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Abstract

The field of Lexical Semantic Change Detection (LSCD) deals with the

detection of words that change their meaning over time. While there is a large

amount of research in the field, only few go beyond a standard benchmark

evaluation of existing models. The goal of this thesis is to derive a practical

benefit from previous milestones in research. Therefore, a framework is built,

that utilizes common approaches for LSCD to discover novel changing words.

The framework is highly automated and easily applicable, making it useful

for both beginners and experienced users. Anyone, who has access to two

corpora (e.g., from different time periods) can use this framework to auto-

matically discover words that change their meaning between the two corpora.

In an exemplary discovery process, which includes multiple fine-tuning phases

on common tasks, the framework and its underlying discovery process are

demonstrated. The framework is successfully used to discover changing words

between two time-specific German corpora. Additionally, in the fine-tuning

phases the framework is also used to evaluate and optimize the implemented

approaches and model parameters. The results show that the framework pro-

vided in this thesis and its implemented approaches can be used for the dis-

covery of novel changing words and also evaluation.

Das Gebiet LSCD (Lexical Semantic Change Detection) beschäftigt sich mit

der Erkennung von Wörtern, die ihre Bedeutung im Laufe der Zeit ändern.

Es gibt zwar eine große Anzahl an Forschungsarbeiten auf diesem Gebiet,

aber nur wenige gehen über eine Standard-Benchmark-Evaluation bestehender

Modelle hinaus. Das Ziel dieser Arbeit ist es, aus den bisherigen Meilensteinen

der Forschung einen praktischen Nutzen abzuleiten. Dazu wird ein Framework

erstellt, das gängige Ansätze für LSCD nutzt, um Wörter zu entdecken die

einen Bedeutungswandel durchmachen. Das Framework ist hochgradig au-

tomatisiert und leicht anwendbar, wodurch es sowohl für Anfänger als auch

für erfahrene Benutzer nützlich ist. Jeder, der Zugriff auf zwei Korpora (z.B.

aus unterschiedlichen Zeiträumen) hat, kann dieses Framework nutzen, um

automatisch Wörter zu entdecken, die ihre Bedeutung zwischen den beiden

Korpora ändern. In einem exemplarischen Entdeckungsprozess, der mehrere
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Feinabstimmungsphasen beinhaltet, wird das Framework und der zugrun-

deliegende Entdeckungsprozess demonstriert. Das Framework wird erfolgre-

ich genutzt um Wörter zu entdecken die einen Bedeutungswandel zwischen

zwei deutschen zeitspezifischen Korpora durchmachen. Zusätzlich wird das

Framework in den Feinabstimmungssphasen auch zur Evaluierung und Opti-

mierung der implementierten Ansätze und Modellparameter eingesetzt. Die

Ergebnisse zeigen, dass das in dieser Arbeit vorgestellte Framework und seine

implementierten Ansätze sowohl für die Entdeckung von Wörtern die einen

Bedeutungswandel durchmachen als auch für die Evaluation verwendet wer-

den können.
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1 Introduction

Words change their meaning over time. While some senses are lost, other novel

senses are established (Blank, 1997; p. 113). One such example is the German word

Aufkommen. Previously, the word was used as ‘emergence’ as in ‘It is true that with

the emergence of the manufactory, traces of child exploitation are showing.‘ Later,

this sense was lost, and a new one was gained. The word was used as ‘production’

as in ‘They know that we need more feed from our own production for the cattle’.

The automatic detection (with the help of computers), of such semantic changes has

gained increasing importance over the years and consequently, the field of Lexical

Semantic Change Detection (LSCD) has emerged (Kutuzov et al., 2018; Tahmasebi

et al., 2018; Hengchen et al., 2021). Common tasks include creating data sets or

developing, evaluating and analyzing models that detect change. In recent years,

considerable progress has been made. Through extensive research the field now owns

standard corpora and tuning data for different languages as well as optimized models

for LSCD. However, only a limited amount of work applies the methods to discover

novel instances of semantic change, rather than detecting semantic changes on a

small set of words (Schlechtweg et al., 2020; Basile et al., 2020). Thus, the practical

applicability has not been exploited yet. The goal of this thesis is to derive a

practical benefit from previous milestones in research and make lexical

semantic change useful.

For this, a framework that utilizes common approaches for LSCD to automati-

cally discover novel changes is build. The discovery process is fully automated and

easily applicable. Anyone, who has access to two corpora (e.g., from different time

periods, domains or genres) and wants to discover words that undergo a change

of meaning between them, can utilize this framework without much effort. Addi-

tionally, different tools are provided for fine-tuning and analyzing the implemented

approaches. The framework can act as an entry point for newcomers to the field, by

allowing them to easily generate their first results and further experiment with them

to get comfortable with common approaches. Experienced users can use the fine-

tuning and analyzing tools to aid their research. Furthermore, the full automation
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and ease of use could also assist people outside of the field, e.g., lexicographers, in

their work, without the need of an extensive knowledge in LSCD and programming.

The thesis is split into two main parts. The first part (Section 3) describes the

framework, its implemented methods and the underlying discovery process. After-

wards (in Section 4), the possible applications and the quality of the framework

are illustrated by an exemplary discovery process using the German SemEval-2020

(Schlechtweg et al., 2020) data set. This includes multiple fine-tuning phases on

different tasks to present the different features of the framework and a human an-

notation phase to evaluate the quality of the discovery.

1.1 Paper Submission

A scientific paper based on the thesis results (Section 4) was submitted in collab-

oration with Maike Park, Dominik Schlechtweg, Jonas Kuhn and Sabine Schulte

im Walde. I wrote most parts of the paper myself, while receiving feedback from

Dominik and Sabine; the description of the annotation and the WUGs had however

been contributed by Dominik and have been taken over as annotation section (see

4.3) into my thesis.

2 Related Work

State-of-the-art semantic change detection models are Vector Space Models (VSMs)

(Schlechtweg et al., 2020). These can be divided into static (type-based) (Turney

and Pantel, 2010; Levy et al., 2015; Mikolov et al., 2013b) and contextualized (token-

based) (Schütze, 1998; Devlin et al., 2019; Peters et al., 2018) approaches. Static

embedding models are often used to solve word similarity and analogy tasks (Levy

et al., 2015) and as ingredients for models solving downstream tasks (e.g. Hätty et al.,

2020; Kutuzov et al., 2017). Static embedding models are the state-of-the-art models

for LSCD across time and potentially across any type of domains (Hamilton et al.,

2016; Schlechtweg et al., 2019; Hätty et al., 2019). Prominent static models include
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low-dimensional embeddings such as Global Vectors (GloVe, Pennington et al., 2014)

and Skip-Gram with Negative Sampling (SGNS, Mikolov et al., 2013a;b). However,

as these models come with the deficiency that they aggregate all senses of a word into

a single representation, contextualized embeddings have been proposed (Peters et al.,

2018; Devlin et al., 2019). According to Hu et al. (2019) these models can ideally

capture complex characteristics of word use, and how they vary across linguistic

contexts.

