
Institute of Software Technology

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

A Meta-Approach to Guide
Architectural Refactoring from

Monolithic Applications to
Microservices

Qiwen Gu

Course of Study: INFOTECH

Examiner: Prof. Dr. Stefan Wagner

Supervisor: Jonas Fritzsch

Commenced: April 30, 2020

Completed: December 03, 2020

Abstract

The concept of microservices in the software development industry is getting growing attention
nowadays. This architectural style is widely discussed both in industry and academia. Refactoring
a monolithic application into a microservice application is common practice. Nevertheless, software
architects and developers often find it difficult because they lack a structured overview of various
migration approaches. Even though literature views about microservice migration were conducted
[33][83], they were either obsolete or did not follow a systematic approach to ensure correctness
and reproducibility of results. The goal of this study is to provide a classification framework as well
as a web-based tool that can guide software architects and developers to comprehend up-to-date
migration approaches and select a suitable one according to their requirements. In order to achieve
this, a systematic literature review was conducted, resulting in thirty-one contributions from 2017
to 2020. Next, a web-based tool was developed based on the knowledge repository created after
review. An evaluation of the developed tool by experts and students in the field revealed that it
was able to serve the predefined purpose. The proposed framework, as well as the web-based tool,
can provide the users a comprehensive overview of microservice migration and various practical
approaches.

Keywords: Microservices, Monolith Migration, Architectural Refactoring, Microservice Migra-
tion Framework

Contents

1 Introduction 6

2 Background and Related Works 8
2.1 Background . 8

2.1.1 Monolithic Application . 8
2.1.2 Microservice Architecture . 9
2.1.3 Architectural Design Concepts . 11

2.2 Existing Migration Approaches . 12
2.3 Related Work . 15

3 Systematic Literature Review 16
3.1 Research Methodology . 16
3.2 Research Protocol Definition . 16
3.3 Contribution Search . 20
3.4 Contribution Reading, Data Extraction and Quality Assessment 21
3.5 Contribution Selection . 22
3.6 Data Synthesis and Framework Definition . 22
3.7 Gantt Chart . 23

4 Results and Analysis of Systematic Literature Review 24
4.1 Result of Contribution Searching . 24
4.2 Analysis of Contributions . 25

4.2.1 Required Inputs . 25
4.2.2 Expected Output . 27
4.2.3 Technique Type . 30
4.2.4 Decomposition Strategy . 32
4.2.5 Process Strategy . 35
4.2.6 Applicability . 39
4.2.7 Validation Type . 40
4.2.8 Tool Support . 41
4.2.9 Intentions or Quality Metrics Concerned . 42

4.3 Contribution Selection . 46
4.4 Data Synthesis and Framework Definition . 49

5 Web-based Tool Design and Implementation 52
5.1 Use Case Diagram . 52
5.2 Functional Requirements . 53
5.3 User Interface . 54
5.4 Database Structure . 58
5.5 Programming and Class Diagram . 59
5.6 Microsoft Azure Deployment . 62
5.7 Tool Evaluation . 62

1

CONTENTS

5.7.1 Target Test Participants . 62
5.7.2 Test Task and Questionnaire . 62
5.7.3 Evaluation Result and Statistics . 63
5.7.4 Suggested Improvements . 67

6 Discussion 71

7 Threats to Validity 73

8 Conclusion 74

Appendix A Contribution Index 76

Appendix B Evaluation Questionnaire 80

2

List of Figures

2.1 Domain-Driven Design (DDD) and Model-Driven Design (MDD) [15] 11
2.2 Relationship Among Each Level . 13

3.1 Data Extraction Form Structure . 19
3.2 Gantt Chart for Master Thesis . 21

4.1 Candidate List of the Proposed Decomposition and the Optimal Decomposition [5] 28
4.2 Decomposed Microservice Architecture [66] . 29
4.3 Service Partition Diagram [87] . 30
4.4 UAV Microservice Application with Dynamic Configuration [97] 36
4.5 Strangler Pattern [14] . 37
4.6 Statistic for Process Strategy . 49
4.7 Statistic for Decomposition Strategy . 49
4.8 Statistic for Technique Type . 50
4.9 Statistic for Applicability . 50
4.10 Statistic for Required Inputs . 50
4.11 Statistic for Expected Outputs . 50
4.12 Statistic for Validation Type . 50
4.13 Statistic for Intentions or Quality Metrics . 50
4.14 Design of Microservice Migration Framework . 51

5.1 Use Case Diagram of the Web-based Tool . 53
5.2 The Index Page of the Web-based Tool . 55
5.3 The Hover Effect by Bootstrap in Index Page . 56
5.4 The Search Page of the Web-based Tool . 57
5.5 The Result Page of the Web-based Tool . 57
5.6 Class Diagram of the Web-based Tool . 60
5.7 Structure of the Web-based Tool on Microsoft Azure 63
5.8 Statistic for Scores . 65
5.9 Statistic for Time . 66
5.10 Score Variation . 66
5.11 Time Variation . 66
5.12 Improved Design of the Index Page . 68
5.13 Improved Design of the Search Page . 69

3

List of Tables

3.1 Search Keywords . 17
3.2 Adapted Search Strings for Each Database . 22

4.1 Total Number of Search Results and Selected Contributions 24
4.2 Final Included Contributions and Type Information 47

5.1 Test Participants Demographic Data . 64
5.2 Test Participants Statistic Data . 64
5.3 User Feedback Advices . 66

A.1 Contribution Index . 76

4

List of Codes

5.1 Bootrap Bover Effect Definition . 56
5.2 The Structure of Table ”Contribution” . 58
5.3 SQL Sentence Example for User Creation . 59
5.4 JavaScript Listing . 59
5.5 SQL Pseudo Sentence Generated from User’s Selection 61
5.6 SQL Pseudo Sentence Generated to Get Excluded Contributions 69

5

Chapter 1

Introduction

The concept of microservices in the software development industry is getting growing attention
nowadays. This architectural style is widely discussed in many contributions. The microservice
architecture consists of several light-weight, single-responsibility, and self-contained services that
interact with each other to fulfill the business functionalities desired by users [92][108][103]. It has
many advantages, for instance, the service can be developed in various languages with different
tools which best fits the user’s requirements; each service can be scaled easily and deployed onto
independent platforms; the development teams can update and test the services separately, so
the system is easily manageable, and failures can be enclosed within the service border, ensuring
fault tolerance and reliability [98]. When the legacy applications fail to meet the performance
requirements by development teams, or when development teams meet technical problems during
development, deployment, or maintenance, software architects tend to seek a nice solution. Often
a microservice architecture seems to be an attractive one because of its fancy concept and trend
[99][50]. It is a common approach to migrate the legacy application into a new microservice
environment. Many internet companies such as Amazon, Netflix, Google, Alibaba, etc. [87] have
already adopted microservice architecture. Also, many modern cloud-enabled platforms, including
Google Cloud, and Amazon AWS, also support microservice applications to exploit the benefits.
However, to some software such as enterprise systems, this architecture is not dominant yet [25].

Even though various contributions have discussed migration approaches or frameworks, a clear
guidance on architectural refactoring of legacy application remained unclear to many researchers
because they are facing with different environments, and they have different objectives. There
are many ways to decompose and migrate the monolithic application to microservices, and they
usually vary significantly regarding quality metrics, practical profoundness, applied techniques, tool
support, input resources, validation processes, and so on. Considering this fact, it brings challenges
to software architects and developers to have a general understanding of available approaches or
frameworks and their capabilities. It may also be difficult and time-consuming for them to choose
a suitable way to migrate their own monolithic applications in proper granularity. Moreover, the
number of researches and contributions in academia and industry grow continuously, and they
keep updating the current status of the study. This fact also makes previous studies [33][84] to be
obsolete quickly.

The goal of this study is to create a structured overview of up-to-date microservice architectural
refactoring approaches and frameworks. So it can aid software architects and developers to check
and select appropriate migration strategies and refactoring approaches that are applicable for their
specific system.

In order to achieve this goal, a systematic literature review was performed by referring to a
guideline proposed by Kitchenham and Charters [52]. They introduced a set of explicit and for-
mal processes to conduct the literature review. The research protocol was defined at first, and it
was strictly executed during the literature review to ensure that the achieved result was correct
and reproducible. In this review, I included new contributions that had not been captured by
previous meta-studies yet. I focused mainly on the underlying techniques used for application

6

CHAPTER 1. INTRODUCTION

decomposition. In addition, intentions for migration and evaluated quality metrics of microservice
applications were also further investigated. Based on the knowledge acquired from the literature
review, a comprehensive classification framework for refactoring approaches was designed. Next,
a web-based tool was conceptualized and implemented based on an extensible repository that
contained all the data of analyzed migration approaches collected from the literature review. Ac-
cording to users’ requirements, this tool can provide users appropriate contributions to guide the
choice of suitable refactoring techniques and approaches. Finally, a formal evaluation of the tool
was done among consulting experts and students in the relevant field. According to their feedback,
I could tell whether the tool was helpful for partial use or not.

According to the guideline by Kitchenham and Charters [52], research questions should be
specified because they will drive the whole review methodology [52]. Based on my goal and the
previous research gaps, the research questions were formulated as follows:

RQ 1: What approaches or frameworks for migration scenarios are proposed in the
scientific literature?

Especially, the RQ 1 can be further divided into two sub-questions:

RQ 1.1: How can the proposed approaches or frameworks be classified? What
strategies and techniques did they implement?

RQ 1.2: What are relevant intentions and quality metrics in a microservice
migration/ refactoring scenario?

RQ 2: How can we design a tool to serve the architects and developers as a guidance
for microservice migration?

These two questions were particularly inspected in this study, and they will be answered based
on the evidence and knowledge acquired during the systematic literature review and web-based
tool design.

The remainder of this thesis is organized as follows: Section 2 presents the background and
related work. In Section 3, I will introduce the basic methodologies I have applied for the systematic
literature review. In Section 4, the detailed result and knowledge gathered from the literature
review will be described. Then Section 5 will present the design, implementation, and evaluation
of the corresponding web-based tool. In Section 6, the result of the whole study will be discussed
and interpreted. In Section 7, I will point out potential threats to the validity of this work.
Finally, the conclusions and suggestions for future work will be stated in Section 8. In addition,
the appendix section at last will provided some raw materials and data generated during my thesis.

7

Chapter 2

Background and Related Works

In this chapter, the background knowledge of this topic, as well as previous related researches,
will be mentioned. What’s more, some specific architectural design concepts, including Domain-
Driven Design and Model-Driven Design, will also be introduced.

2.1 Background

In order to provide readers a basic understanding of the microservice architecture and its
characteristics, a brief introduction of microservices is given below. In addition, the concept of
the traditional monolithic application is also discussed so that a comparison between these two
architectures is obvious to readers.

2.1.1 Monolithic Application

The monolithic application has a traditional architecture, which means that the application
is developed and deployed as a self-contained entity having all responsibilities. Since the whole
application is implemented within a single package and homogeneous environment (same framework
and language), it is easy to develop and test [91][50]. The characteristic of monolithic architecture
is tight coupling, which means that its components heavily rely on each other to conduct a task
[50]. To achieve scalability, a load balancer is used to run multiple application copies when the
application encounters performance bottleneck [87].

The benefits of monolithic application can be listed as follows:

(1) It requires less effort and operational overhead because only one application is developed and
deployed. All components are running within a single entity [50].

(2) This is good for small projects to adopt monolithic architecture because it is simple [91].

(3) It is developed using the homogeneous technique and deployed in one particular environment,
so it is also easy to maintain.

However, drawbacks also tend to appear and become outweigh the benefits [69] when the
application becomes large and complex after a few years:

(1) The monolithic architectural style is difficult to change due to tight coupling components
and legacy techniques. When the application faces bugs, bottlenecks or requirements for
additional functionalities, the change of any part requires testing and redeploying the entire
application [92]. Unexpected errors may appear after updates, and this brings difficulty to

8

CHAPTER 2. BACKGROUND AND RELATED WORKS

maintenance when the application is large and cumbersome. Plenty of efforts and time are
required for the updates. Besides, it is not suitable for continuous deployment [50].

(2) It is also hard to scale a monolithic application because of the same reason. The system has
no choice but to run multiple application copies in parallel to resolve performance bottleneck.
This wastes unnecessary resources and adds additional cost [87][65]. However, when differ-
ent components have conflicting resource requirements, it required more effort to orchestrate
them carefully [92][65].

(3) The reliability of the whole application may also be influenced even if only one component
breaks down [50].

(4) Because of high coupling and legacy codes, it is challenging to adopt new languages and
frameworks. This brings potential risk of technology lock-in [91].

When the maintenance and further improvement of a monolithic application become costly in
time and effort, the development teams may think about adopting a new architectural solution.
One possible answer for overcoming such limitations is microservice architecture [91].

2.1.2 Microservice Architecture

Microservice was first introduced in 2011. A growing interest in the software industry can be
observed because of its benefits over monolithic applications [25]. It can be defined in various ways.
One of the most popular definitions is introduced by Sayara et al. [92], that is, microservice archi-
tecture evolves from service-oriented architecture (SOA). SOA has separate components running
in parallel, making the application loosely coupled and high cohesive. However, it also has shared
service contracts, shared databases, etc., which still contains correlation problems.

Microservice architecture improves further by minimizing or totally separating these shared re-
sources, so that the whole application consists of light-weight and well-defined services that are in-
dependently developed and deployed using different tools, languages, platforms, etc. [92][108][103].
Each service should be assigned with only one business responsibility ideally, and they interact with
each other to fulfill tasks by means of Inter-Process Communication (IPC) mechanism using inter-
face such as REST API [108][91]. Typically, Domain-Driven Design (DDD), Single Responsibility
Principle (SRP), or Conway’s Law are applicable to design microservices according to business
functionalities [90]. And it is a common practice to design the microservice application based on
an existing monolithic one.

Microservice application is naturally scalable. It is usually integrated using service discovery,
API gateway, and circuit breaker. They are used for service registration, client-service commu-
nication, and error handling [20]. Therefore, the services can be scaled separately by deploying
service copies on different hosts. During system building, automation techniques such as continuous
integration or continuous delivery are often applied.

One challenge of microservice is to define the number and size of each service properly. Ac-
cording to the single responsibility principle [90], a service should be responsible for one business
functionality, which will influence the size of the service. However, the granularity of such business
functionality is unclear and depends on actual scenarios [92].

Another challenge is to ensure the performance of the overall application because communi-
cations between services across the network boundaries may decrease performance [46]. So, the
coupling of services, which is represented by the number of function calls between services, should
be paid special attention and designed carefully.

To sum up, these challenges require the developers and architects to partition the microservice
application properly. Such design in practice is often intuitive and based on practical experience

9

CHAPTER 2. BACKGROUND AND RELATED WORKS

[103]. Considering the fact that most microservice applications are developed based on legacy
applications, a good separation of business functionalities is therefore essential.

The advantages of microservices include:

(1) It is easier to realize high-concurrency and high-capacity [87].

(2) It is suitable for large project teams and complex applications which require frequent updates
and maintenance [87]. Only updated services required redeployment without restarting the
whole application. And maintenance focusing on one specific service is also easy [91].

(3) It is more scalable than monolithic application because each microservice can be scaled in-
dependently.

(4) Faults can be isolated within service boundaries because of loose coupling and high cohesion
[103]. Therefore, the reliability of the whole application can be ensured.

(5) The independent services own private resources and databases. Therefore, performance can
be enhanced separately [103].

(6) Each microservice can use different program languages, frameworks, libraries, and other re-
sources flexibly [50].

(7) Because of the characteristics of microservice architecture, it matches for cloud deployment
[50]. Besides, it is commonly integrated with DevOps and agile development. The automa-
tion techniques are applied to fasten the development and deployment process [20].

(8) Microservices architecture usually partition services according to business functionalities, so
the application can be better aligned with business needs, and developers can better under-
stand users’ requirement [50].

In spite of its advantages, there still exist some limitations:

(1) The microservice architecture is more complicated than monolithic application because of
the separation of services. In other words, it can be treated as a distributed system [50].

(2) Inappropriate service partition can be costly [103]. For instance, if an application is par-
titioned wrongly, the services are coupled to some extent, and they will generate many
inter-service communications via the network, which will harm the performance [50].

(3) The implementation of such architecture lacks explicit methodologies and is heavily based
on intuitive experience.

Please note that microservice architecture is not always the best answer to architectural design.
Kazanavičius and Mažeika [50] insisted that: “Simply turn to microservice architecture because
of its fancy idea and growing popularity is a bad idea.” Software architects and developers should
choose the form of structure freely based on their own situation and evaluation.

10

CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.1: Domain-Driven Design (DDD) and Model-Driven Design (MDD) [15]

2.1.3 Architectural Design Concepts

Additionally, there were two formal design patterns which were mentioned in previous re-
search: Domain-Driven Design (DDD) and Model-Driven Design (DDD). They can be used during
microservice partitioning. The basic concept and comparison will be introduced in the following
paragraph.

Domain-Driven Design (DDD)

Eric Evans [30] defined Domain-Driven Design in his book as ”the concept that application
structure and source code, including class names, class methods, and class variables, should be
consistent with the business domain. It aims at core business domain and corresponding business
functionalities, and focuses on iteratively designing a conceptual model based on a particular
domain together with technical and domain experts”. Evans explained several terminologies in
order to create a precise mapping of knowledge from concepts to tangible examples [30].

(1) ”Domain” (in software engineering) indicates a specific area where the user applies a program.

(2) ”Context” explains the meaning a word or statement, which is used during the definition of
a domain.

(3) ”Model” represents the selected characteristics of a domain in abstraction, and it is usually
used to solve the corresponding problems.

(4) ”Bounded Context” is used when a software project defines multiple models. It is used to
clarify the context within which a model applies, set boundaries between development teams
in terms of responsibility, code repository, resources and so on. It makes sure that the models
are consistent within these boundaries.

11

CHAPTER 2. BACKGROUND AND RELATED WORKS

(5) ”Context Map” solves the problems caused by ”Bounded Context”, that is, isolation and
unawareness of other bounded contexts due to the boundaries, and the absence of a global
view. The problems will make the edges vague again. Therefore, the ”Context Map” uses
ubiquitous language among different development teams to define models’ names and de-
scribe explicit points of interaction between them. It will create a comprehensive overview
of the whole domain area.

Model-Driven Design (MDD)

Besides Domain-Driven Design, another pattern called Model-Driven Design is also frequently
used during the migration process. Jordi Cabot states that Model-Driven Design shares many sim-
ilar aspects with Domain-Driven Design. For instance, both of them model the problem domain of
a system and focus on platform-independent solutions during the design stage. He shows Figure
2.1 to illustrate the concept and comparison of Domain-Driven Design (DDD) and Model-Driven
Design (MDD). As we can see, Model-Driven Design is a framework that realizes the concept
of Domain-Driven Design by model transformation and code generation techniques. The domain
models can be further applied to generate a software system for model management. Hence, Model-
Driven Design benefits developers more in the development process, it can provide assistance such
as introducing domain-specific languages for communication between team members [15].

After a brief introduction about background knowledge and previous academic literature, the
basic concept of microservice, as well as the research status about microservice migration before
2017, were studied. Therefore, we can start to perform a systematic literature review to continue
the study and fill the research gaps.

2.2 Existing Migration Approaches

In order to know the current status of research about this topic, two contributions were reviewed
before the actual start of this study.

According to the study by Fritzsch et al. [33], an overview of decomposition approaches with
regard to ten contributions was provided in their research. The overview had a relatively clear
and detailed classification describing the characteristics of each approach. As an illustration, they
classified the contributions according to technique type, applicability, process strategy, atomic unit/
granularity, required inputs, expected output, result evaluation type, tool support, and validation
steps.

(1) Technique Type
Fritzsch et al. clarified the terminologies used in their contribution [33]. In particular,
technique type groups specific analysis methods into four main categories: Static Code Anal-
ysis Aided (SCA) method, Meta-Data Aided (MDA) method, Workload-Data Aided (WDA)
method, and Dynamic Microservice Composition (DMC) method. SCA method decomposes
the applications by inspecting their source code; MDA method takes advantage of more
conceptual resources, notably, architectural documents such as UML diagrams, use case de-
scriptions, etc.; WDA method makes use of the applications operational data like log files
about specific modules or functions because these data indicate the performance or com-
munication intensity. By analyzing them, suitable service cuts (granularity) can be derived;
DMC method is similar to WDA one, but it focuses more on the iterative improvement of
the service cuts according to run-time workload and environment. Software developers can
combine multiple techniques during the migration process in consideration of the structure
and available resources of the application.

(2) Process Strategy
The next aspect is process strategy. As we can see in Figure 2.2, one microservice migration

12

CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.2: Relationship Among Each Level

framework may include several approaches. They usually express comprehensive ideas about
migration measures to be taken and summarize them into a brief description. And in one
approach, the developers can exploit multiple methods as migration process strategies. They
are systematic procedures which denote one or more concrete techniques, that is to say, what
should developers do to migrate the monolithic application. Subsequently, the lowest level is
techniques, which are the most specific and practical ways to implement the migration and
development procedures, in other words, how should developers realize the methods.

(3) Applicability
Regarding applicability, it describes the scenarios of microservice implementation. The three
basic scenarios are greenfield development (GR), monolith migration (MO), in other words,
brownfield development, and one that is applicable for both cases (GRMO). John Wade
[105] has compared the concepts of greenfield development and brownfield development. He
claimed that monolith-migration means developing microservices based on legacy applica-
tions, such as decoupling different modules or adapting and improving old source code to
new applications. This is a conservative approach that relies on the existing feasible tech-
niques. Therefore, it is less likely to fail again. Also, the developers can spend less effort
and time during migration because they have already worked with these environments for
years. However, risks still exist when it comes to performance bottlenecks, maintenance cost,
cumbersome source codes and so on. Legacy codes may be difficult to change on account
of highly coupled codes, old technologies, unexpected bugs caused by changes, etc. On the
other hand, greenfield development means that the microservice application is developed
from draft. Therefore, the business functionalities remain similar, but the internal software
architecture and applied technologies (programming language, platform, etc.) may be ut-
terly different. In that case, more suitable technologies, tools, environment, and structure
can be applied during the development process, and that brings advantages such as better
performance and legacy technical restrictions resolve. Nevertheless, this scenario also has
disadvantages, including higher risk of failure, longer learning curve for new technologies and
so on. In addition, some approaches are applicable for both greenfield and brownfield devel-
opment, they usually provide generic decomposed structures of microservices, and architects
can make trade-offs and choice a development scenario which best fits their requirements.

(4) Granularity
After this, Fritzsch brought up the concept of atomic unit/ granularity. He explained it
as ”the smallest entity that the microservice application will deal with” [33]. This term is
highly affected by the decomposition strategies, and in return it will influence the extent of
coupling and cohesion among different entities. This may also affect the final performance. To
illustrate, the fine-grained decomposition will create a considerable amount of highly cohesive
microservice entities. They can work in parallel and improve performance but also create
managing and scheduling challenges due to their complex relationship and frequent inter-
communication [18]. On the other hand, coarse-grained decomposition will result in several
relatively big entities, so less communication overhead is possible, but the workload may be
imbalanced and performance bottleneck will appear after these services scale up. Another

13

CHAPTER 2. BACKGROUND AND RELATED WORKS

problem is maintainability, considering the fact that each entity’s size may be hundreds
or even thousands of lines of code, which makes them difficult to change and more errors
may show up if developers change a single line of code [18]. Overall, granularity needs to
be conscientiously decided according to actual functional and non-functional requirements.
There is no single correct answer. Some approaches will calculate the granularity for reference,
while others will leave this decision to development teams.

(5) Required Inputs and Expected Output
Moreover, required inputs and expected output are also informative aspects to development
teams. These aspects inform them about necessary artifacts (documents or resources) needed
for the proposed approach. In particular, one approach may require UML diagrams and
original source code for application analysis and decomposition. The output aspect can show
possible outcomes after the migration process, such as s suggested list of microservices or
decomposed clusters with their relationships. Architects can refer to this information and
choose suitable approaches according to their own application.

