
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 120

Dynamic workload balancing for
heterogeneous systems

Alexander Strack

Course of Study: B.Sc. Simulation Technology

Examiner: Prof. Dr. Miriam Mehl

Supervisor: M.Sc. Malte Brunn

Commenced: June 01, 2020

Completed: October 21, 2020

Abstract

During the last two decades, GPUs developed into powerful and massively parallel processors.
That rose the attention of scientist who started using GPUs for large scale scientific computing,
e.g. simulations. However, the architecture of GPUs is different from CPUs. Furthermore,
graphic processors have their now fast access memory. Computing in a heterogeneous system
consisting of a CPU and multiple GPUs has various challenges. In this work, we focus on how
to distribute the load among the different components. We consider an iterative load that
can be redistributed after each iteration. The goal of our scheduling methods is to minimise
the computation time of the next iteration by estimating the performance of each component.
After a short introduction to load balancing, we specify the iterative workload scenario and
differentiate it from the typical task-based scenario often found in the literature. Then, we
show the basics of GPU programming with the help of NVIDIAs CUDA API. Furthermore,
we introduce the different kernels we use for our test and derive multiple schedulers. Our
dynamic schedulers use the time each component took to compute its assigned workload in
the last iteration as a basis of the performance estimation. After investigating the influence
of previous run-time data on the scheduling decisions, we turn our attention towards the
properties of the workloads and therefore compare different types of memory management.

2

Contents

1 Introduction 7

1.1 Historical background . 7

1.2 Motivation . 11

2 Basics 13

2.1 Load balancing . 13

2.1.1 Taxonomie . 13

2.1.2 Iterative load balancing . 15

2.2 GPU programming with CUDA . 16

3 Implementation 21

3.1 Kernels . 21

3.1.1 BLAS-kernels . 21

3.1.2 Exponential kernel . 24

3.2 Scheduling algorithms . 26

3.2.1 Static scheduling . 27

3.2.2 Just in time performance scheduling (JITP) . 29

3.2.3 Weighted performance scheduling (WP) . 30

3.2.4 Other dynamic scheduling models . 33

4 Results 35

4.1 Host and one device . 35

4.1.1 Mapped memory . 35

4.1.2 Static device memory . 39

4.1.3 Copy memory . 41

4.2 Host and multiple devices . 45

4.2.1 Performance estimation . 45

4.2.2 Data transfer comparison . 46

5 Discussion and future work 57

3

Bibliography 59

4

List of Figures

1.1 Moore’s law . 8
1.2 Development of CPU and GPU peak performance 9
1.3 Development of CPU and GPU memory bandwidth 10
1.4 Different architectures of CPUs and GPUs . 10

2.1 Taxonomy of load balancing . 14
2.2 CUDA thread hierarchy . 19
2.3 CUDA memory hierarchy . 20

3.1 Naive roofline model . 23

4.1 System information . 36
4.2 Performance comparison for different schedulers 38
4.3 PI distribution comparison for different schedulers 48
4.4 Component execution time comparison of different schedulers 49
4.5 Influence of the weight for the WP-scheduler 50
4.6 Table of the schedulers long-term statistics . 51
4.7 PI distribution for static device memory . 51
4.8 PI distribution for a compute-bound workload 52
4.9 GPU stream overlap . 52
4.10 Manual data transfer comparison for AXPY-kernel 53
4.11 Manual data transfer comparison for DOT-kernel 53
4.12 PI distribution for an iterated kernel single device 54
4.13 PI distribution and component execution time comparison for static device

memory . 54
4.14 PI distribution and component execution time comparison for various data

transfer scenarios . 55
4.15 PI distribution for an iterated kernel multiple devices 56

5

List of Algorithms

2.1 CUDA-kernel call and time measurement . 17

3.1 AXPY-kernel . 22
3.2 DOT-kernel . 25
3.3 Efficient exp(x) computation . 26
3.4 Naive exp(x) computation . 26
3.5 Static scheduler . 28
3.6 JITP-scheduler . 31
3.7 WP-scheduler . 32

4.1 Mapped memory . 37
4.2 Synchronous data transfer . 42
4.3 Asynchronous data transfer . 43

6

CHAPTER 1

Introduction

Computing hardware shifted from single processors with one core to complex systems with
many multi-core processors. These processors can be located at one place or distributed across
the globe and connected via the internet. The challenge of using these heterogeneous systems
as effective as possible developed into the broad topic of load balancing. In this work, we
focus on small heterogeneous systems that consist of a CPU and multiple GPUs and try to
dynamically, iteratively balance a workload.
The first two chapters are part of the propadeuticum required for the Simulation Technology
degree while all following chapters are part of the corresponding bachelor thesis. In the first
chapter, we recapitulate the development of PC hardware and talk about the motivation for
this thesis. Next, we give a short introduction to load balancing and show the necessary basics
of GPU programming with the CUDA API. Then, as the first part of the bachelor thesis, we
introduce several kernels as well as the scheduling algorithms we used for benchmarking. In
Chapter 4 we formulate our different tests and estimate the theoretical performance based
on the properties of the kernel chosen as workload. After validating our estimation with the
results of our tests, we draw a conclusion, answer our motivating questions and give a short
future look.

1.1 Historical background

The journey of the microprocessor starts in 1971 when Intel released the 4004. This first
microprocessor was originally designed for a calculator, clocked at 740kHz, and housed 2300
transistors. In the following years, people began to see the potential microprocessors had to
revolutionize computing. During the third quarter of the 20th century, the performance of
microprocessors rapidly improved. Back in 1965 this rise was astonishingly well predicted
by the Intel co-founder Gordon E. Moore. He predicted a doubling of the transistor count in
processors every twelve months until 1975 [Moo65]. Ten years later he changed his prognosis
to a doubling every 24 months [Moo75]. This prediction is still valid until today as illustrated
in Figure 1.1.
But it was not shortly before the turn of the millennium when AMD launched the first
microprocessor clocked at 1GHz, beating its rival Intel only by a few days. Around the same
time, AMD won the clock speed battle to 1GHz, NVIDIA released the GeForce 256.

7

1 Introduction

Figure 1.1: Transistor count development in the last 50 years. Each point marks a processor
e.g. the Intel 4004 released in 1971 with 2300 transistors or the Intel Pentium
released in 1993 with over 3 million transistors. Gordon E. Moore predicted
in 1975 a doubling of the transistor count in integrated circuits approximately
every two years. It became famous as "Moore’s law" and is a fundamental and
astonishingly accurate prediction of technological progress [Ros19].

This was the first GPU as we know it today and was capable of image transformation which
maps 3D visuals on a regular 2D monitor. That task was previously left for the more powerful
CPU. In the following years, the computation power of NVIDIA and ATI GPUs rapidly increased.
The rise of the accelerators began.
During the last 20 years, the theoretical peak FLOPS (floating-point operations per second)
performance of CPUs and GPUs evolved differently (see Figure 1.2). At the same time, the
memory bandwidth of GPUs skyrocketed (see Figure 1.3). While CPU development mainly
focused on high clock speed on a few cores, GPUs are clocked at a lower speed but have many
more cores. The differences in chip design are caused by the different properties of the tasks
they are designed for. A CPU has to execute a few threads as fast as possible so high clock
speed but not many cores are required. In contrast, a GPU has to do many tasks in parallel.
This led the development to many cores with lower clock speed. The differences between
the two architectures are illustrated in Figure 1.4. Furthermore, GPUs use SIMD-instructions
which provide additional parallelism. So GPUs are comparable to CPUs with AVX extensions.
Though, GPUs use typically a greater vector length.

8

1.1 Historical background

Figure 1.2: Theoretical FLOPS performance development of Intel CPUs and NVIDIA GPUs.
The performance of Intel CPUs (blue) massively increased during the last two
decades. However, the rise is dwarfed by the performance increase NVIDIA GPUs
(green) experienced in the same period. Due to a different architecture with
more cores but lower clock speed GPUs outperform its few cores, high clock
speed counterparts by a factor of up to 7 in raw computational performance.
Even though GPUs are not designed for double-precision computations they still
outperform CPUs by roughly the same factor [Nvib].

Because of lower clock speeds, the power consumption of modern GPUs is only slightly higher
than the power consumption of CPUs. The much higher instruction throughput and memory
bandwidth allow GPUs to work with much more data. This is beneficial for typical graphic
applications e.g. rendering. But the high level of parallelism is also usable for scientific
computations e.g. large scale simulations, where we need to perform the same steps for each
grid node. So with the rise of computing power also rose the interest of scientists in GPU
computing.

9

1 Introduction

Figure 1.3: Theoretical memory bandwidth development of Intel CPUs and NVIDIA GPUs. The
bandwidth of hardware components increased rapidly over the last two decades.
However, CPUs (blue) are still not able to cross the 100GB/s mark. GPUs (green)
in contrast have beaten the mark over a decade ago and have currently up to ten
times greater bandwidth [Nvib].

Figure 1.4: The chip architecture of CPUs and GPUs is different. A CPU focuses on only a
few arithmetic logic units (ALUs) and uses a big control block to handle many
different instructions. The cache block is divided into multiple levels and crucial
for fast data access on CPUs. Cache is much faster than any form of DRAM but in
comparison very small. In contrast to this versatile approach, GPUs use almost
the entire space to accommodate many ALUs [Nvib].

10

1.2 Motivation

1.2 Motivation

In the last section, we showed the exponential performance growth of GPUs in the last 20
years. Not only video editors or gamers profited from it. Among scientists, it also became
popular to use GPUs to accelerate computations. However, for the GPU to work in hand with
the CPU, we have to consider inter alia the following questions:

• How do we distribute the workload among the CPU and GPU to exploit the advantages
of both architectures?

• Is the outsourcing of work to a GPU useful or does the communication negate the
performance gain?

• What influence have the workload properties and the memory management on the
workload distribution?

All of them are part of the topic of load balancing. Therefore, we will shortly introduce load
balancing and give a general overview of different load balancing strategies. Starting from a
general viewpoint we lead to the specific load balancing scenario investigated in this thesis.

The typical load balancing approach is based on scheduling tasks e.g. in [Hag97] or [Bin13].
In addition, task scheduling is the main load balancing topic on distributed systems see
[LR91], [MJ14] and [Sah13] or in cloud computing [KM14] and [MR16]. However, we
focus on balancing an iterative load that is scheduled after each iteration to minimize the
computation time. In this research area, [ABA12] and [ABA13] contributed work on multi-
GPU systems. Basis of their work was the ULL_Calibrate_lib [GABC08] which is a scheduling
library providing minimal computation overhead and is easy to use. Iterative load balancing
on distributed systems was treated by [XL95] and [BCV09].
A essential part of each load balancing algorithm is to make a good scheduling decision.
[DL15] use an approach where the computation time of a task is predicted by profiling codes.
In contrast, [GBHS12] scheduler uses previous run-time data to estimate the run-time of the
currently scheduled tasks. [Boy13] proposed a scheduler that first assigns small partitions
of the workload to the nodes and increases the partition size each time a node has finished
the previous partition. So there exist various approaches on how to estimate the system
performance. Even a fuzzy neural network was used by [ZXZ+17]. The scheduling approach
we use is based on the time each component took to compute its assigned workload in the last
iteration. For a more detailed explanation see Section 3.2.

