
A model-based approach for data
processing in IoT environments

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von
Ana Cristina Franco da Silva

aus Manaus / Brasilien

Hauptberichter: Prof. Dr. -Ing. habil. BernhardMitschang

Mitberichter: Prof. Dr. Marco Aiello

Tag der mündlichen Prüfung: 04.11.2020

Institut für Parallele und Verteilte Systeme

2020

Contents

1 Introduction 17
1.1 Motivation . 18
1.2 Research questions and goals . 21
1.3 Contributions summary . 24
1.4 Structure of this thesis . 26

2 Background 29
2.1 Internet of Things . 29
2.2 Data stream processing and complex event processing 30
2.3 Operator placement problem . 32
2.4 TOSCA . 32

3 Thesis overview 37
3.1 Contributions . 37
3.2 Methodical approach . 40
3.3 Overall architecture . 43

4 Modeling of IoT environments and data stream processing 47
4.1 Modeling of IoT environments . 49

4.1.1 IoTEM definition . 52

3

4.1.2 IoT object and connection capabilities 54
4.1.3 Architecture component and implementation – IoTEM

modeler and manager . 58
4.1.4 Related work . 60

4.2 Modeling of data stream processing 62
4.2.1 DSPM definition . 62
4.2.2 Processing operators . 64
4.2.3 Architecture component and implementation – DSPM

modeler and manager . 67
4.2.4 Related work . 69

5 Mapping of DSPMs onto IoTEMs 71
5.1 Automatic mapping approach . 72

5.1.1 Matching algorithm – greedy variant 74
5.1.2 Matching algorithm – backtracking variant 77
5.1.3 Case scenario: monitoring of mold levels in smart buildings 81

5.2 Manual mapping approach . 84
5.3 Architecture component and implementation – IoTEM and

DSPM mapper . 88
5.4 Related work . 90

6 Deployment of operators onto IoT environments 93
6.1 Automatic deployment approach 94

6.1.1 Deployment states of an operator 94
6.1.2 TOSCA-based operator deployment 95

6.2 Semi-automatic deployment approach 97
6.3 Topic Description Language for the IoT 98
6.4 Architecture component and implementation – Deployment

manager . 105
6.5 Related work . 107

7 Monitoring of deployed DSPMs 111
7.1 Modeling of disturbance recognition 112

4 Contents

7.2 Executing disturbance recognition 117
7.2.1 Customization and provisioning of CEP engines 121
7.2.2 Disturbance classes . 126

7.3 Architecture component and implementation – Disturbance
recognizer . 129

7.4 Related work . 130

8 Evaluation 133
8.1 Integration architecture and prototype 134
8.2 MBP overview . 142

8.2.1 Modeling IoT environments 143
8.2.2 Deploying operators onto IoT environments 143
8.2.3 Monitoring IoT environments 144
8.2.4 Demonstration: smart office 144

8.3 Further considerations . 148

9 Conclusion and future work 153
9.1 Summary . 154
9.2 Future work . 157

Bibliography 165

List of Figures 187

List of Tables 189

List of Definitions 193

Contents 5

Acronyms

API Application Programming Interface

BPEL Business Process Execution Language

BPMN Business Model and Notation

CEP Complex Event Processing

CSAR Cloud Service Archive

dDSPM deployed Data Stream Processing Model

DBMS Database Management System

DSMS Data Stream Management System

DSP Data Stream Processing

DSPM Data Stream Processing Model

ETL Extract, Transform, and Load

GPIO General-purpose Input/Output

HTTP Hypertext Transfer Protocol

7

HVAC Heating, Ventilation and Air Conditioning

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IoTEM IoT Environment Model

IT Information Technology

JAR Java Archive

JSON JavaScript Object Notation

M2M Machine-to-Machine

MBP Multi-purpose Binding and Provisioning Platform

MQTT Message Queuing Telemetry Transport

OASIS Organization for the Advancement of Structured Information
Standards

QoS Quality of Service

RAM Random Access Memory

REST Representational State Transfer

RFID Radio Frequency Identification

RMP Resource Management Platform

SOA Service-oriented Architecture

SSH Secure Shell

SQL Structured Query Language

TDLIoT Topic Description Language for the Internet of Things

TOSCA Topology and Orchestration Specification for Cloud Applications

8

UDDI Universal Description, Discovery and Integration

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

WAR Web Archive

WSN Wireless Sensor Networks

9

Zusammenfassung

Die heutigen Fortschritte in den Bereichen Sensor-Technologie, Netzwerke
und Datenverarbeitung haben die Vision des Internet der Dinge mehr und
mehr zu einer Realität im alltäglichen Leben gemacht. Dabei ermöglicht
das Internet der Dinge die Entwicklung von anspruchsvollen Anwendungen
für IoT-Umgebungen, wie Smart Cities, Smart Homes oder Smart Factories.
Durch kontinuierliche Sensormessungen sowie hochfrequentem Datenaus-
tausch zwischen sogenannten IoT-Objekten (z.B. IoT-Geräte), nehmen die
Daten in IoT-Umgebungen die Form von Datenströmen an. Mit dieser immer
größer werdenden Datenmenge, die kontinuierlich als Strom verarbeitet
werden muss, treten jedoch einige Herausforderungen auf, die für ein effizi-
entes Verarbeiten von IoT-Daten gelöst werden müssen. Beispielsweise stellt
sich die Frage wie IoT-Daten verarbeitet werden können damit einerseits
relevante Informationen gewonnen werden können und andererseits die
Reaktivität der IoT-Applikationen nicht beeinträchtigt wird. Des Weiteren
müssen verschiedene funktionale und nicht-funktionale Anforderungen der
IoT-Applikationen durch die Datenverarbeitung erfüllt werden. In dieser
Doktorarbeit wird ein neuer holistischer Ansatz vorgestellt, um strombasiere
Daten durch IoT-Anwendungen zu verarbeiten. Der Fokus liegt dabei auf
der effizienten Platzierung von Datenvearbeitungsoperatoren der daten-
strombasierten Anwendungen auf heterogene, verteilte und dynamische

11

IoT-Umgebungen. Im Gegensatz zu bestehenden Ansätzen im Bereich der
Platzierung von Operatoren werden in dem in dieser Arbeit vorgestellten
Ansatz auch zusätzliche Anforderungen beachtet, die sich speziell auf die Ei-
genschaften des IoT beziehen. Des Weiteren werden auch nicht-funktionale
und nutzerspezifische Anforderungen beachtet. Diese Doktorarbeit stützt
sich auf verschiedene Informationsmodelle und Techniken, um Operato-
ren zu platzieren, so dass der gesamte Lebenszyklus von IoT-Umgebungen
und datenstrombasierten Anwendungen einfach verwaltet werden kann.
IoT-Umgebungen und ihre Fähigkeiten zur Datenverarbeitung werden durch
sogenannte IoT Environment Models beschrieben (IoTEM). Analog wird
die Geschäftslogik der IoT-Applikationen sowie deren Anforderungen durch
ein Informationsmodell, genannt Data Stream Processing Model (DSPM),
beschrieben. Basierend auf diesen Informationsmodellen bestimmen Algo-
rithmen eine bestmögliche Platzierung von Operatoren auf die IoT-Objekte
der IoT-Umgebung, so dass die vorher definierten Anforderungen der An-
wendungen und Fähigkeiten der IoT-Umgebung zusammenpassen. Dabei
ist es bei diesem Ansatz das Hauptziel die IoT-Daten so nah wie möglich
an den Datenquellen zu verarbeiten, so dass Cloud-Infrastrukturen nur im
Falle von Ressourcenmangel der IoT-Umgebung zum Einsatz kommen. Die
simultane Ausführung der Datenverarbeitung in der IoT-Umgebung und in
der Cloud wird allgemein als Fog-Computing bezeichnet. Durch die Konzepte
dieser Doktorarbeit kann die Datenverarbeitung von IoT-Applikationen auf
spezifische Szenarien zugeschnitten werden, wobei die charakteristischen
Anforderungen der Domänen sowie der Anwender der IoT-Applikation be-
rücksichtigt werden. Sobald eine mögliche Platzierung gefunden wurde,
werden die Operatoren auf die zugehörigen IoT-Objekte installiert. Hierfür
können etablierte Standards wie TOSCA zum Einsatz kommen. Nach der
Installation der Operatoren ist die IoT-Anwendung lauffähig. Während der
Laufzeit der IoT-Anwendung wird diese kontinuierlich überwacht, um mögli-
che Störungen zu bemerken, die während der Datenverarbeitung auftreten.
Die Ansätze dieser Doktorarbeit werden unterstützt durch die Multi-Purpose
Binding and Provisioning Platform, eine Open-Source IoT-Plattform, die als
Proof-of-Concept für die Konzepte dieser Doktorarbeit implementiert wurde.

12

Abstract

The recent advances in several areas, including sensor technologies, net-
working, and data processing, have enabled the Internet of Things (IoT)
vision to become more and more a reality every day. As a consequence of
these advances, the IoT of today allows the development of sophisticated
applications for IoT environments, such as smart cities, smart homes, or
smart factories. Due to continuous sensor measurements and frequent data
exchange among so-called IoT objects, the data generated within an IoT
environment incorporate the form of data streams. With this increasing
amount of data to be continuously processed, several challenges arise while
aiming at an efficient processing of IoT data. For instance, how IoT data
processing can be realized, so that meaningful information can be derived
without affecting the reactiveness of IoT applications. Furthermore, how
different functional, non-functional, and user-defined requirements of IoT
applications can be satisfied by the IoT data processing. In this PhD thesis, a
new holistic approach for processing data stream-based applications within
IoT environments is presented. Its focus lies on efficient placement of oper-
ators of data stream applications onto heterogeneous, distributed, dynamic
IoT environments. In contrast to state-of-the-art operator placement, this
approach takes into consideration additional requirements introduced by
the peculiar characteristics of the Internet of Things. Furthermore, non-

13

functional and user-defined requirements are also taken into consideration.
This PhD thesis is supported by different informational models and operator
placement techniques, so that the entire life cycle of IoT environments and
data stream-based applications can be easily managed. IoT environments
and their processing capabilities are described by IoT environment models
(IoTEM). Likewise, the business logic of IoT applications and their require-
ments are defined by data stream processing models (DSPM). Based on
these informational models, several algorithms determine feasible place-
ments of processing operators onto IoT objects of IoT environments, so that
the aforementioned requirements and capabilities are matched. In this ap-
proach, one of the main goals is to process IoT data as near to data sources
as possible, so that cloud infrastructures are employed only in cases where
IoT environments do not offer sufficient processing resources for the IoT
application. The execution of data processing on both IoT environments
and cloud infrastructures is commonly known as fog computing. Through
the approach of this PhD thesis, data processing of IoT applications can
be tailored to particular use cases, supporting the specific requirements
of the domains, and furthermore, of IoT application users. Once feasible
placements are determined, processing operators are then deployed onto
corresponding IoT objects using standards, such as TOSCA, and the IoT
application is considered up and running. Finally, the IoT environment is
continuously monitored in order to recognize and react to disturbances
affecting the data processing of deployed IoT applications. The approach of
this PhD thesis is supported by the Multi-purpose Binding and Provisioning
Platform (MBP), an open-source IoT platform, which has been developed as
a proof-of-concept of the contributions of this PhD thesis.

14

Acknowledgements

First of all, I would like to thank my PhD supervisor Prof. Dr. Bernhard
Mitschang for his excellent ongoing support and his confidence in my work.
I would also like to thank Prof. Dr. Marco Aiello, who has agreed to be the
second examiner. Also many thanks to the other members of the examination
board, chair Prof. Dr. Stefan Wagner and co-examiner Prof. Dr. Miriam Mehl.
My thanks also go to all my colleagues in the AS department of the IPVS, with
whom I was able to hold discussions that enriched the results of this PhD
thesis. In particular, I would like to thank my post-doc Dr. Pascal Hirmer, who
was always able to provide me with valuable feedback. Furthermore, I would
like to thank all the colleagues with whom I wrote scientific publications
as well as the students who supported me in creating prototypes of my
concepts. Last but not least, I would like to thank my friends and family,
who always supported me in many ways.

15

Ch
ap
te
r 1

Introduction

“The Internet of Things has the potential to change the world,
just as the Internet did. Maybe even more so.”
– Kevin Ashton (2009)

In this PhD thesis, a new approach for processing data stream-based ap-
plications within IoT environments is introduced. Its focus lies on efficient
placement of operators of data stream applications onto heterogeneous, dy-
namic IoT environments. In contrast to state-of-the-art operator placement,
this approach takes into consideration additional requirements introduced
by the peculiar characteristics of the Internet of Things. Furthermore, non-
functional and user-defined requirements are also taken into consideration.
This PhD thesis is supported by different informational models and operator
placement techniques, so that the entire life cycle of IoT environments and
data stream-based applications can be easily managed.
In this introductory chapter, the motivation of this PhD thesis is described

in Section 1.1. The research questions and goals are presented in Section 1.2.
Finally, Section 1.3 provides a summary of the contributions and Section 1.4
describes the overall structure of this PhD thesis.

17

1.1 Motivation

The Internet of Things (IoT) envisions the pervasive presence of heteroge-
neous devices in enclosed environments [GBMP13; LL15]. These devices are
equipped with sensors and actuators. Furthermore, they share a common
network and, thereby, are able to exchange information among each other
to reach common goals [VF13].
In this thesis, the term IoT object is used as the generic term for devices,

sensors, and actuators. The IoT and the characteristics of IoT objects enable
the development of sophisticated applications for IoT environments, such as
smart cities [ARJ19], smart homes [GBMP13], or smart factories [TCZN15].
Due to continuous sensor measurements and frequent data exchange

among IoT objects, the data generated within an IoT environment in-
corporates the form of data streams. These data are not persistent but
rather arrive for processing in multiple, continuous, rapid, time-varying
streams [BBD+02].
In contrast to traditional database systems and to traditional batch pro-

cessing systems, such as Hadoop [MW15], the processing and management
of data streams lead to major challenges, specially in the IoT, where large
amounts of data streams are continuously produced. To respond to these
challenges, well-established techniques can be employed, such as data stream
processing [CM12] and complex event processing [Luc01].
A further challenge of processing data streams is the suitable location of

data processing. To derive meaningful information from data streams, one
common approach is to transfer IoT data to cloud infrastructures, where the
processing is mainly centralized. This cloud-only processing of IoT data is
depicted in Figure 1.1 on the left. The advantage of this approach is that
the required resources to process the data can be provisioned on-demand as
needed [Ran+18]. With a rising amount of data, the underlying infrastruc-
ture can be easily scaled vertically or horizontally. However, this approach
has an impact on an important requirement of reactive IoT applications,
namely, the timely processing of data streams [Ope17]. Sending IoT data
to cloud infrastructures increases latency and network traffic, and might

18 1 | Introduction

connection
sensor data
processed data data processing

Raspberry Pi 1

Raspberry Pi 2Edge server

Arduino Raspberry Pi 1

Raspberry Pi 2Edge server

Arduino

Hum. sensor Hum. sensorTemp. sensor Temp. sensor

Cloud
infrastructure

Cloud
infrastructure

Fan actuator Fan actuator

Figure 1.1: Processing data streams in IoT environments. Left: cloud-only
IoT data processing, right: decentralized IoT data processing

provoke delays before and after the data stream processing.
Therefore, to achieve timely data processing, an alternative approach

is required, which avoids sending all IoT data to cloud infrastructures.
More precisely, data should be processed as close to the sources as possible
by exploiting first the already provided computing infrastructure in IoT
environments. In this approach, which is depicted in Figure 1.1 on the
right, the processing of data streams needs to be distributed among different
processing nodes for execution. This is commonly known as the operator
placement problem [CM12], which aims to find an optimal placement for
data processing operators onto different processing nodes distributed over a
network. Over the last decades, many solutions have been proposed that
tackle the operator placement problem. Many of them decide the placement
location based on the fulfillment of Quality of Service (QoS) requirements,
such as latency and bandwidth.
However, with the increasingly upcoming of IoT applications, further

aspects have emerged that additionally need to be taken into consideration
when realizing operator placement within IoT environments. These aspects

1.1 | Motivation 19

include, for example, the heterogeneity of processing nodes due to the
existent different types of IoT objects. Moreover, IoT environments can
also encompass many different types of networks and technologies, whose
heterogeneity also needs to be considered.
Currently, existent solutions lack supporting such additional requirements

introduced by the IoT domain. Furthermore, they normally do not take into
consideration non-functional and user-defined requirements for IoT applica-
tions, such as data privacy and anonymization, security, and interoperability.
Therefore, in this PhD thesis, an approach for the placement of data stream

processing operators onto IoT environments is presented, which also takes
into consideration the characteristics of the IoT domain, and furthermore,
non-functional and user-defined requirements.
To realize this, it is required to know which IoT objects are available in

an IoT environment and which resources they offer, i.e., their capabilities.
Furthermore, it is also required to know how IoT data should be processed,
i.e., the business logic of IoT applications, and the requirements of these
IoT applications. These information can be described by different models,
such as IoT environment models (cf. Table 4.1) and data stream processing
models [Hir18], which enables a clear separation of concerns. Consequently,
such informational models are crucial on the placement of operators in IoT
environments.
In summary, in this PhD thesis, IoT environments and their capabilities

are described by IoT environment models (IoTEM). Likewise, the business
logic of IoT applications and their requirements are defined by data stream
processing models (DSPM). Based on these informational models, several
algorithms determine feasible placements of processing operators onto IoT
objects of IoT environments, so that the aforementioned requirements and
capabilities are matched.
In this approach, one of the main goals is to process IoT data as near to

data sources as possible, so that cloud infrastructures are employed only in
cases where IoT environments do not offer sufficient processing resources or
do not provide the required capabilities for the IoT application. The execution
of data processing on both IoT environments and cloud infrastructures is

20 1 | Introduction

commonly also known as fog computing [Ope17].
Through the approach of this PhD thesis, data processing of IoT applica-

tions can be tailored to particular use cases, supporting the specific require-
ments of the domains, and furthermore, of IoT application users. Once feasi-
ble placements are determined, processing operators are then deployed onto
corresponding IoT objects using standards, such as TOSCA [OAS13], and the
IoT application is considered up and running. Finally, the IoT environment
is continuously monitored in order to recognize and react to disturbances
affecting the data processing of deployed IoT applications. All concepts of
this PhD thesis are based on established standards or de-facto standards in
order to ensure their long lasting applicability and future-proofness.

1.2 Research questions and goals

In Section 1.1, the issues that this PhD thesis aims to tackle were motivated.
These issues correspond mainly to the current absence of solutions to realize
operator placement tailored to IoT environments that should also consider:
(i) additional, diverse requirements of IoT applications and IoT environ-
ments, and (ii) user-defined and non-functional requirements during the
operator placement decision. The described issues lead to the following
research questions (RQ):

RQ1: How can different functional, non-functional, and user-defined re-
quirements be taken into consideration during the realization of oper-
ator placement onto IoT environments?

RQ2: How can it be decided which IoT objects are suitable to execute which
data stream processing operators?

RQ3: How can data stream processing operators be efficiently deployed
onto heterogeneous, dynamic IoT environments?

RQ4: How can the processing of IoT applications within IoT environments
be guaranteed throughout the entire life cycle of IoT applications?

1.2 | Research questions and goals 21

The aforementioned research questions will be addressed in the scope of
this PhD thesis and lead to the following goals (G):

G1: Timely, efficient processing of IoT data within IoT environments.
This goal aims to realize the processing of data streams primarily by the
computing resources of IoT objects, which are available within an IoT
environment. A timely processing will be achieved by processing IoT
data as close to the sources as possible, so that the provided computing
infrastructure in IoT environments is exploited first. However, if an
IoT environment does not provide enough computing resources, cloud
infrastructures will be also employed to support the processing.
To achieve this goal, operator placement will be realized based on
the characteristics of the IoT domain, i.e., IoT environments and IoT
applications. Furthermore, this goal also aims to assure that the data
processing of IoT applications stays correct, which is defined as follows:
Definition 1.1 (Data processing correctness)
The data processing of an IoT application is correct if the processing is
deployed and running as defined and expected by the domain analyst.

By achieving this goal through a timely, efficient processing, IoT appli-
cations and users highly benefit from the consequent improved quality
of the processing results.

G2: User-friendly, easy modeling of IoT environments. This goal aims to
support users by providing means for easy modeling of IoT environ-
ments. Based on the characteristics of the IoT domain, it should be
possible to model heterogeneous IoT objects, their interconnections,
and furthermore, the capabilities of IoT objects and connections.
This goal will be accomplished by providing a graphical modeling
tool with good usability accomplished through separation of con-
cerns between technical knowledge and high-level domain knowledge.
Therefore, IoT environments should be modeled by so-called domain
experts, which have technical knowledge about the IoT environment,

22 1 | Introduction

e.g., information about the computing capabilities of diverse IoT ob-
jects and how to interact with these IoT objects through their provided
interfaces.

G3: Modeling of data stream processing supporting IoT requirements.
This goal aims to support users that have only high-level domain
knowledge, by providing them with means to model the business
logic of data stream-based applications including the requirements
introduced by the IoT domain. These requirements should be taken
into consideration, in a further step, in order to automatically decide
which IoT objects are suitable to execute the processing.
This goal will be accomplished by providing a further graphical mod-
eling tool, in which only high-level domain knowledge is required,
i.e., technical knowledge about sensors and actuators within an IoT
environment are abstracted as data sources and sinks. Therefore, data
stream processing should be modeled by so-called domain analysts,
which have domain knowledge about the data generated in the IoT
environment and how this data need to be processed. In this way,
domain analysts will be able to describe the processing logic of IoT
applications for domain-specific use cases.

G4: Requirements-based placement of processing operators onto IoT
environments. This goal aims to achieve operator placement for IoT
applications, so that the diverse requirements introduced by the IoT
domain are also supported. Furthermore, user-defined requirements
for IoT applications, e.g., data privacy and anonymization, security,
and interoperability, will be also taken into consideration.
This goal will be accomplished by employing informational models for
IoT environments and data stream processing to decide how operators
should be placed onto IoT environments considering the requirements
of operators to be fulfilled by the capabilities of IoT objects.

G5: Efficient deployment of operators onto heterogeneous, dynamic
IoT environments. This goal aims at the efficient deployment of data

1.2 | Research questions and goals 23

stream processing operators onto heterogeneous IoT objects existent
in IoT environments.
To achieve this goal, automatic deployment approaches should be
employed that are able to deal with the heterogeneous and dynamic
nature of IoT environments. Furthermore, manual actions and hard-
ware configuration (e.g., plugging in sensors) should be also supported
by the deployment, since manual actions are common tasks to be real-
ized during setup and deployment of IoT environments.

G6: Timely recognition of disturbances in IoT environments. This goal
aims to recognize disturbances affecting the processing of deployed
IoT applications onto IoT environments as soon as possible. Such
disturbances can be caused by changes in the IoT environment, e.g.,
a faulty device, or changes in the IoT application, e.g., a new user-
defined requirement is introduced that requires data encryption. A
timely recognition is important in order to be able to eliminate such
disturbances as soon as possible and, therefore, to assure that the data
processing of IoT applications stays correct (cf. Definition 1.1).
This goal will be achieved by using well-established techniques, such as
complex event processing, to continuously monitor IoT environments
and their corresponding IoT data.

1.3 Contributions summary

This section provides a compact overview on the contributions (C) of this PhD
thesis, which address the aforementioned research questions (RQ) and goals
(G). A detailed overview of these contributions is provided in Chapter 3, and
subsequently, each contribution is explained in detail in Chapters 4 to 7.
The contributions are based on established standards in order to ensure

their long lasting applicability. They have been published in several journals,
national and international conferences. An overview of the publications can
be found at the end of this document (p. 159 ff.). In addition, software

24 1 | Introduction

artifacts developed as part of this PhD thesis are available as open-source
projects on GitHub1,2,3,4.
This PhD thesis provides the following four main contributions:

C1: Modeling of IoT environments and data stream processing. This
contribution provides the IoT environment model (IoTEM) to describe
IoT objects and capabilities commonly found in IoT environments.
Furthermore, C1 also provides the data stream processing model (DSPM)
to describe the data processing logic of IoT applications. This model
describes data sources, data sinks, processing operators, and the data
flow among them. Furthermore, it describes requirements of processing
operators for IoT objects.

C2: Mapping of DSPMs onto IoTEMs. This contribution provides the map-
ping of data stream processing models (DSPMs) onto IoT environment
models (IoTEMs), considering the diverse requirements of the pro-
cessing operators and the capabilities of the IoT objects. It contains
two approaches to realize the mapping: (i) an automatic approach,
in which a mapping plan containing at least one set of IoT objects ful-
filling the requirements of the DSPM is automatically generated, and
(ii) a manual approach, in which domain analysts decide themselves
which IoT objects should execute which operators. For this, domain
analysts create a mapping plan manually. To realize the mapping, this
contribution provides the IoT platform called Multi-purpose Binding
and Provisioning Platform (MBP) [FHS+20], which also enables the
management of IoTEMs and DSPMs provided in contribution C1.

C3: Deployment of operators onto IoT environments. This contribution
provides the deployment of processing operators onto IoT objects
available in IoT environments. The concepts of this contribution uses
the Topology and Orchestration Specification for Cloud Applications

1https://github.com/IPVS-AS/MBP
2https://github.com/IPVS-AS/MBP-Docker
3https://github.com/IPVS-AS/MBP2Go
4https://github.com/IPVS-AS/TDLIoT

1.3 | Contributions summary 25

(TOSCA) standard [OAS13] approved by the Organization for the
Advancement of Structured Information Standards (OASIS). This con-
tribution provides two approaches to realize the deployment: (i) an
automatic deployment approach, in which the operators of a DSPM
are deployed automatically based on the mapping plan generated in
contribution C2, and (ii) a semi-automatic deployment approach, which
supports manual actions, called human tasks [OAS10].

C4: Monitoring of deployed DSPMs. This contribution provides the means
to monitor deployed data stream processing models (dDSPM), in order
to recognize disturbances (i. e., concept drifts [WK96]) affecting their
data processing. To recognize such disturbances, the MBP continu-
ously monitors IoT objects in IoT environments and dDSPMs. This
monitoring is realized using complex event processing (CEP) tech-
niques [Luc01], which are well-established for the processing of data
streams to timely recognize situations (i.e., changes requiring correct-
ing actions) [BD15; BK09; FHWM16].

1.4 Structure of this thesis

This PhD thesis is further structured as follows. In Chapter 2, the basic
concepts for this PhD thesis are introduced. It comprises an overview on the
Internet of Things (IoT), data stream processing, complex event processing
(CEP), and the TOSCA standard.
In Chapter 3, the overview of this PhD thesis is provided, in which the

contributions are introduced, and furthermore, the methodical approach and
overall architecture are presented. Moreover, each contribution is explained
in detail in Chapters 4 to 7. For each contribution, the corresponding concepts
and architectural components, as well as related work are described.
In Chapter 8, the Multi-purpose Binding and Provisioning Platform (MBP)

is described, which has been developed as a proof-of-concept of the contribu-
tions of this PhD thesis. Furthermore, the overall architecture of this thesis
is evaluated against the IEEE standard 1934-2018 [Ope17], which provides

26 1 | Introduction

a reference architecture for fog computing platforms. Finally, in Chapter 9,
the results of this PhD thesis are summarized and assessed, and future work
is discussed.

1.4 | Structure of this thesis 27

Ch
ap
te
r 2

Background

In this chapter, the basic concepts for this thesis are introduced. First,
Section 2.1 presents the main concepts of the Internet of Things. Second,
Section 2.2 explains data stream processing and complex event processing.
Third, Section 2.3 gives an overview on the operator placement problem.
Finally, the TOSCA standard is described in Section 2.4.

2.1 Internet of Things

The term Internet the Things (IoT) has first surfaced at the end of the 90s,
with Ashton’s idea [Ash+09] of letting computers know everything about
things, however, based on data gathered autonomously. His idea was to
enhance computers with radio frequency identification (RFID) and sensor
technologies to gather information, observe and identify an environment
without the need of human assistance. In this way, it would be possible to
track and monitor things in order to reduce costs, and furthermore, to know
when things needed to be repaired or replaced.
Vermesan et al. [VFG+13] define the IoT as a paradigm in which a va-

riety of things/objects is pervasively present in an environment. In this

29

so-called IoT environment, these things are connected wireless or wired,
uniquely identifiable, and able to cooperate with each other in order to
reach common goals. To make this paradigm possible, the IoT benefits from
several enabling technologies originated from many different research fields,
such as machine-to-machine (M2M) communication, RFID, wireless sensor
networks (WSN), semantic data, cloud computing, and service-oriented
architectures (SOA) [AIM10].
Nowadays, many applications for the IoT have been developed in a va-

riety of domains, such as healthcare [SSF17], environment monitoring, or
smart factories [ARJ19]. Furthermore, there are several commercial IoT
solutions, partially from highly regarded companies available on the mar-
ket [DEDP15], such as AllJoyn [Ope16], Apple HomeKit [App14], Google
Cloud IoT [Goo17], IoTivity [Lin17], Samsung SmartThings [Sma12] and
Thread [Thr14], which are mainly designed for the domain smart home.

2.2 Data stream processing and complex event processing

The data generated within IoT environments are normally delivered for pro-
cessing in multiple, continuous, rapid, time-varying data streams [BBD+02].
An important requirement of IoT applications is the ability to process this
kind of data in a continuous and timely fashion [CM12], enabling IoT appli-
cations to be scalable, dynamic, and reactive [BK09; CM12]. By employing
traditional database management systems (DBMS) using extract-transform-
load (ETL) processes, which require data to be stored and indexed for
processing, the requirements of IoT applications cannot, however, be met.
Therefore, several approaches have emerged that were specifically designed
to process data as streams based on a set of processing rules [CM12]. Well-
established approaches for this kind of processing are data stream process-
ing [BBD+02] and complex event processing [Luc01].
Data stream processing, which is an evolution of the data processing in

DBMS, runs continuous queries on incoming data streams [CM12; Luc19].
While DBMSs work with persistent data which are not updated frequently,

30 2 | Background

data stream management systems (DSMS) work on transient data, i.e., data
that is continuously updated. Furthermore, queries on DBMSs run once and
return complete answers, while DSMSs run queries continuously and provide
updated answers upon the arrival of new data. Normally, DSMSs process
data streams through a sequence of transformations based on SQL operators,
such as selection, aggregation, or join, defined by relational algebra [CM12].
On the other hand, complex event processing encompasses a set of prin-

ciples and techniques to analyze sets of events partially ordered by time
as these events arrive. That is, CEP provides the means to process sets of
interrelated events in a continuous and timely fashion [Luc19]. An event is
defined by Etzion and Niblett [EN10] as a programming entity representing
an occurrence, i.e., something that has happened, in a system or domain. A
single event might contain a portion of information that is only meaningful
if considered with other related events. Events are normally delivered for
processing in patterns, however, they can be mixed with other unrelated
events. An important characteristic of CEP is the ability to detect patterns
(i.e., relationships) among events [BK09; Luc11]. For instance, CEP enables
the definition of constraints of a system (e.g., an IoT environment) as event
patterns. The output of the system under observation can then be monitored
in real-time for violations of those constraints [Luc19]. These constraints
can be, for example, occurrences that might need a correcting action, i.e.,
situations [Luc01], such as a machine breakdown.
The decision which processing approach should be used depends on the

application specific goals and what problems it aims to solve [Luc19]. If
the application needs to analyze a stream of data or events, ordered by
time, data stream processing should be used. The focus of stream pro-
cessing lies on high-speed querying of data in streams and applying math-
ematical algorithms to this data. There are currently many free, open-
source data (or event) stream processing frameworks, such as Apache
Flink [CKE+15], Apache Heron [KBF+15], Apache Samza [NPP+17],
Apache Storm [TTS+14], or Esper [Esp06a]. On the other hand, if the
application needs to analyze a set of unordered events, CEP should be ap-
plied. CEP focuses on extracting information from sets of events created, for

2.2 | Data stream processing and complex event processing 31

example, in IT and business systems. CEP also provides data analysis, but
focuses more on patterns of events, and abstracting information in these pat-
terns. Many approaches providing CEP functionalities have been developed,
such as Esper [Esp06a], flowthings.io [flo10], FIWARE CEP GE [FIW16],
Odysseus [Uni07], or WSO2 Siddhi [SGL+11; WSO13].

2.3 Operator placement problem

The processing of data streams can be realized through a centralized instance
or it can be distributed among different processing nodes for execution. The
distributed processing, however, implicates a further challenge besides the
timely processing, known as the operator placement problem. This problem
aims to find an optimal placement of either entire continuous queries or
single operators onto a set of different processing nodes distributed across a
network. The optimal placement is normally computed based on system-
defined or user-defined cost functions, which aim to provide, for example,
higher performance or better load distribution [CM12].
Lakshmanan et al. [LLS08] provide a taxonomy for operator placement

and survey different operator placement strategies according to their spe-
cific goals for the placement. These strategies originate from research in
academia and industry. Many distributed stream processing systems that
provide operator placement are available, such as Apache Flink [CKE+15],
Borealis [AAB+05], SBON [PLS+06] and SPADE [GAW+08]. Furthermore,
Cugola and Margara [CM13] present several operator placement strategies
for distributed complex event processing.

2.4 TOSCA

The cloud computing paradigm has recently emerged for hosting and deliv-
ering services over the Internet [LFWW16; ZCB10]. This paradigm has been
increasingly employed together with the IoT paradigm, in order to provide
IoT environments with properties, such as scalability and interoperability.

32 2 | Background

Publisher OS
(Ubuntu14.04)

Publisher
(PythonApp)

Python Interpreter
(Python3)

Publisher VM
(OpenStack)

Broker OS
(Ubuntu14.04)

Message Topic
(Topic)

Broker VM
(OpenStack)

Message Broker
(Mosquitto3.1)

(connectsTo)

(dependsOn) (hostedOn)

Message broker stackPublisher stack

Node template
Operation of an implementation artifact (IA)
Deployment artifact (DA)

stop

terminate

install

start
publisher.py

Figure 2.1: TOSCA topology model example of a publish-subscribe applica-
tion (based on [FBK+16])

Cloud computing can enable a rapid setup and integration of new IoT objects
and IoT applications, while maintaining low costs for the deployment of
entire IoT environments [BDPP16].
The Topology and Orchestration Specification for Cloud Applications

(TOSCA) [OAS13] is an approved OASIS standard for the modeling, deploy-
ment, and management of cloud applications [BBKL14]. It can be divided
in two main parts, (i) the topology model of an application, and (ii) the
orchestration defining the steps for the deployment of this application.
The topology model describes the structure of the application, i.e., its

software components, and furthermore, its platform and infrastructure.

