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Kurzfassung

Die Förderung des Bewusstseins der Konsumenten für ihren Energieeinsatz und -
verbrauch ist eine der wichtigsten Maßnahmen zur Erreichung der Energieeffizienz
in Gebäuden. Diese ist wiederum eines der Hauptziele einer klimabewussten En-
ergiewende. Die Disaggregation und Überwachung der Endenergie ist ein prakti-
scher und effizienter Ansatz zur gezielten Sensibilisierung der Energieverbraucher,
indem ihnen in Echtzeit ein detailliertes Feedback über deren Energieverbrauch ge-
geben wird. Diese Arbeit befasst sich mit der Disaggregation und Überwachung
der elektrischen Last beim Endverbraucher. Hierfür werden geeignete maschinel-
le Lernverfahren eingesetzt. Dabei wird als Erstes ein unüberwachtes (unsuper-
vised) Disaggregationsverfahren entwickelt und validiert. Hierbei werden einfa-
che Einschränkungen und Annahmen zugrunde gelegt, ohne dass vorklassifizierte
Trainingsdaten benötigt werden. Anschließend wird ein semi-überwachte (semi-
supervised) Disaggregationsverfahren entwickelt und validiert. Der angewendete
Algorithmus lernt aus vorklassifizierten Daten. Er ist aber trotzdem in der Lage,
die Knappheit von vorklassifizierten Daten durch den gezielten Einsatz von nicht
klassifizierten Daten zu kompensieren. Zum Schluss wird eine generische neurona-
le Architektur für datengetriebene Disaggregation vorgestellt, die bei Verfügbarkeit
von einer großen Menge an Trainingsdaten zum Einsatz kommt. Die Ergebnisse die-
ser Arbeit bestätigen nicht nur die Durchführbarkeit der Disaggregation der End-
energie, sondern schlagen auch effiziente Modelle vor, die sich an die Verfügbarkeit
von Trainingsdaten anpassen und in der Lage sind, auf verschiedene Kategorien
von elektrischen Lasten einzugehen.





Abstract

Promoting end-users awareness of their usage and consumption of energy is one
of the main measures towards achieving energy efficiency in buildings, which is
one of the main targets in climate-aware energy transition programs. End-use en-
ergy disaggregation and monitoring is a practical and efficient approach towards
achieving the targeted awareness of energy users by providing them with real-time
fine-grained feedback about their own usage of energy. In this work, we address the
case of electrical energy and the problem of end-use load monitoring and disaggre-
gation in a variety of machine learning paradigms. This work starts from unsuper-
vised energy disaggregation based on simple constraints and assumptions without
the need for labeled training data. We then study and propose semi-supervised dis-
aggregation approaches that learn from labeled observations, but are also capable
of compensating for the scarcity of labeled data by leveraging unlabeled measure-
ments. Finally, we propose a generic neural architecture for data-driven disaggre-
gation upon availability of an abundance of training data. Results from this work
not only assert the feasibility of end-use energy disaggregation, but also propose
efficient models that adapt to the availability of labeled data, and are capable of
monitoring different categories of end-use loads.





Contents

Kurzfassung v

Abstract vii

List of Figures xiii

List of Tables xvii

List of Symbols xix

1. Introduction and Background 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Terminology Peculiars . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1. Intelligent or Smart ? . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2. Non-intrusive or Unsupervised ? . . . . . . . . . . . . . . . . . 6

1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Load Identification under Plug-Level Monitoring 13
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4. Load Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1. Identifiability in Elementary Circuits . . . . . . . . . . . . . . . 18
2.4.2. VI-Waveforms as Load Signatures . . . . . . . . . . . . . . . . 24
2.4.3. Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.4. Data Augmentation for Translational Invariance . . . . . . . . 26



– x–

2.5. Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1. The Base Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2. The Ensemble Architecture . . . . . . . . . . . . . . . . . . . . 33
2.5.3. Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6. Performance Assessment Measures . . . . . . . . . . . . . . . . . . . . 37
2.7. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.1. The PLAID Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7.2. Model Specifications . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.3. Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.4. Leveraging External Knowledge . . . . . . . . . . . . . . . . . 42
2.7.5. Training under Data Scarcity . . . . . . . . . . . . . . . . . . . 44
2.7.6. Identifiability under Reduced Sampling Rates . . . . . . . . . 45
2.7.7. Temporal Stability . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7.8. Related Work and Prior Art . . . . . . . . . . . . . . . . . . . . 49

2.8. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 49

3. Unsupervised Energy Disaggregation 51
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3. Evaluation datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1. The residential dataset . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2. The commercial dataset . . . . . . . . . . . . . . . . . . . . . . 56

3.4. Clustering-based Event Detection . . . . . . . . . . . . . . . . . . . . . 56
3.4.1. Event Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2. Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3. Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5. Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6. Event Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.1. Internal Cluster Validation Measures . . . . . . . . . . . . . . 71
3.6.2. Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7. Load Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7.1. Event-level Matching . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7.2. Cluster-level Matching . . . . . . . . . . . . . . . . . . . . . . . 81

3.8. Load Profile Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 83
3.9. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



– xi–

4. Semi-Supervised Energy Disaggregation 89
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4. Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5. Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6. Performance Assessment Measures . . . . . . . . . . . . . . . . . . . . 99
4.7. Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7.1. Transductive Learning Experiments . . . . . . . . . . . . . . . 100
4.7.2. Inductive Learning Experiments . . . . . . . . . . . . . . . . . 101

4.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5. Generic Deep Disaggregation 107
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1. Activation Profiles: Definition and Motivation . . . . . . . . . 112
5.3.2. Activation Profiles: Estimation . . . . . . . . . . . . . . . . . . 113
5.3.3. Single load extraction . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.4. The Assumption of Independent Loads . . . . . . . . . . . . . 116

5.4. Deep Disaggregation Model . . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.1. Modeling Assumptions . . . . . . . . . . . . . . . . . . . . . . 119
5.4.2. Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.3. Elementary Operations . . . . . . . . . . . . . . . . . . . . . . 125
5.4.4. Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.5. Predictive Function . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.6. Remarks and Deployment Considerations . . . . . . . . . . . 129

5.5. Time Series Performance Assessment . . . . . . . . . . . . . . . . . . . 131
5.6. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.1. Training and Evaluation Dataset . . . . . . . . . . . . . . . . . 137
5.6.2. Prior Art Validation . . . . . . . . . . . . . . . . . . . . . . . . 138
5.6.3. Long-term Validation . . . . . . . . . . . . . . . . . . . . . . . 140

5.7. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6. Conclusion and Outlook 147



– xii–

A. Event Detection Results 149

B. BLUED Clustering Validation 177

C. Unsupervised Energy Disaggregation on Commercial Data: Results 179

Bibliography 195



List of Figures

1.1. Daily usage pattern of two loads . . . . . . . . . . . . . . . . . . . . . 4

2.1. Generic LTI load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2. Examples of elementary LTI load circuits . . . . . . . . . . . . . . . . 21
2.3. Samples of VI-trajectories of end-use loads . . . . . . . . . . . . . . . 23
2.4. Translation invariance data augmentation . . . . . . . . . . . . . . . . 30
2.5. Load identification ensemble model architecture . . . . . . . . . . . . 34
2.6. Per-load identification measures . . . . . . . . . . . . . . . . . . . . . 43
2.7. Per-household load identification measures . . . . . . . . . . . . . . . 43
2.8. Load identification under reduced training datasets . . . . . . . . . . 45
2.9. Load identification under sampling frequency variations . . . . . . . 47
2.10. Transductive setting validation of SSL disaggregation . . . . . . . . . 48

3.1. Unsupervised disaggregation pipeline . . . . . . . . . . . . . . . . . . 53
3.2. Principle of clustering-based event detection . . . . . . . . . . . . . . 58
3.3. The clustering-based event detection algorithm . . . . . . . . . . . . . 65
3.4. Clustering-based event detection on sub-metered data . . . . . . . . . 68
3.5. Internal cluster validation measures on commercial data . . . . . . . 75
3.6. Illustration of the load recognition rules . . . . . . . . . . . . . . . . . 78
3.7. Aggregate real power of the 1st phase in a commercial setting. . . . . 85
3.8. Commercial reconstructed load profile 4 . . . . . . . . . . . . . . . . . 86
3.9. Commercial sub-metered load profile 4 . . . . . . . . . . . . . . . . . 87

4.1. Self-training semi-supervised learning paradigm . . . . . . . . . . . . 97
4.2. Data splits for transductive and inductive SSL validation . . . . . . . 100
4.3. Transductive setting validation of SSL disaggregation . . . . . . . . . 102
4.4. Inductive setting validation of semi-supervised disaggregation . . . 103

5.1. Load dependency graph . . . . . . . . . . . . . . . . . . . . . . . . . . 118



– xiv–

5.2. Deep disaggregation model architecture . . . . . . . . . . . . . . . . . 124
5.3. Sample aggregate real power of UK-DALE . . . . . . . . . . . . . . . 143
5.4. WM real power and activation profile . . . . . . . . . . . . . . . . . . . 144
5.5. WM disaggregated real power (details in text) . . . . . . . . . . . . . . 145

A.1. Event detection on sub-metered data 1 . . . . . . . . . . . . . . . . . . 150
A.2. Event detection on sub-metered data 2 . . . . . . . . . . . . . . . . . . 151
A.3. Event detection on sub-metered data 3 . . . . . . . . . . . . . . . . . . 152
A.4. Event detection on sub-metered data 4 . . . . . . . . . . . . . . . . . . 153
A.5. Event detection on sub-metered data 5 . . . . . . . . . . . . . . . . . . 154
A.6. Event detection on sub-metered data 6 . . . . . . . . . . . . . . . . . . 155
A.7. Event detection on sub-metered data 7 . . . . . . . . . . . . . . . . . . 156
A.8. Event detection on sub-metered data 8 . . . . . . . . . . . . . . . . . . 157
A.9. Event detection on sub-metered data 9 . . . . . . . . . . . . . . . . . . 158
A.10.Event detection on sub-metered data 10 . . . . . . . . . . . . . . . . . 159
A.11.Event detection on sub-metered data 11 . . . . . . . . . . . . . . . . . 160
A.12.Event detection on sub-metered data 12 . . . . . . . . . . . . . . . . . 161
A.13.Event detection on sub-metered data 13 . . . . . . . . . . . . . . . . . 162
A.14.Event detection on sub-metered data 14 . . . . . . . . . . . . . . . . . 163
A.15.Event detection on sub-metered data 15 . . . . . . . . . . . . . . . . . 164
A.16.Event detection on sub-metered data 16 . . . . . . . . . . . . . . . . . 165
A.17.Event detection on sub-metered data 17 . . . . . . . . . . . . . . . . . 166
A.18.Event detection on sub-metered data 18 . . . . . . . . . . . . . . . . . 167
A.19.Event detection on sub-metered data 19 . . . . . . . . . . . . . . . . . 168
A.20.Event detection on sub-metered data 20 . . . . . . . . . . . . . . . . . 169
A.21.Event detection on sub-metered data 21 . . . . . . . . . . . . . . . . . 170
A.22.Event detection on sub-metered data 22 . . . . . . . . . . . . . . . . . 171
A.23.Event detection on sub-metered data 23 . . . . . . . . . . . . . . . . . 172
A.24.Event detection on sub-metered data 24 . . . . . . . . . . . . . . . . . 173
A.25.Event detection on sub-metered data 25 . . . . . . . . . . . . . . . . . 174
A.26.Event detection on sub-metered data 26 . . . . . . . . . . . . . . . . . 175

B.1. BLUED internal clustering validation . . . . . . . . . . . . . . . . . . 177

C.1. Aggregate real power of the 1st phase in a commercial setting. . . . . 180
C.2. Aggregate real power of the 2nd phase in a commercial setting. . . . . 181



– xv–

C.3. Aggregate real power of the 3rd phase in a commercial setting. . . . . 182
C.4. Commercial reconstructed load profile 1 . . . . . . . . . . . . . . . . . 183
C.5. Commercial sub-metered load profile 1 . . . . . . . . . . . . . . . . . 184
C.6. Commercial reconstructed load profile 2 . . . . . . . . . . . . . . . . . 185
C.7. Commercial sub-metered load profile 2 . . . . . . . . . . . . . . . . . 186
C.8. Commercial reconstructed load profile 3 . . . . . . . . . . . . . . . . . 187
C.9. Commercial sub-metered load profile 3 . . . . . . . . . . . . . . . . . 188
C.10.Commercial reconstructed load profile 4 . . . . . . . . . . . . . . . . . 189
C.11.Commercial sub-metered load profile 4 . . . . . . . . . . . . . . . . . 190
C.12.Commercial reconstructed load profile 5 . . . . . . . . . . . . . . . . . 191
C.13.Commercial sub-metered load profile 5 . . . . . . . . . . . . . . . . . 192
C.14.Commercial reconstructed load profile 6 . . . . . . . . . . . . . . . . . 193
C.15.Commercial sub-metered load profile 6 . . . . . . . . . . . . . . . . . 194





List of Tables

2.1. PLAID load categories, counts, and ratios . . . . . . . . . . . . . . . . 41
2.2. PLAID per-load load identification scores . . . . . . . . . . . . . . . . 49

3.1. BLUED event detection results . . . . . . . . . . . . . . . . . . . . . . 67
3.2. BLUED internal clustering validation measures . . . . . . . . . . . . . 74

5.1. Activation profile estimation parameters . . . . . . . . . . . . . . . . . 115
5.2. UK-DALE summary statistics of selected loads . . . . . . . . . . . . . 138
5.3. UK-DALE experimental comparison with prior art . . . . . . . . . . . 139
5.4. UK-DALE long-term validation results . . . . . . . . . . . . . . . . . . 141





Notation and Acronyms

Notation

𝑥 Scalar
�̂� Estimated value of 𝑥
�̃� Modified value of 𝑥
𝚡 Physical quantity or signal
𝒙 Vector
𝐗 Matrix
X Set
𝑥(𝑡) Discrete-time signal
𝐗𝑎∶𝑏 Sub-sequence of the signal 𝒙(𝑡) on the interval 𝑎 < 𝑡 ⩽ 𝑏
𝒙𝑎∶𝑏 Vectorized sub-sequence of 𝒙(𝑡) on the interval 𝑎 < 𝑡 ⩽ 𝑏
𝑑(𝒙, 𝒙′) Distance function between the two points 𝒙 and 𝒙′

𝑑(𝒙, X) Distance function between a point 𝒙 and a set X
DKL Kullback-Leibler divergence
( ⋅ ⟂⟂ ⋅ ) Probabilistic independence
( ⋅ ⟂⟂ ⋅ | ⋅ ) Probabilistic conditional independence
exp( ⋅ ) Exponential function
log( ⋅ ) Natural logarithm function
sin( ⋅ ) Sine function
cos( ⋅ ) Cosine function
tan( ⋅ ) Tangent function
diag( ⋅ ) Diagonal matrix denotation
tanh( ⋅ ) Hyperbolic tangent function
𝜎( ⋅ ) Logistic sigmoid function
sgn( ⋅ ) Sign function
max(𝑎, 𝑏) Maximum of either the scalars 𝑎 or 𝑏



– xx–

max(𝒙) Maximum element of the input vector 𝒙
max(X) Maximum element of the set X
min(X) Minimum element of the set X
arg max( ⋅ ) Argument at the minimum value
arg min( ⋅ ) Argument at the maximum value
N(𝜇, 𝜎2) Normal distribution with mean 𝜇 and standard deviation 𝜎
U(𝑎, 𝑏) Uniform distribution on the interval [𝑎, 𝑏]
𝑝( ⋅ ) Probability density or mass function
𝑝( ⋅ | ⋅ ) Conditional probability
𝑔( ⋅ |𝜽𝑔) Parameterized function 𝑔 with parameters 𝜽𝑔
𝟏𝑁×𝑀 𝑁-row 𝑀-column all-ones matrix
1(⋅) Indicator function
[𝑎, 𝑏] Interval of real numbers from 𝑎 to 𝑏 (inclusive)J𝑎, 𝑏K Integer sequence 𝑎, 𝑎 + 1,… , 𝑏

Globally used identifiers

%-NM Percent noisy measure
acc Accuracy or Rand accuracy
B Informedness
ℂ Set of complex numbers
dP Change in real power
dQ Change in reactive power
F1S F1-score
𝐹𝑔 Grid- or Power-line- frequency
FN Number of false negatives
fn False negatives ratio to number of samples
FP Number of false positives
fp False positives ratio to number of samples
𝐹𝑠 Sampling frequency
i(𝑡) Instantaneous current signal
M Markedness
MCC Matthews correlation coefficient



– xxi–

ℕ Set of natural numbers {1, 2, 3,⋯}
ℕ⩽𝑎 The set of natural numbers up to 𝑎 inclusive {1,⋯ , 𝑎}
P(𝑚)(𝑡) Segregated real power signal of the 𝑚th load
P(𝑡) Real power signal
p(𝑡) Instantaneous power signal
PN Number of negative predictions
pn Negative prediction marginal
PP Number of positive predictions
pp Positive prediction marginal
ℚ Set of rational numbers
Q(𝑡) Reactive power signal
ℝ Set of real numbers
ℝ>0 Set of positive real numbers
ℝ⩾0 Set of non-negative real numbers
RN Number of real negatives
rn Real negatives prior
RP Number of real positives
rp Real positives prior
tn True negatives ratio to number of samples
TN Number of true negative
TNA True negative accuracy (aka inverse-precision)
TNR True negative rate (aka inverse-recall)
TP Number of true positives
tp True positives ratio to number of samples
TPA True positive accuracy (aka precision)
TPR True positive rate (aka recall)
𝑇𝑠 Sampling period
v(𝑡) Instantaneous voltage signal
ℤ Set of integers
ℤ⩾0 Set of non-negative integers



– xxii–

Mathematical operations

∑
The sum operator∏
The product operator

[⋅]⊤ Matrix transpose
⋅ ∗ ⋅ Convolution
𝔗𝜏 Shift or translation operator
𝔗−1

𝜏 Inverse translation operator
ℜ{𝑥} Real part of the complex valued scalar 𝑥
vec(𝐗) Vectorization of the matrix 𝐗
tr(𝐗) Trace of a matrix 𝐗|𝑥| Absolute value of the scalar 𝑥|X| Cardinality of the set X|𝑥| |𝑿| Element-wise absolute value of a vector 𝑥 or a matrix 𝑿‖𝒙‖2 𝐿2 -norm of a vector 𝒙

Acronyms and Abbreviations

A Ampere
AC Alternating current
AC Air conditioner
AIC Akaike information criterion
ANN Artificial neural network
BL Boiler
BLUED Building-level fully labeled energy disaggregation dataset
BN Batch normalization
BNN Bayesian neural network
CFL Compact fluorescent lamp
cGAN Conditional generative adversarial network
CNN Convolutional neural network
CONV Dilated temporal convolutions
dAE De-noising auto-encoder
𝙳𝙱𝙸 Davies-Bouldin index



– xxiii–

DBSCAN Density-based spatial clustering for applications with noise
𝙳𝙸 Dunn’s index
DT Decision trees
DTW dynamic time warping
DW Dishwasher
EM Expectation maximization
F Farad
fHMM factorial hidden Markov model
FIR Finite impulse response
FR Fridge
FSM Finite state machine
GLR Generalized likelihood ratio
GN Gaussian activation noise
H Henry
HMM Hidden Markov models
Hz Hertz
i.i.d Independent and identically distributed
IoT Internet of things
KFDA Kernel Fischer discriminant analysis
kHz Kilo Hertz
𝑘-NN 𝑘-nearest neighbours
KT Kettle
kW⋅H Kilo-Watt hour
LC Lighting circuit
LogSg Logistic sigmoid function
LReLU Leaky rectified linear unit
LSTM Long short term memory
LTI Linear time-invariant
MC Microwave oven
𝜇F Micro-Farad
mH Milli-Henry
ML Maximum likelihood
MLP Multi-layer perceptron
MSE Mean-squared-error
NILM Non-intrusive load monitoring



– xxiv–

Ω Ohm
PDF Probability density function
PLAID Plug-level appliance identification dataset
PMF Probability mass function
RBF Radial basis function
REDD Reference energy disaggregation dataset
RFT Random forest tree
RMS Root mean square
RNN Recurrent neural neural
ResNet Residual Network
SCP Switch continuity principle
SMPS Switching mode power supply
SP Solar thermal pump
SSE Sum of squared errors
SSL Semi-supervised learning
SVM Support vector machine
TS Toaster
TV Television
UK-DALE UK-domestic appliance-level electricity
V Volt
VI Voltage and current
WHITED Worldwide household and industry transient energy dataset
WM Washing machine
𝚇𝙱𝙸 Xie-Beni index



Chapter 1.

Introduction and Background

Many countries worldwide have started adopting counter measures for the risk of
limited fossil energy resources facing the vast and growing global energy demand
[BP 2019]. Among these measures is the transition to renewable energy resources
[REN21 2019], as for example what is adopted in Germany under the Energiewende
(energy transition) program [Jacobs 2012]. In 2017, Energiewende has managed to
redirect more than third of the gross electricity consumption to renewable energy
resources, and is aiming for a more ambitious 80% transition by 2050, coupled with
80-95% reduction in greenhouse gas emissions compared to 1990 and 80% savings in
energy consumption in buildings [for Economic Affairs and Energy BMWi]. Tran-
sition to the fluctuating renewable energy resources poses real challenges to ensure
a secure and sustainable energy supply. Additionally, “The Energy for the Future”
(the monitoring program of Energiewende) reported that reductions in buildings’
energy consumption in 2016 were five times slower than formerly targeted for 2020
[Bayer 2015, for Economic Affairs and Energy BMWi]. Involving end-users in the
energy efficiency policies and promoting their awareness of their own energy usage
remains one of the key measures in reaching energy efficiency targets [EUD 2012;
2020].

The need for empowering end-users with a promoted awareness of their energy
usage is inevitably rising as they continue to represent a central participant in the
energy market. Residential end-users in Germany, as an example, account for over
a quarter of the gross electricity consumption [der Energie-und Wasserwirtschaft
BDEW], and represent the largest number of customers in the German energy mar-
ket [Bayer 2015].
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On a parallel track, and with the era of digitisation, large scale smart meter roll-out
plans began to appear in many countries [Cooper and Shuster 2019, Jenkins and
Hopkins 2018, BEIS 2018, for Economic Affairs and Energy a]. In 2016, for exam-
ple, and with the Metering and Digitisation of Energy Transition Acts coming into
force [for Economic Affairs and Energy a], the German power system promoted ex-
pectations of a large scale roll-out of smart and intelligent metering systems [for
Economic Affairs and Energy b].

Motivated by the goals for energy efficiency in buildings, either during or post
the transition to renewable energies, and the evident role of private consumers in
achieving these goals, we present in this work a variety of end-use monitoring and
disaggregation approaches. The main objective of end-use energy monitoring is to
promote public awareness of the energy consumption in buildings by leveraging
the digitisation of energy transition. In this work, we investigate capabilities, chal-
lenges, and limits of these monitoring and disaggregation approaches, and propose
practical and cost-effective solutions under the framework of what is referred to as
non-intrusive load monitoring.

1.1. Background

Energy disaggregation or non-intrusive load monitoring1 (NILM) refers to the set
of computational techniques whose objective is to infer fine-grained electric load
profiles (that is, time series power draws), normally at the end-use level, from a set
of aggregate demand observations obtained from either a single or a limited num-
ber of sensing points in a building [Hart 1985; 1989; 1992, Sultanem 1991]. Sensing
points are usually located at a building-level (e.g. main electricity meter), residence-
or apartment-level (e.g. electric distribution board), or even for a small group of
loads on an electrical socket-level (as in for example Gao et al. [2014]). NILM is a
cost-effective, practical approach for monitoring end-use energy consumption at the
single load level, in residential households, commercial buildings, and industrial
facilities. It represents a compromise between distributed sensing and conditional
demand analysis [Newsham and Donnelly 2013]. The former requires an expensive

1Throughout this work, we use the two terms interchangeably with higher preference given to energy
disaggregation. We also use the terms “load” and “appliance” interchangeably with higher preference
given to the former.
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and intrusive metering of individual appliances which is hardly feasible for large-
scale population-wide deployments while the latter is mainly based on regression
analysis of monthly bills and does not fulfill accuracy requirements for monitoring
individual end-use loads.

Figure 1.1 depicts an example of a ten-week profile of a monitoring system for two
loads from a commercial building, namely a dishwasher and a vending machine,
projected on daily usage. The figure illustrates various key aspects of end-use en-
ergy monitoring. A main observation from the figure is the concept behind load
identification and monitoring based on electrical load signatures. As observed from
the figure, the two loads depict not only unique short-term power draw signatures
but also distinct long-term usage patterns with one load being thermostatically con-
trolled while the other being user activated. Additionally, the figure depicts two of
the promising applications of energy monitoring system. The first is the usage ab-
normality of the dishwasher in the middle of the 42nd day, while the second is the
malfunction of the vending machine leading to an energy leak for almost two days
in the 7th week.

The first, and most focus of our work, is the promoted awareness of electrical en-
ergy usage especially for end-users. Energy disaggregation systems aim at provid-
ing customers with real-time, fine-grained feedback about their usage of electricity
allowing them to adopt more efficient energy saving measures and strategies [Schle-
ich et al. 2012]. In spite of the importance and adequacy of this objective, energy
monitoring and disaggregation additionally offers a variety of promising applica-
tions, of which we discuss a few in the following.

Disaggregated end-use data can provide appliance manufacturers with detailed us-
age patterns of their products in real and long-lasting environments, allowing them
to evaluate the effectiveness of their manufacturing innovations and identify weak-
nesses of their products. The motivation stems from the fact that newly manufac-
tured appliances have witnessed significant improvements with respect to energy
efficiency but a corresponding improvement within energy efficiency in buildings
was not equally observed [Kavousian et al. 2015]. Detecting aging and malfunction-
ing loads that result in mysterious energy leakage (as illustrated in the example in
Figure 1.1) is another application of monitoring systems leading end-users to edu-
cated decisions for their energy savings plans. Other promising applications of dis-
aggregated data include occupancy detection, home automation [Patel et al. 2007],
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Figure 1.1.: Daily usage pattern of a dishwasher (upper) and a vending machine
(lower) sub-metered from a commercial building in Berlin, Germany for
10 consecutive weeks. The figures illustrate the feasibility of inferring
end-use loads merely from their patter of use. Gray-scale is proportional
to the power draw of the load during operation.
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itemized energy billing [Drenker and Kader 1999], and detection of unauthorized
load usage [Cole and Albicki 1998].

In the last three decades, energy disaggregation has attracted a rapidly growing
interest in many research groups worldwide. Energy disaggregation research oc-
curred in three main directions in tandem, namely adapting more accurate dis-
aggregation and inference algorithms, extracting more distinctive appliance signa-
tures, and developing energy datasets that are suitable for training and evaluation
of NILM systems. Reviews on various paradigms and approaches of end-use elec-
trical energy disaggregation can be found in Zoha et al. [2012], Zeifman and Roth
[2011], Froehlich et al. [2011], Jiang et al. [2011], Bonfigli et al. [2015] and Ruano
et al. [2019], and we refer the interested reader to their publications for a detailed
review.

A NILM system consists primarily of three sub-tasks, disaggregation, inference, and
reconstruction. In the disaggregation phase, an aggregate power signal is decom-
posed into multiple components each of which corresponds to a single end-use
load. In inference, each disaggregated component is assigned a load label (e.g. a
load category, a specific load instance, or even anonymous identifier if labeled data
is unavailable). Finally, load profile reconstruction aims at estimating the time series
consumption patterns of disaggregated loads.

In this work, we address each NILM sub-task starting from load classification (in
Chapter 2), and going though disaggregation and reconstruction either with avail-
able training data where deep data-driven models can be adopted (Chapter 5), or
merely based on prior domain knowledge when labeled data is not provided (Chap-
ter 3), or even approaches jointly leveraging both labeled and unlabeled data (Chap-
ter 4).

1.2. Terminology Peculiars

We briefly give a remark on a few concepts the reader should be aware of in order
to conceive our main focus and contribution in this work.
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1.2.1. Intelligent or Smart ?

The cost-benefit analysis report by Ernst & Young for the Federal Ministry of Eco-
nomics and Technology in Germany (BMWi) [Ernst & Young 2013, Bayer 2015] de-
fined the two terms "smart-" and "intelligent-metering" differently. As stated by Bayer
[2015], the report defined both terms as a digitization of the energy metering sys-
tem in the sense that consumption profiles are not only sensed but also digitized,
stored, and optionally communicated to interested parties. However, in intelligent
metering architectures, real-time consumption profiles are only communicated to
the end-users while in smart metering this information become additionally avail-
able to utility companies.

Based on this distinction, we advise the reader of this work to consider our contri-
bution in the sense of intelligent metering, since our main focus in this work is the
promoted awareness of end-users about their usage of energy.

1.2.2. Non-intrusive or Unsupervised ?

Many works on energy disaggregation tend to overload the concepts of super-
vised, unsupervised, and semi-supervised learning from the machine learning do-
main. Since this work proposes energy disaggregation models of all three learning
paradigms, we first give two examples of these terminology peculiars followed by
our adopted definitions of these three terms.

Parson et al. [2014] proposed a hidden Markov model (HMM) to build generalized
load models from multiple instances that are then able to generalize to new load
instances of the same category. Trained load models are then fine-tuned to specific
instances in the target building for disaggregation based solely on labeled data. The
authors indeed highlight the distinction between their approach and the machine
learning definition of unsupervised training, yet they characterize their proposed
model as unsupervised, since no labeling or training is required post-deployment.
Such a model, from a machine learning perspective, would more precisely belong
to the class of semi-supervised models since it trains from labeled measurements
but is also permitted to leverage unlabeled data post-deployment.
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As a second example, Cominola et al. [2017] proposed a two-stage load profile dis-
aggregation and reconstruction framework comprised of a factorial hidden Markov
model (fHMM) and an iterative dynamic time warping (DTW). Both stages required
direct load measurements to construct a library of load signatures for training and
disaggregation. The authors proposed to learn these signatures from the aggregate
(that is, building-level) measurements if usage information is provided (referred to
as energy diaries [Desmedt et al. 2009]). In spite of the savings in hardware costs,
the proposed approach does not follow the machine learning definition of a semi-
supervised learning model since unlabeled measurements are not leveraged for dis-
aggregation. The authors simply utilize a novel, and claimed to be more convenient
and less intrusive, labeling scheme.

In a nutshell, various researchers in the field of energy disaggregation adopt the
terms "un- or semi-supervised" while they actually mean "non- or semi-intrusive" for
installation and deployment in new target buildings. In our work, though, we ad-
here to the machine learning definitions of these concepts and, therefore, character-
izing a system of being unsupervised necessitates that it does not required labeled
or disaggregated training data neither post- nor pre-deployment. Additionally, a
system is characterized of being supervised if its learning process is based merely
on externally labeled data or semi-supervised if it leverages both labeled and unla-
beled data.

1.3. Contributions

The main goal of this work is to explore a variety of end-use energy monitoring
and disaggregation paradigms and propose feasible solutions, while investigating
limitations, for each paradigm. In other words, we propose in this work energy dis-
aggregation models for different levels and format of availability of training data,
from entirely unavailable for which domain knowledge plays an important role, to
abundantly attainable in which case data-driven deep models stand out. Our con-
tributions in this work are:

1. Proposing and validating a data-driven model, namely, an ensemble of neural
networks, for direct plug-level load monitoring (Chapter 2).
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2. Building an event-based unsupervised electrical energy disaggregation sys-
tem in which domain knowledge is the main reference for adjusting model
hyper-parameters (Chapter 3).

3. Investigating the feasibility of semi-supervised event-based classification for
load monitoring systems in situations where labeled data is available but
scarce (Chapter 4).

4. Proposing an efficient, data-driven disaggregation model under the assump-
tion of adequate availability of training data (Chapter 5).

1.4. Publications

• Karim Said Barsim, Bin Yang, “On the Feasibility of Generic Deep Disaggre-
gation for Single-Load Extraction”, in the 4th International Workshop on Non-
Intrusive Load Monitoring, March 2018, Austin, Texas (best paper award).

• Karim Said Barsim, Lukas Mauch, and Bin Yang, “Neural Network Ensembles
to Real-time Identification of Plug-level Appliance Measurements”, in the 3rd

International Workshop on Non-Intrusive Load Monitoring (NILM 2016), Vancou-
ver, Canada, 14th, May. 2016.

• Karim Said Barsim and Bin Yang, “Sequential Clustering-based Event Detec-
tion for Non-Intrusive Load Monitoring”, in proceedings of the 6th International
Conference on Computer Science and Information Technology (CCSIT 2016), Zurich,
Switzerland, 2nd Jan. 2016.

• Karim Said Barsim and Bin Yang, “Toward a Semi-Supervised Non-Intrusive
Load Monitoring System for Event-based Energy Disaggregation”, in proceed-
ings of the 3rd IEEE Global Conference on Signal and Information Processing (Glob-
alSIP), Orlando, Florida, USA, 14th, Dec. 2015.

• Benjamin Wild, Karim Said Barsim, and Bin Yang, “A New Unsupervised
Event Detector for Non-Intrusive Load Monitoring”, in proceedings of the 3rd
IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando,
Florida, USA, 14th, Dec. 2015.



– 9–

• Karim Said Barsim, Roman Streubel, and Bin Yang, “Unsupervised Non- In-
trusive Load Monitoring of Residential Appliances”, in proceedings of the 48th

International Universities’ Power Engineering Conference (UPEC), Dublin, 2nd-5th

Sept. 2013.

• Karim Said Barsim, Roman Streubel, and Bin Yang, “Unsupervised Adaptive
Event Detection for Building-Level Energy Disaggregation”, in proceedings of
the Power and Energy Student Summit (PESS), Stuttgart, 23rd-24th Jan. 2014.

• Karim Said Barsim, Roman Streubel, and Bin Yang, “An Approach for Unsu-
pervised Non-Intrusive Load Monitoring of Residential Appliances”, in pro-
ceedings of the 2nd Non-Intrusive Load Monitoring (NILM) Workshop 2014, Austin,
3rd Jun. 2014.

1.5. Thesis Outline

We start this work by validating the feasibility of end-use load monitoring which
serves additionally as an empirical estimation of the performance upper bound of
an energy disaggregation system. Chapter 2 provides a case study on the problem
of direct distributed sensing applied to a small set of residential loads, but across a
wide range of deployment sites. The work introduces an ensemble of small artificial
neural nets tasked all together with detection and classification of residential end-
use load categories.

Electrical energy disaggregation (or NILM) starts from Chapter 3 in which we intro-
duced a fully-unsupervised (in the machine learning sense) energy disaggregation
system. The proposed system relays primarily on detecting abrupt changes in ag-
gregate measurements, extracts features, clusters repeating events, and performs
end-use energy estimation.

Chapter 4 relies on the assumption that labeled data may be provided but are expen-
sive, and therefore scarce, and proposes a semi-supervised energy disaggregation
system capable of leveraging both labeled and unlabeled observations in reaching
better performance, even in the case of scarce labeled data. This chapter bridges
the unsupervised disaggregation model introduced in the preceding chapter to the
entirely data-driven model detailed in the following chapter.
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In Chapter 5, we propose an end-to-end neural network architecture for training
generic deep disaggregation systems from direct and aggregate load measurements.
The model assumes no prior knowledge, and requires minimal external supervision
for training beyond training data acquisition, and architecture selection.

Finally, we conclude this work in Chapter 6 with remarks on future work and de-
velopment directions.

1.6. Notation

Throughout this work we primarily consider discrete-time signals denoted by 𝑥(𝑡)
where 𝑡 ∈ ℕ is the independent time index starting from a reference epoch2 𝑡 = 1.
Should a signal have a physical interpretation, it is emphasized with a monospaced
font as in the voltage signal v(𝑡) or the reactive power signal Q(𝑡). Vector-valued
signals are noted with a boldfaced font as in 𝒙(𝑡) ∈ ℝ𝑑𝑥 which is a 𝑑𝑥-dimensional
column vector for the time index 𝑡. By default, we use column vectors unless explic-
itly stated otherwise.

Finite sequences (oftentimes referred to as sub-sequences or segments) of the signal
𝑥(𝑡) over the interval (𝑎, 𝑏] where 𝑏 > 𝑎 is denoted by

𝒙(𝑎∶𝑏] =
[
𝑥(𝑎 + 1), 𝑥(𝑎 + 2), ⋯ , 𝑥(𝑏)

]⊤
∈ ℝ(𝑏−𝑎)×1 (1.1)

For example, 𝒙[𝑎∶𝑏] denotes the finite sequence [𝑥(𝑎), 𝑥(𝑎 + 1), ⋯ , 𝑥(𝑏)]⊤ ∈ ℝ(𝑏−𝑎+1).
For brevity, 𝒙𝑎∶𝑏 = 𝒙(𝑎∶𝑏] will oftentimes be used as a shorthand for the half-open
interval (that is, (𝑎 ∶ 𝑏]) defined in Equation (1.1).

