
M
aier

The human neuromuscular system consisting of skeletal muscles
and neural circuits is a complex system that is not yet fully understood.
Surface electromyography (EMG) can be used to study muscle
behavior from the outside.
Computer simulations with detailed biophysical models provide a non-
invasive tool to interpret EMG signals and gain new insights into the
system.

The numerical solution of such multi-scale models imposes high
computational work loads, which restricts their application to short
simulation time spans or coarse resolutions.
We tackled this challenge by providing scalable software employing
instruction-level and task-level parallelism, suitable numerical methods
and efficient data handling. We implemented a comprehensive, state-
of-the-art, multi-scale multi-physics model framework that can simulate
surface EMG signals and muscle contraction as a result of
neuromuscular stimulation.

This book describes the model framework and its numerical
discretization, develops new algorithms for mesh generation and
parallelization, covers the use and implementation of our software
OpenDiHu, and evaluates its computational performance in numerous
use cases.

Scalable Biophysical
Simulations of the
Neuromuscular System

Benjamin Maier
S

calab
le B

io
p

h
ysical S

im
u

latio
n

s
o

f th
e N

eu
ro

m
u

scu
lar S

ystem

Scalable Biophysical Simulations

of the Neuromuscular System

Vom Stuttgarter Zentrum für Simulationswissenschaften (SC SimTech) und

der Fakultät für Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart zur Erlangung der Würde eines Doktors

der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Benjamin Maier

aus Waiblingen

Hauptberichterin: Prof. Dr. Miriam Schulte

Mitberichter: Prof. Dr. Hans-Joachim Bungartz

Tag der mündlichen Prüfung: 22. Juni 2021

Institut für Parallele und Verteilte Systeme der Universität Stuttgart

2021

Benjamin Maier

Simulation of Large Systems

Institute for Parallel and Distributed Systems

University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany

Contact: maierbn+thesis@gmail.com

We acknowledge the support and are thankful for the fruitful collaboration with the following

institutions:

International Research Training Group “Soft Tissue Robotics”

Graduate School Simulation Technology

Group of Simulation of Large Systems,

Group of Scientific Computing,

Group of Usability and Sustainability of Simulation Software,

Institute for Parallel and Distributed Systems (IPVS), University of Stuttgart

Group of Computational Mathematics for Complex Simulation in Science and Engineering,

Institute of Applied Analysis and Numerical Simulation (IANS), University of Stuttgart

Group of Continuum Biomechanics and Mechanobiology,

Institute for Modelling and Simulation of Biomechanical Systems (IMSB), University of Stuttgart

High Performance Computing Center Stuttgart (HLRS)

Auckland Bioengineering Institute, University of Auckland, New Zealand

D 93 (dissertation)

Submitted to the University of Stuttgart

Copyright © 2021 Benjamin Maier.

This work is licensed under the

Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

mailto:maierbn+thesis@gmail.com
https://creativecommons.org/licenses/by/4.0/

v

Contents

Abstract/Kurzzusammenfassung vii

Publications ix

1 Introduction 1

1.1 Anatomy and Physiology of the Human Skeletal Muscle 3

1.2 Use-Cases and Requirements for Simulations Used in in-Silico Experiments 5

1.3 Related Work and Software . 7

1.4 The Multi-scale Model of the Neuromuscular System 12

1.5 Contributions and Scope of This Work . 14

2 Comparative Study: Modeling Upper Arm Movement 19

2.1 Introduction . 20

2.2 Experimental Study . 24

2.3 Models . 27

2.4 Results and Discussion . 36

2.5 Conclusion . 43

3 Generation of Meshes for the Multi-Scale Models 49

3.1 Overview and Notation of Required Meshes 50

3.2 Related Work . 52

3.3 Preprocessing of the Muscle Geometry . 58

3.4 Serial Algorithm to Create Muscle and Fiber Meshes 72

3.5 Parallel Algorithm to Create Muscle and Fiber Meshes 98

3.6 Results and Discussion . 122

3.7 Conclusion and Future Work . 140

4 Muscle Fibers and Motor Units 143

4.1 Introduction . 143

4.2 Method 1: Assignment of Motor Units to a Given Set of Fibers 147

4.3 Method 2: Assignment of Motor Units to a Selection of Fibers 153

4.4 Assignment of Different Motor Units for Neighboring Fibers 154

4.5 Results and Discussion . 155

4.6 Summary and Conclusion . 164

5 Models and Discretization 167

5.1 Electrophysiology Model Equations . 169

vi CONTENTS

5.2 Model of Muscle Contraction . 179

5.3 Discretization of the Electrophysiology Models 192

5.4 Discretization and Solution Approach for the Solid Mechanics Model . . . 208

6 Usage of the Software OpenDiHu 221

6.1 Design Goals . 221

6.2 Usage of OpenDiHu . 225

6.3 Usage of CellML Models . 249

6.4 Output File Formats . 262

7 Implementation of the Software OpenDiHu 273

7.1 Data Handling with PETSc . 273

7.2 Finite Element Matrices and Boundary Conditions 290

7.3 Parallel Partitioning and Subsampling of Meshes 311

7.4 Parallel Solver for the Fiber Based Electrophysiology Model 323

7.5 Parallel Solver for the Multidomain Electrophysiology Model 333

7.6 Computation of CellML Models . 342

7.7 Solid Mechanics Solver . 352

7.8 Data Mapping Between Meshes . 355

8 Numerical Results and Discussion 367

8.1 Solution of Poisson and Diffusion Problems 367

8.2 Simulation of Solid Mechanics Models . 370

8.3 Simulation of CellML Models . 380

8.4 Simulation of Fiber Based Electrophysiology 385

8.5 Simulation of the Multidomain Model . 419

8.6 Simulation of Coupled Electrophysiology and Solid Mechanics 429

9 Performance Analysis 447

9.1 Performance Studies with OpenCMISS Iron 447

9.2 Performance Studies of the Electrophysiology Solver in OpenDiHu 458

9.3 Parallel Strong Scaling and Comparison with OpenCMISS Iron 467

9.4 Performance Measurements on the GPU . 474

9.5 Parallel Scaling of the EMG Model Using High Performance Computing . . 480

9.6 Performance Studies of the Solid Mechanics Solver 485

9.7 Numerical Studies . 489

10 Conclusion and Future Work 497

10.1 Summary of this Work . 497

10.2 Summary of Main Findings . 499

10.3 Summary of Performance Results . 501

10.4 Outlook and Future Work . 502

Bibliography 505

vii

Abstract/Kurzzusammenfassung

Abstract

The human neuromuscular system consisting of skeletal muscles and neural circuits is a

complex system that is not yet fully understood. Surface electromyography (EMG) can

be used to study muscle behavior from the outside. Computer simulations with detailed

biophysical models provide a non-invasive tool to interpret EMG signals and gain new

insights into the system.

The numerical solution of such multi-scale models imposes high computational work

loads, which restricts their application to short simulation time spans or coarse resolutions.

We tackled this challenge by providing scalable software employing instruction-level and

task-level parallelism, suitable numerical methods and efficient data handling. We im-

plemented a comprehensive, state-of-the-art, multi-scale multi-physics model framework

that can simulate surface EMG signals and muscle contraction as a result of neuromuscular

stimulation.

This work describes the model framework and its numerical discretization, develops

new algorithms for mesh generation and parallelization, covers the use and implementa-

tion of our software OpenDiHu, and evaluates its computational performance in numerous

use cases.

We obtain a speedup of several hundred compared to a baseline solver from the litera-

ture and demonstrate, that our distributed-memory parallelization and the use of High

Performance Computing resources enables us to simulate muscular surface EMG of the

biceps brachii muscle with realistic muscle fiber counts of several hundred thousands.

We find that certain model effects are only visible with such high resolution.

In conclusion, our software contributes to more realistic simulations of the neuromuscu-

lar system and provides a tool for applied researchers to complement in vivo experiments

with in-silico studies. It can serve as a building block to set up comprehensive models for

more organs in the musculoskeletal system.

vii i ABSTRACT/KURZZUSAMMENFASSUNG

Kurzzusammenfassung

Beim neuromuskulären System, bestehend aus Skelettmuskeln und Nervenbahnen, han-

delt es sich um ein komplexes System, welches noch nicht komplett verstanden ist. Das

Muskelverhalten kann von außen durch Oberflächen-Elektromyografie (EMG) untersucht

werden. Computersimulationen mit detaillierten, biophysikalischen Modellen stellen ei-

ne nichtinvasive Methode dar, um EMG-Signale zu interpretieren und neue Erkenntnisse

über das System zu erlangen.

Die numerische Lösung solcher Mehrskalenmodelle erfordert eine große Rechenleis-

tung, sodass die Modelle nur für kurze Simulationszeitspannen oder grobe Auflösungen

geeignet sind. Wir lösen dieses Problem durch das Bereitstellen skalierbarer Software,

welche Parallelität auf Instruktions- und Taskebene ausnutzt, geeignete numerische Me-

thoden einsetzt und eine effiziente Datenverarbeitung sicherstellt. Wir setzen ein umfas-

sendes, dem Stand der Wissenschaft entsprechendes Mehrskalen- und Mehrphysik-Modell

um, welches Oberflächen-EMG-Signale simuliert und die Kontraktion eines Muskels als

Folge neuromuskulärer Stimulation berechnet.

Diese Arbeit beschreibt das Modell und seine numerische Diskretisierung, entwickelt

neue Algorithmen zur Gittererzeugung und Parallelisierung, behandelt die Anwendung

und Umsetzung unserer Software OpenDiHu und wertet ihre Berechnungseffizienz in

vielen Anwendungsbeispielen aus.

Wir erreichen eine um einen Faktor von mehreren Hundert schnellere Berechnung

verglichen mit einem Referenzlöser aus der Literatur. Unsere Parallelisierung für Parallel-

rechner mit verteiltem Speicher und die Verwendung von Hochleistungsrechnern erlauben

es uns, Oberflächen-EMG des Biceps Brachii mit einer realistischen Anzahl an Muskel-

fasern von mehreren Hunderttausend zu simulieren. Wir stellen fest, dass bestimmte

Modelleffekte nur mit solch hoher Auflösung sichtbar werden.

Unsere Software trägt zu realistischeren Simulationen des neuromuskulären Systems

bei und stellt ein Werkzeug für die angewandte Wissenschaft zur Verfügung, um In-vivo-

Experimente mit In-silico-Studien zu verknüpfen. Sie kann als Baustein zur Erstellung

umfassender Modelle für weitere Organe im muskuloskelettalen System dienen.

ix

Publications

The following publications discuss various topics that are covered in this thesis.

Peer-Reviewed Publications

[Bra18] Bradley, C. P.; Emamy, N.; Ertl, T.; Göddeke, D.; Hessenthaler, A.; Klotz, T.;

Krämer, A.; Krone, M.; Maier, B.; Mehl, M.; Rau, T.; Röhrle, O.: Enabling de-
tailed, biophysics-based skeletal muscle models on HPC systems, Frontiers in Physiology

9.816, 2018, doi:10.3389/fphys.2018.00816

[Mai19] Maier, B.; Emamy, N.; Krämer, A. S.; Mehl, M.: Highly parallel multi-physics simula-
tion of muscular activation and EMG, COUPLED PROBLEMS 2019, 2019, pp. 610–621,

isbn:978-84-949194-5-9, http://hdl.handle.net/2117/190149

[Mai21f] Maier, B.; Stach, M.; Mehl, M.: Real-time, dynamic simulation of deformable linear
objects with friction on a 2d surface, Mechatronics and Machine Vision in Practice 4,

2021, doi:10.1007/978-3-030-43703-9

[Wal20] Walter, J. R.; Saini, H.; Maier, B.; Mostashiri, N.; Aguayo, J. L.; Zarshenas, H.;

Hinze, C.; Shuva, S.; Köhler, J.; Sahrmann, A. S.; Chang, C.-m.; Csiszar, A.; Gal-

liani, S.; Cheng, L. K.; Röhrle, O.: Comparative study of a biomechanical model-based
and black-box approach for subject-specific movement prediction*, 2020 42nd Annual In-

ternational Conference of the IEEE Engineering in Medicine Biology Society (EMBC),

2020, pp. 4775–4778, doi:10.1109/EMBC44109.2020.9176600

Forthcoming Publications

[Krä21] Krämer, A.; Maier, B.; Rau, T.; Huber, F.; Klotz, T.; Ertl, T.; Göddeke, D.; Mehl, M.;

Reina, G.; Röhrle, O.: Multi-physics multi-scale HPC simulations of skeletal muscles
(accepted), High Performance Computing in Science and Engineering ’20, Transactions

of the High Performance Computing Center, Stuttgart (HLRS) 2020, ed. by Nagel, W.;

Kröner, D.; Resch, M., Springer International Publishing, 2021

[Mai21d] Maier, B.; Göddeke, D.; Huber, F.; Klotz, T.; Röhrle, O.; Schulte, M.: OpenDiHu -
Efficient and Scalable Software for Biophysical Simulations of the Neuromuscular System
(in preparation), Journal of Computational Physics, 2021

[Mai21e] Maier, B.; Mehl, M.: Mesh generation and multi-scale simulation of a contracting
muscle-tendon complex (under review), Journal of Computational Science, 2021

[Mai22] Maier, B.; Schneider, D.; Schulte, M.; Uekermann, B.: Bridging scales with volume
coupling – scalable simulations of muscle contraction and electromyography (under
review), High Performance Computing in Science and Engineering ’21, 2022

https://doi.org/10.3389/fphys.2018.00816
https://www.amazon.com/s/?field-keywords=978-84-949194-5-9
http://hdl.handle.net/2117/190149
https://doi.org/10.1007/978-3-030-43703-9
https://doi.org/10.1109/EMBC44109.2020.9176600

x PUBLICATIONS

Source Code and Data

The most recent version of the OpenDiHu software is made available in the GitHub

repository at https://github.com/maierbn/opendihu. The released version and the

packaged data that are needed to reproduce the results in this work, containing, e.g.,

mesh files and CellML models, are given below.

[Mai21a] Maier, B.: Input data for OpenDiHu simulations, version 1.3, Zenodo, 2021, doi:

10.5281/zenodo.4705945, https://doi.org/10.5281/zenodo.4705945

[Mai21b] Maier, B.: OpenDiHu, version 1.3, Zenodo, 2021, doi:10.5281/zenodo.4706049, https:

//doi.org/10.5281/zenodo.4706049

https://github.com/maierbn/opendihu
https://doi.org/10.5281/zenodo.4705945
https://doi.org/10.5281/zenodo.4705945
https://doi.org/10.5281/zenodo.4705945
https://doi.org/10.5281/zenodo.4706049
https://doi.org/10.5281/zenodo.4706049
https://doi.org/10.5281/zenodo.4706049

1

Chapter 1

Introduction

Tying the shoestrings, running to catch the train, quickly slipping through the closing door,

and then lifting a heavy suitcase to the luggage rack over the seat—all actions that are only

possible because of the versatility of the musculoskeletal system. Voluntary contractions

of skeletal muscles enable humans to perform a variety of tasks: finely controlled and

coordinated actions, endurance tasks, fast and vigorous actions, and exercises requiring

high forces.

Moreover, skeletal muscles are able to be trained and adapt to requirements, can self-

repair, and usually keep their capabilities for an entire lifetime. Understanding this

remarkable system that has evolved over millions of years can advance both engineering

and healthcare.

From an engineering view, derived biomimetic systems such as powered exoskele-

tons or robot arms with muscle-like actuators exhibit promising properties such as being

lightweight, inexpensive, resilient, damage tolerant, noiseless, and agile and, thus, are

potentially emerging field in robotics and medicine [Bar03; Bar04; Mir18].

In the fields of healthcare and medicine, research is interested in obtaining a better

understanding of muscular diseases such as muscular dystrophies [Eme02]. Studies show

that disabling inherited neuromuscular diseases are prevalent in 1 out of 3500 of the

population [Eme91]. However, for most of the neuromuscular disorders no cure is known

and treatment focuses on reducing symptoms [Eme02; Hei15]. Developing treatments

to neuromuscular disorders is only possible with an extensive understanding of the neu-

romuscular system. Similarly, for diagnosing the type of disorder from symptoms and

clinically available examination tools such as electromyographic recordings, a compre-

hensive understanding of muscle physiology is needed.

Surface electromyography (sEMG) measures the temporally changing electric potentials

on the skin surface that are induced by activation of the muscle fibers [Mer04]. It is

2 CHAPTER 1: INTRODUCTION

one of the few non-invasive diagnostic tools to gain insights into the functioning of

the neuromuscular system. High-density surface EMG (HD-sEMG) involves the signal

acquisition by an array of electrodes on the skin surface and, thus, enriches the traditional,

monopolar EMG by spatial information about the muscular activity.

Another application, where insights into the neuromuscular system advance technology,

bridges the two fields of engineering and healthcare: Exoskeletons for rehabilitation, e.g.,

of stroke patients, can be controlled by sEMG or HD-sEMG signals from the patients to

accurately support the intended movements (e.g., [Leo15; Mul05; And05]).

Despite the need to gain comprehensive insights, experimental in vivo investigations of

the neuromuscular system have severe limitations: Boundary conditions, such as contrac-

tion velocities, often cannot be accurately controlled, studies are not repeatable because

of fatigue effects, material parameters of individual subjects are not known and cannot

be measured precisely, and the quantities of interest, such as activation values and active

stresses cannot be measured easily. Moreover, experiments are strongly limited to the

ethical bounds of natural movements.

A controlled environment for such investigations can be provided by in silico experi-

ments, i.e., using computer simulations. The main advantages of using simulations are

unlimited access to all computed quantities, reproducibility, and freedom in the experi-

mental protocol. With appropriate models, predictions can be made even for pathological

conditions.

Employing in silico experiments demands a careful formulation and composition of

mathematical models, using experimentally found evidence about the functioning of

various aspects in the muscular system. Once a model is set up, its execution requires

suitable numerical methods and efficient implementation to utilize the available compute

hardware in the best way.

This work discusses these numerical methods and their efficient implementation on

parallel hardware. The present chapter introduces the fundamentals: Section 1.1 presents

the basic anatomy and physiology of a skeletal muscle. Section 1.2 takes a closer look

at the application of the in silico laboratory and derives requirements on the simulation

technology. Section 1.3 outlines the current state of the art in skeletal muscle simulation.

One of the most promising model frameworks that we use is described in more detail in

Sec. 1.4 before contributions of this work are summarized in Sec. 1.5.

1.1 ANATOMY AND PHYSIOLOGY OF THE HUMAN SKELETAL MUSCLE 3

tendon

muscle

fascicle

muscle fiber

sarcomere

Figure 1.1: Hierarchical structure of a skeletal muscle consisting of fascicles, muscle fibers

and sarcomeres.

1.1 Anatomy and Physiology of the Human Skeletal

Muscle

Skeletal muscles have a hierarchical structure as shown in Fig. 1.1. On the macroscopic

level, fibro-elastic tendons connect the muscle to the skeletal system. The muscle is

composed of tens of fascicles with the exact number strongly depending on the muscle

(numbers according to [Mac06]). Each fascicle contains between ten and 10,000 muscle

fibers, yielding a total of up to one million fibers in a muscle. Each muscle fiber usually

runs through the whole length of the muscle. A muscle fiber consists of numerous parallel

myofibrils, which each consists of series of sarcomeres, the smallest contractile unit of a

muscle. A muscle fiber contains approximately 50,000 sarcomeres and, thus, there are

from millions up to billions of sarcomeres in a whole muscle.

The contraction of the muscle is controlled by motor neurons in the spinal cord. The

axons of each alpha motor neuron innervate multiple fibers in the muscle. In consequence,

all connected fibers are always activated simultaneously. The set of fibers together with

their motor neuron form a motor unit (MU).

The neuromuscular junctions where the axons innervate the muscle fibers are mostly

located in a band within the mid-belly of the muscle [Chi04]. Upon activation of a muscle

fiber, an electric stimulus, the action potential, travels from the neuromuscular junction

towards both ends of the muscle. The action potential triggers subcellular processes and

leads to force generation in the sarcomeres. The fibers are electrically isolated to each

other but mechanically coupled through the fascicles and the extracellular matrix.

4 CHAPTER 1: INTRODUCTION

Figure 1.2: Action potentials over time at a fixed point on a muscle fiber, calculated by

the monodomain equation with a subcellular model of Hodgkin and Huxley

using the software OpenDiHu (More details are given in later sections.).

The propagation of action potentials is governed by ionic currents through ion channels

in the fiber membranes and is driven by ion pumps and the activation and deactivation of

the ion channels. Figure 1.2 shows the shapes of two subsequent action potentials over

time at a fixed point on a muscle fiber. The transmembrane potential Vm initially equals

its resting state of −75mV. After stimulation occurs, the potential rapidly depolarizes to

a maximum value of approximately 30mV, followed by the repolarization and a small

overshoot, before returning to the resting potential. After approximately 30ms, the

system is again in equilibrium, and the action potential induced by the next stimulus has

the exact same shape.

The MUs are activated according to the size principle, starting with the smallest ones

that connect to the least fibers and successively adding larger MUs [Mil73]. The amount

of muscle activation is controlled by the number of MUs and the rate-encoded stimulation

signals for every MU. This finely controlled level is further modulated by the feedback

loops of the neuromuscular system. Sensory organs are located within the muscle sense

stretch, contraction velocity, and forces and influence the motor neuron pool. A more

elaborate description of the anatomy and physiology of the neuromuscular system can

be found in the book of MacIntosh et al. [Mac06].

Considering the origin of EMG signals, all action potentials on the muscle fibers con-

tribute to the electric potential in the muscle volume. While electric conduction is directed

inside the muscle fibers, anisotropic conduction occurs in the volume of extracellular

space. In addition, electric conduction in adipose tissue above the muscle belly influences

the electric potential on the skin surface, which can be measured by EMG.

1.2 USE-CASES AND REQUIREMENTS FOR SIMULATIONS USED IN IN-SILICO

EXPERIMENTS
5

1.2 Use-Cases and Requirements for Simulations

Used in in-Silico Experiments

With a basic understanding of the physiology of the neuromuscular system, we can now

define use-cases for in-silico experiments and derive the requirements for models and

simulation software.

A simulation should be able to accurately predict the response of the neuromuscular

system to different recruitment strategies of the MUs. Also, different organizations of

muscle fibers in MUs could be investigated. Similarly, the sensory feedback loop within a

single muscle is by far not yet fully understood. Various assumptions could be tested in

simulations, and the resulting force and EMG outputs could be compared to experiments.

By complementing in vivo and in silico experiments, more comprehensive insights can be

generated.

A second use case for simulations of the neuromuscular system lies in the decompo-

sition of EMG recordings. Traditionally, signal processing techniques are used to draw

conclusions from EMG data [Mer04; Far10]. Decomposition algorithms exist that identify

discharge patterns of individual motor units in HD-sEMG and additively decompose the

recording [De 06; Naw10; Hol07b]. Novel, data-based techniques exist that employ deep

learning methods [Cla21].

However, these techniques have limitations. The recorded signals are typically weak

and noisy because of the layer of body fat between the muscle and the EMG electrodes.

Cross-talk from adjacent muscles and destructive interference between signals of spatially

close muscle fibers make the decomposition more difficult. Often, only isometric con-

tractions can be considered in experiments since large movements of the muscles with

respect to the electrodes would add additional uncertainties to the recorded signal.

Simulations can provide a controlled testing environment for such EMG decomposition

algorithms. For data-based methods, simulations are unavoidable to generate training

and validation data.

The listed use-cases for in-silico experiments demand detailed, biophysically informed

models. Phenomenological descriptions cannot predict unseen scenarios or pathological

conditions. The hypotheses to test related to MU organizations, recruitment, or sensory

feedback have to reflect in the choice of the model description. A suitable model usually

needs to take into account the multi-scale nature of the neuromuscular system. The

6 CHAPTER 1: INTRODUCTION

geometric structure of muscle fibers embedded in the muscle belly and the layer of adipose

tissue have to be part of accurate models.

Multi-scale multi-physics simulations with high resolutions involve high computational

loads. The simulated processes on a molecular scale, e.g., in the sarcomere require

small timestep widths in the range of microseconds. At the same time, macroscopic

quantities such as EMG signals and muscle contraction should be computed, leading to

desired overall simulation time spans in the range of seconds. Fine three-dimensional

(3D) meshes are needed to achieve high spatial resolutions. To resolve individual muscle

fibers, additional one-dimensional (1D) fiber meshes are considered.

To account for fine resolutions and a high number of timesteps in an acceptable runtime,

the potential of today’s and tomorrow’s computer hardware has to be fully exploited. This

requires task-level and instruction-level parallelism. For example, the latest processor

of the Intel Core X series (the Intel Core i9-10980XE Extreme Edition Processor), which

is listed at a customer price below $1000 contains 18 hardware cores, allowing to run

16 tasks in parallel. It supports Intel AVX-512, a technology with which eight double

precision floating point operations can be executed per instruction. In a higher price

segment, it is, e.g., possible to combine two AMD EPYC 7742 server processors into a

shared memory compute node with 128 cores. Distributed memory clusters allow the

combination of almost any number of compute nodes to achieve higher total core counts.

The supercomputer Hawk at the High Performance Computing Center Stuttgart combines

5632 of the mentioned AMD nodes into an overall cluster of 720 896 cores.

Thus, a requirement to the simulation software is to be able to run on distributed

memory computer systems. This requires efficient data management and a domain de-

composition approach where the computational domain is partitioned into one subdomain

for each process. Highly parallel domain decomposition requires appropriately structured

meshes and efficient parallel linear solvers. At the same time, muscle geometries obtained

from medical imaging should be used to obtain a realistic setting. In a preprocessing step,

the required highly resolved meshes have to be generated from imaging datasets.

A highly resolved simulation model can be used to estimate the accuracy of reduced

models that do not include all biophysical processes or have reduced spatial resolutions.

The advantage of such reduced models is that they can be solved with lower resources

or in shorter runtimes. To assess the error of the reduced resolution, comparisons with

results of the full model can be carried out. In this sense, the full model should be able to

be used with a realistic number in the order of several 100000 muscle fibers and hundreds

of MUs to allow for a comparison with simulations of smaller numbers of fibers.

1.3 RELATED WORK AND SOFTWARE 7

Highly resolved simulations are known to exhibit numerical instabilities, poor condi-

tioning, or other causes for divergence in the numerical solvers. Therefore, numerical

schemes have to be chosen carefully. At the same time, timestep widths can be increased

and runtimes reduced by choosing, e.g., second order timestepping schemes instead of

first order schemes.

Another important requirement of the simulation software can be formulated from the

user’s perspective. Configuring a simulation and exchanging material and numerical pa-

rameters should be possible in a convenient way. Simulation results should be accessible

in various established file formats, to be examined in dedicated visualization software

or used in further post-processing. On the modeling side, comprehensive state-of-the-

art models should be implemented while maintaining the possibility to extend given

multi-scale models later on as research advances. Standards in the biochemical model-

ing community should be respected and incorporated, such as the description language

CellML [Cue03; Llo04] for subcellular models. To find the most suited numerical solvers,

the software should be flexible enough to, e.g., easily exchange timestepping schemes or

employ different linear system solvers.

Our contribution is to implement and employ software that fulfills all these require-

ments. We aim at simulating EMG and muscle contraction with detailed, biophysically

informed multi-scale models. The software runs efficiently on the previously described

hardware, ranging from workstation computers to supercomputers.

1.3 Related Work and Software

In the following, we give an overview of existing approaches for modeling the neuromus-

cular system. The overview involves literature and software frameworks and focuses on

the multi-scale model that is the basis for the present work. For a recent, comprehensive

review on all aspects of neuromuscular modeling, we refer to [Röh19].

1.3.1 Related Work

The lowest computational effort is required when analytically solvable models are used to

simulate skeletal muscle forces. The twitch force of a single motor unit can be described by

the impulse response of a critically damped, second-order system, for which an analytical

8 CHAPTER 1: INTRODUCTION

solution exists. For the given superposition of all motor unit action potentials, the transient

output force of the muscle is computed [Cis08; Did10].

On the next level of detail, phenomenological Hill-type muscle models, which have to

be solved numerically are used to describe muscle forces along a one-dimensional line of

action. They are often used for systemic simulations of larger parts of the musculoskeletal

system [Zaj89; Del07; Hae14; Bay17]. We use Hill-type models in our case study on pre-

dicting forces of the upper arm. However, this type of model is not suited for simulations

of EMG and neglects structural properties of the muscle tissue.

While phenomenological models describe a whole muscle by only a few parameters,

continuum-based models exist that also take into account structural features and spatial

heterogeneity [Joh00; Ble05a; Röh07; Böl08].

A commonly used approach to model muscle contraction in continuum-mechanics is

to additively compose the stress tensor of a passive and an active stress term [Ble05b;

Joh00; Röh08]. The passive muscle behavior can be parametrized using experimentally

found relations, though this is challenging in practice [Böl12; Tak13; Van08; Van06].

Multi-scale models exist that combine formulations of continuum-mechanics with a

description of electrophysiology [Röh08; Röh12; Hei13; Her13]. These models couple

various physical phenomena that occur on different temporal and spatial scales on cell,

tissue and organ levels, such as subcellular ion dynamics in scales of milliseconds and

micrometers and mechanical stresses and electric potentials in scales of seconds and

multiple centimeters.

Model order reduction techniques and surrogate modeling have been applied to these

complex, full models to speed up the computations [Mor17; Val18].

EMG signals of activated muscles can be computed by volume conductor models

[Mes13]. Both analytic [Dim98; Far01; Mes06] and numerical methods exist [Low02;

Mor15; Mor17; Klo20].

We combine existing multi-scale models of electrophysiology, muscle contraction and

generation of EMG with different subcellular models and electrophysiology formulations

as well as motor neuron and afferent feedback models to form a novel, comprehensive

multi-scale modeling framework for the neuromuscular system. We solve these mod-

els using numerically efficient schemes that are implemented in our unified simulation

software environment named OpenDiHu.

1.3 RELATED WORK AND SOFTWARE 9

1.3.2 Related Software

Few software packages exist in the open source world that can be used for compre-

hensive multi-scale modeling of the neuromuscular system. In the following, CellML,

OpenCMISS, Chaste, FEBio, and the generic frameworks OpenFOAM and FEniCS will be

briefly evaluated.

A useful and widespread technology for biochemical models is CellML [Cue03; Llo04].

The open standard CellML language allows defining differential-algebraic equations with

physical units. It can be used to develop mathematical descriptions of biophysical pro-

cesses such as subcellular or neuron models. The description language has also been used

for broader applications, e.g., for constitutive material laws.

CellML provides an online repository where mathematical models and metadata such

as figures and related publications are collected. The models can be downloaded as code

in various formats and programming languages. Existing models can be combined into

new models in a hierarchical manner. Dedicated modeling environments for CellML

models exist. As an example, OpenCOR [Gar15] can be used to edit, simulate and

visualize CellML models. Moreover, application programming interfaces (APIs) exist,

which provide low-level access to models in CellML format and allow software frameworks

to integrate CellML functionality. Among the software frameworks with CellML support

are OpenCMISS and Chaste.

OpenCMISS (Continuum Mechanics, Imaging, Signal processing, and System identifi-

cation) [Bra11] provides a set of open source libraries and applications for modeling and

visualization of bioengineering problems. The frameworks allow using CellML models

[Nic14]. OpenCMISS Iron, the computational engine, can solve finite element models,

discretized also with higher order elements and using Cartesian or curvilinear coordi-

nates. For example, the ventricles of the heart were modeled with a low number of

cubic Hermite elements in a prolate spheroidal coordinate frame [Smi04]. Various nested

timestepping loops and solvers can be configured to create multi-scale models.

The library is programmed largely in the Fortran-90 standard, wrappers for the Python

programming language can be automatically generated. It supports parallel execution

on distributed memory systems.

The development of OpenCMISS Iron started in 2005 as a rewrite of the computational

modeling tool CMISS, whose history dates back to 1980. It is part of the Physiome

Project, an international collaborative open-source effort to provide a public domain

10 CHAPTER 1: INTRODUCTION

framework for computational physiology [Hun04]. OpenCMISS has been used for multi-

scale modeling of the lungs and heart [Smi04], vascular and thermoregulatory system

[Lad16; Gha20] and skeletal muscle [Hei13].

The “Cancer, Heart, and Soft Tissue Environment” (Chaste) is an open source C++

library targeted at simulations of physiology and biology in general [Mir13]. The code

development is driven by cardiac electrophysiology and cancer growth simulations, but

the framework is also capable of solving ordinary and partial differential equations from

other fields. This involves solvers for CellML models, which have been used to simulate

cellular cardiac electrophysiology [Coo15].

Chaste [Coo15] also uses the approach of first converting a CellML description into

C++ code using the tool PyCml [Coo06]. Chaste features adaptive timestepping solvers

such as the CVODE solver from the SUNDIALS package [Coh96] and infers analytic Ja-

cobians from the model equations. The CellML support of Chaste targets “automated

use” by automatically inferring standard variable names, e.g., for membrane voltage and

stimulation current.

While cardiac and skeletal muscle tissue is similar with respect to its multi-scale struc-

ture, significant differences exist regarding electrophysiology and recruitment of MUs. On

cardiac tissue, propagation of action potentials occurs uniformly on a three-dimensional

domain, whereas in the skeletal muscle, a multitude of electrically isolated one-dimensional

muscle fibers are recruited independently. Thus, significant development efforts are

needed to transform a cardiac simulation into a simulation of skeletal muscles.

In contrast to OpenCMISS Iron, Chaste advertises its test-driven development process

to ensure code quality, correctness and reusability [Pit09]. Similar to Iron, the Chaste

code runs in parallel on distributed memory systems and uses external numeric libraries

for linear system solvers. It also implements a solver for 3D incompressible nonlinear

elasticity, which is needed for simulating muscle contraction. However, this solver is not

yet parallelized.

A simulation tool specialized in the field of biomechanics is the FEBio project [Maa12;

Maa17]. It provides an advanced finite element solver for continuum mechanics of mus-

cle tissue and implements a well-documented library of material models, from basic to

advanced and state-of-the-art models. The most recent version includes graphical pre-

processing and post-processing tools. Whereas OpenCMISS Iron and Chaste require some

knowledge of programming and command line usage, FEBio can be used right away also

by application scientists. Unlike OpenCMISS and Chaste, FEBio only runs in parallel on

shared memory computers, which makes it unsuited for High Performance Computing.

1.3 RELATED WORK AND SOFTWARE 11

FEBio contains no electrophysiology models. Prescribing different levels of activation

at different locations in a muscle currently is only possible by a workaround of defining

separate materials for every finite element. However, FEBio is extensible by user-defined

plugins, and multi-scale models would have to be implemented in this way.

More generic simulation frameworks exist that can also be considered for simulations

of the musculoskeletal system.

OpenFOAM [Jas07] is a well-known C++ software framework that provides methods

for “Field Operation And Manipulation”. It is mainly designed for continuum mechanics

problems in the field of computational fluid dynamics and uses the finite volume method.

This method can also be used to solve nonlinear solid mechanics problems [Car14].

Another established general framework for solving partial differential equations is

FEniCS [Aln15]. It provides a high-level Python interface to directly describe the model

in variational form using predefined operators. Then, it derives finite element discretiza-

tions, which it is also able to solve in parallel.

