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Abstract

Two large classes of algebras, Frobenius algebras and gendo-symmetric algebras, are characterised by the

existence of a comultiplication with some special properties. Symmetric algebras are both Frobenius and

gendo-symmetric. In [20], Kerner and Yamagata investigated two variations of gendo-symmetric algebras

and in fact these two variations contain gendo-symmetric and Frobenius algebras. We call one of these

variations gendo-Frobenius algebras. In this thesis, we construct a comultiplication for gendo-Frobenius

algebras, which specialises to the known comultiplications on Frobenius algebras and on gendo-symmetric

algebras. Moreover, we show that Frobenius algebras are precisely those gendo-Frobenius algebras that

have a counit compatible with this comultiplication.
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Zusammenfassung

Zwei große Klassen von Algebren, Frobenius Algebren und gendo-symmetrische Algebren, sind charak-

terisiert durch die Existenz einer Komultiplikation mit einigen besonderen Eigenschaften. Symmetrische

Algebren sind sowohl Frobenius als auch gendo-symmetrisch. In [20] untersuchten Kerner und Yamagata

zwei Varianten von gendo-symmetrischen Algebren und die beiden Varianten enthalten tatsächlich die

gendo-symmetrischen und die Frobenius Algebren. Eine dieser Varianten nennen wir gendo-Frobenius

Algebren. In dieser Arbeit konstruieren wir eine Komultiplikation für Gendo-Frobenius Algebren, die

die bekannten Komultiplikationen bei Frobenius Algebren und bei gendo-symmetrischen Algebren als

Spezialfälle enthält. Darüber hinaus zeigen wir, dass Frobenius Algebren genau jene Gendo-Frobenius

Algebren sind, deren Koeins mit dieser Komultiplikation kompatibel ist.
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Chapter 1

Introduction

Representation theory is an important branch of mathematics which has applications in many other

areas of mathematics, also in physics, chemistry and computer science. Significant building blocks of

representation theory are algebraic structures. An algebraic structure consists of a set and a collection

of operations on this set, which obey certain axioms. For example, groups which have just one operation

(such as multiplication or composition) and rings which have two operations (addition and multiplication)

are basic algebraic structures. The definition of an algebraic structure can have any number of sets and

any number of axioms. For instance, vector space structure has two sets (an abelian group and a field)

and two operations (vector addition and scalar multiplication), which satisfies some axioms. Another

fundamental algebraic structure is algebra over a field. Roughly speaking, an algebra A over a field k

is a vector space over k equipped with an additional operation (multiplication in A) and A is simply

called k-algebra. Briefly, in the standard definition of k-algebra, it has three operations (addition,

scalar multiplication and multiplication in A), which satisfies some axioms. Under some conditions, this

situation can be improved further by a fourth operation, comultiplication, and some classes of k-algebras

can be characterised by existence of a comultiplication with particular properties.

Let us explain this situation by an example. Let G = {g1, ..., gn} be a finite group written multiplica-

tively. The group algebra kG over k is defined as the set of linear combinations
∑n
i=1 cigi (where ci ∈ k)

with multiplication given by linearly extending the multiplication in G. Indeed, the group algebra kG

has a comultiplication ∆ : kG → kG ⊗k kG as a fourth operation such that ∆(g) =
∑n
i=1 ggi ⊗k g

−1
i

for any g ∈ G. The comultiplication ∆ is a kG-bimodule morphism. The group algebra kG actually

also has another, different comultiplication ∆̃ : kG→ kG⊗k kG which sends g to g ⊗k g for any g ∈ G.

This group algebra kG admits a Hopf algebra structure over k with the comultiplication ∆̃, the counit

f : kG → k such that f(g) = 1 for any g ∈ G and some other special linear maps. For more detail

about Hopf algebras, see [31], Chapter VI and for more information about ∆ and ∆̃, see Remark 2.2.6

in Chapter 2. However, we consider ∆ as our main comultiplication for the group algebra kG since it is

more suitable to our context and in this thesis we use this comultiplication. Here, it is natural to ask

the following question.

Why does a group algebra kG have comultiplication?

Answer: Because it is a symmetric algebra and symmetric algebras are characterised by the existence

of a comultiplication with certain properties. Roughly speaking, a k-algebra A is symmetric if there is

an isomorphism λ : A ∼= D(A) of A-bimodules, where D denotes the usual k-duality functor Homk(−, k).

Dualising the multiplication map µ : A ⊗k A → A gives a map µ∗ : D(A) → D(A) ⊗k D(A). Therefore,

11



by using λ, we obtain the comultiplication ∆ : A→ A⊗k A. Here, λ(1A) serves as a counit for ∆.

This answer leads to another natural question:

Are there any classes of nonsymmetric algebras which are characterised by the existence of a

comultiplication with different properties?

Answer: Yes. The class of Frobenius algebras and the class of gendo-symmetric algebras are char-

acterised by the existence of a comultiplication with some special properties. Moreover, in this thesis

we call gendo-Frobenius algebras a special class of Morita algebras and construct a comultiplication for

gendo-Frobenius algebras, which specialises to the known comultiplications on Frobenius algebras and

on gendo-symmetric algebras.

Now we are going into more detail and give some information on symmetric algebras, Frobenius

algebras, gendo-symmetric algebras and our main topic gendo-Frobenius algebras.

Symmetric algebras. A symmetric algebra can be characterised equivalently as: a finite dimen-

sional algebra A equipped with an associative nondegenerate symmetric bilinear form, or equipped with

a central linear form whose kernel does not contain a nonzero one-sided ideal, or equipped with a left (or

right) A-isomorphism from A to the dual space D(A) which is also right (or left) A-linear, respectively.

Symmetric algebras are special class of Frobenius algebras and contain well-known classes of algebras:

matrix algebras, group algebras of finite groups and some quantum groups. For more information about

symmetric algebras, see Subsection 2.1.1.

Frobenius algebras. A Frobenius algebra can be characterised equivalently as: a finite dimensional

algebra A equipped with an associative nondegenerate bilinear form, or equipped with a linear form

whose kernel contains no nonzero ideals, or equipped with an A-linear isomorphism from A to the dual

space D(A). Frobenius algebras were first studied by Frobenius [16] around 1900 and later by Brauer,

Nesbitt [4] and Nakayama [26, 27] in 1937–1941. Later a significant characterisation of Frobenius algebras

in terms of comultiplication appeared. As stated in [21], the characterisation of Frobenius algebras in

terms of comultiplication goes back at least to Lawvere [23] (1967), and it was rediscovered by Quinn

[28] and Abrams [1] in the 1990’s.

Frobenius algebras are algebras and also coalgebras, with compatibility between multiplication and

comultiplication. Examples are matrix rings, group rings and the ring of characters of a representation.

Hopf algebras are Frobenius algebras as well. In recent years, Frobenius algebras started to become more

popular because of their connection with computer science and theoretical physics. In computer science

Frobenius algebras appeared in concurrent programming, control theory, quantum computing, etc [11].

In physics Frobenius algebras have an outstanding connection with topological quantum field theory.

More clearly, in [1], Abrams showed that the category of commutative Frobenius algebras is equivalent

to the category of two dimensional topological quantum field theories. Moreover, in the same paper,

he proved that commutative Frobenius algebras are characterised by the existence of a comultiplication

with properties like counit and coassociative. Later he showed that these characterisations work for

noncommutative Frobenius algebras as well, that is, in [2], he proved that noncommutative Frobenius

algebras are characterised by the existence of a comultiplication as same properties with commutative

Frobenius algebras.

In this thesis, we especially focus on the studies of Abrams on Frobenius algebras with respect to

comultiplication [1, 2] and obtain new results. Therefore, we devote Chapter 2 to Frobenius algebras.

Now we are going to give information on gendo-symmetric algebras. Therefore, we need the following

concept: dominant dimension.
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Dominant dimension. Let A be a finite dimensional k-algebra. The dominant dimension of A is at

least d (written by dom.dimA ≥ d) if there is an injective coresolution

0 −→ A −→ I0 −→ I1 −→ · · · −→ Id−1 −→ Id −→ · · ·

such that all modules Ii where 0 ≤ i ≤ d− 1 are also projective.

There is another homological invariant which is defined as follows.

Global dimension. Let A be a finite dimensional k-algebra. The global dimension of A is defined the

supremum of the set of projective dimensions of all A-modules.

A finite dimensional left A-module M is said to have double centralizer property if the canonical

homomorphism of algebras f : A→ EndB(M) is an isomorphism for B = EndA(M)op.

If dom.dimA ≥ 1, then I0 in the definition of dominant dimension is projective-injective and up

to isomorphism it is the unique minimal faithful right A-module. Therefore, it is of the form eA for

some idempotent e in A. Note that eA is a generator-cogenerator as a left eAe-module. If further

dom.dimA ≥ 2, then eA has double centraliser property, namely, A ∼= EndeAe(eA) canonically.

One of the most important examples of double centralizer property is classical Schur-Weyl duality

between Schur algebras Sk(n, r) for n ≥ r and group algebras of symmetric groups Σr. Let us explain

this example in more detail.

Let k be an infinite field of any characteristic and E be an n-dimensional k-vector space. Let Σr be

the symmetric group on r letters. Then group algebra kΣr operates naturally on E⊗r from the right.

By definition, the Schur algebra Sk(n, r) = EndkΣr (E⊗r). Let n ≥ r. There is an outstanding theorem

which is called Schur-Weyl duality. This theorem relates the representation theories of general linear and

symmetric groups and states that there is a double centralizer property, namely, Sk(n, r) ∼= EndkΣr (E⊗r)

and kΣr ∼= EndSk(n,r)(E
⊗r). Therefore, the Schur algebra Sk(n, r) has dominant dimension at least two.

Indeed, in this case, the tensor space E⊗r is a faithful projective and injective module.

We now ask the following question:

What properties are the two algebras Sk(n, r) and kΣr sharing?

Since kΣr is a symmetric algebra, it has comultiplication. Surprisingly, Schur algebra Sk(n, r) has

comultiplication as well, that is, the two algebras Sk(n, r) and kΣr are sharing the same property,

comultiplication. In fact, we have general version of this situation which is called gendo-symmetric

algebras.

Gendo-symmetric algebras. A new class of algebras called gendo-symmetric algebras have been

introduced by Fang and Koenig [13, 14]. The construction of gendo-symmetric algebras comes by using

symmetric algebras and the Morita-Tachikawa correspondence which is the general form of Auslander’s

correspondence. Let us give more detail.

Let Λ be an Artin algebra and M be an Λ-module which is generator-cogenerator. This means M

contains each indecomposable projective module and each indecomposable injective module as a direct

summand, up to isomorphism. And let A be any Artin algebra.

Morita-Tachikawa Correspondence. There is a correspondence between the class of all pairs (Λ,M)
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and the class of all algebras A of dominant dimension at least two.

This correspondence sends the algebra A of dominant dimension at least two to (Λ = eAe,M = eA).

Conversely, it sends the pair (Λ,M) to the endomorphism ring A = EndΛ(M). Therefore, this corre-

spondence states that every endomorphism algebra of generator-cogenerator has dominant dimension at

least 2, and is characterised by this property. To turn this correspondence into a bijection, we only need

to require Λ to be basic in the pair (Λ,M).

Now, restrict the Morita-Tachikawa correspondence to more special case. Here, assume that Λ has

finite representation type, that is the number of isomorphism classes of indecomposable representations

of Λ is finite. Therefore, we can choose M to be a full direct sum of indecomposable Λ-modules that

each indecomposable module occurs at least once as a summand, up to isomorphism. This restriction is

the very famous Auslander’s correspondence. It can be stated as follows:

Auslander’s Correspondence. There is a bijection between the algebras Λ of finite-representation type

and the algebras A with dominant dimension at least two and global dimension at most two.

In [18], Iyama established higher Auslander’s correspondence. Here, on the right hand side is the

class of algebras of dominant dimension at least n and global dimension at most n for a natural number

n ≥ 2. On the left hand side, for n ≥ 3 there are new objects, which have turned out to be important

in cluster theory. This higher Auslander’s correspondence gives a new direction to research and also has

many applications.

Auslander’s correspondence shows how to apply Morita-Tachikawa correspondence by making a par-

ticular choice of (Λ,M). In [14], Fang and Koenig provided a new correspondence in the same style with

Auslander’s correspondence, where the algebra Λ is now restricted to symmetric algebras:

There is a bijection between the class of all pairs (Λ,M) where Λ is finite-dimensional symmetric

algebra and M a generator in Λ-mod and the class of all algebras A which is finite-dimensional and

HomA(D(A), A) ∼= A as (A,A)-bimodules, where D denotes the duality over the ground field. Since Λ is

symmetric, generator M over Λ is same as cogenerator. Therefore, only generators are mentioned here.

The algebras A in this bijection are called gendo-symmetric algebras.

The term ’gendo-symmetric’ is meant to indicate that one characterisation of these algebras is as

endomorphism rings of generators (module containing each indecomposable projective module at least

once as a direct summand) over a symmetric algebra.

Gendo-symmetric algebras are characterised by the existence of a comultiplication and have the prop-

erties used for defining the bar cocomplex. The exactness of this bar cocomplex is used to determine the

dominant dimension of gendo-symmetric algebras [13]. Gendo-symmetric algebras extend the subclass

A of quasi-hereditary algebras introduced in [15]. These include the algebras on both sides of classical

Schur-Weyl duality and of Soergel’s structure theorem for the BGG-category O. Moreover, the class of

gendo-symmetric algebras contains many other examples from algebraic Lie theory as well as symmetric

algebras and Auslander algebras of symmetric algebras.

In this thesis, we focus on the studies of Fang and Koenig on gendo-symmetric algebras with respect

to comultiplication [13, 14] and obtain new results. Therefore, we devote Chapter 3 to gendo-symmetric

algebras.

Both Frobenius algebras and gendo-symmetric algebras are characterised by the existence of a co-

multiplication with some special properties. However, these two classes of algebras have differences. For

example, Frobenius algebras have a counit compatible with their comultiplication but gendo-symmetric
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algebras do not, in general. Here, it is natural to ask whether there are other properties distinguishing

Frobenius algebras from gendo-symmetric algebras. More precisely, which properties of Frobenius alge-

bras do gendo-symmetric algebras fail to have? At this point, the following question appears:

Question 1. What are the differences between Frobenius algebras and gendo-symmetric algebras with

respect to comultiplication?

In Section 3.4, we answer this question and clarify these differences between Frobenius algebras and

gendo-symmetric algebras with respect to comultiplication.

Besides these differences, there are also important similarities. For example, both are characterised

by the existence of a comultiplication with some special properties as we mentioned before. Moreover,

both contain symmetric algebras. Here, it is natural to ask the following question.

Question 2. Is there a common generalisation of Frobenius algebras and gendo-symmetric algebras

such that this generalisation has a comultiplication, which specialises to the known comultiplications on

Frobenius algebras and on gendo-symmetric algebras?

Answering this question leads to introducing a new class of algebras which we called gendo-Frobenius

algebras.

Gendo-Frobenius algebras. In [20], Kerner and Yamagata investigated two variations of gendo-

symmetric algebras and in fact these two variations contain gendo-symmetric and Frobenius algebras.

First variation is motivated by Morita [24] and they called a finite dimensional algebra A Morita algebra,

if A is the endomorphism ring of a generator–cogenerator over a self-injective algebra. In other words,

from Morita-Tachikawa correspondence by making a particular choice of (Λ,M), where Λ is finite-

dimensional selfinjective algebra and M a generator-cogenerator in Λ-mod and the class of all algebras

A which is finite-dimensional, we obtain Morita algebras. Morita algebras form a class of algebras

properly containing all self-injective algebras and Auslander algebras of self-injective algebras of finite

representation type. They are also properly contained in the class of algebras with dominant dimension

at least 2. Second variation is defined by relaxing the condition on the bimodule isomorphism in the

definition of gendo-symmetric algebras and we call these algebras gendo-Frobenius algebras. In this

thesis, we construct a comultiplication for gendo-Frobenius algebras, which specialises to the known

comultiplications on Frobenius algebras and on gendo-symmetric algebras and so they are the common

generalisation that we asked in Question 2. Therefore, in Chapter 4, we mainly focus on introducing

gendo-Frobenius algebras and their comultiplication.

Inspired by Fang and Koenig, we mean the term ’gendo-Frobenius’ to indicate that one character-

isation of these algebras is as endomorphism rings of generators-cogenerators (module containing each

indecomposable projective and injective module at least once as a direct summand) over a Frobenius

algebra.

We may visualize the hierarchy of the finite dimensional algebras on which we work in this study as

15



follows.

Morita algebras

��
Gendo-Frobenius algebras

ss ,,
Frobenius algebras

++

Gendo-symmetric algebras

rr
Symmetric algebras

In the above diagram, an arrow means the class on top contains the class below.

This thesis is organized as follows. Second chapter begins with giving the definition of Frobenius al-

gebras and providing basic properties as well as some necessary results. We also introduce the Nakayama

automorphism of Frobenius algebras which is fundamental for further considerations. Moreover, we in-

troduce symmetric algebras which are special class of Frobenius algebras. We additionally give some

examples for Frobenius algebras. Frobenius Nakayama algebras which are essential for Chapter 4 are

also introduced in this chapter. Later we recall the definition of k-algebras and formulate its axioms in

terms of commutative diagrams. By reversing all arrows in these diagrams, we also give the definition

of coalgebras. After that we introduce an important characterisation of Frobenius algebras in terms of

comultiplication and give main results of this chapter. In particular, we emphasize that Proposition 2.1.4

in [3] given by Abrams in commutative case is also satisfied for all finite dimensional Frobenius algebras

over k (Theorem 2.2.9) and then inspired by a result of Fang and Koenig ([13], Lemma 2.6) we give a

theorem which shows the structure of the comultiplication of Frobenius algebras and plays a crucial role

to clarify differences between Frobenius and gendo-symmetric algebras (Theorem 2.2.11).

Chapter 3 is devoted to introducing gendo-symmetric algebras and their characterisation in terms of

comultiplication. We first give the definition of gendo-symmetric algebras and then exhibit some examples

of these algebras. Later we introduce the construction of gendo-symmetric algebras’ comultiplication and

some results which were obtained by Fang and Koenig [13]. We additionally give new results on gendo-

symmetric algebras with respect to comultiplication.

We have already mentioned that the Schur algebra A = Sk(n, r) for n ≥ r and the symmetric algebra

kΣr are sharing the same property, comultiplication. Since A is gendo-symmetric, EndeAe(eA) ∼= A and

EndA(eA) ∼= eAe where eA is a basic faithful projective-injective A-module for an idempotent e of A such

that eAe is symmetric. Moreover, A ∼= EndkΣr (E⊗r) and kΣr ∼= EndA(E⊗r), where E⊗r is a faithful

projective-injective A-module. Since all endomorphism rings of faithful projective-injective A-modules

are Morita equivalent (see Lemma 2.3 in [22]), the symmetric algebra eAe is Morita equivalent to the

group algebra kΣr. The following theorem relates the comultiplication on the Schur algebra A with the

comultiplication on the symmetric algebra eAe. Moreover, it gives also the general situation, that is,

gives the relation between the comultiplication of any gendo-symmetric algebra A and comultiplication

of the symmetric algebra eAe.

Theorem A (Theorem 3.2.10) Let A be a gendo-symmetric algebra with a basic faithful projective-

injective A-module Ae for an idempotent e of A such that eAe is symmetric. Let π : A → eAe be the

k-linear map such that π(a) = eae for a ∈ A. Suppose that ∆A is a comultiplication of A. Then there

exists a comultiplication ∆eAe of eAe such that (π ⊗ π)∆A = ∆eAeπ.
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The following theorem also shows the relation between the comultiplication of any gendo-symmetric

algebra A and comultiplication of the gendo-symmetric quotient algebra B = A/I, where I is a two-sided

ideal of A.

Theorem B (Theorem 3.2.13) Let A and B be gendo-symmetric algebras such that B = A/I, where

I is a two-sided ideal of A, and π : A → B be the canonical surjection. Suppose that Ae and Bf are

basic faithful projective-injective A-module and B-module, respectively, where e = e′+e′′ is an orthogonal

decomposition and f = e′ + I. Let ∆A be a comultiplication of A. Then there exists a comultiplication

∆B of B such that (π ⊗ π)∆A = ∆Bπ.

We also visit gendo-symmetric Schur algebras and obtain some new results in terms of comultiplication

in Chapter 3. More clearly, we first give the definition of Schur algebras and indicate in which case the

Schur algebras are gendo-symmetric. At the same time, we give information about their dominant

dimension. Later we introduce the Schur-Weyl duality and give some related examples. We introduce

some results from [33] to show the motivation of the main results related to gendo-symmetric Schur

algebras. In particular, there are some remarkable algebras related to gendo-symmetric Schur algebras

by [33] and we give some results which compute the comultiplication of these algebras (Proposition 3.2.25

& Proposition 3.2.26).

Moreover, in Chapter 3, we introduce a result given by Fang and Koenig [13] on the characterisation

of gendo-symmetric algebras and their dominant dimension by using bar cocomplex. At this point, it is

time to mention a major homological conjecture and also a major open problem in representation theory,

which is called Nakayama conjecture. It states that if A is finite-dimensional algebra over a field and

dom.dimA =∞, then A is self-injective. In this chapter, we give a hypothesis by using the characterisa-

tion of gendo-symmetric algebras in terms of bar cocomplex. Proving this hypothesis may lead to prove

Nakayama conjecture for gendo-symmetric algebras which states that if A is a gendo-symmetric algebra

and dom.dimA =∞, then A is symmetric. This hypothesis is stated as follows.

Hypothesis Let A be a gendo-symmetric algebra with comultiplication ∆. Then there exists a bar

cocomplex for A, using the comultiplication ∆. Suppose that this bar cocomplex is exact. Then there

exists a counit of (A,∆).

The connection to the Nakayama conjecture uses the following implications from [13]:

A gendo-symmetric algebra A with comultiplication ∆ has a counit ⇒ The bar cocomplex of A is

exact ⇒ domdimA =∞.

Now let us consider the reverse of these implications. Let A be a gendo-symmetric algebra with

comultiplication ∆. Then

dom.dimA = ∞
1

⇒ The bar cocomplex of A is exact
(∗)⇒ There exists a counit of (A,∆)

2

⇒ A is

symmetric.

The implications
1

⇒ and
2

⇒ are known by [13]. If the hypothesis is proved, then the implication (*)

is satisfied and Nakayama conjecture for gendo-symmetric algebras is proved.
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First main problem discussed in this study was Question 1. In Section 3.4, we answer Question 1

and clarify the differences between Frobenius algebras and gendo-symmetric algebras with respect to

comultiplication.

Chapter 4 is devoted to introducing gendo-Frobenius algebras and constructing their comultiplica-

tion. We first collect some necessary results obtained by Kerner and Yamagata [20] for background and

then define the gendo-Frobenius algebras by using a result of them ([20], Theorem 3). We additionally

give some examples for gendo-Frobenius algebras. Later inspired by Fang and Koenig [13], we construct

a coassociative comultiplication (possibly without a counit) for gendo-Frobenius algebras and give its

properties. In particular, we show that:

Theorem C (Theorem 4.2.3 & Proposition 4.2.13) Let A be a gendo-Frobenius algebra. Then A has

a coassociative comultiplication which is a map of A-bimodules. In addition, there is a compatible counit

if and only if A is Frobenius.

Indeed, in this thesis we also show that there are further constructions possible that yield comulti-

plications on gendo-Frobenius algebras. In Subsection 4.2.3, we investigate three such constructions and

show that they are lacking crucial properties such as being coassociative. However, since comultiplication

of Frobenius algebras and comultiplication of gendo-symmetric algebras which have been introduced by

Abrams [2] and Fang and Koenig [13], respectively, are coassociative, we mainly focus on the comultipli-

cation given in Theorem C. We also mentioned that gendo-Frobenius algebras contain both Frobenius

and gendo-symmetric algebras. Therefore, Theorem C answers Question 2 which is second main problem

discussed in this study. Moreover, we compare the comultiplication in Theorem C with the comultiplica-

tion of Frobenius algebras which is given by Abrams [2] by assuming that the finite dimensional algebra

is Frobenius.

Finally, we give some results on comultiplication of Frobenius Nakayama algebras and their compati-

ble counit. In particular, we give a comultiplication formula for Frobenius Nakayama algebras (Theorem

4.3.5) and also a result which is related to compatible counit of these algebras (Theorem 4.3.9).

In this study some classes of examples such as Schur algebras or Frobenius Nakayama algebras espe-

cially play important role and exhibit the connection between the chapters. We discuss these examples

at several places by showing and computing their different properties. Let us reveal some of these

examples by mentioning what we are studying and what we are showing there, with references to the

relevant sections. For the definition of Frobenius Nakayama algebra Nm
n (m,n ≥ 1), see Subsection 2.3.1.

Frobenius Nakayama algebra N2
3 . In Subsection 2.1.3, we give the Nakayama automorphism and

the Nakayama permutation of N2
3 . In Section 2.2, we compute its comultiplication by using Theorem

2.2.9 and obtain its counit. We mention that it is a gendo-Frobenius algebra in Subsection 4.1.1 and

give a detailed computation of its comultiplication in Section 4.2. Moreover, after computing comulti-

plication of this algebra, we obtain again its counit compatible with that comultiplication. We use this

algebra also in Section 4.3 and we again compute its comultiplication by using the formula in Corol-

lary 4.3.6. Indeed, in this study, we compute the comultiplication of N2
3 by using three different methods.

Schur algebra Sk(2, 2). In fact, we generally use an algebra A which is Morita equivalent to Sk(2, 2)

if k is an infinite field of characteristic 2 (see Subsection 3.2.1). In Subsection 3.1.1, we show that

A is gendo-symmetric and compute the dominant dimension of A. Since being gendo-symmetric and
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dominant dimension are Morita invariant properties, at the same time we actually show Sk(2, 2) is gendo-

symmetric and compute the dominant dimension of Sk(2, 2). In Section 3.2, we again use the algebra A

in the example which is an application of Theorem B.

A block of a quantised Schur algebra in quantum characteristic 4. In Subsection 3.1.1, we use an

algebra A which is Morita equivalent to a block of a quantised Schur algebra in quantum characteristic

4 (see Subsection 3.2.1). We show that A is gendo-symmetric and compute the dominant dimension of

A. In Section 3.2, as an application of Theorem A, we show the relation between the comultiplication of

A and the comultiplication of eAe for a suitable choice of the idempotent e ∈ A.

Morita algebras with associated Frobenius Nakayama algebra N1
2 . Let B = N1

2 and M be a faithful

right B-module which satisfies a certain condition. In Subsection 4.1.1, we show that the algebra A =

EndB(M) is gendo-Frobenius under this condition. In Section 4.2, we compute the comultiplication of A

in detail. We also mention that the algebra A does not have a counit compatible with its comultiplication

since it is not Frobenius. In Subsection 4.1.1, we state that the algebra A may not be gendo-Frobenius

even if it is Morita algebra when the right B-module M does not satisfy the condition mentioned above.

We explain this condition there as well. Moreover, we use the gendo-Frobenius algebra A to show that

other approaches to new comultiplications given in Subsection 4.2.3 are lacking crucial properties such

as being coassociative.
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Chapter 2

Frobenius algebras

Frobenius algebras were first studied by Frobenius [16] around 1900 and later by Brauer, Nesbitt [4] and

Nakayama [26, 27] in 1937–1941. As stated in [21], the characterisation of Frobenius algebras in terms

of comultiplication goes back at least to Lawvere [23] (1967), and it was rediscovered by Quinn [28] and

Abrams [1] in the 1990’s. In this study, we generally use a number of results of Abrams [1, 2]. To learn

more about Frobenius algebras, see [31] and [34]. Moreover, to learn more detail about commutative

Frobenius algebras and its relation with topological quantum field theory, see [1] and [21].

