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Abstract

X-ray computed tomography (XRCT) and especially micro X-ray computed tomography (µXRCT)
represent key tools to get an insight into the internal structure of an object under investigation. While
XRCT enjoys great popularity in its application for medical imaging, µXRCT is also of great interest
for other research fields like materials science due to its higher spatial resolution. The objective of
this master thesis is to set up an algorithmic workaround to be able to reconstruct real-world µXRCT
data sets recorded in the open, modular and flexible XRCT system of the Institute of Applied Me-
chanics (CE) at the University of Stuttgart. Therein, the ASTRA toolbox is used as a basis, providing
main routines for reconstruction tasks such as the reconstruction algorithms. This work prepares
the indispensable theoretical underpinning concerning X-ray physics, common experimental scan-
ning setups and takes a detailed look at the mathematics of the reconstruction algorithms available
inside the ASTRA toolbox. Coming to the concrete implementation, image processing and filtering
techniques play a major role to achieve meaningful reconstruction results. Several studies dealing
with qualitative aspects which are of central importance for the reconstruction of real-world µXRCT
data sets conclude the present master thesis. It also discusses under which restrictions it is possible
to reconstruct full 3D data sets obtained with cone or helical cone beam scanning.
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1. Introduction

We understand tomography by its definition as an imaging technique using sectionings of an object
to draw conclusions about the internal structures from these slices. The most popular represen-
tatives of tomographic procedures are X-ray computed tomography (XRCT), magnetic resonance
imaging (MRI) and ultrasound computed tomography (USCT). Each of them produces sectional im-
ages, widely known as projections, in which the interior of the object cannot be identified free from
superposition effects. The tomographic method applied in this master thesis will be X-ray computed
tomography, for which we firstly need a clear definition of terms: As the title already suggests, the
data sets we make use of are obtained by micro X-ray computed tomography (µXRCT). The differ-
ence between outdated X-ray tomography (XRT) and XRCT is that in XRT the projections (better
known as radiographs in this case) had to be recorded analogously using a X-ray film, whereas
nowadays digital detection of the radiation in XRCT is a standard procedure. In particular, the word
component “computed” in XRCT refers to the fact that the orientation of the scanning installation,
the generation of a number of radiographs and all the calculations in conjunction with the key recon-
struction task for the sample are performed virtually using computer technology. Of course XRCT
uses Röntgen radiation (and not other types of excitations like magnetic fields in MRI or ultrasound
waves in USCT), and finally the prefix “µ” indicates that the resolution of the resulting tomographic
reconstructions will be in a micrometer range.

In XRCT, the collected radiographs (more likely named projections in this context) are measured
from different projection angles. Depending on the area of application, either the sample or the X-
ray source and detector rotate to achieve variable projection images. The great advantages of XRCT
lies in the fact that the insight into the object of interest can be gained in a noninvasive and nonde-
structive way. The basic prerequisite for XRCT is that the method is very sensitive to small changes
in the X-ray absorption inside the object, leading to a reliable distinction between eventual internal
structures. As presented in (Stock, 2008), the main utilization of XRCT following from these benefits
is clearly in human (or veterinary) medical imaging for diagnostic and therapeutic purposes. The
strength of XRCT for medical use is the speed (caused by the low exposure times) and the ability to
demarcate tissues that only differ very slightly in its physical density (see Kasban, El-Bendary, and
Salama, 2015). The second big use case of XRCT is industrial computed tomography, where inter-
nal inspection of the produced components stands in the foreground (cf. Sun, Brown, and Leach,
2012). It is necessary to impose higher radiation doses to check for production defects or to analyze
assemblies within the inorganic materials. Of course, XRCT can also serve research in the fields
of materials science (for one example, consider Bale et al., 2011) as well as biological or physical
science, or can even be used in geological (Cnudde and Boone, 2013) or archaeological challenges.
In general, it can be said that XRCT is a powerful tool to make the inside of objects accessible.

First of all, the original objective of this master thesis was to deal with the ASTRA toolbox as an
alternative and relatively new open source software solution for reconstruction tasks. Alternative
herein refers to the fact that the Institute of Applied Mechanics (CE) at the University of Stuttgart
used to reconstruct projection data with the commercial software Octopus Reconstruction, whose
sale was stopped in 2019 - so the need for another reconstruction tool is quite obvious. But also
the additional features of the ASTRA toolbox like a variety of applicable reconstruction algorithms
and the geometric flexibility (see chapter 5) shall be tested within this elaboration. To be able to
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carry this out, a huge amount of preparational understanding has to be acquired by the user. First of
all, chapter 2 demonstrates the physics on X-rays underlying any generated radiograph of an object
under investigation. Chapter 3 depicts selected experimental scan setups for XRCT only and ex-
plains how exactly projection data sets are gathered in practice. The reconstruction fundamentals in
chapter 4 play a very central role not only for this thesis, but also for the success of XRCT in general,
since reconstruction is the crucial point on the way to meaningful resulting images for the internal
structures of the sample. These cover the absolutely necessary previous knowledge on theoretical
aspects of analytical (sections 4.1 to 4.4) and algebraic (section 4.5) µXRCT reconstruction methods
in 2D and 3D without claim of completeness. Since real-world projection data sets, as created in the
open, modular and flexible XRCT system of the Institute of Applied Mechanics (CE) at the University
of Stuttgart (for a detailed description of the in-house XRCT lab, see Ruf and Steeb, 2020a), raise
additional challenges which are not included from the start in the toolbox routines, chapter 6 devel-
oped incidentally, offering some input concerning image processing and filtering. The sections on
the correction of center of rotation (COR) misalignments in 6.4 and on beam hardening correction
(BHC) in 6.5 are of particular interest here. To what extend the ASTRA toolbox can reconstruct more
than just theoretically motivated projection data sets and what limitations and particularities appear
in the process will be clarified in chapters 5 to 7, which involve and discuss some studies carries
out with the ASTRA toolbox. Section 7.1 deals with the challenges on the way to processing of a
full cone beam scanning data set and analyzes the final results for an irregular real-world data set,
while section 7.2 elucidates the treatment of helical cone beam scanning data.
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2. Physics on X-rays

This second chapter should give a brief overview over the underlying physical principles that make
the insight into objects possible at all, using the µXRCT scanning technique. The relevant phenom-
ena for this can be separated into the generation of X-rays in section 2.1, the interaction mechanisms
with matter (for example the positioned material sample) in section 2.2 and finally the detection of the
remaining X-ray radiation in section 2.3. The book (Carmignato, Dewulf, and Leach, 2018) notably
served as an inspiration for this chapter.

2.1. Generation of X-rays

X-rays (in the European usage mostly called Röntgen rays after their discoverer Wilhelm Röntgen)
are electromagnetic photon waves. In general, the energy of a single photon Ep, also named photon
energy, is proportional to its stimulation frequency ν as given by the relation

Ep = hν = h
c

λ
. (2.1)

The constant h in the familiar Planck-Einstein relation (2.1) is the so called Planck constant, h =
6.63 · 10−34 Js. In the reformulation with the wave’s wavelenght λ on the right side, the constant c is
the speed of light in vacuum, c = 3 · 108 m/s. The characteristic wavelengths of X-rays range from
0.01 to 10 nm, and the radiation is called hard respectively soft radiation considering the energetic
level attached to these wavelengths from equation (2.1).

To describe the generation of X-rays, we restrict ourselves to a classical polychromatic X-ray tube
like the one used in our in-house XRCT lab to provide projections from a cone beam scanning setup.
The generation of Röntgen radiation is mainly a two step mechanism: in the first step, the thermionic
effect is exploited to generate an electron beam at the cathode of the X-ray tube, which is aimed at
the target anode, where the electron beam interacts with the anode material in the second step and
partially emits Röntgen radiation.
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Figure 2.1.: illustration of the three main mechanisms to generate X-ray radiation
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A little more detailed view on the X-ray tube shows that both the cathode and the anode are evacu-
ated in a high vacuum chamber. The cathode is made up of a tungsten filament (wolfram) which is
heated using the Joule effect at low voltage. As a result of the increasing temperature, the filament
radiates electrons who have overcome the binding energy to their atoms by higher kinetic energy.
This is called the thermionic effect, and the evolving electron beam is focussed on the target after-
wards. The anode itself comprises a metal part, often again tungsten or molybdenum, and a thicker
part around the main target to faciliate heat dissipation, mostly made up of copper.

When the electron beam hits the target material, 99 % of the present energy is transformed to heat
originating from ionisation of target atoms. Only 1 % of the energy produces Röntgen radiation,
and this is obtained by three different mechanisms: The main mechanism can be indicated with
the german word bremsstrahlung and describes the deceleration of fast incident electrons in target
atoms, see Figure 2.1(a). Also of interest is the second mechanism (compare Figure 2.1(b)), which
can only be observed in small regions of photon energy. X-rays are emitted when a vacant electron
place in an inner shell of a target atom is refilled with an outer shell electron, inducing energy loss
to photons. The last and very rare mechanism depicted in Figure 2.1(c) is that an incident electron
directly collides with a target atoms nucleus, emitting photons at a very high energy level.

Figure 2.2.: X-ray spectra for a X-ray tube voltage of 100 kV, created with the software SpekCalc
(Poludniowski, Landry, DeBlois, Evans, and Verhaegen, 2009; the start of the trends

only at 10 keV is software-inherent)

We call a Röntgen radiation monochromatic if all enclosed photons own identical energy levels.
On the contrary, a polychromatic X-ray tube produces a bulk of photons with basically arbitrary
energy levels, and the denomination of the X-ray radiation as a spectrum on the lines of visible light
is traceable since differing photon energies are affiliated with varying wave lengths according to
equation (2.1). To support the comprehension of the three generating physical principles, Figure 2.2
illustrates polychromatic X-ray spectra for three different situations: Each curve predicts the intensity
(which can be understood as a statistical frequency) of the Röntgen radiation with increasing photon
energy levels, in which the applied X-ray tube voltage is 100 kV. The only difference in between
them is that the red and magenta curves correspond to a physical filtering procedure with aluminum
disks of dissimilar thickness, while the blue spectrum remains unfiltered. The continuous share
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of each trend indicates the bremsstrahlung (cf. Figure 2.1(a)) because this phenomenon arises
independent of the photon energy in principle. The peaks in the region of 55 to 70 keV photon
energy in Figure 2.2 symbolize the characteristic radiation (cf. Figure 2.1(b)), and the location of
the peaks is connected to the electron shell where the succeeding electron comes from. Collisions
with a target atom’s nucleus like in Figure 2.1(c) cannot be recognized in the graph because of its
rareness - the vanishing intensity values for the highest photon energies around 100 keV confirm
this statement.

2.2. Interaction mechanisms with matter

After a X-ray beam has been generated in the X-ray tube, the X-rays are exposed to the object
sample of interest in a way that the intensity of the beam reduces exponentially with increasing ob-
ject depth. The so called attenuation includes changes of the number, energy and direction of the
photons comprising the beam. There are some reasons for this attenuation, of which we only want
to take a short look at two thereof.

The first and also central cause for X-ray attenuation in matter is the photoelectric effect, which takes
place at lower photon energy levels. Here, the incident photon with energy higher than the binding
energy of an electron in the sample object effects the ejection of a lower shell electron, now named
photoelectron. We can find the energy balance

hν = Ep = Eb + Epe, (2.2)

where Eb is the surmounted electron binding energy and Epe the energy of the freed photoelectron.
On this ocassion, the photon is absorbed and the matter’s affected atom stays ionised until the
vacant place in the lower shell is filled again. A side effect when refilling the hole of the ionised atom
is that a fluorescence photon is emitted in a similar way as presented in Figure 2.1 (b). The whole
attenuation caused by the photoelectric effect depends on both the material and beam properties:
How strongly the X-ray beam intensity is weakened is proportional to the object’s atomic number Z
and the photon energy Ep of the rays. There exists the thumb rule

µpe ∝ Z4λ3 (2.3)

with the attenuation coefficient µpe of the photoelectric effect and the wavelength λ belonging to a
certain photon energy level.

The second noteworthy reason for the X-ray attenuation in matter is called Compton Scattering.
Herein, a photon of middle energy level (but of course Ep � Eb) interacts with a bound electron
of the material. The photon partially transfers its energy to the bound electron so that the electron
is kicked out of the atom, whereas the photon continues with lower energy, shifted wavelength and
new direction compared to before. The energy balance

hν = Ep = Ee + Ep′ (2.4)

holds true with the new energy of the deflected photon Ep′ and the energy of the ejected, so called
Compton electron Ee.

After putting both effects together, the resulting attenuation coefficient is given by

µ = µpe + µcompt.
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With this relation, we can continue to state the central law of Beer-Lambert, which describes the
progress of attenuation of X-rays passing through matter. Let us first assume to have a monochro-
matic incident beam and a homogeneous material, so that the ordinary differential equation

dI

I (x)
= −µdx (2.5)

gives the spatial evolution of the intensity I of the X-ray in one dimension. Since the attenuation
coefficient µ is constant for a homogeneous material, equation (2.5) integrates to

I (x) = I0 e
−µx (2.6)

with the passed distance through the object x and the initial X-ray intensity I0. If we go a step further
to an inhomogeneous material, we have to consider a spatially changing attenuation coefficient
µ (x). Instead of the scalar µ in the exponent of equation (2.6), we have to use a line integral over
previous positions and this finally yields the law of Beer-Lambert in the form we will use:

I (L) = I0 e
−
L∫
0

µ(x) dx
⇔

L∫
0

µ (x) dx = − ln (I (L) /I0) . (2.7)

One could also include the polychromatic properties of a X-ray beam into the formulation of equation
(2.7), but this is omitted at this point and will be catched up in section 6.5 concerning beam hard-
ening. Important in the haze of equation (2.7) is to highlight that both the initial and the detected
intensity values I0 respectively I (L) are accessible to measurements, quite contrary to the unknown
attenuation coefficient µ (x).

2.3. Detection of X-rays

The last step before holding the projection images of the object sample in our hands is the detection
of the X-rays sent out by the X-ray source. At large, the interaction of the X-rays with the detector
(the specific naming of a X-ray sensor) material is just the same as with all other kind of matter as
described in section 2.2. The difference is that the attenuation behaviour of the detector material
is already known and this knowledge can be exploited to capture the attenuated X-ray beam. In
the following step, the observed Röntgen radiation is translated into an electric signal which finally
can be converted into binary coding, as used for the saving of image data. There are two diverse
types of detectors: On the one hand there are the gas ionisation detectors, which are able to convert
the incident X-ray beam directly into electrical energy. On the other hand there are the scintillation,
solid-state detectors we will focus on hereinafter.

The mode of operation of the solid-state detectors is sketched in Figure 2.3. At first, the X-ray beam
hits the layer of scintillation crystals, where the incoming radiation is converted into visible light (long-
wave radiation). Behind that, a photodetector functions as an electronic light sensor. The invading
light is absorbed and electrons are emitted into the photomultiplier tube using the photoelectric
effect. Inside this photomultiplier tube, the electric information is amplified and aligned through
multiple layers of dyodes behind the photocathode. In the end, the electrical signal is prepared to be
transmitted to some digital backend devices, where it is normally converted to gray value images,
the digital equivalent to a classical radiograph. Such a gray value image only contains discrete,
pixelwise values which represent the average X-ray intensity for each pixel area each.
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Figure 2.3.: abstracted functionality of a scintillation X-ray detector

The choice of the scintillation material is quite critical for the solid-state detectors since it has a great
influence on the quality of the projection images. Some of the quality aspects determined by the
choice of the material are the detection efficiency, the stability over time, the energy resolution or the
intensity of afterglow phenomena. For instance, a very good efficiency of the conversion from X-rays
to light pulses or a fast decay of fluorescence is needed. The detector Dexela 1512NDT1 in use at
the in-house XRCT lab of the Institute of Mechanics (CE) at the University of Stuttgart for example
makes use of gadolinium oxysulfide (Gd2O2S).

1http://www.perkinelmer.com/lab-solutions/resources/docs/PRD_CMOS_NDT_PUB_110_Rev1.pdf

http://www.perkinelmer.com/lab-solutions/resources/docs/PRD_CMOS_NDT_PUB_110_Rev1.pdf
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3. Selected experimental scan setups

In this chapter, we will focus on a set of geometrical setups for µXRCT scanning. The parallel
beam scanning scenario in section 3.1 is rather of theoretical, preparational interest for chapter 4
(reconstruction fundamentals) than for experimental measuring, although it can also be applied to
reconstruct some measurements recorded in the rare synchrotron installations. Fan beam scanning
in 2D with a flat detector (see section 3.2) is the preliminary stage of the 3D cone beam scanning
setup applied in most experimental µXRCT systems, which is presented in section 3.3. A simple
extension of cone beam scanning is given in section 3.4, namely helical cone beam scanning, where
the rotational stage translates vertically during the projection images are taken. The final section 3.5
shortly outlines the recording process for projections and the involved coordinate system definitions
which apply for the whole work.

3.1. Parallel beam scanning

ex
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d
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u

dso dod

pz

px

Figure 3.1.: simplified representation of a 2D or 3D parallel beam scanning scenario (the pictured
vectors are only symbolic and not to be understood true-to-scale)

The first µXRCT scanner construction one could imagine is parallel beam scanning like portrayed in
Figure 3.1. The circle in the middle of the picture symbolizes the object under investigation and in its
center the Cartesian coordinate system is fixed. While the ex-ey-plane lies in the paper plane, the
object is rotated around the ez-axis counter clockwise to obtain a set of projection images. Further-
more, the vectors s and d point from the object’s center to the X-ray source respectively from the
object’s center to the middle pixel of the detector. Other elementary sizes are the distance from the
X-ray source to the origin of the coordinate system dso (dso = ‖s‖2) and the distance from the origin
of the coordinate system to the detector’s center dod (dod = ‖d‖2).

The representation in the left part of Figure 3.1 shows the simplified building of parallel beam scan-
ning in 2D. The detection of the values for the remaining X-ray intensity occurs only on a strip of
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detector pixels, of which each of the Nx many pixels has the dimensions px × pz. In most experi-
mental cases, the pixels of the detector are square. On top of that, parallel beam scanning is not
limited to 2D, but can directly be extended to 3D, as depicted on the right in Figure 3.1. The detector
consists of a rectangular grid of Nx×Nz pixels with the same dimensions as in the 2D case, px×pz.
The pair of vectors {u,v} only makes sense in this scenario and they indicate the vector from the
middle pixel to the next pixel on the right in horizontal direction respectively to the next pixel at the
top in vertical direction. In summary, this pair of vectors give the spatial orientation of the detector’s
surface related to the given Cartesian coordinate system.

3.2. Fan beam scanning

In parallel beam scanning, the assumption that all Röntgen rays are parallel to each other is quite
advantageous. But parallel beams can only be achieved in rare synchrotron installations. In con-
trast, the fan beam scanning setup visualized in Figure 3.2 is accessible to a wider mass of users.
The main difference is that the X-ray source is assumed to be similar to a point source from where
the Röntgen radiation is sent out in the shape of a fan.

ex

eyez
s

d

dso dod

px

u

Figure 3.2.: simplified representation of a 2D fan beam scanning scenario

The pictured parameters in Figure 3.2 describing the geometric structure of the scanning situation
stay almost unchanged compared to the parallel beam scanning setup in section 3.1. Obviously,
sizes like the distance from the X-ray source to the origin of the coordinate system dso only refer to
the midline ray. As implied by the illustration, the sample material is enlarged through the so-called
geometric magnification effect, which can be quantified by the size

M :=
dso + dod
dso

. (3.1)

The version of fan beam scanning considered here is equal-spaced fan beam scanning for a flat
detector, since the detector elements are aligned in a flat detector array with equal spacing px.
Quite contrary to this is the idea of an equiangular fan beam geometry with a curved array of detector
elements, where the angle between two neighboring rays is constant over the total opening angle
and all X-ray beams have the same length.
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3.3. Cone beam scanning
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Figure 3.3.: simplified representation of a 3D cone beam scanning scenario

A further generalization of the 2D fan beam scanning scenario is the standard setup for experimental
investigations: the cone beam scanning geometry. As it was also the case in section 3.1, cone
beam scanning represents the direct transfer of fan beam scanning with a flat panel detector to
3D. A sketch of the resulting geometrical setup can be found in Figure 3.3. Instead of a flat fan
of X-rays, the point-like Röntgen source emits X-rays inside a cone with maximal opening angle
γm. Even if the sizes dso and dod are not shown in the picture, they are still given as the Euclidean
norm of the vectors s and d of the middle X-ray, also referred to as optical axis in this context. The
characterization of the detector surface is just the same as for parallel beam scanning. In Figure
3.3, the shade of the object in lime color on the rectangular array of detector elements clarifies the
effect of the geometric magnificationM from equation (3.1) in computed tomography. The geometric
magnification additionally defines the resulting voxel size vx for the depiction of the internal object
structures in 3D via

vx
(3.1)
=

px
M
. (3.2)

3.4. Helical cone beam scanning

The last step in the chain of generalizations from fan beam scanning over cone beam scanning leads
us to helical cone beam scanning. Just as before, the changes of the measurement process are only
minor, but this time the nature of the recorded projections differs conceptually. In the experimental
setup, the object sample performs a counterclockwise rotation around the ez-axis (as for cone beam
scanning in section 3.3) and simultaneaously a stepwise translation also along this axis, compare
Figure 3.4. Composing these two movements yields a helical trajectory of the material under investi-
gation in real life or of the X-ray source and detector in the imaginary mathematical description. The
control of the z-translation for the specimen can for instance be quantified by the z-pitch per angular
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change or per turn of 360◦.
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Figure 3.4.: simplified representation of a 3D helical cone beam scanning scenario

There are some reasons why helical cone beam scanning can be the method of choice despite of
its increased complexity: One clear advantage lies in the fact that the limited active sensor area of
the detector in vertical direction for cone beam scanning can in principle be extended to an arbitrary
height, which is very useful for longitudinal samples. Especially in clinical application of CT scanning,
a low radiation dose plays a central role to minimize possible effects for the patient’s health - and for
this reason, one single helical cone beam scan can possibly replace multiple discrete cone beam
scans for the benefit of the patient in terms of the radiation dose. Another aspect at this point is the
decreased exposure time for helical cone beam scanning, reducing both the radiation dose (once
again) and the minor movements of the patient. The downside of helical cone beam scanning is
that the reconstruction of the object’s voxel data from projection data turns out to be significantly
more difficult: because of the z-translation of the sample, an identical row of two different measured
projection images does not refer to the same voxels of one single z-slice any more, as it is the case
for cone beam scanning.