Advantages of such generic frameworks are their mature and efficient solvers and

infrastructure such as output file formats and their comprehensive documentation and

support. Disadvantages are the missing domain-specific functionality. For example, no

solvers for CellML models exist in OpenFOAM and FEniCS. For FEniCS, all existing parts

of the desired multi-scale model would have to be formulated in the unified form lan-

guage. This task needs a more in-depth understanding of the framework for the special

requirements of the complex model, e.g., the dynamic, incompressible, nonlinear solid

mechanics muscle contraction model with active stress contribution, for which mixed

finite element formulations and possibly special numerical preconditioners and solvers

are needed. This relativizes the advantages of the high-level interface. Furthermore, in

generic frameworks, it is more difficult to bring own problem-specific contributions to

the core code trunk to make them publicly available and reusable.

Therefore, we select OpenCMISS Iron as the starting point for implementing multi-scale

models. We use the multi-scale chemo-electro-mechanical model that was introduced in

[Röh12] and initially implemented in the software OpenCMISS for the tibialis anterior

muscle [Hei13]. However, this implementation did not fully exploit the parallel capabili-

ties of Iron as it was hard-coded for four processes. We remove this restriction and further

improve runtimes of the existing electrophysiology model by implementing second order

timestepping schemes.

12 CHAPTER 1: INTRODUCTION

We evaluate the performance regarding parallel scaling and memory consumption on a

supercomputer. While the performance is good for small degrees of parallelism, we see an

unavoidable barrier for larger parallelism and High Performance Computing (HPC). This

barrier arises due to fundamental design decisions in the memory layout and is difficult

to overcome in the existing OpenCMISS Iron code.

Furthermore, some of the functionality we require for our multi-scale framework is not

available: Arbitrary data mapping between meshes is needed for a 3D muscle domain

with embedded 1D fibers. Output files use a text-based format that is not suited for

HPC, established parallel file formats such as defined by VTK or ADIOS are not available.

The nonlinear mechanics solver can only solve static problems. At the same time, the

implementation assumes generic coordinate frames and element shapes, which are not

necessarily needed in our models. Due to the lack of modern programming language

features such as object-orientation and polymorphism, it is very difficult to extend the

solid mechanics solver to a fully dynamic formulation.

Therefore, we move the existing models to the new code base OpenDiHu and expand

the multi-scale framework by new model components. This gives us the flexibility to

implement all requirements listed in Sec. 1.2 and target towards HPC from the begin-

ning. For compatibility, OpenDiHu can write the same output file format as OpenCMISS.

Furthermore, an adapter in OpenDiHu allows to integrate the FEBio mechanics solver

with the electrophysiology solver of OpenDiHu.

1.4 The Multi-scale Model of the Neuromuscular

System

Next, we briefly describe the existing multi-scale model framework that we base our work

on. The chemo-electro-mechanical model was introduced by [Röh12] and described in

more detail in [Hei13] and [Hei15]. It has been used to investigate different muscle fibers

lengths [Hei14] and later was enhanced by also modeling actin-titin interactions [Hei16].

The work of [Mor15] extended the framework by a description of EMG signals.

This model reflects the structural and functional aspects of skeletal muscle tissue and

describes its mechanical and electrophysiological properties. Different biophysical pro-

cesses are realized by sub-models that are linked together to form the overall multi-scale

and multi-physics model.

1.4 THE MULTI-SCALE MODEL OF THE NEUROMUSCULAR SYSTEM 13

(a) (b) (c)

Figure 1.3: Modeling skeletal muscle physiology: From the anatomy (a) over a multi-scale

discretization (b) to the multi-physics model (c) of [Röh12].

Figure 1.3 visualizes the model structure. Figure 1.3 (a) depicts the hierarchical skeletal

muscle anatomy consisting of muscle, muscle fibers and sarcomeres. Figure 1.3 (b) shows

the finite element discretization of these three scales. The muscle is represented by a 3D

mesh of hexahedral elements (green). Muscle fibers are modeled as 1D fiber meshes (red)

that are embedded in the muscle domain. The nodes of the fiber meshes are locations of

0D sarcomere models (yellow). Figure 1.3 (b) depicts them only for one fiber, however,

the nodes of all fibers feature instances of this model. The cube-shaped 3D domain was

chosen for the sake of a clear visualization, our simulations use real muscle geometries

instead.

Figure 1.3 (c) shows details of the model parts and their exchanged physical quantities.

In summary, the model consists of 3D, 1D, and 0D components, which are given in

different colors. The green, blue, red, and yellow colors are used throughout this work

to indicate these sub-models or the three different spatial scales.

The continuum mechanics model describes muscle contraction and is defined on the 3D

mesh. The same mesh is also used for computing the 3D electric potential fields within the

volume. The deforming 3D muscle domain defines the geometry, i.e., node positions x of

the embedded 1D fibers meshes. The 1D fiber activation model computes the propagation

of action potentials on every fiber. It is strongly coupled via the transmembrane voltage Vm

to the 0D force generation model on the sarcomeres, which is also called the subcellular

model. It depends on the length ℓHS of the half-sarcomere and the contraction velocity

ℓ̇HS. These quantities are computed in the 3D model and mapped to the 0D points. The

result of the subcellular model is the activation parameter γ that is homogenized and

used as input for the active stress term in the 3D continuum mechanics model.

14 CHAPTER 1: INTRODUCTION

1.5 Contributions and Scope of This Work

In the following, we give a summarizing preview of the main contributions of this work

to the world of existing in-silico models and tools. The contributions include:

(i) Model extensions. In addition to the previously existing model components depicted

in Fig. 1.3 (c), we add a mesh for adipose tissue to simulate EMG signals on the skin

surface. The corresponding model was formulated by [Mor15], however, it has not

been implemented together with the other components in a simulation program prior

to our work.

Furthermore, we add the multidomain model [Klo20], an alternative homogenized 3D

description of electrophysiology that can replace the 1D fiber activation model and the

3D electric potential in Fig. 1.3 (c).

Recruitment of the muscle fibers was previously done in a preprocessing step by simu-

lating motor neuron models such as [Cis08; Neg11]. In OpenDiHu, we explicitly couple

models of the motor neuron pool as well as models of sensory organs such as muscle

spindles and Golgi tendon organs. This allows us to close the loop of afferent neural

feedback.

Another extension is the consideration of tendons together with the contracting muscle.

We add separate models and meshes for the tendons that are mechanically coupled to

the muscle belly.

The previous quasi-static mechanics formulation in OpenCMISS Iron is also imple-

mented in OpenDiHu and extended to a fully dynamic formulation. Instead of a nu-

merical approximation of the Jacobian matrix in the nonlinear system in Iron, we

automatically derive an analytic description in OpenDiHu. This significantly reduces

the runtime and allows simulating finer meshes than is possible with OpenCMISS.

Current limitations among the implemented models are convergence difficulties for

solid mechanics problems with more than approximately 1000 elements. These are

not a result of the implementation but a numerical problem and could be addressed by

different nonlinear solver schemes in the future.

Whereas the computation using the fiber based description of electrophysiology is close

to its optimum performance and scales near-optimally for any degree of parallelism

and number of fibers, the corresponding multidomain implementation exhibits high

memory consumption, is less robust with respect to numerical errors and more difficult

1.5 CONTRIBUTIONS AND SCOPE OF THIS WORK 15

to parallelize. This restricts its application to approximately 20 motor units, 128 pro-

cesses, and timespans of below a second. If scenarios above these limits are required,

the fiber based models should be used.

(ii) Preprocessing Algorithms. A serial and a parallel algorithm are developed to generate

the high-quality 1D and 3D meshes that are required for the simulation from imaging

data. The algorithms are applied on the biceps and triceps brachii muscles.

Furthermore, a method is derived to assign fibers to motor units according to physi-

ological properties. Both implementations are made publicly available together with

the open-source software OpenDiHu.

(iii) Improvements in OpenCMISS Iron. Improvements include the parallelization to

an arbitrary number of cores of the existing implementation of the chemo-electro-

mechanical model, an algorithmic improvement from quadratic to linear time com-

plexity in the homogenization functionality of the activation parameter and the in-

troduction of configuration files such that different parametrizations can be simulated

without recompiling. Further, numerical experiments concerning employed solvers and

timestep widths are conducted. The revised choices, e.g., a conjugate gradient scheme

instead of the GMRES solver lead to faster computation times.

(iv) Development of OpenDiHu. Implementation of an efficient, flexible framework for

simulating the full models of surface EMG, muscle contraction as well as subsets of the

mathematical multi-scale modeling framework. The software can employ CPUs and

GPUs and run on small workstation computers, compute clusters, and supercomputers.

As this is the most comprehensive contribution, we refer to the implementation and

results chapters, Chapters 7 and 8 for details. Highlights are the simulation of EMG

signals with 270000 muscle fibers on 27 000 cores of the supercomputer Hazel Hen

and an overall speedup factor of 200 with respect to the community standard software

OpenCMISS Iron.

Figure 1.4 shows two snapshots of a simulation that are characteristic for this work:

Figure 1.4a depicts the biceps brachii muscle with a body fat layer. The muscle belly and

the fat layer are discretized by nodes and partitioned to multiple processes, indicated

by different colors. Figure 1.4b shows a simulation of EMG signals on the skin surface.

Solutions of the electrophysiology models can be seen on the fibers and on the surface

above the muscle.

16 CHAPTER 1: INTRODUCTION

(a) The bones of the upper arm with tendons

and muscle tissue of the biceps brachii mus-

cle. The colored patches show the domain

decomposition of the muscle and of the

body fat layer domains.

(b) Simulation of action potential propagation

on the muscle fibers (mainly blue, value Vm

according to legend) and EMG on the skin

surface (value φe).

Figure 1.4: Preview on setting and simulations of a biceps muscle in this work.

The scope of this work is to efficiently compute the described models and provide an

environment to carry out processing and investigations. The models themselves, as well

as their parameters, are taken from the literature. It is known that the properties of

human organs vary greatly between individuals. For example, the number of muscle

fibers in a biceps muscle varies between 172 000 and 419000 [Mac84]. By parameter

fitting, the simulations could be adjusted to represent a particular individual. Within this

work, this was done in the initial case study about the upper arm movement for a data-

based and a Hill-type based model. However, parameter fitting for the multi-scale model

and validation experiments or even preclinical studies on patients with musculoskeletal

diseases are beyond the scope of this work. Similarly, our software could be used to

design studies that foster the understanding of the neuromuscular system. However, such

investigations are also beyond the scope of this thesis.

The developed methods in this work were applied to simulations of the biceps brachii

muscle, as this muscle allows straightforward EMG recordings and is well-studied in liter-

1.5 CONTRIBUTIONS AND SCOPE OF THIS WORK 17

ature. Nevertheless, most of the methods and results are also applicable to other muscles.

The anatomical match of the used simulation models could be improved by additionally

considering the aponeurosis in the biceps muscle or by differentiating between the two

muscle heads during motor unit recruitment. However, these model extensions are also

not within the scope of the present work. Some notes for future work can be found in

Sec. 10.4.

The presented findings and conclusions were partly shaped by discussions with various

researchers with expertise from different disciplines. Yet, this doctoral thesis lists essen-

tially own contributions, marks collaborative work in the text, and indicates others’ work

by citations. Using the pronoun “we”, the author refers to the group of the originator,

potentially the supervisors, and certainly the interested reader.

The remainder of this work contains the following chapters: Chapter 2 compares two

model approaches to simulate upper arm movement. Chapter 3 develops algorithms to

generate the meshes that are required in the solution of the multi-scale model. Chapter 4

addresses the assignment of motor units to muscle fibers. Chapter 5 describes all used

model equations and their discretization. Chapter 6 introduces the software OpenDiHu

and describes its usage. Chapter 7 gives details on the implementation of OpenDiHu.

Chapter 8 presents and discusses numerical results. Chapter 9 studies the computational

performance of the solvers. Chapter 10 concludes the work and gives an outlook to future

work.

19

Chapter 2

Comparative Study: Modeling Upper

Arm Movement

Moving one’s upper arms and forearms is an action that is performed unnoticed every day.

What seems like a trivial task involves a sophisticated interplay of muscles, tendons, bones

and joints. Macroscopic behavior such as mechanical properties of fibers and tissues as

well as microscopic mechanisms such as molecular-scale processes inside biological cells

and changes in electric potential across muscle fiber membranes contribute to the overall,

versatile human musculoskeletal system.

Understanding this system well allows to use observations to make predictions. Using

observations and predictions of the musculoskeletal system, we can for example design

safe assistive robotic devices. Such robotic devices, in the form of exoskeletons, can

potentially support humans in strenuous, unhealthy tasks that pose high loads on the

human skeleton. An example is the precise handling of heavy objects that can only be

done by humans, which is required in various industries. Moreover, exoskeletons can

help to restore muscle function in a rehabilitation therapy.

In order to develop models for such predictions, various choices have to be made.

Relevant properties of the muscular system have to be identified. Based on a physiological

understanding, essential relationships have to be selected. Phenomenological relations

can be incorporated. Mathematical formulations and numerical algorithms have to be

found.

Model formulations can be differentiated by how much they are based on biophysical

insights compared to raw experimental observations. The following sections present two

different approaches that use a relatively high proportion of experimental observations

combined with some biophysically justified relations. The two approaches are compared

in an experimental study of forearm movement.

20 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

The first of the two presented models completely relies on experimental data. The

second model adds physiological knowledge at a high level. In the remainder of this

thesis after the current chapter, this trend continues: More details of the functioning of

the musculoskeletal system get included. More advanced models are introduced that

have finer model resolutions.

2.1 Introduction

Actuated orthoses and prosthesis help rehabilitation patients to regain their ability to

move arms and legs when muscles have lost their full function. The dysfunction can be a

result of muscular or nervous diseases, e.g., after a stroke, or originate from amputation

of parts of the limb [Kre02; Zha18].

Rehabilitation or prosthetic devices are firmly attached to the body. Powered actuators

at the joints support or replicate the natural movements of the limb. Exoskeletons are

similar devices that typically extend to a larger part of the human body. Apart from

rehabilitation, they are used as assistive, haptic or teleoperation device. Details can be

found in [Per07].

For the actuation to be supportive and helpful, the device has to determine the intended

movement of the limb. If muscles are functioning at least residually, EMG signals can be

captured from the skin surface. They can be interpreted to determine finely graduated

levels of force.

For this purpose, mathematical models are required that, given EMG measurements,

predict joint torques for the system of limb segments and muscles. Because of the variety

of muscle characteristics among humans, such models have to be patient-specific in order

to be safe and effective for the particular individual.

In the following study, two different approaches for formulating such models, A and B,

are developed. Instances of these two models are parametrized for a particular healthy

subject.

The specific task in this study is to predict movements of a human upper arm. The arm

is flexed and extended under varying loads and with varying velocities. Measured EMG

signals on the agonist and antagonist muscles are used to predict the torque in the elbow

joint. Considering the application of a supportive orthosis or exoskeleton, the predicted

torque value is the control input to the actuator at the joint.

2.1 INTRODUCTION 21

Prior to online application of the models, an offline training-phase is carried out, where

all required parameter values get identified for the subject. After the two computational

models have been trained, we perform validation experiments and compare the output

of the models with measurements from the real system.

The first model approach, A, is a non-parametric, data-driven model. It uses the cap-

tured information from the training phase to construct a map between input and output

values. It is based on Gaussian Process Regression.

The second approach, B, uses biophysically informed models of individual muscles

together with the kinematics of the overall system. This approach requires a set of subject-

specific parameters which is determined in the training phase. The model is based on the

commonly used Hill-type muscle model.

2.1.1 Related Works

Numerous experimental studies of flexion and extension of the upper arm with the aim

to predict elbow torques can be found in the literature. The studies presented in the

following all include a Hill-type muscle model; such a model is also present in approach

B of the present study.

In [Ros99], an exoskeleton across the elbow joint on the forearm is used as a passive

measurement device. Experiments with lifting weights are performed and EMG is cap-

tured. Two different models are compared with respect to their performance in predicting

moments and, thus, their suitability for exoskeleton control. The first model is Hill-based,

similar to model B in the study of this work. The second model is data-driven, as is model

A in our study. However, the method is different, the authors use a neural network.

The study reveals that the neural network is easier to set up but only works for the

space defined by the learning data set. The advantage of the Hill-based model is that it

is universal and not task dependent. Further studies using neural networks to estimate

muscle activations and elbow torques are presented by [Lin02] and [Son05].

The paper of [Ros01] focuses on an exoskeleton that supports the forearm in lifting

heavy weights. A generic Hill-type model is the base for the model predictions. Differ-

ent control strategies are investigated. A naturally feeling human machine interface is

achieved when control input is taken from processed EMG measurements and moment

feedback of the external load. This result is promising as it shows that neural control of

exoskeletons is possible, even using non-customized models.

22 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

The goal and setup of all these studies is similar to the work presented in the following

sections. Differences are, apart from different setups, that they use state-less Hill-type

models instead of the Hill-based models in our study that are more advanced. Further-

more, they do not use subject specific parametrizations. Both improvements can lead to

better predictions of the moments in the elbow.

However, several studies predicting joint torques using Hill-type models exist in the

literature that optimize model parameters to fit a specific subject. The authors of [Cav05;

Cav06] study a scenario where a weight is lifted by the forearm. They use a genetic

algorithm to find subject specific parameters to the models. Similar studies are given in

[Llo03; Ven05; Pon09; Sar12].

A further study is performed by [Hei03]. The authors include models of activation

dynamics, Hill-type muscle contraction and musculoskeletal geometry and restrict the

scenario to isometric tasks. They optimize parameters for different subjects and determine

the importance of parameters for good model predictions. It is found that the predictive

quality of the model decreases with its complexity, but a model with seven parameters

still has reasonable validity. In contrast to this study that only predicts static cases, our

study also includes muscle dynamics and has more parameters to describe all required

muscle properties.

[Fal16] estimate muscle model parameters of the knee joint actuators involving 23

degrees of freedom considering eight flexors and four extensors. Just like our study with

model approach B, EMG signals and motion capture data are used to solve an optimization

problem to fit the model. A difference is that three-element Hill-type models are used,

whereas our study is based on more detailed, four-element Hill-type models but includes

a smaller number of muscles.

Hill-based models of the muscle-tendon complex can also be parametrized without

using EMG data. [Gar03] estimate characteristic parameters of 26 major muscles around

shoulder, elbow and wrist in a two-phase optimization procedure. This approach uses

individual experiments to identify different parameters. A method that requires fewer

experiments is the ISOFIT method presented by [Wag05]. They use non-linear regression

to fit Hill-type model parameters for various muscles from only 6-8 isovelocity contrac-

tions.

The authors of [Van14] develop a new method for estimating a subject-specific model of

muscles around the knee which achieves higher accuracy than [Gar03] and is robust with

respect to noisy data. Two improvements are that they use physiological constraints in

the parameter optimization process and a heuristic for the initial guess of the parameters.

2.1 INTRODUCTION 23

EMG

MoCap

Experiments

Inverse Kinematics

Filtering

Feature

Selection

Model A

Training

Model B

Parameter

Optimization

Validation

Validation2.1: Upper

24 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

φw

φaφe

mw

ℓu

Figure 2.2: Upper Arm Movement Modeling:

Experimental setup for the triceps trials. The subject pulls down a rope over a

pulley which is connected to a weight with mass mw. Angles required for the

kinematic formulation are the elbow angle, φe, the forearm angle, φa, and

the angle of the weight, φw. The length of the ulna bone is denoted by ℓu.

especially filtering of EMG signals and feature selection, derivation and training of both

models, A and B, their validation and the overall programming and visualization of the

results. The respective fields are presented more detailed in the following, corresponding

sections.

2.1.3 Structure of this Chapter

Section 2.2 gives an overview of the experiments, data processing and feature selection,

which resulted in the required datasets. In Sec. 2.3, the two models, A and B, are de-

scribed. Results including the validation of the models and a discussion are given in

Sec. 2.4. Conclusions follow in Sec. 2.5.

2.2 Experimental Study

Experiments are required to identify the model parameters for the particular subject.

First, the experimental setup is described, then, details on the processing of the measured

values are given. Then, the selection of feature points from the experimental data is

described.

2.2 EXPERIMENTAL STUDY 25

2.2.1 Experimental Trials

In a series of experiments, eight different actions of flexing and extending the elbow were

performed by the subject. Weights of 3 kg and 5 kg were held in the hand during the

elbow flexion trials. For the elbow extension trials, a pulley system was installed that

redirected the force of the weight such that the downward movement of the forearm

acted against the direction of the force. This is shown in Fig. 2.2. A detailed description

of the experimental trials can be found in [Wal20].

Time series of position and velocity of the upper arm and the forearm were recorded

using a Motion Capture system. It consisted of eight cameras that tracked three markers

placed on shoulder, elbow and wrist of the subject.

The elbow torque τ was computed as

τ= mw g ℓu sin(φw)−ma g
ℓu

2
sin(φa),

where (mw g) is the force of the weight, ma is the mass of forearm and hand, ℓu is

the length of the ulna bone and φa and φw are the angles of the forearm and rope, as

visualized in Fig. 2.2.

2.2.2 Data Processing

From the captured data, derived quantities of biceps (B) and triceps (T) muscles were

estimated using a geometric model of the upper arm. The geometric model is available in

the software OpenSim [Del07] and was customized for the particular subject. The inverse

kinematics module of OpenSim was used to estimate the muscle tendon unit lengths,

ℓMTU,M , contraction velocities, vM = ℓ̇M , and moment arms, rM , of the two muscles,

M ∈ {B, T}.

EMG signals were captured by two electrodes on the skin at the biceps and triceps

muscles. For both signals, several preprocessing steps were applied to obtain the inputs

for the two models, A and B.

The raw signal was filtered with the same procedure as in [Fal16]. First, a fourth-

order Butterworth high pass filter with cutoff frequency 30 Hz was applied to reduce

non-zero average voltages. Second, the resulting signal was full-wave rectified by taking

the absolute value of every measured data point. Third, application of a fourth-order

26 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

Butterworth low pass filter with 10 Hz cutoff frequency yielded a smoothed signal. Forth,

the resulting filtered EMG signals were normalized to the interval [0,1], such that the

value of 1 corresponds to the experimentally determined value of maximum voluntary

contraction.

The measured EMG signals on the skin directly correspond to the electric excitation level

u in the muscle. Excitation leads to the release of free calcium ions within the sarcomere.

Binding of calcium ions to myosin increases the concentration of cross-bridges. This

concentration is commonly known as the muscular activation α. The muscular activation

directly corresponds to the produced force of the muscle [Bay17].

The concentration of free calcium ions is denoted as γ and can be computed from the

excitation u by the following first order differential equation [Hat77]

γ̇= m (u− γ).

We used the filtered EMG signal u to obtain values for γ. Figure 2.3 shows the raw and

filtered EMG signals and the resulting free calcium concentration for a sample of the

experimental data.

The activation of the muscle α does not only depend on the free ion concentration γ

but also on the current state of muscle contraction. This excitation-contraction coupling

has to be described by a dynamic system of ODEs and is included in model B. Therefore,

preprocessing is completed with computing the free calcium concentration γ and not the

activation α.

2.2.3 Feature Selection

The eight experimental trials were split into ntrials = 7 experiments to be used for model

identification and one for validation. The total number N of captured values in the

training experiments was large, such that not all points could be used for training of

models A and B. To reduce the amount of data and, thus, speed up the computation, we

selected n≪ N featured values with the assumption that they are representative for the

whole data set. For every experimental trial, we choose the same fixed number nper_trial

of data points. Our selection algorithm identifies nper_trial timesteps, t i, i = 1, . . . , n such

that the summed values of the free calcium concentrations γB(t i) + γT (t i) for biceps and

triceps are evenly distributed along the value range. This leads to n = ntrials · nper_trial

selected data points.

2.3 MODELS 27

0 0.5 1 1.5 2 2.5

time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Raw EMG

Filtered EMG

Free calcium concentration

u

Figure 2.3: From raw EMG data of the biceps (yellow) to the filtered signal u (red) and the

free calcium concentration γ (blue). The data are taken from the beginning

of the first elbow flexion experiment. It can be seen that the filtering smooths

out the initial signal and removes the constant offset. The free calcium ion

concentration follows the filtered EMG with a short delay.

The set of training data D = X ×Y consists of the n selected vectors of the experimental

values that are the input to the system of muscles, xi ∈ X , i = 1, . . . , n, together with

the observed output values, yi ∈ Y , i = 1, . . . , n. The input vectors contain values for

muscle tendon unit lengths, contraction velocities, moment arms and free calcium ion

concentrations for biceps and triceps each, xi = (ℓMTU,B,ℓMTU,T , vB, vT , rB, rT ,γB,γT)
⊤(t i).

The output values consist of the elbow torques, yi = τ(t i). This data set, D, serves as

training input for both models, A and B.

2.3 Models

The current section describes the two model approaches that can predict elbow torques

from experimental input data. Section 2.3.1 introduces the non-parametric, data driven

28 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

model A. Section 2.3.2 presents the biophysically based model B. It requires a parameter

optimization, which is described in Sec. 2.3.3.

2.3.1 Data-driven Model A

The first modeling approach uses a non-parametric model. Such a model approximates

the function f that maps from input to output data points. The function f is learned

from the training data set. Regression is used to obtain predictions for new data points.

In our case, we use a stochastic model that considers the probability distribution of the

model function.

We use the method of Gaussian Process Regression. A Gaussian process is a collection

of random variables such that the joint distribution of every finite subset of these random

variables is multivariate normal (Gaussian). In our example, each input data point in the

space of measured values, x ∈ X has an associated random variable f (x) that describes

the output of the model for this point.

A Gaussian process, GP , is characterized by a mean function m(x) and a kernel func-

tion k(x,x′) that models the covariance between any pair (x,x′) ∈ X × X of points.

Different choices of kernel functions are possible and can depend on hyperparameters ψ.

Describing observed values y by a Gaussian process distribution can be expressed as

f (x)≈ y ∼ GP
�

m(x), k(x,x′,ψ)
�

.

This representation is non-parametric in the sense that no particular parametric form of

the function y = f (x) is assumed whose (biophysical) parameters would be determined.

Instead, a generic probabilistic model is constructed using the observed function values

at measured inputs xi ∈ X .

Gaussian Process Regression is based on Bayesian Inference to update a prior belief

of the model to a posterior model using information contained in observations of the

process. The observed data are the set of measurements D.

The prior distribution p(f | X ,ψ) for the vector of function values f is described by the

Gaussian process,

p(f | X ,ψ) =N (f |m,K),

with mean values m= (m(xi))
⊤
i=1,...,n and covariance matrix K with Ki j = k(xi,x j,ψ).

2.3 MODELS 29

The likelihood p(y | f (x),θ) describes the probability of an observation y given a

particular model f . The vector θ denotes additional parameters of the likelihood.

Using Bayes’ rule, the posterior distribution p(f | D) of the function values f can be

computed from prior and likelihood as

p(f |D,θ ,ψ) =
p(y | f,θ) p(f | X ,ψ)

p(D | θ ,ψ)
.

This results in a measure for the uncertainty of the model f at unobserved points x∗ /∈D.

Additionally, the fact that the measured quantities in the experiments are subject to

measurement noise can be incorporated into the model. The assumption

y = f (x) + ǫ

adds a normally distributed random variable of observational noise ǫ ∼N (0,σ2
n) to the

formulation. The noise variance θ = σ2
n is an additional parameter of the likelihood. It

is also possible to explicitly model the mean function m(x). By replacing the model f (x)

by g(x) = f (x) + h(x)⊤β , i.e.

y = f (x) + h(x)⊤β + ǫ, with f (x)∼ GP
�

m(x), k(x,x′,ψ)
�

,

ǫ ∼N (0,σ2
n),

we allow for a global trend in the data that is formulated in terms of a vector of explicit

basis functions h(x) and corresponding coefficients β .

The algorithm for Gaussian Process Regression involves estimating the following values

from the given data during the training phase. The hyperparameters of the covariance

function ψ, the noise variance θ , and the coefficients of the fixed basis functions β

are determined by solving an optimization problem. The computation involves matrix

inversions and has a computational complexity O(n3), i.e. is cubic in the number of data

points. For details, the reader is referred to the literature [Ras05; Kus06].

In our study, training of the Gaussian Process of model A was performed using the

ready to use implementation provided by MATLAB. We parametrized the covariance by

a squared exponential kernel and used constant basis functions, h(x) = 1. We enabled

observational noise, its variance θ = σ2
n was found by optimization during training of the

model.

30 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

2.3.2 Biophysical Model B

Extension of the elbow is governed by the triceps brachii muscle. During elbow flexion,

three muscles are involved: biceps brachii, brachialis and brachioradialis. For simplicity,

only biceps brachii, which contributes most of the moment, is explicitly considered in

the current study. The effects of the other two muscle are contained in the biceps brachii

model in a lumped manner.

Thus, the biophysical model consists of two Hill-type muscle models, for biceps and

triceps, respectively. The muscle models are arranged around a hinge joint for the elbow

angle. The muscle forces contribute to the torque at the elbow over their respective

moment arms.

Hill-type models describe the macroscopic, dynamic mechanical behavior of an en-

tire muscle along a one-dimensional line of action. The behavior is formulated by phe-

nomenological, mathematical functions that have to be parametrized to fit experimental

observations.

Multiple variants of Hill-type models exist that use various configurations of mechanical

elements to consider different properties and functionalities of the muscle. The original

model was proposed in [Hil38]. It contains a contractile element (CE) and two elastic

elements, arranged in series and in parallel to the CE. The authors of [Sie08] compare

two different approaches using these three elements. The effect of tension in eccentric

contractions is added to the Hill-type model by [Til08]. The authors of [Gun07] add

a forth, damping element to account for high-frequency damping of the muscle tissue.

In [Mör12], electromechanical delay is investigated with and without the additional

damping element.

We employ the four-element Hill-type muscle model that is described by [Hae14]. Its

structure is visualized in Fig. 2.4. It consists of four components: the contractile element

(CE), the parallel elastic element (PEE), the serial elastic element (SEE), and the serial

damping element (SDE). Inputs to the model are the muscular activation α(t), the length

ℓMTU(t) and the contraction velocity ℓ̇MTU(t) of the muscle tendon unit (MTU). The output

of the model is the muscle force fMTU(t). The model contains one internal state variable,

the length ℓCE(t) of the CE. The muscle dynamics determine this internal length and its

time derivative, the contraction velocity ℓ̇CE(t) of the CE.

The resulting force of the MTU is given as sum of the forces of the respective parallel

2.3 MODELS 31

ℓCE ℓSEE

ℓMTU

PEE SEE

SDECE

Figure 2.4: Mechanical structure of the Hill-type muscle model. The force generating

contractile element (CE) is parallel-connected to the parallel elastic element

(PEE) and connected in series to a second parallel-connected structure con-

sisting of the serial elastic element (SEE) and the serial damping element

(SDE). The length ℓMTU of the whole muscle tendon unit is composed of the

common length ℓCE of CE and PEE and the common length ℓSEE of SEE and

SDE. The variable ℓCE is an internal state of the model.

elements as visualized in Fig. 2.4:

FMTU = FCE(ℓCE, ℓ̇CE,α) + FPEE(ℓCE) = FSEE(ℓCE,ℓMTU) + FSDE(ℓCE, ℓ̇CE, ℓ̇MTU,α). (2.1)

The force terms of the four elements, FCE, FPEE, FSEE and FSDE are described by analytical

functions that use a total of 19 parameters. A description of the detailed equations and

parameters can be found in [Hae14]. In the following, an overview over the formulation

is given with a focus on the piecewise formulated terms that contribute to the overall

muscle model. In the following formulations, underlined variables designate constant

parameters that either have to be specified or follow from other given parameters.

The muscle output force FMTU is computed by the second identity of Eq. (2.1), i.e., from

the forces FSEE and FSDE. The force FSEE acting in the SEE is formulated as a continuous

piecewise function with a constant zero, an exponential and a linear branch:

FSEE(ℓCE,ℓMTU) =

0, ℓSEE < ℓSEE,0

KSEE,nl(ℓSEE − ℓSEE,0)
νSEE , ℓSEE < ℓSEE,nll

∆FSEE,0 + KSEE,l(ℓSEE − ℓSEE,nll), ℓSEE ≥ ℓSEE,nll

, with ℓSEE = ℓMTU − ℓCE.

The damping force FSDE in the SDE is proportional to the lengthening velocity ℓ̇SEE = ℓ̇MTU − ℓ̇CE

32 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

of this element. It is given by

FSDE(ℓCE, ℓ̇CE, ℓ̇MTU,α)

= DSDE,max

�

(1− RSDE)
FPEE(ℓCE) + FCE(ℓCE, ℓ̇CE,α)

Fmax + RSDE

�

(ℓ̇MTU − ℓ̇CE).
(2.2)

The amount of damping is dependent on the force FMTU of the MTU which appears in the

nominator of the fraction in Eq. (2.2) as the sum of the forces FPEE and FCE. Formulas for

these two forces are given in the following.

The force FPEE of the PEE is formulated piecewise as a shifted and cut off polynomial

function:

FPEE(ℓCE) =

0, ℓCE < ℓPEE,0

KPEE(ℓCE − ℓPEE,0)
νPEE , ℓCE ≥ ℓPEE,0

. (2.3)

The force FCE of the CE is the active force produced by the muscle and is given by:

FCE(ℓCE, ℓ̇CE,α) = Fmax

α Fisom(ℓCE) + Arel(ℓ̇CE,ℓCE,α)

1− ℓ̇CE

Brel(ℓ̇CE,ℓCE,α)ℓCE,opt

− Arel(ℓ̇CE,ℓCE,α). (2.4)

It can be seen that the active force depends on the activation level α. The formulation

of FCE contains the two main characteristic curves for muscle forces, the force-length

relation and the force-velocity relation.

The force-length relation is modeled by the function Fisom(ℓCE) of isometric force, which

describes the relative force for the condition ℓ̇CE = 0. This function is formulated piecewise

for CE lengths ℓCE smaller and larger than an optimal length ℓCE,opt.

The force-velocity relation follows from the auxiliary functions Arel(ℓ̇CE,ℓCE,α) and

Brel(ℓ̇CE,ℓCE,α). These functions have different forms for concentric (ℓ̇CE < 0) and ec-

centric (ℓ̇CE ≥ 0) conditions as well as for the two ranges of CE length, ℓCE < ℓCE,opt and

ℓCE ≥ ℓCE,opt.

Figure 2.5 visualizes the two main characteristic curves of the model. Figure 2.5a shows

how the generated force depends on the length of the CE. The active force FCE, given by

Eq. (2.4), is visualized by the solid red line. It has its maximum at the optimal length

2.3 MODELS 33

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1
F

PEE

F
isom

l
CE,opt

(a) Force-length curves of the PEE (dashed red line) and isometric force Fisom (solid red

line) for an isometric condition (ℓ̇CE = 0), normalized to the maximum isometric

force. The optimal length ℓCE,opt of the CE is shown as yellow vertical line. The force

FPEE(ℓCE) of the PEE is zero for ℓCE < 0.9ℓCE,opt. The isometric contraction force

Fisom is formulated piecewise by two branches separated by ℓCE,opt.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-4000

-2000

0

2000

4000

F
CE

Asymptotes

(b) Force-velocity curve FCE(ℓ̇CE) of the CE at optimal length ℓCE = ℓCE,opt, and for

activation level α = 0.5. The function (red solid line) is formulated piecewise, graphs

of the base functions of the two branches continue as red dotted lines. Their limits

and singularities are visualized by the yellow horizontal and vertical asymptotes.

Figure 2.5: Force-length and force-velocity relations for the muscle model with generic

parameters taken from literature [Hae14].

34 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

ℓCE,opt of the CE. This can be explained by the overlap of actin and myosin filaments in

the sarcomere. The overlap is lower when the actin filaments are pulled apart or pushed

together. A higher overlap leads to a higher force output.

