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Towards an underdamped thermodynamic uncertainty relation

by Lukas P. FISCHER

A recent result of stochastic thermodynamics is the so-called thermody-
namic uncertainty relation (TUR). This relation, appearing in the form of an
inequality, bounds the precision of fluctuating currents by the entropic costs
that are required to drive the non-vanishing mean of the observable. As a
consequence, the relation enables the access to parameters that are not ac-
cessible in an experimental setting via the precision of a experimentally ac-
cessible observable. For instance, it was possible to bound the efficiency of
molecular machines by means of their measurable moments of motion. Al-
beit being generalized and modified to more general terms and dynamics,
the putative generalization of the thermodynamic uncertainty relation to un-
derdamped dynamics where the inertia is not negligible remains a puzzling
problem. Although there are convincing indications for the overdamped
TUR being valid for underdamped dynamics as well in some systems, a
straightforward application can also lead to violations of the bound.

This thesis summarizes the efforts towards an underdamped generaliza-
tion of the thermodynamic uncertainty relation and shows challenges and
chances that come along by generalization of the TUR. To this end, the in-
triguing limitations of the TUR in the underdamped domain are explored
and discussed. For instance, the TUR is inherently broken for finite times
where the evolution is governed by ballistic dynamics due to the inertia being
present. Furthermore, it is possible to improve the precision beyond the over-
damped bound in presence of velocity dependent forces such as the Lorentz
force induced by a magnetic field.

Beyond the limitations of the TUR in the underdamped regime, this the-
sis gives a thorough analysis of the proof that leads to the TUR in the over-
damped regime and discusses the obstacles which have to be overcome to
find the sought-after proof that is valid for underdamped dynamics. The
method is illustrated by deriving thermodynamic bounds that are, however,
not as transparent and often not as tight as the original TUR.
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Finally, a conjecture for a generalized TUR is presented which is based
on the precision of free diffusion and holds for all times. The correspond-
ing bound converges to the overdamped TUR in the appropriate limit and
tightly bounds the precision, even in the ballistic regime. Being based on free
diffusion this conjecture also puts the interpretation of the original TUR in a
different perspective.
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Summary by chapters:

Chapter 1: Motivation

In this chapter the thermodynamic uncertainty relation is embedded in the
context of stochastic motion and its current status for the underdamped regime
is outlined. To this end, the history of stochastic motion is briefly summa-
rized before its relevance for biology is described. In this biological context,
the thermodynamic uncertainty relation is outlined.

Chapter 2: Underdamped dynamics and stochastic thermodynamics

In this chapter the theoretical foundation for a description of random motion
is laid out. To this end, a mathematical description for underdamped stochas-
tic motion, the so-called Langevin equation, is motivated from deterministic
dynamics. This approach highlights assumptions and restrictions entering in
the Langevin description. Although the Langevin equation is presented as a
differential equation, there is an ambiguity in its interpretation. This issue of
stochastic integration is discussed briefly before the limit of vanishing iner-
tia, the overdamped limit, is presented and its different characteristic under
time-reversal with respect to the underdamped regime is discussed. In addi-
tion, the Fokker-Planck equation is introduced. In contrast to the microscopic
Langevin equation it describes the statistics observed for infinitely many re-
alizations. Finally, the chapter focuses on the notion of stochastic thermody-
namics and how it can be used to transfer the definition of thermodynamic
quantities in stochastic systems.

Chapter 3: Fluctuations in the steady state

In this chapter the conceptual framework that is necessary for defining and
proving the thermodynamic uncertainty relation is presented. To this end
different methods are introduced which can be used to characterize and quan-
tify the strength of fluctuations. The cumulants are defined as a measure of
how fluctuations shape the vicinity of the most probable value. In principle it
is possible to reconstruct the complete probability distribution from these cu-
mulants. A more microscopic perspective off the description of fluctuations
is presented in the way of the path integral formalism which allows to assess
the probability of specific trajectories. The formalism is set into practice by
deriving not only fluctuation theorems, an intriguing result from the stochas-
tic thermodynamic framework, but also the large-deviations functional. The
path integrals can be included in a hierarchy of large deviation functions in
which each level can be contracted from the respective higher level function.
At the bottom stands the level 1 large deviation function which, in turn, can
be linked to the cumulants. This rather abstract concept of large deviations
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is particularly relevant for the scope of this thesis as it is at the heart of the
proof for the overdamped TUR which is outlined at the end of this chap-
ter. This proof can, however, not be generalized to the underdamped regime
straightforwardly as discussed in the remainder of the chapter.

Chapter 4: An underdamped finite time TUR?

In this chapter a putative underdamped finite-time thermodynamic uncer-
tainty relation is discussed on base of model systems and by means of exam-
ple calculations. Differences to the overdamped case are highlighted which
in turn have a major effect on the validity of the TUR in the underdamped
regime. It is important to point out that observables in the underdamped
regime do not necessarily have a clear behavior when the trajectory is tra-
versed in reverse. While the overdamped TUR holds naturally only for cur-
rents that by construction change their sign when the trajectory is reversed,
this constraint must be introduced explicitly in an underdamped generaliza-
tion. For the case of even observables, these are observables that result in the
same outcome for the original and a reversed trajectory, it is shown that the
precision is not bound by means of the TUR. Furthermore, it is shown that
the TUR does not hold for finite-times. The short-time regime is governed
by the inertia of the particle and the precision can be improved beyond the
boundaries set by the TUR. This is illustrated by calculations for the arguably
simplest model: free diffusion with drift. The consequences on the validity
of the putative underdamped generalization of the TUR and appropriate re-
strictions are finally considered.

Chapter 5: The underdamped LDF in one dimension

In this chapter the concept of large deviations that led to the proof of the
overdamped thermodynamic uncertainty relation is reviewed from an un-
derdamped point of view. To this end, a method to numerically calculate
the large deviation function is derived for a particle in a one-dimensional
periodic potential. The resulting functions and their features are discussed
from both an applied and a general point of view to allow for a more intu-
itive interpretation of the rather abstract large deviation functions. On top of
the theoretic foundations established in Chapter 3, bounds on said functions
are then derived. These bounds serve both a practical and a pedagogical
purpose. On the one hand, the bounds provide further intuition regarding
the course of the large deviation function and establish a link to the over-
damped analogous. On the other, hand they illustrate how bounds can be
inferred from the higher level large deviation functions. Finally, numerical
data which indicate the validity of a parabolic bound on the large devia-
tion function are presented. This is especially interesting as this bounding
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parabola has also been proven in the overdamped regime. In this regime the
uncertainty relation is a direct consequence of the bound.

Chapter 6: Thermodynamic bounds for underdamped motion

In this chapter possibilities to proof the thermodynamic uncertainty relation
and other bounds on thermodynamic quantities using the previously intro-
duced methods are discussed. As illustrated in Chapter 5, bounds follow
easily from the hierarchy of large deviation functions by developing suited
ansatzes for some of the involved functions. Thermodynamic quantities are
typically averages that capture likely events and it is important to develop
ansatzes in the vicinity of the typical trajectories. Two different concepts,
each motivated from an overdamped perspective, are introduced. First, an
ansatz which employs rescaling of time. Second, an ansatz that amplifies
the irreversible contributions to the motion. Unfortunately, neither of the
resulting bounds have the transparent form of the overdamped uncertainty
relation thereby limiting their significance in practice. The bounds are bench-
marked by using free diffusion and numerical results. This also allows to
asses the quality of an estimate of thermodynamic quantities that is based
on the bound, as relevant in experiments. While the time-scale bound is
not particularly tight, the bound based on rescaling the irreversible contribu-
tion allows for a quite precise estimation of the precision with regimes where
the bound outperforms the putative thermodynamic uncertainty relation re-
garding its tightness. However, this comes with the cost of involving the
dependency of the averaged observables with respect to a changed friction.
Since it is not possible to freely control all parameters in an experimental
setting, this would require a more complex setup. Finally, a bound in one
dimension which is based on free diffusion is conjectured based on numer-
ical results. By design the bound becomes tight for free diffusion similar to
the overdamped analogous and can be applied for all times and for differ-
ent (odd) velocity dependencies of the measured observables. In addition, it
has a similar transparent form and converges to the overdamped TUR in the
appropriate limit and for large times. A way of generalizing the conjectured
bound to higher dimensions is pointed out by considering two-dimensional
systems. Moreover, properties of a potential proof for the conjectured bound
are discussed.

Chapter 7: Beating the overdamped TUR limit

In this chapter the effect of velocity-dependent forces on the thermodynamic
uncertainty relation are explored. As pointed out in the previous chapters,
it is possible to improve the precision beyond the limits of the TUR for even
observables and for finite times. This can, however, also be realized for gen-
eralized forces with a velocity-dependent contribution. The breakdown of an



xii

uncertainty relation is not particularly surprising for feedback mechanisms
which can be implemented by using such forces, for instance, by slowing
down and accelerating the particle dependent on the current velocity. In-
triguingly, a breakdown of the TUR can also be observed in the presence of
a magnetic field. This collapse is first described in the analytically solvable
Brownian gyrator model. Here, the precision of a charged particle driven in
a two-dimensional harmonic potential can be improved beyond the limit of
the overdamped TUR even in the long-time limit when a Lorentz force acts
on the particle. In this model numerical results for different winding number
currents also indicate that the breakdown of the thermodynamic uncertainty
relation crucially depends on the chosen observable. To get additional in-
sight on how a magnetic field can decrease the uncertainty, a stripped down
model is introduced which allows to compute different observables analyt-
ically. In accordance with the observations made considering the Brownian
gyrator, the sole existence of a magnetic field is not sufficient to improve the
precision, but, in addition, the weight of the observable has to be chosen ad-
equately. In an interplay of the magnetic force deflecting faster trajectories,
thereby coupling the velocity with the spatial position, and a weight that
increases when the trajectories are deflected further, the precision can be im-
proved significantly. In this sense, the magnetic force implements a feedback
mechanism that increases the weight of the parts of trajectories that are faster.

Chapter 8: Concluding Perspective

In this chapter, the results from this thesis are concluded and set into perspec-
tive of current research. Results presented in the previous chapters suggest
that a thermodynamic uncertainty relation holds for underdamped dynamics
as well at least for odd observables and for large times. As discussed in this
chapter, a proof is still pending. Since it is not possible to straightforwardly
adapt any of the proofs presented for overdamped dynamics, properties of
the putative proof which arose in the course of this thesis are summarized.
Such a proof is particularly desirable, as it could identify the physical mech-
anism behind the thermodynamic uncertainty relation and help to develop
a unified picture of the numerous thermodynamic inequalities which were
introduced in the spirit of the original thermodynamic uncertainty relation.
Furthermore, open questions and new impulses for future research that were
identified in this thesis are listed and suggested.
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Zusammenfassung in deutscher
Sprache

Die Thermodynamische Unschärferelation (TUR) ist ein recht neues Resul-
tat der Stochastischen Thermodynamik. Diese, in Form einer Ungleichung
auftauchende Relation bildet eine Schranke auf die Präzision eines fluktu-
ierenden Stroms über die entropischen Kosten, die für die Erzeugung eines
nicht-verschwindenden durchschnittlichen Stroms benötigt werden. Damit
erlaubt die TUR auch den indirekten Zugang zu Größen, die experimentell
nicht zugänglich sind, indem die Präzision einer messbaren Observablen ge-
messen wird. Die Relation wurde zum Beispiel genutzt, um die Effizienz
von molekularen Maschinen durch die messbaren Momente der Bewegung
zu beschränken und damit abzuschätzen. Obgleich die ursprüngliche For-
mulierung der TUR verallgemeinert und modifiziert wurde, so dass diese
auch unter allgemeineren Voraussetzungen und in allgemeinerer Dynamik
anwendbar ist, bleibt die mutmaßliche Generalisierung der TUR auf unter-
dämpfte Dynamik, also stochastische Bewegung in welcher der Impuls nicht
vernachlässigbar ist, ein ungelöstes und rege diskutiertes Problem. Obgleich
es überzeugende Indizien für die Gültigkeit der Schranke auch im unter-
dämpften Regime gibt, kann die direkte Anwendung unter bestimmten Be-
dingungen zu einer Verletzung der Schranke führen.

Diese Abhandlung fasst die Bemühungen um einer generalisierten ther-
modynamische Unschärferelation für unterdämpfte Systeme zusammen und
stellt dar, welche Herausforderungen und Chancen die Verallgemeinerung
der TUR mit sich bringt. Hierzu werden die Einschränkungen der Relation
im Bereich unterdämpfter Bewegung untersucht und diskutiert. So ist die
TUR, zum Beispiel, für endliche Zeiten grundsätzlich verletzt, da die Bewe-
gung von ballistische Effekte beherrscht wird. Darüber hinaus ist es möglich
die Präzision jenseits der durch die überdämpfte Relation gesetzte Schranke
zu verbessern, wenn Kräfte wirken, die von der Geschwindigkeit abhängen
wie zum Beispiel die durch magnetische Felder induzierte Lorentz Kraft.

Über die Einschränkungen der TUR im unterdämpften Regime hinaus
liefert diese Abhandlung eine gründliche Analyse des Beweises, der für die



xxii

TUR im überdämpften Regime geführt wurde und diskutiert die Hinder-
nisse die überwunden werden müssen, um den begehrten Beweis in unter-
dämpfter Dynamik zu finden. Die Methodik wird durch den Beweis thermo-
dynamischer Schranken veranschaulicht. Diese gewähren allerdings weni-
ger Einblick in physikalische Prinzipien und stellen oftmals eine schlechtere
Schranke als die originale TUR dar.

Schlussendlich wird auf Basis numerischer Simulationen die vermutete
Form einer generalisierten Unschärferelation präsentiert. Diese beruht auf
der Präzision von freier Diffusion und ist für alle Zeiten gültig. Die zugehö-
rige Schranke konvergiert im entsprechenden Limes zur überdämpften TUR
und liefert auch im ballistischen Regime eine enge Schranke. Da die Ver-
mutung auf freier Diffusion aufbaut, eröffnet sie zugleich eine neue und an-
schauliche Perspektive auf die Interpretationen der TUR für überdämpften
Bewegung.

Kapitel 1: Motivation

In diesem Kapitel wird die thermodynamische Unschärferelation in den Kon-
text stochastischer Bewegung eingebettet und der aktuelle Status der For-
schung bezüglich einer unterdämpften Verallgemeinerung umrissen. Dazu
wird die Historie stochastischer Bewegung zusammengefasst und nachfol-
gend die besondere Bedeutung für die Biologie herausgestellt.

Kapitel 2: Underdamped dynamics and stochastic thermodynamics

In diesem Kapitel wird die theoretische Grundlage für die Beschreibung zu-
fälliger Bewegung geschaffen. Ausgehend von einer rein deterministischen
Dynamik wird die Modellierung von zufälliger Bewegung durch die Langevin-
Gleichung motiviert. Dieses Vorgehen erlaubt es, die Annahmen und Be-
schränkungen hervorzuheben, die in die Beschreibung eingehen. Obgleich
die Langevin-Gleichung dabei als Differentialgleichung präsentiert wird, gibt
es eine Mehrdeutigkeit in der Interpretation derselben. Diese, als Problem
der stochastischen Integration bezeichnete Mehrdeutigkeit, wird kurz the-
matisiert. Anschließend wird der Bereich zu vernachlässigenden Impulses,
der überdämpfte Bereich, beschrieben und im Hinblick auf das zur unter-
dämpften Dynamik unterschiedliche Verhalten unter Zeitumkehr diskutiert.
Zusätzlich wird die Fokker-Planck Gleichung eingeführt welche es erlaubt,
die Statistik unendlicher vieler zufälliger Realisationen zu beschreiben. Zu-
letzt wird das Konzept der stochastischen Thermodynamik beschrieben, im
Besonderen wie dieses genutzt werden kann, um Größen der klassischen
Thermodynamik in zufälligen Systemen zu definieren.
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Kapitel 3: Fluctuations in the steady state

In diesem Kapitel wird das konzeptionelle Grundgerüst eingeführt, welches
benötigt wird, um die thermodynamische Unschärferelation zu definieren
und zu beweisen. Dazu werden zuerst unterschiedliche Methoden zur Cha-
rakterisierung und Quantifizierung der Stärke von Fluktuationen vorgestellt.
Als ein Maß, das angibt wie Fluktuationen die Umgebung des wahrschein-
lichsten Ereignisses formen, werden die Kumulanten definiert. Aus diesen
Kumulanten kann im Prinzip die komplette Wahrscheinlichkeitsverteilung
rekonstruiert werde. Eine mikroskopische Perspektive für die Beschreibung
von Fluktuationen nimmt der Pfadintegral Formalismus ein. Dieser erlaubt
es die Wahrscheinlichkeit unterschiedlicher Trajektorien abzuschätzen. In
diesem Kapitel wird der Formalismus genutzt um nicht nur Fluktuations-
theoreme, und damit ein weiteres faszinierendes Resultat der stochastischen
Thermodynamik, zu beweisen, sondern auch um die sogenannten Large--
Deviation Funktionale herzuleiten. Die Pfadintegrale können dabei in eine
Hierarchie von Large- Deviation Funktionen eingebettet werden, in welcher
jedes Level jeweils aus der hierarchisch nächsthöherer Funktion kontraktiert
werden kann. Am Ende steht die Level 1 Large-Deviation Funktion, welche
wiederum auf direkter Art mit den Kumulanten gekoppelt ist. Das eher ab-
strakte Konzept der großen Abweichungen ist im Bereich dieser Abhandlung
im Besonderen relevant, da es die Basis des Beweises der überdämpften TUR
bildet. Am Ende dieses Kapitels wird der Beweis skizziert. Der Beweis kann
jedoch nicht direkt für das unterdämpfte Regime verallgemeinert werden,
was ebenfalls diskutiert wird.

Kapitel 4: An underdamped finite time TUR?

In diesem Kapitel wird eine mutmaßliche thermodynamische Unschärferela-
tion für endliche Zeiten auf Basis von repräsentativen Modellsystemen und
Beispielsrechnungen diskutiert. Unterschiede zum überdämpften Fall mit
wesentlichen Auswirkungen auf die Gültigkeit der TUR im unterdämpften
Bereich werden hervorgehoben. So weisen Observablen im unterdämpften
Regime nicht notwendigerweise ein eindeutiges Verhalten unter Zeitumkehr
auf. Während die überdämpfte TUR natürlicherweise nur für die Klasse der
ungeraden Observablen gilt, das sind jene die ihr Vorzeichen wechseln wenn
die Trajektorie umgekehrt wird, muss diese Beschränkung explizit in eine
unterdämpfte Generalisierung eingeführt werden. Für gerade Observablen,
also Observablen die invariabel unter Änderung der Richtung der Trajektorie
sind, wird gezeigt, dass die Präzision nicht über die TUR beschränkt werden
kann. Darüber hinaus wird belegt, dass die TUR nicht für endliche Zeiten
gilt. Da die Bewegung auf kurzen Zeitskalen vom Impuls der Teilchen do-
miniert wird, kann die Präzision auch über die Schranke der TUR hinweg
optimiert werden. Dies wird an einem einfachen Modell veranschaulicht:
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Freier Diffusion mit konstantem Drift. Die Konsequenzen für die Gültigkeit
einer mutmaßlichen unterdämpften TUR und entsprechende Einschränkun-
gen werden zuletzt klar benannt.

Kapitel 5: The underdamped LDF in one dimension

In diesem Kapitel wird das Konzept der großen Abweichungen, welches
zum Beweis der TUR im überdämpften Regime führte, für den unterdämpf-
ten Bereich diskutiert. Hierfür wird eine Methode zur numerischen Berech-
nung der Large-Deviation Funktion für ein unterdämpftes Teilchen in ei-
nem eindimensionalen Potential hergeleitet. Um einen intuitiven Zugang
zu den eher abstrakten Large-Deviation Funktionen zu eröffnen, können die
auf diese Weise berechneten Funktionen und deren Eigenschaften damit so-
wohl aus einer angewandten als auch aus einer theoretischen Perspektive
betrachtet werden. Auf Basis der theoretischen Grundlagen, die im voran-
gegangen Kapitel 3 etabliert wurden, werden daraufhin Schranken an diese
Funktionen bewiesen. Diese Schranken haben sowohl einen praktischen als
auch einen pädagogischen Nutzen. Auf der einen Seite sorgen sie für wei-
tere Einblicke in die Form der Large-Deviation Funktionen und stellen eine
Verbindung zum überdämpften Analgon her. Auf der anderen Seite illustrie-
ren sie, wie solche Schranken aus den Large-Deviation Funktionen höherer
Ordnung abgeleitet werden können. Zuletzt werden numerische Indizien
präsentiert, welche die Existenz einer parabolischen Schranke an die Large-
Deviation Funktion andeuten. Dies ist von besonderer Bedeutung, da eine
parabolische Schranke gleicher Form bereits für den überdämpften Bereich
bewiesen wurde. In diesem Bereich ist die thermodynamische Unschärfere-
lation eine direkte Konsequenz der Schranke.

Kapitel 6: Thermodynamic bounds for underdamped motion

In diesem Kapitel wird die Möglichkeit eines Beweises der thermodynami-
schen Unschärferelation und anderer Schranken an thermodynamische Grö-
ßen über die bereits eingeführten Methoden diskutiert. Da solche Größen üb-
licherweise aus Mittelwerten bestehen, die wahrscheinliche Ereignisse cha-
rakterisieren, ist es unabdingbar Ansätze zu entwickeln, welche die Um-
gebung der typischen Trajektorien modellieren. Zwei unterschiedliche An-
sätze, jeweils aus einer überdämpften Perspektive motiviert, werden einge-
führt: Ein Ansatz, der auf Variation der Zeitskala basiert, sowie einer der
irreversible Anteile der Bewegung verstärkt. Jedoch resultiert keiner der bei-
den Ansätze in einer Schranke, die eine ähnlich transparente Form hat wie
die überdämpfte TUR. Daher sind die hergeleiteten Schranken für die Praxis
nicht besonders signifikant. Durch Beispielrechnungen für freie Diffusion
sowie numerischen Simulationen werden die Schranken beurteilt und die
Qualität der daraus resultierenden Abschätzung der Unschärfe bemessen.
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Während die Zeitskalen-Schranke keine enge Schranke darstellt, erlaubt die
Schranke, die auf Reskalierung der irreversiblen Anteile beruht, eine recht
präzise Abschätzung der Präzision und kann in diesem Aspekt sogar die
mutmaßliche TUR übertreffen. Jedoch enthält die Schranke die Abhängigkeit
der Observable von der Reibung. Diese ist in einem experimentellen Kon-
text nur schwer zu bestimmen. Zuletzt wird, basierend auf numerischen Da-
ten, eine vermutete, auf freier Diffusion basierende Schranke für Bewegung
in einer Dimension präsentiert. Der Grundlage folgend wird die Schranke,
wie die überdämpfte TUR, für freie Diffusion gesättigt und ist für alle Zeiten
sowie für unterschiedliche (ungerade) Geschwindigkeitsabhängigkeiten der
gemessenen Observablen gültig. Darüber hinaus hat die vermutete Schranke
eine ähnlich durchsichtige Form und konvergiert im entsprechenden Limes
und für große Zeiten gegen die überdämpfte TUR. Durch Betrachtung zwei-
dimensionaler Modelle wird auch ein Weg zur Generalisierung der Schranke
für höhere Dimension skizziert. Darüber hinaus werden auch die Eigen-
schaften eines potentiellen Beweises diskutiert.

Kapitel 7: Beating the overdamped TUR limit

In diesem Kapitel werden die Effekte einer geschwindigkeitsabhängigen Kraft
auf die thermodynamische Unschärferelation beleuchtet. In den vorange-
gangen Kapiteln wurde bereits betont, dass die Präzision auch jenseits der
Grenzen der TUR verbessert werden kann, wenn die Observablen gerade
sind oder endliche Zeiten betrachtet werden. Dies ist jedoch auch dann mög-
lich, wenn generalisierte Kräfte wirken, die einen geschwindigkeitsabhängi-
gen Anteil besitzen. Für Feedback Mechanismen, die über solche Kräfte im-
plementiert werden können, ist das nicht besonders überraschend. Je nach
aktueller Geschwindigkeit können diese das Teilchen abbremsen oder be-
schleunigen und damit die Präzision der Bewegung aktiv erhöhen. Inter-
essanterweise kann der Zusammenbruch der Unschärferelation jedoch auch
dann beobachtet werden, wenn lediglich eine durch magnetische Felder in-
duzierte Lorentzkraft wirkt. Die Verletzung der mutmaßlichen TUR wird zu-
erst im analytisch lösbaren Modell eines Brownschen Gyrators beschrieben.
Numerische Resultate für unterschiedliche Umdrehungsmaße lassen in die-
sem Modell bereits vermuten, dass die Gültigkeit der thermodynamischen
Unschärferelation von den Eigenschaften der betrachteten Variable abhän-
gen. Um weitere Einblicke darin zu ermöglichen, wie magnetische Felder
die Unsicherheit verringern können, wird ein minimalistisches Modell einge-
führt. In diesem Modell können Observablen unterschiedlichen Charakters
analytisch ausgewertet werden. In Übereinstimmung mit den Ergebnissen
für den Brownschen Gyrator ist die bloße Existenz eines magnetischen Fel-
des nicht hinreichend, um die mutmaßliche TUR zu veretzen und, denn auch
die Observable muss entsprechend gewählt werden. In einem Zusammen-
spiel der magnetischen Kraft, welche schnellere Trajektorien ablenkt, und
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einer Observablen die solche, nun räumlich sortierte, Trajektorien höher ge-
wichtet kann, wird die Präzision deutlich gesteigert. In diesem Sinne hat die
wirkende Lorentzkraft einen ähnlich Effekt wie Feedback Mechanismus in-
dem die Teile der Trajektorien welche eine hohe Präzision aufweisen stärker
gewichtet werden.

Kapitel 8: Concluding Perspective

In diesem Kapitel werden die Resultate der Abhandlung zusammengefasst
und im Kontext des aktuellen Stands der Forschung diskutiert. Die Ergeb-
nisse der vorangegangenen Kapitel erhärten den Verdacht, dass eine thermo-
dynamische Unschärferelation auch für unterdämpfte Dynamik gilt, zumin-
dest für ungerade Observablen und große Zeiten. Ein Beweis steht jedoch
noch aus. Da es nicht möglich ist die bisher präsentierten Methoden für den
Beweis einer überdämpften TUR zu generalisieren, werden die Konsequen-
zen dieser Arbeit auf einen potentiellen Beweis herausgearbeitet. Ein solcher
Beweis könnte dazu beitragen, den bisher nicht komplett verstandenen phy-
sikalischen Mechanismus hinter der TUR zu identifizieren und zudem helfen
ein einheitliches Bild für die vielen thermodynamischen Ungleichungen zu
entwickeln, die im Stil der ursprünglichen TUR entstanden sind. Darüber
hinaus werden auch offene Fragen und neue Impulse für die zukünftige For-
schung benannt, die durch diese Abhandlung aufkamen.
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Chapter 1

Motivation

When Robert Brown first described Brownian motion in 1828 [1] he was not
fully aware of the endeavor that would follow. He ascribed the effect of ran-
dom motion of small particles to an active component being present in the
particles itself. It took almost 80 years to identify the solvent itself as source of
the random motion culminating in the (Sutherland)-Einstein-Smoluchowski-
equation [2, 3]. This result did not only give credence to the, at that time,
still debated discrete nature of fluids but also was the first representative
of flucutation-dissipation theorems relating fluctuations (the random) with
dissipation of energy. Shortly after, Paul Langevin implemented this random
character in a Newtonian description and thus allowed for a microscopic de-
scription of Brownian motion [4]1.

