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Abstract

Complex Event Processing (CEP) systems are used to combine low-level data from an input

stream into high-level information. To account for workload peaks load shedding can

be used to drop events. To determine when to drop events, the delay of the CEP system

needs to be predicted by its workload. But if multiple operators of the CEP system share a

resource, the workload of one operator does also influence the performance of the other

operators. In this thesis, we examine the interference effect between multiple operators by

building a prediction model. To solve this task we consider it a regression problem, where

we use the arrival rate of an operator to predict the processing time of another operator

on the same node. To also take into account the difference between the arrival rates of

different event types, we introduce the balance score as the second input variable. Next,

we design an experiment to generate diverse data. The data generated this way is then

used to build prediction models by using two different methods: regression analysis and a

neural network. After finding the best prediction model for each method, we compare the

performance of these models. Here we show that which model is better mostly depends on

the specific use case of the CEP system.
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1 Introduction

1.1 Motivation

Nowadays in all areas of life huge amounts of data are generated. This leads to a high

demand to analyze these information streams. In many of these areas, it is important

that these data streams get evaluated fast to make it possible to react fast to the observed

events.

Usually, CEP applications have a high arrival rate of input data, which can also fluctuate.

These fluctuations are caused trough traffic peaks. For example, an infrastructure monitor-

ing application usually gets more data during the daytime, because then the interaction is

higher compared to during the nighttime. But even with these fluctuating arrival rates, the

CEP application needs to produce high-level information reliable and quick.

One possibility to deal with workload peaks is to use load-shedding techniques. For load-

shedding techniques, every event gets a utility value assigned, which shows how important

this event is for the output quality. Then if the workload passes a certain threshold the

events with low utility values are dropped. This ensures that the resources can process the

more important events.

To make load-shedding techniques work reliable it is important to define the amount of data

that needs to be dropped to ensure a certain latency bound. This is especially challenging

if multiple processes of the CEP application share a resource. In this case, the workload of

one process does not only influence its own performance, but also the performance of the

other processes. So, to determine how many events need to be dropped, it is necessary to

model the influence the workload of a process has on the latency of the resource.

1.2 Problem Statement and Goals

We assume that a CEP application consists of one or multiple operators. These operators

are located on nodes, which represent the resources that are used. Every operator receives

events as input, which either are provided by an external source or from another operator.

The operators then process these events and combine them to new events, which are

emitted. The arrival rate of events at an operator has an impact on the processing time of

this operator. If multiple operators are located on one node, there might be interference

effects. Since a resource only has limited processing power, it is unavoidable, that one

or multiple operators under heavy load are degrading each other’s performance. To take
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1 Introduction

such interference effects into account, a model needs to be developed that can predict

performance changes of all operators on a node. To achieve this the model should use the

change of the arrival rates of single operators as input. It is expected that the interference

effects have a complexity that is too high to solely rely on analytical models. Therefore

machine learning techniques should also be used to train the model. The model developed

shall then be implemented on top of the existing CEP framework Precept II. Also, the

performance and correctness of the implemented model shall be evaluated. So, in the

end, it shall be possible to provide a vector of arrival rates to the implemented model and

receive the predicted processing times for the operators.

1.3 Structure

In this section, we explain how this master thesis is structured. Chapter 1 shows the

motivation for this thesis and then defines the problem statement and the goals. In

Chapter 2 we convey the background knowledge which is necessary to understand the

following chapters of this master thesis. Here we first explain CEP and then introduce the

Precept II framework. We also describe two methods that can be used to solve regression

problems: regression analysis and neural networks. In Chapter 3 we explain the approach

with which we want to achieve the goal of this master thesis and which steps are necessary

for it. Chapter 4 describes how we generate the data which is necessary to build our

prediction model. Here we first show which metrics we use as variables for our prediction

model. Then we describe the design of the experiment we use to generate and gather

the necessary data. Last we explain how we adjust the Precept II framework so that it

meets our advanced requirements. In Chapter 5 we show how we use the gathered data

to build prediction models. Here we first explain how we need to preprocess the data.

Then we show how we can build prediction models by using regression analysis and neural

networks. In Chapter 6 we discuss our results. Here we compare the prediction models

we built and describe the limitations of our results. Finally, we summarize the results of

this master thesis in Chapter 7 and provide an outlook on how the topics dealt with in this

thesis can be pursued further.
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2 Background

In this chapter, we explain the background, which is necessary to understand this thesis.

The first two sections explain the concept of CEP and describe the CEP framework that

is used in this thesis. The other two sections of this chapter introduce two concepts that

can be used to solve a regression problem. The first of these sections explains the different

types of regression analysis. The second of these sections explains how to build a neural

network and how it works.

2.1 Complex Event Processing (CEP)

Complex Event Processing (CEP) denotes concepts and methods to process arriving events

from event streams and extract information from them. These events often happen in

the external world and are observed for example by sensors [CM12]. CEP is usually used

in real-time situations. Therefore its goal is to identify meaningful events as quickly as

possible. To achieve this CEP aggregates, filters, and matches low-level events to combine

them to new higher-level events [RC10]. These events are then consumed by sinks, which

either trigger actions or forward the new high-level event. Also in CEP providers and

receivers of information are decoupled. That means that the providers do not need to know

anything about the potential receivers and the receivers do not need to know anything

about the possible sources or the events they might receive [BK09].

2.1.1 Areas of Application

CEP can be used in a variety of different fields. In the following, we shortly describe some

of the most common areas of application as described in [EB09]. One area of application

to use CEP is in the field of business activity monitoring. Here the CEP application tries to

identify problems and opportunities of a business domain at an early stage. For that, the

application monitors business processes and company-critical resources. Another possibility

is to use CEP in combination with sensor networks. Here sensors capture events from the

outside world and send them to a CEP application. Then CEP can be used to combine

the data from multiple sensors to minimize measurement errors. CEP can also be used

to combine events from different sensor types to detect a more complex situation. So for

example the data from a temperature sensor and a smoke sensor could be combined to

detect a fire. Another field in which CEP can be useful is to analyze market data. Data

like stock or commodity prices can also be viewed as events. To identify trends at an early
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stage this data must be analyzed promptly and continuously. If necessary the application

can then react automatically. This is also called algorithmic trading.

2.1.2 Events

A CEP application consumes events from an event stream to process them further. According

to Luckham [Luc02] an event records an activity in a system in the form of an object. An

event contains data regarding the recorded activity and meta-data like a sequence number.

Events can be related to each other through time, causality, and aggregation. Time is saved

as a property of an event in the form of a timestamp. Causality between two events exists

if one event causes the other event. If event A causes event B this is denoted as A -> B. If

event A caused event B, this means that A had to happen before B. This also means that

the timestamp of A needs to be earlier than the timestamp of B. Some events can also

be aggregated, which is one of the main tasks of a CEP application. Formally this means

that a set of events Bi can be combined to a higher-level event A. This event A consists

of the activities recorded by the aggregated events. Such higher-level events may also be

aggregated further into even more high-level events. The more high-level an event gets,

the further it usually separates itself from the hardware level and the closer it gets to the

business domain.

In [HBN13] it is described that an event stream is usually modeled as a sequence of events.

In such a sequence S = (e1, e2, ..., en) each event ei has a timestamp ti and an event type

qi. The sequence is ordered according to the timestamps, so that ti < tj , i < j

2.1.3 Operator Graph and Patterns

A CEP application contains one or multiple operators which together form a directed acyclic

graph. The edges between the operators transmit events between the operators. At its

boundaries, the operator graph receives events from the input stream and delivers output

events. An operator graph can be executed on one machine or distributed in a network

consisting of multiple machines.

An operator receives events from the event stream or from another operator and tries

to aggregate them to new higher-level events according to predefined patterns. These

higher-level events are also called complex events [SBR20]. Two of the most simple pattern

types are sequence-patterns and and-patterns. A sequence-pattern is denoted by a sequence

Pseq = (q1, q2, ..., qn) of event types qi. As soon as the specified sequence of events Pseq is

captured by the operator a new complex event is created. An and-pattern is denoted by

a set Pand = ¶q1, q2, ..., qn♢ of event types qi. As soon as all events from the specified set

Pand are captured by the operator a new complex event is created. Each pattern P is only

evaluated over a certain time frame [HBN13]. If no complex event is created within this

time frame, the corresponding pattern instance is dropped. This is necessary because of

usually CEP applications process time-sensitive data. So after a certain amount of time the
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events received become useless. Therefore a complex event must be created before this

point in time.

2.1.4 Load Shedding

The arrival rate of event streams is often fluctuating and is especially high during peak

times [HBN13]. This can quickly become a performance bottleneck for CEP applications.

The reason for this is that the processing of events is stateful [ZVW20]. Each operator stores

a set of partial matches for the pattern it is looking for. This state can grow exponentially

if the arrival rate greatly surpasses the processing rate of events. This leads to slower

processing of the arriving events. This can be a serious problem, because in most CEP

applications complex events need to be created within a certain latency bound, otherwise

they become useless [SBR19].

