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Ab initio based method to study structural phase transitions in dynamically unstable crystals, with
new insights on the β to ω transformation in titanium
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We present an approach that enables an efficient and accurate study of dynamically unstable crystals over
the full temperature range. The approach is based on an interatomic potential fitted to ab initio molecular
dynamics energies for both the high- and low-temperature stable phases. We verify by comparison to explicit
ab initio simulations that such a bespoke potential, for which we use here the functional form of the embedded
atom method, provides accurate transformation temperatures and atomistic features of the transformation. The
accuracy of the potential makes it an ideal tool to study the important impact of finite size and finite time
effects. We apply our approach to the dynamically unstable β (bcc) titanium phase and study in detail the
transformation to the low-temperature stable hexagonal ω phase. We find a large set of previously unreported
linear-chain disordered (LCD) structures made up of three types of [111]β linear-chain defects that exhibit
randomly disordered arrangements in the (111)β plane.
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I. INTRODUCTION

Besides thermodynamically stable and metastable phases,
dynamically unstable phases are important for the description
of crystalline materials [1–3]. A dynamically unstable phase
refers to a saddle point in the potential energy surface at
T = 0 K as a function of atomic coordinates. If the atoms are
unconstrained, the smallest deviation from their ideal lattice
positions will allow the system to slide into a neighboring
energy minimum [4]. The attempt to calculate frequencies
of vibration within the harmonic or quasiharmonic approx-
imation in a dynamically unstable lattice reveals the saddle
point in the form of negative eigenvalues of the dynamical
matrix, representing imaginary frequencies. This makes the
(quasi)harmonic methods for calculating phonon frequencies
and hence free energies unworkable. Methods going beyond
such low-temperature approximations are required to treat
dynamically unstable phases. The main aim of this paper is to
introduce an ab initio based method to study structural phase
transitions in dynamically unstable crystals. To demonstrate
our approach we choose the important example of the β (bcc)
phase and its transition to the ω phase (see Fig. 1) exhibited,
e.g., by titanium or zirconium and their alloys.

One possible approach to study dynamically unstable sys-
tems is to employ molecular dynamics (MD) based on inter-
atomic potentials, for example the embedded atom method
(EAM), enabling the simulation of large system sizes and
long simulation times. In this way, the high-temperature sta-
bilization of dynamically unstable phases can be explicitly
investigated. However, the accuracy of interatomic potentials,
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in particular for properties that were not considered in the
fitting procedure or given only small weight, is problematic.
In this respect, ab initio simulations that consider explicitly
electronic interactions are superior. Several approaches have
been developed to overcome the difficulties associated with
dynamically unstable systems and to carry out the neces-
sary sampling of phase space, at least approximately, while
capturing electronic effects at the level of density-functional
theory (DFT) [5]. For example, the self-consistent ab initio
lattice dynamics (SCAILD) method [6,7] or the temperature
dependent effective potential (TDEP) method [8] stabilize the
system by utilizing effective harmonic potentials fitted to the
high-temperature stable phase. Another approach based on
harmonic lattice dynamics stabilizes the dynamically unstable
system by a reduction of the degrees of freedom [9]. The
anharmonic potential cluster expansion [10] as well as the
recently developed piecewise polynomial potential partition-
ing (P4) method [11,12] provide an alternative route to study
dynamically unstable systems by expanding the potential en-
ergy surface in terms of a Hamiltonian composed of effective
cluster interactions or piecewise polynomials fitted to DFT
energies.

Progress has been also made on approaches that enable
full sampling of phase space and numerical determination of
the free energy at the DFT level. For example, the two-stage
upsampled thermodynamic integration using Langevin dynam-
ics (TU-TILD) [13] method uses an optimized interatomic
potential (e.g., EAM) as an efficient bridge for thermody-
namic integration from quasiharmonic to anharmonic free
energy, followed by up-sampling to obtain DFT accuracy. The
efficiency of the TU-TILD potential comes from the specific
fitting procedure where only the most relevant part of the
phase space enters, i.e., DFT MD energies for a single, target

2469-9950/2019/100(10)/104110(11) 104110-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.104110&domain=pdf&date_stamp=2019-09-12
https://doi.org/10.1103/PhysRevB.100.104110


D. KORBMACHER et al. PHYSICAL REVIEW B 100, 104110 (2019)

A 

A 

A 

B 

B 

C 

C 

(111)

Triangular Hexagonal

(111)-(011)

(b) (c)(a)

[1
01

]

[121]- -

-

[1
01

]

[121]- -

-

FIG. 1. Schematic representation of the conventional understanding of the β to ω phase transformation. (a) The stacking sequence of the β

structure (red dots) is ABCABC and AB’AB’AB’ for the ω structure (black dots). The phase transformation occurs by two planes coalescing
to one new plane, e.g., B and C to B’. There are two symmetrically equivalent variants C,A → C’ and A,B → A’. (b) and (c) show the pattern
which arises in the (111)β projection with (b) a triangular topology for planes A, B, C and (c) a hexagonal topology for plane B’ (in ω only).

phase. This fitting strategy is in contrast to the one employed
for the aforementioned conventional interatomic potentials,
where transferability to different phases is desired. In the
two-optimized references thermodynamic integration using
Langevin dynamics (TOR-TILD) [14] method, the concept of
TU-TILD was extended to phase transitions, in particular to
the solid to liquid transition, by introducing two optimized
potentials fitted to DFT MD energies of each of the phases.

