PHYSICAL REVIEW B 92, 134107 (2015)

Development and application of a Ni-Ti interatomic potential with high predictive accuracy
of the martensitic phase transition
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Phase transitions in nickel-titanium shape-memory alloys are investigated by means of atomistic simulations.
A second nearest-neighbor modified embedded-atom method interatomic potential for the binary nickel-titanium
system is determined by improving the unary descriptions of pure nickel and pure titanium, especially
regarding the physical properties at finite temperatures. The resulting potential reproduces accurately the
hexagonal-close-packed to body-centered-cubic phase transition in Ti and the martensitic B2-B19’ transformation
in equiatomic NiTi. Subsequent large-scale molecular-dynamics simulations validate that the developed potential
can be successfully applied for studies on temperature- and stress-induced martensitic phase transitions related
to core applications of shape-memory alloys. A simulation of the temperature-induced phase transition provides

insights into the effect of sizes and constraints on the formation of nanotwinned martensite structures with multiple
domains. A simulation of the stress-induced phase transition of a nanosized pillar indicates a full recovery of the
initial structure after the loading and unloading processes, illustrating a superelastic behavior of the target system.
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I. INTRODUCTION

Shape-memory alloys are a class of materials with the
property of recovering their original shape upon heat treat-
ment (shape-memory effect) and of sustaining large elastic
strains (superelasticity). These unique properties make shape-
memory alloys into widely used functional materials in many
applications [1]. Among the shape-memory alloys discovered
so far, nickel-titanium (NiTi) shape-memory alloys with
equiatomic or nearly equiatomic compositions have received
great attention owing to their excellent mechanical properties,
corrosion resistance, biocompatibility, and their ability to
transform close to room temperature [2]. In NiTi alloys,
the shape-memory effect and superelasticity result from the
reversible temperature- or stress-induced martensitic phase
transition between cubic B2 (austenite) and monoclinic B19’
(martensite), respectively [2].

Recently, the application of NiTi shape-memory alloys
has been extended to micro- and nanoelectromechanical
systems (MEMS/NEMS) [3.4]. To this end, the properties
of miniaturized NiTi shape-memory alloys such as nanosized
wires, pillars, and particles are of great interest as they can
differ significantly from their bulk counterparts. Experimental
studies focusing on the exceptional characteristics of phase
transitions in miniaturized NiTi alloys are therefore ongo-
ing [3,4]. To supplement experiments, the theoretical study
of phase transitions by means of atomistic simulations such
as molecular dynamics (MD) is highly desirable to provide a
detailed understanding of the underlying mechanisms.

To enable large-scale MD simulations of phase transitions
in NiTi shape-memory alloys, the availability of a reliable
interatomic potential is of crucial importance. Surprisingly,
presently available interatomic potentials cannot sufficiently
well reproduce the phase transitions in the NiTi system.
Interatomic potentials were developed by Farkas et al. [5]
based on the embedded-atom method (EAM) [6] and by
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Lai and Liu [7] based on the Finnis-Sinclair model [8].
These potentials are not able to reproduce the observed phase
transitions [9], as they were developed by focusing on the
properties of the ternary Ni-Ti-Al alloy [5] and amorphous
alloys [7]. Two further potentials were developed by Saitoh
et al. [10] and Ishida and Hiwatari [11] based on the modified
EAM (MEAM) [12] with a focus on the phase transitions in
NiTi. However, these potentials were not found to satisfactorily
reproduce the reversible temperature- and stress-induced phase
transitions and crystallography of related phases [9].

Recently, the Finnis-Sinclair potential by Lai and Liu [7]
was independently modified by Mutter and Nielaba [9] and
Zhong et al. [13]. The authors [9,13] clarified the occurrence
of a reversible temperature-induced phase transition; how-
ever, the motif of the low temperature martensite structure
was clearly different from the experimentally reported B19’
structure. As a direct consequence of the wrongly predicted
martensite structure, twinning—being the most important de-
formation mechanism in shape-memory alloys [2,3]—cannot
be properly reproduced. For example, one potential [9] predicts
the martensitic transition without the occurrence of any
twinning, and the other potential [13] predicts an unphysical
twinning behavior with a negative twin boundary energy.

In the present paper, we have developed a potential based on
the second nearest-neighbor (2NN) MEAM model [14—16] and
applied it to study the phase transitions of NiTi shape-memory
alloys. The 2NN MEAM potential parameterization has been
selected here because of the notorious difficulties experienced
in previous studies to properly describe the complex low
temperature martensite structure (B19’) with simple potential
parameterizations. The characteristics of the B19’ structure, a
monoclinic angle of ~98° and a shuffle of Ni and Ti atoms
at the faces of the unit cell [2], lead to a strong directionality
of the atomic bonds in the interatomic potentials. This feature
is difficult to capture with simple models, whereas the 2NN
MEAM model implicitly provides angle-dependent terms to
reflect the directionality of atomic bonds.

In addition to the proper selection of the potential model,
the selection of an appropriate optimization method of the
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potential parameters is necessary considering difficulties in
previous studies based on the MEAM model [10,11]. Previous
MEAM potentials were developed mostly focusing on energies
of a few configurations at 0 K, and a transferability to properties
at finite temperatures was never tested. In the present paper, the
force-matching method proposed by Ercolessi and Adams [17]
is utilized for the optimization. This method considers forces
and energies related to various atomic configurations, in-
cluding configurations at finite temperatures from density
functional theory (DFT). It has been previously reported that
this method provides robust potentials for various applications
at finite temperatures [18,19].

To develop a potential for the binary Ni-Ti system,
potentials for the pure Ni and Ti systems are necessary because
the 2NN MEAM description of a binary system is based on
the constituent unary potentials. 2NN MEAM potentials for
the pure Ni and Ti systems have been developed previously
by Lee et al. [20] and Kim et al. [21], respectively, but
these potentials are not appropriate for investigating phase
transitions at finite temperatures. The most serious problem
of the previously developed Ti potential [21] is that it cannot
reproduce the phase transition between body-centered-cubic
(bee) Ti (B-austenite phase) and hexagonal-close-packed (hcp)
Ti («-martensite phase), which is closely related to the
transition mechanism in the NiTi shape-memory alloy. Both
systems (pure Ti and NiTi) have very similar structures of
entropically stabilized austenite phases (bcc in Ti and B2 in
NiTi) and similar transition paths related to the imaginary
phonon modes of the austenite phases [22-25]. In addition, the
previous potentials [20,21] less accurately reproduce physical
properties at finite temperatures than those at 0 K. To overcome
these deficiencies, the development of potentials in the present
paper proceeds in a systematic manner: Accurate potentials
for the pure Ni and Ti systems are developed first, and the
development of a binary potential for the Ni-Ti system is
subsequently addressed.

II. OPTIMIZATION OF THE INTERATOMIC POTENTIALS
BY FITTING TO A DFT DATABASE

A. Construction of a DFT database

For the potential development based on the force-matching
method, a DFT database of atomic forces and energies related
to various atomic configurations needs to be prepared. To
ensure the transferability of the potential to a wide variety
of atomistic situations, configurations resulting from various
temperature and strain conditions as well as various defect
configurations are included in our DFT database, as listed in
Table I. Corresponding physical target properties are compiled
in Table II.

The DFT calculations were performed using the VASP
code [26-28] and the projector-augmented wave (PAW)
method [29] within the Perdew-Burke-Ernzerhof generalized
gradient approximation (GGA) [30,31] for the exchange-
correlation functional. In the PAW potential for Ti, 3p
electrons were treated as part of the valence. A cutoff energy of
340 eV for the plane-wave basis set and the Methfessel-Paxton
smearing method with a width of 0.1 eV were used. A
k-point mesh of 19x19x 19 was selected for the face-centered
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cubic (fcc) primitive unit cell, and the corresponding k-point
density was employed for other unary structures, binary
compound structures, and supercells. Magnetism was included
by considering spin-polarized calculations for pure Ni, binary
compounds, and Ni-rich supercells.

To obtain the equilibrium lattice constant and bulk mod-
ulus, we employed the Birch-Murnaghan equation of state
[32-34] fitted to a volume range from 0.95V; to 1.05V, (Vp =
equilibrium volume). The elastic constants were calculated
by applying strains from —1 to +1% to a cell in the equi-
librium structure. In all defect calculations, atomic positions
were relaxed at a constant volume and cell shape with the
convergence criteria for energy and forces set to 1076 eV and
1072 eV//OX, respectively. For the calculation of the vacancy
migration energy of the pure metals and the solute migration
energy of the binary solid solutions, the nudged elastic band
(NEB) method with the climbing-image extension [35,36] was
used to find a suitable saddle-point configuration. Phonon
calculations were performed using the supercells listed in
Table I (108 atoms for fcc Ni and hcp Ti and 128 atoms
for bee Ti and B2 NiTi). The calculations were based on the
direct force constant approach [37], as implemented in the
Phonopy code [38,39] with the convergence criteria for energy
and forces set to 1078 eV and 10~* eV/A, respectively.

To obtain configurations at finite temperatures, ab
initio MD simulations [26] were conducted. Following the
concept of the upsampled thermodynamic integration using
Langevin dynamics (UP-TILD) method [40], in a first step
these calculations were performed based on relatively low DFT
convergence parameters to provide an efficient sampling of the
configuration space. The cutoff energy was set to the default
value of the PAW potential from the VASP library and a single
k-point was used. The MD simulations were performed for a
total of 1000 steps with a time step of 1.5 fs. In a following
step, uncorrelated MD snapshots were extracted from the MD
trajectories and recalculated with a higher cutoff energy and
denser k-point mesh to determine accurate forces and energies
for the fitting process.

B. 2NN MEAM potential

The MEAM interatomic potential was proposed by
Baskes [12] as an extension of the EAM potential by
introducing additionally angular dependent terms. MEAM
potentials are well suited for simulations of multicomponent
systems composed of elements with different ground states
because they can describe a wide range of phases (fcc, bec, hep,
diamond-structured, and even gases) using a common mathe-
matical formalism. The MEAM description was improved by
Lee and Baskes (2NN MEAM) [14] to partially consider 2NN
interactions, thereby overcoming some critical shortcomings
of the original MEAM approach.