The dashed line in Fig. 2.5a represents the passive force FPEE of the elastic muscular

tissue, formulated in Eq. (2.3). The passive force is essentially generated by the titin

proteins in the sarcomere. Only starting from a certain length, the structure exerts reaction

forces against lengthening forces to avoid overstretching of the muscle.

Fig. 2.5b shows the force-velocity relation of the Hill-type model. The curve of FCE(ℓ̇CE)

is composed of two branches: The concentric branch for shortening contraction with

ℓ̇CE ≤ 0 and the eccentric branch for lengthening contraction with ℓ̇CE > 0. It can be

seen that the generated force increases monotonically over the lengthening velocity. It

approaches a limit for maximum positive and negative velocity. These limits can be

adjusted by parameters of the model and are exemplary for how the shape of the curves

of a Hill-type model can be parametrized.

In addition to the resulting muscle force FMTU, a formulation for the internal state

variable ℓCE is required. The second identity of (2.1) can be solved for the lengthening

velocity ℓ̇CE of the CE to get an evolution equation for the length ℓCE of the CE. The

derivation and the resulting formula can be found in [Hae14].

To describe the activation dynamics, i.e., the evolution of the muscle activationα ∈ [0,1],

the model of Hatze et al. [Hat77] is used. The activation is computed depending on the

free calcium ion concentration γ and the length ℓCE of the CE by

α(ℓCE,γ) =
a0 +

�

ρ(ℓCE)γ
�3

1+
�

ρ(ℓCE)γ
�3

.

The function ρ is given by

ρ(ℓCE) = cη
(k− 1)ℓCE

(k− ℓCE/ℓCE,opt)ℓCE,opt

.

All used parameter values for the activation dynamics can be found in [Bay17].

In summary, we get the following coupled system of differential-algebraic equations,

2.3 MODELS 35

where fCE and fα denote the respective formulas:

FMTU = FMTU(ℓMTU,ℓCE, ℓ̇CE,α), (2.5)

ℓ̇CE = fCE(ℓCE,ℓMTU, ℓ̇MTU,α), (2.6)

α= fα(γ,ℓCE). (2.7)

To compute the joint torque in a system of an agonist and antagonist muscle pair, two

instances of the presented Hill-type muscle model can be used. In our study considering

the upper arm, the torque τ at the elbow is computed by multiplying the predicted forces

FMTU,B and FMTU,T of biceps and triceps with the corresponding moment arms r̂B and r̂T :

τ= FMTU,B(ℓMTU,B, ℓ̇MTU,B,αB) · r̂B − FMTU,T (ℓMTU,T , ℓ̇MTU,T ,αT) · r̂T . (2.8)

2.3.3 Parameter Identification for Model B

The process of model identification finds the parameters that make the model B predict

correct values for the specific subject, i.e., minimizes the error in the predicted outcome

for the training data set.

The following minimization is performed:

min
θM ,ℓCE,M (t),

∀M∈{B,T},∀t∈T

∑

t∈T
|τ(t)− τ̂(t)|2 (2.9)

s.t. ∀t ∈ T : τ(t) = FMTU,B(t,ℓCE,B,θ B) · r̂B(t)

− FMTU,T (t,ℓCE,T ,θ T) · r̂T (t), (2.10)

ℓ̇CE,M(t) =
˙̂
ℓMTU,M(t), M ∈ {B, T}, (2.11)

θ B,θ T ∈ Θ, (2.12)

ℓCE,M(t) ∈ [0,ℓMTU,M(t)], M ∈ {B, T}. (2.13)

The optimization variables are the parameters θ B and θ T for the biceps and triceps

Hill-type models and the lengths ℓCE,B(t) and ℓCE,T (t) of the contractile elements for both

36 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

models at every point in time. The variables designated as �̂ are the measured quantities

from the training experiments. The objective function given in Eq. (2.9) penalizes the

difference between computed torque τ and measured torque τ̂ at every timestep t ∈ T

of the training data.

Equation (2.10) computes the torque values and follows from Eq. (2.8) of the muscle

model. For every point in time, the predicted forces FMTU,B and FMTU,T are multiplied with

the measured moment arms r̂B and r̂T .

In Eq. (2.11), the contraction velocities are constrained to the measured values. Because

the lengthening velocity ℓ̇CE of the CE is an internal quantity and, thus, cannot be observed

in experiments, we assume it to be equal to the lengthening velocity of the whole muscle:

ℓ̇CE ≈ ℓ̇MTU = ℓ̇CE + ℓ̇SEE. This requires the assumption ℓ̇SEE ≈ 0 which can be justified

given the low dynamic nature of the experiments.

By Eq. (2.12), we bound each of the parameters θ B and θ T to a range between half

and twice the generic value from literature. The lengths of the CEs are constrained by

Eq. (2.13) to be positive and smaller than the length of the MTU.

All optimization variables are normalized to improve the numerical conditioning of the

optimization problem. The parameters θ B and θ T are normalized with respect to generic

values from literature that were taken from [Gun07; Mör12; Hae14]. The initial values

are set to one, which corresponds to the generic literature values. The internal states ℓCE,B

and ℓCE,T , are normalized with respect to the measured MTU lengths ℓ̂MTU,B and ℓ̂MTU,T

and initialized with zero.

We implemented the Hill-type models and the constraints in MATLAB and used the

nonlinear programming implementation, fmincon, to minimize the given bounded and

nonlinear constrained, multivariable function. In our study, the total number of optimiza-

tion variables is computed by 2 · 19+ 2n= 598, as each of the parameter vectors θ B,θ T

had 19 entries.

2.4 Results and Discussion

In the following, results of connecting the two model formulations, A and B, to the

experimental data are presented. At first, Sec. 2.4.1 gives details on the preprocessed

data. The training phase is described in Sec. 2.4.2. Applying the trained models to the

validation data is done in Sec. 2.4.3. Then, Sec. 2.4.4 tests a simplified version for model

2.4 RESULTS AND DISCUSSION 37

A. Then, Sec. 2.4.5 shows some insights into the optimized parameter values for model

B.

2.4.1 Feature Selection

The experimental data is split into a training and a validation dataset. Figure 2.6 shows

the processed data of the training data set. In total, we captured N = 34 934 data points

for the seven experimental trials. Out of these, we select nper_trial = 40 feature points in

every trial, leading to a total of n= nper_trial · ntrials = 280 points. The selected points are

visualized by crosses in the top plot of Fig. 2.6. It can be seen that the algorithm described

in Sec. 2.2.3 distributes the feature points equally along the γ axis.

2.4.2 Training of the Models

Training of model A consists of estimating the hyperparameters for the Gaussian Process

Regression model from the training data.

For model B, the optimization problem for the biophysical parameters is solved. The

resulting parameter values and their relation to the initial values are summarized in

Tab. 2.1. It can be seen that none of the final parameter values is limited by the con-

straints, which would be −50% and +100 %. However, it was observed that including the

constraints helps the optimizer to stay in the valid range of meaningful model parameters

and, thus, reach the optimum faster.

After training of the models A and B using the selected points of the training dataset,

both models were tested by a resubstitution prediction, i.e., predicting output from the

training input data. The results are shown in Fig. 2.7a for model A and Fig. 2.7b for

model B. As this evaluation only uses the subset of selected experimental values, the data

points have no natural ordering. They were sorted for better visibility.

It can be seen that, for both models, the predicted values are a good fit to the measured

values. For model A, the predicted 95% confidence interval includes the actually measured

values almost everywhere. For model B, the predicted values show a higher variance,

especially for high torque values.

38 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

0 50 100 150 200 250 300 350 400
0

0.5

0 50 100 150 200 250 300 350 400
0.25

0.3

0 50 100 150 200 250 300 350 400

-0.05

0

0.05

biceps

triceps

0 50 100 150 200 250 300 350 400

-10

0

10

20 Torque

Trial separators

time [s]

Figure 2.6: Processed experimental values over time that were used for training of both

models. The concatenated data of seven trials are shown, which yield an end

time of 363.32 s. The individual trials are separated by the yellow triangles on

the x-axis. The three upper plots show the values of γ,ℓMTU and ℓ̇MTU for both

biceps (brown) and triceps (blue), the bottom plot shows the elbow torque τ.

The selected feature points are visualized as crosses in the two top plots. In

the upper-most plot, it can be seen that the first three trials, which correspond

to elbow flexion, mainly activated the biceps muscle, whereas in the last four

trials, corresponding to elbow extension, the triceps is more active.

2.4 RESULTS AND DISCUSSION 39

CE Fmax [N] ℓCE,opt [m] ∆Wd [] ∆Wa [] νCE,d []

Generic 4260 0.3 0.35 0.35 1.5

Biceps +11.0% +31.7 % +10.9% +91.6 % +10.9%

Triceps −49.0% −25.4 % +10.9% +5.1 % +10.9%

CE νCE,a [] Arel,0 [] Brel,0 [] Secc [] Fecc []

Generic 3.0 0.25 2.25 2 1.5

Biceps −46.4% +14.0 % +77.5% −4.1 % −30.1%

Triceps +95.9% −20.3 % +41.4% +22.3 % +36.8%

PEE LPEE,0 [] νPEE [] FPEE []

Generic 0.9 2.5 2.0

Biceps +10.9% +10.9 % +10.9%

Triceps +10.9% +10.9 % +10.9%

SDE DSDE [] RSDE []

Generic 0.3 0.01

Biceps +10.9% +8.6 %

Triceps +10.9% −11.0 %

SEE ℓSEE,0 [m] ∆FSEE,0 [] ∆Ul [] ∆Unll []

Generic 0.172 0.0425 0.017 568

Biceps −25.0% −42.4 % +63.3% +59.2 %

Triceps −10.3% +64.75 % +19.0% +23.6 %

Table 2.1: Hill-type muscle model parameters of the four elements: CE, PEE, SDE and

SEE, initial values given in literature and relative changes of the optimized

values. Further explanations of the parameters and references to literature

containing their initial values are given in [Hae14].

2.4.3 Validation

The next evaluation uses the validation dataset and compares the predicted outputs of

the models with the actual experimental values. In contrast to the training data, where a

small number n of points was selected, we now use all captured values. This involves a

total of 54 · 103 data points for a time span of t = 54 s.

The results are shown in Fig. 2.8. Comparing the green curve for model A with the

blue curve for the experimental data, it can be seen that the predicted values match

qualitatively for most of the time span. The predicted torque values appear consistently

slightly smaller than the real values. Only for the two intervals [11s, 12 s] and [40 s,42 s]

the predicted value is far off. The 95 % confidence interval that was computed by the

40 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

0 100 200 300
-20

-15

-10

-5

0

5

10

15

20

25

30

T
o

rq
u

e
 [

N
m

]

Measured

Predicted

Data-point number

(a) Measured values (blue) and values pre-

dicted by model A (dark green), with 95%

confidence interval (light green).

0 100 200 300
-20

-10

0

10

20

30

40

T
o

rq
u

e
 [

N
m

]

Measured

Predicted

Data-point number

(b) Measured values (blue) and values pre-

dicted by model B (orange).

Figure 2.7: Resubstitution prediction: Measured and predicted torque values for the train-

ing data set. The measured points are ordered and numbered by magnitude,

the order of the predicted points matches the order of the measured points.

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50 95% prediction interval

Model A

Optimized model B

Generic model B
Experiment

Figure 2.8: Validation: Predicted torque values by model A (green), trained model B

(red) and untrained model B (yellow), in comparison to the experimentally

measured values (blue), for the validation data set.

2.4 RESULTS AND DISCUSSION 41

Gaussian Process spans a large range for these time intervals which implies that the model

prediction is not to be trusted for this area.

The biophysical model approach, model B, was tested in two variants. First, with

the generic parameters from literature (yellow curve), second, with the subject-specific,

optimized parameters (red curve). It can be seen that the generic model fails to predict

the torque values whereas the trained model predicts reasonable values. These values are

worse than most of the predictions from model A, but they succeed in giving a qualitative

estimate about a low, medium or high torque output.

The match between model outputs τi and experimental data τ̂i can be quantified

using the normalized root-mean-square error (NRMSE). This is a scaled version of the

root-mean-square error (RMSE) and can be defined as

RMSE=

√

√

√
N
∑

i=1

(τi − τ̂i)
2/N ,

NRMSE=
RMSE

max
i
{τ̂i} −min

i
{τ̂i}

.

The NRMSE for model A is 0.267 which is worse than the value of 0.163 for the trained

model B. The generic model B has the worst NRMSE of 0.547.

2.4.4 Simplified Model A

An advantage of model approach A is that it forgoes any biophysical description and

the associated type of model error. It is a generic approach that does not require expert

knowledge about the physiological structure. In the present study, however, some level

of expert knowledge and physiological model was required in preprocessing the MoCap

data, i.e. solving the inverse kinematics of the observed forearm movements to get the

kinematic quantities of muscle lengths, velocities and moment arms.

Since model A performed well in the previous validation study, we tested whether

good results can also be achieved without this expert knowledge. Consequently, the next

study applies model approach A using only the elbow angle and no muscle lengths,

velocities nor moment arms. Thus, the training data consists of input vectors xi =

(φe(t i),γB(t i),γT (t i))
⊤ ∈ X . In the following, this model is named “simplified model

A” in contrast to the “full model A” that uses the complete set of input variables.

42 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

0 100 200 300
-15

-10

-5

0

5

10

15

20

25

T
o
rq

u
e
 [
N

m
]

Measured
Predicted

Data-point number

(a) Measured and predicted torque values of

the training dataset, ordered and num-

bered by magnitude. The measured val-

ues (blue) and the values predicted by the

Gaussian Process (green) lie on each other.

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

Experiment

Model A

95% prediction interval

(b) Predicted torque values for the validation

trials (green dotted line), 95% confidence

interval (light green) and the reference val-

ues of the experiment (blue). The plot re-

veals bad prediction capabilities of the sim-

plified model A.

Figure 2.9: Result for the simplified model A, where, apart from the free calcium ion

contractions, only the elbow angles, φe, are used as training input instead of

MTU lengths, velocities and moment arms.

The results are shown in Fig. 2.9. It can be seen that the resubstitution prediction in

Fig. 2.9a where the trained model is used to predict the training values shows a perfect

fit. In contrast to the full model A, Fig. 2.7a, here, the learned input-output mapping

shows no variance. However, the prediction for the validation dataset in Fig. 2.9b shows

a high error relative to the experimental data. The curve for the experimental data even

lies outside the 95% confidence interval of the prediction at some points.

The simplified model A has a NRMSE value of 0.461. For comparison, the NRMSE

values of the full and simplified model A and the generic and optimized model B are

summarized in Fig. 2.11.

This evaluation shows that simplified model A gives no useful results where the training

input is too scarce. Instead, preprocessing of the measurements using a subject specific

geometric model, as done for the full model A, is needed to allow for a useful prediction.

2.5 CONCLUSION 43

2.4.5 Insights of Model B

An advantage of model approach B is that the trained parameters are physically meaning-

ful and allow insight into the properties of the subject specific model. Furthermore, the

quality of the training data can be assessed. Figure 2.10 shows the force-length relation

of the biceps muscle model using the generic and the optimized parameter values. It

can be seen that the subject-specific model has a smaller slope of the force curve. All

points of the training data set are indicated by red crosses on the curves and show the

operating range of the muscle in which the model has been trained. It can be seen that

the experimental training data are limited to a small range of the muscle length below its

optimal CE length ℓCE,opt. In order to improve the quality of the model predictions for this

subject, specific additional experimental trials can be designed for model training. They

can be designed to fill in values in the missing range of operation, which in this case is

for larger muscle extensions.

A low computational time of the offline parameter identification and the online evalua-

tion of the two models would be an important measure for their practical applicability. In

the present study, the training phase of Model A, i.e., optimization of the quantities for the

Gaussian Process Regression using 280 training data points took 2.24 s. The evaluation of

Model A for the validation data set containing 54 · 103 points had a duration of 116 ms.

The runtimes for model B were significantly higher. The parameter optimization lasted

25 min 16 s and the evaluation for the validation data set had a duration of 13 s.

The large differences in runtime between models A and B can be explained by the

inefficient implementation of the biophysical model using the MATLAB programming

language. During parameter identification, this model needs to be evaluated iteratively

in the optimization algorithm. In contrast, the optimization within model A works with

an internal implementation of the Gaussian Process which was optimized during devel-

opment of the particular MATLAB functionality. In general, the evaluation of Gaussian

Process Regression has cubic time complexity whereas, for the parameter optimization of

model B, iterative solvers with linear time complexity exist.

2.5 Conclusion

In this study, elbow torques during flexion and extension of the upper arm were predicted

from motion capture data and EMG measurements. Two models, A and B, were developed.

44 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1 f
isom

l
CE,opt

Data points

(a) Model with generic parametrization.

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1
f
isom

l
CE,opt

Data points

(b) Model with subject-specific parametriza-

tion.

Figure 2.10: Isometric force-length relation of the CE for the biceps model, analogue to

Fig. 2.5a, but additionally with training data points. The points are placed

on the model curve and visualize the predicted relative forces for the lengths

of the CE that occurred during the training trials.

27%

46%

55%

16%

Full A

Sim
plifie

d A

Generic
 B

Optim
ized B

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2.11: Normalized Root Mean Square errors (NRMSE) of the validation trials be-

tween the respective models and the measured values. A lower error value

means a better fit.

2.5 CONCLUSION 45

Model A is non-parametric and uses Gaussian Process Regression. Model B is biophysically

informed and involves two state-of-the-art Hill-type muscle models for biceps and triceps.

Experiments were conducted to generate training and validation data. These training

data were used for model parameter identification. Predictions from the two models were

compared to real experimental values using the validation data.

Regarding the formulation and implementation, model A requires low effort and no

special knowledge about the model, except where experimental motion data is prepro-

cessed for a specific subject. In contrast, model B needs expert knowledge about the

biophysical structure and the implementation of all comprised models.

Similar holds for the offline training phase. There are no parameters in model A that

have to be tuned manually, which allows a quick start. Conversely, model B requires

the appropriate definition of initial values and physiological constraints for the optimiza-

tion problem. However, this can also be seen as an advantage for model B, as a-priori

knowledge can be integrated in such a model.

On the other hand, an advantage of model A is that additional experimental data, e.g.,

from neighboring muscles or additional sensors, can easily be added to the model. This

is not possible with model B, where the model formulation would have to be changed.

Our studies showed that both models were able to predict the levels of torque reason-

ably. Figure 2.11 showed the best score for model A, followed by model B. It was also

seen that the generic parametrization of model B does not yield a useful prediction. The

same is true for a simplified version of model A, where the elbow torque was used as

training input instead of derived quantities from the motion capture system that required

a complex preprocessing step.

Both models provide possibilities to assess the confidence of their predictions. With

model A, confidence intervals can be computed directly from the Gaussian Processes.

Their usefulness was shown in the validation where regions with large errors also had

a large confidence interval. Model B allows insight into force-length and force-velocity

characteristics of the two involved muscles. The operating ranges of the muscles during

the experiments can be visualized and allow assessing whether the desired model features

were covered by the training phase and, thus, will yield a good prediction.

In our study, runtimes were low for model A and high for model B in both offline

and online phases. However, this is due to our prototypical implementation of model

B. For larger data sizes and a more sophisticated implementation, the reverse effect is

expected. The runtime complexity for the training phase is better for model B (linear

46 CHAPTER 2: COMPARATIVE STUDY: MODELING UPPER ARM MOVEMENT

in time) compared to model A (cubic in time). For the online phase, costly integration

over data points is needed for model A whereas model B directly provides a differential

equation of the system that can be solved efficiently.

If EMG is used to control an exoskeleton that supports the movement of the limb, it is

known that the measured signals are ahead of the intended movement by a small offset.

This is a result of the time delay in the neuromusculoskeletal system. This property gives

the assistive exoskeleton a short time to predict the intended movement and thereby

allows a seamless integration of the artificial device with human control.

When targeted at such a real-time application, both models could be considered to

be integrated into the control. Model A better fits the use case of a device that could

be (re-)calibrated by the patient itself. Because of the built-in estimation of prediction

quality, compliance and safety could be ensured more easily even for imperfect training.

Model B would need a controlled environment such as a specialist’s laboratory and careful

assistance for the calibration process. After calibration, it would promise a more natural

and more responsive experience because of the subject-specific model and possibly smaller

compute times.

Where real-time application is not a requirement, biophysically informed models have

a high potential to leverage the understanding how the human neuromusculoskeletal

system operates for given tasks. In model B of this study, the kinematics and individ-

ual muscle dynamics were described close to the current understanding of the system.

However, several aspects where not modeled as detailed as possible. The pathway from

neural stimulation to excitation and activation of the muscle, the recruitment strategies

including different motor units, neural feedback loops as well as effects stemming from

the 3D geometry of the muscle were not considered. Therefore, this thesis develops a

more detailed, biophysically informed model including these properties in the following

chapters.

The presented study reproduced what similar studies in literature have shown: Subject-

specific model identification for Hill-based torque prediction models can vastly improve

the prediction quality compared to generic models. Our work adds to the common

knowledge that this holds also for the four-element Hill-type model that was used for

model B. Furthermore, a comparison with Gaussian Process Regression was given, various

advantages and disadvantages of these two approaches were identified. Future work can

test the two models with more subjects and increase the variety of motion in the training

experiments. For example, effects resulting from high contraction velocities or eccentric

2.5 CONCLUSION 47

contractions could be investigated to evaluate the model’s potential in more complex

movements.

49

Chapter 3

Generation of Meshes for the

Multi-Scale Models

Multi-scale models of skeletal muscles describe phenomena on different length scales and

combine them into a single description. The phenomena are modeled by different sets of

equations which need individual discretizations and solvers. For that, various geometrical

meshes describing different physical domains are required.

The discretization considered in this work involves three-dimensional (3D) and one-

dimensional (1D) meshes. As a whole, muscles and tendons are treated as 3D domains.

Muscle fascicles and myofibrils are represented by 1D fibers that are embedded in the 3D

domain of the muscle.

The generation of the respective 1D and 3D meshes should be based on biomedical

imaging data in order to represent actual human anatomy. The generated meshes should

be of good quality such that finding numerical solutions with low error is possible. Good

mesh quality usually involves mesh cells with similar lengths and angles. It should also

be possible to easily partition the mesh into multiple, equally sized subdomains. This is

required for efficient parallel computation. The two requirements of good mesh quality

and easy partitioning lead to the decision to employ hexahedral elements and a structured

mesh for the 3D domains.

In this chapter, we present a workflow to construct meshes with the mentioned proper-

ties starting from biomedical data. We present novel algorithms to generate the required

structured hexahedral meshes. This work contributes an implementation of the algorithms

that can be used to construct all meshes needed for our biomechanical simulations.

50 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

ΩM

ΩB

ΩT,2ΩT,1

ΩF,1
ΩF,2

Figure 3.1: Visualization of the computational domains in a simulated muscle: tendons

ΩT,1,ΩT,2, muscle belly ΩM , body domain ΩB and fiber domains ΩF,i.

3.1 Overview and Notation of Required Meshes

In the following, we summarize the meshes generated and used in this thesis and intro-

duce their notation used in the following discussions.

The domain of the muscle belly is denoted by ΩM . A layer of fat and skin tissue is

located on top of the muscle belly. It is denoted as the body domain ΩB. The muscle belly

is attached to tendons on both longitudinal ends. The tendon domains are denoted byΩT,1

and ΩT,2. These domains are all subspaces of the 3D Euclidean space: ΩM ,ΩB,ΩT,i ⊂ R3.

Additionally, a number n f of individual muscle fibers ΩF,i ⊂ R3 for i ∈ {0, . . . , n f } is

introduced. Each fiber is a 1D manifold embedded in the 3D domain, i.e., ΩF,i ⊂ ΩM .

Figure 3.1 summarizes the notation of the domains.

For the application of the finite element method (FEM), we create meshes for each of

these domains. Formally, a 3D meshΩ3D is given by a number of 3D elements {U3D,i}i=1,...,n

with U3D,i ⊂ R3 such that their disjoint union approximates the domain, ˙⋃n

i=1
U3D,i ≈ Ω3D.

Similar holds for 1D meshes.

The elements are non-overlapping and can be defined by nodes and edges. In the

discretizations used here, no hanging nodes are allowed, i.e., at any node all adjacent

elements share the node.

Furthermore, only structured, hexahedral meshes are considered in this chapter. A 3D

structured mesh is isomorphic to a 3D Cartesian grid with equidistant elements. This

has advantages for programmatically indexing nodes and elements as well as for parallel

partitioning of the domain. Figure 3.2a shows an example of a 3D structured mesh that

is partitioned into twelve subdomains. The subdomains are constructed by planar cuts

through the structure of the mesh. These cuts are typically defined in a way that the

resulting subdomains have similar numbers of 3D elements and, thus, every process gets

a similar portion of the total computational load.

3.1 OVERVIEW AND NOTATION OF REQUIRED MESHES 51

x

z y

(a) Parallel decomposition of a 3D mesh with

nx × ny × nz = 8 × 4 × 8 elements into

2× 2× 3= 12 subdomains.

(b) Top: a linear 3D mesh with eight ele-

ments, bottom: a single quadratic ele-

ment, which uses the same nodes as the

linear 3D mesh at the top.

Figure 3.2: Structured 3D meshes that are used in the simulations: parallel partitioning

and construction of quadratic elements.

The number n of 3D elements is the product of the numbers ni, n j and nk of elements

in the three coordinate directions x , y and z of the Cartesian grid, i.e., n = ni n j nk. Each

element can be indexed by a triple (i, j, k) of indices with the ranges i ∈ {0, . . . , ni−1}, j ∈
{0, . . . , n j − 1} and k ∈ {0, . . . , nk − 1}. In the simulation program, typically, consecutive

indices ι are used that iterate over all elements ι ∈ {0, . . . , n− 1} and are obtained from

the index triples by the mapping (i, j, k) 7→ ι = k ni n j + j ni + i.

The elements of such a mesh can have different numbers of degrees of freedom (dof)

depending on the desired spatial order of consistency of the finite element discretization.

The number ndofs,dD of dofs in a d-dimensional element is computed from the number

ndofs,1D of dofs along one coordinate direction of the element as ndofs,dD = nd
dofs,1D

. Con-

sequently, linear elements have two dofs in 1D meshes and eight dofs in 3D meshes.

Quadratic elements have three dofs in 1D and 27 dofs in 3D.

The dofs are located at the nodes of the elements. In linear and quadratic elements,

every node corresponds to a single dof. While the nodes form the “corners” of linear 3D

elements, they are also located on the faces and in the interior of quadratic 3D elements.

52 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Figure 3.2b shows a mesh with 2 × 2 × 2 linear 3D elements at the top. The same 27

nodes can be used to define a single quadratic 3D element as shown at the bottom of

Fig. 3.2b.

It is sufficient to develop a method for constructing structured 3D meshes with linear

elements. Higher order elements can be geometrically constructed by using the nodes

of multiple adjacent linear elements. To generate both linear and quadratic elements,

we always begin with generating a mesh with even numbers ni, n j and nk of elements in

the coordinate directions. Then, linear and quadratic meshes can be extracted from the

set of nodes. Similarly, a linear 1D mesh with an even ni can be easily converted into a

quadratic 1D mesh.

The next sections describe workflows and algorithms to construct 3D meshes for the

domains ΩM ,ΩB,ΩT,i and 1D meshes for the fibers ΩF,i based on anatomical informa-

tion. Section 3.2 gives an overview over available meshing software tools and existing

algorithms in literature. Then, Sec. 3.3 presents a workflow to extract a smooth surface

representation from anatomical imaging data. In Sec. 3.4, two serial algorithms are pre-

sented to generate 3D meshes and 1D fibers meshes. The next section, Sec. 3.5, extends

these serial algorithms formulating a parallel algorithm and shows and discusses results.

Finally, Sec. 3.7 gives a summary and concludes this chapter.

3.2 Related Work

Generating volumetric meshes for domains enclosed by a given surface is a task that is

frequently needed in computational science. It is a preprocessing step whenever spa-

tially discretized models have to be solved numerically. In consequence, a vast amount

of literature has addressed this algorithmic task and various approaches and methods

have been proposed. Moreover, numerous software packages that solve this problem

exist. Especially tools for Computer Aided Design and Engineering (CAD/CAE) as well

as free and commercial preprocessing tools and finite element solver software include

functionality to generate meshes from given surfaces.

An example from the biomechanical domain is [Unt13]. The study develops a finite

element model of the lower limb of an occupant of a car with the aim to investigate

injury scenarios during traffic crashes. The lower extremity geometry was obtained by

computer tomography (CT) and magnetic resonance imaging (MRI) scan data of a 50th

percentile male volunteer. Different meshes of bones and ligaments were created using

3.2 RELATED WORK 53

the three tools IA-FEMesh [Gro09], TrueGrid [XYZ20] and Hyper-Mesh [Alt20] which

will be outlined in the following.

IA-FEMesh (University of Iowa, Iowa City, USA) is an open source tool to generate

hexahedral meshes [Gro09]. It provides an interactive environment where existing ge-

ometries can be loaded. In a visualization window, bounding boxes, called blocks, can be

positioned such that they contain the whole geometry. A structured grid on the block is

then projected onto the surface of the geometry. Multiple blocks can be placed to account

for more complex geometries. The resulting surface mesh is improved using Laplacian

smoothing which equalizes the edge lengths of the elements. The interior nodes are

generated using interpolation. The result is a structured mesh if only one block is used

or an unstructured mesh if multiple blocks are used. Further operations to manage mesh

density, visually manipulate the meshes and add material properties, load and boundary

conditions are available. The model can be exported in a file format for finite element

analysis with ABAQUS (Dassault Systèmes, Vélizy-Villacoublay, France) [Das20].

The second tool is TrueGrid (XYZScientific Applications, Livermore, USA) [XYZ20]. It

is a commercial toolkit to generate hexahedral meshes. The project was started in the

early 1990s as the successor to the even older preprocessor software INGRID. Similar to

IA-FEMesh, a projection method and a multi-block technique are used. Some effort has

been put into dealing with holes and sewing together dissimilar blocks.

The third tool is Hyper-Mesh, the commercial pre-processing and post-processing toolkit

of Hyperworks (Altair HyperWorks, Troy, USA) [Alt20]. Altair sells infrastructure and

solvers for a multitude of physics and is targeted at a wide range of industries. Being a

commercial vendor, information about the internals of their preprocessing software are

hardly provided.

More meshing software exists, such as CGALmesh [Jam15] for tetrahedral meshes.

The package gives quality guarantees of their generated meshes and includes four mesh

optimization algorithms to further improve the mesh quality.

Another application-oriented work dedicated to the use of commercial tools is [Ram18].

A workflow for patient-specific modeling, simulation and analysis of the interaction be-

tween a residual lower limb stump and the socket of a prosthesis is presented. Imaging

data were taken from magnetic resonance diffusion tensor imaging where also the pre-

ferred diffusion direction of water molecules along muscle fibers is captured. The open

source tool MedInria (National Institute for Research in Digital Science and Technology

(Inria), France) [Vic12] was used to extract muscle fibers. The residual limb data were

processed using the commercial 3D image segmentation software Simpleware ScanIP

54 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(Synopsys, Mountain View, USA). Auxiliary tasks were performed using MATLAB (Math-

Works, Natick, USA) scripts. The commercial multiphysics solver LS-DYNA (LSTC/Ansys,

Canonsburg, USA) was used for the simulations.

Commercial tools usually have the advantage that more development effort was put

into them, than is possible for open source codes from the scientific community. This

often leads to more robust and user-friendly software. An advantage of open source

software is that the used algorithms are disclosed to everyone. They are often well

documented or described in a publication. This allows to assess the expected quality

of the generated meshes. Conversely, commercial vendors usually have no interest in

revealing their internal algorithms.

For our simulation, structured, hexahedral meshes are needed. Several of the described

tools are able to generate hexahedral meshes, however the meshes are typically unstruc-

tured. For our special need of 1D muscle fibers embedded in a 3D mesh, we develop

our own method that is based on the ideas of existing algorithms. In the following,

an overview over the algorithmic common knowledge of creating simplex meshes and

hexahedral meshes is given as a basis.

Triangulating a 2D domain is the archetype of mesh creation. The triangulation named

after B. Delaunay was formulated in 1934 [Del34]. For a given set of points, it maximizes

the minimum angle of the triangles and, thus, avoids small angles. Therefore, a guarantee

on the quality of the triangulation is given.

In 1995, J. Ruppert presented the Delaunay refinement algorithm [Rup95], which

constructs a Delaunay triangulation conforming to prescribed connected points. This

algorithm is still commonly used and also part of numerous derived meshing techniques.

In 1997, P. Chew developed an algorithm for meshing a 3D domain with tetrahedra

[Che97] and proved that the aspect ratio of the tetrahedra is bounded, i.e., degenerate,

“flat” tetrahedra, called slivers, are avoided.

The authors of [All05] propose a variational approach to triangulation where a quadratic

energy function is minimized. During minimization both vertex positions and connectivity

are optimized. This leads to better quality meshes than by simple Delaunay triangula-

tions.

Hexahedral meshes can be obtained from certain tetrahedral meshes by splitting up

each tetrahedron into four hexahedra. This is discussed in [Epp99]. A remaining issue

is that the generated meshes from this procedure are highly unstructured and some

3.2 RELATED WORK 55

hexahedra have poor quality, whereas the goal would be to construct elements that are

almost equilateral.

A different approach is to directly generate a hexahedral mesh for the given surface

geometry. The survey in [Owe98] identifies four different strategies for generating un-

structured hexahedral meshes.

The first one is a grid-based approach. It was introduced in [Sch96; Sch97]. The interior

of a given solid is filled with a regular and Cartesian grid of as many hexahedral elements

as fit into the space. Then, the gaps at the surface are filled with additional elements.

This method is robust but can lead to poor quality elements near the surface.

The second approach for generation of hexahedral meshes are medial surface methods

[Pri95; Pri97]. First, the volume is decomposed into subregions by medial surfaces such

that the resulting domains are one of only 13 possible types. Predefined templates are

used to fill the domains with hexahedral elements. Then, the continuity between the

domains is ensured using linear programming. This approach gives good results for some

geometries but has robustness issues when general geometries are considered.

The third approach is called plastering. It was first described by [Bla93] and continued

by [Sta06; Sta10]. It is a moving-front method where hexahedral elements are placed in

layers starting at the boundary and moving towards the interior. Intersection of faces has

to be detected when the fronts meet in the interior and rules for connecting to existing

faces have to be defined. During this process, complex shaped voids can occur in the

interior. When it is no longer possible to fill the voids with hexahedra already placed

elements have to be removed. A new method, called unconstrained plastering, starts

from an unmeshed volume boundary. The approach has general robustness issues and is

not guaranteed to find a solution for arbitrary boundaries.

The forth approach is whisker weaving, introduced by [Tau96] and extended by [Led08;

Kaw08]. Here, the dual of the hexahedral mesh is considered. The dual consists of the

three surfaces per hexahedron that lie in the planes of symmetry. The surfaces of all

hexahedra form topological loops. The principle is now to first construct the dual of

the mesh, which can be determined from the given boundary surface. Then, the actual

hexahedral mesh is created from the dual, using the surfaces as guides where to place the

elements. The dual forms topological loops inside the volume. One important criterion

for generating good quality meshes is that self-intersections of these loops are resolved

in a first step. The approach, used with subsequent smoothing, can produce meshes of

good quality. However, no guarantee is given. One problem is that the resulting mesh

56 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

depends on the quality of the surface mesh and that the number of nodes can increase

significantly during the method.

For the whisker weaving method and for some plastering methods, a quadrilateral

mesh of the surface is required. Algorithms for creating high quality quadrangulations of

closed surfaces exist [Don05; Kov11; Bes12; Men16].