Analogously, a finite sequence of the discrete-time 𝑑𝑥-dimensional signal 𝒙(𝑡) over
the interval (𝑎, 𝑏] is given by the matrix 𝐗(𝑎∶𝑏] where

𝐗(𝑎∶𝑏] =
[
𝒙(𝑎 + 1), 𝒙(𝑎 + 2), ⋯ , 𝒙(𝑏)

]⊤
∈ ℝ(𝑏−𝑎)×𝑑𝑥 (1.2)

2That is to say that natural numbers in this work are defined as the set of positive integers.
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and likewise for 𝐗(𝑎∶𝑏), 𝐗[𝑎∶𝑏), and 𝐗[𝑎∶𝑏]. Particularly for vector-valued signals 𝒙(𝑡)
the denotation 𝒙(𝑎∶𝑏] is defined as

𝒙(𝑎∶𝑏] = vec
(
𝐗(𝑎∶𝑏]

)
∈ ℝ(𝑏−𝑎)𝑑𝑥×1 (1.3)

where vec( ⋅ ) is the matrix vectorization operator and 𝐗(𝑎∶𝑏] is as defined in Equa-
tion (1.2). Similar to scalar-valued signals, the shorthand notation 𝐗𝑎∶𝑏 ≡ 𝐗(𝑎∶𝑏] and
𝒙𝑎∶𝑏 ≡ 𝒙(𝑎∶𝑏] will refer to Equation (1.2) and Equation (1.3), respectively. In fact, the
sub-sequence definition of scalar-valued signal given in Equation (1.1) can be seen
as a special case of the vectorization given by Equation (1.3) for vectorial signals.

In addition, we will repeatedly make use of the translational operator 𝔗𝜏( ⋅ ) defined
on the signal 𝒙(𝑡) as

𝔗𝜏𝒙(𝑡) = 𝒙(𝑡 + 𝜏) (1.4)

and on the sequence 𝒙𝑎∶𝑏 as

𝔗𝜏𝒙𝑎∶𝑏 = 𝒙(𝑎+𝜏)∶(𝑏+𝜏) (1.5)

and its inverse 𝔗−1
𝜏 ( ⋅ ) defined as

𝔗−1
𝜏 𝒙(𝑡) = 𝒙(𝑡 − 𝜏) (1.6)

on the signal 𝒙(𝑡) and
𝔗−1

𝜏 𝒙𝑎∶𝑏 = 𝒙(𝑎−𝜏)∶(𝑏−𝜏) (1.7)

on the sequence 𝒙𝑎∶𝑏. Equation (1.6) implies a signal delay (i.e. time-shift) by 𝜏.

We do not differentiate between random variables and realizations thereof so that
𝑝(𝑥) = 𝑝(𝑥 = 𝑥) both equally represent the probability that the random variable 𝑥 is
assigned the value 𝑥. To further avoid pedantry, we let 𝑝(𝑥) denote the probability
density function (PDF) of the random variable 𝑥 if 𝑥 is continuous-valued and the
probability mass function (PMF) when 𝑥 is discrete-valued. Each case will be clearly
obvious from the context.

The subscripted real number set ℝ⩾𝑎 denotes the half-bounded interval [𝑎, ∞) and
in a similar fashion for ℝ>𝑎, ℝ⩽𝑎, and ℝ<𝑎. Likewise, the subscripted integer number
set ℤ⩾𝑎 denotes the integer sequence 𝑎, 𝑎 + 1, … and similarly for ℤ>𝑎, ℤ⩽𝑎, and
ℤ<𝑎.
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Finally, we point out that exceptions to these rules may arise if deemed necessary
but shall be explicitly noted.



Chapter 2.

Load Identification under Plug-Level
Monitoring

Many works on energy disaggregation are motivated by their superiority over di-
rect distributed sensing approaches. That is in the sense that, the former is cost-
and energy-efficient for scalable deployments, less invasive to consumers’ prop-
erties and privacy, and more capable of leveraging existing architectures and the
recent smart meter rollouts (amongst many other motivations but to mention just
a few), while expected to maintain the accuracy and monitoring performance of a
distributed sensing deployment.

From this view point, direct sensing is not only considered the other extreme of
greedy intrusive monitoring but also the upper bound with respect to monitoring
performance in spite of being invasive or infeasible for large scale deployments.
Such a view, however, necessitates an estimation of the performance of direct dis-
tributed sensing deployments viewed as an upper bound on the performance of en-
ergy disaggregation methods and treated as an assessment of one of its late stages
namely, load identification.

This chapter is organized as follows. We first introduce the problem of load identi-
fication in Section 2.1 as a common problem to both energy disaggregation and dis-
tributed sensing systems followed by a brief review of prior art on this problem in
Section 2.2. The addressed challenge is further explicitly formulated in Section 2.3.
Our contributions then follow starting from Section 2.4 with a detailed description
of the adopted raw voltage and current waveforms as load signatures. In Section 2.5,
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we detail our proposed robust real-time identification approach based on an ensem-
ble of neural networks. Performance assessment measures for the adopted model
are introduced in Section 2.6. Afterwards, we report and discuss empirical evalu-
ations on a real-word plug-level dataset [Gao et al. 2015] obtained from a variety
of common end-use load categories and across different households in Section 2.7.
Finally, Section 2.8 concludes this chapter.

Work in this chapter has been published by Barsim and Yang [2015] and formu-
lations, phrasing, experiments, and results are partially adopted from our prior
work.

2.1. Introduction

We define the task of load identification as the process of inferring abstract load in-
formation from low-level load usage data. Complexity of such a task depends on
the extent to which load information is to be inferred and the level of granularity
to which load usage data is provided. For example, load usage data can be pro-
vided in terms of weakly/monthly usage information (e.g. number of hours of us-
age per day/weak), on-off timing patterns, load energy profiles, or raw current and
voltage measurements. The targeted abstract load information ranges from generic
load characterization such as operational principles (e.g. resistive, thermostatically-
controlled, pump-operated, motor-driven, switching mode power supplied (SMPS)
[Gupta et al. 2010], ... etc) [Sultanem 1991], functional aspects (e.g. temperature con-
troller, lighting, user interactive, ... etc), miscellaneous categorization (e.g. air con-
ditioner, heater, lamp, computer, printer, ... etc), and even down to specific load
instances in an electrical network (e.g. a certain lighting circuit in an apartment) as
in [Gupta et al. 2010].

Direct distributed sensing is similarly motivated by all promising applications of
energy disaggregation (e.g. home automation, itemized billing, health monitoring,
elderly assistance, demand response, energy efficiency, promoted self-awareness of
energy usage, ... etc). However, superiority of energy disaggregation stems from
the scalability barrier faced by distributed sensing architectures where large scale1

1That is, population-wide deployments rather than single user cases which have been successfully
realized as in [Kelly and Knottenbelt 2015b].
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deployments are normally either prohibitively infeasible, expensive, or even energy
inefficient.

2.2. Related Work

In this section, we briefly review two parallel tracks of prior art. The first track uti-
lized the high-frequency instantaneous voltage and current trajectories (referred to
hereafter as VI-trajectories and will be formally defined in Section 2.4) or engineered
features thereof as a load signature. The second track addresses the problem of load
identification via distributed plug-level monitoring.

Lam et al. [2007] utilized steady-state VI-trajectories to blindly construct a taxon-
omy of load signatures mainly based on the residential load categorization pro-
posed by Sultanem [1991]. The authors extracted a predefined set of geometrical
features from each normalized VI-trajectory for a hierarchical clustering algorithm
[Aggarwal and Reddy 2013] to construct the targeted taxonomy. They then showed
that these features proved to be more effective in classifying residential loads than
traditional power measures (such as root mean square (RMS) current, power factor,
... etc) while pertaining a similar level of interpretability.

Gao et al. [2014] published the plug-level appliance identification dataset2 (PLAID)
followed by an extended version by Baets et al. [2017b]. PLAID comprises direct
voltage and current measurements of different household loads at the relatively
high sampling frequency of 30 kHz with the standard grid frequency of 60 Hz. In
their dataset, end-use loads were grouped into 11 categories, spread over 55 resi-
dential buildings, and with an average of almost 100 load instances per category.
PLAID will be the target evaluation dataset in this chapter and will be described in
more detail Section 2.7.1. The main purpose of this dataset is to conduct a proper
generalizability assessment of proposed load identification algorithms to new resi-
dential buildings.

Gao et al. [2015] reported, shortly afterwards, with a feasibility study on load iden-
tification empirically validated on the PLAID dataset. In their study, Gao et al.
trained and compared different off-the-shelf classifiers (random forests, support

2Found under: http://plaidplug.com

http://plaidplug.com
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vector machines, naïve Bayes, nearest neighbors, amongst others) on the binary-
valued images constructed from the the VI-trajectories (referred to in their work
as VI-binary-images). The authors reported benchmarking identification metrics on
PLAID households, and additionally emphasized the improved identification accu-
racy due to their proposed features compared to either raw measurements, power
signals, or other engineered features. Reported identification accuracies reached up
to 86% of total identification queries based on a leave-one-(building)-out cross vali-
dation3 using random forest trees (RFTs) and a combined set of features in addition
to raw measurements as load signatures. The authors additionally reported the no-
table degradation of identification accuracy with a reduction in sampling rates for
almost all adopted models, and the challenging implementation on embedded sys-
tems due to the complexity of adopted features. We address both limitations in this
chapter, and report a new load identification benchmark using an ensemble of small
neural nets.

De Baets et al. [2018] applied convolutional neural networks (CNN) on a variant of
VI-image features (with non-binary pixel values) and RFTs on VI-shape descriptors
(known as elliptic Fourier features) [Baets et al. 2017a, Kuhl and Giardina 1982] and
evaluated on an extended version of PLAID [Baets et al. 2017b] and the worldwide
household and industry transient energy dataset (WHITED) [Kahl et al. 2016].

Following our work Barsim et al. [2016], Baptista et al. [2018] and Davies et al. [2019]
reported on the application of CNN architectures for load identification validated
on PLAID. They emphasized the advantage of the translation-equivariant tempo-
ral convolutional layers and the multi-class architectures that notably reduce train-
ing time. Undoubtedly, depth in hierarchical architectures increases representative
power of a neural network model. Also, connectivity patterns can indeed encode
domain knowledge when carefully designed. Distinct from these works, however,
our proposed model features two main advantages. The first is the modularity in
the adopted one-vs-one strategy. Such modularity permits ease of domain knowl-
edge incorporation (e.g. knowing a priori that a specific target building does not
have an certain load category) with a notable reduction in model size compared to
multi-class networks. The second is the simple, relatively shallow architecture fea-

3We adopted the same cross validation scheme and shall, therefore, detail their approach explicitly in
Section 2.7.
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turing low computational complexity suitable for embedded system deployments
and real-time monitoring.

2.3. Problem Statement

The problem we address in this chapter is formally stated as follows. Estimate the
identifiability of end-use household loads from direct instantaneous voltage and current mea-
surements. This formulation is further detailed in the sequel.

Identifiability in the aforementioned formulation is addressed to the level of an ad-
equate categorization of end-use loads, and an explicit example of which shall be
given in Section 2.7.

The term “direct measurements“ implies single-load circuits (that is, monitoring a
single load a time). Direct measurements can be obtained from in-series current
sensors attached to the plug of a load, and hence the name “plug-level monitoring“.
This assumption mimicks the behavior of an ideal energy disaggregation system
where a disaggregator has successfully reconstructed end-use load profiles of each
target load and the task at this stage is to classify each disaggregated signature to
one of the end-use categories.

Acquisition of the instantaneous voltage and current signals implicitly implies a sam-
pling rate higher (oftentimes orders in magnitude higher [Carrie Armel et al. 2013])
than the grid frequency as shall become more evident in the following section.

We additionally investigate further aspects closely related to the targeted prob-
lem. Examples of these aspects include the effect of the sampling frequency (Sec-
tion 2.7.6), size of training data (Section 2.7.5), and external knowledge (Section 2.7.4)
on the identifiability of end-use loads from their direct voltage and current measure-
ments.

2.4. Load Signatures

In this work, we utilize the raw voltage v(𝑡) and current i(𝑡) waveforms (henceforth
referred to as VI-waveforms) during the steady-state operation of a load as its dis-
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tinct signature, where 𝑡 ∈ ℕ represents a time index. Such a signature is extracted
from multi-state and variable loads4 randomly while operating in any of their on-
states.

Presumably, VI-waveforms are the most informative electricity-related features since
they completely characterize an electric circuit, in the sense that all electricity-related
load signatures5 are derived quantities from these raw instantaneous waveforms.

In order to illustrate our motivation for adopting raw VI-waveforms as load sig-
natures, we first illustrate their behavior in elementary circuits and compare them
with what is commonly referred to as VI-trajectories.

2.4.1. Identifiability in Elementary Circuits

Figure 2.1 shows a generic diagram of an alternating-current (AC) circuit. For ease
of illustration, we will limit the discussion to ideal AC voltage sources with a purely
sinusoidal waveform, and a linear time-invariant (LTI) load6. In this simple model,
the load’s opposition to the supply voltage and the resulting current is characterized
by its total electrical impedance.

Denote the impedance of a load by Z∈ ℂ which is a complex-valued quantity whose
real part is referred to as the resistance R ∈ ℝ⩾0 (measured in Ohm), where ℝ⩾𝑎

denotes the interval [𝑎,∞), and the imaginary part is referred to as the reactance
X ∈ ℝ so that Z = R + 𝑗X where 𝑗 is the imaginary unit. Equivalently, let Z =|Z | exp(𝜙Z) where |Z | = √

R2 + X2 is the amplitude of the load impedance Z and
𝜙Z = tan−1(X∕R) is its phase.

4Hart [1992] proposed splitting end-use loads into three model classes: 1) an on-off load (e.g. a lamp
or an iron) which operates under a single on-state with nearly stationary power draw, 2) a multi-
state load, named in the original text as a "finite state machine", which has multiple on-states but
each of which features a nearly stationary power draw, and 3) continuously variable loads with non-
stationary power draw in general such as power tools.

5Energy disaggregation can also benefit from non-electricity-related features such as weather condi-
tions [Barker et al. 2012], electromagnetic detectors [Patel et al. 2007, Gupta et al. 2010, Hazas et al.
2011], or portable and wearable devices’ signals [Roy et al. 2016]. Such features are outside the scope
of this work.

6An example of which are all loads composed of passive LTI circuit components such as resistors,
capacitors, and inductors. This is definitely a strong assumption since most modern household loads
are equipped with complex non-linear electronic components. Nevertheless, non-linearities will most
likely promote identifiability as shall be illustrated in Figure 2.3 but rather tackle reliable feature
extraction especially at low sampling rates and under noisy measurements.
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Let v(𝑡) denote the discrete-time real-valued sinusoidal waveform of the supply
voltage sampled at 𝐹𝑠 such that v(𝑡) = |V | cos(2𝜋𝑓𝑡+𝜙v) or equivalently the real part
of its analytic form representation ℜ{v𝑐(𝑡) = |V | exp(𝑗(2𝜋𝑓𝑡+𝜙v))} where |V | ∈ ℝ⩾0

is the voltage amplitude, 𝜙v ∈ [−𝜋∕2, 𝜋∕2] is the phase-shift of the voltage signal,
ℜ{⋅} is the real part denotation, exp(⋅) is the complex exponential function, and 𝑓
is the normalized frequency defined as 𝑓 = 𝐹𝑔∕𝐹𝑠 where 𝐹𝑔 is the grid frequency7

and 𝐹𝑠 is the sampling rate. The assumption of linearity permits re-writing Ohm’s
law in the complex representation

v𝑐(𝑡) = Z ⋅ i𝑐(𝑡) (2.1)

for any time index 𝑡 where i𝑐(𝑡) is the analytic representation of the current sig-
nal i(𝑡) at the time index 𝑡. It becomes evident that the resulting current signal
i(𝑡) = ℜ{i𝑐(𝑡)} is of a sinusoidal waveform whose amplitude |I | ∈ ℝ⩾0 is given
by |V | ∕ |Z | whereas its phase 𝜙i ∈ [−𝜋∕2, 𝜋∕2] is shifted8 by 𝜙Z from the voltage
signal so that i(𝑡) = ℜ{(|V | ∕ |Z |) exp(𝑗(2𝜋𝑓𝑡 + 𝜙v − 𝜙Z))}. The supply voltage |V |
and the grid frequency 𝐹𝑔 are country specific power system standards and are ei-
ther ∼160 or ∼330 voltage (in amplitude, that is, 110-120 or 220-240 in RMS) for the
former, and 50 or 60 Hz for the latter.

The VI-trajectory of a load is the directed path in ℝ2 constructed by the mapping 𝝆 ∶
ℕ → ℝ2 defined as 𝝆(𝑡) = [v(𝑡), i(𝑡)]⊤ where [ ⋅ ]⊤ is the matrix transpose denotation.
In the case of periodic signals (as in an AC-circuit with an LTI-load) and assuming
rationality of the normalized frequency 𝑓 ∈ ℚ, then the VI-trajectory forms a loop
such that 𝝆(𝑡) = 𝝆(𝑡 + 𝑛) for some positive integer 𝑛 ∈ ℕ.

Finally, we refer to the signals ṽ(𝑡) = v(𝑡)∕ |V | and ĩ(𝑡) = i(𝑡)∕ |I | and the mapping
�̃�(𝑡) = [ṽ(𝑡), ĩ(𝑡)]⊤ as the normalized voltage, current, and VI-trajectory, respectively,
where amplitude information has been discarded.

We illustrate in Figure 2.2 the behavior of the voltage and current signals along with
their VI-trajectories for simple examples of LTI loads such as purely resistive loads
(R-loads), series resistive-capacitive loads (RC-loads), and series resistive-inductive
loads (RL-loads).

7Also known as the fundamental-, line-, or utility-frequency.
8Either leading or lagging the voltage signal based on the direction of the phase shift.
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v(𝑡)

i(𝑡)

Z

Figure 2.1.: A generic LTI load under a sinusoidal supply voltage v(𝑡) and the re-
sulting current i(𝑡) where Z denotes the total electrical impedance of
the load.

In a purely resistive load (top row in Figure 2.2) where the impedance is real-valued
Z = R, both the voltage v(𝑡) and current i(𝑡) signals remain in phase, meaning
that 𝜙i = 𝜙v. The resulting VI-trajectory 𝝆 = [v(𝑡), (v(𝑡)∕R)]⊤ in this case follows
a straight line passing through the origin whose slope is 1

R
.

The impedance of a series RC-load (middle row in Figure 2.2) is given by R −
𝑗∕(2𝜋𝐹𝑔C) where C ∈ ℝ>0 is the capacitance (measured in Farads). On the other
hand, a series RL-load (lower row in Figure 2.2) has an impedance of R + 𝑗(2𝜋𝐹𝑔L)
where L ∈ ℝ>0 is the inductance value (measured in Henries). Accordingly, the
impedance phase 𝜙Z is positive for RL-circuits, and negative for RC-circuits.

The middle and lower rows of Figure 2.2 illustrate the behavior of RC- and RL-
circuits, respectively. In this case, the current leads or lags the voltage signal, re-
spectively, with a phase difference equivalent to the negative impedance phase 𝜙Z.
The VI-trajectories in these cases are tilted elliptic loops directed clock-wise in the
RC-circuit, and counter clock-wise in the case of an RL-circuit. In the extreme case of
a purely capacitive or inductive circuit, the total impedance degenerates to a purely
imaginary reactance Z = 𝑗X with a phase value 𝜙Z = ±𝜋∕2 rendering the voltage
and current signals mutually orthogonal, and resulting in a circular VI-trajectory
looping clock-wise or counter clock-wise in the capacitive and inductive circuits,
respectively.

In general, certain load characteristics can be inferred from geometrical features
(e.g. enclosed area, major axis slope, looping direction ... etc) of the VI-trajectory.
Such an approach has been adopted by previous works as in [Lam et al. 2007] and
[Hassan et al. 2014] to name a few examples.
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Figure 2.2.: Examples of elementary LTI load circuits. A purely resistive load (top),
an RC-load (middle), and an RL-load (bottom). Rotational curvature
of the rightmost VI-trajectories are indicated by the upper left circu-
lar arrow. Simulations are based on the selected values |V | = 220

√
2 V,

𝜙v = 𝜋∕2, 𝐹𝑔 = 50 Hz, R = 150 Ω, C = 30 𝜇F, and L = 300 mH which are
adopted for illustration purposes only.
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As load non-linearities9 are introduced, deviations from the ideal elliptically shaped
VI-trajectories will be observed. Examples of these deviations include non-elliptic
loops, self intersections, and peaks introduced in the outer (i.e. leftmost and right-
most) segments of the trajectory.

Figure 2.3 depicts samples of normalized VI-trajectories (middle column) of vari-
ants of household loads extracted from the PLAID dataset [Gao et al. 2014] along
with the normalized raw voltage ṽ(𝑡) (right) and current ĩ(𝑡) (left) signals. Loads
shown are an air conditioner (AC), a compact fluorescent lamp (CFL), a fan, fridge
(FR), a hairdryer, a heater, a light bulb, a laptop, a microwave-oven, a vacuum
cleaner (VC), and a washing machine (WM), in that order from top downwards in
the figure. As expected, non-linear loads (e.g. a laptop or a CFL) show a clear devi-
ation from the ideal elliptic VI-trajectory

These deviations require more carefully engineered geometrical features to reach a
targeted level of identifiability [Lam et al. 2007, Hassan et al. 2014]. With increasing
non-linearities and noisy measurements, it rapidly becomes infeasible to design re-
liable, adequately generic signatures based on the VI-trajectories. This is one of our
key motivations for adopting raw VI-waveforms along with a data-driven model
that comprises unsupervised feature extraction capabilities as shall be discussed in
Section 2.5.

A notable observation from Figure 2.2 is that loosing the directionality of the VI-
trajectories renders some loads unidentifiable as illustrated in the hypothetical case
of RC- and RL-circuits of the figure where both lead to the same loop just oppositely
directed. This observation is another key difference between our contribution and
prior art that leveraged unsupervised feature extraction on VI-trajectories10 [Gao
et al. 2015] where directionality is lost resulting in a reduced level of identifiability.
With the adopted VI-waveforms (formally defined in the following section) as load
signatures, we claim to maintain a higher level of identifiability and empirically
show superior performance on the benchmarking dataset.

9Non-linear loads are those comprising non-linear circuit components such as diodes and transistors
which are the major components in nowadays complex power electronics or digital logic circuits.

10In fact, Gao et al. [2015] derived a VI-image feature which is a mesh of pixels constructed from the
VI-trajectory. Nevertheless, directionality is still lost leading to inferior identifiability.
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ĩ
(𝑡)

ĩ
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ĩ
(𝑡)

ĩ
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Figure 2.3.: Normalized voltage ṽ(𝑡) (right), current ĩ(𝑡) (left), and VI-trajectories
�̃�(𝑡) (middle) of selected samples from each load category in PLAID
[Gao et al. 2014]. Samples are shown for the very last period of each
measurement. Abbreviated load names are found in text.
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2.4.2. VI-Waveforms as Load Signatures

As mentioned earlier, we adopt the raw VI-waveforms as load signatures and ex-
ploit one of the learning capabilities of neural nets as data-driven unsupervised fea-
ture extractors. In this subsection, we formalize the definition of the VI-waveform
and defend our motivation for adopting this generic load signature.

We first remind the reader of our notation for a sub-segment of a time series signal
(see Section 1.6). The vectorized 𝑎-to-𝑏 sub-segment [𝒙(𝑎 + 1), 𝒙(𝑎 + 2), … , 𝒙(𝑏 −
1), 𝒙(𝑏)]⊤ of a 𝑑𝑥-dimensional discrete-time signal 𝒙(𝑡) is denoted by 𝒙𝑎∶𝑏 ∈ ℝ(𝑏−𝑎)𝑑𝑥×1

where 𝑎, 𝑏 ∈ ℕ and 𝑏 > 𝑎 so that

𝒙𝑎∶𝑏 = vec
([
𝒙(𝑎 + 1), 𝒙(𝑎 + 2), … , 𝒙(𝑏 − 1), 𝒙(𝑏)

]⊤) ∈ ℝ(𝑏−𝑎)𝑑𝑥×1 (2.2)

where vec(⋅) is the matrix vectorization operator. By adopting this notation, we then
define the VI-waveform.

Let the signal 𝒙(𝑡) denote the concatenation of the normalized current ĩ(𝑡) and volt-
age ṽ(𝑡) signals at time index 𝑡 such that11

𝒙(𝑡) =

[
ĩ(𝑡)
ṽ(𝑡)

]
∈ ℝ2×1 (2.3)

The VI-waveform is, accordingly, defined as the 𝑑-historical samples of the current
and voltage signals till time index 𝑡 (inclusive) and will be hereafter denoted by

11The range of the normalized signals is in fact [−1, 1]2×1 but we rather keep the formulation more
generic to accommodate, for instance, outlier-aware normalization.
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𝒙𝑡−𝑑∶𝑡

𝒙𝑡−𝑑∶𝑡 =

[
ĩ𝑡−𝑑∶𝑑
ṽ𝑡−𝑑∶𝑑

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĩ(𝑡 − 𝑑 + 1)
ĩ(𝑡 − 𝑑 + 2)

⋮

ĩ(𝑡 − 1)
ĩ(𝑡)

ṽ(𝑡 − 𝑑 + 1)
ṽ(𝑡 − 𝑑 + 2)

⋮

ṽ(𝑡 − 1)
ṽ(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ ℝ2𝑑×1 (2.4)

where 𝑑 is a design hyperparameter and is chosen in all our experiments such that
the VI-waveform comprises one complete period of the voltage and current signals
based on the grid- and sampling-frequencies. In other words,

𝑑 =
⌈
𝐹𝑠

𝐹𝑔

⌉
(2.5)

and accordingly ranges in our experiments from 42 samples for the 2.5 kHz sam-
pling frequency to 500 samples for the 30 kHz original sampling frequency of PLAID,
where ⌈⋅⌉ denotes the ceiling function. The VI-waveform 𝒙𝑡−𝑑∶𝑡 is the input signal
to all our models.

Our choice of a load signature along with unsupervised feature extractors are mo-
tivated by two main advantages over prior work. First, our approach permits ro-
bust adaptation to different sampling rates and noisy measurements for reliable
extraction of stable representative features. Geometric features of VI-trajectories (as
adopted in [Hassan et al. 2014, Gao et al. 2015, Lam et al. 2007]) require an educated
guess from domain experts for generic, representative set of features. Yet, they re-
main vulnerable to measurement noise and discretization error at lower sampling
rates.

Second, raw VI-waveforms preserve valuable temporal information (such as the di-
rectionality of the phase shift) that in some cases accommodate the most (or even the
only) discriminative feature between certain loads. An example of such a case has
been discussed in the preceding section and illustrated in the RC- and RL-circuits of
Figure 2.2. Undirected VI-trajectory features (e.g. VI-images [Gao et al. 2015]) dis-
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card this information and are, accordingly, expected to suffer from unidentifiability
limitations.

We, however, support the repeatedly reported claim that amplitude information is
to be discarded in order to support generic load identification (i.e. a higher level
of abstraction than specific instance identification) and avoid calibration problems.
Therefore, we discard all amplitude information through normalization similar to
[Gao et al. 2015].

2.4.3. Training Data

Let D(train), or simply D to avoid tedious pedantry, denote the set of training data
comprised of 𝑁 pairs of load signatures 𝒙𝑡−𝑑∶𝑡 and the corresponding load category
𝑦 such that

D=
{(

𝒙(𝑛)
𝑡−𝑑∶𝑡, 𝑦

(𝑛))}𝑁

𝑛=1
(2.6)

where the superscript 𝑛 denotes the 𝑛th data item, 𝑁 is the size of the dataset, 𝒙(𝑛)
𝑡−𝑑∶𝑡

is the VI-waveform (signature) of the 𝑛th load, and 𝑦(𝑛) ∈ 𝕐 is the corresponding
load category with 𝕐 = {𝑦𝑚}𝑀𝑚=1 being the space of 𝑀 load categories. In D, and
without yet any sort of data augmentation (which is to be discussed next) the load
signature 𝒙(𝑛)

𝑡−𝑑∶𝑡 is the very last period of each load measurement in PLAID.

For notational convenience, we will occasionally omit the superscript ⋅(𝑛) unless this
becomes a source of confusion.

2.4.4. Data Augmentation for Translational Invariance

In the preceding subsections, the definition of the load signature 𝒙𝑡−𝑑∶𝑡 comprised
an unspecified parameter, namely, the time index 𝑡. The time index 𝑡 is an indicator
of the phase of the voltage and current signals, and a change in that index maps to
a phase shift (or a translation) in each signal.

In unsupervised data-driven feature extractors (such as the model adopted in this
work), it is of a paramount importance to avoid leaking information about the tar-
get variable (the category of the load in our case) through irrelevant variables (e.g.
the time index). For example, with an unlucky selection of the sub-segments’ phase
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per load the model may learn to predict the load category merely from the phase (or
time index) of the corresponding sub-segment rending itself invaluable for mean-
ingful predictions.

It is, therefore, essential to attain non-informativeness of the irrelevant time index 𝑡
with regard to the target variable (load category) in order to achieve reliable feature
extraction. Explicitly stated, it is required to render the model invariant to transla-
tions in the input signals. While there exist neural net models that enable encoding
such invariances directly in their architectures, we rather adopt an alternative and
commonly adopted approach to achieve translation invariance known as data aug-
mentation or algorithmic expansion of training data.

Formally stated , the objective is to render the time index variable 𝑡 non-informative
with regard to the load category 𝑦 such that

𝑝(𝑦 | 𝑡) = 𝑝(𝑦) (2.7)

where 𝑝(𝑦 | 𝑡) is the conditional probability of the load category 𝑦 given the time in-
dex 𝑡 while 𝑝(𝑦) is the prior distribution of load categories (interpreted, for instance,
as how often a certain load is found in addressed buildings). In this case, the two
random variables 𝑦 and 𝑡 are said to be statistically independent and this property
is denoted by 𝑦 ⟂⟂ 𝑡. Let 𝑝(𝑦, 𝑡) denote the joint distribution of both variables, then it
holds from Equation (2.7) that

𝑝(𝑦, 𝑡) = 𝑝(𝑦 | 𝑡) 𝑝(𝑡)
= 𝑝(𝑦) 𝑝(𝑡)

but also
𝑝(𝑦, 𝑡) = 𝑝(𝑡 | 𝑦) 𝑝(𝑦)

from which it holds
𝑝(𝑡 | 𝑦) = 𝑝(𝑡) (2.8)

(which also serves as the proof of the symmetry property of statistical indepen-
dence). Relevant to this discussion though is the implication of Equation (2.8) which
is stated as follows. The distribution of the phase shift is identical over all load cat-
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egories. This requirement can be satisfied by either aligning phases12 of all mea-
surements such that 𝑡 follows a delta distribution13 or randomly selecting the phase
of each measurement so that 𝑡 follows a uniform distribution over its support. The
former approach is vulnerable to noisy measurements and alignment artifacts. The
latter requires a relatively large dataset (free of biases) to achieve uniformity. For
the example of PLAID with around 100 measurements per category and 500 bins
of support for the phase shift 𝑡, neither uniformity nor independence (condition
Equation (2.8)) is likely to take place.

In order to satisfy Equation (2.8), the training dataset is augmented with sets of
translated sub-segments for each measurement such that the phase is always uni-
formly distributed conditioned on any measurement. Stated differently, all loads
contribute equally to the augmented training set with respect to phase shift, so that
the latter is no longer informative about from which load it has been produced. We
first formulate the translational invariance data augmentation, followed by a prac-
tical consideration.

Let 𝔗{⋅}−1 denote the inverse translational operator defined on a signal 𝒙(𝑡) as

𝔗−1
𝜏 𝒙(𝑡) = 𝒙(𝑡 − 𝜏) (2.9)

and similarly for a sub-segment of 𝒙 as

𝔗−1
𝜏 𝒙𝑎∶𝑏 = 𝒙(𝑎−𝜏)∶(𝑏−𝜏) (2.10)

where 𝜏 ∈ ℤ is the amount of shift in time (see Section 1.6).

For each item in the original dataset, we augment the training dataset with trans-
lated copies of that item covering the whole support14 of the time index 𝑡

D̃=
⋃

(𝒙𝑡−𝑑∶𝑡, 𝑦)∈D

{(
𝔗−1

𝜏 𝒙𝑡−𝑑∶𝑡, 𝑦
) ||| 𝜏 = 0, 1, 2, ⋯ , 𝑑 − 1

}
(2.11)

12In general, any operation controlling the phase 𝑡 so as to render it independent of the load label
would suffice, and phase alignment (that is, aligning all measurements to a fixed phase) is just an
example.

13Which has to hold in test time though, and requires deployment-time phase alignment to satisfy the
common assumption of identical distributions from training to test.

14Assuming a periodic signal such that 𝒙(𝑡) = 𝒙(𝑡 + 𝑛𝑇 ) for some positive integer 𝑛, we refer to the
set 0, 1,… , 𝑇 − 1 as the support of the phase shift since no other value for the phase 𝑡 can produce
further variations in the waveform.
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In words, D̃ comprises all possible 𝑑-length sub-segments from the last two periods
of each measurement (see Figure 2.4). Observe that the load label 𝑦 remains invari-
ant to the translation index 𝜏 which affects only the phase shift of the waveform.
This is the key ingredient we intend for the data-driven model to learn.

Equation (2.11) shows an extreme case of translation invariance data augmenta-
tion in which training data is expanded by unit-step translations given by 𝜏 =
0, 1, 2, … , 𝑑 − 1 and the original dataset is expanded by a factor of 𝑑. In this case,
all possible values of 𝑡 are observed exactly once for each data sample rendering
the conditional probability 𝑝(𝑡 | 𝑦) a discrete uniform distribution over the support
{0, 1,… , 𝑑 − 1} (i.e. independent of 𝑦) such that 𝑝(𝑡 | 𝑦) = 1∕𝑑 for all 𝑦. Stated equiv-
alently, the marginal probability 𝑝(𝑡) becomes

𝑝(𝑡) =
∑
𝑦∈𝕐

𝑝(𝑡 | 𝑦) 𝑝(𝑦) = 1
𝑑

∑
𝑦∈𝕐

𝑝(𝑦) = 1
𝑑
= 𝑝(𝑡 | 𝑦)

for any 𝑦, and that satisfies the targeted independence 𝑡 ⟂⟂ 𝑦.

For practical feasibility, we rather consider expanding the dataset with 𝜖-step trans-
lations such that 𝜏 = 0, 𝜖, 2𝜖, ... which expands the dataset by a factor of 𝑑∕𝜖 (rather
than 𝑑). This introduces the second hyperparameter 𝜖 whose objective is to balance a
trade-off between computational feasibility and translational invariance. This aug-
mentation parameter is set to 𝜖 = 10 steps in all our experiments. We denote this
𝜖-dependent relaxed expansion by D̃𝜖 defined as

D̃𝜖 =
⋃

(𝒙𝑡−𝑑∶𝑡, 𝑦)∈D

{(
𝔗−1

𝜏 𝒙𝑡−𝑑∶𝑡, 𝑦
) ||| 𝜏 = 0, 𝜖, 2𝜖, ... and 𝜏 ⩽ 𝑑 − 1

}
(2.12)

where 𝜖 ∈ {1, 2,… , 𝑑} is a positive integer with 𝜖 = 1 denoting perfect augmen-
tation with the highest computational cost while 𝜖 = 𝑑 denotes no augmentation.
We discuss the effects of this relaxation on the performance of the trained model in
Section 2.7.7.

Figure 2.4 visually illustrates the data augmentation procedure using the two peri-
ods of the normalized current signal from a selected load in PLAID.

In a nutshell, data augmentation provides a larger set of training data diminishing
the effect of overfitting, eliminates the need for phase alignment of the signals, and
more importantly renders a fully connected neural network invariant to the initial
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Figure 2.4.: Illustration of the adopted artificial expansion of training data from
two periods of an end-use load (air conditioner) in order to enforce
translation-invariant prediction in the adopted models. The sampling
rate is 30 kHz, grid frequency is 60 Hz, and dimensionality is, therefore,
𝑑 = 500.

phase of the extracted signatures. As a result, the model becomes more translation-
invariant and, accordingly, more robust to signal variations during steady-state op-
eration of appliances.