2.4 | TOSCA 33

Consequently, the concepts of the TOSCA standard unifies the paradigms
software-as-a-service, platform-as-a-service, and infrastructure-as-a-service.
A topology model, called topology template, is a graph composed of typed
nodes, called node templates, and directed typed edges, called relationship
templates. TOSCA is highly generic so that it enables the definition of arbi-
trary types to describe application components, called node types, and their
dependencies, called relationship types.
In Figure 2.1, an exemplary topology model of an application using the

topic-based publish-subscribe interaction model [EFGK03] is depicted. In
this communication pattern, a data producer (i. e., publisher) publishes
messages to a topic hosted on a message broker, which routes published
messages to corresponding subscribers (i. e., a data consumer). The used
graphical representation in TOSCA is based on the Visual Notation for
TOSCA (Vino4TOSCA) [BBK+12].
The TOSCA topology model in Figure 2.1 contains two stacks: (i) the

publisher stack on the left and (ii) the message broker stack on the right. The
publisher stack is composed of four node types. It contains an OpenStack
node type, which corresponds to the cloud platform providing a virtual
machine for the publisher application. The Ubuntu14.04 node type defines
the operating system of the virtual machine. Furthermore, the PythonApp
corresponds to the publisher’s software component, which requires Python3
to be installed on the virtual machine. In the message broker stack, the
Mosquitto3.1 node type corresponds to the message broker, which hosts
the Topic to which the publisher can send messages. Finally, this topology
model contains three relationship types. In the publisher stack, for example,
the PythonApp node type dependsOn the Python3 node type. Both of them
are hostedOn the Ubuntu14.04 node type. Furthermore, the PythonApp
connectsTo the Topic node type.
The concrete implementation artifacts of components can be attached

to node templates using deployment artifacts (DA), which are, for exam-
ple, binary files, Shell or Python scripts. To install or manage a software
component, management operations can be defined for the corresponding
node type. The implementations of these operations can be provided using

34 2 | Background

implementation artifacts (IA), e.g., shell scripts to install the component.
Furthermore, TOSCA defines a packaging format called cloud service archive
(CSAR), which enables the grouping of all the above described entities in a
self-contained manner.
The second part of the TOSCA specification deals with the orchestration of

services, in order to execute the necessary steps to set up an application. This
part of the TOSCA specification describes all actions necessary to provision,
manage, and deprovision a cloud application based on its topology model.
TOSCA supports two approaches for application provisioning: (i) an im-

perative approach, and (ii) a declarative approach. The imperative approach
requires defining so-called build plans, which describe the concrete order of
steps that need to be conducted to set up the application components. That
is, the orchestration is realized through these build plans, which invoke op-
erations (i.e., implementation artifacts) to set up the individual components
of the application following a certain order. More concretely, build plans
can be created by employing workflows and processes technologies, such as
BPEL [ACD+03] or BPMN [CT12].
On the other hand, the declarative approach only requires the definition

of the topology model. In this case, the corresponding TOSCA runtime con-
sequently provisions the application by itself. However, in the declarative
approach, only components can be set up that are known to the correspond-
ing runtime environment [BBK+14]. That is, this approach is not generic
and only works for a specific set of components. A combination of the im-
perative and declarative approach by generating build plans automatically
is provided by Breitenbücher et al. [BBK+16].
An example of a combined imperative and declarative TOSCA ecosystem

is OpenTOSCA [BBH+13], which provides a TOSCA runtime environment
and the corresponding graphical modeling tool Winery [KBBL13] for TOSCA
topology templates.

2.4 | TOSCA 35

Ch
ap
te
r 3

Thesis overview

This chapter gives an overview of this PhD thesis. A detailed overview of
the contributions of this thesis is provided in Section 3.1. Each contribution
is further explained in detail in Chapters 4 to 7. In Section 3.2, the overall
methodical approach is presented. Finally, in Section 3.3, the resulting
architecture and the corresponding employment of the methodical approach
are described.

3.1 Contributions

The contributions presented in this section are based on established standards
(e.g., MQTT, TOSCA, XML) in order to ensure their long lasting applicability.
They have been published in journals, as well as on national and international
conferences. An overview of the publications can be found at the end of this
thesis (p. 159 ff.). In addition, software developed as part of this thesis have

37

been made available as open-source projects in GitHub1,2,3,4.
This thesis provides the following four main contributions (C):

C1: Modeling of IoT environments and data stream processing. In or-
der to decide how data should be processed within an IoT environ-
ment, knowledge about the available IoT objects in the environment
and about the processing logic of an IoT application is required. For
this purpose, this contribution provides the IoT environment model
(IoTEM) to describe IoT objects commonly found in IoT environments.
These IoT objects include both hardware objects (e.g., devices, sensors,
actuators) and virtual objects (e.g., virtual machines). This model con-
tains, for example, information about how to access IoT objects (e.g.,
IP address of a device) and about their capabilities (e.g., processing
power, available storage of a device). Furthermore, this contribution
also provides the data stream processing model (DSPM) to describe
the data processing logic of an IoT application. This model describes
data sources (e.g., sensors), data sinks (e.g., actuators), processing
operators (e.g., data filter, aggregation), and the data flow among
them. Furthermore, it describes requirements of processing operators
for IoT objects, such as minimum required available memory.

C2: Mapping of DSPMs onto IoTEMs. In contribution C2, means are pro-
vided for the mapping of data stream processing models (DSPMs) onto
IoT environment models (IoTEMs), considering the requirements of
the processing operators and the capabilities of the IoT objects. This
contribution provides two main approaches to realize the mapping:
(i) an automatic approach, in which a mapping plan containing at
least one set of IoT objects fulfilling the requirements of the DSPM is
automatically generated, and (ii) a manual approach, in which domain
analysts decide themselves which IoT objects should execute which
operators. For this, domain analysts create a mapping plan manually.

1https://github.com/IPVS-AS/MBP
2https://github.com/IPVS-AS/MBP-Docker
3https://github.com/IPVS-AS/MBP2Go
4https://github.com/IPVS-AS/TDLIoT

38 3 | Thesis overview

To realize the mapping, this contribution provides the Multi-purpose
Binding and Provisioning Platform (MBP), which enables the manage-
ment of IoTEMs and DSPMs provided in contribution C1. Furthermore,
the MBP provides two mapping algorithms that match the overall
requirements of the DSPM with the capabilities of the IoTEM. The
manual mapping approach is recommended for small use cases, e.g.,
for smart homes, with a minor effort to manually choose IoT objects to
execute operators. The automatic mapping approach is more suitable
for larger use cases, which require a major effort to choose suitable
IoT objects for the execution, e.g., in the smart factory domain, where
a large amount of IoT objects are available.

C3: Deployment of operators onto IoT environments. Contribution C3
provides the deployment of processing operators onto IoT objects in
IoT environments based on the results of contribution C2. The concepts
of this contribution uses the Topology and Orchestration Specification
for Cloud Applications (TOSCA) standard [OAS13] approved by the
Organization for the Advancement of Structured Information Stan-
dards (OASIS). For contribution C3, the MBP provides two paradigms
for the deployment of operators onto IoT objects: (i) an automatic
deployment, in which the operators are deployed automatically based
on the mapping plan generated in contribution C2, and (ii) a semi-
automatic deployment, which is also based on the mapping plan gener-
ated in contribution C2, however, manual actions called human tasks
(e.g., plugging in sensors) are required during or before the deploy-
ment of operators. In this case, the mapping plan is enhanced with
corresponding human task definitions. Once the deployment of the
operators is finished, the MPB creates and manages a running instance
of the corresponding DSPM, which is called deployed data stream pro-
cessing model (dDSPM).

C4: Monitoring of deployed DSPMs. After the deployment of processing
operators, the overall data stream processing of an IoT application
is started. To assure that this processing stays correct (cf. Defini-

3.1 | Contributions 39

tion 1.1) as long as needed by the IoT application, the contribution
C4 provides the means to recognize disturbances affecting the de-
ployed data stream processing model (dDSPM). Such disturbances
can occur through changes in the IoT environment (e.g., a faulty de-
vice) or changes in the DSPM (e.g., by adding a new requirement).
To recognize such disturbances, the MBP continuously monitors IoT
objects and dDSPMs. This monitoring is realized mainly using complex
event processing (CEP) techniques [Luc01]. Such techniques are well-
established and have been used for the continuous processing of large
amounts of data, for example, to timely recognize critical situations
(i.e., changes requiring correcting actions) [BD15; BK09; FHWM16].

The contributions of this thesis are applied through a methodical approach,
which manages the entire life cycle of IoT environments and data stream-
based IoT applications.
The life-cycle method is depicted in Figure 3.1. The contributions are

highlighted by color. It consists of six main steps: ➊ creation of the IoT
environment model (IoTEM),➋ creation of the data stream processing model
(DSPM), ➌ mapping of processing operators and IoT objects, ➍ deployment
of processing operators onto IoT objects, ➎ recognition of disturbances
affecting the data processing, and ➏ retirement of the data processing.
Two main roles are defined in this approach: the domain expert, which

conducts step ➊ and part of step ➎, and the domain analyst, which conducts
step ➋ and part of step ➏. The other steps are conducted in an automated
fashion. Exceptions are the optional manual approaches in which the domain
analyst also interacts in steps ➌ and ➍ (cf. contributions C2 and C3).

3.2 Methodical approach

Domain experts have technical knowledge about the hardware objects (i.e.,
devices, sensors, actuators), the virtual objects (i.e., virtual machines) and
their network interconnections within an IoT environment. This technical
knowledge comprises information about the computing capabilities (e.g.,

40 3 | Thesis overview

IoTEM, DSPM

Creation of
the IoTEM

1

Mapping of
processing operators

and IoT objects
3

Deployment of
processing
operators

4

Creation of
the DSPM

2

Mapping plan,
software artifacts

IoTEM

Domain expert Domain analyst

Contribution C1 Contribution C2 Contribution C3

Retiring of
data stream
processing

6

Recognition of
disturbances

5

Contribution C4

IoTEM, dDSPM IoTEM, dDSPM

Method step
Step input artifacts

IoTEM: IoT environment model
DSPM: data stream processing model
dDSPM: deployed data stream processing model

Contribution C1

Manual approach

Figure 3.1: Life-cycle method for the contributions of this thesis

available main memory, connectivity, processing power) of IoT objects. Fur-
thermore, domain experts have the knowledge about how to access these
IoT objects to, for example, extract sensor data or send control commands
to an actuator. Therefore, in step ➊, the main task of domain experts is
the creation of IoTEMs, which are directed graphs containing IoT objects
as nodes, and their network interconnections as edges. IoTEMs are based
on ontologies [BEBT16], which associate semantics, and hence, reason-
ing. Created IoTEMs are then automatically registered in the MBP, which
instantiates the digital counterparts of the modeled IoT objects.
Domain analysts on the other hand have domain knowledge about the

processing of data generated within the IoT environment, i.e., they have the
required knowledge to model different IoT applications for domain-specific
use cases. In step ➋, the main task of domain analysts is the creation of
DSPMs representing the processing logic of IoT applications. A DSPM is
graph-based and contains data sources, data sinks, and processing operators
as nodes, and the data flow connections among these nodes as edges. DSPMs
are based on the pipes and filters design pattern [Meu95]. To the domain
analysts, the sensors and actuators modeled in step ➊ are abstracted as data

3.2 | Methodical approach 41

sources and sinks, so that they only need to handle the modeling of the
processing logic of an IoT application. Furthermore, such DSPMs contain
computing requirements (e.g., minimum main memory, secure data storage)
of processing operators of an IoT application. For this, knowledge about IoT
applications and corresponding operators is required from domain analysts.
Based on the overall capabilities of the IoTEM and the requirements

specified by the DSPM resulting from steps ➊ and ➋, the third step aims
at automatically deciding on which IoT objects the operators should be
deployed. This task is conducted by algorithms, which match requirements
in the DSPM with capabilities of the IoTEM. The algorithms consider not only
capabilities of IoT objects, but also capabilities of the network connections
in between. This results in a mapping plan, which contains at least one set
of available IoT objects, whose capabilities fulfill the requirements of the
DSPM. One of the main goals of step ➌ is to place operators as close to
the data sources as possible, in order to possibly reduce network traffic and
exchanged data volume within an IoT environment. Furthermore, a manual
approach is also enabled, in which domain analysts decide themselves which
IoT objects should execute which operators. For this, domain analysts create
a mapping plan manually.
In step➍, according to the resultingmapping plan of step➌, the processing

operators can be deployed onto their corresponding IoT objects and the
execution of the DSPM can be started. This step also supports manual
actions, called human tasks in the semi-automatic deployment approach.
The IoT objects are first prepared for executing the processing operators,
i.e., the software artifacts required by a processing operator are installed
and configured as necessary. Further software artifacts to collect empirical
values and to monitor the processing operators and the IoT objects are also
installed and configured. Afterwards, the processing operators are deployed
onto their corresponding IoT objects and are then started, resulting in a
running instance of the DSPM, which is called dDSPM. The preparation
of IoT objects and the subsequent deployment of processing operators are
realized by employing the TOSCA standard.
In step ➎, to assure that the overall processing in the IoT environment

42 3 | Thesis overview

stays correct (cf. Definition 1.1), IoT objects and the dDSPM are continuously
monitored in order to recognize disturbances. If a disturbance affects the
original processing negatively, the algorithms in step ➌ are restarted and a
new mapping plan is created.
In step ➏, the data stream processing of an IoT application can be retired.

In this case, IoT objects are cleaned, i.e., processing operators and software
artifacts that are not needed anymore are stopped and uninstalled. For this,
the TOSCA standard is employed as well. This step can be triggered by
domain analysts or through programmatic analysis, e.g., when disturbances
in the data processing occur and no correcting actions can be determined.

3.3 Overall architecture

This section presents an overview of the architecture comprising the contri-
butions of this thesis. The architecture is depicted in Figure 3.2, in which
the contributions are distinguished by color.
The overall architecture is composed of three main layers: the IoT physical

environment layer, the IoT application layer, and the Multi-purpose Binding
and Provisioning Platform (MBP) layer, which bridges the gap between IoT
physical environments and IoT applications. The contributions of this thesis
lie in the middle layer, for which the MBP was designed.
The IoTEM modeler and manager a component is the entry point of the

methodical approach (cf. Section 3.2) and provides tools for domain experts
to create, store, and manage IoTEMs. Through this component, the IoT
objects of an IoTEM are registered in the MBP and their digital counterparts
are instantiated. The digital counterparts provide APIs that can be accessed
by IoT applications, for example, to access devices, sensors, and actuators
registered in the MBP.
The DSPM modeler and manager b component provides further tools that

enable domain analysts to create, store, and manage DSPMs describing the
processing logic of IoT applications. Through this component, data analysts
can also retire running instances of DSPMs (dDSPMs) once the processing is

3.3 | Overall architecture 43

Contribution C1
Contribution C3

Contribution C2
Contribution C4

IoTEM: IoT environment model
DSPM: data stream processing

model

IoT application layer

IoT physical environment layer

synchronize
extract sensor data,
control actuators

deploy processing
operators

IoTEM modeler
and manager

IoTEM and DSPM mapper

Disturbance recognizer

DSPM modeler
and manager

Deployment manager

D
a
s
h
b
o
a
r
d

send command
consume
processing results

push /pull
sensor data

Multi-purpose Binding and Provisioning Platform (MBP) layer

a b

c

d

e
f

Figure 3.2: Overall architecture of this thesis

not needed anymore.
The IoTEM and DSPMmapper c component provides means to support the

decision about where processing operators should be deployed. Furthermore,
it provides algorithms to automatically decide about the operator placement,
based on the requirements of the processing operators and the capabilities

44 3 | Thesis overview

of the IoT objects.
The Deployment manager d component is responsible for deploying

processing operators onto IoT objects, so that the execution of DSPMs can
be started. Furthermore, any further required software artifact, e. g., to
monitor IoT objects, can be deployed through this component as well.
In the Disturbance recognizer e component, the digital counterparts of

IoT objects and the dDSPM are continuously monitored to recognize distur-
bances during the data processing. This monitoring can be realized through
scripts, such as Python or Shell scripts, or through more sophisticated im-
plementations, such as complex event processing (CEP) queries. Hence, this
component provides different runtime environments to realize the monitor-
ing, including a CEP engine to continuously evaluate CEP queries.
Finally, metadata and dynamic data of IoT objects can be visualized by

the Dashboard f component. It provides, for example, information about
the availability and current disc space of IoT objects, historical data, and
last measurements of sensor values.

3.3 | Overall architecture 45

Ch
ap
te
r 4

Modeling of IoT
environments and data

stream processing

This chapter presents contribution C1, the IoT environment model (IoTEM)
and the data stream processing model (DSPM). In this thesis, the term hard-
ware objects corresponds to devices, sensors and actuators, while the term
virtual objects corresponds to virtual resources. The term IoT object is the
generic term for hardware and virtual objects.
The IoTEM, which defines IoT objects within IoT environments, and

the DSPM, which defines the data processing logic of IoT applications,
describe different aspects of the IoT domain. Therefore, this thesis defines
different IoT layers (depicted in Figure 4.1), in which further IoT models,
comprehending different aspects, can be classified as well. There are two
main layers: the physical layer and the digital layer. The physical layer refers
to aspects describing hardware objects and their physical interconnections.
In the digital layer, the digital twin refers to aspects describing running

47

physical
layer

digital
layer

IoT
application

logic

digital
twin

operator data flow

Contribution C1: DSPM

Contribution C1: IoTEM
IoT

objects

Raspberry Pi

Edge server

Arduino Actuator

ESP8266

Temp. sensor

Hum. sensor

Raspberry Pi

Edge server

Arduino

Hum. sensorTemp. sensor Actuator

ESP8266

Figure 4.1: Layers of the Internet of Things [FH20]

operators provided within an IoT environment, for example, to access sensor
data [HWBM16b]. The IoT application logic refers to models that logically
use the operators provided by the digital twin to achieve specific goals of
an IoT application. In the above described layers, the IoTEM focuses on the
physical layer, while the DSPM focuses on the application logic in the digital
layer. The IoTEM describes the computing capabilities of IoT objects in the
IoT environments. On the other hand, the DSPM describes the computing
requirements of IoT applications.
The IoTEM and DSPM are created by different roles: the domain expert

and the domain analyst. Domain experts have technical knowledge about the
IoT environment, e.g., information about the computing capabilities and how
to interact with IoT objects. Domain analysts have domain knowledge about
the data generated in the IoT environment and how these data need to be
processed. In this way, domain analysts are able to describe the processing
logic of IoT applications for domain-specific use cases.
The models IoTEM and DSPM are explained in detail in Section 4.1 and

Section 4.2, respectively.

48 4 | Modeling of IoT environments and data stream processing

4.1 Modeling of IoT environments

The continuous progress in sensor and network technologies has enabled the
existence of IoT devices, which are interconnected and continuously exchang-
ing information about their surroundings and about themselves [AAS13;
GBMP13]. IoT devices are typically embedded with or connected to sensors
and actuators, through which the devices can sense and act in their sur-
roundings. An environment containing one or more of such devices is called
an IoT environment. Such environments exist in a variety of domains, such
as smart homes [GBMP13], smart factories [Jaz14], or smart cities [VF13].
Furthermore, to enhance IoT environments with computing power, for ex-
ample, to handle large amounts of data, virtual resources provided by cloud
computing technologies can be employed as well [GBMP13].
In recent years, many IoT platforms have been developed [MMST16].

Normally, IoT objects are managed by IoT platforms, which provide access
for IoT applications through high-level APIs. In many approaches, such
as FIWARE [RGSE14], IBM Watson IoT [Nel16], OpenMTC [CCE+12],
or Microsoft Azure IoT [Kle17], IoT objects are manually and individually
registered and configured with these IoT platforms. This is, however, a
complex and time-consuming task. Furthermore, IoT environments are very
dynamic, e.g., devices might become faulty. Therefore, IoT platforms need
to be in-sync with IoT environments in order to enable IoT applications to
be aware of changes.
For this, contribution C1 provides the IoTEM to describe whole IoT envi-

ronments. IoTEMs are integrated into and used by the Multi-purpose Binding
and Provisioning Platform (MBP) to automatically register and configure IoT
environments as a whole instead of configuring each IoT object individually.
Registered IoT environments are constantly monitored to recognize critical
changes in the environment, e.g., when a device becomes faulty.
Within this thesis, a comprehensive survey comparing different IoT models

was conducted in [FH20], in order to choose a suitable model as IoTEM.
In Table 4.1, the results of this survey are shown, in which a criteria-based
comparison of several IoT models is presented.

4.1 | Modeling of IoT environments 49

Table 4.1: Criteria-based comparison of IoT models [FH20]: maturity ➊,
hierarchy ➋, availability ➌, implementation ➍, geolocation ➎

Model ➊ ➋ ➌ ➍ ➎ Remarks
homeML non-std. ✗ ✗ ✗ ✓ Designed for smart

homes [MNH+13]
IEEE 1451 std. ✗ ✓ ✓ ✗ Focuses on transducers [IEE10]
IoT ARM non-std. ✓ ✗ ✗ ✓ Generic reference

model [BBD+13]
IoT-Lite submitted ✓ ✓ ✓ ✓ Uses SSN ontology [BEBT17]
IoT MC std. ✓ ✓ ✓ ✗ Also known as IoTivity [Lin17]
IoT-O std. ext. ✓ ✗ ✗ ✗ Uses SSN ontology [AMMD15]
Nexus non-std. ✓ ✓ ✓ ✓ Focuses on geolocaliza-

tion [NSM17]
oneM2M std. ✓ ✓ ✓ ✓ Focuses on services of IoT de-

vices [one18]
OPC-UA std. ✓ ✓ ✓ ✗ Established in smart facto-

ries [Fou17a]
SenML std. ✗ ✓ ✓ ✓ Focuses on sensors and sensor

values [JSA+18]
SensorML std. ✗ ✓ ✓ ✓ Supports processes [OGC14]
SSN std. ✓ ✓ ✓ ✓ Used by IoT-Lite / IoT-O [W3C05]
TDLIoT non-std. ✗ ✓ ✓ ✓ Research prototype [FHB+18]
Vorto non-std. ✗ ✓ ✓ ✗ Programming language [Ecl17]

In order to compare the IoT models, five criteria covering their most impor-
tant characteristics are provided. These criteria were identified by a thorough
investigation of available IoT models, and furthermore, from experiences
in the scope of the German industry projects SmartOrchestra [Sma16] and
IC4F [IC417], which have many industry partners with expertise in IoT
applications. The criteria are explained in the following.
The first criterion specifies thematurity ➊ of the IoT models, e.g., whether

an IoT model is an approved standard of an organization, such as OASIS,
W3C or OGC, or not. It is assumed that an approved standard by such

50 4 | Modeling of IoT environments and data stream processing

organizations went under a thorough reviewing process and, thus, has been
checked for feasibility. Furthermore, it is assumed that a standard provides
advantages in contrast to, e.g., IoT models that were published in scientific
papers and have not yet been extensively validated regarding feasibility.
Consequently, maturity is an important factor while evaluating IoT models.
The second criterion refers to the support of hierarchy ➋. This is an

important factor when modeling environments in the IoT, since they nor-
mally contain hierarchical deployments among the different existing IoT
objects. There are two main types of hierarchies, grouping and abstraction.
For example, through grouping, it should be possible to model complex
systems, such as production machines in a smart factory, which contain a
high amount of devices, sensors and actuators. This enables group-based
querying. Such relations can be of vital importance, for example, when
conducting monitoring for predictive maintenance [MS17]. Furthermore,
through abstraction, generic types can be defined. For example, different
sensor modules measuring temperature can be aggregated by the generic
type temperature sensor. Consequently, this thesis investigate whether some
support of hierarchies can be expressed in the IoT models. For example, an
ontology-based model supports natively both mentioned types of hierarchies.
Other models normally need to provide such means separately.
The third criterion availability ➌ refers to whether the IoT model is

publicly available or not, and furthermore, if a wide community is involved in
its future development. Clearly, a large community of users and developers,
or a larger organization, is required in order to establish and to further
develop an IoT model. To realize this, the model should either be available
open source, or, if it is closed source, it should be developed and used by a
larger organization.
The fourth criterion refers to whether an implementation ➍ of the IoT

model exists. In scientific papers, for example, interesting concepts are
created that, however, might not have a corresponding implementation.
For the usage in real-world scenarios, an available implementation is of
vital importance. This also includes available tools for model creation and
management.

4.1 | Modeling of IoT environments 51

Finally, the fifth criterion geolocation ➎ refers to whether the IoT model
can describe (geo-)locations of IoT objects, which enable sophisticated fea-
tures, such as location-based querying. Especially in the IoT, locations are
important, for example, when recognizing situations, i.e., events that might
require a reaction, which occur in a specific location, e.g., in a smart home.
As a result of the investigation, the IoTEM is based on the ontology IoT-

Lite [BEBT16; BEBT17]. IoT-Lite is a lightweight instantiation of the SSN
ontology [W3C05] and aims to reduce the complexity of other IoT models by
describing only main IoT concepts, however, it can be extended to describe
further concepts or details, enabling, in this thesis, also the modeling of
computing capabilities of IoT objects. Furthermore, using an ontology as
IoTEM enables the definition of semantics within the IoT environment and
also reasoning can be conducted.

4.1.1 IoTEM definition

The IoTEM is an undirected graph containing IoT objects as nodes, and their
network interconnections as edges [FHM19]. It is formalized as follows:
Definition 4.1 (IoTEM)
An IoT environment model is a tuple
IoT EM := (Ob jects, Connect ions, distance, Ob jectCapabil i t ies,
Connect ionCapabil i t ies, ob jec tCapabil i t yAssi gnment,
connect ionCapabil i t yAssi gnment), where:

• Ob jects ̸= ;: set of all IoT objects of the IoT environment.
• Connect ions ⊆ {(ob ji , ob j j) | i ̸= j ∧ ob ji ̸= ob j j ∧ ob ji, j ∈ Ob jects}:
set of all undirected connections among the IoT objects in Ob jects.

• distance : Connect ions → R: weight function, which assigns the re-
spective network distance to the connections.

• Ob jectCapabil i t ies: set of all IoT object capabilities in the IoT envi-
ronment.

52 4 | Modeling of IoT environments and data stream processing

• Connect ionCapabil i t ies: set of all connection capabilities in the IoT
environment.

• ob jec tCapabil i t yAssi gnment : Ob jects → P(Ob jectCapabil i t ies):
mapping, which assigns a set of capabilities to IoT objects.

• connect ionCapabil i t yAssi gnment : Connect ions
→ P(Connect ionCapabil i t ies): mapping, which assigns a set of ca-
pabilities to connections.

so that (Ob jects, Connect ions, distance) is an undirected and weighted
graph with the network distance to define the weight.

For such an IoTEM, a network path corresponding to a series of connec-
tions, is defined as follows:
Definition 4.2 (IoTEM network path)
Let IoT EM be an IoT environment model. A network path in IoT EM is a
finite series of connections, where,

path = {(ob j0, ob j1), (ob j1, ob j2), . . . , (ob jn−1, ob jn)} : n, i ∈ N, ob ji ∈
Ob jects, such that:

1. ∀ob ji ∈ {ob j0, ob j1, . . . , ob jn−1} : {ob ji , ob ji+1} ∈ Connect ions.
2. ∀ob ji , ob j j ∈ {ob j0, ob j1, . . . , ob jn} : i ̸= j ∧ ob ji ̸= ob j j .

Furthermore, the following properties are defined:

• sec t ion= (ob ji , ob ji+1) | i ∈ {0, 1, . . . , n− 1}: a section of the network
path.

• n: length of the network path.
• start(path) = ob j0: start of the network path.
• target(path) = ob jn: target of the network path.
• Paths = {path0, path1, . . . , path j | j ∈ N}: set of all network paths in

IoT EM .

4.1 | Modeling of IoT environments 53

The first condition for a network path ensures that all connections existing
in the path also have a connection in the IoTEM. The second condition
implies that a network path must not contain cycles or loops. It is assumed
that the IoT objects are connected directly to each other in a Peer-to-Peer
network [Dea15].
Furthermore, the distance of a network path distance(path) in an IoTEM

is defined as:
Definition 4.3 (Network distance of an IoTEM network path)

distance(path) =
∑

∀sec t ion ∈ path(N)

distance(sec t ion)

The total distance of a network path is the sum of all distances of its
sections. The concrete distance calculation of the sections is implementation-
specific and depends, for example, on latency or bandwidth. For instance, if
a cloud infrastructure solution is available, the distance to it is typically much
higher than to an on-premise IoT object. One possible metric to measure the
distance of such sections within a network is introduced by Dean [Dea15].
An example for an IoTEM is depicted in Figure 4.2 including a graphical and
formal representation.

4.1.2 IoT object and connection capabilities

In terms of computing capabilities, McEwen et al. [MC13] define an IoT
object as a minicomputer, which provides network connectivity, processing
power, and storage. Examples of IoT hardware objects are Arduino Yún,
BeagleBone, ESP8266, and Raspberry Pi [SK17].
The following capabilities, which can be used to describe an IoT object,

are derived from the McEwen et al. definition, and furthermore, from the
constraints of heterogeneous and distributed environments presented by
Cipriani et al. [CLM10]. The following alphabetic list represents a subset of
possible capabilities, and hence, is not complete.

54 4 | Modeling of IoT environments and data stream processing

Objects = {device-1, sensor, device-2, device-3, actuator}
Connections = {conn-1, conn-2, conn-3, conn-4, conn-5}
ObjectCapabilities = {memory}
ConnectionCapabilities = {bandwidth}
objectCapabilityAssignment = {(device-1, cap-1)}
connectionCapabilityAssignment = {(conn-3, cap-2)}
distance = {(conn-1, 0), (conn-2, 10), …}

device-1

device-2 device-3

sensor

actuator

conn-2

conn-1

conn-3

conn-4

conn-5

cap-1:
memory

cap-2:
bandwidth

connectionIoT object capability

Figure 4.2: Example of an IoTEM

• Authentication. This capability describes the supported authentica-
tion mechanisms of an IoT device. Specially important in the IoT do-
main is machine authorization, which is the authorization for machine-
to-machine or human-to-machine communication. Examples of au-
thentication mechanisms are passwords, digital credentials, and cer-
tificates [HA94].

• Confidentiality. This capability describes how the information stored
in the IoT device is protected even if an unauthorized access occurs.
Confidentiality can be reached by employing, for example, encryption
mechanisms [HA94].

• Device category. This thesis defines four device categories, which dis-

4.1 | Modeling of IoT environments 55

tinguish among different deployment paradigms onto devices. These
categories are the result of our investigation in [HBF+16] about how
operator placement (i.e., software deployment) can be realized onto
different types of IoT devices:
A plug-and-play device has embedded sensors and/or actuators. How-
ever, it does not allow remote deployment but rather provides APIs
through a cloud server to access its sensors and actuators. Examples
of such devices are wireless wearables [Fit09], which constantly syn-
chronize their data to cloud servers. Therefore, operator placement
on a plug-and-play device is not possible, however, operators can be
deployed in other IoT objects connected to a plug-and-play device
through the provided APIs.
A configurable device, such as the Raspberry Pi computer [Ras09],
allows sensors and actuators to be attached to it through its physical
interface (e.g., GPIO). Such a device has an operating system (OS),
which enables a remote configuration and deployment of operators,
for example, to extract and forward sensor data to an IoT platform.
A constrained configurable device, such as Arduino Yún [Ard13] and
the Bosch XDK node [Rob16], has sensors and actuators embedded
or attached to it and enables their remote configuration and software
deployment. However, such devices are constrained, i.e., have limited
processing and storage capabilities. In this case, complex processing
operators should be avoided in this kind of device and the data to be
processed should be rather forwarded to more powerful devices than
being handled by the device itself.
A gateway-dependent device enables its configuration (e.g., firmware
flashing) and software deployment only through a connection to a host
device, in this thesis called a gateway. Generally, a gateway connects
two systems using different formatting, communication protocols,
or architectures [Dea15]. Examples for such devices are ESP8266
modules [Esp14] or Arduino Leonardo boards [Ard05]. In this case,
the role of a gateway can be assumed by configurable devices physically

56 4 | Modeling of IoT environments and data stream processing

connected (e.g., through an USB port) to gateway-dependent devices.
Through such physical connections, it is possible to upload operators
into the gateway-dependent devices.

• Memory. This capability corresponds to the currently available work-
ing memory (i.e., RAM) of the IoT device.

• Networking type. This capability describes how an IoT device con-
nects to other devices in the IoT environment. Examples of network-
ing types are Ethernet (IEEE 802.3), Wi-Fi (IEEE 802.11), Bluetooth
(IEEE 802.15.1), Bluetooth Low Energy (IEEE 802.15.4), 4G LTE, or
5G [AGM+15; SBH16; SK17].

• Power consumption mode. In the IoT domain, devices depending on
batteries should be able to run on low-power consumption modes, in
order to keep up with long-lasting IoT applications [MVD+14]. This
capability describes the power consumption modes that an IoT device
can support. For example, a Raspberry Pi provides four power modes,
among them a run mode (default) and a standby mode [Hor13].

• Processing power. This capability corresponds to the CPU speed of the
IoT device. For example, a Raspberry Pi 3 model B has four processors
running at 1.2 GHz.

• Storage capacity. This capability corresponds to the available amount
of storage. This is important for operators collecting sensor data or
storing intermediate results.

• Supported runtime. This capability corresponds to a list of supported
and available software runtime environments (e.g., Java, Python, CEP
engines) of an IoT device.

As formalized in Definition 4.1, the capabilities of the network connections
among IoT objects are modeled by the IoTEM as well. The following list
shows a subset of possible connection capabilities, and hence, is not complete.

• Bandwidth. This capability provides an estimation about the amount

4.1 | Modeling of IoT environments 57

of data that can be transferred in a fixed amount of time by the con-
nection.

• Encryption. This capability describes if the data exchange through
the referred connection is encrypted.

• Latency. This capability provides an estimation of the time required
to exchange data by a connection.

• Networking type. This capability describes the type of network con-
nection, for example, wired or wireless.