To avoid this problem load shedding can be used. Load shedding means that a part of the

events arriving at an operator is dropped. This reduces the load on this operator and lead

to lower latency at detecting complex events [SBR19]. Simple load shedding strategies just

drop events randomly. But if events are dropped that are very important, this may lead to a

decreasing quality of detecting complex events. Therefore it can be beneficial to estimate

how great the impact of an event on the quality of results is. This value is usually called the

utility of an event. It can be best determined by a user or administrator, which has a good

knowledge of the application [HBN13]. Instead of dropping random events, this can be

used to drop events with a lower utility resulting in a better quality of results. The method

explained so far is called input-based load shedding. Another method that can be used

is state-based load shedding. Here, instead of dropping arriving events, partial matches

of patterns is dropped. By this, the size of the state of an operator is reduced, which also

leads to a decreased processing time.

A load shedding system usually has three main tasks [HBN13]. First, it needs to decide

when it needs to conduct load shedding. Therefore it must be able to detect when a load

peak happens and if this peak is so big that the latency bound of the operator is violated.

Second, the load shedding system needs to decide which events should be dropped. For

that it can for example use the utility value described above. And third, the load shedding

system needs to decide how many events should be dropped. So it must be able to calculate

how much a dropped event improves the processing time and when the latency bound of

the operator is not violated anymore. Additionally, the load shedding system should use an

efficient method to drop events, so that the overhead of the load shedding does not become

too big [SBR19].

2.2 Precept II Framework

The Precept II Framework is the CEP framework that is used in this thesis. It was build

as part of the PRECEPT II project, which is carried out by the Institute for Parallel and
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Distributed Systems of the University of Stuttgart. The goal of this project is to ensure

a given latency bound of a CEP application. Therefore load shedding techniques are

developed, which maximize the perceived quality of result. The framework currently is

still under development. In the following we describe the components of the Precept II

Framework and how they work together.

2.2.1 Components

The core components of the Precept II Framework are the operators. An operator receives

events and tries to combine them into complex events. These complex events are created

according to predefined patterns. A pattern is represented by a statemachine, which is

handed to an operator when the operator is created. Two types of statemachines are already

defined: the sequence-statemachine and the and-statemachine. The and-statemachine

looks for a specified set of events. As soon as all specified events arrived at an operator

with this type of statemachine, a complex event is created. The order in which these events

arrive does not matter. The sequence-statemachine looks for a specified sequence of events.

In contrast to the and-statemachine, here it matters in which order the events arrive. As

soon as all specified events arrived in the specified order at an operator with this type of

statemachine, a complex event is created. Operators can open multiple statemachines to

store partial matches. So, if an event arrives, that can not be used in any of the currently

opened statemachines and represents the start of the pattern, a new statemachine is opened.

A statemachine is dropped after a certain amount of time if it has not created a complex

event till then. It is possible to define this time. An operator is also the place where

load-shedding can happen. Currently, only random load-shedding is implemented. Here

it is possible to define the percentage of events that should be kept. Every time an event

would be processed a random number between 0 and 1 is generated. If the percentage of

events, that should be kept, is larger or equal than the value of [1 - this random number],

then the event is processed. Otherwise, the event is dropped.

Two more components that are used in the Precept II Framework are producers and sinks.

A producer creates events and sends them to an operator. Every event contains an event

type, a payload, a message-id, and a timestamp. The event type, the message-id, and the

timestamp are metadata, whereas the payload contains the actual data of the event. The

event type usually is a number that identifies the type of the event, the message-id is used

to clearly distinguish the events and the timestamp contains the time of sending. The

output rate of a producer can be adjusted by increasing the delay between the emitted

events. If we view a producer as the starting point of a CEP process, a sink is the end of the

process. If an operator creates a complex event it can either forward it to another operator

or it can send it to a sink. In the current implementation, a sink does not do anything when

receiving a complex event, apart from collecting some metadata like the arrival time. But

in the future, this would be the location, where actions can be triggered, depending on the

received complex events.

The last component that is a part of the Precept II Framework, is the metrics consumer.

Operators, producers, and sinks also send metadata that can be used for logging. The
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metrics consumer is the component that collects all this metadata and saves it to a file

or a database. The metrics consumer also further process some data. For example, it

calculates the processing time of an operator, based on the start time and end time of

the processing. The data collected by the metrics consumer can for example be used to

examine the performance of the CEP system.

2.2.2 Topology

The Precept II Framework uses so-called scenarios to define the topology of a CEP system.

A scenario needs to define which operators exist in the CEP system and how they are

connected. Every operator needs an identifier, which usually is an integer number greater

than zero. This identifier is later used to refer to this operator when forming a topology. An

operator consists of one or multiple sub-operators. By that is it possible for one operator

to have multiple different processing steps. If only one processing step is needed, only

one sub-operator needs to be defined. Every sub-operator needs to have the following

properties: identifier, name, and a list of output consumers. The identifier usually is an

integer number greater than zero. The name property defines which operator class is used

by the sub-operator. An operator class defines how events are processed and is explained

in more detail in Section 2.2.1. The list of output consumers defines where the generated

complex events is sent to. This can be other operators or sinks. Additionally, a sub-operator

can have the properties sleep_time_mean and sleep_time_sdv. These properties can be

used to generate random delays according to a gauss distribution. These delays can be

used to slow down the processing of operators.

A scenario also needs to define which nodes exist in the CEP system and how the operators

are distributed among them. Every node needs to have the following properties: an

identifier and a list of included operators. The identifier usually is an integer number

greater than zero. The list of included operators consists of the identifiers of all operators

that run on that node. Additionally, a node can also have the properties sleep_time_mean

and sleep_time_sdv. These properties can be used to generate random delays according to

a gauss distribution. These delays are then used for all operators on that node. Nodes can

be started separately and can therefore run on different physical machines. This makes it

possible to distribute the CEP system among a network.

2.3 Regression Analysis

Regression analysis is a statistical method to investigate the relationship between variables.

It is one of the most used methods to analyze data that consists of multiple factors.

Regression analysis is usually used to determine if an independent variable has an effect on

a dependent variable and how strong this effect is. To avoid confusion with the concept of

statistical independence in regression analysis the independent variable is usually called the

predictor or regressor variable and the dependent variable is called the response variable

[MPV12]. Regression analysis uses an equation to represent the relationship between a set
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of regressor variables and the response variable. The data used in a regression analysis

can originate from an observational study, or from existing historical records. Another

possibility is to specifically design an experiment to gather the needed data.

2.3.1 Linear Regression Model

Regression analysis can be used to build a linear regression model. First, we look at the

cases where only one regressor variable is used. Such a regression analysis is called simple

linear regression [Syk93]. The goal of simple linear regression is to build a linear regression

model which is represented by Equation (2.1).

y = β0 + β1x + ϵ (2.1)

Here y denotes the response variable and x denotes the regressor variable. The parameter

β0 denotes the value of y when x = 0 and is called the intercept. The parameter β1 denotes

how fast the value of y changes when the value of x changes and is called the slope. If

we view the linear regression model as a graph, it takes the form of a straight line. So in

this context, β0 denotes the point where the line intersects with the y-axis and β1 denotes

how steep the slope of the line is. The main goal of a regression analysis is to determine

the values of β0 and β1 so that Equation (2.1) is as correct as possible with regard to

the examined data. Therefore these parameters are usually also called the regression

coefficients. Usually, it is not possible that the linear regression model fits perfectly to the

data only on the basis of the regression coefficients. Therefore Equation (2.1) contains the

parameter ϵ which can be viewed as a statistical error. The value of ϵ is a random variable

that shows the difference between the model and the actual data. So ϵ should ensure that

the model fits the examined data exactly [MPV12]. In reality, the regression model usually

is still only an approximation of the actual relationship between the regressor variable

and the response variable. It is also important to keep in mind that the regression model

generally only can be applied to the range of regressor variables that are contained in the

examined data.

Apart from simple linear regression, it is also possible to perform a multiple linear regression.

The main difference to simple linear regression is that multiple linear regression uses

multiple different regressor variables. This makes it possible to determine the impact

multiple factors have on a single response variable [Syk93]. For multiple linear regression,

the linear regression model needs to become more generalized and is therefore now

represented by Equation (2.2).

y = β0 + β1x1 + β2x2 + ... + βkxk + ϵ (2.2)

Compared to Equation (2.1) this new equation nearly stays the same. The only difference

is, that now the equation takes multiple regressor variables into account, which are denoted

by x1, x2, ..., xk. Also, the equation can no longer be drawn as a simple straight line. If we

only have two regressor variables we can still construct a graph by using three dimensions.

In this case, the graph takes the form of a plane. If we have more than two regressor

variables it is no longer possible to construct a graph.
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Like mentioned earlier the goal of regression analysis is to determine the unknown regres-

sion coefficients. Therefore usually the method of least squares is used. First, the estimated

error is defined as the difference between the actual value of the response variable and

the value the response variable has according to the regression model. The regression

analysis then calculates the sum of the squares of the estimated errors for all data points.

By choosing the regression equation with the minimum value of this sum, the model fits

the data as closely as possible. This technique can be used regardless of whether a simple

or multiple regression is performed.

