

Konformation und Lichtabsorption von (2-Alkoxyvinyl)ethandionen

Franz X. Effenberger^b, Roland Kramme^d, Hans Jörg Lindner^c, Georg Martin^a, Hans-Dieter Martin^{*a} und Bernhard Mayer^a

Institut für Organische Chemie und Makromolekulare Chemie, Universität Düsseldorf^{*}, Universitätsstraße 1, D-4000 Düsseldorf 1

Institut für Organische Chemie, Biochemie und Isotopenforschung, Universität Stuttgart^b Pfaffenwaldring 55, D-7000 Stuttgart

Institut für Organische Chemie, Technische Hochschule Darmstadt^e, Petersenstraße 22, D-6100 Darmstadt

Henkel KGaA^d, Henkelstraße 67, D-4000 Düsseldorf 1

Eingegangen am 13. August 1990

Key Words: Conformations, solid state / Conformers in solution / UV-Vis transition energies and CO/CO dihedral angles / CO/CO rotational barriers / Calculations, CNDO/S-CI, MMP1, PIMM / PE spectroscopy

Chromophoric Systems, 2¹⁾. - Conformation and Absorption of Light in (2-Alkoxyvinyl)ethanediones

The unusual color properties of yellow 1,2-bis(4,5-dihydrofuran-3-yl)ethane-1,2-dione (1) and colorless 1,2-bis(5,6-dihydro-4H-pyran-3-yl)ethane-1,2-dione (2) in the solid state and in solution are investigated by crystal structure analysis, UV-Vis, PE, and ¹³C-NMR spectroscopy as well as by reparameterized force-field calculations. Dione 1 takes an antiperiplaner CO/

Im UV-Vis-Spektrum von α -Diketonen findet man zumeist zwei Absorptionsbanden geringerer Intensität, eine langwellige im Bereich von 300-600 nm sowie eine kurzwellige zwischen 250 und 350 nm. Die langwellige Bande wird einem $n_+ \rightarrow \pi_+^*$ -Übergang zugeordnet²⁻⁵. Werden die beiden Carbonylgruppen aus der planaren Konformation ($\Theta = 0$ oder 180) gegeneinander verdreht, so resultiert eine hypsochrome Verschiebung der langwelligen Absorption. Dabei bleibt die Lage der n_+ und n_- -Kombinationen im Gegensatz zu der der π^* -Orbitale von der Veränderung des Diederwinkels zwischen den beiden Carbonylgruppen weitgehend unbeeinflußt. Die Wellenzahl des $n_+ \rightarrow \pi_+^*$ -Übergangs korreliert in charakteristischer Weise mit der Konformation des Dicarbonylchromophors⁶⁻⁸.

CO conformation of its chromophore in the solid state whereas dione **2** is twisted in this respect by 102° . In solution both chromophores are not planar, but **1** is less distorted (ca. 142°) than dione **2** (ca. 126°). The calculated rotational barrier for CO/CO twisting amounts to 0.9 kcal mol⁻¹ for **1** and to 2.2 kcal mol⁻¹ for **2**.

In diesem Zusammenhang sind die ungesättigten α -Diketone 1 und 2 interessant⁹⁾. Im kristallinen Zustand ist der Farbunterschied zwischen den Dionen 1 und 2 auffallend. Verbindung 1 kristallisiert in gelben, 2 in farblosen Nadeln. Dieser Absorptionsunterschied ist auch in Lösung zu beobachten. Daraus läßt sich als Arbeitshypothese der vorläufige Schluß ziehen, daß 1 einen antiperiplanaren Dicarbonylchromophor besitzt, während dieser in 2 verdrillt vorliegt. Im folgenden wird versucht, das Phänomen der unterschiedlichen Farbe dieser Verbindungen mit Hilfe experimenteller und theoretischer Methoden zu deuten. Als Referenzverbindungen dienen dabei Benzil (3), Divinylglyoxal (4)¹⁰ sowie Phenanthrenchinon (5).

Ergebnisse

Die He(I)-Photoelektronenspektren der Dione 1 und 2 sind in Abb. 1 dargestellt. Die zugehörigen Ionisierungsenergien sind in Tab. 1 angegeben.

