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1 Introduction and motivation

Chemical reactions happen all the time. The car that slowly rusts, the hemoglobin
constantly binding oxygen in the lung and transporting it through our bodies, and the
photosynthesis. In industry, reactions are used to create materials for our daily life. They
create metals for cars, create textiles for different equipment and closing, and the silicon
dioxide by oxidation for microchips [1]. Simulations are used, as for example in the
oxidation of silicon [1], to optimize the reactions or to make predictions. The optimization
of reactions, e.g. via driving them by external fields or changing the pressure, saves costs
for the industry and energy, which is important with regard to the climate change.

One successful method for computing reaction rates is the mean first-passage time (MFPT)
method [2-8|. It is able to predict reaction rates of both non-driven and driven chemical
reactions and is also successful in the fields of neuron dynamics, dynamics of a spin
system, electrostatics, and stochastic systems [8-12]. The reaction rate is the decrease of
reactant concentration per unit time at the reactant side R because the reactants react
to the product at the product side P [13]. The reactants do not react instantly to the
product, because both sides are separated by an energy barrier as shown in Fig. 1.1. The
energy, which the reactant needs to overcome that barrier and react to the product side,
is called the activation energy. This energy could be provided due to thermal energy.
The first-passage time is the time at which the reactive particle overcomes the barrier
for the first time. For the first time, because the particle could also react back to the
reactant side again after some time. The MFPT is the average of first-passage times
of many particles. With the inverse of the MFPT the reaction rate can be calculated.
In the limit of a harmonic energy barrier, the MFPT rate has been seen to be precisely
equal to the transition state (TS) rate [14], and both are equal to the correct Kramers
rate [4].

The transition state theory (TST) [15-21], on which the TS rate is based, describes the
transition between the reactant and the product with its intermediate state, the transition
state (TS) also called activated complex. This intermediate state in a one-dimensional
system is located at the maximum of the energy barrier, which is called the saddle
point. The theory presents a further development of Arrhenius’ law, which describes
only an empirical observation and makes no statement about the intermediate state of a
reaction [22]. Intentionally the TST deals with chemical reactions [23-27|, but it finds its
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Figure 1.1: Energy surface of a one-dimensional reaction with the reaction coordinate
x. The reactant side R is separated by a barrier with the height E, from the product
side P. E, is called the activation energy. The TS is located at the maximum of the
energy barrier, the saddle point.

application in various fields such as Bose-Einstein condensates [28-32], astronomy [33-35],
atomic and solid state physics |36, 37|, and cluster formation [38, 39].

With TST it is possible to study trajectories in multidimensional systems, which are
unstably bound to the saddle region, perform movements orthogonally to the reaction
direction, and never fall off the saddle to one or the other side. In calculating their
instability on the saddle via decay rates [40-44], the saddle, which is the bottleneck of a
reaction, can be further studied. The decay rate has no preferred direction in contrast to
the reaction rates. The behavior of such trajectories and their decay rates were recently
studied for a thermal model system [45] and the non-thermal LiCN isomerization [46, 47|.
The LiCN isomerization is studied several times in the field of TST and other fields [46,
48-60)].

So far, reaction rates of LiCN isomerization could only be determined for high temper-
atures without external driving [57, 60]. Furthermore, thermal decay rates were only
studied in a model system [45], missing the link to a real reaction. In this thesis the
MFPT rates and the thermal decay rates are calculated for both the non-driven and the
driven LiCN system. Therefore, the goal of this thesis is to study the thermal decay
rates in a real reaction using the LiCN isomerization and to use the MFPT rates to
study the behavior of the reaction rates for different temperatures, frictions, and external
influences. Furthermore, the calculation of both the MFPT and the decay rates offers
the opportunity to take a next step in comparing the reaction rates and the decay rates
in this work.



1.1 Structure of the thesis

1.1 Structure of the thesis

In Chapter 2, the non-thermal LiCN isomerization reaction will be introduced, and the
basic terms and methods of TST will be explained. After that the thermal influence on
the system is discussed. Chapter 3 presents the behavior of bounded trajectories and
the influence of the external driving on the potential energy surface (PES) of LiCN. In
Chapter 4 the decay and MFPT rates are discussed for both the non-driven and driven
LiCN system. Finally, in Chapter 5 a summary of all previous sections is given and an
outlook for further possible studies in the fields of this thesis is presented.

In Appendix A the details on the PES and the electric dipole moment are discussed.
Appendix B shows the Jacobian J of the thermal LiCN system. The German conclusion
and outlook is presented in Appendix C.

A paper about the mean first-passage time (MFPT) rate part of the non-driven LiCN
system is in preparation [61]:

Mean first-passage times for solvated LiCN isomerization at intermediate to high temper-
atures

M. M. Schleeh, J. Reiff, P. L. Garcia-Miiller, R. M. Benito, F. Borondo, J. Main,
R. Hernandez






2 Theory of thermal LICN

The lithium cyanide (LiCN) isomerization reaction, of which the potential energy surface
(PES) is fitted by R. Essers et al. [62], is a good reaction to fundamentally study the
fields of TST theory and reaction rate theory as in Refs. [46, 48-60]. The realistically
modeled potential and the asymmetric shape of the saddle enables us to re-examine old
assumptions and to observe new findings in TST and rate theory. Coupling the reaction
to a thermal bath gives the further investigations a more applied orientation because in
reality we hardly find a system which is not influenced by thermal energy. This influence
will give us a deeper insight into TST in the following. To later introduce the methods of
TST, the non-thermal LiCN system is used. The methods can be applied to the thermal
case, but are significantly easier to introduce in the non-thermal case. The methods of
reaction rate theory are presented after the introduction of thermal LiCN.

2.1 Non-thermal LiCN

For the non-thermal LiCN reaction, parts of the TST have been investigated by Matthias
Feldmaier in Ref. [47]. His achievements motivated the consideration of thermal LiCN in
this thesis. The implementation of the thermal bath for the LiCN reaction is carried out
on the basis of the non-thermal LiCN. In order to introduce the LiCN reaction for the
first time, a chemical consideration is given in the following.

2.1.1 Chemical description

The LiCN = LiNC reaction is an isomerization reaction of a molecule which is built of
a cyanide as the anion and the lithium atom as the cation. An isomerization reaction is
a reaction in which only the arrangement of the atoms changes. The nitrogen atom in
LiCN is connected to the carbon atom with a strong triple bond. Thereby the lithium
atom is weakly bound to the cyanide molecule depending which isomer we are looking at.
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LiNC is the stable conformation of the isomerization reaction, that means, if we look
at
Li—C=N — C=N-Li

we are talking about the backward reaction. The two isomerization conformations are
different in the position of the lithium atom. This implies that the lithium atom orbits
around the cyanide during the reaction. Looking at the small masses of LiCN with
my; = 7.016 u, mc = 12u and my = 14.003 u and the little inertias that come with it,
it shows us that the reaction must happen at very short timescales around picoseconds.
The arrangement of the atoms is shown in Fig. 2.1.

2.1.2 LiCN potential

Simulating the LiCN isomerization in its general coordinates without separating the
center of mass nor simplifying it would be difficult to find simple differential equations
for the propagation of the atoms. Because of the described orbiting of the lithium atom
around the cyanide it is much easier to choose a coordinate system, where the center
of mass of cyanide is the center of the newly defined body-fixed Cartesian coordinate
system [48]|. This Cartesian body-fixed frame (x,z) is shown in Fig. 2.1. Here the
nitrogen atom lies at 2y = —1.0088 ay and the carbon atom lies at z¢ = 1.1772ay. The
equilibrium distance of the vibration ry¢ = 2.186 a¢ of them can be kept fixed, because
the triple bond between them is very stiff [48, 63]. ag is the Bohr radius. With this
coordinate system it is now possible to define Jacobian coordinates for the lithium atom
orbiting around the cyanide. Its distance to the center of the Cartesian coordinate system
is defined by R and the angle ¥ = £(rnc, R).

The described relative movement of the atoms in the defined Jacobian coordinates can
be expressed in the Hamiltonian

2 2 2
H:p—R+1(i+R )p—ﬂ+V(R,19), (2.1)
210 2\

by using the Born-Oppenheimer approximation. Further parts of the Hamiltonian, as
the center of mass movement H.., or the rotation around its own axis H,. by an angle
of o, can be neglected for continued investigations. The center of mass movement can
be neglected because the absolute position of the molecule in space does not affect the
potential energy surface V(R,?) nor the external driving Vgi,(R,¥,t). The rotation
around its own axis can be neglected because the potential energy surface V (R, )
does not depend on its overall rotation o as well as in the case of the external driving
Vaip(R, Y, t). An assumption can be used to neglect the dipole moment in z-direction,
which is dependent on the overall rotation around its own axis around an angle « in

10
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Li

rNC

O

Figure 2.1: Body-fixed Cartesian coordinate system of the LINC == LiCN isomeriza-
tion reaction. The origin is located at the cyanide compound’s center of mass. The Jacobi
coordinates are defined in terms of the distance R = |R| and the angle ¥ = £(rnc¢, R) of
the lithium atom relative to the origin. The position ry¢ of C relative to N is assumed
to be fixed because of the rigid N=C bond.

the direction of y [47]. H contains the kinetic energy part of R with its reduced mass
pr = (1/my; +1/Mcx) ™!, where Mcon = me + my, and the kinetic energy part of ¢ with

its reduced mass )
m=—— (2.2)

Y
1 R2
(m + u2r§>

7

where 115 = (1/m¢ +1/mx)~". We assume pure 'Li, *C, and "N isotopes for the atomic

masses mr;, mc, and my, respectively.

The potential energy surface (PES) Vpgs(R,?) in the Hamiltonian of LiCN is shown in
Fig. 2.2. More details on the PES and how it is fitted can be found in Appendix A.1. At
¥ =0 and R = 4.801 a.u. the isomer LiCN is in its stablest state, which corresponds to a
local minimum of the potential. The global minimum lies at the stable conformation
LiNC at ¥ = 7 and R = —4.354 a.u. Three equipotential lines at V' = —0.200, —0.2147,
and —0.2293 a.u. drawn as white lines in Fig. 2.2 visualize the shape of the rank-1 saddle,
which divides the two different isomer states LICN and LiNC. The rank-1 saddle, lies at
R =4.263a.u. and ¢ = 0.2807. Its shape and height will be the origin of lots of different
behaviors of the LiCN system observed and calculated in this thesis.

During this work, it was found that two fit values of the PES in the R. Essers et al.

11
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Figure 2.2: Potential energy V' as a function of Jacobi coordinates (R, 1)). The PES shows
a characteristic reaction channel with a saddle point at V/(4.263,0.2807) = —0.228 88 a.u.
marked by the cyan cross. At 9 = 0 the isomer exists in its LiCN configuration
[V(4.801,0) = —0.23366a.u.|, whereas at ¥ = 7 it is in its LINC configuration
[V (4.354, ) = —0.244 10 a.u.].

tables do not match their own results presented in their paper [62]. Nevertheless, these
parameter are used in this thesis to compare the findings with Refs. [46, 47]. The
difference between the two different potentials are shown in Appendix A.3. It turns out
that the results calculated in this thesis do not depend strongly on these details of the
potential surface.

2.1.3 External driving of LiCN

In driving the LiCN with a time-dependent external electric field E(t) the propagation of
the lithium atom and the properties of the system are strongly influenced. This makes it
possible to give a deeper understanding of the topics TST and MFPT in driven systems.
The external electric field acts on the existing dipole moment g of LiCN. In general such

12
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an external driven potential energy can be written as
Vap = —p - E(t). (2.3)

If we look at Fig. 2.1, we see that in the body-fixed Cartesian coordinate system the
molecule lies just planar in the - and z-direction without an extension in the y-direction.
This also applies for the orientation of the dipole, which means that the dipole moment
©¥) = 0 in the y-direction is zero. If we then use an external field, which is only oriented
in that z, z-plane, the dipole moment ;¥ will remain zero. This is caused by the fact
that there is no force driving the molecule out of the z, z-plane. The dipole moment
in the z-direction p*) is at least around 15 times shorter than the dipole moment in
z-direction p*), as shown in Ref. [47]. For this reason we neglect the dipole moment
1) in the dipole surface and only p*) remains. A detailed derivation of the dipole
moment can be found in Appendix A.2.

When using a harmonic electric field, the dipole potential
Vaip(R, 0, t) = — Agsin(wt)u®) (R, 9) (2.4)

can be expressed in a simple way. We set « equal zero as in Ref. [47]. The validity of
this approximation still remains for future work. Now the Hamiltonian of the driven
LiCN system

Heriven = H + Vaip (R, 9, 1) (2.5)

can be written as the sum of the non-driven Hamiltonian and the dipole potential. A
huge advantage is that the Hamiltonian Hgyiven in Eq. (2.5) is still only dependent on the
distance between the lithium atom and the center of the body-fixed Cartesian coordinate
system R, the angle 9 between rony and R, and the time t.

2.2 Transition state theory

The transition state theory (TST) is a well know theory to study chemical reactions [15—
21]. The theory is used to describe the transition from reactant and product near the
saddle region. Several theories were developed to study different fields in TST. For
example variational transition state theory [15, 16, 18-21, 64, 65] and Rice-Ramsperger-
Kassel-Marcus (RRKM) theory [66-70]. In this thesis we study the normally hyperbolic
invariant manifold (NHIM) |21, 65, 71-74], the trajectories on the NHIM [75-78| and the
corresponding TST rates |64, 79-89|. The normally hyperbolic invariant manifold (NHIM)
in a non-driven chemical reaction is an area in the phase space connected to the saddle
on which trajectories can be propagated and do not fall off the saddle on one side or the

13
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Figure 2.3: The MEP as function of 9. At 0 > ¥ > g the reactant region R (LiCN) is
marked. And at ¥ = 7 the product region P (LiNC) with its global minimum is visible.
The dividing surface (DS) is attached to the saddle point, which lies at the maximum of
the minimum energy path (MEP). The two barriers ¥z and ¥p define the region where
the dividing surface is locally recrossing free.

other. It is comparable with an object at the top of a nail. Only an incredibly small
deviation of the position of the object will cause the object to fall off the nail. First basic
terminologies of a chemical reaction have to be clarified by using the example of LiCN.
After that a deeper understanding on the NHIM can be given.

2.2.1 Dividing surface at the minimum energy path

By simplifying the LiCN structure to a one-dimensional case through looking on the
minimum energy path (MEP) for ¢, as shown in Fig. 2.3, it gets easier to describe the
terminologies of a chemical reaction. The MEP can be also called the “path of least
resistance” or “valley path”, as discussed in Ref. [90]. It is the path following the valley
bottom from the minimum of the PES of the reactant side (LiCN) to the minimum of
the PES of the product side (LiNC). In between the path crosses the saddle point. This

14



2.2 Transition state theory

path can be calculated mathematically by finding the eigenvectors with the smallest
positive eigenvalues of the hessian matrix [90]. The directions of these eigenvectors
continuously lead the way up from the minimum of the reactant side to the saddle point
and downwards to the minimum of the product side. Sometimes in chemistry the MEP
is only calculated for the minimum of the reactant side to the saddle point. Another
method to calculate the MEP in a two-dimensional PES over the reaction coordinate ¢,
as done in Fig. 2.3, is to hold the reaction coordinate fix and search for the minimum
in the PES in the other coordinate R. If we do this for many values of the reaction
coordinate ¢} from the reactant side to the product side, we obtain the MEP. At the
global maximum of the MEP, we find the position of the saddle point for the reaction
coordinate.

The area around the minimum of LiCN as well as the area around the minimum of the
stable isomer LiNC are basins. Both basins are separated by an energy barrier. The
top of this energy barrier respectively the maximum in energy is called the saddle point.
Every trajectory must have enough energy to overcome this barrier respectively to pass
the saddle point to be a reactive trajectory. In this simple one-dimensional case a dividing
surface (DS) |15, 16, 18-21, 64, 65| can be directly attached to the saddle point, being a
line, which separates the reactants R and the products P. Such a dividing surface is
normally recrossing free, meaning a reactive trajectory just passes the DS once and is
not coming back to pierce the recrossing-free DS again. As an anticipation it must be
said that in case of a noisy system the trajectory is able to change its direction and it is
possible that it pierces the DS multiple times. To avoid that, an observation area vz to
Jp has to be spanned, every trajectory entering from or passing vz comes from or goes
to the reactant side and every trajectory entering from or passing ¥p comes from or goes
to the product side. With that area it is now possible to avoid recrossings and classify
the trajectories for sure as reactive and non-reactive trajectories. The area has to be
small enough that a trajectory influenced by noise passes one of those vertical lines Jx
or ¥p, before it pierces the DS a second time. But also not too small, because otherwise
the classification of the trajectories will not work.

2.2.2 Transition state of the minimum energy path

The transition state (T'S) is used in the terminology of transition state theory (T'ST) [15-
21]. Tt describes the state of a trajectory being at the top of the energy barrier respectively
the saddle point and not falling off on one or the other side. This state itself is unstable.
The smallest force on the trajectory causes the trajectory to leave this state. Sometimes
also the name activated complex is used instead of the T'S. The name gives another view
on this state in a molecular way being in a configuration somehow in between the reactant

15



2 Theory of thermal LiCN

and product configuration. In the case of the one-dimensional MEP of the non-driven
LiCN the TS rests at the saddle point which can be seen in Fig. 2.3. It is exactly one
trajectory which rests at this saddle point being the TS. This is only valid for the case of
a one-dimensional model. In the following section we will discuss the two-dimensional
case.

2.2.3 The two-dimensional case

In the two-dimensional case as in the case of LICN, with the Jacobi coordinates 1 and R,
the T'S does not only contain one trajectory. It contains an infinite number of trajectories,
because of the shape of the saddle, with one unstable and one stable mode. On this
stable mode trajectories can propagate infinitely long if they have no drift in the unstable
direction. The stable mode can be also called orthogonal mode and is approximately R
for the LiCN isomerization. The unstable mode can be called the reaction direction and
is approximately ¥ for the LiCN isomerization.

That is best illustrated in Fig. 2.4. Here the potential surface of the LiCN is shown in a
three-dimensional plot. The viewing direction is in the unstable direction of the saddle
where the point of view is close to the LiCN state. The LiNC state is hidden by the
hill of the potential on the right hand side. Three different trajectories are propagated
in the direction of the stable mode of the saddle. They have been projected to the
potential surface, which means their energy gained by momentum is neglected. These
trajectories have each been started with different R values and no momentum. The
cyan one is started at R = 4.4a.u., the orange one at R = 4.7 a.u. and the green one at
R = 5.0a.u. By that each trajectory has its fixed energy like a pendulum. Propagating
the trajectories on the stable mode means, that they never fall off the saddle into the
LiCN or into the LiINC state. With the example of three different starting points of the
trajectories, it becomes clear, that there is an infinite variety of trajectories propagating
on the stable mode of the saddle. The stable mode and all trajectories, starting at some
point in phase space (R, 9, pgr,py) and which do not fall of from the saddle, are lying
on a two-dimensional surface in phase space called the normally hyperbolic invariant

manifold (NHIM).

2.2.4 The normally hyperbolic invariant manifold in two
dimensions
When considering the phase space, the sketch in Fig. 2.5 shows the different structures of

the TST. Here one plane with fixed R (orthogonal mode) and pg and varying ¢ (reaction

16



2.2 Transition state theory

Figure 2.4: An illustrative three-dimensional plot of the potential surface of LiCN with
the same colorbar as in Fig. 2.2. The point of view from which the potential is looked at
is close to the LiCN state. The viewing direction is rotated in the unstable direction of
the saddle. Through that the LiNC state is hidden, because the hill on the right side is
in the way. Here, the saddle point is marked as a red dot. Furthermore, three different
trajectories, propagating in the direction of the stable mode of the saddle and projected
to the potential surface (neglecting their energy), are displayed. These trajectories have
each been started with a different R value and no momentum. The cyan one is started
at R = 4.4a.u., the orange one at R = 4.7 a.u. and the green one at R = 5.0 a.u.