As noted earlier [Baptista et al. 2018, Davies et al. 2019], such translation invariance
is also achievable using a transitional classifier (e.g. dense stack of neural net layers)
fitted on top of a stack of translation-equivariant (e.g. convolutional) layers LeCun
et al. [1998a], Krizhevsky et al. [2012].

2.5. Model Architecture

In this section, we introduce our proposed model for real-time load identification
based on an ensemble of small neural networks. First, we introduce the architec-
ture of a single base model in Section 2.5.1. Afterwards, we detail in Section 2.5.2
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how base models are integrated in an ensemble for a final decision on the predicted
load category. We then discuss relevant remarks and advantages of the proposed
architecture in Section 2.5.3.

For notational convenience and without loss of generality, we formulate the pro-
posed model based on the original dataset D as defined in Equation (2.6), but the
formulation remains valid for any augmented set D̃𝜖.

2.5.1. The Base Model

The proposed model is an ensemble of small binary neural nets each referred to
as a base model and a final committee decision mechanism. Prior to detailing the
complete model architecture, we first describe the functionality and architecture of
the base model.

Loosely stated, the base model is a small binary neural network targeted with dis-
tinguishing between particularly two different load categories. The architecture re-
mains identical across all base models, but each pair of class labels leads to a partic-
ular set of parameter values15. Within a given pair of class labels, the output of the
corresponding base model is interpreted as the likelihood of a particular one of the
two labels knowing that the true class is either of the two.

Formally, let 𝑦𝑖 and 𝑦𝑗 be a selected pair of class labels such that 𝑦𝑖, 𝑦𝑗 ∈ 𝕐 . Let
further 𝑔(𝑖,𝑗) ∶ ℝ2𝑑×1 → [0, 1] denote a mapping from a load signature 𝒙𝑡−𝑑∶𝑡 ∈ ℝ2𝑑×1

(that is, the 2𝑑-dimensional VI-waveform of a load) to the parameter 𝑝 = 𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡)
of a Bernoulli distribution so that

𝑝
(
𝑦𝑖

||| 𝒙𝑡−𝑑∶𝑡, 𝑦 ∈ {𝑦𝑖, 𝑦𝑗}
)
= Bernoulli(𝑝) = Bernoulli

(
𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡)

)
(2.13)

where 𝑝(𝐴 |𝐵) denotes the conditional probability of the event (or random variable)
𝐴 on the event 𝐵 assuming it has occurred. Equation (2.13) is interpreted as how
likely it is for the true load category to be 𝑦𝑖 given its load signature 𝒙𝑡−𝑑∶𝑡 and the
knowledge that it can only be either of the two classes 𝑦𝑖 or 𝑦𝑗 based on the adopted
selection mechanism.

15Parameters of a neural net are generally weights and biases of each linear (or affine) transformation.
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During training, the selection mechanism that guarantees the assumed condition
𝑦 ∈ {𝑦𝑖, 𝑦𝑗} is simply training that specific base model on the subset B(𝑖,𝑗) comprised
exclusively of 𝑦𝑖 and 𝑦𝑗 load categories

B(𝑖,𝑗) =
{
(𝒙𝑡−𝑑∶𝑡, 𝑦) ∈ D

||| 𝑦 ∈ {𝑦𝑖, 𝑦𝑗}
}

(2.14)

Upon deployment though, no selection is supposed to take place, and hence the
second condition 𝑦 ∈ {𝑦𝑖, 𝑦𝑗} is in some cases violated. In other words, a given test
sample 𝒙∗

𝑡−𝑑∶𝑡 may belong to any of the 𝑀 target classes while the model has been
trained on the two 𝑖th and 𝑗th categories. It is unknown a priori whether the given
test sample 𝒙∗

𝑡−𝑑∶𝑡 indeed belongs to the training data distribution for that specific
base model or it is an out-of-distribution sample. In fact and as Section 2.5.2 will
illustrate, a test sample 𝒙∗

𝑡−𝑑∶𝑡 whose real load label is e.g. 𝑦∗ is an out-of-distribution
sample for exactly

(𝑀
2

)
− (𝑀 − 1) base models which never observed the class 𝑦∗ in

their selected training sets B(𝑖,𝑗).

Nevertheless, the hope is that the trained model exhibits an abstaining behavior
(such that 𝑔(𝑖,𝑗)(𝒙∗

𝑡−𝑑∶𝑡) → 0.5 ) for out-of-distribution samples stating that it is un-
certain about its own prediction based on the the current sample since it belongs
to a class outside its two-element label space {𝑦𝑖, 𝑦𝑗}. In other words, the model is
supposed to be highly certain of its prediction

||| 𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡)∗ − 0.5 ||| → 0.5 if 𝑦∗ ∈ {𝑦𝑖, 𝑦𝑗} (2.15)

if the condition holds, and uncertain otherwise

||| 𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡)∗ − 0.5 ||| → 0 if 𝑦∗ ∉ {𝑦𝑖, 𝑦𝑗} (2.16)

assuming the model’s sigmoidal activation is an indicator of its predictive uncer-
tainty16. Such a behavior is better observed in Bayesian models (e.g. Bayesian neural
nets (BNN)17) [Gal 2016] but we delegate this approach to future work.

As mentioned earlier, a base model 𝑔(𝑖,𝑗) is a shallow neural network whose archi-
tecture is defined by two affine transformations each followed by a sigmoidal acti-

16Gal [2016], for example, illustrates that a sigmoidal function is not a valid indicator of uncertainty.
17That is, neural networks with stochastic synaptic connections (aka weights or parameters).
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vation function

𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡) = 𝜎
(
𝐰(𝑖,𝑗)
2 tanh

(
𝐖(𝑖,𝑗)

1 𝒙𝑡−𝑑∶𝑡 + 𝒃(𝑖,𝑗)1

)
+ 𝑏(𝑖,𝑗)2

)
∈ [0, 1] (2.17)

where 𝜎(𝑥) = (1 + exp(−𝑥))−1 is the logistic function and tanh(𝑥) = 2𝜎(2𝑥) is the hy-
perbolic tangent (with their multivariate variants defined element-wise). In other
words, we consider a 3-layer neural network with 𝑑-neuron input layer, a single 30-
neuron hidden layer, and a single-neuron output layer. Model parameters comprise
the weights 𝐖(𝑖,𝑗)

1 ∈ ℝ30×2𝑑 , 𝐰(𝑖,𝑗)
2 ∈ ℝ1×30 and the biases 𝒃(𝑖,𝑗)1 ∈ ℝ30×1, 𝑏(𝑖,𝑗)2 ∈ ℝ of

each affine transformation, leading to a model size (quantified as number of train-
able parameters) of 60𝑑 + 61 parameters. For PLAID with 𝐹𝑠 = 30 kHz, 𝐹𝑔 = 60 Hz,
and 𝑑 = 𝐹𝑠∕𝐹𝑔 = 500 samples, the resulting base model size is ∼ 30 × 103 param-
eters. The model size is a linear function of (and mostly affected by) the sampling
frequency 𝐹𝑠.

With the selected subset B(𝑖,𝑗) and the binary cross-entropy loss function18, (details
on which are delegated to Chapter 5 for a more elaborate discussion on a similar
approach) a base model is trained so as to maximize the log-likelihood of observing
the given training dataset. We utilized matlab’s implementation of the conjugate
gradient descent with random restarts [Powell 1977] as an optimizer for all models.
A final remark is that, we only train a base model 𝑔(𝑖,𝑗) for each 𝑖 < 𝑗 pair since
we can utilize its reflection 1 − 𝑔(𝑖,𝑗) as the likelihood of the second class label 𝑦𝑗
(that is 𝑝

(
𝑦𝑗

||| 𝒙𝑡−𝑑∶𝑡, 𝑦 ∈ {𝑦𝑖, 𝑦𝑗}
)
= Bernoulli

(
1 − 𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡)

)
) under identical

conditions.

In Figure 2.5, a base model consists of the input layer (left-most) and a single row
of the middle layers (a hidden layer and an output layer). Next, we discuss how the
whole ensemble is constructed.

2.5.2. The Ensemble Architecture

The ensemble architecture comprises a one-vs-one realization of the multi-class clas-
sification task using binary classifiers. A base model 𝑔(𝑖,𝑗) is trained on an appropri-

18Later work (e.g. [Gast and Roth 2019]) showed empirically that using a linear layer at the output
(instead of a logistic sigmoid) and sum of squared error (SSE) as a loss function indeed drives the
network towards the targeted range, while mitigating the vanishing gradient problem. In our shal-
low networks, however, the problem of vanishing gradients was minimally, if ever, observed.
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Figure 2.5.: Illustration of the proposed model architecture. The input signal 𝒙𝑡−𝑑∶𝑡
is a VI-waveform signature of a load. This input is then distributed to
an ensemble of 1-vs-1 base models. Base model outputs are then aggre-
gated for a final prediction in the output decision layer (e.g. majority
voting or maximum confidence). Training (i.e. parameter optimization)
is performed only on the base model level. A single base model con-
sists of the input layer (left-most) along with a single row of the middle
layers (see Equation (2.17)). Layer sizes (in dimensionality) is noted top
left of each layer, and its non-linear activation (if exists) is noted top
right. The activations 𝜎(⋅) and tanh(⋅) denote the logistic and hyperbolic
tangent sigmoidal functions, respectively.
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ate subset of the training data (that is, B(𝑖,𝑗)) which comprises exclusively samples
of either of the two class labels 𝑦𝑖 and 𝑦𝑗 for each class combination 𝑦𝑖 and 𝑦𝑗 where
𝑖 < 𝑗. Accordingly, a total of

(𝑀
2

)
base models are trained for 𝑀 load categories us-

ing the aforementioned training procedure where
( ⋅
⋅

)
is the binomial coefficient.

From the ensemble of
(𝑀
2

)
base models, we reach a final class prediction using the

committee decision layer. An example of a committee decision function includes
majority voting. Majority voting counts the number of class votes across base mod-
els for each target class, where a class vote for class 𝑦𝑖 against 𝑦𝑗 given the load
signature 𝒙𝑡−𝑑∶𝑡 is defined as 1(𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡) ≥ 0.5) if 𝑖 < 𝑗 and 1(𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡) ≤ 0.5) if
𝑖 > 𝑗 where 1( ⋅ ) is the indicator function. The total class vote for the 𝑖th class across
all base models is given by

𝑔(𝑖)(𝒙𝑡−𝑑∶𝑡) =
∑
𝑗≠𝑖

1
(
𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡) ≥ 0.5 sgn(𝑗 − 𝑖)

)
(2.18)

where sgn( ⋅ ) is the sign function. The final class prediction can be then defined as

�̂�(𝒙𝑡−𝑑∶𝑡) = arg max
𝑦𝑖∈𝕐

𝑔(𝑖)(𝒙𝑡−𝑑∶𝑡) (2.19)

which means that the estimated class is the one with the most votes.

Another example of a final committee decision mechanism that leverages the prob-
abilistic interpretation of base model scores, is the maximum confidence voting in
which the final class score is an average of the base model predictions 𝑔(𝑖,𝑗) inter-
preted as their confidence scores

𝑔(𝑖)(𝒙𝑡−𝑑∶𝑡) =
1

𝑀 − 1

(∑
𝑖 < 𝑗

𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡) +
∑
𝑖 > 𝑗

(
1 − 𝑔(𝑖,𝑗)(𝒙𝑡−𝑑∶𝑡)

))
(2.20)

and the final class prediction remains the same as in Equation (2.19).

This adopted one-vs-one scheme indeed represents one of the scalability limitations
of such an architecture. In other words, one-vs-one multi-class generalization of
binary classifiers scales quadratically with the number of classes. This is treated in
this work simply by adopting small-sized base models.

As an example, PLAID contains 11 load categories leading to a total of 55 base mod-
els, each comprising its own parameters resulting in a total model size of 0.5(𝑀2 −
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𝑀)(60𝑑 + 61) ≃ 1.65 × 106 trainable parameters for the sampling frequency 𝐹𝑠 = 30
kHz. Nevertheless, the total training time of all 55 base models is 1 ∼ 2 hours on
a modern 12GB-GPU unit. Model size and training time are notably reduced for
lower sampling rates or reduced number of classes.

Finally, we utilize a validation-based early stopping as a regularization technique
to avoid over-fitting [Prechelt 2012]. As mentioned earlier, PLAID measurements
contain, for each load category, several instances from various households. In order
to improve model generalization to new buildings, a predefined fraction of house-
holds assigned originally for training is reserved for validation19. Training and val-
idation subsets are mutually exclusive building-wise. Please note that, this is only a
discussion of how the training set is split for gradient-based optimization and early
stopping. For evaluating our model, a suitable cross validation scheme is adopted
on a prior level as shall be discussed in the rest of this chapter.

Figure 2.5 illustrates the architecture of the proposed model. Leftmost is the input
layer representing the queried load signature 𝒙𝑡−𝑑∶𝑡 which is then distributed to all
base models 𝑔(𝑖,𝑗) whose outputs are aggregated in a rightmost decision layer.

2.5.3. Remarks

The proposed model is characterized by three main features, namely, modularity
of the one-vs-one ensemble, data-driven-ness of base models, and a small-sized base
model architecture. These aspects led to various advantages of the proposed model,
of which we highlight the following.

First, it allows for a straightforward and simple incorporation of domain knowl-
edge. An example of such a feature is illustrated in Section 2.7 where knowledge of
the categories of loads in each target building leads to a notable boost in identifica-
tion performance and reduction in total model size by simply ruling out irrelevant
base model (that is, base model models whose labels includes non-existent loads).
Similarly, preference can be directed to certain target loads by simple adjustments
to the final decision layer (e.g. using a weighted decision function).

19In other words, this fraction is not used for gradient-based optimization.
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Second, the adopted shallow and small architectures are more suitable for embed-
ded system deployments, where a single sub-network is around 30 × 103 parame-
ters in size. Training such small models with standard gradient-based optimization,
even with the extensively augmented dataset, is less than a couple of minutes on a
modern GPU.

Third, it is known that neural networks are one of the unstable learning algorithms
with respect to training data [Aggarwal 2014] (i.e. they are sensitive to changes in
the training set). For unstable models, an ensemble approach known as Bootstrap
aggregation (aka Bagging) [Breiman 1996, Friedman and Hall 2007] is expected to
provide more robust results than a single base model20. Our adopted ensemble
framework shares numerous similarities with Bagging.

We also highlight some limitations of the adopted architecture that we propose for
future work on the topic in Section 2.8.

2.6. Performance Assessment Measures

In this section, we introduce the adopted measures for empirically quantifying the
performance of our model on a benchmarking dataset. The adopted metrics rep-
resent one generalization of the standard binary classification measures [Powers
2011]. These standard measures are detailed in Section 5.5 and the unfamiliar reader
will benefit from consulting that section prior to the present one.

Let 𝚲 = [Λ𝑖𝑗]
𝑀,𝑀
𝑖,𝑗=1 denote the 𝑀x𝑀 square confusion matrix whose 𝑖th-row 𝑗th-

column element Λ𝑖𝑗 represents the number of data samples whose true class label is
𝑦 = 𝑦𝑖 and model prediction �̂� = 𝑦𝑗 over some evaluation dataset D(test) with 𝑁 (test)

data samples, denoted hereafter simply by D with 𝑁 for brevity21. Let further 𝑁𝑚

denote the number of occurrences of class 𝑦𝑚 in the target population.

20In Bootstrap aggregation, an ensemble of weak, multi-class learners, each trained on a randomly
sampled subset of the whole training dataset, is used rather than binary-classifiers generalized to a
multi-classification problem.

21This should not cause any confusion with the training set denoted earlier by D since we primarily
consider the evaluation set hereafter. Should a confusion arise though, we will revert back to dis-
tinctly superscripted denotations D(train) and D(test) for the training and evaluation sets, respectively.
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We define the per-class performance indicators as

True Positives: TP𝑚 =
∑

(𝒙𝑡−𝑑∶𝑡, 𝑦)∈D

1
(
�̂�(𝒙𝑡−𝑑∶𝑡) = 𝑦𝑚 & 𝑦 = 𝑦𝑚

)
True Negatives: TN𝑚 =

∑
(𝒙𝑡−𝑑∶𝑡, 𝑦)∈D

1
(
�̂�(𝒙𝑡−𝑑∶𝑡) ≠ 𝑦𝑚 & 𝑦 ≠ 𝑦𝑚

)
False Positives: FP𝑚 =

∑
(𝒙𝑡−𝑑∶𝑡, 𝑦)∈D

1
(
�̂�(𝒙𝑡−𝑑∶𝑡) = 𝑦𝑚 & 𝑦 ≠ 𝑦𝑚

)
False Negatives: FN𝑚 =

∑
(𝒙𝑡−𝑑∶𝑡, 𝑦)∈D

1
(
�̂�(𝒙𝑡−𝑑∶𝑡) ≠ 𝑦𝑚 & 𝑦 = 𝑦𝑚

)
for each class 𝑦𝑚 ∈ 𝕐 where �̂�(𝒙𝑡−𝑑∶𝑡) is the class prediction for the sample 𝒙𝑡−𝑑∶𝑡.
These measures reduce the confusion matrix 𝚲 to a standard 2×2 aggregated score
matrix for each class 𝑦𝑚 from which normalized measures can be estimated. Nor-
malized measures for the 𝑚th class are then defined as

recall𝑚 = TPR𝑚 =
TP𝑚

TP𝑚 + FN𝑚
(2.21)

precision𝑚 = PPV𝑚 =
TP𝑚

TP𝑚 + FP𝑚
(2.22)

specificity𝑚 = TNR𝑚 =
TN𝑚

TN𝑚 + FP𝑚
(2.23)

F𝑚
1 -score = F1S𝑚 =

2TP𝑚
2TP𝑚 + FP𝑚 + FN𝑚

(2.24)

where TPR is the true positive rate or recall, PPV positive predictive value or preci-
sion, and TNR is the true negative rate or specificity.

The per-class metrics are further aggregated to a single scalar-valued measure via
unweighted average leading to the macro-F1-score defined as

macro-F1-score = 1
𝑀

𝑀∑
𝑚=1

F𝑚
1 -score (2.25)

or the class weighted average known as weighted-F1-score and given by

weighted-F1-score =
𝑀∑
𝑚=1

𝑁𝑚

𝑁
F𝑚
1 -score (2.26)
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Additionally, we utilize the scalar-valued unweighted accuracy metric 𝛼

𝛼 =
∑

𝑖 Λ𝑖,𝑖∑
𝑖,𝑗 Λ𝑖,𝑗

= tr(𝚲)
𝟏1,𝑀𝚲𝟏𝑀,1

= tr(𝚲)
𝑁

(2.27)

and Cohen’s Kappa 𝜅 measure [Ben-David 2008] given by

𝜅 =
𝛼 − 𝑝𝑒
1 − 𝑝𝑒

(2.28)

for an overall performance assessment and benchmarking against prior art and re-
lated work, where 𝑝𝑒 is the expected agreement with the prior class distribution,
𝟏𝑁,𝑀 is the 𝑁 ×𝑀 matrix of all ones, and tr(⋅) is the matrix trace operator.

Loosely speaking, the main distinction between the accuracy metric 𝛼 and Cohen’s
kappa 𝜅 is the metric’s baseline. The former is normally benchmarked against a
strictly random classifier that simply assigns absolutely random guesses in each
prediction with no prior information (i.e. assuming equiprobable classes) 𝑝(𝑦 |𝒙) =
1∕𝑀 ∀𝑦 ∈ 𝕐 . The latter, however, quantifies the improvement against a naïve clas-
sifier that leverages prior class distributions in its random guesses 𝑝(𝑦 |𝒙) = 𝑝(𝑦).
Cohen’s Kappa 𝜅 was, therefore, originally proposed in order to lessen the biased-
ness of the accuracy, precision, and recall measures in highly imbalanced class dis-
tributions [Cohen 1960, Aggarwal 2014].

The expected agreement is defined as

𝑝𝑒 =
𝟏1,𝑀𝚲
𝑁

⏟⏟⏟
classifier marginals 𝑝(�̂�)

⋅
𝚲𝟏𝑀,1

𝑁
⏟⏟⏟

empirical priors 𝑝(𝑦)

=
tr(𝚲𝟏𝑀,𝑀𝚲)

𝑁2
(2.29)

whose first term is the estimated class marginals 𝑝(�̂�) of the classifier after marginal-
izing out all load signatures (which is, empirically, the normalized row sum of the
confusion matrix, or intuitively how often the classifier predicts a certain class re-
gardless of the load signature). The second term (a column sum of the confusion
matrix) represents how often this class indeed appears in a real dataset (that is, the
empirical priors). Accordingly, the kappa measure 𝜅 is defined as

𝜅 =
𝑁 ⋅ tr(𝚲) − tr(𝚲𝟏𝑀,𝑀𝚲)

𝑁2 − tr(𝚲𝟏𝑀,𝑀𝚲)
(2.30)



– 40–

2.7. Experiments and Results

In this section, we evaluate and empirically investigate the performance of our pro-
posed model on a real-world energy dataset. First, the dataset is introduced in Sec-
tion 2.7.1. Specifications of the proposed model for this specific dataset are detailed
in Section 2.7.2. Afterwards, we detail the adopted evaluation framework in Sec-
tion 2.7.3 and report our empirical results. We then discuss further investigations of
the model’s robustness against training data scarcity in Section 2.7.5, reduced sam-
pling frequency in Section 2.7.6, and phase shift of load signatures in Section 2.7.4.
Section 2.7.8 discusses reported results and compares our contribution to prior art
on the addressed problem.

2.7.1. The PLAID Dataset

We evaluate our proposed model on the publicly available dataset named plug-
level appliance identification dataset (PLAID) [Gao et al. 2014]. PLAID comprises
∼ 103 instantaneous voltage and current measurements of 𝑀 = 11 household load
categories. Each load category is represented by a variety of load instances with
different models across 55 residential buildings located in the US. Table 2.1 lists all
load categories in PLAID along with the load instance count per category and the
ratio of each category in the dataset.

Acquired measurements are on the plug-level of each load (i.e. single load opera-
tion), and sampled at 𝐹𝑠 = 30 kHz where the standard grid-frequency for domestic
end-use in the US is 𝐹𝑔 = 60 Hz. Each measurement in PLAID comprises a 1- to
13-second window of voltage and current during (or shortly after) the turn-on tran-
sient of a load. Since transient operation is outside the scope of this work, training
and evaluation sets are extracted from merely the last two periods of each measure-
ment22.

22An exception though, is the final evaluation setups (see Section 2.7.6) which extracts the evaluation
dataset from the last second of each measurement.
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Table 2.1.: List of load categories, instance counts, and ratio of instances in each
category in the PLAID dataset [Gao et al. 2014].

Load category Instance count 𝑁𝑚 Weight 𝑁𝑚
𝑁

Air conditioner (AC) 66 0.062
Compact fluorescent lamp (CFL) 175 0.163
Fan 115 0.107
Fridge (FR) 38 0.035
Hairdryer 156 0.145
Heater 35 0.033
Bulb 114 0.106
Laptop 172 0.160
Microwave (MC) 139 0.130
Vacuum cleaner (VC) 38 0.035
Washing machine (WM) 26 0.024

2.7.2. Model Specifications

Since PLAID comprises 𝑀 = 11 load categories, there exist
(𝑀
2

)
= 55 class com-

binations 𝑦𝑖 and 𝑦𝑗 where 𝑖 < 𝑗 and for each, we train a distinct base model. A
base model as formulated by Equation (2.17) and depicted in Figure 2.5 comprises
a two-layer, fully connected, feed-forward neural network with 2𝑑 input neurons,
30 hidden neurons, a single output neuron, and sigmoidal non-linear activations.

For translation invariance, the extracted training set is augmented according to
Equation (2.12) with a translation step of 𝜖 = 10. Consequently, the training dataset
is expanded by an expansion factor of 𝑑∕𝜖 = 50 for the dimensionality 𝑑 = 500. For
lower dimensionalities (e.g. resulting from downsampling as in Section 2.7.6) the
translation step 𝜖 is adjusted so as to keep the expansion factor 𝑑 around the same
value for all experiments.

2.7.3. Evaluation Framework

For a fair comparison of our model with prior works that were empirically evalu-
ated on PLAID, we adopt the same cross validation scheme as in [Gao et al. 2015],
namely leave-one-out cross validation where “one“ here denotes a single build-
ing. In other words, measurements from a certain building (the test building) are
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held out for evaluation in an evaluation dataset D(test) while the remaining set of
measurements (across all other 54 buildings) are available to the model during the
training phase in the training set23 D(train). The process is repeated for each building
in PLAID resulting in a total of 55 evaluation folds. This cross validation scheme
follows a practical use of trained models, because the long-sought goal in all these
models is, in fact, to generalize deployments to new previously unseen buildings.

With the leave-one-out cross validation on PLAID buildings, we report our main
results in Figure 2.6 where per-class performance is shown, and Figure 2.7 where
aggregate measures are reported on a per-household basis. Additionally, Table 2.2
reports our best achieved aggregate measures of accuracy 𝛼, macro–F1-score, and
weighted-F1-score. The best result obtained for the maximum confidence decision
mechanism (see Equation (2.20)) is 𝛼 = 89.7% while the unweighted majority voting
(see Equation (2.18)) achieved 88.2% of accuracy. We report the final accuracy of this
study as 88.92%(±0.745) for an argument elaborated in Section 2.7.7.

It is observed from the figures that microwaves, compact fluorescent lamps, vacuum
cleaners, and laptops are the most identifiable loads whereas temperature control
devices (such as air conditioners, heaters, fridges, and even fans) are the least. Upon
relating these two sets to the load signatures depicted in Figure 2.3, one observed
a relationship between a load’s prediction score and non-linearities exhibited in its
signature. This supports our claim earlier that non-linearities in VI-waveforms is
expected to promote identifiability but are tackled by reliable feature engineering
and extraction.

2.7.4. Leveraging External Knowledge

As discussed earlier, one key advantage of the adopted ensembling architecture (i.e.
the one-vs-one construction) is ease of incorporation of domain knowledge. For an
illustrative example, we emulate this process through partial knowledge of targeted
load categories in a building which maps to a reduction in the label space24 𝕐 for
that specific building and correspondingly a reduction in the model size. In other
words, if a specific building is known to be empty of air conditioners, the reduced

23The training D(train) is further partitioned into a validation set for early stopping and a sub-training
set for gradient estimations.

24The reduced label space �̃� is building-specific, but we omit this dependence in notation for conve-
nience.
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Figure 2.6.: Per-load measures TNR𝑚, PPV𝑚, TPR𝑚, F1S𝑚 for 𝐹𝑠 = 30 kHz.
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Figure 2.7.: Per-building evaluation measures for all loads. Note that Cohen’s
Kappa can return an undefined value (for a zero-valued denominator)
and this is observed in the cases of buildings containing a single load
category. This applies to the 26th, 46th, and 53rd buildings from which
only washing machine, microwave, and laptop measurements were col-
lected, respectively. The 5th, 35th, 41st, 42nd, and 45th are all limited to
CFL measurements.
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label space for this building becomes �̃� = 𝕐 − {'AC'} and we rather train 45 bi-
nary networks. While this process is valid for any model (e.g. CNN), the advantage
in our construction is that reduction in the total model size is quadratic with re-
spect to label space reductions, and is (for the one-vs-one construction) given by
(𝑀 − 1)Δ − Δ2 where Δ is the reduction in label space (i.e. the number of load cate-
gories known to not exist in the target building). Leveraging external knowledge, of
course, improves the performance where the best-case accuracy reaches 𝛼 = 94%.

For all upcoming experiments, we repeat each experiment twice. The first is per-
formed using the whole label space 𝕐 and the second exploits external knowledge
in reducing the label space �̃� using the list of appliances in each household. This is
depicted in the right and left sub-figures, respectively, of Figures 2.8 to 2.10.

2.7.5. Training under Data Scarcity

In the first study, we investigate the effect of training data size on the performance of
the proposed model and how it performs under extreme situations of data scarcity.
To this end, we repeatedly reduce the size of the training dataset and estimate the
total performance using the same cross validation technique for each reduction.

In each test case, a subset B(𝑟) ⊆ D(train) is randomly sampled from the training
set D(train) such that 𝑟 = |B| ∕ || D(train) || represents the ratio of the subset size to
the whole training set where |A| denotes the cardinality of the set A. The training
subset B(𝑟) is sampled building-wise such that either all samples from a building
are included in B(𝑟) or none, until the targeted size ratio 𝑟 is reached. This approach
emulates a more realistic data scarcity condition (where certain households reject
to participate in data acquisition) than randomly discarding individual measure-
ments. Varying the subset size 𝑟 permits emulating data scarcity situations on which
we evaluate the proposed model.

Figure 2.8 shows the effect of training data reduction (starting from extreme cases of
only 100 data samples 𝑟 ≃ 0.1 to the complete training set 𝑟 = 1.0). As expected, the
performance of the model degrades notably as the size of the training data decreases
but notable also is the approximate linearity of this degradation through a wide
range 𝑟 ∈ [0.2, 0.9] of training data reductions.
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Figure 2.8.: An empirical study (using the aggregate evaluation measures: accuracy
𝛼 and kappa 𝜅) of the sensitivity of the trained models to the size of the
training dataset. In the figures, 𝑟 is the ratio of the randomly sampled
subset B(𝑟) ⊆ D(train) to the size of the canonical training set D(train). A
reduced label space �̃� is where the list of load categories in the target
building is known in advance and missing classes are excluded from
the final committee decision mechanism.

2.7.6. Identifiability under Reduced Sampling Rates

In the second study, we use the complete training dataset (i.e. 𝑟 = 1) but rather re-
duce the sampling rate of the raw measurements 𝐹𝑠 through downsampling. Down-
sampling is performed in three stages for which we utilized matlab’s implemen-
tation of a sample rate converter given by the function mfilt.firsrc. First the
closest rational number to the ratio 𝐹𝑠∕𝐹𝑠 is estimated such that

𝐹𝑠

𝐹𝑠
≃ 𝑎

𝑏
∈ ℚ (2.31)
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where 𝐹𝑠 is the target frequency, and 𝑎, 𝑏 ∈ ℕ. The signal is first upsampled by a fac-
tor 𝑎, then filtered using a suitable finite impulse response (FIR) filter to avoid alias-
ing, and finally decimated by a factor 𝑏 to reach the targeted sampling frequency
𝐹𝑠.

For different sampling frequencies 𝐹𝑠, the study reveals the robustness of our method
with respect to changes in the sampling frequency. As observed in Figure 2.9, the ac-
curacy slightly drops but is always well above 80% even at 2.5 kHz. Apart from the
rapid loss in performance from the original sampling frequency of 30 kHz, perfor-
mance thereafter remains more stable (that is within ±2.3%) than reported in prior
work [Gao et al. 2015] in which the accuracy varied in a range of ±7% within the
same range of frequencies. The rapid drop in performance between 30 kHz and 25
kHz is unknown to us, but is most likely attributed to the fractional decimation
procedure that was not deeply investigated in this work25. Further investigation is
delegated to future work.

2.7.7. Temporal Stability

In this experiment, we test the sensitivity of the proposed model to the phase shift
of the extracted segments. Towards that end, we constructed the following evalu-
ation setup. For each cross validation fold (that is, for each target building) with
the evaluation set D = {(𝒙(𝑛)

𝑡−𝑑∶𝑡, 𝑦
(𝑛))}𝑁𝑛=1 comprising the last period 𝒙𝑡−𝑑∶𝑡 of each

measurement, we construct the following phase-shifted set

D(𝜏) =
{(

𝔗−1
𝜏 𝒙𝑡−𝑑∶𝑡, 𝑦

) ||| (𝒙𝑡−𝑑∶𝑡, 𝑦
)
∈ D

}
(2.32)

where 𝜏 ∈ ℤ⩾0 is a non-negative phase shift (here ℤ⩾𝑎 denotes the set of integers in
the interval [𝑎,∞)). In D(𝜏) each load signature is shifted by 𝜏 while retaining the
same class label 𝑦. The model is then alternatively evaluated on the phase-shifted
dataset D(𝜏). For different phase shift 𝜏, such an evaluation setup puts the sought
translation invariance to the test and investigates the temporal stability of the pro-
posed model.

25For example, it was not clear to us what sort of interpolation was adopted by the matlab’s function
mfilt.firsrc for upsampling.
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Figure 2.9.: Empirical investigation of the sensitivity of the proposed model to re-
ductions in the sampling frequencies. Curves illustrate stable and min-
imal improvements upon increasing the sampling frequency except for
the relatively upper range (25-30 kHz). Robustness against reduced
sampling rates is clearly observed in the consistent and stable perfor-
mance (81.9% to 84.2% in accuracy) for the whole range from 2.5-25
kHz.

Figure 2.10 demonstrates the behavior of the proposed model over the range of
phase shifts from 0 to 1 second since PLAID comprised minimum 1-second mea-
surements. The figure depicts two phenomena, a declining trend from 89.67% of
accuracy at 𝜏 = 0 to 87.05% at 𝜏 = 1 seconds (that is, 30000 samples) revealing
the stability of our model over a wide range of phase shifts. Worth noting here is
that, loads in PLAID are not necessarily switched-on since the epoch of the mea-
surement (that is, at time 𝑡 = 0) and hence moving backwards in time increases the
likelihood of querying the model with void signatures. This partially attributes the
declining trend to the evaluation setup and renders the obtained results (in spite of
out-performing state-of-art [Gao et al. 2015]) pessimistic to an extent.
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Figure 2.10.: Illustration of the translation invariance of the proposed model and it
sensitivity to phase shift in load signatures. The model is evaluated on
a phase-shifted variants D(test)(𝜏) of the evaluation set D(test) in each
cross-validation fold. The shift spans a 1-second window starting from
the end of each measurement and going backward in time with steps of
125 samples such that 𝜏 = 0, 125, 250,⋯ , 30000 samples. Observed are
a slowly declining trend and minimal variation per period. Accounting
for variations, the best recorded accuracy is 𝛼 = 0.8892 (±0.0072) for the
complete label space.

The second phenomena is the oscillatory behavior observed in Figure 2.10 which
represents fluctuations in the observed performance within the same period (around
16.67ms). Variations in the accuracy measure within the same period are in aver-
age 0.72%. Our claim is that these variations represent a side-effect of the relaxed
expansion of the training set proposed in Equation (2.12) for computational feasi-
bility. Since the observed variations are minimal, we delegate further investigations
on this corollary to future work and report our best load identification accuracy as
0.8892 (±0.00745) with a complete label space and 30 kHz sampling frequency.



– 49–

Table 2.2.: The per-load F1-score measure of our model compared to related work
on the PLAID dataset [Gao et al. 2014]. First four loads are a compact
fluorescent lamp (CFL), a fridge (FR), a microwave oven (MC), and an air
conditioner (AC).

F1-score Gao et al. Baets et al. Baptista et al. ours2015 2017a 2018

CFL 0.971 0.956 0.909 0.698
FR 0.523 0.510 0.589 0.969
MC 0.934 0.931 0.870 0.740
AC 0.383 0.467 0.612 0.926

Hairdryer 0.784 0.798 0.847 0.741
Laptop 0.922 0.979 0.880 0.774
Vacuum 0.974 0.979 0.976 0.882

Bulb 0.840 0.806 0.848 0.956
Fan 0.689 0.601 0.542 0.986

Washer 0.698 0.688 0.806 0.961
Heater 0.000 0.822 0.719 0.894

macro-F1-score 0.702 0.776 0.782 0.866
weighted-F1-score 0.797 0.824 0.809 0.823

accuracy 𝛼 0.815 — — 0.889

2.7.8. Related Work and Prior Art

Table 2.2 depicts the per-load F1-score measure for the proposed model compared
to related work on the same dataset, in addition to aggregate measures. Gao et al.
[2015] utilized an RFT on binary VI-images while Baets et al. [2017a] and Baptista
et al. [2018] proposed CNN architectures. The table shows a notable performance
gain of our model in most load categories. While the class weighted F1-score is
almost similar to [Baets et al. 2017a], the ease of domain knowledge incorporation
or modular architecture (as discussed in Section 2.5.3) is not equally possible in
standard CNN architectures.

2.8. Conclusion and Future Work

In this chapter, we introduced a plug-level load monitoring model based on en-
sembles of small neural networks applied on raw, high-resolution current and volt-
age measurements with unsupervised, data-driven feature extraction. We evaluated
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our model on the real-work PLAID dataset with the best performance test achiev-
ing 0.8892 (±0.00745) of accuracy. The study shows the upper bound of a energy
disaggregation in load identification assuming perfect disaggregation (emulated as
plug-level monitoring) and at high sampling frequencies that most likely comprise
most electricity-related features.