Within the MEAM approach, the total energy of a system
is approximated as

1
E = Xl: |:Fz(151) + 5 J%;) S,-‘,»q&ij(R,-j)], (1)

where F; is the embedding energy as a function of background
electron density p;. Further, S;; and ¢;;(R;;) are the screening
function and the pair interaction between atoms i and j
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TABLE 1. Atomic configurations entering the DFT database used for fitting (marked by the asterisk in the Fitting column) and testing
(unmarked in the Fitting column) the present MEAM potential. In the Stability column, “stable” indicates that the structure is reported in an
equilibrium phase diagram, and “metastable” indicates that the structure has been reported as a metastable phase. Other phases are labeled as
“hypothetical.” The Strain column indicates the strain applied to the supercells, where H, O, and M denote hydrostatic, orthorhombic, and
monoclinic strains, respectively.

Structure NNi atoms NTi atoms Nyacancies Stability Temp. (K) Strain (%) Fitting
fce 108 0 0 stable 0, 300 0, H (£5, £10) *
108 0 0 stable 0 O (&5, £10), M (£2, £5) *
107 0 1 stable 0, 300 0 *
106 0 2 stable 0 0 *
107 1 0 stable 0 0
106 1 1 stable 0 0
106 2 0 stable 0 0
0 108 0 hypothetical 0 0
hep 0 108 0 low T stable 0, 300 0, H (5, +£10) *
0 108 0 low T stable 0 O (&5, £10), M (£2, £5) *
0 107 1 low T stable 0, 300 0 *
0 106 2 low T stable 0 0 *
1 107 0 low T stable 0 0
1 106 1 low T stable 0 0
2 106 0 low T stable 0 0
107 0 1 hypothetical 0, 300 0 *
108 0 0 hypothetical 0, 300 0 *
bee 128 0 0 hypothetical 0, 300 0 *
127 0 1 hypothetical 0, 300 0 *
0 127 1 high T stable 0, 300 0 *
0 128 0 high T stable 0, 300 0 *
hexagonal (w) 0 144 0 high P stable 0, 300 0 *
0 143 1 high P stable 0, 300 0 *
liquid 108 0 0 stable 1800, 2000 0
0 108 0 stable 1800, 2000 0
NiTi (B2) 2 2 0 high T stable 0 0 *
NiTi (B2) (phonons) 64 64 0 high T stable 0 0
NiTi (B19) 2 2 0 hypothetical 0 0
NiTi (B19') 2 2 0 low T stable 0 0
NiTi (B33) 2 2 0 hypothetical 0 0
Ni3Ti (DOy) 12 4 0 stable 0 0
Ni;Ti; (Al3Os; type) 6 4 0 metastable 0 0
Ni;Ti, (PdsTi, type) 12 8 0 metastable 0 0
Niy Tiz (Pd4Pus type) 24 18 0 metastable 0 0
NiTi; (E9;) 32 64 0 stable 0 0

separated by a distance R;;. For the calculation of the embed-
ding energy, the functional form of the background electron
density needs to be defined first. While EAM potentials contain
only spherically averaged atomic electron densities, MEAM
potentials introduce additional angular terms to account for the
directional character of bonding. In particular, the background
electron density is computed by combining several partial
electron density terms for different angular contributions
with weighting factors 1/ (h = 1 — 3). Each partial electron
density is a function of atomic configuration and atomic
electron density. The atomic electron densities p*® (h =
0—4) are given as

0“®(R) = po expl—B™M(R/r, — D], )

where the atomic electron density scaling factor pp and
the decay lengths B are adjustable parameters and r, is
the nearest-neighbor distance in the equilibrium reference
structure.

To compute the total energy in Eq. (1), a functional form of
the pair interaction ¢;;(R;;) is also necessary. In the MEAM
approach, the value of the pair interaction ¢;;(R;;) is computed
not from a specific functional form but from a known value
of the total energy and the embedding function for an atom
in an equilibrium reference structure. Here, the equilibrium
reference structure is defined as a structure where individual
atoms are sitting on exact lattice points. The total energy
per atom for the equilibrium reference structure is obtained
from the zero-temperature universal equation of state by Rose
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TABLE II. Physical properties of binary NiTi and constituent pure Ni and Ti systems considered in the present paper. Properties closely
related to atomic configurations from the DFT database explicitly used in the parameter optimization process (marked by an asterisk in Table I)
are in italics. The cohesive energy of fcc Ni and hep Ti is written in bold italics because the rescaling procedure was used to adjust it to the
experimental value (see Sec. 11 C). Properties used only for testing the transferability of the potential are written in regular, upright font, with
bold upright indicating that only the experiment is presently available for comparison.

Structure Temperature Ni Ti NiTi

fcc 0K Cohesive energy Stability w.r.t. hcp Lattice constant
Lattice constant Dilute heat of solution
Bulk modulus Vacancy-solute binding energy
Elastic constant Solute-solute binding energy
Vacancy formation energy Solute migration energy

Vacancy migration energy

Activation energy of vacancy diffusion
Divacancy formation energy

Surface energy

Phonon dispersion

Finite 7 Thermal expansion coefficient

Specific heat
hcp 0K Stability w.r.t. fcc Cohesive energy Dilute heat of solution
Lattice constant Vacancy-solute binding energy
Bulk modulus Solute-solute binding energy
Elastic constant Solute migration energy
Vacancy formation energy
Vacancy migration energy
Activation energy of vacancy diffusion
Divacancy formation energy
Surface energy
Phonon dispersion
Finite T Thermal expansion coefficient
Specific heat
bce 0K Stability w.r.t. fcc Stability w.r.t. hep
Phonon dispersion
Finite T Phase transition temperature
Hexagonal 0K Stability w.r.t. hcp
Liquid Finite T  Melting temperature Melting temperature Enthalpy of mixing
Enthalpy of melting Enthalpy of melting
Volume change upon melting Volume change upon melting
Equiatomic NiTi
compounds (B2, 0K Lattice constant
B19,B19',B33) Monoclinic angle (B19)
Enthalpy of formation
Bulk modulus
Phonon dispersion (B2)
Twin boundary energy
Finite T Lattice constant (B19')
Monoclinic angle (B19')
Phase transition temperature
Volume change upon transition
Other compounds
(Ni5Ti,Ni;Ti,, 0K Lattice constant
Ni,Ti3,NiTip) Enthalpy of formation

Bulk modulus
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TABLE III. Optimized 2NN MEAM potential parameter sets for the pure Ni and Ti systems. The following quantities are dimensionful:
the cohesive energy E,. (eV/atom), the equilibrium nearest-neighbor distance 7, (A), and the bulk modulus B (10'> dyne/cm?). The reference

structures are fcc Ni and bec Ti.

E, r, B A O g O g el o) t® Coin Connx d
Ni 445 2490 1.8586  0.79 248 194 346 256 2.84 -1.20 249 095 1.75 0.05
Ti 4.75 2.850 1.0735 024 220 3.00 4.00 3.00 —18.0 —-32.0 —44.0 0.25 1.58 0.00

et al. [41] as a function of nearest-neighbor distance R:
E“(R)= —E.(1 +a* +da**)e ™, 3)

where d is an adjustable parameter,

a* = a(R/r.— 1) @
and
9B\ /2
- e

Here, r, is the equilibrium nearest-neighbor distance, E,. is
the cohesive energy, B is the bulk modulus, and 2 is the
equilibrium atomic volume of the reference structure. The
value of the pair interaction is evaluated from the known values
of the total energy per atom and the embedding energy as a
function of the nearest-neighbor distance. While the original
MEAM considers only first nearest-neighbor interactions by
using a strong many-body screening function [42], the 2NN
MEAM partially considers also 2NN interactions by adjusting
the screening parameters (Cpin, Cmax) SO that the many-body
screening becomes less severe. A detailed formulation of the
unary 2NN MEAM formalism is available in the literature
[14-16,20,21].

To describe an alloy system, pair interactions between
different elements need to be determined. For this purpose,
a similar technique is employed as for the pair interactions of

TABLE IV. Optimized 2NN MEAM potential parameter set for
the binary Ni-Ti system. The following quantities are dimensionful:
the enthalpy of formation of the reference structure (B2 NiTi) AE
(eV/atom), the equilibrium nearest-neighbor distance r, (A), and the
bulk modulus B (10'? dyne/cm?).

Parameter Selected value
AE; = (O.SEZ,‘Ii + O.SELTi - Efz) —-0.36

Te 2.612

B 1.2818

d 0.5dN + 0.54™
oot pdt 1:1
C[I;I{;Ti-Ni 0.25
ng‘i;N"T‘ 0.09
CNENCTE 0.49

CT TN 1.60
CN-TiNi 1.70
Coniti 1.70
CN-NiTi 1.40
CTTiNi 1.70

max

pure elements. A binary reference structure, where one type
of atom has only the same type of atoms as second-nearest
neighbors, is chosen. The total energy per atom of the reference
structure is computed using the universal equation of state.
Then, the pair interactions between different elements are
obtained from the known values of the total energy per atom
and the embedding energy of the reference structure. A detailed
formulation of the binary 2NN MEAM formalism is available
in the literature [43].

C. Optimization of potential parameters

To describe a pure element using the 2NN MEAM potential
formalism, 14 independent parameters are necessary. Four of
these parameters [the cohesive energy (E.), the equilibrium
nearest-neighbor distance (r.), the bulk modulus (B) of the
reference structure, and the adjustable parameter d] are related
to the universal equation of state. Seven further parameters [the
decay lengths (8?0, gV, B2, B®) and the weighting factors
@D, @, 3] are related to the electron density. The parameter
A belongs to the embedding function, and the parameters Cy;,
and Cy,,x are responsible for the many-body screening. Details
are given in Refs. [14—16,20,21]. For describing a binary alloy,
13 independent parameters are necessary, in addition to the
constituent unary parameters. Four of these parameters [E.,
re, B, and d] are related to the universal equation of state.
The atomic electron density scaling factor py belongs to the
electron density, and the remaining eight parameters (four Cpyin
and four Cp,y) are responsible for the many-body screening.
Details are given in Refs. [16,43].

