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Abstract

This thesis examines the application of physics-informed neural network to solve free-surface
flow problems modeled with the shallow water equations. Physics-informed neural network allow
training of a surrogate model that resembles the latent solution of an underlying partial differential
equation, without using any training data sampled from experiments or numerical simulations. The
shallow water equations are an approximation of the Navier stokes equations and serve as a model
to many environmental flow problems including dam-breaks, floods, and tsunami propagation. The
equations form a non-linear system of hyperbolic partial differential equations that describe the
evolution of a fluid’s depth and momentum through time. Contrary to other models for free-surface
flow, where the exact location of the free surface is only given implicitly as an isosurface and
needs reconstruction, here, the depth directly yields its location. One characteristic of the shallow
water equations is the formation of steep wavefronts and discontinuities. The thesis examines four
state-of-the-art techniques to improve accuracy and training speed and discusses their behavior
on three initial value problems. These include the famous idealized dam-break and two depth
perturbations, one above a flat and one above varying bathymetry. For each of the scenarios,
an inspection of suitable network architectures was considered. Additionally, three different
formulations of the physics-informed neural network are presented and tested, where one approach
implicitly fulfills the mass conservation and thus eliminates one equation of the system. The results
show, that it is possible to train a surrogate model with a relative L? error of less than 10~* compared
to a solution computed by a high-resolution numerical solver in case of a moderate steepening
of wavefronts. A relative error close to 1073 can be achieved for the dam break problem, where
the initial conditions are discontinuous, and the solution contains shocks that propagate over time.
Additionally, it shows that training with bathymetry is possible and the learned depth approximates
the varying underground without any noticeable difference.
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1 Introduction

1.1 Motivation

Artificial neural networks (ANNs) have reached many scientific disciplines ranging from classification
and generative tasks in well-known fields like computer vision and natural language processing to
recent applications in material science [SMBM19] and protein folding [JEP+20]. One reason for
the splendid success of ANNs stems from their ability to apporixmate a large space of nonlinear
functions. This is essential to solving many real-world problems since they often require building a
complex model to describe the relationship between variables of interest accurately. An example is
the classification of human faces based on an input image which results in a highly nonlinear decision
boundary in the space of all RGB-images. Some network architectures, e.g. the feed-forward
architecture fulfill the universal function approximation theorem. In short, this means that there
exists an approximation for any continuous function over the Euclidean space. Recently, Raissi
et al. [RPK19] exploited this property and invented a framework for solving forward and inverse
problems involving partial differential equations (PDEs) using ANNSs. In this case, the forward
problem amounts to solving a PDE with given initial and boundary conditions. The inverse problem
involves inferring parameters of a PDE by observing measurements in the spatio-temporal domain.
Since PDEs are used to describe many processes in nature, the contribution has applications in
many scientific fields, e.g. natural sciences and engineering [RYK18; WWW20; WZ20]. This work
concentrates on the forward problem and investigates the framework for solving free-surface flow
problems described by the 1D shallow water equations (SWE).

Free-surface flow is a branch in fluid mechanics that focuses on the interface between two or more
fluids that strongly differ in density, e.g. between water and air. The field of fluid mechanics is
dominated by the Navier Stokes equations which is a system of PDEs that describe the behavior
of fluids as an interplay of quantities like velocity, pressure, and temperature. The equations are
known to be hard to solve, and over the years, the equations were simplified and specialized for,
typically idealized, use cases. One such simplification is the shallow water equations, which is a
nonlinear, hyperoblic type of PDEs that describes the movement of one or more free surfaces in
scenarios where the horizontal scale is much larger than the vertical scale. Typical use cases range
from tsunami forecasting to simulations of dam breaks and floods. They are typically solved with
classical numerical methods, as analytical solutions only exist for limited cases.

Numerical methods typically fall under one of three types: finite elements, finite volumes, and
finite differences, that all involve a discretization of the considered domain. That means they only
compute the solution at discrete point locations, e.g. wind speed, temperature, and pressure every
ten kilometers for a global weather forecast. For gathering values in between, interpolation is
used, which rarely obeys the rules of the underlying PDE. A suitable discretization is crucial to
get representative results. Typically, the discretization process is highly problem dependent and
often involves manual inspection and adaption. Instead, the discretization process turns into a less
restrictive sampling strategy when training an ANN to solve the PDE. The result is an analytical
approximation to the PDE’s latent solution which naturally provides a result at any point in the
spatio-temporal domain without the need to interpolate. Contrary to classical machine learning
tasks, no careful preprocessing of labeled training data is necessary, as the information mainly
comes from the PDE itself and is enforced undisturbedly via a unique loss term. Here, the training
data typically contains few labeled data of sampled initial and boundary conditions and many
points in the spatio-temporal domain to enforce the rules of the PDE. Apart from its benefits, the
main practical drawback is that learning the PDE is currently more time consuming compared
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1.2 Outline of the Thesis

to solving it with well established and highly optimized numerical methods. However, recently
many techniques were developed to speed up the convergence process [JKK19; JKK20a; MB20;
SMB+20; WTP20; WYP20; WZ20]. Where some are investigated throghout this thesis to improve
the achieved results.

To my best knowledge, solutions to the SWE within the PINN framework have not yet been
presented. The only work similar to mine was recently published by Wessels et al. [WWW20]
which considers the solution of the implicit Euler equations in an updated Lagrangian formulation.
They use the PINN as a spatial ansatz function before Runge Kutta stages, which was previously
described by Raissi et al. [RPK19], and therefore solve the equations in a stepwise approach. As
their formulation considers individual fluid particles, the free surface is defined implicitly, and a
reconstruction of its exact location is possible. A method that combines the SWE with neuronal
networks to create a surrogate model has been proposed recently by Zhang et al. [ZZX+20]. They
also use a stepwise approach to solve the 2D SWE with the help of a convolutional neural network.
However, their training is solely based on numerical simulation results and does not include the
laws of the underlying PDE. Also, their architecture only computes the solution at discrete points.

1.2 Outline of the Thesis

The thesis is divided into six chapters, where Chapter 2 introduces the shallow water equations in
three sections. The first section gives a brief overview of modeling assumptions and resulting fields
of applications. The following section presents the equations and describes general characteristics.
The third section concerns classical methods to compute solutions and gives a brief overview of the
methods used to evaluate the results achieved in this work.

Chapter 3 presents the framework of PINNs and lies the foundation for the methods that were used
to solve the SWE. The chapter is divided into three sections, where the first section provides an
introduction to ANNs with a focus on feed-forward networks. The second Section considers the
training procedure of typical regression problems and describes the base gradient descent method
along with a broadly used optimization. The last section builds on the previous two and defines
the PINN framework and its training procedure similar to how it was originally described by Raissi
et al. [RPK19].

Chapter 4 investigates the application of the PINN to the SWE. General network and training
assumptions are defined in the first section. The following section presents four optimization
methods that were examined in this work to improve the accuracy and training speed of the learned
models.

Chapter 5 presents the results achieved with the methods described in the previous chapter after
solving three initial value problems with different levels of complexity. The problems involve an
initial depth perturbation over a flat bathymetry, a dam break scenario, and a depth perturbation
with varying bathymetry.

Chapter 6 concludes the work and shows prospects for future work.
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2 Shallow Water Equations

This chapter presents the SWE along with their properties and classical solution methods. The
first section motivates the equations and provides examples for areas of application. The following
section introduces the equations for the 1D case in the conservative and non-conservative form
and explains the terms and modeling assumptions. The last section concentrates on solving the
equations and provides an overview of numerical and analytical methods.

2.1 Basic Principles and Applications

Shallow-water flow is part of the broad field of fluid mechanics, which includes the theory of fluid
statics and fluid dynamics. The dominating equations in this field are the three-dimensional Navier
Stokes equations. They are derived from the conservations of mass and momentum and can describe
all types of fluids in terms of fundamental properties, e.g. velocity, pressure, and temperature. While
the classical Navier Stokes equations consider the flow inside a single fluid medium, the branch
of free-surface flows focuses on the interface between fluids. If the difference in density between
two fluids is high enough, an interface emerges and forms the free surface. Typical examples are
between a gas and a fluid such as water and air, but also other combinations are possible and are
conceptually similar. Free surfaces appear on different scales. On a smaller scale, air entrainments,
i.e. the creation of bubbles and foaming can be observed. On a larger scale, the free surface forms
the surface of rivers, lakes, and oceans. However, solving these equations with the same fidelity
on arbitrary scales is infeasible due to the computational complexity. In many cases the benefit
of the high precision does not justify the computational effort. Therefore the equations have been
simplified, and tailored to idealized cases.

The shallow water equations (SWE) are one of such simplifications [Cli] and consider flows where
the horizontal scale of the fluid medium is much larger than the vertical scale, i.e. the depth
of the fluid beneath the free surface. This restriction allows two simplifications to the original
three-dimensional model [Kat19]: (1) Observations show, that particle orbits under a graviation
wave transform from circles to horizontally stretched ellipses. Details in the vertical velocity
can therefore be neglected and integrated over the depth. In the SWE they become the vertical
movement of the free surface. (2) Due to the small depth, it can be shown, that the pressure
gradient is almost hydrostatic, i.e. increases linearly with depth. That suggests that the only driving
force is the gravitation, and the horizontal velocity is assumed the same for a single column of
fluid. The free surface is approximated by a single, infinitely thin surface, that is described by a
scalar-valued heightfield. A downside of this representation is that it does not allow two values
at the same location, and therefore air entrainment and overhangs i.e. braking waves can not be
modeled. Contrary to what the term shallow suggests, such flows do not only appear on a smaller
scale like streams, ponds, and puddles. Also, larger, up to global scale phenomenons can be modeled
successfully with the SWE.