3.5. Remarks on projection acquisition and coordinate systems

We will shortly comment on the recording process of projection data for simple parallel beam scan-
ning, as it is easily understandable for this kind of experimental setup. Figure 3.5(a), which is inspired
by the book (Kak and Slaney, 2001), portrays the manner how the data acquisition will be addressed
to in the mathematical description in chapter 4 as well as it will be used in the ASTRA toolbox, com-
pare chapters 5 and 6. At large, the exact choice of the coordinate systems in all figures of chapter 3
was made like this to reproduce the description of the geometrical conditions for the ASTRA toolbox
(compare van Aarle et al., 2016). The assumption herein is that the radiation source as well as
the detector panel move on a circular trajectory, parametrized by the increasing projection angle θ
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(b) actual recording mechanism corre-
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Figure 3.5.: comparison of theoretical and empirical acquisition of projection data

between the central (parallel) X-ray beam and the ey-axis. Of course the detected radiation intensity
varies over the changing source/detector positions, as indicated by the differing gray values of the
detector pixels in Figure 3.5(a). But the actual scanning process is realized experimentally by an
inverse rotation of the object sample with fixed X-ray source and detector, compare Figure 3.5(b).
Especially notice the contrary direction of rotation to describe the corresponding behaviour to the
virtual rotation! All in all, we will use the (imaginary) recording scenario from Figure 3.5(a) in the
knowledge that we can identify it with an opposite real-world scanning routine. Another remark to
avoid confusions about the exact choice of the fixed Cartesian coordinate system in the center of
the sample is that the whole representation of the alignment of source, object and detector is rota-
tional invariant in the sense that the starting position of source and detector relative to the object is
irrelevant. We will make use of this in sections 4.3 and 4.4, so do not hang up on this “inconsistency”.
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4. Reconstruction fundamentals

One main component of the work on hand is to develop and present some important reconstruction
techniques for a set of projection images. The focus of course lies on reconstruction algorithms
that can be chosen inside the ASTRA toolbox (which will be introduced in chapter 5). Like a house
of cards, we will gradually build up the concept of reconstruction in general as well as analytical
reconstruction methods based on this derivation. The crucial question for the analytical reconstruc-
tion approach is how the local attenuation values µ (x, y), which will mostly be replaced by a more
general two-dimensional object field function f (x, y), can be regained from projection data. Sec-
tions 4.1 through 4.4 will cover this, and the description herein is geared to the understandable but
profound explanation of the book (Buzug, 2008). In conclusion, section 4.5 elucidates algebraic
reconstruction methods based on the examples of the SIRT and CGLS algorithms, whose origin is
described in a completely different mathematical way.

4.1. Radon transformation and Fourier slice theorem

4.1.1. Radon transformation

The starting point for any kind of reconstruction is the mathematical description of the projection
image recording process. For a fixed Cartesian coordinate system (ex, ey) with given local attenua-
tion coefficients written as f (x, y) or µ (x, y), we characterize a straight line L representing a single
X-ray beam of a parallel beam setting via

ξ = x cos (γ) + y sin (γ) . (4.1)

To derive this, another Cartesian coordinate system (eξ, eη) is established, which is the rotation
of the (ex, ey) system by γ in mathematical positive direction as depicted in Figure 4.1(a). The
meaning of any ξ 6= 0 for the corresponding parallel X-ray beam is a shift away from the center of
both coordinate systems, while the η-variable gives the location on the path of the ray after rotating
it by a fixed angle γ. Therefore, for fixed γ, ξ, the definite projection integral from 0 to the position s
standing for the integration length along the affiliated ray is

p (s) =

s∫
0

µ (η) dη (4.2)

or in a discrete version

p (s = Ks ∆η) =

Ks∑
k=1

µk ∆η. (4.3)

Rewriting equation (4.2) yields the definition of one single projection pγ (ξ) at an angle γ and a
translation ξ from the origin:

pγ (ξ) =

s∫
0

µ (ξ, η) dη. (4.4)
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For a parallel beam scenario, the integration length s stays constant for varying ξ. In a next step,
equation (4.4) shall be reformulated in the (ex, ey) coordinate system. From Figure 4.1(b) it is
obvious that the normal unit vectors nξ = (cos (γ) , sin (γ))T and nη = (− sin (γ) , cos (γ))T span
the rotating (eξ, eη) sampling coordinates. Therefore, for a single object point r = (x, y)T the
coordinates on a specific X-ray at fixed angle γ are given in the new coordinate system by

ξ = r · nξ =

x
y

 ·
cos (γ)

sin (γ)

 = x cos (γ) + y sin (γ)

η = r · nη =

x
y

 ·
− sin (γ)

cos (γ)

 = −x sin (γ) + y cos (γ)

(4.5)

and we can write f (x, y) = µ (ξ (x, y) , η (x, y)).
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(a) representation of one specific X-ray in
the (eξ, eη) coordinate system

ex

eyeη

eξ

γ

= nξ

= nη

γ

‖nξ‖2 = 1

‖nη‖2 = 1

(b) normal unit vectors nξ and nη spanning
the new coordinate system

Figure 4.1.: introduction of the rotated polar (eξ, eη) coordinate system

Combining all these preparational steps, we can find the two-dimensional Radon transformation of
the object of interest as

pγ (ξ) = p (ξ, γ) =

∞∫
−∞

∞∫
−∞

f (x, y) δ (x cos (γ) + y sin (γ)− ξ) dx dy (4.6)

with the Dirac δ-function permitting only object points on the projection line L in Figure 4.1(a). As a

short form, we could write f (x, y)
R27−−→ pγ (ξ) or pγ (ξ) = R2{f (x, y)}.

At this point, a useful concept can be mentioned for the first time: the sinogram as an alternative
way to arrange the obtained projection images. Assuming we only have a one-dimensional detector
array for a parallel beam scanning setup like in Figure 3.1 (or analogously for fan beam scanning,
Figure 3.2), the sinogram displays the data in a (eξ, eγ) grid. The ξ-variable is the direct reference to
a position on the detector array, whereas the angle γ ∈ [0, π] (or even [0, 2π]) runs through all X-ray
source and detector locations that have been headed for. If a three-dimensional scanning construc-
tion is used, we can generate a sinogram for each height in ez-direction separately (corresponding
to a special row of the rectangular detector array), containing the information of a single sectional
plane of the full sample. The detailed and illustrated explanation of sinograms follows in section 6.2.
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4.1.2. Fourier slice theorem

The two-dimensional Radon transformation from subsection 4.1.1 is one part of the so-called Fourier
slice theorem which makes computed tomography possible at all. To summarize the theorem in one
sentence, one could say that the Fourier slice theorem gives the procedure to identify the one-
dimensional Fourier transform of a projection with a radial line in the Cartesian Fourier space of
the object data at a certain angle of measurement. We will develop the individual ingredients to
the theorem one by one. If we start with some projection data pγ (ξ) and the reconstruction aim is
to restore the local attenuation values f (x, y), the main steps of the Fourier slice theorem are the
following:

(1) Calculate the one-dimensional Fourier transform pγ (ξ)
F17−→ Pγ (q).

(2) Construct the Fourier transformation F from Pγ : Pγ (q)
?7−→ F (u, v).

(3) Calculate the inverse two-dimensional Fourier transformation F (u, v)
F−1

27−−−→ f (x, y).

The steps (1) and (3) are quite straightforward: For (1), the Radon space data pγ (ξ) are seen
as one-dimensional functions of the detector coordinate ξ for each projection angle γ. With this
interpretation

Pγ (q) = P (q, γ) =

∞∫
−∞

pγ (ξ) e−i2πqξ dξ (4.7)

is indeed the one-dimensional Fourier transform of pγ (ξ) to the frequency space of projection im-
ages. On top of that, if we want to regain f (x, y) from the Fourier space data F (u, v) (where both
spaces are Cartesian) in (3), we directly apply the inverse two-dimensional Fourier transformation
to F so that

f (x, y) =

∞∫
−∞

∞∫
−∞

F (u, v) ei2π(xu+yv) dudv. (4.8)

The sticking point in step (2) is to interconnect the differing spaces (eq, eγ) and (eu, ev). Since
(eq, eγ) is a polar coordinate system, a relation similar to the one in equation (4.5) has to be ex-
ploited. The interactive structure in Figure 4.2 elucidates the relations between all the introduced
spaces up to now.

The transformation from the polar coordinates (eq, eγ) of the projection frequency space to the
Cartesian coordinates (eu, ev) of the object frequency space follows the simple correlation{

u = q cos (γ)

v = q sin (γ) .
(4.9)

Therewith, we declare the Fourier slice theorem as the following:

F (u (q, γ) , v (q, γ)) = F (q cos (γ) , q sin (γ)) = Pγ (q) . (4.10)

Verbatim, equation (4.10) states that a linear radial intersection of the two-dimensional Fourier spec-
trum F (u, v) of the spatial distribution of attenuation values f (x, y) at angle γ equals the one-
dimensional Fourier transform Pγ (q) of the measured Radon values pγ (ξ) that result from the pro-
jection of f (x, y) under the angle γ. We will prove this theorem in the next paragraph.
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Figure 4.2.: interactive structure to clarify the coherence of the various spaces used in the discussion
of the Fourier slice theorem

Let’s begin to prove the equality in (4.10) starting from the right side with Pγ (q). Looking back to
equation (4.7), the one-dimensional Fourier transform of pγ (ξ) is

Pγ (q) =

∞∫
−∞

pγ (ξ) e−i2πqξ dξ
(∗)
=

∞∫
−∞

∞∫
−∞

µ (ξ, η) e−i2πqξ dξ dη

=

∞∫
−∞

∞∫
−∞

µ (ξ (x, y) , η (x, y))︸ ︷︷ ︸
=f(x,y)

e−i2πq

=ξ︷ ︸︸ ︷
(r · nξ) dx dy (4.11)

where in the step indicated by the (∗)-symbol the projection (see equation (4.4))

pγ (ξ) =

s∫
0

µ (ξ, η) dη

was extended to the interval (−∞,∞). The substitutions in the last row have already been discussed
in subsection 4.1.1 in equation (4.5) and below. Contrary, starting with F (u, v), we can find

F (u, v) =

∞∫
−∞

∞∫
−∞

f (x, y) e−i2π(ux+vy) dx dy
(∗∗)
=

∞∫
−∞

∞∫
−∞

f (x, y) e−i2πq(x cos(γ)+y sin(γ)) dx dy

=

∞∫
−∞

∞∫
−∞

f (x, y) e−i2πq(r·nξ) dx dy. (4.12)

Herein, in the step labeled with (∗∗) the relation from equation (4.9) was used to replace the (eu, ev)-
coordinates. The final equation mark is obtained by factorisation with respect to q and finding
ξ = (r · nξ) following equation (4.5) once again. Altogether, the results of equation (4.11) and
(4.12) are identical, which was to be proved.
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The shortest description of the Fourier slice theorem can be specified by

F (u, v)|u=q cos(γ), v=q sin(γ) = Pγ (q) . (4.13)

For the sake of overview, a concluding flow chart can be found in Figure 4.3.

Radon space

pγ (ξ)

object space

f (x, y)

Fourier space

F (u, v)

R2

R
−1

2

F1 + Fourier slice theorem

F−1
1 + Fourier slice theorem

F
2

F −12

Figure 4.3.: flow chart to emphasize the overall benefit of the Fourier slice theorem as a linking
element in computed tomography

4.1.3. Remarks and challenges

With the help of the Fourier slice theorem (4.13), the algorithmic scheme to reconstruct the original
sample of interest arises, like already suggested in Figure 4.3. In the beginning, the only resource
we have in our hands is the measured projection data pγ (ξ) living in the Radon space (eξ, eγ).
After applying the one-dimensional Fourier transform F1, the projection data translate into polar
spectral data Pγ (q) in the Fourier-transformed Radon space (eq, eγ). The connection to the Carte-
sian Fourier space is given by the fact that for a fixed angle γ, Pγ (q) represents a line through the
origin in the (eu, ev) Fourier space under the angle γ with the eu-axis. Including the whole set of
possible angles leads to a radial filling of the Fourier space, as depicted in Figure 4.4 by the solid
green lines.

Before we can use the inverse two-dimensional Fourier transform F−1
2 for the Fourier space data

F (u, v), it is unavoidable to sort the line information of Pγ (q) into the Cartesian grid (u, v). This
procedure is also called Cartesian regridding and is necessary since a numeric implementation of
any kind of Fourier transformation (e.g. the fast Fourier transform, FFT) is only possible for a regular
rectangular grid just like (eu, ev). If this has happened, we can restore the tomographic data f (x, y)
in its object space (ex, ey). At this point, the so called forward projection is able to close the circle
to some projection data pγ (ξ), which was our starting point. Forward projecting only means to use
the Radon transform R2 for given object data f (x, y) (which is more of theoretical interest than of
practical).

The challenge of reconstruction algorithms becomes clear if we switch from the analytical to the
experimental point of view: We only have a finite number of projections at angles γi available for re-
construction. That means there is only a limited number of measured radial lines in the eu-ev-plane,
and even more only a set of discrete points on these lines, displaying the single detector pixels. The
measured projections for increasing angle γi are symbolized by the dashed green lines in Figure
4.4 and the discrete detector pixel values are given by the orange points on these lines. As already
mentioned, we need values on the Cartesian grid points (pictured by the blank points) to realize a
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Figure 4.4.: continuous and discrete spectral projection data in two competitive coordinate systems

numerical Fourier transformation operation, so that the detector pixel values have to be interpolated
onto this grid. Firstly, this interpolation is not trivial because of the radial arrangement of the point
cloud (proposing methods like nearest neighborhood search or bilinear interpolation). Another im-
portant phenomenon that can be observed in Figure 4.4 is that the density of points decreases for
higher spatial frequencies. Therefore, interpolating in remote regions from the origin yields a much
higher interpolation error and related uncertainty. This finally leads to a severe degradation of the
reconstruction image quality especially for details, since they have a high spatial frequency nature.

4.2. 2D reconstruction methods for parallel beam scanning

After the general introduction into how reconstruction can be formulated mathematically in section
4.1, we will devote ourselves to reconstruction methods for two-dimensional parallel beam scanning.
What was not mentioned in the small paragraph on sinograms in subsection 4.1.1 is the fact that the
(mathematically) total necessary projection angle range differs for varying scanning scenarios. For
the parallel beam scanning scenario, the interval [0, π] is sufficient because the measured attenu-
ation coefficients replicate after half a turn. This lies in the nature of parallel beam scanning: the
parallel X-ray beams tread identical paths as before after a rotation of 180◦. For fan or cone beam
scanning in sections 4.3 and 4.4 though, this is not the case - here, the full range of [0, 2π] for the
projection angles is required.
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4.2.1. Simple backprojection

The first real reconstruction algorithm presented here is the simple backprojection algorithm. As
we will see, the simple backprojection only serves as a preparation and motivation for the filtered
backprojection algorithm in subsection 4.2.2. The basic idea of backprojection throughout lies in
smearing back the measured projection profiles pγ (ξ) in source direction. In mathematical terms,

g (x, y) =

π∫
0

pγ (ξ) dγ
(4.1)
=

π∫
0

pγ (x cos (γ) + y sin (γ)) dγ (4.14)

gives the reconstructed attenuation coefficient at the position r = (x, y)T . The arising problem of
the smear back operation is that each point in the reconstruction image grid receives a non-negative
attenuation contribution from all other points of the original image, even if a grid point is actually
located outside the real sample. The reason for this is explained in the following paragraph.

Let’s investigate the reconstructed attenuation value from equation (4.14) deeper (herein, L is a
specific (back)projection line, see Figure 4.1(a)):

g (x, y) =

π∫
0

=pγ(ξ)︷ ︸︸ ︷∫∫
r∈L

f (r) dr dγ =

π∫
0

∫∫
r∈R2

f (r) δ (r− L) dr dγ

=

π∫
0

∫∫
r∈R2

f (r) δ ((r · nξ)− ξ) dr dγ
(∗)
=

π∫
0

∫∫
r′∈R2

f
(
r′
)
δ
(
(r · nξ)−

(
r′ · nξ

))
dr′ dγ (4.15)

=

∫∫
r′∈R2

f
(
r′
) π∫

0

δ
((

r− r′
)
· nξ
)

dγ

 dr′.

In the steps indicated with (∗) in equations (4.15) and (4.16), we use some properties of the Dirac
δ-function which will not be explained any further in here. These characteristics can for example
be looked up in (Buzug, 2008, p. 175 ff.). After having defined ϕ as the angle between the vector
r− r′ and the ex-axis of the Cartesian coordinate system, we can continue with the reformulation of
equation (4.15) by replacing (r− r′) · nξ with ‖r− r′‖2 cos (ϕ− γ):

g (x, y) =

∫∫
r′∈R2

f
(
r′
) π∫

0

δ
(
‖r− r′‖2 cos (ϕ− γ)

)
dγ

 dr′

(∗)
=

∫∫
r′∈R2

f
(
r′
)

π∫
0

δ (γ − γ0)

‖r− r′‖2 |sin (±π/2)|︸ ︷︷ ︸
=1

dγ

 dr′. (4.16)

The new size γ0 is the only zero value of cos (ϕ− γ) for γ ∈ [0, π). Because the denominator term
‖r− r′‖2 is independent of the integrator and

∫ π
0 δ (γ − γ0) dγ = 1, we find

g (x, y) =

∫∫
r′∈R2

f
(
r′
) 1

‖r− r′‖2
dr′ =

∞∫
−∞

∞∫
−∞

f
(
x′, y′

) 1

‖(x− x′, y − y′)T ‖2
dx′ dy′. (4.17)

Equation (4.17) exactly equals the convolution (integral) of the object data f (x, y) with the so called
point-spread function (PSF) or also impulse response h (x, y) = 1/‖(x, y)T ‖2. In short version, we
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could write
g (x, y) = f (x, y) ∗ h (x, y) (4.18)

for the whole simple backprojection routine. If we consider only a single object point f (x, y) =
δ (x, y) present, the reconstruction algorithm for simple backprojection smears back the attenuation
coefficient with the point-spread function. The attenuation value therefore influences the neighbor-
ing region with the radial decreasing factor 1/‖r‖2. But since this is just the influence of one sole
point information, we obtain an overall unacceptable blurring of the reconstruction image - and so
the need for other algorithmic ideas becomes clear.

(a) exact input pixel data of the
object space f (x, y)

(b) sinogram for a parallel beam
projection geometry with 360
projection angles γi ∈ [0, π]

(c) reconstructed image using
the simple backprojection

Figure 4.5.: blurring introduced by the usage of the ASTRA simple backprojection algorithm BP

For the purpose of clarification, Figure 4.5 shows the effect of a reconstruction trial applying the
simple backprojection algorithm BP from the ASTRA toolbox (for details consider chapter 5). The five
point-like bright objects of the exact input slice in Figure 4.5(a) are first reshaped into the sinogram
in Figure 4.5(b) using a (simulated) parallel beam scanning setup. The ASTRA equivalent to simple
backprojection, the BP algorithm, takes this sinogram as starting point for the reconstruction and
results in the image displayed in Figure 4.5(c). The radial filling around the point-like objects and the
overall blurring are clearly recognizable.

4.2.2. Filtered backprojection

As we have already seen in section 4.1 (e.g. (2) in subsection 4.1.2), the sticking point of recon-
structing/backprojecting is the change from Cartesian to polar coordinates and vice versa. This is
the starting point for the derivation of the filtered backprojection reconstruction algorithm. We reca-
pitulate equation (4.8), the inverse two-dimensional Fourier transformation of some Fourier space
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data F (u, v):

f (x, y) =

∞∫
−∞

∞∫
−∞

F (u, v) ei2π(xu+yv) dudv.

To express this relation in the (eq, eγ) polar coordinate system, equation (4.9) serves as a trans-
formation relationship. But this time, we take a closer look at the coordinate transform for the line
elements which act as integrators. We are interested in the mapping dudv 7→ J dq dγ with the
Jacobian J given by

J =

∣∣∣∣∣∣
∂u
∂q

∂u
∂γ

∂v
∂q

∂v
∂γ

∣∣∣∣∣∣ =

∣∣∣∣∣∣cos (γ) −q sin (γ)

sin (γ) q cos (γ)

∣∣∣∣∣∣ = q
(

cos (γ)2 + sin (γ)2
)

︸ ︷︷ ︸
=1

= q. (4.19)

If we substitute the coordinate variables in equation (4.8) with the coordinate transform in equation
(4.19), this results in

f (x, y) =

2π∫
0

∞∫
0

F (q cos (γ) , q sin (γ))︸ ︷︷ ︸
=F (q,γ)

ei2πq(x cos(γ)+y sin(γ))q dq dγ. (4.20)

In the next step, the outer integral is split into the two integration intervals [0, π] and [π, 2π], which
yields

f (x, y) =

π∫
0

∞∫
0

F (q, γ) ei2πq(x cos(γ)+y sin(γ))q dq dγ

+

π∫
0

∞∫
0

F (q, γ + π) ei2πq(x cos(γ+π)+y sin(γ+π))q dq dγ. (4.21)

The terms cos (γ + π) and sin (γ + π) are equal to − cos (γ) respectively − sin (γ). An additional
set of symmetry properties for the Fourier transform is necessary for the further handling of equation
(4.21) (compare Klingen, 2001, p. 184 ff.):

<F (q, γ) = <F (−q, γ + π) = <F (−q, γ) = <F (q, γ + π) (4.22)

=F (q, γ) = =F (−q, γ + π) = −=F (−q, γ) = −=F (q, γ + π) . (4.23)

Therewith, we write

f (x, y) =

π∫
0

∞∫
0

(<F (q, γ) + i=F (q, γ)) ei2πq(x cos(γ)+y sin(γ))q dq dγ

+

π∫
0

∞∫
0

(=<F (q,γ+π)︷ ︸︸ ︷
<F (q, γ) −i

=−=F (q,γ+π)︷ ︸︸ ︷
=F (q, γ)

)
e−i2πq(x cos(γ)+y sin(γ))q dq dγ

︸ ︷︷ ︸
=
π∫
0

0∫
−∞

(<F (−q,γ)−i=F (−q,γ)) ei2πq(x cos(γ)+y sin(γ))(−q) dq dγ

(4.24)

=

π∫
0

∞∫
0

(<F (q, γ) + i=F (q, γ)) ei2πq(x cos(γ)+y sin(γ))q dq dγ

+

π∫
0

0∫
−∞

(<F (q, γ) + i=F (q, γ)) ei2πq(x cos(γ)+y sin(γ))(−q) dq dγ (4.25)
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The difference in the underbraced part of equation (4.24) is the switch of the limits of integration,
changing the sign at the positions marked in green. To come from the underbraced part of equation
(4.24) to equation (4.25), it is necessary to use the symmetry relations in equations (4.22) and
(4.23). This was also used to generate the second summand of equation (4.24), as indicated by the
overbraces. Except for the red factors, both summands in equation (4.25) could be reunited. This
problem can be bypassed by simply introducing the absolute value:

f (x, y) =

π∫
0

∞∫
−∞

F (q, γ) ei2πq(x cos(γ)+y sin(γ))|q|dq dγ (4.26)

FST
=

(4.1)

π∫
0

∞∫
−∞

Pγ (q) ei2πqξ|q| dq dγ. (4.27)

To produce equation (4.27), the short form F (q, γ) = F (q cos (γ) , q sin (γ)) is identified with Pγ (q)
by the means of the Fourier slice theorem (FST). Writing

f (x, y) =

π∫
0

 ∞∫
−∞

Pγ (q) |q|ei2πqξ dq


︸ ︷︷ ︸

=:hγ(ξ)

dγ, (4.28)

the reconstruction algorithm for filtered backprojection is complete. The function hγ (ξ) symbolizes
the high-pass filtered version of the projection profile pγ (ξ), which of course solves the key problem
of simple backprojection in subsection 4.2.1.