4.1.3 Architecture component and implementation – IoTEM modeler and
manager

In the overall architecture (cf. Section 3.3), the IoTEM modeler and manager
component supports domain experts by providing the means to create and
store IoTEMs, and furthermore, to manage registered IoTEMs to the MBP.
The IoTEM modeler and manager component is depicted in Figure 4.3.

It contains the graphical IoTEM modeling tool a , which is used to model
the IoT environment by dragging and dropping IoT object types b into a
modeling area. IoT object types, such as Raspberry Pis, temperature sensors,
and virtual machines, are provided by an ontology. IoTEMs, which are
instances of the ontology, are stored in the IoTEM storage c .
Furthermore, the IoTEM modeling tool enables domain experts, besides

storing and retrieving IoTEMs, to register all IoT objects of an IoTEM to
the MBP at once. This registration triggers the IoT objects manager d
to instantiate digital counterparts (i.e., digital twins) of the modeled IoT
objects. These digital counterparts are stored in the IoTEM storage. The IoT
objects manager constantly synchronizes with the physical IoT environment
in order to recognize disturbances in the physical environment, such as when
devices become faulty. The current status of the registered IoT objects can
be checked and visualized in the MBP dashboard. How the recognition of
disturbances is realized will be explained in detail in Chapter 7.

58 4 | Modeling of IoT environments and data stream processing

IoTEM: IoT environment model

IoTEM
modeling tool

IoTEM modeler and manager

IoT object
types

ontology

IoT objects
manager

IoTEM
storage

IoT physical environment layer

synchronize

register
IoT objects

create
IoTEM a

b c

d

Multi-purpose Binding and Provisioning Platform (MBP) layer

Domain
expert

Figure 4.3: Architecture component: IoTEM modeler and manager

The IoTEM modeler and manager component has been prototypically im-
plemented as part of the MBP, which is available as an open-source GitHub
project1. Section 8.2 gives an overview on the MBP functionalities. The
implementation of this component uses mainly JavaScript on the graphical
user interface and Java on the server side. The IoTEM modeling tool uses the
JavaScript library jQuery and the jsPlumb Toolkit for the implementation of a
drag and drop editor2 for the modeling of IoT environments in a user-friendly
manner. The IoT object manager is implemented on the server side using
Java. A REST API3 reflecting the same functionality for the management of
IoT objects has been implemented on the server side as well. The MongoDB
database is used as the IoTEM storage to store IoT object types and modeled

1https://github.com/IPVS-AS/MBP
2https://github.com/IPVS-AS/MBP/wiki/Modeling-IoT-Environments
3https://github.com/IPVS-AS/MBP/wiki/API-Reference

4.1 | Modeling of IoT environments 59

IoTEMs. Section 8.1 presents the integration architecture of all architecture
components and shows how they fit together.

4.1.4 Related work

Many approaches exist for the modeling of IoT environments (cf. Table 4.1).
They provide IoT models and tools for the creation and management of
instances of these IoT models. Tool support is of vital importance since it ab-
stracts the complexity of IoT models (e.g., complex data formats) and eases
the task of modeling and management. However, state-of-the-art approaches
do not provide the means to support the entire life cycle of IoT environ-
ments, i.e., from modeling, through deployment, until undeployment. More
concretely, they do not provide a holistic concept as in this thesis for the
modeling, configuration, and monitoring of IoT environments.
McDonald et al. [MNH+13] introduce a modeling tool for the model

homeML [NFD+07], which is, however, tailored for smart homes. In con-
trast, this thesis employs an IoT model that is generic and can be also applied
to other IoT domains, such as smart factory or smart city.
Mayer et al. [MIV+14; MIVV14] show an approach combining semantic

metadata and reasoning with graphical modeling, in which goals of an IoT
environment can be configured, for example, the desired temperature of a
room during the day. However, this approach assumes that the IoT environ-
ment is already deployed and computing operators are already running.
Moreover, there exist a large amount of IoT platforms [BMP13; MMST16;

SK17], such as FIWARE [RGSE14], GSN [AHS06; AHS07], IBM Watson
IoT [Nel16], OpenIoT [SKH+15], OpenMTC [CCE+12], or Microsoft Azure
IoT [Kle17]. However, they do not provide the means to model and manage
complete IoT environments, i.e., IoT objects are manually and individually
registered and configured to these IoT platforms.
This thesis employs the IoT-Lite ontology [W3C15] for the modeling of

IoT environments and provides a graphical modeling and management tool
for IoT environments, the IoTEM modeling tool (cf. Figure 4.3). Besides the
IoT-Lite ontology, other formats and standards could also be used to model

60 4 | Modeling of IoT environments and data stream processing

Device OS
(RaspianJessie)

Publisher
(PythonApp)

Python Interpreter
(Python3)

Device
(RaspberryPi3)

Broker OS
(Ubuntu14.04)

Message Topic
(Topic)

Computer
(Computer)

Message Broker
(Mosquitto3.1)

(connectsTo)

(dependsOn) (hostedOn)

sensor:
temperature

IoT Environment Model

stop
terminate

install
start

Node template
Operation of an implementation artifact (IA)
Deployment artifact (DA)

publisher.py

Figure 4.4: TOSCA topology model for an IoT environment (based
on [FBK+16])

IoT environments, such as the SSN [W3C05] or oneM2M Base [one18]
ontologies. In this thesis, a thorough literature review on state-of-the-art
IoT models was conducted. Table 4.1 shows the results of this literature
review, in which a criteria-based comparison of IoT models is presented. As
a consequence of this comparison, the IoT-Lite ontology has shown to be the
best suitable model for the purposes of this thesis.
Furthermore, more generic models that are not specifically tailored for IoT

environments, can be employed as well. For instance, the Topology and Or-
chestration Specification for Cloud Applications (TOSCA) standard [OAS13]
could be employed, which is originally designed for cloud applications, but
offers nonetheless the means to model IoT environments and IoT applications
as we investigated in [FBH+17; FBK+16; FHB+17]. An abstract TOSCA

4.1 | Modeling of IoT environments 61

topology model including an IoT device and an IoT application is depicted in
Figure 4.4. The node templates on the bottom correspond to the IoT objects
of the IoT environment.
However, IoT-specific models, such as ontologies, offer many advantages,

such as predefined types, semantic descriptions and tool-support for semantic
resolution [SI02]. Vermesan et al. [VFG+13] argue that, to reach the full
potential of IoT applications, semantic information about IoT objects is a
premise. For these reasons, the IoT-specific ontology model IoT-Lite was
employed in this thesis.

4.2 Modeling of data stream processing

This section explains in detail the data stream processing model (DSPM).
Due to continuous sensor readings and frequent data exchange among

IoT objects, high amounts of data are generated within IoT environments.
These data incorporate the form of data streams, which are not persistent
but rather arrive for processing in multiple, continuous, rapid, time-varying
streams [BBD+02]. Well-established paradigms to process data streams are
complex event processing and stream processing [CM12]. Contribution C1
provides the DSPM to describe the processing logic of IoT applications, i.e.,
how data streams in the IoT environment should be processed.

4.2.1 DSPM definition

The DSPM is a graph-based model containing data sources, data sinks,
processing operators, and the data flow between these operators [FHM19].
It is based on the pipes and filters design pattern [Meu95], which provides a
structure for the processing of a data stream [BMR+96]. The input for the
processing is provided by the data sources, e.g., sensors, producing sequences
of data values in the same structure. On the other hand, the output of the
processing reaches data sinks. A processing operator corresponds to a filter,
and the data flow between two adjacent processing operators corresponds to
a pipe. Furthermore, the connections between data sources and processing

62 4 | Modeling of IoT environments and data stream processing

operators and between processing operators and data sinks correspond
to pipes as well. This thesis uses a pipes and filters variant, in which a
processing operator can have multiple inputs and outputs [BMR+96].
The DSPM is formalized as follows:

Definition 4.4 (DSPM)
A data stream processing model is a tuple
DSPM := (Sources, Sinks, Operators, Ed ges, OperatorRequirements,
Ed geRequirements, operatorRequirementAssi gnment,
ed geRequirementAssi gnment), where:

• Sources ̸= ;: set of all data sources of the DSPM.
• Sinks ̸= ;: set of all data sinks of the DSPM.
• Operators ̸= ;: set of all processing operators of the DSPM. This
set also contains operators that extract data from data sources, and
furthermore that serve data to data sinks.

• Ed ges ⊆ ((Operators×Operators) ∪ (Sources×Operators) ∪
(Operators×Sinks)): set of edges between operators, between sources
and operators, and between operators and sinks.

• OperatorRequirements: set of all operator requirements in the DSPM.
• Ed geRequirements: set of all edge requirements in the DSPM.
• operatorRequirementAssi gnment : Operators→

P(OperatorRequirements): mapping, which assigns a set of require-
ments to operators.

• ed geRequirementAssi gnment : Ed ges→ P(Ed geRequirements): map-
ping, which assigns a set of requirements to edges.

so that (Operators, Ed ges) forms a directed, unweighted, loop-free and
acyclic graph. Moreover, the DSPM describes the data flow and not the
control flow [ACÇ+03].

To properly create DSPMs, domain analysts need to know which data
sources and sinks are available in the IoT environment. For this, only general

4.2 | Modeling of data stream processing 63

descriptions of sensors and actuators need to be extracted from the IoTEM
in order to abstract them to domain analysts as data sources and sinks.
Furthermore, operators and connections are annotated with computing
requirements. An example of a requirement is the minimum storage required
by an operator that stores intermediate results. Based on the computing
requirements of operators, it is possible to search for a suitable operator
placement in the IoT environment, which meets all the requirements of a
modeled DSPM. Possible computing requirements are those meeting the
exemplary computing capabilities of IoT devices described in Section 4.1.2.
For some requirements, such as required main memory, domain analysts

typically do not know which concrete values should be used. This knowl-
edge is highly dependent on the amount and complexity of the data and,
thus, needs to be inferred through empirical values. Therefore, empirical
values of operators are collected during their execution. These values are
then processed using analytical techniques to provide domain analysts with
recommendations about the requirements at modeling time.
Figure 4.5 shows an example of a DSPM including data sources, sinks,

and processing operators containing graphical and formal representations.
The goal of the exemplary application is to monitor mold levels in different
rooms of a building in order to recognize when mold levels rise to unhealthy
ranges. The data sources are represented by temperature sensors (So1, So3)
and humidity sensors (So2, So4), while the data sinks are represented by
dashboards (Si1, Si2, Si3). Furthermore, the example uses operators to
extract sensor data, to join sensor data based on time windows, to calculate
mold levels, and to serve data to data sinks. For each room, the mold level is
continuously calculated based on temperature and humidity values and is
analyzed over time in order to detect increases.

4.2.2 Processing operators

In the context of this thesis, a processing operator is a software component
that executes an operation (e.g., data filtering, average function) on one or
more input data streams. These software components can be, for example,

64 4 | Modeling of IoT environments and data stream processing

E1

E2

J3 C4

J9

E5

E6
J7 C8

So1

So2

So3

So4

Si1

Si3

Si2

Room 1

Operators = {E1, E2, E5, E6, J3, J7, J9, …}
Sources = {So1, So2, So3, So4}
Sinks = {Si1, Si2, Si3}
Edges= {(E1,J3), (E2,J3), (J3,C4), (C4,J9),

(E5,J7), (E6,J7), (J7,C8), (C8,J9), …}
OperatorRequirements = {req-1, …}
EdgeRequirements = {req-2, …}
operatorRequirementAssignment= {(C4,req-1), …}
edgeRequirementAssignment= {((J7,C8),req-2), …}

req-1: memory

Room 2

req-2: bandwidth

C: Calculation
E: Extraction
J: Join
S: Serving

data flowdata source
data sink
operator
requirement

S12

S11

S10

Figure 4.5: A DSPM for an application in the domain smart building

Python or Shell scripts, JAR files, or continuous processing queries. The suit-
able software runtime environment (e.g., Java RE, Python interpreter, stream
processing engine) required by a processing operator needs, therefore, to be
modeled in the DSPM as a computing requirement of this operator.
Processing operators are normally executed continuously and are based

on windows, i.e., intervals of data based on time or number of elements,
due to the data stream’s nature of being infinite [BBD+02; CM12]. Fur-
thermore, window-based operations are imperative, since the data within
IoT environments can be imprecise or become stale rapidly [ACÇ+03]. The
output of a processing operator leads to one or more data streams, which
can be sent to further processing operators or to data sinks.
Processing operators are assumed to be ready for operator placement

4.2 | Modeling of data stream processing 65

procedures, i.e., necessary mechanisms to distribute the data processing
have been already employed. Approaches realizing stream processing in
distributed environments can be found in [AAB+05; CM13; LF98; SMP09].
The following alphabetic list shows an incomplete subset of processing
operators, which can be employed to process data within IoT environments.

• Aggregation. This operator applies an aggregation function to a
set of values (i.e., a window) in a data stream and returns a sin-
gle value [ACÇ+03]. Examples of aggregation are average, minimum
value, and maximal value calculations.

• Calculation. This operator realizes a calculation based on values of
one or more input streams. For example, in Figure 4.5, the calcu-
lation operator is a function, which calculates mold levels based on
temperature and humidity values.

• Extraction. This operator extracts data from the data sources, for
example, it can be the software code accessing the physical interface
of a sensor (e. g., through GPIO) to get actual sensor measurements.

• Filter. This operator filters the data based on parameters.
• Join. This operator joins two data streams.
• Pattern detection. This operator recognizes certain patterns in a data
stream [EBB+11]. An example of a pattern derived from CEP concepts
is an event sequence, i.e., specified events occurring in a certain order.

• Serving. This operator serves data to data sinks, for example, it can
be the software code accessing the physical interface of an actuator to
control it, or the software code sending data to a dashboard application.

• Transformation. This operator realizes transformations, e.g., among
different data formats or data schemas.

66 4 | Modeling of IoT environments and data stream processing

IoT application layer

DSPM
modeling tool

dDSPM
manager

d

create
dDSPM

DSPM
storage

Operator
types

repository
b c

a

create DSPM,
retire dDSPM

Domain
analyst

DSPM modeler and manager

IoTEM and DSPM mapper

start
mapping

IoT objects
manager

IoTEM modeler
and manager

retrieve IoTEM

synchronize

IoT physical environment layer

synchronize

IoTEM: IoT environment model
DSPM: Data stream processing model
dDSPM: deployed data stream processing model

consume
processing

results

Multi-purpose Binding and Provisioning Platform (MBP) layer

Figure 4.6: Architecture component: DSPM modeler and manager

4.2.3 Architecture component and implementation – DSPM modeler and
manager

In the overall architecture (cf. Section 3.3), the DSPM modeler and manager
component supports domain analysts by providing the means to create
and store DSPMs, and furthermore, to manage deployed DSPMs onto IoT
environments. This component is depicted in Figure 4.6.
This thesis uses the FlexMash tool [HB17; Hir18; HM16], which was

proposed by Hirmer et al., as the DSPM modeling tool a for the creation
of DSPMs. It provides a graphical interface and its JSON-based underlying
model can be extended to enable the annotation of computing requirements

4.2 | Modeling of data stream processing 67

on nodes and edges, which is a premise for the concepts of this thesis.
The DSPM modeling tool enables the creation of DSPMs by dragging

and dropping data sources, data sinks, and processing operators into the
modeling area. While operators are available in the Operator types reposi-
tory b , data sources and sinks are abstracted from sensors and actuators
existent in IoTEM models, which are retrieved from the IoT objects manager.
Furthermore, modeled DSPM are stored in the DSPM storage c .
Through the DSPM modeling tool, the mapping of a DSPM onto an IoTEM

is started, and subsequently, the deployment based on the created mapping
plan is started as well. Once a DSPM has been successfully deployed and
started by the Deployment manager component(cf. Chapter 6), the dDSPM
manager d gets informed about the success of the deployment and creates a
corresponding dDSPM, which contains information about which IoT object is
processing which operator. The dDSPM manager constantly retrieves status
information from the IoT objects manager, to get, for example, insights of the
health of the deployed operators and existing IoT objects. This information
can be visualized in the MBP dashboard. Finally, the modeling tool also
enables domain analysts to stop and retire dDSPMs, what is managed by the
dDSPM manager.
The DSPM modeler and manager component has been prototypically im-

plemented as part of the MBP, except for the DSPM modeling tool, which
corresponds to an external tool available in the FlexMash GitHub project1.
The DSPM modeling tool corresponds to the graphical user interface of the
FlexMash tool [Hir18]. In the scope of this thesis, the FlexMash graphi-
cal user interface and its JSON-based underlying model were extended in
the master thesis conducted by Chaudhry [Cha18]. The extensions include
enabling the annotation of requirements on processing operators and on
edges. FlexMash was also extended with communication interfaces to the
server side of the MBP, in order to import sources and sinks from IoTEMs,
to trigger the automated mapping and deployment of operators, and to
retire dDSPMs. The FlexMash graphical user interface was implemented in

1https://github.com/hirmerpl/FlexMash

68 4 | Modeling of IoT environments and data stream processing

JavaScript and uses jQuery and the jsPlumb Toolkit. Modeled DSPMs are
stored in the MBP server in a MongoDB database. The dDSPM manager is
implemented in the MBP server using Java. The Operator types repository
corresponds to a file system in the installation location of the MBP. Several
operators have been implemented in Python and Shell, which can be found
in the MBP GitHub project1. Finally, Section 8.1 presents the integration
architecture of all architecture components and shows how they fit together.

4.2.4 Related work

There exist many approaches to model data flows and data processing
for the IoT [BL14; SBS+17], such as COMPOSE [Man+13; PVC+14],
Huginn [Can+13], IFTTT [IFT11], LabVIEW [TK07], Node-RED [JS 13],
WoTKit [BL12a; BL12b], WoT Flow [BL14], or Yahoo! Pipes [Pru07]. How-
ever, they either assume that the processing is executed centralized or that
operators and services are already running in the IoT environments.
A thorough literature review on state-of-the-art data flow models was

conducted by Hirmer [Hir18], who proposed an approach for the modeling
and execution of requirements-based data flows. In his work, the FlexMash
tool [HB17; HM16] has been developed, which serves as a basis for this
thesis in respect to the modeling of data stream processing.
More generic models that are not specifically tailored to model data pro-

cessing can be employed as well, for instance, the Topology and Orches-
tration Specification for Cloud Applications (TOSCA) standard [OAS13].
In [FHB+17], we investigate how to model complex event processing in
TOSCA and afterwards use the resulting TOSCA model to deploy and start
the processing. An abstract TOSCA topology model for complex event pro-
cessing is depicted in Figure 4.7, in which several types of operators are
modeled. For example, it contains operators extracting temperature and
humidity sensor values, and subsequently, one operator transforming these
values into a format that can be understood by the CEP system.

1https://github.com/IPVS-AS/MBP/tree/master/resources/operators

4.2 | Modeling of data stream processing 69

Temp. extraction
(Operator)

Hum. extraction
(Operator)

Transformation-1
(Operator)

CEP System
(Application)

System Runtime
(Runtime)

CEP Customization
(Operator)

Transformation-2
(Operator)

(dependsOn)

(hostedOn)(connectsTo)

Data flow
Node template
Deployment artifact (DA)

CEP query

Dashboard
(Operator)

Figure 4.7: TOSCA topology model of a complex event processing example
(based on [FBH+17])

Finally, many IoT platforms have been developed that include a data
processing layer [BMP13; MMST16; SK17], however, they either do not
provide the means to model the data processing in a user-friendly way (e.g.,
the modeling is realized by textual input) or only the modeling of simple rules
(e.g., if-statements) is supported. Furthermore, they assume the processing
is executed centralized, for example, by the IoT platform itself, and do not
support, in this way, the concepts of operator placement.

70 4 | Modeling of IoT environments and data stream processing

Ch
ap
te
r 5

Mapping of DSPMs onto
IoTEMs

This chapter presents contribution C2, which is the mapping of data stream
processing models (DSPMs) onto IoT environment models (IoTEMs). This
contribution contains two approaches to realize the mapping: (i) an au-
tomatic approach, in which a mapping plan is automatically generated by
different algorithms, and (ii) a manual approach, in which domain ana-
lysts decide themselves which operators should be executed by which IoT
objects [FHST20]. In this case, a mapping plan is created manually.
The resulting mapping plan can be, for example, based on a software or-

chestration standard, such as TOSCA [OAS13], or based on other established
provisioning tools, such as Shell scripts, Chef [Che09], or Puppet [Pup05].
Based on the mapping plan, the next contribution C3 (cf. Chapter 6) deals
with the deployment of operators in the IoT environment.
The mapping approaches are explained in detail in Sections 5.1 and 5.2.

The architecture component realizing the mapping approaches is described
in Section 5.3. Finally, Section 5.4 presents related work to contribution C2.

71

5.1 Automatic mapping approach

This approach aims to automatically decide which IoT objects should pro-
cess which operators. This is realized by means of algorithms that are able
to evaluate and match the overall capabilities of the IoTEM and the re-
quirements of the DSPM. In this thesis, this is referred to as the operator
placement problem (cf. Section 2.3). The problem of distributing operators
is NP-complete, therefore, heuristic algorithms, such as those presented by
Lo [Lo88], are normally used to solve this kind of problem.
Based on the DSPM and the IoTEM, the operator placement problem of

this thesis is formalized as follows:
Definition 5.1 (DSPM operator placement problem)
Let IoT EM := (Ob jects, Connect ions, distance, Ob jectCapabil i t ies,
Connect ionCapabil i t ies, ob jec tCapabil i t yAssi gnment,
connect ionCapabil i t yAssi gnment) be an IoT environment and
DSPM := (Operators, Sources, Sinks, Ed ges, OperatorRequirements,
Ed geRequirements, operatorRequirementAssi gnment,
ed geRequirementAssi gnment) be a data stream processing model for the
IoT EM . The operator placement problem aims to find a
solut ion := (operatorMapping, ed geMapping), where:

• sourceMapping : Sources→ Ob jects: mapping that assigns the data
sources of the DSPM to the dedicated IoT objects in the IoTEM.

• sinkMapping : Sinks→ Ob jects: mapping that assigns the data sinks
of the DSPM to the dedicated IoT objects in the IoTEM.

• operatorMapping : Operators→ Ob jects: mapping that assigns com-
puting operators of the DSPM to IoT objects of the IoTEM.

• ed geMapping : Ed ges→ Paths(IoT EM): mapping that assigns edges
in the DSPM to connection paths of the IoTEM.

• sat is f ies : P(OperatorRequirements)×P(Ob jectCapabil i t ies)∧
P(Ed geRequirements)×P(Connect ionCapabil i t ies)→ {true, false}:

72 5 | Mapping of DSPMs onto IoTEMs

function determining if the requirements of the DSPM are fulfilled by
the capabilities of the IoTEM.

The solution is considered valid, if:

1. ∀so ∈ Sources : sourceMapping(so) ̸= ;

2. ∀si ∈ Sinks : sinkMapping(si) ̸= ;

3. ∀(op1, op2) ∈ Ed ges with map := ed geMapping((op1, op2)) :

star t(map) = operatorMapping(op1) ∧
tar get(map) = operatorMapping(op2)

4. ∀op ∈ Operators : sat is f ies(operatorRequirementAssi gnment(op),
ob jec tCapabil i t yAssi gnment(operatorMapping)(op)))

5. ∀ed ge ∈ Ed ges with map := ed geMapping(e) :

∀sec t ion ∈ map(N) : sat is f ies(ed geRequirementAssi gnment(ed ge),
connect ionCapabil i t yAssi gnment(sec t ion))

The first and second conditions ensure that the mapping of extraction and
serving operators in a DSPM includes the mapping of the corresponding
data sources and sinks.
The third condition ensures that the structure of the DSPM is preserved in

the edge mapping. For this, the IoT object to which the start operator of an
edge is mapped must be the start of the connection path to which the edge
is mapped. Furthermore, the IoT object to which the target operator of an
edge is mapped must be the destination of this connection path.
The fourth and fifth conditions ensure that IoT objects and connection

paths meet all requirements of the operators and edges to which they are
mapped. For this, all the sections in a connection path have to meet the
requirements of an edge.

In this thesis, two algorithms are provided to solve the DSPM operator
placement problem: (i) a greedy variant and a (ii) backtracking variant.
The greedy variant finds a solution timely, however, it does not guarantee

to find the best possible solution. Lo [Lo88] shows that a simple greedy

5.1 | Automatic mapping approach 73

algorithm is highly efficient and performs nearly as well as more complex
heuristic algorithms. In contrast, the backtracking variant computes all pos-
sible solution, thus, it is able to select the best possible one. The backtracking
variant, however, requires higher execution time and should, therefore, be
used for simple scenarios involving fewer IoT objects.
The main goal of both algorithms is to find a set of IoT objects, whose

capabilities satisfy the requirements of the operators. IoT objects near to
data sources are preferred, enabling, e.g., early detection of critical situa-
tions and corresponding timely actions [FHWM16]. Furthermore, the data
volume exchanged in the IoT environment can be reduced by aggregating
and filtering data near to their sources and as early as possible in the data
processing chain. For both algorithms, it is assumed that IoT objects physi-
cally connected to sensors or actuators through their hardware interfaces
offer enough computing capabilities to run sensor data extraction or data
serving operators. That is, a data extraction operator can always be placed
directly onto the IoT object physically connected to the corresponding sensor.
Similarly, a data serving operator can always be placed onto the IoT object
physically connected to the corresponding actuator.
The algorithms are explained in detail in Sections 5.1.1 and 5.1.2.

5.1.1 Matching algorithm – greedy variant

The algorithm in pseudo-code depicted in Algorithm 5.1 requires as input
the IoTEM and the DSPM (cf. Definition 4.1 and Definition 4.4). The output
returns a mapping of operators and edges of the DSPM onto the IoT objects
and their connections of the IoTEM.
In the following, the greedy algorithm is described step-by-step. In

line 6, the function GetTopologicalOrder is called, which takes as input
the DSPM with its Operators and Ed ges. This function returns a map-
ping order: {0,1, . . . , |Operators|} → Operators which corresponds to the
topological sorting [CLRS09] of the operators. In line 7, the function
F il lSourceMapping is called, which takes as input the DSPM and IoTEM and
returns a mapping of sources abstracted from sensors and the dedicated IoT

74 5 | Mapping of DSPMs onto IoTEMs

Algorithmus 5.1 Greedy variant (based on [FHM19])
1: function GreedyMatching((Sources, Sinks, Operators, Ed ges, ...),
(Ob jects, Connect ions, ...))

2: DSPM ← (Sources, Sinks, Operators, Ed ges, ...)
3: IoT EM ← (Ob jects, Connect ions, ...)
4: operatorMapping : Operators→ Ob jects
5: ed geMapping : Ed ges→ Paths(IoT EM)
6: order ← GetTopologicalOrder(Operators, Ed ges)
7: sourceMapping ← FillSourceMapping(IoT EM , DSPM)
8: sinkMapping ← FillSinkMapping(IoT EM , DSPM)
9: i← 0
10: while i < |Operators| do
11: op j ← order(i)
12: if (op j .isConnectedToSource()) then
13: opOb ject ← sourceMapping(op j)
14: ConsumeCaps(operatorRequirementAssi gnment(op j),

ob jec tCapabil i t yAssi gnment(opOb ject))
15: operatorMapping(op j)← opOb ject
16: else if (op j .isConnectedToSink()) then
17: opOb ject ← sinkMapping(op j)
18: ConsumeCaps(operatorRequirementAssi gnment(op j),

ob jec tCapabil i t yAssi gnment(opOb ject))
19: operatorMapping(op j)← opOb ject
20: else
21: PreOperators← {opi ∈ Operators : ∃(opi , op j) ∈ Ed ges}
22: PreOb jects← operatorMapping(PreOperators)
23: closestOrder ← GetClosestObjects(IoT EM , PreOb jects)
24: f oundOb ject ← f alse
25: j← 0
26: while (j < |Ob jects| & ¬ f oundOb ject) do
27: opOb ject ← closestOrder(j)
28: if TryMapOperator(op j , opOb ject, operatorMapping,

ed geMapping, DSPM , IoT EM) then
29: f oundOb ject ← t rue
30: end if
31: end while

5.1 | Automatic mapping approach 75

32: if ¬ f oundOb ject then
33: return "No solution found"
34: end if
35: end if
36: end while
37: return (operatorMapping, ed geMapping)
38: end function

objects connected to these sensors. Similarly, the function F il lSinkMapping
in line 8 returns a mapping of sinks abstracted from actuators and dedicated
IoT objects connected to these actuators.
Next, the sorted list of operators is traversed. If the current operator is

connected to a data source node, the IoT object attached to the data source
(i.e., the sensor) is retrieved (line 13). The capabilities of this IoT object are
then adjusted by subtracting the required resources of the operator (line 14).
Finally, the operator is mapped onto the IoT object (line 15). Then, the loop
continues with the next operator. If the current operator is connected to
a data sink node (line 16), it is handled similar to a data source as above
described.
In line 21, a list of predecessor operators of the current operator in the

DSPM is determined and, subsequently, the IoT objects hosting these prede-
cessor operators are also retrieved (line 22). The function GetClosestOb jects
sorts all IoT objects in the IoTEM (line 23) based on their network distance
to the predecessor IoT objects. The result is the map closestOrder : {0,1, . . . ,

|Ob jects|} → Ob jects, whereas closestOrder(0) refers to the IoT object clos-
est to the predecessor IoT objects. The predecessor IoT objects are also part
of this sorting and they appear first because their network distance is 0.
After that, the list of closest IoT objects is traversed (line 26) and it is

checked, whether the operator can be mapped onto one of the closest IoT
objects, depending on their available capabilities. If the mapping is possible,
i.e., the function Tr yMapOperator returns t rue (line 28), an IoT object
was found and the operator was successfully mapped onto the found IoT
object. Otherwise, the next nearest IoT object is checked. If no IoT object

76 5 | Mapping of DSPMs onto IoTEMs

has the required capabilities, no solution can be found. In this case, the
algorithm will use a cloud infrastructure as a fallback, so that a solution can
be ensured.
Finally, the algorithm returns a set of mappings of operators and objects

(line 37). The greedy variant returns a solution, however, it might not be the
best one regarding to the minimum network distance between operators.

5.1.2 Matching algorithm – backtracking variant

Algorithm 5.2 shows the backtracking algorithm in pseudo-code. The goal
of this variant is not only to find one solution, but the best one. The input is
the same as for the greedy algorithm, i.e., the IoTEM und DSPM.
In lines 11–15, all operators connected to the sources of the DSPM are

traversed, the corresponding IoT objects are retrieved, and the data extrac-
tion operators are mapped onto these IoT objects. After that, the extraction
operators are removed from the list of operators. In lines 16–21, all opera-
tors connected to sinks are also traversed, the corresponding IoT objects are
retrieved, and the data serving operators are mapped onto these IoT objects.
After that, the serving operators are also removed from the list of operators.
Next, the function F indSolution is called (line 24), which contains the

logic for the requirements and capabilities matching.
The F indSolution function, which is depicted in Algorithm 5.3, realizes

a depth-search for possible solutions using recursion. In line 5, it is checked
how far the algorithm has already advanced. If the set of operators still
contains elements, these are first mapped onto the IoT objects.
In line 3, the f oundSolution variable is defined, which memorizes if a

solution could be found or not. In line 4, the GetOneElement function
returns the current operator. After that, IoT objects are searched that are
suitable for executing this operator by iterating all IoT objects of the IoTEM.
It is important to note that the order in which the IoT objects are processed is
the same for each iteration. Otherwise, it is no longer possible to backtrack,
i.e., undo the mapping steps later and to look for alternatives.
In line 6, it is checked whether the current device satisfies the require-

5.1 | Automatic mapping approach 77

Algorithmus 5.2 Backtracking variant (based on [FHM19])
1: function BacktrackingMatching((Sources, Sinks, Operators, ...),
(Ob jects, Connect ions, ...))

2: DSPM ← (Sources, Sinks, Operators, ...)
3: IoT EM ← (Ob jects, Connect ions, ...)
4: operatorMapping : Operators→ Ob jects
5: ed geMapping : Ed ges→ Paths(IoT EM)
6: solut ion← (operatorMapping, ed geMapping)
7: sourceMapping ← FillSourceMapping(IoT EM , DSPM)
8: sinkMapping ← FillSinkMapping(IoT EM , DSPM)
9: RestOperators← Operators
10: for op ∈ RestOperators do
11: if (op.isConnectedToSource()) then
12: opOb ject ← sourceMapping(op)
13: ConsumeCaps(operatorRequirementAssi gnment(op)

ob jec tCapabil i t yAssi gnment(opOb ject))
14: operatorMapping(op)← opOb ject
15: RestOperators← RestOperators \ op
16: else if (op.isConnectedToSink()) then
17: opOb ject ← sinkMapping(op)
18: ConsumeCaps(operatorRequirementAssi gnment(op)

ob jec tCapabil i t yAssi gnment(opOb ject))
19: operatorMapping(op)← opOb ject
20: RestOperators← RestOperators \ op
21: end if
22: end for
23: Solutions← ;
24: f oundSolution ← FindSolution(solut ion, RestOperators, Ed ges,

Solutions, DSPM , IoT EM)
25: if (Solutions = ; | ¬ f oundSolution) then
26: return "No solution found"
27: end if
28: return GetBestSolution(Solutions, Ed ges, distance)
29: end function

ments of the operator nex tOperator. If this is not the case, the next IoT
object is considered. If an IoT object is a match, the operator is removed

78 5 | Mapping of DSPMs onto IoTEMs

Algorithmus 5.3 F indSolution function pseudo-code (based on [FHM19])
1: function FindSolution(solut ion, Operators, Ed ges, Solutions,

DSPM , IoT EM)
2: if Operators ̸= ; then
3: f oundSolution← f alse
4: nex tOperator ← GetOneElement(Operators)
5: for currObject ∈ Ob jects do
6: if SatisfiesReqs(operatorRequirementAssi gnment(nex t

Operator), ob jec tCapabil i t yAssi gnment(cur rOb ject)) then
7: ConsumeCaps(operatorRequirementAssi gnment(nex t

Operator), ob jec tCapabil i t yAssi gnment(cur rOb ject))
8: operatorMapping(nex tOperator)← cur rOb ject
9: Operators← Operators \ {nex tOperator}
10: if FindSolution(solut ion, Operators, Ed ges,

Solutions, DSPM , IoT EM) then
11: f oundSolution← t rue
12: return t rue
13: else
14: Undo(operatorRequirementAssi gnment(nex t

Operator), ob jec tCapabil i t yAssi gnment(cur rOb ject))
15: operatorMapping(nex tOperator)← null
16: Operators← Operators ∪ {nex tOperator}
17: end if
18: end if
19: end for
20: return f oundSolution
21: else
22: if Ed ges ̸= ; then
23: // similar to operators
24: else
25: Solutions← Solutions ∪ {solut ion}
26: return t rue
27: end if
28: end if
29: end function

from the set of operators that still need to be mapped (line 12). Then,
the F indSolution function is called recursively. By doing so, all possible

5.1 | Automatic mapping approach 79

solutions are found, considering the mapping of each operator with each IoT
device. This leads to a higher runtime compared to the greedy algorithm.
Consequently, for a mapping realized at runtime or for applications that
require constantly updating the mapping of operators, the backtracking
algorithm is not recommended.
The mapping of the edges is similar to the operator mapping as described

above. In this case, however, all edges are checked to be possible solutions
based on the already existing mapping of operators onto devices. If the set
of operators and the set of edges are both empty, they were all mapped and
a solution was found. In this case, the solution is appended to the set of
Solutions (line 25).
After the F indSolution function terminates, the GetBestSolut ion func-

tion in line 28 in Algorithm 5.2 determines the best solution of the set of
total solutions. This function traverses all found solutions and calculates the
sum of the distances of the contained paths. The solution with the lowest
distance is considered the best solution, as defined in Definition 5.2.
Definition 5.2 (Definition of the best solution)
Let Solutions be the set of possible solutions for an IoT EM . A solution
solut ion ∈ Solutions is defined as the best possible solution, if:

∀t ∈ Solutions : solut ion ̸= t ⇒ dist(solut ion)≤ dist(t)

Since the backtracking algorithm calculates all possible solutions, its run-
time becomes exponential. Therefore, the backtracking algorithm is recom-
mended for small IoT environments and data stream processing models.
If an IoT object from a cloud infrastructure is modeled in the IoTEM, the
algorithm will use it as a fallback solution, thus, a solution can be ensured.
Otherwise, the algorithms might not return a solution. In order to optimize
the introduced algorithms, heuristics [Pea84] can be considered, which
predefine a coarse mapping of specific operators. The introduced algorithms
consider one heuristic, mapping the source operators onto the IoT object
which is attached to the corresponding sensor to extract data from the
hardware interfaces. In the future, more heuristics can be supported. For

80 5 | Mapping of DSPMs onto IoTEMs

example, if it is known that some sensors produce a large amount of data,
e.g., video streams, operators processing this data can already be mapped
onto powerful IoT objects, while low-resource IoT objects are not considered.