In the present paper, we show that the concept of fitting
a tailored interatomic potential is well suited to describe
dynamically unstable systems. We focus on the prototype β

phase in Ti and its transformation to the ω phase neglecting
the small strain contribution [15]. The β to ω transformation
is known to occur in pure Ti at higher pressures (above 8 GPa)
and also in Ti alloys (e.g., upon alloying with V or Nb)
[16–22]. The ω phase plays an important role in the design of
Ti alloys where it can have detrimental [23] or beneficial [21]
properties. We study here the β to ω transformation in an ex-
perimentally unreachable regime, i.e., at zero pressure in pure
Ti, by suppressing the transformation to the α (hcp) phase
through constant volume calculations. This approach renders
the involved DFT MD calculations feasible and the obtained
results can be expected to be qualitatively transferable to the
high pressure and concentrated regimes [24]. Applying this
approach, we find—besides the three variants of the perfect ω

structure (Fig. 1), which are alternative commensurate struc-
tures to the β lattice—numerous highly defective ω structures
in which the stacking sequence is broken.

To properly describe the β to ω transformation including
the defective structures, we extend the fitting strategy that
has been applied in the previous TU-TILD and TOR-TILD
methods. In each of these methods, a potential is fit to a single,
specific phase. Here, we fit our potential over a large enough
temperature range to capture the relevant energetics of both
the β and ω phases, the corresponding transformation, and the
defective structures. Note that this fitting strategy still stands
out of the conventional fitting strategy that aims to achieve
transferability to all relevant phases and defect structures,
i.e., transferability to an extensive part of phase space. In
contrast, our potential is on purpose restricted to a small part
of phase space spanning two, geometrically closely related
phases (see Fig. 1). We show that this potential, referred to as
βω-EAM, offers an important advantage, i.e., efficient access
to large length and timescales, enabling the study of finite size
effects on the transformation behavior. The obtained results

demonstrate that the β to ω transformation is accompanied
by a hysteresis (consistent with the first order character [25])
that vanishes for experimental timescales. The results further
suggest that the highly defective ω structures can be viewed
as a new set of structures, which we refer to as linear-chain
disordered (LCD) structures, that are related to perfect ω

by the formation of linear-chain defects along the [111]β
direction.

II. COMPUTATIONAL DETAILS

The βω-EAM potential was fitted to DFT MD simulations
at different, fixed volumes (corresponding lattice constants:
3.24, 3.27, and 3.31 Å) and different temperatures (850, 1350,
1600, and 1941 K) in a 3 × 3 × 3 cubic bcc supercell with
54 atoms. The chosen temperature range covers the stability
region of the β and ω phase. In particular, at 850 K the
defective ω structure is observed as discussed in detail in
Sec. III A. A total of 1200 energies was used in the optimiza-
tion and a resulting mean-square deviation of 10.6 meV/atom
was obtained. Fitting was performed using the MEAMFIT2
code [26,27]. An attempt was made to optimize a reference-
free modified EAM (RF-MEAM) potential [26] but no im-
provement was found upon the EAM parametrization. The
optimized parameters of the βω-EAM potential are given in
Ref. [28].

The DFT MD simulations were performed using the Vi-
enna ab initio simulation package (VASP) [29,30] and the

TABLE I. Parameters used in the DFT MD calculations. All
calculations were performed using Fermi-Dirac broadening with a
parameter of 0.1 eV. The first row corresponds to the parameters used
for the fitting database.

Sec. Fig. Supercell Atoms Initial structure Sim. time (ns)

— — 3 × 3 × 3 54 β 0.025
III A 2 3 × 3 × 3 54 β 0.025
III A 5 3 × 3 × 3 54 β, perfect ω 0.025
III B 7 6 × 6 × 6 432 β 0.005
III B 8 2 × 2 × 2 16 β 0.05
III B 8 3 × 3 × 3 54 β 0.025
III B 8 4 × 4 × 4 128 β 0.005
III B 8 6 × 6 × 6 432 β 0.005
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TABLE II. Parameters used in the βω-EAM MD simulations.

Sec. Fig. Supercell Atoms Initial structure Sim. time (ns)

III A 5 3 × 3 × 3 54 β 0.05
III B 7 6 × 6 × 6 432 β, LCD 0.05
III B 8 2 × 2 × 2 16 β 0.05 / 50
III B 8 3 × 3 × 3 54 β 0.025 / 50
III B 8 4 × 4 × 4 128 β 0.01 / 50
III B 8 6 × 6 × 6 432 β, LCD 0.01 / 50

projector augmented wave (PAW) method [31] as imple-
mented in VASP. The generalized-gradient approximation with
the Perdew-Burke-Ernzerhof parametrization [32] was used
for the exchange-correlation functional. A PAW potential
including the semi core p orbitals with an electronic configu-
ration of 3p63d24s2 was chosen [33]. Further details are given
in Table I.

The βω-EAM MD simulations were performed using the
Large-scale atomic/molecular massively parallel simulator
(LAMMPS) [34]. Further details are given in Table II.

