
applied
sciences

Article

Model Predictive Control for Flexible Job Shop Scheduling in
Industry 4.0 †

Philipp Wenzelburger * and Frank Allgöwer

����������
�������

Citation: Wenzelburger, P.; Allgöwer,

F. Model Predictive Control for

Flexible Job Shop Scheduling in

Industry 4.0. Appl. Sci. 2021, 11, 8145.

https://doi.org/10.3390/

app11178145

Academic Editor: Paolo Renna

Received: 23 July 2021

Accepted: 27 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Systems Theory and Automatic Control (IST), University of Stuttgart, Pfaffenwaldring 9,
70569 Stuttgart, Germany; frank.allgower@ist.uni-stuttgart.de
* Correspondence: philipp.wenzelburger@ist.uni-stuttgart.de; Tel.: +49-(0)711-685-67754
† This paper is an extended version of two of our conference papers.

Abstract: In the context of Industry 4.0, flexible manufacturing systems play an important role. They
are designed to provide the possibility to adapt the production process by reacting to changes and
enabling customer specific products. The versatility of such manufacturing systems, however, also
needs to be exploited by advanced control strategies. To this end, we present a novel scheduling
scheme that is able to flexibly react to changes in the manufacturing system by means of Model
Predictive Control (MPC). To introduce flexibility from the start, the initial scheduling problem,
which is very general and covers a variety of special cases, is formulated in a modular way. This
modularity is then preserved during an automatic transformation into a Petri Net formulation,
which constitutes the basis for the two presented MPC schemes. We prove that both schemes are
guaranteed to complete the production problem in closed loop when reasonable assumptions are
fulfilled. The advantages of the presented control framework for flexible manufacturing systems are
that it covers a wide variety of scheduling problems, that it is able to exploit the available flexibility
of the manufacturing system, and that it allows to prove the completion of the production problem.

Keywords: Industry 4.0; model predictive control; scheduling; flexible job shop; Petri nets

1. Introduction

In the prospect of smart factories, industrial manufacturing is in the middle of an evo-
lution that heads towards increasingly interconnected and digitized production systems.
New paradigms evolve which make use of novel technologies from the field of information
and communication technology, and their potential is exploited in an effort which is recog-
nized as fourth industrial revolution (Industry 4.0) [1]. This trend is fostered by increased
computational power, ongoing miniaturization of computational units, as well as faster
and more reliable communication system. Previously purely mechanical machines are
equipped with sensors, computational units, and communication interfaces, which enables
decentralized reasoning, decision-making, and integration in an interconnected production
system, rendering the machines into a cyber-physical production systems (CPPSs) that can
interact with their environment physically as well as via digital communication [2]. This
allows to have instantaneous feedback from the production process which is provided to a
digital decision making and scheduling system. Such information can be exploited to react
to problems in the production process, perform real-time optimization, and even predict
imminent failures and act before they occur [3].

The development on the digital side goes hand in hand with a change from rigid
production lines to flexible manufacturing systems (FMSs). This development is driven
by a more diverse customer demand ranging towards individualized products and has
the goal of enabling the manufacturing of products in lot size one at the cost of mass
production [1,4]. The focus of industrial production changes from highly automated
mass production to more adaptable manufacturing processes. This requires truly flexible

Appl. Sci. 2021, 11, 8145. https://doi.org/10.3390/app11178145 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8540-4087
https://orcid.org/0000-0002-3702-3658
https://doi.org/10.3390/app11178145
https://doi.org/10.3390/app11178145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11178145
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11178145?type=check_update&version=2

Appl. Sci. 2021, 11, 8145 2 of 38

manufacturing systems that are capable of changing according to the present needs. On
the one hand, the physical manufacturing units need to be flexible, and on the other hand,
also their control and their integration in the overall process require the capability to adapt
in order to handle manufacturing orders of different types.

To manage the flexible manufacturing units, the concept of the digital twin is intro-
duced. It describes the notion of having a real-time synchronized virtual equivalent of
the real world objects in a digital environment that can be used in the decision-making
process [3,5]. The organization of the production, the manufacturing units, and the parts
being produced is coordinated digitally by means of their digital twins, which comprises
their current status, their abilities, and a digital documentation of their past. The up-to-
date status information and the knowledge about the capabilities of the physical system
represented in its digital twin allow for digital panning and control and are the prerequisite
to formulate the online optimization problem introduced in Section 4.1.

A very promising approach to exploit these information is the concept of skill-based
programming, where commands to a robot or machine are abstracted to a higher level [6,7].
It became popular in the field of robot programming, where the high level of abstraction is
provided to the user in order to simplify the usage of versatile robots [8–13]. On the high
abstraction level, the operator can access the skills of the machines and give the desired
instructions, which are passed to the machines that interpret and execute the incoming
commands according to their capabilities by means of a subordinate logic. This approach
enables the flexible use of versatile manufacturing units in complex production scenarios.
Although it was initially conceived for easy human machine interaction, it also facilitates
the automated interconnection of manufacturing units on the higher abstraction level.

The goal of a factory designed according to Industry 4.0 principles is to achieve a
real-time optimal execution of the production process respecting the varying demand
for diverse products. The optimization of the production could be done with regards to
different criteria as for example work in progress or production time, but the economic
goal to generate the maximum monetary profit remains the objective of every commercial
production system. In order to achieve this goal, we aim to contribute to this development
with control theoretic methods, building up on existing notions and results. In particular,
we focus on the dynamic scheduling of customer specific orders in an FMS.

We take the concept of the digital twin as proposed by Grieves [5] as basis for our
work and assume that the information on every physical system are always available in
the corresponding digital twin and therefore can be used for the digital control of the
manufacturing system. For a manufacturing unit, the digital twin particularly holds the
manufacturing skills it can perform. Furthermore, a digital twin is initialized for every
order that is placed at the manufacturing system. In this case, especially the production
plan holding the necessary production steps for the requested product is of interest for our
approach. The assignment between orders and manufacturing units is done based on their
digital twins. On the one hand, the digital twin of the production orders requires skills of
the manufacturing system for being produced and on the other hand, the manufacturing
units offer those necessary skills. We formulate this assignment problem between required
skills to produce the orders and available skills in the FMS as a scheduling problem.

The solution of the proposed scheduling problem is done on the basis of a Petri
Net (PN) model, which is generated automatically from the initial description of the
scheduling problem. The generation algorithms exploit the modular formulation of the
initial scheduling problem, where the manufacturing units and the production orders can
be considered as separate modules, and transforms it into a well-structured PN. The PN
offers an algebraic representation that is used to determine the schedule for the FMS.

The result of the scheduling scheme are manufacturing decisions that are intended to
be directly applied to the system in real-time. In order to exploit the flexibility of the FMS,
it is important to keep the scheduling scheme flexible as well. Therefore, it is formulated
in the form of a feedback control law, more precisely in the form of Model Predictive
Control (MPC) [14]. MPC has the advantage that an optimization problem, in which the

Appl. Sci. 2021, 11, 8145 3 of 38

economic objective of the FMS can be considered, is solved while computing the scheduling
inputs. The feedback mechanism of the MPC allows to immediately react to changes in the
manufacturing system and to adjust its behavior accordingly.

The remainder of the paper is structured as follows. The description that we use
for the scheduling problem will be further described in Section 2. It is kept in a rather
general way such that it can be used for various specific cases. It is a generalization of the
widely discussed job shop problem (JS) [15] and allows more general production plans
with respect to the JS. This general form of a scheduling problem has, for example, practical
applications in printing shops [16], and it can also be used to describe several special cases
and practical applications thereof. A detailed description of the presented scheduling
problem together with a classification with respect to a common classification scheme
and a comparison with more common scheduling problems in literature can be found in
Section 2. In this regard, we especially set the focus on the flexibility of the employed
problem description.

In Section 3, we describe the automatic generation of a PN for the considered class
of FMSs, which is used as mathematical basis to solve the scheduling problem. In this
context, we slightly extend the classical notion of a PN in order to distinguish between
autonomously running production processes and conscious production decisions. The
generation process is discussed and the resulting PN is analyzed with respect to its relevant
properties for the scheduling of the FMS.

Finally, two MPC schemes are introduced in Section 4, which determine the optimal
scheduling decisions at the current time step with respect to a given cost function. We
relate the presented approach to common control strategies for manufacturing and for PNs
from literature. Most importantly, we provide proven guarantees of the MPC schemes that
assure the completion of the scheduling problem based on a few natural assumptions.

In Section 5, we apply one of the presented MPC schemes in the simulation of two
scheduling problems from literature. The results show that decent closed loop performance
is achieved.

Section 6 summarizes and discusses the results with respect to the initially formulated
objectives. It is explained how the results from Section 4 can be used in order to implement
a suitable MPC formulation for a given manufacturing problem. The flexibility of the
proposed solution is laid out and possible changes in the problem description are analyzed
with respect to their effects on the MPC schemes. Further research opportunities are
identified that enhance the presented methods. In Section 7, we draw a brief conclusion of
our work.

The paper at hand is an extension of our conference papers [17,18] and repeats pre-
vious results in some indicated it paragraphs. Besides many additional explanations and
bringing those two related works in their mutual context, our previous work is extended
in various ways. On the level of the scheduling problem, this paper adds a more profound
classification of the considered problem and describes its properties in a clearer form.
For the automatically generated PN description, proofs of some important properties are
provided. On the level of the MPC, the previously rather short proof of the main theorem is
extended and now provides detailed descriptions of parts that were initially kept short due
to page limitations. Additionally, a new MPC formulation is provided that significantly
reduces the complexity of the employed optimization problem. Two simulation examples
are added to show the applicability of our results with problem setups from literature.

2. Problem Description

The scheduling problem considered in this paper was originally proposed in our
previous work [17] and describes an FMS with a given set of manufacturing units in which
customer specific orders are fulfilled. It is a general case of the flexible job shop (FJS), which
is further discussed in Section 2.3. Every customer specific order constitutes a specific and
possibly unique job in the manufacturing system.

Appl. Sci. 2021, 11, 8145 4 of 38

In order to arrive at a versatile modeling and control framework, we start from a
very abstract description of the manufacturing problem which can be refined to describe
several more specific scenarios. We want to exploit the flexibility to combine the skills of
the available manufacturing units in the sense of skill based programming [6], in order to
create and describe production plans. Therefore, our modeling approach has the skills as a
central element. The manufacturing units have the skills to execute tasks, which are the
basic building blocks for the jobs that have to be fulfilled by the manufacturing system. A
job is completed once all its tasks have been completed. In a more formal way, the basic
elements of the manufacturing problem are

• a set T = {τ1, . . . , τnτ} of tasks that can be executed in the manufacturing system,

• a set M = {M1, . . . , MnM} of manufacturing units (robots, machines, automated
guided vehicles, etc.) which are called machines for brevity in the rest of this paper;
every machine M can only execute a subset of tasks, which is specified as TM ⊂ T ,

• a set J = {J1, . . . , JnJ} of jobs that need to be fulfilled by the manufacturing system;
every job J consists of a set TJ ⊂ T of tasks.

The purpose of the manufacturing system is to complete the jobs J ∈ J with the
available machine poolM. The assignment between jobs and machines is done based
on the tasks, which are the linking element between them. As different jobs J and J′,
which represent the instructions for the production of different goods, may share the same
production steps, their sets TJ and TJ′ may contain the same elements. If we refer to a
task τ ∈ TJ of a specific job J, the pair (τ, J) of task and job is called operation O = (τ, J).
With this, the set of operations O is defined as O = {(τ, J)|τ ∈ TJ} ⊆ (T × J). The term
operation is mainly used to abbreviate certain statements, but in many cases we rather
refer to the pair of task and job for the sake of clarity.

In the same way different jobs might share the same tasks, also different machines
M and M′ might be able to execute the same tasks and hence the corresponding sets TM
and TM′ may have elements in common. In this case and when considering the framework
of skill-based programming [6], the fact that both machines can execute the same task
does not mean that they do it in the same way. The machines might be of a different kind
and it is not even necessarily required that the machines have some specific tool, as the
introduction of a multipurpose machine by Brucker [15] suggests. In the framework of
skill based programming [6], different production times for the same task might even
result form different implementations of the same task or skill on different machines. For
example, the tightening of a screw can be done with a tool that can rotate infinitely, or with
a robotic arm that can only rotate by a limited angle and therefore needs to turn back and
forth several times needing more time for a task that requires to tighten a screw. The skill
to execute a task can be seen in the most abstract and general way possible. As the way
in which a task is executed may vary from machine to machine, the production time
tP(M, τ) ∈ R>0 describing the amount of time that machine M needs to execute task τ
not only depends on the task but also on the machine. The production times tP(M, τ) are
assumed to be known and fixed for every valid combination of machine and task.

The general setup described above already contains several restrictions by itself and
offers a variety of different flexibilities. A more detailed and structured description thereof
is provided in the next section.

2.1. Restrictions and Flexibility in the Scheduling Problem

In the considered scheduling problem, there are restrictions concerning the three basic
elements, i.e., tasks, machines, and jobs. To begin with, the sequence of tasks in a job is
generally free. However, as there might be dependencies between the different steps in
the production process of a product, these dependencies needs to be considered in the
manufacturing problem such that only production sequences are scheduled which can
be executed in the real production process. This is achieved through the following four
restrictions in the scheduling problem related to the tasks:

Appl. Sci. 2021, 11, 8145 5 of 38

(R1) A task τ might not be independent, but require all tasks τ′ ∈ Tτ in the set of its
required tasks Tτ ⊂ T to be finished before it can be started.

(R2) A task τ ∈ TJ in a job J can only depend on tasks τ′ ∈ TJ in the same job J, i.e., Tτ ⊂ TJ
for every task τ ∈ TJ . If a task τ depends on another task τ′, i.e., τ′ ∈ Tτ , τ ∈ TJ ,
then the operations O = (τ, J) and O′ = (τ′, J) exist and it is said that O depends O′.
Operations O = (τ, J) and Ō = (τ′, J̄) in different jobs J and J̄ are independent from
one another.

(R3) Two tasks τ and τ′ must not be mutually dependent.

(R4) Preemption of tasks is not allowed, i.e., once a task has been started it must be
completed without interruption.

The restriction to a non-preemptive setup is the general case in literature and therefore
adopted in the considered problem [19–23]. In the description of the dependencies of a
task τ on other tasks (R1), only direct dependencies are provided in the sets Tτ . Indirect
dependencies with one or more other tasks in between can be recursively determined
with an algorithm presented in our previous work [17]. The set of all tasks on which a
task τ depends directly or indirectly is denoted with T̄τ . From the different sets Tτ of the
tasks τ ∈ TJ of a job J, a precedence graph GJ = (TJ , EJ) can be generated to represent
the relations between the tasks of the job by considering the tasks τ ∈ TJ as nodes and
constructing the directed edges EJ = {(τ′, τ)|τ′ ∈ Tτ , τ ∈ TJ} according to the precedence
relations in the sets Tτ . Due to Restriction (R3), this graph is acyclic, which is important
as otherwise none of the tasks in a cycle could ever start due to a circular wait condition.
To summarize, all precedence relations that can be represented by an arbitrary acyclic
graph can be considered in the scheduling problem, as it is the case for some closely related
scheduling problems [24,25].

Furthermore, the machines and jobs are restricted in the real-world production process.
Every machine has a limited production capacity, which we assume to be one for simplicity,
and we assume that every machine has an infinite output buffer. For the jobs, we assume
that they represent products that can only be at one place, and thus they can only be
handled by a single machine at a time. Together with the limited capabilities of the
machines, the following restrictions are present, which are all the general case in the
literature on scheduling of FJSs, despite they are not always stated explicitly [19–21,23]:

(R5) Every machine M can only execute a subset of tasks, which is specified as TM ⊂ T .

(R6) A machine can only execute one task at a time.

(R7) Only one task per job can be executed at a time.

Despite these restrictions, which are rather few compared with other scheduling
problems in manufacturing, the production problem still has a lot of flexibility. As in most
scheduling problems, the production of different products, i.e., different jobs, is considered
to be independent. This is the case as the tasks in different jobs are independent from one
another as specified in Restriction (R2). In line with Nasiri and Kianfar [24], we consider
the interdependence between different jobs to be rare in practice. In our setup they only
arise as the jobs are manufactured in the same production facility and share the same
machine pool. In general, we consider as flexibility of a manufacturing system its ability to
adapt, or to be adapted, as a response to changing external conditions [26]. An operator or
operating system needs to have the possibility to exploit the flexibility in order to improve
the system behavior with respect to some desired criteria as for example the efficiency and
profitability of the manufacturing system. The most significant types of flexibility of the
considered description of an FMS are

(F1) the possibility to execute the same task on different machines,

(F2) the ability of one machine to execute different tasks,

(F3) the possibility to change the sequence in which the tasks in one job are executed, only
restricted by (R1),

Appl. Sci. 2021, 11, 8145 6 of 38

(F4) the possibility to change the sequence in which different operations are executed
on a machine,

(F5) the possibility to execute different types of jobs in the same manufacturing system.