An early application of the framework was the analysis of diffusion pro-
cesses over energetic barriers by Hendrik Anthony Kramers [6]. By defining
the rate at that chemical reactions take place, it is at the heart of chemical
rate equations. A notable and arguably outstanding experiment is that of
Eugen Kappler. He used obtainable statistics from a small mirror on a metal
rod to experimentally infer the Avogadro number. The surprising connec-
tion is made by statistical physics via the Ornstein-Uhlenbeck process that
describes the diffusion in a harmonic potential [7]. With this approach he
exploited statistics as a mean of inferring underlying quantities.

The rational behind this work was in a sense visionary for modern bio-
and statistical physics. Driven by advances in experimental methods, study-
ing and manipulating small systems and micromachines became more and
more feasible. Such systems are, literally, vital as they assume important
tasks in biology [8] such as cargo transport inside the cell, production of
Adenosine triphosphate (ATP) and muscle motion. While it is often not pos-
sible to track all involved components, statistical properties are easily acces-
sible.

When the considered systems, however, become smaller, they cannot be
described by classical thermodynamics anymore. The notions of thermody-
namics, like work or heat, that are elementary for discussing macroscopic

1A translation of the french article can be found in [5].
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machines do not generalize to systems small in number and size as thermal
fluctuations become more and more pronounced. Rather than the averaged
quantities that govern classical thermodynamics, each realization is different
due to the influence of the fluctuating surrounding. Nevertheless, the defini-
tions and concepts that were that by prominent names as Maxwell, Boltzmann
and Gibbs can be transferred to single realizations of such systems using the
framework of stochastic thermodynamics [9, 10].

Such a mapping does not only allow for a formal analysis of microscopic
machines, it also brings order in the random by characterizing its details.
Most notably, fluctuation theorems [11] succeed in relating the probabilities
of certain realizations with those of opposing outcome. While this is trivial in
equilibrium, where the probability of a trajectory is symmetric under time-
reversal, it becomes highly relevant for exploring systems that are driven out
of equilibrium and are characterized by an overall energy turnover.

A more recent result of stochastic thermodynamics is the thermodynamic
uncertainty relation [12] (TUR). The relation bounds the precision of time
asymmetric observables by the entropic costs to drive the system out of equi-
librium. It implements the intuitive picture that higher precision comes at
an energetic cost. From a theoretical perspective the inequality gives a valu-
able insight in the dynamics of small machines and reaction networks. From
a more applied point of view it also proved useful for deriving bounds on
the efficiency of microscopic machines [13] or, more generally, to infer the
entropy production from the statistics of an observable [14]. This is of par-
ticular relevance for chemically driven systems, such as biological systems,
where measuring the entropy production would require the virtually impos-
sible task of tracking all molecules that contribute energy to the system.

Several generalizations of the TUR have been reported, but they are tied
to an regime where the inertia does not play a role. The rationale behind
this assumption is that the frictional forces on the typical length-scales are
much larger compared to the masses. In other words, any motion is quickly
dampened down, hence dubbed the overdamped regime. As a consequence
of the high damping, the velocities in the system quickly relax and can thus
be marginalized. This leads to a description with only the spatial dimensions
of freedom remaining in the dynamics.

While this approximation is justified in a broad class of systems, there
is a renewed interest in the contrary underdamped regime. First, the under-
damped regime is much closer to a Hamiltonian description and can describe
effects that do not carry over to the overdamped limit [15, 16]. Further, the
underdamped approach correctly captures thermodynamic quantities that
are misrepresented in a purely overdamped approach [17]. Second, with the
advances of nanotechnology underdamped systems shift in the experimen-
tal focus [18, 19]. Last, a class of self propelled particles, namely the active
Ornstein-Uhlenbeck particles, are described by an underdamped Langevin
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equation [20, 21]. The precision of such active particles is of particular inter-
est for the design of micromachines and their application to biomedicine.

So far attempts to generalize the uncertainty relation to underdamped
systems have been made without a conclusive proof. Alternative thermody-
namic bounds that have been derived are less tight, less transparent or even
both. Although there is no doubt that a relation similar in spirit to the TUR
holds for such dynamics as well, the precision can be improved beyond the
restrictions of the TUR under more general terms.

Taken these aspects into account, there is an additional reason that longs
for a proof of the generalized underdamped TUR: Understanding the phys-
ical mechanism that guarantees the validity of the bounds. The proofs pre-
sented for the overdamped case are rather abstract [22, 23, 24] and can nei-
ther directly nor in spirit be transfered to the underdamped case. A physical
mechanism that provides the basis for the TUR has not been established, yet.

In this thesis, we explore the proofs and analyze possibilities to use them
in the underdamped case. To this end, we give an introduction to large devi-
ation theory which is the foundation for the overdamped proof. By deriving
new bounds, we demonstrate how to apply the framework. We then discuss
the additional restrictions that prevent a straightforward application of the
overdamped proof.

Apart from this path, we discuss a putative underdamped TUR more gen-
erally. We show that a traditional TUR only holds in the long-time limit and
for the class of observables that the overdamped TUR applies to, namely
current-like observables that are odd under time-reversal.

To include the finite-time behavior that is dominated by the inertia of the
particle, we conjecture an inequality that is based on free diffusion. This
inequality coincides with the overdamped TUR in the long-time limit, but
has a different behavior for short times. In stark contrast with other bounds
that have been derived so far, it can be saturated for all times. With the bound
being based on free diffusion, it also gives a new direction in assessing the
physical nature of the TUR. Lastly, we discuss how velocity-dependent forces
can improve the precision, before we conclude with an perspective on the
TUR and its putative proof for underdamped dynamics.
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Chapter 2

Underdamped dynamics and
stochastic thermodynamics

Before we discuss fluctuations and how they can be bound using thermody-
namic uncertainty relations, we establish the foundations that are needed for
modeling and discussing underdamped systems. To this end, we first reca-
pitulate the basics of underdamped stochastic systems and how to treat such
systems mathematically. As a second step, we briefly introduce the necessary
features of stochastic thermodynamics.

2.1 Describing the random

With the work by Einstein and Smoluchowski [2, 3] it became clear that the
nature of Brownian motion are random collisions of the smaller fluid parti-
cles with the larger Brownian particle. If one considers all particles in the
system, including the fluid particles1, the system is perfectly deterministic.
In the following we will use the deterministic foundation of the (apparent)
random Brownian motion to motivate the stochastic dynamics of an under-
damped Brownian particle. We then establish the foundation that is needed
for describing such stochastic systems both microscopically and statistically.
Finally, we discuss how the velocity effects the dynamics and compare the
underdamped regime with its overdamped analogous.

2.1.1 The Langevin equation

The first microscopic description of Brownian motion has been presented by
Paul Langevin, the so-called Langevin equation [4, 5]. Essentially, this is a
Newtonian equation that accounts for random noise imparted by the envi-
ronment. In the following, we will motivate these stochastic equations of
motion heuristically following Ref. [25]. The Langevin equation can also be
rigorously derived from the more general Mori-Zwanzig formalism [26, 27]

1As a reference, the number of particles in 18 ml water is one Mole or 6.022 · 1023 particles.
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where, ultimately, the same assumptions enter that are presented below. For
the objective of motivating the Langevin equation, we restrict ourselves to
one-dimensional diffusion and generalize it to multiple dimensions at the
end.

We start with an isolated Brownian particle in one spatial dimension x.
Lets assume its position and velocity is described by x and v, respectively,
then its motion is described by the Newtonian equation

ẋ = v mv̇ = F(x) = −∂xV(x) + f (2.1)

with some force that stems from a conservative potential potential V(x), an
external driving f and the mass of the Brownian particle m.

The Brownian particle is surrounded by much smaller fluid particles. Due
to the difference in size and mass, the timescales of the Brownian particle
and of the fluid particles are separated. On an intermediate timescale ∆τ
in between the characteristic times of the Brownian particle and the fluid,
the former is almost at rest whereas the fluid molecules move rapidly. Con-
sequently, there are many collisions between the Brownian particle and the
fluid molecules. We collect these interactions in a force ξtot(t).

By the central limit theorem, the overall force of collisions accumulated
during the nth timestep

Ξtot
n ≡

∫ ∆τ

0
dt ξtot(t + n∆τ) (2.2)

can be described by a Gaussian distribution of some width D. This is due
to the fast relaxation of the fluid that prohibits a memory effect between two
timesteps. As a result, the accumulated collisions are not correlated for dif-
ferent timesteps

〈ΞnΞm〉 = 2Dδn,m. (2.3)

Here, δn,m is the Kronecker delta which is one if n = m and 0 otherwise, 〈·〉
denotes the average over the ensemble of all possible realizations, and D is a
constant that we leave undetermined for the moment.

If the particle is at rest, we assume that there is no prefered direction and
thus the collisions balance out on average. If the particle, however, moves,
collisions at the front (against the direction of travel) are more likely than on
its back. Consequently, the motion of the particle is slowed down. As the
Brownian particle is very slow on the characteristic timescale of the fluid, we
model this asymmetry as being proportional to the velocity

〈
Ξtot

n
〉
= −γvn∆τ (2.4)

with the coefficient γ and the velocity vn at time n∆τ. This biased part of the
collision term acts against persistent motion and has the form of a frictional
drag. Consistently, γ can be identified as the friction coefficient.
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Subtracting the non-symmetric part of the fluctuating force ξtot

Ξn ≡ Ξtot
n + γvn∆τ. (2.5)

yields a fluctuating force with the same variance as before, but zero mean.
Due to its character, this unbiased collision force is dubbed fluctuating force or
simply noise.

By discretizing the Newtonian equation, Eq. (2.1), and adding the effect
of the collisions Ξtot

n , the overall update during one timestep yields

xn = xn−1 + vn∆τ mvn = mvn−1 + F(xn)∆τ − γvn∆τ + Ξn. (2.6)

This discretized equation of motion can also be written as a differential equa-
tion that describes the dynamics on the timescale of the Brownian particle.
Furthermore, it can be straightforwardly generalized to higher dimensions
ultimately leading to

ẋ(t) = v(t) (2.7)
mv̇(t) = F (x(t))− γv(t) + ξ(t)

with the vectors x = (x1, x2, ...)ᵀ and v = (v1, v2, ...)ᵀ. Now, ξ is a vector
containing zero-mean Gaussian white noise with covariances

〈
ξi(t)ξ j(t′)

〉
=

2Dijδ(t− t′) and a symmetric covariance matrix D by definition. It is worth
noting that the fluctuating force has a fractal self-similarity. This means that
its structure is similar noisy irrespective of the chosen timescale. As before,
we can split the force in a conservative and non-conservative contribution
F(x) ≡ f +∇xV(x) where ∇x is the gradient with respect to x.

So far, the correlations D are still undetermined. In the next section we
will connect this matrix to thermodynamic quantities and, thereby, give the
Langevin equation a physical meaning.

2.1.2 Fokker-Planck equation

The Langevin equation (2.7) describes the microscopic motion of a Brownian
particle. Often, however, one is not interested in the exact fluctuating motion
of the particle but rather its distribution after time t

p(x, v, t) ≡ 〈δ (x− x(t)) δ (v− v(t))〉t
∣∣

p(x,v,0). (2.8)

The average in this expression is taken over an ensemble of all realizations at
time t that start from some initial distribution p(x, v, 0). Instead of evaluating
the Langevin equation multiple times to calculate the above average, this
distribution can also be obtained directly using the so-called Fokker-Planck
equation [28].
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The Fokker-Planck equation governs the evolution of the probability den-
sity function (PDF) p(x, v, t) and is given by

∂t p =

{
−∇x · v +∇v ·

1
m

(γv− F(x)) +∇ᵀ
v · D′ · ∇v

}
p ≡ Lp (2.9)

where the arguments are dropped for brevity and D′ ≡ D/m2. The oper-
ator L is called the Fokker-Planck operator. The Fokker-Planck equation can
be interpreted as a probability flow equation where all terms with single
derivatives define the drift in a specific direction, whereas those with par-
tial derivatives in second order specify how the probability broadens. This
interpretation also manifests by writing it as the continuity equation

∂t p(x, v, t) +∇ · j(x, v, t) = 0 (2.10)

with the microscopic current

j(x, v, t) =
(

jx(x, v, t)
jv(x, v, t)

)
≡
(

vp(x, v, t)
− ((γv/m− F(x))/m + D′ · ∇v) p(x, v, t)

)

(2.11)
which describes in which direction the probability flows at each given point
in phase space and time.

Since the noise in the Langevin equation only affects the time evolution
of the velocity v, no derivatives appear in the current jx. As a result, the
probability flow in spatial directions only consists of a drift that points in the
direction of the velocity.

In the long-time limit the PDF often approaches a stationary state in which
it becomes time independent. Consistently, the left hand side of the Fokker-
Planck equation vanishes and the differential equation reduces to

0 = Lpss(x, v) (2.12)

where pss is the steady state distribution. One further can distinguish between
equilibrium and non-equilibrium steady states. In the former, the arrow of
time vanishes, meaning that if one takes a movie of a trajectory and plays
it in reverse, it is impossible to distinguish it from the original one. In the
latter, in contrast, one can distinguish them as one seems more likely then
the other. For instance a particle consistently moving up a potential slope
seems impropable compared to the particle rolling down said slope.

Normally, this duality of the steady state is translated in microscopic cur-
rents vanishing in equilibrium and being non-zero otherwise. For under-
damped motion, the microscopic current in x-direction jx does, however,
never vanish. Strictly, an absence of any net currents also known as equi-
librium state can never be observed. We will, nevertheless, refer to a system
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as being in equilibrium if the microscopic current in v-direction is zero every-
where, i.e. jv = 0. States in which the steady-state condition, Eq. (2.12), is met
although jv does not vanish are called non-equilibrium steady states (NESS).

In the absence of an external driving f = 0 the PDF is known to be the
equilibrium Maxwell-Boltzmann distribution

peq(v) ∝ exp
[
− m

2kBT
v2 − 1

kBT
V(x)

]
(2.13)

with the Boltzmann constant kB. In the following, we set the Boltzmann con-
stant to unity, kB = 1. Plugging this distribution into the Fokker-Planck equa-
tion (2.9) yields a fluctuation-dissipation relation

Dij
!
= Tγ (2.14)

also known as Einstein-Smoluchowski-relation [2, 3] 2. By connecting the yet
undetermined noise intensity D to the Boltzmann-distribution, this relation
gives the Langevin equation a physical meaning and ensures that the correct
equilibrium distribution is attained in the corresponding limit.

In the following we drop the prime on D′ for brevity and include the mass
directly in the diffusion coefficient

Dii ≡
Tγ

m2 . (2.15)

2.1.3 The Problem of stochastic integration

Although the Langevin equation has been presented in the form of the differ-
ential equation (2.7), integrating it is ambiguous due to the fluctuating noise
ξ which is not differentiable. Of course, it is possible to evaluate the differen-
tial equation in the discretized image, see for instance Eq. (2.6), and perform
the continuum limes. In contrast to regular differential equations, however,
the outcome does depend on the underlying discretization scheme which is
a consequence of the fractal character of the noise.

The discretization scheme assumed previously for the Langevin equation,
Eq. (2.6), is known as Itô convention. In general, the integral of a function
g(q) along a fluctuating trajectory q(t) ≡ (x(t), v(t))ᵀ is interpreted as

∫ T

0
g(q(t)) · dq(t) ≡ lim

∆t→0

bT /∆tc

∑
n=0

g(qn) · [qn+1 − qn] (2.16)

2One year prior to Einstein, the relation was also presented on a conference by Aus-
tralien physicist William Sutherland [29]. Consistently, the relation is sometimes dubbed the
Sutherland-Einstein-Smoluchowksi-relation.
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in the Itô sense with the floor function b·c that gives the largest integer that
is less or equal than the argument. This convention corresponds to the left
Riemann sum, where g is evaluated on the start point of every discretized
time-interval of lenght ∆t.

Another common convention is known as Stratonovich integration. Its
use is typically indicated by the symbol ◦

∫ T

0
g(q(t)) ◦ dq(t) ≡ lim

∆t→0

bT /∆tc

∑
n=0

1
2
[g(qn) + g(qn+1)] · [qn+1 − qn] . (2.17)

In contrast to the Itô convention, the function is evaluated at both the start
and end point of the interval and corresponds to a trapezoidal Riemann sum.
As a consequence, the integral on the left hand side of Eq. (2.17) obeys the
conventional chain rule for derivation and can be integrated like a regular
integral.

The two conventions can be converted using the rule [30]

∫ T

0
g(q(t)) ◦ dq(t) =

∫ T

0
g(q(t)) · dq(t) +

∫ T

0
∇vDgv(q(t)) dt (2.18)

where gv is the part of the current that is multiplied with dv in the integral.
For the part of the weight function that is integrated with respect to dx,

namely gx, the Riemann integral exists and both conventions are equivalent.
This is due to the absence of noise in the deterministic x-part of the Langevin
equation. Consequently, the stochastic integral can be rewritten in the regular
form

∫ T

0
gx(q(t)) ◦ dx(t) =

∫ T

0
gx(q(t)) · dq(t) =

∫ T

0
gx(q(t)) · v dt. (2.19)

Based on this distinction between stochastic and regular integrals, we can
define a general class of time-integrated observables

X(T ) =
∫ T

0
w(x(t), v(t)) dt +

∫ T

0
gv(x(t), v(t)) ◦ dv(t) (2.20)

where the function w incorporates both a weighted mean and the stochastic
integration with respect to ◦dx according to Eq. (2.19). Since each realization
is different, the observable is subject to fluctuations that have consequences
on the statistics of the observable.

2.1.4 The overdamped limit

A common assumption for microscopic systems is that the effect of friction
affects the particle much stronger than the inertia. In other words, the mass
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of the particle is so small that it is immediately slowed down by friction.
Mathematically, this condition is expressed as the limit γ/m � 1 and fit-
tingly dubbed the overdamped limit. The Langevin and Fokker-Plancl equa-
tion follows in the respective limit from the previously established expres-
sions. Since we will focus on the truely underdamped case, we will only
give the results for completeness and discuss some distinct properties in the
following.

The overdamped Langevin equation involves only the spatial degrees of
freedom

ẋ =
1
γ

F(x) + ξ(t) (2.21)

with correlations 〈ξ(t)ξ(t′)〉 = T
γ δ(t − t′). This is due to the fact that the

velocity distribution becomes infinitely broad due to the small mass of the
Brownian particle. As a consequence, there is an additional time-scale sep-
aration between the change of the position and the change of the velocity.
With the velocity relaxing much faster, the dynamics can be marginalized
with respect to x.

The same holds for the Fokker-Planck equation

∂t p(x, t) = − 1
γ
∇F(x)p(x, t) +∇D∇p(x, t) (2.22)

that reduces to a differential equation in the spatial coordinates x and time t
and Dij = T/γ.

2.1.5 Effect of time-reversal

A distinct feature of underdamped motion, in comparison with its over-
damped counterpart, is the presence of degrees of freedom with different
characteristics when the time is reversed. By this we mean that a trajectory
ΓT ≡ (x(t), v(t))T of lenght T is traversed in the opposite direction

Γᵀ
T = (xᵀ(t), vᵀ(t))T ≡ (x(T − t),−v(T − t))T . (2.23)

The different nature of the degrees of freedom becomes apparent when
the original trajectory is compared with the time-reversed trajectory, Eq. (2.23).
Whereas the sign of an the position x does not change under time-reversal, it
must be flipped for the velocity v. This behavior is dubbed even and odd un-
der time-reversal, respectively. Put more generally, we consider a function or
observable even (odd) under time-reversal if its sign does not change (does
change) if all degrees of freedom are time-reversed.

The microscopic current jv, Eq. (2.11), has an ambigious behaviour under
time-reversal for underdamped dynamics. If the microscopic current is eval-
uated for an ensemble of time-reversed trajectories it cannot be related to the
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original current straightforwardly. It can, however, be split in an odd part

jirr
v (x, v, t) ≡ 1

2
(jv(x, v, t)− jv(x,−v, t)) = − (γv + D · ∇v) p(x, v, t) (2.24)

and an even part

jrev
v (x, v, t) ≡ 1

2
(jv(x, v, t) + jv(x,−v, t)) = F(x)p(x, v, t). (2.25)

Here, the even part includes the parts that can be reversed, e.g. the energy
put in this motion can be regained by reversing the trajectory. In contrast, the
irreversible, odd part describes dissipation which cannot be reverted. In this
case, the dissipation along the time-reversed trajectory is the same as for the
original one.

2.2 Stochastic thermodynamics along single trajec-
tories

Now that the we have outlined the dynamical description of a Brownian par-
ticle, we consider its energetics in the framework of stochastic thermodynam-
ics. The overarching notion of stochastic thermodynamics is, to map the laws
of classical thermodynamics on the single trajectory of stochastic systems.
This way one can analyze microscopical processes just like its macroscopic
counterparts and discuss, for instance, work and heat turnover. Since the
trajectories are subject to noise, these quantities, however, fluctuate.

In this section, we touch on the topic of stochastic thermodynamics and
fix the notations needed throughout this thesis. A broader review of the
framework can be found in Ref. [11].

2.2.1 First law of thermodynamics

Along the stochastic trajectories of the particle, the first law of (stochastic)
thermodynamics represents energy conservation. The rate of change of the
internal energy U = 1/2mv2 + V(x) of the particle is given by [9]

U̇(t) = mv(t) ◦ v̇(t) +∇xV(x(t)) · v(t) = Q̇(t) + Ẇ(t) (2.26)

where one can identify the heat exchanged with the medium during an in-
finitesimal time interval dt as

d̄Q̇(t) = mv(t) ◦ dv− F(x) · vdt (2.27)

and the rate of work done on the particle against the non-conservative force
f

Ẇ(t) = f · v(t). (2.28)
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Using these rates, we can express the respective quantities along single
trajectories of finite length as time-integrated observables of the form (2.20).
The heat ∆Q[ΓT ] dissipated along a path ΓT ≡ (x(t), v(t))T can be calculated
by integrating Eq. (2.27)

∆Q[ΓT ] ≡
∫ T

0
(mv(t) ◦ dv− F(x) · vdt) . (2.29)

Analogeously, the functional for the work against an external force

∆W[ΓT ] ≡
∫ T

0
f · v(t)dt (2.30)

follows from integrating Eq. (2.28).

2.2.2 The second law of thermodynamics

Defining the first law of thermodynamics along an individual trajectory nat-
urally raises the question how to formulate the second law of thermodynam-
ics. To this end, we need to identify a stochastic entropy production.

The entropy production has two contributions [10]: The entropy pro-
duced in the medium by dissipated heat

∆Sm[ΓT] ≡ −
1
T

∆Q[ΓT] (2.31)

and a stochastic contribution

∆Ss[ΓT] ≡ − ln
pss(x(T ), v(T )
pss(x(0), v(0))

(2.32)

that captures the informational entropy produced in the system, e.g., when
the system is prepared in a state that is not the steady state. Adding up both
contributions gives the total entropy produced along the trajectory Γ as

∆Stot[ΓT] ≡ ∆Sm[ΓT] + ∆Ss[ΓT]. (2.33)

On first sight, this entropy production seems to violate the second law
of thermodynamics as the entropy can also decrease. For instance a particle
can traverse against an external force, powered by random fluctuations. On
average, however, the mean rate of entropy production in the steady state
can be expressed as an integral over the dissipative part of the microscopic
steady-state current jirr,ss

v , Eq. (2.24) in the form

〈
Ṡtot〉 ≡ σ =

∫
dx
∫

dv
jirr, ss
v (x, v) · D−1 · jirr, ss

v (x, v)
p(x, v)

(2.34)
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which, in accordance with the second law of thermodynamics, is strictly pos-
itive. In particular, for one-dimensional diffusion the mean entropy produc-
tion rate is given by the positive expression

σ =
m2

γT

∫
dx
∫

dv
jirr, ss
v (x, v)2

p(x, v)
. (2.35)

Applied to the example above, the positive average of the entropy produc-
tion means that one might observe examples of a decreasing entropy. For
long observation times or many realizations, however, the expected validity
of the second law is restored.

The mean entropy production rate in the steady state can equivalently be
extracted from the first law, Eq. (2.26)

σ = − 1
T
〈Q̇〉 = 1

T
〈 f · v〉 (2.36)

where we use that in the steady state the internal energy becomes constant
on average and the stochastic contribution ∆Ss vanishes.

Although the definitions for thermodynamic quantities introduced here
can also be formulated for the overdamped regime, is is not guaranteed
that the underdamped results converge appropriately. For instance when
a system is driven out of equilibrium by an inhomogeneous temperature.
Such a temperature profile can be handled in the underdamped formula-
tion straightforwardly. One can also show that the correct steady-state dis-
tribution can be obtained from an overdamped perspective as well by mod-
ifying the Fokker-Planck equation. However, the exchanged heat and thus
the entropy production is misrepresented in an a priori overdamped ap-
proach when compared to the respective quantities from an underdamped
approach where the overdamped limit is performed explicitly [17]. This is
due to the fact that heat is transported from regions of high temperature to
regions where it is lower by means of a spatially varied velocity distribution
which can not be tracked in overdamped dynamics.
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Chapter 3

Fluctuations in the steady state

So far, we have mainly discussed typical values in the form of ensemble av-
erages. Due to the random noise that affects the dynamics, however, every
realization is different and the fluctuations of an observed quantity result in
a not necessarily trivial probability distribution.

These fluctuations can be bound by means of the thermodynamic uncer-
tainty relation. Before introducing the TUR properly at the end of the Chap-
ter, we introduce methods that can be used to characterize and quantify the
strength of fluctuations. As a measure of how fluctuations shape the vicin-
ity of the most probable value, we first define the cumulants. By introduc-
ing the cumulant generating function, we show that the cumulants can, in
principle, reconstruct the complete distribution. We then highlight the more
microscopic path integral formalism that associates a probability measure
to each possible trajectory. We put this formalism into practice by deriving
fluctuation theorems that relate the relative probability of realizations with
opposing signs.

As a central point of this chapter we introduce the large-deviations frame-
work that illuminates how the probability distribution of an observable col-
lapses onto the typical value in an appropriate limit. This framework is par-
ticularly relevant for the scope of this thesis as it is at the heart of the proof
for the overdamped TUR that we outline at the end of this chapter. We wrap
up by discussing why this proof can not be straightforwardly applied to the
underdamped regime.