17
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Figure 2.5: A sketch of the stable Wg and unstable YW, manifold on a plane with fixed
R (orthogonal mode) and pr and varying ¢ (reaction direction) and py in phase space in
Jacobian coordinates. One point of the two-dimensional NHIM can be found at the point
where those two manifolds intersect and thus does not belong to either Ws or Wy. The
black trajectories are exemplary ones to see how they behave in the different regions 1 to
4 separated by the stable and unstable manifolds. Region 1 and 2 are non-reactive areas,
where the trajectories have not enough energy to overcome the saddle and to propagate
towards the reactant or product side. Region 3 and 4 are the reactive areas, where the
trajectories have the energy to overcome the saddle and react to the product (3) or react
back to the reactant side (4). The DS is vertically attached to the NHIM.

direction) and py in phase space in Jacobian coordinates is presented. The two fibers
separating the phase space in different regions are called the stable Wg and unstable
Wy manifold. When a trajectory is started exactly at the stable manifold, the trajectory
approaches the intersection of the unstable and stable manifolds asymptotically fast and
arrives there at the time t = co. The same happens when one starts a trajectory on the
unstable manifold and propagates backwards in time. Forward in time this trajectory
moves away from the intersection point exponentially fast due to the hyperbolic nature of
the NHIM. Hereby, the intersection point does not belong to the stable nor the unstable
manifold. This point is one of the points of the two-dimensional surface in phase space
called the normally hyperbolic invariant manifold (NHIM). Because the intersection of
two manifolds are again a manifold, the NHIM is called a manifold. If a trajectory starts
at the intersection point of the two fibers, it will stay on the NHIM forever. It might
propagate out of this (R, pr)-plane, finding itself in another (R, pgr)-plane at the NHIM,

18



2.2 Transition state theory

which also contains the stable and unstable manifold fiber. This behavior gives the NHIM
the word invariant as another part of its name. Being called normally hyperbolic is due to
the fact that the trajectories nearby separate exponentially fast from each other |71, 72].
As said before the NHIM itself is unstable. Every trajectory which has a small deviation
from it moves away to the reactant or the product side. Furthermore the NHIM is often
called the TS. In this thesis only the NHIM is used for the rest of the theory part as
well as in the result part of this thesis.

In Fig. 2.5 the NHIM is the only point showing the aforementioned behavior in that phase
space plane. The other regions are marked out by the stable and unstable fiber. Here,
regions (1) and (2) are non-reactive areas, where the trajectories have not enough energy
to overcome the saddle and to propagate towards the reactant or product side. This
is illustrated by the exemplary black trajectories, which are reflected by the potential
surface and are propagating backwards in the direction of their original position 9. The
regions (3) and (4) are the reactive areas, where the trajectory has enough energy to
react to the product (3) or react back from product to the reactant (4).

With knowing that the trajectories of region (1) and (2) never cross the DS, the DS in the
two-dimensional case has to go through the NHIM. For simplification the recrossing-free
DS is vertically attached to the NHIM in this thesis. An example of the vertically
attached DS is given in Fig. 2.5. This simplification is verified by dynamical simulations
in Refs. [75-77].

Now we come back to the unstable and stable manifold, which is shown as fibers in
Fig. 2.5. In a two-dimensional system those are three-dimensional surfaces in phase space.
As described above, they separate the trajectories, which behave differently in the long
term [38, 91]. Such surfaces in phase space are called separatrices. A separatrix does
also appear when two fixed points in phase space attract trajectories. One could find
a surface, which separates the trajectories propagating towards one or the other fixed
point in phase space [91]. Then this surface can also be called a separatrix.

2.2.5 Binary contraction method

An efficient numerical method to find the NHIM is the binary contraction method
(BCM) [77, 92|. It uses the four regions, the two non-reactive and the two reactive areas,
described in Sec. 2.2.4 and shown in Fig. 2.5 to narrow the point of the NHIM further
and further until it is finally determined to numerical accuracy. Therefore a quadrangle
is spanned above the four regions with each point in a different region, as visualized in
Fig. 2.6. Then it is reduced step by step by starting a trajectory at a new vertex in
half of its edge, which can then be classified to one of the regions, and replacing the old
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Figure 2.6: The iterative BCM from panel (a) to (d) that searches for points on the
NHIM. An initial quadrangle is reduced step by step by starting a trajectory at a new
vertex in half of its edge, which can then be classified to one of the regions, and replacing
the old vertex of this region with the new one. The initial vertex of the trajectory is
marked as a red non-filled dot, while the other vertices of the quadrangle are marked as
black dots. The quadrangle for the next step, that would result if the vertex is replaced,
is indicated by the red dashed line. This figure is based on a similar sketch in Ref. [77].
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2.2 Transition state theory

vertex of this region with the new one. If the vertex of the trajectory neither lies in the
regions of the two corners a backup method will be performed. As described in Ref. [92],
that backup method will expand the quadrangle outward just enough that halving the
sides still results in convergence to the NHIM. This backup method seems to speed up
the BCM even more, because it causes the square to contract to the NHIM nicely and
evenly. In Fig. 2.6 the initial vertex, halving the sides, is marked as a red non-filled dot,
while the other vertices of the quadrangle are marked as black dots. The quadrangle for
the next step, that would result if the vertex is replaced, is indicated by the red dashed
line.

The BCM is not only faster than older methods, it is also extremely accurate. This
makes it the perfect tool to start trajectories on the NHIM, which then take some time
to deviate from it and fall off one side of the saddle or the other. They deviate from the
NHIM after a certain time due to numerical rounding errors respectively computational
inaccuracy [92]. As explained in Sec. 2.2.4, this deviation goes exponentially, i.e. such
rounding errors affect the trajectory faster than one would think. For this reason the
trajectories are always projected back to the NHIM. How often they are projected back
depends on the system. In the driven LiCN system the trajectory is projected back onto
the NHIM at every period of driving 7}, = 4269.5a.u.. The same time is used in the
non-driven system.

Although the BCM is fast, multiple applications are costly. Since in this thesis not only
trajectories on the NHIM are propagated, but also their rates are determined, the BCM
is applied numerous times. This explains the use of the local manifold analysis (LMA) in
the next Section 2.2.6, where the BCM still has to be used a few times, but saves time
compared to other methods.

2.2.6 Local manifold analysis

The local manifold analysis (LMA) [43, 46] is the further development of the ensemble
method for the calculations of the instantaneous decay rate (IDR) [43, 44, 46]. In both
methods the stability of a trajectory on the NHIM is evaluated by calculating the rate of
reactants reacting to the product near the NHIM. As described in Sec 2.2.4, trajectories
near the NHIM move away from the NHIM. This process is called decay of a trajectory
and it happens exponentially fast. That is why those calculated rates are named decay
rates.

In case of the ensemble method a homogeneous and linear ensemble is initialized near
the NHIM and propagated via the equations of motion. The corresponding rates get the
name instantaneous decay rate (IDR). A sketch of such an ensemble, initialized on the
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Figure 2.7: Sketch of the LMA method. Left a equidistant ensemble (blue dots),
initialized at ¢ parallel to the Wy, and attached to the Ws and DS, is shown. After the
time step dt parts of ensemble have crossed the DS (orange dots). There the ensemble is
extended towards the Wy, but is still parallel to the Wy, and still attached to the Ws.
This figure is based on a similar sketch in Ref. [93].

(¥, pg)-plane in the LiCN system with its approximately orthogonal mode R*, is given in
Fig. 2.7 as the blue dots on the left hand side. Here, the stable and unstable manifolds
are linear because it is zoomed in the close vicinity of the NHIM. After a time 0t a part
of the trajectories of the ensemble pierced the DS (red diamonds), which means they
have reacted to the product. Because of the exponential decay of the trajectories near
the NHIM the differential equation for the IDR k(t) of this reaction [43, 44, 46, 94| can
be written as

d
V() = —k(ON®), (2.6)
where N(t) is the time-dependent number of trajectories of the ensemble, which are still

at the reactant side, also called the reactant population. The IDR

k(t) = —%m (N(t)) (2.7)

can then be calculated by fitting an exponential function on the decay of the reactant
population. For further information about the ensemble method see Refs. [43, 44, 46].
The main problem of the ensemble method is the time consuming calculation. Each
trajectory has to be propagated and for each trajectory the DS has to be obtained
individually [92] by using the BCM. Also its accuracy decreases with time because the
reactant population N (t) decreases.
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2.2 Transition state theory

Therefore the LMA has been invented [43, 46, 47, 93]. It is a much faster method without
loosing accuracy compared to the ensemble method. The LMA uses the slope of the stable
and unstable manifold fibers in the close vicinity of the NHIM in the aforementioned
(9, pg)-plane to avoid some time consuming propagation of trajectories. On the basis of
the LiCN system in Fig. 2.7 and similar explanations in Refs. [46, 47, 93], more detailed
information of the LMA follows.

The (1, py)-plane is taken because ¢ is approximately the reaction coordinate of the
system. Then the orthogonal modes are approximately R¥, which can be best seen in
Fig. 2.4. Without loss of generality an arbitrary trajectory 8% = (¥, R}, pfg, pE)T on
the NHIM is chosen and the origin of the coordinate system is pinned to its position
on the NHIM. That means 9*(¢) = 0 and p(t) = 0 for all time ¢ at the position of the
NHIM, which lies at the crossing point of the stable Wy and the unstable Wy fiber in
Fig. 2.7. As the starting point in time of calculating the IDR one can use an arbitrary
time ty. Because the calculation of the IDR is done in the vicinity of the NHIM the
stable and unstable manifolds are linear and can therefore be described via the vectors

S = (95,p3) and BY = (WY, pY). Another positive effect of linearization is that 95 = 9,
see Fig. 2.7. Strictly speaking, all variables must also depend implicitly on B* and ¢,
but this is neglected for the sake of clarity.

With those simplifications we are able to describe how the IDR can be calculated. In
the LMA there are two parts which make up the IDR. First the ensemble part, which
describes the ensemble and its in-plane behavior and can be calculated by the slope of
the unstable and stable manifold. Second the DS part, which takes into account that the
ensemble could propagate out of the plane and that is why the DS could move relative
to B*. To describe both parts we must take a closer look at the creation of the ensemble.
It is created parallel and equidistant to the unstable manifold, see Fig. 2.7. It is spanned
from the stable manifold to the DS, which means it pierces the DS at his end. This can
then be expressed in the parameterization, with « € [0, 1],

B (a,t) = =B5(t) + aBU(t) . (2.8)

If this ensemble is propagated, it is stretched in the unstable direction. The stretching
happens exponentially fast, because in that direction each trajectory decays exponentially
fast from the NHIM as described in Sec. 2.2.4. With a being proportional to the number
of reactants the decay rate

k(o) = —% In (@P5(t)) = —aP5(to) (2.9)

can be expressed in terms of «, as stated in Ref. [93].
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The rate of the aforementioned ensemble part k“*(to) contributes to IDR ky, (o). To find
out how many reactants are left we need to look at the dynamics

d
S8 =T (B, (2.10)

where they have been linearized and the Jacobian J(t) at 3% is used. The Jacobian J(t)
of the thermal LiCN system can be found in the Appendix B. The actual propagation of
the ensemble from t; to ¢ can then be computed by using

B (1) = o ()8 (a to) , (2.11)

where the fundamental matrix o is used. The fundamental matrix can be calculated by
solving

/t:zy(z) _ /t:J(t)a(t), (2.12)

where o (ty) = 1op is the initial condition. To see at which a the parameterized ensemble
3% hits the DS we need to solve

o (1) (aPS(t),t0) - €5 = 0, (2.13)

as stated in Ref. [93]. Here the first part in Eq. (2.13) must be set to zero, because
the DS lies at 9P5(¢) = 0. Now taking the parameterization in Eq. (2.9) the Eq. (2.13)

becomes o
DS/, 09,0(t)0Y (to) + 09, ()05 (t0)

- 09a(t)0V(t0) + 0, ()P (t0)
on the condition of using ¥5 = YY. If we use that definition of o in Eq. (2.8) with
t =ty we finally get

(2.14)

Py (to) — P5(to)
(ko)
which is now an instantaneous rate, because of using t = t5. That and the following

explanation is strongly oriented on the explanation of the LMA in Ref. [93] and can be
found in more detail in Refs. [46, 47].

kS (to) = Jyp, (to) (2.15)

The second part of the IDR ky,(to) is the aforementioned DS part kP5. As mentioned
above, the ensemble can leave this specific (¢, py)-plane of the trajectory on the NHIM
in Fig. 2.7. Hereby it has to be projected back to the (¥, py)-plane via the BCM.
Nevertheless, it remains a straight linear line, because of the linear behavior close to the
NHIM. However the position of the DS is then different. To obtain the difference of ¥P5
in comparison to the DS of the trajectory on the NHIM 3%, only the trajectory, which
was attached to the DS in the first place, has to be propagated for the time step 6t and
then be projected back onto the NHIM. The trajectory we use corresponds to 3*(1,¢y)
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2.2 Transition state theory

of the above described parameterization, which is the blue dot in Fig. 2.7 lying on top
of the DS at ¥P5(t). The difference in the position of the DS after the time step dt is
visualized in Fig. 2.7 via an arrow pointing to ¥P5(¢ + dt), the new position of the DS.
In the linear regime we can describe the change in aP® via

IP5(ty + 6t) — IP5(ty)

5aPS(ty) = 99 (to) ;

(2.16)

where 9P5(to) is used for normalization as in Ref. [93]. Through the parameterization it
is possible to obtain the rate kP5 one more time by using Eq. (2.9) and that 9P%is zero

at time tg:
DS §aPS(tg) IPS(ty + 0t)
]{Z (to) - — - —
ot Y (to) bt
The time step dt is chosen as one integration step dt¢, which is 4.2695 a.u. for all of the
simulations in this thesis, and 9¥ =1 x 1073.

(2.17)

By adding both Eq. (2.15) and (2.17), we now get the IDR

o pY() —pi) 9Pt + ot
/{:m(t,ﬁi) = Jﬁ,pﬁ ? ﬁU(t)ﬁ N 19U<t) ot

(2.18)

as derived in Ref. [93]. Over time a trajectory, which explores the NHIM, can reach
several different slopes of the stable and unstable manifolds. That means its IDR varies
for each time step. Because of the simplicity of obtaining the slopes of the manifolds and
the few times one has to use the BCM, the LMA method is used for obtaining the IDR
in the whole thesis. Previously the LMA was used in Ref. [45] to calculate IDR for a
model system under noise. It obtains the same IDR as the ensemble method in the case
of noise. That the slopes of the manifolds change under noise was observed in Ref. [95].

Whether in the thermal or non-thermal case, the IDR can be calculated over time and
then averaged. This quantity is then called average decay rate (ADR) (k). The ADR
will be the same as the average Floquet rate (AFR) (k) for a periodic or quasi-periodic
trajectory on the NHIM in the non-thermal case. The AFR will be discussed in the next
Section 2.2.7.

2.2.7 Floquet method

A further method to obtain rates is the Floquet method, discussed in Ref. [47], invented
by Craven, Bartsch and Hernandez [42], and used in Refs. [43, 46, 77, 78, 96] in a
generalized form. But that method can only be used in noiseless systems, because the
system must not be chaotic. Nevertheless, Floquet rates of Ref. [47] are shown in this
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2 Theory of thermal LiCN

thesis to compare them to thermal rates. The Floquet method is based on the monodromy
matriz M (T) = o(to+T,ty), which provides information about the stability of a periodic
trajectory [97] on the NHIM. As we can see, it is the fundamental matrix o, which was
used for the derivation of the LMA in Eq. (2.12), but here from ¢, to to + 7', where 7' is
one period of a periodic trajectory on the NHIM. In this method the Jacobian J has
to be calculated instantaneously, which means the Jacobian has to be derived for the
system and directly implemented into the program. Now, the Floquet rates

ke = — ps (2.19)

can be calculated by using the eigenvalues of the monodromy matrix to obtain the

Floquet exponents
1
s = ?ln [my,s] -
The Floquet rates describe how strong trajectories in the linear vicinity of the NHIM
separate from each other and can be understood as an average decay rate of orbits near

the periodic trajectory on the NHIM. If the trajectory on the NHIM shows quasi-periodic

(2.20)

behavior, which shows every trajectory besides the fixed point trajectories, the Floquet
exponents have to be calculated via

1
fis = tllglo gln |y s(t)] - (2.21)
The average Floquet rate (AFR) (kg), with which the thermal rates are compared, is the
slope of a linear fit of In |m;| — In |my|.

2.3 Langevin dynamics

The Langevin dynamics lays the foundation of this thesis and is one of the most common
approaches to couple a system to a thermal bath [60, 98-107]. It can be best introduced
by the Langevin equation (LE)

a(t) = —%VV(X, f - / () + E(1), (2.22)

which gives the mathematical description for a physical interpretation of a particle in a
solvent or a gas [60, 98|. The LE adds random forces £ at each time step and propagates
the particle inside the potential V' (x,t). Those random forces equal the collisions, the
atoms normally would be exposed to in a thermal bath. The particle gains energy from
these collisions. This energy is in turn taken out of the system by friction, which is
comparable to the loss of momentum by colliding with slower particles in the gas or
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solvent. In the LE the friction is an intergral over the friction kernel (¢, ¢") multiplied
by the velocity v(¢’). In case of the LE the friction kernel is

Y(t, ') =00t —t') (2.23)

a delta function multiplied by a constant friction value 7y, which is named just v in this
work.

In the following, the implementation of the LE for the case of LiCN is discussed in
Sec. 2.3.1. This implementation lays the foundation of the discussions on the thermal
influence on the system and on the quantities in TST and MFPT theory.

2.3.1 Langevin implementation

Solvent effects on the non-driven LINC == LiCN isomerization reaction have previously
been addressed through the introduction of an argon bath [53, 57, 58|. The interaction
with the bath can be reduced to the Langevin equation, see Eq. (2.22), through a mapping
to the characterisic friction and random noise [53, 57, 60]. With the approximation
(d/dt)(ps/(m*R)) =~ pgy/(m*R), the equations of motion follow from Hamiltonian (2.1)
as

. 1 1
J— 2.24
(e s o (2240)
. AVpes(R, U
po = ——r " d(ﬁ ) Ypy + Réy , (2.24b)
R="1E (2.24¢)
M1
2
. pﬁ dvpes(R7 rﬁ)
- - - 2.24
bR = iR VPR + &R, (2.24d)

with Vpes(R, V) given in Eq. A.5 (see Appendix A.1). The stochastic forces &y and &g
satisfy the respective fluctuation-dissipation theorems [108]

. 6’)/]{ZBT

(€0()€0,5 (1)) = ——=0i;0(t = 1) (2.252)
/ 6vksT /
and - {Era(1)ens (1) = = E=00,0(0 — 1) (2.25D)

for uniformly distributed noise. The canonical momentum py is a torque. It should
therefore not be surprising that the last term in Eq. (2.24b) includes a product with the
radial coordinate R as it leads to the correct units. The random forces ; are generated
at the beginning of the calculation and use a fixed R (= 4.263 a.u.) at the barrier with
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the reduced mass m* (= 2369a.u.). This is a nontrivial approximation because the
reduced mass varies as much as 25 % across the positions in R, but it is consistent with
prior work [60] and the error is least when the trajectories are near the barrier. A
numerical consequence of this approximation is that the random forces do not vary with
R, thus allowing a significant simplification in coding the equations of motion and in
implementing the theory. Thus the price of this approximation is that the results may
be affected in so far as the effective temperature is renormalized.

In the Langevin implementation for the driven LINC == LiCN isomerization reaction,
the Vies(R, V) is replaced with Vies(R,¥) + Vaip (R, V) with Vg, (R, ) given in Eq. 2.4.

The results have been calculated with a fourth order Langevin Runge-Kutta keeping the
random force constant during each time step. As described above, the random forces
are calculated in the beginning of a simulation. This is because the BCM propagates
trajectories forward and backwards in time, as described in Sec. 2.2.5. We must know the
random forces in the time backward already if we use the BCM. Furthermore the fourth
order Langevin Runge-Kutta has to be modified to perform the backward propagation
correctly. The modification selects the same random force over a time step, whether it
is passed forward or backward in time. With the description above one can name the
whole pattern, which is created in the beginning a random force pattern. It is generated
by a random generator of C+-+, which gets a certain seed defined by the user in the
beginning.

The observations on trajectories on the NHIM has already been investigated in Refs. [75—
78]. The LiCN isomerization coupled to a thermal bath gives us the oppertunity to study
TST in a more applied manner than without noise. This was also done in Refs. [45, 109]
on model systems. The trajectories now behave as one would expect from a thermal
system, relaxing from initial conditions into thermal equilibrium. We will describe, what
is responsible for this, and the consequences for studying TST in such a system will be
described in the next Sec. 2.3.2.