Verbindung 1 weist zwei deutlich voneinander getrennte Banden bei 8.68 und 10.46 eV im Verhältnis 3:1 auf. Bei Dion 2 ist eine ziemlich breite und intensive Bande bei 8.70 und eine kleinere bei 10.30 eV zu beobachten. Ein Vergleich der beiden Spektren mit dem He(I)-Photoelektronenspektrum von Divinylglyoxal¹⁰ (4) erlaubt folgende Interpretation: Bedingt durch den mesomeren Einfluß der Ethersauerstoffatome erfahren die beiden π -MOs der C=C-Dop-

pelbindungen eine beträchtliche Destabilisierung und ionisieren somit bei ähnlicher Energie wie das n_+ -MO. Folglich kann die erste PE-Bande der Verbindungen 1 und 2 drei Ionisierungsereignissen zugewiesen werden: Ionisierungen aus dem n_+ - und aus zwei π -Niveaus. Die Banden bei 10.46 (1) und 10.30 eV (2) sind demzufolge die Konsequenz einer Ionisation aus dem n_- -Niveau. Die n_+/n_- -Aufspaltung liegt mit $\Delta_n = 1.8$ eV in der gleichen Größenordnung wie bei Divinylglyoxal (4)¹⁰⁾ und bewegt sich im üblichen Rahmen⁴⁾. Allerdings sind die n-Niveaus gegenüber 4 um etwa 1.0 eV destabilisiert. Dies ist vermutlich ebenfalls dem mesomeren Einfluß der beiden Enolether-Sauerstoffatome sowie dem vergrößerten σ -System in 1 und 2 zuzuschreiben. In Tab. 1 sind gemessene und berechnete Ionisierungsenergien der Verbindungen 1 und 2 angegeben.

Abb. 1. He(I)-Photoelektronenspektren von 1, 2 und 4¹⁰. Eichung: Xe, Ar

Tab. 1. Experimentelle Ionisierungsenergien von 1 und 2 (Fehler +/-0.03 eV) sowie berechnete Orbitalenergien (HAM/3¹⁵), MMP1¹¹⁾-optimierte Geometrien unter Verwendung der Parameter von Tab. 7)¹²⁾

	$I_{\rm m}/{\rm eV}$, exp.	ε/eV, ber
1	8.68	- 8.63 - 8.68 - 8.71
2	10.46 8.70	-8.71 -10.38 -8.36 -8.75
	10.30	-8.83 -10.19

UV-Vis-spektroskopische Untersuchungen

Im UV-Vis-Spektrum von 1 (Acetonitril) beobachtet man ein intensives Maximum bei 296 nm ($\lg \epsilon = 4.08$) und ein zweites, weniger intensives bei ca. 400 nm ($\lg \epsilon = 1.9$) (Abb. 2). Dion 2 (Acetonitril) hingegen weist eine starke Bande bei 258 nm ($\lg \epsilon = 4.2$) auf, mit einer Schulter bei 380 nm ($\lg \epsilon = 1.8$). Demzufolge ist 1 in Lösung intensiv gelb, während 2 praktisch farblos erscheint.

Abb. 2. UV-Vis-Spektren von 1 und 2 in Acetonitril

Kernresonanzspektroskopische Untersuchungen

Die ¹³C- und ¹⁷O-chemischen Verschiebungen sind in Tab. 2 zusammengefaßt.

Tab. 2. 13 C- (25 MHz, TMS, CDCl₃)- und 17 O- (41 MHz, Dioxan, CDCl₃/CD₃CN)-chemische Verschiebungen von 1 und 2 (δ -Werte)

	C=0	C-2	C-3	C-4	C-5	C-6	C=0	0-C=0
1 2 3 4 5	186.3 194.0 195.4 189.0 180.3	164.0 162.6	116.3 114.2	27.1 20.7	73.2 17.3	67.6	506.4 512.6	125.3 98.6

Sowohl das Kohlenstoffatom C-2 als auch C-3 erscheinen in 1 und 2 bei ähnlicher Frequenz, der Unterschied von ca. 2 ppm liegt in der Größenordnung, die man beim Übergang vom Fünfring zum Sechsring erwartet. Dagegen zeigen die

Carbonyl-Kohlenstoffatome der beiden Verbindungen hinsichtlich ihrer chemischen Verschiebung eine Differenz von 8 ppm. Die Carbonyl-Kohlenstoffatom-Resonanz in 2 liegt mit $\delta = 194.0$ im Erwartungsbereich von α,β -ungesättigten Ketonen, während das Signal des Carbonyl-Kohlenstoffatoms in 1 mit $\delta = 186.3$ hochfeldverschoben ist. Damit liegen die beiden Verbindungen jeweils 3 ppm oberhalb bzw. unterhalb der chemischen Verschiebung des Carbonyl-Kohlenstoffatoms von Divinylglyoxal (4), $\delta = 189.0^{10}$. Zieht man zum Vergleich auch noch den Wert für Benzil (3) heran, $\delta = 195.4^{16}$, sowie den entsprechenden Wert für Phenanthrenchinon (5) mit $\delta = 180.3^{17}$, so liegt die Annahme nahe, daß die unterschiedlichen chemischen Verschiebungen von 1 und 2 in ähnlicher Weise durch die unterschiedliche Verdrillung des Dicarbonylchromophors zustande kommen, wie dies bei Divinylglyoxal (4) diskutiert wurde¹⁰⁾. In den ¹⁷O-NMR-Spektren beobachtet man zwei Signale bei $\delta =$ 125.3 und 506.4 für 1 sowie 98.6 und 512.6 für 2. Die bei höherem Feld liegenden Signale sind den Enolether-Sauerstoffatomen zuzuordnen, diejenigen bei tieferem Feld den Carbonyl-Sauerstoffatomen.

