
Utilizing Networked Mobile

Devices for Scienti�c

Simulations

Von der Fakultät Informatik, Elektrotechnik und

Informationstechnik der Universität Stu�gart zur Erlangung der

Würde eines Doktors der Naturwissenscha�en (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Christoph Benjamin Dibak
aus Schorndorf

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Mitberichter: Prof. Dr.-Ing. Wolfgang Nowak

Prof. Dr. Christian Becker

Tag der mündlichen Prüfung: 10.01.2020

Institut für Parallele und Verteilte Systeme (IPVS)

der Universität Stu�gart

2020

Acknowledgements

This thesis would not have been possible without the support by so many people.
First of all, I would like to thank my doctoral advisor and mentor Prof. Kurt
Rothermel, for his guidance, valuable feedback, helpful support, and the oppor-
tunity to work on this interesting topic at the IPVS. Furthermore, I would like to
thank my co-supervisor Prof. Wolfgang Nowak for his helpful comments and
support, especially during the initial part of my studies and for the collaboration
that lead to the work on surrogate models and data assimilation. I would also
like to thank Prof. Christian Becker for kindly acting as a referee for this work.

The scienti�c collaboration leading to the publications on the distributed
reduced basis method would not have been possible without Prof. Bernard
Haasdonk and Dr. Andreas Schmidt. Thank you very much for you detailed
explanations and helpful conversations.

I would like to thank Prof. Nigel Davies and Mateusz Mikusz for providing the
opportunity for the three-month visit to Lancaster University, which has been
an inspiring, but also enjoyable experience.

Research requires frequent interaction with senior researchers. Special thanks
to Dr. Frank Dürr for many interesting and long discussions and for valuable
feedback. I would also like to thank Dr. Boris Koldeholfe for supporting me
during the initial year of my PhD studies.

The workplace is not the same without so many supportive and like-minded
colleagues. I would like to thank Thomas Kohler for sharing the o�ce and Eva
Strähle for all the support in administrative matters. Thanks to all of the VS
team for sharing co�ee and thrilling kicker experiences. I would also like to
thank my colleagues from the SimTech Graduate School for lots of interesting
conversations during our Stammtisch and PhD-Student Weekends.

Science is not possible without �nancial support. I would like to thank the
DFG for funding within the Cluster of Excellence in Simulation Technology (EXC
310/2). Clearly, this thesis would not have been possible without the establishment
of this interdisciplinary research cluster.

3

Finally, I would like to thank my family and friends for their encouragement,
support, and for providing the necessary distraction to re-focus on scienti�c
matters. Last but certainly not least, I would like to thank Andrea for her love
and support on good and bad days, and for always �nding ways to cheer me up
when I was struggling with my work.

4

Abstract

Numerical simulations on mobile devices create new applications supporting
engineers and scientists in the �eld. Boosted by novel augmented reality devices,
in-�eld analysis of complex systems allow engineers to make better decisions and
predict the behavior of such systems by assuming di�erent parameters before
making risky and costly decisions.

Mobile simulations are challenging as battery-powered mobile devices are
only equipped with slow processors and are limited in energy resources. At
the same time, mobile devices are only connected via wireless communication
subjected to environmental conditions that might cause slow bandwidths or even
disconnections to remote computing resources. Nevertheless, concepts presented
in this thesis assume a distributed computation between mobile device and a
powerful remote server.

This thesis covers three major areas of the research �eld of mobile simulations.
First, it provides concepts for distributed execution between server and mobile
device in case of frequent disconnections. Second, it provides concepts using
computationally less complex surrogate models for faster computation on the
mobile device while still utilizing remote resources. Third, it provides concepts
utilizing model order reduction for fast execution on mobile devices by pre-
computing and adaptation of reduced models on a connected server.

Evaluations show that concepts presented in this thesis signi�cantly increase
the performance of mobile simulations. In the case of disconnections, the number
of deadline misses is reduced by 61 % while reducing the energy consumption by
more than 74 % compared to a simpli�ed approach. Concepts utilizing surrogate
models speed-up the computation of the simulation by a factor of 6.5. Lastly,
concepts utilizing model order reduction reduce the time for the computation
of simulation results by a factor of 131 while using 73 times less energy for the
speci�c test application.

5

Zusammenfassung

Die Ausführung von numerischen Simulationen auf Mobilgeräten ermöglicht
neue Anwendungen um Ingenieure und Wissenschaftler vor Ort zu unterstützen.
Solche mobile Simulationen ermöglichen es die Auswirkungen von Änderun-
gen an komplexen Systemen vor Ort zu untersuchen und dadurch Risiken zu
senken bevor teure oder zeitaufwändige Änderungen vorgenommen werden. In
Kombination mit neuesten Augmented-Reality Geräten können Ingenieure und
Wissenschaftler so mehr Erkenntnisse über ein komplex System sammeln und
somit bessere Entscheidungen tre�en.

Mobile Simulationen zu realisieren ist mit vielen Herausforderungen verbun-
den. Batteriegetriebene Mobilgeräte sind mit langsamen Prozessoren ausgestat-
tet und verfügen nur über stark limitierte Energieresourcen. Gleichzeitig sind
solche Geräte nur über drahtlose Kommunikation verbunden, welche externen
Ein�üssen ausgesetzt ist. Dadurch kann drahtlose Kommunikation keine fes-
ten Bandbreiten garantieren und es kann zu zeitweisen Verbinungsabbrüchen
kommen. Trotzdem schließen Konzepte, die in dieser Arbeit vorgestellt werden,
externe Rechenressourcen mit ein, da diese unerlässlich für eine Ausführung
von komplexen Simulationen sind.

Diese Arbeit deckt drei Gebiete des Forschungsgebiets über mobile Simulatio-
nen ab. Zuerst werden Konzepte für die verteilte Ausführung zwischen Server
und Mobilgerät im Falle von zeitweisen Verbinungsabbrüchen vorgestellt. Zweit-
ens werden Konzepte vorgestellt, welche weniger komplexe Stellvertretermodelle
zu komplexen Simulationsmodellen ausnutzen um eine schnellere Berechnung
auf dem Mobilgerät zu ermöglichen. Drittens stellt diese Arbeit Konzepte vor
um Ergebnisse aus dem Forschungsgebiet der Modellreduktion auf mobile Sim-
ulationen zu übertragen, um durch Vorberechnung und verteilte Adaption der
reduzierten Modelle eine schnellere Ausführung ermöglichen.

Untersuchungen haben gezeigt, dass die Konzepte dieser Arbeit die Leistungs-
fähigkeit des verteilten Gesamtsystems bei der Ausführung von mobilen Simula-
tionen deutlich verbessern. Im Fall von zeitweisen Verbinungsabbrüchen sind

7

die hier vorgestellten Verfahren in der Lage gegenüber vereinfachten Verfahren,
vorbestimmte Zeitschranken in weiteren 61 % der Fälle einzuhalten und mehr als
74 % an Energie einzusparen. Konzepte, welche vereinfachte Simulationsmodelle
ausnutzen beschleunigen die Simulation um einen Faktor von 6.5. Zuletzt kon-
nten wir zeigen, dass Konzepte, welche Modellreduktionsmethoden verwenden
die Berechnung um einen Faktor von 131 beschleunigen und 63 fach weniger
Energie benötigen.

8

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Research Focus and Goals . 16
1.3 Contributions . 19
1.4 Project Background: SimTech 20
1.5 Structure . 22

2 Background 23
2.1 Numerical Simulations . 23
2.2 Model Order Reduction . 34
2.3 Data Assimilation . 40
2.4 Mobile Computing . 48

3 System Overview 53
3.1 System Components . 53
3.2 Generic System Model . 56

4 Increasing Robustness Against Disconnections 59
4.1 System Model . 60
4.2 Problem Statement . 62
4.3 Architecture . 63
4.4 Scheduling Computation Steps 65
4.5 Statistics Component . 68
4.6 Detecting Disconnections . 70
4.7 Predicting the Duration of Disconnections 72
4.8 Evaluation . 73

9

Contents

4.9 Related Work . 80
4.10 Summary . 83

5 Using Surrogate Models for E�icient Solution of Time-Dependent
Problems 85
5.1 System Model . 86
5.2 Problem Statement . 89
5.3 Stream Approach . 90
5.4 Full Update Approach . 91
5.5 Partial Update Approach . 94
5.6 Evaluation . 98
5.7 Related Work . 106
5.8 Summary . 109

6 Using Model Order Reduction for E�icient Solution of Station-
ary Problems 111
6.1 System Model . 112
6.2 Problem Statement . 115
6.3 Basic Approach . 116
6.4 Adaptive Approach . 120
6.5 Subspace Approach . 122
6.6 Reorder Approach . 124
6.7 Reorder Basis Generation . 127
6.8 Evaluation . 129
6.9 Related Work . 141
6.10 Summary . 145

7 Conclusions and Outlook 147
7.1 Conclusions . 147
7.2 Outlook . 149

Publications 151

10

Contents

Bibliography 153

11

1

Introduction

1.1 Motivation

With the 2007-introduced iPhone by Apple, ubiquitous and mobile computing
devices revolutionized the interaction with software and enabled the development
of new disruptive services such as Uber, Foodora, or Spotify. Those services
require either the customer or part of the service to be mobile and therefore not
only changed our private lives, but also the workplace for many people. With
emerging augmented reality devices even more disruptive application are to be
expected in our private and working lives. Augmented reality enables virtual
objects to be overlayed over the real world and allow not only ubiquitous access
to software but a novel form of interaction that constantly adapts to the world
around us.

Another, more long-term, disruptive technology from computer science are
numerical simulations. As of today, simulations are heavily used for engineer-
ing and scienti�c applications, especially for applications where human lives or
�nancial interests are at high risk. Therefore, in engineering, today’s rapid devel-
opment of new products would not be possible without numerical simulations
and virtual prototyping [RWMS18]. In science, simulations are established as the
third form for gaining scienti�c knowledge besides experiments and theory. They
are required to validate theories and provide estimates, especially in situations
where experiments are not possible as the scenario is unobservable. For instance,
when the scenario is unlikely or unique (e.g., the big bang), too long (e.g., climate
change, atomic waste disposal), too short (e.g., combustion processes in engines),

13

1 Introduction

too big (e.g., weather forecasts, the expanse of the universe), or too small (e.g.,
chemical reactions, cancer cells).

The goal of this thesis is to combine ubiquitous computing and numerical
simulations to mobile simulations enabling novel applications to assist engineers,
scientists, and decision-makers in the �eld. Such mobile simulations enable better
decision making, e.g., when an engineer requires to decide on changing some
parameters, and even better interaction, e.g., when an architect discusses di�erent
options how to react to unexpected incidents with her client directly on site
using augmented reality devices.

As a scenario for mobile simulations, we consider an engineer in a machine hall
during the assembly of new machinery. While most steps will be long planned
before the assembly process, unexpected incidents requiring on-site decisions
are to be expected. In this scenario, the engineer has to place a hot tube in
accordance with the heat resistance of surrounding materials. Using mobile
simulations on her augmented reality glasses, the engineer can see how heat
would spread inside the tube and propagate to surrounding materials as if the
machine would be operational. In addition, she can change parameters re�ecting
di�erent conditions on the operation of the machine and surroundings (e.g., air
�ow, temperature, and pressure). Some parameters can be taken in accordance to
sensor readings available to the mobile device, or collected in the cloud, e.g., from
similar conditions at other locations. Using mobile simulations, the engineer
can choose a placement for the tube that optimally �ts and complies with its
surroundings.

Providing results of complex numerical simulations to mobile devices is chal-
lenging as such devices are limited in energy and computing resources. Mobile
devices have to be small to be carried by users and they require mobile energy
resources in form of a battery. This requires processors to be energy e�cient
and results in signi�cantly lower performance compared to server or desktop
processors. Such processors alone cannot compute complex numerical simula-
tions. We, therefore, have to take connected computing resources into account,
i.e., a remote server. However, mobile devices are connected via wireless com-

14

1.1 Motivation

munication, which is subjected to environmental conditions leading to dynamic
throughput, dynamic latency, and disconnections of the communication link,
requiring even more challenges to be solved.

While past decades have seen signi�cant research on numerical applications
and ubiquitous computing as separate �elds, only a few researchers combined
both �elds of computer science. Numerical applications were among the �rst
applications on electronic computers and have been addressed by early computer
scientists such as Turing [Tur48]. There have always been highly specialized
computing facilities, i.e., supercomputers, to solve numerical problems and the
�eld of high-performance computing is centered around such massive, scalable,
but immobile computing facilities. While more computing resources were mostly
invested in higher quality simulation results, recent research in the �eld of model
order reduction also addressed applications requiring fast results and even mobile
applications. However, this research is missing the utilization of powerful server
resources, as well as optimizations tailored to modern mobile devices for fewer
energy consumption and latency.

On the mobile computing side, Mark Weiser coined the term ubiquitous com-
puting in the early 1990’s with his work describing what we now know as tablets
and smartphones [Wei91, WB96]. His idea was to make computing invisible and
happen in the background supporting humans in their daily lives. While this re-
search led to concepts for distributing complex applications in the infrastructure
consisting of mobile devices and background servers, there has been only a few
concepts for quality-aware applications on mobile devices, such as numerical
simulations.

The goal of this thesis is therefore to combine both research �elds. To this end,
we will �rst formulate research questions in the next section, before describing
the detailed contribution of this thesis, the project background, and the structure
of this thesis.

15

1 Introduction

1.2 Research Focus and Goals

This thesis focuses on four research areas, the analysis of simple approaches,
robust distributed execution, e�cient quality-aware execution, and how methods
from model order reduction can be utilized. These research areas are explained
in the following along with the major research questions covered in this thesis.

1.2.1 Analysis of Approaches for Mobile Simulations

Complex numerical applications require high computational resources and ef-
�cient execution methods. While mobile devices became ever more powerful
providing multiple GHz of processing power and multiple processor cores, they
still have to be energy e�cient and therefore clearly lack behind stationary pro-
cessors. However, mobile devices are equipped with fast IEEE 802.11 WiFi and
LTE which can be used for o�oading complex computations to remote servers.
The �rst objective is therefore to analyze the limitations of modern mobile de-
vices for scienti�c simulations that are either completely o�oaded or executed
on the mobile device itself. The main research questions are:

1. How e�cient is the execution solely on the mobile device?

2. What components need to be identi�ed in a distributed architecture to
include server resources in the simulation?

3. How e�cient is streaming of results from nearby servers to the device?

1.2.2 Robust Distributed Execution for So� Real-Time Simulations

In order to provide timely results for the user, we need to de�ne the mobile
simulations as soft real-time applications. Soft real-time applications should
provide the result before a given deadline. However, in contrast to hard real-time
applications, deadline misses are undesirable but not forbidden, e.g., in soft real-
time applications, the user still has some value in receiving the solution after the

16

1.2 Research Focus and Goals

deadline, wherein hard real-time applications receiving the solution after the
deadline has no value at all.

Distributed processing between the server and mobile device faces the problem
of frequent disconnections of the wireless communication channel. We assume
that wireless communication channels are only unavailable for a limited time
and are eventually recovered. In this setup, we consider the following questions:

4. How often is the mobile device disconnected from the server? We consider
the mobile device to be disconnected if multiple packets sent from the
server never arrive.

5. How can we timely detect disconnections?

6. Assuming a soft real-time mobile simulation, how can we reduce the
number of deadline misses in case of frequent disconnections, i.e., how to
react on detected disconnections?

1.2.3 E�icient �ality-aware Execution

Quality plays an essential role in simulations. Intuitively, the higher the quality,
the higher the complexity of the computation. Depending on the application, too
low-quality results are useless, while too high-quality results waste resources.
Additionally, in mobile environments, resources are dynamically available. For
instance, the data rate in LTE depends on the current location, usage of other sub-
scribers in the same cell, and physical properties such as humidity [LLM+09]. To
provide the best experience, i.e., fast simulation results, to the user, the following
research questions need to be answered:

7. How to provide a method for users to de�ne quality constraints for mobile
simulations?

8. How to utilize available resources for fast distributed computation of
simulation results for the mobile user?

9. Given a low data rate wireless communication link, how can we provide
fast simulation results to the user that still ful�ll quality constraints?

17

1 Introduction

1.2.4 Utilizing Model Order Reduction

Model order reduction (MOR) concepts are already established in the �eld of
numerical simulations for building reduced problems providing an approximate
solution to the original problem [Haa16]. The general idea is to train a reduced
model in a pre-computation phase to provide desired quality constraints during
runtime. To this end, training data needs to be available before the generation of
the reduced model. This training data consist of the parameter range of the sim-
ulation that will be used during the execution. While MOR has been intensively
studied in high-performance computing (HPC), only a few researchers applied
such concepts in mobile computing settings. For our ubiquitous computing sce-
nario, the following open research questions remained:

10. How to e�ciently distribute the computation between mobile device and
server? How to assess the communication overhead depending on the size
of the reduced model?

11. Often, the parameter range for simulations is not known before the execu-
tion. How to enable quality constraints for dynamic query ranges that are
not available at the pre-computation phase?

12. How can energy consumption and latency be reduced during runtime?
Can the distribution be modi�ed to provide results with lower energy
consumption or lower computational complexity?

13. Can we generate application dependent reduced models to provide results
with fewer resource consumption, i.e., can we modify the pre-computation
phase to improve the execution during runtime on the mobile devices?

As we have now de�ned the scope and research questions of this thesis, the
next section will provide details about the contributions of methods.

18

1.3 Contributions

1.3 Contributions

This thesis combines and extends previously published results presented in
[DK14,DDR15,DSD+17,DDR17,DHS+18,DNDR19]. The major contributions are
sorted into concepts for robust execution, concepts utilizing surrogate models,
and concepts utilizing model order reduction (MOR).

Concepts for Robust Execution

This thesis provides concepts for the distributed execution of time-based numer-
ical applications between mobile device and server in case of disconnections.
Providing a soft real-time deadline, presented methods are able to reduce the
deadline misses by using prediction of the availability of the network. Another
method additionally provides lower energy consumption in such scenarios. Evalu-
ations of approaches were based on real-world data taken from cellular networks
in the Stuttgart area and show that approaches are able to keep deadline con-
straints in more than 61 % while saving up to 74 % of energy compared to a
simpli�ed approach.

Concepts for robust execution have been published in [DDR15]. The author
of this thesis contributed around 80 % of the scienti�c content.

Concepts Utilizing Surrogate Models and Data Assimilation

Second, this thesis provides novel concepts for the distributed execution of
quality-aware numerical applications using low-quality surrogate models and
data assimilation techniques. To this end, this thesis provides an intuitive de�-
nition of quality based on reference con�guration and surrogate con�guration
required on the mobile device. Additionally, this thesis provides methods to
guarantee quality constraints on the mobile device with drastically reduced re-
quirements for the wireless communication channel. Evaluations using a test
bed with emulated wireless communication channel and system-on-chip (SoC)
devices show that our approaches are able to speed up the distributed com-
putation by a factor of 6.5 while reducing required data rates of the wireless

19

1 Introduction

communication channel.
Concepts for utilizing surrogate models for mobile simulations are currently in

submission [DNDR19]. The author of this thesis contributed 80 % of the scienti�c
content.

Concepts Utilizing Model Order Reduction

Third, this thesis provides methods utilizing methods from model order reduction
(MOR) for parameterized stationary simulation problems. It provides several
methods for di�erent situations, e.g., an adaptive method to provide guaranteed
quality for untrained parameter ranges, methods to reduce energy consumption
and runtime in the online phase, and a method to provide better reduced models
for faster and energy e�cient computation during runtime. Methods can be
combined and our evaluations show that we are able to speed up the computation
by over 131 times while using 73 times less energy for the speci�c test application.

Concepts utilizing model order reduction have been published in [DSD+17],
[DDR17], and [DHS+18]. The author of this thesis contributed around 70 %, 90 %,
and 70 % respectively to the scienti�c contents of these publications.

In addition to these three major contributions, this thesis provides architectures
for middleware implementations for all three scenarios and compares results
with simple approaches to either compute everything on the mobile device or
to stream simulation results from a remote server. These architectures were
published in [DK14], where the author of this thesis contributed around 60 % of
the scienti�c content.

1.4 Project Background: SimTech

The research project for mobile simulations has been funded by the German
Research Foundation (DFG) at the Cluster of Excellence in Simulation Technology
(SimTech) at the University of Stuttgart. SimTech was established in 2007 as an
e�ort to combine and bring together many institutes of the University of Stuttgart
to support interdisciplinary research on and with simulations. SimTech’s goal is to

20

1.4 Project Background: SimTech

promote simulations to an integrative systems science, instead of having isolated
numerical approaches, which still is the way many engineers and scientists use
simulations as of today.

To support the goal of providing an integrative system science, SimTech identi-
�ed �ve visions: (V1) Computational Material Design, including simulation-based
optimization for highly sophisticated new materials; (V2) Integrative Virtual
Prototyping, supporting design and development for modern production; (V3) In-
teractive Environmental Engineering, combining simulations, data assimilation,
optimization, and risk assessment for applications like carbon dioxide (CO2)
injection into deep geologic formations; (V4) Simulation Cyber Infrastructures
for using modern cloud and mobile infrastructures to support engineers and
scientists using simulation technologies; and (V5) Overall Human Model, to
understand and in�uence biological processes inside humans to heal diseases.

Towards these visions and goals, research is structured into 7 project net-
works (PNs), combining nearly 70 individual projects. The PNs are (PN 1) Mate-
rial Design: Multi-scale and Multi-�eld Simulations of Materials; (PN 2) High-
Performance Simulations Across Computer Architectures; (PN 3) Dynamical
Systems: Reduction Optimization and Control; (PN 4) Coupled Problems in Biome-
chanics and Systems Biology; (PN 5) Multi-phase and Multi-physics Modeling;
(PN 6) Cyber Infrastructures and Beyond; and (PN 7) Re�exion and Contextuali-
sation.

Each PN consists of multiple projects. For instance, PN 6, Cyber Infrastructures
and Beyond, where the mobile simulation project was incorporated, consisted of 7
Projects: (1) Modeling of Multi-Scale and Multi-Physics Simulations; (2) Execution
of Multi-Scale and Multi-Physics Simulations; (3) Bootware: E�cient Execution of
Uncertain Computations; (4) Data Provisioning for Data-Driven and Ubiquitous
Simulations; (5) Utilizing Networked Mobile Devices for Scienti�c Simulations;
(6) Interactive Visual Analysis of Big Simulation Data; and (7) Natural Interaction
with Ubiquitous Simulation Systems. Projects (1) to (3) focused on providing
scienti�c work�ows for modeling of experiments and execution in the cloud.
Project (4) focused on how simulation data can be stored in databases and how

21

1 Introduction

scientists can model data. Project (6) and (7) focused on visual user interaction
with simulations and big data.

To transfer concepts researched in the cluster of excellence, the cluster not
only publishes scienti�c papers on conferences and journals, but also exchanges
results, problems, and ideas with industry. To this end, the cluster established
an industrial consortium and invites speakers from industry into the SimTech
Colloquium. Additionally, SimTech raises social awareness about simulation
technology in the general public, e.g., with the exhibition ’In the Digital Lab’,
which took place in 2017 in the Carl-Zeiss-Planetarium Stuttgart.

1.5 Structure

The rest of this thesis is structured as follows: Chapter 2 provides the required
background for the rest of the thesis, including model order reduction and mobile
computing. Chapter 3 introduces an overview of the system, including the system
model. Chapters 4 to 6 introduce concepts for mobile simulations. First, concepts
for robust execution of time-dependent simulations in harsh environments with
frequent disconnections are discussed in Chapter 4. Second, concepts for e�cient
calculation of simulations on mobile device and server for various scenarios,
including low data rate scenarios are discussed in Chapter 5. Third, concepts
utilizing model order reduction methods are discussed and how they can be
improved for mobile simulations are discussed in Chapter 6. After introducing
the concepts, the thesis is concluded with the conclusion and outlook in Chapter 7.

22

2

Background

This chapter presents background for numerical simulations on networked mo-
bile devices. It discusses numerical simulations, model order reduction, data
assimilation techniques, such as the ensemble Kalman �lter, and background
from mobile computing.

2.1 Numerical Simulations

This section provides background on numerical simulations used throughout
this thesis. We assume that the simulated system is described by means of par-
tial di�erential equations (PDE). To provide a better overview of the process of
designing, modelling, and computing of simulations, the simulation pipeline is in-
troduced. After the simulation pipeline, background on discretization, numerical
solvers, and quality in simulations are discussed.

2.1.1 Simulation Pipeline

The simulation pipeline describes the steps for building and using simulations
for engineering and scienti�c purposes. Di�erent de�nitions of the simulation
pipeline exist. The simulation pipeline described in this section is a slightly

Real
System

Mathematical
Model

Discretization
Numerical

Solver
Reasoning

Figure 2.1: The simulation pipeline.

23

2 Background

modi�ed version taken from [BZBP13].
Figure 2.1 depicts a schematic representation of the major steps for mobile

simulations: the real system, the mathematical model, the discretization, the
solver, and the reasoning. The steps are described in more detail in the following.

Real System The real system is the system to be simulated. The real system
might be observed by sensors, providing sensor data to be used in the
simulation process and for veri�cation of the simulation. As a running
example throughout this section, we consider a hot metal plate containing
temperature sensors.

Mathematical Model Depending on the aspects of the simulation, the mathe-
matical model contains di�erent aspects of the real system. For instance,
if we are interested in tra�c simulations of cars, we might model the be-
havior of individual cars on a map. However, if we are interested in the
heat distribution on a hot metal plate, we are interested on a continuous
phenomena. From physics, we know formulas for the heat equation. Such
equations contain parameters and can be applied to di�erent geometries.
We assume parameters and geometries of the problem to be known.

Discretization The mathematical model captures the behavior of the system
over continuous space at in�nitely many space points. However, comput-
ers are only able to handle a limited number of space points. Therefore,
the mathematical model needs to be discretized. Typical methods for dis-
cretization are �nite di�erences or �nite elements. In this thesis, only �nite
di�erences are used.

Numerical Solver After the discretization, an algebraic problem has to be
solved to provide an approximate solution. Depending on the problem
and its mathematical properties, a speci�c numerical solver has to be used.
For instance, if we de�ne the problem with the hot metal plate on sparse
matrices, we require a sparse matrix solver for the speci�c data structure.
Depending on the mathematical properties of the matrix, a speci�c sparse
matrix solver can be chosen to guarantee fast convergence.

24

2.1 Numerical Simulations

Reasoning In this thesis, reasoning is everything beyond the calculation of
the solution of the simulation problem. For instance, reasoning can be
performed by human users, requiring visualization of the solution, e.g.,
on an augmented reality device. Another form of reasoning can be in the
context of a cyber physical system, where the solution is used to control
certain aspects of the real world. In that case, reasoning is performed by
the controller.

The focus of this thesis is on parts of the mathematical model, the discretization
of the model, and parts of the numerical solver. The other parts, mainly reasoning
and description of the system, are outside the scope of this thesis and have to be
implemented by experts in the speci�c areas. In the following, we will shortly
discuss further background on the mathematical model, the discretization, and
the numerical solver.

2.1.2 Mathematical Model

This section provides a short overview on the mathematical model. Further
information can be found in [BZBP13].

Partial Di�erential Equations

Partial di�erential equations (PDE) describe the behavior of the system. The
system state is an unknown function u that describes the current situation of
the system. The function domain of u is the temporal and spatial domain of the
simulation. For simplicity, the temporal domain will be an interval t ∈ [0, tend]

and the spatial domain will be the two-dimensional unit square with x ∈ [0, 1]2.
Partial di�erential equations contain multiple derivatives of space and time.

