production and CO con-
sumption increases as well. The initial mass transfer value changes during
the simulation. This is due to the fact that the model initialisation does not
include consumption and production kinetic as well as the vertical transport
(see equation (4.37) in chapter 4.3.6). The same accounts for the gas holdup
and bubble diameter.

In Figure 6.5 (D) and (E) the effect and importance of mass transfer are
clearly visible. The production rates are limited by the CO consumption,
which in turn depends on the mass transfer. The parameter study D demon-
strates that the gas holdup of 10% is not limiting. Only at a very small
gas holdup (εG ≤ 0.08), a decline in productivity can be noted. With a fix
kL = 3.7 e−4 m s−1 and dB,0 = 4.3 e−3 m as in E, the gas holdup has a much
greater impact on the steady state result because it affects directly the spe-
cific bubble surface a and therefore the kLa value. Although the product
formation stays almost constant, the CO2 concentration increases. More gas
is hold up respectively dissolved in the bubble column. The gas amount
increases linearly with the increasing εG. The superficial gas velocity vS is
directly affected by changes in εG (see chapter 4.3.4, vS = vG,slipεG) as well. It
seems the product concentration reaches a plateau even though the dissolved
CO concentration increases. The reason for this can be found in the uptake
kinetic of Mohammadi et al. (2014) and the set dilution rate of D = 0.055 h−1.

All in all, the steady state concentration results provide information about
the model behaviour. However, there are better ways to show the sensitivity
of this model and the impact of the parameter variations, which can be found
in the next subsections.

6.1.4 Sensitivity and impact of parameter variations

To show the sensitivity of certain parameter changes on the model, radar
charts have been chosen. Figure 6.6 illustrates the observed sensitivities
of the simulation scenarios A to E (see declaration in chapter 6.1.2, p. 86)
focussing on the readouts: mean gas holdup εG, final kLa, mean bubble
diameter dB, bubble number density nG, total carbon fixation Cfix(SS) and
production biomass yields YP,X(SS). Values are normalised with respect to
the maximum (1) and the minimum (-1). The black solid line indicates the
baseline (0) respectively reference.

Variations in CO fraction and gassing rate (Figure 6.6 (A) and (B)) have
no significant effect on gas holdup, mass transfer, mean bubble diameter and
bubble number density. However, low CO fraction cause poor CO fixation



90 Chapter 6. Modelling results and discussion

and production biomass yields. On the contrary, at high CO fractions the
carbon is fixated mainly as product and biomass. Whereas, low gassing rates
have high production biomass yields due to longer gas dwell times.
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Figure 6.6: Parameter sensitivity analysis for conceptual design. The following scenarios are
studied with variations of: (A) gas composition (excluding wash-out results), (B) gassing rate,
of (C) initial kLa value, (D) initial gas hold-up εG,0 with constant kLa and (E) initial gas hold-up
εG,0 with variable kLa. Variables with a bar indicate the average steady state value. Additionally,
the steady state production biomass yields YP,X(SS), total steady state carbon fixation Cfix(SS)
and bubble number density nG are depicted. All values are normalised to the overall maximum
(1) as well as minimum (-1) value to allow comparability. The black solid line indicates the first
parameter set, thereby defining the baseline (0) of each radar graph. Areas of light grey (as well
as small arrow in (D)) contour the set of minimum values, dark grey areas highlight maximum
values. (Reprinted from Siebler et al., 2020, with permission of © Wiley-VICH Engineering in
Life Science.)

The mass transfer rate (Figure 6.6 (C)) has been adjusted with different
dB,0 and kL values. Changing the initial bubble diameter consequential
changes the average bubble diameter and number density (see equation (4.32)
in chapter 4.3.4 and equation (6.2) in chapter 6.1.2). Higher mass transfer
rates allow higher dissolved gas concentration and therefore CO fixation.
Additionally, the product biomass yield increases slightly and declines with
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lower kLa values. There is no significant effect on the mean gas holdup for
the parameter variation C.

Figure 6.6 (D) shows the gas holdup variation with constant kLa (indi-
cated with an arrow). Consistent with the modification of the initial gas
holdup εG,0 and diameter dB,0, the average steady state gas holdup εG and
diameter dB vary (applies for Figure 6.6 (D) and (E)). Both parameter also
affect the number density according to the correlation in equation (4.32) in
chapter 4.3.4. The CO2 production increases in D and E, which causes a drop
in CO fixation.

The last variation has the greatest impact on the outcome of the model
(Figure 6.6 (E)). This underlines again the importance of including the gas
holdup into the systems of partial differentiated equations. Almost all pa-
rameters show maximum deviations, especially the kLa value is affected. In
this case, the mass transfer coefficient and initial diameter are constant (see
also Figure 6.4). The diameter for an initial kLa of 110 h−1 is smaller than the
one of the reference state, therefore both maximum and minimum value are
lower than the baseline. It should be noted that changing the specific bubble
surface by adapting the initial gas holdup has a greater effect on the average
mass transfer than changing kL and dB,0.

The sensitivity of the parameter can be used to describe the outcome
of the model. However, besides the general CO fixation Cfix(SS), it is also
economically interesting how much of the carbon goes into biomass and how
much into product formation. This examination is presented in chapter 6.1.5.

6.1.5 Carbon flow and final parameter set-up

The carbon flow in gas fermentations is very difficult to predict. On the
basis of the CO uptake kinetic described by Mohammadi et al. (2014) and the
simple kinetic correlation outlined in chapter 4.3.1 the steady state carbon
share for each variation can be calculated (Figure 6.7). It is of interest how
the carbon flows within a parameter variation (Figure 6.7) and in comparison
with the other variations (Figure 6.8).

In Figure 6.7 all identification letters are analogue to the variation de-
scription A - F determined in chapter 6.1.2. The percentage carbon share is
generally very similar. With more than 95% in each simulation, the CO is
converted mainly into product (grey area) and biomass (white area). The
product share is slightly higher than the biomass share and shows the high-
est variations in study B, C and E. This is also indicated with the product
biomass yields YP,X(SS) in the radar charts (Figure 6.6). The final parameter
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study F, which is based on A - E, is also included and elaborated in this
chapter.

Figure 6.7: Steady state carbon share of parameter study. Variation results are shown as
follows with variations in: (A) gas composition, (B) gassing rate, (C) initial kLa value, (D)
initial gas holdup εG,0 with constant kLa value and (E) initial gas holdup εG,0 with variable kLa
value. In (A) the first two volume fraction of CO in the gas are two low and the continuous
fermentation results in a wash out scenario. The black dashed line indicates the reference, while
the interconnected black squares in (A) to (E) describe the maximum CO fixation normalised to
the overall maximum in (E). However, (F) is normalised to the maximum in the final kLa study.

In all three cases high dissolved CO concentrations are reached, either
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due to longer dwell times as in case B or due to higher mass transfer rates as
in C and E. High CO concentrations result in better consumption rates and
according to the kinetic correlation in higher local product formation rates.

Figure 6.8: Total steady state carbon share in comparison. Variation results are shown as
follows with variations in: (A) gas composition, (B) gassing rate, (C) initial kLa value, (D) initial
gas holdup εG,0 with constant kLa value and (E) initial gas holdup εG,0 with variable kLa value.
The black dashed line indicates the reference, while the maximum CO conversion for each
parameter is normalised to the maximum in (E) of the first parameter study series A - E.

Since the dilution rate is constant at D = 0.055 h−1, changes in carbon
share respectively product formation rates can only be achieved by increasing
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the CO concentration locally. In addition, the wash-out scenario at low CO
fractions is clearly visible in Figure 6.7 (A). Consequently, the dilution rate
respectively growth rate can only be met with CO fractions larger than
10 vol-%.

Figure 6.7 not only displays the carbon share within the parameter varia-
tion but also the maximum CO fixation normalised to the maximum in the
first parameter study A - E, which is analogue to the Cfix(SS) mapping in
Figure 6.6.

Figure 6.7 and Figure 6.8 show similar results in two different ways.
While Figure 6.7 displays the carbon share of each steady state in a more
comparable manner, Figure 6.8 outlines the total carbon amount of the
fermentation normalised to the maximum in E of the first parameter study
series. Biomass (white area) and sum(P) (grey area) together result in the
same quantity displayed in Figure 6.7 as interconnected black squares.

The highest fixated amount of carbon with the greatest product biomass
yield of the first parameter study is achieved with a mean gas holdup of
about 30% (equals εcrit see also chapter 4.1) and kLa of 480 h−1. For the
final study, new starting parameters are chosen according to the findings of
the first run. Besides, an initial gas holdup εG,0 of 19% (εG = 0.31) the CO
fraction of 55% is not changed, since the amount of CO rarely exceeds this
value in converter gas of the steel production (Clarke Energy®, 2018) and
it is the same amount used in the experiments (in the supplementary files
of Siebler et al., 2019, respectively Manuscript II). According to published
literature (Figure 6.3 (A)), εG can only be increased by also increasing the
superficial gas velocity, which was set for F to the maximum of the first study
(0.15 vvm).

Figure 6.9: Steady state results of kLa variations of final parameter set-up. The new parameter
set has a CO fraction of 55 vol-%, gas holdup εG of 0.3 and superficial gas velocity of 0.0625 m s−1

(0.15 vvm) as new reference. According to Figure 6.11, the results of a second and final mass
transfer variation is pictured in (F).
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With this new parameter set-up a final kLa study was modelled as dis-
played in Figure 6.9. The behaviour is similar to the first mass transfer
study C. However, much higher product and biomass yields are reached
(Figure 6.10).

Figure 6.10: Comparison of old reference point with the final result. The pictures show
the percentage carbon share of the first parameter set (coloured black) with a kLa of around
130 h−1, CO fraction of 55 vol-%, gas holdup εG of 0.1 and superficial gas velocity of 0.025 m s−1

(0.06 vvm). The new parameter set (coloured red) has a kLa of around 580 h−1, CO fraction of
55 vol-%, gas holdup εG of 0.3 and superficial gas velocity of 0.0625 m s−1 (0.15 vvm). In (A) the
products of both parameter sets are comparatively shown. The percentage share is normalised
to the maximum carbon amount of both simulations (see (B)). Note: Percentage share is given
for c-mol.

In Figure 6.10 the reference of the first study is compared with the final
kLa study F respectively the simulation result of the last kL and dB,0 set. A
final mass transfer of 580 h−1 is reached, which leads to high local CO uptake
and therefore production rates (see kinetic correlation in chapter 4.3.1). This
means that in comparison three times more CO is converted to biomass
and product (Figure 6.10 (B)). The percentage share within each setting
stays almost the same (around 40/60% − biomass/sum(P) with remaining
carbon always < 1%). The final fermentation set-up has only 2% more carbon
converted into product than biomass. A significant change in product share
can only be expected for two substrate growth with different gas solubilities
as for example CO2/H2 gas fermentations. Nevertheless, the product can
be divided into 32/23/45% − acetate/ethanol/2,3-butanediol (percentage
share is given for c-mol).

Each steady state result can be displayed as concentration over time and
for each time step the local concentration can be plotted over the height of the
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reactor. In Figure 6.11, the final scenario was selected to show the temporal
(A) and spatial results (B). The spatial results of the steady state (at 1,200 h)
have also been translated into consumption, production and growth rates
(Figure 6.11 (B), right side). For the temporal results in Figure 6.11 (A) the
biomass and product concentrations (left), the gas concentration at the top
(middle) and mean soluble gas concentration of the whole bubble column
(right) was depicted. As mentioned before, the steady state is reached after
around 800 h.
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Figure 6.11: Temporal and spatial results for final parameter set-up. In (A) the average con-
centrations are pictured over time until the process reaches a steady state. (B) Spatially resolved
steady state results of the liquid and gaseous concentrations are shown in on the left side. The
right side illustrates the related consumption and production rates (acetate qa, ethanol qe and
2,3-butanediol qb and the growth rate µ). (Reprinted from Siebler et al., 2020, with permission
of © Wiley-VICH Engineering in Life Science.)

The gas composition changes over the height (Figure 6.11 (B) top left).
As CO dissolves and is consumed CO2 is produced. The dissolved gasses
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behave accordingly. In Figure 6.11 (B) top right, it can be seen that the kinetic
correlation determines a CO consumption proportional to the CO2 produc-
tion as defined in equation 4.3 (chapter 4.3.1). CO limitations described
by Mohammadi et al. (2014) only occur at CO concentration higher than
0.1 mmol L−1. This is only the case at the bottom of the reactor respectively
in the first compartment and thereby negligible. When the gas enters the
reactor it almost immediately dissolves due to high hydrostatic pressure
(around 3.5 atm) and is consumed at once by the organism.

The sudden changes in the growth and production rates occur when
qc ≤ −14 mmol g−1

CDW h−1. This happens at a column height of around 12 m.
In this scenario the growth rate is not at its maximum as it can be seen in
chapter 4.3.1 Figure 4.5. The production rates are lower as well. Since the
maximum growth rate of around 0.06 h−1 is not the same as the dilution rate
D = 0.055 h−1, the growth rate can change locally. Nevertheless, the mean
steady state growth rate always equals the dilution rate, except the two wash-
out scenarios at low CO gas fractions. At which height this effect occurs
for growth and production rates depends on the gas availability, which in
turn depends mostly on gas holdup and mass transfer. This can also cause
changes in the product biomass yield respectively carbon flow (see Figure 6.6
and 6.10).

In summary, the most important properties of a gas fermentation are gas
holdup and mass transfer. Unfortunately, they are very difficult to predict
and most likely to change during the fermentation. Nevertheless, the 1-
dimensional approach gives an overview of possible fermentation scenarios
and their carbon flow. This helps to find an optimal parameter set for further
analysis with computational fluid dynamics focusing on the cell behaviour.
The results also give a recommendation of how the fermentation has to be
run in order to obtain the best yields and therefore minimise risks in scale-up.

6.2 Computational fluid dynamics

The second modelling part focuses on more detailed flow behaviour and
bacteria tracking. With the help of computational fluid dynamics (CFD)
and therefore more detailed spatial discretisation, a pseudo-stationary gas
gradient is achieved. In this chapter, the classification of the gas gradient as
processing and the interpretation of the bacterial lifelines are also presented
and discussed. How predictions according to short and long-term responses
of the microorganism can be made is also shown.
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This chapter is a summary of Siebler et al. (2019, respectively Manuscript
II). The structure deviates from Manuscript II and all recited pictures and
tables are stated as such.

6.2.1 Mesh, flow field and pseudo-stationary gas gradient

To solve the flow equations mentioned in chapter 4.4.1 (Turbulent incom-
pressible flow), both spatial and temporal discretisation need to be chosen
carefully. As stated in the 1-dimensional approach, the mass needs to be
conserved. Additionally, the general flow behaviour of a bubble column
should be represented as well as possible. As mentioned before, the finer the
numerical grid the more accurate the eddies are reproduced and therefore
the two phase flow. However, the equations to be solved increase the higher
the spatial resolution. Accordingly, the simulation time also increases.

Figure 6.12: Computational fluid dynamic grid. Top and bottom section of grid in side and top
view. (Reprinted from Siebler et al., 2019, with permission of © Elsevier Chemical Engineering
Science.)

The final mesh with around 125,000 numerical cells is shown in Fig-
ure 6.12 in side and top view (further information can be found in chap-
ter 5.3). The mean gas holdup is tracked (Figure 6.13 (A)) to determine
whether incoming and outgoing gas flow is approximately the same and a
steady state is reached. The mass flow at the bottom and top of the reactor is
also analysed in ANSYS Fluent (data not shown). In bubble column reactors
the flow field is developed by the bubble movement. For simulation stability
reasons, in the first 1,000 s only one constant bubble size is used until the flow
field with a gas holdup of 0.34 is developed. An initial diameter of 4 mm is
set to keep the simulation comparable to the 1-dimensional approach. After
1,000 s, different bubble sizes are enabled by using the population balance
model with sixteen discrete size classes ranging from 0.001 m to 0.032 m.
Breakage, coalescence, expansion, mass transfer from gas to liquid phases
and the gas uptake in each numerical cell are enabled as well (Figure 6.13
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(A) dashed line). The incoming bubble size is kept at 4 mm (bubble diameter
bin 7).

BB

G

G
G

Figure 6.13: Simulation development to reach pseudo-stationary gas gradient. In (A) the
average gas holdup in the bubble column reactor is plotted against time. During the first 1,000 s
the flow field was developed with one bubble size and no mass transfer from gas to liquid
phase. From 1,000 to 1,500 s breakage and coalescence and effects of hydrostatic pressure are
enabled by including the population balanced model. The average bubble size distribution for
start (dark grey) and end point (light grey) are shown in (B). The number density over diameter
bin is given as normal and cumulative distributions. Similar to 1-dimensional approach the
start parameter is always 4 mm (bin 7). (Adapted from Siebler et al., 2019, with permission of
© Elsevier Chemical Engineering Science.)

Figure 6.13 (B) shows the number density nG of each bubble diameter
class on the left side and the normalised cumulative number density on
the right side. To show how the bubble size distribution (BSD) changes,
start (dark grey) and final (light grey) distributions are depicted, which is
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also indicated in Figure 6.13 (A) as dots. The gas holdup decreases when
coalescence is enabled and a new steady state is reached after 500 s with εG
of 0.21. The trend of the final BSD is similar to observations with water-air
experiments of Lehr et al. (2002). However, longer bubble dwell times are
obtained in the six times larger bubble column of this study. The probability
for coalescence is much higher compared to Lehr et al. (2002) leading to
larger bubbles classes up to 3.2 cm (bin 16). This causes the lower average
gas holdup after 1,500 s.
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Figure 6.14: Flow field (A), gas holdup (B) and concentration profile (C) of the CFD simula-
tion. Colour scale and unit is given on the left side. Shown are side profiles in yz-direction and
eleven section planes in xy-direction indicated by the dashed lines as well as reactor top and
bottom. In (A) the velocity magnitude vM =

√
u2 + v2 + w2 as defined by Fluent is depicted.

(Reprinted and modified from Siebler et al., 2019, with permission of © Elsevier Chemical
Engineering Science.)

With the same bubble diameter and gas input as in the 1-dimensional
approach the first steady state of the gas holdup is 3% higher. More accurate
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flow behaviour with recirculation patterns and eddies are factored in which
cause more gas retention in the liquid. However, if bubble breakage, coa-
lescence and expansion are enabled, the average bubble diameter of 4 mm
is increased to 9.7 mm (number length mean) or more important a Sauter
bubble diameter of 20.9 mm (surface area mean). This indicates that bubble
expansion and coalescence are the governing effects in bubble column. Addi-
tionally, larger bubbles experience more buoyancy and rise faster which is in
accordance to Figure 6.14 (A) with higher velocities at the top of the reactor.
Simultaneously, the overall gas holdup decreases, because higher velocities
mean lower bubble dwell times. Therefore, the gas holdup declines, which
corresponds to heterogeneous churn-turbulent flow behaviour and not per-
fect bubbly flow as described in chapter 4.1 Figure 4.3 on page 36 (Kantarci
et al., 2005; Deckwer et al., 1980; Krishna and Sie, 2000).

In conclusion, computational fluid dynamics allow to cover important
physical properties such as drag, lift, expansion, breakage and coalescences,
which give a more realistic flow behaviour in large scale bubble column reac-
tors. Therefore, mass transfer calculations are more accurate and a pseudo-
stationary gas gradient with flow field can be derived for further studies
on the microbial level. Information on the overall changes in mass transfer
before and after the population balance model is enabled can be found in the
supplementary files of Siebler et al. (2019, respectively Manuscript II).

In addition to that, the mixing time with 27.3 ± 4.3 s and the circulation
time with 14.7 ± 1.4 s is demerited. Since the circulation velocity is approx-
imately two times the reactor height divided by the circulation time, the
bacteria travel through the reactor with an average speed of 3.4 m s−1. This
is within the range of Pandit and Joshi (1983). Further, information on the
determination of these values can be found in the supplementary files of
Siebler et al. (2019, respectively Manuscript II).

Finally, with the gas gradient, hydrodynamics and mixing time the La-
grange trajectories can be simulated. However, before the data of this CFD
simulation can be processed, reasonable classification criteria have to be
found, which is discussed in the next chapter.

6.2.2 Classification of regimes by product biomass yields

For the statistical evaluation, the Lagrange trajectories were sorted and the
CO concentration profiles filtered as described in Kuschel et al. (2017). As
the title of this chapter implies, the classification criteria of the lifeline inter-
pretation is the productivity of the organism, more precisely the steady state
product biomass yield YP,X. This crucial biological value is also mentioned
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in the 1-dimensional approach (chapter 6.1.4: Sensitivity and impact of pa-
rameter variations). As discussed in chapter 3 (Evaluation and assessment
of industrial reactors), synthesis gas fermentations are not highly productive
and should be low in plant, operation and maintenance cost. The more
product is produced the more economical the process. Therefore, the product
per biomass yield is a good indicator and choice for the regime classification.

In order to do so, the dissolved CO concentration needs to be connected
to the product biomass yield YP,X. From chapters 4.3.1 and 4.3.2 the CO
uptake kinetic of Mohammadi et al. (2014) and element balance correlation
can be used to approximate the product biomass yield as a function of CO
uptake qc, which is given in equation (6.4) and illustrated in Figure 6.15 (A).

YP,X (qc) =

{
1.51 qc
qc−2.29 −14 < qc ≤ 0

− qc
6 − 1 qc ≤ −14

(6.4)

Since the product yields per c-mol CO can be derived from the rates
Yproduct,CO = qproduct/qc, the product biomass yield is the sum of all product
substrate yields divided by the biomass per carbon monoxide yield.

H

T

L

HTH THT LTH HTL LTL TLT

P,
X

A B

q

Y

Figure 6.15: Regime classification as function of productivity. In (A) the product biomass
yield YP,X is given in c-mol per c-mol as a function of CO uptake rate (see also equation (6.4)).
From qc of 0 to−14 mmol g−1

CDW h−1 the YP,X function behaves Monod-like with a half-maximum
value of −2.29 mmol g−1

CDW h−1 which is also the first regime transition value. The second
transition value is at −14 mmol g−1

CDW h−1 when the YP,X function is linear ascending. All six
regime transition strategies are illustrated in (B). (Reprinted from Siebler et al., 2019, with
permission of © Elsevier Chemical Engineering Science.)
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The higher the YP,X value the more carbon flows in the formation of the de-
sired by-product. High product biomass yields indicate a strong metabolism
of growing cells. As described in chapter 5.3.2 and pictured in Figure 6.15 (B),
the movement patterns of the individual cell is analysed by this translation.
In doing so, critical thresholds need to be defined to divide the gas gradient
in gradient segments. Considering the function for YP,X, the first part of the
equation (0 ≤ qc < −14 mmol g−1

CDW h−1) shows Monod-like behaviour with
a half-maximum yield KYP,X of −2.29 mmol g−1

CDW h−1. With this value also
the first threshold from low to high yields is set. At qc ≤−14 mmol g−1

CDW h−1

the YP,X-function turns into a linear correlation. This indicates that the maxi-
mum of CO conversion into biomass formation is achieved and all additional
carbon is used in by-product formation. The switch to linear function be-
haviour is used as second threshold leading to three regimes: L for low
yields from 0 to−2.29 mmol g−1

CDW h−1 (0≤ YP,X < 0.75), T for transition area
between -2.29 and −14 mmol g−1

CDW h−1 (0.75 ≤ YP,X < 1.33) and H for high
yields starting from −14 mmol g−1

CDW h−1 (1.33 ≤ YP,X).
This classification is also implied in Figure 6.15. Six movement patterns

(Figure 6.15 (B)) can be derived characterising the shift between three gradi-
ent zones. The regime transition events are described in the following list
(recited from Siebler et al., 2019, with permission of © Elsevier Chemical
Engineering Science.):

HTH: Event from high to transition and back to high product per biomass
yield areas.

