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wörtlich oder sinngemäß aus anderen Werken übernommenen Aussagen als solche gekenn-

zeichnet habe und dass die eingereichte Arbeit weder vollständig noch in wesentlichen
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Zusammenfassung

In zahllosen Forschungsbereichen und Anwendungen ist das Verständnis des Verhaltens

und der Struktur von Fluiden, d. h. Flüssigkeiten oder Gasen, von entscheidender Be-

deutung. So spielen Fluide beispielsweise in Batterien und Kondensatoren [1, 2] wie auch

in biologischen Systemen [3] oder sogar in Bereichen der Photovoltaik und Katalysato-

ren [4, 5] eine Schlüsselrolle. Vor allem die Besonderheiten heterogener Systeme, also

von Systemen mit Grenz- oder Oberflächen, sind dabei ausschlaggebend für eine Viel-

zahl von Phänomenen. Zusätzlich sind in natürlichen Systemen Ladungsträger und damit

elektrostatische Wechselwirkungen allgegenwärtig. Sie verkomplizieren nicht nur jeglichen

Versuch einer Untersuchung solcher Systeme, sie führen zudem zu einer Reihe weiterer

interessanter Effekte, deren genaues Verständnis intensiver Forschung bedarf. In großen

Teilen solcher Forschungsarbeiten, die sich mit Fluiden in Kontakt mit festen Substraten

beschäftigen, werden Näherungen und Einschränkungen verwendet. Eine typische Verein-

fachung ist dabei, dass das Substrat als homogen bezüglich der Interaktionen zwischen

Fluid und Wand betrachtet wird. Auf der einen Seite macht dies die mathematische Be-

schreibung solcher Systeme signifikant einfacher, auf der anderen Seite fehlt oftmals die

experimentelle Information über die genaue Oberflächenbeschaffenheit der untersuchten

Substrate. Für den Fall ungeladener Oberflächen und neutraler Fluide ist diese Näherung

durchaus vernünftig, da die Längenskala, auf der die Einflüsse eventueller Heterogenität

abklingen, durch die Bulk-Korrelationslänge gegeben ist. Der Ausdruck
”
Bulk“ bezeich-

net hier ein homogenes System in Abwesenheit sämtlicher äußerer Einflüsse, gewisser-

maßen ein unendlich ausgedehntes System des betroffenen Materials. Sogenannte Bulk-

Eigenschaften ergeben sich also stets durch innere Eigenschaften des Materials. Diese

Bulk-Korrelationslänge liegt, fernab von Phasenübergängen, in der Größenordnung ei-

niger Partikeldurchmesser, sie ist also von so kurzer Reichweite, dass Inhomogenitäten

vernachlässigbar sind. Im Falle von elektrostatischen Wechselwirkungen zwischen einer

geladenen Wand und Fluiden, die Ladungsträger beinhalten, ist die relevante Längenskala

jedoch durch die Debye-Länge gegeben. Diese ist, vor allem im Falle geringer Salzkonzen-

trationen, sogenannter verdünnter Elektrolytlösungen, deutlich größer als alle anderen

9



10 ZUSAMMENFASSUNG

Längenskalen, die durch Partikelgrößen gegeben sind. Außerdem sind typischerweise auch

Inhomogenitäten innerhalb der Verteilung von Oberflächenladungen in der Größenordnung

der Debye-Länge voneinander entfernt. Daher ist die oben angesprochene Näherung einer

homogenen Oberfläche in solchen Fällen nicht haltbar. Die Vielzahl von Effekten, die bei

genauerer Betrachtung mit solchen Inhomogenitäten in Verbindung gebracht werden, stel-

len den Ausgangspunkt der hier vorgestellten Forschung dar. In der vorliegenden Thesis

wurde daher eine planare Wand untersucht, die räumlich variierend chemisch und elek-

trostatisch mit einer benachbarten Elektrolytlösung wechselwirkt. Insbesondere wurden

die Effekte auf die Struktur des Fluides, ausgedrückt durch Teilchenzahldichten, unter-

sucht. Hierfür wurde der mathematische Rahmen der Dichtefunktionaltheorie gewählt,

da dieser sich schon wiederholt als leistungsfähiges Werkzeug für Studien gerade solcher

Teilchenzahldichten gezeigt hat. Nach einer ausführlichen Motivation und Erläuterung

der Fragestellung in Kap. 1 werden die Grundlagen dieser Methode in Kap. 2 eingeführt

und erklärt. Basierend auf diesen Ausführungen werden in den Kap. 3 und 4 dann zwei

verschiedene Ansätze besprochen, die sich in erster Linie in der Komplexität der zu-

grundeliegenden Beschreibung des Fluides unterscheiden. In diesen Kapiteln werden die

Ergebnisse der hier vorgestellten Forschung präsentiert und eingeordnet. Die Resultate

der beiden Ansätze wurden in großen Teilen schon an anderer Stelle veröffentlicht [6, 7].

Mit der oben genannten Motivation wurde in Kap. 3 zunächst eine einfache, grobe Be-

schreibung des Fluides gewählt. Das Fluid und seine Komponenten wurden hier mit einer

quadratischen Gradientennäherung im Stile von Cahn-Hilliard beschrieben (siehe Abschn.

3.2.2). Darüber hinaus wurden die heterogenen chemischen oder elektrostatischen Inter-

aktionszentren, deren Anordnung innerhalb des Modells frei gewählt werden konnten, in

ihrer Stärke begrenzt, sodass sie schwach genug waren, um eine lineare Antwort der Teil-

chenzahldichten anzunehmen. Dies ermöglichte es, geschlossene analytische Ausdrücke für

die resultierenden Teilchenzahlprofile herzuleiten (siehe Abschn. 3.2.3). Diese wiederum

wurden im Verlaufe dieses Kapitels analysiert, um erste, fundamentale Erkenntnisse zu

den Effekten von chemisch oder elektrostatisch inhomogenen Wänden und zur Kopplung

von Ionen- und Lösungsmittelvariationen zu erhalten. Zunächst wurden einzelne, isolierte,

punktförmige Interaktionszentren untersucht. Deren Analyse zeigte deutliche Unterschie-

de in den Reaktionen des Fluides auf chemisch im Vergleich zu elektrostatisch wechsel-

wirkenden Wänden. Wie eingangs erwähnt, wurde für chemische Interaktionen zwischen

Substrat und Fluid ein Abklingen der Variationen der Dichte auf der Längenskala der

Bulk-Korrelationslänge ξ gefunden. Zudem waren die Veränderungen in allen drei Teil-

chenzahldichten, die des Lösungsmittels sowie die der beiden Ionen, in ihrem Verlauf

proportional zueinander (siehe Abb. 3.2, 3.3 und 3.4). Im Gegensatz hierzu wurde im Fall

von elektrostatischen Wechselwirkungen zwischen Wand und Fluid keinerlei Veränderung
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bei den Teilchenzahldichten des Lösungsmittels gefunden. Die Ionen zeigten dagegen deut-

liche Reaktionen auf eine elektrostatische Wechselwirkung, wobei ihre Veränderungen in

den Dichten identisch waren, mit jeweils unterschiedlichen Vorzeichen für die Ko- und

die Gegenionen. Außerdem konnte, wie ebenfalls eingangs ausgeführt, ein Unterschied im

Abklingverhalten festgestellt werden, wobei die Bulk-Korrelationslänge durch die Debye-

Länge 1/κ ≫ ξ ersetzt wurde (siehe Abb. 3.5). Durch das Einführen einer zweiten

Längenskala in Form eines ausgedehnteren Interaktionsgebietes konnte die Wechselwir-

kung verschiedener Längenskalen analysiert werden. Die Betrachtung verschiedener Kom-

binationen von Größenordnungen ergab, dass die Ausdehnung der Oberflächenstruktur

die Form des Fluides signifikant beeinflussen kann. Dominiert für eine gegebene Struk-

tur, bzw. Ausdehnung der Interaktionsfläche eine interne Längenskala des Fluides, also

die Bulk-Korrelationslänge oder die Debye-Länge, so ähneln die resultierenden Dichte-

profile stark denen, die sich für punktförmige Interaktionsstrukturen ergeben. Wächst

hingegen die Längenskala der Oberflächenstruktur, so steigt deren Einfluss auf den Ver-

lauf der Dichtevariationen bis hin zu Dichteprofilen, die streng der Form der Interak-

tionen auf der Oberfläche folgen, für den Fall, dass deren Ausdehnung die dominierende

Längenskala darstellt (siehe Abb. 3.7). Zuletzt wurde dieser erste, einfache Ansatz zur Be-

schreibung der Elektrolytlösung im Falle einer regelmäßigen, hexagonalen Verteilung von

gaußförmigen Interaktionszentren betrachtet. Eine derartige Verteilung der Interaktionen

entspricht der, die z. B. in Kristallen zu erwarten wäre. Erneut zeigte sich der starke Ein-

fluss der Ausdehnung der Interaktionsgebiete auf die Struktur des benachbarten Fluides.

Außerdem zeigte sich hier, dass die Distanz benachbarter Interaktionszentren die Bedeu-

tung höherfrequenter Dichtefluktuationen, also Fluktuationen mit größeren Werten der

lateralen Wellenzahl |q‖|, beeinflusst (siehe hierzu Abb. 3.8). In Anbetracht der Simpli-

zität des in diesem Kapitel verwendeten Modells lässt sich an dieser Stelle festhalten, dass

die Menge an beobachteten Phänomenen beachtlich ist.

Im folgenden Kap. 4 wurden die Erkenntnisse aus der vorausgegangenen Studie ge-

nutzt, um das verwendete Model zur Beschreibung der Elektrolytlösung zu verfeinern

und damit genauere, realistischere Ergebnisse zu erhalten. Anstatt, wie bislang, quasi

punktförmige Partikel zu betrachten, wurde die Methodik der Dichtefunktionaltheorie

um die Konzepte der
”
fundamental measure theory“ (FMT) erweitert. In dieser wer-

den, anstatt die tatsächlichen Dichteverläufe zu betrachten und in den Berechnungen zu

verwenden, geometrische Überlegungen (Kugelvolumen, Kugeloberfläche) genutzt, um ge-

mittelte, sogenannte gewichtete Dichten zu bestimmen, die in der weiteren Berechnung

des Fluidverhaltens genutzt werden. Diese Variante sorgt für eine automatische Beschrei-

bung der Partikel in Form von harten, undurchdringlichen Kugeln (siehe Abschn. 4.2).

Daher sind in diesem zweiten Model alle internen Wechselwirkungen zwischen den Par-
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tikeln und auch zwischen den Partikeln und dem Substrat, also alle Wechselwirkungen,

die nicht durch die Elektrostatik erzeugt werden, rein repulsiv. Darüber hinaus wurden

hier die Einschränkungen bezüglich der Stärke der Interaktionen zwischen Substrat und

Fluid aufgehoben, was den in diesem Kapitel verwendeten Ansatz deutlich realistischer

und umfangreicher macht. Allerdings führten diese Änderungen auch dazu, dass keine

geschlossenen analytischen Ausdrücke mehr bestimmt werden konnten und das Verhalten

des Fluides numerisch bestimmt werden musste. In einem ersten Schritt bestätigte die Un-

tersuchung von homogen geladenen Oberflächen in Abschn. 4.3.2 die Beobachtungen aus

dem vorangegangen Kapitel. Alle Profile zeigten exponentiell abklingendes Verhalten für

größer werdende Entfernungen zur Wand, wobei die Längenskala dieses Abklingens durch

die Debye-Länge 1/κ gegeben wurde. Zusätzlich zeigten in diesem Fall alle Dichteprofi-

le die für harte Kugeln an harten Oberflächen typische Schichtstruktur. Die bisherigen

Ergebnisse aus Kap. 3 erweiternd wurde hier zudem eine qualitative Änderung der Reak-

tion der Teilchenzahldichten für ausreichend große Wandladungen gefunden. Für geringe

Stärken der Wandladung trat noch, wie auch schon im vorangegangenen Kap. 3, eine

lineare Antwort des Systems auf die Oberflächenladung auf. Für große Wandladungen

wurde jedoch ein zweiter Bereich beobachtet, in welchem die Lösungsmittelteilchen durch

die Gegenionen nahe der Oberfläche verdrängt wurden. Dies entspricht einem qualitativ

anderen Verhalten und stellt den Übergang in einen Bereich nicht-linearen Fluidverhal-

tens dar (siehe Abb. 4.2, 4.3, und 4.4). Um von einer homogenen Wandladungsverteilung

hin zu heterogenen Ladungsstrukturen zu gelangen, wurde im Anschluss zunächst der Fall

einer eindimensionalen, sinusförmigen Ladungsverteilung untersucht. Abgesehen von der

lateralen Variation der Oberflächenladung unterscheidet sich dieser Fall gegenüber der ho-

mogen geladenen Wand im Hinblick auf eine verschwindende Nettoladung der Wand. Bei

Betrachtung verschiedener Konfigurationen dieser Randbedingung konnte zunächst kein

Übergang vom linearen in das nicht-lineare Regime der Fluidreaktion gefunden werden; für

alle analysierten Amplituden der Wandladung blieb der Verlauf der Lösungsmitteldichten

de facto konstant (siehe Abb. 4.5). Außerdem beeinflusste die Amplitude der Wandladung

auch die Ionen nur in Form eines Proportionalitätsfaktors und erzeugte keine qualitativen

Änderungen. Es liegt daher nahe, dass der Übergang zwischen den beiden Bereichen, li-

neare und nicht-lineare Fluidantwort, zumindest verschoben ist. Aufgrund der verschwin-

denden Nettoladung ist diese Änderung nicht überraschend. Allerdings zeigten sowohl

die Ionendichten, in Form der lokalen Ladungsdichte, wie auch der Verlauf des elektro-

statischen Potentials starke Variationen in Abhängigkeit der Wellenlänge der lateralen

Variation der Oberflächenladung. Hierbei führten größere Wellenlängen zu deutlich gestei-

gerten Abklinglängen der Reaktion der entsprechenden Größen für zunehmende Distanz

zur Wand (siehe Abb. 4.6 und 4.7). Als weiterer Schritt hin zu komplexeren heteroge-
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nen Oberflächen wurde im letzten Abschn. 4.3.4 eine Auswahl an naheliegenden Ober-

flächenstrukturen analysiert, wobei die Ladungsstrukturen sowohl laterale Variation als

auch eine effektive Wandladung, also eine nicht verschwindende gemittelte Wandladung,

zeigten (siehe Abb. 4.8). Zunächst wurden diese Ladungsverteilungen im Hinblick auf die

Auswirkungen auf die lokale Ladungsdichte, also die Teilchenzahldichten der Ionen, un-

tersucht (siehe 4.9). Hier ergab sich, dass für Inhomogenitäten mit kurzer Periodenlänge

die tatsächliche Form der Ladungsverteilung keine ausgezeichnete Rolle spielt, der einzig

relevante Parameter in diesem Fall ist die gemittelte Ladungsstärke, also die Nettoladung

der Wand. Des Weiteren wurde die Streifenstruktur (siehe Abb. 4.8 (b)) genauer unter-

sucht, um den Einfluss der Wellenlänge der Oberflächenstruktur genauer zu analysieren.

Wie auch schon in Kap. 3 und Abschn. 4.3.3 zu erkennen ist, zeigte sich auch hier erneut

der starke Einfluss, den diese Wellenlänge auf die Struktur des Fluides besitzt. Längere

Wellenlängen in der Ladungsverteilung führten auch hier zu einem Abklingen der Re-

aktionen des Fluides für zunehmende Entfernung zum Substrat auf deutlich gesteigerten

Längenskalen (siehe Abb. 4.10). Jedoch konnte dieser Effekt, obgleich das zugrundeliegen-

de Model zur Beschreibung der Elektrolytlösung deutlich komplexer war, selbst mit den

einfachen Mitteln des in Kap. 3 verwendeten Ansatzes und den daraus folgenden analy-

tischen Ausdrücken hervorragend beschrieben werden, wie in Abb. 4.10 klar zu sehen ist.

Hier konnte nicht nur das asymptotische Verhalten für große Entfernungen zur Wand, für

welches die mikroskopischen Details erwartungsgemäß an Bedeutung verlieren, sondern

auch der Verlauf bspw. des elektrostatischen Potentials in direktem Kontakt zum Substrat

mit bemerkenswerter Präzision reproduziert werden. Sogar die Betrachtung lediglich des

Beitrages der zwei höchsten Ordnungen in der Entfernung zur Wand zeigte hier schon

eine überraschende Übereinstimmung (siehe Abb. 4.11).

Zusammenfassend lässt sich sagen, dass die hier vorgestellte Forschung und ihre Ergeb-

nisse klar die Bedeutung heterogener Oberflächenladungsverteilungen herausstellt. Insbe-

sondere wurde gezeigt, wie wichtig die Berücksichtigung eventueller Inhomogenitäten und

deren Auswirkungen auf angrenzende Elektrolytlösungen bei der Untersuchung der Struk-

tur und des Verhaltens solcher Fluide an Oberflächen ist. Die hier untersuchten Modelle

stellen dabei ein vielseitiges Fundament für weitere Forschungsarbeiten in diesem Bereich

dar. Mögliche Schwerpunkte solcher Arbeiten könnten beispielsweise der Einfluss mehre-

rer Substrate und die durch das Fluid vermittelten Kräfte oder die Nutzung verschiedener

Längenskalen zu Synthese von strukturierten Makromolekülen sein.





Abstract

Understanding the structure of fluids close to solid substrates is of great importance in

numerous research applications. When studying these interfaces, a typical assumption

is to regard the substrate as homogeneous with respect to wall-fluid interactions. For

uncharged walls and fluids comprised of only neutral constituents, this assumption is

reasonable. In contrast, in the case of electrolyte solutions in contact with charged walls,

the effect of heterogeneities in the interactions is particularly long ranged, because the

corresponding relevant length scale is set by the Debye length. This length is large com-

pared to a molecular size scale, and such simplifications are therefore generally unsound.

For this reason, in the present thesis the interactions of a planar wall with heterogeneous

chemical and electrostatic properties with a nearby electrolyte solution were studied. The

research focused on the influence of the interfacial inhomogeneities on the number densit-

ies of the fluid constituents. Because it has been proven to be a powerful tool for studies of

fluid structure in terms of number density profiles, the analysis was performed within the

framework of classical density functional theory. The basic mathematical framework of

this theory is provided in Chap. 2. Based on this method, two different approaches were

pursued, varying in complexity of the underlying model used to describe the electrolyte

solution. The results of these investigations are presented in Chaps. 3 and 4, with the

simpler approach of Chap. 3 providing first, basic insights, which were then verified and

more extensively studied with the second approach as described in Chap. 4. The results

presented in these chapters have mostly been published in Refs. [6, 7].

In Chap. 3, a chemically or electrostatically heterogeneous substrate adjacent to

an electrolyte solution is studied. To describe the fluid and its components, a Cahn-

Hilliard-like square gradient approximation was used (see Sec. 3.2.2). Moreover, while

the model allowed for an arbitrary spatial distribution of nonuniformities of the chemical

and electrostatic wall-fluid interactions, their influence was assumed to be sufficiently

weak such that a linear response of the number density deviations from the bulk values

was deemed justified. Consequently, closed-form analytical expressions could be derived

(see Sec. 3.2.3), which were used to obtain basic, elemental insights into ion-solvent

15



16 ABSTRACT

coupling and the effects of chemically or electrically nonuniform walls. The study of

single, isolated, δ-like interaction sites revealed significant differences in the reaction of

the fluid for chemically as compared to electrostatically interacting walls. For chemical

interactions between the substrate and the fluid, the resulting deviations from the bulk

densities all decayed on the length scale of the bulk correlation length ξ, with deviations

of the three different constituents being proportional to each other (see Figs. 3.2, 3.3, and

3.4). On the other hand, in the case of electrostatic interactions between the wall and the

fluid, the solvent density remained unchanged and the density deviations of the two ion

types were opposite in direction. An increase in counterion density was accompanied by

a decrease in the density of coions. Additionally, the decay length significantly increased

for charged walls, with the length scale being the Debye length 1/κ instead of the bulk

correlation length ξ ≪ κ−1 (see Fig. 3.5). Introducing another length scale by increasing

the area of interaction to nonvanishing size led to a discernible competition between length

scales. If an internal length scale dominated the system, the resulting profiles showed

strong similarities with the results for the δ-like interactions. However, upon increasing

the external length scale set by the boundary condition, the structure of the surface charge

pattern became increasingly relevant, with the density deviations of the fluid increasingly

mimicking the structure imposed by the boundary condition (see Fig. 3.7). Lastly, a

regular hexagonal lattice of Gaussian-shaped interaction sites, simulating a crystalline

structure, was considered. Again, the analysis of the resulting profiles depended on the

size and also the distance between separate interaction sites (see Fig. 3.8), influencing

the importance of large lateral wave numbers |q‖| on the structure of the fluid response.

Considering the simplicity of this first approach, the number of observed effects was

remarkable.

In Chap. 4, the insights gained from the first approach were used to refine the model

describing the electrolyte solution and therefore produced more informative results. In-

stead of considering basic point-like particles, the framework of fundamental measure

theory was introduced, in which the particles are modeled as hard spheres (see Sec. 4.2).

Therefore, the nonelectrostatic interactions between the particles themselves and also

between the particles and the wall are purely repulsive in this second model. In addition,

the restriction to a linear response regime, as was used in the first approach, was lifted,

making the approach taken in this chapter much more versatile. However, these expan-

sions required to numerically determine the equilibrium number density profiles. First,

the case of a homogeneously charged wall was explored. Confirming the results in Chap.

3, the observed density deviations all indicated an exponential decay away from the wall

with a length scale given by the Debye length 1/κ. Additionally, the resulting profiles

exhibited the layer structure, which is known to occur for hard spheres next to hard walls
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(see Figs. 4.2, 4.3). Expanding the findings from the first model, the number densit-

ies within this second approach revealed a qualitative change in the decay behavior for

sufficiently high wall charges. For low surface charge strengths, the findings agreed with

those of the simpler model from Chap. 3, exhibiting a linear response of the fluid particle

densities. However, if the surface charge was increased, a second regime was revealed,

in which the dissolved ions displaced solvent particles, marking the onset of nonlinear

fluid response (see Figs. 4.2, 4.3, and 4.4). Introducing the simplest case of a lateral

inhomogeneity with a single length scale, a sinusoidal charge distribution was analyzed

in Sec. 4.3.3. Besides the lateral variation, this case also differed from the previous one

because there was no overall charge on the surface. For this boundary condition, first

and foremost, there was no qualitative change in the profile of the solvent and solute

densities found. For all examined settings of the surface charge, the profiles of the solvent

densities remained de facto unchanged (see Fig. 4.5). In addition, the amplitude of the

surface charge only influenced the local charge density and the electrostatic potential in

the form of a proportionality factor. Therefore, it appears that the transition of the lin-

ear response regime to the nonlinear fluid response is shifted towards higher amplitudes

or wavelengths for the case of a sinusoidal surface charge distribution, which is likely a

consequence of the vanishing net charge. However, both the solute densities expressed

via the local charge density in the fluid and the electrostatic potential displayed strong

dependence on the wavelength of the sinusoidal charge pattern. Increasing wavelengths

greatly increased the decay length of the respective deviations from the profiles for the

uncharged wall (see Figs. 4.6 and 4.7). In a final consideration, more complex surface

charge structures were analyzed, wherein the structures combined both lateral variation

in the surface charge and a nonvanishing net charge. First, various such structures (see

Fig. 4.8) were compared, which revealed that, for small-scale variation, the only relevant

parameter determining the response of the fluid was the average charge at the surface (see

Fig. 4.9). Different average charges can therefore be used to more precisely resolve the

transition regime from linear to nonlinear response, for example. Second, focusing on a

striped surface charge pattern, a clear impact of the wavelength of the surface structure

on the decay behavior of the electrostatic potential was found. Longer wavelengths not

only increased the decay length of the potential away from the wall, but also the strength

of the variation of the potential laterally along the wall (see Fig. 4.10). Although the

model used in this second approach in Chap. 4 is much more elaborate compared to that

of the first approach presented in Chap. 3, the influence of the lateral wavelength on

the decay of the electrostatic potential was also detected with the simpler model used in

Chap. 3, as is obvious in Fig. 4.10. Not only the asymptotic behavior far from the wall,

but also the increase in the potential in close proximity to the wall was verified, with the
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two highest orders of the analytical solution (see Sec. 3.2.3) already providing remarkably

precise predictions (see Fig. 4.11).