Intuitively, they describe how changes in time or surrounding space a�ect the
system. For instance, the heat equation in two dimensions is given as

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, (2.1)

25

2 Background

where u is the unknown function, t is time, and x and y are the axes of the two
dimensional space.

There are two fundamentally di�erent kinds of simulation models, stationary
and time-dependent. Stationary simulation models do not include varying time
and describe one extreme condition for certain parameters. In contrast, time-
dependent simulation models describe how the system evolves over time.

Boundary Conditions

The boundary of the spatial and temporal simulation domain needs to be treated
di�erently. Partial di�erential equations do not contain any information on how
the boundary should be treated. The two most common boundary conditions
are the Neumann conditions and the Dirichlet conditions. Dirichlet conditions
set u on the boundary to a �xed value while Neumann conditions �x the �rst
derivatives of the function in direction to the boundary. Formally, if discrete
points on the boundary are given in set B and b ∈ B, Dirichlet conditions claim
u(b) = c for constant c. Analogously, Neumann conditions claim u′(b) = c,
where u′ is the derivative of u in direction of the boundary. There are many
other boundary conditions describing di�erent physical phenomena. However,
in this thesis, we will only use Dirichlet and Neumann conditions.

Full Specification of the Simulation Problem

Using the PDE and boundary conditions, we can now formulate a full speci�cation
of the simulation problem, which in this thesis is mostly an initial value problem.
In an initial value problem, the initial conditions of the system at time t = 0

are provided. Initial conditions can be provided by external measurements, e.g.,
sensor data, or are provided by the user. The full speci�cation of an initial value
problem can be described as

1. the PDE describing the "internal" behavior of the system;

2. the space and time domain of the simulation;

26

2.1 Numerical Simulations

3. boundary conditions describing the behavior on the spatial boundary; and

4. initial conditions describing the conditions of the system at time t = 0.

Having described how the mathematical description of the simulation problem
is provided, we discuss how this description can be transformed into an algebraic
problem in the following section.

2.1.3 Discretization

Solutions of simulation problems described by means of partial di�erential equa-
tions are functions over continuous spaces. Such functions cannot be represented
in digital computers. Therefore, simulation problems have to be discretized and
solved on a �nite number of points in space and time.

There are multiple methods for the discretization of di�erential equations. The
most common discretization methods are �nite di�erences, �nite elements, and
�nite volumes. Notice that the discretization of time-dependent problems might
use another discretization technique for time than for space discretization, hence
there could also be a mix of methods for solving one simulation problem. All
discretization techniques transform di�erential equations to algebraic equations,
e.g., a set of linear equations. These equations can then be solved in the next step
using problem speci�c numerical solvers (see Figure 2.1).

In this thesis, only �nite di�erences are used. However, concepts described in
this thesis can also be applied for other discretization methods. Finite di�erences
can be directly derived from the di�erence quotient (f(x+h)− f(x))/h, which,
as limit h → 0, is used as the de�nition of the derivative of the function f at
position x. The general idea of �nite di�erences is to �x h and describe the
function only at discrete positions xi = x0 + i ·h. Finite di�erences are therefore
usually implemented on an equidistant regular grid spanning time and space.
In one space dimension, this equidistant grid has mesh width h. The �ner the
mesh width, the bigger will be the algebraic equation that has to be solved in the
next step. For one dimension, the values of the solution can be stored in a vector,
where the i-th entry of the vector represents the solution at position i · h. For

27

2 Background

two or more dimensions, the solution can still be stored in a vector, but needs to
be encoded in a special form, e.g., row-major or column-major.

Name Di�. Eq. Formula
Forward Di�erence ∂f/∂x (f(xi+1)− f(xi))/h
Central Di�erence ∂f/∂x (f(xi+1)− f(xi−1))/2h
2nd Order Central ∂2f/∂x2 (f(xi+1)− 2f(xi) + f(xi−1))/h2

Table 2.1: Common �nite di�erences for �rst and second-order derivatives.

Table 2.1 lists common �nite di�erences used for the discretization of terms
of 1st order derivatives and 2nd-order derivatives. Notice that the continuous
parameter x is used in the di�erential equations, whereas discrete parameters xi
are used in the di�erential equations as �xed points in the discretization grid.

Using �nite di�erences, algebraic equations with unknowns ui can be formu-
lated. For time-dependent simulations, there are two di�erent classes of methods
for discretization, namely explicit methods and implicit methods. Explicit meth-
ods consider the future state as evolution of only the current state. This allows
to de�ne a straight forward problem resulting in a matrix A that has to be multi-
plied with the current state ui in order to calculate the next state ui+1. Implicit
methods on the other hand consider both, future state and current state as input
and calculate the next state as result of linear equations. Linear equations are
formulated as matrix problem with given matrix A, given right-hand side f and
unknown next state ui+1. For the next state, the equation Aui+1 = f has to
hold. This is implemented in a numerical solver.

There exist numerous special methods for discretization that are used for
certain simulation problems. For instance, for di�usive phenomena, the forward
time central di�erences space (FTCS) scheme is commonly used. As the name
suggests, the FTCS scheme uses forward di�erences for the time discretization
and central di�erences for the space discretization. Additionally, for multiple
dimensions, there are also alternative direction implicit (ADI) methods that use
one-dimensional implicit space discretization for alternating directions. The goal
of such methods is to reduce the complexity of the underlying algebraic problem

28

2.1 Numerical Simulations

such that it can be solved quickly by still providing good approximations for the
true solution of the di�erential equation.

While explicit methods can calculate the solution directly using the matrix
product of the last state, implicit methods require the solution of an algebraic
equation. How such equations can be solved is part of the next Section.

2.1.4 Numerical Solvers

The last section described how simulation problems are discretized and trans-
formed into algebraic problems. This section brie�y describes how the algebraic
problem can be solved using numerical solvers (see Figure 2.1). Usually, the
algebraic problem is given as set of linear equations, i.e., a matrix A and a right-
hand-side f . The solution of the problem is an unknown vector u ful�lling
A · u = f . For simplicity, we assume that the algebraic problem is mathemati-
cally well-de�ned, i.e., there exists exactly one solution. Solving linear equation
problems has a long history dating back to 2000 BC, and involved famous sci-
entists such as Isaac Newton, Carl Friedrich Gauss, John von Neumann, and
Alan Turing [Grc11, Tur48]. Hence, a variety of methods exist for solving linear
equations for di�erent properties of the matrix A. This section therefore only
provides the basic concepts of exact and iterative solvers before brie�y discussing
the impact of numerical libraries.

Exact Solvers

The basic Gaussian Elimination technique taught in school is used for solving
linear equations by subtracting and multiplying equations until the equations
are transformed to a triangular form, i.e., the matrix A has only non-zero entries
below or at the diagonal, as can be seen in the following equation, where ∗

29

2 Background

represents any entry.

A =

 ∗ 0 0

∗ ∗ 0

∗ ∗ ∗

 (2.2)

Solving A · u = f for such a triangular matrix A and unknown u is straight
forward and only has linear complexity. The algorithm starts at the �rst entry,
where it assigns u[0]← f [0]/A[0, 0]. Having calculated all previous entries of u,
the next entry i is calculated as

u[i]← f [i]−A[i, 0] · u[0]− · · · −A[i, i− 1] · u[i− 1]

A[i, i]
. (2.3)

The linear complexity of solving triangular systems motivates one common
decomposition: the LU-Factorization. The LU-Factorization decomposes the
matrix A into an upper (U) and lower (L) triangular matrix with A = L · U .
Intuitively, having such a factorization allows for fast solution of A · u = f in a
two-step algorithm, where �rst the triangular systemL·y = f and thenU ·u = y

are solved to obtain y and u. Solving these two systems only requires linear
complexity with slight variations of the above algorithm for triangular systems.
LU-Factorization is especially useful when multiple sets of linear equations need
to be solved with the same matrix A but di�erent vectors f , as the factorization
only involves A but not f .

Iterative Solvers

In simulations, we are always concerned about the quality-to-complexity trade-
o�. Solving the exact solution might result in long calculations that might also
be subjected to numerical instabilities. Another concept than solving the equa-
tion exactly is therefore to construct a sequence of approximate solutions {ui}
converging to the real solution u. Calculating a new element in this sequence
is one iteration. Iterative solvers support multiple stopping criteria, e.g., after a

30

2.1 Numerical Simulations

�xed number of iterations or after the di�erence of the previous approximate so-
lution is lower than a de�ned threshold. Depending on the application, a suitable
stopping criteria can be chosen.

One famous iterative solver is provided by the Jacobi Method. For solving
A · u = f , the Jacobi Method splits the matrix A into two parts D and R, where
D simply includes all entries on the diagonal of matrix A and R the remainder.
To this end, R has only 0 entries on the diagonal and A = D + R. The next
solution is then calculated as ui+1 = D−1(f −R · ui). This is motivated by the
equation D · u = f −R · u and as D can be easily inverted.

Many di�erent iterative solvers exist for di�erent properties of the matrix A.
The properties depend on the conditions required to guarantee convergence of
the constructed sequence. In the example of the Jacobi Method, the matrix A
has to be diagonally dominant, i.e., the diagonal value is greater than the sum of
absolute values of other entries in the same row.

One important property of iterative solvers is that they can use the concept
of linear operators, i.e., they do not require construction of the full matrix but
only to implement the matrix-vector product with the problem matrix A. This
allows to save memory by not storing the problem matrix and reduces memory
access. For instance, the Jacobi Method only requires multiplication with the
inverse diagonal D−1 and multiplication with the remainder R, which can both
be implemented directly without constricting the matrix A. Similarly, the often
applied conjugate gradient solver only requires the multiplication of vectors with
the problem matrix A [S+94].

Numerical Libraries

Having described di�erent methods for solving discrete simulation problems,
we shortly want to discuss performance of such algorithms and why numerical
libraries are so important.

Performance of numerical algorithms heavily depends on the utilization of
processor features. For instance, modern single instruction multiple data (SIMD)
instructions process 8 double precision �oating point numbers in one instruc-

31

2 Background

tion [Coo18]. Using such features signi�cantly speeds up the calculation, e.g., for
solving triangular matrix equations. However, using speci�c processor features
is complex and might require to use assembly instructions or compiler-speci�c
tricks, making the code less portable and harder to write and maintain.

Basic Linear Algebra Subsystem (BLAS) and Linear Algebra PACKage (LA-
PACK) libraries provide generic standardized routines that can be used for ef-
�cient platform-independent implementations of numerical algorithms. There
are di�erent BLAS and LAPACK libraries available, e.g., the open source Auto-
matically Tuned Linear Algebra Software (ATLAS) library or Intel Math Kernel
Library (MKL). All those libraries provide the same routines and are optimized
for speci�c processor architectures utilizing speci�c SIMD instructions and other
optimizations [RJ15]. The same technique is also used when implementing nu-
merical software for supercomputers, where such libraries are provided by the
manufacturer.

2.1.5 �ality

This section brie�y discusses the de�nition of quality, which is important for all
steps in the simulation pipeline (cf. Figure 2.1).

�ality Degradation

A perfect quality simulation can never exist, since many small e�ects contribute
to the overall behavior of the real-world system. To this end, all parts of the
real system with only little impact to quality might be omitted to speed-up the
computation of the result. Such decisions on the quality-to-complexity trade-o�
have to be made during all steps in the simulation pipeline:

• During the modelling process, the model will only capture a small number
of e�ects and behavior of the real system. Depending on the granularity
of the model, di�erent e�ects can be included. However, with more details
in the model, higher complexity for the computation is required.

32

2.1 Numerical Simulations

• During discretization, depending on the mesh-width, not all e�ects of the
mathematical model can be observed. For instance, in a �ow simulation,
turbulent �ows require a very �ne-grained discretization grid compared to
laminar �ows [BZBP13]. Knowing which e�ects are to be expected during
runtime may be therefore essential to choose a suitable discretization.

• For the numerical solver, iterative solvers can reduce the quality of the
solution by reducing the number of iterations and provide signi�cantly
faster results.

Since every step in the simulation pipeline a�ects all subsequent steps, the
impact of quality decisions on the overall quality has to be evaluated carefully.
Additionally, applications using numerical simulations have to de�ne their own
quality requirements. To de�ne parts of such requirements, the mathematical
concepts of error and residual can be used. These concepts are introduced in the
following section.

Error and Residual

For de�nition of quality, two mathematical quantities are important: error and
residual. Consider an algebraic equation A · u = f , where A is a given matrix,
f is the given right-hand side and u is the unknown solution vector. Given an
approximate solution ũ to this equation, the error e and the residual r are de�ned
as follows:

e = ũ− u (2.4)

r = A · ũ− f = A · e (2.5)

Intuitively, the residual measures the di�erence by relaxation of f , while the
error measures the di�erence compared to the true solution.

33

2 Background

2.2 Model Order Reduction

This section describes how Model Order Reduction (MOR) can be used for fast
computation of approximate results of parameterized simulation problems. Pa-
rameterized simulation problems have many applications from multi-query opti-
mization problems to low-latency computation when some parameters can be
provided only during runtime.

The concept of Model Order Reduction (MOR) reduces the computational com-
plexity of numerical simulations by generating a computationally less complex
model providing fast approximate results for di�erent parameters. There are
di�erent methods for MOR, e.g., Proper Orthogonal Decomposition [KGVB05],
Krylov Methods, or the Reduced Basis Method (RBM) [Haa16]. We will focus on
the reduced basis method.

reduction

parameter µ parameter µ

solution u(µ) solution ũ(µ)

fu
ll

pr
ob

le
m

re
du

ce
d

pr
ob

le
m

Figure 2.2: Model order reduction translates full simulation problems to reduced
simulation problems, requiring signi�cantly fewer computing re-
sources.

The idea of RBM is to generate a low-dimensional search space for approximate
solutions of the original simulation problem (cf. Figure 2.2). This is implemented
using solutions of the full problem. To this end, the full problem has to be solved
multiple times with di�erent parameters during a pre-computation phase. Using
these solutions, RBM constructs the reduced problem, which can then be used to
provide fast approximate solutions.

Before we provide more details about RBM, the next section will �rst introduce
the parameterized full problem and the reduced problem.

34

2.2 Model Order Reduction

2.2.1 The Parameterized Full Numerical Problem

As described above in Section 2.1.3, the simulation problem can be translated in
a set of linear equations represented as matrix equation of the form A · u = f ,
where A is a given matrix, f is a given right-hand side and u is the solution.

Simulation models contain parameters describing di�erent properties of the
system that can be changed. Such parameters can be used to interact with the
system, e.g., to insert sensor readings or user input. To express the dependency
on parameters, we formulate the algebraic problem as

A(µ) · u(µ) = f(µ) (2.6)

where µ is a vector including all parameters of the simulation. In the RBM context,
this problem is called the full problem.

2.2.2 Parameter Separable Matrices

The essential part of RBM is the parameter separability of the matrix A(µ) and
the right-hand side f(µ). Parameter separability of a vector or matrixM is given
if we know scalar functions θi that map from the parameter space to real numbers
and matrices Mi that have the same shape as M such that

M(µ) =
∑
i

θi(µ)Mi. (2.7)

Notice that we assume that the sum in this equation is �nite. Such a representation
can be derived from the model equation, e.g., after the discretization using �nite
di�erences, or using Empirical Interpolation Methods [BMNP04].

2.2.3 The Reduced Problem

The RBM represents approximate solutions of the full numerical problem as linear
combination of snapshots. Snapshots are pre-computed and linearly independent
solutions for typical parameters. The snapshots form the snapshot matrix V .

35

2 Background

Therefore, the approximation to the real solution u(µ) is V uV (µ) ≈ u(µ), where
vector uV (µ) is called the reduced solution. The size of the reduced solution is
the number of snapshots.

+ + =

u(µ0) u(µ1) u(µ2)c0(µ) c1(µ) c2(µ) ũ(µ)

Figure 2.3: The number of unknowns (blue) is much smaller than for the full
problem.

Figure 2.3 visualizes the multiplication of coe�cients ci(µ) of a reduced solu-
tionuV (µ) = (c0(µ), c1(µ), · · ·)T with snapshot matrixV = (u(µ0);u(µ1); · · ·)
and demonstrates why the reduced problem is much faster to solve. While snap-
shots and the approximate solution are vectors, coe�cients ci(µ) are scalars.
Typically, the number of coe�cients is around 10, while one snapshot can have up
to one million entries. In this example, the reduced problem has 3 unknown coef-
�cients, while the full simulation result would have up to one million unknowns,
making the full problem much harder to solve.

For �nding coe�cients in uV (µ), we will now formulate the reduced problem.
To this end, we use V uV (µ) ≈ u(µ) and rewrite Equation 2.6 asA(µ)V uV (µ) ≈
f(µ). This is an overdetermined system. Therefore, we multiply the full prob-
lem from left with V T , which yields our reduced problem V TA(µ)V uV (µ) =

V T f(µ). We callAV (µ) := V TA(µ)V the reduced matrix with snapshot matrix
V . Notice that AV (µ) is again a separable matrix. The matrices (V TAiV) in this
separation can be pre-computed, and the matrixAV (µ) can be rapidly assembled:

VTA(µ)V = VT (θ1 (µ)A1 + · · ·+ θm(µ)Am)V

= θ1(µ)VTA1V + · · ·+ θm(µ)VTAmV

Similarly, fV (µ) := V T f(µ) can be partially pre-computed and rapidly assem-
bled.

36

2.2 Model Order Reduction

The process of computing a reduced solution is now to solve

AV (µ) · uV (µ) = fV (µ)

and then to reconstruct uV (µ) to the full problem space by multiplication with
V . Solving the low-dimensional problem is much faster than solving the full
problem, as the low-dimensional problem has only the size of the number of
snapshots, which is typically much smaller than the full problem size.

2.2.4 Error Estimation

As described in the previous section, in numerical simulations, the trade-o�
between accuracy and computational e�ort is made on many levels. One key
property for serious simulation applications is to estimate or indicate the error.
We brie�y discuss how a fast error indicator can be implemented for reduced
models.

Using a reduced model instead of solving the full problem typically degrades
the quality of the solution. To express the quality of the solution, we use the
residual norm of the approximation as error indicator (see Section 2.1.5). The
residual r is the di�erence of A(µ)V uV (µ) and the right-hand side f(µ). If
the residual r is 0, the approximation V uV (µ) is the exact solution u(µ) of the
algebraic problem A(µ)u(µ) = f(µ). To this end, the residual is a very common
and well-known value for the accuracy of the simulation model.

For RBM, the residual of the approximate solution from the reduced problem
can be computed very e�ciently by using pre-computed parameter separable
matrices. Starting with the de�nition of the residual r as r = A(µ)V uV (µ)−

37

2 Background

f(µ), the norm of the residual ‖r‖2 = rT r can be computed as follows:

‖r‖2 = uV (µ)T VTA(µ)TA(µ)V︸ ︷︷ ︸
r1

uV (µ) (2.8a)

− uV (µ)T VTA(µ)T f(µ)︸ ︷︷ ︸
r2

(2.8b)

− f(µ)TA(µ)V︸ ︷︷ ︸
r3

uV (µ) (2.8c)

+ f(µ)T f(µ)︸ ︷︷ ︸
r4

. (2.8d)

Notice that r1 to r4 can be expressed as separable matrices. These matrices can
be pre-computed after the basis construction. To this end, the size of the matrices
to be computed only depends on the number of snapshots, which is much lower
than the size of the full problem matrix A(µ). Also notice that we do not need
to calculate the full solution for this error indicator and require therefore much
less overhead compared to calculating the full solution. The error indicator is
therefore suitable to measure quality during the basis generation process, as it
will be described in the following section.

2.2.5 The Basis Generation Process

Using the residual as error indicator, the snapshots can be computed from a
training set of parameters using a greedy approach [VPRP03].

Figure 2.4 depicts the pseudo code of the greedy basis generation method. The
user provides a set of training parameters (train_set) and a maximum threshold
for the residual (max_res). The initial basis can be either an existing basis, or
the reduced basis based on the evaluation of a random training parameter. The
algorithm will terminate when the generated basis provides a residual norm
lower than the provided threshold for all parameters in the training set. In every
iteration of the loop, one solution of the full problem is computed and added to
the basis. For this computation, the parameter that yields the maximum residual

38

2.2 Model Order Reduction

1: function GreedyBasisGeneration(train_set ,max_res)
2: basis ← initial basis
3: residuals[µ]← basis.residual(µ) ∀µ ∈ train_set
4: while max(residuals) ≥ max_res do
5: µ∗ ← max(residuals).key
6: solution ← solution of the full problem for µ∗
7: AddSnapshot(basis, solution) . See Figure 2.5
8: residuals[µ]← basis.residual(µ) ∀µ ∈ train_set
9: end while

10: return basis
11: end function

Figure 2.4: Greedy approach for generation of a reduced basis, where train_set is
a set of parameters and max_res is the maximum residual threshold.

norm using the current basis is chosen.

Normalization and Orthogonalization

Using the snapshots directly as solutions of the numerical simulation might
lead to poor numerical stability. For instance, consider two snapshots s1 and s2
as results of the full simulation problem with just one di�erent entry in both
large vectors. This di�erence might, even for humans, be hard to see and also
might lead to numerical instabilities of the solution. To provide better numerical
stability, only the most relevant information of the second vector should be added
to the basis. Adding only the most relevant part of snapshots can be implemented
using orthonormal bases, i.e., bases that are both, normal and orthogonal.

Orthonormal bases can be implemented using the iterative Gram-Schmidt
procedure when adding a new snapshot to the basis [Fis08]. This procedure
calculates what part of the snapshot can be already expressed using the current
basis and what information is new. It then only adds this new information to the
basis. The same concept is repeated for every new snapshot added to the basis.

Figure 2.5 depicts pseudocode of the Gram-Schmidt procedure. Adding one
additional snapshot requires to calculate the product with all orthonormalized
vectors in the basis in line 5. Therefore, adding one snapshot is inO(|B|), where

39

2 Background

1: function AddSnapshotOrthonormal(basis B, snapshot s)
2: if B is ∅ then
3: return

{
s
‖s‖

}
4: end if

5: s̃←
∑

b∈B〈s, b〉b
6: b← s− s̃
7: return B ∪

{
b
‖b‖

}
8: end function

Figure 2.5: Function for adding a snapshot s as solution to the simulation problem
to an already orthonormal basis B.

|B| is the number of snapshots in the basis.

2.2.6 Limitations of the Reduced Basis Method

The RBM converts the full-dimensional problem into a lower-dimensional prob-
lem by computation on snapshots. The dimension of the reduced problem de-
pends on the number of snapshots. The number of snapshots depends on the
characteristics of the problem and the quality required by the user. The here intro-
duced method works only for stationary problems without any changes to the ge-
ometry. However, in recent literature, RBM approaches for time-dependent prob-
lems or problems with changing geometry have already been proposed [Haa16,
RHP08]. Nonetheless, advanced RBM approaches are beyond the scope of this
thesis.

2.3 Data Assimilation

Data assimilation is the process of combining uncertain sensor data with un-
certain simulation models and uncertain initial state [LSZ15b]. Uncertainties
are typically expressed in form of covariances describing noise in the respective
quantities. While there are di�erent methods for data assimilation available,
we focus on the Kalman �lter (KF) and the ensemble Kalman �lter (EnKF). KF
and EnKF gained lots of attention since they have been used for navigation of

40

2.3 Data Assimilation

Analysis Ai−1

Observation Oi

Forecast Fi

Analysis Ai

Forecast Fi+1

t = ti−1 t = ti t = ti+1

Figure 2.6: Formal model for data assimilation.

spacecrafts in the Apollo program in the 1960s [GA10]. Since then, it has been
used in many applications, e.g., for attitude determination [HMS03]. This section
will �rst describe the KF, by introducing forecast, analysis, observations, analysis
step, Kalman gain, forecast covariance, and analysis covariance. After a brief
summary of the concepts for the KF, the EnKF will be explained.

2.3.1 Formal Model of Forecast, Analysis, and Observations

Formally, data assimilation is an iterative process combining information on
forecast state and sensor observations to a common state, referred as analysis
state (cf. Figure 2.6). Forecasts Fi are the result of the simulation model on the
previous analysis Ai−1. Observations Oi contain new information about the
state of the real system, e.g., using sensors. Goal of data assimilation is to combine
observations Oi and forecast state Fi to a common analysis state Ai. Initially,
the initial state of the simulation is used as forecast state F0.

All quantities Fi, Oi, and Ai contain uncertainties that can be expressed by
covariance matrices. There are three quantities that contribute to uncertainties:
Initial uncertainty, process uncertainty of the simulation model, and measurement
uncertainty of observations. Initial uncertainty is the uncertainty associated to
the initial stateF0. This uncertainty might traverse all future analysis and forecast
states during the execution unless observations are included. Process uncertainty
is the uncertainty added by the simulation model. Even if the previous analysis

41

2 Background

Ai−1 is perfectly accurate, the simulation model will introduce some error during
computation of the forecast state Fi. Measurement uncertainty are assigned to
observations Oi. This way, measurement errors and noise of respective sensors
can be included into the model.

The forecast Fi can be calculated from the previous analysis state Ai−1 by
applying the simulation model on Ai−1. For the explanation of the Kalman
�lter, we assume that the simulation model is described in a matrix Si such
that Fi = Si ·Ai−1. The following section explains the calculation of the next
analysis state Ai using the introduced quantities.

2.3.2 Analysis Step and Kalman Gain

The previous section introduced the forecast Fi and the observations Oi. In this
section, we explain how forecast and observations are combined to form the
combined analysis state Ai. To this end, we will require the Kalman gain Ki, and
covariance matrices expressing the errors in observation, forecast, and analysis.

To calculate analysis Ai, the current forecast Fi and observation Oi are re-
quired. The KF and EnKF combine these quantities using a matrix express-
ing weights of how much the observation and how much the forecast can be
trusted [LSZ15a]. This matrix is called the Kalman gain Ki. Using the Kalman
gain, the general formula for the analysis is

Ai = Fi +Ki(Oi −HiFi) (2.9)

where Hi is a selection matrix mapping only values from the forecast that relate
to positions of the sensor observations in Oi. Intuitively, Hi maps from the state
space of the forecast model to the observation space of sensors.

The Kalman gain rates the importance of observations over the forecast. If the
Kalman gain is high, the observations have more weight, as the measurements
have been identi�ed to be accurate and the forecast model provided only unstable
results. If the Kalman gain is low, the forecast model has more weight, as the
measurements have been identi�ed to be inaccurate and estimates have only a

42

2.3 Data Assimilation

small error. To this end, the formula in one dimension of the Kalman gain K is
given as follows:

K =
forecast error

forecast error + observation error
. (2.10)

In multiple dimensions, the Kalman gain is calculated from the covariance matri-
ces for the forecast CF

i and for the observations CO . The general formula can
be directly derived from Eq. 2.10:

Ki = CF
i Hi(HiC

F
i H

T
i + CO)−1. (2.11)

In contrast to Eq. 2.10, the forecast covariance is transformed to the smaller ob-
servation space using Hi. This is required to combine the covariance matrices of
the forecast CF

i and the observation CO . Additionally, it reduces the complexity
for the matrix inversion, which in the 1d case is a simple division (cf. Eq. 2.10).