In this chapter, we introduce a main object of this study, Frobenius algebras, as well as give some

important results with respect to comultiplication.

More clearly, first section is devoted to defining Frobenius algebras. We also introduce the Nakayama

automorphism of Frobenius algebras which is fundamental for further considerations. Moreover, we

introduce symmetric algebras which are special class of Frobenius algebras and Frobenius Nakayama

algebras which are essential for the last chapter. We additionally give some examples for Frobenius

algebras.

In the second section, an important characterisation of Frobenius algebras in terms of comultiplication

is introduced and main results of this chapter are given.

Throughout this chapter, all algebras and modules are finite dimensional over an arbitrary field k

unless stated otherwise. By mod-A, we denote the category of finite dimensional right A-modules and

by D the usual k-duality functor Homk(−, k). For simplicity, we denote ⊗k by ⊗.

2.1 Definition and examples of Frobenius algebras

Definition and basic properties

Definition 2.1.1. A finite dimensional k-algebra A is called Frobenius if it satisfies one of the following

equivalent conditions:

(i) There exists a nondegenerate bilinear form β : A⊗A→ k which is associative, that is, β(ab⊗ c) =

β(a⊗ bc) for all a, b, c ∈ A.

(ii) There exists a linear form ε : A→ k whose kernel does not contain a nonzero left ideal of A.

(iii) There exists an isomorphism λL : A→ D(A) of left A-modules.

(iv) There exists a linear form ε′ : A→ k whose kernel does not contain a nonzero right ideal of A.

(v) There exists an isomorphism λR : A→ D(A) of right A-modules.
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The above definition is based on [31], Theorem IV.2.1, which provides the equivalence of the five

conditions.

Remark 2.1.2. The linear form ε : A→ k in Definition 2.1.1 is called Frobenius form.

At this point, we give some parts of the proof which provides the equivalence of the five conditions

in Definition 2.1.1 and plays an important role to prove especially Theorem 2.2.9. Let µ : A⊗A→ A be

the multiplication map and µ : A → End(A) be the map such that µ(a)(b) := µ(b ⊗ a). Here, we note

that given λL : A ∼= D(A) satisfying condition (iii), the linear form ε = λL(1A) satisfies condition (ii).

Given the linear form ε : A → k satisfying condition (ii), the bilinear form β = ε ◦ µ satisfies condition

(i). Given β : A⊗A→ k satisfying the condition (i), the linear form ε = β(1A⊗−) = β(−⊗1A) satisfies

condition (ii). And the linear map λL = ε ◦ µ satisfies condition (iii).

Proposition 2.1.3. ([21], Lemma 2.2.8) If A is a k-algebra with Frobenius form ε, then every other

Frobenius form on A is given by c · ε, where c is an invertible element of A. Equivalently, for a given

fixed left A-module isomorphism λL : A ∼= D(A), the elements in D(A) which are Frobenius forms are

precisely the images of the invertible elements in A.

The following proposition gives a general method to find a bilinear form giving the structure of a

Frobenius algebra to a finite dimensional k-algebra.

Proposition 2.1.4. ([35], Proposition 1.10.18) Let A = kQ/I be a Frobenius algebra over k given by a

quiver Q and ideal of relations I, and fix a k-basis B of A consisting of pairwise distinct nonzero paths

of the quiver Q. Assume that B contains a basis of the socle soc(A) of A. Define a k-linear mapping ε

on the basis elements by

ε(b) =

{
1 if b ∈ soc(A)

0 otherwise

for b ∈ B. Then an associative nondegenerate k-bilinear form β : A ⊗ A → k for A is given by

β(x⊗ y) := ε(xy).

The following theorem shows that the construction in Proposition 2.1.4 is the only possible construc-

tion.

Theorem 2.1.5. ([35], Proposition 3.6.14) Let A be a finite dimensional Frobenius k-algebra and suppose

A = kQ/I for a quiver Q and an admissible ideal I and an algebraically closed field k. Then for every

nondegenerate associative bilinear form β : A⊗ A → k, there is a k-basis B containing a k-basis of the

socle such that β(x⊗ y) = ε(xy), where ε is defined by

ε(b) =

{
1 if b ∈ soc(A) ∩B

0 if b ∈ B \ soc(A).

Definition 2.1.6. A finite dimensional k-algebra A is called self-injective if the modules AA and AA

are injective.

Therefore, a finite dimensional k-algebra A is self-injective if the projective modules in mod-A (re-

spectively, in mod-Aop) coincide with the injective modules.

Let A be a finite dimensional self-injective algebra over k. Then 1A has a decomposition 1A =∑n
i=1

∑mi

j=1 eij , where the eij are the pairwise orthogonal idempotents, with eijA ∼= ersA if and only if

i = r. Therefore, e11A, e21A,...,en1A is a complete set of pairwise nonisomorphic indecomposable right

A-modules. The socle of a projective-injective right A-module is simple, but not necessarily isomorphic
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to the top and each simple module occurs once as a top and once as a socle. Hence, there exists a

permutation ν of {1, ..., n}, called the Nakayama permutation, such that

top(eν(i)1A) ∼= soc(ei1A) for all i ∈ {1, ..., n}.

The following selected results show the close relation between Frobenius and self-injective algebras.

Proposition 2.1.7. ([31], Proposition IV.3.8) Let A be a Frobenius algebra over a field k. Then A is a

self-injective algebra.

Proposition 2.1.8. ([31], Proposition IV.3.9) Let A be a basic self-injective finite dimensional algebra

over a field k. Then A is a Frobenius algebra.

Corollary 2.1.9. ([31], Corollary IV.3.12) Let Q be a finite quiver, k a field, I an admissible ideal of

the path algebra kQ, and A = kQ/I the associated bound quiver algebra, and assume A is a self-injective

algebra. Then A is a Frobenius algebra.

Corollary 2.1.10. ([31], Corollary IV.3.11) Let A be a finite dimensional self-injective algebra over a

field k. Then A is Morita equivalent to a Frobenius algebra.

Note that the class of all finite dimensional self-injective algebras over k is closed under Morita equiv-

alences (see [31], Proposition IV.3.10). But, the class of Frobenius algebras is not (see [31], Chapter

IV). In fact, the class of all Frobenius algebras over a field k is a proper subclass of the class of all

finite dimensional self-injective algebras, and the class of all finite dimensional self-injective algebras is

the smallest class of finite dimensional algebras which contains the class of all Frobenius algebras and is

closed under the Morita equivalences.

Now we first give the definition of Nakayama automorphism which plays an essential role in this

study, and later observe a prominent result which is related to Nakayama automorphism.

Definition 2.1.11. For a Frobenius algebra A and a nondegenerate associative bilinear form β : A⊗A→
k, the k-algebra automorphism νA : A → A with β(x ⊗ y) = β(y ⊗ νA(x)) for all x, y ∈ A is said to be

the Nakayama automorphism of A associated to β.

For existence of Nakayama automorphism, see [31], Proposition IV.3.1. Note that every Frobenius

algebra A has a Nakayama automorphism which is unique up to inner automorphisms ([31], Corollary

IV.3.5).

Remark 2.1.12. By the proof of Proposition 2.2 in [30], ifA is a Frobenius algebra, and 1A =
∑n
i=1

∑mi

j=1 eij

is the decomposition of 1A into the sum of pairwise orthogonal primitive idempotents, then we have

top(νA(eij)A) ∼= soc(eijA).

Then, in particular, the Nakayama automorphism νA induces a Nakayama permutation ν of {1, ..., n}.

For more information about properties of Nakayama automorphism, see [25] and [31]. We now

continue with the promised result which is related to Nakayama automorphism. Let νA be the Nakayama

automorphism associated to a nondegenerate associative bilinear form β : A⊗A→ k. Take the associated

linear form ε = β(−⊗ 1A) = β(1A ⊗−) : A→ k. Then we have the isomorphism of left A-modules

λL : AA→ AD(A)
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such that λL(x)(y) = ε(yx) for x, y ∈ A. Moreover, for x, y, z ∈ A, we have

λL(xz)(y) = ε(y(xz)) = β(yxz ⊗ 1A)

= β(yx⊗ z) = β(ν−1
A (z)⊗ yx) = β(ν−1

A (z)yx⊗ 1A)

= ε(ν−1
A (z)yx) = λL(x)(ν−1

A (z)y) = (λL(x)ν−1
A (z))(y)

and so λL(xz) = λL(x)ν−1
A (z). This shows that λL defines an isomorphism

λL : A→ D(A)ν−1
A

of A-bimodules.

2.1.1 Symmetric algebras

In this part, we introduce symmetric algebras which are special Frobenius algebras. Symmetric algebras

contain well-known classes of algebras: group algebras of finite groups and some quantum groups. Note

that symmetric algebras are also gendo-symmetric which is introduced in the next chapter.

Definition 2.1.13. A finite dimensional k-algebra A is called symmetric if it satisfies one of the following

equivalent conditions:

(i) There exists a nondegenerate associative bilinear form β : A⊗A→ k such that β(a⊗b) = β(b⊗a)

for all a, b ∈ A.

(ii) There exists a linear form ε : A → k such that ε(ab) = ε(ba) for all a, b ∈ A, and whose kernel

does not contain a nonzero one-sided ideal of A.

(iii) There exists an isomorphism λ : A→ D(A) of A-bimodules.

The above definition is based on [31], Theorem IV.2.2, which provides the equivalence of the three

conditions.

Proposition 2.1.14. ([21], Lemma 2.2.11) Let (A, ε) be a symmetric Frobenius algebra (i.e. ε is cen-

tral). Then every other central Frobenius form on A is given by c · ε, where c is a central invertible

element of A.

Note that a Frobenius algebra A is symmetric if and only if νA is inner ([34], Therorem 2.4.1). In

this case, we may take the identity automorphism as a Nakayama automorphism.

Proposition 2.1.15. ([31], Corollary IV.4.3) Let A and B be Morita equivalent finite dimensional

algebras over a field k. Then A is a symmetric algebra if and only if B is a symmetric algebra.

Therefore, the class of all symmetric algebras over k is closed under Morita equivalences.

A finite dimensional algebra A over a field k is called weakly symmetric if soc(P ) ∼= top(P ) for any

indecomposable projective module P in mod-A. Note that finite dimensional weakly symmetric algebras

over k are Frobenius ([31], Corollary IV.6.3) and symmetric algebras over k are weakly symmetric ([31],

Corollary IV.6.4).

Remark 2.1.16. Commutative finite dimensional self-injective algebras are symmetric. See [31], Propo-

sition IV.4.6.
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2.1.2 Examples

In this part, some examples of Frobenius algebras are exhibited.

Example 2.1.17. The field of complex numbers C over R is a Frobenius algebra over R. The obvious

Frobenius form is the following

C→ R

a+ bi→ a.

Example 2.1.18. Let A = Matn(k) be the ring of all n-by-n matrices over a field k. The usual trace

map of this matrix ring is defined as follows:

Tr : Matn(k)→ k

(aij) 7→
∑
i

aii.

Then A is a Frobenius algebra with the usual trace map. Therefore, Tr is the Frobenius form of A.

Moreover, it is a symmetric algebra since the two matrix products CD and DC in A have the same

trace.

Example 2.1.19. Finite dimensional semisimple algebras over k are symmetric Frobenius. See [31],

Corollary IV.5.17.

Example 2.1.20. Let kG be the group algebra of a finite group G over a field k. Then kG is a Frobenius

algebra with the linear form

ε : kG→ k∑
g∈G

λgg 7→ λ1G
.

Here, ε is the Frobenius form of kG. We observe that ε(ab) =
∑
g∈G λgµg−1 and ε(ba) =

∑
g∈G µgλg−1 ,

where a =
∑
g∈G λgg, b =

∑
g∈G µgg in kG. Hence, ε(ab) = ε(ba). Then the Frobenius algebra kG is

symmetric.

Example 2.1.21. Finite dimensional Hopf algebras over k are Frobenius. For more information, see

[31], Chapter IV.

Example 2.1.22. Let k be a field and Q be a quiver given as follows:

1
α1 //

2
β1

oo
α2 //

3
β2

oo

Let I be the ideal in the path algebra kQ generated by α1β1, β2α2, β1α1 − α2β2 and A = kQ/I be

the associated bound quiver algebra. We observe that D(Ae3) ∼= e1A, D(Ae2) ∼= e2A and D(Ae1) ∼=
e3A. This means that every indecomposable projective module is also injective, that is, A is self-

injective. Then by using Corollary 2.1.9, we say that A is Frobenius. Since top(e1A) � soc(e1A) and

top(e3A) � soc(e3A), A is not weakly symmetric and so A is a nonsymmetric Frobenius algebra (see

Subsection 2.1.1). A has a k-basis {e1, e2, e3, α1, α2, β1, β2, α1α2, β2β1, β1α1} so D(A) has the dual basis
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{e∗1, e∗2, e∗3, α∗1, α∗2, β∗1 , β∗2 , (α1α2)∗, (β2β1)∗, (β1α1)∗}. We observe that there is a left A-module isomor-

phism λL which is explicitly defined on the basis elements by

λL : A ∼= D(A)

e1 7→ (β2β1)∗

e2 7→ (β1α1)∗

e3 7→ (α1α2)∗

α1 7→ β∗1

α2 7→ α∗1

β1 7→ β∗2

β2 7→ α∗2

α1α2 7→ e∗1

β2β1 7→ e∗3

β1α1 7→ e∗2.

Here, the Frobenius form of A is ε = λL(1A). Since 1A = e1 + e2 + e3, we obtain that ε = (α1α2)∗ +

(β2β1)∗ + (β1α1)∗.

Example 2.1.23. Let k be a field and Q be a quiver given as follows:

1
α //

2
β
oo

Let I be the ideal in the path algebra kQ generated by αβα and βαβ, and A = kQ/I be the associated

bound quiver algebra. A has a k-basis {e1, e2, α, β, αβ, βα} so D(A) has the dual basis {e∗1, e∗2, α∗, β∗, (αβ)∗,

(βα)∗}. Observe that there is an A-bimodule isomorphism λ : A→ D(A) which is explicitly defined on

the basis elements by

λ : A ∼= D(A)

e1 7→ (αβ)∗

e2 7→ (βα)∗

α 7→ β∗

β 7→ α∗

αβ 7→ e∗1

βα 7→ e∗2.

Then A is symmetric by Definition 2.1.13. Since the Frobenius form of A is ε = λ(1A) and 1A = e1 + e2,

we obtain that ε = (αβ)∗ + (βα)∗.

2.1.3 Frobenius Nakayama algebras

A finite dimensional k-algebra A over a field k is called a Nakayama algebra if all indecomposable

projective modules and all indecomposable injective modules in mod-A are uniserial modules. For more

information about Nakayama algebras, see [31], Chapter I.10. In this study, we focus on Frobenius
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Nakayama algebras on which we give some results in the last chapter. Therefore, in this part, we

introduce some prominent results on Frobenius and symmetric Nakayama algebras which we use in

Chapter 4.

Let Nm
n = kQ/I (m,n ≥ 1) be the algebra of the following quiver

1

n

n− 1

. . .

i

. .
.

3

2

αn

αn−1

αn−2

αi αi−1

α3

α2

α1

such that I is the ideal in the path algebra kQ generated by all compositions of m + 1 consecutive

arrows in Q.

Theorem 2.1.24. ([31], Corollary IV.3.12 & Theorem IV.6.15) Let Q be a finite connected quiver with

nonempty set of arrows, k a field, I an admissible ideal of the path algebra kQ, and A = kQ/I the

associated bound quiver algebra. Then the following are equivalent.

(i) A is a Frobenius Nakayama algebra.

(ii) A = Nm
n for some positive integers m and n.

Theorem 2.1.25. ([31], Corollary IV.6.16) Let Q be a finite connected quiver with nonempty set of

arrows, k a field, I an admissible ideal of the path algebra kQ, and A = kQ/I the associated bound

quiver algebra. Then the following are equivalent.

(i) A is a symmetric Nakayama algebra.

(ii) A is a weakly symmetric Nakayama algebra.

(iii) A = Nm
n for some positive integers m and n, with n dividing m.

Example 2.1.26. Let A = N2
3 and νA be a Nakayama automorphism of A. A has a k-basis {e1, e2, e3, α1,

α2, α3, α1α2, α2α3, α3α1}. Then the Nakayama automorphism νA can be explicitly defined on the basis

elements by

νA : A→ A

e1 7→ e3

e2 7→ e1

e3 7→ e2

α1 7→ α3

α2 7→ α1

α3 7→ α2

α1α2 7→ α3α1

α2α3 7→ α1α2

α3α1 7→ α2α3.
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Observe that the Nakayama automorphism νA induces a Nakayama permutation ν of A which is the

cyclic permutation (
1 2 3

3 1 2

)
.

2.2 Frobenius algebras and comultiplication

In this section, we introduce an important characterisation of Frobenius algebras in terms of comultipli-

cation and give the main results of this chapter. For this aim, we first recall the definition of k-algebras

and formulate its axioms in terms of commutative diagrams. By reversing all arrows in these diagrams,

we also give the definition of coalgebras.

Remember that all algebras and modules are finite dimensional over an arbitrary field k in this study.

Definition 2.2.1. A k-algebra A is defined with two k-linear maps

µ : A⊗A→ A and η : k → A

such that the following three diagrams commute:

A⊗A⊗A
idA⊗µ

((
µ⊗idA

vv
A⊗A

µ ((

A⊗A

µvv
A

k ⊗A
η⊗idA //

''

A⊗A
µ
��

A⊗A
µ
��

A⊗ k
idA⊗ηoo

ww
A A

Here, idA : A→ A is the identity map and µ and η are called multiplication and unit map, respectively.

Also, first diagram satisfies associativity condition, second and third diagrams satisfy unity condition.

Now, we give the structure of coalgebra over k, that is the dual of the structure of k-algebra. We

define the coalgebra by reversing all arrows in the above maps given in the definition of k-algebras.

Definition 2.2.2. A coalgebra over k is defined with two k-linear maps

α : A→ A⊗A and ε : A→ k

such that the following three diagrams commute:

A⊗A⊗A

A⊗A

α⊗idA
66

A⊗A

idA⊗αhh

A
α

hh
α

66

k ⊗A A⊗Aε⊗idAoo A⊗A idA⊗ε // A⊗ k

A

gg
α

OO

A

α

OO 77
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Here, again idA : A → A is the identity map and α and ε are called comultiplication and counit map,

respectively. The satisfied condition in the first diagram is called coassociativity, second and third

diagrams are called counity condition.

We denoted the Frobenius form and the counit with same notation ε. This is not a coincidence. In

([21], Proposition 2.3.22), it is proved that every Frobenius algebra has a unique coalgebra structure for

which the Frobenius form is the counit, and which is A-linear. Conversely, in ([21], Proposition 2.3.24), it

is also proved that given a k-algebra equipped with an A-linear coalgebra structure, then the counit is a

Frobenius form. So, this leads to a very important characterisation for Frobenius algebras. In [1], Abrams

did it for commutative Frobenius algebras and also in [2], he proved that all of these characterisations

work for non-commutative Frobenius algebras. He also established the following important theorem:

Theorem 2.2.3. ([2], Theorem 2.1) An algebra A is a Frobenius algebra if and only if it has a coasso-

ciative counital comultiplication α : A→ A⊗k A which is a map of A-bimodules.

Here, we will not give the complete proof of this theorem. But it is necessary to give the construction

of the comultiplication α which is given in [2], Theorem 2.1.

Construction of the comultiplication α : A→ A⊗k A.

Let A be a Frobenius algebra and µ : A⊗k A→ A be the multiplication map. Since A is Frobenius,

there is a left A-module isomorphism λL : A ∼= D(A). Define the comultiplication map αL : A→ A⊗k A
to be the composition (λ−1

L ⊗k λ
−1
L ) ◦ µ∗ ◦ λL:

A

λL

��

αL // A⊗k A

D(A)
µ∗
// D(A)⊗k D(A)

λ−1
L ⊗kλ

−1
L

OO

Note that there is a canonical isomorphism ζ : D(A)⊗kD(A)
∼→ D(A⊗kA) which is described in 2.1.17 in

[21]. The dual of µ : A⊗k A→ A is actually a map µ∗ : D(A)→ D(A⊗k A). Since ζ is an isomorphism,

we can compose µ∗ with the inverse of ζ and write µ∗ : D(A) → D(A) ⊗k D(A). Abrams showed that

αL is a map of left A-modules.

Using the right A-module isomorphism λR : A ∼= D(A), it is analogous to define αR and Abrams

also showed that this comultiplication map αR is a map of right A-modules. Moreover, he proved that

αL = αR. Then we define α := αL = αR. Therefore, this map α : A→ A⊗k A is a map of A-bimodules.

Furthermore, let ε : A → k denote λR(1A). Note that λL(1A) = λR(1A) and thus that ε serves as a

counit for α.

We mentioned that there is a left A-module isomorphism λL : A ∼= D(A). Here we note that

A is viewed as the left regular module over itself, and D(A) is made a left A-module by the action

(a · f)(b) := f(ba) for any a, b ∈ A and f ∈ D(A). Since ε = λL(1A), all elements of D(A) are of the form

a · ε for any a ∈ A. The isomorphism λL : A ∼= D(A) allows us to define a multiplication ϕL in D(A) by

ϕL(a · ε⊗ b · ε) := ab · ε.
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To see it more clearly, observe the following.

ϕL : D(A)⊗k D(A)
λ−1
L ⊗λ

−1
L // A⊗k A

µ // A
λL // D(A)

a · ε⊗k b · ε � // a⊗k b � // ab � // ab · ε

Note also that αR can be used to define the multiplication ϕL such that

ϕL(a · ε⊗ b · ε) = (b · ε⊗ a · ε) ◦ αR = ab · ε.

Dually, the isomorphism λR : A ∼= D(A) allows us to define a multiplication ϕR in D(A) by

ϕR(ε · a⊗ ε · b) := ε · ab.

To see it more clearly, observe the following.

ϕR : D(A)⊗k D(A)
λ−1
R ⊗λ

−1
R // A⊗k A

µ // A
λR // D(A)

ε · a⊗k ε · b � // a⊗k b � // ab � // ε · ab

Note also that αL can be used to define the multiplication ϕR such that

ϕR(ε · a⊗ ε · b) = (ε · b⊗ ε · a) ◦ αL = ε · ab.

Remark 2.2.4. Commutative Frobenius algebras have a very attractive application to two-dimensional

topological quantum field theories. In [1], it is proved that the category of commutative Frobenius

algebras is equivalent to the category of two-dimensional topological quantum field theories.

Example 2.2.5. Let G = {g1, ..., gn} be a finite group written multiplicatively and kG be the group

algebra over k. Then the group algebra kG has a comultiplication α : kG → kG ⊗k kG such that

α(g) =
∑n
i=1 ggi⊗k g

−1
i =

∑n
i=1 gi⊗k g

−1
i g for any g ∈ G. The counit ε of (kG, α) was given in Example

2.1.20 as Frobenius form of kG.

Remark 2.2.6. The group algebra kG has actually another comultiplication α̃ : kG → kG ⊗k kG which

sends g to g ⊗k g for any g ∈ G. This group algebra kG admits a Hopf algebra structure over k with

the comultiplication α̃, the counit f : kG→ k such that f(g) = 1 for any g ∈ G and some other special

linear maps. For more detail about Hopf algebras, see [31], Chapter VI. However, the counit f may not

be a Frobenius form of kG since the kernel of f may contain a nonzero left ideal of kG. Therefore, we

may not say that (kG, f) is a Frobenius algebra. However, since the counit ε of (kG, α) given in Example

2.2.5 is also a Frobenius form of kG, we construct the symmetric Frobenius algebra structure of kG by

using this ε (see Example 2.1.20).

Lemma 2.2.7. Let A be a Frobenius algebra with the comultiplication α and the compatible counit ε.

Suppose that α(1A) =
∑n
i=1 xi ⊗ yi. Then

∑n
i=1 ε(axi)yi = a =

∑n
i=1 xiε(yia) for all a ∈ A.

Proof. Let A be a Frobenius algebra. By Theorem 2.2.3, it is known that the comultiplication α is a

map of A-bimodules. Therefore, aα(1A) = α(a) = α(1A)a. Since α(1A) =
∑n
i=1 xi ⊗ yi by assumption,

we obtain that α(a) =
∑n
i=1 axi ⊗ yi =

∑n
i=1 xi ⊗ yia. We know that A is also a coalgebra since it is

Frobenius. Then by using the counity condition of the coalgebra given in Definition 2.2.2, we obtain that

(ε⊗ idA)α(a) = a = (idA⊗ε)α(a), this means that
∑n
i=1 ε(axi)yi = a =

∑n
i=1 xiε(yia) for all a ∈ A.
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Proposition 2.2.8. Let A be a Frobenius algebra with the comultiplication α. Suppose that α(1A) =∑n
i=1 xi ⊗ yi. Then

α(1A) =

n∑
i=1

xi ⊗ yi =

n∑
i=1

yi ⊗ ν−1
A (xi),

where νA is a Nakayama automorphism of A.

Proof. Let A be a Frobenius algebra with a nondegenerate associative bilinear form β : A⊗A→ k and

ε be its corresponding Frobenius form. Recall that β(x⊗ y) = ε(xy) for all x, y ∈ A. Then by using the

previous lemma and Definition 2.1.11, we obtain that

α(1A) =

n∑
i=1

xi ⊗ yi =

n∑
i,j=1

ε(xixj)yj ⊗ yi

=

n∑
i,j=1

yj ⊗ ε(xixj)yi

=

n∑
i,j=1

yj ⊗ ε(ν−1
A (xj)xi)yi

=

n∑
j=1

yj ⊗ ν−1
A (xj).

The following theorem shows that Proposition 2.1.4 in [3] which was given by Abrams in commu-

tative case is also satisfied for all finite dimensional Frobenius algebras over k. Indeed, in the proof of

Proposition 4.3 in [2], Abrams mentioned and used this result. However, we give an explicit proof by

using Abrams’ results (see the proofs of Theorem 1 in [1] and Theorem 2.1.4 in [3]) and by taking into

consideration the adjustments made by Abrams in the proof of Theorem 2.1 in [2] for noncommutative

case. Here our aim is to emphasize this result since it is very useful for computing the comultiplication

of Frobenius algebras.

Theorem 2.2.9. Let A be a Frobenius algebra with the left A-module isomorphism λL : A ∼= D(A) and

the comultiplication α : A→ A⊗k A. Suppose that v1, ..., vn is a basis for A and v′i = λ−1
L (v∗i ) such that

v∗i (vj) = δij. Then the following are satisfied.

(i) α(1A) =
∑
i v
′
i ⊗ vi.

(ii) α(a) =
∑
i av
′
i ⊗ vi =

∑
i v
′
i ⊗ via for a ∈ A.

Proof. (i) Let A be Frobenius and ε : A→ k be the counit. To prove it, we give the construction which

is given by Abrams in the proof of Theorem 1, [1]. So, let us define β := ε ◦ µ : A⊗ A → k, where µ is

the multiplication map. And also, we define ψ := α ◦ η : k → A ⊗ A such that η : k → A is the unit of

A. Abrams showed that the following diagram commutes:

A⊗A⊗A
idA⊗µ

))
k ⊗A

η⊗idA // A⊗A

α⊗idA 55

µ
))

A⊗A idA⊗ε // A⊗ k

A
α

55

Thus, the top line shows that (idA ⊗ β) ◦ (ψ ⊗ idA) is the identity map on A. Now, we choose a basis
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v1, ..., vn for A. Then for any a ∈ A, this composition maps as follows:

a 7→ ψ(1k)⊗ a = (
∑
j

uj ⊗ vj)⊗ a 7→
∑
j

ujβ(vj ⊗ a) = a,

where uj are some elements in A. In fact, these uj form a basis for A, since they clearly span A, and

there are at most (A : k) of them. Let a = ui. Then we see that ui =
∑
j ujβ(vj⊗ui), so β(vj⊗ui) = δij .