Summarizing the steps from the available projection data pγ (ξ) to the reconstructed local atten-
uation values f (x, y) using a filtered backprojection, we can capture the three main steps in the
following.

(1) Calculate the one-dimensional Fourier transform pγ (ξ)
F17−→ Pγ (q).

(2) Calculate the inverse one-dimensional Fourier transform hγ of the high-pass

filtered Pγ : |q|Pγ (q)
F−1

17−−−→ hγ (ξ).

(3) Calculate the backprojection f along the line ξ = x cos (γ) + y sin (γ):
f (x, y) =

∫ π
0 hγ (ξ) dγ.

4.2.3. Aspects of discretization and implementation

After we found the filtered backprojection as a practical meaningful method to reconstruct a set of
measured projection images, we will shortly discuss how to make the mathematical terms of the
previous subsection accessible to a computer. Let’s introduce the discretization ∆ξ := 1/2Q for
a weighting interval [−Q,Q] of the ramp function |q| if the maximum available spatial frequency
shall be bounded by Q. Of course ∆ξ refers to the width of a single detector pixel. Therewith,
the sampled projection signal is written as pγ (j∆ξ) for j = 0, . . . , D − 1, where D denotes the
total number of horizontal detector elements contained in the detector array. Consequently, we can
restrict the integration limits of equation (4.7) to

Pγ (q) =

(D−1)∆ξ∫
0

pγ (ξ) e−i2πqξ dξ
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and employ a discretization in the form

Pγ

(
k

2Q

D

)
=

1

2Q

D−1∑
j=0

pγ

(
j

2Q

)
e−i2π

jk
D for k = 0, . . . , D − 1 (4.29)

with renamings ξ 7→ j∆ξ = j
2Q , q 7→ k∆q := k 2Q

D . One obviously obtains qξ = k��2QD j
1

��2Q
= jk

D for the
exponent of the exponential function, completing the expressions in equation (4.29). Analogously,
the filtered projection signal hγ (ξ) from equation (4.28) can be windowed to

hγ (ξ) ≈
Q∫
−Q

Pγ (q) |q|ei2πqξ dq

and discretized to

hγ

(
j

2Q

)
≈ 2Q

D

D/2∑
k=−D/2

Pγ

(
k

2Q

D

) (∗)︷ ︸︸ ︷∣∣∣∣k2Q

D

∣∣∣∣ ei2π jkD for j = 0, . . . , D − 1. (4.30)

Concluding, the local image value in a discretized form is given by

f (x, y) =

π∫
0

hγ (ξ) dγ ≈ π

Np

Np∑
n=1

hγn (x cos (γn) + y sin (γn)) , (4.31)

where of course {γn}
Np
n=1 is the set of the Np many measuring angles at whom the projections were

taken and hγn has to be used according to equation (4.30). The prefactor π/Np comes from the
discretization of the angle γ 7→ ∆γ := π/Np.

The particularity of the with (∗) marked term (the discretized ramp filter) in equation (4.30) is that it
is a linear increasing function in the frequency domain and therefore increases the noise in the high
frequency regions. That means a data windowing as already implied by the integration limits [−Q,Q]
is definitely necessary. Such a windowing can be carried out either in the frequency or in the spatial
domain. We will just take a look at the restriction of the reconstruction routine to a rectangular band
in the frequency interval [−Q,Q], which can be expressed via

hγ

(
j

2Q

)
≈ 2Q

D

D/2∑
k=−D/2

Pγ

(
k

2Q

D

) ∣∣∣∣k2Q

D

∣∣∣∣W (
k

2Q

D

)
ei2π

jk
D (4.32)

using a window functionW (•). Common window functions are the Ram-Lak filter (short form for Ra-
machandran and Lakshminarayanan; Ramachandran and Lakshminarayanan, 1971) or the Shepp-
Logan filter (Shepp and Logan, 1974):

WRL (q) = rect (q) =

1 if |q| ≤ 1

2
0 else

(4.33)

WSL (q) = rect (q) sinc (q) with sinc (•) =
sin (π•)
π•

. (4.34)

As suggested by the definition of the rectangular function rect (•), the range of nonzero values of the
window function is limited to a frequency domain with Q = 1/2 (which could of course be expanded
to any other interval by linear coordinate transformation). The difference between the Ram-Lak filter
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(4.33) and the Shepp-Logan filter (4.34) is how sharp the edges of the rectangle are shaped. The
sinc-factor of the Shepp-Logan window function tries to smoothen the edges and is only one of
a variety of other kernels developed on top of the simple windowing ansatz by Ram-Lak. All these
possible kernels can also be expressed in the spatial domain (which is of minor interest here) and so
finally the reconstruction can be done numerically avoiding the problem of additional noise evoked
by the ramp filter term (∗).

4.3. 2D reconstruction methods for fan beam scanning

In section 3.2, 2D fan beam scanning was already scanned briefly. Especially the sizes dso (distance
source↔ origin), dod (distance origin↔ detector) and their sum dsd = dso+dod (distance source↔
detector) have been motivated in Figure 3.2. Similarly, the difference between a curved and a plane
detector array has been pointed out: while in the curved variant there are equidistant angles ∆ζ in
between the X-rays leading to neighboring detector elements, the detector spacing ∆ξ for the flat
variant is equidistant. For the following, we parametrize the trajectory of the X-ray source moving on
a circle around the origin of the Cartesian (ex, ey) coordinate system in the mathematical positive
sense by s = (−dso sin (θ) , dso cos (θ))T . Therein, the angle θ is included between the central beam
of the X-ray beam fan and the ey-axis, and the X-ray source starts its rotation in the point (0, dso)

T

(cf. Figure 4.6). All these sizes will be of importance for the handling of reconstruction for a fan
beam scanning scenario.

One clear result of subsection 4.2.1 was that simple backprojection is an insufficient method to re-
construct projection data. For this reason, we will directly enter into the preparational steps for filtered
backprojection. We have to understand how projection images taken under a fan beam scanning
setup are linked to projections from parallel beam scanning. In fact, the methodology to achieve this
conversion is quite easily understandable and known as rebinning. The beams of different fan beam
projection angles can partially be rebinned (meaning kind of a replacement) into a set of parallel
beams for one single projection angle. After this procedure, we can fall back to the reconstruction
routines of section 4.2 for the newly synthesized parallel beam scanning scenario.

To approach the rebinning for a curved detector, Figure 4.6 displays the geometrical considerations
which are necessary to give the following mathematical relations. The arc angle ψ belonging to a
sole ray of the fan beam establishes the traveled arc lenght ζ = dsdψ per definitionem of a radian
size. The projection angle θ is usefully defined between the central beam of the fan and the ey-axis
of the Cartesian coordinate system (ex, ey). The new fan beam polar coordinates are therefore
given by (eζ , eθ) in contrast to the parallel beam polar coordinates (eξ, eγ) (for the Radon space).
While the projection data pγ (ξ) for parallel beam stay unchanged, we identify the projection data in a
fan beam scanning setting straightforwardly by φθ (ζ). With a sharp look at Figure 4.6, the relations

ξ = dso sin (ψ) ⇔ ψ = arcsin (ξ/dso) (4.35)

γ = θ + ψ ⇔ θ = γ − ψ (4.36)

become clear. This directly yields the rebinning for fan beam scanning with a curved detector array
as

φθ (ζ) = φθ (dsdψ) = pθ+ψ (dso sin (ψ)) (4.37)

⇔ pγ (ξ) = φγ−ψ (ζ) = φγ−arcsin(ξ/dso) (dsd arcsin (ξ/dso)) . (4.38)

What can be seen in the argument of pθ+ψ in equation (4.37) is that the parallel beam data points of
the rebinned projection φθ along the eξ-axis are not distributed equidistanly (due to the sin (ψ)-term),
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inducing the need to interpolate to achieve equidistant parallel beam data.

eζ

ey

ex

eξ

γψ

θ

dso

dod
dsd

pγ (ξ)

φθ (ζ)

s

d

ψ
dsdψ

Figure 4.6.: geometrical situation for rebinning of a curved detector array

The next step towards filtered backprojection for fan beam scanning with a flat detector is to transmit
the results of rebinning for a curved detector array to the planar one. This time the spacing of the
detector elements is equidistant, implying a non-linear change of the angle between neighboring X-
rays. Another big difference for rebinning of flat detector panels is that an imaginary linear detector
going through the origin has to be used as an auxiliary, compare the ea-axis in Figure 4.7.

The currently considered point r = (x, y)T is parameterized by the radius r from the origin and the
angle δ to the ex-axis. Its distance to the radiation source s is denoted by L. The virtual detector
used to derive the filtered backprojection method for fan beam scanning with a flat detector array
in the following is orientated along the ea-axis, so the polar fan beam coordinate system for planar
detectors is (ea, eθ). The value a (in green) designates the intersection of the ea-axis with the actual
X-ray L. The meaning of the projection angle θ or the fan beam projection data φθ (a) remains
unchanged on the whole. We can again identify some important preparational relations by detailed
contemplation of Figure 4.7:

ξ = a cos (ψ) = a
dso√
a2 + d2

so

(4.39)

γ = θ + ψ = θ + arctan (a/dso) (4.40)

r · nξ = ξ = r cos (γ − δ) . (4.41)
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ey

ex

eξ

γ

ψ

θ

dso

φθ (a)

s

ea

ψ

L

δ

L

r = (x, y)T

ξ a

r
R

ψ

U

θ − δ

Figure 4.7.: geometrical situation for rebinning of a flat detector array

Now, it’s time to begin with the derivation of filtered backprojection for flat detector arrays in fan beam
scanning, starting from equation (4.28):

f (x, y) =

π∫
0

=hγ(ξ)︷ ︸︸ ︷ ∞∫
−∞

Pγ (q) |q|ei2πqξ dq

 dγ
(4.1)
=

π∫
0

∞∫
−∞

Pγ (q) ei2πq(x cos(γ)+y sin(γ))|q|dq dγ (4.42)

(4.5)
=

π∫
0

∞∫
−∞

Pγ (q) ei2πq(r·nξ)|q| dq dγ
(4.7)
=

π∫
0

∞∫
−∞

 ∞∫
−∞

pγ
(
ξ′
)
e−i2πqξ

′
dξ′


︸ ︷︷ ︸

=Pγ(q)

ei2πqξ|q| dq dγ.

An alternative form of this equation can be achieved by rearranging and changing of the integration
order to

f (x, y) =

π∫
0

∞∫
−∞

pγ
(
ξ′
) ∞∫
−∞

ei2πq(r·nξ−ξ
′)|q|dq


︸ ︷︷ ︸

=:g(r·nξ−ξ′)

dξ′ dγ. (4.43)

The function g (•) represents the convolutional filter kernel in the spatial domain. After expanding
the outer integration in equation (4.43) to the interval [0, 2π] (yielding the prefactor 1/2), we can
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record

f (x, y) =
1

2

2π∫
0

 ∞∫
−∞

pγ
(
ξ′
)
g
(
r · nξ − ξ′

)
dξ′

 dγ (4.44)

as an interim result.

The next level consists of the coordinate transform from the parallel beam (eξ, eγ) system to the
fan beam (ea, eθ) system, for which we will excessively use the correlations introduced in equations
(4.39) through (4.41). We are interested in the conversion dξ dγ 7→ J da dθ with

J =

∣∣∣∣∣∣
∂ξ
∂a

∂ξ
∂θ

∂γ
∂a

∂γ
∂θ

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
(

dso√
a2+d2so

)3

0

dso
a2+d2so

1

∣∣∣∣∣∣∣ =

(
dso√
a2 + d2

so

)3
(4.39)

= cos (ψ)3 (4.45)

using the auxiliary calculations

∂ξ

∂a

(4.39)
=

∂
(
adso ·

(
a2 + d2

so

)− 1
2

)
∂a

= dso
(
a2 + d2

so

)− 1
2 + adso

(
−
�
��
1

2

(
a2 + d2

so

)− 3
2 �2a

)
= dso

(
��a

2 + d2
so

) (
a2 + d2

so

)− 3
2 −(((((

((((
dsoa

2
(
a2 + d2

so

)− 3
2 =

(
dso√
a2 + d2

so

)3

and

∂γ

∂a

(4.40)
=

∂
(
θ + arctan

(
a
dso

))
∂a

=
dso

a2 + d2
so

.

Applying the found coordinate transform condition and the set of equations (4.39) - (4.41) reshapes
equation (4.44) to

f (r, δ) =
1

2

2π∫
0

{ amax∫
−amin

=φθ(a)︷ ︸︸ ︷
pθ+ψ︸︷︷︸
=pγ

(
a

dso√
a2 + d2

so︸ ︷︷ ︸
=ξ

)
· · · (4.46)

g

( =r·nξ−ξ′︷ ︸︸ ︷
r cos

(
θ + arctan

(
a

dso

)
︸ ︷︷ ︸

=γ

−δ

)
− a dso√

a2 + d2
so︸ ︷︷ ︸

=ξ

)(
dso√
a2 + d2

so

)3

︸ ︷︷ ︸
=J

da

}
dθ.

In order to shorten the large expressions, we have to insert some mathematical side thoughts. At
first, we will use an addition theorem for the cos (•) function, namely

cos (α± β) = cos (α) cos (β)∓ sin (α) sin (β) ,

which gives the following for the choice α = θ − δ, β = ψ = arctan (a/dso):

r · nξ − ξ′ = r cos
( =α︷ ︸︸ ︷
θ − δ+

=β︷︸︸︷
ψ
)
− a dso√

a2 + d2
so

= r cos (θ − δ) cos (ψ)− r sin (θ − δ) sin (ψ)− a dso√
a2 + d2

so

= r cos (θ − δ) dso√
a2 + d2

so

− (dso + r sin (θ − δ)) a√
a2 + d2

so

(4.47)

with cos (ψ)
(4.39)

=
dso√
a2 + d2

so

and sin (ψ)
Fig.4.7

=
a√

a2 + d2
so

.
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From the right-angled triangle in Figure 4.7 having R = r cos (θ − δ) as adjecent side and r as
hypotenuse, we can follow the abbreviation

U := dso + r sin (θ − δ) . (4.48)

Now let’s assume we have any selected position a′ which is not necessarily identical to the recent
position a indicating the X-ray of interest. Then the intercept theorem declares that

tan
(
ψ′
)

=
a′

dso
=
R′

U
=

r cos (θ − δ)
dso + r sin (θ − δ)

⇒ Ua′ = r cos (θ − δ) dso. (4.49)

If we now substitute equations (4.48) and (4.49) into equation (4.47), we obtain

r · nξ − ξ′ =
(
a′ − a

) U√
a2 + d2

so

. (4.50)

After we inserted the whole gained simplifications into equation (4.46), the reduced formulation
reads

f (r, δ) =
1

2

2π∫
0


amax∫
−amin

φθ (a) g

((
a′ − a

) U√
a2 + d2

so

)(
dso√
a2 + d2

so

)3

da

 dθ, (4.51)

in which the bracketed share constitutes a convolution with respect to the a-variable. The penulti-
mate step towards the final form of the filtered backprojection reconstruction for fan beam scanning
with a flat detector is to focus on the filter kernel g (•) in the spatial domain once again. Since

g (ξ) =

∞∫
−∞

|q|ei2πqξ dq

⇒ g

((
a′ − a

) U√
a2 + d2

so

)
=

∞∫
−∞

|q|e
i2πq(a′−a) U√

a2+d2so dq,

a coordinate substitution of the shape

q′ =
U√

a2 + d2
so

q ⇔ q =

√
a2 + d2

so

U
q′ (4.52)

yields the very helpful correlation

g

((
a′ − a

) U√
a2 + d2

so

)
=
a2 + d2

so

U2

∞∫
−∞

|q′|ei2πq′(a′−a) dq′ =
a2 + d2

so

U2
g
(
a′ − a

)
. (4.53)

Condensing equations (4.51) and (4.53) gives

f (r, δ) =
1

2

2π∫
0

1

U2


amax∫
−amin

φθ (a) g
(
a′ − a

) d3
so√

a2 + d2
so

da

 dθ

=

2π∫
0

d2
so

U2

{
1

2

(
φθ (a)

dso√
a2 + d2

so

)
∗ g (a)︸ ︷︷ ︸

=:hθ(a)

}
dθ. (4.54)
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The underbraced convolution function hθ (•) represents the ramp filtering of the modified fan beam
scanning projection data φθ (•) along the latest detector orientation (the ea-axis). Finally, the short
version of the filtered backprojection can be specified as

f (r, δ) =

2π∫
0

d2
so

U2
hθ (a) dθ with hθ (a) =

1

2

(
φθ (a)

dso√
a2 + d2

so

)
∗ g (a) . (4.55)

As already done at the end of subsection 4.4.2, we will also conclude this subsection with the key
steps that have to be absolved to come from a set of available fan beam projection data φθ (a)
measured by a flat detector panel to local attenuation values f (r, δ) with the newly derived filtered
backprojection reconstruction method.

(1) Perform the coordinate transform from the ramp filter for a fan beam scenario to the ramp filter
for parallel beam scanning, using relation (4.53).

(2) Filter the projection data signal in the spatial domain along the ea-axis of the flat linear detector
panel, giving the convolution function hθ stated in equation (4.55).

(3) Calculate the backprojection f by integration over all possible projection angles θ, using the
essential variable U (length of the projection of the vector r− s onto the current central ray of
the fan beam): f (r, δ) =

∫ 2π
0

d2so
U2 hθ (a) dθ.

4.4. 3D reconstruction methods for cone beam scanning

Basically, three-dimensional reconstruction needs a comprehensive theoretical derivation (please re-
fer to the book Buzug, 2008 once again for more information) which is much longer than the already
presented section 4.1 for two-dimensional reconstruction. Fortunately, the FDK cone beam recon-
struction method (named after Feldkamp, Davis and Kress; Feldkamp, Davis, and Kress, 1984) can
be introduced on top of the filtered backprojection reconstruction for a fan beam scanning scenario
with a flat detector array given in the previous section 4.3. One could say the FDK reconstruction
method is the direct generalization of the filtered backprojection for fan beam scanning onto cone
beam projection data. Still, one important difference between the two reconstruction techniques
is that the FDK reconstruction method can only give an approximation of the theoretically exactly
solvable reconstruction problem. The reason for this is that the mathematically principally arbitrary
path of the X-ray source s (λ) (which could be parametrized by a scalar path variable λ) is restricted
to a circular motion around the fixed Cartesian (ex, ey, ez) coordinate system in reconstruction with
the FDK algorithm for practical purposes. But since the arising difference in the final reconstructed
images is negligible for a general user and further focussing on the principles of three-dimensional
reconstruction would lead much to far, we are content with the FDK reconstruction method in the
following.

The reconstruction method proposed by Feldkamp, Davis and Kress is a derivative-free method
which also works with a virtual flat detector (which is an extended two-dimensional rectangle and
not only a one-dimensional array of detector elements this time) positioned in the iso-center of ro-
tation O. Of course the method could also be characterized for the curved variant of the detector
in 3D, but this is not of interest at this point. The radiation source s moves on a circle lying in the
(ex, ey)-plane with the radius dso to the origin, so it still holds that s = (−dso sin (θ) , dso cos (θ) , 0)T .
The projection angle θ is thereby determined by the angle between the central beam of the cone
and the ey-axis. Furthermore, the measured projection values on the virtual detector are denoted
by φθ (a, b). The variables a, b define the position of a point p = (a, b)T on the virtual flat detector
panel along the principal (ea, eb)-axes, starting in the center of the rectangle area of the detector,
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which coincides with the global origin O. As the direction of the principal width axis ea changes with
increasing projection angle θ, the angle can also be identified between the moving ea- and the fixed
ex-axis. All mentioned sizes and relations can be recovered in Figure 4.8.

s

O

ex

ey

ez

ea

eb

θ

κa

a

θ

r = (x, y, z)T

p = (a, b)T

b = (0, 0, b)T

dso

√
d2
so + a2

√
d2
so + b2

√
d2
so + a2 + b2

ψ

ϕ

κ0

β

φθ (a, b)

A

eζ

κa = ^ (s− a, s− p)

κ0 = ^ (s, s− b)

Figure 4.8.: global overview of the geometry necessary for the derivation of the FDK reconstruction
algorithm for cone beam scanning

Let’s discuss some connections already indicated in Figure 4.8: For example, the cone angle for
fixed opening angle of the fan ψ can be obtained as κa = arctan

(
b/
√
d2
so + a2

)
. A possible further

cognition from Figure 4.8 is that it makes sense to look at a fan beam like the one depicted with
the yellow surface which intersects the (ea, eb)-plane of the virtual detector in a line with constant b-
value. Thus, we can treat each such fan seperately with methods of two-dimensional reconstruction.
Of course the lengths have to be adapted individually for each intersection position along the eb-axis
because of the cone beam opening angle κa. Last, the point r = (x, y, z)T on the considered fan is
projected onto the intersection point p = (a, b)T in (ea, eb) coordinates via

a = dso tan (ψ)

b =
√
d2
so + a2 tan (κa)
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for known angles ψ, κa, compare Figure 4.10(c) or 4.10(d).

