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Abbreviations

Technical abbreviations:

FMM Fourier modal method
ASR adaptive spatial resolution
S-matrix scattering matrix
s from German senkrecht = perpendicular
p parallel

General definitions:

α, β, γ, σ variable integers for components 1, 2, 3 of three-
dimensional vectors unless specified

nm variable integers or placeholders for integers
εαβγ Levi-civita symbol, see equation (2.13)
B three-dimensional vector
eα contravariant basis vectors
eα covariant basis vectors
Bα, Cα contravariant vector components
Bα, Cα covariant vector components
U,V six-dimensional super-vector containing the components

of electric and magnetic fields
UE,UH vectors containing the electric and magnetic field compo-

nents of U
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Physical quantities:

c speed of light in vacuum
ε, µ permittivity and permeability tensors with components

εαβ and µαβ , respectively
ζ, ξ bi-anisotropic tensors
ρ charge term
ω angular frequency
k0, k vacuum wave number k0 = ω

c
k, kα incident wave vector and its covariant components
E, Eα electric field and its covariant components
H, Hα magnetic field and its covariant components
D, Dα electric displacement and its contravariant components
B, Bα magnetic induction and its contravariant components
j, jα current vector and its contravariant components
P, Pα nonlinear polarization vector and its contravariant com-

ponents
χ(2), χ(3) second- and third-order nonlinear susceptibilities
G,K lattice vector and the associated in-plane momentum
Gαm lattice vector component
Kα,m Kαm = kα +Gαm

Coordinate systems:

r three-dimensional vector with spatial components
x, y, z, xα Cartesian coordinates
xα general non-uniform coordinates
∂α,

∂
∂xα derivative with respect to xα

Jx→x Jacobian matrix, see equation (2.2)
Λαβ component of the Jacobian matrix Jx→x√
g determinant of the Jacobian matrix Jx→x

θ polar incidence angle as angle between incident wave vec-
tor and z axis

φ azimuth incidence angle as angle between x axis and pro-
jection of incident wave vector on xy plane
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Special quantities:

J source current super-vector
JA,FA current super-vector belonging to the source A and the

corresponding radiated field super-vector
Fn field super-vector of the resonant pole n
I,O Super-vectors of plane wave basis describing incoming and

out going fields

M̂ Maxwell’s operator

Ĝ Green’s dyadic
BV ,B∂ν vector functions defined by equations (2.43) and (2.42)
Fαmn Fourier coefficient of order mn for vector component Fα
l̂−α Li operator, see equation (2.73)

m̂−α , ĵ
−
α Fourier factorization operators, see equations (4.15) and

(4.17)
ε̃, µ̃ Fourier transform of permittivity and permeability ten-

sors

ε̌, µ̌ l̂−3 (ε̃) and l̂−3 (µ̃), respectively
γm,Γ

±
l eigenvalues of equation (2.75) and eigenvalue matrix, with

+/− indicating the subsets of forward/backward propa-
gating or decaying solutions in direction x3 and layer l

M̃ operator of the eigenvalue equation (2.75)
E ,F eigenvector and material matrix
A±l vector of expansion coefficients for forward or backward

propagation or decay in layer l
Sl,l′ scattering matrix between the position x3

l (top) and the
position x3

l′ (bottom)
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Abstract

Nonlinear optical phenomena represent a large family of effects. We can
cite for instance Raman and Brillouin scatterings, second-, third- and
higher-harmonic generations as well as sum-frequency generation and Kerr
optical effect. These phenomena are often neglected; however they might
appear in nanophotonic systems. While micro- or nano-structured media
can be tailored in order to control far-field emission pattern and achieve
high intensities in the near-field, it is known that resonantly enhanced
near-fields can produce significant nonlinear optical phenomena. As a
consequence, nonlinear nanophotonics has been subject to many investi-
gations in the last years [1, 2].

In this thesis, we aim to solve linear and nonlinear Maxwell’s equations
within layered nanostructures at a reasonable numerical cost. To achieve
this goal, we will use the scattering matrix formalism as well as the Fourier
modal method also called rigorous coupled wave analysis [3, 4]. While the
Fourier modal method will be used as the main solver this entire thesis
long, we will discuss in detail different approaches that can be implemented
upon the Fourier modal method to solve linear and nonlinear Maxwell’s
equations.

In recent years, it has been shown that the near- and far-field properties
of nanostructures can be described using a basis of resonant states, also
known as quasi-normal modes. This approach is extremely fast and can
be implemented upon existing solvers. In this thesis, we will describe the
mathematics behind the decomposition of the inner fields of a structure
over its resonant poles. Then, we provide a new formulation of the pole-
expansion of electromagnetic fields that we will compare with the older
formulation.

Then, we discuss a first approach that describes nonlinear optical phe-
nomena by solving nonlinear Maxwell’s equations [5]. In this approach, we
explain the implementation of new factorization rules for nonlinear suscep-
tibility and matched coordinates that are indispensable to achieve accurate
results with the Fourier modal method. Then we show that the speed of
such method can be improved using the pole expansion approach for the
nonlinear emission problem.

In addition, the pole expansion provides a deep insight in the descrip-
tion and understanding of nonlinear phenomena within nanostructures.
Indeed, this method leads to an analytic expression measuring the impact
of symmetries and the importance of a resonant excitation of nanoparticles
in the generation of second and higher harmonics.

page 14



Thus, this thesis presents a full set of approaches for the description of
nonlinear phenomena within nanostructures. Additionally, these methods
are used to calculate second- and third-harmonic generations as well as
the Kerr optical effect within nanostructures of different shapes.

Finally, we compare the results of our method with experimental results
on the generation of third harmonic within rather complex plasmonic sys-
tems, which are subject to the chiroptical effect in the first example [6]
and plasmonic dark modes hybridization in a second example [7].
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Zusammenfassung

Nichtlineare optische Phänomene repräsentieren eine große Anzahl an Ef-
fekten. Beispiele dafür sind die Raman- und Brillouin-Streuung, Fre-
quenzverdopplung und -verdreifachung und allgemein die Erzeugung von
höheren Harmonischen, Summenfrequenzerzeugung und der optische Kerr-
Effekt. Diese Phänomene werden in vielen Fällen vernachlässigt; allerdings
können sie in nanophotonischen Systemen auftreten. Während mikro- oder
nanostrukturierte Materialien modifiziert werden können, um das Fern-
feld zu kontrollieren und hohe Intensitäten im Nahfeld zu erzielen, ist
bekannt, dass resonant verstärkte Nahfelder signifikante nichtlineare op-
tische Phänomene hervorrufen. Folglich ist das Gebiet der nichtlinearen
Nanophotonik in den letzten Jahren zum Gegenstand zahlreicher Unter-
suchungen geworden [1, 2].

Das Ziel dieser Arbeit ist die Lösung der linearen und nichtlinearen
Maxwell-Gleichungen bei mehrlagigen Nanostrukturen mit vertretbarem
numerischen Aufwand. Um dieses Ziel zu erreichen, verwenden wir den
Streumatrix-Formalismus und die Fourier-Modal-Methode, auch bekannt
als rigorose gekoppelte Wellenanalyse [3, 4]. Während im Wesentlichen
die Fourier-Modal-Methode verwendet wird, werden wir im Detail die ver-
schiedenen Ansätze diskutieren, die wir implementiert haben, um die lin-
earen und nichtlinearen Maxwell-Gleichungen zu lösen.

In den letzten Jahren wurde gezeigt, dass die Nahfeld- und Fern-
feldeigenschaften von Nanostrukturen durch eine Basis von resonanten
Zuständen beschrieben werden können, auch bekannt als quasinormale
Moden. Dieser Ansatz ist extrem schnell und kann einfach implemen-
tiert werden. In dieser Arbeit beschreiben wir die Mathematik hinter der
Zerlegung der inneren Felder einer Struktur über ihren resonanten Polen.
Dann präsentieren wir eine neue Formulierung der Polentwicklung von
elektromagnetischen Feldern, den wir mit der alten Formulierung vergle-
ichen.

Dann diskutieren wir einen ersten Ansatz zur Beschreibung nichtlin-
earer optischer Phänomene durch die Lösung der nichtlinearen Maxwell-
Gleichungen [5]. In diesem Ansatz erklären wir die Implementierung
von neuen Faktorisierungsregeln für die nichtlineare Suszeptibilität und
angepassten Koordinaten, die unverzichtbar sind, um akkurate Ergeb-
nisse mit der Fourier-Modal-Methode zu erzielen. Anschließend zeigen
wir, dass die Geschwindigkeit der Methode verbessert werden kann, indem
der Polentwicklungsansatz für das nichtlineare Emissionsproblem verwen-
det wird.
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Zusätzlich bietet die Polentwicklung tiefe Einsichten in die Beschreibung
und das Verständnis von nichtlinearen Phänomenen in Nanostrukturen.
Tatsächlich führt diese Methode zu einem analytischen Ausdruck, der den
Einfluss von Symmetrien und die Bedeutung von resonanter Anregung von
Nanopartikeln bei der Erzeugung von höheren Harmonischen beschreibt.

Somit präsentiert diese Arbeit eine ganze Reihe von Methoden für
die Beschreibung von nichtlinearen Phänomenen in Nanostrukturen.
Zusätzlich werden diese Methoden benutzt, um Frequenzverdopplung und
Frequenzverdreifachung sowie den optischen Kerr-Effekt in Nanostruk-
turen mit verschiedener Form zu berechnen.

Zum Schluss vergleichen wir die Ergebnisse unserer Methoden mit ex-
perimentellen Ergebnissen von Frequenzverdreifachung in komplexen plas-
monischen Systemen, die im ersten Beispiel einen chiro-optischen Effekt [6]
und im zweiten Beispiel dunkle Moden durch plasmonische Hybridisierung
[7] zeigen.

page 17



Publications

Parts of this work have already been published:

� J. Defrance, M. Schaferling, and T. Weiss, “Modeling of second-
harmonic generation in periodic nanostructures by the Fourier modal
method with matched coordinates,” Opt. Express 26, 13746–13758
(2018).

� J. Krauth, T. Schumacher, J. Defrance, B. Metzger, M. Lippitz, T.
Weiss, H. Giessen, and M. Hentschel, “Nonlinear Spectroscopy on
the Plasmonic Analog of Electromagnetically Induced Absorption:
Revealing Minute Structural Asymmetries,” ACS Photonics 6, 2850–
2859 (2019).

� L. Gui, M. Hentschel, J. Defrance, J. Krauth, T. Weiss, and H.
Giessen, “Nonlinear Born-Kuhn Analog for Chiral Plasmonics,” ACS
Photonics 6, 3306–3314 (2019).

Publications under review:

� J. Defrance, and T. Weiss, “On the pole expansion of electromagnetic
fields,” Opt. Express, (2020).

Publications in preparation:

� J. Defrance, and T. Weiss, “On the Kerr optical effect within the
pole expansion approach,” (2020).

18



1 Introduction

If you want to find the secrets of the universe, think in terms of
energy, frequency and vibration.

Nikola Tesla (1856-1943)

I insist upon the view that ’all is waves’.

Erwin Schrödinger (1887-1951)
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1 Introduction

Light-matter interactions represent a very large field of study. From
the pioneering work of Descartes and Newton in optics and infinitesi-
mal calculus, to the formulation of Maxwell’s equations [8], this topic has
greatly evolved over the past centuries. In recent years, modern theoret-
ical advances and the development of new fabrication methods for nano-
structured media opened large perspectives in nanophotonics.

Though the intrinsic polarizability of a medium defines most of its opti-
cal properties, it is possible to build mediums with artificial optical char-
acteristics by the means of nanostructures [9–11]. Indeed, the effective
magnetic and electric polarizabilities of a material can be tailored by nano
structuring the material at the scale of optical wavelengths. For instance,
by these methods it is possible to mimic natural nanostructures such as
feather tails and butterfly wings to produce bright structural colors [12–
14]. Beyond natural phenomena, periodic nanostructures such as photonic
crystals and metamaterials provide many different kinds of effects used
for example in perfect absorbers [15, 16], optical wave-guides [17, 18] and
chemical sensors [19, 20].

Most of nano-structured materials contain metallic particles that exhibit
plasmonic resonances. Plasmon resonances are collective oscillations of free
electrons within metallic structures. We distinguish two types of plasmon
resonances, propagating plasmon polariton occurring at metallo-dielectric
interfaces and standing particle resonances. These types of resonant modes
are able to focus intense electromagnetic fields in deep sub-wavelength vol-
umes. At large intensities, electromagnetic fields are subject to a very
broad family of nonlinear optical phenomena. Though in quantum me-
chanical representations even vacuum exhibits nonlinear properties, note
that in classical approaches nonlinear phenomena concern just light-matter
interactions. These interactions are theoretically expressed within the so
called constitutive equations that describe the local polarization of matter
induced by an external electromagnetic field. This process can be subject
to non-locality [21]. Although in linear optics the polarization of matter
is expressed as susceptibility tensors multiplied by the components of the
incoming electromagnetic field, it is an approximation. Light-matter in-
teractions are merely governed by the an-harmonic oscillations of charged
particles, such as free and bounded electrons, induced by an incoming field.
As a consequence the induced polarization-field contains harmonics of the
excitation frequency. In the constitutive equations the electric nonlinear
polarization is expressed as higher order tensors multiplied multiple times
with the components of electric field. Thus, in simple models the nonlin-
ear polarization is proportional to the incoming field raised to the power
two or higher. Many materials exhibit a very small nonlinear suscepti-
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bility and thus a negligible nonlinear polarization. However, there exist
some materials such as GaAs that exhibit high optical nonlinearities. Ad-
ditionally, a nth-order nonlinear polarization scales with the amplitude of
the pump field raised to the power n. As a consequence, even-though the
metal of a nano-particle do not own a high nonlinear susceptibility, the
strongly enhanced near fields in the vicinity of the particle can be subject
to nonlinear phenomena [1, 22–24].

Nonlinear optical phenomena proved to be indispensable tools in many
domains. We can cite for instance, fiber-amplifiers and wavelength mul-
tiplexer for telecommunications, microscopes [24, 25], chemical sensors
[2, 26, 27]. As a consequence, while nanostructures are able to drastically
enhance nonlinear optical phenomena, the tailoring of nonlinear effects
at the scale of nanostructures is still an active field of research. Indeed,
though the influence of crystalline symmetries is well understood and de-
scribed within the formalism of susceptibility tensors, the conjunction of
structural symmetries with the optical susceptibilities of materials within
nanostructures to produce nonlinear responses is not well understood.

In this context, numerical algorithms calculating the linear and non-
linear behavior of plasmonic nanostructures offer good optimization tools
and provide the mean to achieve a better understanding of these phe-
nomena. Different approaches have been developed to account for the
nonlinear contributions to Maxwell’s equations in either time or frequency
domain [28, 29]. Plasmonic structures are often produced as layers of pat-
terns repeated periodically in one or two dimensional arrays. This type of
structure is typically produced using lithographic methods and numerical
modal methods are the most suited tools to solve Maxwell’s equations in
such layered systems. These methods belong to the category of frequency
domain solvers, which resolve Maxwell’s equations for one single frequency
in each calculation. In addition, these methods require a numerical dis-
cretization only along two directions. Indeed, in the stacking direction
of the layered system, one searches for eigenmodes that can propagate or
decay for each layer. These eigenmodes serve as a basis for deriving the
propagation of fields through a layer, which is usually carried out by the
scattering matrix approach [3]. In the case of the Fourier modal method,
the eigenmodes are calculated by decomposing Maxwell’s equations in a
finite Fourier basis. This implies periodic boundary conditions that are
the reason why the Fourier modal method is ideal for layered periodic
structures.

The thesis is structured as follows: In chapter 2, we express Maxwell’s
equations within the formalism of general coordinate systems that is in-
dispensable for the modeling of nanostructures with arbitrary shapes. In
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1 Introduction

a second step, we introduce the matrix formulation of Maxwell’s equa-
tions. This new formulation proved to be extremely useful and leads us
to the expression of the reciprocity principle, in addition to the resolu-
tion of Maxwell’s equations using the pole expansion approach. Finally,
this chapter ends with a detailed description of the Fourier modal method
(FMM) within the scattering matrix formalism. The description includes
a reminder about factorization rules [4, 30] and adaptive spatial resolution
[31, 32] that we might re-define in a broader picture, further in the the-
sis. In chapter 3, we present a detailed description of the Mittag’s Leffler
theorem and the associated series expansion. Then, we use the proper-
ties of the latter to solve Maxwell’s equations using a different approach
from the standard pole expansion [33]. The novel as well as the older
formulation of the pole expansion improves significantly the calculation
speed of frequency domain solvers that will be relevant in the resolution of
nonlinear Maxwell’s equations, which is known to be time consuming. In
chapter 4 we will study three different approaches to compute nonlinear
optical phenomena using the Fourier modal method as the main solver.
The first method calculates the second-harmonic generation within the
Fourier modal method using a direct emission scheme. We consider ma-
terials with nonlinear properties as volumetric sources, thus the emission
of these sources to the far field at the harmonic frequency is calculated
using the scattering matrices formalism. A second method expresses the
field scattered at the harmonic frequency in the same fashion as the field
scattered at the pump frequency, using the pole expansion approach. Fi-
nally, the last method uses an indirect scheme based on the reciprocity
principle. The radiation of the nonlinear material to the far field is calcu-
lated as the overlap integral of two quantities: The nonlinear polarization
expressed as a source current and the near field scattered by plane waves
propagating in the inverse direction, from far to near field at the harmonic
frequency. In the chapter 5 we study the third-harmonic generation in
two rather complex nanostructures. In the first system, we compute the
third-harmonic generated in a chiral plasmonic structure [6, 34–36]. In
the second system, we study the influence of plasmonic dark modes and
symmetry breaking, in the enhancement of third-harmonic generation in
metallic nanostructures [7, 37].
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2 Theoretical approaches in
nanophotonics

A scientist is happy, not in resting on his attainments but in
the steady acquisition of fresh knowledge.

Max Planck (1858-1947)
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2 Theoretical approaches in nanophotonics

2.1 Introduction

Though the context and the reasons why we need to further improve nu-
merical methods has been discussed, we might now introduce the state of
the art in this field. The resolution of Maxwell’s equations using modal
methods have been a field of research for a few decades now. Originally,
the Fourier modal method (also called rigorous coupled wave analysis,
RCWA) had few issues in the calculation of transverse magnetic fields (i.e.
p-polarized fields). L. Li proposed later his so called Fourier factorization
rules [38], which account for the limited size of the reciprocal basis used
in modal methods. The factorization rules improved greatly the Fourier
modal method, however issues with metal dielectric or curved interfaces
were still hampering the accuracy of the method. These two problems were
tackled by the implementation of adaptive spatial resolution and general
coordinates within the numerical scheme achieved by G. Granet and T.
Weiss [31, 32]. This new feature enables the use of stretched and matched
coordinates. On one hand, the stretched coordinates strongly reduce the
Gibbs phenomenon, which was the origin of the convergence issues afore-
mentioned for metallo-dielectric interfaces. On the other hand, it allows
the description of curved interfaces by surfaces of constant coordinates,
which prevent the use of staircase approximation, another source of inac-
curacy in the older approach.

The implementation of the Fourier modal method with factorization
rules and adaptive spatial resolution exhibits very good convergence pat-
tern in most cases and thus it is ready for the implementation of more
complicated schemes, for instance the description of nonlinear optical phe-
nomena. Additionally, new approaches based on a semi-analytic scheme
solving Maxwell’s equations using Mittag-Leffler series expansion offer a
plethora of possible improvements.

In this chapter we will introduce the necessary formalism and the ideas
necessary to push the Fourier modal method further and use pole expan-
sion approaches in more situations than the traditional ones.

2.2 Maxwell’s equations

2.2.1 Covariant form of Maxwell’s equations

In the following chapters, we will use the CGS (centimeters, grams and sec-
onds) unit system and the covariant notation, which provides an efficient
tool for the description of electromagnetic fields in general coordinates.
Additionally, bold letters in this document will refer to vector quantities.
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2.2 Maxwell’s equations

The covariant formalism describes spatial dimensions using two recip-
rocal bases, the covariant basis (e1, e2, e3) and the contravariant basis
(e1, e2, e3) that we will define in this discussion. Thus, covariant quanti-
ties own a lower index and contravariant one’s own an upper index. The
product of elements of each basis sharing the same symbol as lower and
upper index UαVα, implicitly refers to the sum convention over the three
dimensions:

UαVα ≡
3∑

α=1

UαVα. (2.1)

Let us first assume the coordinate transformation from a Cartesian co-
ordinate system (O, x1, x2, x3) to non-uniform (curvilinear) coordinates
(O, x1, x2, x3), in a flat space. Depending whether a physical quantity is
expressed in Cartesian coordinates or general coordinates, it will be written
with or without an upper bar. The Jacobian matrix of the transformation
from Cartesian to the curvilinear system is denoted by:

Jx→x =

∂x1

∂x1
∂x1

∂x2
∂x1

∂x3

∂x2

∂x1
∂x2

∂x2
∂x2

∂x3

∂x3

∂x1
∂x3

∂x2
∂x3

∂x3

 . (2.2)

In the Cartesian coordinates, the covariant and contravariant basis vec-
tors are the unit vectors eα. In addition, the coordinates of any point in
space are defined relatively to an origin by a linear combination of transla-
tions expressed using the coordinate vector defined as r(x1, x2, x3) = xαeα.
In curvilinear coordinates, the latter vector becomes

r(x1, x2, x3) = xα(x1, x2, x3)eα. (2.3)

In curvilinear coordinates, the vectors of the covariant basis at the po-
sition r(x1, x2, x3) are the tangents of the curves r(x1, c2, c3), r(c1, x2, c3)
and r(c1, c2, x3), where c1, c2 and c3 are constants. Similarly, the vectors of
the contravariant basis are the normals of the surfaces of constant param-
eters, xα = constant. Thus, the vectors of the covariant and contravariant
basis in curvilinear coordinates are defined as

eα =
∂r

xα
, (2.4)

eα = ∇xα. (2.5)

As you can see in Fig. 2.1, the direction and the norm of the co- and
contravariant basis vectors depend on the spatial position marked as a
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2 Theoretical approaches in nanophotonics

y
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x
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 (
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)
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1.4
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e2
e1

e1

e2

Figure 2.1: Example of two-dimensional curvilinear coordinates with a line
of constant coordinates matching the shape of a circle of radius r=300 nm.
In this curvilinear coordinate system the characteristics of the covariant and
contravariant basis vary with the spatial position. At the position of the blue
cross, the directions of the covariant and contravariant basis vectors are given
by red and green arrows, respectively.

blue cross in the figure. As a consequence, in stretched or curvilinear
coordinates the Jacobian matrix and the weight

√
g are functions of space.

In general coordinates, physical quantities as vectors are represented
within the two reciprocal bases with the decomposition:

U = Uαeα, & U = Uαeα, (2.6)

The transformation of a vector of weight W from Cartesian coordinates
to curvilinear coordinates is obtained using the elements of the Jacobian
matrix Jx→x written as Λαβ = ∂xα/∂xβ . Thus,

Uα = U
β
Λαβ
√
g
W
, & Uα = UβΛβα

√
g
W
, (2.7)

where
√
g is the determinant of the Jacobian matrix of the inverse trans-

formation Jx→x. Depending on their properties, physical quantities carry
different weights.

The covariant form of the electric and magnetic fields have a weight zero,
the contravariant form of the current vector, the magnetic induction, the
displacement and the polarization fields are of weight one. The transfor-
mation of these quantities from Cartesian to curvilinear coordinates yields

Eα = EβΛβα, Hα = HβΛβα, (2.8)

Dα = D
β√

gΛαβ , Bα = B
β√

gΛαβ , (2.9)

Pα = P
β√

gΛαβ , Jα = J
β√

gΛαβ . (2.10)
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2.2 Maxwell’s equations

The dielectric permittivity and permeability are tensors of second order
with a weight one:

εαβ = ερτ
√
gΛαρΛβτ , µαβ = µρτ

√
gΛαρΛβτ . (2.11)

Finally the charge density is a scalar quantity of weight 1:

ρ = ρ
√
g. (2.12)

In covariant notation the vector product and the curl operator are ex-
pressed using the Levi-Civita symbol:

εα,β,γ =

 1, for αβγ = {123, 231, 312};
−1, for αβγ = {321, 213, 132};
0, otherwise.

(2.13)

The weight of this operator is directly linked to the deformation of the
parallelepiped whose edges are the vectors of the covariant basis. The
volume of this parallelepiped is locally expressed as a vector product:

Vu = eαε
α,β,γeβeγ . (2.14)

This elementary volume is equal to the determinant of the inverse Ja-
cobian matrix Vu =

√
g that is unitary in Cartesian coordinates V u = 1.

Nonetheless, Vu is not unitary in curvilinear coordinates. As a conse-
quence, the Levi-Civita symbol owns a weight one:

εαβγ = εµντ
√
gΛαµΛβνΛγτ , (2.15)

and
√
g can be regarded as a volumetric normalization or a density [39].

The previous demonstrations and definitions provide a rather detailed de-
scription of electromagnetic fields in general coordinates. We might con-
clude this demonstration with the expression of linear Maxwell’s equations
in covariant notation [32]:

∂αD
α = 4πρ, (2.16)

∂αB
α = 0, (2.17)

εαβγ∂βEγ = ik0µ
αβHβ , (2.18)

εαβγ∂βHγ = −ik0ε
αβEβ . (2.19)

The reader will recognize that in each of these equations the left and
right terms of the equality have a total weight of one. Thus, the Maxwell’s
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2 Theoretical approaches in nanophotonics

equations are invariant under coordinate transformation. Similarly, we can
derive the constitutive equations that embrace the same property:

Dγ = εγβEβ + ξγαHα, (2.20)

Bγ = µγβHβ + ζγαEα. (2.21)

Here, ξγα and ζγα known as bi-anisotropic contributions are second-order
tensors of weight one.

It has been demonstrated that Maxwell’s equations can be solved for
circular and other geometries in general coordinates. The use of curvi-
linear coordinates is eminently useful for numerical methods. Resolving
accurately the optical properties of a structure with curved interfaces re-
quires curvilinear coordinates and the definition of surfaces of constant
coordinates that match the interfaces of the structure of interest. At this
condition, the normal and tangential components of the field are defined
correctly and the numerical description of curved interfaces does not suffer
from artificial discontinuities due to spatial discretization.