Let v′1, ..., v
′
n denote the dual basis relative to β for a given basis v1, ..., vn. In other words, v′i satisfy

β(vj ⊗ v′i) = δij . Therefore, we have α(1A) = ψ(1k) =
∑
j uj ⊗ vj and uj = v′j .

In fact, since

λL(v′i)(vj) = ε ◦ µ(v′i)(vj) = ε ◦ µ(vj ⊗ v′i) = β(vj ⊗ v′i) = δij ,

we have that v′i = λ−1
L (v∗i ) such that v∗i (vj) = δij . Therefore, we obtain that

α(1A) =
∑
i

v′i ⊗ vi.

(ii) Since α is a map of A-bimodules, we say that aα(1A) = α(a) = α(1A)a for any a ∈ A.

Example 2.2.10. Let k be a field and Q be a quiver given as follows:

1
α1

��
3

α3
@@

2
α2

oo

Let I be the ideal in the path algebra kQ generated by α1α2α3, α2α3α1, α3α1α2 and A = kQ/I be the

associated bound quiver algebra. A has a k-basis {e1, e2, e3, α1, α2, α3, α1α2, α2α3, α3α1} so D(A) has the

dual basis {e∗1, e∗2, e∗3, α∗1, α∗2, α∗3, (α1α2)∗, (α2α3)∗, (α3α1)∗}. It is a nonsymmetric Frobenius Nakayama

algebra by Section 2.1.3. We observe that the left A-module isomorphism λL can be explicitly defined

on the basis elements by

λL : A ∼= D(A)

e1 7→ (α2α3)∗

e2 7→ (α3α1)∗

e3 7→ (α1α2)∗

α1 7→ α∗3

α2 7→ α∗1

α3 7→ α∗2

α1α2 7→ e∗1

α2α3 7→ e∗2

α3α1 7→ e∗3.

Then let e1 = v1, e2 = v2, e3 = v3, α1 = v4, α2 = v5, α3 = v6, α1α2 = v7, α2α3 = v8 and α3α1 = v9.

Therefore, by using Theorem 2.2.9, we write that v′1 = α1α2, v′2 = α2α3, v′3 = α3α1, v′4 = α2, v′5 = α3,

v′6 = α1, v′7 = e3, v′8 = e1 and v′9 = e2 since v′i = λ−1
L (v∗i ) such that v∗i (vj) = δij . Then by using the
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formula given in Theorem 2.2.9 (i), we obtain that

α(1A) =
∑
i

v′i ⊗ vi = α1α2 ⊗ e1 + α2α3 ⊗ e2 + α3α1 ⊗ e3 + α2 ⊗ α1

+ α3 ⊗ α2 + α1 ⊗ α3 + e3 ⊗ α1α2 + e1 ⊗ α2α3 + e2 ⊗ α3α1.

Moreover, by using Theorem 2.2.9 (ii), we obtain that

α(e1) = α1α2 ⊗ e1 + α1 ⊗ α3 + e1 ⊗ α2α3

α(e2) = α2α3 ⊗ e2 + α2 ⊗ α1 + e2 ⊗ α3α1

α(e3) = α3α1 ⊗ e3 + α3 ⊗ α2 + e3 ⊗ α1α2

α(α1) = α1α2 ⊗ α1 + α1 ⊗ α3α1

α(α2) = α2α3 ⊗ α2 + α2 ⊗ α1α2

α(α3) = α3α1 ⊗ α3 + α3 ⊗ α2α3

α(α1α2) = α1α2 ⊗ α1α2

α(α2α3) = α2α3 ⊗ α2α3

α(α3α1) = α3α1 ⊗ α3α1.

Here, the counit ε = λL(1A). Since 1A = e1 + e2 + e3, we obtain that ε = (α1α2)∗ + (α2α3)∗ + (α3α1)∗.

Theorem 2.2.11. Let A be a Frobenius algebra with the comultiplication α : A→ AA⊗k AA. Then

Im(α) = {
∑

ui ⊗ vi |
∑

uix⊗ vi =
∑

ui ⊗ ν−1
A (x)vi, ∀x ∈ A},

where νA is a Nakayama automorphism of A.

Proof. We postpone this proof until Section 4.2 where it will be part of a more general result.
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Chapter 3

Gendo-symmetric algebras

A new class of algebras called gendo-symmetric algebras have been introduced by Fang and Koenig

[13, 14]. Gendo-symmetric algebras are defined by a special case of the Morita-Tachikawa correspondence,

which shows that algebras of dominant dimension at least two are exactly the endomorphism rings of

generator-cogenerators over an algebra (which in our case is assumed to be symmetric). A generator-

cogenerator is a module that up to isomorphism contains each indecomposable projective or injective

module at least once as a direct summand. An algebra A of dominant dimension at least two has a faithful

projective-injective module, say Ae, and also there is a double centraliser property on this (A, eAe)-

bimodule Ae, that is, A ∼= EndeAe(Ae). There are important examples of this situation. Classical Schur-

Weyl duality between Schur algebras Sk(n, r) for n ≥ r and group algebras of symmetric groups Σr as

well as Soergel’s structure theorem for the Bernstein-Gelfand-Gelfand category O are such examples.

Hence the class of gendo-symmetric algebras contains these and many other examples from algebraic

Lie theory as well as symmetric algebras and their Auslander algebras. Gendo-symmetric algebras are

characterised by the existence of a comultiplication and have the properties used for defining the bar

cocomplex. The exactness of this bar cocomplex is used to determine the dominant dimension of gendo-

symmetric algebras. For more information about gendo-symmetric algebras, see [13] and [14].

This chapter is devoted to introducing gendo-symmetric algebras and their characterisation in terms

of comultiplication. We first give the definition of gendo-symmetric algebras and then give some examples

of these algebras. In the second section, we revisit the comultiplication of gendo-symmetric algebras and

give new results on it. As subsection we visit gendo-symmetric Schur algebras and give new results on

the existence of a comultiplication. Next we introduce a result given by Fang and Koenig [13] on the

characterisations of gendo-symmetric algebras and their dominant dimension by using bar cocomplex

and we give a hypothesis which may lead to prove Nakayama conjecture for gendo-symmetric algebras.

Both Frobenius and gendo-symmetric algebras contain symmetric algebras and both are characterised

by the existence of a comultiplication with some special properties. However, these two classes of algebras

have differences. For example, Frobenius algebras have counit compatible with their comultiplication

but gendo-symmetric algebras do not, in general. More clearly, a gendo-symmetric algebra has a counit

compatible with its comultiplication if and only if it is a symmetric algebra. Here, it is natural to ask

whether there are other properties distinguishing Frobenius algebras from gendo-symmetric algebras.

More precisely, what are the differences of gendo-symmetric and Frobenius algebras with respect to

comultiplication? In the last subsection, we answer this question in a different way.

Throughout, all algebras and modules are finite dimensional over an arbitrary field k unless stated

otherwise. By D, we denote the usual k-duality functor Homk(−, k). For simplicity, we denote ⊗k by ⊗.
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3.1 Definition and examples of gendo-symmetric algebras

Definition 3.1.1. A finite dimensional k-algebra A is called gendo-symmetric if it satisfies one of the

following equivalent conditions:

(i) A is the endomorphism algebra of a generator over a symmetric algebra.

(ii) HomA(AD(A),AA) ∼= A as A-bimodules.

(iii) D(A)⊗A D(A) ∼= D(A) as A-bimodules.

(iv) dom.dimA ≥ 2 and D(Ae) ∼= eA as (eAe,A)-bimodules, where Ae is a basic faithful projective-

injective A-module.

From condition (iv) in Definition 3.1.1, we see that symmetric algebras are gendo-symmetric by

choosing e = 1A.

The above definition is based on [14], Theorem 3.2, which provides the equivalence of the four

conditions.

3.1.1 Examples

In this part, some examples of gendo-symmetric algebras are exhibited.

Example 3.1.2. Let B = k[x]/(x2) and M = B ⊕ k. Note that B is symmetric and M is a generator.

Suppose that A = EndB(B ⊕ k). Then A is given by the following quiver

1
α //

2
β
oo

such that βα = 0. We see that A is a gendo-symmetric algebra by using Definition 3.1.1 (i).

We now describe modules by Jordan-Hoelder series. The algebra A has two simple modules S(1) = 1

and S(2) = 2. The indecomposable projective modules are P (1) =

1

2

1

and P (2) =
2

1
, and the indecom-

posable injective modules are I(1) =

1

2

1

and I(2) =
1

2
.

Observe that an injective resolution of A is

0→ A = P (1)⊕ P (2)→ P (1)⊕ P (1)→ P (1)→ I(2)→ 0.

Since I(1) = P (1) is projective, but I(2) is not, we obtain that dom.dimA = 2. Also, since B is

symmetric, it is self-injective and dom.dimB =∞.

Example 3.1.3. Let k be a field and Q be a quiver given as follows:

1
α1 //

2
β1

oo
α2 //

3
β2

oo
α3 //

4
β3

oo

Let I be the ideal in the path algebra kQ generated by α1α2, α2α3, β3β2, β2β1, β1α1−α2β2, β2α2−α3β3

and β3α3 and A = kQ/I be the associated bound quiver algebra.
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Let e = e1 + e2 + e3. The algebra A has four indecomposable projective modules

P (1) =

1

2

1

P (2) =

2

1 3

2

P (3) =

3

2 4

3

P (4) =
4

3
.

The first three of these are injective, too, and their direct sum Ae is a faithful projective-injective

A-module.

Two algebras A and B = eAe also are in a double centraliser situation, on a faithfully balanced

bimodule Ae. This means that A ∼= EndeAe(Ae). Observe that B is symmetric and Ae is a generator.

Therefore, A is gendo-symmetric.

Since P (1) = I(1), P (2) = I(2) and P (3) = I(3) are injective, it is enough to resolve P (4):

0→ P (4)→ I(3)→ I(2)→ I(1)→ I(1)→ I(2)→ I(3)→ I(4)→ 0.

Since I(4) =
3

4
is not projective, we obtain that dom.dimA = 6. Also, since B = eAe is symmetric, it is

self-injective and dom.dimB =∞.

Example 3.1.4. Let N3
3 = kQ/I be the algebra of the following quiver

1
α1

��
3

α3
@@

2
α2

oo

such that I is the ideal of the path algebra kQ generated by all compositions of 4 consecutive arrows.

By using Theorem 2.1.25, we obtain that N3
3 is a symmetric Nakayama algebra. Therefore, it is gendo-

symmetric and dom.dimN3
3 =∞.

Remark 3.1.5. The class of gendo-symmetric algebras includes the subclassA of quasi-hereditary algebras

introduced in [15]. These include the algebras on both sides of classical Schur-Weyl duality and of

Soergel’s structure theorem for the BGG-category O. More information on Schur-Weyl duality can be

found in Subsection 3.2.1.

3.2 Gendo-symmetric algebras and comultiplication

In this part, we revisit the comultiplication of gendo-symmetric algebras and give new results on it. We

start by giving the construction of the comultiplication of gendo-symmetric algebras which has been

obtained by Fang and Koenig in [13].

Let A be a gendo-symmetric algebra. Fix an (eAe,A)-bimodule isomorphism ι : eA ∼= D(Ae). By the

double centralizer property EndeAe(eA) ∼= A, there is an A-bimodule isomorphism γ : Ae⊗eAeeA ∼= D(A)

such that

γ(ae⊗eAe eb)(x) = ι(ebx)(ae) (3.1)

for a, b, x in A. Hence there is an isomorphism in Definition 3.1.1 (iii)

D(A)⊗A D(A) ∼= (Ae⊗eAe eA)⊗A (Ae⊗eAe eA) ∼= Ae⊗eAe eA
γ→ D(A)

where the first isomorphism is γ−1 ⊗A γ−1.
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Let m be the composition of the canonical A-bimodule morphism with the above isomorphism such

that

m : D(A)⊗k D(A)→ D(A)⊗A D(A) ∼= D(A),

where

m(γ(ae⊗eAe eb)⊗k γ(ce⊗eAe ed)) = γ(ae⊗eAe eb⊗A ce⊗eAe ed) = γ(aebce⊗eAe ed). (3.2)

Dualising m yields

∆ : A→ AA⊗k AA

such that

(f ⊗ g)∆(a) = m(g ⊗ f)(a) (3.3)

for any f, g in D(A) and a in A.

Theorem 3.2.1. ([13], Theorem 2.4) Let A be a gendo-symmetric algebra. Then ∆ : A→ AA⊗k AA is

a coassociative comultiplication on A.

The following two results show that ∆ is coassociative and also a map of A-bimodules.

Lemma 3.2.2. ([13], Lemma 2.5) The map m satisfies

m(1⊗m) = m(m⊗ 1)

as k-morphisms from D(A)⊗k D(A)⊗k D(A) to D(A).

Lemma 3.2.3. ([13], Lemma 2.6) Let ∆ : A→ AA⊗k AA be as above. Then

(i) ∆ is an A-bimodule morphism.

(ii) (1⊗∆)∆ = (∆⊗ 1)∆.

(iii) Im(∆) = {
∑
ui ⊗ vi |

∑
uix⊗ vi =

∑
ui ⊗ xvi, ∀x ∈ A}.

Corollary 3.2.4. ([13], Corollary 2.7) The comultiplication ∆ is unique up to precomposing it with

multiplication by an invertible central element.

Thus ∆ is called the canonical comultiplication attached to the gendo-symmetric algebra A.

Proposition 3.2.5. ([13], Proposition 2.8) Let A be a gendo-symmetric k-algebra with the canonical

comultiplication ∆ : A→ AA⊗k AA. Then

(i) (A,∆) has a counit iff A is symmetric.

(ii) Let ∆(1) =
∑
xi ⊗ yi. Then ∆(1) =

∑
yi ⊗ xi.

Proposition 3.2.6. ([13], Proposition 2.10 (2)) Let A be a gendo-symmetric k-algebra. If B is Morita

equivalent to A, then B is gendo-symmetric.

Procedure for obtaining the comultiplication ∆ of any gendo-symmetric algebra A.

(1) Choose an idempotent e ∈ A so that Ae a basic faithful projective-injective A-module.

(2) Write the (eAe,A)-bimodule isomorphism ι : eA→ D(Ae) explicitly on a choice of basis elements.

(3) Write the A-bimodule isomorphism γ : Ae ⊗eAe eA ∼= D(A) by using (3.1) to obtain the basis

elements of D(A) in terms of the elements of Imγ.

(4) Obtain the multiplication table of D(A) by using (3.2).

(5) Dualise m by using (3.3) and obtain ∆ on the basis elements of A.
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(6) By using the linearity of ∆, obtain ∆ on any element a ∈ A.

Let us apply this procedure on the following examples.

Example 3.2.7. LetA be the gendo-symmetric algebra in Example 3.1.2. A has a k-basis {e1, e2, α, β, αβ}
so D(A) has the dual basis {e∗1, e∗2, α∗, β∗, (αβ)∗}.

(1) We choose e = e1 since Ae1 is a basic faithful projective-injective A-module.

(2) The (eAe,A)-bimodule isomorphism ι is explicity defined on the basis elements by

ι : eA ∼= D(Ae)

e1 7→ (αβ)∗

α 7→ β∗

αβ 7→ e∗1.

(3) The A-bimodule isomorphism γ is explicitly defined by

γ : Ae⊗eAe eA ∼= D(A)

e1 ⊗ αβ 7→ e∗1

β ⊗ α 7→ e∗2

β ⊗ e1 7→ α∗

e1 ⊗ α 7→ β∗

e1 ⊗ e1 7→ (αβ)∗.

(4) We obtain the multiplication table of the basis elements of D(A) as follows:

m e∗1 e∗2 α∗ β∗ αβ∗

e∗1 0 0 0 0 e∗1

e∗2 0 0 0 0 0

α∗ 0 0 0 e∗2 α∗

β∗ 0 0 e∗1 0 0

αβ∗ e∗1 0 0 β∗ (αβ∗)

(5) Dualising m yields

∆ : A→ AA⊗k AA

such that (f ⊗ g)∆(a) = m(g ⊗ f)(a) for any f, g ∈ D(A) and a ∈ A. So let

f = λ1e
∗
1 + λ2e

∗
2 + λ3α

∗ + λ4β
∗ + λ5(αβ)∗

g = µ1e
∗
1 + µ2e

∗
2 + µ3α

∗ + µ4β
∗ + µ5(αβ)∗,

where λi, µi ∈ k for 1 ≤ i ≤ 5. By using the table in the previous step, we get

m(g ⊗ f) = (µ1λ5 + µ4λ3 + µ5λ1)e∗1 + µ3λ4e
∗
2 + µ3λ5α

∗ + µ5λ4β
∗ + µ5λ5(αβ)∗.

Then

m(g ⊗ f)(e1) = µ1λ5 + µ4λ3 + µ5λ1
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m(g ⊗ f)(e2) = µ3λ4

m(g ⊗ f)(α) = µ3λ5

m(g ⊗ f)(β) = µ5λ4

m(g ⊗ f)(αβ) = µ5λ5.

Since (f ⊗ g)∆(a) = m(g ⊗ f)(a) for all a ∈ A, we obtain that

∆(e1) = αβ ⊗ e1 + α⊗ β + e1 ⊗ αβ

∆(e2) = β ⊗ α

∆(α) = αβ ⊗ α

∆(β) = β ⊗ αβ

∆(αβ) = αβ ⊗ αβ.

(6) Let a ∈ A. Then we can write a = a1e1 + a2e2 + a3α + a4β + a5αβ, where ai ∈ k for 1 ≤ i ≤ 5.

The linearity of ∆ gives that

∆(a) = a1∆(e1) + a2∆(e2) + a3∆(α) + a4∆(β) + a5∆(αβ).

Example 3.2.8. Let k be a field and Q be a quiver given as follows:

1
α1 //

2
β1

oo
α2 //

3
β2

oo

Let I be the ideal in the path algebra kQ generated by α1α2, β2β1, β2α2, β1α1−α2β2 and A = kQ/I be

the associated bound quiver algebra. A has a k-basis {e1, e2, e3, α1, α2, β1, β2, α1β1, α2β2} so D(A) has

the dual basis {e∗1, e∗2, e∗3, α∗1, α∗2, β∗1 , β∗2 , (α1β1)∗, (α2β2)∗}.

(1) We choose e = e1 + e2 since A(e1 + e2) is a basic faithful projective-injective A-module.

(2) The (eAe,A)-bimodule isomorphism ι is explicity defined on the basis elements by

ι : eA ∼= D(Ae)

e1 7→ (α1β1)∗

e2 7→ (α2β2)∗

α1 7→ β∗1

β1 7→ α∗1

α2 7→ β∗2

α1β1 7→ e∗1

α2β2 7→ e∗2.

(3) The A-bimodule isomorphism γ is explicitly defined by

γ : Ae⊗eAe eA ∼= D(A)

e1 ⊗ α1β1 7→ e∗1

e2 ⊗ α2β2 7→ e∗2
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β2 ⊗ α2 7→ e∗3

β1 ⊗ e1 7→ α∗1

β2 ⊗ e2 7→ α∗2

e1 ⊗ α1 7→ β∗1

e2 ⊗ α2 7→ β∗2

e1 ⊗ e1 7→ (α1β1)∗

e2 ⊗ e2 7→ (α2β2)∗.

(4) We obtain the multiplication table of the basis elements of D(A) as follows:

m e∗1 e∗2 e∗3 α∗1 α∗2 β∗1 β∗2 (α1β1)∗ (α2β2)∗

e∗1 0 0 0 0 0 0 0 e∗1 0

e∗2 0 0 0 0 0 0 0 0 e∗2

e∗3 0 0 0 0 0 0 0 0 0

α∗1 0 0 0 0 0 e∗2 0 α∗1 0

α∗2 0 0 0 0 0 0 e∗3 0 α∗2

β∗1 0 0 0 e∗1 0 0 0 0 β∗1

β2 0 0 0 0 e∗2 0 0 0 0

(α1β1)∗ e∗1 0 0 0 0 β∗1 0 (α1β1)∗ 0

(α2β2)∗ 0 e∗2 0 α∗1 0 0 β∗2 0 (α2β2)∗

(5) Dualising m yields

∆ : A→ AA⊗k AA

such that (f ⊗ g)∆(a) = m(g ⊗ f)(a) for any f, g ∈ D(A) and a ∈ A. So let

f = λ1e
∗
1 + λ2e

∗
2 + λ3e

∗
3 + λ4α

∗
1 + λ5α

∗
2 + λ6β

∗
1 + λ7β

∗
2 + λ8(α1β1)∗ + λ9(α2β2)∗

g = µ1e
∗
1 + µ2e

∗
2 + µ3e

∗
3 + µ4α

∗
1 + µ5α

∗
2 + µ6β

∗
1 + µ7β

∗
2 + µ8(α1β1)∗ + µ9(α2β2)∗,

where λi, µi ∈ k for 1 ≤ i ≤ 9. By using the table in the previous step, we get

m(g ⊗ f) = (µ1λ8 + µ6λ4 + µ8λ1)e∗1 + (µ2λ9 + µ4λ6 + µ7λ5 + µ9λ2)e∗2 + µ5λ7e
∗
3

+ (µ4λ8 + µ9λ4)α∗1 + µ5λ9α
∗
2

+ (µ6λ9 + µ8λ6)β∗1 + µ9λ7β
∗
2

+ µ8λ8(α1β1)∗ + µ9λ9(α2β2)∗.

Then

m(g ⊗ f)(e1) = µ1λ8 + µ6λ4 + µ8λ1

m(g ⊗ f)(e2) = µ2λ9 + µ4λ6 + µ7λ5 + µ9λ2

m(g ⊗ f)(e3) = µ5λ7

m(g ⊗ f)(α1) = µ4λ8 + µ9λ4

m(g ⊗ f)(α2) = µ5λ9

m(g ⊗ f)(β1) = µ6λ9 + µ8λ6
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m(g ⊗ f)(β2) = µ9λ7

m(g ⊗ f)(α1β1) = µ8λ8

m(g ⊗ f)(α2β2) = µ9λ9.

Since (f ⊗ g)∆(a) = m(g ⊗ f)(a) for all a ∈ A, we obtain that

∆(e1) = α1β1 ⊗ e1 + α1 ⊗ β1 + e1 ⊗ α1β1

∆(e2) = α2β2 ⊗ e2 + β1 ⊗ α1 + α2 ⊗ β2 + e2 ⊗ α2β2

∆(e3) = β2 ⊗ α2

∆(α1) = α1β1 ⊗ α1 + α1 ⊗ α2β2

∆(α2) = α2β2 ⊗ α2

∆(β1) = α2β2 ⊗ β1 + β1 ⊗ α1β1

∆(β2) = β2 ⊗ α2β2

∆(α1β1) = α1β1 ⊗ α1β1

∆(α2β2) = α2β2 ⊗ α2β2.

(6) Let a ∈ A. Then we can write

a = a1e1 + a2e2 + a3e3 + a4α1 + a5α2 + a6β1 + a7β2 + a8α1β1 + a9α2β2,

where ai ∈ k for 1 ≤ i ≤ 9. The linearity of ∆ gives that

∆(a) = a1∆(e1)+a2∆(e2)+a3∆(e3)+a4∆(α1)+a5∆(α2)+a6∆(β1)+a7∆(β2)+a8∆(α1β1)+a9∆(α2β2).

Definition 3.2.9. Let (A,∆) be a gendo-symmetric algebra. A coideal of the gendo-symmetric algebra

A is a k-vector subspace C of A such that ∆(C) ⊆ C ⊗A+A⊗ C.

Since a gendo-symmetric algebra (A,∆) may not have a counit, in general, we can not use this

property in the above definition.

Theorem 3.2.10. Let A be a gendo-symmetric algebra with a basic faithful projective-injective A-module

Ae for an idempotent e of A such that eAe is symmetric. Let π : A→ eAe be the k-linear map such that

π(a) = eae for a ∈ A. Suppose that ∆A is a comultiplication of A. Then there exists a comultiplication

∆eAe of eAe such that (π ⊗ π)∆A = ∆eAeπ.

Proof. Since A is gendo-symmetric and eAe is symmetric, there are multiplications

mD(A) : D(A)⊗k D(A)→ D(A)

and

mD(eAe) : D(eAe)⊗k D(eAe)→ D(eAe).

Let π : A → eAe be the k-linear map which is given in the assumption. Take the dual of π. Then we

have π∗ : D(eAe) → D(A) such that π∗(f)(a) = f ◦ π(a) = f(eae) for any f ∈ D(eAe) and a ∈ A. In

fact, there is an A-bimodule isomorphism γ : Ae ⊗eAe eA ∼= D(A). Multiplying by e on the left and

right implies an (eAe, eAe)-bimodule isomorphism γ : eAe ⊗eAe eAe ∼= D(eAe) and we define mD(eAe)
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by using γ. Here, for any a, b, x ∈ A γ(eae⊗eAe ebe)(x) = γ(eae⊗eAe ebe)(exe) since γ is an A-bimodule

isomorphism. We may suppose that γ(eae⊗eAe ebe)(exe) = γ(eae⊗eAe ebe)(exe).

We now observe the following diagram

D(eAe)⊗k D(eAe) D(eAe)

D(A)⊗k D(A) D(A)

mD(eAe)

π∗⊗π∗ π∗

mD(A)

Observe that

π∗ ◦mD(eAe)(γ(eae⊗eAe ebe)⊗k γ(ece⊗eAe ede))(x) = π∗(γ(eaebece⊗eAe ede))(x)

= γ(eaebece⊗eAe ede) ◦ π(x)

= γ(eaebece⊗eAe ede)(exe)

for any x ∈ A. Let ∆A(x) =
∑
i ui ⊗k vi. Then

mD(A) ◦ (π∗ ⊗ π∗)(γ(eae⊗eAe ebe)⊗k γ(ece⊗eAe ede))(x)

= mD(A)(γ(eae⊗eAe ebe) ◦ π ⊗k γ(ece⊗eAe ede) ◦ π)(x)

= (γ(ece⊗eAe ede) ◦ π ⊗k γ(eae⊗eAe ebe) ◦ π)∆A(x)

= (γ(ece⊗eAe ede) ◦ π ⊗k γ(eae⊗eAe ebe) ◦ π)
∑
i

ui ⊗k vi

=
∑
i

(γ(ece⊗eAe ede) ◦ π(ui)⊗k γ(eae⊗eAe ebe) ◦ π(vi)

=
∑
i

(γ(ece⊗eAe ede)(euie)⊗k γ(eae⊗eAe ebe)(evie)

=
∑
i

(γ(ece⊗eAe ede)(euie)⊗k γ(eae⊗eAe ebe)(evie)

=
∑
i

(γ(ece⊗eAe ede)(eui)⊗k γ(eae⊗eAe ebe)(vie) (since γ is an A-bimodule isomorphism)

= γ(ece⊗eAe ede)⊗k γ(eae⊗eAe ebe)(
∑
i

eui ⊗k vie)

= γ(ece⊗eAe ede)⊗k γ(eae⊗eAe ebe)∆A(exe) (since ∆A is an A-bimodule morphism)

= mD(A)(γ(eae⊗eAe ebe)⊗k γ(ece⊗eAe ede))(exe)

= γ(eaebece⊗eAe ede)(exe)

= γ(eaebece⊗eAe ede)(exe).

