
Institute of Software Engineering
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelor Thesis

Does Functional Programming
Improve Software Quality? An

Empirical Analysis of Open Source
Projects on GitHub

Daniel Abajirov

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Stefan Wagner

Supervisor: Dr. Justus Bogner

Commenced: November 7, 2020

Completed: May 7, 2021





Abstract

Nowadays, there are not many studies that have empirically analyzed the e�ect of functional
programming on software quality. Through the era of microservices and cloud-based systems,
functional programming is experiencing a growing usage. This is due to the features that this
paradigm o�ers and the benefits that follow. With this study we want to find out if there is a
correlation between functional programming language and software quality.

To determine the impact of functional programming on software quality, we conducted an empirical
study. This study was inspired by the lack of empirical evidence of this impact. To address this
lack, we have collected a large dataset from GitHub (eight programming languages, four functional
and four imperative, 400 projects, 200 using a functional languages and 200 using an imperative
one) that we will analyze to gather information on various aspects of software quality such as
maintainability, reliability and further to test our hypotheses.

Several tools and techniques were used for the analysis. For maintainability, we used a static
analysis tool, SonarQube. For reliability, we analyzed the commit history of each project looking
for bugs and categorized them. To determine the domains of each project, we implemented a
classification algorithm in Python. As input for this algorithm, we used the information in each
project’s “README.md” to obtain a list of possible topics. With this list we were able to classify
each project to its domain performing a manual classification. We also categorize bugs from the
commit history into eight categories.

Above all, it seems that functional programming languages provide good reliability compared to
imperative languages.
In general, it cannot be said that functional languages have a positive influence on software
quality, since for maintainability there is not enough evidence to show that functional programming
languages have less code smells that imperative programming languages. The results also indicate
that for domains such as applications, databases, and libraries, the use of a functional language
could decrease the frequency of programming bugs.

3





Contents

1 Introduction 11
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background 15
2.1 Imperative Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Software Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Related Work 19

4 Methodology 21
4.1 Study Objects and Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Identifying Project Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Categorizing Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Results 31
5.1 Software Quality Impact (RQ1) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Analysis of Characteristics that influence Frequency of Bug Categories (RQ2) . 33

6 Discussion 45
6.1 Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Conclusion 49

Bibliography 51

5





List of Figures

4.1 Data collection process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Application domain with bug categories in % . . . . . . . . . . . . . . . . . . . 38
5.2 Database domain with bug categories in % . . . . . . . . . . . . . . . . . . . . . 39
5.3 Code Analyzer domain with bug categories in % . . . . . . . . . . . . . . . . . 40
5.4 Library domain with bug categories in % . . . . . . . . . . . . . . . . . . . . . 41
5.5 Framework domain with bug categories in % . . . . . . . . . . . . . . . . . . . 42
5.6 Programming Language domain with bug categories in % . . . . . . . . . . . . . 43

7





List of Tables

1.1 Companies using functional programming languages. . . . . . . . . . . . . . . . 12

4.1 Study object: Functional language. . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Study object: Imperative language. . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Domains of imperative language projects. . . . . . . . . . . . . . . . . . . . . . 25
4.4 Categories of bugs and the keywords that characterise them. . . . . . . . . . . . 27
4.5 Overview of hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Overview of metric results for functional languages. . . . . . . . . . . . . . . . . 32
5.2 Overview of metric results for imperative languages. . . . . . . . . . . . . . . . 32
5.3 Code smells of functional languages using SonarQube. . . . . . . . . . . . . . . 33
5.4 Code smells of imperative languages using SonarQube. . . . . . . . . . . . . . . 33
5.5 Results of measures overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Categories of bugs for functional languages. . . . . . . . . . . . . . . . . . . . . 35
5.7 Categories of bugs for imperative languages. . . . . . . . . . . . . . . . . . . . . 35
5.8 Percentage of categories of bugs for functional languages. . . . . . . . . . . . . . 36
5.9 Percentage of categories of bugs for imperative languages. . . . . . . . . . . . . 36
5.10 Domains of functional language projects. . . . . . . . . . . . . . . . . . . . . . 37
5.11 Domains of imperative language projects. . . . . . . . . . . . . . . . . . . . . . 37

9





1 Introduction

In this chapter, we provide an introduction that helps to better understand the motivation behind
the choice to analyze the impact of functional programming on software quality. Then, we explain
the research questions we formulate to see if functional programming improves software quality.
Finally, we give an overview of the structure of the paper.

1.1 Motivation

With the increasing use and development of new technologies and the expansion of cloud infrastruc-
ture, software quality is becoming more and more important [Goe19].
An important part of a project that determines its quality is modularity and as size of projects
increases, modularity plays a big role in determining whether software is good or not. A study on the
e�ect of modularity on software quality was published by Rosene et al. in “Software Maintainability
- What It Means and How to Achieve It” [RCB81]. This research showed that there is a positive
relation between the modularity and maintainability of a program. Modularity is also one of the key
of functional languages and because of their implementation it is easily to write modular code then
with a non-functional language like Java.
John Hughes claimed in his paper [Hug90] that as software becomes more complex, it is important
to structure it well. In his paper he attempted to show how functional programming can help to
achieve this goal. In his conclusion, he cited two important factors why functional programming
can help improve the modularity of software. The first one is the use of higher order functions.
The goal is to create smaller functions that take care of only part of the logic. Then combine them
into more complex functions. The second is the lazy evaluation of functional languages. This is a
crucial part of improving the modularity of a software and especially the software quality. Using
lazy evaluation can have many benefits, such as postponing expensive calculations that may not be
needed or working with large data sets that would not fit in memory. Lazy evaluation and other
aspects of functional programming are discussed later in Chapter 2.

Today, there is not enough evidence to lead that functional programming has a positive impact
on software quality. This is evident in the publications of studies that investigated software
quality in specific domains using imperative languages or compared di�erent programming lan-
guages to select the best language that can lead to good software quality. In their paper, “An
Overview of Practical Impacts of Functional Programming”, Khanfor and Yang [KY17] aimed
to better understand the impact of functional programming language through a literature review.
It was concluded that more studies need to be conducted by the software engineering research
community that can show the impact of functional programming language on software quality.
Functional programming is generally considered more di�cult to learn and master than other

11



1 Introduction

programming paradigm such as imperative programming. If we have enough evidence to show
that learning this new paradigm is worth the e�ort, we can encourage more people to learn it and use it.

So the questions is whether functional languages can improve software quality. We have seen
through Hughe’s paper [Hug90] that there is a positive impact on modularity, but that is not enough
to conclude that functional programming also has a positive impact on software quality.

From a purely academic use, functional language is slowly being adopted by many companies, such
as Amazon, Twitter and others that we can see in the table 1.1. This information can be found on the
website of o�cial languages such as Elixir1, Clojure2, and Erlang 3. They rely on the properties of
functional languages such as the already mentioned lazy evaluation or the simplicity of writing code
in functional style that make it is easier to find bugs and reduce the risk of exploits or to implement
complex tasks that involve parallel actions.
At the early QConPlus4 congress, functional programming has been addressed.

Clojure Elixir Erlang F#

Amazon Adobe WhatsApp Jet.com
Apple BBC IBM Walmart
Cisco Discord Cisco Olo

CircleCi Frame Rocket Journey Large Financial Services Firm
Spotify Payout3 Helium Microsoft

Table 1.1: Companies using functional programming languages.

One of the presentation was “The resurgence of Functional Programming”5 in which was discussed
how functional programming could experience a resurgence due to the era of microservices and
cloud-native systems. Properties of functional programming like composability, immutability or
the absence of side e�ect can lead to a joyful development experience. Through this properties we
can write more understandable code and through modularity we can program complex interactions,
having a great confidence in the code.

On their paper “A Large Scale Study of Programming Languages and Code Quality in Github”
[al17], Ray et al. attempted to investigate the influence of programming languages on software
quality. They had as results under others that functional languages are a bit better than procedural
languages and thus the choice of using a functional programming language could have a slight
impact on software quality. Unfortunately, with these results we cannot assume that functional
programming improves software quality over non-functional programming. This is because the
number of functional projects selected is not representative. Of the 19 languages present, only

1ElixirCompanies, https://e�ixir-companies.com/en
2ClojureCompanies, https://c�ojure.org/community/companies
3ErlangCompanies, https://er�ang-companies.org
4QConPlus2020, https://p�us.qconferences.com/recap/p�us2020
5ResurgenceFunctionalProgramming, https://p�us.qconferences.com/p�us2020/track/resurgence-functiona�-

programming

12

https://elixir-companies.com/en
https://clojure.org/community/companies
https://erlang-companies.org
https://plus.qconferences.com/recap/plus2020
https://plus.qconferences.com/plus2020/track/resurgence-functional-programming
https://plus.qconferences.com/plus2020/track/resurgence-functional-programming


1.2 Research Questions

3 were functional languages (Clojure6, Erlang7 and Haskell8). They considered Scala9 to be
functional, but it is not so easy to determine whether a Scala project is purely functional or not, due
to the possibility of writing functional non-functional code in Scala [BHM+19]. This leads to a
lack of empirical evidence that can support that functional programming languages could improve
software quality. There is not enough data to compare functional with non-functional languages in
their study to provide a reliable result. A better overview of the studies on the topic of functional
programming or software quality is provided in chapter three.
Thus, as stated at the outset, there is a lack of empirical evidence to support the impact of functional
programming on software quality. The few studies that have attempted to shed some light on this
field are mostly poorly structured and fail to produce valid results.

1.2 Research Questions

The goal of this study is therefore to empirically analyze projects using functional programming
languages and to compare them to projects with imperative languages. The comparison should
provide insights into a potential influence of the functional programming paradigm on software
qualities. The concrete quality aspects to be analyzed will be reliability and maintainability. In this
way we can better understand, if functional programming improves software quality.