2.3.2 Polynomial Regression Model

If we can not find a linear regression model that fits our data well, it is possible to build a

polynomial regression model. A linear regression model tries to capture the relationship

between a regressor variable and a response variable by an equation that only uses the first

degree of the regressor variable. A polynomial regression model on the other hand also

uses higher degrees of the regressor variable in its regression equation. Therefore this type

of model can also capture a curvilinear relationship between the regressor variable and

the response variable [Ost12]. The simplest example for a polynomial regression model is

the second-order polynomial model in one variable. This model is also called a quadratic

model and is represented by Equation (2.3) [MPV12].

y = β0 + β1x + β2x2 + ϵ (2.3)

As in a linear regression model y denotes the response variable, x denotes the regressor

variable, β denotes the regression coefficients and ϵ denotes the error. Here β1 is also called

the linear effect parameter and β2 the quadratic effect parameter. If we create a graph from

this equation, it takes the form of a quadratic function. A polynomial regression model can

also use higher degrees for x. The generalized kth-order polynomial model in one variable

is therefore represented by Equation (2.4) [MPV12].

y = β0 + β1x + β2x2 + ... + βkxk + ϵ (2.4)

Using higher degrees for x makes it possible to capture even more complex relationships

between the regressor variable and the response variables.

It is also possible to build a polynomial regression model with more than one regressor

variable. The simplest example for this would be the second-order polynomial model in

two variables, which is represented by Equation (2.5).

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x2
1 + β22x2

2 + ϵ (2.5)

This model is usually called a response surface [MPV12]. A polynomial regression model

can theoretically use any number of regressor variables combined with any degree for x.

The values of these factors depend on the concrete model that should be built.

To successfully build a polynomial regression model, the optimal values for the regression

coefficients β need to be determined. For that a polynomial regression model usually is
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viewed as a multiple linear regression model [Ost12]. This means that the x variables with

higher degrees are handled as new regressor variables. Therefore the examined data needs

to be preprocessed. For example, for a second-order polynomial model in one variable, we

need to square the regressor variable and label it as a new regressor variable. This makes it

possible to just use the method of least squares like for linear regression models.

2.3.3 Coefficient of Determination

After a regression model has been built, it is important to check how well it fits the

examined data. One of the most commonly used metrics is the coefficient of determination

R2. The coefficient of determination shows to which extend the regression model can

explain the variation of the response variable [Syk93]. This metric can be calculated by

using Equation (2.6) [MPV12].

R2 = 1 −
SSRes

SST

(2.6)

SSRes =
∑

i

(yi − ȳ)2 (2.7)

SST =
∑

i

(yi − fi)
2 (2.8)

SSRes is calculated by using Equation (2.7) and SST is calculated by using Equation (2.8).

Here yi denotes the actual measured response variables, ȳ denotes the mean value of

the measured response variables and fi denotes the response variable determined by the

regression model. So R2 calculates how much better the regression model can determine

the response variable compared to just taking the mean value of the response variable. The

coefficient of determination usually takes a value between 0 and 1. A value of 0 means that

the response variable is determined by the regression model not any better than just taking

the mean value of the response variable. A value of 1 means that the regression model

fits the examined data perfectly. In this case, the regression model determines exactly

those values for the response variables that have also been measured. The coefficient of

determination theoretically can also take a negative value. This means that the regression

model is worse at determining the response variable than taking the mean value of the

response variable. This usually indicates that the approach to how the model was built is

entirely wrong or that there are faults in the measured data. It should also be noted that a

bad value of R2 does not necessarily mean that the regression model is bad. A bad value of

R2 can for example also result from a huge amount of noise in the data [Syk93].

2.4 Neural Networks

This section mostly uses information from [Nie15] to describe neural networks. A neural

network can use training data to learn something from it. Neural networks are used a lot

for classification tasks, for example in the field of image processing. But neural networks

can also be used to solve regression problems.

22



2.4 Neural Networks

Figure 2.1: Output of a perceptron with the usage of a threshold [Nie15]

Figure 2.2: Output of a perceptron with the usage of a bias [Nie15]

2.4.1 Neurons

A neural network consists of multiple neurons, which form a graph. Originally neural net-

works used perceptrons as neurons. A perceptron gets multiple binary values x1, x2, ..., xn

as input and produces a single binary value as output. Also a weight w1, w2, ..., wn is

assigned to every input. The output of the perceptron is determined by comparing the

weighted sum
∑n

i=0 wixi to a certain threshold. Figure 2.1 shows that the output is 1 if

the weighted sum is greater than the threshold and 0 otherwise. Usually, the threshold

is moved to the left of these equations, where it is called bias. These new equations are

shown in Figure 2.2.

Nowadays instead of perceptrons neural networks usually use sigmoid neurons. A sigmoid

neuron basically works like a perceptron with the difference that its output is processed

further. For that it uses an activation function σ, which takes the weighted sum x =∑n
i=0 wixi + b as input and produces a new output value. The most commonly used

activation functions are:

sigmoid: σ = 1
1+e−x

tanh: σ = 2
1+e−2x

− 1

linear: σ = a ∗ x

Rectified Linear Unit (RELU) σ = max(0, x)

For the sigmoid and the tanh activation function this output is between 0 and 1. The

important difference between perceptrons and sigmoid neurons is, that the output of

sigmoid neurons is changing less for changing input than it does for perceptrons. And

this is exactly the property that is needed for a neural network, to better learn from the

provided data and adapt to them.
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2.4.2 Stochastic Gradient Descent

The main goal of a neural network is to minimize a cost function. This cost function shows

how much the output values predicted by the neural network differ from the actual output

values. This difference is called loss. One of the most commonly used cost functions is the

Mean Squared Error (MSE) denoted by Equation (2.9).

C(w, b) =
1

2n

∑

x

♣♣y(x) − a♣♣2 (2.9)

Here, w denotes all weights, b denotes all biases, y(x) denotes the expected output value

for the input value x, and a denotes the output value predicted by the neural network.

The value of a is calculated using w, b and x. The task of the neural network is to find

a combination of weights and biases, so that C(w, b) ≈ 0. This can be achieved through

gradient descent. For that, we first need to calculate the gradient vector ∇C for the cost

function C. The gradient vector consists of the partial derivatives for all weights in w

and all biases in b. If ∇C is calculated we know the direction in which the cost function

rises. So, to minimize the cost function we just need to move in the opposite direction.

By establishing a learning rate η, it is possible to control the speed of the movement in

this direction. The complete formula to calculate the next values for w and b is denoted by

Equation (2.10).

(w′, b′) = (w, b) − η∇C (2.10)

By repeating this procedure multiple times the cost function can be minimalized. It is

important to choose a good value for η. Because when η is too high, the changes in the

weights and biases is too high to precisely reach the minimum. And if η is too low, it takes

a long time to get some meaningful changes.

Usually, large amounts of data are being used to train a neural network. Since it would

be quite time-consuming to calculate the gradients for all this data, usually Stochastic

Gradient Descent (SGD) is used. SGD works like gradient descent with the difference, that

average gradients are calculated for small subsets of the training data. These subsets are

called mini-batches and are randomly chosen. When all training data has been used in

mini-batches to train the neural network, an epoch of training is finished. Then a new

epoch is started, where the training data is assigned to new mini-batches. The more epochs

of training a neural network performs, the more accurate its predictions are.

2.4.3 Architecture

A neural network is separated into multiple layers: the input layer, hidden layers, and

the output layer. This architecture is shown in Figure 2.3. The neurons located in the

input layer transfer the training data to the neurons in the first hidden layer. They are not

real neurons per definition but are normally just modeled as such. The amount of input

neurons is equal to the number of input variables. The hidden layers use an activation

function on the weighted input data and forward the result. The more hidden layers a

neural network has, the more complex problems it can solve. Usually, one hidden layer is
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2.4 Neural Networks

Figure 2.3: The layers of a neural network [Nie15]

enough to solve the most common problems. How many neurons a hidden layer needs to

contain, is dependent on the concrete problem. Heaton [Hea08] describes the following

rules of thumb that are often used to get a starting point:

• Choose a number of hidden neurons between the size of the input layer and the size

of the output layer.

• Choose a number of hidden neurons equal to 2
3 the size of the input layer plus the

size of the output layer.

• Choose a number of hidden neurons that is less than twice the size of the input layer.

The output layer puts out the final result of the neural network. The amount of output

neurons is equal to the number of output variables to be predicted.

25





3 Approach

The core task of this master thesis is to build a model that can predict the processing times

for the operators in a CEP system. This prediction model gets a vector as input, which

contains the arrival rates for the events arriving at the operators of the CEP system. This

input vector should then be transformed into an output vector containing the processing

times for these operators.

This task can be understood as a regression problem. At a regression problem, you want

to understand the relationship between a response variable and one or multiple regressor

variables. Therefore a model is built which describes this relationship. This process is called

a regression analysis. Such a model can also be used to predict the response variable based

on the regressor variables. This functionality is exactly what we want to achieve. So if

we view the goal of this master thesis as a regression problem, the arrival rates are the

regressor variables and the processing time of an operator is the response variable.

To be able to perform a regression analysis it is necessary to first collect data points. Each

data point is a pair consisting of a set of regressor variables and the corresponding response

variable. Often this data already exists or can be extracted from a running application. But

in the context of this master thesis, we have no already existing CEP system, which could

be used for that purpose. So the first step is to build a CEP system that can be used to

generate the necessary data. Here the focus should be specifically set on the interference

effect between operators on the same node because the understanding of these effects is

also a goal of this thesis. How this CEP system is built and how the data is generated and

captured is described in more detail in Chapter 4.

