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Abstract

In modern software development issues are very important for inter-team communication and project
management. Issues are used to clearly state the requirements of a change request and allow teams to
plan and track their tasks. As part of an agile development process new issues are discussed during
the sprint planning and reviews. However, the creation of well-structured issues with current tooling
is still very time-consuming. Elements like the title and body have to be typed into the issue card
and labels have to be manually selected. This makes it difficult for product owners to create digital
issues during a meeting. For this reason, product owners often create handwritten notes during
meetings and create issues in the issue management system afterwards. The current process results
in a time and location distance between the need to create an issue and the digital documentation
of this issue. This makes the process inefficient and error-prone. A product owner is effectively
documenting each issue twice, once on the sheet of paper and then again in the issue management
system. This thesis introduces the concept of a digital voice assistant for issue management. This
system aims to automate the issue creation process and allows a product owner or developer to freely
dictate an issue. Based on the spoken input a structured issue is automatically created. Elements
like the assignee, labels, and priority are extracted from free text. A speech recognition system and
natural language processing will be used. While modern voice assistants like Google Assistant and
Amazon Alexa are increasingly common in consumer households, the underlying technology is
rarely used in the enterprise context to help automate administrative tasks. The concept developed in
this thesis acts as a blueprint for systems to fill out domain-specific forms, like issues or bug reports.
A prototype of the system was implemented to showcase its capabilities. The system follows a
four-step process. In the first step, the spoken input is transcribed using a speech recognition system.
In the second step, the transcribed text is annotated with a natural language processing toolkit.
Based on the annotations and transcribed text a structured issue card is filled out in the third step.
The user has the option to edit and confirm the result. Finally, the resulting issue card is passed into
an existing issue management system (like Github or Gropius) over an API call. To validate this
solution approach an experiment was conducted. Future research possibilities and potential new
use cases of the system design are presented at the end.
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Kurzfassung

In der modernen Softwareentwicklung sind Issues ein wichtiges Werkzeug im Projektmanagement
und unterstützen bei der Team Kommunikation. In Issues werden Anforderungen von Change
Requests und Bugs dokumentiert. Zudem nutzen Teams Issues, um ihre Sprints zu planen und
den Fortschritt zu beobachten. Im agilen Entwicklungsprozess werden neue Issues oft während
dem Sprint Meeting und bei Reviews diskutiert. Das Erstellen von digitalen Issues in aktuellen
Issue Management Systemen ist allerdings zeitaufwändig. Nutzer müssen den Titel und die Issue
Beschreibung manuell eintippen. Auch Elemente wie Labels, Assignee (der Zuständige für das
Issue) und die Priorität müssen einzeln aus Menüs und Listen ausgewählt werden. Der aufwändige
Prozess macht es schwierig für Product Owner Issues schon während des Meetings digital im Issue
Management System zu erfassen. Aus diesem Grund halten Product Owner die besprochenen
Issues während dem Meeting oft in handschriftlichen Notizen fest. Diese Notizen werden dann
nach dem Meeting digital im Issue Management System erfasst. Dieser Prozess führt zu zeitlicher
und räumlicher Distanz zwischen dem Bedürfnis ein Issue zu erstellen und der finalen digitalen
Dokumentation des Issues. Das macht den Prozess ineffizient und fehleranfällig. Ein Product
Owner dokumentiert jedes Issue effektiv zweimal: zuerst als Notiz auf einem Papierzettel und im
Anschluss nochmal digital im Issue Management System. Diese Arbeit präsentiert das Konzept
eines Sprachassistenten für die Issue Erstellung. Das System hat das Ziel die Issue Erstellung zu
automatisieren und soll Product Ownern es erlauben Issues auch während Meetings frei ins System
einzusprechen. Basierend auf dem gesprochenen Text wird ein strukturiertes Issue automatisch
generiert. Elemente wie der Labels, Assignee und Priorität werden aus dem frei gesprochenen
Text extrahiert. Automatische Spracherkennung und natürliche Sprachverarbeitung werden dazu
eingesetzt. Digitale Sprachassistenten wie Google Assistant und Amazon Alexa werden immer
häufiger von Privatanwender eingesetzt. Trotzdem kommt die zugrundeliegende Technologie kaum
im Enterprise Bereich zum Einsatz um administrative Aufgaben zu automatisieren. Das in dieser
Arbeit entwickelte Konzept stellt einen generalisierbaren Bauplan bereit für die Entwicklung von
Systemen, die Formulare spezifischer Fachbereiche aus Spracheingabe automatisch ausfüllen können.
Ein Prototyp des beschriebenen Konzeptes wurde implementiert, um die Funktionen präsentieren
zu können. Das System folgt einem einfachen vier Schritte Konzept. Zuerst wird die gesprochene
Eingabe des Nutzers durch ein Spracherkennungssystem transkribiert. Im zweiten Schritt wird die
Transkription von einem natürlichen Sprachverarbeitungssystem analysiert und annotiert. Anhand
der Transkription und der Annotationen wird im dritten Schritt eine strukturierte Issue Karte erstellt.
Der Nutzer kann diese bei Bedarf bearbeiten und speichern. Zum Schluss wird das gespeicherte Issue
über eine Schnittstelle in ein bestehendes Issue Management System übertragen, wie z.B. Github
oder Gropius. Das Lösungsdesign wurde durch ein Experiment validiert. Am Ende der Arbeit wird
ein Ausblick in weitere Forschungsmöglichkeiten gegeben und zusätzliche Anwendungsfälle der
Lösung beschrieben.
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1 Introduction

Digital voice assistants like Google Assistant or Alexa are getting increasingly common in our
everyday life. In the last couple of years, they have seen an increase in user adoption. Today users
can control their smart home appliances, music, and get news through these devices.

But for the general consumer, these digital voice assistants still have three major problems. Voice
assistants have problems with feature discoverability, still do not have a high enough accuracy, and
only offer limited functionality and value to the general user. [LB] presents this in further detail. It
is often unclear to the user which features a voice assistant supports and what they can do. This is
caused by the poor discoverability in voice interfaces since there are no buttons or a UI that can tell
the user what the assistant can do. Voice assistants are still making a lot of mistakes, misunderstand
individual commands far to often, and start the wrong actions despite a clear voice command. Even
modern voice assistants provide only a very limited amount of functionality.

It seems that the three main issues of feature discoverability, poor recognition accuracy, and
limited functionality are unique to consumer-focused systems. With an enterprise-focused voice
assistant, feature discoverability is far less of an issue, because users get specific training on how
to use the assistant. Employees also use the system for many hours a day, so they get used to the
system’s capabilities quickly. The speech recognition and natural language processing system can
be optimized for a specific context and domain in which to operate, resulting in the possibility to
increase accuracy. By helping to automate specific repetitive tasks that employees of an enterprise
complete often, a lot of value to the user can be created despite a limited feature set.

Despite that, there are hardly any voice assistant systems that specifically target the enterprise and
aim to support employees with their everyday tasks. Especially administrative tasks are often very
time consuming and cumbersome to complete. [VKWM15] shows that using speech input could
make it significantly faster to complete administrative tasks.

1.1 Motivation

In modern SCRUM based software development processes, product owners often have to enter
dozens of issues after a sprint planning or review. During these SCRUM meetings, the team
discusses new features, current bugs, and other tasks that have to be worked on during a sprint. The
product owner has the responsibility to keep track of these elements and enter them into an issue
management system. Creating new detailed issue entries in the issue management system, however,
takes to long to be done immediately during the meeting.

Instead, the product owner often writes down short notes on a sheet of paper for these issues so they
can be entered into an issue management system at a later time. This information transformation
from a discussed issue to a handwritten note and then to a structured and digitized issue entry in the
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1 Introduction

issue management system is not ideal. It has the potential to cause information loss (when elements
are forgotten to be added to the issue), fail to uncover misunderstandings (as the other stakeholders
will only see the created issue hours after the meeting), and be very time-consuming. In the article
“It’s Not Just Standing Up: Patterns for Daily Standup Meetings”1 on Martin Fowler’s homepage,
Yip highlights the importance of note-taking during these agile meetings.

It is very important for teams to carefully document their bugs, user stories, and tasks. Issue entries
become an increasingly important tool for communication and project management, especially with
an increase in remotely located development teams and teams across multiple timezones working
on the same application together.

A system that would allow the team to efficiently create issue entries during such meetings could
help to improve this process. The team members would no longer have to write extra notes for each
issue they want to create after the meetings. All team members could immediately see the newly
created issue and suggest changes if there was a misunderstanding or if elements are missing. The
product owner would also no longer have to spend time after the end of the meeting to enter all of
the required issues in the issue management system.

A digital voice assistant for issue creation has the potential to allow easy issue creation during
SCRUM meetings. The product owner could speak freely to create the issue. The proposed system
would use speech recognition and natural language processing to automatically recognize the
elements of the issue and generate a structured issue. For example, a product owner could speak a
user story freely into the microphone, and the system could automatically create the correct issue
with title, nicely formatted markdown body, labels, and more.

The team in the SCRUM meeting can use this structured issue suggestion to discuss further details,
add them to the issue and clear any misunderstandings. The product owner can then confirm the
issue and it is automatically created in the issue management system.

To support this crucial part of the software engineering process the aim is to make it easier and
faster to create well-structured issues. This system could streamline the process of issue creation
and save time. Not only the issue creation process has inefficiencies. Also the issue management
and team communication can be challenging when multiple teams and microservices are involved
in one issue.

The cross-component issue management system Gropius proposed by Speth et. al. in [SBB20] aims
to make the overall issue management for modern microservice oriented projects easier. This paper
and his work in [Spe19] introduced the concept of cross-project issues to reduce the communication
overhead for “issues affecting multiple projects or teams”.

These cross-component issues still have to be manually created. In this thesis, a system will be
proposed to automatically create (cross-component) issues based on spoken user input. The goal of
the system is to reduce the effort and time it takes to create new and well-structured issues. This
system also aims to be an example of an enterprise-focused speech recognition system, showing how
a modern speech recognition system can be designed and optimized for limited domain-specific
use cases in a professional context. For this reason, particular emphasis will be put on creating an
extensible and customizable architecture.

1https://martinfowler.com/articles/itsNotJustStandingUp.html
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1.2 Purpose and Scope

A speech recognition service will be used to create text from spoken utterances. Natural lan-
guage processing will be used to recognize the semantics of the text and create the correct issue
accordingly.

For the natural language processing engine CoreNLP, as proposed by Manning et. al. in [MSB+14],
will be used. CoreNLP is a well known and very mature natural language processing tool kit, that
allows for easy training of domain-specific named entity recognition models.

This system will be able to support existing issue management platforms. Its goal is to augment the
existing platforms and help to improve the issue management workflow. As part of this thesis the
multi-project issue management system proposed by [SBB20] will be integrated.

Helping to automate the administrative tasks will free up time for important work and make the
daily tasks more enjoyable.

1.2 Purpose and Scope

The purpose of this thesis is to design and develop a complete proof-of-concept system that al-
lows automated creation of structured Cross-Component Issues from spoken text. This holistic
approach requires research and development in the areas of Cross-Component Issue Management,
microservice architectures, speech recognition, and natural language processing.

To be able to complete the research, design, and development work needed for such a system and
still stay within the scope of a bachelor thesis, not every component can be researched and evaluated
in full depth.

A completed proof-of-concept system is necessary to evaluate how useful such a system could be to
end-users. Such an evaluation is critically important to determine if further research in this field
is justifiable. This is the reason why modern software development approaches are used for this
research and a full so-called Minimum-Viable-Product is developed as part of this thesis.

Rather than focusing solely on detailed research for one specific component, a proof-of-concept
version of each component is developed (as described in Section 4.3). Therefore, particular care
will be put into the future work section, and detailed approaches that could be taken to further the
research in natural language processing and speech recognition for this field will be given.