With our study, we want to find out if functional programming language have a positive impact
on software quality. Then we want to see what characteristics influence the frequency of the bug
categories of the analyzed projects. For this purpose, we will answer the following RQs:

1. Does using a functional programming language improve Software Quality10?

1.1. Does using a functional programming language improve Reliability11?

1.2. Does using a functional programming language improve Maintainability12?

2. What characteristics influence the frequency of the bug categories of the analyzed projects?

2.1. Choice of the programming paradigm.

2.2. Choice of the programming language.

2.3. Choice of the project domain.

To better answer the two RQs, we split them into sub-questions so that we can easily examine them
and gather enough information to answer the main questions.

6Clojure, https://c�ojure.org/index
7Erlang, https://www.er�ang.org
8Haskell, https://www.haske��.org
9Scala, https://www.sca�a-�ang.org

10SoftwareQuality, https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
11Reliability, https://iso25000.com/index.php/en/iso-25000-standards/iso-25010/62-re�iabi�ity
12Maintainability, https://iso25000.com/index.php/en/iso-25000-standards/iso-25010/57-maintainabi�ity

13

https://clojure.org/index
https://www.erlang.org
https://www.haskell.org
https://www.scala-lang.org
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010/62-reliability
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010/57-maintainability


1 Introduction

For RQ1.1, we will look for bugs in each commit that a project has had in its history. For this
question, we need to analyze each commit of a project and look for bugs or errors. With further
analysis, we will mark a commit as a bug if it contains a bug discovery or bug fix.

To answer RQ1.2, we will use static code analysis to find code smells that each project currently has.
This information plus the main line code of a project will be used to compare the two programming
paradigms in order to answer this RQ. As main lines code we mean only the lines of code that are
written in the main language assigned to each project.

To answer RQ2.1, we will see which programming paradigms are more prone to certain types of
bugs. In order to categorise a bug, a classification algorithm will be applied to the information
obtained from RQ1.1.

To answer RQ2.2, we will see which programming languages are more prone to certain types of
bugs. In order to categorise a bug, a classification algorithm will be applied to the information
obtained from RQ1.1.

To answer RQ2.3, we will assign to each project its domain and see which domains are more
prone to certain types of errors. We will divide the domains into categories that we have chosen
for this purpose and see what the main di�erence between them is. The assignment of domains
will be done using a topic analysis algorithm on the description files of each project. In order
to categorise a bug, a classification algorithm will be applied to the information obtained from RQ1.1.

1.3 Structure of the Thesis

This thesis is divided into seven chapters. Chapter 1 introduces the motivation behind the thesis and
the research questions. Chapter 2 gives the essential background knowledge to better understand
the paradigms and the definition we used in this thesis. In chapter 3 we present the related work.
Chapter 4 describes the design and planned procedure of the study. The actual evaluation of the
results and comparison are discussed in Chapter 5. Chapter 6 contains a discussion of the results as
a threat validation and Chapter 7 the conclusion of this thesis and the limitations that this thesis has
encountered. Future work is also discussed in this chapter.

14



2 Background

In order to fully understand the content of this paper and follow its logical thread, we must first
explain three basic concepts, namely imperative programming, functional programming, and
software quality.

2.1 Imperative Programming

The first computers were not electronic but electromechanical, requiring glass tubes to perform some
operations. An example is the first computer (ENIAC, 1946) [SBCG98]. These first computers
had something in common, they all needed instructions to perform operations. This summarizes
the early phase of imperative programming. Instructions were simple. They manipulated data
only step by step, the so-called “do this, then do that”, as Salus says in his book [SBCG98]. The
first major imperative programming language for electronic computers was FORTRAN. With this
new language it was possible to execute complex expressions and create more complex programs
[SBCG98].
In general, imperative programming is a well-defined sequence of instructions given to a computer
to change a state. An example of this type of programming is the loop, where, starting from an
initial state, instructions are executed through a series of iterations that change the state. The source
code of imperative languages assembles the commands that determine what the computer must do
and when to achieve the desired result [SIT18].
Imperative programming languages are very concrete in that they work close to the system. So on
the one hand the code is easy to understand, on the other hand it takes many lines of source code
to describe what can be accomplished in declarative or functional programming languages with a
fraction of those commands. This has both advantages and disadvantages [SIT18].
As advantages we have that imperative programs are more easy to run on hardware [BMP13]. The
first disadvantages are in solving more complex problems, which increases the amount of code
produced. It remains very readable, but its size makes it unwieldy. When is produced more code,
there is also the risk of making more mistakes and introducing more bugs, which makes updating
an application quite complex.

2.2 Functional Programming

Functional programming languages can be traced back to the lambda calculus proposed by Alonzo
Church in the 1930s [Mic11]. The lambda calculus is based on mathematical logic and forms
the basis for modern functional programming languages [KI16]. In 1958, 30 years later after the
introduction of lambda calculus, John McCarthy invented LISP, the first functional programming

15



2 Background

language. Functional programming describes programs as expressions and transformations, model-
ing mathematical formulas, and tries to avoid mutable state. Functional programming languages
categorize problems di�erently than imperative languages [CMHB18]. The logical categories (filter,
transform, and convert) are represented as functions that implement the low-level transformation but
rely on the developer to customize the low-level machinery with a higher-order function, supplied
as one of the parameters [CMHB18].
Programs are built out of pure functions. A pure function has no side e�ects, it doesn’t depend on
anything but its arguments, and its only influence on the outside world is through its return value.
Functional programs make heavy use of recursion and laziness. A recursion occurs when a function
calls itself, either directly or indirectly. With laziness, an expression’s evaluation is postponed until
it’s actually needed. Lazy techniques imply pure functions.
Laziness depends on the ability to replace a function call with its result at any time. Functions that
have this ability are called referentially transparent. This can benefit from Memoization ( automatic
caching of results) and automatic parallelization, moving function evaluation to another process or
machine [KI16].
We can see that some imperative languages such as Java 1 or C# [Buo17] have recently implemented
some functional capabilities into their paradigm. In summary, functional programming has many
advantages such as run-time optimization, lazy evaluation, and abstraction in categorizing problems
[BMP13]. To get a better overview of the two implementations, we pick two implementations of
the factorial function, this can be seen in listing 2.1. First we have a Java implementation of this
function. The use of the for loop to iterate through immediately jumps out. The code is easy to
understand and to follow. In listing 2.2 we have the same implementation using the functional
language Clojure. Here it is hard to tell what is happening without further knowledge. Reduce is a
core function in Clojure, which can also be found in Lisp. This function takes the first two items in
the list, applies the operator to them, then takes that result along with the next item in the list and
applies the operator to them, and so on. Range and inc as functions should be self-explanatory.
Another di�culty is to follow the logic of this function.
In conclusion, the imperative implementation is easier to read and understand, while the functional
one takes some time to be analyzed and understand.

pub�ic �ong factoria�Java(int n) {

�ong factoria� = 1;

for (int i = 2; i <= n; i++) {

factoria� = factoria� * i;

}

return factoria�;

}

Listing 2.1: Implementation of factorial function in Java.

(defn factoria�[n]

(reduce * (range 1 (inc n))))

Listing 2.2: Implementation of factorial function in Clojure.

1Java lambda expressions. https://docs.orac�e.com/javase/tutoria�/java/javaOO/�ambdaexpressions.htm�

16

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html


2.3 Software Quality

2.3 Software Quality

Software quality is not so easy to define. There are many definitions but they all point in the
same direction. For example some defined software quality as measures how well an application
is designed or perform, others defined it whether the software satisfies its requirements. Wagner
(2013) in “Software Product Quality Control” [Wag13] notes that quality is not an easy concept to
be defined and "quality is a concept that has kept philosophers occupied for more that 2000 years".
Always in [Wag13], we can see how di�erent the software quality from di�erent organization like
ISO, IEC and IEEE is defined:

• The degree to which a system, component or process meets specified requirements

• The ability of a product, service, system, component or process to meet customer or user
needs, expectations or requirements

• The totality of characteristics of an entity that bear on its ability to satisfy stated and implied
needs

• Conformity to user expectations, conformity to user requirements, customer satisfaction,
reliability and level of defects present

• The degree to which a set of inherent characteristics fulfils requirements

• The degree to which a system, component or process meets customer or user needs or
expectations

For this thesis, we will use the definition of the ISO 25010 2 that says "The quality of a system is
the degree to which the system satisfies the stated and implied needs of its various stakeholders, and
thus provides value". In particular we will analyze the aspect of Reliability and Maintainability.
The definitions according to ISO 25010 are as follows:

• Reliability:"Degree to which a system, product or component performs specified functions
under specified conditions for a specified period of time".

• Maintainability:"This characteristic represents the degree of e�ectiveness and e�ciency
with which a product or system can be modified to improve it, correct it or adapt it to changes
in environment, and in requirements".

2ISO-25010, https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

17

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010




3 Related Work

Unfortunately, not so many empirical studies have been done on functional programming that
analyzed the impact on software quality.

One of the few studies that attempted to shed some empirical light on the question of which
language could improve software quality was the study performed by Harrison et al. in "Comparing
programming paradigms: an evaluation of functional and object-oriented programs"[HSDL96].
In this study, a quantitative evaluation of functional and object-oriented paradigm is carried out.
The aim was to find out whether the choice of one paradigm over another has an influence on
the quality of the code. For the evaluation, twelve sets of algorithms were developed in SML
(Standard ML) and C++. Strict constraints were placed on the development of this algorithm
to improve the reliability of the results. It was found that there is a significant di�erence in
the number of known errors per thousand lines of code. Further results showed that the SML
code showed one and a half times as much reuse as the C++ code. This suggests that using a
functional programming language may be better for reusability than object-oriented programming
languages. But in general, no significant di�erences were found to the numbers of known errors,
modification requests, the times to attend to these, a subjective measure of complexity, and the
total development time. The finding suggested that the subjective preference may be a deciding factor.