THT: Reverse movement starting from the transition area with retention in
the high yield area and back to transition.

LTH: Crossing all regimes from low to high and with dwelling in the transi-
tion area.

HTL: Reverse event from low to high product biomass yields.
LTL: Analogous to HTH but from low to higher and back to low yield areas

with residence time in the transition domain.
TLT: Same regimes but with a stay in the lower domain with little product

biomass yields and start in the transition class.

The second letter of the regime transition events also indicates the resi-
dence time τ for each movement pattern.

Finally, the Lagrange trajectories representing the bacterial lifelines can
be processed in a statistical manner. Statistical relevance, translation and
processing of the data will be shown in the following chapter.
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6.2.3 Processing bacterial lifelines

Four times 30,000 massless Lagrange particles are tracked for 500 s which
results in 120,000 bacteria for 2,000 s (see chapter 5.3.2). The statistical rele-
vance of the space and time dependent trajectories are checked for ergodicity.
As described in chapter 4.4.5, the Lagrange trajectories are ergodic when
the time average is the same as the average over the probability space. For
this reason, the reactor was horizontally divided into ten uniform columns
(Figure 6.16 (A) z0 − z9). In each subdivision the particles were superim-
posed at each time step (t0 − tend). More precisely, at each recorded time
step the amount of bacteria in one volume is counted and then compared to
the expected amount (see Figure 6.16 (B)). As indicated in Figure 6.16 (B) all
volumes show deviations lower then 2%. Consequently, both, the amount of
particles and tracking time, can be assumed to be ergodic and statistically
relevant. In addition to that, the average carbon monoxide concentration
of the Lagrange trajectories (cL,CO = 0.0020 mmol L−1) is approximately the
same as of the liquid phase (cL,CO = 0.0018 mmol L−1).
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Figure 6.16: Statistical relevance of Lagrange trajectories. In (A) 3,000 representative enlarged
bacteria are depicted to illustrate the spatial (z0 − z9) and temporal (t0 − tend) residence of the
bacteria. For each spatial segment z the probability with respect to expected value (black line)
is shown in (B) as frequency in percentage. Dotted black lines indicate the ±2% deviation
limit. (Reprinted from Siebler et al., 2019, with permission of © Elsevier Chemical Engineering
Science.)
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The representative 120,000 bacteria lifelines need to be further processed
in order to gain insight into the effects of substrate gradients on the cellular
level. The gradient classification and movement pattern introduced in the
previous chapter are applied to the recorded trajectories. In general, the
longer a bacterium stays in one regime the more likely it adapts to its sur-
roundings leading to demanding adaptations of the regulatory programs of
the organism (Löffler et al., 2016).
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Figure 6.17: Processing of bacterial lifelines. Exemplary two 30 s lasting bacterial lifelines
L1 (black) and L2 (grey) are shown in spatial resolution in (A). The related CO concentration
profiles are given in (B) also indicating the results of the moving-average filter (red line) (see
also Kuschel et al., 2017). The concentration is translated into the uptake rate qc finally yielding
the total product biomass yield YP,X presented in (C). The black dashed lines indicate the regime
transition boundaries which are used to translate the lifelines into regime switch diagrams with
transient stays τ of each regime switching event (D). The regimes are divided into high (H),
transition (T) and low (L) product biomass yields. For lifeline L1 two strategies are shown
(LTH and THT) with different durations of stay τ. (Reprinted from Siebler et al., 2019, with
permission of © Elsevier Chemical Engineering Science.)

In Figure 6.17 (A), the CO gradient of Figure 6.14 (C) is translated into the
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three product biomass yield dependent regimes: H encoding high product
biomass yields (zoomed detail in dark grey) located in the lowest column
zone, T the transition regime (in grey) spreads along the column height
and L the low product biomass yield regime (in light grey) mainly at the
top of the reactor. Figure 6.17 (B) to (D) shows two lifelines tracked for
30 s as well as their translation process from concentration profile (B) to
product biomass yield (C) and finally regime transition (D). Their movement
is spatially shown in Figure 6.17 (A) as well. The first lifeline L1 (black)
passes all three gradient regimes while the second L2 (grey) stays only in the
transition area. This leads to only two transition events for L1 with residence
times of τLTH = 18.3 s and τTHT = 2.1 s (Figure 6.17 (D)).

Both frequency of the six regime transition strategies as retention time
depend on the substrate gradient, regime classification and flow field respec-
tively velocity of the bacteria. The next chapter focuses on these properties
and points out a possible way of interpreting the Lagrangian trajectories.

6.2.4 Frequency of regime transition strategies

The classification into three regimes for different product biomass yields
allows the assessment of bacteria passing through a gradient. This evaluation
encompasses counting of transition events and grouping them with respect to
the retention time in the transient regime (Figure 6.18). From this evaluation,
maximum and average time of stays in a certain regime can be derived and
listed (Table 6.1).

Table 6.1: Total frequency, average and maximum retention time. For each regime transition
event the total frequency, the average retention τ and maximum retention time τmax is listed. A
confidence level of 99% for τmax is chosen. (Reprinted from Siebler et al., 2019, with permission
of © Elsevier Chemical Engineering Science.)

Regime transition Total frequency τ τmax
strategy in % in s in s

LTL 44.6 12.1 86.6
TLT 46.0 7.2 28.4
THT 3.6 3.4 15.3
HTH 1.2 17.4 80.4
LTH 2.4 29.6 107.5
HTL 2.2 32.8 109.8

In Figure 6.18 the frequency patterns of all possible regime transition
strategies are given. The regime transitions are listed on page 103 in chap-
ter 6.2.2. With an overall probability of 46.0%, the TLT movement pattern



6.2. Computational fluid dynamics 107

is the most common event, directly followed by the LTL regime transition
event with 44.6% (see also Table 6.1). The overall probability of the other
events is less than 4%. In contrast to that, the average retention times τ range
from 3.4 s to 32.8 s, whereas maximal regime durations τmax go up to 109.8 s.
LTH and HTL include all regimes and show besides the maximum retention
time also a minimum time of about 10 s (see Figure 6.18).

Figure 6.18: Regime transition strategies over retention time. The frequency of all six regime
transition strategies are given (log scale) and plotted against their duration of stay τ in the
second (transient) regime. For each histogram 600 bins have been chosen. (Reprinted from
Siebler et al., 2019, with permission of © Elsevier Chemical Engineering Science.)

The volume of each regime reflects the total event frequency. On the other
hand, the retention time and frequency of a transition event depend on the
gradient profile and the flow field. When comparing Figure 6.14 (A) with
Figure 6.17 (A) (flow field and gradient in regimes), the difference in τ and
τmax between LTL and TLT can be explained. Higher velocities close to the
wall and on top of the reactor cause lower average and maximum retention
times for the TLT regime transition event. In a biological context this means
that a high turnover of cells is passing the low product biomass yield zone
in less time (TLT) than it is staying in the transition regime (LTL).

Between the high and low regime areas (see Figure 6.17 (A)) the rather
wide transition area is located leading to the low event frequencies of LTH
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and HTL. For each event the T area has to be passed, which lasts at least
10 s. These maximum shifts from low to high rarely happen (≤ 5%), thus
the organisms are not often exposed to very extreme environmental changes.
Haringa et al. (2017) observed similar behaviour in their stirred tank investi-
gations.

The H zone represents less than 1% of the total bubble column. This leads
to the conclusion that only in this small area the CO supply for the organisms
is optimal. Kinetic inhibition of the CO uptake is not an issue in the major
part of the reactor.

Moreover, by weighting the average residence time of each regime tran-
sition event with its overall probability, an average circulation time of a
bacterium with 10.5 s can be estimated. This value is similar to the circu-
lation time derived from the mixing time estimation (see supplementary
files of Siebler et al., 2019). Compared to stirred tank observations with
circulation times of 20 s (Haringa et al., 2017; Kuschel et al., 2017), the mixing
of the reactor is rather good with a much lower power input (Siebler et al.,
2019). Bubble column reactors allow for axial flow patterns while stirred
tank reactors with Rushton blades mostly reveal radial velocities with typical
eddy formations along the stirrer. This also leads to hard transitions zones
between the vortices. Bacteria often dwell in these eddies for a longer period
of time and cause therefore longer circulation times.

The next chapter focuses on short- and long-term responses which can be
derived from the Lagrangian trajectories as well.

6.2.5 Short- and long-term responses

How microorganisms react to environmental changes depends on external
stress stimuli and the period of exposure to this stimulus. A short-term
stress indicator can be a critical substrate concentration, while the long-term
response to this critical change are usually transcriptional adaptations of
the organism. The longer the exposure the more severe the internal changes
of the cell. The indicators respectively thresholds for short- and long-term
responses can be identified with plug-flow experiments (Löffler et al., 2016).

Unfortunately, for C. ljungdahlii no comparable experimental studies are
published and their development is not in the scope of this study. However,
thresholds from well-investigated organisms such as Escherichia coli can be
used. With a maximum glucose uptake rate qmax of 1.8 ggluc g−1

CDW h−1 this
strain has a maintenance demand ms of 0.057 ggluc g−1

CDW (Taymaz-Nikerel
et al., 2010; Michalowski et al., 2017). In other words, under optimum
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growth conditions 3.2% of the maximum uptake are needed for maintenance.
In the case of C. ljungdahlii, this would be a critical CO concentration of
ccrit

L,CO = 0.003 mmol L−1 derived from qreal
c,max = qc

(√
KMKI

)
, which results

in 24.87 ggluc g−1
CDW h−1 (0.1 mmol L−1). This value consequently marks the

metabolic short-term stress response.
The second threshold marks transcriptional and translational responses

which occur only after longer exposure. For E. coli after 30-40 seconds
first transcriptional changes can be measured (Löffler et al., 2016). Major
transcriptom adaptations can be found after 70 s. In comparison with E. coli,
three minimum critical residence times in stress-inducing zones are derived:
τcrit = 10 s, τcrit = 40 s and τcrit = 70 s.

q

q q q

qq

Figure 6.19: Expected bacterial responses while experiencing limitation for different expo-
sure periods. As described in chapter 5.4.2 three critical time points τcrit = 10 s in (A), τcrit = 40 s
in (B) and τcrit = 70 s in (C) have been chosen to show the distribution of uptake rates (first
row) and the weighted distribution by actual duration τi indicated by the case-specific weight-
ing factor ατ,i (second row). Histograms are normalized to the highest total percentage of
the average occurrence (τcrit = 10 s) and divided into 100 bins. The average uptake rate
qc = 12.26 mmol g−1

CDW h−1 is indicated as a grey dotted line. (Reprinted from Siebler et al., 2019,
with permission of © Elsevier Chemical Engineering Science.)
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The Lagrange trajectories are processed as described in chapter 5.4.2 and
resulted in Figure 6.19 and 6.20 for the short- and long-term responses. For
each stress exposure period, the distribution of uptake rates (Figure 6.19
(A) - (C), first row) is depicted. Since the frequency of different uptake rates
does not include the actual duration, each count is additionally weighted
by its average residence time (Figure 6.19 (A) - (C), last row). The abstract
visualisation of the distributions in Figure 6.19 is summarised in Figure 6.20
in form of total percentage shares.

In Figure 6.19, heterogeneous cellular population with a bimodal distri-
bution can be identified for short residence times of at least τcrit = 10 s. Since
the carbon uptake rates can be correlated with the product biomass yields,
also bimodal production zones can be expected in this case. The very short re-
tention in high CO concentration areas such as for the THT regime transition
event (Table 6.1 with τTHT = 3.4 s) is reflected by the normalised distribu-
tion. They indicate that long residence times in high CO concentration areas
respectively high qc do not happen frequently. On the other hand, longer
exposure periods (τcrit = 40 s and τcrit = 70 s) show homogeneous unimodal
distributions (Figure 6.19 (B) and (C)). However, the overall uptake rate qc

with 12.26 mmol g−1
CDW h−1 (Figure 6.19, dashed grey line) deviates from all

three critical time period. This is an indication that time-dependant bacterial
adaptation caused by substrate limitation will have a major negative effect
on the overall production of this fermentation process.

95%91%84%

100%

97%
≤cL,CO cL,CO

crit

≥

≥

≥

τ70
critτ

τ40
critτ

τ10
critτ

Figure 6.20: Percentage share for three critical residence time points. From black to light grey
the overall probability (100%), percentage of all possible dissolved CO concentrations smaller
than the critical value ccrit

L,CO = 0.003 mmol L−1 (97%), amount of residence times with at least
10 s (95%), not less than 40 s (91%) and with a critical residence time point of 70 s (84%) are
shown. (Reprinted from Siebler et al., 2019, with permission of © Elsevier Chemical Engineering
Science.)
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As indicated in Figure 6.20, 97% of all bacteria experienced severe CO lim-
itation at least once (cL,CO ≤ ccrit

L,CO) while 95% are likely to show immediate
metabolic changes (τcrit = 70 s). When taking E. coli as a reference, 84% of all
cells react to external CO limitation and start transcriptional adaptations by
inducing starvation programs. This causes additional energy demand in the
organism. The additional maintenance is most likely to reduce the product
biomass yields and the growth rate. To confirm these findings, experimental
scale-up studies with C. ljungdahlii are necessary.

6.3 Computation results in comparison

In this chapter both approaches are compared. The results and discussion is
mainly given in Manuscript III (Siebler et al., 2020). Not only the key findings
are summarised, but also the results of one additional pursuing simulation
is included.

Even though, the 1-dimensional (1D) approach has a low spatial reso-
lution, it can resolve local heterogeneities. Moreover, it reduces the model
complexity and simulation time. In contrast to that, the computational fluid
dynamics (CFD) approach has a much higher resolution, which allows for
better flow behaviour prediction and the integration of bacterial lifeline
analysis. The CFD simulation needs much more computational power and
can only represent certain states (snap-shots) of a large scale fermentations.
Consequently, less computationally challenging frameworks such as the 1D
model are advisable to narrow down optimal operation modes.

Table 6.2: Average results of both simulations as well as iteratively adjusted 1-dimensional
approaches. Both approaches, 1D (1D(F), (G) and *) and computational fluid dynamics (CFD)
simulation used the same initial conditions with superficial gas velocity of 0.0625 m s−1 and
initial bubble diameter of 4 mm. 1D(G) used the Sauter mean diameter of the CFD simulation
as mean bubble diameter. In the final simulation 1D*, besides the Sauter diameter, the gas
holdup and mass transfer rate were adjusted accordingly. (Recited from Siebler et al., 2020, with
permission of © Wiley-VICH Engineering in Life Science.)

Average Variable 1D(F) CFD 1D(G) 1D∗ Unit

CO concentration cL,CO 0.018 0.002 0.0016 0.0015 mmol L−1

gas holdup εG 0.31 0.34/0.211) 0.31 0.21 −
diameter dB 4.4 20.92) 20.9 20.9 mm
bubble surface a 408.3 61.8 86.9 59.1 m−1

mass transfer rate kL 3.93 1.75 3.93 1.75 e−4 m s−1

vol. mass transfer rate kL a 578 39 123 37 h−1

product biomass yield YP,X 1.5 0.9 1.3 1.4 −
1)second value with breakage, coalescence, bubble expansions and mass transfer, 2)Sauter mean for CFD
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Initially both models are used for different purposes. However, it might
be interesting to compare and discuss their results. In Table 6.2 the most
important average results of the 1D simulation F is compared with the
CFD outcome. Additionally, two further 1D simulations were subsequently
performed and listed.

In the first two columns of Table 6.2 the final results of both models
are listed. Almost every value except the mean diameter dB of the 1D(F)
simulation is much higher than the CFD results. Besides the average values
of Table 6.2 also the spatial differences are illustrated in Figure 6.21.
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Figure 6.21: Differences between 1D and CFD simulation over reactor height. Pictured are
concentration cL,CO (A), gas hold-up εG (B) and mean diameter dB (C) deviations in percentage.
In (A) 100%−cCFD

L,CO(z)/c1D
L,CO(z)·100% is shown which translates high similarity into low values.

By analogy, graphic (B) is set. In (C) the criterion 100%−d1D
B (z)/dCFD

B (z)·100% was applied to
avoid negative values. Still, high percentages encode large deviations. (Reprinted and modified
from Siebler et al., 2020, with permission of © Wiley-VICH Engineering in Life Science.)

In Figure 6.21 the difference in percentage of both approaches between
dissolved CO concentration, gas holdup and bubble diameter are illustrated.
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In general, the deviation is rather high for each comparison. CO levels are
almost everywhere overestimated (Figure 6.21 (A)) while the gas holdups of
1D(F) and CFD are similar in at least the lower parts of the bubble column
reactor (Figure 6.21 (B)). The strongest deviation occurs for the diameter
(Figure 6.21 (C)), which is also reflected by the average values of Table 6.2.
Moreover, Figure 6.21 not only visualises discrepancies over the reactor
height but also in the radial direction (section planes).

According to these findings, the initial diameter of the 1-dimensional
model is adjusted to reach the same average value as for the CFD simulation
(Table 6.2 1D(G)). Besides the underestimated diameter with the greatest
deviation in Figure 6.21, another 1D simulation is performed by adjusting
also the gas holdup εG and mass transfer rate kL (Table 6.2 1D∗). These
adjustments are graphically compared and displayed in Figure 6.22.
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Figure 6.22: Profiles over reactor height in comparison. Each graph depicts profiles of CFD
(dots) and 1D (red lines) simulation. In case of CFD, each dot represents values of individual
numerical cells, thereby visualising the varying conditions at each column height. (A) to (F)
compare dissolved CO concentration cL,CO, bubble area a, gas hold-up εG, mass transfer rate kL,
bubble diameter dB and volumetric mass transfer kLa. (Reprinted from Siebler et al., 2020, with
permission of © Wiley-VICH Engineering in Life Science.)
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In Figure 6.22 the same representation method as in Figure 6.11 (B) is
chosen. Besides the 1D results over reactor height, also the CFD results
are shown as scatter plot while each dot represents values of individual
numerical cells. By adjusting the average diameter as in 1D(G), the interfacial
area concentration a also decreases and consequently the volumetric mass
transfer rate kLa (see Figure 6.22 (B), (E) and (F)). The gas holdup εG and mass
transfer rate kL are still far from the CFD results. In a final 1D∗ simulation,
these values are adjusted as well (see Figure 6.22 (C) and (D)). The gas holdup
adjustment affects a directly and together with kL they cause a lower kLa with
37 h−1, which is almost the same value as for the CFD simulation (39 h−1).
However, the general gas holdup and diameter trends of the 1D simulations
are spatially very different from the CFD results.

The 1D approach clearly lacks mechanistic details of modelling bubble
size distributions. Important bubble functions for breakage and mainly
coalescence are not considered. This leads to severe overestimation of the
volumetric mass transfer rate which is reflected in the small bubble diameters
dB. In other words, 1D(G) predicts too high CO concentrations and therefore
product biomass yields. When bubble size distributions and functions for
breakage and coalescence are not included, a proper average bubble diameter
should be considered to give reasonable mass transfer predictions.

As mentioned previously in chapter 4.1, churn-turbulent heterogeneous
bubbly flow occurs when a critical gas holdup value is reached (for water
εcrit = 0.3). This heterogeneous flow regime is rendered by the CFD simula-
tion, which is indicated by the bubble size distributions in Figure 6.22 (E).
Moreover, turbulent flow patterns in combination with different bubble sizes
cause locally changing gas holdups. These effects can not be reproduced by
the one dimensional 1D model. Homogeneous bubbly flow and gas holdup
assumption up to εG = 0.31 are too optimistic but can be adapted by the high
resolution CFD results.

In summary, both models have their advantages and disadvantages.
Together, they complement each other and enable large-scale bubble column
prediction to narrow down the optimum industrial scale scenario.
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Chapter 7

Conclusion and outlook

A summary of all results, a reflection on their implications and their research
contribution is presented in this chapter. The conclusion is structured in the
same three main parts which are outlined at the beginning of the thesis (1.3.
Objectives, strategy and thesis outline). All research questions are addressed
in this context followed by suggestions concerning future research. Some
information of this chapter was also published in Siebler at al. (2019; 2020).

(A) Pre-evaluation of industrial reactor design

In scale-up as in many other disciplines, the technically possible needs to be
balanced with the economically reasonable. The first part of the thesis deals
exactly with this estimation by pre-evaluating the synthesis gas process. Two
research questions have been formulated (see chapter 1.3) addressing this
topic. Their research answers (RA) can be summarised as follows:

RA3.1 Based on the developed rating system, bubble column, airlift,
membrane and trickled bed reactors are most suitable for synthe-
sis gas fermentations.

RA3.2 The industrial application of synthesis gas fermentation is eco-
nomically feasible if sufficient amounts of complex and high en-
ergy carbon hydrates are produced.

In chapter 3 both questions are analysed in detail. First, an overview
of reactors used in syngas fermentations, including some unconventional
reactors variations/ designs, is given. A rating system is developed to com-
pare and finally assess each reactor for industrial application. Additionally,
a focus was set on expected reactor performance and expenses in scale-up.
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The evaluation results in bubble columns being one of the most feasible
reactor types. That is why they are investigated in greater detail. Neverthe-
less, the final choice can be adjusted depending on the products and their
yields. In case of the second question, possible fermentation products are
listed and analysed according to their conserved energy and market price.
While products with higher complexity such as isobutanol or 2,3-butanediol
currently achieve very high stock prices, more common products such as
acetate and ethanol are comparatively cheap. Long chain carbon hydrates
are usually high-energy products. However, the stored energy is not nec-
essarily proportional to the rates. In addition, product purity and general
complexity of the production have a great influence on the price. With both
values for educts and products as well as the annual production, expected
profits per year can be estimated. An example of this assessment of potential
was calculated for an already existing industrial process from LanzaTech pro-
ducing ethanol with up to 109.2 Mio USD profit per year. The model strain
Clostridium ljungdahlii produces, 2,3-butanediol besides its main products
acetate and ethanol. Alongside the general recycling aspect, the additional
product makes synthesis gas fermentations lucrative.