The results of the research presented in this thesis clearly highlight the importance

of accounting for possible heterogeneities in the surface charge structure of substrates

when studying their impact on electrolyte solutions. The methods and models presented

here provide a powerful framework for further studies in this research area. Possible

starting points for further research could, for example, be the forces on neighboring walls

mediated by a fluid as well as further refinements in the description of the properties

of both the electrolyte solution and the charged substrate. Additionally, heterogeneities

of different lateral length scales might be used for catalysing macroscopic particles by

inducing laterally varying concentrations of fluid components to create, e.g, spatially

varying surface chemistry on the particles.







Chapter 1

General introduction

Life without fluids, that is liquids and gases, is hardly imaginable. Not only are we

constantly surrounded by a multitude of fluids, even we ourselves, as well as all other

animals and plants are water-, and therefore fluid-based [8, 9]. Our modern understanding

of a fluid is a substance, which is continuously deformed when being exposed to a shear

stress [10], i.e. fluid is a state of matter which can resist only an isotropic pressure [8].

Studying fluids and understanding their properties plays a crucial role in many of our

modern day technologies and applications [11], ranging from batteries and capacitors [1,

2] to biomembranes [3] and colloidal self-assembly [12], to photovoltaics and catalysts [4,

5], to name only a few. Due to their importance to our everyday life, it is no surprise,

that research on fluids has a long history. I therefore want to start this doctoral thesis

with a short overview over the history of fluid research and the development of the tools

and methods used in this thesis.

One of the cornerstones of the modern theory of statistical mechanics was laid by

Daniel Bernoulli in the early 18th century. He experimentally studied many types of fluid

motion, and in his fundamental work Hydrodynamica he introduced the kinetic theory

of gases, which was one of the first theories describing macroscopic properties of gases

by their molecular motion [8, 13, 14]. Although it wasn’t immediately accepted, the

significance of this concept for the development of modern microscopic theories of fluids

is beyond doubt. In the further course of the 18th century, there were several crucial

contributions to the description of fluids associated with famous scientists like Euler, d’

Alembert and Lagrange [8, 10, 13]. Not only did they introduce the basic mathematical

framework of fluid mechanics and dynamics by establishing the differential calculus [8, 10,

13], but they also used these concepts to formulate basic equations of fluid motion, velocity

and acceleration [10], thereby adding fundamental knowledge to the understanding of fluid

behavior. This insight also laid the foundation for the famous Navier-Stokes equation

21
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describing the motion of viscous fluids, which was derived independently by Claude Louis

Marie Henri Navier [15] and George Gabriel Stokes [16] in the first half of the 19th century

[8].

At that time the developments in fluid mechanics saw the emergence of a novel branch

of physics, namely thermodynamics, which is what I want to focus on in this historic

review, although scientific progress in fluid mechanics and dynamics did not stop there.

In the beginning thermodynamics was nothing but a collection of loosely connected stud-

ies mostly about gases, which described a plethora of phenomena, linking macroscopic

parameters, such as e.g. pressure p, temperature T and volume V in a mostly phe-

nomenological way [17–19]. For example, the concept of specific heat capacity has been

developed around 1750, Joseph Louis Gay-Lussac developed his well-known law linking

pressure and temperature of a given mass of gas in 1808, and John Dalton published his

lecture series Experimental Essays about the nature of mixed gases, describing among

other things the expansion and contraction of gases at various temperatures, in 1802 [13,

20]. Also, first insights in the relationship between heat and energy emerged from the

experiments of Lord Rumford in 1798 [19]. These studies were often motivated by obser-

vations made on guns or steam engines [17]. Over the course of the 19th century, a more

axiomatic approach to thermodynamics has been developed [17]. One of these axioms was

built on the research of the French physicist Nicolas Carnot, who originally published his

famous reflections on the working mechanism of steam engines in 1824 [21], and who is

often considered to be the founding father of thermodynamics [22]. His work initially re-

ceived only little attention from other scientists. He died very young, and only when Lord

Kelvin established his temperature scale inspired by Carnot’s work and Rudolf Clausius

explicitly mentioned Carnot almost 25 years later, his work received broader attention

and acknowledgement. These two gentlemen, Lord Kelvin and Clausius, independently of

each other refined Carnot’s work and developed, in the early 1850s, what is now known as

the second law of thermodynamics, describing conditions and limitations to the possibility

of thermodynamic processes [17–19, 22–24]. It was also Clausius, who coined the term

entropy in his studies on the kinetic theory of gases [22], which nowadays is universally

used to express the second law of thermodynamics. Another axiom of thermodynamics

was developed around the same time mainly by Julius Rudolf Mayer and James Joule

[17–19, 22]. Mayer was first to theoretically derive the concept of conservation of en-

ergy by claiming the interchangeability of heat and work; Joule provided support for this

concept by measuring the mechanical equivalent of heat, and connecting the amount of

heat put into and the amount of work extracted from a cyclical process. Later Hermann

von Helmholtz recognized the universal applicability of Mayer’s statement and expanded

it [17, 18, 22, 25]. This was essentially what is known today as the first law of thermo-
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dynamics. The third fundamental law was established only years later at the beginning

of the 20th century by Nernst [17, 22]. Together these three laws build the foundation of

all thermodynamic considerations.

With the advances in the more phenomenological thermodynamics, the second half of

the 19th century also saw an increasing interest in a microscopic description of thermody-

namic processes and attempts to derive the fundamental assumptions of thermodynamics

via a microscopic treatment [17–19, 26]. In a way, the continuum mechanical approach

which had been developed by Euler and others and which eventually led to the thermo-

dynamic theory stood in contrast to the atomistic approach via Newtonian mechanics

[17]. For example, this atomistic approach was embodied by the kinetic theory of gases

Bernoulli introduced in 1738 (see above [22]). In the late 1850s James Clerk Maxwell

entered the scene, and after reading works of Clausius on Bernoulli’s theory he recog-

nized, that various properties of dilute gases in thermal equilibrium can be derived with

Newtonian mechanics and some statistics [17, 27]. With his description of the distribution

of molecular velocities he derived the first statistical law in physics, and thus founded the

theory of statistical mechanics [17–19, 22, 26]. With this velocity distribution he could

derive both the caloric and the thermal equations of state of ideal gases [18]. Several years

later and inspired by Maxwell’s work Ludwig Boltzmann started his extensive work on

this theory, in which he revisited Maxwell’s ideas and started to properly introduce stat-

istical mechanics [18, 19, 22, 26]. In his work, much of which was published collectively

in 1896 [22], he introduced his famous equation on the dynamics of ideal gases [17–19,

22] and tried to derive the second law of thermodynamics with this (H-theorem) [17] —

to name only a couple of his research accomplishments. With his lifelong devotion to

this field he is one of the most important figures in establishing statistical mechanics [17,

26, 28]. The second invaluably important contributor to statistical mechanics was Josiah

Willard Gibbs. He coined the term statistical mechanics in 1884 [29], and with his fun-

damental research, published in 1902 [26], he finalized the theory as a general approach

to unite atomistic statistical mechanics with thermodynamics, establishing methods to

study properties of all mechanical systems, both macroscopic and microscopic [17–19,

22, 26]. In the 1920s further additions to the microscopic description of many-particle

systems were provided by the newly developed quantum mechanics [17–19], but Gibbs’

groundwork is still the key ingredient of statistical mechanics up to this day. So far,

most studies considered fluids as more or less homogeneous materials. For example, not

much attention was paid to the omnipresent boundaries and surfaces of a fluid. As part

of Gibbs’ work on the second law of thermodynamics and its validity, he also, as one of

the first, considered heterogeneous systems, when he assumed the possible coexistence

of two bulk phases [30]. In his derivations, however, the phases were merely separated
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by two-dimensional mathematical entities, although he did acknowledge the occurrence of

density heterogeneities near the interfaces [28, 31]. Although this treatment of an interface

coincides with our everyday experience, where macroscopically large volumes of mater-

ial are separated from each other by negligibly small borders, the microscopic situation

couldn’t be more different. However, the first microscopic treatment of a liquid-vapour

interface was not introduced until 1894 by Johannes Diderik van der Waals, whose result

reproduced a study from Lord Rayleigh, although he used a completely different approach

[32, 33]. He found, that the interface is by no means a sharp entity, but it has a finite

size and its structure is not straightforward. Later Smoluchowski also found interfaces

to not be sharp and uniform, as spontaneous densification and rarefaction can occur in

fluids [34]. With this very simple approach by van der Waals, in which he introduced

variational techniques into thermodynamics, he in essence performed the very first study

using what later became known as density functional theory (DFT) [28, 35, 36]. It is this

technique, which is the key ingredient to the research presented in this thesis. Therefore,

I want to highlight the development of density functional theory in the following.

With the discovery and advancement of quantum mechanics in the early 20th century,

many models and equations were developed to describe quantum mechanical systems and

their properties, the most famous of them being Schrödinger’s equation, which Erwin

Schrödinger postulated in 1926 [37]. Shortly after the publication of Schrödinger’s theory,

Llewellyn Thomas and Enrico Fermi developed their model, known as Thomas-Fermi

model [38, 39]. In comparison to Schrödinger’s theory, which is based on the wave function

as the fundamental component, the Thomas-Fermi model is entirely based on the electron

density. It was originally introduced to calculate the electron distribution moving in the

potential of atoms, but it also proved to be useful for addressing many particle problems

[40]. In particular, Thomas and Fermi showed that, using their model, the energy of the

ground state can also be calculated via the electron density distribution [36, 38–40]. The

variational principles introduced by van der Waals were extensively used in the following

decades, e.g. by Cahn and Hilliard [28, 41]. The Thomas-Fermi model was also improved

several times, e.g. by Dirac in 1930 [42] and Lewis in 1958 [43], to deliver more precise

results.

However, the breakthrough in terms of the theoretical foundations came only in the

early 1960s, when the Thomas-Fermi theory was revisited and refined by Pierre Hohen-

berg, Walter Kohn and Lu Jeu Sham in two landmark papers [44, 45]. In the first paper

Hohenberg and Kohn showed, that the electron distribution of the ground state minim-

izes a unique functional of the electron density distribution. In the second paper Kohn

and Sham postulated, that in a system of many particles this ground state energy can be

divided into contributions from a noninteracting reference system, where all particles only
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experience the potentials of the nuclei, a second contribution accounting for their Cou-

lombic repulsion, and a third contribution arising from exchange and correlation effects

[28, 46]. With this they laid the theoretical foundations for all later DFT studies. Because

of the outstanding success of this technique and its potentially far-reaching applications,

Kohn was awarded the Nobel Prize in Chemistry in 1998 [47]. Soon after, Mermin suc-

ceeded in expanding Hohenberg’s and Kohn’s studies to nonvanishing temperatures [48],

using the grand potential instead of the free energy. In the meantime, that is in the first

half of the 20th century until the early 60s, progress was made in the study and formalism

of inhomogeneous fluids [46]. Montroll and Mayer [49], for example, provided the solution

to problems formulated by Ursell [50] and Mayer [51] to derive formal expressions for

thermodynamic properties of imperfect gases and condensing systems within the limits of

low temperatures. In this spirit, Morita and Hiroike also derived expressions for density

distributions in dependence of integral equations over the underlying potentials [52, 53].

In the 1950s, Percus derived thermodynamic properties in terms of correlation functions

via variational methods applied to the free energy and also presented methods to derive

these correlation functions [54, 55]. De Dominicis followed up on this shortly afterwards,

deriving several thermodynamic functions expressed via one- and two-particle densities

and a correlation matrix [56]; he also expressed the grand partition function as a sta-

tionary equation in terms of these particle densities. In the early 1970s Bongiorno and

Davis [57, 58] as well as Toxvaerd [59, 60] also used perturbation approaches to revisit

the planar liquid gas interface, where the focus was primarily on triple point studies [57].

Another major step forward in the development of DFT came in 1976, when Charles

Ebner, William Saam and David Stroud recognized the link between the quantum mech-

anical theory of Kohn et al. and statistical mechanical problems in the context of classical

fluids [28, 46, 61, 62]. One year later, Saam and Ebner even further expanded this theory,

thereby establishing DFT for classical liquids, which is since then a widely and frequently

used method in a whole range of different applications [36, 63]. Formally, the approach

is exact. However, for most cases, the excess functional, being the part on top of the

exactly calculable ideal gas part, and the interaction potentials are not exactly known,

making the DFT treatment dependent on the quality of the approximations used. Thus,

in the years since its development, many different approximations have been introduced

[46, 64]. Let me close this review of the history of fluid mechanics and the development

of the framework of density functional theory by presenting some of the most successful

approximations, highlighting the ones used in this thesis.

A basic idea to facilitate the calculations is the independent study of subsystems

by splitting of the interactions, which, especially in the case of ionic contributions, is a

straightforward consideration [46]. Along these lines I want first to focus on the approxim-
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ations typically used to model the nonelectrostatic interactions and turn to electrostatics

later. The best-known approximation is probably the so-called square-gradient approx-

imation (SGA) [46]. In first order, or for homogeneous fluids, it basically reproduces the

approach of van der Waals from one hundred years ago, which is usually referred to as

local density approximation (LDA). Although the square gradient approach is justified

only for slowly varying densities, it still proves extremely valuable for a variety of prob-

lems [36, 46], which is why it is used as a starting point for the first part of this thesis

(see Chap. 3). It will be obvious in Chap. 3, that its generalization to fluid mixtures

is straightforward [46]. Other types of approximations can be regarded as expansions of

the integral-equation theories used before the establishment of DFT. In these approxim-

ations, the Ornstein-Zernike-Equation, combining the pair distribution function, the pair

correlation function and the direct correlation function (see Chap. 2), as well as another

so-called closure relation is used [46]. These approximations are closely related to expan-

sions of the excess functional around known reference densities and their corresponding

grand potentials, referred to as density or virial expansions [46, 65].

In the 1980s, motivated by coarse graining treatments, another type of approximations

was developed [46]. Maybe the first of these approaches was the one by Nordholm and

collaborators [66, 67]. As heavily oscillating density profiles, which can occur, e.g., close

to interfaces and surfaces, are not well suited for a treatment within the SGA, Nordholm

et al. used a so-called weighted density, thereby introducing the family of weighted density

approximations (WDA) [46]. In this family, weight functions are used to ”average” the

actual density distribution, which in turn are used to determine the excess functional.

Approximations of this family mainly vary in the choice of the weights, with two of the

most prominent representatives being the Tarazona Mark I [68] and the Tarazona Mark II

[69] approaches [36, 46, 64]. The standard test of such approximations are hard spheres,

since their excluded volume provides a natural order of magnitude for the weights, and

the only relevant parameter in those systems is the particle density [36, 46, 64]. Again,

these approaches can be readily expanded to describe mixtures. The aforementioned

approximations all have in common, that they take a certain approximated correlation

function as an input and derive the grand potential from it [36]. A different approach

was taken by Yaakov Rosenfeld in 1989 [70], who was the first to use multiple weight

functions and based all of them only on geometrical considerations [36, 46]. His model

is nowadays known as fundamental measure theory (FMT), and it already included the

treatment of fluid mixtures in the definition of the weights [46]. The form of the weights

used in Rosenfeld’s theory have been improved and refined by Rosenfeld himself [71] as

well as by Kierlik and Rosinberg [72] in the subsequent years. This original FMT, being

a significant improvement over other WDAs, was frequently and very successfully used in
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the last decades [36, 46, 73] and has also been successfully adapted to many other scenarios

such as soft interacting systems or polymers [36]. However, it has its shortcomings, e.g., in

failing to describe a stable crystalline phase [46, 73]. To address this, Roland Roth, Robert

Evans and coworkers introduced an improved approach of Rosenfeld’s FMT [73], called

the White Bear version, in acknowledgement of a Bristol pub, which ”supported” the

development of the theory (see references in [73]). The White Bear version significantly

improved the original FMT by rewriting it for a different, more precise equation of state.

Rosenfeld built his theory on top of the Percus-Yevick bulk equation of state, and Roth

et al. used the empirical Mansoori-Carnahan-Starling-Leland (MCSL) equation of state

[74], which is known to be more precise in the case of hard sphere mixtures [73]. Roth

even developed a second version, White Bear II, in 2006 [75] to further improve the model

by using the mixture extension of the Carnahan-Starling equation of state, keeping a

similar level of complexity, but achieving a more consistent relation with scaled-particle

theory [64]. Because this framework is ideally suited for tackling the questions studied

in this thesis, I used this version of the DFT in Chap. 4, with the somewhat simpler

approach of the original White Bear being sufficiently precise for the level of accuracy

this research is aiming for. Rosenfeld’s and later also Roth’s methods inspired many more

attempts to generalize and adapt their theories for the description of more and more

complex systems, e.g., with attraction [76] or polymeric structure [77]. However, these

theories are not relevant for the system studied in the present thesis, which is why I will

not go into further detail here.

Aside from their microscopic structure, there are multiple possible classifications of

fluids, one of them being the presence of charge carriers. There are fluids comprising only

neutral constituents, and there is the exact opposite, fluids only consisting of charge carri-

ers, so-called ionic liquids. Common examples for ionic liquids are molten salts; however,

salts usually need extremely high temperatures to enter a liquid state, which poses new

challenges for their description, but there are other ionic liquids at room temperature.

The liquid state of these room-temperature ionic liquids is often caused by the nonspher-

ical shape of their molecules or particles on an atomic length scale and a heterogeneous

charge distribution inside these molecules [2, 78]. In between these two extremes there

are also mixtures, i.e., fluids containing neutral solvent particles as well as charged ionic

particles; these are commonly referred to as electrolyte solutions. As mentioned in the

beginning, one of the most common and most important fluids is water, which intrinsic-

ally contains ionic molecules [79]. Furthermore, due to the high dielectric constant it is

a good solvent and usually contains dissolved ions [79, 80]. It therefore clearly classifies

as an electrolyte solution, making this type of conducting liquids an important field of

study. If solids come into contact with such fluids, they tend to develop a charge on
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their surface. This can occur, for example, via dissociation of ionic groups from surface

molecules or via specific adsorption of ions to surface molecules. In addition, one can

create surface charges by applying an external electric potential between the solid and a

counterelectrode [79, 80]. In any case, these surface charges create an electrostatic field

inside the fluid, which in turn attracts counterions to the surface. The resulting formation

of charged layers is known as electric double layer (EDL) [31, 79, 81].

Studies of the structure of these layers date back as far as the 1870s, when Helmholtz

studied the double layer at the interface between the wall of a vessel and a liquid [82].

His very simple model was based on the assumption, that the counterions bind directly

to the surface, therefore forming a structure similar to the one found in plate capacitors.

This model, nowadays known as Helmholtz-model, was capable of explaining some basic

features of the electric double layer, but failed in, for example, describing the phenomenon

of a voltage-dependent capacitance, which in Helmholtz’s approach was simply dependent

on the distance of the two layers [83, 84].

Based on the work of Boltzmann, Louis Gouy and David Chapman early in the 20th

century revisited the problem of the structure of the EDL and included thermal motion

of the ions into their approach. They concluded that the counterions form a diffuse

layer, rather than a sharp one as postulated by Helmholtz [85–87]. In their theory, Gouy

and Chapman combined the conditions of Siméon Denis Poisson and Boltzmann using

the Poisson-Boltzmann equation (PB) to describe the charge as spatially extended, and

successfully applied it to the case of a planar surface. Several years later, Peter Debye and

Erich Hückel extended the Gouy-Chapman theory to spherical surfaces [79, 88]. Albeit

being also a very simplistic approach, their theory, to this day, is successfully applied in

describing monovalent ions, small ionic strengths and small surface charges. This longevity

can be attributed to the successful experimental verification of the predicted differential

capacitance [79].

In 1924 another improvement over the existing models was introduced. Otto Stern

pointed out several limitations of the Gouy-Chapman approach, such as the possibility of

large charge accumulations close to the charged surface [89]. He proposed combining the

two previous models, such that the charge in the fluid is partly accumulated at a distance

of about one ionic radius away from the surface, thereby forming a so-called Helmholtz

plane. The surplus charge is then forming a diffuse layer as suggested by Gouy-Chapman

[80].

This model of a closely adsorbed layer of charge combined with a diffuse layer at

a larger distance from the wall was extended even further about thirty years later by

Grahame. He improved and refined the concept of Stern layers by assuming the existence

of multiple Helmholtz layers [84]. The innermost of them is formed by adsorbed ions
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which are tightly bound to the surface either via covalent or van-der-Waals bonds. He

argued, that these specifically adsorbed ions, due to their lack of a hydration shell, can

approach the charged electrode even more closely than dissolved ions. This layer is called

the inner Helmholtz plane. Next to this plane there is a layer formed by the hydrated

and electrostatically attracted counterions, much like the original Helmholtz layer; it

is nowadays referred to as outer Helmholtz plane [79]. Following these layers there is

again the diffuse layer of spatially distributed charges satisfying the Poisson-Boltzmann

equation.

In parallel with the models discussed above, an increasingly sophisticated understand-

ing of the structure of the EDL was developed. It became progressively clear, that the

nonvanishing size of the ions accounted for by the Helmholtz layers is important for the

properties of electric double layers. Among other effects, studies have demonstrated that

finite size effects of charges can lead to a nonmonotonous decay of the electrostatic po-

tential [81, 90]. In its original form, however, the Poisson-Boltzmann theory, which is

used to describe the diffuse layer in all the models above, considers the ions as point-like

particles, i.e., all the theories above neglect the finite size of the ions for distances larger

than a couple of particle radii. In the last decades, different, more precise, models were

introduced. The first one is the primitive model (PM) which regards the ions as charged

hard spheres, therefore adding a hard sphere repulsion on top of the PB theory [65].

The solvent is still treated only as a background, implicitly entering the equations solely

via the permittivity. Extending the model to additionally describe the solvent particles

as uncharged hard spheres leads to a model called solvent primitive model or molecular

solvent model. An even more detailed description of the solvent molecules is achieved

within the civilized model, in which an embedded electric dipole is also considered. For

all these models, there is also a so-called restricted version, in which all the hard sphere

radii are considered to be equal.

To study systems within the previously described models, there are various tools avail-

able. On the one hand there are simulation methods, such as Monte Carlo simulations

or molecular dynamics simulations, which have, for example, been used to survey bulk

structure [91–93] and structure within an EDL [94–97]. On the other hand, there are also

theoretical approaches such as adapted Poisson-Boltzmann equations [98, 99] called modi-

fied Poisson-Boltzmann theories [100, 101]; Bhuiyan and Outhwaite proposed a number of

such approaches [102–104]. Furthermore, the already discussed integral equation methods

using the Ornstein-Zernike equation have been used to investigate the properties of EDLs,

e.g., within the hypernetted chain equations (HNC) or the mean spherical approximation

(MSA) [80, 105, 106]. A third method to investigate the molecular models mentioned

above is via the DFT, which is what was used in this thesis.
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To sum up, the study of fluids in heterogeneous systems offers a variety of interesting

areas of research to explore. Additionally, the fact, that charges are ubiquitous in real flu-

ids, provides even more complexity and even richer phenomena to investigate. Numerous

previous studies performed in this field, however, are subjected to certain restrictions or

simplifications. Among other simplifications, a commonly made approximation is model-

ing the interaction between a surface and a fluid as laterally homogeneous. The reason

for this approximation is the significant simplification of the calculations as well as a

lack of actual experimental data concerning the local structure of the surface. In the

absence of electrically charged components this simplification is well-grounded, since the

length scale on which the influence of surface heterogeneities decays is set by the bulk

correlation length, if one neglects wetting transitions [107]. Far away from critical points

this bulk correlation length is of the order of a few molecular diameters, with the res-

ult that heterogeneities are of negligible importance. However, in the case of electrically

charged components, e.g., surfaces and fluid particles, the scale of the decay of the relev-

ant (charge-charge) correlation function is given by the Debye length. Especially in the

case of electrolyte solutions, this length scale is typically much larger than any fluid com-

ponents. On top of that, distances between surface charge heterogeneities are typically

also of the order of the Debye length, which argues strongly against the simplification of

homogeneous interaction distributions mentioned above [108–110]. Fittingly, heterogen-

eous surface charge distributions are under suspicion to cause a number of ”anomalies”

in the context of colloidal forces (see, e.g., [111, 112]). In Ref. [113], for example, a

change in the sign of the interaction between two surfaces across an aqueous solution was

found, crossing over from repulsive to attractive interactions, when changing the surface

charge distribution towards random heterogeneities or when increasing the separation

of the surfaces [114]. Furthermore, studies have found the assembly of heterogeneously

charged colloids close to a patterned substrate to be sensitive to the shape of the surface

charge pattern [115]. Further frequently used simplifications are, e.g., the analysis of only

net-neutral surfaces [116, 117] or the neglect of the solvent particles, accounting for the

solvent only implicitly via the permittivity. However, known coupling effects due to the

competition between solvation and electrostatic interactions cannot be captured by such

approaches [118–120]. The plethora of expected phenomena sketched above, combined

with the lack of more precise theoretical treatments motivated me to study the structure

of EDLs adjacent to heterogeneously charged substrates (see Chaps. 3 and 4). The use

of density functional theory to investigate such systems was motivated on the one hand

by the relatively fast convergence of numeric DFT implementations, allowing the study

of a multitude of parameters and even a fully three-dimensional system, and on the other

hand by the significant success of previous research in describing electrolyte solutions and
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hard spheres.