5.1.3 Case scenario: monitoring of mold levels in smart buildings

In the following, a case scenario in the smart building domain and how the
mapping concepts are used to implement this scenario are presented.
A smart building is defined in this thesis as a building equipped with

computing and information technology, which supports the needs of their
occupants in order to provide them with a comfortable living.
The goal of this case scenario is to monitor mold levels in different rooms

of a building in order to recognize when these levels rise to unhealthy
ranges. For each room, the mold level is continuously calculated based
on live measured temperature and humidity values. The mold levels are
analyzed over time in order to detect any increase.
The smart building of this case study is composed of four rooms and a

further room in the basement. Each room is provided with two Raspberry
Pis as IoT devices, where one of them is connected to a temperature sensor
and a humidity sensor. The second Raspberry Pi of each room provides
additional computing resources if necessary. Furthermore, the basement
room is equipped with an edge server as an IoT device, which has more
computing capabilities than the other Raspberry Pis in the smart building.
The involved IoT devices are connected to the same network, i.e., they are
able to communicate with each other through standard internet protocols.
The described physical scenario is depicted in Figure 5.1 on the bottom.

The IoTEM for this scenario is modeled based on the concepts presented
in Section 4.1, while the data stream processing realizing the monitoring of
mold levels is modeled based on the concepts presented in Section 4.2. The
resulting DSPM is depicted in Figure 5.1 on the top.
In this scenario, the operators of the DSPM should be distributed among

the IoT devices available in the building. The greedy variant of the matching
algorithm is employed in order to decide where to deploy the operators.

5.1 | Automatic mapping approach 81

Contribution C1: DSPM

Contribution C1: IoTEM

Room 1 Room 2

Room 3 Room 4

Mapped operator

Raspberry Pi

Hum. sensor

Raspberry Pi

Temp. sensorE1 E2 J3

C4

Raspberry Pi

Hum. sensor

Raspberry Pi

Temp. sensorE5 E6 J7

C8

Raspberry Pi

Hum. sensor

Raspberry Pi

Temp. sensorE9 E10 J11

C12

Raspberry Pi

Hum. sensor

Raspberry Pi

Temp. sensorE13 E14 J15

C16

Edge server

J17

Basement room

Contribution C2:
automated mapping

approach

C: Calculation
E: Extraction
J: Join
S: Serving

data source
data sink
operator
requirement
data flow

E1

E2

J3 C4

J17
E5

E6
J7 C8

So1

So2

So3

So4

Si1

Si3

Si2

req-2: bandwidth

E9

E10
J11 C12

E13

E14
J15 C16

So5

So6

So7

So8

Si3

Si4

req-1: memory

cap-1: memory

connection

IoT object

capability

S18

S19

S21

S20

S22

S18 S19

S20 S21

S22

Figure 5.1: Case scenario: automated mapping in smart buildings

82 5 | Mapping of DSPMs onto IoTEMs

In a first step, the extraction operators, E1 through E14, are deployed onto
the IoT devices, to which the sensors are physically attached to (as depicted
in Figure 5.1). These operators contain, for example, scripts to extract
the sensor data and send them to the next processing operator. Therefore,
these extraction operators need to be deployed directly onto the IoT device
attached to the sensors. Thus, it is a premise that there are enough resources
available on these devices. After the extraction operators are mapped, their
required resources are subtracted from the capabilities of the selected IoT
devices in order to decide in a further step whether additional operations
could be mapped onto these IoT devices. Afterwards, similar to extraction
operators, the serving operators S18, S19, S20, and S21 are then mapped.
After the serving operators are mapped, the join operators are mapped

next. For J3, which joins the output data from the extraction operators E1
and E2, the nearest device to the deployed extraction operators is searched
within the IoT environment model. Obviously, the nearest device is the
same device the extraction operators are deployed on. Assuming that this
device fulfills the requirements attached to the join operation J3 and that
there are enough capabilities left, thus, the join operator J3 can be deployed
on this same device. This same procedure is done for the remaining join
operators J7, J11, and J15. After that, the required resources are once again
subtracted from the capabilities of the devices.
Next, the calculation operators C4, C8, C12, and C16 are mapped. For C4,

again, the nearest device in the IoT environment model to its predecessor
operator (i.e., the mapped operator J3) is searched. This is the device that
already contains the mapped operators E1, E2, and J3. However, assum-
ing that the calculation is based on a sophisticated algorithm to calculate
the mold level consuming more resources, this device does not match the
requirements of the C4 operator. Consequently, the next nearest device is
searched, which is the one in the same room as the device containing E1,
E2, and J3. Assuming that this device has enough computing capabilities to
calculate the mold level, the operator C4 is mapped onto this device and its
resources are consumed. In the remaining rooms, the operators are mapped
similarly.

5.1 | Automatic mapping approach 83

Finally, the calculated mold level of all four rooms is aggregated using
operator J17, which produces output data suitable for a dashboard visual-
ization for users. In this example, the IoT devices in different rooms have the
same network distance to each other. Consequently, the algorithm selects
them randomly. Next, it is checked whether an IoT device can fulfill the
requirements of operator J17. If not, it checks the other devices. In this
example, it is assumed that none of the IoT devices in the four rooms can
fulfill the requirements of the operator J17. Consequently, J17 has to be
mapped on another IoT device. In this case, the edge server in the basement
room of the building is marked to execute this operator.
Since the explained concepts for the mapping are based on a generic

method (cf. Figure 3.1), i.e., generic models are employed (IoTEM, DSPM),
and furthermore, an extensible set of mapping algorithms is provided, this
approach is transferable to other domains as well, such as the smart fac-
tory domain. This approach also scales for such large scenarios, i.e., the
algorithms return a solution eventually.

5.2 Manual mapping approach

In this approach, a mapping plan is created manually by domain analysts,
who decide the placement location explicitly for each operator involved in
the data processing of IoT applications. That is, domain analysts are required
to know whether the IoT objects of an IoT environment provide enough
resources, and furthermore, meet the requirements of the operators of the
IoT application. In this case, no separation of concerns can be guaranteed
between technical knowledge and high-level domain knowledge.
This thesis employs the TOSCA standard for the creation of mapping

plans manually. In [FBH+17; FBK+16; FHB+17], we have shown how
TOSCA-based manual mapping plans for IoT scenarios in the smart home
domain can be realized, and furthermore, how they can be, in a further
step, deployed using a TOSCA-based deployment engine.
In the following, a manual mapping using the TOSCA standard is ex-

84 5 | Mapping of DSPMs onto IoTEMs

Humidity Extraction
(Operator)

IoT Device OS
(RaspbianJessie)

Calculation and Serving
(Operator)

IoT Device
(RaspberryPi)

Join Topic
(Topic)

Message Broker
(Mosquitto)

hostedOn

IoT Device OS
(RaspbianJessie)

IoT Device
(RaspberryPi)

sensors: temperature,
humidity Node template

Temperature Extraction
(Operator)

Data producer stack Data consumer stack

connectsTo

Figure 5.2: TOSCA topology model for a IoTEM and DSPM manual mapping
(based on [FBH+17])

plained. The TOSCA-based mapping plan is created for the case scenario
presented in Section 5.1.3, which aims at the monitoring of mold levels in
smart buildings.
Figure 5.2 depicts an exemplary TOSCA topology, in which the IoT objects

and the processing logic of the IoT application for the monitoring of mold
levels in one single room are represented. For instance, IoT objects of an
IoTEM are abstracted as TOSCA node templates, as shown in Figure 5.2 on
the bottom. Furthermore, the processing operators of a DSPM are abstracted
as node templates as well and are visualized in Figure 5.2 on the top.
The modeled TOSCA topology is divided into two stacks: a data producer

stack and a data consumer stack. The data exchange among data producer
and consumer is realized through the topic-based publish-subscribe pat-

5.2 | Manual mapping approach 85

tern [HW03]. In this communication pattern, a data producer publishes
messages to a topic hosted on a message broker, which routes published
messages to corresponding subscribers, i. e., data consumers.
Normally, a data producer stack contains the following components mod-

eled as node templates: (i) one or more physical IoT devices, e.g. Raspberry
Pis, smart watches, or smart phones, which can be embedded or attached
with various sensors producing data, (ii) the operating system of the device,
e.g., an operating system hosted on the IoT device, (iii) an operator that
binds the sensors, able to extract their data and to hand them over, and
(iv) the Topic, to which data is published and that is accessible by the data
consumer stack. For devices that do not provide an accessible operating
system, for example, a smart watch, a node template for the operating system
is not required. In contrast, a remote runtime node template (e.g., an edge
server) acting as a gateway needs to be provided, which enables placing
an operator on it that connects to such devices and extracts data of corre-
sponding embedded sensors. The described example in the following focuses
mainly on IoT devices that provide an operating system, e. g., Raspberry Pis.
The data producer stack in Figure 5.2 encompasses an IoT device, which

has attached temperature and humidity sensors, and the infrastructure
providing access to these sensor values. For instance, temperature and
humidity values are measured by sensors plugged into a Raspberry Pi, which
executes two extraction operators to measure these values and send them to
a topic-based message broker. In this case, temperature and humidity values
are joined by sending both values to the same topic in the message broker.
Using the concept of TOSCA node types, a Raspberry Pi node type and

its properties, e. g., the attached or embedded sensors, are modeled. Fur-
thermore, the IoT Device OS node template specifies the operating system
type of the IoT device being used, in this case, the Raspbian Jessie operating
system. To properly model such an operating system, information needs to
be provided about its type (e. g., Unix-based), how to access it (e. g., using
SSH connections), and its access credentials, which could be through user
authentication or based on a SSH key. Based on this operating system, oper-
ator scripts can be automatically deployed to access the hardware interfaces

86 5 | Mapping of DSPMs onto IoTEMs

of the sensors and extract their data.
The Temperature Extraction node template and the Humidity Extraction

node template serve as interface between the physical IoT device, i. e.,
the Raspberry Pi, and the topic that is providing the data to consumers.
Furthermore, the Join Topic node template needs to be modeled. This
topic is hosted on a message broker software component represented by
a corresponding Message Broker node template in the TOSCA topology.
This message broker could be, for example, the Mosquitto Broker [Lig17],
which is a messaging middleware based on the MQTT protocol. Finally,
these extraction node templates are then connected to the Join Topic node
template by a connects to relationship template.
The data consumer stack in Figure 5.2 encompasses an IoT device and

the infrastructure to consume, process and monitor sensor values from the
data producer stack. This stack provides a calculation and serving operator,
which is executed on the IoT device. This operator subscribes to the message
broker of the data producer stack in order to receive sensor values, and
furthermore, to calculate the current mold level in the room based on the
temperature and humidity sensor values.
Data consumers work in a similar fashion than data producers in the sense

that they build on the publish-subscribe pattern. Consequently, for their
modeling using TOSCA, the already introduced node types can be reused,
i.e., the Raspberry Pi, the RaspbianJessie and the Operator node types. As
depicted in Figure 5.2, three node templates are necessary: the IoT device,
the operating system of the device, and the calculation and serving operator,
which consumes and processes the data received through the Join Topic
node template. Similar to the extraction node templates, the Calculation
and Serving node template is also connected to the Join Topic node template
by a connects to relationship template.
The data flow of the scenario is not explicitly modeled in the TOSCA

topology, but rather implicitly implemented in the software artifacts of the
operators. For instance, the data flow originates from the temperature and
humidity sensors as data sources, passes through the topic hosted on the
message broker, and reaches the calculation and serving operator hosted on

5.2 | Manual mapping approach 87

a Raspberry Pi, which represents a data sink.
In summary, in order to create a mapping plan in the form of a TOSCA

topology model for such a case scenario, the above mentioned components
need to be modeled and connected as described. However, the manual
mapping approach is recommended only for use cases with a low amount
of IoT objects or operators. That is, the manual creation of a mapping plan
increases considerably the complexity of this task and becomes error-prone
in larger scenarios, such as those in smart factories or smart cities.

5.3 Architecture component and implementation – IoTEM and
DSPM mapper

In the overall architecture (cf. Section 3.3), the IoTEM and DSPM mapper
component provides the means to support the decision about where opera-
tors should be executed based on their requirements. In this component,
depicted in Figure 5.3, domain analysts have the possibility to perform the
mapping of operators and IoT objects for the current DSPM and IoTEM using
two approaches: (i) an automatic approach, in which a mapping plan is
automatically generated by different algorithms, and (ii) a manual approach,
in which domain analysts decide themselves by creating a mapping plan
manually where operators should be executed.
In the automated approach, the Mapping plan creator a starts the Match-

ing algorithms b that return a mapping plan. In the manual approach,
domain analysts can create mapping plans themselves through the mapping
plan creator. In this case, a modeler for TOSCA topology models, such as
Winery [KBBL13], can be used to create a TOSCA-based mapping plan.
Created mapping plans are stored in the Mapping plan storage c . Once a
mapping plan is created, the deployment of TOSCA-based mapping plans
(cf. Chapter 6) can be started using a TOSCA-based deployment engine,
such as OpenTOSCA [BBH+13], by triggering the Deployment manager
component (cf. Section 6.4).
The IoTEM and DSPM mapper component has been prototypically imple-

88 5 | Mapping of DSPMs onto IoTEMs

IoTEM: IoT environment model
DSPM: Data stream processing model

DSPM modeler and manager

IoT physical environment layer

IoT application layer

Deployment manager

retrieve
IoTEM

Mapping plan
creator

start
deployment

generate
mapping plan

Mapping
plan

storage

a

create manual
mapping plan

Matching
algorithms

b

c

Multi-purpose Binding and Provisioning Platform (MBP) layer

Domain
analyst

IoTEM modeler and manager

IoTEM and DSPM mapper start
mapping

Figure 5.3: Architecture component: IoTEM and DSPM mapper

mented as part of the MBP. For the manual mapping approach, however,
the Mapping plan creator corresponds to the external tool Winery1. In this
case, the mapping plans are based on the TOSCA standard and are stored in
a configured file system for Winery. For the automatic mapping approach,
the Mapping plan creator and the Matching algorithms (the greedy vari-
ant and the backtracking variant) have been implemented in the server
side of the MBP in Java in the scope of the bachelor thesis conducted by

1https://github.com/OpenTOSCA/winery

5.3 | Architecture component and implementation – IoTEM and DSPM mapper 89

Schneider [Sch18]. As the Mapping plan storage, a MongoDB database is
used to store created mapping plans. Section 8.1 presents the integration
architecture of all architecture components and shows how they fit together.

5.4 Related work

Rizou et al. [Riz+10] present a heuristic algorithm that allows distribution
of data stream operators in order to enable lowest possible latency for
data processing. This algorithm searches for the best possible distribution
to reduce the network latency to a minimum. The algorithm is executed
directly on the available IoT objects, not centrally, in contrast to this thesis.
However, the approach of Rizou et al. requires that the IoT objects in the
network are known, connected, and able to communicate with each other,
e.g., to share information about latency. The approach in this thesis rather
aims for a loose coupling between the IoT objects. In the best case, the
IoT objects do not have to know each other and, consequently, do not have
to communicate directly. Furthermore, the approach of Rizou et al. only
considers latency as a requirement for data processing, therefore, other
requirements, as described in this thesis, are not supported.
Cipriani et al. [CSM11] provide an approach for the operator placement

of stream processing queries, in which specific objectives (i.e., require-
ments) of stream-based applications are taken into consideration to realize
necessary placement decisions. This approach is called Multi-target Opera-
tor Placement of Query Graphs for Data Streams (M-TOP). Similar to this
thesis, M-TOP enables the annotation of requirements onto processing oper-
ators. These requirements need to be fulfilled by the available computing
nodes (i.e., IoT objects) in order to achieve a suitable operator placement.
However, in contrast to the approach of this thesis, M-TOP does not take
post-deployment operator placement into consideration, i.e., monitoring of
the deployed stream processing is not available [Cip14; CLM10; CSM11].
Furthermore, the approach in this thesis also considers application-based
and user-based requirements that emerged with the upcoming of the IoT

90 5 | Mapping of DSPMs onto IoTEMs

domain. Thus, new kinds of IoT hardware objects that are eligible to be
computing nodes are considered as well.
Bumgardner et al. [BHM18] present a graph-based modeling language

named Cresco Application Model (CAM), in order to describe the logic of
distributed stream-based applications. The CAM models are similar to the
DSPMs presented in this thesis. Furthermore, Bumgardner et al. search for an
optimal distribution of operators onto IoT objects through a greedy algorithm.
The presented algorithms in contribution C2 of this thesis, furthermore,
optimize the distribution based on the network distance in order to enable
short communication paths.

5.4 | Related work 91

Ch
ap
te
r 6

Deployment of operators
onto IoT environments

This chapter introduces contribution C3, which handles the deployment of
operators onto IoT environments. This contribution contains two approaches
to realize the deployment: (i) an automatic deployment approach, in which
the operators of a DSPM are deployed automatically based on the mapping
plan generated in contribution C2, and (ii) a semi-automatic deployment
approach, which is also based on the mapping plan, however, manual actions,
called human tasks [OAS10], are supported. The concepts of contribution C3
employ the TOSCA standard [OAS13] and established software deployment
tools, such as Shell scripts.
The deployment approaches are explained in detail in Sections 6.1 and 6.2.

In Section 6.3 the Topic Description Language for the IoT (TDLIoT) is intro-
duced, which is used in this thesis by the deployment approaches. In Sec-
tion 6.4, the architecture component responsible for the deployment is
described. Finally, Section 6.5 presents related work to contribution C3.

93

6.1 Automatic deployment approach

The mapping plan resulting from contribution C2 is defined as a solution
for the DSPM operator placement problem (cf. Definition 5.1). It consists
of the operator mapping assigning operators of a DSPM to IoT objects of
the IoTEM. Based on the operator mapping, operators are iterated and
each of them is deployed automatically using the TOSCA-based deployment
engine OpenTOSCA [BBH+13]. Each operator can reach several states,
which reflect the current deployment state of an operator. These states are
explained in the following.

6.1.1 Deployment states of an operator

This thesis defines six deployment states of an operator: (i) unconfigured,
(ii) configured, (iii) started, (iv) published, (v) stopped, and (vi) terminated.
These operator states are depicted in Figure 6.1.
The initial state of an operator is unconfigured. Once the deployment

starts, the first task is to configure the assigned IoT object for the execution of
the operator. For this, the operator in the form of software artifacts is copied
to the assigned IoT object. Furthermore, required software dependencies
(e.g., MQTT client, Python interpreter) for the operator are installed and
configured on the assigned IoT object. After the configuration, the operator
transitions to the state configured.
A configured operator can be started, which is the main goal of the au-

tomatic deployment. Once all operators in the operator mapping reach
the state started, the automatic deployment is considered as finished and,
consequently, the operators of the IoT application are set up and running.
Furthermore, a configured operator can be directly terminated as a rollback
mechanism in case the operator could not be started.
Once an operator is started, its output, e.g., extracted sensor data, can be

made available for external applications. This task is conducted by domain
analysts, which decide if and which operators should be published. For this,
descriptions of how to access and parse the output of the operators are

94 6 | Deployment of operators onto IoT environments

configure
operator

configured

unconfi-
gured

termi-
nated

published

start
operator

stop
operator

start
operator

terminate
operator

started

stopped

publish
operator

unpublish
operator

terminate
operator

Figure 6.1: Life cycle of an operator

automatically created. Such descriptions and corresponding concepts for
their management are explained in detail in Section 6.3.
Finally, when the data stream processing is retired, e.g., by domain an-

alysts, each of the previously deployed operators needs to be retired. For
this, each started operator is stopped and, subsequently, terminated. If the
operator was published, it is unpublished, stopped and terminated. By ter-
minating an operator, all software artifacts that were copied to the IoT object
are deleted and dependencies are uninstalled.

6.1.2 TOSCA-based operator deployment

In [FBH+17; FBK+16; FHB+17], we show how to use the Winery modeling
tool [KBBL13] to model TOSCA topologies containing several operators.
Furthermore, we also show how to use the OpenTOSCA runtime [BBH+13]
to automatically deploy the modeled operators onto IoT objects.

6.1 | Automatic deployment approach 95

Operator

Dependencies

IoT Object

(dependsOn)

configure

install

start

publish

unpublish

stop

stop

terminate

Properties
endpoint: ---
credential: ---

IoT Object OS

(hostedOn)

install

start

terminate

Node template
Operation of an implementation artifact (IA)
Deployment artifact (DA)

publisher.py

dependencies.zip

Figure 6.2: TOSCA topology model for an operator

Figure 6.2 depicts a TOSCA topology model, which is used in this thesis as
a basis template for the deployment of each operator in a mapping plan. This
topology does not yet contain all necessary information for the deployment,
and needs to be extended with specific information of each operator in the
mapping plan during the deployment. The node template Operator defines
a life-cycle interface containing operations corresponding to the operator
state transitions defined in this thesis (cf. Figure 6.1). These operations are
configure, install, start, publish, unpublish, stop, and terminate. Furthermore,
the node template Dependencies also defines a life-cycle interface for the
dependencies of the modeled operator.

96 6 | Deployment of operators onto IoT environments

To deploy the operators with the OpenTOSCA runtime, the operators in
the mapping plan are iterated and this topology is copied and extended with
the specific details of each operator. Software artifacts and dependencies
of an operator are programmatically added to the topology as implementa-
tion artifacts and deployment artifacts of the node templates Operator and
Dependency. Furthermore, specific properties of the mapped IoT object are
also added to the topology. Finally, the extended topologies can be deployed
sequentially or in parallel by several OpenTOSCA engine instances.

6.2 Semi-automatic deployment approach

As introduced in Section 6.1.2 and in [FBH+17; FBK+16; FHB+17], Open-
TOSCA can be used to deploy operators onto IoT environments in a fully
automated manner based on topologies. These approaches assume that the
IoT objects in the IoT environment are already configured for the deployment
of the operators. However, manual actions, called human tasks, are usually
required to be conducted, in order to deploy operators of IoT applications,
e.g., plugging in sensors.
In this thesis, the concept of human tasks is based on the OASIS speci-

fication WS-HumanTask [OAS10]. Human tasks are activities that need to
be conducted by people and, therefore, cannot be conducted automatically.
Examples of human tasks include the approval of certain processes, e.g.,
for buying expensive hardware or to grant a loan. Further examples in the
context of IoT environments are plugging in sensors to devices or flashing
microcontrollers. In conclusion, a human task is a request to a person to
perform a specific activity.
To be more tailored for the challenges presented in IoT environments, this

thesis provides a semi-automatic deployment approach, in which human
tasks are also considered for the deployment. For this, this thesis enables
domain experts to define human tasks and add these to mapping plans
before the deployment starts. Furthermore, by supporting human tasks, it
increases the reusability of mapping plans for different, however, similar

6.2 | Semi-automatic deployment approach 97

IoT environments, e.g., different smart buildings composed of identical IoT
objects. In this case, specific property values of IoT objects, such as IP
addresses, do not need to be modeled in the IoTEM, and can be filled by a
human task during the deployment.
When the deployment of a DSPM is triggered, themapping plan is received

as input for the deployment. This mapping plan is searched for human task
definitions and for implicit patterns implying that human tasks are required.
An example of such a pattern is an empty property value in the description of
an IoT object. In this case, a human task definition is automatically created
to fill empty property values.
In case the mapping plan is considered complete, i. e., the mapping plan

does not contain human task definitions or patterns, the deployment is
performed as explained in Section 6.1.
Finally, when the search is done, a list of human task definitions is sent

to a middleware component, called Human task manager. This component
notifies users (e.g., domain experts) about the human tasks to be conducted
and also notifies deployment engines about the status of human tasks. Within
the scope of this thesis, a bachelor thesis was conducted by Kutger [Kut18],
which presents an approach for enabling the OpenTOSCA engine to support
human tasks.

6.3 Topic Description Language for the IoT

The following section is mostly based on [FHB+18].
In [FHB+18], we introduce the Topic Description Language for the Internet

of Things (TDLIoT) approach, which provides simple means to describe and
find topics for public sensors and actuators, and furthermore, for published
operators as defined in this thesis. The TDLIoT notation is derived from
an extensive literature review and experiences on different IoT platforms,
protocols, and applications. The TDLIoT approach is used in this thesis to
create descriptions that aim to ease the access to the output data of published
operators (e. g., extracted sensor data) by further IoT applications.

98 6 | Deployment of operators onto IoT environments

Unoccupied
parking space
>> 100 m <<

Gate
actuator

Sensor

P

Figure 6.3: Case scenario: parking in smart cities (based on [FHB+18])

A case scenario for such an IoT application is the live detection of unoccu-
pied parking spaces in a smart city, so that drivers nearby are notified on
their smart phones about unoccupied parking spaces. This case scenario
is depicted in Figure 6.3. It can be based, for example, on parking space
sensors, which detect the availability of parking spaces. Furthermore, once
parking spaces are available, drivers could trigger actuators through their
smart phone applications, for example, to open gates to the parking areas.
However, in order to develop such an IoT application, developers needs to

know (i) which sensors and actuators (abstracted as published operators)
exist in the context of the application, (ii) what data sensors provide and
in which format, (iii) which actions can be triggered for actuators, and (iv)
how sensors and actuators can be accessed to be used.
In the IoT, the access to sensors and actuators is usually realized through

the publish-subscribe communication model [HW03] based on topics. These
topics are used to provision sensor values or enable access to actuators.
In the scope of this thesis, a topic is an entity that allows to receive and
send data in a uniform manner. Topics could be realized through various
communication models, such as publish-subscribe or request-response, using
different protocols. In the topic-based publish-subscribe model, e. g., realized
through MQTT [BG14], subscribers register on topics relevant for their

6.3 | Topic Description Language for the IoT 99

IoT platform

send data send command

Topic
catalog

Topic consumer Topic provider

1. publish topics2. find topic

3. connect to topic

Parking space
sensor

Gate
actuator

Topic descriptions

Path: /parking-space-sensor
Data type: Boolean
Topic type: Subscription
Location: Stuttgart

IoT application

Figure 6.4: Overview of the TDLIoT approach for topic description and re-
trieval [FHB+18]

context to get asynchronously notified when publishers send messages to
these topics [EFGK03]. In the request-response model, instead of getting
notified, applications need to request the data, e.g., through HTTP requests.
The management of subscriptions and delivery of messages is usually

realized by IoT platforms, such as FIWARE [RGSE14], Mosquitto [Lig17],
OpenMTC [WMS12], or RMP [HWBM16a]. For example, given that sensor
values are provided through topics hosted on such IoT platforms, using the
publish-subscribe model, a smart city parking application subscribes to topics
of all sensors monitoring parking spots and gets notified once a parking spot
is detected as unoccupied.
Application developers depend on knowing everything about the topics

100 6 | Deployment of operators onto IoT environments

they can use to build such IoT applications. This information, which includes,
for example, the data structure or how it can be accessed, is usually only
known if the application developers own the involved IoT objects. Other
available topics, which could provide additional information about the en-
vironment, are oftentimes not considered but could lead to a significant
improvement of the application, e. g., through a higher coverage by addi-
tional sensors. For instance, there exist publicly accessible IoT data available
on platforms, such as dweet.io1, however, details about the data content,
e.g., the data structure and how to interpret them, are not provided. This
highly increases the effort to develop IoT applications using such IoT data.
Therefore, the TDLIoT approach provides simple means to describe and

find topics of published operators, and furthermore, data sources and sinks
abstracted from sensors and actuators. The TDLIoT approach provides (i) a
holistic description of the topics, (ii) a topic catalog to browse the topic
descriptions, and (iii) an effective way to find suitable topics that offer access
to sensors and actuators abstracted as data sources and sinks. In this way, IoT
application development can be eased through an abstraction from specific
IoT platforms. The topics in the catalog can be searched by, for example, a
specific location or sensor type.
The TDLIoT approach, which is depicted in Figure 6.4, is composed of three

main roles: the topic provider, the topic consumer, and the topic catalog. The
topic provider creates topic descriptions based on the TDLIoT and publishes
them to the topic catalog. The topic consumer searches for interesting topic
descriptions in the topic catalog, and directly connects to topic providers to
either publish data or receive the data published to subscribed topics. The
TDLIoT approach has been prototypical implemented and is available as an
open-source GitHub project2.
In the scope of this thesis, a TDLIoT topic catalog is provided, in which

descriptions for operators are stored. This catalog can, therefore, be searched
by external developers in order to create further IoT applications requiring
publicly accessible data, e.g., in the smart city domain [FHB+18].

1http://dweet.io
2https://github.com/IPVS-AS/TDLIoT

6.3 | Topic Description Language for the IoT 101

A TDLIoT-based topic description must contain at least the following at-
tributes, however, it can be extended with further attributes when necessary
to describe a topic in more detail:

• data type: the type of the values provided by the topic, e.g., Boolean.
• hardware type (optional): the type of hardware represented by the
topic, i.e., a specific sensor or actuator.

• location: the location of the sensor or actuator represented by the
topic. It contains the location type, e.g., GPS or a specific city name, as
well as the location value, e.g., specific GPS coordinates.

• message format: the format of the message provided by the topic,
e.g., JSON, YAML, or XML.

• message structure: the structure of the message defined as meta-
model to understand its content. It contains the metamodel type, e.g.,
JSON schema or XML schema and the specific metamodel.

• platform endpoint: the endpoint of the IoT platform hosting the topic,
e.g., the endpoint of a message broker running on a server.

• owner: the name of the topic provider.
• path: path of the topic.
• protocol: the communication protocol being used, e.g., MQTT or
HTTP.

• topic type: the type of the topic, i.e., subscription or command.
• unit (optional): the unit of the data provided through the topic, e.g.,

Celsius if the topic provides temperature values in °C.

In Figure 6.5, the aforementioned attributes are visualized in the TDLIoT
metamodel as entity-relation model in the notation of Chen [Che76]. This
metamodel describes the relations between the entities of TDLIoT descrip-
tions. With exception of the hardware type and unit attributes, all of its
entities must occur only once within a single TDLIoT description. However,

102 6 | Deployment of operators onto IoT environments

unit

location

message
structure

hardware
type

data type

message
format

owner
middleware

endpoint

protocol

path

topic
type has

has has

has

0..1

n

1

nn

0..1

1

n

n

1

n1

n n n

1 1 1

n

n

1

1topic
description

metamodel
metamodel

type
has

11

n

location
type

1

has

n

location
value

1

Figure 6.5: Data model associated with the TDLIoT [FHB+18]

these entities can occur in an arbitrary amount of descriptions. In case topics
provide aggregated data, for example, originating from different sensors, or
data that do not come from hardware at all, the hardware type attribute is
not required.
To prevent conflicts regarding the values of the TDLIoT attributes, on-

tologies can be used to detail the semantic description of these values, such
as a specific hardware type having more than one name. For example, the
type parking-space-sensor could also be named parking sensor or PSensor in
different topic descriptions.
Grangel-Gonzalez et al. [GHC+16] introduce such an ontology-based vo-

cabulary for the IoT based on ontologies, which can be used as foundation for
the TDLIoT. Furthermore, other semantic relations can be expressed through
the ontology, for example, whether the represented hardware is a sensor

6.3 | Topic Description Language for the IoT 103

1 { " data_type " : " boolean " ,
2 " hardware_type " : " parking - space - sensor " ,
3 " l o c a t i on " : {
4 " l o ca t i on_ t ype " : " city_name " ,
5 " l o ca t i on_va lue " : " S t u t t g a r t "
6 } ,
7 " message_format " : " JSON" ,
8 " message_s t ructure " : {
9 " metamodel_type " : " JSON_schema " ,
10 " metamodel " : " { " t i t l e " : " provider_schema " ,
11 " type " : " ob j e c t " ,
12 " p r ope r t i e s " : {
13 " value " : { " type " : " boolean " } ,
14 " timestamp " : { " type " : " i n t ege r " } ,
15 " requ i red " : [" value " , " timestamp "] } "
16 } ,
17 " p lat form_endpoint " : " h t t p : // example . com" ,
18 " owner " : " u n i v e r s i t y _ o f _ s t u t t g a r t " ,
19 " path " : " parking - space / operator / id7321/ output " ,
20 " p ro toco l " : "MQTT" ,
21 " t op i c_ t ype " : " s ub s c r i p t i on "
22 }
Listing 6.1: Example of a TDLIoT description in JSON (based on [FHB+18])

or actuator. Using such a vocabulary enhances the TDLIoT with semantics,
i.e., the meaning of attribute values can be understood through reasoning
approaches. With this semantic information, finding topic descriptions for
specific use cases can become easier.
Listing 6.1 shows an example in JSON format of a TDLIoT description to ac-

cess the output data of an extraction operator. In this example, the output can
be accessed through themessage topic parking-space/operator/id7321/output
(line 19) hosted on an MQTT message broker (line 20). The format and
structure of the messages provided through this topic are defined in lines 7
to 16. That is, the message is formatted in JSON and the message structure
is specified by the JSON schema in lines 10 to 15.