Typical fields of applications are:

* Tsunami Propagation — Tsunamis are ocean waves with wavelengths of several hundred
kilometers that can create severe damage to infrastructure and population around coast-
lines [LPF+13]. The main driving sources are earthquakes on the seafloor, which lead to
disturbance of the water surface that propagates due to the gravitational force. Models have
been proposed based on the SWE [MS10] and are used in simulation software today [Cla20;
RDO8].

18



2.2 The 1D Shallow Water Equations

» Storm Surges — Extreme weather phenomenons such as hurricanes, cyclones, or typhoons
produce strong winds, which cause long and large waves traveling to coastlines. The
consequences are flooding of urban areas and erosions of shores. Due to climate change,
these hazards tend to increase. The SWE allow modeling and forecasting [WLB+92] of such
events, which can help to introduce suitable counter measurements.

* Dam Breaks — Dams are used as barriers to prevent floods and serve as water reservoirs for
human consumption, and electrical energy, i.e. hydropower. Dam failure can cause a major
disaster, ranging from damaged buildings to endangerment of human lives [Ger05]. While
there are analytical solutions for idealized cases, numerical methods based on the SWE offer
a more general application spectrum [Pen12].

2.2 The 1D Shallow Water Equations

Many realistic problems require to solve the 2D shallow water equations and cannot be simplified
to a single spatial dimension. However, the experience shows that due to high frequencies, which
emerge when a wave forms a steep front and tends to brake or during shock propagations in case of
a dam break, even the 1D equations are not trivial to solve. Therefore in this thesis 2D problems are
not considered.

The 1D shallow water equations are a hyperbolic non-linear coupled system of PDE. Their
conservative form is as follows:

oh Ohu
-5 - 7 2.1
ot Ox 21
Ohu Ohu® + gh/2 ob
- _ — oh— 2.2
o1 ox 8% 2.2)

Expanding all spatial and temporal derivatives and using the first equation to replace % in the

second equation, yields the following non-conservative form:

oh ou oh

E = —h% — ua (23)
ou ou oh db
E = —Ma—x - g(g + a—x) (24)

The depth of the fluid is denoted by % = h(x, t) and measures the distance from the impermeable
bathymetry (seafloor) b = b(x) to the free surface at a specific locationx € Q c Rattimer € [0,T].
It is worth mentioning that the term % vanishes and simplifies the equations, when the bathymetry
is flat. The horizontal velocity at the same location is given by u = u(x, t). In this representation,
the only driving force is the gravitation, here denoted by g. Modeling other physical quantities
such as viscosity, friction, or Coriolis force is also possible but not considered in this case. For
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2 Shallow Water Equations
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Figure 2.1: Illustration of the variables described in the shallow water equations.

better understanding, Figure 2.1 illustrates an example. Here, equations 2.1 and 2.3 derive from the
conservation of mass and equations 2.2 and 2.4 from the conservations of momentum respectively.
The derivation from the conservation laws is not part of this work. For a detailed investigation,
the reader is referred to the great thesis of Jhon Jakeman [Jak06]; or for a broader view, Nikolaos
Katopodes derives the equations in chapter 4 of his book [Kat19], including additional modeled
properties.

A property of the SWE is the steepening of the wavefront that emerges when the wave propagates.
In reality, this effect can typically be observed when the wave approaches the shore. Because of the
increasing bathymetry, water particles at the wavefront near the bottom slow down while particles
closer to the top of the wave keep their horizontal speed. This allows the crest of the wave to
catch up with the wavefront and form the steep face of the wave. The deceleration of the lower
particles also induces a vertical motion which increases the height of the wave and decreases its
wavelength. In reality, this effect leads to the breaking of the wave, which can not be described
by the SWE. Although the SWE model the steepening of the wavefront in case of an increasing
bathymetry, eventually all waves form a steep front independent of the bottom profile. This behavior
can be observed in Figure 2.2 and is a weak point of the model and does not reflect observations in
reality.

Considering the conservative form of the equations it shows, that the horizontal velocity is not
propagated directly through time. Instead, the time derivative of the momentum, sometimes also
denoted by discharge, expressed by hu, is concerned, which measures the flow rate of fluid passing
a point. The reason for this is that velocity is not a conserved quantity regarding the conservation
laws. A problem with non-conservative equations shows during discretization when a quantity is
discontinuous—e.g. this is the case for the dam break problem as we will see later in Section 5.2. To
make this more clear, consider the spatial derivative in equation 2.3 hg—;. Approximating this term
with finite differences requires to pick at least two u’s and one # at locations of the discretization.
For example when using forward differences the approximation is /; ””Al—;“‘ While the choice of
u;y1 and u; is straight forward, the selection of /; is not and leads to different results, especially
when the supporting points of u; and u;, are adjacent to the discontinuity.
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2.3 Solutions to the 1D Shallow Water Equations
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Figure 2.2: Evolution of an initial depth perturbation at the center of the domain over a flat
bathymetry. The SWE are solved with the Pyclaw [KMA+12] software, where the
gravity g is set to 9.8. The left column shows the water depth % and the right column
the momentum #Au.

2.3 Solutions to the 1D Shallow Water Equations

The non-linear and hyperbolic characteristics of the SWE only allow analytical solution for idealized
cases and thus numerical treatment is required. For an overview of analytical solutions, see
[DLK+13]. The broad range of proposed numerical methods covers finite volume methods [ZR03],
finite elements methods [BC96], and spectral methods [SK11]. Commonly, these methods are
optimized to withstand shocks which can be present at beginning of a simulation, for example,
when the initial condition contains a discontinuity (e.g. in case of a dam break). Or later, when
the wavefront steepens as described in the previous section. Other enhancements consider the
dampening of oscillations which are typical for higher order methods and the avoidance of entropy
violation. Jakeman [Jak(06] provides an overview of methods in his thesis. In chapter 4, he describes
the principles of the finite volumes and finite elements method regarding the SWE and outlines
improvements to these which concern the forementioned optimizations.
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2 Shallow Water Equations

The numerical solutions concerned in this work serve as validation data during the training of the
ANN-based model described in section 3.2.1. Since I chose Python in this work because of its
simple access to modern deep learning libraries and great plotting capabilities, it seemed natural to
search for a framework that provides solutions to the SWE as well in that language. After inspecting
available frameworks, including mattflow [Mat], ANUGA [RCO1] and pyswashes [DLK+13], the
Clawpack (Conservation Law Package) [Cla20] turned out to be most appropriate because of its
good documentation and the possibility to model various 1D and 2D examples; in contrast, the first
two only support 2D and the latter is limited to idealized analytical solutions. Clawpack provides a
collection of finite volume methods for linear and non-linear hyperbolic systems of conservation
laws for the Python and Fortran programming languages. The methods used in this work are part of
the Pyclaw software [KMA+12], which is part of Clawpack and provides a more Python related
interface (other parts of the software require to implement portions in Fortran) and parallelism
that can scale up to thousands of nodes. The examples presented in this work are of two kinds:
Those which incorporate a varying bathymetry and those where the bathymetry is assumed to be
flat. For each of the two types, Pyclaw provides a different numerical treatment. The following
briefly describes their underlying concept.

For solving the SWE, Clawpack relies on Godunov’s method for non-linear conservation
laws [LeV02]. The originally first-order finite volume scheme can handle shock waves in an
“upwind” manner, even for systems of equations where information propagates in both directions.
The idea is to approximate each cell of the finite volume discretization by a constant-valued
function that returns the cell’s average at each timestep. To compute the solution at a following
timestep it is necessary to compute the fluxes at each cell interface, i.e. the right-hand sides of
Equations 2.1 and 2.2. The Godunov method formulates each cell interface as a Riemann problem
(a generalization of the dam break problem, see section 5.2) that can be solved analytically, even if
the equations are non-linear (via the method of characteristics). The result is averaged for each cell
and forms the solution of the next timestep. As the exact solution to the Riemann problem typically
is very time-consuming, approximations were invented to speed up the solution process. One such
approximation is the HLLE method [TTO09], which I applied for cases without bathymetry in this
work, as suggested in the Clawpack documentation [Cla]. Similarly, I chose a second-order-accurate
solver that uses the f-wave approach [LGO8] for cases with bathymetry. The technical details would
go beyond this thesis, and the reader is referred to the given literature. In all presented scenarios, I
chose a spatial discretization with 500 cells. The number of waves is set to 2 in cases of the f-wave
approach.
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3 Pysics Informed Neural Networks

This chapter introduces physics-informed neural networks (PINNs) and sets the foundations of how
they can be used to solve the SWE. Before going into details, a brief introduction to artificial neural
networks (ANNSs) in the first section will provide the basis of the following methods and explain
general terminologies that appear throughout the work. The subsequent section describes how
PINNSs can solve PDEs of general form.

3.1 Artificial Neural Networks

In today’s machine learning, ANNs have established themselves, besides other algorithms, as
a useful and versatile tool. While their invention reaches back to the year 1958 [Ros58], it
was a long way until they could show off their full potential. Many theoretical developments
including the invention of the backpropagation algorithm [Wer75], described in Section 3.2.2,
and the discovery of problem-specific architectures [HS97; KSH17] were made to improve their
training and generalization performance. However, a dominant factor for their breakthrough results
increasing processing power, especially development of fast GPUs, and the availability of large
datasets necessary to cover the example space of many relevant problems during training, e.g.
classification of images or natural speech and language. Also, the easy availability of open-source
software frameworks, e.g. PyTorch [PGM+19] and TensorFlow [ABC+16] which allow fast and
efficient development of new models, provide a straightforward way for applications in industry and
research.