The next research questions are answered by further investigating the
chosen bubble column reactor. This resulted in the following statements:

RA4.1 Crucial characteristics of bubble column reactor are the possible
occurrence of bubble coalescence and the overall gas holdup.

RA4.2 A fast 1-dimensional (1D) approach for parameter probing and a
high-resolution computational fluid dynamics approach for cell
behaviour evaluation seem to be appropriate scale-up tools.

Fortunately, in the case of bubble column reactors, a lot of information is
available in published literature. Generally, gas-liquid two-phase systems are
very complex. Some parameters have a greater impact on performance than
others. Their dependencies and importance were stated as well as parameters
highlighted which can be adjusted in order to achieve the best performance
outcome (see chapter 4.1). Additionally, background information was given
about flow behaviour and flow regimes. In summary, the most desired flow
regime would be the homogeneous bubbly flow which not necessarily forms
when the gas holdup exceeds 30%. Small uniform bubbles assure high mass
transfer areas and thorough mixing of the liquid.

The two model approaches were chosen according to currently available
computing power and their scope of applicability. While computational fluid
dynamic (CFD) analysis can solve physical multi-phase problems with an
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adequate level of detail, simplified models are potentially faster and less
computationally demanding. During the selection process, the applicabil-
ity of biological behaviour in addition to the fluid flow models was taken
into account, too (see chapter 4.2). Simple one-dimensional 1-dimensional
(1D) approaches can even include genome-scale kinetic models, which is
still challenging with CFD. Besides the computing speed, 1D models can
temporally solve the whole fermentation process within minutes. It is for
this reason that 1D model was chosen to scan different start conditions for
an optimal parameter set which then was used in the more detailed CFD
simulation. The latter not only models the gas fermentation more properly
but also allows statistical cell behaviour analysis. Combining both modelling
approaches narrows down the most efficient scale-up scenario and therefore
reduces the risk of performance loss.

Both modelling tools make use of existing approaches but are adjusted
or derived in a more suitable way while targeting the issues of gas fermen-
tations. It is for this reason that both the model derivation, model set-up
and the simulation findings are equally important steps of this thesis. The
summary of the last RAs is therefore grouped according to the risk minimisa-
tion concept and finally concluded by the last RA. In both cases, the chosen
reactor volume is 125 m3 with a high to diameter ratio of around 10 reaching
a pressure of 3.5 atm at the bottom of the bubble column.

(B) 1-dimensional approach

In general, models are used for predictions and reducing experimental ef-
forts. The more physical equations are solved, the more accurate the pre-
diction. However, model reduction can have important advantages. The
1-dimensional approach includes a kinetic correlation maintaining the el-
ement balances of carbon, hydrogen and oxygen of the overall chemical
reaction. After a brief excursus whether diffusion is limiting or not, the next
two research answers can be summarised as follows:

RA4.3 By considering an additional partial differential equation, the
focus of the 1-dimensional model is set on the gas holdup as well.
The equation takes the total molar density of the gas mixture into
account.

RA6.1 The 1-dimensional approach revealed that for the chosen set-up
inhibition due to carbon monoxide excess is not an issue but the
mass transfer from gas to liquid phase. In addition, the performed
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parameter probing provided the optimal start conditions for the
CFD simulations.

In chapter 4.3, the model approach is described in detail, resulting in
partial differential equations for bacterial growth on carbon monoxide in
synthesis gas mixture: CO and CO2 in gas and liquid phase as well as
the gas holdup. Assuming an ideally mixed liquid phase, four ordinary
differential equations are solved, too. Spatial and temporal discretisation
are chosen appropriately with simulation times under five minutes and a
resolution of 100 numerical volumes respectively compartments. The code
was written and executed in Matlab®. With this set-up, about 120 different
start parameters are investigated within a reasonable probing space derived
from published experimental values (see chapter 6.1).

The sensitivity of the 1-dimensional model is examined highlighting the
importance of proper start parameters. The additional modelling of the
gas holdup proves to be of importance and should not be disregarded. It
even turned out to be the parameter with the widest influence on process
performance directly followed by mass transfer. With this set-up, variations
of the carbon monoxide fraction and the gassing rate have no effect on
physical parameters such as gas holdup, mass transfer and bubble diameter.
On the contrary, they change the biological performance index of total bound
carbon and product biomass yields. As mentioned before, this analysis
indicates the best operation mode for the chosen parameter ranges. In
addition to that, the kinetic inhibition due to carbon monoxide excess will
not occur under these conditions. However, the mass transfer from gas to
liquid phase is the limiting factor. Besides a better understanding of the
process and general operation suggestions, the results are mainly used in the
next refinement step: the computational fluid dynamics analysis.

(C) Computational fluid dynamics approach

As mentioned before, computing power still restricts direct simulations of
physical multiphase flows. For this reason, models are used which approx-
imate some of these physical effects. Models usually are limited within a
certain range of parameters in which they are valid. This is proven by ei-
ther experimental or numerical validation with direct numerical simulations.
Even though a validation of the applied models is beyond the scope of this
thesis, they raise valid and important questions concerning computational
fluid dynamics. Their answers can be summarised as follows:
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RA4.4 An Euler-Euler multiphase approach including breakage and coa-
lescence is appropriate for bubble column CFD simulations. La-
grangian trajectories are a suitable tool for bacterial lifelines anal-
ysis to predict biological effects.

RA6.2 The CFD results reveal mixing and circulation time, the gas gradi-
ent and substrate limitation zones as well as the bacterial short-
and long-term responses under these CO limiting conditions.

Background information on the main models is given in chapter 4.4 from
which the final modelling set-up is selected: The turbulence is modelled
using the RANS equations combined with the RNG- k-ε-model, all within
the Euler-Euler multiphase approach. Mainly pre-programmed models and
functions of ANSYS Fluent are combined, self-implemented code as well as
adjustments are introduced in chapter 5.3. It is noteworthy that meshing
allows solving breakage and coalescence, which have a great effect on the
mass transfer. Both have a significant influence on the gas holdup and
substrate availability. The Lagrangian trajectories method was chosen to
predict the effect of CO insufficiencies on Clostridium ljungdahlii. In a previous
study, this method was established with another strain (see chapter 4.4.5 and
Manuscript I).

While the CFD results are already published in Siebler et al. (2019), the
conclusion is only a short repetition thereof (more information can be found
in Manuscript II). The CFD simulation revealed a well-mixed bubble column
with average circulation times of about 10 seconds. Compared to conven-
tional stirred tank reactors, less power is needed for similar circulation times.
In respect to that, the bubble column reactor a good alternative to addition-
ally agitated processes. On the other hand, strong coalescence of the bubbles
lead to an average Sauter mean bubble diameter of about 2.1 cm reducing the
overall mass transfer. For the first time, a pseudo-stationary gas gradient was
successfully examined with the statistical Lagrangian trajectories method for
Clostridium ljungdahlii in an anaerobic, synthesis gas operated bubble column.
The regime transition analysis as well as short- and long-term responses
indicate that most of microorganisms suffer from an insufficient CO supply.
Improvements in CO mass transfer as well as engineering the strains to cope
with these stress conditions are advisable. For higher biomass concentrations
and even more active cells, the CO gradient is most likely intensified making
further engineering studies necessary in order to improve the synthesis gas
process.

Initially, the 1D and CFD model were chosen for different purposes but
in the end, they solve similar problems with different resolutions. For this
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reason, the last research question was formulated which can be answered as
follows:

RA6.3 Properly estimated parameters from CFD simulations help to
improve 1D model predictions, especially for highly relevant
biological readouts such as product-biomass yields.

In respect to Figure 1.1 of the thesis introduction, the results of the risk
minimisation concept is concluded in Figure 7.1. With the real scale-up
optimum as goal, the presented concept narrows down all possible results
(abstract parameter spaces of Figure 7.1) towards the best solution.
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Figure 7.1: Result abstraction of the risk minimisation concept. The real scale-up optimum
(black circle) is unknown and approximated by the presented concept (A)-(C). In red the
possible scale-up solution without the presented in silico strategy is indicated. The grey areas
indicate their abstract parameter spaces. The arrows between (B) and (C) indicate the synergistic
potential of both methods with the final adaptation (dashed line) of the solution space of (B).
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CFD simulations offer the most accurate solution for the prediction of
physical and biological readouts in large-scale bioreactor fermentations (see
Figure 7.1 (C) in dark grey). However, they are comparatively complex and
computationally expensive and therefore limited to solve only pre-evaluated
problems. Conceptual design approaches such as the 1-dimensional ap-
proach can search through parameter spaces of putative operational win-
dows (see Figure 7.1 (A)) and thus narrow down the initial values and
operation mode for CFD (see Figure 7.1 (B)). Without doubt, physical read-
outs of the 1D model are most likely overestimated but can be adjusted by
considering the results of CFD (see Figure 7.1 adaptation of solution space
of (B)). Finally, combining the advantages of both models improve their
respective accuracy resulting in reliable findings, obtainable with reasonable
effort.

Focus of future work

The models and work of this thesis provide a sound foundation for future
research. A first step could be to establish a kinetic correlation for the
growth of Clostridium ljungdahlii in an CO2/H2 environment. This then
could be combined with the presented correlation for CO and finally be
implemented into the models as a multi-substrate kinetic. By doing so, all
carbon of the synthesis gas is bound as product and biomass, reducing the
carbon emissions. The multi-substrate kinetic should be validated by further
experiments. Especially, the critical CO concentration needs to be found
when the organism switches form the preferred CO consumption to the
CO2/H2 consumption.

With this new kinetic correlation, further possibilities for additional in-
vestigation using the 1-dimensional model arise. First of all, produced CO2
can additionally be converted and secondly, off-gas circulation strategies can
be investigated. It is recommended to use gas recycling ports at different
reactor heights for optimum carbon exploitation. Besides the simple kinetic
correlation, it is also possible to include profound stoichiometric models.
These models exist for C. ljungdahlii but need further improvements to be of
use for the 1D model.

As for the CFD approach, future work should focus on properly predict-
ing physical and biological effects since the lifeline analysis depends strongly
on them. In general, multiphase simulations are still very challenging. While
the k-ε-model is a commonly applied approach for estimating turbulent flow,
it is not impeccable. Moreover, inaccuracies while calculating the energy
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dissipation can propagate affecting the prediction of breakage and coales-
cence respectively the volumetric mass transfer. It is for this reason, that
these models need ongoing improvement in form of fundamental research
while considering particularities of biotechnological applications (e.g. media
compositions). With the help of experimental bubble size distribution and
volumetric mass transfer measurements, their accuracy can be examined. Ad-
ditionally, the effect of the mesh resolution on a pseudo-stationary substrate
gradient is worth investigating.

Lifeline analysis is a very promising investigation tool. This method
depends on the real stress response of C. ljungdahlii, which so far has not
been investigated experimentally so far. Scale-down fermentations with plug-
flow and cascade reactors can be conducted to find critical concentrations
and retention times for this strain. As the gradient is pseudo-stationary, the
flow filed for bubble column reactors is fluctuating, thus numerical studies
seem to be appropriate to identify the effect of different frozen flow fields on
the statistical analysis.

As indicated while comparing both models, iteratively apply their results
to the other model show synergistic potential. The 1D model is used for
the high-resolution simulation set-up and benefits subsequently from the
CFD results. This iterative ’model-training’ can be continued to further
narrow down the real scale-up optimum. Furthermore, the risk minimisation
concept can be applied to other reactor geometries and set-ups. Depending
on the complexity of the reactor only few adjustments are required. The
airlift reactor for example only needs the implementation of a reverse flow
in the 1D model for the downcomer. On the other hand, membrane and
trickle bed reactors are more complex and required further adaptations or
even other model approaches. When the best performing reactor and set-up
is approximated, a final budget calculation can be performed.
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Abstract: Successful scale-up of bioprocesses requires that laboratory-scale performance is equally
achieved during large-scale production to meet economic constraints. In industry, heuristic
approaches are often applied, making use of physical scale-up criteria that do not consider cellular
needs or properties. As a consequence, large-scale productivities, conversion yields, or product
purities are often deteriorated, which may prevent economic success. The occurrence of population
heterogeneity in large-scale production may be the reason for underperformance. In this study,
an in silico method to predict the formation of population heterogeneity by combining computational
fluid dynamics (CFD) with a cell cycle model of Pseudomonas putida KT2440 was developed.
The glucose gradient and flow field of a 54,000 L stirred tank reactor were generated with the
Euler approach, and bacterial movement was simulated as Lagrange particles. The latter were
statistically evaluated using a cell cycle model. Accordingly, 72% of all cells were found to switch
between standard and multifork replication, and 10% were likely to undergo massive, transcriptional
adaptations to respond to extracellular starving conditions. At the same time, 56% of all cells
replicated very fast, with µ ≥ 0.3 h−1 performing multifork replication. The population showed
very strong heterogeneity, as indicated by the observation that 52.9% showed higher than average
adenosine triphosphate (ATP) maintenance demands (12.2%, up to 1.5 fold). These results underline
the potential of CFD linked to structured cell cycle models for predicting large-scale heterogeneity
in silico and ab initio.

Keywords: computational fluid dynamics; cell cycle model; Lagrange trajectory; scale-up; stirred
tank reactor; population dynamics; energy level

1. Introduction

The physiological state of bacterial cells is strongly dependent on the surrounding conditions.
As outlined in Müller et al. [1], external stress is a key factor inducing the formation of population
heterogeneity, which differs according to growth phenotypes and cell cycle patterns. Moreover,
concentration fluctuations occurring under large-scale mixing conditions have a measurable influence
on growth and production yield [2–4]. Accordingly, homogeneity of the bacterial population may
be affected, yielding subpopulations that co-exist next to each other [1]. Makinoshima et al. [5]
observed five and ten cell populations of Escherichia coli during exponential growth and the subsequent
stationary phase, respectively. For Pseudomonas putida, steady-state chemostat cultivation revealed that
industry-like stress conditions induced changes in the cell cycle process. Under stress, deoxyribonucleic
acid (DNA) replication was accelerated in a dose-dependent manner, yielding subpopulations with
different DNA contents [6].

Bioengineering 2017, 4, 27; doi:10.3390/bioengineering4020027 www.mdpi.com/journal/bioengineering
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To investigate whether nutrient gradients of large-scale conditions foster the occurrence of
population heterogeneity, the following concept was formulated. First, large-scale substrate gradients
of a bioreactor should be simulated. Next, the path of bacterial cells through the gradients need to
be tracked, and the resulting growth phenotypes monitored. Then, a cell cycle model can be used
to translate changing growth conditions into cell cycle patterns. Apparently, this approach requires
(i) a sound simulation of large-scale substrate gradients that trigger ‘stress’ in the cells and (ii) the
translation of nutrient availability in growth patterns as a basis of cell cycle modelling. For the latter,
the findings of Cooper and Helmstetter [7] were applied. They specified a relationship between
chromosome content and cell cycle phase duration for E. coli B/r and showed that the amount of DNA
varies continuously with the growth rate and substrate availability. Consequently, the durations of the
cell cycle phases are strongly dependent on the environmental conditions.

The cell cycle of bacteria using binary fission can be divided into three parts: the time for initiation
of replication (B-period), the time required for replication (C-period), and the time between replication
and completed cell division (D-period). C-periods are the longest for slow-growing cells but decrease
to constant values under elevated growth conditions [8]. In order to grow faster, replication and
segregation are separated in time. Most bacteria initiate replication during a previous generation,
leading to multifork replication.

Single-cell analysis by fluorescence-activated cell scanning has proven to be a valuable method
to measure the DNA content from thousands of bacteria and to generate DNA content histograms
for the population [9]. Also, latest lab on a chip techniques are a feasible method for measuring
population heterogeneity [10,11]. Subpopulations with one, two, or more chromosomes can be
detected. Skarstad [12] extended the model of Cooper and Helmstetter to calculate the number of
individuals of E. coli B/r comprising a subpopulation with a specific DNA content from flow cytometry
data. Furthermore, Skarstad determined the duration of the cell cycle periods for various growth rates.
This was proven to be applicable for P. putida KT2440 as well [6].

It is still challenging to capture the magnitude and frequency of fluctuations in large scale
bioprocesses and to predict the extent of the intracellular response. Several authors have suggested
computational fluid dynamics (CFD) as a tool to provide detailed information of environmental
conditions inside a fermenter. The gas, liquid, and bio phases are often modeled as a continuum by the
Euler-Euler approach [13–15]. Typically, microorganisms react individually to different environmental
conditions; therefore, a continuum description may not be advantageous. An extension of the
Euler-Euler approach for the liquid phase is the use of population balance equations to model the
heterogeneity of a population [16,17]. The incorporation of a detailed intracellular reaction network,
however, demands a high computational effort to solve the complex distribution functions [18,19].

Since the pioneering work of Lapin et al. [20], environmental fluctuations have been studied
from the perspective of microorganisms. The applied Euler-Lagrange approach uses a continuous
representation of the fluid phase (Euler), combined with a segregated description of the cell population
(Lagrange). The bacteria are simulated as particles, which are tracked on their way through the reactor.
Statistical evaluation of these trajectories, denoted as bacterial lifelines, provide valuable information
about substrate fluctuation frequencies experienced by microorganisms [21].

The influence of these fluctuations on cell cycle dynamics and energy levels has not been
demonstrated yet. Thus, in this study, based on the work of Haringa et al. [21], an extensive statistical
evaluation of bacterial lifelines was performed. Rather conservative operating conditions for the
industrially relevant strain P. putida KT2440 were assumed to investigate the occurrence of and impact
on population homogeneity. The Euler-Lagrange approach was combined with a cell cycle model
of Lieder et al. [6] to gain deeper insights into the behaviors of cell cycle dynamics and individual
distributions during large-scale fermentation.

These findings present a method to better analyze and understand the heterogeneity caused by
scale up-induced stress stimuli.
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2. Materials and Methods

2.1. Cell Cycle Model

Flow cytometry data ranging from µ = 0.1 h−1 to 0.6 h−1 for P. putida KT2440 were obtained by
Lieder et al. [6] and processed as shown in Figure 1. The data were channeled and displayed as the
frequency distribution of DNA content. The durations of cell cycle phases C (DNA replication) and D
(period between replication and completed cell division) were determined iteratively by minimizing
the deviation between experimental and theoretical DNA histograms. The theoretical DNA content
of an asynchronous, ideal culture in which all cells have equal growth parameters was derived from
the age distribution according to Cooper and Helmstetter [7]. Using this probability density function
for cells of a specific cell age, Cooper and Helmstetter further calculated the theoretical chromosome
content per cell at a specific cell age. This model was extended by Skarstad et al. [12] to calculate
the frequency of the occurrence of a specific DNA content in an interval of ongoing DNA synthesis.
The durations of phases C and D are decisive for the distribution of DNA content. Different values for
C were obtained to fit the experimental histograms for various growth rates. Based on the work of
Lieder [22], a function for C-phase duration, dependent on the growth rate of P. putida KT2440, was
derived. A correlation for C proposed by Keasling et al. [23] was used.

C = Cmin

(
1 + a eb µ

)
(1)

where C is the length of the C period, Cmin is the minimal length of the C period, µ represents the
growth rate and a and b are parameters that fit the experimental data. Based on the experimental data
of Lieder et al. [6], the parameter estimation resulted in Cmin = 0.77 h, a = 1.83, and b = 4.88.
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Figure 1. Approach for the cell cycle dynamics model. (A) Representative flow cytometry scatter plot
for deoxyribonucleic acid (DNA) content of the growth rate µ = 0.3 h−1. (B) DNA content over counts
for growth rates ranging from µ = 0.1 h−1 up to µ = 0.6 h−1. A single genome is indicated by 1, and
double chromosomes by 2. Black lines present experimental data, and blue dashed lines present the
calculation of the cell cycle model. (C) Approximated C-phase duration over growth rate estimated by
the cell cycle model (1% parameter covariance). Black dashed lines indicate the transition regime from
single-forked to multiforked replication. Flow cytometry data obtained by Lieder et al. [6].
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2.2. Numerical Simulation

2.2.1. Geometry and Reactor Setup

In order to generate a pseudostationary glucose gradient of an industrial fed batch fermentation,
a large-scale stirred tank bioreactor was chosen. Precise dimensions and information about the inner
geometry can be found in Appendix A (Figure A1 and Table A1). The main geometry was derived
from Haringa et al. [21] and only slightly modified for the purpose of this study. With an H/D ratio of
2.57, the total volume was about 54,000 L. The reactor setup included four baffles and a stirrer with
two Rushton agitators. The lower stirring unit was equipped with eight blades, and the middle unit
with six blades. With a stirring rate of 100 rpm, a tip speed of 5–8 m s−1 was reached. The impeller
Reynolds number was 1.8 × 106, the power number 13.15, and the needed power was 226 kW.

The feeding rate was set as half of the maximum uptake rate qs,max of P. putida with
0.738 kgglc·kg−1

CDW·h−1. Aeration, gas transfer, and oxygen uptake were neglected in this study.
Therefore, no gassing system was installed. A cell concentration of 10 kgCDW·m−3 was assumed, and a
simple Monod-like kinetic was used to simulate the substrate uptake qs:

qs = qs,max·
cs

Ks + cs
(2)

where qs,max is the maximum uptake rate, cs is the glucose concentration, and the approximated
substrate specific uptake constant Ks with 10 mg·L−1. The maximum uptake rate was calculated with
the biomass substrate yield YXS = 0.40 gs·g−1

CDW and the maximum growth rate µ = 0.59 h−1 [22,24].

2.2.2. Simulation Setup

For the numerical simulation, the commercial calculation tool ANSYS Fluent version 17.0 was
used. Using this finite volume-based fluid dynamic analysis program, the virtual geometry was
built, and spatial discretization was performed. A total of 445,000 numerical cells yielded the same
circulation time as achieved by Haringa et al. [21]. The flow field was approximated by solving the
Reynolds-averaged Navier-Stokes (RANS) equations in combination with the standard k-ε model for
turbulence. All surfaces were set as slip boundaries, except for the frictionless top area, which implied
the reactor filling height. Both impeller units were set to sliding mesh motion to generate a more
realistic flow field.

For glucose feed, a separate volume at the top of the reactor was defined, and a constant
mass flow was set. The feed was inserted as mass percentage, with constant pressure and volume.
The hydrodynamic and kinetic was calculated every 10 ms until the overall glucose concentration was
constant and a pseudostationary gradient was reached. Finally, an average flow field and glucose
gradient were obtained over 150 s. In further simulations, the hydrodynamic and glucose gradient
were set as frozen.