All MD simulations were performed in an NV T ensemble,
i.e., at constant volume conditions. To control the temperature
during the MD simulation the Langevin thermostat with a
friction parameter of 0.01 fs−1 was used. The time step for
all MD simulations was set to 5 fs. Except for the calculations
for the DFT fitting database, we used the equilibrium volume
of the β phase (lattice constant: 3.253 Å). The constant vol-
ume conditions prevent the transformation to the α Ti phase.
This transformation requires a much larger strain deformation
compared to the β to ω transformation which requires only an
atomic shuffling [15]. As we will discuss, a transformation to a
constrained cubic hcp structure (excluding strain deformation)
is suppressed as well.

III. RESULTS AND DISCUSSION

A. The β to ω phase transformation from DFT

We start with an analysis of the β to ω transformation
using “pure” DFT MD simulations in a 3 × 3 × 3 cubic bcc
supercell with 54 atoms. This supercell size enables DFT MD
simulations in a realistic time frame. While, as we will show
later, the size of this cell is too small to capture all details
of the transformation its purpose is twofold: (i) to obtain a
basic understanding of the transformation fully from DFT and
(ii) to set a well-defined reference for fitting and testing the
βω-EAM potential.

Figures 2(a)–2(d) show the atomic distributions of the DFT
MD runs projected onto the (001)β plane at different tem-
peratures. Averaged mean positions are shown by the black
dots in Figs. 2(e)–2(h). The red dots represent the equilibrium
coordinates of the β (bcc) structure. At higher temperatures,
e.g., 1941 K, there is virtually no difference between the initial
β and the final mean positions confirming the stability of
the β phase. At lower temperatures, e.g., 875 K, the mean
positions of some atoms are shifted. Thus, whereas at high
temperatures the β structure is stabilized by anharmonicity, a
secondary structure arises at low temperatures. The obtained
low-temperature structure corresponds only in some cases to
the perfect ω structure (Fig. 1) as known from previous works
[15,25,35]; in most cases, when initializing with β positions,
it is a defective ω structure.

To better reveal the ω structure, the projection plane needs
to be changed from (001)β to (011̄)β , with the actual plane
depending on the direction of the symmetry breaking. The
modified perspective is shown in Fig. 3(a) for the initial and
mean positions of the MD run at 875 K. For this temperature
the simulation does reproduce the transformation from the β

to the perfect ω structure. The perfect ω unit cell is highlighted
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FIG. 2. Analysis of the DFT MD simulations in a 3 × 3 × 3 cubic bcc supercell with 54 atoms. [(a)–(d)] 2D histograms of the atomic
distributions projected onto the (001)β plane at representative temperatures (T melt

exp = 1941 K is the experimental melting point). [(e)–(h)]
Corresponding mean atomic positions (black dots) in comparison to the initial β positions (red dots). Note that for this supercell and projection
three mean positions overlap for the high-temperature β structure in (h). Two of these mean positions are shifted and become visible in the
low-temperature ω structures in (e) and (f).
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FIG. 3. Illustration of the perfect (top row; ωperf ) and defective (bottom row; ωdef ) ω structure. [(a) and (d)] Projection onto the (011̄)β
plane of the initial β positions (red dots) and mean positions (black dots) from the DFT MD simulations in a 3 × 3 × 3 supercell with 54
atoms at 875 K (perfect ω) and 350 K (defective ω), respectively. The black rectangles highlight a perfect and defective ω unit cell, enlarged in
(b) and (e), and illustrated three-dimensionally in (c) and (f). The gray dot in (d) indicates an atom lying in a plane behind the cell highlighted
by the black rectangle; this atom is therefore not shown in (e) and (f).

by the black rectangle in Fig. 3(a), and enlarged in Figs. 3(b)
and 3(c). As compared to the β structure, one out of three
atoms remains in the equilibrium position, whereas two out
of three atoms perform a shift along the [111]β direction by a
distance of 1/6 dNN, with dNN = 2.82 Å the nearest-neighbor
distance in β. In the employed 54 atomic supercell, 18 atoms
(one third) remain in β positions and 36 atoms (two-thirds)
perform the shift.

Most of the low-temperature MD runs starting from β

positions do not show the perfect ω structure, but instead a
defective ω structure. Mean positions for such a structure are
shown in Fig. 3(d) with the black rectangle highlighting an ω

unit cell containing a defect. The enlarged representation of
the defective ω unit cell in Figs. 3(e) and 3(f) clarifies that one
of the two middle atoms (labelled “2”) is shifted by 1/3 dNN

into the opposite direction as compared to the corresponding
displacement for a perfect ω cell. This opposite shift occurs in
all consecutive ω cells along the [111]β direction as visualized
in Fig. 4(a) (gray dashed lines). Figure 4(a) makes also clear
that not every ω unit cell in a defective ω structure contains a
defect, only every third. Moreover, there is a regular pattern of
how the defective and perfect ω unit cells are arranged within
the (111)β plane as visualized in Fig. 4(b).