Though coordinate transformation is a useful tool for numerical meth-
ods, it carries a physical meaning. For instance, changing the optical prop-
erties of a particle or applying the corresponding change in the structural
geometry of the same object is equivalent. This characteristic is the equiv-
alence principle, thus a particle with an arbitrary shape made of homoge-
neous material, is equivalent to a cubic particle made of a corresponding
non-trivial material. The permittivity and permeability of the latter mate-
rial in Cartesian coordinates is defined by the transformation of these ten-
sors from the matched coordinates basis to the Cartesian one. This prin-
ciple is intensively used in transformation optics for the nano-structuring
and the shaping of materials to achieve new artificial permittivities and
permeabilities [40–42]. Such materials are usually called metamaterials,
amidst them a large family containing materials made of metallic parti-
cles that are the subject of intense research because of the properties they
exhibit. Indeed, metallic materials are subject to plasmonic resonances
which are collective oscillations of free electrons at interfaces that couple
with incoming light. Nanostructured media containing metallic particles
are experimentally built with few methods such as electron beam lithog-
raphy. Thus, such structures are organized in planar layers stacked on top
of each other. In the case the layers are periodic in one or two directions
with a common translational symmetry and invariant in the stacking direc-
tion, the structure can be perfectly described numerically using the Fourier
modal method. This numerical method will be described in the last sec-
tion of this chapter. However, in the following calculations we will assume
that the dielectric permittivity and the magnetic permeability are defined
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2.2 Maxwell’s equations

in general coordinates such that our demonstrations remain as general as
possible.

2.2.2 Matrix formulation of Maxwell’s equations

”As is often the case in mathematics and physics, a good notation is half
the battle” [43]. Thus, depending on the goal to be achieved, one or the
other formulation of Maxwell’s equations is required. Besides the usual
vector forms, these equations possess matrix formulations, the most known
is using the four dimensional electromagnetic tensor eminently useful in
electrodynamics [39]. However, another matrix formulation exists, it can
be written in frequency domain [time dependence exp(−iωt), Gauss units,
wavenumber k = ω/c] as [44]:

M̂(r; k)F(r; k) = J(r; k), (2.22)

where M̂(r; k) = kP̂(r; k)− D̂(r) assuming:

P̂(r; k) =

[
ε(r; k) −iξ(r; k)
iζ(r, k) µ(r; k)

]
, D̂(r) =

(
0 ∇×
∇× 0

)
, (2.23)

where ε, µ, ζ and ξ are the dielectric permittivity, the dielectric perme-
ability, and possible bi-anisotropic contributions, respectively. The six-
dimensional supervector F contains the electric and magnetic fields de-
noted by E and H. The current supervector J contains an electric source
current JE = −4πj/c and a magnetic current JH introduced for symmetry
reasons,

F(r; k) =

[
E(r; k)
iH(r; k)

]
, J(r; k) =

[
JE(r; k)
iJH(r; k)

]
. (2.24)

The value of the field F(r; k) is obtained solving the Maxwell’s equations
(2.22). A usual method to solve in-homogeneous differential equations
makes use of a Green function G that is solution of the equation for a
second term equal to a Dirac distribution. The equation (2.22) is written
for six dimensional supervectors. Hence, instead of a Green’s function, we
use the Green’s dyadic operator G that obeys

M̂(r; k)Ĝ(r, r′; k) = 1δ(r− r′). (2.25)

The solution F of the inhomogeneous Maxwell’s equation is obtained by
the convolution of the Green’s dyadic with the source current supervector
in the region of emission v:

F(r; k) =

∫
v

Ĝ(r, r′; k)J(r′; k)dv. (2.26)
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Though in the latter formula we model only the emission of a source
current, the linear properties of a scattering geometry as well as the non-
linear process taking place in some materials are well described by source
currents. The occurrence of these phenomena in layered media will be the
subject of the coming chapters.

2.3 Plane wave decomposition

Let us assume the example of stacked arrays of nanostructures with com-
mon translation symmetry. Each layer is invariant along x3 and contains
nanostructures arranged periodically along one or two directions x1 and x2

with the periods d1 and d2. Consequently, the layers are stacked along the
direction x3. In such periodic structures, the light-matter interaction ten-
sors as the dielectric permittivity can be decomposed in terms of Fourier
harmonics. Additionally, the system can be excited by planes waves com-
ing from the top and bottom half spaces above and below the structure.
Each incoming plane wave owns a wave vector k = (k1, k2, k3) that is
related to the the azimuthal and polar incidence angles θ and φ as

k1 =
ω

c
sin(θ)cos(φ), k2 =

ω

c
sin(θ)sin(φ), (2.27)

k3 =
ω

c
cos(θ). (2.28)

Thus, the in-plane momentum k//= (k1, k2) of the incoming plane wave
interacts with the pseudo momentum of the structure represented by the
Fourier harmonics of the dielectric permittivity and the magnetic perme-
ability. As a consequence, owing to the Bloch’s theorem, the system re-
sponds by reflecting and transmitting the incoming field in Bragg’s diffrac-
tion orders that will be a natural basis to represent the fields outside the
structure. Bragg’s diffraction orders are described by the reciprocal lattice
vectors:

G =

(
2π

d1
m,

2π

d2
n

)
with m,n ∈ Z, (2.29)

K ≡ k//+ G. (2.30)

Let us define Kα,m = kα + Gα,m with Gα,m = 2π
dα
m.

The top and bottom half-spaces are homogeneous sub- and super-strate,
thus for every diffraction order of the reciprocal basis K, we can define one
propagation constant:

k
t/b
z,K =

√
ω2εt/bµt/b

c2
−K2, (2.31)
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2.3 Plane wave decomposition

where the superscript t/b refers to superstrate and substrate material prop-
erties.

Through the last equations, we have defined a basis of wave vectors

k
t/b
K =

(
K, k

t/b
z,K

)
for all K that corresponds to the plane wave basis:

ψ
t/b
K,±(r, k) = ei(K·r//±k

t/b
z,Kz). (2.32)

In the case of loss-less surrounding mediums, the propagation constants
defined in Eq. (2.31) are either purely real or imaginary. Modes owning
purely real propagation constants are loss-less and can propagate from- and
to- the far field. Purely imaginary propagation constants describe evanes-
cent fields exponentially decaying in the direction along which the mode
would propagate if its eigenvalue had a real part. The sign of the square
root in Eq. (2.31) is chosen to obtain forward decaying and propagating
fields for a positive x3 direction. In the case of complex wave vectors the
sign of the square root is chosen to match the sign of the corresponding
channel with a real propagation constant.

The Fourier reciprocal basis ensures the conservation of the in-plane
momentum of fields that propagate from the far field through the structure.
Thus, the tangential components of fields can be written in this reciprocal
basis and should remain unchanged on both sides of each interface to
fulfill the boundary conditions expressed within Maxwell’s equations. This
procedure is used in the Fourier Modal method and will be explained later.

The elements of the basis defined above are degenerated over two orthog-
onal polarizations. To distinguish these two polarization states, we have
to introduce a polarization basis. It could be the left and right-circular
polarization basis or any set of two orthogonal polarizations. In the cur-
rent document, we will choose the s- and p-polarizations as a basis. The
unit vectors of the Bragg’s diffraction order basis Eq. (2.32) are to be, for
the s-polarized light:

Ě
t/b
s,K,±(k) =

1

|K|

−K2

K1

0

 , (2.33)

Ȟ
t/b
s,K,±(k) =

1

|kt/bK ||K|

∓K1k
t/b
z,K

∓K2k
t/b
z,K

|K|2

 . (2.34)

Kα refers to the vector components Kαm associated to the in-plane
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momentum K. The unit vectors for the p-polarized fields are:

Ě
t/b
p,K,±(k) = ∓Ȟ

t/b
s,K,±(k), (2.35)

Ȟ
t/b
p,K,±(k) = ±Ě

t/b
s,K,±(k). (2.36)

Thus, the vectors of the plane-wave basis are written with three sub-
scripts, that describe the polarization state a ≡ s or p, the in-plane mo-
mentum in the reciprocal basis K and the forward or backward directions
of propagation + or −:

Ê
t/b
a,K,±(r, k) = N t/bĚ

t/b
a,K,±(k)ψ

t/b
K,±(r, k), (2.37)

Ĥ
t/b
a,K,±(r, k) =

N t/b

Zt/b
Ȟ
t/b
a,K,±(k)ψ

t/b
K,±(r, k), (2.38)

where Zt/b =
√
µt/b/εt/b is the optical impedance, and N is a normaliza-

tion constant.
Owing to the propagation directions of incoming and outgoing fields in

the top and bottom half spaces, we use Eqs. (2.33-2.38) to build the four
corresponding bases

O
t
a,K = F

t
a,K,−, I

t
a,K = F

t
a,K,+, (2.39)

O
b
a,K = F

b
a,K,+, O

b
a,K = F

b
a,K,−, (2.40)

where I and O are field supervectors built as F in Eq. (2.24), each field is
a function of r and k.

These four bases provide a precise description of the fields reflected and
transmitted by the structure. The incoming and outgoing field profiles
are scaled with the size of a single unit cell that is of the order of the
field wavelength. Thus, in such a small area, incoming fields might be
approximated by a single plane wave while near fields can exhibit more
complex spatial distributions. As a consequence, incoming fields often
contain one plane wave of the total basis while transmitted and reflected
fields are described as superposition of many plane waves.

2.4 Reciprocity principle

The previous section provides a non-exhaustive description of electromag-
netic fields outside a layered structure. In the following sections we will
study the relations and rules that fields obey at interfaces. To achieve this
goal we will formulate the reciprocity principle.
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2.4 Reciprocity principle

To preserve the clarity of the coming derivations, we introduce two vec-
tor functions BV and B∂ν . We define the new functions using the example
of two six-dimensional complex supervectors:

U =

(
UE

iUH

)
, & V =

(
VE

iVH

)
. (2.41)

The first function BV is mapping C6 × C6 → C and is expressed as a
volumetric integral over a finite volume V :

BV (U;V) =

∫
V

(UE ·VE −UH ·VH) dV. (2.42)

BV is linear and symmetric.
The second vector function is an integral over the surface ∂V enclosing

the volume V :

B∂ν(U;V) = i

∫
∂v

(UE ×VH −VE ×UH) · dS. (2.43)

The latter function is linear and anti-symmetric: B∂ν(U;V) =
−B∂ν(V;U). Owing to the properties of the curl operator and the Gauss’s
theorem, one can write:

B∂ν(U;V) = BV (V; D̂U)− BV (U; D̂V). (2.44)

In addition, applying the second vector function to the plane wave basis
vectors F̂, we find the orthogonality relation:

B∂ν(FR
a,K,+;Fa,K′,+) = B∂ν(FR

a,K,−;Fa,K′,−) = 0, (2.45)

B∂ν(FR
a,K,+;Fa,K′,−) = −B∂ν(FR

a,K,−;Fa,K′,+) = δKK′δa,a′ , (2.46)

where the super script R denotes the reciprocal conjugate. In the case of
incident plane waves, the reciprocal conjugate denotes plane waves with
opposite in-plane wave vector components. In the case of a resonant state,
the reciprocal conjugate refers to a resonance at the same energy but with
reciprocal boundary conditions.

Abiding by the orthogonality relation above, some calculus demonstrate
that N has to fulfill

N t/b =

√√√√i
Zt/bkt/b

2k
t/b
z,K

. (2.47)
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Let us study the reciprocity principle applied to a convex volume V , cho-
sen to be one unit cell of a periodic and layered medium (see Fig. 2.2). A
thorough description of the reciprocity principle comes through the emit-
ting properties of two sources A and B in the closed volume V . Each of
these sources is described by a supervector J and is radiating an electro-
magnetic field abiding by Maxwell’s equations

M̂(r; k)FA(r; k) = JA(r; k), (2.48)

M̂(r; k)FB(r; k) = JB(r; k). (2.49)

With some calculus it is possible to reach the relation:

BV (FB;JA)− BV (FA;JB) =

k
[
BV (FB; P̂FA)− BV (FA; P̂FB)

]
−
[
BV (FB; D̂FA)− BV (FA; D̂FB)

]
.

(2.50)
Furthermore, one can prove

k
[
BV (FB; P̂FA)− BV (FA; P̂FB)

]
= 0, if


ε = εT ;

µ = µT ;

ξ = −ζT .
(2.51)

The conditions written on the right hand side are often referred to as
the reciprocity conditions. Owing to these conditions, and the equation
(2.44), we can rewrite Eq. (2.52) as

B∂ν(FB;FA) = BV (FB;JA)− BV (FA;JB). (2.52)

As it is formulated above, the reciprocity equation provides two formu-
lations of a constant quantity that is nil if the two emitting currents are
inside the same closed volume. However, this equation becomes much more
useful in the situation where one source is located outside V and infinitely
far away. For instance, we take the example of a source A in a closed
volume V . Then, we express in the same volume the field FB shaped as a
plane wave that is radiated by another source B located outside V . Thus,
the reciprocity equation becomes:∮
∂ν

(Ea ×Hb −Eb ×Ha) · dS =

∫
ν

(Eb · Ja
E + Hb · Ja

H) dV 6= 0. (2.53)

In the case of an emission inside a layer containing a periodic arrange-
ment of nano-structures, the volume of integration is the volume of a
grating single unit cell. The integration of the fields over the sides of
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d1
d2

St

Sb

Figure 2.2: Example of a two-dimensional photonic crystal consisting of a
periodic arrangement of circular holes with periods d1 and d2 inside an arbitrary
material.

the unit cell is canceled due to the periodic boundary conditions. Thus,
the surface of integration will be the top and bottom interfaces of the
cell(∂ν ≡ St or Sb in Fig. 2.2).

As described by Eqs. (2.37 - 2.38), the fields FA emitted outside the
structure can be expanded in Floquet-Fourier series in the top and bottom
half space as:

FtA =
∑
K,a

αta,KF̂ta,K,−, (2.54)

FbA =
∑
K,a

αba,KF̂ba,K,+, (2.55)

where F denotes either E or H.
Owing to the Lorentz reciprocity principle and the orthogonality re-

lations in Eq. (2.46), we can calculate the coefficients αK through the
equation:

α
t/b
a,K = B∂ν

[(
I
t/b
a,K

)R

,F
t/b
A

]
. (2.56)

At the top interface, the field FB is written as the superposition of

an incoming plane wave It and its reflected part Ot. However F
t/b
A is a

purely outgoing wave and the surface integral B∂ν

[(
Ota,K

)R
,FtA

]
is nil as

expected from the Eq. (2.46). The equation (2.56) provides an efficient
method to calculate the radiated field outside a structure with the sole
knowledge of the field distribution at the interfaces, without knowing the
profile of the source current.

Nonetheless, in the situation where the distribution JA is known the
right hand side of Eq. (2.53) becomes useful:

α
t/b
a,K = BV

[
(FB)R

a,K,JA

]
. (2.57)
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The component (FB)R
a,K is the part of the incoming field

(
I
t/b
a,K

)R

that

propagates inside the structure.

Thus, we showed in this part how the reciprocity principle and the or-
thogonality relations Eqs. (2.45) and (2.46) provides efficient tools for the
calculation of a field emitted inside a closed volume.

2.5 Resonant states

One century ago, G. Mie demonstrated that the field scattered by a sphere
whose diameter is of the order of the incoming field wavelength can be
written in terms of spherical harmonics. The spherical harmonics being
resonant states of the studied spherical system, it leads later to the more
general idea of representing the field scattered inside an arbitrary system
as a superposition of its resonant states. This idea is formulated through
the pole expansion approach [45].

In general, a purely propagating field contains incoming and outgoing
parts, such a situation is described by Eq. (2.22) with a vanishing source
term J = 0. In this case, the homogeneous Maxwell’s equations possess
a discrete set of solutions for complex wavenumbers k satisfying purely
outgoing boundary conditions. These solutions are the resonant states of
the system obeying:

M̂(r; kn)Fn(r) = 0. (2.58)

Additionally, field distributions of resonant states have to be normalized
according to the following equation:

BV (FR
n ; (kP̂)′Fn) + B∂ν(FR

n ;F′n) = 1. (2.59)

As explained in the previous section the first term denotes an integral
over V as the volume of a unit cell and the second term denotes integrals
over the top and bottom interfaces of the same unit cell, in the case of
a periodic structure similar to the one depicted in Fig. 2.2. The prime
refers to the derivative of the corresponding quantities with respect to k
at kn. The first derivative is carried out for the product of kn times the
material tensors contained inside V . The second derivative is applied to
the analytic continuation of Fn in the complex k-plane.

In a scattering geometry described by a local material change, the
Maxwell’s operator M̂ in Eq. (2.22) can be split into two contributions:
the background operator M̂BG = kP̂BG − D̂, and the scattering contri-
bution ∆M̂ = k(P̂ − P̂BG). In addition, the field supervector can be
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a) b)

c) d)

Figure 2.3: In panels (a-d) are displayed exemplary resonant modes of a nano-
cylinder made of gold. We draw no detailed study of this system, hence we do not
need to focus on the dimensions of the structure. In the pole expansion approach
presented in this section, resonant modes are used as a basis to represent the
field scattered inside the structure as written Eq. (2.64).

expressed as the superposition of a background and a scattered field as
Ftot = FBG + Fscat. The background field fulfills:

M̂BG(r; k)FBG(r; k) = 0. (2.60)

The background field is the incoming excitation inducing the scatter-
ing inside the structure. On one hand, the background field propagates
through the system as if it was an homogeneous medium with the permit-
tivity of the background, i.e., the permittivity of the half space where the
excitation comes from. On the other hand, from Eqs. (2.22) and (2.60),
we can rewrite Maxwell’s equations for the scattered field as an emission
problem, where the source term is proportional to the background field:

M̂(r, k)Fscat(r, k) = −∆M̂(r, k)FBG(r, k)︸ ︷︷ ︸
≡Jscat(r,k)

. (2.61)

In the latter equation, the second term is equivalent to a source current
emitting the scattered field. Knowing the Green’s dyadic G(r, r′; k) of
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Eq. (2.22), we can calculate the scattered field as

Fscat(r; k) =

∫
V

dV ′Ĝ(r, r′; k)Jscat(r
′; k). (2.62)

Based on the Mittag-Leffler theorem, the Green’s dyadic can be ex-
panded in terms of the resonant poles [44, 46, 47]:

Ĝ(r, r′; k) =
∑
n

Fn(r)⊗ FR
n (r′)

k − kn
. (2.63)

Combining Eq. (2.63) with Eqs. (2.62) and (2.61), we thus can construct
the total field as

Ftot(r; k) = FBG(r; k)−
∑
n

Fn(r)

k − kn
In(k)︸ ︷︷ ︸

Fscat(r,k)

, (2.64)

In(k) = k BV

[
F
R
n (r); ∆M̂(r; k)FBG(r; k)

]
, (2.65)

where the block matrix ∆M, for a nonchiral material, contains only two
tensors ∆ε = εscat − εBG and ∆µ = µscat − µBG. The latter tensors are k
dependent 3× 3 tensors describing the difference of dielectric permittivity
and permeability between the background material distribution and the
scatterer. Additionally, we will not consider any bi-anisotropic materials
in the following chapters, thus ∆ζ and ∆ξ are nil. The superscript R
refers to the reciprocal conjugate of the electric and magnetic fields of the
resonant states [48, 49]. The reciprocal conjugates are evaluated at the
same resonant energies but for reciprocal boundary conditions. In this
approach of the pole expansion, the scattered field inside the structure
Fscat(r, k) is decomposed as a superposition of the resonant modes of the
system. Each resonance n contributes to the scattered field proportionally
to the coefficient In. The latter factor is the overlap integral between the
background field and the field at the resonance n. This overlap integral
indicates how efficiently the mode is excited by the incoming field. In the
end, the total field is the sum of the scattered field and the background
field. This approach is broadly used as a semi-analytical method to solve
Maxwell’s equations for a given system [48–56] henceforth referred to as
Mittag-Leffler expansion of the Green’s dyadic.

This new approach is in itself a significant improvement of numerical
methods. It can be implemented upon any numerical frequency solver
(Fourier modal method, finite differences, finite element method). It pro-
vides an accurate description of the electromagnetic field at any energy
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within an arbitrary spectral range by the only mean of very few calcula-
tions. Although, most methods fully solve Maxwell’s equations at any eval-
uated energies, the pole expansion requires only the full wave calculation
of field distributions at the resonant energies and two or three off-resonant
energies. The accuracy of this method is directly related to the efficiency
of the mode searcher. Finding all the resonant modes and their field dis-
tributions within the spectral range of interest is a necessary condition
to obtain accurate results. This numerical scheme allows the calculation
of hundreds of field distributions within a time scale of minutes that is
utterly fast compared to the traditional methods. However, the necessary
condition to fulfill can be difficult to satisfy in certain circumstances and
prevent the accurate evaluation of a certain type of phenomenon. Rayleigh
anomalies also called Wood anomalies that mark the energy at which the
first diffraction orders open is not modeled within the resonant state ex-
pansion. Such features are usually denoted by very sharp finger prints in
the transmission and reflectance spectra as well as the field distribution
inside the structure. Thus, the field can undergo swift changes while the
structure is excited at energies close to the anomaly. Driving numerical
calculations with the pole expansion approach near these features often
lead to large numerical errors.

Additionally, non-local optical properties of metallic nano-structures are
described within the so-called Hydrodynamic model. This model predicts
a shift of the plasmon resonances and the apparitions of so called Bennett
resonances [57, 58]. To describe nonlocal phenomena, the pole expansion
would require a mode solver that accounts for non-locality and can find
Bennett resonances.

Nonetheless, Mittag-Leffler series expansion does not need any solver in
the case where the resonant modes of a system can be calculated analyt-
ically. Eventually more complex structures can be modeled from analytic
results through approaches based on perturbations applied on the geome-
try of analytic systems [48, 56, 59].

2.6 The Fourier modal method

2.6.1 Basic principles of the Fourier modal method

In section (2.3), we derived a description of the fields reflected and trans-
mitted by a system of stacked periodic layers. In this section, we will
discuss the propagation of electromagnetic fields inside the structure. We
first have to choose a reciprocal basis in which we will decompose the
permittivity and permeability tensors and the fields. Then, we will solve
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Maxwell’s equations for each layer separately within the chosen reciprocal
space before connecting the fields of the different layers using boundary
conditions.

In the case of a periodic layer, it seems logic to use the Fourier reciprocal
space. Thus, owing to the Bloch theorem, fields can be decomposed in the
Fourier basis as

Fα(x1, x2, x3) =
∑
mn

Fα,mne
i(K1,mx

1+K2,nx
2). (2.66)

Here, Fα denotes the vector components of either Eα or Hα with α ∈
{1, 2, 3} and m n referring to a Fourier harmonic associated to the lattice
vector G as described in Eq. (2.29).

The interactions of the electric field with matter are described by the
constitutive equations (2.20) which yields in the Fourier reciprocal space:

Dβ
mn =

∑
m′n′

εβ,αmn,m′n′Eα,m′n′ , (2.67)

where εβ,αmn,m′n′ is the convolution tensor built out of the Fourier transfor-

mation of ε(x1, x2, x3) along x1 and x2:

εα,βmn,m′n′ =
1

d1d2

∫
S

ε(x1, x2, x3)e−i(K1,m−K1,m′ )x
1−i(K2,n−K2,n′ )x

2

dS.

(2.68)
In addition, we do not account for bi-anisotropic properties in this scheme,
thus ξ and ζ are nil.

The same decomposition can be derived for the second constitutive equa-
tion (2.21). To be exact the summation in Eq. (2.67) has to be infinite.
However, numerical derivations can only be computed for a finite num-
ber of harmonics. Let us consider an interface with a normal vector that
equals the contravariant basis vector eα. This means that Dα is normal to
the interface, while Eβ with β 6= α gives the two tangential electric field
components. The constitutive equation for Dα is as follows:

Dα = εααEα + εαβEβ , α 6= β. (2.69)

For brevity of notations, there is no sum convention over indices α in the
current section, and the sum convention over β runs only over indices
β 6= α. For all other indices, we maintain the standard sum convention
over all three components.

One method to Fourier transform the quantities of the aforementioned
equation in direction eα is to use the Laurent rule expressed as

[Dα]α = [εαα]α [Eα]α +
[
εαβ
]
α

[Eβ ]α , α 6= β, (2.70)
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2.6 The Fourier modal method

where the square brackets with the subscript α denote the Fourier trans-
formation in the direction eα. As in the publication of P. Lalanne [60],
we need to draw some observations on the representation of continuous
and discontinuous quantities in truncated reciprocal spaces. On one hand,
we assume that the Fourier transformation of a smooth and continuous
quantity does not contain high spatial-frequencies, the derivation of such
quantity in a truncated Fourier space do not induce a large error if the
Fourier space contains enough harmonics. On the other hand, the Fourier
transformation of discontinuous quantities always include an infinite sum
of harmonics with non vanishing amplitudes in the infinity, which implies
that the representation of such discontinuous quantities in a truncated
reciprocal space introduces an error in the derivation.

As a consequence, the Fourier transformation of Dα and Eβ in a trun-
cated Fourier space can be almost exact, while the Fourier transformation
of the dielectric permittivity components and Eα will introduce a much
larger error. In addition, it has been demonstrated by L. Li that the
Fourier transformation of the product of two quantities with concurrent
jump discontinuities cannot converge at the position of the discontinuities,
even in a reciprocal space with an infinite number of harmonics [30]. Thus
the Fourier transformation leading to the product [εαα]α [Eα]α has to be
avoided.

To overcome the above-mentioned issues, the Fourier transformations of
the material tensors have to abide by factorization rules. In the case of the
Fourier modal method, such rules have been very accurately formulated by
L. Li. Let us consider the same interface as above with the normal vector
eα. In a first step, we express the discontinuous component of the electric
field as a function of the other field components:

Eα = (εαα)−1Dα − (εαα)−1εαβEβ , α 6= β. (2.71)

In this equation, the product of the linear permittivity and the field com-
ponent Eα with a concurrent jump discontinuity has been removed, so
that we can Fourier transform Eq. (2.71) in the xα direction according to
Li’s factorization rules also called the inverse rule. In addition, the jump
discontinuities of (εαα)

−1
and (εαα)

−1
εαβ are smaller than the jumps of

εαα and εαβ , thus the error introduced by
[
(εαα)

−1
]

and
[
(εαα)

−1
εαβ
]

is smaller than the error of the truncated Fourier transform [εαα] and[
εαβ
]
. Finally, assuming that the Fourier transformation of the contin-

uous functions Dα and Eβ is almost exact, the main error in Eq. (2.71)

is introduced only by the truncation of (εαα)
−1

and (εαα)
−1
εαβ which

cannot be avoided and correspond to the error inherent to the truncation
of the Fourier transformation of the discontinuous function Eα.
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2 Theoretical approaches in nanophotonics

Let us denote this Fourier transformation by square brackets with sub-
script α and reorganize the terms in order to obtain the Fourier transform
of the electric displacement:

[Dα]α =[(εαα)−1]−1
α ([Eα]α + [(εαα)−1εαβ ]α[Eβ ]α). (2.72)

This simple derivation provides the accurate Fourier transformation of Dα

for eα being normal to the interface.