More in-depth analyses of different types of flexibility in manufacturing were, among
others, done by Beach et al. [26], Sethi and Sethi [27], Jain et al. [28]. In the search of a unified
taxonomy they identified more than 50 different terms for various types of flexibility and
there are different terms for the same type of flexibility as well as different meanings of
the same terms [27]. This is why we do not set specific terms for the flexibilities (F1)–
(F5), but rather refer to their numbers (F1)–(F5) when referring to the different types of
flexibility. With respect to the taxonomy of Sethi and Sethi [27], who distinguishes eleven
types of flexibility, the manufacturing system described above offers routing flexibility
(F1), machine flexibility (F2), operation flexibility (F3) and (F4), and process, product and
production flexibility (F5). Implicitly, also material handling flexibility is assumed as the
jobs can be transferred from one machine to another. The setup also allows for expansion
flexibility, which allows to introduce new machines to the system, due to the automatic
generation of the scheduling problem in Section 3.3.

The benefit of the different types of flexibility is that they offer the potential to find an
improved schedule with respect to a nominal one. On the other hand the complexity of
the scheduling problem increases and it is harder to find an optimal solution [20,29]. In
fact, the considered problem is NP-hard as it is a generalization of the flexible job shop
(FJS), which we will discuss in Section 2.3, and since the FJS is NP-hard itself [19,20,25].
Increasing the flexibility of the FJS makes a hard to solve problem even harder.

2.2. Scheduling Objective

The goal of the proposed method is to optimize the throughput through the manu-
facturing system in order to maximize its profitability. This means that the best possible
assignment between operations and machines needs to be found. Moreover, as the system
evolves with time as the production proceeds, also the timing of the assignment needs to
be considered, so the goal is to find the best possible schedule of jobs in the manufacturing
system with a given set of machines. In line with the notion of Birgin et al. [25], a schedule
is the assignment of the operations to the machines and a starting time. A schedule is
considered to be feasible if the restrictions (R1) and (R4)–(R7) are met. Restrictions (R2)
and (R3) refer to the formulation of the jobs and therefore do not need to be explicitly
considered during scheduling.

As in real production scenarios, where not all future jobs are known and new jobs
may arise at arbitrary points in time, we also consider that jobs may arrive during runtime.
Therefore, the goal of the proposed scheme is not necessarily to find the best schedule but
to provide a scheduling policy, as, for example, introduced by Pinedo [30], which is able to
generate feasible schedules in different states of the manufacturing system that are as good
as possible under the given circumstances.

In order to arrive at a schedule that is desirable from a manufacturing point of view,
the profit needs to be quantified with a cost function and at least one feasible solution
must exist. In general, a cost function has to take into account the criteria that matter
in the specific production scenario, which might for example be the usage or waste of
material or energy, or storage cost. The design of the cost function offers the possibility to
set priorities according to quantifiable criteria. Single objectives as the minimization of the
makespan, total flow time, and many more are frequently considered in academic scenarios.
As usually multiple criteria need to be considered to capture the true manufacturing cost
and reward, multi-objective scheduling problems address real-world scenarios in a better
way [23]. As our focus is not to design meaningful scheduling problems but to develop
a general scheme to solve them, we assume a meaningful cost function to be given and a
feasible solution to exists.

In scheduling literature the assignment between tasks and the machines that are
able to process them is viewed from the perspective of the task [15]. To each task a set

Appl. Sci. 2021, 11, 8145 7 of 38

of machines that are able to process it is assigned. In an Industry 4.0 scenario that is
considered over a possibly infinite time horizon, this notion does not seem suitable. When
jobs are allowed to enter the manufacturing system and are assumed to be completed and
removed, the implications of new jobs or removing old ones need to be considered. Even
if a new job requires a novel task τ∗ that has never been executed in the manufacturing
system before, it is reasonable to check which machines M are able to execute it and add
the novel task τ∗ to their sets of executable tasks TM = T (old)

M ∪ τ∗. The task can then be
remembered for the case that a future job also requires it in its production process. The
part of the production problem that can be considered to be persistent over time are the
machines in the manufacturing system. Thus, an assignment between machines and their
production capabilities (the skills to execute tasks) will not be subject to many changes. In
contrast to that, the assignment between jobs (or their tasks) and the machines that can
execute them needs to be reintroduced with every new job.

2.3. Classification of the Scheduling Problem

A common classification of scheduling problems was introduced by Graham et al. [31]
and further refined as then [15,30,32]. It systematically categorizes various scheduling
problems by their machine environment, their job characteristics and their optimality
criterion. For the classification of the problem at hand we mainly focus on the machine
environment, since the job characteristics in the sense of the classification scheme are not
completely specified and the optimality criterion can be arbitrary, except for the properties
required for the proofs in Section 4.

According to this classification scheme, the machine environment of the scheduling
problem described above can be classified as a generalization of the most common speci-
fication of the flexible job shop (FJS) [21] and at the same time as a generalization of the
partial job shop (PJS) [24]. The FJS as well as the PJS generalize the ordinary job shop
(JS) [15], which restricts the problem formulation above in two ways. First, every task can
only be executed by one distinct machine, i.e., it does not offer machine flexibility (F1).
Secondly, every job has a predefined process plan in the form of a fixed sequence in which
the tasks of the job have to be executed, i.e., it does not offer sequence flexibility (F3).

There is a large amount of literature on the FJS and it is not always defined in the
exactly the same way [20,21,23]. The most common specification introduces machine
flexibility (F1) with respect to the ordinary JS by allowing every task to be executed by
multiple machines and is also called job shop with multipurpose machines (JMPM) [15].
In a more restrictive definition by Pinedo [30] the FJS consists of distinct work centers with
identical parallel machines. The sequence flexibility (F3) is not introduced and the tasks of
every job have a predetermined sequential order in which they have to be executed [21,33].

In the PJS, which was introduced by Nasiri and Kianfar [24] and is rarely considered
in literature [34], sequence flexibility (F3) was introduced with respect to the ordinary,
non-flexible JS. The fixed sequence of tasks in a job is relaxed such that arbitrary precedence
relations in the form of an acyclic graph are allowed. The machine flexibility (F1) to choose
on which machine a certain operation will be executed is not available in the PJS.

In order to arrive at an understandable denomination that speaks for itself, we follow
the definition of the JMPM and categorize the machine environment in our scheduling
problem as job shop with multipurpose machines and sequence flexibility (JMPMSF). It combines
the two types of flexibilities (F1) and (F3) that were introduced in the JMPM and the
PJS, respectively, with respect to the ordinary JS. In the literature no unique name was
given to the JMPMSF. Among other names, it is called extended FJS [25], or FJS with process
plan flexibility [35]. Birgin et al. [25] and Özgüven et al. [35] present two different mixed
integer linear programming (MILP) models to find a schedule that minimizes the makespan
of a JMPMSF. Due to its complexity, however, it is mostly solved by means of heuristic
approaches [16,29,36]. Its practical relevance was shown by Lunardi et al. [37] who consider
a JMPMSF from online printing industry that is subject to additional challenges. They

Appl. Sci. 2021, 11, 8145 8 of 38

present a MILP and a constraint programming model for it, after providing a concise
literature review on the JMPMSF.

3. Model Generation

For the problem described in Section 2 we generate a mixed integer programming
(MIP) model, which does not necessarily need to have a liner cost function, by means of
an automated procedure described in Section 3.3. In contrast to existing MIP models for
the JMPMSF [25,35,37], we introduce an intermediate step to tackle the complexity of the
problem with a modular approach in terms of a Petri Net (PN). The model we use was
first described in our previous work [17] and is based on the fundamental form of a PN
introduced by Carl Adam Petri in his dissertation [38]. This model represents a discrete
time description of the production process. Alternative Petri Net descriptions for the
scheduling problem can either directly use the real-valued production time tP in a Timed
Petri Net (TdPN) [39], or ignore the time information and describe the production process
as a Discrete-Event System (DES), which again results in a non-timed PN as introduced by
Petri [38]. The discussion of the alternative possibilities is beyond the scope of this paper.

3.1. Introduction to Petri Nets

Before describing the automatic generation of the PN model of the JMPMSF, we
formally introduce Petri Nets analogous to [17].

Definition 1 (Petri Net). A Petri Net is a tuple PN = (P,T,E, w, x0), where

• P = {P1, ..., Pn} is a finite set of places, n ∈ N>0, graphically represented as circles,

• T = {T1, ..., Tm} is a finite set of transitions, m ∈ N>0, graphically represented as bars,

• E ⊆ (P×T)
⋃
(T× P) is a set of arcs from places to transitions and from transitions to

places, graphically represented as arrows,

• w : E → N>0 is an arc weight function, graphically represented as numbers labeling the
arcs (if an arc has the weight 1 it is not labeled) and

• x0 ∈ Nn is the initial marking of the Petri Net, from now on called initial state; the initial
state of a place Pi is graphically indicated by x0

i dots (“tokens”) in the circle corresponding
to Pi.

The dynamics of a PN is driven by the firing of the transitions and captured by the
evolution of the state vector x(k) ∈ Nn at the time instants k ∈ N and is initialized with
x(0) = x0. The firing of a transition T removes tokens according to the weights w(Pi, T)
of the arcs (Pi, T) ∈ E from its input places Pi ∈ P and adds token to its output places
Po ∈ P according to the weights w(T, Po) of the arcs (T, Po) ∈ E. The number of times each
transition fires at instant k is expressed with the firing count vector u(k) ∈ Nm. We introduce
the incidence matrix B = B+ − B− which is composed of the two matrices B+ ∈ Nn×m and
B− ∈ Nn×m that are defined as

B+
i,j :=

{
w(Tj, Pi) i f (Tj, Pi) ∈ E
0 else

B−i,j :=

{
w(Pi, Tj) i f (Pi, Tj) ∈ E
0 else

. (1)

We can now compactly describe the Petri Net dynamics by

x(k + 1) = x(k) + Bu(k), x(0) = x0. (2)

As the places are not allowed to have a negative number of tokens, the Petri Net
dynamics needs to be further restricted by only allowing transitions to fire if they do not
generate negative tokens in any place. We say a transition T is enabled at a state x(k) if all of
its input places Pi connected through an arc (Pi, T) ∈ E hold as least as many tokens as the
arc weight w(Pi, T), i.e., xi ≥ w(Pi, T). Two transitions, Ti and Tj, might be concurrently
enabled at state x(k), but if they both fire simultaneously they would consume the same

Appl. Sci. 2021, 11, 8145 9 of 38

token resulting in a negative entry in the state vector x(k + 1). This situation is called
conflict between the transitions Ti and Tj [39]. To prevent negative tokens in this case,
a non-negativity condition on the basis of the firing count vector u(k) is introduced. With
the matrix B− and the state vector x(k) all allowed firing count vectors u(k) must satisfy
the non-negativity constraint

0 ≤ x(k)− B−u(k). (3)

3.2. Modified Petri Net Dynamics

So far, we only introduced common notions for Petri Nets that can be found in
literature, for example, in [39,40]. However, in order to describe the scheduling problem
introduced in Section 2, we will slightly adapt the role of the transitions as proposed in our
previous work [17]. In most literature on Petri Nets, the firing of transitions is initiated by
predefined rules, considered to be stochastic, or the dynamics is even seen as the set of all
possible sequences in which the transitions can fire [39,41]. In contrast to that, we will use
a subset TC ⊂ T of the transitions as controlled inputs to actively influence the dynamics
of the Petri Net, which we will call controlled part of the PN, and another subset TI ⊂ T of
the transitions is defined to fire as soon as they are enabled, which we will call independent
part of the PN.

As discussed by Giua and Seatzu [42], the PN dynamics (2) is a special case of the
dynamics of a linear discrete time system x(k + 1) = Ax(k) + Bu(k) with A = I, where I is
the identity matrix of appropriate dimension. We will now exploit the possibility to change
the matrix A such that it holds the influence of the so-called independent transitions in the
set TI . The matrix B then merely considers the actively controlled transitions in the set TC
and the control decisions are captured in the firing count vector u. Whether it is possible
to represent the firing of a transition “as soon as it is enabled” and without violating the
constraint (3) by means of a matrix multiplication Ax of the PN’s state x with a matrix
A, depends on its interconnection with the rest of the PN. Therefore, we introduce two
restrictions on the independent transitions. A transition T can only be considered to be
independent if

(I1) it only has one input place Pi,

(I2) its only input place Pi has no second output transition,

(I3) the weight of the arc (Pi, T) connecting the place Pi to its output transition T must
be w(Pi, T) = 1.

With those restrictions, only the basic Petri Net elements depicted in Figure 1, i.e., se-
quence, merging, and splitting, can be assigned to the independent part of the Petri Net,
i.e., to the set TI . On the other hand, conflict and synchronization depicted in Figure 2 must
be controlled actively and the corresponding transitions always belong to the set TC. This
obviously also holds for the combination of synchronization and conflict in a so called non
free-choice conflict [41].

Appl. Sci. 2021, 11, 8145 10 of 38

P1 P2T1

(a) Sequence

P1

P2

P3

T1

T2

...
...

(b) Merging

P1

P2

P3

T1

...

(c) Splitting

Figure 1. Elementary Petri Net structures in which the transitions can be assigned to the set of independent transitions TI .

P1

P2

P3

T1

T2

...
...

(a) Conflict

P1

P2

P3T1

...

(b) Synchronization

Figure 2. Elementary Petri Net structures in which the transitions must be actively controlled and always belong to the set
of controlled transitions TC.

With the distinction between independent transitions and controlled transitions,
the Petri Net dynamics is described as

x(k + 1) = Ax(k) + Bu(k), x(0) = x0. (4)

As the places must not hold a negative number of tokens, i.e., constraint (3) must
still be satisfied, and as there always has to be an integer number of tokens, for the newly
introduced dynamics matrix must hold A ∈ Nn×n. The dynamics (4) together with the
non-negativity constraint (3) is called state space description or state space form of the PN.

If the output transition Ti of the place Pi is handled as an independent transition,
the i-th column of the matrix A is changed, starting from an identity matrix I for a com-
pletely controlled PN. The input arc (Pi, Ti) of transition Ti sets the diagonal entry to zero,
i.e., Ai,i = 0, and the output arcs (Ti, Po) of the transition Ti introduce the weight w(Ti, Po)
in the entry Ao,i = w(Ti, Po). If a place has no independent output transition, a one in the
corresponding diagonal entry in A keeps its number of tokens constant when no controlled
transition fires.

Example 1. The matrices corresponding the the elementary PN structures in Figure 1 are

A(a) =

[
0 0
1 1

]
, A(b) =

0 0 0
0 0 0
1 1 1

 and A(c) =

0 0 0
1 1 0
1 0 1

.

The firing of the independent transitions at the state x(k) removes all tokens from the input
places through the zero in the corresponding diagonal entry of the matrix A. In the state x(k + 1),
tokens are produced in the output places of the independent transitions through the non-zero
off-diagonal elements in A.

Note that the criteria (I1)–(I3) are necessary so that a transition can be assigned to
the set TI . If one of them is not fulfilled for a specific transition, it must be assigned to
the set TC. However, it is still possible to assign transitions to TC if they fulfill the three

Appl. Sci. 2021, 11, 8145 11 of 38

criteria (I1)–(I3). For example, it is possible to set the transition T2 in Figure 1b as controlled
transition and assign it to TC. In this case, the dynamics of the Petri Net in Figure 1b is

x(k + 1) =

0 0 0
0 1 0
1 0 1

x(k) +

 0
−1
1

u(k).

We will exploit the independent transitions to have a production process running au-
tonomously while the scheduling decisions are handled by means of controlled transitions.
How the problem formulation in Section 2 can be automatically transformed into a Petri
Net will be discussed in the next Section.

3.3. Generation of the Discrete Time Petri Net Model

Form the description of the JMPMSF in Section 2, we will automatically generate a
Petri Net model with the algorithms presented in our previous work [17]. The generated
PN model will provide all possible manufacturing decisions in the form of controlled
transitions in the set TC. Their implications are captured in the matrix B of the algebraic
description (4) and the decisions are taken by means of the firing count vector u. The
automatic production process is represented through the independent transitions in the
set TI and handled in the matrix A of the algebraic representation (4), as presented in
Section 3.2.

The state of the Petri Net x represents the current status of the manufacturing system.
In order to preserve the production related meaning of the elements of the PN components,
we introduce distinct identifiers as labels for the places and transitions. By introducing
corresponding vectors xID and uID, the state x and the input vector u are intuitively
understandable and can be related to the elements in the production system. The identifiers
hold information on the machine, the task and the job to which the places and transitions
refer. Additionally, we introduce a classifying character σ ∈ Σ = {S, F, P, B, I, N, C} to
indicate the meaning of the places and transitions in the production process. The classifier
S relates to “start”, F relates to “finish”, B to “buffer”, I to “idle”, N to “necessary”, and C
to “completed”. This set of classifiers was specifically selected for the given production
problem together with the desired model of it and the algorithms that translate between
them, which will be presented in the sequel. This set of classifiers is certainly not the only
possible one to implement a similar model generation. If further characteristics of the
production problem are investigated or other restrictions are present, the set of classifiers
can be changed and further Petri Net structures can be introduced.

The identifier of a place P has the form (M, τ, J, σ), as a place can relate to one machine
M ∈ M, one task τ ∈ T , one job J ∈ J and has the production related meaning that
corresponds to its classifier σ ∈ Σ. With this notation it becomes obvious to which machine,
which task and which job a place P(M,τ,J,σ) relates and how its marking can be interpreted.
If a place has no specific machine, task or job it relates to, its identifier has a zero at the
respective position. For example the marking of the place P(M,0,0,I) indicates whether the
machine M is idle, which is independent of any specific task or job.