As the name suggests, the inspiration for ANNs originally came from the biological brain, however
the functionality is different in many ways. Like its natural counterpart, it is a collection of connected
units, called artificial neurons; see figure 3.1. However, where a natural neuron receives signals
from other neurons through its dendrites and sends signals to other neurons connected to its axon
based on a complex chemical process, artificial neurons only vaguely imitate that behavior. An
artificial neuron computes a weighted sum of its inputs xi, . . ., x,, and weights wy, ..., w, and an
offset value b called bias. Afterwards, it applies a non-linear function o, called activation function,
to this sum and returns its outcome, here denoted by a:

a:= O'(Z Wix; + b) =o(w'x+b) 3.1
i=1

The activation function is there for two reasons: first, it normalizes the output and prevents a
continuous increase or decrease when the outcomes propagate from one neuron to another inside the
network. Second, its non-linearity is the key to the approximation quality. Omitting the activation
function reduces the network to a linear function over the space of its inputs, which discards the
property of a general function approximator and drastically limits its applications. Typical activation
functions are the hyperbolic tangent function tanh or the sigmoid function, a generalization of the
logistic function.

Over time, many network architectures emerged for various use cases. The most popular and only
one concerned in this work is the fully connected feed-forward network that was first introduced by
Rosenblatt [Ros58]. Figure 3.2 provides a visual representation. It follows a layer-wise approach,
where neurons arrange in multiple layers. The number of layers minus one describes the depth.
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3.2 Training

a )
X1 AN W1 Activation Function

Figure 3.1: A single artificial neuron

Because of the full connection property, each neuron in layer / connects with all neurons in the
subsequent layer / + 1. The layers classify into three classes: the input layer, hidden layer, and
output layer. We can think of the input layer as constant output neurons that solely serve as a
placeholder to feed the inputs of the network to the neurons in the first hidden layer. The term
hidden describes that it is commonly not trivial what exactly neurons in this layer learn or represent.
However, it is proven that the complexity and approximation capability increases with the number
of layers in this class [KB20; KL.19]. The number of neurons in the hidden layer denotes the width
of the network. The output layer yields the outcome of the network and depending on the desired
output range, its neurons usually omit the activation function. So, for an input x € R" and output
y € R™ the feed-forward network fy of depth k and width p describes the following function:

fox)=y=0cWro(...c(W?ec(W'x +b") +b%) +...)+b") (3.2)

ak=1)

Here W! € RP*" and b! € R” denote the matrices which contain all weights and the biases of
neurons in the first layer. Similarly, W! € RP*P and b’ € R” denote the weights and biases of
neurons in the hidden layers 2 < [ < k — 1. And W* € R"™ P and b* € R™ contain the weights
and biases of the neurons in the output layer. In contrast to the definition of the neuron, here, the
activation function o operates element-wise. The output of the layer / is denoted by a’ and we
define a° := x. In terms of regression and classification problems, the outcome y is often called the
network’s prediction. The parameters of the network 8 = (W', ..., Wk, b!, ... b¥) are all weights
and biases of all artificial neurons in all layers. Depending on their adjustments, the network alters
the mapping of input to output. The training process, described in the next section, exploits that
flexibility and steers it to fulfill the training goal.

3.2 Training

3.2.1 Loss Function and Minimization
This section focuses primarily on solving typical regression problems. We will later see that

solving a PDE with PINNs also falls into this category. A regression problem generally concerns
finding a function that can accurately describe the relationship between a dependent variable and an
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> Input Layer > Hidden Layers Output Layer

Figure 3.2: Illustration of a feed-forward network

independent one. Consider a labeled dataset {(x, y")}iD:1 where the data points x' € R" represent
the independent variable and corresponding labels y’ € R” denote the dependent variable. Here,
we concentrate on the feed-forward network fy : R" — R™ with its parameters 6 as the describing
function. A common method of solving such problems is to reframe them as optimization problems.
In this setting, a positive and scalar-valued function called objective function, often also denoted by
loss function or cost function ¥ is used to penalize deviations of the describing function from the
dataset. The best describing function is then minimizing ¥ with respect to the network parameters.
The optimal parameter 6* can thus be expressed by:

D
0* = arg;nin Y(h) = arg;nin % ; W (f(x0),y") (3.3)

Here  is also a nonnegative scalar function that measures the error between the network’s outcome
f(x';0) to a given data point x' and its true label y’. In contrast to equation 3.2, where the
parameters are fixed, here the network f(x; 6) additionally depends on 6. Evaluating the network
for a set of parameters and computing the loss function is called computing the forward pass. The
main loss function that is used in this work is the mean squared error (MSE) loss, where iy measures
the error in the squared L? norm || - ||§.

The minimization of the loss function, is called training or often vaguely described as learning.
Typically, the dataset used to train the network, denoted by training data is just a small sample from
the whole range of possible inputs. To measure the generalization performance of the learned model,
typically a different, non overlapping dataset called validation data is sampled from the inputs space.
The error measured by the loss function on the training data is called training error and similarly
the error on the validation data is called validation error. The minimization can be achieved by
many optimization algorithms. Many of these algorithms rely on a gradient descent based approach.
Today many advanced versions of this procedure are used. For an overview of gradient descent
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-n

Figure 3.3: Illustration of the gradient descent method for a one dimensional parameter.

based methods, see [Rud16]. The following describes the standard gradient descent method, also
known as batch gradient descent method. Subsequently, an improved variant, the widely applied
adaptive moment estimation method (ADAM) [KB17] is presented.

Standard gradient descent is an iterative method. Starting from an initial parameter configuration,
each iteration updates the parameters of the network in direction of the steepest descent—which is
the negative gradient. The method reads:

09 <« (initial guess (3.4)
0, = 60,1 —nVe¥(6;-1)

Figure 3.3 illustrates the procedure for a one-dimensional parameter. Here, 7 denotes the learning
rate, which scales the step size in direction of the steepest descent. A parameter, such as 7, that is
not optimized during the training process is called hyperparameter. The learning rate has a large
impact on the convergence of the algorithm. If it is too small, the algorithm converges slowly and
may get stuck in a local minimum. However, if it is too large, it may skip the global minimum and
potentially even diverge. Especially with ANNs as modeling functions, the loss function is often
non-convex with respect to the network parameters and has many local minima.

Through the years, the deep learning community presented improvements to the standard gradient
descent method [DHS11; Hin; RHW86]. That also includes the ubiquitous stochastic and memory
saving variants, i.e. stochastic gradient descent and mini-batch stochastic gradient descent. However,
the models presented in this work can be trained on a single consumer graphics card, and thus these
methods are not further described here.
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In the year 2014, Kingma et al. [KB17] presented ADAM, which is a combination of two techniques,
the RMSProp algorithm [Hin], a memory-efficient version of the former Rprop algorithm [RB92]
and the gradient descent with momentum first presented by Rumelhart et al. [RHWS86]. In each step
t, ADAM uses an exponentially decaying average of the first moments m, and second moments v
of the gradient g, := VW¥(8") to update the parameters. The update rule reads:

my = Prome+(1-01)- g

Ve = ﬁZ'Vt—l"'(l_ﬁZ)'gzz

= (3.5)
vy = 11}%;

0 = 01— # d

Throughout this work, the hyperparameters are fixed to their suggested values: §; = 0.9, 5, = 0.999
and € = 1078, As in the previous method 3.4, 5 denotes the learning rate. However, because
of the scaling with the inverse square root of the averaged second moments V,, it adapts to each
parameter individually. Intuitively, ADAM behaves like a heavy ball with friction. Because the first
momentum, i.e. the running average of the gradient ri1; defines the step direction and the unscaled
step size, it tends to skip narrow, local minima of the loss function and prefers flat ones instead.

3.2.2 Backpropagation and Automatic Differentiation

A key element in the update step of the minimization algorithms presented above is the computation
of the gradient with respect to the network parameters. To derive the gradients, a successive
application of the chain rule is necessary. Similar to the evaluation of the network in equation 3.2, a
recursive pattern reveals. If expressed as an algorithm, it is known as the backpropagation algorithm
[Wer75]. Including the weight update during a single cycle of an optimization algorithm, the
method—in contrast to the forward pass—is called the backward pass.

Implementing the backpropagation by hand can be tedious, error prone and requires a reimplementa-
tion for every other network architecture, e.g. when replacing the activation function. To overcome
this inconvenience, many popular machine-learning frameworks, e.g. TensorFlow [ABC+16] and
PyTorch [PGM+19] introduced a technique called automatic differentiation. It allows to instruct
the framework to track computations that involve specified variables e.g. the network parameters.
Behind the scenes, the framework then generates, what is called a computation graph. The leafs
of this graph comprise the variables and the nodes are operations. By applying the chain rule
successively, the framework can then compute the gradients by itself, provided that the derivation
of each node is well-defined. If this is not the case, it can be manually proved by the user. However,
typically this is the case for all common operations and activation functions e.g. tanh.
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3.3 Physics Informed Neural Networks

Before ANNs were applied as physics-informed learning machines, early approaches employed
Gaussian process regression [Ras04] for linear [Owh15; RPK17a; RPK17b], and non-linear
PDEs [RK18; RPK18]. However, in the non-linear case, these methods showed severe limitations
concerning the accuracy and approximation capacity of the resulting models.

The central concept of PINNSs is to include prior information, given by the PDE, during the training
procedure of the ANN-based model. This is achieved via a specially designed loss function that
penalizes the network’s deviation from the rules described by the PDE. Raissi et al. [RPK19]
originally described his framework for two types of problems: data-driven solution and data-driven
discovery. The following introduces the first problem, which concerns inferring a model for the
latent solution of the PDE.