Kristallstrukturanalyse von 1 und 2

Das Ergebnis der Kristallstrukturanalyse ist prinzipiell im Einklang mit den UV-Vis-Spektren. Die im Kristall vorliegenden Molekülkonformationen von 1 und 2 mit einigen ausgewählten Strukturparametern sind aus den Abbildungen 3 und 4 ersichtlich.

In 2 stehen die beiden nahezu planaren Alkoxyacrolein-Einheiten verdrillt zueinander. Der Winkel zwischen den besten Ebenen der beiden π -Systeme beträgt 75°. Der Torsionswinkel CO/CO ergibt sich zu 102°. Es liegen also ähnliche Verhältnisse wie in Benzil (3) vor¹⁸⁾. Dadurch ist die π -Konjugation zwischen den beiden Carbonylgruppen weitgehend aufgehoben, die Verbindung erscheint praktisch farblos. Die sechsgliedrigen Ringe haben Envelope-Konformation, verzerrt nach ⁴T₃. Etwa 10% der Moleküle besitzen invertierte Sechsringkonformation. Das Dion 1 hingegen liegt auf den Dicarbonylchromophor bezogen in einer antiperiplanaren Anordnung vor. Die mittlere Abweichung der C- und O-Atome von der besten Ebene beträgt 0.06 Å. Somit besteht eine beträchtliche π -Konjugation zwischen den beiden C=O-Gruppen, was sich in einer stärkeren Stabili-

Abb. 3. Molekülbild von 1; ausgewählte Bindungslängen [Å] und -winkel [°]: C(5)-C(5A) 1.535(4), C(5)-O(2) 1.227(3), C(5)-C(1)1.435(3), C(1)-C(2) 1.340(3); C(2)-C(1)-C(5) 130.3(2), O(2)-C(5)-C(5A) 119.0(2), O(2)-C(5)-C(1) 120.4(2); O(2)-C(5)-C(2A) 180; C(2)-C(1)-C(5)-O(2) 180(1)

sierung des π_+^* -Niveaus und damit in der intensiv gelben Eigenfarbe von 1 widerspiegelt.

Abb. 4. Molekülbild von 2. C(4*) und C(4A*) sind weggelassen; ausgewählte Bindungslängen [Å] und -winkel [°]: C(6)-C(6A) 1.543(8); C(6)-O(2) 1.231(7), 1.226(8); C(6)-C(1) 1.448(9), 1.418(8); C(1)-C(2) 1.333(8), 1.356(9); O(2)-C(6)-C(6A) 118.7(7), 115.0(7); C(2)-C(1)-C(6) 118.7(7), 119.5(7); O(2)-C(6)-C(1) 122.2(7), 124.5(7); O(2)-C(6)-C(6A)-O(2A) -102(2); C(1A)-C(6A)-C(6)-C(1) -108(2); C(2)-C(1)-C(6)-O(2) -177(2), 177(2)

Kraftfeldrechnungen

Ein völlig planares Molekül 1 sollte nach den Erwartungen noch erheblich langwelliger absorbieren als dies im UV-Vis-Spektrum der Fall ist. Um diese Diskrepanz zu erklären, wurden zunächst unter Verwendung des MMP1-Programms von Allinger et al.¹¹⁾ Kraftfeldrechnungen an den beiden Verbindungen 1 und 2 durchgeführt. Die Grundparametrisierung des MMP1-Programms wird dabei um einige Parameter ergänzt, die zuvor an Benzil (3) getestet wurden (siehe Tab. 7 im experimentellen Teil)^{10,12)}. Diese zusätzlichen Parameter reproduzieren die von Shen und Hagen mittels Elektronenbeugung bestimmte Konformation von Benzil in der Gasphase gut^{10,13)}. In Tab. 3 sind die für Benzil berechneten Molekülparameter den gemessenen gegenübergestellt.