While large amounts of research exists, previous work mostly focuses on creating

data sets or developing, evaluating and analyzing models. Contrary to this, the

goal of the framework developed in this thesis, is to find ‘undiscovered’ changing

words. Few studies (Kim et al., 2014; Hamilton et al., 2016; Takamura et al., 2017)

focus on this task. Common and well-performing LSCD approaches are implemented

in a framework to make a practical use of previous milestones in research. The

discovery process is fully automated and easy to execute in order to allow users with

different levels of experience to make large-scale discoveries on all kinds of corpora.

Additionally, tools for evaluating, analyzing and further optimizing the implemented

approaches can be utilized by researchers to reach new milestones.

3 Framework

The goal of the framework is to solve the task of lexical semantic change dis-

covery:

Given a corpus pair (C1, C2), decide for the intersection of their vocabularies

which words lost or gained sense(s) between C1 and C2.

Discovery is an important task, with applications e.g. in lexicography where dictio-

nary makers aim to cover the full vocabulary of a language. However, the task comes

with difficulties. While the LSCD models are commonly used to detect changes for a

small list of pre-selected target words (Schlechtweg et al., 2020; Basile et al., 2020),

the intersection of two corpus vocabularies contains a much larger amount of words.
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For some models (e.g., BERT), the computational effort rises drastically with the

size of the vocabulary intersection. Furthermore, the intersection will likely contain

many faulty words (e.g., misspelled words and foreign language), that stem from

difficulties in the corpus creation (e.g., digitalization errors).

While the main focus of the framework is the automated discovery of chang-

ing words, scripts are provided to automatically solve the binary classification and

graded ranking subtasks from SemEval-2020 Task 1 (Schlechtweg et al., 2020) (see

Section 4.1). The framework also provides methods to evaluate the quality of the

produced results, i.e., calculating evaluation metrics for the classification problem

and calculating the Spearman rank-order correlation coefficient ρ.1 This allows users

to fine-tune the implemented models on their own data sets to find well-performing

parameter configurations.

The core components of the framework are written in the Python programming

language. Shell scripts are provided to fully automate the process. The framework is

built modularly to facilitate debugging, analyzing and modifying the code, resulting

in more clarity for both the developer and user. Furthermore, this allows the user

to only use single parts of the framework when needed. The python scripts as well

as the shell scripts contain a wide range of parameters, to incentivize experimenting

with the provided approaches, and further optimizing these. Additionally, for the

ease of use, a set of recommended parameters is provided.

3.1 Discovery Process

The following steps are executed to solve the task of lexical semantic change discov-

ery:2

1. A neural language model (SGNS, BERT) is used to generate word embeddings

(dense representation of words in the form of a numeric vector) for words in

1This requires gold data, e.g., human-annotated labels.
2Both approaches require additional model-specific steps, which are explained in the according

sections.
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the intersection of the corpus vocabularies.3

2. Differences between word embedding(s) from C1 and word embedding(s) from

C2 are measured, resulting in graded values.

3. A threshold is calculated according to these graded values. Words whose graded

values are greater than or equal to this threshold, are labeled as changing

words.

4. A filtering is applied to these changing words in order to remove undesirable

words (e.g., proper names and foreign words).

5. (Optional) The usages for the filtered changing words are extracted and stored

in a specific format. These can then be used to evaluate the predictions or

detect false positives.

Figure 1: The essential steps of the discovery process.

3.2 Models

The framework provides a static and a contextualized model to generate word em-

beddings. While static models generate a single word embedding for a word, con-

textualized models generate a word embedding for every word usage, i.e., sentence

where the word occurs.
3In BERT’s case only a sample of the intersection is considered due to computational limitations.
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3.2.1 Static Model

Most static approaches in LSCD combine three sub-systems (Schlechtweg et al.,

2019) to generate graded values:

1. Creating word embeddings.

2. Aligning them across corpora.

3. Measuring differences between the aligned embeddings.

Creating Static Word Embeddings The implementation of the Skip-gram with

Negative Sampling model (SGNS, Mikolov et al., 2013a;b) in Schlechtweg et al.

(2019) is used to generate static word embeddings.4

SGNS is a shallow neural language model trained on pairs of word co-occurences

extracted from a corpus. In short, given a vocabulary V , a target word x and a word

from the vocabulary v ∈ V , the neural network learns how likely it is for the word

v to appear in the context of the target word x. Figure 2 shows the structure of

the skip-gram model. The network consists of an input layer, a single hidden layer

(without an activation function) and an output layer. The input layer and hidden

layer are connected by weights which are stored in a weight matrix W . Similarly,

the weights connecting the hidden layer to the output layer are stored in a second

weight matrix W ′. The neural network is trained by feeding it word pairs found in

the corpus. A word pair consists of the target word and another word appearing in

its context. The context is defined by a symmetric windows size parameter (e.g., a

window size of two considers two words to the left and two words to the right). For

each training pair, all weights are adjusted slightly so that the network predicts the

training sample more accurately. The input for the network is a one-hot vector with

|V | components. Every position is labeled as 0, except the one corresponding to the

word, which is labeled as 1. The hidden layer performs the dot product between

the weight matrix W and the input vector ~x. Since the input vector is a one-hot

4The implementation is based on the gensim word2vec library (Řeh̊uřek and Sojka, 2010).
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vector, this simply selects the matrix row of the corresponding word. This vector is

then passed to the output layer. Now the output layer computes the dot product

between this output vector of the hidden layer and the weight matrix (W ′) of the

output layer. Finally, the softmax activation function is applied to compute the

output vector ~y. The output vector is also a single vector with |V | components.

Every positions contains the probability that the corresponding word occurs in the

context of the target word x. As mentioned, all weights are adjusted slightly for

every training sample. In order to lessen the huge computational effort caused by

this, negative sampling is used (Mikolov et al., 2013b). The idea is that every training

sample only modifies a small percentage of the weights, rather than all of them. A

small number (according to the negative sampling parameter k) of “negative” words

(words for which we want the network to output a 0) are selected. Additionally the

“positive” word is selected. Now only the weights for these k+ 1 words are updated.

Once the model is fully trained, only the first weight matrix W is of interest. The

optimized weight vectors can be interpreted as a semantic vector space that contains

the embeddings for all words in the vocabulary.

Following standard practice, both spaces are length-normalized and mean-centered

(Artetxe et al., 2016; Schlechtweg et al., 2019) to optimize the word embeddings.

The implementation in Schlechtweg et al. (2019) is used for this.5

Alignment The resulting vector spaces containing the word embeddings for C1

and C2 respectively, are then aligned by applying Orthogonal Procrustes (OP), be-

cause columns from different vector spaces may not correspond to the same coor-

dinate axes (Hamilton et al., 2016). For this, the implementation of Artetxe et al.

(2018) is used.