Bacteria lifelines were simulated as massless Lagrangian particles with a discrete random walk
(DRW) model passing through the flow field. Every 30 ms, the position and glucose concentration
for each bacterium were recorded. In total, 120,000 bacterial cells were tracked over 260 s. According
to the ergodic theorem, the same average values are obtained by tracking 1,560,000 bacteria for
20 s (the approximate circulation time). The simulation would yield even more precise statistical
evaluations by increasing the number of lifelines.

2.3. Statistical Evaluation

All bacterial lifelines were evaluated statistically and grouped according to the regime borders.
The growth rate was calculated for each bacterial cell and each time interval. The regimes were classified
as follows: standard forked replication S for µ ≤ 0.3 h−1, the transition area T (0.3 < µ < 0.4 h−1), and
multifork replication M for µ ≥ 0.4 h−1 derived by the cell cycle model (see Section 2.1.). By evaluating
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the cell history, further classifications were made. Six regime transitions follow when two transitions
and one retention time were considered:

• STM: transition from standard forked to multiforked with a retention time in the transition area.
• STS: standard forked, retention in the transition area, and back to standard forked
• TST: starting from the transition area with retention in a single forked area and back to transition
• MTS: multiforked replication regime to single forked replication with a retention time in the

transition area
• MTM: beginning in the multifork regime with retention in the transition area and back to the

multifork regime
• TMT: circulation from transition back to transition area with retention time in the multifork

replication regime

The second capital letter always indicates the area in which the retention time τ was measured.
Before the bacterial lifelines were grouped in regimes, a moving-average filter was applied to filter
unrealistic, turbulent fluctuations caused by the standard DRW model (see Appendix B). A second
one-dimensional (1D) filter was conducted to erase rapid sequential regime transitions smaller than
0.09 s. Both filtering steps caused deviations from the raw data of less than 5%.

The distribution of the growth rates was derived by calculating the mean growth rate for the
whole reactor and the mean growth rate for 20 s for each bacterium. This distribution combined with
the cell cycle approach resulted in a distribution of different C-phase durations using Equation (1).
Additionally, the energy level distribution was obtained based on Pirt’s law [25]:

qATP =
µ

Yx/ATP
+ mATP (3)

with the Pseudomonas putida properties of nongrowth-associated maintenance mATP =

3.96 mmolATP·g−1
CDW·h−1 and the growth-associated maintenance YXATP = 1

85 gCDW·mmol−1
ATP [24].

3. Results and Discussion

In order to investigate heterogeneity in large-scale bioreactors, a pseudostationary glucose
gradient occurring during fed batch fermentation of P. putida was simulated. Therefore, a biomass
of 10 kg·m−3 was assumed, which remained constant within the time observed. For higher biomass
concentrations, stronger gradients can be expected.

3.1. Gradient and Flow Field

In a 54,000 L stirred tank reactor, a pseudostationary glucose gradient was obtained with CFD
simulations. The average glucose concentration was monitored until no further changes could be
observed. The residual steady state glucose concentration was 20.7 mg·L−1. The theoretical growth
rate for every numerical cell was computed (Eulerian approach), resulting in an average growth rate
of µ = 0.294 h−1. Ideal mixing was assured by comparing the average growth rate in the reactor
(Eulerian approach) and the expected growth rate for the set feed rate µ = 0.295 h−1. In the fed batch
fermentation, the feeding rate amounted to half the maximum uptake rate of P. putida. The objective of
the simulation was to generate a realistic glucose gradient with concentrations for which theoretical
growth rates ranging from 0.0 h−1 to 0.59 h−1 could be approximated. Moreover, the distribution
of bacteria that were introduced from different vertical positions in the reactor at the start of the
simulation is displayed.

In Figure 2, three reactor cross sections are depicted to describe (A) the growth rate regimes
(see also Section 2.3), (B) the flow field, and (C) the bacterial distribution. Due to asymmetric reactor
geometry (see Section 2.2.1), the mean flow field and mean glucose gradient showed periodic changes.
Accordingly, the averages of the flow field and gradients over 150 s were computed to track the bacteria
(Figure 2C) as lifelines. Bacteria moved faster when approaching the stirrer. This clearly indicated
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zones with different residence times. However, tracking the bacterial paths showed that they evenly
crossed every part in the reactor.

The underlying gradient was not expected to perfectly reflect the real experiment.
Several assumptions had to be made. For simplicity, bubbling flow and oxygen transfer were neglected.
The kinetic reaction of substrate consumption following a Monod-like kinetic was assumed to take
place in every numerical cell. This implied that the bacterial cells were distributed homogeneously at
each time step, which is only a simplified scenario (Figure 2C). However, to examine the effects of cell
history or lag phases of the bacteria on the gradient itself, an existing gradient had to be installed with
the stated simplifications. In the following sections, a detailed statistical analysis is provided to study
the influence of the gradient on the bacteria and reverse in a realistic manner.
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Figure 2. Simulation of gradients and bacterial lifelines. (A) Averaged substrate gradient calculated for
150 s, colored by regime classification: standard replication S (µ < 0.3) in light gray, transition regime
T (0.3 ≤ µ ≤ 0.4) in gray, and multifork replication M (µ > 0.4) in dark gray. (B) Average flow field
estimated for 150 s. (C) Representative magnified bacteria particles (around 2000) at a certain time step
(colored by particle ID; low numbers in dark gray represent a starting point close to the reactor bottom,
high numbers in light gray represent a starting point close to the reactor top). Horizontal section planes
are indicated by dashed red lines; otherwise, the top view is shown.

3.2. Lagrangian Trajectory

For 260 s, 120,000 bacteria were tracked on their paths crossing different substrate concentrations.
Figure 3 depicts growth rate profiles of two organisms for 20 s, referred to as lifelines L1 and L2.
Figure 3C shows the related paths.

According to the regime thresholds (see Section 2.3 and Figure 3A, dashed lines), the growth rate
trajectories could be transferred to replication modus curves, as described in Figure 3B). The lifeline L1
revealed high variations in glucose concentrations that were likely to induce strong metabolic changes.
In contrast, environmental shifts along L2 were moderate, and there were no effects on metabolism
or the cell cycle. The first lifeline L1 gave information regarding five regime transition strategies
(STS, TST, STM, TMT, and MTS) and the individual residence times. Lifelines L1 and L2 started from
different positions in the reactor and were unequal in length because they moved according to the
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predominant velocity field. Within 20 s, L2 did not approach the feed zone, remaining in an area of
reduced substrate concentration and increased shear stress, owing to the higher velocity of L2.

As shown in Figure 3B,C, within a defined timescale, bacteria completely sensed different
environmental conditions. Whereas L2 seemed to remain in the same environment, L1 passed different
glucose concentrations and performed several replication strategies. Each metabolic adjustment will
cost energy and could have an impact on the production yield.Bioengineering 2017, 4, 27  7 of 12 
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Figure 3. Bacterial lifeline and regime transition classification. (A) Two-dimensional (2D) bacterial
lifeline for different growth rates µ over time. The black line represents raw data, and the red line
represents filtered data (moving average filter to correct discrete random walk (DRW) fluctuations).
Black dashed lines indicate the transition regime from single-forked to multiforked replication.
(B) Translation of filtered (one-dimensional (1D) filter) growth rate curves for the three regimes:
multifork replication regime M, transition between standard forked and multiforked T, and standard
replication S. Examples for two bacterial lifelines L1 and L2 are depicted. For L1, five regime transitions
(STS, TST, STM, TMT, and MTS; see Section 2.3) were analyzed. (C) Bacterial movement patterns for
two bacterial lifelines (L1 in gray and L2 in black). Starting positions are indicated by black circles.

3.3. Statistical Evaluation

3.3.1. Regime Transition Frequency

All bacterial lifelines were scanned for regime transitions and retention times in order to obtain
the frequency distributions as a function of τ. Thus, six transition strategies were evaluated in a
statistical manner to gain insights into cell histories and possible cell behaviors (see also Section 2.3).

Figure 4 shows the counts for each regime transition at a certain retention time. All regime
transition statistics, except the TST transition, exhibited a decay after at least 10 s. Bacteria starting from
the transition regime T could remain in an area of low concentration for up to 73.5 s (data not shown),
where they could grow regularly (standard forked S), before changing back to the T regime. This could
be explained by the flow field and gradient pictured in Figure 2A,B. The critical concentrations
representing possible growth rates for the regime transition (µ ≥ 0.3 h−1 and µ > 0.4 h−1) were located
in the upper half of the reactor. Rushton turbines usually cause flow patterns moving away from the
blades to the wall, where they circulate up or down, thereby forming large eddies for each stirrer set
(Figure 2B). Consequently, cells will often circulate in this segment and do not pass other areas of the
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reactor. The lower part of the reactor, which does not provoke a regime transition and, therefore, badly
supplies the organisms with substrate, consisted of three segments. As a result, the average retention
time in the TST transition was the longest (τTST = 8.54 s). All other average and maximum retention
times are listed in Table 1. The shapes of the distributions follow a Poisson distribution. The maximal
retention time was defined as the limit, within which 99% of the values were located.Bioengineering 2017, 4, 27  8 of 12 

 

Figure 4. Regime transition frequency as a function of the retention time 𝜏 . Regime transition 

classifications are indicated in the left corner of each panel. The second capital letter always indicates 

the area, in which the retention time 𝜏 was measured. The regime transition count for each retention 

time was scaled logarithmically. 

Table 1. Average and maximal retention time in a specific regime. For the six regimes (STS, TST, TMT, 

MTM, STM, and MTS), the average ( 𝜏 ̅) and maximal retention times (𝜏max) are displayed in seconds. 

The maximum 𝜏 was defined as the limit, within which 99% of the values were located. 

Regime Transition 𝝉 ̅ [s] 𝝉𝐦𝐚𝐱 [s] 

STS 0.99 3.7 

TST 8.54 73.5 

TMT 3.53 16.25 

MTM 2.45 13 

STM 0.95 6.6 

MTS 0.88 5.5 

Lifeline statistics provide insights into the frequency of regime transitions and residence times. 

Depending on the cell history, i.e., the concentrations of bacteria encountered before the bacteria 

passed the actual concentration, the cells will adapt accordingly. Although metabolic adaptation is 

known to be very rapid, the initiation of regulatory programs involving transcriptional changes is 

slower. Investigating the impact of large-scale conditions for E. coli, Löffler et al. [26] showed that 

fundamental transcriptional programs were initiated after 70 s of glucose shortage. After 30 s, 

metabolic consequences were measured, and the first transcriptional changes were detected. In total, 

about 600 genes were found to be up- or downregulated repeatedly, indicating a strong adaption. 

Considering this finding during the regime analysis, it is assumed that all cells travelling from 

high (M) to low (S) substrate availability should be influenced. Being prepared for multifork 

replication in M, the cells must adapt to standard replication (S). By analogy, this also includes 

travelers from T to S. Such cells can have a growth rate of about 0.4 h−1 before they adapt to growth 

rates of less than 0.3 h−1. During the observation window of 260 s, 72.6% of all cells were expected to 

carry out this move at least once and to linger more than 30 s in regime S. About 14.7% of all cells 

were expected to stay more than 70 s in regime S after experiencing higher glucose concentrations in 

regime T. Furthermore, if a regime transition from maximal to moderate growth conditions (MTS) 

with the retention time in regime T and S is assumed, 55.5% of all cells performed this move for more 

than 30 s. A retention time of 70 s was calculated for 10.4% of all cells. The time scales of 30 s and 70 s 

were shown to significantly influence the transcriptional response of E. coli [26], leading to the 

assumption that changes in adenosine triphosphate (ATP) and guanosine triphosphate (GTP) levels 

of P. putida KT2440 could also be expected. 

Figure 4. Regime transition frequency as a function of the retention time τ. Regime transition
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the area, in which the retention time τ was measured. The regime transition count for each retention
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Table 1. Average and maximal retention time in a specific regime. For the six regimes (STS, TST, TMT,
MTM, STM, and MTS), the average (τ) and maximal retention times (τmax) are displayed in seconds.
The maximum τ was defined as the limit, within which 99% of the values were located.

Regime Transition τ [s] τmax [s]

STS 0.99 3.7
TST 8.54 73.5
TMT 3.53 16.25
MTM 2.45 13
STM 0.95 6.6
MTS 0.88 5.5

Lifeline statistics provide insights into the frequency of regime transitions and residence times.
Depending on the cell history, i.e., the concentrations of bacteria encountered before the bacteria
passed the actual concentration, the cells will adapt accordingly. Although metabolic adaptation
is known to be very rapid, the initiation of regulatory programs involving transcriptional changes
is slower. Investigating the impact of large-scale conditions for E. coli, Löffler et al. [26] showed
that fundamental transcriptional programs were initiated after 70 s of glucose shortage. After 30 s,
metabolic consequences were measured, and the first transcriptional changes were detected. In total,
about 600 genes were found to be up- or downregulated repeatedly, indicating a strong adaption.

Considering this finding during the regime analysis, it is assumed that all cells travelling from
high (M) to low (S) substrate availability should be influenced. Being prepared for multifork replication
in M, the cells must adapt to standard replication (S). By analogy, this also includes travelers from T
to S. Such cells can have a growth rate of about 0.4 h−1 before they adapt to growth rates of less than
0.3 h−1. During the observation window of 260 s, 72.6% of all cells were expected to carry out this
move at least once and to linger more than 30 s in regime S. About 14.7% of all cells were expected



Bioengineering 2017, 4, 27 9 of 13

to stay more than 70 s in regime S after experiencing higher glucose concentrations in regime T.
Furthermore, if a regime transition from maximal to moderate growth conditions (MTS) with the
retention time in regime T and S is assumed, 55.5% of all cells performed this move for more than
30 s. A retention time of 70 s was calculated for 10.4% of all cells. The time scales of 30 s and 70 s were
shown to significantly influence the transcriptional response of E. coli [26], leading to the assumption
that changes in adenosine triphosphate (ATP) and guanosine triphosphate (GTP) levels of P. putida
KT2440 could also be expected.

3.3.2. Energy and C-Phase Duration Distribution

For the observation window of 260 s, the growth rate profiles of 120,000 bacteria were calculated.
Given the set feed rate, the average µ of 0.295 h−1 was expected. Using the Lagrangian approach,
an average growth rate of µ = 0.269 h−1 was computed, indicating an adequate deviation of 8.5%
compared to the Eulerian approach with µ = 0.294 h−1 (see Section 3.1).

The distribution of the ATP consumption rate qATP is presented in Figure 5A. The growth rate
µ and qATP were not evenly distributed compared to the mean value, but exhibited individual
distributions according to the gradient. The ATP consumption rate was calculated applying
Pirt’s law (see Equation (3)). While only 6.3% of all cells had a mean ATP consumption
rate of qATP,mean = 29.31 ± 2 mmolATP·g−1

CDW·h−1, 40.8% showed a reduced consumption rate
of less than 27.31 mmolATP·g−1

CDW·h−1, and 52.9% showed an increased energy demand of
31.31 mmolATP·g−1

CDW·h−1 in comparison to the average consumption rate. Moreover, 12.2% show an
energy demand that was more than 1.5 times that of the mean value in the reactor.
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Figure 5. Distribution of C-phase duration and energy level. (A) Frequencies of cells with a specific
adenosine triphosphate (ATP) consumption rate (qATP) tracked for 20 s. Average value of qATP,mean =
29.31 mmolATP·g−1

CDW·h−1. Range of the x-axis from qATP,min = 5.57 mmolATP·g−1
CDW·h−1 to qATP,max =

52.98 mmolATP·g−1
CDW·h−1. (B) Frequency of cells having a specific duration of replication (C-phase).

Average C-phase duration of Cmean = 1.21 h. Range of the x-axis from Cmin = 0.86 h to Cmax = 2.05 h.
Counts were divided into 300 bins.

The distribution will differ if increased nongrowth-associated maintenance mATP is considered.
As outlined by Löffler et al. [26], mATP increases by 40–50% when cells are exposed to large-scale
substrate gradients.

The individual growth profiles of the cells are the basis for deducing cell cycle patterns using
the cell cycle model (see Section 2.3). Distributions of the C-length (encoding DNA replication)
could be derived for the population of 120,000 bacteria. Figure 5B shows the average duration of



Bioengineering 2017, 4, 27 10 of 13

replication of 1.21 h and the frequency of cells with a C-phase duration ranging from Cmin = 0.86 h to
Cmax = 2.05 h. Clearly, the bacteria were not evenly distributed according to the mean value, and there
was a large heterogeneity in the reactor. Although only 22.3% of all cells had a replication phase of
1.21 ± 0.2 h, about 30% possessed a C-period of more than 1.41 h. In contrast, 47.7% displayed a shorter
replication phase than the average time for replication (less than 1.01 h). Moreover, approximately
56.1% of the cells were rapidly replicating cells with a growth rate higher than µ = 0.3 h−1. For these
cells, it can be assumed that they already started to completely adjust their metabolism to achieve
multifork replication. As shown in Figure 5B, the bioreactor population was strongly heterogeneous,
characterized by a nonequal distribution of bacteria in different cell cycle states. Three different
growth phenotypes are shown: C-phase durations of (i) 0.94 ± 0.08 h, (ii) 1.68 ± 0.1 h, and (iii) a
transition state of C-phases ranging from 1.1 to 1.5 h. Previously, subpopulations resulting from
chemostat experiments have been categorized in populations containing one, two, or more than
two chromosomes [27]. With this simulation setup, a model-based superposition of subpopulations
containing different growth rates to mimic the scenario in a (fed)batch fermentation was shown. For the
underlying gradient, new categories of subpopulations according to the C-phase durations mentioned
above can be formulated.

4. Conclusions

The existence of population heterogeneity in industrial fermenters has been demonstrated, but
it still not completely understood. Improvements in fermenter operation, reactor design, and strain
engineering can be achieved as more information of cell behaviors during large-scale production
becomes available. In this study, the formation of heterogeneity by combining CFD with a cell cycle
model of P. putida was investigated. With this method, heterogeneity can be interpreted from the
bacterial point of view, particularly with respect to the growth phase durations and energy demands
of the cell.

Average and maximum residence times for each transition strategy have been approximated and
can be linked to scale-down experiments using STR-PFR setups. Moreover, distributions of growth
rates, ATP consumptions, and C-phase durations could be generated. Such findings provide important
insights into the intracellular mechanisms that determine growth phenotypes. These mechanisms may
become a crucial part of strain and process engineering to predict ab initio and in silico whether and how
large-scale performance will meet expectations. Realistic large-scale cultivation can be simulated by
investigating the “subpopulations” individually. Specifically, it may be possible to elucidate whether
the total drop in production performance during large-scale production is caused by all cells or by
individual “subpopulations” that underperform.

To further investigate such problems, heterogeneity studies need to be coupled with single-cell
product kinetics. Moreover, research will need to focus on the quantitative measurement of the impact
of stress intensity on the mATP level. This will enable prediction of the total energy demand for a
given setup.
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Appendix A

More precise information of the reactor setup and geometry can be found in Table A1 and
Figure A1.
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Table A1. Dimensions of the reactor setup pictured in Figure A1.

Description Symbol Relation

Reactor diameter DR 3.00 m
Impeller diameter DI 0.43 DR

Impeller height HI 0.21 DI
Bottom clearance C1 0.30 DR
Impeller spacing ∆C 1.00 DR
Upper clearance C2 1.27 DR

Baffle width B 0.10 DR
Liquid height HL C1 + ∆C + C2Bioengineering 2017, 4, 27  11 of 12 

 

Figure A1. Schematic diagram of reactor geometry derived from Haringa et al. [21]. The stirred tank 

reactor contains four baffles and two Rushton turbines with eight blades (bottom) and six blades 
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Appendix B

The standard moving average filter of MATLAB is a linear filter (low pass filter), which removes
high frequency components such as fluctuations caused by the DRW model. It is formulated as:

m(t) =
q

∑
j=−q

yt+j q < t < N − q (A1)

with:
q =

τ − 1
2

(A2)

where N is the total number of measured time points and τ the filter timescale.
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� Risks in scale-up of gas fermentations can be minimized by CFD simulations.
� Circulation time and lifeline analysis give insight in reactor performance.
� CO limiting conditions will occur in bubble column reactor.
� Short- and long-term response can be expected for syngas fermentations.
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a b s t r a c t

Successful scale-up of biological fermentations requires the prevention of any performance losses from
lab to production scale. Modelling large-scale conditions, in particular, so-called lifeline analysis, is a
proper approach to unravel potential risks and to guide the way for preventing non-wanted under-
performance. This study focuses on synthesis gas fermentations in bubble columns which are particularly
challenging because of poor carbon (C) -source solubility and low bacterial energy availability under such
anaerobic conditions. As a model case, Clostridium ljungdahlii DSM 13528 is studied in a 125 m3 bubble
column reactor investigating bacterial motion patterns, circulation time, short- and long-term responses.
A pseudo-stationary gas gradient respectively fermentations ‘snap-shot’ was conducted with computa-
tional fluid dynamics in an Euler-Euler approach while the movement of the microorganism was simu-
lated as Lagrangian massless particles. Cells were assigned uptake and product formation kinetics.
Statistical lifeline analysis revealed that 97% of all cells experienced substrate limitations, whereas 84%
were likely to undergo transcriptional changes after exposure in stress-inducing zone longer than 70 s.
Bacteria movements predominately occurred between low and moderate product biomass yield regions
with longer residence times in the latter. The circulation time derived from mixing time analysis is sim-
ilar to the mean circulation time of a single bacterium. The latter was deduced from regime transition
studies. Maximum residence times over 100 s as minimum regime crossing times of 10 s could also be
identified. These findings show the high potential of Lagrange trajectories analysis in bubble column
gas gradients which can be used for performance prediction and therefore risk minimization in scale-up.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Supported by worldwide agreed resolutions such as the Paris
Climate Agreement 2015, politicians and decision-makers in the
industry more and more evaluate possibilities for establishing a
CO2 neutral bioeconomy (Philp, 2018). Accordingly, the use of syn-
thesis gas (also called syngas) as a CO2, CO and H2 containing sub-
strate gets in the focus to supply bacterial fermentations. Via

syngas fermentations, said substrates can be converted through
microbial routes to high-grade hydrocarbons (Köpke et al., 2010;
Daniell et al., 2012) finally representing drop-in chemicals for the
existing industrial infrastructure (Takors et al., 2018). From the
engineering perspective, the main issue of this process is the poor
mass transfer and equally low solubility of the gas components,
since only dissolved carbon monoxide, carbon dioxide and hydro-
gen can be utilized by the acetogenic bacteria. Several reactor con-
cepts have been investigated to overcome this challenge
(Abubacker et al., 2011). As syngas fermentations typically yield
commodities, i.e. low value, large volume products with small

https://doi.org/10.1016/j.ces.2019.06.018
0009-2509/� 2019 Elsevier Ltd. All rights reserved.
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margins of economic benefit, large-scale gas fermentations should
run with low operation costs. Furthermore, any loss of microbial
production performance in large-scale should be prevented which
is a challenging task (Takors, 2012). To minimize energy input and
expenses, bubble columns are typically preferred. Compared to the
conventional biotechnical set-up using stirred tanks they offer low
operating costs and show high gas solubility because of their slim
design and consequently high hydrostatic pressure.