104 6 | Deployment of operators onto IoT environments

Deployment
instance manager

Deployment manager

IoT obj.
values

deploy operators

IoT physical environment layer

publish,
subscribe

Human task
manager

Human task
client

subscribe
synchronize

notify
define/finish
human tasks

IoTEM modeler
and manager

publish,
subscribe

TDLIoT
catalog

Message
broker

b

c d

e

f

a

Domain
expert

IoTEM and DSPM mapper

Multi-purpose Binding and Provisioning Platform (MBP) layer

start
deployment

DSPM modeler
and manager

notify deploym.
result

IoTEM: IoT environment model
DSPM: Data stream processing model
TDLIoT: Topic description language for the IoT

Figure 6.6: Architecture component: Deployment manager

6.4 Architecture component and implementation –
Deployment manager

In the overall architecture (cf. Section 3.3), the Deployment manager compo-
nent provides the means for the deployment of operators onto IoT objects.
This component is depicted in Figure 6.6. The deployment of operators of a
DSPM can be started through the Deployment instance manager a , which
receives as input the mapping plan created via mapping plan generation
(cf. Section 5.1) or created manually (cf. Section 5.2). Furthermore, once
the deployment of DSPMs is completed, running instances of the DSPMs
(dDSPMs) are created and managed by the Deployment instance manager.
These running instances are forwarded to the DSPM modeler and manager
component (cf. Section 4.2.3), which gets informed about the success of

6.4 | Architecture component and implementation – Deployment manager 105

the deployment of DSPMs, in order to provide visual feedback to domain
analysts in the DSPM modeling tool.
In the automatic deployment approach, operators and their required

software artifacts are installed, configured, and started onto the mapped IoT
objects. Further software artifacts to collect empirical values and monitoring
information about the operators and the IoT objects are also deployed.
Once the execution of operators is started on IoT objects, they publish data,
e. g., sensor values or monitoring information, to the Message broker b
component. The Deployment instance manager subscribes to the Message
broker, in order to continuously receive IoT object values and monitoring
values, which are stored in the IoT object values c repository. Descriptions
of how to access and parse the output of published operators are stored in
the TDLIoT catalog d . This catalog also provides a REST API to search for
publicly accessible operators, e.g., which extract values of public sensors.
In the semi-automatic deployment approach, the Human task manager e

infers manual actions (i.e., human tasks) from the mapping plan, and notifies
the Human task client f application about their existence. Once the human
tasks are completed by domain experts input in the Human task client, the
Deployment instance manager is notified to either start or continue the
deployment of the operators.
The Deployment manager component, has been partly implemented in

the MBP as a prototype and also uses existent external implementations.
The OpenTOSCA container [BBH+13] is used as an external Deployment
instance manager, which is able to automatically deploy operators of mapping
plans based on the TOSCA standard. This external tool is available in the
GitHub project of the OpenTOSCA Ecosystem1. Within the scope of this
thesis, Kutger [Kut18] conducted a bachelor thesis, which implemented
the Human task manager and the Human task client, in order to enable the
OpenTOSCA container to support the deployment of operators involving
human tasks. The Human tasks manager is based on the implementation
from Wagner [Wag10], which corresponds to a Java web application running

1https://github.com/OpenTOSCA

106 6 | Deployment of operators onto IoT environments

on Apache Tomcat1. The Human task client was implemented as an Android-
based mobile application2.
Additionally, the MBP provides several ready-to-use extraction and control

operators as Python and Shell scripts3, which can then be registered in the
MBP and be deployed onto IoT objects by the MBP. Once operators are
deployed, they send values to the MBP by connecting and publishing to the
Message broker, which is implemented using the MQTT broker Mosquitto.
The MBP can visualize sensor values as line diagrams in the MBP dashboard.
The data management and processing in the MBP implements a lambda-
based architecture [MW15], in which both live and historical data can be
managed and processed. To store measurement data, i.e., timestamp-based
sensor data, the time-series database InfluxDB is used. Further metadata,
IoT environment models, and data stream processing models are stored in
the NoSQL database MongoDB, to clearly separate measurement data and
metadata. The TDLIoT catalog has been prototypically implemented outside
the MBP as an open-source GitHub project4. It is implemented in Java and
uses a MongoDB database to store TDLIoT descriptions. It provides a web
interface implemented in JavaScript and a REST API for interactions with
the TDLIoT catalog. Finally, Section 8.1 presents the integration architecture
of all architecture components and shows how they fit together.

6.5 Related work

This section describes related work regarding software deployment onto
IoT environments. Li et al. [LVCD13] propose to employ TOSCA to specify
the basic components of IoT applications (e.g., gateways, micro controllers)
and their configuration, in order to automate IoT application deployment
in heterogeneous environments. Extensions of this work were presented
by Vögler et al. [VSI+15; VSID16]. The authors propose the framework

1https://github.com/IPVS-AS/Human-Task-Manager
2https://github.com/IPVS-AS/Human-Task-Client
3https://github.com/IPVS-AS/MBP/tree/master/resources/operators
4https://github.com/IPVS-AS/TDLIoT

6.5 | Related work 107

LEONORE for the deployment and execution of custom application logic
directly on IoT gateways. However, for the framework to know the available
IoT gateways for provisioning, the IoT gateways must have a pre-installed
local provisioning agent. This agent registers itself to the framework by
providing its unique identifier and profile data of the gateway (e.g., MAC ad-
dress, instruction set, and memory consumption). In contrast, the approach
of this thesis does not require pre-installed components on IoT objects, how-
ever, it requires activated remote access to IoT objects, so that necessary
components can be installed automatically.
Hur et al. [HCJL15] propose a Semantic Service Description (SSD) on-

tology and a system architecture to automatically deploy IoT devices to
heterogeneous IoT middlewares, aiming to solve interoperability problems
between them. This thesis also aims to tackle interoperability problems,
however, it proposes a standard-based approach using TOSCA to automati-
cally deploy computing operators onto heterogeneous IoT environments.
Hirmer et al. [HBF+16; HWBM16a] introduce an approach for automated

binding of IoT devices using a middleware called Resource Management
Platform (RMP). The RMP enables an easy registration of IoT devices and
their binding through adapters. An adapter is a piece of code containing
the logic to read sensor values of IoT devices, to send the sensor values
to the RMP, and to invoke actuators. For the binding, adapter scripts are
automatically deployed onto the IoT devices. An extension of the RMP,
which uses TOSCA to deploy the adapters, is also described by Hirmer
et al. [HWBM16b]. In contrast to this thesis, Hirmer et al. concentrate
on the binding of hardware devices whereas the approach of this thesis
additionally deals with the deployment of computing operators onto whole
IoT environments.
The automated deployment onto IoT environments can be realized by

several approaches, e.g., by using Shell scripts, Chef, or Puppet. However, in
contrast to these approaches, the standard-based approaches in this thesis
are using TOSCA and enable a generic approach based on topology models
and a corresponding graphical notation [BBK+12]. These topology models
are highly adaptable in a way that single software components of a topology

108 6 | Deployment of operators onto IoT environments

can be easily interchanged, and furthermore, extended. In other approaches,
this requires a large adaptation effort, e.g., when editing Chef scripts. In
addition, through the concepts of node and relationship types, TOSCA offers
a high abstraction level that supports reusability for software deployment.

6.5 | Related work 109

Ch
ap
te
r 7

Monitoring of deployed
DSPMs

This chapter introduces contribution C4, which is the monitoring of de-
ployed data stream processing models (dDSPM). For this, contribution C4
provides the means to continuously monitor IoT objects in IoT environments
and dDSPMs, in order to recognize disturbances. This monitoring is re-
alized using complex event processing (CEP) techniques [Luc01], which
are well-established for the processing of data streams to timely recognize
situations [BD15; BK09; FHWM16].
The modeling of disturbance recognition is explained in Section 7.1.

How the execution of disturbance recognition is realized is explained in
Section 7.2. In Section 7.3, the architecture component and implementation
for the monitoring of dDSPMs is described. Finally, Section 7.4 presents
related work to contribution C4.

111

7.1 Modeling of disturbance recognition

Context-aware applications have gained a lot of attention in recent years,
especially in the IoT domain. Deriving high-level context from low-level, raw
sensor data enables automated adaptation and realization of self-organized
IoT environments. However, there are a lot of challenges to be addressed
regarding the acquisition, modeling and management of context informa-
tion [GBH+05; LCG+09]. A further challenge is how to achieve efficient
processing of large amounts of sensor data and, consequently, good quality
of the derived high-level context knowledge. For this, well-established tech-
niques, such as complex event processing (CEP), have been introduced to
process large amount of data in a timely fashion [BD15; BK09].
This thesis uses the definition provided by Dey and Abowd [Dey01] de-

scribing context as “any information that can be used to characterize the
situation of an entity, where an entity can be a person, place, or object”. As a
consequence, such context information can be used to derive high-level con-
text information, called situations. In the scope of this thesis, a disturbance
is considered as a situation, which is defined as an occurrence that might
require correcting actions [Luc01]. Therefore, disturbance recognition is
also referred to as situation recognition in this thesis.
Hirmer et al. [HWS+15] propose SitRS, a cloud-ready situation recogni-

tion service that enables situation recognition based on raw sensor data. In
their approach, sensors are bound dynamically and the sensor data is re-
ceived in a pull-based manner. The situation recognition is executed in fixed
time intervals by pulling the sensor data and deriving situations and, thus,
is suitable only for simple situation recognition scenarios. In [FHWM16],
we introduce SitRS XT, an efficient, scalable situation recognition service.
SitRS XT extends the approach from Hirmer et al. [HWS+15] by enabling a
continuous processing of sensor data through a stream-based approach using
CEP technologies. Thereby, the modeling and execution of more complex
situation recognition scenarios are enabled.
This thesis employs SitRS XT to recognize disturbances on deployed DSPMs

onto IoT environments. SitRS XT processes monitoring data on different

112 7 | Monitoring of deployed DSPMs

IoT environment level:
Observable IoT objects

data level:
monitoring data

information level:
observable context

knowledge level:
situation

application level:
situation-aware IoT application

1. start situation
recognition for machine
2. adapt to situations

situation-model,
e.g., machine X is
overheated

observation notification

context-model,
e.g., temperature
of machine X

basic data types,
e.g. ,°C

Temperature
sensor 1

over-
heat

OR

Temperature
sensor 2

context
nodes

condition
nodes

operation
nodes

situation
node

Temp.
in °C

Temp.
in °C

> 90 > 90

Figure 7.1: Data processing levels (based on [FHWM16])

levels, which are depicted in Figure 7.1 on the left. On the data level, only
raw monitoring data (e.g., temperature sensor values) is available. This
data is pushed to the information level, to be enhanced with information
about relations of raw data to real-world things (e.g., a production machine),
becoming, in this way, information about the IoT environment. Based on the
observable context, monitoring data is aggregated and interpreted in order
to derive situations, which leads to knowledge about the IoT environment.
This high-level knowledge is crucial for situation-aware applications, since it
can be processed on a higher-level of abstraction.
In SitRS XT, situations are modeled as situation templates [HHL+10], a

domain-specific model that abstracts from complex, technical details. This
model contains the monitored IoT objects and the conditions that have to
match for a certain situation to be recognized. Situation templates are based
on situation aggregation trees (SAT), which are directed, cohesive graphs as
introduced by Zweigle et al. [ZHKL09]. In SATs, sensors correspond to leaf

7.1 | Modeling of disturbance recognition 113

nodes called context nodes and branches are aggregated bottom-up through
a combination of so-called condition nodes and operation nodes until the root
node (i.e., situation node) is reached.
A simple example of a situation template is depicted in Figure 7.1 on

the right. It defines the conditions to recognize when the temperature
of a production machine passes the threshold of 90 Celsius degrees. The
nodes of a situation template reflect the aforementioned processing levels:
context nodes represent the sensors monitoring a certain IoT object, which
correspond to the data level. Context nodes are connected to condition nodes,
which establish the relations of sensor data to IoT objects (information level).
Furthermore, condition nodes filter monitoring data based on the defined
conditions. Condition nodes can be aggregated by operation nodes using
logical operations until the situation node is reached, which represents the
situation to be recognized. The combination of condition, operation and
situation nodes corresponds to the knowledge level, where sensor data is
aggregated, interpreted, and derived to situations.
Defining situations using situation templates releases domain experts of

creating complex, executable representations, such as CEP queries. Such
representations are, however, still required for the deployment in execu-
tion environments. The manual creation of such complex representations
requires expert knowledge and, thus, is time-consuming and error-prone.
Therefore, SitRS XT reduces this complexity by automatically transforming
situation templates onto the required executable representations, i.e., CEP
queries. The transformation of situation templates onto CEP queries, and
consequently, the execution of disturbance recognition based on these exe-
cutable representations are explained in Section 7.2.

In the aforementioned SitRS XT approach for disturbance recognition, it is
assumed that the resulting CEP queries are to be executed only on monolithic
IT infrastructures. However, in order to process data more efficiently, further
approaches are required to distribute the CEP queries within the IoT envi-
ronment, so that a distributed data processing with short communication
paths and reduced network traffic is enabled. Therefore, we introduced

114 7 | Monitoring of deployed DSPMs

in [FHKM18] an approach for CEP query shipping onto IoT environments,
so that the execution of all required CEP queries only on monolithic IT
infrastructures can be avoided.
In the following, a case scenario based on the work of Hoos et al. [HHM17]

is presented, in which several CEP queries can be shipped (i.e., deployed)
onto different execution locations. The goal of this case scenario is the mon-
itoring of a production step on the shop floor of a manufacturing company,
in order to recognize disturbances in the production step as soon as possible.
In this production step, a shop floor worker inserts a metal part into a

machine, which cuts it into the required form. In this process, two problems
could occur: (i) the tool cutting the metal gets decayed over time, or (ii)
the metal part is wrongly placed into the machine, so that the metal cannot
be cut correctly. Both these cases lead to an erroneous end product, which
sometimes is discovered late in the production process. This could cause
high costs because many steps need to be repeated or products even need
to be thrown away. Consequently, those error cases need to be recognized
immediately in order to save costs.
In this case scenario, there are two data sources, (i) a position sensor and

(ii) a tool condition sensor. The position sensor returns a Boolean value
indicating whether the metal part is correctly placed into the machine. In
case of true, the metal part is in the correct position. In case of false, the
metal part is in a wrong position. The tool condition sensor returns the
cutting tool’s condition as percentage value, where 0% means the tool is
fully decayed, and 100%, the tool is unused. Furthermore, to realize this
case scenario, three different CEP queries can be created, so that they can be
executed on different locations. However, the CEP engine that will execute
these CEP queries needs to be either distributed, such as presented by Cugola
et al. [CM13], or be provided as different instances of the same CEP engine.
In this case scenario, the second option is assumed.
In Listing 7.1, the CEP query Q1 is depicted in the Event Processing

Language (EPL) syntax [Esp06b]. This query uses the values of a position
sensor as its input and creates an output event if the sensor produces the
value false. For this, a schema for an input event stream is defined with

7.1 | Modeling of disturbance recognition 115

name PositionSensorStream in line 1. Likewise, a schema for an output event
stream with name ProductionErrorStream is defined in line 2. Subsequently,
the CEP query Q1 is defined in lines 4 and 5.

1 c rea t e schema Pos i t ionSensorStream (value boolean) ;
2 c rea t e schema Product ionErrorStream (value boolean) ;
3

4 @Name('Q1 ') i n s e r t i n to Product ionErrorStream
5 s e l e c t ∗ from Pos i t ionSensorStream (value=f a l s e) ;

Listing 7.1: CEP query Q1 in EPL syntax [FHKM18]

Another CEP query (Q2), depicted in Listing 7.2, uses the values of the
tool condition sensor as input and produces an output event when the tool
condition becomes less than 80%.

1 c rea t e schema Condit ionSensorStream (value in t ege r) ;
2 c rea t e schema Product ionErrorStream (value boolean) ;
3

4 @Name('Q2 ') i n s e r t i n to Product ionErrorStream
5 s e l e c t ∗ from Condit ionSensorStream (value<80) ;

Listing 7.2: CEP query Q2 in EPL syntax [FHKM18]

The CEP query Q3, depicted in Listing 7.3, serves as an aggregation query,
which uses the output events, produced by the queries Q1 and Q2, as input.

1 c rea t e schema Product ionErrorStream (value boolean) ;
2

3 @Name('Q3 ') s e l e c t count (∗) from
4 Product ionErrorStream . win : time (10 sec)
5 having count (∗) > 1

Listing 7.3: CEP query Q3 in EPL syntax [FHKM18]

Q3 checks whether Q1 or Q2 produce more than one event for a time
window of 10 seconds. The time window is used to avoid detection of false-
positive events due to outliers. Only if multiple events are produced during

116 7 | Monitoring of deployed DSPMs

top distance
sensor

left distance
sensor

right distance
sensor

Side view of the conveyor belt Top view of the conveyor belt

2

3

1 Situation production part detected
Situation upside-down part
Situation outside limits part

2

3

1

4 Derived situation wrongly positioned
(upside-down or outside limits part)

Figure 7.2: Case scenario: monitoring production parts on a conveyor
belt [FHWM16]

this time window, it can be ensured that a production error really occurred.
Moreover, there is a notification service acting as data sink, which receives

events of Q3 and notifies the person responsible to cope with the occurred
error, for example, a maintenance engineer, who can replace the affected
production part, or a shop floor worker that can remove the erroneous part
from the production process. Finally, the software for executing the CEP
queries are deployed as described in Chapter 6, which automatically starts
the disturbance recognition.

7.2 Executing disturbance recognition

This section explains how to execute disturbance recognition based on the
concepts explained in Section 7.1. For this, situations previously modeled as
situations templates are first transformed onto executable, event-based rep-
resentations, i.e., CEP queries. These representations are then executed by
CEP engines, which process input monitoring data and generate notifications
when disturbances are recognized based on the executable representations.

7.2 | Executing disturbance recognition 117

In Figure 7.2, an example abstracted from real-world production scenarios
is depicted, which timely recognizes disturbances in production processes.
In this example, production parts on a conveyor belt are monitored in order
to recognize when they are wrongly positioned.
The disturbance recognition is based on the data generated by several

distance sensors, which are attached to the conveyor belt. In this scenario,
four situations are defined.
The situation production part detected ➊ indicates the presence of a pro-

duction part on the conveyor belt. This situation alone does not necessarily
indicate a disturbance, but its occurrence is required for the following de-
fined situations. The situation upside-down part ➋ indicates that a production
part is upside-down and, thus, a disturbance in the production process oc-
curred. The situation outside limits part ➌ indicates that the production part
is positioned outside the allowed limits either left or right and, therefore,
corresponds to a disturbance in the production process.
The derived situation wrongly positioned ➍ is a composition of the afore-

mentioned situations and indicates that a production part is either upside-
down or positioned outside the allowed limits and, therefore, wrongly posi-
tioned on the conveyor belt.
In Figure 7.3, a situation template combining the aforementioned situa-

tions is depicted. This situation template is automatically transformed to an
executable representation, which is depicted at the bottom. In this example,
the executable representation is defined using the CEP query language EPL
that can be executed by the Esper CEP engine. However, a wide range of
CEP-based execution formats exist that could be used by this approach.
For the automated transformation of a situation template onto a CEP query,

the nodes of the situation template are traversed in order to formulate a
complex event pattern, which is composed of pattern expressions combined
through logical operators (e.g., or, and). In this approach, the complex
event pattern is built based on the set of condition nodes, which are aggre-
gated by operation nodes. Each condition node corresponds to a pattern
expression, while an operation node corresponds to a logical operator. The
example in Listing 7.4 depicts such a complex event pattern in a pseudo

118 7 | Monitoring of deployed DSPMs

select * from pattern [
(every A2_stream = DistanceSensorStream (sensorID='distTop', distance < 60) -
> (timer:interval (500msec) and not DistanceSensorStream (sensorID='distTop',
distance > 60))) and ((every A1_stream = DistanceSensorStream
(sensorID='distTop', distance > 50, distance < 60)) or (every
A0_stream=DistanceSensorStream (sensorID='distLeft') ->
(A1_stream=DistanceSensorStream (sensorID='distRight', A0_stream.distance
!= distance) and not distanceSensorStream(sensorID='distLeft'))))]

OR

right distance
sensor

left distance
sensor

Dist.
in

cm

Dist.
in

cm

≠

top distance
sensor

Dist.
in

cm

50 <
x <
60

Wrongly
positioned

Graphical
situation template model

AND

< 60

top distance
sensor

Dist.
in

cm

Sub-situation 1:
production part detected

Sub-situation 2:
upside-down

Sub-situation 3:
outside limits

automatic
template

transformation

time:
500ms

Figure 7.3: Exemplary situation template and its transformation to Esper
CEP queries (based on [FHWM16])

7.2 | Executing disturbance recognition 119

query language, which is roughly based on the Esper CEP query language.

s e l e c t ∗ from pat te rn [
<condi t ionNode_pat ternExpress ion>
<operationNode_type>
<condi t ionNode_pat ternExpress ion>

]

Listing 7.4: Complex event pattern in pseudo-code

To build the pattern expression for a condition node, the monitored sensor
identifier and the sensor type are retrieved from the IoTEM. To map which
physical sensor is used for a specific condition in the situation template, the
sensor role, e.g., “top distance sensor”, is specified in the context node and
the transformation retrieves the registered sensor by this role. Listing 7.5
shows the structure of a pattern expression based on a condition node.

condi t ionNode_pat ternExpress ion = <sensor_type_stream>(
sensor_ id = '<monitored_sensor_id> ' ,
s en so r_ ro l e = '<contextNode_sensor_ro le> ' ,
<condi t ionNode_condi t ion>)

Listing 7.5: Complex event pattern expression in pseudo-code

In Figure 7.3 at the bottom, the CEP query to recognize the situation
wrongly positioned is shown. This CEP query is complex and, therefore,
difficult to be created manually. Furthermore, CEP queries may become
verbose depending on the complexity of the situation to be recognized.
By providing automatic transformation from situation templates onto CEP
queries, domain experts are released from the burden of creating such
complex CEP queries themselves.
Finally, the disturbance recognition is started by deploying the resulting

CEP queries on the CEP execution engine. Within the scope of this thesis, a
master thesis was conducted by Mahmoodi [Mah18], in which several CEP
engines (e. g., Esper, Apache Flink, and Odysseus) were investigated. This
master thesis provides an abstract query language, which expresses common

120 7 | Monitoring of deployed DSPMs

CEP features among the different investigated CEP engines. Consequently,
besides using situation templates for situation recognition, this thesis also
enables the modeling using this abstract query language. Similar to situation
templates, queries modeled using the designed abstract query language
are also transformed onto CEP queries that can be executed by the specific
CEP engines. This enables the support of different execution environments,
avoiding dependency on a specific CEP execution engine (vendor lock-in).

7.2.1 Customization and provisioning of CEP engines

In [FBH+17], we present an approach based on the TOSCA standard, in
order to enable the customization and provisioning of CEP engines.
Many software solutions providing CEP functionalities have been devel-

oped, such as Esper [Esp06a], flowthings.io [flo10], FIWARE CEPGE [FIW16],
or Odysseus [Uni07]. Furthermore, there are many approaches to provision
CEP engines in a generic manner, such as Docker, Amazon AWS, Ansible,
or Vagrant. However, generic approaches enabling provisioning of standard
CEP engines lack the customization required by the IoT domain. More pre-
cisely, IoT environments are highly heterogeneous in regard to deployed IoT
objects, applications, and continuous queries to process data.
Consequently, using standard cloud services for such CEP engines re-

quires a high customization effort. These customization steps comprise:
(i) configuration of the CEP engine, (ii) binding of data sources and sinks
by writing and deploying complex operator code, and (iii) deploying CEP
queries. When conducted manually, these steps are tedious and error-prone.
To cope with these issues, we present the approach in [FBH+17] for

customization and provisioning of CEP engines, including their IoT environ-
ments, required operators, and CEP queries. This approach leads to a large
reduction of customization effort when applying CEP to IoT environments.
Furthermore, such a customized approach enables increased data security
through the creation of fixed, non-changeable instances of CEP engines,
similar to views in databases.
This approach builds on a self-contained TOSCA topology model, i. e.,

7.2 | Executing disturbance recognition 121

Temperature
Topic

(Topic)

CEP Engine
(Esper)

Action Topic
(Topic)

Runtime
(Tomcat)

Runtime OS
(Ubuntu)

Message
Broker

(Mosquitto)

Message
Broker

(Mosquitto)

Data processing stack

Data producer
stack

Data consumer
stack

Input
Transform
(Operator)

Output
Transform
(Operator)

Broker OS
(Ubuntu)

Computer
(Computer)

Broker OS
(Ubuntu)

Computer
(Computer)

Cloud
Provider

(Provider)

hostedOn
connectsTo
dependsOn

CEP
Customization

(Operator)

CEP query

Node template
Deployment artifact (DA)

Figure 7.4: TOSCA topology model for a CEP engine (based on [FBH+17])

the topology model must contain all necessary software components to set
up the CEP engine. Such a topology model is depicted in Figure 7.4. In
this example, a simplified HVAC system scenario is modeled, in which the
temperature of a room is continuously monitored to recognize and react
when the temperature exceeds or goes below the thermal comfort zone.
The customization and provisioning of CEP engines require at least the

following components: (i) a CEP engine to process and aggregate input data,
(ii) CEP queries in a compatible query language, which define how the CEP
engine processes input data to compute higher-level situations based on
low-level data, (iii) data producers, which provide low-level data to the CEP
engine, and (iv) data consumers, which receive and process the higher-level
situations derived by the CEP engine. Therefore, the topology is divided in

122 7 | Monitoring of deployed DSPMs

three stacks: the data producer stack, the data processing stack containing
the CEP engine and CEP queries, and the data consumer stack.
The data producer stack contains an IoT device, a temperature sensor,

and the infrastructure providing access to sensor values through a message
broker. For instance, temperature values are measured by a sensor plugged
into a Raspberry Pi, which executes an operator to extract these values and
to send them to a specific topic hosted on a message broker. In Figure 7.4,
the node templates for the IoT object and extraction operator are omitted
for simplification reasons. An example of a data producer stack including
these node templates is shown in Figure 5.2.
The data processing stack depicted in the middle of Figure 7.4 contains

the infrastructure and the CEP engine that monitors and processes sensor
values. This stack can be created in two ways: (i) modeling the CEP engine
self-hosted on own infrastructure and platform components or (ii) as a
service, e. g., offered by an external cloud provider, such as Amazon AWS
or Microsoft Azure. In the first case, the topology stack usually consists of
seven node templates, as depicted in Figure 7.4. Starting from the bottom,
a Provider node template corresponds to the hardware resource provider,
which creates and runs virtual machines. Furthermore, the Runtime OS node
template models the operating system of the virtual machine, while the
Runtime node template models the necessary runtime, e. g., a web server for
the CEP engine to be deployed in. In this thesis, the self-hosted approach is
assumed in order to provide an approach that is generic and not dependent
on a specific cloud provider.
In the following, the node templates of the customized CEP engine are

described in detail. The CEP engine node template represents the CEP system
itself, e.g., Esper. This node template, which is hosted on the Runtime node
template, must contain: (i) an implementation artifact (IA) for installing,
configuring and starting the CEP engine, and (ii) a property providing the
API endpoint of the CEP engine to be used for customization, i.e., to push
events, deploy queries, and define event types. Usually, (iii) a deployment
artifact (DA) needs to be provided that contains the binaries of the engine’s
installers. If this DA is not provided, these binaries need to be dynamically

7.2 | Executing disturbance recognition 123

retrieved by the IA.
Once the CEP engine is set up, the customization of the CEP engine

is realized by the CEP Customization node template, which defines the
event types, i. e., input and output data events. More precisely, data is
provided or consumed based on the modeled topic node template, e. g.,
the node templates Temperature Topic and Action Topic in the topology
model depicted in Figure 7.4. Furthermore, the CEP Customization node
template contains tailor-made CEP queries, which define how the CEP engine
must process incoming data of the defined input events. Both event type
definitions and CEP queries are represented as deployment artifacts, i.e.,
monolithic objects, such as text files, which are deployed into the CEP engine.
Furthermore, the CEP Customization node template contains properties that
define additional system-specific customizations, such as the (de-)activation
of query optimizations.
To bind the data producer stack to the CEP engine through the publish-

subscribe pattern, an operator is required that (i) subscribes to data producer
topics, (ii) transforms the received data to a format the CEP engine under-
stands, and (iii) pushes this transformed data to the CEP engine through
its provided interface and API endpoint. For that, the Input Transformation
node template is provided, which contains such an operator as a deployment
artifact. This node template connects to the Temperature Topic node template
and depends on the CEP engine node template, since it requires the API
endpoint of the CEP engine being provided to push events to it. In addi-
tion, the node template contains an implementation artifact that deploys
these deployment artifacts onto a corresponding runtime. In the depicted
example, this is the runtime the CEP engine is hosted on. However, if the
Input Transformation node template requires a different type of runtime, an
additional node template can be modeled.
Similar to the binding of the data producer stack, a further operator is

required to realize the binding of the data consumer stack to the CEP engine
that (i) receives the resulting situation computed by the CEP engine based
on the CEP queries, (ii) transforms it to the data format the message broker
understands, and (iii) publishes it to the data consumer topic. Thus, the

124 7 | Monitoring of deployed DSPMs

Output Transformation node template is provided, which contains such an
operator as a deployment artifact. This node template may also connect
to several Topic node templates (e. g., Action Topic) and depends on the
CEP engine node template, because it also requires the API endpoint of the
CEP engine from which the operator receives derived situations. Similar
to the Input Transformation node template, the Output Transformation
also contains a corresponding implementation artifact that handles the
deployment of this operator into a suitable runtime.
Modeling the CEP engine as a service offered by an external provider

differs slightly from the model in Figure 7.4. The Runtime and Runtime OS
node templates do not need to be modeled, however, the infrastructure for
the Input Transformation and Output Transformation node templates still
needs to be provided. As before, they can communicate with the CEP engine
by using the API endpoint of the CEP Engine node template.
In summary, in order to create the data processing stack in the TOSCA

topologymodel, containing the customized CEP engine, the above-mentioned
components need to modeled and connected as described.
The data consumer stack works in a similar fashion as the data producer

stack, since it also builds on the publish-subscribe pattern. Data consumers
can be, for example, applications reacting on situations computed by the CEP
engine. This stack contains an IoT device, an actuator, and furthermore, the
infrastructure composed of a message broker, through which the actuator can
be controlled. For instance, a ventilator actuator is plugged into a Raspberry
Pi. On this IoT device, a control operator is hosted, which subscribes to the
specific action topic of a message broker to extract on/off commands for
the ventilator actuator. Furthermore, this operator sends the corresponding
action commands to the ventilator actuator.
In Figure 7.4 on the right, the infrastructure for the message broker

hosting the Action Topic node template is depicted. The node templates for
the IoT device and control operator are omitted for simplification reasons.
An example of a data consumer stack including these node templates is
shown in Figure 5.2.
Furthermore, the introduced approach for customization and provisioning

7.2 | Executing disturbance recognition 125

of CEP engines enables another important feature: data security. Similar to
the concept of read-only views [UGW02] in relational database management
systems, this approach is able to limit the degree of exposure of underlying
data through this customization approach. This can be realized by forbidding
additional query and data input into the CEP engine as well as additional
output through encapsulating the CEP engine (e.g., through port blocking)
after its provisioning and only allowing communication through the deployed
topics. In addition, by doing so, consumers of data processed by the CEP
engine cannot retrace how the results have been achieved, i.e., the concrete
structure of the CEP query is hidden.

7.2.2 Disturbance classes

Due to the dynamic nature of IoT environments, reconfiguration of opera-
tors of a deployed DSPM might be required when disturbances in the IoT
environment occur. Section 7.1 presents the means to model disturbance
recognition. This section presents an overview of which disturbances are
relevant to be modeled and recognized in the scope of this thesis.
This thesis takes into considerations two main classes for disturbances:

(i) changes in the network infrastructure of an IoT environment, and (ii)
changes in the DSPM executed on this IoT environment. The following
list represents a subset of disturbances to be recognized, and hence, is
not complete. These disturbances can occur through changes in the IoT
environment or in the DSPM of an IoT application.

• IoT object breakdown. In case an IoT object stops working, this can
cause a disturbance if the corresponding IoT object belongs to the de-
ployed DSPM (dDSPM), i.e., if the IoT object is executing an operator
or if it is a data source. For this, condition monitoring of IoT objects
is conducted. Gupta [Gup15] gives an overview about monitoring
mechanisms, such as Big Brother [Mac97] and Zenoss [Bad08], which
can be applied for the condition monitoring of IoT objects connected to
a network infrastructure. Such monitoring mechanisms generate noti-
fications about critical values reaching threshold or condition failures

126 7 | Monitoring of deployed DSPMs

on IoT objects.
• IoT object update. Changes in the capabilities and properties of an
IoT object might lead to a disturbance if the updated capabilities do
not fulfill any requirement of the DSPM anymore. Furthermore, if
an IoT object changes, for example, a crucial property, such as its IP
address, the IoT object might become unreachable or the data flow
might be compromised.

• IoT object running low on resources. If an IoT object becomes over-
loaded over time or if its battery state is low, this situation might lead to
a disturbance if, as a consequence, this processing node stops working.
In this case, the IoT object can be given more resources if possible, or
the operator needs to be remapped to another IoT object.

• IoT object added to the IoTEM. When a new IoT object is added to
the IoTEM in which a DSPM was already deployed, consequently, the
IoT environment provides additional resources that can be taken into
consideration the next time a mapping of operators onto IoT objects
is realized. Within the scope of this thesis, a bachelor thesis was con-
ducted by Fouskas [Fou17b], which designed an automated discovery
service for IoT devices using different communication technologies,
such as Wi-Fi or Bluetooth.