2.3.3 Observation Error, Forecast Error, and Analysis Error

For the calculation of the Kalman gain Ki, observation covariance CO , the fore-
cast covariance CF

i , and the analysis covariance CA
i are required [LSZ15a]. The

observation covarianceCO is assumed to be known from the technical properties
of the sensor providing the observations. Such information are typically provided
by the manufacturer. The forecast covariance CF

i can be calculated directly from
the covariance of the previous analysis state CA

i−1 and the error of the simulation
model CS . It is calculated as follows:

CF
i = S · CA

i−1S
T + CS . (2.12)

The only missing matrix is now the covariance of the analysis steps Ai. This
matrix can be calculated using the current forecast covariance CF

i , the selection
matrix Hi and the Kalman gain Ki. It is calculated as follows:

CA
i = (I −KiHi)C

F
i , (2.13)

43

2 Background

where I denotes the one matrix in the required dimension. Intuitively, this for-
mula uses the values where observations exist and reduce the forecast covariance
depending on the Kalman gain Ki. As mentioned before, entries in the Kalman
gain are between 0 and 1 and re�ect the weight of how observations should be
taken into account. If the observations are accurate, the entry in Ki will be 1. In
this case, this entry after the analysis has to be perfectly accurate and will be 0. If
the observation is useless and the entry in Ki is 0, the entry from the covariance
of the forecast step CF

i will be taken, as the error could not be reduced in the
analysis.

2.3.4 Summary of the Kalman Filter

Having introduced all required concepts for the Kalman �lter (KF), we now
provide a short summary of the required calculation for one step of the Kalman
�lter.

1: function KalmanStep(Ai−1, CA
i−1, Oi, Hi)

2: Fi ← S ·Ai−1 . Forecast
3: CF

i ← S · CA
i−1S

T + CS . Covariance of Forecast
4: Ki ← CF

i Hi(HiC
F
i H

T
i + CO)−1 . Kalman Gain

5: Ai ← Fi +Ki(Oi −HiFi) . Analysis
6: CA

i ← (I −KiHi)C
F
i . Covariance of Analysis

7: return (Ai, C
A
i)

8: end function

Figure 2.7: One step of the Kalman �lter. The input is the last analysis Ai−1, the
covariance of the last analysis CA

i−1, and the current observations Oi

and position of the observations decoded in matrix Hi. The output
is a tuple of the current analysis state Ai and the covariance of this
analysis stateCA

i , that can then be used in the next step as parameters.

Figure 2.7 depicts the algorithm for the Kalman �lter. The �lter is an iterative
process where the output consisting of the analysis state Ai and analysis covari-
ance CA

i will be used as input for the next state (cf. Figure 2.6). The initial state
A0 has to be provided by the application with an initial covariance CA

0 re�ecting

44

2.3 Data Assimilation

the uncertainty of A0.
Vector Oi represents sensor readings at one time-step and matrix Hi decodes

the mapping from state space to observation space, i.e., it maps corresponding
values in Ai (and Fi) to values in Oi. When there are no new observations for
one time-step, the Kalman gain has to be zero and the analysis is directly taken
from the forecast. In this case, Ai will be set to Fi and CA

i to CF
i .

The space complexity of the Kalman �lter depends on the number of discretiza-
tion points of the simulation. This number is also the size of vectors Ai and Fi.
With linearly growing number of discretization points of the simulation, vectors
Ai and Fi will also grow linearly. However, space complexity of CA

i will grow
quadratically, which raises problems on machines with only few memory, like
mobile devices. For such devices, we therefore found another method for data
assimilation better suited: the ensemble Kalman �lter. This data assimilation
method will be discussed in the following section.

2.3.5 The Ensemble Kalman Filter

The Kalman �lter (KF) as described in the previous section has two problems.
First, it has to store and track the full covariance matrix CA

i , which requires
quadratic memory compared to one forecast simulation state. Especially for
complex simulation models with hundreds or thousands of unknowns, this is the
major bottleneck. Second, it is only applicable for forecast models that are can
be expressed in matrix multiplication, i.e., only explicit methods and not implicit
methods (cf. Section 2.1.3).

This section introduces the ensemble Kalman �lter (EnKF), which has a lower
memory overhead and can be used for explicit and implicit methods [HM98,
Eve03]. The biggest di�erence to the KF is that the EnKF replaces analysis
covariance matrices CA

i with sample covariances. These sample covariances are
generated from a set of randomized replicas of the original state, the so called
ensemble members (cf. Figure 2.8). For every time-step, all ensemble members
follow the behavior of the simulation model. Intuitively, the distribution of
ensemble members in one step represents the uncertainty of the current state.

45

2 Background

En
se

m
bl

es

t = ti−1 t = ti t = ti+1

Figure 2.8: Ensemble members (yellow) tracking the real state (black) of the
system over time.

It has been shown that even complex applications only require few ensemble
members [HM98]. Therefore, processing and storing ensemble members is much
faster than using the full covariance matrix as in the KF.

In the following, we brie�y describe how ensemble members are generated
and how the Kalman gain can be calculated from the sample covariance.

Generation of Ensemble Members

One of the challenging parts for the EnKF is the generation of ensemble mem-
bers [Eve04]. The idea of the EnKF is that the mean of ensemble members should
track the real state of the system (cf. Figure 2.8). Therefore, simply adding white
noise to the initial state does not provide desired results, since this would only
track the real system state at the current time-step and not necessarily the next
time-step. For instance, consider a heat simulation with positive values and zero
on the boundary. If we would simply add white noise to an initial state, bigger
positive values would "cool down" faster than negative values "heat up" from
surroundings. Thus, the mean value of ensembles would be negative.

Generation of ensemble members is problem dependent, as it can be seen in
the previous example. In this example, we could only use uniform distributed
positive values for perturbation. Following the system behavior, positive changes
of the temperature will be cooled down in the next step and therefore allow the
mean value of all temperatures to track the real system state. For other applica-

46

2.3 Data Assimilation

tions, generation of ensemble members has to be implemented with meaningful
perturbation that can be provided by an expert in the corresponding �eld.

Calculation of the Sample Covariance

The sample covariance is calculated directly from the ensemble members using
the mean value and the ensemble perturbation matrix [BJvLE98, Eve03]. For
the formal description, we �rst need to introduce notation and de�nitions of
ensemble members, the ensemble matrix, the ensemble perturbation matrix and
the mean matrix.

The ensemble matrix Ei is the matrix that holds all m ensemble members
of time-step i. Formally, the m ensemble members are denoted as e(j)i and the
ensemble matrix is de�ned as Ei = (e

(1)
i ; . . . ; e

(m)
i).

For the calculation of the sample covariance, we require two other matrices,
the ensemble perturbation matrix E′i and matrix Ei which stores the mean of
the ensembles in each column. The latter matrix is de�ned as Ei = Ei1m, where
the matrix 1m is a m×m matrix with all values set to 1/m. Using this matrix,
the ensembles perturbation matrix can be de�ned as E′i = Ei − Ei.

Having de�ned these matrices, we can now de�ne the sample covariance
matrix as

CE
i =

1

m− 1
E′i(E

′
i)

T . (2.14)

Where the scalar division by m − 1 is used as Besel’s correction to provide
unbiased results for di�erent ensemble sizes. Once the sample covariance CE

i

has been calculated, the Kalman gain is calculated analogously to Eq. 2.11 as

Ki = Ce
iH

T
i (HiC

e
iH

T
i + CO

i)−1. (2.15)

This Kalman gain can then be used to update the current state as described in
Eq. 2.9.

To summarize this section, we explained two popular data assimilation tech-

47

2 Background

niques, namely, the Kalman �lter (KF) and the ensemble Kalman �lter (EnKF).
While the KF uses full covariance matrices, the EnKF uses only a sample covari-
ance, which is only an estimate of the full covariance matrix. However, by using
only the sample covariance, the EnKF has a much lower complexity making it
the preferred data assimilation technique for mobile devices.

2.4 Mobile Computing

In the following, background information on wireless communication, network
availability models, and throughput measurement for wireless communication
links is provided.

2.4.1 Wireless Communication Technologies

Mobile devices do not have any wired connections and therefore need to use
wireless communication. There are di�erent standards for wireless communi-
cation depending on the user case. For cellular networks providing world-wide
ubiquitous access, Long Term Evolution (LTE) is the major standard. For wireless
local area networks (WLAN), the IEEE 802.11 family is the dominant standard,
with IEEE 802.11 ac being the most recent standard for WLAN. In the following,
few details about the physical layer is provided, before more details are given on
cellular networks and WLAN.

The Wireless Physical Layer

The wireless physical layer consists of radio waves that travel through space.
Physically, waves can be described by frequency, amplitude, and phase. Depend-
ing on the frequency, radio waves propagate di�erently. As rule of thumb, waves
with shorter frequencies have higher range and travel better through solid ma-
terials like walls [Wal02]. However, radio waves can be re�ected by obstacles
leading to multiple paths of the same wave. Such e�ects can lead to fading of the
signal at the receiver.

48

2.4 Mobile Computing

To be used as digital medium, analog radio waves need to be translated into
bits. There are multiple methods for such modulation techniques [Wal02]. One
often used method is quadrature amplitude modulation (QAM), where frequency
and phase of the radio wave is translated into (multiple) bits.

To support multiple channels, signals need to be multiplexed. One of the
mostly used multiplexing technique is orthogonal frequency-division multi-
plexing (OFDM), where orthogonal frequencies are constructed such that, for
multiple frequencies at a speci�c time, the receiver sees only the signal from the
sender [Wal02]. Protocols such as LTE or IEEE 802.11 ac use OFDM and QAM.

Cellular Networks and Long Term Evolution

Cellular networks are wide area networks for ubiquitous access everywhere at
any time. The network is built using �xed-location transceivers forming cell
areas. Transceivers are connected via a high-speed backend network to serve
mobile devices in their cells.

Long Term Evolution (LTE) is today’s mostly used standard for cellular net-
works by the 3rd Generation Partnership Project (3GPP). It promises high data
rates of more than 300 Mbit/s for the downlink in perfect conditions and a tar-
get latency of less than 5 ms between mobile device and base station [LLM+09,
PYLFT16].

In the following, some fundamentals are provided about cellular networks and
LTE. Further details can be found in [Wal02, PYLFT16].

Location of the Mobile Device When a packet has to be sent to a mobile
device, the approximate location of the device has to be known to forward the
packet to the responsible transceiver [Wal02, p. 229]. If the location was not
known, the network would need to search for the responsible transceiver, which
requires tra�c in all cells nation-wide. Nation-wide tra�c has to be avoided,
as it does not scale with the number of mobile devices. Therefore, the provider
stores the approximate location as set of transceivers where the mobile device
is located. The responsible cell for the mobile device can then be found using

49

2 Background

paging only in cells of these transceivers.

Scheduling of Downlink Packets to Mobile Devices Scheduling of down-
link packets in one cell is a trade-o� between spectral e�ciency and fairness
[CPG+13]. The shared downlink channel is divided into resource blocks (RB),
spanning time duration for one frequency domain. Coding in one RB depends on
the Signal to Inference plus Noise Ratio (SINR) of the mobile device. For instance,
if the reception of the device is good, i.e., it has high SINR, a higher bitrate will
be assigned. This results in better overall spectral e�ciency, if downlink packets
are only sent to devices with high SINR. However, if spectral e�ciency would be
optimized, devices on the edge or in other conditions leading to low SINR will
not receive any packet and thus would be treated unfair. The trade-o� how to
schedule packets depending on the bitrate and spectral e�ciency is a parameter
set by the provider of the cellular network.

Retransmissions Being the basic protocol for most applications on today’s
Internet, the transmission control protocol (TCP) is known to perform poorly in
wireless networks due to packet loss in the physical layer [Ela02]. To provide bet-
ter performance for TCP applications, LTE therefore implements re-transmissions
on the media access control (MAC) layer using a so called hybrid automatic repeat
request (HARQ) mechanism [LLM+09]. As TCP also implements retransmissions,
there are two layers implementing retransmissions when using TCP over LTE.

Wireless Local Area Networks

Wireless local area networks (WLAN) are used for wireless access to the local
network of home networks or companies. WLAN is used synonymously with
the IEEE 802.11 protocol family. Over recent years, many IEEE standards have
been implemented, leading to faster communication or extended range [Soc16].

As of today, most deployed WLANs use IEEE 802.11n or the succeeding IEEE
802.11ac. Both are based on OFDM, and multiple antennas (MIMO) to provide
high data rates of up to 600 Mbit/s for n or even up to 3.4 Gbit/s for ac. However,

50

2.4 Mobile Computing

MIMO is mostly used to provide streams for multiple mobile devices and not for
connecting two stations.

2.4.2 Energy Consumption

Energy consumption on mobile devices is critical as it a�ects battery runtime
and therefore how long the users can interact with the device. While scientists
and engineers are working on higher energy density batteries, battery power
will always be limited and cannot keep up with energy demands of modern
processors [AT08]. Therefore, mobile devices require energy-e�cient processing
and communication technologies as well as understanding of the implications
of algorithms on power consumption [DLMT16]. To this end, power consump-
tion has been observed and modelled on di�erent levels of the mobile device,
e.g., on hardware component level [BBV09, CH10], on system call level of the
operating system [PHZ+11], on application code level [FS99,HLHG13], and even
on browser level [TAN+12]. In the following, we will go into details about the
power consumption of components on a mobile device.

Power Saving for Processors

Modern processors implement power saving techniques in form of power states
[Coo18]. There are two di�erent power states provided by the Advanced Con�gu-
ration and Power Interface (ACPI), namely P-States and C-States. While P-States
de�ne the power state during active execution, C-States de�ne the power state
when the processor is halted. These power states save power by lowering fre-
quency, lowering voltage, or switching o� sub-systems in the processor.

Controlled by the operating system, the decision to go into higher power states
is a trade-o� between performance and energy. For instance, transition between
the highest C-State (C4) to the active state (C0) takes two orders of magnitude
longer than the transition from C1 to C0 [Coo18]. Notice that, during this state
transition, power is consumed by the processor. Toggling between power states
too frequently therefore may waste energy. To this end, the operating system

51

2 Background

requires heuristics on the future workload to decide on power states.
As the application programmer might know best whether high workload is

to be expected, the operating system provides mechanisms to change power
management decisions to userspace. For instance, Android provides wake locks
that restrict the system to go into higher power states in order to operate at
maximum performance. This enables applications to provide fast results for
heavy computations and even may result in lower power consumption [VJLA12,
LXCT16].

Power Saving for Wireless Communication

In contrast to processors, power saving for wireless communication needs to be
coordinated between multiple stations. For instance, IEEE 802.11 implements
a power saving poll mode, where the mobile device instructs the access point
to send periodic frames informing the mobile device of incoming tra�c. The
mobile device can then send the communication module into sleep mode and
only wake it up when a new frame from the access point is scheduled.

Deciding on the frequency how often the communication module wakes up is
a trade-o� between latency and energy consumption. The longer the communica-
tion module is at sleep, the more energy is saved. However, if the communication
module sleeps longer, the mobile device will not be informed that new packets
are waiting. Therefore, di�erent frequencies will be chosen depending on the
expected load on the wireless link.

Sending data from the mobile device can also be scheduled to save power.
For instance, in cellular networks, energy can be reduced by sending data in
bulk [BDR13, BBV09]. This way, the communication module can switch to lower
sleep modes when no data has to be sent.

52

3

System Overview

This chapter provides an overview of the system for the execution of numerical
simulations on networked mobile devices. First, the system components will be
introduced, followed by a generic system model. This generic system model will
be re�ned for the respective concepts in the following chapters.

3.1 System Components

This section introduces the components of the system that is used by concepts
and methods in the following. While all approaches share the same hardware
model, the model of the numerical simulation is di�erent for di�erent concepts
and methods.

3.1.1 Distributed Mobile Environment

The distributed mobile environment consists of computing resources, i.e., the
mobile device and the server, and the wireless communication link connecting
computing resources (cf. Figure 3.1).

Computing Resources

The system consists of two heterogeneous computing resources of two classes.
The �rst class represents mobile devices, while the second class represents sta-
tionary servers.

Mobile devices are very resource constraint. To be mobile, they have to rely on
mobile energy resources, i.e., they are battery-powered. To serve user requests

53

3 System Overview

Mobile
Device Server

Wireless Link

Figure 3.1: Mobile device and server connected via wireless communication.

as long as possible, processors on the mobile device have to be energy e�cient,
and are therefore signi�cantly slower than stationary computing resources.

Servers are stationary computing resources. As servers do not have to rely on
battery power, they have strong processors at much higher clock rates and are
equipped with special vector processing units that can use the same instruction
on multiple data. Both enable the server to provide results for computational
resources much faster than devices of the mobile class.

Wireless Communication

Mobile device and server communicate via wireless communication. Wireless
communication is subjected to dynamic data rates, latency, and might face even
disconnections. In general, we assume a 3/4G cellular network or IEEE 802.11
WiFi with data rates between a few kbit/s to multiple Mbit/s.

3.1.2 Numerical Simulation

The numerical simulation is the application that is executed on top of the dis-
tributed mobile environment. Throughout this thesis, two models of the nu-
merical simulation are considered: parameterized stationary simulations and
time-dependent simulations. As time-dependent simulations can be seen as a
sequence of stationary problems, the latter will be explained �rst.

Parameterized Stationary Simulations

Parameterized stationary simulations can be transferred to the solution of the
algebraic problem A(µ) · x(µ) = f(µ), where µ is a vector containing multiple

54

3.1 System Components

Stationary
Simulation

Parameter µ Solution x(µ)

Figure 3.2: Model of parameterized stationary simulations.

Time-dependent
Simulation

s0

s3s2s1 · · ·

Initial State

Resulting States

Figure 3.3: Model of time-dependent simulation providing simulation results si
at discrete time ti with initial state s0.

parameters, A ∈ Rn×n is a given parameter dependent matrix, f ∈ Rn is a
given vector, and x(µ) ∈ Rn is the parameter dependent unknown solution (cf.
Figure. 3.2). The size n of matrices and vectors is called the problem size and can
be chosen by the user.

All parameters µi of the stationary problem can be expressed as one parameter
vector µ = (µ1, µ2, . . .). Parameters are called bounded, if the user provides
µmin
i and µmax

i prior to runtime such that µmin
i ≤ µi ≤ µmax

i for all parameters
µi during runtime. Notice that this might not be the case for all simulation
parameters.

The user accepts some degradation of quality to speed up the computation,
as long as a threshold for quality can be de�ned. This way, the user can decide
for herself, if she wants to have a fast low quality solution or a slightly slower
high quality solution. To provide a well-known interface to the user, quality of
the simulation needs to be de�ned in form of residual or absolute error of the
approximate solution to the problem (cf. Section 2.1.5).

Time-Dependent Simulation

In contrast to stationary simulations, time-dependent simulation require the
solution of a sequence of algebraic problems as result of the time-discretization

55

3 System Overview

process. Time-discretization divides the continuous time into a �nite number of
time states. Each state represents the system state at a �xed time and is required
to compute the next time state (cf. Figure 3.3).

As for the stationary case, time-dependent simulations might also require
external parameters that can only be assigned shortly before or directly at runtime,
i.e., input from external sensors. Therefore, the solution can not just be cached
but needs to be calculated every time the result of the simulation is requested.

Quality-degradations will be accepted by the user as long as the error can be
quanti�ed in a meaningful way. As the simulation requires multi-dimensional
discretization, assessment of quality is more complex as for the stationary case
and requires di�erent concepts.

3.2 Generic System Model

After having introduced the components of the system, we provide a generic
system model. As concepts presented in this thesis have a di�erent focus, i.e.,
provide robustness against disconnections, provide fast execution using surrogate
models, and provide fast execution using model order reduction techniques, the
generic system model will be re�ned in the respective chapters.

Mobile Simulation Middleware

Mobile Server

Simulation Application

Figure 3.4: Generic system model

In our generic system model, we assume a distributed mobile simulation
middleware (cf. Figure 3.4). This middleware runs on top of both compute nodes,
the mobile device and the server. Furthermore, we assume that the simulation

56

3.2 Generic System Model

can be executed on both nodes, which might require specialized implementations
to utilize speci�c hardware features on the compute nodes. Additionally, the
application requiring simulation results and specifying requests to the simulation,
is usually only implemented on the mobile device to support the user with the
speci�c task.

Concepts and methods consider di�erent kinds of simulation problems, i.e.,
either stationary simulation problems or time-dependent simulation problems.
While stationary simulation problems only provide one solution, time-dependent
simulation problems provide a number of solutions. While the computation of
the result can be executed on the server or the mobile device, the result has
to be made available to the user on the mobile device. Additionally, methods
supporting degradation of quality to speedup the computation have to include a
quality constraint that is de�ned based on a well-known and intuitive quality
metric.

The wireless link connecting mobile device and server has properties such as
latency, bandwidth, and availability. Depending on the concept, these properties
are either measurable or can be detected by the mobile simulation middleware.
The middleware can also request pro�ling of the simulation on speci�c compute
nodes to detect bottlenecks of the computation.

Further details on the system model and requirements can be found in the
respective chapters introducing the concepts.

57

4

Increasing Robustness Against
Disconnections

Wireless communication faces frequent disconnections. Disconnections are
caused by multiple e�ects. One e�ect is that the mobile device got out of range
of any nearby wireless access point. Other e�ects are inferences in the wireless
channel, environmental obstacles, too fast mobility for handover between access
points, problems in synchronization of too many wireless subscribers, or issues
in the �xed back-end network of the provider.

As introduced before, we assume two compute nodes, where the next step of
a time-dependent simulation can be executed, the mobile device or the server
(see Section 3.2). Computation on the server requires to stream the result to
the mobile device, while computation on the mobile device does not require a
wireless link to the server. Therefore, if the network is disconnected, a mobile
simulation middleware could decide to continue the computation on the mobile
device. However, this might result in higher latency for the result or in increased
energy consumption, as computation on the mobile device is much slower and
requires mobile energy resources.

Figure 4.1 depicts a scenario for the execution on two compute nodes in case of
disconnections. For the computation of state S3, the middleware has two options.
Either, it will provide the time step from the server to the mobile device, where it
has to wait until the device is reconnected, or it will compute the result of time
step S3 on the mobile device with potential high energy cost and higher latency
cost.

59

4 Increasing Robustness Against Disconnections

Server

Mobile

S1 S2 S3

S1 S2 S3

disconnection

deadline

time

Figure 4.1: Robustness against disconnections is required to provide timely re-
sults.

In this chapter, we are considering time-based simulations with a soft deadline
until all results for multiple time steps are available on the mobile device. Quality
of experience depends on the soft deadline and can be set by the application
programmer. For computation of simulation results, both, mobile device and
server, are considered. Additionally, we consider disconnections of the wireless
communication link between mobile device and server.

We assume that computation of the complex numerical simulation on the
mobile device costs more energy than communication of results. If computation
would cost less energy, we would simply execute the simulation on the mobile
device and would not need to take the network or disconnections into account.
Goal is to minimize the energy consumption in case of disconnections with
constraints on latency until all results are available on the mobile device.

Parts of this chapter have been published in [DDR15].

4.1 System Model

For robust execution, we consider the system model of the distributed mobile
environment with a time-dependent simulation as application (see Section 3.2).

The solver for the time-dependent simulation problem is implemented for two
compute nodes, server and mobile device. These two nodes are heterogeneous.

60

4.1 System Model

On the one hand, the server is located inside a data center. It is well connected to
other computing resources nearby and therefore can scale to current workload
on demand. On the other hand, the mobile device runs on battery and is therefore
constrained in energy. It has to rely on energy e�cient processors being much
slower than server processors. Therefore, we assume the server processor to be
much faster than the mobile processor.

Mobile device and server are connected over a wireless link provided via cellu-
lar networks (3/4G). Such a link experiences communication errors on the wire-
less link, which will result in packet loss. There are two kinds of communication
errors in wireless networks, single packet errors and burst packet errors [GF04].
While the former a�ects single packets only, the latter a�ects multiple packets
over a period. Single packet errors are easily avoided by introducing retrans-
mission on the link layer as it is implemented in LTE [LLM+09]. Therefore, the
majority of errors are burst errors (cf. Section 4.8). Notice that loosing all packets
over a period causes temporary disconnection.

To support di�erent quality-of-service requirements, the user provides a soft
deadline for the computation. The soft deadline is speci�ed as time tmax, where
the computation should be �nished. However, results of the simulation are
required even after the deadline. Therefore, providing the solution before tmax

is desired but not a hard requirement.
Computation on the mobile device and communication between mobile device

and server e�ects energy consumption and therefore the limited energy stored
in the battery of the mobile device. In order to give the user best experience,
energy consumption of the application should be minimized.

Every simulation has a di�erent energy pro�le for computing the result on
the mobile device and for communicating results from a remote server to the
mobile device. In this chapter, we assume that the simulation costs much more
energy to compute on the mobile device than to communicate the results from
a remote server. Notice that when this assumption would be wrong, we could
simply execute all simulation steps on the mobile device and would not need
to take unreliable wireless communication into account. However, preliminary

61

4 Increasing Robustness Against Disconnections

tests showed that numerical computations take very long on today’s mobile
devices while new communication techniques such as LTE promise very high
data rates with low energy consumption [CPG+13]. Additionally, especially when
high-quality results of the simulation are required, the computational overhead
grows faster than the communication overhead, e.g., consider turbulent �ows
that require computation of multiple intermediate steps that are not required
for reasoning or visualization of the results on the mobile device. Therefore, we
assume that communicating results from the server is the most e�cient solution
as long as the mobile device is connected.

4.2 Problem Statement

This section introduces a detailed problem statement for minimizing energy
consumption for iterative computation of the states in S = {s1, . . . , sn} to be
�nished within time period e with timespan tmax. Each state si ∈ S can be
computed on the mobile device, the server, or both. In case of server computation,
the result has to be transferred over the wireless link to the mobile device. The
decision, whether a state should be computed on the mobile device or the state
should be transferred over the network is given by a schedule (M,T), consisting
of two sets: M represents computation on the mobile device, and T states to be
transferred over the network.

Computation on the mobile device is represented in the set M . Every element
(si, ti) ∈M represents the computation of state si on the mobile device starting
at time ti. For this computation, the state si−1 has to be available on the mobile
device at time ti. We assume all computations on the mobile device to take equal
time tM until the computation is �nished and the result is available. The set
M̂(t) represents the results of computations on the mobile device at time t and
is de�ned as M̂(t) = {(si, ti) ∈ M : ti + tM ≤ t}. Notice, that we consider
sequential execution only. Therefore, no two states can be computed in parallel.

For computation on the server, we have to decide on the time when the result
should be sent to the mobile device. This decision is represented in T within

62

4.3 Architecture

the schedule (M,T). Every element (si, ti) ∈ T represents the transfer of state
si from the server to the mobile device, starting at time ti. The time when the
message will be received on the mobile device can be either �nite or, in cases of
disconnections, in�nite. The unknown function d : R+ → R+ ∪ {∞}, t 7→ d(t)

represents the time of delivery of a message sent at time t. At any point in time
t, at most one message can be sent. If a message is sent at time t and d(t) <∞,
the message is delivered on the mobile device at time d(t). If d(t) is in�nite, the
message is lost. We de�ne T̂ (t) = {(si, ti) ∈ T : d(ti) ≤ t} as the set of all
messages successfully delivered on the mobile device at time ti.

In the case of disconnections, we want to reduce the energy overhead on the
mobile device. As stated in the system model, we assume that remote execution
of the simulation is most e�cient in terms of energy and latency for the mobile
device. However, in the case of disconnections, local computation on the mobile
device might be required to meet the deadline for the simulation result. In this
case, we want to minimize the additional energy consumption caused by discon-
nections on the mobile device, i.e., the number of simulation steps that need to
be computed on the mobile device.

Using the introduced notation, we can formulate our optimization problem as

min |M |

s.t . M̂(tmax) ∪ T̂ (tmax) = S

That is, we want to minimize the number of additional computations on the
mobile device, under the constraint that all states should be available on the
mobile device at time tmax.

4.3 Architecture

In this section we present our architecture to solve PDEs on the two computa-
tion nodes, the mobile device and the server. This architecture is partly based
on [DK14].

63

4 Increasing Robustness Against Disconnections

Our system consists of four components (1) a scheduler to distribute the com-
putation among the computation nodes, (2) a statistics component to collect data
about the availability of the wireless link on the mobile device, (3) a disconnection
detector, and (4) a predictor to predict the length of a temporary disconnection
based on the statistics (cf. Figure 4.2) All components run on the mobile device.