We determined the unary potential parameters by fitting
to the DFT database of energies and forces introduced in
Sec. IIA. A genetic algorithm that allows for an efficient
parameter search in high-dimensional spaces was used as
an optimizer. The optimization proceeded iteratively. First, a
reference structure, a radial cutoff distance, and fitting weights
were specified. The optimization algorithm then adjusted the
parameters to minimize the weighted error between the DFT
database and the corresponding values produced by the param-
eters. If the fitting error was too large and the potential failed
to reproduce physical properties satisfactorily, the parameters
were refitted based on different reference structures, radial
cutoff values, fitting weights, and/or DFT databases with
added or removed configurations. This optimization process
was repeated until reliable potentials were obtained.

The optimization of the pure Ni potential was conducted
by fitting forces and energies related to various configurations
of the fcc, bee, hep, and liquid phases, as listed in Table 1.
During the optimization, a rescaling of the structural energies
was performed in order to match the experimental cohesive
energy of the fcc phase (4.450 eV [20]), which we consider
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TABLE V. Calculated bulk and defect properties of pure Ni using the present 2NN MEAM potential, in comparison with experimental
data, DFT data, and previous MEAM calculations by Lee et al. [20]. The following quantities are listed: the cohesive energy E. (eV/atom);
the lattice constant a (A); the bulk modulus B and the elastic constants C,;, C},, and Cy4 (10'2 dyne/cm?); the structural energy differences
AE (eV/atom); the vacancy formation energy E7 (eV); the vacancy migration energy E, (eV); the activation energy of vacancy diffusion
QY¥ (eV); the divacancy formation energy E (}iv (eV); and the surface energies Eq,s (erg/cm?) for the orientations indicated by the superscript.

Property Exp. DFT 2NN MEAM (Lee et al. [Ref. [20]) 2NN MEAM [This paper]
E, 4.450° 4.842" 4.450 4.450
a 3.520 3.524" 3.521 3.521
B 1.876¢ 1.909" 1.876 1.859
Cii 2.612° 2.661" 2.612 2.604
Ch 1.508¢ 1.551" 1.508 1.486
Cu 1.317¢ 1.285" 1.317 L111
AErecs bee 0.093" 0.16 0.088
AEgec hep 0.026" 0.02 0.010
EY© 1.6 1.41" 1.51 1.51
E¥* 1.09" 1.47 1.38
Qv 2.87° 2.50" 2.98 2.89
E4 2.81" 2.97 2.97
EGY 22400 2426¢ 1943 2085
EQ 2368¢ 2057 2148
EQD 20112 1606 1630

4Reference [52].

bReference [53].

‘Reference [54].

dReference [55].

¢Reference [56].

fReference [57].

gReference [58].

"Present DFT calculation.

IThe experimental value is for a polycrystalline solid.

more reliable than the corresponding DFT value (4.842 eV).
The use of this rescaling procedure has only a minor effect on
the overall fitting since it is related to an arbitrary choice of the
reference state. The optimization of the pure Ti potential was
started with forces and energies related to configurations of the
hep (@), bee (B), and hexagonal (w) phases, which are stable
at ambient and high temperature and high pressure conditions,
respectively [44]. The rescaling of the structural energies
to obtain the experimental cohesive energy of hcp («) Ti
(4.870 eV [21]) was also performed. During the optimization
process, we found that a stabilization of the hexagonal (w)
phase, a ground state phase predicted by DFT [24], over the
hcp (o) phase always resulted in a significant worsening of
the properties of the hcp (o) phase in particular in a negative
vacancy formation energy. Considering the importance of the
hcp phase and of the hep-bee (a-f) phase transition for the
present paper, a final optimization was conducted using a
reduced fitting weight for the hexagonal (w) phase. Table III
presents the finally determined potential parameter sets for
pure Ni and Ti, which were the basis for the following
optimization of the binary Ni-Ti potential.

The binary Ni-Ti system shows several stable intermetallic
compound phases at Ni3Ti, NiTi (equiatomic), and NiTi, com-
positions [45] and metastable compound phases at Ni3Ti, [46]
and NiyTiz [47] compositions. During the optimization, we
found that the binary parameters introduced in the 2NN
MEAM model do not provide the necessary flexibility to

accurately describe all these phases by the force-matching
process. In particular, the small structural energy differences
at the equiatomic composition predicted by DFT (on the
order of a few meV /atom) could not be reproduced by any
of our fitted potentials, which instead predicted significant
energy differences after atomic relaxation. We could trace
back this problem to the pair interaction description, which, as
explained above, is determined not from a specific functional
form but from the universal equation of state. The universal
equation of state was originally introduced into the MEAM
formalism [12] in order to allow a straightforward extension
to multicomponent systems avoiding in particular overfitting.
However, it also inevitably restricts the flexibility of the overall
fitting procedure resulting in the observed discrepancies. A
long-term route to overcome these restrictions would be a
search for more flexible functional dependencies of the pair
interactions. In the present paper, we have followed a more
pragmatic route, as described in the following.

The binary potential developed in the present paper is
mainly intended to properly describe the martensitic transfor-
mations close to the equiatomic composition, and to this end
an accurate description of the corresponding small structural
energy differences is essential. We have therefore included
only configurations of these equiatomic compounds into the
fitting procedure (cf. Tables I and II). Further, we excluded
forces from the fitting procedure, and instead we focused on
the following target properties: lattice constants, bulk moduli,
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TABLE VI. Calculated bulk and defect properties of pure Ti using the present 2NN MEAM potential, in comparison with experimental
data, DFT data, and previous MEAM calculations by Hennig et al. [24] and by Kim ef al. [21]. The following quantities are listed: the cohesive
energy E. (eV/atom); the lattice constants a and ¢ (A); the bulk modulus B and elastic constants C,;, C},, Cj3, C33, and Cyy (10'? dyne/cm?);
the structural energy differences AE (eV/atom); the vacancy formation energy £ (eV); the vacancy migration energy E}* (eV); the activation
energy of vacancy diffusion 0¥* (eV); the divacancy formation energy E' ‘}i" (eV); and the surface energies Eq, (erg/cm?) for the orientations

I3}

indicated by the superscript. In-basal plane and out-of-basal plane vacancy formation and migration energies are designated by “in” and “out,”

respectively.
Spline-based MEAM 2NN MEAM 2NN MEAM

Property Exp. DFT (Hennig et al. [Ref. [24]]) (Kim et al. [Ref. [21]]) [This paper]
E, 4.870° 5.274 4.831 4.873 4.867
a 2.951° 2.928 2.931 2.945 2.922
¢ 4.679 4.645' 4.678 4.687 4.694
¢/a ratio 1.586" 1.586/ 1.596 1.592 1.606
B 1.097¢ 1.137 1.138 1.097 1.097
Ci 1.761° 1.72! 1.74 1.701 1.700
Ch 0.869° 0.82' 0.95 0.804 0.955
Ci3 0.683° 0.75' 0.72 0.748 0.724
Cs 1.905¢ 1.90' 1.88 1.871 1.904
Cu 0.508° 0.45' 0.58 0.421 0.404
AEneptec 0.059’ 0.039 0.048 0.011
A Epepsec 0.108! 0.111 0.024 0.078
A Enep hexagonal ~0.007 —0.005 0.144 0.061
Eye 1.27¢ 2.045 2.24 1.79 1.460
EY(in) 0.5017 1.09 0.811
E¥*(out) 0.504/ 0.87 0.796
0'*(in) 1.75¢,3.14F 2.546 2.88 2.270
0'*(out) 2.549) 2.66 2.255
E%™(in) 3.932) 4.00 3.87 2.957
E4(out) 3.904 3.90 2.957
EQPY 1920¢°%, 2100"* 1939’ 1474 2144 2032
EQY 2451 1554 2145 2307
EG” 1875' 1682 2352 2549

4Reference [52].
bReference [59].
‘Reference [54].
dReference [60].
¢Reference [61].
fReference [62].
gReference [57].
hReference [63].
iReference [24].

iPresent DFT calculation.
“The experimental value is for a polycrystalline solid.

enthalpies of formation, and the monoclinic angle, which were
all obtained by fully including atomic relaxations for each
configuration. More specifically, we employed the following
stepwise fitting procedure in order to capture the important
characteristics of the phase transition. Initially, a large number
of candidate parameter sets was prepared. Then, using all these
parameter sets, one of the target properties was computed, and
only parameter sets yielding the target value were selected
for further consideration and calculation of the other target
properties. In this manner, the candidate parameter sets were
sequentially reduced. The sequence of target properties was
arranged as follows: (1) enthalpy of formation; (2) monoclinic
angle; (3) lattice constants; (4) bulk moduli [with (1) to (4)
corresponding to 0 KJ; and, finally, (5) phase stabilities at

finite temperatures. Table IV presents the determined potential
parameter set for the binary Ni-Ti system.

After the optimization of the binary potential, a radial cutoff
distance of 5.0 A was confirmed to be sufficiently large to
reproduce various physical properties as well as the phase
transitions of pure metals and binary alloys. Therefore, the
simulations in the following sections were performed based
on this radial cutoff distance.