• Processing operator removal. In case a processing operator, a data
source, or a data sink is removed from a deployed DSPM, the allocated
resources of the IoT environment need to be released and the data
flow needs to be checked to ensure that it is not compromised.

• Processing operator update. Changes in the requirements of a pro-
cessing operator can lead to a disturbance if the new or updated
requirements cannot be met anymore by the mapped IoT object.

• Processing operator added to the DSPM. When a new processing
operator, data source, or data sink is added to a deployed DSPM, the
new element is then required to be mapped onto a suitable IoT object.

7.2 | Executing disturbance recognition 127

Disturbance
modeling tool

a

Domain
expert

create disturbance
recognition
model

Disturbance
handler

b

register
disturbance
recognition
model

CEP engine
c

IoTEM modeler
and manager

DSPM modeler and manager

Disturbance recognizer

send
monitoring data

IoT physical environment layer

Multi-purpose Binding and Provisioning Platform (MBP) layer

synchronize

send
monitoring data

send
disturbance
notification

notify
recognized
disturbance

deploy CEP queries,
send input events

IoTEM: IoT environment model
DSPM: Data stream processing model
dDSPM: deployed data stream processing model

synchronize

Figure 7.5: Architecture component: Disturbance recognizer

Once such a change is recognized, in case this is a disturbance, possible
correcting actions can be executed by domain experts or domain analysts.
An example of a correcting action is the redeployment of necessary process-
ing operators (i.e., operator migration). The resolution and execution of
correcting actions for disturbances recognition is part of the future work
of this thesis. For this, a complete remapping of processing operators and
IoT objects will need to be conducted. The previous mapping plan of a
dDSPM can then be compared to the new mapping plan and the difference
can be extracted. Based on this difference, processing operators can be

128 7 | Monitoring of deployed DSPMs

redeployed, and the dDSPM can be updated accordingly. The redeployment
of stateless operators is a simpler task, since such operators are only required
to be redeployed. By redeploying stateful operators, however, the state of
operators needs to be migrated. A survey about state management in data
stream processing is presented by To et al. [TSM18]. Moreover, Cardellini et
al. [CLNR18] investigate operator placement decisions for the effective run-
time management of data stream processing applications in geographically
distributed environments. Their work aims to select the optimal adaptation
strategy that minimizes migration costs but still satisfies application QoS
requirements.

7.3 Architecture component and implementation –
Disturbance recognizer

In the overall architecture (cf. Section 3.3), the Disturbance recognizer com-
ponent provides the means to monitor IoT objects and deployed DSPMs in
order to recognize disturbances during the data processing. This component
is depicted in Figure 7.5. The modeling of disturbances to be recognized
is conducted by domain experts in the Disturbance modeling tool a , which
registers the modeled disturbances to the Disturbance handler b .
The Disturbance handler transforms disturbance recognition models onto

CEP queries (cf. Figure 7.3), which are deployed onto the CEP engine c .
Furthermore, the disturbance handler receives monitoring data about the
IoT environment and processing operators. These monitoring data are
transformed onto CEP input events and forwarded to the CEP engine. Once
the CEP engine recognizes a disturbance, it notifies the Disturbance handler,
which sends notifications about the disturbances to the DSPM modeler and
manager component (cf. Section 4.2.3) and to the MBP dashboard.
The Disturbance recognizer component has been prototypically imple-

mented as part of the MBP. Section 8.2 gives an overview on the MBP
functionalities. The Disturbance modeling tool1 has been implemented in

1https://github.com/IPVS-AS/MBP/wiki/Rules

7.3 | Architecture component and implementation – Disturbance recognizer 129

JavaScript and uses the library jQuery. Created disturbance recognition mod-
els are stored in a MongoDB database. The Disturbance handler transforms
disturbance recognition models into CEP queries, which can be processed by
the Esper CEP engine1. The Disturbance handler is implemented in Java in
the server side of the MBP. Section 8.1 presents the integration architecture
of all architecture components and shows how they fit together.

7.4 Related work

This section describes related work regarding situation recognition within
IoT environments. Many approaches exist that employ ontologies for situa-
tion recognition [WZGP04]. However, these approaches are either focused
on specific use case scenarios [BMK+00] or cannot provide the efficiency
suitable for real-time critical scenarios [DMM+13; WZGP04], e.g., in smart
factories. These limitations regarding efficiency also occur in machine learn-
ing approaches [ASRH13]. In contrast, the approach in this thesis offers high
efficiency by recognizing situations in milliseconds instead of seconds or even
minutes as reported in [DMM+13; WZGP04]. This enables applicability in
time-critical real-world scenarios, such as smart factories [LCW08], in which
fast recognition times are of vital importance.
Several situation recognition systems using complex event processing

were proposed in [GHM+13; HCBO11; TL11]. Taylor and Leidinger [TL11]
propose the use of ontologies to specify and recognize complex events, whose
occurrence can be detected in digital messages streamed frommultiple sensor
networks. The developed ontology is accessed through a user interface,
where the user specifies the events of interest. The specification of an event
of interest is then processed in order to generate configuration commands
for a CEP system. The CEP system monitors the specified data streams and
generates notifications, which can be delivered to clients when the event
occurs [TL11]. In this article, complex events are not directly specified,
but rather abstracted as situations. The approach in this thesis also realizes

1http://www.espertech.com/esper/esper-downloads

130 7 | Monitoring of deployed DSPMs

transformations of the event specifications (i.e., the modeled situations) into
CEP queries for a CEP system. The difference is that this thesis does not use
ontologies to model situations of interest.
Hasan et al. [HCBO11] propose to use CEP along with a dynamic enrich-

ment of sensor data in order to realize situation-awareness. In this approach,
the situations of interest are directly defined in the CEP engine, i.e., the user
formulates the situations of interest using CEP query languages. A dynamic
enrichment component processes and enriches the sensor data before the
CEP engine evaluates them. This approach and the one in this thesis differ
as follows: No complex dynamic enrichment of the sensor data is done in
this thesis. The necessary information about the sensor for the situation
recognition (e.g., the sensor identification) is kept at a minimum. This in-
formation together with the sensor reading are made available directly to
the CEP engine, dispensing any further processing step of the sensor data.
Furthermore, instead of defining situations directly as CEP queries, which
can be long and complicated depending on the situation, this thesis defines
the situations of interest as situation templates. The abstraction provided
through situation templates enables the employment of CEP engines as well
as the use of other technologies for situation recognition. Besides that, the
use of situation templates also facilitates the modeling step of situations
for the user, so that the user does not have to deal with the complexity of
formulating CEP queries. The formulation of CEP queries is taken care of by
transformations, which automatically create the necessary CEP queries for a
given situation template.
Glombiewski et al. [GHM+13] present a similar approach integrating

context from a wide range of sources for situation recognition using event
processing technologies as well. However, they do not provide any abstrac-
tion, i.e., the users of the situation recognition have to create CEP queries
themselves. This proves difficult, especially for domain experts, e.g., in
factories, who do not have extensive computer science knowledge. In this
thesis, an abstraction by situation templates [HHL+10] and a graphical
interface are provided, which enable the usage by domain experts without
necessary knowledge of technical details, such as event processing queries.

7.4 | Related work 131

Ch
ap
te
r 8

Evaluation

This chapter describes and evaluates the Multi-purpose Binding and Provi-
sioning Platform (MBP), which has been developed as a proof-of-concept of
this thesis’ contributions (cf. Chapters 4 to 7). The MBP is an open-source IoT
platform and its prototypical implementation can be found as open-source
projects on GitHub1,2,3.
Section 8.1 presents the integration architecture for the architecture com-

ponents of each contribution and describes its prototypical implementation.
Section 8.2 gives an overview of the main functionalities of the MBP IoT plat-
form and explains how it can be employed to realize a simple IoT scenario
for the smart office domain. The concepts of the MBP IoT platform have been
published as a demonstration paper in [FHS+20]4, therefore, are approved
for feasibility. Finally, Section 8.3 evaluates the MBP architecture against
the IEEE standard 1934-2018 for fog computing, which comprehends the
OpenFog reference architecture [Ope17].

1https://github.com/IPVS-AS/MBP
2https://github.com/IPVS-AS/MBP-Docker
3https://github.com/IPVS-AS/MBP2Go
4Best Paper Award, Percom Demos 2020

133

8.1 Integration architecture and prototype

Figure 8.1 depicts the detailed resulting architecture of this thesis, which
integrates the components of each contribution, and shows how they fit
together. The contributions are highlighted by color and the steps of the
methodical approach are also indicated. The architecture components and
corresponding implementations for each contribution are explained in detail
in Chapters 4 to 7, respectively.
In the overall architecture (cf. Section 3.3), contribution C1 encompasses

two architecture components, the IoTEM modeler and manager (cf. Sec-
tion 4.1.3), and the DSPM modeler and manager (cf. Section 4.2.3). These
components are further divided in smaller components and are indicated in
the color blue in Figure 8.1. The IoTEM modeler and manager component
is the entry point of the methodical approach (step ➊) and supports do-
main experts during the creation and management of the IoTEM. The DSPM
modeler and manager component supports domain analysts by providing
the means to create and manage the DSPM (step ➋), and later to retire the
deployed DSPM onto the IoT environment (step ➏).
Contribution C2 encompasses the architecture component IoTEM and

DSPM mapper, which supports domain analysts on the decision about where
processing operators should be deployed. This architecture component is
further divided in smaller components and is indicated in the color orange
in Figure 8.1. This component communicates with the architecture compo-
nents of contribution C1 to retrieve the IoTEM and the DSPM. It provides
the means to realize the IoTEM and DSPM mapping (step ➌) automatically
through algorithms or manually by domain analysts.
Contribution C3 encompasses the architecture component Deployment

manager, which provides the means for the deployment of operators onto IoT
objects (step➍). This component is indicated in the color green in Figure 8.1.
This component receives the mapping plan from the architecture component
of contribution C2 and starts the deployment based on this mapping plan.
The current deployment status of an operator can be visualized in the
Dashboard. In case manual actions are required by the deployment (e. g.,

134 8 | Evaluation

IoT physical environment layer

IoT application layer

Multi-purpose Binding and Provisioning Platform (MBP) layer

IoTEM: IoT environment model
DSPM: data stream processing model
dDSPM: deployed DSPM

Creation of the IoTEM
Creation of the DSPM
Mapping of operators and IoT objects
Deployment of operators
Recognition of disturbances
Retiring of data stream processing

1

2

3

4

5

6

Contribution C1
Contribution C2

Contribution C3
Contribution C4

IoTEM
modeling tool

IoT object
types

ontology

IoT objects
manager

IoTEM
storage

DSPM
modeling tool

dDSPM
manager

DSPM
storage

Operator
types

repository

6

2

Mapping
plan creator

Matching
algorithms

Mapping
plan

storage

3

Deployment
instance manager

Message
broker

Human task
manager

Human task
client

Disturbance
handler

CEP
engine

Disturbance
modeling tool

5

define/finish
human task

create
disturbance
recognition
model

start deployment

create manual
mapping plan

retrieve values

4 D
a
s
h
b
o
a
r
d

retrieve
deployment

status

send
disturbance
notification

1

Domain
analyst

Domain
expert

retrieve IoTEM start mapping

IoTEM modeler and manager DSPM modeler and manager

IoTEM and DSPM mapper

Deployment manager

Disturbance recognizer

IoT obj.
values

TDLIoT
catalog

Figure 8.1: Integration architecture of this thesis

plugging sensors), this component provides the means for domain experts
to define human tasks (cf. Section 6.2), to get notified about human tasks to
be executed, and to finish human tasks after they are manually executed.

8.1 | Integration architecture and prototype 135

Contribution C1
Contribution C3

Contribution C2
Contribution C4

IoTEM: IoT environment model
DSPM: data stream processing model

IoTEM modeler
and manager

IoTEM and DSPM mapper

Disturbance recognizer

DSPM modeler
and manager

Deployment manager

D
a
s
h
b
o
a
r
dEsper

CEP Engine

Multi-purpose Binding and Provisioning Platform (MBP) layer

IoT physical environment layer

IoT application layer

REST

Figure 8.2: Overall detailed architecture of this thesis

Contribution C4 encompasses the architecture component Disturbance rec-
ognizer, which is indicated in the color yellow in Figure 8.1. This component
provides the means to monitor IoT objects and deployed DSPMs, in order to
recognize disturbances during the data processing (step ➎). It provides a
disturbance modeling tool, which domain experts can model and start the
recognition of disturbances. This component continuously retrieves output
values of deployed operators and monitoring values of IoT objects from the
architecture component of contribution C3. These values are forwarded to
the CEP engine, where they are processed based on disturbance recogni-
tion models. In case disturbances are recognized, notifications about the
disturbances are sent to the Dashboard, where they can be depicted to either
domain experts or domain analysts.

136 8 | Evaluation

Figure 8.3: The MBP user interface [FHS+20]

In Figure 8.2, the software technologies employed in the prototypical
implementation of the MBP architecture are depicted. The MBP implemen-
tation uses mainly JavaScript and Angular for the MBP user interface and
Java for the MBP server. The REST API is built on the Spring boot framework,
and the whole server component is provided as a web application running
on the Java application server Apache Tomcat. The MBP can be installed on
Windows, Mac or Linux operating systems by installing its required software
components individually, or by an installation script on Linux. In addition,
the MBP can be run as a Docker container. After installation, the MBP user
interface, which is depicted in Figure 8.3, can be accessed through an Inter-
net browser (e.g., Chrome or Firefox). The MBP user interface is based on
Bootstrap templates and uses the JavaScript framework Angular JS. Icons
are extracted from Google’s Material Design library. Furthermore, the library
Highcharts was employed in the Dashboard to visualize live and historical
output values of deployed operators and to show monitoring data of IoT
objects. A REST API reflecting the same functionalities provided by the MBP

8.1 | Integration architecture and prototype 137

Figure 8.4: The MBP IoTEM modeling tool [FHS+20]

user interface has been implemented in the MBP server as well.
Regarding the IoTEM modeler and manager component, the IoTEM model-

ing tool has been implemented in JavaScript and uses the JavaScript library
jQuery. The jsPlumb Toolkit has been used to implement a drag-and-drop ed-
itor for modeling IoT environments, which is depicted in Figure 8.4. The IoT
object manager is implemented in the MBP server using Java. The MongoDB
database is used to store IoT object types and modeled IoTEMs.
Regarding the DSPM modeler and manager component, the FlexMash

tool [Hir18] is used as the DSPM modeling tool, which was developed by
Hirmer et al. In the scope of this thesis, the FlexMash graphical interface
and its JSON-based underlying model were extended within the master
thesis conducted by Chaudhry [Cha18]. The extensions include enabling the
annotation of requirements on processing operators and on edges between
operators. Furthermore, FlexMash was extended to connect to the MBP

138 8 | Evaluation

and enable the import of sources and sinks from IoTEMs. The FlexMash
graphical interface was implemented in JavaScript and uses jQuery and
jsPlumb. Modeled DSPMs are stored in the MBP in a MongoDB database. The
dDSPM manager is implemented in the MBP server using Java. The operator
types repository corresponds to a file system, which is configured in the
installation location of the MBP. Several operators have been implemented
in Python and Shell, which can be found in the MBP GitHub project1.
Concerning the IoTEM and DSPM mapper component, Winery [KBBL13] is

used as an external mapping plan creator for the manual mapping approach.
In this case, the mapping plans are based on the TOSCA standard and are
stored in a configured file system for Winery. For the automatic mapping
approach, the mapping plan creator and two matching algorithms, a greedy
variant and a backtracking variant, were implemented in the MBP server in
Java within the scope of the bachelor thesis conducted by Schneider [Sch18].
In this case, automatically generated mapping plans are stored in a MongoDB
database.
Concerning the Deployment manager component, the OpenTOSCA con-

tainer [BBH+13] is used as an external deployment instance manager, which
is able to automatically deploy operators of mapping plans based on the
TOSCA standard. Within the scope of this thesis, a bachelor thesis was
conducted by Kutger [Kut18], which implemented the Human task manager
and the human task client, to enable the OpenTOSCA container to support
human tasks. The Human tasks manager is based on the implementation
from Wagner [Wag10], which corresponds to a Java web application run-
ning on Apache Tomcat. The Human tasks client was implemented as an
Android-based mobile application. Additionally, the MBP provides several
ready-to-use extraction and control operators as Python and Shell scripts1,
which can then be registered in the MBP and be deployed onto IoT objects
by the MBP. Once operators are deployed, they send values to the MBP
by connecting and publishing to the Message broker, which is implemented
using the MQTT broker Mosquitto. The MBP can then visualize sensor values

1https://github.com/IPVS-AS/MBP/tree/master/resources/operators

8.1 | Integration architecture and prototype 139

Figure 8.5: The MBP disturbance modeling tool

as line diagrams in the Dashboard. The data management and processing
in the MBP implements a lambda-based architecture [MW15], in which
both live and historical data can be managed and processed. To store mea-
surement data, i.e., sensor data and timestamp-based data, the time-series
database InfluxDB is used. Further metadata, IoT environment models, and
data stream processing models are stored in the NoSQL databases Mon-
goDB, to clearly separate measurement data and corresponding metadata.
The TDLIoT catalog has been prototypically implemented outside the MBP
as an open-source GitHub project1. It is implemented in Java and uses a
MongoDB database to store TDLIoT descriptions. It provides a web interface
implemented in JavaScript and a REST API for interactions with the TDLIoT
catalog.
Concerning the Disturbance recognizer component, the Disturbance model-

ing tool, which is depicted in Figure 8.5, is implemented in JavaScript and
uses the library jQuery. Created disturbance recognition models are stored
in the MongoDB database. The Disturbance handler transforms disturbance
recognition models into CEP queries, which can be processed by the Esper

1https://github.com/IPVS-AS/TDLIoT

140 8 | Evaluation

Figure 8.6: The MBP mobile client application [FHS+20]

CEP engine. The Disturbance handler is implemented in Java.
Within the scope of this thesis, the MBP2Go, an Android-based mobile

client application implemented in Java to connect to the MBP, has been
developed. The MBP2Go is depicted in Figure 8.6 and was partially im-
plemented within the bachelor thesis conducted by Ulusal [Ulu19]. The
MBP2Go provides an overview of registered IoT objects in the MBP. It can
register and remove IoT objects, and visualize current and historical sensor
values. The modeling of IoT objects with the MBP2Go can be automated by
scanning QR code templates provided in the MBP2Go GitHub repository1. By
scanning such QR code templates, the MBP2Go automatically fills properties
that are possible to be inferred for the IoT object type being modeled.

1https://github.com/IPVS-AS/MBP2Go

8.1 | Integration architecture and prototype 141

8.2 MBP overview

The following section is mostly based on [FHS+20].
Since the popularization of the Internet of Things [VF13], many commer-

cial and non-commercial IoT platforms were developed to help non-expert
users with the management of IoT objects within their IoT environments.
However, the binding and provisioning of IoT objects to these IoT platforms
are still very challenging tasks for non-expert users.
In the context of this thesis, binding means enabling IoT applications

to access IoT objects on a higher level of abstraction, so that the required
hardware expertise is kept at a minimum.
In [HBF+16], we primarily designed the MBP to ease the management of

IoT environments, however, we also moved a step deeper into supporting
users already during the binding and provisioning of IoT environments. In
many IoT platforms, such as FIWARE [RGSE14], IBM Watson IoT [Nel16],
OpenMTC [CCE+12], or Microsoft Azure IoT [Kle17], IoT objects are regis-
tered, bound, and provisioned to IoT platforms in a manual fashion. Such
tasks are complex and require technical knowledge about the IoT objects.
That is, operators (i.e., software code) to extract and provision sensor data
to IoT applications, as well as to receive actuator control commands from
IoT applications are required. Such operators need to be created and de-
ployed for each sensor and actuator manually. Furthermore, monitoring
functionality needs to be implemented and deployed manually as well.
Deploying operators manually is error-prone and time-consuming, since

a hardware expert has to configure IoT objects, install necessary operators
for the specific sensors and actuators, bind them, and provide accessible
interfaces to IoT applications. In real-world scenarios, e.g., for situation
recognition [FHWM16], efficiency and accuracy requirements are crucial.
However, these requirements cannot be met through manual binding and
provisioning. To tackle the aforementioned issues, the MBP was developed
to support users in the entire life cycle of IoT environments, so that the
amount of manual tasks are kept to the possible minimum. This includes the
automated deployment, management, and monitoring of IoT environments.

142 8 | Evaluation

The main functionalities of the MBP are explained in the following.

8.2.1 Modeling IoT environments

IoT objects can be registered to the MBP either separately or as part of a
specific IoT environment. The second option additionally enables the user
to model the connections among IoT objects within the IoT environment. In
the MBP IoTEM modeling tool, IoT objects including their properties and
connections are specified. These properties describe specific information
about the IoT objects, such as IoT object type, identifier, or MAC address.
To automate the modeling of IoT objects, the MBP provides QR code

templates and an Android-based smartphone application to scan these QR
codes and automatically fill properties that are possible to be inferred for
the IoT object being modeled. Furthermore, following the same fashion, IoT
objects can be automatically discovered by connecting to theMBP registration
Wi-Fi hotspot. That is, the MBP listens for new connections to this configured
hotspot and automatically creates models with inferred properties for the
connected IoT objects.
Once an IoT environment is modeled and saved, it can automatically be

registered through the MBP user interface. At this point, basic monitoring
information about IoT objects can be already visualized in dashboards, such
as network accessibility, CPU usage, and CPU temperature of a device.

8.2.2 Deploying operators onto IoT environments

The MBP provides several ready-to-use extraction and control operators
in the form of scripts, which can be found in the MBP GitHub project.
One exemplary extraction operator reads measurement values of an analog
temperature sensor (TMP36 module) connected to a Raspberry Pi. This
operator sends the extracted values to the MBP through MQTT, a publish-
subscribe communication protocol. Such operators can be simply linked to
registered devices and, in sequence, be deployed onto these devices. Through
this approach, sensors are bound automatically to the MBP and measured

8.2 | MBP overview 143

sensor values can be live-visualized and are also available as historical data.
The MBP also enables the users to provide their own operators, which can

be implemented in any programming language. The MBP only requires the
existence of specific life-cycle management scripts (e.g., install, start, stop, or
terminate) for the operator, in order to be able to automate the deployment
of the user-defined operators. The application logic of these management
scripts can be still defined by the user, e.g., specifying necessary software
that needs to be installed. In this way, users can create operators fulfilling
their specific requirements, such as the use of specific hardware types or
programming libraries.

8.2.3 Monitoring IoT environments

Once IoT objects are bound to the MBP, they can be monitored by the users
through provided dashboards. These dashboards show status and statistical
information about IoT devices, sensors, and actuators. Furthermore, both
live sensor data and historical sensor data can be visualized.
To realize an automatic monitoring based on sensor data and to trigger

actuators automatically based on recognized disturbances, the MBP provides
the means to recognize disturbances based on user-defined rules. Such
rules, which are based on the event-condition-action pattern [KRRS96], can
be defined in the MBP disturbance modeling tool. These high-level rules,
i. e., disturbance recognition models, are then internally transformed into
complex event processing (CEP) queries and evaluated using corresponding
CEP systems [Luc01]. By employing CEP systems, the MBP has the advantage
of achieving an efficient and timely sensor data processing.

8.2.4 Demonstration: smart office

This section explains how a simple IoT scenario, a smart office, can be
realized with the MBP. An office is defined as a room in which people conduct
their work tasks. In order to make an office smart, it can be enhanced with
computing power and sensing and acting capabilities through IoT devices,

144 8 | Evaluation

Figure 8.7: Lego smart offices [FHS+20]

sensors, and actuators. A common practice in real-world scenarios is to
integrate a heating, ventilation, air conditioning (HVAC) system into rooms.
The goal of such a system is to keep the indoor environment comfortable for
its occupants, while taking over tasks that can be executed automatically.
For example, the room’s temperature can be automatically regulated for its
occupants based on user-defined goals and continuous sensor measurements.
In the Lego IoT environment depicted in Figure 8.7, several Lego minia-

ture offices were enhanced with diverse IoT objects, in which many IoT
applications, including a HVAC system, can be realized. To implement the
HVAC system, two IoT devices can be used: (i) a Bosch XDK device equipped
with eight sensors, including humidity and temperature sensors, and (ii) a
Raspberry Pi, which is connected to a relay actuator controlling a cooler fan.
To realize the IoT scenario, the IoT devices, the temperature and humidity

sensors, and the relay actuator are modeled in the IoTEM modeling tool

8.2 | MBP overview 145

DSPM

IoTEM

mapped
operator

Bosch XDK

Hum. sensor

Raspberry Pi

Temp. sensorE1 E2 J3 C4

mapping

C: Calculation
E: Extraction
J: Join
S: Serving

data source
data sink
operator
requirement
data flow

E1

E2

J3 C4

So1

So2

Si1

req-1: memory >= 500MB

connection

IoT object

capability

S5

S5 Fan actuator

cap-2: memory = 1GBcap-1: memory = 128MB

Figure 8.8: Mapping in smart office scenario

(step ➊ in Figure 8.1). The modeled IoTEM is depicted in Figure 8.8. After
this, the DSPM modeling tool (FlexMash tool) imports the modeled IoTEM
and abstracts the temperature sensor, the humidity sensor, and the relay
actuator as two data sources and one data sink. A DSPM containing the
processing logic for the HVAC system is then modeled for this IoTEM (step ➋

in Figure 8.1). The DSPM consist of two extraction operators, a join operator,
a calculation operator and a serving operator. The modeled DSPM is depicted
in Figure 8.8. The concrete implementation of these operators are Python
and Shell scripts, which are stored in the MBP. Extraction operators for the
specific temperature and humidity sensors of the XDK, and for the relay
actuator are provided in the MBP GitHub repository. The join operator
combines a temperature value and a humidity value into one measurement
based on a time-window. The calculation operator checks if the temperature
value is under or above the thermal comfort zone inside the office, e.g., from
20 to 22 Celsius degrees. This operator also calculates, based on temperature

146 8 | Evaluation

and humidity values, if the current mold level has reached an unhealthy
zone. If the temperature is above the thermal comfort zone or the mold
level is unhealthy, this operator generates a command indicating that the
cooler fan should be turned on. The serving operator receives turn on and
off commands from the calculation operator and switches the relay actuator
controlling the cooler fan accordingly. For simple scenarios, event-condition-
action rules as provided by the Disturbance Recognition could be used. For
more complex scenarios, such as the Smart Office scenario, modeling a
DSPM is required, which provides a more sophisticated means to model data
processing among several devices, sensors and actuators.
Through the FlexMash tool, the automated mapping algorithm is started

and a mapping plan is created (step ➌ in Figure 8.1). The greedy variant of
the matching algorithm is employed to decide where to deploy the operators.
A possible mapping is depicted in Figure 8.8. The extraction operators E1
and E2 are mapped to the IoT device, to which the sensors are physically
attached to. Similarly, the serving operator S5 is mapped to the IoT device,
to which the relay actuator is physically connected to. Afterwards, the join
operator J3 is mapped to the device nearest to the deployed extraction
operators. The calculation operator C4 is mapped to the device matching the
operator’s requirement, i.e., at least 500 MB memory. Based on the mapping
plan, the deployment of the operators is started (step ➍ in Figure 8.1).
When the deployment is completed, basic monitoring information about the
devices can be visualized in dashboards, such as network accessibility and
CPU temperature of the devices. Sensor values can be also visualized in the
detailed sensor view of the MBP.
To assure that the processing of the deployed data stream processing

model (dDSPM) stays correct as long as needed by the HVAC system, sev-
eral high-level rules, i. e., disturbance recognition models, are created for
the set up IoT environment, in order to recognized disturbances (step ➎

in Figure 8.1). To recognize if the devices are overheating, a disturbance
recognition model is created in the MBP disturbance modeling tool that
continuously checks if the CPU temperature of the devices is near to the
operating temperature limit (85°C for the Raspberry Pi). In case a distur-

8.2 | MBP overview 147

bance is recognized, notifications about the disturbance are shown in the
MBP dashboard. Once the HVAC system is not needed anymore, the dDSPM
of the HVAC system is stopped and retired through the dDSPM manager
(step ➏ in Figure 8.1).

8.3 Further considerations

In 2018, the OpenFog reference architecture [Ope17] was adopted as an offi-
cial standard for fog computing. This standard, known as IEEE 1934-2018,
presents eight main principles that IoT platforms need to implement in order
to satisfy the data-intensive requirements existing in IoT environments.
These principles are security, scalability, openness, autonomy, RAS (reliabil-
ity, availability, and serviceability), agility, hierarchy and programmability.
In this section, the MBP architecture is evaluated against these principles.
The security principle aims to achieve safe, trusted transactions within

IoT environments. For this, an approach is required to discover, attest, and
verify IoT objects before trust can be established. In the MBP, IoT objects
are verified through authentication mechanisms, such as passwords, digital
credentials, or certificates. Furthermore, the data exchange between IoT
objects and the MBP is supported by well-established security mechanisms,
such as HTTPS, or OAuth2. Moreover, the MBP provides user management
and ownership concepts, so that IoT objects are accessible only to their
owners or to other users with granted access permissions.
The scalability principle aims to benefit from scaling opportunities pro-

vided within IoT environments. These opportunities exist in many dimen-
sions, such as scalable performance, scalable capacity, and scalable software.
Scalable performance refers to the demanded performance of IoT applications,
which should be provided with small latency between sensor measurements
and resulting actuator commands, even when the number of IoT objects
connected to the IoT platform grows. For this, the MBP employs CEP tech-
nologies, which are able to continuously process large amounts of data, and
furthermore, to process sensor data efficiently and timely, so that actuator

148 8 | Evaluation

commands can be issued as soon as possible. Scalable capacity refers to the
capability of IoT objects to be added (or removed) to IoT environments.
The MBP provides mechanisms to update IoT environments, by adding,
updating, or removing IoT objects, which include both hardware objects
(e.g., devices, sensors, actuators) and virtual objects (e.g., virtual machines).
Finally, scalable software refers, among other aspects, to the scalability of the
management infrastructure of an IoT platform, i.e., its capability to manage
lots of IoT objects as demanded by IoT scenarios. Due to the modular archi-
tecture of the MBP and to the employment of scalable software components
(e.g., scale databases, or message brokers) as described in Section 8.1, the
MBP is also able to provide this dimension of scalability.
The openness principle aims to avoid vendor lock-in. The MBP is avail-

able as a GitHub open-source project [FH+17] and, therefore, is neither
proprietary nor a single-vendor solution. Moreover, the MBP is based on
established standards, such as MQTT, TOSCA, XML, in order to ensure its
long lasting applicability. Furthermore, the MBP does not have any constraint
about which IoT objects can be connected to the MBP. Through its dynamic
binding concepts [HBF+16], operators for any kind of IoT object can be
created and registered in the MBP. The MBP provides several ready-to-use
extraction and control operators in the form of scripts, but also enables users
to provide their own operators in any desired programming language.
The autonomy principle refers to the decision making autonomy of IoT

objects once failures occur. The MBP provides the means to deploy operators
on IoT objects, so that a basic degree of autonomy of IoT objects is enabled
through operators. However, upon recognized failures in IoT environments
connected to the MBP, the required decision-making to react to failures
is conducted mostly by the MBP itself. Nonetheless, more sophisticated
approaches are still required to achieve the goals of this principle and,
therefore, will be part of future work based upon the concepts of this thesis.
The programmability principle aims to achieve a highly adaptive deploy-

ment so that giving new tasks (i.e., operators) to an IoT object occurs in
an automated fashion. This principle is achieved in the MBP through its
operator placement and dynamic deployment concepts [FHM19], e.g., in

8.3 | Further considerations 149

which an operator can be redeployed to another IoT object automatically.
The agility principle aims at the transformation of huge amounts of low-

level data into compact, high-level information to help users to analyze this
data and make business decisions. Furthermore, it refers to the capability of
dealing with dynamic IoT environments by responding to changes quickly.
The MBP provides several approaches to help users to early recognize dis-
turbances in the IoT environments, and furthermore, to conduct correcting
actions as early as possible. Examples for such approaches are high-level
information presentation through dashboards, a disturbance modeling tool
for user-defined rules, which enables automatic rule-based reaction on dis-
turbance recognition, and timely data processing using CEP technologies.
To realize an automatic monitoring based on sensor data and to trigger

actuators automatically based on recognized disturbances, the MBP provides
the means to recognize disturbances based on user-defined rules. Such rules,
which are based on the event-condition-action pattern [KRRS96], can be
defined in the MBP disturbance modeling tool.
The hierarchy principle aims at hierarchical architectures composed of

several layers, where each layer addresses specific problems in IoT scenarios.
As depicted in Figure 8.2, the MBP provides a layered architecture, where
from the bottom layer to the top layer, each layer corresponds to a different
level of abstraction. For example, the Disturbance recognizer processes low-
level sensor data, while the DSPM modeler and manager deals with high-level
application logic.
Finally, the RAS (reliability, availability, serviceability) principle is di-

vided into three aspects. The reliability is defined as the ability of the IoT
platform to provide the designed functionalities even upon adverse circum-
stances, for example, when an IoT object becomes faulty. The availability
refers to the continuous management and orchestration of the IoT environ-
ment. The serviceability refers to the correct operation of IoT applications
on the IoT environment, for example, through automated deployment and
repair. Throughout the contributions of this thesis (cf. Chapters 4 to 7),
it has been shown how the MBP addresses the concerns about reliability,
availability and serviceability. To increase reliability, an approach to recog-

150 8 | Evaluation

nize disturbances as early as possible is presented in Chapter 7. Moreover,
to increase availability, the MBP manages (cf. Chapter 4) and monitors
(cf. Chapter 7) IoT environments and deployed operators continuously. Fi-
nally, Chapters 5 and 6 support serviceability through several concepts to
automatically deploy and redeploy operators onto IoT environments.