11

CHAPTER 2

Basics

This chapter contains a short introduction to load balancing and a definition of the iterative
balancing scenario. Furthermore, we introduce the fundamental basics of GPU programming
with the CUDA API provided by NVIDIA.

2.1 Load balancing

Many more or less different types of load balancing exist. To get a general overview, we
classify the different types with the help of the frequently used taxonomy of Casavant and
Kuhl [CK88]. Furthermore, we explain the different hierarchy levels of the taxonomy. Then,
we give an example of a typical task-based dynamic load balancing scenario and derive an
iterative scenario that better represents scientific simulations.

2.1.1 Taxonomie

There exist various schemes to classify load balancing. The most popular is the taxonomy
proposed by Casavant and Kuhl [CK88]. A simplified version of the taxonomy can be seen in
Figure 2.1. The following explanation style was inspired by [SNO+11]. We refer to a part of
the system as node or component. On the first level, the model divides scheduling approaches
into local and global strategies.

Local versus global A local scheduler only distributes the workload on one node. It is not
dependent on any other node in the system. Whereas a global scheduler uses information
about all nodes in the system to allocate tasks to different nodes. Its goal is to optimize a
global performance objective e.g. node utilization. Compared to global scheduling, local
scheduling requires no communication between nodes but is a dead end when we have a
system with multiple nodes and want to optimize a global performance objective. As we focus
on global schedulers, the next hierarchy level is static versus dynamic.

13

2 Basics

Figure 2.1: The load balancing taxonomy by Casavant and Kuhl [CK88]. This version was
modified from the original and contains only new leaves where a lower level of
the hierarchy is relevant for this thesis. For a more detailed explanation of the
different hierarchy levels see Section 2.1.1.

Static versus dynamic In static scheduling, we assume to have all the necessary information
at hand when we make the scheduling decision and then never change it during the entire
run-time. We need information about the computation time of the task at each node. Further,
we need to know the communication cost and structure of the system. For each task, a static
scheduler makes only one decision before the application is running. In contrast, a dynamic
scheduler makes various scheduling decisions during the run-time. Therefore, it has some
advantages compared to static scheduling. For example, the computation time of a finished
task can be used to improve the next decision because the performance of the node can be
better approximated. Furthermore, a dynamic scheduler can handle tasks that are created
while the application is running. Another benefit of a dynamic scheduler is its resistance
against sudden performance changes of certain nodes e.g when they have to compute tasks
for another application. However, dynamic approaches generate additional cost and make
the application more complex. So choosing a dynamic scheduler is not always the optimal
solution.

14

2.1 Load balancing

In a homogeneous system, static scheduling is attractive because we can assume the same
execution time on each node and assign the tasks equally. Considering a heterogeneous system,
this type of static scheduling is not efficient because to get good results we must somehow
approximate the performance of each node before the application run-time.

Central versus decentral Dynamic approaches can be further divided into centralized and
decentralized scheduling. In a scenario, with a central scheduler one node - typically referred
to as host - collects all the system information and makes the scheduling decisions. This has the
advantage that all the information is accumulated at the host and available for the scheduling
decisions. In general, that leads to better decision making compared to a decentralized
scheduler. Furthermore, it is easier to implement because all other nodes do not have to deal
with scheduling. But it lacks scalability for very large or distributed systems. In such systems,
it may be more effective to only have some information e.g. about the neighbour nodes, and
request or send tasks to them.

Optimal versus sub-optimal As mentioned in the last paragraphs global schedulers need
information about all nodes and the unscheduled tasks. Especially static schedulers need all
the information about the system before the run-time. Because scheduling is an NP-complete
problem [Ull75] and it is difficult to make general performance assumptions, static schedulers
found in the literature are typically sub-optimal and use heuristic or approximative models to
make scheduling decisions. The optimization problem can be solved e.g. by gradient descent
or heuristic methods like Simulated Annealing [Pol99] or Genetic Models [SP94].

2.1.2 Iterative load balancing

The typical task-based dynamic load balancing scenario is the following:

• Dynamic centralized sup-optimal scheduler → one host accumulates the entire system
information and makes the scheduling decision

• Tasks have different types and sizes and are typically scientific applications

• Tasks are generated by a Poisson process and get scheduled on-the-fly

• The host is only responsible for scheduling and does not execute tasks - even if idle

• Goal: maximize the utilization of all nodes

Most scientific simulations do some sort of discretization in space and time. Thus, the spatial
is divided into a grid of size N points and there is a time step size of ∆t. Each time step ti is
∆t bigger than its predecessor. The resulting task has always size N and is iterated over the
time steps ti. This is why we investigate an iterative scheduling scenario.

15

2 Basics

The scheduler is like in the task-based scenario dynamic, centralized, and sup-optimal. The
goal is to minimize the computation time of one iteration. In contrast to the task-based
scenario where the host node is only responsible for scheduling, the host assigns itself a part
of the static task to which we will refer as workload from now on. That is possible because
scheduling decisions only have to be made at the start of each iteration. Furthermore, will we
refer to our non-host nodes in the system as devices because in our test systems they are all
GPUs while the host is the only CPU. So our heterogeneous system consists of one CPU (host)
and n GPUs (devices). The scheduling approach is to redistribute the workload on the host
and devices in such a way that the new distribution fits the current performance estimation
of the system. So our approach impacts a lower level of parallelism as we do not schedule
tasks but try to partition one iterated task optimally. In fact, we only parallelize a kernel and
redistribute the partitions on which the nodes operate. In the next chapter, we introduce the
kernels used as workload and the scheduling algorithms we developed for our benchmarks.

2.2 GPU programming with CUDA

This section contains a short introduction to the CUDA API which enables scientific computing
on NVIDIA GPUs. Released in 2007, CUDA (Compute Unified Device Architecture) is an
NVIDIA GPU exclusive API. CUDA can be wrapped for many programming languages e.g.
Python or MATLAB. But the conventional way to use it is "C for CUDA" which simply extends
the language C with specific commands and functions. In the following paragraphs, we show
how to write code for GPUs, launch CUDA-kernels, allocate memory, copy data and measure
the execution time of CUDA-kernels.

Core of the C extension are CUDA-kernels i.e. functions that run exclusively on the device. As
mentioned above, we refer to the CPU as host and to GPUs as devices. In code, a CUDA-kernel
can be identified by the declaration specifier __global__. To call a CUDA-kernel we need
to add a <<< X, Y >>> expression (see Algorithm 2.1). These two parameters specify
the number of blocks and on how many threads per block the code is executed in parallel.
Typically the number of threads per block is limited to 1024 on current hardware. The maximal
number of blocks is way larger. Furthermore, the threads and blocks can be organized in
up to three dimensions. Figure 2.2 gives an example for a computation grid containing a
two-dimensional set of six blocks, with twelve threads each. When called, a CUDA-kernel is
executed asynchronously by the device. To synchronize the kernel e.g. when the results of the
kernel are required for the host to proceed, use the method cudaDeviceSynchronize(). With
this routine, the host is forced to wait until all CUDA-kernels are finished.
To make a performance-based scheduling decision we need to measure the time the device
needs to execute a kernel. This measurement has to be synchronous and can be implemented
with a CUDA provided tool called events. To measure the execution time of a kernel we have
to create two events - start and stop.

16

2.2 GPU programming with CUDA

Algorithm 2.1 CUDA-kernel call and time measurement
The algorithm shows the declaration of a CUDA-kernel. Furthermore, it shows how to call the
kernel with the specifiers X, Y that indicate the number of blocks and threads per block. The
kernel is timed with the help of two CUDA-events.

1: __global__ void kernel(void) {}
2: int main(void)
3: {
4: cudaEvent_t start , stop ;
5: cudaEventCreate(&start);
6: cudaEventCreate(&stop);
7: cudaEventRecord(start, 0);
8: kernel<<<X, Y>>>();
9: cudaEventRecord(stop, 0);

10: cudaEventSynchronize(stop);
11: float elapsedTime;
12: cudaEventElapsedTime(&elapsedTime, start, stop)
13: return 0;
14: }

Then, we record the start event before and the stop event after the kernel call and compute the
time difference via the provided function cudaElapsedTime(). This kind of time measurement
requires the host thread to wait until the CUDA-kernel finished. During that period, the host
cannot compute its part of the workload. Unfortunately, the execution times are crucial for
our performance estimation. At first glance, a parallel kernel execution of host and device
seems not feasible. But there is a quite simple solution to this problem. The host thread is only
capable of handling one device [SK11]. Therefore, a n device system requires n − 1 additional
threads on the host to manage the devices. To solve our synchronisation problem we start one
thread for the host and one per device. For example, in a single device system, runs one host
thread that handles the scheduling and host workload, and one device thread that handles the
CUDA specific function calls for the device. This additional thread can be blocked by CUDA
synchronizers and does not affect the host thread at all.

Another basic topic when programming with CUDA is memory management in heterogeneous
systems. An NVIDIA GPU has a specific memory hierarchy as illustrated in Figure 2.3. On
the lowest level, each thread has its local memory. On the next level, shared memory is
available for all threads in one block. The highest level is global memory which is available to
every thread and block of the device. We can allocate global device memory via the method
cudaMalloc() and free it via cudaFree(). Host memory can be allocated in standard C fashion
via the method malloc() and freed via free(). Also, it is possible to allocate pinned memory on
the host via cudaHostAlloc(). Pinned memory stays always on the system memory and cannot
be outsourced to storage memory. Further, it can be declared to mapped memory by using the
flag "cudaHostMapped". This enables devices with compute capability greater than 1.0 to read
and write directly on the data.

17

2 Basics

So the devices do not operate on their global memory but the system memory. Data can be
directly accessed without first transferring it to the devices global memory. The two advantages
of this method are that we can work on data that would not fit on the devices global memory
which is typically smaller than the system memory and that we do not have to care about
manually transferring data. All data transfer gets implicitly performed by the device when
needed.

This leads us directly to the last topic of this introduction - data transfer and streams. The
easiest way to manually copy data to a device is to use the method cudaMemcpy() with the
"cudaMemcpyHostToDevice" flag. Vice versa when copying data back to the host with the flag
"cudaMemcpyDeviceToHost". However, this copy mechanic has a downside - it is synchronous.
Only after all the data was copied to the device the CUDA-kernel is called. This leads to a
performance loss because modern GPUs have separated copy engines that can handle data
transfer while kernels are running. To improve the performance, the idea is to copy a small
partition of the assigned workload to the device and execute it thereafter, while the copy
engine already copies the next partition. CUDA realizes this mechanic with the help of streams.
To use streams the device must be able to handle overlap which supports nearly every NVIDIA
GPU from compute capability 1.1 and above. In a stream, queued copy and kernel calls are
executed sequentially while multiple streams are asynchronous among each other. So the idea
is to create multiple streams, and overlap the data transfer with kernel calls of small workload
partitions.

18

2.2 GPU programming with CUDA

Figure 2.2: Scheme of the thread hierarchy on NVIDIA GPUs. The thread hierarchy consists of
three levels. The highest level is the computation grid. The size of a grid is fixed
by the second parameter of the kernel call. It contains an up to three-dimensional
array of blocks. Each of these blocks accommodates a fixed number of threads.
The thread is the lowest instance and executes the kernel code. The number of
threads per block can be specified via the first parameter at the kernel call. Again,
it is possible to use multidimensional structures. Furthermore, individual blocks
can be accessed via blockIdx and the unique threads therein via threadIdx [Nvia].