Measuring Differences Given two word embeddings ~w1 and ~w2, the difference

is measured by calculating their Cosine Distance (CD) (Salton and McGill, 1983):

CD(~w1, ~w2) = 1− cos(~w1, ~w2),(1)

5The implementation is based on SciPy (Virtanen et al., 2020) and NumPy (Harris et al., 2020).
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Figure 2: Structure of the skip-gram model (Weng, 2017).

where cos is the cosine of the angle between ~w1 and ~w2. The CD can take values

between -1 (exactly rectified) to 1 (exactly opposed). However, the weights in the

word vectors are non-negative and thus, in this use case the CD ranges from 0

(related) to 1 (unrelated). A value close to 1 indicates that word has undergone a

semantic change and a value close to 0 indicates the opposite (no change). Again,

the implementation in Schlechtweg et al. (2019) is used.6

The sub-system combination of SGNS+OP+CD has performed very well in re-

cent shared tasks (Schlechtweg et al., 2020; Basile et al., 2020), ranking among the

best submissions (Arefyev and Zhikov, 2020; Kaiser et al., 2020b; Pömsl and Lyapin,

2020; Pražák et al., 2020).

6The implementation is based on SciPy (Virtanen et al., 2020).
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3.2.2 Contextualized Model

Contextualized models take word usages as input to generate contextualized embed-

dings. Therefore, the procedure of generating graded values is slightly different:

1. Sample words that will act as an input for the model.

2. Extract usages from the corpora for the sampled words.

3. Create two sets of contextualized word embeddings for every word in the sam-

ple.

4. Measure differences between the two sets of embeddings.

Sample from the Intersection of the Vocabularies Contextualized models

generate a word embedding for every usage of a word. Unfortunately, both the

extraction of usages as well as the generation of word embeddings with the contex-

tualized model are computationally expensive. Depending on the size of the intersec-

tion of the corpus vocabularies, these tasks become infeasible on normal hardware.

Therefore, words from this intersection have to be sampled. This sample then acts

as a pool of possible changing words and is also needed to calculate the threshold.

A sample size of 500 words is recommended as a good balance between feasibility

and number of predictions. However, a variable size parameter allows end-users with

more resources to increase the size of the sample at will.

Zipf’s law (Zipf, 1935; 1949) states that given a corpus, the frequency (number

of occurrences) of any word is inversely proportional to its rank in a frequency

ranking. Thus, the second most frequent word will only occur half as often as the

most frequent one, the third most frequent word will only occur a third as often, etc.

This means that a overwhelming majority of the words in a corpus are low-frequent

ones. Therefore, a random sampling is likely to not contain any higher-frequency

words. In order to have predictions not only for low-frequency words, the following

sampling procedure is implemented:
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1. Compute the frequency range (highest frequency - lowest frequency) of the

vocabulary intersection.

2. Split this range into five areas of equal frequency width.

3. Take random samples from these areas according to how many words they

contain.

Consider the following example:

(2) Given a sample size of 500, a lowest frequency of 1 and a highest frequency

of 100:

1. The frequency range equals 99 (= 100− 1).

2. This range is then split into five areas of width 20 (= d99/5e). The first

area contains the words with a frequency less than or equal to 20, the

second area contains the words with a frequency higher than 20 and less

than or equal to 40, etc.

3. Let the first area contain 50%, the second area 30%, the third area 10%,

the fourth area 8% and the fifth area 1% of the words from the

intersection. Then 250, 150, 50, 40 and 10 words are randomly sampled

from the respective areas.

Extracting usages A script is provided, that given a list of words (e.g., a sample

of the vocabularies intersection) automatically extracts usages from the corpora. The

user can choose the maximum number of usages to extract from a corpus. The usages

are then randomly extracted from both corpora and stored in an appropriate format.

For users that have access to two pairs of corpora, i.e., a raw and a lemmatized pair,

the script will extract sentences for both corpora pairs and save them accordingly.7

7These can be used for the pre-processing approaches that are described in the next paragraph.
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Creating Contextualized Word Embeddings The implementation of the Bidi-

rectional Encoder Representations from Transformers (BERT, Devlin et al., 2019)

model in Laicher et al. (2020) is used to generate contextualized word embeddings.8

BERT is a transformer-based (Vaswani et al., 2017) neural language model de-

signed to find contextualized representations by analyzing left and right contexts.

The training objective is to solve two unsupervised tasks simultaneously and mini-

mize their combined loss function:

1. Masked Language Model (MLM): Randomly replace 15% of the words in

the input by a [MASK] token. Predict the masked words based on the context

provided by the other non-masked words.

2. Next Sentence Prediction (NSP): Given two sentences A and B, predict

whether B is the actual sentence that comes after A, or just a random sentence

from the corpus.

The idea behind the MLM task is that the model looks at both directions (using left

and right contexts) to predict the masked word, making it deeply bidirectional. The

second task is solved simultaneously, in order to better understand the relationship

between two sentences.

The key part is the self-attention mechanism, which is used to find the words of

importance for the words in the input sequence. First, the input, i.e., a sentence or

two sentences, is split into tokens. These tokens are then mapped onto embeddings.

Afterwards, these are passed to the self-attention head (see Figure 3). For every

embedding, a key, query and value vector with 64 components is created by a matrix

multiplication with the respective key, query and value matrices (Allamar). The

following steps are executed for every token (Futrzynski):

1. The dot products between the token’s query vector and the key vectors of all

tokens are calculated.

8The implementation is based on SciPy (Virtanen et al., 2020) and transformers (Wolf et al.,

2020).
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Figure 3: The Self-Attention Head (Futrzynski).

2. These values are normalized by a non-linear softmax activation function, re-

sulting in attention scores.

3. A new (contextualized) embedding is created by linear combination of the

value vector of all tokens, where the attention scores act as coefficients.

This results in transformed embeddings, which now encode information about

their surroundings. This self-attention mechanism is run multiple times simulta-
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neously (multi-head attention), with different key, query and value matrices. The

embeddings from the different attention-heads are then concatenated together and

passed to a feed-forward neural network. The bert-base model, that is used in this

framework, has 12 self-attention-heads, resulting in contextualized embeddings with

768 components after concatenation. The model uses 12 layers of multi-head atten-

tion (see Figure 4), where the output from one layer is passed as an input to the

next layer.

The contextualization is one of the key differences in comparison to the static

SGNS model. Furthermore, while SGNS is trained from scratch on the task-specific

data, BERT models, that are already pre-trained on large amounts of data, are

already provided. The previously extracted usages are fed into BERT to encode

the contextualized information onto the embeddings. These are then extracted from

either one of the 12 different layers or as the average over multiple of those. A

parameter allows the user to choose at will.

Following the success in Laicher et al. (2021), two pre-processing approaches are

implemented:

• Lemma: Lemmatized usages are fed into BERT instead of raw usages.9

• TokLem: The target words in the raw usages are replaced by their lemma.