Other approaches start with 3D volumetric medical imaging data instead of surfaces. In

[Zha03; Zha05], adaptive tetrahedral and hexahedral meshes are created from volumetric

data using octree subdivision. The method avoids hanging nodes and allows a feature

sensitive adaptivity. While adaptive meshing methods can reduce the number of elements

in the interior of the volume, a problem is that the worst quality elements are generated

at the boundary, the location where the solution in a finite element study usually is most

interesting.

Multiple reasons make the previously outlined approaches unsuited regarding the needs

for our parallel muscle simulation.

(i) The generated meshes are unstructured. When performing domain decomposition

for parallel computing on unstructured meshes, graph-partitioning methods have to be

used. Storing an unstructured mesh requires storage of element adjacency information.

Partitioned meshes additionally require storage of the adjacent processes. In contrast,

structured meshes can be trivially decomposed and stored efficiently. A decomposition

can be represented in memory by a very low number of parameters.

(ii) The presented methods are designed for hexahedral meshing of arbitrary volumes.

Robustness and mesh quality at the same time remain issues that are not completely solved

for most of the algorithms. Often, expensive smoothing steps are needed to increase mesh

quality.

(iii) In general, either no assumption can be made about orientation or alignment of

hexahedra in the interior, or, for the grid-based approach, the elements at the surface

have poor quality. Having a mesh that is consistently aligned with, e.g., the main diffusion

direction or the preferential direction of the anisotropic material or the muscle fibers can

reduce numerical errors in the finite element solution.

Consequently, a more scenario specific solution is needed that can avoid the mentioned

issues. Such solutions can also be found in the literature. An example is [Ble05b], where

3D finite element models for various complex muscle geometries around the hip are

generated from magnetic resonance images. Segmentation and surface mesh generation

are performed using the old, unmaintained software Nuages (Inria, France) [Nat20].

3.2 RELATED WORK 57

Then, a 3D hexahedral mesh is generated using TrueGrid. A structured template mesh on

a unit square is mapped to the horizontal slices of the muscle geometry that resulted from

the segmentation. After mesh smoothing, the slices are connected vertically to form a 3D

mesh. Fiber directions are described by Bézier curves in a reference volume and mapped

to the muscle geometry using the same mapping. The fiber direction then are used in a

transversely-isotropic material formulation. Simulations are performed using the finite

element solver Nike3D (Lawrence Livermore National Lab, Livermore, USA) [Mak91].

We base our work on this study and use a similar mapping from a template mesh to the

actual muscle volume. In comparison to [Ble05b], we use an improved mapping based

on harmonic maps, which potentially leads to better quality meshes on the slices of the

muscle. Instead of the unit circle template mesh, we experiment with different reference

meshes and evaluate their quality.

In the study of [Ble05b], fiber directions are defined based on anatomically assumed

directions. However, the definition is carried out on the cuboid reference geometry. This

means that the authors mentally morph the muscle geometry into the reference geometry

in order to define fiber directions, using their expertise. Then, the fiber directions together

with the cuboid are transformed back to the actual geometry. This approach simplifies

the definition of the fibers. However, defining the fiber direction directly on the muscle

geometry can lead to better results. Thus, our approach is to automatically estimate fiber

directions and define fibers directly in the muscle domain. At the same time, the 3D mesh

and 1D fibers are aligned in our work to allow for better numerical and data structure

properties of the discretization.

The definition of fiber directions follows a method proposed in [Cho13]. The directions

are assumed to follow a divergence free vector field. Such a field can be created by taking

the gradient of the solution of the Laplace equation. Neumann boundary conditions are

defined at the attachment points of the muscle tendon complex. The solution of the

Laplace equation corresponds to the pressure values of a potential flow. Its gradient

corresponds to the velocity and individual fascicles or fibers can be obtain by tracing

streamlines through the velocity field. This approach is extended and validated by the

studies in [Ino15] and [Han17]. We incorporate this method into our workflow.

58 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

3.3 Preprocessing of the Muscle Geometry

The first step towards creating a structured mesh is to obtain a representation of the

surface of the muscle. Starting point is a human biomedical imaging data set. In this

section, two possible workflows are presented how to extract the muscle and tendon

surfaces from imaging data. The two workflows are visualized in Fig. 3.3. The workflow

using the branch on the left side in Fig. 3.3 is automized but only works for the particular

data set and extracting the biceps muscle. The right branch involves manual steps and is

applicable for any muscle geometry.

3.3.1 Data Source

Anatomic images provide the basis for the extraction of muscle geometries. Our used

data set originates from the Visible Human Project [Spi96] of the United States National

Library of Medicine. The project has published anatomic images derived from a male

corps, among other data sets. The data, known as “Visible Human Male”, were published

in 1994. Colored images of transversal cross-sections were obtained by cryosectioning.

A total of 1871 images with dimensions of 2048 by 1216 pixels and 24 bit color depth

visualize the whole human body. Parts of the upper arms are contained in approximately

500 of these images. The size of a pixel is 0.33 mm in transversal direction and 1 mm

in axial direction. The size of the complete set of JPEG compressed images is 772 MB.

Cropping and selecting the relevant portions of the upper arm extracts a dataset with the

size of 35 MB.

An extract of an image of the upper arm is given in Fig. 3.4. The location of biceps

and triceps brachii muscles can be identified in the dark red tissue. For the biceps, the

two muscle heads are visible, separated by the bright diagonal line from bottom left to

top right. For the triceps, at least two of the three heads can be identified. The blue

background is colored frozen gelatin that was needed during cryosection to stabilize the

arms.

3.3.2 Automatic Surface Extraction

This section outlines the automatic algorithm to obtain the muscle surface from the

Visible Human Male data set. The scheme corresponds to the left branch in Fig. 3.3. The

algorithm was implemented in a Python script as part of the Bachelor thesis of Kusterer

3.3 PREPROCESSING OF THE MUSCLE GEOMETRY 59

Imaging

data

Segmentation,

edge detection

Surface fitting

using MAP-Client

Export STL file

using cmgui

Remove interior

triangles

Surface

STL file

Fit spline surface

Smoothed

surface

Volume

STL file

Volume

Exnode file

Figure 3.3: Workflow of generating a surface representation of the muscle and tendons

from imaging data. Operations and intermediate results are shown as gray and

yellow boxes, respectively. Two alternatives are given by the two branches.

On the left, the imaging data are automatically processed to directly retrieve

points on the surface of the muscle. The right branch achieves the same with

three steps of which the first one involves manual adjustments. At the end, a

spline surface smooths the collected data from both possibilities to yield the

resulting surface representation.

60 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Figure 3.4: Exemplary extract of image number 483 from the Visible Human Male. A

transversal slice of the left upper arm is shown as seen from the bottom. The

biceps and triceps muscles as well as the humerus bone can be identified.

[Kus19] that was supervised by me. The algorithm is capable of extracting muscle and

bone geometries from the mentioned imaging dataset.

At first, the color values in the images are used to segment the pixels into muscle

tissue, surrounding tissue and skeletal structure. The algorithm traverses the selected

and cropped relevant parts of the images.

For every such part of an image, pixels that match a certain range in the RGB color space

are marked and categorized. The categories are muscle tissue and, for demonstration,

also bone tissue. The corresponding color ranges are given in Tab. 3.1.

The color based classification does not succeed everywhere as the white shade corre-

sponds not only to bone material but also to fat and other tissue. Therefore, the algorithm

removes artifacts located near the outer gelatin from the set of pixels that was categorized

as bone.

Exemplary results for image number 483 are given in the left column of Fig. 3.5. It can

be seen that the marked regions for muscle and bone have gaps in the interior resulting

3.3 PREPROCESSING OF THE MUSCLE GEOMETRY 61

red green blue

muscle 60− 100 30− 75 15− 60

bone 145− 255 135− 205 60− 160

Table 3.1: Ranges in the RGB color space to identify pixels of muscle and bone segments.

The numbers correspond to 24 bit colors with the range [0, 255] for every color

channel.

from differently colored tissue inside muscles and bones. On some images, the set of

pixels also includes small objects outside the actual muscle and bone regions.

To reduce the gaps and small objects, the morphological operations closing and opening

are applied on the data. These operations consist of dilation and erosion steps. Both are

pixel based operations that traverse the dataset and for every pixel consider a window

of 3× 3 pixels centered at the current position. Dilation picks the maximum value and

erosion the minimum value from this window and assigns it as the pixel’s value in a new

image. In our case, values of zero and one correspond to non-categorized and categorized

pixels, respectively.

Closing consists of dilation followed by erosion and closes small gaps or holes in the

marked objects. Opening consists of erosion followed by dilation and removes small

artifacts outside the actual bone and muscle areas. It was found effective to perform both

dilation and erosion twice in sequence to yield good results containing almost no more

holes nor unwanted small objects.

Next, the algorithm determines the contours of all regions with marked pixels. This

leads to lines with a width of one pixel that enclose the muscle and bone areas. The right

column of Fig. 3.5 shows the results after this step. It can be seen that numerous gaps

have been closed by the morphological operations. In some images, as in the considered

example, the muscle area gets split into multiple smaller enclosed regions, which is not

desired. These images skipped in the processing. However, proper contours of the biceps

are found in the majority of images.

In the next step, a single contour for each of muscle and bone is obtained in every

image. If there are multiple contours per image, the one that is located closest to the

upper right corner of the image is selected for the muscle. If all contours in an image are

shorter than 20 pixels, this is an indication for bad segmentation quality and the whole

image gets discarded. Because of the discarded images, the resulting surface description

has a lower resolution at the respective locations. This is not a problem as the data is

subsequently approximated by a smooth spline surface.

62 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Figure 3.5: Intermediate steps of the algorithm to determine surface geometry of muscles

and bones. The left column shows pixels from the image in Fig. 3.4 that were

categorized to be muscle tissue (top) and bone material (bottom). The right

column shows a later step in the algorithm, where the surface of muscle (top)

and bone (bottom) is estimated.

3.3 PREPROCESSING OF THE MUSCLE GEOMETRY 63

(a) Surface of the biceps brachii muscle. On the

right-hand side of the muscle, the groove

of the humerus bone can be seen.

(b) Surface of the humerus.

Figure 3.6: Surfaces of biceps and humerus bone obtained by the automatic surface ex-

traction algorithm.

The result is a set of contours for muscle and bone in the cross-sectional planes of the

images. Combining these, we get a point cloud in 3D space that approximates the surface

of the biceps muscle and the surfaces of the considered bones humerus, ulna and radius.

Using these points, a spline surface can be fitted and subsequently triangulated. Resulting

surfaces for the biceps and humerus bones are shown in Fig. 3.6.

The runtime for the algorithm applied on a dataset with 495 images and approximately

144 · 106 pixels in total was 121 min. The used hardware was an AMD Ryzen 5 1600

processor with 6 cores, 3.2 GHz and 16 GB RAM, of which a maximum of 2 GB was used.

Because processing of the images can be done in parallel, the runtime was reduced to

approximately half (62 min) using 2 threads and to a quarter (30 min) using 6 threads.

The advantage of the presented algorithm is that the outcome solely depends on the

imaging data and, thus, no modeling error by manual approximation of the geometry

occurs. For example, the obtained surfaces of biceps and humerus geometrically fit

perfectly into each other. Intermediate steps are stored as black and white images. By

editing these between the steps of the algorithm, manual tweaking is possible and can be

used to increase the quality of the results.

A disadvantage is that the algorithm relies on color information in the imaging data to

differentiate between muscle and other tissue. Because some involved tissue types have

64 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

similar colors, this approach can be error-prone. Furthermore, the color ranges need to

be determined experimentally. Therefore, the algorithm is not very robust with respect

to image noise and needs adjustments when it should be used to extract other muscles.

Expert knowledge about the location and shape of human muscles cannot be used easily

to improve the results of the algorithm.

An alternative approach is to manually segment the imaging data and construct surfaces

with the help of a tool. This approach is described in the following section.

3.3.3 Manually Guided Surface Extraction

Manually guided segmentation can be done using the MAP client of the Musculoskeletal

Altas Project (MAP) [Zha14]. This application allows creating and execute a workflow

to achieve data processing and simulation tasks. In a graphical window, the user can

place and connect various workflow steps. When executing the workflow, each step

shows a dialog where the required configuration can be entered or the operations can be

performed on a visual representation of the data at this workflow stage.

Possible workflow steps include source and sink operations such as reading image data

and writing meshes. Imaging data such as the 2D images from the Visual Human Male

can be visualized in a 3D representation. The user can place points in the 3D space to

mark boundaries of the visualized muscle and tissue structures. Further workflow steps

allow creating meshes of predefined geometrical shapes, such as cubes and cylinders

and merge them into a common mesh. These meshes can be fitted to point clouds of

user defined points. This is done by a least squares approach minimizing the distances

between user created points and the mesh surface. Details can be found in [Fer18].

The MAP client has a plugin architecture and allows creating new workflow steps. It

imports features from OpenCMISS, especially data processing formats and tools from

OpenCMISS Zinc. Meshes can be created with 3D cubic Hermite elements that allow for a

high geometric modeling flexibility with a low number of nodes. Such meshes are stored

in the OpenCMISS file format of exnode and exelem files.

As a result, meshes of individual muscles or the whole human organism can be created.

Figure 3.7 shows meshes that were created from the cryosectioning data of the Visible

Human Male. In Fig. 3.7a, almost the whole body has been extracted. In Fig. 3.7b, the

mesh consisting of cubic Hermite elements is visualized. A relatively coarse mesh width

suffices to model a smooth surface of the body. When exported in the exfiles format from

3.3 PREPROCESSING OF THE MUSCLE GEOMETRY 65

(a) Mesh of the trunk and limbs, the surface

has been triangulated for visualization.

(b) Detail view of part of the right upper arm

and the trunk with orange nodes and edges

of a cubic Hermite element mesh.

Figure 3.7: Mesh of the Visible Human Male from the Visible Human Project.

the MAP client, the data can be visualized, e.g., using cmgui, the visualization tool of

OpenCMISS Zinc.

The mesh width of the meshes obtained using the MAP client was chosen such that

the surface fitting yielded good results. The meshes are not necessarily ready for use

in a simulation, especially if a high mesh resolution is desired. Apart from the mesh

width also the type of elements can be different from what is needed for a finite element

simulation. Our goal is to obtain meshes with linear or quadratic Lagrange elements

with configurable mesh widths for the specified upper arm muscles, such as the biceps

brachii.

Therefore, the next step of the workflow, as visualized by the right branch of Fig. 3.3,

is to transform the volume mesh into a surface mesh which then can be used as start for

further meshing. The further meshing steps are visualized in Fig. 3.8. The start is the

Hermite mesh shown in the left-most image.

The Hermite elements can be triangulated and stored as an STL file using the tool cmgui.

66 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Figure 3.8: Processing the geometry of the biceps brachii muscle. From left to right: mesh

with cubic Hermite elements, STL mesh with inside triangles, STL surface

mesh where triangles lying inside have been removed, Spline surface of the

muscle belly.

This process triangulates the non-planar faces of all Hermite elements. This leads to a

dataset with triangles both on the surface and in the inside of the volume, as can be seen

in the second image of Fig. 3.8. At this stage, the use of the MAP and OpenCMISS related

tools is finished and further processing steps are performed using tools from OpenDiHu

that we developed on our own.

A Python script removes the triangles inside the volume. The detection whether a

triangle is inside the volume is done by casting four rays from the center of gravity of

the respective triangle and determining if the rays intersect any other triangles. The rays

have directions (x , y, z) = (±1,±1, 1
3
), where the z axis is oriented along the muscle’s

longitudinal axis and the x and y axes are oriented in radial direction. The ray-triangle

intersection is done using the fast Möller-Trumbore algorithm [Möl97]. For every ray,

all triangles are checked. Only if all four rays intersect at least one more triangle, the

starting triangle is considered to be inside the volume and subsequently removed from

the dataset.

This algorithm has a quadratic time complexity O(n2) in the number of triangles n. It

3.3 PREPROCESSING OF THE MUSCLE GEOMETRY 67

could be improved by organizing the triangles in a spatially adaptive data structure, such

as an octree. However, since this preprocessing step has to be performed only once for a

given geometry, the runtime is not critical and there is no need for such optimization.

The result of this operation is a triangulated surface, shown in the third image of

Fig. 3.3. The next step is to create a Spline surface of the muscle belly, as shown in the

right-most image of Fig. 3.3. This is described in the next two sections.

3.3.4 Introduction of Spline Surfaces

After the surface representation of the muscle has been obtained from either the left

or the right branch of the preprocessing workflow in Fig. 3.3, the surface is given by a

point cloud or a number of triangles. To remedy eventual outliers or unphysiologically

sharp edges from the segmentation, a Spline surface is fitted to the data. This leads to

a smooth surface representation and later to a better conditioned finite element mesh

in the simulation. However, this step is optional. It is also possible to directly use the

surface triangulation from Sec. 3.3.3 for the meshing algorithm described in Sec. 3.4.

The surfaces use Nonuniform Rational B-splines (NURBS). A NURBS surface is a gen-

eralization of a B-spline surface. From a modeling point of view, B-spline surfaces have

three advantageous properties. First, the B-spline surface can be constructed with given

smoothness properties. Second, the definition of a particular B-spline surface builds on

intuitive geometric information, which simplifies their creation: A control polygon mesh

in 3D space is defined. Its convex hull is guaranteed to contain the surface. Third, the

geometric parameters of a B-spline surface have only local impact on the shape of the

surface. This allows a B-spline surface of a fixed, low polynomial degree to approximate

point clouds with any number of points without loosing approximation quality.

A limitation of B-spline surfaces is that circular and spherical shapes cannot be repre-

sented. This limitation is overcome by NURBS surfaces. NURBS surfaces are defined as

the perspective projection into 3D space of a B-spline surface in 4D space.

The mathematical description is given in this section, following the notation of [Pie12].

The building blocks are the B-spline basis functions of polynomial degree p. Given a knot

vector

Ξ = (ξ1,ξ2, . . . ,ξk) ∈ Rk with a = ξ1 ≤ ξ2 ≤ · · · ≤ ξk = b,

68 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

the ith B-spline basis function Ni,n of degree n is defined recursively starting with the

piecewise constant function

Ni,0(ξ) =

1 for ξi ≤ ξ < ξi+1,

0 else,

and using the following relation to define the functions of higher degree (n> 0):

Ni,n(ξ) =
ξ− ξi

ξi+n − ξi

Ni,n−1(ξ) +
ξi+n+1 − ξ
ξi+n+1 − ξi+1

Ni+1,n−1(ξ), for all i > 0.

Because neighboring entries in the knot vector can be equal, the fraction 0/0 can occur.

In this case, 0/0 := 0 is defined. Note that by construction of Ni,n a zero denominator

implies that also the dividend is zero.

A B-spline curve C : R→ Rd of polynomial degree p is defined as

C(u) =
ℓ
∑

i=1

Ni,p(u)Pi, u ∈ [a, b].

The coefficients Pi ∈ Rd , i = 1, . . . ,ℓ, of the basis functions Ni,p are called control points

and define the control polygon. The number ℓ of basis functions and control points is

determined from the number of knots k in an open knot vector and the polynomial degree

p as ℓ= k− p− 1.

The number of equal entries in series in the knot vector is the multiplicity of the respec-

tive knot value. Usually open knot vectors Ξ are used where the first and the last knot

occur with a multiplicity of p+ 1. This makes the first and the last points of the B-spline

curve coincide with the control polygon points: C(a) = P1 and C(b) = Pℓ.

The multiplicities of the knots in the knot vector encode information about the smooth-

ness of the B-spline curve. If the knot value ξ̂ has a multiplicity of m, the B-spline curve

will be (p−m) times continuously differentiable at C(ξ̂).

An exemplary B-spline curve is shown in Fig. 3.9. It uses a non-uniform knot vector

for polynomial degree p = 3, where the differences ξi+m − ξi between neighboring knot

values vary. The effect of different multiplicities can be seen. The multiplicity m= p = 3

places the point of the curve at the knot on the respective control point, as for ξ = 49

in the example. The multiplicity m= p− 1= 2 places the point of the curve at the knot

on the control polygon, as in the example at ξ = 10. A lower multiplicity m < p − 1

3.3 PREPROCESSING OF THE MUSCLE GEOMETRY 69

ξ= 0, m= 4 ξ= 7, m= 1

m= 2

ξ= 49, m= 3

m= 4
ξ= 50, ξ= 10,

Figure 3.9: Exemplary B-spline curve (red) of degree p = 3 for the knot vector Ξ =

(0, 0, 0, 0, 7, 10, 10, 49, 49, 49, 50, 50, 50, 50), control points (blue) and control

polygon (black). Positions of the curve C(ξi) at the knots ξi are indicated

by the red squares and the knot value ξ and its multiplicity m is given. The

effect of moving one control point is shown in green.

does not yield a higher smoothness and in turn does not force the curve to coincide with

the control polygon at the respective knot. It can also be seen that the B-spline curve

stays inside the convex hull of the control polygon which is a property of B-spline curves

[Pie12].

The effect of moving one of the 10 control points is visualized with green color in

Fig. 3.9. The B-spline basis function Ni,p has a local support of S = (ξi,ξi+p+1). Conse-

quently, only the corresponding part of the curve, C(ξ) for ξ ∈ S, changes.

A B-spline surface S : R2 → Rd is given by the tensor product of two B-spline curves:

S(u, v) =
ℓ(1)
∑

i=1

ℓ(2)
∑

j=1

N (1)
i,p(1)
(u)N (2)

j,p(2)
(v)Pi, j. (3.1)

Here, we have two polynomial degrees p(1) and p(2), the ansatz functions N (1)
i,p(1)

and

N (2)
j,p(2)

with ℓ(1) and ℓ(2) ansatz functions per coordinate direction are constructed from

the corresponding knot vectors per coordinate direction.

NURBS, B-spline curves and surfaces are formulated using homogeneous coordinates.

Every point in Cartesian coordinates (x , y, z) ∈ R3 has a set of homogeneous coordinates

(x̃ , ỹ , z̃, w) = (x w, y w, z w, w). Thus, the Cartesian coordinates can be obtained from

70 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

the homogeneous coordinates by the perspective division, i.e., dividing all but the last

coordinate by the weight w.

A NURBS surface is given by the same definition as the B-spline surface in Eq. (3.1)

except that the control points Pi, j ∈ R3 are enriched with scalar weights wi, j and, thus,

replaced by (Pi, j, wi, j) ∈ R4. The resulting surface S is given in homogeneous coordinates.

Executing the perspective division yields the form:

T(u, v) =
ℓ(1)
∑

i=1

ℓ(2)
∑

j=1

Ri, j(u, v)Pi, j,

with Ri, j(u, v) =
Ni,p(1)(u)N j,p(2)(v)wi, j

ℓ(1)
∑

r=1

ℓ(2)
∑

s=1

Nr,p(1)(u)Ns,p(2)(v)wr,s

.

The new rational basis functions Ri, j and the possibly non-uniform knot vectors give rise

to the name Non-Uniform Rational B-spline surface (NURBS).

3.3.5 Fitting a Spline Surface to the Muscle Geometry

In order to find a NURBS surface for the given triangulated surface of a muscle, at first,

the part of the geometry corresponding to the tendons is removed such that the resulting

triangles model only the surface of the muscle belly. In our example of the biceps muscle,

the resulting belly has a length of 12.8 mm.

Then, twelve cross-sections are extracted from the surface triangles. As a result, we

get twelve horizontal circumferential rings. On each ring, 9 equidistant points are deter-

mined. The first point is appended after the last point in every ring, such that in total we

obtain a grid of 10× 12 points.

Then, the least squares surface approximation algorithm by [Pie12] is used to fit a

NURBS surface to the points. The implementation of the algorithm is given by the NURBS-

Python (geomdl) library. Polynomial degrees of p(1) = 3 and p(2) = 2 are used where

the first dimension corresponds to the cross-sectional direction of the muscle. The knot

multiplicity is chosen as m = 1 for both coordinate directions. We obtain a two times

respective one times continuously differentiable surface in u and v direction. The resulting

NURBS surface and the control polygon are visualized in Fig. 3.10. Note that the control

polygon is different from the grid of points against which the surface is fitted.

3.3 PREPROCESSING OF THE MUSCLE GEOMETRY 71

Figure 3.10: Muscle surface description with Splines: Fitted NURBS surface of the biceps

muscle (red) and the control polygon (orange).

Figure 3.11a shows the result of this approach in more detail. We observe that the

surface is non-differentiable and has a kink at the seam line where the first and last

points of each ring meet. The reason for this is that the surface fitting algorithm does not

pose any conditions on the tangents at the edges of the fitted NURBS surface. Thus, the

tangents mismatch.

Since no implementation of a fitting algorithm specifically for a tubular NURBS surface

with periodicity in tangential direction is available, we develop a different remedy. We

modify the point grid that is used for the surface fitting. The series of 9 equidistant points

on each ring is replicated twice and the first point is again added as the last point. This

leads to a grid of (3 · 9+ 1) = 28× 12 points which wrap around the muscle volume in

circumferential direction three times. The NURBS surface fitting algorithm is applied on

this grid. The resulting NURBS surface also wraps around the muscle three times with

the two ends being again not properly fitting to each other. From these three wraps, the

middle one is extracted. In the biceps example, this corresponds to restricting the NURBS

surface T(u, v) from (u, v) ∈ [0, 1]2 to (u, v) ∈ [0.4,0.733]× [0, 1].

The result is depicted in Fig. 3.11b. The tangents now match very well between the

two sides of the NURBS surface. Additionally, the comparison with the initial approach in

Fig. 3.11a shows that an artificial bulge at the top of the muscle in the perspective of the

visualization is removed. The overall shape of the muscle now looks smoother and more

72 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(a) First approach with 10× 12 control points.

The kink at the seam line along the muscle

is clearly visible.

(b) Second, improved approach with 28 × 12

points. It can be seen that the tangents at

the seam line match very well.

Figure 3.11: Muscle surface description with Splines: Fitted NURBS surface of the biceps

muscle, triangulated for visualization purposes.

natural. Also, a comparison with the result of the automatic algorithm given in Fig. 3.6a

shows that the results of our new approach are smoother.

The generated tubular surface has two holes at the top and bottom which prevent it

from being an enclosing surface to the muscle belly volume. The borders of these holes

each lie in a plane and, thus, the missing surfaces are treated as being planar during the

subsequent creation of the 3D meshes.

For the next step, a triangulation of the tubular surface is created and stored as STL

mesh file. We use the respective functionality of the NURBS-Python library that creates a

structured triangle mesh using the 2D parametrization of the NURBS surface.

3.4 Serial Algorithm to Create Muscle and Fiber

Meshes

Next, a 3D mesh for the muscle volume and 1D meshes for muscle fibers need to be

generated from the surface representation described in the previous sections. In this

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 73

section, first an algorithm for the 3D mesh is described. Then, a second algorithm that

reuses results from the first algorithm is presented which generates one dimensional

meshes for muscle fibers. Both algorithms are executed in serial. A derived algorithm

that can run in parallel and, thus, can handle larger datasets on a distributed memory

hardware is presented in Sec. 3.5.

The steps of a serial algorithm for the generation of a 3D mesh are given in Alg. 1.

Input is the set of triangles at the tubular surface of the muscle. The tubular surface is

oriented along the z axis. In the following descriptions, the muscle in considered to be

oriented upright such that the z axis points in vertical direction towards the top. The

borders at the bottom and at the top have a constant z coordinate.

Algorithm 1 Serial algorithm for the generation of 3D meshes.

1 procedure Create_3D_mesh

Input: Triangulated tubular surface

Output: Structured 3D volume mesh

2 Slice geometry

3 Triangulate 2D slices

4 Compute harmonic maps u, v from the slices to a parameter space

5 Construct regular grid in parameter space and map it to slices

6 Form 3D quadrilateral elements between the 2D slices’ meshes

The idea of the algorithm is to first create 2D meshes with good quality on cross-

sectional slices of the muscle volume and then combine them to get a 3D mesh. The

algorithm starts with creating the horizontal 2D slices in lines 2 and 3. The slices get

vertically connected at the end of the algorithm in line 6 to create the 3D mesh. This step

is visualized in Fig. 3.13d.

Because the goal is to create a hexahedral mesh, the horizontal slices have to consist

of quadrilaterals. Decomposing a 2D domain into quadrilaterals is easier for a square

or circular shaped domain than for an actual cross-section of the muscle. Therefore,

we introduce a separate, square or circular shaped parameter domain for creating the

quadrilaterals.

Figure 3.12 outlines the method. We start at the upper left of the figure with a triangu-

lation on the cross-sectional slices of the muscle. A mapping from the muscle slices to the

parameter space at the right of the figure is computed. We use harmonic maps to ensure

a smooth mapping that results in good mesh quality. This first step corresponds to line 4

in Alg. 1. Different parameter domains such as unit circle and unit square are considered,

as shown in Fig. 3.12. It can also be seen at the upper right that the image of the muscle

74 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

harmonic map

u-1, v-1

solution solutionu v

Laplacian

smoothing

SM ΩPMuscle domain Parameter domain

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

unit circle unit square

u, v

Figure 3.12: Generation of the muscle meshes, overview of the mapping method between

the muscle domain (left) and the parameter domain (right) using harmonic

maps.

slice triangulation in the parameter domain is better in the unit circle than in the unit

square. Therefore, an investigation of different parameter domains and triangulation

schemes is necessary.

Next, line 5 of Alg. 1 defines a quadrangulation in the parameter space, shown at the

lower right of Fig. 3.12. The quadrilateral elements are mapped back to muscle slices

where they are needed for the final 3D mesh. An optional smoothing step at the lower left

of the figure further improves the mesh quality. All steps of the algorithm are described

in more detail in the following sections.

3.4.1 Slicing of the Geometry

The first step in line 2 of Alg. 1 slices the geometry. This means that horizontal slices of the

cross-sectional area are extracted from the surface mesh. First, the muscle is divided into

equidistant positions zi, i = 1, . . . , n along the z-axis where the slices are to be extracted.

As can be seen in Fig. 3.13a, n= 13 z coordinates are selected. Next, for every position zi,

all surface triangles T j that intersect the plane Zi = {p= (x , y, z) | z = zi} are considered

and the intersection lines P = T j ∩ Zi are computed. The method of computing plane-

triangle intersection is described in the following.

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 75

Given is a triangle T with points p1,p2,p3 ∈ R3 and a value ẑ, the result is the set of

points P = T ∩ {p= (px ,py ,pz) | pz = ẑ} which corresponds to a line segment papb.

We describe the points in the triangle by two barycentric coordinates ξ1 and ξ2 as

p(ξ1,ξ2) = (1− ξ1 − ξ2)p
1 + ξ1 p2 + ξ2 p3,

with ξ1 + ξ2 ≤ 1, 0≤ ξ1,ξ2 ≤ 1.

(3.2)

pz(ξ1,ξ2) = ẑ defines the equation for the line through the points pa and pb in barycentric

coordinates. The solution is given as

ξ1 = m · ξ2 + c, m= −
p3

z − p1
z

p2
z − p1

z

, c =
ẑ − p1

z

p2
z − p1

z

, p2
z 6= p1

z .

For p1
z = p2

z 6= p3
z we swap p2

z and p3
z .

Next, the end points of the line segment papb are determined. We consider the three

sides p1p2,p2p3 and p3p1 of the triangle and check which of them are intersected by the

z = ẑ plane by the following three conditions:

1. On the triangle side p1p2 the condition ξ2 = 0 holds and the side intersects the plane

at p(c, 0) iff 0≤ c ≤ 1.

2. Similarly, on the triangle side p1p3 we have the condition ξ1 = 0 and the side intersects

the plane at p(0,−c/m) iff m 6= 0∧ 0≤ −c/m≤ 1.

3. The third triangle side p2p3 is intersected for ξ̂1 = (c +m)/(1+m) at p(ξ̂1, 1− ξ̂1) iff

m 6= −1∧ 0≤ ξ̂1 ≤ 1.

If two of these three conditions for intersection of the triangle sides are met, there is an

intersecting line segment papb with pa 6= pb and the two intersection points pa and pb

on the triangle sides are determined as stated above. The trivial cases pa = pb and the

case where pa and pb are equal to two of the triangle corners p1,p2 and p3 are handled

separately in our implementation.

After the presented computations are performed for all planes Zi and all triangles T j,

we have a number of line segments that form a geometric “ring” for each z plane. The line

segments are ordered according to their adjacency and a counter-clockwise orientation

with respect to the z axis is ensured. The length of each ring is computed. A number

m= 16 of equidistant points is selected on each ring.

76 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Because the selected points on the rings are later used as boundary points of the

resulting 3D mesh, their position relative to each other on different rings should be in

a tidy manner. The positioning should enable straight connection lines in longitudinal

direction of the muscle connecting the points on every ring. For illustration, Fig. 3.13a

shows such a configuration of properly positioned ring points. Connecting the points

from top to bottom is possible with smooth lines rather than zigzag lines. In result, the

outer surface of the final mesh in Fig. 3.13d consists of a smooth quadrilateral mesh.

With given rings and number m of equidistant points per ring, only the position of one

point per ring is not yet fixed. To close the definition, in the following we formulate a first

condition that relates the point positions of two neighboring rings and a second condition

for one point at the bottom-most ring.

As mentioned, the first condition should ensure that the point positions on neighboring

rings are as similar as possible. This is done by minimizing the distance between the first

points on every ring. In the algorithm, the z planes are traversed from bottom to top. The

first point p̃i,0 on a ring at z = zi is determined from the first point p̃i−1,0 of the previous

ring at z = zi−1 as the one with the minimal distance |p̃i,0 − p̃i−1,0|. Thus, the searched

point p̃i,0 has the property that the line between p̃i,0 and p̃i−1,0 and the tangent of the ring

are perpendicular.

Given any point p on the ring at zi and the tangent vector u at this point, we can project

the connection vector v from p to the start point p̃i−1,0 of the previous ring, v= p̃i−1,0−p,

onto the tangent u. This leads to the plumb foot point p0 by the computation

p0 = p+ t u with t =
v · u
|u|2

.

Performing this calculation for every line segment u on a ring allows to select the plumb

foot p0 with the smallest distance to the start point p̃i−1,0 of the previous ring to be the

start point p̃i,0 of the current ring. This is the point that fulfills the first condition.

With this first condition, all points are only fixed relative to each other. The definition

of one point, the start point p̃0,0 of the bottom-most ring, is missing. The second condition

fixes this point by a prescribed plane at x = x̂ and selects p̃0,0 such that its x coordinate

lies in this plane. From the (usually two) points that meet this condition, the one with

lower y coordinate is selected. The actual value of x̂ is determined experimentally such

that the resulting point positions are visually uniform. Not every value leads to a good

result because of the shape of the biceps muscle, especially the groove where the humerus

bone is located.

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 77

The resulting grid of points on the biceps surface is visualized in Fig. 3.13a. It can

be seen that all points of the same ring have the same z coordinate. By connecting

neighboring points horizontally and vertically, a regular grid can be formed. This overall

grid in this x-z perspective view looks relatively uniform, e.g., compared with the gray

surface triangulation mesh of the biceps geometry. The spacing between the points is

lower at the top and bottom of the muscle because of the smaller circumference at these

locations.

3.4.2 Triangulation of the Slices

The points of each ring enclose a planar, polygonal surface, a slice SM of the muscle. The

next step in the algorithm, line 3, is to triangulate the extracted slices, i.e., to construct

triangles that decompose the polygons. The result of this step is visualized on the left

side in Fig. 3.13b.