Scheduler

StatisticsPredictor Detector
message delays network model

execution
time

disconnectionduration of
disconnection

Figure 4.2: Overview of the architecture

The scheduler decides on computation and communication on and between
the compute nodes. The goal of the scheduler is to minimize energy consumption
on the mobile device, while ful�lling real-time constraints. As we assume compu-
tations to be very complex and much more energy intensive than communication
of results, the scheduler computes all states on the server and sends them to the
mobile device as long as the wireless link is available. However, when the mobile
device is temporarily disconnected, the scheduler has two options (1) waiting
for the link to become available or (2) starting the computation on the mobile
device. The scheduler will use the predicted duration of disconnection, provided
by the predictor and information about the execution time on the mobile device
provided by the statistics component to make this decision.

The statistics component collects information about the execution time for
the computation of states on the mobile device, information about the transfer
time of packets from the server to the mobile device, and information about the
availability of the wireless link. Information about execution time will be needed
by the scheduler. This information will be collected every time the mobile device
computes a state. The information about packet transfer time and availability of

64

4.4 Scheduling Computation Steps

the link will be collected using probe messages periodically sent from the server
to the mobile device. If such a message is received, the statistics component
informs the scheduler about the availability of the link.

The disconnection detector monitors the state of the wireless link. It uses the
same probe messages sent periodically by the server as the statistics component.
If no such message is received on the mobile device for a longer period of time, the
detector will inform the scheduler about the mobile device being disconnected
from the server. To detect disconnections, the detector uses a timeout mechanism.
To choose this timeout, the detector needs further informations about the link
characteristics from the statistics component.

The predictor gives a prediction about the duration of temporary discon-
nections of the mobile device. To this end, it uses recent data about the link
availability provided by the statistics component to learn a Markov Chain. Using
this Markov Chain, the expected duration of a temporary disconnection can
be computed. The predictor is invoked by the scheduler once disconnection is
detected.

The following sections will provide detailed descriptions about each compo-
nent of the architecture.

4.4 Scheduling Computation Steps

The scheduler decides on when and where to execute compute steps and if results
of computations should be sent from the server to the mobile device, i.e., construct
the sets M and T for a schedule (M,T).

Notice, it is never bene�cial to send states from the mobile device to the server,
as (1) we assume server computation to be much faster, (2) computation on the
server to not induce any cost, as it does not cost energy on the mobile device and
(3) it would increase the energy consumption for communication on the mobile
device. Sending a state from the mobile device to the server would therefore
only cost time. However, we want to optimize energy consumption of the mobile
device, which is to minimize the number of additional computations on the mobile

65

4 Increasing Robustness Against Disconnections

device. Therefore, the scheduler tries to compute as many steps as possible on
the server and will start computation on the mobile device only if it might be
absolutely necessary, e.g., if the risk of missing the deadline is high.

The scheduler operates in three di�erent modes, “connected”, “disconnected”,
and “recovery”. On the start of the computation, the scheduler operates in “con-
nected” mode. The “disconnected” mode is triggered by the disconnection de-
tector. The statistics component triggers the “recovery”, once the scheduler was
in “disconnected” state and the link became available. The state transition from
“recovery” to “connected” is handled by the scheduler itself (cf. Figure 4.3).

connected

disconnectedrecovery

disconnection

connection

recovered
disconnection

Figure 4.3: Modes and mode transition of the Scheduler

In “connected” mode, all computation is executed on the server and results
are sent to the mobile device. For garbage collection on the server, the mobile
device sends cumulative acknowledgments to the server. If the server receives
such a message for state si, it will forget about all prior states sj with j < i.
Preliminary tests, which will be presented in the next section, show that this
mode is the most e�cient in terms of computations on the mobile device, since
server computation is very fast compared to computation on the mobile device.

If a disconnection between mobile device and server is detected, the disconnec-
tion detector triggers the “disconnected” mode of the scheduler. The scheduler
has two options during disconnections (1) to wait for the link to become available
again or (2) to compute on the mobile device. The two alternatives have di�erent
e�ect on the objective function. Waiting does not introduce any additional cost,

66

4.4 Scheduling Computation Steps

E

tmobile

time
trem

disconnection
detected

wait

compute

time for
transfer

Figure 4.4: Scheduling decision based on the expected time of the disconnection.

while computation increases the additional energy consumption, and, therefore,
the objective function of the optimization problem. However, if the scheduler
waits too long, the deadline for the computation cannot be kept and the constraint
is violated.

To decide between the two alternatives, the scheduler uses two values: an
estimate on the duration of the disconnection E and an estimate on the time
to �nish the full computation on the mobile device tM (cf. Figure 4.4). These
values are provided by the predictor and the statistics component. The scheduler
evaluates two predicates. The �rst predicate evaluates to true if, according to
the predicted disconnection duration E, the deadline cannot be kept. This is
denoted as t+ E > tmax, where t is the current time and tmax is the deadline.
The second predicate evaluates to true if computation on the mobile device is
faster than waiting and can be denoted as tM < E. Only if both predicates are
true, the scheduler decides to start computation on the mobile device. While
the scheduler is in “disconnected” mode and decides to wait, it will periodically
verify its decision based on new predictions of the components. Notice, that
uncertainty bounds for the prediction can be introduced to adapt the accuracy
of the predictor and the respective cellular network situation, for example the
mobility scenario.

When the scheduler is in “disconnected” mode and the statistics component

67

4 Increasing Robustness Against Disconnections

receives messages from the server, it triggers “recovery” mode. In this mode, the
scheduler pauses all computation on the mobile device. It sends a recovery request
to the server, containing the numbers of missing states. The server answers by
sending previously computed states to the mobile device. Once the mobile device
received all requested states computed on the server during disconnection, the
scheduler returns to “connected” mode. Notice that the detector component can
also trigger “disconnected” mode when in “recovery” mode.

4.5 Statistics Component

The statistics component collects data about three aspects: (1) timing information
for solving states on the mobile device, (2) packet transfer time to the mobile
device, and (3) the availability of the wireless link. All data is stored directly on
the mobile device.

As mobile devices have di�erent processors and execution time varies from de-
vice to device, timing information about the computation is needed for prediction
of execution time. Execution time depends on the method used for solving the
PDEs. Typically, such methods reduce the problem to algebraic equations, like in
the heat equation example given in Section 2.1. Solving these equations is the
hardest part of solving PDEs. The statistics component collects information about
how long it took the speci�c device to solve the algebraic equations depending
on the problem size. For example, for a given matrix size, it provides the mean
time for computation as well as an upper and lower bound on the computation
time. This information is used by the scheduler to estimate computation time on
the mobile device.

In preliminary tests, we evaluated the time to solve matrix equations on dif-
ferent device classes. We choose the Conjugate Gradient method [S+94] which
is often used when applying the �nite elements method (FEM). For portability
reasons, we choose the Java CG-Solver implemented in the Apache Commons
Math library. Figure 4.5 depicts the mean time for solving linear equations on
di�erent device classes. We chose four di�erent device classes: (1) classical sta-

68

4.5 Statistics Component

tionary desktop PCs, (2) mobile laptops, (3) Smartphones like the LG Nexus 5,
and (4) small and cheap system on a chip (SoC) like the Raspberry Pi 2. The
error bars represent the maximum and minimum time for solving the algebraic
equation. All three values, mean time, minimum time, and maximum time are
provided by the statistics component. Maximum and minimum execution time
are very close. Therefore the mean execution time describes the actual execution
time of any execution very accurately. Also notice the di�erence in execution
time on mobile devices, like Smartphones, and servers. This strongly supports
our assumption of the server being much faster than the mobile device.

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

m
s]

Matrix Size

Raspberry Pi 2
Nexus5
Laptop

Desktop

Figure 4.5: Mean time to solve linear equations on di�erent device classes. Error
bars represent maximum and minimum time.

In order to make the decision when to consider the mobile device to be dis-
connected, the detector needs detailed timing information about the transfer
time of packets sent from the server to the mobile device. The server periodically
sends probe messages to the mobile device. These messages contain timing in-
formation. Probe messages are sent via a connectionless protocol, like UDP, and
are not retransmitted by the transport layer. The statistics component receives

69

4 Increasing Robustness Against Disconnections

probe messages and computes the relative delay of the packet. Notice that this
relative delay is only used for comparison between delays of di�erent packets.
For this task, the delay does not have to be exact and clocks do not have to be
synchronized.

For predicting the duration of disconnections, the statistics component collects
information about lost packages for the predictor. Therefore, probe messages,
periodically sent by the server, contain a sequence number. Using this sequence
number, the statistics component is able to detect lost packages. This informa-
tion is used by the disconnection duration predictor to predict the duration of
disconnection once a disconnection is detected.

4.6 Detecting Disconnections

This section describes the detector component for detecting disconnections.
Detecting disconnections as early as possible is an important task, as the system
can react faster to the new situation.

There are two basic approaches for detecting disconnections: (1) detecting
disconnections by lower layer information, e.g., signal-to-noise ratio (SNR), or
(2) detecting disconnections using a timeout mechanism for reception of peri-
odically sent probe messages. The former method requires additional link layer
information like SNR, which might not be available on the application layer
and which highly depends on the link layer protocol. We therefore focus on the
timeout mechanism. The timeout mechanism introduces additional messages
and needs a carefully chosen timeout value. However, it respects the layer model
and does not need any additional information from lower layer protocols.

For the timeout method, the server periodically sends packets to the mobile
device using a connectionless protocol, such as UDP. The mobile device registers
reception of the packages. If no package arrives after the timeout ttimeout, the
mobile device considers itself to be disconnected from the server. The challenge
is to choose the timeout value ttimeout. Choosing ttimeout is a trade-o� between
detection time and rate of false positive disconnection events. If ttimeout is too

70

4.6 Detecting Disconnections

large, the detection time is increased, which might lead to suboptimal execution,
e.g., the scheduler might start mobile computation too late and the deadline for
the computation is missed. If ttimeout is too small, the detector might signal dis-
connection shortly before the missing probe packet arrives. This false detection
might lead to wrong execution strategies and unnecessary computations on the
mobile device, leading to increased energy consumption.

In order to deal with this trade-o�, we choose ttimeout dynamically, depending
on the actual situation of the execution. We use a lower timeout when the risk
for missing the deadline is high. To this end, we consider the time when the
computation could be �nished by just using the mobile processor tM . We subtract
this value from the deadline, so that the values get smaller when we reach the
critical point to �nish the computation on the mobile device. Too small timeout
values do not make sense, therefore we set the timeout to be at least tmin.

To determine good values for tmin, we did preliminary tests. We set up a
server and a laptop. The server was well connected to the campus network. The
laptop was located inside a train and connected to the server over 3/4G cellular
network. The server sent messages to the laptop every 50 ms using UDP. The
messages contained a 2 byte sequence number only. Server and laptop recorded
timing information when messages were sent and received. Using this timing
information we were able to compute the variance of message delay.

Figure 4.6 depicts the empirical distribution function of received messages over
time. The time is calibrated to minimum transfer time of any packet. Figure 4.6
show that the empirical distribution function has a long tail. The longest message
delay of any received message was 6227 ms. The number of messages never
received on the mobile device was 16.42 %.

As a result of this tests, we found the 90 % quantile as a good trade-o� between
time to detection and number of false detections. The 90 % quantile guarantees
to detect 90 % of received packets correct, while detecting 10 % of later received
packages as disconnections. The 90 % quantile of the preliminary tests was 103
ms. Notice that any quantile can be easily identi�ed based on historical data
stored by the statistics component or requested by a central database for the

71

4 Increasing Robustness Against Disconnections

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300 350 400

re
ce

iv
e
d
 p

a
ck

e
ts

 [
%

]

time [ms]

Figure 4.6: Empirical distribution of received packets over time.

given provider and location.

4.7 Predicting the Duration of Disconnections

In the previous section, we showed how to detect disconnections. This section
covers the prediction of the duration of a disconnection based on collected data.
For this prediction, we learn the characteristics of the network using recent data
in a Markov Chain and use the expected error duration of this Markov Chain as
prediction.

Higher-order Markov Chains are a common method to model burst errors in
wireless networks [GF04]. We will use second-order Markov Chains to predict the
link state, which might be either available (A) or disconnected (D). Thus, states of
the Markov Chain are boolean. Second-order Markov Chains give the probability
of the next state based on the current and the previous state. If a denotes the
previous state and b denotes the current state of the link, P ((a, b)→ c) is the
probability of c being the next state. However, Markov Chains are memoryless
and do not depend on the longer history of previous link states.

For learning the Markov Chain, we use recent data about the link availability.
Learning can be implemented by counting the number of three consecutive
link states (cf. Figure 4.7). The probability p = P ((x, y)→ A), can be derived

72

4.8 Evaluation

by counting the combinations a = #{(x, y,A)} and d = #{(x, y,D)} for
all combination of three consecutive link states in recent data starting with x
followed by y. The probability p can then be set to p = a/(a+ b). In the special
case of a+b = 0, the value should be set to 1/2 to keep principles of probabilities.

For predicting the duration of a disconnection, we use the expected value of
disconnections. If the device gets disconnected, the state of the Markov Chain will
be shortly (A,D) and then remain (D,D). The probability p of the wireless link
to become available again is in every step p = P ((D,D)→ A). The expected
duration of a disconnection E can therefore be derived as

E = 1/p

We use this value to predict the duration of the disconnection. Notice, if the
Markov Chain is not based on enough data, p might not represent the actual
properties of the network. In this case, the predictor returns a very low estimate
to collect more data. Markov Chains can also be shared among users of the same
cellular network provider in the same region.

Figure. 4.7 shows how learning and prediction can be implemented. Notice,
all functions are implemented in O(1). Therefore, this approach for predicting
link availability can be implemented very e�ciently and can be applied in an
online fashion.

4.8 Evaluation

In the previous sections, we explained our method for solving PDEs on a mobile
distributed infrastructure. In this section we will evaluate our method. First we
will explain our evaluation setup, including the application, devices, and our
setup for measuring real-world data. Second, we will use the collected data to
evaluate the disconnection detector. Last, we evaluate our approach with our
real-world collected data on the availability of the wireless link.

73

4 Increasing Robustness Against Disconnections

1: backlog← new queue()
2: counter← [0, . . . , 0]
3: procedure LearnLinkState(link state a)
4: backlog.append(a)
5: (a, b, c)← �rst three link states in backlog
6: counter[(c, b, a)]← counter[(c, b, a)] + 1
7: if |backlog| ≥ max_backlog then
8: (x, y, z)← last three link states in backlog
9: counter[(x, y, z)]← counter[(x, y, z)]− 1

10: backlog.pop()
11: end if

12: end procedure

13: function GetProb((a, b)→ c) . returns P ((a, b) → c)

14: sum← counter[(a, b, c)] + counter[(a, b,¬c)]
15: if sum = 0 then return 1 / 2
16: end if

17: return counter[(a, b, c)] / sum
18: end function

19: function ExpectedDurationDisconnection
20: prob← GetProb((D,D)→ A)
21: if prob = 0 then return∞
22: end if

23: return 1 / prob
24: end function

Figure 4.7: Learning and prediction using Markov Chains for the link state can be
realized e�ciently. Link states are represented as booleans, denoted
as either available (A) or disconnected (D).

4.8.1 Evaluation Setup

Our evaluation setup consist of three parts, the application, the compute nodes
and the wireless network.

As application, we assume a well-known textbook example, namely, the heat
equation. We already introduced the heat equation as an example in Section 2.1.

74

4.8 Evaluation

It is given as

∂u

∂t
−∇2u = 0.

and describes the evolution of the temperature u at any position x in an object
over time t. We choose 1,400 equidistant steps for discretization of the positions
x at any �xed time t. During the evaluations, the time discretization was chosen
randomly, while the deadline was �xed. We ensured that the computation can be
�nished on the server. We assume to use an implicit scheme for the discretization.
This method needs to solve a system of 1, 400 linear equations in every time
step.

For the computation nodes, we assume the mobile device to be equally equipped
as an LG Nexus 5 Smartphone and the server to have four cores at 2.6 GHz. For
computation of one time step, the devices have to solve a system of 1, 400 linear
equations. According to our preliminary tests in Section 4.5 (cf. Figure 4.5), solv-
ing such a system on these nodes would cost roughly 200 ms on the mobile device
and 20 ms on the server. We neglect any additional time for other computations.

For the network, we use di�erent assumptions for link availability, throughput
and latency. For the availability of the link, we collected real-world data on the
train and per-pedes as already described in Section 4.6. We sent packets every 50
ms from the server to the mobile device and recorded detailed timing information
on the devices. For the �nal evaluation, we used a di�erent cellular provider
and di�erent routes than in the preliminary tests. For throughput and latency
we used the speci�cation of recently deployed LTE. LTE promises to provide
throughput of up to 100 Mbit/s [ZM07]. However, technology deployed today
mostly provides only up to 50 Mbit/s. One state plus metadata �ts in 12 UDP
packets, where each packet has 512 byte payload. Using a 50 Mbit/s link, we are
able to send over 950 states per second. We therefore simply assume unlimited
bandwidth.

Figure 4.8 depicts the relative arrival times of packets sent by the server and the
state of the link in one of our collected real-world datasets. The state is assumed

75

4 Increasing Robustness Against Disconnections

 0

 2

 4

 6

 8

 10

 12

 14

D

A

0 200 400 600 800 1000

S
ta

te
V
a
ri

a
n
ce

 i
n
 M

e
ss

a
g
e
 A

rr
iv

a
l
[s

]

Time on Server [s]

Figure 4.8: One of the sample collected per-pedes and on the train. On top, the
variance in message arrival is depicted. On the bottom, the link state
(’A’: available, ’D’: disconnected) is depicted.

to be connected if packets sent by the server eventually arrived on the mobile
device. The graph shows two important pieces of information. First, latency can
be up to nearly 14 s. Second, high latency of particular packets does not imply
disconnection. For instance at 471 s, the mobile device was not disconnected,
but packages had a very high latency of 4.5 s compared to other messages. One
possible explanation for this high latency are retransmissions of the cellular link
layer in areas with bad reception. Especially at underground stations on the train,
but also under small obstacles such as bridges, we observed an increased message
delay.

76

4.8 Evaluation

4.8.2 Evaluation of the Disconnection Detector

For the evaluation of the disconnection detector, we use the real-world data of
cellular networks. In Section 4.6, we already described how we did preliminary
tests and found a 90 % quantile for the minimum timeout for detection of dis-
connections a good choice. However, in the data collected for the evaluation,
the 90 % quantile is 301 ms, which is much higher as in the preliminary tests,
where it was 103 ms. The median message transfer time of eventually received
messages was 54 ms, whereas the maximum was 7153 ms.

Figure 4.9 depicts the latency of messages, the disconnections and the results
of the detector of a sample trace. The deadline was at the end of the plot. We
used received messages to simulate progress of the computation. Our dynamic
timeout mechanism only detects messages at the end of the computation, where
detection is critical in order to meet the deadline. It assumes to have detected
six disconnections. However, �ve are false positives, all with message latency
over 464 ms, which are received eventually. One of the false positives is received
even after 3.9 s, whereas the only real disconnection correctly detected by the
detector, has a latency of 417 ms. In other words, the probe message with the
smallest delay was a disconnection, while the other messages were eventually
received. Any timeout mechanism detecting the real disconnection has to detect
the others.

4.8.3 Evaluation in an LTE Scenario

In the remainder of this section, we will evaluate our method to solve PDEs on
mobile devices against two other approaches, namely a pure o�oading approach
and our approach without the disconnection predictor.

The pure o�oading approach simply computes all states on the server and
sends the results to the mobile device. While the link is disconnected, there is no
progress on the mobile device. However, the mobile device sends a retransmission
request to the server, once the link is recovered from disconnection. If the server
receives a retransmission request, it answers with data of states available on the

77

4 Increasing Robustness Against Disconnections

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000

V
a
ri

a
n
ce

 i
n
 M

e
ss

a
g
e
 A

rr
iv

a
l
[s

]

Time on Mobile [s]

Detected Disconnections

Figure 4.9: Sample data and decision of the disconnection detector. The detector
returns 5 disconnections, depicted as light blue lines. Only the third
disconnection is an actual disconnection, the others are false-positives
reported by the detector.

server but not yet available on the mobile. The pure o�oading approach does
not use the mobile processor. Therefore, it provides the optimal solution, if the
constraint on the deadline can be ful�lled.

Our approach without the disconnection predictor does not have an estimate
on the length of disconnections. It therefore starts computation of any missing
states on the mobile device, once the device is disconnected. If the connection is
recovered, the mobile device sends a retransmit message to the server and stops
the mobile computation. The server will then answer with all its available states,
requested by the mobile device.

To evaluate the performance of the three methods, we used di�erent dead-
lines and tested each of the methods with random time discretization. We were
interested in two aspects: (1) the fraction of simulation runs, where the deadline
could be kept and (2) the additional energy consumption, expressed as the time

78

4.8 Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 50 100 150 200 250 300

D
e
a
d
lin

e
 V

io
la

ti
o
n
s

[%
]

Deadline [s]

pure server
w/ predictor

w/o predictor

Figure 4.10: Fraction of deadline misses over variable deadline of the three ap-
proaches.

of the mobile processor usage.
Figure 4.10 depicts the fraction of deadline misses over the deadline. As the

deadline is later, the pure o�oading approach misses more and more deadlines.
However, our approaches with and without the predictor have a very constant
rate of deadline misses, independent of the actual deadline. Compared to the
pure o�oading approach, our approach without the predictor is able to increase
the fraction of kept deadlines by 61.25 % and our approach with the predictor
by 61 %. If the application requesting the results is able to handle 10 % to 15 %
deadline misses, our approaches can be used, while the pure o�oading approach
does not provide su�cient results.

Figure 4.11 depicts the performance in terms of the optimization goal. Whereas
the pure o�oading approach yields optimal solutions with no mobile processor
use, it mostly does not ful�ll the constraint on the deadline of the computation.
Our two methods use the mobile processor and are able to keep the deadline
more often. However, they also use the mobile processor and therefore do not
yield energy-optimal solutions. Comparing our approaches with and without the
predictor, the approach with the predictor is able to reduce energy consumption
by up to 74 %. Therefore, the predictor is an essential component to provide
better results in terms of energy consumption on the mobile device.

79

4 Increasing Robustness Against Disconnections

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300

M
o
b
ile

 P
ro

ce
ss

o
r

U
sa

g
e
 [

s]

Deadline [s]

w/ predictor
w/o predictor

Figure 4.11: Energy consumption on the mobile device of our methods with and
without the predictor.

Overall, our approaches with and without the predictor are able to ful�ll
the constraint on the deadline much better than the pure o�oading approach.
However, using the predictor, we are able to save a constant time of mobile
processor utilization. Especially in a scenario such as AR or MCPS, where the
solver has to provide results continuously, this constant time adds up to a linear
improvement in energy consumption on the mobile device.

4.9 Related Work

This section discusses related work for providing robust execution of simulations
in distributed environments. Related work is structured in classical methods
from high-performance computing and code o�oading methods for execution
in distributed mobile environments.

4.9.1 High-Performance Computing Methods

Classically, numerical simulations are computed on supercomputers using high-
performance computing (HPC) methods [RD15]. HPC assumes a set of distributed
but closely located nodes connected via a wired dedicated low-latency and high
data rate network. Additionally, nodes are considered to be homogeneous and

80

4.9 Related Work

have the same hardware.

Usually, communication between nodes is implemented using the message
passing interface (MPI) standard [RJ15]. Starting with standardization in 1993
[MPI93], MPI provides methods to distribute data and tasks across computing
nodes for parallel computation. This makes it easier for the application pro-
grammer of numerical simulations to implement scalable, massively parallel
applications.

The MPI standard assumes reliable communication provided by the underlying
communication subsystem [MPI15]. Therefore, in case of disconnections, the
underlying subsystem has to handle recovery. However, TCP for instance does
not implement recovery after disconnections. Therefore, other mechanisms need
to be implemented by the user [GL04, HSML07].

Limitations of High-Performance Computing Methods

While the MPI standard can be used to implement mobile simulations, they require
handling of disconnections by the user. Therefore, disconnection detection and
recovery needs to be implemented separately.

In general, HPC methods cannot be used for mobile applications, as they
assume reliable communication and homogeneous architectures. In contrast,
mobile devices and servers are heterogeneous and usually have di�erent proces-
sor architectures. Additionally, the cost of communication is much higher for
wireless communication technology than for closely distributed computation
nodes in supercomputers. To this end, HPC applications are also considered to
be relatively static compared to mobile applications that need to dynamically
react to di�erent situations.

In contrast, the approach presented in this chapter considers heterogeneous
computing nodes and presents methods for deciding on local and remote compu-
tation.

81

4 Increasing Robustness Against Disconnections

4.9.2 Code O�loading

In code o�oading, mobile applications are split into modules, where the execution
of modules is distributed between mobile device and connected server. To this
end, approaches reduce the latency [RSM+11, GRA12, YKC+13] or the energy
consumption on the mobile device [CBC+10, CIM+11] for the execution.

The main problem is to decide how to distribute modules of the application.
One solution for this problem is reduced to a graph partitioning problem, where
nodes represent di�erent modules and edges represent dependencies between
modules, e.g., one module calls a function of another module. Nodes and edges
are adjunct with cost for computation and communication on di�erent nodes. To
�nd the best partitioning of modules, the graph has to be partitioned into two
distinct sets with respect to energy, time, throughput, latency, volume, and space
constraints.

Safe-Pointing Recent publications in code o�oading also deal with the prob-
lem of disconnections of the wireless network [BDR14, ZNW15, Ber18]. Berg et
al. proposed to use safe-points of the application that will be sent to the mobile
device from time to time. When a disconnection is discovered, the last used
safe-point can be used on the mobile device to eventually start the computation
on the mobile device and therefore save energy and time for reconstruction of
the same state as on the server.

Limitations of Code O�loading

Code o�oading is application agnostic, which may lead to non-optimal distribu-
tion in case of speci�c applications. Time-dependent numerical simulations only
support one execution thread, where the result of the previous state is required
for calculation of the current state. Code o�oading therefore can only split the
application into a row of modules where it has to execute one after another.

While solving one step of the numerical simulation is more performant when
it is calculated on parallel processors, the state of the simulation is much smaller

82

4.10 Summary

after each time step is calculated. Therefore, if safe-pointing is applied during
parallel executions, it may result in non-optimal communication strategies at a
much higher cost for the calculation during disconnections. Additionally, safe-
pointing is implemented on a virtual machine layer, which results in higher
overhead than application-speci�c serialization.

4.10 Summary

In this chapter, we described how to solve simulation problems using mobile
devices and servers connected over wireless communication links. Wireless links
such as implemented via 3/4G cellular networks are subject to burst errors, where
multiple successive packets are not delivered and the link is unavailable for a
longer period, i.e., the device is temporarily disconnected. By using prediction
on the availability of the wireless link, we showed that we can improve the
energy consumption on the mobile device during disconnections while ful�lling
constraints on the deadline of the computation.

While frequent disconnections are one of the major problems in mobile com-
puting, mobile simulations also have to provide timely results in case of low data
rates. The following chapter therefore considers to use surrogate models to �nd
a trade-o� between computation resources on the mobile device and current
communication resources of the wireless network.

83

5

Using Surrogate Models for
Efficient Solution of Time-
Dependent Problems

In the previous chapter, we provided concepts to execute the simulation either on
the mobile device or on the server. In evaluations, we have seen that execution
on the server and streaming results to the mobile device was much faster than
execution on the mobile device in cases of no disconnections. In this chapter,
we will explore a di�erent form of distribution of the execution between mobile
device and server that is very speci�c to simulations and quality-dependent
algorithms. In particular, we will utilize the concept of surrogate models, i.e.,
low-quality and low-complexity simulation models. As surrogate models have
much lower complexity than the original full simulation model, they are suitable
for execution on the mobile device. Intuitively, the server can run the same
surrogate model in addition to the full simulation model and provide updates
depending on the quality requirements of the user. In this way, the execution
requires little more overhead on the server side, but much less overhead on the
network and the mobile processor.