Measuring Differences Given two sets of word embeddings U1 and U2, two dif-

ferent approaches are implemented to measure differences:

• Average Pairwise Distance (APD): First, if one set is larger, it is randomly

downsampled so both sets contain the same number of word embeddings. Af-

terwards, for every possible pairing of word embeddings between both sets, the

CD is calculated. The average over all CDs then corresponds to the change

score (Schlechtweg et al., 2018; Giulianelli et al., 2020):

APD(U1, U2) =
1

|U1| · |U2|
∑

u1∈U1,u2∈U2

CD(u1, u2).(3)

9This is only possible if lemmatized corpora are provided.
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Figure 4: The Bert model (Futrzynski).
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The APD values range from 0 (related) to 1 (unrelated). Values closer to 0

indicate that no semantic change happened between the sets of word embed-

dings, while values closer to 1 indicate a strong semantic change between the

sets.

• Cosine Similarity (COS): First, both sets are averaged respectively. After-

wards, the CD between the resulting mean embeddings is measured (Kutuzov

and Giulianelli, 2020):

COS(U1, U2) = CD

(∑
u1∈U1

u1
|U1|

,

∑
u2∈U2

u2
|U2|

)
.(4)

Analogous to CD, COS can take values from 0 (related) to 1 (unrelated).

Again, word whose meaning has not change between the sets, should result

in smaller values, while words that have undergone a meaning change should

result in larger values.

3.3 Thresholding

Thresholding is commonly used to infer binary values from graded ones (Schlechtweg

et al., 2020; Basile et al., 2020). The idea is to define a threshold and rank every

word based on its graded value. Words whose graded values are greater than or equal

to this threshold, are marked as changing words, while words with a lower graded

value are marked as non-changing words. When training data is available, i.e., a set

of target words with human-labeled binary change scores, different thresholds can

be evaluated to find a well-performing one. However, without training data, this

becomes much more difficult. For such cases, Kaiser et al. (2020b) propose to choose

the threshold according to the CDs of all words in the intersection of the corpus

vocabularies. Motivated by this work, but with the addition of a variable parameter

t for fine-tuning purposes, the following threshold is implemented:

TH = µ+ t · σ,(5)

where µ is the mean and σ is the standard deviation of all graded values. Kaiser

et al. show that the special case of t = 1 works very well with the SGNS model on

the Italian data set provided by the DIACR-Ita shared task (Basile et al., 2020).
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3.4 Filtering

The predicted changing words will likely contain proper names, foreign language and

lemmatization errors. Since these are usually not considered as semantic changes,

two filters are implemented with the help of spaCy (Honnibal et al., 2020), to remove

such cases:

1. The first filter acts on a lemma-level and only allows nouns, verbs and adjec-

tives to pass.10

2. The second filter operates on a usage-level. Words where over 10% of the usages

do not correspond to the language or contain more than 25% punctuation

are filtered out. Note, that the static approach requires usages for the words

that passed the first filter. Depending on the amount of words the extraction

process can be time-consuming. Therefore, for the static approach a parameter

is provided, so users with low resources can apply the second filter to a sample

of the words instead.

3.5 Store Usages for Human-Annotation

An optional step is provided to store the usages of the filtered changing words in a

specific format. Falsely discovered changing words can then be removed by manually

(human-based) inspecting the corresponding usages. This process can be assisted by

the openly available DURel interface for annotation and visualization (see Section

4.3). The extracted usages are saved in a way so that they can be directly uploaded

into the DURel interface. With the help of human-annotators, false positives can be

found and removed. Additionally, the usages and the DURel interface can be used

to evaluate the quality of the discovered changing words.

However, it should be noted that the manual human-annotation process is costly

and can obviously not be automated. Therefore, it is not an essential part of the

10For BERT the first filter is applied to the intersection of the vocabularies before the random

sample is taken, in order to not waste computational power on undesirable words.
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discovery process, but rather an optional step for users with more resources, that

want to further improve the quality of the discovered words.

4 Framework Application

In this section, a full discovery process is shown to illustrate the framework and it’s

possible applications. This process includes a fine-tuning of the model parameters

and the threshold on the German SemEval-2020 data set by solving the two corre-

sponding subtasks (Schlechtweg et al., 2020). All of this is done with tools provided

by the framework.

Using the best-performing parameter configurations for both approaches, two

sets of discovered changing words are generated. Afterwards, both sets are uploaded

into a human-annotation system to evaluate their quality.

4.1 Data and Subtasks

The German data set provided by the SemEval-2020 shared task (Schlechtweg et al.,

2020) is used for the discovery process. The data set contains a diachronic corpus

pair for two time periods to be compared, a set of carefully selected target words as

well as binary and graded gold data for semantic change evaluation and fine-tuning

purposes.

Corpora The DTA corpus (Deutsches Textarchiv, 2017) and a combination of

the BZ (Berliner Zeitung, 2018) and ND (Neues Deutschland, 2018) corpora are

used. DTA contains texts from different genres spanning the 16th–20th centuries.

BZ and ND are newspaper corpora jointly spanning 1945–1993. Schlechtweg et al.

(2020) extract two time specific corpora C1 (DTA, 1800–1899) and C2 (BZ+ND

1946–1990) and provide a raw and a lemmatized version.
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Target Words A list of 48 target words, consisting of 32 nouns, 14 verbs and 2

adjectives is provided. These are controlled for word frequency to minimize model

biases that may lead to artificially high performance (Dubossarsky et al., 2017;

Schlechtweg and Schulte im Walde, 2020).

Subtask 1: Binary Classification For a set of target words, decide which words

lost or gained sense(s) between C1 and C2.

Subtask 2: Graded Ranking Rank a set of target words according to their

degree of LSC between C1 and C2.

4.2 Tuning

The discovery process is closely related to the SemEval-2020 subtasks. And in fact,

the task of discovering changing words can be seen as a special case of Subtask 1,

where the list of target words equals the intersection of the corpus vocabularies.

Hence, parameter configurations that perform well on these subtasks should result

in good predictions. Therefore, both approaches are fine-tuned on the SemEval-2020

data.

First, Subtask 2 is solved to optimize the graded value predictions. Both models

described above are used with multiple parameter configurations to generate sets of

graded value predictions for the 48 SemEval target words. These are then evaluated

by computing the Spearman rank-order correlation coefficient ρ between the graded

value predictions and the graded gold data provided by the SemEval-2020 data set.

The Spearman correlation coefficient ρ is a measure for the strength of association

between two variables, whose values range from −1 (strong negative correlation) to

1 (strong positive correlation). A value close to 0 indicates no correlation between

the variables. A strong positive correlation indicates a high performance.

Afterwards, the thresholding with t values ranging from −2 to 2 in steps of

.1 is applied to the best-performing sets of graded values for both models. The
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x
4: Identical

3: Closely Related

2: Distantly Related

1: Unrelated

Table 1: DURel relatedness scale (Schlechtweg et al., 2018)

binary gold data provided by the SemEval-2020 data set is then used to calculate

precision, recall and F0.5. Precision measures how many of the words that are labeled

as changing words are indeed changing words. Recall measures how many of the

existing changing words were labeled as such. The F0.5-score considers both, but

with a higher importance on precision. All three measures can take values from 0 to

1. A higher value indicates a better performance.

For both approaches, the parameter configuration with the highest peak F0.5-

score and the corresponding threshold is then chosen to discover changing words in

a sample of 500 words.