A transition connects at least two places and its production related role can be related
to the places connected to it. Its identifier has the form (M, M′, τ, τ′, J, σ), which indicates
that the transition T(M,M′ ,τ,τ′ ,J,σ) connects places of the form P(M,τ,J,σ), and P(M′ ,τ′ ,J,σ). The
identifiers of transitions only refer to one job J, since we assume dependencies between dif-
ferent jobs to arise only through the fact that they are produced in the same manufacturing
system, as discussed in Section 2 and formulated in Restriction (R2). As a consequence, all
places connected to the same transition either relate to the same job or they do not relate to
any job at all.

Analogous to the algorithms presented in our previous work [17], the PN model of
the manufacturing system is created with the Algorithms 1 and 2. The generated model
is a discrete time description of the manufacturing system and the production processes

Appl. Sci. 2021, 11, 8145 12 of 38

are represented by chains of places P(M,τ,J,P1)
, P(M,τ,J,P2)

, . . . , P(M,τ,J,PkP(M,τ))
. The number

of production steps

kP(M, τ) =

⌈
tP(M, τ)

ts

⌉
(5)

for the execution of the task τ on the machine M is calculated with respect to the sampling
time ts, which is also called sampling period. It is rounded to the next larger integer which
means that for a large sampling time ts the resulting production time t̄P = kPts might be
larger than the true production time tP, i.e., t̄P ≥ tP.

Algorithm 1: Create Places [17].
input :A set of machinesM, a set of tasks T , a set of jobs J
output :A set of places P marked with the initial states x0

1 for every machine M ∈ M do
2 Add an idle place P(M,0,0,I) to P holding one token;
3 end
4 for every job J ∈ J do
5 Add the starting place P(0,0,J,S) to P holding one token;
6 for every task τ ∈ TJ do
7 Add an unmarked completion place P(0,τ,J,C)

and a necessity place P(0,τ,J,N) holding one token to P;
99 for every machine M ∈ M do

10 if task τ ∈ TM then
11 Add kP(M, τ) unmarked production places P(M,τ,J,P1), . . . , P(M,τ,J,PkP(M,τ))

and an unmarked buffer place P(M,τ,J,B) to P;
1313

14 end
15 end
16 end
17 end

Algorithm 1 generates the set of places P for the Petri Net. First, in lines 1–3, the idle
places P(M,0,0,I), which indicate whether a machine is working or not, are created for all
machines M ∈ M. As it is assumed that all machines are idle at initialization, the idle
places are marked with one token. This token is consumed by every transition starting the
execution of a task on the respective machine and returned once the production is finished.
Due to this mechanism it is guaranteed that every machine only executes one task at a time
and therefore respects Restriction (R6).

In lines 4–14, the places for the statuses of the jobs J ∈ J are created. Every job J has a
starting place P(0,0,J,S), initialized in line 5 with one token, indicating that the production of
the respective job has not yet been started. Once the production of a job starts, its token is
moved according to the production process. Despite the token is not labeled and it can not
be said that it stays the “same” token, the machine at which the job is being processed or
was processed last can be deduced from the identifiers and the markings of the production
and buffer places related to it. Those places are created in line 10. For every machine M
with τ ∈ TM, the production places P(M,τ,J,Pi)

, i = 1 . . . kP(M, τ) are created. They indicate at
which machine M the task τ of job J is executed and how far its execution already proceeded.
At the end of line 10, the buffer places P(M,τ,J,B) are created. If a buffer place P(M,τ,J,B) is
marked, this shows that the task τ of the job J was processed on machine M at last and
that the semi-finished product of the job J is currently in the output buffer of machine M.
By generating the production and buffer places for all possible machines that can execute
each task, the selection of the machine that will eventually execute it is not predefined
a priori and can be chosen during runtime. This structure enables the Flexibility (F1). In
line 7, necessity places P(0,τ,J,N) and completion places P(0,τ,J,C) are created for all tasks τ ∈ TJ ,

Appl. Sci. 2021, 11, 8145 13 of 38

which indicate the production progress of the job J. Besides that, the completion places are
used to ensure that the precedence relations between the tasks are met and Restriction (R1)
is respected. As it is assumed that no task in any job is already completed at initialization,
the completion places are initialized unmarked whereas the necessity places hold one token
indicating that the respective task needs to be executed once.

Algorithm 2: Create Transitions and Arcs [17].
input :A set of machinesM, a set of tasks T , a set of jobs J , a set of places P
output :A set of independent transitions TI , a set of controlled transitions TC,

a set of arcs E

1 for every job J ∈ J do
2 for every task τ ∈ TJ do
3 for every machine M with τ ∈ TM do
4 if Tτ = ∅ then
5 Add a starting transition T(0,M,0,τ,J,S) to TC;
6 Add its input arcs (P(0,τ,J,N), T(0,M,0,τ,J,S)), (P(M,0,0,I), T(0,M,0,τ,J,S)) and (P(0,0,J,S), T(0,M,0,τ,J,S))

and its output arc (T(0,M,0,τ,J,S), P(M,τ,J,P1)) to E;
7 end
8 Add the production transitions T(M,M,τ,τ,J,Pq), q ∈ [1, kP(M, τ)− 1] to TI ;

9 Add their input arcs (P(M,τ,J,Pq), T(M,M,τ,τ,J,Pq))

and their output arcs (T(M,M,τ,τ,J,Pq), P(M,τ,J,Pq+1)) to E;

1111 Add a finishing transition T(M,M,τ,τ,J,F) to TI ;
12 Add its input arc (P(M,τ,J,PkP(M,τ))

, T(M,M,τ,τ,J,F))

and its output arcs (T(M,M,τ,τ,J,F), P(M,τ,J,B)), (T(M,M,τ,τ,J,F), P(M,0,0,I)) and (T(M,M,τ,τ,J,F), P(0,τ,J,C)) to E;
1414 for every task τ′ ∈ TJ do
15 if τ 6= τ′ and τ′ /∈ T̄τ and {τ∗ ∈ TJ : τ ∈ T̄τ∗ , τ∗ ∈ T̄τ′} = ∅ then
16 for every machine M′ with τ′ ∈ TM′ do
17 Add a starting transition T(M,M′ ,τ,τ′ ,J,S) to TC;
18 Add its input arcs (P(0,τ′ ,J,N), T(M,M′ ,τ,τ′ ,J,S)), (P(M′ ,0,0,I), T(M,M′ ,τ,τ′ ,J,S)) and (P(M,τ,J,B), T(M,M′ ,τ,τ′ ,J,S))

and its output arc (T(M,M′ ,τ,τ′ ,J,S), P(M′ ,τ′ ,J,P1)) to E;
19 for every task τ′′ ∈ Tτ′ do
20 Add the arcs (P(0,τ′′ ,J,C), T(M,M′ ,τ,τ′ ,J,S)) and (T(M,M′ ,τ,τ′ ,J,S), P(0,τ′′ ,J,C)) to E;
21 end
22 end
23 end
24 end
25 end
26 end
27 end

In Algorithm 2, the transitions and arcs that allow the possible evolutions of the
system and implement the required constraints are generated. At first, in lines 5 and 6,
the starting transitions T(0,M,0,τ,J,S) to start the jobs are created for every possible initial task
of the jobs.

The other starting transitions T(M,M′ ,τ,τ′ ,J,S) allowing to start all further tasks in an
arbitrary order only restricted by the precedence between the tasks, i.e., Restriction (R1),
are generated in lines 15–18. Every starting transition is a synchronization of an idle place,
a necessity place and a starting or buffer place as illustrated in Figure 3. Its three input
places need to be marked before a starting transition is enabled and allowed to fire, which is
why it has to be implemented as a controlled transitions. This is not a restriction, however,
as actively choosing the sequence in which the different tasks of the different jobs are
started on the available machines by means of deciding which starting transitions fire at
a given time, exactly implements the desired Flexibilities (F3) and (F4). The starting of a

Appl. Sci. 2021, 11, 8145 14 of 38

task reserves the machine M that is used for its execution by consuming the token from
the idle place P(M,0,0,I). This guarantees that every machine is only used once at a time as
required by Restriction (R6). By consuming the token from the necessity place P(0,τ,J,N), it
is indicated that the task τ will not be necessary any longer. The consumption of the token
from the starting place P(0,0,J,S) or the buffer place P(M,τ,J,B) reserves the semi-finished
product of the job J and guarantees that only one task of every job is executed at a time,
as required by Restriction (R7). Each starting transition that starts the execution of a task τ′

consumes the token from all completion places P(0,τ′′ ,J,C) of the tasks τ′′ ∈ Tτ′ that need to
be finished before the task τ′ can be started. Thereby it is guaranteed the task τ′ can only
be started once its precedence constraints according to Restriction (R1) are fulfilled. The
tokens are immediately returned to the completion places such that their production status
is preserved. Starting transitions create a token in the first production place P(M,τ,J,P1)

,
indicating that the production starts.

P(M′ ,0,0,I)

P(M,τ,J,B)

P(0,τ′ ,J,N) P(0,τ′′ ,J,C)
...

P(M′ ,τ′ ,J,P1) P(M′ ,τ′ ,J,P2)

. . .

P(M′ ,τ′ ,J,PkP−1)

P(0,τ′ ,J,C)

P(M′ ,τ′ ,J,B)T(a,S) T(b,P1) T(b,P2) T(b,F)

Figure 3. Illustration of the production sequences for the execution of task τ′ of job J on machine M′

as it is generated in the Algorithms 1 and 2, with a = (M, M′, τ, τ′, J) and b = (M′, M′, τ′, τ′, J). The
tokens in the sequence are depicted as they are initialized in Algorithm 1. As at initialization no task
τ or τ′′ is already completed, the places P(M,τ,J,B) and P(0,τ′′ ,J,C) are not marked and the transition
T(M,M′ ,τ,τ′ ,J,S) is not enabled.

The production transitions T(M,M,τ,τ,J,Pq), which are created in the lines 8 and 9, im-
plement the production process as a sequence of production steps, similar to Figure 1a,
as illustrated in Figure 3. They move tokens from one production place P(M,τ,J,Pq), q ∈
[1, kP(M, τ)− 1] to the next production place P(M,τ,J,Pq+1)

and are implemented as indepen-
dent transitions.

The finishing transitions T(M,M,τ,τ,J,F) are created in lines 10 and 11 and have the form
of a splitting similar to Figure 1c. They are considered to be independent as well. They
consume the token from the last production place and return a token to the idle place
P(M,0,0,I) of the machine M that finishes the production and store the semi-finished product
in its output buffer P(M,τ,J,B). Finally, they set the task τ completed by creating a token in
the completion place P(0,τ,J,C).

The state space description of the Petri Net in the form of the Equations (3) and (4) is
created as introduced in Section 3.2. First, the initial state x0 is initialized by assigning the
initial markings of all places to it. The effects of the production and finishing transitions
are represented in the matrix A. Starting from an identity matrix I, for every production
transition T(M,M,τ,τ,J,Pq) the diagonal entry corresponding to its input place P(M,τ,J,Pq) is set
to zero and a one is introduced in the same column in the line corresponding to its output
place P(M,τ,J,Pq+1)

. The result is similar to matrix A(a) in Example 1.
For every finishing transition T(M,M,τ,τ,J,F), the diagonal entry corresponding to its

input place P(M,τ,J,PkP(M,τ))
is set to zero and ones are introduced in the same column in

the lines corresponding to its output places P(M,τ,J,B), P(M,0,0,I), and P(0,τ,J,C). The result is
similar to matrix A(c) in Example 1.

Appl. Sci. 2021, 11, 8145 15 of 38

For every starting transition T(M,M′ ,τ,τ′ ,J,S), a column is added to the matrix B through
the matrices B+ and B− as defined in Equation (1). The new columns in B+ and B− are
initialized with zeros. In B− a one is introduced in the lines corresponding to the input
places P(0,τ′ ,J,N), P(M′ ,0,0,I), and P(M,τ,J,B). The precedence relations among different tasks,
which are considered through arcs from the completion places of other tasks τ′′, lead to
further ones in the lines corresponding to possibly multiple places of the form P(0,τ′′ ,J,C). In
B+ a one is introduced in the line corresponding to the first production place P(M′ ,τ′ ,J,P1)

and
further ones are introduced in the lines corresponding to the completion places P(0,τ′′ ,J,C) of
the precedence relation, in order to keep their marking constant. Note that directly creating
the matrix B and omitting the matrices B+ and B− would make the completion places
obsolete and cancel out their effect. Additionally, the matrix B− is required to formulate the
non-negativity constraint (3). The input vector u has one entry for every starting transition.

The result of the Algorithms 1 and 2 is the Petri Net PN = (P,T,E, w, x0) and its state
space description given by the matrices A, B+, B− and the initial state x0. The state space
description will be used for the scheduling scheme described in Section 4. As it was created
by specific Algorithms it has some properties that will be exploited to prove important
properties of the scheduling scheme. Those properties are discussed in the next section.

3.4. Analysis and Discussion of the Discrete Time Petri Net Model

Before using the Petri Net model generated in Section 3.3 for the scheduling of the
JMPMSF in Section 4, we will analyze its state space description (4) together with the
non-negativity constraint (3). Some specific properties that will be exploited to prove
important properties of the proposed scheduling scheme in Section 4 are given in the
following lemma from our previous work [18].

Lemma 1 (Properties of the automatically generated Petri Net). For the Petri Net PN =
(P,T,E, w, x0) generated with the Algorithms 1 and 2, the following properties hold:

(P1) A steady state is a pair of state and input (xs, us) with xs = Axs + Bus. As there is no steady
state (xs, us) with us 6= 0, us ∈ Nm, we denote xs the steady state and omit the input u.
The fact that there is no steady state with us 6= 0 means that the Petri Net PN has no
T-invariant ([39] Definition 11.4).

(P2) The following statements are equivalent:
In the state xs no production is taking place, i.e., no production place P(...,P) is marked⇔ xs

is a steady state.

(P3) The initial state x0 generated in Algorithm 1 is a steady state and x0 ∈ Nn.

(P4) All parts x̄, x̂ ∈ Nn of a steady state xs are themselves steady states, i.e.,
xs = x̄ + x̂ = Axs ⇔ x̄ = Ax̄, x̂ = Ax̂.

(P5) The precondition of every firing, which needs to be satisfied according to the non-negativity
condition (3) in order to start a production process, forms a steady state for all inputs u,
i.e., B−u = AB−u ∀ u ∈ Nm.

(P6) A task which has been completed stays completed, i.e., once the completion places P(...,C) are
marked they stay marked.

(P7) If x(0) ∈ Nn then x(k) = Akx(0) ∈ Nn for all k ≥ 0 and condition (3) is satisfied for x(k)
with u(k) = 0 for all k ≥ 0.

(P8) Every state x eventually enters a steady state xs = Anx ⇔ there is a k̄ < n for which
Ak̄ = A(k̄+1) = An.

(P9) If an operation O = (τ′, J), i.e., a specific task τ′ of a job J, can be started at a steady state
xs,1, it can also be started in all steady states xs,2 reachable from xs,1 through a legal firing
sequence respecting (3), or it was already completed in xs,2.

A proof of the Lemma 1 can be found in Appendix A.

Appl. Sci. 2021, 11, 8145 16 of 38

The Properties (P1)–(P6) define important features of steady states, that are not only
important for theoretical analysis, but also required for a reasonable representation of
a production system. If, in contrast to Property (P1), an action is necessary to keep the
production system at rest, it tends to be unstable. If, in contrast to Property (P2), a produc-
tion is going on while the system is at rest, either the model is flawed or the production
does not yield any products, which would not be favorable. Initializing the system at
rest as stated in Property (P3) is a common way of modeling. If Property (P4) was not
fulfilled, there would be a steady state only due to two or more ongoing processes that
cancel each other out. This can be reasonable for some models, for example, if the states
describe inventory levels. In our case, however, as the individual products are tracked, this
would imply that one process is progressing on a product while another one is reversing
its effect, which is not desired. The absence of property (P5) would allow the start of a
new production process to be only temporarily possible and after some time it would
not be possible any more without any external causes. This might be caused by decaying
products or tools, which are not considered in the presented setup. Property (P6) describes
a production process without disintegrating products. The created PN does not violate the
non-negativity constraint (3) by the independent evolution represented through the matrix
A as Property (P7) states. This means that the model by itself does not lead to any states
which do not have a reasonable real-world representation. In the described production sys-
tem no endless production processes can be started, which is expressed through Property
(P8), and Property (P9) shows that there are no restrictions in the sequence flexibility (F3)
of the described JMPMSF, except the ones explicitly modeled through Restriction (R1).

The discrete time model introduced in Section 3.3 describes the evolution of the
production process with respect to the sampling time ts. A smaller sampling time ts will
lead to an increased state dimension, which results from Equation (5) and the creation of
the production places in line 10 of Algorithm 1. On the other hand, a larger sampling time
might lead to a more significant over approximation of the true production time tP by the
discrete time model through the rounding in Equation (5). As a consequence, the sampling
time ts should be chosen in accordance with the dynamics of the represented processes. If
the manufacturing system has processes with vastly different time scales, it might be hard
to find a good compromise. However, despite the increasing state dimension, the number
of input variables, which has an even greater influence on the runtime of the optimization
problem presented in Section 4, is independent of the sampling time. This alleviates the
drawbacks of having a small sampling time and a large state dimension.