1.3 Research Questions

This section describes the three fundamental research questions of this thesis. The first research
question focuses on the speech recognition and natural language component of this thesis.

RQ 1
How can Cross-Component Issues be recognized from the spoken text?

For this research question, we will evaluate the structure of Cross-Component Issues and use
CoreNLP to try to recognize the elements of these issues.

The second research question focuses on system development and architecture.

3



1 Introduction

RQ 2
How can a system that recognizes Cross-Component Issues from the spoken text be designed
and architected?

The goal of the second research question is to design and implement a proof-of-concept system that
can recognize the elements of a Cross-Component Issue from spoken text and create an issue with
these elements in a Cross-Component Issue Management System, e.g. Gropius.

The third research question focuses on the evaluation of the system.

RQ 3
Can the system accurately create structured issues from the spoken text?

The purpose of the third research question is to evaluate the system’s performance and usability.
The goal of this part is to evaluate if the proof-of-concept system can provide a good enough user
experience to justify further research in the individual components of this thesis.

1.4 Thesis Structure

The thesis is structured as follows:

Chapter 2 - Foundations: This chapter presents issue management, speech recognition, and natural
language processing as the foundations that are used in this thesis.

Chapter 3 - Related Work: related research to this thesis is presented in this chapter. Due to the
novice concept developed in this thesis, a limited amount of related research is available at the time
of writing.

Chapter 4 - Concept of the Issue Speech Assistant: In this chapter, the requirements of the target
audience are analyzed. Based on the requirements an application concept is designed. Example
use cases for this concept are presented and the architecture for the application is discussed. The
purpose of each component of the microservice architecture is explained in detail.

Chapter 5 - Implementation: The implementation of the application concept presented in the
previous chapter is discussed here. Tools and technology decisions are outlined. The chapter is
concluded by showing the deployment architecture and automated deployment processes developed
for this system.

Chapter 6 - Evaluation: This chapter evaluates the performance of the implemented application.
An experiment with multiple participants was conducted to determine the recognition accuracy.
Threats to the validity of the experiment results are discussed at the end of the chapter.

Chapter 7 - Conclusion and Future Work: The results of this thesis are summarized and opportu-
nities for future research are presented.
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2 Foundations

This chapter describes the foundations used in this work. First, Section 2.1 describes issues, issue
management and the concept of cross-component issues. Afterwards, current speech recognition
frameworks are compared in Section 2.2 as one of them will be used for the implementation in this
thesis. Section 2.3 outlines the basics of natural language processing.

2.1 Issue Management

This section describes issue management in detail as it is a foundational part of this thesis. First the
term issue is defined in Section 2.1.1. In Section 2.1.2 issue management systems and their uses
are described. The lifecycle of an issue in an issue managament system is detailed in Section 2.1.3.
Finally the concept of cross-component issues is discussed in Section 2.1.4.

2.1.1 Issues

In modern software development issues are used to document any kind of change request or task
related to the project. These change requests can include bug reports, feature requests or refactorings.
Developers and other stakeholders of a software product can create new issues and communicate
their ideas with the team, as outlined by Sommerville

In tools like Github1 and Gitlab2 developers can create issues in a code repository.

Issues have a simular structure in both tools. An Issue is part of a project. Each issue has a title,
body, assignees, and labels. In the following, these elements of issues are explained in further detail.
The structure and datatypes of each element is important.

For the purpose of this evaluation, only Github and Gitlab were used. For more details on other
issue management systems such as Atlassian Jira3 or Readmine4 see [Spe19].

1. Project: When creating a new issue it is part of a project. Issues are generally not intended to
be moved between different projects. In systems like Github or Gitlab a project has a single
repository.

2. Title: The title is a single-line text field intended for a short and descriptive text about the
intention of the issue. To create an issue a title is required on both Github and Gitlab.

1https://github.com/
2https://gitlab.com/
3https://www.atlassian.com/de/software/jira
4https://www.redmine.org/
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2 Foundations

3. Body: The body allows the developer to add additional information and describe the issue in
further detail. The body mostly contains free text written in markdown format.

4. Assignees: The assignees are a list of users that are responsible for the issue. Both Github
and Gitlab support multiple assignees. In Jira, issues are designed to have a single assignee5.

5. Labels: A list of labels that are used to categorize and filter issues.

6. Milestone: A milestone lets a team group multiple issues together and allows the team to
track the combined progress.

7. Weight: Estimated complexity of the issue. Commonly measured in story points. (Isuse
weight is not supported by Github).

8. Due date: The date on which the issue has to be closed at the latest.

9. Comments: After the issue was originally created other developers can comment on a issue
to provide feedback.

2.1.2 Issue Management Systems

The purpose of an issue management system is to manage and maintain multiple issues. They allow
team members to edit, update, and comment on issues. Isuse managament systems give users an
overview of all issues and can notify users if particular issues are updated.

Issue management also often include progress tracking features that allow teams to analyze if they
are reaching their goals. Gitlab for example includes burndown charts6 that lets a team see if they
are still on track to complete their milestone on time.

2.1.3 Issue Management Lifecycle

On the surface, issues have a really simple live cycle. In issue management systems that are part of
tools like Github or Gitlab an issue can either be open or closed. An open issue represents a task
that is not yet completed. A closed issue represents a task that has been completed and no longer
has to be worked on. An issue can be reopened if a previously closed issue needs to be worked on
again. This might be the case if a team thought that a bug had been fixed by a particular merge
request and then the same bug resurfaced after the issue had already been closed.

An issue goes through the steps of ideation, creation, discussion, planning, implementation, review
to closed. As most issue management systems only have the two states of open and closed for their
issues, teams use labels to describe in which stage the issue currently is.

5Issues can only be assigned to multiple assignees using workarounds: https://confluence.atlassian.com/jira/how-do-i-
assign-issues-to-multiple-users-207489749.html

6https://docs.gitlab.com/ee/user/project/milestones/burndown_and _burnup _charts.html
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2.2 Automatic Speech Recognition (ASR)

2.1.4 Cross-Component Issues

The adoption of microservice architectures lead to teams managing multiple microservices rather
than a single monolith. In a microservice architecture, a single feature request can easily require
changes in multiple services. This can make issue management particularly difficult. Tracking
bugs and change requests across multiple components is not properly supported by current tooling.
Existing issue management systems like the ones in Github, Gitlab or Jira do not allow issues to be
part of multiple projects.

Some teams use a monorepo approach, where all components are maintained in a single git repository.
However, the monorepo is not widely adopted [Bro19] and even strong proponents of monorepos
like Google conclude in a case study [JJK+18] that the use of is monorepos is still a “comparison of
tradeoffs”. Organizations like Amazon and Netflix are firmly staying behind their polyrepo approach
[Bro19]. This makes it clear that there is a need for cross-component issues that allow the use of
polyrepo structures.

Speth identified in [Spe19] the problem that current issue management systems as described in
Section 2.1.2 are not sufficient to manage issues for applications based on the increasingly common
microservice architecture. He proposed a new issue management system optimized for these
component-based architectures with support for cross-component issues. Speth et. al. build in
[SBB20] on this work and present Gropius, a cross-component issue management tool.

In [Spe19] the term “multi-project coding issues” was used. However, in more recent work from S.
Speth et. al. “multi-project coding issues” have been renamed to “Cross-Component Issues”.

The cross-component issue management system Gropius allows for visualization of the component-
based architecture and displays the components affected by an issue. This visualization helps teams
to manage and track the cross-component issues. Gropius uses integration adapters to sync issues
between multiple issue management systems. This has the significant advantage that teams can
continue to use their existing tooling.

2.2 Automatic Speech Recognition (ASR)

With Automatic Speech Recognition (ASR) spoken input from a user can be transcribed. Speech
recognition takes the audio input and generates a written transcription. This is also called speech-
to-text or in short SST. In speech synthesis, written text is used to create spoken words. Creating
spoken words from written text is called text-to-speech or TTS. In this thesis, the focus will be on
speech recognition. Speech synthesis will not be used.

As described by Yu et al. in [YD16], a typical ASR system consists of four main components:
signal processing and feature extraction, acoustic model, language model, and hypothesis search.
These main components of a ASR system are illustrated by Figure 2.1.

The signal processing and feature extraction component processes the audio input, extracts the audio
features as vectors and passes them on to the acoustic model. An acoustic model is trained with
audio data that contains recorded speech and the matching text transcriptions to that audio data.
This results in a statistical model of the sounds that are part of each word.

7
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Signal Processing &
Feature Extraction

Acoustic Model Language Model

Hypothesis Search

Audio Signal

Features

Acoustic
Model Score

Language
Model Score

Recognition
Result

Figure 2.1: Architecture of ASR Systems (based on illustaration from [YD16])

The language model (LM) estimates the probability of a given word sequence. Language models is
trained on text corpora and learns the correlation between words in the training data. The accuracy
of the language model can be improved if it is only intended for use in a specific domain. By
training the language model on text data that is specific to the intended domain it can be less accurate
in general-purpose tasks but more accurate on for its intended domain. The concept of a speech
recognition system for issues presented in this thesis would be a great use case for a domain-specific
language model.

The resulting scores from the acoustic model and language model are combined in the hypothesis
search component. The hypothesis component outputs the word sequence with the highest probability.
This is the recognized result.

2.2.1 Speech Recognition Toolkits

There are multiple different tools you can use to add speech recognition capability to your application.
In the following the popular open-source speech recognition toolkits DeepSpeech, wav2letter++
and Kaldi are presented. A web application can also use the Web Speech API to add speech recog-
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nition capability for the user. This is an alternative to implementing a separate speech recognition
microservice. The Web Speech API was used in the final system of this thesis, as DeepSpeech had
accuracy issues.

DeepSpeech (recently renamed to Mozilla Voice SST)

DeepSpeech7 is an open-source speech-to-text engine. The implementation is based on Baidu’s
Deep Speech research paper [HCC+14]. DeepSpeech is implemented with Google’s TensorFlow
machine learning framework.

Recently the DeepSpeech research project was renamed by the Mozilla foundation to Mozilla Voice
STT8 (SST stands for speech to text). However, Mozilla is not very consistent with its branding and
still frequently uses the name DeepSpeech.

Both the documentation9 and Github repository10 still use the name DeepSpeech, rather than the
new name Mozilla Voice STT. At the time of writing DeepSpeech, is far more commonly used
name for this speech recognition toolkit. In order to keep consistency, the name DeepSpeech will
be used exclusively throughout this thesis.

wav2letter++

wav2letter++11 is an open-source speech recognition toolkit from Facebook AI Research. It is
written in C++. Wav2Letter++ is the youngest of the speech recognition tools discussed here and
was open-sourced in December of 2018. First results of wav2letter++ seem very promising. Zamia
reports a word error rate of less than 4 percent12.

Kaldi

Kaldi13 is an open-source speech recognition toolkit developed by its community. It is written in
C++. Kaldi is licensed under Apache v2.0. The Kaldi Speech Recognition Toolkit is described in
detail in [PGB+11].

7https://voice.mozilla.org/stt.html
8https://voice.mozilla.org/stt.html
9https://deepspeech.readthedocs.io/en/v0.9.1

10https://github.com/mozilla/DeepSpeech
11https://github.com/facebookresearch/wav2letter
12https://goofy.zamia.org/asr/
13https://kaldi-asr.org/
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There are pre-trained models for different languages and trained on different corpora available.
Particularly good models for Kaldi are available from Zamia14. These models are free and open-
sourced on Github15. Zamia provides models in German and English. For the English models,
Zamia reports a Word-Error-Rate between 5.8% and 10.6%16. For the German models, Zamia
reports a Word-Error-Rate between 8.4% and 11.5%17.