2.3.2 Equilibrium trajectories

The thermal behavior of a trajectory on the NHIM can be compared to a trajectory in a
potential with a minimum. With pure, friction the trajectory relaxes to the minimum of
the potential. With thermal forces the trajectory moves around the vicinity of the poten-
tial well and after some time the trajectory has relaxed to its thermal equilibrium [110].
If the trajectory is in the thermal equilibrium, it satisfies the equipartition theorem [111]
and a diffusion constant can be defined for it [112]|. The equipartition theorem is only
satisfied for ergodic systems. Ergodicity means that the whole phase space can be visited
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Figure 2.8: Two stroboscopic PSOS under pure friction in panel (a) and under the
interplay between friction and temperature in panel (b). The trajectories are initialized
in the non-driven LiCN system on the dashed gray crosses and propagate towards a
fixed point in panel (a) or an attractor in panel (b) due to friction. With pure friction
each trajectory ends up on the saddle point at R = 4.263 and pr = 0 marked by the
blue cross, which corresponds to the equilibrium trajectory (EQT). With the addition of
temperature, a attractor results, the trajectories, which are started at t = 0, converge to
that attractor (blue dots) and the attractor moves around the actual fixed point, the
saddle point. The attractor can also be referred to as an EQT. Because this PSOS is
made of a non-driven system, the stroboscopic view is only used for the sake of clarity.

by one single trajectory for ¢ — oo [113|. Ergodicity is rarely proven for systems, but
for example the ergodicity of the “Langevin Dynamics with Coulomb interaction” was
proven by Y. Lou and J. Mattingly [114]. If we look at two thermal trajectories started
at different initial positions in the potential they will converge to each other for ¢t — oo
due to the conservative force of the potential.

The trajectories on the NHIM show the same behavior as discussed above. At pure
friction they are forced to propagate into the local energy minimum of the NHIM. In
a non-driven system that would be the saddle point respectively the fixed point in the
non-thermal case, because it is the point with the lowest energy on the NHIM. Here,
a trajectory no longer performs any movement. This is shown in Fig. 2.8 in panel (a),
where a stroboscopic Poincaré surface of section (PSOS) is used to show the behavior of
the trajectories in the non-driven LiCN system under pure friction. The stroboscopic
view is used for the sake of clarity. Normally a stroboscopic PSOS is only used to observe
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driven systems, where the stroboscopic points are taken with every driving period. Only
with the help of this stroboscopic view, a meaningful observation becomes possible, since
the periodic trajectories arising through the driving are mastered to some extent. In a
driven system with pure friction the trajectories converge to the fixed point trajectory,
which somehow oscillates in phase space with the same period as the potential. In a
stroboscopic PSOS those fixed point trajectories would arise as a dot, because they have
exactly the same period as the potential, see Refs. [46, 47].

We now come back to the discussion of the trajectories converging to each other. In
case of friction and temperature the same happens as in the example system mentioned
above. The trajectories converge to each other and they perform similar movements
after a long time. This is shown in panel (b) of Fig. 2.8. If the coordinates of the many
trajectories on the NHIM in phase space, started at ¢t = 0 and at different initial positions,
are very similar, the mean coordinates are taken to determine the so called equilibrium
trajectory (EQT) (blue dots). The trajectory gets its name from the system being in its
thermal equilibrium, if the trajectories converged close enough to each other. From then
on, the calculated trajectory can be further propagated as EQT (blue dots). For short
propagation times of the EQT the random seed influences the ADR of the EQT. The
random seed itself is not a physical property. If we propagate the EQT long enough and
would calculate the decay rate for every specific time step, the random seed should not
influence the ADR anymore.

The EQT can also be referred to as a geometric attractor. Both definitions for calling
the EQT an attractor are satisfied. Any randomly chosen trajectory with its initial
point somewhere in phase space will end up with some possibility in the trajectory all
trajectories converge to [115]. Furthermore every part of the attractor in time plays an
essential role [115]|. In simpler terms, an attractor describes a part of the phase space
to which other parts of the phase space (trajectories with different initial conditions)
converge over time and remain in. The parts of phase space converging to the attractor
can be called basins of attraction. In this thesis we mostly use the term attractor if we
talk about its stroboscopic view as in Fig. 2.8. The term EQT is used if we talk about the
instantaneous decay rate (IDR) or the fully displayed trajectory for some sets of phase
space coordinates as in Fig. 3.9. Nevertheless, it can happen from time to time that
both terms are used for the same topic. If two attractors exist in a ergodic system, as in
Sec. 4.2.1, then ergodicity cause the attractors to merge with each other for ¢ — oo.

The attractor moves somehow randomly around in the vicinity of the saddle in the
non-driven LiCN system. Because the attractor is a thermalized trajectory in phase
space the equipartition theorem is also satisfied. Furthermore the attractor should be
ergodic. This means that at ¢ — oo the attractor has visited all states in phase space.
Nevertheless, the attractor stays near the saddle for observable time intervals with a high
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probability. To define the term wvicinity of the attractor, we refer to the definition of an
orbital in chemistry. In the orbital the electron can be found with a probability of 90%.
The same definition is taken for the vicinity of the attractor. Although the exact position
of the attractor can be determined, these positions change with a different random seed.
Although it is a different seed, the extension of the attractor at a given time remains
similar in phase space. Due to the specific energy of the heat bath, it is very unlikely
for the attractor to move for a long time at very high or very low potential energies far
outside of the saddle region. Thus, in order to be able to describe the change in the
probable location and the probable extent of the attractor over a given time, the vicinity
of the attractor is introduced.

The behavior of trajectories on the NHIM in thermal model systems were studied by
Thomas Bartsch et al. [109] and by Robin Bardakcioglu et al. [45]. Part of this section
is based on their achievements. The discussions about the thermal NHIM have already
been lead in Ref. [45] in a model system, where some stochastic movements of the NHIM
and some trajectories are presented. However, in the studies of Thomas Bartsch et
al. [109] some important things were observed for the TS trajectory under white noise,
which will be later compared to the behaviors of the EQT. In Fig. 4 in this work, the
variances of the stable and unstable component of the TS trajectory in a model system
as a function of friction are shown. The variance of the unstable component of the TS
trajectory first increases linearly and then saturates for higher frictions . The variance
in the stable component shows a linear increase at very low frictions and decreases with
1/~? at high friction. This turnover has its maximum around ~/(2wg) = 0.5, where wg
is the angular frequency at the saddle point of the model potential. The extension of
the TS trajectory in the unstable and stable direction was theoretically derived in this
reference. Furthermore the variance of the position of the TS trajectory as a function
of friction was also theoretically derived. The variance of the position shows the same
behavior as the unstable component of the TS trajectory. In all cases the variance is zero
if v is zero because then the system is noiseless.

The decay rates of the EQT are not the reaction rates we know from chemistry. The
next section (Sec. 2.3.3) will explain the difference of the decay rates and reaction rates.
Furthermore it will provide an overview of Kramers’ theory.

2.3.3 Kramers theory

The decay rates especially the instantaneous decay rate (IDR) are the rates we know from
TST. They describe the decay of a reactant population near the NHIM, as introduced
in Sec. 2.2.6. The population decays exponentially in the vicinity of the NHIM. The
smallest deviation of a trajectory to the NHIM causes the trajectory to diverge from the
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NHIM and to propagate in the direction of the reactant side or the product side [47].
In this case, the dynamics are observed at the vicinity of the NHIM. In the non-driven
LiCN system the NHIM lies somewhere in the vicinity of the saddle point, for example.
This is in contrast to the reaction rate we know from chemistry. There the rare events
of a particle escaping from a metastable state in a thermal system are observed. The
particle must overcome an energy barrier to escape from one metastable state to another
one. The event of escaping the metastable state is rare if the metastable states are
seperated by a barrier height (£ /kg) much larger than the temperature of the system.
We call an event a rare event if the time scale of a particle escaping the metastable state
is much larger than its dynamic time scales [84]. In a thermal system, as introduced in
Sec. 2.3 and discussed in more detail in Sec. 2.3.2, such events happen because a particle
gains and loses energy via thermal forces. Sometimes a particle gains enough energy to
overcome the energy barrier and escapes the metastable state. It is assumed here that
the particle starting from the metastable state is in its thermal equilibrium. It is thus
clear that barrier height plays a central role, although this is not the case for TST, since
the dynamics mainly take place on top of the barrier. Therefore the decay rates depend
mainly on the shape of the saddle.

In 1940, Kramers made a breakthrough in the computation of reaction rates using a
one-dimensional asymmetric double-well potential with two metastable states [84]. The
reaction rate for such a model is know as the Kramers’ rate. Kramers used the Langevin
thermostat in his model as we do in this work [84], see Sec. 2.3. The Kramers’ rate
J

kg = - (2.26)
is defined as the stationary flux j divided by the reactant population n in the metastable
state, from which the particles escape. The stationary flux is maintained by removing all
particles that reach the metastable state of the product side and returning a new particle
to the reactant side. The so called source at the reactant side supplies the system with
particles. Those particles already have energies far below the energy barrier height Eg.
They thermalize before escaping over the barrier. The removal of the particles at the
product side is done by a sink. For more information about the modell, see Ref. [84], on
which this section is based. This reference provides a very large overview of reaction rate
theory.

Kramers succeeded in making a groundbreaking achievement in rate theory with its
model. He was able to determine the rate in the very weak friction limit (v < wg)

E
kk o T exp <——B> , (2.27)

where Ejg is the barrier height, defined as the energy difference between the minimum in
energy of the metastable state from which the particle escapes and the energy maximum
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2.3 Langevin dynamics

of the barrier [84]. wg is the angular frequency at the saddle point, for which the energy
surface at the saddle is approximated to be harmonic [47, 84]. The very weak friction
limit is also called the energy diffusion limit. Furthermore, he derived the rate of escape
in the spatial diffusion limit respectively the Smoluchoswski limit (7 > wg)

09} EB
— —— . 2.2
kg o > exp( kBT> (2.28)

That limit is taken for very high friction . Nevertheless, the behavior of the rate within
the two limits, the intermediate friction regime, remained undescribed. The turnover that
occurs between the rate increasing with + at low friction and the rate decreasing with
~ at high friction was not derived by Kramers and left the Kramers turnover problem.
The “Solution of the Kramers turnover problem” was later published for an exponential
friction kernel and an arbitrary friction kernel by Pollak, Grabert and Hanggi [116].
However, further solutions were found [117], e.g. for periodic potentials in Ref. [118].

One way to observe the Kramers turnover in a system is to use the mean first-passage
times method [4, 6] with which the rate of escape can be calculated [7, 84, 119, 120].
This method will be introduced in the next section, Sec. 2.3.4. It allows us to observe
the famous Kramers turnover in the non-driven and driven LiCN system, as we will see
in Sec. 4.1.4.

2.3.4 Mean first-passage time rates

The first-passage time is the time a particle needs to reach a certain region for the first
time given some initial state. In case of a reaction, the first-passage time is defined
as the time the particle is propagated from a point in the reactant region to a point
on some characteristic surface at or beyond a DS [2-4, 6, 7, 121|. In reactive systems
characterized by one-dimensional barriers, the DS reduces to a point. It is naively taken
to be the saddle point, but other choices are available, just like for variational transition
state theory, see for example [15, 16, 18-21, 64, 65|. The first-passage times for a series
of trajectories from different initial points in the reactive regime experiencing varying
thermal forces vary stochastically. Averaged together they lead to the mean first-passage
time tyrpr, whose inverse is the rate of escape, see Refs. |7, 84, 119, 120]

1

IMFPT

kMFPT = (229)

In the limit of a harmonic barrier, kyrpr has been seen to be precisely equal to the
transition state rate, and both are equal to the correct Kramers rate k, see Ref. [4].
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2 Theory of thermal LiCN

Generally, the rate problem is treated exclusively in the activated regime. Therein, the
typical energies of the system are characteristic of an average temperature that is well
below the energetic barrier. The smooth turnover in the Kramers rates with friction
was first resolved by Pollak-Grabert-Hénggi (PGH) theory in Ref. [116]. They found a
mathematical expression for the rate connecting the low-friction regime—where the rate
increases with y—and the high-friction regime—where the rate decreases with 1/v. To do
so, they had to impose a rate-determining region (or DS in phase space) which requires
temperatures to be low enough that the reacting system is somehow thermalized. Since
initial work in Refs. [53, 58, 60| demonstrating the applicability of the PGH theory at
surprisingly higher temperatures, Pollak and coworkers have extended it to temperatures
near threshold [122].

In the present problem, however, we must also consider much higher temperatures in
which the reactive system usually accesses energies much higher than the barrier along
the reaction coordinate. The process is consequently effectively barrierless, and the rate
problem reduces to the determination of a steady state flux for a given thermal molecular
beam. That is, the typical energies of those states accessing and crossing the barrier at
high temperatures—in the sense that they are much larger than the barrier—correspond
to states that cross the barrier freely (or ballistically) at their typical velocity. As a
consequence, the rates reduce to a simple power law at high temperature,

ko< /(?) o« VT . (2.30)

This behavior is well known since the early work on molecular beams, see Refs. [123, 124].
Alternatively, we can recover Eq. (2.30) from the mean-squared displacement observed
in small and long times from the Langevin equation [98|, where the mean-squared
displacement is given by

<AT2> = w(yt —14e)
<Dy (231)
~ 2NkpTt? .
Thus the velocity dependence of Eq. (2.30) is again recovered when
t<<1/y (2.32)

is satisfied [98], and the reactants have a short MFPT (and associated small ) due to
the fast barrierless crossing.

To confirm this behavior of the rate in Eq. (2.30) at high temperatures, a model system
with the LE was additionally programmed in this thesis. This model system has no
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2.3 Langevin dynamics

underlying potential and is two-dimensional with the coordinates x and y. Many
trajectories were started from the origin x = 0 and y = 0 and two absorbing boundaries
were placed at z = 10 and x = —10. With increasing temperature at a fixed friction
value, it was observed, that the rate of leaving the boundary region indeed goes with the
square of the temperature v/T. How such a ballistic motion, which is the reason for this
particular rate increase, looks like is shown in Fig. 2.9. Here, three exemplary trajectories
are taken out of the rate calculation to show the change from a random motion to a
ballistic motion, if we increase temperature.

2.3.5 Pollak—Grabert—Hanggi theory

The PGH theory for activated processes driven by Markovian forces has been seen to
be very effective in the low-temperature regime across the Kramers turnover of the
rates with respect to friction [116]. Among several examples in Refs. [82, 84, 116, 125~
127], it was shown to be effective for characterizing the dynamics across the potential
model of Straub-Borkovec—Berne (SBB) [128, 129]. The Langevin implementation is
memoryless, effectively reducing 7 to zero in the friction kernel, see Eq. (2.23). The
SBB approximation uses parabolic functions attached to each other to create a single
potential well followed by a saddle as an inverse parabolic function, and implemented
in the generalized Langevin equation with a memory friction. It was used to model the
minimum energy path of the LICN == LiNC isomerization reaction [53]. In the SBB
model, memory is introduced through a single exponentially decaying term in the friction
kernel,

Yt ) =atexp| — [t = ¢ . (2.33)
) a’y

The propagation of particles inside this potential is strongly dependent on the memory
time scale 7 = ay used in the friction kernel and the form of the friction kernel ~(z,t")
itself. For those relaxation processes that occur at times much longer than 7, the response
looks ohmic as in the Langevin case. However, the SBB model now allows for dynamical
responses from the solvent that can compete with the dynamics in the system. This
leads to an effective friction which arises from the mean of the modulate frictions from
the previous times. Reference [60] found, that in practice, this led to an overestimation
of the rates by a factor of 5 when using the LE rather than SBB model. Consequently,
all the rates reported here for the Langevin friction kernel are divided by 5, and marked
as k{ppr and kip. Similarly, when this factor is included in the use of MFPT or reactive
flux, we refer to the modified methods as MFPT* and ReactiveFlux*, respectively.
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Figure 2.9: Three random walks in a two-dimensional model system (z,y) without
a potential. The trajectories were propagated at kgT = 30 (blue solid), kg7 = 1000
(orange dashed) and kg7 = 2000 (red dotted) with the same friction v = 30. The blue
trajectory performs a random motion. But the higher the temperature, the more the
trajectories become ballistic, as one can see at the orange and red trajectories.
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3 Geometric structure of LICN

An important prerequisite for the determination of rates in Chapter 4 is the geometric
structure of LiCN. In the geometric structure of LiCN the shape of the saddle respectively
the PES and the equations of motions are included. The behavior of the EQT is influenced
by that structure, which will be described in Sec. 3.1. Here, we first investigate the
system without driving because this allows for an easier access to the topic and because
the non-driven system is also considered later in Sec. 4.1.

3.1 Equilibrium trajectories without driving

When studying the NHIM in the thermal case it is interesting to observe a particular
trajectory, the EQT. As explained in Sec. 2.3.2 the EQT is the trajectory to which all
the other trajectories on the NHIM approach over time in the thermal case. To obtain
the EQT, a simulation is performed in which at 16 different initial points on two separate
crosses in phase space trajectories are started, see Fig. 2.8 (b). After a long time they
approach this EQT. If the trajectories approached each other due to friction and the
difference in each coordinate between the trajectories is lower than a A under threshold,
the EQT starting point is taken as the center of each coordinate of the 16 trajectories.
From then on, the EQT can be propagated. The EQT results from the thought process
that the equilibrium in the system is established exactly at this time, when all trajectories
approached each other. Therefore, all later observations of the rate are performed from
this point on. As a consequence, it is necessary to study the behavior of the EQT under
noise. To effectively study the behavior of the EQT under noise, one parameter, be it
temperature or friction, must be held constant while the other parameter is changed.

For this reason the temperature in Fig. 3.1 is kept fixed and only the friction v is varied
to observe the influence of friction on the EQT on its own. To see the extent of the
EQT more easily, only a small window around the saddle region has been plotted. Here,
the friction values increase from (a) to (d). For consistency, Fig. 3.1 uses the same
equipotential lines as Fig. 2.2, which are colored in white and give a better visualization
on the structure of the saddle. As expected, the EQT propagates around the saddle
point, which is marked with a black cross. To talk about the propagation of the EQT at
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Figure 3.1: Potential energy V' of the non-driven LiCN as a function of position (R, ).
The EQTs at a temperature of T = 300K and the frictions (a) v = 4 x 10~%a.u,,
(b) y =49 x 10°a.u., (¢) vy =1.6 x 10°a.u., (d) v = 3 x 10~*a.u. are shown in cyan.
A black cross marks the position of the saddle point. At low friction values the EQT
shows a large extent in the stable coordinate and a small extent in the unstable coordinate.
Increasing the friction stretches the EQT in the unstable direction in (d). See Fig. 2.2 in

Sec. 2.1.2 for more details about the potential surface. All EQTs have been propagated
for t, = 2.13 x 10% a.u.
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Figure 3.2: The variance o2 of the EQT in the stable coordinates as a function of
friction v for a temperature of 7' = 300 K. The variance increases for v — 0. The
minimum of the variance seems to be located at v ~ 5 x 107° a.u.. For frictions between
v =5 x 10"%a.u. and 2.9 x 10~% a.u. the variance increases linearly.

different friction, it has to be kept in mind that a higher friction causes stronger random
forces (see Sec. 2.3.1), similarly to an increased temperature. That by increasing or
decreasing the friction it is possible for the EQT to reach states with higher or lower
potential energies. The low-energy states can be only explored by the EQT in the thermal
case because a specific random force pattern is added to the dynamics, which will again
drive up the EQT to the saddle according to the states with higher potential energies.
However, this exploration of higher and lower potential energies is not evenly done by
the EQT. Figure 3.1 shows that the EQT explores the lower potential energy states with
increasing friction, which also means that the EQT is expanding in the unstable direction
of the saddle. This could coincide with the observations of Ref. [109], in which the
variance of position of the TS trajectory also increases with increasing friction. In case
of a low friction of v = 4 x 107%a.u., the EQT oscillates mostly in the stable direction,
which is shown in Fig. 3.2. There the variance of the EQT in the stable direction o2 is
investigated as a function of friction «. The variances of the EQTs of Fig.3.1 are included
in this figure. Thus, at v = 4 x 107%a.u. the oscillating EQT reaches higher potential
energy states more often than in the case of higher friction, as in panels (b), (c), and (d)
of Fig. 3.1. At v~ 5 x 10~*a.u. the variance is at its minimum. After that the variance
increases linearly until a friction of v = 2.9 a.u. This behavior is different to the variance
of the TS trajectory in the stable mode discussed in Ref. [109]. The difference could
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3 Geometric structure of LICN

come from the different calculation of the variances. Ref. [109] uses the stable mode
in phase space while we use the stable direction of the saddle in position coordinates.
Nevertheless, in our case the variance should go down for very small values of v because
the noise strength decreases with this. At very low friction the EQT should show no large
deviation from the saddle point anymore. In contrast to the temperature, friction enters
directly into the dynamics and seems to drag the particle downward in the unstable
direction.