III. ACCURACY AND TRANSFERABILITY
OF THE DEVELOPED 2NN MEAM POTENTIAL

In this section, the accuracy and transferability of the
developed potential are examined by comparing them to a
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FIG. 1. (Color online) Scatter plots for (a), (b) energies and (c), (d) forces of (a), (c) pure Ni and (b), (d) pure Ti with respect to the DFT
database. Values obtained with the present potential are compared to those obtained with the previous potentials by Lee et al. (Ref. [20]) and
Kim et al. (Ref. [21]). A perfect correlation with the DFT values would correspond to the dashed lines.

wide variety of physical properties from DFT and experiment.
The corresponding 2NN MEAM calculations were performed
using the LAMMPS code [48]. If not specifically designated
as MD simulations, all calculated values represent results of
molecular statics simulations, and the number of atoms in the
supercells is at least 4000. Cell dimensions and individual
atomic positions were allowed to fully relax. MD simulations
were performed using a time step of 2 fs, the Nosé-Hoover
thermostat [49,50], and the Parrinello-Rahman barostat [51]
for controlling temperature and pressure, respectively.
Generally, the physical properties calculated in this section
can be divided into two groups. The first group comprises
properties that are closely related to the atomic configurations
used in the parameter optimization (see configurations marked
with an asterisk in Table I and properties written in italics in
Table II). The comparison of these properties indicates the
accuracy of the fitting. The other group comprises properties
that were not used directly in the parameter optimization
process (unmarked configurations in Table I and properties
in regular, upright font in Table II). The comparison of
these properties indicates the transferability of the developed

potential. For the properties in the first group, DFT values are
available and can be directly used for the comparison. Many
of the properties in the second group correspond to finite
temperature conditions and cannot be easily obtained by DFT
calculations. For these properties, we use experimental data
for comparison (bold properties in Table II).

A. Physical properties of pure Ni and Ti
1. Bulk and defect properties at T = 0 K

We focus first on bulk and defect properties, most of
which were included in the fitting optimization (cf. Table II).
Corresponding results are compared with DFT, experimental
data, and previous potentials in Tables V and VI. The
experimental cohesive energy is exactly reproduced for both
Ni and Ti due to the employed rescaling procedure (Sec. I1C).
The other bulk properties should be compared with the DFT
values, and we observe a satisfactory agreement, except for
the structural energy differences of pure Ti. In particular,
the present Ti potential cannot reproduce the stability of the
hexagonal (w) Ti phase because the optimization was
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TABLE VII. RMS errors for energies and forces of pure Ni and Ti with respect to the DFT
database (cf. Fig. 1). Values using the present potential are compared to those using the previous

potentials by Lee et al. [20] and Kim et al. [21].

RMS error Ni Ti

(Lee et al. [Ref. [20]]) [This paper] (Kim et al. [Ref. [21]]) [This paper]
Energy (eV/atom) 0.039 0.019 0.063 0.029
Force (eV/A) 0.203 0.072 0.216 0.102

conducted with a reduced fitting weight of this phase to
avoid the worsening of the properties of the hcp («) phase,
as discussed in Sec. IIC. This means that phase transitions

related to the hexagonal (w) phase cannot be studied by the

present Ti potential.

The calculated vacancy formation and activation energies
by the present potentials agree well with their DFT coun-
terparts except for the divacancy formation energy of pure

Ti, which shows an underestimation of about 25%. Similar

deviations can be observed also for the surface energies where
the largest discrepancy in Ni is 19% for the [111] surface and
in Ti 36% for the [1120] surface. These deviations reflect the
fact that the surface energies were not explicitly included in
the fitting process; this should be considered in future studies
when applying our potentials to corresponding simulations.
Overall, the accuracy of our Ni and Ti potentials in
describing bulk and defect properties can be considered
as satisfactory. However, comparing to the accuracy of the
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previous potentials [20,21] (see Tables V and VI), we observe
no significant improvement; thus the refitting of the pure
potentials is unjustified at this stage. The justification will be
provided in the following three sections (Sec. IIT A 2-IIT A 4)
where we stepwise extend the performance evaluation.

2. Statistical quality of energies and forces

We first extend the evaluation to a large set of configurations
that were obtained from MD simulations at finite temperatures.
To this end, we investigate the statistical correlation between
the energies and forces from the present/previous MEAM
potentials and the DFT database. The MEAM calculations
were performed using atomic configurations, as obtained from
DFT without further atomic relaxations. Figure 1 shows scatter
plots for the statistical correlation, and Table VII shows the
corresponding root mean square (RMS) errors. Two main
conclusions can be drawn from these results. (1) The fitting

«©
T

o

>

Exp.
-DFT (GGA)
2NN MEAM (Kim)

—ZP{N MEAM I(Present)

Phonon frequency (THz)
N

r [EE01K M [£00] r

(b)

[0og] A

7 4
"4

)
4 [

=
\-\
A

= Exp.
-DFT (GGA)
2NN MEAM (Kim)

Phonon frequency (THz)
N

-4

[ 1

{\

\ \\, |
[——2NN MEAM (Present),
;

N s

r [E00] H

bee (B) — hexagonal (w)

(©

(€01 N
bee (8) — hep (a)

P [888] r

FIG. 2. (Color online) Calculated phonon spectra of the (a) fcc Ni, (b) hep Ti, and (¢) bee Ti phases using the present 2NN MEAM potential,
in comparison with experimental data (Refs. [53, 64] and [65]), DFT results, and previous calculations by Lee et al. (Ref. [20]) and Kim et al.
(Ref. [21]). Imaginary frequencies of unstable modes are plotted as negative values, and corresponding phase transitions are indicated in red at

the bottom.
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FIG. 3. (Color online) (a), (b) Thermal expansion coefficients and (c), (d) specific heats of (a), (c) fcc Ni and (b), (d) hep Ti calculated
based on the quasiharmonic (QH) approximation and full MD simulations, in comparison with experimental data (Refs. [67-69]), DFT results,
and previous calculations by Lee et al. (Ref. [20]) and Kim ef al. (Ref. [21]).

error for pure Ti is generally higher than that for pure Ni,
reflecting the difficulty in describing configurations related to
the hexagonal (w) phase. (2) The correlation with the DFT
values is considerably better for the present potential than for
the previous ones. In particular, the RMS error for both the
energies and forces is reduced by a factor of two, as evidenced
by Table VII. This gives a first indication of the improved
performance of our potential at finite temperatures. However,
the configurations entering the statistical analysis here have
been used explicitly in the optimization of the potential, and
we thus have to further extend the evaluation.

3. Quality of perturbative forces: Phonon-dispersion relations

We now come to the group of properties that were not
explicitly included in the fitting process but are especially
important for the application of the developed potentials over
a wide range of temperature conditions. In this section, we
investigate phonon dispersion relations, which were obtained
by perturbative calculations from small displacements around
the equilibrium structure. This provides a very sensitive
measure of the fitted atomic interactions.

Figure 2 shows phonon spectra along high-symmetry direc-
tions in the Brillouin zone of fce Ni, hep Ti («), and bee (8) Ti
for the MEAM potentials, DFT, and the experiment [53,64,65].
For fcc Ni [Fig. 2(a)], the present potential and the previous
one by Lee et al. [20] closely reproduce the overall dependence
of the phonon branches with a small overestimation of the
DFT/experimental frequencies at the high symmetry points.

For the hep (o) Ti phase [Fig. 2(b)], the acoustic branches by
the present potential are in better agreement with experiment
and DFT than those by the previous potential by Kim et al. [21],
in particular along the [£00] direction. The optical branches
are likewise better described by the present potential, but the
full complexity of the DFT/experimental dispersion cannot be
captured as observed for example for the highest frequency
band around I'.

For the bcc (B8) Ti phase, imaginary phonon branches
predicted by DFT reflect the instability of this phase at low tem-
peratures. It was previously reported that the imaginary phonon
branch along the [££0] direction corresponds to the Burgers
mechanism of the hcp-bee (o— ) transition [24,66] and the
imaginary phonon branch along the [£££] is responsible for
the (111) plane collapse mechanism of the bcc-hexagonal
(B-w) transition [24]. As shown in Fig. 2(c), the previous
potential by Kim et al. [21] cannot reproduce any of the
imaginary phonon branches, which is likely related to the
failure of this potential [21] to reproduce the corresponding
phase transitions. In contrast, the present potential can be
expected to reproduce the hcp-bee («-B) transition correctly
because it can successfully reproduce the imaginary phonon
branch along the [££0] direction. The difference in the long
wavelength limit, i.e., that our potential predicts mechanical
stability, whereas DFT shows a mechanical instability, is an
artefact of the employed supercell size. For larger supercell
sizes, DFT likewise predicts a mechanically stable system, i.e.,
positive frequencies in the long wavelength limit as explicitly
investigated in Ref. [24]. The reproducibility of the hcp-bce
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TABLE VIII. Calculated thermal properties of pure Ni and Ti using the present 2NN MEAM
potential, in comparison with experimental data and previous calculations by Lee et al. [20] for pure
Ni and Kim et al. [21] for pure Ti. The listed quantities correspond to the melting temperature 7,,
(K), the enthalpy of melting A H,, (kJ/mol), and the volume change upon melting AV,,/Vuia (%).

2NN MEAM

(Lee et al. [Ref. [20]])

Element Property Exp. or (Kim et al. [Ref. [21]]) 2NN MEAM [This paper]
Ni T, 1728* 2013 1892
AH, 17.5% 24.6 20.7
AV, Volia 4.5b 9.1 7.0
Ti T 1941° 1651
AH, 14.15* 11.7
AV [ Vsolia 1.6

2Reference [70].
PReference [56].

(e-B) phase transition by our potential will be explicitly tested
in Sec. IVB below. In contrast, the bcc-hexagonal (8-w)
transition is not feasible by both potentials because the stability
of the hexagonal (w) phase is not properly reproduced, as
discussed above.

4. Quality of thermodynamics: Expansion, heat capacity,
and melting

We finally evaluate the performance of the developed pure
Ti and Ni potentials in describing thermal properties such as
the thermal expansion coefficient, the specific heat, the melting
point, the enthalpy of melting, and the volume change upon
melting. The thermal expansion coefficient and the specific
heat were calculated based on the quasiharmonic approxima-
tion and using full MD simulations. The latter were performed
using an isobaric-isothermal ensemble (NPT) at zero pressure
and 300 K. The melting temperature was calculated using the
interface method, which utilizes a simulation cell consisting
of solid and liquid phases in contact with each other. The
enthalpy of melting and the volume change upon melting were
calculated using an NPT ensemble at zero pressure and at the
obtained melting temperature.