Additionally, we show the advantage of using the raw VI-waveforms as load signa-
tures which was shown to promote identifiability of monitored loads. Further, the
use of an unsupervised feature extractor (that is, a data-driven model) showed reli-
able learning pattern that remained more stable and robust to discretization errors
in lower sampling rates.

It was observed that the performance notably degrades as the size of the training
data is reduced. Therefore, one of the main topics of this work will be unsuper-
vised and semi-supervised learning in energy monitoring and disaggregation (that
is, Chapter 3 and Chapter 4) addressing situations of scarce or complete unavail-
ability of training data.

While being able to reach state-of-art performance on end-use load identification
in plug-level monitoring, we highlight in the sequel numerous directions in which
this work can be extended in the future.

First, the one-vs-one ensemble results in a quadratic growth rate of the model size
with respect to cardinality of the label space. While a one-vs-all ensemble is also
possible and scales rather linearly, a problem of class imbalance will certainly arise.
Future work may investigate more flexible model architectures that mitigate this
scalability limitation.

Second, the chosen one-vs-one architecture was mostly motivated by the need for
modular architectures and ease of domain knowledge incorporation. While stan-
dard multi-class neural net architecture do not feature such modularity by default,
future work should focus on distilling such architectures.

Further, we proposed the one-vs-one ensemble architecture based on the hope of
an abstaining behavior for out-of-distribution queries. For such a task, probabilistic
models (e.g. BNNs) is more relevant and is another proposal for future work.



Chapter 3.

Unsupervised Energy Disaggregation

Obtaining clean labeled training data is oftentimes a tedious, expensive, and time-
consuming stage in various data science applications, and that similarly applies
to energy disaggregation. Training data acquisition for end-use energy disaggre-
gation can itself become energy-inefficient [Kelly and Knottenbelt 2015b], requires
laborious post-processing [Anderson et al. 2012], or becomes unreasonably invasive
[Gupta et al. 2010]. Unlabeled measurements, on the other hand, are relatively much
cheaper to obtain (even synthesize as in more recent works [Kelly and Knottenbelt
2015a, Chen et al. 2016, Henriet et al. 2018]) and require merely interfacing with the
whole-hose power meter for acquisition and storage.

In this chapter, we introduce our work on unsupervised event-based energy disag-
gregation which is a multi-stage energy disaggregation framework relying primar-
ily on abrupt changes in the aggregate signal in detecting and identifying end-use
loads with minimal reliance on domain knowledge. While featuring an unsuper-
vised learning scheme, the proposed framework additionally features a high level
of interpretability. Moreover, the proposed framework showed notable robustness
against minimal variations in hyper-parameters that, in turn, facilitated deployment
in residential and commercial settings.

This chapter is organized as follows. Section 3.1 gives a brief overview of the gen-
eral event-based unsupervised energy disaggregation framework. Section 3.2 states
the addressed problem in this chapter. The following section, Section 3.3, briefly in-
troduces two energy datasets that will be adopted for empirical validation through-
out this chapter. The disaggregation framework is then detailed one stage at a time
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starting with event-detection in Section 3.4, feature extraction in Section 3.5, event-
level clustering Section 3.6, and finally load recognition and inverse load profile
reconstruction in Section 3.7. Finally, Section 3.10 concludes this chapter with final
remarks and future work.

This work has been published by Barsim et al. [2013; 2014a;b], Barsim and Yang
[2016], Wild et al. [2015] and formulations, phrasing, experiments, and results are
partially adopted from our prior works. Additionally, part of this work was a contri-
bution from an earlier work [Barsim 2013]. Finally, this work is open-sourced under:
https://github.com/karimpedia/tafSeel.

3.1. Introduction

With the task of energy disaggregation defined (see Section 1.1), an unsupervised
setting thereof is a setting in which the task is addressed with no reliance on ex-
ternally labeled data neither in the form of sub-metered load profiles nor manually
labeled load events. This is primarily motivated by the fact that acquiring labeled,
not to mention clean, data in an adequate abundance is, in many applications, an
expensive and laborious task. In contrast, unlabeled data can be acquired in ubiq-
uitous amounts at relatively minimal costs compared to labeled data.

Even though an unsupervised disaggregation system will not be able to assign
human-sensible load names or categories due to the loss of labeled data, it defi-
nitely assists in load profile reconstruction, which can then be easily labeled e.g.
using a semi-supervised system as shall be discussed in Chapter 4.

An event-based setting for a disaggregation system is a setting in which loads’
profiles are inferred primarily from the state-changes of end-use loads which are
known commonly as events, hence the name. Such a disaggregation system relies
mainly on two assumptions. The first is that loads reflect their state-change events
in the form of abrupt changes in the aggregate load profile. The second assumption
is that state-change events are temporally sparse compared to the sampling rate of
the load profile. In other words, it is assumed that a single, or a limited number
of, loads may change state in a short interval of time. This is sometimes referred to
as the switch continuity principle (SCP) within the energy disaggregation community
[Makonin 2016].

https://github.com/karimpedia/tafSeel
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Aggregate measurements
P(𝑡) and Q(𝑡)

Event detection
(Section 3.4)

Feature extraction
(Section 3.5)

Event clustering
(Section 3.6)

Load recognition
(Section 3.7)

Profile reconstruction
(Section 3.8)

Estimated load
profiles P̂𝑙(𝑡)

Figure 3.1.: A block diagram representing the standard event-based unsupervised
energy disaggregation pipeline which will be adopted in this chapter.

A standard pipeline for an event-based energy disaggregation system comprises
four stages as depicted in Figure 3.1. The first is an event-detection stage tasked
with detecting abrupt changes in the aggregate load profile. This is then followed
by a feature extraction stage responsible for extracting representative feature vec-
tors from each detection to reliably distinguish between distinct loads in the moni-
tored circuit. Particular to unsupervised disaggregation chains, the third stage is an
event clustering stage applied to extracted features with the objective of clustering
detections that are most likely to originate from the same load instance. A second
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objective of the event clustering stage is to identify falsely claimed event detections
thus diminishing their impact on the following stages. The following stage, load
recognition, is where load components are constructed from these event detections
along with their clustering structures. From the this stage, load usage statistics (e.g.
usage time, consumed energy, stage-changes ... etc) are inferred. Optionally, a time
series segregated load profile may be also reconstructed in the last stage. Our pro-
posed framework follows this standard pipeline, and these five stages are the main
topic of Sections 3.4 to 3.8.

3.2. Problem Statement

The problem addressed in this chapter is stated as follows. Given the aggregate load
profile of a building, how much of the total energy consumption can an unsupervised disag-
gregation framework attribute to distinct end-use loads?

We illustrated in the first chapter (Section 1.2.2) the overloading usage of the term
unsupervised disaggregation, and explicated our definition thereof which matches the
machine learning definition. Accordingly, we assume in this chapter that labeled
data is unavailable or inaccessible. Additionally, we assume missing information
about the number of loads in the target building, types or categories of these loads,
nor any relevant characteristics (e.g. nominal power draw, usage times ... etc). We
address this problem with a rule-based heuristic disaggregation pipeline that will
be empirically validated on residential and commercial datasets, which will be in-
troduced in the following section.

3.3. Evaluation datasets

The proposed framework has been empirically validated and evaluated at differ-
ent stages of disaggregation on two real-world datasets. The first is a residential
dataset developed and published specifically for event-based energy disaggrega-
tion research, and is acronymed by its developers as BLUED. The second is a com-
mercial dataset that was acquired from the workplace of a company in Germany,
whose name as well as various aspects of the dataset will remain anonymous.
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3.3.1. The residential dataset

The building-level fully labeled energy disaggregation (BLUED) dataset [Anderson
et al. 2012, Anderson 2014] is a ∼7-day long electrical energy dataset acquired from
a residential building in Pittsburgh, Pennsylvania, in October 2011 that was, shortly
afterwards, made public1 to motivate and support energy disaggregation research.
The monitored building is a single-family residence with

Remarkable in BLUED, and distinct from earlier energy datasets, is the accom-
panied labeling of each event (that is, state changes of individual end-use loads)
throughout the whole monitoring period. The event-level labeling was acquired
via a separate, plug-level2 measurement system that ran in parallel to the aggre-
gate measurement acquisition system. Missing, however, from this dataset is the
sub-metered load profiles that would have of a notable value in evaluating the
load profile reconstruction stage Section 3.8. For this reason, we evaluate our re-
constructed load profiles on a commercial dataset that will be introduced shortly
(see Section 3.3.2).

The monitored residence had a two-phase3 split of loads (referred to hence forth as
phase A and B). The dataset developers noted around 50 loads in the target resi-
dence but only a fraction was observed in that short period of acquisition. Worth
mentioning as well is the notable imbalance between the two phases which is ob-
servable from the number of loads, and rate of state changes in each phase. Phase
A comprised fewer number loads, and the majority of its events were generated
by a single load, namely the fridge whereas phase B comprised a larger variety of
load categories, more state-change events, and as a result more frequent violations
of the switch continuity principle. Further details on these events will be given in
Section 4.7.

The nominal grid frequency in the US is 60Hz, and BLUED’s 12kHz raw current and
voltage measurements were accompanied with the post-processed real and reactive

1http://portoalegre.andrew.cmu.edu:88/BLUED/ at the time of this writing.
2In addition to plug-level measurement system, the authors devised feasible workarounds (e.g.
electro-magnetic sensors) to monitor loads that were unattainable via a plug-socket connection.

3In fact, it is two 120V sources originating from a 240 single-phase distribution. For this work, we
shall refer to these sources as phases (that is, phase A and B) as has been similarly adopted by BLUED
authors [Anderson et al. 2012].

http://portoalegre.andrew.cmu.edu:88/BLUED/
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power signals at the grid frequency. These two signals represent the main input to
our energy disaggregation framework.

3.3.2. The commercial dataset

The commercial dataset adopted for evaluation is a two-week dataset acquired from
the workplace of a company in Berlin. Raw current and voltage measurements were
acquired at 4 kHz rate, but post-processed to the real and reactive power signals at
the grid frequency which is 50 Hz in Germany. The workplace similarly comprised
at least 50 loads, but most were observed during the two-week period, and addi-
tionally comprised various load categories that are uncommon in a normal resi-
dence (e.g. vending machines, copy machines, elevators, multiple identical desktop
machines, lighting groups ... etc).

The dataset was accompanied with the sub-metered4 load profiles which enabled
the evaluation of the later stages of our proposed framework, namely the inverse
load profile reconstruction. Sub-metered channels comprised both real and reactive
power signals sampled at a 1 Hz rate. The building had a 3-phase 240V distribution
(referred to phase 1 to 3) and some loads were not restricted to a single phase.

3.4. Clustering-based Event Detection

The problem of change-point detection has been well studied and adopted in many
signal processing applications [Basseville and Nikiforov 1993, Amini and Gallinari
2002, Liu et al. 2012]. In most of these applications, the informative segments of the
signal are the stationary ones preceding and following the transient phase. How-
ever, for energy monitoring and disaggregation the transient phase represents a
valuable load signature [Chang et al. 2010, Meziane et al. 2017, Leeb et al. 1995, Pa-
tel et al. 2007, Chen et al. 2013, Chang et al. 2008]. This raised the need for estimating
the entire change interval (rather than change point) for a more reliable and stable
extraction of load-representative features.

4In fact and due to resource limitations, some plug-level meters were attached to multiple loads. For
instance, it was common to aggregate the whole desktop utilities (laptop, monitor, docking station,
telephone, mobile charger ... etc) in one sub-metered channel.



– 57–

In this section, we introduce a clustering-based framework for sequential detection
of abrupt changes with accurate segmentation of the input signal into stationary
and transient intervals. While we do not leverage transient signatures, we show
that such segmentation leads to more robust and reliable feature extraction.

The main principle in clustering-based abrupt change detection is that stationary
phases of a time series signal cluster together upon loosing their temporal dimen-
sion (that is, the finite sequence 𝐗𝑎∶𝑏 of the 𝑑𝑥-dimensional discrete-time signal 𝒙(𝑡)
would form a cluster when projected on ℝ𝑑𝑥 if it is a stationary sequence). Similarly,
transient time series segments are observed as outliers or scattered points when
projected on their corresponding spatial dimensions ℝ𝑑𝑥 [Streubel and Yang 2012].
Figure 3.2 depicts few examples of this principle from the real and reactive power
signals in a commercial building.

We leverage the reverse implication of this principle and state the following. If a
finite sequence 𝐗𝑎∶𝑏 = [𝒙(𝑎 + 1), 𝒙(𝑎 + 2), ⋯ , 𝒙(𝑏)]⊤ does not show any clustering
behavior when projected on its spatial dimensions ℝ𝑑𝑥 , then it is unlikely that it
contains any stationary sub-segments. Similarly, if 𝐗𝑎∶𝑏 forms 𝑀 clusters when pro-
jected on ℝ𝑑𝑥 , then it is most likely to comprise at least5 𝑀 stationary sub-segments.
Evidently, a sequence that constitutes 𝑀 stationary sub-segments comprises 𝑀 − 1
transient segments.

3.4.1. Event Model

Without loss of generality, we will primarily consider the 𝑇 -length sequence 𝐗0∶𝑇 ∈
ℝ𝑇×𝑑𝑥 . Once projected6 on the spatial dimensions ℝ𝑑𝑥 and with a suitable distance
function 𝑑(⋅, ⋅), a spatial clustering algorithm can be applied to the projected data
points. In our experiments, we utilize the scaled Euclidean distance function de-
fined as

𝑑
(
𝒙(𝑡), 𝒙(𝑡′)

)
=
((

𝒙(𝑡) − 𝒙(𝑡′)
)⊤ 𝚺−1 (𝒙(𝑡) − 𝒙(𝑡′)

))1∕2
(3.1)

5Multiple stationary sub-segments with the same nominal value are projected to the same cluster even
if they appear in two disjoint time intervals.

6That is, mapping the sequence 𝐗0∶𝑇 ∈ ℝ𝑇×𝑑𝑥 to its spatial subspace ℝ𝑑𝑥 parallel to the time axis, which
is achievable by simply discarding the temporal index.
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Figure 3.2.: Illustration of the clustering principle leveraged in the proposed
clustering-based event detection. Each pair of adjacent sub-plots show
the real power (blue) and the reactive power (orange) signals in time
series (left) and its image on ℝ2 (right). Observe that stationary phases
appear as clusters in the ℝ2 projection, while transient phases are rep-
resented by scattered outliers. Axes scales were discarded for conve-
nience.

where 𝚺 is the diagonal scale matrix given by

𝚺 = diag(𝜎2
1 , 𝜎

2
2 , ⋯ , 𝜎2

𝑑𝑥
) (3.2)

with diag(⋅) being the diagonal matrix denotation. Scale parameters 𝜎1, 𝜎2, ⋯ rep-
resent the first degree of freedom in the proposed event detection algorithm and are
interpreted as the minimum change to detect in each dimension. For the real and
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reactive aggregate power signals 𝒙(𝑡) = [P(𝑡), Q(𝑡)]⊤, scale parameters are chosen to
have 𝜎1 = 15 Watt and 𝜎2 = 15 VAR, respectively, in all our experiments.

For the clustering algorithm, we utilize the density based spatial clustering for
applications with noise (DBSCAN) algorithm [Ester et al. 1996] which returns three
estimates, namely, an estimated number of clusters 𝑀 , a mapping from the given
sequence to cluster labels, and a second mapping from the sequence to the connec-
tivity or clustering level — all will be detailed in the following.

DBSCAN partitions a given set of data points (e.g. the data points projected from
the sequence 𝐗0∶𝑇 ) to mutually exclusive cluster sets. Worth mentioning here is that
the number of clusters 𝑀 ⩾ 0 is estimated by the DBSCAN algorithm and can be
zero-valued if, for example, the observed data points do not form any dense regions
(that is, cluster-less data).

Stated more formally, given the sequence 𝐗0∶𝑇 and the distance function in Equa-
tion (3.1), DBSCAN estimates the number of clusters 𝑀 and builds thereupon the
clustering label space 𝕐 = {𝑦𝑚}𝑀𝑚=0 and estimates a mapping from each of the se-
quence instances 𝒙(𝑡) to an assigned cluster label 𝑦(𝑡) ∈ 𝕐 for that instance 𝒙(𝑡) ↦
𝑦(𝑡). This results in a cluster sequence denoted by 𝒚0∶𝑇 = [𝑦(1), 𝑦(2), ⋯ , 𝑦(𝑇 )]⊤ ∈ 𝕐 𝑇 .
Note that the label 𝑦0 denotes a cluster-less set, that is, the set of samples which do
not fit any of the retrieved clusters, and will be denoted oftentimes as noisy samples
or outliers.

Should we denote by y𝑚 the set of sequence instances assigned the cluster label 𝑦𝑚
such that

y𝑚 =
{
𝒙(𝑡) ∈ 𝐗0∶𝑇 | 𝑦(𝑡) = 𝑦𝑚

}
(3.3)

(where we have abused the notation 𝒙(𝑡) ∈ 𝐗0∶𝑇 to denote the membership of 𝒙(𝑡)
to the image of 𝐗0∶𝑇 in ℝ𝑑𝑥 given by {𝒙(𝑡) | 1 ⩽ 𝑡 ⩽ 𝑇 }), then each cluster set y𝑚 is a
spatially dense collection of points which is likely to represent a stationary segment
in the sequence 𝐗0∶𝑇 . An exception yet is the noise cluster denoted by 𝑦0 whose
sample set y0 are indeed likely to be measurement noise but in our application
may additionally represent the transient segment of a detected event in 𝐗0∶𝑇 . For
DBSCAN, all cluster sets are mutually exclusive y𝑚 ∩ y𝑚′ = ∅ if 𝑚 ≠ 𝑚′ and non-
empty except for the noise cluster y𝑚 ≠ ∅ ∀𝑚 > 0.
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Finally, DBSCAN distinguishes between two-levels of clustered samples, namely,
cores and borders. Loosely speaking, core samples are those samples embedded in
a dense region (that is, samples with a dense neighborhood) while borders are the
neighborhood of core samples that do not retain a dense neighborhood by them-
selves. This is not of a paramount relevance to our detection algorithm, but can of
course be leveraged (e.g. for reliable and more stable feature extraction). The out-
come is another binary sequence 𝐜0∶𝑇 = [𝑐(1), 𝑐(2),⋯ , 𝑐(𝑇 )]⊤ ∈ {0, 1}⊤ where 𝑐(𝑡)
is a binary indicator on whether or not the sequence instance 𝒙(𝑡) possess a dense
neighborhood.

In addition to the distance function, DBSCAN takes a single7 parameter known
commonly as the minimum number of points minPts to identify a core sample
(that is, a sample with a sufficient number of data points in its neighborhood) which
represents the second degree of freedom in the proposed event detection algorithm.
The minPts parameter is interpreted as the minimum length of a stationary seg-
ment and is set in all our experiments to 1 second (that is, 60 points in 𝐹𝑔 = 60 Hz
signals, and 50 points when 𝐹𝑔 = 50 Hz8). This gives a limit to simultaneous events
detection (that is, detection of events occurring in close temporal proximity) and an
intuitive adjustment parameter controlling the trade-off between retrieval (of simul-
taneous events) and relevance (e.g. false detections resulting from over-segmenting
long transients).

The first requirement for a sequence 𝐗0∶𝑇 to contain an event is that its image on ℝ𝑑𝑥

forms at least two clusters 𝑀 ⩾ 2 which is a necessary (but insufficient) condition.
For sufficiency, we impose two more constraints for which we first introduce the
following properties of a cluster.

Let t𝑚 denote the set of time indices exhibiting a membership to the 𝑚th cluster such
that

t𝑚 =
{
𝑡 ∈ ℕ⩽𝑇 | 𝑦(𝑡) = 𝑦𝑚

}
(3.4)

which leads to the concept of cluster interval denoted by J𝑦𝑚K and defined as

J𝑦𝑚K = q
min t𝑚, max t𝑚

y
(3.5)

7In fact, DBSCAN takes two parameters; minPts and neighborhood threshold 𝜖 [Ester et al. 1996].
However, the second parameter is embedded in our case in the distance function as the 𝜎𝑖 parameters
and hence is no longer explicitly required by the DBSCAN algorithm.

8Assuming that signals are sampled at the rate of the grid frequency.
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where J𝑎, 𝑏K denotes an integer interval from the inclusive endpoints 𝑎 to 𝑏 given
by {𝑧 ∈ ℤ | 𝑎 ⩽ 𝑧 ⩽ 𝑏} and minX is the minimum element in the set X, and likewise
for maxX. We then define cluster cardinality, temporal locality, and overlap with
another cluster as follows.

Cardinality of a cluster label 𝑦𝑚 is the number of data samples assigned to that
cluster and is given by || t𝑚 ||.
Locality of a cluster 𝑦𝑚 is a measure of how dense the cluster samples are in time
(that is, considering the distance 𝑑(𝒙(𝑡),𝒙(𝑡′)) = |𝑡 − 𝑡′|). It is denoted by loc(𝑦𝑚) and
is estimated as the ratio between cluster size and it temporal length

loc(𝑦𝑚) =
|| t𝑚 ||

len
(J𝑦𝑚K) ∈ (0, 1] (3.6)

where the len(J𝑎, 𝑏K) denotes the length of the integer interval J𝑎, 𝑏K which is given
by (𝑏 − 𝑎 + 1). A temporally local cluster loc(𝑦𝑚) → 1 indicates that this cluster is
formed out of adjacent instances 𝒙(𝑡) in the considered time series sequence 𝐗0∶𝑇 .

Overlap between two clusters 𝑦𝑚 and 𝑦𝑚′ where 𝑚 ≠ 𝑚′ and 𝑚,𝑚′ > 0 is defined
as the intersection of their corresponding temporal intervals which is denoted byJ𝑦𝑚K ∩ J𝑦𝑚′K.

A sequence 𝐗0∶𝑇 represents an abrupt change event if its image on ℝ𝑑𝑥 comprises
two temporally local clusters 𝑦𝑚 and 𝑦𝑚′ such that

loc(𝑦𝑚), loc(𝑦𝑚′) ⩾ 𝜗loc (3.7)

and with minimal overlap such that

J𝑦𝑚K ∩ J𝑦𝑚′K
minPts

⩽ 𝜗∩ (3.8)

The two parameters 𝜗loc and 𝜗∩ are yet two more degrees of freedom in our event
model where the first is interpreted as the permitted rate of measurement outliers
during the stationary sub-segments, and the second permits more flexibility in the
transient phase (the higher, the more flexible). In our experiments these two param-
eters were chosen to 𝜗loc = 25% and 𝜗∩ = 50% which were found to be reasonable
values for both residential and commercial aggregate and segregate load profiles.
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Algorithm 3.1 The clustering-based event model queried for an event in the cluster
sequence 𝒚0∶𝑇 .

Input: minPts: minimum length of a stationary segment
Input: 𝜗loc: Locality threshold
Input: 𝜗∩: Overlap threshold

1: procedure QUERYEVENT(𝒚𝑎∶𝑏,𝑀)
2: if 𝑀 < 2 then
3: return False
4: for each pair (𝑚, 𝑚′) ∈ ℕ2

⩽𝑀 do
5: if loc(𝑦𝑚) ⩽ 𝜗loc and loc(𝑦𝑚′) ⩽ 𝜗loc then
6: if J𝑦𝑚K ∩ J𝑦𝑚′K ⩽ 𝜗∩ ⋅ minPts then
7: return True
8: return False

Algorithm 3.1 illustrates the conditions tested for each query for an event in a given
time series sequence. In a nutshell, whenever a sequence 𝐗0∶𝑇 is queried for the
existence of an abrupt change event, then 1) construct the image of the sequence on
its spatial dimensions ℝ𝑑𝑥 , 2) apply a clustering algorithm (for example, DBSCAN)
to estimate the number of clusters in the sequence image on ℝ𝑑𝑥 and construct the
cluster sequence 𝒚0∶𝑇 , 3) amongst temporally local clusters loc(𝑦𝑚) ⩾ 𝜗loc, 4) retrieve
the pair of clustered sub-segments with minimal overlap J𝑦𝑚K ∩ J𝑦𝑚′K ⩽ 𝜗∩ ⋅minPts.
If at least one pair of such clusters exist, the sequence 𝐗0∶𝑇 is likely to represent an
event.

The event model parameters are the scale parameters 𝜎1, 𝜎2 ∈ ℝ>0, the minimum
stationary segment length minPts ∈ ℕ, the rate of measurement outliers in sta-
tionary phases 𝜗loc ∈ [0, 1], and the model’s flexibility9 during the transient phase
𝜗∩ ∈ ℝ>0.

3.4.2. Detection Algorithm

The algorithm for extracting event sub-sequences from the signal 𝒙(𝑡) that are match-
ing the event model introduced earlier can now be stated as follows. Starting from
a window of width 2 ⋅minPts (that is, 2 seconds and is the minimum window to

9While this is a vague interpretation, it in fact means that the transient phase can have an arbitrar-
ily shaped profile with some instances 𝒙(𝑡) possibly coinciding with either of the preceding or the
following stationary phases.
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Algorithm 3.2 The proposed clustering-based event detection algorithm. The
queried sequence �̃�𝑎∶𝑏 is obtained from the scaled aggregate signal �̃�(𝑡), the
QueryEvent procedure is defined in Algorithm 3.1, and the DBSCAN procedure
is the canonical algorithm from [Ester et al. 1996]. The algorithm only returns the
first occurrence of an abrupt change event and has to be repeated starting from e.g.
the right endpoint 𝑏.

Input: minPts: minimum length of a stationary segment
Input: 𝚺: Scale

1: procedure DETECTEVENT(𝒙(𝑡))
2: �̃�(𝑡) ← 𝒙(𝑡)𝚺

1
2 ⊳ Scale

3: 𝑎 ← 0 ⊳ Left endpoint
4:
5: 𝑏 ← 𝑎 + (2 ⋅ minPts − 1) ⊳ Right endpoint
6: repeat ⊳ Forward detection
7: 𝑏 ← 𝑏 + 1
8: 𝒚𝑎∶𝑏, 𝒄𝑎∶𝑏,𝑀 ← DBSCAN(�̃�𝑎∶𝑏, minPts, 𝜖 = 1)
9: event ← QueryEvent(𝒚𝑎∶𝑏, 𝑀)

10: until event detected
11:
12: 𝑎 ← 𝑏 − (2 ⋅ minPts − 1)
13: repeat ⊳ Backward refinement
14: 𝑎 ← 𝑎 − 1
15: 𝒚𝑎∶𝑏, 𝒄𝑎∶𝑏,𝑀 ← DBSCAN(�̃�𝑎∶𝑏, minPts, 𝜖 = 1)
16: event ← QueryEvent(𝒚𝑎∶𝑏, 𝑀)
17: until event detected
18:
19: return ; 𝑎, 𝑏

detect an event in our experiments), the window iteratively expands from the right
endpoint and the enclosed sequence is repeatedly queried for the existence of an
event based on the model constraints discussed earlier. Once an event is detected,
it retracts iteratively from the left endpoint to estimate the smallest window that
comprises the detected event. Equivalently, the same objective (that is, estimating
the minimum window comprising the event) is achieved upon expanding to the left
starting from the right endpoint after the forward detection. The latter approach is
expected to result in computational savings especially in the case of rare (aka tem-
porally sparse) events, and is the one adopted in our experiments.

Algorithm 3.2 illustrates the proposed event detection algorithm. The detection al-
gorithm comprises a forward detection loop followed by a refinement step once
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an event is detected. For a practical implementation, it is noted that the canonical
DBSCAN algorithm is of a worst-case quadratic complexity 𝑂(𝑁2) in both time and
space and is, therefore, very demanding to re-apply every instance 𝑡 in the given sig-
nal 𝒙(𝑡). Therefore, we adopt a modified implementation depicted in Algorithm 3.3
with an expansion step 𝑇𝑠 ∈ ℕ and an upper bound on the monitoring window
𝑇𝑤 ∈ ℕ. Greedy values for the canonical version are a unit step 𝑇𝑠 = 1 and an in-
finitely wide monitoring 𝑇𝑤 = ∞. In all our experiments for both residential and
commercial settings, we used a half-second expansion or sliding step 𝑇𝑠 = 𝐹𝑔 × 0.5s
and a one minute monitoring window 𝑇𝑤 = 𝐹𝑔 × 60s.

Figure 3.3 depicts an illustrative example of the proposed sequential clustering-
based event detection algorithm (Algorithm 3.3) applied on a 3-minute sequence of
phase B of the BLUED dataset. The figure comprises three rows of sub-figures (top,
middle, and bottom) to represent progression of the event detection algorithm in
time. In each row, the real and reactive power signals (left), the current detection
window (green shaded area), and the PQ-plane showing the image of power sig-
nals on ℝ2 (right) are depicted. In the PQ-plane, the image of the whole 3-minute
sequence is depicted in grayed out scatter points, while the sub-sequence under
the detection window is highlighted in red. Moreover, an arrow above each shaded
detection window explicates the direction in which the window is currently ex-
panding. Detection starts with a suitably narrow window as shown on the top row
of figures. At this stage, it is known that the sub-sequence under the detection win-
dow comprises at most a single cluster (shown on the highlighted red samples PQ-
plane). Detection then proceeds by expanding its window forward in time (middle
row of sub-figures) until a sub-sequence matches the event model and a detection
is declared. In this case, the PQ-plane comprises at least two clusters. In its last step,
the detection window retracts to the minimal length anchored at its end-point such
that the detection flag is cleared (e.g. a window that is minPts in length or shorter,
and this is not shown in the figure) and expands backward in time until a match is
declared (bottom row of sub-figures). With this last step, the minimal length sub-
sequence matching the event model is estimated. The algorithm further proceeds
to the rest of the signal by re-initializing the whole procedure post-transient the
currently detected event.
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Figure 3.3.: A visual illustration of the three steps of the detection algorithm (e.g Al-
gorithm 3.3) applied to a 3-minute window from phase B of the BLUED
dataset with steps top) expansion (or forward detection), middle) de-
tection (that is, event model match), and bottom) backward refinement.
See. detailed description inline.
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Algorithm 3.3 A less greedy but more computationally efficient variant of the detec-
tion algorithm depicted in Algorithm 3.2. Additional parameters are the maximum
window size 𝑇𝑤 and the sliding or expansion step 𝑇𝑠. Similarly, the algorithm only
returns the first occurrence of an abrupt change event and has to be repeated start-
ing from e.g. the right endpoint 𝑏. The function max(𝑎, 𝑏) returns the maximum of
the scalars 𝑎 and 𝑏.
Input: minPts: minimum length of a stationary segment
Input: 𝚺: Scale
Input: 𝑇𝑤: Maximum window size
Input: 𝑇𝑠: Sliding or expansion step

1: procedure DETECTEVENT(𝒙(𝑡))
2: �̃�(𝑡) ← 𝒙(𝑡)𝚺

1
2 ⊳ Scale

3: 𝑎 ← 0 ⊳ Left endpoint
4:
5: 𝑏 ← 𝑎 + (2 ⋅ minPts − 𝑇𝑠) ⊳ Right endpoint
6: repeat ⊳ Forward detection
7: 𝑏 ← 𝑏 + 𝑇𝑠
8: 𝑎 ← max(𝑎, 𝑏 − 𝑇𝑤)
9: 𝒚𝑎∶𝑏, 𝒄𝑎∶𝑏,𝑀 ← DBSCAN(�̃�𝑎∶𝑏, minPts, 𝜖 = 1)

10: event ← QueryEvent(𝒚𝑎∶𝑏, 𝑀)
11: until event detected
12:
13: 𝑎 ← 𝑏 − (2 ⋅ minPts − 1)
14: repeat ⊳ Backward refinement
15: 𝑎 ← 𝑎 − 1
16: 𝒚𝑎∶𝑏, 𝒄𝑎∶𝑏,𝑀 ← DBSCAN(�̃�𝑎∶𝑏, minPts, 𝜖 = 1)
17: event ← QueryEvent(𝒚𝑎∶𝑏, 𝑀)
18: until event detected
19:
20: return ; 𝑎, 𝑏

3.4.3. Empirical Validation

Since BLUED was developed primarily for evaluation of event-based energy disag-
gregation systems, we first report our detection results on BLUED’s labeled events.

Table 3.1 shows a comparison between the generalized likelihood ratio (GLR) de-
tector [Anderson et al. 2012], an event detector based on kernel Fisher discriminant
analysis (KFDA)10, a clustering-based event detector based on the mean-shift [Fuku-

10The work of a student under my supervision.



– 67–

Table 3.1.: The per-phase detection measures (precision, recall and F1-score) on each
phase of the residential BLUED [Anderson et al. 2012] dataset.

Anderson et al. Wild et al. Barsim et al. ours2012 2015 2014a

Ph
as

e
A recall 0.9816 0.9878 0.9841 0.9801

precision 0.9794 0.9966 0.9943 0.9833
F1-score 0.9805 0.9922 0.9892 0.9817

Ph
as

e
B recall 0.7040 0.9217 0.7048 0.9425

precision 0.8729 0.8632 0.8897 0.6963
F1-score 0.7794 0.8915 0.7865 0.8009

naga and Hostetler 1975] clustering algorithm [Barsim et al. 2014a], and the pro-
posed DBSCAN-based event detector. The last three approaches represent our main
contribution to abrupt change segmentation for reliable feature extraction.

Figure 3.4 depicts the event-detection results on the power signals of a small num-
ber of loads measured from a commercial building in Berlin at a sampling frequency
of 1 Hz along with extracted power change features of all detected events. Further
results are shown in Appendix A.

3.5. Feature Extraction

In this work, we primarily consider steady-state features, namely, the abrupt step
changes in the real P and reactive Q power signals. We intentionally simplify the
feature extraction stage in order to emphasize the effectiveness of the event seg-
mentation performed in the prior stage. For each detected event we extract the step
change in the real and reactive power signals, denoted dP and dQ respectively, from
the change in the stationary segments preceding and following the segmented tran-
sient.

Let 𝐗0∶𝑇 denote a sequence of the aggregate signals the comprises an abrupt change
event and, hence, forms two temporally local clusters y1 and y2. Assuming y1 rep-
resents the leading stationary sub-sequence, then the event features are estimated
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simply by the difference

𝐝𝒙 =

[
dP

dQ

]
= 1|| y2

||
∑

𝒙(𝑡) ∈ y2

𝒙(𝑡) − 1|| y1
||

∑
𝒙(𝑡) ∈ y1

𝒙(𝑡) (3.9)

For a reliable, more robust, and noise-aware feature extraction, the secondary out-
put of DBSCAN (that is, the clustering level sequence 𝒄0∶𝑇 ) can be leveraged in lim-
iting the estimation of the cluster means (that is, each term of the right expression
in Equation (3.9)) to the core samples. For that we define

y(core)
𝑚 = {𝒙(𝑡) | 𝑦(𝑡) = 𝑦𝑚 and 𝑐(𝑡) = 1} (3.10)

and feature extraction remains as defined in Equation (3.9) with the cluster sets y1

and y2 replaced with y
(core)
1 and y

(core)
2 , respectively. In words, step changes are

estimated based on the difference between cluster core representatives.

Additionally, we distinguish between switch-on and switch-off events based on the
change in real power and associate each feature vector with its time of occurrence 𝑡
(defined as the last sample in the leading cluster prior to the overlap). To that end,
we split the data set of detected events denoted by D= {(𝐝𝒙(𝑛), 𝑡(𝑛))}𝑁𝑛=1, where 𝑁 is
the number of detected events, to two subsets D(on) and D(off) for switch-on and -off
events, respectively.

For notational convenience, we will overload the symbol 𝒙 to denote henceforth the
feature vector of each detected event such that the dataset D= {(𝒙(𝑛) ≡ 𝐝𝒙(𝑛), 𝑡(𝑛))}𝑁𝑛=1
comprises feature vectors of 𝑁 detected events along with their time-of-occurrence
𝑡(𝑛). Moreover, we will oftentimes drop the event index superscript ⋅(𝑛).

Empirical validation of the robustness of extracted feature vectors will be illustrated
via their effect on the following stage, that is, event-clustering. In Section 3.6.1, we
demonstrate that extracted features exhibit more stable clustering structures with
minimal intra-cluster variations while featuring maximal inter-cluster separation.
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3.6. Event Clustering

The task of the event clustering stage is to group similar events based on the ex-
tracted event-based features into groups of high within-cluster similarity and wide
across-cluster separation. In this section, we first review some of the challenges
faced at this stage, and then detail our proposed approach.