In contrast to DeepSpeech described in Section 2.2.1 and Wav2Letter++ described in Section 2.2.1,
Kaldi does not implement an end-to-end speech recognition pipeline using a deep neural network.
Kaldi uses more conventional GMM (Gaussian Mixture Models) and SGMM (Subspace Gaussian
Mixture Models) acoustic models18.

Web Speech API

The Web Speech API is a JavaScript API included in the browser which allows developers to easily
enable speech recognition and text-to-speech functionality in their web applications. It is important
to keep in mind that the Web Speech API is not a speech recognition tool kit. Instead, it is a uniform
API you can use to take advantage of the speech recognition system that the browser manufacturer
implemented.

The speech recognition functionality is provided by the SpeechRecognition interface and the
SpeechSynthesis interface can be used for text-to-speech. It is important to keep in mind that
the Web Speech API is currently not a W3C Standard nor is it on the W3C Standards Track. The
Web Speech API specification19 was published by the Web Platform Incubator Community Group.

The Web Speech API abstracts the entire speech recognition system away and allows developers
to call browser integrated functionality rather than implementing the speech recognition service
themselves. As the Web Speech API is only in draft status there is currently limited browser support.
Google Chrome already added support for the Web Speech API in 201320.

A major drawback is that the Web Speech API is currently only supported by Google Chrome
browsers. As reported by Mozilla21 the Web Speech SpeechRecognition interface is only imple-
mented by Google Browsers including Firefox, Opera and Safari do not support the Web Speech
API at the time of writing.

Another drawback when using the Web Speech API is that users do not have control over where and
how the audio data is being processed. The current Google Chrome Browser implementation of the
Web Speech API for example uses a server-based speech recognition engine and utilizes Google
Cloud services.

14https://zamia.org/asr/
15https://github.com/gooofy/zamia-speech
16https://zamia.org/asr/
17https://zamia.org/asr/
18http://www.kaldi-asr.org/doc/model.html
19https://wicg.github.io/speech-api/
20https://developers.google.com/web/updates/2013/01/Voice-Driven-Web-Apps-Introduction-to-the-Web-Speech-API
21https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
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This means that all the audio recorded by your application will be sent to a remote web service for
speech recognition. Depending on the intended use cases this can be a big problem from a data
privacy perspective. The use of a remote speech recognition service also means that the functionality
will not be available to your application when running in offline mode. Especially with the increase
in popularity of Progressive Web Applications, offline capability can be quite important.

To summarize, the Web Speech API offers a fast and easy way to add speech recognition and speech
synthesis functionality to your web application. The implementation on Google Chrome browsers
has very high accuracy.

2.3 Natural Language Processing (NLP)

Natural language processing (NLP) was defined by Chowdhary in [Cho20] as “the study of computer
systems for understanding and generating natural language”. For this thesis, the focus will be on
“understanding” natural language.

Popular Natural Language Processing (NLP) toolkits are SpaCy22 and CoreNLP23. CoreNLP is an
open-source NLP toolkit developed by Stanford and written in Java. SpaCy is written in python
and also open-source. With SpaCy’s python background it is easier to integrate it into existing
deep-learning pipelines.

NLP tools have a pipeline with multiple steps like tokenization, parts-of-speech, and named entity
recognition to achieve their annotation results. They take raw text as input, execute their annotation
steps, and return annotated text. Figure 2.2 visualizes the annotation pipeline for CoreNLP. The
individual steps of the annotation pipeline are explained in detail.

In the Tokenization step, a tokenizer splits the input text into a sequence of tokens [MSB+14]. A
token can be a word, punctuation, or number. A sentence like “This Apple won’t sell for 300€.”
will be split into the following tokens (CoreNLP was used for this example): “This”, “Apple”, “wo”,
“n’t”, “sell”, “for”, “300”, “€”, “.”. The Sentence splitting step takes the sequence of tokens and
groups them into sentences. All tokens that are in one sentence will be grouped together.

In part-of-speech (POS) tagging every token gets labeled as a noun, pronoun, verb, adjective, adverb,
preposition, conjunction, and interjection. In lemmatization, each token is assigned its lemma. For
example the words “were”, “is”, “are”, “been” all have the same lemma “be”.

2.3.1 Named Entity Recognition (NER)

Named Entity Recognition (NER) is one of the fundamental components in natural language
processing. With NER elements in a sentence can be classified into specific groups. A named entity
represents a normal object that is referenced in the text. This could be something like a name, city,
number, component, or label. NER is able to detect these named entities in a written text. This
helps to extract the information from the text.

22https://spacy.io/
23https://stanfordnlp.github.io/CoreNLP/
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Figure 2.2: CoreNLP Annotation Pipeline Architecture (based on illustaration from [MSB+14])

NER can be split into two separate problems. In the first steps, all the tokens that belong to one
name have to be detected. This is called name detection. A name like “New York” for example
consists of two tokens.

In the second step, the detected names have to be classified into predefined entity groups. To classify
the detected names into the correct entity groups, a model can be used. The model is trained based
on a data set of sentences with labeled entities.
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In this chapter, related work to the topics of semantic analysis of issues and domain-specific speech
recognition is reviewed. First, the survey procedure that was used is presented in Section 3.1.
Section 3.2 describes research that has been done in automatically extracting information from
unstructured issues. Related work on domain-specific speech recognition systems is discussed in
Section 3.3.

3.1 Survey Procedure

The search engine Google Scholar1 was used primarily to find relevant research papers.

To find work related to this thesis, the following survey questions were defined:

SQ 1
How can semantic information be extracted from issues?

SQ 2
How can speech recognition be optimized for specific domains?

During the research efforts the following key-words were used: semantic recognition of issue
structure, bug analysis, semantic analysis bug reports, semantic analysis issues, speech recognition
bug reports, domain-specific speech recognition, speech recognition optimized for domains, speech
recognition optimized for use cases .

Due to the novice nature of the concept presented in this thesis not a lot of related research has
been conducted at the time of writing. In this thesis the existing approach of speech recognition and
natural language understanding has been applied to issue management.

3.2 Semantic Recognition of Issues

Existing research in this area primarily focuses on detecting and classifying bug reports. Zhou et.
al. developed a system in [ZLSG18] to recognize “bug-specific named entities”. In their work they
designed and implemented their own bug-specific NER system and named it BNER. They contributed

1https://scholar.google,com
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a comprehensive classification of different categories for bug specific entities. To get training data
for their NER system they gathered solved bug reports from the Mozilla and Eclipse projects on
Bugzilla. A total sample of 1800 bugs were randomly selected and labeled by a team of 8.

Chen et. al. builds on top of the work from Zhou et. al. in [CLZZ19] and propose a neural network
to extract bug entities and their relationships. In their work Chen et. al. relied in [CLZZ19] on the
Stanford CoreNLP toolchain for the natural language processing. The same tool will also be used in
this thesis.

Ye et. al. also designed a NER system specific for software engineering in [YXF+16]. Instead
of labeling bug reports as Zhou et. al. in [ZLSG18] Ye et. al. focus on analyzing posts in social
communities such as Stack Overflow2. Ye et. al. highlights that “one must first understand the
unique characteristics of domain-specific texts”. The system developed by Ye et. al. was called
S-NER. In their work they labeled over 1500 Stack Overflow posts for the supervised learning of
the NER system. Using an iterative approach Ye et. al. improved the pipeline of their S-NER
annotator.

Related work that focuses on the semantic recognition of issues from spoken input has not been
found during the literature review procedure. These designs extracted information from issues
that have already been created in the issue management system. Rather than developing an own
specialized NER system like Ye et. al. or Zhou et. al. the NER engine in the open-source natural
language processing toolkit CoreNLP will be used in this thesis. In their work Ye et. al. and Zhou
et. al. showed that text with terminology that is specific to the software development domain can be
accurately classified using NER techniques. For the training of their classifiers, they both used over
1500 labeled data entries, which were annotated by hired annotators.

3.3 Domain Specific Speech Recognition

Current state-of-the-art speech recognition systems like DeepSpeech3, Kaldi4, Amazon Transcripe5,
or Google Speech API6 are general-purpose speech recognition system. They are trained on very
large datasets of general-purpose speech corpus, like the Common Voice Corpus7. Ardila et. al.
presents the data collection procedure and text corpus of Common Voice in [ABD+19]. The
Common Voice website allows for crowd-sourced collection and verification of audio data.

Models public state-of-the-art speech recognition systems are trained on a collection of this non-
domain specific audio data. The acoustic and language model used in these systems is optimized
for general-purpose recognition and not for a specific domain.

This makes these general-purpose speech recognition systems a great allrounder and allow for
usage in many different use cases. However, there are many specific domains that have a specific
vocabulary and specific sentence structures that are frequently used. A well-known example of

2https://stackoverflow.com/
3https://github.com/mozilla/DeepSpeech
4https://kaldi-asr.org/
5https://aws.amazon.com/de/transcribe/
6https://cloud.google.com/speech-to-text
7https://commonvoice.mozilla.org/
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specific domains with custom vocabulary is the medical field. General-purpose speech recognition
systems have poor accuracy for medical terms and are only usable in the medical field if properly
optimized. The domain of issue creation is also very specific. Issue creation requires the use a lot
of technical terms primarily used by developers like API, microservice, backend, bug, stack trace,
and many more. Just like in the medical field existing general-purpose speech recognition systems
have limited accuracy which harms the user experience. A speech recognition system optimized for
the specific domain would be needed for optimal results.

There are two different approaches to optimizing a speech recognition system for a specific domain.
The first approach would be to train a custom acoustic and language model for a specific domain.
Training custom models is only supported by speech recognition frameworks like DeepSpeech,
Cloud services for speech recognition like Amazon Transcribe and Google Speech API do not
support custom models that are provided by a developer. This approach requires new optimizations
of the acoustic and language model for each new domain and language that has to be supported,
which can be very expensive.

The second approach would be to take use a readily available general-purpose speech recognition
system and develop a post-processing system that can adapt and repair erroneous transcriptions
from the speech recognition. This design was presented by Anantaram et. al. in [AK17]. The
speech recognition gets a spoken input ( and generates a transcription output of ) ′. The correct
transcription would be ) . As part of his work Anantaram et. al. developed “two mechanisms for
adaption or repair of the ASR output, namely ) ′ −→ ) .”

The research survey showed that the trend and research focus seems to go towards general-purpose
speech recognition systems and optimizing their performance on very large datasets. Limited
research is done in the field of domain-specific speech recognition systems. The high cost of
collecting the required domain-specific labeled audio data and optimizing the speech recognition
for the domain might be the reason for it. Models can not be reused across distinct domains or
languages without which further increases the cost.

15





4 Concept of the Issue Speech Assistant

The following chapter will give an overview of the application concept that was designed for this
thesis. First, the necessary requirements of the application are evaluated in Section 4.1. Based on
these requirements the application design was created. This is presented in Section 4.2. Possible
example uses of the concept are outlined in Section 4.2.3. The architecture of the application is
discussed in Section 4.3. Furthermore the speech pipeline, natural language processing system and
integration design are described in Section 4.4, Section 4.5, and Section 4.6.

4.1 Requirements

In this section, the requirements of the application are outlined. First, the requirements engineering
process used in this thesis is described. After this the persona of an intended typical user is shown.
To conclude this section the list of gathered requirements is given.

4.1.1 Requirements Engineering Process

As a first step in the requirements engineering process possible stakeholders where identified. In the
issue management process the roles of product owner, software developer, software architects, and
(non-technical) domain experts are stakeholders. Individuals that work in these roles were contacted
and interviewed. The problem statement was presented to the interviewees. The interviews were
conducted over the phone, video calls, in-person, and instant messengers like Telegram.

For each of the stakeholders, multiple individuals were interviewed as shown in Table 4.1.