(6) Evaluation type
The next classification aspect is result evaluation type, and this illustrates what quality at-
tributes have been measured during the evaluation stage. The quality attributes are quantifi-
able metrics, which reflect the quality and performance of the new microservice application.
Fritzsch gathered these attributes for each contribution. For instance, some mentioned re-
sponse time, team size, average domain redundancy as evaluation metrics [67][72]. Later,
experiments, examples, or case studies were carried out during the validation stage, and
these metrics will be utilized. More specifically, a contribution may introduce a monolithic
legacy application for migration, recording its size in LOC, number of classes and meth-
ods, team size, year of development, functionalities, etc. Next, it will document the steps
which follow the proposed approach and migrate the application. And then it measures the
quality attributes to check whether the new microservice application can meet the expected
requirements and whether this approach is feasible in reality. In addition, it may discuss the
advantages or disadvantages and suggest further study and improvement of this approach.
The aim of these two stages is not only to prove the effectiveness of a specific approach but
also to demonstrate its applicability scenario under industrial or practical development en-
vironments. Therefore concrete and comprehensive argumentation is available to architects
and enables them to judge the suitability of the approach to their project. They can also
evaluate the quality of contributions, whether they are mature approaches or just conceptual
ideas without practical validation which require further studies.

The literature review conducted by Fritzsch and others [33] is detailedly introduced because
they provided some explicit aspects to classify the migration approach and techniques. This knowl-
edge acted as a basis for my study. And I can further extend these aspects to generate a more
comprehensive overview of microservice mitigation.

Additionally, Ponce, Márquez, and Astudillo conducted a rapid review about microservice mi-
gration [84]. They classified the migration strategies into Model-Driven Design (similar to Domain-
Driven Design), Static Analysis, and Dynamic Analysis (similar as workload-data aided). They
found that most approaches used Model-Driven Design or Static Analysis during the migration pro-
cess. Moreover, they identified that seventy percent of migrations happened on web-based systems,
and ninety percent of the microservice applications were developed using object-oriented program-
ming languages. Nearly half of contributions validated the proposed approaches by case studies,
following by experiments and then examples. They claimed that the challenges for migration in-
cluded database migration, business capabilities partitioning, resource management, environment
setting and so on.

14

CHAPTER 2. BACKGROUND AND RELATED WORKS

2.3 Related Work

Fritzsch et al.conducted another research [34] to study the intentions, strategies, and challenges
for microservice migration in the industry. They interviewed ten participants who had at least
five years of working experience. They identified that maintainability, analysability, traceability,
modifiability, flexibility, performance improvements, shorter time to market were major intentions
for migration. With respect to migration strategies, most development teams applied rewrite or
strangler patterns. In addition, they also identified several challenges, including finding the right
service cut, adopting DevOps or agile pattern for software development and integration, team
collaboration and human resource management.

Similarly, Taibi, Lenarduzzi, and Pahl [99] pointed out that maintainability, scalability and del-
egation of team responsibilities were three main drivers for migration. This matched the observed
benefits of migration such as improvement of maintainability and scalability, as well as the rise of
ROI and reduction of system complexity. Besides, the identified issues in the survey were applica-
tion decomposition, database partitioning and migration, inter-service communication design and
so on. These results were also similar to the previous study. Moreover, they proposed a migration
process framework based on real research participants’ projects, but a specific technical discussion
about the framework was missing in their research.

Moreover, Taibi et al. [98] further proposed an assessment framework to support companies
to make decisions and evaluate the migration to microservices. This framework included several
steps for metrics identification, migration decision-making, and actual migration process. The
main metrics were identified from an industrial survey and referred to ISO/IEC 25010 standard.

Lastly, Carvalho et al. [17] conducted a survey with specialists to identify the criteria which they
thought essential during migration. They stated that the most critical criteria included coupling,
cohesion, reuse potential, and requirements impact. Some other criteria such as database schema
were also influential to the migration process. What’s more, they pointed out the need for more
formal techniques and tool supports for migration.

Based on the above studies, several gaps were identified. First, a structured overview of the
supporting techniques and their benefits as well as limitations was missing. Second, a microservice
migration framework focusing on technical methodologies was also lacking. Third, considering the
fact that microservice is gaining growing attention these years in the industry, previous studies
that were conducted mostly around 2017 or earlier may be obsolete. Therefore, a new meta-study
within this area was desired. These were the purpose of this master thesis.

15

Chapter 3

Systematic Literature Review

In order to continue the study based on the acquired knowledge, the current state of research
about architectural refactoring to microservice should be reviewed and documented. Therefore, in
this thesis, I defined the goals to be identifying the newly released contributions which described
refactoring approaches and had not been captured by previous meta-studies [33][34][83] yet. These
approaches gathered from the contributions should be analyzed using a unified framework similar to
the one used in [33]. Furthermore, this framework would be adapted according to the new findings
of my research. Particularly, emphasis should be put on the techniques used for decomposition
into microservices.

3.1 Research Methodology

In this thesis, I will introduce a formal systematic literature review process for software engi-
neering. This methodology referred to Fritzsch, J. and his colleges’ report [33] and also a generic
guideline proposed by B. Kitchenham and S. Charters [52]. The purpose of this methodology is to
follow a clear and concrete process, summarize the empirical evidence related to one technology,
identify gaps in current research, and also enable researchers to continue the research more easily
[52]. Due to the well-defined methodology, it requires considerably much more effort than normal
research. However, such endeavor is worthwhile because all relevant empirical evidence will be
collected by means of meta-analytic techniques [52] and presented as a comprehensive overview.
Additionally, it can identify research gaps of the current study and refine researcher’s knowledge
on the target area [81]. What’s more, the acquired results are reproducible, more consistent and
less likely to be biased because various results including positive and negative ones can be analyzed
by statistical techniques after contribution reading.

3.2 Research Protocol Definition

The first step of the systematic review was defining a research protocol. Considering the goal
of our meta-study, the review should be able to find a sufficient amount of contributions that were
related to our topic, that was, about microservice migration.

In order to answer the research questions that I have proposed in Introduction chapter, the
research methods were applied accordingly. In this thesis, I first defined the target databases:
ACM Digital Library, IEEE Xplore, Springer Link, and Google Scholar. ACM Digital Library is a
platform for research and networking, which contains an extensive bibliographic database focused
specifically on the field of computing [60]. IEEE Xplore is also a worldwide database dedicated to
advancing technology, including information technology and software engineering, offering highly
cited contributions [43]. In addition, Springer Link is also a technical and scientific portfolio
containing various publications covering the area of computer science and software engineering
[96].

16

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

These databases were selected because they are famous and common databases accessible by
scholars in the field of this topic. They provide relatively high-quality full-text contributions and
also they cover nearly all relevant knowledge, which offer a comprehensive scope about my topic. In
combination with these three databases, many kinds of contributions such as conference proceed-
ings and technical reports were scanned. Therefore, unbiased results were achieved because both
supporting contributions about effective migration approaches and opposite ones that documented
immature or failed attempts were involved. What’s more, Google Scholar was also chosen as a
supplementary source of knowledge, considering the fact that there might exist some contributions
of interest, but they were unavailable from the above three databases. Other database sources
such as Elsevier were also considered to be included. However, due to the fact of workload and
schedule, I excluded them later during the research. I believed that the current search scope could
already provide me an adequate amount of contributions for my study. Therefore, I suggest that
other databases should be included, and then more extensible results can be collected for further
research.

All information could be later gathered and analyzed as the knowledge base, and then it would
support web-based tool development and further serve the software architects, developers, and
researchers.

For the second step, the research keywords were defined as representatives of my study scope.
In Table 3.1, this case of study mainly focused on ”microservice”, and the contribution under
investigation should be about architectural refactoring, so I included several possible empirical
practices related to it, for instance, ”migration”, ”evaluation” and ”adoption”. It would be a plus
if the contributions had documented sections about the comparison between these two software
structures in case of the development process, performance, tool support, etc., so ”monolith” was
also chosen as a keyword. Last but not least, the expected outcome of our searching was a collection
of frameworks, approaches, and techniques, which could give me extensive empirical evidence and
support me to define a comprehensive microservice migration framework in this thesis.

Table 3.1: Search Keywords
Subjects microservice
Practices migration; evaluation; adoption
Comparison monolith
Outcome framework; approach; technique

By referring to the keywords and previous research by Fritzsch et al. [33], a general search
string was decided as the input for databases:

(”microservice*” OR ”micro-service*” OR ”micro service*”) [AND ”monolith*”] [AND
(”refactor” OR ”transform” OR ”migrat*” OR ”decompos*” OR ”partition*” OR ”granular*”

OR ”evaluat*” OR ”compar*” OR ”adopt*” OR ”metric”)]

With the purpose of avoiding missing relevant contributions during the searching process, I
tried to include as many synonyms as necessary, such as ”refactoring”, ”transformation”, ”parti-
tion”, etc. Additionally, I included ”comparison”, ”granularity”, ”metrics” and so on, so that I
could also acquire some contributions which investigated detailed aspects like granularity decision,
microservice quality metrics, migration intentions, and architectural comparison to legacy systems.

Thirdly, explicit inclusion and exclusion criteria were determined to indicate which kind of
contributions should be selected for this research. Considering the scope and objectives of this
thesis, I determined the inclusion and exclusion criteria as:

CR 1: The contributions under consideration should be published since 2017 so that the
research was based on previous literature reviews [33][83] could be continued.

17

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

CR 2: The contributions must have shown empirical evidence (practical report), in
other words, they must describe approaches of migration from monolithic application to
microservices.

CR 3: The contributions should be written in English.

The following important step was defining a data extraction form. The purpose of this step was
to design a unified form so that all relevant information that was valuable to this research could be
gathered and documented from each selected contribution. This form was of great importance due
to the fact that it would store all empirical evidence, and it would construct a repository for the
microservice migration framework and the web-based tool. Hence, considerable effort was spent
to design and improve the content of the extraction form so that it reflected the requirement of
information, which was of most interest for our research.

Fritzsch’s study [33] provided a well-grounded overview of microservice migration. And his
classification framework was later referred to and improved to create a new data extraction form.
In my study, the form was constructed of three main groups: ”Paper Context Data”, ”Empirical
Data”, and ”Quality Assessment”. Specifically, ”Paper Context Data” tried to capture information
about contributions, such as title, year of contribution, author and organization, publisher, avail-
able source and so on. ”Empirical Data” collected information about approaches, techniques, tools
used for migration, as well as drivers for migration, expecting goal and quality after migration,
required inputs, etc. Finally, ”Quality Assessment” intended to evaluatd feasibility, comprehen-
siveness and quality of the contributions. This part showed validation aspects, creativeness of the
proposed approach, process formalness, and level of detail. Figure 3.1 shows the content of data
extraction form. In this research, the form was created using Microsoft Excel.

The first draft of the data extraction form experienced further improvement after discussion
with Mr. Fritzsch. In the end, the sections were arranged and merged again, and some other
form elements such as process strategy, decomposition strategy, technique sets for migration were
added so that in the future it would be much easier to conduct data collection, and all valuable
and informative data could be gathered using this form during the systematic literature review.

Emphasis should be put on some specific rows in the form which contained new elements other
than previous researches. To start with, according to Figure 3.1, in the ”FRAMEWORK/AP-
PROACH” section, the row ”The contribution proposed a framework or approach?” should be
clarified. Secondly, the row ”Approach” should contain a brief description of general concepts
related to microservice migration measures. Especially if the approach was bound to certain pro-
gramming languages, software frameworks or design patterns, it should be annotated in this row
as well. Thirdly, ”Process Strategy” was further classified into six main categories: rewrite, ex-
tension, strangler pattern, continuous evaluation, splitting the existing code base, other strategy.
In this research, process strategy was closely related to coding and development processes. It
indicated how should architects and developers utilize application resources and handle practical
programming and migration tasks. On the other hand, the row ”Decomposition Strategy” focused
more on application functional decomposition. In other words, it was more related to architec-
tural decomposition for different functional clusters. Therefore, a set of widely-used decomposition
methodologies were documented, including Domain-Driven Design, functional decomposition, us-
ing existing system structure and so on. Additionally, ”Technique Sets” were recorded to illustrate
the practical procedures step by step. This could provide architects and developers a clear under-
standing of how to migrate monolithic applications in a given context.

Also, ”Quality Assessment” was merged into ”Empirical Data” group for the sake of simplicity
and understandability. The ”Validation Type” involved: experiment, example, and case study.
After the proposal of an approach, it was favorable to validate it to prove its feasibility and
correctness. For instance, experiment and case study are similar because they require to test
the approach with practical migration tasks, say, an existing banking system or parking charging
system. But experiment may be less formal and the monolithic application may be relatively small,
while case study requires much more effort and the microservices will be actually put into service
after migration. In contrast, the researchers may provide a hypothetical monolithic application,

18

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Figure 3.1: Data Extraction Form Structure

19

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

explain its functionalities and consisted modules, and use it as an example to explain migration
steps. Validation with example may be less convincing since it is a fictitious scenario and some
issues or drawbacks may be ignored which can only be captured in real and complex environments.
However, it is easier for readers to grasp the basic concept.

Besides, ”Validation Details” stored information about the monolithic application, such as
name, purpose for usage (functionality) and size. It also recorded the resulting number of mi-
croservices after migration and detailed steps intended for validation.

Furthermore, quality attributes had been measured during the validation, these attributes
should refer to [3] and they should be shown in ”Validation Metrics”, important attributes involved:
maintainability, performance, reliability, scalability, security, etc. These attributes indicated the
final quality and effectiveness of the microservice migration. And quantifiable matrices were pre-
ferred for the sake of conviction. Additionally, ”Drivers/ expectations and result influence for the
migration?” captured the intentions and results for migration. This also referred to the quality
attributes because quality improvement, technique bottlenecks, maintenance cost were common
causes and goals of microservice migration. Considering this information, we could know whether
the final result meets the expectation and goals before migration, and they would also reflect the
effectiveness of the approach.

The last row of the form was ”Score”, this was a five-point likert scale thet represented the
quality, comprehensiveness, and feasibility of the proposed approach or framework and if it was
worth to be referred. The decision of this score was based on ”Quality Assessment” group, which
was defined previously in the draft form. By evaluating creativeness, formalness, level of detail,
and profoundness of the validation process documented in the contributions, a score was signed by
me for reference. It enabled me to distinguish and rank various contributions. Therefore, I found
it especially helpful during the systematic literature review. Till now, the data extraction form
was completely designed. For detailed explanation about each element in the form, see Section 4.2.

Finally, a formal and precise definition of the research protocol was successfully finished. It
played an important role at the initial stage because it could serve as a criterion about what kinds of
contributions should be included in the research. More particularly, it acted as the backbone of the
microservice migration framework, and it made data extraction, synthesis and quality assessment
from different contributions possible. Furthermore, it could be exploited to serve the development
of web-based tool and later answer the proposed research questions. I believe that the research
protocol plays a fundamental role in almost every systematic literature review, and it may directly
influence the result and conclusion of the research. Therefore, considerable effort should be spent
during this stage, and issues such as vague definitions of input, different data formats, missing
information can be avoided in further research processes.

In the next section, the actual literature review would be conducted. As we can see in Figure
3.2, this proceeded in seven stages: contribution searching, contribution selecting, thesis reading,
data extraction, data synthesis, quality assessment, and framework definition. Some steps can be
performed in parallel: contribution searching and selecting could be done at the same time; for each
contribution, thesis reading, data extraction, and quality assessment were conducted sequentially
for each contribution. And after I read all contributions, a general data synthesis process would
be done, and a framework would be defined according to all relevant data collected in the form.

3.3 Contribution Search

The purpose of contribution search and selecting was to find and filter contributions that
included predefined search terms and answered research questions [52]. Effort was required in
order to include as many relevant contributions as possible. Also the publication bias should be
minimized. Therefore, I strictly followed the research protocol step by step.

During the contribution search stage, considerable attention must be paid when setting the
search strings for different databases. In Section 3.2, a set of research keywords, target databases,
and a general search string were defined. However, each target database had a slightly different
searching user interface, and they covered different academic fields and contributions, or classified

20

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Figure 3.2: Gantt Chart for Master Thesis

them into different subject categories. So later, when I actually started searching among databases,
I found that using the general input string was unfeasible. If the same search string was used in
different databases, it was impossible to get the optimal number of results from each database.
The reason was that the search string contained too many keywords, and it was too specific for
databases to find relevant results.

Hence, I adapted the search string for each database and search for the results iteratively. I
aimed at getting the maximum number of matched results. As a result, the search string for each
database can be seen in Table 3.2.

Among these matched results of each search, their abstracts were read thoroughly, and they
would be filtered based on inclusion and exclusion criteria. For instance, some contributions dis-
cussed microservices, but they focused on application development rather than monolith migration;
others might be theoretical studies about the microservices, and they showed less practical evidence
in the abstract; there also existed some contributions which were written in Italian or French. So
these contributions were excluded in the first phase.

3.4 Contribution Reading, Data Extraction and Quality As-
sessment

The purpose of contribution reading was to read and gather valuable information which was
relevant to my topic and classify this information in order to favor data extraction and synthesis.

Therefore, the first step was creating a contribution index. This index contained basic informa-
tion such as title, the decision of inclusion or exclusion, database source, and note about exclusion
reasons. It was essential to the review because it provided an overview of the studied contribu-
tions. It also made the research process traceable and clear to researchers. In the future, they
could validate the decisions again based on the contribution index as well. The contribution index
was available in Appendix A Table A.1.

In this study, I did contribution reading, data extraction, and quality assessment in parallel. Af-
ter I read one contribution, I would immediately extract the knowledge about proposed approaches
or frameworks documented by the authors and filled this knowledge into the corresponding data ex-

21

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Table 3.2: Adapted Search Strings for Each Database
Research Database Search string
IEEE Xplore [Publication Title:(”microservice*” OR ”micro-service*” OR ”micro

service*”) [AND ”monolith*”]][AND Publication Date:(2017 TO 2020)]
ACM Digital Library [Publication Title:(”microservice*” OR ”micro-service*” OR ”micro

service*”) [AND ”monolith*”] [AND (”refactor” OR ”transform” OR
”migrat*” OR ”decompos*” OR ”partition*” OR ”granular*” OR
”evaluat*” OR ”compar*” OR ”adopt*” OR ”metric”)]] [AND Publi-
cation Date:(01/01/2017 TO 05/31/2020)]

Springer Link [Publication Title:(”microservice*” OR ”micro-service*” OR ”micro
service*”) [AND ”monolith*”]] (Content type is only conference pa-
per, and discipline within Software Engineering or Information Systems
Applications (incl. Internet))[AND Publication Date:(2017 TO 2020)]

Google Scholar [Publication Title:(”microservice*” OR ”micro-service*” OR ”micro
service*”) [AND ”monolith*”] [AND (”refactor” OR ”transform” OR
”migrat*” OR ”decompos*” OR ”partition*” OR ”granular*” OR
”evaluat*” OR ”compar*” OR ”adopt*” OR ”metric”)]][AND Pub-
lication Date:(2017 TO 2020)]

traction form. Particular emphasis was put on the techniques used for microservice decomposition.
Meanwhile, the ”Score” was also assigned in the form as quality assessment.

3.5 Contribution Selection

Based on the full-text reading of all contributions, the second filtering was done to refine and
narrow the scope of the study. This step was performed by two researchers: Jonas Fritzch and I.

To begin with, I referred to the inclusion and exclusion criteria again to filter out irrelevant con-
tributions such as literature reviews or conceptual solution proposals without detailed migration
steps. Next, I created a contribution index that contained information about all included contri-
butions. And this index was checked by Fritzsch again. He further read the contributions and
provided his advice about inclusion or exclusion. In that case, the bias caused by one researcher
can be minimized.

3.6 Data Synthesis and Framework Definition

The last step of the systematic literature review was data synthesis. As described by Kitchen-
ham and Charters: ”The extracted data in the forms should be in a consistent format. And
the form should be able to highlight similarities and differences between study outcomes” [52].
Therefore, data synthesis is an essential step to inspect the data and reconstruct them consis-
tently. Thanks to the well-defined data extraction form, little effort for this step was required in
this study. Basically, the terminologies used among different contributions and the format such as
spacing and punctuation for the content were unified.

After data synthesis, a new microservice migration framework was designed according to the
knowledge acquired from the literature review. The proposed framework should provide software
architects and developers an up-to-date overview of microservice migration approaches or frame-
works that were possibly feasible according to different scenarios. The repository of data extraction
forms as well as the migration framework were the final outcome of the systemic literature review,
and they would support the development of a web-based tool later.

22

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

3.7 Gantt Chart

In an attempt to always keep track of the review progress and manage it in proper order, a
Gantt Chart was created using Microsoft Excel, which reflected the whole schedule of the thesis
proceedings. According to Figure 3.2, the detailed planning for each stage was listed and orga-
nized. Specifically, each stage was described as task name, progress rate, duration, start date,
and end date. Besides, all necessary stages which should be performed in the thesis were also
listed in the Gantt Chart, including background study, research protocol definition, contribution
search, contribution selection, thesis reading, data extraction, data synthesis, quality assessment,
framework definition, web-demo design, repository building, web-demo back-end implementation,
web-demo front-end implementation, testing, validation, and master thesis writing and refinement.

Till now, the systematic literature review and its methodologies were completely introduced.
In the next chapter, I discuss the results of the review and provide some evidence or examples
accordingly.

23

Chapter 4

Results and Analysis of
Systematic Literature Review

In this chapter, the result of the literature review and acquired knowledge will be introduced
in detail. Some terminologies and concepts were already discussed in Chapter 2, but they will be
further extended with new evidence or examples identified during the contribution reading. Also,
the first three research questions proposed in Introduction will be answered.

4.1 Result of Contribution Searching

Consequently, the total number of search results and selected contributions after abstract read-
ing are listed in Table 4.1. As we can see, I got a vast number of results from each database,
especially Springer Link and Google Scholar, because the searching scopes in terms of academic
fields were more comprehensive than other databases. However, after abstract reading, more than
half of the contributions were filtered, resulting in sixty-one contributions remaining for my study.

Please note that even though a significant number of irrelevant contributions were excluded in
the first phase, some contributions still existed, which failed to meet the inclusion criteria. However,
it was difficult to figure them out only by reading their abstracts. Several studies mentioned
monolith migration in their abstract or paragraph, but maybe they provided less evidence about
empirical practices or their approaches were non-systematic, or they were rather vague and fictional.
For that reason, the following stage was contribution reading. All included contributions were full-
text read, and final decisions were made whether they should be included or not.

Table 4.1: Total Number of Search Results and Selected Contributions
Research Database Total Results After Abstract Reading After Full-Text Reading
IEEE Xplore 26 17 10
ACM Digital Library 61 14 2
Springer Link 204 17 11
Google Scholar 517 11 6
Snowballing 2 2 2

Total 810 61 31

24

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

4.2 Analysis of Contributions

As mentioned earlier, contribution reading, data extraction, and quality assessment were con-
ducted in parallel to improve research efficiency and reduce repeating efforts. In the following
paragraph, I will sequentially give explanations and examples of some essential parameters in the
data extraction form. Furthermore, I will also introduce some approaches or frameworks identified
during the study. Therefore, the first sub-question RQ 1.1 can be answered based on knowledge
acquired during contribution reading.

RQ 1.1: How can the proposed approaches or frameworks be classified? What strategies
and techniques did they implement?

4.2.1 Required Inputs

The first part to be discussed is required inputs. Currently, microservice migration is still
an area with research potential, and most researchers propose their unique views and creative
approaches based on their project experience. Considering this fact, available resources of the
existing monolithic application play important roles in the decision-making during migration. So
it is the starting point of the microservice migration procedure. Typical input resources are source
code, use case diagram, system specification, application programming interface (API) and others.
These are common resources which most software projects will create during the design and de-
velopment stage. During my study, I notice that some approaches use single input resources while
others use multiple inputs as a combination, and I will introduce them one by one.

(1) Source Code
My study revealed that sixteen contributions chose source code as the main input in combi-
nation with databases, system specifications, APIs, etc. They accounted for relatively half of
the final included contributions, which meant that this was essential for migration, especially
for monolith-migration (brownfield development).

Sarita and Sebastian [91] proposed an approach using Docker [27]. This platform is based on
container virtualization engine. It is designed for agile development, deploying, and migra-
tion to cloud and microservices. Docker provides three main components: Docker Image as a
template for creating Docker Containers; Docker Registry which stores and manages Docker
Images; and Docker Container as an independent virtualized environment created from an
image. For microservice migration, Sarita and Sebastian divided the monolithic application
by separating the front-end and back-end of MVC pattern. And they further divided these
modules based on factors such as importance and frequency of change, resource requirements
(memory, computational intensity), inter-dependencies (asynchronous messages) and so on.
After division, they decoupled the resulting modules by adding REST APIs as interacting
interfaces and refactored them into microservices. Next, they built Docker Image for these
services and deployed them on containers as microservice instances. Therefore, the instances
composed a micro-service application. To use microservices, clients could interact with Dae-
mon process running on the host utilizing CLI commands. Daemon accounts for building,
running, and distribute containers. To sum up, Docker makes microservices independent of
platform, easy to scale and manage, and enables automatic development and delivery. Sarita
and Sebastian argued that it was a good fit for microservice migration [91]. Most importantly,
source code was an important resource in their approach for application decomposition and
refactoring.