Consider a general nonlinear PDE with its boundary and initial condition:

Nylu(x,t)] =0, xeQ,te[0,T]
Bylu(x,t)] =0, xe€dQ,te|0,T] (3.6)
u(x,0) =up(x), xe€aiQ

Here, x denotes the spatial component, with Q ¢ R and ¢ is time. The latent solution function of
the PDE is u(x, ) and N, ; is a spatio-temporal, non-linear differential operator applied on u. In
contrast to the original work by Raissi et al., who only consider Dirichlet type boundary conditions,
we introduce a spatial differenial B, operator to allow also Neumann or higher-order boundary
conditions. The function uy(x) imposes the initial conditions. If we approximate the solution
function u by an artificial neural network (ANN) iig with parameters 6 and define the right-hand
side of the PDE by

fo(x,t) = Ny ¢[iig(x,1)], (3.7)

then fy(x,t) is called a physics-informed neural network (PINN). It is worth mentioning that it
shares the same parameters as iig. To ensure that the approximating solution ii ¢ fulfills the PDE
and its initial and boundary conditions imposed by equation 3.6, the accumulation of three distinct
loss functions ¥ 7 (0), Wo(6) and W5 (6) form the loss function W(6) during the training phase:

lP(Q) = (uf‘Pf (9) + a)O‘PO(Q) + wb‘Pb(G) (38)

Here, ¥ ¢ (6) denotes the PDE loss, which penalizes the deviation of the PINN from zero. The initial
loss W penalizes deviations from the initial condition function at ¢t = 0. The boundary conditions
are enforced by the boundary loss ¥j,. The weights w ¢, wo, and w;, scale the losses and therefore
scale their gradients during the backward pass. That, in turn, results in an individual learning speed
for each of the three requirements necessary for i to approximate the latent solution of the PDE.
To achieve a reasonable convergence speed of the minimization algorithm, the weights must be
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fine-tuned. However, recent methods [WTP20; WYP20] dynamically adapt the weights in each
optimization step and work well out of the box. Specifically, the method by Wang et al. [WTP20] is
used in this work and will be further explained in Section 4.2.1. The losses have the form:

| <
¥, = N_fzwf (f(x{,t{)) (3.9)
Jooi=1
No
¥, = Ni0;¢o(g(x9,0),u?) (3.10)
1 & ~ b b
¥, = N—bZ;//b(B[u(xi,ti ]) 3.11)

Each loss function requires a distinct set of training data. Here, the spatio-temporal points

{(xlf , tlf )},]-Z are called collocation points. The labeled set {(x?, uf.))}l.lio1 denotes the initial points
which are sampled from the initial condition i.e. u? = uo(x?). Similarly, the boundary points
{(xf’ , tf’ )}f\:]'i are sampled along the spatial boundary for various times i.e. xf’ € 0Q. Note that no
labels define the outcome at the boundary in the case of Dirichlet boundary conditions. Here, the
required value is wrapped as the outcome of a function inside the non-linear differential operator
B,. The collocation points can be sampled randomly across the spatio-temporal domain. However
an improved sampling strategy, e.g. by concentrating on regions with higher error, can improve the
convergence during the training phase [WZ20] Especially, when considering higher dimensional
domains—similar to the discretization in classical numerical solvers—improved strategies are
essential to overcome the curse of dimensionality [Bel66].
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This chapter presents the methods used to solve the SWE within the framework of PINN. The
first section considers the fundamental model and training assumptions, including implementation
details of the network architecture and the PINN, as well as sampling strategies for the training and
validation data. The following section presents optimization techniques investigated to speed up the
training process and improve accuracy.

4.1 Model and Training assumptions

4.1.1 Network and Training

As mentioned earlier, all implementations were made in Python, and the machine learning framework
PyTorch was chosen for defining and training ANNs. PyTorch provides high-level access to common
deep-learning architectures and techniques. This also includes the computation of derivatives with
automatic differentiation, provided by the torch.autograd module. All the training in this work
was performed on an Nvidia GTX 970 with 4GB of memory. In all scenarios, a fully connected
feed-forward network serves as the baseline architecture for other improvements. Similar to the
approach presented by Raissi et al. [RYK20] weight normalization is applied to improve the training
speed. It is a re-parameterization of the weight vectors in a neural network that decouples the
length of the weight vectors from their direction, and an alternative to batch normalization. In all
cases, the inputs of the network, i.e. spatio-temporal points, are normalized by subtracting the mean
and dividing by the standard deviation, which leads to a mean of zero and a standard deviation of
one. Unless it is mentioned otherwise, the method of Glorot et al. [GB10] serves as the default
initialization scheme of the network weights and biases.

As already described for the general case in Section 3.3, to train the model, all three losses require
individual datasets. The choice of the dataset heavily impacts the training and can analogously be
viewed as the discretization scheme in classical numerical approaches such as finite differences. This
work considers random sampling based on the latin hypercube sampling (LHS) strategy [Ima99],
which ensures that no data point is sampled twice. As the SWE are hyperbolic type of PDEs, it has
well-posed initial value problems which are only concerned in this work. Therefore no boundary
conditions are employed and only collocation and initial points are sampled. To concretize this,
the Ny collocation points {(xlf , t‘if )}f\g are sampled in the spatio-temporal domain Q X [0, T].
The Ny initial points {(x?, 0)}{.101 and the labels {uo(x?)} f\i % are sampled from the inital condition,
along the spatial domain Q. For all trained PINNs I used Ny = 20K collocation and Ny = 1000
initial points. Obviously, random sampling is not the most economic solution concerning memory
usage and training speed. However, as only 1D problems are concerned in this work the datasets
easily fit on low end graphics cards or can be trained entirely on the cpu. Recent work suggest
adaptive sampling strategies which can improve accuracy and convergence [WZ20]. They present a
time-adaptive sampling approach, where the sampling space of the collocation points is gradually
increased along the temporal direction during training, based on the value of the PDE loss. One test
case presented in Section 5.2 compares this strategy with the one where all collocation points are
used in each training step. Figure 4.1 illustrates the two methods.
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Figure 4.1: A training dataset with 2000 collocation and 100 initial points randomly sampled with
the LHS method. The left image illustrates the time-adaptive sampling where the
sampling space of the collocation points is gradually increased along the temporal
direction; here the limiting timestep is at = 0.2. The right image represents the whole
training dataset as it is used in classical random sampling.

As an evaluation metric I compare a model’s prediction with the outcome of a Pyclaw simulation
at 10K points randomly sampled from the discretization. For each of the predicted quantities, i.e.
water height and velocity (or momentum), the relative error in the L? norm was computed. The

relative L? error between a prediction f and ground truth g at points {xi}f\i | is defined as

2

N N N
1 2 1 1
&(f.9) =y Zl [f) =] |/ 5 Zl g0a) = Zl sl | @.1)
and as a single metric I defined the mean of all relative errors for k£ quantities &1, . .., Ex
E+---+&
Euo = “42)

as the total validation error.

4.1.2 PINN for the 1D Shallow Water Equations

When concerning the SWE, it is not obvious, which of the two forms, non-conservative or
conservative, should be chosen to define the PINN. Here, no discretized derivatives need to be
computed that would influence the choice. However, although they are mathematically equivalent,
each representation has advantages and disadvantages which are described in the following.
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Conservative form

Consider the conservative form of the 1D SWE as defined in the Equations 2.1 and ??. A first attempt
would be to define the ANN such that it takes the spatio-temporal coordinate (x,7) € R x [0, 7] as
input and returns the prediction of water height and momentum (4, hu) as output. This seems to be

a good choice at first glance, but a drawback shows when defining the PINN. Because of the term

Ohu?
ox

the prediction, it requires to divide the momentum by the height, i.e. i := %" This leads to the
following PINN:

it is necessary to multiply the velocity u# with the momentum /u. As the velocity is not part of

t X
st = _ oo (4.3)
ol , O /i+gh®/2 7 ab
e ox +ghas

This is not optimal, since the prediction returned by the ANN might not obey the rules of the PDE
during the training, it can take values of zero or close to zero that lead to crashes or high loss values
which slow down training or inhibit learning at all. This is particularly problematic at the beginning
of the training, where the initialization of the parameters determine the output of the ANN. To
overcome this issue, an initialization scheme that prevents zero or close to zero output is essential.
Additionally a regularization term, that penalizes small absolute values of the depth prediction £,
e.g. |h~|+e can be introduced as an additional loss. Observations show, that using the parameter

initialization presented by Xavier et al. [GB10] with the bias set to 1.01 (which prevents a zero
network output), already yields reasonable performance.

A simpler approach is to directly output the velocity prediction # instead of the momentum prediction
hu, resulting in the following PINN

dh | Ohii
NC ot ox
X,t) = N s 4.4
Jo = (xe1) Ohi | Ohi+gh?/2 7 ob )
ot dx 8Max

However, this solution does not differ from the non-conservative form described later.

A benefit from considering the momentum directly is that by a smart trick one can get rid of the first
equation and obtain mass conservation implicitly. The underlying concept has been presented in
other works to acquire a divergence-free model of the Navier-Stokes equations [KAT+19; RPK19].
To my best knowledge, this is the first time anyone applied it to the SWE. The method exploits
the fact, that the curl of the gradient of a scalar-valued function is always zero. Consider the
scalar-valued function ¢ : Q c R x [0,T] — R where (x,1) +— ¢(x,t) and ¢ is at least twice
continuously differentiable, i.e. ¢ € C2, then the following holds:

A

90|~ dtox  oxor
ot

curl Vo (x,1) = V X 4.5)
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By choosing /4 := —— + and hu = at , then
dhu ah
1V ) = =0 4.6
curl Vo(x,t) = Iy 81‘ , (4.6)

which resembles the mass conservation defined in Equation ??. Transferring this to the model,
means defining the ANN as the scalar-valued function ¢, and thus a surface in the spatio-temporal
domain is learned whose gradient reflected across the time axis is an approximation to the solution
function of the shallow water equations. To train the network only the momentum equation must be
enforced via the PDE-loss and therefore the PINN has the following form:

| OCi?/h+gi?)2 | - ob R\ (-3¢
2 = 2 9 Wkt g2 | g0b i [ =] 7 .7
Ox Ox hu %_‘tf’

It is worth mentioning, that the requirement of being twice continuously differentiable is fulfilled by
the ANN exactly when the activation function is twice continuously differentiable. This does not
collide with the activation functions used in this work as they are infinitely continuously differentiable,
i.e. {tanh,sin} ¢ C*. The drawbacks of this approach are similar to that of Equation 4.3. Here,
the negative partial derivative of the surface with respect to the spatial direction is not allowed
to be zero. However finding an appropriate initialization scheme, that (1) yields either a strictly
monotonically increasing or decreasing surface along the x direction and (2) preserves good training
performance, is not trivial, as it depends on the activation function and must be further investigated.
Luckily, for the tanh activation function the initialization scheme by Xavier et al. [GB10] with
the bias set to 0 leads to acceptable performance. For the sin activation function, however, this
scheme does not work well and produces high loss values directly at the beginning, which lead
to slow convergence. It should also be mentioned that the training time is larger compared to the
other PINNS in this work (I measured an increase of about 1.5 concerning a model with 20000
collocation and 1000 initial points and architecture with 5 hidden layers a 20 neurons). This mainly
results from the computation of the second derivatives, which requires populating a computation
graph that has double the size compared to that of a first derivative.