The next step to approach the FDK reconstruction method lies in the introduction of the fan-specific
coordinate system spanned by the normal vectors {nσ,nη,nξ}, as depicted in Figure 4.9. The nor-
mal vector nσ points in direction of the ea-axis and is therefore rotated by the projection angle θ from
the ex-axis in the ex-ey-plane. This rotational operation can be described mathematically by the
orthogonal rotation matrix Σ. The normal vector nη simply points back to the X-ray source position
along the central beam of the fan. Finally, the normal vector nξ = nσ × nη is exactly the surface
normal vector of the fan area A. As we can see from Figure 4.9, this normal vector direction can
also be generated by a rotation with the central cone beam angle κ0 = arctan (b/dso) (see Figure
4.10(a)) in the ey-ez-plane starting from the ez-axis. Again, a formulation via an orthogonal rotation
matrix Ξ can be given.

ez

nη

ex

b

nσ

nξ

κ0

θ

A

Figure 4.9.: illustration of the orientation of the new fan-specific coordinate system (eσ, eη, eξ) (which
is still positioned in the global origin O) by its spanning normal vectors {nσ,nη,nξ}

Plugging all these preparations together, the coordinate changes between a point r = (x, y, z)T in
the fixed coordinate system (ex, ey, ez) and its equivalent point ρ̃ = r with coordinates ρ̃ = (r, s, t)T

on a specific fan beam surface A in the (eσ, eη, eξ) coordinate system can be achieved using the
following expressions:

ρ̃ = (r, s, t)T = Ξ (Σr + b) = Ξ
(
Σ (x, y, z)T + (0, 0, b)T

)

r

s

t

 =


1 0 0

0 cos (κ0) sin (κ0)

0 − sin (κ0) cos (κ0)





cos (θ) sin (θ) 0

− sin (θ) cos (θ) 0

0 0 1



x

y

z

+


0

0

b




=


1 0 0

0 cos (κ0) sin (κ0)

0 − sin (κ0) cos (κ0)



x cos (θ) + y sin (θ)

−x sin (θ) + y cos (θ)

z + b


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=


x cos (θ) + y sin (θ)

−x sin (θ) cos (κ0) + y cos (θ) cos (κo) + (z + b) sin (κ0)

x sin (θ) sin (κ0)− y cos (θ) sin (κo) + (z + b) cos (κ0)

 (4.56)

⇔ r = (x, y, z)T = ΣT
(
ΞT ρ̃− b

)
= ΣT

(
ΞT (r, s, t)T − (0, 0, b)T

)

=


cos (θ) − sin (θ) 0

sin (θ) cos (θ) 0

0 0 1





1 0 0

0 cos (κ0) − sin (κ0)

0 sin (κ0) cos (κ0)



r

s

t

−


0

0

b




=


cos (θ) − sin (θ) 0

sin (θ) cos (θ) 0

0 0 1




r

s cos (κ0)− t sin (κ0)

s sin (κ0) + t cos (κ0)− b



=


r cos (θ)− sin (θ) (s cos (κ0)− t sin (κ0))

r sin (θ) + cos (θ) (s cos (κ0)− t sin (κ0))

s sin (κ0) + t cos (κ0)− b

 (4.57)

If we focus on a selected fan A and consider only some points r ∈ A, it holds that t = 0 along the
eξ-direction. Therewith, equation (4.57) can be simplified for points ρ = (r, s)T in this specific fan
beam plane A. We also use relations from Figure 4.10(a) to formulate equation (4.58):


x

y

z

 =


r cos (θ)− s sin (θ) cos (κ0)

r sin (θ) + s cos (θ) cos (κ0)

s sin (κ0)− b

 =


r cos (θ)− s sin (θ) dso√

d2so+b
2

r sin (θ) + s cos (θ) dso√
d2so+b

2

s b√
d2so+b

2
− b

 . (4.58)
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Figure 4.10.: focussing several right-angled triangles from Figure 4.8
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For most of the subsequent steps of the FDK reconstruction algorithm, we can now use the almost
perfect analogy to the filtered backprojection reconstruction method from section 4.3 on a fixed fan
beam surface A, for now parametrized by point coordinates ρ = (r, s)T . We can directly exchange
some of the used variables in the given order:

{ξ, ψ, dso,
√
d2
so + a2, θ} 7→ {ζ, ϕ,

√
d2
so + b2,

√
d2
so + a2 + b2, θb}.

We indeed withdraw to the single fixed plane A including the projection angle θb with the ey-axis
(the angle index •b specifies that this selected plane intersects the ez-axis at z = b). Again, we are
interested in the transfer from some kind of fan beam projection data φθb (a, b) to the corresponding
parallel geometry data pγ (ζ) along the auxiliary eζ -axis (recap Figure 4.8). For a deeper under-
standing of the specified relations, it is helpful to look at Figure 4.7 once again and to replace some
identifiers as introduced above. The first analogous sizes are defined by

(4.39) 7→ ζ = a cos (ϕ) = a

√
d2
so + b2√

d2
so + a2 + b2

(4.59)

(4.40) 7→ γ = θb + ϕ = θb + arctan
(
a/
√
d2
so + b2

)
(4.60)

(4.41) 7→ ρ · nζ = ζ = ρ cos (γ − δ) . (4.61)

To get nearer to the reconstruction algorithm, we transmit equation (4.44) to its new form

f (r, s) =
1

2

2π∫
0

 ∞∫
−∞

pγ (ζ) g (ρ · nζ − ζ) dζ

 dγ (4.62)

with the addressed coordinate change to the auxiliary ζ-coordinate. Again, we will carry out the
conversion from the (eζ , eγ) to the detector-inherent (ea, eθb) coordinate system by calculation of
the Jacobian dζ dγ 7→ J dadθb. This yields

J =

∣∣∣∣∣∣
∂ζ
∂a

∂ζ
∂θb

∂γ
∂a

∂γ
∂θb

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
( √

d2so+b
2√

d2so+a
2+b2

)3

0
√
d2so+b

2

d2so+a
2+b2

1

∣∣∣∣∣∣∣ =

( √
d2
so + b2√

d2
so + a2 + b2

)3

= cos (ϕ)3 , (4.63)

following equation (4.45) and the auxiliary calculations below. Resubstitution of the achieved results
in equation (4.62) gives the equation (4.64) similar to equation (4.46):

f (r, s) =
1

2

2π∫
0

{ amax∫
−amin

=φθb (a,b)
∣∣
b=const.︷ ︸︸ ︷

pθb+ϕ︸ ︷︷ ︸
=pγ

(
a

√
d2
so + b2√

d2
so + a2 + b2︸ ︷︷ ︸

=ζ

)
· · · (4.64)

g

( =ρ·nζ−ζ︷ ︸︸ ︷
ρ cos

(
θb + arctan

(
a√

d2
so + b2

)
︸ ︷︷ ︸

=γ

−δ

)
− a

√
d2
so + b2√

d2
so + a2 + b2︸ ︷︷ ︸

=ζ

)( √
d2
so + b2√

d2
so + a2 + b2

)3

︸ ︷︷ ︸
=J

da

}
dθb.

Notice the modified identity pγ (ζ) = pθb+ϕ

(
a
√
d2
so + b2/

√
d2
so + a2 + b2

)
= φθb (a, b)

∣∣
b=const. for

the present three-dimensional scenario, where b = const. references the specific fan beam plane
A under the projection angle θb. The next step on the way to the FDK reconstruction algorithm
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is to work out the convolution integral in braces in equation (4.64). For this, the ensuing bunch of
correlations similar to equations (4.47) through (4.50) is necessary:

ρ · nζ − ζ = ρ cos (θb − δ + ϕ)− ζ (4.47)
= ρ cos (θb − δ) cos (ϕ)− ρ sin (θb − δ) sin (ϕ)− ζ

= ρ cos (θb − δ)
√
d2
so + b2√

d2
so + a2 + b2

−
(√

d2
so + b2 + ρ sin (θb − δ)

) a√
d2
so + a2 + b2

(4.65)

Ub
(4.48)
:=

√
d2
so + b2 + ρ sin (θb − δ) (4.66)

⇒ tan
(
ϕ′
)

=
a′√

d2
so + b2

=
ρ cos (θb − δ)

Ub
⇒ Ub a

′ (4.49)
= ρ cos (θb − δ)

√
d2
so + b2 (4.67)

⇒ ρ · nζ − ζ
(4.50)

=
(
a′ − a

) Ub√
d2
so + a2 + b2

. (4.68)

All these expressions can be used to simplify equation (4.64) to

f (r, s)
(4.51)

=
1

2

2π∫
0

{ amax∫
−amin

φθb (a, b) g

((
a′ − a

) Ub√
d2
so + a2 + b2

)
· · ·

( √
d2
so + b2√

d2
so + a2 + b2

)3

da

}
dθb. (4.69)

Considering the filter kernel g (•) in the spatial domain reveals

g

((
a′ − a

) Ub√
d2
so + a2 + b2

)
(4.53)

=
d2
so + a2 + b2

U2
b

g
(
a′ − a

)
(4.70)

with the simple substitution

q′ =
Ub√

d2
so + a2 + b2

q
(4.52)⇔ q =

√
d2
so + a2 + b2

Ub
q′. (4.71)

The last step directly obeying the principles of the two-dimensional filtered backprojection algorithm
is therefore given by

f (r, s) =
1

2

2π∫
0

1

U2
b


amax∫
−amin

φθb (a, b) g
(
a′ − a

) (√d2
so + b2

)3

√
d2
so + a2 + b2

da

 dθb

=

2π∫
0

d2
so + b2

U2
b

{
1

2

(
φθb (a, b)

√
d2
so + b2√

d2
so + a2 + b2

)
∗ g (a)

}
dθb. (4.72)

The missing puzzle piece to the final version of the FDK reconstruction method is to replace the
dependency of the individual fan beam angle θb by the actual rotation angle θ of the sampling unit.
On this occasion, we will also get rid of the fan beam surface coordinates r, s. Figure 4.11(a)
clarifies that for two different source positions s1, s2 it holds that ‖s1‖2 = ‖s2‖2 = dso and so
‖s1 − b‖2 = ‖s2 − b‖2 =

√
d2
so + b2. We can follow that for small angular changes ∆θ

‖s1 − s2‖2 = dso ∆θ ≈
√
d2
so + b2∆θb ⇒ ∆θb ≈

dso√
d2
so + b2

∆θ.
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Figure 4.11.: additional illustration of geometrical relations used to derive the FDK algorithm

Passing over to an infinitesimal formulation, this relation in combination with equation (4.72) yields

dθb =
dso√
d2
so + b2

dθ (4.73)

⇒ f (r, s) =

2π∫
0

d2
so + b2

U2
b︸ ︷︷ ︸

(∗)

{
1

2

(
φθ (a, b)

dso√
d2
so + a2 + b2

)
∗ g (a)

}
︸ ︷︷ ︸

=:hθ(a,b)

dθ. (4.74)

The termed marked with (∗) can be identified with the fracture d2
so/U

2 using the intercept theorem
for the triangle sketched in Figure 4.11(b). This identity reduces equation (4.74) to its short form

f (r, s) =

2π∫
0

d2
so

U2
hθ (a, b) dθ. (4.75)

The weighting factor dso/
√
d2
so + a2 + b2 in the high-pass filtered function hθ (•) could also be ex-

pressed in terms of angles like cos (β) or cos (ψ) cos (κa), which can be derived with a sharp look
at Figure 4.8 or 4.10. Still, we didn’t resolve the full three-dimensional formulation of the FDK re-
construction algorithm: We eventually have to sort each single fan beam surface A into the fixed
Cartesian (ex, ey, ez)-coordinate system, especially the z-component of the reconstruction has not
been treated yet. From equation (4.58) it holds that

z = s
b√

d2
so + b2

− b,

which is quite badly invertible. A clever choice can be found with a look at Figure 4.11(b):

tan (κ0) =
b

dso
=

z

U
⇔ b =

dso
U
z. (4.76)

In the end, it is reasonable to write the FDK reconstruction method in the symbolic form

f (x, y, z) =

2π∫
0

d2
so

U (x, y, θ)2hθ (a (x, y, z, θ) , b (x, y, z, θ)) dθ. (4.77)
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The conclusion of the three-dimensional reconstruction algorithm by Feldkamp, Davis and Kress
starting from a set of available cone beam projection data φθ (a, b) measured with a flat rectangular
detector panel makes the local attenuation values f (x, y, z) accessible using the subsequent key
steps.

(1) Perform the coordinate transform from the ramp filter for a cone beam scenario to the ramp
filter for parallel beam scanning, using relation (4.70).

(2) Filter the projection data signal in the spatial domain along the ea-axis of the flat rectangular
detector, giving the weighted convolution function hθ stated in equation (4.74).

(3) Calculate the filtered backprojection f by integration over all possible projection angles θ,
using the essential variable U (•) (length of the projection of the vector r− s onto the current,
non-angulated central ray of the cone beam):

f (x, y, z) =

2π∫
0

d2
so

U (x, y, θ)2hθ (a (x, y, z, θ) , b (x, y, z, θ)) dθ

with b (x, y, z, θ) =
dso

U (x, y, θ)
z.

4.5. Algebraic reconstruction methods in 2D and 3D

A completely different approach to the reconstruction of the object’s attenuation coefficients of in-
terest starting with a given set of projection data obtained by measuring with a X-ray detector is the
class of algebraic reconstruction methods. In the following, the question whether we are dealing
with two- or three-dimensional data sets becomes insignificant because this facts just expresses
itself in an increase of dimensionality. The key virtues of algebraic reconstruction in contrast to ana-
lytical reconstruction methods are their flexibility in geometrical formulation and ability to make use
of some prior knowledge information that can be included in the solution process. The backside are
the mostly higher computational efforts, depending on the iteration count, which of course competes
the resulting image quality of the reconstruction.

The problem of algebraic reconstruction can be poured into the single equation

Wv = p, (4.78)

wherein we have the vector v ∈ Rn of voxel data, the vector p ∈ Rm containing the acquired
projection data and finally the projection matrix W ∈ Rm×n. Each projection weight wij symbolizes
the influence of the voxel vj onto the specific measured X-ray beam pi - therefore most of the matrix
entries vanish (because only a few voxels contribute to the information of a sole ray), so W is in
general a sparse matrix. To determine such a contribution, there exist several so-called kernels
which are not of any deeper importance here, so let us just assume they are given. Equation
(4.78) constitutes an algebraic forward projection of some known voxel data onto specific projection
data, which naturally depend on the defined projection weights inside W. The opposed procedure
starting from given projection information can again be denoted as a backprojection and constituted
mathematically via

u = WTp. (4.79)

Be aware that equation (4.79) does not recover the full voxel information, as it has already been
the case for analytical reconstruction with the simple backprojection ansatz in subsection 4.2.1.
However, a generic extension like the filtered backprojection in subsection 4.2.2 synthesized on
top of the simple backprojection is not required here. The goal of algebraic reconstruction rather
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is to find “v∗ = W−1p”, but since the projection matrix is not square and anyways too large to
invert algebraically, “W−1” is not available. The solution of this challenging point is to set up the
optimization problem

find v∗ ∈ Rn so that v∗ = arg min
v∈Rn

‖p−Wv‖2 (4.80)

which searches for the voxel vector v∗ that minimizes the projection distance in a to-be-chosen vec-
tor norm ‖•‖. The broad field of Numerical linear algebra shows some satisfactory procedures to
dissolve the imposed optimization problem of equation (4.80).

We will focus on the simultaneous iterative reconstruction technique (SIRT) from the family of Landwe-
ber algorithms and on the Krylov subspace algorithm conjugate gradients for least squares (CGLS)
in the subsequent two subsections. This is of course motivated by the fact that these two alge-
braic reconstruction algorithms are available for all imaginable configurations of the ASTRA toolbox.
Moreover, the circumstance that other possible algebraic reconstruction algorithms like the algebraic
reconstruction technique (ART) or the simultaneous algebraic reconstruction technique (SART) (for
a short characterization, see Kak and Slaney, 2001, p. 283 ff.) can only be used as algorithms
for projection data from two-dimensional scanning setups suggests that those ones cannot reliably
handle the increased requirements of the more demanding general three-dimensional reconstruction
task. The two main disparities between SIRT and CGLS are the differing mathematical backgrounds
from which the methods are evolved on the one hand and the conflict between occupied working
memory and necessary iteration count to achieve reconstructions of adequate image quality on
the other hand. While the SIRT algorithm is lightly more memory-efficient, CGLS reaches good
reconstructions for a considerably lower number of iterations (and is therefore linked to a shorter
computational time).

4.5.1. Simultaneous iterative reconstruction technique (SIRT)

We will unceremoniously introduce the iteration necessary to update the i-th estimation of the voxels’
attenuation coefficient vector v(i) to the (i+ 1)-st step using the SIRT reconstruction algorithm,
following the paper (Gregor and Benson, 2008):

v
(i+1)
j = v

(i)
j +

m∑
k=1

[
wkj

(
pk −

n∑
l=1

wklv
(i)
l

)
/

n∑
l=1

wkl

]
m∑
k=1

wkj

for j = 1, . . . , n

⇔ v(i+1) = v(i) + CWTR
(
p−Wv(i)

)
. (4.81)

Herein, the currently iterated projection distance p −Wv(i) is concatenated with a particular se-
quence of matrix multiplications, where the diagonal matrices C and R contain the inverse column
sum cjj = 1/

∑m
k=1wkj respectively the inverse row sum rkk = 1/

∑n
l=1wkl of the projection matrix

W. The SIRT procedure given in equation (4.81) indeed solves an optimization problem comparable
to the one in equation (4.80), namely

v∗ = arg min
v∈Rn

‖p−Wv‖2R with ‖p−Wv‖2R := (p−Wv)T R (p−Wv) .
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To analyze the convergence, we need to reshape the SIRT specification to normal equation form to
access an eigenvalue consideration. This yields the set of relations

normal equation: WTRWv = WTRp
C·(•)7−−−→ CWTRWv = CWTRp (4.82)

splitting: CWTRW = I−
(
I−CWTRW

)
(4.83)

⇒ v(i+1) =
(
I−CWTRW

)
v(i) + CWTRp

(4.81)
= v(i+1) = v(i) + CWTR

(
p−Wv(i)

)
.

The splitting introduced in equation (4.83) is essential for the discussion of eigenvalue properties,
and as shown above also reflects the SIRT algorithm. The convergence of the iterative SIRT method
is guaranteed mathematically if

%
(
I−CWTRW

)
= max

λ∈Λ
|1− λ|

!
< 1, (4.84)

that is the largest eigenvalue of the iteration matrix has a strict upper bound of 1. On the one hand,
the matrix CWTRW has strictly positive eigenvalues λ > 0 (C is positive definite and if W has full
column rank, WTRW is even symmetric positive definite). On the other hand, the equivalence of
the spectral radius % (•) with any vector norm on finite dimensional vector spaces induces

%
(
CWTRW

)
≤ ‖CWT ‖∞‖RW‖∞

when choosing the row sum matrix norm ‖•‖∞. Thanks to the construction of the matrices C and R,
both expressions equal 1. Altogether, the SIRT algorithm given in equation (4.81) globally converges
when using an arbitrary starting point v(0) because the two previous points show

0 ≤ |1− λ| < 1,

fulfilling the necessary condition for convergence in equation (4.84).

4.5.2. Conjugate gradients for least squares (CGLS)

The CGLS method comes from the class of Krylov subspace methods and therefore follows deviant
mathematical principles. Just as before, we are interested in solving the least squares optimization
problem (4.80), this time applying the Euclidean vector norm ‖•‖2. Instead of equation (4.78), it is
adequate to solve the corresponding normal equation

WTWv = WTp. (4.85)

To make the algorithmic steps of the CGLS method a bit clearer (and to pick up the train of thoughts
from Kloek, 2012), the method of steepest decent for the least square (SDLS) problem will be spec-
ified first.

The SDLS method is only employable for symmetric positive definite matrices, so it is necessary to
start with the normal equation (4.85) (WTW is of course symmetric positive definite). The quadratic
form

f (v) = vT
(
WTW

)
v − 2

(
WTp

)T
v (4.86)

is exploited to find the minimum of the least squares optimization problem. Because of its quadratic
(parabolical) characteristic, the global minimum of f (•) can be obtained by evaluating

f ′ (v) = 2WTWv − 2WTp
!

= 0, (4.87)
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and reshaping of this condition indite yields the normal equation (4.85). Thus, finding the minimum
of the normal equation can equivalently be done as an iterative search for the zero point of f ′ (•).
If we start with a given initial guess v(0) and follow the direction of steepest decent −f ′

(
v(i)
)

=

2WTp − 2WTWv(i) in the iteration from v(i) to v(i+1), we can define the following two important
sizes for the SDLS algorithm:

i-th residual vector for (4.78): r(i) := p−Wv(i) (4.88)

i-th residual vector for (4.85): s(i) := WTp−WTWv(i) = WT r(i) = −1

2
f ′
(
v(i)
)
. (4.89)

The iteration rule of SDLS takes the αi-share of the step s(i) to find the new voxel values v(i+1) =
v(i) + αis

(i). This proportion has to be ascertained by minimizing the function value f
(
v(i+1)

)
with

respect to αi via

0
!