The calculated thermal properties are compared with
experimental data in Fig. 3 and Table VIII. For the thermal
expansion coefficient and the specific heat of pure Ni, the
present potential and the previous potential by Lee ef al. [20]
show no clear difference in the reproducibility of experiment.
For the melting temperature of pure Ni, the result by the present
potential shows better agreement with the experimental value.
It is about 10% higher than the experimental value, while
that by the previous potential by Lee et al. [20] shows about
16% overestimation. The calculated enthalpy of melting and
the volume change upon melting of pure Ni by the present
potential are also in better agreement with experimental values
than those by the previous potential by Lee er al. [20].

In the case of the thermal properties of pure Ti, the present
potential shows a considerably improved high temperature
phase stability. The previous potential by Kim et al. [21]
does not properly stabilize the bcc (8) phase at higher
temperatures, as we confirmed by our own calculations. In
fact, this potential [21] stabilizes the hcp («) phase until the
melting temperature of 1706 K; thus, it cannot be employed

for finite temperature simulations of the bcc phase and in
particular of the bee to liquid transition. This incorrect behavior
at finite temperatures is related to the failure of describing
the imaginary phonon branch along the [££0] direction, as
discussed above. In contrast, our potential correctly predicts
the transition to the bcc (B) phase (discussed in detail in
Sec. IVB), and it shows a reasonable melting temperature
of 1651 K, which is an underestimation of the experimental
melting temperature by only 15%. The corresponding melting
enthalpy likewise shows an acceptable agreement with the
experiment (17% underestimation).

5. Summary for pure Ni and Ti potentials

Overall, we have shown that the present potentials for the
pure Ni and Ti systems reproduce a wide range of fundamental
physical properties. In particular, the good transferability of
the potentials to properties relating to lattice vibrations and
thermodynamic properties is crucial for finite temperature
applications. A striking improvement over the previously
available potential [21] is found for Ti, where the phase
transition sequence hcp to bcc to liquid is now properly
described. Based on these good pure-element descriptions,
the potentials can be confidently extended towards the binary
Ni-Ti system.

B. Physical properties of binary Ni-Ti alloys
1. Accuracy and transferability for equiatomic NiTi compounds

At the equiatomic NiTi composition, several compounds
were proposed in previous experiments [2,71-73] and DFT
calculations [74-76] (see Fig. 4). The cubic B2 and the
monoclinic B19” are the structures of the experimentally well
investigated austenite and martensite phases, respectively [2].
The B19" structure differs from the B2 structure by a
monoclinic distortion (8 = 97.9° [71]) and additionally by
a shuffling of Ni and Ti atoms on the (110) B2 plane. The
orthorhombic B19 structure can be regarded as an intermediate
structure between the B2 and B19’ structures as it shows the
shuffles similar to the B19’ structure but without the mono-
clinic distortion. The B19 structure is experimentally observed
when Cu is alloyed to the NiTi alloy [73]. The orthorhombic
B33 structure, which also shows atomic shuffling albeit with
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FIG. 4. (Color online) Atomic structures of the cubic B2, or-
thorhombic B19, monoclinic B19’, and orthorhombic B33 NiTi
phases with the monoclinic angle (8) and the lattice constants (a
and ¢) indicated. Ni and Ti atoms are represented by blue (dark gray)
and orange (gray) balls, respectively.

a higher monoclinic angle (8 = 107°) [74-76],isa T = 0K
ground state structure predicted by DFT. So far, this is only a
hypothetical phase not observed by any experiment, possibly

PHYSICAL REVIEW B 92, 134107 (2015)

because of kinetic constraints, as it is not geometrically related
to the shape-memory transformation.

In Table IX, the O K properties of the equiatomic compounds
calculated by the present binary potential are compared with
DFT and experimental data. These properties were used in the
parameter optimization process (cf. Tables I and II), and the
comparison reflects therefore the accuracy of the potential
fitting. We observe that our potential reproduces well the
lattice constants, the atomic volume, the enthalpy of formation,
and the bulk modulus of the compounds. It also successfully
reproduces the DFT trend in the formation enthalpies, includ-
ing a slightly more negative formation enthalpy of the B33
structure than that of the B19’ structure (6 meV/atom). To
evaluate the transferability of our binary potential to finite
temperatures at the equiatomic composition, we focus on the
temperature dependence of the lattice parameters of the B19’
structure, which were not included into the fitting. The results

TABLE IX. Calculated physical properties of equiatomic NiTi compounds using the present 2NN MEAM potential, in comparison with
experimental and DFT data. The following quantities are listed: the lattice constants a, b, and ¢ (A); the monoclinic angle 8 (degree); the atomic

volume (/f\3); the bulk modulus B(10'? dyne/cm?); and the enthalpy of formation AE; (eV/atom).

Structure (Space group) Stability Property Exp. DFT 2NN MEAM

B2 (Pm3m) high T stable a 3.016* 3.009¢, 3.014¢, 3.007¢, 3.012¢ 2.999
b 4.265* 4.2559, 4.262¢, 4253, 4.260¢ 4.242
c 4.265* 4.2559, 4,262¢, 4253, 4.260¢ 4.242
B 90.0* 90.0¢, 90.0¢, 90.0f, 90.0¢ 90.0
Q 13.624, 13.60f, 13.67¢ 13.49
B 1.42° 1.60f, 1.571¢ 1.332

AE; —0.351¢ —0.355¢ —0.393
B19 (Pcmm) hypothetical a 2.7769, 2.840¢, 2.798¢ 2.809
b 42219, 4.120¢, 4.208¢ 4.275
c 4.6319, 4.602°, 4.613¢ 4.503
B 90.04, 90.0¢, 90.0¢ 90.0
Q 13.57¢,13.58¢ 13.52
B 1.589¢ 1.337

E — Ep, —0.030¢, —0.0265°, —0.0287¢ —0.0106
B19' (P2,/m) low T stable a 2.909% 2.9299h 2923 2.917f,2.945¢ 2.878
b 4.114* 4.048%04.042¢, 4.047°, 4.034¢ 4.129
c 4.657* 4.686%", 4.801°, 4.780", 4.769¢ 4.659
B 97.9* 102.4¢, 100.0f, 101.8¢ 994
Q 13.76%P,13.72f, 13.87¢ 13.66
B 1.47, 1.580¢ 1.340

E — Ep, —0.0424", —0.0435°, —0.0415F, —0.0428¢ —0.0341
B33 (Cmcm) hypothetical a 2.9409, 2.928¢, 2.914f, 2.932¢ 3.149
b 3.9979,4.017¢, 4.021f, 4.012¢ 3.760
c 4.9369, 4.923¢, 4.927', 4.926¢ 4.984
B 107.04, 106.6¢, 107.3f, 107.3¢ 108.4
Q 13.874, 13.78¢, 13.83¢ 14.00
B 1.49f, 1.578¢ 1.275

E — Ep, —0.0509, —0.046°, —0.042f, —0.0439¢ —0.0397

4Reference [71].

bReference [77].

‘Reference [78].

dReference [74].

°Reference [75].

fReference [76].

¢Present DFT calculation.

"Values obtained using a designated monoclinic angle (97.8°).
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FIG. 5. (Color online) Temperature dependence of the lattice
constants of the B19" NiTi phase calculated using the present 2NN
MEAM potential, in comparison with experimental data (Ref. [71]).
Each lattice constant is rescaled by the corresponding value at room
temperature (ao, by, and cp).

(blue circles in Fig. 5) indicate a nearly constant a lattice
constant, an increase in the b lattice constant, and a decrease
in the c lattice constant with increasing temperature. All these
dependencies are in excellent agreement with the experimental
data near room temperature (black squares in Fig. 5), indicating
a good performance of the present potential at the equiatomic
composition.

The phonon dispersion of the B2 structure, which contains
critical information about the martensitic transition, is shown
in Fig. 6 (blue lines). As for the pure elements, the B2
phonons were obtained by perturbative calculations from
small displacements around the equilibrium structure, thereby
providing a very sensitive measure. Overall, we observe a
reasonable qualitative agreement with DFT (orange lines),
although some of the complex dependencies of the optical
branches cannot be well reproduced. However, the most
important feature for the present purpose is the imaginary,
acoustic phonon branch along the [££0] direction, which is
critical for the B2-B19’ transition mechanism, similarly as
the imaginary phonon branch along the [££0] direction in
pure bee Ti is responsible for the hcp-bec (¢ —p) transition
(see Sec. III A3). The present binary potential successfully
reproduces this imaginary phonon branch and thus can be

PHYSICAL REVIEW B 92, 134107 (2015)
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FIG. 6. (Color online) Calculated phonon spectra of the B2 NiTi
phase using the present 2NN MEAM potential, in comparison with
DFT. Imaginary frequencies of unstable modes are plotted as negative
values, and the mode responsible for the B2 to the B19 transition is
emphasized by the red label at the bottom.

expected to properly capture the martensitic transformation
B2-B19'. The details of this transformation will be investigated
in Sec. IV C, and it will be shown that the transformation is
indeed well described.

While the imaginary phonon branch along the [££0]
direction is well described, there is a disagreement in the
branch along the [££&] direction. DFT predicts an instability,
whereas our potential predicts a stable phonon branch. Any
attempts to avoid this disagreement without modifying the
unary parameters to better describe the hexagonal (w) Ti
phase have failed. It therefore seems very plausible that the
deficiency of the binary potential is closely related to the
wrong description of the hexagonal (w) Ti phase, which itself
originates in the wrong description of the imaginary phonon
branch along the [£££] direction of the bcc (8) Ti phase
[Fig. 2(c)] by the pure Ti potential. An improvement in the
properties of the hexagonal (w) Ti phase always resulted,
however, in a worsening of the properties of the hcp (o)
phase and in a wrong description of the imaginary phonon
branch along the [££0] direction of the bce (8) Ti and the B2
NiTi phases. Considering the intention of the present paper to
develop a binary NiTi potential especially for the martensitic
transformation, an accurate description of the hexagonal (w)
Ti phase and of the imaginary phonon branch along the [££&]
direction of both the bee (8) Ti and the B2 NiTi phases was
sacrificed.

