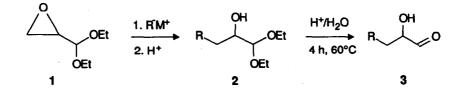
Preparation of Optically Pure L-2-Hydroxyaldehydes with Yeast Transketolase¹

Franz Effenberger*, Volker Null and Thomas Ziegler


Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, W-7000 Stuttgart 80, Germany

Abstract: L-2-Hydroxyaldehydes L-3 with a great variety of substituents in 3-position are obtained in good chemical and excellent optical yields by kinetic resolution in the transketolase-catalyzed reaction of racemic 2-hydroxyaldehydes with lithium hydroxypyruvate 4 where only the enantiomer (R)-3 reacts to 5-deoxy-D-xyluloses 5.

Exclusively the (R)-enantiomer of racemic 3-azido-2-hydroxypropanal reacts with lithium hydroxypyruvate 4 and yeast transketolase (EC 2.2.1.1) as catalyst to 5-azido-5-deoxy-D-xylulose;² from the reaction mixture the (S)-enantiomer can be isolated in good chemical yield and high optical purity.² A kinetic resolution of racemic 2-hydroxyaldehydes, which are interesting compounds for various syntheses,³ with transketolase as catalyst therefore can be reached. Transketolase-catalyzed kinetic separations of racemic 2-hydroxyaldehydes were mentioned in the literature,⁴ but were not yet used for the preparation of optically active α -hydroxyaldehydes.

In generally, optically active 2-hydroxyaldehydes can be synthesized by hydrogenation of the corresponding 2-hydroxycarboxylic acid derivatives.⁵ Several optically active 2-hydroxyaldehydes were obtained as their diethyl acetals via lipase-catalyzed kinetic resolution of racemic 2-acetoxyaldehyde diethyl acetals.⁶ Optically pure glyceraldehydes, important starting compounds for many syntheses,³ were obtained from natural sources. For example (R)-2,3-O-isopropylidene glyceraldehyde is accessible from D-mannitol and the corresponding (S)-enantiomer starting from L-ascorbic acid.⁷ (R)- and (S)-2-O-benzyl glyceraldehyde resp. which are less sensible to racemization can be obtained from the esters of D- or L-tartaric acid.⁸

From the racemic 2-hydroxyaldehydes 3a-g, used for the transketolase-catalyzed reactions, the aldehydes 3a, 3c, and 3g have not yet been described in the literature; they were obtained by regioselective ring opening of the easily accessible 2-(diethoxymethyl)oxirane⁹ 1 with the respective nucleophiles R⁻M⁺ (Table 1).

The regioselectivity of the oxirane ring opening is influenced by electronic and steric effects.¹⁰ With strong nucleophiles ring opening of 1 occurs exclusively in 3-position to give the acetals 2 which can be isolated and characterized. The hydroxyaldehydes 3 itself, however, received by acid catalyzed hydrolysis

from compounds 2 are obtained in aqueous solution as hydrates or as colorless dimers, for example 3a and 3g, whose structure has been established by mass spectrometry.¹¹

Table 1. Yields of Diacetals 2 and Hydroxyaldehydes 3 by Nucleophilic Ring Opening of the Oxirane 1 and Subsequent Hydrolysis

R-	M+		2 yield [%]	3 yield [%]		
PhCH ₂ O	Na	8	45	a	85a	
HS	к	С	95	с	92	
CN	к	g	60	g	96 ^a	

a Isolated as dimers.

Racemic 2-hydroxyaldehydes 3a-g react with lithium hydroxypyruvate 4 and yeast transketolase (EC 2.2.1.1) as catalyst to give the L-2-hydroxyaldehydes L-3a,b,d-g and the corresponding 5-substituted 5-deoxy-D-xyluloses 5a-g in good chemical yields and in excellent optical purity (Table 2).