=
d

dαi
f
(
v(i+1)

)
= f ′

(
v(i+1)

)T d

dαi
v(i+1) (4.89)

= −2s(i+1)T s(i)

·(− 1
2)

====⇒ 0
!

= s(i+1)T s(i) (4.89)
=

[
WTp−WTW

(
v(i) + αis

(i)
)

︸ ︷︷ ︸
v(i+1)

]T
s(i)

=
(

WTp−WTWv(i)︸ ︷︷ ︸
s(i)

)T
s(i) − αis(i)TWTWs(i) ⇒ αi =

s(i)T s(i)

s(i)TWTWs(i)
. (4.90)

To conclude this short excursion to the SDLS method, its algorithmic scheme is stated as follows:

r(0) = p−Wv(0) → s(0) = WT r(0)

αi =
s(i)T s(i)

s(i)TWTWs(i)
→ v(i+1) = v(i) + αis

(i) → r(i+1) = r(i) − αiWs(i) → s(i+1) = WT r(i+1).

The expression for r(i+1) herein can be derived by

r(i+1) = p−W
(

v(i) + αis
(i)︸ ︷︷ ︸

v(i+1)

)
= p−Wv(i)︸ ︷︷ ︸

r(i)

−αiWs(i).

Important to keep in mind at this point is that the factor αi in equation (4.90) minimizes the norm of
the residual vector ‖r(i+1)‖22 = ‖r(i) − αiWs(i)‖22 with knowledge of the previous iteration.

The conjugate gradients for least squares (CGLS) method exhibits a similar property, as we will de-
rive in its entirety in this subsection. After we developed the algorithmic steps for SDLS in a “forward”
way, for CGLS we will proceed inversely by instantaneously declaring the algorithmic scheme:

r(0) = p−Wv(0) → s(0) = WT r(0) =: t(0)

v(i+1) = v(i) + αit
(i) → r(i+1) = r(i) − αiWt(i) → s(i+1) = WT r(i+1) → t(i+1) = s(i+1) + βit

(i).

The equal signs shall be understood as definitions by now, and we single out the relation

s(i+1) = WT r(i+1) = s(i) − αiWTWt(i). (4.91)

The factor αi of the algorithm does not match the one worked out for SDLS and the new factor βi
is yet unknown, so we have to impose the first condition that ‖r(i+1)‖22 should be minimized with
respect to the factors αi and αi−1. Since

r(i+1) = r(i) − αiWt(i) = r(i−1) − αi−1Wt(i−1) − αiWt(i), (4.92)
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the norm of the subsequent residual vector becomes

‖r(i+1)‖22 = r(i+1)T r(i+1) (4.92)
= r(i−1)T r(i−1) − 2αi−1r

(i−1)TWt(i−1) − 2αir
(i−1)TWt(i)

+ α2
i−1t

(i−1)TWTWt(i−1) +((((
(((

((((
(

2αi−1αit
(i−1)TWTWt(i) + a2

i t
(i)TWTWt(i). (4.93)

In order to regard the minimization problem independently for αi−1 or αi, we omit the canceled
term which containes the mixed product αi−1αi in equation (4.93). To make this possible, a second
additional condition has to be fixed: we have to choose the factor βi in the relation t(i+1) = s(i+1) +
βit

(i) in such a way that
t(i+1)TWTWt(i) !

= 0. (4.94)

After this requirement has been recorded, we can come back to the investigation of equation (4.93),
which is now differentiated with respect to αi (it is not necessary to consider αi−1 because this
should have been treated in the previous iteration):

0
!

=
d

dαi
‖r(i+1)‖22 = −2r(i−1)TWt(i) + 2αit

(i)TWTWt(i)

⇒ αi =
r(i−1)TWt(i)

t(i)TWTWt(i)

(4.91)
=:

s(i−1)T t(i)

τ (i)

(4.91)
=

(4.94)

s(i)T t(i)

τ (i)
+ αi−1���

���
���t(i−1)TWTWt(i)

τ (i)
. (4.95)

The size τ (i) is just an abbreviation for the denominator, and equation (4.95) is not the final shape
of the factor αi. Step by step, a small set of lemmata will be proved in the following, which helps us
to formulate the CGLS method further.

The first claim comprises t(i) ⊥ s(i+1), which can be shown quite easily:

t(i)T s(i+1) (4.91)
=

(4.95)
t(i)T s(i) − s(i)T t(i)

�
�τ (i)︸ ︷︷ ︸
αi

((((
((((

t(i)TWTWt(i) = t(i)T s(i) − s(i)T t(i) = 0. (4.96)

This helps us proving the deduction s(i)T t(i) = s(i)T s(i), which will be done for the (i+ 1)-st iteration
for readability reasons.

s(i+1)T t(i+1) (4.96)
= s(i+1)T s(i+1) + βi��

���s(i+1)T t(i) (i+1)→ i7−−−−−→ s(i)T t(i) = s(i)T s(i) (4.97)

With this understanding, the factor αi can be transformed to its final form

αi
(4.95)

=
s(i)T t(i)

τ (i)

(4.97)
=

s(i)T s(i)

τ (i)
. (4.98)

Another intermediate lemma claims the one-liner

τ (i+1) = t(i+1)TWTWt(i+1) (4.94)
= t(i+1)TWTWs(i+1) + βi(((

((((
((

t(i+1)TWTWt(i) = t(i+1)TWTWs(i+1)

(i+1)→ i7−−−−−→ t(i)TWTWs(i) = t(i)TWTWt(i) = τ (i), (4.99)

where the second imposed condition was the central ingredient again and of course (i+ 1) instead
of i was used for consistency. More meaningful for the CGLS routine is the conclusion that s(i) ⊥
s(i+1), for which the prove is still uncomplicated:

s(i)T s(i+1) (4.91)
= s(i)T s(i) − αis(i)TWTWt(i) (4.98)

=
(4.99)

s(i)T s(i) − s(i)T s(i)

�
�τ (i) �

�τ (i) = 0. (4.100)
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Finally, all lemmata that are necessary to study equation (4.94) and especially the βi-factor are
prepared. We require

0
!

= t(i)TWTWt(i+1) = t(i)TWTWs(i+1) + βi t
(i)TWTWt(i)︸ ︷︷ ︸

=τ (i)

⇒ βi =
−t(i)TWTWs(i+1)

τ (i)

and use the subsequent side reflection of the iteration instruction

Wt(i) (4.92)
=

r(i) − r(i+1)

αi
⇒ −t(i)TWTW =

(
r(i+1) − r(i)

)T
W
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(4.91)
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)T
αi

to obtain the factor βi via
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s(i)T s(i)
=

s(i+1)T s(i+1)

s(i)T s(i)
. (4.101)

If the two factors αi from equation (4.98) and βi from (4.101) are inserted into the algorithmic
scheme with which we started the previous derivation, the iterative CGLS method is completed.
It remains to explain why CGLS belongs to the family of Krylov subspace methods: By its construc-
tion in the additional condition (4.94), it holds that Wt(i+1) ⊥ Wt(i) and from means of iteration
also Wt(i+1) ⊥ {Wt(i), . . . ,Wt(0)}. This means the vector Wt(i+1) is orthogonal to the sub-
space span{Wt(i), . . . ,Wt(0)}, which exactly determines the characteristic of the powerful Krylov
subspace methods. Moreover, with regard to the least squares problem formulation, the residual
‖r(i+1)‖22 is minimized over all α0, . . . , αi when using the CGLS algorithm.
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5. The ASTRA toolbox

There are some well-established commercial software packages to generate reconstructed images
from a set of projection data (for instance Octopus Reconstruction; Vlassenbroeck et al., 2007).
Their key features clearly lie in their reliability by testing over a long time period and their user-
friendliness in shape of a GUI or similar. But of course there are some incisive limitations accompa-
nied by the black-box user ansatz, for instance the small number of usable reconstruction algorithms,
the fixed geometrical setup which serves to display the acquisition process of the projection data or
the computational efficiency (mostly because of the usage of CPU algorithms). Similar constraints
apply to current open source software tomographic reconstruction tools like PyHST2 (Mirone, Gouil-
lart, Brun, Tafforeau, and Kieffer, 2014), TomoPy (Gürsoy, Carlo, Xiao, and Jacobsen, 2014) or
TIGRE (Biguri, Dosanjh, Hancock, and Soleimani, 2016).

The All Scale Tomographic Reconstruction Antwerp (ASTRA) toolbox (van Aarle et al., 2015; van
Aarle et al., 2016; Palenstijn, Batenburg, and Sijbers, 2011) has been developed since 2010 by
the Vision Lab at the University of Antwerp (Belgium) to offer a new alternative software package
dealing with reconstruction tasks. It aims to mix the tried and tested functionalities of commercial
codes with the possibility to consult advanced developer tools and flexibilities. Therefore reason-
ably, the package is available as open source software for free under a GPLv3 license1. The ASTRA
toolbox routines can be called either through a MATLAB mex or a Python interface. It offers full
three-dimensional flexibility to map the projection measuring process in a vectorized geometrical
description. Finally, the ASTRA toolbox provides the important possibility to be run on GPUs (graph-
ics processing units), but only NVIDIA graphic cards can be used for this purpose because the
algorithms require the CUDA language. The design ideas of the ASTRA toolbox are summarized in
Figure 5.1. We will go on by presenting the main components including minimal algorithmic usage
examples in section 5.1. Note that all algorithmic snippets shown here refer to the MATLAB mex
interface. Afterwards, we will plunge deeper into how our experimental setups from chapter 3 can
be transfered to the ASTRA toolbox.

5.1. Main components of the ASTRA toolbox

The components of the ASTRA toolbox can be structured into three main concepts: depiction of the
spatial geometrical setup, data handling and reconstruction algorithms. While the first two aspects
further subdivide into properties of the object volume or rather of the projection composition, the
algorithms of course need the full information about both the volume and the projections.

1https://www.astra-toolbox.com/#

https://www.astra-toolbox.com/
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Figure 5.1.: schematic overview of the ASTRA toolbox design (taken directly from van Aarle et al.,
2015, p. 36)

The input and output data have to be linked to the special measuring situation that was present
when the projections have been recorded. This is why the volume and projection geometry have
to be specified - they define how the volume and projection data have to be interpreted in the
reconstruction algorithms later on. For the volume geometry, we have to indicate the position of
the sample in the two- or three-dimensional space and even more important the pixel or voxel grid
representing the object of interest.

% 2D volume geometry : square p i x e l g r i d centered around the o r i g i n
vol_geom = astra_create_vol_geom ( num_det_cols , num_det_cols ) ;
% 3D volume geometry : cuboid voxel g r i d centered around the o r i g i n
vol_geom = astra_create_vol_geom ( num_det_cols , num_det_cols , num_sino ) ;

Thus, each slice is a square image with Nx×Nx pixels, and in the three-dimensional case the stack
is additionally Nz voxels high. The projection geometry in general comprises a keyword to identify
the scanning setup ( {’parallel’, ’fanflat’} in 2D or {’parallel3d’, ’cone’} in 3D) plus the detector pixel
pitch px, the number of detector columnsNx and all projection angles arranged in a specific MATLAB
matrix2.

% 2D p a r a l l e l beam p r o j e c t i o n geometry ( p_x = 1 .0 )
proj_geom = astra_create_proj_geom ( ’ p a r a l l e l ’ , 1 .0 , num_det_cols , . . .

l inspace2 (0 , pi , num_angles ) ) ;
% 2D fan beam beam p r o j e c t i o n geometry ( p_x = 1 .0 )
proj_geom = astra_create_proj_geom ( ’ f a n f l a t ’ , 1 .0 , num_det_cols , . . .

l inspace2 (0 , 2∗pi , num_angles ) , source_or ig in , o r i g i n _ d e t ) ;
% 3D p a r a l l e l beam p r o j e c t i o n geometry ( p_x , p_z = 1 .0 )
proj_geom = astra_create_proj_geom ( ’ p a r a l l e l 3 d ’ , 1 .0 , 1 .0 , num_sino , . . .

num_det_cols , l inspace2 (0 , pi , num_angles ) ) ;
% 3D cone beam p r o j e c t i o n geometry ( p_x , p_z = 1 .0 )
proj_geom = astra_create_proj_geom ( ’ cone ’ , 1 .0 , 1 .0 , num_sino , . . .

num_det_cols , l inspace2 (0 , 2∗pi , num_angles ) , source_or ig in , o r i g i n _ d e t ) ;

For the three-dimensional examples, the ASTRA routine also needs the detector pixel pitch pz in
ez-direction and the number of detector rows Nz. The fan and cone beam scenarios also require
storage of the exact source and detector position relative to the volume geometry. As the ASTRA
toolbox understands the object sample as motionless in the origin of a fixed coordinate system, in-
versely the X-ray source and detector have to rotate around the origin using the sizes dso and dod

2Notice that the parallel beam projection geometries only need the projection angle interval [0, π], see also the introduc-
tion of section 4.2.
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and the information given in the projection angles matrix.

As a second component, data handling becomes necessary at all because ASTRA will not directly
work with the standard MATLAB double precision matrices. In the case of the object volume data,
we have to prepare an ASTRA data object linked to the volume geometry and initialized with zeros,
which can be addressed on the user layer of the interface by a unique identifier (ID).

% 2D volume data
recon_id = astra_mex_data2d ( ’ c reate ’ , ’−vo l ’ , vol_geom , 0 ) ;
% 3D volume data
recon_id = astra_mex_data3d ( ’ c reate ’ , ’−vo l ’ , vol_geom , 0 ) ;

After we used to reconstruct image data with the algorithms included in the software package, we
have to copy them back into the MATLAB workspace to possibly edit them and finally write them to
image files. Again, this can be effected by making use of the unique data object ID.

% r e t r i e v e 2D volume data from the ASTRA data ob jec t
r e c o n s t r u c t i o n = astra_mex_data2d ( ’ get ’ , recon_id ) ;

% r e t r i e v e 3D volume data from the ASTRA data ob jec t
r e c o n s t r u c t i o n = astra_mex_data3d ( ’ get ’ , recon_id ) ;

In principle, the behaviour is the same for projection data, except for the facts that we will pass the
sinogram data (which are prepared in a standard MATLAB double precision matrix) to the creational
function of the ASTRA data object and no retrieve step has to be executed for this type of data, since
they are only needful for the reconstruction algorithms.

% 2D p r o j e c t i o n data
s ino_ id = astra_mex_data2d ( ’ c reate ’ , ’−s ino ’ , proj_geom , sinogram ) ;
% 3D p r o j e c t i o n data
s ino_ id = astra_mex_data3d ( ’ c reate ’ , ’−pro j3d ’ , proj_geom , sinogram ) ;

The last main component of the ASTRA toolbox consists of the reconstruction algorithms. They
subdivide into some 2D CPU algorithms (e.g. BP, FBP, SIRT, CGLS), furthermore some 2D GPU
algorithms (e.g. BP_CUDA, FBP_CUDA, SIRT_CUDA, CGLS_CUDA) and lastly some 3D GPU
algorithms (e.g. BP3D_CUDA, FDK_CUDA, SIRT3D_CUDA, CGLS3D_CUDA). The mathematical
background of each of the specified reconstruction methods should have become clear in chapter
4. The way how to configure the algorithms is pointed out in the following code snippet.

% 2D FBP a lgo r i t hm using the CUDA acce lera ted vers ion
cfg = a s t r a _ s t r u c t ( ’FBP_CUDA ’ ) ;
c fg . Reconst ruc t ionDataId = recon_id ;
c fg . P ro jec t i onDa ta Id = s ino_ id ;
a lg_ id = astra_mex_algor i thm ( ’ c reate ’ , c fg ) ;
astra_mex_algor i thm ( ’ run ’ , a l g_ id ) ;

% 3D SIRT a lgo r i t hm i n c l u d i n g a minimum c o n s t r a i n t c o n d i t i o n
cfg = a s t r a _ s t r u c t ( ’SIRT3D_CUDA ’ ) ;
c fg . Reconst ruc t ionDataId = recon_id ;
c fg . op t ion . MinConst ra in t = minconstr ;
c fg . P ro jec t i onDa ta Id = s ino_ id ;
a lg_ id = astra_mex_algor i thm ( ’ c reate ’ , c fg ) ;
astra_mex_algor i thm ( ’ i t e r a t e ’ , a lg_ id , i t e r s ) ;

As we can see, each algorithm has to be linked to the belonging volume and projection data by their
IDs. In the SIRT example, it is even possible to include the additional option of using a minimal
constraint condition. If all configurations have been completed, an identifier for the algorithm object
is generated. Depending on what kind of reconstruction method should be executed, the algorithm
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is then ran or iterated until the resulting image data are present in the ASTRA volume data object.

5.2. Application to the experimental setups

Hypothetically, the short introduction of the last subsection should give us the opportunity to directly
start a reconstruction based on a set of projection images. Nevertheless, there are some points one
stumbles across by trying this. The first peculiarity occurs for 2D fan beam or 3D cone beam: When
we look back to Figure 3.2 or 3.3, it is obvious that the object under investigation is enlarged onto the
detector screen just like the sun casts a big shadow of a small person under certain circumstances.
This effect is called geometric magnification in the field of computed tomography (cf. equation (3.1))
and quantified by the size

M :=
dso + dod
dso

=
dsd
dso

. (5.1)

To add this factor instead of directly passing the sizes dso and dod to the astra_create_proj_geom-
function, these two values must be manipulated manually to depict the situation that the detector
is virtually located in the fixed origin of the coordinate system. This is expressed as follows for the
two-dimensional fan beam scenario: In a first step, the detector is shifted to the origin so that

p̃x :=
dso

dso + dod
px

(5.1)
=

px
M

and afterwards d̃od := 0. (5.2)

The quantity p̃x could also more appropriately be called the voxel size vx (see equation (3.2)),
describing the real physical dimension covered by one voxel. Secondly, all lenghts have to be
rescaled to achieve p̂x ≡ 1, which means that the distance from the X-ray source to the iso center
origin becomes

d̂so :=
dso
p̃x

(5.2)
= ��dso (dso + dod)

��dso px
=
dsd
px
. (5.3)

As the flat detector panels used for our three-dimensional cone beam scanning experiments have
square-shaped detector elements with px = pz, indeed the two manipulations from equations (5.2)
and (5.3) suffice once again. What should be emphasized at this point is that from our experience,
the reconstruction algorithms provided within the package were only able to give meaningful results if
the projection geometry has always been created with p̂x = p̂z ≡ 1 after eventual lenght rescalings.
This is also the reason why the code snippet in the previous section 5.1 contains these hard-coded
ones in the definition of the projection geometry.

Another aspect of the ASTRA toolbox that has been withheld consciously so far is the possibility
to describe the projection geometry in a vectorized way. We will point this out now for the three-
dimensional cone beam scanning scenario: The projection geometry determines the location and
trajectory of the X-ray source, and instead of employing a standard routine to generate the projection
geometry description, we could fall back on a specific vector V ∈ RNθ×12, where Nθ indicates the
number of projection angles considered. Each row Vi is assigned to one single projection angle θi
and contains the already in chapter 3 introduced vectors Vi = (si,di,ui,vi) (used as row vectors
here). To map the fact that ASTRA expects the detector to be manually placed in the iso-center of
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rotation, these vectors have to be assigned to

ŝi =


sin (θi) d̂so

− cos (θi) d̂so

0


T

, d̂i = d̃i =


− sin (θi) d̃od

cos (θi) d̃od

0


T

(5.2)
= 0T ,

ûi =


cos (θi) p̂x

sin (θi) p̂x

0


T

=


cos (θi)

sin (θi)

0


T

, v̂i =


0

0

p̂z


T

=


0

0

1


T

(5.4)

with the manipulated sizes from above. After such a vector V has been created in the MATLAB
workspace, a vectorized projection geometry can be generated like this:

% 3D vec to r i zed cone beam p r o j e c t i o n geometry using predef ined vec to r V
proj_geom = astra_create_proj_geom ( ’ cone_vec ’ , num_sino , num_det_cols , V ) ;

Figure 5.2 shows the changes of the vectors involved in the specific vector V: While the starting po-
sition of the cone beam scanning scenario is indicated by •1, another position corresponding to the
projection angle θi (inducing the i-th row vector Vi) is marked with •i. One can clearly realize from
Figure 5.2 that the vectors {s,d,u} are varied under trigonometric functions with dependency of the
specific projection angle θi, which is reflected in equation (5.4). In contrast, the vector v pointing
out of the paper plane remains invariant under increasing projection angles θi. Starting from such
an arbitrary, rotated position •i, the detector shift to the origin O like in equation (5.2) (•̃) and the
subsequent standardization from equation (5.3) (•̂) yield the input vectors {ŝi, d̂i, ûi, v̂i} in equation
(5.4) for a vectorized ASTRA projection geometry.

ex

ey

ezs1 d1

dso
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ui

O
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di
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v1

vi

θi

θi
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Figure 5.2.: auxiliary illustration to obtain a deeper understanding of the vectorization
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To satisfy the less common reconstruction task for projections made with 3D helical cone beam scan-
ning according to section 3.4, a few additional modifications to the vectorized cone beam projection
geometry are needed. Assuming the number of entire 360◦ turns num_turns and the z-pitch per full
rotation are known characteristics of the scanning process in Figure 3.4, we can calculate the z-pitch
per angular change z_trans and the resulting total covered z-distance z_dist = Nθ z_trans. The
necessary projection geometry for 3D helical cone beam scanning is initialized and vectorized by
means of the routines for cone beam scanning in a first step3.

% 3D ( h e l i c a l ) cone beam p r o j e c t i o n geometry ( p_x , p_z = 1 .0 )
proj_geom = astra_create_proj_geom ( ’ cone ’ , 1 .0 , 1 .0 , num_sino_used , . . .

num_det_cols , l inspace2 (0 , num_turns∗2∗pi , num_angles ) , . . .
source_or ig in , o r i g i n _ d e t ) ;

% generate the corresponding vec to r i zed p r o j e c t i o n geometry
proj_geom = astra_geom_2vec ( proj_geom ) ;

Notice that the maximal angle argument changes by the factor num_turns and that the (virtual) num-
ber of detector rows has to equal the number of sinograms to be used, called num_sino_used. So
far, the number of detector rows Nz was always identical to the total number of sinograms num_sino
and thus the two appellations were used synonymously (compare the first code snippets in section
5.1), but this fact does not apply any more to the depiction of helical cone beam scanning. The
difference will be elaborated in the context of section 7.2 later on.