Non-Conservative form

Similarly to the previous section, the PINN for the non-conservative form of the SWE can be defined

Fo@n) = gn o ax(iaxab) ' 4.8)

Equivalent to Equation 4.4 this approach considers the velocity directly and therefore does not suffer
from division by zero issue. The downside of this approach is, that one can not eliminate the mass
conservation equation and needs to penalize non-fulfillment.
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Algorithm 4.1 Learning rate annealing (LRA) for physics-informed neural networks adapted
from [WTP20]

Consider the accumulated loss function similar to that described in Equation 3.8 but with an
arbitrary number of components:

M
W(0) =Wy (0) + ) wi¥i(6).

where ¥ ¢ (6) denotes the PDE loss, the W;(6) are other losses (e.g. initial or boundary conditions)
andw; =1,i=1,..., M are weights to balance the interplay between the different loss terms. In
each training epoch, after computing the gradients and before performing the z-th optimizer step,
update the weights as:
fori=1,...,M do
b; — maxo {|V¥y (60}
|V (6:-1) |

w; — (1 - )w; + a®;
end for

Here |V‘~P,~(Q,_ 1)| denotes the mean of }VLP,-(H,_ 1)| with respect to all parameters 6. The hyper-
parameter « is set to its recommended value of 0.9 throughout this work.

4.2 Optimization Methods

This section explains the optimizations methods which were examined to increase training speed
and the accuracy of the learned model.

4.2.1 Learning Rate Annealing

Wang et al. [WTP20] considered training the Helmholtz equation with a PINN and observed that
the error along the boundary is particularly high. By inspecting the gradients of each individual
loss function, they found that the gradient of the PDE loss, with respect to the parameters, is larger
than that of the boundary loss. Since the total loss W is the composition of the three losses, as
defined in Equation 3.8, the gradient of the total loss is the sum of the gradients of the individual
losses. Therefore, the influence of the boundary was smaller during the parameter update (see
Section 3.2.1). Which ultimately biased the network towards neglecting the contribution of the
boundary loss. To compensate for the effect, they provide a heuristic weighting that leads to more
balanced gradients during the backpropagation. The learning rate annealing (LRA) method is
defined in Algorithm 4.1. As the algorithm describes, the method is not limited to boundary
conditions but considers all additionally applied loss terms individually by dynamically scaling
them according to the performance of the PDE loss. The method draws its motivation from the
ADAM optimizer [KB17] and uses statistics of the gradients to update the weights in a moving
average like fashion. The benefit of the method is that it eliminates the trial-and-error procedure of
finding weights with good convergence, which is an extremely tedious task, especially when the
number of losses increases.
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4.2.2 Sinusoidal Representation Networks

The choice of the activation function can make a high impact on training performance. Sitzmann
et al. [SMB+20] present sinusoidal representation networks (SIRENs) which correspond to fully
connected, feed-forward networks with a sinus activation function. They applied their network
to a wide variety of problems, ranging from inferring a solution to the Helmholtz and wave
equation with PINNSs up to representing shapes with signed distance functions. The results show
that the sine activation outperforms other architectures that use classical activations such as the
hyperbolic tangent tanh or ReLU in convergence speed and accuracy. For example, they achieved
an improvement of over one order of magnitude for the wave equation compared to the baseline
approach using tanh. In the supplementary part of their work, they describe additional details on the
exact implementation and reveal further optimizations to the original version of the network. They
suggest scaling the network weights by a factor « to increase the convergence speed further. The
reason for this is that during backpropagation, the factor remains and scales the gradient of the loss
with respect to a weight, which consequently leads to an increased update step during optimization.
Including this optimization, the SIREN has the following form:

y = fo(x) =sin(kWX .. sin(«kW2o(W'x + b)) + %) +...) (4.9)

A specific initialization scheme is necessary to train the network successfully. It should avoid that
the output of the last layer depends on the number of layers. They propose to sample the weights
W* uniformly, such that

6 6
1 pa—
W (LI( \/fan_inl’\/fan_inl)’
6 6
Wi~ Ul - : , forl>1.
( \/Kzfan_inl \/Kzfan_inl) of

Here, ! denotes the layer and the term fan_in; describes the number of neurons in the previous
layer [ — 1, i.e. the number of columns in W’. The different sampling of weights in the first layer
introduces higher frequencies at the beginning of the training, that further increases the convergence.
While they recommend setting « = 30, this produced poor results. After some evaluation a value of
3.5 turned out to be much more appropriate for the scenarios considered in this work.

(4.10)

4.2.3 Adaptive Activation

In the context of physics-informed neural networks, Jagtap et al. [JKK19] present a procedure,
which speeds up the training process by introducing scaling factors inside the activation function,
similar to the parameter x described in the section above. However, the scaling factors described
in their work are part of the network’s parameters and are trained during the optimization. They
propose the introduction of these parameters at three different levels of granularity—a single
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parameter for the entire network, layer-wise, and neuron-wise. This work examines the layer-wise
and neuron-wise approach, as they showed most prospects considering the experiments presented in
their work. To further increase the training speed, they also propose an additional loss term that
guides the optimization of the parameters. In a theoretical analysis, they showed that the method is
non-attractive to sub-optimal local minima during gradient descent. The following describes the
methods.

Consider the feed-forward neural network as defined in Equation 3.2. The layer-wise scaled
activation functions, denoted by layer-wise locally adaptive activation functions (L-LAAF), which
are introduced in the hidden layers of a network with width p depth k are defined:

o(gAta™"), withi=1,... k-1 (4.11)

Similarly, activation functions on the neuron level called neuron-wise locally adaptive activation
functions (N-LAAF) are defined as:

o(gAl™lal™), withl=1,...,k-1,andi=1,...,p (4.12)

Here, the A’s are new network parameters that are trained during the optimization step. The L-LAAF
introduces k£ — 1 and N-LAAF introduces p (k — 1) additional parameters. The global scaling factor
g is a hyper-parameter that is problem dependent and can decrease the performance if set too high.
After some experiments, it showed that g = 1 is an appropriate value for the L-LAAF method and
g = 5 for the N-LAAF method. The parameters should be initialized such that A = éV/l. In both
cases, the primary motivation of the scaling factors is to increase the slope of the activation function,
which results in non-vanishing gradients and faster training of the network. To profit from faster
convergence during the beginning of the training, Jagtap et al. introduce the slope recovery loss
term that penalizes small values of the new parameters and therefore speeds the slope increase. It is
defined as

1
m for L-LAAF

S(1) = 1 for N-LAAF (4.13)
1 k-1 Z{’:l /15
BT 2ot exp( P )

and adds to the total loss similar to the other losses defined in Equation 3.8.

4.2.4 Attention Mechanism

Besides the LRA method, another way to increase the accuracy of the network’s prediction was
presented recently by McClenny et al. [MB20]. Their approach focuses on "stiff" PDEs, which are
characterized by sharp spatio-temporal transitions. Solving these types of problems with the original
method by Raissi et al. [RPK19] can lead to poor results and typically requires an unreasonably large
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number of collocation points. To overcome this problem, McClenny et al. suggest an attention-based
approach that weights each point individually and dynamically draws attention to regions that
yield lower performance during training. Attention-mechanism is a well-known technique in deep
learning and is applied in transformer networks for language translation [VSP+17] and object
detection [LLZC20]. The following describes the approach in more detail.