Based on these interviews the product owner was identified as the ideal target user for the application
developed in the thesis. Of the interviewees, the individuals working as product owners had the
most pain points in the current issue management process. It also got apparent that individuals who
are working in the role of product owner spent the most time on issue management and created the
most issues. While the product owners that were interviewed created on average 43 issues per week,

Stakeholder Number Interviewees

product owner 3
software developer 2
software architect 2
(non-technical) domain expert 1

Table 4.1: Stakeholder Interviews
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developers and software architects both created less than 15 issues every week. The (non-technical)
domain expert that was interviewed only occasionally (less than 5 per week) created an issues in the
team’s issue management system.

It should be noted that due to the limited sample size of these interviews these results do not carry
a lot of scientific weight. Additionally, the majority of the interviewees worked in small software
development organizations with a strong focus on agile processes. The individual development
process of these organizations might affect their use of their issue management systems and the
interview results. However, these results are sufficient to continue the requirements engineering
process for the prototype aimed to be developed as part of this thesis. Further research would be
required before a real product could be developed.

Based on this evaluation, the application developed in this thesis will target product owners and focus
on the requirements of product owners. In the next section, a persona for a typical product owner is
developed. This helps to contextualize the concrete requirements that were later collected.

4.1.2 Personas

Based on the interview a persona for the intended user was developed. Personas are fictional
characters, that are created to represent specific user types.

In the following the persona of Peter, the product owner is introduced. He represents the type of
users the further application design will focus on.

Peter - Product Owner

Peter is 35 and the product owner in a software development team of seven. He and his team are
building a SaaS software product. They are using SCRUM as their development process with
two-week sprints. As product owner Peter is responsible for maintaining the team’s backlog.

In their project management process, they aim to create issues that are small enough so that they
can be completed within one day. Most issues can be completed in a couple hours. In an average
sprint of two weeks the team completes roughly 100 issues. About 80 of these issues are created
by Peter. The idea or need for most of these issues comes up during the sprint planning and sprint
review. Currently, Peter takes notes on sheets of paper during the meeting and creates new issues in
the issue management system after the meeting.

Each issue describes a change request with limited scope. Often Peter only adds a title, labels,
priority, and assignee to the issues. A detailed description of the issue in the body is rarely required.
As they are a small team they often discuss details during spontaneous meetings.

Peter is unhappy with the current process, where he writes notes during the meeting and has to type
them into the issue management system after the meeting. Sometimes he forgets to create issues he
and his team discussed during a meeting.
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4.1.3 Gathered Requirements

As a result of the interviews and requirements engineering process, the following requirements were
gathered. These requirements are written as user stories with the persona of Peter as the intended
user.

These userstories have the following structure: “As a type of user, I want achive some goal so that
reason.”

• As a product owner, I want to create issues efficiently during a meeting, so that I don’t have
to write them on paper during the meeting and digitize them later.

• As a product owner, I want to show the content of the issue to the entire team during the
meeting, so that we can check if there are any misunderstandings in the team.

• As a product owner, I want to efficiently create multiple issues in succession, so that I can
easily document bugs in the review process.

• As a product owner, I want to see what elements in the spoken input have been recognized so
that I can quickly identity if anything is missing.

• As a product owner, I want to reset the current input, so that I can remove text with errors in
it.

• As a product owner, I want to be able to connect the application with the issue management
system that I currently use.

• As a product owner, I want to be able to use the application on any laptop with no installation
required, so that I can use for example the laptop of a college in the meeting to create the
issues.

• As a product owner, I want to be able to edit issues, so that I can fix any mistakes that I
previously made.

4.2 Overview of the Concept

Based on the requirements outlined in Section 4.1.3, an application concept was designed.

The application should be a web application that allows a user to dictate the issue they want to
create. The web application shows the spoken input text on the left side of the screen. The speech
recognition results are displayed immediately while the user is still speaking. Once the user stops
the recording the recognized text is analyzed by a natural language processing system. A separate
microservice will be responsible for this analysis.

The results of the natural language processing are visualized by highlighting the recognized entities.
Based on these results an issue card on the right side of the screen is filled out. The issue title and
issue body should be filled out based on the spoken user input. Elements like the assignees, labels,
and components are recognized as well and shown in the created issue card.
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Figure 4.1: Concept Design: UI Mockup

The automatically generated issue is reviewed by the user. If anything is incomplete or was not
recognized correctly the user manually corrects the issue. Once the issue is completed the user can
press a save button. When the user presses the save button the issue with all of the filled out data
elements should be automatically created in the connected issue management system.

Figure 4.1 shows a basic mockup of the user interface, that was designed for this concept.

The user should have the ability to connect different issue management systems. Github and the
Cross-Component Issue Management System Gropius developed by Speth et. al [SBB20] should
have integrations. The user can configure which issue management system is connected in the
settings menu of the application. The configuration of a user will be saved.

From the users perspective the following steps will be completed:

1. The user opens the application in a web browser.

2. The user presses the “start recording” button and speaks freely into a microphone.

3. The spoken text is converted into written text using speech recognition.

4. The written text is analyzed using natural language processing. The content of the spoken
text is understood.

5. Using the results of the natural language processing a structured issue is created. Elements
like title, labels, a text body and assignee are filled out automatically.

6. The user can confirm or edit the proposed issue.

7. The issue is automatically created in existing issue management systems.
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This user journey can be reduced to four crucial steps. In the first step, speech recognition is used
to create a transcript of the spoken input. In the second step, the transcription is analyzed by a
natural language processing engine. The results from the speech recognition and natural language
processing in step one and two are used to create a structured issue in step three. Once the user
confirms the structured issue it is synchronized with an existing issue management system in step
four. These steps are visualized in Figure 4.2.

Figure 4.2: Concept Design: Main Steps

4.2.1 Application Name

The application needs a name so it can be referenced throughout the rest of this thesis and in future
work. Requirements for the name of the application include:

• should reflect the purpose of the application: based on the application name a user should be
able to recognize that the application is a speech recognition for issues

• short

• easy to remember

• easy to write

• can be spoken

• low chance of conflict with other existing applications or well-known concepts

Based on these criteria the following names were part of the final selection:

• ISR: Issue Speech Recognition

• AISR: Automated Issue Speech Recognition
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• SIRA: Speech Issue Recognition Automated

• ISA: Issue Speech Assistant

• TSR: Task Speech Recognition

From this selection, the name ISA was chosen. It is short and memorable. Isa is also a first name,
which helps to humanize the software system developed here. Other digital assistants like Alexa and
Siri have chosen a similar naming strategy and picked names that are also similar to a first name. In
contrast to some of the other options like AISR, ISA can easily be spoken.

In the following sections, the application presented in this thesis will be referenced as ISA.

4.2.2 Design Limitations

The concept of ISA has limitations that have to be considered. In this section, the usability definition
from Nielsen introduced in [Nie94] will be used to evaluate the concept. Nielsen defines usability
as a combination of the so-called “usability attributes”: Learnability, Efficiency, Memorability,
Errors, and Satisfaction. These terms are defined in [Nie94]:

• Learnability: The system should be easy to learn so that the user can rapidly start getting
some work done with the system.

• Efficiency: The system should be efficient to use, so that once the user has learned the system,
a high level of productivity is possible.

• Memorability: The system should be easy to remember, so that the casual user is able to
return to the system after some period of not having used it, without having to learn everything
all over again.

• Errors: The system should have a low error rate, so that the users make few errors during the
use of the system, and so that if they make errors they can easily recover from them. Further,
catastrophic errors must not occur.

• Satisfaction: The system should be pleasant to use, so that users are subjectively satisfied
when using it; they like it.

Learnability is one of the core weaknesses of voice-enabled systems. Users have to learn which
terms and phrases can be used. It is not immediately apparent what the supported features are. In
typical applications with a graphical user interface (GUI), the user can simply look at the available
buttons and determine the available functions. With a voice user interface these functions are not
immediately apparent. Feature discovery is a real challenge for users. Users have to effectively
experiment what works. These same aspects also cause reduced memorability. A guided tutorial
could help with the learnability of the system.
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These usability limitations are part of the inherent design of voice assistant systems and are present
in most digital voice assistants on the market like Google Assistant1, Amazon Alexa2 and Siri3.
These systems target general consumers so the learnability and intuitiveness of the system is really
important. As the ISA system targets only professionals in a narrow domain, limited learnability is
less of a concern.

High efficiency is an expected strength of the concept. Product owners no longer have to write notes
during meetings so they can create digital issues later. They are able to dictate the issue and the
proposed application will create it automatically. This very efficient interaction with the system
requires that the user is sufficiently trained and accustomed to the functionality. For power users
who regularly use the application and know the features of the voice interface this can be a very
efficient way to interact with a system.

The definition of the usability attribute errors is not quite sufficient for the use here. Nielsen
references user errors and catastrophic system failures. An application that uses machine learning
like the proposed concept here can also create errors in its decision making. For example, the name
of an assignee in a spoken issue could wrongly be classified as a label for the issue. This is not a
user error and also no catastrophic error. This error was caused by a wrong decision in the machine
learning components. The error rate of these particular errors can be improved by further training
of the machine learning models that are used.

User satisfaction is a more subjective usability attribute. For this concept, high user satisfaction can
be expected. The application automates the previously manual task of creating new issues in the
issue management system and aims to save the user time through high efficiency.

To summarize this evaluation: the concept of a voice assistant for issue creation focuses primarily
on high efficiency. Other usability attributes like learnability and memorability are weaknesses in
this design. However, when designing the application for a specific target user group of heavy users
these tradeoffs are justifiable. For this intended user group, the poor learnability and memorability
can be acceptable as long as the efficiency gains and user satisfaction are high enough.

4.2.3 Example Use Cases for Recognized Issues

The following section shows exemplary use cases that can be supported by this system. First the
spoken text is shown. This is the text that a user of the system would speak into a microphone
and that will be transcribed by the speech recognition service. After that the individual elements
the natural language processing (NLP) engine would recognize are listed. From these recognized
elements a structured issue is constructed.

Change Request

To create a new issue for a change request the product owner Peter would say:

1https://assistant.google.com/
2https://developer.amazon.com/alexa
3https://www.apple.com/siri/
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Add a monitoring system to our server. The administrators should receive notifications if we have
issues. This is for components payment and auth-service. Assign Fabio, add labels enhancement.
The weight is 7 and the priority is high.

The application should then recognice the following elements:

• Title: “Add SSO Support”

• Issue Body: “The administrators should receive notifications if we have issues.”

• Cross-Component Issue for the following services: “payment-service”, “authentication-
service”

• Lables: “enhancement”

• Priority: “High”

• Weight: “7”

• Assignee: the project member with user ID: “FabioSchmidberger”

Bug Report

To create a new bug report the developer Jake would say:

The login button is hidden on the mobile page. Add the labels bug and mobile. The components are
frontend. Assign Jake.

The application should then recognize the following elements:

• Title: “The login button is hidden on the mobile page”

• Cross-Component Issue for the following services: “app-frontend”

• Lables: “bug”, “mobile”

• Assignee: the project member with user ID: “JakeCoder”

Only the issue title is a required element. All other issue elements can be left empty.

4.3 Architecture

The application will be created using a microservice architecture. This has the significant advantage
of allowing individual services to be swapped and updated without impacting the overall functionality
of the application. This is especially important for this thesis as it allows us to easily change the
speech recognition service to use different speech recognition frameworks (like Kaldi, DeepSpeech,
wav2letter++, or the Web Speech API). These frameworks also need specific environments to run
in, so containerizing them using Docker is the best approach for reliable and repeatable deployment.
This also allows each service to be built in the tech stack with the best framework support.