8.3 | Further considerations 151

Ch
ap
te
r 9

Conclusion and future
work

In the last decades, the Internet of Things (IoT) vision has become more and
more a reality. Advances in, for example, hardware and network technologies
have enabled the existence of IoT environments containing devices, sen-
sors, and actuators, which can be employed to realize diverse sophisticated
applications, such as smart cities, smart homes, or smart factories.
Within IoT environments, large amounts of data streams are continuously

generated, which leads to great challenges in respect to their processing
and management. In many approaches, IoT data is transferred to cloud
infrastructures, where the processing is executed centralized.
However, depending on the application at hand, this can increase latency

and network traffic, and furthermore, provoke delays before and after the
processing. Other approaches, in contrast, execute the data processing
within the IoT environment, in order to avoid latency and network traffic,
and furthermore, to achieve a timely processing of data streams. For this,
operator placement is essential. Over the last decades, many approaches

153

have been proposed that tackle the operator placement problem. Many
of them decide the placement location based on the fulfillment of QoS
requirements, such as latency and bandwidth.
However, in the IoT domain, further aspects have emerged that additionally

need to be taken into consideration while realizing operator placement
within IoT environments, such as heterogeneity of processing nodes. Current
approaches lack in supporting such additional requirements introduced
by the IoT domain while realizing operator placement decisions for IoT
environments. They also normally do not take into consideration non-
functional and user-defined requirements for IoT applications, such as data
privacy and anonymization, security, and interoperability.
Therefore, in this PhD thesis, an approach for the placement of data stream

processing operators onto IoT environments was presented, which takes into
consideration the characteristics of the IoT domain as well as non-functional
and user-defined requirements during the operator placement decision. For
this, an IoT environment and its processing capabilities are described by
an IoT environment model (IoTEM). Likewise, the business logic of an IoT
application and its requirements are defined by a data stream processing
model (DSPM). These informational models are then employed to enable
the operator placement decision for IoT environments, i.e., to decide where
processing operators should be placed onto IoT environments based on the
matching of requirements and capabilities. Through the approach of this
PhD thesis, data processing of IoT applications can be tailored to particular
use cases, supporting the specific requirements of the IoT domain, and
furthermore, of IoT application users.

9.1 Summary

This PhD thesis provided four contributions (C), which address the research
questions, and furthermore, provide concepts to achieve the goals described
in Section 1.2:

C1: Modeling of IoT environment and data stream processing;

154 9 | Conclusion and future work

C2: Mapping of DSPMs onto IoTEMs;
C3: Deployment of operators onto IoT environments;
C4: Monitoring of the deployed DSPM.

In contribution C1 (cf. Chapter 4), the achievement of goals G2 and G3
was reached by providing the IoTEM for the modeling of IoT environments
and the DSPM for the modeling of the business logic of IoT applications.
This contribution enables a user-friendly, easy modeling of IoT environ-
ments through a graphical modeling tool in which it is possible to model
heterogeneous IoT objects, their interconnections, and furthermore, the ca-
pabilities of IoT objects and connections. On the other hand, the modeling of
data stream processing supporting IoT requirements was achieved through
another graphical modeling tool, in which the processing logic of IoT appli-
cations for domain-specific use cases, including IoT and user requirements,
are modeled.
Furthermore, contribution C2 (cf. Chapter 5) achieves goal G4 by enabling

a requirements-based placement of processing operators onto IoT environ-
ments. For this, this contribution provides several algorithms to conduct
mappings of data stream processing models (DSPMs) onto IoT environment
models (IoTEMs), considering the requirements of the processing operators
to be fulfilled by the capabilities of the IoT objects.
In contribution C3 (cf. Chapter 6), goal G5 was achieved by providing

several deployment approaches based on the TOSCA standard. These ap-
proaches are able to deal with the heterogeneous and dynamic nature of IoT
environments, achieving in this way, an efficient deployment of operators
onto IoT objects.
Moreover, contribution C4 (cf. Chapter 7) achieves goal G6 by continuously

monitoring IoT environments and deployed operators by employing well-
established CEP techniques, so that disturbances are recognized as early as
possible. In summary, all goals are covered by the contributions.
As a proof-of-concept of this thesis’ contributions, the IoT platform Multi-

purpose Binding and Provisioning Platform (MBP) has been developed as a

9.1 | Summary 155

prototype. The MBP has been developed as an open-source project through-
out several student works supervised within the scope of this PhD thesis.
Furthermore, the concepts of the MBP as an IoT platform have been published
as a demonstration paper in [FHS+20] and, therefore, approved for feasibil-
ity. In Chapter 8, an overview on the main functionalities of the MBP was
provided and its architecture was evaluated against the OpenFog reference
architecture provided by the IEEE standard 1934-2018 for fog computing.
In Figure 8.1, the complete resulting architecture including the individual
architecture components of each contribution, are depicted. The contri-
butions are highlighted by color and the steps of the methodical approach
employing this architecture are also indicated. The architecture components
of each individual contribution are explained in detail in Chapters 4 to 7.
The methodical approach is composed of six main steps: ➊ creation of

the IoT environment model (IoTEM), ➋ creation of the data stream pro-
cessing model (DSPM), ➌ mapping of processing operators and IoT objects,
➍ deployment of processing operators onto IoT objects, ➎ recognition of
disturbances affecting the data processing, and ➏ retirement of the data
processing. In the methodical approach, two main roles are defined, the
domain expert, which conducts step ➊ and part of step ➎, and the domain
analyst, which conducts step ➋ and part of step ➏.
Domain experts have technical knowledge about the hardware objects (i.e.,

devices, sensors, actuators), the virtual objects (i.e., virtual machines), and
their network interconnections within an IoT environment. Furthermore,
domain experts have the knowledge how to access these IoT objects to,
for example, extract sensor data or send control commands to an actuator.
Therefore, in step ➊, the main task of domain experts is the creation of
IoTEMs, which are directed graphs containing IoT objects as nodes, and
their network interconnections as edges.
Domain analysts have domain knowledge about the processing of data

generated within the IoT environment, i.e., they have the required knowledge
to model different IoT applications for domain-specific use cases. In step ➋,
the main task of domain analysts is the creation of DSPMs representing the
processing logic of IoT applications. Furthermore, they can retire the data

156 9 | Conclusion and future work

stream processing of an IoT application in step ➏ .
The contributions altogether enable the achievement of goal G1, i.e.,

they enable a timely, efficient processing of IoT data within IoT environ-
ments. These contributions were based on established standards, e.g., MQTT,
TOSCA, XML, in order to ensure their long lasting applicability, and further-
more, they have been published in several journals, national and interna-
tional conferences. The contributions were further evaluated by integrating
them into different research projects, whereby their applicability could be
confirmed. These projects include the research projects SitOPT [WSBL15],
SmartOrchestra [ABF+19; LAB+18], and IC4F [IC417]. The SitOPT project
aimed at the development of concepts and methods to allow situation-
based applications, so that they could adapt autonomously to the dynamic
environment in which they run. The SmartOrchestra project aimed at the
development of an open platform for the safe combination and TOSCA-based
orchestration of smart services for cyber-physical applications, and further-
more, for the effective marketing of such smart services. The IC4F project
aimed at the development of secure, robust and real-time communication
solutions for the manufacturing industry.
Finally, software developed as part of this thesis have been made available

as open-source projects in GitHub 1,2,3,4.

9.2 Future work

Currently, when disturbances in the IoT environments are recognized that
require a correcting action, new operator placement decisions need to be
recalculated, which is realized by the MBP in a central manner. In future
work, this approach can be extended to distribute the operator placement
decision logic throughout different instances, including IoT objects, in order
to avoid a single point of failure (SPOF), and furthermore, to increase

1https://github.com/IPVS-AS/MBP
2https://github.com/IPVS-AS/MBP-Docker
3https://github.com/IPVS-AS/MBP2Go
4https://github.com/IPVS-AS/TDLIoT

9.2 | Future work 157

the autonomy of IoT objects once failures occur. Therefore, IoT objects
and deployed operators should be extended with an autonomy concept,
as recommended by the OpenFog reference architecture for fog computing
(IEEE standard 1934-2018). In this way, IoT objects and deployed operators
will be able to autonomously recognize disturbances and partially calculate
a new operator placement for themselves.
Furthermore, the concepts of this thesis can be extended to enable pre-

dictive analytics for IoT data, in order to, for example, predict when IoT
devices, sensors, or actuators might become faulty, require maintenance,
or the hardware need to be newly calibrated. By enabling such predictions,
the reliability of IoT environments can be increased, and consequently, IoT
applications being executed on such IoT environments can highly improve
their robustness and quality of processing results. Preliminary work has
been already conducted in the scope of this thesis by a student survey of
Bacharew et al. [BVV20].
Finally, an important and up-to-date aspect of IoT platforms and IoT

objects is how to ensure that they are provided with the minimal necessary
security and data privacy. Due to the highly interconnected nature of the
IoT, IoT objects are prone to attacks that are not only isolated but can be
rather propagated through whole IoT environments. Therefore, the concepts
of this thesis should be extended with further privacy and security measures.
Preliminary work has been already conducted in the scope of this thesis by a
student survey of Glaub et al. [GSU19].

158 9 | Conclusion and future work

Author publications

The following lists the author publications, which are divided as first author
and co-author publications.

First author publications

• A. C. Franco da Silva, P. Hirmer, M. Wieland, B. Mitschang: SitRS XT –
Towards Near Real Time Situation Recognition. Journal of Information
and Data Management (JIDM), 2016

• A. C. Franco da Silva, U. Breitenbücher, K. Képes, O. Kopp, F. Leymann:
OpenTOSCA for IoT: Automating the Deployment of IoT Applications
based on the Mosquitto Message Broker. In: Proceedings of the 6th
International Conference on the Internet of Things, 2016

• A. C. Franco da Silva, U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp, F.
Leymann, B. Mitschang, R. Steinke: Internet of Things Out of the Box:
Using TOSCA for Automating the Deployment of IoT Environments. In:
Proceedings of the 7th International Conference on Cloud Computing
and Services Science (CLOSER), 2017

• A. C. Franco da Silva, P. Hirmer, U. Breitenbücher, O. Kopp, B. Mitschang:
Customization and provisioning of complex event processing using

159

TOSCA. In: Research and Development, Springer, 2017
• A. C. Franco da Silva, P. Hirmer, R. Koch Peres, B. Mitschang: An
Approach for CEP Query Shipping to Support Distributed IoT Environ-
ments. In: Proceedings of the 14th Workshop on Context and Activity
Modeling and Recognition at Percom, 2018

• A. C. Franco da Silva, P. Hirmer, U. Breitenbücher, O. Kopp, B. Mitschang:
TDLIoT: A Topic Description Language for the Internet of Things, In:
Proceedings of the 18th International Conference on Web Engineering
(ICWE), 2018

• A. C. Franco da Silva, P. Hirmer, B. Mitschang: Model-based Operator
Placement for Data Processing in IoT Environments, In: Proceedings
of the IEEE International Conference on Smart Computing (SMART-
COMP), 2019

• A. C. Franco da Silva, P. Hirmer, J. Schneider, S. Ulusal, M. Tavares
Frigo: MBP: Not just an IoT Platform, In: Proceedings of the 18th IEEE
International Conference on Pervasive Computing and Communica-
tions (PerCom), 2020

• A. C. Franco da Silva and P. Hirmer: Models for Internet of Things
Environments – a Survey, In: Information, Vol. 11, 2020

Co-author publications

• P. Hirmer, U. Breitenbücher, A. C. Franco da Silva, K. Képes, B. Mitschang,
M. Wieland: Automating the Provisioning and Configuration of De-
vices in the Internet of Things, In: Complex Systems Informatics and
Modeling Quarterly (CSIMQ), Vol. 9, 28–43, 2016

• C. Stach, F. Steimle, A. C. Franco da Silva: TIROL: The Extensible
Interconnectivity Layer for mHealth Applications. In: Proceedings
of the 23rd International Conference on Information and Software
Technologies (ICIST), 2017

160

• A. Liebing, L. Ashauer, U. Breitenbücher, T. Günther, M. Hahn, K. Képes,
O. Kopp, F. Leymann, B. Mitschang, A. C. Franco da Silva, R. Steinke:
The SmartOrchestra Platform: A Configurable Smart Service Platform
for IoT Systems. In: Papers from the 12th Advanced Summer School
on Service-Oriented Computing (SummerSOC’18), 2018

• L. Ashauer, U. Breitenbücher, A. C. Franco da Silva, O. G. Gemein,
T. Günther, M. Hahn, K. Képes, E. Kleinod, O. Kopp, F. Leymann, A.
Liebing, B. Mitschang, P. Niehues, D. Olschewski, K. Semmler, R. St-
einke, J. van Well, M. Virtel: Sichere internetbasierte Vermarktung
cyber-physischer Systeme mit SmartOrchestra. In: Sichere Plattfor-
marchitekturen - Rechtliche Herausforderungen und technische Lö-
sungsansätze. Begleitforschung Smart Service Welt - Internetbasierte
Dienste für die Wirtschaft, 2019

• M. Tavares Frigo, P. Hirmer, A. C. Franco da Silva, L. H. Thom: A
Toolbox for the Internet of Things–Easing the Setup of IoT Applications.
In: Proceedings of the ER Forum, Demo and Posters 2020 co-located
with 39th International Conference on Conceptual Modeling, 2020

161

Supervised student work

The following lists the student work supervised by me, which collaborated
to the implementation of the concepts presented in this PhD thesis.
• A. Hüneburg: Automatische, TOSCA-basierte Provisionierung des Sit-
uationserkennungssystems SitOPT, Bachelor thesis, 2016

• A. Blehm, O. Kabierschke, S. Lehmann: Analyse und Vergleich von
IoT-Plattformen, Prozessanalyse, 2016

• A. Fouskas: Automatisches Auffinden und Anbinden von IoT-Geräten,
Bachelor thesis, 2017

• D. Krüger: Ein Testwerkzeug für das Internet der Dinge, Bachelor
thesis, 2017

• D. Krüger, Q. T. Pham, F. Pfeffer: Modellierungstool für IoT Umgebun-
gen, Projekt-INF, 2017

• M. B. Chaudhry: Enhancing data flow models with computing require-
ments for distributed IoT environments, Master thesis, 2018

• Isabella Kutger: Human Tasks für OpenTOSCA zum Aufsetzen von
IoT-Anwendungen, Bachelor thesis, 2018

• S. Mahmoodi: A Canonical Language for Complex Event Processing
Systems, Master thesis, 2018

163

• J. Schneider: Finden einer geeigneten Infrastruktur für Datenopera-
tionen in IoT-Umgebungen, Bachelor thesis, 2018

• S. Lehmann: Policy4TDLIoT - Policies for the Topic Description Lan-
guage, Master thesis, 2018

• E. Czychon, F. Scheerer, S. Ulusal: Ultimativer Vergleich mobiler IoT-
Applikationen, Fachstudie, 2018

• F. Bauer, S. Öney, N. Dörr: Ultimativer Vergleich von Betriebssystemen
und Laufzeitumgebungen für das IoT, Fachstudie, 2018

• S. Ulusal: MBP2Go+: Erweiterung der mobilen MBP-Applikation um
Monitoring-Funktionalitäten, Bachelor thesis, 2019

• A. Imeri: Modellierung und Deployment von IoT-Umgebungen in der
MBP, Bachelor thesis, 2019

• S. Glaub, J. Schneider, S. Ulusal: Eine Sicherheitsanalyse der IoT-
Plattform MBP, Master-Fachstudie, 2019

• A. Bacharew, C. Vieira Rocha, M. Vijayaruban: Algorithmen für Maschi-
nelles Lernen auf IoT-Daten, Master-Fachstudie, 2020

164

Bibliography

[AAB+05] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. “The
Design of the Borealis Stream Processing Engine.” In: Cidr. Vol. 5.
2005. 2005, pp. 277–289 (cit. on pp. 32, 66).

[AAS13] C. C. Aggarwal, N. Ashish, A. Sheth. “Managing and Mining Sensor
Data.” In: ed. by C. C. Aggarwal. Boston, MA: Springer US, 2013.
Chap. The Internet of Things: A Survey from the Data-Centric Per-
spective, pp. 383–428 (cit. on p. 49).

[ABF+19] L. Ashauer, U. Breitenbücher, A. C. Franco da Silva, O.G. Gemein,
T. Günther, M. Hahn, K. Képes, E. Kleinod, O. Kopp, F. Leymann,
A. Liebing, B. Mitschang, Niehues, D. Olschewski, K. Semmler, R. St-
einke, J. van Well, M. Viertel. “Sichere internetbasierte Vermarktung
cyber-physischer Systeme mit SmartOrchestra.” In: Sichere Plattfor-
marchitekturen - Rechtliche Herausforderungen und technische Lö-
sungsansätze. Begleitforschung Smart Service Welt - Internetbasierte
Dienste für die Wirtschaft, 2019 (cit. on p. 157).

[ACÇ+03] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, S. Zdonik. “Aurora: a new model
and architecture for data stream management.” In: The VLDB Journal
12.2 (2003), pp. 120–139 (cit. on pp. 63, 65, 66).

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, et al. Business process execution
language for web services. Online. 2003 (cit. on p. 35).

165

[AGM+15] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash.
“Internet of things: A Survey on Enabling Technologies, Protocols,
and Applications.” In: IEEE communications surveys & tutorials 17.4
(2015), pp. 2347–2376 (cit. on p. 57).

[AHS06] K. Aberer, M. Hauswirth, A. Salehi. “Amiddleware for fast and flexible
sensor network deployment.” In: Proceedings of the International
Conference on Very Large Data Bases (VLDB 2006). Seoul, Korea:
ACM, 2006 (cit. on p. 60).

[AHS07] K. Aberer, M. Hauswirth, A. Salehi. “Invited Talk: Zero-Programming
Sensor Network Deployment.” In: 2007 International Symposium on
Applications and the Internet Workshops. IEEE, 2007 (cit. on p. 60).

[AIM10] L. Atzori, A. Iera, G. Morabito. “The internet of things: A survey.” In:
Computer networks 54.15 (2010), pp. 2787–2805 (cit. on p. 30).

[AMMD15] M. B. Alaya, S. Medjiah, T. Monteil, K. Drira. “Toward Semantic
Interoperability in oneM2M Architecture.” In: IEEE Communications
Magazine 53.12 (2015), pp. 35–41 (cit. on p. 50).

[App14] Apple Inc. Apple HomeKit. Online. 2014. url: https://www.
apple.com/ios/home (cit. on p. 30).

[Ard05] Arduino Company. Arduino. Online. 2005. url: https://www.
arduino.cc (cit. on p. 56).

[Ard13] Arduino Company. Arduino Yún. online. 2013. url: https://www.
arduino.cc/en/Guide/ArduinoYun (cit. on p. 56).

[ARJ19] Asghari, Parvaneh, Rahmani, AmirMasoud, Javadi, HamidHaj Seyyed.
“Internet of Things applications: A systematic review.” In: Computer
Networks 148 (2019), pp. 241–261 (cit. on pp. 18, 30).

[Ash+09] K. Ashton et al. “That ‘internet of things’ thing.” In: RFID journal 22.7
(2009), pp. 97–114 (cit. on p. 29).

[ASRH13] J. Attard, S. Scerri, I. Rivera, S. Handschuh. “Ontology-based Sit-
uation Recognition for Context-aware Systems.” In: Proceedings of
the 9th International Conference on Semantic Systems. Graz, Austria:
ACM, 2013 (cit. on p. 130).

[Bad08] M. Badger. Zenoss core network and system monitoring. Packt Publish-
ing Ltd, 2008 (cit. on p. 126).

166 Bibliography

https://www.apple.com/ios/home
https://www.apple.com/ios/home
https://www.arduino.cc
https://www.arduino.cc
https://www.arduino.cc/en/Guide/ArduinoYun
https://www.arduino.cc/en/Guide/ArduinoYun

[BBD+02] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom. “Models and
Issues in Data Stream Systems.” In: Proceedings of the 21st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems. ACM, 2002 (cit. on pp. 18, 30, 62, 65).

[BBD+13] M. Bauer, N. Bui, J. De Loof, C. Magerkurth, A. Nettsträter, J. Stefa,
J.W. Walewski. “IoT Reference Model.” In: Enabling Things to Talk:
Designing IoT solutions with the IoT Architectural Reference Model.
Springer Berlin Heidelberg, 2013. Chap. 7, pp. 113–162 (cit. on
p. 50).

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
S. Wagner. “OpenTOSCA – A Runtime for TOSCA-based Cloud Appli-
cations.” In: 11th International Conference on Service-Oriented Com-
puting. LNCS. Springer, 2013 (cit. on pp. 35, 88, 94, 95, 106, 139).

[BBK+12] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, D. Schumm. “Vino-
4TOSCA: A Visual Notation for Application Topologies Based on
TOSCA.” In: On the Move to Meaningful Internet Systems: OTM 2012:
Confederated International Conferences: CoopIS, DOA-SVI, and ODBASE
2012, Rome, Italy, September 10-14, 2012. Proceedings, Part I. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 416–424 (cit. on
pp. 34, 108).

[BBK+14] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, J. Wet-
tinger. “Combining Declarative and Imperative Cloud Application
Provisioning based on TOSCA.” English. In: Proceedings of the IEEE
International Conference on Cloud Engineering (IC2E). IEEE Computer
Society, Mar. 2014, pp. 87–96 (cit. on p. 35).

[BBK+16] U. Breitenbücher, T. Binz, O. Kopp, K. Képes, F. Leymann, J. Wet-
tinger. “Hybrid TOSCA Provisioning Plans: Integrating Declarative
and Imperative Cloud Application Provisioning Technologies.” In:
Communications in Computer and Information Science. Springer Na-
ture, 2016, pp. 239–262 (cit. on p. 35).

[BBKL14] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann. “TOSCA: Portable
Automated Deployment and Management of Cloud Applications.” In:
Advanced Web Services. Ed. by A. Bouguettaya, Z. Q. Sheng, F. Daniel.
New York, NY: Springer New York, 2014, pp. 527–549 (cit. on p. 33).

Bibliography 167

[BD15] R. Bruns, J. Dunkel. Complex Event Processing: Komplexe Analyse von
massiven Datenströmen mit CEP. Springer-Verlag, 2015 (cit. on pp. 26,
40, 111, 112).

[BDPP16] A. Botta, W. de Donato, V. Persico, A. Pescapé. “Integration of Cloud
computing and Internet of Things: A survey.” In: Future Generation
Computer Systems 56 (2016), pp. 684–700 (cit. on p. 33).

[BEBT16] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, K. Taylor. “IoT-Lite: A
Lightweight Semantic Model for the Internet of Things.” In: Ubiq-
uitous Intelligence & Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and Big Data Com-
puting, Internet of People, and Smart World Congress (UIC/ATC/Scal-
Com/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences. IEEE.
2016, pp. 90–97 (cit. on pp. 41, 52).

[BEBT17] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, K. Taylor. “IoT-Lite: a
lightweight semantic model for the internet of things and its use with
dynamic semantics.” In: Personal and Ubiquitous Computing 21.3
(June 2017), pp. 475–487 (cit. on pp. 50, 52).

[BG14] A. Banks, R. Gupta. MQTT Version 3.1.1. OASIS, 2014 (cit. on p. 99).
[BHM18] V. K. C. Bumgardner, C. Hickey, V.W. Marek. “An Edge-FocusedModel

for Distributed Streaming Data Applications.” In: Proceedings of the
2018 IEEE International Conference on Pervasive Computing and Com-
munications Workshops. 2018 (cit. on p. 91).

[BK09] A. Buchmann, B. Koldehofe. “Complex Event Processing.” In: IT-
Information Technology Methoden und innovative Anwendungen der
Informatik und Informationstechnik 51.5 (2009), pp. 241–242 (cit. on
pp. 26, 30, 31, 40, 111, 112).

[BL12a] M. Blackstock, R. Lea. “IoT mashups with the WoTKit.” In: 2012 3rd
IEEE International Conference on the Internet of Things. IEEE. 2012,
pp. 159–166 (cit. on p. 69).

[BL12b] M. Blackstock, R. Lea. “WoTKit: A Lightweight Toolkit for the Web
of Things.” In: Proceedings of the Third International Workshop on the
Web of Things. ACM. 2012, p. 3 (cit. on p. 69).

168 Bibliography

[BL14] M. Blackstock, R. Lea. “Toward a distributed data flow platform for
the web of things (distributed node-red).” In: Proceedings of the 5th
International Workshop on Web of Things. ACM. 2014, pp. 34–39
(cit. on p. 69).

[BMK+00] B. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer. “EasyLiving:
Technologies for Intelligent Environments.” English. In: Handheld
and Ubiquitous Computing. Springer Berlin Heidelberg, 2000 (cit. on
p. 130).

[BMP13] P. Balamuralidhara, P. Misra, A. Pal. “Software platforms for internet
of things and M2M.” In: Journal of the Indian Institute of Science 93.3
(2013), pp. 487–498 (cit. on pp. 60, 70).

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal.
Pattern-oriented Software Architecture – A System of Patterns. Vol. 1.
Wiley, 1996 (cit. on pp. 62, 63).

[BVV20] A. Bacharew, C. Vieira Rocha,M. Vijayaruban. Algorithmen fürMaschi-
nelles Lernen auf IoT-Daten. Universität Stuttgart. Master-Fachstudie.
2020 (cit. on p. 158).

[Can+13] A. Cantino et al. Huginn – Your agents are standing by! Online. 2013.
url: https://github.com/huginn/huginn (cit. on p. 69).

[CCE+12] M. Corici, H. Coskun, A. Elmangoush, A. Kurniawan, T. Mao, T. Mage-
danz, S. Wahle. “OpenMTC: Prototyping Machine Type communi-
cation in carrier grade operator networks.” In: Globecom Workshops
(GC Wkshps), 2012 IEEE. IEEE. 2012, pp. 1735–1740 (cit. on pp. 49,
60, 142).

[Cha18] M. B. Chaudhry. Enhacing data flow models with computing require-
ments for distributed IoT environments. Universität Stuttgart. Master
thesis. 2018 (cit. on pp. 68, 138).

[Che09] Chef. Chef Infra: Infrastructure Automation for Hardened, Consistent
Configuration at Any Scale. Online. 2009. url: https://www.chef.
io/products/chef-infra/ (cit. on p. 71).

[Che76] P. P.-S. Chen. “The Entity-Relationship Model – Toward a Unified
View of Data.” In: ACM Transactions on Database Systems (TODS) 1.1
(1976), pp. 9–36 (cit. on p. 102).

Bibliography 169

https://github.com/huginn/huginn
https://www.chef.io/products/chef-infra/
https://www.chef.io/products/chef-infra/

[Cip14] N. Cipriani. “Flexible processing of streamed context data in a dis-
tributed environment.” PhD thesis. Universität Stuttgart, 2014 (cit.
on p. 90).

[CKE+15] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas.
“Apache flink: Stream and batch processing in a single engine.” In:
Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36.4 (2015) (cit. on pp. 31, 32).

[CLM10] N. Cipriani, C. Lübbe, B. Mitschang. “Exploiting constraints to build
a flexible and extensible data stream processing middleware.” In:
2010 IEEE International Symposium on Parallel Distributed Processing,
Workshops and Phd Forum (IPDPSW). Apr. 2010, pp. 1–8 (cit. on
pp. 54, 90).

[CLNR18] V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo. “Optimal op-
erator deployment and replication for elastic distributed data stream
processing.” In: Concurrency and Computation: Practice and Experi-
ence 30.9 (2018), e4334 (cit. on p. 129).

[CLRS09] T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to
Algorithms. MIT press, 2009 (cit. on p. 74).

[CM12] G. Cugola, A. Margara. “Processing Flows of Information: From Data
Stream to Complex Event Processing.” In: ACM Computing Surveys
(CSUR) 44.3 (2012), p. 15 (cit. on pp. 18, 19, 30–32, 62, 65).

[CM13] G. Cugola, A. Margara. “Deployment strategies for distributed com-
plex event processing.” In: Computing 95.2 (2013), pp. 129–156
(cit. on pp. 32, 66, 115).

[CSM11] N. Cipriani, O. Schiller, B. Mitschang. “M-TOP: Multi-target Operator
Placement of Query Graphs for Data Streams.” In: Proceedings of the
15th Symposium on International Database Engineering & Applications.
IDEAS ’11. ACM, 2011, pp. 52–60 (cit. on p. 90).

[CT12] M. Chinosi, A. Trombetta. “BPMN: An introduction to the standard.”
In: Computer Standards & Interfaces 34.1 (2012), pp. 124–134 (cit.
on p. 35).

[Dea15] T. Dean. Network+ Guide to Networks. Course Technology Press,
2015 (cit. on pp. 54, 56).

170 Bibliography

[DEDP15] H. Derhamy, J. Eliasson, J. Delsing, P. Priller. “A survey of commercial
frameworks for the internet of things.” In: 2015 IEEE 20th Conference
on Emerging Technologies & Factory Automation (ETFA). IEEE. 2015,
pp. 1–8 (cit. on p. 30).

[Dey01] A. K. Dey. “Understanding and Using Context.” In: Personal and Ubiq-
uitous Computing (2001) (cit. on p. 112).

[DMM+13] W. Dargie, J. Mendez, C. Mobius, K. Rybina, V. Thost, A.-Y. Turhan,
et al. “Situation Recognition for Service Management Systems Using
OWL 2 Reasoners.” In: Proceedings of the 10th IEEE Workshop on
Context Modeling and Reasoning 2013. IEEE Computer Society, 2013,
pp. 31–36 (cit. on p. 130).

[EBB+11] M. Eckert, F. Bry, S. Brodt, O. Poppe, S. Hausmann. “A CEP Babelfish:
Languages for Complex Event Processing and Querying Surveyed.”
In: Reasoning in Event-Based Distributed Systems. Springer, 2011,
pp. 47–70 (cit. on p. 66).

[Ecl17] Eclipse. Vorto. online. 2017. url: https://github.com/eclipse/
vorto (cit. on p. 50).

[EFGK03] P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Kermarrec. “The Many
Faces of Publish/Subscribe.” In: ACM Computing Surveys (CSUR) 35.2
(June 2003), pp. 114–131 (cit. on pp. 34, 100).

[EN10] O. Etzion, P. Niblett. Event Processing in Action. Manning Publications
Co., 2010 (cit. on p. 31).

[Esp06a] EsperTech Inc. Esper. Online. 2006. url: http://www.espertech.
com/esper (cit. on pp. 31, 32, 121).

[Esp06b] EsperTech Inc. Esper Reference. 2006.url: http://www.espertech.
com/esper/release-5.3.0/esper-reference/html (cit. on
p. 115).

[Esp14] Espressif. ESP8266. online. 2014. url: https://www.esp8266.
com (cit. on p. 56).

Bibliography 171

https://github.com/eclipse/vorto
https://github.com/eclipse/vorto
http://www.espertech.com/esper
http://www.espertech.com/esper
http://www.espertech.com/esper/release-5.3.0/esper-reference/html
http://www.espertech.com/esper/release-5.3.0/esper-reference/html
https://www.esp8266.com
https://www.esp8266.com

[FBH+17] A. C. Franco da Silva, U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp,
F. Leymann, B. Mitschang, R. Steinke. “Internet of Things Out of the
Box: Using TOSCA for Automating the Deployment of IoT Environ-
ments.” In: Proceedings of the 7th International Conference on Cloud
Computing and Services Science (CLOSER). ScitePress. SciTePress Dig-
ital Library, 2017, pp. 358–367 (cit. on pp. 61, 70, 84, 85, 95, 97,
121, 122).

[FBK+16] A. C. Franco da Silva, U. Breitenbücher, K. Képes, O. Kopp, F. Ley-
mann. “OpenTOSCA for IoT: Automating the Deployment of IoT
Applications Based on the Mosquitto Message Broker.” In: Proceed-
ings of the 6th International Conference on the Internet of Things.
IoT’16. Stuttgart, Germany: ACM, 2016, pp. 181–182 (cit. on pp. 33,
61, 84, 95, 97).

[FH+17] A. C. Franco da Silva, P. Hirmer, et al. Multi-purpose Binding and Pro-
visioning Platform (MBP). Online. Institute for Parallel and Distributed
Systems/Applications of Parallel and Distributed Systems (IPVS/AS),
University of Stuttgart. 2017. url: https://github.com/IPVS-
AS/MBP (cit. on p. 149).

[FH20] A. C. Franco da Silva, P. Hirmer. “Models for Internet of Things Envi-
ronments—A Survey.” In: Information 11.10 (2020). url: https:
//www.mdpi.com/2078-2489/11/10/487 (cit. on pp. 48–50).

[FHB+17] A. C. Franco da Silva, P. Hirmer, U. Breitenbücher, O. Kopp, B. Mitschang.
“Customization and provisioning of complex event processing using
TOSCA.” In: Computer Science - Research and Development (2017),
pp. 1–11 (cit. on pp. 61, 69, 84, 95, 97).

[FHB+18] A. C. Franco da Silva, P. Hirmer, U. Breitenbücher, O. Kopp, B. Mitschang.
“TDLIoT: A Topic Description Language for the Internet of Things.”
In: Proceedings of the International Conference on Web Engineering
(ICWE). Springer International Publishing, 2018, pp. 333–348 (cit.
on pp. 50, 98–101, 103, 104).

[FHKM18] A. C. Franco da Silva, P. Hirmer, R. Koch Peres, B. Mitschang. “An
Approach for CEP Query Shipping to Support Distributed IoT Envi-
ronments.” In: Proceedings of the 2018 IEEE International Conference

172 Bibliography

https://github.com/IPVS-AS/MBP
https://github.com/IPVS-AS/MBP
https://www.mdpi.com/2078-2489/11/10/487
https://www.mdpi.com/2078-2489/11/10/487

on Pervasive Computing and Communication Workshops. 2018 (cit. on
pp. 115, 116).

[FHM19] A. C. Franco da Silva, P. Hirmer, B. Mitschang. “Model-based Oper-
ator Placement for Data Processing in IoT Environments.” In: Pro-
ceedings of the IEEE International Conference on Smart Computing
(SMARTCOMP). IEEE, 2019 (cit. on pp. 52, 62, 75, 78, 79, 149).

[FHS+20] A. C. Franco da Silva, P. Hirmer, J. Schneider, S. Ulusal, M. Tavares
Frigo. “MBP: Not just an IoT Platform.” In: Proceedings of the In-
ternational Conference on Pervasive Computing and Communications
(PerCom). 2020 (cit. on pp. 25, 133, 137, 138, 141, 142, 145, 156).

[FHST20] M. Frigo, P. Hirmer, A. C. F. da Silva, L.H. Thom. “A Toolbox for
the Internet of Things–Easing the Setup of IoT Applications.” In:
Proceedings of the ER Forum, Demo and Posters 2020 co-located with
39th International Conference on Conceptual Modeling. 2020 (cit. on
p. 71).