The following chapters describe the research performed and the knowledge gained in

the course of my doctoral studies. Chaps. 3 and 4 discuss different approaches and dif-

ferent levels of precision in describing the features of an electrolyte solution in contact

with a nonuniformly charged substrate, with each chapter including a theoretical back-

ground section and a description of the results. Additionally, each chapter has a separate

thematic introduction and short summary.

Preceding these chapters, Chap. 2 presents the density functional theoretical frame-

work the research is based on. A short introduction of the fundamental DFT terminology

alongside a mathematical derivation of the essential equations and approximations neces-

sary for an understanding of this thesis are provided.

In Chap. 3, a first approach to the study of the structure of an electrolyte solution

next to a heterogeneously charged substrate is presented. In this first analysis, the solvent

particles are explicitly taken into account. However, all finite size effects are neglected.

Focusing on length scales larger than the size of typical fluid particles and weak inter-

action strengths, a Cahn-Hilliard-like SGA is used. This simplistic approach allows for

the calculation of closed-form analytical expressions describing chemically or electrically

nonuniform substrates. Various examples of such surfaces are then explored in terms

of particle number density profiles in lateral and normal direction with respect to the

substrate.

Building upon Chap. 3, Chap. 4 expands the first approach to include finite size

effects. Again, all three particle types, two types of solute ions and the solvent particles,

are taken explicitly into account, which qualifies the model as a molecular solvent model.

Albeit not required in terms of the implementation, this chapter restricts itself to the

treatment of equal particle sizes. This makes the model used here a restricted molecular

solvent model. To account for the finite size of the particles studied, the DFT is expanded

via the FMT method of Roth et al. [73]. Again, the resulting framework is used to

investigate a number of surface charge distributions in terms of particle number density

profiles, charge density and the structure of the electrostatic potential. The results are

also used to test the validity of the somewhat simpler model used in Chap. 3.

Conclusions and summary of the research presented in the dissertation are provided

in Chap. 5. In a preview, future research to be built on this thesis is proposed.
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Chapter 2

Principles of density functional the-

ory

The basic result, on which DFT is based on, is the fact, that for a given interatomic, or

-molecular, potential, there exists a unique functional, the free energy, which is minimized

by the equilibrium density distribution in the system [46, 65]. Given this minimum, all

relevant thermodynamic functions can be calculated from that [57]. It has proven to be

a powerful tool, since the theory is able to describe both the macroscopic properties and

the microscopic structure of a fluid solely using intermolecular forces as input [28]. In the

following I want to introduce and establish the formulations and equations of the density

functional theory, which form the basis of the research presented in the thesis at hand.

The derivation is similar to the ones in [46, 57, 121]. As is so often the case in theoretical

physics, let us first consider the Hamiltonian of a fluid of N atoms, each with mass m,

HN =
N∑

i=1

p2
i

2m
+ Φ(r1, ..., rN ) +

N∑

i=1

V (ri)

= k.e. + Φ + V,

(2.1)

where pi is the momentum of particle i, Φ is the interatomic potential and V is the

one-body external potential. The external potential will be given by the system under

consideration. Based on these foundations it follows, that the system is best described

within the grand canonical ensemble. In this ensemble the ensemble average of any

quantity A({ri}, {pi}) can be expressed as

〈A〉 = Tr[f0A], (2.2)

33
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with the classical trace Tr used here together with f0, the equilibrium probability density.

It is defined by

f0 =
1

Ξ
exp(−β(HN − µN)), (2.3)

where β = (kBT )
−1, with the Boltzmann constant kB and the temperature T , µ being

the chemical potential, and the normalization factor Ξ being the so-called grand partition

function

Ξ = Tr[exp(−β(HN − µN))]. (2.4)

Probably the most important example of such an ensemble average is the one-body density

̺(r) = 〈̺̂(r)〉, (2.5)

with ̺̂(r) =
∑N

i=1 δ(r − ri) being the so-called one-body density observable. The grand

potential

Ω = −kBT ln Ξ (2.6)

is therefore a functional of V and with this also a functional of the combination

u(r) ≡ µ− V (r). (2.7)

With this, a sequence of correlation functions can be established by functional derivatives

of Ω with respect to u(r), where it is straightforward to show that the first derivate is

equivalent to the one body density profile,

̺(r) = − ∂Ω

∂u(r)
. (2.8)

Another frequently used function is the density-density correlation function

G(r1, r2) ≡ 〈(̺̂(r1)− 〈̺̂(r1)〉)(̺̂(r2)− 〈̺̂(r2)〉)〉

= −β−1 ∂2Ω

∂u(r2) ∂u(r1)

= β−1 ∂̺(r1)

∂u(r2)
,

(2.9)

which can obviously be calculated using the second derivative of Ω with respect to u(r).

This density-density correlation function is in turn closely related to the two-body distri-

bution function

̺(2)(r1, r2) = G(r1, r2) + ̺(r1)̺(r2)− ̺(r1)δ(r1 − r2). (2.10)
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Continuing this scheme, further derivatives of Ω lead to the three-body, four-body etc.

correlation functions. Another sequence of correlation functions is generated via the

differentiation with respect to the one-body density ̺(r) instead of u(r). Despite ̺(r)

clearly being a functional of u(r), one can show that for fixed Φ, T and µ (see Eq.

(2.1)), only one specific external potential V (r) can determine a unique equilibrium one-

body density ̺(r) [48, 57]. With this follows that the probability density f0 is uniquely

determined by ̺(r) and therefore also the functional

F [̺] = Tr[f0(k.e. + Φ+ β−1 ln f0)] (2.11)

is a unique functional of the density. Legendre transforming F leads to the functional

ΩV [ ˜̺] = F [ ˜̺]−
∫
dr u(r)˜̺(r). (2.12)

This functional reduces to the grand potential Ω (see Eq. (2.6)) for the equilibrium

density ˜̺ = ̺ [57, 121]. Additionally, it can be shown that the grand potential Ω is equal

to the minimum value of the functional ΩV [ ˜̺] [57]. This means that ΩV [ ˜̺] together with

̺ provide a variational principle

∂ΩV [ ˜̺]

∂ ˜̺

∣∣∣∣
̺

= 0, ΩV [̺] = Ω, (2.13)

for calculating the equilibrium density of a fluid in a given external potential V . This vari-

ational principle combined with Eq. (2.12) forms the starting point of density functional

theory (DFT). The main task in applications of this theory is deriving an appropriate

expression for F . Since the total Helmholtz free energy is

F = Ω + µ

∫
dr ̺(r)

= F [̺] +

∫
dr ̺(r)V (r),

(2.14)

F is often referred to as intrinsic Helmholtz free energy. This functional contains both an

ideal gas contribution, that is a noninteraction contribution

βFid[̺] =

∫
dr ̺(r)[ln(Λ3̺(r))− 1], (2.15)
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and contributions stemming from atom-atom forces in the fluid. This excess contribution

Fex = F −Fid can again be used to create a hierarchy of direct correlation functions

c(1)(r) = −βFex[̺]

∂̺(r)
, (2.16)

c(2)(r1, r2) =
c(1)(r1)

∂̺(r2)

= − ∂2(βFex[̺])

∂̺(r1) ∂̺(r2)
,

(2.17)

and so on. The two particle direct correlation function c(2)(r1, r2) can also be expressed

via

c(2)(r1, r2) =
δ(r1 − r2)

̺(r1)
− β

∂u(r1)

∂̺(r2)
, (2.18)

which shows that c(2) is, in principle, the inverse of the density-density correlation function

G. Combining Eqs. (2.9) and (2.18), one finds the integral equation

h(r1, r2) = c(2)(r1, r2) +

∫
dr3 h(r1, r3)̺(r3)c

(2)(r2, r3), (2.19)

which combines the two-body correlation function c(2) and the total correlation function

h, which is defined as

̺(r1)̺(r2)h(r1, r2) ≡ ̺(2)(r1, r2)− ̺(r1)̺(r2). (2.20)

Eq. (2.19) is the Ornstein-Zernike equation. The above equations together form the

mathematical foundation of the so-called density functional theory, which is the main

ingredient to the calculations done in the context of this study. For ideal gases, the

density profile ̺(r) can exactly be determined to reproduce the well-known barometric

law for any external potential V . However, there is no other case, for which F [̺] is

known exactly in three dimensions [46]. The above theory is therefore always used by

making approximations about the exact form of the excess functional Fex. The problem

formulation in this theory is then to find suitable approximations either directly for Fex

and thus for ΩV (see Eq. (2.12)) or via further differentiation of the excess functional

and usage of the two particle direct correlation function c(2) and the Ornstein-Zernike

equation (2.19) with subsequent inversion to calculate h [121]. These approximations

have to be on the one hand sufficiently accurate for a possibly wide range of systems, i.e.,

external potentials V (r), and on the other hand computationally manageable [46, 65]. In

the past decades a multitude of approximations has been proposed for usage in a variety
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of different applications. In the research presented here and discussed in the following

Chaps. 3 and 4 the first method was used, that is direct approximations for Fex have

been made, which are separately discussed in the introductory sections of the respective

chapters.
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Chapter 3

Analytically solvable square-gradient

approach

The following Chap. 3, apart from subtle modifications, corresponds to the study pub-

lished in Ref. [6]. Therein, a first step towards studying the influence of a heterogeneous

distribution of chemical or electrical interaction sites at a flat substrate onto the number

density profiles of a nearby fluid is taken. Here all three particle types — the solvent and

both types of dissolved ions — are taken into account explicitly. However, a very simple

way of describing the fluid is chosen, mainly describing the fluid components as point-

like particles. This approach allows for the derivation of closed-form analytic expressions

describing the influence of nonuniform walls, which can be used as basis for further stud-

ies, as performed in Chap. 4. Here, the analysis of isolated δ-like interactions, isolated

interaction patches, and hexagonal periodic distributions of interactions sites reveals a

sensitive dependence of the fluid density profiles on the type of the interaction, as well as

on the size and lateral structure and distribution of interaction sites.

3.1 Introduction

Detailed knowledge of the structure of electrolyte solutions close to solid substrates is

of great importance to numerous research areas and fields of application, ranging from

electrochemistry [122, 123] and wetting phenomena [124, 125] via coating [126] and sur-

face patterning [5, 127] to colloid science [128, 129] and microfluidics [130, 131]. The

vast majority of models describing fluids in contact with substrates consider the latter

as uniform with respect to the wall-fluid interaction. This approximation is commonly

made partly due to a lack of experimental data on the actual local properties of the sub-

strate under consideration and partly for the sake of simplicity. For fluids comprising

39
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only electrically neutral constituents and uncharged walls, assuming uniform substrates

is typically an acceptable approximation because, in the absence of wetting transitions,

heterogeneous substrate properties influence the fluid only on length scales of the order

of the bulk correlation length [107], which, not too close to critical points, is of the order

of a few molecular diameters. In contrast, nonuniformities of the surface charge density

of charged substrates in contact with dilute electrolyte solutions influence the fluid on

the scale of the Debye length, which is much larger than the size of the molecules. Fur-

thermore, the charged sites of substrates, such as mineral surfaces and polyelectrolytes,

are lateral distances apart which are typically comparable with the Debye length of the

surrounding fluid medium [108–110]. Hence, the assumption, that substrates in contact

with electrolyte solutions carry a uniform surface charge density, is, in general, untenable.

In recent years considerable theoretical interest has emerged in the effective interaction

between two heterogeneously charged walls (which typically are the surfaces of colloidal

particles) mediated by an electrolyte solution [111, 113, 114, 116, 117, 132–137]. In

contrast to uniform substrates, this effective interaction can lead to lateral forces, in

addition to the common ones in normal direction. However, all the studies cited above

model the solvent of the electrolyte solution as a structureless dielectric continuum. This

approach precludes coupling effects due to a competition between the solvation and the

electrostatic interaction, which are known to occur in bulk electrolyte solutions [118–

120]. In particular, in the presence of ion-solvent coupling and far away from critical

points, correlations of the solvent number densities in a dilute electrolyte solution decay

asymptotically on the scale of the Debye length. Consequently, under such conditions,

nonuniformities of the nonelectrostatic solvent-wall interaction can influence the structure

of an electrolyte solution close to a wall and hence the strength and range of the effective

interaction between two parallel plates immersed in an electrolyte medium on a length

scale much larger than the molecular size. This mechanism differs from the one studied

in Refs. [111, 116, 117, 132], in which the walls are locally charged but overall charge

neutral.

In the present analysis a first step is taken towards a description of the structure of

electrolyte solutions close to chemically and electrically nonuniform walls in terms of all

fluid components. The natural framework for obtaining the fluid structure in terms of

number density profiles of solvent and ion species is classical density functional theory [46,

57, 121]. Here, the simplest case of an electrolyte solution, composed of a single solvent

species and a single univalent salt component, is considered far away from bulk or wetting

phase transitions. Moreover, the spatial distribution of nonuniformities of the chemical

and electrostatic wall-fluid interactions can be arbitrary but their strengths are assumed

to be sufficiently weak such that a linear response of the number density deviations from
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the bulk values is justified. This setup allows for closed-form analytic expressions which

are used to obtain a first overview of the influence of ion-solvent coupling on the structure

of electrolyte solutions in contact with chemically or electrically nonuniform walls. This

insight will guide future investigations of more general setups within more sophisticated

models, as performed in Chap. 4.

After introducing the formalism in Sec. 3.2, selected cases of heterogeneous walls are

discussed in Sec. 3.3. Due to the linear relationship between the wall nonuniformities and

the corresponding number density deviations from the bulk values, the latter are given by

linear combinations of elementary response features, which are discussed first. Next, two

main cases are studied: wall heterogeneities, which are laterally isotropic around a certain

center and wall heterogeneities, which possess the symmetry of a two-dimensional lattice;

the study of randomly distributed nonuniformities [111, 114, 132–134] is left to future

research. For both cases various length scale regimes are discussed, which are provided

by the bulk correlation length of the pure solvent, the Debye length, and a characteristic

length scale associated with the wall nonuniformities. Conclusions and a summary for

this chapter are given in Sec. 3.4.

3.2 Theoretical foundations

3.2.1 Setup

Here, the influence of a chemically and electrically nonuniform wall on the fluid density

is studied. In spatial dimension d = 3 the system consists of an impenetrable planar

wall for z < 0 and a fluid for z > 0, both parts being macroscopically large. In the

following, the space occupied by the fluid is denoted by V := {r = (x, y, z) ∈ A × L};
the positions r = (x, y, z) = (r‖, z) are uniquely decomposed into the lateral components

r‖ = (x, y) ∈ A ⊂ R2 and the normal component z ∈ L = [0, L] relative to the wall surface

at z = 0. The size |A| of the wall and the extent L of the system in normal direction are

both assumed to be macroscopically large. The fluid is an electrolyte solution composed

of an uncharged solvent (index “1”), univalent cations (index “2”), and univalent anions

(index “3”). Two types of interactions between the fluid and the wall are considered:

(i) electric monopoles at the wall surface (z = 0) and the fluid ions, giving rise to an

electrostatic interaction, (ii) all other contributions, in particular those due to nearest-

neighbor-like chemical bonds, referred to as nonelectrostatic interactions.
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3.2.2 Density functional theory

In this study, I use density functional theory [46, 57, 121] in order to determine the

equilibrium number density profiles ̺ = (̺1, ̺2, ̺3) of the three fluid species. Since the

focus is on length scales larger than the sizes of the fluid particles and on weak wall-fluid

interactions, the following dimensionless density functional within a Cahn-Hilliard-like

square-gradient approximation [41] is considered:

βΩ[̺] =

∫

V

d3r

[
βω(̺(r),µ) +

b

2

3∑

j=1

(
∇̺j(r)

)2

+ β
ε0εr
2

(
∇Ψ(r, [̺])

)2
]

−
∫

A

d2r‖ h(r‖) · ̺(r‖, z = 0), (3.1)

where β = 1/(kBT ) is the inverse thermal energy, and µ = (µ1, µ2, µ3) are the chem-

ical potentials of the three species. Furthermore, b > 0 is a phenomenological para-

meter with dimension [b] = (length)5, which can be inferred from microscopic models (see

Sec. 3.3.1), ε0 ≈ 8.854× 10−12As/(Vm) is the vacuum permittivity [138], εr is the relat-

ive dielectric constant of the fluid, Ψ(r, [̺]) is the electrostatic potential at r ∈ V, and
h(r‖) = (h1(r‖), h2(r‖), h3(r‖)) describes the strengths of the nonelectrostatic wall-fluid

interactions at r = (r‖, 0) for the three species. Note that for the sake of simplicity, the

coupling of number density gradients of different particle types is neglected in Eq. (3.1)

(see Sec. 3.3.1). In the present study the bulk state ̺b = (̺1,b, ̺2,b, ̺3,b) is considered to

be thermodynamically far away from any phase transition so that the local contribution

βω(̺) of the density functional in Eq. (3.1) can be safely expanded around ̺b up to

quadratic order in δ̺ := ̺− ̺b :

βω(̺,µ) = βω(̺b,µ) +
1

2
δ̺ ·Mδ̺, (3.2)

where the local part of the interactions between different types of particles is captured

by the real-valued, symmetric, and positively definite 3 × 3-matrix M (see Eq. (3.30)).

Furthermore, ω(̺b,µ) = −p specifies the grand potential density, evaluated for the equi-

librium bulk densities ̺b, which equals minus the bulk pressure p; in the following its

value is of no importance. For a given equation of state p(̺b, T ) the bulk densities

̺b = (̺1,b, ̺2,b, ̺3,b) are free parameters of the model. Finally, the electrostatic potential

Ψ(r, [̺]), which enters into Eq. (3.1) on a mean-field level via the electric field energy
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density, fulfills the Poisson equation

−ε0εr∇2Ψ(r, [̺]) = eZ · ̺(r) (3.3)

for r ∈ V with the boundary conditions

∂

∂z
Ψ(r‖, z, [̺])

∣∣∣∣
z=0

= − 1

ε0εr
σ(r‖), Ψ(r‖,∞) = 0, (3.4)

for r‖ ∈ A, where σ(r‖) is the surface charge density at the point r = (r‖, 0) on the

wall surface (z = 0), and Z = (Z1, Z2, Z3) = (0, 1,−1) denotes the valences of the fluid

species.

The Euler-Lagrange equations, corresponding to the minimum of the density func-

tional specified in Eqs. (3.1)–(3.4), can be written as

b∇2δ̺(r) = Mδ̺(r) + βeZΨ(r) (3.5)

and

− 1

4πlB
∇2βeΨ(r) = Z · δ̺(r) (3.6)

for r ∈ V with the boundary conditions given by Eq. (3.4) and by

∂

∂z
δ̺(r‖, 0) = −1

b
h(r‖), δ̺(r‖,∞) = 0 (3.7)

for r‖ ∈ A, where lB = βe2/(4πε0εr) is the Bjerrum length of the fluid.

The linear nature of the Euler-Lagrange equations (3.5) and (3.6) tells that the quad-

ratic (Gaussian) approximation of the underlying density functional in Eqs. (3.1) and

(3.2) corresponds to a linear response approach. It is widely assumed and in some cases

it can be even quantified (see, e.g., the quantitative agreement between the full and the

linearized Poisson-Boltzmann theory in the case that the surface charges are smaller than

the saturation value [128, 139]) that for sufficiently weak wall-fluid interactions linear

response theory provides quantitatively reliable results.

3.2.3 Solution of the Euler-Lagrange equations

Instead of solving the Euler-Lagrange equations in Eqs. (3.5) and (3.6) as differential

equations for the profiles δ̺ and Ψ as functions of r = (r‖, z), it is convenient first to

perform Fourier transformations with respect to the lateral coordinates r‖. The resulting
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transformed profiles

δ̺̂(q‖, z) =

∫

A

d2r‖δ̺(r‖, z) exp(−iq‖ · r‖) (3.8)

and Ψ̂ as functions of q‖ = (qx, qy) ∈ R2 and z ∈ R can be combined in the four-component

quantity v(q‖, z) = (δ̺̂(q‖, z), βeΨ̂(q‖, z)) so that Eqs. (3.5) and (3.6) can be written as




b 0 0 0

0 b 0 0

0 0 b 0

0 0 0 − 1
4πlB




︸ ︷︷ ︸
=: D

v′′ =




Z1

M + bk21 Z2

Z3

Z1 Z2 Z3 − k2

4πlB




︸ ︷︷ ︸
=: N(k)

v, (3.9)

where k := |q‖| =
√
q2x + q2y and v′′(q‖, z) is the second derivative of v(q‖, z) with respect

to the coordinate z normal to the wall. Note that the components of v are quantities

of different dimensions: [v1] = [v2] = [v3] = 1/length and [v4] = (length)2. This does

not allow for the formation of a scalar product of two vectors of the type v = (δ̺̂, βeΨ̂);

however, in the following scalar products will not occur. Writing D = T T with T :=

diag(
√
b,
√
b,
√
b, i
√
1/(4πlB)) (i.e., T is a diagonal matrix with these entries), one obtains

Tv′′(q‖, z) = T−1N(k)T −1

︸ ︷︷ ︸
=: H(k)

Tv(q‖, z). (3.10)

The 4×4-matrixH(k) is independent of z and it is symmetric but not real-valued, because

the bottom entry of T is imaginary. H(k) is not a normal matrix, i.e., it does not commute

with its adjoint matrixH(k)†, and hence it does not possess an orthogonal basis composed

of eigenvectors. However, the actual structures of the matrix M and of the vector Z used

below guarantee the existence of a nonorthogonal basis {Λ1(k), . . . ,Λ4(k)} of eigenvectors

of the matrix H(k) with respective positive (real-valued) eigenvalues λ1(k), . . . , λ4(k) ∈
(0,∞) (see Sec. 3.A). Expanding the vector Tv(q‖, z) in this basis {Λ1(k), . . . ,Λ4(k)},

Tv(q‖, z) =

4∑

α=1

Aα(q‖, z) Λα(k), (3.11)

leads to Eq. (3.10) in the form

A′′
α(q‖, z) = λα(k)Aα(q‖, z) (3.12)
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with the solution

Aα(q‖, z) = gα(q‖) exp(−
√
λα(k)z), (3.13)

where the second boundary conditions in Eqs. (3.4) and (3.7) have been used. Therefore,

the solution of Eq. (3.10) can be expressed as

v(q‖, z) =

4∑

α=1

gα(q‖) exp(−
√
λα(k)z) T

−1Λα(k). (3.14)

Finally, the first boundary conditions in Eqs. (3.4) and (3.7) can be expressed as

v′(q‖, 0) =

(
−1

b
ĥ(q‖),−

βe

ε0εr
σ̂(q‖)

)
, (3.15)

with

ĥ(q‖) =

∫

A

d2r‖ exp(−iq‖ · r‖)h(r‖) (3.16)

as the Fourier transform of h(r‖) with respect to the lateral coordinates r‖ and σ̂(q‖) as

the Fourier transform of σ(r‖). Note that, as for v, the components of v′ are quantities of

different dimensions: [v′1] = [v′2] = [v′3] = 1/(length)2 and [v4] = length. From Eqs. (3.14)

and (3.15) the coefficients g1(q‖), . . . , g4(q‖) can be determined. Note that according to

Eqs. (3.14) and (3.15) the coefficients g1(q‖), . . . , g4(q‖) and hence the profiles ̺̂ and

Ψ̂ depend linearly on the nonelectrostatic wall-fluid interactions ĥ(q‖) and the surface

charge density σ̂(q‖). Such a linear response of the number density profiles inside the

fluid to the wall properties requires weak wall-fluid interactions, which is assumed in the

present study and which is consistent with the quadratic form of the density functional

in Eqs. (3.1)–(3.4).