This chapter is structured as follows. First, more details on the system model
are provided, followed by the problem statement. The following three sections
provide three methods to solve the problem. After the methods have been intro-
duced, they are evaluated in a synthetic testbed based on real-world data. The
last two sections in this chapter discuss related work and provide a summary.

85

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

Parts of this chapter have been published in [DNDR19].

5.1 System Model

This section introduces our system model for o�oading of time-dependent numer-
ical simulations. We �rst describe our model for the time-dependent simulation
and then provide our model of the mobile environment, consisting of mobile
device, remote server, and wireless communication network.

5.1.1 Time-Dependent Simulations

Time-dependent numerical simulations are based on di�erential equations de-
scribing the behavior of the system w.r.t. continuous time and space. Such equa-
tions need to be discretized in order to be solved. Time-discretization divides the
continuous time into nt + 1 time steps. Each step represents the system state Si

at �xed time ti. For simplicity, we assume that the time of the �rst step is t0 = 0

and the time for the last step is tnt
= 1. Then, the time resolution is ∆t = 1/nt

(cf. Figure 5.1).

∆x

∆
y

∆t ∆t ∆t . . .

S0

t0

S1

t1 = t0 + ∆t

S2

t2 = t0 + 2∆t

Figure 5.1: Time discretization and space discretization of numerical simulations.

Next, we �rst describe how the simulated system at each time step is dis-
cretized in space, how the transition between time steps is implemented, and
how the computation can be optimised to provide computationally cheaper
approximations of the simulation problem.

86

5.1 System Model

Representation of Time-States and Transition Between States

Time-states Si represent the state of the simulated system at discrete points in
time. While space is de�ned continuously in the di�erential equation, it also
needs to be discretized. To this end, the system is only observed at �xed points in
space, e.g., at points forming a grid with mesh width ∆x (cf. Figure 5.1). Values
of the simulation at these points form a vector. The size of the vector depends on
the spatial discretization. If �ner discretization is required, the size of the vector
is increased. The size of the vector later also depends on the complexity of the
computation.

Transition between time states is implemented by solving an algebraic problem
in a numerical solver. The output of the solver is the state vector of the next time
state Si+1. Input into the solver is the old state vector Si and problem-speci�c
information, e.g., a problem matrix and a vector forming the algebraic problem.
Typically, there is a choice between multiple classes of algebraic problems for
the same di�erential equation, leading to di�erent trade-o�s between quality
and complexity of the computation. For instance, simulating heat propagation
using the heat equation yields various discretization methods that can be gener-
alized into two classes: implicit methods and explicit methods. While implicit
methods are computationally more expensive, they provide better quality than
explicit methods. Such decisions on the trade-o� between quality and complexity
motivate the use of surrogate models.

Reference Model and Surrogate Model

We assume two di�erent implementations of the model, a reference model and
a surrogate model. The reference model de�nes the “ground truth” of the sim-
ulation. It is de�ned over �ne-grained discretization grids, enabling accurate
predictions of future system states. While it provides accurate results, it is ex-
pensive to compute. On the other hand, the surrogate model is computationally
less expensive while providing only a lower quality than the reference model.
Surrogate models can be obtained by using an explicit method rather than an

87

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

implicit method or by changing ∆x of the discretization grid to have a lower
space resolution.

We will later compare the reference model and the surrogate model at the
same time step. To compare results of both models, the vector of the reference
model has to be mapped to the same dimensionality as the vector of the surrogate
model. We assume that this mapping is provided by a transformation matrix
TR→S . Additionally, to simplify the notation for comparison between models,
we assume that time-discretization of the reference model and the surrogate
model is the same. However, the reference model could also be con�gured to
compute multiple, say nref steps for one surrogate step. This way, the reference
model will have a time discretization with ∆tref = ∆t/nref and we are able to
compare results of the reference model and the surrogate model every nref time
steps.

Mixing Simulation Models for Approximate Solutions

The solutions of one simulation model form a chain of time steps (cf. Figure 5.1).
To provide better quality, the chains of the reference model can be used to
update the surrogate model chain. Each of these updates forms a new chain of
approximate solutions. For instance, the surrogate model is updated at time step,
say 5, to set its state to the state of the reference model. The resulting chain
of simulation results may be signi�cantly di�erent compared to the original
surrogate simulation chain without the update.

5.1.2 System Components

To compute results of the numerical simulation, the system consists of two
compute nodes, namely the mobile device and the server. The server is located in
a central location in the network and receives data from sensors (cf. Figure 5.2).

The mobile device is carried by the user. The user directly interacts with the
mobile device and requests simulation results. The mobile device has an energy-
e�cient but slow processor. In contrast to the server, it is very resource-limited

88

5.2 Problem Statement

Mobile Server
Wireless Link

S
S

S

Sensors

Figure 5.2: The two compute nodes, server and mobile device, and connected
sensors.

and depends on batteries providing limited energy.

The server receives data from cloud-connected sensors and collects and stores
relevant data to form the initial state for the simulation. Therefore, the initial state
for the simulation is only available on the server and needs to be communicated
to the mobile device before any simulation model can be executed.

Server and mobile device are connected via wireless communication, e.g., 3/4G
cellular networks or IEEE 802.11 WiFi. Wireless communication is subjected to
dynamic latency and throughput, which might be very low in some cases.

5.2 Problem Statement

After describing the system model, this section describes the problem statement.
We �rst de�ne quality for approximate solutions and then de�ne the optimization
goal of the system.

Quality of approximate solutions is de�ned by comparing approximate solu-
tions to the reference model using a user-de�ned norm ‖·‖U . Let SA

i denote the
approximate solution and SR

i denote the reference solution for time step i =

0, . . . nt. The quality of time step i is then de�ned as qAi = ‖SA
i − TR→SS

R
i ‖U ,

where TR→S is the transformation matrix between reference model results and
surrogate model results (cf. Section 5.1.1). The overall quality of the approximate

89

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

solution for all time steps is then de�ned as

QA = max
i=0,...,nt

qi (5.1)

= max
i=0,...,nt

∥∥SA
i − TR→SS

R
i

∥∥
U
. (5.2)

One example for the user-de�ned metric ‖·‖U is to compare approximate solution
and reference model solution by the maximum di�erence at any point, e.g., the
maximum temperature di�erence of a heat simulation.

Having de�ned quality, we can now de�ne the overall goal of the system. The
goal of the system is to minimize the latency until approximate solutions are
available on the mobile device. Approximate solutions have to ful�ll quality
constraints given by the user, i.e., the user provides Qmax and the solution has
to ful�ll QA ≤ Qmax. This way, the user can de�ne the maximum di�erence of
the approximate solution to the reference simulation and the system provides an
approximate solution as fast as possible.

5.3 Stream Approach

We brie�y describe the straight forward streaming approaches. These approaches
only serve as baseline and for comparison to our approaches that will be presented
in the next sections. Streaming approaches compute all steps of the simulation
on the server and communicate results to the mobile device. We introduce two
approaches, the simple stream approach and the slightly more sophisticated
advanced stream approach.

The simple stream approach computes the reference simulation on the server
and communicates all steps to the mobile device. Therefore, all results on the
mobile device have the best possible quality and QA = 0.

The advanced stream approach also computes the reference simulation on
the server. However, it will reduce the quality of the simulation states before
they are sent to the mobile device. In particular, it will reduce the resolution
of the simulation to the surrogate model discretization. This way, the quality

90

5.4 Full Update Approach

is still QA = 0, while the volume of data communicated over the wireless
communication link is signi�cantly reduced.

While the simple stream approach represents the result of an unbalanced
partitioning, which could be the result of code o�oading for the simulation
problem, the advanced stream approach is able to reduce the communication
overhead at no quality loss. However, the advanced stream approach still has to
communicate all simulation steps over the network. The following sections will
introduce our approaches, which require much lower communication overhead
over the stream approaches.

5.4 Full Update Approach

While the previously introduced stream approaches are able to meet any quality
requirements, they do not consider the mobile device for computing simulation
results. Therefore, this section introduces the full update approach, which reduces
the requirements on the wireless link as it uses computation on the mobile device.

The general idea of this approach is to execute the same simulation on the
surrogate model simultaneously on the mobile device and the server. Thus, the
server knows which (approximate) results have been calculated by the mobile
device using the surrogate model. By comparing to the exact solution of the
reference model, the server can send updates to the mobile device at selected
states, whenever the surrogate model yields results of insu�cient quality.

Figure 5.3 depicts the components for the full update approach. Reference
model and surrogate model are models of the simulation that implement time
transition of the states. The update decision component will decide whether
to send an update to the mobile device. The mobile state tracker holds the last
known state of the simulation on the mobile device for the previous state. On
the mobile device, the update integration component combines possible outputs
of the surrogate computation.

While the reference model and the surrogate model have already been intro-
duced in the previous sections, we will explain the remaining components in the

91

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

Reference Model Surrogate Model

Update Decision Mobile State
Tracker

S
e
r
v
e
r

Su
rr

og
at

e
M

od
el

Up
da

te
In

te
gr

at
io

n

Us
er

A
pp

lic
at

io
n

M
o
b
i
l
e

Figure 5.3: Overview of the full update approach

following subsections.

5.4.1 Mobile State Tracker

The mobile state tracker provides the previous state of the mobile device on the
server. As the surrogate model is deterministic and will return the exact same
result as on the mobile device, the server can use the result even before it has
been computed on the mobile device.

For the initialization, the initial state needs to be communicated to the mo-
bile device in reduced-model resolution. The mobile state tracker will then be
initialized with the same initial state.

5.4.2 Update Decision

The update decision is based on the requirements of the user. To this end, the
update decision component receives the current state of the reference model and
the surrogate model. It computes the di�erence of the states after transforming

92

5.4 Full Update Approach

the reference state to the same spatial discretization grid as the surrogate state.
Afterwards, it will check whether the quality of the result of the surrogate model
is su�cient. If it is su�cient, it will send a quality certi�cation message to the
mobile device. If it is not su�cient, it will send an update of the vector representing
the current reference state to the mobile device.

Notice that, before sending, the update is transformed to the spatial discretiza-
tion level of the surrogate model since this provides the quality such that the
mobile device can continue calculating future states from the updated model.

The update decision component will also update the tracked state on the server.
If a certi�cation message was sent, it will use the result from the surrogate model.
If an update was sent, it will update the mobile state with the result from the
reference model.

5.4.3 Update Integration

The update integration component is executed on the mobile device and receives
messages from the server. It may invoke the surrogate model and provides the
result as current simulation state to the user application.

If the update integration component receives a certi�cation message, it will use
the result from the surrogate model and provide the result to the user application.
If it receives an update message, it parses the state and provides it directly to
the user application since the result then is directly derived from the reference
model. To this end, the update integration module always has to wait for the
next message from the server. If no certi�cation message is available, it cannot
provide any result to the user application since the result of the surrogate model
might not provide su�cient results.

There are optimistic and pessimistic implementations of the full update ap-
proach. The optimistic implementation assumes that no update has to be made
and the computation using the surrogate model is su�cient. The pessimistic im-
plementation assumes that the surrogate model will not provide su�cient quality.
To this end, the optimistic approach will always start the computation of the
next state in the background, whereas the pessimistic approach only computes

93

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

on request by the server.
Compared to the stream approach, the full update approach will reduce the

tra�c of the wireless communication link, as certi�cation messages will be much
smaller than streaming results. The tra�c of the network now depends on the
accuracy of the surrogate model. However, this approach adds slightly more
overhead on the server side, which now has to compute the surrogate model
in parallel to the reference model. In the next section, we will see how we can
further reduce the tra�c of the network by just sending partial updates.

5.5 Partial Update Approach

The previously introduced full update approach always has to communicate full
state updates for surrogate states violating quality requirements. This results in
a huge communication overhead even in cases where only a small part of one
surrogate state violates quality constraints. In this section, we therefore introduce
our partial update approach, which is based on the full update approach, but will
only update parts of the vector representing the approximate solution from the
surrogate model (cf. Figure 5.4).

On Server

On Mobile

SS
0

SM
0

SS
1

SM
1

SS
2

. . .

SM
2

. . .

Figure 5.4: Partial point updates.

Updating single values of the simulation is not straight forward since the sim-
ulation model might be sensitive to external changes of the simulation state. For

94

5.5 Partial Update Approach

instance, if we consider a heat simulation, the simulation model and numerical
calculation assumes the solution to be continuous, while when randomly updat-
ing values, the solution becomes discontinuous, i.e., updated values add sharp
edges to the simulation state. Such discontinuities lead to numerical instabilities
which would never occur in normal calculations for the simulation and which the
model might not be able to recover. Therefore, more sophisticated approaches
are required.

To reduce the discontinuity when updating single values, we use data assimila-
tion techniques. Data assimilation emerged from weather simulations, where sen-
sor data updates the simulation state, which leads to similar problems [LSZ15b].
To prevent such problems, data assimilation techniques identi�es the correlation
between parts of the simulation state. When updating one value, data assimilation
uses this correlation and updates all correlated values respectively. Therefore,
the number of discontinuities is highly reduced and the simulation model quickly
recovers from single point updates.

The idea of the partial update approach is to apply data assimilation and treat
single point updates as sensor observations. In this case, sensor observations are
perfect, since they are taken from the reference simulation, which is our ground
truth. This simpli�es the calculation of data assimilation methods, since they
normally assume inaccurate observations.

In the following, we �rst brie�y describe our data assimilation of choice, the en-
semble Kalman �lter, before we discuss how the partial update approach changes
the update decision and update integration from the full update approach.

5.5.1 The Ensemble Kalman Filter

The ensemble Kalman �lter (EnKF) provides a solid and frequently applied frame-
work for data assimilation [Eve03]. The general idea of the EnKF is to use multiple
states to track uncertainties (cf. Figure 5.5). These states are called ensemble
members. Initially, ensemble members are generated using random perturbation
of the initial state. For every simulation state, the next state of the ensemble
members is computed using the surrogate model. The number of ensemble mem-

95

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

bers ne can be small. It has been shown that even some complex applications do
not require more than 50 ensemble members [HM98, Kep00].

Ensemble Kalman Filter

Surrogate Model

Updates Ensembles
State Estimate

Figure 5.5: Simpli�ed operating principle of the ensemble Kalman �lter.

Generation of Ensemble Members

We generate ensemble members by perturbation of a reference state Si. To this
end, we add a random vector to the initial state to form an ensemble member
e
(j)
i = Si + r(j). The random vector r(j) is sampled such that the mean of

ensemble members track the state of the reference simulation, e.g., using the
standard error between reference and surrogate model.

In order to have the same result available on the mobile device as on the server,
the computation has to be deterministic. To provide random numbers to the
EnKF, we therefore use a deterministic random number generator with well-
de�ned seed for the random vector. As the seed should change for every state,
the server chooses a basic seed during initialization. We then use a deterministic
function of the basic seed and the state number to calculate the seed for state
perturbation of the current state.

Combining Simulation Model and Observations

Combining the state of the surrogate model and partial updates consists of two
steps, namely the forecast step and the analysis step. In the forecast step, the sur-
rogate model is applied for all current ensemble members Ei = (e

(1)
i ; . . . ; e

(ne)
i).

This generates the forecast ensembles for the next ensemble members Fi+1 =

(f
(1)
i+1; . . . ; f

(ne)
i+1).

96

5.5 Partial Update Approach

Partial updates are communicated as set of pairs (position, value) where, for
every updated value, the position of this value in the surrogate state vector is
given. This representation is translated into an update vector ui+1 containing
just the values and a measurement operator Hi+1 mapping respective entries of
the surrogate state vector to the update vector.

For the analysis step, the next state has to be combined with partial updates
ui+1 by using the so called Kalman gain Ki+1. The Kalman gain de�nes the
sensitivity of the di�erence of partial update ui+1 and forecast state Fi+1.

The analyzed ensemble members are then calculated as

e
(j)
i+1 = f

(j)
i+1 +Ki+1(f

(j)
i+1 −Hi+1ui+1).

The analyzed simulation state as output for the user is the ensemble mean of all
analyzed ensemble members. Further details about the EnKF and the computation
of the Kalman gain Ki+1 can be found in Section 2.3.

5.5.2 Update Decision

For identi�cation of parts that need updating, we introduce the concept of vi-
olation points. Violation points are points in the result of the surrogate model
that violate the quality constraint. How these points can be calculated depends
on the norm used for specifying the quality. In general, we distinguish between
maximum norm and any other norm.

If the maximum norm is used for the quality constraint, every point has a
maximum distance to its corresponding point in the reference state. Violation
points are therefore all points that di�er too much from the current reference
state.

For other norms, e.g., the Euclidean norm, the computation of violation points
is slightly more complex and requires an iterative process. To this end, we build
the set of points that require updating. Initially, this set is empty. If quality re-
quirements using the current updates cannot be met, the point with the maximum
error to the reference model is included in the updates. This is repeated until the

97

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

quality requirements are met.
Once the decision on the set of points to update is made, the update is sent

over the network. Additionally, on the server side, the update is applied by the
mobile state tracker in order to derive the same state as on the mobile device.
In contrast to the full update approach, the mobile state tracker not only keeps
track of the current simulation state on the mobile device, but also of ensemble
members expressing the uncertainty of the current state.

5.5.3 Update Integration

The update integration component on the mobile device receives the update
from the server. It holds the current ensemble members of the surrogate model.
To this end, it will calculate the prediction model and prepares all steps in the
calculation of the EnKF to provide the next state of the simulation for the user
application.

Notice that before using the EnKF, we used the Kalman �lter as data assim-
ilation technique. The Kalman �lter tracks uncertainty of the states using a
covariance matrix. This matrix is quadratic to the problem size and therefore
much more computationally expensive.

5.6 Evaluation

The previous sections introduced the full update approach and the partial update
approach. This section evaluates both approaches against the two streaming
approaches described in Section 5.3, which are the state-of-the art for providing
simulation results to mobile devices. In this evaluation, we consider di�erent
mobile network setups and di�erent assumptions on the accuracy of the surrogate
model. As benchmark simulation problem, we are using a 2d heat simulation
based on the well-known heat equation. Before describing details of evaluation
results, we �rst introduce the evaluation setup.

98

5.6 Evaluation

5.6.1 Setup

We evaluated our approaches on a distributed test bed consisting of a Raspberry
Pi 3 as mobile device and a powerful server. The Raspberry Pi 3 uses a system-
on-chip (SoC) hardware similar to the SoCs used by mobile devices. It features
a quad-core Broadcom ARM CPU at 1.2 GHz and 1 GB RAM. The server is
a commodity o�-the-shelf server featuring a quad-core Intel Xeon E3 CPU at
3.4 GHz and 16 GB RAM.

We emulated the cellular network connecting mobile device and server using
the Linux Kernel Packet Scheduler on both nodes. To this end, we added queueing
disciplines that restrict the data rate using a token bucket �lter (TBF) and delaying
packets using the netem module. To set parameters of the TBF and for the delay,
we measured the performance of real cellular networks using HSDPA and LTE.
We found that, in extreme conditions, data rates can be as low as 50 kbit/s with
around 1 second latency over longer periods. However, as we assume data rates
to increase in the future and as our approaches are much better for lower data
rates, we assume a data rate of 1 Mbit/s.

Our approaches and the simulation are implemented in Python (version 2.7.13)
and NumPy (1.14.3). To accelerate the computation, NumPy was linked with
OpenBLAS (0.2.19), which is available for the server and mobile architecture.
Serialization is implemented using Protobuf (3.5.2), and data was communicated
using TCP as transport protocol. We used background threads and queues in order
to send data parallel to processing. As deterministic random number generator,
we use the Mersenne twister sequence [MN98] as implemented in Python.

As simulation problem, we choose the popular and well understood 2d heat
equation with Dirichlet boundary conditions. We implemented two numerical
solvers, one using explicit Forward-Time Central-Space (FTCS) discretization
and the other using the Alternating Direction Implicit method (ADI) with the
Crank-Nicolson method for 1d discretization. Throughout the evaluation, we
used the explicit FTCS implementation as surrogate model and the implicit ADI
implementation as reference model. For the initial state, we choose random
values in the interval [0, 1] and set the boundary to 0.

99

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

The execution of the simulation depends on many parameters for discretization
and accuracy of the numerical model. We ran our evaluations with di�erent
parameters and received results similar to the results reported in this section.
For the �nal evaluations, we used the following default parameters. We assume
the temporal discretization as ∆t = 0.0001 with 100 states. The maximum error
allowed between reference and surrogate model was 2−7, i.e., we allowed less
than 1 % of error between reference model and surrogate model.

To compare di�erent surrogate models, we de�ned quality levels as uniform
grids for space discretization. This way, we can use di�erent discretization grids
and de�ne surrogate models on each of the levels. To this end, our uniform grid
implementation consists of di�erent levels, where each higher level includes
points of all lower levels plus points in between of all existing points. The number
of points on this levels quickly grows, e.g., the later often referred level 5 contains
1089 points, while level 6 contains 4225 points.

In the following, we will �rst evaluate the impact of quality onto the number of
full state updates and sizes of partial state updates, since the number of updates
required might depend on the required quality. We will then evaluate the latency
for varying data rate of the network, full update probability, sizes of partial
updates, and surrogate problem size.

5.6.2 Accuracy of the Surrogate Model

The accuracy of the surrogate model impacts two quantities: (1) the number of
points requiring partial updates and (2) the distribution of the number of points
in states violating quality constraints. To this end, we introduced the terms
violation states and violation points. Violation states are states of the simulation
that do not ful�ll quality requirements and therefore need updating in the full
update approach. Similarly, violation points are points in one simulation state
that are required in partial updates. Intuitively, violation states and violation
points depend on the maximum error that is allowed for the application. To
provide an overview of the distribution of violation states and violation points,
we recorded them for di�erent error bounds (maximum error) in the 2d heat

100

5.6 Evaluation

equation with random initial state.

 0

 20

 40

 60

 80

 100

 0.01 0.1 1

p
e
rc

e
n
ta

g
e

maximum error

Violation States
Violation Points

Figure 5.6: Ratio of violation states and violation points.

Figure 5.6 depicts the percentage of states that are required as updates, and
percentage of points per state requiring updating for partial updates. While
some partial updates require many point updates, the majority of partial updates
only require few points. For maximum error 2−7, around 50 % of states require
updating, while only 5.2 % of points need to be updated. We therefore assume a
state update probability of 0.5 in the following, if not stated otherwise. Notice
that this reduced the volume of data to be communicated from server to mobile
device by 50 %.

5.6.3 Impact of Channel Data Rate

Mobile devices face varying data rates of the wireless communication channel.
Especially in areas with bad signal strength, e.g., indoors in basements, data rates
drop to low rates down to 50 kbit/s. This is inline with the Shannon-Harley
Theorem which would require higher bandwidth in cases of higher signal-to-
noise ratio to keep constant data rates.

We measured the overall latency of the approaches for di�erent data rates.
Latency is taken from the time the program is started on the mobile device
until all results are available in su�cient quality on the mobile device. For the

101

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

streaming approach, this includes sending the initial request to the server and
then receiving all states of the simulation. For the full update approach, this
includes sending the initial request and then computing the surrogate model
on the mobile device, whereby the server either acknowledges the surrogate
model quality or sends an update to correct quality of the surrogate model. For
the partial update approach, this includes sending the initial request, receiving
the initial state and then executing the ensemble Kalman �lter alongside the
surrogate model while potentially receiving point updates for each state from
the server.

After setting di�erent data rates, we ran our approaches multiple times and
recorded the median latency. All other parameters are set to the default con�gu-
ration introduced in Section 5.6.1.

 10

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

la
te

n
cy

 [
s]

data rate [kbit/s]

Stream
Full Update

Partial Update

Figure 5.7: Latency of the four approaches over data rate.

Figure 5.7 depicts results for the three approaches over the data rate of the
wireless channel. For low data rates, the partial update approach provide results
up to 13.3 times faster than streaming, while the full update approach is only 9.4

times faster. However, for high data rates, the full update approach is marginally
faster than the partial update approach. Both have a speedup of 50 % compared
to streaming. In general, data rate has only very little impact on the partial
update approach, while it e�ects stream and full update approach. For varying
data rates, the combined approach is therefore the best choice, while the full

102

5.6 Evaluation

update approach might be considered for higher data rates.
We found that most of the overhead of streaming is caused by the deserializa-

tion on the mobile device. However, our implementation is based on Protocol
Bu�ers, which is considered to be one of the fastest serialization formats [SM12].
Partial update approach and full update approach have to serialize and deserialize
much fewer data compared to streaming as they do not need to send all states
over the network. The biggest bottleneck for the partial update approach remains
the execution of the ensemble Kalman �lter.

5.6.4 Impact of Update Probability

To evaluate the impact of the accuracy of the surrogate model on latency of the
approaches, we previously evaluated our approaches with a synthetic probability
of updates (cf. Section 5.6.2). To this end, we recorded the median latency for the
di�erent approaches for multiple simulation runs with di�erent update probabil-
ity. We assumed that updates are uniformly distributed. All other parameters are
as our default con�guration introduced in Section 5.6.1.

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

la
te

n
cy

 [
s]

state update probability

Stream
Full Update

Partial Update

Figure 5.8: Latency over update probability.

Figure 5.8 depicts latency over update probability of simulation states. The
latency of the stream approach is practically constant, since it sends all states
of the simulation over the network. The full update approach is up to 2.1 times

103

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

faster than the stream approach for no updates but converges to the latency of
the stream approach when all states require updating. Performance of the partial
update approach only changes gradually, since more updates only marginally
change the communication overhead. For less than 40 % of state update proba-
bility, the full update approach has a better performance than the partial update
approach. However, if all states require updating, the partial update approach
has a speedup of 26 % compared to streaming and full update approach.

5.6.5 Impact of the Size of Partial Updates

In addition to varying update probability, we also considered di�erent sizes of
partial updates. To this end, we run the approaches and introduced fake updates.
Each state had a probability of 0.5 to require an update. Each update had a
�xed size of violation points that require updating by partial updates. All other
parameters are as our default con�guration in Section 5.6.1.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

la
te

n
cy

 [
s]

update size [%]

Stream
Full Update

Partial Update

Figure 5.9: Latency over update size.

Figure 5.9 depicts latency over update size. As the size of the partial update
does not e�ect the stream approach and full update approach, only the latency
of the partial update approach gradually increases. Latency is even higher than
for the stream approach, since sending partial updates requires decoding of
the position of the updated points. This makes a partial update with all points

104

5.6 Evaluation

updated bigger than a full update. Additionally, the overhead for calculation of
the ensemble Kalman �lter is increased for more updates. For more than 50 %
updates, streaming is more e�cient than the partial update approach. However,
for up to 20 %, the partial update approach provides results in the same time as
the full update approach. As shown in Section 5.6.2, the percentage of violation
points is typically below 20 %.

5.6.6 Impact of the Surrogate Problem Size

Lastly, we want to measure the impact of di�erent surrogate problem sizes. If
the surrogate problem grows, the stream approach has to communicate more
data. However, for the full update approach and the partial update approach, also
the computational overhead is increased. We want to measure the impact for
di�erent space discretization of the surrogate model. All parameters are taken as
described in Section 5.6.1.

 0

 5

 10

 15

 20

 25

 30

 35

 2 2.5 3 3.5 4 4.5 5 5.5 6

la
te

n
cy

 [
s]

surrogate space discretization level

Stream
Full Update

Partial Update

Figure 5.10: Latency over surrogate model space discretization level.