Event clustering in a purely unsupervised energy disaggregation chain faces nu-
merous challenges such as the a priori unknown number of loads nor states per
load and, it turn, number of clusters, the high imbalance across cluster densities,
variations within each cluster, and outliers resulting from false detections, to name
a few.

Because neither the number of underlying loads nor the total number of distinct
state transitions per load is known in advance, the clustering algorithm is addition-
ally tasked with estimating the number of clusters. Additionally, and even though it
is reasonable to assume that data samples can be fitted to an underlying generative
model or tend to have specific spatial characteristics, we still assume that this infor-
mation is also not available to the addressed unsupervised approach and, hence, the
clustering algorithm should be robust to arbitrarily shaped clusters. Furthermore,
different loads exhibit varying number of event generation (for example, thermo-
statically controlled loads are expected to result in many more events than lighting
circuits). This is besides the challenge that the monitored circuit exhibit loads from
few tens of Watts to kiloWatt loads and no preference is given to either in our ap-
proach.

The input to this stage is two sets of event-based features compiled in the set D =
{(𝒙(𝑛), 𝑡(𝑛))}𝑁𝑛=1. Of most concern at this stage is the event features 𝒙 ∈ ℝ𝑑𝑥 , and for
that we consider a dataset of 𝑑𝑥-dimensional event-based features denoted by X =
{𝒙(𝑛)}𝑁𝑛=1 where 𝑁 is the number of detected events.

To address the wide scale between small miscellaneous appliances and major loads,
extracted features are transformed to the logarithmic domain using the function

�̃� = 𝑓 (𝑥) = sgn(𝑥) ⋅ log
(|𝑥| + 𝛽

)
(3.11)
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where 𝛽 > 1 is a shift parameter for numerical consideration (chosen in our case
to be 𝛽 = 10), log(⋅) is the logarithmic function, sgn(⋅) is the sign function, and the
transformation 𝑓 (𝑥) is applied element-wise in the multivariate case.

With the transformed feature vectors �̃� from Equation (3.11) and the standard Eu-
clidean distance 𝑑(𝒙,𝒙′) = ((𝒙 − 𝒙′)⊤(𝒙 − 𝒙′))

1
2 , we utilize the DBSCAN clustering

algorithm [Ester et al. 1996]. The result (as in Section 3.6) is an estimation of the
number of clusters denoted by11 𝑀 and partitioning of the dataset X into 𝑀 mu-
tually exclusive clusters y𝑚 ⊆ X ∀𝑚 in addition to the noise cluster y0 comprising
outliers which are most likely to be false detections.

The challenges of unknown number of clusters and cluster distribution is addressed
with the choice of the DBSCAN clustering algorithm which is known to be suitable
for arbitrarily shaped clusters and features an implicit estimation of the total num-
ber of clusters. DBSCAN additionally addresses outliers resulting from false detec-
tions through its notion of noise. Finally, the wide feature scale is addressed using
the logarithmic transformation proposed in Equation (3.11). DBSCAN, however, re-
mains valuerable to imbalance in cluster densities and this addressed in our case
through longer monitoring periods (around 2 weeks in our experiments) to give
real events sufficient time to accumulate and form dense regions. This remains an
open problem from our work and consensus clustering [Aggarwal and Reddy 2013]
is a promising candidate proposed for future investigation.

3.6.1. Internal Cluster Validation Measures

The main motivation for the proposed abrupt change segmentation is to reliably
extract stable event-based features suitable for event-clustering and load recogni-
tion. This is not limited to the segmented transient phase but also equally apply to
steady-state features as the ones in Section 3.5.

In validating the claimed advantage, we conduct the following experiment. With
the extracted features12 defined by Equation (3.9), event-based clustering is per-
formed as detailed in Section 3.6 and cluster validation measures are estimated.

11Where 𝑀 is overloaded at this stage to denote the number of clusters of event-based features rather
than the image of a time series sequence on the spatial dimensions.

12With the minor difference that cluster cores are considered for representativeness of each cluster set
rather than all cluster members.
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Estimated measures are then compared with those obtained upon replacing the pro-
posed adaptive segmentation with a fixed length 𝜏 for the transient phase resulting
the simple feature extraction 𝐝𝒙 = 𝒙(𝑡 + 𝜏) − 𝒙(𝑡) for the event detected at time 𝑡.

As a measure of extracted feature stability, we leverage internal clustering measures.
Internal clustering measures primarily quantitatively validate two aspects the esti-
mated clustering structure, namely, intra-cluster compactness and inter-cluster sep-
aration13. In the sequel, we first introduce the adopted validation measures and
then discuss obtained results on the two considered datasets.

Let X= {𝒙(𝑛)}𝑁𝑛=1 denote the set of 𝑁 𝑑-dimensional feature vectors to be clustered.
A clustering structure is denoted by 𝕐 = {𝑦𝑚}𝑀𝑚=1 which is partitioning X into 𝑀
mutually exclusive non-empty subsets14 denoted by y𝑚 for 1 ⩽ 𝑚 ⩽ 𝑀 . Let further
𝒄 denote the center of the dataset X estimated as its empirical mean (1∕𝑁)

∑
𝒙∈X𝒙

and in a like manner 𝒄𝑚 for each subset y𝑚.

The first measure is the standard R2 (aka R-squared) statistic commonly adopted in
regression tasks. R2 is defined (similar to one of its definitions in regression) as the
ratio between residuals’ variance to the variance of the dataset samples

R2 = 1 −
VARresiduals

VARdata
= 1 −

∑
𝑚
∑

𝒙∈y𝑚
||||𝒙 − 𝒄𝑚||||22∑

𝒙∈X ||𝒙 − 𝒄||22 ∈ [0, 1] (3.12)

where VARresiduals are defined as the squared deviations of each data point from its
cluster mean 𝒄𝑚, while VARdata is the squared deviation from each data point to the
whole data mean 𝒄. The former is a measure of cluster compactness while the latter
is a weak indicator of cluster separation (even though it is not a direct measure of
pair-wise cluster separation) [Halkidi et al. 2001, Aggarwal and Reddy 2013]. Here||⋅||22 denotes the squared 𝐿2-norm. The R2 measure is normalized to the range [0, 1]
with the optimum value at unity.

Dunn [1974] proposed a validation index that is more explicit about the clustering
objectives. Dunn’s index DI is, therefore, defined as the ratio between inter-cluster
separation (measured in the minimum distance between any two distinct clusters

13Aggarwal and Reddy [2013] argues that the R2 measure is an exception that mostly considers cluster
compactness. We, however, claim that the R2 measure indirectly, yet inefficiently, considers cluster
separation through the normalizing total sum of squared deviations

∑
𝒙∈X ||𝒙 − 𝒄||.

14We ignore unclustered data points (i.e. outliers) in the evaluation procedure.
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which is, in turn, defined as the minimum distance between their members) to the
intra-cluster compactness (measured as the maximum distance between two mem-
bers of the same cluster) and is given by

DI =
min𝑚min𝑛≠𝑚min𝒙∈y𝑚

𝒙′∈y𝑛

||||𝒙 − 𝒙′||||
max𝑚max𝒙,𝒙′∈y𝑚

||𝒙 − 𝒙′|| (3.13)

Intuitively, Dunn’s index is a non-negative measure that attains a higher value for
a more fitting clustering structure.

In a like manner, Xie and Beni [1991] proposed a cluster validity measure quantify-
ing the ratio between compactness and separation15. The former is estimated as the
mean of squared deviations of each data point from its cluster representative. Sep-
aration, however, is estimated as the minimum distance between any two distinct
clusters estimated by the distance between their representative points. Xie-Beni in-
dex XBI is defined as

XBI =
1
𝑁
∑

𝑚
∑

𝒙∈y𝑚
||||𝒙 − 𝒄𝑚||||22

min𝑚min𝑛≠𝑚 ||||𝒄𝑛 − 𝒄𝑚||||22 (3.14)

and is similarly non-negatively valued with a lower value indicating a better clus-
tering structure.

The final measure is proposed by Davies and Bouldin [1979] which is a more flexi-
ble validation measure that assigns a similarity value to each cluster (rather than a
global compactness to separation value) that is again estimated as a compactness to
separation ratio. Davis and Bouldin index DBI is then estimated as the average of
all cluster similarities so that

DBI = 1
𝑀

∑
𝑚

max
𝑛≠𝑚

⎛⎜⎜⎜⎝
(

1|y𝑚| ∑𝒙∈y𝑚
||||𝒙 − 𝒄𝑚||||2) +

(
1|y𝑛| ∑𝒙∈y𝑛

||||𝒙 − 𝒄𝑛||||2)||||𝒄𝑚 − 𝒄𝑛||||2
⎞⎟⎟⎟⎠ (3.15)

and is likewise non-negatively valued with a lower value indicating a better clus-
tering structure.

15Observe the reciprocal relationship to Dunn’s index.
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Table 3.2.: Internal cluster validation measures on BLUED with a fixed length 𝜏
window for transient phase segmentation (first three columns of each
phase) against our proposed adaptive segmentation algorithm (right-
most column of each phase). The logarithm function log(⋅) is taken to
base 10.

Validity 𝜏 = 0.33 𝜏 = 0.5 𝜏 = 1.0 𝜏 = 1.5
ours

Index seconds seconds seconds seconds

Ph
as

e
A R2 0.990 0.998 0.999 0.999 0.999

log(DI) -10.567 -8.100 -6.768 -5.794 -4.000
log(XBI) 2.923 0.119 0.314 0.748 -0.204
log(DBI) 3.351 2.357 1.643 1.582 1.317

Ph
as

e
B R2 0.963 0.975 0.990 0.983 0.999

log(DI) -12.058 -13.716 -9.852 -10.120 -5.084
log(XBI) 7.425 6.471 5.971 6.223 1.360
log(DBI) 3.465 3.233 2.803 2.750 1.807

3.6.2. Empirical Validation

Table 3.2 shows a list of clustering validations performed at various fixed-length
transient phase segmentation depicted against our adaptive segmentation algo-
rithm. As clearly observed, our adaptive segmentation algorithm consistently out-
performs fixed-length segmentation on all validation measures and for both phases.
The advantage is more emphasized in the second phase of the dataset (that is, Phase
B) which includes a wider variety of loads with almost twice the number of events
increasing the risk of simultaneous events16. Further results on BLUED can be found
in Appendix B.

Figure 3.5 depicts a similar evaluation framework on the three-phase commercial
building dataset. The figure reasserts our previous claim from the BLUED dataset
evaluation that adaptive segmentation consistently outperforms fixed-length fea-
ture extraction for steady-state features. Such promising results raise even higher
expectations upon utilization of transient features but this is outside the scope of
this work.

16That is, events violating the switch continuity principle by occurring within a very short time inter-
val that are resulting in either missed detections or distorted feature vectors.
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Figure 3.5.: Internal cluster validation measures estimated on the three-phase com-
mercial dataset. Red lines represent the measures of our proposed adap-
tive segmentation algorithm while green curves are those measures es-
timated from a fixed window length 𝜏 up to 2 seconds.
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3.7. Load Recognition

In the event clustering stage, events were split in groups based on the similarity
between their extracted feature vectors. The objective at the load recognition stage
is to group detected events based on the likelihood that they were generated from
the same end-use load. In this section, we propose a load recognition stage based
on a set of engineered rules to estimate the number of monitored loads and map
events (and event clusters) to inferred loads.

Due to the lack of labeled data, we limit this stage to on-off load recognition only.
Worth mentioning here is that recognition is only performed to the level of anony-
mous labeling (that is, unnamed load instances). Identifying human-sensible load
identifiers requires labeled data which is assumed to be missing in this unsuper-
vised disaggregation framework.

The proposed load recognition stage leverages both individual event features (re-
ferred to hereafter as event-level matching and is discussed in detail in Section 3.7.1)
and cluster-level characteristics (which is detailed in Section 3.7.2) in two matching
principles. The first is the ground-state matching principle which is applied to in-
dividual events and propagated subsequently across events’ clusters. The second
principle is based on the zero-sum assumption of multi-state loads and is applied
to cluster-level features and exploited afterwards in matching individual events.

In the following, we let a subscript arrow distinguish between switch-on and switch-
off events as in 𝒙(𝑘)

↑ for the switch-on event detected at time 𝑡(𝑘) and assigned to the
cluster 𝑦(𝒙(𝑘)

↑ ) ∈ 𝕐 where 𝕐 = {𝑦𝑚}𝑀𝑖=1 and likewise for the switch-off event 𝒙(𝑙)
↓ .

Should a distinction become unnecessary, the subscript is simply discarded as in
𝒙(𝑘) denoting the 𝑘th detected event. A series of 𝑁 events is denoted by the chain
𝒙(1) → 𝒙(2) → ⋯ → 𝒙(𝑁) where the symbol ⋯ → ⋯ connotes temporal succession of
detected events. This notation will be enriched as load recognition rules are intro-
duced in the sequel.

3.7.1. Event-level Matching

Prior to discussing proposed rules, we first introduce the concept of a ground state
on which the following rules rely. A ground state is defined as the steady-state



– 77–

where all monitored loads are not in use. Ideally, this is a stationary phase of zero
power draw. However, a certain category of loads (known as always-on loads) pre-
vents observing the ground state according to the given definition. Therefore, we re-
vise the earlier definition of a ground state to be the state where all event-generating
loads are not in use. This excludes always-on loads from the proposed load recog-
nition but this is a tolerable omission as shall be discussed in Chapter 5.

A ground state detected after the 𝑘th event is denoted by 𝒙(𝑘) ↛ 𝒙(𝑘+1) with the
symbol ↛ representing the detected ground state. Ground states, therefore, split
the 𝑁-event series into a set of sub-series surrounded by ground states from both
endpoints and referred to henceforth as entities. In the earlier example, the ground
state detected after the 𝑘th event results in two entities. The first is the 𝑘-event sub-
series 𝒙(1) → ⋯ → 𝒙(𝑘) and the second is the 𝑁 − 𝑘 sub-series 𝒙(𝑘+1) → ⋯ → 𝒙(𝑁).

Section 3.7.1 depicts our running example (a 5-hour aggregate load profile extracted
from the first phase of the BLUED dataset) for illustrating the rule-based load recog-
nition stage. Observable in this illustrative example multiple ground states that seg-
ments the entire 5-hour signal into temporally disjoint entities. This leads to the first
rule.

Rule 1: Events from different entities can not be matched.

Matched events are those attributed to the same duty cycle (that is, a single continu-
ous interval of operation) of a load. The first rule stems directly from the definition
of the ground state since no detectable load is permitted to remain operational dur-
ing a ground state. Hence if a load is switched-on during an entity, it must have
been switched-off prior to the succeeding ground state.

In Section 3.7.1, seven entities can be observed, with the shortest comprising a pair
of state-change events, while the longest is composed of 6 events in this illustrative
example. Event matching can be simplified to within-entity search according the
aforementioned rule.

Rule 2: The on-off entity identified by the pattern ↛ 𝒙(𝑘)
↑ → 𝒙(𝑙)

↓ ↛ implies a matching
between the 𝑘th and 𝑙th events.

In words, if an entity comprises solely a switch-on event followed by a switch-off
event, then both events are attributed to the same duty cycle of a load. This of
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Figure 3.6.: A segment of the aggregate load profile (real power P top, and reactive
power Q bottom) from the first phase (phase A) of the BLUED dataset
[Anderson et al. 2012]. The segment is extracted from the 18th to the 23rd

hour of the dataset, and will be our running example for illustrating var-
ious load recognition rules. Ground state power draw for this phase is
∼ 40 Watt, and the figure depicts eight instances thereof which, in turn,
segments the load profile into seven entities. The figure additionally
shows an false detection at time 𝑡 ∼ 22.17 hours, and a distorted feature
vector due to simultaneous off events at time 𝑡 ∼ 21.31 hours.

course assumes an ideal event detection17. Since an ideal event detector is not guar-
anteed, we complement the second rule with few auxiliary conditions. The first is

17At least with perfect retrieval.
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that matched events belong to different clusters18 (that is 𝑦(𝒙(𝑘)) ≠ 𝑦(𝒙(𝑙))), their
clusters’ cardinalities are adequately matching, and they loosely19 but adaptively
satisfy the zero sum constraint as in |dP(𝑘) + dP(𝑙)| ⩽ 1

2 (|dP(𝑘)| + |dP(𝑙)|) where dP(𝑘)

denotes the change in real power of the 𝑘th event20. Matched events are represented

by 𝒙(𝑘) → … → 𝒙(𝑙) in the event series and denoted in text by 𝒙(𝑘) ↔ 𝒙(𝑙).

Section 3.7.1 depicts at least21 four pairs of matched events via direct application of
Rule 2. These are the 1st, 3rd, 4th, and 6th entities.

Rule 3: If the two events 𝒙(𝑘) and 𝒙(𝑙) of distinct clusters belong to the same load (that is,
matched), then so does their corresponding clusters 𝑦(𝒙(𝑘)) and 𝑦(𝒙(𝑙)) should none happen
to be the noise set 𝑦0. The two clusters are hence declared as matching.

Stated differently, if Rule 2 declares a matching between two events indicating that
they potentially belong to the same load, then their corresponding clusters also be-
long to the same load (unless either of the two events is unclustered; that is, belongs
the noise set 𝑦0). Equivalently, Rule 3 is expressed as 𝒙(𝑘) ↔ 𝒙(𝑙) ⟹ 𝑦(𝒙(𝑘)) ↔ 𝑦(𝒙(𝑙))
where 𝑦(𝒙(𝑘)) ≠ 𝑦(𝒙(𝑙)) ≠ 𝑦0. Practically, we augment Rule 3 with a minimum re-
quired number of recurrences per cluster pair in order to be accepted so as to re-
duces the number of faulty matches. This threshold value is set in our experiments
to 3 event matches per cluster pair. Rule 2 and 3 imply jointly that two matching
clusters 𝑦𝑚 ↔ 𝑦𝑛 must be a pair of on-off clusters (that is, one is a cluster of on-events
and the other is of off -events). Similar to events denotation, subscript arrows will
distinguish between on and off clusters, as in 𝑦𝑚,↑ and 𝑦𝑛,↓, respectively.

18That includes the case where both belong to the noise cluster since matching these two events is of
a very limited value.

19We use this term to indicate that the sum of power changes can deviate from zero in a relatively
wide range and that we only impose this assumption on the change in real power since reactive
power can deviate largely as in loads with power storage capabilities for instance.

20A zero-sum constraint is originally stated as |dP(𝑘)+dP(𝑙)| → 0 and a relaxed version that is normally
adopted in practice is simply comparing the absolute sum or the power changes against a threshold
𝜖 as in |dP(𝑘) + dP(𝑙)| ⩽ 𝜖. To make this matching adaptive to power change, we choose a threshold 𝜖
that is a function of the absolute changes such that 𝜖 = 1

𝜃
(|dP(𝑘)| + |dP(𝑙)|). This concept applies also

to similar matching rules as, for example, in Equations (3.16) and (3.17).
21As shall be illustrated in the load recognition algorithm, introduced rules will be applied recursively

after discarding matched events from the sequence of detections. This leads to new cases where
matching rules can be further observed. For instance, recursively applying Rule 1 and Rule 2 leads
to 10 cases of matched event pairs, and leaves out two unmatched events, a simultaneous event, and
a false detection.
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Since this work is limited to on-off loads, we only permit unique pairs of cluster
matches. Stated more explicitly, if the 𝑚th and 𝑛th clusters are matched 𝑦𝑚 ↔ 𝑦𝑛
where 𝑛, 𝑚 > 0 then neither is permitted to match any other cluster (that is, 𝑦𝑚 ↮ 𝑦𝑘
for 𝑘 ≠ 𝑛 and likewise for 𝑦𝑛). Should a conflict arise e.g. due to missed detections,
the cluster pair with the maximum number of matching recurrences is selected.

This rule represents the first step in promoting an event-level matching to cluster-
level. The following two rules, then, governs how this cluster-level matching is
spread across cluster members.

Rule 4: For any cluster matching 𝑦𝑚,↑ ↔ 𝑦𝑛,↓, an event 𝒙(𝑘)
↑ of the on-cluster 𝑦𝑚,↑ forward

matches the nearest succeeding event belonging to the off-cluster 𝑦𝑛,↓. Similarly, an event
𝒙(𝑙)
↓ of the off-cluster 𝑦𝑛,↓ backward matches the nearest preceding event belonging to the

on-cluster 𝑦𝑚,↑.

Rule 5: Two events match 𝒙(𝑘)
↑ ↔ 𝒙(𝑙)

↓ if 𝒙(𝑘)
↑ forward matches 𝒙(𝑙)

↓ and 𝒙(𝑙)
↓ backward matches

𝒙(𝑘)
↑ backward.

To illustrate Rules 4 and 5 we use the following simplified example. Assume a
cluster match 𝑦1,↑ ↔ 𝑦2,↓ and let a 4-event series comprise two events of the on-
cluster followed by two events of the off -cluster so that the series is expressed as

𝒙(1)
↑ → 𝒙(2)

↑ → 𝒙(3)
↓ → 𝒙(4)

↓ . Denote a forward match by 𝒙(𝑘) → … → 𝒙(𝑙) and a back-
ward match by 𝒙(𝑘) → … → 𝒙(𝑙) . Rule 4 then states that the series is expressed as

𝒙(1)
↑

⟶ 𝒙(2)
↑

⟶ 𝒙(3)
↓

⟶ 𝒙(4)
↓ and Rule 5 states that only the 𝒙(2)

↑ ↔ 𝒙(3)
↓ matching is

accepted. Worth mentioning is that matches remain only possible within the same
entity as stated by the first rule. Admittedly, these two rules represent two main lim-
itations in our unsupervised load recognition stage and an opportunity for future
research. Rules 4 and 5 represent a conservative choice that favors the hypothesis
of faulty event detection over the claim of load aliasing (that is, multiple loads with
similar signatures).

The ground-state event matching procedure is then stated as follows:

1. Given an event series, detect ground states and split entities

2. Apply Rule 2 to each entity to extract event matches

3. Apply Rule 3 to promote event matches to cluster-level
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4. Apply Rules 4 and 5 to spread cluster-matches to events

5. Remove matched (and partially matched) events from each entity

6. Repeat from Step 2 until no further matches are possible

and all steps are performed with Rule 1 in mind. Partially matched events are those
matched only forwards or only backwards (as in 𝒙(1)

↑ and 𝒙(4)
↓ in the preceding exam-

ple). Clearly this procedure is overly conservative and extensions can be proposed
but are not investigated further in this work and are rather recommended for fu-
ture investigation. However, and due to the limitations of this matching approach,
we additionally complement this approach with the commonly adopted zero-sum
principle [Hart 1992] which is introduced in the following.

3.7.2. Cluster-level Matching

The event-level matching discussed in the preceding subsection faces two main dif-
ficulties. First it relies on estimating a ground state which require a long monitoring
period to be observed. Second, in each loop iteration the matching algorithm be-
gins with a search for two-event entities to apply the event-level matching. Even if
a ground state is observed, finding a two-state entity is an assumption not guaran-
teed to hold. Therefore, once the event-level matching procedure has retrieved all
possible matching pairs, further matching possibilities are retrieved using cluster-
level features and these are discussed in the following.

In the following, we often distinctly differentiate between on and off clusters which
is intentional since we primarily consider on-off loads and hence only permit a
matching between a cluster pair with opposing change in power.

Zero sum constraint: Hart [1992] introduced the concept of zero-sum of a duty cy-
cle of a load and this concept has been utilized by many energy disaggregation
approaches afterwards (see e.g. [Giri and Bergés 2015, Krall et al. 2016, Azaza and
Wallin 2017, Liu et al. 2017]). The concept states that sum of state transitions of a
complete duty cycle of an FSM load is nearly zero-valued (assuming nearly con-
stant power draws of an FSM load in each state). While we do not strictly enforce
the zero-sum constraint on each event, we adopt a relaxed variant thereof applied
to the cluster representatives.
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Since we only consider on-off loads, a matched pair of clusters are expected to nearly
match in their absolute power change dP and dQ features. Letting dP𝑚,↑ and dP𝑛,↓
denote the power change features of the 𝑦𝑚,↑ on-cluster and the 𝑦𝑛,↓ off -cluster, re-
spectively, then the condition

|||dP𝑚,↑ + dP𝑛,↓
||| ⩽ 1

𝜗dP

( |||dP𝑚,↑||| + |||dP𝑛,↓||| ) (3.16)

(where 𝜗dP > 1) retrieves a list of potential candidates for each cluster 𝑦𝑚 ↑ ordered
by the sum of power change |dP𝑚,↑ +dP𝑛,↓|. Here dP𝑚 of the 𝑚th cluster is estimated
from the cluster mean given by 𝒙𝑚 = 1∕|y𝑚|∑𝒙∈y𝑚

𝒙 where 𝒙𝑚 = [dP𝑚, dQ𝑚]⊤. A
similar list of potential matching candidates are retrieved using a constraint on the
change in reactive power given analogously by

|||dQ𝑚,↑ + dQ𝑛,↓
||| ⩽ 1

𝜗dQ

( |||dQ𝑚,↑||| + |||dQ𝑛,↓||| ) (3.17)

(where 𝜗dQ > 1) and similarly ordered by the sum of change |dQ𝑚,↑ + dQ𝑛,↓|. Condi-
tions 3.16 and 3.17 represent an adaptive, weak version of the zero-sum constraint
as they state that power changes in the on- and off clusters should be close but not
necessarily zero-valued. Closeness here is stated as that one event should be in the
range of (𝜗dP − 1)∕(𝜗dP + 1) to (𝜗dP + 1)∕(𝜗dP − 1) times the other for them to qualify
for potential matching (and likewise for the reactive power). In all our experiments,
both parameters are identically set to 𝜗dP = 𝜗dQ = 3.

Potential event matching: A second condition for a cluster-level matching is the
anticipated event pairs that could be matched according to Rules 1, 4, and 5. In
other words, if the two on- and off -clusters indeed correspond to the same load, it
is likely that their members will be observed in ordered on-off pairs and within the
same entity of operation. Therefore, the condition∑

𝒙↑∈y𝑚
𝒙↓∈y𝑛

1
(
𝒙↑ ↔ 𝒙↓

)
⩽ 𝜗𝑒 ⋅max

(|y𝑚|, |y𝑛|) (3.18)

(where 0 < 𝜗𝑒 ⩽ 1 and 1(𝒙↑ ← 𝒙↓) indicates the number of possible matches) simi-
larly retrieves for a given cluster 𝑦𝑚 a list of potential clusters for matching ordered
by the ratio of anticipated event matches to the cluster cardinality. This threshold is
set in our experiments to 𝜗𝑒 = 40%.
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The cluster-level matching procedure is then detailed as follows:

1. Set tolerance level 𝑙 = 1

2. For each unmatched on-cluster 𝑦𝑚,↑

3. Retrieve three ordered lists of matched off -clusters based on the Conditions
3.16, 3.17, and 3.18

4. If the 𝑙th first elements of each list has a candidate in common (e.g. 𝑦𝑛,↓), then
declare the matching 𝑦𝑚,↑ ↔ 𝑦𝑛,↓.

5. Repeat from Step 2 unit no further matching is possible.

6. Increment the tolerance level 𝑙 ← 𝑙 + 1

7. Repeat from Step 2 until a maximum tolerance (i.e. for 𝑙 ⩽ 𝐿)

At the end of this stage, each pair of matched clusters (either indirectly from the
preceding event-level stage or the current cluster-level matching procedure) are de-
clared as a distinct load for which a power trace (that is, load profile or the time
series draw of the real power) is to be reconstructed.

We defer evaluation of this and the following stage (that is, load profile reconstruc-
tion) to the end-to-end validation of the entire disaggregation pipeline presented in
Section 3.9.

3.8. Load Profile Reconstruction

For each detected on-off load, the load profile is reconstructed with the assumption
of a linear power draw from each on-event to its matched off -event. Additionally,
a power surge (a spike of the power draw during the on-transient phase) extracted
from the on-event transient segmentation is injected into the reconstructed time se-
ries. Load profiles are reconstructed at a frequency of 1 Hz.
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3.9. Experiments and Results

In this section we provide qualitative evaluation of the proposed end-to-end disag-
gregation framework applied to the commercial dataset. Quantitative evaluations
are outside the scope of this work, and are delegated to a solid future work on en-
ergy disaggregation validity measures which remains, to our knowledge, a debate
within the energy disaggregation to date.

Figure 3.7 shows the aggregate real power signal of the commercial data on a 6-day
period in January 2015. The proposed unsupervised energy disaggregation frame-
works reaches up to 20 detected loads of which we provide a single example de-
picted in Figure 3.8 and further results can be found in Appendix C.

Figure 3.8 shows the disaggregation of a load commonly used during the evening
on workdays. Amongst the list of sub-metered loads in that dataset, the best ob-
served candidate is the dishwasher whose sub-metered profile is shown in Fig-
ure 3.9. As observable from the figure, our framework was able to precisely esti-
mate the start-time of each usage cycle and, to a large extent, the whole duration of
operation. Observable yet is that the reconstructed profile is much smoother than
the real one (with many power surges missed) in addition to missing a second state
of this multi-state load. Please note the difference in power draw levels is mostly
attributed to calibration artifacts since different power meters have been used for
the aggregate and sub-metered signals.

3.10. Conclusion

In this chapter, we proposed a multi-stage unsupervised energy disaggregation
framework which comprised five stages, namely, a clustering-based event detec-
tion stage, feature extraction, non-parametric event-based clustering stage, event-
matching for on-off load recognition, and finally inverse load profile reconstruc-
tion.

Being unsupervised, the introduced framework relied in general on repeated pat-
tern detection and matching. However, it additionally leveraged domain knowl-
edge encoded in a set of rules or heuristics that were proven to be valuable in ad-
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Figure 3.7.: Aggregate real power of the 1st phase of a commercial building.
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Figure 3.8.: Reconstructed profile of a detected load in the 1st phase of the commer-
cial data with estimated energy 0.1 kW⋅H, 6-day usage time ∼ 4.6 hours
(that is around 3.2% of the disaggregation period), and around 4.1% of
detected events.
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Figure 3.9.: Best-match sub-metered load profile to the detected load in Figure 3.8.
Meter calibration artifacts results in the observed scale difference be-
tween the aggregate data meter and the individual load sensors.
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dressing the load disaggregation task. In spite of the introduced rules and heuristics,
the algorithm featured a high level of interpretability that, in turn, allowed for ease
of hyper-parameter adjustment. Notable yet is the high level of robustness against
parameter variations indicating a stable disaggregation performance that rendered
this framework equally applicable to both the residential and commercial settings
on which the proposed model was indeed empirically validated.

For future work on such a multi-stage framework, probabilistic modeling repre-
sents one of the most promising improvements. As a main advantage, a proba-
bilistic framework permits the system user or domain expert to encode their un-
certainty in the system’s parameters. Such a probabilistic framework would then
reflect user’s uncertainty in design parameters to model’s uncertainty in predicted
outputs which would further promote the level explainability and transparency of
the proposed framework. A second advantage of a probabilistic framework is that it
permits a propagation of uncertainties from one stage to the next so as to e.g. recall
missed detections at a higher level of abstraction.

Extending the proposed approach to multi-state and variable loads is another pos-
sible direction. Yet, the work introduced in this chapter reflects on some of chal-
lenges in unsupervised energy disaggregation. Therefore, we proceed in the follow-
ing chapters with gradual increase of labeled data for energy disaggregation from
event-based labels in Chapter 4 to sub-metered loads in Chapter 5.



Chapter 4.

Semi-Supervised Energy Disaggregation

Ubiquity of unlabeled measurements, along with scarcity of labeled data, motivated
a machine learning paradigm known as semi-supervised learning (SSL). SSL leverages
the ubiquity of unlabeled data in guiding the model-under-training towards more
reliable generalization performance especially when labeled data is not adequately
available. Indeed, some assumptions have to hold for this learning paradigm to
achieve its targeted performance gain. However, these assumptions are neither re-
strictive nor unreasonable in many practical scenarios. In general, it is assumed that
structure or dynamics of the data in the feature space is relevant to the structure of
the label space. In simpler terms, it is assumed that signatures or features having
the same label tend to cluster together in the feature space. In that case, revealing
the feature space structure to an appropriate learning model assists in inferring the
structure of the label space.

This chapter presents our work in the direction of semi-supervised energy disaggre-
gation [Barsim and Yang 2015]. The proposed learning paradigm reduces labeling
and training efforts of standard supervised learning models, mitigates the problem
of labeled data scarcity, and enables a form of online learning as more unlabeled
data become available post-deployment. Experimental validation shows that SSL
can achieve a notable boost in performance in situations of severe scarcity of la-
beled data.

This chapter is organized as follows. Section 4.1 gives a brief overview of the SSL
and an example of this learning setting, namely, self-training. Section 4.2 reviews
prior art on energy disaggregation that adopted SSL. In Section 4.4, our proposed
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SSL model for energy disaggregation is detailed. Experimental validation on a real-
world household dataset, namely, the BLUED dataset [Anderson et al. 2012] is pro-
vided in Section 4.7. Finally, Section 4.8 concludes this chapter.

This work was published by Barsim and Yang [2015], and formulations, phrasing,
and results are partially adopted from our publication.

4.1. Introduction

Semi-supervised learning (SSL) refers to a set of machine learning paradigms that
either assist an unsupervised component with externally labeled data or accommo-
date a supervised learner with unlabeled observations [Chapelle et al. 2006, Gold-
berg 2010]. SSL attempts to infer valuable information about the structure of the
label space through exploring the feature space, assisted by constraints on the for-
mer. Such constraints are provided either explicitly or through scarcely labeled data.
The main objective of SSL tools is to address the scarcity of labeled data, and this is
achieved by leveraging the ubiquity of unlabeled observations to probe and explore
the feature space for valuable structures.

Formally stated, SSL attempts to estimate the conditional distribution 𝑝(𝑦 | 𝑥) of
the labels 𝑦 given observations 𝑥 through samples obtained from the joint distri-
bution 𝑝(𝑥, 𝑦) in addition to a ubiquity of samples from the marginal distribution
𝑝(𝑥) [Schoelkopf et al. 2012]. We refer to samples acquired from the marginal 𝑝(𝑥) as
unlabeled observations while labeled data is the sample set obtained from the joint
𝑝(𝑥, 𝑦).

In the last three decades, SSL algorithms have been utilized in various applications
with different models including self-training [Yarowsky 1995b], co-training [Blum
and Mitchell 1998], semi-supervised support vector machines [Joachims 1999], and
generative mixture models [Nigam et al. 2000]. We refer the interested reader to
[Chapelle et al. 2006, Goldberg 2010] for a more comprehensive review on SSL.

Plentiful examples can be quoted where unlabeled observations overwhelm labeled
data for a machine learning problem. Of a particular relevance to our discussion is
the case of energy disaggregation. In energy disaggregation, labeled data is either
segregated signals of sub-metered loads for eventless disaggregation or manually
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labeled events for event-based energy disaggregation systems. Respectively, unla-
beled data is either aggregate signals or their detected events. Undoubtedly, ac-
quiring segregate load profiles is considerably more invasive, laborious, and time-
consuming than recording aggregate signals which is a by-product of the smart me-
ter deployment. Similarly, detecting abrupt changes in an aggregate signal is much
cheaper than manually associating each detection to the causing load.

Self-training [Scudder 1965, Fralick 1967, Agrawala 1970, Amini and Gallinari 2002]
is one of the simplest SSL algorithms in which a probabilistic model is initially
trained on the limited amount of labeled data, and then iteratively re-trained and
updated based on both the externally labeled data, and its own high-confidence pre-
dictions. A probabilistic model is a model that quantifies its confidence (or equiva-
lently uncertainty) in its own prediction. The self-training SSL paradigm has been
adopted in a number of machine learning problems such as named entity classifica-
tion [Collins and Singer 1999], object detection [Rosenberg et al. 2005], and compu-
tational linguistics [Yarowsky 1995a].

In this work, we prove the effectiveness of SSL for event-based energy disaggrega-
tion. To this end, we propose a self-training model for event-based classification
and empirically validate this model on a publicly available energy dataset. The
proposed model consists of a support vector machine (SVM) along with a nearest
neighbor rule for label propagation as shall be detailed shortly.