19

2 Basics

Figure 2.3: Scheme of the memory hierarchy on NVIDIA GPUs. The memory hierarchy works
in hand with the thread hierarchy (see Figure 2.2). On the lowest level, each
thread has its local memory. Then on the next level, there is shared memory per
block to which all threads of a block have read and write access. The last level
is the global memory where each thread in each block in each grid has access
authorization [Nvia].

20

CHAPTER 3

Implementation

While the previous two chapters were part of the propadeuticum this chapter marks the
beginning of the bachelor thesis. In this chapter, we first show the implementation of the
kernels we use as workload. Then, we introduce our general performance estimation approach
and derive multiple schedulers. In the end, we refer to other, more complex estimation
approaches.

3.1 Kernels

Kernels are a fundamental part of scientific computations. We chose the two well-know level
one BLAS-routines AXPY and DOT with different data-parallelism but the same memory-
boundedness. Furthermore, we complement the BLAS-routines with a special kernel that
computes the exponential function.

3.1.1 BLAS-kernels

In this subsection, we discuss the implementation of the two BLAS-routines AXPY and DOT.
Scientific computations heavily rely on different levels of BLAS-routines reaching from sim-
ple vector addition (AXPY) up to matrix-matrix multiplication (GEMM) or the fast Fourier
transform (FFT).

AXPY

The AXPY-routine may be one of the simplest BLAS-routines to implement for host and device.
It is just an addition of a scaled vector x with another vector y. The algebraic equation is given
by

(3.1) z = a · x + y

with the scalar a and where all three vectors have the same size and are real-valued. The host
kernel is simply a for-loop over all assigned indices. It’s implementation as CUDA-kernel is
also straightforward. Both can be viewed in Algorithm 3.1.

21

3 Implementation

Algorithm 3.1 AXPY-kernel
Implementation of the AXPY-kernel. For the host the kernel only consists of a for-loop which is
iterating over the assigned workload. The assigned workload is defined by the start-index and
end-index. The CUDA-kernel is almost the same, but each thread of a block works on its own
partition until the overall index tid is bigger than the end-index.

1: //host kernel
2: void AXPY_host(int startIndex, int endIndex, float a, float∗ x, float∗ y, float∗ z)
3: {
4: for (int i = startIndex; i < endIndex; i++)
5: {
6: z[i] = a ∗ x[i] + y[i];
7: }
8: }
9: //device kernel

10: __global__ void AXPY_device(int startIndex, int endIndex, float a, float∗ x, float∗ y, float∗ z)
11: {
12: int tid = threadIdx.x + blockIdx.x ∗ blockDim.x + startIndex;
13: while (tid < endIndex)
14: {
15: z[tid] = a ∗ x[tid] + y[tid];
16: tid += blockDim.x ∗ gridDim.x;
17: }
18: }

Each thread per block solves the equation for its assigned indices until it reaches the end
index. The best feature about the AXPY-routine is not the low coding complexity but its
data-parallelism. The routine is embarrassingly data-parallel. This means each sub-equation
at index i can be computed independently from the other sub-equations. We can simply cut
off at any index and send the data to one device and the rest to another one and the result
will be still correct. Therefore, we have a parallel computation complexity of O(N).
Further investigating the routine, we see that each sub equation consists of three load (a, xi, yi),
two compute(+, ·), and one store (zi) instruction. This leads to the assumption that our results
will be more dependent on the memory bandwidth than the raw single-precision performance
of the system components. The memory-bound properties can be modelled by the naive
roofline model [Wil08]. The component performance P can be model by

(3.2) P = min
(

b · I

f

)
with peak performance f , bandwidth b and arithmetic intensity I. The arithmetic intensity
is defined as the ratio between computation and communication work. For example, the
arithmetic intensity of the SAXPY-routine is given by ISAXPY = 1

6 with computation cost 2N

for the two compute instructions and communication cost 12N for two load and one store
instruction.
As a result, the performance of an application is either capped by the peak performance or the
memory bandwidth (see Figure 3.1).

22

3.1 Kernels

Figure 3.1: Naive roofline model. The performance of an application on a node is either
capped by the bandwidth b or peak performance f . The greater the operational
intensity of an application the more likely is it compute-bound. The intensity of
O1 is low such that its performance is memory-bound. In contrast, the intensity
of O2 is higher. Thus, its performance is compute-bound. Modified from [Nat16].

DOT

The second BLAS-routine we use is the DOT-routine. This level one BLAS-routine is just the
scalar product of two vectors. The algebraic equation is given by

(3.3) z = xT · y

with the real-valued vectors x and y and the scalar result z. In contrast to the AXPY-routine,
this routine is not embarrassingly data-parallel. Each sub-equation adds up to the result z. This
creates a small overhead because after the host and all devices have finished the computation
of their partial result, the host needs to add up all partial results. However, compared to the
size of the workload this overhead is negligible. The data dependency also directly affects the
CUDA-kernel because each block has to compute its partial result. Therefore, all threads in
one block add up the products into the shared cache memory. This array then gets reduced
via fan-in to one result per block. Then, the result of each block gets transferred into a helping
array on the device-specific host thread. So the kernel does return an array and not a scalar
value. The final reduction step has to be done on the device-specific thread. Because of the
reduction steps, we get a parallel computation complexity of O(N · log(N)). Algorithm 3.2
shows the CUDA-kernel that reduces the large array into a way smaller one which can be
then post-processed on the CPU. Again, we investigate the sub-equations which consist of
two load (xi, yi), one compute(·), and one store (cachei) instruction. So the kernel is also
memory-bound. But we may see a different performance compared to the AXPY-kernel because
we have to copy fewer data back to the host.

23

3 Implementation

Because both BLAS-kernels have memory-bound properties, we derive a compute-bound
kernel in the next section.

3.1.2 Exponential kernel

Because level one and even level two BLAS-routines are memory-bound on GPUs [VD08], we
derive a compute-bound kernel in this section. We expect for this kernel that our schedulers
distribute the workload more in favour of the devices compared to the BLAS-routines. As
workload we choose the computation of the exponential function, which is defined as

(3.4) exp(x) :=
∞∑

k=0

xk

k!

with the scalar x. The sum up to its N -th part can be easily computed in O(N) by using
xk = xk−1 · x and k! = (k − 1)! · k (see Algorithm 3.3). However, we choose a more naive
approach and compute xk and k! each time from scratch (see Algorithm 3.4). This results in
worse O(N2) complexity. Because the EXP-kernel has to send back the reduced result of the
sum we can use the same fan-in as for the DOT-kernel (see Algorithm 3.2) and post-process
on the device thread.
Note that from a scientific point of view even an efficient computation of exp(x) up to the
N -th partial sum is useless. The contributions for large N get very small and vanish because
we use floating-point accuracy. Nonetheless, there are two reasons to consider the naive
EXP-workload. First, the EXP-kernel requires minimal data transfer (scalar x and the partial
result of each block). And second, its scaling is linear i.e. the load for j = 0, ..., N

2 is three
times smaller than for j = N+1

2 , ..., N .

24

3.1 Kernels

Algorithm 3.2 DOT-kernel
Implementation of the DOT-kernel. While for the single-threaded host one for-loop is
sufficient to compute the partial result of the dot product, the CUDA-kernel faces the problem
of data-parallelism. To compute the devices partial result we need to make multiple reduction
steps and reduce the result of each thread to one per block. This reduction is done by using
fan-in, where the number of adding threads is divided by two each cycle. In the end, we get
an array which entries correspond to the partial result of each block. To get the final partial
result of the device we need to make a final reduction step, that is not part of the
CUDA-kernel.

1: //host kernel
2: float DOT_host(int startIndex, int endIndex, float∗ x, float∗ y)
3: {
4: float sum = 0.0f;
5: for (int i = startIndex; i < endIndex; i++)
6: {
7: sum += x[i] ∗ y[i];
8: }
9: return sum;

10: }
11: //device kernel
12: __global__ void DOT_device(int startIndex, int endIndex, float∗ x, float∗ y, float∗ sumBlock)
13: {
14: __shared__ float cache[threadsPerBlock];
15: int tid = threadIdx.x + blockIdx.x ∗ blockDim.x + startIndex;
16: int cacheIndex = threadIdx.x;
17: float temp = 0;
18: while (tid < endIndex)
19: {
20: temp += x[tid] ∗ y[tid];
21: tid += blockDim.x ∗ gridDim.x;
22: }
23: // set the cache values
24: cache[cacheIndex] = temp;
25: // synchronize threads in this block
26: __syncthreads();
27: // for reductions, threadsPerBlock must be a power of two
28: int i = blockDim.x / 2;
29: while (i != 0)
30: {
31: if (cacheIndex < i)
32: cache[cacheIndex] += cache[cacheIndex + i];
33: __syncthreads();
34: i /= 2;
35: }
36: if (cacheIndex == 0)
37: {
38: sumBlock[blockIdx.x] = cache[0];
39: }
40: }

25

3 Implementation

Algorithm 3.3 Efficient exp(x) computation
Computation of exp(x) up to the N -th partial sum in O(N). Helping variables are used to
store the current faculty and power of x.

1: float sum = 1.0f ;
2: float fac = 1.0f ;
3: float x_pot = x;
4: for(int k = 1; k < N + 1; k++)
5: {
6: fac = fac / k;
7: x_pot = x_pot ∗ x;
8: sum = sum + fac ∗ x_pot
9: }

10:

Algorithm 3.4 Naive exp(x) computation
Computation of exp(x) up to the N -th partial sum in O(N2). Instead of storing the
intermediate results, we compute the faculty and power in each iteration from scratch.

1: float sum = 1.0f ;
2: for(int k = 1; k < N + 1; k++)
3: {
4: float fac = 1.0f ;
5: float x_pot = x;
6: for(int i = 1; k < N + 1; i++)
7: {
8: fac = fac / i ;
9: x_pot = x_pot ∗ x;

10: }
11: sum = sum + fac ∗ x_pot
12: }

3.2 Scheduling algorithms

The essential core of each load balancing strategy is the scheduler. It uses information about
the system to make a scheduling decision and assigns different workload partitions to the
nodes of the system. Our iterative simulation scenario has to be optimized in two different
variables:

• Minimize the workload computation time on each node through better and more costly
scheduling

• Minimize the scheduling overhead which risks a worse scheduling decision that results
in slower workload computation

26

3.2 Scheduling algorithms

These two variables can be combined into one criterion which minimizes the total computation
time of each iteration. One iteration contains the scheduling decision of the host and the
computation of the assigned workload on each node. There exist many different scheduling
approaches but we use schedulers that have relatively low complexity and all use the same
principle. The basis of our scheduling algorithms is the system performance ptotal which is
defined as

(3.5)
ptotal =

nodes∑
i

pi,

ptotal = 1.

Each node has a performance index (PI) pi between 0 and 1, such that summed up the total
system performance is 1. Let’s assume our system only consist of the host and one device with
phost = 1

4 and pdevice = 3
4 . Then the scheduler assigns 3

4 of the total workload to the device
and the remaining 1

4 to the host.