[FHWM16] A. C. Franco da Silva, P. Hirmer, M. Wieland, B. Mitschang. “SitRS
XT – Towards Near Real Time Situation Recognition.” In: Journal of
Information and Data Management 7.1 (Apr. 2016), pp. 4–17 (cit. on
pp. 26, 40, 74, 111–113, 117, 119, 142).

[Fit09] Fitbit, Inc. Fitbit Trackers. online. 2009. url: https://www.fitbit.
com (cit. on p. 56).

[FIW16] FIWARE. Complex Event Processing (CEP) - Proactive Technology On-
line. Online. 2016. url: https://github.com/ishkin/Proton
(cit. on pp. 32, 121).

[flo10] flowthings.io. flowthings.io. Online. 2010. url: https://flowthings.
io (cit. on pp. 32, 121).

[Fou17a] O. Foundation. OPC Unified Architecture Specification. Part 5: Infor-
mation Model. Release 1.04. OPC Foundation, 2017 (cit. on p. 50).

[Fou17b] A. Fouskas. Automated discovery and binding of IoT devices. Universität
Stuttgart. Bachelor thesis. 2017 (cit. on p. 127).

Bibliography 173

https://www.fitbit.com
https://www.fitbit.com
https://github.com/ishkin/Proton
https://flowthings.io
https://flowthings.io

[GAW+08] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, M. Doo. “SPADE: The Sys-
tem s Declarative Stream Processing Engine.” In: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’08. Vancouver, Canada: ACM, 2008, pp. 1123–1134 (cit. on
p. 32).

[GBH+05] M. Großmann, M. Bauer, N. Hönle, U.-P. Käppeler, D. Nicklas, T. Sch-
warz. “Efficiently Managing Context Information for Large-Scale Sce-
narios.” In: Proc. of the Third IEEE Intl. Conf. on Pervasive Computing
and Communications. 2005 (cit. on p. 112).

[GBMP13] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami. “Internet of Things
(IoT): A vision, architectural elements, and future directions.” In:
Future Generation Computer Systems 29.7 (2013), pp. 1645–1660
(cit. on pp. 18, 49).

[GHC+16] I. Grangel-González, L. Halilaj, G. Coskun, S. Auer, D. Collarana,
M. Hoffmeister. “Towards a Semantic Administrative Shell for Indus-
try 4.0 Components.” In: Proceding of the 10th International Conference
on Semantic Computing (ICSC). IEEE, 2016, pp. 230–237 (cit. on
p. 103).

[GHM+13] N. Glombiewski, B. Hoßbach, A. Morgen, F. Ritter, B. Seeger. “Event
Processing on your own Database.” In: BTW workshops. 2013, pp. 33–
42 (cit. on pp. 130, 131).

[Goo17] Google. Google Cloud IoT Solutions. Online. 2017. url: https://
cloud.google.com/solutions/iot (cit. on p. 30).

[GSU19] S. Glaub, J. Schneider, S. Ulusal. Eine Sicherheitsanalyse der IoT-
Plattform MBP. Universität Stuttgart. Master-Fachstudie. 2019 (cit.
on p. 158).

[Gup15] U. Gupta. “Monitoring in IOT enabled devices.” In: CoRR abs/1507.03780
(2015) (cit. on p. 126).

[HA94] N. Haller, R. Atkinson. “On Internet Authentication.” In: (1994) (cit.
on p. 55).

[HB17] P. Hirmer, M. Behringer. “FlexMash 2.0 – Flexible Modeling and
Execution of Data Mashups.” In: Rapid Mashup Development Tools
696 (2017), pp. 10–29 (cit. on pp. 67, 69).

174 Bibliography

https://cloud.google.com/solutions/iot
https://cloud.google.com/solutions/iot

[HBF+16] P. Hirmer, U. Breitenbücher, A. C. Franco da Silva, K. Képes, B. Mitschang,
M. Wieland. “Automating the Provisioning and Configuration of De-
vices in the Internet of Things.” In: Complex Systems Informatics and
Modeling Quarterly 9 (2016), pp. 28–43 (cit. on pp. 56, 108, 142,
149).

[HCBO11] S. Hasan, E. Curry, M. Banduk, S. O’Riain. “Toward Situation Aware-
ness for the Semantic Sensor Web: Complex Event Processing with
Dynamic Linked Data Enrichment.” In: SSN 839 (2011), pp. 69–81
(cit. on pp. 130, 131).

[HCJL15] K. Hur, S. Chun, X. Jin, K.-H. Lee. “Towards a Semantic Model for
Automated Deployment of IoT Services Across Platforms.” In: Pro-
ceedings of the 2015 IEEE World Congress on Services. SERVICES ’15.
IEEE, 2015, pp. 17–20 (cit. on p. 108).

[HHL+10] K. Häussermann, C. Hubig, P. Levi, F. Leymann, O. Simoneit, M. Wie-
land, O. Zweigle. “Understanding and designing situation-aware
mobile and ubiquitous computing systems.” In: Proc. of intern. Conf.
on Mobile, Ubiquitous and Pervasive Computing (2010), pp. 329–339
(cit. on pp. 113, 131).

[HHM17] E. Hoos, P. Hirmer, B. Mitschang. “Towards Context-Aware Decision
Information Packages to Improve Problem Resolving on the Shop
Floor.” In: Proceedings of the 29th International Conference on Advanced
Information Systems Engineering (CAiSE). 2017 (cit. on p. 115).

[Hir18] P. Hirmer. “Anforderungsbasierte Modellierung und Ausführung von
Datenflussmodellen.” PhD thesis. Universität Stuttgart, 2018 (cit. on
pp. 20, 67–69, 138).

[HM16] P. Hirmer, B. Mitschang. “FlexMash - Flexible Data Mashups Based
on Pattern-Based Model Transformation.” In: vol. 591. Rapid Mashup
Development Tools. Springer International Publishing, 2016, pp. 12–
30 (cit. on pp. 67, 69).

[Hor13] B. Horan. Practical Raspberry Pi. Apress, 2013 (cit. on p. 57).
[HW03] G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing, Build-

ing, and Deploying Messaging Solutions. Addison-Wesley Longman
Publishing Co., Inc., 2003 (cit. on pp. 86, 99).

Bibliography 175

[HWBM16a] P. Hirmer, M. Wieland, U. Breitenbücher, B. Mitschang. “Automated
Sensor Registration, Binding and Sensor Data Provisioning.” In: Pro-
ceedings of the CAiSE 2016 Forum at the 28th International Conference
on Advanced Information Systems Engineering. 2016 (cit. on pp. 100,
108).

[HWBM16b] P. Hirmer, M. Wieland, U. Breitenbücher, B. Mitschang. “Dynamic
Ontology-based Sensor Binding.” In: Proceedings of the 20th East-
European Conference on Advances in Databases and Information Sys-
tems (ADBIS). 2016 (cit. on pp. 48, 108).

[HWS+15] P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher,
F. Leymann. “SitRS - A Situation Recognition Service Based on Mod-
eling and Executing Situation Templates.” In: Proceedings of the 9th
Symposium and Summer School On Service-Oriented Computing (Sum-
merSOC). 2015 (cit. on p. 112).

[IC417] IC4F Consortium. IC4F Research Project. Online. 2017. url: https:
//www.ic4f.de (cit. on pp. 50, 157).

[IEE10] IEEE. Information technology – Smart transducer interface for sen-
sors and actuators – Common functions, communication protocols,
and Transducer Electronic Data Sheet (TEDS) formats. Standard.
IEEE, 2010. url: http://standards.ieee.org/findstds/
standard/21450-2010.html (cit. on p. 50).

[IFT11] IFTTT. IFTTT: Put the internet to work for you. online. 2011. url:
https://ifttt.com (cit. on p. 69).

[Jaz14] N. Jazdi. “Cyber physical systems in the context of Industry 4.0.” In:
IEEE International Conference on Automation, Quality and Testing,
Robotics. May 2014, pp. 1–4 (cit. on p. 49).

[JS 13] JS Foundation. Flow-based programming for the Internet of Things.
online. 2013. url: https://nodered.org (cit. on p. 69).

[JSA+18] C. Jennings, Z. Shelby, J. Arkko, A. Keranen, C. Bormann. Sensor
measurement lists (SenML). Internet Engineering Steering Group
(IESG), 2018 (cit. on p. 50).

176 Bibliography

https://www.ic4f.de
https://www.ic4f.de
http://standards.ieee.org/findstds/standard/21450-2010.html
http://standards.ieee.org/findstds/standard/21450-2010.html
https://ifttt.com
https://nodered.org

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann. “Winery – AModeling
Tool for TOSCA-based Cloud Applications.” In: Proceedings of the
11th International Conference on Service-Oriented Computing (ICSOC
2013). Springer, Dec. 2013, pp. 700–704 (cit. on pp. 35, 88, 95,
139).

[KBF+15] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J.M. Patel, K. Ramasamy, S. Taneja. “Twitter Heron: Stream Process-
ing at Scale.” In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM. 2015, pp. 239–250 (cit. on
p. 31).

[Kle17] S. Klein. IoT Solutions in Microsoft’s Azure IoT Suite. Springer, 2017
(cit. on pp. 49, 60, 142).

[KRRS96] G. Kappel, S. Rausch-Schott, W. Retschitzegger, M. Sakkinen. “From
Rules To Rule Patterns.” In: Advanced Information Systems Engineer-
ing. Ed. by P. Constantopoulos, J. Mylopoulos, Y. Vassiliou. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 99–115 (cit. on
pp. 144, 150).

[Kut18] I. Kutger. Human Tasks für OpenTOSCA zum Aufsetzen von IoT-
Anwendungen. Universität Stuttgart. Bachelor thesis. 2018 (cit. on
pp. 98, 106, 139).

[LAB+18] A. Liebing, L. Ashauer, U. Breitenbücher, T. Günther, M. Hahn, K. Képes,
O. Kopp, F. Leymann, B. Mitschang, A. C. Franco da Silva, R. Steinke.
“The SmartOrchestra Platform: A Configurable Smart Service Plat-
form for IoT Systems.” In: Papers from the 12th Advanced Summer
School on Service-Oriented Computing (SummerSoC). 2018 (cit. on
p. 157).

[LCG+09] R. Lange, N. Cipriani, L. Geiger, M. Großmann, H. Weinschrott,
A. Brodt, M. Wieland, S. Rizou, K. Rothermel. “Making the World
Wide Space Happen: New Challenges for the Nexus Context Plat-
form.” English. In: Proceedings of the 7th Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom ’09).
Galveston, TX, USA. March 2009. 2009 (cit. on p. 112).

Bibliography 177

[LCW08] D. Lucke, C. Constantinescu, E.Westkämper. “Manufacturing Systems
and Technologies for the New Frontier: The 41st CIRP Conference
on Manufacturing Systems May 26–28, 2008, Tokyo, Japan.” In:
ed. by M. Mitsuishi, K. Ueda, F. Kimura. London: Springer London,
2008. Chap. Smart Factory - A Step towards the Next Generation of
Manufacturing, pp. 115–118 (cit. on p. 130).

[LF98] D. C. Luckham, B. Frasca. “Complex Event Processing in Distributed
Systems.” In: Computer Systems Laboratory Technical Report CSL-
TR-98-754. Stanford University, Stanford 28 (1998), p. 16 (cit. on
p. 66).

[LFWW16] F. Leymann, C. Fehling, S. Wagner, J. Wettinger. “Native Cloud Ap-
plications: Why Virtual Machines, Images and Containers Miss the
Point!” In: Proceedings of the 6th International Conference on Cloud
Computing and Service Science. SciTePress, Apr. 2016, pp. 7–15 (cit.
on p. 32).

[Lig17] R. A. Light. “Mosquitto: server and client implementation of the
MQTT Protocol.” In: The Journal of Open Source Software 2.13 (2017),
p. 265 (cit. on pp. 87, 100).

[Lin17] Linux Foundation Collaborative Project. IoTivity. online. 2017. url:
https://www.iotivity.org (cit. on pp. 30, 50).

[LL15] I. Lee, K. Lee. “The Internet of Things (IoT): Applications, invest-
ments, and challenges for enterprises.” In: Business Horizons 58.4
(2015), pp. 431–440 (cit. on p. 18).

[LLS08] G. T. Lakshmanan, Y. Li, R. Strom. “Placement Strategies for Internet-
Scale Data Stream Systems.” In: IEEE Internet Computing 12.6 (2008),
pp. 50–60 (cit. on p. 32).

[Lo88] V.M. Lo. “Heuristic Algorithms for Task Assignment in Distributed
Systems.” In: IEEE Transactions on Computers 37.11 (Nov. 1988),
pp. 1384–1397 (cit. on pp. 72, 73).

[Luc01] D. C. Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Longman
Publishing Co., Inc., 2001 (cit. on pp. 18, 26, 30, 31, 40, 111, 112,
144).

178 Bibliography

https://www.iotivity.org

[Luc11] D. C. Luckham. Event processing for business: organizing the real-time
enterprise. John Wiley & Sons, 2011 (cit. on p. 31).

[Luc19] D. Luckham. What’s the Difference Between ESP and CEP? Online.
June 2019. url: http://www.complexevents.com/2019/07/
15/whats-the-difference-between-esp-and-cep-2 (cit. on
pp. 30, 31).

[LVCD13] F. Li, M. Vögler, M. Claeßens, S. Dustdar. “Towards Automated IoT
Application Deployment by a Cloud-Based Approach.” In: Proceedings
of the 2013 IEEE 6th International Conference on Service-Oriented
Computing and Applications. SOCA ’13. IEEE Computer Society, 2013,
pp. 61–68 (cit. on p. 107).

[Mac97] S. MacGuire. “Big Brother: A Web-based UNIX System and Network
Monitor.” In: Sys Admin 6.3 (Mar. 1997), pp. 43–54 (cit. on p. 126).

[Mah18] S. Mahmoodi. “A Canonical Language for Complex Event Processing
Systems.” MA thesis. Universität Stuttgart, 2018 (cit. on p. 120).

[Man+13] B. Mandler et al. “COMPOSE–A Journey from the Internet of Things to
the Internet of Services.” In: 27th International Conference on Advanced
Information Networking and Applications Workshops. IEEE. 2013,
pp. 1217–1222 (cit. on p. 69).

[MC13] A. McEwen, H. Cassimally. Designing the Internet of Things. 1st. Wiley
Publishing, 2013 (cit. on p. 54).

[Meu95] R. Meunier. “The pipes and filters architecture.” In: Pattern languages
of program design. ACM Press/Addison-Wesley Publishing Co. 1995,
pp. 427–440 (cit. on pp. 41, 62).

[MIV+14] S. Mayer, N. Inhelder, R. Verborgh, R. Van de Walle, F. Mattern.
“Configuration of smart environments made simple: Combining vi-
sual modeling with semantic metadata and reasoning.” In: 2014
International Conference on the Internet of Things (IOT). Oct. 2014,
pp. 61–66 (cit. on p. 60).

[MIVV14] S. Mayer, N. Inhelder, R. Verborgh, R. Van de Wallet. “User-friendly
Configuration of Smart Environments.” In: 2014 IEEE International
Conference on Pervasive Computing and Communication Workshops
(PERCOM WORKSHOPS). Mar. 2014, pp. 163–165 (cit. on p. 60).

Bibliography 179

http://www.complexevents.com/2019/07/15/whats-the-difference-between-esp-and-cep-2
http://www.complexevents.com/2019/07/15/whats-the-difference-between-esp-and-cep-2

[MMST16] J. Mineraud, O. Mazhelis, X. Su, S. Tarkoma. “A gap analysis of
Internet-of-Things platforms.” In: Computer Communications 89 -
90 (2016). Internet of Things: Research challenges and Solutions,
pp. 5–16 (cit. on pp. 49, 60, 70).

[MNH+13] H. McDonald, C. Nugent, J. Hallberg, D. Finlay, G. Moore, K. Synnes.
“The homeML suite: shareable datasets for smart home environ-
ments.” In: Health and Technology 3.2 (2013), pp. 177–193 (cit. on
pp. 50, 60).

[MS17] S. T. March, G. D. Scudder. “Predictive maintenance: strategic use of
IT in manufacturing organizations.” In: Information Systems Frontiers
(2017), pp. 1–15 (cit. on p. 51).

[MVD+14] M. Maksimović, V. Vujović, N. Davidović, V. Milošević, B. Perišić.
“Raspberry Pi as Internet of things hardware: performances and con-
straints.” In: Proceedings of 1st International Conference on Electrical,
Electronic and Computing Engineering (IcETRAN). Vol. 3. 8. 2014
(cit. on p. 57).

[MW15] N. Marz, J. Warren. Big Data: Principles and best practices of scalable
realtime data systems. Manning Publications Co., 2015 (cit. on pp. 18,
107, 140).

[Nel16] R. Nelson. “IBM Watson takes to the road.” In: EE-Evaluation Engi-
neering 55.7 (2016), pp. 32–33 (cit. on pp. 49, 60, 142).

[NFD+07] C. D. Nugent, D. D. Finlay, R. J. Davies, H. Y. Wang, H. Zheng, J. Hall-
berg, K. Synnes, M.D. Mulvenna. “homeML – An Open Standard
for the Exchange of Data Within Smart Environments.” In: Pervasive
Computing for Quality of Life Enhancement: 5th International Con-
ference On Smart Homes and Health Telematics, ICOST 2007, Nara,
Japan, June 21-23, 2007. Proceedings. Springer, 2007. Chap. Per-
vasive Computing for Quality of Life Enhancement, pp. 121–129
(cit. on p. 60).

[NPP+17] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, R. H. Campbell. “Samza: stateful scalable stream processing
at LinkedIn.” In: Proceedings of the VLDB Endowment 10.12 (2017),
pp. 1634–1645 (cit. on p. 31).

180 Bibliography

[NSM17] D. Nicklas, T. Schwarz, B. Mitschang. “A Schema-Based Approach
to Enable Data Integration on the Fly.” In: International Journal of
Cooperative Information Systems 26.01 (2017), p. 1650010 (cit. on
p. 50).

[OAS10] OASIS. Web Services – Human Task (WS-HumanTask) Specification
Version 1.1. Online. 2010. url: http://docs.oasis-open.org/
bpel4people/ws-humantask-1.1-spec-cs-01.html (cit. on
pp. 26, 93, 97).

[OAS13] OASIS. Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0. 2013. url: http://docs.oasis-open.org/
tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html (cit. on pp. 21,
26, 33, 39, 61, 69, 71, 93).

[OGC14] OGC. Sensor Model Language (SensorML). online. 2014. url: http:
//www.opengeospatial.org/standards/sensorml (cit. on
p. 50).

[one18] oneM2M Partners. oneM2M Base Ontology. oneM2M, 2018. url:
http://www.onem2m.org/technical/latest-drafts (cit. on
pp. 50, 61).

[Ope16] Open Connectivity Foundation. AllJoyn Open Source Project. On-
line. 2016. url: https://openconnectivity.org/developer/
reference-implementation/alljoyn (cit. on p. 30).

[Ope17] OpenFog Consortium Architecture Working Group. “OpenFog Refer-
ence Architecture for Fog Computing.” In: OPFRA001 20817 (2017),
p. 162 (cit. on pp. 18, 21, 26, 133, 148).

[Pea84] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984 (cit. on p. 80).

[PLS+06] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh,
M. Seltzer. “Network-Aware Operator Placement for Stream-Processing
Systems.” In: 22nd International Conference on Data Engineering
(ICDE’06). Apr. 2006, pp. 49–49 (cit. on p. 32).

[Pru07] M. Pruett. Yahoo! pipes. O’Reilly, 2007 (cit. on p. 69).
[Pup05] Puppet. Unparalleled infrastructure automation and delivery. Online.

2005. url: https://puppet.com/# (cit. on p. 71).

Bibliography 181

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cs-01.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cs-01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://www.opengeospatial.org/standards/sensorml
http://www.opengeospatial.org/standards/sensorml
http://www.onem2m.org/technical/latest-drafts
https://openconnectivity.org/developer/reference-implementation/alljoyn
https://openconnectivity.org/developer/reference-implementation/alljoyn
https://puppet.com/#

[PVC+14] J. L. Pérez, Á. Villalba, D. Carrera, I. Larizgoitia, V. Trifa. “The COM-
POSE API for the internet of things.” In: Proceedings of the 23rd
International Conference on World Wide Web. ACM. 2014, pp. 971–
976 (cit. on p. 69).

[Ran+18] R. Ranjan et al. “The Next Grand Challenges: Integrating the Internet
of Things and Data Science.” In: IEEE Cloud Computing 5.3 (2018),
pp. 12–26 (cit. on p. 18).

[Ras09] Raspberry Pi Foundation. Raspberry Pi. Online. 2009. url: https:
//www.raspberrypi.org (cit. on p. 56).

[RGSE14] F. Ramparany, F. Galan Marquez, J. Soriano, T. Elsaleh. “Handling
smart environment devices, data and services at the semantic level
with the FI-WARE core platform.” In: 2014 IEEE International Con-
ference on Big Data (Big Data). IEEE. 2014, pp. 14–20 (cit. on pp. 49,
60, 100, 142).

[Riz+10] S. Rizou et al. “Solving the Multi-Operator Placement Problem in
Large-Scale Operator Networks.” In: Proceedings of 19th International
Conference on Computer Communications and Networks. IEEE, 2010
(cit. on p. 90).

[Rob16] Robert Bosch GmbH. Bosch XDK Node. Online. 2016. url: https:
//www.arduino.cc (cit. on p. 56).

[SBH16] F. Samie, L. Bauer, J. Henkel. “IoT Technologies for Embedded Com-
puting: A Survey.” In: Proceedings of the Eleventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis. CODES ’16. Pittsburgh, Pennsylvania: ACM, 2016, 8:1–
8:10 (cit. on p. 57).

[SBS+17] T. Szydlo, R. Brzoza-Woch, J. Sendorek, M. Windak, C. Gniady. “Flow-
based programming for IoT leveraging fog computing.” In: 2017 IEEE
26th International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE). IEEE. 2017, pp. 74–79 (cit. on
p. 69).

[Sch18] J. Schneider. Finden einer geeigneten Infrastruktur für Datenoperatio-
nen in IoT-Umgebungen. Universität Stuttgart. Bachelor thesis. 2018
(cit. on pp. 90, 139).

182 Bibliography

https://www.raspberrypi.org
https://www.raspberrypi.org
https://www.arduino.cc
https://www.arduino.cc

[SGL+11] S. Suhothayan, K. Gajasinghe, I. Loku Narangoda, S. Chaturanga,
S. Perera, V. Nanayakkara. “Siddhi: A second look at complex event
processing architectures.” In: Proceedings of the 2011 ACM workshop
on Gateway computing environments. ACM. 2011, pp. 43–50 (cit. on
p. 32).

[SI02] X. Su, L. Ilebrekke. “A Comparative Study of Ontology Languages
and Tools.” In: Advanced Information Systems Engineering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 761–765 (cit. on
p. 62).

[SK17] K. J. Singh, D. S. Kapoor. “Create Your Own Internet of Things: A
survey of IoT platforms.” In: IEEE Consumer Electronics Magazine 6.2
(Apr. 2017), pp. 57–68 (cit. on pp. 54, 57, 60, 70).

[SKH+15] J. Soldatos, N. Kefalakis, M. Hauswirth, et al. “OpenIoT: Open Source
Internet-of-Things in the Cloud.” English. In: Interoperability and
Open-Source Solutions for the Internet of Things. Springer International
Publishing, 2015 (cit. on p. 60).

[Sma12] SmartThings Inc. Samsung SmartThings. Online. 2012 (cit. on p. 30).
[Sma16] SmartOrchestra Consortium. SmartOrchestra Research Project. On-

line. 2016. url: http://smartorchestra.de/en (cit. on p. 50).
[SMP09] N. P. Schultz-Møller, M. Migliavacca, P. Pietzuch. “Distributed com-

plex event processing with query rewriting.” In: Proceedings of the
Third ACM International Conference on Distributed Event-Based Sys-
tems. ACM. 2009, p. 4 (cit. on p. 66).

[SSF17] C. Stach, F. Steimle, A. C. Franco da Silva. “TIROL: The Extensible
Interconnectivity Layer for mHealth Applications.” In: Information
and Software Technologies. Ed. by R. Damaševičius, V. Mikašytė.
Springer International Publishing, 2017, pp. 190–202 (cit. on p. 30).

[TCZN15] F. Tao, Y. Cheng, L. Zhang, A. Y. C. Nee. “Advanced manufactur-
ing systems: socialization characteristics and trends.” In: Journal of
Intelligent Manufacturing (2015), pp. 1–16 (cit. on p. 18).

[Thr14] Thread Group. Thread – a low-power wireless mesh networking protocol
for IoT. Online. 2014. url: https://www.threadgroup.org (cit.
on p. 30).

Bibliography 183

http://smartorchestra.de/en
https://www.threadgroup.org

[TK07] J. Travis, J. Kring. LabVIEW for everyone: graphical programming made
easy and fun. Prentice-Hall, 2007 (cit. on p. 69).

[TL11] K. Taylor, L. Leidinger. “Ontology-driven complex event processing
in heterogeneous sensor networks.” In: The Semanic Web: Research
and Applications. Springer, 2011, pp. 285–299 (cit. on p. 130).

[TSM18] Q.-C. To, J. Soto, V. Markl. “A survey of state management in big
data processing systems.” In: The VLDB Journal—The International
Journal on Very Large Data Bases 27.6 (2018), pp. 847–872 (cit. on
p. 129).

[TTS+14] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal,
D. Ryaboy. “Storm@Twitter.” In: Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data. SIGMOD ’14.
ACM, 2014, pp. 147–156 (cit. on p. 31).

[UGW02] J. D. Ullman, H. Garcia-Molina, J. Widom. Database Systems: The
Complete Book. Upper Saddle River, 2002 (cit. on p. 126).

[Ulu19] S. Ulusal. MBP2Go: Erweiterung der mobilen MBP-Applikation um
Monitoring-Funktionalitäten. Universität Stuttgart. Bachelor thesis.
2019 (cit. on p. 141).

[Uni07] Universität Oldenburg. Odysseus – the event processing system. Online.
2007. url: http://odysseus.informatik.uni-oldenburg.
de/ (cit. on pp. 32, 121).

[VF13] O. Vermesan, P. Friess. Internet of Things: Converging Technologies
for Smart Environments and Integrated Ecosystems. River Publishers,
2013 (cit. on pp. 18, 49, 142).

[VFG+13] O. Vermesan, P. Friess, P. Guillemin, H. Sundmaeker, M. Eisenhauer,
K. Moessner, F. Le Gall, P. Cousin. “Internet of Things Strategic
Research and Innovation Agenda.” In: Internet of Things: Converging
Technologies for Smart Environments and Integrated Ecosystems. River
Publishers, 2013, pp. 7–152 (cit. on pp. 29, 62).

184 Bibliography

http://odysseus.informatik.uni-oldenburg.de/
http://odysseus.informatik.uni-oldenburg.de/

[VSI+15] M. Vögler, J.M. Schleicher, C. Inzinger, S. Nastic, S. Sehic, S. Dustdar.
“LEONORE–Large-Scale Provisioning of Resource-Constrained IoT
Deployments.” In: Symposium on Service-Oriented System Engineering
(SOSE). IEEE Computer Society. 2015, pp. 78–87 (cit. on p. 107).

[VSID16] M. Vögler, J.M. Schleicher, C. Inzinger, S. Dustdar. “A Scalable Frame-
work for Provisioning Large-Scale IoT Deployments.” In: ACM Trans-
actions on Internet Technology (TOIT) 16.2 (Mar. 2016), 11:1–11:20
(cit. on p. 107).

[W3C05] W3C. Semantic Sensor Network Ontology. online. 2005. url: https:
//www.w3.org/2005/Incubator/ssn/ssnx/ssn (cit. on pp. 50,
52, 61).

[W3C15] W3C. IoT-Lite Ontology. online. 2015. url: https://www.w3.org/
Submission/2015/SUBM-iot-lite-20151126 (cit. on p. 60).

[Wag10] S.Wagner. A Concept of Human-orientedWorkflows. Universität Stuttgart.
Diplomarbeit. 2010 (cit. on pp. 106, 139).

[WK96] G. Widmer, M. Kubat. “Learning in the Presence of Concept Drift and
Hidden Contexts.” In: Machine Learning 23.1 (Apr. 1996), pp. 69–
101 (cit. on p. 26).

[WMS12] S. Wahle, T. Magedanz, F. Schulze. “The OpenMTC framework – M2M
solutions for smart cities and the internet of things.” In: IEEE Inter-
national Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM). June 2012, pp. 1–3 (cit. on p. 100).

[WSBL15] M. Wieland, H. Schwarz, U. Breitenbücher, F. Leymann. “Towards
Situation-Aware Adaptive Workflows.” In: Proceedings of the 11th

Workshop on Context and Activity Modeling and Recognition (CO-
MOREA) IEEE Conference on Pervasive Computing (PerCom). 2015
(cit. on p. 157).

[WSO13] WSO2. Siddhi – Stream Processing and Complex Event Processing
Engine. https://github.com/siddhi-io/siddhi. 2013 (cit.
on p. 32).

Bibliography 185

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126
https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126
https://github.com/siddhi-io/siddhi

[WZGP04] X. Wang, D.Q. Zhang, T. Gu, H. Pung. “Ontology Based Context
Modeling and Reasoning Using OWL.” In: Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and Communications
Workshops. IEEE Computer Society, 2004 (cit. on p. 130).

[ZCB10] Q. Zhang, L. Cheng, R. Boutaba. “Cloud computing: state-of-the-
art and research challenges.” In: Journal of Internet Services and
Applications 1.1 (2010), pp. 7–18 (cit. on p. 32).

[ZHKL09] O. Zweigle, K. Häussermann, U.-P. Käppeler, P. Levi. “Supervised
Learning Algorithm for Automatic Adaption of Situation Templates
Using Uncertain Data.” In: Proceedings of the 2nd International Con-
ference on Interaction Sciences: Information Technology, Culture and
Human. 2009 (cit. on p. 113).

All URLs were last followed on 08.11.2020.

186 Bibliography

List of Figures

1.1 Processing data streams in IoT environments 19

2.1 TOSCA topology model example 33

3.1 Life-cycle method for the contributions of this thesis 41
3.2 Overall architecture of this thesis 44

4.1 Layers of the Internet of Things 48
4.2 Example of an IoTEM . 55
4.3 Architecture component: IoTEM modeler and manager 59
4.4 TOSCA topology model for an IoT environment 61
4.5 A DSPM for an application in the domain smart building 65
4.6 Architecture component: DSPM modeler and manager 67
4.7 TOSCA topology model of a CEP example 70

5.1 Case scenario: automated mapping in smart buildings 82
5.2 TOSCA topology model for a manual mapping 85
5.3 Architecture component: IoTEM and DSPM mapper 89

6.1 Life cycle of an operator . 95
6.2 TOSCA topology model for an operator 96

187

6.3 Case scenario: parking in smart cities 99
6.4 Overview of the TDLIoT approach 100
6.5 Data model associated with the TDLIoT 103
6.6 Architecture component: Deployment manager 105

7.1 Data processing levels . 113
7.2 Case scenario: monitoring production parts on a conveyor belt 117
7.3 Exemplary situation template and its transformation to Esper

CEP queries . 119
7.4 TOSCA topology model for a CEP engine 122
7.5 Architecture component: Disturbance recognizer 128

8.1 Integration architecture of this thesis 135
8.2 Overall detailed architecture of this thesis 136
8.3 The MBP user interface . 137
8.4 The MBP IoTEM modeling tool . 138
8.5 The MBP disturbance modeling tool 140
8.6 The MBP mobile client application 141
8.7 Lego smart offices . 145
8.8 Mapping in smart office scenario 146

188 List of Figures

List of Tables

4.1 Criteria-based comparison of IoT models 50

189

List of Algorithms

5.1 Greedy variant . 75
5.2 Backtracking variant . 78
5.3 F indSolution function pseudo-code 79

191

List of Definitions

1.1 Data processing correctness . 22
4.1 IoTEM . 52
4.2 IoTEM network path . 53
4.3 Network distance of an IoTEM network path 54
4.4 DSPM . 63
5.1 DSPM operator placement problem 72
5.2 Definition of the best solution . 80

193

	1 Introduction
	1.1 Motivation
	1.2 Research questions and goals
	1.3 Contributions summary
	1.4 Structure of this thesis

	2 Background
	2.1 Internet of Things
	2.2 Data stream processing and complex event processing
	2.3 Operator placement problem
	2.4 TOSCA

	3 Thesis overview
	3.1 Contributions
	3.2 Methodical approach
	3.3 Overall architecture

	4 Modeling of IoT environments and data stream processing
	4.1 Modeling of IoT environments
	4.1.1 IoTEM definition
	4.1.2 IoT object and connection capabilities
	4.1.3 Architecture component and implementation – IoTEM modeler and manager
	4.1.4 Related work

	4.2 Modeling of data stream processing
	4.2.1 DSPM definition
	4.2.2 Processing operators
	4.2.3 Architecture component and implementation – DSPM modeler and manager
	4.2.4 Related work

	5 Mapping of DSPMs onto IoTEMs
	5.1 Automatic mapping approach
	5.1.1 Matching algorithm – greedy variant
	5.1.2 Matching algorithm – backtracking variant
	5.1.3 Case scenario: monitoring of mold levels in smart buildings

	5.2 Manual mapping approach
	5.3 Architecture component and implementation – IoTEM and DSPM mapper
	5.4 Related work

	6 Deployment of operators onto IoT environments
	6.1 Automatic deployment approach
	6.1.1 Deployment states of an operator
	6.1.2 TOSCA-based operator deployment

	6.2 Semi-automatic deployment approach
	6.3 Topic Description Language for the IoT
	6.4 Architecture component and implementation – Deployment manager
	6.5 Related work

	7 Monitoring of deployed DSPMs
	7.1 Modeling of disturbance recognition
	7.2 Executing disturbance recognition
	7.2.1 Customization and provisioning of CEP engines
	7.2.2 Disturbance classes

	7.3 Architecture component and implementation – Disturbance recognizer
	7.4 Related work

	8 Evaluation
	8.1 Integration architecture and prototype
	8.2 MBP overview
	8.2.1 Modeling IoT environments
	8.2.2 Deploying operators onto IoT environments
	8.2.3 Monitoring IoT environments
	8.2.4 Demonstration: smart office

	8.3 Further considerations

	9 Conclusion and future work
	9.1 Summary
	9.2 Future work

	Bibliography
	List of Figures
	List of Tables
	List of Definitions