Tab. 3. Vergleich der a) mit dem erweiterten MMP1-Kraftfeld^{11,12)} berechneten Konformation minimaler Energie von Benzil (3) mit b) Elektronenbeugungsdaten von 3¹³⁾

	C _{CO} -C _{CO}	C=O	$C_{CO} - C_{sp^2}$	$C_{sp^2} - C_{sp^2}$	0=C-C=0	C=C-C=0	
a)	1.54	1.22	1.48	1.40	116.9	173.0	MMP1
b)	1.54	1.22	1.48	1.40	116.9	170.1	13)

Ähnliche Berechnungen an 1 und 2 wurden auch mit dem Programm PIMM¹⁹⁾ durchgeführt. Ihre Ergebnisse sind denen auf der Basis von MMP1 erhaltenen in Tab. 4 gegenübergestellt.

Zur Berechnung der Lichtabsorption der Dione 1 und 2 wurde auf das CNDO/S-CI-Verfahren von Del Bene und Jaffé zurückgegriffen¹⁴⁾. Die $n_{+}\pi_{+}^{*}$ -Übergangsenergien zeigen die erwartete Abhängigkeit vom CO/CO-Dihedralwinkel. Die für die Berechnung notwendigen Geometrien resultieren aus Optimierungen mit dem erweiterten MMP1-Modell, wobei die jeweilige CO/CO-Verdrillung vorgegeben wurde (Abb. 5). Zwei Ergebnisse sind bemerkenswert: Zum einen ist die Kurve für das Sechsring-Dion 2 im Einklang

Tab. 4. Vergleich	der experimentellen Geometrien (Kristallstruk-
turanalyse) von 1	und 2 mit den Ergebnissen der Kraftfeldrech-
nungen auf der	Basis des erweiterten MMP1-Kraftfelds ^{11,12}
-	(Tab. 7) und von PIMM ¹⁹⁾

1,2-Bis	(4,5-dihy	trofuran-3	-yl)eti	han-1,2-dion	(1)
---------	-----------	------------	---------	--------------	-----

C _{co} -C _{co}	C=0	C _{CO} -C _{sp2}	$C_{sp^2} - C_{sp^2}$	0=C-C=0	C = C - C = O	
1.53 1.535	1.22 1.227	1.48 1.435	1.34 1.340	142.41 180.00 145.00	174.23 180.00	MMP1 exp. PIMM
1,	2-Bis (5,6-dihydi	·o-4H-pyr	an-3-yl)etha	n-1,2-dion (2)
C _{co} -C _{co}	C=0	$C_{CO} - C_{sp^2}$	$C_{sp^2} - C_{sp^2}$	0=C-C=0	C=C-C=0	
1.54 1.543	1.22 1.226	1.48 1.418	1.35 1.356	126.15 105.00 129.00	174.01 180.00	MMP1 exp. PIMM

mit dem experimentellen Spektrum zu kürzeren Wellenlängen hin verschoben, zum anderen ergibt sich auch durch den etwas größeren Torsionswinkel in 2 eine weitere hypsochrome Verschiebung. Die Übereinstimmung der für die berechneten Konformeren (Pfeile) erhaltenen Anregungsenergien mit dem Spektrum in Abb. 2 ist sehr gut.

Abb. 5. Energie der längstwelligen $n_+\pi_+^*$ -Übergänge von 1 und 2, berechnet mittels CNDO/S-CI¹⁴ (30 einfach angeregte Konfigurationen) unter Verwendung von MMP1^{11,12)}-optimierten Geometrien (Tab. 7). Die Pfeile weisen auf die berechneten Konformerenminima hin

Mit Hilfe des semiempirischen Verfahrens HAM/3¹⁵⁾ wurden die He(I)-Photoelektronenspektren der Verbindungen 1 und 2 im Bereich 7–12 eV simuliert und für jeweils drei verschiedene CO/CO-Dihedralwinkel abgebildet (Abb. 6).

Diskussion

Es ist anzunehmen, daß die Verbindung 2 hinsichtlich der Konformation des Dicarbonylchromophors auch in Lösung stärker verdrillt vorliegt als das Dion 1. Dafür sprechen die mit zwei unterschiedlichen Kraftfeld-Modellen berechneten Konformeren-Geometrien (Tab. 4). Da im vorliegenden Fall die bekannte Abhängigkeit Dihedralwinkel/Anregungsenergie⁷⁾ nicht zur Konformationsanalyse herangezogen