In Fig. 3.3 four EQTs with temperatures between T'= 20 K and T' = 1200 K are shown.
We can see that at higher temperatures in the system, the EQT shows larger extents in
both the stable and unstable direction. There the EQTs are beginning to explore higher
and lower potential energy states at higher temperatures. However, it should be noted
that their expansion to higher R values in the stable direction and the expansion towards
the LiCN state (lower 9J) in the unstable direction is greater than that to lower R values
in the stable direction and that towards the LiNC state (higher ¢). This is caused by
the shape of the potential. In the direction of smaller R values the potential energy rises
much stronger than in the direction of higher R values. This confines the movement
of the EQT at a defined temperature. States with higher potential energy can actually
only be explored at higher temperatures because reaching such high energy states is
extremely unlikely at low temperatures. It is not only the amount of potential energy
that matters, as shown at a higher temperature in Fig. 3.3. Here the EQT is expanding
further in the unstable direction towards the LiCN state crossing the white equipotential
line at £ = —0.2293 a.u., whereas this is not the case on the other side. Hence, it is
also the slope that is responsible for which region of the saddle can be explored by the
EQT at a certain temperature and friction. That the slope towards the LiCN state is
lower than towards the LiNC state can best be seen in Fig. 2.3 showing the MEP of
LiCN = LiNC. This asymmetric extent of the EQT can also be seen in Fig. 3.1 where
the friction has been varied. In the non-thermal case the trajectories on the NHIM with
high momentum are closer to the LiCN state, as shown in Fig. 2.4. This proves that
this extent of the EQT in the direction of the LiCN state is caused by the shape of the
saddle and not only by a specific random seed. This means that the trajectory explores
the potential energy states to a different extent depending on the temperature, friction
and shape of the saddle.

Next, it is interesting to see what happens to the EQT when the system is driven. But
for this, the effect of driving on the saddle should be considered first.
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Figure 3.3: Potential energy V' of the non-driven LiCN as a function of position
(R,9). The EQTs at friction of v = 4 x 107° a.u. and the temperatures (a) T' = 20K,
(b) T'= 353.3K, (¢) T = 620K, (d) T" = 1200K are shown in cyan. A black cross
marks the position of the saddle point. At small temperatures the EQTs show a small
extent in both directions, the stable and unstable one. With increasing temperature the
EQTs extent in both the unstable and stable direction. The expansion in the unstable
direction towards the LiCN state (lower 9J) is larger than towards the LINC state (higher
). Furthermore the extent in the stable direction towards higher R values is larger than
towards smaller R values. For more details about the potential surface see Fig. 2.2 in
Sec. 2.1.2. All the EQTSs have been propagated for ¢, = 2.13 x 10° a.u.
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3 Geometric structure of LICN

3.2 Externally driven energy barrier

The geometric structure of the externally driven LiCN reaction is strongly dependent on
the shape and height of the energy barrier. Therefore the influence of external driving

on the barrier must first be discussed before explaining the behavior of the trajectories
on the NHIM converging to EQT, and the EQT itself.

We start with the energy barrier height, which shows a strong influence on the potential
surface due to the driving of the external electric field. The energy barrier height
is shown in Fig. 3.4 over one period of driving. Here, the barrier height of LiCN
E* =0.0047805a.u. (E*/kg = 1510K) in the non-driven case is reached at the times
t=0,t=1T,/2 and t = T}, where T, = 4269.5 a.u. is the period time of the driving.
This corresponds to an angular frequency of w = 1.472 x 10~%a.u. In between the
energy barrier height is increased for times 0 < ¢t < 7,,/2 and is decreased for times
T,/2 <t < T,. This means with the use of an external electric field it is possible to
decrease the barrier height temporarily. Theoretically speaking, that should have a strong
influence on the reaction rate. This could be very interesting for chemists and is further
discussed in the Sec. 4.1.4. At amplitudes higher than Ay ~ 0.01 a.u. the energy barrier
height oscillation starts to get anharmonic. The energy barrier height does not decrease
as much as it increases because it is approaching zero at t = (3/4)7},. This anharmonic
region has to be treated with care because in the derivation of the external driving a
rather weak driving amplitude was assumed. To give a better understanding of the
large differences in the barrier height, the barrier height of the mostly used amplitude of
driving in this thesis—Ay = 0.01 a.u.—is discussed. At the maximum the barrier height

is B =0.010754au. (B}, /kg = 3396 K) and at the minimum the barrier height is
El . =0.001436a.u. (B /ks = 453K).

If one thinks not only of the reaction rates but also of the instantaneous decay rate (IDR),
this driving has major impact. The shape of the NHIM is deformed and it moves with
a smaller amplitude than the saddle point, as mentioned and visualized in Ref. [47].
An EQT on the NHIM is thus exposed to these oscillations, see Sec. 3.4. It explores
different regions in phase space and gains energy due to the driving. Furthermore, the
unstable and stable manifold will be deformed, which has a direct influence on the IDR
as explained in Sec. 2.2.6. The IDR in connection with the driving is further discussed
in Sec. 4.2.1.

To analyze the IDR, the behavior of trajectories on the driven NHIM has to be investigated.
The following Sec. 3.3, first discusses the trajectories, which will converge to an EQT,
and the corresponding basins of attraction.
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Figure 3.4: Energy barrier height E* of the externally driven isomerization reaction of
LiCN as a function of time ¢. The functions for different driving amplitudes A, are shown.
Up to an amplitude of Ay = 0.01 the barrier height oscillates more or less harmonic. At
higher amplitudes the driving causes an anharmonic oscillation of the energy barrier
height of LiCN. Here, the barrier height almost approaches zero at times t = (3/4)T,n,
where T;, = 4269.5 a.u. is the period and n € N.

3.3 Geometric attractors

In the case of the non-driven energy barrier, only one equilibrium trajectory (EQT)
exists for a specific sequence of the random forces given by a random seed. The EQT
is introduced in Sec. 2.3.2. However, the number of EQT in the driven system seems
to correspond to the number of stable fixed points on the NHIM for the same driving
amplitude Ay and frequency w in the LiCN reaction without coupling to a thermal bath.
Various fixed points have been discussed in Ref. [47], where Matthias Feldmaier found
two stable fixed points and one unstable fixed point for an external driving amplitude of
Ap = 0.01 a.u. and angular frequency of w = 1.472 x 1073 a.u, with the correction given
the arXiv version of Ref. [46]. In the following, we study the influence of temperature
and friction on EQTs and their basins of attraction with those driving parameters.
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3 Geometric structure of LICN

3.3.1 Basins of attraction

This section will introduce the concept of the geometric attractor and how its basin of
attraction can be visualized. Knowing that the system has two stable fixed points, the
question is, which trajectories converge to which EQT. Therefore 10000 trajectories
are started on the (R, pg)-plane of the NHIM and are propagated until they converge
to their corresponding EQT. All trajectories are started at the center of one pixel as
shown in Fig. 3.5, and are propagated for the same time. If each coordinate of many
trajectories differs less than a A under threshold, they form a cluster respectively they
have become very close to each other in phase space. If only two of such clusters are
found the respective trajectories has converged close enough to the corresponding EQT.
If not, the trajectories have to be propagated for another time interval until only two
clusters are found. After they converged to their corresponding EQTs, the initial points
of the trajectories respectively the pixels in Fig. 3.5. at the (R, pr)-plane can be assigned
to one of the EQTs. That assignment is done in Fig. 3.5 by coloring the pixels in cyan
and yellow depending on which EQT they converge to. They have been propagated for a
time t = 9.39 x 10 a.u. Somewhere in between they converged to the two separate EQTs.
The attractors lie inside the spiral bulge. However the actual extension of the attractors
is smaller than the spiral bulges, because the color only shows which trajectories collapse
to which attractor. This means that in the spiral bulges it is clear in which attractor the
trajectories end in. In the spiral arms this assignment is not so clear. A small derivation
of the initial position (R, pr) and the trajectory will end up in a different attractor. Later
discussions in Sec. 4.2.2 cover the extension of geometric attractors in phase space. The
colored regions are also called basin of attractions of the geometric attractors from now
on.

Two example trajectories in red and purple are displayed on top of the colored grid. The
red trajectorie’s initial position (R,pg) = (5.9a.u., —7a.u.) has been projected to the
NHIM and propagated for At = 9.82 x 10° a.u. The initial position of the pink trajectory
is (R,pr) = (5.9a.u.,5a.u.) and the trajectory has been propagated for the same time
as the red one. As one can see the trajectories spiral towards their attractors and nearly
follow the spiral structure of the underlying colored grid in the stroboscopic view. The
red one, for example, does not follow the colored spiral structure completely. If the red
stroboscopic trajectory is inside the yellow region at a yellow pixel, a completely different
random force pattern will act on the red trajectory in the next time steps, as it did on
the trajectory started at that yellow pixel in the beginning of the simulation. This means
that the picture is only a snapshot of which trajectories end in which attractor at time
t = 0 in the (R, pr)-plane, which depends mainly on the random seed. This dependency
is described in more detail in the next Sec. 3.3.2.

We can further observe in Fig. 3.5 that the spiral arms are more compressed at smaller
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Figure 3.5: Basins of attraction of the two attractors in the (R, pg)-plane. At each
pixel a trajectory is started. Within a time ¢ = 9.39 x 10° a.u. they converge to the
corresponding EQT. Whether they are all converged to their corresponding EQT is
obtained by a cluster method. They are colored cyan and yellow depending on which
geometric attractor they end up in. The initial conditions leading a trajectory to end in
an attractor follow a spiral structure in both cases. The violet region marks the initial
conditions for which the numerical propagation fails. Here, the red and purple points are
stroboscopic views of two trajectories spiraling towards their respective attractors. The
respective attractor is typically located in the spiral bulge. For this figure the amplitude
Ap = 0.01 a.u., the angular frequency w = 1.472 x 1073 a.u., the temperature 7' = 125 K,
the friction value v = 3.8 x 107% a.u., and a random seed of 1 is used.
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R than in the direction of large R. This can be explained by the fact that the potential
around the saddle point is rising faster in the direction of smaller R than in the direction
of large R. This behavior is consistent with the EQT for the non-driven case in Fig. 3.3,
where the trajectory explores regions to higher R much further than regions to smaller
R at a given temperature.

3.3.2 Influence of the random seed

The random seed changes the system’s behavior, because the random force pattern
applied to each time step changes. This means that a trajectory started at the same
position and time will take a different path if it is propagated with a different random
seed. The change in the basins of attraction in Fig. 3.6 is considerable. The proportion
of trajectories that converge to the second attractor (yellow) become significantly smaller
with the random seed of 4. Not only are the yellow spiral arms much thinner, but also
the spiral bulge around the second attractor is smaller.

The discussion about the initial trajectories approaching different attractors see Sec. 3.3.1,
and crossing the colored region of the other attractor during their propagation can be
taken up here again.

As previously addressed in Sec. 3.3.1, the crossing of the colored region of a example
trajectories is now examined in more detail here. In Fig. 3.6(b) two example trajectories
are propagated from (5.5a.u.,15a.u.) and at (6.0a.u.,15a.u.) on the NHIM. The first
point mentioned corresponds to the red stroboscopic trajectory and the second to the
pink stroboscopic trajectory. Both spiral towards their corresponding attractors. Again,
it is visible that the pink one crosses the cyan region. But at that time the following
force pattern for the trajectory looks completely different than at the time t = 0 at the
start of the propagation. It can be equated to defining a whole new pattern for the
trajectory from this point on. A snapshot at the time the pink trajectory lying inside
the cyan region, would give a completely different picture of the basins of attraction. For
example one spiral arms could be much thicker, like in Fig. 3.6(b). Now it becomes clearer
once again what effect the random seed has on this system. Small deviations in the
initial position of a trajectory can cause a completely different path to its corresponding
attractor or it can even lead a whole region of initial trajectories to another attractor.
This means that the line between spiral arms in cyan and yellow is a separatrix at time
t = 0. That separatrix will change over time because of the changing random force
pattern.

The vicinity of the attractor, as described in Sec. 2.3.2, itself seems to be not effected
by another noise seed if we compare Fig. 3.6 and Fig. 3.5. But the attractor itself has
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Figure 3.6: Basins of attraction of the two attractors in the (R, pg)-plane for the
two different random noise sequences with seed (a) 1 and (b) 4. At each pixel on
the (R, pr)-plane a trajectory is started. The 10000 trajectories are propagated for a
time ¢t = 9.39 x 10° a.u. Within this time they are converged to their corresponding
attractors. They are colored cyan and yellow depending on which geometric attractor
they end up in. The violet region marks the initial conditions for which the numerical
propagation fails. The proportion of trajectories that end in the second attractor (yellow)

become significantly smaller with the random seed of 4. The yellow spiral arms of
the second attractor become thinner. In (b) two example trajectories are added in a
stroboscopic view. The red one converges to the first attractor and the pink one to
the second attractor. Both pictures where made with an amplitude Ag = 0.01 a.u., an
angular frequency w = 1.472 x 1073 a.u., a temperature T' = 125 K, and the friction value
v =38x107%a.u.

changed, as we can see in differently distributed stroboscopic points. This implies that
the trajectories behave very similarly in the vicinity of the attractor, but explore different
states over time compared to other random seeds. Propagated over a sufficiently long
time, they should explore any possible state. That behavior is called ergodicity and is
described in Sec. 2.3.2.

Another difference is that in Fig. 3.6(b) a cyan spiral arm starts to grow into a yellow
spiral arm into the direction of spiral bulge of basin of attraction of the second attractor.
However, the random seed is only a numerical detail and is not part of a physical system.
That is why in the following we will discuss the influence of noise parameters—which
can be changed by the observer—on the basins of attraction.
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Figure 3.7: Basins of attraction of the two attractors in the (R, pr)-plane for the two
different temperatures (a) 7= 150K and (b) T' = 220 K. At each pixel on the (R, pg)-
plane a trajectory is started. The 10000 trajectories are propagated for T' = 220 K for a
time t = 1.37 x 10%a.u. and for 7" = 150 K less time. Within this time they are converged
to their corresponding attractors. They are colored cyan and yellow depending on which
geometric attractor they end up in. The violet region marks the initial conditions for
which the numerical propagation fails. The significant difference in comparing those
two basins of attraction, is that at the higher temperature in panel (b) the spirals
become thinner and one cyan spiral arm starts to grow into a yellow spiral arm into
the direction of spiral bulge of basin of attraction of the second attractor. Furthermore
the thin yellow spiral arms at the edge to the violet region are not continuous anymore.
Both pictures where made with an amplitude Ay = 0.01 a.u., an angular frequency
w = 1.472 x 1073 a.u., the friction value v = 3 x 107° a.u, and a random seed of 4.

3.3.3 Influence of noise parameters

After discussing the influence of the random seed on the basins of attraction, the discussion
about the influence of the temperature and friction is another exciting area to look at
because the random seed itself is only a numerical detail and is not part of a physical
system. However, friction and temperature can be changed in an experiment by by
changing the temperature and density of the argon bath.

By the calculations done for Fig. 3.7 it was observed that at a temperature T'= 150K in
panel (a) it takes less time to reach the equilibrium than at a temperature 7= 220 K in
panel (b). That could be an effect of our simple implementation of noise in the LiCN
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3.3 Geometric attractors

Figure 3.8: Basins of attraction of the two attractors in the (R, pr)-plane for the two
different friction (a) v = 1.5 x 107° a.u. and (b) v = 3.8 x 107? a.u.. At each pixel on the
(R, pr)-plane a trajectory is started. In panel (a) with v = 1.5 x 107 a.u. the trajectories
are propagated for ¢ = 1.41 x 10%a.u., and in panel (b) with v = 3.8 x 107° a.u. the
trajectories are propagated for around ¢ = 9.39 x 10° a.u. Within this time they are
converged to their corresponding attractors, but at v = 3.8 x 107 a.u. the system reaches
the equilibrium much faster. The trajectories are colored cyan and yellow depending on
which geometric attractor they end up in. The violet region marks the initial conditions
for which the numerical propagation fails. On the left hand side at lower friction, much
more trajectories end up in the second attractor (yellow) than in the first attractor (cyan).
At a higher friction value on the right hand side, the opposite behavior is observed.
Both pictures where made with an amplitude Ay = 0.01a.u., an angular frequency
w = 1.472 x 107% a.u., the friction value 7' = 125 K, and a random seed of 4.

system. But it could also be part of the behavior of the trajectories on the NHIM, which
could take longer to converge to an attractor with increasing temperature. Another
observation connected to this is that the yellow spiral arms are thinner and that at the
edge to the violet region they are not continuous anymore. The trajectories starting in
the noncontinuous region propagate much longer, because their initial position is located
in outer spiral arms. They perform several rotations until they converge to the second
attractor located somewhere in the yellow spiral bulge. Those rotations can be seen in
the example stroboscopic trajectories in Figs. 3.5 and 3.6. At those outer spiral arms a
small deviation in the initial position of a trajectory can cause it to take a completely
different path. The noncontinuous spiral arms can be caused by the too low resolution.
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3 Geometric structure of LICN

In principle, of course, these could not be noncontinuous, but this would have to be
confirmed by taking a closer look. Another difference in comparing those two basins
of attraction, is that at the higher temperature in panel (b) of Fig.3.7 one cyan spiral
arm starts to grow into a yellow spiral arm into the direction of spiral bulge of basin of
attraction of the second attractor.

Compared to temperature, friction seems to have a more significant influence on the
geometric structure as one can see in Fig. 3.8, which compares two systems that are
identical except for friction. At low friction a very large proportion of the initial
trajectories end up in the second attractor. Interestingly, the average energy of the
second attractor is higher than that of the first. And yet, more trajectories converge to
that second attractor. Whether the basin of attraction of the second attractor expands
even further at low friction could be interesting for the following investigations. However,
with increasing friction a smaller proportion of the trajectories end up in the second
attractor. Then the energetically lower attractor is favored by higher friction and a large
proportion of the trajectories end up in the first attractor. The energy of the attractors
and the collapse of the attractors will be further discussed in Sec. 4.2.2.

The spirals are still visible, but new substructures can be recognized. They appear to
be broken spirals separated from the cyan region. At higher friction the yellow areas
at the edges almost completely disappear. This is another indication that the second
attractor could collapse and completely disappear if the friction is further increased.
As we expect, if the friction is increased, the system will reach the equilibrium much
faster. At v = 1.5 x 107° a.u. in Fig. 3.8(a) the trajectories have to be propagated for
around t = 1.41 x 10%a.u. to converge to the attractors, whereas at v = 3.8 x 107° a.u.
in panel (b) the system reaches the equilibrium much faster around ¢ = 9.39 x 10° a.u.

The previous sections showed us the behavior of trajectories in phase space on the NHIM,
which converge to one of the two EQTs. The EQT was only shown in a stroboscopic
view. In the next Sec. 3.4 the full behavior of the EQT over time is discussed.

3.4 Equilibrium trajectories with driving

As introduced in Sec. 3.3, two geometric attractors appear if the LiCN is externally driven
with Ag = 0.0l a.u. and w = 1.472 x 1073 a.u. They are located near the stable fixed
point in the stroboscopic PSOS in the (R, pr)-plane in the non-thermal case, see Ref. [47|
for comparison. But the EQTs do not only thermally fluctuate around these fixed points,
they do also behave similarly as the fixpoint trajectories without the stroboscopic view.
This is shown in Fig. 3.9 for T = 100K, v = 4 x 107® a.u. in panels (a) and (c), as
well as T = 285K, v = 1 x 107% a.u. in panels (b) and (d) in the (R, 9)- and (R, pr)-
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3.4 Equilibrium trajectories with driving

0.367(2) 1(b)

Figure 3.9: Two EQTs of the externally driven LiCN for 10 driving periods 7, =
4269.5a.u. The driving amplitude is Ay = 0.01 a.u. and its period corresponds to an
angular frequency of w = 1.472 x 1072 a.u. The red trajectories correspond to the first
attractor and the pink ones to the second attractor. Their movement in the coordinates
(R,9) and (R, pg) is displayed for T'= 100K, v = 4 x 107 a.u. in panels (a) and (c) and
T =285K, v =1 x 10"%a.u. in panels (b) and (d). The black dashed curves are the first
(lying in the red EQTs) and the second (lying in the pink EQTSs) fixed point trajectories
of the non-thermal case for one driving period. The blue dotted curves in panel (a) and
(b) show the movement of the saddle point for one driving period. It can be seen that
the EQTs behave similarly as the corresponding fixed point trajectories.
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3 Geometric structure of LICN

planes, respectively. It can be seen that the EQTs are influenced by noise in all of the
subplots but still move close to the fixed point trajectory. To explain this behavior,
we first take a look at the fixed point trajectories in the driven, non-thermal case.
Their movement is perfectly balanced to stay in the saddle region without falling to the
LiCN or the LiNC state. Trajectories on the NHIM in the vicinity of the fixed point
trajectories follow this movement and also trajectories close to the NHIM will follow
that movement until they fall of the moving saddle. Those movement is created by
the potential forces. In the thermal case, those potential forces are still there, but the
thermal forces disturb the movement. If the thermal forces are small compared to the
potential forces the trajectories on the NHIM and nearby trajectories behave similarly
to the fixed point trajectories except for small disturbances. If the thermal forces are
strong, the characteristic movement of the fixed point trajectories is difficult to identify.
For reference, the movement of the saddle point over one driving period is visualized as
a blue dotted line.