However, the set-up or more precisely the competition between
mixing and bioreaction creates gradients of dissolved substrates. In
return, gradients impact the microbial activity as they impose fluc-
tuating concentration in the cell environment. Various formulation
of the same idea is to be found in Enfors et al. (2001); Schmalzriedt
et al. (2003); Lapin et al. (2006); Morchain et al. (2014). This study
will investigate related consequences focusing on the impact of a
pseudo-stationary carbon monoxide gas gradient that will serve
as the background of fluctuating bacteria. Pseudo-stationary gas
gradient means that only a time point respectively ‘snap-shot’ of
a large-scale bioreactor is simulated with a fixed biomass concen-
tration. In this case, the gas holdup, as well as the liquid gas gradi-
ent, is stationary which does not account for the locally changing
flow field. CO has been chosen as a model case because of the
growth inhibition that is created by high levels (Mohammadi
et al., 2014). Concentration changes that cells experience while
flowing along the so-called ‘lifelines’ will be recorded. Apparently,
(i) a sound large-scale gas gradient in a bubble column with repre-
sentative flow structures in form of a motion ‘snap-shot’ and (ii)
the translation of nutrient availability into product and biomass
formation are essential prerequisites of such simulations.

The latter (ii) requires a thorough understanding of the intracel-
lular metabolic network which interacts with the cellular environ-
ment. A comprehensive genome-scale stoichiometric model of
Clostridium ljungdahlii has been published by Nagarajan et al.
(2013). Chen et al. (2015) succeeded to apply the genome-scale

model with the dynamic flux balancing technique of Gomez et al.
(2014) to resolve the spatiotemporal distributions of C. ljungdahlii
fluxes in a bubble column reactor. For minimizing computational
efforts, the bioreactor was discretized in a set of compartments
each assuming homogenous conditions. In general,
compartment-based bioreactor simulations are quite common
(Vrábel et al., 2001; Heins et al., 2015; Pigou and Morchain,
2015) because they inherently offer high simulation speed even
in combination with complex kinetics (Mantzaris et al., 1999;
Henson, 2003). Challenging flow patterns may be well approxi-
mated. However, important bubble characteristics such as coales-
cence and breakup are rarely (Nauha et al., 2018) or not at all
considered which have a great impact on mass transfer especially
in large scales (Akita and Yoshida, 1973).

To fulfil the constraint (i) compartment-based approaches need
to be replaced by improved spatial resolution applying computa-
tional fluid dynamics (CFD). For gas–liquid multiphase flows, either
the Euler-Euler or the Euler-Lagrange approach can be used
(Noorman et al., 1993; Larsson et al., 1996; Schmalzriedt et al.,
2003). The latter allows more detailed bubble simulation but is
not recommended for large-scale simulations with gas hold-ups
higher than 10%. Solving the Euler-Euler approach combined with
a population balance model (PBM) enables the implementation of
important bubble physics such as bubble expansion, breakage and
coalescence. Gas hold-up and mass transfer get more realistic as
well as the simulation of a pseudo-stationary gas gradient.

This study aims to predict the impacts of large-scale bubble col-
umn fermentations through the ‘eyes’ of C. ljungdahlii DSM 13528
(Tanner et al., 1993) which was chosen as a promising acetogenic
strain of industrial interest. So-called ‘lifelines’ will be calculated,
i.e. fluctuation profiles of individual cells recording extracellular
impacts of biological relevance. To fulfil the constraints (i) and
(ii) Euler-Lagrange multi-phase simulations will be linked to meta-
bolic models. Accordingly, the study follows the original approach

Nomenclature

AR reactor cross section, m2

a interfacial area concentration, m�1

cL;CO dissolved CO concentration, mmol g�1
CDW

d32 Sauter mean bubble diameter
dB bubble diameter, m
DR reactor diameter, m
DL;CO diffusion coefficient of CO, m2 s�1

HR reactor height, m
kH;cp Henry coefficient, mol L�1 atm�1

KI inhibition constant, mmol g�1
CDW

kL mass transfer coefficient, m s�1

KM Monod constant, mmol g�1
CDW

KYP;X half-maximum yield, mmol g�1
CDW h�1

lb lower bound
_mGL mass transfer from gas to liquid phase, kg m�3 s�1

q consumption/production rate, mmol g�1
CDW h�1

T temperature, K
ub upper bound
vrel relative velocity, m s�1

Greek
eG gas hold-up, –
gL media viscosity, Pa s�1

l growth rate, h�1

qL liquid density, kg m�3

rL surface tension, N m�1

s residence time, s

Subscripts
* equilibrium concentration of gas in liquid phase
a acetate
b 2,3-butanediol
B bubble
c carbon monoxide
c2 carbon dioxide
CDW cell dry weight
e ethanol
h+ proton
L liquid
R reactor
w water
max maximum value

Abbreviations
BSD bubble size distribution
CFD computational fluid dynamics
DRW discrete random walk
MS mass spectrometry
PBM population balance model
RANS Reynolds-averaged Navier-Stoke equations
RNG Re-Normalization Group
UDF User-defined function
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of Lapin et al. (2004) which is gaining momentum by numerous
continuing works (Haringa et al., 2016a; Haringa et al., 2016b;
Haringa et al., 2017; Kuschel et al., 2017). The statistical interpre-
tation of bacterial lifelines was initially shown by Haringa et al.
(2016b) and will also be applied in this study. The framework will
be used to investigate the challenging design of large-scale bubble
columns as a prerequisite of successful syngas fermentations. Con-
clusions will be drawn not only with respect to mass transfer and
hydrodynamics but particularly regarding the expected impact of
time-varying concentrations on the metabolic behaviour of C.
ljungdahlii in a 125 m3 bubble column.

2. Materials and methods

2.1. Geometry, reactor set-up and biological system

For the computational investigation of a large-scale synthesis
gas gradient, a bubble column reactor of 25 m in height and
2.5 m in diameter has been chosen. Clostridium ljungdahlii DSM
13528 (Tanner et al., 1993) serves as a model organism using as
carbon (C) source carbon monoxide provided by synthesis gas.
The gas inflow was set to 0.15 vvm at the whole bottom surface
area of the reactor (AR = 5 m2) and contained a CO/N2-mixture of
55/45 vol-%. The initial bubble diameter was 4 mm. Media viscos-
ity gL, density qL and surface tension rL was assumed to be similar

to the properties of water with gL = 0.001 Pa s�1, qL = 1000 kg m�3

and surface tension rL = 0.072 N m�1. The process was assumed to
be isotherm with an operating temperature of 310.15 K. No addi-
tional pressure was applied beside the ambient pressure of 1 atm
and the hydrostatic pressure due to the column height. All values
can also be found in Table 1.

2.2. Mathematical method and computational set-up

The multiphase approach was conducted by an Euler-Euler sim-
ulation and solved with the commercial computational fluid
dynamics (CFD) program ANSYS Fluent 18.0. The reactor volume
of 125 m3 was discretised into 125,000 numerical cells (see also
Appendix A: Mesh). By solving the Reynolds-averaged Navier-
Stokes equations (RANS) combined with the RNG (Re-
Normalization Group) k-e-model the gas gradient was approxi-
mated. The flow field in a bubble column is only developed when
the liquid and dispersed phase are coupled and a bubbly flow
reproduced. Coupling is achieved through the pressure and inter-
phase exchange coefficients set by the chosen phase interaction
correlations. The ideal gas law was applied. All other settings are
listed in Table 1.

The flow equations were solved every 10 ms and the maximum
iterations per time step were set to 25. However, only ten or fewer
iterations per time step were needed. After 1000 s a constant gas
hold-up was reached which corresponds to approximately 10 sim-

Table 1
Computational fluid dynamics simulation set-up for the pseudo-stationary gas gradient. Listed are boundary conditions, physical properties, phase set-up and solution
methods. Details on the mesh can be found in Appendix A.

Boundary condition Units

Inlet Velocity inlet with 0.0625 m s�1 (eG = 1) m s�1

Outlet Degassing
Wall Non-slip conditions
Initial bubble size 4 mm

Physical properties Units
Column diameter DR 2.5 m
Column height HR 25 m
Media viscosity gL 0.001 Pa s�1

Media surface tension rL 0.072 N m�1

Media density qL 1000 kg m�3

Gas density qL 1.1 kg m�3

Temperature T 310.15 K
CO/N2 composition 55/45 vol-%

Models and phase set-up Source
Multiphase Euler-Euler (implicit)
Population balance model Discrete with 16 bins and a diameter range of 0.001 � dB � 0.032 m
Turbulence RNG k-e-model + differential viscosity model
Phase interactions Drag Grace drag force or universal drag law (Clift et al., 1978)

Lift Tomiyama et al. (2002)
Wall Lubrication Antal et al. (1991)
Turbulent Dispersion (cd = 0.8) Burns et al. (2004)
Turbulent Interaction Sato and Sekoguchi (1975)
Surface tension coefficient Specified

Solution methods
Pressure-velocity coupling Phase coupled SIMPLE
Spatial discretization Gradient Least square cell based

Momentum QUICK
Volume fraction QUICK
Turbulent kinetic energy First order upwind
Turbulent dissipation rate First order upwind
Phase 1 (liquid) and 2 (gas) species First order upwind
Phase 2 bin First order upwind

Transient formulation Bounded second order implicit
Under-relaxation factors Between 0.3 and 1 (mostly default)
Transient regime Time step size 0.01 s

ITERATIONS per time step Maximum 25 (usually > 10)
Simulation time Flow field 1000 s

Gradient 500 s
Lagrange trajectories 500 s
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ulation days with four cores and double precision. Likewise, the
mass balance of gas in- and outflow converged in a steady state
and the second modelling set-up was started.

In general, it should be stated that the k-e-model represents a
promising, commonly applied approach for estimating turbulent
flow. However, because of its basic nature, non-accuracies of tur-
bulence predictions may propagate further, e.g. affecting bubble
breakage when applying the Luo model (Luo, 1993; Luo and
Svendsen, 1996). Furthermore, Haringa and Mudde (2018) indi-
cated that 1st order upwind has the tendency of under-
estimating turbulence quantities which may further affect the dis-
crepancy between e.g. power input estimations using superficial
gas velocity measurements and k-e-derived predictions.

2.2.1. Pseudo-stationary gas gradient
The next step to reach a pseudo-stationary gas gradient is to

include breakage, coalescence and bubble expansion. Therefore,
different bubble sizes were introduced by the population balance
model (PBM) also available in ANSYS Fluent 18.0. All in all, 16 bub-
ble classes with a diameter range of 0.001 m � dB � 0.032 m were
chosen and for both - breakage and coalescence - the Luo-model
(Luo, 1993; Luo and Svendsen, 1996) was applied. In addition,
two user defined functions (UDF) for mass transfer and the dis-
solved carbon monoxide uptake were included. For the simulation
of mass transfer from gas to the liquid phase in non-agitated bub-
ble column reactors the conform Higbie correlation for the mass
transfer rate kL was chosen and solved in each numerical cell
(Higbie, 1935).

kL ¼ 2ffiffiffiffi
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DLv rel

d32

s
ð1Þ

The correlation depends only on the Sauter mean bubble diam-
eter d32, the diffusion coefficient of CO DL;CO = 2 e�9 m2 s�1 and rel-
ative bubble velocity vrel of the numerical cell. While the Sauter
mean bubble diameter is applied, the effects of PBM bubble distri-
bution is neglected in this case. Henry’s law was used to estimate
solubility with the coefficient kH;cp = 7.7 e�4 mol L�1 atm�1. The
pressure gradient was also accounted for in this UDF, giving the
equilibrium concentration of carbon monoxide c�L;CO. The interfacial
area concentration a is calculated assuming a spherical bubble
shape which finally leads to the expression in Eq. (2) for the mass
transfer _mGL solved at each time step in each discretisation volume.

_mGL ¼ kL c�L;CO � cL;CO
� �6eG

d32
ð2Þ

The Higbie correlation for the mass transfer and spherical bub-
ble shapes are rough simplifications. The reader should be aware
that dimensionless numbers for the bubbles, such as Eötvös
(�60), Morton (log(Mo) = �10) and Reynolds number (�5000)
rather pinpoint to transient wobbling to spherical cap geometries
(Grace, 1973). Additionally, gas hold-up and superficial gas velocity
also indicate the transition between homogeneous bubbly flow to
heterogeneous churn-turbulent flow (Deckwer et al., 1980; Krishna
and Sie, 2000; Kantarci et al., 2005). Nevertheless, the Higbie cor-
relation was used, not only for the sake of simplicity but also
because profound mass transfer studies with the said biological
matrix would have been needed which are far beyond the scope
of this lifeline analysis.

The second UDF was written to describe the CO uptake kinetic
qc of C. ljungdahlii published by Mohammadi et al. (2014). With a
maximum uptake of qc;max = 34.36 mmol g�1

CDW h�1 and a Monod
constant of KM = 0.02 mmol g�1

CDW the equation also includes a sub-
strate (cL;CO) inhibition modification by Andrews with an inhibition
coefficient KI = 0.55 mmol g�1

CDW.

qc ¼
qc;maxcL;CO

cL;CO þ KM þ c2
L;CO
KI

ð3Þ

The dissolved carbon monoxide uptake takes place in each
numerical cell at each time step. After another 500 s a new steady
state for the gas hold-up and dissolved CO concentration was
reached which does not account for the constantly changing peri-
odic flow field. Pseudo-stationary gradient means that only a time
point respectively ‘snap-shot’ of a real large-scale simulation is
chosen with a temporary constant biomass concentration of 10 g
L�1 and no cell multiplication. This assumption can be made since
mixing and mass transfer time scales are much smaller than time
scales for bacterial growth. The second simulation part lasted more
than ten simulation days since 16 bubble classes instead of one,
breakage, coalescence, bubble expansion, mass transfer and a reac-
tion needed to be solved as well. Detailed changes in the volumet-
ric mass transfer rate after 1000 s and 1500 s can be found in
Appendix E.

2.2.2. Lagrange trajectories
The final CFD simulation uses the generated pseudo-stationary

gas gradient and flow field to analyse cell lifelines, movement pat-
terns and circulation time. Therefore, besides the Euler-Euler
phases a third phase, the bacteria were introduced as massless
Lagrange particles as well as the discrete random walk (DRW)
model was enabled. The gradient and flow field were set as frozen
and not further calculated. With another user defined function
every 30 ms the particle ID, the corresponding CO concentration
and position were recorded. In total, 120,000 bacteria were tracked
for 500 s. The trajectories were checked for ergodicity which can be
found in Appendix B: Statistical relevance. Further evaluations of
the lifelines were conducted with the program MATLAB�.

2.3. Uptake kinetic and product formation correlation

C. ljungdahlii prefers CO over CO2 because the substrate equally
serves as a carbon and electron source. However, the consumption
of CO2 requires additional electrons originating from the crucial co-
uptake of H2. For the sake of simplicity, this case is omitted in the
current study which focuses on the impact of CO gradients only.
The growth of C. ljungdahlii coincides with the formation of the
by-product’s acetate, ethanol, 2,3-butanediol and maybe even car-
bon dioxide (under distinct conditions). Clearly, the latter may only
be produced under ample CO conditions when the carbon drain to
targeted products such as ethanol and 2,3-butanediol is limited
(e.g. because of non-optimum strain engineering). Linking meta-
bolic modelling with large-scale CFD represents a trade-off
between crucial metabolic complexity and computational efforts
necessary to solve the large-scale simulation problem. Because
the use of genome-scale network models is computationally
expensive a minimum stoichiometry model was formulated mir-
roring the essentials of C. ljungdahlii metabolism. With the help
of a simple net Eq. (4) and the element balances for carbon C,
hydrogen H and oxygen O (Eq. (5)) the correlation can be derived.

1 CO|fflffl{zfflffl}
qc

þYHþ ;COH
þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

qhþ

�YX;COCH1:8O0:5|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
qx

þYAc;COCH1:5O|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
qa

þYEtOH;COCH3o0:5|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
qe

Y2;3But;COCH2:5O0:5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
qb

þYCO2 ;COCO2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
qc2

þYH2O;COH2O|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
qb

ð4Þ
The net reaction includes all relevant products such as biomass

(x), acetate (a), ethanol (e), 2,3-butanediol (b) and carbon dioxide
(c2). Water (w) and hydroxide ion (h+) are needed for H- and
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O-balance. Analogous to the yields Y per c-mol CO the uptake and
production rates q are indicated at the bottom in Eq. (4).

C :

H :

O :
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1

0
1
0
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0
2
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2
1

1
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0
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1
CCCCCCCCCCCCCA

¼ 0
�

ð5Þ

Eq. (4) can also be transformed into Eq. (5) which is five times
under-determined. Therefore, the resulting solution space is
restricted by lower (lb) and upper bounds (ub) as described in
Eq. (6). The ratio qc/1.7 is motivated by own experimental observa-
tions (data not shown) studying the by-product formation of C.
ljungdahlli wildtype under ample CO conditions.

lb ¼ ðqc

ub ¼ ðqc

�100
100

qc=1:7
qc=1:7

�100
100

0
2:5

0
100

0
100

0Þ
100Þ ð6Þ

Maximum growth for C. ljungdahlii is set to l = 0.06 h�1� H2O
and H+ can either be consumed or produced and the by-products
only produced.

f qcð Þ ¼ maxðqx þ qa þ qe þ qbÞ ð7Þ
The optimal result can be derived by maximizing the sum of all

production rates (Eq. (7)) which is graphically shown in Fig. 1(A)
for different possible uptake rates. In each case, the element bal-
ances are not violated.

Fig. 1(B) compares experimental findings with the simulation
results. How the experiment was conducted can be found in
Appendix D: Experimental values. As the predictions are the result
of elementary flux balance analysis, instantaneous ‘pseudo-steady-
state’ transitions are intrinsically assumed which translate local qc

to growth and production rates. Accordingly, time-resolved meta-
bolic or transcriptional dynamics as seen in Chen et al. (2015) and
Löffler et al. (2016) are not covered by the simple modelling
approach.

2.4. Statistical evaluation

2.4.1. Evaluation of regime transition events
For the statistical evaluation, the Lagrange trajectories were

sorted and the CO concentration profiles filtered as described in

Kuschel et al. (2017). The filtered concentration is translated into
uptake kinetics and total product-biomass yields. The latter can
be derived from the optimization results of the element balances
which leads to Eq. (8) also shown in Fig. 2(A). The total product-
biomass yield describes the carbon share between all products
and biomass as a function of the carbon uptake rate. High YP,X val-
ues indicate that more carbon flows in the formation of the desired
by-product. Accordingly, high YP,X values can be considered as a
proxy for strong metabolism in growing cells. The aim of this trans-
lation is to investigate how the cells move. From which gradient
segment they come, where they go and for how long they stay in
a certain environment defined by the surrounding dissolved CO
concentration. Therefore, conditions have to be classified in high
and low total product-biomass yields and in a transition phase
between both regimes.

YP;X qcð Þ ¼
1:51qc
qc�2:29 �14 < qc � 0

� qc
6 � 1 qc � �14

(
ð8Þ

The first functional segment ranging from qc = 0 to
qc < �14 mmol g�1

CDW h�1 shows Monod-type kinetics with a half-
maximum yield at KYP;X = 2.29 mmol g�1

CDW h�1. This value was also
used to mark the beginning regime transition from low to higher
yields. Translating the yield limits into CO concentrations transfers
the yield regime into a CO regime, respectively. When
qc � –14 mmol g�1

CDW h�1 the function turns into a linear correla-
tion. The maximum of CO conversion into biomass formation is
achieved. Additional uptake directly fuels by-product formation.
This switch was used as the second regime transition criterion
indicating the high yield zone. Thus, three regimes can be speci-
fied: L for low yields from zero to �2.29 mmol g�1

CDW h�1 (0 � YP,

X < 0.75), T for transition area between �2.29 and
�14 mmol g�1

CDW h�1 (0.75 � YP,X < 1.33) and H for high yields start-
ing at �14 mmol g�1

CDW h�1.
The classification into three regimes is also graphically implied

in Fig. 2. The regime classification represents the number of small-
est encoding units characterizing the shift between three gradient
zones which the bacteria do transverse. Lifelines are characterized
by a sequence of regime changes thereby integrating all extracellu-
lar stimuli exposed on the cell. Three gradient areas lead to six
regime transition events which are schematically shown in Fig. 2
(B) and are additionally described in the following list.

� HTH: Event from high to transition and back to high product per
biomass yield areas.

Fig. 1. Optimization results for kinetic correlation (A) and comparison with experimental data (B). In (A) the maximization for product formation results are graphically
shown for several possible CO uptake rates qc. The production rates for acetate qa, ethanol qe and 2,3-butanediol qb are shown as well as the growth rate l on the left side. The
simulation outcome was compared with experimental data in (B). The experimental rates in mmol g�1

CDW h�1 were provided by M. Hermann (ongoing studies, IBVT) who
performed synthesis gas fermentations with a gas composition of 55/30/5/10% for CO/H2/CO2/Ar.
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� THT: Reverse movement starting from the transition area with
retention in the high yield area and back to transition.

� LTH: Crossing all regimes from low to high and with dwelling in
the transition area.

� HTL: Reverse event from low to high product biomass yields.
� LTL: Analogous to HTH but from low to higher and back to low
yield areas with residence time in the transition domain.

� TLT: Same regimes but with a stay in the lower domain with lit-
tle product biomass yields and start in the transition class.

The residence time is referred to as s and accounts for the ‘sand-
wich’ regime always. The frequency of each regime transition
event was counted and the duration recorded.

2.4.2. Evaluation of short- and long-term responses
For qualifying the stress impact of the cells biological criteria

are necessary. To distinguish between short- and long-term
responses, two sensitive thresholds are needed. The occurrence
of critical CO concentrations flags the start of a short-term stress
stimulus. The length of the exposure of this stimulus flags the
putative triggering of long-term transcriptional responses. The
longer a bacterium lingers in an area with the critical concentra-
tion the more severe the internal changes and therefore energy
costs for the cell will be. Usually, short- and long-term responses
can be examined with scale-down approaches such as plug-flow
experiments (Löffler et al., 2016).