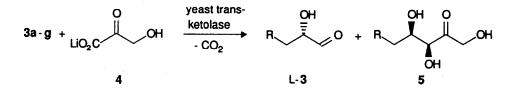


Table 2. Yeast Transketolase (TK)-Catalyzed Reaction of Racemic 2-Hydroxyaldehydes 3a-g with Equimolar Amounts of Lithium Hydroxypyruvate 4¹²

edu	cts, reactio	on conditions		L-3						5
		ТК	time		yield	ee	[α] _D ²⁰		yield	[α] _D ²⁰
3	R	[U/mmol 3]	[h]		[%]	[%]	(c, solvent)		[%]	(c, solvent)
3a	PhCH ₂ O	3.0	168	(S)-3a	75	98	+2.8°(0.25,CHCl ₃)	5a	79	-2.0° (1.0,CHCl ₃) ^a
3b	CH ₃ O	2.7	24	(S)- 3 b	72	99	-7.5° (0.6,D ₂ O)	5b	72	+5.1° (0.4,H ₂ O)
3c	SH	5.4	24	(R)-3c	-	-	-	5c	80	-116° (0.3,H ₂ O) ^b
3d	EtS	2.7	168	(R)-3d	52	99	-15.7° (0.3,H ₂ O)	5d	74	-37.5° (0.7,EtOH)°
3e	F	4.0	24	(R)-3e	71	96	-12° (1.0,H ₂ O)	5e	79	-2.4° (0.3,D ₂ O)
3f	CH ₃	1.7	84	(S)- 3f	50	99	-23.5° (1.0,H ₂ O)	5f	80	+9.5° (0.4,H ₂ O) ^d
3g	CN	1.9	24	(S)-3g	78	97	-22.8° (0.8,D ₂ O)	5g	82	+5.3° (3.6,D ₂ O)

a) $[\alpha]_{D}^{20} = -2.2^{\circ}$ (c = 0.98, CHCl₃).¹³ b) $[\alpha]_{D}^{20} = -103.8^{\circ}$ (c = 3.23, D₂O).¹⁴ c) $[\alpha]_{D}^{20} = -41^{\circ}$ (c = 0.9, EtOH).¹⁵ d) $[\alpha]_{D}^{20} = +6^{\circ}$ (c = 2.5, H₂O).¹⁶

5158

The highest conversion in the yeast transketolase-catalyzed reaction is achieved with lithium hydroxypyruyate 4 and racemic 2-hydroxyaldehydes 3 in equimolar ratio. Despite a partly deactivation of the enzyme, a subsequent addition of transketolase is not necessary. The course of the resolution of the racemic aldehydes 3 was followed either by derivatization (3a,b,d-g) or by measuring the optical rotation (3c). After incubation at 30°C at the pH optimum 7.6 of the enzyme¹⁷ the reactions were started by addition of the enzyme. The reactions were stopped by addition of Dowex 50WX8 H⁺ and Dowex 1X8 HCO₃⁻ when no change of concentration of 4 nor a change of α_D for L-3 is observed. The pure 2-hydroxyaldehydes L-3b.d-g and the 2-ketoses 5 were isolated by chromatography on Dowex 50WX8 Ca²⁺. In case of the reaction of 3c only the ketose 5c but not L-3c could be isolated. (S)-3a and 5a were obtained by extraction and perforation with diethyl ether or ethyl acetate followed by column chromatography on silica gel. The L-hydroxyaldehydes L-3 were converted into the corresponding diethyl acetals and the enantiomeric excess was determined by gas chromatography on a β -cyclodextrine phase. The enantiomerically pure hydroxyaldehydes L-3 are oily compounds; they do not dimerize in aqueous solution in contrast to the racemic aldehvdes 3.

Acknowledgement: This work was generously supported by the Deutsche Forschungsgemeinschaft.