Another interesting study that indirectly compared functional and non-functional languages in an
empirical study was that of Ray et al., “A Large Scale Study of Programming Languages and Code
Quality in Github” [al17]. They collected a total of 850 projects in 17 di�erent languages. These
projects were selected from GitHub, retrieving only projects primarily written in that language.
Using a mixed-methods approach, they were able to combine multiple regression modelling and
text analysis to investigate the influence of language features on software quality.
They found out that strong typing is better than weak typing, that static typing is better than dynamic,
and that managed memory usage is better than unmanaged. Further they found that functional
languages are slightly better than procedural languages, albeit with some limitations.
There are limitations to these results. The first is that they were not able to quantify the specific
e�ects of language type on usage. Secondly, the categorisations of domains and bugs could be
influenced by the initial choice of keywords. Finally, they associated defect fixing commits with
language properties, even though they might reflect the reporting style or other properties of the
developers.

Due to the success of this study, Berger et al. decided to conduct a replication study to validate the
results thus obtained by Ray and his collaborators. In their reproduction study [BHM+19], they first
carried out an experimental replication, which was only partially successful. Nevertheless, they
managed to validate one part of the study, namely the association of programming languages with
defects.

19



3 Related Work

Due to an incomplete data set and missing codes, they had to do a complete re-analysis of the data
and statistical modelling steps of the original study. Through this reanalysis, they discovered that
only four out of eleven languages from the original study had a statistically significant association
with defects, and even among these, the e�ect size was quite small.
Upon further investigation, they found that the original statistical modelling had technical omissions,
such as improper handling of multiple hypothesis testing. After correction, they compared the data
thus obtained with that of the original study and found a certain discrepancy. For example, the
original six languages with a positive association with defects became only one.
This replication study is interesting for us because it gives us some good practice recommendations
for similar e�orts. Recommendations that can lead to the avoidance of mistakes that can be
made when conducting such empirical studies. Such as the attention that should be paid to the
modelling of the analysis pipeline. To avoid bias, errors and unwarranted interpretations, it must be
implemented carefully.

But we can also find other papers that are in some way related to the empirical study and main-
tainability, an aspect that we have investigated in this study on software quality. One example is
the study by Roehm et al., “Evaluating Maintainability Prejudices with a Large-Scale Study of
Open-Source Projects”, [RVWJ19].
In this study, a large set of open source projects (6,987 GitHub repositories, 402 million lines,
5 programming languages) were used to test 10 hypotheses about maintainability. The data was
collected via GitHub API and analyzed using an open source tool ConQAT.
The results were that programming language has only a modest impact on maintainability and that
there is no significant relationship between maintainability and development activity, repository
popularity, code base size and team size.

Another example of an empirical study based on software quality is that of Kochhar et al., “A Large
Scale Study of Multiple Programming Languages and Code Quality” [KWL16]. In this study, a
large empirical investigation was conducted to find out whether the use of multiple programming
languages to implement some functionalities has an impact on software quality.
For this purpose, a large dataset was collected. This dataset consisted of popular projects from
GitHub (628 projects, 85 million SLOC, 134 thousand authors, 3 million commits, in 17 languages).
Multiple regression models were built to investigate the e�ect of using di�erent languages on the
number of bug-fixing commits, considering factors such as project age, project size, team size, and
the number of commits.
The results showed that, in general, using multiple languages to implement a project has a significant
impact on the quality of the project. This is due to an increase in error-proneness. Furthermore, it
was found that certain languages are more error-prone when used with other languages, such as
C++, Objective-C, Java, TypeScript, Clojure and Scala.

The studies cited above are used by us to get a more detailed overview of how to measure the code
quality of open source code and to see how we can analyze the data collected.
Of particular importance to us was the way they selected and analyzed the open source projects
and how the data cleaning process was done to get a valid sample of the projects to be analyzed.
None of the aforementioned studies, however, have directly analyzed the impact that a functional
programming language could have on software quality.

20



4 Methodology

In this chapter, we describe the languages and GitHub projects we collected and the analysis methods
we used to gather the data necessary to answer our research questions. To have a better overview of
the whole data collection process, we can take a look at figure 4.1.
The first step is the data collection. Here is important to identify good sources from where we can
extract our data. This can be seen in the next section, “Study Objects and Sampling”. Here we will
explain what source we used, how we proceeded, and what rules we applied to get good data.
The next phase is data cleaning. In this phase, we remove all data that does not fit our rules. Through
this process, we obtain valid data that we can later use for analysis. This can also be seen in the next
section, “Study Objects and Sampling”.
After data cleaning comes data analysis. Here, after we have a valid collection of data, we can start
analyzing it. We can see this in the section, “Data Collection”, “Identifying Project Domains”, and
“Categorizing Bugs”.
The final stage of interpretation occurs later in chapter five, where we compare the data to answer
the RQs formulated in chapter one.

Figure 4.1: Data collection process.

4.1 Study Objects and Sampling

Study Object To understand whether functional programming languages have an impact on software
quality, we analyzed four functional programming languages, which can be seen in the table 4.1,
and for comparison, four imperative programming languages. This can be seen in table 4.2. For the
functional languages, we chose Clojure, Haskell, Erlang, and F#, and for the imperative languages,
we chose JavaScript, Python, Go, and Ruby.
For each of the selected languages, we used GitHub to find the projects we needed for our study.
GitHub is a code-hosting platform where it is possible to find open-source projects used as
data-mining sources by various empirical studies.
The choice of languages that we saw in the table 4.1 and 4.2 was mainly based on the supported
languages that the static analysis tool, SonarQube 1, supported. This tool uses static code analysis
to capture quality technical features of software and displays them in a web interface. In addition to
the most famous language like Python, Java , and C , many other languages can also be analyzed

1SonarQube, https://www.sonarqube.org

21

https://www.sonarqube.org


4 Methodology

Project Details Total Commits

Functional Language Projects Authors KLOC Commits

Clojure 50 3.580 21.925 63.101
Erlang 50 2.544 32.806 48.554
F# 50 3.335 46.611 82.260
Haskell 50 4.517 58.808 142.728

Summary 200 13.976 160.152 336.643

Table 4.1: Study object: Functional language.

Project Details Total Commits

Imperative Language Projects Authors KLOC Commits

Go 50 22.656 318.502 344.906
JavaScript 50 13.428 158.825 198.818
Python 50 32.584 216.191 306.672
Ruby 50 23.921 81.279 245.913

Summary 200 92.589 774.799 1.096.309

Table 4.2: Study object: Imperative language.

using internal or external plugins. For this work, we used four external plugins to analyze projects
written in Clojure , F# , Haskell and Erlang .
At the beginning of our analysis, we selected the first 50 top projects written mainly in the analyzed
languages, sorted by stars. In total, we analyze 400 projects from eight di�erent languages, 106,565
Authors, over one million KLOC and over one million commits that can be seen in table 4.1 and 4.2.

Sampling To automatically retrieve the corresponding projects for the selected languages from
GitHub, we used the GitHub REST API 2. Using the request3 library in Python, we were then
able to use the GitHub API to automatically retrieve the data we needed. Due to the limit on the
number of requests an unidentified user can make per hour, a user token was required. The data
thus obtained were still in a raw state, and a further process was necessary to obtain valid data.

We conducted a process of data cleaning to obtain a valid sample of projects to analyze. This
process consisted of three phases, during which we excluded the projects that did not meet our
criteria. The criteria on which we excluded the projects was based on the study performed by
Kalliamvakou et al. [al16]. This criteria were based on the numbers of stars that a project must
have to be considered, here minimum 50, and the numbers of commits to be considered a project,
more than 6. This process of data cleaning can be summarized in three phases:

2GitHub REST API, https://docs.github.com/en/rest
3request, https://requests.readthedocs.io/en/master/

22

https://docs.github.com/en/rest
https://requests.readthedocs.io/en/master/


4.2 Data Collection

• First: identify the first top 100 projects for each language based on the number of stars. This
is done using the GitHub-API and the python library “Requests” 4. Then we need to ensure
that the main language, GitHub assigns to each project, is more than 75%.

• Second: manually review each project to determine if it is a collection or other type of
documentation that cannot be classified as a project.

• Third: clean the data by removing the projects that were only for collection or documentation
and did not meet the minimum number of commits. If the data thus obtained is less than 50
projects, take the next sample for 10 projects and repeat the steps.

After this process of data cleaning, we can extract the first details about these projects. These
details consisted of the number of authors each project had, the number of KLOC and the number
of total commits. This information can be seen in table 4.1 for functional projects and in table 4.2
for imperative one.

4.2 Data Collection

Mainly we collected two types of data coming from the same sources, the projects. The first came
from using SonarQube to analyze the projects, the second from analyzing the commit history of the
projects in each repository.

In order to use SonarQube, some preparations were necessary. First, we had to manually set up
the correct dependencies to Clojure 5 projects and Haskell6. Without these preparations it was not
possible to use these plugins for these languages. For Clojure, it was a case of adding the right
dependencies from the plugin or making sure that each Clojure project used the right dependencies.
Then, we had to manually test whether the dependencies added in this way worked for each project
without causing errors. For Haskell, it was necessary to use hlint 7 to generate a report. This report
was then used by SonarQube to analyze the project. For the rest of the languages, this adding and
checking was not necessary. Due to the limitation of the SonarQube API, it was then not possible to
automate the whole process. This meant that manual creation of the projects to be analyzed was
required on the SonarQube side, including execution of the command line needed to analyze the
projects.