3.3 Results and Discussion

3.3.1 Choice of parameters

The present study discusses the influence of the wall-fluid interactions, represented by the

nonelectrostatic wall-fluid interactions ĥ(q‖) and the surface charge density σ̂(q‖), onto

the number density profiles ̺ in the adjacent fluid. Applying density functional theory as

described in Sec. 3.2 requires knowledge of the bulk number densities ̺b, the parameter

b, and the coupling matrix M all of which are bulk quantities or characterize them.

In the bulk local charge neutrality holds, i.e., Z · ̺b = 0. Hence, the equilibrium bulk
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Figure 3.1: The nonelectrostatic interaction between fluid particles is modeled by a
square-well pair potential U(r) displayed in panel (a), where r denotes the distance
between the centers of two spherical particles. For r < σ a hard core repulsion pre-
vents the overlap of two particles. For r ∈ (σ, σpot) two particles attract each other with a
constant interaction energy −εpot < 0. At distances r > σpot there is no nonelectrostatic
interaction. Panel (b) sketches the decomposition U = Uhc + Upot of the nonelectrostatic
interaction potential U according to the scheme due to Barker and Henderson into the
hard core repulsion Uhc and the attractive well Upot, which is used in Sec. 3.3.1 in order
to obtain the parameters entering the Cahn-Hilliard square-gradient density functional in
Eq. (3.1).

state is determined by the temperature T , the number density ̺1,b of the solvent, and the

bulk ionic strength I = ̺2,b = ̺3,b.

In order to obtain expressions for the parameter b and for the coupling matrix M in

terms of experimentally accessible quantities, in a first step the pure, ion-free solvent is

considered, the particles of which interact only nonelectrostatically. Here this nonelectro-

static interaction between solvent particles at a distance r is modeled by a square-well

pair potential U(r) as displayed in Fig. 3.1 (a). At small distances r < σ a hard core

repulsion prevents the overlap of two particles. At intermediate distances r ∈ (σ, σpot) two

particles attract each other with an interaction energy −εpot, and at distances r > σpot the

nonelectrostatic interaction vanishes. According to the scheme due to Barker and Hende-

rson [65], the interaction potential U can be decomposed as U = Uhc +Upot into the hard

core repulsion Uhc and the attractive well Upot (see Fig. 3.1 (b)). The microscopic density

functional Ωmic
1 [̺1] for the pure solvent (species 1) in the bulk can be approximated by

the expression

βΩmic
1 [̺1] = βΩhc

1 [̺1] + βF ex,pot[̺1]. (3.17)
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The contribution Ωmic
1 (here within local density approximation (LDA)) is due to the

reference system governed solely by the hard core interaction Uhc:

βΩhc
1 [̺1] =

∫

V

d3r
[
̺1(r)

(
ln(̺1(r)Λ

3
1)− 1− βµ1

)

+βf ex,hc(̺1(r))
]
. (3.18)

Here, contributions of external potentials are neglected, because they do not contribute

to the bulk parameters b and M . The second term on the right-hand side of Eq. (3.17)

is (within random phase approximation (RPA) [57]) the excess free energy functional due

to the square-well attractive interaction Upot:

βF ex,pot[̺1] =
1

2

∫

V

d3r

∫

V

d3r′ βUpot(r − r′)̺1(r)̺1(r
′). (3.19)

In Eq. (3.18) Λ1 is the thermal de Broglie wavelength, µ1 denotes the chemical potential

of species 1, and f ex,hc(̺1) is the excess free energy per volume of the reference system

governed by the hard core interaction Uhc.

Following Cahn and Hilliard [41], Eq. (3.19) can be approximated by a gradient

expansion:

βF ex,pot[̺1] ≃
∫

V

d3r

[
K0

2
(̺1(r))

2 − K2

12
(∇̺1(r))2

]
(3.20)

with the m-th moment of the pair potential Upot in units of kBT ,

Km =

∫

R3

d3r |r|mβUpot(|r|), (3.21)

which, for the present form of Upot, leads to

K0 = −4π

3
βεpot

(
σ3
pot − σ3

)
< 0,

K2 = −4π

5
βεpot

(
σ5
pot − σ5

)
< 0. (3.22)

From Eq. (3.20) one obtains the gradient expansion of βΩmic
1 [̺1] in Eq. (3.17):

βΩmic
1 [̺1] ≃

∫

V

d3r

[
βωloc

1 (̺1(r), µ1)−
K2

12
(∇̺1(r))2

]
(3.23)
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with the local contribution

βωloc
1 (̺1, µ1) =̺1

(
ln(̺1Λ

3
1)− 1− βµ1

)

+βf ex,hc(̺1) +
K0

2
̺21. (3.24)

The comparison of Eq. (3.23) with Eq. (3.1) renders an expression for the parameter b in

terms of parameters of the interaction potential U (see Fig. 3.1):

b = −K2

6
=

2π

15
βεpot

(
σ5
pot − σ5

)
. (3.25)

By expanding βωloc
1 (̺1, µ1) up to quadratic order in the density deviation δ̺1 = ̺1 − ̺1,b

from the equilibrium bulk density ̺1,b, which is a solution of the Euler-Lagrange equation

0 =
∂ (βωloc

1 )

∂̺1
(̺1,b, µ1), (3.26)

one obtains

βωloc
1 (̺1, µ1) ≃ βωloc

1 (̺1,b, µ1) +
1

2

∂2 (βωloc
1 )

(∂̺1)
2 (̺1,b, µ1)(δ̺1)

2

= βωloc
1 (̺1,b, µ1) +

1

2

(
1

̺1,b
+

d2 (βf ex,hc(̺1,b))

(d̺1,b)
2 +K0

)
(δ̺1)

2. (3.27)

The comparison with Eq. (3.2) leads to the matrix element

M11 =
1

̺1,b
+

d2 (βf ex,hc(̺1,b))

(d̺1,b)
2 +K0 (3.28)

of the matrix M , where the first term on the rhs stems from the ideal gas contribution

of the solvent particles. The argument ̺1,b of the second term, which is due to the hard

core interaction Uhc, is a measure of the packing fraction η = π̺1,bσ
3/6.

The analogue of Eq. (3.23) for the nonelectrostatic contribution of all three particle

species is given by the first line of Eq. (3.1) with the local contribution (compare Eq.

(3.24))

βωloc(̺,µ) =

3∑

i=1

̺i
(
ln(̺iΛ

3
i )− 1− βµi

)

+ βf ex,hc(̺tot) +

3∑

i,j=1

K0

2
̺i̺j , (3.29)
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where ̺tot = ̺1+̺2+̺3 denotes the total number density. Note that Eq. (3.29) assumes,

that all interactions among the species are the same (see Eq. (3.21)). This implies that

the last term in Eq. (3.29) takes the form K0

2
(̺tot)2. By expanding βωloc(̺,µ) up to

quadratic order in the density deviations δ̺ = ̺−̺b from the equilibrium bulk densities

̺b one finally finds (see the steps leading to Eq. (3.28))

Mij =
δij
̺i,b

+
d2 (βf ex,hc(̺totb ))

(d̺totb )2
+K0

=
δij
̺i,b

+
d2 (βf ex,hc(̺totb ))

(d̺totb )2
− 4π

3
βεpot

(
σ3
pot − σ3

)
,

i ∈ {1, 2, 3}, (3.30)

where ̺totb = ̺1,b + ̺2,b + ̺3,b = ̺1,b + 2I denotes the total number density in the bulk. In

the present study the hard core excess free energy per volume f ex,hc(̺b) is chosen as the

one corresponding to the Carnahan-Starling equation of state [65]:

βf ex,hc(̺totb ) = ̺totb

η(4− 3η)

(1− η)2
(3.31)

here with the packing fraction η = π̺totb σ3/6.

Accordingly, from Eq. (3.24) one obtains the following equation of state of the pure

solvent:

βp(̺1,b) = ̺1,b
1 + η + η2 − η3

(1− η)3
+
K0

2
(̺1,b)

2. (3.32)

Its derivative with respect to the number density ̺1,b, using the relation ∂p/∂̺1,b =

1/(κT̺1,b) with the isothermal compressibility κT , yields

β

κT̺1,b
=

1 + 4η + 4η2 − 4η3 − η4

(1− η)4
+K0̺1,b. (3.33)

As an exemplary fluid I consider water at room temperature T = 300K and ambient

pressure p = 1bar (which corresponds to the number density ̺1,b = 55.5M ≈ 33.3 nm−3

and the isothermal compressibility κT = 4.5× 10−10 Pa−1 [138]) with relative dielectric

constant εr = 80, i.e., with Bjerrum length lB = 0.7 nm, and with a univalent salt of ionic

strength I = 1mM ≈ 6× 10−4 nm−3. The strength of hydrogen bonds, which generate the

dominant attractive interaction contribution, is of the order of εpot ≈ 20 kJmol−1 ≈ 8 kBT

[138, 140]. Using these data, one obtains from Eqs. (3.32) and (3.33) the bulk packing
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fraction η ≈ 0.44 as well as σ = 2.9 Å and σpot = 3.4 Å. In the following the Debye length

1

κ
=

√
1

8πlBI
(3.34)

is used as length scale, which, for the present choice of parameters, is 1/κ ≈ 10 nm.

In the case of a pure solvent (δ̺2 = δ̺3 = Ψ = 0), in the bulk the density two-point

correlation function G(r1, r2) = Ḡ(r1 − r2) fulfills an equation similar to Eq. (3.5):

b∇2Ḡ(r) =M11Ḡ(r). (3.35)

Note that the similarity between Eqs. (3.5) and (3.35) is due to the asymptotic propor-

tionality between density deviations and two-point correlation functions (Yvon equation)

[65]. From Eq. (3.35), one can readily infer the relation

ξ =

√
b

M11
(3.36)

for the solvent bulk correlation length, which characterizes the exponential decay of Ḡ(r).

For the present choice of parameters, one has ξ ≈ 1.3 Å so that κξ ≈ 0.013.

3.3.2 X-ray scattering

In the following subsections the Fourier transforms δ̺̂ = (δ ̺̂1, δ ̺̂2, δ ̺̂3) of the profiles

of the density deviations as functions of the lateral wave vector q‖ and of the normal

distance z from the wall are discussed in detail. However, from the experimental point of

view, it is challenging to directly obtain the z-dependence of the density profiles. One of

such direct methods is total internal reflection microscopy (TIRM) [141] in the context

of the structure of colloidal suspensions close to (optically transparent) substrates. In

contrast, for molecular fluids, as the ones considered here, such direct methods are not

available and one has to resort to, e.g., X-ray scattering techniques [142, 143]. As X-rays

are predominantly scattered by the electrons of the fluid molecules one has to consider

the electron number density

̺e(r‖, z) =
3∑

j=1

Nj̺j(r‖, z) =

{
̺eb + δ̺e(r‖, z) , z > 0

0 , z < 0
(3.37)

for r‖ ∈ A with the number Nj of electrons per molecule of particle species j ∈ {1, 2, 3},
the bulk electron density ̺eb =

∑3
j=1Nj̺j,b, and the deviation δ̺e = ̺e−̺eb =

∑3
j=1Njδ̺j

of the electron number density from its bulk value. The X-ray scattering signal for scat-
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Figure 3.2: Density distribution δ ̺̂1(q‖, z) of the solvent (panel (a)) and of the ions
δ ̺̂2(q‖, z) = δ ̺̂3(q‖, z) (panel (b)) as function of the distance z from the wall and of
the absolute value of the lateral Fourier wave vector q‖ in units of the inverse Debye
length κ (see Eq. (3.34)). The plane z = 0 is given by the positions of the fluid particle
centers when the surface-to-surface distance between the hard wall and the hard particles

vanishes. The data correspond to the boundary condition v′ = −h
(0)
1

b
(1, 0, 0, 0) (see Eqs.

(3.15) and (3.40)). The physical situation corresponding to this boundary condition is an

attraction h1(r‖) = h
(0)
1 δ(r‖) (see Eq. (3.42)) of the solvent particles by the wall located

at the origin of the wall. Concerning the remaining relevant parameters see Sec. 3.3.1.

tering vector q = (q‖, qz) is proportional to
∣∣∣ ̺̂̂e(q‖, qz)

∣∣∣
2

with the double Fourier transform

̺̂̂e of the electron number density profile ̺e in both the lateral and the normal direction

[65].

For common specular X-ray reflectivity measurements, i.e., for q‖ = 0, the normalized

intensity reflected as function of the normal wave number qz is given by [142, 143]

R(qz)

RF(qz)
=

∣∣∣∣∣1 +
iqzδ

̺̂̂e(q‖ = 0, qz)

|A|̺eb

∣∣∣∣∣

2

, (3.38)

where RF(qz) denotes the Fresnel reflectivity of an ideal, step-like planar interface [144],

and where the notation δ ̺̂̂e :=
∑3

j=1Njδ ̺̂̂j with

δ ̺̂̂j(q‖, qz) =

∞∫

0

dz δ ̺̂(q‖, z) exp(−iqzz) (3.39)

has been used. Moreover, off-specular diffuse X-ray scattering (q‖ 6= 0) at grazing



52 CHAPTER 3. ANALYTICALLY SOLVABLE APPROACH

incidence (GIXD, Im qz 6= 0) yields scattering intensities which are proportional to∣∣∣δ ̺̂̂e(q‖, qz)
∣∣∣
2

[143]. Hence, as the double Fourier transforms δ ̺̂̂j in Eq. (3.39) of the

density deviation profiles δ̺j are of direct experimental relevance, they will be discussed

in the following in parallel to the single Fourier transforms δ ̺̂j . Note that due to δ ̺̂̂i ∈ C,

in Figs. 3.3 and 3.5 its absolute value is shown.

3.3.3 Basis vectors of boundary conditions

As mentioned above, the linear nature of the relationship between wall nonuniformities

and the resulting number density deviations leads to the possibility of describing the

latter in terms of linear combinations of elementary response patterns. These elementary

response patterns correspond to four basis vectors, e.g., (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

and (0, 0, 0, 1), which span the four-dimensional space of boundary conditions v′(q‖, 0) in

Eq. (3.15). Therefore, as a first step to study the influence of wall inhomogeneities onto

the fluid, these four distinct boundary condition vectors v′(q‖, 0) are studied. The first

one of these vectors is given by

v′(q‖, 0) = −h
(0)
1

b
(1, 0, 0, 0), (3.40)

which requires (see Eq. (3.15))

ĥ1(q‖) = h
(0)
1 ,

ĥ2(q‖) = ĥ3(q‖) = σ̂(q‖) = 0, (3.41)

and which in real space corresponds to the boundary condition

h1(r‖) = h
(0)
1 δ(r‖),

h2(r‖) = h3(r‖) = σ(r‖) = 0. (3.42)

This boundary condition corresponds to an attractive, δ-like interaction of the wall with

the solvent located at the origin. Solving the Euler-Lagrange equations for this boundary

condition, one finds the density distribution δ ̺̂1(q‖, z) for the solvent and δ ̺̂2(q‖, z) =

δ ̺̂3(q‖, z) for the ions, as shown in Figs. 3.2 (a) and 3.2 (b), respectively. Since the

boundary condition corresponds to a constant in Fourier space, the density distribution

v(q‖, z) depends on k = |q‖| only. Actually, the solution v(q‖, z) for this system is

proportional to the first column of the Green’s function, which is a 4 × 4-matrix, of the

differential operator corresponding to Eqs. (3.5) and (3.6).
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Figure 3.2 illustrates that for fixed |q‖| the density deviations from the bulk value

increase for smaller normal distances from the wall and, for fixed z, also upon decreasing

the absolute value of the lateral wave vector |q‖|. The behavior with respect to the

normal distance from the wall can be anticipated, because the effect of the interaction

between the wall and the fluid is expected to decrease with increasing distance from the

wall. Moreover, also the behavior with respect to |q‖| is as expected, because a strong

attraction at the origin leads to a radially decreasing density deviation, which in Fourier

space corresponds to a maximum at the origin. In order to allow for a quantitative analysis

of the behavior of the density deviations, Figs. 3.3 and 3.4 show various cuts through the

data of Fig. 3.2 along several lines.

Figures 3.3 (a), (c), and 3.4 (a) show the density profiles for the solvent and Figs.

3.3 (b), (d), and 3.4 (b) the ones of the positive ions, which in this case are the same as

the profiles for the negative ions. This equivalence is due to the nature of the boundary

conditions in this special case, which in real space lead primarily to an increased solvent

density close to the origin at the wall. The ions, however, react only indirectly via the

solvent, with which both ion types interact in the same way. Since the solvent particles

get attracted by the wall, it is favorable to increase their density close to the wall. Due to

the hard core nature of the particles, the space occupied by the solvent particles is blocked

for the ions. Since the solvent is attracted by the wall and the interparticle attraction

is the same for all pairs of particles, this leads to an extrusion of the ions in favor of an

increased number of solvent particles. Figures 3.3 (a) and (b) show the density deviations

as function of the normal distance z from the wall for three values of |q‖|, i.e., Figs. 3.3

(a) and (b) correspond to horizontal cuts through Figs. 3.2 (a) and (b), respectively. For

fixed |q‖|, as in Figs. 3.2 (a) and (b), Figs. 3.3 (a) and (b) clearly show an exponential

decay of the density deviation for increasing distances from the wall. In contrast, Figs.

3.3 (c) and (d) show vertical cuts through Figs. 3.2 (a) and (b), i.e., density profiles as

functions of the absolute value of the lateral wave number |q‖| for three normal distances

z from the wall. The dependence of these profiles on the absolute value |q‖| of the lateral
wave vector q‖ implies a laterally isotropic decay of the density deviations in real space.

The third pair of graphs, Figs. 3.4 (a) and (b), shows the Fourier transforms of the density

profiles of Figs. 3.3 (a) and (b), being additionally Fourier-transformed with respect to the

normal direction z, which leads to the Fourier transforms δ̺̂̂(q‖, qz) in terms of the lateral

wave vector q‖ and the normal wave number qz, respectively. All curves in Figs. 3.3 (c),

(d), 3.4 (a), and (b) exhibit a Lorentzian shape as functions of |q‖| and qz, respectively.
These Lorentzian curves in Fourier space correspond to exponential decays in real space

in lateral or normal direction. The curves in Figs. 3.3 (c) and (d) show widths of half

height which decrease with increasing normal distance z, i.e., the lateral decay length in
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Figure 3.3: Density profiles of the solvent (left column, panels (a) and (c)) and of the
ions (right column, panels (b) and (d)) as functions of the normal distance z from the
wall (top row, panels (a) and (b)) and of the absolute value of the lateral wave vector |q‖|
(bottom row, panels (c) and (d)) in corresponding units of the Debye length 1/κ and the
inverse Debye length, respectively (see Eq. (3.34)). In each graph, there are three profiles
shown corresponding to three values of the other relevant variable. Therefore, the profiles
correspond to cuts through Figs. 3.2 (a) and (b) at various positions and in different

directions. In this case the boundary condition is v′ = −h
(0)
1

b
(1, 0, 0, 0) (see Eqs. (3.15)

and (3.40)), corresponding to a δ-like nonelectrostatic attraction of the solvent particles
at the origin of the wall (see Fig. 3.2 and Eq. (3.42)). The graphs show, that the density
deviations of the ions are proportional to the ones of the solvent, although different in
sign. Since only the solvent particles are attracted by the wall, it is favorable for the
system to increase their density close to the wall. However, due to the hard core nature of
the particles and the equality of the interparticle attraction for all pairs of particles, the
increase of solvent particles leads to an extrusion of ionic particles, leading to decreased
ion densities at the wall. However, the density deviations of the ions are much weaker.
For the remaining relevant parameters see Sec. 3.3.1.
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Figure 3.4: Density profiles of the solvent (panel (a)) and of the ions (panel (b)) as

functions of the wave number qz in normal direction (with h
(0)
1 κ3 being dimensionless) in

corresponding units of the Debye length 1/κ (see Eq. (3.34)). Note that due to δ ̺̂̂i ∈ C,
the absolute values are shown. In each graph, there are three profiles shown corresponding
to three values of the other relevant variable. Therefore, the profiles correspond to cuts
through Figs. 3.2 (a) and (b) at various positions and in different directions. In this case

the boundary condition is v′ = −h
(0)
1

b
(1, 0, 0, 0) (see Eqs. (3.15) and (3.40)), corresponding

to a δ-like nonelectrostatic attraction of the solvent particles at the origin of the wall (see
Fig. 3.2 and Eq. (3.42)). The graphs show, that the density deviations of the ions are
proportional to the ones of the solvent. Since only the solvent particles are attracted by
the wall, it is favorable for the system to increase their density close to the wall. However,
due to the hard core nature of the particles and the equality of the interparticle attraction
for all pairs of particles, the increase of solvent particles leads to an extrusion of ionic
particles, leading to decreased ion densities at the wall. However, the density deviations
of the ions are much weaker. For the remaining relevant parameters see Sec. 3.3.1.
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real space increases with increasing distance from the wall. This implies that the density

distribution broadens upon moving away from the source of the perturbation. The curves

in Figs. 3.4 (a) and (b) exhibit widths of half height which increase with the lateral

wave number |q‖|, i.e., the normal decay length in real space decreases with increasing

lateral wave number. Consequently, the range of influence of rapidly varying modes of

wall heterogeneities onto the fluid is shorter than that of slowly varying modes. This

relationship can also be inferred from Figs. 3.3 (a) and (b). From the above discussions

and from Figs. 3.3 and 3.4 one can conclude, that the response of all species to a simple

attraction of nonelectrostatic type is the same up to a proportionality factor. This is

confirmed by studying, in addition, the boundary conditions v′ = −h
(0)
2

b
(0, 1, 0, 0) and

v′ = −h
(0)
3

b
(0, 0, 1, 0); these results are not shown here.

After having discussed the effects of the boundary condition ĥ 6= 0 via Figs. 3.2 and

3.3, the following second type of boundary condition is analyzed:

ĥ(q‖) = 0,

σ̂(q‖) = σ(0), i.e., σ(r‖) = σ(0) δ(r‖), (3.43)

leading to

v′(q‖, 0) = −βeσ
(0)

ε0εr
(0, 0, 0, 1). (3.44)

As before, the physical realization of this boundary condition is a δ-like interaction, with

the only difference residing in the type of the basic interaction. Unlike in the previous

case, here the interaction is of electrostatic character. Thus, the situation corresponds to

a δ-like negative charge distribution placed at the origin of the wall. Since the two ion

types respond oppositely, the ion density profiles differ only in sign:

δ ̺̂2 = −δ ̺̂3. (3.45)

This implies that the total ion density deviations vanish δ ̺̂2 + δ ̺̂3 = 0. Accordingly,

also the density deviation for the solvent vanishes, i.e., δ ̺̂1 = 0. Figure 3.5 shows the

density profiles of the positive ions, which, up to the sign, are the same as the ones for the

negative ions. As stated above, for this boundary condition, there is no need to discuss

the behavior of the solvent particles.

The three panels in Fig. 3.5 are obtained similarly as the ones in Figs. 3.3 and 3.4.