(2) Use Case Diagram
Among all contributions, only three of them used use case diagrams as one of their inputs
for structural analysis. Gemino and Parker [35] said that use case diagrams are ”simplified
and graphical representation of systems”. They serve as the ”blueprint” of the system and
illustrate users’ interaction with the system and how users are involved in different use cases.

25

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

Santos et al. [90] proposed an approach using use case diagrams for domain modeling, and
they also adapted the Four Step Rule Set (4SRS) method [63] during migration. Each use
case indicated one or more microservice components. Briefly, 4SRS method was based on
MVC pattern. It decomposed the functional requirements of use cases and generated corre-
sponding functionalities of microservices [63]. The first step was requirements modeling in
use case diagrams. The functionalities were decomposed based on specific tasks in a tree-like
form. They were arranged hierarchically, from high-level business functionalities to low-level
create, read, update and delete operations. Second, for each use case, components such as
the system’s interface, data model, and logic/control were created. Third, redundant compo-
nents which had the same purpose and functionalities should be eliminated, and developers
should add name and description for each remaining component. Fourth, the remaining
components were grouped into packages based on business processes they related to, which
composed higher-level microservices. Subsequently, developers should define the communi-
cations and interactions between microservices by setting up service channels according to
specific rules and scenarios. Finally, microservice applications, including service participants,
capabilities, architectures, and interfaces, were interpreted using service-oriented architecture
modeling language (SoaML). Therefore a clear overview of the whole structure was available
to architects and developers.

Even though few approaches exploited use case diagrams during the migration process, Santos
et al. [90] claimed that there is a tendency to use languages oriented and use case diagrams to
model microservices and operations. And I believe that this is also a straightforward resource
for understanding the application’s functionalities and can help microservice decomposition
comprehensively.

(3) System Specification
System specification, including functional and non-functional requirements, is also a necessary
document created during the design process. It defines the functionalities and other aspects
such as quality metrics, user satisfaction requirements and so on. This input acts similarly
to using case diagram, but the main difference is that it is usually described linguistically.

Seven approaches were proposed by developers that used system specification as input re-
source. Specifically, one approach introduced by Martin and Boggies [66] reported their
experience of conducting microservice migration based on glossary definition in business lan-
guage. To start with, they defined a glossary of terms to clarify business entities. They
set up a shared vocabulary between the customers and the technical team to eliminate any
misinterpretation of the design concept during communication. Then they converted the
glossary into a domain model diagram, showing entities and their relationships graphically.
The following step was to elucidate use cases in the diagram about how users interact with
each component to realize functional requirements. Next, robustness analysis was done to
improve the descriptions and avoid missing any components. The fifth step was converting
use cases into sequence diagrams to inspect specific tasks to be performed by different com-
ponents of the system and specify interface functions for each use case as the entry points.
In order to achieve balanced participation of entities, they applied Aggregated Class Inter-
action Diagram (ACID) as a visualization tool. Therefore, they could graphically partition
boundaries between components and measure coupling, cohesion, and work balance between
microservices. They clustered components based on the number of relationships, component
size, the variance of amount of functions and so on.

Considering the suitability of clustering decision and granularity, Martin and Boggies [66]
admitted that this approach might be relatively crud. However, this was also an inspiring
way for migration because it focused on linguistic definitions rather than actual codes, which
offered us a higher understanding of the monolithic application. Also, it benefited further
functional decomposition and made the clustered entities more consistent concerning business
capabilities.

(4) Application Programming Interface (API)

26

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

According to the microservice architecture design standard, interactions between different
microservices are usually realized by Restful APIs. Therefore, original APIs in monolithic
application can serve as a reference for application partition and later be converted into
Restful APIs. Surprisingly, only one document mentioned an approach that used API speci-
fication as the input for migration.

AI-Debagy and Martinek [5] have decomposed a monolithic application by analyzing its Ope-
nAPI specification. Several algorithms were applied during migration. In detail, OpenAPI
specification was imported as an input document, and the operation names was extracted.
Next, the names were converted into word vectors. To achieve this, FastText or Word2Vec
models were trained and utilized. These were AI models trained with different data sets. The
average of word vectors in every operation name was calculated, which meant to sum up each
word vector and then divided itself by the number of words in each name. This mid-term
result was fed to the Affinity Propagation Algorithm [32] to find the number of microservices
by measuring messages between data points. Then similar data points and exemplars (indi-
cating a possible microservice point) were grouped. Therefore, candidates of microservices
were generated for developers to aid the decomposition of the monolithic application. Finally,
data consistency within clusters and performance of decomposition method were validated by
measuring metrics such as Silhouette coefficient [89], precision, recall and F-measure metrics.
What’s more, AI-Debagy and Martinek implemented the method using Python in combi-
nation with text analysis and clustering libraries. They conducted experiments to migrate
Amazon Web Services, PayPal, Kanban Board and Money transfer app. After comparing
their result with the actual number of microservices of each application, they proved that the
method could produce relatively correct decomposition and better performance since their
method was nearly automatic.

Microservice migration based on APIs has advantages such as better performance, consis-
tent results and comprehensive applicability because API specification is usually platform-
independent. Developers themselves can also decide the implementation of algorithm. As
long as the API specification is available, this resource and approach can be considered a
proper option. It is worth further research to make the algorithm more mature with regard
to word vector conversion and clustering [5].

(5) Other Inputs
Besides the input types I have discussed already, other resources are used in some specific
scenarios. For instance, Alwis et al.[25] used source code and database to figure out the
run-time relationship of system components; Jin et al. [47] exploited monolithic application
with test cases, executed them to inspect the log file and clustered the application by func-
tionality oriented microservice extraction (FoME) method; More than three contributions
[87][20][57] claimed that they selected source code, system requirements, design documents,
and some additional information such as developers’ interview or log files for migration;
Others [64][42][109] might use conceptual design diagrams like service contract diagrams,
structural diagrams, or UML diagrams to graphically decompose the monolithic application.

Generally speaking, the selection of input sources is an open answer. So it is suggested that
architects and developers can include their available sources and explore potentials among them
to benefit the migration process, improve quality and reduce effort. Because there are vast input
resources for different software projects, there is a growing need for a general migration framework
that can enable architects and developers to quickly find out possible migration approaches. Again
this is the purpose of my study to design such a framework and fill this gap.

4.2.2 Expected Output

After the execution of the approach, it is also interesting for architects and developers to know
what kinds of possible outputs will be generated in the future. Ideally, a fully functional microser-
vice application is desired after migration, so automatic migration approaches and techniques are

27

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

Figure 4.1: Candidate List of the Proposed Decomposition and the Optimal Decomposition [5]

favorable. However, my study reveals that such kind of approaches remains rare. So in this study,
the types of outcomes generated by each approach were documented and classified. In the future,
when the users refer to my migration framework, they can evaluate whether the approach under
consideration can meet their expected goal. Also, they can try to minimize gap between actual
outcomes and expected ones. My study revealed that six contributions generated candidate list of
microservices; while eleven constitutions suggested detailed microservice structure. The remaining
contributions provided other types of outputs as results.

(1) Candidate List of Microservices
The Candidate list indicates the possible decomposed microservices after migration. It acts
as a ”check list” for architects and developers to assist their actual partitioning of the appli-
cation. The partitioned clusters include data entities, methods, interfaces, and other system
components. Within every cluster, the entities are either functional-related or highly cohesive
with each other.

Previously, AI-Debagy and Martinek [5] have introduced their migration approach based on
OpenAPI specification. As we can see in Figure 4.1[5], the algorithm was able to generate a
clear list of decomposed components for each monolithic application during their validation
process. Different APIs were grouped according to name similarities. The size of them varied
and was decided by the algorithm automatically. Additionally, they compared the proposed
result (left) to the real-life decomposition example (right).

However, despite its clear structure, one drawback of the candidate list is that the relation-
ships and interactions between each microservice are absent. This may bring inconvenience
during microservice decomposition optimization because development teams may find it chal-
lenging to check the coupling and communication behavior between components.

(2) Microservice Architecture
Micro-service architecture as output solves the problem of missing relationship between each
component, since it illustrates not only microservice components in the application but also

28

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

Figure 4.2: Decomposed Microservice Architecture [66]

interactions between them. Therefore, a comprehensive architecture design is available to
architects and developers to aid them during the migration process.

In ”Required Inputs - System Specification”, the approach proposed by Martin and Boggies
[66] has been discussed. In order to partition the application properly, a visualization tool
(ACID) was used. In the end, a graphic structure of the microservice application example was
generated by the tool, which can be seen in Figure 4.2[66]. The components of application
were clustered into four microservices. Furthermore, each of them had specific business
entities identified from the monolithic application by system specification analysis and use
case analysis. According to their application, ”register model” represented code repository,
”register input dataset” indicated the input data repository, ”submit model run” meant to
execute the code with input, and ”retrieve model result dataset” showed the link to result
and its status after execution. In the figure, the interactions between business entities of the
microservices were clearly presented by lines. Using this architecture, such interactions could
be optimized by adjusting the partition and observing the result again. And this could be
done with help of the tool or manually.

In brief, the microservice architecture, which is a graphical representation of the migrated
application, is usually much straightforward than the candidate list. This may explain why
more development teams have chosen microservice architecture as the output after migration.

(3) Other Outputs
Other than the previous two outputs, some approaches produced particular files or docu-
ments after migration. Two approaches [51][91] applied virtual machine technologies such as
ENTICE or Docker for microservice deployment, and final outputs were images for containers
that were runnable on virtual machines.

Additionally, there were four proposed approaches [87][108][100][42] which generated partition
diagrams of services as results. The main difference between this diagram and microservice
architecture is that: the microservice architecture shows the decomposition of system com-

29

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

Figure 4.3: Service Partition Diagram [87]

ponents, while the service partition diagram focuses more on the decomposition of service
(task) execution processes. Take Figure 4.3[87] as an example, the partition diagram groups
execution processes if they are with in the same or similar service (task) provision flow. The
developers can further partition interfaces, services, and databases according to this diagram
and deploy microservice application.

The remaining approaches might give suggestions about final microservice application design,
which were decided by the algorithm, but they were rather vague about the detailed outcomes.
In conclusion, the desired outputs also vary according to different scenarios. So the choice of this
section is also left to be free to development teams based on their needs.

4.2.3 Technique Type

As previously mentioned, Fritzsch [33] has grouped technique types groups into four main cat-
egories: Static Code Analysis Aided (SCA) method, Meta-Data Aided (MDA) method, Workload-
Data Aided (WDA) method and Dynamic Microservice Composition (DMC) method. Each tech-
nique type has specific procedures. Based on the given input resources, various analyses can be
done in order to construct the structure and behavior of the monolithic application. This provides
a guideline about how to partition it. Usually, one or more technique types were applied in one
approach to conduct a comprehensive analysis of monolithic applications.

(1) Static Code Analysis Aided (SCA)
Static Code Analysis Aided (SCA) method analyzes and decomposes applications by inspect-
ing their source code, so that the static traits of the application can be understood, including
business objects, business functionalities, context boundaries, relationship between different
classes, access to databases and so on.

Pigazzini and her colleagues [82] analyzed the Java code bases statically. They used a tool
called Arcan, which was developed for the migration process. First, the tool conducted
architectural smell detection to find inappropriate dependencies such as cyclic dependency,
multiple feature concentration in one component, etc. This could filter out architectural
smells and microservice candidates were reserved. Second, they inspected the dependency

30

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

graph to find out structurally and functional independent class groups that could be trans-
formed into microservices. In addition to code structure analysis, they also applied machine
learning algorithms like Latent Dirichlet Allocation(LDA) [11] and Seeded Latent Dirichlet
Allocation (SLDA) [45] to extract domains of the project from comments and source code
words in Java classes. Finally, they got hints about microservice grouping.

Static Code Analysis Aided (SCA) method is a commonly adopted approach, twenty-two
contributions have performed static code analysis of monolithic applications. This is because
source code is one of the most informative and straightforward resources that show monolithic
applications’ behavior and structure. In the future, it is also an important and solid resource
to construct the microservice application.

(2) Meta-Data Aided (MDA)
Meta-Data Aided (MDA) method inspects the application from conceptual resources, such
as UML diagrams, use case descriptions, system specification, etc.

Sayara et al. [92] focused on a generalized approach that defined business capabilities through
multidimensional update rate and scaling rate of the monolithic system. According to their
suggestion: ”A service should be assigned with one specific responsibility. The homogeneity
of each service is decided with respect to the update rate, scaling rate and technology used”
[92]. So they broke down all business capabilities and calculated metrics from the update
rate and scaling rate of each service. The update rate indicates the frequency of update.
Likewise, the scaling rate shows the possibility of scaling up or down of a service. These
aspects were chosen as decisive factors because they reflected the essential characteristics
of microservice architecture: scalability, maintainability, high cohesion and loose coupling.
Next, an algorithm was provided in order to calculate similarity between capabilities re-
garding previous metrics. Finally, Multidimensional Scaling Technique (MDS) was used to
group the sub-business capabilities having similar weight. This indicated that the grouped
parts showed similar business functionalities, and they used same technologies. As a result,
a microservice structure diagram of partitioned service and databases was generated.

I found that six contributions have [92][38][22] applied this technique. The number was rela-
tively small because resources like UML diagrams and system specifications were sometimes
unavailable. Also, these documents alone might be difficult to construct a comprehensive
view of monolithic applications. Therefore, development teams usually apply Meta-Data
Aided (MDA) method together with other techniques to inspect the system.

(3) Workload-Data Aided (WDA)
Workload-Data Aided (WDA) method observes applications’ operational data, including log
files about method invocation, data access and so on. Analyzing these data can get informa-
tion about the application’s run-time behavior, performance, and communication intensity
among different components. This information can also aid further migration and solve
existing problems such as performance bottleneck and finding suitable service boundaries.

As mentioned in ”Required Inputs - Other Inputs”, Jin et al. [47] migrated their monolithic
application by executing the system with predefined test cases. They also inspected the log
file using Kieker, a tool for execution monitoring. The log file contained attributes describing
each execution record. Five of them were essential for execution trace generation: ”Method”
denoted the invoked method; ”SessionID” and ”TraceID” were unique identifier labeling a
session and a execution trace, they indicated specific execution of functions within a session.
”Eoi” and ”Ess” were the order and depth of the calling stack of methods. Next, the log
files were analyzed to create function-level traces and class-level execution traces. These
traces indicated the call relationship and order between functions or classes. They were of
different granularity, and they provided evidence for further microservice clustering. This
will be discussed later in ”Process Strategy - Splitting the Existing Code Base”.

Workload-Data Aided (WDA) method observes monolithic application’s behavior dynami-
cally. In my scope of the study, ten contributions have applied this technique during migra-

31

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

tion. In addition, many approaches applied Workload-Data Aided (WDA) method together
with Static Code Analysis Aided (SCA) method in order to inspect both static and dynamic
characteristics of an application. So they could have a more comprehensive view of the
application and make clustering more suitable to their requirement.

(4) Dynamic Microservice Composition (DMC)
The principle of Dynamic Microservice Composition (DMC) method is similar to Workload-
Data Aided (WDA) one. Additionally, it improves service partitioning iteratively and dy-
namically by observing run-time workload and environment.

Nakazawa and his team [74] used a visualization tool for designing microservice applications
from monolithic applications. They referred to profile data, source code, and commit infor-
mation in the project for analysis. Specifically, a calling context tree (CCT) was created
using profile data. It indicated the number of communications between microservices. Also,
an algorithm was used to compact CCT according to function names so that unnecessary
calling contexts such as software libraries were filtered out. Nakazawa explained that ”these
contexts could be deployed without REST API calls by other microservices, so they were
out of consideration” [74]. After that, two initial designs of microservices were generated by
employing semantic clustering and CCT-based clustering. The first technique used source
code text for class-level clustering, while the second one considered number of communica-
tions between functions and performed function-level clustering. These were done by the
visualization tool automatically, and it visualized the designs as dependency graphs. Then,
it required users to manually refine the design by creating, moving, cloning and keeping
microservice candidates. The refinement actions were suggested by the tool whenever the
user made changes. It aimed to help the user best reduce the number of API calls within
the applications and therefore make the whole architecture loosely coupled. In the end, a
visualized microservice architecture design was available to users to help them migrate the
monolithic application.

Nearly seven contributions adopted Dynamic Microservice Composition (DMC) method,
Nakazawa claimed that it helps developers to gradually improve the architecture and fi-
nally meet the requirement in the greatest possible manner [74]. The feedback during whole
process is timely and intuitive to the development teams. However, She also pointed out
one drawback that their technique might be time-consuming. Additionally, some researchers
developed approaches supported by more automatic algorithms and tools to accelerate the
optimization process and save time. Take the contribution by Alwis et al. [25] as an example,
they applied machine learning algorithms such as Non-dominated Sorting Genetic Algorithm
II (NSGA II) and SYNPOP function to achieving global optima. Briefly speaking, this is
also one of the common technique types applicable during migration. It has the potential
to be further investigated and create various algorithms and tools to make migration design
more accurate and fasten in process.

Besides, only one contribution used other technique types [68] and it was vaguely documented in
the paragraph. The researchers deployed the application using Docker without specifying detailed
steps. In conclusion, my study reveals that nearly all contributions’ technique types can be classified
into four main categories (SCA, MDA, WDA, and DMC). Moreover, software developers can exploit
any available input resources and combine multiple techniques during migration to construct a
detailed overview of the monolithic application. They can analyze its static structure and run-
time behavior and apply the acquired knowledge to generate the microservice architectural design.
Then they will transform the application into a modernized microservice one using decomposition
strategy and process strategy.

4.2.4 Decomposition Strategy

Decomposition strategy sounds similar to process strategy, but it represents a higher level of
abstraction, that is, it focuses on handling and decomposing application functionalities rather

32

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

than practical programming. Nowadays, most applications consist of different components such
as classes, modules, libraries, and packages. They interact and collaborate with each other to
perform specific tasks. In this case, the application can have many advantages such as clearer
structure, less coupling, easier code sharing, better maintainability and so on. Decomposition
strategy exploits application partitioning by splitting the application into several components.
Each of them represents an individual microservice. In my study, three principal decomposition
methodologies were documented:

(1) Domain-Driven Design (DDD)
The approach documented by Fan and Ma [20] applied a typical Domain-Driven Design
method during migration. They analyzed the internal system architecture according to source
code and system requirements, and they performed Domain-Driven Design method to define
bounded contexts and extract possible candidates of microservices. Then they analyzed
the system again using database schema to identify foreign keys as possible microservice
candidates. These two results were compared, and inconsistent candidates were filtered
out. Next, the source code related to the remaining candidates was extracted. After that,
the corresponding communication protocol, data format, and microservice architecture were
designed. In addition, the database structure was also adjusted to fit the architecture, and
the interfaces between services were transformed into Restful APIs or MQTT. The final step
was the actual development of microservices accordingly.

Domain-Driven Design is a widely used strategy in monolithic decomposition because nearly
one-third of final included contributions have introduced it. As mentioned before, it has
the technical benefits, for instance, clearly defined boundaries between business contexts and
corresponding functionalities, good maintainability, and it can guide the decomposition of
the monolithic application.

However, Microsoft [70] states that it also has disadvantages: in order to maintain the iden-
tified domain models, isolation and encapsulation of them must be implemented thoroughly,
resulting in a relatively high cost for development. It is recommended if a project’s domain
is complex and large in terms of system size and team size.

(2) Functional Decomposition
Functional decomposition is similar to Domain-Driven Design method. Both of them focus
on decomposition based on systems or business functionalities, but functional decomposi-
tion may be less complex in the process. Besides, rather than involving domain experts,
development teams alone is enough for designing new microservice architecture.

In ”Required Inputs - Application Programming Interface (API)” and ”Expected Outputs -
Candidate List of Microservices”, AI-Debagy and Martinek [5] have decomposed a monolithic
application by analyzing its OpenAPI specification using FastText or Word2Vec word vector
converting methods, Affinity Propagation Algorithm [32], and Silhouette coefficient [89]. As
a result, a complete candidate list of microservices was achieved after decomposition. I
classified their approach as functional decomposition because they partitioned different APIs
based on name similarities. These names reflected the actual functionalities provided by the
application.

Within all final included contributions (thirty-one contributions), twelve of them applied
functional decomposition. This is because this strategy produces consistent results with
the requirements of microservices, such as low coupling, high cohesion, clear separation of
business responsibilities, and explicit light-weight communications. Its procedure is less strict
than Domain-driven Design, which applies to many relatively small and simple software
projects.

(3) Using Existing System Structure
Instead of decomposing the application and designing a new architecture for it, some ap-
proaches adapted a much easier way, that is, using the existing system structure and simply
transferring its components into microservices.

33

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

According to my statistics, three contributions have used this strategy. For example, Kamimura
et al. [49] examined source code and application data of their monolithic application. The
program names or class names were defined as entry points, and programs related to each
entry point were defined as program groups. Then they extracted dependencies between
program groups and dependencies between program groups and data. What’s more, the run-
time information of program calls or data access were collected. Next, they applied SArF
software clustering algorithm [55] with data access [107] to cluster program groups and cor-
responding data. This algorithm produced a dendrogram as well as an abstract tree model
of features accordingly. Subsequently, they arranged the clustered classes and features into
a City Block Diagram and assigned a color to each class to indicate its original belonged
package. After this, the application data were analyzed by the dedication score to determine
the dependencies on program groups. Therefore, the data could be grouped into related
program groups. In the end, a visualized map of candidates of microservices was generated
by SArF Map. Moreover, the practical migration could be done by partitioning the code and
data according to this map.

Because this strategy is highly related to the original structure in class-level or package-level, I
define it as ”Using Existing System Structure”. The decomposition of monolithic application
may be course-grained, and the final structure of microservices might be similar to the original
one. So the development teams may spend less effort and time to get familiar with the new
architecture. However, the quality of the microservice application depends on the original
quality of the monolithic one, especially the rationality of the class structural design, such
as methods, data access, coupling and cohesiveness among them. Bad performance of the
monolithic application will be reflected or even amplified in the final microservice application.
Therefore, adjustment and continuous improvement of design is necessary to achieve a good
result.

(4) Other Decomposition Strategies
Other than the above strategies, Bucchiarone et al. [13] applied Model-Driven Design strat-
egy to partition their legacy application using JetBrains MPS, which was a text-based meta-
programming system. It processed source code and provided projectional editors for de-
velopers to generate microservices almost automatically. And its outcome was Jolie-based
microservices (Jolie was a programming language for defining microservices by JetBrains
MPS). Bucchiarone and his colleagues first imported Java source code into MPS editor
and parsed it into MPS Baselanguage. Second, they implemented Microservices Miner to
search for microservice candidates in the abstract syntax tree (AST) of Java models. Third,
Microservices DSL (domain-specific language) was used to create models for the identified
candidates. Forth, Microservices Generator, which included three parts: Microservice Text
Generator, Interface Text Generator, and Docker Tex Generator, was exploited to generate
corresponding files for developing and deploying microservices in Docker Containers. As a
result, microservice architecture was successfully created and ready for deployment in Docker
Container.

In addition, five approaches [74][100][65][64][93] mentioned that they conducted class-level
clustering or function-level clustering according to functional similarities, data relationships,
communication intensities, function call graph, and so on. Barros et al. [13] analyzed and
clustered business objects in combination with data access history, execution logs, and call
graphs during the migration process. My study revealed that the development teams tended
to use formal processes and define models to address problem areas during application de-
composition. Such approaches had the benefits of clear boundaries among microservices
candidates. Also, some design tools such as JetBrains and SArF Map were available to speed
up the efficiency and improve final quality. In short, a proper and well-defined decomposi-
tion strategy can set a solid foundation for further implementation stage. It assures that the
final result can be consistent as required, and quality aspects after migration are possibly
guaranteed.

34

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

4.2.5 Process Strategy

As mentioned earlier, process strategy represents the actual utilization of application resources
and is closely related to practical programming during migration processes. Once the decomposi-
tion strategy was decided and the primary design of microservice architecture was conducted, one
or more process strategies can be applied to realize the architecture. In my study, I classified them
into six categories, and they will be enumerated sequentially.

(1) Rewrite
Rewrite seems to be an easy way of migration. Indeed, it is highly compatible with almost
any approaches, as long as a primary microservice architecture or candidate list is available
after decomposition. It can get rid of the existing problems and make a ”fresh start” again.
Pawlaczyk [78] argued that this strategy is usually considered if developers find: the legacy
code is too cumbersome to maintain and too difficult to understand; debugging and bug fixing
become burdensome; changing the code or adding new functionalities may cause various
errors; new technologies and languages can solve the existing technical and performance
problem much easily; a new architecture is adapted for the application...Therefore, Heusser
[41] claimed that some programmers tend to choose code rewrite, hoping to solve these
problems straightforwardly.