4.3 Annotation

The model predictions are validated by human annotation. For this, the SemEval-

2020 Task 1 procedure, as described in Schlechtweg et al. (2020), is applied. Anno-

tators are asked to judge the semantic relatedness of pairs of word usages, such as

the two usages of Aufkommen in (6) and (7), on the scale in Table 1.

(6) Es ist richtig, dass mit dem Aufkommen der Manufaktur im Unterschied

zum Handwerk sich Spuren der Kinderexploitation zeigen.

‘It is true that with the emergence of the manufactory, in contrast to the

handicraft, traces of child exploitation are showing.’

(7) Sie wissen, daß wir für das Vieh mehr Futter aus eigenem Aufkommen

brauchen.
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‘They know that we need more feed from our own production for the cattle.’

The annotated data of a word is then represented in a Word Usage Graph (WUG,

Schlechtweg et al., submitted), where vertices represent word usages and weights on

edges represent the (median) semantic relatedness judgment of a pair of usages. The

final WUGs are clustered with a variation of correlation clustering (Bansal et al.,

2004; Schlechtweg et al., 2020) (see Figure 5, left) and split into two subgraphs

representing nodes from C1 and C2 respectively (middle and right). Clusters are

then interpreted as word senses and changes in clusters over time as lexical semantic

change.11

In contrast to Schlechtweg et al. the openly available DURel interface for anno-

tation and visualization is used.12 This also implies a change in sampling procedure,

as the system currently implements only random sampling of use pairs (without

SemEval-style optimization). For each target word, 25 usages (sentences) per sub-

corpus (C1, C2) are sampled and uploaded to the DURel system, which presents

use pairs to annotators in randomised order. Four German native speakers with

university level education are recruited as annotators. Three have a background in

linguistics, and one has an additional professional background in lexicography. Sim-

ilar to Schlechtweg et al., the robustness of the obtained clusterings is ensured by

continuing the annotation of a target word until all multi-clusters (clusters with

more than one usage) in its WUG are connected by at least one judgment. Finally,

a target word is labeled as changing (binary) if it gained or lost a cluster over time.

For instance, Aufkommen in Figure 5 is labeled as change as it gains the orange

cluster from C1 to C2.
13 Find an overview over the final set of WUGs in Table 3. A

comparably high inter-annotator agreement (.67 Krippendorf’s α) is reached.

11The data set is available at https://www.ims.uni-stuttgart.de/data/wugs
12https://www.ims.uni-stuttgart.de/data/durel-tool.
13Following Schlechtweg et al. k and n are used as lower frequency thresholds to avoid that

small random fluctuations in sense frequencies caused by sampling variability or annotation error

be misclassified as change. k = 1 and n = 3 are set.
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full C1 C2

Figure 5: Word Usage Graph of German Aufkommen (left), subgraphs for first time

period C1 (middle) and for second time period C2 (right). black/gray lines indicate

high/low edge weights.

4.4 Results

In this section, the results of the tuning and discovery process are described.

4.4.1 Tuning

The SGNS model is commonly used in the field of LSCD (Schlechtweg et al.,

2020) and already highly optimized (Kaiser et al., 2020a;b; 2021). Therefore, well-

performing parameter configurations are known and difficult to further improve

upon. Various parameter configurations based on the work in Kaiser et al. (2020a)

are tested on the German SemEval-2020 data set.14 The three best-performing con-

figurations are presented in Table 2. These yield competitive ρ = .690, .710 and .710

respectively.

The performance of token-based approaches like BERT is drastically below the

type-based counterparts in the SemEval-2020 shared task (Schlechtweg et al., 2020).

However, Kutuzov and Giulianelli (2020) were able increase the performance im-

mensely by fine-tuning these token-based models. Recently, Laicher et al. (2020;

14All configurations use w = 10, d = 300, e = 5 and a minimum frequency count of 39.
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parameters t
tuning predictions

ρ F0.5 P R ρ F0.5 P R
S
G
N
S k = 1, s = .005 1.0 .690 .692 .750 .529

k = 5, s = .001 1.0 .710 .738 .818 .529 .324 .748 .704 1.0

k = 5, s = None 1.0 .710 .685 .714 .588

B
E
R
T APD −0.2 .673 .598 .560 .824

COS 1.0 .738 .741 .706 .788 .482 .620 .567 1.0

Table 2: Performance (Spearman ρ, F0.5-measure, precision P and recall R) of differ-

ent approaches on tuning data (SemEval targets) as well as performance of best type-

and token-based approach on respective predictions with optimal tuning threshold

t.

2021) achieved competitive results on the SemEval-2020 data by experimenting with

different layers and various pre-processing approaches. Following their work, the

framework is used to test the performance of different layers and pre-processings.

And indeed, by using the TokLem pre-processing in combination with layers 1+12,

both APD and COS perform on a very high-level for Subtask 2 (ρ = .690 and .738).

The three best performing SGNS configurations, as well as the two BERT config-

urations (see Table 2) are considered for the second fine-tuning phase. After applying

thresholding as described in Section 3, F0.5-scores for a large range of thresholds are

obtained. Table 2 presents the resulting peak F0.5-score as well as the corresponding

precision and recall for every configuration. SGNS achieves peak F0.5-scores of .692,

.738 and .685 respectively. Interestingly, the optimal threshold is at t = 1.0 in all

three cases. This corresponds to the threshold used in Kaiser et al. (2020b). While

the peak F0.5 of BERT+APD is marginally worse (.598 at t = −0.2), BERT+COS

is able to outperform the best SGNS configuration with a peak of .741 at t = 0.1.
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4.4.2 Discovery

For both approaches, the top-performing configuration (see Table 2) is used to dis-

cover two sets of changing words. The filtering as described in Section 3.4 is applied

to both sets. A set of 27 and a set of 75 words labeled as changing remain. 30

targets from the second set of changing words are randomly sampled to obtain a

feasible number for annotation. The first set is called SGNS targets and the second

one BERT targets, with an overlap of 6 targets. Following the annotation process,

binary and graded gold data is generated for both target sets, in order to validate

the quality of the discovery.

The evaluation is presented in Table 2. F0.5-scores of .748 for SGNS and .620 for

BERT are achieved. Out of the 27 words predicted by the SGNS model, 19 (70 %)

were actually labeled as changing words by the human annotators. In comparison,

only 17 out of the 30 (56 %) BERT predictions were annotated as such. The perfor-

mance of SGNS on the predictions (SGNS targets) is even higher than on the tuning

data (SemEval targets). In contrast, BERT’s performance on the predictions drops

strongly in comparison to the performance on the tuning data (.741 vs. .620). This

reproduces previous results and confirms that BERT generalises poorly for LSCD

and does not transfer well between data sets (Laicher et al., 2020).