3.2.1 Static scheduling

As described in Chapter 2, static scheduling is dependent on the available information before
the actual application run-time. Furthermore, a static scheduler does not create any scheduling
overhead during the computation. We use a static scheduler as a reference and compare it
against the dynamic schedulers derived in this work. The performance of the static scheduler
is only dependent on our "initial guess" on how we estimate the system performance and
initialize the PIs of the host and the devices. Algorithm 3.5 shows how the static scheduler
assigns the workload by specifying the start and end index by multiplying the PI with the
workload size.

No information If no information about the system is available before the run-time starts, a
naive approach is to initialize all computing nodes equally [Lam15]. The PIs of the host and
all devices are set to

(3.6) pi = 1
n

with n being the number of nodes in the system. The bottleneck of this initial guess is the
slowest part of the system. For example, the host could significantly slow down the iteration
because the devices exploit their superior bandwidth. In a homogeneous system, however,
this is the optimal solution if we assume that each node has no additional load.

27

3 Implementation

Algorithm 3.5 Static scheduler
Static PI-based scheduler. The method has to be called only one time before the first iteration.
It assigns each node a partition of the total workload corresponding to its PI-value. The size of
the assigned workload is defined by the start-index and the end-index e.g. of the dot product
vectors.

1: void staticScheduler (HostStruct∗ host , DeviceStruct∗ devices)
2: {
3: int remainingWorkload = 0;
4: //DISTRIBUTE WORKLOAD
5: //Compute device workload
6: for (int i = 0; i < deviceCount; i++)
7: {
8: //Assign device i workload
9: devices [i].workloadDevice = (int)(devices[i].performanceIndexDevice ∗ taskSize);

10: //Map data to device
11: devices [i]. startIndex = remainingWorkload;
12: remainingWorkload += devices[i].workloadDevice;
13: devices [i].endIndex = remainingWorkload;
14: }
15: //Compute host workload
16: host−>startIndexHost = remainingWorkload;
17: host−>endIndexHost = taskSize;
18: host−>workloadHost = taskSize − remainingWorkload;
19: }

Type information If a bit more is known about the system, e.g. that all devices have the
same specifications, we can manually specify a performance relation between the devices
and the host. Let this relation be rhost : rdevice, then we can initialize the PIs for the static
scheduling as

(3.7)
phost = rhost

rhost + ndevice · rdevice
,

pi = rdevice

rhost + ndevice · rdevice

for all devices i with the number of devices ndevice. For example, rhost : rdevice could be fixed
to 1:2 which means the devices are twice as fast as the host. In a system with one host and two
devices, the PIs would be initialized as 1

5 for the host and 2
5 for each device. This initial guess

is efficient and performs better than equal initialisation when the relation is chosen reasonably
by the programmer and the set of devices is homogeneous. Big performance differences across
the devices can act as a bottleneck.

28

3.2 Scheduling algorithms

Specification information The more information we have about the system the better can
we approximate the performance of individual nodes. If we have access to detailed system
information like memory bandwidth, clock speed, and core count of each node we can make
a better estimation of the node’s real performance and therefore make a better initial guess.
Assume we have access to all the system information, then we can make a pretty good initial
guess. That’s why static scheduling approaches use different techniques to gather as much
information as possible before the application is launched.

Semi-static The last static scheduling approach we talk about is not permanently static. It
estimates the PIs by using the information gathered during the first iteration. The scheduler
uses the initial PI distribution to measure the execution time of the assigned workloads for
each node. Then before the second iteration, it uses this gathered information to estimate the
PIs. In contrast to a fully dynamic approach, the PIs are constant for all following iterations.
An advantage of the semi-static scheduler is that it needs no explicit information about the
system and creates only a small scheduling overhead before the second iteration.
The main problem even an optimal static scheduler cannot overcome is its inability to react to
sudden short or long performance changes of nodes that may occur during the run-time. Only
dynamic schedulers have that ability.

3.2.2 Just in time performance scheduling (JITP)

In the last subsection, we talked about static scheduling and concluded that even the best
initial guess can lead to decreased performance over time. To further optimize the iteration
computation time we can measure the current performance of the host and each device each
iteration and then rearrange the workload based on that information.
First, we introduce a dynamic scheduler that reacts immediately to performance changes.
Because of this property we name it "Just in time performance scheduler". We use the execution
time of the workload assigned to the host and the devices measured by CUDA events (see
Section 2.2). After each iteration k we store the execution time tk

i of each component. At
the beginning of the next iteration k + 1 the JITP-scheduler uses this information to calculate
the current performance estimation for each node. It assumes that the node performance is
constant in relation to the workload size N .

29

3 Implementation

The estimations are given by

(3.8) p̂k+1
i = wk

i

tk
i

with the size of the assigned workload wk
i during iteration k. To match the performance model

(Equations (3.5)) the estimations have to be normed. So we compute the total estimated
performance

(3.9) p̂k+1
total =

∑
i

p̂k+1
i

and then update the PIs with the normed estimations

(3.10) pk+1
i = p̂k+1

i

p̂k+1
total

.

After this update phase the schedulers assigns the workload in the same way as the static
scheduler by multiplying the PI with the total workload (see Algorithm 3.6). Due to perfor-
mance fluctuations of the nodes, we expect the PIs to change slightly after each iteration.
Furthermore, a bad initial guess should be corrected after a couple of iterations. Also, the
scheduler should react immediately to decreased performance at affected nodes - even if it
was unlikely in the past. At the next iteration, these nodes get a smaller partition of the
workload. And that might be its greatest flaw: It uses no information about the performance
in the past.

3.2.3 Weighted performance scheduling (WP)

Instead of just using the latest information about the workload execution time the weighted
performance scheduler uses all information available since the run-time started. The base
assumption is that we get a better average performance and more stability compared to the
JITP-scheduler when we use the entire information. The WP-scheduler is quite identical to the
forgetting JITP-scheduler. It also uses the execution time tk

i and calculates the performance
estimation (Equation (3.8)) after each iteration. But the update step is different compared to
Equation (3.10). Instead of simply updating the PIs the WP-scheduler takes the old PIs into
account by the weight ω. The resulting updating term is given by

(3.11) pk+1
i = ω · pk+1

i + (1 − ω) · p̂k+1
i

p̂k+1
total

with ω ∈ [0, 1]. The implementation (see Algorithm 3.7) is almost identical to the JITP-
scheduler and uses the familiar assigning principle. By changing the weight we can change
the behaviour of the scheduler. A rational approach is to value the new information more than
the old because its more recent e.g. ω = 1

2 .

30

3.2 Scheduling algorithms

Algorithm 3.6 JITP-scheduler
Dynamic scheduler based on the performance estimation of the latest iteration. The algorithm
can be divided into two steps. In the first step, the scheduler uses the time each component
needed to compute its workload partition in the latest iteration to update the PIs of the
system. The updating process follows Equations (3.8-3.10). In the second step, the scheduler
assigns the new workload partition to the components based on the updated PIs. In fact, the
second step is identical to the static scheduler (see Algorithm 3.5).

1: void JITPScheduler(HostStruct∗ host , DeviceStruct∗ devices)
2: {
3: float unnormedPerformanceIndex[1 + deviceCount]; //first entry : host − then devices
4: float performanceSum = 0;
5: int remainingWorkload = 0;
6: //UPDATE PERFORMANCE INDEX
7: //Compute host performance
8: unnormedPerformanceIndex[0] = host−>workloadHost / host−>elapsedTimeHost;;
9: //Compute devices performance

10: for (int i = 0; i < deviceCount; i++)
11: {
12: unnormedPerformanceIndex[i + 1] = devices[i].workloadDevice / devices[i].elapsedTimeDevice;
13: }
14: //Sum of total Performance to norm performance by computing performanceIndex
15: for (int i = 0; i < deviceCount + 1; i++)
16: {
17: performanceSum += unnormedPerformanceIndex[i];
18: }
19: //Update performance index on host
20: host−>performanceIndexHost = unnormedPerformanceIndex[0] / performanceSum;
21: //Update performance index on devices
22: for (int i = 0; i < deviceCount; i++)
23: {
24: devices [i].performanceIndexDevice = unnormedPerformanceIndex[i + 1] / performanceSum;
25: }
26: //DISTRIBUTE WORKLOAD
27: //Compute device workload
28: for (int i = 0; i < deviceCount; i++)
29: {
30: · · ·
31: }
32: //Compute host workload
33: · · ·
34: }

31

3 Implementation

Algorithm 3.7 WP-scheduler
Dynamic scheduler based on weighting the old PI with the latest performance estimation. The
algorithm can be divided into two steps. In the first step, the PIs get updated - unlike the
JITP-scheduler (see Algorithm 3.6) - by weighting the old PI with the newly computed
estimation (see Equation (3.11)). In the second step, the scheduler distributes the workload
the same way as the static and JITP-scheduler.

1: void WPScheduler(HostStruct∗ host, DeviceStruct∗ devices , float weight)
2: {
3: float unnormedPerformanceIndex[1 + deviceCount]; //first entry: host − then devices
4: float performanceSum = 0;
5: int remainingWorkload = 0;
6: //UPDATE PERFORMANCE INDEX
7: //Compute host performance
8: unnormedPerformanceIndex[0] = host−>workloadHost / host−>elapsedTimeHost;
9: //Compute devices performance

10: for (int i = 0; i < deviceCount; i++)
11: {
12: unnormedPerformanceIndex[i + 1] = devices[i].workloadDevice / devices[i].elapsedTimeDevice;
13: }
14: //Sum of total Performance to norm performance by computing performanceIndex
15: for (int i = 0; i < deviceCount + 1; i++)
16: {
17: performanceSum += unnormedPerformanceIndex[i];
18: }
19: //Update performance index on host by weightening
20: host−>performanceIndexHost = memoryWeight ∗ host−>performanceIndexHost + (1.0f − weight) ∗ (

unnormedPerformanceIndex[0] / performanceSum);
21: //Update performance index on devices by weightening
22: for (int i = 0; i < deviceCount; i++)
23: {
24: devices [i].performanceIndexDevice = weight ∗ devices[i].performanceIndexDevice
25: + (1.0f − weight) ∗ (unnormedPerformanceIndex[i + 1] / performanceSum);
26: }
27: //DISTRIBUTE WORKLOAD
28: //Compute device workload
29: for (int i = 0; i < deviceCount; i++)
30: {
31: · · ·
32: }
33: //Compute host workload
34: · · ·
35: }

32

3.2 Scheduling algorithms

Furthermore, the WP-scheduler contains three special cases:

• ω = 1: This case has the same effect as static scheduling because all new estimations are
weighted 0 and the initialized PIs never change.

• ω = 0: This case has the same effect as the JITP-scheduler as the old PIs are weighted 0.

• ω = k
k+1 : Using this weighting in iteration k + 1 guarantees that the estimation of each

iteration is weighted equally.

At the end of this section, we formulate our expectations on how the WP-scheduler behaves
for different weights. For ω → 0 we expect the WP-scheduler to behave like the JITP-scheduler
to which we already formulated our expectations in the last section. In contrast, we expect
for ω → 1 different behaviour. A bad initialization may take very long to be balanced and the
scheduling should not feel responsive to performance fluctuations.