In this thesis, we use two different methods to solve the regression problem. The first

method is to perform a regression analysis, which is described in Section 2.3. The second

method is to build a neural network, which is described in Section 2.4. We implement

prototypes for both methods and then evaluate their performance. Therefore we check

how accurate the predictions of the models are, how fast the prediction is, and how long it

takes to build the model. Then we compare the two prototypes and discuss how good they

serve their purpose and which one is better.

27





4 Data Generation

To generate meaningful prediction models we need data regarding the relationship between

the regressor variables and the response variable. Because we do not yet have any data that

we can use, we need to generate that data. In this chapter, we first define which metrics

we use as regressor variables and response variable. Then we define the experiment setup

to gather the needed data. Here we also show the CEP system that is used for this. Last

we show how the existing CEP framework is adjusted to make it possible to perform the

experiment and gather all needed data.

4.1 Selection of Variables

The goal of the master thesis is to predict the performance of a CEP system. We decided

that the best way to do this is to measure the processing time of each operator. Therefore

we set the processing time of an operator to be the response variable.

The problem statement defines that the arrival rates of a CEP system should be used as

input to the prediction model. Therefore we define that one regressor variable is the arrival

rate of an operator. An operator usually receives events of different types. A predefined

pattern of these event types then triggers the creation of a new complex event. As explained

in Section 2.2.1 an operator stores partial matches for a pattern in open statemachines.

We suspect that the number of open statemachines influences the processing time of an

operator. If the arrival rates for the different event types do not fit the pattern of the

operator good enough, this leads to more open state machines. Therefore we originally

planned to add the individual arrival rates for different event types as regressor variables.

But this would mean that a high number of different event types would greatly increase

the number of configurations that we need to generate data for. So instead we determine

the proportion between these arrival rates and the pattern of the operator and combine

them into a single value. We call this value the balance score and formally define it in

Section 4.1.2. So the two regressor variables we use are the arrival rate and the balance

score of an operator. The two following sections describe the execution of experiments

to test if there is a correlation between each regressor variable and the response variable.

This way we can verify that it makes sense to use the arrival rate and balance score of an

operator as regressor variables.
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4.1.1 Arrival Rate

One regressor variable we want to use is the arrival rate of an operator. The arrival rate

of an operator is defined as the number of events that arrive at an operator per second.

Therefore we do not make a difference between the different event types and instead count

all the events that arrive at the operator. In Section 4.3.2 we explain in more detail how

this arrival rate is calculated.

In the problem statement, the arrival rate is suggested as input for the prediction model.

Intuitive this makes sense because if an operator receives more events he might not be

able to process them fast enough. But to use the arrival rate as a regressor variable we

wanted to make sure that there is at least some form of correlation between it and the

response variable. Therefore we conducted an experiment to show that such a correlation

exists. In this experiment, we use a small CEP system consisting of two operators that

are on the same node. Both operators implement an AND state machine that searches for

the pattern [0,1,2]. Since the prediction models should focus on the interference effect

between operators, the goal of the experiment is to show that the arrival rate of operator 1

influences the processing time of operator 2. The experiment consists of twelve different

configurations which all run separately. Each configuration defines different values for the

arrival rate and balance score of the two operators. Operator 2 has constant values for

all configurations so that it does not have any influence on its own processing time. The

arrival rate of operator 2 is set to 300 events per second and the balance score is set to 1.

Operator 1 has a different arrival rate for each configuration, but a constant balance score

of 500. This way we can make sure that changes of the processing time only are caused by

changes of the arrival rate. Each configuration runs for five minutes.

Table 4.1: Measured values for the correlation between the arrival rate of operator 1 and

the processing time of operator 2

Id Balance Score Arrival Rate Arrival Rate 0 Arrival Rate 1 Arrival Rate 2 Processing Time

1 519.625 49.1656 46.9067 1.37938 0.879527 0.0032202

2 517.702 98.8586 93.9938 2.93238 1.93245 0.0070381

3 526.293 199.373 189.824 5.87182 3.67731 0.00381435

4 537.76 300.794 287.135 8.32893 5.33001 0.0060878

5 543.536 404.868 387.077 10.8967 6.89418 0.00463933

6 529.491 496.462 472.072 14.68 9.70998 0.0084955

7 515.415 590.963 564.664 16.141 10.1573 0.00485561

8 526.093 693.669 660.153 20.2359 13.2801 0.00735489

9 532.332 795.69 755.898 23.8406 15.9516 0.00765038

10 547.75 995.761 959.899 22.0391 13.8229 0.0039904

11 544.454 1047.07 1001.59 27.608 17.8681 0.00591003

12 551.247 2784.57 2662.98 73.4541 48.1357 0.00578154

While performing the experiment we measured the arrival rate and balance score of

operator 1 and the processing time of operator 2 for each arriving event. Then we took the

30



4.1 Selection of Variables

mean of these values for every configuration. Table 4.1 shows the results of the experiment.

Because it is very difficult to generate precise values for the balance score, the measured

value of it only is in the close range of the planned value of 500. But the variation of the

balance score should still be low enough so that we mainly capture the influence of the

arrival rate. The measured arrival rates are in a range between ca. 50 and 2780 events per

second. When we performed this experiment, 2780 events per second was the maximum

we could reach and 1050 was the second-highest. In Section 4.3.3 we explain the reason

for this in more detail. Table 4.1 also shows the arrival rates for the different event types,

which determine the balance score.

Figure 4.1: Correlation between arrival rate of operator 1 and processing time of operator

2

Next, we use these measured values to create a graph that shows the correlation between

the arrival rate of operator 1 and the processing time of operator 2. In Figure 4.1 it can be

seen that the processing time of operator 1 shows a clear upward trend till an arrival rate

of around 660 with only one collapse. Afterward, the processing time is slowly decreasing.

But because we could not take any measurements between the arrival rates of 1050 and

2780 events per second, it can not be said for sure how the processing time in this area

actually evolves. But at least till a certain boundary, the arrival rate of operator 1 seems to

influence the processing time of operator 2. So, the experiment showed that there seems to

be at least some form of correlation between the arrival rate and the processing time.
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4.1.2 Balance Score

The second regressor variable we want to use is the balance score of an operator. The

balance score was created by us to determine the imbalance between arriving event types

and the pattern of an operator. To calculate the balance score, we first need to get

the proportion of an event type regarding the pattern of the operator. To calculate this

proportion proportion_patternm we use Equation (4.1).

proportion_patternm =
nm

n
(4.1)

Here nm denotes the number of times an event of the type m is used in the state machine

and n the total amount of events the pattern consists of. Next, for every event type, we

need to get its proportion regarding the arrival rate for the whole operator. To calculate

this proportion proportion_ratem we use Equation (4.2).

proportion_ratem =
ratem

rate
(4.2)

Here ratem denotes the arrival rate of an event of the type m and rate the arrival rate of

the whole operator. Now we calculate the ratio ratiom between proportion_patternm and

proportion_ratem by using Equation (4.3).

ratiom =
proportion_ratem

proportion_patternm

(4.3)

The closer the value of ratiom is to 1, the more balanced the arrival rate of an event type

m is with regard to the pattern of the operator. Finally, we calculate the balance score by

multiplying the values of ratiom for all event types as shown in Equation (4.4).

balance_score =
∏

m

ratiom (4.4)

There might be cases where some values of ratiom are greater than 1 and some are smaller

than 1. In such a case the ratios balance out each other by multiplying, which leads to a

wrong balance score. Therefore if the value of ratiom is smaller than 1, we transform it by

using Equation (4.5).

ratiom =
1

ratiom

(4.5)

This ensures that the value of ratiom is always greater than 1 while remaining the ratio

factor that corresponds to the original value.

In the following, we show the calculation of the balance score on an example. The operator

used in the example has the following pattern: [1,1,2,3]. This leads to the following

values:

proportion_pattern1 = 2
4 = 0.5

proportion_pattern2 = 1
4 = 0.25

proportion_pattern3 = 1
4 = 0.25
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The arrival rate for the whole operator is four events per second: rate = 4. The arrival

rates for the single event types are rate1 = 1, rate2 = 2 and rate3 = 1. This leads to the

following values:

proportion_rate1 = 1
4 = 0.25

proportion_rate2 = 2
4 = 0.5

proportion_rate3 = 1
4 = 0.25

Now we caclulate the ratio between these values:

ratio1 = 0.25
0.5 = 0.5

ratio2 = 0.5
0.25 = 2

ratio3 = 0.25
0.25 = 1

Because ratio1 is smaller than 1 we need to transform it first: ratio1 = 1
0.5 = 2. Finally we

can now calculate the balance score: balance_score = 2 ∗ 2 ∗ 1 = 4.

We defined the balance score to account for the different arrival rates of the event types. A

higher balance score should lead to a greater amount of open state machines and therefore

to a higher processing time. But to use the balance score as a regressor variable we

wanted to make sure that there is actually some form of correlation between it and the

response variable. Therefore we conducted an experiment to show that such a correlation

exists. In this experiment, we use a small CEP system consisting of two operators that

are on the same node. Both operators implement an AND state machine that searches for

the pattern [0,1,2]. Since the prediction models should focus on the interference effect

between operators, the goal of the experiment is to show that the balance score of operator

1 influences the processing time of operator 2. The experiment consists of 15 different

configurations which all run separately. Each configuration defines different values for the

arrival rate and balance score of the two operators. Operator 2 has constant values for

all configurations so that it does not have any influence on its own processing time. The

arrival rate of operator 2 is set to 300 events per second and the balance score is set to

1. Operator 1 has a different balance score for each configuration, but a constant arrival

rate of 1000 events per second. This way we can make sure that changes of the processing

time only are caused by changes of the balance score. Each configuration runs for five

minutes.