Figure 6 shows the detailed F0.5 developments across different thresholds on the

SemEval targets and the predicted words. Increasing the threshold on the predicted

words improves the F0.5 for both the type-based and token-based approach. A new

high-score of .783 at t = 1.3 is achievable for SGNS. While BERT’s performance

also increases to a peak of .714 at t = 1.0, it is still lower than in the tuning phase.

4.4.3 Analysis

To find out what went wrong, false positives as well as their WUGs and underlying

usages are inspected. Most of the wrong predictions can be grouped into one out of

two error sources.

1. Context Change: The first category includes words where the context in
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Figure 6: F0.5 performance on SemEval targets (orange) and respective predictions

(green) across different thresholds. Left: SGNS. Right: COS. Gray vertical line in-

dicates optimal performance on SemEval targets.

the usages shifts between time periods, while the meaning stays the same. The

WUG of Angriffswaffe (‘offensive weapon’) (see Figure 7) shows a single cluster

for both C1 and C2. In the first time period Angriffswaffe is used to refer to

a hand weapon (such as ‘sword’ or ‘spear’). In the second period, however,

the context changes to nuclear weaponry. We can see a clear contextual shift,

while the meaning did not change. In this case both models are tricked by

the change of context. Further false positives in this category are the SGNS

targets Ächtung (‘ostracism’) and aussterben (‘to die out’) and the COS targets

Königreich (‘kingdom’) and Waffenruhe (‘ceasefire’).

2. Context Variety: Words that can be used in a large variety of contexts form

the second group of false positives. SGNS falsely predicts neunjährig as a

changing word. As seen in the corresponding WUG (see Figure 8), there is only

one and the same cluster in both time periods, and the meaning of the target

does not change, even though a large variety of contexts exists in both C1 and

C2. For example: ‘which bears oats at nine years fertilization’, ‘courageously,

a nine-year-old Spaniard did something’ and ‘after nine years of work’. Both
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General Subtask 1/2

n N/V/A SPR KRI UNC LOSS JUD LSC LSC

SemEval 48 32/14/2 .59 .54 - .20 38k .35 .31

Predictions 51 28/10/13 .74 .67 .16 .22 14k .63 .51

SGNS 27 12/4/11 .75 .68 .19 .22 9k .70 .58

BERT 30 21/6/3 .71 .64 .14 .22 8k .57 .48

Table 3: Overview target words. n = no. of target words, N/V/A = no. of

nouns/verbs/adjectives, SPR = mean pairwise Spearman. KRI = Krippendorff’s

alpha. UNC = mean of uncompared multi-cluster combinations. LOSS = mean of

normalized clustering loss * 10, JUD = no. of judged usage pairs, LSC = mean

binary/graded change score.

models are misguided by this large context variety. Examples include the SGNS

targets neunjährig (‘9-year-old’) and vorjährig (‘of the previous year’) and the

COS targets Bemerken (‘notice’) and durchdenken (‘to think through’).

Lastly, consider two of the many words that are correctly labeled as changing

by the SGNS model, and their corresponding WUGs. The uncommon word Zehner

(see Figure 9), is a prime example of the framework’s capabilities and the underlying

approaches. While many clusters exist for the word, two of those stand out: the

blue cluster and the orange one. In the first time-period, Zehner was used in a

numerical sense, often in combination with Hunderter (‘hundreds’) und Tausender

(‘thousands’), such as in (8).

(8) Man sieht also, daß die Striche nach den Tausenden, nach den Hunderten

und nach den Zehnern gesetzt werden.

‘So you can see that the strokes are placed after the thousands, after the

hundreds, and after the tens.’
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full C1 C2

Figure 7: Word Usage Graph of German Anriffswaffe (left), subgraphs for first time

period C1 (middle) and for second time period C2 (right).

full C1 C2

Figure 8: Word Usage Graph of German neunjährig (left), subgraphs for first time

period C1 (middle) and for second time period C2 (right).

This meaning was lost over time and is nonexistent in the second time-period,

as seen by the absence of the blue cluster in C2. Interestingly, at the same time a

novel word sense was gained. In C2 a large orange cluster appeared, which was not

present before. The usages show that, in the second time-period Zehner is used in

the context of soccer lottery, as for example in (9).

(9) Fußball-Toto : Kein Elfer ; 6 Zehner mit je 3778 Mark ; 152 Neuner mit je

298 Mark.

‘Soccer lottery : No eleven ; 6 tens with 3778 marks each ; 152 nines with

298 marks each.’
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full C1 C2

Figure 9: Word Usage Graph of German Zehner (left), subgraphs for first time

period C1 (middle) and for second time period C2 (right).

The second word is Sprachrohr. Again, different clusters exist for the word, but

the orange cluster and the blue cluster stand out. Sprachrohr was used to describe

the physical device that directs the propagation of sound, improving intelligibility

even at a further distance of the listener from the speaker. An exemplary usage is

the following:

(10) Mittelst eines durch die Wand gehendes Sprachrohrs, wird der Heizer

commandiert.

‘Through a voice tube going through the wall, the stoker is commanded’

This corresponds to the orange cluster. As seen in the WUG for C2 the orange cluster

disappeared, while the blue one emerged. In the second time-period Sprachrohr

referred to the ‘spokesman’ of someone as in

(11) “Das Vaterland ist in Gefahr” - trommelte 1913 pausenlos der Wehrverein als

Sprachrohr des Imperialismus.

‘“The fatherland is in danger” - drummed the defense association as the

spokesman of imperialism in 1913.’
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full C1 C2

Figure 10: Word Usage Graph of German Sprachrohr (left), subgraphs for first time

period C1 (middle) and for second time period C2 (right).

5 Conclusion

The goal of thesis was to make LSCD useful by deriving practical applicability from

previous research. Thus, a framework was build to automatically detect changing

words. Additionally, different tools were implemented to solve tasks related to the

field of LSCD. The framework should assist inexperienced users (e.g., beginners

and people outside the field) with the large automation and ease-of-use as well

experienced users, by providing generally applicable tools for analyzing and fine-

tuning purposes.

Section 4 illustrated the complete discovery process, including multiple fine-

tuning phases. Both approaches (static and contextualized) were used to successfully

discover changing words, although the static model (SGNS) performed considerably

better. The performance of SGNS is more stable for varying parameter configurations

and SGNS generalizes better between data sets. Hence, SGNS is the recommended

model to discover changing words. Furthermore, the results showed similarly to pre-

vious research that contextualized models like BERT can also perform well but a lot

more fine-tuning is necessary. In the fine-tuning phase, the framework was also suc-

cessfully used to solve tasks beyond LSC discovery. High performances were reached

with both models for the SemEval-2020 Subtask 1 and Subtask 2.
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The exemplary discovery process also showed some weaknesses of the framework.