Figure 3.5 (a) shows the density profiles δ ̺̂2(q‖, z) as functions of the normal distance

z from the wall for three values of the lateral wave number |q‖|. Panel 3.5 (b) shows

the same density profiles δ ̺̂2(q‖, z) but as functions of |q‖| for three distances z from the
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Figure 3.5: Density profiles of the ions as functions of the normal distance from the wall
(a), of the absolute value of the lateral wave vector |q‖| (b), and of the wave number in

normal direction (c). Note that due to δ ̺̂̂i ∈ C, in panel (c) the absolute value is shown.
Each panel shows the profiles for three values of the other relevant variable. These profiles
are cuts of the corresponding data (analogous to Fig. 3.2) along various directions. Here,

the boundary condition is given by v′ = −βeσ(0)

ε0εr
(0, 0, 0, 1) (see Eqs. (3.15) and (3.44)),

which corresponds to a δ-like surface charge at the origin in real space (see Eq. (3.43)).
The profiles for the solvent are not shown, because the deviations linked to the two types
of ions cancel out, δ ̺̂2 + δ ̺̂3 = 0, leaving the density of the solvent unchanged as if there
were no ions. In comparison with Fig. 3.3, the profiles in (a) decay much slower on the
scale of the Debye length 1/κ (see Eq. (3.34)) instead of on the scale of the much shorter
bulk correlation length ξ (see Fig. 3.3 (b) and Eq. (3.36)) due to the nonelectrostatic
interaction. Accordingly, the profiles in (b) and (c) decay on the scale of κ more rapidly
than their counterparts in Figs. 3.3 (d) and 3.4 (b). For the remaining relevant parameters
see Sec. 3.3.1.
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wall. Figure 3.5 (c) displays the double Fourier transform δ ̺̂̂2(q‖, qz). Compared with the

profiles in Figs. 3.3 and 3.4 for the previously discussed boundary conditions, all present

profiles differ significantly from them. Figure 3.5 (a) reveals a much larger decay length

in z-direction, i.e., normal to the wall. Also in Fourier space the decay in lateral direction

occurs much more rapidly, i.e., on much longer length scales in real space than in the

case of the nonelectrostatic wall-fluid interaction (cf. Fig. 3.3). This is indicated by the

much narrower peak in the double Fourier transform (see Fig. 3.5 (c)). Furthermore,

Fig. 3.5 (a) shows a variation of the decay length in normal direction as function of |q‖|.
In Fig. 3.5 (b) one observes that the lateral wave numbers |q‖| at which the profiles

δ ̺̂2 = −δ ̺̂3 decay to half of the maximum values decrease upon increasing the distances

z from the wall, from which one infers that the lateral decay length in real space increases

upon increasing z. The decay with respect to |q‖| is much faster than in the previous

case (compare Fig. 3.3 (d)), indicating that in real space there is a slower decay in the

lateral direction. Moreover, in Figs. 3.5 (b) and 3.5 (c) the functional form differs from

the one shown in Figs. 3.2, 3.3, and 3.4. These differences naturally occur due to the

different form of the boundary condition. Since in the case of the boundary condition

studied above (see Figs. 3.2, 3.3, and 3.4) the relevant interaction is nonelectrostatic,

the length scale dominating the decay is given by the corresponding short-ranged bulk

correlation length ξ (see Eq. (3.36)). In contrast, for the system shown in Fig. 3.5, due

to the electrostatic nature of the corresponding interaction, the dominating length scale

is the Debye length 1/κ (see Eq. (3.34)). This length is much larger than the correlation

length ξ due to the nonelectrostatic interaction, giving rise to the much slower decay in

Fig. 3.5 (a) (on the scale of 1/κ) and the much faster decay in Figs. 3.5 (b) and (c) (on

the scale of κ).

3.3.4 Circular patch of interaction

Having discussed actually point-like interactions between the wall and the fluid in Sec.

3.3.3, as the next step I now study the influence of interaction patterns on the density

deviations close to a wall upon broadening the spatial extent of the interaction area. To

this end I analyze the influence of a two-dimensional circular interaction patch of radius

R centered at the origin (see Fig. 3.6 (a)).

Due to the radial symmetry, the spatial structures in Fourier space depend only on

the absolute value |q‖| of the lateral wave vector q‖. Figure 3.7 discusses four distinct

configurations.

Alluding to the insights gained in the previous section, Figs. 3.7 (a) and (c) correspond

to a homogeneous circular patch of radius R, which interacts with the solvent only, similar
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Figure 3.6: Physical configurations studied in Sec. 3.3.4 (a) and in Sec. 3.3.5 (b). In Sec.
3.3.4, a two-dimensional circular patch of radius R centered at the origin is studied (a).
The dots in panel (b) correspond to the positions of the centers of the Gaussian interaction
sites for the model used in Sec. 3.3.5, which form a two-dimensional hexagonal lattice
with lattice constant ∆. The variance of the Gauss distributions is ∆2

peaks (Eqs. (3.52)
and (3.53)). The results shown here are based on the choice ∆ = 5∆peaks (cf. Fig. 3.8).

to Figs. 3.2, 3.3, and 3.4. This amounts to the boundary condition (see Eq. (3.15))

h1(r‖) = h̄
(0)
1 Θ(R− |r|),

h2(r‖) = h3(r‖) = σ(r‖) = 0 (3.46)

leading to

v′(q‖, 0) = −2πR2 h̄
(0)
1

b

J1(|q‖|R)
|q‖|R

(1, 0, 0, 0), (3.47)

where the two-dimensional Fourier transform of the Heaviside function Θ(R−|r|) is given
by ∫

R2

d2r‖ Θ(R− |r‖|) exp(−iq‖ · r‖) = 2πR2J1(|q‖|R)
|q‖|R

. (3.48)

In contrast, Figs. 3.7 (b) and (d) refer to a charged circular patch of radius R, similar to

Fig. 3.5:

h(r‖) = 0, σ(r‖) = σ̄(0)Θ(R− |r‖|), (3.49)

leading to the boundary condition

v′(q‖, 0) = −2πR2βeσ̄
(0)

ε0εr

J1(|q‖|R)
|q‖|R

(0, 0, 0, 1). (3.50)
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Figure 3.7: Density profiles of the solvent (panels (a) and (c)) and of the ions (panels (b)
and (d)) as functions of the absolute value |q‖| of the lateral wave vector for three normal
distances z from the wall. The boundary condition corresponds to a circular interaction
patch centered at the origin with radius R > 0. In the panels (a) and (b) the radius of
the patch is R = 0.5/κ, whereas in the panels (c) and (d) the radius is R = 2/κ, where
1/κ is the Debye length (see Eq. (3.34)). All considered patch radii are much larger than
the bulk correlation length, R ≫ ξ (see Eq. (3.36)). In addition, there are different types
of interaction. In panels (a) and (c) the interaction between the wall and the solvent

particles is nonelectrostatic (h1(r‖) = h̄
(0)
1 Θ(R − |r‖|), h2(r‖) = h3(r‖) = σ(r‖) = 0, see

Eq. (3.46) as well as Figs. 3.2, 3.3 and 3.4), whereas in panels (b) and (d) the patch
contains a constant surface charge and therefore interacts with the ions only (h(r‖) =
0, σ(r‖) = σ̄(0)Θ(R − |r‖|), see Eq. (3.49) and Fig. 3.5). Besides the profiles, all panels
show also the lateral Fourier transform of the boundary condition (Eqs. (3.47) and (3.50))
displayed as a black solid line. In the case of the interaction of the wall with the solvent
((a) and (c)), the decay of the profiles as function of |q‖| is proportional to the lateral
Fourier transform of the boundary condition, which implies, that the density deviations
in real space closely follow the shape of the patch. However, in the case of a charged
patch at the surface the density distribution of the ions reflects the competition between
the length scale R of the radius of the patch and the Debye length 1/κ. In the case of
small patches (R < 1/κ, panel (b)), the Debye length dominates and therefore dictates
the decay as function of |q‖| without noticeable influence of the patch. (cont.)
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Continued Figure 3.7: In contrast, in the case of large patches (R > 1/κ, panel (d)),
in which the radius of the patch is the dominating length scale, the shape of the profiles
follows the Fourier transform of the charge distribution at the wall, i.e., the patch of
radius R. For the remaining relevant parameters see Sec. 3.3.1.

Figures 3.7 (a) and (b) correspond to the patch size R = 0.5/κ whereas Figs. 3.7 (c) and

(d) correspond to R = 2/κ. In all four panels the black line is given by AJ1(|q‖|R)/(|q‖|R)
with A chosen such that the first maximum of the data for zκ = 0 is reproduced. In Figs.

3.7 (a) and (c) only the solvent density profiles are shown, because, due to linearity, Sec.

3.3.3 indicates, that the ion profiles are proportional to the one of the solvent. Figures

3.7 (a) and (c) clearly show, that the density deviations are proportional to the Fourier

transform v′(q‖, 0) of the boundary condition (Eq. (3.47), solid black line). This implies

that for increasing lateral distances from the center of the patch the decay of the profiles

in real space is dominated by the length scale set by the radius R of the patch. This

trend holds for both patch sizes. However, as expected, the amplitudes of the density

deviations increase for the larger patch size (note the different scales). In contrast, in

Figs. 3.7 (b) and (d), where the density profiles of the positive ions are shown and where

the profiles for the solvent are omitted for the same reasons as explained in Sec. 3.3.3, the

profiles do not follow the Fourier transform of the boundary conditions (solid black line).

This is particularly pronounced in Fig. 3.7 (b), i.e., for the smaller patch size. In this

case, the decay as function of |q‖| is faster than the Fourier transform of the boundary

condition, which implies that the profiles decay on a length scale larger than that of the

radius R of the patch and also the shape of the decay differs from that of the expression

J1(|q‖|R)/(|q‖|R). This behavior can be understood in terms of two distinct dominating

length scales. In Figs. 3.7 (b) and (d), where the effect of electrostatic interactions are

shown, the dominating internal length scale is the Debye length 1/κ in contrast to the

much smaller correlation length ξ (ξ ≈ 1.3 × 10−2 κ−1) induced by the nonelectrostatic

interactions characterizing Figs. 3.7 (a) and (c). Since in Fig. 3.7 (b) the radius R of the

patch is only half the Debye length 1/κ, the overall dominating length scale is the Debye

length 1/κ, so that the density deviations decay in real space on a length scale which is

larger than the patch radius R. Also, since the profile in Fourier space is not proportional

to the Fourier transform of the boundary condition, one can conclude that the shape of

the patch has no significant influence on the decay behavior. The competition of the

length scales ξ, 1/κ, and R is also borne out in Fig. 3.7 (d), where the patch size R is

twice as large as the Debye length 1/κ. This case is much more similar to the situations

discussed in Figs. 3.7 (a) and (c), because the overall dominating length scale is set by the

radius R, and consequently the profiles follow rather closely the shape (solid black line)



62 CHAPTER 3. ANALYTICALLY SOLVABLE APPROACH

dictated by the interaction patch. However, the influence of the smaller Debye length

scale is still visible, which is the reason for the deviations from the Fourier transform of

the boundary condition (solid black line). In conclusion, as already seen in Sec. 3.3.3, the

largest length scale sets the decay behavior of the density deviations. In the present case

of nonvanishing sizes of the interaction areas, the largest length scale dictates not only

the range but also the shape of the density deviations.

3.3.5 Periodic distribution of interaction sites

After having discussed the density profiles in the presence of spatially localized, single

interaction sites in Secs. 3.3.3 and 3.3.4, here I study the influence of interaction sites

forming a regular hexagonal lattice:

rpeaks = (m∆+
n

2
∆,

√
3

2
n∆), m, n ∈ Z, (3.51)

see Fig. 3.6 (b); the distance between nearest neighbor sites is denoted as ∆.

Distinct from the previous examples in Secs. 3.3.3 and 3.3.4, the interaction strength

around the individual interaction sites rpeaks is taken to form a Gaussian distribution,

providing either a nonelectrostatic or an electrostatic interaction with equal amplitudes

for all interaction sites:

hi(r) = h̄
(0)
i

∑

peaks

exp

(
−(r − rpeaks)

2

2∆2
peaks

)
, i = 1, 2, 3, (3.52)

and

σ(r) = σ̄(0)
∑

peaks

exp

(
−(r − rpeaks)

2

2∆2
peaks

)
, (3.53)

respectively, where ∆2
peaks is the variance of the Gaussian interaction. Lateral Fourier

transformation leads to the corresponding boundary condition v′ (see Eq. (3.15)) with

v′i(q‖) =− h̄
(0)
i

b
(2π∆2

peaks) exp

(
−
q‖

2∆2
peaks

2

)
|CG|×

∑

G∈G

δ(q‖ −G), i = 1, 2, 3, (3.54)
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and

v′4(q‖) =− βeσ̄(0)

ε0εr
(2π∆2

peaks) exp

(
−
q‖

2∆2
peaks

2

)
|CG|×

∑

G∈G

δ(q‖ −G), (3.55)

where |CG| = (16π2/(3∆2)) sin(60◦) is the size of an elementary cell of the corresponding

two-dimensional reciprocal lattice G. Using this boundary condition, I have studied four

different systems, as shown in Fig. 3.8.

The four panels are arranged as in Fig. 3.7, with the boundary conditions in Figs. 3.8

(a) and (c) corresponding to a chemical interaction between the wall and solvent only,

v′(q‖) =− h̄
(0)
1

b
(2π∆2

peaks) exp

(
−
q‖

2∆2
peaks

2

)
|CG|×

∑

G∈G

δ(q‖ −G) (1, 0, 0, 0), (3.56)

whereas the boundary conditions in Figs. 3.8 (b) and (d) correspond to an interaction

between the wall and ions only, i.e., they are due to a hexagonal lattice of interaction sites

with Gaussian intrinsic charge distribution:

v′(q‖) =
βeσ̄(0)

ε0εr
(2π∆2

peaks) exp

(
−
q‖

2∆2
peaks

2

)
|CG|×

∑

G∈G

δ(q‖ −G) (0, 0, 0, 1). (3.57)

For the same reason as stated in the context of Fig. 3.7, in the former case (Figs. 3.8 (a)

and (c)) only the deviations of the solvent density and in the latter case (Figs. 3.8 (b) and

(d)) only the deviations of the ion densities are shown. Figures 3.8 (a) and (b) correspond

to the lattice constant ∆ = 0.5/κ, whereas Figs. 3.8 (c) and (d) correspond to ∆ = 2/κ.

The variance ∆2
peaks of the peaks is taken as ∆peaks = ∆/5, so that ∆peaks = 0.1/κ in Figs.

3.8 (a) and (b) and ∆peaks = 0.4/κ in Figs. 3.8 (c) and (d). Figures 3.8 (a) and (c) tell

that, although different values for q‖ change the amplitude of the profiles in all cases, the

solvent profile decays exponentially, upon increasing the normal distance z from the wall,

on the scale of the bulk correlation length ξ. This holds for both values of the lattice

constant ∆. However, the amplitude of the density deviations is slightly increased for the

larger lattice constant ∆, which is in line with the also increased variance ∆2
peak of the

interaction sites. In contrast to these findings, Figs. 3.8 (b) and (d) reveal a different

picture. In these panels, one still finds an exponential decay of the profiles upon increasing
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Figure 3.8: Density profiles of the solvent (panels (a) and (c)) and of the ions (pan-
els (b) and (d)) for three lateral wave vectors q‖ = (qx, qy) as functions of the normal
distance z from the wall in units of the Debye length 1/κ. The boundary condition cor-
responds to a hexagonal lattice of interaction sites with a Gaussian distribution of the
interaction strength characterized by a standard deviation ∆peaks = ∆/5. The lattice
constant is denoted as ∆ (see Fig. 3.6). In panels (a) and (b) the lattice constant and
the variance are ∆ = 0.5/κ and ∆peaks = 0.1/κ, respectively, whereas in panels (c) and
(d) the lattice constant and the variance are ∆ = 2/κ and ∆peaks = 0.4/κ, respectively,
with the Debye length 1/κ (see Eq. (3.34)). Panels (a) and (c) correspond to systems
with a nonelectrostatic interaction between the wall and the solvent particles (see Eq.
(3.56)), whereas panels (b) and (d) correspond to systems with electrostatic interaction
sites between wall and ions (see Eq. (3.57)). The insets in (b) and (d) show a magni-
fied version of the respective profiles in the main plot. In all cases, the profiles decay
exponentially upon increasing the normal distance z from the wall. However, the decay
length differs significantly between the two aforementioned types of interactions. In the
case of the nonelectrostatic interaction, the decay length is set by the bulk correlation
length ξ (see Eq. (3.36)) of the fluid, whereas in the case of the electrostatic interaction
it is set by the much larger Debye length 1/κ. This difference in the decay lengths, both
in lateral and in normal direction, which leads to a much faster lateral decay in the case
of the electrostatic interactions, is also responsible for the decreasing amplitude of the ion
profiles for increased wave vectors (panel (b) and (d)). (cont.)
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Continued Figure 3.8: Another significant difference between the two interaction types
is the variation of the decay length as function of the lateral wave vectors. In panels (a)
and (c) all profiles decay exponentially on the same decay length ξ, whereas in panels (b)
and (d) the decay length depends significantly on the wave vectors. This effect follows
from the dependence of the eigenvalues on |q‖| as discussed in Eq. (3.60), corresponding

to a lateral decay proportional to exp(−
√
κ2 + |q‖|2z). In principle this occurs for both

types of interactions. However, only in the case of the electrostatic interactions it is
relevant, which again is due to the difference between the dominating length scales. For
the remaining relevant parameters see Sec. 3.3.1.

the normal distance z. However, the profiles decay on a much larger length scale than the

ones in Figs. 3.8 (a) and (c). Moreover, not only the amplitude but also the decay length

changes significantly for different values of q‖. This was already encountered in Fig. 3.5,

where the decay length depends on the value of |q‖|. This variation of the decay lengths

can be inferred from Eq. (3.14), which shows that the eigenvalues and thus the decay

length depends on k = |q‖|. The variation of the decay length can be expressed in terms

of the Debye length 1/κ, which determines the length scale in case of |q‖| = 0. From Eq.

(3.60) one finds, that the decay as function of z is proportional to exp(−
√
κ2 + |q‖|2z).

The large differences in the amplitudes of the various profiles in Figs. 3.8 (b) and (d),

as well as the pronounced increase of the decay length in comparison to Figs. 3.8 (a)

and (c) can be understood in terms of the differences between the dominating length

scale. Analogous to the previous sections, for the systems shown in Figs. 3.8 (a) and (c),

the dominating length scale in lateral direction is the length scale set by the boundary

conditions and the bulk correlation length ξ, which characterizes the decay of the solvent

density in normal direction. However, for the systems shown in Figs. 3.8 (b) and (d), the

relevant inherent length scale of the fluid is the Debye length 1/κ, which is significantly

larger than the bulk correlation length ξ and thus causes the increase in the length scale

of the decay, both in lateral and in normal direction.

3.4 Conclusions and summary

In the present analysis the influence of a chemically or electrostatically structured surface

on an adjacent fluid has been studied and described in terms of the number density

profiles of the fluid components. The fluid, which comprises a single solvent species

and a single univalent salt far away from bulk and wetting phase transitions, has been

investigated within classical density functional theory [46, 57, 121]. Within this model

four examples of heterogeneous walls have been studied. First, single isolated interaction
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sites are discussed, which interact either nonelectrostatically (between the wall and solvent

particles) or electrostatically (between the wall and ions) (see Secs. 3.3.3 and 3.3.4). In

the case of a δ-like nonelectrostatic interaction, the solvent density increases around the

interaction site and decays exponentially on the length scale of the bulk correlation length

ξ. The deviations of the ion number densities from their bulk values are proportional to

that of the number density of the solvent (see Figs. 3.2, 3.3, and 3.4). For a δ-like

electrostatic interaction, within the present model, the solvent does not respond at all,

because the deviations induced by the two ion types even out due to symmetries, whereas

the density deviations of the ionic particles again decay exponentially. However, the

length scale of the latter decay is significantly increased as compared to the former case,

because the dominating scale in this case is the Debye length 1/κ ≫ ξ (see Fig. 3.5).

The introduction of another length scale by studying interaction sites of nonvanishing

extent (see Sec. 3.3.4) shows, that the resulting density profiles strongly depend on the

dominant length scale (see Fig. 3.7). If a bulk length scale (bulk correlation length ξ

or Debye length 1/κ) dominates, the profiles resemble the ones for δ-like interactions.

However, if a length scale set by a boundary condition at the wall dominates or is similar

to the dominating length scale in the bulk, the decay of the density deviations increasingly

reflects the boundary conditions. Finally, the examination of multiple interaction sites,

arranged as a regular hexagonal lattice (see Fig. 3.6 (b)), shows, that the size of the

interaction sites and the distance between them influence the amplitude and thus the

importance of density deviations for large values of the lateral wave number |q‖| (see Fig.
3.8).

In summary, the present study provides a flexible framework to determine the influence

of various surface inhomogeneities on the density profiles of a fluid in contact with that

substrate. The resulting profiles are found to be sensitive to the type of interaction as

well as to the size and the distribution of the interaction sites.

This framework is considered as a starting point for extensions into various directions,

aiming for the analysis of more sophisticated and realistic models. First, the model used

here to describe the fluid is a very simple one, chosen to lay a foundation for further

research and to introduce the approach as such. Concerning future work, more realistic

descriptions of the fluid and more elaborate density functional descriptions could be used.

For instance, the present restriction to low ionic strengths and equal particle sizes can be

removed along the lines of Ref. [145]. Another way of using more precise density functional

descriptions is the one used in the following Chap. 4, where fundamental measure theory is

used to account for finite sizes of the described particles. Second, for the systems studied

here, the fluid is thermodynamically far from any bulk or wetting phase transitions. This is

solely done for the sake of simplicity. In future studies of more realistic systems, taking into
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account the occurrence of phase transitions and their influence on the systems is expected

to be rewarding. Third, this study is restricted to linear response theory. Whereas this

allows for a broad overview of structure formation in terms of superpositions of only a few

elementary patterns, the occurrence of nonlinear structure formation phenomena requires

approaches beyond linear response theory. Again, this limitation is lifted in the research

presented in Chap. 4. Finally, studying the influence of disordered surface structures

within the present framework appears to be very promising.

3.A Eigenvectors and eigenvalues of H(k)

According to the structure of the matrix M (Eq. (3.2)), with entries given by Eq. (3.30),

and of the vector Z = (0, 1,−1), from Eqs. (3.9) and (3.10) one infers that the matrix

H(k) has the form

H(k) =




s u u 0

u t u iv

u u t −iv
0 iv −iv 0




+ diag(k2) (3.58)

with s, t, u, v ∈ R and k = |q‖|, s, t > 0. It can be readily verified that the four vectors

Λ1(k) := (2u, λ1(k)− s, λ1(k)− s, 0),

Λ2(k) := (λ2(k)− t− u, u, u, 0),

Λ3(k) := (0, λ3(k),−λ3(k), 2iv),
Λ4(k) := (0, iv,−iv, λ4(k)− t + u) (3.59)

with Λi ∈ C4 for i = 1, . . . , 4, form a nonorthogonal basis of eigenvectors of the matrix

H(k) in Eq. (3.58) with the respective real eigenvalues

λ1(k) =
1

2

(
s + t+ u+

√
(s− t− u)2 + 8u2

)
+ k2,

λ2(k) =
1

2

(
s + t+ u−

√
(s− t− u)2 + 8u2

)
+ k2,

λ3(k) =
1

2

(
t− u+

√
(t− u)2 − 8v2

)
+ k2,

λ4(k) =
1

2

(
t− u−

√
(t− u)2 − 8v2

)
+ k2. (3.60)

The expressions for s, t, u, and v can be obtained from the bulk quantities mentioned
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in Sec. 3.3.1 and take on the forms (see Eqs. (3.25) and (3.30))

s =
M11

b
, (3.61)

t =
M22

b
=
M33

b
, (3.62)

u =
M12

b
=
M13

b
=
M23

b
, (3.63)

v = −
√

4πlB
b

. (3.64)



Chapter 4

Hard sphere electrolyte solution using

fundamental measure theory

Building on the results of the previous Chap. 3, this chapter deals with investigating

the structure of dilute electrolyte solutions close to a surface carrying a spatially in-

homogeneous surface charge distribution by means of classical density functional theory

(DFT) within the approach of fundamental measure theory (FMT). Here, a fully three-

dimensional investigation is performed, which, again, accounts explicitly not only for the

ionic solute particles, but also for the solvent particles, and thus provides insight into

effects caused by ion-solvent coupling. Furthermore, the usage of FMT by construction

includes effects due to the finite size of the considered particles. The approach taken in

this chapter introduces a versatile framework to analyze a broad range of types of surface

charge heterogeneities even beyond the linear response regime. The study of, e.g, sinus-

oidal and striped surface charge distributions reveals a sensitive dependence of the number

density profiles of the fluid components and of the electrostatic potential on the magnitude

of the charge as well as on details of the surface charge patterns at small scales. Up to

occasional extensions and modifications, the research presented in this chapter matches

the one published in Ref. [7].