References and Notes

- Enzyme-catalyzed Reactions, Part 12.- Part 11: Effenberger, F.; Stelzer, U. Angew. Chem. Int. Ed. Engl. 1. 1991. 30. 873-874.
- Ziegler, T.; Straub, A.; Effenberger, F. Angew. Chem. Int. Ed. Engl. 1988, 27, 716-717.
- 2. 3. Mulzer, J. (R)- and (S)-2,3-Isopropylidene Glyceraldehyde - "Unbiased" Chiral Starting Materials. In Organic Synthesis Highlights; Altenbach, H.-J.; Braun, M.; Krohn, K.; Reissig, H. Eds.; VCH-Verlagsgesellschaft: Weinheim, 1991; pp. 243-250.
- Bestmann, H.J.; Pecher, B.; Riemer, C. Synthesis 1991, 731-734. Bolte, J.; Demuynck, C.; Samaki, H. Tetrahedron Lett. 1987, 28, 5525-5528. 4.
- Bolte, J.; Demuynck, C.; Samaki, H. Tetrahedron Lett. 1987, 28, 5525-5528.
 Myles, D.C.; Andrulis III, P.J.; Whitesides, G.M. Tetrahedron Lett. 1991, 32, 4835-4838.
 Massad, S.K.; Hawkins, L.D.; Baker, D.C. J. Org. Chem. 1983, 48, 5180-5182.
 Hoppe, D.; Tarara, G.; Wilckens, M. Synthesis 1989, 83-88.
 Kobayashi, Y.; Takase, M.; Ito, Y.; Terashima, S. Bull. Chem. Soc. Jpn. 1989, 62, 3038-3040.
 Effenberger, F.; Hopf, M.; Ziegler, T.; Hudelmayer, J. Chem. Ber. 1991, 124, 1651-1659.
 Von der Osten, C.H.; Sinskey, A.J.; Barbas, C.F.; Pederson, R.L.; Wang, Y.-F.; Wong, C.-H. J. Am. Chem. Soc. 1989, 111, 3924-3927.
 Pederson, R.L.; Liu, K.K.-C.; Rutan, J.F.; Chen, L.; Wong, C.-H. J. Org. Chem. 1990, 55, 4897-4901.
 Fischer, H.O.L.; Baer, E. Helv. Chim. Acta 1936, 19, 519-532.
 Dumont R.: Pfander, H. Helv. Chim. Acta 1936, 66, 814-823. 5.
- 6.
- 7. Dumont, R.; Pfander, H. Helv. Chim. Acta 1983, 66, 814-823. Schmid, C.R.; Bryant, J.D.; Dowlatzedah, M.; Phillips, J.L.; Prather, D.E.; Schantz, R.D.; Sear, N.L.; Vianco, C.S. J. Org. Chem. 1991, 56, 4056-4058. Takano, S.; Numata, H.; Ogasawara, K. Heterocycles 1982, 19, 327-328.
- Jäger, V.; Wehner, V. Angew. Chem. Int. Ed. Engl. 1989, 28, 469-470. 8.
- Payne, G.B.; Deming, P.H.; Williams, P.H. J. Org. Chem. 1961, 26, 659-663.
- 10. Parker, R.E.; Isaacs, N.S. Chem. Rev. 1959, 59, 737-799.
- Behrens, C.H.; Sharpless, K.B. Aldrichimica Acta 1983, 16, 67-79.
- Racemic 3a (persilylated): MS (70 eV): Calc. 504.2363 Found 504.2360; m/z (%): 504 (0.06) [M⁺], 324 (0.32) [M⁺-2(CH₃)₃SiOH], 281 (2.6), 107 (11.2), 91 (100) [C₇H₇⁺]. Racemic 3g (persilylated): MS (70 eV): Calc. 342.1431 Found 342.1430; m/z (%): 341 (1.5), 191 (18.4), 156 (100). 11.
- Preparation of 2-hydroxyaldehydes L-3 and ketoses 5; general procedure: A freshly prepared solution of the corresponding aldehyde 3a-g, 4 (each 25 50 mM), MgCl₂ dihydrate and thiamine pyrophosphate in Tris-HCl buffer (0.5 M, pH 7.6) were incubated at 30°C. The reactions are started by addition of 12. yeast transketolase (EC 2.2.1.1) (Table 2). After the given time (Table 2) the reaction mixture is de-salted with Dowex 50WX 8 H⁺ and Dowex 1X8 HCO₃⁻. The solutions were concentrated and the products L-3 and 5 were separated by column chromatography on Dowex 50WX 8 Ca²⁺ (column 3 cm x 85 cm) with water as eluent. (S)-3a was reprocessed by extraction with diethyl ether and perforation of