Based on these geometric considerations it seems appropri-
ate to refer to the defects occurring in a defective ω structure
as linear-chain defects along the [111]β direction. There are
three linear-chain defects in the 3 × 3 × 3 supercell. (Note
that these three defects are of the same type. Larger supercells
will enable the simultaneous occurrence of different types
of linear-chain defects; Sec. III C.) Every linear-chain defect
introduces small relaxations in the mean positions of the
neighboring atoms within the (111)β plane as visualized in
Fig. 2(e) (see the deviations from the diagonal arrangement
of the black dots next to the linear-chain defects represented

by the gray dashed lines). The regular pattern observed in
the (111)β plane could be interpreted as an ordering of the
defects, but we will show (Sec. III C) that this pattern is
stabilized only by the small supercell size.

To be able to conveniently distinguish the different struc-
tures from each other as a function of temperature, we intro-
duce a structure descriptor. One could assume that the phonon
eigenvector associated in earlier works [15,25,35] with the β

to ω transformation would be appropriate for this purpose.
However, such a choice works well only for the perfect ω

structure, but not for the defective one. It is also not practical
to use the displacement vector corresponding to the defective
ω structure as a descriptor, because the arrangement of the
linear-chain defects changes for larger system sizes.

The most effective structure descriptor turns out to be

� = 1

N

N∑
i

�i, �i = ∥∥〈Ri〉T − Rβ
i

∥∥
[111]β

, (1)

where N is the number of atoms in the supercell, 〈Ri〉T the
mean position of atom i at temperature T , Rβ

i the equilibrium
position of atom i in the β structure, and ‖v‖[111]β denotes the
norm of the projection of a vector v onto the symmetry broken
direction [111]β . The equilibrium positions Rβ

i are adjusted
for each run, i.e., out of the set of symmetrically equivalent
equilibrium β positions the ones closest to the mean positions
〈Ri〉T are chosen as Rβ

i . The atomic displacement �i is
illustrated in Fig. 3(b) for a perfect and in Fig. 3(e) for a
defective shift. Note that �i takes only positive values.

The temperature dependence of the structure descriptor
for the DFT MD simulations in the 3 × 3 × 3 bcc supercell
is shown in Fig. 5. The gray squares indicate results of
the simulations discussed so far, i.e., runs for which the β

positions were used as starting positions. We have performed
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FIG. 4. Illustration of the defective ω structure found for a 3 × 3 × 3 supercell with 54 atoms employing a projection onto the (a) (011̄)β
and (b) (111)β plane. Defective ω unit cells containing a linear-chain defect are displayed in gray color and perfect ω cells in white. The atoms
shown in (a) are emphasized in (b) by the blue colored line. The red lines in (b) emphasize the contour of the 3 × 3 × 3 supercell. [The small
relaxations caused by the linear-chain defects are not shown in this figure; see Fig. 2(e) for that purpose.]

an equally dense sampling of the descriptor starting the MD
simulations with perfect ω positions. Corresponding results
are shown by the black dots in Fig. 5 and, similarly as for
the gray squares, a transition regime around 1000 K can be
identified. Below the transition, the data points are confined
to two plateaus corresponding to perfect and defective ω.

For a perfect ω structure, the descriptor value is

�perf = 1
3

(
0 + 1

6 dNN + 1
6 dNN

) = 1
9 dNN = 0.31 Å. (2)

For a defective ω structure in the 3 × 3 × 3 supercell with 54
atoms, 6 atoms perform shifts that are larger by 1

6 dNN and thus
the descriptor amounts to

�def = �perf + 6

54

(
1

6
dNN

)
= 0.37 Å. (3)

FIG. 5. Temperature dependence of the structure descriptor �

[Eq. (1)] for a 3 × 3 × 3 cubic bcc supercell with 54 atoms. Dark
gray squares represent DFT MD simulations initialized with β

positions and black dots with perfect ω positions. The red line is
an average over the gray squares. The orange line shows the corre-
sponding result for the βω-EAM potential. The horizontal dashed
green line represents the descriptor value, �β→ω, used to identify the
β to ω transformation. The horizontal dashed blue lines correspond
to descriptor values of the β structure, the perfect ω structure (ωperf ),
and the defective ω structure (ωdef ).

When defective ω structures form, we observe that all atoms
undergo a small correlated shift along the symmetry broken
[111]β direction, opposite to the movement of the defective
atoms. This shift is needed to conserve the center of mass of
the supercell. To have a well-defined descriptor we subtract
this shift from the mean positions prior to applying Eq. (1) to
defective ω structures.

Whether a perfect or defective ω structure is observed (at
low temperatures) depends on the starting positions of the MD
simulations. When starting with perfect ω positions (black
dots in Fig. 5) the thermodynamically averaged structure
remains in a perfect ω configuration. When starting with β

positions (gray squares), a defective ω structure is observed
in most runs and only a small fraction of the runs (about
10%) shows the perfect ω structure. To clarify this behavior,
we have computed the T = 0 K DFT energies of the relaxed
perfect and defective ω structures, and the DFT energy barrier
between them with nudged elastic band calculations [36,37].

Figure 6 shows that the perfect ω structure is more stable
than the defective one by only 11 meV/atom at T = 0 K.
Thus while the perfect ω structure is the thermodynamic equi-
librium state at very low temperatures, the difference in total
internal energy per atom is already less than 1

2 kBT at ambient

FIG. 6. DFT results for T = 0 K nudged elastic band calcula-
tions between the perfect and defective ω structures; ωperf and ωdef ,
respectively.
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temperature. We also learn from Fig. 6 that the perfect and the
defective ω structures are separated by an energy barrier of
about 50 meV/atom. This is sufficient to inhibit a transition
in either direction within the simulation time. Hence, starting
with perfect ω positions the system remains in a perfect ω

structure below the transition to β as revealed by the black
dots lying on the lower plateau in Fig. 5 (� = 0.31 Å).