4.2. Literature Review

It is important to remark the terminology peculiars resulting from redefining some
machine learning concepts for energy disaggregation. As introduced in the preced-
ing section, we use the term "semi-supervised" as defined in the domain of machine
learning in general, namely, learning from labeled and unlabeled data. Works on
energy disaggregation, however, tend often to use the same term to indicate re-
duced level of intrusiveness upon deployment in a target building (see Section 1.2.2
for a terminology discussion). In this section, we limit our review to prior art on
semi-supervised disaggregation methods as defined from a machine learning per-
spective.
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Our work [Barsim and Yang 2015] along with the independent and shortly preced-
ing works by Li et al. [2015] and Iwayemi and Zhou [2017]1 were, to our knowl-
edge, the first of their kind in proposing SSL for energy monitoring and disaggre-
gation. All three works utilized the self-training paradigm but varied in their base
learner. An expectation maximization (EM) classification model is proposed by Li
et al. [2015], a 𝑘-nearest neighbor 𝑘NN by Iwayemi and Zhou [2017], and an SVM
in our earlier work [Barsim and Yang 2015]. Iwayemi and Zhou [2017] addition-
ally complement our work through an elaborate search for an efficient stopping
criterion. Stopping in their work was considered an anomaly detection problem
where a Gaussian model is fit to labeled and augmented samples. Using the fit-
ted model, unlikely data points are prevented from augmenting the labeled set2.
The framework is evaluated on the REDD dataset [Kolter and Johnson 2011] in a
transductive setting (introduced in Section 4.7), and claim minimal degradation in
performance (compared to fully supervised models) despite the severe scarcity of
labeled data).

Co-Training, a paradigm of SSL [Blum and Mitchell 1998], was introduced by Gillis
and Morsi [2016; 2017] for the problem of energy disaggregation. The authors lever-
aged diversity in class predictions between two different classification models (a
decision tree and a 𝑘NN in this case) trained on distinct subsets of the labeled data
[Xu et al. 2012]. The training set for each model is augmented with samples from
the unlabeled data for which both learners were in agreement with respect to their
class predictions. Re-training then takes place for both models with the newly aug-
mented training set, and the process repeats until a predefined stopping condition
(e.g. no further prediction agreements are possible). While experimental validation
was limited to synthetic data and a relatively small number of loads, results show
comparable performance to fully supervised models.

Fatouh and Nasr [2018] proposed a combination between self-training with decision
trees (DT) as base classifiers and active learning. In their approach, the SSL model
(in the training phase) is additionally permitted to query an oracle about its least
confident predictions. The model is validated on the BLUED dataset [Anderson
et al. 2012], and illustrated consistent improvements. Nevertheless, such a setting
is more precisely referred to as active learning [Settles 2012].

1The work is actually published in December 2015.
2Upon detailing the proposed SSL algorithm, it will become evident that self-training is vulnerable to
error (that is, false predictions) propagation.
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Humala et al. [2018] introduced a model-tuning stage that leverages unlabeled mea-
surements in target buildings for fine-tuning generic load models. After careful se-
lection of temporal sub-segments, a set of parameters are estimated for each load
model. A parameter clustering stage takes place afterwards for detection of anoma-
lies and more robust parameterization. Model-tuning is performed upon installa-
tion in a new target building or if new loads are introduced into the building with-
out the need for user intervention or intrusive calibration procedures.

4.3. Problem Statement

Since labeled data is expensive to acquire and is oftentimes scarce, we try in this
work to answer the following question. Can a learning model benefit from an abundance
of unlabeled data from the target building to recover to the fully supervised performance ?

When the answer to the first question is positive, we further ask the following ques-
tion. Can this model generalize to entirely novel queries without the need for retraining ?
In other words, how much of unlabeled data has to be available during training for
the model to generalize well to new, previously unseen data ?

To this end, we limit this study to event-based energy disaggregation with the ex-
ample of self-training as the chosen SSL paradigm.

4.4. Model Architecture

The proposed model is a self-training wrapper around a maximum margin classi-
fier, namely an SVM, applied on extracted features of abrupt changes (aka events)
from the aggregate signals. Figure 4.1 shows a block diagram illustrating the train-
ing procedure which will be detailed in the following.

Let D = {(𝒙(𝑛), 𝑦(𝑛))}𝑁𝑛=1 be a dataset of 𝑁 samples sampled from the joint distri-
bution 𝑝(𝒙, 𝑦) such that the 𝑛th feature vector 𝒙(𝑛) ∈ 𝕏 is associated with the corre-
sponding discrete-valued class identifier (i.e. label) 𝑦(𝑛) ∈ 𝕐 . Here we use 𝕏 and 𝕐 to
denote the input and output spaces, respectively, with the latter being a finite set of
𝑀 class labels given by 𝕐 = {𝑦𝑚}𝑀𝑚=1. Oftentimes, we drop the sample index denota-
tion ⋅(𝑛) for notational convenience. We assume that the first 𝑁L data samples of D
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are accessible to the model under consideration while the remaining 𝑁U = 𝑁 −𝑁L

are query samples whose labels 𝑦(𝑛) are to be predicted by the proposed model. Im-
portant yet is that the feature vectors 𝒙(𝑛) of the query samples are available to the
model even during the training phase3.

In other words, we assume that the dataset D is split into a labeled subset Lgiven,
for example, by the first 𝑁L < 𝑁 samples of D such that

L=
{
(𝒙(𝑛), 𝑦(𝑛))

}𝑁L

𝑛=1 (4.1)

and an unlabeled set U comprised of only the feature vectors of the last 𝑁U items
of the dataset D such that

U=
{
𝒙(𝑛) }𝑁

𝑛=𝑁L+1
(4.2)

where 𝑁L + 𝑁U = 𝑁 . The labels of the last 𝑁U are discarded and may be used
merely for evaluation purposes4. We additionally refer to L as the seed labeled set,
and denote it by L̂0 = L for the iterative training procedure detailed later.

We limit this study to non-abstaining classification models5. As a result, we state
our first requirement on the seed labeled set as follows

𝕐 = {𝑦𝑚}𝑀𝑚=1 ≡ {
𝑦(𝑛)

}𝑁L

𝑛=1 (4.3)

that is, class labels in the seed labeled set L are expected to span the whole label
space. Stated explicitly, the seed labeled set is expected to contain at least a single
sample from each target class. In the field of energy disaggregation, this constraint
assumes either prior knowledge of all target loads or external labeling of newly
introduced loads, which is admittedly a limitation of the adopted SSL paradigm
along with the non-abstaining SVM as a base model. However, this can be easily

3And if the model is merely evaluated based on these query samples, then this is a setup referred to
as transductive semi-supervised learning (see Section 4.7.1)

4In practice, these labels will not be available to the oracle in the first place and are to be estimated by
the trained model. We emulate this scenario by ignoring some labels of an entirely labeled dataset D.

5Abstaining classification models are those models that support out-of-distribution detection. Loosely
speaking, these models are allowed to reject prediction if the query sample is most likely to be an
outlier, or an observation whose label has not been included in the training set.
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addressed if an abstaining classification model (for example, a Bayesian classifier6

or a DT7) are utilized instead.

Let 𝔥 ∶ L̂↦ �̂� = 𝔥[L̂] denote a fully supervised training algorithm that estimates a
classification function �̂� ∶ 𝕏 → 𝕐 from a set L̂= {(𝒙(𝑛), 𝑦(𝑛))}𝑁L̂

𝑛=1 of observation-label
pairs. For example, in our experiments each prediction function �̂� is a multi-class8

SVM and 𝔥[L̂] is the estimation of their support vectors from the labeled set L̂.

The self-training algorithm then iteratively proceeds for a predefined number of
iterations 𝐾 as follows. At the 𝑘th iteration, a fully supervised classification model
is trained, class labels of unlabeled samples are predicted, an appropriate subset of
these samples is selected, and finally the labeled set is augmented with this selection
for the next iteration. These steps shall be formalized in the following.

Initialization: Let the seed set of labeled data L̂0 comprise the manually labeled
samples from D such that

L̂0 ≡ L (4.4)

Training: Estimate the prediction function �̂�(𝑘) from the labeled set L̂𝑘

�̂�(𝑘) = 𝔥
[
L̂𝑘

]
(4.5)

for each iteration 𝑘 where L̂𝑘 denotes the potentially augmented labeled set at the
𝑘th iteration.

Prediction: Estimate class labels of the unlabeled set Uusing the estimated predic-
tion function �̂�(𝑘)

�̂� = �̂�(𝑘)(𝒙) for each 𝒙 ∈ U (4.6)

where �̂� is the estimated label for the sample 𝒙 at the current iteration. Note that
label prediction �̂� of the data sample 𝒙 can change from one iteration to the next as
the prediction function �̂�(𝑘) is updated.

6Bayesian classifiers are uncertainty-aware models that can quantitatively demonstrate their confi-
dence in their own predictions. This is normally estimable from the model’s predictive variance.
High predictive uncertainty can be interpreted as an abstaining behavior.

7Decision trees can easily abstain if designed specifically for such purposes (e.g. if 𝑥𝑖 < 50, return "no
label").

8We use the term multi-class SVM to refer to a simplification of the multi-class problem into a set of
binary classifications and utilizing binary SVMs thereon [Allwein et al. 2001]. An example was given
in Chapter 2 for a one-vs-one construction for binary neural nets.
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Selection: Based on a pre-designed selection criterion, select a set of unlabeled sam-
ples along with their predicted labels resulting in an augmentation set denoted by
dL̂𝑘 for the 𝑘th iteration. For an example, we adopt a nearest-neighbor selection
criterion defined in the following.

For each class 𝑦𝑚 ∈ 𝕐 , let X𝑚 and X̂
(𝑘)
𝑚 be the subset of labeled data whose class is

𝑦𝑚, and the set of unlabeled samples whose class prediction is 𝑦𝑚, respectively

X𝑚 =
{
𝒙 ||| (𝒙, 𝑦𝑚 ) ∈ L

}
(4.7)

and
X̂(𝑘)
𝑚 =

{
𝒙 ||| 𝒙 ∈ U and �̂�(𝑘)(𝒙) = 𝑦𝑚

}
(4.8)

We then define the nearest predicted sample from X̂
(𝑘)
𝑚 to the labeled class X𝑚 as

arg min
𝒙∈ X̂

(𝑘)
𝑚

(
𝑑(𝒙,X𝑚) =

1||X𝑚
||

∑
𝒙′ ∈X𝑚

𝑑(𝒙, 𝒙′)

)
(4.9)

where 𝑑(𝒙,X𝑚) is the distance between a sample 𝒙 and the set X𝑚 defined in Equa-
tion (4.9) to be the average distance between the sample and all members of the
set. In Equation (4.9), 𝑑(𝒙,𝒙′) is the distance between two data points in the feature
space 𝕏 and is a design choice. In all our experiments, this choice is the Euclidean
distance 𝑑(𝒙, 𝒙′) = ||||𝒙 − 𝒙′||||2.

The nearest-neighbor augmentation set dL̂𝑘 is then given by

dL̂𝑘 =
{(

arg min
𝒙∈ X̂

(𝑘)
𝑚

𝑑(𝒙,X𝑚), 𝑦𝑚
)}𝑀

𝑚=1
(4.10)

which in words comprises the nearest unlabeled sample to each class set X𝑚 pre-
dicted to have the same class label 𝑦𝑚.

Augmentation: Selected samples dL̂𝑘 augment the training set L̂𝑘 for the next train-
ing iteration

L̂𝑘+1 = L̂𝑘 ∪ dL̂𝑘 (4.11)

Stopping: Steps of training, prediction, selection, and augmentation are repeated for 𝐾
iterations. That is, we adopt a fixed number of iteration as a stopping criterion.
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Labeled data
L=

{
(𝒙(𝑛), 𝑦(𝑛))

}𝑁L

𝑛=1

Unlabeled data
U=

{
𝒙(𝑛)}𝑁

𝑛=𝑁L+1

Training
�̂�(𝑘) = 𝔥

[
L̂𝑘

]

Prediction
�̂� = �̂�(𝑘)(𝒙)

Selection
dL̂𝑘

Augmentation
L̂𝑘+1 = L̂𝑘 ∪ dL̂𝑘

Predicted labels{(
𝒙(𝑛), 𝑔(𝐾) (𝒙(𝑛)))}𝑁

𝑛=𝑁L+1

L̂0

�̂�(𝑘)

U �̂�

dL̂𝑘

L̂𝑘

𝑘 = 𝐾

L̂0

Figure 4.1.: Block diagram of a simple self-training system. The output from the sys-
tem is either estimated labels {(𝒙(𝑛), 𝑔(𝐾)(𝒙(𝑛)))}𝑁𝑛=𝑁L+1

(for transductive

learning) or a semi-supervised classifier �̂�(𝐾) (for inductive learning).
Training starts from the seed labeled L ≡ L̂0 being fed to the training
algorithm 𝔥[⋅] for estimating the fully supervised classification function
�̂�(0). It then proceeds iteratively in the loop (training, prediction, selec-
tion, and augmentation) for 𝐾 iterations.

In Figure 4.1, a visual illustration of the iterative self-training framework adopted
in this work is provided. As depicted in the illustration, training is built up on a
labeled set and an unlabeled one. As training proceeds, a new classifier is trained
on the externally labeled data, and a few samples from the unlabeled set along with
the classifier’s own prediction on these samples.

4.5. Remarks

One advantage of this approach is its applicability to any learning algorithm (or su-
pervised classification model) as long as a suitable selection criteria can be defined.
Empirical evidence, however, shows a better fit to maximum margin classification
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models. Another advantage is that it does not require additional clustering compo-
nents to reveal the density (or structural information) in the input space, rather it
estimates this structure from its own predictions.

Admittedly, the adopted selection and augmentation steps are vulnerable to error
propagation. In other words, if a classier �̂�(𝑘) at iteration 𝑘 results in a false pre-
diction for a set of samples, such mis-predictions have the chance of reaching the
augmentation set dL̂𝑘 and, in turn, the training set L̂𝑘+1 for the following iteration.
The following classifier �̂�(𝑘+1) will then be trained on a faulty set of labeled data with
no assumption of a faulty ground truth. One can, however, adopt various measures
to remedy the risk of error propagation. Examples of these measures include reserv-
ing a validation subset Vof the original labeled data L for a test of degradation in
performance and potentially early stopping. Another is simply self-training for a
relatively low number of iterations 𝐾 . The latter is our adopted approach where
self-training is limited to 𝐾 = 3 iterations in our experiments with a notable boost
in performance.

As final remark we note that the unlabeled set U remains the same for all iterations.
As a result, augmentation samples are permitted to change labels in future iterations
which is adopted as a counter measure against the problem of error propagation.
This is indeed a reasonable choice for different reasons.

The first, as stated earlier, is to avoid error propagation as early augmentation sam-
ples are very likely to contain erroneous predictions since the model was trained
using smaller labeled sets. As augmentation samples are introduced and with the
assumption that SSL is feasible, we are supposed to trust later model predictions
rather than earlier ones.

Secondly, the self-training algorithm should give a chance for rare classes to satu-
rate faster than prevalent ones. Removing samples from the unlabeled set U after
each iteration will force rare classes to expand even beyond its boundary region,
while stopping very early will leave dense regions poorly exploited. With dynamic
augmentation, rare classes are permitted to saturate (that is, by repeatedly selecting
the same nearest neighbor) earlier then prevalent ones which will most likely select
a new sample each iteration.

A third and final motivation is that, it serves as a stopping criterion for the iterative
self-learning procedure. Indeed, if the algorithm ends up in two identical augmen-
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tation sets, then this is a clear stopping flag where further iterations are very likely
to hurt performance.

4.6. Performance Assessment Measures

Briefly stated, we utilize the macro-F1-score introduced and defined in Section 2.6
as a final evaluation measure for all experiments.

4.7. Experimental Validation

In validating the proposed model, we tested a self-training classification model base
on an multi-class9 linear SVMs and nearest-neighbor selection criterion on the pub-
licly available BLUED dataset [Anderson et al. 2012].

As mentioned in Section 3.3.1, BLUED [Anderson et al. 2012] is a residential en-
ergy dataset comprising aggregate measurements of two phases (phases A and B
with the latter containing more loads and wider range of load categories includ-
ing several miscellaneous appliances) of a household for one week. We mention in
this section further details that are mostly relevant to the SSL experimental setups
and refer the reader to the original work by Anderson et al. [2012] for a thorough
description.

Originally, BLUED contained 872 events in its first phase and 1548 in the second.
For appropriate validation, we built transition-level labeling for these events where
on-, off -, and state-change events are distinguished (such information is not pro-
vided in BLUED by default). Additionally, we assigned different labels to each load
state (e.g. refrigerator’s lights). Finally, we neglected some events that were either
of unknown circuits or simultaneously occurring with other events. Handling si-
multaneous events is a task of either a feature extraction stage or a smarter energy
estimation component. We ignored these events since our interest at this step is the
comparison between two different classification approaches. Such manual cleans-
ing led to a refined set D of labeled observations consisting of 𝑁 (𝐴) = 749 events

9More precisely, a multi-class construction of binary SVMs.
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spanning 𝑀 (𝐴) = 23 classes for phase A and 𝑁 (𝐵) = 1284 events spanning 𝑀 (𝐵) = 45
classes for phase B.

Feature vectors are limited to step changes in real and reactive power signals for
each event 𝒙 = [dP, dQ]⊤ and are extracted from the post-computed 60 Hz signals
using a clustering-based event detection algorithm [Barsim et al. 2014a]. Training
and selection utilized the Euclidean distance function 𝑑(𝒙, 𝒙′) = ||||𝒙 − 𝒙′||||. In all
experiments, the adopted self-training model is limited to 𝐾 = 3 iterations .

Two semi-supervised settings are investigated in the sequel, namely, transductive
and inductive learning (see Chapelle et al. [2006] and Zhu and Goldberg [2009] for
a detailed discussion and observe the illustration in Figure 4.2 for the next subsec-
tions).

4.7.1. Transductive Learning Experiments

A transductive setting of SSL is a learning scheme in which both the labeled L and
unlabeled U sets are exposed to the training framework during its training phase
with the objective of predicting labels �̂� for the elements in the unlabeled set Uonly.

validation
subset V labeled subset L transductive set U inductive set Ũ

dataset D

L̂𝑘 dL̂𝑘

L̂𝑘+1

𝑘

Figure 4.2.: Data splits for transductive and inductive settings of SSL. In case of
validation-based stopping, a validation subset V is first reserved for
estimating the stopping indicator. The rest of the dataset is split into
a labeled subset L and unlabeled set U. The latter is referred to as the
transductive set from which augmentation samples dL̂are incrementally
incorporated in training the base model. An inductive Ũ set is beyond
all samples that have been observed at any step of training. Validation-
based early stopping as a counter measure for error propagation can be
achieved using the pre-reserved validation set V but is not our choice
in this work.



– 101–

In other words, transductive learning does not need to generalize beyond the given
dataset D, and its main output is a set of predicted class labels {(𝒙(𝑛), �̂�(𝑛))}𝑁𝑛=𝑁L+1
rather than a trained classifier �̂�(𝐾) as in the case of inductive learning.

Observe in Figure 4.2, for example, how a trainer progressively acquires new sam-
ples from the transductive subset, but not the inductive one. A transductive model
is one that only evaluates on the transductive set.

Figure 4.3 compares the performance of a traditional supervised model with a self-
training one on a growing number of labeled observations 𝑁L. The test set D is
divided into two subsets, the labeled subset L and an unlabeled set U and both
are exposed to the training algorithm. Therefore, the semi-supervised system here
is an example of a transductive setting (i.e. the system is permitted to observe all
test queries during the learning phase).

Note that the selected labeled set L in both phases covers the whole label space
and therefore starts from one observation per class. Evaluations are taken over a
random subset D̃⊂ D, selected in advance and fixed for all evaluations.

Tests on phase A of BLUED show an noticeable gain in performance particularly
in the regions where labeled observations are relatively scarce (that is, below 12%
or equivalently 90 events). Once sufficient labeled data is available, the two models
perform almost identically. This shows how an SSL system can benefit from un-
labeled data in order to recover a loss in performance due to insufficient labeling
information.

Phase B shows a gain in the performance as well, but it is rather smaller compared
to the first phase. This can be attributed to the weak class separation in the sec-
ond phase compared to the first one, along with our choice of linear kernel SVM
models.

4.7.2. Inductive Learning Experiments

A more challenging setting of SSL is the inductive learning scheme. In this setting,
the objective of the trained model �̂�(𝐾) is to generalize to query observations beyond
both subsets L and U. Therefore, the main output is the classifier itself �̂�(𝐾) rather
than its predictions on the unlabeled set U. Inductive SSL is intuitively interpreted
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as an augmentation of the training dataset with unlabeled data for reaching a more
robust prediction model.
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Figure 4.3.: Transductive validation of the proposed self-training model (solid
green) compared with a traditional supervised model (dashed blue)
when applied to extracted events of phase A (upper) and phase B
(lower) of the BLUED dataset. The dash-dotted vertical line at almost
4.67% of labeling is the cut analyzed in Figure 4.4. 𝑟 = |L| ∕ | D| is the
ratio of labeled observations. In all cases, we estimated the performance
of the output classifier �̂�(𝐾) on a randomly selected set of observations.
The selected set is fixed for all tests in order to give a fair comparison
and it can contain samples from either the labeled set Lor the unlabeled
set U.
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Figure 4.4.: Transductive and inductive validation of the proposed semi-supervised
model (solid green) compared to the fully supervised one (dashed blue)
over time, with the fully inductive case starting at 𝑇 = 0 days and reach-
ing a fully transductive scheme at 𝑇 = 7 days. Labeled data for both
phase A (upper) and phase B (lower) is fixed to 35 and 60 samples, re-
spectively. In all cases, we estimate the performance of the output clas-
sifier �̂�(𝐾) on a randomly selected set of observations. The selected set
is fixed for all tests in order to give a fair comparison and it can con-
tain samples from either the labeled set L, the unlabeled set U, or the
remaining samples that are never seen by the learner 𝔥.
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Figure 4.4 shows the classification performance of an inductive SSL system over
time. In this case, the labeled set is kept constant (and small) for the two phases.
For phase A, 35 random samples were labeled while phase B was provided with 60
labeled samples (both constitute almost 4.67% of the total number of events in that
phase or almost 8 hours of labeling). A traditional supervised model is dependent
only on the labeled set and since the labeled set is fixed and the adopted model
(i.e. SVM) provides a unique solution, the performance of the traditional system
remains constant all the time.

On the contrary, a semi-supervised system leverages both labeled and unlabeled
observations. It starts from almost the same performance of a traditional super-
vised model (fully inductive far left in the figure). Afterwards, the system keeps
observing new unlabeled events (represented in the incrementally growing set U

and reaching the fully transductive setting far right), deduces more internal struc-
tural information, and attempts to estimate a better classifier �̂�(𝐾).

Both figures show an increasing performance of an semi-supervised system over
time. However, phase B shows less stable behavior and also less gain. Once again,
this is hypothesized to the relatively well-separated classes in phase A compared to
phase B.

4.8. Conclusion

In this work, we introduced a simple semi-supervised classification tool to an en-
ergy disaggregation system in order to reclaim the loss in performance due to la-
beled data scarcity. The proposed models empirically shows performance gains
via leveraging unlabeled observations and, therefore, reduces labeling costs and
efforts.

Despite its simplicity, the algorithm was able to provide a learning energy disaggre-
gation system that leverages both external information in the form of hand-labeled
observations and internal structural information revealed from the unlabeled detec-
tions. For batch processing or offline deployments (that is, the transductive learning
setup), a semi-supervised system reduces the amount of labeling effort required.
For an online system, on the other hand, and in case the model is permitted to fine-
tune its parameters post-deployment, the proposed model results in a system that
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increases performance over time as it observes more unlabeled instances at no extra
cost.

Future work should investigate the choice of a probabilistic base model capable of
providing meaningful uncertainty scores. Additionally, self-training is one of the
simplest SSL paradigms that yet showed promising results on a real-world energy
dataset. More stable and profound SSL paradigms are expected to show even supe-
rior performance and remedies to data scarcity and should, therefore, be a topic of
future research.

Finally, we give a word about practicality of SSL settings in general and the dis-
cussed self-training paradigm in particular for energy disaggregation. As discussed
throughout this chapter, SSL is mostly beneficial in situations where labeled data
are scarce while unlabeled observations are abundantly available. This notably oc-
curs in two forms of energy monitoring deployments. The first is the long-term
slow variations in the target building resulting from, as an example, newly intro-
duced loads, seasonal shifts, and end-users’ habitual changes. In this case, energy
monitoring definitely benefits from SSL in rapidly adapting to the new changes at
minimal costs. For instance, the self-training paradigm would require a few labels
of the newly introduced load for it to get incorporated in the monitoring process.

The second case is an abrupt change in the target deployment such as generalizing
to new buildings. Numerous aspects determine the benefit of SSL in this scenario.
For example, if the new building shares a considerable set of end-use loads (e.g. in
the case of generalizing across households within a close geographical proximity)
and especially if variations in loads’ signatures are minimal, then SSL is expected
to effectively mitigate the burden of labeled data acquisition. However, SSL is not
expected to be effective if the domain change suffers from a considerable shift in the
feature space. In this latter scenario, transfer learning algorithms should be lever-
aged instead.





Chapter 5.

Generic Deep Disaggregation

In Chapter 3, the significance of a well engineered feature set was particularly em-
phasized for efficient clustering (or similarly classification in supervised energy dis-
aggregation frameworks) and more accurate and robust energy estimation. This,
in turn, introduced further complexities and imposed higher requirements on the
early stages of either time series analysis or change detection and segmentation.

An alternative framework, known as the deep learning framework, is to optimize
such a multi-stage system (e.g. preprocessing, feature extraction, classification ...
etc) jointly using a common objective function under gradient-based optimization
[LeCun et al. 1998a] and utilizing the back-propagation algorithm [Rumelhart et al.
1986, LeCun et al. 1998b] that is supported by automatic differentiation tools [Bay-
din et al. 2018]. In this chapter, we review prior art (to the date of our publication
[Barsim and Yang 2018]) in energy disaggregation that utilized deep learning frame-
works for such a task, and introduce a well regularized deep black-box model based
on convolutional neural nets suitable for generic end-to-end load monitoring and
disaggregation.

This chapter is organized as follows. In the first section we introduce how the deep
learning framework applies to the energy disaggregation pipeline, and review prior
art on this topic in the following section. The remainder of this chapter presents a
study on leveraging the deep learning framework on the problem of energy disag-
gregation. We first state the addressed problem in Section 5.3. The proposed model
is detailed in Section 5.4 along with our modeling assumptions. Performance assess-
ment measures are defined and discussed in detail in Section 5.5. Section 5.6 reports
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and discusses our main results on one of the freely available energy datasets, and
Section 5.7 summarizes and concludes this chapter.

Work in this chapter was published by Barsim and Yang [2018], and phrasing, fig-
ures, and results are partially taken from our prior work. Moreover, literature re-
view is limited to works preceding our aforementioned publication.

5.1. Introduction

Deep learning is a machine learning framework in which a multi-stage system (such
as the energy disaggregation pipeline) is jointly optimized based on an end-to-
end objective function and using gradient-based optimization [LeCun et al. 1998a],
which in turn leverages the power of the gradient backward propagation (known
commonly as back-propagation or reverse accumulation) algorithm [Rumelhart et al.
1986] implemented in modern automatic differentiation tools [Baydin et al. 2018].
Such models are normally over-parameterized in order to feature high modeling ca-
pacities allowing for end-to-end learning from an abundance of training examples.
The hierarchical architecture of deep models (aka depth) is a key component that
allows for progressive abstraction of data from low level processing in early stages
or layers (e.g. filtering, translation, rotation ... etc) to high level abstractions in later
ones.

Especially in the last decade and due to numerous factors, deep learning has been
widely applied to an exceptional variety of machine learning problems and do-
mains such as, and most notably, computer vision [Krizhevsky et al. 2012, Cire-
san et al. 2012], dynamic system modeling [Yeo and Melnyk 2019, Längkvist et al.
2014, Duncker et al. 2019], reinforcement learning [Jeerige et al. 2019, Caicedo and
Lazebnik 2015], natural language processing [Mikolov et al. 2013, Socher et al. 2012],
graphical data modeling [Santoro et al. 2017, Defferrard et al. 2016], healthcare and
medical diagnostics [Zhang et al. 2019, Khuriwal and Mishra 2018], context-aware
data compression [Goyal et al. 2019, Bégaint et al. 2019], acoustic and speech ap-
plications [Ling et al. 2015, Trigeorgis et al. 2016, Miao et al. 2015], remote sens-
ing [Zhang et al. 2016], to name but a few. A detailed review of deep learning ap-
proaches, applications, and the history of deep learning is outside the scope of this
work but we refer the interested reader to some of the ubiquity of reviews on the
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topic such as [Schmidhuber 2015, Bengio et al. 2013, Shrestha and Mahmood 2019,
Modi 2018, Wan 2019] and [Guo et al. 2016].

Viewed as a pipeline of traditional machine learning stages (raw data processing,
feature extraction, clustering, energy estimation ... etc), energy disaggregation be-
comes one of the target applications for the deep learning framework due to its
progressive learning design. For example, it is common in various energy moni-
toring and disaggregation approaches to begin with first order differences for the
detection of abrupt changes. Higher order differences (e.g. distances between event-
based features) are utilized in later stages such as event-level clustering or classifi-
cations. Such a hierarchical architecture, along with the exceptional success in many
other applications, motivated research on deep disaggregation models.

In this chapter, we discuss the feasibility of utilizing deep learning as a black-box
modeling framework for energy disaggregation (what we refer to as a generic deep
disaggregation framework). Our claim is that, a carefully regularized deep disaggrega-
tion model with sufficient modeling capacity is able to learn the (short-term) load profiles
without the need for load-dependent fine tuning nor complete knowledge of the target envi-
ronment.

It should be noted, however, that we do not devalue domain knowledge, hybrid
modeling, nor neural architecture search approaches for deep energy disaggrega-
tion. We, rather, hope to answer in this work the question of whether or not a generic
load-independent deep disaggregation model is feasible once an adequate amount
of training data has been obtained, and how it compares to load-tuned disaggrega-
tion models.

5.2. Related work

In this section, we briefly review some of the most recent works (to the date of
our publication [Barsim and Yang 2018]) on energy disaggregation and load mon-
itoring that adopted data-driven learning techniques, or more precisely the deep
learning framework. We limit this review to those works that followed the recent
breakthrough in data-driven learning with neural architectures [Krizhevsky et al.
2012] which proved to be remarkably powerful in various machine learning and
data mining applications, more prominently in cases where adequate (or even an
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abundance of) observations are available with limited or missing domain knowl-
edge.

Mauch and Yang [2015] exploited a generic two-layer bidirectional recurrent neural
neural (RNN) architecture featuring long short term memory (LSTM) [Hochreiter
and Schmidhuber 1997] recurrent units in extracting single load profiles. They tested
their models on the reference energy disaggregation dataset (REDD) [Kolter et al.
2010] in a de-noised scheme1 [Makonin and Popowich 2015]. Additionally, they val-
idated the generalization of their architecture to previously unseen loads in new
buildings. In a later work, Mauch and Yang [2016] used a combination of discrimi-
native and generative models in a two-stage eventless extraction of load profiles.

Kelly and Knottenbelt [2015a] evaluated and compared three neural network ar-
chitectures on domestic loads from the UK-domestic appliance level energy (UK-
DALE) [Kelly and Knottenbelt 2015b]. The first is a bidirectional RNN architecture
with LSTM units similar to the one adopted by Mauch and Yang [2015]. The second
follows the architecture of a de-noising auto-encoder (dAE) [Vincent et al. 2010].
Finally, the third model is a regression-based disaggregator whose objective is to
estimate the main key points of an activation cycle of the target load within a given
window. Such key points include the start-time, end-time, and average energy con-
sumed in the first activation cycle in the given window.

Similarly, He and Chai [2016] applied two architectures, namely a convolutional
dAE and an RNN, to the same problem. In their architectures, they applied parallel
convolutional layers with different kernel sizes analogous to the Inception module
introduced in GoogLeNet [Szegedy et al. 2015]. Zhang et al. [2018] simplified the ob-
jective of the dAE architecture in [Kelly and Knottenbelt 2015b] to predict a single
time instance of the target load profile for a given window of the aggregate signal.
Their work is inspired by similar approaches in related application domains such
as speech signal processing. Likewise, Nascimento [2016] applied three neural net-
work architectures, namely basic convolutional dAE, an RNN, and a ResNet-based
model [He et al. 2016a] to the same problem but on three target loads in the REDD
dataset [Kolter et al. 2010]. He introduced several improvements such as redefin-

1A scheme in which aggregate signals are synthesized from the measured segregate profiles. In this
scheme, all information about underlying loads is known, and the only source of noise is sensor or
measurement noise.
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ing the loss function, exploiting batch normalization [Ioffe and Szegedy 2015], and
applying residual connections [He et al. 2016a].

Additionally, Lange and Bergés [2016] adopted a deep neural network with con-
strained binary and linear activation units in the last two layers. Their first objective
was to retrieve relevant sub-components of the input signal that sum up linearly to
the aggregate active and reactive powers. Subsequently, they estimate the on-off ac-
tivation profile of each load. Notable yet is that their approach was applied on the
very-high frequency (12 kHz) current and voltage measurements from the BLUED
dataset [Anderson et al. 2012].

Contrary to these event-less approaches, Kaman et al. [2017] applied a basic multi-
layer perceptron (MLP) [Bishop 2006] in an event-based setting. The model is used
in the event classification stage adopted in event-based monitoring systems whose
input is the feature vector extracted from detected events2. The study was, however,
performed in a de-noised setup and limited to merely two loads.

In many of the aforementioned works [Kelly and Knottenbelt 2015b, He and Chai
2016, Zhang et al. 2018, Nascimento 2016], each disaggregation model is a neural
network whose disaggregation window length (and consequently the width of sub-
sequent layers) depends on the load being monitored. The disaggregation window
of each load is manually adjusted in a per-load basis to fully capture a single activa-
tion cycle of the load, and its width is treated as a load-dependent hyper-parameter
affecting both training and deployment. Moreover, the disaggregation performance
widely differs amongst variant load categories and a model that achieves remark-
ably well on one load might drastically fail for other loads.

This section represents a nearly comprehensive review of related work (to the date
of our publication [Barsim and Yang 2018]) on energy disaggregation using data
driven learning which supports our claim that joint progress in the two fields (en-
ergy disaggregation and data-driven learning) lags notably behind the develop-
ment of each field individually. Therefore, one of the objectives of this chapter is
to assert the feasibility of data-driven models in the problem of energy disaggrega-
tion if the adopted model possesses adequate capacity and its parameters are used
efficiently, in a hope to close this gap.

2Abrupt changes in the observed aggregate signal.
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5.3. Problem Statement

The problem we address in this chapter is single load extraction of activation profiles.
Specifically, can we infer the operating intervals of a certain load given the aggregate load
profile ? and how much historical (or future) measurement samples would be required for
this task ?.

In the following subsections, we first introduce what is referred to as activation pro-
files and how they are estimated from segregate load profiles. Afterwards, we for-
mulate the single load extraction problem and how the input and target signals are
modeled for the given task.

5.3.1. Activation Profiles: Definition and Motivation

In its simplest form, a load is modeled as a finite state machine (FSM) consisting of
merely two states, namely, the positive- or on-state whenever the load is consum-
ing energy from the main power source, and the negative- or off -state otherwise.
Accordingly, the load monitoring problem reduces to a set of binary classification
tasks as shall be discussed shortly.

Note that unlike prior effort, the consumption profile of a load during its on-state
need not be a constant nor a piecewise-constant function in time. In other words,
previous works defined an on-off or a multi-state load model as a finite state ma-
chine with constant [Zeifman and Roth 2011] or a piece-wise constant [Makonin
2014] energy consumption level between state-change events, respectively.

In contrast, our proposed model incorporates all load categories that can be, at least
once in a while, disconnected from the monitored circuit (that is, switched-off ) re-
gardless of the complexity of its consumption profile during operation3. Such loads
are often the main target in load monitoring and disaggregation systems [Liang
et al. 2019].

The desired signal (aka ground truth) of the 𝑚th load is the discrete-time binary-
valued signal 𝑦(𝑚)(𝑡) ∈ {0, 1} which is set (i.e. to indicate an on-state) at time 𝑡 when-

3Excluded loads are limited to permanently operating ones such as alarm systems and stand-by loads.
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ever the load is operating in one of its activation states at that time instance and
unset otherwise. In this work, we refer to this signal as the activation profile.

Activation profiles have been addressed in [Kelly and Knottenbelt 2015a] but either
in a regression-based formulation (which estimates only the change points of the
activation profile 𝑦(𝑚)(𝑡)) or as a post-processed output of the disaggregation model.
In this work, activation profiles are the direct output of each disaggregator.

For notational convenience, we will drop the load index ⋅(𝑚) for the rest of this chap-
ter since we only target a single load per model. Nevertheless, load indices may still
arise occasionally if deemed necessary to avoid confusion.