While performing the experiment we measured the arrival rate and balance score of

operator 1 and the processing time of operator 2 for each event. Then we took the mean

of these values for every configuration. Table 4.2 shows the results of the experiment.

The measured arrival rate is around 700 events per second as opposed to the planned

1000 events per second. But the measured arrival rate stays pretty constant across the

configurations. This constancy is the most important point about the arrival rate if we want

to make sure to only capture the influence of the balance score. Therefore the difference

between the planned and measured values should not be a problem. The measured balance
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Table 4.2: Measured values for the correlation between the balance score of operator 1

and the processing time of operator 2

Id Balance Score Arrival Rate Arrival Rate 0 Arrival Rate 1 Arrival Rate 2 Processing Time

1 1.12723 719.689 239.039 238.825 239.444 0.000692008

2 1.95526 722.393 278.341 278.63 164.764 0.00489911

3 3.24937 726.564 386.968 169.981 169.998 0.0050639

4 6.11735 723.644 455.406 133.924 134.014 0.00602502

5 25.6039 711.125 556.353 71.0824 71.0531 0.0075465

6 61.5593 701.315 594.087 57.3274 38.6764 0.00830747

7 151.313 690.363 622.23 48.114 19.6725 0.00823603

8 249.258 688.157 619.541 57.2794 9.90859 0.00827435

9 530.521 697.727 658.197 9.91207 29.2938 0.0090639

10 1293.06 699.359 670.104 24.5081 4.97537 0.0094126

11 1556.77 684.334 664.141 9.91654 9.91824 0.00927385

12 2884.58 695.866 680.769 7.9433 6.95427 0.00951577

13 3639.2 691.34 675.994 10.9017 3.98386 0.00946009

14 4938.93 686.019 673.399 7.94341 3.98382 0.00884541

15 6314.39 685.066 674.904 4.97595 4.97592 0.00944013

scores are in a range between ca. 1 and 6300. Table 4.2 also shows the arrival rates for the

different event types, which determine the balance score.

Next, we use these measured values to create a graph that shows the correlation between

the balance score of operator 1 and the processing time of operator 2. We used a logarithmic

scale for the balance score because this way it is easier to see the trend of the graph. In

Figure 4.2 it can be seen that at the start the processing time rises pretty fast. Then the rise

of the processing time slows down till it finally stays at a rather constant value for the rest

of the graph. This means the influence of the balance score on the processing time gets

weaker the higher the balance score becomes. So, the experiment showed that there is a

correlation between the balance score and the processing time.

4.2 Experiment Design

In the last sections, we chose the overall arrival rate and the balance score of an operator

to be the regressor variables and the processing time of an operator to be the response

variable. In this section, we design an experiment that is used to gather the data necessary

to build the prediction models. The experiment uses a CEP system, which consists of two

operators that run on the same node. Both operators implement an AND state machine

with the pattern [0, 1, 2]. We intentionally choose a rather simple CEP system, to make

sure there are no other factors that possibly would distort the results. By this, we can

ensure that the results focus on the interference effect between operators and how well

this effect can be predicted by the prediction models. Also, this is basically the same setup
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Figure 4.2: Correlation between balance score of operator 1 and processing time of opera-

tor 2

we already used for the experiments to show the correlation between the regressor and

response variables. Since this worked fine, we can expect this CEP system also works fine

in this case and we do not have to deal with unexpected problems.

To make sure the producers do not influence the processing time of the operators, we

run these components on separate machines. The producers run on a laptop with a 1.70

GHz processor with 4 cores and 4 GB RAM. The operators run on a desktop computer

with a 3.00 GHz processor with 4 cores and 16 GB RAM. The producers on the laptop

generate events and send them to the operators on the desktop computer by using Local

Area Network (LAN). This way the producers and operators use completely separated

resources and therefore do not influence themselves.

To build meaningful prediction models it is important to have diverse data. This data

should capture as many values and combinations of the regressor variables as possible. To

reach that goal we first define a minimal and a maximal value for the arrival rate and the

balance score. For the arrival rate, the range is between 50 and 1000 events per second.

We choose 50 events per second as the minimal arrival rate because the experiments

in Section 4.1.1 showed that at this arrival rate the influence on the processing time is

negligible (see Figure 4.1). This ensures that there are data points, where only the balance

score influences the processing time. Originally we wanted to choose 10.000 events per

second as the maximal arrival rate. But when we performed some test runs with this arrival

rate, we discovered that the operator takes much longer to process all events than the

producer sends events. The cause of this is, that the mean processing time of the operator
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is at 0.0017 seconds. That means the operator processes around 590 events per second. It

is obvious that at an arrival rate of 10.000 events per second this processing speed leads

to a fast-growing queue of events. This means that the operator already is overloaded

since it can not keep up with the incoming events. So we decided to use 1000 events per

second as the maximal arrival rate. This arrival rate already pushes the operator to its limit

and further increasing it should not increase the influence on the processing time. For the

balance score, the range is between 1 and 1000. We choose 1 as the minimum balance

score because at this score the arrival rates of the event types are perfectly balanced. So at

this score, only the arrival rate influences the processing time. We choose 1000 as maximal

balance score, because the experiments in Section 4.1.2 showed that at this value the

processing time begins to stagnate (see Figure 4.2). So it can be assumed the effect of the

balance scores on the processing time does not grow any further past this point.

Table 4.3: Configurations for operator 1

Ids Arrival Rate Balance Scores

1-10 50 [1, 112, 223, 334, 445 ,556 ,667 ,778 ,889 ,1000]

11-20 156 [1, 112, 223, 334, 445 ,556 ,667 ,778 ,889 ,1000]

21-30 261 [1, 112, 223, 334, 445 ,556 ,667 ,778 ,889 ,1000]

31-40 367 [1, 112, 223, 334, 445 ,556 ,667 ,778 ,889 ,1000]

41-50 472 [1, 112, 223, 334, 445 ,556 ,667 ,778 ,889 ,1000]

51-60 578 [1, 112, 223, 334, 445 ,556 ,667 ,778 ,889 ,1000]

61-70 683 [1, 112, 223, 334, 445 ,556 ,667 ,778 ,889 ,1000]

71-80 789 [1, 112, 223, 334, 445 ,556 ,667 ,778 ,889 ,1000]

81-90 894 [1, 112, 223, 334, 445 ,556 ,667 ,778 ,889 ,1000]

91 - 100 1000 [1, 112, 223, 334, 445 ,556 ,667 ,778 ,889 ,1000]

Now we choose ten values for the arrival rate and the balance score, which are evenly

distributed in the ranges defined by these minimal and maximal values. For every combina-

tion of these values, we have a configuration that is executed individually. This results in a

total of 100 different configurations, which can be seen in Table 4.3. The arrival rate in the

middle column is combined with all balance scores in the right column. The goal of this

experiment is to generate data that can be used to examine the influence operator 1 has on

operator 2. Therefore the configurations shown in Table 4.3 are only used with operator 1.

The arrival rate and balance score of operator 2 is constant across all configurations. We

choose the minimal values from the ranges defined before. So operator 2 has an arrival

rate of 50 events per second and a balance score of 1. By using these values the arrival rate

and balance score of operator 2 do not have a noticeable influence on its own processing

time. Therefore we can ensure, that only the interference effect operator 1 has on operator

2 is captured.

Next, we decided how long each configuration should run. To make sure that the generated

data is equally distributed we need to make sure that each configuration produces the
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same amount of data points. Because we want to measure the processing time of operator

2, it is therefore important that operator 2 receives the same amount of events in every

configuration. Since operator 2 has the same arrival rate for every configuration, every

configuration needs to run the same amount of time to reach that goal. We decided

that each configuration should produce 10.000 data points, which leads to a total of

1.000.000 data points. Because the arrival rate of operator 2 is 50 events per second,

each configuration needs to run for 200 seconds. It may appear that producing so many

data points from a configuration does not increase the diversity of the data points because

they always use the same arrival rate and balance score. But actually, the variety of these

data points is bigger, because the arrival rate is never exactly the same as the planned

values. In reality, the individual arrival rates can fluctuate and are only somewhere around

the planned values. This also leads to fluctuating balance scores, since they are directly

dependent on the arrival rates. This fluctuation has the positive effect that the real variety

of the data points is much bigger than the planned variety. Therefore the generated data

should be diverse enough to build meaningful prediction models.

4.3 Implementation

In this section, we show how we adjusted the existing CEP framework so that we can run

the experiments described in the previous sections. Therefore we first explain how the

producers of the CEP framework are adjusted, so each event type can have an individual

output rate. Next, we show how we adjusted the metric consumer to calculate and measure

the variables that are needed to build the prediction models. In the last section, we explain

how and why a new networking library was integrated.