In Fig. 3.9 two different parameter sets were taken. One with a low temperature and a
high friction in panels (a) and (c) and one with a high temperature and low friction in
panels (b) and (d). This means that both parameters are changed and the change in
behavior cannot be attributed to a specific parameter.

In the case of strong friction in panels (a) and (c), the movement of the two EQTSs differs
clearly in the (R, pg)-plane. The second EQT (pink) surrounds the first EQT, but with
a clear distance. Overall, the second EQT has a higher energy in average and accesses
higher momenta in pg as the first one. Friction acts directly on the momentum in the
dynamics. This means that at high momenta in pg the friction takes out the most energy
of the system, see Sec. 2.3. This leads to a compression to smaller momenta pg in the
second EQT. At later times that compression causes the second EQT to merge with the
first EQT, which will be further discussed in Sec. 4.2.2. Further parts of the trajectory
were omitted due to clarity. The friction does not directly act on R. That is why we do
not see a compression in R. There the EQT is equally extended around the fixed point
trajectory.

At high temperatures and low friction in panels (b) and (d), the EQT is both extended
to higher and lower R and to higher and lower pg. The first EQT is strongly extended.
We can see that the first and second EQT intersect in the (R, pr)-plane. Since the
projections overlap in these areas, it is possible that the first or second EQT will merge
into the second or first EQT. In Sec. 4.2.2 we will observe, that the first EQT will merge
into the second EQT at later times.

The corresponding (R, )-planes (a) and (b) also show the thermal fluctuations of the
EQTs around the fixed point trajectories. In some cases, the same similar movements
of one EQT can be seen in the other EQT. For example, at small ¢ values in (b), the
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3.4 Equilibrium trajectories with driving

motion of the first EQT seems to be slightly oriented to the strong oscillations of the
second EQT.

These observations on the structure in this chapter provide the basis for the discussion
of rates in Chapter 4. Furthermore, the observations of the collapse of the attractors are
continued.

93






4 Rates of the LIiCN isomerization
reaction

Thermal rates are an important aspect of chemical reactions. They can provide a deeper
insight into the system and their treatment can in some cases lead to more efficient
industrial processes. In this chapter, the methods described in Chapter 2 are applied to
calculate two different rates, the instantaneous decay rate (IDR) on the NHIM of the
LiCN == LiNC, and the mean first-passage time (MFPT) rates of the LICN — LiNC
isomerization reaction. This allows us to compare both rates in Sec. 4.3. With the help
of observations in Chapter 3, the rates can be interpreted and analyzed.

4.1 Non-driven case

Examining the non-driven LiCN system yields on the one hand an easy entry into the
rate topic, but on the other hand also much more easily interpretable data. This makes it
an optimal start to examine the dependence of the instantaneous decay rates (IDRs) on
the states of the non-thermal NHIM and the influence of noise thereon in Sec. 4.1.1. This
then gives the basic framework on which further discussion of the rates can be based,
also to understand the driven case even better.

4.1.1 Influence of the bath parameters on the instantaneous
decay rates

The average decay rates (ADRs) of a thermal system depend on the thermal transition
states exploring different states of the non-thermal NHIM. This was first observed in
a driven model system in Ref. [45]. Hereby, the time-averaged decay rate grid is used
to map the ADR of the states of the non-thermal NHIM at a specific position in phase
space. On top of the time-averaged decay rate grid, the stroboscopic PSOS of the EQT
is plotted to see which states of the non-thermal NHIM are explored for each period
of the driving. The thermal ADR varies depending on which states of the non-thermal
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Figure 4.1: (a) IDR ky, as a function of time ¢ for the EQT and the associated ADR
(k) of the EQT. (b) Stroboscopic PSOS of the EQT and an underlying Floquet grid for
the simulation parameters 7' = 686.7K and v = 4 x 107° a.u., the time of propagation
is t, = 2.13 x 10%a.u., and the stroboscopic frequency is fs = 2.34 x 10~*a.u, which
results in 500 stroboscopic points. The EQT explores different states of the non-thermal
NHIM. The average value of the IDR (k,,) is calculated by averaging the IDR over time.
Here, the equilibrium is reached at to, = 7.26 x 10° a.u., where the EQT is started.

NHIM with a specific ADR are explored. These observations can be verified in the LiCN
system.

In Fig. 4.1 the IDRs and their average is compared to the stroboscopic PSOS of the
EQT. The position of the EQT in panel (b) in the (R, pgr) plane is always recorded at
multiples of some time interval At as in Refs. [43, 45, 46]. This stroboscopic map is
done in the non-driven case for the sake of clarity. The time interval is At = 4269.5 a.u.
corresponding to a stroboscopic frequency of fg = 2.34 x 10~* a.u. For the underlying
interpolated Floquet grid in the non-thermal system, calculated in Ref. [47], a lot of
trajectories are started and are propagated for a long time to calculate their AFR (k).
A stroboscopic PSOS of those trajectories would fill the plot in Fig. 4.1 with the same
number of tori. Each of these tori can be assigned an AFR (kg). In a thermal system
those tori collapse to an EQT. This EQT is propagated at a temperature of 17" = 686.7 K
and a friction of ¥ = 1 x 107% a.u. In total there are 500 stroboscopic points of the EQT
in Fig. 4.1(b). As one can see the points are all randomly distributed in the low AFR
regime.
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4.1 Non-driven case

The corresponding IDR is visualized on the left hand side and can be calculated via the
LMA for each time step of the trajectory. In the case of such a complicated potential, the
IDR is not calculated for every time step because it is too time consuming. A calculation
with the lower resolution in the IDRs already requires more than one day of CPU time.
However, the longer the propagation time t,, the more accurately the ADR can be
estimated. With a propagation time of ¢, = 2.13 x 10% a.u. in the non-driven case, as in
Fig. 4.1, a sufficient accuracy of the ADR is reached.

In Fig. 4.1(a) the IDR oscillates with high amplitudes. In the non-thermal case such
oscillations also happen for trajectories on the NHIM, which are started with an initial
momentum. The AFR is the average of those rate oscillations. And this is the reason
why the values on the Floquet grid are changing so smoothly. The AFR changes so
little because of the shape of the saddle. As mentioned in Sec. 2.2.7, the Floquet
rates reveal something about the stability of the trajectory. In the region of the saddle
(R = 4.2626 a.u.) and with low momentum (pgr = 0 a.u.), the trajectory performs relatively
stable movements on the NHIM in the non-thermal, non-driven case. With increasing or
decreasing R, the AFR increases. At higher momenta the trajectory loses its stability
and the AFR rises.

We know that the EQT propagates randomly in the neighborhood of the saddle. Depend-
ing on friction and temperature, the EQT extents more or less in the stable or unstable
direction. The aforementioned 500 stroboscopic points of the EQT on this Floquet grid
give an idea of which non-thermal states are explored over time. However, the ADR
should not be calculated directly from the mean of the corresponding Floquet rates at
which the points lie. This would give an ADR of (k,,) = 1.75545a.u. This value does
not match with the ADR calculated with the average of the IDR before.

That the ADR does not match with the AFR in the (R, pr) plane is because the EQT
explores so many other non-thermal states in between not matching with the non-thermal
trajectories propagated for the Floquet grid. Furthermore, the oscillations of the EQT
are slightly slanted to R, which can be seen in Fig. 4.2. The direction of the reaction
over the saddle is rotated by a few degrees in 9. Through this, the (R, pg) plane is not
purely the cut in phase space of the stable direction of the saddle. This could be one of
the causes of the differences in estimating the ADR out the Floquet grid, which were
also observed in Ref. [45].

Nevertheless, the extent of the EQT in Fig. 4.1(b) is correlated with the oscillations of
the IDR in panel (a). If the EQT reaches higher rates in the stroboscopic PSOS, the
amplitudes of the IDR oscillations should increase. This statement is confirmed by the
discussion of the next Fig. 4.2.
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Figure 4.2: IDR as a function of time ¢ in panels (a) and (c¢) and underlying EQTs
in cyan in panels (b) and (d). The temperature is T = 220K in panels (a) and (b)
and is 7" = 686.7 K in panels (c) and (d). Both EQTs are propagated with a friction
of ¥ = 4 x 107%a.u. The black cross marks the saddle point at R = 4.2626 a.u. and
¥ = 0.28007. It is shown that the extent of the EQTs in (R,d) correlates with the
amplitude of the IDRSs ky, in cyan. Also the ADR (k) is higher at the higher temperature
in panel (c) than in panel (a). But at the higher temperature the equilibrium is reached
later around teq = 7.26 x 10° a.u. than at the lower temperature, where it is reached in
panel (a) at teq = 4.91 x 10° a.u. Both EQTs are propagated for ¢, = 2.13 x 10% a.u.,
but are only plotted for the first ¢+ = 8.52 x 10° a.u. for the sake of clarity. The ADR is
calculated with the fully calculated IDR. The EQT in panels (c¢) and (d) is the same
EQT as in Fig. 4.1.
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4.1 Non-driven case

Figure 4.2 gives a better view on the rising amplitude of the IDR. The amplitude rises
if the EQT explores non-thermal states with higher rates at higher temperature. Two
temperatures—7 = 220K in panels (a) and (b) and 7" = 686.7 K in panels (c) and
(d)—are compared with each other. Hereby, the same friction of v = 4 x 107 a.u. is used
for the thermal bath. The IDRs k,, are only shown for t = 8.52 x 10° a.u. for the sake
of clarity, but the ADRs (k) are calculated with the full propagation time of the EQT
t, = 2.13 x 10°a.u. It can be seen that the EQT in panel (a) reaches the equilibrium
first at teq = 4.91 x 10° a.u., whereby the EQT in panel (c) reaches the equilibrium at
teq = 7.26 x 10° a.u.. This was also observed and discussed in Sec. 3.3.3. This is only
observed if the friction is kept fixed. Another point to notice is that the EQT in panel (d)
is the same as the one in Fig. 4.1. The EQTs are located around the saddle point at
R = 4.2626 a.u. and v = 0.28007, marked with the black cross.

In Fig. 4.2 the whole potential energy surface is shown to get a better visualization of the
extent of the EQT and the following discussion about rates. The IDRs in Fig. 4.2(a) show
oscillations with smaller amplitudes as the oscillations in panel (c). In Fig. 4.2(b) and (d),
this difference in the amplitudes of the oscillations could be somehow connected to the
extent of the EQT in the region of the saddle.

The position of the EQT und therefore its phase space coordinates have an influence
on the IDR. To see their influence we should use a very extended EQT because then
the influence of the coordinates should be more visable. This is done in Fig. 4.3, where
an EQT is propagated with T'= 1500K and v = 4 x 10~° a.u.. A small excerpt from
the EQT’s IDR k., and radius R is taken. As expected, with higher temperature the
oscillations of the IDR show higher amplitudes than in Fig. 4.2(c). It can be seen that
the maxima of R almost coincide with the maxima of k,,, which means that the IDR is
maximal when the trajectory is closest to the LiNC state. Furthermore, the positions
of the minima in R and k,, in time match. However a correlation of the height of the
maxima and minima in k, with the maxima and minima of R can not be confirmed
without considering the other coordinates in phase space 9, py and pg or the slopes of
the potential energy surface. But knowing that the momentum of the EQT is quite small
or even zero at the maxima and minima of R and k,,, allows for the assertion that ¥ is
one of the other parameters influencing the height of the maxima or minima.

The maxima in R and ¢ occur at the same times. This is connected to the NHIM in
the non-thermal case. There, trajectories with high energy are oscillating from high R
and high ¢ values to low R and low 9 values. Three example trajectories are shown in
Fig. 2.4. The EQT still shows these oscillations in the thermal system, but deviates due
to thermal forces, as shown in Fig. 3.1. The IDR represents the instability of the EQT.
This means that the instability of the EQT is much higher at high R and high ¢ values.
This correlation can be seen very well by comparing Figs. 4.3 and 4.4.
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Figure 4.3: IDR ky, as a function of time ¢t compared to the radius R as a function of
time ¢ of the EQT, which is propagated with 7' = 1500 K and v = 4 x 10~° a.u.. When R
is at a local maximum, the IDR is also at a local maximum, except for the small bumps.
Conversely, this also applies to the minima, where no bumps are visible. Comparing
the heights of the maxima or minima of R and k,, directly is not possible due to too
many other factors influencing the IDR. Here, a small excerpt from the IDRs and R of
an EQT is shown.

In Figs. 4.3 and 4.4 can also be seen that the maxima of the IDR k,, sometimes have
two humps. Those humps are caused by the momentum pr and momentum py of the
EQT. Their influence is only apparent around the local maxima. A slightly higher
momentum in py seems to somehow increase the instability of the EQT, increasing the
rate and thereby creating a hump. Two humps exists if the momentum before and after
the maximum in R is high. The second maximum in R in Fig. 4.3 shows a flatter increase
until the maximum is reached later in time than the maximum in R. This behavior is
caused by slow increase of the 19 coordinate at the beginning due to a large momentum in
py, which further increases the IDR to its maximum. After that, a fast decrease of ¥ with
accompanying large momentum py causes a strong decrease of k,, after its maximum. All
kinds of variations of those behaviors can be observed because it is a thermal system and
the EQT explores many different non-thermal states during its propagation. With the
statements made before, it must of course be considered that the random force pattern
also plays a role. However, the temperature is 7' = 1500 K in Figs. 4.3 and 4.4, which
is extremely high compared to the other temperatures discussed in this thesis. If the
temperature is that high and the correlations between 9 and the k,as well as R and k,,
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Figure 4.4: IDR k,, as a function of time ¢ compared to the angle ¥ as a function of
time ¢ of the EQT, which is propagated at T'= 1500 K and v = 4 x 10~° a.u.. When o
is at a local maximum, the IDR is also at a local maximum The IDR is correlated to 9.
Here, a small excerpt from the IDRs and ¥ of an EQT is shown.

are found anyway, the influence of the random force pattern should still be limited.

For lower R such a behavior is hardly observed. An almost invisible shift between the
minima of the IDRs and the minima of R is also caused by the momenta. The slope of
the potential energy to lower R values is much larger and seems to limit the behavior of
even lower or higher rates in the time window around the minima in R.

Last but not least, we have to come back to the Floquet grid in Fig. 4.1(b). The Floquet
grid is capable of presenting the structure of the saddle point and gives a prediction
on how the rates will change if the temperature will be increased. Misleading are the
average Floquet rate (AFR) at smaller R values, where they seem to rise very quickly
with lower R values. The explanation for this misleading idea is that this is the AFR. It
takes into account the whole propagation, where also a lot of states with higher rates are
explored outweighing the parts of the trajectory exploring states with lower rates. The
trajectory propagated for the AFR is not subject to energy loss as in the thermal system.
Therefore, it propagates for a long time at high R values and keeps up its momentum
while propagating at smaller R values. There are lots of states with high rates that
can be reached, while states with low rates are reached less on average. In conclusion
this increases the AFR for higher momentum and higher R values, but is not capable of
showing that the IDR of the EQT actually is decreasing at low R values. Information is
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Figure 4.5: The ADR (k,) in the non-driven LiCN as a function of temperature
T. The ADRs are marked as blue dots. The respective EQTs were calculated with
v =4 x 107% a.u, and a random seed of 105. A linear increase in the low percentage area
of ADRs can be clearly seen. The black dashed line belongs to the IDR of the trajectory
resting on the saddle in the non-thermal system and is used as a reference line. For the
calculation of the ADRs the corresponding EQTs are propagated for ¢, = 2.13 x 10° a.u,
which corresponds to 500 periods with a period of T}, = 4269.5 a.u.

also lost by averaging the IDR. The resulting ADR can only refer to the general behavior
respectively the extent of the EQT.

4.1.2 Influence of the bath parameters on average decay rates

The discussion on the instantaneous decay rate (IDR) in Sec. 4.1.1 shows that the extent
of the equilibrium trajectory (EQT) depends on the shape of the saddle and that, in
turn, the instantaneous decay rate (IDR) also depends on the saddle shape and on the
coordinates of the EQT. By looking again at Fig. 4.2, an increase of the average decay
rate (ADR) of approximately 0.5 % between a temperature of 7' = 220 K and 7' = 686.7 K
is noticeable.
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4.1 Non-driven case

This increase of the ADR is further investigated in Fig. 4.5. Here, a linear increase of
the ADR at temperatures between T' = 20K to 7" = 1500 K, marked by blue dots, in the
percent range is observed when using the same random seed for the EQT. The friction is
kept fixed at v = 4 x 107° a.u. The black dashed line serves as a reference to which the
thermal ADR can be compared to. It represents the decay rate of the trajectory resting
on the saddle in the non-thermal case.

That the deviations of the ADR only lie in the low percentage range can be explained
by the fact that the EQT explores states with high and low IDRs almost equally. This
is shown in Figs. 4.2(a) and 4.2(c). The very small difference in the ADR can only be
measured by observing the EQT for a long time. Here, the slight difference of the EQT
in exploring on average more often states with a higher IDR matters. The exploration of
higher R respectively the extent in the direction of higher R of the EQT is favored by
the shape of the saddle. The potential energy near the saddle in the direction of higher
R does not rise as quickly as it does in the direction of lower R. This means that the
average R value that is explored by the EQT rises with rising temperature.

Contrary to this, the average value of ¢} that is explored by the EQT decreases with
rising temperature. As discussed in Sec. 4.1.1, this decreases the IDR and thus also the
ADR and is caused by the lower slope of the potential energy surface in the direction of
the LiCN state. This observation is consistent with the discussed extent of the EQT in
Fig. 3.3. From this figure some of the EQT's are used for the calculation of the ADR in
Fig. 4.5.

It can therefore be said that the saddle shapes the ADRs. The modification of the slopes
of the potential surface in the saddle region should lead to different behavior of the ADR
as a function of the temperature. Creating a saddle in a non-driven system on which the
ADR decreases with increasing temperature could be a topic for future work. In Ref. [45]
such a decrease of the ADR was already found for a driven model system.

Another point for future work is to prove that the increase of temperature not changes
the ADRs in a non-driven system if the saddle is symmetric. In this case the EQT
should extent equally in the regimes with higher and lower IDRs and the average should
not change. Only the amplitude of the IDR should rise as it is the case in the LiCN
reaction.

However, at a fixed temperature and changing v, the ADR should change in the case of
a symmetric saddle. The friction parameter is present on the diagonals of the Jacobian
J (see Appendix B) influencing the system differently than the random forces, which
are dependent on both the temperature and the friction. Reference [130] shows that
by changing friction a minimum is visible in the transmission coefficient—an analog of
the decay rate—in a model system. This behavior can also be observed in the thermal
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Figure 4.6: The ADRs (k) of the non-driven LiCN as a function of friction v for
different temperatures and with different seeds. For a temperature of 7' = 300 K and
the random seed of 106 the ADRs (blue circles) are calculated over the whole range
from v = 4 x 107%a.u. to v = 2.9 x 10~%a.u. Only 4 ADRs are calculated to find the
minimum of the ADRs for each of the other parameter sets. It can be seen that the larger
the temperature the larger the friction at which the minimum in the ADR is located.
At a different seed of 105 at 7" = 300 K, the ADRs (orange circles) are higher than at
a seed of 106. But the difference in v between the minima is comparably small. With
the ADRs of T'= 100K (green diamonds) and 7" = 500 K (red triangles), it seems that
the minimum shifts downwards at higher temperatures. But that needs to be studied
with longer propagation times if the random seed does not matter anymore. For the
calculation of the ADRs the corresponding EQTs are propagated for ¢, = 2.13 x 10° a.u.,
which corresponds to 500 periods with a period of T}, = 4269.5 a.u.
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4.1 Non-driven case

non-driven LiCN system. Figure 4.6 shows the ADRs as a function of friction at different
temperatures and with different random seeds. For each parameter set a minimum is
visible, but the change in rate is still in the low percentage range as is the case with a
varying temperature and a fixed friction. The largest dataset of the ADRs (blue circles)
were calculated at temperature 7' = 300K from v =4 x 107%a.u. to vy = 2.9 x 10~* a.u.
Here, one can see that the ADR increases strongly with decreasing friction and appears
to diverge for ¥ — 0. The increase of the ADRs for higher frictions v > 2.5 x 10~* a.u.
is not that strong at temperature 7" = 300 K.