After each project was analyzed by SonarQube, we proceeded to manually annotate the results we
needed for our study. This included the number of code smells, their proportions, and the number of
LOC. SonarQube did not provide an easy way to retrieve only the code for a particular language in a
project. To retrieve only the code regarded to the language of our interest, we used an external tool
to count the lines of code, CLOC 8. In this way, we could associate the code smells of a particular
language with its lines of code.
This manual annotation was done because we were using the basic version of SonarQube, which

4Requests python library https://docs.python-requests.org/en/master/

5SonarQube Clojureplugin, https://github.com/fsantiag/sonar-c�ojure
6SonarQube Haskellplugin, https://github.com/uartois/sonar-haske��
7hlint Haskell,https://github.com/ndmitche��/h�int
8CLOC, tool to count lines of code. https://github.com/A�Dania�/c�oc

23

https://docs.python-requests.org/en/master/
https://github.com/fsantiag/sonar-clojure
https://github.com/uartois/sonar-haskell
https://github.com/ndmitchell/hlint
https://github.com/AlDanial/cloc


4 Methodology

did not allow us to easily export the data thus obtained. In the table 5.3 we can observe the Code
Smells, the Maintainability Rating value, and the Maintainability Rating Scale of each functional
languages and in the 5.4 for imperative languages. The Maintainability Rating Value is given to the
project related to the value of the Technical Debt Ratio. The default Maintainability Rating grid is:
A=0-0,05, B=0,06-0,1, C=0,11-0,20, D=0,21-0,5, E=0,51-1. To create these tables, for each scale
we took the mean of the range, for example, if a project was classified as A, we gave it the value
0.25 ( (0 + 0,05) / 2).

Due to the limitation of using external plugins to analyze functional projects, when we encountered
a problem with a project, such as dependencies not working or a “NullPointExpection”, we se-
lected the next available project on our list to have the same number of valid projects for all languages.

The second type of data consisted of bug fix commits. We know that when developers fix bugs, they
tend to leave important information about the fix or the bug, such as why the bug occurred or how
the bug was fixed. To distinguish bug/fix commits from normal commits, we relied on keywords
that developers tend to use when fixing or commenting on certain bugs. One of these keywords was
the combination of the word “fix” with the word “issue”, but other keywords than this one were
used to ensure that mainly only bugs/fixes were collected.

After we completed the collection of bug/fix commits, to ensure the validity of the data thus obtained,
a random sample of 800, 100 from each language, bug fix commits was taken and manually verified.
From all the data so analyzed only five, 0.006%, commits were not bug/fix commits, two of them
belonged to Python, one to Ruby, one to Clojure, and the last one to Go.

4.3 Identifying Project Domains

Normally, it is possible to assign to each project its corresponding domain. For example a project
that consist on an application that users can use, fall under the domain “Application”. A project that
contains data and programming code that is used to develop software programs or application fall
under the domain “Library”. A full overview of the domains that we used in this thesis can be seen
in the table 4.3. We grouped together domains that appeared individually in either functional or
imperative programming into the category “Other”.

The subdivision into domains allowed us to analyse projects in more detail and obtain more
information. This allowed us to observe, for example, what influence a certain language has on a
specific domain rather than on the whole sample. In order to realize this subdivision, we needed to
classify the studied projects into di�erent domains. This was done based on their characteristics
and functionality using a mix of automated and manual techniques.

Normally, every project on GitHub have always a “Readme” file that describe its features. This
means that we can use this information to classify each project into its own domain manually or
through an automated technique.
We first applied Latent Dirichlet Allocation(LDA), a well-known topic analysis algorithm, to the
text describing the features of the project. Topic modeling refers to the task of identifying the topics

24



4.3 Identifying Project Domains

Domain Domain Characteristics Total Projects

Application (APP) A program that can be used
from an user.

93

Database (DB) An implementation of a
database using sql or nosql.

17

Code Analyzer (CA) A program for testing, analyz-
ing and reporting information
about the source code.

33

Library (LIB) A project that contains data
and programming code that
is used to develop software
programs or application.

132

Framework (FW) A platform to develop soft-
ware applications.

57

Programming Language (PL) A project that implement a
programming lanugage.

13

Others (OTH) - 55

Table 4.3: Domains of imperative language projects.

that best describe a set of documents.These topics emerge only during the topic modeling process
(hence called latent). Each topic represents a set of words. And the goal of LDA is to map all
documents to topics in such a way that the words in each document are mostly captured by those
imaginary topics [BNJ03].
Given a set of documents, LDA identifies a set of topics where each topic is represented as a
probability of generating di�erent words. For each document, LDA also estimates the probability
of assigning that document to each topic. Based on this information, we were able to assign
a domain to each project with a semi-manual classification. Domains like framework or pro-
gramming language needed more attention and a manual investigation on the project repository.
Frameworks are sometimes easily confused with Library or Application due to the poor docu-
mentation of these projects. Just like programming languages that sometimes presented words
like application or library in their description that can confuse the assignment of a domain. The
implementation of the algorithm was made possible through the use of the python library “Gensim” 9.

The results and classification of this mix of automated and manual techniques to classify projects
into domains can be seen in the table 5.10 and 5.11.

9Gensim library https://radimrehurek.com/gensim/mode�s/�damu�ticore.htm�

25

https://radimrehurek.com/gensim/models/ldamulticore.html


4 Methodology

4.4 Categorizing Bugs

Project commit logs contain not only information on modifications and production incidents that
occurred during their development, but also other information such as the type of incidents that
occurred. These types of incidents gave us a better understanding of what kind of problems a
certain project has had, such as problems caused by the incorrect implementation of an algorithm
or a problem due to insecurity. With this kind of categorisation we can better understand which
programming languages are more prone to certain errors.
In our study, we analyzed the commit history of each project to find out what kind of bugs or errors
each bug-commit had. In order to make this categorisation, we based ourselves on the studies of Tan
et al. [LTW+06] and Ray et al. [al17]. From their studies, we borrowed the categories that we used
to categorize our bug-commits. Of the 20 categories presented in Tan’s study, we decided to use
only eight that were also presented in Ray’s study. To make sure that the categories we discarded
were not present or not easily recognisable, we searched the commits with keywords tied to these
types of categories. For example, we searched for corruption or data corruption for the category
“data corruption”, but nothing was found for this category.
We noticed that some bugs contained keywords linked to the discarded categories but fell more
into the programming category, such as “Fix 443 port” or “Fix crash due to wrong input in
display-method”. So we finally decided to classify the bug commits according to these eight
categories, which we can find in the table 4.4. In this table we can see the description of each
category and the keywords linked to the bug/fix commits.
In order to assign a separate category to each of the almost 100 thousand bug/fix commits found, a
manual classification was not possible. For this reason, we developed a natural language processing
algorithm (NLP). Natural language processing is a field of artificial intelligence in which computers
analyze, understand, and derive meaning from human language in a smart and useful way [LHH19].

For the implementation of the supervised learning algorithm we decided to use a linear model and a
python library 10. Linear models make predictions using linear functions of input features and are
also used for classification. A main advantage of these models is that they are very fast to train and
can make predictions quickly [Gui16].
To optimize this model we then used the SGD ( stochastic gradient descent) method 11. SGD
Classifier fit well for large data sets

We first randomly selected 400 bug/fix commits and then manually classified each bug into one of
the categories presented in the studies cited above to use as training data for supervised learning.
Then randomly selected another 400 bug/fix commits to use these as supervised data. By testing
the prediction, we got an accuracy of 89%. This result was quite satisfactory, so we decided to
merge the training data with the supervised data into a single training data to be used against the
remaining bug/fix commits that needed to be analysed. The categorization of these commits can be
seen in the table 5.6 and 5.7

10Lienar model https://scikit-�earn.org/stab�e/modu�es/c�asses.htm�#modu�e-sk�earn.�inear_mode�
11SGDClassifier https://scikit-�earn.org/stab�e/modu�es/generated/sk�earn.�inear_mode�.SGDC�assifier.htm�

26

https://scikit-learn.org/stable/modules/classes.html%23%23module-sklearn.linear_model
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html


4.5 Metrics

Bug Type Bug Description Search keywords

Algorithm (Alg) Bugs caused by algorithmic
or logical errors.

algorithm, implementation, implementing, logi-
cal errors, logical.

Programming (Prog) Bugs caused by generic pro-
gramming errors.

missing, missing switch case, missing case, faulty
initialization, bad initialization, default value,
standard value, exception handling, exception,
copy-paste, copy-paste error, refactoring, type
error, error handling.

Concurrency (Conc) Bugs caused by multi-
threading or multi-processing
(data race, deadlock, and syn-
chronization).

deadlock, race condition, data race, race, synchro-
nization error,

Memory (Mem) Bugs caused by improper
memory handling.

null pointer, memory leak, bu�er, bu�er error,
bu�er overflow, heap overflow, dangling pointer,
double free, segmentation fault, OutOfMemo-
ryException, StackOverflowException, Memory-
FailPoint, AccessViolationException, Memory-
Error.

Security (Sec) Errors that may a�ect the au-
thentication of users, the au-
thorisation of access rights
and privileges, the confiden-
tiality of data or the integrity
of data.

security bu�er overflow, bu�er overflow, security,
security error, security bug, password, privilege,
authorisation, compromise integrity of data, com-
promise confidentiality of data, oauth, auth, ssl,
ssl error, ssl fix.

Performance (Perf) Bugs that can lead to signif-
icant performance problems,
delayed responses or to a poor
user experience because the
system is slow.

optimization problem, delay response, perfor-
mance, performance problem, performance fix,
performance bug

Failure (Fail) Bugs that can cause the appli-
cation to crash or hang.

reboot, restart, crash, crash problem, hang, hang
problem, booting, booting problem, system crash,
application crash.

Unknown (Unkn) The impact cannot be identi-
fied from the bug report.

Table 4.4: Categories of bugs and the keywords that characterise them.

4.5 Metrics

We selected static metrics which we expect to have an e�ect on the impact of functional programming
on software quality: number of bugs per commit and code smells per LOC. We chose these metrics
because they are easy to understand and improve. They are language-independent and they have
been found to be suitable for making solid statements about software reliability and maintainability

27



4 Methodology

and they are used in practice.
Code smells can provide hints to various maintainability factors that can be improved through
refactoring [YM12]. Bug counts a metric have been used for a variety of purpose like for error-
pattern discovery or the for the evaluation of products status [KMB04]. Another use was the
estimation of reliability of a product [BL92].