Figure 5.10 shows the latency of the approaches over di�erent discretization
level. Notice that for level 6, the reference model has the same space discretiza-
tion as the surrogate model. However, the surrogate model is implemented as
implicit method, so the two models provide di�erent results. As for increased
discretization level the number of unknowns grow exponentially, latency of the

105

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

approaches grow linearly with increased number of unknowns. However, the
full update approach and partial update approach provide much better results
for high discretization levels. In particular, the full update approach provides
a speedup of up to 1.9, while the partial update approach is only 33 % faster
than the streaming approach. Notice that the mobile device is limited to at most
discretization level 6 due to memory limitations.

Concluding the evaluations, full update approach and partial update approach
are signi�cantly better than streaming. The full update approach is best for high
data rates, high update size, low update probability, and high surrogate problem
size. The partial update approach is best in cases of low data rates, low update
size, and high update probability. Approaches can be combined by simply using
the partial update approach for updates lower than 20 % and otherwise send full
updates to bene�t from both update types.

5.7 Related Work

This section discusses related work for reducing the latency of mobile simulations.
While high performance computing (HPC) and code o�oading were already
discussed in context of robust execution in Section 4.9, this section discusses
methods for increasing the performance for these concepts. Additionally, anytime
computing and recent work in quality-aware execution for mobile applications
are discussed.

5.7.1 High Performance Computing

Traditionally, numerical simulations are executed as high performance computing
(HPC) applications on supercomputers [RD15]. Supercomputers consist of many
closely distributed nodes connected via low latency and high data rate networks.
This enables to run parallel programs on the same data using protocols such as,
e.g., the message passing interface (MPI).

Surrogate modelling is not new and is actively researched and applied, espe-
cially for optimization, prototyping, or sensitivity analysis. For instance, Gorissen

106

5.7 Related Work

et al. describe the Matlab SUrrogate MOdelling (SUMO) toolbox to generate surro-
gate models based on data and applications [GCD+10]. The toolbox uses di�erent
models, e.g, arti�cial neural networks, splines, or support vector machines, to
generate problem-speci�c surrogate models.

In the simulation community, approaches exist that use pro�ling in order to
make better decisions on the trade-o� between accuracy and latency of the com-
putation [LDBNR13]. However, these approaches do not provide a distribution
between nodes.

Limitations of High Performance Computing

As discussed in Section 4.9, traditional methods from HPC are not suitable as they
assume low delay and high data rates between computation nodes. In contrast,
wireless communication has high delay and low data rates.

While our approaches could use any surrogate model, providing quality bounds
for surrogate models is very problem dependent. In contrast, our approaches
compares the result of the surrogate model with a reference model and can
guarantee maximum errors between reference and surrogate model.

Making good trade-o�s between accuracy and latency of the calculation is
important for the surrogate model. Therefore, approaches using pro�ling to
provide good surrogate models are orthogonal to our approach, while they do
not provide any mechanism for distribution of the computation.

5.7.2 Code O�loading

Besides aspects discussed in Section 4.9, some code o�oading methods were
developed to increase the performance of mobile applications [RSM+11,CIM+11,
GJM+12]. The general idea is to partition the mobile application and assign
weights for o�oading to partitions.

107

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

Limitations of Code O�loading

Code o�oading is application agnostic and does not consider quality. Therefore,
code o�oading can only o�oad either an implementation of the surrogate model
or the reference model. However, o�oading the surrogate model does not provide
quality constraints for the user and o�oading the reference model results in
higher overhead on communication and computation on the mobile device.

5.7.3 Anytime Computing

Another concept that can be used for quality-aware execution on mobile devices is
anytime computing [Zil96,SN01]. In anytime computing, algorithms are required
to provide an approximate result when interrupted at any time. The idea is to
use an iterative algorithm converging to the correct solution. If the algorithm is
stopped before calculation of the correct solution, the current value is provided
as approximation.

Limitations of Anytime Computing

While there are anytime algorithms for numerical simulations, e.g., multi-grid
methods or iterative solvers of algebraic equations, calculation of the reference
model would be required on the mobile device. Therefore, using anytime algo-
rithms would have a much higher computational overhead on the mobile device
compared to our distributed approach.

5.7.4 �ality-Aware Execution of Mobile Applications

Recently, Pandey et al. proposed a framework for approximate computing on
mobile devices and connected servers [PP17]. Their framework uses a work�ow-
based representation of computation states that yield approximate results. During
runtime, their framework selects the quality in real-time and decides on o�oad-
ing.

108

5.8 Summary

Limitations of Existing �ality-Aware Approaches

In contrast to the approaches presented in this chapter, their framework does
not utilize state based computation of simulations or parallel processing of a
mobile surrogate model on the server. To this end, in contrast to our approaches,
all data has to be communicated, or our approaches using the surrogate model
would need to be manually modelled as work�ow.

5.8 Summary

In this chapter, we presented methods utilizing surrogate models to increase the
performance of mobile simulations. The goal was to provide fast results with
guaranteed quality of the simulation result. To this end, our approaches compute
the simulation in a user-de�ned reference quality on the server. On the mobile
device, a surrogate model providing lower quality at much fewer computation
time will be executed.

We presented three approaches. The �rst approach was to simply stream results
to the mobile device in surrogate quality. The second approach was to compute
the surrogate model on the mobile device and the server. The server detects
whether quality constraints are not ful�lled and then sends a full state update
as correction to the mobile device. In the third approach, we considered partial
updates to reduce communication overhead. To combine the surrogate state with
partial updates, we use tools from data assimilation, namely the ensemble Kalman
�lter. This is required to maintain mathematical properties of the simulation
model.

Evaluations on our test bed based on a Raspberry Pi and a connected server
showed that the approaches are able to provide fast simulation results, even in
cases of low data rates. Compared to our streaming approach, our approaches
increase the performance of the system by up to over 13 times. The performance
depends on the actual data rate and the size and frequency of required updates.

Methods described in this chapter can be generalized to di�erent simulations
and numerical applications, since the ensemble Kalman �lter provides a very

109

5 Using Surrogate Models for E�cient Solution of Time-Dependent Problems

generic framework (see Section 2.3.5). Requirements for the choice of the sur-
rogate model and the reference model for our approaches are (1) existence of a
mapping from the reference model state to the surrogate model state, and (2) the
implementation of the surrogate model has to be deterministic. The surrogate
model can be very simple but fast to compute and might not respect all physical
properties of the real world. However, the simpler the surrogate model, the more
communication overhead is to be expected during execution.

As we have seen, surrogate models are a very powerful technique to enable
simulations on resource constraint mobile devices. While we mainly used surro-
gate models that change the discretization of the numerical simulation, active
research in mathematics provides an orthogonal approach to generate reduced
models by using methods from model order reduction. One such methods is
the reduced basis method, which we will use in the next chapter for even more
e�cient calculation on the mobile device.

110

6

Using Model Order Reduction
for Efficient Solution of
Stationary Problems

The previous two chapters focused on concepts for time-dependent simulations,
whereas this chapter will introduce concepts for stationary simulation problems.
While time-dependent problems require to compute a chain of time states, sta-
tionary problems require only one solution. Therefore, previously introduced
concepts might not provide e�cient computation in the mobile environment. In
this chapter, we provide concepts using model order reduction techniques for sta-
tionary simulation problems. In particular, we will use the reduced basis method
(RBM) for distributing the computation between server and mobile device.

As introduced in Section 2.2, RBM uses the original full simulation model
to generate a reduced simulation model (cf. Figure 6.1). The full simulation
model provides parameter-dependent snapshots that will be used in the reduced
simulation model to provide fast approximation for a speci�c parameter. This way,
approximate solutions for parameters only known at runtime can be provided
with very low latency compared to the full simulation model.

The general idea of concepts developed in this chapter is to compute the full
simulation model only on the server. The mobile device does all necessary steps
to provide the parameter-dependent approximate solution from the reduced
model. It will constantly check quality constraints de�ned by the user and might
require re�ned reduced bases from the server. In particular, we provide methods

111

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

Full Simulation Generation Procedure Reduced Simulation

s1 s2 s3

Snapshots

Parameter µ

Solution u(µ)

Parameter µ

Solution û(µ)

Typical Parameters
µ1, µ2, µ3, . . .

Quality q

Figure 6.1: Overview over the reduced basis method (RBM) using solutions of
the full simulation problem as snapshots in the reduced simulation
problem.

for the following problems of mobile simulations: (1) We allow the user to de�ne
quality constraints based on training data and maximum error, (2) adapt the
reduced model when quality constraints can not be met, (3) save energy for the
execution of the reduced model by reducing the number of data required for the
computation, and (4) provide methods for alternative basis generation algorithms
to provide better performance on the mobile device during runtime.

Parts of this chapter have been published in [DSD+17, DDR17, DHS+18].

6.1 System Model

Before introducing the problem statement and concepts for utilizing RBM, this
section describes our assumptions on hardware and software components, as well
as the interfaces between the components in our mobile simulation middleware.
Figure 6.2 depicts an overview of the system components and interfaces.

6.1.1 System Components

The system consists of two compute nodes, namely the mobile device and the
server. Both nodes are connected via a wireless communication channel. Fur-
thermore, the system consists of two software components provided by the

112

6.1 System Model

Mobile Simulation

Middleware

Numerical
Simulation

User
Application

MobileServer

snapshots queries

Figure 6.2: System Model

application programmers, the numerical simulation and the user application, and
the middleware, which de�nes the distribution of computations.

The mobile device is the augmented reality headset carried by the user. Energy
consumption on the mobile device is critical as it is battery-powered. There
are two distinct energy consumers on the mobile device, the processor and the
communication module.

In contrast to mobile devices, the server provides fast execution. It can be
scaled-up by using specialized hardware, such as GPUs for e�cient computation
of numerical codes, or scaled-out by adding more servers in a cloud infrastructure.

For the wireless communication channel between mobile device and server,
we assume data rates of multiple Mbit/s, as provided by state of the art wireless
communication technologies like IEEE 802.11 (WiFi) or 4G cellular networks.

The numerical simulation is implemented by the simulation expert. The simu-
lation problem is implemented as a separable matrixA(µ) and a separable vector
f(µ) representing the simulation problem A(µ)u(µ) = f(µ) as described in
Section 2.2. Parameters of the simulation model are represented by a vector µ.
Additionally, the simulation expert has to de�ne the quality requirements of
the application. The quality has to be speci�ed by two parameters. The �rst
parameter, say D, is the discretization of the full problem. The second, say rmax,
is the maximum residual value, which is an indicator for the error introduced by
the RBM.

113

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

M
o
b
i
l
e

S
i
m
u
l
a
t
i
o
n

M
i
d
d
l
e
w
a
r
e

N
um

er
ic

al
Si

m
ul

at
io

n

Us
er

A
pp

lic
at

io
n

problemMatrix()

rightHandSide()

snapshot(µ)

handleQuery(µ)

Figure 6.3: Interfaces for the mobile simulation middleware.

The user application is implemented by the application programmer. It sends
queries to the middleware. Queries contain a parameter vector µ, which encodes
sensor data or user input. When the query is answered, the user application
visualizes the simulation results on the augmented reality headset.

The mobile simulation middleware connects the components. It executes code
on the server and on the mobile device. Intuitively, the reduced basis method
will be used to answer queries with low latency on the mobile device, and the
compute-intensive pre-computation of the reduced basis will be performed on
the server.

6.1.2 Interfaces

The numerical simulation and the user application provide interfaces for the mo-
bile simulation middleware. Figure 6.3 shows an overview of all interfaces. There
are three methods of the numerical simulation to be called by the middleware
and one method called by the user application.

The numerical simulation has to implement three interfaces providing the
problem matrix, the right-hand side, and solutions to the simulation problem. The
problem matrix and the right-hand side has to be provided in parameter separable
form. This call is only depending on the quality parameter D. The interface to
provide solutions of the simulation problem, called snapshot, provides u(µ) as the
solution of the problem A(µ)u(µ) = f(µ) depending on the parameter. Notice
that the implementation of the interface to provide snapshots is optional. The
mobile simulation middleware could also use a generic algorithm to solve this

114

6.2 Problem Statement

problem. However, the simulation expert usually knows which solver should be
used to solve the simulation problem e�ciently.

The user application sends queries to the mobile simulation middleware.
Queries contain the parameter µ. The middleware will return an approximate
solution which ful�lls the quality requirements given by the simulation expert.

6.2 Problem Statement

Before introducing approaches and concepts, we �rst provide the problem state-
ment for the execution of mobile simulations using the RBM. The major objective
of the system is to reduce two quantities: energy consumption and execution
time. At the same time, the system has to ensure to provide user-given quality
constraints on the approximate solution that is returned to the user application.

We assume that the user provides a maximum residual rmax as quality con-
straint to the approximate solution provided to the user application. The optimiza-
tion goal is then to reduce latency of the computation T and energy consumption
on the mobile device E. Mathematically, the goal is to optimize the system for
the following optimization problem:

min T + E (6.1)

s.t. ‖A(µ)û(µ)−A(µ)u(µ)‖ < rmax. (6.2)

Notice that measuring T and E heavily depends on the method for the distri-
bution between mobile device and server. Reducing latency of the computation
usually also reduces the energy consumption of the approach as the device re-
quires energy even while idle. Also notice that in this equation, the parameter µ
is unknown before runtime and the solution u(µ) might never be computed, but
the RBM provides a framework to check the quality constraints. Furthermore, the
residual depends on the actual problem matrix. To this end, the residual provided
has to be chosen carefully by the simulation expert knowing the constraints and
requirements of the simulation result for the user applications.

115

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

To provide a low latency and low energy solution, the following sections will
provide di�erent methods with di�erent distributions for solving the simulation
task using the reduced basis method. We will start with the basic approach that
requires a-priori knowledge of the parameters to provide the quality constraint
of the formal problem.

6.3 Basic Approach

In the following, we present our approaches for the e�cient execution of mobile
simulations using the Reduced Basis Method. We �rst present a basic approach in
this section, which is then further extended to improve adaptability and energy
e�ciency in the following sections.

The basic approach for processing queries with di�erent parameters on the
mobile device consists of four steps: (1) generation of the reduced basis on the
server; (2) communication of the reduced basis from the server to the mobile
device where the reduced basis is stored on the internal storage; (3) loading
the reduced basis from the internal storage of the mobile device; (4) processing
queries on the mobile device using the reduced basis.

The generation of the basis is executed on the server. To this end, the mobile
device sends a request to the server which contains all information needed for
the basis generation process. This includes the training set and the minimum
quality as maximum residual threshold, which depends on the application. The
training set can be given by the domain expert or, in applications where sensor
values are read, the mobile device can �rst collect some sensor data, statistically
obtain the distribution of the parameter µ, and then use this distribution to create
the training set for the reduced basis.

Once the basis has been generated on the server, it is sent to the mobile
device. The mobile device stores the basis on internal storage. Notice that the
pre-computation of the reduced basis can take multiple minutes, depending on
the numerical simulation code, the training set, and the number of snapshots
needed to achieve the quality as speci�ed. However, this step is only needed once

116

6.3 Basic Approach

for initialization and should not be performed when latency-sensitive queries
need to be processed.

Data Size

Snapshots n · d
Reduced Problem Matrix SA · n2
Reduced Right Hand Side Sf · n
Residual Computation Matrices S2

An
2 + 2SASfn+ S2

f

Figure 6.4: Size of the reduced basis in �oating point numbers.

Figure 6.4 lists the size of the data communicated and stored on the mobile
device. The size of the data depends on the number of snapshots n, the number
of discretization points of the full problem d, and the number of summands
in the separation of the problem matrix SA and the right-hand side Sf . The
number of discretization points d, which depends on D, is by far the largest
part, typically multiple thousand �oating point numbers (in our evaluation up to
65536 with D = 256). The number of snapshots depends on the residual and is
typically below 30 in our experiments. Numbers SA and Sf are constant for a
given problem. In our evaluation these values were 4 and 1.

After the basis is stored in a �le on the mobile device, this �le needs to be read
by the middleware on the mobile device. As the �le size for the reduced basis
can grow rapidly, reading the data from the �le can take up to seconds. However,
this step is needed only once and can be performed when the user starts the user
application, long before the �rst query will be received by the middleware. The
basis can then be stored in memory for processing of multiple queries.

Processing a query is then straightforward as described in Section 2.2.3. First,
we need to assemble the reduced system and then compute the solution of the
reduced problem. After that, we need to multiply the solution with the snapshots
to get an approximate solution of the full problem. In addition to the approximate
solution, we also calculate the residual of this approximation and provide this
information to the application. Notice that ful�lling the quality constraints for
queries with parameters outside the range of the training set cannot be guaran-

117

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

teed using this approach. However, it is known that the quality of the result does
depend on the region of the parameters rather than the density or speci�c choice
of parameters in the training set [Haa16]. Therefore, for queries with parameters
inside the range of the training set, the resulting approximation should have
high quality. Furthermore, for many practical problems, the parameter region
is known a priori by physical constraints. For example, if one parameter is the
heat conductivity of some material, the application can request the reduced basis
in the range of all materials to be used for the speci�c purpose, e.g., all exhaust
tubes ever used by the company.

The basic approach has several drawbacks. First, the parameter range needs
to be known before the basis generation process. If the parameter range changes,
e.g., because the range of sensor values changes, the approach has to start from
scratch. We therefore present an adaptive approach in the next section. Second,
another problem is the latency and energy overhead introduced by reading the
reduced �le from internal storage of the mobile device. This is signi�cantly
improved using the subspace approach, which will be presented in Section 6.5.

6.3.1 Analysis of Communication Overhead

Using the Reduced Basis Method as described in the previous sub-section reduces
the computational overhead on the mobile device signi�cantly. However, it
introduces communication overhead to send the basis from the server to the
mobile device. Note that this overhead is less critical since the basis is stored on
internal storage and can be re-used many times so the communication cost w.r.t.
energy, amortizes over time. Moreover, the basis can be transferred while the
mobile device is connected to a �xed power source while re-charging its battery.
In this case, transferring the basis does not induce any energy overhead.

Still, we are interested in the size of the basis that needs to be transferred
and stored on the mobile device. The data structure for a reduced basis con-
tains(1) the snapshots stored in the matrix V ; (2) the reduced problem matrix
AV (µ); (3) the reduced right hand side f(µ); (4) matrices for computation of the
error, in particular the residual.

118

6.3 Basic Approach

The snapshots are stored in matrix V . Each column of this matrix is a snapshot,
which can be represented as D �oating point numbers. Therefore, the size of the
snapshots matrix is n ·D, where n is the number of snapshots in the reduced
basis and D is the discretization of the full problem.

The reduced problem matrix AV (µ) is a separable matrix. The separable
matrix is represented as AV (µ) = θ1A1 + θ2A2 + · · ·+ θSA

ASA
. The number

of summandsSA depends on the actual problem. Each matrixAi in the separation
has n× n entries. The size for storing the separable matrix is therefore SA · n2.
Additionally, the functions θi need to be stored, which introduces a constant size
linear in SA.

The reduced right hand side f(µ) is also separable, but instead of a matrix,
f(µ) is a vector. Analogously to AV (µ), if f(µ) has Sf summands, it can be
stored in Sf · n �oating point numbers. In addition, the functions θi need to be
stored, which introduces a small overhead. The theta functions can be stored as
a string, as the only operation for the theta function is multiplication with other
theta functions, which can then be realized as string concatenation.

The residual matrices are the result of the multiplication of separable matrices
and are therefore again separable matrices (cf. Section 2.2.4). When multiplying
two separable matrices, the number of summands of the result is the multi-
plication of the number of summands in the original matrices. Therefore, the
size of Equation 2.8a in Section 2.2.4 is S2

an
2. The size of the rest of the ma-

trices can be derived analogously. The full residual matrices can be stored in
S2
An

2 + 2SASfn+ S2
f �oating point numbers.

Therefore, we can store the data for the reduced basis in

n2(S2
A + SA) + n(N + Sf + 2SaSf) + S2

f

�oating point numbers. Thus, the size of the data will grow quadratically with the
number of used snapshots. However, in general,SA is very small in comparison to
D. For example, for the di�usion-advection equation introduced in Section 2.2.4,
SA is 4, while D can be in ranges up to 1024× 1024 ≈ 106.

119

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

1: function on�eryReceived(q)
2: µ← parameter of request q
3: basis ← basis available on mobile
4: if basis.residual(µ) ≤ max_res then
5: return approximate solution using basis
6: end if

7: send µ to server; receive basis update
8: apply basis update to basis
9: return approximate solution using basis

10: end function

Figure 6.5: Pseudocode for the adaptive approach.

6.4 Adaptive Approach

If the parameter range and distribution are not known a priori, the basic approach
might not be able to ful�ll the constraint on quality for all queries. We therefore
introduce an adaptive approach next that re�nes the basis during runtime. This
approach is more �exible and also suitable for harder simulation problems, i.e.,
problems that need more snapshots to ful�ll the user requirements.

6.4.1 Overview

The adaptive approach builds upon the basic approach. Similar to the basic
approach, some initial reduced basis is made available on the mobile device as
described in the previous section. However, in contrast to the basic approach,
when a new query q arrives, the adaptive approach �rst computes the residual of
the approximate solution provided by the RBM. If the residual ful�lls the quality
requirements of the application, the query will be answered with the approximate
solution. If the residual does not ful�ll the requirements of the application, the
mobile device will request an update of the reduced basis from the server. Once
the mobile device receives the update, it can again compute the approximate
solution, which will—as a property of the RBM—return the exact solution of the
full problem. Figure 6.5 depicts the pseudocode of the adaptive approach.

120

6.4 Adaptive Approach

In the following, we will describe the parts of the approach, including the
computation of the error indicator and content of the server request, and the
processing of the update on the server.

6.4.2 Error Indicator and Server Requests

In addition to the basic approach, for handling query q, the mobile device has
to compute error indicators for the approximate solution provided by the RBM.
This error indicator represents the quality of the approximate solution. One
very generic error indicator is the residual. The computation of the residual
can be implemented very e�ciently by exploiting the parameter separability (cf.
Section 2.2.4).

Once the mobile device has computed the error indicator, it can check whether
the quality bounds of the user can be met. If the result is insu�cient, the mobile
device will request a basis update from the server. This basis update contains the
parameterµ of the query and the identi�er of the reduced basis which is currently
used. As an identi�er, the parameters of the snapshots and the discretization of
the underlying numerical simulation can be used.

6.4.3 Computation on the Server

When an update request with parameter µ and an identi�er of the reduced basis
is received by the server, the server �rst loads the properties of the reduced
basis. It then computes a solution of the full problem with parameter µ and
the discretization settings of the reduced basis. After computation of the full
solution, this solution is orthogonalized to other basis vectors and is normalized
to obtain more robust numerical systems. The server then computes the updated
separable problem matrix and the separable right-hand side (cf. Section 6.3).
Last, the updated residual matrices are computed. All of these operations require
high-dimensional and costly operations. However, the most time consuming
operation is the computation of the full solution on the server. Therefore, there
is only little overhead compared to a pure o�oading approach, where only the

121

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

m

Snapshots

m

m

Reduced
Problem Matrix

Figure 6.6: Subspace approach chooses m of n available snapshots in the order
given during the basis generation approach and changes the reduced
problem matrix, the reduced right-hand side, and the residual matrices
(last two not depicted).

full problem solution is computed on the server.

6.4.4 Basis Updates

Once the server has computed the update of the reduced basis available on the
mobile device, it sends the update back. The update includes a snapshot and
updates for the separable matrices. Most entries of the matrices can be re-used,
and the update does only contain one column and one row vector of the matrices.
Nevertheless, the size of the update grows linearly with the number of snapshots
included in the reduced basis. However, for a small number of snapshots, the
dominant part is still the snapshot of the full problem. Therefore, the overhead
to only communicating the full problem result is very small (for instance only
1.13 % for a 2D problem with 2562 points, SA = 4, Sf = 1, and 20 snapshots).

6.5 Subspace Approach

In our analysis of the basic approach, we found that reading the snapshots from
internal storage is the major energy-consuming part. We therefore present in
this and the following section approaches for reducing the number of snapshots
needed for query processing on the mobile device. In this section, we present the
subspace approach, which limits the computation of the problem to a subspace of
the vector space spanned by all snapshots.

122

6.5 Subspace Approach

The reduced basis is generated such that it ful�lls quality requirements for all
parameters in the training set. However, for one speci�c parameter µ, it might be
su�cient to compute on fewer snapshots. In the subspace approach, we therefore
limit the computation to the �rst m snapshots in the order given by the reduced
basis. Therefore, if n snapshots s1, . . . , sn are given, we want to �nd m ≤ n

such that the quality constraint is still ful�lled and compute an approximation
only on s1, . . . , sm (cf. Figure 6.6). This saves us from reading n−m snapshots
while still ful�lling the quality requirements of the user.

The subspace approach is divided into two problems. First, we explain how
we can reuse the data structure of the matrix for computation on a subspace.
Second, we explain how we can �nd the snapshot given the quality constraint
by the user. Last, we shortly discuss how this approach can be combined with
the adaptive approach.

6.5.1 Computation on Subspaces

For computing a solution on the reduced basis spanned only by the snapshots
s1, . . . sm, we can reuse the existing data structure. We can compute on sub-
matrices which are created when trimming rows from the right and columns
from the bottom.

For the reduced problem matrix, we just need the �rst m rows and the �rst m
columns. Similarly, we only need the �rstm entries of the reduced right-hand side.
The residual matrices can be trimmed similarly. Notice that the right-hand side
and the reduced problem matrix are separable matrices. Trimming the separable
form of the matrices therefore includes trimming multiple matrices.

The reuse of the data structure is essential at this point. Re-computation of the
reduced problem matrix would otherwise involve the high dimensional problem
matrix A(µ) and the snapshots. Using the sub-matrices, neither the problem
matrix, nor the snapshots are needed for computation of the residual for the
subspaces.

123

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

6.5.2 Subspace Selection

Now that we know how to compute a solution of the reduced problem by compu-
tation on the sub-matrices, we want to �ndm, such that computing on snapshots
s1, . . . , sm gives us a solution that ful�lls the quality requirements of the user.
We call the subspace spanned by the �rst m snapshots S(m).

In order to �ndm for S(m), we use a linear search. When a query arrives with
parameter µ, we �rst load the reduced problem matrix and the residual matrices
into memory. We then loop, starting with m = n, compute the subspace S(m),
and compute the residual for parameter µ on S(m), until we �nd the lowest m
such that S(m) ful�lls the quality requirements. Once this m is known, we load
the m snapshots from the �le into memory and reconstruct the reduced solution
in the full problem space.

The linear search could also be bottom-up starting with one snapshot or could
be replaced by a bisection approach. However, this would result in longer search
time when the number of snapshots needed is high.

The subspace approach can also be used with the adaptive approach. If the
quality check for m = n fails, the mobile device can request a basis update from
the server. We then have a three-level storage model, where snapshots are either
stored in-memory, on internal storage, or on the server.

6.6 Reorder Approach

For the subspace approach, the order of the snapshots is �xed. This might lead
to suboptimal solutions, e.g., when the query has the same parameter as the last
snapshot. In this example, the subspace approach needs to choose all snapshots.
If we would reorder the snapshots according to the importance of the snapshots,
then the snapshot with the same parameter would be the �rst and the subspace
with only the �rst snapshot would already be su�cient. This motivates our
reorder approach, which we introduce in this section as a preceding step to the
subspace approach. The reorder approach operates on pre-computed data in
order to allow the subspace approach to reduce the number of snapshots needed

124

6.6 Reorder Approach

mSnapshots

1. Reorder 2. Subspace

Figure 6.7: The reorder approach permutes the snapshots before choosing sub-
space with m snapshots depending on parameter µ.

for the computation.
Figure 6.7 depicts the idea. First snapshots are reordered. Then a subspace

is chosen using the previously introduced subspace approach. The reordering
depends on the query parameter µ. As we will show, �nding a reordering can be
implemented on the pre-computed data such that it can be executed e�ciently
and fast on the mobile device.