4.1 Introduction

In a wide spectrum of research areas and applications — ranging from electrochemistry

[122, 123] and wetting phenomena [124, 125] via coating [126] and surface patterning [5,

127] to colloid science [128, 129, 146] and microfluidics [130, 131] — there is a significant

interest in understanding the structure of electrolyte solutions at solid substrates. Most

of the theoretical studies dealing with such fluids close to a substrate neglect heterogen-

69
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eities in the interaction between the wall and the fluid, modeling the substrate as being

uniform. On one hand this approach simplifies the calculations significantly, whereas on

the other hand there is a lack of experimental data concerning the actual local structure

of these fluids near substrates. In the case of electrically neutral fluids and uncharged

walls this simplification is typically well justified because, besides wetting transitions, the

bulk correlation length sets the length scale, on which heterogeneities of surface proper-

ties influence the fluid [107]. This bulk correlation length is, sufficiently far from critical

points, of the order of a few molecular diameters, rendering any heterogeneity to be of

negligible importance. In contrast to this short length scale, a dilute electrolyte solution

close to nonuniformities of the surface charge density of a charged substrate is influenced

on the length scale of the Debye length, which is, for this type of solutions, much larger

than the size of the fluid constituents. Additionally, surface charge heterogeneities of

typical substrates (e.g., minerals and polyelectrolytes) are usually also of the order of the

Debye length of the fluid close to these substrates [108–110]. Consequently, for the treat-

ment of dilute electrolyte solutions in contact with charged surfaces, the approximation

of assuming uniform surface charge densities is questionable.

Over the last years, an increasing interest in these surfaces has developed, leading to a

number of studies investigating the influence of heterogeneously charged walls, for example

on the effective interaction between two substrates in contact with an electrolyte solution

[111, 113, 114, 116, 117, 132–137]. These studies revealed, e.g., the effective interaction

in case of nonuniform substrates to cause lateral forces in addition to the ones in normal

direction, which are commonly known. Despite describing the solute components in a wide

range of ways, all those studies neglect the size of the solvent particles and its influence

on the permittivity of the fluid, treating it as structureless dielectric continuum. As has

been shown in previous studies [118–120], due to a competition between the solvation

and the electrostatic interaction, there are coupling effects occurring in bulk electrolyte

solutions, which cannot be captured by these simple approaches. However, in particular

in the presence of ion-solvent coupling, fluctuations of the solvent density decay on the

scale of the Debye length, which leads to inhomogeneities in the wall-solvent interaction

influencing the structure of the electrolyte solution in contact with the charged substrate

on a length scale much larger than molecular sizes. A very recent example of such a

study, deriving exact solutions of the shape of the electrostatic potential in an electrolyte

solution close to a heterogeneously charged surface within Poisson-Boltzmann theory, is

given by Ref. [147]. There, previous research of coworkers and myself [6] was expanded

with respect to the description of nonlinear responses, albeit not explicitly including the

solvent and neglecting the spatial extent of all fluid particles. Moreover, in Ref. [148]

a one-dimensional wall with a single, isolated step in the surface charge in contact with
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a hard-sphere electrolyte solution was studied in a broad parameter range, concerning

both surface specifications and characteristics of the electrolyte solution. It was shown,

that the valences of the ions, their respective sizes, their concentration, and the strength

of the surface charge can lead to various structural effects in the fluid structure both

perpendicular and parallel to the wall. However, in that study, the solvent was again

treated only implicitly and thus coupling effects have been neglected.

In the present analysis, I aim for a deeper understanding of the structural effects of

surface charge nonuniformities on a nearby dilute electrolyte solution in terms of all fluid

components. The system is studied by means of DFT in combination with FMT, which

has been shown to be a powerful framework for investigating fluid structures in terms

of number density profiles [46, 57, 121]. The study at hand is concerned with explicitly

calculating the structure of an electrolyte solution composed of neutral solvent particles

and a single univalent salt component, described as hard spheres. As for the structure

of the two-dimensional surface nonuniformities, they can be arbitrary in strength and

also their spatial arrangement can de facto be chosen freely, with the computational

capacities being the only limitation. However, here I restrict myself to periodic surface

charge patterns. Furthermore, I lift the constraint of overall charge neutral walls, as has

been used in Refs. [111, 116, 117, 132]. The research in this chapter addresses the open

questions from Chap. 3 and Ref. [6] concerning the influence of microscopic details and

nonlinear effects on the structure of a dilute electrolyte solution close to heterogeneously

charged walls. In the present study I have chosen a small subset of the parameter range

analyzed in Ref. [148], for which it has been shown, that the valences have a negligible

effect and that the width of the region, which is influenced by a variation of the surface

charge, is computationally manageable (see Sec. 4.2.4). Furthermore, I have focussed

on the effect of multiple heterogeneities of the sort of the ones discussed in Ref. [148],

thereby creating a two-dimensional patterned surface.

In the following, first the setup and the formalism will be introduced in Sec. 4.2.

Secondly, in Sec. 4.3 various selected surface charge patterns are studied. From a simple

homogeneously charged surface investigated in Sec. 4.3.2, I move towards more complic-

ated charge distributions such as a sinusoidal shape (Sec. 4.3.3), patch-like, or rectangular

patterns (Sec. 4.3.4). Conclusions and a summary are presented in Sec. 4.4.
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4.2 Theoretical foundations

4.2.1 Setup

In the present chapter, the interplay of an electrically nonuniform hard wall and a fluid,

comprising hard spheres and monovalent ions, is studied. For z < 0 the system consists

of a semi-infinite impenetrable (hard) wall; on the other hand for V = {r ∈ R3|z > 0} the

system is occupied by a fluid mixture of hard spheres, where z is one of the three spatial

coordinates r = (x, y, z). This fluid is an electrolyte solution with three particle species:

an uncharged solvent (index ”1”), monovalent cations (index ”2”), and monovalent anions

(index ”3”), all of which are taken to be of the same size. All these interactions are either

of electrostatic nature, as caused by electric monopoles at the surface of the wall (z = 0)

and by the monovalent ions, or of a nonelectrostatic, purely repulsive nature caused by

the steric repulsion of the hard spheres and the hard wall. The precise geometries of

the electric nonuniformities at the wall are given in the context of the various scenarios

studied in the subsequent Sec. 4.3.

However, in all cases I assume the nonuniformities at the wall to be periodic with a

unit cell of size Lx × Ly =: PxR1 × PyR1, where R1 is the radius of the solvent particles.

Px and Py are the dimensionless widths of the box, for which the numerical evaluations

are performed (see Sec. 4.A). Furthermore, I assume that all deviations from the bulk

behavior are located in close proximity to the wall, justifying a restriction of the numerical

treatment to a length Lz = PzR1 in the direction normal to the wall and assuming the

densities to take on their respective bulk values for z > Lz. With the same justification I

assume the electrostatic potential Ψ to decay purely exponentially with the decay length

given by the Debye length 1/κ =
√

εr
8πlB0I

for z > Lz, where lB0 = e2

4πε0kBT
= 56.8 nm is

the vacuum Bjerrum length, εr is the relative permittivity, and I = ̺2,b = ̺3,b is the ionic

strength, which, in the present case of monovalent ions, equals the bulk number density

of the cations and the anions.

In order to tackle the system described above numerically, I introduce a discretization

of the system by using discrete versions of the equations derived in the following. However,

in order to illustrate the approach, I use the continuous expressions. For further details

concerning the discretization see Sec. 4.A.

4.2.2 Density functional theory

In order to determine the equilibrium number density profiles ̺ = (̺1, ̺2, ̺3) of the

three species I use density functional theory [46, 57, 121]. To this end I establish the
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approximate density functional βΩ[̺ = (̺1, ̺2, ̺3)], which is minimized by the equilibrium

number density profiles of the three species.

The exactly known expression for the ideal gas contribution

βΩid[̺] =

∫

V

d3r
∑

i

(
̺i(ln(̺iΛ

3
i )− 1− βµi)

)
, (4.1)

where β = 1/(kBT ) is the inverse thermal energy, µi are the chemical potentials of the

three species, and Λi are the thermal de Broglie wavelengths of the three species. In

addition to this, I use FMT in the White Bear I version [73] to account for the hard

sphere nature of the fluid constituents. This leads to an excess free-energy functional for

the hard core part given by

βF hc[̺] =

∫

V

d3r′ Φ({nα(r
′)}), (4.2)

with the volume V = R2 × (0,∞) and the reduced free-energy density

Φ = −n0 ln(1− n3) +
n1n2 − n1 · n2

1− n3
+ (n3

2 − 3n2n2 · n2)
n3 + (1− n3)

2 ln(1− n3)

36πn2
3(1− n3)2

(4.3)

as a function of the weighted densities

nα(r) =
3∑

i=1

∫

V

d3r′ ̺i(r − r′)ω
(α)
i (r′). (4.4)

Following Ref. [73], the weight functions are given by

ω
(3)
i (r) = Θ(Ri − r), (4.5)

ω
(2)
i (r) = δ(Ri − r), (4.6)

ω
(1)
i (r) =

ω
(2)
i (r)

4πRi

, (4.7)

ω
(0)
i (r) =

ω
(2)
i (r)

4πR2
i

, (4.8)

ω
(2)
i (r) =

r

r
δ(Ri − r), and (4.9)

ω
(1)
i (r) =

ω
(2)
i (r)

4πRi

, (4.10)

where Ri are the radii of the three species denoted by index i.

Furthermore, in the present study electrostatic contributions play a role, all of which
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are combined in the form of the electric field energy density βUel[̺] given by (see Eqs.

(4.28) and (4.29))

βUel[̺] =
β

2

∫

V

d3r ε0εr(r)(∇Ψ(r))2. (4.11)

Here, ε0 is the vacuum permittivity, εr is the relative permittivity, and Ψ is the elec-

trostatic potential profile. The relative permittivity εr will be discussed in more detail

in Sec. 4.3.1. Furthermore, it should be noted, that the calculation of the electrostatic

field energy is mathematically identical to other, commonly used variants, such as the

ones in Refs. [97, 106] (see Sec. 4.B). In the context of the present investigation the

expression in Eq. (4.11) is chosen due to its close connection to the applied numerical

two-step minimization method. Its reliability can readily be tested by comparing the

results for a homogeneous wall (Sec. 4.3.2) with corresponding results in Refs. [149–151].

The resulting expression for the density functional used in the present study is

βΩ[̺] =

∫

V

d3r

(
∑

i

̺i(ln(̺iΛ
3
i )− 1− βµi)

)
+ βF hc[̺] + βUel[̺], (4.12)

which in turn can now be used to determine the Euler-Lagrange equations. Whereas

the hard-core contribution βF hc[̺] to the density functional in Eq. (4.12) is based on

the fundamental measure theory (FMT) described by Eqs. (4.2) - (4.10), the electro-

static contribution βUel[̺] in Eq. (4.11) is a random-phase approximation (RPA). Hence,

one cannot expect that the second-moment Stillinger-Lovett sum rule or the consistency

between the test-particle and the Ornstein-Zernike route to the pair distribution functions

are fulfilled. However, this should not be regarded as a serious disadvantage, because the

present investigation is addressing the fluid structure close to a solid surface, which is

strongly dominated by the influence of the external field of the wall and is influenced only

to a small extent by correlations from the bulk.

4.2.3 Derivation of the Euler-Lagrange equations

Using the previously established density functional (see Sec. 4.2.2) I now can derive the

corresponding Euler-Lagrange equations, which provide the equilibrium density profiles.

Since minimizing with respect to all three density profiles and the potential distribution

at the same time is computationally very costly, I divide the minimization into first min-

imizing for the equilibrium form Ψ(r) of ψ(r) at fixed density profiles ̺ and subsequently

minimizing with respect to the three density profiles ̺(r).
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In order to determine the equilibrium form of ψ(r) for Eq. (4.11), I introduce

E [ψ, q, εr, σ] =
∫

V

d3r

(
ε0εr(r)

2
(∇ψ(r))2 − q(r)ψ(r)

)
−
∫

∂V

d2s σ(s)ψ(s, 0), (4.13)

where q(r) = e(̺2(r) − ̺3(r)) is the local charge density, and σ(s) is the surface charge

density at the wall surface ∂V = {r ∈ R3|(x, y, z = 0) = (s, 0)}. As shown in Sec. 4.B,

the electrostatic field energy can be written as

βUel[̺] = −βE [Ψ, q, εr, σ], (4.14)

that is, given the equilibrium potential Ψ(r) for a given charge distribution q(r), the elec-

trostatic contribution to the density functional can be expressed in terms of E [Ψ, q, εr, σ].
Additionally, by construction the variation of E [ψ, q, εr, σ] with respect to ψ vanishes

for the equilibrium profile Ψ (see Sec. 4.C). Therefore, I can find the equilibrium potential

distribution Ψ corresponding to a given distribution of the densities, i.e., σ(s), q(r),

and εr(r), by minimizing E with respect to ψ. Following these lines and incorporating

the numerically necessary discretization as outlined in Sec. 4.2.1, one finds the Euler-

Lagrange equations (Eqs. (4.31) - (4.33)) for the electrostatic potential, which depend on

the distance from the wall.

After determining the electrostatic potential distribution by solving Eqs. (4.31), (4.32),

and (4.33), I can use the resulting solution for ψ(r) = Ψ(r) in accordance with Eq. (4.11)

in order to determine the density functional and the following Euler-Lagrange equations

for the three number densities ̺:

ln(|C∗|̺j(r)) = µ∗
j −

∑

α

∫

V

d3r′ pα
∂Φ(r)

∂nα(r′)
ω
(α)
j (r′ − r) +

∂βE
∂̺j(r)

. (4.15)

Here |C∗| is the size of one of the cells used in the numerical implementation (see Sec.

4.A), µ∗
j = βµj − ln(Λ3

j/|C∗|) is the dimensionless effective chemical potential of species

j, and the prefactor is pα = −1 for vectorial weights ωα and pα = 1 for scalar weights.

The three terms result from the ideal gas contribution, the FMT contribution, and the

electrostatic interactions, respectively.

4.2.4 Choice of parameters

For solving the Euler-Lagrange equations obtained above (Sec. 4.2.3) and in Sec. 4.C,

there are certain parameters which have to be fixed in advance. Besides the surface charge

distribution σ(s), which is varied for each calculation, and the permittivity, which will be
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discussed later (see Sec. 4.3.1), the bulk packing fraction η, the ionic strength I of the bulk

liquid, the radii of the three particle types Rj , and the parameter χ = 9πlB0

R1
(see Sec. 4.C)

have to be fixed. When choosing these parameters, I took the respective values for water

as guidance, resulting in particle radii R1 = R2 = R3 = 1.5 Å and χ ≈ 1.05× 104, where

the vacuum Bjerrum length is lB0 = 56.8 nm. Furthermore, inspired by Ref. [73], the bulk

packing fraction is set to η = 0.4257, which together with the chosen particle diameter

corresponds to the bulk number density ̺totb = ̺1,b + ̺2,b + ̺3,b = 50mol l−1 ≈ 30 nm−3.

Finally, the ionic strength is set to I = 100mM ≈ 6× 10−2 nm−3.

4.3 Results and Discussion

4.3.1 Structure of the permittivity

Before moving on to the discussion of the various charge patterns in the following sections,

this paragraph focuses on the structure of the permittivity used in the present chapter.

It has previously been shown [152], that a solvent density dependent, linear interpolation

of the permittivity between its vacuum value ε
(0)
r = 1 and its value for the pure system

(water) ε
(1)
r = 80 matches the behavior of fluid mixtures very well. I have therefore

compared two different approaches to set the permittivity in the current study: one is

a constant permittivity εr = 80 throughout the whole system, the other one is a linear

interpolation between the two extreme values, scaled with the weighted solvent density:

εr(r) = ε(0)r +
3(ε

(1)
r − ε

(0)
r )

4π̺1,bR3
1

∫

V

d3r′ ̺1(r − r′)ω
(3)
1 (r); (4.16)

the structure of this equation is adopted from the FMT approach. In Eq. (4.16) the

solvent density is essentially averaged over a particle radius, whereas for the constant

permittivity the solvent density is basically averaged over an infinite region. Calculating

the density profile for a homogeneous charge distribution σ(s) = const, I have compared

these two approaches for the permittivity. In Fig. 4.1 the electrostatic potential Ψ for

two homogeneous wall charges σ = 10−4 e/(4R2
1) and σ = 10−5 e/(4R2

1) and for the two

cases of the permittivity treatment is shown as function of the normal distance z from

the wall. Since there is no lateral variation of the surface charge distribution, there is

consequently also no dependence of the electrostatic potential on the lateral position,

which is why only the z−dependence is shown here. Although the two expressions used

for the permittivity are quite distinct, the two approaches yield rather similar results.

All differences solely occur on a length scale of fractions of the particle radius R1 away
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Figure 4.1: Electrostatic potential Ψ(r) as function of the distance z from the wall for
homogeneously charged walls, i.e., σ = const. Due to the homogeneous charge distri-
bution, Ψ does not depend on x and y. The curves differ both in the strength of the
wall charge (σ = 10−4 e/(4R2

1) and σ = 10−5 e/(4R2
1)) and in the way the permittivity is

incorporated. For the crosses the permittivity in the whole system is constant (εr = 80)
and for the squares the permittivity at each position is calculated according to Eq. (4.16).
Albeit being vastly different, both treatments of the permittivity produce nearly identical
results. All differences occur on the length scale of fractions of the particle radius, where
the varying permittivity leads to stronger potentials at the wall.

from the wall, where the varying permittivity εr leads to stronger potentials. This is

due to the vanishing solvent density ̺1(r) = 0 for distances smaller than a particle radius

z < R1, caused by steric repulsion. Therefore, close to the wall the permittivity decreases,

which in turn causes an increasing potential Ψ. However, this increase is restricted to

the proximity of the wall, leading to basically indistinguishable profiles even at distances

of the order of the particle radius. Since treating the permittivity according to Eq.

(4.16) is computationally very costly and the benefits are apparently minor, I treat the

permittivity as εr(r) = constant = 80 throughout the whole system, i.e., for all r ∈ V
with V = {r ∈ R3|(x, y, z > 0) = (s, z > 0)}.

4.3.2 Constant wall charge distribution

After studying the influence of the permittivity and describing the form used in the

present chapter in the previous Sec. 4.3.1, I now turn towards the analysis of various

surface charge patterns, where I first focus on the simplest case of a spatially constant

surface charge distribution σ = const and vary solely its strength. First, I studied the

case of a vanishing surface charge σ = 0. In this case, due to the hard sphere nature
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of the model, close to the wall layering of the particles occurs (see Fig. 4.2). This is

an expected result, as it has been reported in numerous previous studies (e.g., Ref. [73,

153]). If the strength of the surface charge density is slowly increased, one can identify

the effects introduced in the system via electrostatics. In Fig. 4.2 the solvent densities for

three different surface charge strengths is shown, ranging from a neutral wall (σ = 0) to

a highly charged wall with σ = 10−1 e/(4R2
1) ≈ 16 µCcm−2. As can be seen in Fig. 4.2,

only for high wall charges, the density profiles of the solvent start to deviate from the ones

found for pure hard spheres with no electrostatic addition. For these high wall charges

the solvent density decreases in close proximity to the charged substrate. However, the

size and the range of these deviations are relatively small and even for distances of about

two particle radii away from the wall, the profiles reduce to the purely hard sphere ones.
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Figure 4.2: Solvent density ̺1(r) as function of the distance z from the wall for three
cases of homogeneous wall charges. The case σ = 0 corresponds to an uncharged wall.
The resulting profile is caused only by steric repulsion of the hard spheres. One can see,
that only for high wall charges, i.e., σ = 10−1 e/(4R2

1) ≈ 16 µCcm−2, the density profile
deviates from the purely hard sphere profile. For these wall charges the density of the
solvent decreases close to the wall, however the amplitude and the range of these changes
are rather small. Still, the layer structure, caused by the hard spheres, is predominant.

By studying the charge densities q, and by that the profiles of the ions, a similar

observation can be made. In Fig. 4.3, the charge density q is shown for a wide range of

wall charges σ, for which the charge density and thus the profiles of the ions vary only by

a proportionality factor. However, for high wall charges, the behavior changes. For these

instances, the charge density increases directly at the wall and decays faster with the

distance z from the wall than in the case of lower charge densities, as can clearly be seen

in Fig. 4.3. In combination with the findings for the solvent particles, the reason for this
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effect is obvious. For small wall charges σ, the fluid reacts by simply swapping co- and

counterions, so that the total density as well as the solvent density is largely unaffected

by this replacement of ions. However, if the surface charge is becoming too large, this

simple replacement is insufficient to neutralize the charge apparent at the wall. Thus,

the density of the counterions has to increase even further by superseding, in parts, the

solvent particles. This explains the decrease in the solvent density ̺1 close to the wall in

the case of high wall charges and the change in the shape of the charge density profiles.
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Figure 4.3: Reduced charge density q(r) = e(̺2(r)− ̺3(r)) as function of the distance
z to the wall for three cases of homogeneous wall charges. For all three cases one can
clearly see the layer structure in the densities, which is caused by the hard sphere nature
of the particles. Similar to the solvent density, the reduced charge density stays more or
less constant for a wide range of wall charge strengths and deviates noticeably from the
low wall charge behavior only for high wall charges, i.e., σ = 10−1 e/(4R2

1) ≈ 16 µCcm−2.
In this case the charge density increases upon approaching closely the wall and decreases
for distances larger than three particle radii, when compared with the profiles for smaller
wall charges. Also, the hard sphere nature of the particles is still important for high wall
charges, as expressed via the layering, which is still apparent.

In addition to the number density profiles, I also studied the profile of the electrostatic

potential βeΨ occurring in the case of charged substrates. In Fig. 4.4 it is shown as

function of the distance z from the wall for three strengths of the wall charge density.

The observations here are similar to the previously discussed cases of the number density

profiles. For most of the range of wall charges σ studied here, the potential is only varying

by a proportionality factor so that the overall shape of its decay with increasing distances

z from the wall stays the same, similar to the results found for the number density profiles.

Again, this behavior changes for high values of the surface charge density σ. As previously

seen for the particle profiles in Figs. 4.2 and 4.3, the decay of the electrostatic potential
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Figure 4.4: Reduced electrostatic potential βeΨ as function of the distance z from
the wall for three cases of homogeneous wall charges (various symbols). For all three
cases one can clearly see the linear behavior in the region z < R1, which occurs because
there is no charge present. Also, in all three cases the potential decreases monotonously
with increasing distance z. However, in the case of high wall charge densities, i.e., σ =
10−1 e/(4R2

1) ≈ 16 µCcm−2 (blue circles), there is an apparent change in the behavior:
the amplitude of the potential right at the wall decreases, and the profile decays faster in
normal direction. Additionally, the results for the wall charge density σ = 10−2 e/(4R2

1),
calculated within the model used in Chap. 3 and Ref. [6], is shown here as a black line
(see the inset). This prediction matches the present results remarkably well.

Ψ changes upon approaching the wall charge density σ = 10−1 e/(4R2
1) ≈ 16 µCcm−2.