The second step consists of the manipulation of the specific vector V to reproduce the stepwise
translation along the ez-axis. This procedure itself is quite straightforward, but one must not forget
about the standardization step to p̂x = p̂z ≡ 1 indicated by (•̂) in equation (5.3). Hence, the sizes
z_trans and z_dist have to be divided by the voxel size p̃z in the first instance. Afterwards, the
third component of the vectors si and di inside the row Vi is assigned to the height of the X-ray
source and detector (center) along the ez-direction for the current projection angle θi. To map an
upward translation of the object sample, however the choice of the signs for trans_vec is given like
in the following code snippet.

% adjustment o f the vec to r i zed p r o j e c t i o n geometry to 3D h e l i c a l
% cone beam using the vec to r t rans_vec
t rans_vec = z_t rans . ∗ ( 0 : ( num_angles − 1 ) ) ’ − z _ d i s t / 2 ;
proj_geom . Vectors ( : , 3) = proj_geom . Vectors ( : , 3) + trans_vec ;
proj_geom . Vectors ( : , 6) = proj_geom . Vectors ( : , 6) + trans_vec ;

As the first translation of the investigated sample takes place between θ1 and θ2, the z-pitch per an-
gular change is multiplied elementwise with the vector 0:(num_angles - 1) to create the trans_vec.

3The astra_geom_2vec-routine casts a classical into a vectorized representation of the projection geometry.
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6. Image processing and filtering techniques

The ASTRA toolbox offers a wide range of functionalities concerning reconstruction techniques to
the user, but it nevertheless is not a general purpose weapon. That means a user has to provide ad-
ditional pre- and postprocessing steps to fulfill the expectations of the desired reconstruction images.
This applies in particular to the preparational image processing from the raw projection data over
normalized ones (cf. section 6.1) to the sinogram data in section 6.2 and to image filtering methods
like the region of interest (ROI) mask in section 6.3. A different kind of additional functionality a user
can implement is a correction of center of rotation (COR) misalignments, see section 6.4: if we take
advantage of the vectorized depiction of projection geometries in the ASTRA routines, a possible
experimental misalignment of the rotational axis can be dissolved. Finally, the beam hardening cor-
rection (BHC) in section 6.5 is kind of a filtering technique which remedies physical reasoned beam
hardening artifacts. Similar to chapter 5, we will state code snippets where necessary.

6.1. Normalization

The normalization process of the recorded projection images is inevitable to obtain meaningful re-
construction results. Two important steps are included therein: The first processing of the projection
image data was already mentioned in section 2.2 - what can be measured empirically are the X-ray
intensity values, which have to be transformed nonlinearly to attenuation coefficient values by taking
the negative logarithm, compare equation (2.7). Another necessary thing is to include both dark
images and open beam images to adjust the projection data. Dark images (often also called dark
field images) are images taken with inactive Röntgen radiation source and they indicate bad detec-
tor pixels as well as they serve as an offset correction. Contrary, open beam images (or flat field
images) are recorded without the object sample when the X-ray source is turned on. These images
help to rescale the projection data relative to the present surrounding medium (usually air) and to
resolve defects coming from distortions in the optical path.

It is advisable to consider at least one dark and open beam image each, and if multiple ones are
available, they should be averaged arithmetically before executing the subsequent code snippet1.

% c e n t r a l element o f the no rma l i za t i on r o u t i n e
proj_norm = − log ( ( p r o j − d i ) . / ( ob − d i ) ) ;

As we can see, the dark image noise di is subtracted from the projection data proj as well as from
the open beam image ob and the result is divided by the open beam data afterwards. It turned out
that another scaling of the maintained attenuation coefficients is also significant: The normalized
data should be rescaled under usage of their global minimal and maximal values directly after the
normalization itself. Thus, we need to iterate over all normalized projection images in a first loop of
a possible implementation to ascertain and save the minimum and maximum. In a second iteration,
each pixel value of the normalized projection images is rescaled to the interval [0, 1].

1The MATLAB log-operation does not take the decadic logarithm, as one could suspect, but the requisite natural loga-
rithm ln (•). The proj-values match the intensity I (L) and the ob-values the intensity I0 from equation (2.7).
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% r e s c a l i n g wi th known g loba l minimal and maximal p i x e l value
proj_norm_resc = ( proj_norm − min ) . / ( max − min ) ;

The resulting image data contained in the double precision matrix proj_norm_resc can then be
written to image files of desired output format (e.g. 16-bit TIFF) using MATLAB standard routines.
Figure 6.1 primes the normalization routine with an application example: The raw, visually unedited
projection image of a stepped brass cylinder phantom in Figure 6.1(a) (which has been rescaled
for better visibility in Figure 6.1(b)) is normalized first, which would yield the saved output image in
Figure 6.1(c). As clearly visible, an identical gray value is assigned to the entire cylinder, which is an
undesirable side effect of image data type conversions in the MATLAB reading and writing routines
(all double values of the normalized image larger than 1 are cut off to the maximal 16-bit unsigned
integer value of 65535). It is therefore compulsory to rescale the normalized image as previously
described, resulting in an output like in Figure 6.1(d).

(a) raw input image proj (b) rescaled input image (just for illustration)

(c) normalized image proj_norm (d) normalized and rescaled image
proj_norm_resc

Figure 6.1.: normalization steps for one projection image of a stepped brass cylinder phantom with

M
(5.1)
= 16.50
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6.2. Sinograms

The creation of sinogram images does not comprise any kind of pixel value editing, but is rather a
rearrangement procedure of the projection data (which can, but does not need to be preprocessed
by normalization according to section 6.1) in a specific, problem adapted order. So far, if we assume
that a set of normalized and rescaled projection images is given, each projection image has the size
Nz ×Nx, equal to the resolution of the flat detector panel for a parallel or cone beam scanning sce-
nario. The entirety of projection images counts Nθ many individual images, where Nθ again stands
for the number of projection angles of the measuring process. The transformation to sinogram im-
ages runs as follows: We fix one single detector row, which consists of Nx pixel values, and track
the gray value trend of this particular row over all available projection angles Nθ. Thus, each single
sinogram includes Nθ ×Nx pixel values, and altogether the set of sinograms is obviously Nz large,
where Nz is the number of detector rows. To give an impression of real-world sinograms, Figure 6.2
shows two sinograms for two different object samples recorded with various scanning setups. Figure
6.2(a) contains an asphalt sinogram measured with cone beam scanning for Nθ = 1440 projection
angles. Figure 6.2(b) however depicts a sinogram for the stepped brass cylinder phantom already
used in subsection 6.1 (for another geometric magnification), this time measured using helical cone
beam scanning with Nθ = 2880 projection angles. The distinct difference between the two scanning
scenarios is that the object itself moves vertically through the detector rows for helical cone beam
scanning, producing a sinogram like the one in Figure 6.2(b).

(a) cone beam scan of an asphalt sample with M
(5.1)
= 2.99

(Nθ = 1440×Nx = 1944 pixels)

(b) helical cone beam scan of a stepped

brass cylinder phantom with M
(5.1)
=

5.98 (Nθ = 2880×Nx = 830 pixels)

Figure 6.2.: exemplary sinograms generated from corresponding normalized projection images
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One could ask the question what the advantage of the whole rearrangement should be. The reason
for this lies in an implementation aspect: For one slice to be reconstructed with algorithms from
the ASTRA toolbox (exemplarily), which has the dimensions Nx × Nx, the sinogram correspond-
ing to this detector row (belonging to the resulting slice) contains all projection data required for a
reconstruction algorithm. To tell the whole truth, this substantiation is only valid for parallel beam
projection geometries in 2D or 3D and the fan beam scanning scenario in 2D, as in these cases
one X-ray beam passes straightforward through the object in a slice-wise manner before impinging
orthogonally on the detector. Therefore, one sole sinogram includes all necessary information to
reconstruct the penetrated sample slice - the reason why the transfer from projection to sinogram
data is widespread in computed tomography. By the way, the naming “sinogram” of this depiction
method refers to measurements of a point-like object which is positioned eccentric from the axis of
rotation: if the projections of this sample are rearranged to a sinogram, the viewer will observe a
sinusoidal graph along the image rows serving as an ordinate. This can for instance be observed
well in Figure 4.5(b).

6.3. Cropping and region of interest (ROI) mask

In this subsection, two minor image processing methods are merged because they both restrict the
image data in a certain manner. The first one will be named “cropping” here and is used in the follow-
ing situation: Normally, the input projections are measured with a geometric magnification sufficient
to record the full object sample including some blank space (usually covered by the surrounding air)
to guarantee that the object is always located inside the field of view (FOV). Then cropping denotes
the editing of projection images by cutting off some pixels which are not of interest for the investi-
gator, for example the blank space pixels. One has to take care when performing the cropping that
the region the user wants to remove is irrelevant for the whole set of projections, which is possibly
not the case for a misaligned center of rotation (compare section 6.4) or an asymmetrical object of
interest. We applied the cropping routine after the normalization step in section 6.1, but there should
be no difference in which order this is done as long as the cropping is finished before starting the
reconstruction algorithm. The clear advantage of cropping is the (noticeable) reduction of memory
space needed for the projection images and each image subsequently saved as part of the whole
reconstruction procedure.

The region of interest (ROI) mask however is a postprocessing method which is applied to the
reconstructed images. After utilizing one of the ASTRA reconstruction algorithms, each resulting
slice has the dimensions Nx × Nx, which was already mentioned in section 5.1. Thereof, only the
circle around the central pixel (Nx/2, Nx/2)T with radius Nx/2 contains the relevant object data.
All pixels outside this circle show quite arbitrary values, which are artifacts of the reconstruction
algorithm used, do not have any physical meaning and especially disturb the contrast ratio of the
output pictures. This problem is also independent of the reconstruction algorithm employed and
must therefore be solved with the additionally implemented ROI mask function: Firstly, the user shall
define a percentage ratio of the radius to enclose the circle of valuable reconstructed values. Per
default, this value is set to 100 %, but often a lower ratio (for example 95 %) is advisable. The
reason for this is that with increasing radial distance from the central pixel there are fewer projection
information available per pixel, leading to worse reconstruction data if the number of projection
angles stays unchanged. If the ratio has been set, all pixel values outside the just mentioned circle
are replaced by any permissible gray value. The following code snippet demonstrates how the key
functionality of the ROI mask is implemented in our case.
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% ROI mask f o r 3D r e c o n s t r u c t i o n data handed i n rec_mat r i x
for i = 1 : size ( rec_matr ix , 3)

rec_mat r i x ( : , : , i ) = rec_mat r i x ( : , : , i ) . ∗ c i r c _ m a t r i x + . . .
( rec_mean / 2 ) . ∗ ( c i r c _ m a t r i x == 0 ) ;

end

The variable circ_matrix is a Nx ×Nx large logical matrix in which each pixel position inside the
defined circle is associated with a true-value. As you can see, all reconstructed image pixels inside
the circle remain unchanged, whereas all pixels outside are replaced with half of the global mean
gray value of all reconstruction data rec_matrix (this choice was made for optical purposes only).

6.4. Correction of center of rotation (COR) misalignments

(a) horizontal COR misalignment by 10 pixels (b) optimally chosen COR parameters

Figure 6.3.: reconstructions of an asphalt sample with M
(5.1)
= 2.99 for different COR parameters

A very important feature which is not yet mapped as a standard ASTRA toolbox routine is the pos-
sibility to compensate some center of rotation (COR) misalignments mainly induced by suboptimal
experimental projection recording. For non-vectorized projection geometry configurations of the AS-
TRA toolbox, such a correction is impossible without touching the lowest implementation level of
the involved reconstruction algorithms, and also for vectorized projection geometries the user has to
concern himself with a suitable implementation. Misaligned CORs lead to undesirable artifacts like
double edges and therewith to a significant deterioration in the image quality of the reconstruction
(see for example Louk and Suparta, 2015). Figure 6.3(a) gives an example for a reconstruction
(starting from exactly the sinogram in Figure 6.2(a) for the asphalt sample) that was carried out with
an uncorrected COR and underlines the need of such an algorithmic option - otherwise meaningful
results like the one in Figure 6.3(b) remain unachievable. Such a malposition arises if the rotational
axis of the experimental setup is not perfectly projected onto the middle of the flat detector panel (for
further details, look at Ferrucci, Leach, Giusca, Carmignato, and Dewulf, 2015). In other words, an
ideal alignment would be given if the projection values of the vertical center line through the sino-
gram equal the attenuation values of the rotational axis. As even a difference in subpixel precision
can lead to COR misalignment artifacts, this interference can not be eliminated by the experimenter
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through means of the used hardware, but has to removed inside the computation of the reconstruc-
tion. In the following subsection 6.4.1, we will focus on a more detailed explanation and depiction of
possible error sources. After that, subsections 6.4.2 and 6.4.3 will show how a COR shift respec-
tively tilt can be handled both mathematically and in the implementation.

6.4.1. Characterization of possible center of rotation (COR) misalignments

Figure 6.4(a) clarifies the situation of a perfectly aligned experimental setup and incidentally in-
troduces the identifiers for the current problem (see also “Octopus Reconstruction User Manual”,
2018). The fixed Cartesian coordinate system is located at the intersection point of the optical axis
with the rotational axis of the ideal measuring situation (and is also kept like this for the misaligned
constructions in Figures 6.4(b) - 6.4(e)). The optical axis is characterized through the fact that the
corresponding X-ray beam hits the flat detector panel surface orthogonally. With ideal orientation,
this specific intersection point (yielding the horizontal and vertical center) coincides with the middle
of the detector, where the vector d also points to. Furthermore, the center of rotation (COR) line
is defined by the projection of the rotational axis onto the detector panel. If the COR only covers
the single detector column lying at the horizontal center, again the measurement scenario was con-
structed optimally. The first deviations from a perfect lining up are given in Figure 6.4(b) and Figure
6.4(c) and are called COR shift: In the first case depicted in Figure 6.4(b), the detector panel’s center
d was displaced both horizontally by δu and vertically by δv, while the position d′ where the optical
axis impinges is kept unmodified. The same situation can also be obtained by a displacement of
the X-ray source s and optical as well as rotational axis in the opposite direction with fixed detector
position (and coincides anyway in the mathematical description, except for signs). The second and
more common case in Figure 6.4(c) developes if the rotational axis is displaced horizontally by the
amount δu from the optical axis going through the originO of the Cartesian coordinate system, while
the X-ray source s and detector d stay unaffected. One can clearly see that the center of rotation
does not pass through the horizontal center of the detector panel any more. Nevertheless, both
COR shifts will be treated in the same manner in subsection 6.4.2 because changes in the angle of
impact for the affiliated X-ray beams regarding the positions d and d′ are neglected. The situation
portrayed in Figure 6.4(d) comes from a detector respectively rotational axis distortion and will be
called a COR tilt misalignment from now on. To be exact, Figure 6.4(d) implies a tilt of the rotational
axis by the angle ϕ in mathematical positive direction with respect to the ey-axis of the global coordi-
nate system. Besides that, the key characteristic of a COR tilt is that the COR does not fall onto one
single detector column, but onto several ones. Finally, Figure 6.4(e) portrays a COR skew generated
by the rotation of the detector by the skew angle χ with respect to the ex-axis of the fixed Cartesian
coordinate system. As we will not deal with this kind of misalignment in the following because of its
very little influence on the image quality of the reconstruction, this has only been specified for the
purpose of completeness. Nevertheless, the correction of a COR skew can easily be derived with
the knowledge from subsection 6.4.3 concerning a COR tilt.
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6.4.2. Correction of misalignments through center of rotation (COR) shift

The most powerful tool of COR misalignment correction is undoubtedly dissolving misalignments
through a COR shift. The impacts of a vertical or horizontal displacement have already been pointed
out in the introductory part and also in Figure 6.4(b) or 6.4(c), so we will directly pass over to the
description of the correction in mathematical terms. The vectors {s,u,v} remain unmodified, while
the COR shift correction is carried out via

d′ = d− δuu− δv v. (6.1)

For given displacements δu, δv the ASTRA projection geometry can be corrected as specified in the
following code snippet.

% c o r r e c t i o n o f COR s h i f t f o r 3D vec to r i zed cone beam p r o j e c t i o n geometry
proj_geom . Vectors ( : , 4 :6 ) = proj_geom . Vectors ( : , 4 :6 ) − . . .

de l ta_u .∗ proj_geom . Vectors ( : , 7 :9 ) − . . .
de l ta_v .∗ proj_geom . Vectors ( : , 10 :12 ) ;

Remember how the vector V has been assembled in section 5.2 when the possibility to use a vec-
torized projection specification was introduced to understand that equation (6.1) can immediately
be applied in an implementation. What should also be emphasized here is that any kind of COR
misalignment can only be corrected in the ASTRA toolbox if the vectorized form of the projection
geometries is used. One big negative side effect thereof is that this fact reduces the number of us-
able reconstruction algorithms to the ones which can be called with vectorized projection geometries
(eliminating for instance the prominent analytical reconstruction algorithms FBP in 2D and FDK in
3D), since the COR correction explicitly needs this requirement. For example, the reconstruction of
the asphalt sample with optimal horizontal COR parameter δu in Figure 6.3(b) was generated using
the CGLS_CUDA algorithm with 50 iteration steps.

6.4.3. Correction of misalignments through center of rotation (COR) tilt

The second correction we will treat here is the one of a tilted COR in the form portrayed in Figure
6.4(d). If for instance the rotational axis has a tilt of tilt angle ϕ, this does not really affect the slices
in the middle of the stack of reconstructed images corresponding to the vertical center (since usually
ϕ < 1◦, and definitely not as large as in the illustration). But indeed a COR tilt correction can help to
improve the quality of the reconstruction results in the outer regions along the ez-direction because
the COR line will fall onto some non-central detector columns there. If we define the rotational matrix
Rϕ as

Rϕ :=


cos (ϕ) 0 − sin (ϕ)

0 1 0

sin (ϕ) 0 cos (ϕ)

 , (6.2)

which gives the “forward” mapping {u′ Rϕ7−−→ u,v′
Rϕ7−−→ v}, the COR tilt correction simply is

u′ = RT
ϕ u and v′ = RT

ϕ v (6.3)

with unchanged source vector s and detector vector d. Of course we used the property of a rotational
matrix that its inversion can be expressed through its transposing operation, leading to the form of
equation (6.3). As already mentioned, a rotation matrix for the skew angle χ similar to the one
presented in equation (6.2) solves the challenge of a COR skew (see Figure 6.4(e)) misalignment.
If the tilt angle ϕ and the corresponding rotational matrix Rϕ have been predefined, the ASTRA
projection geometry is again manipulated exactly as described in equation (6.3).
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% c o r r e c t i o n o f COR t i l t f o r 3D vec to r i zed cone beam p r o j e c t i o n geometry
for i = 1 : size ( proj_geom . Vectors , 1)

proj_geom . Vectors ( i , 7 :9 ) = proj_geom . Vectors ( i , 7 :9 )∗ r o t _ m a t r i x ;
proj_geom . Vectors ( i , 10:12) = proj_geom . Vectors ( i , 10:12)∗ r o t _ m a t r i x ;

end

A little tricky herein is the multiplication with the (untransposed) rotational matrix Rϕ from the right:
As the vectors u and v are saved as row vectors inside the global vector V (compare section 5.2),
performing the operation RT

ϕ u on a column vector u (which was assumed in the mathematical
formulation above) can identically be done with u Rϕ if only a row vector u is available. The same
is obviously valid for the row vector v, and this difficulty is also the reason for the loop presented in
the code snippet.2

6.5. Beam hardening correction (BHC)

The last image filtering technique presented in this section is the beam hardening correction (BHC;
Carmignato et al., 2018, p. 165 ff.). The physical background is given by the law of Beer-Lambert,
as it already has been presented in section 2.2. If we recap equation (2.7),

I (L) = I0 e
−
L∫
0

µ(x) dx
⇔ p =

L∫
0

µ (x) dx = − ln (I (L) /I0) ,

we can see that one specific projection value p is found by integration of the attenuation coefficient
µ (x) along the corresponding X-ray beam path only using its spatial dependency. This is indeed just
a simplified version and does not take into account that the attenuation coefficient is also energy-
dependent, meaning µ = µ (x,E). As we will see, the form of the law of Beer-Lambert in equation
(2.7) is not sufficient any more to illuminate beam hardening artifacts coming from the polychromatic
nature of Röntgen radiation (recap the X-ray spectra in Figure 2.2 for an illustration of the polychro-
matic properties). If we additionally include that the X-ray source emits an initial spectrum I0 (E),
Beer-Lambert’s law in equation (2.7) can be extended to a non-linear version

I (L) =

Emax∫
0

I0 (E) e
−
L∫
0

µ(x,E) dx
dE. (6.4)

Expanding the definition of the incident intensity value to Ĩ0 =
∫ Emax

0 I0 (E) dE, the polychromatic,
non-linear reshaping of equation (6.4) reads

p = − ln

[
1

Ĩ0

Emax∫
0

I0 (E) e
−
L∫
0

µ(x,E) dx
dE

︸ ︷︷ ︸
=I(L)

]
. (6.5)

This nonlinearity is usually not considered in the reconstruction process as the intensities can not
be differentiated in distinct energies, and this in turn leads to beam hardening effects in reconstruc-
tions based on equation (2.7): If a broad-band energy spectrum I0 (E) passes through an object,
its spectrum changes along the path since varying frequency bands of the spectrum are attenuated
differently, depending on the attenuation coefficient µ (x,E) of the specific sample material, com-
pare equation (6.5). In general, the low-energy (soft) X-ray beams are more strongly attenuated

2Unfortunately, the presented COR tilt correction could not be validated yet in practice for lack of time.
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than the high-energy (hard) ones. This fact generates the so-called beam hardening artifacts in the
reconstruction images, which are of course an undesirable side effect of the assumption that the
X-ray source produces monochromatic radiation.