In the case of C. ljungdahlii, no comparable experimental studies
are available. Accordingly, related threshold values were estimated
taking the well-investigated Escherichia coli as reference. Taymaz-
Nikerel et al. (2010) and Michalowski et al. (2017) estimated the
maintenance demands and the maximum glucose uptake of
E. coli as ms = 0.057 ggluc g�1

CDW and qmax = 1.8 ggluc g�1
CDW h�1, respec-

tively. Consequently, 3.2% of the maximum uptake are needed for
maintenance demands under optimum growth conditions. In the
case of C. ljungdahlii, the optimum CO uptake rate can be derived
from the Andrew inhibition kinetic as qreal

c;max ¼ qc

ffiffiffiffiffiffiffiffiffiffiffiffi
KMKI

p� �
= 24.87

gc g�1
CDW h�1 (0.1 mmol L�1). Assuming that maintenance needs of

E. coli and C. ljungdahlii are somewhat comparable the 3.2% fraction
corresponds to ccritL;CO = 0.003 mmol L�1. This concentration is
expected to be a good indicator for a biological regime shift as it
marks the likely initiation of regulatory programs to adapt meta-
bolic activities to the limiting CO supply.

Translating the metabolic stress stimulus into a transcriptional
and translational response takes time. In the case of E. coli, early
transcriptional responses were found after 30–40 s whereas the
bulk of transcriptional activation occurred after 70 s (Löffler

et al., 2016). Accordingly, minimum critical residence times in
stress-inducing zones were chosen as scrit = 10 s, scrit = 40 s and
scrit = 70 s. Because related measurements are missing for C. ljung-
dahlii and because similar findings were found for other microbes
(not yet published), the same criteria were set for C. ljungdahlii in
this study.

Further information on the evaluation of the short- and long-
term response can be found in Appendix F: Detailed short- and
long-term responses evaluation.

3. Results and discussion

3.1. Flow field and pseudo-stationary gas gradient

To reach a pseudo-stationary gas gradient in an industrial-scale
bubble column reactor two simulation set-ups have been chosen.
The flow field was developed by solving the Euler-Euler multiphase
approach with one entering bubble class of 4 mm and all phase
interactions described in Table 1. As steady-state indicator the
average gas hold-up eG was tracked for 1000 s until it stayed con-
stant at 0.34. Then, the population balance model (bubble classes
with breakage, coalescence and expansion) was additionally
enabled considering CO mass transfer with respect to the bacterial
needs. After 1500 s the final CO gradient was reached (eG = 0.21).
Fig. 3 shows the mean gas hold-up history in (A) as well as the
changes in bubble size distribution (BSD) for the second simulation
approach from 1000 s (start, dark grey) to 1500 s (end, red) in (B).

BSDs are indicated as a function of number density nG in Fig. 3
(B). They reveal that both bubble breakage and coalescence occur,
although the bubbles the tendency of coalescence is dominating.
Since the initial bubble size is 4 mm (bin 7) this class is repre-
sented the most followed by bubble classes with larger diameters
(first picture in Fig. 3(B), distribution colored in red). The composi-
tion of the final BSD is similar to observations with water–air
experiments of Lehr et al. (2002). However, the bubble column of
this study is six times larger than the set-up of Lehr et al. (2002)
creating longer bubble residence times and thus higher probability
for coalescence finally leading to larger bubbles classes up to
3.2 cm (bin 16). Consequently, a lower average gas hold-up was
calculated after 1500 s compared to 1000 when coalescence was
not yet considered.

The flow field, gas hold-up, and concentration profiles of the
CFD simulation are graphically displayed in Fig. 4(A) to (C) after
1500 s simulation time. Whereas graphic (B) and (C) show similar
gradient profiles with maximum values at the bottom and reduc-
ing values towards the top, the flow field in (A) is different. By
trend, high velocities are observed in the upper reactor region close

Fig. 2. Regime classification as function of productivity. In (A) the product biomass yield YP,X is given in c-mol per c-mol as a function of CO uptake rate (see also Eq. (8)).
From qc of zero to –14 mmol g�1

CDW h�1 the YP,X function shows Monod-tyke trends with a half-maximum value of –2.29 mmol g�1
CDW h�1 which is also the threshold for entering

the transition regime. The upper limit of transition is indicated by –14 mmol g�1
CDW h�1 when the YP,X starts to ascend linearly. All six regime transition strategies are illustrated

in (B).
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Fig. 3. Simulation development to reach pseudo-stationary gas gradient. In (A) the average gas hold-up in the bubble column reactor is plotted versus time. During the
first 1000 s the flow field was developed with one bubble size and no mass transfer from gas to liquid. From 1000 to 1500 s breakage and coalescence and effects of
hydrostatic pressure are enabled by including the population balanced model. The average bubble size distribution for start (dark grey) and end point (red) are shown in (B).
The number density over diameter bin is given as normal and cumulative distribution. The initial bubble size is always 4 mm (bin 7). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Flow field (A), gas hold-up (B) and CO concentration profile (C) of the CFD simulation. Colour scale and the unit are given on the left side. Shown are side profiles
and eleven section planes indicated by the dashed lines as well as reactor top and bottom. In (A) the velocity magnitude is depicted. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

416 F. Siebler et al. / Chemical Engineering Science 207 (2019) 410–423



to the wall and low to moderate flow patterns are dominating in
the low part of the bubble column. The spatially distributed flow
pattern reflects the impact of changing bubble size distribution
very well. To be precise, the more proximate to the outer top
regions the larger the average bubble size and the faster the bubble
rising velocity is. Accordingly, faster bubble rise creates broader
bubble size distributions (data not shown).

As mentioned in the materials and methods section, the flow
field has a cyclic behaviour. The distributions of Fig. 4 are ‘snap-
shots’ that re-occur frequently whereas the total hydrodynamic
scenario is in steady-state with respect to the gas hold-up (see
Fig. 3). To investigate the impact of the gradients on the cells, the
condition of Fig. 4 has been ‘frozen’ serving as a background for
further studies. Accordingly, the CO gas gradient was used to inves-
tigate the bacterial lifelines with respect to productivity, circula-
tion time and long- and short-term responses. As such, the
observations should be interpreted as a trend for qualifying the
bacterial lifelines and for discussing putative impacts on cellular
performance.

3.2. Bacterial lifelines and frequency of regime transition events

To assess statistically the bacterial movements through the gra-
dients in the bubble column, regime shifts (introduced in the Mate-
rial and Method section) were evaluated. The analysis focusses on
the flow pattern qualifying the beginning, residence time and end
of the bacterial flows (see Fig. 2(B)). The stay in the transient
interim regime is particularly of interest since information about
possible performance changes of the microbe can be deduced.
The threshold criteria defined in the Material and Method section
basically mirror the assumption that the longer a bacterium stays
in one regime the more likely it adapts to its surroundings. As a
consequence, energetically demanding adaptations of the regula-
tory programs are initiated that may deteriorate the production
capacity of the cells (Löffler et al., 2016).

Fig. 5(A) shows the regime-specific zones inside the bubble col-
umn. The regime classification H encoding high product biomass
yields is depicted in dark grey and is located in the lowest column
zone (zoomed detail). In contrast to H, the transition regime T (in
lighter grey) spreads along the majority of the column height
whereas the low product biomass yield regime L is located pre-
dominately at the top of the reactor. Moreover, the 30 s lasting
courses of the two lifelines, L1 and L2, are depicted in Fig. 5(B) to
(D) together with their translation in product biomass yield pro-
files (C) and regime classifications (D). While the first lifeline L1
passes through all three regimes the second lingers in the transi-
tion regime for the time span of 30 s. For L1 two movement pat-
terns can be recognized, the LTH and the THT regime transition
events with dwell times of sLTH = 18.3 s and sTHT = 2.1 s, respec-
tively. However, L2 always stays in the T zone.

Further lifeline processing comprises counting of transition
events and grouping with respect to the residence time in the tran-
sient regime (Fig. 6). Related values indicating maximum and aver-
age time of stays were calculated and listed in Table 2.

Movement patterns from the transition area to low product bio-
mass yields and back (TLT) are the most common transitions with
an overall probability of 46.0%. However, the second most likely
regime transition LTL happens almost as often with 44.6% (see also
Table 2). All other events have probabilities lower than 4%. As for
the average and maximum residence times, very different results

can be stated. While the mean dwell times s
�
ranges from 3.4 s

up to 32.8 s the maximum time spans can reach over 100 s for
the LTH and HTL pattern. Movements starting in the transition
regime and circling back to it (THT and TLT) show the lowest
smax with 15.3 s for THT and 28.4 s for TLT. Movement patterns
passing all regimes (LTH and HTL) reveal not only the longest but
also a minimum residence time of about 10 s.

Whereas the total event frequency reflects the volumes encom-
passed by the related regimes the duration of a stay and how often
a transition event occurs depends strongly on the gradient profile

Fig. 5. Processing of bacterial lifelines. Exemplary two 30 s lasting bacterial lifelines L1 (black) and L2 (grey) are shown in spatial resolution in (A). The related CO
concentration profiles are given in (B) also indicating the results of the moving-average filter (red line) (see also Kuschel et al., 2017). Concentrations are translated in uptake
rates qc finally yielding the total product-biomass yield YP,X presented in (C). The black dashed lines indicate the regime transition boundaries which are used to translate the
lifelines into regime switch diagrams with transient stays s of each regime switching event (D). The regimes are divided into high (H), transition (T) and low (L) product
biomass yields. For lifeline L1 two strategies are shown (LTH and THT) with different durations of stay s. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

F. Siebler et al. / Chemical Engineering Science 207 (2019) 410–423 417



and on the flow field. Comparing the most likely events LTL and

TLT differences in s
�
and smax can be detected revealing relatively

low values of s
�
and smax for TLT. This can be explained by compar-

ing Fig. 4(A) with Fig. 5(A), i.e. the flow field with the gradients

divided in regimes. The finding that TLT s
�
and smax values are lower

than LTL counterparts is in agreement with the higher velocities at
the top of the reactor, in particular, close to the wall. They coincide
with the low product biomass yield regime anticipating a high
turnover of cells passing this zone. Accordingly, the TLT events
reveal shorter time spans compared to the LTL although total event
frequencies are similar.

The low event frequency of LTH and HTL regime transitions can
be explained with the far distance between the high and the low
zones (see Fig. 5(A)). The bulk of the T compartment has to be
passed either to reach the H area at the bottom or to enter the L
zone travelling from the bottom. Regarding the flow pattern, such
travels require 10 s at least. Hence, transitions are dominated by
moderate regime shifts exposing cells from one adjacent regime
to the other – and back. ‘Extreme’ shifts are relatively rare sum-
ming up to about 5% of all events (LTH + HTL). This finding is in
agreement with similar observations of Haringa et al. (2017) who
investigated stirred tanks equipped with Rushton turbines under
production-like conditions.

Additionally, the small volume of the H zone is worth noticing.
The compartment represents less than 1% of the total bubble col-
umn, only. In other words, physical properties of CO solubility
are such poor that only a ‘tiny’ fraction of the bubble column is
operating with maximum CO transfer. The majority of the bioreac-

tor works with moderate or even limiting CO supply. Accordingly,
putative CO inhibition is only an issue for a small compartment of
the bubble column located at the bottom.

Besides the statistical evaluation of regime transitions, also the
average circulation time of a bacterium can be estimated by
weighting the average residence time of each regime transition
event with its overall probability. Accordingly, the average circula-
tion time in the bubble column is estimated as 10.5 s. The value
reflects fairly good the estimation of 14.7 s which is derived from
the mixing time (see Appendix C: Circulation time). Interesting
enough, this is a remarkably low value for industrial type settings
of this size. Often, stirred tank bioreactors reveal average circula-
tion times of about 20 s (Haringa et al., 2017; Kuschel et al.,
2017). Noteworthy, such circulation times are found for power
inputs of 4185W/m3 which is higher than 613W/m3 invested in
bubble columns. This trend is independent weather simulated or
observed power input is used. As a fundamental characteristic,
bubble column reactors show good mixing properties due to long
axial flow patterns. While stirred tank reactors with Rushton
blades predominately reveal radial velocities with typical Eddy for-
mations along the stirrer and hard transitions zones between the
vortices. These vortex rolls can cause longer dwelling and therefore
equally longer average circulation times.

3.3. Investigation of short- and long-term responses

The statistical evaluation of the Lagrange trajectories offers
insight about the possible short- and long-term responses bacterial
cells may show after proper induction. For this reason, two critical
values have been chosen with respect to the concentration thresh-
old and duration. Taking findings of E. coli as a reference, the short-
term metabolic responses of C. ljungdahlii is expected to be trig-
gered as soon as a critical CO value, namely the equivalence of
starting maintenance demands, will be reached. In other words,
when the dissolved CO concentration falls below 0.003 mmol L�1

the short-term response is assumed to be switched ‘on’. Because
its translation in transcriptional and translational reprogramming
requires time, different residence times of continuing stimulus
were investigated: scrit = 10 s, scrit = 40 s and scrit = 70 s.

Fig. 7(A) to (B) depicts the results of the three stress exposure
periods and Fig. 8 shows the distribution of cell fractions which

Fig. 6. Regime transition strategies over retention time. The frequency of all six regime transition events are given (log-scale) and plotted against their duration of stay s in
the second (transient) regime. For each histogram 600 bins have been chosen.

Table 2
Total frequency, average and maximum retention time. For each regime transition
event the total frequency, mean s

�
and smax is listed. For smax a confidence level of 99%

was chosen.

Regime transition event Total frequency in % s
�
in s smax in s

LTL 44.6 12.1 86.6
TLT 46.0 7.2 28.4
THT 3.6 3.4 15.3
HTH 1.2 17.4 80.4
LTH 2.4 29.6 107.5
HTL 2.2 32.8 109.8
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are exposed to the CO stress stimulus for different residence times.
The statistics of scrit = 10 s include scrit = 40 s and scrit = 70 s which
is indicated in Fig. 7 and more clearly illustrated in Fig. 8.

According to Fig. 7, the cellular population in the bubble column
is not homogenous but heterogeneous instead. Short residence
times of 10 s show a bimodal distribution (Fig. 7(A)). Because car-
bon uptake rates directly correlate with product formation a bimo-
dal distribution of production zones can be expected in this area,
too. Additionally, the normalization by residence time indicates
very short retention in high concentration areas which concludes

with the finding for the THT event (Table 2 with s
�
THT = 3.4 s). How-

ever, longer exposure periods are somewhat homogenous, reveal-
ing unimodal distribution (Fig. 7(B) and (C)). All three critical
time periods statistics deviate strongly from the average uptake
rate qc = 12.26 mmol g�1

CDW h�1 (Fig. 7 grey dotted line) which indi-

cates that substrate limitation and time-dependant bacterial adap-
tion will have a major negative effect on the overall production of
this fermentation process.

From the biological perspective, the most striking observation is
that about 97% of all bacteria experienced severe CO limitation at
least once (cL;CO � ccritL;CO). As indicated in Fig. 8, 95% are likely to
show immediate metabolic changes (exposure time 10 s) and even
84% stay in the CO limitation zone longer than 70 s. Taking the
E. coli case as a reference, 70 s exposure time marks the beginning
of transcriptional changes (Löffler et al., 2016). Cells are expected
to react on external CO limitation by inducing starvation programs
which coincide with severe up- and down-regulation of related
genes. In E. coli, such transcriptional adaptations could be quanti-
fied with respect to additional ATP demands revealing add-on
maintenance needs of 15% – 50% depending on the stimulus. By
analogy, similar add-on maintenance demands should be expected
for C. ljungdahlii as well. Reductions of the product biomass yields
and the growth rate are fairly probable. Nevertheless, it needs to be
stressed that related experimental scale-up studies with C. ljung-
dahlii are simply missing. These are essential to proof the simula-
tion results of the current work.

4. Conclusions

Lagrangian trajectories for Clostridium ljungdahlii have been
successfully calculated enabling the lifeline analysis in an anaero-
bic, synthesis gas operated bubble column. Through the eyes of C.
ljungdahlii the impacts of a pseudo-stationary carbon monoxide
gas gradient were recorded with respect to short- and long-term
CO stimuli.

Hydrodynamic analysis reveals a well-mixed bubble column
showing average circulation times of about 10 s. The value is com-
parable to conventional stirred tank bioreactors but achieved with
less power input. Defining CO-induced thresholds for triggering
the short- and long-term response of the cells enabled the bubble
column division into the H, T and L zones and – most important –
the identification of related transition events. Although most of the

Fig. 7. Expected bacterial responses while experiencing limitation for different exposure periods. As described in Appendix F three critical periods scrit = 10 s in (A),
scrit = 40 s in (B) and scrit = 70 s in (C) have been chosen to show the distribution of uptake rates (first row) and the weighted distribution by the actual duration si indicated by
the case-specific weighting factor asi (second row). Histograms are normalized to the highest total percentage of the average occurrence (scrit = 10 s) and divided into 100
bins. The average uptake rate qc = 12.26 mmol g-1

CDW h�1 is indicated as a grey dotted line.

Fig. 8. Distribution of cells exposed to CO stimuli with respect to different
resting periods. Black indicates all cell of which (in dark grey) 97% experienced the
critical value ccritL;CO = 0.003 mmol L–1. The other grey colours indicate the cell
fractions thereof which stayed in the stress zones with the exposure times as
indicated.
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transitions may be qualified as ‘moderate’, because they only con-
sider shifts between adjacent regimes, they indicate transitions
under already CO limiting conditions. In other words, most of the
bioreactor is suffering CO supply which outlines the need to
improve COmass transfer and/or to engineer strains that cope with
the conditions with the least add-on ATP demand. Given that cal-
culated gradients will be much more pronounced with higher bio-
mass concentrations and more active cells, the need to perform
such engineering studies is apparent for further process
intensification.

The lifeline analysis depends on the proper prediction of phys-
ical and biological impacts. The first requires accurate models for
simulating e.g. local energy dissipation rates, mass transfer and
flow fields. In particular, multiphase conditions are still very chal-
lenging requiring ongoing improvements for accurately predicting
local energy dissipation and for providing good estimations of bub-
ble size distributions, breakage and coalescence. Fundamental
research is necessary to derive related models also considering
particularities of biotechnical application (e.g. media composi-
tions). Intrinsically, said studies provide ‘snap-shots’ on fermenta-
tion performance. Thorough experimental and simulation studies
are necessary for statistically evaluating their reliability further.

From the biological perspective, the study depends on the real
stress response of C. ljungdahlii which – unfortunately – has not
been investigated experimentally so far. Related results will surely
improve our understanding of large-scale processes using the tool
of lifeline analysis as a very promising design and optimization
approach.
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Appendix A. Mesh

The computational fluid dynamics mesh of the 125 m3 bubble
column reactor was also generated with the commercial program
ANSYS Fluent 18.0. Therefore, the reactor was divided into three
parts: the inner rectangular section with uniform grid cells, the
outer cylinder cut with inflating grid cells as well as the area in-
between both geometries. Mainly rectangular grid cells are gener-
ated giving a good minimal orthogonal quality of 0.66 and maxi-
mum aspect ratio of 4.1. All in all, about 125000 numerical cells
are used for the simulation (approx. 1000 per 1 m3, see also Fig. 9).

Simulations with a higher spatial resolution (250000 and
1000000 numerical cells) and the same set-up repeatedly revealed
severe numerical instabilities. Solving Euler-Euler multiphase
combined with population balance model turned out to be not only
computationally intensive but also very sensitive with respect to
the multiphase interactions per cell. Poor approximations of the
flow dynamics in a single cell turned out to be easily propagated
(and amplified) to other cells finally causing cessation of the whole
simulation. Nevertheless, our set-up ensured that global parame-
ters such as gas hold-up are within the expected range of heteroge-
neous churn-turbulent bubbly flows (Krishna and Sie, 2000).
Besides, satisfying flow fields and gas gradients were achieved giv-
ing a first glimpse on their effect on bacterial movements and
lifelines.

Appendix B. Statistical relevance

As a quality criterion of statistical relevance, the ergodicity can
be used. The Lagrange trajectories are ergodic when the time aver-
age is the same as the average over the probability space. There-
fore, the reactor was spatially discretised into ten uniform
columns (Fig. 10(A) z0-z9) and the particles can be superimposed
at each time step (t0-tend). The expected value is compared to the
result and should lie in the confidence level of 98%.

As shown in Fig. 10(B) the superimposed result lies within the
confidence level. Additionally, the average carbon monoxide con-
centration of the Lagrange trajectories is cL;CO = 0.0020 mmol L–1

which is approximately the same as of the liquid phase with
cL;CO = 0.0018 mmol L–1.

Appendix C. Circulation time

The mixing time of the reactor set-up was approximated in a
dynamic flow field. Therefore, mass transfer and CO uptake were
disabled and the dissolved CO concentration mixing tracked at
three representative positions (P(x/y/z) in meter) in the reactor:

Fig. 9. Computational fluid dynamic grid. Top and bottom section of the grid in side few and top few.
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P1(0/0/10), P2(0/0/15) and P3(0/0/20). As quality criterion, 99% of
the average CO concentration had to be reached.

As shown in Fig. 11 the 99% mixing time t99 was obtained at dif-
ferent moments giving an average mixing time of 27.3 ± 4.3 s
which is in the range of experimental values of Pandit and Joshi
(1983) between 5 s up to 40 s depending on media properties.
The circulation time tc was estimated by the time interval between
the CO concentration peaks with 14.7 ± 1.4 s. The circulation veloc-
ity is approximately two times the reactor height divided by the
circulation time with vL;circ of 3.4 m s�1. also within the range of
Pandit and Joshi (1983).

Appendix D. Experimental values

For the experimental data, a 3 L lab scale steal reactor (Bioengi-
neering) equipped with a six-blade Rushton impeller and four baf-
fles was used. A L-tube sparger and a synthesis gas mixture (CO/H2/
CO2/Ar with 55/30/5/10 vol-%) and 1 bar pressure were continu-
ously applied with a gassing rate of 13.2 L h�1 (0.15 vvm). The stir-

rer speed was set to 500 rpm and the fermentation temperature
controlled at 37 �C as the pH at 5.9. The Tanner mod. 1754 PETC
medium (Tanner et al., 1993) with 15 g L�1 MES buffer and 0.5 g
L�1 yeast extract was used and an initial liquid volume of 1.5 L.
The preculture of the Clostridium ljungdahlii wildtype strain (DSM
13528) was grown in anaerobic bottles with a gas composition of
CO/H2/CO2 of 50/45/5 vol-%. During the exponential phase, sam-
ples were taken for cell dry weight (CDW) and product measure-
ments. The products acetate, ethanol, 2,3-butanediol and lactate
were quantified by high-performance liquid chromatography
(HPLC). The exhaust gas composition was directly analysed by
mass spectrometry (MS). In the exponential phase the growth,
uptake and production rates were conducted.

Appendix E. Volumetric mass transfer rate before and after PBM

The volumetric mass transfer without population balance
model (PBM) and a constant bubble size of 4 mm is very high with
1190 h�1 (first 1000 s). The average interfacial area concentration a
is about 980 m�1 which decreases drastically when enabling PBM
to include bubble breakup, coalescence and bubble expansion
due to hydrostatic pressure. After 1500 s the average kLa is only
about 40 h�1 (a = 60 m�1).