As a foundation, consider the three loss terms defined in Equations 3.9, 3.10, and 3.11. Introducing
the trainable self-adaption weights &/ = {fl.f}Nf &= {f?}NO and &P = {flb}:\il; for each of

i=1° i=1’
the collocation, initial, and boundary points allows weighting each point-wise loss individually. By

specializing on the MSE loss, we can adapt the three loss terms as:

Ny
1 <« .2
W0, = — > |&l ]t 4.14
7 (0.67) Nf;[f,f(xl D) (4.14)
AL 2
0 _ 0([~/.0 0
Wo(0,67) = FO;[‘?! (u(xi,O)—ul-)] (4.15)
1 K 2
b _ b ~ b b
¥, (0.6%) = N—b;[azz[u(xi,zi)]] (4.16)

That leads to the composite loss function:

W0, ,60%,E7) =W (0,67) +P(0,€°) + Py (0,£P) 4.17)

The key feature of the approach is to minimize the composite loss with respect to the network
parameters 6, while maximizing it with respect to the self-adaption weights &/, £°, £, Consequently,
the training procedure seeks a saddle point

min max W(0,&7, &0, &), (4.18)
0 g.f,§0,§b

Because of the maximization, those weights at points that have a higher error are preferably
increased. This leads to an even higher loss at those points which the minimization tries to decrease
by adjusting the parameters of the network. Ultimately, this counterplay directs the focus at locations
with a lower performance during the minimization, which speeds up the overall convergence. The
authors do not directly provide a recommended initialization scheme but prove that the weights
monotonically increase as long as initialized positively. In the investigated examples, they sample
the weights from a uniform distribution, i.e. €° ~ U0, 100] and &/ ~ U[0, 1] which is also
applied in this case, however, decreasing the standard deviation for the initial points to 10. Note that
one can still use a hard-coded weighting of the individual loss as defined in equation 3.8 to apply a
general preference on the three losses. From an implementation point of view, the training goal can
be achieved conveniently with any gradient descent based optimizer by simply flipping the sign of
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the update of the self-adaption weights. In their work, they describe a two-step training approach,
were during a pre-training phase, the network trains along with the weights for a certain number of
epochs using the ADAM optimizer. Afterward, the weights are kept fixed, and the network trains
for another number of epochs using the L-BFGS optimizer [LN8&9]. I tried the same procedure,
however, in the second phase, the optimizer tends to get stuck in local minima or the total loss
explodes, and is highly sensitive to the applied learning rate. Even if in some cases it converged
quicker than ADAM with the learning rate suggested in their work, for a fair comparison to the
other optimization methods, I also used ADAM in the second phase with fixed weights.
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5 Results

This chapter discusses the results achieved after solving three different SWE scenarios with the
PINN framework as described in the previous chapter. The first section presents a detailed analysis
of the architecture choice and performance of the PINN definitions considering a simple scenario
without bathymetry and gentle steepening of the wavefront. Findings of these investigations form
the basis for the following scenarios. The next section investigates the idealized dam break scenario
that shows an increase in complexity as it contains non-continuous initial conditions and shocks
that propagate through space as time passes. The last section considers a depth perturbation with
bathymetry where steepening of the wavefront emerges stronger than in the first scenario. A strong
focus of this chapter lies on the performance of the optimization strategies. In each scenario the
optimization strategies are compared with each other after training 50K epochs, where the learning
rate is set fixed to 0.01. Throughout the experiments the learning rate showed to be appropriate
and allows for a fair comparison between the methods. Although it is not necessarily practical, for
each scenario, I present a summary of the solutions with smallest validation error achieved with the
different optimization methods epochs. Additionally, the best model overall is illustrated to get an
impression of which result one can theoretically achieve. However, I will remark how realistic it is
to achieve such values when no validation data is present.

5.1 Scenario 1 — Small Depth Perturbation

This section considers a depth perturbation, similar to the one illustrated in Figure 2.2 but with a
smaller initial height and decreased gravity. The initial conditions of the initial value problem are
defined as

h(x,O):0.2-exp 0—4 +0.8,

hu(x,0) =0,

where the considered domain is limited to x € [—1, 1] and # € [0, 1]. To delay the steeping of the
wavefront in this area, the propagation speed of the wave is reduced by setting the gravity g = 2.
Figure 5.1 illustrates the propagation of the wave and its horizontal momentum at three timesteps
extracted from a Pyclaw [KMA+12] simulation.

5.1.1 Architecture Choice

To get a feel of how many layers and neurons per layer are needed to achieve an acceptable solution
accuracy, I trained different network architectures, all based on the non-conservative PINN defined
in 4.8, to approximate the simulation results. The test is performed for both, the hyperbolic tangent
and sine activation function. I did not choose the scalar-output model intentionally, as it does not
perform well on the SIREN. Although it has one neuron less in the output layer, the difference in
approximation quality should vanish when the number of neurons and layers increase. As already
described, the feed-forward network of the non-conservative form outputs the water height # and
velocity u. The total loss function used in this case only penalizes deviations of the network’s
output from the simulation results. Therefore, 20K distinct points are sampled randomly from

42
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Figure 5.1: Scenario 1 — Three timesteps extracted from a Pyclaw [KMA+12] simulation with a
spatial discretization consisting of 500 cells, and gravity g set to 2.0. The left column
shows the water depth /4 and the right column the momentum #Au.

the simulation solution. I divided the momentum output of the simulation by the height to get
the velocity needed for the training data. Note, that the definition of the PINN does not play an
essential role here, as the fully connected feedforward-network is almost the same in all three cases.
Only the scalar-output network defined in 4.7 has one neuron less in the output layer, which does
not make a great difference as experiments showed (e.g. 2.86 x 1073 for a depth of 5 and width
of 20). It should also be mentioned, that this investigation is just for studying purposes and can
not be applied when the solution is unknown. In such cases, one can consider approaches such as
Bayesian optimization [SLA12] to tune the network architecture. To make the architecture types
comparable, here the SIREN boosting factor x was set to 1.0. Tables 5.1 and 5.2 summarize the best
validation losses achieved after training networks with different widths and depths for 10K epochs
and a learning rate of 0.01. The former Table corresponds to networks with hyperbolic tangent
activation function, the latter to ones with sine activation function.

The results show, that apart from a few exceptions, the performance of the network grows with the
number of layers and neurons per layer. The exceptions should vanish when the number of epochs
reach a point where the capacities of all networks are fully exploited and differences in the training
speed that result from differences in the landscape of the loss function do not play a role anymore. I
decided to stick with the network of depth 5 and width 20 with 1280 weights and 82 biases, as it
performed well and seemed to have more than sufficient approximation capacity with an acceptable
amount of computing time, i.e. here ~ 8 x 10~ seconds for an epoch. The sufficient approximation
capacity turns out to be valid, as we will see in the following examinations.
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Width 5 10 20 50
Depth

2 1.723 x 107" 3.945x 1072 3.079 x 102 5.343 x 1072

3 1.169 X 1072 5.455x 1073 4.287x 1073 1.213x 1072

4 2.010x 1072 3.104x 1072 8.825x 10~ 2.786 x 1073

5 9.640x 103 1.109x 1072 1.832x 10 6.888 x 107*

Table 5.1: Scenario 1 — Relative L? error to simulation data for different network architectures
with hyperbolic tangent activation function. Each network was trained to approximate
20K distinct points randomly sampled from the simulation data. The values correspond
to the best approximation achieved after 10K epochs.

Width 5 10 20 50
Depth

2 3.659x 107! 9.823x 1072 1.679 x 107" 4.751 x 1072

3 5.609 x 1072 1.333x 1072 5.548 x 103 1.964 x 1073

4 1.809 x 1072 4.891 x 1073 3.952x 1073 1.520x 1073

5 6.871 x 1073 2258 x 1073 3.170 x 103 7.484 x 107*

Table 5.2: Scenario 1 — Relative L? error to simulation data for different network architectures
with sine activation function. Each network was trained to approximate 20K distinct
points randomly sampled from the simulation data. The values correspond to the best
approximation achieved after 10K epochs.

5.1.2 PINN Choice

As mentioned earlier, it is not straightforward, which of the PINNs defined in section 4.1.2 to choose.
It seems obvious to prefer the non-conservative form fN¢, as it is the only one where the training
process can not crash due to a division by zero. However, it is still interesting to see how each term
performs when solving the initial value problem. For a better understanding, I trained the different
forms for 50K epochs using the network architecture described in the previous section. To allow a
fair comparison to the scalar-output approach, the hyperbolic tangent activation function was used.
Also, utilizing the LRA method provides an unbiased weighting scheme for the initial and PDE
losses. Additionally, to allow a better comparison between the non-conservative and conservative
PINN, I trained the non-conservative form twice, once with a bias of 0 and another time, with
bias set to 1.01. The learning rate is was set fixed to 0.01. Table 5.3 summarizes metrics of the
models that produced the lowest validation error after training 50K epochs. Additionally, Figure 5.2
illustrates the evolution of various training and validation metrics.

It shows that the scalar-valued PINN performed worst with a difference of more than one and a half
orders of magnitude to the non-conservative form with same bias. Clearly, the initialization scheme
is not optimal as one can see when comparing the two non-conservative models. But the fact
that it performed similarly during the simulation approximation leads to the guess that due to the
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5.1 Scenario 1 — Small Depth Perturbation

PINN total err. h err. hu err. mass eq. mom.eq. epoch
S 28x 107 32x10% 24x10™* 25x10° 2.7x107° 45837
e 55x1070 6.7x107" 44x107! 0.0 41x10™ 5417

e b=0 21x107% 23x107 20x107 28x107° 1.4x107 49,729
NCb=1.01 | 12x10% 13x10™* 1.1x10* 3.1x10% 23x107% 49,530

Table 5.3: Scenario 1 — Performances of different PINNs forms, each row corresponds to the
network with lowest total validation error achieved after training SOK epochs.

deep architecture resulting from the second derivatives, the training speed suffers from vanishing
gradients. One way to address this is to use a different activation function that does not scale down
the gradient of activated neurons (the derivative of tanh converges to O for both positive and negative
inputs) and is at least twice continuously differentiable e.g. the Swish function. Also the adaptive
activation methods described in Section 4.2.3 showed a speed-up of the training process.

Comparing the conservative network in the first row of Figure 5.2 with both non-conservative
cases, clearly shows that the increased bias is the main reason for the improved performance, and
only comparing with the 0 bias case would have lead to a wrong conclusion. Comparing both
cases where the bias is set to 1.01, one can see that the conservative form converges faster at the
beginning, but the validation errors equalize near the end. That leads to the conclusion that applying
the non-conservative form does not require making sacrifices (also the same was true for more
complex scenarios that face discontinuities), and therefore, the following approaches only concern
this form. Also, Table 5.3 shows that mass conservation is fulfilled to a satisfying amount and does
not justify employing the scalar-output based approach.