Thus we obtain that π∗ ◦mD(eAe) = mD(A) ◦ (π∗ ⊗ π∗). Therefore, the above diagram is commutative.

By dualising the above diagram, we have the following commutative diagram

A A⊗k A

eAe eAe⊗k eAe

∆A

π π⊗π
∆eAe

In other words,

(π ⊗ π)∆A = ∆eAeπ.

43



We keep the notations introduced in the above theorem.

Corollary 3.2.11. Kernel of π is a coideal of the gendo-symmetric algebra A.

Proof. By the above theorem, we have (π⊗π)∆A = ∆eAeπ. Since ∆eAeπ(Ker(π)) = 0, (π⊗π)∆A(Ker(π)) =

0, that is, ∆A(Ker(π)) ⊆ Ker(π ⊗ π). Observe that

Ker(π ⊗ π) = Ker(π)⊗A+A⊗Ker(π).

Therefore, ∆A(Ker(π)) ⊆ Ker(π)⊗A+A⊗Ker(π). By definition of coideal, Ker(π) is a coideal of A.

Example 3.2.12. Let A be the path algebra of the following quiver

1
α1 //

2
β1

oo
α2 //

3
β2

oo
α3 //

4
β3

oo

such that α1α2 = 0, α2α3 = 0, β3β2 = 0, β2β1 = 0, β1α1 = α2β2, β2α2 = α3β3 and β3α3 = 0.

Observe that A is a gendo-symmetric algebra. We choose e = e1 + e2 + e3 so that Ae is a basic faithful

projective-injective A-module. Then eAe becomes a path algebra of the following quiver

1
α1 //

2
β1

oo
α2 //

3
β2

oo

such that α1α2 = 0, β2β1 = 0, α1β1α1 = 0, β2α2β2 = 0 and α2β2 = β1α1. The map π is explicitly

defined on the basis elements by

π : A→ eAe

e1 7→ e1

e2 7→ e2

e3 7→ e3

e4 7→ 0

α1 7→ α1

α2 7→ α2

α3 7→ 0

β1 7→ β1

β2 7→ β2

β3 7→ 0

α1β1 7→ α1β1

β1α1 7→ β1α1

β2α2 7→ β2α2.

Suppose that ∆A is the comultiplication of A which is defined on the basis elements by

∆A(e1) = α1β1 ⊗ e1 + α1 ⊗ β1 + e1 ⊗ α1β1
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∆A(e2) = β1α1 ⊗ e2 + β1 ⊗ α1 + α2 ⊗ β2 + e2 ⊗ β1α1

∆A(e3) = β2α2 ⊗ e3 + β2 ⊗ α2 + α3 ⊗ β3 + e3 ⊗ β2α2

∆A(e4) = β3 ⊗ α3

∆A(α1) = α1β1 ⊗ α1 + α1 ⊗ β1α1

∆A(α2) = β1α1 ⊗ α2 + α2 ⊗ β2α2

∆A(α3) = β2α2 ⊗ α3

∆A(β1) = β1α1 ⊗ β1 + β1 ⊗ α1β1

∆A(β2) = β2α2 ⊗ β2 + β2 ⊗ β1α1

∆A(β3) = β3 ⊗ β2α2

∆A(α1β1) = α1β1 ⊗ α1β1

∆A(β1α1) = β1α1 ⊗ β1α1

∆A(β2α2) = β2α2 ⊗ β2α2.

Then there exists a comultiplication ∆eAe of eAe which is defined on the basis elements by

∆eAe(e1) = α1β1 ⊗ e1 + α1 ⊗ β1 + e1 ⊗ α1β1

∆eAe(e2) = β1α1 ⊗ e2 + β1 ⊗ α1 + α2 ⊗ β2 + e2 ⊗ β1α1

∆eAe(e3) = β2α2 ⊗ e3 + β2 ⊗ α2 + e3 ⊗ β2α2

∆eAe(α1) = α1β1 ⊗ α1 + α1 ⊗ β1α1

∆eAe(α2) = β1α1 ⊗ α2 + α2 ⊗ β2α2

∆eAe(β1) = β1α1 ⊗ β1 + β1 ⊗ α1β1

∆eAe(β2) = β2α2 ⊗ β2 + β2 ⊗ β1α1

∆eAe(α1β1) = α1β1 ⊗ α1β1

∆eAe(β1α1) = β1α1 ⊗ β1α1

∆eAe(β2α2) = β2α2 ⊗ β2α2

such that (π ⊗ π)∆A = ∆eAeπ.

The following result shows the relation between the comultiplications of gendo-symmetric algebra A

and gendo-symmetric quotient algebra B = A/I, where I is a two-sided ideal of A.

Theorem 3.2.13. Let A and B be gendo-symmetric algebras such that B = A/I, where I is a two-

sided ideal of A, and π : A → B be the canonical surjection. Suppose that Ae and Bf are basic faithful

projective-injective A-module and B-module, respectively, where e = e′+e′′ is an orthogonal decomposition

and f = e′ + I. Let ∆A be a comultiplication of A. Then there exists a comultiplication ∆B of B such

that (π ⊗ π)∆A = ∆Bπ.

Proof. Since A and B are gendo-symmetric, there are multiplications mD(A) : D(A) ⊗k D(A) → D(A)

and mD(B) : D(B)⊗k D(B)→ D(B), respectively. Note that mD(A) is a A-bimodule and mD(B) is a B-

bimodule morphism. Let π : A→ B be the canonical surjection. By dualizing this surjective morphism,

we obtain an injective morphism i : D(B) → D(A). Observe that there is an algebra isomorphism

φ : D(B) = D(A/I) ∼= I0, where I0 = {f ∈ D(A) | f(x) = 0, for all x ∈ I}. Then we obtain that

i : D(B) ∼= I0 ↪→ D(A), that is i = iφ, where i : I0 ↪→ D(A) is an inclusion.
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There are also A-bimodule isomorphism γ : Ae ⊗eAe eA ∼= D(A) and B-bimodule isomorphism

γ : Bf ⊗fBf fB ∼= D(B). We can write γ as γ : Ae′/I ⊗e′Ae′/I e′A/I ∼= D(B).

Therefore, the injective morphism i can be defined as

i(γ((ae′+ I)⊗e′Ae′/I (e′b+ I))) = iφ(γ((ae′+ I)⊗e′Ae′/I (e′b+ I))) = i(γ(ae′⊗eAe e′b)) = γ(ae′⊗eAe e′b)

such that γ(ae′ ⊗eAe e′b)(x) = 0 for all x ∈ I. Therefore, we obtain the following commutative diagram.

D(B)⊗k D(B) D(B)

D(A)⊗k D(A) D(A)

mD(B)

i⊗i i

mD(A)

Let us check this commutativity. From Section 3.2, it is known that mD(A) and mD(B) are defined by

mD(A) : D(A)⊗k D(A)→ D(A)⊗A D(A) ∼= D(A) (∗)

and

mD(B) : D(B)⊗k D(B)→ D(B)⊗B D(B) ∼= D(B), (∗∗)

respectively. Therefore,

imD(B)(γ((ae′ + I)⊗e′Ae′/I (e′b+ I))⊗k γ((ce′ + I)⊗e′Ae′/I (e′d+ I)))

(1)
= i(γ((ae′ + I)⊗e′Ae′/I (e′b+ I)⊗A/I (ce′ + I)⊗e′Ae′/I (e′d+ I)))

=i(γ((ae′bce′ + I)⊗e′Ae′/I (e′d+ I)))

=iφ(γ((ae′bce′ + I)⊗e′Ae′/I (e′d+ I)))

=i(γ(ae′bce′ ⊗eAe e′d))

=γ(ae′bce′ ⊗eAe e′d),

where (1) is obtained by (∗∗), and

mD(A)(i⊗ i)(γ((ae′ + I)⊗e′Ae′/I (e′b+ I))⊗k γ((ce′ + I)⊗e′Ae′/I (e′d+ I)))

=mD(A)(i(γ((ae′ + I)⊗e′Ae′/I (e′b+ I)))⊗k i(γ((ce′ + I)⊗e′Ae′/I (e′d+ I))))

=mD(A)(iφ(γ((ae′ + I)⊗e′Ae′/I (e′b+ I)))⊗k iφ(γ((ce′ + I)⊗e′Ae′/I (e′d+ I))))

=mD(A)(i(γ(ae′ ⊗eAe e′b))⊗k i(γ(ce′ ⊗eAe e′d)))

=mD(A)(γ(ae′ ⊗eAe e′b)⊗k γ(ce′ ⊗eAe e′d))

(2)
=γ(ae′ ⊗eAe e′b⊗A ce′ ⊗eAe e′d)

=γ(ae′bce′ ⊗eAe e′d),

where (2) is obtained by (∗). Hence, we obtain that imD(B) = mD(A)(i ⊗ i). By dualising the above

diagram, we have the following commutative diagram

A A⊗k A

B B ⊗k B

∆A

π π⊗π
∆B
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where π : A→ B is canonical surjection. Then we obtain that

(π ⊗ π)∆A = ∆Bπ.

Let us illustrate this result by an example.

Example 3.2.14. Let A be the path algebra of the following quiver

1
α1 //

2
β1

oo
α2 //

3
β2

oo

such that α1α2 = 0, β2β1 = 0, β2α2 = 0, β1α1 = α2β2 which is given in Example 3.2.8, and B be the

path algebra of following quiver

1
α1 //

2
β1

oo

such that β1α1 = 0 which is given in Example 3.2.7. Observe that B ∼= A/Ae3A. Let π : A→ B be the

canonical surjection. Let ∆A be the comultiplication of A which is computed in Example 3.2.8. Then

there exists a comultiplication ∆B of B, which is computed in Example 3.2.7, such that (π⊗π)∆A = ∆Bπ.

In Theorem 3.2.13, we assumed that e = e′ + e′′ is an orthogonal decomposition and f = e′ + I. Let

us see why this assumption is necessary by an example.

Example 3.2.15. Let A be the algebra given in previous example and e = e1 + e2. Let I = radA.

Then B ∼= A/radA is semisimple and so symmetric. Here we can consider B as the path algebra of the

quiver which has 3 vertices and no arrows. Since B is symmetric, f = 1B = e1 + e2 + e3. We see that

this example does not satisfy the assumption in the theorem. We now determine the invertible central

elements of B. Any element x ∈ B can be written by x = c1e1 + c2e2 + c3e3 where c1, c2, c3 ∈ k. Suppose

that x is an invertible element of B such that xy = 1B , where y = d1e1 + d2e2 + d3e3. Then

xy = (c1e1 + c2e2 + c3e3)(d1e1 + d2e2 + d3e3)

= c1d1e1 + c2d2e2 + c3d3e3

= e1 + e2 + e3.

Hence, c1d1 = c2d2 = c3d3 = 1k. This means that c1, c2, c3 are nonzero elements of the field k. Moreover,

for any b = b1e1 + b2e2 + b3e3 ∈ B, we observe that

xb = (c1e1 + c2e2 + c3e3)(b1e1 + b2e2 + b3e3)

= c1b1e1 + c2b2e2 + c3b3e3

= b1c1e1 + b2c2e2 + b3c3e3

= (b1e1 + b2e2 + b3e3)(c1e1 + c2e2 + c3e3) = bx.

Then we obtain that the central invertible elements of B are of the form x = c1e1 + c2e2 + c3e3 where

c1, c2, c3 are nonzero elements of the field k.

By Corollary 3.2.4, any comultiplication ∆B of B on the basis elements is of the form

∆B(e1) = c1e1 ⊗ e1
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∆B(e2) = c2e2 ⊗ e2

∆B(e3) = c3e3 ⊗ e3.

Let π : A→ B be the canonical surjection. Then we observe that

(π ⊗ π)∆A(e1) = (π ⊗ π)(α1β1 ⊗ e1 + α1 ⊗ β1 + e1 ⊗ α1β1) = 0

and

∆Bπ(e1) = ∆B(e1) = c1e1 ⊗ e1

are not equal and the conclusion of Theorem 3.2.13 does not hold.

3.2.1 Gendo-symmetric Schur algebras

Schur algebras, named after Issai Schur who was a student of Frobenius, are certain finite dimensional

algebras which relate representation theories of general linear and symmetric groups. In fact, this relation

is obtained by using an important theorem which is called Schur-Weyl duality. Some Schur algebras are

also contained in the class of gendo-symmetric algebras. Therefore, we will give a place to Schur algebras

in this study.

In this part, we first give the definition of Schur algebras and indicate in which case the Schur algebras

are gendo-symmetric. At the same time, we give information about their dominant dimension. Later we

introduce the Schur-Weyl duality and give some related examples. Lastly, we give some results from [33]

to show the motivation of the main results of this subsection.

For more information about Schur algebras, see [7] and [17].

Let k be an infinite field, n and r be two natural numbers. Let I(n, r) be the set of multi-indices

(i1, ..., ir) with iρ ∈ {1, ..., n} for 1 ≤ ρ ≤ r. Let Ak(n, r) be the k-space of homogeneous polynomials of

degree r in the n2 indeterminants {ci,j | 1 ≤ i, j ≤ n}. This k-space Ak(n, r) is clearly spanned by the

monomials ci,j = ci1,j1 ...cir,jr where i, j ∈ I(n, r). The Schur algebra Sk(n, r) is defined to be the k-dual

of Ak(n, r).

Let n ≥ r. Then Sk(n, r) is gendo-symmetric (see [13]). Therefore, any faithful projective and

injective left Sk(n, r)-module satisfies the double centralizer property and the dominant dimension of

Sk(n, r) equals

max{d | Hi(C•Sk(n,r)) = 0 | 0 ≤ i ≤ d}+ 1,

by Theorem 3.3.1 which is given in the next section. Moreover, if r ≥ p = char(k) > 0, then

dom.dimSk(n, r) = 2(p−1) ([15], Theorem 5.1); otherwise, Sk(n, r) is semisimple and so dom.dimSk(n, r) =

∞.

Let n < r. In this case, the Schur algebra Sk(n, r) does not always have a faithful projective-injective

module and may have dominant dimension zero. Instead of projective-injective modules, in [22], Koenig,

Slungard and Xi used (partial) tilting modules, that is, self-dual modules which are filtered by Weyl

modules.

However, in [12], Fang made some further investigation and more results under the mild condition

r ≤ n(p− 1); and he proved the following theorem.

Theorem 3.2.16. ([12], Theorem 3.10) Let k be an infinite field of characteristic p > 0, n and r be two

natural numbers. If r ≤ n(p − 1), then Sk(n, r) is gendo-symmetric with dominant dimension equal to
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the largest number t (or ∞) such that the following complex is exact

Ak(n, r)⊗(t+1) ∂t→ Ak(n, r)⊗t → ...
∂2→ Ak(n, r)⊗k Ak(n, r)

∂1→ Ak(n, r)→ 0

where ∂i(a0 ⊗ ...⊗ ai) =
∑i−1
j=0(−1)ja0 ⊗ ...⊗ aj−1 ⊗Θ(aj , aj+1)⊗ aj+2 ⊗ ...⊗ ai for a0, ..., ai ∈ Ak(n, r)

and Θ is the multiplication map defined in [12], Theorem 3.2.

The condition r ≤ n(p − 1) in the last theorem is sufficient but not necessary for Sk(n, r) to be

gendo-symmetric. For example, if k is an infinite field of characteristic 2, then Sk(2, 3) is semisimple by

Theorem 2 in [8], hence it has dominant dimension ∞. Sk(2, 4) has dominant dimension 0 by [22]; and

Sk(2, 7) has dominant dimension 2 since it is Morita equivalent to Sk(2, 2) × k × k. Here both Sk(2, 3)

and Sk(2, 7) are gendo-symmetric.

Remark 3.2.17. The q-Schur algebras are q-analogues of the classical Schur algebras, in which the sym-

metric group is replaced by the corresponding Hecke algebra and the general linear group by an appro-

priate quantum group.

Now we introduce an outstanding result which is called Schur-Weyl duality.

Theorem 3.2.18. (Schur-Weyl duality) Let n and r be two natural numbers and let k be an infinite field

of any characteristic. Let the general linear group GLn(k) act diagonally from the left on E = (kn)⊗r

(with natural action on kn) and let the symmetric group Σr act from the right by place permutations.

Denote by Sk(n, r) the algebra generated by the image of the GLn-action (the ”Schur algebra”).

(a) Suppose n ≥ r. Then there is a double centralizer property

Sk(n, r) ∼= EndkΣr
(E)

kΣr ∼= EndSk(n,r)(E).

(b) Suppose n < r. Denote by B the quotient of kΣr modulo the kernel of the action of kΣr on E.

Then there is a double centralizer property

Sk(n, r) ∼= EndB(E)

B ∼= EndSk(n,r)(E).

(c) Parts (a) and (b) remain true if one replaces the Schur algebra Sk(n, r) by the quantized Schur

algebra Sq(n, r) and the group algebra kΣr of the symmetric group by the Hecke algebra Hq(r) (q 6= 0)

of type A.

Schur [29] proved (a) and (b) at least in characteristic zero in order to relate the representation

theories of the general linear and the symmetric groups. There are various proofs for the general case.

For different approaches and cases, see [5], [6], [9], [10] and [19]. In [22], there is also a computation-free

proof. In addition, see [17].

Theorem 3.2.19. ([22], Theorem 1.3) (a) A (classical or quantized) Schur algebra S(n, r) with n ≥ r

has dominant dimension at least two.

(b) For a (classical or quantized) Schur algebra S(n, r) with n < r there is a tilting module T such

that S(n, r) has T -dominant dimension at least two.

Example 3.2.20. The algebra A in Example 3.1.2 is Morita equivalent to the Schur algebra Sk(2, 2) if

k is an infinite field of characteristic 2. Then B = eAe is the corresponding group algebra kΣ2 occuring

in Schur-Weyl duality.
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Example 3.2.21. The algebra A in Example 3.1.3 is Morita equivalent to a block of a quantised Schur

algebra in quantum characteristic four. Then B = eAe is the corresponding block of a Hecke algebra

occuring in quantised Schur-Weyl duality.

From now on, we underline some remarkable parts of [33] by Xi. So until the next section we assume

that k is an algebraically closed field and n ≥ r. We consider the case char(k) = p > 0 and r = p.

Theorem 3.2.22. ([33], Theorem 2.8) Let A be a connected basic symmetric algebra and M the socle

of an indecomposable projective left ideal of A such that A/M is quasi-hereditary. Then A is a simple

algebra, or isomorphic to k[x]/(x2) where k[x] is the polynomial ring in one variable x, or there is a

natural number n ≥ 2, such that A is the path algebra of the following quivers

1
α1 //

2
β1

oo
α2 //

3 · · ·n− 1
αn−1 //

β2

oo n
βn−1

oo

modulo the ideal generated by

αi−1αi, βiβi−1, αiβi − βi−1αi−1 for i = 2, · · · , n− 1;

α1β1α1, βn−1αn−1βn−1.

The converse of the above theorem holds.

Note that an algebra A is called quadratic if the basic algebra of A can be written by quiver and

relations with all relations of degree 2. The above theorem equivalently says that if there is an inde-

composable module M over a symmetric algebra A such that E := EndA(AA⊕M) is quasi-hereditary,

then the algebra E is quadratic. By Proposition in [33], the algebra Sk(n, p) is Morita equivalent to an

algebra of the form EndA(AA⊕M) with A = kΣp and M an indecomposable module. Since the Schur

algebra is quasi-hereditary (see [15]), by Theorem 3.2.22 the basic algebra of Sk(n, p) is of the form in

following theorem.

Theorem 3.2.23. ([33], Theorem) Let k be an algebraically closed field with characteristic p > 0. Then

each block of the Schur algebra Sk(n, p) with n ≥ p is either simple or Morita equivalent to the path

algebra P (over k) of

1
α1 //

2
β1

oo
α2 //

3 · · ·n− 1
αn−1 //

β2

oo n
βn−1

oo

modulo the ideal generated by

αiαi+1, βi+1βi, αi+1βi+1 − βiαi, for 1 ≤ i ≤ n− 1;

βn−1αn−1,

where n ≥ 1 and depends only on p. Moreover, there is only one non-simple block. Thus, in particular,

Sk(n, p) is a quadratic algebra.

Remark 3.2.24. In [32], Wen considered the case where A is self-injective and obtained a complete list

of self-injective algebras with an indecomposable A-module M such that the k-algebra EndA(A⊕M) is

quasi-hereditary, which properly includes the algebras in Theorem 3.2.22.

We observe that the algebra in Theorem 3.2.23 is gendo-symmetric Schur algebra. Now we are ready

to give its comultiplication with following result.

50



Proposition 3.2.25. Let A be the path algebra (over k) of the following quiver

1
α1 //

2
β1

oo
α2 //

3 · · ·n− 1
αn−1 //

β2

oo n
βn−1

oo

modulo the ideal generated by

αiαi+1, βi+1βi, αi+1βi+1 − βiαi for 1 ≤ i ≤ n− 2;

βn−1αn−1,

where n ≥ 2. Then A has a comultiplication ∆ which is defined on basis elements by

∆(e1) = α1β1 ⊗ e1 + α1 ⊗ β1 + e1 ⊗ α1β1

∆(en) = βn−1 ⊗ αn−1

∆(ei+1) = αi+1βi+1 ⊗ ei+1 + βi ⊗ αi + αi+1 ⊗ βi+1 + ei+1 ⊗ αi+1βi+1

∆(αi) = αiβi ⊗ αi + αi ⊗ αi+1βi+1

∆(αn−1) = αn−1βn−1 ⊗ αn−1

∆(βi) = αi+1βi+1 ⊗ βi + βi ⊗ αiβi
∆(βn−1) = βn−1 ⊗ αn−1βn−1

∆(αjβj) = αjβj ⊗ αjβj ,

where 1 ≤ i ≤ n− 2 and 1 ≤ j ≤ n− 1.

Proof. Let e = e1 + e2 + · · · + en−1 since A(e1 + e2 + · · · + en−1) is a basic faithful projective-injective

A-module. There exists an (eAe,A)-bimodule isomorphism ι which is explicity defined on the basis

elements by

ι : eA ∼= D(Ae)

ei 7→ (αiβi)
∗

αi 7→ β∗i

βj 7→ α∗j

αiβi 7→ e∗i ,

where 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 2.

By using (3.1), the A-bimodule isomorphism γ is explicitly defined by

γ : Ae⊗eAe eA ∼= D(A)

ei ⊗ αiβi 7→ e∗i

βn−1 ⊗ αn−1 7→ e∗n

βi ⊗ ei 7→ α∗i

ei ⊗ αi 7→ β∗i

ei ⊗ ei 7→ (αiβi)
∗,

where 1 ≤ i ≤ n− 1.
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Let f, g ∈ D(A) such that

f =

n∑
i=1

aie
∗
i +

n−1∑
i=1

biα
∗
i +

n−1∑
i=1

ciβ
∗
i +

n−1∑
i=1

di(αiβi)
∗

and

g =

n∑
i=1

a′ie
∗
i +

n−1∑
i=1

b′iα
∗
i +

n−1∑
i=1

c′iβ
∗
i +

n−1∑
i=1

d′i(αiβi)
∗.

By using γ and (3.2), we obtain that

m(g ⊗ f) = (a′1d1 + b′1c1 + d′1a1)e∗1 + (a′i+1di+1 + b′ici + c′i+1bi+1 + d′i+1ai+1)e∗i+1 + (b′n−1cn−1)e∗n

+(b′idi + d′i+1bi)α
∗
i + (b′n−1dn−1)α∗n−1

+(c′idi+1 + d′ici)β
∗
i + (d′n−1cn−1)β∗n−1

+(d′jdj)(αjβj)
∗,

where 1 ≤ i ≤ n− 2 and 1 ≤ j ≤ n− 1. Then

m(g ⊗ f)(e1) = a′1d1 + b′1c1 + d′1a1

m(g ⊗ f)(ei+1) = a′i+1di+1 + b′ici + c′i+1bi+1 + d′i+1ai+1

m(g ⊗ f)(en) = b′n−1cn−1

m(g ⊗ f)(αi) = b′idi + d′i+1bi

m(g ⊗ f)(αn−1) = b′n−1dn−1

m(g ⊗ f)(βi) = c′idi+1 + d′ici

m(g ⊗ f)(βn−1) = d′n−1cn−1

m(g ⊗ f)(αjβj) = d′jdj ,

where 1 ≤ i ≤ n− 2 and 1 ≤ j ≤ n− 1.

Since (f ⊗ g)∆(a) = m(g ⊗ f)(a) for all a ∈ A, dualising m gives the desired comultiplication.

There is a remarkable symmetric algebra given in Theorem 3.2.22. The following results give comul-

tiplication of this algebra and its compatible counit.

Proposition 3.2.26. Let A be the path algebra (over k) of the following quiver

1
α1 //

2
β1

oo
α2 //

3 · · ·n− 1
αn−1 //

β2

oo n
βn−1

oo

modulo the ideal generated by

αiαi+1, βi+1βi, αi+1βi+1 − βiαi for 1 ≤ i ≤ n− 2;

α1β1α1, βn−1αn−1βn−1,

where n ≥ 2. Then A has a comultiplication ∆ which is defined on basis elements by

∆(e1) = α1β1 ⊗ e1 + α1 ⊗ β1 + e1 ⊗ α1β1
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∆(en) = βn−1αn−1 ⊗ en + βn−1 ⊗ αn−1 + en ⊗ βn−1αn−1

∆(ei+1) = αi+1βi+1 ⊗ ei+1 + βi ⊗ αi + αi+1 ⊗ βi+1 + ei+1 ⊗ αi+1βi+1

∆(αi) = αiβi ⊗ αi + αi ⊗ αi+1βi+1

∆(αn−1) = αn−1βn−1 ⊗ αn−1 + αn−1 ⊗ βn−1αn−1

∆(βi) = αi+1βi+1 ⊗ βi + βi ⊗ αiβi
∆(βn−1) = βn−1αn−1 ⊗ βn−1 + βn−1 ⊗ αn−1βn−1

∆(αjβj) = αjβj ⊗ αjβj
∆(βn−1αn−1) = βn−1αn−1 ⊗ βn−1αn−1,

where 1 ≤ i ≤ n− 2 and 1 ≤ j ≤ n− 1.

Proof. Since A is symmetric, we choose e = 1A. Then there exists an (A,A)-bimodule isomorphism ι

which is explicity defined on the basis elements by

ι : A ∼= D(A)

ei 7→ (αiβi)
∗

en 7→ (βn−1αn−1)∗

αi 7→ β∗i

βi 7→ α∗i

αiβi 7→ e∗i

βn−1αn−1 7→ e∗n

where 1 ≤ i ≤ n− 1.

By using the similar way with the proof of Proposition 3.2.25, we complete the proof.

Proposition 3.2.27. Let A and ∆ be as in Proposition 3.2.26. Then the counit δ of (A,∆) is explicitly

defined on the basis elements by

δ : αjβj 7→ 1 for 1 ≤ j ≤ n− 1

βn−1αn−1 7→ 1

otherwise 7→ 0.

Proof. Here, A is a symmetric algebra with the A-bimodule isomorphism ι which is given in the proof of

Proposition 3.2.26. By taking into account Proposition 3.4.1 which is proved in Section 3.4, and Chapter

2, we see that the counit δ of (A,∆) corresponds to the Frobenius form of A which is equal to ι(1A).