(S)-**3a**

the aqueous phase with ethyl acetate within 48 h. The combined organic phases were dried (Na_2SO_4), concentrated and chromatographed on silica gel with methanol/dichloromethane/petroleum ether (1+2+4). All compounds gave correct elemental analyses and were characterized by 1H-NMR spectro-SCODV.

¹ H-NMR data (250 MHz, δ)
1.76 (s, 1 H, OH), 3.40-3.70 and 5.10-5.40 (m, 4 H, 1-,2-,3-H), 4.54 (s, 2 H, CH2Ph), 7.30-7.39 (m,
5 H, Ph)
3.40 (s, 3 H, CH ₃), 3.53 (dd, J _{2,3} =3.0 Hz, J _{3,3} =-10.5 Hz, 1 H, 3-H), 3.64 (dd, J _{2,3} =6.9 Hz, 1 H,
3-H), 3.69 (ddd, J _{1.2} =5.3 Hz, 1 H, 2-H), 4.93 (d, 1 H, 1-H)
1.25 (t, J=7.3 Hz, 3 H, CH ₃), 2.63 (q, 2 H, CH ₂ CH ₃), 2.65 (dd, J _{2,3} =8.5 Hz, J _{3,3} =-13.8 Hz, 1 H,
3-H), 2.88 (dd, J _{2,3} =3.6 Hz, 1 H, 3-H), 3.66 (ddd, J _{1,2} =5.1 Hz, 1 H, 2-H), 4.95 (d, 1 H, 1-H)
3.75 (dddd, $J_{F,2}=23.8$ Hz, $J_{2,3}=3.1$ Hz, $J_{2,3}=5.1$ Hz, $J_{1,2}=6.0$ Hz, 1 H, 2-H), 4.58 (dd, $J_{3,3}=-10.2$
Hz, $J_{F,3}$ =47.2 Hz, 1 H, 3-H), 4.63 (dd, 1 H, 3-H), 5.00 (d, 1 H, 1-H)
0.96 (t, 3 H, CH ₃), 1.40-1.80 (m, 2 H, CH ₂), 3.40-3.90 (m, 1 H, 2-H), 4.30-5.30 (m, 1 H, 1-H)
2.74 (dd, $J_{2,2}$ =-17.2 Hz, $J_{2,3}$ =7.2 Hz, 1 H, 2-H), 2.84 (dd, $J_{2,3}$ =4.5 Hz, 1 H, 2-H), 3.86 (dddd,
J _{3,4} =5.3 Hz, 1 H, 3-H), 4.97 (d, 1 H, 4-H)
1.70, 2.70, 3.00 (3s, 3 H, OH), 3.60-3.70 (m, 2 H, 5-H), 4.12 (m, 1 H, 4-H), 4.33 and 4.41 (AB
ATT 1 TT 4 40 (1 1 TT 2 TT 4 55 (- 2 TT (7/ DE) 7 20 7 40 (- 5 TT DE)