Figure 4.3 visualizes the architecture. In the following list the purpose of each service is explained:
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ASR Service

NLP Service

ISA System

Issue Management System 

(like Github or Gropius)

Transcription

Annotated
Text

Issues

ISA Web App 

Issues

Integration Adapter

Figure 4.3: Service Architecture as a UML Component Diagram

1. ISA Web App: This ISA web app is the heart of the system. It displays the UI to the user
and records the spoken audio input. The recorded audio is passed on to the ASR Service.
The resulting transcription from the ASR service is then displayed and passed into the NLP
service for annotation. Based on the transcription and annotation results a structured issue is
created and displayed. The ASR service based on settings entered by the user, the integration
adapter will be configured.

2. ASR Service: The ASR (automatic speech recognition) service contains the speech recogni-
tion engine and has the task to convert an audio input stream into a text output. A web socket
connection will be used for continuous audio streaming and transcription.

3. NLP Service: This service contains CoreNLP and an API service with exposes the specific
CoreNLP features needed in this application. The NLP Service annotates the text that is
passed into it. A custom NLP result interface will be used by the NLP Service and the ISA
web app to abstract the CoreNLP specific data structures.

4. Issue Management System: The issue management system is an external application that
provides an API to create new issues. Multiple different issue management systems can be
supported. As part of this thesis support for Github and Gropius will be implemented. The
integration adapter uniforms the integration implementations under a uniform interface.
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4.4 Speech Recognition Pipeline

In this thesis, an existing open-source speech recognition system will be used. Prominent options are
Kaldi [Kal] and DeepSpeech [moz]. The newly released wav2letter++ [res] from Facebook research
could also be a great option. The architectural approach outlined above will make it possible to easily
exchange the speech recognition system for a new one or customize an existing speech recognition
system to fit specific needs.

4.4.1 Language Support

The ISA system will only support English. This makes the ISA system available to the largest
potential audience. As many software development teams write their issues in English even if they
live in a non-English speaking country, the majority of developers should be able to use the ISA
system.

Support for other languages like German could be added later. The modular architecture of the
system allows other developers to replace the used speech recognition system and natural language
processing with a different version that supports languages other than English.

However, adding multiple locales to the ISA application is considerably more work than in regular
web applications. Support for new languages has to be added to the application UI, speech recogni-
tion, and the natural language processing system. Adding a new language to the natural language
processing system is particularly time-consuming, as a new model has to be trained on a new data
set. The current model is trained based on English example issues. To train the model in German, a
German data set would have to be created.

4.4.2 From Spoken Input to Structured Issue

The goal of this thesis is to build a system that can automatically create structured cross-component
issue entries from spoken text. A multi-step pipeline will be used to generate the structured input.

Figure 4.4 visualizes this pipeline. This pipeline is split into three phases:

1. Speech Recognition

2. Natural Language Processing

3. Manual Issue Confirmation and Synchronization

Phase 1: Speech Recognition

The input to the speech recognition phase is the spoken issue from the user. The spoken input of the
user is captured by a microphone, which creates an audio stream. This audio stream is passed into
the speech recognition toolkit.
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Figure 4.4: Speech Pipeline
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The speech recognition toolkit returns partial results of the spoken text. These partial results

are the text that the speech recognition has detected based on the audio stream it has received so
far. The transcribed text is returned once the recording has ended and the speech recognition has
transcribed the full audio input.

The transcribed text is then passed into a text post-processing step. In the post-processing, two
kinds of corrections are made: text content correction and text formatting corrections. The text
content correction uses heuristics to fix common mistakes made in the speech recognition step. For
example, “assign” is often not recognized correctly by the speech recognition and written as “A
sign”. Mistakes like this are detected and get replaced in the text content correction by a regex
replacer. The text formatting corrections include punctuation, word spacing, and capitalization.
These text formatting corrections are executed after the text content correction.

The output of the speech recognition phase is a corrected string of the spoken input from the user.
This string is called Corrected Text and gets passed on to the next phase.

Phase 2: Natural Language Processing

In the natural language processing phase, the resulting Corrected Text from phase 1 is passed in as
an input. The text is sent to the named entity recognition microservice. This service analyses the
text and recognizes the entities that are in the text. A list of the labeled entities is returned.

The step that takes the generated data and creates a structured element of the issue (like a list of
labels or the title) from that data, will be called slot matching in this thesis. For the slot matching
step now combines the labeled entities, the corrected text, and the available issue element values to
generate the issue slot values. These slots are issue title, issue body, components, assignee, labels,
issue weight, and priority. For slots like assignee, components, and labels there is a predefined
selection of values configured in the issue management system. In the case of the assignee slot, there
might only be the users “Jake Taper” and “Max Maier” defined as possible assignees in the issue
management system. When the product owner says “assign Jake” the recognized name “Jake” has
to be matched to the user “Jake Taper” and his corresponding user id. When the speech recognition
makes an error and recognizes the name “Jimmy” rather than the spoken input “Jake” the correct
value should still be selected. The slot matching uses a trigram search to find the best matching
available values based on the recognized input.

The following explains the process of slot matching in greater detail with the example of matching
a label element.

1. Extraction of recognized elements: based on the NER results from the CoreNLP microservice
all occurrences of the entity LABEL are selected. This list represents all of the labels that were
detected by the NER. As the total number of detected entities in a NER result is very limited
(usually less than 20) a simple linear search is used.

2. Importing of available elements: Labels are predefined in the issue management system and
these values are imported into the ISA system.
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3. Matching of recognized elements to available elements: The string similarity of a recognized
element to each of the available elements is compared. The available element with the highest
similarity to the recognized element is picked and will be the value of the slot. This matching
is crucial, as the speech recognition can make mistakes.

The matched slots are then assembled into a structured issue by the isuse parser. The issue parser
returns a structured issue which is the final result of the natural language processing phase.

Phase 3: Manual Issue Confirmation and Synchronization

In the third phase, the issue is manually reviewed by the user and then synced with an existing
issue management system. First, the user checks the automatically created issue from phase 2 for
mistakes. The UI editor allows the user to correct any mistakes that might have happened or to add
data that he or she forgot to say when dictating into the system. The result of phase 2 is considered
a suggestion that is automatically generated based on user input. The user still has the power to
manually review and change the decisions made by the speech recognition service and natural
language processing.

Once the user considers the issue correct, he or she can save it. The saved issue is automatically
created in an issue management system over an API call. A local copy of the issue is not saved. The
reasons for this design approach are discussed in Section 4.6.3. After phase three the issue has been
synchronized to an existing issue management system. The user can now dictate a new issue.

4.5 Natural Language Processing

Once the spoken utterances are converted into written text by the speech recognition service, the
natural language processing service will analyze the written text to detect the semantics. For this,
the very popular natural language processing toolkit CoreNLP as described in [MSB+14] will be
used. The Stanford CoreNLP Toolkit is an open-source natural language processing (NLP) toolkit
based on the JVM.

In this thesis named entity recognition (NER) will be mainly used to detect the structured components
in the entered text. Coreference or bootstrapped entity learning presented in [GM14] look very
promising as well. The further optimization of the natural language processing system by using
these tools is beyond the scope of this thesis and a short outlook on these techniques will be confined
to the Future Work section.

4.5.1 Named Entity Recognition (NER)

To automatically detect specific elements in the issue, named entity recognition will be used. Named
entity recognition is only one of the many tools provided in CoreNLP, but the main focus of this
thesis.
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The CoreNLP NER Classifier is based on arbitrary order linear chain Conditional Random Field
(CRF) sequence models as described in [FGM05] with further details given in [Corb]. These sources
also show that CoreNLP NER has a NERCombinerAnnotator. This allows the use multiple different
annotators, such as the RegexNER and entitymentions annotators. Their results are then combined
by the NERCombinerAnnotator.

The docdate, sutime, regexner, tokensregex, entitymentions annotators are run as sub-annotators of
the NER annotator as described in [Corb].

The CoreNLP NER Tagger handles sparse data sets exceptionally well. Training the NER Tagger
with only 10 labeled example sentences per named entity (for 20 named entities total) already
performed well. For this system approximately 10 named entities have to be recognized (see
Section 4.5.3 for details). This means that manually creating labeled test data for 20 - 40 issue
examples should be sufficient for acceptable accuracy.

These results can be further improved by utilizing the RegexNER annotator [Cora]. Considering the
semi-structured user input when they dictate a issue they want to create, utilizing the RegexNER
Annotator could be very promising. By using a couple of heuristics for the structured elements in
an issue the recognition accuracy could be improved and the training significantly simplified.

This shows the great strength of the highly customizable NER Pipeline in CoreNLP and makes
CoreNLP the ideal NLP tool kit for this system.

4.5.2 Training the Model

One of the challenges in this thesis will be to train a sufficient NER model to recognize the different
entities in a Cross-Component Issue. As stated in Section 1.2 the purpose of this thesis is to build a
proof-of-concept system. Therefore a basic NER model is sufficient and further extensive research
in model optimization can be done in future work.

To train the NER tagger of CoreNLP labeled training and test data will be created manually. Examples
of issue texts that users could say are labeled. Crawling existing open-source issues from sources
like Github or Gitlab did not create the desired results. As these issues are already in a structured
format and have very little similarity to the freely spoken input of a user, the crawled issues were
not used to train the model.

4.5.3 Namend Entities in Cross-Component Issues

The following elements of an issue should be detected:

• Title

• Issue Body

• Components

• Assignee

• Priority
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• Weight

• Lables

A particular challenge will be to accurately detect the title and issue body. These elements will have
to be generated from the spoken text based on recognized named entities and heuristics about their
structure. The first sentence will always be used as the issue title. If there is no recognized entity in
the second sentence it will be used as the issue body. These heuristics are relatively basic. However,
the use of NLP zoning to accurately extract title and body without relying on syntax is beyond the
scope of this thesis. This approach could be evaluated in future work.

4.6 Issue Management System Integration

Once the structured issue has been created, it has to be transferred into existing issue management
systems. This application should be decoupled from the issue management system it is integrated
with. To achieve this service will be built, which provides its own so-called micro-frontend which
is then displayed as part of the main issue management systems UI.

In this thesis, the ISA application will be integrated into the Gropius Cross-Component Issue
Management System developed by [Spe19]. To allow support for additional issue management
systems like Github and Gitlab, an adapter pattern will be used. This makes it easy to implement
additional integration providers for these additional issue management systems.

4.6.1 Github Integration

Github provides a REST API4 that allows users to access and create resources on Github, including
issues and labels. The API is well documented. For the use in JavaScript there is a special npm
package called octokit.

4.6.2 Gropius Integration

The Gropius cross-component issue management system also has an API that allows the ISA
application to integrate into it. The code of the backend API is maintained in a public Github
repository5.

The Gropius Backend API uses GraphQL6 instead of REST used by the Github API. A schema of
the API can be generated from the code.

4https://docs.github.com/en/free-pro-team@latest/rest
5https://github.com/ccims/ccims-backend-gql
6https://graphql.org/
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4.6.3 Persistance Design - Single Source of Truth

The ISA application is designed for issue creation and is not intended to be used as a fully-featured
issue management system. As discussed in Section 2.1.2 issues are part of a whole issue management
lifecycle that has multiple steps. The ISA application however is only active in a small part of the
issue lifecycle. Therefore the data that is crucial for the issue lifecycle should be persisted and
managed by the system that is responsible for the whole issue lifecycle any not by ISA.

It is important to ensure that there will be only a single source of truth for all issue management-
related data. Two data sources (one in the issue management system and one in ISA) would result
in the need for continuous synchronization and data duplication between the two systems. The goal
was to avoid this to reduce complexity and the potential of errors.

For this reason, it was decided that the ISA application will not have its own persistence layer to
store issues. ISA will exclusively rely on API integration into existing issue management systems to
import context data from them and create new issues.

Not having a persistence layer has a number of benefits for the application design and greatly reduces
the complexity both during development and during operations of the deployed application. As
there is no stateful container the application can be scaled without the need for a distributed database.
There is also no need for data backups or database migrations.