4.3.1 Producers

In the existing CEP framework it is possible to create events and send them to an operator

through a producer. It is possible to adjust the output rate of a producer by inserting a

delay between the sending of two events. Usually, one producer sends all different event

types in random or predefined patterns to the operator. But to perform the experiments

described in the last sections we need the possibility to define a different output rate for

every event type on an operator. To achieve this we assign one producer to each event

type on an operator. Now we can set a different delay for each producer and therefore

have different output rates. Every producer is started in a different thread. This way all

producers can run in parallel. To make it easier to create a CEP system it is possible to

enter which operators use which event types and assign the desired output rates directly

to these pairs. These output rates are then converted to the equivalent delay by using

Equation (4.6). Then for each specified event type on an operator a producer, which uses

the previously calculated delay, is created and started on a new thread.

delay =
1

output_rate
(4.6)
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When we tested the new implementation, we noticed that in many cases the actual output

rate is much slower than the specified output rate. When we examined this issue more

closely, it became apparent that with larger output rates the difference between the actual

and specified output rate also becomes larger. The cause of this problem is that the producer

also takes a small time to be executed and to send the events. When the specified output

rates are low, this leads to a high delay between emitted events. In this case, the execution

time is too small in relation to the delay to have a big impact. But when the output rate

becomes higher, this results in a smaller delay between emitted events. The smaller this

delay, the greater the influence of the execution time on the delay. This can be shown in a

small example. When we specify the output rate to be 1000 events per second this results

in a delay of 0.001 seconds. But we measured that the producer takes an execution time

of 0.00035 seconds plus the 0.001 seconds delay to send one event. This makes a total of

0.00135 seconds, which is 35% higher than the delay that should be between the sending

of two events. Therefore the producer has an actual output rate of 740 events per second.

This problem also makes it difficult to assign precise balance scores to an operator. To

induce some balance scores it is necessary to have great differences between the arrival

rates of the event types. But since high arrival rates are affected more by the problem

than low ones, this also changes the proportions of the event types differently. This often

leads to an unpredictable balance score. So to run controlled experiments it is important

to fix this problem. Our first idea was to find a mean execution time of the producer and

then subtract it from the delay that is calculated from the specified output rate. But we

could not find an execution time that is generally applicable. Therefore it is necessary to

run preliminary experiments before running the actual experiment. In these preliminary

experiments, we measure the execution times for every producer for every configuration of

an experiment. These execution times can then be entered at the CEP framework and are

automatically subtracted from the delays which are calculated from the specified output

rates. So the delay for a producer is now calculated according to Equation (4.7).

delay =
1

output_rate
− execution_time (4.7)

4.3.2 Metric Consumer

To build the prediction models, we need the arrival rate and balance score of one operator

that corresponds to the processing time of another operator. The processing time of an

operator is already measured by the existing CEP framework. So we only need to implement

the calculation and measurement of the arrival rate and the balance score. These new

implementations are added to the metrics consumer of the framework.

The arrival rate of an operator is defined as the number of events which arrive at an

operator every second. We also need to measure the arrival rate for every event type

individually, since these values are used to calculate the balance score later. To calculate

the arrival rate of an event type at an operator we use Equation (4.8).

arrival_rate =
tn − t(n−20)

20
(4.8)
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Here tn denotes the arrival timestamp of the current event and tn−20 denotes the arrival

timestamp of the event that arrived 20 events earlier. So this means that we calculate the

mean arrival rate over the last 20 events. To be able to calculate this we save the arrival

timestamps for the last 20 events, that arrive at an operator, individually for every event

type. By calculating the arrival rate this way, the calculated arrival rates for the first 19

events are not as accurate as for the following events. Measurements showed that usually

there is a rather large difference between the first 19 events and the following events.

Therefore, the arrival rate of the first 19 events is set to zero, so that they can be sorted

out easier later. To get the overall arrival rate of an operator we then calculate the sum

from the arrival rates measured for the event types on this operator. The arrival rates for

every event type and operator are calculated at every arriving event, no matter on which

operator the event arrives. By this, it is later possible to get the arrival rate of one operator

that corresponds to the processing time of another operator.

The balance score of an operator is defined in Section 4.1.2. To calculate the balance score

we first need to calculate some intermediate variables. First, we calculate the proportion of

an event type regarding the pattern of the operator according to Equation (4.1). Therefore

we need to know the pattern of each operator. Since this pattern usually does not change

on runtime, it is enough to enter the pattern manually before running the CEP system. This

also means that the proportion_pattern does not change while running the CEP system

and can therefore be precalculated. Next, we calculate the proportion regarding the arrival

rate for the whole operator according to Equation (4.2). The values of the arrival rate

which are needed for this are already measured as explained before. Then we calculate

the ratio between the two proportions according to Equation (4.3). As the last step, these

ratios are then combined to the balance score of the operator according to Equation (4.4).

Because we start to calculate the arrival rates only when there are at least 20 events, there

are some arrival rates with a value of zero. This also results in the fact that the balance

score can not be calculated in such a case. These uncalculated balance scores get a value

of zero assigned so that they can be sorted out easier later. The balance scores for every

operator are calculated at every arriving event, no matter on which operator the event

arrives. By this, it is later possible to get the balance score of one operator that corresponds

to the processing time of another operator.

4.3.3 Network Library

When we started working on this thesis, the Precept II framework used Kafka as its

network library. The network library is used to send events and log messages between the

different components of the framework. But when we performed our first experiments

we discovered that, even with a delay of zero between the sending of events, we could

only reach a maximum output rate of around 2780 events per second. The second-highest

output rate we could reach was 1050 events per second by using a delay close to zero.

To increase these output rates we implemented ZeroMQ as a network library for parts

of the framework. The implementation for the operators was done by Henriette Röger,

one of the supervisors of this thesis. We then integrated ZeroMQ for our producers, so
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that they can connect to the new operator implementation. By using ZeroMQ instead of

Kafka we could increase the maximum possible output rate from 2780 events per second

to 10.000. Currently, ZeroMQ is only used for sending events to the operator whereas

all other communication is still using Kafka. But in the future, it might be beneficial to

completely replace Kafka with ZeroMQ.
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In this chapter, we describe how we build prediction models from the data created in

Chapter 4. Therefore we first provide an overlook over the created data and explain how

we need to preprocess this data. Next, we explain how we use regression analysis to

build different regression models. Here we also decide which of these models has the best

performance. Last we show how we build a neural network that can be used as a prediction

model. Here we also explain how we need to adjust the parameters of our neural network

to get the best results.

5.1 Data Preprocessing

In Chapter 4 we described how to generate the data necessary to build a prediction model.

But this data can not be used directly to build the prediction models. We first need to

preprocess it. As explained in Section 4.3.2, inaccurate arrival rates and balance scores get

assigned a value of zero. These inaccurate values could distort the building of a prediction

model. Therefore we delete all data points where either the arrival rate or the balance

score has a value of zero. Our experiment normally can not produce a value of zero for

these metrics. Therefore we can safely delete these data points without losing valid data.

The CEP framework measures many different metrics. But to build our prediction models

we only need the regressor variables and the response variable. In our case, we use the

overall arrival rate and the balance score of operator 1 as regressor variables and the

processing time of operator 2 as the response variable. We extract these metrics from the

collected data and store them into two different arrays. One array contains pairs of the

regressor variables and the other contains the response variables. This separation is needed

by the frameworks we use for the regression analysis and the neural network.

After building the prediction models we need a way to measure their accuracy. Therefore

we need to compare the predicted response variables to the measured response variables.

But the data fluctuates and mostly does not assign one unambiguous response variable

to a pair of regressor variables. So using this data to measure the accuracy most likely

would not work as intended. What we need is one unambiguous response variable for

each configuration of the experiment. Therefore we take the mean value of the regressor

variables and the response variables for every configuration. This gives us a total of 100

data points which we can use to measure the accuracy of the prediction models. The

triangulated surface graph formed by these data points is shown in Figure 5.1. This graph

can also be used to compare the expected and predicted values more intuitively.
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Figure 5.1: Surface graph for the mean values of each configuration of the experiment

5.2 Regression Analysis

One method to build a prediction model is to perform a regression analysis. There are

mainly two libraries for python, which can be used to perform a regression analysis: scikit-

learn and statsmodels. Both libraries work pretty similarly, but there are a few differences.

One difference is that scikit-learn is significantly faster than statsmodel for datasets with

more than 1000 data points [Sri20]. Statsmodel on the other hand provides more statistics

than scikit-learn. But these additional statistics are not relevant for prediction. Because our

goal is to build a prediction model and we have a total of 1.000.000 data points, we use

scikit-learn for our regression analysis.

First, we build a linear regression model. This is the simplest form of a regression model

and gives us a first impression of the complexity of the needed prediction model. Since

we already preprocessed our data in Section 5.1 we now only need to provide this data to

42



5.2 Regression Analysis

Figure 5.2: Surface graph for the linear regression model

the scikit-learn framework. The framework then builds a linear regression model from the

data. The model that was built from our data is described by Equation (5.1).

y = 0.000004708x1 + 0.000002938x2 + 0.00534446 (5.1)

Here y denotes the processing time of operator 2, x1 denotes the arrival rate of operator

1 and x2 denotes the balance score of operator 1. Figure 5.2 shows the surface graph

that corresponds to this equation. It can be seen that the graph takes the form of a plane,

where the processing time rises when the arrival rate and the balance score rise. Here the

influence of the arrival rate is a bit smaller than the influence of the balance score. To

measure the accuracy of the linear regression model we use the coefficient of determination,

which is explained in Section 2.3.3. By using the mean data points we created in Section 5.1

the scikit-learn framework calculates a coefficient of determination of R2 = 0.2262. That

means that our model fits the data to 22.62%, which is not very good. This also become

clear when you compare Figure 5.1 and Figure 5.2. If the prediction model has a high
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accuracy these two figures should look pretty similar. But obviously Figure 5.1 is more

complex then just beeing a plane as in Figure 5.2.