- (S)-3b 1 H, 1 H.
- (R)-3d Ð
- -10.2 (R)-3e
- -H) (S)-3f dd,
- (S)-3g
- (AB 5a system, 2 H, 1-H), 4.40 (d, 1 H, 3-H), 4.55 (s, 2 H, CH₂Ph), 7.30-7.40 (m, 5 H, Ph)
- 5b 3.38 (s, 3 H, CH₃), 3.53 (dd, J_{4.5}=7.2 Hz, J_{5.5}=-10.4 Hz, 1 H, 5-H), 3.60 (dd, J_{4.5}=5.2 Hz, 1 H, 5-H), 4.18 (ddd, J_{3,4}=2.5 Hz, 1 H, 4-H), 4.39 (d, 1 H, 3-H), 4.50, 4.60 (AB syst., J_{1,1}=-19.4 Hz, 2 H, 1-H)
- 2.63 (dd, $J_{4,5}$ =9.2 Hz, $J_{5,5}$ =-10.3 Hz, 1 H, 5-H), 3.08 (dd, $J_{4,5}$ =7.3 Hz, 1 H, 5-H), 3.66 (s, 2 H, 5c 1-H), 3.80 (d, J_{3,4}=9.4 Hz, 1 H, 3-H), 4.34 (ddd, 1 H, 4-H)
- 1.22 (t, J=7.4 Hz, 3 H, CH₃), 2.60 (q, 2 H, CH₂), 2.70 (dd, J_{4.5}=7.5 Hz, J_{5.5}=-13.8 Hz, 1 H, 5-H), 5d 2.73 (dd, J_{4,5}=6.6 Hz, 1 H, 5-H), 4.13 (ddd, J_{3,4}=2.2 Hz, 1 H, 4-H), 4.51 (d, 1 H, 3-H), 4.53, 4.62 (AB syst., J_{1,1}=-19.5 Hz, 2 H, 1-H)
- 4.33 (dddd, $J_{F,4}$ =15.9 Hz, $J_{4,5}$ =6.2 Hz, $J_{4,5}$ =5.0 Hz, $J_{3,4}$ =2.1 Hz, 1 H, 4-H), 4.49 (d, 1 H, 3-H), 5e 4.58 (ddd, J_{5,5}=-9.7 Hz, J_{F,5}=46.6 Hz, 1 H, 5-H), 4.65 (ddd, 1 H, 5-H), 4.56, 4.66 (AB syst., J_{1.1}=-19.5 Hz, 2 H, 1-H)

- 2.87 (d, 2 H, 2-H), 4.43 (d, J_{3,4}=2.3 Hz, 1 H, 4-H), 4.48 (ddd, 1 H, 3-H), 4.58, 4.68 (AB syst., 5g J_{6.6}=-19.6 Hz, 2 H, 6-H)
- Bednarski, M.D.; Simon, E.S.; Bischofberger, N.; Fessner, W.-D.; Kim, M.-J.; Lees, W.; Saito, T.; 13. Waldmann, H.; Whitesides, G.M. J. Am. Chem. Soc. 1989, 111, 627-635.
- Straub, A. Dissertation, Univ. Stuttgart 1989. 14.
- Jones, J.K.N.; Mitchell, D.L. Can. J. Chem. 1959, 37, 1561-1566. 15.
- Gorin, P.A.J.; Hough, L.; Jones, J.K.N. J. Chem. Soc. 1955, 2699-2705. 16.
- Kochetov, G.A. Methods Enzymol. 1982, 90, 209-223. 17.
- Datta, A.G.; Racker, E. J. Biol. Chem. 1961, 236, 624-628.

(Received in Germany 12 June 1992)

⁵f 0.93 (t, J_{5,6}=7.4 Hz, 3 H, CH₃), 1.58 (m, 2 H, CH₂), 3.89 (ddd, J_{4,5}=7.4 Hz, J_{4,5}=6.6 Hz, 1 H, 4-H), 4.34 (d, J_{3,4}=2.3 Hz, 1 H, 3-H), 4.48, 4.58 (AB syst., J_{1,1}=-19.4 Hz, 2 H, 1-H)