(a) reference reconstruction without
BHC

(b) reconstruction with “optimal” BHC
fitting parameters

(c) numerical study of the gray value trend (des-
ignated coefficients cf. equation (6.6))

Figure 6.5.: comparison of reconstructions for the small diameter region of a stepped brass cylinder

phantom (M
(5.1)
= 33.02) with regard to the application of BHC

The result of beam hardening can be identified as following (compare Stock, 2008): The accessible
projection values p underestimate the attenuation coefficients, leading to a lowering opacity along
increasingly long X-ray paths which suffer the most from this underestimation. Consequently, the
material absorption decreases with increasing depth of the penetrated material - yielding smaller
intensities in the center of the reconstructed images than their true attenuation value would be. This
beam hardening artifact is possibly better known under the name “cupping effect”, whose naming
becomes understandable with a look at Figure 6.5: The two images on the left both show recon-
structions of the stepped brass cylinder phantom which has already been mentioned several times
(the portrayed slice comes from the region with smaller diameter, cf. Figure 6.1). While Figure 6.5(a)
embodies the reference reconstruction with clear cupping effect visible, the result of a reconstruc-
tion using the BHC method explained in the following with an “optimal” choice of fitting parameters
can be found in Figure 6.5(b). Additionally, Figure 6.5(c) plots the actual gray data values along the
cutting line at half image height, restricted to pixel column indices near the location of the cylinder
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for a better representation. The dashed lines each symbolize the maximum of the cylinder border
values in the reconstructed images. An optimal reconstruction taking the beam hardening effect into
account would be given if the gray values were constant along the path length through the object
- and the parameters in the legend of Figure 6.5(c) can approach this behaviour well since they
oscillate around the dashed cyan line.

To remove this kind of artifacts, a BHC could be done both utilizing additional hardware in the mea-
surement process and exploiting a software solution with prior knowledge of the sample’s material
properties. Of course we only take a closer look at the computational correction here. One ansatz
consists of a linearization technique in which polynomial curves for the projection gray values are
parametrized to reduce the cupping effects in the final reconstruction (the representation below is
taken from Carmignato et al., 2018, p. 173 f.). The very simple correction is directly implemented in
the reconstruction software in the shape

Y = a
(
b+ cX + dX2 + eX3 + fX4 + gX5

)
. (6.6)

Herein, X is the initial gray value of a single pixel in the projection images (after normalization, see
section 6.1), Y on the other hand the BHC-adjusted, linearized gray value and {a, b, c, d, e, f, g}
the set of fitting parameters of the polynomial curve given by equation (6.6). The simplicity of the
BHC is at the expense of the manual user-driven selection of the parameters in a trial-and-error way.
Nevertheless, it is an adequate method to cause a noticable amelioration both for materials with
low absorption characteristic as well as for higher absorbing materials (as given in Figure 6.5) or
even multi-component objects of interest. The choice of the coefficients in equation (6.6) is crucial
to achieve this goal. There are also some iterative methods to correct for beam hardening artifacts,
but these are significantly larger than the scope of this work.

To investigate the influence of the BHC method proposed in equation (6.6) systematically, a numer-
ical study for the already presented reconstructed slice has been carried out, whose outcome is
pictured in Figure 6.6. Although equation (6.6) also permits the usage of the coefficients {a, b, c},
this has not been examined because a change up to the first monom has not been considered useful.
This reflection was approved by a look into the user manual (“Octopus Reconstruction User Man-
ual”, 2018) of the Octopus Reconstruction software3, in which a simple polynomial BHC method is
contained, too. That means we kept the lower coefficients at {a = 1.0, b = 0.0, c = 1.0} and raised
the magnitude of each higher fitting parameter {d, e, f, g} independently of each other. Generally
speaking, each parameter can contribute to an improvement of the resulting reconstruction image.
The increment in Figure 6.6(a) for the d-coefficient has a higher magnitude because the influence
of this coefficient on the gray values is not that high, compared to the higher-order coefficients in
Figures 6.6(b) - 6.6(d). Taking each diagram for itself, an individual (manual) choice of the belonging
fitting parameter can be identified by analyzing the gray value trend with respect to the distance to
its dashed border value line. For the stepped brass cylinder phantom example, Figure 6.6 would
suggest the individual choices {d = 3.0, e = 1.0, f = 1.0, g = 1.5}. But of course the superposition
of all these fitting parameters clearly overestimates the desired gray value trend, so a well-suited
BHC can be found with a moderate choice like {d = 2.5, e = 0.5}, as it was made for the “optimal”
reconstruction in Figure 6.5. Another cognition especially of Figures 6.6(c) and 6.6(d) is that the
coefficients corresponding to higher polynomial orders amplify the gray values of the central pixel
column indices unreasonably much.

3https://octopusimaging.eu/

https://octopusimaging.eu/
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(a) coefficient d with 1.0-increment (b) coefficient e with 0.5-increment

(c) coefficient f with 0.5-increment (d) coefficient g with 0.5-increment

Figure 6.6.: numerical studies of the gray value trend for each coefficient in {d, e, f, g} independently,
compared to the reference reconstruction in Figure 6.5(a) with unchanged overall setting
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(a) reference reconstruction without BHC (b) reconstruction with “optimal” BHC fitting
parameters

Figure 6.7.: comparison as in Figure 6.5 for the large diameter region

To finish the investigation, the detected (good) choice of the fitting parameters {d = 2.5, e = 0.5}
was transfered to another region of the stepped brass cylinder phantom with larger diameter (for
constant geometric magnification) in Figure 6.7. The proposed simple polynomial BHC method
produces a good result for the reconstructed slice related to the larger diameter region (cf. Figure
6.7(b)), just as required.
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7. Results, comparison and discussion

The issue of this penultimate chapter will be if all the preparations made in chapters 4 through 6 suf-
fice to conduct good reconstructions for practice-oriented cone or helical cone beam scanning data
sets. We can anticipate that this is not the case, and so section 7.1 explicates with which additional
methods it was possible for us to accomplish good reconstruction results for an irregular real-world
data set measured by cone beam scanning. This section is rounded off with the actual fulfillment
of the thesis’ objective to be able to reconstruct full three-dimensional µXRCT cone beam scanning
data sets. In contrast, section 7.2 discusses to what extent we were able to treat helical cone beam
scanning data and which extra considerations play a major role on the way to a reconstruction for
this scan setup.

7.1. Processing of a full cone beam scanning data set

We want to approach the goal of this thesis slowly, which is to offer the opportunity to reconstruct a
full experimental (cone beam scanning) data set detected in the open, modular and flexible in-house
XRCT system of the Institute of Applied Mechanics (CE) at the University of Stuttgart. In theory, we
should be able to achieve this offhand using the whole preparations from chapters 5 and 6. However,
there was still a big obstacle in the way of the practical enforcement: the amount of data. To run the
GPU-accelerated ASTRA reconstruction algorithms, the toolbox transmits the necessary sinogram
data into the allocatable GPU RAM where it is held available for the algorithmic operations. This
is uncomplicated for one single sinogram (for instance in 2D reconstruction) with a typical size of
1440 × 1944 pixels1, each encoding a 16 bit gray value information which is saved internal as an 8
byte double precision value in MATLAB2, consuming approximately 22.39 MB in total. But as a full
3D cone beam data set (exemplary) embraces 1536 sinograms, the required GPU RAM amounts to
about 34.4 GB data volume, not yet including any further free memory for workspace variables of
the computation. These hardware requirements will commonly not be available, as it was the case
with us, and so the necessity of partitioning pops up.

This directly raises the question of how a sensible partitioning should look like. One has to consider
that one single X-ray beam passes multiple voxel layers (the number depends on the location inside
the entire cone), corresponding to several sinograms. Viewed inversely, we have to estimate how
many sinograms have to be present in the GPU RAM simultaneously for the reconstruction of one
slice. In the worst case for the outermost X-ray of the cone, the necessary slice count can be
identified as

nec_slice_count =

⌈
∆hray
p̃z

⌉
=

⌈
tan (ω)Nx p̃x

p̃z

⌉
by some easy geometrical deliberations according to Figure 7.1. This expression can be simplified
further by replacing tan (ω) = Nz pz/2dsd (regard the big triangle in Figure 7.1 for this) and convert-

1This is the resulting standard size for many scans executed with the Dexela 1512NDT X-ray detector of the in-house
XRCT lab, refer to section 2.3 for more details over it.

2The choice of the data format is linked to the allowed formats for the initialization routine of the ASTRA sinogram data
objects, cf. section 5.1. The astra_mex_data_2d/3d function expects a MATLAB matrix of class double, single or
logical.
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dsd
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p̃x/p̃z

px/pz

Figure 7.1.: auxiliary sketch of the geometrical situation for the definition of nec_slice_count

ing p̃x = px/M and p̃z = pz/M each with a look back to equation (5.2). Hence, the final correlation
for the necessary slice count is given by

nec_slice_count =

⌈
NxNz px

2dsd

⌉
. (7.1)

In our case, this size can be seen as a constant because the choice of a specific detector dictates
the numerator sizes and the distance from the X-ray source to the detector dsd is invariable in the
XRCT lab setup. As even the calculated number nec_slice_count = 113 from equation (7.1) did
not fit into the GPU RAM, we were finally satisfied with dnec_slice_count/2e = 57.

7.1.1. Introduction and utilizability of the overlap

Unfortunately, a subordinate problem came along with the partitioning: the marginalized slices of
such an individual partition exhibit poor quality of the 3D reconstruction (which is a frequent phe-
nomenon because of the shrinking number of projection values disposable in the border areas).
This means a full reconstructed data set reveals periodical zones of poor image quality, exactly at
the positions where the changes between two partitions take place. To cope with this additional
challenge, we inserted an overlap region in between the transition of two adjacent partitions, called
“the overlap” from now on. The exact procedure is presented in the following paragraph.

The first two steps actually belong to the partitioning procedure itself. As a start, we have to calculate
the theoretically requisite number of partitions via

partitions =

⌊
Nz

nec_slice_count

⌋
3. (7.2)

This yields partitions = 26 for the above-mentioned example with the reduced number of neces-
sary slices of 57. Secondly,

num_slices_per_part =

⌈
Nz

partitions

⌉
(7.3)

gives the actual number of slices per partition that will be reconstructed all at once. The rounding
operations in equations (7.2) and (7.3) ensure that the global algorithm will reconstruct the full data

3If the hardware constraints are very strict, the usage of the rounding up operation d•e is advised at this point. Never-
theless, we decided to implement equation (7.2) in the above shape.
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set in any case. For instance, num_slices_per_part takes the value 60 (it slightly differs from the
nec_slice_count because of the addressed roundings). Now, the user can assign the so-called
overlap divisor overlap_div ∈ {2, 3, . . . , num_slices_per_part−1} to define the absolute overlap
value as

overlap =

⌈
num_slices_per_part

overlap_div

⌉
. (7.4)

Let’s assume we set overlap_div = 5 for the example from above, then the overlap is 12 slices
thick according to equation (7.4). Because neighboring partitions overlap by this amount, of course
the total number of partitions increases, like the subsequent relation

partitions =

⌈
Nz

num_slices_per_part− overlap

⌉
(7.5)

specifies. Continuing the exemplary calculations, the number of partitions mounts to 32 for
overlap_div = 5.

60
12first partition

second partition

overlap region
slice number 1

last partition

slice number 1536

. . .

Figure 7.2.: symbolic explanation of the algorithmic treatment of overlap regions

After the overlap has been established, the question arises how the reconstructed slices lying in
the overlap region should be determined starting from the existing reconstructions of the two neigh-
boring partitions involved. Certainly there are a few methods to accomplish good images for these
slices cleverly, but since this issue is just the last piece of the overall puzzle, we decided to use
the simple solution illustrated in Figure 7.2: Each of the two partitions corresponding to the current
overlap region writes merely half of the reconstruction data inside the overlap, and in doing so each
one uses the slices farther from the border of the individual partition. Accordingly, the canceled
slices in Figure 7.2 are not taken into account, which is usually reasonable because of the big gray
value fluctuations contained. For overlap = 12 in the example, this implies that the last respectively
first 6 slices of the two different partitions are omitted. If the slice number of the overlap variable is
odd, the posterior partition (the one in light blue in Figure 7.2) was appropriated to write one more
reconstructed slice. All in all, a good choice of the overlap_div can enable us to reconstruct a
full experimental cone beam data set with constant quality, except for the global boundary areas
(because of the lack of a possible overlap, symbolized by the grey slices in Figure 7.2).

In order to analyze what accounts for a good choice of the overlap divisor and what possible depen-
dencies should be kept at the back of one’s mind when applying the proposed method in combination
with the ASTRA toolbox reconstruction algorithms, an extensive study has been conducted. The ob-
ject of investigation is the already known stepped brass cylinder phantom from chapter 6, recorded
in the open, modular and flexible in-house XRCT system with the three geometric magnifications
M ∈ {4.95, 16.5, 33.02}. The reasons for this sample’s selection are its plainness and the homo-
geneous physical properties of the involved material along the object height, implying comparable
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gray value distributions for all reconstructed slices (at least within the current step the slice belongs
to). Starting from the sinogram data, each data set was reconstructed using the 3D GPU ASTRA
algorithm CGLS3D_CUDA (50 iterations), including well-suited definitions of the COR and BHC
parameters (compare sections 6.4 and 6.5). Furthermore, the number of slices per partition was
kept constant at num_slices_per_part = 60 for comparability reasons, whereas the overlap_div
is varied in the set {2, 3, 5, 10, 20, 50,∞}. The option “ol∞” markes the case that each partition
attaches oneself to the next one without any overlap. The conclusion of the study has been con-
densed into the overview plots in Figure 7.3. To get a general idea of the study’s scope, the reader
may be referred to appendix A, in which each configuration is depicted separately.

Each diagram in Figure 7.3 is structured as follows: The upper subplot depicts the gray value trend4

along the stack height abscissa in blue and the arithmetic mean of the related (ez-dependent) data
by the dashed red line. The dashed green lines give an orientation of the reconstruction quality for
the pictured overlap divisor since they demonstrate the standard deviation of the best reconstruction
including an overlap (namely ol2), plotted from the mean value in red. The dashed green lines in the
lower subplot have the same meaning (and of course also the identical value), but are plotted from
the horizontal axis this time. In addition, the lower subplots contain the curves of the difference be-
tween the “optimal” reconstruction with ol2 and some selected overlap divisor reconstructions, again
compared slicewise along the stack height. The aim of the lower subplot is to justify the decision for
a certain overlap_div as a good choice for the belonging geometric magnification.

For M = 4.95 in Figure 7.3(a), the key insight that can be obtained is that using any overlap that
permits omitting at least one slice per partition (which is exemplarily the case for ol50) is clearly
advisable, in contrast to no overlap given by the profile indicated by ol∞. If we compare the gray
value trends for ol20 and ol50, the deviation from the best reconstruction with ol2 is insignificant for
both of the two parameters. That’s why the upper subplot shows ol50 as the overlap divisor of choice
and also reveals the approximate positions where the brass cylinder phantom changes its diameter.
Figure 7.3(b) illustrates the situation for the average geometric magnification M = 16.5 - herein the
periodic outliers coming from the partitioning routine become apparent (their location varies with the
overlap divisor, as can be seen with a retrospect to equation (7.5)). An adequate reconstruction
quality with respect to the standard deviation of ol2 (green dashed lines) cannot be reached until
ol5. Hence, the “optimal” choice concerning computational speed and accuracy at once is achieved
with overlap_div = 5. Last but not least, the maximal geometric magnification of M = 33.02 in-
cluded in this study provides the gray value trends in Figure 7.3(c). Although both ol5 and ol3 stay
inside the tolerance threshold implied by the standard deviation of ol2, the choice falls on an overlap
divisor of 3 with a glance at the upper subplot: Evidently, the oscillations in the gray value trend
induced by partitioning cannot be recognized when representing the absolute gray value, whereas
they could be identified in such a graph for ol5. Another fact that Figure 7.3(c) adumbrates is how
poorly the gray values are for the limits of the stack height (the gray colored slices in Figure 7.2),
compare the upper subplot on the left and right margin. These slices are usually taken out of the
reconstructed images to that effect by the reconstruction software. As already mentioned, appendix
A contains several plotted gray value trends for any overlap scenario addressed above, so for more
details please throw a glance at these diagrams.

4used pixel regions: rows 310-320, columns 290-300 for M = 4.95; rows 900-1000, columns 800-900 for M = 16.5;
rows 900-1000, columns 700-800 for M = 33.02
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(a) stepped brass cylinder phantom with M
(5.1)
= 4.95

(b) stepped brass cylinder phantom with M
(5.1)
= 16.5

Figure 7.3.: numerical study of the gray value trends along the slice’s stack height for varying geo-
metric magnifications
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(c) stepped brass cylinder phantom with M
(5.1)
= 33.02

Figure 7.3.: numerical study of the gray value trends along the slice’s stack height for varying geo-
metric magnifications (continued)

overlap_div 2 3 4 5 6 7 8 9 10, 11 12 - 14 15 - 19 20 - 29 30 - 59

overlap (7.4) 30 20 15 12 10 9 8 7 6 5 4 3 2

overwritten5 15 10 7 6 5 4 3 2 1

Table 7.1.: line-up of slice numbers corresponding to increasing overlap divisors for fixed
num_slices_per_part = 60

The conclusions that can be drawn from the stated study are as follows: Firstly, it turned out that
the application of any kind of overlap is highly recommended if the user expects comparable gray
value ranges along the ez-direction (which will be the case in general in view of a successive im-
age postprocessing for the reconstructed slices). Furthermore, we found out that it exists a distinct
dependency of the essential overlap divisor on the geometric magnification with which the object
sample has been projected onto the X-ray detector. Based on the three experimental setups con-
sulted above, Figure 7.4 gives a recommendation by means of an exponential regression which
overlap_div should be equipped for which geometric magnification M . The form of the exponen-
tial regression curve therein is determined by

f (x) = a+ b e−cx with a = 2, b = 62.5 and c = 0.1. (7.6)

The parameters in equation (7.6) have been fitted with respect to the data points implicated by the
5overwritten = boverlap/2c
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investigated cases for the stepped brass cylinder phantom, but also to two further constraints: For
M → 1 with M > 1, we expect that the maximal overlap divisor (which is ol59 for num_slices_per_
part = 60) is assumed. Contrariwise, the minimal overlap divisor ol2 makes sense for the highest
possible geometric magnifications M (which are only limited by the experimental construction) - in-
ducing a horizontal asymptote by the term a = 2. If one used to identify a suited overlap_div from
Figure 7.4, Table 7.1 directly presents the belonging numeric values for overlap and overwritten
(which stands for the number of slices that will effectively be ignored per partition in the implemen-
tation). Table 7.1 also serves to give the reader a deeper understanding for the absolute numbers
linked to the described overlap divisors.

Figure 7.4.: correlation between geometric magnification and required overlap divisor for a proper
reconstruction (using 3D ASTRA toolbox algorithms)

7.1.2. Remarks on occured differences between 2D and 3D reconstruction

In the context of the overlap investigation in the previous subsection 7.1.1, each of the three data
sets (for the different geometric magnifications) was also reconstructed with the analogous 2D GPU
ASTRA algorithm, in particular CGLS_CUDA with 50 iterations, since we could expect that each
sinogram contains all required information for one to-be-reconstructed slice in 2D. The COR and
BHC parameters remained unmodified compared to the 3D reconstruction including certain overlap
divisors. The point of interest by a comparison of these two types of reconstruction algorithms is if
the whole effort to achieve a good reconstruction because of the hardware limitations described is
worth it. On the one hand, it is mathematically incorrect to try to reconstruct the data sets recorded
with cone beam scanning using 2D reconstruction routines. But on the other hand, we can only
include a limited number of slices per partition in 3D reconstruction, which is not congruent with the
expected slice count nec_slice_count from equation (7.1) in our case. Another great motivation
for such a contrast is to validate if the prediction of the COR and BHC parameters for 3D made
with single slices with 2D reconstruction algorithms is justifiable. In this spirit, a brief comparison
seems reasonable - and this will be carried out for the stepped brass cylinder phantom example with
M = 16.5 in the next paragraph.
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Figure 7.5.: numerical study of the signal-to-noise ratio SNR for the stepped brass cylinder phantom

with M
(5.1)
= 16.5

First of all, one should take a look at the running times for the reconstruction of the full data set:
While the 3D ansatz with overlap_div = 5 took about 11600 s (≈ 193 min), 2D reconstruction
lasted approximately 16300 s (≈ 272 min), which corresponds to degradation of a factor 1.416. An-
other observation applies to the gray value trends (cf. Figure 7.3). At large, the absolute gray values
of the 2D reconstruction (which are mainly dictated by the toolbox routines) are lower than the ones
for the 3D case, whereas the curves show identical trends - for instance, regard the graphs A.2(e)
and A.2(h) in appendix A for this. However, it is not obvious which resulting images have better qual-
ity characteristics, so that another measure shall be introduced for this contemplation. It is a matter
of the so-called signal-to-noise ratio SNR (see “DIN EN ISO 15708-3:2019-09, Zerstörungsfreie Prü-
fung – Durchstrahlungsverfahren für Computertomographie – Teil 3: Durchführung und Auswertung
(ISO 15708-3:2017); Deutsche Fassung EN ISO 15708-3:2019”, 2019), defined as

SNR =
µ̄

σ
(7.7)

with a problem-dependent arithmetic mean µ̄ and the associated standard deviation σ. Altogether,
a high value of the SNR is associated with a good reconstruction quality. To contrast the 2D re-
construction of the stepped brass cylinder phantom with M = 16.5 with the best choice of a 3D
reconstruction according to subsection 7.1.1 (which is ol5 for this geometric magnification), Figure
7.5 depicts the slicewise SNR (which means both the arithmetic mean µ̄ and the standard deviation
σ in equation (7.7) refer to a fixed pixel domain7 in a single reconstructed slice) for these two sce-
narios. With just a few downward outliers, both stacks of images show a good reconstruction quality,
as measured by the high values of the SNR. If we take the average along the stack height for both
scatter plots (compare the dark red and khaki lines in Figure 7.5), it turns out that the mean SNR for
the 3D reconstruction with overlap_div = 5 is almost 40 points higher than the 2D value. Based on

6specification of the XRCT lab computer: operating system Windows 7 Professional 64 bit, Intel Xeon E5-2630 v2
processor, 128 GB CPU RAM, NVIDIA GeForce GTX 1080 Ti graphic board, 11 GB GPU RAM

7used pixel regions just as in subsection 7.1.1: rows 900-1000, columns 800-900 for M = 16.5
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the two points carved out, we can record the perception that reconstructing a full cone beam scan-
ning data set with the described 3D procedure from subsection 7.1.1 is advantageous compared to
2D reconstruction if the overlap divisor was assigned well for the specific geometric magnification.
Of course we only examined few aspects of a possible extensive comparison, and so no general
recommendation should be pronounced because the circumstances are rather problem-dependent.