We select three different methods to construct this triangulation. The first and second

methods are based on Delaunay triangulations. The third method creates a custom trian-

gulation using a simple construction scheme with only one additional point. Figure 3.14

visualizes results of the three methods for one slice.

The first method uses the tessellation algorithm from the spatial algorithms and data

structures module of the Python package SciPy. The Quickhull algorithm [Bar96] is used

which triangulates the convex hull of the points. In consequence, the triangulations of

concave slices have triangles that lie outside the interior of the slice, which is a disadvan-

tage. An advantage is that the triangulation uses all given points and no new points are

added. However, this often results in meshes of lower quality than if adding additional

points were allowed. The example in Fig. 3.14a shows such a concave slice. At the bottom

of the domain, the triangles are outside the slice and almost degenerate.

The second method uses a Delaunay refinement algorithm described in [She02] and

implemented in the Triangle software [She96]. A conforming, constrained Delaunay

triangulation is created. The triangulation correctly handles convex and concave domains.

Conforming means that the triangulation uses the given points at the boundary. Additional

points on the boundary as well as in the interior are added. The triangulation is constraint

to generate triangles with minimum angles of 20 degrees and a maximum area A that is

set to a value depending on the area of the bounding box. In consequence, the generated

triangulations of all slices have a guaranteed mesh quality in terms of angles and about

the same size and number of triangles.

78 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(a) Extracted boundary points (blue) on the

biceps surface mesh (gray). This is the

result of line 2 in Alg. 1.

(b) The generated triangulation of the slices (left)

and the image y(x) of the triangulation under

the harmonic map (right). This figure shows

the result of lines 3 and 4 in Alg. 1.

(c) Grid in parameter space (right) and muscle

domain (left), result after line 5 in Alg. 1.

(d) 3D elements formed by connecting

the slices in line 6 in Alg. 1.

Figure 3.13: Steps of the serial algorithm for 3D mesh generation, Alg. 1, executed directly

on the surface mesh of the biceps muscle (not the B-spline surface).

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 79

(a) First triangulation method (b) Second triangulation

method

(c) Third triangulation method

Figure 3.14: Intermediate step of 3D mesh generation: triangulation of slices, result of

different triangulation methods for a slice in the center of the biceps muscle.

Comparing the result of the second method in Fig. 3.14b with the result of the first

method in Fig. 3.14a shows the better triangulation quality as the triangles all have larger

angles.

The third method places one additional point at the center of gravity of the given points.

Triangles are constructed by connecting the center point with two adjacent points on the

boundary, for all given points. The resulting triangulation resembles a pie chart. For some

extreme concave slices, this method also creates triangles that partly lie outside the slice,

but this rarely occurs with muscle cross-sections. The advantage of this approach is its

simplicity. Figure 3.14c shows the result for an exemplary slice. In contrast to the first

method, the third method creates a valid triangulation despite the concave domain.

3.4.3 Harmonic Maps

Next, harmonic maps are created that allow to smoothly map a given 2D reference mesh

onto an actual cross-section of the muscle. The initial application of harmonic maps to

meshes used for biomedical simulations is given by [Mar10] and [Mar11]. The authors

improve a given, over-sampled surface mesh obtained from classical segmentation. This

is done by partitioning the surface into multiple mesh partitions of zero genus (i.e.,

containing no holes) and transforming them to a reference space using harmonic maps.

There, controlled remeshing is carried out before the transformation is reversed.

80 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

In our algorithm, harmonic maps are also used for the purpose of generating high

quality meshes. In contrast to the literature, the mapping is based on the muscle slices

instead of the surface. Also, different parameter domains are investigated.

A function u : Ω→ R on a domain Ω ∈ Rd is harmonic if it is a solution of the Laplace

equation ∆u = 0. From variational calculus, it is known that harmonic functions are

extremals of the Dirichlet energy functional [Wey40],

E[u] =
1

2

ˆ

Ω

|∇u|2 dx.

For an intuitive understanding, the map u can be seen as deforming an elastic material that

is initially located tension-free in the domain Ω. Then, the Dirichlet energy E[u] describes

the total amount of squared stretch or elastic energy resulting from the tension that occurs

in the deformed state. A harmonic map minimizes this total tension. Qualitatively, the

map deforms neighborhoods of all points in Ω by a similar amount, thus, preserving

geometrical structures in Ω, e.g., given by a mesh. The idea of our approach is that

applying a harmonic map on a mesh with good quality preserves the mesh quality also in

the image under the map.

In Alg. 1, computing the harmonic maps u and v is done in line 4. For a given slice SM ,

the functions u and v map from points x ∈ SM to coordinates u(x), v(x) ∈ R of a parameter

domain ΩP ⊂ R2. The parameter domain is either a unit circle or a unit square.

The vector y(x) := (u(x), v(x))⊤ for x ∈ SM is interpreted as position in ΩP . The maps

are constructed such that the boundary ∂SM of the slice SM is mapped to the boundary

∂ΩP of the parameter domain ΩP while preserving the distance between points on the

boundary. The mapping y : SM → ΩP is bijective and harmonic, i.e., the Laplacians of u

and v are zero. More specifically, u : SM → R and v : SM → R are solutions of

∆u(x) = 0, ∆v(x) = 0 ∀x ∈ SM . (3.3)

To derive suitable Dirichlet boundary conditions for these equations, we consider a uni-

form parametrization p : [0, 1]→ ∂SM of the boundary ∂SM of the slice, i.e.,

∂ℓ(t)

∂ t
= c ∈ R ∀t ∈ [0,1], where ℓ(t) :=

t
ˆ

0

|p′(τ)|dτ.

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 81

We require the image of the boundary parametrization in ΩP to be also uniform, i.e.,

∂ℓP(t)

∂ t
= cP ∈ R ∀t ∈ [0, 1], where ℓP(t) :=

t
ˆ

0

|y′
�

p(τ
�

|dτ.

Corresponding boundary points xM,boundary ∈ SM and xP,boundary = (uP,boundary, vP,boundary)
⊤

can be defined. This leads to the following Dirichlet boundary conditions that close the

definition in Eq. (3.3):

u(xM,boundary) = uP,boundary, v(xM,boundary) = vP,boundary. (3.4)

Equations (3.3) and (3.4) describe a boundary value problem of ordinary differential

equations for u and v. We solve it using the finite element method and the spatial

discretization given by the triangulation of the slices. Depending on the method of

triangulation, a different number of degrees of freedom is given. For the first method with

the Quickhull algorithm, no degree of freedom is present and no system of equations needs

to be solved. Then, the mapping is only a FE interpolation of the boundary mapping. For

the third method, only one degree of freedom for the center point needs to be computed.

The second method has as many degrees of freedom as there are additional points inserted

during the Delaunay refinement.

The first step is to compute the prescribed boundary points xP,boundary in parameter space.

When using the first and third triangulation methods, the boundary points on the slices

are equidistant and therefore the same number of points need to be sampled equidistantly

on the boundary ∂ΩP of the parameter space. If the second triangulation method, which

potentially adds additional points is used, the same number of points are created on the

boundary ∂ΩP of the slice as are given on the slice ∂SM . The boundary points are created

such that the relations of their distances are the same on ∂ΩP as for the original points

on ∂SM .

Using the standard procedure of the finite element method for ∆u(x) = 0 on SM and

u = f (x) on ∂SM , e.g., as outlined in [Rem10], leads to the weak form with ansatz and

test functions φ,

ˆ

SM

(∇u⊤∇φ +∇ f (x)⊤∇φ)dx= 0 ∀φ ∈H1
0
. (3.5)

Standard linear hat functions are used on the triangles, such that they provide the inter-

82 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

polation property φi(x j) = δi j. Using the barycentric parametrization of triangles with

points p1,p2 and p3 introduced in Eq. (3.2), we define the ansatz functions and get their

derivatives within the elements by:

φ
(e)
1 = (1− ξ1)(1− ξ2), φ

(e)
2 = ξ1(1− ξ2), φ

(e)
3 = (1− ξ1)ξ2,

∇φ(e)1 = (ξ2 − 1,ξ1 − 1)⊤, ∇φ(e)2 = (1− ξ2,−ξ1)
⊤, ∇φ(e)3 = (−ξ2, 1− ξ1)

⊤.

The superscript �(e) refers to the definition of the functions within elements. The global

assembly involves composing the global nodal functions φi(x) for nodes indexed by

i = 1, . . . , nnodes and using a mapping between the barycentric coordinates ξ1,ξ2 ∈ [0, 1]2

inside the elements to the global coordinates x ∈ SM . Inserting the discretization

uh(x) =

nnodes∑

i=1

uiφi(ξ1(x),ξ2(x))

into Eq. (3.5) leads to the form

nnodes∑

i=1

ui

ˆ

SM

∇xφ
⊤
i ∇xφ j dx+

nnodes∑

i=1

fi

ˆ

SM

∇xφ
⊤
i ∇xφ j dx= 0 ∀ j = 1, . . . , nnodes. (3.6)

The integrations are executed element-wise and over the elemental coordinates ξ1,ξ2.

The transformation to elemental coordinates involves the computation of the Jacobian J =

dx/dξ of the mapping between element coordinates ξ= (ξ1,ξ2) and global coordinates

x. From the definition in Eq. (3.2), it follows that

J =
dx

dξ
= [p2 − p1,p3 − p1].

The metric tensor for this mapping is given by

M :=

�

dx

dξ

�T �
dx

dξ

�

.

The transformation of the integrals in Eq. (3.6) introduces an additional integration factorp
detM. We get the following matrix equation:

Muu= −M f f, (3.7)

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 83

with the vector u of nodal solution values, the vector f of nodal Dirichlet boundary

condition values at the boundary and the global stiffness matrices Mu and M f . The two

global stiffness matrices are assembled from the element stiffness matrices M (e) for the

degrees of freedom at all nodes respectively at the boundary nodes. The entries of the

element stiffness matrices are given by

M (e)
i, j =

1
ˆ

0

1−ξ1
ˆ

0

∇φ(e)i (ξ1,ξ2)
⊤M−1∇φ(e)j (ξ1,ξ2)

p

detMdξ2dξ1.

By solving Eq. (3.7) for u, we get the discretized harmonic map u. The finite element

formulation and computation for v is analog and uses the same global stiffness matrices.

Figure 3.15 visualizes the triangulation of SM and the solutions u(x) and v(x) for a

circular parameter domain ΩP and an exemplary muscle slice in the first two plots. The

color range from bright yellow to dark violet corresponds to increasing values of u and v.

It can be seen that the u values increase from left to right whereas the v values increase

from bottom to top, corresponding to the horizontal and vertical coordinate axes y1 and

y2 of ΩP .

Applying the computed harmonic map y(x) to the triangulation of the slices results in

a triangulation of the parameter domain ΩP . This is shown in the third plot of Fig. 3.15

and in Fig. 3.13b. In both figures, the triangulation of the slices was generated using the

second triangulation method with the constrained Delaunay triangulation. On the right

side of Fig. 3.13b, the image y(x) under the harmonic map of the triangulation in the

slices is shown on the unit circle parameter domain.

3.4.4 Construction of a Regular Grid in the Parameter Domain

The next step in Alg. 1 is the construction of a 2D structured, regular grid in the pa-

rameter domain ΩP , as stated in line 5. This grid will then be mapped to the slices

SM . Creating a structured grid of quadrilateral elements in a given domain is also called

quadrangulation.

The parameter domain ΩP can be selected to be either a unit square or a unit circle.

For both choices, two different schemes how to generate a grid with a given number of

cells can be selected. Figure 3.16 shows all four possibilities.

84 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Figure 3.15: Quality improvement of muscle slice meshes as a basis for 3D mesh gener-

ation: Initial triangulations and harmonic map for a slice SM of the biceps

muscle. The first two plots show the solutions of u and v on the slice SM .

The third plot shows the image in ΩP of the triangulation in SM under the

harmonic map.

The first scheme, Fig. 3.16a, uses an equidistant regular grid in a unit square. This is

the easiest possibility to generate a quadrangulated reference domain. A possible issue is

induced by the corners of the square. The grid will be mapped to a cross-section of the

muscle which has no sharp corners. Therefore, the cells of the grid will be distorted at

the images of the corners, usually shortening diagonals that point towards the corners

and lengthening the other diagonals. This assumption motivates the second scheme

in Fig. 3.16b. Here, the elements are already distorted in the described manner, with

increasing distortion closer to the corners. The rationale is that the mapped cells in SM

will then be less distorted.

We construct our second quadrangulation scheme of the unit square as follows. The

diagonals of the square divide the domain into bottom, top, left and right quarters, which

are considered separately. For example, the bottom quarter is the triangle that is formed

by the corner points (0, 0), (1, 0) and the center point (1
2
, 1

2
) of the square. In the bottom

quarter, the horizontal x coordinate of a point (x , y) in a uniform grid can be described by

x = 1
2
+ tan(φ) (1

2
− y) where φ is the angle between a line through (x , y) and the center

point (1
2
, 1

2
) and the y-axis. The points of the adjusted grid in the quadrangulation scheme

are constructed by altering the value of φ. On every horizontal series of points in the

bottom quarter, φ is varied linearly in [−π/4,π/4] instead of the nonlinear progression

according to the actual angle. This leads to the larger spacing between points near the

diagonals. All four quarters are treated analogously to produce the shown symmetric

pattern.

A different approach is to use a unit circle, which has no corners and therefore might

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 85

resemble a muscle cross-section more consistently. The first scheme of the unit circle is

given in Fig. 3.16c. It uses the radial and circumferential directions for the two dimensions

of the grid. A disadvantage of this scheme is that the quadrilaterals at the center are

degenerated to triangles. Additionally, the area of the cells varies significantly and the

outer cells have unequal side lengths.

To remedy this problem, we develop the second scheme given in Fig. 3.16d. When

traversing from the outer boundary towards the center point and considering the cir-

cumferential lines of grid points, the circle morphs into a square as the number of grid

points decreases. This approach has the disadvantage that some cells have an inner

angle of nearly 180°, especially four elements at the boundary. Apart from that, all

elements have similar sized sides and angles. The construction of this scheme is simi-

lar to the approach of scheme 2 on the unit square in that the domain is also divided

into four quarters. However, different formulas for the point coordinates (x , y) depend-

ing on the angle φ are used. The detailed construction formulas of all four presented

quadrangulation schemes are provided by their implementation in the code. The script

plot_quadrangulation_schemes.py constructs and visualizes the four schemes with a

configurable number of grid points.

Each construction scheme allows to specify the (squared) number of nodes and in

consequence the number of cells. The examples in Figures 3.16a, 3.16b, and 3.16d have

11× 11 nodes and 10× 10 cells. For Fig. 3.16c, the numbers are slightly different. There

are 10× (11+ 1) nodes resulting in 10× 11 cells.

Next, the grid in the parameter domain is transferred to the muscle domain by apply-

ing the harmonic map y(x) ∈ SM on every point of the quadrangulation x ∈ ΩP . This is

illustrated in Fig. 3.13c for a parameter domain consisting of the unit circle, with quad-

rangulation scheme 2 and 5 × 5 nodes. The cells of the grid in ΩP are shown in the

right-most stack of domains. The grid points are visualized left of the grids. The resulting

image of the mesh in the slices SM is shown on the left. For visualization reasons, each

quadrilateral has been split into two triangles.

3.4.5 Formation of Three-Dimensional Elements

The result of the previous steps is a number of quadrangulated muscle slices. The grid

on every slice has the same number of nodes and elements. The nodes on the boundary

of neighboring slices are positioned similarly.

86 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(a) Unit square, scheme 1 (b) Unit square, scheme 2

(c) Unit circle, scheme 1 (d) Unit circle, scheme 2

Figure 3.16: Four different quadrangulation schemes of the parameter domain with 11×
11 nodes. The boundaries of the grid are colored for better perceptibility.

In (a) and (b), the parameter domain is a unit square with a uniform grid

(a) and an adjusted grid (b) that tries to reduce the problem of degenerate

elements at the corners of the muscle slices. In (c) and (d), quadrangulations

on a unit circle parameter domain are shown. (c) shows a rotationally

symmetric construction scheme whereas the approach in (d) is similar to a

uniform grid.

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 87

The final step of Alg. 1 is line 6, the formation of 3D elements. Inserting vertical edges

between all corresponding nodes on two neighboring slices creates a set of 3D hexahedral

elements and, thus, an overall 3D hexahedral mesh of the muscle volume. This step is

visualized in Fig. 3.13d.

3.4.6 Generation of Fiber Meshes

1D fiber meshes are created following the approach of computing a divergence free vector

field introduced in [Cho13]. The steps are given in Alg. 2.

The Laplace problem to be solved can be stated as

∆p(x) = 0 for x ∈ ΩM . (3.8)

The vector field is given by the gradient ∇p of a solution p of Eq. (3.8). The quantities

can be interpreted as pressure p and (negative) velocity field ∇p of a steady flow. The

muscle fibers are given as streamlines or, equivalently, pathlines in this velocity field.

Every streamline x : [−c1, c2] ⊂ R→ ΩM with c1, c2 > 0 is defined by a seed point x0 and

the property that it is tangent to the velocity field at any point:

x(0) = x0,
∂x(s)

∂s
=∇p

�

x(s)
�

.

As proposed by [Cho13], Neumann boundary conditions can be specified for the bottom

and top surfaces of the muscle volume, ∂ΩM ,bottom and ∂ΩM ,top:

dp(x)

dx
· n = Fin, for x ∈ ∂ΩM ,bottom,

dp(x)

dx
· n = Fout, for x ∈ ∂ΩM ,top.

(3.9)

The in and outflow values Fin < 0 and Fout > 0 are balanced such that the total inflow

Fin ·µ(∂ΩM ,bottom) compensates the total outflow Fin ·µ(∂ΩM ,bottom). Here, µ(∂Ω) is the

surface area of the respective boundary.

Alternatively, Dirichlet boundary conditions can be specified:

p(x) = 0, for x ∈ ∂ΩM ,bottom,

p(x) = 1, for x ∈ ∂ΩM ,top.

(3.10)

88 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

The specification of Dirichlet boundary conditions has the same effect as Neumann bound-

ary conditions and is easier to define. The in and outflows are still orthogonal to the

boundary because the prescribed value of p does not vary in the planar boundary.

The boundary value problem given by Eqs. (3.8) and (3.9) or Eqs. (3.8) and (3.10)

is discretized by the finite element method with linear or quadratic ansatz functions

and solved by our software OpenDiHu using the 3D mesh generated from Alg. 1. The

divergence free gradient field is visualized in Fig. 3.17a. The gradient values are directly

given by the finite element discretization. The gradient is elementwise constant for linear

ansatz functions and trilinear for quadratic ansatz functions.

The next step in Alg. 2 is line 3, tracing streamlines through the gradient field. Seed

points are selected on the 2D cross-section at the vertical center of the 3D muscle domain.

The seed points are sampled regularly on the square or circular parameter domain ac-

cording to the quadrangulation scheme and then mapped to the respective muscle slice.

Because the 3D mesh was created using harmonic maps, the resulting spacing between

the seed points is very uniform.

For the tracing of streamlines, the semi-analytical Pollock’s method [Pol88] is often

used, which was originally developed for fixed 2D finite difference grids. Extensions to

irregular 3D grids and for given velocities at nodes instead of fluxes over faces have been

formulated [Hæg07]. Other, more accurate algorithms exist [Cor92], including higher

order formulations [Jua06].

Because modeling muscle fascicles is only a heuristic approach, the generated stream-

lines do not have to be exceptionally accurate. Therefore, we use a fully numerical

method. The streamlines are generated by explicit Euler integration of the gradient vec-

tors in top and bottom direction. A small spatial step width of h= 10−2 is used. Details

of the algorithm are given in the next section, Sec. 3.4.7. In line 4 of Alg. 2, all generated

streamlines are resampled to obtain the desired widths of the 1D elements. Figure 3.17b

visualizes the resulting streamlines in the biceps muscle.

Algorithm 2 Serial algorithm

1 procedure Create_1D_meshes

Input: Structured 3D volume mesh

Output: 1D fiber meshes

2 Solve Laplacian flow problem

3 Trace streamlines in the gradient field

4 Resample 1D fiber meshes

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 89

(a) Solution (color coding) and direction vec-

tors of the gradient field for the bound-

ary value problem Eq. (3.8) with Dirichlet

boundary conditions Eq. (3.10).

(b) Resulting streamlines that were traced

through the gradient field.

Figure 3.17: Setup and solution of the Laplace problem for the biceps geometry that is

used to estimate muscle fibers by streamline tracing.

3.4.7 Algorithm for Streamline Tracing

The algorithm for streamline tracing uses an efficient method to traverse the mesh, which

makes use of its structuredness. At first, the element E(0) in the mesh that contains the

first seed point p0 needs to be found. By construction of the mesh generation algorithms,

this is always the element with the lowest index. However, if the seed point is not found

there, the scheme is robust enough to search in all other elements.

Starting from the seed point p0 = p(i) in element E(i), the next point p(i+1) of a streamline

is computed as

p(i+1) = p(i) + h∇p(p(i)).

After p(i+1) has been computed, the mesh element E(i+1) where it is located needs to be

identified. This is needed to evaluate the gradient value ∇p(p(i+1)) at the new point by

90 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

interpolation according to the FE representation of p.

At first, the element E(i) of p(i) is checked whether it also contains p(i+1). If not, the

neighboring element in the direction of the streamline is considered. This neighboring

element is chosen among all up to 26 possible neighbors such that the direction from the

previous element E(i−1) to the current element E(i) continues.

If this element is also not the right one, all other neighbors of E(i) are subsequently

checked, ordered by their plausibility according to the previous streamline direction. If

none of the 27 considered elements contains the computed point, a search among all

elements of the entire mesh is performed. This case happens only for unsuited choices of

the integration width h, i.e., if the streamline tracing skips whole elements.

The end of a streamline is detected when the streamline reaches the final z plane,

either at the bottom or top of the muscle volume. To make the algorithm more robust,

also the case is considered where the streamline leaves the muscle domain to the side

shortly before reaching the end of the muscle. This can happen due to discretization

errors for streamlines that start close to the boundary of the muscle. In such a case, the

missing rest of the streamline is interpolated from up to four existing neighboring parallel

streamlines.

After the end of the streamline is found, tracing of the next streamline starts at the next

seed point p0
next

. The element where p0
next

is located can also be easily determined in the

structured mesh.

The presented scheme avoids repeatedly traversing all elements of the mesh by predict-

ing the next elements according to streamline direction and organization of seed points.

This is facilitated by the structured mesh, which has well-defined element neighbor rela-

tions. At the same time, the scheme is robust enough to also efficiently handle streamlines

in other use cases. It can also be reused, e.g., in muscle fiber tracing applications of more

complex shaped muscles where the fibers change directions.

3.4.8 Results and Discussion

The presented Algorithms 1 and 2 generate a 3D mesh and 1D muscle fibers from a trian-

gulated surface. Three different triangulation strategies for the slices and four different

reference quadrangulations can be chosen. In the following, the different choices are

evaluated.

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 91

The different triangulation methods for the slices discussed in Sec. 3.4.2 are visualized

in the three columns of Fig. 3.18. The top rows show the triangulation of SM and the

harmonic map u as color coded values from violet to yellow. u is the horizontal coordinate

on the reference domain. A point with violet color in SM will be mapped to the left-most

point in the parameter space ΩP . Similarly, a yellow point will be mapped to a point far

at the right in ΩP .

The middle and bottom rows in Fig. 3.18 show the image of the triangulation in ΩP

under the harmonic map, for the unit square and the unit circle, respectively. The map-

ping between the colored boundary points stems from the Dirichlet boundary conditions

in the formulation of the harmonic map. In consequence, the boundary points are by

construction equally spaced both in the muscle domain SM and in the parameter domain

ΩP .

It can be seen that the triangulation appears distorted in the parameter domain. The

effect is most significant for the square in Fig. 3.18b and Fig. 3.18c. For the latter, the

center point of the muscle domain SM gets mapped far off the center of the squared

parameter domain. This effect does not occur for the circle.

The reason for this lies in the triangulation of SM together with the boundary shape.

In the third method, only the value at the center point is a degree of freedom in the

computation of u while the values at the boundary points are fixed. By the triangulation,

the value of u varies linearly from the boundary towards the center point. By comparing

the colored boundary points in the muscle slice in the top row with the square in the

second row, it can be seen that the prescribed values for u are 0 at all blue points, 1 at all

yellow points and linearly increasing from 0 to 1 at the green and red points, increasing

from left to right. The yellow points of SM with the prescribed constant value of u = 1

are approximately located on a vertical line. The first two derivatives of u in vertical

coordinate direction are therefore almost zero, in consequence, the Laplace equation

forces the derivatives in horizontal direction to also be approximately zero. Therefore,

the solution value at the center point is close to 1. This leads to the mapped center point

being close to the right boundary in the square parameter domain. The same happens

for the vertical coordinate v of the harmonic map.

For the circle, neighboring boundary points are not located on horizontal or vertical

lines and, thus, the Dirichlet boundary conditions for u and v vary along the boundary.

Therefore, a better mapping is obtained. The shape of the muscular slice is more similar

to the circle than to the square.

92 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Another result that can be seen in Fig. 3.18 is the effect of the failure of the first

method to handle concave slices on the harmonic map. As the top left image shows,

the first triangulation method produces triangles outside the domain. The triangles are

located around the red boundary points. In the square parameter domain, these triangles

are degenerated and lie on the bottom boundary. In the circle parameter domain where

the respective triangles can be seen at the bottom, they even intersect other triangles.

This yields an invalid triangulation.

The reasons for degenerate triangles in the square parameter domains are not solely

the concave muscle slices. Also, the straight sides of the unit square lead to degenerate

triangles whenever three boundary points of the same side form a triangle. In the example

in Fig. 3.18, this occurs for the square in column (a). As can be seen in the triangulated

slice in the top row, there are three triangles that are entirely made up of blue boundary

points. These triangles get mapped onto the left side of the square parameter domain

where they have a vanishing surface area.

The same effect also occurs with the second triangulation method in column (b) of

Fig. 3.18 where a triangle at the bottom right comprises three red boundary points and,

therefore, gets mapped to the bottom side of the square. Because of the guaranteed

minimum angle in the second triangulation method, this circumstance occurs less often

and only for muscle cross-sections where the boundary makes sharp turns, such as the

muscle slice in this example. The third triangulation method is guaranteed to avoid this

problem as all triangles are connected with the center point.

In conclusion, the second triangulation method with the unit circle and the third tri-

angulation method with both unit square and unit circle show good behavior for use in

our meshing algorithm. Next, their interplay with the quadrangulation of the parameter

space needs to be investigated.

In the next step, the algorithm creates a quadrilateral mesh in the parameter domain

and computes its image in the muscle domain using the inverse of the harmonic map.

The results are shown in Fig. 3.19 for the three different initial triangulation methods

(columns) and the four different schemes to create the quadrilateral mesh (rows).

In the images in column (c) and rows (d) and (e), it can be seen that the previously

observed effect of a bad mapping for squares and the third triangulation method also

leads to a mesh in SM of poor quality. The result for the two square schemes in column

(b) is better but still not satisfactory. Good results with the square reference domain are

only observed for the first triangulation method in this example.

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 93

(a) First method,

Quickhull algorithm

(b) Second method,

Delaunay refinement

(c) Third method,

center of gravity

Figure 3.18: Initial slice triangulation and harmonic maps in 3D mesh generation: Top

row: Different triangulation methods for SM , the color represents the solu-

tion u of the harmonic map. Middle and bottom row: triangulation mapped

to the parameter domain ΩP , for the unit square (middle) and the unit circle

(bottom). Each column corresponds to one triangulation method.

94 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

It can be seen that the approximation quality of the boundary of the domain varies.

Most of all, the combination of the first triangulation method (column (a)) and the

square parameter domain (rows (d) and (e)) reproduces the shape of the slice poorly.

The mismatch occurs at the blue and red boundary points. Additionally, the second

triangulation method (column (b)) for the squares fails to correctly represent the round

boundary at the bottom of the domain. The degenerate triangles in the parameter domain

are the cause for this effect. The harmonic map y : SM → ΩP is not injective and, therefore,

its inverse does not exist. In our implementation, the points on the degenerate triangles

in ΩP are mapped to an arbitrarily selected location inside the corresponding triangles

in SM . Thus, the mapping is correctly inverted at locations of valid triangles and only

creates different boundary points in the invalid areas.

Furthermore, it can be seen that an inaccurate representation of the boundary also

occurs with the parameter mesh in the unit circle generated by scheme 1. In this case,

the reason is the low number of elements at the boundary in the parameter domain

quadrangulation.

The two schemes for the circle parameter domain in rows (f) and (g) both generate

reasonable meshes for all triangulation methods, despite the different structure of the

generated meshes. The best results for both schemes have been obtained with the third

triangulation method.

Next, a quantitative comparison of the resulting mesh quality for different parameters of

the presented algorithm is carried out. The algorithm was executed for all variants with 43

slices of the biceps muscle, resulting in 43 meshes for every combination of triangulation

method and quadrangulation scheme. To assess the quality of the generated meshes,

the edge lengths of the elements were collected and normalized to have a mean of 1

in each mesh. The normalization was done to allow for a comparison between meshes

with different bounding box sizes. The standard deviation of the normalized lengths was

determined in each mesh. The total mean of all standard deviations was computed. This

value is a measure for the quality of the mesh. A low value means that, in every slice, the

generated mesh has similar edge lengths and, in consequence, the overall mesh has good

quality.

Figure 3.20 visualizes the results. Three groups of bars are displayed for the three

triangulation methods. For every type of mesh in the parameter space, i.e., unit square

(�) or unit circle (#) and scheme 1 or 2, the standard deviation is given by the red

bar and the generation runtime of the overall algorithm is given by the yellow bar. The

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 95

(a) First method (b) Second method (c) Third method

(d) Square, scheme 1

(e) Square, scheme 2

(f) Circle, scheme 1

(g) Circle, scheme 2

Figure 3.19: Initial triangulations, harmonic maps and final quadrangulations of muscle

slices for 3D mesh generation: Meshes in the muscle slice SM for quadran-

gulations (rows) and triangulations (columns).

96 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

1 2 1 2 1 2 1 2 1 2 1 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

St
an

da
rd

 d
ev

ia
tio

n
[-]

Triangulation 1 Triangulation 2 Triangulation 3

0

20

40

60

80

100

120

140

160

M
es

h
ge

ne
ra

tio
n

ru
nt

im
e

[s
]

Standard deviation of
relative element lengths
Mesh generation runtime [s]

Figure 3.20: 3D mesh generation quality assessment: Mesh quality (red, lower is better)

and generation runtime (yellow) for the three different triangulation meth-

ods and the different parameter space quadrangulation schemes. �1 and �2

designate the two quadrangulation schemes on the unit square parameter

domain, #1 and #2 are the schemes on the unit circle parameter domain,

as introduced in Fig. 3.16. A low value for the standard deviation of relative

element lengths indicates good quality.

corresponding axis labels for standard deviation and duration are given on the left and

right of the diagram.

The diagram shows the lowest standard deviation of edges and therefore the best mesh

quality for the first triangulation method and the square (�1 and �2), with scheme 1

having a slightly better value than scheme 2. This shows that the modified placement of

the nodes in scheme 2 has no positive effect compared to scheme 1. However, from the

observations in Fig. 3.18, it is known that the boundaries are not represented correctly.

This behavior does not influence the result because of the chosen metric of uniform

relative edge lengths. Similarly, good results can be seen for scheme 2 in the circular

parameter domain and the second and third triangulations.

Moreover, it can be seen that certain connections between parameter domain and

suited triangulation scheme exist. The square parameter domain works best with the

first triangulation method. The second scheme for the parameter mesh on the unit circle

works best with the triangulation methods 2 and 3.

3.4 SERIAL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 97

The first scheme for the parameter mesh on the unit circle (#1) shows bad results for

all triangulation methods. This can be explained by looking at the generated meshes in

row (f) of Fig. 3.19. By construction, the elements have a bad aspect ratio. This results

in the high standard deviation values. However, the generated meshes still look uniform

to a certain extent and can be useful in applications where such type of mesh is needed.

The score could be improved by adding more nodes in circumferential direction.

The runtime of the algorithm is approximately the same for the different parameter

domain meshes. It mainly depends on the triangulation of the slices. The first triangula-

tion using the SciPy package takes the most time, followed by the Delaunay refinement.

The fastest triangulation is the custom one where only one additional point needs to be

placed. In conclusion, when runtime is an issue, the third triangulation should be chosen.

It achieves good quality meshes only with the second scheme of the circular parameter

domain. This combination also does not suffer from the bad approximation quality of the

boundary, as is the case for the unit circle with the first triangulation method.

Figure 3.21 shows three structured meshes ΩT,i for the tendons of the biceps brachii

muscle that were created using Alg. 1. The tendon at the bottom of the muscle is repre-

sented by a single mesh. At the top, there are two tendons that extend the two muscle

heads of the biceps. Because the meshes need to be structured, two tendon meshes are

created at the top. It can be seen that the algorithm creates meshes with similar sized

elements despite the difficult, wound geometry of the surfaces.

How To Reproduce

The described algorithms are part of the fiber_tracing examples. Execute the

following commands to get the results in this chapter:

cd $OPENDIHU_HOME/examples/fiber_tracing/streamline_tracer/scripts

. run_evaluation.sh

Then, the visualizations will be created under ../processed_meshes. Create Fig. 3.20

with plot_mesh_quality.py. How to create the tendon meshes is explained at the

end of Sec. 3.6.6.

98 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(a) Two meshes for the top tendons with 9×9×21= 1701

nodes each.

(b) One mesh for the bottom tendon with 5×5×25= 525

nodes.

(c) The tendon meshes in the

volume of the whole bi-

ceps muscle.

Figure 3.21: 3D mesh generation results: Tendon meshes that were created using the

serial algorithm for mesh creation.

3.5 Parallel Algorithm to Create Muscle and Fiber

Meshes

The previously presented algorithm to create 3D and 1D meshes is not parallelized. Thus,

the size of the handled meshes is limited by the available memory of the computer. An

algorithm that can be used with distributed memory parallelization could, in contrast,

benefit from more total memory that is accessible at different compute nodes. Further-

more, the tracing of the streamlines could be performed in parallel which has the potential

to reduce runtimes.

In the following, we present an extended algorithm based on the one presented in

Sec. 3.4 that can be run in parallel on multiple cores. The extended algorithm employs a

partitioning of the 3D volume. Every process only stores data corresponding to its own

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 99

partition. This allows to run the algorithm on a distributed memory system, where data

transfer between the processes occurs by sending messages using the Message Passing

Interface (MPI). It is possible to create meshes with larger sizes than could fit into a

single nodes’ memory. This enables us to run the algorithm for meshes with very high

resolution that can be used for simulations in the field of High Performance Computing.

These meshes are partitioned into subdomains for every compute core and can be read

from and written to disk concurrently.

3.5.1 Overview of the Parallel Algorithm to Create Muscle and

Fiber Meshes

The steps of the algorithm and its input and output are given in Alg. 3. Input and output

are the same as for the Alg. 1 presented in Sec. 3.4. The input is a triangulated tubular

surface of the muscle that can be obtained as described in Sec. 3.3. A second input, the

variable called boundary_points, is used only during recursive calls and is not set at the

beginning. The output consists of the 3D mesh of the muscle volume ΩM and embedded

1D fiber meshes ΩF,i.

During execution of the algorithm, the 3D mesh of the muscle is recreated iteratively

with increasing resolution and increasing number of subdomains. The algorithm is for-

mulated recursively. At the finest resolution when the recursion terminates, the fiber

meshes are finally generated together in all subdomains.