In the creation of the discrete time Petri Net model, several structures and mechanisms
are created to represent the characteristics of the job shop with multipurpose machines and
sequence flexibility. In the sequel, we will briefly highlight the most significant ones and
discuss simplifications of the PN model for special cases of the JMPMSF as for example for
the ordinary job shop problem.

The possibility to execute the same task on different machines, i.e., Flexibility (F1),
is introduced through the different production places and buffer places for the same task
introduced in the line 10 of Algorithm 1. For an ordinary job shop, the if-statement in line 9
is only true for a single machine leading to a single chain of production places and a single
buffer place for every task of every job .

The assumption of having multipurpose machines in the JMPMSF, i.e., flexibility (F2),
is considered in the for-loop in line 8 of Algorithm 1 together with the if-statement in line
9, which allows to restrict the possibilities of the machines. For single-purpose machines,
those conditions represent the search for the single machine that is able to execute the
currently investigated task and could be implemented more efficiently.

The sequence flexibility in the JMPMSF, i.e., Flexibility (F3), is respected through the
multitude of starting transitions that are created in the for-loop which starts in line 12 of
Algorithm 2. They allow to change the sequence in which the tasks τ ∈ TJ in a job J are
executed. If no precedence relation between the tasks τ and τ′ is present, both transitions
T(M,M′ ,τ,τ′ ,J,S), starting τ′ after τ, and T(M′ ,M,τ′ ,τ,J,S), starting τ after τ′, are present in the

Appl. Sci. 2021, 11, 8145 17 of 38

PN. It is guaranteed that only one of them can fire since each of them requires a token at the
buffer place after the execution of the respective other task. Without sequence flexibility,
the if-statement in line 13 of Algorithm 2 would only be true for the single task τ′ that
follows after the task τ, leading to a single starting transition of τ′ and recovering the given
production sequence. Furthermore, the necessity places and completion places created in
line 7 of Algorithm 1 would be obsolete in this special case.

Remark 1. The presented mechanism of creating a Petri Net model for a scheduling problem is not
unique. With similar algorithms, further mechanisms and properties of a manufacturing system
can be represented, as, for example, a limited buffer at every machine, production capacities of the
machines larger than one, or maintenance tasks that are represented by transitions that are not
related to any job.

Remark 2. The automatically created Petri Net and the resulting mixed integer programming
model is not the smallest one that would be possible for the given JMPMSF. For example, the size of
the state vector could be reduced by summarizing all the buffer places P(M,τi ,J,B) for the different
tasks τi ∈ TJ of the same job J that can be executed at the same machine M into one buffer place
P(M,0,J,B). By that, however, the information which task in job J was executed last is removed from
the state of the PN.

4. Model Predictive Control

On the basis of the state space description of the automatically generated Petri Net,
we will now develop two similar scheduling schemes for the job shop with multipurpose
machines and sequence flexibility (JMPMSF) based on Model Predictive Control (MPC).
One of them was first described and analyzed in our previous work [18], and the other one
is a more efficient adaption thereof. Although they are specifically designed for JMPMSFs
as defined in Section 2, they are exemplary for arbitrary scheduling problems formulated
as a PN of the form introduced in Section 3.2.

Using systems and control theory to analyze and influence PNs is not uncommon in
the literature [41,42], and also MPC techniques are used [43–45]. In the context of MPC for
PNs, usually either continuous or hybrid PNs are considered from the start, or fluidification
of the Petri Net is used, meaning that the integer constraint is relaxed and the tokens are
considered to be a fluid. Instead of a state x ∈ Nn and a firing count vector u ∈ Nm, a state
x̃ ∈ Rn

≥0 and a flow vector ũ ∈ Rm
≥0 are considered. This relaxation is used to avoid a high

dimensional state space and simplify the problem [43,45]. It is known that this adaptation
changes the properties of the PN and that it is mostly suited for models with a large number
of tokens [46,47]. In our particular case, it violates the notion of the production problem
defined in Section 2. In order to illustrate this, let us only consider a starting transition that
fires by a non-integer amount smaller than one, e.g., ũ(0) ∈ (0, 1) at instant k = 0. This
would mean that a task is only partially started and therefore also only partially executed
through the independent part of the PN dynamics (4) with ũ(k) = 0 for k > 0. The result is
a partially completed task. Although it is not completely equivalent, this is comparable to
the violation of Restriction (R4), i.e., that a task must not be interrupted, as an interruption
would also lead to a partially completed task. If there is a reason why it is not allowed to
interrupt a task the same reason usually prohibits to only start it partially.

An MPC formulation for a timed discrete PN was presented by Lefebvre [48,49]. It is
tailored to a setup in which a PN needs to be transferred from an initial marking to a desired
final marking in minimum time while avoiding critical markings in which uncontrollable
transitions could fire. Due to this specific setup, it is not applicable to the our case and
especially not to the more general type of scheduling objectives described in Section 2.2.

In the context of discrete manufacturing, MPC was applied for dynamic capacity
adjustment of a production system with reconfigurable machine tools and job shop char-
acteristics by Zhang et al. [50]. They consider a continuous optimization problem, which
relaxes the integer constraint in the sense of fluidification of the problem. The question how
the underlying integer assignment problem can be solved is left as an outlook. An MPC

Appl. Sci. 2021, 11, 8145 18 of 38

approach for the scheduling of reentrant manufacturing lines motivated by semiconductor
manufacturing was considered by Vargas-Villamil and Rivera [51], who optimize a the
long-term behavior of a reentrant production system modeled as a discrete-time flow model
with respect to a multi-objective cost function by means of linear programming. The result
of the MPC is fed to a subordinate controller which coordinates the short-term decisions
and applies the integer valued control input to the plant. Cataldo et al. [52] use MPC for
the scheduling in a machine environment with parallel identical machines that are fed
through transportation lines of different lengths. The goal is to maximize the production
output while limiting the energy consumption. The resulting optimization problem is a
MIP assigning speeds to the machines and binary inputs to the transportation system. For
general job shop problems no alternative MPC approach was found in the literature.

In contrast to problems in scheduling and discrete manufacturing where MPC is rarely
used [52], it has a variety of applications in supply chain management and especially in
process industry, where continuous models naturally arise [53–56]. Due to the large body
of knowledge on various properties and different implementations of MPC schemes, it
became a well-established control method [57].

In the sequel, we start by formulating the first MPC problem according to [18], be-
fore we show that the problem is feasible in Section 4.2 and determine a criterion to
guarantee the completion of a single operation in the production problem in Section 4.3.
The insights form this discussions motivate the formulation of the second MPC formulation
in Section 4.4. The guarantees for the completion of the production problem for both MPC
formulations are given in Section 4.5.

4.1. Formulation of the Mpc Problem

As discussed in Section 2.2, the goal of the proposed production scheduling scheme is
to optimize the profitability of the production system. This is done by assigning the different
tasks to the most efficient machines and by choosing the production sequence which yields
the most reward possible. In order to quantify the profitability of the production system
represented as a PN, we introduce a cost function c : Nn ×Nm → R, which is called stage
cost, that assigns to every pair (x, u) of state and input a cost value c(x, u). It quantifies how
much cost the current status of the production system represented through the state x and
the decisions taken through the input u cause. In general, the cost may depend arbitrarily
on x and u and can also contain couplings between them. As the state of the system
changes over time and at every time step new decisions are taken, the cost c(x(k), u(k))
only represents the cost in the current time interval of length ts. In order to achieve a good
performance with respect to a given cost function c, the system needs to be influenced in a
way such that the resulting cost summed up over time is minimal. In the sense of MPC, we
formulate this goal as a finite horizon optimal control problem over the prediction horizon
N, which is repeatedly solved in a rolling horizon fashion [14]. It is initialized at each time
instant k with the most accurate knowledge about the system, which is the state x(k) that
we assume to be known or measured. This assumption is justified by the concept of the
digital twin introduced in Section 1. The optimization problem to determine the MPC
control law at time instant k is formulated as

minimize
u(·|k)

N−1

∑
k̄=0

c
(
x
(
k̄|k
)
, u
(
k̄|k
))

(6a)

subsect to x
(
k̄ + 1|k

)
= Ax

(
k̄|k
)
+ Bu

(
k̄|k
)

(6b)

0 ≤ x
(
k̄|k
)
− B−u

(
k̄|k
)

(6c)

u
(
k̄|k
)
∈ Nm (6d)

x(0|k) = x(k). (6e)

During the prediction, the PN dynamics (4) and the non-negativity of the states (3)
need to be respected in the constraints (6b) and (6c). The planned input vectors u(k̄|k) are

Appl. Sci. 2021, 11, 8145 19 of 38

only allowed to have non-negative integer values (6d), whereby also the predicted states
x(k̄|k) remain vectors of of non-negative integers and the tokens in the PN are moved in the
intended direction. The optimization variables in the MPC problem are the inputs u(k̄|k)
of the planned input trajectory u(·|k) = (x(0|k), . . . , u(N − 1|k)). They allow to choose a
new firing count vector u(k̄|k) at every future time instant k + k̄ and represent potential
decisions taken for the production process. The minimizer of (6a) in the MPC problem is
the optimal input trajectory u∗(·|k). The resulting optimal predicted state trajectory, which
results from applying the inputs u∗(·|k) starting from the initial state x(k), is denoted
x∗(·|k). The sum of the predicted cost is only minimized over a finite prediction horizon
N ∈ N>0 in Equation (6a). This is not only the common case in MPC, but also reasonable
under the assumption that the production system changes over time due to unknown or
uncertain external influences. Due to such disturbances, the predictions for the distant
future are unlikely to be accurate. From the optimal input trajectory u∗(·|k), only the
first input u∗(0|k) is applied to the system, before the optimization is repeated with the
newly measured state x(k + 1) at the next time instant. The resulting nominal closed loop
dynamics can be expressed as

x(k + 1) = Ax(k) + Bu∗(0|k) = x(1|k), x(0) = x0, (7)

where a feedback mechanism is introduced through the repeated solution of the opti-
mization problem (6). This inherent feedback mechanism is one of the key features of the
presented approach compared with scheduling techniques from literature [22,23]. It is nec-
essary as, due to external influences and non-modeled effects, the state x(1|k), which was
predicted for time k + 1 starting from x(k) and applying u∗(0|k), might be different from
the true state x(k + 1). Therefore, for the real closed loop it might be x(k + 1) 6= x(1|k).

In order to provide a proof that the proposed MPC scheme leads to a desirable solution
of the scheduling problem defined in Section 2, we first need to show important properties.
Repeatedly applying the optimal input determined through a finite horizon optimal control
problem such as (6) does not naturally lead to an optimal closed loop performance [58],
which in our case is the completion of all jobs in the production problem in the best possible
way. In fact, quite the opposite can be the case, and the MPC might not even start a single
task if the MPC problem (6) is not formulated carefully and does not fulfill some required
conditions. In this respect, the MPC problem is analyzed in the following sections and
guarantees are provided that the desired properties, i.e., always having a feasible solution
and leading to a state in which the production problem is completed, are fulfilled if some
specific conditions are satisfied. We first show that there always exists a solution to the
optimization problem (6) in the following section, before we provide conditions on the
cost function c(x, u) and the prediction horizon N which guarantee that applying the MPC
to the manufacturing system will lead to the completion of every task in every job and
therefore to the completion of the scheduling problem.

4.2. Feasibility of the Mpc Problem

As a first important property of the MPC problem formulated in Section 4.1, it needs
to be guaranteed that the optimization problem (6) always has a feasible solution when it
is applied in closed loop (7), which is called recursive feasibility in the context of MPC [14].
Proving recursive feasibility of an MPC problem requires prior assumptions. In our
case, the standing assumption is that the PN was generated with the Algorithms 1 and 2
for a manufacturing system as described in Section 2. We first show that under this
assumption the MPC optimization problem (6) is feasible for every possible state of the
PN, before specifically analyzing the closed loop system (7).

Lemma 2 (Feasibility). For every Petri Net PN = (P,T,E, w, x0) generated with the Algorithms 1
and 2 represented in its state space form (3), (4), the MPC optimization problem (6) is feasible for all
x(k) ∈ Nn.

Appl. Sci. 2021, 11, 8145 20 of 38

Proof of Lemma 2. The input trajectory u(·|k) = (0, . . . , 0) satisfies (6d), and for all x(k) ∈
Nn it satisfies constraint (6c) due to Property (P7). Constraint (6b) is satisfied with x(k̄+ 1|k)
according to the open loop system dynamics (4). Therefore u(·|k) = (0, . . . , 0) is a feasible
candidate solution of the MPC Problem (6) for every x(k) ∈ Nn. For the PN generated with
the Algorithms 1 and 2 it particularly holds that x0 ∈ Nn due to Property (P3).

Lemma 3 (Recursive feasibility). For every Petri Net PN = (P,T,E, w, x0) generated with the
Algorithms 1 and 2 represented in its state space form (3), (4), the MPC optimization problem (6) is
feasible with x(k) = x0, the nominal closed loop system (7) with u∗(0|k) from problem (6) satisfies
the condition (3), and Problem (6) is feasible for all k ∈ N.

Proof of Lemma 3. From Lemma 2 and as x0 ∈ Nn due to Property (P3) follows that the
input trajectory u(·|k) = (0, . . . , 0) is a feasible candidate solution at x(k) = x0.

That the nominal closed loop system (7) with u∗(0|k) from problem (6) satisfies the
condition (3) follows directly from the fact that x(k) = x(0|k) holds in the nominal case
and since u∗(0|k) satisfies (6c).

For every feasible input trajectory u(·|k) at time instant k, the input trajectory u(·|k +
1) = (u(1|k), . . . , u(N − 1|k), 0) is a feasible input trajectory to Problem (6) at time k + 1
with the initial state x(0|k+ 1) = x(k+ 1) = x(1|k) from the nominal closed loop system (7).
The feasibility of the inputs u(0|k + 1) = u(1|k), . . . , u(N − 2|k + 1) = u(N − 1|k) follows
directly from the feasibility of u(·|k) at time instant k. The final predicted input u(N− 1|k +
1) = 0 is also feasible due to the following reasons. First, it naturally satisfies constraint
(6d). The predicted state x(N − 1|k + 1) is a natural number, i.e., x(N − 1|k + 1) ∈ Nn, due
to the feasibility of u(N − 2|k + 1) = u(N − 1|k) and satisfies the constraint (6b) according
to the open loop system dynamics (4). For x(N − 1|k + 1) ∈ Nn, constraint (6c) is satisfied
with u(N − 1|k + 1) = 0 due to Property (P7).

The input trajectory u(·|k) = (0, . . . , 0) used in the proof of Lemma 2 simply does
not start any task in the scheduling problem. This is surely not desired but in the problem
described in Section 2 there is no external driver prohibiting this solution. In the same
sense, extending an existing feasible input trajectory u(·|k) by a new predicted input
u(N − 1|k + 1) = 0 in the candidate trajectory for the next time step used in the proof of
Lemma 3 does not plan to start any new task in the last step of the prediction.

As explained in Section 2.2, there is a production related objective that requires taking
some action due to its economic motivation. This objective needs to be formulated in the
form of a cost function c(x, u) depending on the state x and the input u. In the sequel
we will investigate properties of such a cost function, which we assume to be known and
given, that allow to adjust the prediction horizon N such that the production problem
controlled with the MPC is guaranteed to be completed. In this process we exploit the
hierarchical nature of the production problem that is composed of jobs, which themselves
are composed of tasks. We first provide a sufficient condition for the completion of a single
operation, i.e., a single task of a single job. The arguments in the proof of the completion of
an operation motivate the formulation of a more efficient MPC scheme. Finally, we provide
a condition for the completion of a job and finally of the whole production problem for
both MPC schemes.

4.3. Completion of An Operation

Our goal is to achieve optimal performance of the system in closed loop through
applying MPC. For a flexible manufacturing system (FMS), the first and most important
goal is to produce the requested products. In the formulation of the production problem in
Section 2, this means the completion of all the tasks of all jobs. In the model generated in
Section 3, this is represented as the convergence to a state in which all completion places
are marked. In this section, we will first guarantee the completion of a single operation if
some clearly specified condition are fulfilled.

Appl. Sci. 2021, 11, 8145 21 of 38

A second goal in an FMS is to minimize production cost or to maximize profit. This
can be conveniently formulated with a cost function. In the MPC, this cost function is
directly use as objective function of the optimization problem (6a). As the cost function
is only optimized over a limited prediction horizon N, the reward of performing actions
in the manufacturing system needs to be perceived through evaluating the cost function
during this limited time frame. This results in a condition on the cost function c(x, u) and
subsequently in a condition on the prediction horizon N. In the sequel we will show how
the prediction horizon N must be chosen based on the given manufacturing system as
described in Section 2 and a given cost function c(x, u) in order to guarantee completion
of a specific operation O = (τ, J) in the production problem with the MPC. To achieve
this result, we first give a general condition that must hold such that the MPC completes
any operation.

Lemma 4 (Starting an operation). Given a Petri Net of a flexible manufacturing system in its
state space form (3), (4) is generated with the Algorithms 1 and 2. If for a steady state xs all
optimal input trajectories u∗(·|k) for the MPC problem (6) initialized at x(k) = xs are such that
u∗(0|k) 6= 0, then at least one operation O = (τ, J) will be started at time instant k in closed loop
(7), the operation O will eventually be completed, and it will remain completed.