Three approaches have adapted rewrite as their process strategy. Gouigoux and Tamzalit [38]
reported a microservice migration project conducted by a software vendor MGDIS SA. They
decided to rewrite the legacy application using a modern web-based architecture in 2013,
and after three years, the new microservice application was stable and open to all users.
Business capabilities were analyzed and decomposed to generate candidate microservices.
Additionally, granularity was decided according to the cost of quality assurance and deploy-
ment, which were measured by time spent for validation and deployment. These services
were deployed using Docker, and they were integrated using Webhooks. Webhooks provided
light-weight and HTTP-based communication methods between APIs, making low coupling
and simple passive choreography of the microservices possible.

Heusser [41] has introduced some advantages of rewrite: exploiting new technologies, plat-
forms, and markets; using familiar languages and tools for development; better performance
and maintainability, etc. Nevertheless, greater development effort, higher risk of failure, and
splitting resources to maintain the legacy code during the rewrite process are also the main
drawbacks. This may explain why only three contributions mentioned this strategy. It seems
that rewrite is an unpopular choice, and other strategies can better solve the problem at
lower cost.

(2) Extension
Extension strategy focuses more on adding new features or new components to the legacy
application during the migration process. So that the new microservice application can
achieve better quality, more functionalities, better maintainability, etc.

Sun et al. [97] introduced their principle approach to migrate a UAV flight control IoT system
and make it dynamically re-configurable with various functionalities. First, they applied
top-down domain analysis to determine service boundaries. Then, a bottom-up analysis
was done of source code, metadata, and database. This could refine the determination of
boundaries. Third, a hierarchical layered structure of the monolithic application was reserved
and masked into the new microservice application. Additionally, real-time embedded modules
for operation control and event triggering were also integrated into microservices. And its
performance was ensured to realize the same quality requirement as the legacy system.

Basically, the decomposition and migration of this approach were based on the original object-
oriented programming source code and structure. Moreover, Figure 4.4 shows a tool called
CM4MS which was developed by Sun and others. Its main features included business process
representation, microservice management, and dynamic configuration. In detail, decomposed
microservices were registered in the Registration Center, and a layer of key-value store kept

35

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

Figure 4.4: UAV Microservice Application with Dynamic Configuration [97]

36

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

Figure 4.5: Strangler Pattern [14]

invocation relationships between microservices. Therefore, a functional microservice appli-
cation was composed. In order to achieve dynamic configuration, users used HTTP APIs
to update key-value pairs at run-time. As a result, new microservices were introduced, and
the functionalities were changed according to user’s need. In that case, a re-configurable mi-
croservices composition was realized. According to Figure 4.4, the layered architecture of the
microservice application is displayed in CM4MS. Each rectangular represents a microservice
with specific functionality. The user can change the ”Invoke” column in ”Variation Points” to
switch service components and therefore change the functionalities (mode) during run-time.

In my study, three approaches have applied the extension strategy. If developers want to
make the new microservice application flexible, extensible and manageable in the future,
they can consider this approach to make the architecture loosely coupled and functional
cohesive. Therefore, changes and updates are isolated to other services, the errors caused by
changes can be minimized as well.

(3) Strangler Pattern
According to Microsoft’s definition [14], strangler pattern requires the developers to gradu-
ally replacing part of functionalities with new services, until the new microservice application
replaces the legacy one completely. This strategy is similar to rewrite, but it emphasizes in-
cremental replacement, because complete replacement and rewrite are heavy tasks. It is
applicable if the legacy application is too complex to maintain or hard to add new function-
alities. The old system may be kept running to provide features during migration. Once
the new microservice component is developed, the application will locate and point to the
new component and discard the old one. To realize this, a façade is created to route user’s
requests either to new services or legacy ones. The users always use the same interface to
interact with the application, and the routing process is transparent to them. The whole
migration procedure is shown in Figure 4.5, the size of the ”Legacy” part and ”Modern” part
indicates their percentage in the application during migration. In the end, the ”Modern”
code will replace the whole legacy part after migration.

Among the included contributions in this study, there were only two approaches that men-
tioned strangler pattern. Carneiro and Monteiro [24] manually inspected application directo-
ries and files. They applied Domain-Driven Design method to define modules, functionalities
and boundaries. Then they sorted them by the level of complexity and analyzed their rela-
tionships and dependencies. Next, they started to decompose the least complex and small
modules into microservices. A new database schema was created in MySQL to interact with
migrated microservices. Finally, the developers redirected all front-end components to the
new APIs corresponding to the microservices and discarded the legacy functions. These
procedures were repeated until the complete microservice application was implemented.

Special care should be taken during migration, Microsoft suggests [14] that system resources,
such as database, should be available to both monolithic application and microservices in
order to provide functionalities normally. Also, it is recommended to design the new appli-
cation properly so that they can be further evolved using strangler pattern again. And the

37

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

façade should be maintained carefully to avoid becoming a performance bottleneck or failure
point. In some situations, strangler pattern is unsuitable. For instance, the application is
relatively small and simple, or the user’s request to the system is difficult to be redirected.

(4) Continuous Evolution
Continuous evolution aims at iteratively achieving an optimized microservice granularity
and service clustering. Several aspects such as quality, level of coupling and cohesion, and
functional independence can be inspected and improved by means of multiple times of ad-
justment of the microservice application. In the end, the result can best meet the expectation
for migration.

Eleven contributions in total have included continuous evolution, indicating that this was
a popular strategy. Take the approach proposed by Krause et al.[57] as an example, they
applied domain analysis, source code analysis and run-time behavior analysis of the legacy
application. During this process, Structure101 and ExplorViz were applied. Structure101
was used to inspect source code packages, and it produced maps with a layered structure
to bounded contexts and restructured particular packages to solve the conflicts in domain
contexts. Therefore, the developers could observe the locations and dependencies of these
packages. More importantly, ExplorViz was a trace monitoring and visualization tool for large
software. It analyzed the dynamic behavior of the monolithic application to refine bounded
contexts. These two tools were available for Java programs. In addition, DBeaver was used
to analyze the data model and partition database tables according to respective bounded
contexts. Finally, the development teams could further analyze the resulting architecture
by examining its run-time behavior, and then they could discover additional microservice
candidates. Several iterations were conducted so that the resulting application was refined
and could fit the requirement of migration better.

Continuous evolution is a common strategy for the actual migration process. This is sup-
ported by the fact that one-third of the final included contributions documented this strategy.
It may also be applicable to agile development, and it fits the goal of continuous delivery for
producing software updates in short cycles. It allows iterative improvements in production
and makes optimized results come true [19][94].

(5) Splitting the Existing Code Base
One of the most popular process strategies was splitting the existing code base. Nearly half
of the studies applied this strategy to cut source code and existing monolithic structure to
compose a microservice application.

As mentioned in ”Required Inputs - Other Inputs” and Technique Type - Workload-Data
Aided (WDA)”, Jin et al. [47] executed the system with test cases, and they used Kieker to
inspect the log files and extracted function-level and class-level execution traces. Next, they
clustered the application by Functionality Oriented Microservice Extraction (FoME) method.
The Trace Clustering Algorithm was executed to group the classes with the same business
logic as one microservice. After this, some shared classes were also extracted as individual
microservices for the sake of better maintainability. Forth, they identified interfaces and
corresponding APIs for each extracted microservice candidate, and a final loosely-coupled
microservice architecture was generated.

This strategy was frequently used because programming languages, imported libraries or
packages, and other software resources were usually remained same or similar before and
after migration. Therefore, it was unnecessary to switch to new technologies during migration
process. Splitting the existing code base according to decomposed architecture design could
save costs and efforts, and it could also shorten the time for development and put final
microservices into service quickly.

(6) Other Process Strategies
Eight contributions with the research scope applied specific process strategies other than pre-
vious mentioned ones. Higashino et al. [42] decomposed the mobile agent system according

38

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

to its conceptual diagram. They divided and merged its processes as micro-service candidates
according to their network distance to the data to be processed. Data that had strong asso-
ciation (frequency of transactions and communication traffics) with candidate microservices
were also partitioned.

On the other hand, Kecskemeti et al. [51] started with ENTICE environment, which was a
ubiquitous repository-based technology for virtual machine and container image management.
Using this tool and environment, they synthesized use cases and created images accordingly.
Next, they broke images into smaller pieces and repeatedly optimized their fragmentation size
by analyzing read access operations and microservices’ functionalities during test execution.
A microservice image family was returned to the ENTICE environment until it reached an
optimized status.

What’s more, AI-Debagy and Martinek [5] partitioned the APIs and corresponding codes
according to name similarity through specific word embedding model analysis.

Last but not least, the remaining contributions mentioned mostly about the decomposition
strategies instead of process strategies. Therefore, I assume that splitting the existing code base is
usually considered as a default strategy, which is applicable to most cases when it is not specifically
mentioned in the contribution. As long as the decomposed design of architecture is completed,
in most cases, source code and database can be partitioned accordingly to form a microservice
application.

4.2.6 Applicability

In Section 3.2, Fritzsch et al. classified three basic applicability cases: greenfield development
(GR), monolith migration (MO) and one that is applicable for both cases (GRMO). These three
applicability scenarios will be discussed more detailed in the following paragraph.

(1) Monolith Migration (MO)
Monolith migration (MO), in other words, brownfield development, refers to developing and
deploying a new application based on the legacy one. John Wade [105] suggests that this
case is usually applicable when developers want to adapt and improve legacy code, integrate
new features to the application or enhance its functionality. Relying on existing feasible
techniques, it requires less effort and time for development because of the familiar environ-
ment and code reuse. However, risks still exist when it comes to performance bottleneck,
maintenance cost, unexpected bugs caused by changes, etc. As mentioned by Wade: ”De-
velopers are required to obtain comprehensive knowledge about legacy application, including
services and data on which they need to develop for the new application. Many parts of
existing complex environment need to be re-engineered in order to adjust them to fit the new
business requirements and avoid potential failures” [105].

Monolith migration was widely applicable in almost all approaches during my study. Thirty
contributions in total presented their migration experience or assumption which were based
on monolith migration.

(2) Greenfield Development (GR)
According to John Wade [105], greenfield development (GR) applies a brand-new environ-
ment and develops a new application from scratch without any restrictions or dependencies
on legacy application. So technological breakthrough and better performance are possible.
Nevertheless, higher risk of failure, longer learning curve for new technologies and other
negative aspects may also happen in this case.

My study found that six contributions documented their approaches which were related to
greenfield development. Their required inputs were usually source code, system specification,
UML diagrams, or API specification. Based on these resources, the approach would generate
a proper microservice design, which aimed at providing desired business functionalities. New
technologies would implement these services.

39

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

(3) Applicable for both cases (GRMO)
In my research, I noticed that all greenfield development approaches were also applicable
to monolithic migration. Because during greenfield development, a new architectural design
indicating the decomposed microservices and their relationships would be provided as a mi-
gration result. Therefore, development teams could make trade-offs and choose a suitable
case that fits their requirements in the best manner. Apart from exploiting a new environ-
ment for migration, developers could also choose to preserve and change the legacy code
and environment accordingly. Later they could perform monolith migration as mentioned
previously.

After investigation, I concluded that almost every approach was applicable for monolith migra-
tion as long as the source code was available in the project. Some contributions were also applicable
for greenfield development. This can be decided freely by developers and architects according to
their goal, requirements, available cost and so on. Except for these three cases, one contribution
focused on quality assessment of microservices, so it was excluded in our discussion.

4.2.7 Validation Type

In order to evaluate the effectiveness of the migration process and the quality of the final
product, most contributions documented their validation process after the introduction of their
approaches. They provided either experimental evidence, case studies or fictional examples to
illustrate how the approach worked in detail.The following paragraph will introduce some specific
validation processes recorded in the contributions.

(1) Experiment
Experiment is a validation way that usually selects one or more applications to perform
migration according to the steps proposed by the approach. The selected applications are
sometimes closed to public users, and they may be developed for personal or experimental
use. In other words, the experiment is conducted in order to validate the expected outcome.
The experiment is then documented and available to readers to make them understand the
methodology of the approach. In my research, I found four contributions which conducted
experiment during validation phase.

In the previous paragraph, the approach by Alwis et al. [25] has been introduced already. In
order to validate their approach, they migrated two customer relationship management sys-
tems: SugarCRM and ChurchCRM. According to Alwis introduction, SugarCRM contained
8116 source files and 101 tables with 600 attributes in total, while ChurchCRM contained
8039 source files and 55 tables with 350 attributes. After migration and optimization, Sug-
arCRM resulted in eight microservices and ChurchCRM resulted in eleven microservices.
Next, they measured the ”Lack of Cohesion (LOC)” and ”Structural Coupling (StrC)” of
the legacy systems and migrated systems. These metrics were described by Candela et al.[16].
By comparing the metrics of legacy systems and migrated systems, the improvement of co-
hesion and coupling of different clusters before and after migration were clearly observed.
Then, the legacy systems and migrated systems were deployed in AWS Cloud, and they were
executed using Selenium to simulate real-life users. In addition, they also deployed another
microservice system, which was decomposed inappropriately, to compare the result with op-
timized decomposition. Alwis et al. evaluated the effectiveness and performance of the three
systems. They observed total execution time, CPU consumption, and network bandwidth
consumption during run-time. Besides, they used their own formula to calculate system
scalability, availability, and execution efficiency. Finally, they concluded that an optimized
microservice system could achieve ”higher scalability, availability, efficiency, high cohesion,
and low coupling” [25].

(2) Example
To illustrate the migration approach comprehensively, an exemplar and fictional legacy ap-
plication can be introduced. Usually, this application will have a clear structure without

40

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

complex components or inter-relationships, and the migration scenario may also be simple.
The researchers can explain the approach step by step in the ideal environment, so readers
can easily understand basic methodologies and principles. Validation with example requires
less effort, but it also has the risks of lack of empirical evidence and quantitative indicators.
So the result of example is convincing than experiment or case study.

In my study, seven research teams described their approach with migration examples. Take
Sayara et al. [92] as an example, they described the decomposition approach based on a
fictional online reading application, which contained five components: load balancer, cata-
log service, subscription service, author service, human interface and database. The three
main services provided business capabilities to authors and readers. After breaking them
down into sub-business capabilities, decomposition algorithm was applied according to each
component’s update rate and scaling rate. They used Multidimensional Scaling Technique
(MDS) to group similar sub-business capabilities together. Finally, this example generated
five microservices. Sayara et al. explained each step straightforwardly so that the readers
could understand the workflow and apply the approach easily. However, the effectiveness and
quality after migration still required further research, since they did not conduct practical
validation during their research, such evidence remained vacant.

(3) Case Study
Case study is one of the most effective validation types, because the migration happens
in real environment, so unexpected problems and risks tend to expose. Most researchers
reported their actual migration projects using the proposed approaches. The advantages and
disadvantages of the given approach are also visible after validation. Readers can understand
the characteristics of the approach and decide whether they can apply it according to their
own scenarios.

Tyszberowicz and his colleagues [103] documented their migration of CoCoME (Common
Component Modeling Example). This is a supermarket trading system, and it is often used
in case study for software modeling and evolution. The research team used easyCRC tool
[102] that assisted word analysis on system specifications about system variables and opera-
tions. Then, the TextAnalysisOnline [75] was exploited to visualize a uni-directed bipartite
graph and decomposed it so that each candidate has independent system variables and op-
erations. Finally, a partition of the system’s state space into microservices was achieved,
resulting in four microservices. The RESTish protocols were applied for communication be-
tween different services, and each identified microservice was assigned with its own API and
database. In order to analyze the changes after migration, the researchers applied KAMP
approach [88]. It calculated the changes and its propagation from legacy application to mi-
grated one. Additionally, to validate consistency and correctness of the result, they compared
their result with manual decomposition results, which were produced by three student groups.
Finally, it was proved that this approach could ”provide a decomposition of the system into
microservices that was similar to a decomposition suggested by human” [103]. By means
of these validations, Tyszberowicz and his colleagues made their approach stand the test of
real-life environments. Therefore, it is more convincing to other development teams when
they consider referring it.

4.2.8 Tool Support

Another parameter is tool support. This introduces supporting tools for migration which
were developed by researchers themselves or from third parties. Some specific tools were already
introduced in previous sections. They can be classified into six main categories: analysis tool,
monitoring tool, visualization tool, clustering tool (algorithm), development and deployment tool,
and management tool.

(1) Analysis Tool
Analysis tool inspects the source code, system specification, database and other resources

41

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

to analyze the system’s static characteristics. The underlying algorithm varies according
to the applicable scenarios. Some tools analyze methods calls among classes and packages,
while some tools investigate interface names or words used in the system specifications. For
example, FastText or Word2Vec word embedding model analyzes and clusters microservices
based on methods’ names [5], and Structure101 statically analyzes the source code packages
[57].

(2) Monitoring Tool
By means of monitoring tool, the application’s run-time behavior can be gathered in various
files, such as log files and execution traces. It enables the researcher to investigate events
and methods calls that happened during the execution of the target application. Such tools
include: Elastic APM [100], openTracing [46], PPTAM+ [46] and so on.

(3) Visualization Tool
Visualization tool is used to generate a graphical representation of the application’s structure
or behavior. It can provide the researcher an intuitive overview of the application’s static
or dynamic characteristics. Examples identified during research includes: SArF Map [49],
Kibana/ Grafana [46] and DISCO [49].

(4) Clustering Tool (Algorithm)
Rather than manually decomposing the application into microservices, many proposed ap-
proaches applied particular tools and clustering algorithms to design the architecture consis-
tently. Usually, the tools can provide ”near-optimized” solutions to development teams as
reference. For instance, Al-Debagy and Martinek applied affinity propagation algorithms for
text analysis and clustering [5], while Selmadji et al. adopted a hierarchical agglomerative
clustering algorithm on object-oriented source code [93].

(5) Development and Deployment Tool
Development and deployment tool helps developers to fasten and automate the development
and deployment process. It also provides functionalities such as testing, source code merging,
library managing, performance monitoring and so on. Such tools mentioned among the
contributions includes Junit, Mockito, and Pact for testing [20], Docker for development and
deployment [38], JetBrains MPS as a meta-programming framework, etc [13].

(6) Management Tool
Management tool is used for service orchestration during run-time, application maintenance,
resource management and so on. According to Mazzara et al. [68], RabbitMQ and Docker
Swarm were used for load balancing and service discovery.

4.2.9 Intentions or Quality Metrics Concerned

The final aspect which classified the migration approaches was intentions or quality metrics
concerned by the development teams. The intentions indicate drivers or reasons for migration.
The microservice migration is usually inspired by the fact that the monolithic application fails to
meet new requirements by the development teams, so actions need to be taken in order to enhance
further and add business functionalities. Besides, quality metrics are used to evaluate the effects
of migration. They represent the quality of final microservices and reflect whether the final results
meet the development teams’ requirements or not. In my study, These two aspects were discussed
together, because both illustrate the desirable characteristics of the microservice architecture to
improve their legacy application. In addition, the research question RQ 1.2 in Introduction will be
answered in this subsection:

RQ 1.2: What are relevant intentions and quality metrics in a microservice migration/
refactoring scenario?

42

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

To classify common metrics as intentions or quality attributes and answer the question, I
referred to ISO25010 [44] and defined five factors: maintainability, performance, reliability, scala-
bility, and security. They will be explained sequentially in the following paragraphs.

(1) Maintainability
According to ISO25010 [44], maintainability can significantly influence the secondary devel-
opers’ experience during software maintenance. Generally, it includes modularity, reusabil-
ity, analysability, modifiability, and testability. It indicates the degree of effectiveness and
efficiency when software maintainers change the application. The maintenance actions in-
clude corrections, improvements, and adaption in techniques, environments, requirements
and functional specifications by development teams and users.

Maintainability is considered as one relevant parameter here, because microservice architec-
ture to achieve loose coupling and high cohesion. Cojocaru et al. [23] stated that microservice
architecture increases the product’s delivery rate. It is influenced by granularity, technology
heterogeneity, coupling and cohesion. Several matrices can also hint the degree of maintain-
ability, for instance, number of interfaces among microservices, amount of technologies used,
etc. Therefore, each service should consider only one specific business functionality. What’s
more, code data components should be well-separated accordingly. Ideally, changes within
one service should be isolated by the boundary as long as the interfaces among services re-
main unchanged. Other services will be unaware of the changes, they communicate with each
other and get results as usual. A good monolith decomposition can improve maintainability
and vice versa.

(2) Performance
The performance of software will influence primary users’ experience. It is relative to the
number of resources used during run-time under specific conditions [44].

About a quarter of the contributions have discussed performance in the validation process.
Nakazawa and her development teams [74] utilized visual interface for migration and per-
formance degradation detection. They observed the number of communications between
microservices to define performance. Suitable clustering of classes could be realized by re-
ducing unintentional communication frequency, and then the performance can be improved.
Also, Ren and his colleagues [87] mentioned duplicating service copies to resolve performance
bottlenecks. They conducted empirical research on the influences of different application par-
titions on performance. Moreover, they also pointed out that frequent communication will
cause performance degradation because of network transmission delay. In addition, they
measured metrics such as throughput and load before and after the migration. Then they
adopted static and dynamic analysis to evaluate performance improvement. Even more,
Mahanta and Chouta [64] imported C packages to evaluate performance by observing and
instrumenting code flows. Besides, Alwis et al. [25] applied virtual machine technology to
host microservices in AWS Cloud to record and compare execution time, CPU consumption
and network bandwidth consumption to refine the performance. Further, Three contribu-
tions [23][46][38] evaluated performance by response time and throughput, which could be
measured at run-time using various tools such as PPTAM+ [46].

In my study, performance can be related to many sub-parameters. According to [3], perfor-
mance efficiency includes time behavior, resource utilization and capacity. This is one of the
standards that the development teams can refer to during the validation process, and they
can select and define their own metrics that fit their requirements.

(3) Reliability
Reliability is also a widely discussed parameter in the study. It should be concerned by both
users and development teams including stakeholders [3]. ISO25010 [3] defined reliability
as the ability of a system to provide specific functions under specified conditions within
the predefined duration. It is a combination of maturity, availability, fault tolerance and
recoverability. The microservice application should be accessible by the user under a certain

43

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

level and it should meet users’ requirements under regular operation. It should also bear
specific hardware or software failures and re-establish the desired state within a certain
period of time.

Cojocaru explained the concept of Service Level Agreements (SLA) [23], which is a multi-
plicative quality attribute describing the availability over a certain period of time. A lightly
change of SLA will result in a dramatic increase or decrease of the overall availability of the
application.

Specifically, Mazzara et al. [68] admitted that microservice architecture can provide better
availability. Because it is loosely coupled and it can apply replication and load-balancing for
individual services. Also, with the help of RabbitMQ and container technology, independent
microservice environments and reliable message transmission are easily realized to enhance
availability. Finally, Alwis and his colleagues [25] proposed Non-dominated Sorting Genetic
Algorithm (NSGA) II for migration. They evaluated the availability with two customer
management systems by measuring service up time and response time. They then calculated
optimal values to make trade-offs between availability, scalability, granularity, and execution
cost. There were some contributions that mentioned other metrics to determine reliability.
For example, Carneiro and Monteiro [24] discussed the usage of different frameworks and
tool-kits to improve system resilience, while Taibi and Systä [100] claimed that microservice
architecture might also enhance fault-tolerance.

Reliability was also frequently discussed in the contributions because microservice architec-
ture encourages separate business capabilities and independent service development based on
different environments and technologies. In that case, it brings side effects such as greater
redundancy and isolation of failure within service boundaries. The nature of microservices
provides potential enhancement of reliability in various ways.

(4) Scalability
Scalability is a parameter that was added specifically in my study. O’Brien [77] defined scala-
bility to be the ability to provide correct functionalities with the same performance regardless
of the changes in application size or amount of resources. He classified it into horizontal scal-
ability, which meant duplicating the microservice; and vertical scalability, meaning adding
the amount of resources to a microservice. Cojocaru [23] further measured it by calculating
the distribution of requests provided by services under various workloads.

According to the study by Mazzara et al. [68], microservice architecture can increase system
scalability because of reduced complexity, low coupling, high cohesion, and simple integration.
All sub-parameters, including automation, orchestration, service discovery, load balancing,
and clustering should be carefully maintained. They suggested applying platforms such as
Google Kubernetes [2], Mesosphere Marathon [1] and Docker Swarm Mode [4] to enhance
scalability. Additionally, Fan and Ma [20] stated that the architecture should also integrate
API gateway for service invocation, and circuit breaker as error handling mechanism.