At first, a single process executes all the steps of Alg. 3 from lines 2 to 11. This corre-

sponds to recursion level ℓ = 0. Then, in line 12, the procedure is called again and in the

first recursion executed by eight processes with eight subdomains. On the ℓth recursion

level, the number of involved processes and subdomains is 8ℓ. After a specified maximum

recursion depth ℓmax is reached, all involved processes execute the first branch of the if

statement in line 8 and generate the final 3D and 1D output meshes in line 9.

The steps in Alg. 3 are executed concurrently by the involved processes at the respective

levels. Some of the steps only operate on the locally stored data and, thus, are independent

of other processes. Other steps involve communication between processes. Whether an

instruction effects only the own domain of the process or involves global communication

is denoted in parentheses at the beginning of the lines in Alg. 3.

100 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Algorithm 3 Parallel algorithm to create muscle and fiber meshes

1 procedure Create_3D_meshes_parallel

Input: Triangulated tubular surface

Input: boundary_points: 4× 4 points per slice

Output: Structured 3D volume mesh

Output: 1D fiber meshes

2 (own domain) Create_3D_mesh(boundary_points)

3 (own domain) Fix and smooth 2D meshes

4 (global) Solve Laplace problem

5 (global) Communicate ghost elements to neighboring subdomains

6 (own domain) Trace streamlines for new subdomain boundaries

7 (global) new_boundary_points ← Construct new subdomains

8 if recursion ends then

9 (own domain) Trace streamlines for fiber meshes

10 else

11 (global) communicate boundary points

12 (global) Create_3D_meshes_parallel(new_boundary_points)

3.5.2 Overview of the Subdomain Refinement

The goal during the recursive calls is to determine smooth boundaries for the new subdo-

mains. Each process splits its own subdomain into eight subdomains and then proceeds

to the next recursion level. The subdomain boundaries are determined by tracing stream-

lines in a divergence-free vector field through the entire muscle volume, similar to the

approach in Alg. 2. The divergence-free vector field is computed from the solution of a

Laplace problem, which is solved in parallel on the entire mesh of the muscle in every

recursion. The mesh width of this mesh gets halved in every recursion, subsequently

leading to an increasingly fine mesh.

The subdomain boundaries are always aligned to streamlines in the mesh that was

created last. On each recursion level, the existing subdomain boundaries and the new

boundaries for the subdomains on the next recursion level are all created anew and, thus,

change slightly as the mesh refines.

As the subdomain boundaries in the interior of the volume refine, so do the outer

boundaries given by the surface of the muscle. The given triangulation of the surface is

sampled again on each recursion level yielding increasingly fine representations.

At the final recursion level ℓmax, the muscle is partitioned into 8ℓmax subdomains and

a respective fine 3D mesh in the muscle volume exists. Then, the algorithm traces the

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 101

specified amount of streamlines through the whole mesh to produce 1D meshes for the

muscle fibers. By construction of the subdomains, the streamlines enter and leave the

subdomains through their top and bottom bounding planes. This allows parallel execution

of the final streamline tracing step.

The reason that the algorithm constructs the partitioning iteratively and not once at the

beginning using an initial mesh lies in the requirements for parallel streamline tracing.

Each subdomain should be able to trace streamlines in longitudinal (z) direction of the

muscle without communication to their neighbors in x and y directions. To ensure this

property, the partitioning involves a small overlap of neighboring subdomains, i.e., a

ghost layer. This ghost layer can consist of a lower number of elements if the mesh is

iteratively refined than if the partitioning was created directly on a coarser mesh.

3.5.3 Data Structure of Boundary Points

In the following, Alg. 3 is illustrated in more detail. The execution starts with one pro-

cess and the only input is the tubular muscle surface. It is given either as triangulation

or in parametric form as NURBS surface. The first step is to construct a quadrilateral

mesh of this surface. This is done using the procedure explained in Sec. 3.4.1, which

creates horizontal slices of the muscle and places equidistant points on the “rings” of the

boundaries of these slices. As explained earlier, the points are arranged such that the

resulting quadrangulation of the surface has good quality. A result for the biceps muscle

is visualized in Fig. 3.13a.

Initially, the parallel algorithm stores the points on these rings in the variable boundary_

points. If the procedure in Alg. 3 is called recursively, the contents of this variable is

passed as an argument from the previous recursion. The set of points in boundary_points

defines the boundaries of the subdomain of the process where it is stored.

The points on each ring in the x-y-plane are organized such that they enclose a grid of

nel,x × nel,x elements, where the number nel,x of elements per coordinate direction can be

specified as parameter. In the following, an example with nel,x = 4 is considered. The grid

is shown in Fig. 3.22a, the 4 nel,x boundary points on the ring are visualized by red color.

Note that Fig. 3.22a depicts the ring as a square whereas in reality it has the potentially

more irregular shape of the subdomain.

A number (nel,z+1) of these rings are stacked in z direction to approximate the enclosing

surface of the subdomain, where the number nel,z of elements in z direction is again given

102 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(a) Grid of 4×4 boundary points, which occurs

at the beginning of the procedure of Alg. 3.

(b) Grid with 4× 8 boundary points, which oc-

curs after a refinement step at beginning of

the procedure of Alg. 3.

Figure 3.22: Logical subdomain boundaries (red) and interior grid (gray) before and after

the refinement at the beginning of Alg. 3.

by a parameter. Thus, the variable boundary_points contains a total of 4 nel,x (nel,z + 1)

points. Typical parameter values are nel,x = 4 and nel,z = 50.

As the goal on every recursion level is to construct a mesh with half the mesh width of

the mesh on the previous level, the given boundary points are refined to twice the amount

by inserting new points at the centers between neighboring points. The refinement

happens in all three coordinate directions. For the example with nel,x = 4, the resulting

grid with the 4× 8 refined boundary points is shown in Fig. 3.22b. In z direction, we get

(2 nel,z + 1) slices with points.

The task in the recursive procedure is now to determine boundaries for eight subdo-

mains. This is achieved by subdividing the given 2D slices into four 2D subdomains each.

Additionally, the 3D volume is split at its vertical center. Thus, the upper and lower

parts contain four subdomains each. Figure 3.23 visualizes this scheme for the eight

subdomains on recursion level ℓ = 1. The boundary points of the first and the eighth

subdomain are shown. The boundary points have already been refined such that every

slice in Fig. 3.23 consists of 4× 8 points and corresponds to the grid in Fig. 3.22b

3.5.4 Generation and Smoothing of the 3D Mesh

After the boundary_points variables has been set, the next step of Alg. 3 is to construct a

3D mesh in the domain. In line 2 of Alg. 3, the harmonic map algorithm Alg. 1 described

in Sec. 3.4 is called. Its input consists of the boundary points that define the 2D slices of

the volume. This means that Alg. 1 does not need to construct the slice boundary rings

from the surface triangulation, instead, the formulation of Alg. 1 can directly start with

line 3 to triangulate the slices and then compute the harmonic map. For the harmonic map

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 103

Figure 3.23: Parallel 3D mesh generation: Partitioning of the muscle volume into eight

subdomains during the first call to the procedure in Alg. 3. The first (red)

and the eighth subdomain (green) are shown.

computation, the second triangulation method is used with a circular reference domain

quadrangulated by the second scheme. The result is a set of quadrangulated 2D slices

that forms a 3D mesh by vertically connecting the elements of neighbor slices.

Next, line 3 of Alg. 3 improves the mesh quality of the 2D muscle slices SM from which

the 3D mesh is formed. This action consists of two steps. The first step is to ensure that

no self-intersecting or degenerate quadrilaterals exist in the slice. The second step applies

Laplacian smoothing to improve the mesh quality of the slice.

Theoretically, the first step should not be necessary, as the chosen quadrangulation

algorithm always produces valid elements. However, in practice, small or irregularly

shaped, concave domains occur and together with rounding and numerical errors in the

Laplace problem computations occasionally lead to invalid meshes with self intersecting

elements, especially for higher recursion depths in Alg. 3. Executing the first step therefore

increases the robustness of the implementation.

The algorithm performs this step by repeatedly iterating over all interior mesh points in

every slice SM and fixing invalid elements. To find invalid elements, for every quadrilateral

the four triangles that can be formed from the points of the quadrilateral are considered,

as shown in Fig. 3.24. For every triangle with points p0,p1 and p2, the orientation of

the triangle is determined. The orientation is counterclockwise if the oriented triangle

104 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

p3p2 p3 p3p2 p3p2

p0 p1 p0 p1 p1 p0 p0 p1

p2

Figure 3.24: Decomposition of quadrilateral elements into triangles as substep of the

validity check of muscle slice quadrangulations. A quadrilateral element

(left) and the four triangles (right) that can be constructed from its four

points. These triangles are needed for the check in Alg. 3 whether the

quadrilateral element is valid.

(a) Convex quadrilateral with score s = 4 and

the contained triangles, which are all ori-

ented counterclockwise.

(b) Concave quadrilateral with score s = 3 and

the contained triangles. Only the red trian-

gle is oriented clockwise.

Figure 3.25: Check for valid elements in the muscle slice quadrangulations that occurs in

Alg. 3: Illustration of the score of valid concave and convex quadrilaterals.

area A012 is positive. The oriented triangle area is the determinant of the 3× 3 matrix

that contains the row vectors (pi
x , pi

y , 1) for the triangle points pi = (pi
x , pi

y)
⊤ and can be

computed by the following formula [Sed11]:

A012 = (p
1
x − p0

x) (p
2
y − p0

y)− (p2
x − p0

x) (p
1
y − p0

y).

If the orientation is counterclockwise, a score value of the triangle is set to one, if it is

clockwise, the score is set to zero. The score values of the four triangles are added up

to yield a score s for the quadrilateral. Only if this score is s ≥ 3, the quadrilateral is

valid. Figure 3.25 illustrates the cases of valid quadrilateral elements. In a valid, convex

element, all four triangles lie inside the element and, thus, the score is s = 4. If only one

triangle is located outside, the quadrilateral is also valid and concave. In this case the

score has the value s = 3.

At the current mesh point in the loop over all points that are not at the boundary of

the mesh, the four adjacent quadrilaterals are considered. If any of them is invalid, the

algorithm tries to improve the situation by deflecting the point by a random, small vector.

A maximum of 200 random deflections from the original position with exponentially

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 105

increasing deflection vector sizes are tried. After each modification of the point, the

scores of the four adjacent quadrilateral elements are evaluated. If the sum of the four

element scores increases, the point is kept and the iteration over all interior mesh points

starts anew.

Note that this does not necessarily mean that the invalid element was fixed, only its

score was improved. If it was not fixed, it will be considered again in the next iteration. For

example, a convex element that initially is oriented clockwise instead of counterclockwise

has a score of s = 0. In the first iteration, one point is deflected such that the quadrilateral

intersects itself but has a higher score s ≥ 0. At least one more iteration is needed until

the quadrilateral is oriented correctly. When all elements in the slice SM are valid, this

step is complete.

3.5.5 Laplacian Smoothing

The second step is the smoothing step that improves the mesh quality of the 2D slices. 20

iterations of Laplacian smoothing [Fie88] are executed. Laplacian smoothing in our case

subsequently visits all interior points of the mesh and sets the location of a point to the

center of gravity of its four direct neighbors. Figure 3.26 shows the effect of Laplacian

smoothing for a slice in a subdomain on the first recursion level. It can be seen how the

smoothing equalizes the element side lengths and angles.

However, this smoothing step can invalidate a mesh by introducing overlapping quadri-

laterals. An example for this case is given in Fig. 3.27. The initial mesh in Fig. 3.27a is

concave and occurs during recursion level ℓ = 2. Figure 3.27b shows the result of the

smoothing, which contains one invalid element. The smoothing operation placed the

fourth point of the element that also contains the three boundary points at the concavity

outside the mesh. As a remedy, the smoothing method checks the validity of the adjacent

elements before a point is moved. If the move results in an invalid element, the action is

not carried out and the traversal continues with the next point instead. Figure 3.27c shows

the resulting mesh if this check is enabled. The mesh has slightly different boundaries

because the check influenced the behavior already on lower recursion levels.

3.5.6 Solution of the Laplace Problem

After the 3D mesh has been created and smoothened, the next steps are to solve the

Laplace problem in the muscle domain, to trace streamlines in the gradient of the solu-

106 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(a) Initial 2D mesh of a subdomain at the

boundary of the biceps muscle.

(b) The mesh of (a) after 20 iterations of Lapla-

cian smoothing.

Figure 3.26: Quality improvement of 2D muscle slice quadrangulation: Effect of Laplacian

smoothing of a 2D grid which occurs in line 3 of Alg. 3.

(a) Initial 2D mesh. (b) The mesh of (a) after

20 iterations of Laplacian

smoothing, yielding an

invalid quadrangulation.

(c) The mesh of (a) after

20 iterations of Laplacian

smoothing with the valid-

ity check, yielding a valid

quadrangulation.

Figure 3.27: Quality improvement of 2D muscle slice quadrangulation: Effects of Lapla-

cian smoothing on concave domains.

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 107

tion vector field and finally to construct the eight subdomains for the recursive calls by

subdividing the own domain along the streamlines.

Prior to the solution of the Laplace problem, the 3D mesh gets refined further by

increasing the number of elements per coordinate direction by a specified factor r ∈ N.

The rationale is to increase the number of degrees of freedom and, thus, the resolution

to get a smaller numerical error in the subsequent Laplace computation. This refinement

is in addition to the refinement of the initial boundary points by a factor of two described

in Sec. 3.5.3. The mesh with 2 nel,x × 2 nel,x × 2 nel,z elements gets refined to 2 r nel,x ×
2 r nel,x × 2 r nel,z elements. The new points are found by interpolating in the existing

mesh.

For example, the 3D mesh of Fig. 3.22 with 2 · 4× 2 · 4× 2 · 50 elements gets refined

with the factor r = 2 to 16×16×200 elements. Figure 3.28a shows the refined boundary

points in this example in a view in negative z direction towards the bottom of the muscle.

The red points are the boundary points of the 4 × 8 grid, the additional white points

are added in between by the refinement with r = 2. Because this refinement is carried

out by interpolating between the initial points, the new points are located on straight

lines between the initial points. This can especially be seen at the lower left of the figure

(indicated by arrows and lines) where always five neighboring points lie on a straight

line.

Next, in line 4 of Alg. 3 the Laplace problem gets solved. The same step also occurs

in Alg. 2 and is explained in Sec. 3.4.6. The equation is formulated globally and the

discretization uses the existing partitioning. Dirichlet boundary conditions of p(x) = 0

and p(x) = 1 are prescribed at the bottom and top of the domain, as shown by the spheres

in Fig. 3.29a. Alternatively, Neumann boundary conditions can be used. A parallel GMRES

solver is employed to obtain the solution in a few iterations. E.g., for the biceps muscle a

linear system at ℓ = 0 has 4131 degrees of freedom and 26 iterations are needed to obtain

a residual norm below 10−4. After the solution p(x) is obtained, the gradient field ∇p(x)

is computed. The solution and the gradient directions are visualized in Fig. 3.29b.

3.5.7 Communication of the Ghost Layer

Subsequently, the gradient field ∇p(x) is used to trace streamlines to determine new

boundaries of the subdomain. This involves tracing streamlines that start exactly on

the boundary. These streamlines potentially switch between the subdomain owned by

the current process and the subdomains of neighboring processes. Streamline tracing

108 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(a) Initial (arrows) and refined boundary

points (red) and points after additional

refinement by a factor of r = 2 (white).

(b) Seed points for the streamlines (blue).

(c) The four boundary streamlines (red) and

the layer of ghost elements (green) at

the bottom and right of the subdomain.

(d) New boundary points on the outer (light

green) and interior boundary (dark

green).

Figure 3.28: Parallel generation of 3D meshes: refined boundaries, streamlines and sub-

domain refinement in the first subdomain for recursion level ℓ= 1.

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 109

(a) Location of Dirich-

let boundary con-

dition nodes at the

bottom and top.

(b) Solution p of the

Laplace problem

and direction of

the gradient ∇p.

(c) Traced stream-

lines that split

the domain

into eight

subdomains.

(d) Rings of the slices

SM and traced

streamlines in the

interior.

Figure 3.29: Parallel 3D mesh generation: Process of subdividing the muscle volume

into eight subdomains using the solution of a Laplace problem, which is an

important step in the procedure of Alg. 3.

requires the gradient field values of the elements where the streamline passes through.

To avoid repeated communications in these cases, a ghost layer of a specified number

nghost_layer_width of elements is added to the subdomains at all parts of the boundary that

touch a neighboring subdomain directly or diagonally adjacent in x and y direction.

The ghost layer is constructed and the node positions and values of p and∇p associated

with the ghost elements are communicated between the neighboring processes after the

solution of the Laplace problem. This occurs in line 5 of the algorithm. Figure 3.28c shows

nghost_layer_width = 1 layer of ghost elements on a subdomain at recursion level ℓ= 1.

3.5.8 Selection of Seed Points for the Streamlines

Next, the seed points from which the streamlines start are determined on the subdomain.

All seed points are selected from the set of nodes in the structured mesh of a horizontal

2D slice.

Figure 3.30a visualizes the structured mesh in light gray in the first call to the procedure

110 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(a) The seed points of the

streamlines used to de-

termine the subdomain

boundaries.

(b) Streamlines and lines on

the muscle surface that

define the new subdo-

main boundaries.

(c) All streamlines and lines

on the muscle surface that

are created if the algo-

rithm is run with one pro-

cess and ℓmax = 0.

Figure 3.30: Parallel mesh generation: Seed points and streamlines that occur during the

first call to the procedure in Alg. 2, in a view from the top of the muscle.

for recursion level ℓ = 0 where the domain is not yet partitioned. The selected seed points

are shown by the yellow and red points. As can be seen, the seed points consist of the

nodes of the 2D mesh at the horizontal and vertical centers in this view which form the

plus sign shape given by the yellow points. In addition, the four red points near the

corners of the structured mesh are selected.

The seed points of the plus sign yield the streamlines that subdivide the domain into four

parts in x and y direction. With the additional split in z direction, the inner boundaries

of the eight subdomain are obtained. The resulting boundaries are given in Fig. 3.30b.

The streamlines of these seed points are also depicted in Fig. 3.29c. The interior

boundary points for the eight subdomains that partition the muscle volume at level ℓ = 1

are shown by different colors. The full subdomain boundaries include also the outer

surface of the muscle, which is given by the rings of the muscle slices. Figure 3.29d shows

the streamlines in black and the circumferential rings of the muscle slices in blue that

were extracted during the call to Alg. 1 in line 2.

At higher recursion levels ℓ > 0, the boundaries for the new subdomains consist of

those at the outer boundary of the muscle defined by the surface representation and those

in the interior of the muscle. Similar to the previously considered case at recursion level

ℓ = 0, for ℓ ≥ 1 the boundaries in the interior of the muscle have to be sampled by a

set of streamlines. In addition to the streamlines associated with the plus sign shaped

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 111

seed points, new streamlines at the boundaries of the current subdomain have to be

obtained.

Figure 3.28b shows in blue all seed points that are selected in a subdomain on recursion

level ℓ = 1 in order to create subdomain boundaries for level ℓ = 2. As can be seen, in

addition to the plus sign shape and the four outer seed points two lines of points in

approximate x and y directions are selected at the lower and right edges of the image.

These are seed points for the new boundaries in the interior of the muscle. Note that

the current recursion level ℓ = 1 also has boundaries at these locations. However, for

level ℓ = 2 these boundaries are recreated by the new streamlines. Tracing of these

streamlines potentially uses the ghost layer. The resulting streamlines and the ghost layer

for nghost_layer_width = 1 are shown in Figures 3.28c and 3.28d.

3.5.9 Determination of Subdomain Boundaries on the Outer

Muscle Surface

Next, the boundary points on the outer surface of the muscle are determined for the

new partitioning. They are obtained by sampling the circumferential rings of the muscle

surface with the resolution required in the current recursion level. In our implementation,

this can be done either by sampling the original surface triangulation of the muscle or

by directly evaluating the parametric form of the NURBS surface that approximates the

muscle surface.

At recursion level ℓ= 0, the entire muscle surface is touched by the new subdomains.

Thus, when traversing the circumference of the muscle four new subdomains are en-

countered. In consequence, every circumferential ring needs to be split into four quarter

parts for the four adjacent subdomains. For each of these new subdomains, the quarter

part corresponds to two neighboring sides of the subdomain boundary in Fig. 3.22a.

Figure 3.30a also visualizes the two neighboring sides per new subdomain as dark and

light portions of the outer boundary. To obtain these sides, a splitting point is needed that

further splits every quarter part of the circumferential ring into the two sides for the new

subdomain. In summary, the ring needs to be split into eight parts that fit to the inner

subdomain boundaries.

The eight split points are determined by the eight outer streamline points. In Fig-

ure 3.30a, the four outer yellow points of the plus sign and the four red points are

112 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

considered. For each split location, the nearest point on the circumferential ring is de-

termined. The employed algorithm for calculating the coordinates of the point on a ring

that has the shortest distance to a given, second point is described in Sec. 3.4.1.

After the two sections of the circumferential rings have been determined for all new

subdomains, the sections are equidistantly sampled in circumferential direction with nel,x

elements each to create the outer boundary points for the subdomains. Also in longi-

tudinal direction of the muscle, i.e., the z axis, points are sampled on each streamline

and on the outer boundary surface to yield the required number of nel,z points per sub-

domain. The resulting boundary points obtained during recursion level ℓ = 0 are shown

in Fig. 3.30b.

This method is also similarly required on higher recursion levels ℓ > 0. Then, however,

two cases have to be considered separately. The first case involves splitting the muscle

surface boundary on one process into two parts, analogously to the described method at

ℓ = 0. The second case involves two neighboring processes that have to agree on the split

point of their common part of the outer surface boundary.

In the example at recursion level ℓ = 1 in Fig. 3.28c, the red streamlines are used to

split the boundary sides at the outer boundary of the global domain. The first case occurs

for the upper left red streamline, which is used to bisect the shown white part of the

muscle surface.

The second case occurs at the lower left and upper right borders between the shown

subdomain and the neighboring subdomains of two other processes. For the case at the

upper right, Fig. 3.31 visualizes the following method: First, the point on the outer sur-

face that is closest to the point of the red streamline is determined on both subdomains,

visualized by the yellow stars. These points are communicated between the two pro-

cesses. Each process computes the center point of these two points (orange star) and

then finds the closest point to this center point on the boundary. This is done for all

rings of the muscle in z direction. In result, both processes have the same line on the

surface in longitudinal direction of the muscle that is then used as one edge of the new

subdomains.

Thus, the new subdomain boundaries on the outer boundary can be found using the

red extra streamlines shown in Fig. 3.28c. For simplicity, the algorithm always computes

the four streamlines in every corner of the mesh although all of them are only required

for ℓ = 0. In the shown example for ℓ = 1, the streamline in the lower right corner is not

needed for the sampling of the new boundary points.

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 113

Subdomain process p1Subdomain process p0

Figure 3.31: Parallel mesh generation: Case of partitioning the outer boundary surface

that occurs for recursion level ℓ≥ 1 in Alg. 2. Shown are the meshes on two

subdomains of processes p0 and p1 and the location of the streamline at the

corner (red points). The orange star is the newly determined border point

between the subdomain boundaries.

A summary of the streamlines that are used for the new subdomain boundaries in this

example is given in Fig. 3.28d. The sampled boundary points at the muscle surface are

shown in light green color. These two sides of the own domain will be split into four sides

for the new subdomains. In this example with nel,x = 4, the surface therefore gets sampled

at 4× 4= 16 lines. A comparison with the white lines in Fig. 3.28c shows that the newly

sampled points are different from the initially sampled points. While in Fig. 3.28c always

five neighboring boundary points are located on a straight line, the points in Fig. 3.28d

follow the curved outer boundary better and, thus, refine the boundary representation.

3.5.10 Parallel Algorithm for Streamline Tracing

In line 6 of Alg. 3, streamlines have to be traced through the gradient field ∇p(x) of the

Laplace solution for all the seed points given in Sec. 3.5.8. In the following, more details

on the parallel method of streamline tracing is given.

This step is similar to the analog step in Alg. 2. The same method of explicit Euler

integration is used. The seed points are located at the horizontal plane at the center in

vertical direction of the muscle. From there, streamlines are traced in both directions

towards the ends of the muscle following the positive and negative gradient directions.

The tracing algorithm uses the efficient scheme of selecting the subsequently traversed

elements described in Sec. 3.4.7. The implementation is adjusted in a way to also take

into account the layers of ghost elements.

Since the streamlines traverse the entire muscle from the center to the bottom and

114 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

top, multiple processes are involved in the computation of every streamline. To describe

the scheme, all processes are numbered in z direction from bottom to top by an index

iz ∈ {0,1, . . . , nz − 1} where nz = 2ℓ is the number of processes in z direction on the

current recursion level ℓ.

The initial seed points are determined on the processes at the vertical center with index

⌊nz/2⌋. They are communicated to the processes below with index ⌊nz/2⌋−1. These two

groups of processes begin with tracing the streamlines through their subdomains starting

from the same seed points, the upper processes in upward and the lower processes in

downward direction. Then, the end points of the traced streamlines are communicated

to the next processes, which continue the tracing. The procedure repeats with further

processes until the streamlines reach the bottom and top ends of the overall muscle

domain. The time complexity of this approach is O(nz) = O(3
p

nproc) with the number

nproc of processes.

After the streamlines have been traced, they are sampled at equidistant positions with

a distance according to the required distance between the boundary points of the subdo-

mains.

3.5.11 Recursion End: Generation of the Resulting Meshes

In result, one pass of Alg. 3 from lines 2 to 7 creates boundaries for eight new subdomains.

Line 8 checks whether the maximum recursion ℓmax is reached and the recursion ends. If

the recursion ends, the final 3D mesh and 1D fiber meshes are constructed in line 9. In

this case, the prepared boundary points are not needed for a further subdivision of the

domain but are used to construct the final meshes instead.

Every resulting fiber mesh is generated by one streamline. In line 9, additional stream-

lines are traced starting at the remaining grid points of the 2D slice at the vertical center

of the muscle that were not selected as seed points earlier. The parallel method described

in Sec. 3.5.10 is used.

As an example, Fig. 3.32 shows all seed points of streamlines for ℓ = 2 at the beginning

of line 9 in a run of Alg. 3 with nel,x = 4, ℓmax = 2 and 64 processes. The shown points

are located at the top of the lowest 16 subdomains in the muscle, i.e., the subdomains of

processes 0 to 15. The corresponding streamlines get traced in line 6 to be used for the

new subdomain boundary. However, since the recursion ends at ℓ = 2 the missing seed

points of the subdomain grids are subsequently filled in and the remaining streamlines

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 115

Figure 3.32: Parallel mesh generation: Seed points of the streamlines that are traced on

processes 0 to 15 in the procedure of Alg. 3 at recursion level ℓ= 2.

are traced. From the full grid of 31× 31 = 961 streamlines, 449 or 47% have already

been traced at this point.

In summary, the 2D quadrilateral mesh at the center slice of the muscle defines the

location of the resulting muscle fibers. Because the construction of this 2D mesh ensured

a good mesh quality with similar element sizes, the distance between the resulting fibers

is similar and a spatially homogeneous set of muscle fibers is generated.

To obtain the final 1D fiber meshes ΩF,i, the streamlines are sampled at equidistant

z intervals, specified by a parameter ∆z. Because the streamlines are directed mainly

along the z axis, the constant z interval for the sampling approximately corresponds to

the resulting 1D mesh width, i.e., the distance between the points of a fiber. An advantage

of this method is that the points of all fibers lie in the same x-y planes. Thus, the total set

of points can also be interpreted as a structured 3D mesh of the muscle volume ΩM . This

3D mesh is aligned with the fiber meshes and planes through the x and y axes. These

properties are advantageous for data mapping between the 3D mesh and the 1D fiber

meshes and for the numerical solution of models with anisotropic advection processes in

the 3D mesh that is oriented according to the direction of the fibers.

At the end, the data is written collectively by all processes into a single file. This is done

using the parallel file I/O functionality of MPI. This can be done because the absolute

position in the file of every point can be calculated from the index of the point in the

structured mesh.

Figure 3.30c gives an example of the resulting streamlines if the recursion ends already

after one pass of the procedure at ℓmax = 0. For the example with ℓmax = 1, the selected

seed points and the parts of the resulting streamlines in the considered subdomain are

shown in Fig. 3.33a. Here, the dark blue streamlines on the boundary were traced as part

116 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

of the refinement actions in line 6. Because the recursion ends for ℓ = 1, these stream-

lines are now reused for the final fiber meshes instead of further parallel partitioning.

Additionally, the light blue streamlines in the interior were traced to obtain a full grid of

fibers for the output of the algorithm.

3.5.12 Continuation on the Next Recursion Level

If line 8 of Alg. 3 does not detect the recursion end because the maximum recursion levels

is not yet reached, the else branch in line 10 is chosen. Execution continues with the

eight times higher number of processes 8ℓ+1. The processes that executed the previous

parts of the algorithm send their determined boundaries of the new subdomains to seven

other respective processes in line Sec. 3.5.1. Only the first subdomain remains on the

same process. Every process stores the boundary points for its new subdomain in the

variable boundary_points. In line Sec. 3.5.1, the procedure is called recursively and the

next recursion level (ℓ+ 1) begins.

Figure 3.33b shows the boundary_points of the first new subdomain on level ℓ = 2

for the example on recursion level ℓ= 1. It consists of the outer boundary (dark yellow

lines) and the interior boundary (brown streamlines) and is nearly geometrically similar

to the subdomain on level ℓ= 1.

3.5.13 Repair of Incomplete Streamlines

Practical tests have shown that, for irregular muscle geometries, occasionally some stream-

lines generated in lines 6 and 9 of Alg. 3 can be incomplete. This means that it was not

possible to obtain a streamline that runs through the entire subdomain or the entire mus-

cle domain from top to bottom, instead points are missing for some ranges of z values.

This can happen if the streamlines leave the subdomains (because the ghost layer width

was chosen too small) or due to numerical errors in irregularly shaped elements mainly

on high recursion levels where the system matrix is badly conditioned.

To obtain meaningful results even in these cases, three different repair mechanisms are

introduced that interpolate the missing data from valid streamlines. Figure 3.34 visualizes

the cases by examples in a setting of four subdomains with grids of 5×5 fibers each. The

repair mechanisms #1 to #3a only apply to boundary points. They are executed in line

6 of the algorithm after the local portions of the streamlines have been traced and before

the end points of the streamlines are sent to the neighbor processes below and above that

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 117

(a) Seed points (yellow), traced interior

streamlines (light blue) and boundary

points (dark blue), generated if ℓmax = 1.

(b) Boundary points of the first subdomain on

level ℓ = 2 (dark yellow and brown) em-

bedded in the boundary (white) of level

ℓ= 1, generated if ℓmax > 1.

Figure 3.33: Generation of 3D and 1D meshes in subdomains: Resulting streamlines after

the pass of Alg. 3 for recursion level ℓ= 1.

continue the streamline tracing. Mechanismn #3b and #3c repair invalid streamlines in

the final result and are executed during line 9 of Alg. 3.

Mechanism #1 checks all streamlines at subdomain boundaries in the interior, which

are shared between neighboring processes. If a streamline is incomplete on one process

but complete on the neighbor process, the data of the complete side are transferred

such that both processes have the same valid points for this streamline. In the example in

Fig. 3.34, the valid streamline data are sent from the top left to the top right subdomain.

Mechanism #2 checks streamlines at the outer corners of the subdomains. Incomplete

streamlines at these locations are recreated from the given boundary points. Because

the set of boundary points is twice as coarse as the required number of sample points at

these streamlines, every second point gets interpolated from the top and bottom neighbor

points.

Mechanism #3a is concerned with streamlines at interior subdomain boundaries that

118 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

could not be fixed by mechanism #1 because the streamlines are incomplete on both

sharing processes. In this case, the streamlines are interpolated from the two complete

neighboring streamlines that are located next along the boundary as shown in the example

in Fig. 3.34. Instead of the factors 1
3

and 2
3
, the actual relation of distances between the

seed points of the streamlines is used. The same interpolation is executed independently

on both involved processes. Because the valid streamlines have the same data on both

subdomains, the resulting fixed streamlines will also be identical.

Mechanisms #3b and #3c follow the same approach. They are applied to the interior

fibers of the final result and can repair any number of incomplete fibers that are located

between complete fibers. This case rarely occurs, a cause can be errors in the numerical

solution of the Laplace problem. In example #3b in Fig. 3.34, the two invalid streamlines

are interpolated from their left and right valid neighbors. In example #3c, no valid right

neighbor exists. Instead, the streamlines are interpolated by using valid positions from

the upper and lower neighbors.

3.5.14 Post-processing and Output of the Generated

Streamlines

After repairing invalid streamlines, the final result of the algorithm is a grid with (2 nel,x nx+

1)× (2 nel,x nx + 1) fibers in the x-y plane and a configurable number of points in z direc-

tion, where nx = 2ℓmax is the number of subdomains per coordinate direction on the last

recursion level.

If a higher number of fibers is desired than is naturally generated by the parallel algo-

rithm, additional fibers can be created by interpolation in the existing grid of fibers, which

is parallel partitioned. The implementation of the presented algorithm in OpenDiHu

includes this post-processing functionality as part of the mesh generation program. Al-

ternatively, the step can be applied separately on any binary output file that contains a

grid of fibers.

The action of increasing the number of fibers proceeds as follows. The initial grid

contains the fibers that were created from the streamlines, called key fibers. A specified

number m of additional fibers is placed between the key fibers in both x and y coordinate

directions. The additional fibers together with the key fibers form a grid of fibers in the

muscle cross-sections with an m times finer mesh width. In the grid of key fibers, every

portion bounded by 2×2 key fibers contains (2+m)2−4 additional fine fibers. The total

number of fibers depending on nx and m, therefore, is N = (2 nel,x nx (1+m) + 1)2. Due

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 119

border points

·2
3
·1

3
·2

3
·1

3

·2
3
·1

3
·2

3
·1

3

·2
3
·1

3
·2

3
·1

3

·1
2

·1
2

·1
2

·1
2

#1

#2

#3a

#3b

#3c

Figure 3.34: Repair of streamlines used during partitioning and fiber approximation in

the 3D and 1D mesh generation: Examples of the four repair mechanisms

for estimating incomplete streamlines during the parallel algorithm. Invalid

streamlines are indicated by red circles, valid streamlines by black circles.

The brown arrows show the direction of data transfer.

120 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

to construction, this number is always odd. This is a desired property because it yields

an even number of elements per coordinate direction and this allows to construct a mesh

with quadratic ansatz functions.

The new fibers are computed by barycentric interpolation. The location of every new

point p is calculated from the nearest points p0,p1,p2 and p3 of key fibers in the x-y

plane, numbered according to Fig. 3.24, by

p= (1−αx) (1−αy)p0 +αx (1−αy)p1 + (1−αx)αy p2 +αx αy p3. (3.11)

Here, the factors αx ,αy ∈ [0, 1] are chosen in a way to create the fine grid of fibers:

αx = i/(m+ 1), αy = j/(m+ 1) for i, j = 0, . . . , m, (i, j) 6= (0,0).

As a result, we can generate a 3D mesh where the number of points in x and y directions

can be adjusted by the parameter m.

An advantage of this algorithm is that each process only has to keep the data of its

own subdomain in memory at any time. This allows parallel processing of very large

meshes. For small-enough meshes that do not fall under this restriction, the utility script

resample_bin_fibers.py can be used to create meshes of any resolution from any other

mesh using the barycentric interpolation in Eq. (3.11). An example is given in Fig. 3.35,

where a mesh of 33×33 fibers is refined by interpolation to a mesh with 71×71 fibers.