The spatial volumetric mass transfer distributions are shown in
Fig. 12. The average mass transfer rates are kLðt ¼ 1000 sÞ = 3.36
e�4 m s�1 and kLðt ¼ 1500 sÞ = 1.73 e�4 m s�1.

Appendix F. Detailed short- and long-term responses evaluation

The concentration profiles cL;CO tð Þ of the bacterial lifelines were
processed according to the Nassi-Shneiderman diagram in Fig. 13
for each critical time periods scrit = 10 s, scrit = 40 s and scrit = 70 s.
If both thresholds, ccritL;CO and scrit , are true the average concentration
respectively uptake rate (according to Eq. (3)) of the real time per-
iod is calculated. Mean concentration and retention time are saved
in two arrays cvecL;CO and Dtvec .

For each critical time period, the resulting arrays were clustered
into histograms with 100 bins and normalized to the highest total
percentage of the average occurrence (scrit = 10 s). To take the
actual duration of each average concentration respectively uptake

Fig. 10. Statistical relevance of Lagrange trajectories. In (A) 3000 representative enlarged bacteria are depicted to illustrate the spatial (z0-z9) and temporal (t0-tend)
residence of the bacteria. For each spatial segment z the probability with respect to the expected value (black line) is shown in (B) as the frequency in percentage. Dotted black
lines indicate the ±2% deviation limit.

Fig. 11. Determination of the mixing time. To determine the mixing time the CO
mass transfer and uptake was disabled. At three positions (P1(0/0/10), P2(0/0/15)
and P3(0/0/20)) the dissolved CO concentration was tracked until it reached 99% of
the overall concentration. Pictured is the normalized CO concentration over time.
On average the mixing time is 27.3 ± 4.3 s and the circulation time 14.7 ± 1.4 s.
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rate into account, also histograms with weighted distribution
(weighting factor asi ¼ Dtveci =

P
Dtvec) are visualized (see Fig. 7).

The direct translation histograms of the concentration profiles
respectively uptake rates can be found in Fig. 14. Instantiations

adaption corresponds directly with the spatial gradient and does
not take temporal effects into account which makes the compar-
ison with Fig. 7 difficult. Nevertheless, the average uptake rate
qc = 12.26 mmol g-1

CDW h�1 is a strong indicator to show the differ-
ence between average values and more likely time-dependent
adaption of the bacteria.
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The reduction of greenhouse gas emissions and future perspectives of circular econ-

omy ask for new solutions to produce commodities and fine chemicals. Large-scale

bubble columns operated by gaseous substrates such as CO, CO2, and H2 to feed aceto-

gens for product formations could be promising approaches. Valid in silico predictions

of large-scale performance are needed to dimension bioreactors properly taking into

account biological constraints, too. This contribution deals with the trade-off between

sophisticated spatiotemporally resolved large-scale simulations using computation-

ally intensive Euler–Euler and Euler–Lagrange approaches and coarse-grained 1-D

models enabling fast performance evaluations. It is shown that proper consideration

of gas hold-up is key to predict biological performance. Intrinsic bias of 1-D models

can be compensated by reconsideration of Sauter diameters derived from uniquely

performed Euler–Lagrange computational fluid dynamics.

K E Y W O R D S
1-D model approach, bubble column reactor, computational fluid dynamics, pseudo-stationary gas gradient,

two-phase Euler–Euler simulation

1 INTRODUCTION

The Paris Climate Agreement that entered into force in

November 2016 created the framework for national con-

tributions to limit the global temperature rise well below

2◦C. As such, the reduction of greenhouse gas emissions

became part of responsible chemical industry leadership, now

aiming to establish a circular economy [1], that is, preventing

any carbon losses and ensuring economic and ecological

sustainability [2, 3].

Accordingly, using CO2, H2, and CO gas mixtures either

from gasification of municipal waste, biogenic sources or

as off-gas (e.g., from steel industry) is an attractive source

of reduced carbon (CO) and H2. The so-called syngas

fermentations with acetogens such as Clostridiae sp. are

Abbreviation: CFD, computational fluid dynamics.
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highly promising to access not only natural products (ethanol,

acetate, or 2,3-butanediol) [4, 5] but also recombinant com-

pounds such as acetone and butanol [6–8]. Those commodi-

ties require for simple, continuously operating large-scale

bioreactors that could be designed as bubble columns.

Dimensioning needs thorough in silico parameter analysis

to ensure proper, large-scale production. However, large-scale

bubble columns are very challenging to simulate, actually

comprising three phases (liquid, bubbles, and cells), turbu-

lent flows, mass transfer of poorly soluble gases (CO, H2),

microbial reaction kinetics, and—last but not least—proper

bubble population models for predicting mass transfer areas.

With the advent of gaseous substrates for large-scale single

cell protein production in the 1970 s, the attraction of bubble

columns peaked but somewhat leveled out during the last

Eng Life Sci. 2020;1–13. www.els-journal.com 1



2 SIEBLER ET AL.

decades. Intensive studies in 6–10 m pilot scales [10, 13]

unraveled correlations between gas velocities and kLa and

even succeeded to develop 1-D models for predicting gas

transfers properly [11]. The applicability of the well-known

k-𝜀 model for bubble columns was questioned [12, 14] out-

lining the need to consider turbulent flow regimes properly.

Nevertheless, 1-D modeling of bubble columns should be

possible, in particular when iterative optimization cycles are

taken into account [9, 13].

Ideally, large-scale simulations should consider spatiotem-

poral heterogeneities and their impact on cellular performance

[9–12]. But related simulations not only require thorough

mechanistic models but also sufficient computational power

[13]. Accordingly, simplifications are often made either by

assuming ideal mixing, 1-D gas gradients [14] or dissembling

the large bioreactor into numerous volumes [15–19].

Recent highly valuable examples are given by Chen

et al. [20, 21] who evaluated the performance of large-scale

Clostridiae fermentations with the help of a genome-scale

metabolic model applying spatiotemporal bioreactor simula-

tions based on homogenously mixed volumes. The authors

applied flux balance analysis to estimate flux distributions for

each 1-D discretization. However, despite successful applica-

tion, growth rates were overestimated by trend and physical

criteria such as gas hold-up were not integrated, yet. The lat-

ter may have affected the large-scale prediction accuracy, too.

Without doubt, such 1-D models require less computational

efforts than sophisticated Euler–Lagrange computational

fluid dynamics (CFD). They offer relatively easy-to-

implement use but may hide intrinsic drawbacks hampering

prediction quality. Furthermore, their predictions might be

biased because model granularity is intrinsically coarse. Nev-

ertheless, they are the method of choice in conceptual design

to search in operational parameter spaces. This contribution

exactly deals with the trade-off between properly simulat-

ing large-scale bubble column performance and screening

operational parameter spaces with reasonable computational

effort. Special emphasis will be put on the impact of gas

hold-up on the expected biological performance, that is,

product-per-biomass yield. This relation is considered of

particular importance as it links a key operational parameter

with the most important biological readout.

2 MATERIALS AND METHODS

2.1 Geometry, reactor set-up, and biological
system
Both simulation approaches were conducted for equal

reactor geometry using the same biological system, that is,

Clostridium ljungdahlii DSM 13528 that grows on carbon

monoxide as C-source. The choice of CO simplifies the com-

PRACTICAL APPLICATION
Transferring biochemical processes from the labora-

tory to industrial scales is very challenging. Physi-

cal properties may change drastically and may cause

nonwanted performance losses. Accordingly, tools

are needed to predict large-scale conditions leading

to an optimum design with minimized performance

losses.

This study presents a computational tool for con-

ceptual reactor design of an industrial-scale bubble

column bioreactor. Time-consuming and computa-

tionally challenging design parameter studies were

performed with a simplified 1-D model. Notewor-

thy, key settings including gas hold-up were derived

from spatially resolved, computational fluid dynam-

ics (CFD). The interaction of both approaches repre-

sents the optimum trade-off between computationally

intensive CFD and the essential probing of a broad

design parameter space performed via 1-D modeling.

parison with the previous publication [11] and represents the

preferred carbon and electron source for alcohol production.

A cylindrical reactor with 25 m liquid height and diameter

𝐷𝑅 = 2.52 m was chosen resulting in a 𝐻𝐿∕𝐷𝑅-ratio of

about 10. Consequently, the setup imposed high hydrostatic

pressure gradients. For 1-D modeling, the bubble column

simulations considered continuous countercurrent mode with

liquid recycling and medium feed at the top of the reactor.

At the bottom, synthesis gas was continuously provided via

the total cross-sectional area 𝐴𝑅. The media density 𝜌𝐿
was assumed to be similar to the properties of water with

𝜌L = 1,000 kg m−3. Isothermal process conditions were

assumed with an operating temperature of 310.15 K. Heat

generation was neglected. Nevertheless, in large-scale biore-

actors temperature control might be necessary. No additional

pressure was applied beside the ambient pressure of 1 atm

and the hydrostatic pressure due to the column height.

State variables such as gas concentrations and gas hold-up

were partially differentiated following the scheme presented

by Chen et al. [14].

2.1.1 1-D approach
This approach is similar to the publications of Chen et al. [14,

20, 21]. The new mass balance equations are described in

this section. Growth and production formation are calculated

as described in Siebler et al. [11]. Spatial and temporal

discretization was kept the same as in Chen et al. [14, 21] and

is described in more detail in the Supporting Information.

According to the reactor set-up outlined in the previous

section, four partial differential equations and four ordinary
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differential equations need to be set. Dissolved and gaseous

synthesis gas components, the gas hold-ups, and the bubble

number density are local, time dependent variables, and

serve as input values for calculating dynamics of growth and

product formation.

The mass balance for the liquid phase of one discretization

volume is derived including convective and diffusive trans-

port, phase-to-phase mass transfer, and consumption terms.

The volume of each section is written as: Δ𝑉𝐿 = Δ𝑧𝐴𝐿,

where Δ𝑧 is the section height and 𝐴𝐿 is the liquid surface

area between the sections. The cross-sectional area of the

reactor 𝐴𝑅 is the sum of 𝐴𝐿 and the gaseous interface 𝐴𝐺.

The gaseous and liquid volume fractions are indicated by 𝜀𝐺
and 𝜀𝐿 (see Figure S2). It follows

Δ𝑧 d𝑐𝐿𝐴𝐿

d𝑡
= 𝐴𝐿𝑐𝐿𝑣𝐿,slip

|||𝑧+Δ𝑧 − 𝐴𝐿𝑐𝐿𝑣𝐿,slip
|||𝑧

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
transport

+ 𝐴bubbles𝑘𝐿
(
𝑐∗
𝐿
− 𝑐𝐿

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

mass transfer

−Δ𝑧𝐴𝐿𝑞𝑐𝑐𝑋
⏟⏞⏞⏞⏟⏞⏞⏞⏟
consumption

+ 𝐷𝐿𝐴𝐿

d𝑐𝐿
d𝑧

||||𝑧+Δ𝑧 − 𝐷𝐿𝐴𝐿

d𝑐𝐿
d𝑧

||||𝑧
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dif fusion

(1)

with 𝐴bubbles as the mass transfer area between the liquid and

gaseous phase that leads to 𝑎 = 𝐴bubbles∕(Δ𝑧𝐴𝐿) and the

well-known 𝑘𝐿𝑎 term for modeling the mass transfer term

with the equilibrium concentration 𝑐∗
𝐿

and the soluble gas

concentration 𝑐𝐿. The liquid slip velocity 𝑣𝐿,𝑠𝑙𝑖𝑝 multiplied

by 𝜀𝐿 = 1 − 𝜀𝐺 gives the liquid velocity 𝑣𝐿, which can be

assumed to be constant. The diffusion term with the liq-

uid phase dispersion coefficient 𝐷𝐿 with 4.5 m2 h−1 [21]

is included as well as the consumption term consists of the

uptake kinetic qc and biomass concentration 𝑐𝑋 . By divid-

ing equation (1) by 𝐴𝑅 and Δ𝑧 and using the correlation

1 − 𝜀𝐺 = 𝐴𝐿 ∕𝐴𝑅, the final partial differential equations for

the dissolved gases (𝑚 ∈ [CO,CO2,H2]) can be formulated.

𝜕𝑐𝐿,𝑚𝜀𝐿

𝜕𝑡
= 𝑣𝐿,slip

𝜕𝑐𝐿,𝑚𝜀𝐿

𝜕𝑧
+ 𝑘𝐿,𝑚𝑎

(
𝑐∗
𝐿,𝑚

− 𝑐𝐿,𝑚

)
− 𝑞𝑚𝑐𝑋𝜀𝐿 +𝐷𝐿

𝜕2𝑐𝐿,𝑚𝜀𝐿

𝜕𝑧2
(2)

Each balance of the gas phase only needs to consider con-

vective mass transport and phase-to-phase mass transfer that

leads to

𝜕𝑐𝐺,𝑚𝜀𝐺

𝜕𝑡
= 𝑣𝐺,𝑠𝑙𝑖𝑝

𝜕𝑐𝐺,𝑚𝜀𝐺

𝜕𝑧
− 𝑘𝐿,𝑚𝑎

(
𝑐∗
𝐿,𝑚

− 𝑐𝐿,𝑚

)
(3)

Because the gas phase is compressible, the gas hold-ups

depend on the local pressure that correlate 𝜀𝐿 and 𝜀𝐺 with

the liquid height 𝐻𝐿. The total molar density 𝜌∗ is introduced

using the ideal gas law 𝑃𝑉 = 𝑛𝑅𝑇 and the hydrostatic pres-

sure 𝑃𝐻 = 𝑃0 + 𝜌𝑔ℎ with ℎ = 𝐻𝐿 − 𝑧

𝜌∗ =
3∑

𝑚=1

𝜌𝑚 (𝑧)
𝑀𝑚

=
𝑃0 +

(
𝐻𝐿 − 𝑧

)
𝑔𝜌𝐿𝜀𝐿

𝑅𝑇
(4)

with the gravitational acceleration 𝑔, liquid density 𝜌𝐿, uni-

versal gas constant 𝑅, and the operating temperature 𝑇 . The

index 𝑚 = 1, 2, 3 always represents the synthesis gas com-

position with CO, CO2, and H2. Considering the total molar

gas density, the following equation can be derived:

𝜕𝜀𝐺𝜌
∗

𝜕𝑡
= 𝑣𝐺,slip

𝜕𝜀𝐺𝜌
∗

𝜕𝑧
−

3∑
𝑚 = 1

𝑘𝐿,𝑚𝑎
(
𝑐∗
𝐿,𝑚

− 𝑐𝐿,𝑚

)
(5)

It is further assumed that the number density 𝑛𝐺, that is,

the number of bubbles 𝑁𝐵 divided by the reactor volume 𝑉𝑅,

only depends on convection. No further bubble breakage or

coalescence occurs.

𝜕𝑛𝐺
𝜕𝑡

= 𝑣𝐺,slip
𝜕𝑛𝐺
𝜕𝑧

𝑛𝐺 (𝑡, 𝑧) = 𝑁𝐵

𝑉𝑅
= 𝜀𝐺

4
3𝜋𝑅

3
𝐵

(6)

Nevertheless, the bubble radius 𝑅𝐵 is a function of the gas

hold-up and hydrostatic pressure. If the number of bubbles in

a section 𝑖 is multiplied with the bubble volume 𝑉𝐵,𝑖, the gas

hold-up 𝜀𝐺,𝑖 is derived. Therefore, all balance equations are

intertwined by the gas hold-up. Noteworthy, this also affects

the volumetric surface area 𝑎, which is the sum of all bubble

surfaces 𝐴𝐵 divided by the reactor volume.

𝑎 =
∑

𝐴𝐵

𝑉𝑅
= 3

𝑅𝐵

𝜀𝐺 (7)

Product formation and growth are formulated as ordinary

differential equations (see Equations 8) using the growth rate

𝜇 and the dilution rate D = 0.055 h−1.

d𝑐𝑋
d𝑡

= 𝜇𝑐𝑋 −𝐷𝑐𝑋

d𝑐𝑘
d𝑡

= 𝑀𝑘 𝑞𝑘𝑐𝑋 −𝐷𝑐𝑘

(8)

Because biomass and product concentrations 𝑐𝑘 are in

g L−1, the molecular weight 𝑀𝑘 is needed with 𝑘 ∈
[acetate, ethanol, 2, 3−butanediol]. For the sake of simplic-

ity, individual production rates q𝑘 represent mean values of

the section-specific q𝑘,𝑖 that consider local gas uptake kinet-

ics q𝑚,𝑖 (see Supporting Information).

2.2 Computational fluid dynamics
Recently, the set-up of the simulation framework including

results has been published in Siebler et al. [11]. Accordingly,

only a draft explanation is given. For details, readers are
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A B C

F I G U R E 1 Refinement study. In (A) and (B), the gaseous and dissolved (liquid) mass of CO over times is shown. Exemplary, four

discretization steps are depicted N = 10, 20, 100, and 200. In (C), the relation between total CO leaving and entering the column is illustrated

revealing that N = 100 closes the mass balance with less than 5% gap

referred to the publication. Euler–Euler two phase simulations

were conducted with the CFD tool ANSYS Fluent 18.0. The

Reynolds-averaged Navier–Stokes equations combined with

the re-normalization group k-𝜀-model were solved to derive

pseudo-stationary gas gradients similar to the 1-D approach.

Drag and lift forces, wall lubrication, turbulent dispersion,

and interaction as well as breakage and coalescence were

enabled. For mass transfer, the same correlation as in Equa-

tion (9) was used except for the bubble diameter 𝑑𝐵 , which

was exchanged by the Sauter mean bubble diameter 𝑑32. For

the solubility of the gas, the Henry law was also applied.

Pressure was considered as static. The initial bubble size

was 4 mm. To model CO uptake kinetics, the correlation of

Mohammadi et al. [22] was used (see Supporting Information

eq. 13). The analyzed fermentation “snap-shot” operation

window was defined by chosen the biomass concentration of

10 g L−1.

As indicated for the 1-D approach, the uptake kinetics of

CO were translated into production rates according to the

approximation described in Siebler et al. [11]. So far, there

is no comprehensive model for the prediction of production

rates of C. ljungdahlii. The simple correlation used does nei-

ther include internal redox and energy balances nor mainte-

nance. It is solely based on the element balances of carbon,

hydrogen, and oxygen. Nevertheless, the correlation allows to

compare both modeling approaches.

3 RESULTS

3.1 Basic settings of 1-D
The bubble column was divided in N slices each consisting

of a liquid L and a gaseous G fraction with the uprising

superficial gas velocity 𝑣𝑆 and the downcoming liquid

velocity 𝑣𝐿. Homogenous conditions were assumed in each

liquid and gaseous phase. For identifying the number N of

essential volumes (sections), simulations were performed

probing N between 10 and 200 (Figure 1).

Physical state variables were simulated according to Equa-

tions (1)–(8). Biochemical reaction rates reflecting microbial

metabolic activity were set as described in “Materials and

Methods” section and in Siebler et al. [11].

As presented in Figure 1, the mass balance for the chosen

discretization does not close but gives reasonable results for

N ≥ 100. No significant improvement of simulation accuracy

and convergence could be achieved increasing N from 100 to

200. With respect to computational efforts, N = 100 was used

for all calculations.

3.2 Probing the parameter space
For evaluating a proper parameter setting, key impact factors

defining the performance of a biotechnological bubble

column need to be specified. To characterize the biological

output, YPX(SS) and Cfix(SS) were chosen indicating the

product per biomass yield and the metabolized amount of

carbon under steady-state operating conditions, respectively.

The physical operation was qualified by the total mean gas

hold-up 𝜀̄𝐺, the mean bubble diameter 𝑑𝐵 , the mean oxygen

transfer coefficient 𝑘𝐿𝑎, and the bubble number density

𝑛𝐺.

The simulation of the said performance criteria crucially

depends on the proper prediction of 𝑘𝐿𝑎 and their interaction

with the gas hold-up 𝜀𝐺 and the superficial gas velocity

𝑣𝑆 . The well-known Higbie correlation [23] was used for

estimating 𝑘𝐿 as

𝑘𝐿 = 2√
𝜋

(
𝑣𝑇𝐷𝐶𝑂

𝑑𝐵

)0.5
(9)
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A B

C

F I G U R E 2 Comparing model predictions with experimental observations. In (A), the gas hold-up 𝜀̄𝐺 as a function of superficial gas velocity

𝑣𝑆 for demineralized water, yeast solution, and ethanol solution is shown [27]. The average mass transfer rate 𝑘𝐿𝑎 as a function of 𝜀̄𝐺 for different

column diameters is depicted in (B) [28]. In (C), the 𝑘𝐿𝑎 is shown as a function of superficial gas velocity 𝑣𝑆 for water–salt solution, pure water, and

water detergent mix [26]

with 𝐷𝐶𝑂 as the diffusion coefficient of CO in water [24, p.

127] and 𝑑𝐵 as the bubble diameter. According to Tomiyama

et al. [25], the steady-state uprising bubble velocity 𝑣𝑇 can be

estimated as

𝑣𝑇 =
√
2

(
𝜎g

(
𝜌𝐿 − 𝜌𝐺

)
𝜌2
𝐿

)0.25

(10)

for 2 × 10−3 ≤ dB ≤ 10 × 10−3 m and Eötvös number 𝐸𝑜 =
(𝜌𝐿 − 𝜌𝐺) 𝑔𝑑𝐵∕𝜎 ≤ 16. With the measured surface tension

of the cultivation medium 𝜎 = 0.0724 ± 0.0063 N m (iden-

tified via bubble pressure tensiometer), the medium density

𝜌L = 1000 kg m−3 and the air density 𝜌G = 1.2 kg m−3

vT = 0.23 m s−1 is calculated, which is pretty similar to the

distilled water value vT = 0.25 m s−1 [26]. The volume spe-

cific gas/liquid mass transfer area a was estimated assuming

spherical bubbles:

𝑎 =
6𝜀𝐺
𝑑𝐺

(11)

For evaluating bubble diameters ≤ 10 × 10−3 m, the fol-

lowing equation was applied:

𝜀𝐺 =
𝑣𝑆

𝑣𝑇
(12)

with vT = 0.23 m s−1 [26]. Furthermore, the impact of media

components such as organic acids, salts, and alcohols on 𝜀𝐺
and 𝑣𝑆 were considered using the experimental findings of

Schügerl et al. [27] as reference. By analogy, experimental

observations of Heijnen and van’t Ried [26] outlining the cor-

relation between 𝑘𝐿𝑎 and 𝑣𝑆 regarding media compositions

were used. Figure 2 provides an overview of the experimental

measurements.