As mentioned in ”Technique Type - Meta-Data Aided (MDA)”, Sayara [92] also defined and
decomposed business capabilities according to the scaling rate of the monolithic system. They
calculated the scaling matrix for each business capability and applied algorithms to group
similar capabilities as one microservice. They stated that microservice application ensured
independent development, bug isolation, and accurate scaling of desired resources.

What’s more, according to the precious approach by Alwis and his team [25], they proposed
Non-dominated Sorting Genetic Algorithm (NSGA) II, aiming at achieving microservices
according to the factors such as scalability cost. They claimed that ”a system is well scalable
if it can provide services with less time and fewer resources in an under-provisioned state”.
So they measured the time and resources taken by the services to quantify scalability cost.
Then they used it as one major factor of their decomposition algorithm and generated a
set of clustered business objects and operation nodes. Also, Tyszberowicz, Heinrich and Liu
[103] said that a fine-grained microservice clustering can also improve scalability.

44

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

In the end, sixteen contributions have evaluated or mentioned scalability as one impor-
tant benefit of microservice migration. Considering the fact that many worldwide Internet
businesses and services, such as Netflix and Amazon, have already applied microservice ar-
chitecture to handle the huge website traffics and continue offering good user experience,
it makes sense that scalability should also be paid attention to for migration intention or
quality assessment.

(5) Security
Security is also one quality metric under consideration during this study. Because micro-
service architecture will usually separate independent service modules on different hosts, and
they will communicate with each other by interfaces, this may arise additional risks during
the communications via network. Therefore, it is curious to researchers how microservice
architecture can ensure certain security level during their design and implementation process.

ISO25010 [3] said: ”Security is important to user experience. It consists of confidentiality,
integrity, non-repudiation, accountability and authenticity. The system should be resilient
to malicious attacks in certain level and continue providing services to authenticated users.”

Cojocaru et al. [23] conducted a detailed investigation on security. In their research, they
found that the security of microservice still lacked reliable testing methodologies. One feasible
way was to inspect execution traces and UML diagrams according to domain models. They
also suggested that the security was not ensured by microservice architecture. Instead, it
depended on technologies and some particular aspects of the application [23]. Therefore,
they made one conclusion that microservice architecture provided one possibility to isolate
vulnerabilities such as sensitive data to improve security. Additionally, Maisto and his team
[65] aimed at realizing DevOps practices for migration process in combination with the latest
security standards.

There were only two contributions in my study that mentioned security as migration inten-
tion or validation aspects. There were few formal methodologies to validate security. This
may because microservice architecture, especially migration, is still a ”young” topic under re-
search. Further study about this scope is desirable to find more formal and various validation
evidence about it.

(6) Other Intentions or Quality Metrics
Apart from the intentions and quality metrics listed above, some other parameters were
introduced in different contributions.

One of the most frequently mentioned parameters was cost and effort reduction [91][68][23].
Because of the better structure of the microservice architecture, the maintenance was easier
for the development teams. It required less effort to add new features and make changes.
The automation of development and deployment also made the procedure more agile and
cost-effective [20][24][66].

In addition, Taibi and Systä [100] suggested that microservices can reduce the need of in-
teraction between teams. Because the interfaces for inter-service communication may be
already defined and development teams can focus on high cohesive service with one business
functionalities, they can spend all their effort on their own development and require lower
support from others. This is supported by Gouigoux and Tamzalit [38], as they said that mi-
croservice architecture could increase financial return over investment by reducing the need
for communication between teams.

What’s more, Mazzara et al. [68] explained that they transformed the monolithic application
to microservices to achieve a distributed and modular application. Knoche and Hasselbring
also stated [26] that such structure could reduce complexity and avoid vendor or technology
lock-in in the future. Besides, Tyszberowicz and his teams [103] migrated a monolithic
application to achieve better traceability.

45

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

According to the result of my study, it is obvious that maintainability and scalability are the
two main parameters considered by development teams and architects throughout the migration.
They also reflect the advantages and benefits provided by such modern architecture. Microservices
are loosely coupled services that can be deployed on independent hosts, so maintenance becomes
easier and faster. Once the resources are insufficient to provide services to the users, they can
scale easily by deploying more hosts and resources accordingly to ensure the quality of services
(QoS). Other parameters such as better performance, higher reliability and security are frequently
considered as well. From my perspective, the increase of quality is one of the actual benefits of
microservice architecture, and it simulates the architects and developers to migrate their legacy
code. This part can be investigated to find more related parameters that people care about when
migrating their monolithic applications.

After all included contributions were read thoroughly, a five-point likert score was assigned to
each contribution. As I mentioned before, it indicated the quality, comprehensiveness, weight of
importance and feasibility of contributions. Next, a data extraction form was created for each
contribution, and the relevant information was extracted and filled into the form in a predefined
format, which can be seen in the column ”Value” in Figure 3.1. In this case, I could reduce effort
for rework during data synthesis because it was considered one of the largest wastes in software
engineering. As a result, a repository of Excel files containing all required data of migration
approaches was achieved.

4.3 Contribution Selection

After my full-text reading was finished, Fritzsch and I performed contribution inclusion and
exclusion again to to refine the field of study further. Then a primary contribution index was
created accordingly. It contained information about all sixty-one contributions, including title,
database source link, decision of inclusion or exclusion, note, etc. The content of the index is
shown in Appendix A Table A.1. Moreover, we further classified the included contributions by
three main aspects:

(1) Approach/ Framework/ Review
These aspects indicated whether the authors proposed an approach, a framework for migra-
tion, or they conducted a review of several migration projects.

(2) Validation Type
The validation type was already introduced in the previous section. Additionally, the con-
tribution with ID ”13” conducted several studies to measure the quality of various migrated
applications. Therefore, I classified it as ”Meta Study”. I kept it in the repository since qual-
ity was also one of the essential aspects for migration and it also represented the intention
for migration. Besides, it was well documented, so readers could quickly grasp the concept
by reading the content.

(3) Process-related/ Tool-related/ Quality Assessment
These aspects specified the main focus of the contribution. The authors might mainly illus-
trate detailed steps and techniques used for migration, or they might introduce particular
tools aiding the structural analysis, decomposition, migration, deployment and so on. Be-
sides, the authors might conduct various validation processes to evaluate and quantify quality
metrics, so the effectiveness and quality of the migration approach or framework were proved.

Based on two researchers’ selection, a final list of included contributions was achieved. This
list was used to answer the research question RQ 1:

RQ 1: What approaches or frameworks for migration scenarios are proposed in scientific
literature?

46

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

In the end, thirty-one contributions were selected after full-text reading, this can be seen in
Table 4.1. Moreover, the final included contributions and their corresponding type information are
available in the following Table 4.2.

Table 4.2: Final Included Contributions and Type Information

ID Title Approach/
Frame-
work/
Review

Validation Type Process-related/
Tool-related/
Quality Assess-
ment

1 From monolith to microservices:
Lessons learned on an industrial migra-
tion to a Web Oriented Architecture
[38]

Approach Case Study Quality Assessment

2 A Probabilistic Approach For Obtain-
ing An Optimized Number Of Services
Using Weighted Matrix And Multidi-
mensional Scaling [92]

Approach Example Process-related

3 Microservices architecture: Case on the
migration of reservation-based parking
system [108]

Approach Case Study Process-related

4 Functionality-oriented Microservice
Extraction Based on Execution Trace
Clustering [47]

Approach Case Study Process-related

5 Transform Monolith into Microservices
using Docker [91]

Approach Example Process-related

7 Visualization Tool for Designing Mi-
croservices with the Monolith-first Ap-
proach [74]

Approach Case Study Process-related +
Tool-Related

9 Microservices: Migration of a Mission
Critical System [68]

Approach Case Study Tool-Related

11 Extracting Candidates of Microservices
from Monolithic Application Code [49]

Approach Case Study Process-related +
Tool-Related

13 Attributes Assessing the Quality of Mi-
croservices Automatically Decomposed
from Monolithic Applications [23]

Review Meta Study Quality Assessment

14 Automatic performance monitoring
and regression testing during the tran-
sition from monolith to microservices
[46]

Approach Example Quality Assessment

26 Migrating Web Applications from
Monolithic Structure to Microservices
Architecture [87]

Approach Experiment Process-related

31 A logical architecture design method for
microservices architectures [90]

Approach Case Study Process-related

32 Availability and Scalability Optimized
Microservice Discovery from Enterprise
Systems [25]

Approach Experiment Process-related

34 A Model-Driven Approach Towards
Automatic Migration to Microservices
[13]

Approach Example Process-related +
Tool-Related

Continued on next page

47

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

Table 4.2 – Continued from previous page
ID Title Approach/

Frame-
work/
Review

Validation Type Process-related/
Tool-related/
Quality Assess-
ment

39 Towards a Methodology to Form Mi-
croservices from Monolithic Ones [51]

Approach Not specified Process-related

40 Translating a Legacy Stack to Mi-
croservices Using a Modernization Fa-
cade with Performance Optimization
for Container Deployments [64]

Framework Example Process-related

41 From Monolith to Cloud Architecture
Using Semi-automated Microservices
Modernization [65]

Approach Not specified Process-related

42 From a Monolith to a Microservices
Architecture: An Approach Based on
Transactional Contexts [76]

Approach Case Study Process-related +
Tool-Related

43 Tool Support for the Migration to Mi-
croservice Architecture: An Industrial
Case Study [82]

Approach Case Study Process-related +
Tool-Related

44 Re-architecting OO Software into Mi-
croservices A Quality-Centred Ap-
proach [93]

Approach Case Study Process-related +
Tool-Related

45 An Experience Report from the Migra-
tion of Legacy Software Systems to Mi-
croservice Based Architecture [24]

Approach Experiment Process-related

47 A Reconfigurable Microservice-Based
Migration Technique for IoT Systems
[97]

Approach Case Study Process-related

48 Identifying Microservices Using Func-
tional Decomposition [103]

Approach Case Study Process-related +
Tool-Related

50 Microservice Decomposition via Static
and Dynamic Analysis of the Monolith
[57]

Approach Case Study Process-related +
Tool-Related

53 A Design with Mobile Agent Architec-
ture for Refactoring A Monolithic Ser-
vice into Microservices [42]

Approach Example Process-related

55 From Monolithic Systems to Microser-
vices: A Decomposition Framework
based on Process Mining [100]

Framework Case Study Process-related

56 A New Decomposition Method for De-
signing Microservices [5]

Approach Case Study Process-related

57 Migration of Software Components to
Microservices: Matching and Synthesis
[22]

Framework Experiment Process-related +
Tool-Related

58 Use Case Driven Microservices Archi-
tecture Design [66]

Approach Example Process-related +
Tool-Related

60 Using Microservices for Legacy Soft-
ware Modernization [54]

Approach Case Study Process-related

61 Migrating Monolithic Mobile Applica-
tion to Microservice Architecture: An
Experiment Report [31]

Approach Case Study Process-related +
Tool-Related

48

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

After the second contribution selection, effort required for study was greatly reduced because
of narrower research field. Also, the quality of each contribution was enhanced and its relevance to
my study topic was also ensured. A contribution index with a clear structure and basic information
could also provide me an easier way to manage the contributions and future benefited the set up
of repository for the web-based tool.

However, one problem was identified that only three out of thirty-one contributions introduced
migration frameworks. Mahanta and Chouta [64] proposed a framework for the application’s
architectural evaluation and simulation. They followed specific steps to analyze the application by
URL and source code, and then the framework tried to decompose the application and optimize
it by simulation. Also, Christoforou et al. [22] designed a migration framework using EBNF
Profiles. The framework used ontology alignment algorithm to group similar components and
generate a microservice architecture design. Lastly, Taibi and Systä [100] introduced a six-step
framework to perform decomposition based on execution log files. Their framework provided
several decomposition alternatives for optimized approaches decomposition, and developers could
choose one design according to their requirement. Among these three frameworks, only Taibi
and Systä [100] proposed an explicit and formal framework because its applicable scenario was
generic and it generated multiple solution choices for the user. The other two frameworks [64][22]
claimed by the authors were relatively similar to an approach designed for particular scenarios.
The vague or mixed definition of an approach and a framework among some contributions provided
difficulties in classifying them during full-text reading, and it might affect the correctness of the
result. Therefore, special care needed to be taken during the review to eliminate such confusion.

4.4 Data Synthesis and Framework Definition

Finally, data synthesis was done to make the extracted data consistent. The number of contri-
butions mentioning specific elements in the data extraction form was already described in Section
4.2. Additionally, the statistical data of some essential elements are shown in the following pages.
Based on these figures, an overview of the whole repository is clear to the readers, and it is easy to
figure out which strategy or technique is most frequently used by the researchers. Please note that
one contribution could apply multiple techniques or strategies in their approach or frameworks, so
the sum of numbers in each figure can be greater than the total number of contributions.

Figure 4.6: Statistic for Process Strategy Figure 4.7: Statistic for Decomposition Strategy

Based on the knowledge acquired from the literature review, a microservice migration frame-
work was designed. The basic concept came from Fritzsch and his colleagues’ study [33]. They
proposed a decision guide that acted as a migration framework. According to user’s requirement,
available resources and system structure, they could provide migration advice about what kind
of technique types should be applied (SCA, MDA, WDA, DMC). However, it only focused on
technique suggestions instead of other aspects such as process strategy, decomposition strategy,

49

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

Figure 4.8: Statistic for Technique Type Figure 4.9: Statistic for Applicability

Figure 4.10: Statistic for Required Inputs Figure 4.11: Statistic for Expected Outputs

Figure 4.12: Statistic for Validation Type
Figure 4.13: Statistic for Intentions or Quality
Metrics

tool support and so on. So I adapted their framework and extended it further into a more generic
one. As we can see in Figure 4.14, the framework takes several inputs from users, which were
particularly introduced in previous paragraphs. These are the essential parameters required by
the framework in order to suggest possible migration approaches referring to the included con-
tributions in the repository. The suggested results should be arranged in the order of relevance.
The high relevance indicates that this contribution provides an approach or framework which is
more suitable to user’s requirement. In that case, users have a set of choices, and they can study
different migration approaches or frameworks and select one which fits their scenarios most.

Till now, the systematic literature review and framework design were completed. A general
overview of the current state of research about architectural refactoring was acquired. Also, a repos-
itory of data extraction forms were generated containing all relevant knowledge about microservice
migration approaches and frameworks. Therefore, I had a solid foundation to further design and

50

CHAPTER 4. RESULTS AND ANALYSIS OF SYSTEMATIC LITERATURE REVIEW

Figure 4.14: Design of Microservice Migration Framework

implement a web-based tool to guide the choice of refactoring techniques and approaches.

51

Chapter 5

Web-based Tool Design and
Implementation

In this chapter, I will finally the answer research question RQ 2, that is:

RQ 2: How can we design a tool to serve the architects and developers as guidance for
microservice migration?

In order to present and aggregate the knowledge acquired from the literature review, a web-
based tool was designed and implemented. Its main objective was to help software architects and
developers overlook and comprehend the existing research status and help them choose suitable
refactoring techniques and approaches. The repository produced by the literature review could
be transformed into an actual database containing all relevant properties of the analyzed refac-
toring approaches. Furthermore, it should be connected to the web-based tool to provide such
functionality to users. In this project, several techniques were used to implement the tool. The
front-end (user interface) was developed using Bootstrap, HTML, PHP, and JavaScript; the back-
end (database) was set up using XAMPP and MySQL; the communication between front-end and
back-end was realized mainly by PHP.

5.1 Use Case Diagram

In order to identify the use cases of the web-based tool, the use case diagram was first designed.
It represented the things that users could do with this tool. As we can see in Figure 5.1, I defined
five main use cases, those were: search for approach/ framework, read search result list, read
detailed approach information, select scenarios, and get original contribution.

(1) Search for Approach/ Framework
In index page, the user can search for approaches or frameworks according to the user’s input
from the user interface (UI), the input should represent the characteristics of user’s monolithic
application, the user’s expectation and requirement to the new microservice application,
which were discussed in Section 4.2.

(2) Read Search Result List
After searching, the user can go to search page and read a result list containing all approaches
or frameworks which are recommended by the tool and suitable to his/ her monolithic appli-
cation. They are well-ordered by ID, year, or degree of relevance. The order can be decided
by the user.

(3) Read Detailed Approach Information
If the user click one title in the result list, the tool will open a new detailed result page and
show detailed knowledge about the migration process within its specific scenario.

52

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Figure 5.1: Use Case Diagram of the Web-based Tool

(4) Select Scenarios In index page, the user can select parameters in each property, these prop-
erties were discussed in Section 4.2. After selection, the user can click ”Search” button to
perform searching. Additionally, he/ she can read all migration approaches or frameworks
by clicking ”Show All” button without selecting any parameters.

(5) Get Original Contribution
In result page, the user can also click a link to jump to the original source website for further
information and retrieve particular contribution source file.

5.2 Functional Requirements

Several main functionalities were defined during the design phase of the tool. They specifically
realized the use cases as mentioned before, and they are listed and described as follows:

(1) Characteristic Selection
Via a web-based tool UI, the user can specify a set of system characteristics according to his/
her specific application, referring to the scenarios I have introduced in Section 4.2. In that
case, the web-based tool can be acknowledged about the most important and prior charac-
teristics that user cares about, and use them to search for relevant contributions suitable to
user’s requirement.

(2) Search Button
The web-based tool should conduct SQL searching mechanisms to the database via internet
connection. After the user clicks ”Search” button in index page, an SQL search string is
generated according to the user’s input. The web-based tool should be able to achieve the
corresponding results after searching.

(3) Show All Button
The web-based tool should allow the user to skip characteristic selecting and view all contri-

53

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

butions in the database. After the user clicks ”Show All” button in index page, the web-based
tool should achieve all information from the database.

(4) Show Results
After searching, the user goes to search page, and the web-based tool will provide a list of
relevant results, containing columns such as ID, title, year of publication, author, missing
characteristics of the contribution, quality score and recommendation score in percentage.

In detail, the contribution may not contain all desired characteristics by the user. So the
missing characteristics of the contribution in the column shows what characteristics are not
included in one specific contribution. Besides, the recommendation score represents the
degree of relevance and initial quality score of the contribution. It is calculated by a specific
equation, which will be discussed in Section 5.5. Therefore, the user can refer to these two
columns to check if the contribution is suitable and relevant to his/ her requirements.

(5) Result List Sorting
Additionally, there are four buttons in search page: ”IDSort”, ”YearSort”, ”Score” and
”RelevanceSort”. The tool provides user possibility to order the result list by ID, year
of publication,the quality score of contribution or recommendation score. By clicking the
button, the list can be sorted in ascent or descent order automatically. This enables user to
scan the most interesting result.

(6) Read Detailed Approach or Framework Information
By clicking the title of one contribution in the result list, the web-based tool will open a new
detailed result page, where all detailed information, such as process strategy, decomposition
strategy, required inputs, expected outputs, technique steps, and tool support is available to
the user. So the user can be informed of all technical details about the proposed approach
or framework.

(7) Go to Source Page
In result page, the user can click ”Link to Website” button, and the tool will open a new
page to jump to the source database website. So he/ she can read original information about
the contribution and retrieve the source file if he/ she has membership or license for the
database.

(8) Instruction
In index page, the tool should show a link to the instruction page, so that the user can
understand how to use the tool. Here, a GitHub README page [40] is suitable to provide
such instruction.

5.3 User Interface

After the functionalities of the tool were defined, the mock-up of the UI was designed. It
contained all UI elements as mentioned before and made functionalities visible to the user. Three
pages were designed for the tool, including index page, search page and result page.

According to Figure 5.2, the index page contains various sections representing user’s monolithic
application’s characteristics and his/ her requirement to the new microservice application. These
sections were already discussed in Section 4.2.

Initially, I only created two radio buttons for each property in the sections: ”Include” and
”Exclude” button. However, it is possible that the user does not care about particular properties.
For instance, he/ she does not care about what kind of input types are required for migration, so
it is confusing to the user to decide inclusion or exclusion in the ”Input” section. Therefore, I later
changed it into three radio buttons: ”Include”, ”Exclude”, and ”Neutral”. So the user can decide
whether to include this property, or exclude it, or leave it as neutral, meaning that it does not
matter if the contribution has this particular property or not. The choices will influence the SQL
search string and produce a corresponding result list. This will be mentioned again in Section 5.5.

54

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Figure 5.2: The Index Page of the Web-based Tool

55

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Figure 5.3: The Hover Effect by Bootstrap in Index Page

Also, in order to instruct the user and provide enough hints about usage, each section title has
hover effect. As we can see in Figure 5.3, if the user moves his/ her mouse cursor onto the title of a
section, a description will pop up to explain the terminology and concept of this section. This can
be realized easily using the Bootstrap framework. And the code example is provided as follows:

Listing 5.1: Bootrap Bover Effect Definition

1 <h5 data-toggle="tooltip" data-placement="bottom" data-delay='{"show":"800"}' title="Some description
example">

2 Title of Section
3 </h5>

Bootstrap enables developer to easily realize hover effect by simple setting the ”data-toggle”,
”data-placement”, and ”data-delay” attributes in HTML-5. Here, a plugin called Tooltips was used
in ”data-toggle”. According to the official tutorial: ”it relies on the 3rd party library Popper.js, so
developers must include popper.min.js before bootstrap.js, or use bootstrap.bundle.min.js/ boot-
strap.bundle.js” in order to make use of Tooltips [12]. According to the code block example, I set
hover text to show at the bottom of the title, and I set the hover effect time delay to be eight
hundred milliseconds. Therefore, it can prevent immediate popping up and disturbing the user.

After the user click ”Search” or ”Show All” button in index page, the tool will provide a list
of relevant results in search page. The layout is shown in Figure 5.4. As mentioned before, a
search string showing the selected properties by the user is again visible to him/ her as feedback.
Additionally, the total number of results is shown above the result list.

The result list has toggling row color for the sake of better readability. And user can click
sorting buttons to sort the list in different orders. Specifically, data in the ”Missing String” column
indicates the missing characteristics desired by the user. They are shown in HTML Strikethrough
element, using ”” tag, so the user can be straightforwardly informed about the missing
properties of each proposed approach or framework.

What’s more, in the upper left corner of the page, there is a link called ”Back to Index Page”,
the user can click it to close the search page and return to the previous index page easily.

Finally, if the user clicks one title in the search page, he/ she can jump to a new result page.
Here, all collected data of an approach/ framework is visible in a well-designed table layout. The
user can read the migration information, including ”Process Strategy”, ”Decomposition Strat-
egy”, ”Technique Type”, etc. This page can provide the user with a guideline for architectural
refactoring, and he/ she can decide whether it is applicable to his/ her monolithic application.

Additionally, in the upper right corner of the page, there is a blue button called ”Link to
Website”, the user can click it and jump to the corresponding database for further details and
source file.

Generally speaking, the main focus of this tool was to provide practical usage and valuable
information gathered from literature review, so less effort was paid on fancy animations or effects.
All UI elements and design mainly served to provide basic and necessary functionalities to users
in order to support easy and convenient usage of the tool.

56

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Figure 5.4: The Search Page of the Web-based Tool

Figure 5.5: The Result Page of the Web-based Tool

57

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

5.4 Database Structure

After designing the UI, the next step was to set up the web-based tool database. In this step,
the XAMPP was set up on the computer for local internet application development. As introduced
on the official website [6], it is an open-source PHP development environment. And it has built-in
phpMyAdmin MySQL database administration tool, Apache cross-platform web server software,
and other software components for easy installation and local development.

With the help of phpMyAdmin, a MySQL database schema ”migration” and a table ”contri-
bution” were created for the tool. The basic structure of the table is available in the following
code block. All columns were defined according to the elements in index page. These reflected
the framework proposed by me, and they were considered as the most essential parameters during
architectural refactoring and microservice migration. Most columns related to essential parameters
were defined as Boolean type (”tinyint(4)”)and Not Null. Except for the basic information, such
as ID, title, year of public cation, authors, and some descriptive data such as process detail, tech-
nique sets for migration, were defined as medium text field or variable character field. Therefore,
primary validity and space usage were ensured. The database columns were named consistently
so that it could be easily figured out which column belonged to which scenario. For example,
the column ”Process Rewrite” indicates if the proposed approaches or frameworks are related to
rewrite pattern for process strategy.