3.1 Cumulants: Fluctuations around the average

First we explore the fluctuations in the direct vicinity of the typical values.
These are realizations that are quite probable and directly shape observa-
tions.
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3.1.1 Characterizing typical fluctuations

The most direct way of characterizing fluctuations is to analyze the cumu-
lants of an observable X

Kn(T ) ≡ ∂n
λα(λ, T ) (3.1)

with the finite-time scaled cumulant generating function or short cumulant gen-
erating function (CGF)

α(λ, T ) ≡ ln
〈

eλX
〉
T

(3.2)

where the subscript T indicates that the ensemble average is taken after an
observation time T . It is worth mentioning that the CGF is the logarithm of
the moment generating function. Prominently, the first two cumulants

K1(T ) = 〈X〉T and K2 = Var[X]T ≡
〈

X2
〉
T
− 〈X〉2T (3.3)

are the mean value and the variance after an observation time T , respectively.
The variance is the quadratic deviation of the observable around its typ-

ical value. For a Gaussian distribution it simply relates to the width of the
distribution.

3.1.2 The generating function

As the name indicates, all cumulants are generated by the cumulant generat-
ing function. The latter, in a sense, contains all information of the complete
distribution of the observable. However, computing the CGF from Eq. (3.2)
in practice is challenging. When the distribution is not known analytically
but inferred numerically, the CGF is heavily weighted towards rare, barely
sampled events for |λ| � 0.

In the long-time limit the CGF can also be computed on a different, more
controlled path. For long times, the CGF is dominated by the largest eigen-
value of the differential equation governing the time evolution of the average〈

eλX〉 over a steady state ensemble. To keep the notation slim we denote the
time-independent long-time limit of the CGF as α(λ) without time depen-
dence.

For the class of observables considered here, Eq. (2.20), the so-called tilted
operator governing the dynamics of the CGF is [31]

L(λ) ≡−∇x · v + λ f − (∇v − λgv) · (γv− F(x))
− (∇v − λgv)

ᵀ · D · (∇v − λgv) (3.4)
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which reduces to the Fokker-Planck operatorL, Eq. (2.9), for λ = 0. When the
probability distribution is expanded in a suited basis, the problem of calcu-
lating the CGF can thus be translated to a numerically well controlled eigen-
value problem. The continuous generalization of the Perron-Frobenius theo-
rem guarantees that the largest eigenvalue is real as long as the spectrum re-
mains gapped [31]. Since all other eigenvalues have a negative real part, the
largest eigenvalue corresponds to the CGF α(λ) for large observation times.

Moreover, the left and right eigenfunction allow to construct the density
of the ensemble that becomes typical for a given tilting λ. Let Hr(x, v, λ)
denote the right eigenfunction corresponding to the largest eigenvalue of
Eq. (3.4)

L(λ)Hr(λ) = α(λ)Hr(λ). (3.5)

This eigenfunction is also dubbed the dominant eigenfunction. Equivalently
Hl is the corresponding eigenfunction of the adjoint operator L†

L†(λ)Hl(λ) = α(λ)Hl(λ) (3.6)

for some tilting λ. The typical density then is the product at each point [32]

ρtyp(x, v, λ) = Hr(x, v, λ)Hl(x, v, λ)/N (3.7)

with appropriate normalization N . Most notably, for λ = 0 the right eigen-
function is the stationary distribution pss and the left eigenfunction is 1 due
to probability conservation. Consistently, the typical density for vanishing
tilting is ρtyp(x, v, 0) = pss(x, v).

3.2 Path integrals: Fluctuating trajectories

The cumulant generating function is a suited tool to characterize fluctuations
of an observable. Given that calculating the CGF can be mapped to a numeri-
cally well controllable eigenvalue problem it does not only allow to efficiently
calculate the cumulants of a distribution but also to illustrate the ensemble
that generates specific fluctuations by means of the typical densities.

The approach is, however, limited to ensembles of trajectories. To assess
the probabilities of specific fluctuations or even individual trajectories one
can employ so-called path integrals. We demonstrate the relevance of such a
description as a follow-up by deriving fluctuation theorems.

3.2.1 Assessing the probability of certain trajectories

The probabilistic weight of a specific trajectory conditioned on a starting
point (x(0), v(0)) can be expressed in form of the path weight functional [33]

P [ΓT ] ≡
1
Z exp

[
−
∫ T

0
S(x(t), v(t))dt

]
pss (x(0), v(0)) (3.8)
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with the so-called action

S(x, v) ≡− log[δ(ẋ− v)] (3.9)

+
{
[v̇− (F(x)− γv) /m] D−1 [v̇− (F(x)− γv) /m]−∇vγv

}
.

which must be interpreted in the Stratonovich sense. For the Itô interpre-
tation, the last term must be omitted. Unique for underdamped motion, is
the delta function that reflects the deterministic equation of motion for the
spatial variables x. As a result, the weight for trajectories with inconsistent
change in the position, i.e., a particle moving faster than its current velocity,
is zero.

The path weight can be used to evaluate averages over any functional
observable. For instance, for the observable X[ΓT ] after time T , see Eq. (2.20),
the mean can be expressed as the integral

〈X[ΓT ]〉T =
∫

T
[DΓ] X[Γ] P [Γ], (3.10)

where
∫
T [DΓ] denotes an integral over the space of trajectories of length T .

Analogously, the probability of a specific value X̃ of the observable is given
by

P(X̃, T ) =
∫

T
[DΓ] δ

(
X[Γ]− X̃

)
P [Γ]. (3.11)

3.2.2 Entropy as a measure of irreversibility

After having introduced the path integral formalism, we can use it to rewrite
the stochastic entropy production, Eq. (2.33), in a compact form

Stot[ΓT ] = ln
[
P [ΓT ]
Pᵀ[Γᵀ

T ]

]
(3.12)

with the time-reversed path Γᵀ
T , Eq. (2.23), and the complement path weight

[34]

Pᵀ[Γᵀ
T ] ≡ P [Γ

ᵀ
T |(xᵀ(0), vᵀ(0))] pss (xᵀ(0),−vᵀ(0)) (3.13)

= P [Γᵀ
T |(x(T ),−v(−T ))] pss (x(T ), v(T )) (3.14)

which is the original path weight but the initial probability of the comple-
mentary weight is given by the final distribution pss (x(T ), v(T )) of the orig-
inal process. In the ratio of path weights, Eq. (3.12) the initial probability and
conditioned path weight form the system and medium contribution of the
entropy along a trajectory, Eq. (2.33), respectively.

By relating the probability of the two opposing trajectories, this definition
of the entropy, Eq. (3.12), directly embodies the interpretation as a measure
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of irreversibility. When the system is in equilibrium one would not be able
to distinguish a trajectory from its time-reversed counterpart since both are
equally probable. In this case the entropy production (3.12) vanishes. In
non-equilibrium situations there is, however, a difference between the prob-
abilities. The trajectory has an irreversible contribution that is captured by
the entropy production.

3.3 Fluctuation theorems: Characterizing fluctua-
tions

While introducing the path weight gives a theoretical way of studying fluc-
tuations, they are hard to evaluate in practice. However, they allow to derive
a class of relations known as fluctuation theorems [11] that relate the prob-
abilities of certain fluctuations. In this section, we derive a detailed fluctu-
ation theorem that specifies the relative probability of measuring a negative
medium entropy production −∆Sm, Eq. (2.31).

Before we discuss the underdamped case, we introduce the fluctuation
theorem for the entropy production in overdamped dynamics. Here, all de-
grees of freedom are even under time-reversal and the entropy production
along a trajectory can be calculated as the logarithmic ratio of the path weight
of the original trajectory and its time-reversed counterpart without adjust-
ing the initial probability as was necessary in Eq. (3.12) for the velocity. By
this definition one can straightforwardly derive the so-called steady-state de-
tailed fluctuation theorem (DFT) [10] that has the form

P(−S) = P(S)e−S (3.15)

where S is the overdamped entropy production and P(S) is the probability
to observe a specific value. This is true for all times. As a consequence of
the DFT, the probability of negative fluctuations is dampened by the entropy
production for large times.

By integrating both sides the integral fluctuation theorem (IFT)
〈

e−S
〉
= 1 (3.16)

follows. By applying Jensen’s inequality it follows 〈S〉 ≥ 0. Since this is
exactly the statement of the second law of thermodynamics, the IFT is often
interpreted as a refinement of the second law.

In contrast to the overdamped case, a detailed fluctuation theorem holds
for the entropy production in the underdamped regime only in the long-time
limit [35]. This is due to the different complement path weight that appears
in the definition of the entropy production (3.11). In the long-time limit these
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boundary terms vanish. Nevertheless, an IFT holds for all times due to the
form of the entropy production.

A detailed fluctuation theorem valid for all times can, however, be de-
rived for the different irreversibility measure

∆Ψ[ΓT ] ≡ ln
[
P [ΓT ]
P [Γᵀ

T ]

]
. (3.17)

This functional involves the time-reversed trajectory Γ†
T and a complemen-

tary path weight that is the same as for the forward process. The functional
∆Ψ coincides with the entropy production in the long-time limit, where the
boundary terms from the system entropy production become irrelevant. Plug-
gin this measure in Eq. (3.11) and changing the integration to an integration
over the time-reversed trajectory yields the detailed fluctuation theorem

P(Ψ̃, T ) =
∫

T
[DΓ] δ

(
∆Ψ[Γ]− Ψ̃

)
P [Γ] (3.18)

=
∫

T
[DΓ] δ

(
∆Ψ[Γ]− Ψ̃

) P [Γ]
P [Γᵀ]

P [Γᵀ] (3.19)

=
∫

T
[DΓᵀ] δ

(
−∆Ψ[Γᵀ]− Ψ̃

)
e−∆Ψ[Γ]P [Γᵀ] (3.20)

= eΨ̃P(−Ψ̃, T ) (3.21)

where in the third line we use that ∆Ψ is odd under time-reversal.
While the irreversibility measure ∆Ψ itself has no physical interpretation,

we can use its convergence in the long-time limit. In this limit, the detailed
fluctuation theorem for the irreversibility, Eq. (3.21), can mapped to the en-
tropy production

P(∆Stot, T ) ≈ e∆Stot
P(−∆Stot, T ) (T � 1) (3.22)

as already discussed in Ref. [35].

3.4 Large deviations theory: Studying rare fluctu-
ations

We have shown that the CGF and the path integral formalism are good tools
to characterize fluctuations and even to study specific fluctuations. Since
we are interested in the TUR, we introduce a third framework, namely large
deviation theory [36]. For a pedagogical review see Ref. [37]. After introducing
the basics of the framework, we show that its most basic form is tightly tied to
the cumulant generating function. However, in a more abstract form it plays
an important role in the proof of the TUR in the overdamped regime [38, 39,
22].
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3.4.1 The large deviation principle

The basis of the large deviations framework is the question, how a probabil-
ity distribution collapses for a large parameter N. Although the framework
can be employed in a more general context we will restrict ourselves to two
cases, namely the long-time limit where the observation time T is the large
parameter, and many copies of the same system where N is the number of
copies. As an introduction, we discuss the latter and consider the mean ob-
servable XN(T ) = 1/N ∑N

i=1 Xi over N copies measured over some time T .
We consider the probability distribution of a possibly path-dependent ob-

servable X and rewrite it in the asymptotic form

P(X̃, N) ≈ e−NI(X̃)+o(N) (N � 1) (3.23)

where
I(X̃) = lim

N→∞

1
N

ln P(X̃, N) (3.24)

is called the large deviation function (LDF) and o(N) denotes the small Landau-
o symbole. This function captures the exponential rate of decay of the proba-

bility to observe a specific value X̃ !
= XN(T ) for large values of the parameter

N. If this limit exists, X is said to satisfy a large deviation principle.
In the N → ∞ limit the mean observable XN(T ) over a finite number of

copies converges to the ensemble average 〈X〉T . In this case, the probability
must vanish anywhere except for the typical value. As a consequence, the
LDF is 0 only for the typical value and strictly positive elsewhere. All fluctu-
ations around this stationary value become exponentially less likely for the
increasing large-deviation parameter N.

Analogously, one can consider the mean rate recorded along a finite-
length trajectory JT ≡ X(T )/T with the large-deviation parameter T . For
large times, the observed velocity converges to the steady state value 〈J〉
meaning that limT →∞ P(〈J〉 , T ) = 1. As a consequence, the LDF is zero
only at the steady-state value.

To distinguish between the two conceptually slightly different LDFs, we
use a superscript T to denote the long-time LDF in the following.

3.4.2 Relation to the cumulants

While the concept of large deviations seems rather abstract at first, the LDF
can be tightly connected to the previously introduced and ostensible more
applicable scaled cumulant in the long-time limit. This link is established by
the Gärtner-Ellis theorem stating that the LDF can be derived from the gener-
ating function by means of a Legendre-Fenchel transformation

IT (J) = sup
λ

[λJ − α(λ)] (3.25)
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where α(λ) is the CGF in the long-time limit and J is the mean rate X(T )/T .
Using this relation, the LDF can be calculated from the CGF which in turn
can be calculated by solving the eigenvalue problem of the tilted operator,
Eq. (3.4).

This tight connection to the cumulants can be made for finite times as
well. If we consider the N copies version of the LDF, then the direct vicinity
of the typical value is characterized by the central limit theorem. For a large
number of copies N, the distribution of the sum over the observable is ap-
proximately described by a Gaussian centered around the typical value with
the variance being a multiple of the variance of a single copy

PN(X̃, T ) ≈ N exp
[
− 1

NVar[X]T

(
X̃− 〈X〉T

)2
]

(N � 1, X̃ ≈ 〈X〉)
(3.26)

whereN is a suited normalization and Var[X]T is the variance of the observ-
able at time T . As a result, the LDF becomes parabolic in the vicinity of the
typical value with curvature

I′′(〈X〉 , T ) = 1
Var[X]T

. (3.27)

3.4.3 Functional large deviation functions - high level LDFs

The large deviations framework is not limited to scalar observables. It can be
generalized to functional observables as well. The large deviation function
then measures the exponential rate of decay for the probability to observe a
specific function, e.g. a specific probability density. In this section, we derive
the functional LDF for the probability density following Ref. [40]. This func-
tional form has also be considered in Ref. [41] from a more mathematically
point of view.

We consider N identically prepared copies of the system that evolve ac-
cording to the same Langevin dynamics. The probability distribution ob-
served for N systems evolving in parallel along trajectories Γi is given by

ρN(x̃, ṽ)[{Γi}, T ] ≡
1

NT
N

∑
n=1

∫ T

0
dt δ(xi(t)− x̃)δ(vi(t)− ṽ) (3.28)

where the copies of the system are labeled by the subscript i. We will refer
to this distribution as empirical distribution. Analogously, the empirical current
can be defined as

µN(x̃, ṽ)[{Γi}, T ] ≡
1

NT
N

∑
n=1

∫ T

0
dt δ(xi(t)− x̃)δ(vi(t)− ṽ) ◦ d

(
x(t)
v(t)

)

(3.29)
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where in the following we denote the spatial current with µN
x and the velocity

part with µN
v .

In the limit N → ∞, the ensemble average is recovered and the empir-
ical distribution and current converge to the solution of the Fokker-Planck
equation with appropriate boundary conditions

p(x, v, t) = lim
N→∞

ρN(x, v, t) (3.30)

and the corresponding microscopic current, Eq. (2.11)

j(x, v, t) = lim
N→∞

µN(x, v, t), (3.31)

respectively.
To calculate the LDF for observing these quantities, we first need to calcu-

late the probability to observe a specific value for the empirical distribution
and current. Using the path integral, Eq. (3.11), this probability can be writ-
ten as

PN[ρ̃, µ̃, T ] =
∫

T

N

∏
i=1

(DΓi)PT [Γi] δ (ρ[{Γi}, T ]− ρ̃) δ (µ[{Γi}, T ]− µ̃)

(3.32)
where ρ[{Γi}, T ] and µ[{Γi}, T ] are the empirical distribution, Eq. (3.28), and
current, Eq. (3.29), evaluated with the N trajectories {Γi} at time T . The path
weight PT contains a delta condition that guarantees that the path weight
vanishes when ẋ 6= v for all times. As a consequence, we can rewrite the
spatial part of the current as outlined in Sec. 2.1.3 and get

µx[{Γi}, T ] = vρ[{Γi}, T ]. (3.33)

This constraints the desired empirical current in x-direction

µ̃x(x, v, t) !
= vρ̃[{Γi}, T ] (3.34)

with PN being zero otherwise. Keeping this in mind, we can drop the condi-
tion δ(ẋ− v) in the path weight.

We now introduce an alternative driving force G(x, v) that makes the de-
sired empirical functions ρ̃ and µ̃ typical. This is only possible if the continu-
ity equation

∂tρ̃(x, v, t) = −∇µ (3.35)

holds. Empirical functions that do not match this continuity equation, are
unlikely and their probability rapidly vanish as the number of copies N → ∞
increases. Consistently, the large deviation functional becomes infinity for
such functions.
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Using this altered force, the integration in Eq. (3.32) can be changed to an
integration in the altered dynamics. As a second step, all integrals occuring
in the path integration can then be replaced by empirical densitites and cur-
rents thus allowing to evaluate the integral. The details of the derivation can
be found in the Appendix 3.A. Using the associated current, this is the micro-
scopic current, Eq. (2.11), associated with the empirical distribution instead
of the probability distribution p,

jv(x, v)[ρ] ≡ A(x, v)ρ(x, v) + D · ∇vρ(x, v) (3.36)

the LDF can be written in the obviosuly positive form

I[ρ̃, µ̃, T ] ≡ T
∫

dxdv
(µ̃v − jv[ρ̃]) · D−1 · (µ̃v − jv[ρ̃])

4ρ̃
+ K (ρ̃||pss) (3.37)

where the initial change in the LDF for a non-typical distribution ρ̃ is cap-
tured by the so-called Kullback-Leibler divergence

K (ρ̃||pss) =
∫

dxdv ρ̃(x, v) ln
ρ̃(x, v)

pss(x, v)
. (3.38)

As pointed out before, however, the LDF is infinity if either the continuity
equation (3.35) is violated or the current in the deterministic degree of free-
dom µ̃x does not match the current dictated by the empirical distribution
according to Eq. (3.34).

Using these two constraints on the LDF, it can be reduced to a functional
that depends only on the empirical density. Since µx = vρ, the continuity
equation constraints µv as

∇vµv = ∂tρ(x, v, t)− v∇xρ(x, v, t) (3.39)

which defines µv up to a possibly x-dependent integration constant. For v→
±∞ the current µ must, however, vanish, so that the integration constant is
0. Hence, the empirical current associated with a given empirical density can
be expressed as a functional µv[ρ] and the large deviation functional reduces
to

I[ρ̃, T ] ≡ I[ρ̃, µ[ρ̃], T ] (3.40)

without further constraints on the choice of the empirical density.
On first sight, it is surprising that such a constraint holds in underdamped

dynamics but not for the overdamped case. However, the overall informa-
tion that must be provided to the large deviation functional stays the same.
Whereas for overdamped dynamics one is free to chose an empirical distribu-
tion in x and current µ, one instead can specify a two dimensional empirical
distribution ρ(x, v). Being a function in x and v it can carry the same informa-
tion as for the overdamped case, in particular one can map two independent
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functions in a bijective matter in such a form. For real processes, however,
the position and velocity are correlated. This is due to the relaxation of veloc-
ity and its coupling the spatial degrees of freedom. For instance, if a particle
is locally faster due to an underlying potential, the velocity is overall higher
in the vicinity independent of the potential landscape.

It is worth noting that one can also consider the observation time T as a
large parameter. The empirical density and current can then be defined as
averaged density and current along a long trajectory. The resulting large de-
viation functional has the same form as the one derived here, Eq. (3.37), but
without the Kullback-Leibler divergence. This is due to the fact that the sys-
tem becomes decorrelated from its initial distribution in the long-time limit.

3.4.4 The contraction principle and a hierarchy of LDFs

The functional LDF, Eq. (3.37), that was derived in the previous section can
be connected with the LDFs for the scalar class of observables defined in
Eq. (2.20). Using the definition of the empirical density, the ensemble statis-
tics of an observable that is an average along a trajectory, this is gv = 0, can
be expressed by means of the empirical current

1
N

N

∑
i=1

X[Γi] =
N

∑
i=1

∫ T

0
dt w(xi(t), vi(t)) =

∫
dxdvw(x, v)ρN(x, v). (3.41)

Similarly, an observable that consists only of an path-integration along a tra-
jectory, i.e. w = 0, can be converted

1
N

N

∑
i=1

X[Γi] =
N

∑
i=1

∫ T

0
gv(xi(t), vi(t)) ◦ dv(t) =

∫
dxdvg(x, v)µN

v (x, v).

(3.42)
In general an observable can contain both types of integration and thus we
rewrite the observable as functional X[ρ] with µ[ρ] following through consis-
tency conditions as before. The LDFs associated with such a scalar observ-
able will be referred to as level 1 LDF.

When we can express the scalar observables by means of the empirical
density and current, it is possible to derive the corresponding level 1 LDF
from the functional LDF of the empirical measures via the so-called contrac-
tion principle. In detail, the level 1 LDF can be derived through the contraction

I(X̃) = min
ρ | X̃=X[ρ]

I[ρ] (3.43)

which is a minimization over the densities ρ that generate the desired value X̃
of the observable. The rationale behind this contraction is that the probability
of X̃ decays as slow as the slowest in the ensemble of empirical density that
generates the desired value.
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With the level 1 LDF being contractable from the functional LDF it was
dubbed the level 2.5 LDF in the overdamped context. In this regime, the em-
pirical density and current can be chosen individually and thus the contrac-
tion in (3.43) involves both functions as a parameter. Since the functional
LDF I[ρ] can in turn be contracted from the level 2.5 LDF by minimizing
over the empirical densities only, it was dubbed the level 2 LDF. From this
intermediate level, the lower level 1 LDF can only be contracted if the ob-
servable depends only on the empirical density ρ in a functional sense, i.e. a
mean-like observable. In this hierarchy, an LDF on the trajectory level can be
regarded as a level 3 LDF and lower level LDFs can be contracted from as we
did in the proof in Sec. 3.4.3.

The notion of a level 2.5 does, however, not carry over to underdamped
case. Here, the empirical density and current are interlinked by Eq. (??) and
hence scalar observables are functionals of the empirical density, only. As
a consequence, the level 2 functional fulfills the task previously associated
with the level 2.5 LDF.

Building upon the connection of the CGF and the LDF, the typical den-
sity (3.7) extracted from the left and right eigenvectors of the tilted oper-
ator can be shown to minimize the contraction of IT [ρ] for the realization
J̃ = α′(λ) [32]. Hence, ρtyp(x, v, λ) can be interpreted as the phase space den-
sity associated with the ensemble of trajectories producing a specific fluctua-
tion J = α′(λ).

3.5 Bounds on fluctuations: The thermodynamic
uncertainty relation

A recent result in stochastic thermodynamics is the thermodynamic uncertainty
relation (TUR) [12]. It bounds the precision of any current in overdamped dy-
namics by the mean rate of entropy production σ of the system in the steady
state. The bound embodies the intuitive picture that increasing the preci-
sion of currents comes with the cost of higher dissipation. The TUR was first
proven for continuous-time Markovian dynamics in the long-time limit for
discrete states [38] and for overdamped continuous states [39, 42]. First only
proven in the long-time limit, the validity of the TUR was extended to finite
times T [43, 22]. In this section, we will give a detailed overview over the
TUR and its proof for overdamped dynamics.

3.5.1 The Statement of the TUR

As the name uncertainty relation implies, the TUR bounds the uncertainty that
is observed in stochastic systems. To quantify the uncertainty, the relation
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utilizes the measure

ε(T )2 ≡ Var[X(T )]
〈X(T )〉2 . (3.44)

which puts the variance of some observable X in perspective to its average.
From a metrology point of view, the uncertainty can also be interpreted as the
inverse signal to noise ratio that quantifies the signal, the mean value, in rela-
tion to the spread around this value. In this sense, a high uncertainty means
that the mean value can hardly be extracted from an observation that is based
on only a few realizations. Consequently, the inverse of this definition is also
used as a measure for the precision.

One of the key success factors of the TUR is its compact form and general
conditions of validity. Using the uncertainty product Q

Q(T ) ≡ ε(T )2σT (3.45)

the TUR takes on the form of the inequality

Q(T ) ≥ 2. (3.46)

and holds for all Stratonovich integrated observables

X(T ) =
∫ T

0
gx(x) ◦ dx(t). (3.47)

3.5.2 A proof of the overdamped TUR

Although the TUR can be stated in an arguably simple form, its proof turns
out to be more involved. In this section, we scetch the proof for overdamped
dynamics to later discuss the challenges in the generalization to the under-
damped regime.

The original proof presented for overdamped dynamics [39, 42, 22] ex-
ploits the contraction principle of large deviations, as introduced in Sec. (3.4.4).
As mentioned before, the level 2.5 LDF

Iov[ρ, µ] =





∫
dx

(µ− jov[ρ]) · D−1 · (µ− jov[ρ])

4ρ
+ K(ρ||pss) ∇µ = 0

∞ otherwise
(3.48)

can be used to contract the level 1 LDF of a Stratonovich current of the form
(3.47). In analogy to Eq. (3.36), the associated current jov[ρ] is the microscopic
probability current

jov(x)[ρ] ≡ F(x)ρ(x)/γ− D · ∇ρ(x) (3.49)

expected for the empirical distribution ρ. The main idea of the proof is, to
find a bound on the level 1 LDF for the current X by making a suitable ansatz
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to the minimization of the contraction principle. Every non-optimal function
that produces the expected current X is an upper bound at that point.

In contrast to underdamped dynamics, this overdamped LDF has two
expedient features. First, there is no constraining link between the empirical
density and current. As a consequence, they can be chosen independently to
get a bound on the level 1 LDF, for instance by using the stationary density
and simultaneously rescaling the stationary current, i.e.