Since 1A = e1 + · · ·+ en, we obtain that

δ = ι(1A) =

n−1∑
j=1

(αjβj)
∗ + (βn−1αn−1)∗.
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3.3 Characterisations of gendo-symmetric algebras and their

dominant dimension

In this section, we first introduce the main result of [13] which gives the characterisation of the dominant

dimension of a gendo-symmetric algebra in terms of exactness of the bar cocomplex. At the same time,

this result shows that the class of gendo-symmetric algebras is characterised by the existence of this bar

cocomplex. Later we give a hypothesis which leads to prove Nakayama conjecture for gendo-symmetric

algebras by using this mentioned result.

Theorem 3.3.1. ([13], Theorem 3.6) Let A be a finite dimensional k-algebra and n ≥ 2 an integer.

Then A is a gendo-symmetric algebra with dom.dimA ≥ n if and only if there is an A-bimodule morphism

∆ : A→ AA⊗k AA satisfying

(1) ∆ is injective;

(2) (∆⊗ 1)∆ = (1⊗∆)∆ and

(3) Im∆ ⊆ {
∑
ui ⊗ vi ∈ A⊗k A |

∑
uia⊗ vi =

∑
ui ⊗ avi, ∀a ∈ A} such that the complex

C•A : 0→ A
∆→ A⊗k A

δ1→ A⊗k A⊗k A→ ...
δn−1

→ A⊗n+1 → ...

has cohomologies Hi(C•A) = 0 for 0 ≤ i ≤ n− 1, where the differential δr : A⊗r+1 → A⊗r+2 is given by:

for any a0, ..., ar ∈ A

δr(a0 ⊗ ...⊗ ar) =

r∑
i=0

(−1)ia0 ⊗ ...⊗ ai−1 ⊗∆(ai)⊗ ai+1 ⊗ ...⊗ ar.

Remark 3.3.2. In the next section, this characterisation of gendo-symmetric algebras is compared with

Theorem 2.2.3 which is proved by Abrams.

Nakayama conjecture is a major homological conjecture and also a major open problem in represen-

tation theory. It states that if A is finite-dimensional algebra over a field and dom.dimA =∞, then A is

self-injective. Nakayama conjecture for gendo-symmetric algebras states that if A is a gendo-symmetric

algebra and dom.dimA = ∞, then A is symmetric. The above characterisation of gendo-symmetric

algebras may lead to prove Nakayama conjecture for gendo-symmetric algebras by first verifying the

following hypothesis.

Hypothesis 3.3.3. Let A be a gendo-symmetric algebra with the comultiplication ∆. Suppose that the

bar cocomplex C•A is exact. Then there exists a counit of (A,∆).

The connection to the Nakayama conjecture uses the following implications from [13]:

A gendo-symmetric algebra A with the comultiplication ∆ has a counit ⇒ The bar cocomplex of A

is exact ⇒ domdimA =∞.

Now let us consider the reverse of these implications. Let A be a gendo-symmetric algebra with the

comultiplication ∆. Then

dom.dimA = ∞
1

⇒ The bar cocomplex of A is exact
(∗)⇒ There exists a counit of (A,∆)

2

⇒ A is

symmetric.
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The implications
1

⇒ and
2

⇒ are known by Theorem 3.3.1 and Proposition 3.2.5, respectively. If the

hypothesis is proved, then the implication (*) is satisfied and Nakayama conjecture for gendo-symmetric

algebras is proved.

3.4 Differences between Frobenius and gendo-symmetric alge-

bras with respect to comultiplication

Two large classes of algebras, Frobenius algebras and gendo-symmetric algebras, are characterised by the

existence of a comultiplication with some special properties and both contain symmetric algebras. How-

ever, there are differences between them. In this section, we clarify these differences between Frobenius

algebras and gendo-symmetric algebras with respect to comultiplication by collecting the related results

given in Chapter 2 and in this chapter. But first we give a result on symmetric algebras with respect to

comultiplication.

Recall that α : A → A ⊗k A is the comultiplication given in Section 2.2 when we assume that A is

Frobenius and ∆ : A → A ⊗k A is the comultiplication given in Section 3.2 when we assume that A is

gendo-symmetric.

Let A be a symmetric algebra over a field k. We keep the notations introduced in Chapter 2 and this

chapter. Since A is symmetric, we choose e = 1A and have the A-bimodule isomorphism ι : A ∼= D(A)

by Section 3.2.

Proposition 3.4.1. Let A be a symmetric algebra with the A-bimodule isomorphism λ : A ∼= D(A).

Suppose that λ = ι. Then α is equal to ∆.

Proof. Let A be symmetric and ι : A ∼= D(A) be the A-bimodule isomorphism. There is an A-bimodule

isomorphism

HomA(D(A), A) ∼= HomA(A⊗A A,A) ∼= HomA(A,A) ∼= A,

where the first isomorphism is HomA(γ,A). Let

Θ : D(A) ∼= A

be the inverse image of 1 ∈ A under the above isomorphism. Then (Θ ◦ γ)(a ⊗ b) = ab for a, b ∈ A. In

particular, Θ = ι−1.

Since the Frobenius form ε of A is equal to λ(1A), all elements of D(A) are of the form a · ε for any

a ∈ A. By Section 2.2, it is known that the isomorphism λ : A ∼= D(A) allows us to define a multiplication

ϕ such that ϕ(a · ε⊗ b · ε) = (b · ε⊗ a · ε) ◦ α = ab · ε.

Let ϑ : A ⊗A A ∼= A be the A-bimodule isomorphism such that ϑ(a ⊗A b) = ab and µ′ : A ⊗k A →
A ⊗A A be the map such that µ′(a ⊗k b) = a ⊗A b for any a, b ∈ A. Suppose that λ′ := λ ◦ ϑ and

ϕ′ := λ′ ◦ µ′ ◦ λ−1 ⊗ λ−1. Observe that ϕ = ϕ′.

Clearly, there are also isomorphisms of A-bimodules λ⊗k λ : A⊗k A ∼= D(A)⊗k D(A) and λ⊗A λ :

A⊗A A ∼= D(A)⊗A D(A).

On the other hand, there is a multiplication m : D(A) ⊗k D(A) → D(A) ⊗A D(A) ∼= D(A) which is

given in this chapter such that m(g ⊗ f)(a) = (f ⊗ g)∆(a) for any f, g ∈ D(A) and a ∈ A. Then we
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obtain the following commutative diagram

D(A)⊗k D(A)
λ−1⊗kλ

−1

//

id ))

A⊗k A
µ′ //

λ⊗kλ��

A⊗A A
λ′ //

λ⊗Aλ��

D(A)

D(A)⊗k D(A) // D(A)⊗A D(A)

77

where id is the identity map of D(A)⊗k D(A). Therefore, we have ϕ = m ◦ id, that is, ϕ = m. Dualising

this commutative diagram gives α = ∆.

For the detailed computation which shows that the above diagram is commutative, see the proof of

Proposition 4.2.19 which will be a more general result than Proposition 3.4.1.

We have already mentioned that two classes of algebras, Frobenius algebras and gendo-symmetric

algebras, have differences. For example, Frobenius algebras have counit property but gendo-symmetric

algebras do not, in general. Here, it is natural to ask whether there are other properties distinguishing

Frobenius algebras from gendo-symmetric algebras. More precisely, the following question appears.

Question. What are the differences of gendo-symmetric and Frobenius algebras with respect to

comultiplication?

Suppose that A is a finite-dimensional k-algebra. Let FA denote the Frobenius algebras and GA

denote the gendo-symmetric algebras. When we write these abbreviations FA and GA, we assume that

the finite dimensional algebra A is Frobenius and gendo-symmetric, respectively. From now on, we an-

swer the above question by clarifying the differences step by step.

(1) FA. There is a left (or right) A-module isomorphism HomA(D(A), A) ∼= A (Theorem 4.1.7).

Moreover, there is an A-bimodule isomorphism HomA(D(A), A)νA
∼= A, where νA is a Nakayama auto-

morphism of A (Proposition 4.1.11).

GA. There is an A-bimodule isomorphism HomA(D(A), A) ∼= A (Definition 3.1.1).

Dually,

FA. There is a right (or left) A-module isomorphism D(A)⊗A D(A) ∼= D(A). Moreover, there is

an A-bimodule isomorphism νAD(A)⊗A D(A) ∼= D(A).

GA. There is an A-bimodule isomorphism D(A)⊗A D(A) ∼= D(A).

(2) FA. α : A→ A⊗k A is a coassociative counital comultiplication on A (Theorem 2.2.3).

GA. ∆ : A → A ⊗k A is a coassociative comultiplication on A. However, there is a compatible

counit if and only if A is symmetric (Theorem 3.2.1 & Proposition 3.2.5).

(3) FA. Im(α) = {
∑
ui ⊗ vi |

∑
uix ⊗ vi =

∑
ui ⊗ ν−1

A (x)vi, ∀x ∈ A}, where νA is a Nakayama

automorphism of A (Theorem 2.2.11).

GA. Im(∆) = {
∑
ui ⊗ vi |

∑
uix⊗ vi =

∑
ui ⊗ xvi, ∀x ∈ A} (Lemma 3.2.3).

(4) FA. Let α(1A) =
∑n
i=1 xi ⊗ yi. Then α(1A) =

∑n
i=1 yi ⊗ ν

−1
A (xi), where νA is a Nakayama

automorphism of A (Proposition 2.2.8).

GA. Let ∆(1A) =
∑
xi ⊗ yi. Then ∆(1A) =

∑
yi ⊗ xi (Proposition 3.2.5).

We see that Nakayama automorphism plays crucial role in these differences.
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Remark 3.4.2. The class of gendo-symmetric algebras is closed under Morita equivalences (Proposition

3.2.6), but the class of Frobenius algebras is not ([31], Chapter IV).

We now compare the two important results of Frobenius and gendo-symmetric algebras. Let us first

remember them.

Theorem 1. ([2], Theorem 2.1) An algebra A is a Frobenius algebra if and only if it has a coasso-

ciative counital comultiplication α : A→ A⊗k A which is a map of A-bimodules.

Theorem 2. ([13], Theorem 3.6) Let A be a finite dimensional k-algebra and n ≥ 2 an integer. Then

A is a gendo-symmetric algebra with dom.dimA ≥ n if and only if there is an A-bimodule morphism

∆ : A→ AA⊗k AA satisfying

(1) ∆ is injective;

(2) (∆⊗ 1)∆ = (1⊗∆)∆ and

(3) Im∆ ⊆ {
∑
ui ⊗ vi ∈ A⊗k A |

∑
uia⊗ vi =

∑
ui ⊗ avi, ∀a ∈ A} such that the complex

C•A : 0→ A
∆→ A⊗k A

δ1→ A⊗k A⊗k A→ ...
δn−1

→ A⊗n+1 → ...

has cohomologies Hi(C•A) = 0 for 0 ≤ i ≤ n− 1, where the differential δr : A⊗r+1 → A⊗r+2 is given by:

for any a0, ..., ar ∈ A

δr(a0 ⊗ ...⊗ ar) =

r∑
i=0

(−1)ia0 ⊗ ...⊗ ai−1 ⊗∆(ai)⊗ ai+1 ⊗ ...⊗ ar.

By using Theorem 2.2.11 which is proved in Subsection 4.2.2 and Theorem 1, we obtain the following

corollary which is similar to Theorem 2.

Corollary 3.4.3. Let A be a finite dimensional k-algebra. Then A is a Frobenius algebra if and only if

there is a counital comultiplication α : A→ A⊗k A which is a map of A-bimodules satisfying

(i) α is injective;

(ii) (α⊗ 1)α = (1⊗ α)α and

(iii) Im(α) = {
∑
ui ⊗ vi |

∑
uix ⊗ vi =

∑
ui ⊗ ν−1

A (x)vi, ∀x ∈ A}, where νA is a Nakayama

automorphism of A.

Moreover, if A is Frobenius, then dom.dimA =∞.

We see that Theorem 2 and the above corollary is similar but also they have some differences. First

difference is Nakayama automorphism. Another one is that the comultiplication α is counital. In addition,

if A is Frobenius, it is self-injective and so dom.dimA =∞. Therefore, the characterisation of dominant

dimension of a Frobenius algebra in terms of exactness of the bar cocomplex is unneeded. However, by

using Theorem 2 and Corollary 3.4.3, it would be good to have this kind of characterisation in terms of

bar cocomplex for gendo-Frobenius algebras which are defined in the next chapter. Having this kind of

characterisation for gendo-Frobenius algebras would be a big step to prove Nakayama conjecture. Hence,

it is a good idea to work on this characterisation for further research.
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Chapter 4

Gendo-Frobenius algebras

Two large classes of algebras, Frobenius algebras and gendo-symmetric algebras, are characterised by the

existence of a comultiplication with some special properties. Moreover, both contain symmetric algebras.

Here, it is natural to ask the following question.

Question. Is there a common generalisation of Frobenius algebras and gendo-symmetric algebras

such that this generalisation has a comultiplication, which specialises to the known comultiplications on

Frobenius algebras and on gendo-symmetric algebras?

Answering this question leads to introducing a new class of algebras which we called gendo-Frobenius

algebras.

In [20], Kerner and Yamagata investigated two variations of gendo-symmetric algebras and in fact

these two variations contain gendo-symmetric and Frobenius algebras. First variation is motivated by

Morita [24] and they called a finite dimensional algebra A Morita algebra, if A is the endomorphism ring

of a generator–cogenerator over a self-injective algebra. Second one is defined by relaxing the condition

on the bimodule isomorphism in Definition 3.1.1 (ii) and we call these algebras gendo-Frobenius algebras.

The class of gendo-Frobenius algebras is the common generalisation that we asked in the above question.

This chapter is devoted to introducing gendo-Frobenius algebras and constructing their comultiplica-

tion. We first give the preliminary results, define the gendo-Frobenius algebras and give some examples of

these algebras. In the second section, we construct the comultiplication of gendo-Frobenius algebras and

give the main results of this chapter. We also compare this comultiplication with the comultiplication of

Frobenius algebras which is given by Abrams (Theorem 2.2.3) by assuming that the finite dimensional

algebra is Frobenius. Moreover, we show that there are other approaches to new comultiplications and

carry out these constructions as well. However, it turns out that they all lead to comultiplications which

are lacking crucial properties such as being coassociative.

Finally, we give some results on comultiplication of Frobenius Nakayama algebras and their compatible

counit.

Throughout, all algebras and modules are finite dimensional over an arbitrary field k unless stated

otherwise. By D, we denote the usual k-duality functor Homk(−, k).

4.1 Definition and examples of gendo-Frobenius algebras

In [24], Morita studied endomorphism algebras of a generator-cogenerator over a self-injective algebra,

and in fact he gave the following theorem.
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Theorem 4.1.1. ([24]) Let A be a finite dimensional k-algebra. Then the following statements are

equivalent:

(i) A is isomorphic to the endomorphism algebra of a finite dimensional faithful module over a self-

injective k-algebra B.

(ii) There is an idempotent e of A such that Ae and eA are injective faithful (left and right respectively)

A-modules and the (A, eAe)-bimodule Ae has the double centralizer property.

(iii) There is an idempotent e of A such that Ae and eA are injective faithful (left and right respec-

tively) A-modules and the (eAe,A)-bimodule eA has the double centralizer property.

Note that if B is a self-injective algebra, then a finite dimensional faithful B-module M is a genera-

tor–cogenerator, since there is a (split) monomorphism B ↪→Mr for some r ≥ 1. Motivated by Morita,

in [20], Kerner and Yamagata gave the following definition.

Definition 4.1.2. A finite dimensional k-algebra A is called Morita algebra with associated idempotent

e and associated self-injective algebra B if it satisfies the conditions in Theorem 4.1.1.

Morita algebras form a class of algebras properly containing all self-injective algebras and Auslander

algebras of self-injective algebras of finite representation type. They are properly contained in the class

of algebras with dominant dimension at least 2.

In [20], Kerner and Yamagata investigated two variations of gendo-symmetric algebras. First one

is the algebras which is given in the above theorem, that is, Morita algebras and cleary it contains

both gendo-symmetric and Frobenius algebras. Moreover, they gave some important results on Morita

algebras (see [20]). Second one is defined by relaxing the condition on the bimodule isomorphism in

Definition 3.1.1 (ii), and in fact we focus on this variation. Before explaining this, let us give some

preliminary results.

Let A and B be finite dimensional k-algebras and AXB be an (A,B)-bimodule. Then the right

multiplication map

rX : B → EndA(X)op

b 7→ rb

and the left multiplication map

lX : A→ EndB(X)

a 7→ la

are algebra homomorphisms. X is said to have double centralizer property if both rX and lX are bijective.

Lemma 4.1.3. ([20], Lemma 1.1) Let AXB and AYB be finite dimensional (A,B)-bimodules.

(i) If αX ∼= Y as left A-modules for some α ∈ Aut(A), and rX as well as rY are isomorphisms, then

there is β ∈ Aut(B) such that αX ∼= Yβ as (A,B)-bimodules.

(ii) If X ∼= Yβ as right B-modules for some β ∈ Aut(B), and lX as well as lY are isomorphisms, then

there is α ∈ Aut(A) such that αX ∼= Yβ as (A,B)-bimodules.

Remark 4.1.4. The following lemma is obtained from the Lemma 2.4 in [20]. In Lemma 2.4, we see that

for a finite dimensional k-algebra A such that D(Ae) ∼= eA as right A-modules for an idempotent e of A,

there is an (eAe,A)-bimodule isomorphism νeAe
eA ∼= D(Ae), where νeAe is a Nakayama automorphism of

eAe. But in the following lemma, under the same assumption, there is an (eAe,A)-bimodule isomorphism
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ν−1
eAe
eA ∼= D(Ae). This difference comes from the definition of the Nakayama automorphism. We use

Definition 2.1.11, but Kerner and Yamagata use the following definition.

For a Frobenius algebra A and a nondegenerate associative k-bilinear form (−,−) : A × A → k,

k-algebra automorphism ν : A → A with (ν(x), y) = (y, x) for all x, y ∈ A is said to be the Nakayama

automorphism of A associated to (−,−). As a result of this, they use the fact that for a Frobenius

algebra A, there is an (A,A)-bimodule isomorphism D(A)νA
∼= A.

But in this work, it is more convenient to use Definition 2.1.11 of Nakayama automorphism. Therefore,

some of the results which are given in [20] will be rearranged by considering these differences.

Lemma 4.1.5. Let A be a finite dimensional k-algebra and D(Ae) ∼= eA as right A-modules for an

idempotent e of A. Then eAe is Frobenius and ν−1
eAe
eA ∼= D(Ae) as (eAe,A)-bimodules, where νeAe is a

Nakayama automorphism of eAe.

Proof. Observe that (eAe,A)-bimodules D(Ae) and eA are faithful eAe-modules and leA : eAe →
EndA(eA) and lD(Ae) : eAe → EndA(D(Ae))op are isomorphisms. Let us apply Lemma 4.1.3 (ii) to

the right A-module isomorphism eA ∼= D(Ae). Then we obtain an (eAe,A)-bimodule isomorphism

αeA ∼= D(Ae) where α is an automorphism of eAe. Multiplying e on the right implies an (eAe, eAe)-

bimodule isomorphism αeAe ∼= D(eAe). By taking the dual of this isomorphism, we obtain that

D(eAe)α ∼= eAe as (eAe, eAe)-bimodules. Therefore, eAe is a Frobenius algebra and α−1 is a Nakayama

automorphism of eAe (see Chapter 2). Thus, we get ν−1
eAe
eA ∼= D(Ae) as (eAe,A)-bimodules.

Definition 4.1.6. Let A be a finite dimensional k-algebra. An idempotent e of A is called self-dual if

D(eA) ∼= Ae as left A-modules, and faithful if both Ae and eA are faithful A-modules.

Observe that self-duality of an idempotent is left–right symmetric. Obviously, an algebra A is a

Frobenius algebra if and only if the identity 1A of A is a self-dual idempotent.

Now, we are ready to explain the second variation which we mentioned before. Inspired by [14], in

[20], Kerner and Yamagata considered the case, when the module HomA(D(A), A) is isomorphic to A,

at least as a one-sided module and they obtained the following result.

Theorem 4.1.7. ([20], Theorem 3) For a finite dimensional k-algebra A, the following statements are

equivalent:

(i) HomA(D(A), A) ∼= A as left A-modules.

(ii) HomA(D(A), A) ∼= A as right A-modules.

(iii) A is a Morita algebra with an associated idempotent e such that eAe is a Frobenius algebra with

Nakayama automorphism νeAe and Ae ∼= AeνeAe
as right eAe-modules.

(iv) A is a Morita algebra with an associated idempotent e such that eAe is a Frobenius algebra with

Nakayama automorphism νeAe and eA ∼= νeAe
eA as left eAe-modules.

(v) A is isomorphic to the endomorphism algebra of a finite dimensional faithful right module M over

a Frobenius algebra B such that M ∼= MνB as right B-modules.

(vi) A is isomorphic to the opposite endomorphism algebra of a finite dimensional faithful left module

N over a Frobenius algebra B such that N ∼= νBN as left B-modules.

Remark 4.1.8. The idempotent e of A in Theorem 4.1.7 is self-dual and faithful by the proof of Theorem

3 in [20].

Definition 4.1.9. A finite dimensional k-algebra A is called gendo-Frobenius if it satisfies one of the

equivalent conditions in Theorem 4.1.7.
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From conditions (iii) and (iv) in Theorem 4.1.7, we see that Frobenius algebras are gendo-Frobenius

by choosing e = 1A.

Theorem 4.1.10. ([20], Theorem 4.2) Let A be a Morita algebra. If B is Morita equivalent to A, then

B is a Morita algebra.

But the class of gendo-Frobenius algebras is not closed under Morita equivalences since the property

HomA(D(A), A) ∼= A as left (or right) A-modules is not Morita invariant.

We may visualize the hierarchy of the finite dimensional algebras which are given in this study as

follows.

Morita algebras

��
Gendo-Frobenius algebras

ss ,,
Frobenius algebras

++

Gendo-symmetric algebras

rr
Symmetric algebras

In the above diagram, an arrow means the class on top contains the class below.

The following proposition is the rearranged version of Proposition 3.5 in [20] by taking into account

Remark 4.1.4.

Proposition 4.1.11. Let HomA(D(A), A) ∼= A as left A-modules for an algebra A and D(Ae) ∼= eA as

right A-modules, where Ae and eA are faithful. Then there is an automorphism σ ∈ Aut(A) such that

(i) HomA(D(A), A)σ ∼= A as (A,A)-bimodules and σ is uniquely determined up to an inner automor-

phism.

(ii) eA ∼= νeAe
eAσ as (eAe,A)-bimodules.

(iii) Moreover, in case e is basic, we can choose the σ such that σ(e) = e and the restriction of σ to

eAe is a Nakayama automorphism of eAe.

Proof. (i) The proof is similar to the proof of Proposition 3.5 (i) in [20]. But here we apply Lemma 4.1.3

to the isomorphism AA ∼= AHomA(D(A), A). So we obtain that there is an automorphism σ such that

A ∼= HomA(D(A), A)σ as (A,A)-bimodules.

(ii) By applying e on the left side of the (A,A)-bimodule isomorphism A ∼= HomA(D(A), A)σ, we

obtain the following (eAe,A)-bimodule isomorphisms

eA ∼= eHomA(D(A), A)σ = HomA(D(A)e,A)σ

= HomA(D(eA), A)σ ∼= HomA(AeνeAe
, A)σ

= νeAe
HomA(Ae,A)σ ∼= νeAe

eAσ

since D(eA) ∼= AeνeAe
as (A, eAe)-bimodules.

(iii) We first replace σ in the proof of Proposition 3.5 (iii) in [20] with σ−1. Then by using the same

proof, we obtain that there is a θ ∈Aut(A) with θ(x) = cxc−1 for all x ∈ A, where c is an invertible

element in A such that (θσ−1)(e) = e and θσ−1 ∈Aut(A). Observe that HomA(D(A), A) ∼= Aσ−1
∼= Aθσ−1

as (A,A)-bimodules, because A ∼= Aθ as (A,A)-bimodules. By replacing σ−1 with θσ−1, we obtain that

σ−1(e) = e, that is, σ(e) = e. Now, we multiply e on right side of the isomorphism eAσ ∼= ν−1
eAe
eA

given in (ii). Then we obtain (eAe, eAe)-bimodule isomorphisms eAeσe
∼= ν−1

eAe
eAe ∼= eAeνeAe

, where σe
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denotes the restriction of σ to eAe. By using Lemma II.7.15 and Corollary IV.3.5 in [31], we obtain that

σe = θeνeAe for some inner automorphism θe of the algebra eAe, which shows that σe is a Nakayama

automorphism of eAe.

4.1.1 Examples

In this part, some examples of gendo-Frobenius algebras are exhibited.

Example 4.1.12. Let k be a field and Q be a quiver given as follows:

1
α1

��
3

α3
@@

2
α2

oo

Let I be the ideal in the path algebra kQ generated by α1α2α3, α2α3α1 and α3α1α2; and A = kQ/I be

the associated bound quiver algebra. By Theorem 2.1.24, A is Frobenius and so gendo-Frobenius.

Example 4.1.13. Let B be the path algebra of the following quiver

1
β1 //

2
β2

oo

such that β1β2 = 0 = β2β1. Then B is a nonsymmetric Frobenius algebra (see Subsection 2.1.3) and it

has a Nakayama automorphism νB such that νB(e1) = e2, νB(e2) = e1, νB(β1) = β2 and νB(β2) = β1.

Let M = B ⊕ S1 ⊕ S2, where S1 and S2 are simple modules corresponding to e1 and e2, respectively;

and A = EndB(M). Then M is a faithful right B-module, and A is a Morita algebra with associated

Frobenius algebra B. Moreover, MνB
∼= M as right B-modules. Hence, by Theorem 4.1.7, we obtain

that A is a gendo-Frobenius algebra and also HomA(D(A), A) ∼= A as one-sided A-modules. Note that

A is isomorphic to the path algebra of the following quiver

1
α1

��
3

α3 ��

4

α4
^^

2
α2

@@

such that α3α2 = 0 = α4α1.

Remark 4.1.14. Even if A is a basic Morita algebra, it does not need to be a gendo-Frobenius algebra. Let

us consider the algebra B in Example 4.1.13. Let M = B⊕S1. Then MB is faithful and A = EndB(M) is

a Morita algebra with associated Frobenius algebra B. However, MνB �M as right B-modules. Hence,

by Theorem 4.1.7, A is not gendo-Frobenius, and also HomA(D(A), A) � A as one-sided A-modules.

Since the class of gendo-Frobenius algebras contains the classes of gendo-symmetric and Frobenius

algebras, all examples given in Chapter 2 and Chapter 3 are also examples for gendo-Frobenius algebras.

4.2 Gendo-Frobenius algebras and comultiplication

In this section, inspired by [13], we construct a coassociative comultiplication (possibly without a counit)

for gendo-Frobenius algebras and give its properties. For this aim, we first give some preliminary results.
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For simplicity, we keep the notations, which we will introduce throughout this part, until the next

subsection.

Let A be a gendo-Frobenius algebra with a faithful and self-dual idempotent e. By following Lemma

4.1.5, fix an (eAe,A)-bimodule isomorphism ι : ν−1
eAe
eA ∼= D(Ae), where νeAe is a Nakayama automor-

phism of the Frobenius algebra eAe. Since A is gendo-Frobenius, there is a left A-module isomor-

phism HomA(D(A), A) ∼= A. Then by Proposition 4.1.11 (ii), fix an (eAe,A)-bimodule isomorphism

η : eAσ ∼= ν−1
eAe
eA, where σ ∈ Aut(A) and it is uniquely determined up to an inner automorphism.

Lemma 4.2.1. Let A be a gendo-Frobenius algebra with a faithful and self-dual idempotent e. Then

Ae⊗eAe eAσ ∼= D(A) as A-bimodules.