4.6 Hypotheses

To make the impact of functional programming on software quality analyzable in an empirical study,
we formulated two hypotheses about reliability and maintainability. These hypotheses can be seen
in table 4.5. Our hypotheses can be divided in two categories: assumptions about the impact of the
functional programming language on reliability (cf. RQ1.a) and assumptions about the impact of
the functional programming language on maintainability (cf. RQ1.b). The hypotheses consider the
languages Clojure, F#, Erlang, and Haskell as functional programming languages and the languages
Python, JavaScript, Go, and Ruby as imperative programming languages.

Alternative hypothesis Null hypothesis

Reliability �11: Projects using a functional pro-
gramming language have fewer bugs
than projects using an imperative
one. <40=(�D=2C8>=0;⌫D6B) <
<40=(�<?4A0C8E4⌫D6B)

�01: Projects using a functional
programming language have more
or a similar number of bugs
than projects using an imperative
one. <40=(�D=2C8>=0;⌫D6B) >=
<40=(�<?4A0C8E4⌫D6B)

Maintainability �12: Projects using a func-
tional programming language
have fewer code smells than
projects using an imperative one.
<40=(�D=2C8>=0;⇠>34(<4;;B) <
<40=(�<?4A0C8E4⇠>34(<4;;B)

�02: Projects using a functional pro-
gramming language have more or a
similar number of code smells than
projects using an imperative one.
<40=(�D=2C8>=0;⇠>34(<4;;B) >=
<40=(�<?4A0C8E4⇠>34(<4;;B)

Table 4.5: Overview of Hypotheses (each in the form of an alternative hypothesis �18 and
its null hypotheses �08, where i represents the RQ; i=1 for Reliability and i=2
for Maintainability). FunctionalBugs are all the bugs found in projects using
a functional language. ImperativeBugs are all the bugs found in projects using
an imperative language. FunctionalCodeSmells are all the code smells found in
projects using a functional language. ImperativeCodeSmells are all the code smells
found in projects using an imperative language.

The motivation behind �11 was that with the functional programming language many problems can
be solved with less code and some bugs can be avoided. This is because pure functions and the
immutability of data are an important aspect of functional programming. With these features, it is
possible to write cleaner and, compared to some imperative implementations, shorter code. Together

28



4.7 Statistical Methods

with the avoidance of side e�ects and strict typing rules, this could lead to better reliability. For
example, Haskell does not allow functions with side e�ects 12. The only variables that the function
can change are local to the function. This ability is a huge asset for a functional programming
language.

The reason for �12 was the relationship that programmers who use functional languages have to
the code. They tend to follow the core of functional thinking 13. Functions need to make sense,
but in an imperative implementation it is easier to hide bad design in objects and not realise what
happened. The thought process of functional programming is slower, but this produces higher
quality designs that the program needs to thrive and be more useful in the long run. This could
led to less code smells and to a better maintainability of a project. This is also encouraged by the
modularity that functional programming has to o�er. Another reason behind �12 is modularity of
functional languages. This property plays a big role for maintainability of a program. Maintanble
code is easier to understand, to test, and to refactor.

4.7 Statistical Methods

To answer the first two sub-questions (RQ1.a and RQ1.b), we must first find a suitable test. To select
one, we must first check whether the samples are normally distributed.
The normal distribution is a probability function that describes how the values of a variable are
distributed. It is a symmetrical distribution. This means that most observations cluster around the
central peak. Because it is a symmetric function, the probabilities for values farther from the mean
taper equally in both directions [Tho19].
Normal distribution of sample determine which kind of tests are more appropriate. If our sample
is normal distributed we can select a parametric test, like an independent t-test or an ANOVA,
otherwise a non-parametric one, like the Wilcoxon or the Mann-Whitney U-test.

In order to check if the samples were normally distributed we used the Shapiro-Wilk test [Tho19].
Instead of implementing it manually we relied on a python library, “SciPy” 14. In this way we are sure
that the output is a valid result. The test needs as input an array of sample data and as output we get
the test statistic and the p-value. If the p-value is less than 0.05 we can reject the null hypothesis and
thus conclude that the sample is not normally distributed. For both samples, the p-value was quite
smaller than 0.05, so we had to reject the null hypothesis that the sample data are normally distributed.

After performing the Shapiro-Wilk test on the sample we wanted to analyze, it turned out that all
samples were not normally distributed. For this reason, we decided to use a non-parametric test,
the Mann-Whitney U-test. This test is used for the comparison of two independent, non-normally
distributed samples with a number of observations > 20. More details on this specific test are to
be found in the book of Corder and Foreman, “Nonparametric Statistics for Non-Statisticians: A

12Functional Programming Using Haskell, https://www.mta.ca/~rrosebru/o�dcourse/371199/haske��/paper.htm#re�ia
13Core Functional Programming Concepts, https://thecodeboss.dev/2016/12/core-functiona�-programming-

concepts/

14Shapiro-Wilk test in python https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.htm�

29

https://www.mta.ca/~rrosebru/oldcourse/371199/haskell/paper.htm%23%23relia
https://thecodeboss.dev/2016/12/core-functional-programming-concepts/
https://thecodeboss.dev/2016/12/core-functional-programming-concepts/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html


4 Methodology

Step-by-Step Approach” [CF09]. As with the Shapiro-Wilk test, we again used the Python library
“SciPy” to perform the Mann-Whitney U-test 15. The test needs as input an array of samples and as
output we get the test statistic and the p-value. If the p-value is less than or equal to 0.025 we can
reject the null hypothesis and thus conclude that there is a significant di�erence between the two
samples.
The critical value of 0.025 was calculated using the Bonferroni correction. This test is used to
correct the critical value based on the number of hypotheses. “The Bonferroni correction controls
the number of false positives arising in each family by using a probability threshold for each
observation within the family.” [Hay13].
For RQ2, we performed descriptive statistics to get an overview of the data and see if there is a
relationship between the choice of programming paradigm, programming language, or project
domain and the frequency of error categories of the analyzed projects.

15Mann-Whytney U-test python https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.

htm�

30

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html


5 Results

In this chapter, we show the results we obtained from the analysis of the projects as described in
chapter four. The structure follows the RQs we formulated in chapter one. The information is
summarized in tables.

5.1 Software Quality Impact (RQ1)

Here, we present the results and the hypothesis that we used to answer the sub-question RQ1.1 and
RQ1.2.

�11: Projects using a functional programming language have fewer bugs than projects
using an imperative one.

In table 5.1, we can get an overview of the bugfix commits found. For a clearer comparison, the
percentages are displayed next to the numbers.
As we can see, there are not big di�erences within functional languages. The range of bug fixes is
between 5% and 7%. In the functional languages as a whole, we can see that only 6% of the total
commits are bug fixes.
On the other hand, we can see in table 5.2 that the range of bug fixes for imperative languages is
between 4% and 9%. For the imperative languages, 7% of the total commits are bug fixes, 1% more
than for functional languages.

Two samples were used to perform the Mann-Whitney U-test. The first contained the bug/fix per
total commits of each functional project. The second contained the bug/fix per total commits of
each imperative projects.
Using this two samples as input for the test, the results for the Mann-Whitney U-test indicated
a significant di�erence between the two samples, we can see the results in table 5.5. Our e�ect
size for the sample di�erence is 0.25. This value indicates a small-medium level of association
between projects using a functional programming language having fewer bugs than projects using
an imperative one. The median of the functional sample (median(Functional) = 0.044 bug/fix per
total commits) is smaller than the median of the imperative one (median(Imperative) = 0.061 bug/fix
per total commits). Moreover, the e�ect size for the sample di�erence was 0.25. This means that
the null hypothesis is rejected.

Therefore, we can conclude that projects using a functional programming language have fewer
bugs than projects using an imperative one.

31



5 Results

Functional Languages Total Commits BugFix Commits

Clojure 63.101 3.316 (⇠ 5%)
Erlang 48.554 3.229 (⇠ 7%)
F# 82.260 4.891 (⇠ 6%)
Haskell 142.728 7.681 (⇠ 5%)
Summary 336.643 19.117(⇠ 6%)

Table 5.1: Overview of metric results for functional languages.

Imperative Languages Total Commits BugFix Commits

Go 344.906 30.140(⇠ 9%)
JavaScript 198.818 8.859 (⇠ 4%)
Python 306.672 27.368 (⇠ 9%)
Ruby 245.913 14.029 (⇠ 6%)
Summary 1.096.309 80.396(⇠ 7%)

Table 5.2: Overview of metric results for imperative languages.

�12: Projects using a functional programming language have fewer code smells than
an imperative one.

In table 5.3, we can get an overview of the code smells found. We also included the maintainability
rating value/scale to provide a better overview (this information is not used to evaluate the hypothe-
sis).
To better compare the data in the tables, we annotate the respective % near each number of code
smells. As we can see, there are some big di�erences within functional languages. If between
Clojure, F#, and Haskell there is a small di�erence, between Erlang and the other languages there is
a huge di�erence, almost 0.34 code smells per LOC more.
In the functional languages as a whole, we can see that we have 0.08 code smells per LOC.
On the other hand, we can see in table 5.4, that the range of code smells for imperative languages is
between 0.02 and 0.2 code smells per LOC, very low compared to the functional one. All together
for the imperative languages, we have only 0.6 code smells per LOC, almost 6 code smells per loc
less than for functional languages.