The ISA application has some configuration options that should be persisted. Rather than saving
this configuration in a database for every user the data will be saved in the local browser storage
provided by the Web Storage API7. This eliminates the need for user accounts and authentication
but has the drawback that

7https://developer.mozilla.org/de/docs/Web/API/Web_Storage _API
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In this chapter, the concept presented in Chapter 4 will be implemented. The code written in this
thesis is open-sourced and available on Github1.

In Section 5.1 the implementation of the ISA web application is presented. This section shows
UI screenshots to help the reader imagine how the user will interact with the application. The
ISA application discussed in Section 5.1 uses a speech recognition system and natural language
processing microservice.

In Section 5.2 the speech recognition system will implemented and the challenges that were en-
countered during the implementations are discussed. After this, the implementation of the natural
language processing microservice will be presented in Section 5.3. Section 5.4 shows how the
application deployment was implemented and explains the necessity of a public deployment of the
ISA system.

5.1 Application Frontend

This section outlines the implementation of the web application that was built for the ISA issue
speech recognition system.

The user interface is really important in this application. It has the purpose to transparently display
the results from the speech recognition and natural language processing and allow for easy correction
and editing of the resulting structured issue.

This allows the user to evaluate the results and recognize any errors that might have happened during
the speech recognition. Unfortunately, the current state of the art speech recognition and natural
language processing systems are not perfect and from experience still make frequent mistakes. The
design approach used here, embraces the potential of errors and aims to build an application that
allows users to easily identify and correct any potential errors before they confirm and save the
generated issue.

5.1.1 Technology

The frontend application was build using written in TypeScript2. TypeScript is an extension of
JavaScript with types. Type-checking helps during development, adds valuable documentation into
the code and allows you to validate your code before running it. During build time the TypeScript
code is then transformed into JavaScript by the TypeScript compiler.

1https://github.com/FabioSchmidberger/issue-speech-recognition
2https://www.typescriptlang.org/
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Figure 5.1: User Interface of the ISA application with speech input, issue card and collapsable
settings

The Visual Studio Code3 IDE was used for TypeScript development and has excellent language
support.

React4 was used as the UI framework. React is a JavaScript library that allows you to develop
component-based user interfaces. This component-based design allows you to encapsulate the
complexity of individual elements of your UI into separate components that can easily be reused.

5.1.2 UI Design

As described in Section 4.2, the application UI has two prominent elements: the speech input and
the issue card. The speech input displays the spoken user input and the recognized elements from
the text analysis. The issue card displays the structured issue that was created based on the speech
input and allows the user to edit and confirm the issue. The user interface is shown in Figure 5.1.

In the following subsections, the individual components of the user interface are discussed in more
detail.

3https://code.visualstudio.com/
4https://reactjs.org/
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Figure 5.2: User Interface of the Speech Input Component

Speech Input

The speech input UI component allows the user to start and stop the audio recording and displays
the recognized text. Based on the results of the natural language processing the detected entities are
highlighted. To be transparent to the user, ISA color codes the recognized entities and adds a label
of the entity name. Figure 5.2 shows the speech input UI.

Issue Card

The issue card allows the user to review, edit, and save the generated issue. The issue card can be
seen in Figure 5.3.

The text content of the title and body can be edited simply by clicking in the text field and changing
the text. This works on desktop and mobile. Issue elements like labels, components, and assignees
can be changed by clicking on the elements.

When the user clicks the save button, the issue is passed to the integration adapter which will then
use the appropriate configuration to create the issue in the selected issue management system.

Settings

The settings menu allows the user to select between the speech recognition systems that should
be used. You can choose between Google and DeepSpeech. The Google selection uses the Web

Speech API implementation in the Google Chrome browser as described in Section 5.2.2. When the
DeepSpeech speech recognition service is used as described in Section 5.2.1.

The user can also configure the issue management system integration. For the Github integration a
username, the repository name, and a personal access token is needed, to create an issue for the
configured repository over the Github API.

Mobile Optimized User Interface

The ISA application was originally intended for use on a laptop or PC. However, the web application
is also very useful as a tool on a smartphone. This allows users to speak into their smartphones to
create issues.
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Figure 5.3: User Interface of the Issue Card Component

The added benefit of the smartphone-optimized version is that the microphone on a smartphone is
generally a lot better than the microphone integrated into many laptops. This results in improved
speech recognition accuracy when using ISA on a smartphone.

To get an app-like feeling the web-application was implemented as a Progressive Web Application
(PWA)5. PWAs allow users to add your web application to the home screen just like regular apps
that were installed through the AppStore or Google Play Store. To create a PWA you have to
add a Service Worker6 and Web Manifest to the application. The service worker is able to cache
application resources and can allow for offline capability of select functions of a web application.
As the ISA application requires internet connection to use the speech recognition and create issues
in existing issue management systems, the ISA PWA is not offline capable.

With a PWA a developer can create an application that can be added to the home screen like a native
app, that support app notifications, and that can be offline capable. A huge advantage compared to
regular native apps is that no approval from the Google PlayStore7 or from the Apple AppStore8 is

5https://web.dev/what-are-pwas/
6https://developers.google.com/web/fundamentals/primers/service-workers
7https://developer.android.com/distribute/best-practices/launch/launch-checklist
8https://developer.apple.com/app-store/review/
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Listing 5.1 Redux Dispatch Event

const persistConfig = {

key: 'root',

storage,

migrate,

whitelist: ['settings'],

};

const persistedReducer = persistReducer(persistConfig, rootReducer);

Listing 5.2 Redux Dispatch Event

import { useDispatch } from 'react-redux';

...

const dispatch = useDispatch();

dispatch({ type: 'SET_LABELS', labels: labels })

required. These reviews can take up to two weeks and make it a lot more difficult to quickly release
a bug fix. With a PWA a developer release an app update by simply pushing a new version to your
server, no approval process is required. The service worker can be configured by a developer to
automatically load the new version.

5.1.3 State Managment

Redux9 was used as the state management framework. As described in Section 4.6.3 no database
will be used to persist the application configuration. Instead the local browser storage will be used.
This means that the data configured on one device will not be shared with any other device. This
can have a negative impact on the user experience if a product owner user multiple different devices.
However, this is justifiable considering the significant reduction in application complexity that is
gained by not using a database.

The Redux state management makes it really easy to persist state in the local browser storage. A
developer can use the persistReducer from redux-persist and whitelist which reducers should be
persist to the browser storage. When the application is opened again from the same browser the
saved state is loaded from the local browser storage. This works even after the browser was closed
entirely or after the PC was restarted.

The Redux state management is event-driven. As shown in Listing 5.2, one can dispatch an event
with the data that should be updated. This allows for great decoupling of your user interface code
and the state management.

9https://redux.js.org/
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Listing 5.3 Redux Reducer

function IssueElementsReducer(

state: State = initialState,

reduxAction: ReduxAnyAction,

) {

switch (reduxAction.type) {

case 'SET_LABELS':

return {

...state,

elements: {

...state.elements,

labels: reduxAction.labels,

},

};

default:

return state;

}

}

Redux Reducer listen on these events and if the type matches an action type defined in the switch
statement of the reducer the managed state can be updated according to the event. Listing 5.3
shows a very simple example reducer that listens on the SET_LABELS event that was dispatched in
Listing 5.2. Multiple reducers could also listen to the same dispatched events. Redux supports
custom middleware, which makes it easy to add logging or user-interaction monitoring based on
events.

5.2 Speech Recognition

This section describes the implementation of the speech recognition system used by ISA. First,
the open-source speech recognition system DeepSpeech was used. The implementation of the
DeepSpeech microservice is discussed in Section 5.2.1. The problems that were encountered with
the DeepSpeech speech recognition system are explained here as well. These problems lead to the
decision to use the Web Speech API instead of DeepSpeech. The implementation and usage of the
Web Speech API for the speech recognition of the ISA application is discussed in Section 5.2.2.

5.2.1 DeepSpeech

DeepSpeech is an open-source speech recognition framework and was presented in greater detail in
greater detail in Section 2.2.1. In the following, the implementation of the DeepSpeech Microservice
and problems that were encountered with the DeepSpeech system are outlined.
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DeepSpeech Microservice

The DeepSpeech speech recognition system was extracted into a separate microservice to allow for
easy replacement of it should a new state of the art speech recognition system yield better results.
Even during the writing of this thesis, this decision proved to be valuable.

The DeepSpeech Microservice was implemented in NodeJS10. The goal was to immediately display
the recognized transcription even while the user is still speaking. This required an implementation
based on WebSockets so that the audio data could be continuously streamed from the client’s device
to the DeepSpeech microservice hosted on a server.

DeepSpeech has great documentation and offers multiple examples of different use cases. One
of these examples showed how DeepSpeech could be used in a NodeJS deployment. For the
implementation of the DeepSpeech microservice, the example provided by the Mozilla Foundation
was used as a reference and modified.

Problems with DeepSpeech

After the DeepSpeech microservice was implemented and integrated into the web application
described in Section 5.1 basic tests were conducted to evaluate how well the DeepSpeech speech
recognition worked for the ISA use case.

This evaluation showed significant accuracy problems when dictating issues into a microphone.
Basic words like “assignee” or their names were not properly recognized. In the future, these
accuracy problems could be eliminated by training a custom DeepSpeech speech recognition
model based on collected training data. With a custom model, the recognized vocabulary could be
optimized for issues.

For practical use in ISA DeepSpeech was not sufficient. Even basic issue texts like “The login
button should be green instead of blue. Assign Max. The priority is low.” were recognized with
five or more mistakes. A formal study of the word error rate in this application configuration was
not conducted. The general accuracy of the system will be evaluated in Chapter 6.

5.2.2 Web Speech API

Due to the accuracy problems encountered with DeepSpeech, it was decided to use the Google
implementation of the Web Speech API instead. The theory behind the Web Speech API was
described in Section 2.2.1 and this section will show the implementation details.

There is a special npm package that can be used for the Web Speech API in a React environment
called react-speech-recognition11. This package makes it easy to use the Web Speech API in a react
app and has support for the modern React Hooks. Listing 5.4 shows how the useSpeechRecognition

Hook can be used to retrieve the transcript.

10https://nodejs.org/en/
11https://www.npmjs.com/package/react-speech-recognition
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Listing 5.4 Web Speech API Consume Transcript

import SpeechRecognition, { useSpeechRecognition } from 'react-speech-recognition'

const { transcript, resetTranscript, listening } = useSpeechRecognition();

const options = { continuous: true, language: 'en-US' };

const startRecording = () => {

SpeechRecognition.startListening(options);

};

const stopRecording = () => {

SpeechRecognition.stopListening();

};

Listing 5.5 Web Speech API Browser Compatibility Test

import SpeechRecognition from 'react-speech-recognition'

if (!SpeechRecognition.browserSupportsSpeechRecognition()) {

// Web Speech API is not supported

}

Browser Support

As described in Section 2.2.1 the Web Speech API currently has limited browser support. The code
shown in Listing 5.5 allows a developer to verify if the current browser of a user supports the Web
Speech API.

5.3 Natural Language Processing

In this section, the implementation of the natural language processing microservice is outlined.
First, the usage of the CoreNLP annotation pipeline is shown. Furthermore, the implementation of
the HttpServelet that serves the API of the microservice is presented. After this the model training
process and creation of the training data is explained.

5.3.1 CoreNLP

Java was chosen as the language for the CoreNLP microservice because CoreNLP itself is written
in Java and the CoreNLP Java SDK has good documentation. To add CoreNLP to the project it was
included as a Maven dependency as shown in Listing 5.6.