The reason why the defective ω structure forms in most
cases when starting the MD from β positions (gray squares
lying on the plateau of � = 0.37 Å) is related to degeneracy.
Coming from the β structure the number of symmetrically
equivalent configurations is 6 times higher for the defective
ω structure than for the perfect one. The factor of 6 is because
the linear-chain defect could run through either of the two
middle atoms in the ω unit cell, which provides a factor 2,
and the entire pattern in Fig. 4(a) could be placed in three
equivalent positions. The higher number of target configura-
tions makes it statistically more likely for the system to reach
the defective ω structure from the β positions. Nevertheless, a
few of the simulations do end up in the perfect ω structure.

Inspection of the data in Fig. 5 above the transformation
temperature, i.e., 1000 K and higher, reveals the stability of
the β phase. A perfect bcc structure at T = 0 K would give
exactly zero but thermal vibrations in combination with the
limited simulation times prevent the descriptor from reaching
exactly zero. A time dependent analysis of the structure
descriptor at higher temperatures reveals in some simulations
of the 3 × 3 × 3 supercell a hopping between symmetrically
equivalent β structures [cf. Figs. 3(b) and 3(e), β and β ′].
See Ref. [28] for details. However, the hopping is entropically
suppressed in larger supercell sizes.

In a recent study, Kadkhodaei et al. [11] likewise inves-
tigated bcc Ti in a 3 × 3 × 3 supercell using DFT. They ob-
served deviations of the atomic trajectories from the perfect ω

structure at 1200 K. We interpret their results as corresponding
to the defective ω structure as analyzed above. Kadkhodaei
et al. [11] suggested a possible relation with the α (hcp)
phase of Ti that is experimentally known to be stable below
1155 K. We have therefore investigated whether a full T =
0 K relaxation of the defective ω structure (using the mean
positions from our analysis as a starting point), including
atomic as well as cell shape and volume relaxations, would
show a tendency towards the α phase. We find, however,
that the relaxation is negligible lowering the energy by only
11 meV/atom. We will show in Sec. III C that a geometric
connection to the hcp structure can be established for larger
supercells.

B. Finite size and finite time effects

The analysis of the β to ω transformation performed in
the previous section was based on the 3 × 3 × 3 supercell
with 54 atoms. This supercell has the special property of
being commensurate with the β and ω structures (both perfect
and defective), and enabled us to determine readily some
properties of these phases at the DFT level of accuracy. It is,
however, essential to investigate the effect of supercell size on
the transformation behavior, which requires MD simulations
for larger supercells. Direct DFT MD simulations in larger su-
percells quickly become prohibitive due to the asymptotically

FIG. 7. Temperature dependence of the structure descriptor �

[Eq. (1)] for a 6 × 6 × 6 bcc supercell with 432 atoms, starting
the MD with β positions (dark gray squares) and positions of one
particular defective ω structure (black dots). The correspondence
to linear-chain disordered (LCD) structures will be discussed in
Sec. III C. For comparison purposes similar simulation times are
used for both the DFT (5 ps) and βω-EAM (50 ps) calculations. A
hysteresis in the transition temperature of about 100 K is observed.

cubic scaling of CPU time with the number of atoms. We will
show in the following that the βω-EAM potential provides a
viable alternative for studying much larger supercell sizes and
also longer simulation times.

We have first investigated how well the βω-EAM potential
reproduces the characteristic features of the DFT MD simu-
lations for the 3 × 3 × 3 supercell. The orange line in Fig. 5
shows the averaged descriptor computed with the βω-EAM
potential, using β positions as the initial positions, i.e., the
orange line can be directly compared with the red line repre-
senting DFT. The β structure is correctly stabilized at higher
temperatures and it correctly transforms to the defective ω

structure when the temperature is reduced. Qualitatively the
shape of the βω-EAM curve is close to DFT, although the
transition is underestimated by about 200 K.

Using the βω-EAM potential, it is a matter of CPU min-
utes to calculate the temperature dependence of the structure
descriptor for larger supercell sizes. An example for the
temperature dependence of the descriptor for a 6 × 6 × 6
supercell with 432 atoms is shown in Fig. 7. The βω-EAM
result (orange line) is close in shape and also in the transition
temperature to the DFT curve (red line and dots), the latter
requiring many orders of magnitude more computational time
(≈ 30 000 CPU hours).

For this larger supercell we observe a smaller transforma-
tion temperature (≈ 660 K) and also a more sharply defined
transformation regime. Further we see a significant impact
of the supercell size below the transformation temperature.
Whereas for the smaller 3 × 3 × 3 supercell the descriptor
was confined to two plateaus (Fig. 5), the descriptor for the
6 × 6 × 6 supercell shows a range of different values; gray
squares in Fig. 7. The reason for the scatter in the descriptor is
that larger supercell sizes enable a wealth of new defective
ω structures characterized by different linear-chain defect
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arrangements (discussed in Sec. III C), which can be reached
when starting the MD with β positions. Only defective ω

structures are observed as indicated by the blue shading
(labelled “LCD structures”), whereas the perfect ω structure
no longer appears. This finding can be explained by the much
higher number of defective ω structures.