Applications that benefit from activation profiles include mainly activity monitor-
ing and occupancy detection [Batra et al. 2015] in which time-of-use information
dominates the value of energy consumption. Moreover, activation profiles simplify
the disaggregation process and permit the use of a two-stage detect-and-classify
model that first detects the activation periods of a load from the aggregate data
and then estimates the energy consumed or the fine-grained consumption profiles
within each activation cycle. In addition, these profiles facilitate the comparison be-
tween different disaggregators of various load types. This is because binary evalua-
tion metrics are normally more easily interpreted than other disaggregation metrics
that remain contentious within the energy disaggregation community. In this chap-
ter, only the first stage of estimating the activation profile is considered.

5.3.2. Activation Profiles: Estimation

While some energy datasets, such as Belkin’s dataset [Belkin 2013], or UK-DALE
[Kelly and Knottenbelt 2015b] (except for e.g. BLUED4 [Anderson et al. 2012]) in-
clude usage data, such information is either unreliable due to manual logging by
end-consumers or only available for user-activated loads such as lights, kitchen ap-
pliances, washers, cleaners, etc. For that reason, we define the true activation profile
of a load 𝑦(𝑡) via a threshold-based approach applied to the sub-metered real power

4In the case of BLUED [Anderson et al. 2012], switching times are of sufficient reliability for both
user-activated and background loads.
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signals. This estimation approach is similar to the one used in [Kelly and Knot-
tenbelt 2015a] and implemented in the open-source energy disaggregation library
NILM-TK [Batra et al. 2014a] which is defined as follows.

The sub-metered real-power5 P(𝑡) of a load is compared against predefined load-
dependent thresholds to detect its operation intervals. In order to avoid anomalies
and false activations or deactivations, the load is assumed to be in an activation state
(i.e. on) if its power draw P(𝑡) exceeds a load-dependent threshold Pon for a mini-
mum period of time 𝑇on. Similarly, if the power draw drops below a predefined
threshold Poff for a given period 𝑇off, the load is assumed to be disconnected. Oth-
erwise, the load keeps its last observed state. Thus, the estimated activation profile
is defined as

𝑦(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
1, if P(𝜏) ⩾ Pon for

(
𝑡 − 𝑇on

)
< 𝜏 ⩽ 𝑡

0, if P(𝜏) ⩽ Poff for
(
𝑡 − 𝑇off

)
< 𝜏 ⩽ 𝑡

𝑦(𝑡 − 1), otherwise

(5.1)

with the initial state assumed to be off (i.e. 𝑦(1) = 0) for all loads. Note that Pon,
𝑇on, Poff, and 𝑇off are the only load-dependent parameters in this work, and they are
used merely in estimating the ground truth signals. Values of these parameters are
similar or close to those adopted in [Kelly and Knottenbelt 2015a] and are listed in
Table 5.1 for the sake of completeness.

It is also worth noting that we compared this basic threshold-based technique to a
one based on hidden Markov models (HMM) in estimating the ground truth signals
[Mauch et al. 2016]. In the latter, a multi-state HMM with normally distributed emis-
sions was trained on the sub-metered load signals where all states with a non-zero
mean were assumed to be on-states. The number of states in each model is load-
dependent and it is estimated so as to minimize the Akaike information criterion
(AIC) which is a function of both the number of states in the model and the like-
lihood of the observed sequence P(𝑡). However, we found that the complexity of
this approach did not match its added value and was, therefore, excluded from

5We restrict all experiments in this chapter to the real power signals for both aggregate and segregate
data for computational advantages, ease of deployment, and fair comparisons with prior art. How-
ever, involving additional input channels to the adopted models should be straightforward with
minimal changes to the proposed model architecture.
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Table 5.1.: Load-dependent thresholds for estimating the ground truth signals (i.e.
activation profiles) of different loads from their sub-metered real power
signals. In all experiments, the on- and off -power thresholds are identical.
Moreover, 𝑇on and 𝑇off are sample counts in eq. (5.1) but their values are
given in this table in minutes.

Load
Pon = Poff 𝑇on 𝑇off

[Watt] [min] [min]

Fridge (FR) 5 1 1

Lights (LC) 10 1 1

Dishwasher (DW) 10 30 5

Washing machine (WM) 20 30 5

Solar thermal pump (SP) 20 1 1

Television (TV) 5 3 3

Boiler (BL) 25 5 5

Kettle (KT) 1000 1/3 1/6

Microwave (MC) 50 1/6 1/6

Toaster (TS) 300 1/6 1/20

this writing. In addition, HMM-based modeling was not applicable to some un-
controlled and variable-consumption loads such as lighting circuits and personal
computers as reported in our previous work [Mauch et al. 2016].

5.3.3. Single load extraction

In single-load extraction, each disaggregator targets exclusively a single load in the
monitored circuit and normally ignores dependencies between loads. We shall dis-
cuss this assumption in the following subsection.

Let 𝑥(𝑡) denote the discrete-time aggregate signal utilized for the activation profile
extraction. In our experiments, the aggregate signal is the whole-house real power
profile6 𝑥(𝑡) = P(𝑡). Let further, 𝒙𝑎∶𝑏 where 𝑎 < 𝑏 denote a finite sub-sequence of the

6Note that P(𝑡) denotes the aggregate real signal not the real power profile of the 𝑚th load which would
have been denoted in this context by P(𝑚)(𝑡) to avoid confusion.
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signal 𝑥(𝑡) from the time instance 𝑡 = 𝑎 + 1 to 𝑡 = 𝑏 given by

𝒙𝑎∶𝑏 =
[
𝑥(𝑎 + 1), 𝑥(𝑎 + 2), ⋯ , 𝑥(𝑏)

]⊤
and likewise for 𝒚𝑎∶𝑏 (revise Section 1.6).

Formally, we define single load extraction as the process of inferring the activation
profile 𝒚𝑎∶𝑏 of a particular target load in the time interval 𝑎 < 𝑡 ⩽ 𝑏 having merely
observed the aggregate signal within the same interval7 𝒙𝑎∶𝑏.

In the following, and without loss of generality, we limit our discussion to the time
interval 0 < 𝑡 ⩽ 𝑇 where 𝑇 ∈ ℕ such that input aggregate signal and target activa-
tion profile are denoted by 𝒙0∶𝑇 and 𝒚0∶𝑇 , respectively. Later, the interval length 𝑇
becomes a design hyper-parameter and shall be discussed in Section 5.4.6.

5.3.4. The Assumption of Independent Loads

As stated in the preceding sub-section, single load extraction implicitly implies in-
dependent loads given the aggregate load profile 𝒚(𝑚)0∶𝑇 ⟂⟂ 𝒚(𝑚

′)
0∶𝑇 |𝒙0∶𝑇 such that

𝑝
(
𝒚(𝑚)0∶𝑇 | 𝒚(𝑚′)

0∶𝑇 , 𝒙0∶𝑇

)
= 𝑝

(
𝒚(𝑚)0∶𝑇 | 𝒙0∶𝑇

)
∀𝑚 ≠ 𝑚′ (5.2)

where 𝒚(𝑚)0∶𝑇 and 𝒚(𝑚
′)

0∶𝑇 are the activation profiles of the 𝑚th and (𝑚′)th loads, respec-
tively, and ( ⋅ ⟂⟂ ⋅ | ⋅) denotes conditional independence. One can intuitively ques-
tion the validity of this assumption, but for this work, we consider it a simplifying
assumption for ease of disaggregation and generalization.

While exploiting loads’ dependencies is expected to improve the performance of
a disaggregation system in a given building [Kim et al. 2010, Kolter et al. 2010,
Makonin 2014], it is also likely to reduce the generalization capability of such a sys-
tem to new, previously unseen buildings. This is because such dependencies orig-
inate not only from the physical architecture of the power line network and the
assumed signal model but also from the usage behavior of end-consumers which
varies widely from one building to another, especially within the residential sector
[Batra et al. 2014b].

7Admittedly, this is a limitation of this work, and we discuss further possibilities in Section 5.7.
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Additionally, the assumption of independent loads permits load monitoring under
partial knowledge (e.g. incomplete knowledge of all existing loads and their signa-
tures) of the target environment. This is particularly useful in applications targeting
a subset of load categories. Examples of such applications include energy conserva-
tion targeting major loads, activity monitoring targeting consumer activated small
appliances, and energy efficiency targeting specific load brands.

We additionally note that one must practice extreme care when modeling load de-
pendencies since spurious dependencies might arise preventing reliable general-
ization. For example, consider a two-load circuit comprising e.g a dishwasher and a
fridge (see for instance the illustrative example in Figure 1.1). From domain knowl-
edge, we know that the former is user-activated while the latter is mostly thermo-
statically controlled. In other words, we know that these two loads must be almost
independent and either load can barely indicate activation or deactivation of the
other. But since these are the only two loads in the circuit, inferring one (e.g. fridge)
having observed the aggregate signal renders the second completely identifiable,
that is up to measurement noise. Careless modeling would mistakenly conclude a
strong dependence between the loads. However, this model will entirely fail once
introduced to new circuits, or even when new loads are introduced to the moni-
tored circuit, since the previously observed dependence would no longer be valid.
While this is an oversimplified example, we elaborate on our claim more rigorously
in the following.

To illustrate and formally state our claim, Figure 5.1 depicts a graphical representa-
tion of the causal structure of end-use loads in a household. In the graph we assume
that loads do not directly cross talk8, and a load state can only be changed based on
the user intention. Therefore, the user intention 𝐻 is the direct, but latent, cause of
any load profile 𝑦(𝑡) (depicted in the graph as a directed edge) and each load profile
is one cause of the aggregate whole-house profile 𝑥(𝑡). Under these assumptions,
there are two sources for inter-load dependencies to appear.

The first is conditioning on the common effect, that is, the aggregate signal. In this
case, loads appear to be dependent while in fact they are not. A model should not
rely on this dependence since it does not reflect the real cause (nor dependence)

8An assumption that is very likely to hold in many existing households, but may fail in modern home
automation (or internet-of-things (IoT)) architectures.
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𝐻

𝑦(1)(𝑡) 𝑦(2)(𝑡) … 𝑦(𝑀)(𝑡)

𝑥(𝑡)

Figure 5.1.: A graphical model illustrating potential dependencies across loads
where 𝐻 is a hidden variable (grayed out) representing user intention
[Yang and Zhou 2011], 𝑦(𝑚)(𝑡) is the 𝑚th load profile, and 𝑥(𝑡) is the ag-
gregate signal. Assuming loads do not intercommunicate (e.g. no load
causes another load to activate or deactivate) two scenarios may result
in load dependencies. The first is conditioning on the aggregate signal
𝑥(𝑡) (the effect) which results in spurious dependencies between loads
and we claim that a model should not generalize based on this depen-
dency. The second case results from ignoring (that is, not adjusting for)
the user intention 𝐻 (the cause) and such a dependency is definitely
informative but hardly measurable.

between loads, and will dramatically change as new loads are introduced (in other
words new parents of 𝑥(𝑡) are added to the graph).

The second case is not adjusting for (i.e. not conditioning on) the user intention
[Yang and Zhou 2011], that is, the common cause between load profiles. This results
in real dependencies reflecting user intention and inferring consumers’ behavior.
While this is a more promising load dependency to investigate, we hardly found
prior art in this direction (except perhaps [Yang and Zhou 2011]) and causal mod-
eling for energy disaggregation is clearly lagging behind the state-of-art research
on causal learning. Adding new loads is less likely to change this relation between
loads since under the assumption of no direct cross talk between loads, there would
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be no open path9 through other loads to change this relation. For an example, a user
whose daily habit is to use a toaster for breakfast and a dishwasher in the evening
will not deviate much from this habit should he buy a printer.

The trap here is that observational data alone, no matter how abundant, can not
reveal which of these scenarios is the real explanation for observed dependencies.
Accordingly, a data-driving model with only access to data (that is, without the
underlying model) will remain clueless whether to consider or ignore each observed
dependency.

Learning load dependencies is outside the scope of our work, and we assume in-
dependent loads conditioned on the aggregate signal to facilitate modeling, avoid
learning spurious dependencies, and enable targeted load monitoring and disaggre-
gation. Nevertheless, we definitely encourage future research in this direction.

5.4. Deep Disaggregation Model

In this section, we introduce the proposed model in detail starting from the adopted
modeling assumptions in Section 5.4.1. Afterwards, Section 5.4.2 introduces the
adopted model architecture with each elementary operation defined in Section 5.4.3
and training procedure detail in Section 5.4.4. Section 5.4.5 defines the predictive
function used upon deployment with final remarks and deployment considerations
discussed in Section 5.4.6.

5.4.1. Modeling Assumptions

Single load extraction can be cast as a sequence-to-sequence modeling problem,
where the input sequence is the aggregate real power 𝑥(𝑡) while the output sequence
is the binary-valued activation profile 𝑦(𝑡).

9An open path between two variables in the presented model is a path from a source node 𝐴 to a
target node 𝐵 with no intermediate node with both edges pointing inwards (for instance, the path
𝐴⋯ → 𝐶 ← ⋯𝐵 is blocked by the node 𝐶).
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First, we split the input and output sequences into non-overlapping sub-sequences
of identical length such that the training dataset D becomes

D=
{(

𝔗𝑛𝑇𝒙0∶𝑇 , 𝔗𝑛𝑇 𝒚0∶𝑇
)}𝑁−1

𝑛=0
(5.3)

where 𝔗𝜏(⋅) denotes the translation or time-shift operator defined in Equation (1.5),
𝑇 is the length of each sub-sequence, and 𝑁 denotes the number of training sub-
sequences. The total length of the training profile is given by 𝑁𝑇 .

We then assume that all sub-sequences are identically distributed and conditionally
independent given the aggregate signal (i.i.d. assumptions) such that

𝑝
(
𝒚0∶𝑁𝑇 |𝒙0∶𝑁𝑇

)
=

𝑁−1∏
𝑛=0

𝑝
(
𝔗𝑛𝑇 𝒚0∶𝑇 |𝒙0∶𝑁𝑇

)
(5.4)

which is a reasonable assumption, but remains infeasible to model since the consid-
ered input sequence 𝒙0∶𝑁𝑇 is prohibitively long. For an impression, in our second
experiment (see Section 5.6.3) and for all load types, 𝑇 comprises a 3-hour sub-
sequence in 1 Hz signals (or equivalently 𝑇 = 10800), and the total length 𝑁𝑇 spans
one month of training data (that is, 𝑁 = 248). Therefore, we further simplify the
modeling problem with a stronger independence assumption given by

𝑝
(
𝒚0∶𝑁𝑇 |𝒙0∶𝑁𝑇

)
=

𝑁−1∏
𝑛=0

𝑝
(
𝔗𝑛𝑇 𝒚0∶𝑇 |𝔗𝑛𝑇𝒙0∶𝑇

)
(5.5)

which implies that all information that is needed to infer any sub-sequence of the
activation profile 𝔗𝜏𝒚0∶𝑇 is encoded in the synchronous input signal 𝔗𝜏𝒙0∶𝑇 for
any non-negative integer 𝜏 ∈ ℤ⩾0. We further elaborate on this assumption in Sec-
tion 5.4.6 but also encourage future investigation of the validity and effect of this
simplifying assumption.

Additionally, within each sub-sequence we impose once more the i.i.d. assumptions
on each 𝑦(𝑡) within the sub-sequence 𝔗𝜏𝒚0∶𝑇 such that

𝑝
(
𝔗𝜏𝒚0∶𝑇 |𝔗𝜏𝒙0∶𝑇

)
=

𝑇∏
𝑡=1

𝑝
(
𝔗𝜏𝑦(𝑡) |𝔗𝜏𝒙0∶𝑇

)
(5.6)
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for any non-negative index 𝜏 so that the likelihood function of the whole activation
profile 𝒚0∶𝑁𝑇 is given by

𝑝
(
𝒚0∶𝑁𝑇 |𝒙0∶𝑁𝑇

)
=

𝑁−1∏
𝑛=0

𝑇∏
𝑡=1

𝑝
(
𝔗𝑛𝑇 𝑦(𝑡) |𝔗𝑛𝑇𝒙0∶𝑇

)
(5.7)

Our third assumption is on the distribution of the conditional 𝔗𝑛𝑇 𝑦(𝑡) |𝔗𝑛𝑇𝒙0∶𝑇

where we impose a Bernoulli distribution whose parameter 𝑞𝑛,𝑡 is estimable from
the corresponding input sub-sequence 𝔗𝑛𝑇𝒙0∶𝑇 via a parameterized deterministic
mapping denoted by 𝒈( ⋅ |𝜽𝑔) so that

𝑝
(
𝔗𝑛𝑇 𝑦(𝑡) |𝔗𝑛𝑇𝒙0∶𝑇 , 𝜽𝑔

)
= Bernoulli

(
𝑞𝑛,𝑡

)
(5.8)

= Bernoulli
(
𝑔𝑡
(
𝔗𝑛𝑇𝒙0∶𝑇 |𝜽𝑔)) (5.9)

where 𝑔𝑖( ⋅ |𝜽𝑔) denotes the 𝑖th output of the vectorial function 𝒈( ⋅ |𝜽𝑔) and likewise
for 𝑞𝑛,𝑡 and its vectorial counterpart 𝒒𝑛. The structure of this function 𝒈( ⋅ |𝜽𝑔) is the
discussion of the following section. Relevant here is the distribution’s probability
mass function (PMF) which is accordingly given by

𝑝
(
𝔗𝑛𝑇 𝑦(𝑡) |𝔗𝑛𝑇𝒙0∶𝑇 , 𝜽𝑔

)
=
(
𝑞𝑛,𝑡

)𝔗𝑛𝑇 𝑦(𝑡)(1 − 𝑞𝑛,𝑡
)1−𝔗𝑛𝑇 𝑦(𝑡) (5.10)

with the complete likelihood function having the form

𝑝(𝒚0∶𝑁𝑇 |𝒙0∶𝑁𝑇 𝜽𝑔) =
𝑁−1∏
𝑛=0

𝑇∏
𝑡=1

(
𝑞𝑛,𝑡

)𝔗𝑛𝑇 𝑦(𝑡)(1 − 𝑞𝑛,𝑡
)1−𝔗𝑛𝑇 𝑦(𝑡) (5.11)

Assuming the targeted data distribution 𝑝data ≡ 𝑝(𝒚,𝒙) is empirically estimable
from the given training set 𝑝data ≃ 𝑝(𝒚0∶𝑁𝑇 ,𝒙0∶𝑁𝑇 ), then the objective is to mini-
mize some sort of a measure of divergence between the true data distribution 𝑝data

(represented by its empirical estimate 𝑝(𝒚0∶𝑁𝑇 ,𝒙0∶𝑁𝑇 )) and the model’s induced dis-
tribution 𝑝model = 𝑝(𝒚, 𝒙 |𝜽𝑔) via adjusting parameters 𝜽𝑔 of the latter. A standard
choice is the Kullback-Leibler (KL) divergence denoted by DKL( ⋅ ∣∣ ⋅ ) and given for
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the two distributions 𝑝data and 𝑝model by

DKL
(
𝑝data ∣∣ 𝑝model

)
= E𝑝data

[
log

(
𝑝data

𝑝model

)]
(5.12)

= E𝑝data

[
log 𝑝data

]
− E𝑝data

[
log 𝑝model

]
(5.13)

= E𝑝data

[
log 𝑝data

]
− E𝑝data

[
log 𝑝

(
𝒚,𝒙 ∣ 𝜽𝑔

)]
(5.14)

which is a function of the parameters 𝜽𝑔 via its rightmost term. Accordingly, mini-
mizing this divergence measure with respect to the model parameters 𝜽𝑔 accounts
to maximizing the expectation E𝑝data

[log 𝑝(𝒚,𝒙 ∣ 𝜽𝑔)] which is, in turn, equivalent
to

max
𝜽𝑔

E𝑝data
[log 𝑝

(
𝒚,𝒙 ∣ 𝜽𝑔

)
] = E𝑝data

[log 𝑝(𝒚 ∣ 𝒙, 𝜽𝑔)] + E𝑝data
[log 𝑝(𝒙)]

= E𝑝data
[log 𝑝(𝒚 ∣ 𝒙, 𝜽𝑔)] + const. (5.15)

where the general product rule 𝑝
(
𝒚,𝒙 ∣ 𝜽𝑔

)
= 𝑝(𝒚 ∣ 𝒙,𝜽𝑔)𝑝(𝒙) has been utilized.

Maximizing the log-likelihood function E𝑝data
[log 𝑝(𝒚 ∣ 𝒙,𝜽𝑔)] based on samples from

the joint distribution 𝑝(𝒚0∶𝑁𝑇 ,𝒙0∶𝑁𝑇 ) is a standard approach in machine learning
known as maximum likelihood (ML) [Bishop 2006]. With the assumed Bernoulli
distribution, the ML formulation is given finally by

arg max
𝜽𝑔

(𝑁−1∑
𝑛=0

𝑇∑
𝑡=1

𝔗𝑛𝑇 𝑦(𝑡) log
(
𝑞𝑛,𝑡

)
+
(
1 −𝔗𝑛𝑇 𝑦(𝑡)

)
log

(
1 − 𝑞𝑛,𝑡

))
(5.16)

and is our choice for estimating the parameters of the proposed model which is
introduced next.

5.4.2. Model Architecture

As stated earlier, each distribution parameter 𝑞𝑡,𝑛 is a function of the corresponding
input sub-segment 𝔗𝑛𝑇𝒙0∶𝑇 . We propose a deep convolutional neural net whose
objective is to estimate a sub-segment 𝒒𝑛 of the parameter sequence given by

𝒒𝑛 =
[
𝑞𝑛,1, 𝑞𝑛,2, ⋯ , 𝑞𝑛,𝑇

]⊤ (5.17)
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from the input sub-segment 𝔗𝑛𝑇𝒙0∶𝑇 such that

𝒒𝑛 = 𝑔(𝔗𝑛𝑇𝒙0∶𝑇 |𝜽𝑔) (5.18)

for any 𝑛 ⩾ 0 where 𝜽𝑔 denotes the model parameters (e.g. weights and biases of
the neural net), 𝑔 ∶ ℝ𝑇 → [0, 1]𝑇 represents the neural network function (assuming
𝑥(𝑡) ∈ ℝ).

In the following we detail the architecture of the neural network 𝑔 that maps a
given input sub-segment 𝔗𝑛𝑇𝒙0∶𝑇 to the corresponding sub-segment of the output
distribution parameters 𝒒𝑛. We first give a high level overview of the network ar-
chitecture, and then detail each elementary transformation in its layers.

The proposed model is a fully convolutional neural network comprising 46 layers in
five parts, namely, an input layer, 20 layers in pooling (aka downsampling) blocks,
4 intermediate layers, 20 layers in un-pooling (aka upsampling) blocks, and finally
an output layer. The model size reaches around 41M of trainable parameters.

Figure 5.2 depicts the architecture of the proposed model. The model’s input is a
sub-segment of the aggregate signal 𝑥(𝑡) of length 𝑇 denoted by 𝔗𝜏𝒙0∶𝑇 for some 𝜏 ∈
ℤ⩾0 and the output is the predicted distribution parameters10 for the same interval.
The input segment length 𝑇 can be varied dynamically (that is, during run-time)
since the model consists merely of convolutional layers with optional pooling11.
The segment length 𝑇 must respect the pooling operations though, and has to be
divisible by 3 × 3 × 3 × 5 × 5 = 675 samples (that is roughly 11.25 minutes at 1 Hz
sampling rate) for the proposed model under the existing implementation.

Computations proceed layer-wise where each layer is composed of elementary op-
erations depicted in its middle section (e.g “GN ◦BN ◦LReLU ◦CONV“) and applied
(from right to left) to the layer’s input. For example, the first layer’s output is given
for the input sequence 𝔗𝜏𝒙0∶𝑇 by{

GN ◦ LogSg ◦ BN ◦ CONV(7, 1)
}(

𝔗𝜏𝒙0∶𝑇
)

(5.19)

and each elementary operation (e.g. “BN“) will be defined shortly.

10These parameters for the Bernoulli distributions are identical to mean predictions since 𝔼[𝑥] = 𝑞
whenever 𝑥 ∼Bernoulli(𝑞). This property will be utilized shortly.

11Convolution and pooling operations will be defined shortly (see Section 5.4.3). Additionally, the
convenience (and advantage) of a dynamic segment length will be discussed in Section 5.4.6.
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Aggregate signal 𝔗𝜏𝒙0:𝑇 ∈ ℝ𝑇

GN ◦LogSg ◦BN ◦CONV(7, 1)64

GN ◦BN ◦LReLU ◦CONV(7, 3)32

GN ◦BN ◦LReLU ◦CONV(7, 3)32

GN ◦BN ◦LReLU ◦CONV(7, 3)32

GN ◦BN ◦LReLU ◦CONV(7, 3)32 ∕𝟑

GN ◦BN ◦LReLU ◦CONV(7, 3)64

GN ◦BN ◦LReLU ◦CONV(7, 3)64

GN ◦BN ◦LReLU ◦CONV(7, 3)64

GN ◦BN ◦LReLU ◦CONV(7, 3)64 ∕𝟑

GN ◦BN ◦LReLU ◦CONV(7, 3)128

GN ◦BN ◦LReLU ◦CONV(7, 3)128

GN ◦BN ◦LReLU ◦CONV(7, 3)128

GN ◦BN ◦LReLU ◦CONV(7, 3)128 ∕𝟑

GN ◦BN ◦LReLU ◦CONV(7, 3)256

GN ◦BN ◦LReLU ◦CONV(7, 3)256

GN ◦BN ◦LReLU ◦CONV(7, 3)256

GN ◦BN ◦LReLU ◦CONV(7, 3)256 ∕𝟓

GN ◦BN ◦LReLU ◦CONV(7, 3)512

GN ◦BN ◦LReLU ◦CONV(7, 3)512

GN ◦BN ◦LReLU ◦CONV(7, 3)512

GN ◦BN ◦LReLU ◦CONV(7, 3)512 ∕𝟓

GN ◦BN ◦LReLU ◦CONV(7, 3)1024

GN ◦BN ◦LReLU ◦CONV(7, 3)1024GN ◦BN ◦LReLU ◦CONV(7, 3)1024

GN ◦BN ◦LReLU ◦CONV(7, 3)1024

GN ◦BN ◦LReLU ◦CONV(7, 3)512 ×𝟓

GN ◦BN ◦LReLU ◦CONV(7, 3)512

GN ◦BN ◦LReLU ◦CONV(7, 3)512

GN ◦BN ◦LReLU ◦CONV(7, 3)512

GN ◦BN ◦LReLU ◦CONV(7, 3)256 ×𝟓

GN ◦BN ◦LReLU ◦CONV(7, 3)256

GN ◦BN ◦LReLU ◦CONV(7, 3)256

GN ◦BN ◦LReLU ◦CONV(7, 3)256

GN ◦BN ◦LReLU ◦CONV(7, 3)128 ×𝟑

GN ◦BN ◦LReLU ◦CONV(7, 3)128

GN ◦BN ◦LReLU ◦CONV(7, 3)128

GN ◦BN ◦LReLU ◦CONV(7, 3)128

GN ◦BN ◦LReLU ◦CONV(7, 3)64 ×𝟑

GN ◦BN ◦LReLU ◦CONV(7, 3)64

GN ◦BN ◦LReLU ◦CONV(7, 3)64

GN ◦BN ◦LReLU ◦CONV(7, 3)64

GN ◦BN ◦LReLU ◦CONV(7, 3)32 ×𝟑

GN ◦BN ◦LReLU ◦CONV(7, 3)32

GN ◦BN ◦LReLU ◦CONV(7, 3)32

GN ◦BN ◦LReLU ◦CONV(7, 3)32

LogSg ◦BN ◦CONV(7, 3)1

Predictions 𝔗𝜏 �̂�0:𝑇 ∈ [0, 1]𝑇

+

+

+

+

+

+

+

+

+

+

+

Figure 5.2.: Architecture of the proposed model 𝒈( ⋅ |𝜽𝑔 ) (description in text).
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Each layer may optionally apply a pooling or un-pooling operation to its output
or input, respectively, and this is characterized by the right section of each layer’s
block. Pooling and un-pooling factors are indicated by a divisor (e.g. “/3“) for the
former or a multiplier (e.g. “x3“) for the latter. Additionally, pooling, un-pooling,
input, and output layers are all highlighted with a distinct background colors.

The left section of each layer’s block (e.g. 64) indicates the number of output chan-
nels 𝑐out at that layer.

Standard solid lines represent the normal forward flow, while dashed lines rep-
resent skip connections with channel concatenation, and solid lines with addition
nodes represent residual connections.

Skip-connection (aka. shortcuts or lateral connections) are direct connections from
the low-level layers to the high-level ones through channel-wise concatenation.
Such direct connections were empirically shown to deliver higher performance in
both discriminative [Rasmus et al. 2015a;b, Ronneberger et al. 2015, Valpola 2015]
or generative models [Isola et al. 2016]. The resulting architecture is usually referred
to as U-Net [Ronneberger et al. 2015] or LadderNet [Rasmus et al. 2015b].

Residual connection are identity skip connections that comprise identity mappings
across a block of layers (known as residual blocks) through element-wise addition
to the target layer’s output [He et al. 2016a;b, Chen et al. 2018]. Residual connections
were proven to stabilize, simplify, and accelerate training hierarchical architectures
with depth. We refer the interested reader to e.g. He et al. [2016b] for a detailed
discussion on residual connections and their advantages in deep learning architec-
tures. The resulting neural architecture is commonly referred to as ResNet [He et al.
2016a].

5.4.3. Elementary Operations

Elementary operations in model layers will be detailed in the sequel. For notational
convenience, and without loss of generality, we shall drop dependence on layer
channels, and consider merely the input sequence 𝒙0∶𝑇 .
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Dilated temporal convolutions CONV(𝑘, 𝑟): The core operation of each layer is the
temporal convolution12 defined as

CONV(𝑘, 𝑟)
{
𝒙0∶𝑇

}
= 𝑏 + 𝐰 ∗ 𝒙0∶𝑇 (5.20)

where 𝑟 is the dilation rate [Yu and Koltun 2016], 𝑘 is the kernel size, 𝑏 is the bias
term, 𝐰 is the layer’s kernel, and ∗ denotes the convolution operation defined ap-
propriately for finite length sequences such that output remains a 𝑇 dimensional
sequence. Trainable parameters are the bias 𝑏 and the kernel weights 𝐰.

The original work by Yu and Koltun [2016] applied a geometrically increasing di-
lation rate with respect to layer depth whose outcome is an exponential expansion
of the effective receptive field. We, however, restricted our models to a fixed dila-
tion rate throughout all layers whose effect is merely a fixed scaling of the receptive
field.

Kernel sizes are set to 𝑘 = 7 while dilation takes place with a fixed rate of 𝑟 = 3 for
all layers except the input layer where no dilation takes place.

Batch normalization BN [Ioffe and Szegedy 2015]: is a composition of two affine
transformations applied to the output of each layer based on mini-batch statistics.
The objective of batch normalization is to weakly constrain13 the distribution of all
layer inputs and, as a result, reduce what is known as covariate shifts.

Batch normalization is applied independently to each element (aka neuron) in a
layer, and for the 𝑖th element in the vector 𝒙0∶𝑇 is given by

BN{𝑥𝑖} = 𝛾 �̂�𝑖 + 𝛽 = 𝛾
𝑥𝑖 − 𝜇(B)

𝑖

𝜎(B)
𝑖

+ 𝛽 (5.21)

where 𝑥𝑖 is the 𝑖th element of the vector 𝒙0∶𝑇 , 𝛾 and 𝛽 are two layer-wide trainable
parameters, 𝜇(B)

𝑖 and 𝜎(B)
𝑖 are the sample mean and standard-deviation of this ele-

ment over the the training mini-batch B ⊆ D. In this work, we apply BN prior to
the non-linear activations as originally proposed in [Ioffe and Szegedy 2015] for the

12Since one of the convolution terms, namely the weights 𝐰, is a trainable parameter, this deems the
reflection in the definition of a convolutional operations unnecessary and the operation in practice
takes the form of a cross-correlation.

13Through empirical normalization of the first two moments (aka zero-mean unit-variance standard-
ization).
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input and output layers only but found empirically that normalizing post the non-
linear activation in the remaining layers showed better results. Moreover, we avoid
deploying any dropout [Srivastava et al. 2014] regularization as proposed in [Ioffe
and Szegedy 2015] and found in [Isola et al. 2016, Radford et al. 2016] to hurt the per-
formance of a network that jointly includes both regularization techniques. Noise
injection GN (introduced next) is in our case a valuable replacement for dropout.

Activation noise (aka Gaussian noise injection) GN [Nair and Hinton 2010]: acti-
vation noise is a regularization technique applied during the training phase only,
and consists of injecting small additive white Gaussian noise to the layer’s output
to avoid over-fitting. This operation is defined simply by

GN{𝑥(𝑡)} = 𝑥(𝑡) + 𝜔(𝑡) (5.22)

where 𝜔(𝑡) ∼ N(0, 𝜎2
GN) for all 𝑡 where the design hyper-parameter 𝜎2

GN is the variance
of injected noise.

Leaky Rectified Linear Units LReLU [Maas et al. 2013]: is an activation function that
represents the main source of non-linearity in the proposed model and is defined
as

LReLU{𝑥(𝑡)} = max(𝛼𝑥(𝑡), 𝑥(𝑡)) (5.23)

where 𝛼 < 1 is a design hyper-parameter and is set in our model to 𝛼 = 0.1 for
all layers, and max(𝑎, 𝑏) returns the maximum amongst the two scalars 𝑎 and 𝑏.
Activation functions are applied element-wise to multivariate inputs.

Logistic sigmoidal activations LogSg: is a bounded activation function applied to
the first hidden layer and the output layer of the model

LogSg{𝑥(𝑡)} = 1
1 + exp(−𝑥(𝑡))

(5.24)

5.4.4. Training Procedure

In the proposed CNN architecture, trainable parameters 𝜽𝑔 are the convolutional
kernels 𝐰 and biases 𝑏 in addition to the batch normalization shift 𝛽 and scale 𝛾
parameters in each layer. A distinct set of these parameters is optimized for each
target load.
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Initialization: biases 𝑏 and shifts 𝛽 are initialized with zeros across all layers while
normalization scales 𝛾 are initialized with ones. Convolutional kernel weights 𝐰 are
initialized from a layer-dependent zero-mean uniform distribution denoted for the
𝑙th layer by U(−𝑎(𝑙), 𝑎(𝑙)) whose parameter 𝑎(𝑙) is given by

𝑎(𝑙) =
√√√√ 12

𝑘(𝑙)
(
𝑐(𝑙)in + 𝑐(𝑙)out

) (5.25)

where 𝑘(𝑙) is the kernel size, and 𝑐(𝑙)in and 𝑐(𝑙)out denote the number of input and output
channels, respectively, for that layer [Glorot and Bengio 2010].

Optimization: the log-likelihood function Equation (5.16) is maximized with re-
spect to all trainable parameters 𝜽𝑔 using gradient-based optimization. Gradients
are estimated from random mini-batches B ⊆ D of the whole training set D in an
approach commonly referred to as stochastic gradient optimization [Bottou 2012,
LeCun et al. 1998a], and propagated to their corresponding parameters through
automatic differentiation in reverse accumulation mode (that is, back-propagated)
[Baydin et al. 2018]. The parameter update rule is based on the ADAM heuristics
[Kingma and Ba 2014] with Nesterov momentums [Dozat 2015] whose details are
outside the scope of this work. We exploit the same hyper-parameter values of both
approaches as recommended in their original works.

Stopping: in order to avoid overfitting in such a highly parameterized model, opti-
mization (aka data fitting) is performed as long as the model keeps improving on a
held-out dataset, referred to as the validation set, and is terminated once further pa-
rameter updates start to hurt the performance on that dataset. Important, however,
is that the validation set is never used for data fitting. This is approach commonly
referred to as early stopping [Prechelt 2012].

5.4.5. Predictive Function

Upon deployment, the model receives a sub-sequence of the aggregate signal 𝒙0∶𝑇

to infer the mean predictions �̂� = 𝑔(𝒙0∶𝑇 | �̂�𝑔) where �̂�𝑔 is the estimated model pa-
rameters from the training process. The following threshold-based decision rule is
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then adopted to estimate the corresponding activation profiled

�̂�(𝑡) =

⎧⎪⎨⎪⎩
1 if 𝑞𝑡 ⩾

1
2

0 otherwise
(5.26)

where �̂�(𝑡) is the estimated activation profile at time 0 < 𝑡 ⩽ 𝑇 . The mapping is de-
terministic since we disable stochastic operations (e.g. noise injection) in test time.