Abb. 6. Simulierte He(I)-Photoelektronenspektren von 1 und 2, basierend auf berechneten Orbitalenergien (HAM/3¹⁵), Geometrien unter Verwendung des erweiterten MMP1-Kraftfeldes (Tab. 7)

werden kann (sie wurde für gesättigte α -Diketone aufgestellt), wurden die entsprechenden Korrelationen für 1 und 2 individuell berechnet (Abb. 5). Eine Analogie zu der Winkelabhängigkeit für gesättigte Dione wird aber sofort erkennbar: auch bei den ungesättigten Verbindungen 1 und 2 gilt die triviale Regel, daß zunehmende Einebnung zu einer bathochromen Verschiebung der UV-Vis-Absorptionen führt. Der grundsätzliche Unterschied zu den gesättigten Verbindungen besteht jedoch darin, daß die Kurve der Winkelabhängigkeit bei den α,β -ungesättigten Dionen systemabhängig zu längeren Wellenlängen hin parallel verschoben ist (Abb. 5, vgl. auch Abb. 4 in Lit.¹).

Vergleicht man die Torsionswinkelabhängigkeit der Energie beider Verbindungen (Abb. 7a und b), so läßt sich auch die Diskrepanz zwischen Röntgenstrukturanalyse und UV-Vis-Spektrum beider Dione erklären. Um Verbindung 2 völlig einebnen zu können, muß eine Rotationsbarriere von 2.2 kcal mol⁻¹ überwunden werden. Bei 1 ist der Energieunterschied zwischen einer völlig planaren Konformation und dem nach MMP1 ermittelten Konformer minimaler Energie mit 0.9 kcal mol⁻¹ bedeutend kleiner (Abb. 7a). Diese geringe Energiedifferenz kann aber von den im Festkörper auftretenden Packungskräften offensichtlich leicht überwunden werden. Ähnliche Berechnungen auf der Basis von PIMM¹⁹⁾ (Abb. 7b) sind mit den Ergebnissen der MMP1-Rechnungen im Einklang. Hinsichtlich der Höhe der Rotationsbarrieren für 1 und 2 bestehen jedoch gering-fügige Unterschiede. So findet man für 1 eine Rotationsbarriere von 0.9 und für 2 von 2.7 kcal mol⁻¹.

Abb. 7. Relative sterische Energien und Bildungswärmen von 1 und
 2, berechnet auf der Basis von a) MMP1 (Tab. 7) und b) PIMM¹⁹
 Die Geometriedaten der Minima sind in Tab. 4 angegeben

Die PE-spektroskopischen Untersuchungen und deren rechnerische Simulation stützen diese Hypothese, wenngleich diese Methode im vorliegenden Fall nicht mit ausreichender Genauigkeit verwendet werden kann. Vergleicht man das gemessene He(I)-Photoelektronenspektrum von 1 mit den für verschiedene Konformationen mittels HAM/3¹⁵⁾ berechneten He(I)-PE-Spektren (Abb. 6), so kann man erkennen, daß die experimentellen Daten in einem weiten Bereich zwischen 8 und 12 eV recht gut von allen Konformationen mit einem zentralen CO/CO-Torsionswinkel zwischen 110 und 150° wiedergegeben werden. Bei 2 ist die Übereinstimmung (man beachte die kleinere Bande bei 10.3 eV) jedoch nur für einen zentralen CO/CO-Torsionswinkel zwischen 90 und 120° brauchbar. Insgesamt ist diese Methode des Vergleichs der He(I)-PE-Daten jedoch zu unempfindlich, um den zentralen CO/CO-Torsionswinkel genauer angeben zu können.

Die für verschiedene Konformationen von 1 und 2 mittels CNDO/S-CI (30 einfach angeregte Konfigurationen) berechneten UV-Vis-Spektren weisen in die gleiche Richtung (Abb. 5). Auch hier werden die experimentellen Ergebnisse durch Konformationen im Bereich der MMP1-Minima am besten wiedergegeben.

Die aus den ¹³C- und ¹⁷O-NMR-Spektren zu gewinnenden Informationen sind für eine präzise Konformationsanalyse nicht ausreichend. Allerdings kann der γ -Effekt eine Erklärung dafür bieten, warum das Signal des Carbonyl-C-Atoms von 1 gegenüber dem von 2 um ca. 8 ppm hochfeldverschoben ist.

Schlußfolgerung

Die ungesättigten Dione 1 und 2 besitzen sowohl in Lösung als auch im festen Zustand eine unterschiedliche Konformation. Im Kristall liegt 1 nahezu antiperiplanar vor, während in 2 die in sich planaren Alkoxyacrolein-Einheiten erheblich verdrillt sind ($\Theta_{CO/CO} = 102^\circ$). Daraus ergeben sich auch die unterschiedlichen Farbeigenschaften von 1 und 2 im kristallinen Zustand: Gemäß Abb. 3 sollte 1 gelb sein ($\Theta_{CO/CO} = 180^\circ$), wohingegen 2 (Abb. 4) mit $\Theta = 102^\circ$ als farblos vorhergesagt wird, im Einklang mit der beobachteten Kristallfarbe.