Two samples were used to perform the Mann-Whitney U-test. The first contained the code smells
per total main lines of code of each functional project. The second contained the code smells per
total main lines of code of the individual imperative projects.
Using these two samples as input for the test, the results for the Mann-Whitney U-test indicated no
significant di�erence between the two samples, we can see the results in table 5.5. The median
of the functional sample (median(Functional) = 0.0159 code smells per LOC) is bigger than the
median of the imperative one (median(Imperative) = 0.0133 code smells per LOC). This means that
the null hypothesis is not rejected.

32



5.2 Analysis of Characteristics that influence Frequency of Bug Categories (RQ2)

Functional Languages Lines of Code Code Smells Maintainability Rating Value

Clojure 321,303 2,363(⇠ 0.7%) 0.029(⇠ �)
Erlang 562,329 199,025 (⇠ 35%) 0.029(⇠ �)
F# 1,063,827 23,111 (⇠ 2%) 0.029(⇠ �)
Haskell 1,099,179 7,301 (⇠ 0.6%) 0.053 (⇠ ⌫)
Summary 3,046,638 231,800(⇠ 7%) 0.14(⇠ ⇠)

Table 5.3: Code smells of functional languages using SonarQube.

Imperative Languages Lines of Code Code Smells Maintainability Rating Value

Go 19,205,881 119,777 (⇠ 0.6%) 0.029 (⇠ �)
JavaScript 11,989,449 25,257 (⇠ 0.2%) 0.025(⇠ �)
Python 3,991,981 57,981 (⇠ 1%) 0.029 (⇠ �)
Ruby 1,664,597 18,402 (⇠ 1%) 0.029(⇠ �)
Summary 36,851,908 221,417(⇠ 0.6%) 0.112(⇠ ⇠)

Table 5.4: Code smells of imperative languages using SonarQube.

Therefore, we can not conclude that projects using a functional programming language have
fewer code smells than an imperative one.

median(Functional) median(Imperative) U-value p-value E�ect
Size

U -value

Reliability 0.044 0.061 14,114 1.7e-7 0.25 0.025
Maintainability 0.0159 0.0133 23,530 0.99 - 0.025

Table 5.5: Results of measures overview.

5.2 Analysis of Characteristics that influence Frequency of Bug
Categories (RQ2)

This section presents a descriptive statistics to see which characteristics influence the frequency of
the error categories of the analyzed projects. These characteristics are programming paradigms,
programming language, and domains. The data is summarized in tables and bar charts.

1: Influence of the programming paradigm on the frequency of bug categories.

33



5 Results

In table 5.6, we have an overview of all functional languages and their bug categories. To better
compare these results, we have used percentages as the unit of measure. In table 5.8, we have
the percentage of bug categories of the functional programming languages. In table 5.7, we have
an overview of all imperative languages and their bug categories and in table 5.9, we have the
percentage of error categories of the imperative ones.

Here, we look at the programming paradigms. As we can see, there is not much di�erence in
the concurrency categories and failure categories between the two paradigms. What is di�erent,
however, is the frequency of algorithm and security errors, although the di�erence is not very large,
only 0.3%. The frequency of programming errors is higher in the functional paradigm compared to
the imperative paradigm, 93.3% versus 92.4%.

In general, there are not so many relevant di�erences that would allow us to draw a conclusion.
What stands out is the programming category, where we can see almost 1% di�erence between the
two paradigms. This suggests that the functional paradigm has a greater impact on the frequency of
programming bugs than the imperative one.

2: Influence of the programming language on the frequency of bug categories.

The choice of programming language is another interesting feature to see how the frequency of
error categories might be a�ected. This can be seen in table 5.6 and 5.8 for functional programming
languages and in table 5.7 and 5.9 for imperative programming languages.
In the algorithm category, there is a small di�erence between the functional and imperative
languages, almost 0.3% more for the imperative. In the concurrency category, there is no significant
di�erence between the programming languages. It is interesting to note that in the memory category,
almost all languages have a range between 0.6% and 1.2%, with the exception of the imperative
language Go with 1.7%. This could mean that the choice of using the language Go can influence
the frequency of memory bug in projects.
Continuing with the programming category, we can see that all imperative languages are in the
range between 92% and 92.8%, while functional languages are in the range between 93% and
94.4%, with the exception of Erlang with 90.4%. This could lead to the conclusion that functional
programming languages, with the exception of Erlang, have a greater impact on the frequency of
programming errors than imperative languages.
For the security category there is no significant di�erence between functional and imperative
languages. The same applies for the performance category.
For the fail category, we can see that Erlang has 4% failure errors, almost 2% more than the
imperative languages. This suggests that Erlang has a greater impact on the frequency of fail-
ure errors than imperative languages. Lastly, for the unknown category we have the same value, 1,6%.

In conclusion, we found that some languages have a greater impact on frequency of specific bugs
than others. For the programming category, we saw that Clojure, F#, and Haskell have a greater
influence on the frequency of this type of bug than the imperative languages. Meanwhile, Erlang
has a greater impact on the frequency of failure bugs than the imperative languages.

34



5.2 Analysis of Characteristics that influence Frequency of Bug Categories (RQ2)

Functional Languages Alg Conc Mem Prog Sec Perf Fail Unkn Count

Clojure 28 2 30 3077 29 29 55 66 3316
Erlang 28 1 26 2920 42 16 131 65 3229
F# 30 1 58 4619 15 25 87 56 4891
Haskell 46 1 93 7238 29 30 127 117 7681

Summary 132 5 207 17.854 115 100 400 304 19.117

Table 5.6: Categories of bugs for functional languages.

Imperative Languages Alg Conc Mem Prog Sec Perf Fail Unkn Count

Go 296 18 519 27.746 223 249 664 425 30.140
JavaScript 92 1 97 8.223 72 53 184 137 8.859
Python 253 4 241 25.444 253 188 480 505 27368
Ruby 128 3 87 12.935 151 112 317 296 14.029

Summary 769 26 938 74.348 699 602 1.645 1.363 80.396

Table 5.7: Categories of bugs for imperative languages.

3: Influence of the project domain on the frequency of bug categories.

Here, we analyzed the obtained domains to see which type of domain influence the frequency of the
bug categories of the analyzed projects. For this purpose, we created bar charts and converted the
value in percent to make the comparison easier.
In table 5.10, it is possible to see the distribution of domains of the 200 analyzed functional projects.
A large part is made up by the “Library” domain with 67 projects, followed by the “Application”
domain with 37 projects. At the end we have four domains with almost the same number of projects,
“Framework” with 22, “Other” with 23, “Database” with 11 and “Programming Language” with 12.
On the other hand, in table 5.11, we have the distribution of domains of the 200 imperative projects
analyzed. Again, a large part is made up by the “Library” domain with 65 projects, followed
by the “Application” domain with 56 projects. Finally, we have two domains with almost the
same number of projects, “Framework” with 35 and “Other” with 32. The remaining domains
(Database, Code Analyzer and Programming Language) all have small numbers, between one and six.

After this first introduction, we can now proceed to analyze in detail the relationship between the
di�erent domains and categories of errors.
Starting with the “Application” domain, we can see in figure 5.1, that the most largest di�erence
is in the amount of programming bugs between functional and imperative projects. Imperative
projects have almost twice as many programming bugs as the functional projects. However, we
must take into account the number of projects that fall under the “Application” domain: 37 for the
functional and 56 for the imperative projects. Nevertheless, we cannot assume that with the same
number of projects, the functional ones will have more % of programming bugs. In conclusion,

35



5 Results

Functional Languages Alg Conc Mem Prog Sec Perf Fail Unkn

Clojure 0,8% 0,006% 0,9% 93% 0,9% 0,9% 1,6% 1,9%
Erlang 0,8% 0,003% 0,8% 90,4% 1,3% 0,5% 4% 2%
F# 0,6% 0,003% 1,1% 94,4% 0,4% 0,5% 1,8% 1,1%
Haskell 0,6% 0,001% 1,2% 94,2% 0,4% 0,4% 1,6% 1,5%

Summary 0,6% 0,002% 1% 93,3% 0,6% 0,5% 2% 1,6%

Table 5.8: Percentage of categories of bugs for functional languages.

Imperative Languages Alg Conc Mem Prog Sec Perf Fail Unkn

Go 1% 0,005% 1,7% 92% 0,7% 0,8% 2,2% 1,4%
JavaScript 1% 0,001% 1,1% 92,8 % 0,8% 0,5% 2,1% 1,5%
Python 0,9% 0,001% 0,8% 92,8 % 0,9% 0,6% 1,7% 1,8%
Ruby 0,9% 0,002% 0,6% 92% 1% 0,7% 2,2% 2,1%

Summary 0,9% 0,003% 1,1% 92,4% 0,9% 0,7% 2% 1,6%

Table 5.9: Percentage of categories of bugs for imperative languages.

we can say that the choice of the “Application” domain for the imperative paradigm has a greater
impact on the frequency of programming bugs.

The second domain is the “Database” domain, which we can see in figure 5.2. Again, we can see
that the most largest di�erence is in the amount of programming bugs between functional and
imperative projects. Imperative projects have 8% more programming bugs than functional projects,
although there are more functional than imperative projects (11 versus 6). We can say that the
choice of “Database” domain for imperative paradigm has a greater impact on the frequency of
programming bugs.

Proceeding with the “Code Analyzer” domain, which we can see in figure 5.3, we can note that a
big part of functional programming bug is concentrated in this domain, 23.6%. Surprisingly the
imperative projects contains almost no bugs of this type here. However, we must take into account
the number of projects that fall under the code analyzer domain: 28 for the functional and 5 for
the imperative projects, almost six times more functional projects than imperative ones. Still, we
cannot assume that with the same number of projects, the imperative ones will have more % of
bugs, in particular programming bugs.
To conclude, we can say that the choice of the “Code Analyzer” domain for the functional paradigm
has a greater impact on the frequency of programming bugs.