To investigate the impact of the starting positions, we have
selected one specific defective ω structure using it to initialize
the MD simulations. The resultant descriptor is shown by
the black dots in Fig. 7. Below the transformation temperature,
the system remains located in the initial defective ω structure
as revealed by the single plateau. This indicates that transfor-
mations between different defective ω structures are relatively
rare, similarly to the 3 × 3 × 3 supercell.

From Fig. 7, we see that the transformation temperature
is about 775 K for the simulations initiated with a defective
ω structure (black dots). This transformation temperature
is about 100 K higher than the transformation temperature
obtained with β initial positions which is about 660 K (orange
line). Thus we observe a hysteresis as highlighted by the gray
shaded region in Fig. 7. The lower transformation temper-
ature can be associated with a martensite start temperature
Ms and the higher with an austenite finish temperature Af .
As discussed below, the βω-EAM potential can be used to
show that by extending the simulation time the extent of the
hysteresis is reduced, such that the hysteresis would vanish if
we extrapolated to experimental timescales.

Let us first quantify the impact of the supercell size on
Ms and for comparison purposes we use simulation times
comparable to our DFT runs (5, . . . , 50 ps). We define Ms

as the temperature where the descriptor value becomes larger
than 10% of the difference between the value for the defective
ω structure and the value for the β phase (see green dashed
�β→ω line in Figs. 5 and 7). The convergence of this temper-
ature with respect to the supercell size and simulation time is
shown in Fig. 8. The resulting Ms temperature is shown by the
thin orange line with open circles for the βω-EAM potential
and by the red line with open squares for DFT. The “error
bars” reflect the width of the transition which is significant for
small supercells and decreases for larger ones (therefore the
error bars are neglected for larger supercells).

We observe a rather strong variation in the Ms temperature
of a few hundred degrees Kelvin for the smaller supercell
sizes. In particular, the commensurate 3 × 3 × 3 supercell
shows up as a peak in the Ms temperature. This peak is
somewhat stronger for the DFT curve than for the βω-EAM
one, but overall the βω-EAM potential reproduces well the
dependence with supercell size.

The quality of the βω-EAM potential in describing the
β to ω transformation is reflected by comparison to results
obtained with a modified EAM (MEAM) potential available
from literature [18]. The potential of Ref. [18] was obtained
by fitting to a wide range of properties, e.g., energies, elastic
constants and forces for a variety of Ti phases and has been
in particular shown to reproduce accurately the experimental
temperature-pressure phase diagram of Ti, including the α, β,
and ω phases. The Ms temperature from β to ω calculated
with this potential is shown in Fig. 8 by the gray line. While
the qualitative dependence with supercell size is reasonably
close to the βω-EAM and DFT curves, the absolute Ms

FIG. 8. Supercell size dependence of the β to ω transformation
temperature (Ms) employing DFT (red), our optimized βω-EAM
potential (orange; both thin and thick lines), and a MEAM potential
from literature (gray) [18]. The thin orange line with open circles
and the gray line correspond to DFT-accessible simulation times
(5, . . . , 50 ps) and the thick orange line with dots corresponds to
converged simulation times of 50 ns. For the 6 × 6 × 6 supercell
(432 atoms), the βω-EAM transformation temperature is 613 ± 13 K
after 10 ps (matching well the corresponding DFT value) and 750 ±
10 K after 50 ns. The error bars indicate the transition region (cf.
Fig. 5) which decreases with increasing system size. The inset shows
the convergence of Ms and Af in the 6 × 6 × 6 supercell with the two
vertical dashed lines indicating DFT-accessible (left) and converged
simulation times (right).

temperatures are overestimated for the larger cell sizes. Thus,
for the particular application to the β to ω transformation, the
present βω-EAM potential is better suited.

Having analyzed the Ms dependence on the system size
we now turn to the question of how Ms and also Af depend
on the simulation time, i.e., how the hysteresis changes with
longer simulation times. Direct DFT MD simulations are
computationally prohibitive for that purpose, specifically for
the larger supercells, and the availability of the accurate βω-
EAM potential is therefore critical.

Results for the 6 × 6 × 6 supercell are shown in the inset
of Fig. 8. With increasing simulation time the hysteresis
decreases, and the two temperatures Ms and Af converge
towards a single temperature, Tconv ≈ 760 K. After a simu-
lation time of 50 ns, Ms and Af are converged to within
10 K. The convergence behavior is asymmetric: Af converges
comparably quickly to within 1 K already within the DFT
simulation timescale (ps), while the convergence for Ms is
significantly slower, requiring simulation times on the ns
scale to converge as well as Af . It is therefore important
to consider carefully the simulation-time dependence when
analyzing the transformation behavior. Fully time-converged
results for the transformation temperature are shown in Fig. 8
by the orange dots, revealing that the 6 × 6 × 6 supercell
already gives a transformation temperature that is converged
well with supercell size (750 K versus 760 K for the 9 × 9 × 9
supercell).
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FIG. 9. Example of a defective ω structure in a 6 × 6 × 6 supercell with 432 atoms in a (a) (011̄)β and (b) (111)β projection. The cells
shown in (a) are highlighted in (b) by the blue contour. The red lines in (b) emphasize the contour of the 6 × 6 × 6 supercell. Three possible
[111]β linear-chain defects in a ω unit cell are present for this ω structure: (1) one of the middle atoms shifted downward by 1/3dNN with dNN

the nearest neighbor distance in β (gray striped cells), (2) the other middle atom shifted upward by 1/3dNN (gray shaded cells), and (3) corner
atom shifted by 1/2dNN [yellow line in (a) and yellow dots in (b)].