So, since a linear regression model does not fit our data well enough, we need a more

complex prediction model. For that, we can use a polynomial regression model, which

adds regressor variables with higher degrees to the regression equation. The scikit-learn

framework builds a polynomial regression model basically the same way as it builds a

multiple linear regression model. For this, the framework views the regressor variables with

higher degrees as individual regressor variables. So we first need to calculate the higher

degree versions of the regressor variables for each of our data points. The scikit-learn

framework provides a method for that purpose, where we only need to specify the order of

the polynomial regression model.

Table 5.1: Performance of the Regression Models

Order R2 Build Time Prediction Time

1 0.2262 0.0973 0.00000099

2 0.4208 0.2047 0.00000099

3 0.6494 0.5082 0.00000099

4 0.8171 0.8757 0.00000099

5 0.8433 1.2256 0.00000099

6 0.7666 1.9035 0.00000099

7 0.5925 2.4135 0.00000099

8 -2.3636 3.4745 0.00000099

9 -0.9657 5.0166 0.00000099

10 -20.7504 7.2353 0.00000100

We built polynomial regression models with orders between two and ten to find out which

fits the data best. Therefore we calculated the coefficient of determination for each of these

models and compared them. Table 5.1 shows the coefficient of determination for each

polynomial regression model we built. First, the coefficient of determination rises till it

reaches a maximum of R2 = 0.8433 at the fifth-order polynomial regression model and

then decreases again. For the orders between eight and ten the coefficient of determination

even gets negative. This means these models do not fit the data at all. So the model that

fits the data best is the fifth-order polynomial regression model, which is represented by

the surface graph in Figure 5.3. If we compare this graph and Figure 5.1 we can see that

they are pretty similar at the upper part. The lower part of Figure 5.3 shows negative

processing times, which obviously does not make sense. So to properly use this model in a

real application we could view the negative processing times as zero.

We also measured for each model the time it takes to build the model and how fast it

can predict a single response variable. For this, we build the model ten times and let it

perform a prediction for all 100 configurations ten times. Then we measure how long these

processes take and calculate the mean values of these times. Table 5.1 shows these times
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Figure 5.3: Surface graph for the fifth-order polynomial regression model

in seconds. Here we can see that the build time rises with rising order. But the maximum is

only 7.23 seconds, which is negligible since we normally only need to build the prediction

model one time. So even if the lower-order models are faster this does not represent an

advantage in a real application. The time to perform a single prediction is 0.00000099

seconds long for each prediction model. Because there is no meaningful difference for the

build and prediction times between the models, the best regression model is the one that

has the highest accuracy. In our case, this is the fifth-order polynomial regression model

with a coefficient of determination of R2 = 0.8433.

5.3 Neural Network

Our second method to build a prediction model is using a neural network. There are many

different libraries for python, that can be used to build and train a neural network. Since
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there too many different libraries to compare them all, we selected two out of them, which

we look into in more detail: PyTorch and Keras. Keras and Pytorch are both widely used and

have good community support. Keras is a high-level Application Programming Interface

(API), which can run on top of different backends, for example, Tensorflow and Theano.

It has an easy-to-understand and to-use syntax, which results in low development times

for building and training neural networks. To achieve this Keras abstracts many details

from its backend away. This results in Keras being less flexible and adjustable than its

backend. PyTorch on the other hand is a lower-level API, which is much more flexible than

Keras. In PyTorch, you can adjust the neural network in much more detail. But this comes

at the cost of a less simple and concise code compared to Keras. We also tested how fast

PyTorch and Keras are, by building and training a small neural network for each. Here we

discovered, that PyTorch took much longer than Keras to train a neural network. Because

of this fact and the easier syntax, we are going to use Keras. Since the prediction model we

want to build should not become too complex, we do not think that we need the additional

flexibility PyTorch offers.

To build a neural network we need to set several parameters. In the following, we first

define some initial values for these parameters. Then we adjust these parameters so that

the neural network fits our data best. First, we need to decide which activation function

the neurons should use. By looking up some tutorials on that topic we found out that for a

regression problem mostly RELU is used. The next step is to set the layout of the neural

network. Our input layer needs to contain two input neurons, one for the arrival rate and

one for the balance score. Next, we need to decide how many hidden layers we want to use

and how many hidden neurons they should contain. Usually, one hidden layer is enough to

solve the most common problems. Since solving a regression problem should not be too

complex, one hidden layer should be enough. One rule of thumb for the number of hidden

neurons is, to use less than twice the size of the input layer. Because our input layer has

a size of two, our hidden layer contains 3 hidden neurons at the start. Our output layer

needs to contain one input neuron for the processing time. The next step is to decide which

optimizer we use to train the network. In Section 2.4.2 we describe the SGD optimizier. For

the SGD optimizer you need to set a single learning rate that is used for all weight updates.

Nowadays the standard optimizer most neural networks use is the Adam optimizer. The

Adam optimizer has the advantage that it adjusts the learning rate individually for each

weight on runtime [KB17]. This means the Adam optimizer automatically chooses the best

learning rates. Therefore we use the Adam optimizer to train our neural network. The

last step is to decide the batch size and the number of epochs we want to train our neural

network. Usually, a larger batch size leads to shorter epochs but also lower accuracy. To

maintain a good balance between the accuracy of the neural network and the time it needs

to be trained, we use a batch size of 100 for 10 epochs.

After setting the initial parameters we built this model and tested the accuracy. Keras

provides a metric to measure the accuracy of a neural network. But this metric just

calculates how many of the predictions are absolutely correct. Since we almost never

can assign one definite processing time to a pair of arrival rate and balance score, this

accuracy is always 0% in our case. Therefore we use the coefficient of determination as
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an accuracy measurement instead. This also leads to better comparability between the

regression analysis and the neural network. Since the initial weights of the neural network

are chosen randomly, the accuracy of two models with the same parameters is still different

normally. Therefore we build the neural network ten times and take the mean of the

measured coefficient of determinations. For our initial model, we measured a coefficient of

determination of R2 = −4.9702 So this initial neural network does not fit our data at all.

Table 5.2: Accuracy for Neural Networks built with different Activation Functions

Activation Function R2

relu -4.9702

sigmoid 0.9622

tanh 0.6553

linear -14533.4958

Now we tested different combinations of parameters. Here we discovered that if we use

the sigmoid activation function instead of RELU the accuracy of the neural network seems

to be much higher. Therefore we compare the most common activation functions to find

out which ensures the highest accuracy. Since our tests also suggest that a higher number

of hidden neurons increases the accuracy, we use ten hidden neurons for this comparison.

By this, we can make sure that the neural network actually can produce meaningful results.

Table 5.2 shows the coefficient of determination for each activation function. We can see

that neural networks built with the RELU and linear activation function do not fit the

data at all. Neural networks built with the tanh activation function at least do fit the data

somehow, but the accuracy still is not too good. Neural networks built with the sigmoid

activation function have the best accuracy and therefore we use this activation function

from now on.

Table 5.3: Performance of Neural Networks with different amounts of Hidden Neurons

Hidden Neurons R2 Build Time Prediction Time

2 -0.0005 85.85 0.00063

3 0.4603 78.24 0.00064

4 0.7687 79.91 0.00066

5 0.8756 85.90 0.00065

6 0.9653 87.29 0.00065

7 0.9808 79.53 0.00064

8 0.9766 80.20 0.00061

9 0.9814 85.29 0.00063

10 0.9776 79.74 0,00060
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As mentioned before our tests with different combinations of parameters suggest that

a higher number of hidden neurons also increases the accuracy of the neural network.

Therefore we compare different numbers of hidden neurons to find out which number

ensures the highest accuracy. Table 5.3 shows the coefficient of determination for each

number of hidden neurons. We can see that the accuracy of the neural network indeed rises

with the number of hidden neurons. With seven and more hidden neurons the accuracy

stays rather constant with a value around R2 = 0.98 and does not rise further. We also

measured the time it takes to train the neural network and how fast it can predict a single

response variable. For this, we train the neural network ten times and let it perform a

prediction for all 100 configurations ten times. Then we measure how long these processes

take and calculate the mean values of these times. Table 5.3 shows these times in seconds.

We can see that the build time is between 78 and 86 seconds and follows no clear trend.

The prediction time also follows no clear trend and stays between 0.00060 and 0.00066

seconds. So because there is no meaningful difference for the build and prediction times,

the neural network with the highest accuracy is the best one. Therefore we use seven

hidden neurons in our neural network from now on.

Figure 5.4: Relation between the loss and the number of epochs

Next, we inspect how the number of training epochs influences the neural network. As

explained in Section 2.4.2 a neural network tries to minimize the loss over the course of the

training. If the loss does not decrease anymore, additional training epochs are not increasing

the accuracy of the neural network any further. Therefore we examine the relationship

between the loss and the number of epochs. Figure 5.4 shows this relationshship for a

maximum of 50 epochs. We can see that the loss decreases greatly within the first ten

epochs. After this point, it seems that the loss stays rather constant. To further inspect

the loss after ten epochs we zoomed in on the graph. In Figure 5.5 we can see that the

loss actually is still decreasing slightly and reaches its minimum after 28 epochs. After this

point, the loss fluctuates but does not decrease any further. Therefore it should be enough

to train our neural networks for 28 epochs.
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Figure 5.5: Relation between the loss and the number of epochs (zoomed)

Table 5.4: Parameters of the final neural network

Activation Function sigmoid

Hidden Layers 1

Hidden Neurons 7

Optimizer Adam

Batch Size 100

Epochs 28

Our final neural network uses the parameters shown in Table 5.4. It has an accuracy of

R2 = 0.9864, a build time of 230.78 seconds, and a prediction time of 0.00062 seconds.