ρ̃ = pss , µ̃ = cjss. (3.50)

Since X[µ] is linear in the current the corresponding observable is simply
the rescaled steady state value

X[µ̃] = cX[jss] = c 〈X〉 . (3.51)

With c = X̃/ 〈X〉 we can meet the minimization condition in Eq. (3.49) and
obtain

I(X̃) = min
ρ,µ | X̃=X[µ]

Iov[ρ, µ] ≤ Iov
[

pss,
X̃
〈X〉 j

ss
]

. (3.52)

The second important feature is that there is no reversible contribution to
the associated current, Eq. (3.49). Consequently, it reduces to the irreversible
current for the stationary distribution

jov[pss](x) = jss
irr = jss. (3.53)

Plugging the ansatz for the empirical density and current in Eq. (3.48) thus
yields

I(X̃) ≤
(

1− X̃
〈X〉

)2 ∫
dx

jss · D−1 · jss

4pss (3.54)

and we can readily identify the entropy production. The bound resulting
from the ansatz in Eq. (3.52) thus becomes

I(X̃) ≤
(

1− X̃
〈X〉

)2
σT
4

. (3.55)

Since for the typical observable X̃ = 〈X〉 the bound becomes 0 and thus
is tight at that point, we can directly derive a bound on the variance from the
bound on the LDF . To this end, we calculate the second derivative and use
that the curvature of the LDF is given by the variance at its minimum, see
Eq. (3.27),

Var[X] = I′′(〈X〉)−1 ≥ 2 〈X〉2

σT . (3.56)

This is exactly the statement of the TUR, Eq. (3.45).
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Appendix

3.A Derivation of the functional LDF

The ratio of the path weights of the original dynamics and the altered dy-
namics PG yields the ratio

PT [Γi]

PG
T [Γi]

=
pss(xi(0), vi(0))
ρ(xi(0), vi(0), 0)

exp
{
−
∫ T

0
[Ai(t)dt + Bi(t) ◦ dvi]

}
(3.A.1)

with the time integrand

Ai(t) ≡
1
4

{
Ai(t)ᵀD−1Ai(t)−Gi(t)ᵀD−1Gi(t) + 2∇v (Ai(t)−Gi(t))

}

(3.A.2)
where we write

Ai(t) ≡ A(xi(t), vi(t)) ≡ γvi(t)− F(xi(t)) and Gi(t) ≡ G(xi(t), vi(t))
(3.A.3)

for brevity. The Stratonovich integrand is simply given by

Bi(t) ≡
1
2
(Ai(t)−Gi(t)) (3.A.4)

The convergence of this path-weight ratio, Eq. (3.A.1), is guaranteed by the
Girsanov theorem, see Ref. [44], stating that the probability measures are ab-
solulety continuous under changes in the drift.

Using the ratio of path weights, we can change the integration in Eq. (3.32)
to be with respect to the G- altered dynamics. The result of this transforma-
tion is

PN[ρ̃, µ̃, T ] =
∫

T

N

∏
i=1

(DΓi)PG
T [Γi] ·

N

∏
i=1

PT [Γi]

PG
T [Γi]

· δ (ρ[{Γi}, T ]− ρ̃) δ (µ[{Γi}, T ]− µ̃) (3.A.5)

In the product of the ratio, Eq. (3.A.1), we can now replace the trajectories
piece by piece with the empiric counterparts. First, we analyze the logarithm
of the initial weight of the path and insert a delta-function to subsequently
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identify the empirical density

N

∑
i=1

ln
pss(xi(0), vi(0))
ρ(xi(0), vi(0), 0)

=
∫

dxdv ln
pss(x, v)
ρ(x, v, 0)

N

∑
i=1

δ(xi(0)− x)δ(vi(0)− v)

= N
∫

dxdv ln
pss(x, v)
ρ(x, v, 0)

ρ(x, v, 0) = −NK (ρ||pss) (3.A.6)

where K (·||·) in the second line is called the Kullback-Leibler divergence.
Analogeously, we can transform the dt integration in the exponent of the
path weight as

N

∑
i=1

∫ T

0
Ai(t)dt =

NT
4

∫
dx
∫

dv
{

AᵀD−1A−GD−1G + 2∇v (A−G)
}

ρN

(3.A.7)

where we skipped the arguments of A(x, v) and G(x, v). This can be writ-
ten in a shorter form using the current that is associated with the empirical
density in the respective dynamics. This associated current is the microscopic
current, Eq. (2.11), with the distribution p replaced by the empirical distribu-
tion

jv(x, v)[ρ] ≡ A(x, v)ρ(x, v) + D · ∇vρ(x, v) (3.A.8)

and, for the altered dynamics,

jG
v (x, v)[ρ] ≡ G(x, v)ρ(x, v) + D · ∇vρ(x, v) (3.A.9)

By this definition, Eq. (3.A.7) can be written as

N

∑
i=1

∫ T

0
Ai(t)dt =

NT
4

∫
dx
∫

dv
[

jv[ρ]ᵀD−1jv[ρ]

ρ(x, v)
− jG

v [ρ]
ᵀD−1jG

v [ρ]

ρ(x, v)

]
.

(3.A.10)
Finally, we can transform the Stratonovich part of the path weight ratio

using the empirical current

N

∑
i=1

∫ T

0
Bi(t) ◦ dv(t) =

NT
2

∫
dx
∫

dv (A−G) D−1µN
v . (3.A.11)

In the probability, Eq (3.A.5), the delta distributions fix the empirical den-
sities and current to the desired ones. Consequently, all terms that appeared
through the ratio of weights, Eq. (3.A.1) and are now only functionals of the
empirical functions can be pulled out of the integral. The remaining integral

∫

T

N

∏
i=1

(DΓi)PG
T [Γi] δ (ρ[{Γi}, T ]− ρ̃) δ (µ[{Γi}, T ]− µ̃) = PN

G [ρ̃, µ̃, T ]

(3.A.12)
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is the probability to observe ρ̃ and µ̃ in the altered dynamics. This probability
converges to 1 in the large N limit, since we have chosen the altered dynamics
in a fashion that makes the desired functions typical.

Iterating the same steps as described in Ref. [40], the LDF of the probabil-
ity density PN

G [ρ̃, µ̃, T ] can be cast in the obviously positive form that is pre-
sented in Eq. (3.37) and infinity if either the continuity equation (3.35) is vio-
lated or the current in the deterministic degree of freedom µ̃x does not match
the current dictated by the empirical distribution according to Eq. (3.34).
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Chapter 4

An underdamped finite time TUR?

In the previous chapter, the overdamped formulation of the finite time TUR
was presented along with its proof. In this chapter, we make a first step to-
wards the underdamped regime by naively adopting the notations from the
overdamped regime, calculating the uncertainty productQ and exploring its
properties. Even though the TUR has not been proven for underdamped dy-
namics, we from now on call it a “violation of the TUR” if Eq. (3.45) does not
hold.

4.1 Underdamped observables

Naively extending the notations from the original, overdamped TUR, we
consider time-integrated observables of the form

Y(◦)(T ; w̃(x, v)) =
∫ T

t=0
w̃(x(t), v(t)) ◦ dx(t) (4.1.1)

where we can replace the Stratonovich integration ◦ dx(t) with the regular
Riemann integration v(t)dt and get the integral

Y(T ; w(x, v)) ≡
∫ T

0
w(x(t), v(t))dt (4.1.2)

along the trajectory (x(t), v(t)) with weight

w(x, v) ≡ w̃(x, v) · v. (4.1.3)

In analogy to the overdamped results, we for now allow the weight function
to depend on all degrees of freedom, especially the velocity. An example
for such an observable is the integrated work up to time T , Eq. (2.28), with
w(x, v) = f · v.

For this observable, Eq. (4.1.2), the uncertainty product

Q(T ; w(x, v)) ≡ Var[Y(T ; w(x, v))]

〈Y(T ; w(x, v))〉2
σT (4.1.4)
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depends on the weight function as well. It is worth noting that a constant
factor in the weight cancels and does, thus, not change the uncertainty prod-
uct.

4.1.1 Even observables

At this level, there already is a grave difference to the overdamped case.
While the observable for which the TUR is proven in the overdamped regime,
Eq. (3.47), is guaranteed to be odd under time-reversal, the underdamped
analogous Eq. (4.1.2) does not have a clear signature under time-reversal.
Depending on the weight function w, the observable can have even, odd and
even an inconclusive behavior under time-reversal.

For an observables that is even under time-reversal the TUR is not ex-
pected to hold as discussed in Ref. [45]. For such an observable, the time
reversed trajectory (x(T − t),−v(T − t)) of any realization yields the same
value as for the original trajectory. As a consequence, the mean 〈Y〉 does
typically not vanish. Even in the equilibrium limit f → 0 the uncertainty
ε2 is expected to stay finite while at the same time the entropy production
becomes 0. As a result, the uncertainty product Q approaches 0 for small
driving forces. In contrast, for an odd observable the time reversed trajec-
tory contributes the negative value and thus the original and time reversed
trajectory cancel in the calculation of the mean when they are equally prob-
able. As a result, the uncertainty diverges in the equilibrium limit for odd
observables.

The conceptual difference between time symmetric and antisymmetric
observables is not unique to underdamped dynamics. For Markovian jump
dynamics the TUR only holds for odd, current-like observables. In such dy-
namics the precision of even observables, dubbed “traffic” or “frenesy”, is
not bounded by the entropy production but by the so-called time-symmetric
dynamical activity [46]. The fact that the uncertainty approaches 0 for even
observables suggest that the same distinction is necessary for underdamped
dynamics as well. A TUR in its original form with the uncertainty being
solely bound by the entropy production cannot hold for such observables.

This strengthens the presumption that there is a universal physical con-
cept behind the TUR that applies only to observables that are odd under
time-reversal. The same might hold for even observables but with a bound
that reflects the activity instead of the irreversibility in the spirit of the bounds
from Refs. [46, 47].
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4.2 Calculating the cumulants for a general observ-
able

With the definition of a generalized observable, Eq. (4.1.2), in the previous
section, we can now compute the time evolution of the uncertainty product.
To this end, the first and second cumulant are required. While the first cumu-
lant can be calculated from the steady state distribution directly, calculating
the second cumulant is more involved. To this end we first calculate the sec-
ond moment.

The time evolution of the second moment follows the ordinary differen-
tial equation

d
dT 〈Y

2〉T = 2 〈Y w〉T . (4.2.1)

Here and in the following, the arguments of Y and w are dropped for better
readability. The time evolution of the average on the right hand side can, in
turn, be calculated using Itô’s Lemma. After inserting the Langevin equation
(2.7) and using that ensemble averages containing the fluctuating force in
first order vanish, we arrive at

d
dT 〈Y w〉T =

〈
w2
〉
T
+ 〈Y (∇xw) v〉T (4.2.2)

+
1
m
〈Y (∇vw) (F(x)− γv)〉T +

Tγ

m2 〈Y ∆vw〉T

where ∆v ≡ ∑i ∂2/∂v2
i is the Laplace-operator with respect to the velocity.

4.2.1 Short-time behavior

Although the expression Eq. (4.2.1) seems rather intransparent, it nicely il-
lustrates the impact of inertia. In contrast to overdamped motion where the
second moment is constant for all times, the inertia introduces a non-linear
time-dependence in the variance of Y for small times. This can be shown
by taking the time derivative on both sides of Eq. (4.2.1) and, subsequently,
plugging in Eq. (4.2.2). Since Y vanishes for T = 0 by definition, all ensemble
averages involving Y vanish as well. Consequently, the variance simplifies
to

Var [Y(T ; w(x, v))]T = Var [w]T =0 T
2 +O(T 3) (4.2.3)

where the variance on the right hand side can be calculated using the initial
PDF. The quadratic dependence on the observation time T is a result of the
deterministic equation of motion for x which results in a ballistic regime for
short times. For longer times, the noise gains importance and the velocity
decorrelates thus giving rise to the expected linear behavior of the variance.

The ballistic regime in the variance of Y also changes the characteristics of
the uncertainty ε2, Eq. (3.44). While in the overdamped limit the uncertainty
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scales with T −1 for all times, for underdamped dynamics it is of order one in
the ballistic regime. As a result, the uncertainty product generally becomes
linear in this regime

Q(T ; w(x, v)) =
Var[w]

〈w〉2
σT +O(T 2) (4.2.4)

thus violating the overdamped TUR and even approaching 0 in the limit
T → 0. The reported violations of the overdamped TUR for the (odd) parti-
cle current in Ref. [45] can be attributed to this ballistic effect.

4.2.2 A bound based on the detailed fluctuation theorem

On first sight, the linear order of Q in time in the ballistic regime, Eq. (4.2.4)
seems to contradict a proof of the overdamped TUR for small times that is
solely based on the detailed fluctuation theorem for entropy production [43].
This proof can, however, not be generalized to underdamped motion as the
total entropy production does not follow a detailed fluctuation theorem in a
non-equilibrium steady state (NESS).

As introduced in Sec. 3.2.2, the entropy production of a certain trajectory
ΓT = {(x(t), v(t))|t ∈ [0, T ]} can be written as

∆S[ΓT ] = ln
P [ΓT ]
P†[Γ†

T ]
(4.2.5)

with the time-reversed trajectory Γ†
T = {(x(T − t),−v(T − t))|t ∈ [0, T ]},

Eq. (3.13). Since P† 6= P due to the different initial probabilities, a detailed
fluctuation theorem follows only for the irreversibility measure ∆Ψ[ΓT], Eq. (3.17).

In the same way as described in Ref. [43], we can proof a bound on the un-
certainty that follows from the DFT for said irreversibility measure. Iterating
the same steps results in the following bound on the precision

Var[Y(T )]
〈Y(T )〉2

≥ 2− 〈∆Ψ(T )〉
〈∆Ψ(T )〉 . (4.2.6)

This bound is valid for non-equilibrium steady states and for all times T .
Noteworthy, a similar bound for overdamped diffusion involving the en-
tropy production proofs the TUR for small times and thus raises the question
if something similar is possible in the underdamped regime.

The functional ∆Ψ coincides with the entropy production in the long-time
limit where the boundary terms become irrelevant and form the asymptotic
DFT, Eq. (3.22). In the short-time limit, however, this irreversibilty measure
converges to the finite value

lim
T →0

∆Ψ[ΓT ] = ln
p(x(0), v(0))

p(x(0),−v(0))
(4.2.7)
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that involves only the initial distribution.
The different convergence of the irreversibility measure renders the result

trivial in both the long-time and the short-time limit. As heat is constantly
dissipated in the medium in a NESS, the irreversibility measure 〈∆Ψ(T )〉
grows with time so that the right hand side of Eq. (4.2.6) eventually becomes
negative. For large times, the bound thus reduces to a trivial statement. For
small times, the mean irreversibility can be calculated by taking the aver-
age of Eq. (4.2.7) which can be identified as the Kullback-Leibler divergence
between the initial distribution and its v-reflected counterpart. In a NESS,
where currents do not vanish, the distribution of v for fixed x becomes asym-
metric. As a result, the Kullback-Leibler divergence can grow beyond any
value when the driving increases and the right hand side becomes nega-
tive, which also renders this bound trivial. Only for small times and near
equilibrium the expression on the right hand side of Eq. (4.2.6) becomes non-
negative.

Due to the different behavior for small times, the irreversibility bound
does not proof that the uncertainty product saturates the TUR for small times.
Thus, the observed linear behavior of the uncertainty product for small times
does not contradict the bound, Eq. (4.2.6). Apart from that, no universal
insight can be gained from the this bound.

4.3 The simplest model: Free diffusion with drift

Although the expression for the time evolution of the second moment, Eq.
(4.2.2), in principle allows to derive the TUR for arbitrary dynamics, solving
the differential equation is not feasible in a general setting. To gain further in-
sight on the validity of the TUR in underdamped dynamics, we thus consider
the arguably simplest underdamped model: one-dimensional free diffusion
with drift. That is diffusion described by the Langevin equation dimension

ẋ = v mv̇ = −γv + f + ξ(t) (4.3.1)

with constant force F(x) = f . We project the motion in x on a ring with
perimeter 2π to get a unique steady state. As before, the initial conditions
are sampled from the steady state distribution

pss(x, v) =
1

2π

√
m

2πT
exp

[
− m

2T

(
v− f

γ

)2
]

. (4.3.2)

To further simplify we restrict ourselves to the class of observables

Yn(T ; w(x)) ≡ Y(T ; w(x)vn) =
∫ T

0
w(x)vndt (4.3.3)
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with an unambiguous symmetry under time-reversal that is defined by the
v-order n ∈N of the observable. The subscript n on the uncertainty product

Qn(T ; w(x)) ≡ Q(T ; w(x)vn). (4.3.4)

indicates the v-order of the corresponding observable. Since we want to dis-
cuss the dependence on the external force, we writeQ f

n in the following with
a superscript f that indicates this parametric dependence.

4.3.1 Evolution of the uncertainty product

By choosing w(x) = 1, all moments occurring in the uncertainty product
Q f

n(T ; 1), Eq. (4.3.4), can be calculated analytically. The first moment of Yn
is simply given by 〈Yn(T ; 1)〉 = 〈vn〉 T where the ensemble average can be
evaluated using the steady state distribution (4.3.2). The second moment is
defined by Eqs. (4.2.1) and (4.2.2). After inserting the corresponding weight
w(x, v) = vn, we obtain the time evolution of the second moment as

d
dT

〈
Y2

n

〉
= 2 〈Ynvn〉 (4.3.5)

d
dT

〈
Ynvj

〉
=
〈

vn+j
〉
− j

m

(
γ
〈

Ynvj
〉
− Fext

〈
Ynvj−1

〉)

+ j(j− 1)
Tγ

m2

〈
Ynvj−2

〉
for 1 ≤ j ≤ n (4.3.6)

where we dropped the arguments of Yn as well as the subscript T of the
ensemble averages for brevity.

This recurrent set of ordinary differential equations can be solved for
any power n, beginning with the lowest order j = 1, i.e. the correlation
〈Yn(T ; 1)v〉. The corresponding integration constants are fixed by the condi-
tion that for T = 0 all correlations 〈Ynvj〉 vanish.

We start the analysis with the lowest v-order n = 1. In this case, the
observable Y1(T ; 1) corresponds to the distance travelled in time T . The
solution of the uncertainty product for free diffusion according to Eqs. (4.3.5)
and (4.3.6) takes the form

Q f
1(T ; 1) = Q0

1(T ; 1) =
2
τ
(τ − 1 + exp[−τ]) ≈

{
τ τ � 1
2 τ → ∞

(4.3.7)

with dimensionless time τ ≡ γT /m. Interestingly, the uncertainty product
does not depend on the force f .

As mentioned in Sec. 4.2.1, the uncertainty product for free diffusion (4.3.7)
is linear for small times which is a consequence of the ballistic evolution. For
long times it asymptotically approaches 2 from below. Consequently, the
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FIGURE 4.3.1: Uncertainty product of free diffusion Q f
n(T ; 1)

as defined in equation (4.3.4) for observables of the form
Yn(T ; 1) (see Eq. (4.3.3)) with n ∈ {1, 2, 3, 5} plotted against di-
mensionless time τ = γT /m. The solid lines are the results
for different forces f while the colors encode the v-order n. The
thick black line is the exact result for n = 1 which is indepen-
dent from the applied force, see Eq. (4.3.7). The thick lines in
the n = 3 set and n = 5 set correspond to the minimized uncer-
tainty product, Eq. (4.3.8) and (4.3.10), respectively. The thick
line in the n = 2 set corresponds to the limit f → 0 where Q0

2 is
zero for all τ.

overdamped TUR is violated for all finite times. However, if we consider
the overdamped limit of (4.3.7) where γ/m � 1 we indeed recover the ex-
pected behavior for overdamped free diffusion with the uncertainty product
reaching 2 for times τ � m/γ.

For a higher v-order, the uncertainty product for free diffusion depends
on the driving force f with a striking difference for odd and even observables.
First, we discuss the odd case. As shown in Fig. 4.3.1,Q f

3 decreases for f → 0
and eventually converges to a finite limit given by

Q f
3(T ; 1) ≥ Q0

3(T ; 1) =
2
τ

(
11
9

τ − 29
27

+ e−τ +
2

27
e−3τ

)
(4.3.8)

as indicated by the thick line in Fig. 4.3.1.
The minimum of the uncertainty product of free diffusion Q0

3(T ; 1) with
an observable of order n = 3 has similar properties as the n = 1 uncertainty
product. In particular, it is linear for small times and converges to a finite
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long-time limit

Q0
3(T ; 1) ≈

{
5
3 τ τ � 1
22
9 τ → ∞.

(4.3.9)

that is, however, larger compared to the n = 1 case. The steeper slope for
small times and the larger value in the long-time limit compared toQ0

1 is due
to the fact that the higher exponent in the weight increases the contribution of
events in the vicinity of the typical value, thus increasing the variance of the
observable without influencing its mean as strongly. This effect results in the
uncertainty product increasing faster in the ballistic regime and in settling on
a higher value in the long-time limit. Consistently, Q0

3 is larger than Q0
1 for

all times.
The qualitative observations made for the observable scaling with v3 are

valid for the observable Y5(T ; 1) with n = 5 as well. The bright lines in
Fig. 4.3.1 show the uncertainty product over the dimensionless time τ for
different forces. Again, a minimum is obtained in the equilibrium limit

Q0
5(T ; 1) =

2
τ

(
449
225

τ − 4447
3375

+ e−τ +
8

27
e−3τ +

8
375

e−5τ

)

≈
{

21
5 τ τ � 1
898
255 τ → ∞.

(4.3.10)

This result for n = 5 lies above the uncertainty product for the lower v-orders
Q0

3 and Q0
1.

As already pointed out in Sec. 4.1.1, a TUR is not expected to hold for
even observables. In accordance to the discussion presented earlier, the re-
sults for free diffusion look quite different for an even exponent, as plotted
exemplary for n = 2 in Fig. 4.3.1. The curves settle below 2 in the long-time
limit and become smaller for a decreasing driving force. The minimum of
the uncertainty product is attained in the equilibrium limit f → 0 where the
product is 0 for all times.

4.4 Consequences on a putative underdamped TUR

The results obtained in this chapter show that a TUR is not expected to hold
generally in the underdamped regime. Although exemplary in nature, the
results for free diffusion allow to identify general constraints on the validity
of a putative underdamped TUR.

Overall, the general class of observables introduced in Sec. 4.1 is more
versatile than its overdamped analogous. When we allow the weight to de-
pend on all degrees of freedom, including the velocity, there is no definite
symmetry under time reversal. However, as for the overdamped case, the
original TUR cannot hold for even observables.
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Even for odd observables, the TUR does not hold generally as it is inher-
ently broken for short times as a consequence of the inertia, see Sec. 4.2.1.
An underdamped uncertainty relation that is valid for all times must capture
this regime as well. In other words, the bound on the uncertainty product Q
must depart from 0 and be time-dependent.

The results for free diffusion indicate that a long-time TUR can still exist
in its original form. For times larger than the characteristic time γ/m � 1,
the uncertainty product approaches 2 and saturates the orignal TUR for a
current of first order in v. Such a first order current

Y1(T ; w(x)) =
∫ T

0
dtw(x(t)) ◦ dx(t) (4.4.1)

can be interpreted as the rigorous underdamped analogous of the overdamped
current, Eq. (3.47). In contrast to observables with higher v-order it is well
defined in the overdamped limit. Such first-order observables are highly rel-
evant in stochastic thermodynamics. Examples include the work done on the
particle or the distance travelled. A putative TUR is expected to converge to
the overdamped TUR for an order-1-current in the appropriate limit.

For currents that display an higher but still odd v-order, the uncertainty
product for free diffusion lies above the TUR bound, but does not become
tight.

In the following we first focus on the important class of currents with v-
order 1 to further assess the validity of a TUR in the underdamped regime.
Later, we consider other observables as well.
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Chapter 5

The underdamped LDF in one
dimension

The LDF takes on an important role in the proof of the overdamped TUR.
To discuss the option of generalizing the proof to underdamped dynamics, a
better understanding of the LDF is required in this regime. In this chapter we
will introduce a method to calculate the LDF for an underdamped particle
in a periodic potential and discuss its form. Due to the insights from the
previous section, we focus on the long-time limit.

To further simplify the problem, we consider the simplest observable which
is the distance traveled in time T

Y1(T ; 1) =
∫ T

0
dtv(t) (5.0.1)

or, related, the particle current

J1(T ; 1) ≡ 1
T

∫ T

0
dtv(t) (5.0.2)

It is worth noting that any observable of v-order 1 with periodic weight can
be traced back to this observable in the long-time limit since the integrated
current is dominated by the number of completeted periods for large times.

5.1 LDF for free diffusion

To make the rather abstract concept of large deviations more applicable, we
first calculate the LDF for free diffusion with drift as an example. To this
end, we follow the path outlined in Sec. 3.4.2. In more detail we calculate
the CFG by finding the largest eigenvalue of the tilted operator and then
transform it into the LDF using the Gärtner-Ellis theorem. Finally, we discuss
the empirical densities that are associated with the respective fluctuations.

By means of the Gärtner-Ellis theorem, Eq. (3.25), we can calculate the
long-time LDF from the CFG that is in turn the largest eigenvalue of the tilted
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operator, Eq. (3.4). For the traveled distance, Eq. (5.0.1), the tilted operator is
given as

L(λ) = −∂xv− ∂v
1
m

(γv− f ) +
D
m2 ∂2

v + λv. (5.1.1)

A right eigenfunction of this tilted operator is given by the shifted Gaussian

Hr(λ, v) = exp

[
− m

2T

(
v− f

γ
− λ

T
γ

)2
]

. (5.1.2)

The corresponding eigenvalue is

α(λ) =
T
γ

(
λ +

f
2T

)2

− f 2

4T
. (5.1.3)

For λ = 0 the largest eigenvalue is known to be 0 as is the eigenvalue of the
shifted Gaussian. Since the eigenvalue must be continuous in λ, the parabula
(5.1.3) indeed corresponds to the largest eigenvalue for all values of λ as re-
quired for the CGF. The corresponding left eigenfunction is the exponential
function

Hl(λ, v) = exp
[
−λ

m
γ

v
]

(5.1.4)

as can be checked by applying the adjoint tilted operator.
The Legendre-Fenchel transform of the CGF, Eq. (5.1.3), yields the LDF

for free diffusion. It also has the form of a parabula

IT (J) =
γ

4T

(
J − f

γ

)2

(5.1.5)

where J is a certain realization for the mean velocity J1(T ; 1). As discussed in
Section 3.4, the probability collapses on the unique steady-state value Jss =
〈v〉 = f /γ and thus the LDF vanishes at this particular point. Furthermore,
the LDF reflects the symmetry introduced by the asymptotic DFT, Eq. (3.22).
Since the observable J1(T ; 1) is proportional to the medium entropy produc-
tion by means of Eq (2.36), we can apply the DFT to the distribution P(J, T )
for large times and derive the symmetry

IT (−J) = lim
T →∞

1
T ln P(−JT , T )

= lim
T →∞

1
T ln eT f J/TP(JT , T ) = IT (J) +

f J
T

. (5.1.6)

We can further visualize the fluctuations by evaluating the typical distri-
butions associated with a specific tilting λ or value J. This typical distribu-
tion is the product of the left and right eigenfunction, Eqs. (5.1.2) and (5.1.4)
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respectivelly. After appropriate normalization, the typical distribution for
given tilting λ becomes the Gaussian distribution

ρtyp(v, λ) =

√
m

2πT
exp

[
− m

2T

(
v− f

γ
− 2λ

T
γ

)2
]

(5.1.7)

which generates the mean velocity

J[ρtyp(λ, v)] =
∫

dvρtyp(λ, v)v =
f
γ
+ 2λ

T
γ

. (5.1.8)

By inverting the expression for the mean velocity with respect to λ we find
the tilting that is associated with a specific fluctuation J̃ which in turn allows
to express the empirical distribution with respect to the desired current J̃ as

ρ(v, J̃) =
√

m
2πT

exp
[
− m

2T
(
v− J̃

)2
]

. (5.1.9)

Hence, the empirical distribution for a specific fluctuation J̃ is the steady state
distribution but with the mean shifted. Microscopically, a non-stationary cur-
rent is realized by the noise consistently pushing the particle in a specific
direction, just like an increased non-conservative force would.