Listing 5.2: The Structure of Table ”Contribution”

1 CREATE TABLE `contribution` (
2 `id` int(11) NOT NULL,
3 `Title` varchar(150) NOT NULL DEFAULT 'Title',
4 `Year` year(4) NOT NULL DEFAULT 2000,
5 `Authors` tinytext NOT NULL,
6 `Link` varchar(250) NOT NULL DEFAULT 'Empty Link',
7 `Approach` text NOT NULL,
8 `Process_Rewrite` tinyint(4) NOT NULL DEFAULT 0,
9 `Process_Extension` tinyint(4) NOT NULL DEFAULT 0,

10 `Process_StranglerPattern` tinyint(4) NOT NULL DEFAULT 0,
11 `Process_ContinuousEvolution` tinyint(4) NOT NULL DEFAULT 0,
12 `Process_Split` tinyint(4) NOT NULL DEFAULT 0,
13 `Process_Others` tinyint(4) NOT NULL DEFAULT 0,
14 `ProcessDetail` mediumtext DEFAULT NULL,
15 `Decomposition_DDD` tinyint(4) NOT NULL DEFAULT 0,
16 `Decomposition_FunctionalDecomposition` tinyint(4) NOT NULL DEFAULT 0,
17 `Decomposition_ExistingStructure` tinyint(4) NOT NULL DEFAULT 0,
18 `Decomposition_Others` tinyint(4) NOT NULL DEFAULT 0,
19 `DecompositionDetail` tinytext DEFAULT NULL,
20 `TechniqueSet` mediumtext NOT NULL,
21 `Technique_SCA` tinyint(4) NOT NULL DEFAULT 0,
22 `Technique_MDA` tinyint(4) NOT NULL DEFAULT 0,
23 `Technique_WDA` tinyint(4) NOT NULL DEFAULT 0,
24 `Technique_DMC` tinyint(4) NOT NULL DEFAULT 0,
25 `Technique_Others` tinyint(4) NOT NULL DEFAULT 0,
26 `TechniqueTypeDetail` mediumtext DEFAULT NULL,
27 `Applicability_GR` tinyint(1) NOT NULL DEFAULT 0,
28 `Applicability_MO` tinyint(1) NOT NULL DEFAULT 0,
29 `AtomicUnit` tinytext DEFAULT NULL,
30 `Input_SourceCode` tinyint(4) NOT NULL DEFAULT 0,
31 `Input_UseCase` tinyint(4) NOT NULL DEFAULT 0,
32 `Input_SystemSpecification` tinyint(4) NOT NULL DEFAULT 0,
33 `Input_API` tinyint(4) NOT NULL DEFAULT 0,
34 `Input_Others` tinyint(4) NOT NULL DEFAULT 0,
35 `InputDetail` tinytext DEFAULT NULL,
36 `Output_List` tinyint(4) NOT NULL DEFAULT 0,
37 `Output_Archi` tinyint(4) NOT NULL DEFAULT 0,
38 `Output_Others` tinyint(4) NOT NULL DEFAULT 0,
39 `OutputDetail` tinytext DEFAULT NULL,
40 `Tool` mediumtext DEFAULT NULL,
41 `ProgramLanguage` mediumtext DEFAULT NULL,
42 `Validation_Experiment` tinyint(4) NOT NULL DEFAULT 0,

58

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

43 `Validation_Example` tinyint(4) NOT NULL DEFAULT 0,
44 `Validation_CaseStudy` tinyint(4) NOT NULL DEFAULT 0,
45 `Validation_NoValidation` tinyint(4) NOT NULL DEFAULT 0,
46 `ValidationTypeDetail` mediumtext DEFAULT NULL,
47 `ValidationMetrics` mediumtext DEFAULT NULL,
48 `Quality_Maintainability` tinyint(4) NOT NULL DEFAULT 0,
49 `Quality_Security` tinyint(4) NOT NULL DEFAULT 0,
50 `Quality_Performance` tinyint(4) NOT NULL DEFAULT 0,
51 `Quality_Reliability` tinyint(4) NOT NULL DEFAULT 0,
52 `Quality_Scalability` tinyint(4) DEFAULT 0,
53 `Quality_Others` tinyint(4) NOT NULL DEFAULT 0,
54 `QualityDetail` mediumtext DEFAULT NULL,
55 `Score` float NOT NULL DEFAULT 1
56) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

The database data for each row were entered from the data extraction forms of included contri-
butions. This was done manually, and spelling errors or format errors were corrected again in this
step. Because of the formal data extraction form, this process was done quickly. In addition, a user
with only read privilege was created to access the database in order to protect data from malicious
manipulations or unintended changes. Besides, the developers could update, add or delete data
using phpMyAdmin administration tool directly with a web browser, having the full privileges for
operations. The SQL sentence example for creating a user in the local database is shown as follows:

Listing 5.3: SQL Sentence Example for User Creation

1 CREATE USER 'user'@'localhost' IDENTIFIED BY 'password';
2 GRANT SELECT ON migration . contribution TO 'user'@'localhost';

After a well-structured and well-named database table was established, I could easily develop
the searching and matching algorithms later. The access to the database from local web page was
possible using Apache in XAMPP, and the detailed setup process of the local environment was
described in GitHub README page [40].

5.5 Programming and Class Diagram

Based on the design of UI and database, the web-based tool was finally developed, providing
actual functionalities to user. The class diagram in Figure 5.6 graphically depicts the whole
structure of the web-based tool.

As mentioned before, I designed three web pages for the tool: index, search, and result. They
were designed with HTML in PHP file, which is shown in the figure. All of them utilized external
scripts and css files, including ”pooper.min.js”, ”bootstrap.min.js”, ”bootstrap.min.css”, and self-
developed ”style.css”. They could realize some animation effects such as hover text and implement
UI elements easily with pretty appearance.

The index page contains mostly UI elements and a few methods. The main purpose of index
page is to collect user’s input. After the user clicks ”Search” button, it will pass all input elements
value to the new search page to retrieve the corresponding result from the database. Additionally,
if the user clicks ”Show All” button, all contributions in the database would be listed in search
page, regardless of user’s inputs.

Next, in search page, the tool will run either in ”Search” mode or in ”ShowAll” mode. This
is done by specific SQL sentences according to user’s input got from index page. It calls external
JavaScript methods in ”frontend.js” to realize the sorting algorithms. The sorting algorithms
were referred and adapted from [104]. It can sort the result list according to numeral data such
as id, year, score and recommendation (degree of relevance). The several Boolean parameters
are initialized to switch the sorting ”order” between ascend and descend. The ”mode” attribute
indicates which column’s value to be used for sorting. The ”mode” is set by indicating the column
array’s index using JavaScript DOM programming:

Listing 5.4: JavaScript Listing

59

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Figure 5.6: Class Diagram of the Web-based Tool

60

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

1 //Get the table element x by column index from HTML page
2 x = rows[i].getElementsByTagName("TD")[mode];
3 //Get the element content value y from x
4 y = Number(x.innerHTML);

According to each ”y” value of the selected column, ascend or descend sorting is possible by
switching the rows within the result list. However, if the sorting steps are casually executed
according to the user’s click, the result will be inconsistent, which brings confusion to the user,
because the new sorting step will be executed based on the previous sorted list. For instance, if
the user clicks ”IDSort” first and then ”YearSort”, the result list order will be different from which
if he/ she clicks ”YearSort” first and then ”IDSort”. In order to enhance the reproducibility of
sorting results, the order of sort steps was explicitly designed. Particularly, I fixed the sorting steps:
first, the method would automatically sort the list in by ID in ascending order; then, the method
would execute sorting according to the user’s requirement; finally, the result was sorted according
to higher recommendation score (relevance). In that case, it made sure that each time the most
relevant approaches/ frameworks were visible at the top, and the result list kept consistent and
reproducible.

The detailed source code is available at [104][40]. For better maintainability, the ”sortTable”
method applied multiple ”sort” methods according to the user’s input, and ”sortAscend” as well
as ”sortDescend” methods were individual sorting methods developed for the future use.

Third, after the user clicks one title in the result list, the tool will open a new result page,
showing all data of one contribution from the database.

Emphasis should be put on the shared classes and components. The HTML contents were
defined in PHP file, and the code for database connection and access was also written in the PHP
accordingly. According to Figure 5.6, ”search.php” and ”result.php” both contained parameters
for database connection. In addition, they applied methods from ”functions.php” to realize data
retrial and content generation in HTML pages. Based on the parameters selected by the user and
posted from index page, the SQL sentence (Listing 5.5) could be generated using the following
pseudo equation:

Listing 5.5: SQL Pseudo Sentence Generated from User’s Selection

$sqlForInclusion = "SELECT␣*␣FROM␣contribution␣WHERE␣(" . $includedParameters0 . "=1␣OR␣" .
$includedParameters1 . "=1␣OR␣" . $includedParameters2 . "=1␣)␣AND␣(" .
$excludeParameters0 . "=0␣AND␣" . $excludeParameters1 . "=0␣AND␣" . $excludeParameters2 .
"=0␣)";

As we can see in the pseudo equation, all parameters selected as ”Include” are assigned with
Boolean value 1 and combined with ”OR”. Likewise, all parameters selected as ”Exclude” are
assigned with Boolean value 0 and combined with ”AND”. In that case, after SQL query, all
matched contributions will not contain any parameters excluded by the user, and all possible
contributions that contain at least one parameter desired by the user should be included in the
result list. Besides, ”Neutral” elements are ignored because the user also does not care about them.

What’s more, ”functions.php” initializes ”searchObject” for each matched contribution in the
result list and the user’s selection in index page. These objects represented the parameters of the
approaches or frameworks proposed by the contributions. By calling ”setMatchScore” method in
”functions.php”, the tool will compare the user’s input object with each candidate in the result
list and generate the recommendation score (degree of relevance). Based on this equation, each
candidate is assigned with a consistent score. And it will aid user to judge the feasibility of each
proposed approach or framework. Specifically, if the user clicks ”Search” button in index page, the
Equation 5.1 is defined as follows:

RecommendationScore =[
NumberOfSelectedParameters−NumberOfMissingParameters

NumberOfSelectedParameters
∗ 5

+ InitialQualityScore] ∗ 10 (5.1)

61

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Please note that the initial quality score was defined as a five-point likert scale in the data
extraction form, and it ranged from zero to five. So the output of Equation 5.1 is a numerical
value that ranges between zero and one hundred. Additionally, if the user clicks ”ShowAll” button
in index page, the recommendation score will be calculated according to Equation 5.2, and its
range keeps the same.

RecommendationScore = InitialQualityScore ∗ 20 (5.2)

Till now, I have briefly introduced techniques, tools, and implementation details about the web-
based tool. After some debugging and testing on the local machine, the web-based tool was stable
and worked as expected. All desired functionalities were realized successfully with considerably
well time performance. Therefore, further steps could be taken to deploy the tool together with
its database online.

5.6 Microsoft Azure Deployment

In this thesis, Microsoft Azure was applied to deploy the web-based tool online. According
to the official introduction [71], it provides various products and services such as online virtual
machine, cloud computation, IoT development and deployment, AI and machine learning, etc.

Microsoft Azure also provides Web App and MySQL database components, which supports
PHP and online database. By means of these tools, the web-based tool can be accessed via a
public URL from the external network. The detailed deployment steps were introduced in the
README file of the web-based tool in GitHub [40], and the structure overview can be seen in
Figure 5.7. Specifically, a Web App container and a corresponding database were created and
configured in Azure. The local database was then imported into the online phpMyAdmin portal,
whose basic operation was same as local phpMyAdmin as mentioned previously in Section 5.4.
After the database was imported, the source code was migrated into the Web App container
using KUDU environment. And it was further adapted in order to fit the online environment. The
information about online database connection, such as server name, database name, user name, and
password was retrieved from the online database. So the parameters of all source code files, which
called methods for database connection, were changed according to this information. Specifically,
in the web-based tool, ”search.php” and ”result.php” were changed accordingly.

Finally, after deployment was completed, users were able to visit this web-based tool externally
by the URL provided by Microsoft Azure.

5.7 Tool Evaluation

The final step of development was to evaluate the tool. A good software involves not only good
developers but also real users, who see and use the software from another perspective, in various
ways and in different environments. They are more likely to encounter hidden bugs and errors,
thus suggestions based on real-life scenarios can be obtained.

5.7.1 Target Test Participants

The targeted participants for evaluation were defined at first. Software architects, programmers,
teachers and students of relevant majors were involved in testing and consultation. Besides, target
users were supposed to have basic English ability.

5.7.2 Test Task and Questionnaire

Next, the desired test tasks and a questionnaire PDF were created to guide the users to conduct
testing and gather feedback. The content of the questionnaire is available in Appendix B.

62

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Figure 5.7: Structure of the Web-based Tool on Microsoft Azure

First, an introduction about the web-based tool was given in the questionnaire. Then some
demographic data about test participants were collected for statistical purpose. Third, several
small tasks together with a link to GitHub instructions were provided. The users could follow the
tasks and use the tool to search for results. In addition, they could also customize their input
and check whether this tool would generate suitable answers, and whether it was convenient and
efficient. Finally, several questions were answered by users about their user experience and their
judgment about the tool. Users could sign five-point likert score to each question and enter some
advice in the text field.

Later, a proper invitation email together with the questionnaire PDF were sent to target
participants. After they completed the testing, their questionnaire PDFs were sent back to me again
for evaluation. Based on their practical working experience, valuable feedback about shortage,
quality, effectiveness, and further improvements could be gathered.

5.7.3 Evaluation Result and Statistics

As a result, nine participants took part in the evaluation process. They read the instructions,
tried the web-based tool, filled the questionnaires in, and sent them back. Then their advices and
statistical data were gathered and visualized. Table 5.1 and Table 5.2 are the raw data gathered
from user feedback.

The evaluation process involved two teachers, four students, two developers and one IT consul-
tant. Since they studied different majors or had different working experience, they could provide
a variety of feedback from their own perspective. In Table 5.1, The ”Years of Professional Expe-
rience” and ”Years of Experience with Microservices” represented their familiarity of this topic.
The ”Job” and ”Major” indicated the participants’ roles in their work and study.

In addition, the five-point likert scales in Table 5.2 shows the users’ rating of the tool in
four main aspects, say, understandability, usability, effectiveness, and meet of expectation. Under-
standability indicated whether users could understand the concept, terminology and functionalities
provided by the tool; usability meant if the usage of the tool was convenient; effectiveness indicated
if the tool could provide relevant and valuable information to the user during their architectural
refactoring process; finally, it was also validated whether the tool could meet the users’ requirement
and expectation to reduce time and effort for decision-making and gathering information about
microservice migration. Last but not least, the time duration of finishing the test was documented,
this could also reflect the previous four accepts.

63

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Table 5.1: Test Participants Demographic Data

No. Job Major

Years of
Professional
Experience

Years of
Experience with

Microservices
1 Researcher / 5.0 0.5
2 Researcher / 8.0 3.0

3
Student &

Software Developer Software Technique 1.0 0.5
4 IT Consultant / 6.0 3.0
5 Software Developer / 8.0 5.0
6 Student IT 0.0 0.0
7 Student IT 1.0 0.0
8 Student IT 1.0 0.0
9 Software Developer IT 2.0 2.0

Table 5.2: Test Participants Statistic Data
No. Understandability Usability Effectiveness Meet of Expectation Time
1 3 2 2 2 10
2 3 2 3 2 20
3 2 3 4 4 5
4 4 4 2 3 15
5 3 5 4 3 5
6 5 4 3 3 30
7 4 4 2 5 15
8 4 4 4 3 10
9 3 2 4 4 5

64

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Figure 5.8: Statistic for Scores

The statistical analysis of data was then conducted in order to have an overview of users’
feedback. According to Figure 5.8, 5.9, the distribution of each aspect is visualized. Additionally,
the box plots 5.10, 5.11 are generated to inspect their mean, median, maximum, minimum and
quartiles.

From the figures, we can see that the participants held different opinions on the web-based
tool according to their own viewpoints. In detail, people who had more experience in working
and programming tended to have more strict judgments. They had more requirements for this
tool and expected it to have better usability and effectiveness. Besides, they needed more detailed
explanation of each property proposed by the web-based tool. They also reported that the tool was
sometimes unable to provide desired outputs according to their inputs. All these factors gave rise
to the result that developers, IT consultants, and researchers rated the scores as relatively lower
than those rated by students. Also, these experts reported that they spent less time than students
to use the tool on average. This again proved that they were more familiar with the topic, and
they could quickly understand the usage of the tool and its outputs.

When we refer to the box plots (Figure 5.10 and Figure5.11), we can see that the mean and
median of the score were all higher than or equal to ”3”, which was half of the full point. The
understandability showed the best variation among the four aspects because it had the highest
mean and median. This meant that most participants agreed that the tool was pretty much
understandable. They also reported that the tool usually could provide some information about
migration suggestions. However, when it came to particular scenarios, it sometimes failed to show
relevant results and could not meet their expectation. The last aspect was usability, according to
user’s feedback, it had the largest distribution, meaning that the user’s had different opinions on
it. Some people gave particular advice about the UI or functionalities to improve the usability, and
they are shown in Table 5.3. Finally, the participants took about thirteen minutes on average to
fulfill the test tasks, which was desired and expected as the result. It showed that most participants
were able to use the tool after some minutes of trying and testing.

65

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Figure 5.9: Statistic for Time

Figure 5.10: Score Variation Figure 5.11: Time Variation

Table 5.3: User Feedback Advices

No. Advice Number of Mentions
1 Reset button is recommended 1
2 Clarify the result in introduction 1
3 ”Include/neutral/exclude” radio buttons are not intuitive 2
4 Too many filtering parameters 1
5 Quality Metrics/ Intention part feels a little obsolete 1
6 Exlpain in detail the tool’s functions and propose: how to

help to make decisions about the migration
1

7 An explanation on each point/option would be helpful 2

Continued on next page

66

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Table 5.3 – Continued from previous page
No. Advice Mentioned Times
8 The algorithm behind this filtering is unclear to user 1
9 Either place a ”remove filters” button or always show a

complete list of results when clicking ”Search” but gray
out those that are not relevant according to the selected
search string

1

10 Is it necessary to differ between a ”Score” and ”Recommen-
dation”?

1

11 The ”Score” and its definition is unclear 1
12 ”Recommendation” in % is not very helpful. A percentage-

range mapping to a term would helpful (e.g. 0-20% = not
worth, 20-40% = xyz etc)

1

13 The tool sometimes return no results after search 2
14 UI itself could be simplified by starting with generic selec-

tion and then getting more and more into detail, instead of
having to select everything in the first place

1

15 Possibility of using NLP to automatically label new papers 1
16 Use Bootstrap to help to generate the front-end pages

quickly
1

Besides demographic data, score data and time data, users’ advice about further improvements
were also collected in the questionnaire. I extracted the major advice and classified them into
Table 5.3. Additionally, I counted the number of mentioned of each advice. This could show the
most desired improvements proposed by the user, indicating a higher priority for change.

5.7.4 Suggested Improvements

According to Table 5.3, several improvements to the tool were made. First, As we can see
in Figure 5.12, in index page, the ”ShowAll” button was removed. Even though the ”ShowAll”
button also conducted searching in database, its functionality was similar to the ”Search” button.
This sometimes brought confusion to users. Therefore, the searching algorithm was adapted so
that the ”Search” button can also execute the method of ”ShowAll”, a simple conditioning logic
was implemented to decide whether the user selected some parameters or not. If the user did not
provide any input, the tool also automatically shows all data from the database.

Second, as requested by one participant, a ”Reset” button replaced the ”ShowAll” button so
that users could clear their inputs anytime and refresh the index page to conduct a new search.

Third, many participants reported that the terminologies or elements in index page were not in-
tuitive and required more description. Even if I implemented hover effect by Tooltips in Bootstrap,
I later found that many users failed to identify it. In that case, I added question marks beside
each section to notify the user that he/ she could check for hints about each section. Addition-
ally, the introduction at the beginning and the instructions were supplemented by more detailed
explanation.

Fourth, in search page, some participants said that the definition of ”Score” and the difference
between ”Score” and ”Recommendation” were vague. As mentioned before, ”Score” was defined
by me based on the quality, comprehensiveness and feasibility of contributions. This is an internal
parameter for my research. In addition, ”Recommendation” also included ”Score” as one factor
during calculation (Equation 5.1). So ”Recommendation” already reflected ”Score” to some extent.
In order to eliminate confusion, the ”Score” column and ”ScoreSort” button were finally removed,
which is shown in Figure 5.13.

Fifth, one developer suggested that the tool could show the gray out contributions that were
irrelevant to the user’s search results. I thought this was a good idea because the tool could

67

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Figure 5.12: Improved Design of the Index Page

68

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

Figure 5.13: Improved Design of the Search Page

always provide users a comprehensive result about which contributions were included or excluded.
To realize this, another SQL sentence was designed to get the excluded contributions. Please
note that the parameter ”sqlForInclusion” was defined previously in Listing 5.5 to get included
contributions.

Listing 5.6: SQL Pseudo Sentence Generated to Get Excluded Contributions

$sqlForExclusion = "SELECT␣*␣FROM␣contribution␣WHERE␣id␣NOT␣IN␣(" . $sqlForInclusion . ")";

After SQL query, the excluded contributions will compose a gray out list. It is shown under
the included list. The number of excluded contributions is also visible to users.

Finally, the order of the sections in result page was also adjusted so that it was logically more
fluent to users.

Some other advice were also valuable, but I decided not to change it because of the original
design purpose. For instance, one participant said that the ”Quality Metrics/ Intention” part
was obsolete. Indeed, this study referred to the ISO25010 [3]. I thought it could already involve
main qualities and intentions considered in microservice migration scenarios because the metrics
discussed in most contributions were similar to those in ISO25010. For further research, it is
recommended to study more other aspects. Other advice such as No.4 and No.14 both said
that the parameters were complex and too many. In this research, due to time reason, the tool
aimed at providing simple and clear functionalities and UI to serve for architectural refactoring.
However, it is worthwhile if the filtering steps and the UI can be re-structured in the future. Also,
No.8 reported that the filtering algorithm was unclear to the user. Considering the fact that the
”Include” string, ”Exclude” string, and ”Missing String” column in search page could already
provide enough information about filtering to users, I decided to hide the SQL sentence to users
in order to avoid confusion.

Because of time and effort limitation, six advice were taken (No.1, 3, 6, 9, 20, 22) and changes

69

CHAPTER 5. WEB-BASED TOOL DESIGN AND IMPLEMENTATION

on the tool were conducted. Remaining advice were also valuable for further improvements, such
as much more detailed explanation for the result list and parameters in each section; automatic la-
beling for new papers by NLP; quick front-end pages realization by Bootstrap; ”Recommandation”
percentage to term mapping; and inclusion of more contributions to avoid empty search result.

In the end, the improvement of the web-based tool made it easier to use and more under-
standable. According to users’ feedback, they thought the development of such tool was a creative
idea to assist the architectural refactoring. It was of great potential to be further developed and
improved to be more comprehensive and complete.

70

Chapter 6

Discussion

In this section, I will interpret the results generated from the systematic literature review and
web-based tool implementation as well as the feedback gathered from questionnaires.

In the systematic literature review, three main groups of data for the migration process were
extracted: paper context data, empirical data, and quality assessment. According to the previ-
ous studies and thirty-one contributions, the empirical data and quality assessment were further
partitioned into eight main sections: process strategy, decomposition strategy, technique type,
applicability, required inputs, expected outputs, validation type and intentions/ quality metrics.

Regarding process strategy, splitting the existing code base, continuous evolution became pop-
ular, unlike the previous research by Fritzsch et al. [34] where rewrite and strangler pattern were
commonly applied during migration. This fact is supported in Figure 4.6, it is obvious that these
two strategies were applied most frequently by the development teams. One reason for this sig-
nificant shift may be the migration costs of rewrite and strangler pattern tend to be higher in
the industry because both of them require rewrite and redeployment of the existing parts to some
extent, which is often costly in terms of time, effort, and required resources.

In my study, I also noticed that the number of monolith migrations (brownfield development)
was higher than microservice greenfield developments. This fact was consistent with the previous
research [33]. An assumption can be made that when the companies meet technical restrictions
or maintenance problems with the monolithic applications after several years of operation, the
willingness to adopt a new platform or architecture becomes stronger. Besides, since they have the
basis of legacy resources such as source codes, databases, system specifications, etc., it becomes
easier for them to refactor the application or modernize it using new technologies other than
implementing a completely new application from the beginning.