To annotate text with CoreNLP an annotation pipeline has to be created by calling the
StanfordCoreNLP constructor. The pipeline can be configured through props. This allows a developer
to set which annotators should be used and configure the path to the model files. Details on how to
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Listing 5.6 CoreNLP Maven dependency

<dependency>

<groupId>edu.stanford.nlp</groupId>

<artifactId>stanford-corenlp</artifactId>

<version>4.0.0</version>

</dependency>

<dependency>

<groupId>edu.stanford.nlp</groupId>

<artifactId>stanford-corenlp</artifactId>

<version>4.0.0</version>

<classifier>models</classifier>

Listing 5.7 CoreNLP Document Annotation

// build pipeline

StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

// create a document object

CoreDocument document = new CoreDocument(text);

// annnotate the document

pipeline.annotate(document);

train a CoreNLP model are discussed in Section 5.3.3. A CoreDocument is created from the text

that should be annotated. The text is of type String. This CoreDocument can then be annotated by
the pipeline.

Listing 5.7 shows how the StanfordCoreNLP tool can be used to annotate a text.

5.3.2 Java Servelet

The CoreNLP microservice exposes a REST API that allows the API consumer to pass in a
text that should be annotated and returns the annotated result. This API was implemented as
a HttpServelet.

The REST API consists of a single GET endpoint on the /corenlp route of the Servelet. The consumer
calls the endpoint with the text as query parameter. A JSON response with the annotation results in
the body is returned. CORS Headers also had to be set by the CoreNLP microservice to allow web
application that are using HTTPS like the ISA application to access the CoreNLP microservice.

The CoreNLP microservice was dockerized to run it locally and so it can be deployed later. As
Tomcat will be used as a web server the tomcat:jdk8-openjdk base image was used. The generated
war file from the Maven Build steps was moved to the Tomcat Webapps directory. The web.xml file
was configured to serve the CoreNLP Servelet under the route /corenlp. The trained CoreNLP
model files were also packaged into the container. The container will serve the application on port
8080.
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Listing 5.8 CoreNLP Training Data Example

add O

ios O

support O

for O

nlp O

assign ASSIGN_INTENT

Max PERSON

issue O

weight WEIGHT_INTENT

is O

4 NUMBER

labels LABEL_INTENT

are O

app LABEL

and O

feature LABEL

redesign O

admin O

frontend O

labels LABEL_INTENT

are O

app LABEL

weight WEIGHT_INTENT

is O

1 NUMBER

assign ASSIGN_INTENT

Jeff PERSON

5.3.3 Named Entity Recognition Training

To train the named entity recognition in CoreNLP labeled data has to be provided. Unfortunately,
there is currently no pre-labeled data of naturally spoken issue text publicly available. This meant
that the training data set had to be created manually as part of this thesis. To create a data set a
developer has to write down spoken issue examples and label the entity of each word.

The data set is written in regular textfiles that represent a two-column table. The first element in
each row is the word of the sentence and the second word in each row is the entity label of the word.
Each word has to be on a separate line. Two sentences are separated by an empty line.

Null-Entities are words that in this configuration they are marked with an O. Named-Entities are
indicated by labels that are not O such as the entities PERSON, LABEL or NUMBER. You can create a new
entity simply by adding a previously unused label to the training data. There is no need to globally
define all labels that will be used.

Listing 5.8 shows a small excerpt of the training data that was used to train the models of the
CoreNLP microservice.
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Listing 5.9 Command to train CoreNLP Model

# train model

java -Xmx2g -cp "$CORE_NLP_PATH" edu.stanford.nlp.ie.crf.CRFClassifier -prop ner.model.props

CoreNLP Training

Once the data set was created, it has to be split it into a training data set and a test data set. The
training data set will be used to train the CoreNLP model and the test data set will be used to
evaluate the performance of the newly trained model.

The build-model.sh bash script was created to automate the model creation. Listing 5.9 shows a
small part of the script that is responsible for training the model. Based on the configuration set in
the ner.model.props a model will be trained.

The output of this command is a ner.model.ser.gz file that contains the trained named entity
recognition model. In the CoreNLP microservice, this model file is baked into the docker container
and used during the document annotation.

5.4 Application Deployment

Easy deployment is important for this tool. It allows users and other developers to quickly deploy
the application locally and try out the functionality. In this section, the reasons why deployment is
required for this thesis will be outlined and details on the technical implementation of the deployment
setup are given.

5.4.1 Necessity of deployment

In order to, conduct the experiment and get feedback from users safely and easily, the application
had to be used remotely with no setup need. In-person meetings with users and an experiment that
required an in-person session are currently not possible. For this reason, it was not an option to
have the system run locally on a developer’s laptop and let the study participants use this laptop to
complete the experiment.

The application had to be deployed and be publically accessible through a browser on the personal
laptop or PC of every study participant. While this deployment meant additional work and took a
lot of time, it was necessary for the completion of this thesis.

5.4.2 Deployment Orchestrator Decision

The application will be containerized using Docker. For the orchestration of the multiple containers
that are used in this application two tools would be suitable: docker-compose and Kubernetes.

Docker-compose is a basic orchestration tool. On their website [Doc] they describe it as ”Compose
is a tool for defining and running multi-container Docker applications.”
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Kubernetes is a far more advanced orchestration tool with a different focus. On the Kubernetes
website the tool is described as: ”Kubernetes (K8s) is an open-source system for automating de-
ployment, scaling, and management of containerized applications.”. The focus here is on scalability
and being able to manage and orchestrate multiple different applications, where each of them can
consist of multiple containers.

While docker-compose is meant to be used to run multi-container applications on a single host
machine, Kubernetes is designed to allow you to distribute your containers multiple different host
machines (so-called nodes). Kubernetes also allows for easy and fully automated deployment of
multiple applications on the same cluster.

However, docker-compose has a low barrier to entry and the deployment setup is considerably easier.
The advanced functionality with multi-node deployments and orchestration of multiple applications
is not needed here. For a developer who wants to try out the application, it is far easier to get a
‘docker-compose‘ setup running.

For its ease of use docker-compose was chosen as the deployment orchestrator in this thesis. Should
a developer want to deploy the application on a Kubernetes cluster rather than with docker-compose
they can use one of the tools like Kompose12 which can automatically convert a docker-compose file
to Kubernetes deployment configuration files.

5.4.3 Infrastructure Architecture

The application has four separate containers: the App container, the CoreNLP container, the
DeepSpeech Container and the Reverse-Proxy container. The App container contains the react
web-application, Nginx is used as the webserver in this container. The CoreNLP container provides
the CoreNLP API and is implemented as a Java Servlet. In this case, a tomcat-webserver is used.
The DeepSpeech service was implemented as a NodeJS application. To make these containers
publically available and add HTTPS support a reverse-proxy was added. The reverse-proxy also
uses Nginx. The deployment architecture is visualized in Figure 5.4

Host

For the host system, an ubuntu 20.04 VM was chosen. Docker was installed using the provided
guide13 from docker.

Currently, there is an issue with the default ssh configuration and docker-compose. When using
docker-compose to deploy an application to a remote docker host, it is required that you increase the
maximal number of concurrent allowed ssh connections on the docker host to at least 30 concurrent
connections.

The host system with ubuntu 20.04 has no other configuration changes.

12https://kompose.io/
13https://docs.docker.com/engine/install/ubuntu/
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Host

Reverse-Proxy

Exposed Ports:
80

443

App

Exposed Ports:
80

DeepSpeech

Exposed Ports: 
4000

Client

https

http

WebSocket

CoreNLP

Exposed Ports:
8080http

Figure 5.4: Application Deployment Architecture

Listing 5.10 Host SSH Configuration

echo "MaxSessions 500" >> /etc/ssh/sshd_config

Let’s Encrypt Certificates

For the deployment of the application it was required to add HTTPS support. Adding HTTPS support
to the deployed application was necessary, as the Chrome Browser only allows the microphone
usage if the website uses HTTPS rather then unsecured HTTP.

In order to add HTTPS free SSL certificates from the Let’s Encrypt14 service where used. Let’s
Encrypt allows a developer to automatically generate free certificates.

Let’s Encrypt provides the certbot15 docker image. When creating a certificate for a domain the
certificate authority (in this case Let’s Encrypt) has to verify that you are the rightful owner of
this particular domain and have control over it. For this deployment the DNS-01 challenge was
used. With this challenge the certbot generates a token that has to be added as a TXT Record under
_acme-challenge.<YOUR_DOMAIN> in the DNS configuration. Depending on the DNS provider of
the domain it is possible to automate the certificate renewal process. Unfortunately, not all DNS
providers have the required API support for this. The DNS provider Route 53 from Amazon Web
Services supports automatic certificate creation and renewal. Many smaller DNS providers like

14https://letsencrypt.org/de/
15https://hub.docker.com/r/certbot/certbot/
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Listing 5.11 nginx.conf - Reverse Proxy Configuration

server {

listen 443 ssl http2;

server_name ${NLP_HOST_NAME};

ssl_certificate /etc/letsencrypt/live/${SSL_CERTIFICATE_NAME}/fullchain.pem;

ssl_certificate_key /etc/letsencrypt/live/${SSL_CERTIFICATE_NAME}/privkey.pem;

location / {

proxy_pass http://nlp:8080/;

}

}

the German service Strato16 have limited support for automated certificate renewal. Let’s Encrypt
certificates are valid for up to 90 days. If the DNS provider does not have API support it is required
to manually update the certificate. To do so, a simple certbot command has to be executed to
refresh the certificate.

Reverse Proxy

The reverse proxy handles the incoming traffic and decrypts it. A Nginx container is used as the
reverse proxy. The decrypted traffic is then routed into the correct application depending on the
URL that was used. In Nginx, this can be configured with the server_name attribute.

The docker-compose networking conveniently allows a developer to route traffic into a container
by simply referencing the name of the container. With http://nlp:8080/ for example you can
access port 8080 on the container which is named nlp in the docker-compose.yml file. The simplified
version of the reverse proxy configuration for the nlp host endpoint can be seen in Listing 5.11.

An automatic redirect to HTTPS for any incoming HTTP traffic was added as well. This ensures
that all connections use the encrypted HTTPS.

5.4.4 Deployment Configuration

As described earlier docker-compose was used as the deployment orchestrator. When using docker-
compose you create a docker-compose.yml file with your deployment configuration.

A big advantage of using a deployment orchestrator like docker-compose is, that you can configure
containers to automatically restart in case the host machine reboots or even if the container crashes.
This can be set with the restart: unless-stopped option. The full deployment configuration is
shown in Listing 5.12

16https://strato.de/
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Listing 5.12 docker-compose.yml deployment configuration

version: "3"

services:

reverse-proxy:

build: reverse-proxy

restart: unless-stopped

volumes:

- certificates:/etc/letsencrypt

ports:

- "80:80"

- "443:443"

environment:

- APP_HOST_NAME=${APP_HOST}

- NLP_HOST_NAME=${NLP_HOST}

- SSL_CERTIFICATE_NAME=${DOMAIN}

depends_on:

- app

- nlp

app:

build:

context: app

args:

REACT_APP_NLP_URL: https://${NLP_HOST}/api/corenlp

REACT_APP_BASENAME: /

PUBLIC_URL: https://${APP_HOST}

restart: unless-stopped

nlp:

restart: unless-stopped

build:

context: nlp

ports:

- "8080:8080"

volumes:

certificates:
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In this chapter, the performance ISA system will be evaluated. An experiment was conducted for
this evaluation. First, the experiment design is outlined in Section 6.1. In Section 6.2 the experiment
results are presented and interpreted. To conclude the evaluation, potential threats to the validity of
the experiment results are discussed in Section 6.3.

6.1 Experiment Design

An experiment will be used to evaluate the recognition accuracy of the ISA system. The experiment
participants will receive example texts that they are instructed to read into the ISA system and record
the resulting issue created by ISA.