5.2 LDF in a periodic potential

In presence of a periodic potential, we can follow the same path as outlined
in Sec. 5.1. The tilted operator

L(λ) = −∂xv− ∂v
1
m

(γv− F(x)) +
D
m2 ∂2

v + λv (5.2.1)

then contains the periodic force F(x) = F(2πx) with appropriate rescaling of
the position x to normalize the periodicity.

5.2.1 Symmetry of the CGF

The tilted operator satisfies an identity [48] that on the level of the cumulant
generating function manifests itself in the so-called Gallavotti-Cohen symme-
try [49]

α(λ) = α(−λ− f /T) (5.2.2)

which reflects the asymptotic DFT as proven before, Eq. (3.22). Moreover, it
relates the corresponding left and right eigenfunctions as [48]

Hl(x, v, λ) = eE(x,v)/T Hr(x,−v,−λ− f /T). (5.2.3)
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with the energy

E(x, v) ≡ 1
2

mv2 + V(x). (5.2.4)

For the tilting λ = − f /T, the symmetry of the eigenfunctions can be
expressed as a symmetry of the typical density

ρtyp(x, v,− f /T) = pss(x,−v). (5.2.5)

In other words, the stationary density flipped in the velocity is associated
with producing the negative of the stationary velocity.

5.2.2 A numerically convenient expansion

In order to numerically calculate the eigenvalue, we discretize the operator
L(λ). Inspired by previous work considering steady state distributions [28,
50], we expand the right eigenfunction basis of the tilted operator (5.2.1) in a
Fourier-Hermite basis

rn
p(x, v) ≡

√
T

2πR
√

m
einx/Rφ0(v)φp(v), (5.2.6)

consisting of Fourier modes in x and Hermite functions φp(v) in v. The Her-
mite functions are defined as

φp(v) ≡
(−1)p

√
2p p!
√

π

(m
T

) p
2 emv2/(4T) dp

dvp e−mv2/(2T)

≡ Hep(v)
1√

2p p!
√

π
e−mv2/(2T) (5.2.7)

where the second line introduces the Hermite polynomials Hep(v). For the
left eigenfunction, we use the basis

ln
p(x, v) ≡ 1√

2p p!
√

π
einx/RHep(v) (5.2.8)

with Hermite polynomials Hep(v) instead of Hermite functions. This has the
advantage that the left eigenfunction 1 for λ = 0 can be trivially represented
using only the zeroth order Hermite polynomial. The basis vectors lp(x, v)
and rp(x, v) are orthogonal and normalised, such that the matrix elements of
the tilted operator are given by the integral

L(λ)nn′
pp′ =

∫ 2π

0
dx
∫ ∞

−∞
dv ln

p(x, v)L(λ)rn
p′(x, v). (5.2.9)
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Since the v-derivatives and -factors in the tilted operator only cause an
index shift of the right basis vectors, most of the matrix elements vanish. As
a result, L(λ) becomes a tridiagonal block matrix with entries

L(λ)pp′ =−
√

p

(
D̂− λ

√
T
m

I

)
δp−1,p′ − p

γ

m
δp,p′

−
√

p + 1

(
D− λ

√
T
m

I

)
δp+1,p′ (5.2.10)

with the identity matrix I and the matrices

D̂nn′ ≡
(
δn,n′ (inT − Fext) + F̃nn′

)
/
√

Tm (5.2.11)

Dnn′ ≡ inδn,n′
√

T/m (5.2.12)

where

F̃nn′ ≡
∫ 2π

0
dx ei(n′−n)xV′(x) (5.2.13)

is the Fourier transform matrix of the potential force acting on the particle.
For the simple case of a cosine potential

V(x) = V0 cos(x), (5.2.14)

the Fourier transformation yields

F̃nn′ =
iV0

2
(δn,n′−1 − δn,n′+1) . (5.2.15)

The same expression for the discretized tilted operator (5.2.10) has also
been derived in the context of Josephson junctions using a slightly different
approach in [51].

5.3 Numerical case study in a periodic potential

Using the discretized version of the tilted operator, Eq. (5.2.10), both the CGF
and the LDF can be evaluated numerically. The eigenvalues and eigenfunc-
tions of the truncated operator can be evaluated for an arbitrary value of λ
using standard methods as long as the influence of higher modes decays suf-
ficiently fast. For underdamped dynamics in a cosine potential, Eq. (5.2.14),
using 64 Hermite modes and Fourier modes in the range of −80 ≤ n ≤ 80
proved to be suitable for moderate values of γ and m. Solving the eigenprob-
lem for the resulting matrix with roughly 10 000× 10 000 is still feasible on
standard hardware. To probe into the extremely underdamped regime where
m/γ� 1 the v-dependence becomes more complicated so that especially the
number of Hermite modes must be increased.

To further shorten the computation time, we can employ the Gallavotti-
Cohen symmetry (5.2.2) of the generating function and restrict ourselves to
λ ≥ − f /2T.
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FIGURE 5.3.1: Generating function α(λ) for the particle current
in a cosine potential for different masses with T = 1, γ = 1 and
V0 = 2, f = 1. The second derivative is shown in the inset, with

the points of largest curvature marked by coloured dots.

5.3.1 Two different modes of transport

Figure 5.3.1 shows the generating function for three different masses with
T = 1 and an intermediate driving force f = 1 with respect to the potential
barrier of amplitude V0 = 2.

In contrast to the CGF for free diffusion, see Eq. (5.1.3), the potential in-
troduces a pronounced plateau around the center of symmetry with signif-
icantly reduced curvature. This has already been reported for overdamped
motion [52]. Away from this plateau, the generating function converges to-
wards a parabola with the characteristics of free diffusion, in particular the
curvature matches free diffusion α′′(λ) = 2D for |λ| � 0 with the bare diffu-
sion coefficient D ≡ T/γ.

The two regimes of the generating function can be associated with dif-
ferent properties of the typical distributions ρtyp(x, v, λ) as shown in figure
5.3.2. For the center of symmetry λ = − f /2, shown in the first column, the
typical distribution is symmetrical in v as evident from Eq. (5.2.3). The mean
particle current associated with this distribution vanishes. In the vicinity of
this value of λ, the distributions of the velocity are approximately Gaussian
with mean close to zero for all x. Along the x direction the densities show a
local maximum at approximately π. Around x = 0, on the other hand, the
probability is close to zero. The trajectories producing this phase-space den-
sity can be imagined as “locked in” by the potential landscape. They rarely
cross the potential barrier. When the distributions for small and high mass in
the first column of Fig. 5.3.2 are compared, they show only minor differences.
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As the tilting parameter λ increases to larger values, the particle flux in-
creases as well, which gives rise to stripes of elevated probability spread-
ing over the complete x range as shown in the third column. These stripes
correspond to “running” trajectories that can overcome the potential bar-
rier. Even though these stripes occur at large tilting for both large and small
masses, they show a mass-dependent characteristic. For large mass, the
stripes tightly follow the contour lines of the internal energy E(x, v). This
behaviour is due to the fact that the noise intensity in v scales like 1/m, lead-
ing to only small deviations from deterministic trajectories for large mass.

For small mass, in contrast, the probability distribution resembles a Gaus-
sian distribution in v with little dependence on x similar to free diffusion.
In this regime, the relaxation time becomes small thus inhibiting the mem-
ory effects of energy conservation. In the overdamped limit m/γ → 0, the
relaxation time vanishes. Through the arising time-scale separation the dis-
tribution in v becomes independent from its energy at a previous time thus
becoming a Gaussian that only reflects the local mean speed. Furthermore,
the small mass increases the noise intensity on v and broadens the distribu-
tions. With respect to the width of the local distribution in v, the variation in
local mean speed becomes small. Consequently, the distributions shown in
Fig. 5.3.2 seem flat in x.

In an intermediate regime the typical densities display both character-
istics, a “running” stripe and the “locked” local maximum around v = 0,
corresponding to “running” and “locked” parts of trajectories, respectively.
The value of λ in this intermediate regime coincides with the position λc of
the maximum in the second derivative of the generating function, marked
with dots in the inset of figure 5.3.1. This point marks the transition from the
flat plateau to the quadratic regime. The plateau of the generating function
is consequently bound between −λc − f /T and λc.

With increasing mass, the inertia increases and the motion becomes less
prone to the noise thus stabilizing the respective solutions. Consistently, the
plateau associated with the “locked” solutions becomes flatter. In addition,
the intermediate regime becomes narrower, leading to a larger second deriva-
tive of the generating function around −λc − f /T and λc.

5.3.2 Manifestation of the different regimes in the LDF

The LDF for the presented generating functions can be calculated via Legendre-
Fenchel transformation, see Eq. (3.25). The results are plotted in Fig. 5.3.3.

For different masses, the typical current Jss shifts as the inertia allows
to surpass energy barriers more easily. The change of the mean speed with
respect to the mass has been discussed and characterized intensively, for in-
stance in Ref. [28].
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FIGURE 5.3.2: Typical densities for small mass m = 0.01 (top
row) and large mass m = 3 (bottom row) with T = 1, γ = 1 and
V0 = 2. Darker colors depict small probability densities. The
tilting λ of the operator (5.2.1) and with it the empirical current
J is varied along the columns as specified at the bottom of each
plot. The first column corresponds to the state with vanishing
current J = 0. The contour lines of the energy landscape are

plotted as black lines.

In the limit of both small and large mass the LDF seems to converge to
limiting functions. In the limit of small masses, the exact overdamped LDF is
reproduced. For large masses, the LDF becomes quadratic for large empirical
currents with a pronounced plateau between 0 and the stationary current Js.
This degeneration of the minimum of the LDF and divergence of the variance
is a consequence of the bistability in the deterministic limit. Dependent on
the initial condition, the particle can either escape the potential or is tied to
its minimum.

The plateau of the generating function translates to a kink in the LDF at
J = 0, which becomes sharper when the second derivative at λc becomes
larger. Such a kink in the LDF is a common feature and has been observed
and discussed in a wide variety of systems such as models describing driven
overdamped systems [53] and molecular motors [54]. In some cases, the kink
in the LDF has been attributed to intermittent or flashing states [55, 56]. In
the underdamped system, the bistability between “running” and “locked”
dynamics causes such an intermittence [50].
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FIGURE 5.3.3: Large deviation function I(J) for the CGFs
shown in Fig. 5.3.3. The right panel shows the LDF in the vicin-
ity of the vanishing and most probable current as highlighted

on the left hand side.

The sharpening of the kink for increasing mass at J = 0, displayed in the
right panel of Fig. 5.3.3, can be interpreted as a tightening regime of intermit-
tent states. This is due to the fact that a particle with larger inertia survives
longer in a running state compared to a lighter particle. Hence, the inter-
mittent switching between running and trapped trajectories becomes more
sensitive for the tilting λ for large masses.

As mentioned before, the inverse of the second derivative at the mini-
mum of the LDF corresponds to the variance for the current J. The sharp-
ening kink at J = 0 thus has an indirect impact on the decreasing curvature
as shown in the right panel of Fig. 5.3.3. The, in turn, increased effective dif-
fusion for intermittent trajectories suggests that the phenomenon of enhanced
or giant diffusion originally reported for overdamped dynamics [57] is inter-
linked with a sharpening of the kink. The maximal diffusion is observed,
when locked and running trajectories with a different typical current have a
comparable influence on the motion. In terms of the CGF, the maximum of
the second derivative then is located near λ = 0 and enhances the diffusion.
Since changes between the different regimes of motion are mediated by dif-
fusive effects, the effect of such effects can be enhanced significantly if the
different modes of motion are stable and display a small relaxation time.

As a side note, extreme fluctuations have also observed in bistable mod-
els for active matter [58] or biochemical oscillators [59]. As for the periodic
system discussed here, the diffusion coefficient increases when the individ-
ual modes become more stable. This is, however, only observed when there
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is a different mean contribution to the observable for the modes, i.e. a differ-
ent mean rate. In this sense enhanced diffusion is a sign for distinct modes
contributing to the observable. The empirical distribution could be used to
identify and characterize the involved modes of motion in such systems.

5.4 Qualitative reconstruction of the LDF via Bounds

In the previous section the LDF has been evaluated for an exemplary driven
system. The qualitative discussion outlined features of the LDF and how they
reflect in the typical densities. In this chapter, these observations are put on
a broader foundation by bounds that approximate the behavior of the LDF.
To this end, we mime the observed form of the empirical densitites in the
respective regimes and make suitable ansatzes to derive bounds by means of
the contraction principle (3.43).

An overview with all bounds and the appropriate regimes where the
bounds become suitable is presented in Fig. 5.4.1.
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FIGURE 5.4.1: Overview of all bounds on the underdamped
LDF derived in this section. The solid lines are the same LDFs
as plotted in Fig. 5.3.3. The dashed lines depict the bounds Ia,
Eq. (5.4.4) and Ic, Eq. (5.4.12). For typical events, in the vicinity
of the stationary current Jss, the LDFs are governed by the cen-
tral limit theorem (CLT). In the tail of the LDF for rare events,
the asymptotic bound Ia imposes a bound for arbitrary mass.
It can be refined for specific mass using Ib, Eq. (5.4.11). In the
limit m → ∞, Ic forms an upper bound. Finally, for J = 0 the
LDF is bounded from above by the corresponding overdamped
LDF as described in Sec. 5.4.3. The ansatz also describes the
transition to the overdamped regime as indicated by the dotted

line.
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5.4.1 A master ansatz

The constraints of the empirical current, Eq. (3.39) in the underdamped func-
tional LDF, poses two challenges for finding analytical bounds on the LDF.
First, the mean current associated with the ansatz must be known as other-
wise it is not possible to reconstruct the LDF with respect to this observable.
Second, to get an analytical bound the empirical current associated with a
given density must also be expressable analytically.

A versatile ansatz that meets this requirement is the function

ρ(x, v; J̃) = ρ(x)
√

m
2πT

exp

[
− m

2T

(
v− J̃

2πRρ(x)

)2
]

≡ ρ(x)ρ̂(x, v; J̃) (5.4.1)

with an arbitrary normalized distribution ρ(x). This function corresponds to
a Gaussian distribution for fixed x. The variance of the distribution matches
the equilibrium distribution of the velocity, but the center is shifted to J̃/(2πρ(x)).
By construction, the mean current J[ρ] is equal to J̃. The advantage of the
ansatz is that the associated empirical current µ

ρ
v(x, v; J̃) can be cast in the

closed form

µ
ρ
v(x, v; J̃) = ρ′(x)ρ̂(x, v)

[
T
m
− J̃v

2πRρ(x)

]
. (5.4.2)

Plugging these terms in the functional LDF (3.37) in the long-time limit with
still undetermined distribution ρ(x) yields, after some simplifications, the
somewhat lengthy master bound

I( J̃) ≤ IM( J̃) ≡min
ρ(x)

1
4γT

∫
dx

{
1

ρ(x)

[
Tρ′(x)− F(x)ρ(x) + γ

J̃
2π

]2

+ m
(

J̃
2π

)2
ρ′(x)
ρ(x)3

[
2ρ(x)F(x)− Tρ′(x)

]

+m2
(

J̃
2πR

)4
ρ′(x)2

ρ(x)5

}
. (5.4.3)

In the following, we discuss some special realizations and implications of
this bound.

5.4.2 Overdamped asymptotic bound

The simplest realization of the ansatz (5.4.1) is obtained with an uniform dis-
tribution ρ(x) = 1/2π. The resulting distribution is just a shifted Gaussian
as encountered for free diffusion, see Eq. (5.1.9). Furthermore, such a distri-
bution can be recognized in the periodic potential for small mass and large
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currents (see the upper row in Fig. (5.3.2)). Consequently, the ansatz is ex-
pected to be a suitable approximation in the tails of the LDF for small mass,
albeit forming an upper bound for all masses.

Since ρ(x) is flat, the first derivative vanishes as well as the associated
current (5.4.2). This renders most of the terms in IM(J) zero. For an arbitrary
potential, the corresponding bound Ia reads

I( J̃) ≤ IM( J̃) ≤ Ia( J̃) ≡ γ

4T

(
J − f

γ

)2

+
1

4Tγ

〈
V′(x)2

〉
ρ

(5.4.4)

where the last average is an integral over the flat distribution ρ(x). Interest-
ingly, the bound is independent of the mass m.

The bound is plotted in Fig. 5.4.1. As expected, it becomes tight for m→ 0
in the tails of the LDF. For larger masses, however, there is an offset between
the bound and the LDFs. This discrepancy implies that strongly directed
realizations for large masses behave differently. Since it has the same form as
the asymptotic bound reported in [52] for the overdamped limit, the bound
can be considered a generalization of said bound that is valid for arbitrary
underdamped (and overdamped) processes.

5.4.3 LDF in the overdamped limit

The underdamped LDF converges to the overdamped LDF in the limit of
small masses, as can be observed in Fig. 5.3.2. In this section, we examine
how the typical distribution behaves in this limit. In particular, we are driven
by the question of how the two-dimensional empirical density reduces to
effectively one-dimensional ones.

Interestingly the master bound, Eq. (5.4.3), converges to the apparent
overdamped contraction

IO( J̃) = min
ρ(x)

1
4Tγ

∫
dx
[

γ
J̃

2π
− (F(x)− T∂x)ρ(x)

]2

/ ρ(x). (5.4.5)

for m → 0. In fact this is the contraction for the overdamped analogous
of this system, where the empirical current µ is a scalar and fixed to J̃ by
the condition of the contraction. The density ansatz (5.4.1) with the optimal
empirical distribution ρ(x) then represents the exact phase space density in
the limit m→ 0.

In this sense the master ansatz governs the transition from a level 2 LDF
in the underdamped case to the overdamped level 2.5 LDF. As outlined in
Sec. 2.1.4, the velocity becomes a fast variable in the overdamped limit and
thus relaxes instantly on the timescale of the spatial motion. As a conse-
quence, there is no memory effect for the velocity and it relaxes in the local
“equilibrium” that is a Gaussian with the appropriate mean velocity at that
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particular point. For arbitrary mass a more involved coupling between the
velocity and position is expected due to the finite relaxation time of the ve-
locity. As this, in general, exceeds the possibilities of the master ansatz, a true
two-dimensional ansatz is required for the exact underdamped LDF.

Beyond the master ansatz governing the transition to overdamped dy-
namics, it imposes an upper bound to the LDF at J̃ = 0. Here, all terms in-
volving the mass in the bound IM( J̃), Eq. (5.4.3), vanish and the overdamped
contraction is retrieved directly. As a result, the stalled large deviation func-
tion can be bound as

I(0) ≤ IO(0) = lim
m→0

I(0). (5.4.6)

In other words, its more likely for an underdamped particle to observe a
vanishing current compared to a overdamped particle with the same friction
coefficient and temperature. This behavior is plotted in the inset of figure
(5.3.2).

From this bound at J̃ = 0 one can motivate the validity of the TUR for the
particle current in the linear response regime. In this regime, a small force ε f
drives the system out of equilibrium which leads to small stationary current
Jss in the order of ε. As a consequence the stalled state is in the vicinity of the
regime of the central limit theorem. The curvature of the parabula is limited
through Eq. (5.4.6) by the overdamped curvature and in turn by means of the
TUR. A rigorous proof for higher dimensions and arbitrary forces is provided
in Refs. [60, 61] as long as the time-reversal symmetry is not broken.

5.4.4 Underdamped asymptotic bound

Although designed as an asymptotic bound, Ia( J̃) in Eq. (5.4.4) is not satu-
rated by the LDF in the tails for large mass, as shown in Fig. 5.3.2. In this
limit, the impact of thermal noise on the velocity is marginal. As a result, we
observe approximate energy conservation, leading to trajectories that mainly
follow the contour lines of the internal energy E(x, v). The marginalized
probability in x, i.e. the mean time spent at a certain position x, is propor-
tional to the inverse mean velocity at this position. Following this rationale
we make the ansatz

ρ(x, v; E) =
√

m/(2πT)
N(E)v̄(x; E)

exp
[
− m

2T
(v− v̄(x; E))2

]
, (5.4.7)

where v̄(x; E) is the local mean velocity and follows the contour line of the
internal energy with suitably large level E

v̄(x; E) =

√
2
m

(E−V(x) + V(0)), (5.4.8)
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FIGURE 5.4.2: Illustration of the bound Ib, Eq. (5.4.11), in a
cosine potential for different masses m = [0.75, 1, 1.25, 1.5, 2, 3]
from top to bottom. Plotted as thick grey line are exemplar-
ily LDFs for three masses (see legend). The black dashed line
corresponds to the limit m → ∞ or bound Ic, Eq. (5.4.12). The

further parameters are γ = 1, V0 = 2, f = 1, T = 1.

and N is the normalisation

N(E) =
∫

dx v̄(x; E)−1. (5.4.9)

The idea of the ansatz, Eq. (5.4.7), can be cast in the form of the master
ansatz, Eq. (5.4.1), with

ρ(x; E) =
1

N(E)v̄(x; E)
, J(E) =

2π

N(E)
(5.4.10)

for E sufficiently large overcome the potential barriers. Using these terms as
trial function for the minimization in Eq. (5.4.3) gives the bound

I(J(E)) ≤ IM(J(E)) ≤ Ib(J(E)) (5.4.11)

≡ 1
4TγN(E)

∫
dx
{

1
v̄(x; E)

(F− γv̄(x; E))2 +
T
m

V′(x)2

v̄(x; E)3

(
T

mv̄(x; E)2 + 1
)}

for E ≥ maxx(V(x)−V(0)). The mirrored side follows from the symetry of
the LDF, Eq. (5.1.6).

In principle this expression can be evaluated for arbitrary masses using
numerical integration schemes. Fig. 5.4.2 shows the bound for some selected
masses. Although the bound cannot be evaluated when v̄(x; E) becomes
imaginary, the convex hull of the bound is still a bound. The intervals where
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FIGURE 5.5.1: Rescaled LDF for 100 randomly selected param-
eters and potentials consisting of 5 cosine modes also chosen at
random. The black curve corresponds to the parabolic bound

that implies the TUR, Eq. (5.5.2).

the energy is to low stand out through linear parts in the bounds shown in
Fig. 5.4.2.

In the limit m → ∞ with J(E) kept fix the bound reduces to the simpler
expression

lim
m→∞

I
(

J̃
)
≤ lim

m→∞
Ib
(

J̃
)
=

γ

4T

(
J̃ − f

γ

)2

≡ Ic( J̃), (5.4.12)

due to the energy E scaling linearly in m and v̄(x; E) becoming independent
of x. This parabolic function coincides with the exact LDF for free diffu-
sion, Eq. (5.1.5). Moreover, the typical densities obtained for free diffusion,
Eq. (5.1.9), can be retrieved from Eq. (5.4.7) by setting the potential to 0.

The quality of the underdamped asymptotic bound as an approximation
of the actual LDF in the limit of large mass can be appreciated in figure 5.3.2.
For an intermediate mass of m = 3, the bound Ic( J̃) already matches the
tails of the LDF. In this regime, the ansatz (5.4.7) describes well the typical
distributions resulting from running trajectories with high energy that have
only small modulations in the velocity.

5.5 A parabolic bound on the LDF?

One of the more practical aspects of the LDF is its role in the proof of the
overdamped TUR. It follows from a parabolic upper bound on the LDF that
coincides with the free diffusion LDF derived earlier. In this section we will
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asses the validity of this bound for underdamped dynamics using numerical
simulations.

Using the numerical procedure described in Sec. 5.2, we can go beyond
the single cosine potential that has been considered in the previous section
and expand arbitrary potentials in Fourier-modes. To randomly sample dif-
ferent potentials, we select 5 amplitudes cn in the interval [−1/2, 1/2] and
construct the potential as

V(x) =
5

∑
n=1

cn cos(2πnx). (5.5.1)

The system parameters for mass, temperature and friction are also randomly
generated for each run. Depending on the overall height of the potential and
the other parameters the constant force of f = 1 covers the range from sys-
tems that are almost locked (10 % of the free diffusion current) and “running”
parameters with Jss at over 90 % of the average current without potential.

Fig. 5.5.1 shows the rescaled LDF for 100 sampled parameter sets. The
solid black line corresponds to the parabolic bound on the overdamped LDF,
(3.55),

ITUR( J̃) =
σ

4

(
1− J̃

Jss

)
. (5.5.2)

For the considered parameters no violation of the parabolic bound can be
observed both in the typical regime and for rare events in the tails of the LDF.
This result gives further credence to the validity of the TUR in underdamped
dynamics but also to the existence of a parabolic bound that implies said
relation.

5.6 Conclusion

In principle, the form of the LDF for underdamped dynamics is similar to
that of an overdamped particle in a periodic potential. In both cases a crossover
from “locked” to “running” trajectories can be observed that is accompanied
by a kink in the LDF, a pronounced plateau in the CGF, respectively. Dif-
ferences do, however, stand out when the empirical densities are compared.
While the distributions are relatively flat in x and show a Gaussian behav-
ior in v in the overdamped dynamics, they follow the isolines of the energy
when the inertia comes into play.

The derived bounds provide further insight in the LDF. The asymptotic
bounds Ia for arbitrary mass and its refinement Ib capture the discussed
differences of empirical distributions from the overdamped to the under-
damped regime. Furthermore, the overdamped bound IO illustrates how the
transition to the overdamped regime is accompanied in the underdamped
phase space. This bound also illuminates how the empirical distribution in x
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and v transforms to the overdamped pair of empirical distribution in x and
an empirical current.

Deriving bounds on the LDF also revealed challenges that have to be met
when using the contraction principle. The ansatz has to be chosen carefully
to produce an associated current, Eq. (3.39), that can be expressed in a closed
form. That ansatz further has to cover the wide range from a regime that is
dominated by noise, i.e. the nearly overdamped regime, to the underdamped
regime with inherent long-ranged correlations due to the inertia. This chal-
lenge becomes apparent in the derived bounds for the tails of the LDF. The
characteristics of the empirical distributions are known and it is possible to
find bounds that adequately describe the tails in either the overdamped or
the underdamped regime. However, the ansatzes that are necessary to de-
rive the bounds are very different and cannot be connected easily to obtain a
tight bound for arbitrary mass.

The numerical results presented in Sec. 5.5 indicate that a parabolic bound
in the spirit of the TUR exists for observables of v-order 1. In the next chapter
we will apply the insights obtained here to bounds that could be used to
derive bounds on thermodynamic quantities.
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Chapter 6

Thermodynamic bounds for
underdamped motion

As demonstrated in the previous chapter, bounds on the LDF can be de-
rived from the contraction (3.43) by inserting trial densities tailored to pro-
duce a specific particle current. However, the bounds derived to character-
ize the LDF in Sec. 5.4 cannot be employed to derive bounds on thermody-
namic quantities since they structure the LDF for rare events which typically
have little influence on thermodynamics. In order to characterize the typ-
ical events, it is essential to find differentiable bounds on the LDF that are
saturated in the vicinity of its minimum. In other words, the ansatz for the
density has to become the solution of the Fokker-Planck equation pss at one
point.