The Fourier transformation of the other two components Dβ in direction
xα can be found by substituting Eα in the constitutive equation for Dβ

by Eq. (2.71). Following the notation of Li [4], we can summarize the two
steps described above by defining an operator l+τ and its inverse l−τ , with

B ≡ l±τ A, Bρσ =


(Aττ )−1 , ρ = τ, σ = τ ;

(Aττ )−1Aτσ , ρ = τ, σ 6= τ ;

Aρτ (Aττ )−1 , ρ 6= τ, σ = τ ;

Aρσ ±Aρτ (Aττ )−1Aτσ , ρ 6= τ, σ 6= τ.

(2.73)

Thus, the correct application of the Fourier factorization rules to the per-
mittivity tensor yields

ε̃ = l+2 F2l
−
2 l

+
1 F1l

−
1 ε, (2.74)

where Fτ is the Fourier transformation in the direction τ .

Such formulation provides an accurate Fourier transformation of the
material tensors, and allows the convergence of the field toward correct
values at the position of interfaces.

While factorization rules allow to accurately describing products of func-
tions with concurrent jump discontinuities in a finite Fourier space, they
cannot overcome the Gibbs phenomenon in general. In particular, the
Fourier expansion of functions with discontinuities exhibits over- and un-
dershoots at the discontinuity that are at least 18 % of the jump height.
This means that the size of the finite Fourier basis in the Fourier modal
method needs to be large in order to achieve a convincing convergence
behavior in the case that the index contrast in the dielectric function is
large. This occurs, e.g., at interfaces between semiconductors and air, as
well as at interfaces between dielectrics and metals. Therefore, G. Granet
developed a new formulation of the Fourier modal method [31], in which he
implemented coordinate transformations such that the spatial resolution
near material interfaces is increased. The implementation of this adaptive
spatial resolution requires replacing the original permittivity tensor by a
redefined tensor that contains the discontinuous dielectric function times
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2.6 The Fourier modal method

the metric components of the coordinate transformation. Thus, the influ-
ence of the Gibbs phenomenon is drastically reduced, because the metric
components are close to zero near the jump discontinuities, providing a
smaller effective jump height in the adaptive coordinates.

However, the implementation of adaptive spatial resolution and factor-
ization rules is only straight-forward in cases, where all material interfaces
are aligned along the directions of periodicity [61, 62]. The application of
factorization rules in layers with complex cross sections requires finding
at least a decomposition of the fields into normal and tangential compo-
nents [63, 64]. In the covariant formulation of Maxwell’s equations, nor-
mal and tangential field components are directly provided by the contra-
and covariant field components in the case that all material interfaces are
aligned along surfaces of constant coordinates [32]. This requires find-
ing matched coordinate systems that are adapted to the geometry of in-
terest, which can be easily combined with adaptive spatial resolution in
order to achieve a fast convergence behavior even for metallo-dielectric
systems [32, 65, 66]. An example of coordinates with adaptive spatial
resolution matching a circular geometry can be seen in Fig. 2.4.

x

y

Figure 2.4: Example of a structure described within the corresponding matched
coordinates displayed in Fig. 2.1. Note that the matched coordinates include the
material interfaces as surfaces of constant coordinates with an increased spatial
resolution in their vicinity. The coordinate transformation is included in the
numerical calculations in the form of redefined permittivity and permeability.

The transformation of the material tensors and fields from uniform to
nonuniform coordinates is described in the definition of electromagnetic
quantities with general coordinates cf. Eqs. (2.8-2.10).

Let us solve Maxwell’s equation in an arbitrary layer of the structure.
By eliminating the E3 and H3 components from Maxwell’s equations, we
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obtain the matrix form of the equation of propagation
in the Fourier reciprocal space [4]:

− i∂3E(x3) = M̃E(x3). (2.75)

Here, E = (E1, E2, H1, H2)T denotes the supervector containing the
Fourier transform of the transverse field components. The matrix operator
M̃ is:

M̃ =


−µ̌23K2 −K1ε̌

31 µ̌23K1 −K1ε̌
32

µ̌13K2 −K1ε̌
31 −µ̌13K1 −K2ε̌

32

−k0ε̌
21 − (k0)−1K1µ̌

33K2 −k0ε̌
22 + (k0)−1K1µ̌

33K1

k0ε̌
11 − (k0)−1K2µ̌

33K2 k0ε̌
12 + (k0)−1K2ε̌

33K1

k0µ̌
21 + (k0)−1K1ε̌

33K2 k0µ̌
22 − (k0)−1K1ε̌

33K1

−k0µ̌
11 + (k0)−1K2ε̌

33K2 −k0µ̌
12 − (k0)−1K2ε̌

33K1

−ε̌23K2 −K1µ̌
31 ε̌23K1 −K1µ̌

32

ε̌3K2 −K2µ̌
31 ε̌13K1 −K2µ̌

32

 ,
(2.76)

where each quantity is evaluated in matched coordinates and the inverted
hat denotes the tensors ε̌ = l−3 ε̃ and µ̌ = l−3 µ̃ [4]. Furthermore, K1 and
K2 are diagonal matrices with diagonal elements Kα,m.

Most importantly, each layer is invariant along the stacking direction x3.
Thus, M is independent of x3, so that we can make the ansatz E(x3) =
Em exp(iγmx

3), which transforms Eq. (2.75) into the eigenvalue problem

γmEm = M̃Em, (2.77)

with eigenmodes Em that can propagate or decay with propagation con-
stant γm in the direction of x3. The eigenmodes form a basis, in which we
can expand arbitrary solutions of Maxwell’s equations inside that layer.
To each eigenmode is associated an eigenvalue and an eigenvector. The
eigenvalue is the propagation constant of the corresponding mode in the
direction x3. The whole set of eigenvectors can be combined to build a ma-
trix F . Though this matrix is usually called a material matrix, it behaves
mathematically as a base change matrix between the Fourier basis and the
eigenmode basis. This matrix will be used later to fulfill the continuity
equations at the interfaces between layers.

In the following, we split the full set of eigenmodes {Em} into subsets
{E±m} with eigenvalues γ±m. The superscript + or − denotes the sign of
the real part of γ±m (i.e., forward or backward propagation along the x3

direction) in the case that the imaginary part of γ±m vanishes. Otherwise,
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2.6 The Fourier modal method

sign(Imγ±m) = ±1 (i.e., forward or backward decay in the x3 direction).
Thus, an arbitrary field can be expanded inside a layer as

F(x1, x2, x3) =
∑
m

A+
mE+

m(x1, x2)eiγ
+
m(x3−x3

+) +A−mE−m(x1, x2)eiγ
−
m(x3−x3

−),

(2.78)
where A±m is the expansion coefficient calculated at positions x3

±. The
expansion coefficients A±m can be summarized as elements of supervectors
A±l as amplitude vectors for each layer l. The connection of the amplitude
vectors at top and at the bottom of an arbitrary layer l of thickness L is
given by the propagation matrix Pl(L) using the eigenvalues of this layer:

[
A+
l (L)

A−l (L)

]
=

(
eiΓ

+
l L 0

0 e−iΓ
−
l L

)
︸ ︷︷ ︸

Pl(L)

[
A+
l (0)

A−l (0)

]
. (2.79)

Pl(L) is constituted by blocks of sub-matrices defined by the matrix expo-
nentials of Γ±l , i.e., diagonal matrices containing the set of eigenvalues γm
of layer l.

In this paragraph we provided the method to solve Maxwell’s equations
in an arbitrary layer using the correct factorization rules and matched coor-
dinates. The downside of the application of matched coordinates is that it
requires solving homogeneous and isotropic layers numerically, even though
we know their analytical solutions in uniform coordinates. This additional
effort is usually compensated by the fast convergence of the results in lay-
ers with high index contrast, and it can be reduced by additional means
[67].

Finally, the procedure leads to the construction of the operator M̂ and
the definition of an eigenvalue problem whose solution provides a set of
eigenvectors that form an eigenmode basis. The projection of the Fourier
harmonics on this new basis is calculated using the material matrix and
then the propagation constants of the eigenmodes are calculated as the
eigenvalues of the problem. Thus, we finally were able to construct the
matrix Pl describing the propagation of an electromagnetic field through
the layer l in which Maxwell’s equations have been solved. The prop-
agation of an electromagnetic field through a full set of layers requires
the calculation of the propagation through the top and bottom interfaces
separating the different layers. For this purpose we will define and use
scattering matrices in the next paragraph.
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2.6.2 The scattering matrix formalism

The scattering matrix approach is a general formalism that provides the
relations between the incoming and outgoing fields of a system. In a modal
method, this system can be an interface, a layer or a system containing
several layers and interfaces. In the case of the latter, the propagation
through the layers and interfaces is calculated separately, and the results
are combined iteratively to obtain the scattering matrix of the multilayer.
This procedure is performed in three steps [3].

In the first step, we build the propagation matrix Pl(L) in layer l by
solving Maxwell’s equations in a chosen reciprocal space as explained in
the previous section [section (2.6.1)].

In the second step, we build the transfer matrix Il,l−1 of an interface
between the layer l − 1 and layer l using the boundary conditions of the
tangential field components. Owing to the properties of the eigenvectors
in the eigenmode basis, the material matrix Fl is the base change matrix
from the reciprocal basis to the eigenmode basis for the tangential compo-
nents of the fields. According to the boundary conditions, the transverse
components of the fields at the interfaces between layers are continuous.
As a consequence one can write:

EK,l = Fl
(

A+
l

A−l

)
, (2.80)(

A+
l

A−l

)
= F−1

l Fl−1︸ ︷︷ ︸
Il,l−1

(
A+
l−1

A−l−1

)
. (2.81)

Here Fl and Fl−1 are the material matrices of layers l and l−1, respectively.
The columns of these matrices are the eigenvectors of the corresponding
layers. EK,l is the supervector containing Floquet Fourier components of
the tangential fields.

In the last step, we use an iterative procedure to combine subsequently
the matrices of the interfaces between layers and the propagation inside
each layer. The iteration starts with a unit scattering matrix. At each
iteration, the correct scattering matrix is combined with a matrix Z that
is either an interface matrix Il,l−1 or an inverse propagation matrix Pl(−L),
with

Z ≡
(
Z++ Z+−

Z−+ Z−−

)
. (2.82)

The scattering matrix S and the transfer matrix Z are combined using
the operator ∗ and result in a new scattering matrix
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2.7 Derivation of resonant poles within the scattering matrix formalism

Z ∗ S =

[
−(W++)−1S++

S−+ − S−−Z−+ − (W++)−1S++

−(W++)−1W+−

S−−Z−− − S−−Z−+ − (W++)−1W+−

] , (2.83)

with:

Wαβ = Sα−Z−β − Zαβ . (2.84)

Where the superscript − do not refer to the inverted quantities but to the
second row or column of the block matrices as illustrated by Eq. (2.82).

Thus, the propagation of an electromagnetic field inside the structure,
from a position x3

l to a position x3
l′ through an arbitrary number of layer

is described as [3]:(
A+
l′

A−l

)
︸ ︷︷ ︸
≡Aout

l′,l′

=

(
S++
l′,l S+−

l′,l

S+−
l′,l S−−l′,l

)
︸ ︷︷ ︸

≡Sl′,l

(
A+
l

A−l′

)
︸ ︷︷ ︸
≡Ain

l′,l′

. (2.85)

This scheme is very general and can be applied to many modal meth-
ods. For instance one can chose the Legendre or Hermite polynomials as a
reciprocal basis, solve Maxwell’s equations and build an eigenmode basis.
Thus, the scattering matrices have to be built according to the computed
eigenvalues and boundary conditions. Although the field is decomposed in
the Floquet-Fourier basis outside the structure, it might be inconvenient
to solve Maxwell’s equations in a different reciprocal basis inside the struc-
ture. This can lead to a mismatch of the basis at the interfaces that result
in spurious oscillations at the top and bottom interfaces of the structure.

Thus, in this chapter we described within a consistent formalism the cal-
culation of the field inside and outside layered structures using the Fourier
modal method, the pole expansion approach and the reciprocity princi-
ple. In the next chapter we will see an alternative formulation of the pole
expansion approach, which provide an additional insight in this method.

2.7 Derivation of resonant poles within the
scattering matrix formalism

Resonant frequencies of a nanophotonic system are located within the
complex ω-plane. The real part of a pole frequency corresponds to the
frequency of an incident wave that can excite the corresponding resonant
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mode, the imaginary part of a pole frequency corresponds to half of its
line-width. Let us derive how the resonant poles of a structure are related
to its scattering matrix and how we find these poles in the complex plane.

We saw in the previous section how the propagation of electromagnetic
waves in layered system is described using scattering matrices. Deriving
and combining the scattering matrices of every layers and interfaces of a
structure provides the scattering matrix of the whole structure. The lat-
ter expresses the scattered (outgoing) amplitudes in the top and bottom
half-spaces as a function of the incoming amplitudes from the same regions
as in Eq.(2.85). Let us rewrite the latter equation with a slightly differ-
ent formalism to name explicitly the incoming and scattered amplitude
vectors: (

Ab
out

At
out

)
= S

(
At

in

Ab
in

)
, (2.86)

where S is the scattering matrix of an arbitrary structure, Ain and Aout

denote the incoming and scattered amplitudes and the superscripts t and
b denote the fields located in the top and bottom half spaces.

From Eq.(2.87) one can derive:

S−1

(
Ab

out

At
out

)
=

(
At

in

Ab
in

)
. (2.87)

The kernel of the operator [S−1(ω)] refers to the solution of Eq.(2.87) for
a right hand side equal to zero. It provides the solutions of Maxwell’s
equations describing a field scattered by the structure in the absence of
an incoming field. Solutions of Maxwell’s equations with such property
correspond to resonant states of the structure. The resonant frequencies
satisfying this conditions will be written ωm.

As it has been demonstrated in the last years [45], the scattering matrix
of a structure excited at the frequency ω can be written:

S(ω) = SBG(ω) +

M∑
m=1

Bm
ω − ωm

. (2.88)

SBG denotes a smooth background contribution, and M the number of
resonant poles considered in the derivation. Bm is the residue of the scat-
ting matrix at the frequency ωm. As a more suitable representation for
the residue, we might refer to the more general formula [68, 69]:

S(ω) = SBG(ω) +

M∑
m=1

LmRm
ω − ωm

, (2.89)
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where Lm and Rm correspond to the rank factorization of Bm. Then, the
latter equation can be written using block matrices as

S(ω) = SBG(ω) + L(ωI − Ω)−1R. (2.90)

Ω is a diagonal matrix containing the resonant frequencies ωm, I is the
identity matrix and L and R are built using Lm and Rm. Thus, the
dimension of the scattering matrix should be larger than the number of
resonant poles considered dim(S) ≥ dim(Ω). Finally, one can derive the
derivative of Eq.(2.90) with respect to ω:

S′(ω) ≈ −L(ωI − Ω)−2R. (2.91)

We assume that the background term is very slowly varying as a function of
ω and its derivative is neglected. Then, in the case where dim(S) = dim(Ω)
one can multiply Eq.(2.90) with the inverse of Eq.(2.91) that provides the
eigenvalue equation:

[S′(ω)]−1S(ω) = R−1(ωI − Ω)R. (2.92)

In the latter equation, another occurrence of the background term is ne-
glected that is acceptable in the cases where omega is sufficiently close to
a resonant pole so that the background contribution becomes negligible.
Thus, ωI − Ω and the column vectors of R are eigenvalues and eigenvec-
tors respectively of [S′(ω)]−1S(ω). Thus, deriving S and S′ at the guess
frequency ω0, one can derive the eigenvalues ω0 − ω1 of Eq.(2.92), where
ω1 is closer to a resonant mode than ω0. Then, using ω1 as the next guess
value to derive S and S′ one can proceed iteratively until the eigenvalue of
Eq.(2.92) becomes small enough to consider that the guess value converged
to the frequency of a resonance.

In a more general case where dim(S) > dim(Ω), assuming that S′ has
not full rank or at least that some singular values are close to zero, then
one can derive the singular value decomposition

S′ = UΣV †. (2.93)

Σ is the diagonal matrix containing the singular values, U and V are
unitary matrices. As explained in [69], one can remove the singular values
of Σ that are below a certain threshold and the corresponding columns
in U and V . The resulting matrices are called Ur, Σr and Vr. Thus, we
obtain the equation:

(ωI − Ω)v = Σ−1
r U†rSVrv. (2.94)

Using the same iterative procedure as for Eq.(2.91), it is possible to build
a routine that converges to the resonant poles of S.
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3 Mittag Leffler expansion of
electromagnetic fields

The history of science shows that theories are perishable. With
every new truth that is revealed we get a better understanding
of Nature and our conceptions and views are modified.

Nikola Tesla (1856-1943)
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3.1 A new pole expansion

3.1.1 The Mittag-Leffler expansion

In this section we will provide the derivation and assumptions behind the
Mittag-Leffler expansion. This derivation is rarely given in textbooks and
an interested reader needs the following details to understand the more
general scheme behind the pole expansion. Within this picture we will see
that the Green’s dyadic is not the only quantity that can be expanded in
Mittag-Leffler series. Thus, we will study the requirements under which
one might build the series expansion of arbitrary physical quantities, the
bias and challenges behind such mathematics.

A thorough description of the Mittag-Leffler expansion is based on few
mathematical theorems from complex analysis that I will remind shortly.
Consider U a subset of the complex plane C, D is a compact subspace of
U simply connected and γ the positively oriented curve enclosing D.

Theorem 3.1: Residue theorem. —
Let f(ξ) be analytic in (D\{w1, w2, ...wn}), where D contains the singular
points wi. Then,

1

2iπ

∫
γ

f(w)dw =

n∑
i=1

Res(f, wi). (3.1)

Using the generalized Cauchy integral formula it is possible to calculate
the Laurent coefficient of a function f at a pole of order n higher than one,
a textbook would provide the following formula:

LC(f, z0) = lim
z→z0

{
dn−1

dzn−1
[(z − z0)nf(z)]

1

(n− 1)!

}
. (3.2)

Theorem 3.2: Mittag-Leffler theorem (1876). —
Let {an}∞n=1 be a sequence of distinct complex numbers, |a1| < |a2| < ...
with lim

n→∞ |an| = ∞. Let gn(z) be a sequence of rational functions of the
form:

gn(z) =

ln∑
k=1

cnk
(z − an)k

, (3.3)

where ln is a finite entire number and an is the unique pole of the cor-
responding function gn(z). Then there are meromorphic functions f(z)
in the complex z plane C having poles at an, and only there, with given
principal parts gn(z) of the Laurent series corresponding to the points an
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and the associated Laurent coefficient cnk. All these functions f(z) are
representable in the form of a Mittag-Leffler expansion

f(z) = hm(z) +
∞∑
n=1

[gn(z) + pn(z)] , (3.4)

where pn(z) is a polynomial chosen in dependence of an and gn(z) so that
the series expansion is uniformly convergent on any compact set D ⊂ C

and hm(z) is an arbitrary function analytic in C.

Few versions of this theorem have been formulated by Mittag-Leffler
through the years, thus the year of the theorem mentioned above has been
indicated.

The formulation of the Mittag-Leffler theorem can be rather disturbing,
it is an existence theorem and hence the logic of its statement is inverted.
The content can be summed-up into two points:

� for an arbitrary set of points in the complex plane {an}∞n=1, we can
build functions that admit these points as poles

� the latter functions can be expanded in Mittag-Leffler series, which
will have the form of Eq. (3.4).

Though the first statement is not of much interest in this study, the second
statement is the core of the following demonstration.

Consider a holomorphic function f on (D\{a1, a2, ...an}), containing
the simple poles {a1, a2, ...an} associated to the corresponding residues
{b1, b2, ...bn}. According to the Mittag-Leffler theorem this function can
be expressed as

f(z) = hm(z) +

∞∑
n=1

[
bn

z − an
+ pn(z)

]
, (3.5)

where the complex values bn are the residues of f at each pole an. To build
the series expansion of f , Pn(z) and hm(z) have to be expressed relatively
to 1/(z − an) such that the sum in Eq. (3.5) converges.

Let us build the function hm(z) and the polynomial Pn(z) for a function
with simple poles. Choose a sequence of circles Cn of radius Rn centered
around the origin such that the contour does not pass through the singular
points and f(z) is bounded on Cn. The radius Rn grows toward infinity
as n→∞. Then let us integrate around Cn the equality:

f(z)

z − x
= f(z)

[(x
z

)m 1

z − x
+

m−1∑
p=0

xp

zp+1

]
. (3.6)
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The integral of the latter equation along the circle Cn is be calculated
with the residue theorem. The integral of the left side of Eq. (3.6) along
Cn yields

1

2iπ

∫
Cn

f(z)

z − x
dz =

n∑
r=1

br
ar − x

+ f(x). (3.7)

The right side of Eq. (3.6) carry the factor f(z)(x/z)m that has a pole
of order m in z = 0. Thus, the Laurent coefficient of f at this pole is
calculated with Eq. (3.2) and the integral of the right side of Eq. (3.6)
follows:

1

2iπ

∫
Cn

f(z)

z − x
dz =

m−1∑
p=0

{
xp

2iπ

[
1

p!

dpf(z)

dzp

∣∣∣∣
z=0

+

n∑
r=1

br

ap+1
r

]}
(3.8)

+
xn

2iπ

∫
Cn

f(z)

zn(z − x)
dz. (3.9)

According to the Mittag-Leffler theorem, as the radius of integration Rn
increases, the last term of the above equation should converge to zero:

lim
n→∞

 xn

2iπ

∫
Cn

f(z)

zn(z − x)
dz

 = 0. (3.10)

Thus, using Eq. (3.7) and Eq. (3.8) we prove that a complex func-
tion f(z) that is analytic except for a countable number of poles an with
residues bn and that obeys the asymptotic behavior lim

z→∞ f(z)/zp = 0 can
be expanded as

f(z) =

p−1∑
m=0

zm

[
f (m)(0)

m!
+
∑
n

bn

am+1
n

]
+
∑
n

bn
(z − an)

, (3.11)

where f (m)(0) denotes the mth order derivative of f at z = 0. Other
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formulations of the pth order Mittag-Leffler expansion are [70]

f(z) =

p−1∑
m=0

zm
f (m)(0)

m!︸ ︷︷ ︸
hm(z)

+
∑
n

[
bn

(z − an)

zp

ap+1
n

]
, (3.12)

f(z) =

p−1∑
m=0

zm
f (m)(0)

m!︸ ︷︷ ︸
hm(z)

+
∑
n

 bn
(z − an)

+

p−1∑
m=0

zmbn

am+1
n︸ ︷︷ ︸

Pn(z)

 . (3.13)

For instance, the zeroth-order Mittag-Leffler expansion yields

f(z) =
∑
n

bn
(z − an)

, (3.14)

while we obtain for the first-order Mittag-Leffler expansion:

f(z) = f(0) +
∑
n

bn
(z − an)

z

an
= f(0) +

∑
n

bn

(
1

an
+

1

z − an

)
. (3.15)

In both cases, a rather simple pole contribution as a sum over bn/(z− an)
arises, with a nontrivial background hm = f(0) and a polynomial pn =∑
n bn/an for the first-order Mittag-Leffler expansion. That means that

for any order p, we obtain a pole contribution of the form
∑
n
bn/(z −

an), accompanied by a polynomial of order p − 1 and p − 1 background
terms. According to Eq. (3.10), if the pth order Mittag-Leffler expansion
is applicable, an expansion of order p′ with p′ > p is possible, too. From
the uniqueness of the Mittag-Leffler expansion, we infer the sum relations
of the form ∑

n

bn

am+1
n

= −f
(m)(0)

m!
, (3.16)

which holds for any order m larger than p.
In principle, the sum relations in Eq. (3.11) can be used in order to

estimate the accuracy of a series expansion using only a finite set of poles.
In the same context, it should be noted that a finite number of poles in
the expansion results in an error that can be compensated locally by a
polynomial correction. Indeed assuming that f(z) can be calculated with
both, a time consuming but exact method and an incomplete pole expan-
sion, it is possible to calculate an error correction for the pole expansion at
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3.1 A new pole expansion

few position z. Thus, the error correction can be interpolated and added
to the pole expansion as a background term. This procedure is a fit of a
correction term between the exact value of f(z) and its pole expansion.
It has a very low numerical cost that is of high interest to calculate so-
lutions of Maxwell’s equations inside resonant systems. In the end, it is
possible to use a higher order expansion without analytically deriving the
background terms that are fitted during the error correction. In this sit-
uation, the fit procedure will return an error correction containing both
background terms and eventually the contribution of distant poles that
were not considered during the expansion. In that case, the background
and the distant pole’s contributions are fitted at once and thus they are
not distinguishable anymore.

3.1.2 General formulation

In the pole expansion of the Green’s dyadic described in Chapter 2, the
field inside the structure is split in background and scattered parts. The
background field is equal to the incoming plane wave propagating through
the structure as if it was a medium with the same refractive index as
the upper or lower half space where the plane wave comes from. The
scattered field is calculated multiplying the Mittag-Leffler expansion of
Green’s dyadic with the term ∆M̂ and the background field. Then it is
summed to the background contribution, to retrieve the total internal field.
However, the Mittag-Leffler theorem can be used for the expansion of other
quantities than the Green’s dyadic, such as optical scattering matrices [45].
In this chapter, we will focus on the Mittag-Leffler expansion of the whole
total field inside a structure, without distinction between background and
scattered fields. In the case that the background field is free of poles,
according to Eq. (3.11) the pth-order Mittag-Leffler expansion of the total
field yields

Ftot(r; k) =
p−1∑
m=0

[
1
m!