Proof. By using the double centralizer property of Ae and the isomorphisms ι and η, we obtain the

following A-bimodule isomorphism

A ∼= HomeAe(Ae,Ae) ∼= HomeAe(D(Ae),D(Ae))

∼= HomeAe(ν−1
eAe
eA,D(Ae))

∼= Homk(Ae⊗eAe ν−1
eAe
eA, k)

∼= Homk(Ae⊗eAe eAσ, k).

Let us fix an (eAe,A)-bimodule isomorphism τ : eAσ ∼= D(Ae) by using ι and η. Then by dualising

Homk(Ae⊗eAe eAσ, k) ∼= A, we obtain that there is an A-bimodule isomorphism γ : Ae⊗eAe eAσ ∼= D(A)

such that

γ(ae⊗eAe eb)(x) = τ(ebσ(x))(ae) (4.1)

for all a, b, x ∈ A.

Proposition 4.2.2. Let A be a finite dimensional k-algebra. Then A is gendo-Frobenius if and only if

there exists an automorphism ω ∈ Aut(A) such that D(A)ω−1 ⊗A D(A) ∼= D(A) as A-bimodules.

Proof. Let A be gendo-Frobenius. By using the isomorphism γ, observe that there is an A-bimodule

isomorphism γ′ : Ae⊗eAe eA ∼= D(A)σ−1 . Hence, there is an A-bimodule isomorphism

ε : D(A)σ−1 ⊗A D(A)
(1)∼= (Ae⊗eAe eA)⊗A (Ae⊗eAe eAσ)

∼= Ae⊗eAe eAe⊗eAe eAσ (4.2)

∼= Ae⊗eAe eAσ
∼= D(A),

where (1) is γ′−1 ⊗A γ−1, and it is explicitly defined by

ε : γ′(ae⊗eAe eb)⊗A γ(ce⊗eAe ed) 7→ (ae⊗eAe eb)⊗A (ce⊗eAe ed)

7→ ae⊗eAe ebce⊗eAe ed

7→ aebce⊗eAe ed

7→ γ(aebce⊗eAe ed),

for any a, b, c, d ∈ A. Here, ω = σ.
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Now let D(A)ω−1 ⊗A D(A) ∼= D(A) as A-bimodules. Taking the dual of this isomorphism gives

the A-bimodule isomorphism HomA(ωD(A), A) ∼= A. Then we obtain the following isomorphisms of

A-bimodules

A ∼= HomA(ωD(A), A) ∼= HomA(D(A), A)ω.

It means that there is a left A-module isomorphism HomA(D(A), A) ∼= A and by Definition 4.1.9, A

is gendo-Frobenius. Here, for any a ∈ A, ω(a) = σ(uau−1), where u is an invertible element of A by

Proposition 4.1.11.

Let m1 be the composition of the canonical A-bimodule morphism

φ : D(A)σ−1 ⊗k D(A)→ D(A)σ−1 ⊗A D(A)

with the isomorphism ε given in the proof of Proposition 4.2.2 such that

m1 : D(A)σ−1 ⊗k D(A)
φ→ D(A)σ−1 ⊗A D(A)

ε∼= D(A),

where

m1 : γ′(ae⊗eAe eb)⊗k γ(ce⊗eAe ed) 7→ γ′(ae⊗eAe eb)⊗A γ(ce⊗eAe ed)

7→ γ(aebce⊗eAe ed).

Let m2 : D(A)⊗k D(A)→ D(A)σ−1 ⊗k D(A) be the map which is defined by

m2(γ(ae⊗k eb)⊗k γ(ce⊗ ed)) = γ′(ae⊗ eb)⊗k γ(ce⊗ ed),

where γ(ae⊗ eb), γ(ce⊗ ed) ∈ D(A) and γ′(ae⊗ eb) ∈ D(A)σ−1 .

Claim. The map m2 is an A-bimodule morphism.

Proof of Claim. It is enough to check that

m2(xγ(ae⊗ eb)⊗k γ(ce⊗ ed)) = xm2(γ(ae⊗ eb)⊗k γ(ce⊗ ed))

and

m2(γ(ae⊗ eb)⊗k γ(ce⊗ ed)y) = m2(γ(ae⊗ eb)⊗k γ(ce⊗ ed))y

for any x, y ∈ A. We observe that

m2(xγ(ae⊗eAe eb)⊗k γ(ce⊗eAe ed)) = m2(γ(xae⊗eAe eb)⊗k γ(ce⊗eAe ed))

= γ′(xae⊗eAe eb)⊗k γ(ce⊗eAe ed)

xm2(γ(ae⊗eAe eb)⊗k γ(ce⊗eAe ed)) = xγ′(ae⊗eAe eb)⊗k γ(ce⊗eAe ed)

= γ′(xae⊗eAe eb)⊗k γ(ce⊗eAe ed).

Therefore, m2(xγ(ae⊗ eb)⊗k γ(ce⊗ ed)) = xm2(γ(ae⊗ eb)⊗k γ(ce⊗ ed)). Also,

m2(γ(ae⊗eAe eb)⊗k γ(ce⊗eAe ed)y) = m2(γ(ae⊗eAe eb)⊗k γ(ce⊗eAe edσ(y)))

= γ′(ae⊗eAe eb)⊗k γ(ce⊗eAe edσ(y))
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m2(γ(ae⊗eAe eb)⊗k γ(ce⊗eAe ed))y = γ′(ae⊗eAe eb)⊗k γ(ce⊗eAe ed)y

= γ′(ae⊗eAe eb)⊗k γ(ce⊗eAe edσ(y)).

Hence, m2(γ(ae⊗eb)⊗kγ(ce⊗ed)y) = m2(γ(ae⊗eb)⊗kγ(ce⊗ed))y. This means thatm2 is an A-bimodule

morphism. �

Let m be the following composition map

m : D(A)⊗k D(A)
m2→ D(A)σ−1 ⊗k D(A)

m1→ D(A),

where

m : γ(ae⊗eAe eb)⊗k γ(ce⊗eAe ed) 7→ γ′(ae⊗eAe eb)⊗k γ(ce⊗eAe ed) (4.3)

7→ γ(aebce⊗eAe ed).

Dualising m yields an A-bimodule morphism

∆ : A→ AA⊗k AA

such that

(f ⊗ g)∆(x) = m(g ⊗ f)(x) (4.4)

for any f, g in D(A) and x in A.

Theorem 4.2.3. Let A be a gendo-Frobenius algebra. Then

∆ : A→ AA⊗k AA

is a coassociative comultiplication which is a map of A-bimodules.

The proof of Theorem 4.2.3 consists of the following two lemmas.

Lemma 4.2.4. The map m satisfies

m(1⊗m) = m(m⊗ 1)

as k-morphisms from D(A)⊗k D(A)⊗k D(A) to D(A).

Proof. For any a, b, c, d, x, y ∈ A, the definition of m imply that

m(γ(ae⊗ eb)⊗k γ(ce⊗ ed)) = m1m2(γ(ae⊗ eb)⊗k γ(ce⊗ ed))

= m1(γ′(ae⊗ eb)⊗k γ(ce⊗ ed))

= γ(aebce⊗ ed).

Then

m(1⊗m)(γ(ae⊗ eb)⊗k γ(ce⊗ ed)⊗k γ(xe⊗ ey)) = m(γ(ae⊗ eb)⊗k γ(cedxe⊗ ey))

= γ(aebcedxe⊗ ey)

m(m⊗ 1)(γ(ae⊗ eb)⊗k γ(ce⊗ ed)⊗k γ(xe⊗ ey)) = m(γ(aebce⊗ ed)⊗k γ(xe⊗ ey))
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= γ(aebcedxe⊗ ey)

This means that m(1⊗m) = m(m⊗ 1).

Lemma 4.2.5. Let ∆ : A→ AA⊗k AA be as above. Then

(i) ∆ is an A-bimodule morphism.

(ii) (1⊗∆)∆ = (∆⊗ 1)∆.

Proof. (i) By definition of ∆, there are the following equalities for a, b, c, d, x, y ∈ A.

(γ(ae⊗ eb)⊗ γ(ce⊗ ed))∆(xy) = m(γ(ce⊗ ed)⊗ γ(ae⊗ eb))(xy)

= γ(cedae⊗ eb)(x1y) = γ(ycedae⊗ ebσ(x))(1)

(γ(ae⊗ eb)⊗ γ(ce⊗ ed))x∆(y) = γ(ae⊗ ebσ(x))⊗ γ(ce⊗ ed)∆(y)

= γ(cedae⊗ ebσ(x))(y) = γ(ycedae⊗ ebσ(x))(1)

(γ(ae⊗ eb)⊗ γ(ce⊗ ed))∆(x)y = (γ(ae⊗ eb)⊗ γ(yce⊗ ed))∆(x)

= γ(ycedae⊗ eb)(x) = γ(ycedae⊗ ebσ(x))(1)

Therefore, ∆(xy) = x∆(y) = ∆(x)y, that is, ∆ is an A-bimodule morphism.

(ii) Let ∆(u) =
∑
ui ⊗ vi for u ∈ A. Then

(γ(ae⊗ eb)⊗ γ(ce⊗ ed)⊗ γ(xe⊗ ey))(1⊗∆)∆(u) =
∑

γ(ae⊗ eb)(ui)(γ(ce⊗ ed)⊗ γ(xe⊗ ey))∆(vi)

=
∑

γ(ae⊗ eb)(ui)γ(xeyce⊗ ed)(vi)

= γ(ae⊗ eb)⊗ γ(xeyce⊗ ed)∆(u)

= γ(xeycedae⊗ eb)(u)

(γ(ae⊗ eb)⊗ γ(ce⊗ ed)⊗ γ(xe⊗ ey))(∆⊗ 1)∆(u) =
∑

γ(ae⊗ eb)⊗ γ(ce⊗ ed)∆(ui)γ(xe⊗ ey)(vi)

=
∑

γ(cedae⊗ eb)(ui)γ(xe⊗ ey)(vi)

= γ(cedae⊗ eb)⊗ γ(xe⊗ ey)∆(u)

= γ(xeycedae⊗ eb)(u)

This means that (1⊗∆)∆ = (∆⊗ 1)∆.

Proposition 4.2.6. Let A be a gendo-Frobenius algebra and ∆ : A→ AA⊗k AA be as above. Then

Im(∆) = {
∑

ui ⊗ vi |
∑

uix⊗ vi =
∑

ui ⊗ σ−1(x)vi, ∀x ∈ A}.

Proof. Let Σ = {
∑
ui ⊗ vi |

∑
uix ⊗ vi =

∑
ui ⊗ σ−1(x)vi, ∀x ∈ A}. Let ∆(u) =

∑
ui ⊗ vi, for any

u ∈ A. Then for any f, g ∈ D(A) and x ∈ A,

(f ⊗ g)(
∑

uix⊗ vi) = (xf ⊗ g)∆(u) = m(g ⊗ xf)(u)

(f ⊗ g)(
∑

ui ⊗ σ−1(x)vi) = (f ⊗ gσ−1(x))∆(u) = m(gσ−1(x)⊗ f)(u).

By definition of m, there is an equality m(g⊗k xf) = m(gσ−1(x)⊗k f). Because, let f = γ(ae⊗ eb) and

g = γ(ce⊗ ed), then

m(g ⊗k xf) = m1m2(γ(ce⊗ ed)⊗k xγ(ae⊗ eb)) = m1m2(γ(ce⊗ ed)⊗k γ(xae⊗ eb))
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= m1(γ′(ce⊗ ed)⊗k γ(xae⊗ eb)) = γ(cedxae⊗ eb)

m(gσ−1(x)⊗k f) = m1m2(γ(ce⊗ ed)σ−1(x)⊗k γ(ae⊗ eb)) = m1m2(γ(ce⊗ edx)⊗k γ(ae⊗ eb))

= m1(γ′(ce⊗ edx)⊗k γ(ae⊗ eb)) = γ(cedxae⊗ eb).

Thus ∆(u) ∈ Σ and so Im(∆) ⊆ Σ.

Conversely, for each θ =
∑
ui ⊗ vi ∈ Σ, there is a k-linear map D(A)→ A, denoted by θ, such that

θ(f) =
∑
f(ui)vi for any f ∈ D(A). Since for any x ∈ A,

∑
uix⊗ vi =

∑
ui ⊗ σ−1(x)vi, it follows

θ(xf) =
∑

(xf)(ui)vi =
∑

f(uix)vi =
∑

f(ui)σ
−1(x)vi = σ−1(x)θ(f).

Then θ is a left A-module morphism, that is, θ ∈ HomA(σD(A), A) ∼= HomA(D(A), σ−1A). Since

D(A)σ−1 ⊗A D(A) ∼= D(A) as A-bimodules, by taking the dual of this isomorphism, we obtain that

HomA(D(A), σ−1A) ∼= A as A-bimodules. Therefore, HomA(σD(A), A) ∼= A as A-bimodules. Now,

observe that the map ξ : Σ→ HomA(σD(A), A) which sends θ to θ is injective. To show that it is enough

to prove Kerξ = {0}. In fact, ξ(θ) = ξ(
∑
ui ⊗ vi) = θ = 0 means that θ(f) =

∑
f(ui)vi = 0 for any

f ∈ D(A). So we obtain that ui = 0 or vi = 0. Therefore, θ = 0. Also, since m is surjective, ∆ is

injective. Then by using Im∆ ⊆ Σ and previous facts, we obtain the composition of following injective

maps

Im(∆)→ Σ→ HomA(σD(A), A) ∼= A→ Im(∆).

Therefore, Im∆ = Σ.

Remark 4.2.7. Let A be a gendo-Frobenius k-algebra with a faithful and self-dual idempotent e. To

obtain a comultiplication ∆̃ which is different from ∆ by using the same construction given in this

chapter, we first fix an (eAe,A)-bimodule isomorphism τ̃ : eAω ∼= D(Ae) which is different from τ . Here,

ω ∈ Aut(A) and by Proposition 4.1.11, for any a ∈ A, ω(a) = σ(uau−1), where u is an invertible element

of A. Then we have an A-bimodule isomorphism

γ̃ : Ae⊗eAe eAω ∼= D(A)

such that γ̃(ae⊗ eb)(x) = τ̃(ebω(x))(ae) for any a, b, x ∈ A. By using the same construction, we obtain

the following A-bimodule morphism

m̃ : D(A)⊗k D(A)→ D(A)ω−1 ⊗k D(A)→ D(A)ω−1 ⊗A D(A) ∼= D(A).

Dualising m̃ gives an A-bimodule morphism

∆̃ : A→ AA⊗k AA

such that (f ⊗ g)∆̃(x) = m̃(g ⊗ f)(x) for any f, g ∈ D(A) and x ∈ A.

Corollary 4.2.8. Let A be a gendo-Frobenius k-algebra with a faithful and self-dual idempotent e. Sup-

pose that ∆̃ is as given in Remark 4.2.7. Then Im(∆) ∼= Im(∆̃) as A-bimodules.

Proof. By the proof of Proposition 4.2.6, we obtain that

Im(∆) = HomA(σD(A), A) ∼= A
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as A-bimodules. Rearranging Proposition 4.2.6 by taking into account Remark 4.2.7 gives that

Im(∆̃) = HomA(ωD(A), A) ∼= A

as A-bimodules.

Procedure for obtaining the comultiplication ∆ of any gendo-Frobenius algebra A.

(1) Choose a faithful and self-dual idempotent e of A.

(2) Write the (eAe,A)-bimodule isomorphism τ : eAσ → D(Ae) explicitly on a choice of basis

elements.

(3) Write the A-bimodule isomorphism γ : Ae ⊗eAe eAσ ∼= D(A) by using (4.1) to obtain the basis

elements of D(A) in terms of the elements of Imγ.

(4) Obtain the multiplication table of D(A) by using (4.3).

(5) Dualise m by using (4.4) and obtain ∆ on the basis elements of A.

(6) By using the linearity of ∆, obtain ∆ on any element a ∈ A.

Let us apply this procedure on the following examples.

Example 4.2.9. Let A be the gendo-Frobenius algebra in Example 4.1.12. A has a k-basis {e1, e2, e3, α1,

α2, α3, α1α2, α2α3, α3α1} so D(A) has the dual basis {e∗1, e∗2, e∗3, α∗1, α∗2, α∗3, (α1α2)∗, (α2α3)∗, (α3α1)∗}.
(1) We choose e = 1A since 1A is a faithful and self-dual idempotent of A.

(2) The (A,A)-bimodule isomorphism τ is explicity defined on the basis elements by

τ : Aσ ∼= D(A)

e1 7→ (α2α3)∗

e2 7→ (α3α1)∗

e3 7→ (α1α2)∗

α1 7→ α∗3

α2 7→ α∗1

α3 7→ α∗2

α1α2 7→ e∗1

α2α3 7→ e∗2

α3α1 7→ e∗3.

(3) The A-bimodule isomorphism γ is explicitly defined by

γ : A⊗A Aσ ∼= D(A)

e1 ⊗ e1 7→ (α2α3)∗

e1 ⊗ α1 7→ α∗3

e1 ⊗ α1α2 7→ e∗1

e2 ⊗ e2 7→ (α3α1)∗

e2 ⊗ α2 7→ α∗1

e2 ⊗ α2α3 7→ e∗2

e3 ⊗ e3 7→ (α1α2)∗
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e3 ⊗ α3 7→ α∗2

e3 ⊗ α3α1 7→ e∗3.

(4) We obtain the multiplication table of the basis elements of D(A) as follows:

m e∗1 e∗2 e∗3 α∗1 α∗2 α∗3 (α1α2)∗ (α2α3)∗ (α3α1)∗

e∗1 0 0 0 0 0 0 e∗1 0 0

e∗2 0 0 0 0 0 0 0 e∗2 0

e∗3 0 0 0 0 0 0 0 0 e∗3

α∗1 0 0 0 0 e∗2 0 α∗1 0 0

α∗2 0 0 0 0 0 e∗3 0 α∗2 0

α∗3 0 0 0 e∗1 0 0 0 0 α∗3

(α1α2)∗ 0 0 e∗3 0 α∗2 0 (α1α2)∗ 0 0

(α2α3)∗ e∗1 0 0 0 0 α∗3 0 (α2α3)∗ 0

(α3α1)∗ 0 e∗2 0 α∗1 0 0 0 0 (α3α1)∗

(5) Dualising m yields

∆ : A→ AA⊗k AA

such that (f ⊗ g)∆(a) = m(g ⊗ f)(a) for any f, g ∈ D(A) and a ∈ A. So let

f = λ1e
∗
1 + λ2e

∗
2 + λ3e

∗
3 + λ4α

∗
1 + λ5α

∗
2 + λ6α

∗
3 + λ7(α1α2)∗ + λ8(α2α3)∗ + λ9(α3α1)∗

g = µ1e
∗
1 + µ2e

∗
2 + µ3e

∗
3 + µ4α

∗
1 + µ5α

∗
2 + µ6α

∗
3 + µ7(α1α2)∗ + µ8(α2α3)∗ + µ9(α3α1)∗,

where λi, µi ∈ k for 1 ≤ i ≤ 9. By using the table in the previous step, we get

m(g ⊗ f) = (µ1λ7 + µ6λ4 + µ8λ1)e∗1 + (µ2λ8 + µ4λ5 + µ9λ2)e∗2 + (µ3λ9 + µ5λ6 + µ7λ3)e∗3

+ (µ4λ7 + µ9λ4)α∗1 + (µ5λ8 + µ7λ5)α∗2 + (µ6λ9 + µ8λ6)α∗3

+ (µ7λ7)(α1α2)∗ + (µ8λ8)(α2α3)∗ + (µ9λ9(α3α1)∗.

Then

m(g ⊗ f)(e1) = µ1λ7 + µ6λ4 + µ8λ1

m(g ⊗ f)(e2) = µ2λ8 + µ4λ5 + µ9λ2

m(g ⊗ f)(e3) = µ3λ9 + µ5λ6 + µ7λ3

m(g ⊗ f)(α1) = µ4λ7 + µ9λ4

m(g ⊗ f)(α2) = µ5λ8 + µ7λ5

m(g ⊗ f)(α3) = µ6λ9 + µ8λ6

m(g ⊗ f)(α1α2) = µ7λ7

m(g ⊗ f)(α2α3) = µ8λ8

m(g ⊗ f)(α3α1) = µ9λ9.
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Since (f ⊗ g)∆(a) = m(g ⊗ f)(a) for all a ∈ A, we obtain that

∆(e1) = α1α2 ⊗ e1 + α1 ⊗ α3 + e1 ⊗ α2α3

∆(e2) = α2α3 ⊗ e2 + α2 ⊗ α1 + e2 ⊗ α3α1

∆(e3) = α3α1 ⊗ e3 + α3 ⊗ α2 + e3 ⊗ α1α2

∆(α1) = α1α2 ⊗ α1 + α1 ⊗ α3α1

∆(α2) = α2α3 ⊗ α2 + α2 ⊗ α1α2

∆(α3) = α3α1 ⊗ α3 + α3 ⊗ α2α3

∆(α1α2) = α1α2 ⊗ α1α2

∆(α2α3) = α2α3 ⊗ α2α3

∆(α3α1) = α3α1 ⊗ α3α1.

(6) Let a ∈ A. Then we can write a = a1e1 + a2e2 + a3e3 + a4α1 + a5α2 + a6α3 + a7α1α2 + a8α2α3 +

a9α3α1, where ai ∈ k for 1 ≤ i ≤ 9. The linearity of ∆ gives that

∆(a) = a1∆(e1)+a2∆(e2)+a3∆(e3)+a4∆(α1)+a5∆(α2)+a6∆(α3)+a7∆(α1α2)+a8∆(α2α3)+a9∆(α3α1).

Moreover, since A is Frobenius, by Proposition 4.2.19 which is proved later, the counit of (A,∆) is

δ = τ(1A) and we obtain that

δ = (α1α2)∗ + (α2α3)∗ + (α3α1)∗.

Example 4.2.10. LetA be the gendo-Frobenius algebra in Example 4.1.13. A has a k-basis {e1, e2, e3, e4, α1,

α2, α3, α4, α1α3, α2α4} so D(A) has the dual basis {e∗1, e∗2, e∗3, e∗4, α∗1, α∗2, α∗3, α∗4, (α1α3)∗, (α2α4)∗}.
(1) We choose e = e1 + e2 since e1 + e2 is a faithful and self-dual idempotent of A.

(2) The (eAe,A)-bimodule isomorphism τ is explicity defined on the basis elements by

τ : eAσ ∼= D(Ae)

e1 7→ (α2α4)∗

e2 7→ (α1α3)∗

α1 7→ α∗4

α2 7→ α∗3

α1α3 7→ e∗1

α2α4 7→ e∗2.

(3) The A-bimodule isomorphism γ is explicitly defined by

γ : Ae⊗eAe eAσ ∼= D(A)

e2 ⊗ e2 7→ (α1α3)∗

e2 ⊗ α2 7→ α∗3

e2 ⊗ α2α4 7→ e∗2

e1 ⊗ e1 7→ (α2α4)∗

e1 ⊗ α1 7→ α∗4

e1 ⊗ α1α3 7→ e∗1
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α3 ⊗ e2 7→ α∗1

α3 ⊗ α2 7→ e∗3

α4 ⊗ e1 7→ α∗2

α4 ⊗ α1 7→ e∗4.

(4) We obtain the multiplication table of the basis elements of D(A) as follows:

m e∗1 e∗2 e∗3 e∗4 α∗1 α∗2 α∗3 α∗4 (α1α3)∗ (α2α
∗
4)

e∗1 0 0 0 0 0 0 0 0 e∗1 0

e∗2 0 0 0 0 0 0 0 0 0 e∗2

e∗3 0 0 0 0 0 0 0 0 0 0

e∗4 0 0 0 0 0 0 0 0 0 0

α∗1 0 0 0 0 0 0 e∗3 0 α∗1 0

α∗2 0 0 0 0 0 0 0 e∗4 0 α∗2

α∗3 0 0 0 0 0 e∗2 0 0 0 0

α∗4 0 0 0 0 e∗1 0 0 0 0 0

(α1α3)∗ 0 e∗2 0 0 0 0 α∗3 0 (α1α3)∗ 0

(α2α4)∗ e∗1 0 0 0 0 0 0 α∗4 0 (α2α4)∗

(5) Dualising m yields

∆ : A→ AA⊗k AA

such that (f ⊗ g)∆(a) = m(g ⊗ f)(a) for any f, g ∈ D(A) and a ∈ A. So let

f = λ1e1 + λ2e2 + λ3e3 + λ4e4 + λ5α1 + λ6α2 + λ7α3 + λ8α4 + λ9α1α3 + λ10α2α4

g = µ1e1 + µ2e2 + µ3e3 + µ4e4 + µ5α1 + µ6α2 + µ7α3 + µ8α4 + µ9α1α3 + µ10α2α4,

where λi, µi ∈ k for 1 ≤ i ≤ 10. By using the table in the previous step, we get

m(g ⊗ f) = (µ1λ9 + µ8λ5 + µ10λ1)e∗1 + (µ2λ10 + µ7λ6 + µ9λ2)e∗2 + (µ5λ6)e∗3 + (µ6λ7)e∗4

+ (µ5λ9)α∗1 + (µ6λ10)α∗2 + (µ9λ7)α∗3 + (µ10λ8)α∗4

+ (µ9λ9)(α1α3)∗ + (µ10λ10)(α2α4)∗.

Then

m(g ⊗ f)(e1) = µ1λ9 + µ8λ5 + µ10λ1

m(g ⊗ f)(e2) = µ2λ10 + µ7λ6 + µ9λ2

m(g ⊗ f)(e3) = µ5λ6

m(g ⊗ f)(e4) = µ6λ7

m(g ⊗ f)(α1) = µ5λ9

m(g ⊗ f)(α2) = µ6λ10

m(g ⊗ f)(α3) = µ9λ7

m(g ⊗ f)(α4) = µ10λ8

m(g ⊗ f)(α1α3) = µ9λ9
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m(g ⊗ f)(α2α4) = µ10λ10.

Since (f ⊗ g)∆(a) = m(g ⊗ f)(a) for all a ∈ A, we obtain that

∆(e1) = α1α3 ⊗ e1 + α1 ⊗ α4 + e1 ⊗ α2α4

∆(e2) = α2α4 ⊗ e2 + α2 ⊗ α3 + e2 ⊗ α1α3

∆(e3) = α3 ⊗ α1

∆(e4) = α4 ⊗ α2

∆(α1) = α1α3 ⊗ α1

∆(α2) = α2α4 ⊗ α2

∆(α3) = α3 ⊗ α1α3

∆(α4) = α4 ⊗ α2α4

∆(α1α3) = α1α3 ⊗ α1α3

∆(α2α4) = α2α4 ⊗ α2α4.

(6) Let a ∈ A. Then we can write a = a1e1 + a2e2 + a3e3 + a4e4 + a5α1 + a6α2 + a7α3 + a8α4 +

a9α1α3 + a10α2α4, where ai ∈ k for 1 ≤ i ≤ 10. The linearity of ∆ gives that

∆(a) = a1∆(e1) + a2∆(e2) + a3∆(e3) + a4∆(e4)

+ a5∆(α1) + a6∆(α2) + a7∆(α3) + a8∆(α4)

+ a9∆(α1α3) + a10∆(α2α4).

Observe that the algebra A in Example 4.2.10 is not Frobenius. Therefore, it is natural to ask whether

the algebra A has a counit compatible with ∆ or not. Indeed, (A,∆) does not have a counit. After

giving a preliminary result, we give a proposition which explains why (A,∆) does not have a counit and

describes a general situation.