Proof of Lemma 4. In Algorithm 2, the only transitions that are added to the set of con-
trolled transitions TC are starting transitions T(...,S). Therefore, every optimal first input
u∗(0|k) 6= 0 fires at least one starting transition and thereby initiates the execution of at
least one operation by marking at least one production place P(...,P1)

. The first input u∗(0|k)
is applied to the closed loop system controlled by the MPC (7) at time instant k. Therefore
the production is not only started in the prediction, but also in closed loop. According to
Property (P2), the resulting state is no steady state as a production place P(...,P1)

is marked.
Due to Property (P8), eventually another steady state is reached. According to Property
(P2), a steady state is only reached when no production place P(...,P) is marked any more.
As the only independent transitions T ∈ TI that do not mark another production place
are finishing transitions T(...,F), this means that eventually a finishing transition fires. As
every finishing transition T(...,F) created in lines 10 and 11 of Algorithm 2 marks a com-
pletion place P(...,C), eventually a completion place is marked. Due to Property (P6), once
completion places are marked they stay marked and hence the completed operations stay
completed.

The condition in Lemma 4 can be exploited to guarantee the completion of a given
production problem as long as it is finite and feasible, which we state in the following
assumptions. As we generally allow the production problem to change, for example,
through new jobs in the production problem, we assume that it is finite and feasible at the
time when we investigate it. For a production problem that can always be extended, trying
to argue that it will be completed a certain point in time is futile. Therefore, we will only
analyze the properties of the production problems as it is at a certain point in time.

Assumption 1 (Finite production system). The given production problem formulated as in
Section 2 is finite, meaning that it has a finite number of possible tasks nτ < ∞, a finite number of
jobs nJ < ∞ and a finite number of machines nM < ∞ at a given time.

We state the central assumption that the production problem is feasible, meaning
that all operations can be executed by the given machine pool, on the level of the initial
production problem formulated in Section 2 as well as on the level of the Petri Net and its
state space description described in Section 3.

Assumption 2 (Feasibility of the production problem [18]). All jobs J ∈ J can be fulfilled
by the given production system. This means that for every job J ∈ J and every task τ ∈ TJ there
exists at least one machine M ∈ M with τ ∈ TM.

Appl. Sci. 2021, 11, 8145 22 of 38

In terms of the Petri Net, there exists at least one state x̂ in which every completion place
P(...,C) is marked and which is reachable from the initial state x0.

In the state space, there exists at least one state x̂ with x̂i = 1 for every i where xID
i = (. . . , C)

and which is reachable from from the initial state x0, i.e., there exists a legal input trajectory
(u(0), . . . , u(k̂− 1)) leading from x(0) = x0 to x̂ = x(k̂) = Ak̂x0 + ∑k̂−1

l=0 Al Bu(k̂− 1− l) and
where the non-negativity constraint (3) is respected for all x(k), u(k) with k = 0, . . . , k̂.

Lemma 5 (Completion of the production problem). Given a Petri Net of a flexible manufactur-
ing system in its state space form (3), (4) generated with the Algorithms 1 and 2 that fulfills the
Assumptions 1 and 2. If there is only one steady state xF for which not all optimal input trajectories
u∗(·|k) for the MPC problem (6) are such that u∗(0|k) 6= 0, then the production problem will be
completed by the MPC and xF is the final state of production system.

Proof of Lemma 5. The steady state xF is the only steady state for which the preconditions
of Lemma 4 are not fulfilled. For all other steady states xs, all optimal input trajectories
u∗(·|k) for the MPC problem (6) are such that u∗(0|k) 6= 0. Therefore, Lemma 4 states that
in all steady states except xF at least one operation O is started. As the production problem
is feasible due to Assumption 2, all operations can be executed and since it is finite due
to Assumption 1, there is only a finite number of possible operations to be started, so
eventually all operations had been started. Due to Property (P8) another steady state will
be reached. As xF is the only steady state for which the preconditions of Lemma 4 are not
fulfilled, it is the only steady state in which the system can remain.

The condition in Lemma 5 that there only exists a single final state xF is more restrictive
than necessary. In general, also for a fixed production problem there is a set XF of final states,
in which no further production is possible and all jobs are completed. The convergence to
this set can be shown with similar arguments.

Having stated very general conditions when an MPC executes operations and ulti-
mately completes the production problem, we will now formulate more specific conditions
on the prediction horizon N and the cost function c(x, u) which guarantee the completion
of an operation O = (τ, J). As proposed in [18], we will use the cost function c(x, u) in the
MPC problem (6) to determine a sufficiently long prediction horizon NO to guarantee the
completion of the operation O for all prediction horizons N ≥ NO. In order to proof the
finalization of every operation, we first define the sets XO,S and XO,C to classify the steady
states in which an operation O can be started and the steady states in which it was just
finished, respectively.

Definition 2 ([18]). For every O = (τ, J) with τ ∈ TJ , J ∈ J , the set XO,S is defined as the set of
steady states in which the operation O can be directly started and which is reachable from the initial
state of the production system x0 through a legal input trajectory.

Definition 3 ([18]). For every O = (τ, J) with τ ∈ TJ , J ∈ J , the set XO,C is defined as the set of
steady states right after the operation O was completed starting from a state xO,S ∈ XO,S without
executing any further task.

Theorem 1 (Completion of an operation [18]). Given a Petri Net of a flexible manufacturing
system in its state space form (3), (4) generated with the Algorithms 1 and 2 that fulfills the
Assumptions 1 and 2. If for an operation O = (τ, J) and a cost function c(x, u) holds that for every
state xO,S ∈ XO,S there exists a state xO,C ∈ XO,C reachable from xO,S with

c(xO,S, 0) > c(xO,C, 0) (8)

then there exists a shortest sufficient prediction horizon NO ∈ N>0 with the property that for every
N ≥ NO the operation O will eventually be executed when starting from any x0 ∈ XO,S and
applying the optimal solution to the MPC problem (6) in closed loop (7).

Appl. Sci. 2021, 11, 8145 23 of 38

Proof of Theorem 1. As shown in Lemma 4, an optimal input trajectory u∗(·|k) with the
first predicted input u∗(0|k) 6= 0 is required such that some operation is started. In order to
prove that the investigated operation O is started, we need to show that the closed loop sys-
tem always enters a state in which the optimal input trajectory has an input u∗(0|k) ∈ UO,S
as first planned input, where UO,S is the set of all input vectors u that start the execution of
operation O.

Part I:
We only investigate the point in time when the operation O is started in this part of the

proof. Therefore, we assume that the considered operation O = (τ, J) is the only operation
that can be started and also the only one that needs to be executed in xO,S. For this case,
we split all possible predicted trajectories into four categories and compare their resulting
cost over the prediction horizon N. Without loss of generality, we consider all cases to lead
towards the same state xO,C ∈ XO,C, for which condition (8) holds, except the fourth case
where this exception it explicitly mentioned.

1. The operation O is not executed at all and thus the first predicted input is u(0|k) /∈ UO,S.
As no other operation can be executed, the resulting cost over the prediction horizon
N is

cN,0 = N c(xO,S, 0). (9)

2. The operation O is planned to start immediately, i.e., at k̄ = 0, on some machine
M ∈ M with τ ∈ TM leading to the steady state xO,C. In this case, the first predicted
input is u(0|k) ∈ UO,S. As no other operation needs to be executed after finishing the
execution of the operation O, the resulting cost over the prediction horizon N is

cN,1 = cP(M, O) +
(

N − kP(M, τ)
)

c(xO,C, 0), (10)

where cP(M, O) is the production cost of the operation O on machine M.

3. The operation O is planned to start at a later point in time, let us say at k̄ = k̂, on some
machine M ∈ M with τ ∈ TM, but it is still completely executed and the steady
xO,C is reached in the prediction. In this case, the input u(k̂|k) ∈ UO,S, but the first
predicted input is u(0|k) /∈ UO,S. The resulting cost over the prediction horizon N is

cN,2 = cP(M, O) + k̂ c(xO,S, 0) +
(

N − kP(M, τ)− k̂
)

c(xO,C, 0) (11)

as no other operation can be started in xO,S and thus the system stays in xO,S for k̂
time steps.

4. The operation O is planned to start at an even later point in time on some machine
M′ ∈ M with τ ∈ TM′ , such that it is not completely executed any more but only
the first k̃ production steps, and no steady is reached at the end of the prediction. As
no steady state is reached, the execution of O on M′ might or might not lead to xO,C

after the prediction horizon. In this case, the input u(N − k̃|k) ∈ UO,S, but the first
predicted input is u(0|k) /∈ UO,S. The resulting cost over the prediction horizon N is

cN,3 = c̃P(M′, O) + (N − k̃) c(xO,S, 0) (12)

where c̃P(M′, O) is the cost of the first part of the execution of O on M′. No other
operation can be started in xO,S and thus the system stays in xO,S for N − k̃ time steps.

As the MPC scheme (6) minimizes the cost over the prediction horizon N, the optimal
first input u∗(0, k) of the case with the lowest cost will be applied to the system. This
means that the operation O will be executed in closed loop if cN,0 > cN,1, cN,2 > cN,1
and cN,3 > cN,1, which means that the immediate execution of the operation O yields
most benefit over the prediction horizon N. As the existence of a lower bound NO for the

Appl. Sci. 2021, 11, 8145 24 of 38

prediction horizon needs to be proven, we can assume N ≥ NO > kP(M, τ) for all M with
τ ∈ TM. With this assumption, also the effect of the production cost cP(M, O) and the
number of production steps kP(M, O) will be negligible, as the following considerations
show. First note that due to condition (8) and as k̂ > 0 it always holds that

cN,2 > cN,1

cP(M, O) + k̂ c(xO,S, 0)
+
(

N − kP(M, τ)− k̂
)

c(xO,C, 0)
>

cP(M, O)
+
(

N − kP(M, τ)
)

c(xO,C, 0)
(13)

k̂
(
c(xO,S, 0)− c(xO,C, 0)

)
> 0.

For cN,0 > cN,1 to hold, it follows with Equations (9) and (10)

N c(xO,S, 0) > cP(M, O) + (N − kP(M, τ)) c(xO,C, 0)

N >
cP(M, O)− kP(M, τ) c(xO,C, 0)

c(xO,S, 0)− c(xτ,C, 0)
. (14)

For cN,3 > cN,1 to hold, it follows with Equations (10) and (12)

c̃P(M′, O) + (N − k̃) c(xO,S, 0) > cP(M, O) +
(

N − kP(M, τ)
)

c(xO,C, 0)

N >
cP(M, O)− c̃P(M′, O) + k̃ c(xO,S, 0)− kP(M, τ)c(xO,C, 0)

c(xO,S, 0)− c(xO,C, 0)
. (15)

As the right hand sides of (14) and (15) only depend on system parameters that are
assumed to be known, these inequalities can always be fulfilled with a large enough value
of N. In the cases where a final steady state is reached, all trajectories that lead to a steady
state xC,1 with higher cost as xO,C, i.e., c(xC,1, 0) > c(xO,C, 0), clearly lead to higher cost
over a large prediction horizon N and will not be the optimal input trajectory u∗(·|k). In
the fourth case, choosing a trajectory that does not lead to xO,C only changes c̃P(M′, O).
From Equation (15) it can be seen that an arbitrary, possibly even negative, production cost
of the first production steps c̃P(M′, O) can still be compensated by increasing N.

Part II:

Suppose there is at least one other operation O′ that can be executed at xO,S, i.e., xO,S ∈
XO′ ,S, then there are two possibilities:

A O and O′ are executed at the same time,

B O and O′ are not executed at the same time, either because there is no input vector
u starting O and O′ and satisfying the non-negativity constraint (3), or because only
executing one of them leads to a better solution of the MPC problem (6), i.e., an input
trajectory u∗(·|k) that leads to lower cost over the prediction horizon N.

In the case A, we know that the system will enter another steady state xC,2 due to
Property (P8). To proof the existence of the shortest sufficient prediction horizon, we have
to assume that xC,2 is reached during prediction, which can be achieved by increasing N.
We neither have any information on the cost of the resulting steady state xC,2 after the
completion of both operations, nor do we have information on the number of production
steps and the production cost of both operations at the same time. As for the considerations
in the cases in Part I, in which only the operation O can be started, the effects of the
number of production steps and the production cost can be compensated by increasing
N. If the cost of the resulting steady state xC,2 is smaller than the cost of the initial state
xO,S, i.e., c(xC,2, 0) < c(xO,S, 0), the same arguments as in Part I prove that leaving xO,S

immediately in order to reach xC,2 as soon as possible is the optimal choice and thus with
u∗(0|k) either O, or O′, or both are started. If O or both operations are started, the proof
is completed. If another operation O′ is started with u∗(0|k) ∈ UO′ ,S, it is not directly

Appl. Sci. 2021, 11, 8145 25 of 38

guaranteed that O will be started. However, due to Properties (P8) and (P9), the closed
loop system will then eventually enter another steady state xO,S,2 ∈ XO,S. In this state, due
to the precondition of Theorem 1, there is another steady state xO,C,2 ∈ XO,C, for which
all the arguments in this proof apply. As there are only finitely many operations due to
Assumption 1, this recursion can only occur finitely often and eventually the system will
enter a steady state xO,S,3 ∈ XO,S in which due to the precondition of Theorem 1 a steady
state xO,C,3 ∈ XO,C exists and the operation O is executed. This happens at latest if O is the
only operation left and the arguments in Part I hold. Note that instead of O′ also multiple
operations at the same time can be considered in this paragraph on the case A.

In the case B, in which the operations O and O′ are executed sequentially, either O is
executed first and, due to the same arguments as in Part I, will be executed immediately.
Or operation O′ is executed first, which can only occur if the execution of O′ yields more
benefit over the prediction horizon N as the execution of O. As argued in Part I, this
can only be in combination with a steady state xO′ ,C ∈ XO′ ,C with c(xO′ ,C, 0) < c(xO,S, 0).
Therefore, the arguments used in Part I prove that operation O′ is executed immediately
through an input vector u∗(0|k) ∈ UO′ ,S. Due to the Properties (P8) and (P9), the closed
loop system will then eventually enter another steady state xO,S,2 ∈ XO,S for which due to
the precondition of Theorem 1, there is a steady state xO,C,2 ∈ XO,C satisfying condition (8),
for which all the arguments in this proof apply. As argued in the case A, this recursion can
only occur finitely often due to Assumption 1, which proves the ultimate completion of the
operation O.

Theorem 1 shows that a cost decrease between starting states and completion states
drives the production process. Through the arguments to prove Theorem 1, it can be seen
that such a cost decrease combined with a long enough prediction horizon N incentivizes
an immediate start of operations. Therefore, it implicitly leads to a minimization of the
production time, or at least to a short production time under consideration of the given
cost function. With Theorem 1, a rigorous condition is provided to examine whether a
large enough prediction horizon can lead to the guaranteed completion of the investigated
operation. The proof of Theorem 1 illustrates, however, that a cheap initial state combined
with cheap production processes and expensive final states can lead to the situation in
which the optimal predicted trajectory stays in the initial state for some time before the
production process is planned to be initiated. As only the optimal first input u∗(0|k) = 0 is
applied, under those circumstances no production is started at all.

4.4. Mpc Formulation with Terminal Cost

Theorem 1 is based on extending the prediction horizon N such that staying at a final
steady state xO,C with low cost c(xO,C, 0) for a long amount of time will incentivize the
immediate start of an operation. Due to Property (P8), this leads to the completion of the
investigated operation. This insight can be used to formulate a more efficient MPC problem
with terminal cost that has similar properties:

minimize
u(·|k)

N−1

∑
k̄=0

c
(
x
(
k̄|k
)
, u
(
k̄|k
))

+ Vf (x(N|k)) (16a)

subsect to x
(
k̄ + 1|k

)
= Ax

(
k̄|k
)
+ Bu

(
k̄|k
)

(16b)

0 ≤ x
(
k̄|k
)
− B−u

(
k̄|k
)

(16c)

u
(
k̄|k
)
∈ Nm (16d)

x(0|k) = x(k). (16e)

Appl. Sci. 2021, 11, 8145 26 of 38

In this formulation, the terminal cost Vf : Nn → R is introduced with respect to the
previous formulation of the MPC problem (6). It can be used in order to capture the cost of
resting in a final steady state for an extended amount of time. By assigning

Vf (x) =
N+

∑
k̄=0

c(Ak̄x, 0) , (17)

the cost of assigning the input u(k̄|k) = 0 for k̄ = N, . . . , N + N+ to the system is evaluated
through Vf (x(N|k)). This strategy to enlarge the prediction horizon by finite amount
N+ over which the control input is kept constant is a well-known strategy in MPC
literature [59]. It is known that capturing the cost over this extended period of time in
a terminal cost can be used to prove stability of the closed loop system. Due to Property
(P8), for a sufficiently long extended prediction horizon N+ the system converges to a
steady state and stays there as long as the input u(k̄|k) = 0 is applied. With this insight, we
can formulate the following corollary.

Corollary 1 (Completion of an operation with the MPC with terminal cost). Given a
Petri Net of a flexible manufacturing system in its state space form (3), (4) generated with the
Algorithms 1 and 2 that fulfills the Assumptions 1 and 2. If for an operation O = (τ, J) and a cost
function c(x, u) holds that for every state xO,S ∈ XO,S, there exists a state xO,C ∈ XO,C reachable
from xO,S with

c(xO,S, 0) > c(xO,C, 0) (18)

then there exists a shortest sufficient extended prediction horizon N+
O ∈ N>0 with the property

that for every N+ ≥ N+
O and every N ∈ N>0 the operation O will eventually be executed when

starting from any x0 ∈ XO,S and applying the optimal solution to the MPC problem (16) with the
terminal cost (17) in closed loop (7).