∂Ftot

∂k (r; 0) +
∑
n

Fn(r)

km+1
n

In(kn)

]
km

+
∑
n

Fn(r)
(k−kn)In(kn),

(3.17)

where
In(k) = kBV

[
F
R
n (r); ∆M̂(r; k)FBG(r; k)

]
. (3.18)

Though in the Green’s dyadic expansion Eq (2.63) the overlap integral
expressed Eq. (2.65) has to be calculated at every wavenumber k, the
Mittag-Leffler expansion of the total fields requires only the calculation of
the overlap integral at the wavenumbers kn of the resonant modes. Thus,
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the calculation of the field expansion is faster and does not account for
a background field explicitly. However, ”background like” constant terms
arise for the series expansion of the total field at orders higher than 0. In
the end, the higher is the order of the expansion, the more complex is the
term hm(z) whose components draw a picture more and more accurate of
the function.

In the last years the same simplification has been developed for the
Mittag-Leffler expansion of optical scattering matrices. The first step has
been the formulation of a series expansion of scattering matrices with k-
dependent overlap integrals [71]. Then, another form of this pole expansion
arose based on k-independent overlap integrals [45]. Nonetheless, this
simplification often leads to the calculation of more complex background
terms.

Only the field inside the structure can be rigorously decomposed over
the basis of resonant poles since resonance field-distributions exponentially
grow in the exterior of the system. However, methods have been developed
to regularize the resonant fields outside the structure [72]. Other methods
based on the calculation of the scattering matrix coefficient provide the
pole expansion of the reflected and transmitted fields [45]. Finally, using
the orthogonality relations given by Eqs. (2.45)and (2.46) in addition to the
reciprocity principle expressed in Eq. (2.56), one can calculate the trans-
mitted and reflected fields from the internal field at the top and bottom
interfaces. This method will be used in the following numerical example
to compute the complete near field inside and outside nanostructures.

3.2 Numerical results

3.2.1 Dielectric slab

The first example is a planar isotropic and homogeneous dielectric slab
of thickness h. In this structure, most of the optical properties can be
evaluated analytically that will allow a rigorous calculation of relative er-
rors. Let us assume a plane wave incoming from the top half space above
the slab with normal incidence. The incoming electric field is parallel to
the top interface of the dielectric with an arbitrary azimuthal direction.
We choose a coordinate system with the axis x aligned along the direc-
tion of the incoming electric field Etot = Etot x. The reflection and the
transmission Fresnel coefficients ρ and τ , between a surrounding medium
of refractive index n1 and the dielectric material of refractive index n2 are
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3.2 Numerical results

at normal incidence:

ρ = (n1 − n2)/(n1 + n2), (3.19)

τ = 2n1/(n1 + n2). (3.20)

The origin of the coordinate system is centered inside the dielectric slab
such that the refractive index is n2 for z ∈ [−h/2, h/2] and n1 otherwise.
Few analytic derivations lead to the expression of fields inside and outside
the structure:

Etot(z; k) =



(
eikn1(z+h/2) − r(k)e−ikn1(z+h/2)

)
eiφE0 ≡ Etop,

τ
eikn2(z−h/2) − ρe−ikn2(z−3h/2)

1− (ρ2e2ikn2h)
eiφE0 ≡ Eint,

t(k)eikn1(z−h/2)eiφE0 ≡ Ebot,

(3.21a)

(3.21b)

(3.21c)

where Etop, Eint and Ebot are defined on the intervals: z ≤ −h/2;
z ∈ [−h/2, h/2] and z ≥ h/2, respectively. E0 is the amplitude of the
incidence plane wave and φ is the phase of the incoming electric field at
the top interface of the slab. The coefficients r and t are the reflectance
and transmittance of the dielectric slab:

r = ρ(e2in2kh − 1)/(1− ρ2e2in2kh), (3.22)

t = τ2n2

n1
eikn2h/(1− ρ2e2in2kh). (3.23)

From the poles of the field defined in Eq. (3.21b), we can derive the wave
number and field distribution of the resonant states inside the slab as:

kn =
nπ + i ln(|ρ|)

2h
, n ∈ Z, (3.24)

En(z; kn) =
(−i)n

2n2

√
h

[
eiknn2z + (−1)ne−iknn2z

]
. (3.25)

For the Mittag-Leffler expansion of the total field, we need to investigate
the asymptotic behavior of the field inside the slab. We need to distinguish
two cases:

lim
k→∞ |Ex,tot(z; k)| =


2n1

|n1 − n2|
, for z = ztop;

0, otherwise.

(3.26a)

(3.26b)

The total field converges to a constant value at the position of the top
interface, so that we have to use a first-order Mittag-Leffler expansion. The
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total field inside the structure is calculated using Eq. (3.17) and Etot(z; k =
0) = 1, thus the overlap integral yields:

In(k) = (−i)nik∆ε
√
h

2n2
eikn1h/2

{
sinc

[
h
2 (knn2 + kn1)

]
+(−1)nsinc

[
h
2 (knn2 − kn1)

]}
.

(3.27)

In the case of the pole expansion of the total field, k = kn, and the
overlap integral can be further simplified as

In(kn) = (i)nτ

2i
√
h
eikn1h/2. (3.28)

In addition, assuming

EBG(z; k) = exp[ikn1(z + h/2)], (3.29)

we can combine Eq (3.27) with Eq. (2.64) to calculate the total field using
the Mittag-Leffler expansion of the Green’s dyadic.

3.2.2 Convergence of pole expansion approaches

Let us illustrate the analytic results derived in the previous paragraphs.
Consider a slab 1 µm thick, made of GaAs (n2 = 3.5) and surrounded by
air illustrated in Fig. 3.1. The incoming plane wave has a normal incidence
with a wave vector oriented along z as displayed in the top right corner
of the picture. The excited modes of this structure are the Fabry Perot
modes corresponding to the maximum of transmittance in the spectra in
Fig. 3.1. According to Eq. (3.24), these modes occur at energies with the
rounded value 177.1n − 33.1i meV where n is an integer number. The
Fabry Perot resonances own identical imaginary parts represented by red
crosses in the complex plane illustrated in the lower panel of Fig. 3.1.
Identical imaginary parts denote modes of the same linewidth as it can be
observed in the spectra. The profiles of the first four Fabry Perot modes
are illustrated on the edge of the slab in the same figure.

A map of the electric field induced inside and outside the slab by a top
incoming plane wave is calculated analytically and displayed Fig. 3.2 in the
panel (a). The ordinates axis denotes the position along z in the slab, while
the abscissa refers to the energy in meV. The top and bottom interfaces
of the dielectric slab are marked with two horizontal black dashed lines.
The red dashed line indicates at which energy is calculated the field in the
panels below, which is 650 meV.

In Panel (b) is displayed the electric field inside the slab calculated with
the zeroth-order pole expansion of the field, the first order pole expansion
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X

YZ

K

E

h

Figure 3.1: Schematic of homogeneous slab. The top panel displays transmit-
tance spectra for a GaAs slab of thickness h = 1 µm and a refractive index of
3.5 in air at normal incidence. Below the spectra, we depict the complex energy
plane, with each resonant state corresponding to a pole marked by a red cross.

of the field and the Green’s dyadic pole expansion, respectively, from right
to left. The pole expansion of the field displayed in each row is calculated
with an increasing number of poles from top to bottom. For each Mittag-
Leffler expansion, we account for poles whose energy real part can be
positive, nil or negative. Since the poles are located symmetrically around
the imaginary axis of the complex plane with identical imaginary parts,
we consider one resonant energy with negative real part for each resonant
energy with a positive real part. In addition we account for a pole with a
real part equal to zero. Thus, in each row, taking into account 9, 17 and
33 poles correspond to the calculation of 4, 8 and 16 poles with a positive
real energy and in addition, the same number of virtual poles owning a
negative real energy and one pole with nil real energy.

Owing to the asymptotic behavior of the electric field at the top inter-
face expressed in Eq. (3.26a) and Eq. (3.26b), the field expansion at this
position requires a Mittag-Leffler expansion of order one or higher. As a
consequence, we observe in Fig. 3.2 (b) that the result computed using the
zeroth-order field expansion is incorrect at the top interface. Moreover,
even though we increase the number of poles in the calculations displayed
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Figure 3.2: (a) Real part of the electric field displayed inside the dielectric
slab (from -0.5 to 0.5 µm) and outside, for a top incoming plane wave at normal
incidence. (b) Real part of the electric field displayed as a function of the z
coordinate at an energy of 650 meV [denoted by the red dashed line in panel
(a)]. In each panel, the analytic result is displayed as a black dashed line. From
top to bottom, the number of physical poles in each expansion is 9, 17 and, 33.
In the columns, the pole expansion of the field has been calculated using the
Mittag-Leffler expansion of the Green’s dyadic (left) as well as the first (middle)
and zeroth-order (right) expansion of the total field.
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in the lower part of the figure, the zeroth-order field expansion does not
converge to the right value at the top interface. The error manifests itself
through spurious field oscillations along z. The amplitude of the oscilla-
tion increases while getting closer to the top and bottom interfaces. In
addition, the frequency of these oscillations appears to be the energy of
the pole chosen for the truncation of the expansion. We will investigate
these spurious oscillations in the next figure panel (b).
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Figure 3.3: (a) Absolute error of the electric field in logarithmic scale when
using 33 resonant states as basis for zeroth (red dashed line) and first-order
(blue solid line) expansion of the field as well as the expansion of the Green’s
dyadic (green solid line). (b) Normalized Fourier transform of the absolute error
of electric fields in dependence of the spatial frequencies. The relative error for
the higher frequency components becomes dominant except for the approach
based on the expansion of the Green’s dyadic. (c) Evolution of the L2 error as
a function of the number of resonant states used for each of the three methods.

In Fig. (3.3), we produce a detailed analysis of the analytic error owned
by each method at an energy of 650 meV. In panel (a) is displayed the
logarithm of the absolute error of the field, calculated as a function of the
position z. We observe that the error pattern exhibited by the Mittag-
Leffler expansion of the field is asymmetric, as discussed, the reason is
that the asymptotic behavior of the field inside the structure is asymmetric
and so is the derived error. A similar calculation in the case of a dielectric
slab excited from top and bottom half spaces with same incidence and
characteristics would provide a symmetric asymptotic behavior at the top
and bottom interfaces. Consequently, the field expansion in such situations
would lead to an almost symmetric error pattern. The asymptotic behavior
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3 Mittag Leffler expansion of electromagnetic fields

of the Green’s dyadic does not suffer from such asymmetry and the error
exhibited by the corresponding calculation is less asymmetric, yet, not
completely symmetric neither, due to the fact that the total field itself is
not symmetric at 650 meV.

The panel (b) in Fig. (3.3) displays the Fourier transformation of the
absolute error divided by the Fourier transform of the analytic result.
Thus, the panel displays a relative error of the field in Fourier space, which
seems relevant considering the spurious oscillation observed in Fig. 3.2.
The relative error grows until a cut off frequency is reached. It appears
that it is the frequency of the truncation pole, i.e., the pole of higher energy
considered in the pole expansion. In addition, this energy corresponds
to the frequency of the spurious oscillations observed earlier. It seems
rather logic to assume that the spatial resolution of the field in the z
direction is limited by the inverse of the frequency of the pole of higher
energy considered for the expansion. This holds in the situation where
we do not fit any background contribution. In the situation of a fitted
background, the fit procedure will also take into account the contribution
of distant poles in the spectra and the limitation over the spatial resolution
will be lifted. Finally, the presence of pure background terms reduces
the amplitude of the spurious oscillations without completely suppressing
them. Indeed, the spurious oscillations do not hamper so heavily the
higher-order field expansions or the series expansion of the Green’s dyadic.
This behavior has a mathematics origin. In Eq. (3.12) one can observe
for a fixed position z close to a pole an in the complex plane that the
higher is the order of the expansion p the lower is the contribution of the
pole. This phenomenon is balanced by the occurrence of more and more
background terms in the function hm(z). While the calculation of the
Mittag-Leffler expansion always assumes a small error due to the finite
number of poles, the evaluation of the background term requires exact
values. Thus, the higher is the order of the pole expansion the closer we are
from an analytic or fitted calculation of the expanded function. Though the
error of the result computed with field expansion stabilizes to a constant
value at higher frequencies in panel (b), the relative error of the result
from the Green’s dyadic expansion decreases for higher frequencies. The
background term of the Green’s dyadic expansion is a sinusoidal function,
thus it carries more information than the background term of the field
expansion that is just 1. The latter argument could be a reason why the
Green’s dyadic expansion is more accurate.

In panel (c) we integrate the absolute error of each method over the
thickness of the dielectric slab to obtain an overall L2 error for each method
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as a function of the number of considered poles. The L2 error is defined as

||fapprox − fref ||2 =

∫
dz|fapprox(z)− fref(z)|2 (3.30)

The L2 error is higher for the field expansion than for the Green’s dyadic
series expansion. The zeroth-order field expansion does not converge to a
low error due to the incorrect field calculation at the top interface that does
not vanish. Thus, the Mittag-Leffler expansion of the Green’s dyadic has
the fastest convergence pattern even though the first order field expansion
exhibit an error of the same order, accounting for the same number of
poles.

3.2.3 Reflectance and transmittance expansion

It is relevant to emphasize that the previous derivations can be extended
and prove to be fully consistent with the models developed in a broader
context for the calculation of the transmittance and reflection based on
the series expansion of scattering matrices [45]. In the previous paragraph
we have derived the total field inside and outside a dielectric slab, thus
owing to the reciprocity principle Eq. (2.56), we can express the reflection
and transmittance of the dielectric slab as

r = αts,0 = B∂ν

[
I
t
a,0(r; k);Fttot(r; k)

]
, (3.31)

t = αbs,0 = B∂ν

[
I
b
a,0(r; k);Fbtot(r; k)

]
, (3.32)

where F
t/b
tot is the value of the total field derived with Eq. (3.17) at the

top and bottom interfaces. a denotes the polarization, and 0 refers to the
zeroth diffraction order considered for a normal incidence.

To ensure unitary orthogonality relations in the form of Eqs. (2.45) and
(2.46) at normal incidence in a surrounding material with an optical index
n1 = 1, the super vectors It/b(r; k) have to be normalized with the constant
N t/b =

√
i/2. Then the equations (2.56), (3.17), (3.25) and (3.28) lead to

the first-order Mittag-Leffler expansion of r and t

r =
in1(1 + n1)

h(n2
1 − n2

2)

∑
n

(
1

kn
+

1

k − kn

)
, (3.33)

t =
i(−1)nn1(1 + n1)

h(n2
1 − n2

2)

∑
n

(
1

k − kn

)
. (3.34)

These expressions exhibits residues rigorously equal to the residues ob-
tained in the Mittag-Leffler expansion of scattering matrices [45].
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For instance let us pursue the calculation of the latter numerical exam-
ple. We assume a 1 µm thick dielectric slab of refractive index n2 = 2.5
under normal incidence in a surrounding material of index n1 = 1.
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Figure 3.4: Transmittance and reflection of a dielectric slab calculated using
the reciprocity principle on the fields Fig. 3.2 that has been obtained whether
with the Mittag-Leffler expansion of the Green’s dyadic (a,b) or the expansion of
the total field (c,d). The reciprocity principle has been applied on the different
pole expansion for different truncation order, 8 poles with positive real parts in
the first row and 16 in the second row.

The transmittance and reflection of the structure have been computed
applying the reciprocity principle to the internal fields calculated with
the k-dependent and -independent series expansions. In Fig (3.4), the
coefficients in the left and right columns have been calculated using the
Green’s dyadic Mittag-Leffler expansion and the field first-order expansion,
respectively. The results have been calculated with 17 and 33 poles in the
top and bottom rows. In figures 3.2 and 3.3, we studied the convergence
of the field at a fixed energy for an increasing number of poles. In Fig. 3.4,
it becomes obvious that the energy range of the calculations is also limited
by the number of poles considered. It has been shown in Fig 3.3 that
even though the expansion of the Green’s dyadic provides the best overall
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accuracy, the field expansion at the bottom interface provides locally the
best result. Thus, on one hand the transmittance calculated applying
the reciprocity principle to the field expansion at the bottom interface is
more accurate than the result obtained with the Green’s dyadic expansion.
On the other hand, the Green’s dyadic expansion provides better results
for the calculation of the reflection coefficients. Since the zeroth-order
field expansion provides an incorrect value of the electric field at the top
interface, no coefficient has been displayed for this method.

The previous calculations on the dielectric slab provide an intuitive ap-
proach to the pole expansion and the different convergence behavior ob-
tained with different number of poles. We discussed in the first part of
this chapter that a higher order Mittag-Leffler expansion is equivalent to a
zeroth order expansion with a higher-order fitted background-correction.
However, fitted background terms are not necessary in the case of the di-
electric slab because all the resonant modes can be found and the electric
fields belonging to the background and resonant modes can be calculated
analytically. Nonetheless, fitting procedures provide a powerful tool for
more complex structures such as the gratings studied in the next para-
graphs.

3.2.4 Efficiency of the method applied to periodic
structures

The next numerical example is a one-dimensional dielectric grating with
a periodicity of dx = 0.8 µm, a width of w = 0.53 µm, and a thickness of
h = 0.1 µm displayed in Fig. 3.5. The structure is made of ZnSe with a re-
fractive index of 2.6 surrounded by air. We consider a s-polarized incident
plane wave with in-plane wave vectors kx = 0.5 µm−1 and ky = 0.7 µm−1.
Using the Green’s dyadic Mittag-Leffler expansion, the field’s first-order
expansion, and the Fourier modal method, we compute the fields gener-
ated by incoming plane waves of energies from 1700 meV to 2400 meV.
The results computed with the Fourier modal method involve the deriva-
tion of the solution of Maxwell’s equations at each frequency, thus it will
be considered as a reference. All the full wave calculations of the Fourier
modal method and the field distributions at the resonances are computed
using 51 Fourier harmonics in the reciprocal space without adaptive spatial
resolution for this example.

The structure exhibits three resonances between 1700 meV and
2400 meV denoted by black arrows in Fig. 3.6 (a). These resonances
and the corresponding field distributions have been calculated using the
method described in the section 2.7. The pole expansion of the field and the
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Figure 3.5: (a) Schematic of a one-dimensional dielectric grating with defini-
tion of geometrical parameters. (b) Normalized electric field intensity of three
resonant states at 1892 − 15i meV, 2027 − 150i meV, and 2370 − 29i meV in-
side the dielectric grating for period dx = 0.8 µm, width w = 0.53 µm, height
h = 0.1 µm, and a grating refractive index of n = 2.6. The incidence parameters
are kx = 0.5 µm−1 and ky = 0.7 µm−1. The vertical dotted lines indicate the
interface positions, and the horizontal extension of the plots is over one unit cell.

Green’s dyadic inside the system are computed accounting for these three
resonances. The background contribution is calculated for each method
by resolving the exact field distribution inside the structure at three off-
resonant energies denoted by the gray arrows in Fig. 3.6 (a). The field
outside the structure is computed with the reciprocity theorem and the
procedure explained in the previous section. In the case of the one di-
mensional grating, the near field outside the structure is more complex
and contains many diffraction orders, thus instead of only calculating the
Fourier coefficient of the fundamental Fourier order, we have to account for

the Fourier coefficients of each harmonic α
t/b
s/p,K in the two different polar-

ization. The considered grating has a Rayleigh anomaly at 1550 meV that
marks the opening of diffraction channels to the far field. Thus, beyond
1550 meV any small error in the calculation of the field propagating inside
higher order Fourier harmonics can have dramatic consequences. How-
ever the pole expansion of the field and the Green’s dyadic remain very
accurate. We calculate the L2 error for each method by integrating along
x and z the square of the the absolute value of the fields from the pole
expansion divided by the integration of the squared absolute value of the
field computed with the Fourier modal method. The division of one by
the other provides the relative error displayed in panel b). As it is plotted
one can observe that the error exhibited by the Green’s dyadic expansion
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Figure 3.6: (a) Spectra of the dielectric grating shown in Fig. 3.5. The three
resonant states of Fig. 3.5(b) have been used for the pole expansions of the near
fields. Their spectral position is indicated by black arrows. (b) Relative L2

error of pole expansion integrated over one unit cell of the structure along x and
over the thickness of the grating plus 50 nm of superstrate and substrate. As a
reference, we used the field computed with the Fourier modal method. (c-h) Map
of the absolute value of electric field within the structure and its surrounding
at 1870 meV (c-e) and 2225 meV (f-h). The electric field is calculated by the
Fourier modal method (b,e) as well as the Mittag-Leffler expansion of the total
field (d,g) and the Green’s dyadic (e,h). Note that the pole expansion of the
fields includes a quadratic fit of the background field at the positions of the gray
arrows.
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3 Mittag Leffler expansion of electromagnetic fields

is almost equal to the error of the field expansion. A very detailed plot
would reveal that the Green’s dyadic expansion is 0.0001% more accurate.

The field distributions are displayed in two columns and three rows.
Each column denotes a calculation whether at 1870 or 2225 meV. The
field distribution of the first row Fig. 3.6 (c) and (f) show the full wave
calculations provided by the Fourier modal method. In the second row,
panel (d) and (g) is displayed the field calculated using the first-order
field expansion. Finally in the last row, panels (e) and (h) are displayed
the results obtained with the Green’s dyadic pole expansion. We can
appreciate that almost no deviation can be observed by eye.

The structure of the third example is displayed Fig. 3.7 (a). It is a
two dimensional grating made of periodically arranged rectangular holes
filled with air in a film made of gold. The structure is 50 nm thick and
surrounded by air. The grating has a periodicity of dx = dy = 1.2 µm and
the size of each hole is wx = 300 nm by wy = 960 nm. The permittivity of
gold is computed with the critical point model [73]. The system is excited
by plane waves incoming with normal incidence and polarized along x.
In Fig. 3.7 (b) is displayed the spectra of the structure from 200 meV
to 900 meV. In this spectral range, the system has one resonance for x
polarized electric fields at 543 − 135i meV that is marked with a black
arrow in Fig. 3.7 (b). Panel (c) displays a map of the intensity belonging
to the resonance at 543 − 135i meV. In panels (d-f) is plotted the field
calculated 12 nm below the top interface of the grating, for the near field
induced by an x-polarized incoming plane wave at an energy of 537 meV.
The fields are calculated with the Fourier modal method (d), the first
order field expansion (e) and the Green’s dyadic pole expansion (f). The
fields are calculated using adaptive spatial resolution and 29× 29 Fourier
harmonics. The fastest approach makes use of the Mittag-Leffler expansion
of the full field, but the fields derived with the Mittag-Leffler expansion
of the Green’s dyadic are more accurate, as can be seen by the small
deviations between panels (e) and (f) of Fig. 3.7.

In these examples we can see that the fit procedure and the field expan-
sion can be computed while using the adaptive spatial resolution. More
importantly, we know that adaptive spatial resolution is extremely useful
to describe metal-dielectric interfaces. It demonstrates that the pole ex-
pansion can be used in combination with other features to describe more
complex systems.

In addition the series expansion provides an easy and switchable ac-
cess to the contribution of each pole, to the overall behavior of a system.
Moreover, depending on the polarization state and the field symmetries of
a pole, the calculations of the overlap integrals can be greatly simplified.
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Figure 3.7: (a) Schematic of gold film of thickness 50 nm with air holes of
size 300 nm times 960 nm in a square lattice configuration with period 1.2 µm.
(b) Reflectance (red), transmittance (blue), and absorbance (black) of the gold
grating depicted in panel (a) for a plane wave excitation at normal incidence from
the top with field polarized along x. Panel (c) displays the normalized electric
field intensity of an exemplary resonant state of that system at 543− 135i meV.
The resonance position is indicated by a black arrow in panel (b). The field
distributions displayed at the bottom panels are calculated at 537 meV [light blue
dashed vertical line in (b)] by the Fourier modal method (d), the Mittag-Leffler
expansion of the Green’s dyadic (e), and the first-order Mittag-Leffler expansion
of the total field (f). The background contribution to the pole expansions has
been fitted by a first-order polynomial to exact results at 300 meV and 800 meV
[indicated by the gray arrows in panel (b)]. All field distributions are calculated
in the xy plane of a unit cell, 12 nm below the top interface [red dashed line in
panel (a)].
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3 Mittag Leffler expansion of electromagnetic fields

The overlap integral calculation itself provides a quantitative method to
measure the coupling of each mode with the exterior of the structure that
independently of the field calculation helps to understand the physics and
the mechanism behind any arbitrarily chosen system.

Thus, the pole expansion has many advantages and can be implemented
upon another solver. However, the accuracy of the method is entirely
limited to the accuracy with which the resonant energies and the associated
fields are computed. Few mode searchers exist, nonetheless this numerical
task is still improved regularly [67, 74, 75]. Thus, this method benefits from
any improvement achieved in the development mode solver with higher
speed or accounting for more different phenomena such as nonlocality,
which would allow us to model structures with more delicate properties
[21, 76, 77].
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It doesn’t matter how beautiful your theory is, it doesn’t
matter how smart you are. If it doesn’t agree with experiment,
it’s wrong.

Richard Feynman (1918-1988)
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4.1 Introduction

In the previous chapter, we detailed one method to solve Maxwell’s equa-
tions inside one- or two-dimensional layered structures with common in-
variance symmetry amongst their layers. The scheme presented in the
previous chapters account only for the linear optical properties of the ma-
terials. However, in the case of highly nonlinear materials or in the situ-
ation where the near field is strongly enhanced, the nonlinear properties
of the considered materials cannot be neglected anymore. Thus, in these
situations we have to describe additional light-matter interactions.

In this chapter, we will first briefly study different microscopic descrip-
tions of nonlinear optical phenomena. The first numerical approach we
will present is a method used in previous works [78] that provides the ef-
ficiency of harmonic conversion without accounting for the propagation of
the generated harmonic to the far field. We will call a method with such a
characteristic a non-propagative approach. Then we will present a rather
heavy but very stable method based on a full wave calculation using the
reciprocity principle to derive harmonic generation within nanostructures
accounting for the propagation of the generated harmonic to the far field.
Then, we will describe the second-harmonic generation inside dielectric
materials such as GaAs and LiNbO3. Second-order nonlinear optical phe-
nomena inside dielectric media are described using the third rank tensor
χ(2). The approach depicted next is the implementation of a direct emis-
sion scheme within the Fourier modal method. In a last scheme, we will
study the implementation of the pole expansion for nonlinear optics. As
it has been explained, the pole expansion approach is extremely fast and
reduces considerably the heavy numerical cost required for the modeling
of nonlinear effects. It will be used in the picture of second-, third- and
higher-harmonic generation within a dielectric slab. Finally, we will study
how the pole expansion approach can be used to describe the Kerr optical
effect.