5.1.3 Optimizations

When comparing the results of the two non-conservative forms in Table 5.3 one can see that the
initialization scheme has a significant impact on the convergence speed, which should be examined
further. For example, a meta-learning based approach similar to the one Dauphin et al. [DS19] could
yield appropriate initializations for the weights and biases. However, in this work, the main focus
was to increase the accuracy and training speed of problems with stronger steepening wavefronts
and higher frequency components in the solution. Therefore optimization strategies were preferred
that showed prospects in this direction.

To compare the different optimization methods, I considered the same network as in the previous
section and the non-conservative form due to its proven stability as described above. Additionally,
20K collocation and 1K initial points were sampled randomly with the LHS method and used in all
training epochs. Also, similar to the previous test the learning rate is set fixed to 0.01. Figure 5.3
depicts the evolution of the training and validation metrics for all of the trained S0K epochs, and
Table 5.4 summarizes the results as in the previous case. Here, the LRA method, also used in the
previous section serves as the baseline and was used in all cases except for the attention-based
approach (which learns a weighting of the loss terms on a pointwise level). For a more comfortable
comparison, the result of the plain LRA approach, which was also shown in the PINN comparison
in Figure 5.2 and Table 5.3 is plotted and listed again.
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Figure 5.2: Scenario 1 — Evolution of losses and prediction errors of different PINN forms. The
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left column shows the losses values, and the right column the relative L? error between
prediction and simulation at 10K randomly sampled locations over the training of 50K
epochs. Figure (a) illustrates the training of the conservative form fg defined in 4.3.
Figure (b) represents the scalar-valued form f9¢ defined in 4.7, and Figures (c¢) and (d)
illustrate the training of the non-conservative form f, NC as defined in 4.8 with bias set
to 0.0 and 1.01, respectively.



5.2 Scenario 2 — Dam Break

Method total err. h err. hu err. mass eq. mom.eq. epoch
LRA 22x1073 22x107 21x107° 28x107 1.4x107 49,729
Siren 82x1072 9.6x102 69x103 1x107 6x107° 48,163

L-LAAF | 7x10 8.1x10 58x10 55x107 47x107 49,997
N-LAAF | 6.8x 107 7.1x107° 6.6x10° 26x10° 23x10° 49,737
Attention | 2.6 x 1073 2.6x 102 2.6x103 67x10% 3.5x10* 39,825

Table 5.4: Scenario 1 — Performances of different PINNs forms, each row corresponds to the
network with lowest total validation error achieved after training 50K epochs.

Examining the results shows that the SIREN approach performed lowest followed by the LRA
method. The SIREN method (with LRA) requires more iterations, as the validation error did not
seem to have fully converged. The attention mechanism also shows worse performance than the
baseline. The adaptive activation methods performed best. In the end, both methods achieved
similar results, but one can see that the L-LAAF method converged quicker in the first 20K epochs.
The results show, that it takes approximately 12 minutes of training to get a total validation error in
the order of 10™*. Figures 5.4 and 5.5 show a detailed comparison of the best prediction, provided
by the N-LAAF method, and the result achieved by the simulation. As one can see, no difference is
visible between the simulation and prediction results in the presented scale.

5.2 Scenario 2 — Dam Break

The following considers an idealized one-dimensional dam break scenario, which turns out to be
more challenging to solve than the one above, as it contains discontinuities in the initial condition
and shocks that propagate through space as time elapses. The initial value problem considered here
is:

3 x<0
hx,0)=4" ~
1 x>0

hu(x,0) =0

where the domain is restricted to x € [—5, 5], and the considered time scale is limited to ¢ € [0, 1].
In the beginning, the water surface is at rest. The imaginary dam sits at location x = 0 and has
infinitesimal width. It breaks immediately and disappears for all £ > 0. After the dam break, water
streams from the higher, former dammed region at x < 0 into the lower region at x > 0, which leads
to the formation of a flood wave at the streaming front, while the water height decreases in the
previously dammed region. Figure 5.6 illustrates the scenario at three timesteps extracted from a
Pyclaw simulation with a discretization of 500 cells.
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Figure 5.3: Scenario 1 — Comparison of optimization strategies.
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evolution of loss values, and the right column the relative L? error between prediction
and simulation at 10K randomly sampled locations. Figure (a) illustrates the LRA
method. Figure (b) represents the SIREN approach, Figures (c¢) and (d) illustrate the
adaptive activation methods L-LAAF and N-LAAF, and (e) shows the training the
attention based approach with fixed weights after pretraining of 10K epochs.



5.2 Scenario 2 — Dam Break
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Figure 5.4: Scenario 1 — Comparison between the best prediction achieved with N-LAAF (at
epoch 49737 with relative L? error of 6.8 x 107) and simulation results (exact). The
third column denotes the point-wise difference between prediction and the exact value.
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Figure 5.6: Scenario 2 — Three timesteps extracted from a Pyclaw [KMA+12] simulation with a
spatial discretization consisting of 500 cells, and gravity g set to 9.8. The left column
shows the water depth 4 and the right column the momentum Au.

5.2.1 PINN Results

Similar to the previous scenario, I considered training different network architectures on the
simulation dataset to see which performance can be expected when solving the equations within
the PINN framework. It shows that the network with a depth of 5 and width of 20 converges
faster than in the previous case, leading to a total validation error of 2.31 x 1073 for the hyperbolic
tangent, and 6.77 x 107 for the sine activation function after 4K epochs. However, the solution
achieved with the PINN in the non-conservative form after training S0K epochs shows a much
higher validation error for all of the five optimization strategies. Table 5.5 summarizes the models
with smallest validation error. Again a learning rate of 10~ was chosen. Analyzing the training
process, illustrated in Figure 5.7, shows that the PDE loss converges fast at the beginning but then
begins oscillating strongly for the hyperbolic tangent based approaches and even diverges in case
of the adaptive activation methods. Also, note that the best validation error is reached within
the first 10K epochs in all approaches. Typically, strong fluctuations with no progress or even
divergence of the loss functions are a sign that the learning rate is set too high. However, I also tried
smaller learning rates and trained for more epochs, but oscillations still occurred, and there was no
improvement compared to the results presented here. Additionally I tried a step-based learning
rate scheduler, however, it needed carefully adjusted step sizes, which is unpractical in general, and
the solution could not be improved. When taking a look at Figures 5.8 and 5.9, which show the
best model, achieved with the time-adaptive sampling approach described later, it shows that a
large portion of the error is located at the steep front of the wave. Therefore, the hope was that the
attention-based approach, which focuses the training on regions with higher losses, could improve
the results. Although I observed an increase of weighting around the discontinuities as expected,
the attention-based method performs again lower than the baseline approach, as Table 5.5 shows.
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5.3 Scenario 3 — Bathymetry

Method total err. h err. hu err. mass eq. mom.eq. epoch
LRA 1.9%x1072 97x1073 28x102 23x107! 14x107! 17,524
Siren 30x102 1.6x102 47x102% 81x102%2 2x102 6,224

L-LAAF | 1.7x102 69x103 27x102 15x107' 34x107' 14,093
N-LAAF | 1.8x 102 7.7x103 27x102% 1.1x107" 55x102 10,423
Attention | 2.3x 1072 1.1x 102 3.5x 1072 6.4 1.7 13,270

Table 5.5: Scenario 2 — Summary of the best predictions achieved with different optimization
strategies. Each row corresponds to the network with lowest total validation error,
achieved after training SOK epochs using the respecting optimization method.

Similar to the previous approach, the adaptive approaches performed best, but this time the error is
more than two orders of magnitude higher than in the previous case. Looking at the relative L?
errors of the predicted quantities height 4 and momentum Au in Figure 5.7, one can see that they
differ during training in all cases. Especially for the hyperbolic tangent based approaches a clear
gap is visible. That implies that the training is biased and prefers decreasing the height term in this
case. Further investigations are necessary to compensate for this effect.

To further improve the results, I learned the L-LAAF based model with the time-adaptive sampling
which is illustrated on the left in Figure 4.1. The idea was to spend more time on the region close to
initial conditions before considering the whole domain. Therefore I trained another 50K epochs
while starting with the temporal domain limited by # = 0.1 and increased the time by 0.1 whenever
a maximum number of 5000 epochs has passed (until # = 1 is reached). The results are presented in
Figures 5.8 and 5.9. The achieved validation error was 1.3 x 1072 in epoch 43442 and thus showed
an improvement of 0.4 x 1072 to the model trained on the whole domain in each iteration.

5.3 Scenario 3 — Bathymetry

This section considers an initial value problem with a similar depth perturbation as in scenario 1
but with stronger gravity and varying bathymetry. The initial conditions of the problem are defined
as:

—x2
b(x) =0.8 - exp (m) -1.0
h(x,0) =0.2 - exp (_(%24)2) - b(x)

u(x,0)=0

Here, b(x) denotes the bathymetry, which describes an underwater bump. Similar to the first case,
the spatial domain is limited to x € [—1, 1] and the considered timescale is ¢ € [0, 1]. The scenario
is an adapted version of an example test case provided by the Pyclaw simulation software [KMA+12].
Figure 5.10 illustrates the progression of height and momentum at three different times. As one can
see in the last row, at ¢ = 0.6, the wavefront is much steeper than in scenario 1, which results from
the presence of the bathymetry and increased gravity.
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Figure 5.7: Scenario 2 — Comparison of optimization strategies. The left column shows the
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evolution of loss values, and the right column the relative L? error between prediction
and simulation at 10K randomly sampled locations. Figure (a) illustrates the LRA
method. Figure (b) represents the SIREN approach, Figures (¢) and (d) illustrate the
adaptive activation methods L-LAAF and N-LAAF, and (e) shows the training the
attention based approach with fixed weights after pretraining of 10K epochs.



5.3 Scenario 3 — Bathymetry
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Figure 5.8: Scenario 2 — Comparison between the best prediction achieved with L-LAAF and
time-adaptive sampling (at epoch 43442 with relative L? error of 1.3 x 1072) and
simulation results (exact). The third column denotes the point-wise difference between
prediction and the exact value.