While both approaches find changing words, some are missed, and many are falsely

predicted as changing. Both models are often misguided by context changes and

large context variety. While high-performances were reached on the SemEval-2020

data, it can not be guaranteed that the performance on other corpora will be as

good. It is likely, that at least a small fine-tuning might be necessary to find well-

performing parameter configurations, even for SGNS. This requires either gold data

or a human annotation process. However, the first is often not available and the

latter is time-consuming.

Considering the illustrated strengths and weaknesses, I believe that the frame-

work has a lot of potential and can be helpful to different types of people both in

the field of LSCD and outside of it. I also think that the largely automated nature

of the framework can be utilized by users with more resources to find generally

well-performing parameters and thus eliminating one of its key weaknesses. I hope

that the framework will be useful for many people in and outside the field of LSCD,

whether they are experienced or not.
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Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with

Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges

for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http:

//is.muni.cz/publication/884893/en.

Gerard Salton and Michael J McGill. Introduction to Modern Information Retrieval.

McGraw-Hill Book Company, New York, 1983.

Dominik Schlechtweg and Sabine Schulte im Walde. Simulating lexical semantic

change from sense-annotated data. In A. Ravignani, C. Barbieri, M. Martins,

M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, K. Mudd, and T. Verhoef, edi-

tors, The Evolution of Language: Proceedings of the 13th International Conference

(EvoLang13), 2020. doi: 10.17617/2.3190925. URL http://brussels.evolang.

org/proceedings/paper.html?nr=9.

Dominik Schlechtweg, Sabine Schulte im Walde, and Stefanie Eckmann. Diachronic

Usage Relatedness (DURel): A framework for the annotation of lexical semantic

change. In Proceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pages 169–174, New Orleans, Louisiana, 2018.

Dominik Schlechtweg, Anna Hätty, Marco del Tredici, and Sabine Schulte im Walde.

A Wind of Change: Detecting and Evaluating Lexical Semantic Change across

Times and Domains. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 732–746, Florence, Italy, 2019. Association

for Computational Linguistics.

Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Dubossarsky,

and Nina Tahmasebi. SemEval-2020 task 1: Unsupervised Lexical Semantic

40

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
http://brussels.evolang.org/proceedings/paper.html?nr=9
http://brussels.evolang.org/proceedings/paper.html?nr=9


Change Detection. In Proceedings of the 14th International Workshop on Semantic

Evaluation, Barcelona, Spain, 2020. Association for Computational Linguistics.

Dominik Schlechtweg, Nina Tahmasebi, Simon Hengchen, Haim Dubossarsky, and

Barbara McGillivray. DWUG: A large Resource of Diachronic Word Usage Graphs

in Four Languages. submitted.

Hinrich Schütze. Automatic word sense discrimination. Computational Linguistics,

24(1):97–123, March 1998.

Nina Tahmasebi, Lars Borin, and Adam Jatowt. Survey of Computational Ap-

proaches to Diachronic Conceptual Change. arXiv e-prints, 2018.

Hiroya Takamura, Ryo Nagata, and Yoshifumi Kawasaki. Analyzing semantic change

in Japanese loanwords. In Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 1, Long Pa-

pers, pages 1195–1204, Valencia, Spain, 2017. Association for Computational Lin-

guistics.

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space

models of semantics. J. Artif. Int. Res., 37(1):141–188, January 2010. ISSN

1076-9757.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need,

2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
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A German Summary

A.1 Einleitung

Im Rahmen dieser Thesis wird ein Framework zur vollautomatisierten Entdeckung

von Wörtern die einen Bedeutungswandel durchgemacht haben bereitgestellt.

Wörter verändern ihre Bedeutung mit der Zeit. Bedeutungen können verloren

gehen, aber es können auch neue dazugewonnen werden. Das Gebiet LSCD (Lexi-

cal Semantic Change Detection) beschäftigt sich mit der automatisierten (mit Hilfe

von Computern) Erkennung solcher Bedeutungswandel. Durch extensive Forschung

existieren nun sowohl optimierte Modelle, als auch hoch qualitative Datensätze für

verschiedene Sprachen, die zur Analyse, Auswertung und Verbesserung der Modelle

genutzt werden können. Allerdings liegt der Fokus nur selten auf der Entdeckung

neuer Wörter die einen Bedetungswandel durchgemacht haben. Das Ziel dieser The-

sis ist es einen praktischen Nutzen aus den Meilensteinen der bisherigen Forschung

zu ziehen.

Dafür wird ein Framework bereitgestellt, dass gängige Methoden nutzt, um vol-

lautomatisiert neue Wörter zu entdecken, die einen Bedetungswandel durchgemacht

haben. Zusätzlich werden Hilfsmittel zur Analyse und Optimierung der implemen-

tierten Modelle bereitgestellt. Das Framework soll für möglichst viele Nutzer hilfreich

sein, unabhängig davon wie viel Erfahrung sie im Gebiet haben. Durch den hohen

Automatisierungsgrad könnten auch Nutzer außerhalb des Gebietes vom Framework

profitieren.

A.2 Das Framework

Das Hauptaufgabe des Framework’s ist die vollautomatisierte Entdeckung von Wörtern

die einen Bedeutungswandel durchgemacht haben. Ausgangspunkt dafür ist ein

Textkorpuspaar (K1, K2). Mit Hilfe des Framework sollen nun Wörter aus dem

Durchschnitt der Korpusvokabulare entdeckt werden die einen Bedeutungswandel

durchgemacht habe. Außerdem, kann das Framework auch genutzt werden um die
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beiden verwandten Teilaufgaben (binary classification und graded ranking) aus dem

SemEval-2020 shared task (Schlechtweg et al., 2020) vollautomatisiert zu lösen.

Zur Entdeckung von Wörtern die einen Bedeutungswandel durchgemacht haben,

werden die folgenden Schritte ausgeführt:

1. Ein neuronales Sprachenmodell (SGNS, BERT) wird verwendet um Wortein-

bettungen (Darstellung von Wörtern in From eines numerischen Vektors) für

Wörter aus dem Durschnitt der Korpusvokabulare zu generieren.

2. Unterschiede zwischen Worteinbettungen aus K1 und Worteinbettungen aus

K2 werden gemessen.

3. Ein Schwellenwert wird in Abhängigkeit dieser Unterschiede berechnet. Wörter

deren Wert höher als dieser Schwellenwert ist, werden als Wörter markiert die

einen Bedeutungswandel durchgemacht haben.

4. Unerwünschte Worte (wie z.B., Eigennamen und fremdsprachige Wörter) wer-

den ausgefiltert.

5. (Optional) Die Verwendungen der markierten Wörter werden extrahiert und

in einem spezifischen Format gespeichert. Diese können dann genutzt werden

um die Güte zu evaluieren oder fälschlicherweiße markierte Entdeckungen zu

finden.