There are two problems for reordering snapshots: (1) �nd a suitable reordering
for parameter µ, and (2) perform the reordering by re-using pre-computed data.
To improve latency and energy cost, we need to �nd a good order of the n!

possible orders in the �rst step and solve the second problem by only using pre-
computed data and not require any high-dimensional operations of the numerical
simulation.

6.6.1 Finding an Order

Goal for reordering the snapshots is to allow the subspace approach in a sub-
sequent step to reduce the number of required snapshots. Therefore, the best
order of snapshots would be in decreasing order of their importance, i.e., the next
snapshot provides the minimum error among all snapshots that are remaining.
This way, the subspace approach with m snapshots will have the minimum com-
putable error bounds for anym snapshots. Notice that the reordering is executed
during runtime and depends on parameter µ.

Our reordering mechanism is based on the following formal observation that
holds for normalized snapshots. If u is the reduced solution for the subspace

125

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

with m snapshots and ũ is the reduced solution for the subspace with m − 1

snapshots, the di�erence in the approximate solutions after the reconstruction is∥∥∥∥∥
m∑
i=1

u(i)si −
m−1∑
i=1

ũ(i)si

∥∥∥∥∥ ≤ ∣∣∣u(m)
∣∣∣+

∥∥∥∥∥
m−1∑
i=1

si

(
u(i) − ũ(i)

)∥∥∥∥∥ , (6.3)

where u(i) is the i-th entry in vector u and we assume that snapshots are nor-
malized. This motivates to move the snapshots with lowest absolute coe�cient
to the end. We therefore order the snapshots according to the absolute value
of their reduced solution in descending order. Notice that this step does not
need the reconstruction of the approximation and therefore no snapshots need
to be loaded into memory. Additionally, normalizing the snapshots increases
numerical stability [Haa16].

1: function findReorder(µ)
2:

(
u
(i)
V (µ)

)n
i=1
← coe�cients of the reduced solution for parameter µ

3: t←
{(
|u(i)V (µ)|, i

)}n

i=1
4: sort t using the �rst element of the tuples
5: return order of snapshots as second elements in t
6: end function

Figure 6.8: Finding reordering for normal bases

Figure 6.8 depicts the pseudo code for �nding the reordering. We need the pre-
computed reduced problem in memory, which consists of the reduced problem
matrix AV and the reduced right-hand side fV . These are separable matrices
which do depend on the snapshot matrix V (cf. Section 2.2.3). We �rst compute
the coe�cients as solution uV (µ) of the reduced problemAV (µ)uV (µ) = fV (µ)

and sort them according to their absolute value. The reordering is represented
as a list, where the j-th position has value i when the j-th snapshot should be
moved to position i.

126

6.7 Reorder Basis Generation

6.6.2 Reordering Precomputed Data

The reordering can be represented as a permutation matrix P . Reordering can
then be executed by multiplying the existing snapshot matrix V with the permu-
tation matrix P . Using this approach, we can reuse the pre-computed data, such
as the separable reduced problem matrix, the separable right-hand side.

The reordering can be applied to the separable reduced problem matrix by per-
muting rows and columns. We use the pre-computed data for the snapshot matrix
V and show that we can reorder this data in order to obtain the pre-computed
data for matrix V ′ = V P , where P is the permutation matrix of our reorder-
ing. The available pre-computed data is AV (µ) := V TA(µ)V . We can reuse
this data for the reordered snapshots V ′, since AV ′(µ) = (V P)TA(µ)(V P) =

PTV TA(µ)V P = PTAV (µ)P . To obtain the reduced problem matrix, we only
need to multiply with permutation matrix PT from left, which is a permutation
of the columns, and permutation matrix P from right, which is a permutation of
the rows.

The separable right-hand side and the residual matrices can be reordered by
ordering of the entries in the vectors analogously to the reduced problem matrix.

Notice, that the permutation of the matrix can be implemented much faster
than multiplication with the permutation matrix by reordering rows and columns
in the underlying data structure of matrices and vectors. However, we used the
notation for multiplication to show the correctness of the approach.

To improve numerical stability, snapshots can be orthonormalized for the
previous approaches. However, in this approach, it is bene�cial to only normalize
the snapshots. Orthogonalization, e.g. by using Gram-Schmidt, reinforces the
order and reduces the �exibility of the reorder approach.

6.7 Reorder Basis Generation

In order to optimize the number of snapshots to be used in the reorder approach,
we next present a new approach for basis generation. This approach takes into
account the online computation using the reorder approach and is therefore

127

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

1: function ReorderResidual(basis, l, µ)
2: r ← FindReorder(basis, µ)
3: b← ApplyReorder(basis, r)
4: s← CutBasis(b, l) . As in subspace approach
5: return s.residual(µ)
6: end function

7: function ReorderBasisGeneration(T , a, max_res)
8: s← solution of full problem for random µ ∈ T
9: snapshots ← ∅

10: basis ← reduced basis from snapshots
11: while ∃µ ∈ T : ReorderResidual(basis, |snapshots| − a, µ) >

max_res do
12: µ∗ ← max(residuals).key
13: s← solution of the full problem for µ∗
14: snapshots ← snapshots ∪ {s/‖s‖}
15: compute new basis from snapshots
16: end while

17: return basis
18: end function

Figure 6.9: Pseudocode for reorder basis generation for training set T , number
of additional snapshots a, and maximum residual max_res .

able to generate better reduced bases on the server. To this end, we modify the
previously introduced greedy basis generation (cf. Section 2.2) to allow for better
performance for the reorder approach.

In contrast to the greedy basis generation approach, we de�ne the m-residual
as the residual after the execution of the reorder approach and choosing only
m snapshots (see Figure 6.9). This way, we use the results as provided by our
approach already during the construction of the reduced basis.

However, this approach for optimizing for a subset of the full solution space
introduces some numerical problems as snapshots are not strictly linearly in-
dependent. We therefore use the Moore-Penrose pseudoinverse to compute the
solution. The pseudoinverse provides a least square solution, which can even be
used when snapshots are linearly dependent.

128

6.8 Evaluation

Figure 6.9 depicts the basis generation procedure for the reorder approach. In
contrast to greedy basis generation, we consider the residual after the reorder
computation. We omit a number of snapshots for the decision which parameter
to use for the next basis re�nement. The snapshots will be �rst sorted and then
cut to simulate the reorder approach. However, the number of snapshots to be
omitted should not be too large to avoid over�tting. Parameter a, which de�nes
how many snapshots should be omitted, is problem dependent. In preliminary
tests, we found good solutions with a = 3.

Our original approach was to cut the basis to a constant number of snapshots.
However, this approach leads to over�tting to the training set and therefore to
very large reduced bases that only provides good results for the training set but
not for test queries. Having a constant o�set to the greedy basis approach avoids
over�tting and produces only slightly bigger bases which enables the reorder
approach to have more choices when deciding on a reordering.

6.8 Evaluation

In this section, we present the evaluation of our �ve approaches using the Reduced
Basis Method (RBM) with respect to energy e�ciency and execution time. For
comparison, we also implemented two simple solutions without the RBM, the
server-only and the mobile-only approach. The server-only approach sends the
combination of parameters to the server. The solution of the full simulation
problem is computed on the server and sent back to the mobile. The mobile-only
approach computes the full simulation problem on the mobile device.

In our evaluation, we consider di�erent performance metrics. First, we evaluate
the quality of reduced bases with di�erent sizes and compare di�erent basis
generation methods. Then, we evaluate the runtime and energy consumption
for two workloads, single queries and multiple queries.

129

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

6.8.1 Evaluation Setup

Before we present the evaluation results, we introduce our evaluation setup.
The setup consists of two di�erent mobile devices, a mobile network, and the
setup for measuring the energy consumption. We also provide details about the
used libraries in the implementation and the simulation problem used for the
evaluation.

Two di�erent devices were used for the runtime evaluation, a Samsung Note 4
(SM-N910F) and a Samsung Galaxy S7 (SM-G930F). Both devices use the Android
platform (version 6.0) based on the Linux kernel (version 3.10). The results for
both devices were very similar for most evaluations. Therefore, if not stated
otherwise, results of the approaches presented in this section are taken using
the Note 4.

For wireless communication, we used IEEE 802.11 (WiFi). Using ping, the
measured latency between mobile device and server was between 1.4 ms and
6.7 ms with an average of 3.9 ms. iPerf measured bandwidths between mobile
and server between 55 MBits/s and 74 MBits/s.

Figure 6.10: Equipment for measuring energy consumption.

130

6.8 Evaluation

For the energy measurements, we used a custom measurement board with
analog-to-digital converter connected to a Raspberry Pi1. We designed a battery
holder and battery replacement in order to perform energy measurements in
situ. Figure 6.10 shows our energy evaluation setup. All energy measurement
values in this section are absolute values taken from the Note 4 with �xed screen
brightness. The power consumption of the device in idle mode was 0.4 W.

As simulation problem for the evaluation, we used the stationary di�usion-
advection equation. This equation can be used to simulate the heat in an object as
for the application for placing a hot tube as mentioned in the introduction. The
equation has three parameters, one for the di�usion (µdi�) and two for advection
(µadvx and µadvy). For the implementation, we discretized the equation using
�nite di�erences. As numerics library, we used the Apache Commons Maths
library (version 3.6), which is the most popular Java numerics library, and NumPy
(1.13.0) and SciPy (0.19.1), which provide hardware optimization on the server.
Additionally to the pure Java implementation, we implemented the mobile-only
approach natively using the Android Native Development Kit (NDK) and the
Eigen C++ library in version 3.2.8.

6.8.2 Basis Generation Methods

Next, we evaluate the performance of the basis generation methods and how
many snapshots are needed during query processing on the mobile device.

In order to quantify the number of snapshots needed to reach a certain quality,
we created three di�erent training setsA,B, andC . The training sets were chosen
such thatA ⊂ B ⊂ C , where parameters µadvx and µadvy spanned di�erent parts
of the parameter space expressing di�erent behavior of the model ([0, 40]2 for
A, [−40, 40]× [0, 40] for B, [−40, 40]2 for C). Parameter µdi� was for all three
training sets in [10, 20]. All intervals were discretized with step width 1.0.

To quantify the relation between the size of the reduced basis and quality,
we used the three training sets, executed the greedy basis generation algorithm
(cf. Section 2.2), and recorded the maximum residual of test sets. The test sets

1available at https://github.com/duerrfk/rpi-powermeter

131

https://github.com/duerrfk/rpi-powermeter

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

At, Bt, Ct consist of 1000 random points in the range ofA,B,C . The discretiza-
tion of the full problem was 256× 256, i.e. 256 points in x and y direction.

10-5

10-4

10-3

10-2

10-1

100

101

102

 5 10 15 20 25 30

m
a
x
 r

e
is

u
d
a
l

number of snapshots

Training Set A
Training Set B
Training Set C

Figure 6.11: Quality of the RBM with di�erent number of snapshots.

In Figure 6.11 depicts the relation between number of snapshots and quality for
each training set. Training set A, which has smallest variation in the parameters,
has the lowest maximum residual for a �xed number of snapshots. Notice that
the residuum is measured in the Euclidean norm. To get a better impression,
this norm is always bigger than the maximum absolute di�erence of any two
points in the resulting vector. Therefore, a residual of, say 0.1, means that the
result multiplied by the problem matrix results in a vector which di�ers in all
2562 entries at most 0.1 from the right-hand side. Therefore, for many practical
applications, a basis with 10, 15, or 20 snapshots would provide su�cient quality
for this problem.

The number of snapshots required in the subspace approach to provide �xed
quality constraints depends on the actual parameter. To evaluate the impact
on the parameter we recorded how many snapshots are required for di�erent
parameters.

Figure 6.12 depicts the number of snapshots required for di�erent parameter
combinations for two parameters of a reduced basis with training set B and
24 snapshots. The total number of 24 snapshots is required only for a small
corridor range between −10 and 10 for one of the parameters. Big parts of

132

6.8 Evaluation

Figure 6.12: Number of snapshots needed in the subspace approach for di�erent
parameters.

the parameter space require only 80 % or less of the total number of snapshots.
Notice that parameter areas that require only very little snapshots are near the
snapshots chosen by the greedy basis generation algorithm. This way, knowing
the distribution of parameters in the queries can be used for generating better
reduced bases in these parameter regions.

After evaluating the number of snapshots required for the subspace approach
for di�erent parameters, we now quantify the number of snapshots needed
during online computation for di�erent basis generation methods. The number
of snapshots needed for the subspace approach and the reorder approach is
dynamically depending on parameter µ. We also want to quantify the fraction of
snapshots typically needed for these approaches compared to the basic approach,
which always uses all snapshots available in the reduced basis.

Figure 6.13 depicts the number of snapshots needed for the reorder and the
subspace approach in multiple basis generation runs. It also compares the greedy
basis generation approach to our reorder basis generation approach. Using the

133

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

 10

 12

 14

 16

 18

OGreedy Greedy Reorder 1 Reorder 2 Reorder 3

#
 s

n
a
p
sh

o
ts

 u
se

d
Reorder

Subspace
Basic

Figure 6.13: Mean number of snapshots needed in di�erent approaches for di�er-
ent reduced basis generation methods. OGreedy is the orthogonal
greedy basis. Reorder k is the reorder basis generation method with
k additional snapshots.

reorder basis generation approach, the reorder approach performs better than
using the greedy bases. In particular, for the reorder basis with 3 additional
snapshots the median mean number of snapshots for the reorder approach is
69.1 % lower than for the basic approach using an orthonormal greedy basis. On
an orthonormal basis, the median mean number of snapshots of the subspace
approach is only 83.5 % compared to the basic approach. Notice that for the
reorder basis generation, the bigger k is in the additional number of snapshots,
the harder it is to generate the reduced basis because of numerical instabilities.

As these results suggest, we assume in the following that the subspace approach
will only need 83.5 % of the snapshots and the reorder approach only 69.1% of the
snapshots for the di�usion advection equation. Whenever we refer to the reorder
approach, we assume that we use a reorder basis with 3 additional snapshots.

134

6.8 Evaluation

6.8.3 Runtime

We compare the runtime of simulation runs for the di�erent approaches on
di�erent mobile devices for both, single queries and multiple queries. Runtime
of the adaptive approach can be split into runtime for the local case, when the
available reduced basis provides su�cient quality, and runtime for the remote
case, when the reduced basis needs an update from the server. The subspace
approach was evaluated using 83.5 % of the snapshots. For each skipped snapshot,
it had to compute the residual and the subspace. For the reorder approach, we
assume that a reorder basis was generated and that the approach only needs
69.1 % of the snapshots. We included all computations for the overhead. For
the mobile-approach, we used two implementations, one using pure Java and
one using the Android Native Development Kit (NDK) in C++. We repeated
the measurements for di�erent discretizations of the underlying full simulation
problem and for di�erent numbers of snapshots.

Figure 6.14 depicts the average runtime for the processing of single queries for
di�erent sizes of the full problem. The full problem discretization is equidistant
on both axes of the 2D domain. Therefore, for instance, for discretizationD = 32,
a matrix equation with a 322 × 322 matrix has to be solved. The used reduced
bases had 15 snapshots. Most results from the Galaxy S7 were the same as for the
Note 4. Only the performance of the mobile-only approach using the NDK was
signi�cantly better on the Galaxy S7. For simplicity, only the better results from
the S7 are depicted. All other results depicted in Figure 6.14 are from the Note 4.
Results from the local case of the adaptive approach are very similar to results of
the basic approach. Therefore, only the remote case of the adaptive approach is
depicted. The server-only approach is over 280 times faster than the mobile-only
approach in pure Java. The basic approach is again over 5 times faster than the
server-only approach. The subspace approach is over 51 % faster than the basic
approach. The reorder approach is only 3 % faster than the subspace approach.
This is partly caused by the random access on the data �le, which can be read as
one big bulk operation in the subspace approach.

As the improvement of the reorder approach until dimension D = 256 is

135

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

101

102

103

104

 50 100 150 200 250

ti
m

e
 [

m
s]

discretization

Mobile-only Java
Mobile-only NDK on Galaxy S7

Adaptive Remote
Server-only

Basic / Adaptive Local
Subspace

Reorder

Figure 6.14: Runtime for varying problem discretizations.

not signi�cant, we evaluated the subspace and the reorder approach for bigger
reduced problems of dimension D = 512 and D = 1024. While, for the previous
evaluation, snapshots had sizes of up to 500 KB, for dimension D = 1024, one
snapshot has 8 MB. Figure 6.15 depicts results of this evaluations, where the
reorder approach is 10 % faster for dimension D = 512 and 16.5 % faster for
dimension 1024 comparing the median execution times.

As both implementations of the mobile-only approach perform very poorly,
we compare our approaches in the following only with the server-only approach.

Next, we compare the runtime for processing single queries with varying
number of snapshots in the reduced basis. Figure 6.16 depicts the results with
full problem dimension D = 256. As the server-only approach computes the
full problem, it does not depend on the snapshot size. With growing number of
snapshots, our approaches need more time. The speedup of the basic approach

136

6.8 Evaluation

 1

 2

 3

 4

 5

 6

 7

 8

512 1024

ti
m

e
 [

s]

discretization

Reorder
Subspace

Figure 6.15: Runtime for very high dimensions of 512 and 1024 with 15 snapshots.

against the server-only approach is over 13.2 for 4 snapshots and decreases to
2.5 for 32 snapshots. However, with 64 snapshots, the speedup of our approaches
against the server-only approach is still above 1.3 for the basic approach. The
subspace approach is 45 % faster than the basic approach. As the reorder approach
is only 2.8 % faster than the subspace approach, we see that the number of
snapshots does not have too much impact on the performance of the reorder
approach when snapshots are small.

Runtime for Multi-�ery Applications

Many applications require multiple queries, e.g., to continuously visualize simu-
lation results for augmented reality. For such applications, our basic and adaptive
approach can be split into two parts: a setup and a query part. During setup
part, snapshots are loaded from internal storage, whereas during the query part
solution for a speci�c parameter is computed. Notice that in this case, the runtime
of the query part is much more important, as it will be executed many times

137

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

102

103

104

105

 5 10 15 20 25 30

ti
m

e
 [

m
s]

number of snapshots

Basic
Adaptive Remote

Subspace
Reorder

Server-only

Figure 6.16: Runtime for single queries with varying snapshot number.

compared to the setup part, which will only be executed once.
Figure 6.17 depicts the runtime for setup phase and processing of queries for

di�erent sizes of the full problem with 15 snapshots. It shows that the runtime
for one query is in general one order of magnitude higher than for the setup
phase.

Figure 6.18 depicts the runtime for setup phase and processing of queries for
di�erent number of snapshots with discretization D = 256. It also shows one
order of magnitude lower runtime for answering queries than for the initial setup
phase. Processing queries even with 32 snapshots andD = 256 only takes 63 ms.
Query processing using the basic approach on the mobile device is over 131

times faster than the server-only approach for D = 256 and 15 snapshots.

6.8.4 Energy Consumption

Energy is a very important resource for battery-powered mobile devices. There-
fore, we evaluated the energy consumption of all four approaches with varying
full-problem discretization, as well as for varying number of snapshots.

Figure 6.19 depicts the energy consumption for varying discretizations of the
full problem. The initial bases had 15 snapshots. Updates in the adaptive approach
consume more energy than the server-only approach. The energy consumption of

138

6.8 Evaluation

100

101

102

103

104

105

106

 50 100 150 200 250

ti
m

e
 [

m
s]

discretization

Basis Setup
Basis Query

Adaptive Remote
Server-only

Figure 6.17: Runtime for multiple queries with varying full problem dimension.

the local case of the adaptive approach is very similar to the basic approach. Both
only need 68 % of energy compared to the server-only approach. The subspace
approach needs 34 % of the energy of the basic approach, while the reorder
approach saves another 18 % of energy compared to the subspace approach. The
mobile-only approaches, which are not depicted, consume signi�cantly more
energy. The NDK version consumed 3.9 J for discretization D = 32 and over 84 J
for D = 64. The pure Java implementation consumes more than 80 J for D = 32.

In addition to varying the discretization of the underlying full problem, we
also evaluated the impact of the basis size on the energy consumption of our
approaches. Figure 6.20 depicts the energy consumption for di�erent numbers
of snapshots with full problem size D = 256. As already seen for the runtime,
also the energy consumption increases for higher number of snapshots. The
server-only and the mobile-only approaches are not a�ected by the number of
snapshots.

Our approaches can reduce the energy consumption for single queries signif-
icantly, especially when the discretization of the full problem is high and the
number of snapshots needed is low. The adaptive approach consumes less energy
than the server-only approach, if more than 8 % of the queries can be answered

139

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

101

102

103

104

105

106

 5 10 15 20 25 30

ti
m

e
 [

m
s]

number of snapshots

Basis Setup
Basis Query

Adaptive Remote
Server-only

Figure 6.18: Runtime for multiple queries with varying snapshots number.

locally for D = 256 and 5 snapshots. If the snapshot size is increased to 15, the
adaptive approach is still bene�cial when more than 58 % of the requests can be
answered locally. The subspace approach saves over 32 % of energy compared
to the basic approach with 20 snapshots. In addition, the reorder approach saves
another 13 % compared to the subspace approach.

We also considered the energy consumption for multiple queries for the basic
and the adaptive approach. Figure 6.21 depicts the power during the setup phase
and the queries for a basis with 64 snapshots. Between the operations, the device
was idle. Most energy is needed for reading the reduced basis from internal
storage. After the basis is available in memory, processing one query only takes
less than 0.17 J. For a basis with 15 snapshots and D = 256, the median energy
consumption for one query was 0.04 J. This is 73 times less energy as for the
server-only approach.

Overall, the evaluation showed that our approaches signi�cantly improve
latency and energy consumption especially for processing queries after the
reduced basis is available in memory. In this case, the basic approach achieves a
speedup of over 131 compared to the server-only approach. At the same time, it
reduces energy consumption by a factor of 73. For single queries, the subspace

140

6.9 Related Work

 0

 1

 2

 3

 4

 5

 60 80 100 120 140 160 180 200 220 240 260

e
n
e
rg

y
 [

J]

discretization

Basic
Adaptive Remote

Server-only
Subspace

Reorder

Figure 6.19: Energy consumption for di�erent discretizations of the full problem.

approach reduces the energy consumption in the setup phase and therefore needs
34 % less energy than the basic approach. Additionally, our reorder approach is
able to save again 18% of energy compared to the subspace approach and over
62 % of energy compared to the server-only approach.

6.9 Related Work

This section discusses related work for providing results of stationary problems
on mobile devices. As seen in Section 4.9 and Section 5.7, concepts in high per-
formance computing and code o�oading can be used. In contrast to previously
discussed related work (cf. Section 4.9), we will now focus on both, runtime re-
duction and energy e�ciency. Additionally, previously discussed time-dependent
problems required the solution of many algebraic equations, whereas stationary
problems only require the solution of one algebraic problem.

6.9.1 High Performance Computing

As explained in Section 5.7, high performance computing (HPC) solutions cannot
scope with our approaches to provide fast results on heterogeneous and wirelessly
connected mobile devices. However, HPC concepts can be used for the server-
side computation for generation of the reduced basis. Therefore, they might not

141

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

 0

 2

 4

 6

 8

 10

 6 8 10 12 14 16 18 20

e
n
e
rg

y
 [

J]

number of snapshots

Basic
Adaptive Local

Adaptive Remote
Server-only

Subspace
Reorder

Figure 6.20: Energy consumption for di�erent number of snapshots.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6

setup

queries

p
o
w

e
r

[W
]

time [s]

Figure 6.21: Energy consumption of the basic approach processing three queries
after initial setup.

142

6.9 Related Work

provide a distribution between mobile device and server, but can be used to scale
the server to be used with the approaches presented in this thesis. However, this
would have no impact on the energy resources required on the mobile devices.

6.9.2 Code O�loading

Code o�oading has been already discussed in Section 4.9.2 and Section 5.7.2,
where the main focus was on reducing the latency for the solution of time-
dependent simulation problems. We shortly discuss limitations of code o�oading
for stationary problems and not only latency, but also energy consumption on
the mobile device.

Some code-o�oading works focus on reducing the energy consumption on
the mobile device [CBC+10, CIM+11, KAH+12]. As for latency-optimized code-
o�oading, energy-optimized code-o�oading partitions the application into two
parts, where one part is executed on the mobile device and the other part is
executed on the server. The partition is created by minimizing the energy con-
sumption of the di�erent parts of the application that will be executed on the
mobile device. Additionally, the energy consumption for the communication
between components that will run on the server and that will run on the mo-
bile device has to be taken into account. To create the partition, Cuervo et al.
use integer linear programming (ILP) and a pro�le of the di�erent parts of the
application.

Limitations of Code O�loading

As pointed out in Section 5.7.2, code o�oading concepts are application agnostic.
For stationary problems, this might lead only to the two solutions of either
computing everything on the server and then communicating the solution the
mobile device, or to compute everything on the mobile device itself. The reason
for this is that all possible non-extreme partitions would result in more overhead
as methods for solving algebraic equations require all parts to solve A · x =

f . Additionally, code o�oading does not consider quality of the solution and

143

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

therefore does not reduce the original full simulation problem as we do by using
the reduced basis method.

6.9.3 Model Order Reduction

We are not the �rst to execute the RBM on constrained computing devices.
Huynh et al. already proposed to use the RBM for deployment of thin computing
platforms [HKPP11]. In this approach, the precomputation of the reduced basis
is executed prior to deployment, and the approximation using the reduced basis
is executed after deployment.

Limitations of Existing MOR Approaches

In contrast to our approaches, Huynh et al. do not consider the networking
capabilities of the devices. Therefore, their approach is restricted to one single
reduced basis that cannot be changed after the deployment. Especially when
the parameter region of queries changes over time, their approach is not able to
provide approximate solution with quality constraints. Our approach, in contrast,
is able to adapt to other parameter regions or quality constraints. Additionally,
they did not optimize their approach for energy consumption or latency and do
not provide advanced approaches such as the subspace approach or the reorder
approach.

6.9.4 Generic �ality-Aware Approaches

Recently, Pandey et al. proposed a mobile distributed framework for quality-aware
applications [PP16, PP17]. Their approach adapts the quality of computations in
order to achieve better resource e�ciency of pervasive mobile applications. To
this end, they construct work�ows that reduce the quality of the application and
meet the requirements of the user.

144

6.10 Summary

Limitations of Generic �ality-Aware Approaches

The approaches by Pandey et al. do not provide well-de�ned quality of the result.
To be useful, simulations require guarantees on the quality, e.g., by providing a
maximum residual value. Additionally, as for code o�oading, there are no real
distributed concepts that can be used over a wireless link to solve the algebraic
problems. Therefore, we argue that numerical simulations need a more speci�c
method such as the reduced basis method together with speci�c quality metrics
that are well-understood and can be de�ned by simulation experts.

6.9.5 Approximate Computing

The basic idea of approximate computing is to reduce the accuracy of calculations
in favor of reduced energy consumption, runtime, less powerful hardware, etc.
For instance, Xu et al. presented an approach in [XMK16] that reduces the refresh
rate of memory to save energy, which at the same time increases the probability
of bit errors. A second example is the IMPACT system by Gupta et al. [GMP+11]
that implements an imprecise adder for low-power approximate computing.

Approximate computing has already been applied for scienti�c simulations
[SBKW16, SBW17]. Such hardware-centric solutions are complementary to our
approach and can be used to solve the reduced problem more energy e�cient.