In Lösung scheinen beide Dione jedoch verdrillt vorzuliegen. Dafür sprechen modifizierte MMP1- und PIMM-Rechnungen sowie CNDO/S-CI-Berechnungen der Übergangsenergien. Allerdings ist Dion 1 nach diesen Untersuchungen weniger tordiert als 2, was auch den beobachteten Farbunterschied in Lösung erklärt. Zusätzliche Hinweise auf die berechneten Strukturen werden durch die ¹³C-NMRund mit Einschränkungen durch die He(I)-PE-spektroskopischen Ergebnisse erhalten. Die berechnete Rotationsbarriere CO/CO für das Fünfring-Dion 1 ist erheblich kleiner als für das Sechsring-Dion 2, womit die im Kristall eingeebnete Konformation von 1 plausibel gedeutet werden kann.

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der BASF AG für die finanzielle Unterstützung dieser Arbeit sowie für Chemikalienspenden.

Experimenteller Teil

Die Synthese der untersuchten Verbindungen erfolgte nach bekannten Vorschriften⁹⁾. – ¹³C-NMR: Varian XL 100 (25.2 MHz). – ¹⁷O-NMR: Varian VXR 300. – UV: Gerät M4 QIII der Fa. Carl Zeiss.

Röntgenstrukturanalyse von 1^{20} : Kristalldaten: C₁₀H₁₀O₄, gelbe Nadeln, M = 194.19; monoklin, $P2_1/c$, a = 7.523(1), b = 6.029(1), c = 10.430(2) Å, $\beta = 110.74(4)^{\circ}$, $V_{EZ} = 442.7$ Å³, Z = 2, $D_{c} =$ 1.456 gcm⁻³, μ (Mo- K_{α}) = 0.70 cm⁻¹. – Datensammlung: An einer Nadel (ca. $0.2 \times 0.2 \times 1.0$ mm) wurden auf einem Siemens-Vier-Kreis-Diffraktometer mit $Mo-K_{\alpha}$ -Strahlung (Graphitmonochromator) auf der Basis von 60 Reflexen mit $18^\circ < 29 < 42^\circ$ die Gitterkonstanten bestimmt. 926 Reflexe wurden vermessen. 510 symmetrieunabhängige Reflexe mit $|F| > 3\sigma_F$ wurden für die Strukturaufklärung und Verfeinerung verwendet. Außer für geometrische Faktoren und Untergrund wurden keine Korrekturen durchgeführt. - Strukturaufklärung und Verfeinerung: Die Struktur wurde durch direkte Methoden gelöst. Das Molekül liegt auf einem kristallographischen Inversionszentrum. Die C- und O-Atome wurden anisotrop, die Lagen der Wasserstoffatome und ein gemeinsamer isotroper Temperaturfaktor wurden bis R = 0.035verfeinert. Das Maximum in der abschließenden Differenz-Fourier-Synthese lag bei 0.12 e/Å³. Die Atomparameter sind in Tab. 5 zusammengestellt.

Röntgenstrukturanalyse von 2^{20} : Kristalldaten: C₁₂H₁₄O₄, farblose Nadeln, M = 174.14; monoklin, $P2_1/c$, a = 11.744(2), b = 9.332(2),

c = 11.181(2) Å, $\beta = 112.40(1)^{\circ}$, $V_{EZ} = 1132.9$ Å³, Z = 4, $D_{c} =$ 1.302 gcm⁻³, μ (Mo- K_{α}) = 7.2 cm⁻¹. – Datensammlung: An einer Nadel (ca. $0.2 \times 0.2 \times 1.0$ mm) wurden auf einem Siemens-Vier-Kreis-diffraktometer mit Cu-K_a-Strahlung (Graphitmonochromator) auf der Basis von 48 Reflexen mit $35^{\circ} < 29 < 65^{\circ}$ die Gitterkonstanten bestimmt. 857 Reflexe wurden vermessen. 821 symmetrieunabhängige Reflexe mit $|F| > 2\sigma_F$ wurden für die Strukturaufklärung verwendet. Außer für geometrische Faktoren und Untergrund wurden keine Korrekturen durchgeführt. - Strukturaufklärung und Verfeinerung: Die Struktur wurde durch direkte Methoden gelöst und mittels LSQ-Rechnungen verfeinert. C(4) und C(4A) liegen statistisch ungeordnet. Etwa 10% der Atome nehmen Positionen ein $[C(4^*), C(4A^*)]$, die einer Inversion der Konformation des sechsgliedrigen Rings entsprechen. Alle C- und O-Atome außer C(4*) und C(4A*) wurden anisotrop, C(4*) und C(4A*) wurden isotrop und die Wasserstoffatome mit einem gemeinsamen isotropen Temperaturfaktor verfeinert (R = 0.069). Das Maximum der abschließenden Differenz-Fourier-Synthese lag bei 0.19 e/Å³. Die verfeinerten Koordinaten sind in Tab. 6 zusammengefaßt. Verwendete Programme: SHELX-76²¹⁾, PLUTO²²⁾.