3.5 PARALLEL ALGORITHM TO CREATE MUSCLE AND FIBER MESHES 121

(a) Mesh points in a 33× 33 grid at the center

cross-section of the biceps muscle.

(b) Refined mesh points in a 71× 71 grid that

were obtained from (a) by barycentric in-

terpolation.

Figure 3.35: Refinement of existing meshes to obtain derived meshes with any number

of nodes.

The resulting points are stored in a binary file format. The contents of this output

file can either be interpreted as grid points of a 3D mesh or as points of individual 1D

fibers. This is an advantage in a multi-scale simulation where both a 3D muscle mesh

and multiple embedded 1D fiber meshes occur: First, all mesh information of both ΩM

and ΩF,i can be given by a single file. And second, the 3D mesh is aligned with the 1D

fibers and all 3D mesh points are also 1D mesh points.

The spacing in z direction between points on a fiber is typically chosen as∆z = 0.01cm.

This value was found to ensure a low error in the model for propagation of electric stimuli

along the muscle. The value leads to 1481 points per fiber on the belly of the biceps

muscle.

Every point coordinate is stored in the output file as double precision value with eight

bytes. The file contains a header of 72 bytes with descriptive information such as the

number of fibers, some parameter values and a time stamp. The total file size therefore

can be calculated by 72+ N · 1481 · 3 · 8 bytes.

122 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Often, the spatial resolution of the 3D mesh does not need to be as high as those of the

fibers. The relation of the 3D and 1D mesh widths as well as the number of 1D meshes

should be chosen such that the numerical error of the simulation in both domains is

balanced. In case the 3D mesh should be coarser than the output of the algorithm, we

can use only a subset of the points contained in the output file. Then, a stride in x , y,

and z direction is specified in the settings for the simulation. The corresponding coarse

grid of points is extracted and used to construct the 3D mesh that is then used for the

simulation.

A remaining issue concerns the mesh quality on the outer boundary. In general, the 3D

mesh created by Alg. 3 has good quality because the interior points result from smooth

streamlines that were traced through a divergence free vector field. The points at the

boundary, however, are either sampled from a triangulation of a tubular surface of the

muscle or computed from the NURBS formulation. This surface is derived from imaging

data, as described in Sec. 3.3. If the triangulation is used, the quality of the boundary

points of the created mesh depends on the quality of the muscle surface and its triangu-

lation. In a case where this quality is poor, only the outer layer of elements of the created

3D mesh is affected. Figure 3.36 shows an example for this effect in a grid of 9 × 9

fibers. It can be seen that only the fibers at the bottom of the image have an irregularity

at their center. Such an irregularity potentially occurs at every z coordinates where a

new subdomain begins. The cause is that, at these locations, the points on the rings are

slightly shifted relative to each other.

A remedy in such a case is to discard the outer layer of fibers and construct the mesh only

from points of the inner streamlines. Accordingly, our implementation of the presented

algorithm Alg. 3 always creates two different output files. The first output file contains

all fibers, the second contains all except the outer layer of fibers. The second file contains

only N = (2 nel,x nx (1+m)− 1)2 instead of N = (2 nel,x nx (1+m) + 1)2 fibers.

3.6 Results and Discussion

The following section presents results of the parallel algorithm for mesh generation,

Alg. 3. In addition, the effect of various parameters is investigated.

Two types of parameters can be distinguished. Parameters of the first type influences

the number of nodes in the resulting mesh. These parameters have to be set such that the

desired mesh resolution is achieved. Often, multiple, different parameter combinations

3.6 RESULTS AND DISCUSSION 123

Figure 3.36: Evaluation of the parallel mesh generation algorithm, Alg. 3: Resulting fibers

and points on the fibers created with the parallel algorithm, 9×9 fibers with

1481 nodes each. Irregularities in the outer surface can be seen in the center

at the bottom of the image.

are possible to achieve a given mesh resolution. Parameters of the second type have no

effect on the mesh resolution but on the quality of the mesh. Usually, the parameter

combination that gives the highest mesh quality should be chosen.

In the following, Sec. 3.6.1 shows results of the algorithm. Then, Sec. 3.6.2 outlines

how parameters of the first type affect the mesh resolution. A specific parameter, the re-

cursion width, is discussed in Sec. 3.6.3. Subsequently, Sec. 3.6.4 evaluates and discusses

parameters of the second type, which affect the mesh quality.

3.6.1 Resulting Meshes

At first, results of the whole workflow described in Sec. 3.1 to Sec. 3.5 are presented.

The input for the mesh generation algorithm is a geometry representation, which is

typically extracted from biomedical imaging. The output of the parallel algorithm, Alg. 3,

comprises a 3D mesh with hexahedral elements as well as multiple, embedded 1D fiber

meshes.

Figure 3.37 visualizes some results for the biceps and triceps muscles. The parameter

values nel,x = 4, nel,z = 50 and m= 0 are chosen. If the recursion level is set to ℓmax = 0,

the algorithm generates meshes with the smallest possible number of fibers, which is a

grid of 7× 7 fibers. Figure 3.37a shows a grid of 7× 7 fibers and the corresponding 3D

124 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

mesh that was sampled from the fiber data using every 50th point in z direction of the

fiber meshes. It can be seen that the generated fibers traverse all nodes of the generated

3D mesh and, thus, the 3D mesh is aligned with the fiber direction.

Figure 3.37b shows a similar result with 9 × 9 fibers. Here, the colors correspond

to the solution of an electrophysiology simulation. Blue regions indicate that the fiber

membranes have an electric potential equal to their resting potential, which indicates no

activation. Orange and red colors correspond to activated regions. It can be seen that

the activation is present at the same locations on both the fibers and the 3D mesh. In the

simulation, this requires data mapping from the fiber meshes to the 3D mesh. Because

all nodes of the 3D mesh are located on the fibers, this data transfer becomes trivial.

Figures 3.37c and 3.37d present grids with 13× 13 and 67× 67 fibers of the biceps

muscle, respectively. Results with larger numbers of fibers are not shown here because in

such visualizations the fibers become less distinguishable. Figures 3.37e and 3.37f show

fibers for the triceps geometry.

3.6.2 Effect of Mesh Size Parameters

Next, the type of parameters that affect the resulting mesh resolution is discussed. The

choices of the maximum recursion level ℓmax, the number nel,x of elements in x direction

of the subdomains and the fine grid parameter m determine the resulting number N of

fibers and, thus, the file size of the binary output file. The formulas for these numbers

were given in Sec. 3.5.14. Table 3.2 lists exemplary numbers of fibers and file sizes for

nel,x = 4 and different values of ℓmax and m. The number nproc of required processes to

reach the maximum recursion level is also listed, it depends on ℓmax by nproc = 8ℓmax .

Two different numbers of fibers and corresponding file sizes are listed for every param-

eter combination. The two variants correspond to the two files that include respectively

omit the fibers at the boundary.

The table shows that meshes with different sizes can be constructed by appropriate

choices of parameters. A realistic biceps muscle contains about 200 000 to 400000 muscle

fibers [Mac84]. The table shows that constructing a mesh in this range yields a file with a

size of ≈10 GiB.1 A mesh that contains 1 % of the realistic number of fibers can be stored

in a file with size of ≈100 MiB.

1In this work, file sizes are given using multiples of bytes (B) and the prefixes defined in the ISO/IEC

International System of Quantities [80008]. The prefixes are: 1 kibibyte (1 KiB)=210 bytes, 1 mebibyte

(1 MiB)=220 bytes, 1 gibibyte (1 GiB)=230 bytes

3.6 RESULTS AND DISCUSSION 125

(a) Grid of 7 × 7 fibers (red)

and the aligned 3D mesh

with 7×7×30 nodes (yel-

low).

(b) Grid of 9×9 fibers and 3D

mesh with the solution of

an electrophysiology sim-

ulation.

(c) Grid of 13× 13 fibers.

(d) Grid 67× 67 muscle

fibers for the biceps

geometry

(e) 25 × 25

fibers of

triceps

(f) Grid of 67× 67 fibers for the triceps geometry as

seen from within the muscle. The total number of

points is 8 982 489.

Figure 3.37: Evaluation of the parallel mesh generation algorithm, Alg. 3: 1D fiber meshes

and corresponding 3D meshes. The biceps geometry is used in (a)-(d), the

triceps geometry in (e) and (f). The fibers have 1481 nodes each in the

biceps muscle and 2001 nodes each in the triceps muscle.

126 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

max. fine grid # proc. # fibers file size

level ℓmax m nproc

0 0 1 9× 9= 81 2.7 MiB

7× 7= 49 1.7 MiB

0/1 1/0 1/8 17× 17= 289 9.8 MiB

15× 15= 225 7.6 MiB

0/1/2 3/1/0 1/8/64 33× 33= 1089 36.9 MiB

31× 31= 961 32.6 MiB

0 7 1 65× 65= 4225 143.2 MiB

63× 63= 3969 134.5 MiB

2 7 64 257× 257= 66049 2.2 GiB

255× 255= 65025 2.2 GiB

2 15 64 513× 513= 263169 8.7 GiB

511× 511= 261121 8.6 GiB

Table 3.2: Parallel 1D and 3D mesh generation: Different parameter choices of ℓmax and

m and the resulting number nproc of processes, number of fibers and file size.

Some results can be achieved with different parameter combinations, e.g.,

both ℓmax = 0, m = 1 and ℓmax = 1, m = 0 result in 17 × 17 fibers. These

combinations are separated by slashes.

The binary files to store the generated meshes are small compared to ASCII-based file

formats as each point coordinate is represented by only eight bytes. For comparison, the

ASCII-based exnode format defined within the OpenCMISS framework uses 24 characters,

i.e., 24 bytes to store one point coordinate. Additionally, a larger memory overhead for

the description of the data is needed such that exnode files are more than three times

larger than the binary files used in OpenDiHu.

The binary file format uses no compression that could further reduce the file size. The

reason is that no extra effort should be needed when writing programs that parse these

files. Thus, they can easily be handled by codes in different programming languages. For

example, within OpenDiHu the file format is understood by various Python scripts and

C++ programs.

3.6.3 Effect of the Recursion Width

Some numbers of fibers can be achieved with multiple, different parametrizations that use

different recursion widths. Table 3.2 contains such alternatives for ℓmax and m separated

by slashes in the second and third row. For example, the three combinations (ℓmax =

0, m = 3), (ℓmax = 1, m = 1), and (ℓmax = 2, m = 0) all lead to a grid of 31× 31 fibers

3.6 RESULTS AND DISCUSSION 127

(without boundary layer). However, the spatial location of the fibers in the muscle is not

identical for these alternatives, because the intermediate mesh used for the streamline

tracing of the fibers is differently resolved. In the case with recursion depth ℓmax = 0 and

fine grid interpolation parameter m= 3, numerous of the resulting fibers are interpolated

from a coarse grid whereas in the case with ℓmax = 2 and m = 0 all fibers are key fibers

and are obtained by streamlines tracing through a fine mesh.

Figure 3.38 shows parts of the resulting meshes at the longitudinal center of the muscle

for these two cases. In Fig. 3.38a, the mesh obtained with ℓmax = 0 consists of a grid

of traced key fibers and an interpolated finer grid of fibers. The key fiber grid is given

by the corners of the gray checkerboard pattern in the image. It can be seen that the

mesh consists of patches with 4× 5 or 5× 5 fibers that each have equal element lengths

and angles. In comparison, the mesh in Fig. 3.38b that was obtained with ℓmax = 2

consists only of key fibers. Here, the change in shape going from one element to its

neighbors occurs more smoothly than in Fig. 3.38a. This qualitatively implies a higher

mesh quality.

To quantify this effect, we introduce a measure for mesh quality and compare the scores

of the three alternatives in the present example. We consider all angles that occur in an

element in the x-y plane. The mean value of all angles is obviously π/2. The variance

of all angles can be used as the measure for mesh quality. If the variance is low, this

indicates similar elements and, thus, good mesh quality.

For the present example, the variance was computed for the mesh with 31× 31 fibers

and 1481 nodes per fiber and, thus, 1332 000 3D elements in total. Figure 3.39 plots the

variance for the three cases given in the third row of Tab. 3.2, i.e., parameter combinations

(ℓmax = 0, m= 3), (ℓmax = 1, m= 1) and (ℓmax = 2, m= 0). The 3D mesh corresponding to

the lowest bar contains the 2D mesh shown in Fig. 3.38a and the 3D mesh corresponding

to the upper-most bar contains Fig. 3.38b.

It can be seen that the quality of meshes on higher recursion levels with less interpo-

lation increases as expected. This emphasizes the benefit of the parallel algorithm that

uses finer meshes compared to the mesh used during serial execution of the algorithm.

3.6.4 Effect of Mesh Quality Parameters

In addition to the parameters that affect the resulting mesh sizes, nel,x, ℓmax and m, further

options exist to tune the behavior of Alg. 3 and in result lead to meshes with different

128 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(a) Result for parameters ℓmax = 0, m = 3,

i.e., with three interpolated fibers be-

tween every two traced fibers.

(b) Result for parameters ℓmax = 2, m = 0,

i.e., without interpolation.

Figure 3.38: Comparison of generated meshes of the biceps with different maximum

recursion levels ℓmax. A lower left portion of the full mesh with 31×31 fibers

is shown.

0.0 0.1 0.2
Variance of angles [rad2]

0

1

2

M
ax

. r
ec

ur
sio

n
le

ve
l

m
ax

0.194

0.175

0.170

Figure 3.39: Variance of the element angles for meshes with the same number of 31×
31 fibers, but created by different recursion levels ℓmax. The parameters

correspond to the third row of Tab. 3.2. A lower variance means better mesh

quality.

3.6 RESULTS AND DISCUSSION 129

quality. These options are described in the following.

The surface that is the input to Sec. 3.5 can be represented either as triangulation or

in parametric form as NURBS surface. The triangulation can either be the result of the

image segmentation step or it can be obtained by triangulating a NURBS surface. Thus,

if the approximation of the geometry by a smooth spline surface is desired it is possible

to choose between both options.

One difference is the resulting runtime. To sample a point on the surface using the

NURBS representation, the nonlinear equation has to be inverted using a Newton scheme

for each point. This is slower than using the triangulation where rings on x-y planes

are extracted initially and then equidistantly sampled, as explained in Sec. 3.4.1 and

Sec. 3.5.3.

The Laplace problem ∆p = 0 that is solved in every recursion depends on the dis-

cretization and mesh resolution on every subdomain. In addition to the number nel,x of

elements in x and y directions, the mesh resolution also follows from the number nel,z of

elements in z direction.

The number of elements in this intermediate mesh is also influenced by the factor r ∈ N
of the refinement described in Sec. 3.5.6. While r = 1 corresponds to no refinement, for

r > 1 the number of elements is increased by the factor r3. Note that the output meshes

of the algorithm depend on nel,x but not on nel,z nor r as they are generated later after

the process of streamline tracing.

Furthermore, the finite element discretization of the Laplace problem can either use

linear or quadratic ansatz functions, leading to the respective linear or quadratic elements

in the mesh. The type of boundary conditions for the Laplace problem in Eq. (3.8) can

be selected among the Neumann boundary conditions given by Eq. (3.9) or the Dirichlet

boundary conditions given by Eq. (3.10).

After the Laplace problem is solved, the gradient direction ∇p(x) at a point x in the

domain needed for streamline tracing can be determined by two different methods. Either

the gradient vector field is precomputed using finite differences and the nodal values of

the solution field p and then evaluated at x. Or the gradient value is directly interpolated

at x in the 3D element using a linear combination of the solution values and derivatives

of the ansatz functions of the element.

During parallel streamline tracing, the width nghost_layer_width of the ghost layer is im-

portant. If it is too small, streamlines leave the domain of the process and have to be

repaired, i.e., approximated by neighboring streamlines as described in Sec. 3.5.13. We

130 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

found that a value of nghost_layer_width = 2 r is enough and minimizes the number of invalid

streamlines leaving the domain. With some parameter combinations, invalid streamlines

still occur occasionally. Those result from badly conditioned elements and gradient values

with high numerical errors that cannot be fixed by a larger ghost layer. By including the

factor r in the ghost layer width, the actual sizes of the ghost layer is always the same

independent of the chosen refinement.

To investigate the effect of all options, a parameter study is conducted in the following.

We fix the values of nel,x = 4, nel,z = 50, m = 1, ℓmax = 1, and nghost_layer_width = 2 r and

vary all other parameters. The resulting meshes consist of 33 × 33 fibers and 31 × 31

fibers if the boundary layer is omitted, as described in Sec. 3.5.14. We compare the mesh

quality of the 3D meshes that result from the 31× 31 fibers. As before, the variance of

the element angles is used to rate the quality of each resulting mesh.

To identify a parameter combination in the study, a scenario name is composed of

one character each for the various options, as explained in the following. The linear or

quadratic formulation of the Laplace problem is indicated by the characters “ℓ” or “q”.

Neumann and Dirichlet boundary conditions are indicated by “N” and “D”. The refinement

level r is specified by the respective integer value. Finally, “g” or “s” indicates whether

the precomputed gradient field (“g”) is used in streamline tracing or the solution values

(“s”) and derivatives of the ansatz functions.

For example, the scenario considered in Figures 3.38 and 3.39 can be specified as

“ℓD2s”, as it uses the linear mesh with Dirichlet boundary conditions, a refinement factor

r = 2 and the solution values to compute the gradient.

The following study was performed for the biceps geometry in two variants, firstly using

the approximated NURBS surface directly and secondly using a triangulation obtained

from the NURBS surface. These two variants are indicated by “splines” for the NURBS

surface and “stl” for the STL file containing the triangulation.

Figure 3.40 presents the resulting variances of the element angles. The scenarios are

sorted according to their mesh quality score, i.e., the variance of their element angles.

This means the results are ordered by improving mesh quality from bottom to top.

Two separate plots for the “stl” and “splines” scenarios are shown in Fig. 3.40a and

Fig. 3.40b. The two resulting meshes of the best options, “qN1s_stl” and “qN1s_splines”

are visualized left and right in Fig. 3.41. In the top plane of the muscle belly, it can be seen

that the orientation of the mesh is slightly different. This explains the large difference of

the angle variance values between the two scenarios in Fig. 3.40, which are higher for

3.6 RESULTS AND DISCUSSION 131

0.00 0.05 0.10 0.15
Variance of angles [rad2]

D3g_stl
N3g_stl
D1g_stl
N2g_stl
D1s_stl
D2s_stl
D3s_stl

qD3s_stl
qD1s_stl
qD2s_stl
D2g_stl
N1s_stl
N2s_stl
N3s_stl

qN3s_stl
qN2s_stl
qN1s_stl

0.1543
0.1476
0.1463
0.1433
0.1420
0.1411
0.1409
0.1407
0.1396
0.1395
0.1394
0.1390
0.1381
0.1374
0.1364
0.1364
0.1363

(a) Scenario using the surface triangulation.

0.0 0.1 0.2
Variance of angles [rad2]

N1g_splines
N2g_splines
D3g_splines
D1g_splines
N3g_splines
D2g_splines
D1s_splines
D2s_splines

qD3s_splines
D3s_splines

qD1s_splines
qD2s_splines

N1s_splines
N2s_splines
N3s_splines

qN2s_splines
qN3s_splines
qN1s_splines

0.2265
0.2077

0.1972
0.1889
0.1868
0.1813
0.1800
0.1783
0.1776
0.1775
0.1767
0.1764
0.1757
0.1737
0.1730
0.1722
0.1722
0.1718

(b) Scenario using the spline surface.

Figure 3.40: Parallel mesh generation algorithm: Comparison of the mesh quality that

results from different options in the mesh generation algorithm. A lower

variance means better mesh quality.

“splines” than for “stl”. The scores of parameter combinations should therefore only be

compared among the same surface representation. A statement regarding which of the

two options is better is not reasonable from this data set.

The results in Fig. 3.40 show that almost all values are close together, which indicates

similar good mesh qualities for different parameter combinations. Nevertheless, the

ranking reveals some differences between the options. A comparison of the rankings in

the columns for “stl” or “splines” shows that some parameter choices consistently resulted

in better meshes. A better result was achieved if Neumann boundary conditions were

used (“N”) compared to Dirichlet boundary conditions (“D”). Similarly, quadratic ansatz

functions (“q”) performed better than linear ansatz functions (“ℓ”). This is reasonable

as quadratic ansatz functions yield a higher spatial consistency in the finite element

formulation.

132 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Figure 3.41: Parallel mesh generation algorithm: Results of the scenarios using a surface

triangulation (stl, left) and a NURBS surface (splines, right).

A higher refinement factor r of the internal mesh was beneficial for the cases with

linear ansatz functions. For quadratic ansatz functions, the effect of r is less clear. The

study shows that no refinement (r = 1) is often better in this case. The variant without

the precomputed gradient field (“s”) performed generally better than the variant with

gradient field computation (“g”).

However, further studies with different recursion depths showed that the effect of some

options also depended on the scenario. For a higher recursion depth, Dirichlet boundary

conditions turned out to be more robust in the sense that fewer incomplete streamlines

occurred.

In summary, the quadratic formulation (“q”) and the streamline tracing using solution

values (“s”) could be shown to be better options than their alternatives. For a maximum

recursion level ℓmax = 1, the best parameter combination among the tested combination

was “qN1s”. In a separate study for ℓmax = 2, the combination “qD2s” was found to be as

robust as “qN1s”.

3.6.5 Post-processing of the Meshes

To further improve the mesh quality on every cross-section, we apply two more post-

processing steps, one local and one global transformation. As can be seen in the cross-

3.6 RESULTS AND DISCUSSION 133

section of Fig. 3.41, some rows of elements in the generated mesh have zigzag lines, and

not all elements are equally sized. Furthermore, there are almost degenerate elements

with small interior angles.

Thus, we apply a first, local transformation on the mesh. This operation consists of

Laplacian smoothing and randomly deflecting points, where interior element angles are

smaller than 20°. If such deflections result in invalid self-intersecting elements, the self-

intersection is resolved, which potentially again introduces small interior angles. The

total transformation consists of 25 iterations of alternatingly applying the smoothing step

and the improvement step of small interior angles.

An exemplary resulting mesh after this transformation is shown in Fig. 3.43a. It can be

seen that all lines in the mesh are smooth and almost straight. At the right center of the

shown mesh, the effects of the deflection step, which improves small interior angles, can

be seen. However, at the left, top and bottom boundary of the mesh, degenerate elements

with small interior angles remain. This is especially true for the four mesh points on

the boundary that correspond to the corners of the quadrangulation. At these points,

elements are present that have two sides that are part of the mesh boundary, forming an

interior angle of almost 180°. Three points of these elements are located in an almost

straight line. As a consequence, the Laplacian smoothing step moves the fourth point of

these elements close to this straight line, which adds another large interior angle and

degenerates the element. This effect also occurs for interior elements of the mesh that

are close to these points on the boundary.

Figure 3.43b shows the detail of the left boundary of the mesh in Fig. 3.43a, where

this effect can be seen. The area of the elements decreases towards the boundary and the

elements get more degenerate in this direction.

As a remedy, we perform the second, global transformation step to counteract this

tendency. In this step, most of the points in every cross-section of the mesh are translated

by a fixed mapping, such that the small elements at the boundary are transformed into

elements of better quality.

Each mesh point on a cross-section of the mesh is represented by polar coordinates

(r,ϕ). The radius r is transformed according to the function rnew = y(rold) that is depicted

in the lower plot of Fig. 3.42. This piecewise defined function f ∈ C1([0,1]→ [0,1]) is

linear for x ∈ [0, s] and a polynomial of degree 3 for x ∈ [s, 1]. It passes through the

yellow point in Fig. 3.42, which in x direction is at the center of the interval [s, 1] and

in y direction is at fraction α of the shown yellow line. The parameter α controls the

extent, to which the mesh is transformed in radial direction. The parameter s specifies

134 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

1.0

1.5

2.0 y0

0.0 0.2 0.4 0.6 0.8 1.0

r

0.0

0.5

1.0
y

Figure 3.42: Transformation of a mesh to improve the mesh quality. The depicted function

f transforms the elements in radial direction.

the size of a region around the center of the mesh where no transformation occurs. We

obtain good results by choosing s = 0.05 and α = 0.7. The resulting function takes the

form f (r) = 1.330 r3 − 1.463 r2 + 1.136 r − 0.003.

The first derivative f ′(x) of this function is shown in the upper plot of Fig. 3.42.

It quantifies the amount of extension or compression of the mesh elements in radial

direction. The right side of the plot corresponds to the outer boundary of the mesh.

There, the elements are extended, since f ′(r) > 0. To compensate this extension, the

elements have to be compressed towards the interior of the mesh where f ′(r) < 0.

The range of r ∈ [0, s] corresponds to the region in the interior of the mesh that is not

transformed.

The points of the mesh are transformed in radial direction by adjusting their coordinate

r and not transformed in circumferential direction, i.e., the angle ϕ remains constant.

However, the application of the function f on r is additionally modulated by a piecewise

sine function depending on ϕ. The transformation f is only fully applied at the four

radii corresponding to the described special points on the boundary, around which the

degenerated elements occur. In between these lines, the transformation is reduced and

some points of the mesh are not transformed at all.

Figure 3.43b shows the mesh of Fig. 3.43a after this transformation has been applied.

Figure 3.43d shows the extract of the mesh from the left boundary that corresponds

to the same extract of the original mesh in Fig. 3.43c. It can be seen that the quality

of the elements is improved close to the boundary. The area of the rectangles is now

approximately equal and no small interior angles occur.

3.6 RESULTS AND DISCUSSION 135

In Fig. 3.43e, the previous and the transformed mesh are overlaid to show the regions

that remain unmodified. The unmodified parts form a “cross” shape that touches the

boundary at the regions where the mesh quality is also good in the original mesh.

3.6.6 Usage of the Generated Meshes in Simulations

In some biomechanical simulations, also a body fat and skin layer on top of the muscle is

considered. In this case, an appropriate mesh is required that is attached to the muscle

mesh and seamlessly matches the elements of the muscle mesh. The construction of such

a mesh is discussed later in Sec. 7.5.1 together with the parallel partitioning.

A visualization of such a parallel setting is given in Fig. 3.44. Tendons connect the

muscle belly of the biceps brachii muscle to the humerus and ulna bones at the top left

and bottom, respectively. The muscle mesh consists of fibers that are colored according

to a parallel partitioning. In a parallel partitioning, every process contributes calculations

only on its associated spatial subdomain to the overall computation. On the right-hand

side of the muscle, a layer of adipose tissue is attached to the muscle belly. This layer is

needed, if electromyography on the skin surface is simulated.

Figure 3.45 shows another use case of various meshes in a multi-scale simulation

model. The muscle is cut open for visualization purposes. The figure depicts numerous

muscle fibers in the upper part of the muscle belly. The fibers are colored according

to simulation results of the electric membrane potential, which is responsible for the

activation of the muscle. The lower part of the muscle shows elements of the 3D mesh.

The coloring corresponds to the electric potential, that is measured during intramuscular

electromyography in the interior of the muscle or during surface electrophysiology on the

outside of the muscle.

136 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(a) Original mesh at the

upper-most cross-section

of the muscle.

(b) Transformed mesh with

better mesh quality.

(c) Extract at the left boundary of the original

mesh in (a), rotated clockwise by 90°.

(d) Analog extract to (c) of the transformed

mesh (b).

(e) Overlay of the original mesh (a) and the transformed mesh (b),

rotated clockwise by 90°. The unmodified regions can be seen.

Figure 3.43: Transformation of a biceps mesh with 47× 47 points to improve the mesh

quality.

3.6 RESULTS AND DISCUSSION 137

Figure 3.44: Summary visualization of the simulation setup in this work (I): Biceps muscle

with tendons and bones, parallel partitioned fibers and a fat layer mesh.

138 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

Figure 3.45: Summary visualization of the simulation setup in this work (II): Muscle fibers

in the upper part and 3D mesh elements in the lower part of the muscle belly.

3.6 RESULTS AND DISCUSSION 139

How To Reproduce

The parallel algorithm is implemented in the example parallel_fiber_estimation.

Numerous parameters can be set on the command line. After compilation, run the

program as follows to get a description of all available options.

cd $OPENDIHU_HOME/examples/fiber_tracing/parallel_fiber_estimation/

,→ build_release

./generate ../settings_generate.py --help

Running the program without options and --help uses sensible default values. A

given surface triangulation of the biceps muscle gets used by default. To compute

the examples shown in this section, use and adjust the following script that runs the

generate program and computes the mesh quality:

cd $OPENDIHU_HOME/examples/fiber_tracing/parallel_fiber_estimation/

,→ build_release

../run.sh

Computation of mesh and file sizes as shown in Tab. 3.2 can be done using the

compute_sizes.py script.

While the previously given commands are good for exploring the algorithms, gen-

eration of the meshes used for the simulation involves some more steps. Dedicated

scripts exist that perform all steps and call the algorithms with the proper parame-

ters. Starting from the STL file extracted from cmgui, as explained in Sec. 3.3.3, the

next steps are:

(i) Scale the points from millimeters (used in the Visible Human dataset) to cen-

timeters (used in the simulation),

(ii) remove the interior triangles,

(iii) translate the mesh such that the bounding box begins at z = 0, this is needed

for the programs used in the next steps,

(iv) create the spline surface representation as explained in Sec. 3.3.4,

(v) compile and run the OpenDiHu programs to create the binary files of the 3D

mesh and the 1D fibers meshes, the algorithm in Sec. 3.5 is used,

(vi) adjust the indexing and undo the translation in (iii),

140 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

(vii) refine the created meshes of key fibers by different numbers m of fine grid fibers,

in total 10 different mesh sizes are created for differently refined simulations,

(viii) create meshes for the fat layer ΩB on top of the muscle surface, also in 10

different resolutions.

Two scripts are given for the biceps brachii and triceps brachii muscles. They

perform all listed steps and also create intermediate output files that can be used to

understand the process. Some steps are automatically skipped if the resulting output

file already exists from a previous run. This is especially helpful for the removal of

the interior triangles from the initial file which takes nearly a full day.

A third scripts creates three meshes ΩT,i for the tendons of the biceps muscle, as

visualized in Fig. 3.21. At the bottom, a single tendon mesh is created whereas

at the top, two separate tendons exist. The script involves numerous rotation and

cropping operations of the initial surface, before the algorithm of Sec. 3.4 is ex-

ecuted. The three output files of the tendon meshes have the same file format

as the muscle meshes. The files have the extension .bin for “binary”. The script

examine_bin_fibers.py can be used to debug the created binary files.

The three scripts can be executed as follows:

cd $OPENDIHU_HOME/examples/electrophysiology/meshes

./process_meshes_biceps.sh

./process_meshes_triceps.sh

./process_meshes_tendons.sh

The output can be found in the subdirectory processed_meshes. For the total output

about 68 GiB of drive space is required, however, the resulting meshes have a size

of only 19 GiB. A total runtime of more than a day is to be expected.

3.7 Conclusion and Future Work

This chapter presented algorithms for creating muscle meshes that are needed for multi-

scale simulations of the musculoskeletal system. For the biceps muscle, 3D meshes for

tendons on both ends and the muscle were created. Additionally, 1D fibers meshes were

generated that are embedded in the mesh of the muscle. The 3D mesh and the 1D meshes

resulting from the parallel algorithm are aligned with each other. This facilitates data

3.7 CONCLUSION AND FUTURE WORK 141

mapping between the meshes and reduces numerical errors. All generated meshes are

structured, which allows an efficient parallelization.

First, an overview of available meshing software and known algorithms in the literature

was given. Very little software tools were capable of generating structured meshes and

none fitted our special needs. Therefore, own algorithms were developed to generate

meshes starting from medical imaging data.

A workflow was presented to generate a smooth surface triangulation from imaging

data. Our base data was the male dataset from the Visible Human Project. Two alterna-

tives within this workflow were presented, where the first alternative executed automatic

image segmentation based on morphological operations and the second alternative used

semi-automatic segmentation tools from the Physiome project. Then, smooth NURBS

surfaces were fitted to the extracted boundaries of the muscle volumes.

Next, a novel algorithm to create structured meshes from a triangulated muscle surface

was presented. The algorithm used harmonic maps on 2D slices in combination with

regular grids in a parameter space to achieve good mesh quality. A method of computing

streamlines in a divergence-free vector field to estimate muscle fibers, which is estab-

lished in the literature, was used. It allowed embedding 1D meshes for muscle fibers

in the created 3D meshes of the muscle. Numerical experiments tested and evaluated

different choices of triangulation and quadrangulation schemes for the 2D cross-section

and reference domains in our algorithm.

Next, a parallelized algorithm was introduced that was based on our first, serial al-

gorithm. The algorithm used distributed memory parallelism and provided the same

features as the serial algorithm, having the same formats for input and output. The dif-

ference was that it constructed a fine, partitioned mesh for streamline tracing that was

distributed over all employed processes. Thus, it was possible to create finer meshes

using more compute nodes. Differently resolved meshes of the biceps and triceps muscle

volumes and muscle fibers were created using this algorithm. The superiority of the

parallel algorithm using a higher number of processes compared to the serial execution

was explained and demonstrated in a numerical experiment. Several options to fine-tune

the algorithm were evaluated. Post-processing methods were described that improved

the mesh quality of the resulting meshes.

The presented algorithms and their implementation in OpenDiHu are the basis for

further computations within this work. They are used to generating structured hexahedral

meshes with good mesh quality. These meshes are required for efficient, parallel finite

element simulations of various aspects of the neuromuscular system.

142 CHAPTER 3: GENERATION OF MESHES FOR THE MULTI-SCALE MODELS

The presented algorithms are specialized for fusiform muscles and require the muscle

geometry to be oriented along one coordinate axis (the z axis) in order to generate

a structured mesh that comprises planar slices that are normal to that direction. The

algorithms can also be applied to any tubular surface geometry of more complex muscles

and will construct the corresponding structured 3D mesh. The generated 1D fiber meshes,

however, are only valid for muscles, where the approach of streamline tracing through

the solution of the Laplacian potential flow problem with boundary conditions at the

bottom and top ends of the muscle can be applied. In literature, this approach has been

successfully used for various muscles with more complex fiber architectures, such as the

tibialis anterior, gluteus maximus and deltoid muscles [Cho13]. However, the locations

where boundary conditions were prescribed was not always at the bottom and top ends

of the muscle.

If in future work muscles with more complex layouts should be simulated, the approach

could be as follows. Depending on the complexity of the outer geometry, first the pre-

sented algorithms (either Algorithms 1 and 2 or Alg. 3) can be used to create a structured

3D mesh. Then, a potential flow simulation can be manually setup in OpenDiHu using

the 3D mesh and boundary conditions defined at proper locations. Seed points have to be

defined and the streamline tracer of OpenDiHu can be used to create fiber meshes. In con-

sequence, the resulting 1D fibers will not be aligned with the 3D mesh. Algorithmically,

this poses no problem to the simulations in OpenDiHu as the data mapping functionality

can handle arbitrarily positioned meshes. However, the parallel partitioning gets more

involved as the combined domain of 1D and 3D meshes has to be partitioned equally for

both mesh types.

143

Chapter 4

Muscle Fibers and Motor Units

The activation of muscle fibers is governed by the functional organization of the fibers

in motor units (MU). An MU is the set of fibers that are innervated by the same α-motor

neuron, together with the neuron. If a motor neuron fires, all muscle fibers within the

MU are activated. The association of the muscle fibers with MUs needs to be specified for

electrophysiology simulations that consider activated muscle fibers. This chapter describes

algorithms to achieve an MU-fiber association based on biophysical principles.