7.1.3. Application to an irregular real-world data set

In a final step, we will discuss to what extent our advanced algorithmic workaround for the AS-
TRA toolbox can achieve presentable reconstruction results for an irregular real-world data set.
The data set in the focus of this subsection contains the cone beam scanning projections of the
open-pored asphalt concrete sample which was already mentioned in Figures 6.2(a) and 6.3. The
appendant raw data (Ruf and Steeb, 2020b) can be found in DaRUS (the Data Repository of the
University of Stuttgart)8. It is composed of Nθ = 1440 single projection images of dimensions
Nz = 1536 ×Nx = 1944, recorded with a geometric magnification of M = 2.99, and also includes
one dark and open beam image each. We tried to optimize the reconstructions by a correction of
the horizontal COR shift according to subsection 6.4.2 with parameter δu = −2.125 mm and a BHC
as in section 6.5 with coefficients {d = 2.5, e = 0.5} for the correction formula in equation (6.6).
By default, a ROI mask with ratio 95 % (cf. section 6.3) was used, but no COR tilt correction as
described in subsection 6.4.3. Finally, all simulations were run with the ASTRA GPU reconstruction
algorithm CGLS3D_CUDA for 50 iterations and a necessary slice count (see the introduction of this
section, e.g. equation (7.1)) of 57 slices.

If we look back on the exponential regression curve in Figure 7.4 visualizing the suggested overlap
divisor depending on the geometric magnification, the graph prescribes overlap_div ≈ 50 for the
treated asphalt data set. It should turn out that this selection was estimated much too high since the
resulting image stack reveals large fluctuations at the boundary points of two neighboring partitions.
While an overlap divisor of 10 was still unable to achieve a good global reconstruction, overlap_div
= 2 could finally produce a satisfying outcome, as visible in Figure 7.7. These two mentioned vari-
ants for the choice of the overlap divisor will briefly be compared in the following paragraph.

Concerning the running times for the whole reconstruction process, of course ol10 is at an advantage
towards ol2 because of the lower number of overlapping slices (and the associated lower partition
count), compare Table 7.1: While ol2 requires approximately 17900 s (≈ 298 min), the reconstruc-
tion trial for ol10 is finished after about 11300 s (≈ 188 min) - what corresponds to a speeding up
of circa 37 %. However, this is at the expense of the reconstruction quality of the obtained im-
ages, which can be identified by means of Figure 7.6. It shows graphs of the slicewise mean for
the addressed overlap divisors ol10 and ol2 plotted over several slices of the full stack where one
transition from one partition to another one is located. This transition lies between the slice indices
705 and 706 and is indicated by the purple vertical line in Figure 7.6. Clearly recognizeable are the
oscillations of the relative gray value (with respect to the arithmetic mean of the whole trend for the
displayed slice indices) with an amount of - 10 % through + 35 % in proximity to the partition border
for the red curve symbolizing ol10, quite contrary to the almost flat curve for ol2 in blue. Further-
more, the vertical lines in dark green and yellow represent the borders of the overlap area of ol10
respectively ol2 for the two associated partitions in the background. These additional information
helps us to make the statement that the number of overwritten slices (cf. Table 7.1) is insufficient
for overlap_div = 10 as there still occur major gray value outliers for the five slice indices close
to the partition transition on each side. The closing realization from Figure 7.6 is that the overlap

8https://doi.org/10.18419/darus-639

https://doi.org/10.18419/darus-639
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divisor ol2 can generate a consistent stack of reconstructed slices (disregarding the global borders
of the stack) for the specified irregular asphalt sample data set, and so the overall aim of the present
thesis is qualified as fulfilled. Figure 7.7 gives an impression of the internal structure of the investi-
gated open-pored asphalt concrete sample at different heights inside the stack of reconstructions.
In addition, Figure 7.8 shows sectional views through the whole stack of reconstructed images along
the horizontal in Figure 7.8(a) respectively the vertical center line of the reconstructed slice each in
Figure 7.8(b).

Figure 7.6.: numerical study of the mean gray value trends for selected slices of reconstructions for

the open-pored asphalt concrete sample with M
(5.1)
= 2.99

Possible reasons why the predicted overlap_div from subsection 7.1.1 is unsatisfactory cannot be
found that obvious. One main occasion will definitely be the fact that the irregular real-world asphalt
sample implies highly inhomogeneous input projection data and sinograms (for instance, see Figure
6.2(a)), which does not apply in the same way to the stepped brass cylinder phantom made up of
homogeneous matter. In addition, the object under investigation captures the whole reconstruction
image (after applying the ROI mask) for the asphalt sample because the physical dimension of the
material is much larger than the FOV of the experimental scanning setup. For the stepped cylinder
phantom with comparable geometric magnification M = 4.95, this certainty was not given. That
phantom inclusive its surrounding polyester resin layer only covered about 30 % of the diameter
pixels and thus approximately 9 % of the total utilizable pixel area for reconstruction. Potentially,
the user notices minor variations of the gray value for successive slices better if the reconstructed
images show more details and heterogeneities. Nonetheless, the addressed granularity can also be
identified as a subordinate merit of 3D reconstruction in contrast to 2D reconstruction, as we could
realize for the open-pored asphalt concrete sample used in this subsection.
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(a) for slice 384 of 1536 (b) for slice 768 of 1536 (the medium slice)

(c) for slice 1152 of 1536

Figure 7.7.: reconstructed images of the open-pored asphalt concrete sample
with overlap_div = 2
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(a) for the horizontal center line at row 972 of 1944

(b) for the vertical center line at column 972 of 1944

Figure 7.8.: sectional views of the open-pored asphalt concrete sample reconstructed with
overlap_div = 2 along the ez-direction (each image row pictures the gray values along
a specified line in one reconstructed slice, for example in the ones given in Figure 7.7)
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7.2. Treatment of helical cone beam scanning data

The approach to reconstruction of data sets recorded with helical cone beam scanning considerably
differs from the one for cone beam scanning in the last section 7.1. One can realize this by a consid-
eration of the following example: Let’s assume we only have one single sinogram of a helical cone
beam scanning setup like the one pictured in Figure 6.2(b) at our disposal. Correspondingly, the vir-
tually depicted detector is composed of the exclusive middle detector row, implying num_sino_used
= 1 (even if the physical detector would offer more available detector rows, Nz > 1). Nevertheless,
we can try to start a 2D-like reconstruction with this one sinogram, as it contains information about
all the voxels included through the vertical translation of the measured matter. The exact relation
can be found as

num_rec_slices =

⌈
z_dist
p̃z

⌉
+ num_sino_used (7.8)

by geometrical considerations for the case of known right-hand-side parameters. For instance, the
one sinogram in Figure 6.2(b) yields num_rec_slices = 24019, which is of course mostly dictated
by the first term in equation (7.8).

If we want to include more than only one sinogram (1 < num_sino_used ≤ Nz), the position of
the associated detector rows relative to the central row of the physical detector gains importance.
Clearly the number of voxels increases for a higher number of used sinograms according to equa-
tion (7.8), but the crucial point is that the trans_vec of the vectorized helical cone beam projection
geometry (cf. section 5.2) needs to be modified. The reason for this is that the ASTRA volume ge-
ometry creates a cuboid (with dimensions Nx ×Nx× num_rec_slices) in whose center the overall
coordinate system is fixed, and also the alignment of the projection geometry has to be oriented
relative to this origin.

For this purpose, we have to differentiate between three dissimilar arrangements of the involved
detector rows with respect to the central physical detector row. An additional distinction has to be
made regarding the number of detector rows Nz, but this just induces slight adaptations for one of
the foregoing cases. To support the comprehension, all possible variants shall be sketched in Figure
7.9 for two simplified examples, in which the main difference consists in the even respectively odd
number of detector rows. The first constellation is highlighted in orange and shows the case that the
entire considered detector rows lie above the central detector row (since both start_idx = 1 (2) ≤
mid_idx10 and end_idx = 3 ≤ mid_idx). Here, the projection geometry is to be shifted in positive
ez-direction by

upper_extra =
end_idx− start_idx + 1

2
=

num_sino_used
2

, (7.9)

which results in upper_extra = 1.5 (1). Quite similar is the situation colored in lime green where
every processed detector row is below the central detector row (start_idx = 8> mid_idx; end_idx
= 9 > mid_idx for the even number of detector rows on the left or start_idx = 9 > mid_idx +
1; end_idx = 9 > mid_idx + 1 for the odd number of detector rows on the right). This time, the
prepared ASTRA projection geometry has to be displaced by the value

lower_extra =
end_idx− start_idx + 1

2
=

num_sino_used
2

(7.10)

in negative ez-direction, yielding lower_extra = 1 (1.5) for the two instances in Figure 7.9. The
third arrangement for the case of an even number of detector rows Nz is defined exactly by the

9used parameters of the scanning setup: z_dist = 30 mm, p̃z ≈ 12.5003 µm
10mid_idx = bNz/2c
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Figure 7.9.: schematic, exemplary representation of all imaginable combinations that affect the ori-
entation of the ASTRA projection geometry for helical cone beam scanning

conditions start_idx ≤ mid_idx and end_idx > mid_idx. For the example illustrated on the left
side in purple with even Nz = 10, this holds true as start_idx = 4 ≤ mid_idx and end_idx = 6
> mid_idx. To achieve the expected shift of the projection geometry by +0.5 along the ez-axis, the
two sizes from equations (7.9) and (7.10) are redefined via

upper_extra =
mid_idx− start_idx + 1

2
; lower_extra =

end_idx− mid_idx
2

. (7.11)

The superposed total shift is obviously given by

total_extra = upper_extra− lower_extra (7.12)

and so the desired value total_extra = +0.5 can be obtained. As one can imagine well, the
combination of an even number of detector rows Nz and an even number of used sinograms
num_sino_used, arranged symmetrical to the central detector row, is quite familiar and luckily re-
sults in total_extra = 0 under these circumstances. The last possibility is displayed in purple on
the right side of Figure 7.9, characterized by the odd number of detector rows Nz = 11 and the
lightly modified constraints start_idx ≤ mid_idx + 1 and end_idx ≥ mid_idx + 1. Both of the
conditions are fulfilled for the example given since start_idx = 5 and end_idx = 8 (remember the
definition mid_idx = bNz/2c from above). For an odd number of detector rows, equation (7.11)
needs to be adjusted to

upper_extra =
mid_idx− start_idx + 1

2
; lower_extra =

end_idx− mid_idx− 1

2
. (7.13)

The superposition to total_extra still follows the instruction from equation (7.12), and hence
total_extra = −0.5 results for the pictured example.
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The detailed explanation of the exact alignment of the projection geometry in the last paragraph
might seem overdone to the reader for a testing problem like the one portrayed in Figure 7.9, but a
precise readjustment with the calculated total_extra translation is immensely important for real-
world scan data. To implement this displacement, the last code snippet of section 5.2 should be
altered to:11

% adjustment o f the vec to r i zed p r o j e c t i o n geometry to 3D h e l i c a l
% cone beam using the vec to r t rans_vec
t rans_vec = z_t rans . ∗ ( 0 : ( num_angles − 1 ) ) ’ − z _ d i s t /2 − t o t a l _ e x t r a ;
proj_geom . Vectors ( : , 3) = proj_geom . Vectors ( : , 3) + trans_vec ;
proj_geom . Vectors ( : , 6) = proj_geom . Vectors ( : , 6) + trans_vec ;

After we studied the accurate interaction of the necessary ASTRA volume and projection geome-
try, the next level problem was to reconstruct one sinogram like the one already mentioned several
times in Figure 6.2(b). But again, the amount of data upset our plans: This sole sinogram with the
dimensions Nθ = 2880 × Nx = 830 would of course fit into the GPU RAM (memory requirements
about 19.12MB), but the generated volume geometry necessitates a size of Nx = 830 × Nx =
830 × num_rec_slices = 2401, which corresponds to a more than seven times higher GPU RAM
consumption than we used to identify as available in section 7.1. The principal reason for the high
number of voxels in ez-direction consists in the big value for the total traveled z-distance z_dist,
which induces the size num_rec_slices according to equation (7.8). At this point, one could of
course wonder about possible loopholes to overcome this repeated sticking point (like a partitioning
of the sinogram rows and the associated voxels together with an additive management of the recon-
struction output data to approximate the global theoretical gray values for the considered slices), but
the finite time horizon of this master thesis left this job site open. Instead, we will present a theo-
retically performed test example in the successive closing paragraph of this chapter to demonstrate
that our implementation around the ASTRA toolbox can in principle map the reconstruction of helical
cone beam scanning data.

(a) slices 1-200 (b) slices 201-400 (c) slices 401-600

Figure 7.10.: visualization of the underlying exact voxel data in different heights
(counted from above)

The test example is constructed as follows: We prescribe an elongated test phantom by a Nx =
200 × Nx = 200 × num_rec_slices = 600 voxel cuboid which possesses three equally sized
sections along its altitude with variable cross sections, as depicted in Figure 7.10. The first, superior
segment (with slice indices 1 to 200) is made up of two eccentric circles with a radius of 30 pixels

11For the arrangements in orange and lime green from Figure 7.9, of course total_extra = upper_extra respectively
total_extra = - lower_extra applies. The total shift has to be subtracted because of the forced sign definition of
the ASTRA toolbox, analogous to the sign of the z_dist-fraction.
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(a) physical detector
row 76

(b) physical detector
row 200

(c) physical detector
row 325

(d) slice 126

(e) slice 326

(f) slice 526

Figure 7.11.: sinograms ((a) - (c)) and reconstructions ((d) - (f)) of the test phantom generated with
the specified helical cone beam scanning projection geometry
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and a fixed relative gray value of 0.6. This is followed by the central section (slice indices 201 to
400), which includes a square with edge length of 120 pixels and a known relative gray value of
0.8. The slice indices 401 through 600 belong to the final segment and show one centered circle
with a 75 pixels radius and an assigned relative gray value of 0.4. To map a realistic empirical
helical cone beam scanning setup in the ASTRA projection geometry, we were oriented towards
scan parameters which would be consistent with the composition of our XRCT lab. At this point, it
is sufficient to present exemplary parameters like the number of detector rows Nz = 400, the voxel
size p̃z ≈ 12.4667 µm, the number of projection angles Nθ = 1440 along num_turns = 2 entire 360◦

turns and the total covered z-distance z_dist = 5 mm (as before, this z-pitch quantity is measured
in the iso-center). The choice of z_dist in interaction with the voxel size p̃z causes that we have to
select at least num_sino_used ≥ 198 (enforced by equation (7.8), resolved after the unknown size)
- so we defined num_sino_used = 250 here. All this led to 250 sinograms (which were simulated
forward with ASTRA toolbox routines) of dimensions Nθ = 1440 × Nx = 200, of which the first,
middle and last one are pictured in Figure 7.11(a) to 7.11(c). The caption of the images refers to
row indices on a possible physical detector with Nz = 400 many rows (where the supreme detector
row is numbered with 1) and the fact that we use a higher number of num_sino_used as essential is
reflected in the blank pixels in the top of Figure 7.11(a) respectively in the bottom of Figure 7.11(c).
Finally, we started a reconstruction with the created sinograms, in which the only further optimization
applied was the standard ROI mask with ratio 95 % (compare section 6.3). The simulation once
again used the ASTRA GPU reconstruction algorithm CGLS3D_CUDA with an iteration count of 50,
this time including all the num_sino_used = 250 disposable sinograms at one go. The findings of
the reconstruction for the test phantom are quite promising since most of the reconstructed slices
faultlessly reflect the initial situation. Figures 7.11(d) through 7.11(f) verify this proposition because
they picture the reconstruction images correlated with the exact input voxel data from Figure 7.10
(the slice indexing is again modified because of the definition num_sino_used = 250). Solely the
reconstruction quality in the upper and lower border area of the voxel stack is inadequate - which
reflects our expectation as the number of available projection information contained in the sinograms
decreases in this regions according to the recording technique of helical cone beam scanning. All
in all, we can make the statement that all the considerations regarding helical cone beam scanning
have been constructive and the transfer to the more demanding experimentally measured data sets
should be the next milestone to achieve.
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8. Conclusion

The reconstruction of µXRCT data sets is the essential step from experimentally recorded projec-
tion images to interpretable voxel information which try to represent the internal structure of the
object under investigation. To obtain an insight into the interior of a sample in a noninvasive and
nondestructive way is in great demand in many fields of application, for instance in human medi-
cal imaging and materials science. The work at hand provides the opportunity to reconstruct such
µXRCT data sets to a certain degree using the established ASTRA toolbox. The whole requisite
previous knowledge concerning X-ray physics, experimental scan setups and reconstruction itself
(including different mathematical approaches to this task) are elucidated in chapters 2 to 4. The
second half of this thesis (chapters 5 through 7) deals with the description of the ASTRA toolbox
features, with some image processing and filtering methods added to the basic ASTRA routines and
in a final step with the results of its utilization for experimental full 3D cone or helical cone beam
scanning data sets.

Summing up, it can be said that the ASTRA toolbox measures up to our expectation that more than
just theoretically respectively mathematically motivated test examples can be reconstructed, but not
offhand. Over and above standard preparatory tasks such as normalization, the user has to handle
the correct manipulation of the experimental scan parameters. Important techniques to improve the
reconstruction image quality for real-world projection data like BHC and COR misalignment correc-
tion are absent, and a self-made implementation of them often requires the usage of the vectorized
projection geometry representation, which in turn is incompatible with the application of the powerful
FBP (in 2D) or FDK (in 3D) reconstruction algorithms. Nevertheless, we could achieve a meaningful
reconstruction of an entire experimental cone beam scanning data set, for which all developed meth-
ods had to be applied, and even a theoretical test example could be reproduced for the demanding
helical cone beam scanning setup.

As already discussed, the rework of the irregular real-world cone beam projections was really chal-
lenging due to insufficient GPU memory availability (which could be resolved by the introduction of
the so-called overlap). Here, the question is raised if or how the developers provided for the treat-
ment of the amount of data incidental with such real-world data sets, especially because a second
detector on hand in the in-house XRCT lab with an even higher spatial resolution has not been used
for the projections’ recording yet. Proceeding research on the very spot can of course deal with a
possibly better choice of the gray values for the so far overwritten slices inside the overlap region
and a more differentiated study with respect to all potential influencing factors could enrich the pre-
sented overlap study. It would be valuable to the same degree to analyze if a similar partitioning
approach (at which the segmentation could for instance split the sinogram rows) also yields fruit for
experimental helical cone beam scanning projections. In general, one could engage in the problem if
and how the employment of multiple graphic cards can contribute to a faster or easier reconstruction
with the ASTRA toolbox basic routines. Apart from the challenges linked to hardware limitations,
further perspectives to enhance the resulting image quality open up with a deeper familiarization
in the suppression of beam hardening and ring artifacts. Perhaps the implementation of a more
complex computational BHC method in combination with the introduction of a (sinogram-based) ring
artifact reduction lead to a distinct increase of the reconstruction quality even for heterogeneous
sample materials. The incorporation of a spot filter for the sinogram images could also offer the
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chance to contribute to a strong improvement of the reconstructed images. Finally, a minor further
contact point for succeeding work lies in the validation of the theoretically established COR tilt cor-
rection so that potentially occurring experimental misalignments of this kind can in future be resolved
computationally inside the reconstruction process.
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A. Appendix

Complementary plots of the gray value trends for the overlap study in
section 7.1.1

Figures A.1 through A.3 are structured in the following way: Each single diagram contains subplots
with the gray value trends for the slicewise maximum, arithmetic mean and minimum (starting from
the top). The red and green dashed lines of each subplot indicate the arithmetic mean respectively
the standard deviation, calculated along the stack height for the pictured gray value data. Further-
more, the ordinates of every subplot for overlap_div ∈ {2, 3, 5, 10, 20, 50} are identically chosen to
ensure comparability in between these diagrams. This could not be achieved for the overlap divisor
ol∞ (too strong oscillations) and the 2D reconstruction (absolute gray values lie below the level of
the absolute gray values for the images reconstructed with 3D algorithms).
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(a) without applying any overlap (“ol∞”) (b) for overlap divisor ol50

Figure A.1.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 4.95
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(c) for overlap divisor ol20 (d) for overlap divisor ol10

Figure A.1.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 4.95 (continued)
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(e) for overlap divisor ol5 (f) for overlap divisor ol3

Figure A.1.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 4.95 (continued)
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(g) for overlap divisor ol2 (h) 2D reconstruction (for comparison)

Figure A.1.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 4.95 (continued)
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(a) without applying any overlap (“ol∞”) (b) for overlap divisor ol50

Figure A.2.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 16.5



A
ppendix

101

(c) for overlap divisor ol20 (d) for overlap divisor ol10

Figure A.2.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 16.5 (continued)



102
A

ppendix

(e) for overlap divisor ol5 (f) for overlap divisor ol3

Figure A.2.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 16.5 (continued)
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(g) for overlap divisor ol2 (h) 2D reconstruction (for comparison)

Figure A.2.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 16.5 (continued)
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(a) without applying any overlap (“ol∞”) (b) for overlap divisor ol50

Figure A.3.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 33.02
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(c) for overlap divisor ol20 (d) for overlap divisor ol10

Figure A.3.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 33.02 (continued)
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(e) for overlap divisor ol5 (f) for overlap divisor ol3

Figure A.3.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 33.02 (continued)
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(g) for overlap divisor ol2 (h) 2D reconstruction (for comparison)

Figure A.3.: numerical studies of the gray value trends along the slice’s stack height for M
(5.1)
= 33.02 (continued)
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