2. Transferability to other compounds, solid solutions,
and the liquid phase

We finally evaluate the performance of the present binary
MEAM potential in describing stable and metastable com-
pounds at various compositions other than the equiatomic
composition. None of these compounds have been included
into the optimization process (see the discussion at the end
of Sec. II C); therefore, this evaluation is a stringent test of
transferability.
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TABLE X. Calculated physical properties of binary compounds at various compositions using the present 2NN MEAM potential, in
comparison with experimental and DFT data. The following quantities are listed: the lattice constants a, b, and ¢ (A); the bulk modulus

B (10" dyne/cm?); and the enthalpy of formation AE [ (eV/atom).

Composition Structure (Space group) Stability Property Exp. DFT® 2NN MEAM

Ni;Ti DO,y (P63 /mmc) stable a 5.101% 5.108 5.158
c 8.307* 8.337 8.350
B 1.634° 1.906 1.545

AE; —0.360° —0.487 —0.349
Ni;Ti, Al;Os, type (14/mmm) metastable 3.095¢ 3.107 2.683
c 13.59¢ 13.45 18.01

B 1.683 1.417

AEy —0.425 —0.323

Pd;Ti, type (Cmcem) metastable a 4.3994 4.451 4.384

4.371¢ 4.351 4.194
c 13.54¢ 13.39 14.21
B 1.691 1.371

AE; —0.428 —0.331
Ni, Tis Pd,Pu; type (R3h) metastable 11.24¢ 11.26 11.13
c 5.077¢ 5.045 5.147
B 1.662 1.335

AE; —0.418 —0.346

NiTi, E9; (Fd3m) stable a 11.28¢ 11.28 11.30
B 1.437 1.198

AE; —0.278° —0.280 —0.293

#Reference [79].
bReference [80].
‘Reference [77].
dReference [46].
¢Reference [47].
fReference [81].
gPresent DFT calculation.

Table X reveals that except for the c¢ lattice constant of
the metastable Al;Os, type structure (33% overestimation),
the lattice parameters, the enthalpy of formation, and the
bulk modulus are reasonably well reproduced for the various
structures. From these results, it cannot be yet concluded
whether the experimentally reported stable phases (DO,4 and
E9; phases) [45] are indeed correctly predicted as stable phases
by the present potential due to a possible decomposition. We
have therefore extended the test and calculated the stability
of several additional, hypothetical compound phases with our
potential and with DFT to determine the ground-state convex
hull. Figure 7 shows the results, including the formation
energies of the equiatomic compounds. The DFT convex hull
is generally well reproduced by our potential, and the ground
state structures match the ones in DFT. There are, however,
some quantitative differences. At the NisTi composition, DFT
predicts that the enthalpy of formation of the L1, structure is
more positive by 17.2 meV /atom than that of the experimen-
tally reported DOy4 structure. The present potential reproduces
this trend, but the difference is tiny (0.05 meV /atom); it is thus
not clear whether the DO,4 structure is indeed stable at finite
temperatures.

We have therefore extended the test to finite temperatures
to investigate whether unwanted phase transitions, e.g., to hy-
pothetical compounds, occur. For that purpose, NPT ensemble
MD simulations with gradually increasing temperatures were

performed using initially the experimentally reported stable
structures (DO, and E93) of the NisTi and NiTi, phases.
We could confirm that the Ni3Ti phase correctly maintains its
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FIG. 7. (Color online) Calculated formation enthalpies of com-
pounds at various compositions using the present 2NN MEAM
potential, in comparison with experimental data (Ref. [77]) and DFT
values. The dash-dotted line indicates the convex hull of the potential.
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TABLE XI. Calculated physical properties (in eV) of the binary
Ni and Ti rich solid solutions using the present 2NN MEAM potential,
in comparison with DFT. The following quantities are listed: the
dilute heat of solution E*°!, the vacancy-solute binding energy E;*,
the solute-solute binding energy E{°*", and the solute migration
energy E*°!. The reference states for the dilute heat of solution are
fcc Ni and hep Ti. In the Ni-rich fcc phase, the energies for first
and second nearest-neighbor bindings are designated by “INN” and
“2NN” respectively. In the Ti-rich hcp phase, in-basal plane and
out-of-basal plane binding and migration energies are designated by
“in” and “out” respectively. The defect binding energies are defined
such that a positive sign indicates attractive interaction.

Structure Property DFT? 2NN MEAM
Ni-rich fcc E™ —1.434 —1.289
E}*T(INN) 0.059 0.133
E}*Ti(2NN) —0.074 —0.098
ETTI(INN) —0.416 —0.725
EJ"TI(2NN) 0.070 —0.011
EN 0.529 0.337
Ti-rich hep EN —0.144 —0.786
E}*Ni(in) 0.039 —0.054
E*Ni(out) 0.081 —0.075
E)™Ni(in) 0.027 —0.185
ENNi(out) 0.106 —0.216
ENi(in) 0.712 2.018
ENi(out) 0.800 1.867

2Present DFT calculation.

original crystal structure (DO,4) upon heating to a correspond-
ing overheated melting temperature. However, with the present
potential, the NiTi, phase does not maintain its original crystal
structure (E9;) at finite temperatures, and it decomposes to a
partly disordered phase. We attribute the wrong prediction of
the NiTiy (E93) phase to the incompleteness of the present
potential at the Ti-rich side. This should be kept in mind in
future applications of the present potential.

Table XI lists calculated physical properties of the two
solid solutions (the dilute heat of solution, the vacancy-solute
binding energy, the solute-solute binding energy, and the solute
migration energy). The DFT calculation predicts negative
dilute heats on both sides of the phase diagram, indicating
strong bonding between Ni and Ti. This result is consistent
with the experimental fact that the Ni-Ti system shows several
intermetallic compound phases. The present potential correctly
reproduces these trends qualitatively, but there is a rather large
quantitative discrepancy in the dilute heat of the Ti-rich solid
solution with a strong underestimation of the Ni formation
energy (MEAM: —0.786 eV versus DFT: —0.144 eV). In the
Ni-rich solid solution, the present potential and the DFT
calculation consistently predict a small binding (positive sign)
or repulsive (negative sign) interaction between a vacancy
and a Ti atom and a strong repulsive interaction between Ti
atoms. There is a general agreement with DFT also for the
migration energy of a Ti atom toward the adjacent vacancy
in the Ni-rich solid solution. In the Ti-rich solid solution,
however, the present potential cannot reproduce trends in
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FIG. 8. (Color online) Composition dependence of the lattice
constant (a) of the Ni-rich fcc solid solution calculated using the
present 2NN MEAM potential, in comparison with experimental data
(Ref. [82]).

the binding and the migration properties. We therefore stress
again that special attention is necessary in future simulations
of the Ti-rich solid solution using the present potential. In
contrast, the performance of the present potential on the Ni-rich
side is significantly better. To support this statement further,
we have investigated also the lattice constant composition
dependence in the Ni-rich solid solution, as shown in Fig. 8.
The experimental data [82] show an increase in the lattice
constant as the concentration of Ti increases, and we observe
that the calculated values using the present potential closely
follow this trend.

As a last transferability test, we have investigated the
composition dependence of the liquid phase. Figure 9 shows
the enthalpy of mixing of the liquid phase at 2000 K
calculated by the present potential compared to available
experimental data [82]. The calculation was performed using
NPT ensemble MD simulations with a random distribution
of each element at a certain composition. The results by both

o

T v T v T v L]

o Exp.
© Present O

2l B ]

O O
: o

O

Enthalpy of mixing (kJ/g atom)

-60 N ! N 1 N 1 N 1 N
0.0 0.2 04 0.6 0.8 1.0

Ni X Ti
Ti

FIG. 9. (Color online) Enthalpy of mixing of the Ni-Ti liquid
phase at 2000 K calculated using the present 2NN MEAM potential,
in comparison with experimental data (Ref. [82]).
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the present calculation and the experimental data indicate a
negative deviation from the ideal mixing with a minimum point
at the composition of around 40% Ti. The present potential
thus successfully reproduces the liquid phase over a large
composition range.

C. Summary of the performance of the present potential

To summarize, the developed potential performs very
well in describing equiatomic Ni-Ti compounds, Ni-rich
compounds, Ni-rich solid solutions, the binary liquid phase,
phonons related to the «-f phase transition in pure Ti, and
phonons related to the B2-B19’ transition in equiatomic Ni-Ti.
It less suited for describing Ti-rich compounds and Ti-rich
solid solutions, and the following properties are not captured:
dynamical instability along the [££&] direction in pure bcc
Ti, the resulting B-w transition in pure Ti, and the dynamical
instability along the [££&] direction in B2 NiTi.

IV. APPLICATIONS OF THE DEVELOPED POTENTIAL

We have shown in Sec. III that the present 2NN MEAM
binary potential well describes various fundamental physical
properties of the Ni-Ti system as well as those of the pure
Ni and Ti systems. In this section, we present several core
applications for which our potential is particularly well suited.
We investigate the temperature dependence of the monoclinic
angle of the B19’ phase allowing us to resolve a previous
discrepancy between DFT and experiment. Further, we study
temperature- and stress-induced phase transitions of pure Ti
and of NiTi shape-memory alloys. Corresponding simulations
are based on MD within an N PT ensemble using the same
conditions for the time step, thermostat, and barostat as in the
previous section (Sec. III).

A. Temperature dependence of the monoclinic angle of B19

A closer inspection of Table IX reveals a discrepancy
between experimental and DFT values for the monoclinic
angle of the B19’ phase. In particular, DFT predicts a larger
monoclinic angle (100.0° [76], 102.4° [75], and 101.8° present
calculation) than reported by experiment (97.9° [71]). This
discrepancy led the authors of previous studies [75,76] to
regard the DFT structure with the higher monoclinic angle
as a new, separate phase and to label it B19”. However, the
conclusion drawn in the previous studies [75,76] has been
based on a comparison of DFT values computed at 0 K and
experimental data obtained at room temperature, and it is not
clear whether temperature-induced changes might influence
the comparison.