Tab. 5. Atomkoordinaten von 1 mit Standardabweichungen

Atom	X/A	¥/в	z/c
C(1)	0.1734 (3)	0.4584 (3)	0.4017 (2)
C(2)	0.1871 (3)	0.2430 (4)	0.3751 (2)
0(1)	0.3015(2)	0.1973 (3)	0.3044 (2)
císí	0.3715(4)	0.4093 (5)	0.2718 (3)
C(4)	0.3004 (4)	0.5878 (4)	0.3438 (3)
C(5)	0.0684 (3)	0.5663 (4)	0.4749 (2)
0(2)	0.0864 (3)	0.7661 (3)	0.4979 (2)
H(2)	0.126(3)	0.113(4)	0.400 (2)
H(31)	0.323 (3)	0.423 (4)	0.171(3)
H(32)	0.513(4)	0.395 (4)	0.307 (2)
H(41)	0.407 (3)	0.659 (4)	0.420 (2)
H(42)	0.230 (3)	0.700 (4)	0.281 (2)

Tab. 6. Atomkoordinaten von 2 mit Standardabweichungen. Besetzungszahlen: C(4) und C(4a) und zugehörige Wasserstoffatome: 0.9; C(4*) und C(4A*) und C(4A*): 0.1

			·
Atom	X/A	Y/B	Z/C
C(1)	0.3144 (7)	0.1755 (5)	0.1532 (8)
C(2)	0.3367 (8)	0.1604 (7)	0.2786 (9)
0(1)	0.4268 (5)	0.0786 (5)	0.3630 (5)
C(3)	0.5108 (10)	0.0121 (10)	0.3119 (12)
C(4)	0.4521 (10)	-0.0321 (9)	0.1762 (11)
C(4*)	0.5052 (88)	0.0564 (72)	0.1820 (96)
C(5)	0.3844 (8)	0.0931 (7)	0.0871 (8)
C(6)	0.2155 (7)	0.2693 (6)	0.0762 (8)
0(2)	0.1864 (5)	0.2837 (5)	-0.0412 (6)
C(1A)	0.0293 (7)	0.3293 (6)	0.1328 (7)
C(2A)	-0.0299 (9)	0.2170 (8)	0.0577 (8)
O(1A)	-0.1445 (6)	0.1764 (6)	0.0380 (6)
C(3A)	-0.2153 (10)	0.2682 (13)	0.0908 (14)
C(4A)	-0.1366 (10)	0.3289 (10)	0.2180 (12)
C(4A*)	-0.1782 (77)	0.3883 (55)	0.1250 (83)
C(5A)	-0.0324 (9)	0.4139 (7)	0.2050 (9)
C(6A)	0.1508 (7)	0.3634 (6)	0.1449 (7)
O(2A)	0.2102 (5)	0.4659 (4)	0.2059 (5)
H(2)	0.293 (7)	0.210 (8)	0.336 (8)
H(31)	0.588 (5)	0.075 (7)	0.312 (9)
H(32)	0.565 (6)	-0.043 (7)	0.401 (4)
H(41)	0,523 (5)	-0.081 (7)	0.150 (8)
H(42)	0.395 (6)	-0.116 (6)	0.190 (8)
H(51)	0.332 (6)	0.061 (8)	-0.012(3)
H(52)	0.436 (6)	0.149 (7)	0.040 (7)
H(2A)	0.019 (7)	0.149 (8)	0.016 (8)
H(31A)	~0.299 (5)	0.331 (8)	0.055 (8)
H(32A)	-0.292 (6)	0.215 (8)	0.103 (8)
M(41A)	-0.202 (5)	0.409 (6)	0.220 (8)
H(42A)	-0.101 (7)	0.234 (5)	0.276 (6)
n(SLA)	0.041 (5)	0.426 (9)	0.301 (4)
n(32A)	-0.026 (8)	0.488 (9)	0.214 (5)