5.4.6. Remarks and Deployment Considerations

First, we highlight that the concept of load activation cycles (that is, a complete
cycle of operation resembling the state path off → on → off as for instance adopted
by Kelly and Knottenbelt [2015a]), is not considered in our model. In other words,
an activation cycle of a load can extend over several 𝑇 -length windows (such as
lighting circuits and dishwashers) or arise more than once within the same window
(as in the case of fridge and kettle activations). This is an important property since
a disaggregator need not wait till the deactivation of a load (i.e. switch-off event)
but rather can provide near real-time feedback from a partial sub-segment of the
aggregate signal. Such a property will be investigated in our experiments (see for
instance Figure 5.4).

Pertinent yet is our second remark which concerns how close the sought feedback
can be to real-time. We shall not discuss the computational requirements of the
model since this is affected by numerous factors such as the target processing ar-
chitecture, possibility of hardware acceleration or parallel computation, chances of
model distillation, ... etc. Rather we shall discuss the need for future samples 𝑥(𝑡+𝜏)
with 𝜏 > 0 for predicting the load activation �̂�(𝑡) at time 𝑡.

We first point out that the proposed model is a form of a fully convolutional neural
net which in a sense behaves computationally as a single convolution in the sense
that it attains a fixed size (that is, number of parameters) but applies to any segment
length 𝑇 as long is it respects the involved pooling14. Additionally, we point out that

14As fractional pooling was not supported.
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the two-sided15 receptive field16 of a neuron in the output layer is around 17 hours
at a sampling frequency of 1 Hz. In other words, no benefit will be obtained from
training on sub-sequences of length 𝑇 > 17 hours, and in our experiments we used
only 3-hour segments. Accounting for downsampling17, a given sequence length 𝑇
must be divisible by 675 which, in turn, demands a lower bound on the sequence
length 𝑇 ⩾ 11.25 minutes.

Due to the use of a fully convolutional architecture, dimensionality of model param-
eters are independent of the length of the input sequence 𝑇 . Kernel dimensionality
is given by its size and the number of input and output channels, while biases 𝑏,
shifts 𝛽, and scales 𝛾 are defined channel-wise. Hence, the sequence length 𝑇 can
be varied dynamically, and that corresponds to how much contextual information
is provided to the model for a given query point. In other words, while 𝑇 remains a
design parameter that helps the model train on contextual information, the model
can be trained using adequate length 𝑇 but the user may decide in the deployment
phase to trade accuracy for computational efficiency18 and query the model with
a much shorter sequence. This renders the proposed model adjustable for perfor-
mance, delay, and computational cost trade-offs.

Second, we bring to discussion causal requirements of the proposed model. As
stated earlier, the model predicts the load activation �̂�(𝑡) at time 𝑡 where 𝑇 < 𝑡 ⩽ 2𝑇
from the corresponding sub-sequence 𝔗𝑇𝒙0∶𝑇 . This implies a causal inference for
�̂�(2𝑇 ) and an anticausal19 inference for �̂�(𝑇 +1). But the choice of the reference point
is arbitrary, and �̂�(𝑇 +1) can be similarly causally inferred from past samples 𝔗1𝒙0∶𝑇 .
In fact, a prediction �̂�(𝑡) at time 𝑡 can be inferred from 𝔗𝜏𝑥0∶𝑇 where 𝑡 − 𝑇 ⩽ 𝜏 < 𝑡.
Inference is causal if 𝜏 = 𝑡 − 𝑇 , anticausal if 𝜏 = 𝑡 − 1, and acausal in between.
This directly raises the question of prediction performance based on contextual in-
formation. In all our experiments, we have not observed noteworthy variations in

15Considering both historical and future samples. Half that size is inferred from the past and present
samples, while other half considers future samples.

16We define the receptive field of a neuron as the total number of input layer nodes (that is, maximum-
length input sub-segment) that can be used to determine the value of that neuron. This is irrelevant
to the actual input length 𝑇 since it can be varied dynamically.

17That is, the product of all downsampling factors (3, 3, 3, 5, 5).
18A fully convolutional neural net acts computation-wise as a single convolution operation 𝒙(𝑡) ∗ 𝐰.

Such an operation has a fixed size (that is, the kernel width 𝐰) but scales in the number of operations
with the width of the input signal 𝒙(𝑡).

19We define an anticausal system as one that does not depend on historical inputs, causal system as
one that does not depend on future inputs, and acausal system if depends on both past and future
inputs.
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performance for a 3-hour monitoring period20. We adopted a non-overlapping win-
dow for inference where the very first and last samples are anticausal and causally
inferred, respectively, while everything else remains acausal. This is of course poses
a delay (a 3-hour delay) if the proposed model is adopted for real-time monitor-
ing and disaggregation. However, since the disaggregation performance across all
output neurons (regardless of causal-ness) is indistinguishable, one can easily real-
ize real-time disaggregation with the proposed model at a computation cost. We
encourage future investigation of the effect of this feature on the disaggregation
performance and the cost of seeking real-time monitoring.

5.5. Time Series Performance Assessment

Early works on energy disaggregation favored the conventional accuracy index
Equation (5.27) in evaluating the performance of an energy disaggregation model
with respect to activation profiles in single-load extraction frameworks [Chang et al.
2010, Belkin 2013, Makonin et al. 2013]. Later works, however, realized the mis-
leading interpretation of this biased measure and alternatively proposed the mea-
sures precision and recall in addition to their harmonic mean F1-score, commonly
adopted in the domain of information retrieval, for assessing disaggregation per-
formance [Christian et al. 2014, Holmegaard and Kjaergaard 2016, Kim et al. 2010,
Makonin and Popowich 2015]. The misleading interpretation of the accuracy index
resulted from its bias toward the prevailing class. Such a biased measure falsely
credits a trivial solution that results from constantly predicting the prevailing class
with a high score value [Makonin and Popowich 2015]. In the context of domestic
energy disaggregation, for example, scarcity of load usage leads to high prevalence
of the negative class (i.e. the off state). This, in turn, leads to a high accuracy value
assigned to a trivial solution that consistently predicts the load to be off regardless
of the input signal.

20This observation is most likely due to the fact that each output neuron spans the whole 3-hour input
segment with its receptive field. Performance variations might be revealed if 1) the input segment
is longer the half the receptive field of the output layer (that is, longer than ∼ 8.5 hours) and 2)
contextual information is valuable for the target monitoring beyond that range. In that case, Some
middle output neurons will leverage more contextual information than e.g. the right-most causal
neuron.
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We, however, believe that these measures of precision and recall represent a one-
sided rigorous solution to the biasedness property of the Rand accuracy21. In fact,
these metrics are fused to the assumption of scarce load usage and may fail to pro-
vide valuable interpretation of performance whenever this assumption is violated
(e.g. in commercial and industrial settings or for repetitively activated and long-
running loads). In the following, we briefly illustrate the problem with all previous
measures and propose alternative, more balanced and flexible solutions, namely,
Markedness and Informedness as proposed by Powers [2011], that will be adopted
in the rest of this work. For this purpose, we shall utilize the notation adopted by
Powers [2011] and define the two contingency tables as

Predictions

�̂�+ �̂�-

C
lasses

𝑦+ TP FN RP

𝑦- FP TN RN

PP PN N

TP: True positives
TN: True negatives
FP: False positive
FN: False negatives
RP: Real positives
RN: Real negatives
PP: Positive predictions
PN: Negative predictions
N: Number of samples/events

and

Predictions

�̂�+ �̂�-

C
lasses

𝑦+ tp fn rp

𝑦- fp tn rn

pp pn 1

tp: Ratio of true positives 𝑝 ( 𝑦+, �̂�+ )
tn: Ratio of true negatives 𝑝 ( 𝑦-, �̂�- )
fp: Ratio of false positives 𝑝 ( 𝑦-, �̂�+ )
fn: Ratio of false negatives 𝑝 ( 𝑦+, �̂�- )
rp: Ratio of the positive class 𝑝 ( 𝑦+ )
rn: Ratio of the negative class 𝑝 ( 𝑦- )
pp: Ratio of positive predictions 𝑝 ( �̂�+ )
pn: Ratio of negative predictions 𝑝 ( �̂�- )

where 𝑦+, 𝑦- represent the true positive and negative class assignments, and sim-
ilarly �̂�+, �̂�- for assignments of the estimated class. Note that TP, TN, FP, FN, RP,
RN, PP, PN, and N are raw counts while tp=TP/N, tn=TN/N, fp=FP/N, fn=FN/N,

21Hereafter, we shall use the term Rand accuracy to refer to the biased accuracy measure as it is similar
to the Rand index [Rand 1971] adopted in data clustering in the case of binary clustering and to
distinguish this measure from the unbiased accuracy introduced later.
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pp=PP/N, pn=PN/N, rp=RP/N, and rn=RN/N represent empirical estimates of the
joint probabilities 𝑝 ( 𝑦+, �̂�+ ), 𝑝 ( 𝑦-, �̂�- ), 𝑝 ( 𝑦-, �̂�+ ), 𝑝 ( 𝑦+, �̂�- ), the marginals 𝑝 ( �̂�+ ),
𝑝 ( �̂�- ), and class priors 𝑝 ( 𝑦+ ), 𝑝 ( 𝑦- ), respectively, (for N → ∞)22. Rand accuracy
acc is then defined as

acc = TN + TP
TN + TP + FN + FP

(5.27)

= rn ⋅ TNR + rp ⋅ TPR (5.28)

= tn + tp (5.29)

where
TPR = TP

TP + FN
= TP
RP

= recall (5.30)

is the true positive rate or recall (the ratio of correctly retrieving positives w.r.t all
real positives) and

TNR = TN
TN + FP

= TN
RN

= inverse-recall (5.31)

is the true negative rate or inverse recall (ratio of correctly retrieving negative events
w.r.t real negatives). Rand accuracy can be seen as a weighted average of the recall
and it inverse eq. (5.28). The weights in eq. (5.28) are the empirical estimates of the
class priors. As a result, Rand accuracy will be biased toward the prevailing class
(the class of the dominant prior).

In the aforementioned situation of scarce load usage, the probability of negative
samples becomes relatively high (rn → 1) and Rand accuracy becomes a single-
sided measure, namely the inverse recall (acc → TNR), involving no trade-off be-
tween retrieval and relevance. Maximizing the inverse recall TNR in this case (e.g.
via a trivial solution retrieving all negative events) ambiguously yields near opti-
mal values of the Rand accuracy measure, while correctly retrieving positive events
will have minor improvements.

The information retrieval approach to alleviate this bias is to simply ignore the pre-
vailing term in eq. (5.27), namely TN. This approach either results in the Jaccard

22Here 𝑝 ( 𝑦+ ) is in fact 𝑝 ( 𝑦 = 𝑦+ ) or 𝑝 ( 𝑦 = 1 ), and similarly for all other terms, but we avoid this
pedantry for simplicity unless it becomes a source of confusion.
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index [Levandowsky and Winter 1971] or the F1-score (F1S) defined as

F1S = TP + TP
TP + TP + FN + FP

(5.32)

= 2 ⋅ TPR ⋅ TPA
TPR + TPA

(5.33)

where
TPA = TP

TP + FP
= precision (5.34)

is the true positive accuracy or precision. The F1-score is the harmonic mean of pre-
cision and recall and both are measures that simply ignore the correct prediction of
the negative class. Nevertheless, precision TPA and recall TPR remain biased mea-
sures. The difference between these measures and the Rand accuracy index is that
the latter is biased to the prevailing class, while precision and recall are statically
biased to the positive class.

Intuitively, a more robust solution to the problem of class imbalance is to readjust
the weighted sum in the Rand accuracy measure so as to account for variations in
class distributions

unbiased accuracy = TN ⋅ rp + TP ⋅ rn
TN ⋅ rp + TP ⋅ rn + FP ⋅ rp + FN ⋅ rn

(5.35)

= TNR + TPR
2

(5.36)

= 1
2

(
tn
rn

+
tp

rp

)
∈ [0, 1] (5.37)

In fact, we shall observe in due course that precision and recall are the result of
extreme weighting where the positive and negative predictions are assigned the
weights one and zero, respectively.

The question rises, however, as to why these highly biased measure are commonly
adopted and widely accepted in the domain of information retrieval. Our claim
is that, in that application domain TN is undefined or unknown rather than highly
valued. The result is, therefore, an incomplete contingency matrix from which some
aggregate measures can not be obtained. In the other words, it is assumed that the
size of the test set is very large N → ∞ compared to the number of retrieved docu-
ments, and the number of irrelevant documents is usually unknown or difficult to
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estimate. As TN approaches N, it actually approaches infinity and weighting by TN

will result in the (1, 0) weights and, in turn, to the precision and recall.

In energy disaggregation, and with the scarce usage assumption, TN is relatively
high but known and upper bounded by N. Therefore, we believe that the (1, 0)
weighting is an extreme ill-argued choice. Moreover, we argue that the scarce usage
assumption is not necessarily valid for all load categories. For example, the fridge,
air conditioner, space heaters, electric vehicles ... etc, are all domestic loads that of-
ten have an approximately balanced class distribution over their time of use. In
these cases, Rand accuracy is a well interpreted measure. This is also the case for
commercial and industrial loads [Batra et al. 2014b]. Additionally, loads that are on
most of the time (which is a well known category of loads) would suffer from the
opposite situation in which the prevailing class is the positive one. In this case, a
trivial classifier that always predicts the positive class (i.e. the load is always on)
will have a misleading high F1-score value since TP becomes relatively high. Fur-
thermore, when the scarce usage assumption is valid (e.g. for various miscellaneous
appliances such as kettles, irons, vacuum cleaners ... etc), the extent of class imbal-
ance varies widely amongst loads as well as users. These variations are not reflected
by any means in either of the information retrieval measures. For these reasons, we
claimed that precision and recall are inflexible measures since they are fused to a
given assumption regardless of the real distribution of classes.

Powers [2011] introduced informedness B, markedness M, and their geometric mean
Matthews Correlation Coefficient MCC Matthews [1975] as alternative, unbiased eval-
uation measures defined as

B = TPR + TNR - 1 (5.38)

M = TPA + TNA - 1 (5.39)

MCC = ±
√
B ⋅ M (5.40)

= TP ⋅ TN − FP ⋅ FN√
(TP + FP) ⋅ (TP + FN) ⋅ (TN + FP) ⋅ (TN + FN)

∈ [−1, 1] (5.41)

where
TNA = TN

TN + FN
= inverse-precision (5.42)

is the true negative accuracy or inverse-precision. In fact, it is easily observed that
informedness is simply a shifted and rescaled version of the balanced accuracy to
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the range [−1, 1]
B = 2 × unbiased-accuracy − 1

The magnitude of the correlation MCC quantifies the level of agreement/disagree-
ment between the model and the ground truth where |MCC|=1 indicates perfect
agreement/disagreement versus chance MCC → 0.

Similar to the information retrieval measures, these alternatives were also proposed
and adopted in similar application domains. In medical diagnostics [Youden 1950,
Metz 1978], for example, skew-insensitive measures of diagnostic performance are
required for a comparative study between different tests over varying populations
(e.g. test groups)23. Similarly, informedness B, markedness M, and MCC are utilized in
recommender system evaluations [Schröder et al. 2011]. We believe that the require-
ments of performance evaluation in these applications are more similar to those in
energy disaggregation.

These biased metrics of precision and recall can be viewed as one extreme of the
more balanced metrics of informedness and markedness where the other extreme
is their inverses. In fact, it is easily shown that both informedness and markedness
converge to the traditional measures of precision and recall (or their inverses in
the contrary case) as the misleading situation of highly skewed highly biased test
is approached. For example, the common scenario in energy disaggregation where
the negative class is prevalent, a trivial disaggregator which always predicts the
negative class (resulting in a relatively high number of true negatives) would be
evaluated based on the precision and recall measures

lim
TN→∞

(
TP

TP + FN
+ TN
TN + FP

− 1
)
= TP
TP + FN

= recall

lim
TN→∞

(
TP

TP + FP
+ TN
TN + FN

− 1
)
= TP
TP + FP

= precission

while the other extreme case will be evaluated based on the inverse precision and
recall and all other scenarios will have a weighted average. For these reasons, we
use these unbiased measures of informedness, markedness, and balanced accuracy
in evaluating our models. Additionally, we provide both F1−score and negative
class prevalence rn for comparison with other works.

23In medical diagnostics, informedness is known as Youden’ J-statistic [Youden 1950] and in human
psychology markedness is known as DeltaP [Powers 2011].
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5.6. Experiments and Results

The proposed model is empirically evaluated on one of the freely available energy
monitoring datasets that is developed specifically for residential load disaggrega-
tion, namely UK-DALE [Kelly and Knottenbelt 2015a]. This section briefly summa-
rizes relevant aspects of the UK-DALE dataset and the adopted evaluation setup in
Section 5.6.1.

Afterwards, Section 5.6.2 assesses the feasibility of the proposed model and com-
pares against relevant prior art. Finally, we report new benchmarking results for a
long-term deployment in Section 5.6.3.

5.6.1. Training and Evaluation Dataset

The proposed model is evaluated on the publicly available UK-DALE dataset [Kelly
and Knottenbelt 2015b], an energy dataset acquired from five residential buildings
in the UK. In our experiments, we leverage the post-computed 1 Hz whole-house
real power measurements while the target signals are the 0.1667 Hz real power
measurements up-sampled to 1 Hz using forward filling. Conventionally, measure-
ments are split into three folds for training, validation, and evaluation with more
details provided in each of the following experimental setup (that is, Section 5.6.2
and Section 5.6.3). The input to each model is always a 3-hour window that is slid-
ing in a non-overlapping scheme over the 24-hour day, and that is independent of
the target load. Worth noting is that, training was merely performed on real mea-
surements. In other words, in spit of the ease of semi-synthetic data generation for
energy disaggregation, none of the following experiments utilized this advantage
for data augmentation. Additionally, no extraction of activation cycles (that is, start
and end of a single operation of a load) was necessary for the proposed model.
Under these specifications, we consider two evaluation setups.

We refer the interested reader to the original work of Kelly and Knottenbelt [2015b]
for a through description of the UK-DALE dataset.
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Table 5.2.: Summary statistics of some of the selected loads from the first building
in UK-DALE within the period from Jan. 2014 to Dec. 2016 [Kelly and
Knottenbelt 2015b]. Loads are a kettle (KT), a microwave oven (MC), a
dishwasher (DW), a washing machine (WM), a lighting circuit (LC), and
a fridge (FR). The percent-noisy measure % − NM is the one proposed
in [Makonin and Popowich 2015] and defined as ratio of the remaining
residuals upon excluding the target load

∑
𝑡 |P(𝑡)−P(𝑚)(𝑡)| to the aggregate

signal
∑

𝑡 P(𝑡). The total energy consumed is for that period is roughly
3,391 kW⋅H with the nominal power consumption being approximating
7.12 kW.

Load KT MC DW WM LC FR

Power [kW] 2.45 1.63 2.43 2.2 0.362 0.41
Energy [kW⋅H] 134 57.3 235 238 265 351
Energy share 3.98% 1.69% 7.02% 7.04% 7.81% 10.35%
Percent noisy 96.28% 97.99% 93.15% 93.06% 92.19% 89.74%

Usage time [day] 1.5 2.0 11.4 20.4 134.9 153.0
Percent active 0.41% 0.56% 3.11% 5.59% 36.91% 42.74%
# Activations 2,290 2,687 463 308 4283 8,887

5.6.2. Prior Art Validation

The first experimental setup targets major loads in the first building of UK-DALE.
These include a kettle (KT), a microwave oven (MC), a dishwasher (DW), a washing
machine (WM), a lighting circuit (LC), and a fridge (FR).

Table 5.2 shows several annual statistics of these loads estimated from the target
building in a three-year duration from January 2014 to December 2016. The table
shows that the set of selected loads represent around one third of the total energy
consumption in the building out of 52 sub-metered channels in that building.

In this experiment, we compare the proposed model to prior art on the same dataset,
namely the time-of-use regressor proposed by Kelly and Knottenbelt [2015a]. We
adopt identical evaluation framework as in Kelly and Knottenbelt [2015a] which
we briefly describe here for the sake of completeness.

Kelly and Knottenbelt [2015a] considered two experimental setups. The first is re-
ferred to as the same-instance setup, where a model is trained on a target load in-



– 139–

stance in a building, and is expected to monitor the same load instance in future
profiles. In the second setup, the aim is to assess model generalization across build-
ings. Towards that end, a model is trained on multiple instances of the same load
category across different buildings, and is expected to generalize to the same load
category in new buildings.

Table 5.3.: Performance comparison between our proposed model and the rectan-
gles architecture in [Kelly and Knottenbelt 2015a] under the same load
instances (left) and unseen instances from new buildings (right). All val-
ues represent the F1-score measure. Training and evaluation folds are
adopted from [Kelly and Knottenbelt 2015a] where each model is trained
on the whole data for the target load (that is between 2013 and 2015 at the
time of their work) in the first house except for the very last week that is
reserved for the same instances evaluation. The across buildings evaluation
utilized a predefined set of training and test buildings for each load, and
this is found in Table 3 in the aforementioned work.

Load same instances across buildings

2015a ours 2015a ours

FR 0.810 0.879 0.820 0.927
DW 0.720 0.796 0.740 0.804
MC 0.620 0.705 0.210 0.366
WM 0.490 0.960 0.270 0.410
KT 0.710 0.783 0.700 0.819

In Table 5.3, we compare the monitoring performance of our model with the previ-
ous work in [Kelly and Knottenbelt 2015a], specifically the regression-based model
(referred to as the rectangles architecture in the aforementioned work). The table
shows both evaluation setups proposed in the original work. For a fair comparison,
we adopt identical data folds24 as utilized by Kelly and Knottenbelt [2015a] for both
evaluation setups and for each load. We, however, train only on real measurements
while the original work additionally utilized synthetic data25. In the same-instance
setup, the model trains on around 20-months of measurements from the first build-
ing of UK-DALE and is evaluated on the following one week. In the across-buildings

24We refer the interested reader to the original work by Kelly and Knottenbelt [2015a] (Tables 1-3) for
a detailed description.

25Kelly and Knottenbelt [2015a] synthesized disaggregation setups by simply aggregating individual
load profiles from a random subset of loads. Training data is then enriched with these synthesized
profiles along with the selected loads as ground truth.
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setup, the model trains on all measurements from a selected subset of buildings,
and is evaluated on a new, distinct building.

As depicted in the Table 5.3, the proposed model consistently outperforms prior art
on the same dataset in both evaluation setups and across all load categories. We re-
port here merely the biased F1-score for the sake of comparison, while the proposed
assessment measures will be reported for our new benchmarking experiments in
Section 5.6.3.

A notable observation yet is the poor generalization performance of two loads,
namely the microwave MC and the washing machine WM, to new buildings when
compared to other major loads e.g. the fridge FR or the kettle KT. A possible expla-
nation from our point of view is the variations in loads’ signatures across buildings
for each end-use load category. For example, Parson et al. [2015] illustrates that
washing machines show exceptional variation in their energy consumption across
over 600 households compared to e.g. a dishwasher, a fridge, or even lights. This is
consistent with our findings that washing machines disaggregators poorly general-
ize from one building to another. Admittedly, variations in loads’ signature is not
the sole cause of variations in the total energy consumption in a load category (e.g.
variation in the consumption can be attributed to user behavior as well). However,
for some loads that are likely to share the same level of behavioral variations (e.g. a
dishwasher and a washing machine which is also verifiable from Table 5.2) we can
explain away variations in the energy consumption via shifts in loads’ signatures.

5.6.3. Long-term Validation

In this setup, we evaluate the proposed model on a selected set of loads from the
first building in UK-DALE. Targeted loads includes major energy loads (fridge,
washing machine, dishwasher, kettle, microwave oven, and lighting) in addition
to few more loads, namely, solar thermal pump (SP), a television (TV), a boiler (BL),
a toaster (TS), and the kitchen lamp (KL). For each of these loads, we train a distinct
model but all share the same architecture, hyperparameters, and training proce-
dure. Data folds are real power measurements from January and February of 2014
for training and validation, respectively, while the remaining 10 months of the 2014
represents the evaluation fold.
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Table 5.4.: Long-term performance assessment of the model proposed in Figure 5.2
on a extended variety of loads from the first building in [Kelly and Knot-
tenbelt 2015b] where training is performed on the first two months of
2014, and evaluation is reported on the remaining 10 months of the
same year. Reported also are the proposed measures of informedness
B, markedness M, and Matthews Correlation Coefficient MCC in addition
to the probability of the negative class in the evaluation fold rn and the
percent-noisy measure %-NM [Makonin and Popowich 2015]. Loads are a
fridge (FR), lighting circuit (LC), a dishwasher (DW), a washing machine
(WM), a solar thermal pump (SP), a television (TV), a boiler (BL), a kettle
(KT), a microwave oven (MC), a toaster (TS), and kitchen lights (KL).

rn %-NM TPA TPR B M F1S MCC

FR 0.55 0.87 0.92 0.88 0.81 0.82 0.896 0.815
LC 0.69 0.92 0.52 0.67 0.39 0.35 0.589 0.373
DW 0.98 0.95 0.85 0.49 0.49 0.84 0.623 0.641
WM 0.94 0.91 0.97 0.99 0.99 0.96 0.979 0.978
SP 0.78 0.97 0.46 0.24 0.16 0.27 0.312 0.204
TV 0.90 0.97 0.74 0.69 0.67 0.71 0.716 0.686
BL 0.91 0.95 0.34 0.75 0.60 0.31 0.468 0.431
KT 0.99 0.95 0.87 0.87 0.87 0.87 0.870 0.869
MC 0.99 0.97 0.62 0.46 0.45 0.62 0.526 0.529
TS 0.99 0.98 0.67 0.72 0.72 0.67 0.698 0.697
KL 0.87 0.94 0.46 0.55 0.46 0.39 0.502 0.422

Table 5.4 shows the performance measures of the proposed model evaluated on the
targeted 11 loads from the first building in the UK-DALE dataset with a 3-hour
monitoring window for all load categories. We provide these results as an assess-
ment of the feasibility of our proposed model and benchmarks for the addressed
dataset. We additionally report the proposed performance measures of informed-
ness B, markedness M, and Matthews correlation coefficient MCC.

It is observed how MCCmatches the F1-score in some loads, but is more conservative
in most cases. In fact, biasedness of the F1-score can be easily observed in loads
showing the opposite of the scarce load usage assumption, primarily lights as in LC

and KL, where it clearly deviates from MCC and provides an optimistic estimate of
performance.

For an illustration, imagine switching the positive class of the lighting circuit (LC)
so that it indicates that lights are switched-off. For the problem at hand, this sounds



– 142–

like a design choice, but in fact sends a message to the F1-score measure that lights-
off is a more important class to retrieve, and since it is fused to the positive class
its values will notably degrade from the ones given in Table 5.4. On the other hand,
MCC remains neutral to the choice of the positive and negative classes.

Figures 5.3 and 5.4 depict a 9-day sample of the disaggregation performance from
Saturday, Dec. the 13th to 21st of 2014. Figure 5.3 show the aggregate real power
profile (red curve) with the operating intervals of the washing machine highlighted
in shaded areas (green shading). The operation periods are estimated from the sub-
metered signals of this load (depicted in Figure 5.4 as the green curve) using the
activation profile estimation technique detailed in Section 5.3.2.

Figure 5.4 shows the sub-metered real power signal of the washing machine (green
curve) along with the estimated activation profile (red shading) using the proposed
model. The figure not only illustrates the accuracy of the estimated activation pro-
file, but additionally illustrates one of the key aspects of the proposed model. As
illustrated, the model does not need a complete on-off operation period for esti-
mation. Knowing that the trained model utilizes non-overlapping 3-hour windows
(aligned with midnight) for prediction, one observes that some 3-hour windows
comprise no operation period, some comprise a single period, and some even more.
In all cases, the model is able to equally predict the whole activation profile regard-
less of the number of operation periods. In other cases, a single operation extends
over two disaggregation windows (e.g. from Saturday Dec. the 13th to following
day) with model reliably extracting the targeted activation profile.

Figure 5.5, additionally, illustrates a promising extension of the proposed model. In
this experiment, we tweaked the proposed model to estimate the real load profile
(rather than its activation profile) by replacing the cross-entropy loss function in
Equation (5.16) with a mean-squared-error (MSE) and leveraging the sub-metered
real power profile of the load rather than the estimation detailed in Section 5.3.2.
Since this approach is not thoroughly investigated in this work, we briefly show
how promising this approach is through the visual illustration of the estimated load
profile depicted in Figure 5.5 as a motivation of future work.

As depicted in the figure, the model was able to retrieve all operation intervals
precisely. Observable also is that, the reconstructed load profile is notably smoother
than the true sub-metered signal.
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Figure 5.3.: Sample aggregate real power of UK-DALE (description in text).
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Figure 5.4.: WM real power and activation profile (details in text).
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Figure 5.5.: WM disaggregated real power (details in text).
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5.7. Conclusion and Outlook

In this chapter, we assessed the feasibility of end-to-end generic deep disaggrega-
tion for end-use load monitoring. We focused on the problem of single load ex-
traction for which we proposed a well regularized fully convolutional neural net-
work. The proposed model architecture was evaluated on a variety of load cate-
gories from a real-world energy monitoring dataset. The proposed model (with a
fixed architecture and set of hyper-parameters) outperforms prior art on the same
dataset and showed consistent improvement with respect to the adopted perfor-
mance measures.

Additionally, we discussed the biasedness of the commonly adopted performance
measures in the energy disaggregation research. We then proposed unbiased alter-
natives for performance assessment that are more flexible and less sensitive to the
class imbalance problem.

This work can be extended in the future in various aspects. Exploring deep tem-
poral convolutional architectures (TCN) for sequence-to-sequence modeling is one
extension that would additionally investigate the effect of contextual information
through their causal convolutional kernels [Bai et al. 2018]. Another, more interest-
ing future work, is the investigation of the loads’ cross-dependence and the effect
of user intention [Yang and Zhou 2011] from a causal reasoning perspective.



Chapter 6.

Conclusion and Outlook

In this thesis, we presented variants of energy monitoring and disaggregation frame-
works ranging from plug-level load monitoring followed by unsupervised energy-
disaggregation and finally reaching fully supervised deep-learning-based disaggre-
gation. From all aspects, we proved the feasibility of end-use load monitoring and
disaggregation and proposed reliable frameworks and models that were experi-
mentally validated on real-word residential and commercial datasets.

The varying viewpoints of energy disaggregation (from an unsupervised frame-
work to a semi-supervised one and finally reaching a fully supervised model) showed
that the energy disaggregation task can be adaptively addressed based on the avail-
ability of domain knowledge, training data, or both.

Additionally, a plug-level monitoring framework showed a superior end-load iden-
tification level. It further showed a high level of robustness to sampling rate varia-
tions and stable performance over time.

In addition to all possible future works detailed at the end of each chapter, we fur-
ther propose the following.

As it was shown in Chapter 2, a fully supervised model, on its own, is expected
to very sensitive to the size and availability of externally labeled data. Therefore,
and while this thesis presented each disaggregation model as a standalone com-
ponent, a practical energy disaggregation system comprising all proposed compo-
nents is expected to be notably adaptive to the availability of training data. Such
a system would mostly rely on the unsupervised (even though conservative) com-
ponent whenever no training data is provided, leverage a semi-supervised model
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upon scarce available of labeled examples, and finally reach the fully supervised
scenario upon adequate acquisition of training data.

A second, and very promising, future work is accounting for uncertainties amongst
all components where not only the system designers can express their uncertain
beliefs on model parameters, but also each disaggregation component can express
and propagate uncertainties in their predictions.



Appendix A.

Event Detection Results

Figures A.2 to A.26 depict examples of the event detection and feature extraction
stages of our unsupervised disaggregation framework applied to sub-metered chan-
nels of the commercial dataset. The figures show the real-power signal (red curve)
for one week of measurements, the event detections (highlighted in blue), and the
extracted features (in the lower right dP-dQ plane).

Input signals for event detection (and feature extraction) are the real and reactive
power signals sampled at 1 Hz frequency. Note that, some channels (that is, Fig-
ures A.2, A.13, A.14, A.19, A.23 and A.26) comprised loads with non-detectable
state changes for varying reasons. Figure A.26, for instance, depicts the signal of an
always-on load with a slight (around 3 Watts) increase in the power draw during
a working hours of a day. Figures A.2, A.13 and A.19 show abrupt changes in the
aggregate power signals that are far below our minimal threshold (that is, 10 Watt
for these experiments). Finally, loads under channels of Figures A.3 and A.23 were
not operational throughout the monitoring period.

Worth mentioning as well is that, some channels (e.g. Figures A.17 and A.21) were
monitoring indeed a single end-use load, while others (e.g. Figure A.20) monitored
a sub-set of loads.
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Appendix B.

BLUED Clustering Validation
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Figure B.1.: Internal cluster validation measures estimated on the two-phase
BLUED Dataset. Red line represents the measures of our proposed
adaptive segmentation algorithm while green curves are those mea-
sured estimated from a fixed window length 𝜏 up to 2 seconds.





Appendix C.

Unsupervised Energy Disaggregation on
Commercial Data: Results

Figures C.1 to C.3 show the aggregate real power signals of each phase of the com-
mercial dataset leveraged in experimental validation of our unsupervised energy
disaggregation framework.

Figures C.4, C.6, C.8 and C.10 show some of the disaggregated load profiles from the
first phase of the commercial dataset using the proposed framework, Figure C.12
from the 2nd phase, and Figure C.14 from the 3rd phase.

Best-match sub-metered profiles for each of the disaggregated profiles are depicted
in Figures C.5, C.7, C.9, C.11, C.13 and C.15. Note that, sub-metered profiles were
acquired using a different power meter that resulted in the calibration artifacts ob-
served from the figures.
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Figure C.1.: Aggregate real power of the 1st phase of a commercial building.
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Figure C.2.: Aggregate real power of the 2nd phase of a commercial building.
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Figure C.3.: Aggregate real power of the 3rd phase of a commercial building.
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Figure C.4.: Reconstructed profile of a detected load in the 1st phase of the com-
mercial data with estimated energy 2.12 kW⋅H, 6-day usage time ∼ 27
hours (that is around 18.7% of the disaggregation period), and around
7% of detected events.
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Figure C.5.: Best-match sub-metered load profile to the detected load in Figure C.4.
Meter calibration artifacts results in the observed scale difference be-
tween the aggregate data meter and the individual load sensors.
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Figure C.6.: Reconstructed profile of a detected load in the 1st phase of the com-
mercial data with estimated energy 1.12 kW⋅H, 6-day usage time ∼ 19
hours (that is around 13% of the disaggregation period), and around
5.8% of detected events.
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Figure C.7.: Best-match sub-metered load profile to the detected load in Figure C.6.
Meter calibration artifacts results in the observed scale difference be-
tween the aggregate data meter and the individual load sensors.
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Figure C.8.: Reconstructed profile of a detected load in the 1st phase of the commer-
cial data with estimated energy 5.4 kW⋅H, 6-day usage time ∼ 30 hours
(that is around 21% of the disaggregation period), and around 45% of
detected events.
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Figure C.9.: Best-match sub-metered load profile to the detected load in Figure C.8.
Meter calibration artifacts results in the observed scale difference be-
tween the aggregate data meter and the individual load sensors.
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Figure C.10.: Reconstructed profile of a detected load in the 1st phase of the com-
mercial data with estimated energy 0.1 kW⋅H, 6-day usage time ∼ 4.6
hours (that is around 3.2% of the disaggregation period), and around
4.1% of detected events.
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Figure C.11.: Best-match sub-metered load profile to the detected load in Fig-
ure C.10. Meter calibration artifacts results in the observed scale dif-
ference between the aggregate data meter and the individual load sen-
sors.
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Figure C.12.: Reconstructed profile of a detected load in the 2nd phase of the com-
mercial data with estimated energy 3.5 kW⋅H, 6-day usage time ∼ 1.8
hours (that is around 1.25% of the disaggregation period), and around
60% of detected events.
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Figure C.13.: Best-match sub-metered load profile to the detected load in Fig-
ure C.12. Meter calibration artifacts results in the observed scale dif-
ference between the aggregate data meter and the individual load sen-
sors.
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Figure C.14.: Reconstructed profile of a detected load in the 3rd phase of the com-
mercial data with estimated energy 17.8 kW⋅H, 6-day usage time ∼ 57
hours (that is around 40% of the disaggregation period), and around
52% of detected events.
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Figure C.15.: Best-match sub-metered load profile to the detected load in Fig-
ure C.14. Meter calibration artifacts results in the observed scale dif-
ference between the aggregate data meter and the individual load sen-
sors.
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