In the “Library” domain, figure 5.4, we have a better overview than the other domains, since the
number of projects is almost the same. As with the other domains, the bugs here are concentrated
around the programming category, with a di�erence of 3% between functional and imperative

36



5.2 Analysis of Characteristics that influence Frequency of Bug Categories (RQ2)

projects. From this di�erence, we can deduce that the choice of “Library” domain for imperative
paradigm has a greater impact on the frequency of programming bugs.

Although 57 projects are included in the “Framework” domain, as we can see in figure 5.5, only
a small % of the total bugs are found in this domain. We can see that 6% of the total bugs for
functional projects and 5% of the total bugs for imperative projects. With a di�erence of 1%, we
can say that the choice of “Framework” domain for functional paradigm has a greater impact on the
frequency of programming bugs. We cannot draw any conclusions for other categories of bugs
because the di�erence is too small.

Concluding with the “Programming language” domain, figure 5.6, we can see that only one
imperative project was classified as such. The di�erence between the categories is so small that %
is annotated with 0 (smaller than 0.01%). The only largest di�erence is found in programming bugs.
Functional projects have 5.7% more programming bugs than imperative projects. This suggests that
the choice of “Programming Language” domain for the functional paradigm has a greater impact on
the frequency of programming bugs.

Functional Langauges APP DB CA LIB FW PL OTH

Clojure 12 3 5 22 5 1 2
Erlang 8 4 4 17 5 3 9
F# 5 3 8 20 6 1 7
Haskell 12 1 11 8 6 7 5

Summary 37 11 28 67 22 12 23

Table 5.10: Domains of functional language projects.

Imperative Langauges APP DB CA LIB FW PL OTH

Go 16 3 1 10 10 1 9
JavaScript 9 1 1 20 14 0 5
Python 18 1 1 15 5 0 10
Ruby 13 1 2 20 6 0 8

Summary 56 6 l 65 35 1 32

Table 5.11: Domains of imperative language projects.

37



5 Results

Alg Conc Mem Prog Sec Perf Fail Unkn

0

10

20

30

40

50

60

70

80

90

100

0 0 0.1

18

0.1 0.1 0.5 0.50 0 0.2

33

0.3 0.4 0.6 0.5

#A
pp

lic
at

io
n

D
om

ai
n

in
%

Functional projects: 37 Imperative projects: 56

Figure 5.1: Application domain with bug categories in %

38



5.2 Analysis of Characteristics that influence Frequency of Bug Categories (RQ2)

Alg Conc Mem Prog Sec Perf Fail Unkn

0

10

20

30

40

50

60

70

80

90

100

0 0 0
4.8

0 0 0 00.1 0 0.3

12.1

0.1 0 0.3 0.1

#D
at

ab
as

e
D

om
ai

n
in

%

Functional projects: 11 Imperative projects: 6

Figure 5.2: Database domain with bug categories in %

39



5 Results

Alg Conc Mem Prog Sec Perf Fail Unkn

0

10

20

30

40

50

60

70

80

90

100

0.1 0 0.1

23.6

0 0.1 0.2 0.40 0 0 0 0 0 0 0

#C
od

e
A

na
ly

ze
r

D
om

ai
n

Functional projects: 28 Imperative projects: 5

Figure 5.3: Code Analyzer domain with bug categories in %

40



5.2 Analysis of Characteristics that influence Frequency of Bug Categories (RQ2)

Alg Conc Mem Prog Sec Perf Fail Unkn

0

10

20

30

40

50

60

70

80

90

100

0.1 0 0.1

17.5

0.1 0 0.3 0.20.1 0 0.2

20.5

0.1 0 0.2 0.3

#L
ib

ra
ry

D
om

ai
n

Functional projects: 67 Imperative projects: 65

Figure 5.4: Library domain with bug categories in %

41



5 Results

Alg Conc Mem Prog Sec Perf Fail Unkn

0

10

20

30

40

50

60

70

80

90

100

0 0 0

5.9

0 0 0 00 0 0
4.9

0 0 0 0

#F
ra

m
ew

or
k

D
om

ai
n

Functional projects: 22 Imperative projects: 35

Figure 5.5: Framework domain with bug categories in %

42



5.2 Analysis of Characteristics that influence Frequency of Bug Categories (RQ2)

Alg Conc Mem Prog Sec Perf Fail Unkn

0

10

20

30

40

50

60

70

80

90

100

0 0 0
5.7

0 0 0 00 0 0 0 0 0 0 0

#P
ro

gr
am

m
in

g
L

an
gu

ag
e

D
om

ai
n

Functional projects: 12 Imperative projects: 1

Figure 5.6: Programming Language domain with bug categories in %

43





6 Discussion

In this chapter we discuss the results and present threats to validity.

6.1 Results Discussion

We saw that one of our hypotheses could be supported, namely the first one about reliability. This
indicated that functional programming languages have a small-medium positive impact on reliability
compared to imperative programming languages. One explanation for this result could be the less
and more concise code that functional programming languages provide compared to imperative
languages [NF15]. More concise code could lead to less code and less code to review. This brings
us to the idea that with less code, we have fewer things to test and therefore fewer bugs in production.
Unfortunately, there are not so many studies that have analyzed this aspect, so we cannot generalize.

The other assumption about maintainability could not be sustained. This may be due to the rigidity
of the rules that the static analysis tool for functional languages have, which may cause more code
smells. We found that more than half of the projects in Clojure did not have a plugin for the static
analysis tool in their project. This could lead to the assumption that the project was not tested against
code smells. For imperative languages, we found that code smell discovery tools were integrated
into the projects. For example, many JavaScript projects had the ESLint 1 plugin integrated. This
could lead to few code smells in the final project we analyzed. Another explanation could be the
use of the static analysis tool. We have seen that in Erlang almost each line of code contained on
average 0.35 code smells. This could lead to the conclusion that the plugin used to analyze the
projects might have too many false positives.

We also saw that the functional paradigm has a greater impact on the frequency of programming
bugs that the imperative one. This result could be due to the fact that developers find it easier to
detect bugs. This leads to more refactoring and thus more programming bugs discovered and fixed.
Then for programming languages we had that some languages have a greater impact on frequency
of specific bugs than others. Programming languages like Clojure, F#, and Haskell have a greater
influence on the frequency of programming bugs than the imperative languages. As for the
functional paradigm, we can say the same here. Bugs in a functional project could be easier to detect
and through refactoring or general fixing we could have more bugs related to the programming
category.
For Erlang we saw that this language has a greater impact on the frequency of failure bugs than the
imperative languages. This result could be due to the distribution of domains of the projects we

1ESLint plugin. https://es�int.org

45

https://eslint.org


6 Discussion

had for Erlang. We had found that 28 out of 50 projects were associated with domains that have a
higher probability of containing a bug of the failure type. For example, domains such as databases
or applications, where it is possible to find bugs that can crash or hang the application.

Meanwhile for the code analyzer, framework, and programming language we had that functional
languages have a greater impact on the frequency of programming bugs. This could be due to the
complexity of these domains, which could lead to more generic programming errors, and due to
the functional languages properties, such errors could be easier to find and fix than for imperative
languages.

6.2 Threats to Validity

There are a few threats to our reported results. The first is the choice of the static analysis tool
we used to gather information about code smells. Because of the various plugins this tool uses to
analyze projects, it is not possible to determine if one language is better analyzed than another. We
based our results on the number of rules, which each language on SonarQube has. There was no
significant di�erence between the number of rules each language had regarding code smells. Thus,
we concluded that each language was analyzed in the same way.

The second is the procedure we chose to identify bugs from commits. We chose to look for keywords
that might indicate a bug. This could lead to some false positives, commits that contain some
keywords related to bugs or fixes but are not bugs. For this purpose, we tried to compare the bugs
we found with the issue tracker that each repository has on GitHub. Unfortunately, this did not
improve the validity of our data, as not all issues were bugs or marked as such. We found that
some bugs were not present in the issue tracker but were present in the commits, or that issues that
were labeled as bugs were not actually bugs. To give the data some validity, we chose two random
commits from each project and manually inspected them to see how good the accuracy was. Out of
800 commits, only five were false positives.

The third threat to validity is bug categorization. For this task, we implemented a categorization
algorithm using a linear model. We trained this algorithm with manually categorized and selected
data. The accuracy was 89% to categorize a bug in the right category. Due to some bugs that could
be false positives, the categorization could be a�ected.

Another threat to validity is the sampling process. We selected projects from GitHub based on the
stars, the language of a project, and the number of commits each project must have. We did not
pay attention to the domains of these projects. This could result in an unrepresentative number
of projects being used for the sampling process. The biggest di�erence is in the domains of the
applications and the code analyzers. For the functional languages, we had 37 application projects
versus the 56 application projects for imperative languages. For the code analyzer domain, we had
28 projects for functional languages but only five for imperative languages.

46



6.2 Threats to Validity

Among the projects we used as a sample, some were actively developed and sponsored by companies.
This could influence the data obtained in this way. For example “consul” 2, “Capistrano” 3, or
“go-micro” 4 are some of these type of projects that we analyzed.
They may have stricter quality assurance processes than other projects hosted on GitHub, or they
may have adopted a management process like Scrum to better organize the development process.
This could be seen in the way the issues tracker was organized. Projects with sponsor or projects
that belong to companies had a good management of the issue tracker with good labels.

2Consul https://www.consu�.io
3Capistrano https://capistranorb.com

4go-micro https://github.com/asim/go-micro

47

https://www.consul.io
https://capistranorb.com
https://github.com/asim/go-micro




7 Conclusion

We performed an empirical study to analyze whether functional programming improves software
quality. For this study, 400 di�erent projects were analyzed from GitHub. Through this analysis, we
were able to analyze two aspects of software quality, reliability and maintainability. By categorizing
bug commits and project domains, we were able to see what characteristics influence the frequency
of bug categories of the analyzed projects.