Remark 4.2.11. Let us consider the following A-bimodule isomorphism

HomA(D(A), Aσ) ∼= HomA(D(A)σ−1 , A)

∼= HomA(Ae⊗eAe eA,A)

∼= HomeAe(eA, eA)

∼= A

where the second isomorphism is HomA(γ′, A). Let Θ : D(A) → Aσ be the inverse image of 1 ∈ A

under the above isomorphism. Then (Θ ◦ γ)(ae ⊗ eb) = aeb for a, b ∈ A. Actually, Θ is an A-bimodule

morphism with eΘ = τ−1.

The following observation will be used to prove Proposition 4.2.19.

Instead of τ : eAσ ∼= D(Ae), we can write τ ′ : eA ∼= D(Ae)σ−1 . Let us now consider the following

A-bimodule isomorphism

HomA(D(A)σ−1 , A) ∼= HomA(Ae⊗eAe eA,A)

∼= HomeAe(eA, eA)

∼= A
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where the first isomorphism is HomA(γ′, A). Let Θ′ : D(A)σ−1 → A be the inverse image of 1 ∈ A

under the above isomorphism. Then (Θ′ ◦ γ′)(ae⊗ eb) = aeb for a, b ∈ A. Actually, Θ′ is an A-bimodule

morphism with eΘ′ = τ ′−1.

Lemma 4.2.12. Let A be a gendo-Frobenius k-algebra and m : D(A)⊗k D(A)→ D(A) as before. Then

Θ(m(f ⊗ g)) = Θ(f)Θ(g)

for any f, g ∈ D(A).

Proof. Let f = γ(ae⊗ eb) and g = γ(ce⊗ ed). Then observe that

(Θ ◦m)(γ(ae⊗ eb)⊗ γ(ce⊗ ed)) = Θ(γ(aebce⊗ ed)) = aebced = (aeb)(ced)

Θ(γ(ae⊗ eb))Θ(γ(ce⊗ ed)) = (aeb)(ced).

Proposition 4.2.13. Let A be a gendo-Frobenius k-algebra with the comultiplication ∆ : A→ AA⊗kAA.

Then (A,∆) has a counit if and only if A is Frobenius.

Proof. Let δ ∈ D(A) be a counit of (A,∆). Then m(δ ⊗ f)(a) = (f ⊗ δ)∆(a) = f(1 ⊗ δ)∆(a) = f(a),

and similarly m(f ⊗ δ)(a) = (δ ⊗ f)∆(a) = f(a) for any a ∈ A. Therefore, δ is a unit of (D(A),m).

Now, let u be the image of δ under Θ : D(A)→ Aσ. Then Θm(δ ⊗ γ(ae⊗ eb)) = Θ(γ(ae⊗ eb)). So, we

obtain that uaeb = aeb for any a, b ∈ A by Lemma 4.2.12. Hence, we obtain that u = 1 since AeA is a

faithful left A-module. As a result, Θ is surjective as an A-bimodule morphism and thus an isomorphism

by comparing dimensions. So A is Frobenius. In fact, σ is a Nakayama automorphism of A.

Conversely, let A be Frobenius. Then by Theorem 2.2.3 and Proposition 4.2.19 which is given later,

(A,∆) has a counit.

In particular, the case when A is Frobenius, which is considered in Theorem 2.2.3, is now obtained

as a special case of Theorem 4.2.3 and Proposition 4.2.13.

Corollary 4.2.14. Let A be a Frobenius k-algebra. Then it has a coassociative counital comultiplication

∆ : A→ AA⊗k AA which is a map of A-bimodules.

Moreover, the case A is gendo-symmetric, which is considered in Theorem 3.2.1, is obtained as a

special case of Theorem 4.2.3.

Corollary 4.2.15. Let A be a gendo-symmetric k-algebra. Then it has a coassociative comultiplication

∆ : A→ AA⊗k AA which is a map of A-bimodules.

Remark 4.2.16. If we assume that the finite dimensional algebra A is gendo-symmetric, we can choose σ

as identity automorphism. Therefore, the comultiplication given in this section and the comultiplication

given in Section 3.2 are equal.

4.2.1 Alternative approach to the proof of Lemma 4.2.4 and to writing the

comultiplication

In this subsection, we give an alternative approach to the proof of Lemma 4.2.4 and also to writing the

comultiplication ∆ : A → A⊗k A by using Ae⊗eAe eAσ instead of D(A) since Ae⊗eAe eAσ ∼= D(A) as

A-bimodules (see Lemma 4.2.1).
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Let A be a gendo-Frobenius algebra with a faithful and self-dual idempotent e. Let us construct a

multiplication map

m′ : (Ae⊗eAe eAσ)⊗k (Ae⊗eAe eAσ)→ Ae⊗eAe eAσ

which is the composition of the following maps

m′ : (Ae⊗eAe eAσ)⊗k (Ae⊗eAe eAσ)
m′2→ (Ae⊗eAe eA)⊗k (Ae⊗eAe eAσ)

φ′→ (Ae⊗eAe eA)⊗A (Ae⊗eAe eAσ)

ε′→ Ae⊗eAe eAσ,

where m′1 = ε′φ′. This composition is explicitly defined by

m′ : (ae⊗ eb)⊗k (ce⊗ ed) 7→ (ae⊗ eb)⊗k (ce⊗ ed)

7→ (ae⊗ eb)⊗A (ce⊗ ed)

7→ aebce⊗ ed

for any a, b, c, d ∈ A. The map m′2 can be defined by

m′2 : (ae⊗ eb)⊗k (ce⊗ ed) 7→ (ae⊗ eb)⊗k (ce⊗ ed)

since Ae⊗eAe eAσ and Ae⊗eAe eA are same as k-vector spaces and the tensor product is over k.

Lemma 4.2.17. Let m′ be as above. Then m′ is an A-bimodule morphism.

Proof. It is enough to check that m′(x(ae⊗ eb)⊗k (ce⊗ ed)) = xm′((ae⊗ eb)⊗k (ce⊗ ed)) for any x ∈ A
and m′((ae⊗ eb)⊗k (ce⊗ ed)y) = m′((ae⊗ eb)⊗k (ce⊗ ed))y for any y ∈ A. We observe that

m′(x(ae⊗ eb)⊗k (ce⊗ ed)) = m′1m
′
2(x(ae⊗ eb)⊗k (ce⊗ ed))

= m′1m
′
2((xae⊗ eb)⊗k (ce⊗ ed))

= m′1((xae⊗ eb)⊗k (ce⊗ ed))

= xaebce⊗ ed

xm′((ae⊗ eb)⊗k (ce⊗ ed)) = xm′1m
′
2((ae⊗ eb)⊗k (ce⊗ ed))

= xm′1((ae⊗ eb)⊗k (ce⊗ ed))

= xaebce⊗ ed

Then m′(x(ae⊗ eb)⊗k (ce⊗ ed)) = xm′((ae⊗ eb)⊗k (ce⊗ ed)) for any x ∈ A. Also,

m′((ae⊗ eb)⊗k (ce⊗ ed)y) = m′1m
′
2((ae⊗ eb)⊗k (ce⊗ edσ(y)))

= m′1((ae⊗ eb)⊗k (ce⊗ edσ(y)))

= aebce⊗ edσ(y)

m′((ae⊗ eb)⊗k (ce⊗ ed))y = m′1m
′
2((ae⊗ eb)⊗k (ce⊗ ed))y

= m′1((ae⊗ eb)⊗k (ce⊗ ed))y

= aebce⊗ edσ(y)

Then m′((ae ⊗ eb) ⊗k (ce ⊗ ed)y) = m′((ae ⊗ eb) ⊗k (ce ⊗ ed))y for any y ∈ A. Therefore, m′ is an
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A-bimodule morphism.

Proposition 4.2.18. Let A be a gendo-Frobenius algebra, m : D(A)⊗k D(A)→ D(A) be the multiplica-

tion map defined by (4.3) and m′ be as above. Then m′ coincides with m.

Proof. Let γ′ : Ae ⊗eAe eA ∼= D(A)σ−1 be the A-bimodule isomorphism which is given in the proof of

Proposition 4.2.2. Consider the following diagram

(Ae⊗eAe eAσ)⊗k (Ae⊗eAe eAσ)
γ⊗kγ //

m′2

��

D(A)⊗k D(A)

m2

��
(Ae⊗eAe eA)⊗k (Ae⊗ eAσ)

γ′⊗kγ //

φ′

��

D(A)σ−1 ⊗k D(A)

φ

��
(Ae⊗eAe eA)⊗A (Ae⊗ eAσ)

γ′⊗Aγ //

ε′

��

D(A)σ−1 ⊗A D(A)

ε

��
Ae⊗eAe eAσ

γ // D(A)

This diagram is commutative since the maps γ⊗k γ, γ′⊗k γ, γ′⊗A γ and γ are isomorphisms. Therefore,

it gives that

m(γ ⊗k γ)((ae⊗ eb)⊗k (ce⊗ ed)) = m(γ(ae⊗ eb)⊗k γ(ce⊗ ed)) = γ(aebce⊗ ed)

and

γm′((ae⊗ eb)⊗k (ce⊗ ed)) = γ(aebce⊗ ed)

are equal. This means that m′ coincides with m.

Alternative Proof to Lemma 4.2.4. For any a, b, c, d, x, y ∈ A,

m′(1⊗m′)((ae⊗eAe eb)⊗k (ce⊗eAe ed)⊗k (xe⊗eAe ey)) = m′((ae⊗eAe eb)⊗k (cedxe⊗eAe ey))

= aebcedxe⊗eAe ey

m′(m′ ⊗ 1)((ae⊗eAe eb)⊗k (ce⊗eAe ed)⊗k (xe⊗eAe ey)) = m′((aebce⊗eAe ed)⊗k (xe⊗eAe ey))

= aebcedxe⊗eAe ey.

Proposition 4.2.18 completes the proof. �

4.2.2 Comparison with Abrams’ comultiplication

Let A be a Frobenius algebra over a field k. In this subsection, we compare the comultiplication

∆ : A → A ⊗k A given in Section 4.2 and the comultiplication α : A → A ⊗k A given by Abrams

(Theorem 2.2.3). Moreover, we give the proof of Theorem 2.2.11 as promised.

We keep the notations introduced in Chapter 2 and this chapter. Since A is Frobenius, we choose

e = 1A and have the A-bimodule isomorphism τ : Aσ ∼= D(A) by Section 4.2 such that σ is a Nakayama

automorphism of A.
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Proposition 4.2.19. Let A be a Frobenius algebra with the left A-module isomorphism λL : A ∼= D(A)

which defines an isomorphism λL : Aσ ∼= D(A) of A-bimodules, where σ is a Nakayama automorphism

of A. Suppose that λL = τ . Then α is equal to ∆.

Proof. Let A be Frobenius and τ : Aσ ∼= D(A) be the A-bimodule isomorphism. We can consider

τ as τ ′ : A → D(A)σ−1 such that τ(a) = τ ′(a) for any a ∈ A. Therefore, λL(a) = τ ′(a) for any

a ∈ A. Moreover, there is an A-bimodule isomorphism γ : A ⊗A Aσ ∼= D(A) by Lemma 4.2.1 and so

γ′ : A ⊗A A ∼= D(A)σ−1 . By Remark 4.2.11, we have an A-bimodule isomorphism Θ′ : D(A)σ−1 → A

with Θ′ = τ ′−1. By following the same remark, we write τ ′−1(γ′(x⊗ y)) = xy for any x, y ∈ A.

Since the Frobenius form ε of A is equal to λL(1A), all elements of D(A) are of the form a · ε for

any a ∈ A. By Section 2.2, it is known that the isomorphism λL : A ∼= D(A) allows us to define a

multiplication ϕL such that ϕL(a · ε⊗ b · ε) = (b · ε⊗ a · ε) ◦ αR = ab · ε.
Let ϑ : A ⊗A A ∼= A be the A-bimodule isomorphism such that ϑ(a ⊗A b) = ab and µ′ : A ⊗k A →

A ⊗A A be the map such that µ′(a ⊗k b) = a ⊗A b for any a, b ∈ A. Suppose that λ′L := λL ◦ ϑ and

ϕ′L := λ′L ◦ µ′ ◦ λ
−1
L ⊗ λ

−1
L . Then observe the following

ϕ′L : D(A)⊗k D(A)
λ−1
L ⊗λ

−1
L // A⊗k A

µ′ // A⊗A A
λ′L // D(A)

a · ε⊗k b · ε � // a⊗k b � // a⊗A b � // ab · ε

Therefore, ϕL = ϕ′L.

Observe that there are isomophisms of left A-modules τ ′ ⊗k λL : A ⊗k A ∼= D(A)σ−1 ⊗k D(A) and

τ ′ ⊗A λL : A⊗A A ∼= D(A)σ−1 ⊗A D(A). We now observe the following diagram

D(A)⊗k D(A)
λ−1
L ⊗kλ

−1
L //

m2 **

A⊗k A
µ′ //

τ ′⊗kλL��

A⊗A A
λ′L //

τ ′⊗AλL ��

D(A)

D(A)σ−1 ⊗k D(A)
φ // D(A)σ−1 ⊗A D(A)

ε
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Since γ : A ⊗A Aσ ∼= D(A) as A-bimodules and ε ∈ D(A), we can write ε = γ(x ⊗A y) for suitable

x, y ∈ A. Since D(A) = D(A)σ−1 as k-vector spaces, we can consider ε as ε = γ′(x ⊗A y) when

we need to use it. Then any a · ε of D(A) can be written as a · ε = γ(ax ⊗A y) and any a · ε of

D(A)σ−1 can be written as a · ε = γ′(ax ⊗A y). Therefore, λ−1
L (γ(ax ⊗A y)) = λ−1

L (a · ε) = a. Then

τ ′−1(γ′(ax ⊗A y)) = axy = a by definition of τ ′−1 given above. Since A is faithful A-module, xy = 1.

Moreover, (τ ′⊗kλL)(a⊗kb) = γ′(ax⊗Ay)⊗kγ(bx⊗Ay) and (τ ′⊗AλL)(a⊗Ab) = γ′(ax⊗Ay)⊗Aγ(bx⊗Ay).

Recall that m = ε ◦ φ ◦m2. For the definitions of ε, φ and m2, see (4.2) and page 65.

Then by using the above information, first observe that

(τ ′ ⊗k λL) ◦ (λ−1
L ⊗k λ

−1
L )(a · ε⊗k b · ε) = (τ ′ ⊗k λL)(a⊗k b)

= γ′(ax⊗A y)⊗k γ(bx⊗A y)

m2(a · ε⊗k b · ε) = m2(γ(ax⊗A y)⊗k γ(bx⊗A y))

= γ′(ax⊗A y)⊗k γ(bx⊗A y).

It means that left side of the above diagram is commutative.

Also, we see that

(τ ′ ⊗A λL) ◦ µ′(a⊗k b) = (τ ′ ⊗A λL)(a⊗A b)
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= γ′(ax⊗A y)⊗A γ(bx⊗A y)

φ ◦ (τ ′ ⊗k λL)(a⊗k b) = φ(γ′(ax⊗A y)⊗k γ(bx⊗A y))

= γ′(ax⊗A y)⊗A γ(bx⊗A y).

Hence, middle part of the diagram is commutative.

Moreover, we have

ε ◦ (τ ′ ⊗A λL)(a⊗A b) = ε(γ′(ax⊗A y)⊗A γ(bx⊗A y))

= γ(axybx⊗A y)

= γ(abx⊗A y)

= ab · ε

λ′L(a⊗A b) = ab · ε.

Therefore, right side of the diagram is commutative. This means that ϕ′L = m and so ϕL = m. Then

dualising gives that αR = ∆.

There is also a comultiplication αL which is a map of left A-modules and in [2], Abrams proved that

αL = αR and defined α := αL = αR. Hence, we obtain that α = ∆.

Proof of Theorem 2.2.11. Let A be a Frobenius algebra with the left A-module isomorphism λL : A ∼=
D(A). By Section 4.2, there is a comultiplication ∆ and an A-bimodule isomorphism τ : Aσ ∼= D(A).

Since A is Frobenius, σ is a Nakayama automorphism of A. The left A-module isomorpism λL defines

an isomorphism λL : AνA
∼= D(A) of A-bimodules, where νA is a Nakayama automorphism of A. Since

Nakayama automorphism is unique up to inner automorphisms, σ = θνA for some inner automorphism θ

of the algebra A. We may choose θ as identity automorphism and so σ = νA. We may also suppose that

λL = τ . Then by Proposition 4.2.19, α = ∆ and by Lemma 4.2.5, Im(∆) = {
∑
ui ⊗ vi |

∑
uix ⊗ vi =∑

ui ⊗ σ−1(x)vi, ∀x ∈ A}. Therefore, we obtain that

Im(α) = {
∑

ui ⊗ vi |
∑

uix⊗ vi =
∑

ui ⊗ ν−1
A (x)vi, ∀x ∈ A}.

�

4.2.3 More comultiplications which are not coassociative

There are further constructions possible that yield comultiplications on gendo-Frobenius algebras. In

this subsection, we investigate three such constructions and show that they are lacking crucial proper-

ties such as being coassociative. Throughout this subsection, we assume that A is a gendo-Frobenius

k-algebra with a faithful and self-dual idempotent e.

Construction I. Fix an (eAe,A)-bimodule isomorphism ι : ν−1
eAe
eA ∼= D(Ae), where νeAe is a

Nakayama automorphism of the Frobenius algebra eAe. Then by using the double centralizer property

of Ae and the isomorphism ι, we obtain the following A-bimodule isomorphism

A ∼= HomeAe(Ae,Ae) ∼= HomeAe(D(Ae),D(Ae))

∼= HomeAe(ν−1
eAe
eA,D(Ae))

∼= Homk(Ae⊗eAe ν−1
eAe
eA, k).
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By dualising Homk(Ae⊗eAe ν−1
eAe
eA, k) ∼= A, we obtain that there is an A-bimodule isomorphism

ψ : Ae⊗eAe ν−1
eAe
eA ∼= D(A)

such that ψ(ae⊗eAe eb)(x) = ι(ebx)(ae) for all a, b, x ∈ A. Hence, there is a left A-module isomorphism

εL1 : D(A)⊗A D(A)
(1)∼= (Ae⊗eAe ν−1

eAe
eA)⊗A (Ae⊗eAe ν−1

eAe
eA)

∼= Ae⊗eAe ν−1
eAe
eAe⊗eAe ν−1

eAe
eA

(2)∼= Ae⊗eAe ν−1
eAe
eAe⊗eAe eA

∼= Ae⊗eAe ν−1
eAe
eA

∼= D(A)

where (1) is ψ−1 ⊗A ψ−1 and (2) is obtained from Theorem 4.1.7 (iv) which states that there is a left

eAe-module isomorphism ωL : ν−1
eAe
eA ∼= eA. (Instead of the left eAe-module isomorphism ωL, we could

use the (eAe,A)-bimodule isomorphism η : eAσ ∼= ν−1
eAe
eA and obtain the (A,A)-bimodule isomorphism

D(A)⊗A D(A) ∼= D(A)σ. But, we discuss it in Construction II). The map εL1 is explicitly defined by

εL1 : ψ(ae⊗eAe eb)⊗A ψ(ce⊗eAe ed) 7→ (ae⊗eAe eb)⊗A (ce⊗eAe ed)

7→ ae⊗eAe ebce⊗eAe ed

7→ ae⊗eAe ebce⊗eAe ed′

7→ ae⊗eAe ebced′

7→ ψ(ae⊗eAe ebced′)

such that ωL(ed) = ed′. Let mL
1 be the composition of the canonical left A-module morphism with the

above isomorphism such that

mL
1 : D(A)⊗k D(A)→ D(A)⊗A D(A)

εL1∼= D(A),

where

mL
1 (ψ(ae⊗eAe eb)⊗k ψ(ce⊗eAe ed)) = εL1 (ψ(ae⊗eAe eb)⊗A ψ(ce⊗eAe ed))

= ψ(ae⊗eAe ebced′).

However, mL
1 is not associative. We will show this in the next example by using the algebra in Example

4.1.13. Then dualising mL
1 gives the following non-coassociative comultiplication

∆R
1 : A→ A⊗k A

which is a map of right A-modules such that mL
1 (g ⊗ f)(a) = (f ⊗ g)∆R

1 (a) for any f, g ∈ D(A) and

a ∈ A.

Moreover, there is a right A-module isomorphism

εR1 : D(A)⊗A D(A)
(1)∼= (Ae⊗eAe ν−1

eAe
eA)⊗A (Ae⊗eAe ν−1

eAe
eA)
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∼= Ae⊗eAe ν−1
eAe
eAe⊗eAe ν−1

eAe
eA

∼= AeνeAe
⊗eAe eAe⊗eAe ν−1

eAe
eA

(2)∼= Ae⊗eAe eAe⊗eAe ν−1
eAe
eA

∼= Ae⊗eAe ν−1
eAe
eA

∼= D(A)

where (1) is ψ−1 ⊗A ψ−1 and (2) is obtained from Theorem 4.1.7 (iii) which states that there is a right

eAe-module isomorphism ωR : AeνeAe
∼= Ae. The map εR1 is explicitly defined by

εR1 : ψ(ae⊗eAe eb)⊗A ψ(ce⊗eAe ed) 7→ (ae⊗eAe eb)⊗A (ce⊗eAe ed)

7→ ae⊗eAe ebce⊗eAe ed

7→ ae⊗eAe ebce⊗eAe ed

7→ a′e⊗eAe ebce⊗eAe ed

7→ a′ebce⊗eAe ed

7→ ψ(a′ebce⊗eAe ed)

such that ωR(ae) = a′e.

Let mR
1 be the composition of the canonical right A-module morphism with the above isomorphism

such that

mR
1 : D(A)⊗k D(A)→ D(A)⊗A D(A)

εR1∼= D(A),

where

mR
1 (ψ(ae⊗eAe eb)⊗k ψ(ce⊗eAe ed)) = εR1 (ψ(ae⊗eAe eb)⊗A ψ(ce⊗eAe ed))

= ψ(a′ebce⊗eAe ed).

However, mR
1 is not associative. We will show this in the next example by using the algebra in

Example 4.1.13. Then dualising mR
1 gives the following non-coassociative comultiplication

∆L
1 : A→ A⊗k A

which is a map of left A-modules such that mR
1 (g⊗f)(a) = (f ⊗g)∆L

1 (a) for any f, g ∈ D(A) and a ∈ A.

Example 4.2.20. Let A be the gendo-Frobenius algebra given in Example 4.1.13. A has a k-basis

{e1, e2, e3, e4, α1, α2, α3, α4, α1α3, α2α4} so D(A) has the dual basis {e∗1, e∗2, e∗3, e∗4, α∗1, α∗2, α∗3, α∗4, (α1α3)∗,

(α2α4)∗}. We choose e = e1 + e2 since e1 + e2 is a faithful and self-dual idempotent of A. The (eAe,A)-

bimodule isomorphism ι : ν−1
eAe
eA ∼= D(Ae) is explicitly defined on the basis elements of A by

ι : ν−1
eAe
eA ∼= D(Ae)

e1 7→ (α1α3)∗

e2 7→ (α2α4)∗

α1 7→ α∗3

α2 7→ α∗4
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α1α3 7→ e∗2

α2α4 7→ e∗1.

Since ψ(ae⊗eAe eb)(x) = ι(ebx)(ae) for all a, b, x ∈ A, the A-bimodule isomorphism ψ : Ae⊗eAe ν−1
eAe
eA ∼=

D(A) is explicitly defined by

ψ : Ae⊗eAe ν−1
eAe
eA ∼= D(A)

e1 ⊗ e2 7→ (α2α4)∗

e1 ⊗ α2 7→ α∗4

e1 ⊗ α2α4 7→ e∗1

e2 ⊗ e1 7→ (α1α3)∗

e2 ⊗ α1 7→ α∗3

e2 ⊗ α1α3 7→ e∗2

α3 ⊗ e1 7→ α∗1

α3 ⊗ α1 7→ e∗3

α4 ⊗ e2 7→ α∗2

α4 ⊗ α2 7→ e∗4.

Then we obtain the table of multiplication mL
1 as follows:

mL
1 e∗1 e∗2 e∗3 e∗4 α∗1 α∗2 α∗3 α∗4 (α1α3)∗ (α2α

∗
4)

e∗1 0 0 0 0 0 0 0 0 0 e∗1

e∗2 0 0 0 0 0 0 0 0 e∗2 0

e∗3 0 0 0 0 0 0 0 0 0 0

e∗4 0 0 0 0 0 0 0 0 0 0

α∗1 0 0 0 0 0 0 0 e∗3 0 α∗1

α∗2 0 0 0 0 0 0 e∗4 0 α∗2 0

α∗3 0 0 0 0 e∗2 0 0 0 0 0

α∗4 0 0 0 0 0 e∗1 0 0 0 0

(α1α3)∗ e∗2 0 0 0 0 0 0 α∗3 0 (α1α3)∗

(α2α4)∗ 0 e∗1 0 0 0 0 α∗4 0 (α2α4)∗ 0

By the same process as previous examples, dualising mL
1 yields

∆R
1 (e1) = α2α4 ⊗ e1 + α2 ⊗ α4 + e2 ⊗ α2α4

∆R
1 (e2) = α1α3 ⊗ e2 + α1 ⊗ α3 + e1 ⊗ α1α3

∆R
1 (e3) = α4 ⊗ α1

∆R
1 (e4) = α3 ⊗ α2

∆R
1 (α1) = α2α4 ⊗ α1

∆R
1 (α2) = α1α3 ⊗ α2

∆R
1 (α3) = α4 ⊗ α1α3

∆R
1 (α4) = α3 ⊗ α2α4

∆R
1 (α1α3) = α2α4 ⊗ α1α3

81



∆R
1 (α2α4) = α1α3 ⊗ α2α4.

In fact, the multiplication mL
1 is not associative, because, for example

mL
1 (mL

1 ⊗ 1)(α∗1 ⊗k α2α
∗
4 ⊗ α∗4) = mL

1 (α∗1 ⊗k α∗4) = e∗3

and

mL
1 (1⊗mL

1 )(α∗1 ⊗k α2α
∗
4 ⊗ α∗4) = mL

1 (α∗1 ⊗ 0) = 0

are not equal.

Moreover, we obtain the table of multiplication mR
1 as follows:

mR
1 e∗1 e∗2 e∗3 e∗4 α∗1 α∗2 α∗3 α∗4 (α1α3)∗ (α2α

∗
4)

e∗1 0 0 0 0 0 0 0 0 0 e∗2

e∗2 0 0 0 0 0 0 0 0 e∗1 0

e∗3 0 0 0 0 0 0 0 0 0 0

e∗4 0 0 0 0 0 0 0 0 0 0

α∗1 0 0 0 0 0 0 0 e∗4 0 α∗2

α∗2 0 0 0 0 0 0 e∗3 0 α∗1 0

α∗3 0 0 0 0 e∗1 0 0 0 0 0

α∗4 0 0 0 0 0 e∗2 0 0 0 0

(α1α3)∗ e∗1 0 0 0 0 0 0 α∗4 0 (α2α4)∗

(α2α4)∗ 0 e∗2 0 0 0 0 α∗3 0 (α1α3)∗ 0

By the same process as before, dualising mR
1 yields

∆L
1 (e1) = α1α3 ⊗ e2 + α1 ⊗ α3 + e1 ⊗ α1α3

∆L
1 (e2) = α2α4 ⊗ e1 + α2 ⊗ α4 + e2 ⊗ α2α4

∆L
1 (e3) = α3 ⊗ α2

∆L
1 (e4) = α4 ⊗ α1

∆L
1 (α1) = α1α3 ⊗ α2

∆L
1 (α2) = α2α4 ⊗ α1

∆L
1 (α3) = α3 ⊗ α2α4

∆L
1 (α4) = α4 ⊗ α1α3

∆L
1 (α1α3) = α1α3 ⊗ α2α4

∆L
1 (α2α4) = α2α4 ⊗ α1α3.