The high ADR at very low friction can be partly explained by the extent of the EQT in
Fig. 3.1. The tendency of the EQT to mostly propagate in the stable direction of the
saddle at very low frictions of v ~ 1 x 1075 a.u. is shown in Figs. 3.1 and 3.2. This means
that the EQT explores on average more states with higher R values for very low frictions.
This is one factor, which increases the ADR as detailed in Sec. 4.1.1, and especially in
Fig. 4.3. If the friction is increased, the EQT starts to be dragged down in the unstable
direction while it being compressed in the stable direction of the saddle until a friction of
~v = 0.5a.u. is reached, as discussed in Sec. 3.1. However, the minimum in the ADR is
not located at v = 0.5a.u. Other effects seem to play a role, additionally the increase in
the ADRs with increasing friction in the LiCN system is not studied yet. Nevertheless,
the variance of the EQT shows a similar behavior as the ADR. This could be a good
start for new research.

Furthermore, the ADRs of the EQTs for two different seeds 105 and 106 are shown in
Fig. 4.6. It can be seen that with a seed of 105, the ADRs are shifted to higher values. The
curvature is almost the same. However, the position of the minimum differs slightly. If we
want to show in future work that the shift of the minima in v at different temperatures
and the lowering of the minima is independent of the seed, we need to propagate the
EQTs much longer to get a meaningful ADR. At very long propagation times the seed
should not influence the ADR anymore because it is no physical quantity.

Fig. 4.6 gives further insight into how the position of the minimum of the ADR changes
with temperature. Four ADRs each for 7" = 100 K (green diamonds) and 7" = 500 K (red
triangles) are calculated with the same random seed of 106. At 7" = 100 K the minimum
lies higher at (k) = 1.688 x 1073 a.u. and at a lower friction of v ~ 0.5 x 10~* a.u. than
at T = 300K, where (k) = 1.683 x 1072 a.u. with 7y ~ 1.6 x 10~%a.u. At T = 500K
the minimum lies at (k) = 1.682 x 1072 a.u. with v ~ 2.0 x 10~* a.u. But we have to be
careful, because the ADR with another random seed shows a strong difference. Another
temperature is somehow comparable with a different random seed. With a higher energy
transferred via the thermal forces at a higher temperature, the EQT takes a completely
different path. To be able to observe such effects with certainty, the propagation time
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4 Rates of the LiCN isomerization reaction

of the EQT must be increased. This decreases the influence of the random seed, as
described in Sec. 2.3.2.

So far, we have discussed the behavior of ADR in the non-driven case. In the following
a different topic, the MFPT rates, is introduced, to be able to compare the ADR and
MFPT rates in Sec. 4.3. In the case of the MFPT rates we now have a specific reaction
direction, the backward reaction of LINC == LiCN.

4.1.3 Mean first-passage time rates

The PES of LINC == LiCN (cf. Fig. 2.2) is replotted in Fig. 4.7 in terms of the Cartesian
coordinates,  and z, of Li relative to the C, axis of CN. The minimum energy path
of the potential nearly follows a semi-circle with a radius of R ~ 4.5a.u. The minimum
energy of the LICN molecule (Epi, Licn = —0.23366 a.u.) is not as deep as that of LINC
(EminLinc = —0.244 10 a.u.). Consequently, a trajectory starting at the LiCN state has to
overcome a smaller barrier height of E* = 0.004 78 a.u. (corresponds to E*/kg = 1510 K)
than one starting from the LiINC state. At room temperature (7" = 300 K), for example,
the barrier of this backward reaction is thus low enough that such trajectories are activated
to above threshold energy frequently enough that they can be observed numerically. This
is also true even for the forward reaction despite its higher barrier.

To ensure that selected trajectories are properly identified as reactive, they must first
cross the saddle and then reach the product side without turning around. This condition
is satisfied using an absorbing boundary defined by an angle of ¢ = 0.67, and shown as
the dotted white line in the Cartesian PES plot of Fig. 4.7. Indeed, if the trajectory
reaches this line, then it generally has enough momentum in the direction of the product
side to make it very unlikely for it to turn around and climb back over the saddle to the
reactant side. As noted in Sec. 2.3.4, the representative trajectory shown in the figure is
only one of 1500 propagated trajectories from the ensemble used to calculate the MFPT
rate kyppr. Trajectories of this thermal ensemble are initialized at a specific temperature
and located near the reactive well. For simplicity in the current implementation, they
are all placed at the LiCN minimum at R = 4.8012a.u. and ¥ = 0, which in Cartesian
coordinates corresponds to x = Oa.u. and z = 4.8012a.u. Those trajectories with a
higher initial energy leave the LiCN basin faster despite possible energy losses before
overcoming the barrier, and thus contribute a smaller first passage time towards the
MFPT. Thus as expected, the MFPT rate is higher for higher temperatures. Ensembles
which are thermalized between 250 K and 600 K and propagated at a certain friction
value v lead to rates that depend not on the fast inertial trajectories but rather those
that endure several traversals of the reaction region before escaping. They lead to the
expected Arrhenius behavior for these below-threshold rates.
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Figure 4.7: Potential energy V as a function of body-fixed Cartesian coordinates
(x,z). The origin is located at the cyanide compound’s center of mass. Filled circles
illustrate the positions of the individual atoms in our model. The circles’ radii are chosen

proportional to the atomic masses. For lithium, an arbitrary position on an example
trajectory at T' = 300 K is shown. The trajectory starts at the local minimum x = 0 a.u.,
z = 4.8012 a.u. corresponding to the LiCN configuration. It crosses the saddle located
at r = 3.285a.u., z = 2.717a.u. and ends at the absorbing boundary, indicated by the
dashed line. The potential’s global minimum z = 0 a.u., z = —4.3538 a.u. corresponds to
the LiNC isomer.
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4 Rates of the LiCN isomerization reaction

In this thesis we use the PES with some misprinted fit values given in the table of
Ref. [62]. In the following comparisons of the MFPT rates to other rates and methods,
the other rates and methods use the corrected potential discussed in Appendix A. This
includes the PGH rates and the rates obtained by the reactive flux method. Because
the difference between the MFPT rates of the two slightly different potentials is small,
comparisons can still be made. The potential with some misprinted fit values is used
here so that MFPT rates and decay rates can be compared in Sec. 4.3. In Ref. [61], the
MFPT rates are calculated with the corrected potential and show the same behavior as
described in the following Secs. 4.1.4 and 4.1.5.

4.1.4 Kramers turnover

We now report the MEPT* rates k{;ppr across the friction domain at several intermediate
temperatures in Fig. 4.8. As in Refs. [53, 57, 60|, we observe a clear Kramers turnover,
and kjppr is in reasonable agreement with the corresponding PGH rate formula. The
rate maxima are always around v ~ 4 x 10~ a.u.

To obtain the rates in Fig. 4.8, different ensembles at T" = 300K, T"= 450K, and T =
600 K are thermalized on each friction value 7. Each mean rate kyppy is calculated using
1500 trajectories propagated by the Langevin equation. At low friction (1 x 1075 a.u. <
v < 2 x 107%a.u.), we find the expected linear increasing behavior of the rates. Similarly,
at high friction, the rates decrease strongly with 1/v. These two limits have been known
since the work of Kramers and in combination are known as the eponymous Kramers
turnover.

Reference [60] found that the rates calculated using trajectories propagated via the LE are
overestimated by about a factor of 5 compared to the SBB model and all-atom molecular
dynamics (AAMD) calculations. Indeed, this factor is seen in Fig. 4.9 to compensate
for the effective friction arising from the mean of the modulated frictions averaged over
the previous times. The Kramers turnover rate maxima k. in the LE and GLE from
Ref. [60] are in agreement only if the rates obtained for the LE are divided by a factor of
5. Since the numerical effects in the propagation of trajectories with the GLE instead of
the LE can be accounted for through this factor, it was also employed in renormalizing
the rate kyppp in Figs. 4.8 and 4.9.

To confirm the effect of friction in the Kramers turnover of kj;ppy seen in the PGH theory
in Fig. 4.8, the bath parameter a in the PGH friction kernel in Eq. (2.33) is set to a
small value o = 1.5625 a.u. The maximal rates for fixed « in this case are still found at
friction values v, in a similar range and hence this case (a = 1.5625 a.u.) indeed leads
to a short memory time scale of 7 ~ 6.25 x 10~* a.u. This places it in the memoryless
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Figure 4.8: Mean first-passage time rates kyjppr of the LiICN — LiNC backward
reaction as a function of friction 7 at temperatures 7' = 300 K (blue circles), T'= 450 K
(orange triangles), and 7" = 600K (green diamonds). The reported rates kyppr are
obtained from the MFPT rates for the LE model (with ohmic friction), and scaled by a
factor of 5 to correct for the memory time in the actual system. For comparison, the
corresponding PGH rates obtained for a generalized Langevin equation (GLE) model—
with friction kernel specified by a bath parameter o = 1.5625a.u. and decay time 7
(= ary)—are shown as solid blue, dashed orange, and dotted green lines, respectively.

dynamics regime characteristic of the LE. Meanwhile, the PGH rates obtained at the
longer memory time 7 ~ 5.25 x 102 a.u.——corresponding to a larger a—as was observed
in the AAMD simulations still exhibits similar maximal rates in Fig. 4.9. At intermediate
temperatures, for example, the memory time scale is still much lower than the MFPT*
(tippr ~ 2 X 10° a.u.), and thus the system remains in a nearly memoryless regime. As
the PGH theory describes the low- and intermediate-temperature regime well, it is not
surprising that the MFPT* rates are effective here. Interestingly, the MFPT* rates also
nearly match the PGH rates at 7" = 450 K except for small deviations of the rates at
higher friction.

Nevertheless, we observe that MFPT* rates deviate from the PGH rates for T'= 600 K
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4 Rates of the LiCN isomerization reaction

and they deviate in their rate maxima in Fig. 4.9 for T' = 2500 K, both for the short
memory scale and long memory scale 7. For higher temperatures, the PGH rate maxima
and the MFPT rate maxima appear to coincide. This agreement is to be expected
because the applicability of the PGH theory at higher temperatures was demonstrated
through the comparison to AAMD simulations in Ref. [57].

4.1.5 High-temperature regime

The MFPT* rates can also be used to describe the high-temperature regime, where the
typical energies are well above the barrier height E*/kg = 1510 K. Therein the Kramers
turnover maxima in the MFPT* rates are compared to the corresponding rates of the
more accurate AAMD calculations [57| in Fig. 4.9. Notably the latter includes cavity
reorganization effects which may not be fully accounted for by the MFPT approach. It
can be seen that the higher the temperature, the closer the calculated rates are to each
other. At T'= 5500 K the MFPT* rates describe the behavior in the rate maxima as well
as the AAMD calculations.

The comparison between the maxima of the PGH rates (cyan pluses) and the AAMD
rates for higher temperatures in Ref. [57] is shown in Fig. 4.9. The agreement shows that
the PGH theory can also be applied to high temperatures. In this work, we further found
that the PGH rates are able to describe the intermediate- and high-temperature regime,
both with the memory time scale appropriate to the system and through the approximate
Langevin approach (purple crosses). This also justifies the use of the corrected kjppr
obtained from the LE friction kernel at the high temperatures.

The advantage of the MFPT* rates compared to AAMD rates is that they can be
calculated for the whole temperature regime in less time. Furthermore, a square root
function shape is observable for k{ppr, as described in Sec. 2.3.4. This shape arises
because the rate is known to depend on the square root of temperature in this regime. It
also leads to the plateau observed in the AAMD. Unfortunately, due to the small number
of calculated temperatures, it was not possible to see the flattening of the AAMD rates
at higher temperatures.

The difference between kyppr and ki in Fig. 4.9 is a consequence of the assumptions
inherent in each method. For the ReactiveFlux* rate, an extended ensemble is initialized
at the minimum of LiCN and the rates are obtained by the flux-over-population method
across numerically integrated trajectories. In the GLE, the rates are obtained through a
direct (and analytic) analysis of the reactive ensemble across the barrier. In principle,
long-time returns to the barrier may be absent from the latter leading to an overestimate
in the transition state theory calculation. Such long-time sojourns are long only in
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Figure 4.9: Kramers turnover rate maxima k., as functions of temperature T'. The rates
kxppr (blue triangles), calculated with an LE friction kernel, are shown in the low and
high-temperature regimes, which are separated by the effective temperature of the barrier
E*/kg = 1510 K. At the higher temperatures, T > 2000 K, the reported PGH rates
(cyan pluses) are obtained for the GLE model with bath parameter o = 1.313 x 10° a.u.
corresponding to long-time memory. At the lower temperatures, T < 2000 K, the
reported PGH rates (purple crosses) are obtained for the GLE model with bath parameter
a = 1.5625 a.u. corresponding to short-time memory. The rates [57, 60| for the reactive
flux kfp (orange circles), GLE (green squares), and AAMD (red diamonds) are calculated
via the flux-over-population method, and are available only in the high-temperature
regime.
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4 Rates of the LiCN isomerization reaction

the sense that they are longer than the effective reactive timescales but may be short
in an absolute sense because the temperatures (and the kinetic energies) are large. A
related consequence of the high-temperature regime is that the kinetic energy tends to
be dominated by equipartition leading the effective average rate across the barrier to
simply be described by the barrierless average velocity. The ensuing square root behavior
is seen correctly in the MFPT rates in Fig. 4.9 at high temperatures whereas the PGH
rates are unfortunately linear.

4.2 Driven case

The driven LICN — LiNC reaction opens up a huge opportunity to study the system
at many different driving amplitudes and frequencies. With one interesting parameter
set, many conclusions can be drawn. This is due to the emergence of second attractor at
those parameters, which will be discussed in the following Sec. 4.2.1.

4.2.1 The second attractor

The emergence of the second attractor at driving the LiCN system with an angular
frequency of w = 1.472 x 1072 a.u. and an amplitude of Ay = 0.01 a.u. is discussed in
Sec. 3.3.1 from a geometrical point of view. The vicinity of the second attractor is located
somewhere different in phase space than the vicinity of the first attractor and the second
attractor explores different non-thermal states for the propagation times used. This is
reflected in the behavior of the IDRs in Fig 4.10(b) and in the position of the second
attractor in pink on top of the underlying Floquet grid in panel (c).

With Fig. 4.10(c) one is able to see that the underlying Floquet grid for the driven system
has changed a lot compared to the Floquet grid in the non-driven case in Fig. 4.1(b).
Both grids were calculated by M. Feldmaier [46, 47|. In the driven case the Floquet grid
contains clearly delineated rate regions. In Sec. 4.2.2 the separatrix, which is the surface
in phase space separating those rate regions from each other, will be further discussed.
Here, the second attractor in pink lies in the region where (kr) ~ 1.80 x 1073 a.u. The
first attractor in red is located in the region where (kp) ~ 1.72 x 107 a.u.

The first attractor is colored in red in Fig. 4.10(c) because it is comparable with the
attractor in the non-driven case. Its position in the stroboscopic view does not change
significantly with external driving and the rates in its vicinity are similar to those
in the non-driven case. Nevertheless, there are small differences. Its ADR (k) =
1.71 x 1073 a.u. is higher than in the non-driven case and the IDR shows very clean
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Figure 4.10: IDRs k,, as a function of time ¢ and the stroboscopic PSOS in the (R, pr)-
plane of the two attractors in the driven system. The EQTSs are propagated with an
angular frequency of w = 1.472 x 1073 a.u., an amplitude of Ay = 0.01 a.u., a temperature
of T'= 46 K, and a friction of ¥ = 1 x 107® a.u.. The underlying Floquet grid on the right
hand side was made by M. Feldmaier [46, 47|. The IDRs k,, and ADR (k,,) in panel (a)
belong to the first attractor (red) at the low AFRs in panel (¢). The IDRs and ADR
of the second attractor (pink) in panel (c) is shown on the left hand side in panel (b).
The amplitudes of the oscillations of the IDR of the pink attractor in panel (b) are much
higher than those of the red attractor. Furthermore the ADR (ky,) is much higher than
the ADR of the first attractor and roughly at the same value as the underlying AFR (k).
100 stroboscopic points are taken with an angular frequency of w = 1.472 x 1073 a.u..
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4 Rates of the LiCN isomerization reaction

oscillations with a high frequency. The oscillations appear due to the driving of LiCN
and their high frequency corresponds to the driving period of T}, = 4269.5 a.u. Here the
EQT follows the displacement of the potential and explores similar non-thermal states
at every driving period respectively at the same phase of the driving, see Fig. 3.9. On
top of those oscillation a beat is visible which has a frequency approximately ten times
smaller than the driving frequency of fg = 2.34 x 10~*a.u. This beat is clean at low
temperatures and becomes too noisy and is not visible anymore, if the temperature T’
and the friction v get higher.

Such a beat is also visible in the IDRs of the second attractor. Here, the beat has
a frequency approximately twelve times smaller than the driving frequency fs =
2.34 x 10~*a.u. However, the amplitudes of the oscillations with the higher frequency
are much larger than the amplitudes in the IDR of the first attractor. This is connected
to the fact that the second attractor explores completely different regions in phase space
and it oscillates to higher and lower R and ¢ values than the first attractor at a specific
temperature and friction. Because of that, it also reaches states with high momenta
in pr up to 20a.u. and in py up to 22a.u at T =46 K and v = 1 x 107% a.u. The first
attractor in red only reaches momenta in pr up to 5a.u. and py up to 9a.u. An example
of the two EQT's in the driven case at two different parameter sets 7" and + in the (R, 9)-
and (R, pgr)-plane is given in Fig. 3.9. The first and second fixed point trajectory in the
non-thermal case is displayed there as reference and the initial points are taken from

Ref. [47].

Finding a relation between the IDR and the position of the EQT in phase space in
the driven case gets very difficult. Because of the external driving the behavior of the
trajectories can hardly be estimated and no further consideration of this relationship has
been pursued.

4.2.2 Attractors beyond the non-thermal separatrices

The non-thermal driven LiCN system can give us a rough estimate of the ADR of an
EQT and the position of the second attractor as shown in Sec. 4.2.1, but with increasing
friction and temperature the two attractors show an exciting behavior. In Fig. 4.11
the behavior of the attractors is observed at high friction and high temperature. Two
different frictions v = 5 x 107%a.u. in panel (a) and v = 4 x 107> a.u in panel (b) are
used at a fixed temperature T'= 100 K to compare the attractors. In panels (c) and (d)
the temperatures T = 25K and T = 285K at fixed friction v = 1 x 107° a.u. has been
taken for this comparison.
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Figure 4.11: EQTs in red and pink are propagated with parameters (a) 7 = 100K
and v = 5x 10 %a.u., (b) T = 100K and v = 4 x 10 a.u., (¢) T = 25K and v =
1 x 10 au., and (d) T = 285K, v =1 x 107° a.u. They have been propagated for 800
periods with a period of 7T}, = 4269.5a.u. The color encoding in the background presents
the AFR calculated in Ref. [47]. The first attractor, shown via the red EQT, is only
weakly influenced by . However, it is mostly influenced by the change in temperature.
There the attractor extends. At a temperature of T' = 285 K the EQT breaks out of
the separatrix. The second attractor is strongly influenced by both temperature and
friction. Its position seems to spiral into the first attractor at higher friction. At high
temperature the extent of the second attractor gets very large. The system is driven
by an external electric field with an angular frequency of w = 1.472 x 1073 a.u. and an
amplitude of Ayg = 0.01a.u.
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One of the exiting observations is that at high friction the second attractor spirals into
the first attractor. It follows the spiral structure which was observed in Fig. 3.5. Through
the external driving the potential surface changes. The barrier height varies like in
Fig. 3.4 and the position of the saddle changes over a driving period. By driving it with a
low angular frequency of w = 7.36 x 107% a.u., as realized in Ref. [47], a hyperbolic fixed
point appears near to the position where one can now see the second attractor in Fig. 4.11
and an elliptic fixed point appears at R = 3.9a.u. and pg = 0a.u.. In case of perturbing
the system, the fixed points always appear in pairs (hyperbolic and elliptic) according to
the Poincaré-Birkhoff theorem [131]. For an angular frequency of w = 1.472 x 107 a.u. a
hyperbolic fixed point appears at R = 3.9a.u. and pgr = 0 a.u. and an elliptic fixed point
appears where one can now see the second attractor in Fig. 4.11. The corresponding
elliptic fixed point trajectory of the explores much higher momenta in the R and ¢
direction. This means that its mean energy F is higher than the mean energy E of the
other (first) fixed point trajectory, which is located around the same R values as in the
non-driven case. See Refs. [46, 47] for a plot of the mean energy E of the stroboscopic
PSOS. In Sec. 4.2.1 and Fig. 3.9 the different momenta between the first EQT and the
second EQT are compared. As is known, friction dissipates energy from the system.
Simply put, this is why the second attractor collapses into the first attractor because it
has a lower energy. This means that the first attractor is the more stable attractor in
terms of energy.