C. Linear-chain disordered (LCD) structures

To understand the geometric nature of the observed de-
pendence of the transformation temperature on the supercell
size, we have analyzed the mean MD positions from the
various supercells. A main outcome of this analysis is that the
finite sizes of the smaller supercells and the accompanying
periodic boundary conditions impose geometric restrictions
on the ω phase. These restrictions are gradually lifted when
going to larger system sizes. One aspect is related to the
commensurability of the β and ω structures. For 3n × 3n × 3n
supercells where n is an integer, the β and ω structures are
perfectly commensurate. For noncommensurable supercells
(e.g., 4 × 4 × 4 or 5 × 5 × 5) geometric incompatibilities are
compensated by interface defects between the ω unit cells and
a shear strain component along the [111]β direction. The ω

phase is destabilized and the transformation temperature low-
ered. Further details are given in Ref. [28]. The contribution
of interface defects becomes however readily less important
with increasing supercell size. A much more important aspect
is related to the formation of [111]β linear-chain defects in
the ω phase, for which the number of different types and
spacial arrangements increases. This aspect will lead us to
the definition of a new set of structures, the linear-chain
disordered (LCD) structures.

For the supercell size comprising 6 × 6 × 6 cubic bcc unit
cells with 432 atoms, one may have expected a similar trans-
formation behavior as for the 3 × 3 × 3 supercell. The 6 ×
6 × 6 supercell is commensurate, containing exactly 432/3 =
144 ω unit cells, thus in principle not requiring any geometric
defects. Indeed, as expected there are no interface defects and
no shear strain present. However, there is a significant number
of [111]β linear-chain defects present and, importantly, these
linear-chain defects exhibit new characteristics as compared
to the 3 × 3 × 3 supercell: (i) different types of linear-chain
defects can occur concurrently in the same supercell and (ii)
there are significantly more arrangements of the linear-chain
defects in the symmetry-broken (111)β plane.

Figure 9 shows an example of the three types of [111]β
linear-chain defects feasible for the 6 × 6 × 6 supercell and
a possible arrangement in the (111)β plane. Two types of
these linear-chain defects have been observed already for the
3 × 3 × 3 supercell, however not simultaneously in the same

supercell. They correspond to the two inner atoms of the ω

unit cell shifted in opposite [111]β directions (gray stripes
and shading in Fig. 9). These linear-chain defects can be
assigned an up or down direction as emphasized in Fig. 9(a)
by the arrows. The third, new linear-chain defect corresponds
to a shift of a corner atom of the ω unit cell by dNN/2
along the [111]β direction (yellow lines and dots in Fig. 9).
The linear-chain defects are arranged in a specific pattern
in the (111)β plane that preserves translational symmetry of
the supercell. There are many ways of placing this pattern
inside the 6 × 6 × 6 supercell. Moreover, the pattern shown
in Fig. 9(b) is just one particular example among many. In
other 6 × 6 × 6 supercell simulations (different temperatures
or initial configurations), we observe different, symmetrically
inequivalent patterns.

The difference in the linear-chain defects and their ar-
rangements between the 3 × 3 × 3 and 6 × 6 × 6 supercells
is associated with their different transformation temperatures
as observed in our MD simulations (Fig. 8). The fact that
the transformation temperature for the 6 × 6 × 6 supercell is
lower suggests that the defective ω structure in this supercell
is destabilized energetically as compared to the defective
ω structure in the 3 × 3 × 3 supercell. Put differently, the
artificial long-range order imposed by the periodic boundary
conditions in the 3 × 3 × 3 supercell stabilizes the defective
ω structure and thus increases its transformation temperature.

For supercells larger than 6 × 6 × 6, the number of types
of [111]β linear-chain defects remains at three, but the number
of the different arrangements of the defects rapidly increases.
A few representative examples are shown in Fig. 10 for
a 12 × 12 × 12 supercell. There seems to be no obvious
correlation between the linear-chain defects over longer dis-
tances within the supercell. The linear-chain defects rather
appear in randomly disordered arrangements and we therefore
define the set of such structures as linear-chain disordered
(LCD) structures. When an LCD structure is formed, atoms
move randomly between the original triangular and hexagonal
planes characterizing β and ω (cf. Figs. 1(b) and 1(c); more
details are given in Ref. [28]). The gross effect of the ran-
domness in the LCD structures on the overall energetics and
dynamics becomes smaller beyond the 6 × 6 × 6 supercell
as evidenced by the small changes in the transformation
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LCD structures
(representative samples)

cubic αperfect ω

(111)
[121]

[1
01

]

FIG. 10. Representative examples of LCD structures obtained from MD simulations in a 12 × 12 × 12 supercell at T = 500 K. The three
types of possible linear-chain defects are the same as in the 6 × 6 × 6 supercell. In contrast to the 6 × 6 × 6 supercell the up and down
linear-chain defects can occur in the same ω unit cell (dark gray shaded cells). The perfect ω structure (left) contains no linear-chain defects
and the cubically constrained α structure (right) is made of long-ranged ordered defects. Note that the statistical weight of the LCD structures
is large compared to the perfect ω and cubic α structure and that the latter two thus do not occur in the simulations.

temperature (Fig. 8). A 6 × 6 × 6 supercell is therefore a rea-
sonably well converged supercell size to study the properties
of LCD structures.