3.2.4 Other dynamic scheduling models

The PI-based scheduling model used in this thesis takes a very generalized approach at
gathering system information, as it only uses the total execution time of assigned workloads on
the nodes. However, there exist other more complex approaches to estimate node performance.
One way to improve the estimation accuracy is to split the kernel execution time and the time
required for data transfer. Because the PCIe bus delivers an asymmetric bandwidth the data
transfer time has to be split [MIRS14], [GAGZ+20] into the transfer time from host to device
th→d and td→h vice versa. The time measurement now consists of

(3.12) ti,total = ti,h→d + ti,kernel + ti,d→h

such that we get three performance estimations

(3.13)

pi,h→d = si,h→d

ti,h→d

pi,kernel = wi

ti,kernel

pi,d→h = si,d→h

ti,d→h

with si being the size of the transferred data dependant on the workload size wi and the
workload type. Thus, making a scheduling decision is more complicated as the amount of
transferred data is dependant on the workload type.

33

3 Implementation

Our scheduling model assumes a constant node performance to workload size relation e.g.
doubling the workload size doubles the computation time. [DW03] improves the accuracy
by estimating a piece-wise linear performance function. Each node has its own piece-wise
linear function Pi : N → [0, 1] which is modified with new measurements at each iteration.
In contrast, [LR07] and [CLR11] use a non-linear continuous performance function. The
performance function can be estimated while or before the actual application run-time. A
scheduler can make test iterations with pre-determined PIs e.g. ten iterations with phost =
0.1, ..., 1 and pdevice = 0.9, ..., 0 to estimate the performance function or start from scratch
and estimate the function on-the-fly. There are many more variations of dynamic scheduling
approaches. For more information consider the related work paragraph in Chapter 1.

34

CHAPTER 4

Results

As mentioned in previous chapters, we focus on dynamic schedulers that redistribute the
workload after each iteration. For our benchmarks, we used two systems. System 1 was used
for basic testing and coding. Its hardware may not be cutting edge by today’s standards but
has the performance of a typical consumer PC (see Figure 4.1(a)). In contrast, System 2’s
hardware is more powerful and contains two different GPUs of the same generation (see
Figure 4.1(b)).
In the first section of this chapter, we compare the different scheduling algorithms proposed in
Section 3.2. Furthermore, we explore their behaviour for different workload types and for
different types of memory management. All result in the first section are based on System 1.
In the second section we present the results based on System 2.

4.1 Host and one device

In this section, we test the performance of the scheduling algorithms introduced in Section
3.2 for various types of memory management. We use System 1 (see Figure 4.1(a)) for
benchmarking.
At first, we test the performance improvements of dynamic schedulers compared to their static
pendants. Therefore, we assume all data is stored on the system memory and map the data to
the device, such that we do not have to manually copy data to the device. Then, we explore
the performance gap between host and device by assuming static device memory and compare
it to our theoretical estimation. Next, we manually transfer all the required data to the device
using synchronous and asynchronous copying. Furthermore, we show the behaviour of the
schedulers for memory-bound but load-heavy kernels and compute-bound kernels.

4.1.1 Mapped memory

We already talked about host allocated mapped memory in our short introduction GPU
programming (see Section 2.2). To recall how to allocate and initialize mapped memory see
Algorithm 4.1.

35

4 Results

(a) System 1

(b) System 2

Figure 4.1: Specificationsa from [Int] and [Nvic] of the systems used for benchmarking. (a)
System 1 consists of one Sandy-Bridge CPU and one Pascal GPU. (b) System 2
consists of one Coffee-Lake CPU and two Pascal GPUs.

aCPU FLOPS are taken from SGEMM Geekbench 4 score

For mapped memory, we also could use the "cudaHostAllocWriteCombined" flag. This flag
enhances the performance for buffers that are read-only on the device [SK11]. However, it
is useless for our scenario because it massively slows down CPU reads from the buffer. The
workload consists of the kernels introduced in Chapter 3. We set the workload size N to the
biggest power of two possible on System 1 which is N = 229 for mapped memory. This limit is
given by

(4.1) mrequired = nvector · sizeOf(vector) = 3 · 229 · 4Byte ≈ 6.4GB

using float vectors. The following figures are all based on the AXPY-workload. In Figure 4.2
we see how the different scheduling types impact the iteration computation time.

36

4.1 Host and one device

Algorithm 4.1 Mapped memory
Code for allocating mapped memory. Instead of copying the data manually to the device, we
simply hand over pointers. The data transfer is done automatically.

1: float∗ x, ∗ dev_x;
2: //Allocate mapped memory on host
3: x = cudaHostAlloc((void∗∗)&x, taskSize ∗ sizeof(∗x), cudaHostAllocMapped));
4: //Get device pointer to mapped memory
5: cudaHostGetDevicePointer(&dev_x, x, 0);
6: //Call kernel
7: kernel<<<1,1>>>(dev_x);
8: //Free memory
9: cudaHostFree(x);

All schedulers were initialized with one quarter of the total workload assigned to the host and
three quarters to the device. The static scheduler (black) has the worst performance. This
is obvious since the initial guess is non-optimal and does not change during the run-time.
However, the computation time is not constant due to performance fluctuations of the system.
A semi-static scheduling approach (green) yields better results. After the first iteration, the sys-
tem performance is estimated well-enough to lead to a significant performance improvement.
But this approach is a two-edged blade. The performance could be estimated very well after
the first iteration, then the semi-static scheduler is as good as dynamic approaches. However,
if the first PI estimation bad there is no room for further improvement.
The best results are provided by dynamic scheduling approaches. Comparing the JITP-
scheduler (blue) to the WP-scheduler (red) with weight ω = 0.5 we see that after ten iterations
the performance difference is in the margin of fluctuations. The WP-scheduler performs worse
until the optimum because it remembers the non-optimal initialization. So questions arise if
additionally using the old PIs is meaningless and how the WP-scheduler behaves for certain
weights. We discuss them later.

First, we take a look at the PI distribution of each iteration and at how many iterations
the schedulers need to reach the optimal distribution (see Figure 4.3). As defined the static
scheduler never changes the initial guess and the PIs are constant throughout the run-time. The
semi-static scheduler behaves almost the same. After the first PI estimation, the distribution
does not change again. Interestingly, the two dynamic schedulers behave quite equivalent.
After five to ten iterations, the PIs do not change significantly. The WP-scheduler needs a few
iterations more to reach the optimum. Assuming there is no other big load on the host or
device, it might be the best idea to extend the estimation range of a semi-static scheduler
(ESS) to e.g. ten iterations. Further, it might be interesting to see how the different scheduling
approaches affect the workload execution time on the host and the device (see Figure 4.4).
The device execution time is plotted in red while the host execution time is plotted in blue
over the first ten iterations. Looking at the times of the static scheduler, we see that the initial
guess overloaded the device quite heavily.

37

4 Results

Figure 4.2: Comparison of the iteration computation for different schedulers. We timed 50
iterations where System 1 (see Figure 4.1(a)) computed an AXPY-workload of
size 229. We used the schedulers from Chapter 3. The static scheduler (black)
performs the worst followed by the semi-static approach (purple). The best results
yield the dynamic JITP- (blue) and WP-scheduler (red).

So the other schedulers should redistribute the overload to the host. The semi-static scheduler
cannot estimate the real performance well enough after the first iteration, so the device is still
overloaded when it switches to static.
After only three iterations the JITP-scheduler has reached a state where host and device
need the same time for executing their assigned workload. As seen in Figure 4.3, the WP-
scheduler needs a few iterations more to reach the optimum compared to the non-weighting
JITP-scheduler.
When we introduced the WP-scheduler we predicted that its behaviour depends on the weight
ω. So we investigated the influence of the weight ω (see Figure 4.5). We conclude that for
a memory weight ≤ 0.5 (blue, red) there is no big difference and the WP-scheduler behaves
more like the JITP-scheduler. For high values e.g. 0.9 (purple), it takes longer to reach
the optimum but the estimation is more resistant to performance fluctuations. In black, we
additionally plotted the third special case where all iterations are weighted equally. At first,
new values are weighted relatively high but after 20 iterations the new value is only weighted
1
21 and has almost no impact at the scheduling decision.

38

4.1 Host and one device

In the next test, we investigate the long term behaviour of the JITP-, WP-, and the new
ESS-scheduler. As proposed, the ESS-scheduler is a semi-static scheduler that uses the first
ten iterations to estimate the system performance. Then, the PIs are static and the workload
distribution does not change for the remaining run-time. For this test run, we put no other
load at System 1. Figure 4.6 shows a table containing the iteration time statistics of a test
run of 500 iterations. To neglect the influence of the initial guess we only used the data
from the last 450 of 500 iterations. The WP-schedulers average performance is the best
followed by the ESS- and JITP-scheduler. However, the performance improvement is marginal
with less than a half per cent of the total iteration time. Due to that minor performance
differences, we conclude that for an exclusively loaded system there is no real need for
dynamic scheduling as semi-static approaches yield nearly the same results. However, it is
interesting that the standard derivation of the WP-scheduler is smaller than the standard
derivation of the other two algorithms. Weighting the previous PI with the latest estimation,
may not be as unnecessary as the test results up to now suggested.

4.1.2 Static device memory

In contrast to mapped memory, we focus in this section on static device memory. The entire
data stored on the devices global memory. There is no kind of data transfer to or from the
device during the iterative computation. The intention of this scenario is to investigate how the
greater memory bandwidth of the device in System 1 affects the workload distribution when
we neglect data transfer. Before we take a look at the actual results, we make a theoretical
estimation. As we assume the AXPY-kernel to be heavily memory-bound as it only performs
two operations and has four memory accesses and neglect compute instructions, we expect
the optimal workload distribution to be determined by the host and device bandwidth. The
optimal PIs have to fulfil

(4.2)
1

bhost
· phost = 1

bdevice
· pdevice

with bandwidth bhost and bdevice for host and device memory respectively. With the properties
in Equations (3.5) we can solve for phost and pdevice. Using the data for our test system we get

(4.3)
phost = bhost

bhost + bdevice
= 21GB/s

21GB/s + 112GB/s
≈ 0.16,

pdevice = bdevice

bhost + bdevice
= 112GB/s

21GB/s + 112GB/s
≈ 0.84.

39

4 Results

In Figure 4.7 we see how many iterations the JITP- and WP-schedulers (ω = 0.5) need until
they converge to the theoretical limit (4.3). Note that we have to shrink down the workload
to 228 to fit on the 4GB device memory. Furthermore, the host and device were initialized
equally. With this initial guess, the schedulers can make a better first performance estimation
because the JITP-scheduler has almost perfectly estimated the optimal distribution after the
first iteration. Again the WP-scheduler needs a few iterations more to reach the optimal
distribution. This optimal distribution is almost identical to our theoretical estimation which
verifies the memory-boundedness of the AXPY-routine.