Dynamically, something interesting happens. For that, the delineated rate regions of the
Floquet grid have to be discussed. Fig. 3.9 shows that the EQTs propagating in those
regions and the corresponding non-thermal fixed point trajectories show a completely
different behavior, especially in the discussed difference in the momentum pg. This
means that in the non-thermal, driven case somewhere in phase space a separatrix occurs
between the first and the second attractor. Because the AFR depends on the states
explored by the corresponding trajectory, the AFR shows a large change between two
trajectories, one propagating with a behavior similar to the first fixed point trajectory
and one propagating with a behavior similar to the second fixed point trajectory. The
separatrix is best seen in the non-thermal Floquet grids in Fig. 4.11, where it is clearly
visible as a separation between the blue and green region. In such a (R, pg)-plane the
separatrix is just a closed line, whereas in the whole phase space it is a higher-dimensional
surface. It is astonishing that this separatrix in the non-thermal case seems to have
an influence on the thermal case. This influence causes that an EQT, which crosses
the non-thermal separatrix in the thermal case from the vicinity of one to the other
attractor, starts to behave similarly to the corresponding fixed point trajectory of the
other attractor. This happens in Fig. 4.11(b). There, the vicinity of the second attractor
is so close to the vicinity of the first attractor that there is a higher probability for
the pink EQT to cross the non-thermal separatrix for a given time interval At than in
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Fig. 4.11(a). In Fig. 3.9, this corresponds to a transition of the behavior of the second
attractor (pink) to the behavior of the the first attractor (red). Those EQTs are the same
as in Figs. 4.11(b) and 4.11(d). The possibility of crossing the separatrix means that
the noise let the EQT explore different states over time, and if v or T" are large enough,
there is a higher probability of reaching a state beyond the separatrix for a given time
interval At. Geometrically speaking, the vicinity of the attractors extends or changes its
position as in Fig. 4.11(b). Sooner or later, these two attractors would approach each
other anyway due to ergodicity, as stated in Sec. 2.3.2. They have to merge somewhere
in the limit £ — oco. By changing the bath parameters, the attractors can be made to
merge faster. At low friction and low temperature, this would take forever, as one can
see in Fig. 4.11(a) and (b).

A large v on average causes greater deflection towards smaller pr of the second EQT one
time it crosses the separatrix and collapses into the first EQT, as stated in Sec. 3.9. In a
short time the two EQT should converge because it is very unlikely that the second EQT
is able to leave the separatrix again. Over time, they merge like the other trajectories,
which converge to the EQT when they are thermalized and then converge to only one
EQT in the system. We could say that the system is only truly thermalized from this
point on.

At large T it is the opposite. The vicinity of the first attractor extends so much that
the EQT has a large probability to cross the separatrix and starts to behave similarly to
the second EQT. To know for sure whether these two trajectories merge, one would still
have to observe if one of the two EQTs can also temporarily stay outside the vicinity of
the first attractor again. What can be said for sure is that if the temperature is higher
than 285 K, the probability for the first EQT leaving the vicinity of the first attractor
continues to increase. It is also possible that at such high temperatures the system
thermalizes only to one EQT, behaving similarly to the fixed point trajectory of the
second fixed point. From a purely energetic point of view, the higher temperature makes
it possible for the trajectories to gain enough energy. This is why the probability of the
EQT to stay in the energetically higher attractor, the second one, increases.

4.2.3 Influence of bath parameters

The EQTs in the driven LiCN system follow the behavior of the fixed point trajectories,
as observed in Sec. 3.4. Nevertheless, the dynamics becomes more complex. Therefore
the EQT's are propagated for 800 periods of length 7, = 4269.5 a.u. to calculate accurate
ADRs. Without this, the inconspicuous minimum in the ADR in Fig. 4.12(a) could not
be observed because its depth is in the range of the inaccuracy of the calculated ADRs.
Here, the ADR of the EQT of the first attractor is calculated for v = 5 x 10~%a.u. to
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Figure 4.12: The ADRs of the first EQT [in panels (a) and (b)] and of the sec-
ond EQT [in panels (¢) and (d)] as a function of v and temperature 7. In pan-
els (a) and (c) the green and orange ADRs are calculated with 77 = 100K. In
panel (a) the ADRs of an EQT (pink) at 7" = 180K is calculated. The inset shows
a zoom into the minimum of the ADRs of the first EQTs. Its y-ticks are located at
(km) = 1.711 x 1073 a.u.,1.712 x 102 a.u., and 1.713 x 1073 a.u. The ADRs in pan-
els (b) and (d) are calculated with v =1 x 107 a.u. The EQTSs have been propagated
for 800 periods with a period of T}, = 4269.5 a.u. in the driven system with Ay = 0.01 a.u.,
an angular frequency w = 1.472 x 10~? a.u., and a random seed of 100.
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5x 107 a.u. at T = 100K (green diamonds). The ADRs of an EQT at 7' = 180 K (pink
triangles) are calculated with the same random seed of 100 for comparison. First, it has
to be mentioned that the ADRs are slightly higher than those in the non-driven case
in Fig. 4.6. Nevertheless, considering the percent-range deviations that occur when -~y
is varied, this increase in the ADRs is noteworthy. Furthermore the minimum in the
ADR is higher at higher temperature. This is opposite to the behavior observed in the
non-driven case. The shift of the minimum at higher temperatures to higher v values
cannot be observed. This could be the case because the EQT behaves similar as the fixed
point trajectory. There, the extent of the EQT to lower or higher rate regions could be
completely different and needs to be studied in more detail. Compared to a temperature
of T'= 300K in the non-driven case, the ADR at T'= 100 K in the driven case does not
increase that strong at low . But with the larger v range it can be seen that the ADR
does not scale linearly. The increase of the ADR is larger than the a linear increase. This
could not be said for sure in the non-driven case.

Overall, the behavior of the ADR in Fig. 4.12(b) to (d) can be explained on the basis of
the Floquet grids in Fig. 4.11. As mentioned in Sec. 4.1.1, they only provide a quantitative
statement about the ADR and the ADR can not be calculated by taking the average
of the corresponding AFR of the stroboscopic points. Further, the AFR is at a local
maximum at the second attractor’s position at low temperature and low friction. This
means that if the attractor leaves the position through higher friction (see Fig. 4.11(b)),
the ADR of the second EQT must decrease, as one can see in Fig. 4.12(c). Towards the
collapse of the second attractor, the rate also decreases more and more. At last, the
second attractor can be observed at v = 0.4 x 10~%a.u., but the time of the collapse
depends on the random seed and the temperature. That is, this value could be different
in a system with other parameters. The decrease of the ADR of the second EQT for
increasing temperature in panel (d) at v = 1 x 107> a.u. is just linear. The extent of its
stroboscopic view to lower AFR explains that behavior. The increase of the ADR of the
first EQT for increasing temperature is slightly larger than a linear increase. The ADR
of the second attractor thus seems to behave in the opposite way to the first attractor.

4.2.4 Disappearance of the Kramers turnover

In this section we study the MFPT* rates kyppr again, but with externally driving with
the same amplitude and frequency as in Sec. 4.2.1. As shown in Fig. 3.4, the energy
barrier height increases and decreases during one driving period T}, = 4269.5 a.u. At an
amplitude of Ay = 0.01 a.u. the oscillation of the barrier height is slightly anharmonic.
The decrease in the energy barrier could suggests that the particles react faster to the
product side. If we look at Fig. 4.13, this seems to be the case. The MFPT* rates kyppr
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Figure 4.13: MFPT* rates kyppr as a function of friction ~ for different temperatures.
The LiCN reaction is driven by an electrical field with an amplitude of Ag = 0.01 a.u.
and an angular frequency of w = 1.472 x 1072 a.u. For the temperatures 7' = 200K and
T = 250 K no Kramers turnover can be observed. At higher temperatures T' = 300 K and
T = 400 K the Kramers turnover appears. The Kramers turnover maxima shifts slightly
from T'= 300K to T'= 400K to a higher friction v. The maxima at a temperature of
T = 400K is located at a friction of v ~ 1 x 10~*a.u.

are higher at a temperature of 7' = 300 K in the friction range of v < 1 x 10~% a.u. than
in the non-driven case in Fig. 4.8.

The higher rates seem to be caused mainly by an energy transfer from the external field.
The external field does not only vary the energy barrier height, it also moves the position
of the saddle point (Fig. 3.9) and the position of the minimum in energy of the LiCN state
to higher and lower R values. The particles are initialized at ¢ = 0 in the energy minimum
of the LiCN state. At this time the minimum is located at the same position as in the
non-driven case at R = 4.801 a.u. and ¥ = 0. Due to the oscillations of the minimum
of the LiCN state, the particles gain additional energy on top of their very low thermal
energy at these small frictions. This is why the particles at very low frictions v — 0 still
react to the product side and why the MFPT* rates approach kfppr ~ 4.5 x 107%a.u.
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4.2 Driven case

The particles are hardly affected by the very low friction and the particles mostly keep
their energy during propagation. If we increase the friction, the additional energy from
the driving should have less influence on the rates because it dissipates quickly. To really
investigate whether this influence is mainly a result of the oscillations of the minimum
of the LiCN state, a closer look must be taken on the trajectories. Investigating both
different angular frequencies and different amplitudes could help, as their influence can
be clearly distinguished from each other.

At low temperatures of T'= 200K and T" = 250 K the Kramers turnovers in Fig. 4.13
disappear. This observation is interesting from a dynamical point of view. This is
because we can see to what extent the external driving adds energy to the system and
at what point thermal energy dominates. The disappearance of the Kramers turnovers
at T'= 200K and 7" = 250 K means that the rates are only decreasing from the rate of
kippr &~ 4.5 x 107%a.u. The influence of the thermal forces is still visible because the
rates do not decrease at a friction around v = 1 x 10~%a.u as strong as we would expect
for a 1/ behavior at higher friction. The energy transfer seems to be most efficient for a
friction of ¥ ~ 1 x 10~*a.u because there the rate maxima are located. Nevertheless, the
additional driving energy dominates and seems to transfer more energy to the particles
than the thermal bath at temperatures lower than 7' = 250 K, otherwise we should see
the Kramers turnover.

The convergence of the rate to kjppr &~ 4.5 x 107%a.u at v — 0 and the higher rates
at T'= 300K in the driven case compared to the non-driven case in Fig. 4.8 show that
we are able to speed up the reaction via an external field. This means that at room
temperature— which we assume to be T' ~ 300 K—an industrial company could speed
up the LICN — LiNC reaction by applying an external field with an angular frequency
of w = 1.472 x 103 a.u and an amplitude of Ay = 0.0l a.u. This corresponds to an
infrared driving with a wavelength of A = 3.10 x 1075 m. With other driving parameters,
the reaction rates at room temperature could be increased even further. We have to be
careful with high amplitudes because the derivation of the potential’s driving term as
detailed in Sec. 2.1.3 includes a number of approximations. If the amplitude amplitude
causes strongly anharmonic oscillations of the energy barrier height, as shown in Fig. 3.4
for Ag = 0.02, these approximations should be checked first.

It can also be noted that the rate maxima are located at a smaller friction than in the
non-driven case in Fig. 4.8. In the non-driven case they are located at v ~ 4 x 10~*a.u.
This is important for the following outlook and discussion of Sec. 4.3. This section
compares observations made on the ADR to the MFPT* rates in the non-driven and
driven LiCN system. Another thing to notice for the following discussion is that the rate
maxima seem to shift slightly to higher frictions + for higher temperatures for both the
non-driven and driven case.
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4.3 Average decay rates vs. MFPT rates

This section compares observations made on the ADR (ky,) to the MFPT* rates k{ppr in
the non-driven and driven LiCN system. It contains ideas, contains ideas about possible
further investigations connecting the ADR and MFPT* rates. It is based on the trends
observed so far. Some aspects still need to be substantiated with further examples and
longer simulations, as discussed in Secs. 4.1.2, 4.2.3, and 4.2.4. When comparing the
two rates, it is important to note that the ADR is a decay rate that does not have a
particular reaction direction and measures the instability of the EQT.

However, the trend of the MFPT* rate maxima and the ADRs maxima moving to higher
frictions v at higher temperatures in the non-driven case gives a good approach to
investigate common dependencies of the rates on the friction . Both the propagation
of the trajectories for the MFPT method and trajectories on the NHIM are influenced
by friction via the Jacobian J in Appendix B. A connection between both rates should
therefore be somehow possible in the future, even if it is only valid for the particular
system under observation. With the possibility to drive the LiCN reaction, the position
of the rate maxima could be studied for different driving amplitudes and different angular
frequencies. If we compare the two slightly different potentials, discussed in Appendix A,
we see that the minimum of the ADRs (k) and the maximum of the MFPT* rates
kyepr at temperatures of T'= 300 K and 7' = 400 K appear at lower frictions for the
potential with the modified parameter than for the alternative potential. This means
that the saddle shape could also influence the MFPT* rates. However, we must keep in
mind that the barrier height between the two potentials is different and the effect may
also have resulted from this.

The height of the ADR (k) was not used to find a similarity between the ADRs and
the MFPT* rates. As mentioned before, the ADR represents the instability of the EQT.
Interestingly, the instability of the EQT shows a lower minimum at higher temperatures
in Fig. 4.6. This contradicts the expectation that the trajectories should be rather
unstable for higher thermal forces and they should fall down faster to one side or the
other. This is why a further look at the minimum and the areas that the EQT explores
over time could be interesting for future research. If we then propagate the EQT for a
longer time to reduce the influence of the random seed, it should be possible to include
the ADRs somehow into the discussion about the rates.

Furthermore, the trend of the increasing ADRs at higher friction in Fig. 4.6 in the
non-driven case should be verified by calculating the rates for larger friction. Until now
the simulation program fails for friction values that are larger than v = 3 x 10~%a.u.
Nevertheless, the trend could be similar to the trend observed in the driven case (Fig. 4.12),
where the rates increase faster than linear for high frictions.

82



4.3 Average decay rates vs. MFP'T rates

In conclusion, the dynamics on the NHIM are very complex and influenced by many
variables. In a model system akin to Refs. [45, 109]|, the individual dependencies of
the variables can probably be studied best. The application to more realistic systems
seems possible only if all dependencies have been studied. However, the more realistic
system allows us to investigate individual dependencies and brings—e.g., due to the two
emerging attractors in the driven case and the special shape of the saddle— an advantage
in classifying the decay rates in connection with the reaction rates.
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5 Conclusion and outlook

In this thesis the MFPT and the decay rates were calculated for the thermal non-driven
and driven LiCN isomerization reaction. Furthermore, the behavior of both rates were
compared with each other.

In Chapter 2 the non-driven and driven LiCN isomerization is introduced. With its help
the basic terms and methods of the TST are explained. After the implementation of the
Langevin bath for the LiCN system, the introduction of the thermal trajectories on the
NHIM converging to the EQT and the discussion of the reaction rate theory follows.

With this theoretical knowledge, the behavior of the EQTs is studied in Chapter 3. First,
the non-driven case is discussed in Sec. 3.1. There the EQT shows a large extent in
the unstable direction of the saddle for high frictions. By increasing the temperature
the EQT extends both in the stable and unstable direction of the saddle. That the
dynamics of EQT will change in driven LiCN is evident from the investigations in Sec. 3.2.
Through the external driving, the energy barrier height of LiCN is increased up to three
times and is reduced after almost to zero within one period. With a moderate driving
amplitude, where the maximum barrier height is twice as high as in the non-driven case,
the behavior of the trajectories on the NHIM is observed in Sec. 3.3. In this case two
geometric attractors respectively two EQTs appear. Their basins of attraction show a
spiral structure, which mirrors the behavior of the trajectories in the stroboscopic view
spiraling towards the attractors in the spiral bulges. Thereupon the influence of bath
parameters is investigated on the basins of attraction and subsequently on the EQT in
Sec. 3.4. The friction shows a major influence on the basins of attraction. If the friction
is small, the basin of attraction of the second attractor extends.

To introduce the rates in Chapter 4, the more easily interpretable non-driven LiCN
system in Sec. 4.1 is used. It starts with the comparison of the extent of the EQTSs for
high temperatures to their decay rates in Sec. 4.1.1. It is observed that the amplitude
of the decay rate oscillations increases for higher temperatures. This is related to the
strong correlation between the position of the EQT on the saddle and its decay rate.
The investigation of the average decay rates (ADRs) in Sec. 4.1.2, shows a minimum
for changing friction and this minimum seems to shift to higher friction for higher
temperatures. Furthermore, the MFPT rates are studied for the non-driven case in
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Secs. 4.1.3, 4.1.4, and 4.1.5. There, the Kramers turnover for low temperatures is
observed. The comparison of the MFPT rates to the PGH rates and AAMD rates of
other groups demonstrates that the MFPT method can be used for the low and for
the high temperature regime. The driven LiCN system in Sec. 4.2 is started with the
comparison of the high decay rates of the second attractor to the rates of the first
attractor in Sec. 4.2.1. After that, the collapse of the attractors is discussed in Sec. 4.2.2.
The ADR of the second attractor in Sec. 4.2.3 correlates with that collapse and the AFR
in the non-thermal case. Although it was observed that the behavior of the EQT in the
driven case differs strongly from the non-driven case, a minimum in the ADRs is found
for changing friction again. The strong influence of driving the system is also observed
in Sec. 4.2.4, in which the driving actually speeds up the reaction at room temperature.
With the knowledge of the MFPT rates and decay rates of the non-driven and driven
system, we pass on to the discussion between these rates in Sec. 4.3.

Due to the many topics covered, a deep insight into the LiCN system is given. The
decay rates as well as the MFPT rates of this system are calculated. Nevertheless, the
accuracies that could be needed for the comparison of decay rates and MFPT rates
have not yet been achieved. To be able to compare the position of the maxima in the
Kramers turnover and the position of the minima in the decay rates, the EQTs should be
propagated longer and more trajectories should be used for the calculation of the MFPTs.
Another point to study in the future is the exact cause of the minimum of the decay
rates. Here, further analysis of the variance of EQT in the stable and unstable direction
could lead to success. The already implemented driven LiCN system allows to study
the influence of external fields at different amplitudes and different angular frequencies
on the structure and the rates. This could be used to further investigate the Kramers
turnovers for driven systems. Furthermore, the amplitude and angular frequency of the
external field could be calculated, which are required for the second attractor to appear.
Close to this amplitude and frequency, the influence of the thermal bath on the EQT
may be of interest.

The methods applied to the LiCN isomerization reaction could be used for other, more
complex reactions in the future. The optimization of a reaction via an external electric
field could be performed for similar reactions, for example the KCN isomerization reaction.
This approach could lead to a deeper understanding of the influence of the PES on both
the MFPT rates and the decay rates.
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A Potential energy surface and
dipole potential of LICN

In this appendix the derivation of the PES and the dipole potential are explained in more
detail. Furthermore, misprints in Ref. [62] and its impact on this work is discussed.

A.1 Potential energy surface

The potential energy surface Vjes(R, ) in the Hamiltonian of LiCN in Eq. (2.1) was
first calculated at some points by E. Clementi et al. [132] in 1973. In 1982, R. Essers
et al. [62] has performed a set of ab initio self-consistent field (SCF) calculations to map
the potential energy surface at the region of interest. They used different analytical
functions to calculate the long-ranged energies V,; and V;,q and the short-ranged energy
Vi- The long-ranged energies consist of the classical electrostatic energy [63]

Va(R,0) =Y R Py(cos(¥)) (QLo) . (A.1)

where the expectation value of the cyanide’s multipole moment (Qr ) is used, and the
classical induction energy, see in Ref. [62],

o0 l1+12
Via = Y R 3" Pr(cos(9))Cly - (A.2)
ll,l2:0 |l1—l2|

The multipole moments were already calculated in Ref. [63] and are also shown in the
Appendices in Ref. [47]. Furthermore the induction coefficients Cy, 4, 1, up to L = 6 are
originally given by Ref. [63] and used in Ref. [62]. The induction coefficients can also be
found in the Appendices in Ref. [47].

The short range energy of the two closed shell monomers describes their exchange and
penetration. Its integral form, given in Ref. [62], can be best approximated by a ten-point
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Gaussian-Legendre quadrature

Vo =3 Du(R)Py(cos()). (A3)
where
DL(R) = exXp (—AL — BLR — CLR2) . <A4>

The advantage of R. Essers et al. [62] is that they fitted those parameters for the ten
points from L = 0 to L = 9 and published those parameters Ay, By and Cr. Those
parameters are also given in the Appendix in the Table of Ref. [47].