Figure 5.6 shows the surface graph for our neural network. If we compare this graph and

Figure 5.1 we can see that they are pretty similar. This shows that the prediction model we

built by using our neural network fits the data pretty well.
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Figure 5.6: Surface graph for the neural network
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In Chapter 5 we used the data generated in Chapter 4 to build prediction models. For this,

we used regression analysis on the one hand and a neural network on the other. For both

methods, we tried to find the best prediction model. For regression analysis, this is the

fifth-order polynomial regression model and for the neural network we figured out the

parameters shown in Table 5.4. In this chapter, we discuss and compare these prediction

models. We also explain the limitations under which our results are valid.

Table 6.1: Comparison between the Prediction Models of the Regression Analysis and the

Neural Network

Method Accuracy Build Time Prediction Time

Regression Analysis 0.8433 1.2256 0.00000099

Neural Network 0.9864 230.78 0.00062

To compare the prediction models we look at the following three metrics: the accuracy,

the build time, and the prediction time of each model. Table 6.1 shows the values of

these metrics for the best prediction model that we built by using regression analysis and

a neural network. We can see that the neural network model has higher accuracy than

the regression analysis model. But the regression analysis model has a lower build and

prediction time than the neural network model. So which model is better? To answer that

question we need to look at the context in that we want to use the prediction model.

The prediction model shall later be used to improve the load shedding of the CEP framework.

Here it shall be possible to predict the processing time of an operator and then decide if

events need to be dropped. For that, the predictions must be accurate to a certain extent. If

the predicted processing time is lower than the actual one, we might not drop events when

it would be necessary. This could lead to an overload of the operator and increase the delay

above what is acceptable for the CEP system. If the predicted processing time is higher than

the actual one, we might drop events when it would not be necessary. In the worst case,

important events are dropped without a reason for it. This could lead to a degradation

of the results of the CEP system. For the load shedding to work correctly, the processing

time needs to be predicted before the event would be processed. To gain an advantage

from dropping an event, the prediction time must not be higher than the processing time.

But we also need to take into account that often it might not be necessary to drop the

event. In this case, an only slightly smaller prediction time still greatly increases the overall

processing time for this event. So in fact the prediction time should be significantly smaller
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than the processing time. Otherwise, the load shedding might increase the overall delay of

the CEP system instead of lowering it. The build time normally is not important for the

load shedding mechanism, because the prediction model usually is built in advance. So in

most cases, we can ignore this metric.

Now we can put the measured values of our prediction models into context. First, we

compare the build time of the prediction models. Even if the build time of the neural

network is much higher than the build time of the regression analysis model, it is still only

around four minutes long. For a process that usually only is run one time before the actual

CEP process, this is still really low and does not pose a disadvantage. Next, we compare

the accuracy of the prediction models. Both prediction models have an accuracy of over

80% which is pretty good for data that can be so ambiguous. But with an accuracy of ca.

85% for the regression analysis model this still means that in 15% the decision of the load

shedding mechanism might be wrong. The accuracy of nearly 99% for the neural network

model on the other hand means that only a very small part of the decisions are wrong.

So if only necessary events are allowed to be deleted, the neural network model is the

better choice. Last we compare the prediction times of the prediction models. If we directly

compare the values the regression analysis model is much faster than the neural network

model. But as explained before what actually matters is the proportion with regard to the

processing time. The mean processing time of our data is 0.009442 seconds. This means

that the prediction time of the regression analysis model is ca. 9500 times faster than the

processing time, whereas the prediction time of the neural network model is only ca. 15

times faster. So to not increase the overall delay of the CEP system every fifteenth event

needs to be dropped when using the neural network model. This means that in phases

where the load on the CEP system is relatively low, the load shedding could actually worsen

the performance. This effect could be countered by not performing a prediction for every

event, but instead only after certain time intervals or when a higher arrival rate is detected.

A CEP system which uses the regression analysis model on the other hand only needs to

drop every 9500th event. This means even in phases where the load on the CEP system is

relatively low, the load shedding should not worsen the performance. So, the prediction

time is a great advantage the regression analysis model has compared to the neural network

model. Another factor we can compare is how complex it is to build the prediction model.

To find the optimal prediction model both methods need some testing. For the regression

analysis, this mostly consists of finding an appropriate degree for the polynomial regression

model. A neural network on the other hand has much more parameters that need to be

adjusted. Finding the optimal configuration of these parameters most likely takes much

more time than for regression analysis. The process to build a neural network can also be

much harder to understand, if you are not familiar with this theme area. So we can see that

the regression analysis model has more advantages on its side. Using this model makes

sense when you want an easy building process for the model and want to guarantee that

the overall delay rarely gets degraded. However, if events are only allowed to be deleted

when this is really needed, the neural network model may be a better choice. The better

accuracy of this model ensures that the results of the CEP system are not degraded too

much. So all in all which model is better mainly depends on the specific use case of the

CEP system.
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In the following, we describe the limitations under which our results must be viewed. The

prediction models we built are only valid within the ranges of the gathered data. If we try

to use them with higher or lower values for the arrival rate or balance score, the predicted

processing times might not be correct anymore. Therefore it is important to define realistic

boundaries before building a prediction model. We also only used synthetically generated

data, where we could ensure a high diversity. Real data is not necessarily as diverse,

which might lead to a worse accuracy of the prediction models. Our prediction models

also might have different results when used on another machine. A stronger machine

can endure higher arrival rates and balance scores before getting overloaded, whereas a

weaker machine might get overloaded earlier. We also only examined the interference effect

between two operators. The relationship between the regressor and response variables

most likely becomes more complex if we increase the number of operators. With huge

numbers of operators, it might become difficult to find polynomial regression models that

fit the data well. So for more complex CEP systems the accuracy advantage of a neural

network over a regression analysis might become much bigger than for our prediction

models. Despite all these limitations we still think that the main benefits we described

for the two different methods to build a prediction model should still be correct for most

cases.
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CEP applications can be used to analyze information streams. To deal with workload

peaks events can be dropped by using load shedding techniques. Here it is important to

decide when and how many events need to be dropped. But if multiple operators of the

CEP application share a resource, the workload of one operator does also influence the

performance of the other operators. Therefore the goal of this master thesis is to develop

a model that can be used to predict performance changes of a CEP system caused by

interference effects.

To solve this task we consider it a regression problem. A regression problem tries to find

the relationship between a response variable and one or multiple regressor variables. As

the response variable, we choose the processing time of an operator. As one regressor

variable, we choose the arrival rate of an operator. To also take into account the difference

between the arrival rates of different event types, we introduce the balance score as the

second regressor variable. The balance score measures the difference between the pattern

an operator expects and the actual arrival rates of the event types and is represented by a

single value. The higher this value, the greater the difference between the pattern and the

arrival rates. A balance score of 1 means that the arrival rates and the pattern are perfectly

balanced. We also show that the chosen regressor variables actually influence the response

variable by performing some experiments.

To solve our regression problem we need to generate and gather data. To get meaningful

results this data needs to be diverse enough. Therefore we design an experiment that

consists of 100 different combinations of arrival rates and balance scores. For each of

these combinations, we set the arrival rate and balance score on one operator and measure

the corresponding processing time of another operator on the same node. To be able to

perform this experiment we first need to adjust the existing Precept II framework. On the

one hand, we add the possibility to easily set different arrival rates for each event type. For

this, we use one producer per event type each running in its own thread. We also ensure to

generate the correct output rates by taking the execution time of the producer into account.

On the other hand, we extend the metric consumer so that it can measure the arrival rate

of each individual event type and the whole operator. We also directly calculate the balance

score for each event inside the metric consumer.

Next, we run the planned experiment and use the gathered data to build prediction models.

For this, we use two different methods: regression analysis and a neural network. For each

method, we try different configurations and determine the best prediction model. The

best prediction model we could build with regression analysis is the fifth-order polynomial

regression model. To get the best prediction model by using a neural network we used
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the parameters from Table 5.4 to configure the neural network. Then we compare the two

prediction models with regard to their accuracy, build time, and prediction time. The build

time of both models is low enough that it does not make a difference in a real application.

The neural network model has a higher accuracy whereas the regression analysis model

has a lower prediction time. By looking at the context in which these metrics are important,

we concluded that which model is better mostly depends on the specific use case.

The prediction models we built only look at the interference effect between two operators.

So one could build prediction models for the interference effect between more operators.

By this, it might be possible to generalize our results for CEP systems with more operators.

Our prediction models also only look at the interference effects between operators. But to

actually use a prediction model in a load shedding mechanism, the model needs to look at

the workload of all operators on a node. Therefore, a model would need to be built for

each operator that predicts the operator’s processing time by taking into account the arrival

rate and balance score of each operator on the same node.
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