The data indicate a small-medium e�ect that using a functional programming language improves
reliability. This suggests that functional programming languages are less prone to bugs than impera-
tive ones. For maintainability, there is not enough evidence to show that functional programming
languages have less code smells than imperative programming. So all in all, it cannot be said
that functional programming improves software quality. It is interesting to see that the functional
paradigm has a greater impact on the frequency of programming bugs than the imperative one.
Going into details, we can see how functional languages like Clojure, F#, and Haskell are more
prone to bugs caused by generic programming errors than other imperative languages. We also
found that Erlang has a greater impact on the frequency of failure-based bugs than imperative
languages.
The results also indicate that for the application, database, and library domains, the imperative
paradigm has a greater impact on the frequency of programming bugs. While for the code analyzer,
framework and programming language the functional paradigm has a greater impact on the frequency
of programming bugs. For the remaining categories, there was no significant di�erence that could
lead to a comparison.

More research is needed on the impact of functional languages on software quality. Other aspects
of software quality could be analyzed to get a better overview. Further studies in companies that
use functional programming languages to develop applications could help gather more detailed
information that would lead to more accurate conclusions. Experiments that could research how
easy it is to learn and understand functional languages compared to imperative languages could also
help draw some conclusions about software quality.

49





Bibliography

[al16] E. K. et al. “An in-depth study of the promises and perils of mining GitHub”.
In: Empirical Software Engineering (2016), pp. 2035–2071. ���: https://�ink.
springer.com/artic�e/10.1007/s10664-015-9393-5 (cit. on p. 22).

[al17] B. R. et. al. “A Large-Scale Study of Programming Languages and Code Quality in
Github”. In: Reseaarch Topics in Functional Programming 60 (2017), pp. 91–100
(cit. on pp. 12, 19, 26).

[BHM+19] E. D. Berger, C. Hollenbeck, P. Maj, O. Vitek, J. Vitek. “On the Impact of Programming
Languages on Code Quality: A Reproduction Study”. In: ACM Trans. Program.
Lang. Syst. 41.4 (Oct. 2019). ����: 0164-0925. ���: 10.1145/3340571. ���: https:
//doi.org/10.1145/3340571 (cit. on pp. 13, 19).

[BL92] S. Brocklehurst, B. Littlewood. “New Ways to Get Accurate Reliability Measures”.
In: Software, IEEE 9 (Aug. 1992), pp. 34–42. ���: 10.1109/52.143100 (cit. on p. 28).

[BMP13] H. ( Barendregt, G. Manzonetto, R. PlasmeÚer. “The Imperative and Functional
Programming Paradigm”. In: (June 2013) (cit. on pp. 15, 16).

[BNJ03] D. M. Blei, A. Y. Ng, M. I. Jordan. “Latent Dirichlet Allocation”. In: J. Mach. Learn.
Res. 3.null (Mar. 2003), pp. 993–1022. ����: 1532-4435 (cit. on p. 25).

[Buo17] E. Buonanno. Functional Programming in C: How to write better C code. German.
1st. Manning Publications, 2017 (cit. on p. 16).

[CF09] G. Corder, D. Foreman. Nonparametric Statistics for Non-Statisticians: A Step-by-Step
Approach. German. 1. Auflage. John Wiley Sons, 2009 (cit. on p. 30).

[CMHB18] J. Carter, A. Miller, S. Halloway, A. Bedra. Programming Clojure (The Pragmatic
Programmers). German. 3rd ed. Pragmatic Bookshelf, 2018 (cit. on p. 16).

[Goe19] S. Goericke. The Future of Software Quality Assurance. New York, Vereinigte Staaten:
Springer Publishing, 2019 (cit. on p. 11).

[Gui16] S. Guido. Introduction to Machine Learning with Python: A Guide for Data Scientists.
German. 1st ed. O’Reilly UK Ltd., 2016 (cit. on p. 26).

[Hay13] W. Haynes. “Bonferroni Correction”. In: Encyclopedia of Systems Biology. Ed. by
W. Dubitzky, O. Wolkenhauer, K.-H. Cho, H. Yokota. New York, NY: Springer New
York, 2013, pp. 154–154. ����: 978-1-4419-9863-7. ���: 10.1007/978-1-4419-9863-
7_1213. ���: https://doi.org/10.1007/978-1-4419-9863-7_1213 (cit. on p. 30).

[HSDL96] R. Harrison, L. Smaraweera, M. Dobie, P. Lewis. “Comparing Programming
Paradigms: an Evaluation of Functional and Object-Oriented Programs”. In: Software
Engineering Journal 11 (Aug. 1996), pp. 247–254. ���: 10.1049/sej.1996.0030
(cit. on p. 19).

51

https://link.springer.com/article/10.1007/s10664-015-9393-5
https://link.springer.com/article/10.1007/s10664-015-9393-5
https://doi.org/10.1145/3340571
https://doi.org/10.1145/3340571
https://doi.org/10.1145/3340571
https://doi.org/10.1109/52.143100
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://doi.org/10.1049/sej.1996.0030


Bibliography

[Hug90] J. Hughes. “Why Functional Programming Matters”. In: Research Topics in Functional
Programming 30 (1990), pp. 17–42 (cit. on pp. 11, 12).

[KI16] J. Kunasaikaran, A. Iqbal. “A Brief Overview of Functional Programming Languages”.
In: electronic Journal of Computer Science and Information Technology 6 (Dec.
2016), p. 32 (cit. on pp. 15, 16).

[KMB04] C. Kaner, S. Member, W. P. Bond. “Software Engineering Metrics: What Do They
Measure and How Do We Know?” In: In METRICS 2004. IEEE CS. Press, 2004
(cit. on p. 28).

[KWL16] P. S. Kochhar, D. WÚedasa, D. Lo. “A Large Scale Study of Multiple Programming
Languages and Code Quality”. In: Mar. 2016, pp. 563–573. ���: 10.1109/SANER.
2016.112 (cit. on p. 20).

[KY17] A. Khanfor, Y. Yang. “An Overview of Practical Impacts of Functional Programming”.
In: Dec. 2017, pp. 50–54. ���: 10.1109/APSECW.2017.27 (cit. on p. 11).

[LHH19] H. Lane, H. Hapke, C. Howard. Natural Language Processing in Action: Understand-
ing, analyzing, and generating text with Python. German. 1st. Manning Publications,
2019 (cit. on p. 26).

[LTW+06] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, C. Zhai. “Have things changed now?: An
empirical study of bug characteristics in modern open source software”. In: Jan. 2006,
pp. 25–33. ���: 10.1145/1181309.1181314 (cit. on p. 26).

[Mic11] G. Michaelson. An Introduction to Functional Programming Through Lambda
Calculus (Dover Books on Mathematics). German. Dover Publications Inc., 2011
(cit. on p. 15).

[NF15] S. Nanz, C. A. Furia. “A Comparative Study of Programming Languages in Rosetta
Code”. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering (May 2015). ���: 10.1109/icse.2015.90. ���: http://dx.doi.org/10.1109/
ICSE.2015.90 (cit. on p. 45).

[RCB81] A. Rosene, J. Connolly, K. Bracy. “Software Maintainability - What It Means and
How to Achieve It”. In: IEEE Transactions on Reliability R-30.3 (1981), pp. 240–245.
���: 10.1109/TR.1981.5221065 (cit. on p. 11).

[RVWJ19] T. Roehm, D. Veihelmann, S. Wagner, E. Juergens. “Evaluating Maintainability
Prejudices with a Large-Scale Study of Open-Source Projects”. In: Software Quality:
The Complexity and Challenges of Software Engineering and Software Quality in
the Cloud. Ed. by D. Winkler, S. Bi�, J. Bergsmann. Cham: Springer International
Publishing, 2019, pp. 151–171. ����: 978-3-030-05767-1 (cit. on p. 20).

[SBCG98] P. Salus, W. Brainerd, R. Cytron, Grisworld, Ralph E." Imperative Programming
Languages (Handbook of Programming Languages, Band 2). German. Macmillan
Technical Publishing, 1998 (cit. on p. 15).

[SIT18] K. Singh, A. Ianculescu, L. Torje. Design Patterns and Best Practices in Java: A
comprehensive guide to building smart and reusable code in Java (English Edition).
German. Packt Publishing, 2018 (cit. on p. 15).

[Tho19] H. Thode. Testing For Normality. German. Routledge, 2019 (cit. on p. 29).

[Wag13] S. Wagner. Software Product Quality Control. German. 2013th ed. Springer, 2013
(cit. on p. 17).

52

https://doi.org/10.1109/SANER.2016.112
https://doi.org/10.1109/SANER.2016.112
https://doi.org/10.1109/APSECW.2017.27
https://doi.org/10.1145/1181309.1181314
https://doi.org/10.1109/icse.2015.90
http://dx.doi.org/10.1109/ICSE.2015.90
http://dx.doi.org/10.1109/ICSE.2015.90
https://doi.org/10.1109/TR.1981.5221065


[YM12] A. Yamashita, L. Moonen. “Do code smells reflect important maintainability aspects?”
In: 2012 28th IEEE International Conference on Software Maintenance (ICSM). 2012,
pp. 306–315. ���: 10.1109/ICSM.2012.6405287 (cit. on p. 28).

All links were last followed on May 7, 2021.

https://doi.org/10.1109/ICSM.2012.6405287

	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Structure of the Thesis

	2 Background
	2.1 Imperative Programming
	2.2 Functional Programming
	2.3 Software Quality

	3 Related Work
	4 Methodology
	4.1 Study Objects and Sampling
	4.2 Data Collection
	4.3 Identifying Project Domains
	4.4 Categorizing Bugs
	4.5 Metrics
	4.6 Hypotheses
	4.7 Statistical Methods

	5 Results
	5.1 Software Quality Impact (RQ1)
	5.2 Analysis of Characteristics that influence Frequency of Bug Categories (RQ2)

	6 Discussion
	6.1 Results Discussion
	6.2 Threats to Validity

	7 Conclusion
	Bibliography