By adding them all up and using an isotropic damping function F(R) on the long range
part, R. Essers et al. presents the total SCF potential energy surface of LiCN

VpeS(R7 19) = [V;bl(R7 29) + %nd<R7 19)] F(R) + ‘/;F<R7 19) . <A5)
The weighting of the isotropic damping function
F(R) =1—exp (—a(R — Ro)?) , (A.6)

which is also fitted by R. Essers et al. [62], provides the best result by using a = 1.5156 aj >
and Ry = 1.9008 ag.

During this work, it was found that two values, C; 3 and Cy, in the R. Essers et al. tables
do not match their own results presented in their paper [62]. The difference between
the two different potentials are shown in Appendix A.3. It turns out that the results
calculated in this thesis do not depend strongly on these details of the potential surface.

A.2 Dipole potential

In this section the derivation of the dipole surface (cf. Eq. (2.3)) of the LiCN isomerization
reaction is presented. The calculation of the dipole surface was first done in Ref. [62], but
only for a for a few points. An analytical expression was found by G. Brocks et al. [133].
This was then summarized by M. Feldmaier (Ref. [47]). Its already defined PES is used
and extended by the Langevin model in this thesis. There are three different parts adding
up to the total dipole moment

° = M1r<R7 79) + /'l’sr(Rv 79) + /'l’ind<R7 19) ) <A7>

where p = (u(xl), ), u(zl)). There exits a long range part uy,, because of the separation
of the charges Li*™ and CN~. The short range part g again exists due to exchange
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and penetration effects [47]. In this case the induction part pig in Eq. (A.7) can be
neglected, because the fitting of the dipole surface does not improve significantly by
including it [133]. That means pinq = 0 in Eq. (A.7).

If we look at Fig. 2.1, we see that in the body-fixed Cartesian coordinate system the
molecule lies just planar in the z- and z-direction without an extension in the y-direction.
This also applies for the orientation of the dipole, which means the dipole moment
1¥) = 0 in the y-direction being zero. If we then use an external field, which is only
oriented in that x, z-plane, the dipole moment ;) will remain zero. This is caused
by the fact that there is no force driving the molecule out of the z-, z-plane. Another
approximation on the dipole surface is done in Ref. [47]. There it is already observed
that the dipole moment in the z-direction x(*) is at least around 15 times shorter than
the dipole moment in z-direction p®). For this reason we neglect the dipole moment
1) in the derivation of the dipole surface and get

p(R,0) = & (R,9) = (R, 9) + p (R, ) . (A-8)

ST

The long range part in z-direction
,ul(f,)(R, V) = eR + pcn cos(V) . (A.9)

is mostly dominated by the separation of the charges over the length R. A small part of
it is caused by the permanent dipole moment of the CN™ ion pucy = 0.2151 e ag, using e
the elementary charge. The described short range part

3

2
,uéf,)(R, V) = Zam exp (Z bn,)\70Rn> Py (cos(¥)) (A.10)
n=1

A=0

in Eq. A.8, is strongly dependent on the exponential functions of R. The fitted parameters
can be be found in Ref. [133] as well as a table in the Appendix of Ref. [47]. Finally,
with using a harmonic electric field, the dipole potential (Eq. (2.4)) can be expressed in
a simple way. In this thesis the angular frequency w = 1.472 x 10~2 a.u. is used. For this
angular frequency, the driving corresponds to an infrared driving with a wavelength of
A =3.09 x 1075 m.

During this thesis I found out, that the time unit is wrong about a factor \/u/m, in
Refs. [47, 134], where u = 1.660 539 066 60 x 1072" kg is the unified atomic mass unit also
called Dalton and m, = 9.109 383 7015 x 1073 kg is the mass of the electron. Therefore
all units, which include the time, have to be recalculated to be comparable with the data
presented in this thesis. The correction of Ref. [134] can be found in the arXiv version of

Ref. [46].
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Table A.1: Comparsion of the properties of the potential of the R. Essers et al. tables
and the potential with the two modified parameters (See App. A). The position of the
saddle and of LiCN are written down. Furthermore their corresponding energies and the
resulting barrier height is shown. All units are given in Hartree atomic units.

R. Essers et al. tables modified parameters

saddle point (R, ) (4.2626,0.28007) (4.2197,0.29227)
Energy at saddle —0.228 88 —0.228 86
LiCN pos (R, V) (4.8012,0) (4.7947,0)
Energy at LiCN —0.23366 —0.23421
E* 0.004 78 0.005 35
EY/kp 1510 K 1690 K
LiNC pos (R, ¥) (4.3538, ) (4.3487, 1)
Energy at LiNC —0.244 10 —0.24461

A.3 Results with the corrected potential energy
surface

All the methods calculating the data of this thesis uses the potential with the fit parameters
which are published in Ref. [62]. The saddle point and barrier height, calculated with
those fit values, does not match with the Refs. [49-60]|, which did a lot calculations with
the LiCN potential.

By modifying two parameters, which were compared with the values of the Spanish
research group led by Florentino Borondo and Rosa M. Benito, an almost identical MEP
and potential could be generated. The comparison of the MEPs are shown in Tab. A.1.
Here the parameter (Y ; 3 is modified from 2.03 to 1.866 and the parameter Cy is modified
from —0.017818 to —0.017181. The first parameter is used in Eq. (A.2) for the classical
induction energy and the second one in Eq. (A.4) for the short range energy of the two
closed shell monomers. The other parameters can be found in Refs. [47, 62].

In this section it will be shown that the data calculated with the potential with the fit
values of Ref. [62] used in this work do not differ as much as would be expected from the
differences in the potential itself. The differences between the potentials are shown in
Tab. A.1. The calculated data for both potentials are compared in Figs. A.2 to A.4.

The basins of attraction of the two geometric attractors of the two different potentials in
Fig. A.2 are similar. Besides the smaller basin of attraction at the position of the first
attractor at the cyan spiral bulge of the potential with the modified parameters, only
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Figure A.1: The MEP of the LINC == LiCN isomerization reaction as a function of

angle 9. The dotted line was extracted from Fig. 2 of Ref. [62] by R. Essers et al. This
curve differs from what can be obtained using the parameters published in the same
article (dashed line). Modifying the parameters yields much better agreement, as can be
seen with the solid line.

very small differences can be seen. That shows that the trajectories on the NHIM behave
similar for both potentials in the driven case. That the EQTs in the non-driven case do
also behave similar is shown in Fig. A.3. Here, the shape of the curve of the ADR is
similar. Only the minimum in the ADR deviate between the two potentials. That the
ADR is higher for the potential with the modified parameters can be caused by a slightly
different shape by what the EQT takes a complete different path at the same random
seed. The EQT is not propagated long enough to compensate that difference in the
ADR as the discussion about Fig. 4.6 has shown. The size of the ADR is never used for
analyses in this thesis, which resulted in no misinterpretations. Actually the shift in the
minimum in the ADR and the slightly different position in the Kramers turnover maxima
underscores the argument made in Sec. 4.3, that the position of the Kramers turnover
and the position of the minimum in the ADR could be somehow connected. That the
MFPT rates of the Kramers turnover also do not differ much can be seen in Fig. A.4.
The MFPT rates of the potential with the modified parameters are slightly shifted to
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Figure A.2: The basins of attraction of the two geometric attractor for the potential of
the R. Essers et al. tables in panel (a) and the potential with the two modified parameters
(See App. A) in panel (b). At each pixel on the (R, pr)-plane a trajectory is started that
means 10000 trajectories were propagated for each potential. Besides the smaller basin
of attraction at the position of the first attractor at the cyan spiral bulge of the potential
with the modified parameters, only very small differences can be seen. The systems were
externally driven with an angular frequency of w = 1.472 x 1073 a.u. and an amplitude
of Ag = 0.01 a.u. in both cases.

lower values, because the barrier height E*/kg is around 180 K higher. Due to the higher
barrier, the trajectories need more time in average to overcome the barrier to react to
LiNC at the same temperature. The comparison between the Kramers turnover maxima
(Fig. 4.9) is omitted, since these show hardly any difference at higher temperatures, where
the barrier height no longer plays a role.

Nevertheless, there are only small differences the modified potential should be used in
the future.
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A.3 Results with the corrected potential energy surface

1.710 A
1.705 4
» 1.700 1@
o ° ==+ non-thermal, Esser et al., tables
i ® 7T =300K, Esser et al., tables
é 1.6951 @ T = 300 K, modified params
o
1.690 P q
- "'.'.'.' """""""""""""""""" o0 ]
¢ ©
1.685 1 [ [
o
0.0 0.5 1.0 1.5 2.0 2.5
/1074 [K]

Figure A.3: The ADRs of the two different non-driven potentials, the potential of the
R. Essers et al. tables and the potential with the modified parameters over friction ~.
The same temperature of 7' = 300 K and random seed 106 are used for propagating the
EQTs. The shape of the curves are similar, but the ADRs of the potential with the
modified parameters are shifted to higher values. In addition, the minimum in the ADRs
of the potential with the modified parameters is slightly shifted to smaller v values. For
further information see Fig.4.6.
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A Potential energy surface and dipole potential of LiCN
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Figure A.4: (a) Mean first-passage time rates kyppp of the potential of the R. Essers
et al. tables and (b) mean first-passage time rates kyppr of the potential with the modified
parameters (See Sec. A) as a function of friction 7. Calculated for the LICN — LiNC
backward reaction at temperatures 7' = 300 K (blue circles), T' = 450 K (orange triangles),
and 7' = 600 K (green diamonds). For comparison, the corresponding PGH rates obtained
for a GLE model—with friction kernel specified by a bath parameter a = 1.5625 a.u.
and decay time 7 (= ary)—are shown as solid blue, dashed orange, and dotted green
lines, respectively. The MFPT rates of the potential with the modified parameters are
slightly shifted to lower rates. The shift is about Ak}ppp = 0.1 x 107° a.u.. For further
information see Fig. 4.8.
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B Jacobian

With the first order differential equation

1 1
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of the thermal LiCN system in the driven case (cf. Eq. (2.24)) its Jacobian

_ 2pp 1 1
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J = 02Vpes(R,0) ?Vaip (R,9,t) 82Vpes(R,0) ?Vaip (R,9,t) 0
T > - 992 T T O90R 99 OR + §R<t) v
9?Vpes(R,9) 0?Vaip (R,9,1)  3py *Voes(RY) Vi (RY,E) 0 N
~ ®ROY AR Y uiRA OR2 OR2

can be derived. Other parameters than the bath parameters are introduced in Secs. 2.1.2 and 2.1.3.
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C Zusammenfassung und Ausblick

Chemische Reaktionen bestimmen unser Leben. Sei es die Photosynthese oder das
Hemoglobin, das stdndig den Sauerstoff in unser Lunge bindet und ihn durch unseren
Koper transportiert. In der Industrie werden Reaktionen wie die Oxidation von Silizium
verwendet [1], um Mikrochips herzustellen. Diese Reaktionen konnen durch externe
Einfliisse, wie z.B. das Anlegen eines externen Feldes oder die Verdanderung des Drucks,
optimiert werden, so dass Kosten gesenkt und Energie gespart werden kann. Energie zu
sparen ist ein wichtiger Schritt um den Klimawandel aufzuhalten.

Als gute Methode um Reaktionsrates zu berechnen gilt die Untersuchung der mittleren
Erstpassagenzeit (engl. mean first-passage times, MFPT) [2-8]. Sie ist in der Lage,
Reaktionsraten von sowohl ungetriebenen als auch getriebenen chemischen Reaktionen in
den Bereichen der Neuronendynamik, Spindynamik, Elektrostatik und in stochastischen
Systemen zu bestimmen [8-12].

Die Theorie des Ubergangszustandes (engl. transition state theory, TST) [15-21] kann
ebenfalls dazu verwendet werden, Reaktionsraten zu berechnen. Sie beschreibt den
Ubergangszustand (engl. transition state, TS), welcher zwischen Reaktant und Produkt
existiert. Zuerst wurde die TST auf chemische Reaktionen angewandt [23-27], aber fand
noch andere Anwendungsgebiete, wie z.B. in der Astronomie [33-35], Atom- und Festkor-
perphysik [36, 37|, Cluster Formationen [38, 39| und fiir Bose-Einstein-Kondensate [28-
32].

Mit der TST konnen Trajektorien beschrieben werden, die instabil an die Sattelregion
gebunden sind, Bewegungen orthogonal zur Reaktionsrichtung ausfiihren und niemals
auf der einen oder anderen Seite des Sattels herunterfallen. Speziell kann die numerische
hyberbolische invariante Mannigfaltigkeit (engl. normally hyperbolic invariant manifold,
NHIM) betrachtet werden. Fiir Trajektorien, die auf dieser Flache gestartet werden, gilt
das oben genannte Verhalten. Deren Instabilitdt auf der NHIM kann mit den Zerfallsraten
(engl. decay rates) beschrieben werden. Das Verhalten der Trajektorien wurde zuletzt in
einem thermischen Modellsystem [45] und fiir die nicht-thermische Isomerisationreaktion
von LiCN [47, 134] untersucht. Die Isomerisation von LICN wurde im Bereich der TST
und anderen Bereichen mehrere Male untersucht [48-60, 134].
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C Zusammenfassung und Ausblick

Bis jetzt konnten die Reaktionsraten der ungetriebene LiCN Isomerisation nur fiir
hohe Temperaturen bestimmt werden [57, 60]. Des Weiteren wurden die thermischen
Zerfallsraten nur fiir ein Modellsytem berechnet, wobei die Verbindung zu einer realen
Reaktion fehlte [45]. In dieser Arbeit wurden the MFPT Raten und die Zerfallsraten
fiir die thermische ungetriebene und getriebene LiCN Isomerisationsreaktion berechnet.
Des Weiteren wird das Verhalten beider Raten, der MFPT Raten und der Zerfallsraten,
miteinander verglichen.

Zu Beginn von Kapitel 2 wird die ungetriebene und getriebene LiCN Isomerisation
eingefithrt. Mit deren Hilfe werden die Grundbegriffe und Methoden der TST eingefiihrt.
Nach der Implementierung des Langevin Bades fiir das LiCN System folgt eine Erklarung
zu den thermischen Trajektorien auf der NHIM, die zu der Gleichgewichtstrajektorie
(engl. equilibrium trajectory, EQT) konvergieren, und eine Diskussion iiber die Theorie
der Reaktionsraten.

Mit dem theoretischen Wissen wird dann das Verhalten der EQTs in Kapitel 3 untersucht.
Zunéchst wird der nicht getriebene Fall in Abschnitt 3.1 diskutiert. Dabei zeigt die EQT
fiir hohe Reibungen eine groffe Ausdehnung in the instabile Richtung des Sattels. Bei
Erhéung der Temperatur dehnt sich die EQT sowohl in die unstabile und als auch die
stabile Richtung des Sattels aus. Dass sich die Dynamiken der EQT durch das Treiben
des LiCN Sytems verdndern, wird durch die Untersuchungen in Abschnitt 3.2 klar. Durch
das externe Treiben wird die Energiebarriere von LiCN wéhrend einer Periode bis zu
dreifach erhéht und wird danach fast auf null verringert. Mit einem moderaten Treiben,
bei dem die Barrierenhohe zweimal so hoch ist wie im ungetriebenen Fall, wird das
Verhalten der Trajektorien auf der NHIM in Abschnitt 3.3 untersucht. In diesem Fall
tauchen zwei geometrische Attraktoren bzw. zwei EQTs auf. Deren Attraktionsgebiete
zeigen eine spiralféormige Struktur. Dies spiegelt das Verhalten der Trajektorien in
stroboskopischen Untersuchungen wieder, welche in den Attraktor im Zentralbereich der
Spirale spiralen. Darauffolgend wird der Einfluss der Parameter des thermischen Bades
auf die Attraktionsgebiete und nachfolgend auf die EQT in Abschnitt 3.4 untersucht.
Die Reibung hat einen grofen Einfluss auf die Attraktionsgebiete. Wenn die Reibung
klein ist, ist das Attraktionsgebiet des zweiten Attraktors ausgedehnt.

Um die Raten in Kapitel 4 einzufiihren, wird das einfacher zu interpretierende nicht
getriebene LiCN System in Abschnitt 4.1 verwendet. Es beginnt in Abschnitt 4.1.1 mit
dem Vergleich der Ausdehnung der EQTs fiir hohe Temperaturen mit deren Zerfall-
sraten. Es wird beobachtet, dass die Amplitude der Oszillationen der Zerfallsraten mit
hoheren Temperaturen ansteigt. Das hédngt mit der starken Korrelaton zwischen der
Position der EQT auf dem Sattel und ihrer Zerfallsrate zusammen. Bei der Untersuchung
der mittleren Zerfallsraten (engl. average decay rate, ADR) in Abschnitt 4.1.2 bei sich
verandender Reibung zeigt sich ein Minimum und dieses Minimum scheint bei hoheren
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Temperaturen zu groferen Reibungen zu wandern. Des Weiteren werden in den Abschnit-
ten 4.1.3, 4.1.4 und 4.1.5 die MFPT Raten im ungetriebenen Fall analysiert. Hier wird
der Kramers turnover fiir niedrige Temperaturen beobachtet. Der Vergleich der MFPT
Raten zu den Pollak-Grabert-Hénggi (PGH) Raten und den Allatom-Molekulardynamik
Raten (engl. all-atom molecular dynamics, AAMD) von anderen Gruppen demonstriert,
dass die MFPT Methode fiir den niedrigen und hohen Temperaturerbereich verwendet
werden kann. Beim getriebene LiCN System in Abschnitt 4.2 wird mit dem Vergleich
zwischen den hohen Zerfallsraten des zweiten Attraktors und den Zerfallsraten des ersten
Attraktors in Abschnitt 4.2.1 begonnen. Danach wird der Kollaps der Attraktoren in
Abschnitt 4.2.2 diskutiert. Die ADR des zweiten Attraktos in Abschnitt 4.2.3 korreliert
mit diesem Kollaps und der mittleren Floquet-Rate (engl. average Floquet rate, AFR)
des nicht thermischen Systems. Obwohl sich das Verhalten der EQT im getriebenen
Fall stark von dem ungetriebenen Fall unterscheidet, wird bei Verdnderung der Reibung
wieder ein Minimum in den ADRs gefunden. Der grofe Einfluss des Treibens wird
ebenfalls in Abschnitt 4.2.4 beobachtet, in dem das Treiben tatsichlich die Reaktion
bei Raumtemperatur beschleunigt. Mit diesem Wissen iiber die MFPT Raten und die
Zerfallsraten des ungetrieben und getriebenen Systems wird in die Diskussion iiber den
Raten in Abschnitt 4.3 iibergegangen.

Durch die vielen untersuchten Themengebiete wird ein tiefer Einblick in das LiCN System
gewahrt. Sowohl die Zerfallsraten als auch die MFPT Raten werden fiir dieses System
berechnet. Trotzdem wurde die Genauigkeit, die fiir den Vergleich der Zerfallsraten und
der MFPT Raten benoétigt wiirde, noch nicht erreicht. Um die Position der Maxima der
Kramers turnovers und die Minima in den Zerfallsraten vergleichen zu kénnen, sollten
die EQTs langer propagiert werden und es sollten mehr Trajektorien fiir die Berechnung
der MFPTs verwendet werden. Ein weiterer Punkt, der untersucht werden konnte, ist
der exakte Grund fiir das Minimum in den Zerfallsraten. Hierbei konnte die weitere
Betrachtung der Varianz der EQT in die stabile und unstabile Richtung zum Erfolg
fithren. Das schon implementierte getriebene LiCN System ermoglicht es, den Einfluss des
externen Feldes fiir unterschiedliche Amplituden und Kreisfrequenzen auf die Strukturen
und Raten des Systems zu untersuchen. Hierdurch kénnen die Kramers turnovers des
getriebenen Systems weiter analysiert werden. Des Weiteren konnten die Amplitude und
die Kreisfrequenz, welche fiir das Auftauchen des zweiten Attraktors bendtigt werden,
berechnet werden. Nahe dieser Frequenz und der Amplitude konnte der Einfluss des
thermischen Bades auf die EQT interessant sein.

Die Methoden, die auf die LiCN Isomerisierungsreaktion angewendet wurden, konnten in
Zukunft fiir andere, noch komplexere Reaktionen verwendet werden. Die Optimierung
einer Reaktion durch ein exterenes elektrisches Feld, konnte bei dhnlichen Reaktionen,
wie z.B. der KCN Isomerisierungsreaktion, angewendet werden. Dieser Ansatz kénnte zu
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C Zusammenfassung und Ausblick

einem tieferen Verstdndnis des Einflusses der potentiellen Energiefliche auf beide Raten,
die MFPT Raten und die Zerfallsraten, fiithren.
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