5.3.1 PINN Results

Like in the previous scenario I trained different network architectures first on the simulation data to
get a feel for the expected error when using the PINN approach. This time, it showed that after 4K
epochs the network with a width of 20 and depth of 5 and hyperbolic tangent activation function
only achieved a validation error close to 1072, As the depth of the fluid 4 in this case also must
implicitly represent the bathymetry, I decided to increase the approximation capabilities of the
network and picked a large model with 50 neurons in each hidden layer and the same depth of 5.
This network reached a value of close to 1072 for both the sine and hyperbolic tangent activation
function. Again, I trained all five optimization strategies. The results of the best models are
summarized in Table 5.6 and the evolution of the loss values and validation metrics are illustrated
in Figure 5.11. Considering the validation errors of the best models listed in Table 5.6, it shows
that the SIREN based approach performed worst again. Surprisingly, this time the baseline and the
attention-based model outperformed the L-LAAF approach. Especially the attentio-based model
shows further potential but has been stopped at this point. The evolution of the loss terms shows,
that all the mentioned approaches yield a reasonable convergence, and models with errors close to
the best ones described in Table 5.6 can be easily achieved without considering any validation data.
The results also show, that the N-LAAF based method achieved the best performance in the shortest
amount of training cycles. It even produces good results for the depth within the first 10K epochs.
However, especially the validation errors begin to oscillate similarly as in the dam break scenario.
To compensate for the oscillations one might consider using a smaller learning rate, but this has not
been examined. Also, considering the behavior of the PDE and initial loss provide a hint when
spikes in the validation error occur and one could stop the training process accordingly, but this is
not always a valid metric as, towards the end, the solution diverges while the PDE does not change
except for the oscillations. Similar to the dam break problem I tried the time adaptive sampling
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Figure 5.9: Scenario 2 — Comparison between best prediction achieved with L-LAAF and time-

adaptive sampling (at epoch 43442 with relative L? error of 1.3 x 107%) and simulation
results (exact) at two different time steps. (7op) shows the predicted h(x,t) for the
whole domain (x,¢) € [—1,1] x [0, 1] along with two marked timesteps. (Bottom)
illustrates a comparison between the predicted and the simulated height and momentum
at those timesteps.
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Figure 5.10: Scenario 3 — Three timesteps extracted from a Pyclaw [KMA+12] simulation with a

spatial discretization consisting of 500 cells, and gravity g set to 3.5. The left column
shows the water depth 4 and the right column the momentum hu.



5.3 Scenario 3 — Bathymetry

Method total err. h err. hu err. mass eq. mom.eq. epoch
LRA 24x1072 1.6x102 46x102 63x10% 3.5x107 44,349
Siren 1.1x1070 39%x103 21x107! 83x10™* 28x1073 46,070

L-LAAF | 3x102 16x103 58x102 1x10* 4x10™* 49,663
N-LAAF | 89x 103 4.1x10% 1.7x102%2 26x10% 45x10% 33,768
Attention | 1.8 x 1072 12x102 35x102 4.6x102 44x102 39,966

Table 5.6: Scenario 3 — Summary of the best predictions achieved with different optimization
strategies. Each row corresponds to the network with lowest total validation error,
achieved after training SOK epochs using the respecting optimization method.

approach which increases the sampling domain of the collocation points every 5K epochs. However,
the results did not improve this time. Like in the dam break problem, one can identify a large gap
between the performance of the height and momentum when considering the validation metrics
in the right column of Figure 5.11. It is not clear how much this affects the training performance
and should be examined further. Also the comparison plots in Figures 5.12 and 5.13 show the
different performance of the two quantities. It also shows that the errors are mainly located around
edges with increased slopes. Regarding the upper left image in Figure 5.12, one can also observe
that the bathymetry was learned well by depth forming the white band. Although the derivative
of the bathymetry is well defined in this case, it is worth mentioning, that one may also provide a
more realistic bathymetry which is only given at discrete locations by using derivatives from an

interpolation method to compute its spatial derivative % needed for the PINN.
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Figure 5.11: Scenario 3 — Comparison of optimization strategies. The left column shows the
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evolution of loss values, and the right column the relative L error between prediction
and simulation at 10K randomly sampled locations. Figure (a) illustrates the LRA
method. Figure (b) represents the SIREN approach, Figures (c¢) and (d) illustrate the
adaptive activation methods L-LAAF and N-LAAF, and (e) shows the training the
attention based approach with fixed weights after pretraining of 10K epochs.



5.3 Scenario 3 — Bathymetry
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Figure 5.12: Scenario 3 — Comparison between the best prediction achieved with N-LAAF (at
epoch 33768 with relative L? error of 8.9 x 1073 ) and simulation results (exact). The
third column denotes the point-wise difference between prediction and the exact value.
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Figure 5.13: Scenario 3 — Comparison between best prediction achieved with N-LAAF (at
epoch 33768 with relative L? error of 8.9 x 107) and simulation results (exact) at
two different time steps. (Top) shows the predicted i(x,t) for the whole domain
(x,1) € [-1,1] x [0, 1] along with two marked timesteps. (Bottom) illustrates a

comparison between the predicted and the simulated height and momentum at those
timesteps.
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6 Conclusion and Outlook

This thesis investigated the application of the PINN framework to solve free-surface flow problems
modeled by the one dimensional SWE. The results are presented at three test cases: Two over
a flat bathymetry, an initial depth perturbation with moderate steepening of wavefronts, and an
idealized dam break scenario, and an initial depth perturbation with varying bathymetry and stronger
steepening wavefronts. For each of the three cases, different network architectures were trained to
approximate data points extracted from a high-resolution numerical solution to get an impression of
how many neurons and layers are needed to achieve a satisfying result. It showed, that a network of
width 20 and depth 5 is sufficient to achieve reasonable results for the first and second scenario.
As expected, varying bathymetry increases the complexity, and more parameters are necessary to
achieve similar results. The accurate location of the free surface is given by the sum of bathymetry
and the fluid depth. Therefore the bathymetry must be implicitly learned by the model’s depth
prediction. Here, a network with a width of 50 and depth of 5 showed similar results as in the first
two cases.

The SWE allow different formulation of the PINN. I presented three different versions, including
a formulation that implicitly fulfills mass conservation and, thus, eliminates the corresponding
penalization term in the PDE loss. The results show that the non-conservative formulation is best
suited and can be applied most flexibly to different initialization schemes, where the other might
fail training due to high values or division by zero errors. However, more research is needed to fully
exploit the formulation that implicitly fulfills the mass conservation equation.

For each of the three previously described scenarios, five state-of-the-art optimization techniques
and a time-adaptive sampling strategy were explored to improve results and speed up convergence.
It showed that for the first scenario with moderate steepening wavefronts, the locally adaptive
activation methods presented in [JKK19] drastically speed up the convergence process and yielded
arelative L? error in the order of 10 after 10K iterations of full-batch training with the ADAM
optimizer. However, the other two scenarios could not reach a similar performance. Also, the
performance difference between the five methods was not as large as in the first scenario. For
the dam break scenario, the best result has a relative L? error of 1.3 x 1072 using the L-LAAF
method with time-adaptive sampling. The best model for the third scenario achieved an error of
8.9 x 1073 employing the N-LAAF method. However, the attention-based method showed some
prospects which could further improve the result when run longer than 50K epochs, which has not
been tested. In both cases, the largest error emerged at steep wavefronts, with larger gradients and
high-frequency components. Although some of the optimization methods are specifically tailored
to reduce the error in such regions, especially in the dam break scenario, they did not show much
improvement compared to the baseline approach, which uses the LRA method. Therefore, more
research is needed to further improve the results in cases with strong steepening wavefronts.
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Outlook

Throughout the work, unresolved challenges, ideas for improvements, and prospects emerged, which
provide a good starting point for future work. Beginning with the open challenges, the PINN in
scalar-valued form showed that a model for the SWE can be constructed that always fulfills the
mass-conservation equation and removes its penalization term in the PINN. Although the error of
both conservation equations become small in all cases, except for the dam break scenario, the model
is more physically sound if the equation is always fulfilled. However, to prevent divisions by zero,
especially at the beginning of the training process, a tailored initialization scheme is necessary,
which requires further investigation. In general, an inspection of the initialization scheme could
further speed up the training process, i.e. a meta-learning approach could be applied to yield better
initialization of the weights and biases. Another open challenge lies in the different training speeds
of the two quantities depth # and momentum Au, which can be observed in the dam break and
bathymetry scenario. It seemed that the network is biased in direction of the depth and further
investigation is needed to fully understand the influence on the training process.

As the PINN framework is a relatively new approach that is not fully understood and is under strong
development, many improvements to the learned models were just presented recently. Especially
two methods of Jagtap et al. stood out in the context of the SWE, namely, the conservative-PINN
approach [JKK20b] and their newest development eXtended PINNs [JK20]. Both methods allow
decomposing the solution domain which enables distributed learning similar to well-known domain
decomposition methods for classical numerical models. They show improvements to the learned
models, where the former specializes to PDEs in conservative form, the latter extends to the general
case and allows arbitrary decomposition of the domain in space and time.

A preceding step could be an extension of the proposed methods to 2D problems. Other approaches
successfully trained the 2D hyperbolic conservative wave equation, however, it shows that a large
amount of computational effort is necessary i.e. 24 hours on a modern high-performance graphics
card with 24 GB of memory, although time-adaptive sampling was employed [SMB+20]. Also, to
enable more realistic scenarios, boundary conditions such as inflow, outflow, and reflective could
be employed, along with wetting and drying. Especially the reflective boundary conditions that
emerge when static obstacles prevent a continuous flow are challenging as they typically rely on
reflecting values at the cell boundary in a finite volume scheme. However, applying this behavior to
a cell-free approach is not straight forward.
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