4.2 Different microscopic models

The different methods presented in this chapter to account for nonlinear
phenomena describe the nonlinear properties of a material using higher
order tensors such as the χ(2) and χ(3) tensors. However, the values and
the symmetry of these tensors are related to the choice of a microscopic
model to describe the anharmonic character of the microscopic polarization
induced inside the nonlinear media. A first approach is the description of
the microscopic polarization by a dipole oscillating as a classic anharmonic
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oscillator inside a potential Vp(x) (for a one dimensional system).
In the situation where Vp is a quadratic function, the strength of the

restoring force acting on the oscillator is proportional to x and the response
of the oscillator contains only the frequency of the external driving force
[79, 80]. Nonetheless, Vp can be described as a higher order polynomial

Vp(x) =

n∑
j=1

ajx
j , (4.1)

where aj is the amplitude of each polynomial order and the term a0 is
most of time nil unless the system is exposed to an electrostatic field.

In the latter case, the restoring force contains n harmonics of the exci-
tation frequency which will be as many harmonics radiated by the dipole.
The restoring force is proportional to the opposite of the derivative of the
potential [79], thus to observe the apparition of a second- or other even-
harmonics, we need a potential depicted by a polynomial containing third
order terms x3 and higher odd-orders, respectively. As a consequence, to
exhibit a response with even harmonics-order the potential of the oscillator
has to be asymmetric [80, 81]. Through this picture, we understand that
the induction of a nonlinear polarization field of an even order requires
a symmetry breaking inside the structure. The nature of the symmetry
breaking can occur at the crystalline or at the structural levels, as it will
be explained shortly.

The symmetry of a nonlinear susceptibility tensor is related to the
crystalline symmetry of the material of interest, henceforth only dielec-
tric materials with non centro-symmetric lattices should generate second-
harmonic [81]. However, nano-particles made of metals with centro-
symmetric lattices are still able to generate a second-harmonic. The reason
of this behavior is due to the population of quasi free electrons oscillat-
ing inside metallic structures. Indeed, when such metallic nano-particles
are exposed to electromagnetic radiations, an electric field exponentially
decaying is induced inside the metal near the interfaces [82, 83]. Thus,
the quasi-free electrons oscillating with the field near the interfaces be-
have as oscillators inside a gradient of potential. The gradient induces a
symmetry breaking in the potential that transforms the harmonic oscil-
lator into an anharmonic oscillator. This process enables the emission of
even harmonics-order by the polarization field induced by the quasi-free
electrons oscillating an-harmonically near interfaces. These surface effects
induce local symmetry-breaking near interfaces. Such nonlinear behavior
is described, modeling electrons as a cold plasma within the so called hard
wall hydrodynamic model and jellium hydrodynamic model [58, 84, 85].
Thus, in these pictures the equation of motion of electrons is derived from
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fluid mechanics [83] that provides the expression of a current term. Then
this current term is used in the derivation of Maxwell’s equations [86].

As mentioned above, solving Maxwell’s equations in metals leads to the
calculation of evanescent modes that exhibit exponentially decaying field
distributions near metal dielectric interfaces. The exponential profile of
the modes on the metal side of the interface exhibits spatial derivatives
that are rather difficult to compute numerically. Experimentally, this type
of measurement is utterly difficult to set up in a reproducible manner. In-
deed, experimental parameters such as the roughness of the metal dielectric
interfaces are difficult to control and influence dramatically the efficiency
of the second harmonic conversion. Beyond this observation, nonlinear
surface effects are sensitive to structural symmetry-breaking and imper-
fections small enough to be hardly detectable and even more difficult to
control in the production process of an experiment.

Unlike second-harmonic generation, the third-harmonic generation in-
side metal nano-particles is mostly a volumetric effect [87] that is more
accurately controllable experimentally. However, we will see in the next
chapter that even though the third-harmonic generation inside metal nano-
particles is a volumetric effect, it still undergoes the strong influence of
minute structural imperfections. In the numerical examples of the next
chapter, we will use the method based on the volumetric form of the reci-
procity principle described in the previous paragraphs Eq. (4.5) to cal-
culate the third-harmonic generation inside metal nanoparticles with a
complex geometry. In these examples, the structures exhibit mode hy-
bridization and complex plasmonic phenomena that we tailored to achieve
different effects such as electromagnetically induced absorbance. We will
study these phenomena and their interest in nonlinear optics. The micro-
scopic model used to express the χ(3) tensor in the next chapter is based
on the anharmonic oscillator model, which is a good approximation if we
stay away from material resonances such as inter-band transition-energies.
The anharmonic description of the motion of electrons can be found in
textbooks [81] and yields

χ(3)(3ω;ω, ω, ω) =
4πω2

0m
3d2N3e4χ

(1)(3ω)
[
χ(1)(ω)

]3
, (4.2)

where ω0 is a resonance frequency related to the metal properties, N is
the density of atoms, m and e are the mass and the charge of an electron.
Finally d is a length of the order of the material lattice constant.

In this section, we have thus discussed the microscopic models used to
describe nonlinear optical phenomena inside dielectrics en metals. In the
next sections, we will describe numerical approaches using these micro-
scopic models to solve nonlinear Maxwell’s equation inside nanostructured
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media.

4.3 Non-propagative and reciprocity based
approaches

4.3.1 The non-propagative method

Let us first present a simple approach to derive the efficiency of harmonic
conversion for volumetric nonlinear optical phenomena [87, 88]. We con-
sider a third order nonlinear phenomenon generating third-harmonic. The
first step is to derive the induced nonlinear polarization using the anhar-
monic oscillator model as

P(3)(3ω) = χ(3)(3ω;ω, ω, ω)E3
loc(ω), (4.3)

where Eloc is the local field at the pump frequency inside the material with
nonlinear properties. χ(3) is derived using Eq. (4.2).

In a second step, the efficiency of the harmonic conversion can be ap-
proximated by integrating the complex nonlinear polarization inside the
volumes of nonlinear materials [78]. Thus the integration yields:

ETHG(3ω) ≈ 3ω

∫
V

P(3)(r, 3ω)dr3. (4.4)

This method is rather simple and it can be implemented using the
Fourier modal method or a finite element method. However, in this ap-
proach we do not calculate the propagation of the field at the third har-
monic to the far field. Thus we do not account for the radiation efficiency
of the third harmonic from near field to far field. Nevertheless, in the next
paragraphs, we will derive a more accurate method that will account for
the propagation of the third harmonic to the far field using the reciprocity
principle.

4.3.2 Emission by reciprocity

Let us remind that we focus on structures made of layers that are periodic
along one or two directions with common translation symmetry. In struc-
tures with such properties, we demonstrated in chapter 2 that we can use
the reciprocity principle depicted in Eq. (2.53) to calculate the field emit-
ted outside a structure by a volumetric emitter located inside the system.
For instance, in the case of nonlinear optical phenomena, we can describe
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4 Nonlinear optics

third-harmonic generation by considering nonlinear material as volumetric
emitters [87]. Thus, to derive the far field radiated at the third harmonic,
we can use either a surface overlap integral over the generated field at 3ω
as in Eq. (2.56), or a volumetric overlap integral over the source term de-
scribing the nonlinear interaction as in Eq. (2.57). We will use the latter
form, but let us first remind the master equation we need:

α
t/b
a,K = BV

[
(FB)

t/b
a,−K,JA

]
. (4.5)

In the latter equation, JA denotes a source current radiating a field from

inside the closed volume V , FB
t/b
a,−K is the near field produced by a plane

wave incoming from the exterior of V , with the in-plane momentum −K
and the polarization a ≡ s or p. The operator BV denotes the volumetric
integral defined equation Eq. (2.42). The latter vector function applied to

the source term JA and the near field FB
t/b
a,−K provides the amplitude of

the field radiated by the source A, outside the volume V , in the diffraction
channel K and with the polarization a. This calculation can be done for
excitation fields coming from the top and bottom half spaces, above and
below the system, which are referred to with the superscript t/b. The
result of the volumetric integrals is denoted by the Fourier coefficients

α
t/b
a,K. Thus, the electric and magnetic fields emitted outside the structure

can be expressed as the superposition of plane waves:

F
t/b
tot =

∑
a,K

α
t/b
a,KO

t/b
a,K, (4.6)

where F
t/b
tot is the total field radiated outside the structure by the source

JA, α
t/b
a,K is the result of the overlap integral equation (4.5) and O

t/b
a,K is the

basis unit vector defined Eq. (2.39) and normalized with the constant given
Eq. (2.47). Using this approach, we can compute the Fourier coefficients
of the field radiated in the diffraction channels that propagate to the far
field. It is important to note that in the case of harmonic generation,
the source current can be derived from the nonlinear polarzation field:
jα = −iωPα/4π.

The advantage of this approach is that the overlap integral can be cal-
culated whether in the Fourier reciprocal space or in the real space. In
the context of the calculation of third-harmonic generation, as it will be
explained later, heavy factorization rules hampers the calculation of the
nonlinear polarization in the reciprocal Fourier space. However, the non-
linear polarization can be computed in real space from the known spatial
distribution of the materials, their nonlinear susceptibilities and the inverse
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Fourier transformation of the fields inside the layers. Thus, a volumetric
integral evaluated in real space will avoid issues related to the finite size of
the reciprocal space and it leads to the value of the field radiated outside
the system at the third harmonic.
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Figure 4.1: This scheme describes how the amplitude of the field emitted above
the structure by a source current is calculated using the reciprocity principle.
According to Eq. (4.5) the amplitude of the field radiated in a certain diffraction
order K is the volumetric overlap integral of the source current distribution with
the near field induced by an incoming plane wave propagating in the diffraction
order −K. This procedure has to be repeated to compute the field above and
below the structure. Depending if we compute the radiated near field or the far
field, we need to calculate the overlap integral for incoming plane wave in all
diffraction order, or we just account only for the diffraction order reaching the
far field.

The procedure is as follow: First, using the Fourier modal method, we
calculate the near field produced inside the structure by an incoming exci-
tation field, at the pump frequency. The near field is originally computed
in the Fourier reciprocal space, however to avoid any issue related to the
truncation of the reciprocal space, we transform the fields back to the
real space. Thus, using any kind of microscopic model, one can calcu-
late the value of the χ(3)(r; k) tensor inside materials exhibiting nonlinear
properties. Then, multiplying the latter forth-order tensor with the near
field computed earlier, we obtain the value of the third order nonlinear
polarization P (3)(r; k) in real space.

In a second step, we calculate at the third order frequency the propaga-
tion inside the structure of s- and p-polarized incoming plane waves from
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the top and bottom half spaces. The distribution of these probe fields
inside the structure is calculated using the Fourier modal method. The
resulting near fields are then transformed back into real space.

The last step is the most important and the most meaningful. In the case
of third harmonic generation where the third-order nonlinear polarization
is calculated in real space as described above, we calculate the overlap
integral equation (4.5) in real space. We do not need to worry about
factorization rules in the calculation of P (3)(r; k) and we can still use
adaptive spatial resolution to achieve accurate results. The backside of
this method is the necessary inverse Fourier transformations of the pump
field and the probe field at the third harmonic, which are extremely time
consuming.

One possible improvement would be the calculation of the near fields
induced by the pump and the probe fields using the approach of the pole
expansion in real space. In this context the field is calculated in the recip-
rocal Fourier space at the position of the resonant energies and transformed
back in real space. Finally, the electromagnetic fields inside the structure
can be calculated at any frequency by using the pole expansion of whether
the field or the Green’s dyadic in real space. This method would consider-
ably reduces the number of indispensable inverse Fourier transformations
to the number of poles inside the spectra while the nonlinear polarization
and the overlap integral are still evaluated in real space.

4.4 Nonlinear optics in modal methods

4.4.1 Inhomogeneous Maxwell’s equations

Let us consider the second-harmonic generation taking place inside a mul-
tilayer made of a dielectric material whose nonlinear susceptibility is de-
scribed by the third rank tensor χ(2) 6= 0. The value of this tensor comes
from the microscopic model chosen to describe the nonlinear phenomenon.
A good approximation is provided by the anharmonic oscillator model,
though a more complete description can be derived from quantum mechan-
ics [81]. However, in the following section the values used are measured
data [81]. Let us consider just the type of periodic multilayer that can be
modeled within the Fourier modal method. The structure is excited by
an incoming plane wave that we will call the pump. The linear scattering
of this plane wave at the frequency ω is described by the linear Maxwell’s
equations that are solved within the Fourier modal method as described
chapter 2. However, a part of the energy carried by the pump is scattered
at the second-harmonic frequency 2ω. The phenomenon is described by the
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nonlinear susceptibility that is a function of 3 frequencies. One frequency
is the generated frequency and the two others are the frequencies of the
interacting fields. For instance the tensor for second-harmonic generation
is written: χ(2)(2ω;ω, ω). In addition, a back interaction of the second
harmonic with the pump is possible, it is expressed as χ(2)(ω; 2ω,−ω). In
the following description we decide to use the undepleted pump approxi-
mation in the limit of slowly varying envelops. Thus, we do not account
for the energy depletion caused by the second-harmonic generation in the
propagation of the pump field. Additionally, we do not account for the
back conversion χ(2)(ω; 2ω,−ω), neither do we account for the sum fre-
quency χ(2)(3ω; 2ω, ω) and the optical rectification χ(2)(0;ω,−ω), which
are also second order effects. It is obvious that in a real system the energy
carried by the generated harmonics has been provided by the pump field.
Hence, the undepleted-pump approximation stands only if a small amount
of energy is transferred without dramatic consequences on the shape and
intensity of the pump field. The limit of the slowly varying envelopes imply
that the envelope of the incoming pump field should vary slowly in time
and space compared to the field pulsation and wavelength, respectively.

The undepleted pump approximation leads us to a two-step process. We
first derive the pump field from Maxwell’s equations for a given incident
field. The resulting near fields behave as sources for fields at the gener-
ated harmonic frequency. The emission intensity of these sources at the
harmonic depends on the nonlinear susceptibility tensor as well as on the
optical properties of the given system at the harmonic. Therefore, we need
to solve only two linear problems – a homogeneous and an inhomogeneous
differential equations for the pump field and the field generated at the har-
monic, respectively. The nonlinear response of structures undergoing an
interaction of order n is proportional to the pump field magnitude raised
to the power n. Thus, small errors in the linear field calculation propagate
in the numerical scheme with a dramatic effect hampering the computed
nonlinear response. As a consequence, the modeling of nonlinear optical
phenomena has a heavy numerical cost. The modeled structures have to
be described with an extremely fine spatial grid, in order to increase the
accuracy of the linear calculation and to resolve the wavelength of the
generated harmonics. Though the resolution of two systems of Maxwell’s
equations with high accuracy is rather time consuming, the sampling of
nonlinear tensors χ(n) owning 3n+1 components in a fine grid requires
computers with a large memory and the memory allocation time might be
longer than the calculations themselves. In this context, the improvement
of the numerical methods describing nonlinear optical phenomena is highly
relevant.
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Though modal methods such as the Fourier modal method described
in chapter 2 are restricted to the description of layered structures, one of
the strength of these methods is the absence of spatial discretization in
the direction of invariance of the layers. These schemes solve the prop-
agation of the field inside each layer at once, which is fast compared to
other methods. In addition, the absence of discretization avoids numerical
artifact or nonphysical discontinuities inside layers. Thus, the low error
and the speed of the Fourier modal method are perfectly suitable for the
calculation of nonlinear optical phenomena in multilayers.

Possible formulations for the calculation of harmonic generation in the
Fourier modal method with the undepleted approximation are described
in Refs. [89, 90].

While previous approaches for solving the inhomogeneous equations at
the generated harmonic rely on deriving the solutions for entire layers [89,
90], we propose here to consider nonlinear sources in planes normal to
the stacking direction and to coherently integrate over the emission of
theses sources. Thus, we treat the harmonic emission in the same way
as the emission from currents in certain layers [91, 92], with the currents
originating now in the nonlinear polarization.
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Figure 4.2: Numerical scheme describing the generation of the second-harmonic
within a single layer assuming the undepleted pump approximation. The near
field distribution induced by the pump is calculated at every position along z but
it is numerically evaluated only at the position of the set of slices. The nonlinear
polarization induced by the pump field is calculated at the position of each slice
denoting virtual planar emitters. The total volumetric emission of the second
harmonic is obtained by integrating numerically along z, the field emitted by all
the planar emitters.

Moreover, we combine the derivation of the harmonic emission with two
advanced formulations of the Fourier modal method: Factorization rules [4,
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30] and matched coordinates with adaptive spatial resolution [31, 32]. As
explained chapter 2, these formulations have been introduced in order to
prevent inaccuracies in the Fourier modal method related to the Gibbs
phenomenon that occur due to the finite Fourier basis. Regarding the
factorization rules, we find that their formulation for the second-harmonic
susceptibility has been incomplete in previous works [89, 90]. In particular,
we show that it is necessary to account for the discontinuities of the fields at
the pump energy and the harmonic simultaneously. This new formulation
of the Fourier factorization of the nonlinear susceptibility tensor allows for
including matched coordinates and adaptive spatial resolution. Thus, even
nontrivial lateral geometries with large contrast in the dielectric function
can be calculated efficiently by using a coordinate system in which all
material interfaces are described by surfaces of constant coordinates with
an increased spatial resolution in the vicinity of these interfaces.

Let us remind the covariant formulation of Maxwell’s equations (in fre-
quency domain and Gaussian units) with a nonlinear polarization:

εαβγ∂βEγ =ik0µ
αβHβ , (4.7)

εαβγ∂βHγ =− ik0(εαβEβ + Pα) +
4π

c
jα. (4.8)

Equations (4.7) and (4.8) hold for higher harmonics and for the pump
field, with Pα and jα denoting the α component of the nonlinear po-
larization and free currents, respectively. The time dependence of the
fields is assumed to be exp(−iωt); the vacuum wave number is denoted
as k0 = ω/c. In the undepleted pump approximation for harmonic gen-
eration, Pα(ω) = 0 at the pump energy, while the simplest form at the
generated harmonic is given by [90]

Pα(nω) = 4πχ(n),αβ1β2... βn(nω;ω, ω, ...)Eβ1
(ω)Eβ2

(ω)...Eβn(ω), (4.9)

with the underlined quantities calculated at the pump frequency and
χ(n),αβ1β2... βn being the components of the nth-harmonic susceptibility
tensor. Therefore, in the undepleted pump approximation, the equations
describing the pump field are independent of the fields at the harmonic,
whereas the pump field enters as an inhomogeneity in the equations at the
generated harmonic.

The calculation of the field at the pump frequency is carried out as
explained in the section (2.6). The field evaluated inside the material with
nonlinear properties is discretized along the stacking direction as a series
of plane surfaces. Knowing the pump field, we convolute the latter with
the nonlinear permittivity in the reciprocal space to find the nonlinear
polarization field.
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However, to evaluate the polarization field correctly and accurately near
interfaces, the nonlinear tensor has to be expressed in curvilinear coor-
dinates with adaptive spatial resolution. χ(n) is a tensor of rank n and
weight one. The transformation of this tensor from curvilinear coordinates
to general coordinates is:

χ(n),ρ σ1σ2 ... σn = χ(n),α β1β2 ... βn
√
g
∂xρ

∂xα
∂xσ1

∂xβ1

∂xσ2

∂xβ2
...
∂xσn

∂xβn
. (4.10)

In the polarization vector Eq. (4.9), we replace the nonlinear permittiv-
ity tensor and the fields of the uniform coordinate system by those of the
nonuniform coordinate system specified in Eqs. (4.10) and (2.8). Then in
the next paragraphs, we carry out the Fourier transformation of the non-
linear susceptibility according to the correct Fourier factorization rules.

4.4.2 Factorization rules

Matched coordinates are indispensable to calculate the field emitted near
curvilinear interfaces as in the geometry presented Fig. 2.4. However, the
discontinuity of the pump field and the harmonic field at the interfaces
produces a dramatic computational error as demonstrated by L. Li for
the linear field [30]. Thus, the Fourier transformation of the nonlinear
permittivity tensor will require the definition of new factorization rules.
The following explanation and calculation can be applied to a tensor χ(n)

of rank n, however we decide to restrict the following demonstration to
the tensor χ(2), the reason of this choice will be provided at the end of the
demonstration.

In a first step, we proceed as for the Li’s factorization rules described
section 2.6. Consider an interface with a normal vector that equals the
contravariant basis vector eα. Dα is normal to the interface, while Eβ with
β 6= α gives the two tangential electric field components. The constitutive
equation for Dα at the generated harmonics is:

Dα = εααEα + εαβEβ + 4πχ(2),αρσEρEσ︸ ︷︷ ︸
Pα

, α 6= β.
(4.11)

We remind that there is no sum convention over index α in the current
section, and the sum convention over β runs only over indices β 6= α. The
sum convention for σ1 and σ2 spans over all indices.

In a first step, we express the discontinuous component of the electric
field as a function of the other field components. Some calculus leads to
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4.4 Nonlinear optics in modal methods

the equation:

[Dα]α = [(εαα)−1]−1
α ( [Eα]α + [(εαα)−1εαβ ]α[Eβ ]α β 6= α,

+4π[(εαα)−1χ(2),αρσEρEσ]α),
(4.12)

where we denote the Fourier transformation by square brackets with the
direction of the transformation as subscript.

This derivation provides the accurate Fourier transformation of Dα for
eα being normal to the interface. The Fourier transformation of the other
two components Dβ in direction xα can be found by substituting Eα in
the constitutive equation for Dβ by :

Eα = (εαα)−1Dα −(εαα)−1εαβEβ α 6= β.
−(εαα)−1χ(2),αβγEβEγ ,

(4.13)

We finally achieve:[
Dβ
]
α

= [εβα(εαα)−1]α[Dα]α
+[εβγ − εβα(εαα)−1εαγ ]α[Eγ ]α β 6= α& γ 6= α.
+4π[χ(2),βρσ − εβα(εαα)−1χ(2),αρσEρEσ]α,

(4.14)

Inserting Eq. (4.12) into Eq. (4.14) and repeating these steps for the
second direction of periodicity yields the factorization as expressed in
Eqs. (2.73) and (2.74), for the linear part of the constitutive equation.
Thus, the dielectric permittivity at the higher harmonics is factorized in
the same fashion as the permittivity in the linear problem Eq. (2.74).

Similarly, it is possible to construct from Eqs. (4.12) and (4.14) an op-
erator m±τ that should be applied to the second-harmonic susceptibility
tensor and accounts for the discontinuities at the second harmonic:

G ≡ m±τ (B)C, Gαρσ =

{
BττCτρσ , α = τ ;

Cαρσ ±BατCτρσ , α 6= τ.
(4.15)

Here, the tensors B and C are results of applying specific operators to
the permittivity and second-harmonic susceptibility, respectively. For the
latter, we have to additionally take into account the discontinuities of the
pump field. Hence, we express the discontinuous components of the electric
field of the pump as a function of the continuous components of the electric
field and displacement as well as the permittivity tensor evaluated at the
pump energy:

Eα = (εαα)−1(Dα − εαβEβ) , α 6= β. (4.16)
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Inserting Eq. (4.16) into Eqs. (4.12) and (4.14) results in lengthy ex-
pressions that contain no products of functions with concurrent jump dis-
continuities, so that they can be Fourier transformed. They consist of
products of m−τ (l−τ ε), ε and χ(2), which can be written in the compact
form m−τ (l−τ ε)j

−
τ (l−τ ε)χ

(2), with the new operator j±τ being defined by

Γ≡j±τ (B)G, Γαρσ=



GαττBττBττ , ρ = τ, σ = τ ;

GατσBττ±GαττBττBτσ, ρ = τ, σ 6= τ ;

GαρτBττ±GαττBτρBττ , ρ 6= τ, σ = τ ;

Gαρσ±GατσBτρ±GαρτBτσ, ρ 6= τ, σ 6= τ.

+ GαττBτρBτσ

(4.17)

We can summarize the application of the factorization rules to the
second-harmonic susceptibility tensor as

Tτ (ε, ε)χ(2) = j+
τ (Fτ l

−
τ ε)m

+
τ (Fτ l

−
τ ε)Fτm

−
τ (l−τ ε)j

−
τ (l−τ ε)χ

(2), (4.18)

which gives the correctly factorized Fourier transform χ(2) in direction
xτ , with the operator l±τ defined according to Eq. (2.73). Thus, the final
result for the correctly factorized Fourier transform of the second harmonic
susceptibility yields

χ̃(2) = T2(l+1 F1l
−
1 ε, l

+
1 F1l

−
1 ε)T1(ε, ε)χ(2). (4.19)

Once the Fourier transformation of the nonlinear susceptibility is derived
correctly, it is the possible to calculate the nonlinear polarization in the
Fourier reciprocal space by the mean of the following convolution:

Pαmn =
∑

p′,q′,p′′,q′′

χ̃
(2),ασ1σ2

mnp′q′p′′q′′Eσ1,p′q′
Eσ2,p′′q′′

. (4.20)

Here, m,n, p′, q′, p′′, q′′ are integers that refer to the Fourier harmonics of
the fields and the nonlinear susceptibility .

These derivations holds for the second-harmonic susceptibility tensor
χ(2). As explained earlier, it can be generalized to higher harmonics as
well, however the number of terms that have to be combined to generate
the factorized nonlinear permittivity is proportional to a combination of
two binomial factors growing with n. For instance the factorization of
χ(2) requires the combination of 75 terms while the factorization of χ(3)

would requires the combination of 375 factors. The factors themselves
are known quantities of which many are used multiple times, nonetheless
the number of necessary additions and multiplications grows accordingly.
Thus, another approach should be used for the calculation of harmonic
generation at an order higher than two.
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4.4 Nonlinear optics in modal methods

4.4.3 Scattering matrix of an emitted field

The correct Fourier transformation of the linear and nonlinear permittivity
permits us to solve Maxwell’s equations in the Fourier reciprocal space at
the frequency of the radiated field. As in the linear case Eq (2.75), we reach
a propagation equation that has the form of an inhomogeneous equation
[89]:

− i∂3E(x3) = M̃E(x3) + Q̃(x3). (4.21)

The inhomogeneous term reads

Q̃(x3) = −i4π


−K1(ε̃33)−1P3

−K2(ε̃33)−1P3

k0[ε̃23(ε̃33)−1P3 −P2]
−k0[ε̃13(ε̃33)−1P3 −P1].

 , (4.22)

where the quantities K1 and K2 are diagonal matrices containing the fac-
tors defined by Eq. (2.30), K1,m and K2,n respectively. ε̃l refer to the
quantity l−3 (ε) and Pα refers to the nonlinear polarization vector calcu-
lated in the Fourier reciprocal space Eq. (4.20).