For sufficiently high wall charges, the potential value right at the wall drops below the

corresponding value for lower wall charges, and the decay converges more slowly to the

asymptotic behavior with the Debye length as decay length. This change of behavior can

be explained in terms of the observations made for the charge distribution q, as a higher

absolute value of the charge (the sign is naturally the opposite of the sign of the wall

charge) leads to a stronger screening of the wall charges and thus to smaller values of

the electrostatic potential Ψ. It also clearly marks the range of surface charge strengths,

within which the linear approximation breaks down. Furthermore, Fig. 4.4 shows the

result for the corresponding situation of a homogeneous wall charge σ = 10−2 e/(4R2
1)

calculated within the framework of Chap. 3 (Ref. [6]) (black line, see the inset). This

result is a perfect match of our findings for the wall charge within the linear regime. This

is remarkable, as the framework of Chap. 3, i.e., Ref. [6], uses a heavily simplified fluid

model. Still, as shall be seen in the following sections, it appears to provide reliable results

for the electrostatic potential Ψ.

With these insights into the general ranges for which the surface charge σ leads to
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structural effects even for a homogeneously charged wall, I move on towards more complex

surface charge distributions.

4.3.3 Sinusoidal wall charge

As a first step towards more complex surface charge patterns, I first turn towards a

one-dimensional sinusoidal charge distribution

σ(x, y) = σmax sin(2πx/λ) (4.17)

with amplitude σmax and wavelength λ. In contrast to the previous cases studied in

Sec. 4.3.2, there is no net charge on the wall. Because of this absence of a net charge,

one expects a very short-ranged influence of the wall structure on that of the fluid. As

can be seen in Fig. 4.5, the effect of the surface charge inhomogeneity on the solvent

is indeed limited to a very short range with a small amplitude, as no effects of solvent

particle displacement are visible. This hints at small charge density values inside the

fluid. In fact, the difference between the two regions of linear and nonlinear fluid response

(appearing for σ = const) seems to vanish, or at least the transition seems to be shifted

as a function of the wall charge amplitude σmax. This is in line with the observation that

in the case of the sinusoidal surface charge distribution the solvent density ̺1(r) exhibits

no visible deviations from the profiles found for a purely hard sphere system without any

electrostatics (see Fig. 4.5).

However, when moving on to the charge density distribution q(r) ≡ e(̺2(r)− ̺3(r)),

which is shown in Fig. 4.6, there are clear effects specific to the sinusoidal charge distri-

bution. Similar to Fig. 4.3, in Fig. 4.6 the charge density distribution q(r) is shown as

a function of the distance z from the wall. First, as already suspected from the solvent

density profiles ̺1(r) in Fig. 4.5, one can see, that the amplitude of the charge density

distribution inside the fluid is indeed significantly smaller than in the case of an electro-

statically homogeneous wall. This small amplitude leads to apparent ”plateaus” of the

profiles, which occur for numerical reasons. This effect, however, is of no importance for

any of the following conclusions. Second, the profiles in Fig. 4.6 clearly show, that the

wavelength λ of the surface charge pattern has a strong influence on the decay behavior

of the charge density inside the fluid. With increasing periodicity, i.e., increasing λ, the

decay length of the charge density profiles increases, too. Whereas the charge density

decays to (numerically) vanishing values within a length of only a few particle radii for a

wavelength of λ = 1 × R1, it seems to converge to an asymptotically exponential decay

for larger wavelengths of the surface charge pattern σ(s). Furthermore, as stated previ-
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Figure 4.5: Solvent density ̺1(r) for a sinusoidal surface charge distribution as func-
tion of the distance z from the wall for two values of the wall charge strength [σmax =
10−3 e/(4R2

1) and 10−1 e/(4R2
1)] and three values of the period length [λ = 1 × R1, 3 ×

R1, and 9 × R1]. The two wall charge amplitudes are taken from the two regimes found
in Sec. 4.3.2, with σmax = 10−3 e/(4R2

1) being an exemplary value for the linear response
regime. The other value of the wall charge amplitude, σmax = 10−1 e/(4R2

1), is taken from
the suspected nonlinear response regime, as identified in Sec. 4.3.2. There is no visible
lateral variation of the profiles, because the laterally varying surface charge density is not
strong enough to influence the neutral solvent number density profiles. The profiles show
the well-known layering of hard spheres close to a hard wall. When compared with Fig.
4.2, it is clearly visible, that neither the wall charge amplitude nor the period length of
the wall charge distribution σ(s) has any influence on the structure of the solvent density
̺1(r).
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Figure 4.6: Reduced charge density q(r) as function of the distance from the wall z
evaluated at the maximal amplitude, i.e., at x = λ/4, for two values of the wall charge
strength [σmax = 10−3 e/(4R2

1) and 10−1 e/(4R2
1)] and three values of the period length

[λ = 1 × R1, 3 × R1, and 9 × R1]. The two wall charge amplitudes are taken from the
two regimes found in Sec. 4.3.2, with σmax = 10−3 e/(4R2

1) being an exemplary value
for the linear response regime. The other value of the wall charge amplitude, σmax =
10−1 e/(4R2

1), is taken from the suspected nonlinear response regime, as identified in
Sec. 4.3.2. Concerning the lateral variation of the profiles shown, it is strictly following
the shape of the surface charge distribution, with the lateral position chosen here serving as
an example. The known effect of cancellation of significant digits in the number densities
generate the loss of precision for the charge density profile, leading to the plateaus visible
in the profiles. The wavelength λ of the underlying surface charge structure σ(s) (see
Eq. (4.17)) clearly influences the decay behavior of the charge density. With increasing
period length, the decay length increases. In order to highlight, that the amplitude σmax of
the charge distribution has apparently no further influence than that of a proportionality
factor, here the charge density q is reduced accordingly by σmax.

ously for the solvent density profiles ̺1(r) in Fig. 4.5, the profiles for the charge density

q(r) in the fluid show no dependence on the amplitude of the surface charge distribution,

although the two values chosen for the amplitude σmax were taken from the two regimes

of different fluid reaction, which were found in Sec. 4.3.2.

Finally, as for the homogeneous wall charge (see Sec. 4.3.2), I investigated the elec-

trostatic potential Ψ for the case of a sinusoidal surface charge pattern σ(s) (see Eq.

(4.17)). In Fig. 4.7 the electrostatic potential Ψ is shown for three different wavelengths

of the surface charge (λ = 1 × R1, 3 × R1, and 9 × R1). Due to the lack of an effect, as

has been shown in Figs. 4.5 and 4.6, here the amplitude of the surface charge pattern

is kept constant at σmax = 10−3 e/(4R2
1). The various data points for a single value of z

correspond to different lateral positions x along one period of the surface charge pattern.
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First, although the different wavelengths clearly influence the charge density q of the fluid

right next to wall, as can be inferred from Fig. 4.6, there seems to be no significant effect

of the surface charge period length on the strength of the electrostatic potential Ψ at the

wall. Second, also like seen for the charge density q, the electrostatic potential clearly

decays exponentially with increasing distance z from the wall. The decay length of Ψ also

clearly depends on the wavelength of the surface charge, where an increasing wavelength

λ leads to an increased decay length. Note, that the deviation from the exponential decay

for the case λ = 1× R1 is due to the numerically caused lack of precision in determining

the charge density (see Fig. 4.6). In Fig. 4.7, in addition to the data points, there are

three lines indicating the exponential decay corresponding to the prediction in Chap. 3,

i.e., Ref. [6]. There, the decay as a function of z turned out to be proportional to

βeΨ ∝ exp
(
−
√
κ2 + |q2

‖|z
)
, (4.18)

where κ is the inverse Debye length and |q‖| is the absolute value of the Fourier component

of the dominating lateral pattern of the surface charge distribution, which in the present

case of the sinusoidal surface charge pattern (see Eq. (4.17)) equals 2π/λ. Note that

neither the amplitudes of the lines shown in Fig. 4.7, nor the decay lengths are fitting

parameters. The lines strictly follow the results obtained from the counterpiece of Eq.

(4.18) in Chap. 3, respectively Ref. [6]. Although the system described in Chap. 3

and Ref. [6] was more basic and the description of the fluid was rather simplistic, the

findings deliver remarkably accurate predictions when compared with the results of the

present analysis using a significantly more elaborate fluid description. With this very

good agreement with previous, more simplistic approaches, I move on to compare further,

more complex, surface charge distributions σ(s) with the predictions made in Ref. [6].

4.3.4 Various surface charge patterns

Moving on from the somewhat simple surface charge patterns σ(s) discussed in Secs.

4.3.2 and 4.3.3, in the present section I investigate more complex charge distributions.

The four principal cases of charge patterns studied here are shown in Fig. 4.8, where

both lateral lengths Lx and Ly, the dimensionless charge width D, and the amplitude

σmax have been varied throughout the calculations. This variation of parameters leads,

inter alia, to a variation of the effective surface charges, i.e., the averaged surface charge

strengths σav, as the area fraction of the charged area compared to the total area of the

surface charge unit cell Lx × Ly is changed. The influence of this change can be seen

in Fig. 4.9. Here, the charge density q(r) is shown as function of the distance z from
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Figure 4.7: Electrostatic potential Ψ as a function of the distance z from the wall for all
lateral positions (x, y) studied for three period lengths (λ = 1×R1, 3×R1, and 9×R1) of
the sinusoidal wall charge distribution (see Eq. (4.17)). The amplitude of the wall charge
is set to σmax = 10−3 e/(4R2

1) for all these period lengths. Different data points of one
color (shaded areas) for one normal distance correspond to various lateral positions (x, y)
along one period of the surface charge pattern. Laterally varying strength of the surface
charge leads to these broad ranges of data points. The width of these ranges provides
information about the strength of the lateral variation: the wider the range, the stronger
is the lateral variation of the electrostatic potential. The straight lines correspond to an
exponential decay with a decay length, which results from a combination of the Debye
length and the corresponding inverse dominant length scale following the prediction of
the previous study discussed in Chap. 3 (see Eq. (4.18) and Ref. [6]). The agreement
between this prediction and the present data is remarkable.

the wall. Note, that for the cases shown here, which all correspond to the case of the

shortest lateral wavelength considered (λ = 1 × R1), the dependence of the potential Ψ

on the lateral position s = (x, y) disappears for z & R1. Therefore, the shown charge

densities do not exhibit any visible lateral dependence. In Fig. 4.9 one can clearly see

that, independent of the surface charge amplitude σmax, all surface charge patterns lead to

qualitatively similar results. The charge decays exponentially with z and shows clear signs

of the hard core nature of the particles at small distances from the wall. Furthermore,

one can infer from these graphs, that the charge density profiles q(z) smoothly converge

towards the ones found in Fig. 4.3 as the area fraction of the charged surface is increased.

Especially in the case of the stronger wall charge amplitude (σmax = 10−1 e/(4R2
1), Fig.

4.9 (b)) this is interesting, because these profiles and their associated range of averaged

surface charges coincide with the transition region from a linear to a nonlinear fluid

reaction, as has been found previously (Sec. 4.3.2). The profiles in Fig. 4.9 corresponding
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Figure 4.8: Further surface charge patterns σ(s) considered in the present section. The
red areas are regions with nonvanishing surface charges σ(s) = σmax, whereas the white
regions are uncharged. All these patterns correspond to the elementary cell of the surface
charge pattern, which is periodically continued in both lateral directions along the wall
surface. In panel (b) this leads to a striped pattern.

to a small area fraction and a weak averaged surface charge, respectively, still exhibit a

linear response behavior, because the reduced profiles for both wall charge amplitudes

σmax = 10−1 e/(4R2
1) and 10−5 e/(4R2

1) are the same. Thus, the amplitude is solely a

proportionality factor, which matches the behavior characterizing the linear response

regime. However, if the area fraction and thus the averaged wall charge is increased,

deviations from the respective profiles for the above two wall charge amplitudes increase,

until finally the two profiles for the fully charged wall match the previous results in Fig.

4.3. Therefore, the transition between these regions is smooth and does not show any

sign of a step-like variation.

Moving on to the case of longer lateral wavelengths, i.e., λ = 3× R1 and λ = 9× R1,

close to the wall the charge density q(z) starts to exhibit a lateral structure. In contrast

to the profiles shown in Fig. 4.9, the lateral position s influences the local charge dens-

ity q(s, z), for boundary conditions with these longer lateral wavelengths. This lateral

variation is even more visible in the profiles of the electrostatic potential. Thus, in the

following the behavior of the electrostatic potential Ψ for these more complicated charge

distributions σ(s) is studied. Here, I focus on surface charge patterns of the form shown

in Fig. 4.8 (b):

σ(s) =

{
σmax, for Nλ ≤ x ≤ (N +D)λ

0, otherwise,
(4.19)
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Figure 4.9: Reduced charge density q(r) as function of the distance z from the wall
and of the area fraction of the charged area per unit cell area for two cases of the wall
charge strength: σmax = 10−1 e/(4R2

1) and 10−5 e/(4R2
1). Since the lateral variation of

the electrostatic potential Ψ de facto disappears for z & R1 for all the situations shown
here, there is no visible dependence of the displayed profiles on the lateral position. All
the profiles shown here correspond to various realizations of the charge patterns shown
in Fig. 4.8. It turns out that the actual configuration (i.e., Figs. 4.8 (a), (b), (c), or (d))
is not important. Instead, only the averaged surface charge, given by the area fraction
of the charged surface, appears to matter. One can clearly see, how the increase of the
averaged wall charge also leads to increased charge densities inside the fluid and how the
curves for increasing area fraction converge towards the ones for the homogeneous wall
as shown in Fig. 4.3. Furthermore, the range of averaged surface charges shown in panel
(b) coincides with the transition region as identified in Sec. 4.3.2. Therefore, panel (b)
resolves this region in more detail.
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with σmax as the amplitude, N ∈ Z, λ as the wavelength, and D being the dimensionless

width of the charged stripe. I studied the cases λ = Lx = 1 × R1, 3 × R1, and 9 × R1

with D × Lx = 0.5× R1. These choices are taken for the sake of simplicity. The findings

discussed in the following can easily be verified also for the other charge distributions

shown in Fig. 4.8. The resulting profiles for the electrostatic potential Ψ are shown in

Fig. 4.10. Here the data are shown together with the asymptotic Debye decay (red solid

lines) and with the results for the same boundary conditions σ(s), but obtained within

the framework of Chap. 3, i.e., Ref. [6] (black lines).

First, I note the offset between the three profiles, which is due to the fact, that the

net charge differs for the three displayed cases. Here, however, the potential Ψ is reduced

with respect to the amplitude σmax only. If one accounts for the different net charges as

well by determining the averaged charge and reducing Ψ with respect to the averaged

surface charge σav instead of the maximum charge σmax, all three cases render the same

asymptotic profile. Second, the wavelength λ of the surface charge pattern σ(s) strongly

influences the behavior of the potential Ψ close to the wall. With increasing wavelength,

the potential exhibits a strong dependence on the lateral position, as can be inferred

from the range of potential values at z = 0. Also, the decay length of the electrostatic

potential close to the wall strongly increases with increasing wavelength λ. Far away from

the wall all three cases clearly match the predictions of an exponential decay with the

decay length given by the Debye length κ−1. Finally, the comparison with the results

calculated along the lines proposed in Chap. 4 and Ref. [6] again reveals remarkable

agreement, at least for the two larger wavelengths. The results of the calculation within

the framework of Chap. 3 and Ref. [6], respectively, are obtained in the middle of one of

the charged areas. Therefore, they should follow the highest values of the data obtained

from the calculations of the present study. This can easily be verified. The reason for the

discrepancy in the case of the smaller wavelength λ = 1×R1 can be found by comparison

with the situation discussed in Sec. 4.3.2. In that section I found a clear change in the

behavior of the electrostatic potential Ψ for high wall charges, where the fluid reaction

becomes nonlinear. In Fig. 4.10, the effective surface charges of the three cases lie around

this transition, with the case λ = 9×R1 still being in the linear regime, the case λ = 1×R1

being in the nonlinear regime, and the case λ = 3×R1 being very close to the transition.

Due to that, I find very good agreement for the largest of the wavelengths and increasing

deviations for decreasing wavelengths. Especially for the smallest wavelength, λ = 1×R1,

one is clearly in the nonlinear regime, which indicates the failure of the model used in

Chap. 3 and Ref. [6] (see Fig. 4.4 in Sec. 4.3.2).

Finally, I take a closer look at the decay of the electrostatic potential Ψ for the

wavelength of λ = 9 × R1. In Fig. 4.11, the asymptotic behavior of the electrostatic
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Figure 4.10: Scaled electrostatic potential Ψ as a function of the distance z from the
wall for all lateral positions s studied for three wavelengths λ = 1×R1, 3×R1, and 9×R1

of the wall charge distribution; here it is a pulse wave-like charge distribution (see Fig.
4.8 (b) and Eq. (4.19)). The duty cycle D, i.e., the dimensionless width of the charged
stripe, remains the same (DLx = 0.5 × R1) for all three cases. Similar to Fig. 4.7, the
region covered by the spread of the data is due to different lateral positions being shown
for the same distance from the wall. Again, this gives information about the strength and
the range of lateral variations of the electrostatic potential. However, in contrast to the
potentials shown in Fig. 4.7, here the wall carries a net charge. This is the reason for the
visible long-ranged decay, which corresponds to the exponential decay of the associated
net charge with a decay length equal to the corresponding Debye length κ−1 (see Eq.
(4.20)). This decay behavior far from the wall occurs for all three cases. However, close
to the wall there is a much more complicated decay behavior, which strongly depends
on the wavelength of the surface charge pattern. As in previous graphs, the black lines
correspond to the results for the same calculations within the framework of Chap. 3 (Ref.
[6]). For the two longer wavelengths, λ = 3 × R1 and 9 × R1, these results again match
the present ones very well. The deviation occurring for the shortest wavelength is due to
the fact, that this case is outside the linear response regime (see Sec. 4.3.2).
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potential

Ψav ∝ exp(−κz), (4.20)

caused by a nonvanishing average charge σav of the surface with κ as the Debye length,

is subtracted from the data to study shorter ranged contributions to the behavior of the

potential close to the wall. As given in Eq. (4.18), the theoretical predictions from Chap.

3, i.e., Ref. [6] for a linear response approximation hints at a decay with a decay length

depending on the wavenumber q‖ of the surface charge pattern σ(s). In fact, there are

multiple further exponential decays involved, all of which depend on the wavenumber;

Eq. (4.18) represents only the next smaller (to 1/κ) length scale of the decay of the

potential. This prediction is shown as a green solid line in Fig. 4.11. Again, I also

include the results given by Chap. 3 (Ref. [6]) for the same surface charge distribution

(blue circles). The various data points for the same distance z correspond to different

lateral positions. Close to the wall, the potential Ψ exhibits a faster decay than the one

given by the displayed prediction (green line), which agrees with the expected occurrence

of further short-ranged decays influencing the behavior in close proximity to the wall.

However, within the intermediate range of distances from the wall (6×R1 & z & 2×R1),

the data closely follow the lowest order predictions from Chap. 3 (Ref. [6]). The present

data clearly shows an exponential decay, with the decay indeed given by Eq. (4.18).

Nevertheless, even upon closer examination, our findings match remarkably well with the

full corresponding results from Chap. 3 (see Ref. [6]) (blue dots).

Finally, I compare the previously discussed surface charge patterns with respect to the

surface contribution (see Refs. [124, 125])

ΩS =
Ωeq + pV

A
(4.21)

of the grand potential Ωeq, where p is the bulk pressure, V = |V| is the size of the system,

and A = |∂V| is the area of the charged wall. Note that the quantity ΩS, which has

the dimension of energy per area, is sometimes called ”surface tension”, whereas some

authors decompose it into the surface tension of a uniform wall, the line tension, etc. ΩSA

measures the cost of free energy to create an area A with the respective surface charge

pattern. The resulting values for the various configurations of the wall charge are shown

in Fig. 4.12. There, the surface contributions ΩS are shown for a surface charge amplitude

of σmax = 10−1 e/(4R2
1), or σ = 10−1 e/(4R2

1) for the constant wall charge, respectively.

For smaller wall charge amplitudes, there is no significant effect visible. For the shown

strength of the surface charge, however, there are some interesting features. First, the

surface contribution ΩS for the constant surface charge distribution is much higher than
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Figure 4.11: Electrostatic potential Ψ reduced by the surface charge amplitude σmax as
a function of the distance z from the wall for all lateral positions s studied for the case of
an underlying surface charge pattern σ(s) corresponding to Fig. 4.8 (b) with wavelength
λ = 9 × R1. Since all lateral positions are shown, there are multiple data points for one
distance z, leading to the region covered by the spread of the data. Additionally, the
asymptotic profile Ψav with the Debye length 1/κ as decay length is subtracted from the
data in order to gain insight into the next shorter, subdominant length scale involved (see
Eq. (4.20)). The green line corresponds to this shorter length scale as it is obtained from
Eq. (4.18). Furthermore, the blue circles depict the results for the same system derived
via the framework of Chap. 3 (Ref. [6]). Not only do the data follow the theoretical
predictions very well, also both data sets match remarkably well, despite large differences
in the details of the fluid description.

for all the other cases. Because the overall charge in this case is the highest, this large

influence on the structure is understandable. Second, in the case of the sinusoidal wall

charge distribution, the surface contribution ΩS clearly increases with the wavelength of

the surface structure. This is understandable, too, because the lateral variation of, e.g., the

electrostatic potential, and also the range of this variation normal to the surface, becomes

more pronounced for increasing wavelengths (see Figs. 4.7 and 4.10), which reflects the

influence of the surface on the fluid. Thus, the surface contribution ΩS increases for

larger wavelengths. This effect, however, seems to be reversed if the surface is arranged

as shown in Fig. 4.8(b), i.e., as a striped pattern. For this case Fig. 4.12 indicates, that the

surface contribution ΩS decreases for increased wavelengths. However, in contrast to the

sinusoidal charge pattern, the striped pattern carries an average charge, which increases

with decreasing wavelength (DLx is kept constant, see Fig. 4.12). This competition of

increasing range and decreasing average charge leads to the observed behavior. Thus, the

surface contribution ΩS nicely echoes the previous findings, for which the fluid structure
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depends on both the average charge of the wall, especially for small scale surface charge

patterns (see Fig. 4.9), and the wavelength of the surface charge distribution (see Figs.

4.10 and 4.11).

The observed dependence also provides information about the solubility of particles

carrying a surface charge. As mentioned above, the surface contribution ΩSAmeasures the

cost of free energy to form an interface of area A. Therefore, large surface contributions

lead to weak solubilities, because creating the interface is energetically costly. The planar

surface charge patterns studied here can be regarded as surface segments of particles,

which are large compared to the fluid constituents, i.e., for which a planar surface is an

acceptable approximation. Hence, I find the solubility of such large particles, which carry

a surface charge pattern associated with the corresponding surface contribution ΩSA (see

Fig. 4.12), to vary with the wavelength and the average charge of the pattern.
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Figure 4.12: Dimensionless surface contribution ΩS to the grand potential for the differ-
ent surface charge configurations studied here (see Eq. (4.21)). For all cases, the surface
charge amplitude is set to σmax = 10−1 e/(4R2

1), or σ = 10−1 e/(4R2
1) for the constant wall

charge, respectively. In the case of a purely repulsive hard wall, the surface contribution
is βΩSR

2
1 = 0.36972 (not shown here). For values of the wall charge smaller than the one

shown here, the variations of ΩS are negligibly small. Additionally, for the striped pat-
tern the duty cycle D, i.e., the dimensionless width of the charged stripe, is kept constant
(DLx = 0.5 × R1). As the overall charge in the case of the constant wall charge is the
highest by far, this case clearly shows the largest surface contribution ΩS. However, for
the other cases with spatially varying surface charge the surface contribution ΩS depends
on the wavelength of the pattern and on the average charge of the wall.
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4.4 Conclusions and summary

In the present chapter the effects of surface charge heterogeneities on a nearby electro-

lyte solution have been investigated with respect to the density profiles of all three fluid

components and the electrostatic potential inside the system. The fluid comprises a neut-

ral solvent and a single univalent salt component. They are treated explicitly as hard

spheres by means of classical density functional theory within the framework of funda-

mental measure theory, which has been proven to be a powerful approach to study fluid

structures in terms of number density profiles [46, 57, 73, 121]. In order to gain further

insight into this system, a variety of surface charge patterns has been studied, starting

with the case of a homogeneous wall charge distribution (see Sec. 4.3.2). For such homo-

geneously charged walls I have naturally found no dependence of any of the profiles on

the lateral position. For increasing distances from the wall (see Figs. 4.2, 4.3, and 4.4) I

have been able to identify an exponential decay on the length scale of the Debye length

κ−1 for all studied values of the constant surface charge density. Beyond that, the density

profiles of the three fluid components are dominated by well-known layering effects caused

by the hard sphere nature of all particles. Furthermore, for various wall charge strengths

I have identified two regimes of the fluid response. For low surface charges I have found a

linear response of the fluid, whereas replacement of solvent particles by counterions leads

to nonlinear response phenomena for high surface charge strengths.