The technique types classified from my literature review mainly referred to the definition by
Fritzsch et al. [33], say, Static Code Analysis Aided (SCA) method, Meta-Data Aided (MDA)
method, Workload-Data Aided (WDA) method and Dynamic Microservice Composition (DMC)
method. Specifically, SCA played a dominant role in application analysis, following with the WDA.
Additionally, DMC and MDA usually acted as supplementary techniques to inspect the system
in different perspectives. This finding supports the result given by Ponce et al. [84], but it is
different from the overview conducted by Fritzsch et al. [33]. Indeed, the applied techniques varied
differently according to specific scenarios. Each approach will choose its own techniques which fit
its requirement and condition most. However, considering the fact that Ponce and his colleagues
[84] reviewed twenty contributions and I have reviewed thirty-one contributions, while Fritzsch et
al. [33] included ten contributions in total during their literature review. I assumed my results are
much general under various situations.

The required inputs and expected outputs sections in this study further extended the research by
Fritzsch et al. [33]. As I have discussed, source code was the most common inputs for the migration
approach, and it was often combined with other resources. On the other hand, a candidate list
of microservices and a suggested architectural design of microservice application were usually
generated after the execution of proposed approaches. Additionally, new tool support such as

71

CHAPTER 6. DISCUSSION

ENTICE or Docker [51][91] were identified which enable automatic deployment. Besides, other
output results such as partition diagram [87][108][100][42] also corroborated the study by Fritzsch
et al [33].

The validation types documented in the included contributions supported the statistic result
by Ponce et al. [84] as well. Experiments and case studies were frequently introduced in purposed
approaches or frameworks.

Finally, my systematic literature review investigated the intentions and evaluated quality met-
rics mentioned among the contributions. These metrics referred to ISO25010 [44]. Same as previous
studies [34] [84] [99] [98] [17], maintainability and scalability were the two most essential metrics
which drove the development teams to migrate their monolithic applications. Other metrics, such
as performance, reliability, flexibility, etc., were also listed in previous research [34][99][98]. This
provided a deeper overview of the drivers and desired qualities expected by users during their
migration process, which is worthy of being referred by new microservice migration projects in the
future.

Based on the knowledge acquired from my literature review, I have developed a web-based
tool to assist the migration approach selection. The feedback provided by test participants during
the evaluation stage showed that the scores rated by participants in each section were all higher
than or equal to ”3” in five-point likert scale (the five-point likert scale ranges from zero to five,
zero means fail, while five means excellent), indicating that the tool was able to support the users
to fulfill this objective. However, this tool still required improvements in terms of usability and
repository extension of available contributions.

72

Chapter 7

Threats to Validity

In this section, the potential threats to the validity of this study will be mentioned.

(1) During the systematic literature review, informal review process and vague definition of scope
will make the result inconsistent or not comprehensive. So my literature review followed an
explicit guideline which was recommended by Kitchenham and Charters [52]. Therefore, the
repeatability as well as reproducibility of the results could be ensured [33].

(2) It is possible that some important contributions or results are not captured in the field
of study. The main reason for this is because the research scope is limited or insufficient
contributions are retrieved. To mitigate this threat, four online databases were used for
contribution searching and selecting. Therefore, adequate amount of primary studies were
reviewed and selected. Due to time reason, snowballing was not extensively performed. But
the contributions within the repository should be able to provide a comprehensive overview
of this topic.

(3) Potential risk of research bias exists in every literature review always [52]. The data gathered
by researchers usually depend on their own understanding of the results, so that the research
results may vary among different researchers. In my study, the contribution inclusion deci-
sions were made by two researchers, so that the review bias can be mitigated to some extent.
For future research, it is commanded to involve more researchers to minimize the bias further.

(4) Potential threat to data correctness might exist in my study. To overcome this, I designed
a data extraction form to ensure data correctness and consistency. But the data extraction
and data synthesis was done by only one researcher. In the future, more researchers should
work together during the data extraction and synthesis process to eliminate this threat.

(5) The proposed migration framework and corresponding web-based tool were developed, and
they were evaluated by nine participants involving software architects, programmers, teachers
and students of relevant majors. Retrieving the real and complete user feedback is always a
challenge. Because the test participants sometimes have no idea about the tool’s objectives
and functionalities, they may also feel difficult to express their experience. Therefore, a
formal evaluation procedure, including user instructions, test tasks and questionnaires, was
designed explicitly. Based on their different background, valuable feedback could be acquired
from them. Negative comments were also encouraged by guaranteeing confidentiality and
anonymity during the evaluation procedure [34]. However, the evaluation process was limited
within academic area. For further research, it is suggested to be applied in the real industry
environment and tested with real projects.

73

Chapter 8

Conclusion

Microservice migration is a popular topic in the industry, but an overview of appropriate
migration approaches or frameworks is missing. This brings challenges to software architects and
developers during their decision-making for architectural refactoring, especially when they face
with complex legacy applications.

In this paper, I conducted a systematic literature review about architecture refactoring from
monolithic applications to microservices. After defining an explicit research protocol, thirty-one
primary contributions with empirical data were selected, studied, and corresponding migration
information was gathered using data extraction form and stored in a repository. These processes
were conducted by two researchers so that research bias was minimized. Besides, a corresponding
web-based tool was developed and tested by several consulting experts and students.

Based on previous researches [33][34][84][98][99][17], in my study, I classified the identified ap-
proaches or frameworks according to eight main aspects: required inputs, expected output, tech-
nique type, decomposition strategy, process strategy, applicability, validation type, tool support
and intentions or quality metrics concerned during migration. For each aspect, I further defined
several parameters which were common practices in industry, and statistic information about the
adopted times of these parameters in the proposed approaches or frameworks was also calculated.
In that case, readers could have a brief overview of various migration practices.

Based on my systematic literature review, a migration framework focusing on technique and
process was designed. It took the above mentioned eight main aspects as inputs to suggest mi-
gration solutions. And then, a web-based tool was developed using HTML, JavaScript, PHP,
Bootstrap, MySQL and XAMPP accordingly. It stored all extracted migration information into a
MySQL database. It served to help software architects and developers choose suitable refactoring
techniques and approaches according to their expectations and application environments. In order
to evaluate the effectiveness of the tool, it was deployed using Microsoft Azure and could be visited
from external networks using a unique URL address. Several test tasks and corresponding feed-
back questionnaire were designed and sent to nine test participants, including software architects,
programmers, teachers and students of relevant majors for testing. The feedback given by the
participants showed that the tool was able to realize anticipated objectives. But a considerable
amount of advice and the evaluation scores indicated that the tool still had great potential to
be improved in terms of usability, understandability, effectiveness, and the number of included
approaches/ frameworks in the repository.

Additionally, my study also focuses on the intentions or quality metrics concerned during mi-
gration. Because they reflect the weakness of existing application or the characteristics of new
microservices which development teams want to achieve. They also indicate the causes and effects
before and after the architectural refactoring. In my study, I referred to ISO25010 [44] and previous
studies [34] [84] [99] [98] [17] to address five main quality attributes: maintainability, performance,
reliability, scalability, and security. They were the frequently inspected attributes in these studies.
Besides, other metrics including cost, team communication, complexity, etc. were also documented
in my repository as other remaining aspects. My study provided an overview of the drivers and

74

CHAPTER 8. CONCLUSION

desired qualities expected by users during architectural refactoring, but I only limited my scope
within ISO25010 standard [44], which might fail to meet current research direction or users’ re-
quirements. So it is recommended to conduct deeper research about more intentions and quality
metrics in the future.

Some problems also appeared in this study. The vague and mixed definition of framework and
approach often provided confusion during contribution reading and classification. My study also
revealed that microservice migration approaches or frameworks still varied according to different
scenarios and environments. Besides, formal migration frameworks proposed by researchers ac-
counted for only 10% of the total amount. In addition, the quality of each contribution also varied
greatly because of the authors’ experience. What’s more, the tool should not only be evaluated
in academic area but also tested by practice, so that the evaluation result can be better ensured.
Finally, some participants claimed that the quality aspects defined in this study were obsolete.
They could not reflect migration intentions and quality of microservices nowadays.

For further study, I suggest including more researchers during systematic literature review to
conduct thesis selection and data extraction. Searching in more online databases and performing
snowballing research will also help to collect relevant contributions further and extend the migration
information repository. In addition, contributions written in other languages, especially German,
can also be investigated to broaden the review scope and retrieve a more general result. Also, more
researchers should be involved in conducting the systematic literature review to eliminate research
bias and enhance the correctness of the review result. The intentions and quality attributes can be
further investigated by referring to other definitions or defining new metrics in addition to ISO25010
[44]. Moreover, the quality of the contribution should be evaluated in a much more formal way
using an explicit and quantifiable equation. Finally, further improvement of the web-based tool
according to the remaining expert’s advice in Table 5.3 is also recommended.

Additional scopes of research can be: (1) performance comparison of different migration ap-
proaches or frameworks based on the same legacy application, including consumed times, costs,
required workers, etc.; (2) finding a solution which can identify new possible contributions about
microservice migration from the online database automatically and periodically, possibly identify-
ing them according to the content of title and abstract, by means of machine learning technology
and word-based analysis algorithms; (3) deeper investigation in quality metrics and intentions is
also suggested, and new attributes should be defined and compared among different approaches,
for instance, portability, compatibility, better team organizations, and so on. Portability and com-
patibility play an essential role nowadays because of the popularization of mobile devices and IoT
devices. It is curious how microservice applications can support these platforms. Since software
development always involves human factors, the influence of team organization on microservice
migration should also be investigated.

75

Appendix A

Contribution Index

This is the contribution index which contains primary contributions after first-time abstract
reading. General information such as title, source database, include, exclude decision and notes is
provided.

Table A.1: Contribution Index

No. Title Database Selection Note
1 From monolith to microservices:

Lessons learned on an industrial migra-
tion to a Web Oriented Architecture
[38]

IEEE Included Full text read

2 A Probabilistic Approach For Obtain-
ing An Optimized Number Of Services
Using Weighted Matrix And Multidi-
mensional Scaling [92]

IEEE Included Full text read

3 Microservices architecture: Case on the
migration of reservation-based parking
system [108]

IEEE Included Full text read

4 Functionality-oriented Microservice
Extraction Based on Execution Trace
Clustering [47]

IEEE Included Full text read

5 Transform Monolith into Microservices
using Docker [91]

IEEE Included Full text read

6 TheArchitect: A Serverless-
Microservices Based High-level Ar-
chitecture Generation Tool [80]

IEEE Excluded Only discussed tool
support for devel-
opment but not mi-
gration

7 Visualization Tool for Designing Mi-
croservices with the Monolith-first Ap-
proach [74]

IEEE Included Full text read

8 A Rule-based System for Automated
Generation of Serverless-Microservices
Architecture [79]

IEEE Excluded Only discussed
development using
tools from No. 6
but not migration

9 Microservices: Migration of a Mission
Critical System [68]

IEEE Included Full text read

Continued on next page

76

APPENDIX A. CONTRIBUTION INDEX

Table A.1 – Continued from previous page
No. Title Database Selection Note
10 “Functional-first” recommendations for

beneficial microservices migration and
integration: Lessons Learned from an
Industrial Experience [39]

IEEE Excluded Not detailed
enough as an
empirical report

11 Extracting Candidates of Microservices
from Monolithic Application Code [49]

IEEE Included Full text read

12 Migrating Legacy Software to Microser-
vices Architecture [50]

IEEE Included Full text read

13 Attributes Assessing the Quality of Mi-
croservices Automatically Decomposed
from Monolithic Applications [23]

IEEE Included Full text read, liter-
ature review as ref-
erence

14 Automatic performance monitoring
and regression testing during the tran-
sition from monolith to microservices
[46]

IEEE Included Full text read

15 From Monolithic Architecture to Mi-
croservices Architecture [26]

IEEE Excluded Solution proposal

16 From Monolith to Microservices: A
Dataflow-Driven Approach [20]

IEEE Excluded Already covered in
previous study[83]

17 Making the Move to Microservice Ar-
chitecture [56]

IEEE Excluded Technique irrele-
vant topic

18 A Framework for Evaluating Contin-
uous Microservice Delivery Strategies
[58]

ACM Excluded Irrelevant about
migration

19 MAGMA: Build Management-based
Generation of Microservice Infrastruc-
tures [106]

ACM Excluded Only discussed tool
support for devel-
opment but not mi-
gration

20 Research on Digital Publishing Appli-
cation System Based on Micro-Service
Architecture [10]

ACM Excluded Irrelevant about
migration

21 An Efficient Algorithm of Context-
Clustered Microservice Discovery [62]

ACM Excluded Irrelevant about
migration

22 Microservice Architecture and Model-
driven Development: Yet Singles, Soon
Married (?) [86]

ACM Excluded Irrelevant about
migration

23 Microservice Architecture in Industrial
Software Delivery on Edge Devices [59]

ACM Excluded Irrelevant about
migration

24 Towards Defining a Microservice Migra-
tion Framework [7]

ACM Excluded Only conceptual
framework defini-
tion methodology
without actual
experience was
proposed

25 Tracking and Controlling Microservice
Dependencies [36]

ACM Excluded Irrelevant about
migration

26 Migrating Web Applications from
Monolithic Structure to Microservices
Architecture [87]

ACM Included Full text read

Continued on next page

77

APPENDIX A. CONTRIBUTION INDEX

Table A.1 – Continued from previous page
No. Title Database Selection Note
27 A Model-driven Workflow for Dis-

tributed Microservice Development [85]
ACM Excluded Irrelevant about

migration
28 Research on Optimization of Course Se-

lection System Based on Micro service
and Dynamic Resource Extension [61]

ACM Excluded Irrelevant about
migration

29 A Microservice Architecture for Online
Mobile App Optimization [111]

ACM Excluded Irrelevant about
migration

30 The Applicability of Palladio for As-
sessing the Quality of Cloud-based Mi-
croservice Architectures [53]

ACM Excluded Irrelevant about
migration

31 A logical architecture design method for
microservices architectures [90]

ACM Included Full text read

32 Availability and Scalability Optimized
Microservice Discovery from Enterprise
Systems [25]

Springer Included Full text read

33 Microservices Identification Through
Interface Analysis [9]

Springer Excluded Already covered in
previous study[33]

34 A Model-Driven Approach Towards
Automatic Migration to Microservices
[13]

Springer Included Full text read

35 Supporting the Decision of Migrating
to Microservices Through Multi-layer
Fuzzy Cognitive Maps [21]

Springer Included Full text read, liter-
ature review as ref-
erence

36 Evaluation of Microservice Architec-
tures: A Metric and Tool-Based Ap-
proach [29]

Springer Excluded Irrelevant about
migration

37 Migration to Microservices: Barriers
and Solutions [37]

Springer Included Full text read, liter-
ature review as ref-
erence

38 Challenges When Moving from Mono-
lith to Microservice Architecture [48]

Springer Excluded Literature review
and irrelevant
about migration

39 Towards a Methodology to Form Mi-
croservices from Monolithic Ones [51]

Springer Included Full text read

40 Translating a Legacy Stack to Mi-
croservices Using a Modernization Fa-
cade with Performance Optimization
for Container Deployments [64]

Springer Included Full text read

41 From Monolith to Cloud Architecture
Using Semi-automated Microservices
Modernization [65]

Springer Included Full text read

42 From a Monolith to a Microservices
Architecture: An Approach Based on
Transactional Contexts [76]

Springer Included Full text read

43 Tool Support for the Migration to Mi-
croservice Architecture: An Industrial
Case Study [82]

Springer Included Full text read

44 Re-architecting OO Software into Mi-
croservices A Quality-Centred Ap-
proach [93]

Springer Included Full text read

Continued on next page

78

APPENDIX A. CONTRIBUTION INDEX

Table A.1 – Continued from previous page
No. Title Database Selection Note
45 An Experience Report from the Migra-

tion of Legacy Software Systems to Mi-
croservice Based Architecture [24]

Springer Included Full text read

46 Strategies Reported in the Literature to
Migrate to Microservices Based Archi-
tecture [95]

Springer Included Full text read, liter-
ature review as ref-
erence

47 A Reconfigurable Microservice-Based
Migration Technique for IoT Systems
[97]

Springer Included Full text read

48 Identifying Microservices Using Func-
tional Decomposition [103]

Springer Included Full text read

49 Microservices: Migration of a Mission
Critical System [28]

Google-Arxiv Excluded Same as No. 9

50 Microservice Decomposition via Static
and Dynamic Analysis of the Monolith
[57]

Springer Included Full text read

51 Microservices migration patterns [8] Google-Willy Excluded Various conceptual
patterns for refer-
ence

52 An adaptive plan-oriented and continu-
ous software migration to cloud in dy-
namic enterprises [73]

Google-Willy Excluded Could migration
rather than micro-
service migration

53 A Design with Mobile Agent Architec-
ture for Refactoring A Monolithic Ser-
vice into Microservices [42]

Google-Others Included Full text read

54 A Model-Driven Approach to Microser-
vice Software Architecture Establish-
ment [101]

Google-Others Excluded Irrelevant about
migration

55 From Monolithic Systems to Microser-
vices: A Decomposition Framework
based on Process Mining [100]

Google-Others Included Full text read

56 A New Decomposition Method for De-
signing Microservices [5]

Google-Others Included Full text read

57 Migration of Software Components to
Microservices: Matching and Synthesis
[22]

Google-Others Included Full text read

58 Use Case Driven Microservices Archi-
tecture Design [66]

Google-Others Included Full text read

59 Decomposition of monolithic web appli-
cation to microservices [110]

Google-Others Excluded Bachelor thesis

60 Using Microservices for Legacy Soft-
ware Modernization [54]

IEEE Included Snowballing

61 Migrating Monolithic Mobile Applica-
tion to Microservice Architecture: An
Experiment Report [31]

IEEE Excluded Snowballing, al-
ready covered in
previous study[83]

79

Appendix B

Evaluation Questionnaire

The following PDF file is the questionnaire designed for web-based tool evaluation. It contains
an introduction about the web-based tool, usage instructions, test tasks and feedback form. In
the questionnaire, some demographic data about test participants were collected for statistical
purpose. The users could follow the instructions and conduct test tasks to search for results.
Several questions were asked about user experience and their satisfaction. Users could sign five-
point likert score to each question and enter some advice in the text field. After they completed
the testing, their questionnaire PDFs were sent back for evaluation.

80

APPENDIX B. EVALUATION QUESTIONNAIRE

81

APPENDIX B. EVALUATION QUESTIONNAIRE

82

APPENDIX B. EVALUATION QUESTIONNAIRE

83

Bibliography

[1] Marathon - a container orchestration platform for mesos and dc/os. https://mesosphere.
github.io/marathon/.

[2] Production-grade container orchestration. http://kubernetes.io/.

[3] Iso / iec 25010 : 2011 systems and software engineering — systems and software quality
requirements and evaluation (square) — system and software quality models. 2013.

[4] Swarm mode overview, Oct 2020. https://docs.docker.com/engine/swarm/.

[5] Omar Al-Debagy and Peter Martinek. A new decomposition method for designing microser-
vices. Periodica Polytechnica Electrical Engineering and Computer Science, 63(4):274–281,
2019. https://pp.bme.hu/eecs/article/view/13925.

[6] Friends Apache. Xampp installers and downloads for apache friends. https://www.
apachefriends.org/index.html.

[7] Florian Auer, Michael Felderer, and Valentina Lenarduzzi. Towards defining a microservice
migration framework. In Proceedings of the 19th International Conference on Agile Software
Development: Companion, XP ’18, New York, NY, USA, 2018. Association for Computing
Machinery. https://doi.org/10.1145/3234152.3234197.

[8] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian A. Tamburri, and Theo
Lynn. Microservices migration patterns. Software: Practice and Experience, 48(11):2019–
2042, 2018. https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2608.

[9] Luciano Baresi, Martin Garriga, and Alan De Renzis. Microservices identification through
interface analysis. In Flavio De Paoli, Stefan Schulte, and Einar Broch Johnsen, editors,
Service-Oriented and Cloud Computing, pages 19–33, Cham, 2017. Springer International
Publishing.

[10] Wang Bin, Yang Shulin, Ren Xuelei, and Wang Guyang. Research on digital publish-
ing application system based on micro-service architecture. In Proceedings of the 2017
VI International Conference on Network, Communication and Computing, ICNCC 2017,
page 140–144, New York, NY, USA, 2017. Association for Computing Machinery. https:
//doi.org/10.1145/3171592.3171613.

[11] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. Journal
of Machine Learning Research 3, page 993–1022, Mar 2003. http://www.cse.cuhk.edu.hk/
irwin.king/ media/presentations/latent dirichlet allocation.pdf.

[12] Tooltips Bootstrap. Tooltips. https://getbootstrap.com/docs/4.0/components/tooltips/.

[13] Antonio Bucchiarone, Kemal Soysal, and Claudio Guidi. A model-driven approach to-
wards automatic migration to microservices. In Jean-Michel Bruel, Manuel Mazzara, and
Bertrand Meyer, editors, Software Engineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment, pages 15–36, Cham, 2020. Springer In-
ternational Publishing.

84

https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/
http://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://pp.bme.hu/eecs/article/view/13925
https://www.apachefriends.org/index.html
https://www.apachefriends.org/index.html
https://doi.org/10.1145/3234152.3234197
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2608
https://doi.org/10.1145/3171592.3171613
https://doi.org/10.1145/3171592.3171613
http://www.cse.cuhk.edu.hk/irwin.king/_media/presentations/latent_dirichlet_allocation.pdf
http://www.cse.cuhk.edu.hk/irwin.king/_media/presentations/latent_dirichlet_allocation.pdf
https://getbootstrap.com/docs/4.0/components/tooltips/

BIBLIOGRAPHY

[14] Alex Buck and Marc Wilson. Strangler pattern - cloud design patterns, Jun 2017. https:
//docs.microsoft.com/en-us/azure/architecture/patterns/strangler.

[15] Jordi CabotI. Comparing domain-driven design with model-
driven engineering, Sep 2017. https://modeling-languages.com/
comparing-domain-driven-design-model-driven-engineering/.

[16] Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto. Using cohesion and
coupling for software remodularization: Is it enough? ACM Trans. Softw. Eng. Methodol.,
25(3), June 2016. https://doi.org/10.1145/2928268.

[17] Luiz Carvalho, Alessandro Garcia, Wesley K. G. Assunção, Rafael de Mello, and Maria Julia
de Lima. Analysis of the criteria adopted in industry to extract microservices. In Proceedings
of the Joint 7th International Workshop on Conducting Empirical Studies in Industry and 6th
International Workshop on Software Engineering Research and Industrial Practice, CESSER-
IP ’19, page 22–29. IEEE Press, 2019. https://doi.org/10.1109/CESSER-IP.2019.00012.

[18] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. The impact of synchronization and
granularity on parallel systems. volume 18[2SI], page 239–248, 01 1990.

[19] L. Chen. Continuous delivery: Huge benefits, but challenges too. IEEE Software, 32(2):50–
54, 2015.

[20] R. Chen, S. Li, and Z. Li. From monolith to microservices: A dataflow-driven approach. In
2017 24th Asia-Pacific Software Engineering Conference (APSEC), pages 466–475, 2017.

[21] Andreas Christoforou, Martin Garriga, Andreas S. Andreou, and Luciano Baresi. Supporting
the decision of migrating to microservices through multi-layer fuzzy cognitive maps. In
Michael Maximilien, Antonio Vallecillo, Jianmin Wang, and Marc Oriol, editors, Service-
Oriented Computing, pages 471–480, Cham, 2017. Springer International Publishing.

[22] Andreas Christoforou, Lambros Odysseos, and Andreas S. Andreou. Migration of software
components to microservices: Matching and synthesis. In ENASE, 2019.

[23] M. Cojocaru, A. Uta, and A. Oprescu. Attributes assessing the quality of microservices auto-
matically decomposed from monolithic applications. In 2019 18th International Symposium
on Parallel and Distributed Computing (ISPDC), pages 84–93, 2019.

[24] Hugo Henrique S. da Silva, Glauco de F. Carneiro, and Miguel P. Monteiro. An experience
report from the migration of legacy software systems to microservice based architecture.
In Shahram Latifi, editor, 16th International Conference on Information Technology-New
Generations (ITNG 2019), pages 183–189, Cham, 2019. Springer International Publishing.

[25] Adambarage Anuruddha Chathuranga De Alwis, Alistair Barros, Colin Fidge, and Artem
Polyvyanyy. Availability and scalability optimized microservice discovery from enterprise sys-
tems. In Hervé Panetto, Christophe Debruyne, Martin Hepp, Dave Lewis, Claudio Agostino
Ardagna, and Robert Meersman, editors, On the Move to Meaningful Internet Systems:
OTM 2019 Conferences, pages 496–514, Cham, 2019. Springer International Publishing.

[26] L. De Lauretis. From monolithic architecture to microservices architecture. In 2019 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW), pages
93–96, 2019.

[27] Docker. Empowering app development for developers, Sep 2020. https://www.docker.com/.