Tab. 7. Zusätzliche Parameter für MMP1¹¹⁾-Rechnungen

Bindungswinkel Typ	Kraftkonstante k_{Θ} (mdyn Å rad ⁻²)		Gleichgewichts- winkel Θ (°)
3-3-5 1-2-2 2-3-3 3-3-7	0.40 0.50 0.60 0.50		113.00 121.70 116.00 121.00
Torsions- winkel Typ	Torsions r V ₁	barameter V_2	r (kcal mol ⁻¹) V_3
$\begin{array}{c} 2-3-3-2\\ 7-3-3-2\\ 7-3-3-7\\ 2-2-3-3\\ 5-2-3-3\end{array}$	0.0 0.0 0.0 0.91 0.91	6.0 6.0 10.38 10.38	0.0 0.0 0.0 0.91 0.91

Atomtyp: $1 = C_{sp^2}$, $2 = C_{sp^2}$, $3 = C_{C=0}$, 5 = H, $7 = O_{C=0}$.

CAS-Registry-Nummern

1: 131193-57-2 /2: 2384-01-2 / 3: 134-81-6 / 4: 104910-78-3 / 5: 84-11-7

- ¹⁾ 1. Mitteilung: M. Bühl, R. Kramme, H.-D. Martin, B. Mayer, G. Nowack, Chem. Ber. 124 (1991) 821, voranstehend.
- ²⁾ J. R. Swenson, R. Hoffmann, Helv. Chim. Acta 53 (1970) 2331.
- ³⁾ W. Hug, J. Kuhn, J. Seibold, H. Labhart, G. Wagniere, Helv. Chim. Acta **54** (1971) 1451. ⁴⁾ D. Dougherty, P. Brint, S. P. McGlynn, J. Am. Chem. Soc. **100**
- (1978) 5597.
- ⁵⁾ K. Kimura, Y. Achiba, T. Yamazaki, S. Iwata, Handbook of He(I) Photoelectron Spectra of Fundamental Organic Molecules, Halsted Press, New York 1981.
- ⁶⁾ N. J. Leonard, D. M. Mader, J. Am. Chem. Soc. 72 (1950) 5388.
- ⁷⁾ H. Cerfontain, P. L. Verheijdt, J. Chem. Soc., Perkin Trans. 2, **1982**, 1541. ⁸⁾ N. J. Leonard, E. R. Blout, J. Am. Chem. Soc. **72** (1950) 484.
- ⁹⁾ F. Effenberger, Chem. Ber. 98 (1965) 2260.
- ¹⁰⁾ R. Kramme, H. D. Martin, B. Mayer, R. Weimann, Angew. Chem. 98 (1986) 1134; Angew. Chem. Int. Ed. Engl. 25 (1986) 1116, sowie vorstehende Mitteilung¹
- ¹¹ N. L. Allinger, J. T. Sprague, J. Am. Chem. Soc. 95 (1973) 3893.
 ¹² N. L. Allinger, T. Liljefors, J. Am. Chem. Soc. 98 (1976) 2745; R. Isaksson, T. Liljefors, J. Chem. Soc., Perkin Trans. 2, 1983, 1351; R. Kramme, Dissertation, Univ. Düsseldorf, 1990; St. Röver, Dissertation, Univ. Düsseldorf, 1988.
- ¹³⁾ K. Hagen, Q. Shen, J. Phys. Chem. 91 (1987) 1357
- 14) J. Del Bene, H. H. Jaffé, J. Chem. Phys. 48 (1968) 1807.
- ¹⁵⁾ L. Åsbrink, C. Fridh, E. Lindholm, Chem. Phys. Lett. 52 (1977) 63, 69, 72
- ¹⁶⁾ G. A. Olah, J. L. Grant, P. W. Westermann, J. Org. Chem. 40 (1975) 2102.
- (1975) 2102.
 ¹⁷⁾ T. A. Albright, W. J. Freemann, Org. Magn. Reson. 9 (1977) 75.
 ¹⁸⁾ L. R. C. Barclay, E. J. Gabe, F. L. Lee, Y. Le Page, Acta Crystallogr., Sect. B, 1981, 197; C. J. Brown, R. Sadanaga, Acta Crystallogr. 1965, 158; R. J. W. Le Fevre, C. G. Le Fevre, Rev. Pure Appl. Chemn. 1955, 261
- ¹⁹⁾ H. J. Lindner, Tetrahedron 30 (1974) 1127; H. J. Lindner, Tetrahedron Lett. 1974, 2479.
- ²⁰⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 54923, der Autoren und des Zeitschriftenzitats angefordert werden.
- ²¹⁾ G. M. Sheldrick, SHELX-76, Program of Crystal Structure Determination, University of Cambridge, Cambridge (England) 1976.
- ²²⁾ A. D. Motherwell, W. G. Clegg, PLUTO, University of Cambridge, Cambridge (England) 1978.

[271/90]