Proof of Corollary 1. The proof is analogous to the proof of Theorem 1. First, note that stay-
ing in the final state xO,C is beneficial compared with staying in xO,S due to condition (18).
Due to Property (P8), this final state will be reached as soon an input u∗(0|k) ∈ UO,S
starting the operation O is applied. The terminal cost Vf defined in Equation (17) is the
cost of finishing all running production processes and then staying at the final steady state.
With every prediction horizon N > 0, the MPC selects the best possible inputs during the
first N steps considering the autonomous continuation of the processes for further N+ time
steps after the prediction horizon.

In every prediction horizon N > 0 starting at a state xO,S ∈ XO,S, the possibility of
immediately starting a process leading from xO,S to xO,C, i.e., applying an input u∗(0|k) ∈
UO,S, is considered in the optimization. If the horizon N + N+, over which the cost
is considered, is long enough, it follows from the same arguments as in the proof of
Theorem 1 that applying the input u∗(0|k) = 0 and not starting any operation can not
be more beneficial than immediately starting some operation O′. Due to condition (18),
one possibility would be O′ = O. As there might be other beneficial inputs starting other
operations O′, the operation that is immediately started does not have to be the investigated
operation O. As soon as N + N+ is large enough, however, a condition as (18) also needs
to hold for the operation O′ if it is optimal to start it through an input u∗(0|k) ∈ UO′ ,S.
Therefore, as shown in the proof of Theorem 1, it is always better to start such an operation
immediately compared with starting it later. Due to Properties (P8) and (P9) and finiteness
of the production problem assumed in Assumption 1, it is guaranteed that at some point
in time the closed loop (7) reaches a state in which applying u∗(0|k) ∈ UO,S is the optimal
solution of the MPC problem (16).

4.5. Completion of the Production Problem

In the previous section, we have proven the completion of an operation O when either
the MPC (6) or the MPC with the terminal cost (16) and the terminal cost function (17) is

Appl. Sci. 2021, 11, 8145 27 of 38

applied in closed loop, which is formulated in Theorem 1 and Corollary 1. This is the basis
to guarantee the completion of every job and therefore of the entire production problem.

Corollary 2 (Completion of a job [18]). Given a Petri Net of a flexible manufacturing system in
its state space form (3), (4) generated with the Algorithms 1 and 2 that fulfills the Assumptions 1
and 2. If for every task τ ∈ TJ of a job J there exists

(a) a shortest sufficient prediction horizon NO for the operation O = (τ, J), then there exists
a shortest sufficient prediction horizon NJ = maxτ∈TJ NO with the property that for every
N ≥ NJ the job J will eventually be completed when applying the MPC (6) in closed loop (7)
from any initial state x0 ∈ XJ,S :=

⋃
τ∈TJ

XO,S.

(b) a shortest sufficient extended prediction horizon N+
O for the operation O = (τ, J), then there

exists a shortest sufficient extended prediction horizon N+
J = maxτ∈TJ N+

O with the property
that for every N ∈ N>0 and every N+ ≥ N+

J the job J will eventually be completed when
applying the MPC (16) with the terminal cost (17) in closed loop (7) from any initial state
x0 ∈ XJ,S :=

⋃
τ∈TJ

XO,S.

Corollary 3 (Completion of the production problem [18]). Given a Petri Net of a flexible
manufacturing system in its state space form (3), (4) generated with the Algorithms 1 and 2 that
fulfills the Assumptions 1 and 2. If for every job J ∈ J there exists

(a) a shortest sufficient prediction horizon NJ , then there exists a shortest sufficient prediction
horizon Nmin = maxJ∈J NJ with the property that for every N ≥ Nmin the given production
problem will eventually be completed when applying the MPC (6) in closed loop (7) from any
initial state x0 ∈ XS :=

⋂
J∈J XJ,S.

(b) a shortest sufficient extended prediction horizon N+
J , then there exists a shortest sufficient

extended prediction horizon N+
min = maxJ∈J N+

J with the property that for every N ∈ N>0

and every N+ ≥ N+
min the given production problem will eventually be completed when

applying the MPC (16) with the terminal cost (17) in closed loop (7) from any initial state
x0 ∈ XS :=

⋂
J∈J XJ,S.

The proofs for the cases (a) of the Corollaries 2 and 3 can be found in [18] and those
for case (b) follow directly.

With the results provided in this section, we show the applicability of MPC to the
scheduling of a JMPMSF. It is guaranteed that the MPC always yields a feasible solution
and conditions are provided which allow to parametrize the MPC in a way that ensures
the completion of the scheduling problem. The modular structure of the PN model for
the JMPMSF is exploited by first determining the shortest sufficient prediction horizons
NO/N+

O for every operation of a job in order to guarantee their completion. From them,
the shortest sufficient prediction horizons NJ/N+

J for every job of the production problem
are determined, which can finally be used to compute the shortest sufficient prediction
horizon Nmin/N+

min that guarantees the completion of the production problem. In the next
Section we show with two numerical examples how the MPC scheme (16) with the terminal
cost (17) can be applied.

5. Numerical Examples

In order to illustrate the applicability of the MPC scheme presented in Section 4, we
simulate one small- and one medium-sized scheduling problem from literature. From
the set of problems used by Lunardi et al. [37] for evaluating their methods we select
“sops1.json” and “mops1.json”, which can be found at https://willtl.github.io/ops
(accessed on 20 August 2021). As we do not consider all effects that are handled by
Lunardi et al. [37], we omit some particularities and only simulate the scheduling prob-
lems in the form described in Section 2. To arrive at this description, the JSON files are
parsed with a simple Matlab script and the relevant information are deduced. We consider
the resource constraints (R5), meaning that not all machines can execute every task, and

https://willtl.github.io/ops

Appl. Sci. 2021, 11, 8145 28 of 38

the precedence constraints (R1) among the tasks of the same job and the production times
tP(M, τ), which are already given as a number of production steps kP(M, τ) in the JSON
files. From the problem description deduced from the JSON files, the Petri Net descriptions
are generated with the Algorithms 1 and 2 implemented in Matlab, and their state space
descriptions are used to formulate the MPC problems (16). For simulation of the manufac-
turing systems with the MPC in closed loop, we use Matlab R2019b on a ThinkPad L390
Yoga with an Intel® Core™i5-8265U CPU. As solver for the MILP (16) we use intlinprog,
which is a standard solver for mixed integer linear programs in Matlab.

The problems are initialized with all tasks of all jobs being necessary and none of them
being completed. As no cost function is given in the JSON file, we choose a linear cost
function c(x, u) = c>x x + c>u u that weights every token in a starting places with 2, every
token in a production places with 5, every token in a buffer places with 1, every token in a
necessity places with 1, and every token in a completion places with 0. The cost of firing
any transition is 1. This cost function fulfills the condition (18) for every operation O. In
every starting state xO,S, a necessity place is marked with one token, and in every resulting
state xO,C that can be reached by executing the operation O through firing a transition
uT ∈ UO,S, this token is moved to a completion place. This results in a cost decrease of
c(xO,S, 0)− c(xO,C, 0) = 1 between the states xO,S and xO,C. With Corollary 1, for every
operation O there exists an extended prediction horizon N+

O for which it is guaranteed to
be completed. Therefore, if a sufficiently large extended prediction horizon N+ is used,
the MPC (16) is guaranteed to complete the production problem in closed loop according
to Corollaries 2 and 3.

The small-sized scheduling problem “sops1.json” has nM = 3 machines, nτ = 9
tasks and nJ = 2 jobs. The MPC (16) is parametrized with the prediction horizon N = 1
and the extended prediction horizon N+ = 400. The simulation time that the MPC needs
to complete the scheduling problem “sops1.json” in closed loop is approximately 13 s
and the resulting makespan is 274 time steps. The Gantt chart of the resulting closed loop
schedule is given in Figure 4.

0 50 100 150 200 250 300
time

1

2

3

m
ac

hi
ne

s

Job 1
Job 2

Figure 4. Gantt chart of the closed loop schedule for the small sized scheduling problem
“sops1.json” [37], resulting from the application of the MPC (16).

The medium-sized scheduling problem “mops1.json” has nM = 8 machines, nτ = 39
tasks and nJ = 5 jobs. The MPC is parametrized with the prediction horizon N = 1 and
the extended prediction horizon N+ = 500. It takes approximately 35 min to simulate the
MPC in closed loop for the 786 time steps that it needs to complete the production problem.
The Gantt chart of the closed loop schedule determined by the MPC is shown in Figure 5.

Appl. Sci. 2021, 11, 8145 29 of 38

0 100 200 300 400 500 600 700 800
time

1
2
3
4
5
6
7
8

m
ac

hi
ne

s

Job 1
Job 2
Job 3
Job 4
Job 5

Figure 5. Gantt chart of the closed loop schedule for the medium sized scheduling problem
“mops1.json” [37], resulting from the application of the MPC (16).

The simulation results are not directly comparable to the ones presented by
Lunardi et al. [37]. We do not consider the particularities of their setup; we consider a
different optimization criterion and additionally we simulate the production system in
closed loop, meaning that we solve many different optimization problems, whereas Lu-
nardi et al. [37] only determine one optimal schedule for the initial problem. The resulting
average computation time of a single MPC optimization problem is slightly less than
50 milliseconds for the “sops1.json” and approximately 2.6 s for the “mops1.json”. De-
spite the fact that the cost function does not directly consider the makespan, the resulting
closed loop schedule for the “sops1.json” has the makespan which Lunardi et al. [37]
determined to be the shortest possible one. This illustrates how the production time is
implicitly minimized under consideration of the given cost function as discussed at the
end of Section 4.3. The presented examples are not designed to highlight the advantages of
our approach, but they still illustrate that the MPC is applicable to common scheduling
problems and that it neither has a particularly long computation time nor leads to a bad
solution in the closed loop. In the next section we discuss the results and refer to further
simplifications for the case of a linear cost function.

6. Discussion

In this section, we briefly summarize our results, discuss their advantages and lim-
itations, and give an outlook on future work. In Section 2, we presented a general form
of a scheduling problems for flexible manufacturing systems (FMSs). The problem is
formulated as a job shop with multipurpose machines and sequence flexibility (JMPMSF),
which generalizes various more specific problems used in literature on FMSs and thus has
a wide range of potential applications. The restrictions and flexibilities of the JMPMSF
are clearly stated in Section 2.1, and it is discussed in Section 2.3 how further restrictions
lead to special cases that are more widely discussed, as for example the well-known job
shop (JS) problem. The initial problem description is formulated in a modular way, which
is motivated by the digital twins of the components in the manufacturing systems. It is
assumed that the machines are cyber-physical production systems (CPPSs) and have a
digital representation in the form of their digital twin that is synchronized in real-time.
The CPPSs contribute their capabilities to the production system, where their abilities can
be exploited. In the same way, the goods to be produced have a digital twin that holds
instructions for their production. Thus, there are machine modules and product modules
that need to be assigned to one another in the scheduling problem. This modularity is
respected in the problem formulation in Section 2, and it is exploited for the automatic
model generation in the form of a PN in Section 3 and in the analysis of the resulting
scheduling problem in Section 4. By means of a PN formulation, the scheduling problem is
formulated in an algebraic way that allows to apply methods from systems and control

Appl. Sci. 2021, 11, 8145 30 of 38

theory and specifically Model Predictive Control (MPC). In Section 5, we illustrate the
applicability of the scheduling scheme with two simulation examples from literature.

The methodology is developed with respect to arbitrary scheduling objectives that can
be formulated in the form of a cost function based on the elements in the manufacturing
system. In this respect, one might think of the real material, energy, or storage cost that incur
in the manufacturing system. In the resulting optimization problem, which is formulated
to achieve the best possible performance with respect to the given objective, the value
that accumulates over time with respect to the given cost function is minimized. The
optimization is done with respect to a constant system model at first. However, under the
assumption that changes are frequent in an FMS and thus the optimization for the far
future might be futile, two measures are taken. On the one hand, the optimization is only
conducted over a limited time horizon, and on the other hand, the optimization result is
not blindly applied to the system, but only the actions planned for the current time instant.
In order to determine the input, i.e., the manufacturing decisions, for the following time
step, the current system state is measured and the optimization is conducted based on
the true system state. The measurements are assumed to be readily available through the
digital twins of the machines and products. By this, a feedback mechanism is introduced
that naturally makes the scheduling strategy more robust and flexible than simply trying
to apply an optimal open loop strategy. This general approach of MPC seems particularly
suited under the assumption of frequent changes of FMSs in Industry 4.0.

The optimization problems (6) and (16) are MPC formulations for the scheduling of
a given production problem in a JMPMSF provided in the form described in Section 2
and modeled as Petri Net. If the production problem is given, the MPC formulations
can be parametrized such that the completion of the production problem is guaranteed
by employing the results in Theorem 1 and the Corollaries 1–3. Those guarantees are
obviously given with respect to the model of the system. However, due to the way
they are determined, for the case of differences between the model and the real system,
the controller will at least apply an input to the system and attempt to complete the
scheduling problem. As long as disturbances and changes in the real system with respect to
its initial model are perceived through measurements, they can be considered through the
feedback mechanism. If they do not lead to the violation of the required assumptions and
conditions, the guarantees are retained. Changes of this kind could be the breakdown of a
machine, which is fed back by removing a token from the respective idle place in the Petri
Net. As long as at least one of the other machines in the manufacturing system, which is
still functional, can take over all the tasks of the broken machine, Assumption 2 is still true.
If the precondition of Theorem 1 is still fulfilled for all operations taken over by another
machine, the convergence guarantees can be retained or at least restored by adapting the
prediction horizon N. Furthermore, changes in the cost function, which might be caused
by decisions made on the management level or changing energy or material cost, can be
handled as long as condition (8) in Theorem 1 is not violated. However, in order to retain
the convergence guarantees of the proposed MPC schemes, a re-evaluation of the used
prediction horizon N with respect to Theorem 1 is required.

Due to its modular structure, the model offers the possibility to include new jobs or
new machines, as required in Section 2.2 and motivated by real production scenarios. This
modularity is maintained through the model generation to the formulation of the control
problem, and therefore it is easily possible to analyze whether the required properties
are preserved despite changes in the problem description. The introduction of a new
machine changes the convergence guarantees of the MPCs given with Theorem 1 and the
Corollaries 1–3 only in exceptional cases. Generally, a new machine introduces further
flexibility and thereby additional possibilities to perform manufacturing tasks in an efficient
way without restricting existing ones. To be precise, it is unlikely that a new machine
influences the production cost cP(τ, M) of a task τ on an existing machine M, or the relation
between the cost of existing steady states xO,S and xO,C. If it is assumed that the properties

Appl. Sci. 2021, 11, 8145 31 of 38

of the existing parts of the production problem do not change, the introduction of a new
machine does not change the convergence properties of the MPCs.

For the introduction of a new job Ĵ, analogous arguments hold and the modular
structure of the production problem can be exploited. Its completion can be guaranteed,
by only analyzing the new job Ĵ. First, for every task τ ∈ T Ĵ of the new job it is investigated
whether a smallest sufficient prediction horizon NO/N+

O of the operation O = (τ, Ĵ) can
be found. If this is the case for all operations, a smallest sufficient prediction horizon
NĴ/N+

Ĵ
of the new job can be computed according to Corollary 2. If this is smaller than

the existing smallest sufficient prediction horizon Nmin/N+
min, the convergence properties

are preserved despite the new job. If NĴ/N+
Ĵ

is lager, the smallest sufficient prediction
horizon can be adjusted accordingly. If necessary, the prediction horizon N or the extended
prediction horizon N+ needs to be extended to restore the convergence guarantee despite
the new job .

The most challenging part in providing the convergence guarantees is certainly to
determine the shortest sufficient prediction horizon NO/N+

O , as for all states xO,S ∈ XO,S
a corresponding state xO,C ∈ XO,C satisfying condition (8) needs to be found. Only
then a value for NO/N+

O can be computed based on the pair (xO,S, xO,C). By exploiting
Properties (P4), (P5) and (P8), the state xO,C can be characterized based on the state xO,S

and the transitions in the PN description, as described in [18]. With this characterization,
condition (8) can be expressed solely based on the steady state xO,S and an input vector
uT ∈ UO,S, which only fires a single starting transition, without the need to determine the
set XO,C

c(xO,S, 0) > c(xO,S − B−uT + AnB+uT , 0). (19)

Despite the slightly more restricting definition of the set XO,S in Definition 2 compared
with [18], it might still be too large in practice such that it is practically impossible to
check all conditions to prove the completion of a single operation. To make this endeavor
feasible, we provided a condition for the case of a linear cost function c(x, u) = c>x x + c>u u
in our previous work [18]. This is done by exploiting Property (P4) and the linearity of
the cost function and thereby reducing the number of conditions to be investigated. For
a given transition T, there are many possible steady states xO,S ∈ XO,S in which an input
uT ∈ UO,S firing only the transition T can be applied without violating the non-negativity
constraint (3). With the result in [18], instead of investigating all steady states xO,S ∈ XO,S,
only one condition needs to be checked for each transition T with uT ∈ UO,S and thereby
number of conditions to check is significantly reduced.