[28] Nicola Dragoni, Schahram Dustdar, Stephan T. Larsen, and Manuel Mazzara. Microservices:
Migration of a mission critical system, 2017.

85

https://docs.microsoft.com/en-us/azure/architecture/patterns/strangler
https://docs.microsoft.com/en-us/azure/architecture/patterns/strangler
https://modeling-languages.com/comparing-domain-driven-design-model-driven-engineering/
https://modeling-languages.com/comparing-domain-driven-design-model-driven-engineering/
https://doi.org/10.1145/2928268
https://doi.org/10.1109/CESSER-IP.2019.00012
https://www.docker.com/

BIBLIOGRAPHY

[29] Thomas Engel, Melanie Langermeier, Bernhard Bauer, and Alexander Hofmann. Evaluation
of microservice architectures: A metric and tool-based approach. In Jan Mendling and
Haralambos Mouratidis, editors, Information Systems in the Big Data Era, pages 74–89,
Cham, 2018. Springer International Publishing.

[30] E. Evans and M. Fowler. Domain-driven Design: Tackling Complexity in the Heart of Soft-
ware. Addison-Wesley, 2004. https://books.google.de/books?id=7dlaMs0SECsC.

[31] C. Fan and S. Ma. Migrating monolithic mobile application to microservice architecture: An
experiment report. In 2017 IEEE International Conference on AI Mobile Services (AIMS),
pages 109–112, 2017.

[32] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points.
Science, 315(5814):972–976, 2007. https://science.sciencemag.org/content/315/5814/972.

[33] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann. From monolith to microservices: A
classification of refactoring approaches. Lecture Notes in Computer Science, page 128–141,
2019. http://dx.doi.org/10.1007/978-3-030-06019-0 10.

[34] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann. Microservices migration in industry:
Intentions, strategies, and challenges. 10 2019.

[35] Andrew Gemino and D. Parker. Use case diagrams in support of use case modeling: Deriving
understanding from the picture. J. Database Manag., 20:1–24, 2009.

[36] Silvia Esparrachiari Ghirotti, Tanya Reilly, and Ashleigh Rentz. Tracking and controlling
microservice dependencies. Commun. ACM, 61(11):98–104, October 2018. https://doi.org/
10.1145/3267118.

[37] Javad Ghofrani and Arezoo Bozorgmehr. Migration to microservices: Barriers and solutions.
In Hector Florez, Marcelo Leon, Jose Maria Diaz-Nafria, and Simone Belli, editors, Applied
Informatics, pages 269–281, Cham, 2019. Springer International Publishing.

[38] J. Gouigoux and D. Tamzalit. From monolith to microservices: Lessons learned on an
industrial migration to a web oriented architecture. In 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), pages 62–65, 2017.

[39] J. GOUIGOUX and D. TAMZALIT. “functional-first” recommendations for beneficial mi-
croservices migration and integration lessons learned from an industrial experience. In 2019
IEEE International Conference on Software Architecture Companion (ICSA-C), pages 182–
186, 2019.

[40] Qiwen Gu. Tschiwengu/masterthesis, Aug 2020. https://github.com/TschiwenGu/
MasterThesis.

[41] Matt Heusser. Refactor vs. rewrite: Deciding what to do with prob-
lem software, May 2020. https://searchapparchitecture.techtarget.com/tip/
Refactor-vs-rewrite-Deciding-what-to-do-with-problem-software.

[42] Masayuki Higashino, Toshiya Kawato, and Takao Kawamura. A design with mobile agent
architecture for refactoring a monolithic service into microservices. 02 2018.

[43] IEEE. About ieee. https://www.ieee.org/about/index.html.

[44] ISO/IEC 25010. ISO/IEC 25010:2011, systems and software engineering — systems and
software quality requirements and evaluation (square) — system and software quality
models, 2011. https://www.bibsonomy.org/bibtex/25951b0998b7eaea346d826fd77110a48/
bcoldewey.

86

https://books.google.de/books?id=7dlaMs0SECsC
https://science.sciencemag.org/content/315/5814/972
http://dx.doi.org/10.1007/978-3-030-06019-0_10
https://doi.org/10.1145/3267118
https://doi.org/10.1145/3267118
https://github.com/TschiwenGu/MasterThesis
https://github.com/TschiwenGu/MasterThesis
https://searchapparchitecture.techtarget.com/tip/Refactor-vs-rewrite-Deciding-what-to-do-with-problem-software
https://searchapparchitecture.techtarget.com/tip/Refactor-vs-rewrite-Deciding-what-to-do-with-problem-software
https://www.ieee.org/about/index.html
https://www.bibsonomy.org/bibtex/25951b0998b7eaea346d826fd77110a48/bcoldewey
https://www.bibsonomy.org/bibtex/25951b0998b7eaea346d826fd77110a48/bcoldewey

BIBLIOGRAPHY

[45] Jagadeesh Jagarlamudi, Hal Daumé, and Raghavendra Udupa. Incorporating lexical priors
into topic models. In Proceedings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics, EACL ’12, page 204–213, USA, 2012. Association
for Computational Linguistics.

[46] A. Janes and B. Russo. Automatic performance monitoring and regression testing during
the transition from monolith to microservices. In 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pages 163–168, 2019.

[47] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai. Functionality-oriented microservice extraction
based on execution trace clustering. In 2018 IEEE International Conference on Web Services
(ICWS), pages 211–218, 2018.

[48] Miika Kalske, Niko Mäkitalo, and Tommi Mikkonen. Challenges when moving from monolith
to microservice architecture. In Irene Garrigós and Manuel Wimmer, editors, Current Trends
in Web Engineering, pages 32–47, Cham, 2018. Springer International Publishing.

[49] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo. Extracting candidates of microservices
from monolithic application code. In 2018 25th Asia-Pacific Software Engineering Conference
(APSEC), pages 571–580, 2018.

[50] J. Kazanavičius and D. Mažeika. Migrating legacy software to microservices architecture. In
2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), pages
1–5, 2019.

[51] Gabor Kecskemeti, Attila Kertesz, and Attila Csaba Marosi. Towards a methodology to form
microservices from monolithic ones. In Frédéric Desprez, Pierre-François Dutot, Christos
Kaklamanis, Loris Marchal, Korbinian Molitorisz, Laura Ricci, Vittorio Scarano, Miguel A.
Vega-Rodŕıguez, Ana Lucia Varbanescu, Sascha Hunold, Stephen L. Scott, Stefan Lankes,
and Josef Weidendorfer, editors, Euro-Par 2016: Parallel Processing Workshops, pages 284–
295, Cham, 2017. Springer International Publishing.

[52] B. Kitchenham and S. Charters. Guidelines for performing systematic literature reviews in
software engineering. 2, 01 2007.

[53] Floriment Klinaku, Dominik Bilgery, and Steffen Becker. The applicability of palladio for
assessing the quality of cloud-based microservice architectures. In Proceedings of the 13th
European Conference on Software Architecture - Volume 2, ECSA ’19, page 34–37, New York,
NY, USA, 2019. Association for Computing Machinery. https://doi.org/10.1145/3344948.
3344961.

[54] H. Knoche and W. Hasselbring. Using microservices for legacy software modernization. IEEE
Software, 35(3):44–49, 2018.

[55] Kenichi Kobayashi, Manabu Kamimura, Koki Kato, Keisuke Yano, and Akihiko Matsuo.
Feature-gathering dependency-based software clustering using dedication and modularity.
2012 28th IEEE International Conference on Software Maintenance (ICSM), Sep 2012. http:
//dx.doi.org/10.1109/ICSM.2012.6405308.

[56] A. Koschel, I. Astrova, and J. Dötterl. Making the move to microservice architecture. In
2017 International Conference on Information Society (i-Society), pages 74–79, 2017.

[57] Alexander Krause, Christian Zirkelbach, Wilhelm Hasselbring, Stephan Lenga, and Dan
Kröger. Microservice decomposition via static and dynamic analysis of the monolith, 2020.

[58] Martin Lehmann and Frode Eika Sandnes. A framework for evaluating continuous microser-
vice delivery strategies. In Proceedings of the Second International Conference on Internet
of Things, Data and Cloud Computing, ICC ’17, New York, NY, USA, 2017. Association for
Computing Machinery. https://doi.org/10.1145/3018896.3018961.

87

https://doi.org/10.1145/3344948.3344961
https://doi.org/10.1145/3344948.3344961
http://dx.doi.org/10.1109/ICSM.2012.6405308
http://dx.doi.org/10.1109/ICSM.2012.6405308
https://doi.org/10.1145/3018896.3018961

BIBLIOGRAPHY

[59] Fei Li and Lars Gelbke. Microservice architecture in industrial software delivery on edge
devices. In Proceedings of the 19th International Conference on Agile Software Development:
Companion, XP ’18, New York, NY, USA, 2018. Association for Computing Machinery.
https://doi.org/10.1145/3234152.3234196.

[60] ACM Digital Library. About the acm digital library. https://dl.acm.org/about.

[61] Pingrong Lin, Zheyuan Lin, and Xiaoquan Shi. Research on optimization of course selection
system based on micro service and dynamic resource extension. In Proceedings of the 2019
4th International Conference on Big Data and Computing, ICBDC 2019, page 115–119,
New York, NY, USA, 2019. Association for Computing Machinery. https://doi.org/10.1145/
3335484.3335546.

[62] Huan Liu, Zhiying Cao, and Xiuguo Zhang. An efficient algorithm of context-clustered
microservice discovery. In Proceedings of the 2nd International Conference on Computer
Science and Application Engineering, CSAE ’18, New York, NY, USA, 2018. Association for
Computing Machinery. https://doi.org/10.1145/3207677.3277949.

[63] R. J. Machado, J. M. Fernandes, P. Monteiro, and H. Rodrigues. Transformation of uml
models for service-oriented software architectures. In 12th IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems (ECBS’05), pages 173–182,
2005.

[64] Prabal Mahanta and Suchin Chouta. Translating a legacy stack to microservices using a mod-
ernization facade with performance optimization for container deployments. In Christophe
Debruyne, Hervé Panetto, Wided Guédria, Peter Bollen, Ioana Ciuciu, George Karabatis,
and Robert Meersman, editors, On the Move to Meaningful Internet Systems: OTM 2019
Workshops, pages 143–154, Cham, 2020. Springer International Publishing.

[65] Salvatore Augusto Maisto, Beniamino Di Martino, and Stefania Nacchia. From monolith to
cloud architecture using semi-automated microservices modernization. In Leonard Barolli,
Peter Hellinckx, and Juggapong Natwichai, editors, Advances on P2P, Parallel, Grid, Cloud
and Internet Computing, pages 638–647, Cham, 2020. Springer International Publishing.

[66] Jeremy M.R. Martin. Use Case Driven Microservices Architecture Design, volume 70 of
Concurrent Systems Engineering Series, page 463–474. IOS Press BV, 2019.

[67] G. Mazlami, J. Cito, and P. Leitner. Extraction of microservices from monolithic software
architectures. In 2017 IEEE International Conference on Web Services (ICWS), pages 524–
531, 2017.

[68] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen, and S. Dustdar. Mi-
croservices: Migration of a mission critical system. IEEE Transactions on Services Comput-
ing, pages 1–1, 2018.

[69] Nisha Gopinath Menon. Why a monolith was the solution to the mi-
croservices problem, Mar 2020. https://www.cognitiveclouds.com/insights/
why-a-monolith-was-the-solution-to-the-microservices-problem/.

[70] Archived Docs Microsoft. Chapter 3: Architectural patterns and styles, Jan
2010. https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658117(v=pandp.10)
?redirectedfrom=MSDN.

[71] Azure Microsoft. Create your azure free account today. https://azure.microsoft.com/en-us/.

[72] Ola Mustafa and Jorge Gomez. Optimizing economics of microservices by planning for
granularity leve. 04 2017.

88

https://doi.org/10.1145/3234152.3234196
https://dl.acm.org/about
https://doi.org/10.1145/3335484.3335546
https://doi.org/10.1145/3335484.3335546
https://doi.org/10.1145/3207677.3277949
https://www.cognitiveclouds.com/insights/why-a-monolith-was-the-solution-to-the-microservices-problem/
https://www.cognitiveclouds.com/insights/why-a-monolith-was-the-solution-to-the-microservices-problem/
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658117(v=pandp.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658117(v=pandp.10)?redirectedfrom=MSDN
https://azure.microsoft.com/en-us/

BIBLIOGRAPHY

[73] Seyyed Yahya Nabavi and Omid Bushehrian. An adaptive plan-oriented and continuous
software migration to cloud in dynamic enterprises. Software: Practice and Experience,
49(9):1365–1378, 2019. https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2725.

[74] R. Nakazawa, T. Ueda, M. Enoki, and H. Horii. Visualization tool for designing microser-
vices with the monolith-first approach. In 2018 IEEE Working Conference on Software
Visualization (VISSOFT), pages 32–42, 2018.

[75] Stephen C. North, Apr 2004. http://graphviz.gitlab.io/pdf/neatoguide.pdf.

[76] Lúıs Nunes, Nuno Santos, and António Rito Silva. From a monolith to a microservices archi-
tecture: An approach based on transactional contexts. In Tomas Bures, Laurence Duchien,
and Paola Inverardi, editors, Software Architecture, pages 37–52, Cham, 2019. Springer In-
ternational Publishing.

[77] L. O’Brien, P. Merson, and L. Bass. Quality attributes for service-oriented architectures. In
International Workshop on Systems Development in SOA Environments (SDSOA’07: ICSE
Workshops 2007), pages 3–3, 2007.

[78] Kasia Pawlaczyk. The pros and cons of rewriting the app from scratch, Sep 2016.
https://www.netguru.com/blog/the-pros-and-cons-of-rewriting-the-app-from-scratch, jour-
nal=Netguru Blog on Project Management.

[79] K. J. P. G. Perera and I. Perera. A rule-based system for automated generation of serverless-
microservices architecture. In 2018 IEEE International Systems Engineering Symposium
(ISSE), pages 1–8, 2018.

[80] K. J. P. G. Perera and I. Perera. Thearchitect: A serverless-microservices based high-level ar-
chitecture generation tool. In 2018 IEEE/ACIS 17th International Conference on Computer
and Information Science (ICIS), pages 204–210, 2018.

[81] Tina Poklepović Peričić and Sarah Tanveer. Why systematic reviews matter, Jul
2019. https://www.elsevier.com/connect/authors-update/why-systematic-reviews-matter?
aaref=https%3A%2F%2Fwww.google.com%2F.

[82] Ilaria Pigazzini, Francesca Arcelli Fontana, and Andrea Maggioni. Tool support for the
migration to microservice architecture: An industrial case study. In Tomas Bures, Laurence
Duchien, and Paola Inverardi, editors, Software Architecture, pages 247–263, Cham, 2019.
Springer International Publishing.

[83] F. Ponce, G. Márquez, and H. Astudillo. Migrating from monolithic architecture to microser-
vices: A rapid review. In 38th International Conference of the Chilean Computer Science
Society (SCCC 2019), 2019.

[84] F. Ponce, G. Márquez, and H. Astudillo. Migrating from monolithic architecture to mi-
croservices: A rapid review. In 2019 38th International Conference of the Chilean Computer
Science Society (SCCC), pages 1–7, 2019.

[85] Florian Rademacher, Jonas Sorgalla, Sabine Sachweh, and Albert Zündorf. A model-driven
workflow for distributed microservice development. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC ’19, page 1260–1262, New York, NY, USA, 2019.
Association for Computing Machinery. https://doi.org/10.1145/3297280.3300182.

[86] Florian Rademacher, Jonas Sorgalla, Philip Nils Wizenty, Sabine Sachweh, and Albert
Zündorf. Microservice architecture and model-driven development: Yet singles, soon married
(?). In Proceedings of the 19th International Conference on Agile Software Development:
Companion, XP ’18, New York, NY, USA, 2018. Association for Computing Machinery.
https://doi.org/10.1145/3234152.3234193.

89

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2725
http://graphviz.gitlab.io/pdf/neatoguide.pdf
https://www.netguru.com/blog/the-pros-and-cons-of-rewriting-the-app-from-scratch
https://www.elsevier.com/connect/authors-update/why-systematic-reviews-matter?aaref=https%3A%2F%2Fwww.google.com%2F
https://www.elsevier.com/connect/authors-update/why-systematic-reviews-matter?aaref=https%3A%2F%2Fwww.google.com%2F
https://doi.org/10.1145/3297280.3300182
https://doi.org/10.1145/3234152.3234193

BIBLIOGRAPHY

[87] Zhongshan Ren, Wei Wang, Guoquan Wu, Chushu Gao, Wei Chen, Jun Wei, and Tao Huang.
Migrating web applications from monolithic structure to microservices architecture. In Pro-
ceedings of the Tenth Asia-Pacific Symposium on Internetware, Internetware ’18, New York,
NY, USA, 2018. Association for Computing Machinery. https://doi.org/10.1145/3275219.
3275230.

[88] Kiana Rostami, Johannes Stammel, Robert Heinrich, and Ralf Reussner. Architecture-based
assessment and planning of change requests. In Proceedings of the 11th International ACM
SIGSOFT Conference on Quality of Software Architectures, QoSA ’15, page 21–30, New York,
NY, USA, 2015. Association for Computing Machinery. https://doi.org/10.1145/2737182.
2737198.

[89] Peter Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. J. Comput. Appl. Math., 20(1):53–65, November 1987. https://doi.org/10.1016/
0377-0427(87)90125-7.

[90] Nuno Santos, Carlos E. Salgado, Francisco Morais, Mónica Melo, Sara Silva, Raquel Martins,
Marco Pereira, Helena Rodrigues, Ricardo J. Machado, Nuno Ferreira, and Manuel Pereira.
A logical architecture design method for microservices architectures. In Proceedings of the
13th European Conference on Software Architecture - Volume 2, ECSA ’19, page 145–151,
New York, NY, USA, 2019. Association for Computing Machinery. https://doi.org/10.1145/
3344948.3344991.

[91] Sarita and S. Sebastian. Transform monolith into microservices using docker. In 2017 Inter-
national Conference on Computing, Communication, Control and Automation (ICCUBEA),
pages 1–5, 2017.

[92] A. Sayara, M. S. Towhid, and M. S. Hossain. A probabilistic approach for obtaining an
optimized number of services using weighted matrix and multidimensional scaling. In 2017
20th International Conference of Computer and Information Technology (ICCIT), pages 1–6,
2017.

[93] Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Christophe Dony, and
Rahina Oumarou Mahamane. Re-architecting oo software into microservices. In Kyriakos
Kritikos, Pierluigi Plebani, and Flavio de Paoli, editors, Service-Oriented and Cloud Com-
puting, pages 65–73, Cham, 2018. Springer International Publishing.

[94] M. Shahin, M. Ali Babar, and L. Zhu. Continuous integration, delivery and deployment: A
systematic review on approaches, tools, challenges and practices. IEEE Access, 5:3909–3943,
2017.

[95] Heleno Cardoso da Silva Filho and Glauco de Figueiredo Carneiro. Strategies reported in
the literature to migrate to microservices based architecture. In Shahram Latifi, editor, 16th
International Conference on Information Technology-New Generations (ITNG 2019), pages
575–580, Cham, 2019. Springer International Publishing.

[96] Springer. About springer. https://www.springer.com/gp/about-springer.

[97] Chang-ai Sun, Jing Wang, Jing Guo, Zhen Wang, and Li Duan. A reconfigurable
microservice-based migration technique for iot systems. In Sami Yangui, Athman Bouguet-
taya, Xiao Xue, Noura Faci, Walid Gaaloul, Qi Yu, Zhangbing Zhou, Nathalie Hernandez,
and Elisa Y. Nakagawa, editors, Service-Oriented Computing – ICSOC 2019 Workshops,
pages 142–155, Cham, 2020. Springer International Publishing.

[98] D. Taibi, F. Auer, Valentina Lenarduzzi, and M. Felderer. From monolithic systems to
microservices: An assessment framework. ArXiv, abs/1909.08933, 2019.

90

https://doi.org/10.1145/3275219.3275230
https://doi.org/10.1145/3275219.3275230
https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1145/3344948.3344991
https://doi.org/10.1145/3344948.3344991
https://www.springer.com/gp/about-springer

BIBLIOGRAPHY

[99] D. Taibi, V. Lenarduzzi, and C. Pahl. Processes, motivations, and issues for migrating to
microservices architectures: An empirical investigation. IEEE Cloud Computing, 4(5):22–32,
2017.

[100] Davide Taibi and Kari Systä. From monolithic systems to microservices: A decomposition
framework based on process mining. 05 2019.

[101] Branko Terzic, Vladimir Dimitrieski, S. Kordic, and I. Lukovic. A model-driven approach to
microservice software architecture establishment. In FedCSIS, 2018.

[102] S. Tyszberowicz and A. Raman. The easycrc tool. In 2007 International Conference on
Software Engineering Advances, page 52, Los Alamitos, CA, USA, aug 2007. IEEE Computer
Society. https://doi.ieeecomputersociety.org/10.1109/ICSEA.2007.72.

[103] Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhiming Liu. Identifying microservices
using functional decomposition. In Xinyu Feng, Markus Müller-Olm, and Zijiang Yang,
editors, Dependable Software Engineering. Theories, Tools, and Applications, pages 50–65,
Cham, 2018. Springer International Publishing.

[104] w3schools. How to - sort a table. https://www.w3schools.com/howto/howto js sort table.
asp.

[105] John Wade. Greenfield vs. brownfield software development, Sep 2018. https://synoptek.
com/insights/it-blogs/greenfield-vs-brownfield-software-development/.

[106] Philip Wizenty, Jonas Sorgalla, Florian Rademacher, and Sabine Sachweh. Magma: Build
management-based generation of microservice infrastructures. In Proceedings of the 11th
European Conference on Software Architecture: Companion Proceedings, ECSA ’17, page
61–65, New York, NY, USA, 2017. Association for Computing Machinery. https://doi.org/
10.1145/3129790.3129821.

[107] K. Yano and A. Matsuo. Data access visualization for legacy application maintenance. In
2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 546–550, 2017.

[108] P. Yugopuspito, F. Panduwinata, and S. Sutrisno. Microservices architecture: Case on the
migration of reservation-based parking system. In 2017 IEEE 17th International Conference
on Communication Technology (ICCT), pages 1827–1831, 2017.

[109] P. Yugopuspito, F. Panduwinata, and S. Sutrisno. Microservices architecture: Case on the
migration of reservation-based parking system. In 2017 IEEE 17th International Conference
on Communication Technology (ICCT), pages 1827–1831, 2017.

[110] Mikulas Zaymus. Decomposition of monolithic web application to microservices. PhD thesis,
2017. https://www.theseus.fi/handle/10024/131110.

[111] Yixue Zhao and Nenad Medvidovic. A microservice architecture for online mobile app opti-
mization. In Proceedings of the 6th International Conference on Mobile Software Engineering
and Systems, MOBILESoft ’19, page 45–49. IEEE Press, 2019.

91

https://doi.ieeecomputersociety.org/10.1109/ICSEA.2007.72
https://www.w3schools.com/howto/howto_js_sort_table.asp
https://www.w3schools.com/howto/howto_js_sort_table.asp
https://synoptek.com/insights/it-blogs/greenfield-vs-brownfield-software-development/
https://synoptek.com/insights/it-blogs/greenfield-vs-brownfield-software-development/
https://doi.org/10.1145/3129790.3129821
https://doi.org/10.1145/3129790.3129821
https://www.theseus.fi/handle/10024/131110

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	Introduction
	Background and Related Works
	Background
	Monolithic Application
	Microservice Architecture
	Architectural Design Concepts

	Existing Migration Approaches
	Related Work

	Systematic Literature Review
	Research Methodology
	Research Protocol Definition
	Contribution Search
	Contribution Reading, Data Extraction and Quality Assessment
	Contribution Selection
	Data Synthesis and Framework Definition
	Gantt Chart

	Results and Analysis of Systematic Literature Review
	Result of Contribution Searching
	Analysis of Contributions
	Required Inputs
	Expected Output
	Technique Type
	Decomposition Strategy
	Process Strategy
	Applicability
	Validation Type
	Tool Support
	Intentions or Quality Metrics Concerned

	Contribution Selection
	Data Synthesis and Framework Definition

	Web-based Tool Design and Implementation
	Use Case Diagram
	Functional Requirements
	User Interface
	Database Structure
	Programming and Class Diagram
	Microsoft Azure Deployment
	Tool Evaluation
	Target Test Participants
	Test Task and Questionnaire
	Evaluation Result and Statistics
	Suggested Improvements

	Discussion
	Threats to Validity
	Conclusion
	Appendix Contribution Index
	Appendix Evaluation Questionnaire