6.10 Summary

In this chapter, we presented a middleware for enabling complex numerical sim-
ulations on resource-constrained mobile devices by distributing the simulation
between mobile device and a server infrastructure. Such a middleware is needed
for interactive simulations in the �eld, e.g., an engineer using a head-mounted
augmented reality device who wants to simulate the heat in an object to adjust
its placement according to the surrounding materials. We presented four ap-
proaches for solving this problem using the Reduced Basis Method (RBM), which
pre-computes a reduced representation of the simulation to reduce the evaluation
time. The �rst approach was to pre-compute a reduced basis on the server and

145

6 Using Model Order Reduction for E�cient Solution of Stationary Problems

send this basis to the mobile device. In order to calculate an approximation of
the simulation, no further communication is necessary. The second approach
was more interactive and utilized the fast error indicator of the RBM. Using this
indicator, the mobile device can e�ciently check whether the quality demands
of the application are ful�lled. If the quality is not su�cient, the mobile device
requests a basis update from the server. After such an update, the mobile device is
able to answer queries with similar parameters completely autonomous without
communication with the server. Goal of the third and fourth approach is to re-
duce the number of data to be read from internal storage, which we identi�ed as
major energy consumer. In addition, we also presented a novel approach for the
pre-computation, which further reduces the data needed from internal storage
during runtime.

We evaluated our approaches on real mobile devices in a real wireless network.
We showed that our approach has lower energy consumption and is multiple
times faster compared to two simple approaches. In particular, we showed that
our approach, once it has performed a setup phase, is over 131 times faster and
consumes 73 times less energy compared to o�oading everything to a connected
server. Still, our approach keeps quality requirements as requested and reports
an error indicator to the user.

146

7

Conclusions and Outlook

7.1 Conclusions

Numerical simulations on mobile devices will enable new classes of applications
for supporting engineers and scientists in the �eld. Especially in combination
with augmented reality and sensor input, such mobile simulations will support a
new form of pervasive applications for interaction, interpretation, and solution of
complex physical problems. However, to realize complex numerical simulations
on mobile devices, limitations of the devices have to be taken into account and
require new concepts for a distributed execution between connected servers and
the device itself.

This thesis introduced three major concepts for enabling numerical simula-
tions on mobile devices. Depending on the actual application and the mobile
environment, di�erent concepts were discussed to provide (1) a robust execution
in cases of frequent disconnections of the wireless link between server and mobile
device, (2) a low-latency and faster distributed execution using data assimilation
techniques and low-quality surrogate models of the simulation, and (3) concepts
for utilizing model order reduction techniques to reduce the complexity of the
simulation by pre-computation of reduced simulation models for parameter
dependent stationary simulation problems.

In cases of frequent disconnections, we provided methods for deciding on the
placement of the computation of future simulation states of a time-dependent
simulation. Our methods predict the length of the disconnection, using historic
data and Markov Chains, compare the options, and then decide on the placement.

147

7 Conclusions and Outlook

In evaluations, we showed that our methods are able to decrease soft-deadline
misses by more than 61 % compared to pure o�oading. At the same time our
methods save up to 74 % of energy compared to a simpli�ed method.

The execution of the simulation can be changed in quality to provide sig-
ni�cantly faster results with lower quality. This is used by concepts utilizing
surrogate models for fast execution. The basic idea is to execute surrogate models
on the mobile device and execute both, the full model and the surrogate model, on
the server. This way, only updates to the surrogate model require communication
to the mobile device, and thus save bandwidth and latency for communication
of simulation results. Evaluations showed that our methods are up to 6.5 times
faster than pure o�oading while still meeting required quality constraints.

For parameterized stationary simulations, we utilized model order reduction
techniques to generate reduced models that can be executed directly on the mobile
device. We focused on the reduced basis method (RBM), that uses snapshots of
the original simulation model in a pre-computation step to provide the reduced
model. To this end, we provided methods to adapt the reduced model to provide
simulation results with guaranteed quality constraints. Additionally, we provide
methods to reduce the energy consumption and latency for the computation on
the mobile device by reducing the required snapshots depending on the parameter
of the execution and by modifying the original basis generation method. Our
methods are able to speedup the computation by over 131 times while using 73

times less energy.

All of these concepts can be combined to enable a full mobile simulation
middleware that provides fast execution even in the case of disconnections.
As there exist RBM methods for time-dependent simulation models, reduced
models can be used as surrogate models and re�ned where required using data
assimilation techniques and server resources. Model order reduction is still an
active �eld of research and more types of simulations will be supported and it
is to be expected that new concepts will improve execution and generation of
the reduced model for speci�c problems. However, there are still many other
concepts that can be used to improve the distributed execution between mobile

148

7.2 Outlook

devices and servers even further.

7.2 Outlook

This thesis opens a broad area of future work. In particular, there are hardware
improvements, trends in local computing resources, and recent achievements in
the model order reduction community that can be considered.

7.2.1 Hardware Improvements

There are two hardware trends requiring new concepts for the distributed exe-
cution of mobile simulations: 5G and approximate computing. While both are
not yet available, they will require new concepts for the execution of complex
applications, such as numerical simulations.

The next generation of cellular networks, 5G, will provide signi�cantly dif-
ferent characteristics, e.g., co-existence of di�erent wireless communication
methods [AEK+16]. This might require new concepts for execution in harsh
environments and for facing disconnections, especially as mobile devices might
be connected by multiple di�erent communication technologies at the same time.
Concepts could utilize a low bandwidth communication link, e.g., to acknowledge
results of a surrogate model when results are within quality constraints of the
user.

Additionally, specialized approximate computing hardware might be intro-
duced on mobile devices to save energy resources. As discussed in Section 6.9.5,
approximate computing approaches reduce the voltage of chips degrading the
quality of the result [XMK16]. While some works already discussed the execution
of simulations on approximate computing hardware [SBKW16, SBW17], they
did not focus on mobile devices and it remains unclear how such specialized
hardware will be controllable by the application.

149

7 Conclusions and Outlook

7.2.2 Utilizing Local Computing Resources

Another topic for future work is the utilization of local computing resources in
fog computing environments [BMZA12], cloudlets [SBCD09,SSX+15], and multi-
tier o�oading infrastructures [BDR16]. Closer resources provide low-latency
results and might provide better scalability of the overall system. Especially
when fast simulation results are required, e.g., live-integration of sensor data,
nearby resources can help to reduce the overall latency as the data has not to
be communicated to the central cloud. As the network between fog node and
cloud is wired, more traditional approaches could be used [FPS06]. However, also
completely new concepts could be realized for such systems. For instance, the
cloud provides an intermediate reduced model of the full simulation model and
the mobile device will only use signi�cantly less snapshots of this intermediate
model with signi�cantly lower quality at much lower complexity.

7.2.3 Recent Achievements in Model Order Reduction

Recent trends in the model order reduction community combine machine learn-
ing and the reduced basis method to provide solutions even for nonlinear prob-
lems [HU18]. As machine learning is very popular on mobile devices, frameworks
such as Tensor Flow support mobile hardware architectures and might provide
fast inference of already trained models [ABC+16]. However, concepts using
machine learning require to train the model and might require more general
concepts for enabling nonlinear models on mobile devices.

150

Publications

[DK14] Christoph Dibak and Boris Koldehofe. Towards Quality-aware Sim-
ulations on Mobile Devices. 44. Jahrestagung der Gesellschaft für
Informatik e.V. (GI) Workshop, 2014.

[DDR15] Christoph Dibak, Frank Dürr, and Kurt Rothermel. Numerical Anal-
ysis of Complex Physical Systems on Networked Mobile Devices.
International Conference on Mobile Ad-hoc and Sensor Systems
(MASS), IEEE, 2015.

[DSD+17] Christoph Dibak, Andreas Schmidt, Frank Dürr, Bernard Haasdonk,
and Kurt Rothermel. Server-Assisted Interactive Mobile Simulations
for Pervasive Applications. International Conference on Pervasive
Computing and Communications (PerCom), IEEE, 2017.

[DDR17] Christoph Dibak, Frank Dürr, and Kurt Rothermel. Demo: Server-
Assisted Interactive Mobile Simulations for Pervasive Applications.
International Conference on Pervasive Computing and Communica-
tions (PerCom) Workshops, IEEE, 2017.

[DHS+18] Christoph Dibak, Bernard Haasdonk, Andreas Schmidt, Frank Dürr,
and Kurt Rothermel. Enabling Interactive Mobile Simulations
Through Distributed Reduced Models. Pervasive and Mobile Com-
puting, Elsevier, 2018.

[DNDR19] Christoph Dibak, Wolfgang Nowak, Frank Dürr, and Kurt Rothermel.
Using Surrogate Models and Data Assimilation for E�cient Mobile
Simulations, 2019. Preprint online: arxiv.org/abs/1911.10344.

151

https://arxiv.org/abs/1911.10344

Bibliography

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Je�rey Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey
Irving, Michael Isard, et al. Tensor�ow: a system for large-scale
machine learning. In OSDI, volume 16, pages 265–283, 2016.

[AEK+16] M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao,
M. Rahaim, D. Schulz, J. Hilt, and R. Freund. Coexistence of wi�
and li� toward 5g: concepts, opportunities, and challenges. IEEE
Communications Magazine, 54(2):64–71, February 2016.

[AT08] Michel Armand and J-M Tarascon. Building better batteries. Nature,
451(7179):652, 2008.

[BBV09] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun
Venkataramani. Energy consumption in mobile phones: a measure-
ment study and implications for network applications. In Proceed-
ings of the 9th ACM SIGCOMM Conference on Internet Measurement,
pages 280–293. ACM, 2009.

[BDR13] Patrick Baier, Frank Dürr, and Kurt Rothermel. Opportunistic po-
sition update protocols for mobile devices. In Proceedings of the
2013 ACM international joint conference on Pervasive and ubiquitous
computing, pages 787–796. ACM, 2013.

[BDR14] Florian Berg, Frank Dürr, and Kurt Rothermel. Optimal predictive
code o�oading. In Proceedings of the 11th International Confer-
ence on Mobile and Ubiquitous Systems: Computing, Networking and
Services, pages 1–10. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2014.

153

Bibliography

[BDR16] Florian Berg, Frank Dürr, and Kurt Rothermel. Increasing the E�-
ciency of Code O�oading in n-tier Environments with Code Bub-
bling. In Proceedings of the 13th Annual International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services,
November 2016.

[Ber18] Florian Berg. E�cient Code O�oading Techniques for Mobile Ap-
plications. Dissertation, Universität Stuttgart, Fakultät Informatik,
Elektrotechnik und Informationstechnik, Germany, March 2018.

[BJvLE98] Gerrit Burgers, Peter Jan van Leeuwen, and Geir Evensen. Analysis
scheme in the ensemble kalman �lter. Monthly Weather Review,
126(6):1719–1724, 1998.

[BMNP04] Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T
Patera. An ’empirical interpolation’ method: application to e�-
cient reduced-basis discretization of partial di�erential equations.
Comptes Rendus Mathematique, 339(9):667–672, 2004.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli.
Fog computing and its role in the internet of things. In Proceedings
of the First Edition of the MCCWorkshop on Mobile Cloud Computing,
MCC ’12, pages 13–16, New York, NY, USA, 2012. ACM.

[BZBP13] Hans-Joachim Bungartz, Stefan Zimmer, Martin Buchholz, and Dirk
P�üger. Modellbildung und Simulation: eine anwendungsorientierte
Einführung. Springer-Verlag, 2013.

[CBC+10] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wol-
man, Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui:
making smartphones last longer with code o�oad. In Proceedings
of the 8th international conference on Mobile systems, applications,
and services, pages 49–62. ACM, 2010.

154

Bibliography

[CH10] Aaron Carroll and Gernot Heiser. An analysis of power consumption
in a smartphone. In Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC’10, pages 21–21,
Berkeley, CA, USA, 2010. USENIX Association.

[CIM+11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik,
and Ashwin Patti. Clonecloud: Elastic execution between mobile
device and cloud. In Proceedings of the Sixth Conference on Computer
Systems, EuroSys ’11, pages 301–314, New York, NY, USA, 2011.
ACM.

[Coo18] Intel Coorporation. Intel 64 and ia-32 architectures optimization
reference manual, 2018.

[CPG+13] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda. Down-
link packet scheduling in lte cellular networks: Key design issues
and a survey. IEEE Communications Surveys Tutorials, 15(2):678–700,
Second 2013.

[DDR15] Christoph Dibak, Frank Dürr, and Kurt Rothermel. Numerical Anal-
ysis of Complex Physical Systems on Networked Mobile Devices.
In Proceedings of the 12th IEEE International Conference on Mobile
Ad hoc and Sensor Systems (MASS 2015), Oct 2015.

[DDR17] C. Dibak, F. Dürr, and K. Rothermel. Demo: Server-assisted inter-
active mobile simulations for pervasive applications. In 2017 IEEE
International Conference on Pervasive Computing and Communica-
tions Workshops (PerCom Workshops), pages 68–70, March 2017.

[DHS+18] Christoph Dibak, Bernard Haasdonk, Andreas Schmidt, Frank Dürr,
and Kurt Rothermel. Enabling interactive mobile simulations
through distributed reduced models. Pervasive and Mobile Comput-
ing, 45:19 – 34, 2018.

155

Bibliography

[DK14] Christoph Dibak and Boris Koldehofe. Towards Quality-aware Sim-
ulations on Mobile Devices. In Proceedings of the 44. Jahrestagung
der Gesellschaft für Informatik e.V. (GI) (Informatik 2014), Lecture
Notes in Informatics (LNI). Gesellschaft für Informatik (GI), Sep
2014.

[DLMT16] Erik D Demaine, Jayson Lynch, Geronimo J Mirano, and Nirvan
Tyagi. Energy-e�cient algorithms. In Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, pages
321–332. ACM, 2016.

[DNDR19] Christoph Dibak, Wolfgang Nowak, Frank Dürr, and Kurt Rothermel.
Using surrogate models and data assimilation for e�cient mobile
simulations, 2019. Preprint online: arxiv.org/abs/1911.10344.

[DSD+17] Christoph Dibak, Andreas Schmidt, Frank Dürr, Bernard Haasdonk,
and Kurt Rothermel. Server-assisted interactive mobile simulations
for pervasive applications. In Proceedings of the 15th IEEE Inter-
national Conference on Pervasive Computing and Communications
(PerCom 2017), pages 111–120. IEEE, Mar 2017.

[Ela02] Hala Elaarag. Improving tcp performance over mobile networks.
ACM Computing Surveys (CSUR), 34(3):357–374, 2002.

[Eve03] Geir Evensen. The ensemble kalman �lter: Theoretical formulation
and practical implementation. Ocean dynamics, 53(4):343–367, 2003.

[Eve04] Geir Evensen. Sampling strategies and square root analysis schemes
for the enkf. Ocean dynamics, 54(6):539–560, 2004.

[Fis08] Gerd Fischer. Lineare Algebra. Vieweg + Teubner, 2008.

[FPS06] Rohit Fernandes, Keshav Pingali, and Paul Stodghill. Mobile mpi
programs in computational grids. In Proceedings of the Eleventh
ACM SIGPLAN Symposium on Principles and Practice of Parallel

156

https://arxiv.org/abs/1911.10344

Bibliography

Programming, PPoPP ’06, pages 22–31, New York, NY, USA, 2006.
ACM.

[FS99] Jason Flinn and Mahadev Satyanarayanan. Powerscope: A tool for
pro�ling the energy usage of mobile applications. In Second IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA),
pages 2–10. IEEE, 1999.

[GA10] M. S. Grewal and A. P. Andrews. Applications of kalman �ltering in
aerospace 1960 to the present [historical perspectives]. IEEE Control
Systems, 30(3):69–78, June 2010.

[GCD+10] Dirk Gorissen, Ivo Couckuyt, Piet Demeester, Tom Dhaene, and
Karel Crombecq. A surrogate modeling and adaptive sampling
toolbox for computer based design. Journal of Machine Learning
Research, 11(Jul):2051–2055, 2010.

[GF04] Andrei Gurtov and Sally Floyd. Modeling wireless links for transport
protocols. ACM SIGC, 34(2):85–96, 2004.

[GJM+12] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao,
and Xu Chen. Comet: code o�oad by migrating execution trans-
parently. In Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12), pages 93–
106, 2012.

[GL04] William Gropp and Ewing Lusk. Fault tolerance in message passing
interface programs. The International Journal of High Performance
Computing Applications, 18(3):363–372, 2004.

[GMP+11] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand
Raghunathan, and Kaushik Roy. Impact: Imprecise adders for
low-power approximate computing. In Proceedings of the 17th
IEEE/ACM International Symposium on Low-power Electronics and

157

Bibliography

Design, ISLPED ’11, pages 409–414, Piscataway, NJ, USA, 2011. IEEE
Press.

[GRA12] Ioana Giurgiu, Oriana Riva, and Gustavo Alonso. Dynamic software
deployment from clouds to mobile devices. In Middleware 2012,
pages 394–414. Springer, 2012.

[Grc11] Joseph F Grcar. Mathematicians of gaussian elimination. Notices of
the AMS, 58(6):782–792, 2011.

[Haa16] Bernard Haasdonk. Reduced basis methods for parametrized PDEs
– a tutorial introduction for stationary and instationary problems,
2016. Chapter in P. Benner, A. Cohen, M. Ohlberger and K. Willcox:
"Model Reduction and Approximation for Complex Systems", SIAM,
Philadelphia.

[HKPP11] D.B.P. Huynh, D.J. Knezevic, J.W. Peterson, and A.T. Patera. High-
�delity real-time simulation on deployed platforms. Computers &
Fluids, 43(1):74 – 81, 2011. Symposium on High Accuracy Flow Sim-
ulations. Special Issue Dedicated to Prof. Michel Deville Symposium
on High Accuracy Flow Simulations.

[HLHG13] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan.
Estimating mobile application energy consumption using program
analysis. In Software Engineering (ICSE), 2013 35th International
Conference, pages 92–101. IEEE, 2013.

[HM98] P. L. Houtekamer and Herschel L. Mitchell. Data assimilation using
an ensemble kalman �lter technique. Monthly Weather Review,
126(3):796–811, 1998.

[HMS03] Christopher Hide, Terry Moore, and Martin Smith. Adaptive kalman
�ltering for low-cost ins/gps. Journal of Navigation, 56(1):143–152,
2003.

158

Bibliography

[HSML07] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine. The design
and implementation of checkpoint/restart process fault tolerance
for open mpi. In 2007 IEEE International Parallel and Distributed
Processing Symposium, pages 1–8, March 2007.

[HU18] Jan S. Hesthaven and Stefano Ubbiali. Non-intrusive reduced order
modeling of nonlinear problems using neural networks. Journal of
Computational Physics, 363:55–78, 2018.

[KAH+12] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xin-
wen Zhang. Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code o�oading. In INFOCOM,
2012 Proceedings IEEE, pages 945–953. IEEE, 2012.

[Kep00] Christian L. Keppenne. Data assimilation into a primitive-equation
model with a parallel ensemble kalman �lter. Monthly Weather
Review, 128(6):1971–1981, 2000.

[KGVB05] Gaetan Kerschen, Jean-claude Golinval, ALEXANDER F. VAKAKIS,
and LAWRENCE A. BERGMAN. The method of proper orthogonal
decomposition for dynamical characterization and order reduction
of mechanical systems: An overview. NonlinearDynamics, 41(1):147–
169, Aug 2005.

[LDBNR13] Philipp C Leube, Felipe PJ De Barros, Wolfgang Nowak, and Ram
Rajagopal. Towards optimal allocation of computer resources: Trade-
o�s between uncertainty quanti�cation, discretization and model
reduction. Environmental Modelling & Software, 50:97–107, 2013.

[LLM+09] Anna Larmo, Magnus Lindstrom, Michael Meyer, Ghyslain Pelletier,
Johan Torsner, and Henning Wiemann. The lte link-layer design.
Communications Magazine, IEEE, 47(4):52–59, 2009.

[LSZ15a] Kody Law, Andrew Stuart, and Konstantinos Zygalakis. Discrete
Time: Filtering Algorithms, pages 79–114. Springer, 2015.

159

Bibliography

[LSZ15b] Kody Law, Andrew Stuart, and Kostas Zygalakis. Data assimilation.
Springer, 2015.

[LXCT16] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Valerio Terragni.
Understanding and detecting wake lock misuses for android appli-
cations. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 396–409.
ACM, 2016.

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number
generator. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 8(1):3–30, 1998.

[MPI93] The MPI Forum. Mpi: A message passing interface. In Proceedings of
the 1993 ACM/IEEE Conference on Supercomputing, Supercomputing
’93, pages 878–883, New York, NY, USA, 1993. ACM.

[MPI15] The MPI Forum. Mpi: A message-passing interface standard –
version 3.1, 2015.

[PHZ+11] Abhinav Pathak, Y Charlie Hu, Ming Zhang, Paramvir Bahl, and
Yi-Min Wang. Fine-grained power modeling for smartphones us-
ing system call tracing. In Proceedings of the sixth conference on
Computer systems, pages 153–168. ACM, 2011.

[PP16] P. Pandey and D. Pompili. Mobidic: Exploiting the untapped po-
tential of mobile distributed computing via approximation. In 2016
IEEE International Conference on Pervasive Computing and Commu-
nications (PerCom), pages 1–9, March 2016.

[PP17] Parul Pandey and Dario Pompili. Exploiting the untapped potential
of mobile distributed computing via approximation. Pervasive and
Mobile Computing, 2017.

160

Bibliography

[PYLFT16] Alberto Paradisi, Michel Daoud Yacoub, Fabrício Lira Figueiredo, and
Tania Regina Tronco, editors. Long Term Evolution: 4G and Beyond.
Telecommunications and Information Technology. Springer, Cham,
1st ed. 2016 edition, 2016.

[RD15] Daniel A. Reed and Jack Dongarra. Exascale computing and big
data. Commun. ACM, 58(7):56–68, June 2015.

[RHP08] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approxi-
mation and a posteriori error estimation for a�nely parametrized
elliptic coercive partial di�erential equations. Archives of Computa-
tional Methods in Engineering, 15(3):229, May 2008.

[RJ15] James Reinders and Jim Je�ers. High Performance Parallelism Pearls
Volume Two: Multicore and Many-core Programming Approaches.
Morgan Kaufmann, 2015.

[RSM+11] Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai,
David Wetherall, and Ramesh Govindan. Odessa: enabling interac-
tive perception applications on mobile devices. In Proceedings of
the 9th international conference on Mobile systems, applications, and
services, pages 43–56. ACM, 2011.

[RWMS18] U. Rüde, K. Willcox, L. McInnes, and H. Sterck. Research and ed-
ucation in computational science and engineering. SIAM Review,
60(3):707–754, 2018.

[S+94] Jonathan Richard Shewchuk et al. An introduction to the conjugate
gradient method without the agonizing pain, 1994.

[SBCD09] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for
vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23, Oct 2009.

[SBKW16] A. Schöll, C. Braun, M. A. Kochte, and H. Wunderlich. E�cient
algorithm-based fault tolerance for sparse matrix operations. In

161

Bibliography

2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 251–262, June 2016.

[SBW17] A. Schöll, C. Braun, and H. Wunderlich. Energy-e�cient and error-
resilient iterative solvers for approximate computing. In 2017 IEEE
23rd International Symposium on On-Line Testing and Robust System
Design (IOLTS), pages 237–239, July 2017.

[SM12] Audie Sumaray and S. Kami Makki. A comparison of data seri-
alization formats for optimal e�ciency on a mobile platform. In
Proceedings of the 6th International Conference on Ubiquitous Informa-
tion Management and Communication, ICUIMC ’12, pages 48:1–48:6,
New York, NY, USA, 2012. ACM.

[SN01] Mahadev Satyanarayanan and Dushyanth Narayanan. Multi-�delity
algorithms for interactive mobile applications. Wireless Networks,
7(6):601–607, 2001.

[Soc16] IEEE Computer Society. Ieee standard for information technology –
telecommunications and information exchange between systems
local and metropolitan area networks – speci�c requirements – part
11: Wireless lan mediaum access control (mac) and phyiscal layer
(phy) speci�cations, 2016.

[SSX+15] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan
Pillai, Zhuo Chen, Kiryong Ha, Wenlu Hu, and Brandon Amos.
Edge analytics in the internet of things. IEEE Pervasive Computing,
14(2):24–31, 2015.

[TAN+12] Narendran Thiagarajan, Gaurav Aggarwal, Angela Nicoara, Dan
Boneh, and Jatinder Pal Singh. Who killed my battery?: analyzing
mobile browser energy consumption. In Proceedings of the 21st
international conference on World Wide Web, pages 41–50. ACM,
2012.

162

Bibliography

[Tur48] Alan M Turing. Rounding-o� errors in matrix processes. The
Quarterly Journal of Mechanics and Applied Mathematics, 1(1):287–
308, 1948.

[VJLA12] Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal.
Towards verifying android apps for the absence of no-sleep energy
bugs. In HotPower, 2012.

[VPRP03] Karen Veroy, Christophe Prud’Homme, Dimitrios V Rovas, and An-
thony T Patera. A posteriori error bounds for reduced-basis approx-
imation of parametrized noncoercive and nonlinear elliptic partial
di�erential equations. In Proceedings of the 16th AIAA computa-
tional �uid dynamics conference, volume 3847, pages 23–26. Orlando,
Florida, 2003.

[Wal02] Bernhard H. Walke. Mobile radio networks, volume 2. John Wiley &
Sons, 2002.

[WB96] Mark Weiser and John Seely Brown. Designing calm technology.
PowerGrid Journal, 1(1):75–85, 1996.

[Wei91] Mark Weiser. The computer for the 21st century. Scienti�c american,
265(3):94–104, 1991.

[XMK16] Q. Xu, T. Mytkowicz, and N.S. Kim. Approximate computing: A
survey. Design & Test, IEEE, 33(1):8–22, Feb 2016.

[YKC+13] S. Yang, Y. Kwon, Y. Cho, H. Yi, D. Kwon, J. Youn, and Y. Paek. Fast
dynamic execution o�oading for e�cient mobile cloud computing.
In International Conference on Pervasive Computing and Communi-
cations (PerCom), pages 20–28, March 2013.

[Zil96] Shlomo Zilberstein. Using anytime algorithms in intelligent systems.
AI magazine, 17(3):73, 1996.

163

Bibliography

[ZM07] Jim Zyren and Wes McCoy. Overview of the 3gpp long term evo-
lution physical layer. Freescale Semiconductor, Inc., white paper, 22,
2007.

[ZNW15] Y. Zhang, D. Niyato, and P. Wang. O�oading in mobile cloudlet
systems with intermittent connectivity. IEEE Transactions on Mobile
Computing, 14(12):2516–2529, Dec 2015.

164

	Introduction
	Motivation
	Research Focus and Goals
	Contributions
	Project Background: SimTech
	Structure

	Background
	Numerical Simulations
	Model Order Reduction
	Data Assimilation
	Mobile Computing

	System Overview
	System Components
	Generic System Model

	Increasing Robustness Against Disconnections
	System Model
	Problem Statement
	Architecture
	Scheduling Computation Steps
	Statistics Component
	Detecting Disconnections
	Predicting the Duration of Disconnections
	Evaluation
	Related Work
	Summary

	Using Surrogate Models for Efficient Solution of Time-Dependent Problems
	System Model
	Problem Statement
	Stream Approach
	Full Update Approach
	Partial Update Approach
	Evaluation
	Related Work
	Summary

	Using Model Order Reduction for Efficient Solution of Stationary Problems
	System Model
	Problem Statement
	Basic Approach
	Adaptive Approach
	Subspace Approach
	Reorder Approach
	Reorder Basis Generation
	Evaluation
	Related Work
	Summary

	Conclusions and Outlook
	Conclusions
	Outlook

	Publications
	Bibliography