In Sec. 4.3.3, replacing the homogeneously charged (and therefore overall charged)

wall by a sinusoidal charge distribution (with no overall charge), I have found a strong

dependence of both the solute densities and the electrostatic potential on the wavelength

of the underlying surface charge pattern (see Figs. 4.6 and 4.7). However, the solvent

densities remain de facto unchanged upon a change of the wavelength (see Fig. 4.5). Also,

for all studied values, there are no dependences on the amplitude of the surface charge

other than a proportionality factor.

Finally, in Sec. 4.3.4 I have studied more complex surface charge structures, combining

both aspects discussed above: a nonvanishing net charge of the wall and small-scale

heterogeneities of the surface charge distribution (see Fig. 4.8). First, I have found a

way to fine tune the behavior of the fluid with respect to the transition between the

linear and the nonlinear response regime by adjusting the area fraction of the charged

surface and thus effectively tuning the net charge of the wall (see Fig. 4.9). Second, I

have found a clear dependence of the decay behavior of the electrostatic potential on the

lateral wavelength of the surface charge structure, where longer wavelengths translate into

a longer-ranged decay of the potential away from the wall (see Fig. 4.10). This effect, as
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well as all other behaviors of the decay of the potential found in the present study can

readily be understood on the basis of analytic predictions obtained in the previous Chap.

3 (cf. Ref. [6]), where a connection between the lateral wavelengths and the normal decay

behavior has been derived (see Eq. (4.18)). I note, that within the linear regime the

predictions of this previous study provide excellent agreements with the present results,

despite its much more simplistic fluid description. Finally, I compared the surface charge

distributions discussed in the present study in terms of the surface contribution to the

grand potential. This confirmed the different influences of the average surface charge as

well as of the wavelength of the actual surface charge distribution. Since the strength of

the surface contributions is linked directly to the solubility of the corresponding surfaces,

our analysis also provides insights into the solubility of large particles carrying a surface

charge.

In conclusion, the present study displays a powerful and very flexible approach to study

the effect on the density profiles and the electrostatic potential in contact with surfaces

with a broad range of possible surface charge heterogeneities. The fully three-dimensional

results reveal a strong sensitivity on the overall charge as well as on the detailed shape of

the surface pattern.

Building on previous, more simplistic fluid descriptions (Chap. 3, [6]), this framework

still can be extended in various ways in order to incorporate more realistic and sophist-

icated models. First, much more elaborate density functionals have already been used

to account for even more reliable fluid descriptions. These provide a starting point for

further extensions of the present analysis. For example, analyzing equal particle sizes and

low ionic strengths heavily narrows the range of occurrence of important effects, where,

e.g., Ref. [145] shows possible ways for studies beyond these restrictions. Second, in the

present study, no wetting or bulk phase transitions have been investigated. In the future,

the study of such transitions and their influence on the fluid behavior appears to be prom-

ising. Finally, the present study has been restricted to periodic surface charge patterns.

This is solely done for the sake of simplicity. The investigation of random, disordered

surface charge distributions is likely to lead to further interesting effects.
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4.A Details of the discretization of the system

In order to tackle the situation described in Sec. 4.2, the system of size Lx × Ly × Lz is

divided in Nx, Ny, and Nz cells in the respective directions of space. Each cell is of size

|C∗| = ∆∗
x ×∆∗

y ×∆∗
z with

∆∗
i =

Li

Ni

=
PiR1

Ni

, (4.22)

where ∆∗
i is the resolution of the numeric calculations with i ∈ {x, y, z}, and Pi is the

length in units of the particle radius R1. Consequently, ∆i = Pi

Ni

is the dimensionless

resolution and |C| = ∆x × ∆y × ∆z the dimensionless cell size. With this division into

cells, the position dependence can be captured by indices, which denote the respective

cell. E.g., ̺
(α)
i,j,k describes the density of particle species α ∈ {1, 2, 3} in the cell located at

the interval (i∆x, (i+ 1)∆x]× (j∆y, (j + 1)∆y] × (k∆z, (k + 1)∆z]. Let me note that —

in contrast to q,̺ = (̺1, ̺2, ̺3), and εr — the electrostatic potential Ψ is defined at the

corners of the cells, i.e., Ψi,j,k is the electrostatic potential at the point (i∆x, j∆y, k∆z).

This leads to the discrete version of the Euler-Lagrange equations (see Eq. (4.15))

lnϕ
(α)
i,j,k = µ∗

α −
∑

a,b,c,β

pβ
∂Φ

∂n
(β)
a,b,c

ω(β)
α (a− i, b− j, c− k) +

∂βE
∂ϕ

(α)
i,j,k

. (4.23)

Here, ϕ(α) = |C∗|̺α is the dimensionless density of species α, µ∗
α = βµα−ln(Λ3

α/|C∗|) is the
corresponding dimensionless effective chemical potential, and the prefactor is pβ = −1 for

vectorial weights ω(β) and pβ = 1 for scalar weights. The three terms result from the ideal

gas contribution, the FMT contribution, and the electrostatic interactions, respectively.

4.B Derivation of the expression for the electrostatic

field energy

As illustrated, e.g., in Ref. [144], one possible way of determining the equilibrium form

Ψ(r) of ψ(r) in Eq. (4.11) is a variational approach. Along these lines I introduce

E [ψ, q, εr, σ] =
∫

V

d3r

(
ε0εr(r)

2
(∇ψ(r))2 − q(r)ψ(r)

)
−
∫

∂V

d2s σ(s)ψ(s, 0), (4.24)

where q(r) = e(̺2(r) − ̺3(r)) is the local charge density, and σ(s) is the surface charge

density at the wall ∂V = {r ∈ R3|r = (s, z = 0) = (x, y, 0)}. Furthermore, the equilibrium
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distribution of the electrical potential Ψ has to fulfill the Poisson equation

∇(−ε0εr(r)∇Ψ(r)) = q(r) (4.25)

with the boundary condition corresponding to the slope at the wall. This is represented

by

ε0εr(s, 0)n(s, 0) · ∇Ψ(s, 0) = σ(s), (4.26)

where n(s, 0) = −ez is the outer normal vector at r = (s, 0). The boundary condition

corresponding to a homogeneous bulk system far from the wall is represented by

Ψ(s,∞) = 0. (4.27)

Provided the correct potential Ψ has been found, E can be rewritten as

E [Ψ, q, εr, σ] =
∫

V

d3r

(
ε0εr(r)

2
(∇Ψ(r))2 − q(r)Ψ(r)

)
−
∫

∂V

d2s σ(s)Ψ(s, 0)

(4.25)
=

∫

V

d3r

(
ε0εr(r)

2
(∇Ψ(r))2 −∇(−ε0εr(r)∇Ψ(r))Ψ(r)

)

−
∫

∂V

d2s σ(s)Ψ(s, 0)

p.i.
=

∫

V

d3r

(
−ε0εr(r)

2
(∇Ψ(r))2

)
−
∫

∂V

d2s

[
(ε0εr(s, 0)n(s, 0) · ∇Ψ(s, 0)) ·

Ψ(s, 0)

]
−
∫

∂V

d2s σ(s)Ψ(s, 0)

(4.26)
=

∫

V

d3r

(
−ε0εr(r)

2
(∇Ψ(r))2

)
, (4.28)

leading to

βUel.[̺] = −βE [Ψ, q, εr, σ]. (4.29)

Therefore, given the correct potential Ψ(r) for the given charge distribution q(r), the

electrostatic contribution to the density functional can be expressed via E [Ψ, q, εr, σ].

4.C Minimization of the auxiliary functional E

The auxiliary functional E , which is introduced in Eqs. (4.13) and (4.24), respectively,

is constructed in a way, that its variation with respect to the electrostatic potential ψ is

vanishing for the equilibrium potential distribution ψ = Ψ due to the Poisson equation
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(4.25) and its boundary conditions:

δE =

∫

V

d3r (ε0εr(r)∇ψ(r)(∇δψ)− q(r)δψ)−
∫

∂V

d2s σ(s)δψ +O(δq, δεr)

=

∫

V

d3r (∇(ε0εr(r)∇ψ(r)δψ)− ε0∇ · (εr(r)∇ψ)δψ − q(r)δψ)−
∫

∂V

d2s σ(s)δψ + . . .

=

∫

V

d3r ((−ε0∇ · (εr(r)∇ψ)− q(r))δψ) +

∫

∂V

d2s ((ε0εr(s, 0)n(s, 0) · ∇ψ − σ(s))δψ)

+ . . .

(4.25)
=

(4.26)
0× δψ +O(δq, δεr). (4.30)

From this it follows, that for a given and fixed distribution of particles and therefore for

a given and fixed charge distribution q and permittivity εr, the minimum of E is reached

for ψ = Ψ, i.e., the equilibrium potential can be found by a simple minimization of E .
This in turn leads to three types of Euler-Lagrange equations, depending on the distance

from the wall, which can be rewritten as

Ψi,j,0 =


2
(

1

∆2
x

+
1

∆2
y

+
1

∆2
z

) ∑

α,β∈{0,1}

εr;i−α,j−β,0



−1

·


 ∑

α,β∈{0,1}

εr;i−α,j−β,0

[
1

∆2
x

[2Ψi+1−2α,j,0

+ (Ψi+1−2α,j+1−2β,0 −Ψi,j+1−2β,0) + (Ψi+1−2α,j,1 −Ψi,j,1) +
1

2
(Ψi+1−2α,j+1−2β,1

− Ψi,j+1−2β,1)] +
1

∆2
y

[2Ψi,j+1−2β,0 + (Ψi+1−2α,j+1−2β,0 −Ψi+1−2α,j,0) (4.31)

+ (Ψi,j+1−2β,1 −Ψi,j,1) +
1

2
(Ψi+1−2α,j+1−2β,1 −Ψi+1−2α,j,1)

]
+

1

∆2
z

[2Ψi,j,1

+ (Ψi+1−2α,j,1 −Ψi+1−2α,j,0) + (Ψi,j+1−2β,1 −Ψi,j+1−2β,0) +
1

2
(Ψi+1−2α,j+1−2β,1

− Ψi+1−2α,j+1−2β,0)]] +
χ

|C|
∑

α,β∈{0,1}

qi−α,j−β,0 + 2
χ

|C|
∑

α,β∈{0,1}

σi−α,j−β


 ,
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Ψi,j,0<k<Nz
=


2
(

1

∆2
x

+
1

∆2
y

+
1

∆2
z

) ∑

α,β,γ∈{0,1}

εr;i−α,j−β,k−γ




−1

·


 ∑

α,β,γ∈{0,1}

εr;i−α,j−β,k−γ·

[
1

∆2
x

[2Ψi+1−2α,j,k + (Ψi+1−2α,j+1−2β,k −Ψi,j+1−2β,k) + (Ψi+1−2α,j,k+1−2γ

− Ψi,j,k+1−2γ) +
1

2
(Ψi+1−2α,j+1−2β,k+1−2γ −Ψi,j+1−2β,k+1−2γ)

]
+

1

∆2
y

·

[2Ψi,j+1−2β,k + (Ψi+1−2α,j+1−2β,k −Ψi+1−2α,j,k) + (Ψi,j+1−2β,k+1−2γ (4.32)

− Ψi,j,k+1−2γ) +
1

2
(Ψi+1−2α,j+1−2β,k+1−2γ −Ψi+1−2α,j,k+1−2γ)

]

+
1

∆2
z

[2Ψi,j,k+1−2γ + (Ψi+1−2α,j,k+1−2γ −Ψi+1−2α,j,k) + (Ψi,j+1−2β,k+1−2γ

− Ψi,j+1−2β,k) +
1

2
(Ψi+1−2α,j+1−2β,k+1−2γ −Ψi+1−2α,j+1−2β,k)

]]

+
χ

|C|
∑

α,β,γ∈{0,1}

qi−α,j−β,k−γ


 ,

Ψi,j,Nz
=


2
[(

1

∆2
x

+
1

∆2
y

+
1

∆2
z

)
+
κR1

∆z

] ∑

α,β∈{0,1}

εr;i−α,j−β,Nz−1




−1

·


 ∑

α,β∈{0,1}

εr;i−α,j−β,Nz−1·

[
1

∆2
x

[2Ψi+1−2α,j,Nz
+ (Ψi+1−2α,j+1−2β,Nz

−Ψi,j+1−2β,Nz
) + (Ψi+1−2α,j,Nz−1

− Ψi,j,Nz−1) +
1

2
(Ψi+1−2α,j+1−2β,Nz−1 −Ψi,j+1−2β,Nz−1)

]
+

1

∆2
y

[2Ψi,j+1−2β,Nz

+ (Ψi+1−2α,j+1−2β,Nz
−Ψi+1−2α,j,Nz

) + (Ψi,j+1−2β,Nz−1 −Ψi,j,Nz−1) (4.33)

+
1

2
(Ψi+1−2α,j+1−2β,Nz−1 −Ψi+1−2α,j,Nz−1)

]
+

1

∆2
z

[2Ψi,j,Nz−1 + (Ψi+1−2α,j,Nz−1

− Ψi+1−2α,j,Nz
) + (Ψi,j+1−2β,Nz−1 −Ψi,j+1−2β,Nz

)

+
1

2
(Ψi+1−2α,j+1−2β,Nz−1 −Ψi+1−2α,j+1−2β,Nz

)

]]
+

χ

|C|
∑

α,β∈{0,1}

qi−α,j−β,Nz−1

− κR1

∆z

∑

α,β∈{0,1}

εr;i−α,j−β,Nz−1(Ψi+1−2α,j,Nz
+Ψi,j+1−2β,Nz

+
1

2
Ψi+1−2α,j+1−2β,Nz

)


 .

Besides the dimensionless resolutions ∆i, the dimensionless cell volume |C|, the solvent

particle radius R1, and the Debye length 1/κ, the parameter χ = 9πlB0

R1
with the vacuum

Bjerrum length lB0 is introduced here.



Chapter 5

Conclusions and outlook

The goal of this dissertation was to study the behavior of electrolyte solutions adjacent

to inhomogeneous surfaces. Two different approaches within the framework of density

functional theory were used to analyze this behavior in terms of number density profiles of

the fluid components. Specifically, all three types of particles contained in the electrolyte

solution, the neutral solvent and two types of monovalent ions, were studied. The main

focus of the research was on the influence of heterogeneous distributions of interaction

sites on the surface of the substrate.

In Chap. 3, a basic, plain model was used with the goal of deriving closed-form ana-

lytical expressions. An electrolyte solution far from any bulk or wetting phase transition

was modeled within the framework of density functional theory using a Cahn-Hilliard-like

square gradient approximation (see Chap. 3.2.2). Nonelectrostatic interactions between

all three fluid components considered, the solvent and the ionic particles, were modeled by

a square-well pair potential (see Chap. 3.3.1), all electrostatic interactions were treated

on a mean field level via the electrostatic field energy. The electrolyte solution was then

assumed to be in contact with a chemically and electrostatically heterogeneous wall, and

four exemplary types of walls were studied. First, δ-like, isolated interaction sites were

analyzed in Sec. 3.3.3. Both types of interactions between wall and fluid particles were

studied. In the case of attractive nonelectrostatic interactions, where the wall directly in-

teracted only with the solvent particles, the solvent density consequently increased. This

density variation decayed on the length scale of the bulk correlation length ξ (see Figs.

3.2, 3.3, and 3.4). Furthermore, the change of the solvent density also led to changes

in the ion densities, which were proportional to the increase of the solvent density. In

contrast to this finding, the density of the solvent remained unchanged when analyzing

electrostatic δ-like interaction sites. This effect is a result of the model used here, in

which the deviations in the solvent density induced by the two types of ions even out

99
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because of symmetry reasons. The changes in the ion densities for this case of electro-

static interactions, however, were of much longer range than in the nonelectrostatic case.

Here, the ion density deviations decayed on a length scale given by the Debye length

1/κ ≫ ξ. Nevertheless, the density deviations of the ions decayed exponentially on this

longer length scale (see Fig. 3.5). To analyze the influence of competing length scales,

another length scale in the form of the size of a circular region of interaction was in-

troduced in Sec. 3.3.4. The analysis of such an interaction site of nonvanishing extent

revealed, that the resulting density profiles were very sensitive to the dominant length

scale. For bulk length scales (Debye length 1/κ, bulk correlation length ξ) dominating

the systems studied, the density profiles closely resembled the ones found for the δ-like

interactions. On the other hand, if the system was dominated by a length scale set by

the boundary conditions at the wall, the lateral density deviations closely resembled the

structures of the corresponding boundary condition. For intermediate regimes, where the

external length scales set by the boundary conditions on the wall and the internal length

scales set by the correlation lengths competed, a transition between the two extremes was

observed (see Fig. 3.7). Finally, the first model was used to study the influence of multiple

interaction sites, arranged as a regular hexagonal lattice, on the adjacent fluid (see Sec.

3.3.5). Here, again the size of the interaction sites was found to influence the amplitude

of the observed density deviations (see Fig. 3.8). In addition, the distance between the

interaction sites shaped the response of the density profiles, particularly with respect to

the influence of variation of the lateral wave number |q‖|. Despite its simplicity, this

first model still proved very versatile in studying different types and shapes of boundary

conditions.

To gain more insights into the behavior and enhance the precision of the analysis

of electrolyte solutions in contact with heterogeneously patterned substrates, the density

functional approach used in Chap. 4 was considerably refined. Building on the results and

also on potential shortcomings of the first method (Chap. 3), the density functional de-

scription was amended in several ways, including lifting the restriction to a linear response

regime and accounting for the previously neglected finite size of the fluid constituents. To

this end, the methods of fundamental measure theory were incorporated into the density

functional approach (see Sec. 4.2). In a first step, the resulting hard sphere fluid was

placed near a homogeneously charged wall (Sec. 4.3.2). For this homogeneous wall charge

distribution, the profiles obviously showed no lateral variation, but, confirming results

from the simple approach of Chap. 3, the observed density deviations showed an expo-

nential decay with increasing distances from the substrate, where the decay length was

again given by the Debye length 1/κ. In addition to this exponential decay, however, the

expected layering structure caused by the hard sphere nature of the fluid particles dom-
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inated the density profiles close to the hard substrate. Analyzing the resulting density

profiles for the homogeneously charged wall, two regimes of qualitatively different fluid

responses were found. For low surface charges there was a linear response of the fluid,

with the amplitude of the surface charge being merely a proportionality factor. Higher

surface charges, however, led to extrusion of the solvent particles and therefore to nonlin-

ear response phenomena (see Figs. 4.2, 4.3, and 4.4). Introducing lateral variation of the

surface charge distribution in the form of a sinusoidal charge distribution in Sec. 4.3.3

had a strong influence on impact of the surface pattern. In addition to the amplitude of

the surface charge, which had no effects other than being a proportionality factor, both

ion densities and the profile of the electrostatic potential strongly varied in dependence

from the lateral wavelength of the underlying surface charge pattern (see Figs. 4.6 and

4.7). However, due to the vanishing overall charge of the wall for this charge distribu-

tion, the solvent densities remained de facto unchanged upon a change of wavelength or

amplitude (see Fig. 4.5). As a final step in Sec. 4.3.4, the model derived in Sec. 4.2 was

used to study various more complex surface charge structures. In this section the surface

charge distributions considered combined both, a nonvanishing net charge of the substrate

and small-scale heterogeneities (see Fig. 4.8). Within these structures, two main effects

were observed. First, studying different structures varying in area fraction of the charged

surface and thus average charge, revealed that this average charge is the only relevant

parameter in the case of small scale heterogeneities (see Fig. 4.9). Second, the decay of,

e.g., the electrostatic potential strongly depended on the lateral wavelengths of the struc-

ture of the surface charge. Longer wavelengths of the surface charge pattern translated

into longer-ranged decays of the potential away from the wall and longer wavelengths also

led to a greater heterogeneity of the electrostatic potential close to the wall. Notably,

the predictions derived from the simple model described in Chap. 3 were successful in

explaining the behavior of the electrostatic potential for this much more complex case

(see Figs. 4.10 and 4.11). Nevertheless, clear limitations of the simple model from Chap.

3 became obvious, when the applied boundary conditions led to nonlinear responses of

the electrolyte solution.

In conclusion, the approaches used in this dissertation to study the behavior of an

electrolyte solution near a heterogeneously charged wall proved to be flexible and versatile

in determining the influence of a broad range of surface configurations. Furthermore, the

results of these studies in terms of density and potential profiles, which were sensitive to

the surface charge structure, demonstrated the importance of considering inhomogeneities

in the surface charge distribution when analyzing the effects of charged walls on electrolyte

solutions.

Finally, with regard to future exploration in this area, the results of this dissertation
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suggest some obvious starting points. I will briefly highlight some promising applications

and expansions of the research presented in this thesis. First, the systems studied here

have been restricted mostly to periodic or spatially limited surface charge structures. This

was solely done for the sake of simplicity, because particularly the fully three-dimensional

calculations in Chap. 4 are computationally costly. However, lifting these restrictions by

investigating, for example, random, disordered surface charges appears highly likely to

provide insights into a variety of additional interesting effects, e.g., long-ranged disorder

effects, anti-fragility (see Ref. [132]). The same applies to the context of introducing ad-

ditional substrates and revisiting the work of, e.g., [113, 114], among others, with respect

to forces between two substrates mediated by an enclosed electrolyte solution. Second,

in both approaches considered here, the effects of both bulk and wetting transitions were

neglected, assuming the fluid to be far away from any phase transitions. In future research,

the investigation of such transitions and their potential effects on the behavior of the fluid

could be rewarding. Previous studies (e.g., [154]) already demonstrated, that the pres-

ence of charges changes the wetting behavior drastically. If combined with heterogeneous

surface charge properties, this is likely to create a number of interesting phenomena, for

example, the occurrence of local wetting transitions and spatially varying wetting prop-

erties (see Refs. [155, 156]). Another promising application of the methods presented

here would be the analysis of surfaces with not only inhomogeneous interactions with the

adjacent fluid, but also with geometric inhomogeneities (cf. [157, 158]). The interplay of

various heterogeneities competing for influence may lead to further, unexpected effects.

One can also imagine, that introducing multiple different length scales in the form of more

complex boundary conditions could provide ways to synthesize and structure macromolec-

ules. Again, also the introduction of multiple interacting surfaces appears promising (see,

e.g., [113, 114]). Furthermore, the research presented in this thesis already offered two

very distinct versions of describing an electrolyte solution with respect to the degree of

complexity of the model applied. Both methods could be extended in various ways in

order to gain more accurate characterizations of the fluid and its internal structure. For

example, the investigation of equal particle sizes (see Ref. [159]) and the restriction to

low ionic strengths narrow the number of important effects, but these limitations could

be lifted, e.g., along the lines of Ref. [145]. Also, neglecting any attractive interactions

between the fluid components and the constraint of identical interactions between all fluid

particles may serve as inspirations for subsequent research. Finally, apart from the static

considerations studied in this thesis, it also seems possible to include the framework intro-

duced in this research in dynamic studies of fluids near walls, e.g., in studies of dynamic

density functional theory or power functional theory (cf. [160]).
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habt mir stets das Gefühl gegeben, dass ich mit meinen Fragen, ganz gleich welcher Art,

zu Euch kommen kann und die vielen gemeinsamen Stunden haben die letzten Jahre zu

einer unvergesslichen Zeit gemacht. Danke dafür!