Up to now we only considered the memory-bound AXPY-kernel. However, our special EXP-
kernel has different properties. It mainly contains local memory accesses and has a linear
scaling over the workload size N . This means that our schedulers cannot properly estimate
the performance because they assume a constant scaling over N . As the scaling is linear, the
actual size of the workload up to index j is given by

(4.4)
j∑

k=0
k = j · (j + 1)

2

with 0 ≤ j ≤ N . To get the actual partition of the workload we use the ansatz

(4.5) α · N · (N + 1)
2 = j · (j + 1)

2

with α ∈ [0, 1] being the actual partition size. We can rewrite the ansatz to

(4.6) α = j · (j + 1)
N · (N + 1) ≈

(
j

N

)2
= p2

for large j, N . So we have to square the PIs to get the actual workload distribution. But first,
we formulate an estimation based on the theoretical peak performance of the components.
The optimal workload distribution is given by the solution of

(4.7)
1

fhost
· whost = 1

fdevice
· wdevice

with the peak performance fhost and fdevice for host and device respectively. Using the data
for our test system the solution is given by

(4.8)
whost = fhost

fhost + fdevice
= 40GFLOPS

40GFLOPS + 2123GFLOPS
≈ 0.0185,

wdevice = fdevice

fhost + fdevice
= 2123GFLOPS

40GFLOPS + 2123GFLOPS
≈ 0.9815.

So we expect that over 98 per cent of the actual workload is transferred to the device and less
than two per cent remains on the host.

40

4.1 Host and one device

Figure 4.8 shows the PI distribution for the dynamic schedulers. Unlike for the memory-
bound workloads, this time the first, smaller part of the workload remains on the host while
the second, larger part gets assigned to the device. The optimal PIs are phost = 0.12 and
pdevice = 0.88 which translates to

(4.9)
whost = p2

host = 0.0144,

wdevice = 1 − p2
host = 0.9856.

The result almost exactly matches the theoretical estimation. However, it is more interesting
how the different schedulers behave. The JITP-scheduler performs very well for constant
scaling workloads. For the EXP-workload it struggles to accurately estimate the optimal PIs
and oscillates. This is caused by the linear scaling of the workload as each redistribution is
either under- or overestimated. In contrast to the JITP-scheduler, who eventually levels off,
the ESS-scheduler may be stuck with a non-optimal distribution. The best result yields the
WP-scheduler which balances out the oscillation by weighting the latest estimation with the
old PI. It estimated the optimal PIs four times faster than the non-weighting approach. The
result leads to another improvement of the semi-static approach where the PIs are estimated
by a weighting-based scheduler. But then the burden of a bad initial guess has to be considered
such that more iterations may be needed to estimate the optimal distribution.

4.1.3 Copy memory

So far we only considered scenarios were we just handed over pointers of mapped memory
to the device or fixed the data on the devices global memory. Now, we transfer the assigned
workload partition to the device each iteration. After computing the kernel the device transfers
the result back to the host. In Chapter 2 we already talked about the CUDA functions that
enable manual data transfer. Algorithm 4.2 shows how to copy and copy-back a vector. Thus,
this method is synchronous because the device thread on the host has to wait until the copying
is complete. Then, the device thread calls the kernel. So data transfer acts as bottleneck. We
can improve the copy performance up to twice the speed, when using pinned memory [SK11].
But still, data transfer slows down the device and therefore lowers its PI.
Modern GPUs try to solve this problem by using separate copy engines that allow data transfer
while computing a kernel. This mechanic can be implemented with the help of CUDA streams
that use the separate engines effectively. The idea is to split the workload into smaller partitions
and to overlap the copy and kernel calls. Streams are synchronous considering their copy
and kernel calls, but asynchronous to other streams. [CVKG10] showed that asynchronous
data transfer of non-zero streams is slower than synchronous transfer with the zero stream.
The performance gain has to be achieved by efficiently overlapping copy and kernel calls.
Furthermore, it showed that above a certain data size asynchronous transfer is faster than
mapped memory.

41

4 Results

Algorithm 4.2 Synchronous data transfer
Code for synchronous data transfer. Device memory has to be allocated manually. After
synchronously copying the data to the devices global memory, the kernel can be launched.
The results are written into the device memory. Therefore, they have to be synchronously
copied back to the host.

1: float∗ x, ∗ dev_x;
2: //Allocate memory on host
3: x = malloc((void∗∗)&x, taskSize ∗ sizeof(∗x));
4: //Allocate memory on device
5: dev_x = cudaMalloc((void∗∗) &dev_x, sizeof(float) ∗ taskSize));
6: //Copy data to device
7: cudaMemcpy(dev_x, &x, sizeof(float) ∗ taskSize , cudaMemcpyHostToDevice));
8: //Call kernel
9: kernel<<<1,1>>>(dev_x);

10: //Copy data back to host
11: cudaMemcpy(&x, dev_x, sizeof(float) ∗ taskSize , cudaMemcpyDeviceToHost));
12: //Free memory
13: free (x);
14: cudaFree(dev_x);

A significant performance increase can be achieved by using two streams (see Figure 4.9).
Note that when multiple streams are used it is necessary to specify the stream that calls the
CUDA method (see Algorithm 4.3). One stream copies a data partition to the device. While it
executes the kernel on the partition, another stream copies the next partition to the device.
Then, while the second stream executes the kernel, the first stream copies the result back to
the host. The result of the second stream can then be copied back and overlapped with the
first stream copying the next partition to the device. And so on until all partitions have been
computed. As we already analysed the behaviour of the different schedulers we now use the
WP-scheduler with memory weight ω = 0.5 and compare the PI distribution for synchronous
and asynchronous data transfer.
But first, we take a look at the AXPY-routine which has to copy two vectors to the device and
copy the resulting vector back to the host. The total amount of transferred data in iteration k

is given by

(4.10) datak = 3 · wk
device · 4Byte.

Also, we can formulate a theoretical expectation about the resulting workload distribution.
We modify Equation (4.2) by assuming that all the data accessed also needs to pass the PCIe
bus. The new optimal PIs are given by the solution of

(4.11)
1

bhost
· phost = (1

bdevice
+ 1

bbus
) · pdevice.

42

4.1 Host and one device

Algorithm 4.3 Asynchronous data transfer
Code for asynchronous data transfer. The device memory has to be allocated manually. After
creating two streams, we can iterate over small workload partitions and both streams
asynchronously copy data to the device. The kernel launch and the back-copying of results is
also handled by both streams. The stream which is responsible for the function call has to be
stated.

1: float∗ x, ∗dev_x_0, ∗ dev_x_1;
2: //Define partion size
3: int partition = taskSize / 256;
4: //Allocate pinned memory on host
5: x = cudaHostAlloc((void∗∗)&x, taskSize ∗ sizeof(∗x), cudaHostAllocDefault));
6: //Allocate memory on device
7: cudaMalloc((void∗∗)&dev_x_0, partition ∗ sizeof(float));
8: cudaMalloc((void∗∗)&dev_x_1, partition ∗ sizeof(float));
9: //Create streams

10: cudaStream_t stream0, stream1;
11: cudaStreamCreate(&stream0);
12: cudaStreamCreate(&stream1);
13: //Do asynchronous copying and execute small kernel
14: for (int i = 0; i < taskSize − 1; i += 2 ∗ partition)
15: {
16: //Asynchronous copying to device
17: cudaMemcpyAsync(dev_x_0, &x[i], partition ∗ sizeof(float), cudaMemcpyHostToDevice, stream0);
18: cudaMemcpyAsync(dev_x_1, &x[i + partition]), partition ∗ sizeof(float), cudaMemcpyHostToDevice,

stream1);
19: //Call kernel
20: kernel<<<1,1,stream0>>>(dev_x);
21: kernel<<<1,1,stream1>>>(dev_x);
22: //Asynchronous copying back to host
23: cudaMemcpyAsync(&x[i], dev_x_0, partition ∗ sizeof(float), cudaMemcpyDeviceToHost, stream0));
24: cudaMemcpyAsync(&x[i], dev_x_1, partition ∗ sizeof(float), cudaMemcpyDeviceToHost, stream1));
25: }
26: //Synchronize streams
27: cudaStreamSynchronize(stream0));
28: cudaStreamSynchronize(stream1));
29: //Free memory
30: cudaFreeHost(x);
31: cudaFree(dev_x_0);
32: cudaFree(dev_x_1));
33: //Destroy streams
34: cudaStreamDestroy(stream0);
35: cudaStreamDestroy(stream1);

43

4 Results

With the condition phost + pdevice = 1 we can solve Equation (4.11) for phost and pdevice. Using
the data for our test system the optimal PIs are given by

(4.12)
phost = bhost · bdevice + bhost · bbus

bhost · bdevice + bhost · bbus + bdevice · bbus
≈ 0.60,

pdevice = bdevice · bbus

bhost · bdevice + bhost · bbus + bdevice · bbus
≈ 0.40.

So at best, around 40 per cent of the total workload should get assigned to the device, de-
pending on the PCIe bus usage. Therefore, we expect a performance drop for the synchronous
version. The questions rising are how big this performance drop actually is and if an asyn-
chronous approach can hide the communication cost. Figure 4.10 provides answers to those
questions. We use the known - device favouring - initial guess and a workload size of 228. The
PI distribution for the synchronous version is even worse than we predicted. Nearly 70 per
cent of the total workload stays on the host while only around 30 per cent gets copied to the
device. The difference between estimation and reality is likely caused by the data transfer
engine of the device that cannot take advantage of the full bus bandwidth. For example, if
we assume that the engine only utilizes around 2

3 of the PCIe 3.0x16 bandwidth we get a
more fitting estimation. The asynchronous version performs better and the distribution is
almost even. But two streams cannot overcome the performance loss compared to static device
memory (see Figure 4.7(b)). However, the results for asynchronously copying the data to
the device are slightly better than using mapped memory (see Figure 4.3(d)) and letting the
device transfer the data automatically.
In contrast to the AXPY-routine, the DOT-routine only has to copy the partial result of each
block back to the host. The data transferred each iteration is given by

(4.13) datak = 2 · wk
device · 4Byte + numberBlocks · 4Byte

which simplifies to

(4.14) datak ≈ 2 · wk
device · 4Byte

because wk
device ≫ numberBlocks. This means the DOT-kernel transfers only 2

3 of the data
for the AXPY-kernel. We should receive a visible performance gain on the device especially
for the synchronous version. However, the question is if the required post-processing on
the device thread compensates the gain or maybe even worsens the performance. The PI
distributions for the synchronous and asynchronous DOT-workload can be seen in Figure
4.11. For the synchronous version, the PI distribution is only slightly different from the AXPY
distribution. The device gets a slightly larger partition of the workload. It seems like the
post-processing on the device thread slows down the execution time to a degree where the
theoretical performance gain compared to the AXPY-routine vanishes. For the asynchronous
version, the performance of the device is even worse than for the AXPY-routine. This may be
caused by our specific choice of implementing the DOT-routine in which only uses one block
to compute a partition to reduce device thread overhead.

44

4.2 Host and multiple devices

In the last test of this section, we investigate the PI distribution of the WP-scheduler when
only one copy cycle is required for many kernel launches. This simulates a load-heavy but still
memory-bound workload. We expect the data transfer to be negligible and results in the region
of static device memory (see Figure 4.7(b)). In Figure 4.12(b) we see the PI distribution for an
AXPY-kernel launched 100 times between a copy cycle. As expected, the optimal distribution
is almost the same as in a non-copy scenario. This is caused by the fact that we only have to
use the bus bottleneck one time and profit 100 times from the devices superior bandwidth.
The distribution does not shift towards the device when we use mapped memory because
the data is transferred automatically in each of the 100 kernel launches (see Figure 4.12(a)).
Therefore, it is more efficient to manually copy data onto the device if the memory-bound
kernel is load-heavy enough.
Furthermore, we conclude that the best performance is achieved when the data is stored
on the component with the superior bandwidth. If an application requires communication,
asynchronous copy instructions are the way to go. The more complicated code is well worth
the effort and yields noticeable performance gains compared to synchronous data transfer. If
the device has not enough space to store the data, it makes sense to use mapped memory.