In Sec. 5.5 a parabolic bound on the LDF that would imply the TUR was
numerically observed, awakening the hope that the TUR can be proven in
the same fashion as for overdamped motion. However, the constraint of the
empirical current (3.39) in the underdamped functional LDF poses a new
problem for finding bounds on the LDF. The level 2 LDF does not allow for
a variation of the current independently from the density, as was possible in
the overdamped case [38, 39]. Instead, a suitable ansatz has to be developed
for the complete phase space density.

In this chapter we introduce suitable ansatzes and bounds, assess their
tightness and discuss their relation to the most prominent thermodynamic
bound: The TUR.

6.1 Activity bound

The ansatz that leads to the TUR for overdamped dynamics can be inter-
preted as a “time-lapse” transformation of steady state trajectories, where all
trajectories are scaled linearly in time. Such an ensemble of “time-lapsed”
trajectories reproduces the stationary density but leads to a scaled current.
In this section we apply this idea for underdamped dynamics and derive the
so-called activity bound.
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6.1.1 Proof of the bound

The notion of a time-scaling can be implemented for underdamped Brownian
dynamics by introducing a scaling factor (1 + c) in the density

ρTL(x, v; c) ≡ 1
(1 + c)d pss

(
x,

v
1 + c

)
(6.1.1)

where d is the number of dimensions of x and v. By construction, the marginal-
ized x-distribution of this density is the same as for the stationary distribu-
tion, but the particle moves faster or slower. This ansatz was first introduced
in Ref. [48] and later generalized in Ref. [62].

Despite the known discrepancy for observables that are even under time-
reversal we consider the general class of observable

Yn(T ; w(x) ≡
∫ T

0
dt

d

∑
i

wi(x(t))vi(t)n (6.1.2)

with variable v-order n. The mean of such an observable for the density of
the ansatz, Eq. (6.1.1), is

〈Yn(T ; w(x))〉ρ,c = T
∫

dx
∫

dv ρTL(x, v; c)
d

∑
i=1

wi(x)vn
i

= (1 + c)n 〈Yn(T ; w(x)〉 (6.1.3)

where the last ensemble average is taken with respect to the steady-state dis-
tribution. As desired, the mean is just rescaled in the time-scaled image.

Plugging the trial function into the contraction (3.43) with the diagonal
diffusion matrix Dii = Tiγt/m2

i and expanding around the stationary state at
c = 0 gives, after some algebraic simplifications, the bound

I
(
Ỹ, T

)
≤ ITL (c, T ) ≡ I[ρTL(·, c), T ] =

(
T
4

A +
1
2

B

)
c2 +O(c4) (6.1.4)

with the time extensive measure

A ≡ 9σ + 4
d

∑
i=1

[
4γi

mi
− 3γi

Ti
〈v2

i 〉+
1

Tiγi
〈Fi(x)2〉

]
(6.1.5)

and a constant term that stems from the expansion of the Kullback-Leibler
divergence K(ρTL

∣∣ pss)

B ≡
〈(

v · ∇v pss(x, v)
pss(x, v)

)2
〉
− d2. (6.1.6)
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By taking the second derivative, this timelapse bound on the LDF implies
a bound on the variance of the observable Yn(T

∣∣w(x)) as

Var[Yn(T ; w(x)] ≥
(

∂2
c ITL(0, T )

)−1 (
∂c 〈Yn(T ; w(x)〉ρ,c

)2
∣∣∣∣
c=0

= 2 (TA + 2B)−1 n2 〈Yn(T ; w(x)〉2 (6.1.7)

or in the form of an uncertainty product adapted to this bound

QTL
n (T ; w(x) ≡ Var[Yn(T ; w(x)]

〈Yn(T ; w(x)〉2
(TA + 2B) /n2 ≥ 2 (6.1.8)

that defines the uncertainty product that is associated with the timelapse
bound QTL

n . It is worth noting that the bound can readily be generalized
to currents with general v-dependent weight Y(T ; w(x, v)). In this case the
derivative ∂c 〈Y〉ρ,c in Eq. (6.1.7) must be evaluated as shown in Ref. [45].

Since the ansatz ρTL does not coincide with the stationary distribution for
T = 0, the Kullback-Leibler divergence in the level 2 LDF leads to an offset B

that is independent of T . This constant ensures that the bound is valid even
in the limit T → 0, where the uncertainty ε becomes constant (see Sec. 4.2.1).
If the term B vanished, the bound could be broken for small times.

For large times, the time extensive term A dominates. In contrast to the
TUR for overdamped motion, the bound (6.1.7) does, however, not only de-
pend on the irreversibly σ but also on terms that can be identified as a mea-
sure of the dynamical activity [63, 64, 65, 66]. This is the time-symmetric part
of the path integral without the term that is proportional to v̇D−1v̇ [66]. It
can be argued that this term has to be attributed to the path weight itself.

The discrepancy between the timelapse ansatz for overdamped and un-
derdamped dynamics is due to the presence of reversible currents in the lat-
ter regime. For overdamped dynamics, no reversible currents are present
and the ansatz scales the irreversible current in the level 2.5 LDF. For un-
derdamped dynamics, on the other hand, reversible currents are amplified
by the time-scaling as well. This leads to additional terms in the bound, in
particular the activity terms.

An advantage of the bound is that it does not vanish in equilibrium which
is particularly relevant for observables that are even under time-reversal. For
such observables, the bound can be applied for arbitrary driving, particularly
in the equilibrium limit where the original uncertainty productQ approaches
zero. A bound that is similar in spirit can be derived for time-symmetric traf-
fic in Markovian jump dynamics [46] as well. Furthermore, the precision of
current-like observables can also be be bound by the activity in such sys-
tems [47]. This bound on the precision can be derived by increasing the gen-
eral activity in the system instead of the currents as done for the TUR prove.
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This approach has some similarities to the ansatz considered here. The defi-
nition of the activity in such discrete systems does, however, not translate to
the continuous case. Consequently, the similarities between the bounds for
discrete dynamics and the timelapse bound is of a more qualitative nature.

It is worth noting that the decomposition in a term that involves the en-
tropy production σ and other terms is ambiguous. Expanding the expression
for the entropy production, Eq. (2.34), yields after some simplifications

σ = ∑
i

1
Ti
〈 fivi〉 = ∑

i

(
γi

Ti

〈
v2

i

〉
− γi

mi

)
. (6.1.9)

Notably, all terms on the right hand side are averages over time-reversible
terms. Using this identity, the bound as presented in Eq. (6.1.7) can be cast in
the form of Ref. [48].

6.1.2 Benchmark using free diffusion

Evaluating the bound in practice is challenging, especially for small times
where B has a significant impact. The problem with B is that the distribution
appears in the denominator which can lead to an amplification of numerical
errors in the tails of the distribution if it is not accessible analytically. To
further assess the validity and tightness of the bound, we thus benchmark it
using an analytically accessible model and revisit free diffusion with drift in
one dimension. Furthermore we chose constant weights along x, i.e. w(x) =
1.

The uncertainty can be calculated as described in Sec. 4.2. All averages
occurring in the two measures A and B can be calculated analytically using
the stationary distribution, Eq. (4.3.2), leading to

(TA + 2B) =
(

σ + 4
γ

m

)
T + 2

f 2

Tγ2 + 4. (6.1.10)

The resulting products QTL are plotted against the dimensionless time τ in
Fig. 6.1.1.

As mentioned before, the Kullback-Leibler divergence induces a time-
independent constant offset. As the offset depends on the driving force, one
can observe a transition in time for large forces. While for large and small
times the terms A and B dominate, respectivelly, for intermediate times both
terms are significant and add up the maximum in the third and fourth panel
of Fig. 6.1.1.

Due to the crossover, it is hard to make general statements as non-systematic
crossings of the curves occur. Given that the bound is dominated by the un-
desired and somewhat unphysical influence of the Kullback-Leibler diver-
gence for small times, we restrict our discussion on the long-time limit in the
following.
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FIGURE 6.1.1: The timelapse bound, Eq. (6.1.7), evaluated for
free diffusion with drift. The driving force f is increased from
left to right from 0.5 to 10. The plotted lines correspond to the
adjusted uncertainty product for the current Yn(T ; 1) with v-
order n. Dotted lines highlight even observables. The red line

depicts the lower bound 2 of the product QTL.

Overall, we can observe a dependency on the v-order that is contrary to
the observations made for the uncertainty product Q in Sec. 4.2. While QTL

diverges for odd observables in the linear response limit, even observables
converge in the same limit.

This observation can also be put on a more formal basis. For a current of
v-order 1, the uncertainty product is given by

lim
T →∞

QTL
1 (T ; 1) = 2 +

8Tγ2

f 2m
(6.1.11)

in the long-time limit. The latter term shows that the distance between QTL

and its bounding value 2 grows with f−2. The products for n = 3 and n = 5
qualitatively show the same behavior and diverge in the limit f → 0 as can be
observed in Fig. 6.1.1. An offset of potentially several orders of magnitude
for an order 1 current has been reported in more advanced models as well
[62].

For even observables, as plotted with broken lines in Fig. 6.1.1, the perfor-
mance of the bound generally looks better, especially in the linear response
limit. In this limit, the bound can be saturized for free diffusion and an ob-
servables that grows with weight v2. For an observable of order n = 4 the
limit is given by the slightly larger value 7/3.

In the large driving limit f → ∞ or for large mass, the bounding function,
Eq. (6.1.10), is dominated by the entropy production σ for free diffusion. In
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this limit, the bound also becomes tight independent from the v-order. Si-
multaneously, its statement reduces to the statement of a putative TUR as
the timelapse product QTL

n reduces to the entropy uncertainty product Qn.
Although this is only true for free diffusion, the statement might be valid for
other systems as well when they approach free diffusion in the large driv-
ing limit. Most prominently, this is true for diffusion over periodic potential
landscapes. In this case, the details of the potential vanish when dominated
by a large driving force.

Besides the more complex and less transparent form of the timelapse
bound impeding its applicability in practice, it does not seem particularly
tight in general. Although the bound can be saturated in some limiting cases,
in general it only gives a loose bound on the precision. The different behav-
ior for odd and even observables in the linear response limit, however, also
indicates that the timelapse ansatz might incorporate two conceptually dif-
ferent bounds that could also hold individually: One that is based on the
irreversibility and dominates for large forces and one that is based on the
activity and dominates in the linear response regime.

6.2 Virtual pertubative forces

A different proof for the overdamped TUR has been presented more recently
in Ref. [24]. Here, a bound on the CGF is derived by making an ansatz for a
virtual, not-necessary physically motivated force that models the vicinity of
α(0) to second order in the tilting λ.

Although initially formulated as an expansion for the CGF, such virtual
dynamics are used in the proof of the level functional LDF as well (compare
Eq. (3.A.1)). While the large deviation approach allows one to choose an em-
piric density and possibly current to an unknown virtual force, the described
method makes an ansatz for the virtual forces directly without knowing the
associated distributions from the start. Keeping the tight connection between
the CGF and the LDF in mind (Sec. 3.4.2), the both methods can be regarded
as equivalent with a difference only in the interpretation of the ansatzes.

In this section we use this equivalence to derive the class of bounds pre-
sented in [24] from the level 2 LDF. As a next step, we follow the derivation of
the overdamped TUR to discuss its implications on underdamped dynamics.

6.2.1 Bounds based on virtual pertubation

The central result of the method can be retrieved from the contraction princi-
ple by inserting the stationary current and density that follows from a Fokker-
Planck equation with a specific virtual force. Let ρ be a stationary solution to
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the pertubed Fokker-Planck equation

0 =−∇x · vρ(x, v; c)− 1
m
∇v ·

(
F(x)− γv + cF(1)(x, v)

)
ρ(x, v; c)

+∇ᵀ
v

(
D + cD(1)

)
∇vρ(x, v; c) (6.2.1)

with an additional, not necessarily physically motivated force F(1) and an
altered diffusion matrix D + D(1). In the following we will refer to these
pertubed dynamics as virtual dynamics.

It is straightforward to identify the empirical current that is associated
with this distribution from the altered Fokker-Planck equation

µv(x, v; c) =
1
m

(
F(x)− γv + cF(1)(x, v)

)
ρ(x, v) +

(
D + cD(1)

)
∇vρ(x, v).

(6.2.2)
Plugging the ansatz for the distribution ρ and associated current in the

level 2 LDF yields for large times

I[ρ] =
c2T

4 ∑
i

1
Dii

〈(
F(1)

i /mi pss − D(1)
ii ∂vi pss

pss

)2〉
+O(c3) (T � 1)

(6.2.3)
with pss being the stationary distribution of the unperturbed Fokker-Planck
equation, i.e. the stationary distribution of Eq. (6.2.1) with c = 0. Trivially,
I[ρ(x, v, t, 0)] = 0 in the long-time limit.

As shown in the previous section, we can derive a bound on the variance
of an observable Y(T ; w(x, v)) from the LDF as

Var[Y] ≥


T ∑

i

1
2Dii

〈(
F(1)

i /mi pss − D(1)
ii ∂vi pss

pss

)2〉

−1 (

∂c 〈Y〉ρ,c

)2
∣∣∣∣
c=0

(6.2.4)
which is valid for large times (T � 1).

In principle the proof can be extended to finite times. Calculating the vir-
tual bound, however, involves the expansion of the Kullback-Leibler diver-
gence as seen for the activity bound in Sec. 6.1.1. This contribution ensures
the validity of the bound for small times where the regular uncertainty prod-
uct becomes 0. The expansion of the Kullback-Leibler divergence yields

K(ρ(x, v; c)
∣∣ pss(x, v)) =

c2

2

∫
dx
∫

dv
ρ(1)(x, v)2

pss(x, v)
, (6.2.5)

with the pertubative expansion of the probability distribution ρ(x, v; c) =

pss(x, v) + cρ(1)(x, v).
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In addition, we can consider an arbitrary initial states, as demonstrated
in Ref. [67] for the CGF expansion. In this case, the altered Fokker-Planck
equation contains a partial time-derivative and and the empirical functions
become time-dependent. The advantage is that we can now chose the sta-
tionary distribution as initial state, i.e. ρ(x, v, 0; c) = pss(x, v). This choice
leads to a vanishing Kullback-Leibler divergence in limit T → 0, but comes
at the cost of a vanishing derivative of the mean observable with respect to c.
This ultimately ensures the validity of the bound for small times.

A more subtle point of the bound is its convergence when the diffusion
matrix is changed. Following the original paper that builds upon the expan-
sion of the generating function, one has to calculate the probability ratio of
the original process with respect to a process governed by the virtual dynam-
ics. The probability measure is, however, not absolutely continuous when
the diffusion matrix is changed [44] leading to a diverging ratio (see [68] for
a comprehensive explanation). Since we are only interested in a small pertu-
bation in c, a change in the diffusion matrix can be translated to an additional
force by expanding in c [69] thus circumventing this limitation.

Using the large deviation framework this issue does not arise, since we
do not dictate the microscopic dynamics but rather an observed distribution.
In fact, the same ratio of two path measures has to be evaluated in the proof
of the level 2 LDF as well, see Sec. 3.4.3. In contrast to the aforementioned
method, the compared process is, however, not the process that includes the
virtual dynamics (and diffusion) but rather a process that has a force tay-
lored to reproduce the empirical density of the virtual dynamics. This leaves
an ambiguity in the microscopic details of the underlying trajectories which
ensures the convergence of the ratio.

6.2.2 Rescaling the friction

In the previous section we have derived a general bound, Eq. (6.2.4), that can
be evaluated for an arbitrary virtual force. If we want to proof the TUR, a
straightforward choice is

F(1)
i = −γivi D(1)

ii = Dii (6.2.6)

which is chosen in a way that yields the entropy production, Eq. (2.34) on the
right hand side of Eq. (6.2.4). The ansatz can also be expressed as a rescaled
friction γ′ = (1 + c)γ with the vector γ containing the friction coefficients γi
for each spatial dimension. In first order of c, this virtual dynamics can be
interpreted a simple rescaling of the irreversible current.

For this choice, the ensemble average takes on the form of the mean en-
tropy production and thus the corresponding bound takes on the long-time
form

Var[Y] ≥ 2
T σ

(
γ · ∇γ 〈Y〉γ

)2
(T � 1) (6.2.7)
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FIGURE 6.2.1: In the left panel: The condition (6.2.9) in form
of the ratio of left and right side plotted against the friction γ
for a particle of unit mass in a cosine potential with amplitude
V0 = 1 and three different driving forces f . The considered
current is the particle current Y1(T ; 1)/T = 〈v〉. In the regime

highlighted in bright red the condition is violated.
In the right panel: The uncertainty product of the γ-bound,
Eq. (6.2.10) (blue), is plotted in comparison to the putative TUR
(black) for 2700 parameters. Both uncertainty product are ex-

pected to be above 2.

where∇γ 〈Y〉γ describes the change of the average value of the observable Y
under a change of the friction γ.

In the overdamped regime this choice indeed proofs the TUR as no re-
versible currents are present in this limit. As a consequence, rescaling the
irreversible current via virtual forces is equivalent to rescaling the overall
current as done in the LDF based proof of the TUR (see Sec. 3.5.2). As a
consequence, the last term in Eq. (6.2.7) becomes

(
γ · ∇γ 〈Y〉γ

)2
= 〈Y〉2 . (6.2.8)

For underdamped dynamics, in contrast, evaluating the change of the av-
erage is not so straightforward. Since only the irreversible part is rescaled,
one has to solve the Fokker-Planck equation to obtain the PDF and in turn the
change on the overall current for changed friction. In this sense, we meet the
same challenge as for the timelapse bound: The separation of the overall mi-
croscopic current into an irreversible and a reversible contribution obstructs
the proof of the uncertainty relation. We can either choose how the ansatz ef-
fects the overall current or how it renders the term that bounds the precision.
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Nevertheless, Eq. (6.2.7) would be a proof for the TUR if

|γ · ∇γ 〈Y〉γ|
?
≥ |〈Y〉|. (6.2.9)

For driven free diffusion in one dimension with probability density as shown
in Eq. (4.3.2), the terms can be compared analytically. In this case this con-
dition is true only for odd observables with equality prevailing. This is in
accordance with the observations made for free diffusion in Sec. 4.2.

When an external potential, such as a cosine potential V(x) = V0 cos(2πx),
is added the condition is generally violated. The left panel of Fig. 6.2.1 shows
the ratio of the left and right side of condition (6.2.9) with respect to the fric-
tion γ and constant mass m = 1. The results are obtained numerically as
described in Sec. 5.3.

In the red highlighted regime the bound obtained by rescaling γ is looser
than the TUR and can thus not be reduced to the latter. Especially for small
driving forces that result in a small particle current, the bound can not beat
the TUR. For large driving, the potential landscape becomes negligible and
the motion becomes more similar to free diffusion. This manifests in the
ratio approaching 1, as free diffusion. In the overdamped limit, this is for
γ/m � 1, the bound obtained by rescaling γ is known to converge to the
TUR. Hence, the ratio approaches 1 in this limit as well.

To assess the tightness of the bound, we revisit the particle on a ring and
evaluate the bound for the particle current numerically for 2700 parameter
sets as described in Sec. 5.5. The derivative with respect to γ is evaluated
numerically by calculating the average current in the vicinity of a certain γ.
The associated uncertainty product in the long-time limit

Qγ ≡ lim
T →∞

Var[Y]
(

γ · ∇γ 〈Y〉γ
)2T σ ≥ 2 (6.2.10)

is plotted in the right panel of Fig. 6.2.1. As a comparison, the putative TUR
is indicated by black dots.

Although the bound is not as easy to evaluate in practice due to the
derivative in γ, it is much tighter than the timelapse bound, Eq. (6.1.7). Un-
fortunately, it is not possible to build a hierarchy of bounds with either bound
being a tighter version of the other. For some regimes the friction bound
gives a tighter estimate of the variance, while in others the bound is looser.
In general, however, the original TUR seems to be tighter with the uncer-
tainty product typically agglomerating in the vicinity of 2.

For the sake of completeness we shortly discuss how a rescaling of the re-
versible current affects the bound. Such a rescaling corresponds to the virtual
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forces F(1)
i = Fi(x) and gives the bound

Var[Y] ≥
[
T ∑

i

1
2Tiγi

〈
Fi(x)2

〉]−1 (
∂c 〈Y〉ρ,c

)2
∣∣∣∣
c=0

. (6.2.11)

Which also appears as term in the activity bound, Eq. (6.1.7). Combining
the two ansatzes allows to identify the contributions in the activity bound
as parts that arise through irreversible and reversible contributions and their
combination.

6.3 A conjecture based on free diffusion

As shown in Sec. 4.2, the uncertainty product of free diffusion at finite times
becomes smaller than the original, overdamped formulation of the TUR,
Eq. (3.45), for all driving forces. In contrast to the overdamped TUR, the
results obtained for free diffusion suggest that a putative bound should be
time-dependent to cover the linear regime of the uncertainty product for
small times. Consequently, the overdamped TUR cannot be straightforwardly
generalized to underdamped motion.

In the long-time regime, evidence of the validity of a generalized TUR has
been collected. For instance, the parabolic bound on the LDF that is estab-
lished for overdamped motion seems to hold for underdamped dynamics,
see Sec. 5.5. In the linear response regime, the validity is proven in the long-
time limit for observables with v-order 1.

In this section we conjecture a bound on the uncertainty product that is
valid for all times and substantiate it by extensive numerical results.

6.3.1 The conjecture

Conceptually, the original, overdamped TUR can also be interpreted as a
bound generated by free diffusion. One of the features of the original TUR for
overdamped dynamics is that it becomes saturated for free diffusion. In the
proof, the TUR follows from a bound on the large deviation function (LDF)
[70] or on the scaled cumulant generating function [24]. In both versions,
the bounding function on the LDF (the generating function) is the one from
free diffusion. In this sense, one could also say that the TUR states that the
uncertainty product Q is bounded from below by the uncertainty product
of free diffusion. The same interpretation holds for an approach to the TUR
for the entropy production that is based on a Martingale decomposition [23].
For free diffusion, the stochastic entropy is subdivided in a linear part and a
Martingale that embeds free diffusion without drift.
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In extensive numerical simulations for diffusion in a periodic potential
we recognize the same relationship for underdamped motion. In detail, we
find that the uncertainty product Qn(T ; w(x)) of an odd n-order current

Yn(T ; w(x)) = Y(T ; w(x)vn), n ∈ {1, 3, 5...} (6.3.1)

for a one-dimensional system described by the underdamped dynamics (2.7)
without forces that depend on the velocity (e.g. the Lorentz force) is bounded
from below by the respective result for one-dimensional free diffusion in the
equilibrium limit with homogeneous weight w(x) = 1

QF(x)
n (T ; w(x)) ≥ Q0

n(T ; 1). (6.3.2)

We will refer to this conjecture as the free diffusion bound (FDB). The right
hand side of (6.3.2) has been calculated in Sec. 4.2.

Most prominently, for the important class of currents Y1 with v-order 1
the conjecture takes on the form

QF(x)
n (T ; w(x)) ≥ 2− 2m

γT

(
1− exp[− γ

m
T ]
)

. (6.3.3)

For T → ∞ the second term on the right hand side vanishes and the state-
ment of the overdamped TUR is recovered.

In the following we substantiate our conjecture by numerical data.

6.3.2 Driven diffusion in a periodic potential

We consider one-dimensional driven diffusion in a 2π-periodic potential V(x).
The process is described by the Langevin equation (2.7) with scalar variables
x and v. The spatial coordinate x is projected on a ring of perimeter 2π to
get a unique steady state. The potential consists of sine and cosine modes
up to second order and random amplitudes c±i where the superscript + (−)
denotes the amplitude of the cosine (sinus) mode. In addition, a constant
force f is applied. We randomly choose 500 parameter sets ( f ∈ [0, 3.5],
T ∈ [0.5, 1.5], γ ∈ [0.5, 5], c±i ∈ [−2, 2]) and sample at least 50 000 trajectories
of fixed length from the steady state for each set using a Verlet type integrator
[71] with timestep ∆t = 10−3.

The variance and mean value of the currents Y1(T ; 1) and Y3(T ; 1) are
computed for constant time along the different trajectories. Analogously, we
extract the mean entropy production rate σ by tracking the dissipation.

The simulation results for the observable Y1(T ; 1) are summarized in the
left panel of Fig. 6.3.1, where each thin line corresponds to one parameter set.
The conjectured FDB, which is the uncertainty product for free diffusion Q0

1,
Eq. (4.3.7) is plotted as thick, black line. Within the considered parameter
range we see no violation of our conjecture, Eq. (6.3.2).
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FIGURE 6.3.1: Finite-time uncertainty product for different cur-
rents numerically evaluated for an underdamped particle on a
ring. The left panel shows the data for the current Y1(T ; 1) =∫

vdt where each line corresponds to a diffusion process in a
random potential characterized by its amplitudes c±i ∈ [−2, 2]
and randomly sampled parameters with f ∈ [0, 3.5], T ∈
[0.5, 1.5], γ ∈ [0.5, 5]. The conjectured bound for v-currents
of order 1, Eq. (6.3.3), is plotted as solid black line, the (over-
damped) TUR and coincident the asymptotic behavior is indi-
cated by the dashed line. The right panel shows the uncertainty
product for the current Y3(T ; 1) =

∫
v3dt and two exemplary

x-dependent currents (P1) and (P2) (see Eqs. (6.3.4) and (6.3.5)).
The solid black line depicts the more general bound for n = 3,

Eq. (6.3.2).

For n = 3 we can establish the same role of free diffusion. In detail, the
equilibrium limit of the uncertainty product obtained for free diffusion Q0

3,
see Eq. (4.3.8), bounds the uncertainty product from below for all times. We,
again, validate this by randomly selecting 270 different parameter sets and
plotting them as dark lines in the right panel of Fig. 6.3.1. To check that the
conjecture holds with x-dependent weights as well, we furthermore evaluate
the uncertainty product of the two currents

Y(P1)
3 (T ) ≡ Y3

(
T ; 1 +

1
2

cos (2πx(t))
)

(6.3.4)

and
Y(P2)

3 (T ) ≡ Y3

(
T ; cos (2πx(t))2

)
(6.3.5)

which are plotted as bright lines in the right panel of Fig. 6.3.1.
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The procedure is repeated for 200 parameter sets with a randomly con-
structed weighting factor

w(x) = c̃0 +
2

∑
n=1

c̃+n cos(2πn) + c̃−n sin(2πn) (6.3.6)

and v-orders n = 1 and n = 3 without any violations.

6.3.3 Case studies in higher dimensions

So far, we have focused on one spatial dimension. In higher dimensions, it is
not obvious how to generalize our conjecture, Eq. (6.3.2), as different veloci-
ties of different directions can arise. The v-order of an observable involving
different spatial dimensions is ambiguous as it can refer to either the overall
order of all velocities or that of just one specific direction. In the following,
we will exemplarily study two different systems to examine the applicability
of the FDB to higher dimensions. It is important to emphasize that the results
presented in the following are not conclusive, yet, but are rather intended as
a starting point for further studies.