Then, we would have to integrate the equation (4.21) in the whole layer
at once. However, we decided to follow a slightly different path. The total
volumetric emission is split in a series of discrete planar emitters. Then
from Eq. (4.8), it is obvious that we can treat the nonlinear polarization
Pα in the same way as the current jα, i.e., we define jα = −iωPα/4π in
the absence of free currents. In the case that there is a free current in the
x1x2 plane located at the position x3

0 that is radiating at the generated
harmonic, the field is discontinuous [92]:(

E(x3
0 + δx3)

H(x3
0 + δx3)

)
−
(

E(x3
0 − δx3)

H(x3
0 − δx3)

)
=

(
J̃E(x3

0)

J̃H(x3
0)

)
, (4.23)

where δx3 describes a small variation around the position x3
0. Then, we find

at this position a similar source term as in the inhomogeneous propagation
equation that we express in the eigenmode basis using the inverse of the
material matrix:

J̃(x3
0) =

(
J̃E(x3

0)

J̃H(x3
0)

)
= −4πiF−1

0


−K1(ε̃33

0 )−1P3

−K2(ε̃33
0 )−1P3

k0[ε̃23
0 (ε̃33

0 )−1P3 −P2]
k0[P1 − ε̃13

0 (ε̃33
0 )−1P3]

 , (4.24)

with the eigenvector matrix F0 (material matrix), the Fourier transformed
permittivity tensor ε̃0 being that of the layer at x3

0 and Pα as a supervector
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Figure 4.3: Lateral view of a layer of nonlinear material with circular air holes.
This structure is one of the examples that will be treated in this paper. As
illustrated, the linear field induces a nonlinear polarization that results in a vol-
umetric source at the second harmonic, which we discretize in a set of planar
emitting layers. For each discrete source at a position x30, we calculate the prop-
agation of the field through the structure using the scattering matrix formalism.
Then, we integrate coherently over all contributions to obtain the total far field.
The inset in the right part depicts a schematic of the scattering matrix formalism,
with the amplitude vectors A+ and A− of downward and upward propagating
or decaying eigenmodes in a certain layer [cf. equation (2.79)], respectively. The
boxes with Sb and St indicate the scattering matrices of the sub-structures above
and below a layer.

containing the amplitudes Pαmn of the correctly Fourier factorized second-
harmonic polarization.

Thus, the emission of the planar emitter at the position x3
0 (x3

l < x3
0 <

x3
l′) is described by the scattering matrix Σl′,l(x

3
0) [91, 92]:

Aout
l′,l′ = Sl′,lA

in
l′,l′ + Σl′,l(x

3
0)J̃(x3

0). (4.25)

with

Σl′,l(x
3
0) =

[
S++

b V eiΓ
+
0 (L−x3

0) −S++
b V eiΓ

+
0 LS+−

t e−iΓ
−
0 x

3
0

S−−t Ue−iΓ
−
0 LS−+

b eiΓ
+
0 (L−x3

0) −S−−t Ue−iΓ
−
0 (x3

0)

]
.

(4.26)
Here, L is the thickness of the layer generating the second harmonic, St

and Sb denote the scattering matrices of the groups of layers above and
below this region, respectively, and the exponential terms are diagonal
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4.4 Nonlinear optics in modal methods

matrices that account for the propagation inside the emitting layer. While
deriving the field inside the system, one finds that the amplitude of the
internal field is equal to the sum of the field transmitted from the exterior
of the structure added to the internal field itself after one round trip inside
the system. Thus, each term of the matrix in Eq. (4.26) are divided by a
denominator that is the difference of one with the product the reflection
coefficients at the top and bottom interfaces times the phase induced by
one round trip inside the cavity. These coefficients are denoted by the
matrices U and V that account for internal reflections:

U =(1− e−iΓ
−
0 LS−+

b eiΓ
+
0 LS+−

t )−1, V =(1− eiΓ
+
0 LS+−

t e−iΓ
−
0 LS−+

b )−1.
(4.27)

Finally, owing to the linearity of this equation, we can consider the vol-
umetric emission inside the layer as a superposition of sources at positions
x3, so that

Aout
l′,l′ = Sl′,lA

in
l′,l′ +

x3
l′∫

x3
l

dx3Σl′,l(x
3)J(x3). (4.28)

Thus, in this paragraph, we have split the nonlinear volumetric emission
of a layer in a series of discrete contributions that we can integrate numer-
ically. This approach avoids to integrate inhomogeneous equation (4.21)
that would require a lot of memory an power, while the source term can
easily be computed step by step for each planar emitter.

4.4.4 Numerical calculations

As a test system, we consider an asymmetric one-dimensional grating,
which is depicted in Fig. 4.4 (a). The structure consists of two adjacent
periodic layers with GaAs surrounded by air. Each layer is 100 nm thick.
The width of the GaAs region in the upper and lower layer is 0.66 µm and
0.75 µm, respectively. The period is 1 µm. Without the loss of generality,
we consider a constant refractive index of n = 3.85 for GaAs.

The crystallographic lattice of GaAs is face centered cubic; in Gaussian
units, the reduced representation [81] of the second-harmonic susceptibility
is

χ(2) = 10−7

0 0 0 5.73 0 0
0 0 0 0 5.73 0
0 0 0 0 0 5.73

 cm

statV
. (4.29)
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We consider an incoming pump field that is normally incident with 1 W
power per unit cell area. The incident electric field is linearly polarized
and aligned along the direction of periodicity. The unpolarized second-
harmonic intensity is calculated by summing up the s- and p-polarized in-
tensities radiated in the fundamental diffraction order. The field diffracted
in higher diffraction orders can be derived using the same methods, how-
ever it is not taken into account in this example.
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Figure 4.4: (a) One-dimensional periodic asymmetric grating made of GaAs
and surrounded by air. This structure consists of two layers, where each layer
has a of thickness of 100 nm and a period of 1µm. The upper part of the
grating has a width of 0.66µm; the lower part has a width of 0.75µm. The
second-harmonic emission originates in the GaAs region. (b) The incidence
direction is normal, the incident field is p polarized and the incoming pump
power is 1 W per unit cell area. (c) Linear transmission (red line), second-
harmonic intensity emitted above (black dashed line) and below the structure
(gray line) and resonance energies (black arrows). (d) Convergence behavior of
the second-harmonic intensity below the system at a pump energy of 670 meV
for three different implementations: Simple factorization rules (dark blue line),
full factorization rules with (light blue line) and without (blue line) adaptive
spatial resolution. When increasing the number of plane waves in the Fourier
basis, all three implementations converge to the same value.
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In the numerical calculation of the second-harmonic emission, we use
a spatial grid of 512 points per unit cell. Fig. 4.4 (b) shows the linear
transmittance and the second-harmonic intensity emitted above and below
the structure calculated for a reciprocal basis of size 167 Fourier harmonics.
In order to illustrate the impact of resonances on the second-harmonic
intensity, we denote the resonance energies of that structure by arrows.
The resonant energies have been derived from the scattering matrix by the
methods described in section 2.7. The two fundamental resonances possess
a large linewidth of 84 meV, the higher-order resonances are narrower (from
4.4 meV to 60 meV linewidth). Evidently, we have a peak of emission
whenever there is a resonance at the second-harmonic energy.

In order to illustrate the convergence of our calculations, we calculated
the second-harmonic intensity for a successively increasing number of plane
waves in the reciprocal basis. The results calculated by the Fourier modal
method with simple (dark blue line) and full factorization rules with (light
blue line) and without (blue line) adaptive spatial resolution are depicted
in Fig. 4.4 (c) at a pump energy of 850 meV that is near a fundamental res-
onance. We can see that all implementations converge to the same value.
The formulation with full factorization rules converges faster than the ap-
proach with simple factorization rules. The best convergence behavior can
be obtained by the formulation with full factorization rules and adaptive
spatial resolution.

Two-dimensional grating

Next, we consider a two-dimensional grating that consists of a LiNbO3 film
with circular air holes (see Fig. 4.3). The period is 1.400 µm; the radius of
the air holes is 600 nm; the thickness of the film is 80 nm. The incoming
pump field is normally incident and linearly polarized with 1 W power per
unit cell area. The incident electric field is aligned along the x1 direction.
The permittivity of LiNbO3 is a diagonal tensor with ε11 = ε22 = 2.29 and
ε33 = 2.21. The second-harmonic susceptibility is [81]

χ(2) = 10−9

 0 0 0 0 −13 −6.6
−6.6 6.6 0 −13 0 0
−13 −13 −75.9 0 0 0

 cm

statV
. (4.30)

Fig. 4.5 (a) depicts the linear transmittance and the second-harmonic
intensity of this structure calculated for 17×17 plane waves in the Fourier
basis (quadratic truncation) and 512 × 512 spatial points. The structure
exhibits a large number of resonances in the given energy range, but only
few resonances can be excited by the pump or the second-harmonic energy,
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Figure 4.5: (a) Second-harmonic intensity (black line) and linear transmit-
tance spectra (red line) of the structure presented in Fig. (4.3). The thickness of
the structure is 80 nm, the period is 1.400 µm along the x and y directions and
the radius of the holes is 600 nm. (b-d) Convergence behavior of the calculated
second-harmonic intensity with the pump field at (a) 842 meV (dark blue line),
(b) 580 meV (blue line), and (c) 1000 meV (light blue line). The arrows in (a)
denote the energies at which the convergence curves have been calculated.

with resonance energies of 842−8.8imeV, 1152−25imeV, 1183−40imeV,
1700−46imeV and 2345−10imeV. Fig. 4.5(b-d) contains the convergence
behavior calculated at pump energies of (a) 842 meV (dark blue line), (b)
580 meV (blue line), and (c) 1000 meV.
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4.5 Modeling of harmonic generation within the pole expansion

4.5 Modeling of harmonic generation within the
pole expansion

4.5.1 Theoretical formulation and mode matching

In the previous sections we detailed an approach to compute the radi-
ated harmonics generated inside materials with nonlinear properties. This
calculation is rather heavy and requires a lot of resources, memory and
calculation time. Furthermore, we discussed in the previous chapter how
efficiently the pole expansion diminishes the number of time one needs
to solve Maxwell’s equations to derive the optical properties of a struc-
ture for an arbitrary spectral range. Thus, it seems logic to implement
an approach based on the pole expansion to calculate faster and with less
resources the nonlinear response of a system over a whole spectral range.
All the necessary equations for this journey have already been derived in
the previous chapters, we will only stitch together the different parts of
the puzzle. I will henceforth repeat some known equations to spare you
the time you would need to travel back and forth in this document.

Assuming an approach based on the undepleted pump approximation,
we first need to derive the electric field distribution at the pump frequency
inside the structure. Let us use the Green’s dyadic pole expansion that
provided the best results in the chapter 3. The field inside the structure
is expressed according to Eqs. (2.64) and (2.65) as

Ftot(r; k) = FBG(r; k)−
∑
n

Fn(r)

k − kn
k BV

[
F
R
n (r′); ∆M̂(r′; k)FBG(r′; k)

]
.

(4.31)
As in the previous section, the field derived at the pump frequency will be
underlined.

The electric field at the pump frequency induces a nonlinear polarization
of pth-order inside the structure:

Pα(pω) = 4πχ(p),αβ1β2... βp(pω;ω, ω, ...)Eβ1
(ω)Eβ2

(ω)...Eβp(ω). (4.32)

The last step is to derive how the polarization field radiates outside the
structure in the far field. The nonlinear polarization is replaced by the
equivalent source current jNL = −iω

4π P. The description of the emission of
a source current within the pole expansion is described in Eqs. (2.62-2.65).
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It is expressed as

M̂(r; pk)F(r; pk) = J
NL(r; pk), (4.33)

F(r; pk) =

∫
V

dV ′Ĝ(r, r′; pk)JNL(r′; pk). (4.34)

In the Mittag Leffler expansion of the Green’s dyadic, we assume no
background field at the radiated harmonics, thus we can write:

Ftot(r; pk) =
∑
n

Fn(r)

pk − kn
BV

[
F
R
n (r′);JNL(r′; pk)

]
. (4.35)

Even though the nonlinear polarization and the associated source cur-
rent JNL have to be calculated at every frequency, the solution of Maxwell’s
equation at the pump frequency is derived using the pole expansion, thus
this step is very fast. Additionally, the poles used for the Mittag-Leffler
expansion of the Green’s dyadic at the pump frequency are the same poles
used for the expansion of the Green’s dyadic at the second harmonic.
Thus, the resonant modes of the structure are calculated only ones in the
whole scheme and the calculation of the harmonic emission is rather fast.
An analytic formulation of the field scattered at the second harmonic can
be computed in the undepleted pump approximation using the nonlinear
source-current:

J
NL,α
E = −ik4πχ(2),αβγ

[
EBG,βEBG,γ + 2EBG,β k∆ε

∑
i

Ei,γ
k−ki Ii

+(k∆ε)2
∑
i,j

Ej,βEi,γ
(k−ki)(k−kj)IiIj

]
.

(4.36)
In the latter equation, the spatial and the implicit frequency dependence
have been removed to keep the formalism as simple as possible. However,
though these calculations can be done in real and reciprocal space, here
all the fields and susceptibility tensors are assumed to be calculated at the
position r′ for a wave vector k = ω/c. In addition, we assume JNL,α

H = 0.

Thus, the total field generated at the harmonic, inside the structure,
can be expressed as

Ftot =
∑
n

Fn

2k − kn
(An +Bn + Cn), (4.37)
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with:

An = −ik4πBV

[
ER
n,α;χ(2),αβγEBG,βEBG,γ

]
, (4.38)

Bn = −ik4πBV

[
ER
n,α;χ(2),αβγEBG,βk∆ε

∑
i

IiEi,γ
k − ki

]
, (4.39)

Cn = −ik4πBV

ER
n,α;χ(2),αβγ(k∆ε)2

∑
i,j

IjEj,βIiEi,γ
(k − ki)(k − kj)

 , (4.40)

where we can identify the electric field scattered inside the structure at
the pump frequency as

EScat,β = k∆ε
∑
i

IiEi,γ
k − ki

. (4.41)

The overlap integral Ii calculated at the pump frequency is defined by
Eq. (2.65). The background field propagates through the structure like
if it was a homogeneous slab of material owning the permittivity of the
half-space of the incoming field.

The formulation of harmonic generation within the pole expansion ap-
proach owns three different contributions An, Bn and Cn that we will
study in more details.

Contribution An

The first term An is the result of the overlap integral between the field
distribution at the resonance n and the nonlinear polarization generated
by the background pump field. We can thus identify four different factors
that can amplify the value of An and thus the frequency conversion of the
background field.

1. The overlap itself between the nonlinear polarization
−ikχ(2),αβγEBG,βEBG,γ and the resonant field distribution
En,α has to be maximum. The fulfilment of this criterion mainly
depends on the symmetries of the induced nonlinear polarization
and the resonant field. The background field is an incoming plane
wave with a symmetric distribution. Thus, the symmetry of the
nonlinear polarization field mainly depends on the symmetry of the
nonlinear susceptibility tensor, which is related to the symmetry of
the crystalline structure of the material. The symmetry of the field
distribution at the resonance depends mainly on the type of the
resonance.
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2. Another criterion that quantifies the efficiency of the conversion is
the near field enhancement at the resonant energy kn. Assuming that
the overlap integral is not nil, if the structure exhibit a very strong
near field enhancement inside nonlinear media at the resonance n,
the overlap integral of a nonlinear polarization with En will provide
large values.

3. Then we have to account for the ”distance” between the radiated
frequency and the resonant frequency. In the case where the two
frequencies are far from each other, the denominator 2k− kn will be
large and the resonance at kn will be only weakly excited. However,
if the generated frequency is close to the resonant frequency this
denominator will be small, henceforth the resonant mode n will be
efficiently excited by the generated harmonic and the emission at the
generated frequency will be enhanced.

4. Finally, in the case mentioned in the previous point where the har-
monic is generated at the frequency of the resonant mode kn, the
real part of the distance 2k − kn will converges to 0. However, the
imaginary part of kn is not canceled. The imaginary part is inversely
proportional to the quality factor of the resonance. Thus, the higher
is the quality factor, the smaller will be the non-vanishing imaginary
part of 2k − kn and the larger will be the enhancement.

Contribution Bn

The term Bn denotes the overlap integral between the field distribution at
the resonance n and a nonlinear polarization induced by the background
pump field and the field scattered by the structure at the pump frequency.
As in the case of An, if the generated harmonic has a frequency close
to a resonance of the structure the value of Bn will be larger than in
the off resonant case. Thus, the overlap integral between the nonlinear
polarization and the near field En is important and it is scaling according
to the four criteria aforementioned. However, in this case, the amplitude
of the nonlinear polarization itself is influenced by resonances at the pump
frequency. Let us study the impact of a resonance at the pump frequency
within two key points.

1. We note the presence of a factor k∆ε that is characteristic of the
scattering occurring at the pump frequency described by Eq. (4.41).
Thus, this term is scaling up the amplitude of the nonlinear polar-
ization for lower wavelengths.
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4.5 Modeling of harmonic generation within the pole expansion

2. As in the case of the generated harmonics, if a structural resonance is
excited efficiently at the pump frequency, it will dramatically increase
the value of the contribution Bn. The efficiency of the excitation of
the resonance at the pump frequency is calculated as the overlap
integral Ii divided by the denominator k − ki. It has to be noted
that the symmetries of the resonant field Ei and the background field
strongly influence the amplitude of Ii. In addition, the amplitude of
Ei that corresponds to the near field enhancement of the resonance
ki contributes to scaling up the nonlinear polarization as well as a
high quality factor.

Contribution Cn

The term Cn denotes the overlap integral between the resonant field En
and a nonlinear polarization induced by the scattered pump field inter-
acting with itself. While the presence of a resonance near the frequency
of the generated harmonic is still accountable, we will see here that the
resonance and the near field enhancement at the pump frequency has a
larger impact on the efficiency of the frequency conversion. First the non-
linear polarization expressed in Cn scales with a factor (k∆ε)2. Secondly,
the efficiency of the excitation of the structural resonances at the pump
frequency are defined by the overlap integrals Ii, Ij and the denominator
(k−ki)(k−kj). Thus, the near field enhancement exhibited by Ei and Ej
contributes to scale up the induced nonlinear polarization. We then have
to distinguish two different situations:

1. Let us assume two different resonances in ki and kj that are excited
by a pump field at a nearby frequency. The symmetry of the induced
nonlinear polarization henceforth can be predicted from the symme-
tries of the two interacting resonant modes and the symmetry of the
χ(2) tensor. Thus, the geometry of the polarization field can be tai-
lored at the condition that the two modes are excited efficiently by
the pump. Thus, the nonlinear polarization scales as the product of
the two near fields Ei and Ej . However, in this situation, none of
the denominator factors (k− ki)(k− kj) get close to zero so that the
enhancement of the conversion efficiency is limited.

2. In the situation where the pump frequency would be close to a res-
onant frequency, we observed that the contribution Bn is strongly
enhanced. However, the larger contribution originates from the Cn
component. In this case, we have to account for the following pole
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contribution in the sum calculated inside Cn:

Cn,i = −ik4πBV

[
ER
n,α;χ(2),αβγ(k∆ε)2

E2
i,β

(k − ki)2
I2
i

]
. (4.42)

Assuming that the resonant mode at ki exhibits a strong near field
enhancement, the nonlinear response will scale up as the square of the
pump field Ei. Additionally this contribution grows as the inverse
of the difference (k− ki)2, which definitely enhances the signal more
efficiently than the 2k−kn at the generated harmonics. However, the
overlap integral Ii has to be maximized thus we will see in the chapter
5 that field at the resonance needs to fullfill symmetry conditions to
ensure a non-nil overlap integral with the background field.

The factor Cn is proportional to k2, henceforth it is obviously the pre-
dominant contribution in the case where a resonant mode is excited effi-
ciently at the pump frequency. Though resonances at the generated har-
monic are improving the conversion efficiency, it is less influential than the
resonances at the pump frequency. However, the most optimized situation
remains double resonant situations where the system exhibits a resonance
at the pump frequency and at the second harmonic.

Finally, once the field generated at the harmonic is calculated inside
the structure, we use the reciprocity principle to derive the radiated field
outside the structure. We then have to compute the same overlap surface-
integral as in the derivation of the transmittance and the reflectance given
by Eqs. (3.31) and (3.32) that provide the radiated field outside the struc-
ture in each diffraction order as

α
t/b
a,K(2k) = B∂ν

[
I
t/b
a,−K(r; 2k);F

t/b
tot(r; 2k)

]
,

=
∑
n

B∂ν

[
I
t/b
a,−K(r;2k);Fn(r)

]
pk−kn (An +Bn + Cn)

, (4.43)

where the lower index a denotes the s or p polarization, K denotes the
diffraction order and the superscript defines if the fields are derived at the
top or bottom interface.

The new overlap integral that arises Eq. (4.43) is very similar to the term
In in Eq. (2.65). Indeed, the total field Ftot is calculated as the superposi-
tion of the resonances of the structure, which are excited by the nonlinear
source. Thus, the field emitted outside the structure is proportional to
the coupling coefficient of each of these resonance with the exterior that is

calculated by the means of the overlap integral B∂ν

[
I
t/b
a,−K(r; 2k);Fn(r)

]
.
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Finally, in this paragraph, we have been able to derive analytically the
emission process taking place in a nanostructure made of materials with
nonlinear properties. The equation contains in separate quantities the in-
fluence of each mode at the pump and at the generated harmonic, their
quality factors and their symmetries, which are implicitly taken into ac-
count in each overlap integral.

4.5.2 Numerical analysis

Let us study the example of a dielectric slab to illustrate the calculation
of higher-harmonic generation using the pole expansion approach. We will
keep the parameters used in the section 3.2.2 whose structure is illustrated
in Fig. 3.1. The dielectric slab is 1 µm thick and owns a refractive index
of 3.5. The structure is excited by a top incoming plane wave with normal
incidence and polarized along the x axis. The structure exhibits excitable
Fabry Perot modes at the energies 177.1n − 33.1i meV with n being an
integer number. For the sake of simplicity and clarity, we will assume in
a first place a second order susceptibility with only one non-nil parameter
χ(2),xxx = −6.6 10−9 cm.statV−1.

We observe that the emission spectra owns two types of local maximum.
The local maximum reached for a harmonic generation at 1594 meV cor-
responds to an enhanced harmonic generation with one resonant pole at
the generated harmonic and no resonance at the pump frequency. On the
other hand, the local maximum at 1416.8 meV marks the excitation of one
resonance at the generated harmonic precisely, and one resonance at the
pump frequency at 708.4 meV. We observe that the enhancement provided
by the resonant pump field is much more significant than the enhancement
provided by a resonance at the second harmonic. Additionally, we note
that the amplitude of the double resonant peaks of emission grows faster
as a function of the pump energy, than the peaks originating from simple
resonances. This effect is depicted by the dark and bright green-dashed
lines Fig. 4.6.

Finally, we still see a small mismatch between the direct emission scheme
and the pole expansion approach. This mismatch might be due to a back-
ground contribution at the second harmonic. Such deviation can be cor-
rected with the second harmonic generation calculated with the direct
emission scheme at the higher and lower energies of the studied spectral
range. Thus, from the exact calculation at two point of the spectra we can
compute the error in the calculation of the electric and magnetic fields in-
side the structure at the second harmonic at these two frequencies. Know-
ing the error at these two points of the spectra, the results obtained by the
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Figure 4.6: (a) Second-harmonic generated by a dielectric slab excited with a
top incoming plane wave at normal incidence. The power radiated in the top and
bottom half space is displayed with red and blue lines, respectively. The solid
lines denote the emission calculated using the Mittag-Leffler expansion of the
Green’s dyadic at the second harmonic and the reciprocity principle accounting
for 800 poles, the dashed lines represent the SHG computed using the direct
emission scheme detailed in the previous section. The dark and bright green
dashed lines schematically fit the local maxima of frequency conversion at double
and single resonant working points, respectively. (b) The dark gray and light gray
solid lines denote the transmittance of the slab calculated at the pump energy
and the generated harmonic, respectively. The enhancement of the harmonic
generation provided by the resonant poles at the pump frequency is stronger
than the enhancement produced by the poles at the generated frequency.
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4.5 Modeling of harmonic generation within the pole expansion

pole expansion approach are replaced with the exact values. In addition,
the correction terms are interpolated through the whole spectral range of
interest. Background contributions are smooth functions and such fitting
procedure is enough to provide accurate results for a minimal numerical
cost.

In Fig. 4.7 is derived the second-, third- and fourth-harmonic gener-
ation within the same dielectric slab as in the Fig. 4.6. The nonlinear
susceptibilities are arbitrarily chosen to be

χ(2),xxx = χ(3),xxxx = χ(2),xxxxx = −6.6 10−9. (4.44)

The approach provided by the pole expansion provides a swift calcula-
tion of these results. We can observe that enhancement at the resonant
pump frequencies is dominant in any cases. Rather small enhancements
are also observable for resonances at the generated harmonics, however
it is almost invisible on this figure. Finally we observe that the emitted
intensity grows with the order of the nonlinear generation. It occurs be-
cause we took the same value for all the nonlinear susceptibilities in order
to obtain emitted intensities in the same order of magnitude. For instance
a realistic third-order nonlinear susceptibility should have a value around
3.10−17 cm2.statV−2.

600 700 800 900 1000

10-14

0

1

2

3
 FHG
 THG
 SHG

H
ar

m
on

ic
 g

en
e

ra
tio

n 
(a

.u
.)

Pump energy (meV)

Figure 4.7: Higher harmonic generation radiated below a dielectric slab excited
by a top incoming plane wave with normal incidence. The slab is 1 µm thick
and own a refractive index of n = 3.5. The nonlinear susceptibilities assumed
for this numerical example are χ(2),xxx = χ(3),xxxx = χ(2),xxxxx = −6.6 10−9.
The dark-blue and blue dashed lines denotes the second- and third-harmonic
generation. The light-blue solid line represents the fourth harmonic generation.
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4 Nonlinear optics

4.6 Kerr optical effect

4.6.1 Modeling of a third order nonlinear effect

One of the possible nonlinear effects we observe in dielectric as well as in
metallic materials and semi-conductors is known as the Kerr optical effect.
This effect is often associated to the electro-optical Kerr effect accounting
for changes of refractive index as a function of an applied electrostatic
field, however they should not be confused. The nonlinear optical Kerr
effect is a third order nonlinearity described by the polarization vector:

P (3),α(ω) = 4π3χ(3),αβγσ(ω;ω,−ω, ω)Eβ(ω)Eγ(−ω)Eσ(ω). (4.45)

The main components of this tensor are broadly discussed in textbooks
[81], this interaction can happen in the context of material resonances or
out of resonance. It is often represented as a refractive index correction:

n = n0 + 2n2|E(ω)|2, (4.46)

where n0 is the linear refractive index and n2 is the higher order coefficient
that describes the rates at which the optical refractive index changes as a
function of the optical intensity.