An extension of the DFT calculations to finite temperatures
could solve this issue but is computationally demanding.
Instead, we can utilize for this purpose our potential, which
describes very well the finite temperature properties of the B19’
phase (Fig. 5). The result for the temperature dependence of
the monoclinic angle is shown in Fig. 10 (blue solid curve) in
comparison to experiment (black squares). We observe a good
agreement in the temperature dependence (cf. dashed curve)
with a small constant shift. At room temperature, the present
potential predicts an angle of 97.0°, which is close to the
experimental value of 97.9° [71]. Following the temperature
dependence of the shifted curve down to 0 K, we obtain a
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FIG. 10. (Color online) Temperature dependence of the mon-
oclinic angle (8) of the B19' NiTi phase calculated using the
present 2NN MEAM potential, in comparison with experimental data
(Ref. [71]) and T = OK DFT results from Refs. [75] and [76] and
from the present paper. The dashed MEAM curve has been shifted
on top of the room temperature experiment to emphasize the similar
temperature dependence.

value of 100.4°, which falls within the shown DFT values.
The differences in the three DFT results and a possible impact
of the exchange-correlation functional would require a further,
detailed DFT investigation. Nevertheless, our result suggests
that the previously reported discrepancy between DFT and
experiment is mainly due the different temperature conditions
for DFT (0 K) and experiment (room temperature) and that
there is no need to introduce a new phase such as B19”.

The result of the present MD simulation might also explain
why the ground state structure (B33) predicted by DFT is
not observable by experiment. In the DFT study [74] that
first proposed the B33 structure as a ground state structure
of equiatomic NiTi, the monoclinic angle was artificially
constrained to the experimentally reported value of 97.8°,
i.e., the room temperature value. The corresponding DFT
calculation, however, was performed at 7 = OK, and this
introduces a strain energy penalty because the structure has
been deformed from its ground state monoclinic angle. Due
to this strain energy, the B19’ structure was energetically
destabilized over the B33 structure by 8 meV /atom. However,
if the energy difference between the B33 and the B19’
structures is correctly obtained using a fully relaxed B19’
structure with a higher monoclinic angle (100.0°) [76], the
energy difference is very small (less than 0.5 meV /atom [76]),
which is close to the resolution limit of DFT.

B. Temperature-induced phase transition of pure Ti

The temperature-induced phase transition of pure Ti was
analyzed because of its similarity to the transition mechanism
of the NiTi shape-memory alloy. The corresponding MD
simulations were performed starting with a single-crystal
supercell of pure Ti. Initially, the bec structure was equilibrated
at 1950 K. The temperature was then gradually decreased
to 750 K and increased again to 2250 K with cooling and
heating rates of 0.5 K/ps. Periodic boundary conditions were
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FIG. 11. (Color online) (a) Atomic volume dependence of a pure
Ti cell with 1848 atoms during cooling and heating, calculated using
the present 2NN MEAM potential. The discrete jumps indicated by
the dashed arrows represent the occurrence of phase transitions. The
atomic structure of the initial bce and the transformed hep phases are
shown in the inset of the figure. (b) Size dependency of the phase
transition temperatures calculated using the present 2NN MEAM
potential.

applied along all three dimensions, and cell dimensions and
angles were allowed to relax. Temperature-induced changes in
the atomic volume were recorded to observe the occurrence
of phase transitions. To analyze finite-size effects, several
independent simulations were performed using supercells
ranging in size from 462 to 250 000 atoms.

Figure 11(a) shows a representative temperature depen-
dence of the atomic volume during cooling and reheating for
a supercell with 1848 atoms. As the bce (austenite) phase is
cooled down, it transforms into the hcp (martensite) phase. The
discontinuous jump in the volume curve represents the phase
transition event, and the corresponding temperature (900 K) is
recorded as a martensite start temperature (M;). The atomic
structure of the transformed hcp phase is compared with the
initial structure of the bcc phase in the inset of Fig. 11(a).
The hcp structure corresponds to a perfect crystal without any
sign of defects such as twins. The orientation relation between
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the initial bce and the final hep structure clearly indicates that
the phase transition occurs via the Burgers mechanism [66],
which has the_orientation relation of (110)pcc || (0002)nep and
[111]pec || [1120]hcp. Upon reheating, the hep phase transforms
back into the bce phase at a much higher temperature (1880 K)
than the M, temperature. This temperature is recorded as the
austenite finish temperature (A ).

The range of calculated transition temperatures (900 K and
1880 K) covers the experimentally reported transition temper-
ature between the bee and the hep phases (1155 K [44]). How-
ever, a significant amount of thermal hysteresis (1000 K)
caused by an overheating and undercooling is observed in the
simulations, whereas the experimental measurements indicate
a very narrow hysteresis (10 K [83]). We attribute the large
theoretical hysteresis to (1) the absence of heterogeneous
nucleation sites such as defects and (2) the prevention of
active habit planes as the size of the simulation cell is tiny
compared to that of experimental samples. The importance
of heterogeneous nucleation sites was reported in previous
MD simulations on the phase transition of a NiAl shape-
memory alloy [84-88]. These works also resulted in a large
thermal hysteresis (1000 K) if simulations were started using
defect-free crystals, in accordance with our present finding.
Further simulations considering various kinds of defects, such
as a dislocation [85], a grain boundary [84,88], an antiphase
boundary [85], and a free surface [85,86], confirmed that such
defects can significantly reduce the thermal hysteresis window.

Figure 11(a) also illustrates the occurrence of a solid-liquid
phase transition upon continued heating of the solid phase to
higher temperatures. The overheated solid phase transforms
into the liquid phase at a temperature of 2010 K. The amount
of overheating is around 360 K, which we obtained by
comparing the melting temperature of the overheated solid
to the equilibrium melting temperature of 1651 K calculated
by the interface method in Sec. III A 4.

Figure 11(b) shows transition temperatures calculated using
various supercell sizes. As the size of the system increases, the
M, temperature decreases and the A temperature increases,
indicating larger undercooling and overheating windows.
The reduced amount of undercooling and overheating in
smaller sized supercells is possibly caused by an increased
correlation in the thermal and stress fluctuations, providing
more opportunities for the system to transform. If the number
of atoms in a system is larger than 10000, the M, temperature
converges to a value of 820 K. The converged value of the
Ay temperature cannot be accurately established because it
exceeds the melting temperature of the overheated hcp phase.

C. Temperature-induced phase transition of a NiTi
shape-memory alloy

We now turn to the temperature-induced phase transition of
a NiTi shape-memory alloy. Corresponding MD simulations
were performed starting with a single-crystal supercell of
equiatomic NiTi. Initially, the B2 structure was equilibrated
at 550 K. The temperature was then gradually decreased to
10 K and increased again to 550 K with cooling and heating
rates of £0.5 K/ps. Periodic boundary conditions were applied
along all three dimensions, and cell dimensions were allowed
to relax. To investigate the effect of mechanical constraints on
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FIG. 12. (Color online) (a) Atomic volume dependence of an
equiatomic NiTi alloy with 3072 atoms during cooling and heating,
calculated using the present 2NN MEAM potential. The discrete
jumps indicated by the dashed arrows represent the occurrence
of phase transitions. The available experimental atomic volumes
(Ref. [71]) of the B2 and B19" NiTi phases at room temperature
are included. (b) Atomic structures of the initial B2 phase and
the transformed B19" NiTi phase including (001) compound twin
boundaries. Ni and Ti atoms are represented by blue (dark gray) and
orange (gray) balls, respectively.

the martensitic transformation, two sets of simulations, with
and without the relaxation of the cell angles (angles fixed at 90°
for the latter), were independently performed. To analyze finite
size effects, several independent simulations were performed
using supercells ranging in size from 384 to 978 432 atoms.

Figure 12(a) shows a representative temperature depen-
dence of the atomic volume for a cell with 3072 atoms.
The high-temperature B2 austenite phase transforms into the
low-temperature B19’ martensite phase during cooling, and the
martensite phase transforms back into the austenite phase dur-
ing reheating indicating M, and A ; temperatures, respectively.
The volume change due to the martensitic transition is positive,
as also expected from experimental work [71]. The amount
of the room-temperature volume change ((Vgio — VB2)/VB2)
calculated using the present potential (0.66%) compares well
with experimental data (0.69%) [71].

Figure 12(b) shows the atomic configurations of a simu-
lation cell with 3072 atoms before and after the martensitic
transition. In contrast to the transition of pure Ti bulk, the
transformed structure does not maintain a perfect single
crystal but forms a twinned structure with finely dispersed
(001) compound twin boundaries. This twinned structure
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FIG. 13. (Color online) Atomic structure of the B19" phase with
two (001) compound twins 7; and 7, used for the calculation of
the twin boundary energy. Periodic boundary conditions along all
directions lead to the formation of two identical twin boundaries, as
indicated by the dashed arrows. Ni and Ti atoms projected onto the
(010) plane are represented by blue (dark gray) and orange (gray)
balls, respectively.

has been frequently observed also in experiment for phase
transforming NiTi nanocrystals [3,89-91]. By performing sev-
eral independent simulations, we confirmed that the distance
between each twin boundary is not a fixed value but varies
with cell sizes, boundary conditions, and thermal histories.
Despite these small variations, a general observation is that
the magnitude of the twin distance is in the nanometer regime.
Our result agrees well with experimental studies [3,89-91],
which show an average twin width of a few nanometers
in NiTi nanocrystals. Consequently, we can deduce that the
corresponding twin boundary formation energy must be rather
low. To quantify this, a DFT calculation and a molecular statics
simulation based on the present potential were performed using
a bicrystal cell, as shown in Fig. 13. The calculated twin
boundary energies by DFT and the present molecular statics
simulation are 9.6 and 5.3 mJ/m?, respectively. These values
are very low as compared, e.g., to twin boundary energies
of fcc metals (8...161 mJ /m2) [92], indicating the special
mechanical properties of NiTi.