Underdamped diffusion on an torus

First, we consider driven diffusion in a two-dimensional periodic potential,
i.e. diffusion on a two-dimensional torus. The process is described by cou-
pled Langevin equations for the variables x1,2 and v1,2 with periodic bound-
aries along both spatial dimensions. We apply the non-conservative force

F(x) = (c1 sin(x1 + x2), c2 cos(x1 − x2))
T + f (6.3.7)

with parameters c1,2 and external driving f .
The time-integrated current can, in principle, depend on all velocity com-

ponents. First, we restrict the current to the projected velocity in either the
first or the second direction

Y(T1)
n (T ) ≡ Y(T ; vn

1) and Y(T2)
n (T ) ≡ Y(T ; vn

2) (6.3.8)

which correspond to a v-order n = 1 and n = 3, respectively. Furthermore,
we consider the diagonal current

Y(T3)
n ≡ Y(T1)

n + Y(T2)
n . (6.3.9)

As either term can dominate the sum, a lower bound that is based on the v-
order, if existent, must be given by the smallest bound of the respective terms.
This smallest bound corresponds to the term with the lowest occurring v-
order. In this case, both terms in the current Y(T3)

n have the same v-order so
that we attribute the v-order of n to the observable (T3).
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FIGURE 6.3.2: The uncertainty product Q plotted against di-
mensionless time τ for diffusion on a torus. Each line cor-
responds to one of 250 parameter sets for γ, T and the free
parameters in the force (6.3.7). The dark lines correspond to
the projected currents in one direction Y(T1)

n (T ), Y(T2)
n (T ) (see

Eq. (6.3.8)) while the bright lines give the diagonal current
Y(T3)

n (T ), Eq. (6.3.9), with n = 1 in the left panel and n = 3
in the right panel. The thick black line depicts the expected free

diffusion bound Q0
n.

We extract the uncertainty product numerically as described in Sec. 6.3.2.
The results for the three currents (T1) – (T3) for n = 1 and 3 are shown in
the both panels of Fig. 6.3.2. The numerical data give a first indication that
the respective free diffusion bound for one dimension, plotted as thick black
lines, could be generalized to higher dimensions as well.

The apparent validity of the conjecture is surprising as there is no straight-
forward mapping of the two-dimensional diffusion to a one-dimensional
problem. Although the Langevin equation decouples for c1 = c2 = 0 and
one arrives at effectively two one-dimensional processes, the diffusion pro-
cess is a genuine two-dimensional process in general. One could, however,
argue that the additional degrees of freedom increase the uncertainty prod-
uct. First, there might be dissipation due to directed motion in a direction
that does not contribute to the considered current, which increases Q. For
instance for the current (T1) the force in the 2-direction contributes only in-
directly to the motion in 1-direction while it directly increases the entropy
production rate σ. Second, the potential mediates energy transfer between
the two directions, thus increasing the fluctuations and also the uncertainty
for the current in one specific direction.
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In principle, one can also consider mixed currents where both velocities
are connected multiplicatively as in

Y (T ; w(x)vn
1 vm

2 ) =
∫ T

0
w(x)vn

1 vm
2 dt n, m ∈N (6.3.10)

where one number n or m must be even and the other one odd in order to
maintain the odd character under time-reversal. One example is the em-
pirical correlation of the kinetic energy in 1-direction and the velocity in 2-
direction measured along a trajectory. This quantity can be written in the
form Y(T ; mv2

1v2/2)/T . In contrast to the previously analyzed currents, it is
not obvious how to define the “v-order” of such a current. On the one hand,
one could argue that the odd part v1 does only appear in first order. On
the other hand, the overall exponent of velocities is 3 thus suggesting that
the uncertainty product can be estimated better by comparing with a one-
dimensional n = 3 current. We briefly address this issue exemplarily for the
above current.

For a flat potential ci = 0 the uncertainty product can be solved analyt-
ically using the previously derived differential equations (4.2.1) and (4.2.2).
The corresponding uncertainty product for arbitrary driving f , as before, de-
pends on the force. In the equilibrium limit f → 0 the uncertainty product
takes on the form

Q0
(
T ;

m
2

v2
1v2

)
=

2
τ

(
5
3

τ − 11
9

+ e−τ +
2
9

e−3τ

)
(6.3.11)

which is larger than both, the uncertainty product obtained for free diffusion
of observables of order 1 and 3 in the equilibrium limit

Q0
(
T ;

m
2

v2
1v2

)
≥ Q0

3(T ; 1) ≥ Q0
1(T ; 1). (6.3.12)

The tighter bound for the n = 3 current can be interpreted by considering
the correlations between the velocities. Even when a potential mediates a
correlation of the velocities in different spatial directions, the uncertainty of
the current is still higher than that of a one-dimensional process where only
one velocity exists.

To see whether a bound for such multiplicative currents holds in pres-
ence of a potential as well, we repeat the numerical analysis for the time-
integrated current Y(T ; mv2

1v2/2) and evaluate 200 random parameter sets
numerically. All results lie above the value obtained without an external po-
tential in the equilibrium limit, Q0 (T ; mv2

1v2/2
)
. To increase the transfer of

energy between the two spatial directions via the potential we further con-
sider the conservative potential

V(x) = c1 sin(x1 − x2) (6.3.13)
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which essentially forms a well of lower energy diagonally along the torus.
Here, driving in the direction x1 results in a consistent motion in the direc-
tion 2 and vice versa. We simulate 100 different parameter sets with random
values c1, f , γ, T, never observing an uncertainty product that goes below
Eq. (6.3.11). This finding does not only suggests that a lower bound based on
free diffusion holds for such mixed currents as well, but also that it is possi-
ble to improve the bound by including more information on the considered
observable, see Eq. (6.3.12).

The underdamped Brownian gyrator

A model that is conceptually different from diffusion on a torus is that of a
Brownian gyrator [72]. This minimal model of a heat-engine at the nanoscale
at heart consists of a particle in two dimensions that is coupled to two heat
baths of different temperature. By adjusting the potential, work can be ex-
tracted by driving the particle up the potential dominated by the hot bath and
using the gained potential energy. Due to its simplistic nature and analytical
tractability that stems from the linear dynamics, the overdamped version of
this system has been thoroughly studied [73, 74] and even experimentally
realized [75, 76].

The dynamics of the underdamped analogous of the gyrator remains lin-
ear and can thus be solved analytically, as well. Being interested in the un-
certainty, we consider a simplified version that consists of a particle in a two-
dimensional harmonic potential with spring constant k that is driven with a
constant torque κ. The particle is embedded in a medium with friction co-
efficient γ and single temperature T. The overall motion is described by the
two-dimensional Langevin equation

ẋ = v ; mv̇ =

(
−k κ
−κ −k

)
x +

(
−γ 0
0 −γ

)
v + ξ (6.3.14)

with the usual statistics for the noise ξ (see Eq. (2.7)).
As mentioned, the stationary state of the linear Langevin dynamics (6.3.14)

can be solved exactly. The covariance matrix C =
〈
(x, v)T(x, v)

〉
− 〈(x, v)〉2

is given by

C =
T

mφ− κ2m/γ




γ 0 0 −κ
0 γ κ 0
0 κ φ 0
−κ 0 0 φ


 (6.3.15)

with φ ≡ γk/m as long as the parameters satisfy the stability condition

γk− κ2m/γ > 0. (6.3.16)

Consequently, the particle is confined by the potential if the strength of torque
|κ| is moderate enough to satisfy the stability condition, otherwise the parti-
cle escapes from the potential.
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A natural current arising in this system is the observable

Y(G1)
1 (T ) ≡

∫ T

0
dt [x2(t)v1(t)− x1(t)v2(t)] . (6.3.17)

which corresponds to the distance travelled in the gyrator. This circular cur-
rent is also proportional to the work performed by the torque κ. Since the ve-
locity appears in first order, the circular current can be regarded as an n = 1
observable. Using the covariance matrix (6.3.15) the mean value is given by

〈
Y(G1)

1 (T )
〉
= T 2κTγ

m(γφ− κ2)
(6.3.18)

and using Eq. (2.36) the entropy production rate can be expressed as

σ =
κ

T
∂T
〈

YGyr
1 (T )

〉
. (6.3.19)

For small times the variance can be calculated with Eq. (4.2.3)

Var
[
Y(G1)

1 (T )
]
≈ T 2Var[x2v1 − x1v2] (6.3.20)

= T 2
(〈

x2
2

〉 〈
v2

1

〉
+ 〈x2v1〉2 +

〈
x2

1

〉 〈
v2

2

〉
+ 〈x1v2〉2

)
.

Here, the second line follows from Wick’s theorem and from 〈x1x2〉 = 〈xivi〉 =
0. Plugging the covariances in and identifying the mean current, Eq. (6.3.18),
finally yields

Var[Y(G1)
1 (T )] = T 2

〈
Y(G1)

1

〉2 γφ + κ2

2κ2 +O(T 2). (6.3.21)

Combining the cumulants, we can express the uncertainty product in first
order in time as

Q(G1)
1 (T ) = T γ

m
γφ + κ2

γφ− κ2 +O(T 2) ≥ T γ

m
+O(T 2) (6.3.22)

where the bound follows from minimizing in κ which is attained in the equi-
librium limit κ → 0.

This short-time expansion coincides with the corresponding free diffusion
bound (4.3.7) to first order in time. As a result, the conjectured bound (6.3.2)
holds in the Brownian gyrator in this order. It is due to the ballistic dynamics
for small times.

To investigate the uncertainty product and its relation to our conjecture
in this system, we numerically compute the finite-time uncertainty product
of Y(G1)

1 for 160 randomly sampled parameters (γ ∈ [0.5, 1.5], T ∈ [0.5, 1.5],
k ∈ [0.05, 4] and κ ∈ [0, 2.5]) and plot them with respect to the dimensionless
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FIGURE 6.3.3: The uncertainty product for the two considered
currents in the gyrator model, Y(G1)

1 in the left panel and Y(G2)
3

in the right panel, plotted against dimensionless time τ. Each
line corresponds to a different parameter set that was chosen
on random. The thick black line depicts the respective free dif-
fusion boundQ0

n that has been conjectured to be a lower bound
for diffusion in one spatial dimension.

time τ in the left panel of Fig. 6.3.3. In agreement with our conjecture, all
curves lie above the value obtained for one-dimensional free diffusion.

Motivated by the results for diffusion on a torus, we repeat the analysis
for the more abstract order n = 3 current of the form

Y(G2)
3 (T ) ≡

∫ T

0
dt
[

x2(t)v1(t)3 − x1(t)v2(t)3
]

. (6.3.23)

Using the same rationale as for the diagonal current on a torus, we consider
this observable a current of v-order 3. The numerical results for 160 parame-
ter sets with γ ∈ [0.5, 5], T ∈ [0.5, 1.5], k ∈ [0.05, 3] and κ ∈ [0, 2.5] are plotted
in the right panel of Fig. 6.3.3. Again, in accordance with the conjecture the
uncertainty product does not become smaller than the value obtained for free
diffusion in one dimension in the equilibrium limit.

6.4 Conclusion

Based on numerical evidence we conjecture that the uncertainty product for
an odd current with arbitrary weight function in a one-dimensional periodic
potential is bounded from below by the result obtained for free diffusion for
an observable of same order in the velocity but constant spatial weight in
the limit of vanishing driving force. The conjectured bound converges to
the overdamped TUR in the corresponding limit, thus suggesting that our
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conjecture is in fact the underdamped generalization of the TUR. By design,
the bound is saturated for all times for free diffusion and thus is tight.

To our knowledge the conjectured free diffusion bound is the first bound
that can be saturated for the important class of currents scaling with the first
order in the velocity. Among this class of currents are, for instance, the inte-
grated work current or the distance traveled in some time. Since such quanti-
ties can be measured experimentally, our bound can be used to infer bounds
on the entropy production rate in systems where the latter is not directly ac-
cessible.

The presented simulation results, further, indicate that the conjecture could
be generalized to higher dimensions. Surprisingly, the conjectured bound
that is founded on free diffusion in one dimension also shows to bound dif-
fusion in higher dimensions. Further analysis is, however, necessary espe-
cially regarding currents that contain velocities of different spatial directions
multiplicatively. In this case, our data suggest that it is possible to get tighter
bounds by adjusting the weight of the free diffusion process that is used for
comparison.

The short-time behavior of the conjecture, however, also sparks the ques-
tion how to proof such a dependence. One possibility, to achieve this short-
time behavior using the established large deviations framework is to con-
sider the steady state of the original dynamics as a transient initial condi-
tion [69, 67] that evolves according to a suited virtual dynamic, see Sec. 6.2.
In the velocity, such a transition to a new steady state takes place on the
same timescale γ/m as the observed change in the bounding function. Such
an ansatz was outlined in Sec. 6.2.1, but requires to solve the complete relax-
ation in the perturbed steady state.

Underdamped thermodynamic bounds that have been derived so far can
be associated with the activity bound or the bound obtained by γ-rescaling.
A third class of bounds that is derived from the fluctuation theorem has been
discussed [77, 78] more recently. The bound reduces to the statement of the
TUR in the linear-response limit for overdamped and underdamped motion,
thus providing another proof for the validity of the TUR in this limit [60, 61].
For larger driving, the tightness of the bound, however, rapidly decreases.

Additional bounds can be straightforwardly derived by making new an-
satzes. A promising idea is to use the known collapse of the empirical density
in the overdamped limit, see Sec. 5.4.3, and adapt it to reflect the ansatz used
in the proof of the overdamped TUR. By doing so, the ansatz can be directly
used in the underdamped regime. Plugging in the stationary overdamped
density pov, ss(x) and the rescaled stationary current Jss in the master ansatz
Eq. (5.4.1) yields

ρ∗(x, v; J̃) = pov, ss(x)
√

m
2πT

exp

[
− m

2T

(
v− J̃

Lpov, ss(x)

)2
]

(6.4.1)
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in one dimension and for x ∈ [0, L]. Since the stationary distribution follows
the same asymptotic transition, the overdamped ansatz can more generally
be expressed as

ρ∗(x, v; J̃) = pss
(

x, v− J̃ − Jss

L
∫

dv′pss(x, v′)

)
(6.4.2)

which coincides with the stationary distribution for J̃ = Jss as desired.
Such an ansatz that essentially shifts the stationary distribution in the ve-

locity has the appropriate shift in the average observable that gives the sta-
tionary current in the denominator of the bound. Moreover, it is similar in
spirit to the typical densities expected for free diffusion which consist of the
shifted stationary distribution, see Sec. 5.1. Promising at first, the problem
becomes apparent when the level 2 LDF is evaluated as it yields integrals
with finite boundaries over the stationary distribution. As a result, the bound
lacks a physical interpretation and requires knowledge of the complete sta-
tionary distribution.

A full proof of the bound (6.3.2) for underdamped dynamics would prob-
ably require large deviation techniques that go beyond the established meth-
ods. Insight might also come from martingale methods [23, 79], which at
the current stage still requires the diffusion tensor to be invertible, which is
not the case for underdamped diffusion in phase space. Nevertheless, the
method follows a similar rationale as the free diffusion bound. In more de-
tail, the bound follows by splitting the stochastic observable in an increas-
ing process an a fluctuating martingale and estimating its statistics by the
martingale subprocess. The free diffusion bound, on the other hand, can be
interpreted as a splitting of reversible and irreversible contributions. Appar-
ently, the reversible contributions increase the uncertainty product so that it
is bound by the uncertainty product of the irreversible part.
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Chapter 7

Beating the overdamped TUR limit

So far, we have focused on forces that do not depend on the velocity. In such
systems, the numerical results presented so far suggest that the TUR holds
regularly for large times. For underdamped dynamics, forces that depend
on the velocity as well are, however, rather common. Most prominently,
velocity-dependent forces appear in presence of a magnetic field in form of
the Lorentz force that is proportional to the velocity. Other incidents include
models for feedback cooling [80, 81, 82] where the friction coefficient is effec-
tively reduced [83] or even of non-linear nature [84] and active matter [85, 86,
87].

For such generalized forces, a breakdown of the overdamped bound on
the precision is not particularly surprising as such forces can be used to im-
plement feedback mechanism that lower the uncertainty [88]. For instance
in the case of feedback cooling, the particle is effectively subject to a lower
temperature in comparison to the temperature reflected in the bound. Fur-
thermore, more involved steering mechanisms can be implemented that limit
the velocity fluctuations.

In a stochastic model of ballistic transport in multiterminal conductors, a
violation of the TUR was, however, also observed in the presence of a mag-
netic field [60, 61]. This violation is less obvious, as the magnetic field does
not break the fluctuation-dissipation theorem. Mathematically and rather
abstract, the breakdown of the TUR in such models can be explained by the
broken Onsager symmetry.

As an extension to the analysis in multiterminal conductor models, it is
natural to investigate the effects of a magnetic field on the TUR in continuous
underdamped Langevin systems [89]. To this end, we revisit the Brownian
gyrator and indeed observe a violation of the TUR. In order to get an intuition
on the effects contributing to an increase of precision, we introduce a more
transparent model before we conclude the focus on generalized forces.
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7.1 The Brownian gyrator in a magnetic field

The Brownian gyrator that has been introduced in Sec. 6.3.3 is a good start-
ing point for the analysis. Due to its simplicity it is still solvable analyti-
cally. However, the dynamics showed to be more complex than free diffu-
sion thus alowing for a more general perspective on the effect of magnetic
forces. Finally, the model is also relevant from an experimental point of view
as pointed out before.

7.1.1 The model

As an analytically traceable model, we revisit the underdamped Brownian
gyrator in this section. In addition to the previously considered circular driv-
ing force κ and the harmonic force with constant k, a Lorentz force FL(v) =
qB(v2,−v1)

ᵀ induced by a magnetic field of strength B that is perpendicular
to the plane of the particle motion acts on the particle of charge q. In the
following, we collect the charge and magnetic field in the product b ≡ qB.

The resulting dynamics is still linear and governed by the Langevin equa-
tion

ẋ = v

mv̇ =

(
−k κ
−κ −k

)
x +

(
−γ b
−b −γ

)
v + ξ (7.1.1)

which in addition to Eq. (6.3.14) contains the Lorentz force.
When the real parts of all eigenvalues of the dynamics are positive, the

system is stable and the probability distribution eventually converges to a
steady state. This stability condition of the system is given by

γk + κb− κ2m/γ > 0. (7.1.2)

In other words, the particle can be confined by the potential if the strength
of torque |κ| is moderate enough to satisfy the stability condition, otherwise
the particle escapes from the potential. A magnetic field can further stabilize
the system if κ and b have the same sign. On the other side, different signs of
κ and b reduces the stability.

This is due to the Lorentz force pushing the particle either inward or out-
ward of the potential depending on the sign of κb. When κb < 0, the magnetic
field reinforces the tendency to increase the radial distance. When κb > 0,
however, the Lorentz force makes the particle prefer to head towards the
center of the potential. The additional stabilization due to a magnetic field
can be observed in the center column of Fig. 7.1.1. While a negative product
κb increases the radius of typical trajectories in the x-plane, the motion be-
comes more centered for higher magnetic fields. The localization effect only
occurs in the presence of both the external torque and the magnetic field.
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FIGURE 7.1.1: Left and center column: Sample trajectories of
the integrated current Y(G1)(T ) and corresponding motion in
the x1-x2-plane. The shown x-motion in the center column cor-
responds to the intervals that are marked with dots in the left
axis. From top to bottom the magnetic field is increased with

driving κ = 1.
Right column: Scatter plot of the uncertainty product for the
Gyrator in presence of a magnetic field, Eq. (7.1.11), evaluated
for different parameters. The solid black line corresponds to
the minimal uncertainty product, Eq. (7.1.14) while the red line

gives the bound expected from the overdamped TUR.

7.1.2 Exact expressions of mean value and diffusion coeffi-
cient

Due to the linear character of the dynamics, Eq. (7.1.1), the cumulants of mo-
tion can be calculated analytically for integrated currents that depend linear
on x and v, respectively, such as the particle current Eq. (6.3.17)

Y(G1)
1 (T ) =

∫ T

0
dt [x2(t)v1(t)− x1(t)v2(t)] (7.1.3)

or the accumulated work done against the driving torque κ. This can be done
by calculating the largest eigenvalue of the tilted operator. In the shorthand
notation z = (x1, x2, v1, v2)

ᵀ the adjoint of the tilted operator for the current
Y(G1)

1 (T )/T takes on the form

Lᵀ(λ) = z · Aᵀ∇z +∇z ·D∇z + λz ·Wz (7.1.4)

with the matrices

A ≡ 1
m




0 0 m 0
0 0 0 m
−k κ −γ b
κ k −b −γ


 W =




0 0 0 −1
0 0 1 0
0 0 0 0
0 0 0 0


 (7.1.5)
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and the diagonal diffusion matrix D = diag[0, 0, kTγ/m2, kTγ/m2].
To solve the eigenvalue problem for this adjoint tilted operator, we make

a Gaussian ansatz

g(z, λ) = exp
(
−1

2
z ·C(λ)z

)
(7.1.6)

with a symmetric matrix C(λ). Since the untilted Fokker-Planck operator
preserves probability, the left eigenfunction for λ = 0 is a constant and thus
C(0) = 0.

Applying L(λ) on the eigenvalue equation yields the condition

1
2
[AᵀC(λ) + C(λ)A+W+Wᵀ] = C(λ)DC(λ) (7.1.7)

and an eigenvalue that is simply the trace

α(λ) = −tr [DC(λ)] (7.1.8)

which indeed is the largest eigenvalue as it vanishes for λ = 0.
Since we are only interested in the first and second cumulant we can ex-

pand C(λ) = λC1 + λ2C2 in second order of λ around 0. This allows to solve
Eq. (7.1.7) for each order individually. The cumulants turn out to be

〈
Y(G1)

1 (T )
〉
= T 2κT

b + kγ/κ −mκ/γ
(7.1.9)

and

Var
[
Y(G1)

1 (T )
]
= T

4
(
γ2k2/κ + bκ2m/γ + κγ2 + 3mκk

)
T2

(b + γk/κ −mκ/γ)3 ; (T � γ

m
).

(7.1.10)
Employing the balance of work and heat in the steady state, the uncertainty
product is given by

Q(G1)(T ) =
2
(
γ2k2/κ2 + bκm/γ + γ2 + 3mk

)

(b + γk/κ −mκ/γ)2 (7.1.11)

≥ 2

(
γk + mκ2/γ

)2
+ κ2γ2

(bκ + γk−mκ2/γ)
2 (7.1.12)

for large times. Here, the last line follows by inserting the stability condition,
Eq. (7.1.2).

7.1.3 Effect of a magnetic field on the TUR

After having obtained the analytice expression for the uncertainty product,
we can now easily investigate different parameter regimes of the Brownian
gyrator.
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Upon looking at the expression, it is trivial that the uncertainty product
is always larger than 2 for bκ ≤ 0. Evaluating the uncertainty product for
different parameters as shown in Fig. 7.1.1, however, shows that it can fall
below 2 for bκ > 0 thus violating the TUR. Since the last in Eq. (7.1.12) is
monotonic in m/γ, the overdamped inertia limit m/γ → 0 produces the
natural estimate

lim
T →∞

Q(G1)(T ) ≥ 2
γ2k2 + κ2γ2

(bκ + γk)2 = 2
1 + κ2/k2

(1 + bκ/(γk))2 ≥
2

1 + (b/γ)2 (7.1.13)

which in turn can be minimized for b/γ = κ/k, ultimately leading to the
simple expression

lim
T →∞

Q(G1)(T ) ≥ 2
1 + (b/γ)2 (7.1.14)

which is plotted in Fig. 7.1.1 as solid line.
For large magnetic fields, this bound and with it the uncertainty product

can approach 0. However, this comes with the caveat of a decreasing cur-
rent as Eq. (7.1.9) goes to 0 in the same limit. This decrease with increasing
strength of the magnetic field is a result of a stronger localized motion of the
particle.

The localization of motion also seems responsible for the breakdown of
the TUR in the gyrator. Although both the mean rate and dispersion be-
come smaller for large magnetic fields individually, the squared relative un-
certainty ε2 converges to a finite value. The dissipated heat, on the other
hand, is proportional to the particle current and thus scales as b−1, leading to
the uncertainty product approaching 0 for large magnetic fields.

Nevertheless, the breakdown of the TUR cannot be solely ascribed to the
decrease of the entropy production as a consequence of the localization. The
validity of the TUR crucially depends on the chosen observable. To compare
conceptually different currents we consider the class of winding number cur-
rents that basically counts the number of crossings of the positive x1-axis with
a weighting factor φ(z). Formally this current is given by

Yφ(T ) =
∫ T

0
dt φ(z(t))δ(x2(t))sign [v2(t)] χx1 (7.1.15)

where χx1 is an indicator that is 1 if x1 > 0 and 0 otherwise. The uncertainty
product associated with the current Yφ(T ) is given as

Qφ ≡ lim
T →∞

Var
[
Yφ(T )

]

〈Yφ(T )〉2
σT (7.1.16)

An advantage of such a winding number current is that it could be directly
measured in experimental situations without tracing complete trajectories of
the particle.
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FIGURE 7.1.2: Numerical results for the uncertainty product
Qφ for the winding number current (7.1.15) with two different
weighting factors φ(z) = 1 (left) and φ(z) = x1 (right). Each
dot represents one stable parameter set with B ∈ [−2, 4], κ ∈
[0.05, 5], k ∈ [0, 4], γ ∈ [0.1, 10], T ∈ [0.5, 1.5]. The mass m
is set to unity. The entropy production rate σ is calculated on
base of the analytic expression, Eq. (7.1.9). The vertical blue
lines are an estimator for the error. The error is estimated by
calculating the 25 % percentile for the slope of the mean current
and its variance on an ensemble of trajectories. The error of the

uncertainty product then follows by propagation of error.

Since it is not possible to calculate the uncertainty product analytically,
we numerically calculate the winding number current for two conceptually
different weighting factors φ(z) = 1 and φ(z) = x1. The gyrator with con-
stant weight can be interpreted as a continuous Brownian clock. Such sys-
tems are of special interest in the context of biochemical oscillations [90, 91].
In contrast, the latter case of increasing weight is inspired by the particle cur-
rent considered so far, Eq. (7.1.3). The uncertainty products for both weights
are depicted in Fig. 7.1.2 for random parameters. The results show that the
uncertainty product goes well below 1 for the increasing weight. The un-
certainty product of the current with constant weight, however, seems to be
bounded from below by 1 in the margin of error. In this special case the con-
tribution to the current is independent from the radial distance and thus the
localization of motion does not affect the current as strongly.

In principle, an inequality dubbed the “hysteretic thermodynamic uncer-
tainty relation” [92], which takes into account both the original and a time-
reversed dynamics, can be applied to models with broken time-reversal sym-
metry. In the case of the gyrator model, applying the relation is, however,
only possible for a weak magnetic field. For strong magnetic fields the time-
reversed dynamics can become unstable since the stability condition (7.1.2)
is not symmetric with respect to b. Moreover, the activity bound that was de-
rived in Sec. 6.1.1 can be generalized to include velocity dependent forces as
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well [62]. In their respective range of validity both inequalities provide expo-
nentially weaker lower bounds on the uncertainty product than the putative
TUR, Eq. (3.45), does. Given these shortcommings, a theory that describes
the breakdown of the TUR or the physical relevance behind the tight esti-
mate Eq. (7.1.14) is still missing.