Such effect has already been discussed in the scope of the Fourier modal
method [93], where appropriate factorization rules are provided. In the
following derivations, I will solve Maxwell’s equations using the pole ex-
pansion and I will use the advantages provided by such scheme to account
for the Kerr optical effects. In this study, we will assume the case where the
phenomenon is described as a self-interaction of the field itself at the pump
frequency ω. The induced nonlinear polarization will then be expressed as
a source current emitting still at the frequency of the pump field. As in
[93] we will use a recursive scheme to calculate the necessary corrections
applied to the initial field distribution, to account for the nonlinear inter-
action. However, we won’t solve Maxwell’s equations at each step of the
process, thus the shift of the resonant frequencies and the changes in the
associated field distributions due to the nonlinear effect are not taken into
account.

The first step of this approach is to derive the constitutive equation
accounting for the third order nonlinear polarization:

Dα = εατEτ + P (3),α, (4.47)

with the nonlinear polarization given by Eq. (4.45).
The sum convention over α, β, γ and σ leads to the calculation of 81

terms in the more complicated case, which account for all the possible
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4.6 Kerr optical effect

combinations of the different components of the field. In addition, we
have a factor 3 that accounts for all the possible permutations between
the conjugated field and the two other components. However, it has been
demonstrated that this expression can be simplified to the form [81]

P(3) = 4π
[
6χ(3),1122(E ·E∗)E + 3χ(3),1221(E ·E)E∗

]
, (4.48)

where all the fields are ω dependent and E∗ denotes the complex conju-
gate of E. Thus, the nonlinear polarization is split into two contributions
driven by χ(3),1122 and χ(3),1221. The advantage of this formulation is that
χ(3),1122 and χ(3),1221 are scalars, thus we do not need to account for the
full convolution of the fields with the nonlinear susceptibility, we only need
to consider the two scalar products over the field components in Eq. (4.48).
Then, we can derive the equivalent source current as 4π times the time
derivative of the nonlinear polarization. The latter source current will
henceforth generate another electromagnetic field at the pump frequency
that we will have to account for, as a correction of the initial field. Then
we will have to reiterate the procedure until the correction term becomes
small enough to be neglected. It is to be noted that we account for the
emission of a field at the pump frequency in addition to the initial pump
field that propagated from the far field inside the structure. Thus, this
approach violate the conservation of energy, in that sense we are doing an
approximation.

Let us call E[0] the initial field induced in the system without correction,
we will then call E[j] the field correction calculated at the jth recursive step.
It is then appropriate to rewrite the constitutive equation accounting for
the total field with all the correction terms.

D = ε
∑
l

E[l] +4π6χ(3),1122

[∑
j

E[j] ·
∑
k

(
E[k]

)∗]∑
l

E[l]

+ 4π3χ(3),1221

[∑
j

E[j] ·
∑
k

E[k]

]∑
l

(
E[l]
)∗
.

(4.49)

We observe that each nonlinear susceptibility tensor is multiplied by the
product of three sums that account for the nonlinear polarization induced
by each field correction. In addition cross terms appear. They account
for the interaction of the jth field correction with the pump field and
all the other corrections calculated in the previous recursive steps. This
scheme provides a consistent approach on how to compute the nonlinear
polarization without violating the constitutive equation. In a first place, we
will study the calculation of the nonlinear polarization induced by χ(3),1122.
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We assume that this nonlinear susceptibility induces at each correction step

a nonlinear polarization P
(3)[j]
1122 , which generates the correction field of the

next iteration E[j]. For instance:

P
(3)[1]
1122 = 4π6χ(3),1122

[
E[0] ·

(
E[0]

)∗]
E[0], (4.50)

P
(3)[2]
1122 = 4π6χ(3),1122

{ [
E[0] ·

(
E[0]

)∗]
E[1]

+
[
E[0] ·

(
E[1]

)∗
+ E[1] ·

(
E[0]

)∗] (
E[0] + E[1]

)
+
[
E[1] ·

(
E[1]

)∗] (
E[0] + E[1]

) }
.

(4.51)
Before defining the general form of P(3)[j], let us define a new factor:

(χ(3),1122)[j] = 6χ(3),1122

{(
j−1∑
p=0

E[p]

)
·
(
E[j]

)∗
+ E[j] ·

[
j−1∑
p=0

(
E[p]

)∗]}
+6χ(3),1122

[
E[j] ·

(
E[j]

)∗]
.

(4.52)
It is then possible to derive a nonlinear polarization vector that takes into

account each of the previous field correction due to χ(3),1122 and preserve
the constitutive equation:

P
(3)[j+1]
1122 =

j∑
p=0

(χ(3),1122)[p] E[j] + (χ(3),1122)[j]

j−1∑
p=0

E[p]. (4.53)

Similar derivations lead to the definition of the coefficient:

(χ(3),1221)[j] = 3χ(3),1221

{(
j−1∑
p=0

E[p]

)
·E[j] + E[j] ·

[
j−1∑
p=0

E[p]

]}
+6χ(3),1221

[
E[j] ·E[j]

]
.

(4.54)

The latter term is used in the definition of P
(3)[j]
1221 :

P
(3)[j+1]
1221 =

j∑
p=0

(χ(3),1221)[p]
(
E[j]

)∗
+ (χ(3),1221)[j]

j−1∑
p=0

(
E[p]

)∗
. (4.55)

Thus, the total nonlinear polarization induced by an infinity of correc-
tions yields:

P(3) =

∞∑
i=1

(
P

(3)[i]
1122 + P

(3)[i]
1221

)
. (4.56)
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One can verify that the field correction E[j] is proportional to χ(3) to the
power n− 1. Assuming that χ(3) is of the order of 10−17 cm2/statV2 [81],
the largest value contributing to the nonlinear polarization is E[0]. Thus,
the dominant contribution inside each corrective nonlinear-polarization
P(3)[j] will be the cross terms:

χ(3),1122
[
E[0] · (E[0])∗

]
E[j] = (χ(3),1122)[1]E[j], (4.57)

χ(3),1221
[
E[0] ·E[0]

]
(E[j])∗ = (χ(3),1221)[1](E[j])∗. (4.58)

This approach will be used in the next part to account for the optical
Kerr effect inside layered structures.

Though we decided in this chapter to use rather simple approaches to
demonstrate the efficiency of the pole expansion approach to derive so-
lutions of Maxwell’s equations, it is clearly possible to improve these ap-
proaches beyond the current approximations. In the case of harmonic
generation, the implementation of a recursive scheme such as the scheme
used for the optical Kerr effect, could account for a back interaction be-
tween the generated field and the pump (for instance χ(2)(ω; 2ω,−ω) and
χ(2)(3ω; 2ω, ω)). In addition, we could also consider other generated fre-
quencies such as the third harmonic in the case χ(2)(3ω;ω, 2ω). Moreover,
another description of the optical Kerr effect is obtained while introducing
the nonlinear polarization as a correction of the refractive index. Using this
type of approach, we might be able to account for the conservation of en-
ergy during the nonlinear process. However, one needs to solve Maxwell’s
equations for the new refractive index distribution, at each correction step.
However, it is known that fast and efficient approaches based on the pole
expansion of the Green’s dyadic called resonant state expansion are able to
predict the shift of resonances induced by structural perturbations without
solving Maxwell’s equations [44, 71, 94]. Thus, the current approach could
be improved without increasing much the numerical cost by using the res-
onant state expansion to predict the changes induced by the modifications
of refractive index at each correction step.

4.6.2 Numerical example

We consider as a test structure, the U-shaped metallic grating depicted
Fig. 4.8 (a) and in [93]. The structure is dx = 1 µm periodic and the
grooves are h = 494 nm deep by w = 0.5 µm large. The structure is
mainly made of silver, the grooves are filled with a dielectric material, the
superstrate is assumed to be air and the substrate is silver. The permit-
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tivity of silver is derived using the drude model:

ε = ε∞ −
ω2
p

ω(ω + iωγ)
. (4.59)

In the linear spectra displayed in Fig. 4.8, we assume the proper-
ties of silver to be: ε∞ = 5, ωp = 1.355 1016 s−1 (0.139 µm) and
ωγ = 3.425 1013 s−1 (55 µm). The refractive index of air and the per-
mittivity of the dielectric material are respectively, n = 1 and εd = 12.04.
We assume the nonlinear susceptibility of the dielectric material to be
χ(3),1221 = 10−6 cm2.statV−2 that is two orders of magnitude higher than
the third-order nonlinear susceptibility of Si near its absorption band at
1170 meV [93, 95]. The nonlinear susceptibility is defined with a value
much higher than a regular third-order nonlinear term to test our algo-
rithm as it has been done in other works[93]. In the linear spectra Fig. 4.8,
we observe that the structure posses two resonances at 786− 3i meV and
806 − 12i meV. Exciting the structure near these resonances will provide
a near field enhancement that will require us to account for the Kerr op-
tical effect. Thus, we compute the field emitted by the dielectric material
at the pump frequency. The emission is calculated with the pole expan-
sion approach Eq. (4.35) assuming the source term −iωP derived from
Eq. (4.56).

The field distribution accounting for the optical Kerr effect is calculated
using the pole expansion of the Green’s dyadic at 785 meV and 806 meV.
The fields are obtained by calculating numerically the contribution of the
poles denoted by a solid black arrows at 786− 3i meV and 806− 12i and
the background field at the position of the gray arrows at 700 meV and
900 meV in Fig. 4.8 (a). The field distributions at the resonance and the
background corrections are derived using a reciprocal space with 61 plane
waves.

In Fig. 4.9 the field distributions derived in the top and bottom row
respectively at 785 meV and 806 meV account for the optical Kerr effect
in the right column Fig. 4.9 (b,d) while the field distributions of the pump
field without corrections are displayed in the left column panels (a,c). The
fields are calculated for an incoming plane wave with normal incidence and
an amplitude of |Epump| = 6.5 statV/cm. We observe that the corrections
accounting for the Kerr optical effect at 785 meV result in differences
between the field distribution displayed in Fig. 4.9 (a) and (b). More
precisely, at the top of the dip (near z = 0 µm) and in the center of the
lower part (x = 0.5 µm & z > 0.4 µm) the nonlinear phenomenon
decreased the field amplitude while it amplified the near field amplitude in
the two bottom corners of the dip (z = 0.495 µm & x = 0.25 and 0.75 µm).
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Figure 4.8: (a) This scheme represents a one-dimensional grating made of silver
with grooves filled with a dielectric material owning nonlinear properties and a
superstrate made of air [93]. The structure is dx = 1 µm periodic, the grooves are
h = 494 nm deep and w = 0.5 µm large and the substrate is 247 nm thick. The
permittivity of the metal is derived using the Drude model with λp = 0.139 µm,
λγ = 55 µm and ε∞ = 5. The permittivity of the dielectric material is εd = 12.04
and the refractive index of the superstrate is n = 1. The nonlinear susceptibility
of the dielectric is assumed to be χ(3),1221 = 10−6 cm2.statV−2. The structure
is excited by a plane wave with normal incidence polarized along x. (b) In
this panel we display the reflectance and absorption spectra of the structure
as a function of the wavelength. In this spectral range the structure posses two
resonant wavelengths denoted by black arrows at 786−3imeV and 806−12imeV.
The field calculation based on the Mittag Leffler expansion is carried out at
the energies 785 meV and 806 meV denoted by blue dashed lines, while the
background field is fitted at the position of the gray arrows at 700 meV and
900 meV. In panels (c) and (d) are displayed the intensity distribution of the
resonances at 786− 3i meV and 806− 12i meV, respectively.
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Figure 4.9: In the top and bottom rows are displayed the absolute value of
the electric fields inside the structure at 785 meV and 806 meV, respectively.
All the fields are derived assuming an incoming field with normal incidence and
with an amplitude of 6.5 statV/cm. In the left column is displayed the electric
field calculated using the Fourier modal method without accounting for the Kerr
optical effect. In the right column is displayed the field calculated using the pole
expansion of the Green’s dyadic accounting for the Kerr optical phenomenon.

However, accounting for nonlinear Kerr effect at 806 meV produces almost
no changes between Figs. 4.9 (c) and (d). On the one hand, we observe
Fig. 4.9 (c) and (d) that the resonance at 806 meV is inducing a near
field enhancement nearly 1.5 times stronger than the enhancement induced
by the resonance at 786 meV. On the other hand, the linewidth of the
resonance at 786 meV is 4 times smaller than the linewidth of the resonance
at 806 meV. Referring to Eq. (4.36), we observe that in this situation
the narrow resonance exhibits stronger nonlinearities than the resonance
with the strongest near field enhancement. This observation is interesting,
though it might not be true in all situations and there might be cases where
the near field enhancement becomes more important than the linewidth of
the excited resonances.
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Figure 4.10: The markers denotes the L2 norm of the total field after j correc-
tion steps. The red and black markers denote the convergences of the total field
at 785 meV and 806 meV, respectively. The convergence diagram is calculated
for an incoming field of amplitude |Epump| = 6.5 statV/cm.

In such numerical calculations, it is possible in the case of intense in-
coming fields that the corrections accounting for nonlinear phenomenon
do not converge and provide a total field with a higher and higher ampli-
tude. Thus, we calculated the L2 norm of the total electric field, in the
case of the calculations in Fig. 4.9 (b,d). The L2 norm is calculated as the
integral of the squared absolute value of the electric field in one unit cell.
The integration is carried out for one period of the structure (1 µm) in
x direction and through the thicknesses of the grating (495 nm) and the
substrate (247 nm) in z direction:

||Eα|| =
∫
dxdz[Eα|2. (4.60)

The calculation is done for the total electric field at each correction step
j > 0. As we can observe, the L2 norm of the total electric field converges,
which ensure the quality of the results displayed Fig. 4.9.

Finally, we have to note that the near field enhancement observed
Fig. 4.9 leads to self-focusing. In the case of large intensities, solving
Maxwell’s equations at each step would lead the reduction of the size of
the hot-spots. At the same time, the amplitude of the field locally increases
that enhances further the nonlinear interaction. This effect can damage
the structure in the case of filament propagation. In such situation, the
numerical scheme provided would not converge and additional phenomena
as thermal effects should be considered.
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4 Nonlinear optics

In this section, we provided a new method to account for the Kerr optical
effect inside nanostructures. This nonlinear phenomenon is described by
attributing a χ(3) tensor to the medium that posses nonlinear properties.
In the next chapter, we will see that third order nonlinear phenomena that
are described by the χ(3) tensor can also generate third harmonics inside
metallic nanostructures. However, in the next chapter the third harmonic
generation inside plasmonic systems will be derived using reciprocity prin-
cipal as explained in the section 4.3.2.
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generation

What we observe is not nature itself, but nature exposed to our
method of questioning.

Werner Heisenberg (1901-1976)
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5 Experimental and numerical study of third-harmonic generation

5.1 Nonlinear optics within chiral systems

5.1.1 Linear and nonlinear circular dichroism

Chirality is a property that characterizes objects lacking any kind of mirror
symmetry. For instance the left and right hands of a human are chiral.
Indeed they are the mirror projection of each other, however they cannot be
superposed perfectly no matter how you turn them. The two versions of an
object owning a chiral geometry are called enantiomorphs or enantiomers
in the case of molecules. In a Cartesian coordinate system the 3 basis
vectors form a chiral object, indeed once the x and y axis are defined
the z axis can be oriented along two possible directions that refers to two
different basis that are the mirror symmetric of each other. These two
basis cannot be superposed and are called right- and left-handed basis
(see Fig. 6.1).

X

Y

Z

a) b) X

Y

Z

Figure 5.1: Representations of a Cartesian right-handed basis (a) as well as a
left-handed basis (b).

The choice of a left- or right-handed vector basis defines the orientation
of the vector product, henceforth the vector product and thus the curl
operator can be used to discriminate the two different types of handedness
inside one coordinate system.

Beyond the mathematical facts and the observation of macroscopic chiral
objects, chirality is widely present in nature at nano- and microscopic
scales. A large amount of molecules are chiral and probing the handedness
of molecular species is a broad topic of research. Probing the handedness
of a chiral object requires a chiral probe. In this aspect, optical radiations
are highly interesting since the left- and right-circular polarization states
of light are chiral. Thus, so called chiroptical effects can occur through
light matter interactions. Though linear light-matter interactions can be
described using the harmonic oscillator model, chiroptical effects have to
be described using the coupled oscillator model. Thus, we can consider
a system of two oscillators interacting with each other as illustrated in
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5.1 Nonlinear optics within chiral systems

Fig. 5.2.

x

z

y

Figure 5.2: Illustration of a coupled oscillator system made of two mechanic
oscillators. Each mechanic oscillator is constituted of a mass oscillating at the
extremity of a spring. Each mass is moving along the axis of the corresponding
spring, thus the two masses are oscillating in perpendicular directions. The
coupling between the oscillators is modeled with a third spring.

This model leads to the Drude-Born-Fedorov constitutive equations for
reciprocal chiral media [96]:

D = 4πεcE + Γ ∇×E, (5.1)

B = 4πµcH +
µc
εc

Γ ∇×H. (5.2)

µc and εc are quantities that are derived from the coupled oscillator model
and approximate the dielectric permittivity and magnetic permeability in
the same fashion as the Lorentz model does for a single harmonic oscillator.
Γ represents the chiral response of the medium, even though in specific
cases the permittivity εc derived from the coupled oscillator model can
depend on the chiral properties of the medium as well. These equations
can be however reduced to the simpler constitutive equations (2.20) and
(2.21) given in chapter 2 [97].

It has been shown that plasmonic nanoparticles with specific shapes
can exhibit chiroptical effects that are orders of magnitude higher than
in bio-molecules [98–103]. Additionally, such plasmonic structures can
be used to strongly enhance the chiral response of molecules [104, 105].
Thus, plasmonic structures provide an efficient method to analyze the
chirality of biological and chemical objects. In this section we will focus
on circular dichroism spectroscopy that is a well-known method to detect
the chiroptical phenomenon. The circular dichroism of a medium is usually
calculated as the difference of absorption spectra between left- and right-
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5 Experimental and numerical study of third-harmonic generation

circularly polarized light:

CD = ALCP −ARCP . (5.3)

In the case of nano-structures made of materials with nonlinear prop-
erties capable of radiating pump harmonics, one can define a nonlinear
circular-dichroism for the generated harmonic. It is the relative difference
of intensity emitted in each circular polarization-state:

CD NL =
I NL

LCP − I NL
RCP

I NL
LCP + I NL

RCP

. (5.4)

Previous research work demonstrated that even though the intensity
detected at the generated harmonic is weak, the nonlinear circular dichro-
ism (calculated as a relative strength) is stronger than the linear circular
dichroism [106–108]. The previous work mainly aimed for second-harmonic
chiroptical effects, however SHG inside gold nanoparticles takes place at
the interfaces and thus suffer from surface defects. Additionally, this type
of harmonic generation requires non centro-symmetric systems henceforth
it is extremely sensitive to the geometry of the metallic nanostructures.
In this context experimental measurements of the circular dichroism of
emitted second-harmonics are challenging because any small imperfection
in the fabrication process will have dramatic consequences.

5.1.2 Numerical model and experiment

In this section, we will use the reciprocity principle to calculate the circular
dichroism of third-harmonic radiations emitted inside plasmonic structures
with a C4 symmetry. The result of the calculation will be compared with
experimental results, indeed, the third harmonic generation is a volumetric
process less sensitive to structural imperfections, which is a strong advan-
tage from an experimental perspective.

Before describing the complete structure that has a rather complicated
geometry, let us shortly present the Born-Kuhn plasmonic analog [34].
The left-handed and right-handed versions of the Born-Kuhn plasmonic
structures are built as the superposition of two metallic nano-rods (see
Fig. 5.3) that behave as two coupled oscillators.

Individually each rod is designed to exhibit a fundamental resonance
around the wavelength λ0, however the two rods are close enough to couple
through their near fields. Hence, we can observe a splitting of the resonance
into two hybrid resonant modes located symmetrically around the original
resonance of the single rod. The two hybrid resonances are often referred to
as bonding and anti-bonding modes, which are illustrated in Fig. 5.3 panels

112



5.1 Nonlinear optics within chiral systems

a) b)

c) d)

Left-handed structure Right-handed structure

LCP
RCP

Figure 5.3: Panels (a) and (b) are illustrating left-handed and right-handed
gold nanostructures exhibiting the chiroptical properties predicted by the Born-
Kuhn coupled oscillator model. In panel (c) is represented the anti-bonding
mode of a left handed structure excited by an incoming left handed circular
polarized radiation. The blue arrows represent the dipolar moment induced in
each gold nano rod for an anti-bonding mode. (d) Representation of a bonding
mode in a left handed structure excited by right circularly polarized light. The
red arrows denote the induced moment of each rod for a bonding mode.

(c) and (d). The symmetric bonding mode has a lower energy than the
anti-bonding mode that exhibits an anti-symmetric distribution of charge
and thus store an additional load of electrostatic energy. Furthermore, the
bonding mode of a chiral structure is excited by radiations with a circular
polarization of opposite handedness while the anti-bonding mode is excited
with a circular polarization of same handedness as illustrated Fig. 5.3.

The experimental structure has been arranged in a lattice with C4 sym-
metry [6] as illustrated Fig. (5.4). The left- and right-handed circular
polarization states are eigen-polarizations of systems with C4 symmetry.
Incoming electromagnetic radiations polarized with an eigen-polarization
state keep their polarization unchanged while propagating through the
structure. Hence, no polarization conversion occurs, which prove to be
convenient in the measurement of circular dichroism and thus the detec-
tion of the chiroptical phenomenon.

In an experimental structure with such properties, each unit cell contains
4 corner stack Born-Kuhn analogs of same handedness. The metallic nano
rods are made of gold embedded inside a dielectric material (IC1-200).
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} CD

RCP

LCP

d

a)
b)

c)

Figure 5.4: (a) Design of a bi-layer containing corner stacked Born-Kuhn
analogs arranged with a C4 symmetry. The CD spectra of the structure is
computed by detecting the difference of the absorption calculated for the two
circular polarizations. In (b) and (c) are the SEM images of left- and right-
handed enantiomers, in (b) is inserted a scale bar of 200 nm.(Reprinted with
permission from [6]. Copyright (2019) American Chemical Society. Only the
panels (b) and (c) are from the original print.)

The system is printed on top of a substrate of glass. The refractive index
of IC1-200 and glass are assumed to be 1.3 and 1.46, respectively. The
dielectric permittivity of gold is calculated using the critical point model
[73]. The structure has a periodicity of 600 nm, each rod has a length of
200 nm, a width of 70 nm and a thickness of 40 nm. The spacer layer in
between the gold nanorods is d = 110 nm thick.

The structure is excited by a top incoming plane wave with normal inci-
dence and either a left- or right circular polarization. Using the algorithm
based on the S-matrix approach described section 2.7 [68, 69], we iden-
tify the bonding and anti-bonding modes at respectively 1110 − 48i meV
(1116 nm) and 1160− 17i meV (1070 nm).

The third harmonic generation is numerically calculated in three steps.
First the field distribution of the pump field inside the structure is calcu-
lated using the Fourier modal method. For this simulation, the structure
is modeled using a spatial sampling Nx = 2048 in real space and 43 × 43
Fourier harmonics in the reciprocal space.

In a second step, we use the anharmonic oscillator approach [81] to
define the third-order nonlinear susceptibility of gold that we multiply
with the pump field to obtain the induced nonlinear polarization field in
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real space as derived in Eqs. (4.2) and (4.3). As discussed in the previous
chapters, the nonlinear polarization behaves as a source current at the
third harmonic. Thus in a third step, we finally use the volumetric form of
the reciprocity principle as in the section 4.3.2. We calculate the near field
generated by s- and p- polarized plane waves incoming from the far field at
the third harmonic frequency. The overlap integral of the latter fields with
the volumetric nonlinear source provides the third harmonic radiated into
the far field with s- and p-polarization. Obviously, the s- and p-polarized
states are chosen as a basis for convenience but the polarization basis
defined with the two circular polarization could have been chosen too.

While it is possible to model the linear properties of the full structure
with the coupled oscillator model, it has been shown that the nonlinear
properties can be modeled with a similar approach. The parameters of the
linear system are defined using a fit of the linear spectra experimentally
measured on the structure. By the mean of perturbations in the coupled
equations describing the system, it is possible to derive a source term that
describes the harmonic generation inside the structure [6]. The results of
this method are given side by side with the experimental results and the
full wave simulation figures 5.5 and 5.6.

The numerical results and the experimental measurements reveal in a
first place that a circularly polarized pump generates a third harmonic
with the opposite handedness. This polarization conversion occurs during
the harmonic generation. It is due to the symmetry of the structure [109].
This conversion can be understood intuitively calculating the nonlinear
polarization vector using the anharmonic oscillator model for the third-
order nonlinear susceptibility and the Jones vector of the electric field.
Owing to the eigen-polarization states of the structure, we know that the
field inside the structure will be left- or right-handed circularly polarized
and thus in the first case the nonlinear polarization reads:

P(3)(3ω) ∝ χ(1)(3ω)

χ(1)(ω)

1
i
0

3

. (5.5)

We see immediately that the induced nonlinear polarization has the op-
posite handedness P(3) ∝ (−i, 1, 0) of the pump field. Hence the third har-
monic is polarized accordingly in the simple situation where anharmonic
oscillator model can be used to determine the nonlinear susceptibility [87].

Left-handed and right-handed structures display similar behaviors plot-
ted in figures (5.5) and (5.6). The black solid lines in panels (a,d,g) denote
the extinction factor for left-circularly polarized incoming light, the panels
(b,e,h) denote, in black, the linear response for right-circular polarized ex-
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Figure 5.5: Measured (top row), modeled (middle row) and simulated (bottom
row) linear (black) and nonlinear (red) chiroptical response of the left-handed
enantiomer. The extinction defined as the negative logarithm of transmittance
−ln(T ) and the THG efficiency are displayed in (a), (d) and (g) for LCP and
(b), (e) and (h) for RCP excitation schemes, and yield the CD and THG-CD
shown in (c), (f) and (i). (Reprinted with permission from [6]. Copyright (2019)
American Chemical Society.)

citation. We observe that the two polarization states excite two different
resonant modes as expected. These modes are located at the maximums
of linear extinction displayed in each panel. The circular dichroism, in this
example, is calculated as the difference of the extinction for each incoming
circular polarization (CD = −ln(TLCP ) + ln(TRCP )), which is plotted in
panels panels (c), (f) and (i). We can observe in the linear CD response
the fingerprint of chiroptical effects denoted by a local minimum followed
by a local maximum.