Due to linearity of the cost function, condition (19) reduces to

c>x B−uT > c>x AnB+uT . (20)

If this condition holds for at least one input uT ∈ UO,S, Theorem 1 and Corollary 1 can
be used to conclude the existence of a smallest sufficient prediction horizon NO and N+

O for
operation O, respectively. As before, from the values of NO/N+

O for every operation in the
production problem the smallest sufficient prediction horizon Nmin/N+

min that guarantees
the completion of the production problem can be computed.

The conditions in Theorem 1 and Corollary 1 are only a sufficient conditions. This
means that there might also be the possibility that the production problem will be completed
by the MPCs (6) and (16) in case condition (8) is not satisfied. This would, for example, be
the case if the execution of a single operation O cannot directly yield profit, and therefore
does not satisfy condition (8), but it enables another operation O′ and the immediate
execution of O′ after O satisfies condition (8), i.e., c(xO,S, 0) > c(xO′ ,C, 0). Such cases could
be captured by also investigating sequences of operations with respect to condition (8) in
Theorem 1 instead of only single operations.

The MPC optimization problems (6) and (16) formulated in Section 4 are designed
for the solution of the scheduling problem presented in Section 2, which is known to be

Appl. Sci. 2021, 11, 8145 32 of 38

NP-hard. They are finite horizon approximations of the overall optimization problem that
solves the whole scheduling problem until completion and therefore less computationally
expensive. Nevertheless, their solution space still grows exponentially with the number
of jobs and alternative machines. Thus, the computation of the optimal input trajectory
u∗(·|k) is computationally demanding. However, this optimization problem does not need
to be solved completely in every time step. On the one hand, the last N − 1 steps of the
solution computed at time step k can be used as the first N− 1 steps of a candidate solution
at time step k + 1 as it is common in MPC [14]. As appending such a candidate solution
with the input u(N − 1|k + 1) = 0 is always feasible as shown in the proof of Lemma 3,
a feasible solution of the optimization problem can be found instantaneously. On the other
hand, also a suboptimal solution might be sufficient to complete the production problem,
as we further discuss in Section 6.1.

We formulated the maximization of profitability of the manufacturing system as
objective for the presented scheduling scheme in Section 2.2. We assume that it is possible
to quantify the profitability with a cost function that can be used in the optimization
problems (6) and (16). In practice, the formulation of a suitable cost function that represents
the desired production goals is not an easy task. Even formulating scheduling objectives
that are frequently used in literature, as, for example, the optimality criteria presented by
Brucker [15], in the form of a stage cost function c(x, u) is not always trivial.

Compared with other scheduling schemes, we only consider a few of the possible
restrictions in the scheduling problem. As we briefly mentioned at the end of Section 2.3,
for example, the online printing shop considered by Lunardi et al. [37] is subject to further
challenges, which we did not address and therefore also did not consider in the examples
in Section 5. As stated in Remark 1, however, the consideration of further properties and
constraints of a manufacturing system is possible in the presented setup, but requires
adaptations of the employed algorithms. As an example, the explicit handling of waste
can be considered through dedicated Petri Net structures in which waste products are
generated during production and stored in specific buffers that need to be emptied from
time to time. Discussing further possible extensions in detail and proving their properties
is beyond the scope of this paper and the topic of future research.

In closely related literature, the solution of scheduling problems is considered as they
are at some given time instant [16,25,29,35–37]. In contrast to that, we provide a strategy
how to handle complex and possibly changing scheduling problems over the course of
time. The analysis of the resulting closed loop is one of the contributions that distinguishes
our work from existing approaches in literature.

6.1. Future Research Directions

In the presented approach, we focus on the solution of the scheduling problem by
means of Model Predictive Control. The most important features are the guaranteed fea-
sibility of the employed optimization problem and the guaranteed solution of the entire
scheduling problem in closed loop in the sense of convergence to a state in which all tasks
of all jobs are completed. The guarantee for recursive feasibility is directly given by the
problem formulation. For the guarantee of the completion of operations in Theorem 1, it
is assumed that the optimization performed during computation of the MPC control law
is solved until the optimum. This assumption, however, is not needed for the guarantee
of the completion of the production problem, which is already provided in Lemma 5 and
based on a convergence property provided in Lemma 4. For the proofs of these Lemmas,
the key criterion is that a non-zero input is applied to the system once it entered a steady
state. If this property also holds for suboptimal solutions, the closed loop system will
still converge to a state in which the production problem is completed. Under this mild
assumption, the convergence guarantee for the optimal solution of the MPC optimization
problem is retained also for suboptimal solutions. Therefore, if the optimal solution of
the admittedly complex MPC optimization problems (6) and (16) cannot be found in the
available amount of time, the MPC scheduling approach is still a viable solution technique

Appl. Sci. 2021, 11, 8145 33 of 38

for the initial scheduling problem. If an optimization algorithm is used which is able to
return a suboptimal but feasible solution after a desired amount of time, the MPC schedul-
ing approach provides the properties of a so called anytime MPC scheme. This means
that it guarantees important properties of the closed loop system no matter how many
iterations the optimization algorithm are performed [60]. On the other hand, the important
arguments in the proofs are based on steady states, which by definition persist over time.
Therefore, it can also be argued that the optimizer has enough time in the important cases
such that the optimal solution is attained and the properties can be guaranteed despite the
complexity of the optimization problem is high. Even if it is not required that the optimum
is attained in the MPC optimization in order to guarantee convergence, an analysis of the
closed loop performance is a possible future research direction. From MPC theory, it is
known that the repeated solution of a finite horizon optimal control problem does generally
not lead to the infinite horizon optimal solution [61]. Therefore, an analysis of the closed
loop performance of the controlled system might yield interesting results.

The feedback mechanism itself introduces a certain amount of robustness against
disturbances and changes in the system. However, as the growing demand for flexibility
in Industry 4.0 might increases the uncertainty of the evolution of the manufacturing
system, those effects might become even more relevant. Therefore, in future work, the
robustness of the closed loop system can be rigorously analyzed, for example in terms of
some assumed changes with respect to the initial manufacturing problem. Such changes
might be machine dropouts or jobs that arrive during runtime and can be considered as
disturbances. If the worst case disturbances are considered, methods form robust MPC can
be applied, and if the disturbances are described probabilistically, the problem falls into
the domain of stochastic MPC [14]. Especially with respect to machine dropouts, where the
worst case scenarios are overly conservative, the consideration of a dropout probability is
promising. In this case, stochastic MPC minimizes the expected cost over the prediction
horizon and thereby maximizes the expected profit in the manufacturing system.

The special case of a linear cost function was already briefly discussed in [18]. In a
similar way, further classes of cost functions, for example, exhibiting certain separability
conditions, can be analyzed. For the computation of the smallest sufficient prediction
horizon that guarantees the completion of a given scheduling problem, specific algorithms
can be formulated, which exploit the special characteristics of the cost function to sim-
plify the computation. With respect to further special cases, more restrictive scheduling
problems as, for example, the job shop, the flow shop or the open shop can be inves-
tigated. Furthermore, the discussion how the different job characteristics presented by
Brucker [15] or further challenges as the particularities in the online printing shop con-
sidered by Lunardi et al. [37] can be integrated in our framework is an interesting future
topic. Finally, real-world problems with relevant scheduling objectives can be the subject
of further research.

Motivated by the potential further increase in flexibility and the trend towards CPPSs,
the modular structure of the problem setup and the deduced model can be further ex-
ploited. The model generated in Section 3 from the problem setup described in Section 2
basically consists of separate processes for each job that are linked via idle places of the
machines. From this structure, an agent-based approach, similar to the one presented
by Xiang and Lee [62] for a scheduling problem, can be developed or the problem can
be formulated in the form of a distributed MPC problem [63]. One possible approach
would be to consider product agents for every job. The product agents then solve their
local optimization problem and compete with each other for the machines. This requires
coordination between the agents in order to arrive at an optimal production schedule.
Depending on the interaction mechanism, this leads to a distributed optimization problem
that approximates the centralized optimization problems used in the MPC problems (6)
and (16). The smaller individual optimization problems will be easier to solve, but the
global optimal solution might only be obtained in special cases and potentially only after
multiple iterations between the competing agents [63].

Appl. Sci. 2021, 11, 8145 34 of 38

7. Conclusions

Motivated by the changes through the implementation of Industry 4.0, we developed
a novel scheduling scheme for flexible manufacturing system that is based on Model
Predictive Control. The initial problem formulation of a job shop with multipurpose
machines and sequence flexibility captures a wide class of relevant scheduling problems.
This generality allows the direct application of the presented methods on a variety of
important special cases. The initial scheduling problem is then automatically transformed
into a Petri Net formulation, which we slightly adapted to better suit its purpose as basis
for the feedback control mechanism that we use for scheduling. This transformation
mechanism serves as a blueprint that can be adapted to similar problem descriptions in
order to bring them into a form that allows the application of control theoretic tools. The
production schedule is generated with MPC, where the cost of the production process is
explicitly considered. The MPC formulation allows to rigorously prove the completion
of the initial scheduling problem in closed loop based on verifiable conditions on the
elements involved. Due to the feedback mechanism that is inherent in MPC, the scheduling
scheme can react to changes in the problem setup and to exploit the flexibility of the
manufacturing system.

The presented approach can serve as a general guideline on how to automatically
transform complex scheduling problems into a form in which MPC can be applied. The
presented solution only considers a part of the properties that need to be taken into account
in production planning and scheduling but it has the potential to be enhanced and adapted
in order to include further criteria. Furthermore, in those cases, the possibility to provide
proven guarantees based on the MPC problem formulation will be a significant advantage.

Author Contributions: Conceptualization, P.W. and F.A.; methodology, P.W. and F.A.; formal
analysis, P.W.; investigation, P.W.; writing—original draft preparation, P.W.; writing—review and
editing, P.W. and F.A.; visualization, P.W.; supervision, F.A.; project administration, F.A.; funding
acquisition, F.A. Both authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Grant AL 316/12-2-279734922.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Appendix A

Proof of Lemma 1.

(P1) We have to proof that there is no steady state (xs, us) with us 6= 0, us ∈ Nm. As no
entry in us can be negative, the effect of a positive entry in us through B+ can only
be compensated by the effect of a positive entry in us through B−, and vice versa.
In the same sense the effect that an input arc (P, T) has when the transition T fires
in the firing count vector us can only be reversed by an output arc (T′, P′) of a
transition T′ in us. Note that T = T′ would be possible. To prove that there is
no steady state (xs, us) with us 6= 0 can be verified by noticing that only starting
transitions T(...,S) are handled in the controlled part of the PN TC. Every starting
transition has an input arc (P(0,·,·,N), T(...,S)) from a necessity place P(0,·,·,N) and its
effect cannot be reverted, since there is no arc back to the necessity places from any
other transition.

(P2) For this property, the independent part TI of the PN has to be considered, as it
influences the matrix A which is relevant to characterize steady states. A state

Appl. Sci. 2021, 11, 8145 35 of 38

xs is a steady state, if and only if no place P is marked that is an input place of a
transition T ∈ TI ; otherwise, the automatic firing of the transition T would move
the tokens from P according to the arcs connected to T. (A transition which only has
a trivial loop from a single place P back to the same place is considered not to exist
as it does not have any effect.) In the state space form this happens through the
multiplication Axs. As all production transitions T(...,P) and finishing transitions
T(...,F) are handled in the independent part, none of their input places is allowed
to be marked in a steady state xs. As every production place P(...,P) is either input
place of a production- or finishing transition, none of them is allowed be marked in
a steady state. Through the Property (I1), the reverse direction is true as well.

(P3) The initial state x0 is a vector of natural numbers, i.e., x0 ∈ Nn, as in Algorithm 1
the places are only marked with one token or they are not marked at all. That x0 is a
steady state follows directly from Property (P2) and by noticing that in Algorithm 1
not production place is marked.

(P4) Follows from the fact that A ∈ Nn×n and simple algebraic arguments.

(P5) If no production place is marked in the precondition xs = B−u, it follows from
Property (P2) that xs is a steady state. The preconditions of the controlled transitions
T ∈ TC constitute their input places. As only starting transitions T(...,S) are in the
set TC, only the input places of the starting transitions need to be considered. Due
to Property (P2) and as no production place P(...,P) is an input place to a starting
transitions, the Property (P5) is true.

(P6) A task τ is completed if its completion place P(0,τ,J,C) is marked. A completion
place is only input place to starting transitions. If a completion place is input place
to some starting transitions T(...,S) through an arc created in line 18 of Algorithm 2,
it is also one of its output places through an arc created in the same line and the
weight of both arcs is the same.

(P7) This follows directly from A being a matrix of natural numbers, i.e., A ∈ Nn×n.

(P8) First note that all finishing transitions T(...,F) mark an idle place P(·,0,0,I), a buffer
place P(...,B) and a completion place P(0,·,·,C). All of those places only have start-
ing transitions T(...,S) as output transitions, which are all controlled. Thus, every
finishing transition ends an independent firing sequence leading to it. As every
production sequence ultimately ends with a finishing transition after kP steps, every
production sequence terminates and a steady state is reached. In the matrix A, this
is represented as a shifting sequence which ends in a state x̄ = Ak̄x, in which and
entry x̄i with xID

i = (M, τ, J, PkP) is marked. Multiplying x̄ with A, the entry xi is
multiplied with the i-th column of A, which corresponds to the finishing transition
T(...,F) being the output transition of P(M,τ,J,PkP

), as described in Section 3.2. After
this multiplications a state xs is reached in which only entries corresponding to
places without independent output transitions are marked, i.e., idle places P(·,0,0,I),
buffer places P(...,B) and completion places P(0,·,·,C). Therefore, the diagonal entries
corresponding to them are left unchanged and no entries are added to the respective
columns in the process of generating the matrix A form the Petri Net. Multiplying
the resulting vector xs with A once again does not change those entries in xs any
more. This holds for all production sequences and the system ultimately enters a
steady state with xs = Axs.

(P9) To proof this property we have to analyze the input places that correspond to
the starting transitions T(·,τ′ ,J,S) of the investigated operation O = (τ′, J). Those
all have the necessity place P(0,τ′ ,J,N) and the completion places P(0,τ′′ ,J,C) of all
τ′′ ∈ Tτ′ as common input places. P(0,τ′ ,J,N) will remain marked until one of the
starting transition was fired and task τ′ was executed. The places P(0,τ′′ ,J,C) will
remain marked due to property (P6). For each of the investigated starting transi-
tions, their remaining input places are one idle place P(·,0,0,I) and one buffer place

Appl. Sci. 2021, 11, 8145 36 of 38

P(·,τ,J,B) of another task τ of the same job J. In every steady state, the idle places
of all machines P(·,0,0,I) are marked and thus this holds for the steady states xs,1

and xs,2. This is the case as only starting transitions remove tokens from the idle
places and they inject them into a production sequence that ultimately leads back
to the same idle place from which the token was removed. This happens through a
completely independent sequence, i.e., a sequence which is completely represented
in the matrix A (cf. Figure 3).
Now it needs to be shown that, in xx,2, at least one buffer place P(·,τ,J,B) is marked
that has a starting transition T(·,·,τ,τ′ ,J,S) of the investigated task τ′ as output tran-
sition, except the task τ′ already had been executed. It is known that one such
buffer place was marked in the steady state xs,1, since otherwise τ′ could not have
been started. This means that for the pair of tasks τ, τ′ the condition in line 13 of
Algorithm 2 was true.
We now need to show that, if the task τ′ was not already executed, starting from the
buffer place P(·,τ,J,B) only other buffer place P(·,τ̄,J,B) can be marked in any steady
state xs,2, for which the condition in line 13 holds as well for the pair of tasks τ̄, τ′

and thus the transition T(·,·,τ̄,τ′ ,J,S) is created to start τ′.
Such a buffer place P(·,τ̄,J,B) can only be marked through a sequence that started
with a starting transition T(·,·,τ,τ̄,J,S), that was created in line 15 of Algorithm 2.
Thus, for the pair τ, τ̄ the condition in line 13 was true. If it is also true for the pair
τ̄, τ′, we found the buffer place P(·,τ̄,J,B) as the required one to start the task τ′ form
xs,2 through a transition T(·,·,τ̄,τ′ ,J,S).
Let us investigate the condition in line 13 for this pair step by step. The first state-
ment in this condition (τ̄ 6= τ′) is true since otherwise the task τ′ was just finished.
The second statement in this condition (τ′ /∈ T̄τ̄) is true since otherwise the previous
task τ̄ could not have been started, since the task τ′ was not yet completed. The
last statement in this condition ({τ∗ ∈ TJ : τ̄ ∈ T̄τ∗ , τ∗ ∈ T̄τ′} = ∅) is true as
otherwise such a task τ∗ would not have allowed task τ′ to be started in xs,1, which
we know was the case as stated in the precondition of Property (P9). This concludes
the proof.

References
1. Kagermann, H.; Helbig, J.; Hellinger, A.; Wahlster, W. Recommendations for Implementing the Strategic Initiative Industrie 4.0:

Securing the Future of German Manufacturing Industry; Final Report of the Industrie 4.0 Working Group; Forschungsunion: Munich,
Germany; Berlin, Germany, 2013.