In fact, the multiplication mR
1 is not associative, because, for example

mR
1 (mR

1 ⊗ 1)(α∗1 ⊗k α2α
∗
4 ⊗ α∗3) = mR

1 (α∗2 ⊗k α∗3) = e∗3

and

mR
1 (1⊗mR

1 )(α∗1 ⊗k α2α
∗
4 ⊗ α∗3) = mR

1 (α∗1 ⊗ α∗3) = 0

are not equal.

82



And, moreover, we observe that ∆L
1 6= ∆R

1 . Indeed, we obtain the following two commutative

diagrams

A A

A⊗k A A⊗k A A⊗k A A⊗k A

∆∆L
1 ∆∆R

1

idA⊗kσ
−1 σ⊗kidA

Construction II. By Construction I, there is an A-bimodule isomorphism

ψ : Ae⊗eAe ν−1
eAe
eA ∼= D(A)

such that ψ(ae⊗eAe eb)(x) = ι(ebx)(ae), for all a, b, x ∈ A. Hence, there is an A-bimodule isomorphism

ε2 : D(A)⊗A D(A)
(1)∼= (Ae⊗eAe ν−1

eAe
eA)⊗A (Ae⊗eAe ν−1

eAe
eA)

∼= Ae⊗eAe ν−1
eAe
eAe⊗eAe ν−1

eAe
eA

(2)∼= Ae⊗eAe ν−1
eAe
eAe⊗eAe eAσ

∼= Ae⊗eAe ν−1
eAe
eAσ

∼= D(A)σ

where (1) is ψ−1 ⊗A ψ−1 and (2) is obtained from Proposition 4.1.11 (ii) which states that there is an

(eAe,A)-bimodule isomorphism η : eAσ ∼= ν−1
eAe
eA. This map is explicitly defined by

ε2 : ψ(ae⊗ eb)⊗A ψ(ce⊗ ed)
(1)7→ (ae⊗eAe eb)⊗A (ce⊗eAe ed)

7→ ae⊗eAe ebce⊗eAe ed
(2)7→ ae⊗eAe ebce⊗eAe ed′

7→ ae⊗eAe ebced′

7→ ψ(ae⊗eAe ebced′)

such that η−1(ed) = ed′. Let m2 be the composition of the canonical A-bimodule morphism with the

above isomorphism such that

m2 : D(A)⊗k D(A)→ D(A)⊗A D(A)
ε2∼= D(A)σ,

where

m2(ψ(ae⊗eAe eb)⊗k ψ(ce⊗eAe ed)) = ε2(ψ(ae⊗eAe eb)⊗A ψ(ce⊗eAe ed))

∼= ψ(ae⊗eAe ebced′).

In fact, m2 = mL
1 as left A-module morphisms, and m2 is not associative because of the same reason

with Construction I. Dualising m2 gives

∆2 : σA→ A⊗k A.

Also, ∆2 = ∆R
1 as right A-module morphisms. Indeed, ∆2 is not in the form of comultiplication that

we wished as an A-bimodule morphism since it twists with automorphism σ. Moreover, it is non-
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coassociative since m2 is not associative.

Construction III. By the proof of Proposition 4.2.2, there is an A-bimodule isomorphism γ :

Ae⊗eAe eAσ ∼= D(A) and (eAe,A)-bimodule isomorphism τ : eAσ ∼= D(A) such that γ(ae⊗eAe eb)(x) =

τ(ebσ(x))(ae) for any a, b, x ∈ A. By Proposition 4.1.11 (ii), there is an (eAe,A)-bimodule isomorphism

η : eAσ ∼= ν−1
eAe
eA, where νeAe is a Nakayama automorphism of eAe.

Note that there is an eAe-bimodule isomorphism χ : eAσ⊗AAe ∼= eAσ(e)σe , where σe is the restriction

of σ to eAe and χ is explicitly defined by χ : eb⊗ ce→ ebσ(c)σ(e), for any b, c ∈ A.

Suppose that σ(e) = e. By Proposition 4.1.11 (iii), we obtain that σe is a Nakayama automorphism

of eAe. Then let σe = νeAe. All information above gives the following A-bimodule isomorphism

ε3 : D(A)⊗A D(A) ∼= (Ae⊗eAe eAσ)⊗A (Ae⊗eAe eAσ)

∼= Ae⊗eAe eAσ(e)σe ⊗eAe eAσ
∼= Ae⊗eAe eAeνeAe

⊗eAe eAσ
∼= AeνeAe

⊗eAe eAσ
∼= Ae⊗eAe ν−1

eAe
eAσ

∼= Ae⊗eAe eAσ2

∼= D(A)σ

which is explicitly defined by

ε3 : γ(ae⊗eAe eb)⊗A γ(ce⊗eAe ed) ∼= (ae⊗eAe eb)⊗A (ce⊗eAe ed)

∼= ae⊗eAe ebσ(c)σ(e)⊗eAe ed
∼= ae⊗eAe ebσ(c)e⊗eAe ed
∼= aebσ(c)e⊗eAe ed
∼= aebσ(c)e⊗eAe ed
∼= aebσ(c)e⊗eAe ed′

∼= γ(aebσ(c)e⊗eAe ed′),

where η−1(ed) = ed′.

Let m3 be the composition of the canonical A-bimodule morphism with the above isomorphism such

that

m3 : D(A)⊗k D(A)→ D(A)⊗A D(A)
ε3∼= D(A)σ,

where

m3(γ(ae⊗eAe eb)⊗k γ(ce⊗eAe ed)) = ε3(γ(ae⊗eAe eb)⊗A γ(ce⊗eAe ed))

∼= γ(aebσ(c)e⊗eAe ed′).

Dualising m3 gives the following A-bimodule morphism

∆3 : σA→ A⊗k A

such that m3(g⊗ f)(a) = (f ⊗ g)∆3(a) for any f, g ∈ D(A) and a ∈ A. Let us consider ∆3 : A→ A⊗kA
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only as right A-module morphism to make it in the form of comultiplication that we wished. However,

∆3 is not coassociative. Let us see it on the following example.

Example 4.2.21. LetA be the gendo-Frobenius algebra in Example 4.1.13. A has a k-basis {e1, e2, e3, e4,

α1, α2, α3, α4, α1α3, α2α4} so D(A) has the dual basis {e∗1, e∗2, e∗3, e∗4, α∗1, α∗2, α∗3, α∗4, (α1α3)∗, (α2α4)∗}. We

choose e = e1 + e2 since e1 + e2 is a faithful and self-dual idempotent of A. Before, we computed the

(eAe,A)-bimodule isomorphism τ explicitly on the basis elements by

τ : eAσ ∼= D(Ae)

e1 7→ (α2α4)∗

e2 7→ (α1α3)∗

α1 7→ α∗4

α2 7→ α∗3

α1α3 7→ e∗1

α2α4 7→ e∗2

and the A-bimodule isomorphism γ by

γ : Ae⊗eAe eAσ ∼= D(A)

e2 ⊗ e2 7→ (α1α3)∗

e2 ⊗ α2 7→ α∗3

e2 ⊗ α2α4 7→ e∗2

e1 ⊗ e1 7→ (α2α4)∗

e1 ⊗ α1 7→ α∗4

e1 ⊗ α1α3 7→ e∗1

α3 ⊗ e2 7→ α∗1

α3 ⊗ α2 7→ e∗3

α4 ⊗ e1 7→ α∗2

α4 ⊗ α1 7→ e∗4.

Then we obtain the table of multiplication m3 as follows:

m3 e∗1 e∗2 e∗3 e∗4 α∗1 α∗2 α∗3 α∗4 (α1α3)∗ (α2α
∗
4)

e∗1 0 0 0 0 0 0 0 0 0 e∗1

e∗2 0 0 0 0 0 0 0 0 e∗2 0

e∗3 0 0 0 0 0 0 0 0 0 0

e∗4 0 0 0 0 0 0 0 0 0 0

α∗1 0 0 0 0 0 0 0 e∗3 0 α∗1

α∗2 0 0 0 0 0 0 e∗4 0 α∗2 0

α∗3 0 0 0 0 e∗2 0 0 0 0 0

α∗4 0 0 0 0 0 e∗1 0 0 0 0

(α1α3)∗ e∗2 0 0 0 0 0 0 α∗3 0 (α1α3)∗

(α2α4)∗ 0 e∗1 0 0 0 0 α∗4 0 (α2α4)∗ 0
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By the same process as previous examples, dualising m3 yields

∆3(e1) = α2α4 ⊗ e1 + α2 ⊗ α4 + e2 ⊗ α2α4

∆3(e2) = α1α3 ⊗ e2 + α1 ⊗ α3 + e1 ⊗ α1α3

∆3(e3) = α4 ⊗ α1

∆3(e4) = α3 ⊗ α2

∆3(α1) = α2α4 ⊗ α1

∆3(α2) = α1α3 ⊗ α2

∆3(α3) = α4 ⊗ α1α3

∆3(α4) = α3 ⊗ α2α4

∆3(α1α3) = α2α4 ⊗ α1α3

∆3(α2α4) = α1α3 ⊗ α2α4.

In fact, the multiplication m3 is not associative, because, for example

m3(m3 ⊗ 1)(α∗1 ⊗k α2α
∗
4 ⊗ α∗4) = m3(α∗1 ⊗k α∗4) = e∗3

and

m3(1⊗m3)(α∗1 ⊗k α2α
∗
4 ⊗ α∗4) = m3(α∗1 ⊗ 0) = 0

are not equal.

Indeed, ∆3 = ∆2 as A-bimodule morphisms and ∆3 = ∆R
1 as right A-module morphisms under the

assumption σ(e) = e. Without assuming σ(e) = e, alternatively we can take the (eAe, eAe)-bimodule

isomorphism η ⊗A idAe : eAσ ⊗A Ae ∼= ν−1
eAe
eA ⊗A Ae instead of χ. Then we obtain the following

A-bimodule isomorphism

ε4 : D(A)⊗A D(A) ∼= (Ae⊗eAe eAσ)⊗A (Ae⊗eAe eAσ)

∼= (Ae⊗eAe ν−1
eAe
eA)⊗A (Ae⊗eAe eAσ)

∼= Ae⊗eAe ν−1
eAe
eAe⊗eAe eAσ

∼= Ae⊗eAe ν−1
eAe
eAσ

∼= Ae⊗eAe eAσ2

∼= D(A)σ.

In fact, this is same as the isomorphism ε2 and making the same computations gives the non-coassociative

comultiplication ∆2.

4.3 Comultiplication of Frobenius Nakayama algebras and their

compatible counit

In this subsection, we give some results on Frobenius Nakayama algebras with respect to comultiplica-

tion. More clearly, we give a comultiplication formula for the Frobenius Nakayama algebras and their
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compatible counit.

Let Q be a finite connected quiver with nonempty set of arrows, k a field, I an admissible ideal of

the path algebra kQ, and A = kQ/I the associated bound quiver algebra.

Definition 4.3.1. A path of length n ≥ 1 in Q is a sequence of arrows p = α1α2 · · ·αn such that

t(αi) = s(αi+1) for 1 ≤ i ≤ n − 1, where s, t : Q1 → Q0 are source and target maps, respectively. The

length of p is denoted by `(p) = n.

Notation: Let A = kQ/I be a Frobenius algebra and pi be a path in Q. Throughout this subsection,

the index i of pi will denote the starting point of pi, that is, s(pi) = i for i ∈ Q0. If `(pi) = k,

for simplicity, we will denote this path by pik , where k only denotes the length of pi. In addition,

pν(i)k := νA(pik) where νA is a Nakayama automorphism of A and ν is the Nakayama permutation of A

induced by νA.

We now focus on Frobenius Nakayama algebras. By Section 2.1.3, A = kQ/I is a Frobenius Nakayama

algebra if and only if A = Nm
n .

Throughout this subsection, we assume that ∆ : A → A ⊗k A is the comultiplication which is

introduced in Section 4.2.

Example 4.3.2. Let A = N2
3 . A has a k-basis {e1, e2, e3, α1, α2, α3, α1α2, α2α3, α3α1}. See Example

2.1.26 for the Nakayama automorphism νA and the Nakayama permutation ν of A induced by νA. By

using the above notation, we have pi0 = ei, pi1 = αi for 1 ≤ i ≤ 3, p12 = α1α2, p22 = α2α3 and

p32 = α3α1. Therefore, pν−1(1)0 = e2, pν−1(2)0 = e3, pν−1(3)0 = e1, pν−1(1)1 = α2, pν−1(2)1 = α3,

pν−1(3)1 = α1, pν−1(1)2 = α2α3, pν−1(2)2 = α3α1 and pν−1(3)2 = α1α2.

Proposition 4.3.3. Let A = Nm
n , νA be a Nakayama automorphism of A and ν be the Nakayama

permutation of {1, ..., n} induced by νA. Suppose that {e1, · · · , en} is the set of idempotents, and for each

ei there exists a path xi which is an element of socA, where s(xi) = i, t(xi) = ν(i) and `(xi) = m for

all i ∈ Q0. Then there is an A-bimodule isomorphism τ : AνA
∼= D(A) which is explicitly defined on the

following basis elements of A by

τ : ei 7→ x∗ν−1(i)

xi 7→ e∗i

pik 7→ (pν−1(j)m−k
)∗ for 1 ≤ k ≤ m− 1,

where pikpjm−k
= xi, for all i ∈ Q0 and for suitable choices of j which depends on k.

Proof. Since A is a Frobenius algebra, there is an A-bimodule isomorphism τ : AνA
∼= D(A), where νA

is a Nakayama automorphism of A. Now, we need to write this isomorphism explicitly.

Assume that τ is defined as in the proposition. It is necessary to show that τ(ab) = aτ(b) = τ(a)ν−1
A (b)

for all a, b ∈ A. So, by using the linearity of τ , it is enough to check this condition on every basis element

of A. Then firstly observe the following cases for τ(ab).

Case 1:

τ(eiei) = x∗ν−1(i)

τ(eixi) = e∗i

τ(eipik) = (pν−1(j)m−k
)∗,
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where 1 ≤ k ≤ m− 1.

Case 2:

τ(xieν(i)) = e∗i .

Case 3:

τ(pikej) = (pν−1(j)m−k
)∗.

For s < m− k,

τ(pikpjs) = τ(pik+s
) = (pν−1(r)m−(k+s)

)∗,

where t(pik+s
) = t(pjs) = r.

For s = m− k,

τ(pikpjs) = τ(pik+s
) = τ(xi) = e∗i

since `(xi) = m.

Note that if τ(ab) is not in the above cases for any basis elements a, b of A, then τ(ab) = 0.

We now observe these cases for aτ(b).

Case 1:

eiτ(ei) = eix
∗
ν−1(i) = x∗ν−1(i)

eiτ(xi) = eie
∗
i = e∗i

eiτ(pik) = ei(pν−1(j)m−k
)∗ = (pν−1(j)m−k

)∗,

where 1 ≤ k ≤ m− 1.

Case 2:

xiτ(eν(i)) = xix
∗
i = e∗i .

Case 3:

pikτ(ej) = pikx
∗
ν−1(j) = (pν−1(j)m−k

)∗.

For s < m− k,

pikτ(pjs) = pikp
∗
ν−1(r)m−s

= (pν−1(r)m−(k+s)
)∗

since t(pjs) = r.

For s = m− k,

pikτ(pjs) = pikp
∗
im−s

= e∗i

since in this case t(pjs) = ν(i).

Note that if aτ(b) is not in the above cases for any basis elements a, b of A, then aτ(b) = 0.

We lastly observe these cases for τ(a)ν−1
A (b).
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Case 1:

τ(ei)ν
−1
A (ei) = x∗ν−1(i)eν−1(i) = x∗ν−1(i)

τ(ei)ν
−1
A (xi) = x∗ν−1(i)xν−1(i) = e∗i

τ(ei)ν
−1
A (pik) = x∗ν−1(i)pν−1(i)k = (pν−1(j)m−k

)∗,

where 1 ≤ k ≤ m− 1.

Case 2:

τ(xi)ν
−1
A (eν(i)) = e∗i ei = e∗i .

Case 3:

τ(pik)ν−1
A (ej) = (pν−1(j)m−k

)∗eν−1(j) = (pν−1(j)m−k
)∗.

For s < m− k,

τ(pik)ν−1
A (pjs) = (pν−1(j)m−k

)∗pν−1(j)s = (pν−1(r)m−(k+s)
)∗

since t(pjs) = r.

For s = m− k,

τ(pik)ν−1
A (pjs) = (pν−1(j)m−k

)∗pν−1(j)s = e∗i

since in this case t(pjs) = ν(i).

Note that if τ(a)ν−1
A (b) is not in the above cases for any basis elements a, b of A, then τ(a)ν−1

A (b) = 0.

Then by the above cases, we obtain that τ(ab) = aτ(b) = τ(a)ν−1
A (b) for all a, b ∈ A.

Proposition 4.3.4. Let A = Nm
n , νA be a Nakayama automorphism of A and ν be the Nakayama

permutation of {1, ..., n} induced by νA. Suppose that {e1, · · · , en} is the set of idempotents, and for each

ei there exists a path xi which is an element of socA, with s(xi) = i, t(xi) = ν(i) and `(xi) = m for all

i ∈ Q0. Then there is an A-bimodule isomorphism γ : A⊗A AνA ∼= D(A) which is explicitly defined by

γ : ei ⊗ ei 7→ x∗ν−1(i)

ei ⊗ xi 7→ e∗i

ei ⊗ pik 7→ (pν−1(j)m−k
)∗ for 1 ≤ k ≤ m− 1,

where pikpjm−k
= xi, for all i ∈ Q0 and for suitable choices of j which depends on k.

Proof. Since A is a Frobenius algebra, there exists an (A,A)-bimodule isomorphism τ : AνA
∼= D(A).

From Proposition 4.3.3, τ is defined by

τ : ei 7→ x∗ν−1(i)

xi 7→ e∗i

pikej 7→ (pν−1(j)m−k
)∗ for 1 ≤ k ≤ m− 1,

where pikpjm−k
= xi, for all i ∈ Q0 and for suitable choices of j which depends on k.

Moreover, there is an A-bimodule isomorphism γ : A ⊗A AνA
∼= D(A) such that γ(a ⊗ b)(x) =

τ(bνA(x))(a) for all a, b, x ∈ A. By using the isomorphism τ and the last equality, the isomorphism γ is
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explicitly defined by

γ : ei ⊗ ei 7→ x∗ν−1(i)

ei ⊗ xi 7→ e∗i

ei ⊗ pik 7→ (pν−1(j)m−k
)∗ for 1 ≤ k ≤ m− 1,

where pikpjm−k
= xi, for all i ∈ Q0 and for suitable choices of j which depends on k.

Theorem 4.3.5. Let A = Nm
n , νA be a Nakayama automorphism of A and ν be the Nakayama permu-

tation of {1, ..., n} induced by νA. Suppose that {e1, · · · , en} is the set of idempotents, and for each ei

there exists a path xi which is an element of socA, with s(xi) = i, t(xi) = ν(i) and `(xi) = m for all

i ∈ Q0. Then there exists a comultiplication ∆ of A which is given for ei by

∆(ei) =
∑

0≤k≤m
pikpjm−k

=xi

pik ⊗ pν−1(j)m−k
,

for suitable choices of j which depends on k.

Note that pi0 = ei and pim = xi.

Proof. By Lemma 4.2.1, there is an A-bimodule isomorphism γ : Ae ⊗eAe eAσ ∼= D(A) and by Section

4.2, there is a multiplication map

m : D(A)⊗k D(A)→ D(A)

such that m(γ(ae⊗eAeeb)⊗kγ(ce⊗eAeed)) = γ(aebce⊗eAeed) for any a, b, c, d ∈ A. Since A is Frobenius,

we choose e = 1A. By Proposition 4.1.11, we can let σ = νA. Therefore, we can consider the A-bimodule

isomorphism γ as γ in Proposition 4.3.4.

Let t(xi) = s. By Proposition 4.3.4, we obtain that

m(e∗i ⊗k x∗i ) = m(γ(ei ⊗A xies)⊗k γ(es ⊗A es))

= γ(ei ⊗A xi) = e∗i

m(x∗ν−1(i) ⊗k e
∗
i ) = m(γ(ei ⊗A ei)⊗k γ(ei ⊗A xies))

= γ(ei ⊗A xi) = e∗i (4.5)

m((pν−1(j)m−k
)∗ ⊗k (pik)∗) = m(γ(ei ⊗A pik)⊗k γ(ej ⊗A pjm−k

))

= γ(ei ⊗A pikpjm−k
) = γ(ei ⊗A xi) = e∗i .

Observe that the only way of writing e∗i as a product of basis elements is given above.

Now, let f, g ∈ D(A) such that

f = λ0e
∗
i + λ1p

∗
i1 + λ2p

∗
i2 + · · ·+ λm−1p

∗
im−1

+ λmx
∗
i +X (4.6)

g = µ0e
∗
i + µ1p

∗
ν−1(j)1

+ µ2p
∗
ν−1(j)2

+ · · ·+ µm−1p
∗
ν−1(j)m−1

+ µmx
∗
ν−1(i) + Y,

where pik (pν−1(j)m−k
) denotes the path starting (ending) at vertex i such that pikpjm−k

= xi for

1 ≤ k ≤ m−1 and for suitable choices of j which depends on k. Here, X,Y denote the linear combination

of the remaining basis elements of D(A).
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By using (4.5), we obtain that

m(g ⊗ f)(ei) = µ0λm + µ1λm−1 + · · ·+ µm−1λ1 + µmλ0.

Since m(g ⊗ f)(ei) = (f ⊗ g)∆(ei),

(f ⊗ g)∆(ei) = µ0λm + µ1λm−1 + · · ·+ µm−1λ1 + µmλ0. (4.7)

Let ∆(ei) =
∑
k uk ⊗ vk. Then by using (4.6) and (4.7), we obtain that

(f ⊗ g)∆(ei) = (λ0µm(e∗i ⊗ x∗ν−1(i)) + λ1µm−1(p∗i1 ⊗ p
∗
ν−1(j)m−1

) + ...+ λmµ0(x∗i ⊗ e∗i ))
∑
k

uk ⊗ vk

= (λ0e
∗
i (u0)µmx

∗
ν−1(i)(v0) + λ1p

∗
i1(u1)µm−1p

∗
ν−1(j)m−1

(v1) + ...+ λmx
∗
i (um)µ0e

∗
i (vm))

= µ0λm + µ1λm−1 + · · ·+ µm−1λ1 + µmλ0.

So, solving the above equation gives that

u0 = ei, v0 = xν−1(i),

uk = pik , vk = pν−1(j)m−k
for 1 ≤ k ≤ m− 1,

um = xi, vm = ei.

Then we obtain the following formula

∆(ei) =
∑

0≤k≤m
pikpjm−k

=xi

pik ⊗ pν−1(j)m−k
,

where j depends on k.

Observe that ∆(1A) = ∆(e1 + e2 + · · ·+ en) = ∆(e1) + ∆(e2) + · · ·+ ∆(en) for n = |Q0|. Hence, as

a result of this fact and the above theorem, we obtain the following corollary.

Corollary 4.3.6. Let A = Nm
n , νA be a Nakayama automorphism of A and ν be the Nakayama permu-

tation of {1, ..., n} induced by νA. Suppose that {e1, · · · , en} is the set of idempotents, and for each ei

there exists a path xi which is an element of socA, with s(xi) = i, t(xi) = ν(i) and `(xi) = m for all

i ∈ Q0. Then there exists a comultiplication ∆ of A which is given for 1A by

∆(1A) =
∑

1≤i≤n
0≤k≤m

pikpjm−k
=xi

pik ⊗ pν−1(j)m−k

for suitable choices of j which depends on k.

Note that pi0 = ei and pim = xi.

Remark 4.3.7. Let A and ∆ be as given in Corollary 4.3.6. Since ∆ is an A-bimodule morphism, we

obtain that ∆(a) = a∆(1A) = ∆(1A)a for any a ∈ A.

Example 4.3.8. Let us consider again the algebra N2
3 . In Example 4.3.2, all pik for 1 ≤ i ≤ 3 and

0 ≤ k ≤ 2 were computed. By using Corollary 4.3.6, we compute all appropriate pν−1(j)2−k
depending
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on pik and obtain the following

∆(1A) = p10
⊗ pν−1(1)2 + p11

⊗ pν−1(2)1 + p12
⊗ pν−1(3)0

+ p20
⊗ pν−1(2)2 + p21

⊗ pν−1(3)1 + p22
⊗ pν−1(1)0

+ p30 ⊗ pν−1(3)2 + p31 ⊗ pν−1(1)1 + p32 ⊗ pν−1(2)0 .

Then by Example 4.3.2, we obtain that

∆(1A) = e1 ⊗ α2α3 + α1 ⊗ α3 + α1α2 ⊗ e1

+ e2 ⊗ α3α1 + α2 ⊗ α1 + α2α3 ⊗ e2

+ e3 ⊗ α1α2 + α3 ⊗ α2 + α3α1 ⊗ e3.

Since ∆ is an A-bimodule morphism, for example,

∆(α1) = ∆(1A)α1 = α1 ⊗ α3α1 + α1α2 ⊗ α1.

Theorem 4.3.9. Let A = Nm
n , νA be a Nakayama automorphism of A and ν be the Nakayama permu-

tation of {1, ..., n} induced by νA. Suppose that {e1, · · · , en} is the set of idempotents, and for each ei

there exists a path xi which is an element of socA, with s(xi) = i and t(xi) = ν(i) for all i ∈ Q0. Then

δ = x∗1 + · · ·+ x∗n is the counit of (A,∆), where ∆ is as given in Corollary 4.3.6.

Proof. Here, A is a Frobenius algebra with the A-bimodule isomorphism τ : AνA
∼= D(A) which is

explicitly defined by

τ : ei 7→ x∗ν−1(i)

xi 7→ e∗i

pik 7→ (pν−1(j)m−k
)∗ for 1 ≤ k ≤ m− 1,

where pikpjm−k
= xi, for all i ∈ Q0 and for suitable choices of j which depends on k. See Proposition

4.3.3.

By taking into account Proposition 4.2.19 and Chapter 2, we say that the counit δ of (A,∆) corre-

sponds to the Frobenius form of A which is equal to τ(1A). Therefore, we obtain that

δ = τ(1A) = x∗1 + · · ·+ x∗n.

Corollary 4.3.10. Let A = Nm
n . Suppose that {e1, · · · , en} is the set of idempotents, and for each ei

there exists a path xi which is an element of socA. Then the counit δ of (A,∆), where ∆ is as given in

Corollary 4.3.6, is explicitly defined by

δ : xi 7→ 1 for all i ∈ Q0,

otherwise 7→ 0.

By Section 2.1.3, A = kQ/I is a symmetric Frobenius Nakayama algebra if and only if A = Nm
n , with

n dividing m. Moreover, since A is symmetric, we can take the identity automorphism as Nakayama

automorphism of A. Then we obtain the following result by using Corollary 4.3.6.
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Corollary 4.3.11. Let A = Nm
n , where n divides m. Suppose that {e1, · · · , en} is the set of idempotents,

and for each ei there exists a path xi which is an element of socA, with s(xi) = t(xi) = i and `(xi) = m

for all i ∈ Q0. Then there exists a comultiplication ∆ of A which is given for 1A by

∆(1A) =
∑

1≤i≤n
0≤k≤m

pikpjm−k
=xi

pik ⊗ pjm−k

for suitable choices of j which depends on k.

Note that pi0 = ei and pim = xi.
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