7.2 An illustrative model with magnetic field

In the previous section the Brownian gyrator was introduced as a physically
feasible yet simple model. In this model, the TUR can be violated when a
magnetic field reinforces the constraining character of the harmonic poten-
tial. However, this does not generalize to arbitrary currents. For instance, the
uncertainty product of the winding number current that essentially counts
the revolutions in the gyrator does not fall below the expected bound of
2. Unfortunately, studying different currents in the gyrator is troublesome
since many currents vanish due to the symmetry in the system. In contrast,
measuring more general currents, as the winding number current, requires
numerical analysis that is prone to errors.

To further examine the effect of the current of choice on the uncertainty,
we boil the gyrator down to a more illustrative and transparent model that
shares some of its characteristics with the Brownian gyrator: Diffusion in a
infinitely long harmonic channel with a magnetic field oriented perpendicu-
lar to the plane of motion.

7.2.1 Model and Cumulants

The motion is described by the two-dimensional underdamped Langevin
equation

ẋ = v v̇ = −
(

0
k

)
· x +

(
f
0

)
+

(
−γ b
−b −γ

)
· v + ξ (7.2.1)

which is a channel that is confined harmonically in x2 direction and driven by
a force F in x1 direction. As for the gyrator, a magnetic field of strength B is
applied perpendicular to the x-plane. As before, the strength of the induced
Lorentz force is given by b = Bq.

The stationary distribution is a shifted Gaussian

pss(x, v) ∝ exp

[
− k

2T

(
x2 +

b
k

m f
γ

)2

− m
2T

(
v1 −

m f
γ

)2

− m
2T

v2
2

]
(7.2.2)

where, logically, the mean of v1 is shifted due to the external driving force.
Furthermore, the mean displacement in direction x2 is increased by the inter-
action of the magnetic field and the driving force. The Lorentz force pushes
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the particle up the walls of the harmonic confinement due to the non-zero
mean velocity in v1 direction.

We are interested in the cumulants for an observable

Y(C)
(k1,k2)(T ) =

∫ T

0
dt(k1 + k2x2(t))v1(t) (7.2.3)

that is the average velocity along the channel weighted by an factor that de-
pends on the excursion. It is worth noting that the constant contribution k1
can also be introduced by a force in x2 direction that shifts the center of the
channel or by an offset in the x2 coordinate.

As outlined in the previous section, the cumulants can be calculated via
the adjoint tilted operator

Lᵀ(λ) = z · Aᵀ
C∇z +∇z ·DC∇z + λ(w + z ·WC) · z + v1∂x1 + f∇z (7.2.4)

that acts on the vector z = (x2, v1, v2)
ᵀ. Here, the matrices are

AC ≡
1
m




0 0 m
0 −γ b
−k −b −γ


 w =




0
k1
0


 WC ≡




0 k2 0
0 0 0
0 0 0


 (7.2.5)

and the diagonal diffusion matrix is given by DC = diag[0, kTγ/m2, kTγ/m2].
Plugging the shifted Gaussian

g(z) = exp [−z ·C(λ)z− a(λ) · z] (7.2.6)

with yet undetermined symmetric matrix C(λ) and vector a(λ) as an ansatz
in the tilted operator yields the conditions

1
2
(
C(λ)AC + Aᵀ

CC(λ)
)
= C(λ)DCC(λ) +

λ

2
(
WC +Wᵀ

C
)

(7.2.7)

Aᵀ
Ca(λ) + C(λ) f = 2C(λ)DCa(λ) + λw, (7.2.8)

where the two lines guarantee that the terms in second and first order in z,
respectively, vanish. From these, the elements of a and DC can be obtained
by expansion in λ which in term defines the eigenvalue

α(λ) = −Tr [DCC(λ)] + a(λ) ·DCa(λ)− f · a(λ). (7.2.9)

As before the conditions Eqs. (7.2.7) and (7.2.8) can be expanded in orders
of λ and the solution can subsequently be used to calculate the first and sec-
ond derivative of the eigenvalue. While the mean of the observable takes on
the compact form

〈
Y(C)
(k1,k2)(T )

〉
= T f

γ

(
k1 − k2

b f
kγ

)
, (7.2.10)
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FIGURE 7.2.1: Scatter plot of the TUR, Eq. (7.2.12), in the chan-
nel for different parameters and positive force f > 0. The ob-
servable of choice is the current Eq. (7.2.3) with k1 = k2 = 1.
The red line corresponds to the overdamped TUR. The black
line depicts the minimum of the uncertainty product which co-

incides with the minimum of the gyrator, Eq. (7.1.14).

the variance is more complex and will not be given explicitly. The mean value
has two contributions. First, the observable increases as a consequence of the
regular current in 1-direction when k1 6= 0. Second, there is a contribution
that is proportional to k2 and involves the mean displacement from the center
due to the Lorentz force and the mean velocity in v1 direction. Both contribu-
tions can be interpreted in a static image by picturing a particle moving with
mean speed 〈v1〉 = f /γ along 〈x2〉 = b f /(kγ).

Since a force is only applied in one direction, the entropy production is
the same as for free diffusion in one dimension σ = m f 2/(γT). From this,
we can calculate the associated uncertainty product

Q(k1,k2) =
Var

[
Y(C)
(k1,k2)(T )

]

〈
Y(C)
(k1,k2)(T )

〉2 σT (7.2.11)

for any weighting in the observable (7.2.3) which yields the rather complex
expression

Q(k1,k2) = 2 + 2

[
f 2

k2

(
1 + 3b2

γ2

)
− 2 b f k1

kγk2
+ (b2+γ2)T

k(b2+γ2+km/2)

]

(
k1
k2
− b f

kγ

)2 . (7.2.12)

This expression can be easily evaluated for arbitrary parameters as shown in
Fig. 7.2.1.
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7.2.2 Effect of the weight on the TUR

Now that we have described a method to calculate the uncertainty product
for different weighting, we can analyze the effect of different forms of the
weighting function on the uncertainty product.

First we consider the mean current in the channel without an x2-dependence,
e.g. k2 = 0. For this choice, the first condition Eq. (7.2.7) does not show any
λ-dependence and can thus be solved by C(λ) = 0. As a result, the shift
becomes

a(λ) = λk1

(
− b

γ
,−m

γ
, 0
)ᵀ

. (7.2.13)

Inserting this expression in the expression for the eigenvalue and calculating
the mean velocity and variance reveals that neither of both quantities is de-
pendent on the magnetic field. In fact, the uncertainty product Q(k1,0) is 2
independently of the choice of the parameters.

In other words, the sole existence of a magnetic field does not break the
TUR. This finding is also in line with the numerical indication for a TUR
bounding the uncertainty of the winding number current in the gyrator and
the ballistic transport in a multiterminal model, where the TUR can be recov-
ered for two terminals [60].

If there is no contribution k1 = 0 all terms in the uncertainty product,
Eq. (7.2.12), are positive thus also preserving the lower bound of 2. Only
in interaction with k1, the TUR can become lower than this bound for spe-
cific parameter sets. As discussed, the TUR holds for a negative magnetic
field and positive force. In contrast, when the sign of f and b is different,
the TUR can be violated. Interestingly, the minimal uncertainty product co-
incides with the one from the gyrator, Eq. (7.1.14), but is attained for m→ ∞
and a different optimal force

f ∗ =
bγk

2b2 + γ2
k1

k2
. (7.2.14)

7.3 Conclusion

In this chapter we have investigated the effect of a velocity-dependent force
on the TUR, in particular of a magnetic field. To this end we first revisited
the Brownian gyrator as a simple, yet relevant model consisting of a charged
particle driven inside a two-dimensional harmonic confinement. Using the
analytic results, we observe that the uncertainty product for the accumulated
distance traveled in the gyrator can go below the bound implied by the TUR,
if the Lorentz force typically pushes the particle inwards thus leading to a
larger localization.

To pinpoint the reason for the breakdown of the TUR, we consider the
winding number current that essentially counts the number of revolutions in
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the gyrator irrespective of the distance to the center of symmetry. The TUR
does hold for such an observable for arbitrary magnetic field in the margin
of error.

In order to analyze the dependence on the choice of the current in more
depth, we consider a more stripped down model consisting of a particle dif-
fusing in a harmonic channel. We can analytically evaluate the uncertainty
product for linear weighting that is applied perpendicular to the channel.
The results underline the observations from the gyrator model. The TUR is
recovered for a flat weighting that resembles the winding number current.
For an increasing weight, in contrast, the TUR can be violated for a driven
particle if a magnetic field is present.

Notably, the magnetic field neither causes a localization in the channel
model nor causes an increase in the current due to circular trajectories. As a
consequence, the violation can not be attributed to a localization that leads
to less dissipation, as for the gyrator, or to a sole increase of the current due
to circular paths.

Overall, the reason for the violation is not only due to the magnetic field
but rather an interplay between the choice of observable, the driving force
and the Lorentz force itself. The reduced uncertainty can be traced back to a
term in the variance that can become negative. One interpretation is that the
magnetic field allows a kind of feedback that actively steers the particle. If
we consider a positive force and a negative magnetic field, the particle settles
at at negative mean position. If the particle moves faster, the Lorentz force
increases and the particle is pushed down against the harmonic potential.
In the contrary case of a slower particle, the Lorentz force does not balance
the harmonic potential and the particle falls down towards the center of the
potential. This difference can be used to “control” the particle. If the ab-
solute contribution to the observable, i.e. the weight, is typically larger for
the slower particle and smaller for the faster ones, fluctuations in the rate
of growth of the observable are smoothed out. This way, the weight com-
pensates for the fluctuations in the velocity. In this sense, the magnetic field
acts just like an additional velocity-dependent feedback −αv that is used in
models for feedback cooling.

The same interpretation can be directly applied to the gyrator model.
Only if the weighting increases with the radius, as for the distance traveled
or the work current, the magnetic field can be used as a feedback mecha-
nism. For the winding number current, such a feedback mechanism cannot
be implemented and the TUR is recovered for arbitrary magnetic fields.
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Chapter 8

Concluding Perspective

Although originally introduced as a conjecture for discrete Markov networks
in 2015 [12], the thermodynamic uncertainty relation has proofed as a univer-
sal property of stochastic systems and sparked a number of related research.
Using large deviation theory it was possible to proof the relation for discrete
Markov jump processes [38] and continuous overdamped Langevin dynam-
ics [39]. Utilizing the large deviation framework helped to reveal a large
class of thermodynamic inequalities and to embed the TUR in this class of
relations.

Modified versions for discrete time [93], high dimensional observables [67],
arbitrary initial states [67, 94], periodically driven systems [95, 96] and quan-
tum systems [97, 98, 99] have been presented subsequently. Despite the
achievements in the respective fields, the putative generalization to under-
damped dynamics still is pending. Although no definite proof was provided
in this thesis, it shows many features that motivate further analysis and re-
veals challenges that have to be met.

The underdamped dynamics provide much more freedom in both the dy-
namics and the representable observables. A priori, time-symmetric observ-
ables can be treated in the underdamped regime. For such observables, a
TUR involving only the irreversibility can never hold as it leads to a con-
tradiction in the equilibrium limit where the latter vanishes. Furthermore,
velocity dependent forces can be implemented.

In order to follow the original proof of the overdamped TUR, we intro-
duced the large deviation framework for the underdamped regime in Chap-
ter 3. Unfortunately, it cannot be generalized to underdamped motion straight-
forwardly. Under the premises of the overdamped contraction principle, one
is free to chose an ansatz for the empirical density and, independently, for
the empirical current [38, 39]. For underdamped dynamics, in contrast, the
continuity equation connects the empirical current and density thus leaving
only the latter as a free parameter.

Building on the framework we explored the properties of the underdamped
large deviation function in Chapter 5. Overall, the function shares many fea-
tures with the overdamped LDF. In particular, the numerical data suggests
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that a parabolic bound that would imply the TUR holds just like in the over-
damped case for large times. This is further substantiated by direct measure-
ments of the uncertainty product.

While not directly applicable to underdamped dynamics, the rational be-
hind the overdamped proof can be transferred to underdamped dynamics.
Two different interpretations of the proof, namely a timescale ansatz and an
amplification of the irreversible current have been discussed in Chapter 6.
Both yield the same bound in the overdamped regime, however, they lead
to two conceptually different bounds in the underdamped regime. On the
one hand the timescale ansatz provides a typical weak bound and involves
terms that characterize the activity. First introduced in Ref. [48], the ansatz
has lead to a class of related bounds Refs. [45, 62, 100]. On the other hand,
the bound that is based on the rescaling of irreversible contributions involves
the entropy production as desired, but does not bound the uncertainty but
the derivative of the mean velocity with respect to the friction coefficient. In
practice this derivative is hard to obtain.

This ambiguity quite generally poses the question how to interpret the
ansatz that yields the overdamped bound and ultimately reveals the phys-
ical mechanism that limits the uncertainty. Exploring the consequences for
underdamped dynamics might give an indication if the interpretation is rel-
evant. For instance the comparison of the two aforementioned bounds con-
firms that an important property of the ansatz in fact is that it adapts only the
irreversible contribution. Such insights can proof useful in tightening the ex-
isting thermodynamic bounds [39], in bringing order in the increasing num-
ber of thermodynamic inequalities [101, 102], in exploring the limitations of
the original TUR and ultimately in providing new bounds. Furthermore, the
TUR could be generalized to a broader class of systems.

Another challenge is the finite-time generalization of the bound. So far,
the proofs for the original TUR rely on either large deviation theory or an ex-
pansion of the cumulant generating function [69] that results in the Cramér-
Rao bound. Since those two methods are essentially equivalent, it is not sur-
prising that both involve a Kullback-Leibler divergence that gives a contri-
bution whenever the empirical distribution does not coincide with the sta-
tionary one. While this can be circumvented in the overdamped regime,
it is inevitable for underdamped dynamics where one is only allowed to
vary this distribution. For small times any other contributions vanish and
the Kullback-Leibler divergence becomes dominant. Numerically, an expo-
nential dependence of the uncertainty product is observed for small times
that behaves like a relaxation. To reconstruct this effect, the empirical dis-
tribution could be time-dependent and follow a relaxation from the original
steady state in an empirical one. Such time-dependent ansatzes are also rele-
vant for driven systems with time-depend driving [95] and systems that are
not in a steady state [67, 94]. Developing concepts for such time-dependent
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ansatzes could improve the quality of existing underdamped bounds in the
small-time regime. Moreover, a focus on only this small time regime can
also illuminate whether tight and insightful bounds can be derived along the
lines of the discussed proofs or if a method that goes beyond the established
frameworks has to be found.

More generally, underdamped systems offer a suitable environment to
develop a unified and deep understanding. For instance, the analysis of free
diffusion in Chapter 4 showed a difference between observables that are even
or odd under time-reversal. A similar discrepancy has been observed for dis-
crete dynamics where traffic observables [46] are bound by a different mea-
sure than current-like observables. Analysing the range of validity of the
activity bound gives an indication that there might exist a bound in the spirit
of the TUR that is valid and tight for current-like observables, and a bound
for traffic-like, even observables. It would be interesting to further study the
differences between these two types of observables and to understand how
the precision is bounded.

Additional insight can also be gained from analyzing for which observ-
able the tightest bound can be obtained. It would be of great interest to
extend the work done for overdamped particles [103] to the underdamped
domain where the velocity-dependence of the observable is an additional
degree of freedom.

Another intriguing feature are velocity-dependent forces as discussed in
Chapter 7, most notably magnetic fields. Such forces can, however, also be
used to implement feedback mechanisms that break the fluctuation-dissipation
relation and effectively reduce the temperature in the system [82]. In this
thesis, the violations of the TUR in presence of a magnetic field were at-
tributed to a similar effect that “steers” the particle depending on the ve-
locity. Understanding such feedback mechanisms and how they differ from
regular potential forces could answer general questions regarding systems
under feedback such as active matter. It would be most interesting to see,
if the precision can be bound by including additional quantities, i.e. infor-
mation theoretical measures, as done for fluctuation theorems with feedback
and measurement [104, 105, 106]. First advances in this direction have been
made recently [88, 100, 94].

Beyond the scope of this thesis, it would be worthwhile to assess the va-
lidity of bounds in the case of a spatially varied temperature as well. Al-
though, the dynamics of such systems can also be described in the over-
damped regime, the entropy production does not carry over in this limit [17].
In more detail, it is possible that heat is exchanged despite the system reach-
ing an apparent equlibirum state. As a consequence, the overdamped TUR
can not be used to estimate the heat. An underdamped uncertainty relation
based on observables that can also be measured in the position marginal-
ized view, for instance a directional weight only measuring the current in
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one specific direction, could be used to estimate the exchanged heat. Such
observables are beyond the scope of the overdamped TUR.

A more universal issue that arose in this thesis is the role of free diffu-
sion. Numerical data suggests that the uncertainty product can be bound
for all times by using free diffusion as a reference (see Chapter 6). In fact,
the overdamped TUR as well as the ansatzes that lead to its proof can be
motivated by a comparison with free diffusion. The exceptional character
of a driven process without potential barriars has recently been reported for
Markovian jump processes. It was found that not only the second eigenvalue
that captures the coherence of oscillations is bounded by the corresponding
value for an asymmetric random walk [107], but its complete spectrum [108].
This poses the question, if the TUR is only one manifestation of free diffusion
bounding diffusion processes on a more general basis.
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98K. Ptaszy ński, “Coherence-enhanced constancy of a quantum thermoelec-
tric generator”, Phys. Rev. B 98, 085425 (2018).

99G. Guarnieri, G. T. Landi, S. R. Clark, and J. Goold, “Thermodynamics of
precision in quantum nonequilibrium steady states”, Phys. Rev. Research
1, 033021 (2019).

100T. Van Vu and Y. Hasegawa, “Thermodynamic uncertainty relations under
arbitrary control protocols”, Phys. Rev. Research 2, 013060 (2020).

101A. C. Barato, R. Chetrite, A. Faggionato, and D. Gabrielli, “A unifying
picture of generalized thermodynamic uncertainty relations”, en, J. Stat.
Mech. 2019, 084017 (2019).

102J. M. Horowitz and T. R. Gingrich, “Thermodynamic uncertainty relations
constrain non-equilibrium fluctuations”, en, Nat. Phys. 16, 15–20 (2019).

103D. M. Busiello and S. Pigolotti, “Hyperaccurate currents in stochastic ther-
modynamics”, Phys. Rev. E 100, 060102 (2019).

104T. Sagawa and M. Ueda, “Fluctuation theorem with information exchange:
role of correlations in stochastic thermodynamics”, Phys. Rev. Lett. 109,
180602 (2012).

105A. C. Barato and U. Seifert, “Unifying three perspectives on information
processing in stochastic thermodynamics”, Phys. Rev. Lett. 112, 090601
(2014).

106J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, “Thermodynamics of
information”, Nat. Phys. 11, 131–139 (2015).

https://doi.org/10.1088/1742-5468/ab14da
https://doi.org/10.1088/1742-5468/ab14da
http://arxiv.org/abs/1912.11797
http://arxiv.org/abs/1912.11797
https://doi.org/10.1103/PhysRevB.98.155438
https://doi.org/10.1103/PhysRevB.98.155438
https://doi.org/10.1103/PhysRevB.98.085425
https://doi.org/10.1103/PhysRevResearch.1.033021
https://doi.org/10.1103/PhysRevResearch.1.033021
https://doi.org/10.1103/PhysRevResearch.2.013060
https://doi.org/10.1088/1742-5468/ab3457
https://doi.org/10.1088/1742-5468/ab3457
https://doi.org/10.1038/s41567-019-0702-6
https://doi.org/10.1103/PhysRevE.100.060102
https://doi.org/10.1103/PhysRevLett.109.180602
https://doi.org/10.1103/PhysRevLett.109.180602
https://doi.org/10.1103/PhysRevLett.112.090601
https://doi.org/10.1103/PhysRevLett.112.090601
https://doi.org/10.1038/nphys3230


106

107A. C. Barato and U. Seifert, “Coherence of biochemical oscillations is bounded
by driving force and network topology”, Phys. Rev. E 95, 062409 (2017).

108M. Uhl and U. Seifert, “Affinity-dependent bound on the spectrum of
stochastic matrices”, Journal of Physics A: Mathematical and Theoretical
(2019).

https://doi.org/10.1103/PhysRevE.95.062409
http://iopscience.iop.org/10.1088/1751-8121/ab3a7a
http://iopscience.iop.org/10.1088/1751-8121/ab3a7a


107

Danksagung
Der Weg zur Promotion gleicht in manchen Teilen einer Odyssee an deren

Ende all die Erfolge in Form dieser Abhandlung präsentiert werden. Doch
wäre auch Homers Epos bei weitem weniger heldenhaft ohne die Unter-
stützung die er erfährt. Darum ist es mir ein besonderes Anliegen solchen
Personen am Ende meinen persönlichen Dank auszusprechen.

An erster Stelle gilt mein Dank Herrn Prof. Dr. Udo Seifert, der diese
Arbeit wissenschaftlich und persönlich begleitete, durch die richtigen Fra-
gen stets neue Impulse setzte und dessen physikalische Neugier nicht nur
im Rahmen dieser Arbeit sondern auch persönlich eine Bereicherung war.
Die Jahre am II. Institut für theoretische Physik haben damit tiefe Spuren
hinterlassen.

Ich danke Herr Prof. Dr. Eric Lutz für die freundliche Bereitschaft als
Mitberichter zu fungieren. Weiterhin danke ich Herr Prof. Dr. Sebastian Loth
für die Übernahme des Vorsitzes. Auch für die freundliche und konstruktive
Atmosphäre in der mündlichen Prüfung danke ich vielmals.

Dr. Patrick Pietzonka danke ich für die vielen lehrreichen und inspiri-
erenden Gespräche im Rahmen der Masterarbeit und der Anfangsphase der
Promotion sowie den Austausch darüber hinaus. Durch viele Diskussionen
ergaben sich stets neue Fragestellungen und Erkenntnisse die auch im Rah-
men dieser Arbeit dokumentiert sind.

I thank Dr. Hyun-Myung Chun for his impulses during his year as a
postdoc at the institute. His presence, perspective and background allowed
me to take on a different perspective and tackle the problem from a different
point of view.

Ich danke Frau Anja Steinhauser für Ihre freundliche Art, stets mitdenk-
ende Arbeitsweise und die vielen Entlastungen und aufmunternden Abwech-
slungen im Alltag sowie die Einblicke in die Historie des II. Instituts.

Ich danke meinen IT-Administrationskollegen Matthias Uhl und Timur
Koyuk für die spannenden Arbeiten an Servern, Protokollen und Systemen
sowie den Einsatz auch schwierige Probleme zusammen zu lösen. Matthias
Uhl gebührt als langjährigem Zimmernachbar mit seinem offenen Ohr für
Problem die teils mehr und teils weniger mit der Welt der Physik zu tun
hatten ein besonderer Dank.

Ich danke all den Kollegen die meine Zeit am II. Institut für theoretis-
che Physik auch jenseits der Arbeitszeiten bereichert haben. In dieser fre-
undlichen und freundschaftlichen Atmosphäre konnten Erfolge und Rückschläge
gleichermaßen abgefangen werden. Unterhaltsame Diskussionen boten stets
die Möglichkeit den Kopf frei zu bekommen und den eigenen Horizont zu
erweitern. Im besonderen möchte ich mich hier bei den langjährigen Kolle-
gen Matthias Uhl, Basile Nguyen, Dr. Patrick Pietzonka, Dr. Sebastian Goldt,
Steven Siegel, und Timur Koyuk bedanken.



108

Während meiner Promotionsphase durfte ich auch spannende und lehrre-
iche Abschlussarbeiten betreuen. Ich danke Carl Biermann, Steven Siegel
und Finn Schmolke für ihren Einsatz bei diesen Projekten und den persön-
lichen und wissenschaftlichen Erfahrungen die ich in diesen Phasen sam-
meln durfte.

Zuletzt gilt mein Dank all denen Freunden die mich privat während dieser
Phase begleitet haben. Ich danke Freunden und Bekannten aus Orchestern,
Ensembles, Studium und Schule die mich mit Ratschlägen, Ablenkung und
offenen Ohren an der Universität und darüber hinaus stets unterstützt haben.
Ein besonderer Dank gilt meiner Familie und meiner Partnerin die mir das
Studium und die Promotion ermöglicht haben indem sie mir den Rücken frei
hielten und mich gestärkt haben wenn es nötig war.


	Ehrenwörtliche Erklärung
	Abstract
	Publications
	Zusammenfassung in deutscher Sprache
	Motivation
	Underdamped dynamics and stochastic thermodynamics 
	Describing the random
	The Langevin equation
	Fokker-Planck equation
	The Problem of stochastic integration
	The overdamped limit
	Effect of time-reversal

	Stochastic thermodynamics along single trajectories
	First law of thermodynamics
	The second law of thermodynamics


	Fluctuations in the steady state
	Cumulants: Fluctuations around the average
	Characterizing typical fluctuations
	The generating function

	Path integrals: Fluctuating trajectories
	Assessing the probability of certain trajectories
	Entropy as a measure of irreversibility

	Fluctuation theorems: Characterizing fluctuations
	Large deviations theory: Studying rare fluctuations
	The large deviation principle
	Relation to the cumulants
	Functional large deviation functions - high level LDFs
	The contraction principle and a hierarchy of LDFs

	Bounds on fluctuations: The thermodynamic uncertainty relation
	The Statement of the TUR
	A proof of the overdamped TUR


	Appendix
	Derivation of the functional LDF

	An underdamped finite time TUR?
	Underdamped observables
	Even observables

	Calculating the cumulants for a general observable
	Short-time behavior
	A bound based on the detailed fluctuation theorem

	The simplest model: Free diffusion with drift
	Evolution of the uncertainty product

	Consequences on a putative underdamped TUR

	The underdamped LDF in one dimension
	LDF for free diffusion
	LDF in a periodic potential
	Symmetry of the CGF
	A numerically convenient expansion

	Numerical case study in a periodic potential
	Two different modes of transport
	Manifestation of the different regimes in the LDF

	Qualitative reconstruction of the LDF via Bounds
	A master ansatz
	Overdamped asymptotic bound
	LDF in the overdamped limit
	Underdamped asymptotic bound

	A parabolic bound on the LDF?
	Conclusion

	Thermodynamic bounds for underdamped motion
	Activity bound
	Proof of the bound
	Benchmark using free diffusion

	Virtual pertubative forces
	Bounds based on virtual pertubation
	Rescaling the friction

	A conjecture based on free diffusion 
	The conjecture
	Driven diffusion in a periodic potential  
	Case studies in higher dimensions
	Underdamped diffusion on an torus
	The underdamped Brownian gyrator


	Conclusion

	Beating the overdamped TUR limit
	The Brownian gyrator in a magnetic field
	The model
	Exact expressions of mean value and diffusion coefficient
	Effect of a magnetic field on the TUR

	An illustrative model with magnetic field
	Model and Cumulants
	Effect of the weight on the TUR

	Conclusion

	Concluding Perspective 
	Bibliography