2. Rossit, D.A.; Tohmé, F.; Frutos, M. Industry 4.0: Smart Scheduling. Int. J. Prod. Res. 2019, 57, 3802–3813.
3. Negri, E.; Fumagalli, L.; Macchi, M. A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 2017,

11, 939–948. [CrossRef]
4. Cohen, Y.; Naseraldin, H.; Chaudhuri, A.; Pilati, F. Assembly systems in Industry 4.0 era: A road map to understand Assembly

4.0. Int. J. Adv. Manuf. Technol. 2019, 105, 4037–4054. [CrossRef]
5. Grieves, M. Digital Twin: Manufacturing Excellence Through Virtual Factory Replication; Technical Report; Florida Institute of

Technology: Melbourne, FL, USA, 2014.
6. Thomas, U.; Hirzinger, G.; Rumpe, B.; Schulze, C.; Wortmann, A. A New Skill Based Robot Programming Language Using

UML/P Statecharts. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany,
6–10 May 2013; pp. 461–466.

7. Heim, R.; Nazari, P.M.S.; Ringert, J.O.; Rumpe, B.; Wortmann, A. Modeling Robot and World Interfaces for Reusable Tasks.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28
September–2 October 2015; pp. 1793–1798. [CrossRef]

8. Andersen, R.H.; Solund, T.; Hallam, J. Definition and Initial Case-Based Evaluation of Hardware-Independent Robot Skills for
Industrial Robotic Co-Workers. In Proceedings of the ISR/Robotik 2014, 41st International Symposium on Robotics, Munich,
Germany, 2–3 June 2014; pp. 1–7.

9. Schlegel, C.; Lotz, A.; Lutz, M.; Stampfer, D.; Inglés-Romero, J.F.; Vicente-Chicote, C. Model-driven software systems engineering
in robotics: Covering the complete life-cycle of a robot. It-Inf. Technol. 2015, 57, 85–98. [CrossRef]

http://doi.org/10.1016/j.promfg.2017.07.198
http://dx.doi.org/10.1007/s00170-019-04203-1.
http://dx.doi.org/10.1109/IROS.2015.7353610
http://dx.doi.org/10.1515/itit-2014-1069.

Appl. Sci. 2021, 11, 8145 37 of 38

10. Wächter, M.; Ottenhaus, S.; Kröhnert, M.; Vahrenkamp, N.; Asfour, T. The armarx statechart concept: Graphical programing of
robot behavior. Front. Robot. AI 2016, 3, 33. [CrossRef]

11. Lindorfer, R.; Froschauer, R. Towards user-oriented programming of skill-based automation systems using a domain-specific
meta-modeling approach. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN),
Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 655–660. [CrossRef]

12. Herrero, H.; Moughlbay, A.A.; Outón, J.L.; Sallé, D.; de Ipiña, K.L. Skill based robot programming: Assembly, vision and
Workspace Monitoring skill interaction. Neurocomputing 2017, 255, 61–70. [CrossRef]

13. Heuss, L.; Blank, A.; Dengler, S.; Zikeli, G.L.; Reinhart, G.; Franke, J. Modular Robot Software Framework for the Intelligent and
Flexible Composition of Its Skills. In Advances in Production Management Systems. Production Management for the Factory of the
Future; Springer: Cham, Switzerland, 2019; pp. 248–256._32. [CrossRef]

14. Rawlings, J.B.; Mayne, D.Q.; Diehl, M.M. Model Predictive Control: Theory, Computation, and Design; Nob Hill Publishing: Madison,
WI, USA, 2017.

15. Brucker, P. Classification of Scheduling Problems. In Scheduling Algorithms; Springer: Berlin/Heidelberg, Germany, 2007;
pp. 1–10._1. [CrossRef]

16. Birgin, E.G.; Ferreira, J.E.; Ronconi, D.P. List scheduling and beam search methods for the flexible job shop scheduling problem
with sequencing flexibility. Eur. J. Oper. Res. 2015, 247, 421–440. [CrossRef]

17. Wenzelburger, P.; Allgöwer, F. A Petri Net Modeling Framework for the Control of Flexible Manufacturing Systems. IFAC-
PapersOnLine 2019, 52, 492–498. [CrossRef]

18. Wenzelburger, P.; Allgöwer, F. A Novel Optimal Online Scheduling Scheme for Flexible Manufacturing Systems. IFAC-
PapersOnLine 2019, 52, 1–6. [CrossRef]

19. Demir, Y.; İşleyen, S.K. Evaluation of mathematical models for flexible job-shop scheduling problems. Appl. Math. Model. 2013,
37, 977–988. [CrossRef]

20. Genova, K.; Kirilov, L.; Guliashki, V. A survey of solving approaches for multiple objective flexible job shop scheduling problems.
Cybern. Inf. Technol. 2015, 15, 3–22. [CrossRef]

21. Chaudhry, I.A.; Khan, A.A. A research survey: Review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 2016,
23, 551–591. [CrossRef]

22. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0. J.
Intell. Manuf. 2019, 30, 1809–1830. [CrossRef]

23. Türkyılmaz, A.; Şenvar, Ö.; Ünal, İ.; Bulkan, S. A research survey: Heuristic approaches for solving multi objective flexible job
shop problems. J. Intell. Manuf. 2020, 31, 1949–1983. [CrossRef]

24. Nasiri, M.M.; Kianfar, F. A hybrid scatter search for the partial job shop scheduling problem. Int. J. Adv. Manuf. Technol. 2011,
52, 1031–1038. [CrossRef]

25. Birgin, E.G.; Feofiloff, P.; Fernandes, C.G.; De Melo, E.L.; Oshiro, M.T.I.; Ronconi, D.P. A MILP model for an extended version of
the flexible job shop problem. Optim. Lett. 2014, 8, 1417–1431. [CrossRef]

26. Beach, R.; Muhlemann, A.P.; Price, D.H.R.; Paterson, A.; Sharp, J.A. A review of manufacturing flexibility. Eur. J. Oper. Res. 2000,
122, 41–57. [CrossRef]

27. Sethi, A.K.; Sethi, S.P. Flexibility in manufacturing: A survey. Int. J. Flex. Manuf. Syst. 1990, 2, 289–328. [CrossRef]
28. Jain, A.; Jain, P.K.; Chan, F.T.S.; Singh, S. A review on manufacturing flexibility. Int. J. Prod. Res. 2013, 51, 5946–5970. [CrossRef]
29. Kim, Y.K.; Park, K.; Ko, J. A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling.

Comput. Oper. Res. 2003, 30, 1151–1171. [CrossRef]
30. Pinedo, M.L. Deterministic Models: Preliminaries. In Scheduling: Theory, Algorithms, and Systems; Springer International

Publishing: Cham, Switzerland, 2016; pp. 13–32._2. [CrossRef]
31. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G. Optimization and Approximation in Deterministic Sequencing

and Scheduling: A Survey. In Discrete Optimization II; Annals of Discrete Mathematics; Hammer, P., Johnson, E., Korte, B., Eds.;
Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326. [CrossRef]

32. Hoos, H.H.; Stützle, T. Scheduling Problems. In Stochastic Local Search; Hoos, H.H., Stützle, T., Eds.; Morgan Kaufmann: San
Francisco, CA, USA, 2005; Chapter 9, pp. 417–465. [CrossRef]

33. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 1993, 41, 157–183. [CrossRef]
34. Zubaran, T.K.; Ritt, M. An effective heuristic algorithm for the partial shop scheduling problem. Comput. Oper. Res. 2018,

93, 51–65. [CrossRef]
35. Özgüven, C.; Özbakır, L.; Yavuz, Y. Mathematical models for job-shop scheduling problems with routing and process plan

flexibility. Appl. Math. Model. 2010, 34, 1539–1548. [CrossRef]
36. Vilcot, G.; Billaut, J.C. A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem. Eur. J.

Oper. Res. 2008, 190, 398–411. [CrossRef]
37. Lunardi, W.T.; Birgin, E.G.; Laborie, P.; Ronconi, D.P.; Voos, H. Mixed Integer linear programming and constraint programming

models for the online printing shop scheduling problem. Comput. Oper. Res. 2020, 123, 105020. [CrossRef]
38. Petri, C.A. Kommunikation mit Automaten. Ph.D. Thesis, Technischen Hochschule Darmstadt, Darmstadt, Germany, 1962.
39. Seatzu, C.; Silva, M.; Van Schuppen, J.H. Control of Discrete-Event Systems; Springer: Berlin/Heidelberg, Germany, 2013; Volume

433. [CrossRef]

http://dx.doi.org/10.3389/frobt.2016.00033
http://dx.doi.org/10.1109/INDIN41052.2019.8972318
http://dx.doi.org/10.1016/j.neucom.2016.09.133
http://dx.doi.org/10.1007/978-3-030-30000-5_32
http://dx.doi.org/10.1007/978-3-540-69516-5_1
http://dx.doi.org/10.1016/j.ejor.2015.06.023
http://dx.doi.org/10.1016/j.ifacol.2019.11.111.
http://dx.doi.org/10.1016/j.ifacol.2019.10.002.
http://dx.doi.org/10.1016/j.apm.2012.03.020
http://dx.doi.org/10.1515/cait-2015-0025
http://dx.doi.org/10.1111/itor.12199
http://dx.doi.org/10.1007/s10845-017-1350-2
http://dx.doi.org/10.1007/s10845-020-01547-4
http://dx.doi.org/10.1007/s00170-010-2792-2
http://dx.doi.org/10.1007/s11590-013-0669-7
http://dx.doi.org/10.1016/S0377-2217(99)00062-4
http://dx.doi.org/10.1007/BF00186471
http://dx.doi.org/10.1080/00207543.2013.824627
http://dx.doi.org/10.1016/S0305-0548(02)00063-1
http://dx.doi.org/10.1007/978-3-319-26580-3_2
http://dx.doi.org/10.1016/S0167-5060(08)70356-X
http://dx.doi.org/10.1016/B978-155860872-6/50026-3
http://dx.doi.org/10.1007/BF02023073
http://dx.doi.org/10.1016/j.cor.2018.01.015
http://dx.doi.org/10.1016/j.apm.2009.09.002
http://dx.doi.org/10.1016/j.ejor.2007.06.039
http://dx.doi.org/10.1016/j.cor.2020.105020
http://dx.doi.org/10.1007/978-1-4471-4276-8

Appl. Sci. 2021, 11, 8145 38 of 38

40. Cassandras, C.G.; Lafortune, S. Introduction to Discrete Event Systems; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2009. [CrossRef]

41. Balduzzi, F.; Giua, A.; Menga, G. First-order hybrid Petri nets: A model for optimization and control. IEEE Trans. Robot. Autom.
2000, 16, 382–399. [CrossRef]

42. Giua, A.; Seatzu, C. A systems theory view of Petri nets. In Advances in Control Theory and Applications; Bonivento, C., Marconi, L.,
Rossi, C., Isidori, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 99–127._6. [CrossRef]

43. Mahulea, C.; Giua, A.; Recalde, L.; Seatzu, C.; Silva, M. Optimal model predictive control of timed continuous Petri nets. IEEE
Trans. Autom. Control 2008, 53, 1731–1735. [CrossRef]

44. Júlvez, J.; Di Cairano, S.; Bemporad, A.; Mahulea, C. Event-driven model predictive control of timed hybrid Petri nets. Int. J.
Robust Nonlinear Control 2014, 24, 1724–1742. [CrossRef]

45. Taleb, M.; Leclercq, E.; Lefebvre, D. Model predictive control for discrete and continuous timed Petri nets. Int. J. Autom. Comput.
2018, 15, 25–38. [CrossRef]

46. Recalde, L.; Teruel, E.; Silva, M. Autonomous continuous P/T systems. In International Conference on Application and Theory of
Petri Nets; Springer: Berlin/Heidelberg, Germany, 1999; pp. 107–126._8. [CrossRef]

47. Silva, M.; Recalde, L. On fluidification of Petri Nets: From discrete to hybrid and continuous models. Annu. Rev. Control 2004,
28, 253–266. [CrossRef]

48. Lefebvre, D. Deadlock-free scheduling for timed Petri net models combined with MPC and backtracking. In Proceedings of
the 2016 13th International Workshop on Discrete Event Systems (WODES), Xi’an, China, 30 May–1 June 2016; pp. 466–471.
[CrossRef]

49. Lefebvre, D. Dynamical scheduling and robust control in uncertain environments with Petri nets for DESs. Processes 2017, 5, 54.
[CrossRef]

50. Zhang, Q.; Liu, P.; Pannek, J. Modeling and predictive capacity adjustment for job shop systems with RMTs. In Proceedings of the
2017 25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, 3–6 July 2017; pp. 310–315. [CrossRef]

51. Vargas-Villamil, F.D.; Rivera, D.E. A model predictive control approach for real-time optimization of reentrant manufacturing
lines. Comput. Ind. 2001, 45, 45–57. [CrossRef]

52. Cataldo, A.; Perizzato, A.; Scattolini, R. Production scheduling of parallel machines with model predictive control. Control Eng.
Pract. 2015, 42, 28–40. [CrossRef]

53. Köhler, P.N.; Müller, M.A.; Pannek, J.; Allgöwer, F. On Exploitation of Supply Chain Properties by Sequential Distributed MPC.
IFAC-PapersOnLine 2017, 50, 7947–7952. [CrossRef]

54. Subramanian, K.; Maravelias, C.T.; Rawlings, J.B. A state-space model for chemical production scheduling. Comput. Chem. Eng.
2012, 47, 97–110. [CrossRef]

55. Subramanian, K.; Rawlings, J.B.; Maravelias, C.T.; Flores-Cerrillo, J.; Megan, L. Integration of control theory and scheduling
methods for supply chain management. Comput. Chem. Eng. 2013, 51, 4–20. [CrossRef]

56. Faulwasser, T.; Grüne, L.; Müller, M.A. Economic nonlinear model predictive control. Found. Trends® Syst. Control 2018, 5, 1–98.
[CrossRef]

57. Forbes, M.G.; Patwardhan, R.S.; Hamadah, H.; Gopaluni, R.B. Model predictive control in industry: Challenges and opportunities.
IFAC-PapersOnLine 2015, 48, 531–538. [CrossRef]

58. Müller, M.A.; Worthmann, K. Quadratic costs do not always work in MPC. Automatica 2017, 82, 269–277. doi:10.1016/j.automatica.
2017.04.058. [CrossRef]

59. Alamir, M.; Bornard, G. Stability of a truncated infinite constrained receding horizon scheme: The general discrete nonlinear case.
Automatica 1995, 31, 1353–1356. [CrossRef]

60. Feller, C.; Ebenbauer, C. Sparsity-Exploiting Anytime Algorithms for Model Predictive Control: A Relaxed Barrier Approach.
IEEE Trans. Control Syst. Technol. 2018, 28, 425–435. [CrossRef]

61. Grüne, L.; Pannek, J. Nonlinear Model Predictive Control: Theory and Algorithms; Springer International Publishing: Cham,
Switzerland, 2017.

62. Xiang, W.; Lee, H.P. Ant colony intelligence in multi-agent dynamic manufacturing scheduling. Eng. Appl. Artif. Intell. 2008,
21, 73–85. [CrossRef]

63. Maestre, J.M.; Negenborn, R.R., Eds. Distributed Model Predictive Control Made Easy; Springer: Berlin/Heidelberg, Germany, 2014;
Volume 69. [CrossRef]

http://dx.doi.org/10.1007/978-0-387-68612-7
http://dx.doi.org/10.1109/70.864231
http://dx.doi.org/10.1007/978-3-540-70701-1_6
http://dx.doi.org/10.1109/TAC.2008.929386
http://dx.doi.org/10.1002/rnc.2958
http://dx.doi.org/10.1007/s11633-016-1046-7
http://dx.doi.org/10.1007/3-540-48745-X_8
http://dx.doi.org/10.1016/j.arcontrol.2004.05.002
http://dx.doi.org/10.1109/WODES.2016.7497889
http://dx.doi.org/10.3390/pr5040054
http://dx.doi.org/10.1109/MED.2017.7984136
http://dx.doi.org/10.1016/S0166-3615(01)00080-X
http://dx.doi.org/10.1016/j.conengprac.2015.05.007
http://dx.doi.org/10.1016/j.ifacol.2017.08.706.
http://dx.doi.org/10.1016/j.compchemeng.2012.06.025
http://dx.doi.org/10.1016/j.compchemeng.2012.06.012
http://dx.doi.org/10.1561/2600000014.
http://dx.doi.org/10.1016/j.ifacol.2015.09.022.
doi: 10.1016/j.automatica. 2017.04.058
doi: 10.1016/j.automatica. 2017.04.058
http://dx.doi.org/10.1016/j.automatica.2017.04.058
http://dx.doi.org/10.1016/0005-1098(95)00042-U
http://dx.doi.org/10.1109/TCST.2018.2880142
http://dx.doi.org/10.1016/j.engappai.2007.03.008
http://dx.doi.org/10.1007/978-94-007-7006-5

	Introduction
	Problem Description
	Restrictions and Flexibility in the Scheduling Problem
	Scheduling Objective
	Classification of the Scheduling Problem

	Model Generation
	Introduction to Petri Nets
	Modified Petri Net Dynamics
	Generation of the Discrete Time Petri Net Model
	Analysis and Discussion of the Discrete Time Petri Net Model

	Model Predictive Control
	Formulation of the Mpc Problem
	Feasibility of the Mpc Problem
	Completion of An Operation
	Mpc Formulation with Terminal Cost
	Completion of the Production Problem

	Numerical Examples
	Discussion
	Future Research Directions

	Conclusions
	
	References