Das Framework bietet zur Generierung der Worteinbettungen ein statisches und

ein kontextbezogenes Modell an. Der Unterschied ist, dass statische Modelle eine

Worteinbettung pro Wort generieren. Kontextbezogene Modelle hingegen, generieren

eine Worteinbettung pro Wortverwendung (Satz in dem das Wort vorkommt). Der

Entdeckungsprozess unterscheidet sich leicht in abhängigkeit vom gewählten Modell.

Statisches Modell Das Skip-gram with Negative Sampling Modell (SGNS, Mikolov

et al., 2013a;b) wird genutzt um je einen Vektorraum für K1 und K2 zu generieren.

Diese enthalten dann die Worteinbettungen für die entsprechenden Wörter aus K1
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und K2. Zur Optimierung werden die Worteinbettungen dann normiert und zen-

triert. Anschließend werden die beiden Vektorräume angeglichen (Orthogonal Pro-

crustes). Für jedes Wort aus dem Durschnitt der Korpusvokabulare wird dann mit

Hilfe der Cosine Distance (CD), der Unterschied zwischen der Worteinbettung aus

K1 und der Worteinbettung aus K2 gemessen.

Kontextbezogenes Modell Kontextbezogene Modelle wie Bidirectinal Encoder

Representations from Transformers (BERT, Devlin et al., 2019) benötigen Wortver-

wendungen um die Worteinbettungen zu generieren. Der Rechenaufwand für die

Extrahierung der Verwendungen und die darauf folgende Generierung der Wortein-

bettungen steigt erheblich mit der Anzahl an Wörtern. Um diesen Aufwand zu ver-

ringern, wird ein Skript bereitgestellt, dass eine Stichprobe aus dem Durchschnitt

der Korpusvokabulare zieht. Die Größe der Stichprobe kann durch einen Parameter

im Skript bestimmt werden. Danach werden mit Hilfe des Modells, für jedes Wort

aus der Stichprobe, zwei Mengen von Worteinbettungen generiert. Der Unterschied

zwischen zwei Mengen kann mit Hilfe der Average Pairwise Distance (APD) oder

der Cosine Similarity (COS) gemessen werden.

Schwellenwertbildung In Abhängigkeit der gemessenen Unterschiede wird ein

Schwellenwert berechnet. Dieser entspricht

TH = µ+ t · σ,(12)

wobei µ der Mittelwert und σ die Standardabweichung ist. Wörter mit einem gemesse-

nen Unterschied größer oder gleich diesem Schwellenwert, werden dann als Wörter

die einen Bedeutungswandel durchgemacht haben markiert.

Filterung Zwei Filter werden angewandt um unerwünschte Wörter auszusortieren:

1. Den ersten Filter können nur Nomen, Verben und Adjektive passieren.

2. Der zweite Filter entfernt Wörter, bei denen mindestens 10% der Verwendun-

gen entweder fremdsprachig sind, oder mehr als 25% Interpunktion enthalten.

45



Speicherung für die Annotation In einem optionalen Schritt können Verwen-

dungen, für die markierten Wörter die nicht ausgefiltert wurden, extrahiert und

in einem spezifischen Format gespeichert werden. Diese können dann direkt in das

DURel Annotationssystem hochgeladen werden. Mit Hilfe des Annotationssystems

kann die Güte der Entdeckungen evaluiert werden. Außerdem können fälschlicher-

weiße markierte Wörter entdeckt und entfernt werden.

A.3 Exemplarische Anwendung

Das Framework und seine Qualität wird anhand eines exemplarischen Entdeck-

ungsprozesses illustriert. Der Prozess beinhaltet mehrere Optimierungsphasen um

hochperformante Parameterkonfigurationen zu erhalten. Dafür wird erst der Sub-

task 2 (graded ranking) gelöst. Die besten Resultate werden dann verwendet um

den Subtask 1 (binary classification) zu lösen. Für beide Modell wird dann jew-

eils die Parameterkonfiguration die beim Subtask 1 am besten abschneidet für die

eigentliche Aufgabe der Entdeckung verwendet. Die Güte wird im Anschluss mit

Hilfe des DURel Annotationssystem evaluiert.

Resultate Beiden Modelle erreichen ähnlich gute Resultate, für beide Subtasks.

Die optimierten Parameterkonfigurationen beider Modelle eignen sich gut um Wörter

zu entdecken die einen Bedeutungswandel durchgemacht haben. Allerdings schnei-

det das statische Modell deutlich besser ab. Bei 19 (70%) der 27 markierten Wörter

stimmen die Annotationen von Menschenhand mit den Modellvorhersagen überein.

Im kontextbezogenen Fall sind es nur 17 (56%) von 30. Das Wort Zehner und das

Wort Sprachrohr sind zwei der vielen Wörter die im Entdeckungsprozess gefunden

wurden und tatsächlich einen Bedeutungswandel durchgemacht haben.

Fälschlicherweiße markierte Wörter und deren Verwendungen werden genauer

untersucht um mögliche Fehlerquellen ausfinding zu mache. Die meisten falschen

Entdeckungen können dabei einer der folgenden Fehlerquellen zugeordnet werden:

1. Kontextwandel: Die erste Kategorie beinhaltet Wörter, deren Kontext zwis-

chen K1 und K2 einen Wandel durchmacht. Beide Modelle entdecken diesen
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Wandel. Allerdings hat das entsprechende Wort keinen Bedeutungswandel

durchgemacht. Beispiele hierfür sind Angriffswaffe, Ächtung und Königreich.

2. Kontextvariation: Die zweite Kategorie beinhaltet Wörter die in vielen un-

terschiedlichen Kontexten eingesetzt werden können. In diesen Fällen, wer-

den beide Modelle durch die starke Kontextvariation hinters Licht geführt.

Beispiele enthalten unter anderem, neunjährig, vorjährig und Bemerken.

A.4 Fazit

Alles in allem zeigt der exemplarische Prozess, dass das Framework erfolgreich zur

Entdeckung von Wörtern die einen Bedeutungswandel durchgemacht haben genutzt

werden kann. Das statische Modell funktioniert dabei allerdings deutlich besser.

Außerdem wurde das Framework zum Lösen der beiden Subtasks aus dem SemEval-

2020 shared task genutzt. Auch hier konnten beide Modelle gute Resultate erzielen.

Es wurden allerdings auch Schwachstellen des Frameworks verdeutlicht. Neben

den Wörtern die tatsächlich einen Bedeutungswandel durchgemacht haben, werden

von beiden Modellen auch solche markiert, die keinen Bedeutungswandel durchgemacht

habe. Zusätzlich werden andere gar nicht erst entdeckt. Außerdem kann nicht garantiert

werden, dass sich die hohe Performanz die auf den SemEval Datensatz erreicht

wurde, auf andere Datensätze überträgt. Ein kleine Optimierungsphase wird ver-

mutlich nötig sein, auch für SGNS. Dies benötigt allerdings Golddaten oder eine An-

notation von Menschenhand. Ersteres ist selten vorhanden, letzteres sehr aufwendig.
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