Compared to the phase transition of pure Ti shown in
Fig. 11, the phase transition of the NiTi shape-memory alloy
shows a considerably smaller thermal hysteresis (*=1000 K for
pure Ti and ~200 K for NiTi). The reason for this difference is
directly related to the occurrence of the nanometer-sized twins
in the NiTi alloy, which were absent in pure Ti. As twinning
partially relieves the transition strain, a barrier for the phase
transition can be significantly reduced. The theoretical window
of the thermal hysteresis (200 K) is, however, still too large
when compared to the experimental window (41 K) [72].
This overestimation is due to the absence of heterogeneous
nucleation sites in the MD simulation, as confirmed by our
results for the nanopillar to be discussed in the following
section (Sec. IV D). The same argument explains also why
the theoretical M, temperature of the defect-free NiTi bulk
calculated in this section (270 K) is underestimating the
experimental one (339 K) [72].

Figure 14(a) shows transition temperatures calculated using
various supercell sizes, and Fig. 14(b) shows correspond-
ing snapshots of the low-temperature martensite structures.
Similar to the case of pure Ti, we observe that small-sized
supercells result in a reduced undercooling, i.e., in a too high
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FIG. 14. (Color online) (a) Size dependency of the phase transi-
tion temperatures of the equiatomic NiTi alloy calculated using the
present 2NN MEAM potential. The results of two types of simula-
tions, (1) allowing for the relaxation of cell angles (unconstrained)
and (2) prohibiting the relaxation of cell angles (constrained), are
illustrated. (b) Snapshots of twinned B19" structures at 10 K. The
numbers given in the figure represent the number of atoms in each
cell. The color of atoms is scaled according to the centrosymmetry
parameter (Ref. [93]). Relatively blue (dark) regions indicate domain
boundaries.

M; temperature. For example, for the 384 atom supercell,
the M, temperature is about 350 K. Increasing the supercell
size, the undercooling increases, and the M temperature
converges to 230 K. For the A ; temperature, a more complex
convergence behavior is observed. For supercell sizes below
about 30000 atoms, it seemingly converges to a value of
about 500 K. However, for larger supercell sizes, a sudden
drop occurs, and subsequently the A, temperature shows an
oscillatory behavior with an amplitude of 100 K. Moreover,
the results of the two independent simulation sets, with
relaxed cell angles (“unconstrained”) and with constrained
cell angles (“constrained”), illustrate that the A ; temperatures
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of constrained supercells are generally lower than those of
unconstrained supercells.

The drop and the oscillations in the Ay temperature for
large-sized supercells can be explained by the occurrence of
multidomain martensite structures. As shown in Fig. 14(b), the
martensite structures of unconstrained supercells with more
than 220 320 atoms and constrained supercells with more than
73 728 atoms exhibit multiple domains that consist of twinned
B19’ martensite variants with finely dispersed (001) compound
twin boundaries. A similar martensite structure with multiple
domains was reported in previous experiments, and it was
referred to as a “herringbone” structure [3,90]. During reheat-
ing, the domain boundaries of the herringbone structure act
as heterogeneous nucleation sites for the phase transition, and
consequently the A ; temperatures of large-sized supercells are
lower than the ones of small-sized supercells without domain
boundaries. This argument is further supported by performing
a separate simulation initiated with defect-free B19" single
crystals [red filled triangles in Fig. 14(a)]. The calculated
Ay temperatures from these simulations show consistently
a higher value of 520 K since no heterogeneous nucleation
sites are available. For the same reason, the A, temperature
of the defect-free B19’ single crystals shows an excellent (i.e.,
non-oscillatory) convergence behavior. The contrastingly poor
convergence of the A, temperature of the reheated samples
[open and crossed triangles in Fig. 14(a)] can be explained
by the different morphology of each herringbone structure
resulting from different cell sizes, boundary conditions, and
thermal histories. The lower A ; temperatures of constrained
supercells with respect to unconstrained supercells also can
be explained by the difference in the morphology of domain
structures. The fixed cell angles during the simulation provide
less flexibility to form a single domain. Multiple domains and
extended boundary areas are therefore energetically favored,
as illustrated in Fig. 14(b).

D. Stress-induced phase transition of a NiTi
shape-memory alloy

As a final application of the present paper, the developed
potential was applied to a stress-induced phase transition in
a NiTi shape-memory alloy. We focused in particular on the
transition of a nanosized pillar under a compressive stress.
The pillar was prepared as a single crystal consisting of the B2
structure with dimensions of 10.7x10.7x21.1 nm and 175 000
atoms. The sides of the pillar were {110}-type surfaces, and
the longitudinal direction was aligned to the [001] direction of
the B2 structure. Periodic boundary conditions were applied
along the longitudinal direction.

Prior to the loading simulation, transition temperatures of
the pillar under a zero-stress state were obtained using the
same thermal loading process, as described in the previous
section (Sec. IV C). The calculated M, and A ; temperatures
of the pillar are 320 K and 400 K, respectively, indicating
a significantly smaller thermal hysteresis compared to the
transition between the defect-free austenite and martensite
phases in the previous section (Sec. IV C). This can be
interpreted by the fact that the free surfaces provide hetero-
geneous nucleation sites during the phase transition, which
were not available in the defect-free simulations. Incidentally,
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FIG. 15. (Color online) (a) Stress-strain response of an
equiatomic NiTi nanopillar at 450 K with compressive loading
applied along the longitudinal direction and calculated using the
present 2NN MEAM potential. (b) Snapshots of the nanopillar
during the compressive loading (A, B, and C) and the unloading (D,
E, and F) process. The color of the atoms is scaled according to the
common neighbor analysis (CNA) pattern (Refs. [94] and [95]). In
each snapshot, sky blue (gray) atoms correspond to the B2 structure
and brown (dark gray) atoms to the B19’ structure. The intermediate
B19 structure cannot be distinguished by the CNA pattern, and
respective atoms can fall into both regions, blue or brown. A few of
the outmost surface layers (thickness of 0.5 nm) are not visualized
for clarity.

the theoretical transition temperatures and thermal hysteresis
are now very close to experimental values (M; = 339K,
Ay = 380K [72]). Knowing the transition temperatures, the
pillar was heated to 450 K, i.e., to a temperature higher than the
obtained A y temperature, in order to maintain the B2 austenite
phase under a zero-stress state. A stress-controlled uniaxial
loading was then applied by adjusting the stress along the
longitudinal direction of the pillar. The compressive stress
was gradually increased to 2.1 GPa and decreased to 0 GPa
with loading and unloading rates of £3.5 MPa/ps.

Figure 15(a) shows a resultant stress-strain response of the
pillar, and corresponding snapshots are shown in Fig. 15(b).
The discontinuous jumps in the curve represent the occurrence
of phase transitions. While the temperature-induced phase
transition of the bulk NiTi alloy (Sec. IV C) showed a direct
transition between the B2 austenite and the B19' martensite
phases, the stress-induced phase transition of the NiTi nanopil-
lar shows a transition via an intermediate phase. During the
loading process, the initial B2 phase transforms first into an
intermediate B19 phase (B — C), and during further loading,
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the B19 phase transforms into the B19’ phase (D — E). During
the unloading process, the B19’ phase transforms directly back
into the B2 phase (G — H) without the occurrence of an
intermediate transition.

Our results clearly indicate that the present potential can
be successfully applied for studies of stress-induced as well as
temperature-induced phase transitions of NiTi shape-memory
alloys. In fact, the full recovery of the initial B2 austenite phase
and of the cell dimensions after the loading and unloading
processes (A — H) indicates that the nanopillar considered
here possesses the important property of superelasticity, i.e.,
the capability to sustain large elastic strains. The detailed
response of nanopillars to an applied stress depends on the
size, orientation, and shape of the pillar. The analysis of these
conditions is beyond the present scope and is therefore left to
future studies.

V. CONCLUSION

An interatomic potential for the binary Ni-Ti system is now
available based on the 2NN MEAM formalism. The potential
has been developed by improving the unary descriptions
of pure Ni and Ti utilizing the force-matching method and
by extending it to the binary system. The resulting unary
Ti-description can now successfully reproduce the hcp-bee
(«-B) transition that is closely related to the shape-memory
transition in the NiTi alloy. The good performance extends
to the equiatomic composition where the small structural
energy differences and other properties of the various complex
structures are faithfully reproduced, resulting in an accurate
description of the martensitic shape-memory alloy transfor-
mation (B2-B19"). For achieving the high quality description
of the hep-bec and B2-B19’ transitions, a compromise had
to be made by reducing the fitting weight of the hexagonal
(w) phase and by neglecting nonequiatomic compounds in
the fitting process. As a consequence, the Ti potential cannot
reproduce the hcp-hexagonal («-w) phase transition, and the
binary potential has deficiencies in describing Ti-rich alloys.

Several applications have been presented for which our po-
tential is particularly well suited. The temperature dependence
of the monoclinic angle of the B19’ phase has been computed,
and the result successfully resolves a previous discrepancy
between DFT and experiment. Large-scale MD simulations
have been performed to investigate both temperature- and
stress-induced phase transitions of the equiatomic alloy related
to core applications of the NiTi shape-memory alloy. The
MD simulation of the temperature-induced phase transition
indicates the occurrence of a nanotwinned martensite structure
with multiple domains under varying sizes and constraints
in accordance with experiments. The MD simulation of the
stress-induced phase transition of the nanopillar indicates a full
recovery of the initial structure after the loading and unloading
processes correctly reproducing the superelastic behavior of
a shape-memory alloy above the critical temperature. The
proposed 2NN MEAM potential can be utilized in further
studies to accurately describe the structural and mechanical
response of shape-memory alloys on the nanometer length
scale. The strategies outlined here to construct realistic
empirical potential for systems that show a complex phase
diagram with many competing phases and defect structures
can be straightforwardly applied to other material systems.
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