To challenge the plausibility of experimental findings,

the model case of 0.06 vvm (i.e., superficial gas velocity

vS = 0.025 m s−1 in a 0.6 m bubble column) can be studied

in Figure 2. For demineralized water, 𝜀𝐺 = 0.1 is indicated

(Figure 2A, dashed line), which leads to 𝑘𝐿𝑎 of about 130 h−1

(Figure 2C, dashed line). This is in agreement with the find-

ings of Akita and Yoshida [28]. Accordingly, Figure 2 shows
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the framework for further simulations. To be precise, the

ethanol plot in Figure 2A is chosen as C. ljungdahlii also pro-

duce alcohols such as ethanol and 2,3-butanediol. Although

the settings of 𝑣𝑇 , 𝐷𝐶𝑂, 𝜌𝐿, 𝜌𝐺, and 𝜎 could be fairly assumed

as constant, 𝜀𝐺, 𝑑𝐵 , 𝑘𝐿, and 𝑘𝐿𝑎 are intertwined according

to Equations (9)–(12). Each simulation allowed the indepen-

dent setting of two parameters, while the remaining two were

calculated. The simulation scenarios A–E were performed

using the following setting as reference (dashed black line):

yCO = 0.55, 0.06 vvm, 𝜀̄𝐺 = 0.1 (𝜀𝐺,0 = 0.06), and 𝑘𝐿𝑎 =
130 h–1 (𝑘𝐿𝑎 = 90 h−1 with 𝑑𝐵,0 = 5 × 10−3 m and kL = 3.4

× 10−3 m s−1).

1. Variation in CO gas fraction with 0 ≤ yCO ≤ 0.9.

2. Different gassing rates with 0.004 ≤ 𝑣𝑆 ≤ 0.063 m s−1

(15 ≤ 𝑉̇𝐺 ≤ 225 m3 s−1, 0.01–0.15 vvm).

3. Variations of 𝑘𝐿𝑎 (𝜀G = const.) with initial settings of 40–

180 h−1 resulting in mean steady state values of 𝑘𝐿𝑎 rang-

ing from 60 to 250 h−1.

4. Variation of initial gas hold-up 0.02 ≤ 𝜀𝐺,0 ≤ 0.19 with

fixed 𝑘𝐿𝑎 resulting in 0.03 ≤ 𝜀̄𝐺 ≤ 0.31 (and variable 𝑑𝐵 ,

see Figure S3 for explanation).

5. Same variation as in D but considering variable 𝑘𝐿𝑎 yield-

ing equal 𝜀̄𝐺 as in D and constant 𝑑𝐵 (see Figure S3 for

explanation).

6. Final parameter study with new reference set-up according

to findings in A to E: yCO = 0.55, 0.15 vvm and 𝜀̄𝐺 = 0.31
(𝜀𝐺,0 = 0.19). Initial 𝑘𝐿𝑎 settings ranged from 100 to 425

h−1 finally reaching mean steady state 𝑘𝐿𝑎 between 140

and 580 h−1.

Figure 4 illustrates the observed sensitivities of the sim-

ulation scenarios A–E focusing on the readouts YPX(SS),

Cfix(SS), 𝜀̄𝐺, 𝑑𝐵 , 𝑘𝐿𝑎, and 𝑛𝐺. Values are normalized with

respect to the maximum (1) and the minimum (−1) with the

baseline (0) indicating the reference. Figure 3 provides an

overview of the underlying data that were used for the sen-

sitivity analysis in Figure 4.

The key observations are as follows:

(i) The physical parameters 𝜀̄𝐺, 𝑑𝐵 , 𝑘𝐿𝑎, and 𝑛𝐺are neither

dependent on the CO fraction yCO nor on the gassing rate

vvm (A,B). Rising CO fractions cause increasing CO fix-

ation Cfix(SS), whereas reduction of yCO leads to poor

Cfix(SS) and production biomass yields YPX(SS). Inter-

estingly, lowering gassing rates do not cause as severe

reduction of YPX(SS).

(ii) Increasing 𝑘𝐿𝑎 keeping 𝜀̄𝐺 constant leads to increasing

bubble diameters and bubble numbers as indicated in C.

As expected, Cfix(SS) and YPX(SS) improve with rising

𝑘𝐿𝑎 and show lowered values for minimum settings.

(iii) Varying 𝜀̄𝐺 keeping 𝑘𝐿𝑎 constant is responded by strong

variations of bubble sizes and somewhat minor changes

of bubble numbers. Impacts on the biological perfor-

mance criteria are less pronounced.

(iv) Varying 𝜀̄𝐺 and liberating 𝑘𝐿𝑎 caused the strongest

amplitudes of the biological and the physical criteria

except for the mean bubble diameter.

3.3 Spatial and temporal results of 1-D
approach
Simulation results of the 1-D approach applying the new

reference setup are depicted in Figure 5. The time courses

of biomass, acetate, ethanol, 2,3-butanediol, outlet gas (CO

and CO2), and mean dissolved CO and CO2 clearly indi-

cate steady-state process conditions after approximately 800

h. Notably, CO is completely consumed, whereas CO2 is pro-

duced. The products acetate, ethanol, and 2,3-butanediol are

constantly formed mirroring the experimental observations of

C. ljungdahlli formulated in the stoichiometric model. Dur-

ing the first 2 h, the gas accumulates in the medium, since

initial estimations of dissolved gas concentrations had not yet

considered CO consumption and CO2 formation with growing

biomass.

The spatial analysis (B) reveals changing gas compositions

over the column height. Dissolved CO levels are the highest at

the bottom of the column, the only zone where growth inhi-

bition (dissolved CO > 0.1 mmol L−1) occurred according

to Mohammadi et al. [22]. At about 11 m height, the car-

bon uptake rate severely dropped due to limiting CO levels

(𝑐𝐿,𝐶𝑂 ≤ 0.014mmol L−1). The model-based threshold value

of qc = −14 mmol g−1CDW h−1 was fallen below. Consequently,

by-product and biomass formation slow down. Notably, all by-

product and biomass rates were spatially distributed that out-

lines their strict dependence on gas hold-up and mass transfer.

Nevertheless, integral rates corresponded to the steady-state

scenario of the entire bubble column.

3.4 Comparison of 1-D with CFD results
Following the key motivation of this study to compare coarse

grained 1-D modeling (F) with CFD, Table 1 provides an

overview of the main results. As clearly depicted, almost all

criteria reveal severe differences between 1-D (F) and CFD.

By trend, the gas transfer simulated via 1-D (F) is much higher

than via CFD. This is reflected by larger values of gas hold-up,

mean bubble surface, 𝑘𝐿, and smaller mean bubble diameter.

As a consequence, the mean 𝑘𝐿𝑎 of 1-D (F) outnumbers the

CFD values by factor 14 approximately. Noteworthy, mean

dissolved CO values are predicted to be higher via 1-D (F)

than via CFD. The 1-D model with set-up F overestimates the

biological efficiency and predicts 40% more product biomass

yield than CFD.
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A

B

C

D

E

F I G U R E 3 Steady-state results of parameter study. Variation of (A) gas composition, (B) gassing rate, (C) initial 𝑘𝐿𝑎 value, (D) initial gas

hold-up 𝜀𝐺,0 with constant 𝑘𝐿𝑎 value, and (E) initial gas hold-up 𝜀𝐺,0 with variable 𝑘𝐿𝑎 value. The reference set-up is indicated with a black dashed

line. Gray points in (A) are simulation results without consideration of diffusion

In CA (F), the bubble diameter is way off too small in par-

ticular in the down part of the column. For this reason, a sec-

ond run of the 1-D model (G) was conducted replacing the

value by the Sauter mean diameter derived from CFD simula-

tions. Results are indicated in Table 1 as 1-D (G) and in Fig-

ure 6 as red dashed line. This adaptation of the 1-D approach

was further adjusted by approximating the initial gas hold-up

and mass transfer rate according to the findings in the CFD

approach.

Figure 6 illustrates the differences of 1-D (F), 1-D (G),

1-D*, and CFD simulation as a function of the column height.

The trend of divergence depicted in Table 1 is clearly visible
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A

D E

B C

F I G U R E 4 Parameter sensitivity analysis for conceptual design. The following scenarios are studied: (A) variation of gas composition

(excluding wash-out results), (B) gassing rate, (C) initial 𝑘𝐿𝑎 value, (D) initial gas hold-up 𝜀𝐺,0 with constant 𝑘𝐿𝑎, and (E) initial gas hold-up 𝜀𝐺,0
with variable 𝑘𝐿𝑎. Variables with a bar indicate the mean steady-state value. Additionally, the steady-state production biomass yields YP,X(SS), total

steady-state carbon fixation Cfix(SS) and bubble number density 𝑛𝐺 are depicted. All values are normalized to the maximum (1) as well as minimum

(−1) value to allow comparability. The black solid line indicates the first parameter set thereby defining the baseline (0) of each radar graph. Areas of

light gray (as well as small arrow in (D)) contour the set of minimum values, and dark gray areas encode maximum values

in the height-specific predictions using 1-D and CFD. Only

within a small zone close to the bottom of the column 1-D and

CFD, calculated gas hold-ups are equal. For all other cases,

the above-mentioned criteria differ severely following the

same trend as indicated in Table 1 (1-D (F) and CFD). Fur-

thermore, Figure 6 also indicates the heterogeneity of the said

values at each column height. In particular, CFD predicted

bubble size distributions are very heterogeneous at each

height, which also induces variations of gas hold-up. Addi-

tionally, using the gas hold-up and mass transfer value of CFD

simulations improved the prediction quality of the 1-D model

by 32% and 70% for bubble surface and volumetric mass

transfer coefficient, respectively (see Table 1, 1-D (G) and

1-D*). The finding is in agreement with the observations of

Bauer and Eigenberger [29] who suggested an iterative opti-

mization strategy to optimize prediction quality of a so-called

“zone” model. Notably, the statement holds equally true when

additional biological readouts are considered: Acceptable 1-D

model predictions can be achieved when Sauter diameter, gas

hold-up, and mass transfer are derived from CFD simulations.

Figure 7 complements the comparison of the initial simu-

lation results of 1-D (F) and (G) with CFD. The difference

in percentage of the most diverging parameters, namely dis-

solved CO concentration, gas hold-up, and bubble diameter,

is illustrated. By trend, CO levels are heavily overestimated

almost everywhere using 1-D (F). Gas hold-ups of 1-D (F) and

CFD are similar in the lower part of the column but are over-

estimated in the upper part. Figure 7 also provides detailed

insights in the heterogeneities at each column height. Color-

ing indicates that severe discrepancies may even occur on the

same height. The bottom and the upper part are particularly

prone to heterogeneous conditions with respect to gas hold-

up and bubble sizes.

4 DISCUSSION

Intrinsically, 1-D modeling is a coarse-grained approach

lumping local heterogeneities, thereby reducing the modeling

complexity to a minimum. On contrast, CFD aims to unravel

spatial particularities exploiting the local resolution. The

latter is restricted by the maximum mesh size as well as

the general model approach (e.g., multiphase) and therefore

the resulting computational effort. For instance, resolving

mixing and mass transfer of a 200-L stirred tank reactor

with 500 k mesh yields a mean resolution of 0.5 mL and
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A

B

F I G U R E 5 Temporal and spatial results for final parameter set-up. In (A), the average concentrations are pictured over time until the process

reaches a steady state. (B) Spatially resolved steady-state results of the liquid and gaseous concentrations are shown on the left side. The right side

illustrates the related consumption and production rates (acetate qa, ethanol qe, and 2,3-butanediol qb and the growth rate 𝜇)

T A B L E 1 Average results of both simulation approaches in comparison

Average Variable 1-D (F) CFD 1-D (G) 1-D* Units
CO concentration 𝑐𝐿,𝐶𝑂 0.018 0.002 0.016 0.0015 mmol L−1

Gas hold-up 𝜀̄𝐺 0.31 0.34/0.21
a

0.31 0.21 –

Diameter 𝑑𝐵 4.4 20.9
b

20.9 20.9 Mm

Bubble surface 𝑎̄ 408.3 61.8 86.9 59.1 m−1

Mass transfer rate 𝑘̄𝐿 3.93 × 10−4 1.75 × 10−4 3.93 × 10−4 1.75 × 10−4 m s−1

Mass transfer 𝑘𝐿𝑎 577 39 123 37 h−1

Product-biomass yield ȲP,X 1.5 0.9 1.3 1.4 –

a
Second value with breakage, coalescence, bubble expansion, and mass transfer.

b
Sauter mean for CFD.

Both approaches, 1-D (1-D(F), (G) and *) and computational fluid dynamics (CFD) simulation used the same initial conditions with superficial gas velocity of 0.0625 m

s-1 and initial bubble diameter of 4 mm. 1-D (G) used the Sauter mean diameter of the CFD simulation as mean bubble diameter. In the final simulation 1-D*, besides

the Sauter diameter, the gas hold-up and mass transfer rate were adjusted accordingly. The product-biomass yield was calculated spatially with the correlation described

in Siebler et al. [11].

requires about 2–3 days computing using state-of-the-art

personal computers (here: calculation on 16 cores with

double precision). However, demanding the same resolution

for a 125 m3 bioreactor calls for high-performance computing

with supercomputers. As a consequence, evaluating tests

probing different design sets for large-scale application

need be performed in a less computationally challenging

framework. Still, the same set of essential design parameters

should be evaluated but computational speed allows for the

identification of a preliminary design optimum that should
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A B

DC

E F

F I G U R E 6 Profiles over reactor height in comparison. Each graph depicts profiles of CFD (dots) and 1-D (red lines) simulation. In case of

CFD, each dot represents values of individual numerical cells, thereby visualizing the varying conditions at each column height. (A)–(F) Dissolved

CO concentration 𝑐𝐿,𝐶𝑂, bubble area 𝑎, gas hold-up 𝜀𝐺, mass transfer rate 𝑘𝐿, bubble diameter 𝑑𝐵 , and volumetric mass transfer 𝑘𝐿𝑎 are compared

be further investigated by CFD approaches. It is exactly this

scenario that is exemplified in this study.

4.1 Parameter space analysis
As indicated in Figs. 3 and 4, increasing CO fraction finally

improves the biomass and the (by-)product formation indi-

cated by the readouts Cfix and YPX. This observation reflects

predominately low CO levels in the column which do not (yet)

cause growth inhibition. Accordingly, any measure to improve

CO levels is responded by rising Cfix and YPX. Noteworthy, the

physical parameters 𝜀̄𝐺, 𝑑𝐵 , 𝑘𝐿𝑎, and 𝑛𝐺 are not affected by

CO fractions, which allows their independent fine-tuning.

In agreement, variations of the gassing rate vvm support

the necessity to install proper CO supply. Additionally, the

important minimum threshold value of about 0.06 vvm is

outlined (see Figure 4). Below, the biological readouts Cfix

and YPX increase with strong positive correlation on vvm

raise, whereas higher vvm settings improve biological perfor-

mance only marginally. Accordingly, any gassing rate limita-

tion beyond 0.06 vvm can be ruled out that renders this value

an important design parameter. Noteworthy, low vvm settings

may even cause maximum dissolved CO2 levels, which reflect

the counteracting mechanisms of gassing input, hold-up, and

stripping.

The improvement of 𝑘𝐿𝑎 values (variation C) is always

beneficial for the biological readouts. Again, the finding mir-

rors the fact that most CO levels are far below inhibiting

thresholds, which highlights the necessity to improve CO

mass transfer.

One possibility to improve mass transfer is to increase gas

hold-up. Equations (9)–(13) show that the set of related phys-

ical parameters is intertwined, linking changes of gas hold-up

𝜀𝐺 to changes of 𝑎, 𝑘𝐿, 𝑑𝐵 , and 𝑘𝐿𝑎. For the sake of simplicity,

large-scale simulations may exclude putative impacts of gas

hold-up 𝜀𝐺 [14, 21]. However, this study aims to light related

impacts by investigating two possible simulation regimes (see

Figure S3): variation D keeps 𝑘𝐿𝑎 constant; variation E allows

flexible 𝑘𝐿𝑎 (setting 𝑘𝐿 and 𝑑𝐵 constant with characteristic

values, see Section 3.2).

The increase of 𝜀𝐺 (variation D) results in minor changes

of the biological readouts (see Figure 4D). This reflects

the fact that gas hold-up rise is responded by 𝑘𝐿 reduction,

which in turn reduces CO availability. However, the regime
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F I G U R E 7 Differences between 1-D and CFD simulation over reactor height. Concentration 𝑐𝐿,𝐶𝑂 (A), gas hold-up 𝜀𝐺 (B), and mean

diameter 𝑑𝐵 (C) deviation profiles are demonstrated in percentage over the reactor height. Additionally, horizontal section planes (dashed lines, top

and bottom) are graphically shown on the right side for each deviation profile. In (A), 100% − 𝑐𝐶𝐹𝐷
𝐿,𝐶𝑂

(𝑧)∕𝑐1𝐷
𝐿,𝐶𝑂

(𝑧) ⋅ 100% is shown, which translates

high similarity into low values. By analogy, graphic (B) is set. In (C), the criterion 100% − 𝑑1𝐷
𝐵

(𝑧)∕𝑑𝐶𝐹𝐷
𝐵

(𝑧) ⋅ 100% was applied to avoid negative

values. Still, high percentages encode large deviations

of variable 𝑘𝐿𝑎 allows to transfer 𝜀𝐺 raise proportionally to

rising 𝑎, which improves 𝑘𝐿𝑎 and leads to alleviated process

performance (see Figure 3E). Both cases illustrate that gas

hold-up impacts have to be considered properly to get valid

design values for further analysis.

Based on this evaluation, the setting of the reference pro-

cess as the new optimal setting F was chosen as follows: The

CO fraction was not adjusted since converter gas of metallur-

gical production processes rather not exceeds this value [30].

However, a moderate gassing rate of 0.15 vvm was chosen

that responds to the gas hold up of 𝜀G = 0.31 (𝜀G,0 = 0.19).

According to Bailey and Ollis [31, p. 611], this is the crit-

ical threshold value of starting heterogeneous bubbly flow

in air–water systems. Finally, moderate to high mean steady-

state 𝑘𝐿𝑎 values range (140–580 h−1) was rerun. The setting

yielded the final simulation results in Figure 5.

4.2 1-D versus CFD
Figures 6 and 7 depict the discrepancy between 1-D and CFD

modeling. Not only spatial differences are shown (Figure 7)

but also discrepancies in fundamental trends (Figure 6). The

first may have been expected as they reflect the missing

granularity of 1-D modeling. However, the second clearly

pinpoint to the lacking mechanistic details of modeling

bubble size distributions with the 1-D (F) approach. Appar-

ently, simply considering gas fractions and bubble numbers

leads to severe overestimation of 𝑎 values, which in turn

reflect too small bubble diameters 𝑑𝐵 . As a consequence,

1-D (F) overestimates 𝑘𝐿𝑎, which creates too high CO levels

and increases biological performance. Consequently, 1-D

modeling should already consider proper approaches to

simulate bubble sizes. Simply estimating bubble numbers

creates biased simulation results. This trend was already

indicated in the gas hold-up analysis and is clearly visible in

Figure 6. Noteworthy, the consideration of the Sauter diam-

eter of the CFD simulation improved the prediction quality

of 1-D (G) with respect to physical and biological readouts.

Additionally, using the gas hold-up and mass transfer value of

CFD simulations enhanced simulation quality even further.

Predictions of 1-D (G), 1-D*, and CFD converged but average

rates and constants of mass transfer are still too high in 1-D

(G). Nevertheless, the biological readouts approximated to

approximately 40% deviation of the CFD value.

5 CONCLUSIONS

Without doubt, CFD simulations inherently offer the most

accurate prediction of physical and biological readouts, spa-

tially resolved, in large-scale bioreactor fermentations. How-

ever, they also require detailed mechanistic understanding
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and—equally challenging—proper computational power for

dealing with industrial scale multiphase, mass transfer, mix-

ing, and reaction problems. Conceptual design approaches

need to search through parameter spaces of putative opera-

tional windows. Although CFD simulations would be ideal to

fulfill the task, limited computational power constraints cal-

culations on the use of 1-D models. Users must be aware that

physical readouts are most likely overestimating bioreactor

performance because impacts of bubbles are reflected poorly.

Nevertheless, the use of properly estimated Sauter mean

diameters from CFD helps to improve model predictions,

in particular for highly relevant biological readouts such as

product-biomass yields.

NOMENCLATURE

𝑎 [m−1] Interfacial area concentration

𝐴 [m2] Cross-sectional area

𝑐𝑘 [g L−1] Product concentration

𝑐𝑚 [mmol L−1] Gas concentration

Cfix(SS) [-] Total steady state carbon

fixation

𝐷 [h−1] Dilution rate

𝑑32 [m] Sauter mean bubble diameter

𝑑𝐵 [m] Bubble diameter

𝐷𝐶𝑂 [m2 s−1] Diffusion coefficient

𝐷𝐿 [m2 s−1] Liquid phase dispersion

coefficient

𝐷𝑅 [m] Reactor diameter

𝐠 [m s−2] Gravitational acceleration

𝐻𝐿 [m] Liquid height

𝐻
𝑐𝑝
𝑚 [mol L-1 atm−1] Henry coefficient

𝑘𝐿 [m s−1] Mass transfer coefficient

𝑀 [g mol] Molecular weight

𝑛 [-] Numerical volumes

𝑁 [-] Number of sections

𝑁𝐵 [-] Number of bubbles

𝑛𝐺 [m-3] Number density

𝑛𝑚 [mol] Number of moles of gas

𝑃 [atm] Pressure

q𝑘 [mmol g−1CDW h−1] Production rates

𝑄̇𝐿 [m3 h−1] Media flow

q𝑚 [mmol g−1CDW h−1] Gas consumption rates

𝑄̇𝑅 [m3 h−1] Back flow

𝑅 [kg⋅m2⋅s−2⋅K−1⋅mol−1] Universal gas constant

𝑅𝐵 [m] Bubble radius

𝑡 [s] Time

𝑇 [K] Temperature

𝑣 [m s−1] Velocity

𝑉 [m3] Volume

𝑦𝑚 [-] Gas fraction

YPX(SS) [-] Steady-state production

biomass yields

𝑧 [m] Direction and unit of length

Δ𝑧 [m] Section height

Greek
symbols

𝛼 [-] Combined back and media flow

𝜀 [-] Volume fraction

𝜇 [h−1] Growth rate

𝜌 [kg m−3] Density

𝜌∗ [mol m−3] Total molar density

𝜎 [N m] Surface tension

Indices
∗ Equilibrium concentration

0 Initial value

A Acetate

B 2,3-Butanediol

𝐵 Bubble

C Indices for CO uptake rate

E Ethanol

𝐺 Gaseous

𝑖 Section counter for 1-D

approach

𝑘 Product 𝑘 ∈ [acetate, ethanol,
2, 3 − butanediol]

𝐿 Liquid

𝑚 Gas composition

𝑚 ∈ [CO,CO2,H2]
𝑅 Reactor

𝑠 Indices superficial gas velocity

bubbles Mass transfer area between the

liquid and gaseous phase

slip Slip velocity

𝑇 Indices for terminal velocity

𝑋 Biomass
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