Based on the concept of the newly introduced LCD struc-
tures we can draw a connection to the α (hcp) phase. For a
specific arrangement of the linear-chain defects with strong
long-range order as shown in Fig. 10 to the right, we ob-
tain a cubically constrained α structure, i.e., by applying
an additional strain deformation we would reach the actual
hexagonal α phase. Such a transformation is related to the
Silcock pathway from α to ω as studied in Ref. [38]. Note
that the cubic α structure is only commensurable with the
β structure for a 12n × 12n × 12n supercell (n = integer).
The structure descriptor of the cubic α structure corresponds
to �α = 0.704 Å and gives an upper bound to structure
descriptors for the LCD structures. The lower bound is given
by the perfect ω structure (cf. Fig. 7). We stress, however, that
neither the perfect ω nor the cubic α structure are found in
our simulations. The statistical weight of the LCD structures
strongly dominates over these special structures.

IV. CONCLUSION

We have demonstrated an efficient atomistic approach
to study dynamically unstable systems with DFT accuracy
over the full temperature range, i.e., including the high- and
low-temperature stable phases as well as the transformation
regime. At the core of this approach is an interatomic po-
tential that is fitted to the most relevant part of the phase
space, i.e., a set of DFT MD energies for the high- and low-
temperature phases. Transferability to other parts of the phase
space (e.g., other phases) is not sought, which is in contrast
to conventional interatomic potential fitting. With our fitting
strategy, the potential provides better accuracy for the target
quantities than potentials that are fitted to be more versatile.
In particular, it provides accurate transformation temperatures
and atomistic features of the transformation.

The parametrization employed here for the interatomic
potential has been the embedded atom method (βω-EAM
potential) with the fitting to DFT MD energies performed

using the MEAMFIT2 code [26,27], which is freely avail-
able for academic use. Other parametrizations could be em-
ployed as well, for example modified EAM which is also
available in MEAMFIT2 (in a reference-free implementation).
Other possibilities are Gaussian approximation potentials [39]
or machine-learning potentials [40]. Such more advanced
parametrizations offer a higher degree of flexibility and thus
the possibility for further accuracy improvement, albeit at
an increase in fitting complexity and computational costs.
Since any of these potentials are orders of magnitude faster
to compute than DFT, they enable one to study the impact
of finite size and finite time effects on the transformation
behavior, both of which turn out to be critical.

We have applied our approach to the prototypical dynami-
cally unstable β (bcc) phase in Ti and studied its transforma-
tion to the low-temperature ω phase. Our analysis has led us
to the introduction of a new set of structures, the linear-chain
disordered (LCD) structures. These structures are suppressed
by the periodic boundary conditions in the small supercells
that are accessible with DFT calculations. At least a 6 × 6 × 6
supercell is required to provide enough freedom to the system
to produce LCD structures. The LCD structures can be derived
from the perfect ω structure by considering three types of
linear-chain defects along the [111]β direction. These linear-
chain defects correspond to three different shifts of atoms in
the primitive ω unit cell. These are shifts of ±1/3 or 1/2
of the nearest neighbor distance in β, precisely the three
possible shifts that preserve the surrounding (111)β planes,
corresponding to the three variants of ω in this direction. The
linear-chain defects appear randomly disordered when viewed
in the (111)β plane. With the concept of the linear-chain
defects also a cubically constrained α (hcp) phase can be
produced theoretically. Neither the perfect ω nor the cubic α

structure are observed in the simulations due to the statistical
dominance of the LCD structures.

Based on the present results it is not possible to say
whether the linear-chain defects will persist for experimental
timescales and macroscopic system sizes. However, for all our
simulation times we observe that the linear-chain defects are
quenched in.
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Another interesting open question relates to the nucleation
process of the linear-chain defects along the [111]β direc-
tion. Our results indicate a correlated movement during the
creation of a linear-chain defect. For macroscopically large
system sizes such a correlated movement will be entropically
suppressed. We expect that a localized nucleation process will
take over, possibly enhanced by vacancies. It is conceivable
that a vacancy-assisted migration of the linear-chain defects
may be related to the anomalous diffusion behavior observed
in Ti [41].

We expect that the results presented here for the prototypi-
cal β Ti phase apply to the ω transition in real alloys of Ti and
Zr, in which the ω phase is known to form and to contribute
to mechanical properties depending on alloy composition and
heat treatment [42,43]. In general terms, such defect formation

may occur in other kinds of dynamically unstable bcc based
systems. Preliminary results support this statement [44].
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