The nonlinear response displays a similar behavior. The emission at
the third harmonic for each handedness of incoming pump is displayed
whether with red points in panels (a), (b) for the experiment or a red
solid lines panels (d), (e) for the model and (g), (h) for the simulation.
It occurs that the resonant modes excited at the pump frequency, in each
case, produce an enhancement of the harmonic conversion process as we
could expect from the pole expansion approach detailed in chapter 4. For
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Figure 5.6: Measured (top row), modeled (middle row) and simulated (bottom
row) linear (black) and nonlinear (red) chiroptical response of the right-handed
enantiomer. The extinction defined as the negative logarithm of transmittance
−ln(T ) and the THG efficiency are displayed in (a), (d) and (g) for LCP and
(b), (e) and (h) for RCP excitation schemes, and yield the CD and THG-CD
shown in (c), (f) and (i). (Reprinted with permission from [6]. Copyright (2019)
American Chemical Society.)

instance, in the left handed structure in Fig. 5.5 the maximum of THG
will occur at three times the frequency of the bonding or anti-bonding
mode, respectively for right- and left-handed circularly polarized pump
fields. The nonlinear CD-spectra is displayed panels (c), (f) and (i) with
red points and red solid lines for the experimental measurement, the model
and the simulation, respectively. We observe that the relative nonlinear
circular-dichroism expressed by Eq. (5.4) displays a similar fingerprint as
the linear CD-spectra, which was expected from the position of the peak of
nonlinear emission at the position of the bonding and anti-bonding modes.

The simulation displays slightly broader extinction peaks than the peaks
measured experimentally. It might be due to the difference between the
perfect nano-rods of the model and the imperfect rods printed for the
experiment. This difference would yield different coupling constants and
then different damping rates for the bonding and anti-bonding modes of the
experiment and the simulation. Additionally, we observe that the peak of
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nonlinear emission calculated in our simulation is red-shifted compared to
the experiment. This behavior is due to the fact that the maximum of near
field enhancement that strongly influence the harmonic generation occurs
at lower energies (larger wavelength) than the far field enhancement [110].
Thus, the shifted near field enhancement might be stronger in the case of
the simulated perfect structure than the imperfect experimental structure,
which then would display a better efficiency at shorter wavelength.

Besides the small mismatch discussed above, the numerical simulations
display a good agreement with the experiment and the model being able to
reproduce the chiroptical effect at the third harmonic using rather simple
assumptions such as the anharmonic oscillator model for the nonlinear
susceptibility. In addition, one should note that using 43 × 43 harmonics
for the numerical simulation generates gigantic matrices that are more
difficult to invert numerically and push the model close to its limit. In the
next chapter we will study a simpler structure that still undergoes mode
hybridization as the Born-Kuhn plasmonic analog and exhibits a rather
singular harmonic-conversion mechanic very different from the nonlinear
chiroptical phenomenon.

5.2 Influence of symmetry breaking on the
third-harmonic generation

5.2.1 Electromagnetically induced absorption

We observed in the previous section that the hybridization of two modes
can trigger interesting phenomena such as chiroptical effects. The third
harmonic has proven to exhibit a circular dichroism whose amplitude cal-
culated relatively to the total field amplitude is higher than the relative
circular dichroism of the linear signal. However, such measurements re-
quire very sensitive sensors at the third harmonic frequency. Indeed, in
the situation where the plasmonic structure is not designed appropriately,
the nonlinear harmonic generation is weak.

In this section, we aim to design a plasmonic structure that would exhibit
an enhanced third-harmonic conversion efficiency. From the pole expan-
sion approach providing Eq. (4.37), we observed that a pump frequency
close to a resonant mode exhibits a high harmonic conversion efficiency.
The generated intensity scales with the quality factor of the resonance and
the amplitude of the resonant near field to the power n (n = 3 in the case of
THG) as it can be observed by rewriting Eq. (4.36) for third-harmonic gen-
eration. Additionally, the scattered near field in Eq. (4.37) is proportional
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to the amplitude of the pump wave-vector, which provides better efficiency
for higher energies. Thus, our current goal is to excite a structure with
the pump at the frequency of a resonant mode exhibiting a large near field
enhancement. In addition, this theoretical assumption is correlated with
experimental studies, which proved that the near field enhancement and
the quality factor of resonant modes at the pump frequency play indeed
a critical role in the frequency conversion efficiency [101]. In this section,
we will study specifically the interaction of a dipolar resonant mode with
a quadripolar mode that is of particular interest in plasmonics.

a)

b)

x

y

z

Figure 5.7: (a) Example of a dolmen structure built out of three gold nano-
rods, two rods in the lower layers parallel to each other and one rod on top
of the latter oriented in a perpendicular direction. The three nano-rods are
embedded inside a dielectric material. The gold nano-rod on top of the structure
owns a fundamental resonance with a strong dipole moment whose near field
induces the excitation of the two gold nano-rods located below that exhibit
a quadrupolar mode. (Reprinted with permission from [7]. Copyright (2019)
American Chemical Society. Only the panel (b) comes from the original print.)

So called plasmonic dark modes might exhibit the near field enhance-
ment and the large quality factor required to provide a high conversion
efficiency to the third harmonic. However, dark modes cannot be excited
from- and radiate to the far field because their overall dipolar moment is
nil. In other words they cannot exchange energy with the far field at all.
One alternative is to introduce an additional element to the system that
can sustain energy exchange with the far field and couple with the dark
mode. Hence, the dark mode could receive and radiate energy through
this element. In a plasmonic structure for instance, the idea would be to

119



5 Experimental and numerical study of third-harmonic generation

induce a near field mediated hybridization of a dark mode with a dipolar
plasmonic resonance that can be excited from the far field.
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Figure 5.8: In this figure are displayed as an example the top view of a plan
(0,x,y) of the near fields of a dipolar and a quadrupolar resonance in panels (a)
and (b), respectively, without external excitation [67]. The dipolar resonance in
panel (a) is excited on a gold nano-rod 450 nm long, 120 nm large and 60 nm
thick. The blue dashed line denotes a symmetry plane of the field. In (b) the
quadrupolar mode is excited on a pair of nano-rods 400 nm by 80 nm by 40 nm
separated from each other by 120 nm center-to-center. The white dashed line
denotes a plane of anti-symmetry of the field at the quadrupolar resonance. The
red arrow denotes the orientation of an incoming x-polarized electric field.

Let us first study individually a quadrupolar and a dipolar plasmonic
resonant mode. Fig. 5.8 (a) displays the top view of the electric field
belonging to a plasmonic dipolar resonance on a single gold nano-rod.
Panel (b) contains the field of a quadrupolar resonant mode on a pair
of nano-rods. The green arrows denote the in-plane components of the
electric fields. These fields are calculated using the approach described in
section 2.7 that does not account for an external excitation. In addition,
we do not consider any coupling between the quadrupolar and the dipolar
modes. The dimensions of the gold nano-rods are given in the caption
below the figure but since they are not yet relevant in these explanations,
let us focus on the symmetries of the fields.

We consider the situation of an incoming plane wave with normal in-
cidence and polarized along the x axis marked by a red arrow at the
top of the Fig 5.8. Consequently, an associated background field can be
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considered, by definition we assume that the background field propagates
through the structure as if it was a homogeneous material with the same
permittivity as the superstrate. The capability of the incoming field to
excite each mode is quantified by the overlap integral of the background
field with the resonant near field (see Eq. (2.64)). We observe that the
field of the dipolar mode posses one plane of symmetry, marked with a
blue dashed line in Fig. 5.8 (a). The overlap integral of the background
electric field with the field of the dipolar mode, on each side of the symme-
try plane, will provide the same results that we will add to each other to
calculate the total overlap. In the case of the quadrupolar mode, the same
plane marked with a white dashed line is a plane of anti-symmetry. Thus
in Fig. 5.8 (b), the overlap integral of the background field with the field
distribution of the quadrupolar mode on each side of the white dashed line
will provide opposite values that will exactly cancel each other. Thus, the
overall overlap integral is equal to zero. Using the approach depicted in
the pole expansion Eqs. (2.64) and (2.65), we can deduce that the dipole
mode can be excited from the far field but the quadrupolar mode cannot
be excited this way and thus the quadrupolar plasmonic mode depicted in
Fig. 5.8 (b) is a dark mode.

According to the idea previously mentioned, we now assume the situa-
tion where the single nano-rod is located near to the pair of nano-rods so
that they can couple by the mediation of their near-fields. Additionally,
we consider that the frequencies of the dipolar and the quadrupolar modes
of the single and the pair of nano-rods are close enough to hybridize. We
can study the capability of the quadrupolar plasmonic mode to radiate
to the far field through the dipolar resonance using the approach based
on the pole expansion detailed in the previous chapters. While deriving
Eq. (2.64), we found that the overlap integral of a resonant near field with
a plane wave coming from the far field results in the coupling coefficient of
this resonance with the far field. In the same fashion, we can assume that
the coupling between the dipolar mode and the quadrupolar mode can be
evaluated by the overlap of their respective near fields. In the situation
where the single nano-rod has a centered position relatively to the pair of
nano-rods, we can anticipate from Fig. 5.8 that the overlap integral be-
tween a symmetric and an anti-symmetric field distribution is going to be
nil. Due to symmetry, the dipole has to be moved aside, more specifically
in the direction y.

We finally reach the design of an experimental plasmonic system, the
dolmen structure [7, 37, 111] depicted in Fig. 5.7. The structure is made
out of three layers, a first layer contains two gold nano-rods parallel to each
other and close enough to couple and exhibit a quadrupolar resonant mode.
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On top of the first layer is printed in a perpendicular direction a single
nano-rod exhibiting a resonant mode with a strong dipolar moment. These
two layers are separated by a spacer that will induce a phase retardation
in the coupling between the quadrupolar mode and the dipolar mode.
The retardation effect gives rise to a peculiar behavior known as the so
called electromagnetically induced transparency (EIT), which is originally
a quantum phenomenon observed in atomic physics.

This phenomenon is best described using an energy level diagram that
provides an analogy with atomic physics. Let us consider a system with
three energy levels as depicted in Fig. 5.9. The energy level |0〉 represents
the ground state. |1〉 represents the energy level of a dipolar mode that
can be excited from the ground state. |2〉 denotes the energy level of the
quadrupolar mode that cannot be excited from the ground state. γ1 and
γ2 are the decay rates of |1〉 and |2〉. The energy level of the quadrupolar
mode cannot exchange energy with the ground state and thus its decay
rate γ2 is non-radiative. As a consequence, γ2 is much smaller than the
decay rate of the dipolar mode γ1 that can radiate. On the other hand a
possible coupling between the two excited energy states can occur and is
expressed by the factor κeiφ that describes the intensity of the coupling
and the phase retardation induced by the energy exchange between the
two resonant modes. Thus, the energy state |2〉 can be excited and radiate
by the mediation of |1〉. The three level system owns two excitation-to-
radiation paths: |0〉 → |1〉 and |0〉 → |1〉 → |2〉 → |1〉, where the energy is
radiated from the dipolar mode. These two patterns allow the two excited
states to radiate coherently and thus interfere with each other, accounting
for the phase retardation φ due to the complex coupling factor.

In the plasmonic analog the coupling strength κ between the dark mode
and the bright dipolar mode is proportional to the displacement of the
single nano-rod out of the centered position on top of the quadrupolar
mode. The phase φ induced during the coherent emission of the two modes
is proportional to the thickness of the spacer between the single nanorod
and the pair of nanorods. The value of the phase retardation will define
the kind of interference that will occur between the two modes. In the case
φ = 0, a destructive interference occurs and a transmittion window opens
in between the two resonances with a minimum of absorption. In the case
φ = π/2 a constructive interference occurs and we observe a strong peak
of absorption in between the two resonances that is characteristic from the
so called electromagnetically induced absorption (EIA) [112].

In the case of EIA, the peak of absorption is the sign of a strong en-
hancement of the near field. The latter effect is of interest in our journey
to design a structure with a high conversion efficiency from the pump fre-
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Figure 5.9: (a) Scheme and linear spectra of a EIA structure with a cen-
tered dipole. The dipole cannot excite the qudrupolar mode of the pair of gold
nano-rod. Thus, the quadrupolar mode cannot be excited and only the dipolar
resonance appears in the linear spectra. In panel (b) is displayed the scheme and
linear spectra of the structure with a shifted dipole. We observe a second reso-
nance occuring at 1.72 µm and a local peak of absorption. These are the signs
that the dipolar resonance hybridize with the dark mode, which can then radiate
to the far field. Panel (c) is displayed the energy level diagram illustrating the
electromagnetically induced transparency or absorption. The ground state is the
energy level |0〉. Thus, |1〉 and |2〉 are the quadrupolar and dipolar resonances.
The coupling between the two resonant modes is modeled by κeiφ. Depending
if φ is equal to 0 or π/2 we obtain an electromagnetically induced transparency
or absorption [112].
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quency to the third harmonic. Additionally, from the classical point of view
we consider that the two modes hybridize and the overall structure will
then exhibit two resonances with interesting properties. Both hybridized
resonant modes have a higher quality factor than dipolar resonances, a
characteristic they inherit from the dark mode. However, they can both
be excited from the far field. Considering the enhanced absorption and
the very high quality factors owned by the dolmen structure resonances,
the latter seems a very good choice of structure for frequency conversion
to the third harmonic.

5.2.2 Enhanced third-harmonic generation in dolmen
structures

Let us consider the experimental structure depicted Fig. 5.7 (b). The top
single nano-rod is 450 nm long, 120 nm wide and 60 nm thick. Both rods
of the lower pair are 400 nm by 80 nm by 40 nm and they are separated
from each other by a center-to-center distance of 270 nm. The single nano-
rod is separated from the pair of nano-rods by a spacer 120 nm thick and
the nano-rods are made of gold while the surrounding dielectric is as in
the previous example IC1-200. The refractive index of both materials is
numerically modeled using the same models as in the previous section, the
gold dielectric permittivity is calculated using the critical point model, and
the refractive index of IC1-200 is assumed to be 1.3.

The experimental measurement is performed on an array of 100 × 100
µm2 containing many structures. The array is excited with an incoming
pump field polarized along the x axis, with a wavelength between 1.2 µm
and 1.9 µm. The resulting signals are displayed Fig. 5.10 panels (a) and
(b). The red solid line denotes the absorption of the structure. The black
dots connected with a black solid line mark the third harmonic generation
measured by transmittance and polarized along x and y in (a) and (b),
respectively. Below, in the panels (c) and (d) are displayed the numerical
results calculated using the nonlinear Fourier modal method and a model
based on the finite elements method.

In Fig. 5.10 panel (c), the red solid line denotes the linear absorption
numerically calculated within the Fourier modal method. The black solid
line represents the intensity generated at the third harmonic. The response
at the third harmonic is calculated in two steps as in the previous example.
In a first step we use the linear Fourier modal method to compute the near
field created by pump. Thus, we use the extended anharmonic oscillator
model to calculate the χ(3) that we multiply to the pump near field to
obtain the nonlinear polarization field inside the structure. Finally, we
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Figure 5.10: (a) The red solid line displays the linear spectra of absorption
of the structure excited by a x-polarized plane wave with normal incidence, the
black dots linked by a solid black line represent the measured third harmonic
generation emitted with x-polarization. In (b) is displayed the y-polarized third
harmonic generation that is triggered by a symmetry breaking. Panel (c) dis-
plays the x-polarized third harmonic generation theoretically predicted using
the Fourier modal method and the reciprocity principle applied for a perfectly
symmetric structure. In (c) is plotted the third harmonic enhancement pre-
dicted by integrating the pump field inside the gold nano-rods using a finite
element method. (Reprinted with permission from [7]. Copyright (2020) Amer-
ican Chemical Society. The panel (c) is not part of the original print and has
been added by the author of this thesis.)
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5 Experimental and numerical study of third-harmonic generation

calculate the propagation of plane waves incoming from the top and bottom
half spaces at the third harmonic frequency with normal incidence and with
a s- and p-polarizations. Owing to the reciprocity principle, the overlap
integral between the near field induced by the incoming plane waves at
the third harmonic and the nonlinear polarization field provide the field
radiated to the far field at the third harmonic as explained in section 4.3.2.

In panel (d) the near field induced at the pump frequency is calculated
using the finite element method. Then the generated third harmonic is
calculated by integrating the nonlinear polarization induced inside the gold
nano-rods as described section 4.3.1.

We observe that the linear response calculated with the Fourier modal
method is fairly similar to the measured absorption, however in the result
computed using the FEM, the plateau at 1550 nm is not as pronounced
as in the experiment. At the third harmonic the Fourier modal reproduce
well the two peak of emission of same amplitude and similar linewidth ob-
served in the experiment. However, in the third harmonic signal calculated
with the nonlinear Fourier modal method, the peak of smaller wavelength
exhibits a slight slope-breaking on its side at 1680 nm that is a numerical
artifact whose amplitude decreased while we increased the accuracy of the
calculation. The third harmonic generation calculated with the finite ele-
ment method do not exhibit similar artifact, however the second peak of
emission calculated at 1800 nm is smaller and with a larger linewidth than
in the experiment. Finally, the peak of emission radiated at the third har-
monic are red shifted in the simulations compared to the experiment. This
phenomenon has been explained in the previous section. Additionally, in
the current experiment, the sample was not excited with a perfectly normal
incidence, which could have slightly shifted the third harmonic response
to shorter wavelength compared to the numerical calculation modeling a
perfectly normal incidence.

Finally, a very interesting effect has been observed. Indeed in the case
of a perfect structure with (O,y, z) as symmetry plan, there is no third-
harmonic generated with a polarization along the direction y. This char-
acteristic is predicted in both simulations. Indeed, in perfectly symmetric
dolmen structures, the third harmonic is radiated through the dipole that
radiate with a polarization aligned with its moment. Though in our case
the dipolar mode has a x-oriented moment, in the experiment a very strong
peak of emission polarized along the y axis has been measured at 1700 nm.
In the end, it has been demonstrated that the unexpected peak of emission
was due to a structural symmetry breaking of the nano-rod pair [7]. In the
situation where the two nano-rods do not own the same length, the sym-
metry breaking induces a very strong third-harmonic generated directly by
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5.2 Influence of symmetry breaking on the third-harmonic generation

the quadrupole and leading to the apparition of the peak in Fig.5.10 (b).
The importance of structural symmetries and anti-symmetries in nonlinear
optical phenomena is known. However, in this example we observe that
the enhancement induced by a symmetry breaking can be stronger than
the complicated process we enabled using an EIA structure.
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6 Conclusion and outlook

One of the weaknesses of our age is our apparent inability to
distinguish our need from our greed.

James Clerk Maxwell (1831-1879)
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In this thesis, we explored different approaches based on the Mittag-
Leffler expansion. We showed that not only the scattered field but also
the total field inside a nano-structure can be derived using the pole expan-
sion. This additional insight on the Mittag-Leffler expansion shows that
this series expansion can be used in a more general and systematic manner
for the calculation of different physical quantities. This method describes
the behavior of a structure over a full spectral range by the only mean of
few full-wave solutions of Maxwell’s equations that is of high interest for
time consuming calculations such as the modeling of complex nanostruc-
tures or nonlinear phenomena, as it is demonstrated in chapter 4. While
the approach is already fast, it could be improved by the development of
methods able to retrieve different types of modes like static modes [113].
In addition, the derivation of resonant modes could account for the hydro-
dynamic model to consider different types of phenomena like nonlocality
or inter-band transitions inside metals [58]. In addition, a model with such
properties could then calculate hydrodynamic resonances.

The description of nonlinear optical phenomena in systems made of
stacked periodic layers is expressed by extending the original scheme of
the Fourier modal method. This approach uses the undepleted pump ap-
proximation. Additionally, we formulate new factorization rules necessary
for the Fourier transformation of higher order tensors as the nonlinear sus-
ceptibility. Combined with adaptive spatial resolution, these new features
ensure the fastest convergence achieved so far to solve nonlinear Maxwell’s
equations within the Fourier modal method. This method is unfortunately
limited by the new factorization rule that becomes memory and power con-
suming for tensors of order higher than two. However, it is demonstrated
later that other alternatives are possible using the reciprocity principle.

We observe that even the calculation of the second-harmonic generation
within the Fourier modal method can become rather time consuming for
complex structures. Thus, we show that it is possible to improve upon
the previous work, using the pole expansion in the derivation of the har-
monic generation within periodic structures made of materials with non-
linear properties. The pole expansion comes as a semi analytic model
that is by definition faster than fully numerical schemes. Additionally, the
semi-analytic formulation expressed in Eq. (4.37) gives a deep insight in
the physics ruling nonlinear phenomena inside nanostructures. Indeed, in
this formula the different competing effects enhancing or hampering the
nonlinear conversion are expressed separately. On one hand the superior
enhancement provided by resonances at pump frequencies is analytically
expressed and quantified. On the other hand, the influence of the quality
factor of each resonance occurs explicitly in the denominator of the pole
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6 Conclusion and outlook

expansion as a non-vanishing imaginary part in the limit of frequencies
close to the resonant poles. Finally the importance of the symmetries and
anti-symmetries and the impact of the near field enhancement of each res-
onance is accurately quantified by the mean of overlap integrals. This last
step might be calculated numerically in nontrivial cases. However, visualiz-
ing the symmetries of the resonant poles at the pump and at the harmonic
frequencies using field plots already provides a good indication concerning
the possible enhancement of harmonic generation within a nanostructure.
In addition, the speed and the memory consumption of the method can
be further improved using an approach based on the group theory as L. Li
did for the linear Fourier modal method [114–116].

While we tackle the contribution of symmetries and anti-symmetries
in the volumetric emission of pump harmonics, we might remember that
the crystalline symmetries of a dielectric material are described by the
symmetry of its nonlinear susceptibility tensor. We are thus able to draw
a crystalline to structural symmetry analysis within the same picture that
could be relevant in the optimization of the frequency conversion within
nanostructured media.

We showed that Kerr optical phenomenon can be modeled using a re-
cursive method, which calculates a field emitted at the pump frequency.
However, instead of modeling the emission of light at the pump frequency,
we can modify this approach considering a change of refractive index pro-
portional to the square of the electric field that will ensure the conserva-
tion of energy. In theory, this other approach requires that we account for
structural changes at each recursive step, thus we would have to calculate
the new position and field distribution of resonant modes at every itera-
tion. Nonetheless, one can uses approaches based on the resonant state
expansion that can account for structural changes without requiring new
solutions of Maxwell’s equations [44, 71, 94]. Thus, we could account for
the Kerr optical effect accurately for a low numerical cost combining the
pole expansion approach and the resonant state expansion. Similarly, a
perturbative approach implemented upon the pole expansion could take
into account energy depletion in the pump field and thus get rid of the
undepleted pump approximation we used so far.

In the last part of the 4th-chapter we demonstrated how the reciprocity
principle can be used in real space to calculate third-harmonic generation,
avoiding at the same time the issue related to the implementation of heavy
factorization rules. This method proved to be efficient in the resolution of
nonlinear Maxwell’s equations, in complex plasmonic structures exhibiting
dark resonant modes or chiroptical effects. Applying the reciprocity prin-
ciple in real space is nonetheless time consuming due to the many Fourier
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transformations required at each spectral point. An improvement of this
approach would remain in the implementation of the pole expansion for
the calculation of the pump field but also the calculation of the probe field
at the generated harmonic.

The pole expansion provided a powerful tool capable of drastically im-
proving the current numerical methods. Thus the construction of optimiza-
tion algorithms solving nonlinear Maxwell’s equations within the Fourier
modal method becomes possible. Such algorithm could in principle further
optimize known structures to achieve even higher conversion efficiency and
eventually discover new designs exhibiting strong nonlinear effects.
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[100] M. Schäferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing
the complexity: Enantioselective chiral near-fields by diagonal
slit and mirror configuration,” ACS Photonics 3, 1076 (2016).

[101] M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative
Modeling of the Third Harmonic Emission Spectrum of Plas-
monic Nanoantennas,” Nano Lett. 12, 3778 (2012).

[102] L. V. Poulikakos, P. Gutsche, K. M. McPeak, S. Burger, J. Niege-
mann, C. Hafner, and D. J. Norris, “Optical chirality flux as a
useful far-field probe of chiral near fields,” ACS Photonics 3, 1619
(2016).

[103] L. V. Poulikakos, P. Thureja, A. Stollmann, E. De Leo, and D. J.
Norris, “Chiral light design and detection inspired by optical an-
tenna theory,” Nano Lett. 18, 4633 (2018).

[104] J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz,
E. Ruiz-Reina, and R. Quidant, “Overcoming diffusion-limited
biosensing by electrothermoplasmonics,” ACS Photonics 5, 3673
(2018).

[105] G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem.
Soc. Rev. 43, 3898 (2014).

[106] M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener,
and M. Kauranen, “Nonlinear chiral imaging of subwavelength-
sized twisted-cross gold nanodimers,” Opt. Mater. Express 1, 46
(2011).

[107] V. K. Valev, J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. Osley,
S. Vandendriessche, M. Hojeij, C. Blejean, and J. Mertens, “Non-
linear superchiral metasurfaces: tuning chirality and disentan-
gling nonreciprocity at the Nanoscale,” Adv. Mater. 26, 4074
(2014).

[108] J. Byers, H. Yee, and J. Hicks, “A second harmonic generation analog
of optical rotatory dispersion for the study of chiral monolayers,”
J. Chem. Phys. 101, 6233 (1994).

[109] S. Chen, G. Li, F. Zeuner, W. Han Wong, E. Yue Bun Pun, T. Zent-
graf, K. Wai Cheah, and S. Zhang1, “Symmetry-Selective Third-
Harmonic Generation from Plasmonic Metacrystals,” Phys. Rev.
Lett. 113, 033,901 (2014).

141



Bibliography

[110] J. Zuloaga and P. Nordlander, “On the energy shift between nearfield
and far-field peak intensities in localized plasmon systems,” Nano
Lett. 11, 1280 (2011).

[111] R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical Ana-
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