4.2 Host and multiple devices

In this section, we present our test result on another system which consists of a high-end
consumer CPU, high-end consumer GPU, and low-end consumer GPU (see Figure 4.1(b)). We
refer to this heterogeneous system as System 2.

We analyse how the changes in component bandwidth affect the performance and if the results
match our memory-bound estimations. For all benchmarks, the dynamic WP-scheduler with
ω = 0.5 was used.

4.2.1 Performance estimation

Again, we assume that all the data used during the kernel execution is stored on the devices
and there is no data transfer required. For our memory-bound kernels, we can again formu-
late a performance estimation, depending on the theoretical peak bandwidth of the system
components. Because System 2 has three components we have to solve

(4.15)
1

bhost
· phost = 1

bdevice0
· pdevice0 = 1

bdevice1
· pdevice1.

45

4 Results

The optimal PIs for System 2 are given by

(4.16)

phost = bhost

bhost + bdevice0 + bdevice1
≈ 0.06,

pdevice0 = bdevice0
bhost + bdevice0 + bdevice1

≈ 0.76,

pdevice1 = bdevice1
bhost + bdevice0 + bdevice1

≈ 0.18.

Figure 4.13(a) shows the PI distribution for the memory-bound AXPY-workload. The three
components are initialized equally and the WP-scheduler needs around five iterations to reach
the optimal distribution. Device0 gets by far the biggest part of the workload. The two other
components only get small parts. The result fits our estimation almost perfectly and differs
only by a few per cent from the theoretical memory-bound optimum. Even though device0 has
many more cores and a higher clock speed compared to device1, the performance difference is
only caused by the superior bandwidth of device0. So, for memory-bound problems the only
performance indicator is the device bandwidth.
As all components are initialized equally the host is overloaded and slows down the com-
putation by factor five during the first iteration (see Figure 4.13(b)). The Figure shows
how bad an initial guess can be if we do not use dynamic scheduling and that for efficient
load balancing it is essential to somehow estimate the system performance before (static)
or during (dynamic) the run-time. If we know the properties of the workload, e.g. AXPY is
memory-bound, Equation (4.16) is a good and simple performance-based initial guess.

4.2.2 Data transfer comparison

We reviewed different ways of data transfer in Section 4.1. As there are no theoretical
differences to a multi-device system we only share the results for System 2. Figure 4.14
shows the PI distributions and component execution times plotted for the two manual copy
(synchronous/asynchronous) and the automatic copy (mapped memory) mechanisms. When
we compare the PI distribution of synchronous transfer for System 1 (see Figure 4.10(a))
and System 2 (see Figure 4.14(a)) we see the same host-devices relation of around 60:40.
However, the two devices split the 40 per cent equally. Even though device0 has a superior
bandwidth compared to device1, they get the same partition because of the PCIe x8 bus
bottleneck.
The asynchronous version yields better results than the synchronous (see Figure 4.14(c)).
Again, both devices get the same partition of the workload. Comparing asynchronous data
transfer and mapped memory (see Figure 4.14(e)), the PIs differ only by a few per cent and
this time mapped memory yields slightly better results.

46

4.2 Host and multiple devices

Moreover, we take a look at our iterated kernel scenario to simulate a memory-bound and
load-heavy workload. Similar to System 1, we get expected results. For mapped memory (see
Figure 4.15(a)) the performance matches the non-iterated kernel results (see Figure 4.14(e))
while for synchronous data transfer (see Figure 4.15(b)) the distribution is similar to the static
device memory scenario (see Figure 4.13(a)).

47

4 Results

(a) Static scheduler (b) Semi-static scheduler

(c) JITP-scheduler (d) WP-scheduler

Figure 4.3: Comparison of the PI distribution for different scheduling approaches. We bench-
marked System 1 (see Figure 4.1(a)) with an AXPY-workload of size 229. The blue
area marks the PI of the host while the red shows the PI of the device. According
to the PI, the schedulers assign the workloads. (a) Shows the distribution of
the static scheduler. Obviously, it is constant. (b) Shows the distribution of a
semi-static approach where after one estimation the PIs are constant. (c) Shows
the distribution of the JITP-scheduler that only uses the latest estimation for
decision making. After only a few iterations the PIs are well enough estimated for
the distribution to be approximately constant. (d) Shows the distribution of the
WP-scheduler with ω = 0.5. Compared to the JITP variant it needs more iterations
to estimate the optimal distribution.

48

4.2 Host and multiple devices

(a) Static scheduler (b) Semi-static scheduler

(c) JITP-scheduler (d) WP-scheduler

Figure 4.4: Comparison of the component execution time for different scheduling approaches.
System 1 (see Figure 4.1(a)) computed an AXPY-workload of size 229. (a) Shows
the comparison for the static scheduler. It becomes clear that the initial guess
overloaded the device. (b) Shows the comparison for a semi-static scheduler.
The first estimation is not good enough, such that the device is still overloaded.
(c) Shows the comparison for the JITP-scheduler. After only three iterations the
components are loaded equally. (d) Shows the comparison for the WP-scheduler.
Because it remembers the bad initialization, the overload on the device gets
redistributed slower.

49

4 Results

Figure 4.5: Influence of the weight ω on the behaviour of the WP-scheduler. The Figure shows
the iteration computation time for different weights. The smaller the weight
the more the WP-scheduler behaves like the JITP-scheduler. For bigger weights,
it takes more iterations to reduce the iteration computation time. Weighting
each value equally (black) proofs to be a bad choice because after a few dozen
iterations ω ≈ 1 and new values have almost no influence.

50

4.2 Host and multiple devices

Figure 4.6: Iteration time statistics of different schedulers on System 1. As workload, we
chose an AXPY-workload of size 229. The test consisted of 500 iterations, where
only the data of the last 450 iterations was used for the statistics. The JITP-
and WP-schedulers are already known from Chapter 3. The ESS is a semi-static
scheduler that estimates the system performance during the first ten iterations. We
see that the iteration times are in the range of 445±20ms. The mean performance
is almost equal. However, the WP-scheduler has a slight advantage. Furthermore,
it has the lowest standard derivation. The JITP-scheduler performed worse than
the ESS-scheduler.

(a) JITP-scheduler (b) WP-scheduler

Figure 4.7: PI distribution for the two dynamic schedulers with static device memory. Due
to memory constraints on the device the AXPY-workload size was reduced to
228. Further, we used equal initialization. (a) Due to an equally distributed
load, the JITP-scheduler nearly estimated the theoretical optimum after the first
iteration. (b) The WP-scheduler needs more iterations to reach the optimum. Both
distributions are quite close to the theoretical memory-bound optimum.

51

4 Results

(a) JITP-scheduler (b) WP-scheduler

Figure 4.8: PI distribution for the two dynamic schedulers with static device memory. A
compute-bound EXP-workload of size 214 was computed. (a) The JITP-scheduler
oscillates and needs roughly 20 iterations to estimate the optimal PIs. (b) The
WP-scheduler (ω = 0.5) is more robust because it also considers the previous PIs
and only needs five iterations to estimate the optimal PIs.

Figure 4.9: Stream overlap example using two streams. The green rectangles are copy calls
e.g. "Trans A.0" copies partition 0 of vector A to the device. Moreover, the red
rectangles are kernel calls e.g. "Comp C.0 = A.0 + B.0" computes the sum of
vector A and B for partition 0. The idea is to use two streams and overlap the
copy and kernel calls of adjacent partitions by assigning them alternately to the
streams. During each iteration, both streams execute a copy-to-device, kernel and
copy-to-host call. Modified from [HC].

52

4.2 Host and multiple devices

(a) Synchronous (b) Asynchronous

Figure 4.10: PI distribution for synchronous and asynchronous data transfer on System 1
(see Figure 4.1(a)) plotted for an AXPY-workload of size 228. (a) The optimal
distribution for synchronous transfer has a 68-32 host-device ratio. So there is
an eight per cent difference between the theoretical estimation (4.12) and the
actual result. (b) For asynchronous transfer, the optimal distribution is 51-49.
Therefore, the overall performance of asynchronous copying is slightly better
than the performance of mapped memory.

(a) Synchronous (b) Asynchronous

Figure 4.11: PI distribution for synchronous and asynchronous data transfer on System 1 (see
Figure 4.1(a)) plotted for a DOT-workload of size 228. (a) For synchronous copy-
ing, the optimal distribution has a ratio of 66-34. Even though the DOT-routine
transfers less data the distribution is nearly the same as the AXPY-workload
distribution (see Figure 4.10(a)). (b) Compared to the AXPY-workload, asyn-
chronous transfer yields a smaller performance gain. The device’s performance
is bottlenecked by the post-processing on the device thread.

53

4 Results

(a) Mapped memory (b) Synchronous

Figure 4.12: PI distribution for an AXPY-kernel iterated 100 times between each data transfer
cycle on System 1. The workload was initialized unequally and scheduled by
the WP-scheduler with ω = 0.5. (a) For mapped memory, we see no difference
compared to one kernel launch (see Figure 4.3(d)). (b) For a synchronous copy
cycle around the iterated kernel we see a PI distribution that matches the static
device memory estimation (4.3). Thus, the data transfer time can be neglected.

(a) PI estimation static device memory (b) Component execution time comparison static de-
vice memory

Figure 4.13: PI distribution and component execution time for static device memory on Sys-
tem 2 (see Figure4.1(b)). An AXPY-workload of size 228 was scheduled over 50
iterations by the WP-scheduler with ω = 0.5. (a) The PI distribution is approx-
imately constant after five iterations and matches the theoretical estimations
from Equations (4.16). At first, all components were initialized equally. But
when the workload is optimally distributed, device0 computes over 75 per cent
of the total workload. (b) The initial guess heavily overloads the host until the
workload gets redistributed to device0.

54

4.2 Host and multiple devices

(a) PI distribution synchronous (b) Component execution time comparison syn-
chronous

(c) PI distribution asynchronous (d) Component execution time comparison asyn-
chronous

(e) PI distribution mapped memory (f) Component execution time comparison mapped
memory

Figure 4.14: PI distributions and component execution times for various data transfer scenar-
ios on System 2 (see Figure 4.1(b)). An AXPY-workload of size 228 was scheduled
over 50 iterations by an WP-scheduler with ω = 0.5.

55

4 Results

(a) Mapped memory (b) Synchronous

Figure 4.15: PI distribution for an iterated AXPY-kernel on System 2. Between each copy
cycle, the kernel was launched 100 times. The workload was initialized equally
and scheduled by the WP-scheduler with ω = 0.5. (a) For mapped memory, we
see no difference compared to one kernel launch. The PI distribution is still the
same as in Figure 4.14(e). (b) For a synchronous copy cycle around the iterated
kernel, we see a clear shift towards device0. The PI distribution is identical to
the static device memory distribution (see Figure 4.13(a)).