It is necessary to use predefined issue texts so that the spoken text is consistent. Allowing the user
to freely choose the phrasing, would rather result in an evaluation on how intuitive it is to speak a
recognizable sentence and how accustomed the user is to interacting with digital voice assistants.
However, this is not the objective of the evaluation. The goal is to measure how accurately ISA can
create a structured issue given spoken input of different users. As discussed in Section 4.2.2 the
ISA system inherently suffers from poor learnability. It takes a user time to get used to the digital
voice assistant and learn what words and phrases have the best recognition accuracy most effectively
given a certain task. As each participant was only able to spend a limited time with the application
during the experiment, predefined texts were required.

Each study participant received 10 predefined issue texts that they read into the ISA application.
The participants accessed the application through a web browser on their personal laptops. Prior to
the experiment a basic questionnaire on the participant’s demographic and background was filled
out. 8 individuals participated in the experiment as shown in Table 6.1.

Participant ID Age Group Gender Background Native English speaker

1 20-30 male software engineering student No
2 20-30 male software engineering student No
3 20-30 male software engineering student No
4 20-30 male product owner Yes
5 20-30 female (non-technical) Domain Expert No
6 50-65 male product owner No
7 20-30 male software engineering student No
8 20-30 male project management No

Table 6.1: Experiment Participants
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Precision Recall F1

0.945 0.77 0.853

Table 6.2: Precision, Recall and F1 Score of the ISA system

6.2 Results

For the evaluation of the experiment the precision, recall and F1 score of the ISA system will be
evaluated. These are industry-standard metrics to evaluate a machine learning model.

The precision of a system is the number of true positives divided by the sum of true positives and
false positives. The precision indicates what percentage of the labeled elements were correctly
labeled. The precision score can be between 0 and 1. A precision score of 1.0 indicates that every
element that is part of an entity group � was labeled as � by the system.

The recall is the number of true positives divided by the sum of true positives and false negatives.
The recall indicates what percentage of elements that are supposed to be labeled got correctly
labeled. The recall score can be between 0 and 1. A recall score of 1.0 indicates that all no element
was missed.

The F1 score is the weighted average of precision and recall. It can be calculated with the following
formula: �1 = 2∗'420;;∗%A428B8>=

'420;;+%A428B8>=

In the experiment the true positives, the false positives, and the false negatives in the results of ISA
were counted. Correctly labeled null-entities are not counted towards the true positives. From these
measured values the precision, recall, and F1 score of the ISA system were calculated to determine
the system performance. Table 6.2 shows the resulting values.

The F1 score is relatively high, indicating a good system performance. Overall the system per-
formance ISA is respectable. This result is slightly worse than the pertained CoreNLP models
which achieved an F1 score of 0.9131. The overall recognition of the ISA system has to be further
improved in future work. When creating an issue it is rare (less than 20% likelihood) that no edits
on the issue card have to be performed. Especially, the issue title and issue body are likely to contain
some errors. The content of these elements is taken directly from the speech recognition system
with limited post-processing. As discussed in Section 4.2.2 it is also not very intuitive and to get
optimal results the user needs to know which labels, components, and assignees are part of the
system. However, some participants mentioned that the small fixes on the auto-generated issue by
ISA seem to be easier than creating the entire issue manually.

It should be noted that microphone performance can have a big impact on the speech recognition
results and subsequently the recognized issue. The experiment participants mostly used webcam
microphones or their smartphones.

These results show that ISA is a good first step to automatically recognize structured issues from
spoken text. The speech recognition and natural language processing systems have to be further
improved for this system to be a tool that can be daily used by software development teams.

1https://nlp.stanford.edu/software/crf-faq.html
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6.3 Threats to Validity

This section discusses the threads to the validity of the concept developed in this thesis.

6.3.1 Construct Validity

The evaluation results are based on precision, recall, and F measure. Other evaluations might have
different results. But these measures are widely used to evaluate NLP and NER systems.

As discussed during the experiment design in Section 6.1 the experiment only evaluated the recog-
nition accuracy of the ISA system given a predefined text. A long term study of the concept in a
more real-world situation, would allow for more robust results.

6.3.2 Internal Validity

The data set used to train the ISA system was based on manually created data. This data does not
necessarily represent data that will be spoken into the system in a real-world situation accurately.
Due to the lack of available production data, some assumptions on how the user would interact with
it had to be made. As the data was manually created and labeled the volume of it is very limited.
Following this thesis, a long-term field study of the ISA system would be required to give a more
accurate representation of its real-world performance.

As the data was labeled manually human mistakes can not be avoided. The values of the true
positives, false positives and false negatives in the experiment were also manually collected.

6.3.3 External Validity

The experiment participants were predominantly young male professionals with a background in
software development. For most participants, English was their second language. The lack of
diversity in the participant group could be a threat to the validity of the experiment results.
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This chapter summarizes the results of this thesis in Section 7.1. The key insights of the ISA concept
are outlined. Finally, Section 7.2 presents opportunities for further research in the area.

7.1 Results and Conclusion

This thesis identified a problem with the issue creation process. Issues are an important tool to
document change requests and bug reports. However, there is a time and location gap between the
need to create an issue and the actual act of creating this issue in the issue management system.
The need to create an issue often comes up during a team meeting, these issues however are often
created hours after the meeting. As the issue creation in current issue management systems is too
time-consuming to create issues during a meeting. This can negatively impact the quality of the
issues as important details are forgotten or the user can forget to create the issue outright. This can
cause the team to not plan and execute on the issue.

Interviews were conducted to learn more about the problem and gather requirements from potential
users. Based on these requirements a new concept for a speech assistant that could automatically
create structured issues from freely spoken text was developed. This system is called ISA, short for
Issue Speech Assistant.

In the ISA system speech recognition is used in the first step to create a transcription of the spoken
text. This text is then analyzed by natural language processing and named entities are extracted.
Based on these results a structured issue card is filled out. The user can review and edit the generated
issue. Once the user saves the issue it is transferred into an existing issue management system.

A prototype of the ISA system was implemented as part of this thesis. The code is available on
Github1. A microservice architecture approach was used. For the speech recognition a DeepSpeech
service was implemented. As the available DeepSpeech models had accuracy problems, support
for the Web Speech API was added as well. The NLP microservice uses CoreNLP named entity
recognition to annotate the text result. The architecture was designed with extensibility in mind and
allows for easy replacement or extension of individual services.

This proof-of-concept implementation allowed for an evaluation of the ISA design. The goal of
the evaluation was to determine if further research in this area can be justified. An experiment was
conducted to measure the performance of the system. Based on the experiment results and user
feedback, the concept design was validated and further optimizations will be implemented.

1https://github.com/FabioSchmidberger/issue-speech-recognition
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ISA showed how a digital voice assistant can be optimized for a specific use case in a limited domain.
By targeting professional power-users rather than general consumers the voice assistant is able to
focus on efficient user interaction at the cost of intuitiveness. This concept of a domain-specific
voice-centric system could be extended into other domains. This approach is in contrast to current
well-known digital voice assistants like Goole Assistant, Alexa or Siri. However, the expected
benefits in a professional context and the achievable system accuracy is higher than in the existing
consumer-focused offerings. A careful analysis of the existing processes is required to make sure
the speech assistant is optimally integrated into the user process and the application landscape the
organization uses.

To summarize, the ISA system streamlines the issue creation process and makes it possible for
product owners to easily create issues during a meeting. Spoken user input is automatically translated
into a structured issue. The application implemented in this thesis, validated the developed concept
and showed promising enough results to justify further research and analysis of additional use
cases.

7.2 Future Research Opportunities

This section outlines areas where further research on the thesis topic could be conducted. First
possible improvements to the speech recognition and natural language processing are discussed. A
machine learning pipeline is proposed which would instrumental to achieving these improvements.
Furthermore, a new design for the integration system is presented, that could make it easier to
integrate into additional issue management systems. To conclude this section, additional use cases
beyond the current prototype implementation of the ISA concept are presented.

7.2.1 Improved Speech Recognition

The speech recognition accuracy is still a weakness of the system. As this application has a limited
domain (issue management) and therefore a limited vocabulary a custom language model and
acoustic model could significantly increase the accuracy. Currently, the Web Speech API is used,
which does not support custom language models or acoustic models. However, for DeepSpeech
custom models could be trained.

7.2.2 Improved Natural Language Processing

In this thesis, a basic NLP system based on named entity recognition and heuristics was used. This
approach has its limitations. Elements like the issue title and issue body are recognized with a
heuristic and the recognized input text is simply pasted into the issue card. An improved semantic
understanding of the spoken issue could improve the user experience and increase the resilience of
the system to intuitively spoken text.
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7.2.3 Machine Learning Pipeline

The previous sections described, how improved speech recognition and natural language processing
is necessary for the ISA application. One of the challenges is, that there is very limited publically
available training data that can be used to optimize the speech recognition and natural language
processing for the domain of issue management. It would be a huge advantage if the ISA application
would collect all the data that is created by using it. The audio from spoken input can be used to
train the speech recognition, and based on the text results the NLP system could be trained.

A pipeline would have to be build where the data is collected, then labeled and stored in a new data
set. This new data set can then be used to train new and improved models. It is very important to
quality assure the incoming data to prevent wrongly labeled data from negatively impacting the
model accuracy.

7.2.4 Integration Design

The ISA application currently only supports Github and Gropius as issue management systems.
There are no integrations into other issue management systems at the moment. The used API by ISA
is relatively slim, so it is not difficult to add additional issue management systems. But considering
the vast number of different issue management and project management tools out on the market, an
implementation of all their APIs is simply not realistic. A great way to have potential support for
every tool is to build an integration to an integration platform like Zapier2. Zapier is an integration
platform that allows users to configure adapters between over 2000 applications. Tools like Gitlab3,
Jira4, Asana5, and Github6 all have Zapier support. Zapier does not require its users to write code
and makes it simple to add integrations. Once a user has configured an integration between ISA
and a new issue management tool, all other users will have access to it. Crowdsourcing integrations
and empowering users to configure their own integrations without having to submit code to the
repository would make it a lot more user friendly to add integrations.

7.2.5 Additional Use Cases

In the following, additional use cases for the ISA system are presented. The current implementation
is a prototype to showcase the possibilities of the ISA concept. The following use cases could turn
this concept into a viable product.

2https://zapier.com/platform
3https://zapier.com/apps/gitlab/integrations
4https://zapier.com/apps/jira-software/integrations
5https://zapier.com/apps/jira-software/integrations/asana
6https://zapier.com/apps/jira-software/integrations/github
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Integration into Video Meeting or Remote Communication Tools

In the present climate, there is a significant increase in the number of meetings conducted remotely
over video call software. The ISA tool developed for this thesis was intended to be used by a product
manager during in-person meetings to easily create issues and make sure that all team members are
on the same page.

But the tool could also be integrated into an existing video call platform like Zoom7 or Cisco
WebEx8 and suggest the creation of a todo item or issue automatically based on the topics discussed.
As the entire discussion is live recorded it is not very difficult to take the audio recording tracks and
stream them into a speech-to-text system. The resulting transcript could be analyzed live during the
meeting and suggestions for issues can be displayed directly in the video call software. This would
allow the entire team to immediately see the generated issue and work together on it to clear any
misunderstandings.

A similar approach could be taken with the Slack integration. When employees discuss something
in a Slack channel the text could be automatically analyzed with the natural language processing
system developed for this thesis and a suggestion to create an issue could be posted to the channel
using a Slack bot.

Support for general Project Management Tools

This thesis focused on integrating ISA into issue management systems. The current implementation
of ISA is very developer-focused, as the intended users are only product owners and developers.
However, ISA could be very beneficial to other user groups like project managers. To extend
in general project management the current data model of an issue (or rather task) needs to have
customizable attributes. This is required, as most project management systems like Monday9 and
Asana10 offer their users customizable data types. This would introduce additional challenges for
the NLP system. Additional integrations into project management systems would be required.

7https://zoom.us/
8https://www.webex.com/de/video-conferencing.html
9https://monday.com/

10https://asana.com/
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