56

CHAPTER 5

Discussion and future work

We derived multiple dynamic and semi-static schedulers and compared their behaviour for
different workloads. Our PI-based scheduling approach requires a few iterations to estimate
the optimal distribution. The WP-scheduler is a bit slower at estimating the optimal distribution
but using previous run-time data leads to more stable behaviour. Furthermore, the draw-back
is less relevant if we make a good initial guess. However, after the optimal distribution is
reached the dynamic and semi-static schedulers yield comparable results for an exclusively
loaded system.
Then, we turned our attention toward memory management. For the memory-bound kernels,
the PI distribution is tied to the bus and component bandwidth. In contrast, for compute-
bound kernels, the peak performance is a good indicator for the optimal distribution. Mapped
memory has the advantage of not occupying device memory. But if the data is accessed
multiple times during kernel execution it is more efficient to manually transfer the data to the
device. Modern GPUs allow a noticeable performance increase by the overlapping kernel and
copy calls using asynchronous data transfer.

There are several ways to expand our simple model. We only used a single thread for host
computation. So the host performance can be improved by parallelizing its kernel. However,
we do not expect a significant difference in the PI distribution for compute-bound workloads.
Our test system only contained components that were directly connected by the PCIe bus. For
a system where components are connected via a network and data transfer is more expensive
the question is if our PI estimation is sufficient or if a more complex estimation model which
explicitly considers the data transfer time is needed.

57

APPENDIX

Bibliography

[ABA12] A. Acosta, V. Blanco, F. Almeida. Towards the Dynamic Load Balancing on
Heterogeneous Multi-GPU Systems. In 2012 IEEE 10th International Symposium
on Parallel and Distributed Processing with Applications (ISPA), pp. 646–653. IEEE
Computer Society, 2012. (Cited on page 11)

[ABA13] A. Acosta, V. Blanco, F. Almeida. Dynamic load balancing on heterogeneous
multi-GPU systems. Computers & Electrical Engineering, 37:2591–2602, 2013.
(Cited on page 11)

[BCV09] J. Bahi, R. Couturier, F. Vernier. Synchronous Load Balancing on Asynchronous
Iterative Computation. Journal of Algorithms & Computational Technology, 3:135–
153, 2009. (Cited on page 11)

[Bin13] A. P. D. Binotto. A Dynamic Scheduling Runtime and Tuning System for Het-
erogeneous Multi- and Many-Core Desktop Platforms. Ph.D. thesis, Technische
Universität Darmstadt, 2013. (Cited on page 11)

[Boy13] M. Boyer. Improving Resource Utilization in Heterogeneous CPU-GPU Systems.
Ph.D. thesis, University of Virginia, 2013. (Cited on page 11)

[CK88] T. L. Casavant, J. G. Kuhl. A taxonomy of scheduling in general-purpose
distributed computing systems. IEEE Transactions on Software Engineering,
14(2):141–154, 1988. (Cited on pages 13 and 14)

[CLR11] D. Clarke, A. Lastovetsky, R. Reddy. Dynamic Load Balancing of Parallel Com-
putational Iterative Routines on Highly Heterogeneous HPC Platforms. Parallel
Processing Letters, 21(2), 2011. (Cited on page 34)

[CVKG10] L. Chen, O. Villa, S. Krishnamoorthy, G. R. Gao. Dynamic load balancing on
single- and multi-GPU systems. In 2010 IEEE International Symposium on Parallel
Distributed Processing (IPDPS), pp. 1–12. 2010. (Cited on page 41)

[DL15] J.-F. Dollinger, V. Loechner. CPU+GPU Load Balance Guided by Execution Time
Prediction. In Fifth International Workshop on Polyhedral Compilation Techniques
(IMPACT 2015). 2015. (Cited on page 11)

59

Bibliography

[DW03] M. Drozdowski, P. Wolniewicz. Out-of-Core Divisible Load Processing. Parallel
and Distributed Systems, IEEE Transactions on, 14:1048– 1056, 2003. (Cited on
page 34)

[GABC08] I. Galindo, F. Almeida, J. Badía-Contelles. Dynamic Load Balancing on Dedicated
Heterogeneous Systems. pp. 64–74. 2008. (Cited on page 11)

[GAGZ+20] T. Geng, M. Amaris Gonzalez, S. Zuckerman, A. Goldman, G. Gao, J.-L. Gau-
diot. PDAWL: Profile-based Iterative Dynamic Adaptive WorkLoad Balance on
Heterogeneous Architectures. 2020. (Cited on page 33)

[GBHS12] C. Gregg, M. Boyer, K. Hazelwood, K. Skadron. Dynamic Heterogeneous Schedul-
ing Decisions Using Historical Runtime Data, 2012. (Cited on page 11)

[Hag97] T. Hagerup. A Hybrid Dynamic Load Balancing Algorithm for Distributed System.
Journal of Parallel and Distributed Computing, 47:185–197, 1997. (Cited on
page 11)

[HC] W.-M. Hwu, S. Chandrasekaran. GPU-Teaching Kit - Accelerated
Computing. URL https://engineering.purdue.edu/~smidkiff/ece563/
NVidiaGPUTeachingToolkit/Mod14DataXfer/Mod14DataXfer.pdf. Retrieved July
14, 2020. (Cited on page 52)

[Int] Intel Corporation. Intel Product Specifications. URL https://ark.intel.com/.
Retrieved September 30, 2020. (Cited on page 36)

[KM14] M. Katyal, A. Mishra. A Comparative Study of Load Balancing Algorithms in
Cloud Computing Environment, 2014. (Cited on page 11)

[Lam15] S. Lammel. CPU-GPU Heterogeneous Computing. 2015. (Cited on page 27)

[LR91] H. Lin, C. Raghavendra. A dynamic load balancing policy with a central job
dispatcher (LBC). In Proceedings 11th International Conference on Distributed
Computing Systems. IEEE Computer Society, 1991. (Cited on page 11)

[LR07] A. Lastovetsky, R. Reddy. Data partitioning with a functional performance model
of heterogeneous processors. The International Journal of High Performance
Computing Applications, 21(1), 2007. (Cited on page 34)

[MIRS14] S. Momcilovic, A. Ilic, N. Roma, L. Sousa. Dynamic Load Balancing for Real-Time
Video Encoding on Heterogeneous CPU+GPU Systems. IEEE Transactions on
Multimedia, 16(1), 2014. (Cited on page 33)

[MJ14] M. Mehta, D. Jinwala. A Hybrid Dynamic Load Balancing Algorithm for Dis-
tributed System. Journal of Computers, 9:1825–1833, 2014. (Cited on page 11)

[Moo65] G. E. Moore. Cramming more components onto integrated circuits. Electronics,
38, 1965. (Cited on page 7)

60

https://engineering.purdue.edu/~smidkiff/ece563/NVidiaGPUTeachingToolkit/Mod14DataXfer/Mod14DataXfer.pdf
https://engineering.purdue.edu/~smidkiff/ece563/NVidiaGPUTeachingToolkit/Mod14DataXfer/Mod14DataXfer.pdf
https://ark.intel.com/

Bibliography

[Moo75] G. E. Moore. Progress In Digital Integrated Electronics. 1975. (Cited on page 7)

[MR16] M. Mesbahi, A. Rahmani. Load Balancing in Cloud Computing: A State of the
Art Survey. International Journal of Modern Education and Computer Science,
8:64–78, 2016. (Cited on page 11)

[Nat16] G. Natale. Example of a naive Roofline model, 2016. URL https://commons.
wikimedia.org/wiki/File:Example_of_a_naive_Roofline_model.svg. Retrieved
September 30, 2020. (Cited on page 23)

[Nvia] Nvidia Corporation. Cuda C++ Programming Guide Version 11.0. URL https:
//docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf. Retrieved July
26, 2020. (Cited on pages 19 and 20)

[Nvib] Nvidia Corporation. Cuda C++ Programming Guide Version 9.1. URL https://
docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf. Re-
trieved July 26, 2020. (Cited on pages 9 and 10)

[Nvic] Nvidia Corporation. GeForce GTX 10 Series. URL https://www.nvidia.com/
en-us/geforce/10-series/. Retrieved October 5, 2020. (Cited on page 36)

[Pol99] R. Pollak. Auswirkungen verschiedener Informationsebenen auf die Effizienz der
dynamischen Lastbalancierung. Ph.D. thesis, Universität Stuttgart, 1999. (Cited
on page 15)

[Ros19] M. Roser. Moore’s Law Transistor Count 1971-2018, 2019. URL https://commons.
wikimedia.org/wiki/File:Moore27s_Law_Transistor_Count_1971-2018.png. Re-
trieved July 30, 2020. (Cited on page 8)

[Sah13] B. Sahoo. Dynamic load balancing strategies in heterogeneous distributed system.
2013. (Cited on page 11)

[SK11] J. Sanders, E. Kandrot. CUDA BY EXAMPLE- An Introduction to General-Purpose
GPU Programming. Addison-Wesley, 2011. (Cited on pages 17 and 36)

[SNO+11] M. Shahsavari, M. Nadeem, S. A. Ostadzadeh, Z. Al-Ars, K. Bertels. Task Schedul-
ing Policies in General Distributed Systems: A Survey and Possibilities. 2011.
(Cited on page 13)

[SP94] M. Srinivas, L. M. Patnaik. Genetic algorithms: a survey. Computer, 27(6):17–26,
1994. (Cited on page 15)

[VD08] V. Volkov, J. W. Demmel. Benchmarking GPUs to Tune Dense Linear Algebra.
2008. (Cited on page 24)

[XL95] C.-Z. Xu, F. Lau. Iterative Dynamic Load Balancing in Multicomputers. The
Journal of the Operational Research Society, 45, 1995. (Cited on page 11)

61

https://commons.wikimedia.org/wiki/File:Example_of_a_naive_Roofline_model.svg
https://commons.wikimedia.org/wiki/File:Example_of_a_naive_Roofline_model.svg
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf
https://www.nvidia.com/en-us/geforce/10-series/
https://www.nvidia.com/en-us/geforce/10-series/
https://commons.wikimedia.org/wiki/File:Moore27s_Law_Transistor_Count_1971-2018.png
https://commons.wikimedia.org/wiki/File:Moore27s_Law_Transistor_Count_1971-2018.png

Bibliography

[ZXZ+17] C. Zhang, Y. Xu, J. Zhou, Z. Xu, L. Lu, J. Lu. Dynamic load balancing on multi-
GPUs system for big data processing. In 2017 23rd International Conference on
Automation and Computing (ICAC), pp. 1–6. 2017. (Cited on page 11)

62

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Historical background
	1.2 Motivation

	2 Basics
	2.1 Load balancing
	2.1.1 Taxonomie
	2.1.2 Iterative load balancing

	2.2 GPU programming with CUDA

	3 Implementation
	3.1 Kernels
	3.1.1 BLAS-kernels
	3.1.2 Exponential kernel

	3.2 Scheduling algorithms
	3.2.1 Static scheduling
	3.2.2 Just in time performance scheduling (JITP)
	3.2.3 Weighted performance scheduling (WP)
	3.2.4 Other dynamic scheduling models

	4 Results
	4.1 Host and one device
	4.1.1 Mapped memory
	4.1.2 Static device memory
	4.1.3 Copy memory

	4.2 Host and multiple devices
	4.2.1 Performance estimation
	4.2.2 Data transfer comparison

	5 Discussion and future work
	Bibliography