4.1 Introduction

Given a number of muscle fibers, the goal is to assign each fiber to one MU out of a set of

given MUs. A muscle with a fusiform geometry, such as the biceps brachii is considered.

Because muscle fibers do not branch or interrupt within the belly of such a muscle, the

task can be reduced to the 2D problem on a cross-section of the muscle.

Properties of MUs have been subject to various investigations in literature. The number

of MUs in a human muscle can be estimated by anatomical and physiological methods

[Mac06]. Anatomical methods include counting large-diameter fibers in postmortem

tissue. The morphological studies of [Fei55] revealed high variations between different

muscles. For example, the brachioradialis muscle has an estimated number of 333 MUs

with 410 muscle fibers on average whereas the external rectus muscles in the eye have

2970 MUs with an average of only 9 muscle fibers.

Physiological methods involve comparing the electrical and mechanical responses of

artificially activated muscles, e.g., as in [Mil73; Tho90]. Typically, a high number of MUs

with a smaller force or electric response is observed and a smaller number of MUs with

a higher response. The review of [Eno01] collects available experimental results and

144 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

concludes an exponential distribution of the number of fibers per MU over all the MUs in

a muscle.

The spatial arrangement of the fibers of an MU can be revealed by a histochemical

method [Bra69]. It was found that the fibers of an MU appear at random positions but

are grouped in a subregion of the muscular cross-section. The size of the subregion varies

among muscles and fiber types and can be as large as one quarter of the cross-section,

as in the tibialis anterior of the rat [Eds68]. Although the fibers of an MU are located in

proximity they usually do not touch each other, i.e., there are always fibers of other MUs

in between the fibers associated with an MU.

In our algorithm for assigning fibers to MUs we incorporate the following properties

that are founded on biophysical experiments.

(a) The number of fibers per MU is exponentially distributed.

(b) The fibers of an MU are spatially distributed around a center point of the MU territory.

(c) The MU center points are reasonably separated from each other. However, the MU

territories intermingle.

(d) The spatial extents of the MU territories are proportional to the number of fibers of the

MUs.

(e) The exact locations of the fibers are random, but the overall density of fibers in the

muscle is approximately constant.

(f) Neighboring fibers are not innervated by the same motor neuron and therefore belong

to different MUs.

Further physiological properties of fibers such as their fast or slow-twitch type as well

as the distribution of electrical and mechanical properties are not subject to the fiber

assignment algorithm. They are considered during configuration of the simulations of

electrophysiology or muscular contraction.

4.1.1 Related Works

Simulations involving individually resolved muscle fibers are scarce in the literature.

Therefore, not much previous work exists regarding methods to algorithmically assign

fibers to MUs. The chemo-electro-mechanical skeletal muscle framework of [Hei13] uses

4.1 INTRODUCTION 145

a method introduced in [Röh12] where center points of MU territories are positioned

normally distributed around two distinct weighting centers for fast- and slow-twitch

fibers. The algorithm randomly selects from certain sets of fibers and assigns them to

MUs with exponentially increasing MU sizes. The method is applied to determine up to

50 MUs in the tibialis anterior (TA) muscle.

This algorithm fulfills the previously formulated properties (a)-(e). Among those,

the fulfillment of (c) is not guaranteed but may be given by the random nature of the

algorithm. An assumed issue regarding property (b) is that no predictions can be made

about the fiber locations of the larger MUs. The larger MUs get assigned to previously

unassigned fibers in a late stage of the algorithm, after most of the fibers have been

selected for smaller MUs. The largest MU simply gets associated with all remaining fibers

that were not selected for other MUs. In the worst case, these fibers can accumulate at

multiple different regions, e.g., at boundaries of the muscle which is not physiological.

Instead of the 3D setting in [Röh12] that was needed for the complex anatomy of the

TA muscle, we restrict our problem to a 2D cross-section of a fusiform muscle such as

the biceps brachii. In comparison, our method creates MU territories of equal quality

for all MUs and additionally fulfills property (e). Slow- and fast-twitch fibers are not

treated differently by our algorithm, their properties are considered later in the simulation

settings.

3D Simulations of skeletal muscle exist that treat MU association as homogenized

property in the muscle volume. The approach in [Sai18] assigns volume fractions of MUs

to every spatial point of a 3D FEM discretization grid. MU center points are selected

randomly ensuring a minimal distance. Prescribed volume fractions are sequentially

assigned for each MU. The degree of intermingling can be adjusted by a parameter. It is

shown that the algorithm highly depends on the order in which the MUs are traversed.

The algorithm fulfills the properties (b)-(e), fulfilling (a) is possible by using appropriate

parameter values.

In comparison, our method is targeted at MU assignment to individual fibers. However,

distributing volume fractions is also the first step in our method. The volume fractions are

interpreted as probabilities of the fibers being assigned to the respective MU. Therefore,

our method can also be used as generator for homogenized formulations. A difference is

that our method does not depend on a traversing order of MUs and ensures the exponential

distribution of MU sizes.

146 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

4.1.2 Two Alternative Premises for Motor Unit Assignment

We identify two different sets of requirements which lead to two different methods. Both

methods fulfill the properties (a)-(f) listed in Sec. 4.1. The first premise is to assign motor

units to a given number of fibers such that every fiber is associated with one MU. The

second, alternative premise is to assign motor units only to a portion of the given set of

fibers, discarding unassigned ones and thereby reducing the resulting set of fibers.

With the first setup, simulations of muscles that are gradually activated by motor

neurons are possible. Activating the full muscle corresponds to activating all MUs and, in

consequence, all muscle fibers. In reality, it is hardly possible to voluntarily activate all

fibers in a muscle. This approach is also chosen in the presented literature, [Röh12] and

[Sai18].

The second setup corresponds to modeling only a part of the muscle. The discarded

fibers can be seen as belonging to other MUs that are not part of the simulation. When

running highly parallelized simulations containing a large number of fibers, the missing

fibers can introduce load imbalances, if they are computationally treated equally to the

fibers with MUs. Even if no extra computational time is spent for the discarded fibers, a

parallel domain decomposition becomes more involved than with the first setup where

all fibers in a grid are present.

An advantage of the second setup is that the MU assignment to the fibers is generally

easier. It also has its analog in volume fraction methods, where scalar fields of factors

fk : Ω ⊂ R3 → [0,1] representing multiple MU territories, k = 1, . . . , nMU, can be easily

defined. With this setup it is possible, for example, to perform analogous EMG simulations

with the Multidomain model of [Klo20] and the fiber based model of [Mor15].

In the remainder of this chapter, Sec. 4.2 presents method 1, which fulfills the first

premise where all fibers are associated to the MUs. Next, Sec. 4.3 introduces method

2, which only associates some fibers to MUs. Methods 1 and 2 fulfill the properties (a)-

(e). Two derived methods 1a and 2a are subsequently constructed in order to also fulfill

property (f). They are presented in Sec. 4.4. Results and a discussion is given in Sec. 4.5

before the chapter ends with a conclusion in Sec. 4.6.

4.2 METHOD 1: ASSIGNMENT OF MOTOR UNITS TO A GIVEN SET OF FIBERS 147

(a) Muscle fibers in the cross-

section of a muscle visual-

ized by Gömöri trichrome

stain1

(b) A cut open muscle with

49 muscle fibers in the

simulation domain

(c) A quadratic grid of 7 × 7

fibers, used for the methods

to assign MUs to fibers.

Figure 4.1: Representation of muscle fibers for the methods to associate fibers with MUs:

From the real muscle to a quadratic grid.

4.2 Method 1: Assignment of Motor Units to a Given

Set of Fibers

In our methods to assign MUs to muscle fibers, the considered set of muscle fibers is

organized in a regular grid. Figure 4.1a shows a part of the cross-section of a skeletal

muscle, the domains of individual fibers are visible. Figure 4.1b visualizes the represen-

tation of muscle fibers in our simulations. In this figure, a relatively low number of 49

fibers was modeled. The fibers are approximated by 1D lines with uniform spacing in

radial direction. For the algorithms to assign MUs to fibers, the muscle cross-section is

considered as a logical 2D grid with a quadratic number of n× n fibers. Such a grid is

visualized in Fig. 4.1c.

The first method for the assignment of MUs to a given set of fibers associates the n× n

fibers to a set of nMU motor units. First, for each fiber (i, j) in the grid, the probabilities

p(i, j, kMU) to be assigned to MU kMU are computed. This computation involves the

solution of an optimization problem. Second, the sampling step assigns the actual MU

indices to the fibers.

1Image copyright © 25/12/2010 Michael Bonert (https://commons.wikimedia.org/wiki/User:

Nephron), CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/legalcode). The

picture shows mitochondrial myopathy, it was cropped and the color was adjusted to make the “ragged

red fibers” less prominent.

https://commons.wikimedia.org/wiki/User:Nephron
https://commons.wikimedia.org/wiki/User:Nephron
https://creativecommons.org/licenses/by-sa/3.0/legalcode

148 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

4.2.1 Stochastic Formulation of Motor Unit Assignment

In order to fulfill the formulated properties, the following three conditions are enforced

on the probabilities.

(i) The probabilities at every fiber have to be valid, i.e., positive and sum up to 1 for all

MUs.

(ii) The portions fibers associated to MUs have to approximately follow an exponential

progression q, with MU 1 containing the least and MU nMU containing the most fibers.

(iii) For any given MU, the spatial arrangement of its fibers in the cross-sectional plane is

described by a radial kernel function p̂. The fiber density of the MU increases when

moving closer to the center point of the MU. This condition approximates the fact that

the fibers of an MU are located in proximity, forming the MU territory.

The exponential progression q in condition (ii) is defined as follows,

q(kMU) = bkMU/

nMU∑

ℓ=1

bℓ. (4.1)

The basis b is a parameter and should be set to a value greater than one, e.g., b = 1.2.

[Eno01] formulate the function to be proportional to exp(log(R)/nMU ·kMU) where R is the

constant ratio between the sizes of the largest and smallest MUs. Our form is equivalent

with b = R1/nMU .

The value of q in Eq. (4.1) is always positive. The division by the scaling factor ensures

that the probabilities for all MUs sum up to one. Thus, condition (i) is fulfilled. The

construction with the exponential function fulfills condition (ii).

For condition (iii), center positions xkMU
, kMU = 1, . . . , nMU of the MU territories are

defined. The center positions are quasi-randomly selected inside the inner 80% of the

n× n grid of fibers. A band at the boundary with width of 10% is not considered because

the MU center points should not be at the border of any MU territory but rather at their

center.

The used quasi-random sequence is the following Weyl low-discrepancy sequence

4.2 METHOD 1: ASSIGNMENT OF MOTOR UNITS TO A GIVEN SET OF FIBERS 149

2 0 2
0.00

0.25

0.50

0.75

1.00

Figure 4.2: Function 1/(1+ a |x |2), similar to p̂ of Eq. (4.3), for σ = 1.

[Wey16]:

x0 = 0.5, y0 = 0.5,

x i = x0 + (i ·α1) mod 1.0, yi = y0 + (i ·α2) mod 1.0,

with α1 = 0.554 549 7, α2 = 0.308 517.

(4.2)

It is known that the sequences x i and yi are equidistributed in [0,1) for any irrational

α1 and α2 [Wey16]. The chosen values lead to a sequence of 2D points (x , y) ∈[0,1)2

with low discrepancy and a good coverage of the domain for any number of sequence

elements. Accordingly, the MU territory center points are defined as

xkMU
=
�

(0.1+ 0.8 xkMU
)n, (0.1+ 0.8 ykMU

)n
�⊤

The radial kernel function p̂ that describes the spatial probability distribution for a given

MU kMU according to condition (iii) is defined as follows,

p̂(i, j, kMU) =
1

1+ a |xkMU
− xi, j|2

, with a =
π2

4σ4
. (4.3)

The coordinates i and j specify the grid point xi, j = (i, j)⊤ of the fiber. The factor a

is computed from the given standard deviation σ of the spatial distribution of the MU

territory around the center point. A lower value of σ leads to smaller and “sharper” MU

territories, for higher values of σ, the MU territories intermingle more with each other.

Figure 4.2 shows the graph of the function for σ = 1.

This kernel function was chosen because it can be computed efficiently with a low

number of basic operations unlike, e.g., a Gaussian kernel function which requires costly

evaluation of an exponential function.

150 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

If the kernel function p̂ in Eq. (4.3) is used to describe the probability of fiber (i, j) to be

in MU kMU, then condition (iii) is fulfilled but conditions (i) and (ii) will not automatically

be fulfilled. Instead of p̂, a derived term p(i, j, kMU) is introduced in the following that

satisfies all requirements.

To ensure condition (ii), additional scalar factors λk, k = 1 . . . nMU for the MUs are

introduced that yield the required exponential distribution. To ensure condition (i),

the term is normalized by a respective division. The resulting formulation is given as

follows:

p(i, j, kMU; {λk}1...nMU
) =

p̂(i, j, kMU) ·λkMU

nMU∑

ℓMU=1

p̂(i, j,ℓMU) ·λℓMU

. (4.4)

Now, the factors {λk}1...nMU
have to be determined accordingly. Setting λkMU

= q(kMU)

would not yield the required exponential distribution of probabilities, because the MU

center points xkMU
have varying distances between each other. Therefore, the accumulated

total probability of all fibers to be associated to a particular MU is different for each MU.

This is the case even before scaling with any factors {λk}.

Instead, the values of the factors have to be determined by solving a global optimization

problem. The objective function to be minimized is given by

F({λk}1...nMU
) =

nMU∑

kMU=1

�

q(kMU)−
n
∑

i=1

n
∑

j=1

p(i, j, kMU; {λk}1...nMU
)/n2

�2

. (4.5)

It sums up the quadratic error for every MU between the desired, exponentially distributed

probability q(kMU) per fiber and the achieved probability per fiber under the current set of

the scaling factors λk. The achieved probability is computed by a sum over all fibers (i, j)

and the formulated radial probability density function p divided by n2 to get the value per

fiber. After solving the optimization problem and plugging the factors {λk} into Eq. (4.4)

we get every probability for a fiber to be in an MU by Eq. (4.4). The optimization problem

is described in more detail in the following section.

4.2 METHOD 1: ASSIGNMENT OF MOTOR UNITS TO A GIVEN SET OF FIBERS 151

4.2.2 Algorithm to Solve the Optimization Problem

The optimization problem to be solved in order to compute the scaling factors in Eq. (4.4)

can be stated as:

“Find {λk}1...nMU
with λk > 0 s.t. F({λk}1...nMU

) is minimal”. (4.6)

The objective function F was given in Eq. (4.5). The solution is obtained by a Quasi-

Newton method, more specifically the limited-memory version of the Broyden-Fletcher-

Goldfarb-Shanno algorithm with box constraints by the authors of [Byr95]. Their Fortran

implementation is made accessible in Python by the SciPy Optimize package.

With increasing number n2 of fibers and increasing number nMU of MUs, the evaluation

duration for the objective function and the number of optimization parameters increases.

For numbers about n2 > 1000 and nMU > 25, the solution times become unfeasible.

As a remedy we develop an algorithm to split the large optimization problem into

multiple smaller ones which reduces the total runtime. The set of factors {λk}1...nMU
is

partitioned into chunks, i.e., subsets of given size nper_chunk leading to a total of nchunks =

⌈nMU/nper_chunk⌉ chunks. Remainder chunks towards the end potentially get one set ele-

ment less. The factors for chunk number c are selected in a strided manner as {λk} with

indices k = c, c + nchunks, c + 2 nchunks, For example, for nMU = 13 and nper_chunk = 4

we get chunks of sizes 4,3,3,3 and subsequently solve for {λk} with k ∈ {1,5,9,13},
{2,6, 10}, {3,7, 11}, {4, 8,12}.

A number of nchunks optimization problems is solved subsequently where the optimiza-

tion parameters are each time given by the next chunk. During this loop, more and more

scalar factors are determined. Initially, all scalar factors λk are set to one. After each

solved optimization problem, the respective λk values are updated with the values of the

found minimizer. The number nfactors_up_to_chunk of already solved scalar factors up to the

current iteration starts with zero and increases by nper_chunk after each iteration, finally

arriving at nMU after the last iteration.

These smaller optimization problems have a similar formulation as the overall problem

with different values for some variables. The formulation of the optimization problem

involves Eqs. (4.1) and (4.3) to (4.5). The number nMU of motor units in Eqs. (4.4)

and (4.5) is replaced by the number (nfactors_up_to_chunk+ nper_chunk) of factors that will have

been solved after the current iteration.

152 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

As each of the small optimization schemes only solves for nper_chunk factors, the argument

of the objective in Eq. (4.5) contains only the factors of the current chunk. The other

nfactors_up_to_chunk factors in the definition that are not given by the argument of the objective

are set to the solutions obtained in previous iterations.

The indexing of the MU center positions xkMU
in Eq. (4.3) is adjusted such that only the

MUs up to and including the current chunk are considered. The indexing in the expo-

nential progression formulated by Eq. (4.1), however, stays the same, here the argument

kMU of the function q refers to the full set of MUs.

In summary, the iteratively considered settings contain an increasing number of MUs.

The number of optimization parameters and, thus, new MUs is kept constant while the

number of summands in the objective function increases. In consequence, the evaluation

of the objective function gets more expensive with increasing iteration number while

the size of the optimization problem stays constant. The latter has more influence on

the optimizer duration. By increasing the chunk size nper_chunk, the size of the small

optimization problems can be decreased to any value. This makes the presented algorithm

applicable for any large number nMU of MUs.

The result in this approach is not exactly the same as if one big optimization problem

including all scalar factors at once would be solved. However, the error is small because of

the interleaved MUs indices that are considered in every iteration. Because the resulting

MU distribution finally gets drawn from the computed random probability distribution

the error is hardly noticable in the result.

4.2.3 Sampling Motor Unit Indices from the Given Probabilities

The next step is to assign actual MU numbers to every fiber. Drawing samples Y with

the given probabilities p(i, j, kMU) is done using inverse transform sampling. The inverse

cumulative distribution function (CDF) F−1
p (kMU) is applied onto a random value X drawn

from a continuous uniform distribution U :

Y = F−1
p (X) with X ∼ U

�

0, Fp(nMU)
�

, Fp(kMU) =

kMU∑

ℓMU=1

p(i, j,ℓMU).

Computing the inverse of the CDF is computationally cheap as the probabilities are dis-

crete and, thus, a loop over the values of the CDF suffices.

4.3 METHOD 2: ASSIGNMENT OF MOTOR UNITS TO A SELECTION OF FIBERS 153

To reduce outliers during the random sampling where some MUs get exceptionally

little fibers (such as none) or exceptionally many fibers assigned, the sampling procedure

is performed five times. Each time, a histogram with bins for the MUs is computed and

provides the number of fibers per MUs. For all MUs k that have zero fibers assigned, the

one fiber where the probability for the respective MU k is highest is determined. This

is usually the fiber closest to the center point xk of the MU k. The MU assignment of

this fiber is changed to k, such that the MU k is no longer empty but is associated to one

fiber.

In each of the five iterations, the squared error between the sampled MU sizes and the

expected sizes according to the probabilities, given by q(kMU) · n2 is computed. The MU

assignment of the iteration that yielded the smallest error is used for the final result of

method 1.

4.3 Method 2: Assignment of Motor Units to a

Selection of Fibers

The second method proceeds similar to the first method in that at first the probability

for a specific MU is defined for any fiber (i, j) in the n × n grid. Then the actual MU

assignments are sampled from the probability distributions. The difference to the first

method is that any fiber is also allowed to not be assigned to any MU. This makes the

definition of the probabilities easier and no optimization is required.

The three conditions defined in Sec. 4.2.1 are also imposed for the second method. The

definition of the MU center positions xkMU
follows the same low-discrepancy series. Also,

the radial kernel function Eq. (4.3) can be reused to describe the spatial distribution of

probability for a given MU. Instead of Eq. (4.4), the probability is formulated directly as

the product of the kernel function p̂ and the exponential progression q:

p̃(i, j, kMU) = p̂(i, j, kMU) · q(kMU).

To ensure that the function is within the bounds of a probability, p ≤ 1, the result is

divided by the maximum occuring value,

p(i, j, kMU) =
p̃(i, j, kMU)

max
ī, j̄=1,...,n

k̄MU=1,...,nMU

p̃(ī, j̄, k̄MU)
.

154 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

In the sampling step, for every fiber (i, j) the probabilities p(i, j, kMU), kMU = 1, . . . , nMU

for the MUs and the remaining probability p̄ = 1−
∑

kMU
p(i, j, kMU) are computed. Then,

the MU index is randomly drawn from the set of numbers {1, . . . , nMU} and a “null” event

that corresponds to no assigned MU, according to the computed probabilities p and p̄.

As a result, we get MUs that satisfy all three conditions formulated in Sec. 4.2.1, in-

cluding the approximate exponential progression of the MU sizes. However, the resulting

number of fibers with assigned MU is an outcome of the algorithm and cannot be pre-

scribed.

4.4 Assignment of Different Motor Units for

Neighboring Fibers

As mentioned in Sec. 4.1, one observation in staining experiments was that the fibers

of an MU typically do not touch each other, i.e., neighboring fibers always belong to

different MUs. However, the presented methods 1 and 2 assign neighboring fibers with

a high probability to the same MU. To create a grid with an MU assignment that avoids

this behavior, the idea is to interleave four smaller grids where the MU assignments were

obtained independently of each other but with the same parameters. In the following,

this method is named “method 1a” and “2a” depending on whether the partial grids were

handled with method 1 or 2.

First, either method 1 or method 2 are applied four times to smaller grids of fibers, the

partial grids, as visualized in Fig. 4.3. The partial grids contain npart × npart = n/2× n/2

fibers. In each partial grid, MU assignments with nMU,part = nMU/4 MUs are created.

The basis b is changed to bpart = b4 and the standard deviation of the kernel function is

changed to σpart = σ/2. In result, we get the same exponential distribution of number of

fibers per MU on every partial grid.

The four smaller grids are then merged according to the scheme shown in Fig. 4.3.

Fibers of the first partial grid directly touch only fibers of the third and fourth grids and

touch fibers of the second partial grid diagonally. By using this scheme, neighboring fibers

in any of the partial grids are always separated by fibers of other grids.

The MU indices that are assigned in the partial grids are mapped to the resulting, large

grid also in an interleaved manner. MU k of the ℓth grid is mapped to the resulting MU

(4 (k− 1) + ℓ). For illustration, the MUs 1,2,3 of the first grid are mapped to MUs 1, 5, 9,

4.5 RESULTS AND DISCUSSION 155

...1 1

1 1 1

1

1 1 1

3

33

33

3

4

44

4

4

4 2

22

2

Figure 4.3: Repeating scheme for interleaving the four partial grids. The partial grids are

indicated by the numbers and have different colors. The pattern is highlighted

at the bottom left of the figure.

MUs 1,2,3 of the second grid are mapped to MUs 2,6,10, etc. Since the MU sizes in

the partial grids follow the defined exponential progression, this also holds for the final

MUs.

The location of the MU center points is determined by contiguous elements of the same

Weyl sequence given in Eq. (4.2) for all partial grids. First, all MU center points for the

first partial grid are assigned, then for the second, third and forth. By this construction,

all MU center points are distributed with similar spacing between each other and the

placement of similar sized MUs close to each other is avoided.

4.5 Results and Discussion

In the following, results of the methods described in Sections 4.2 to 4.4 with different

parameters are presented. Figure 4.4 shows the resulting assignment of MUs to fibers for

methods 1 and 2. The number of fibers per coordinate direction is n= 13, a number of

nMU = 10 MUs is considered and two different values for the kernel function parameter

σ are used.

In Fig. 4.4a, method 1 is used with basis b = 1.2 and a kernel function with standard

deviation of a tenth of the grid, σ = n/10. Each square represents one fiber, their colors

refer to the MU index as indicated by the legend. Colored crosses visualize the center

points xkMU
of the respective MUs.

156 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

It can be seen that the MU territories, i.e., the regions of the fibers of an MU are located

around the center points of the MUs. Because of the random sampling, the fibers of an

MU are not all located closely together but spread over a larger area. Especially for MU

8, depicted by light orange color, some fibers are located further away from the center

point, which is approximately at the center of the grid. On the other hand, for MU 10

most of the red marked fibers are located close to the center point of the MU, which can

be found in the center of the lower third of the grid.

The histogram for the setting considered in Fig. 4.4a is shown in Fig. 4.5. It can be seen

that the number of fibers per motor unit approximately follows the prescribed exponential

function with basis b = 1.2. The observed deviation is due to the random sampling.

Figure 4.6 shows the values of the probability function of a specific MU for all fibers,

formulated in Eq. (4.4). Figures 4.6a and 4.6b correspond to the scenario considered in

Fig. 4.4a. The comparison shows that the probability is the highest around the center of

MU 3 and MU 9, respectively. When moving away from the MU centers, the probability

follows approximately the shape of the radial kernel function in Eq. (4.3). An image of

the radial kernel function in higher resolution is given by Fig. 4.6c, where the probability

function is depicted for MU 41 in a scenario with 50 MUs in a grid of 37× 37 fibers.

It can be observed, however, that the probability distribution in Figures 4.6a and 4.6b

does not entirely follow the kernel function. The effects of the scaling factors {λk} in

Eq. (4.4) are visible, e.g., at the top-most and right-most fibers. There, the probability

increases again compared to the interior of the grid. The purpose of the scaling factors is

to enforce the exponential distribution of MU sizes.

This effect is illustrated more clearly in Fig. 4.7. It shows the value of p(i, j, kMU) for the

top right fiber in the grid, (i, j) = (13, 13), for all values of kMU. The blue curve indicates

the probability that results from the kernel functions, only according to the distance of the

top right fiber to the respective MU centers. In other words, the scaling factors {λk}1...nMU

are removed or equivalently set to one. By inspecting again Fig. 4.4a, it can be seen

that the MU centers of MUs 9, 3 and 5 are—in this order—closest to the top right fiber

whereas MU 4 and 10 are the furthest away. Consequently, the blue curve in Fig. 4.7 has

peaks at 9, 3 and 5 and low values for 4 and 10.

When incorporating the scaling factors {λk}1...nMU
that were found by the optimization

problem in Eq. (4.6), the probabilities change to the orange curve. It can be seen that the

probability for the fiber to be in MU 9 increases. MU 9 which is expected to have a rather

high number of fibers according to the exponential progression. It gets more fibers from

the top right corner. The areas left to and below the center of MU 9 are at the same time

4.5 RESULTS AND DISCUSSION 157

MU 1
MU 2
MU 3
MU 4
MU 5
MU 6
MU 7
MU 8
MU 9
MU 10

(a) Result for method 1 with σ = n/10= 1.3

MU 1
MU 2
MU 3
MU 4
MU 5
MU 6
MU 7
MU 8
MU 9
MU 10

(b) Result for method 1 with σ = n/100 =

0.13

MU 1
MU 2
MU 3
MU 4
MU 5
MU 6
MU 7
MU 8
MU 9
MU 10

(c) Result for method 2 with σ = n/10 = 1.3,

only 54 out of 169 fibers, i.e., 32 % have an

assigned motor unit.

MU 1
MU 2
MU 3
MU 4
MU 5
MU 6
MU 7
MU 8
MU 9
MU 10

(d) Result for method 2 with σ = n/100 =

0.13, only 63 out of 169 fibers, i.e., 37 %

have an assigned motor unit.

Figure 4.4: Resulting MU assignments to a grid of n× n = 13× 13 = 169 fibers. Each

MU is represented by a color, the MU center points xkMU
are the same for all

scenarios and are shown by the colored crosses.

158 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

1 2 3 4 5 6 7 8 9 10
motor unit index

0

5

10

15

20

25

30

co
un

t

1.2x

Figure 4.5: Histogram of the number of fibers per MU in Fig. 4.4a. The orange line

corresponds to the ideal exponential distribution y = c · 1.2x .

(a) n = 13,σ = n/10 = 0.13,

MU 3

(b) n = 13,σ = n/10 = 0.13,

MU 9

(c) n = 37,σ = n/10 = 0.37,

MU 41

Figure 4.6: Probability at every fiber to be in a given MU, for different grid sizes and

number of MUs.

4.5 RESULTS AND DISCUSSION 159

0 1 2 3 4 5 6 7 8 9 10
MU no.

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

to
 b

e
in

 th
is

M
U

with k = 1
with optimized k

Figure 4.7: Probability of the top right fiber in the 13 × 13 grid to be in a given MU,

without considering the scaling factors {λk}1...nMU
(blue) and including the

scaling factors (orange).

close to the centers of MU 3 and 5 and therefore can also be occupied by fibers of MUs 3

and 5. Thus, the optimization performs an exchange where MU 9 forgoes the bottom and

left fibers and, conversely, obtains portions of the fibers in the top right area from MUs

3 and 5. Consequently, the probability in Fig. 4.7 decreases for MUs 3 and 5. The shape

of the final probability distribution for MU 9 in Fig. 4.6b is the kernel function stretched

to the top and right. By looking at Fig. 4.4a, it can be seen that, by chance, the top right

fiber indeed gets assigned to MU 9.

The influence of the kernel width σ is demonstrated by comparing Fig. 4.4a with

Fig. 4.4b. In Fig. 4.4b the value of σ is only a tenth of the value in Fig. 4.4a. All

other parameters are the same such that a similar exponential distribution of MU sizes

is obtained. It can be seen that the MU territories are less interleaved and have clearer

borders. For example, the territory of MU 7 at the bottom left of the domain has a cohesive

shape in Fig. 4.4b whereas the respective fibers are more scattered in Fig. 4.4a.

In comparison, the results for method 2 with the same two values of σ are shown in

Figures 4.4c and 4.4d. All other parameters are kept the same. It can be seen how method

2 only associates some fibers with MUs. For the larger standard deviation σ in Fig. 4.4c,

only 32 % of the fibers get assigned to a MU, for the smaller value of σ, the fraction is

160 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

slightly higher with 37 %. Similar to method 1, the effect of more cohesive MU territories

for smaller σ values can also be observed in the results of method 2.

Next, the two methods 1 and 2 are investigated for a higher number of nMU = 100

motor units and a grid of n× n= 67× 67= 4489 fibers.

Figure 4.8a shows the MU center points xkMU
. The color corresponds to the MU index

and follows the same rainbow color scheme as in Fig. 4.4. Since the construction scheme

is the deterministic Weyl sequence in Eq. (4.2), the first 10 MU center positions are the

same as for the scenario with nMU = 10. It can be seen that the MU centers have similar

distances throughout the grid and that, in general, MUs located next to each other have

different colors and therefore are differently sized.

Figure 4.8b shows the histogram of the MUs, i.e., the number of fibers per MU. Following

[Eno01] the prescribed basis for the exponential progression was reduced because of the

higher number of fibers. It was set to b = 1.05. It can be seen that the resulting MU size

distribution closely matches the prescribed function. Because the ratio of fibers to MUs

(4489/100) is higher than in the previous setting (169/10), the deviation of the realized

MU sizes from the prescribed curve appears smaller than in Fig. 4.5.

Figure 4.8c shows the result for method 1. The width of the radial kernel function was

chosen as σ = n/100= 0.67. Only the fibers of five selected MUs and their center points

are visualized for better clarity.

The algorithm for the 4489 fibers and 100 MUs was performed with a chunk size of

nper_chunk = 10, yielding a total number of nchunks = 10 chunks. The runtime was 45 min

53.5 sec on a single core of an Intel Core i5-6300U CPU with base frequency of 2.40GHz

and 19.5 GiB of RAM.

Figure 4.8d shows the result for method 2. All resulting fibers that were associated to

an MU are shown as gray or colored squares, leaving white spaces for unassigned fibers.

Again, only the fibers of five selected MUs are colored. The kernel parameter was set to

σ = 0.04 · n = 2.68 which resulted in 2328 of 4489 fibers or 52 % of the fibers being

assigned an MU. When the parameter is instead set to σ = n/100= 0.67 as in the study

with 10 MUs before, the result assigns only 136 fibers or 3 %. This shows that method 2

is very sensitive to the choice of the standard deviation parameter σ.

The comparison with Fig. 4.8c shows that the resulting MU territories are more dis-

persed than for method 1. This can be explained with the higher value of σ. Obtaining

“sharper” MU territories would require a smaller σ, however, this results in less fibers

being assigned to MUs.

4.5 RESULTS AND DISCUSSION 161

(a) MU center points. (b) Histogram of number of fibers assigned to

MUs (blue) and the prescribed exponential

progression y = c · 1.05x (orange).

(c) Result of method 1 with σ = n/100= 0.67.

The colored fibers are assigned to one of

five selected MUs: 11, 41, 61, 81 and 91.

The MU sizes are: MU 11: 1 fiber, MU 41: 2

fibers, MU 61: 15 fibers, MU 81: 32 fibers,

MU 91: 72 fibers

(d) Result of method 2 with σ = 0.04 · n =
2.68. The colored fibers are assigned to

one of five selected MUs: 11, 41, 61, 81

and 91. The MU sizes are: MU 11: 3 fibers,

MU 41: 8 fibers, MU 61: 18 fibers, MU 81:

34 fibers, MU 91: 75 fibers

Figure 4.8: Results of the presented algorithm to assign MUs to fibers, using a grid of

67× 67 fibers and 100 MUs.

Furthermore, Fig. 4.8d shows that the fiber density decreases towards the outer border

of the domain. In reality, staining studies on skeletal muscles do not find this effect.

An advantage of method 2 over method 1 is that we do not have to solve any opti-

mization problem. In consequence, the algorithm for the scenario in Figure 4.8d was

completed in 8 sec on the same hardware as before.

Next, the extension of methods 1 and 2, called 1a and 2a, are investigated that ensure

that neighboring fibers are not associated to the same MU. Figure 4.9 shows results for

162 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

(a) First partial grid, n= 34. (b) Second partial grid, n= 34.

(c) Third partial grid, n= 34. (d) Resulting interleaved grid, n= 67.

Figure 4.9: Assignment of motor units to fibers using method 1a. Shown are the first

three partial grids (a)-(c) to be interleaved and the result (d), parameters

n= 67, nMU = 100,σ = n/10= 6.7, b = 1.05.

method 1a for nMU = 100 MUs. In Figures 4.9a to 4.9c, three of the four partial grids with

n= 34 are shown. Because parameters are the same for those smaller grids, the generated

MU assignments look similar for all partial grids, except for different MU center positions.

In Fig. 4.9d, the resulting grid with n = 67 is shown that is obtained by interleaving

the four partial grids. In this MU association, all neighboring fibers belong to different

MUs. The resulting distribution of MU sizes is shown in Fig. 4.10. It can be seen that the

algorithm for method 1a achieves the approximate, prescribed exponential progression.

An advantage of method 1a is also that the runtime decreases compared to method

1. The result in Fig. 4.9d could be computed in 5 min 52.4 sec with nper_chunk = 10 or in

4 min 53.0 sec with nper_chunk = 5, compared to the 45 min 53.5 sec of method 1.

Method 2a cannot be reasonably used with the same parameters as method 1a. If it is

4.5 RESULTS AND DISCUSSION 163

10 20 30 40 50 60 70 80 90 100

Motor Unit Index

0

50

100

150

200

C
o
u
n
t

1.05x

Figure 4.10: Histogram of number of fibers assigned to MUs for method 1a, for the sce-

nario that is shown in Fig. 4.9.

used to generate fibers assigned to 100 MUs, a grid of 67× 67 leads to the majority of

MUs having only 1 fiber. Therefore, a larger grid is needed. Figure 4.11 shows the result

for n= 251. The result assigns 13 618 of the n2 = 63 001 initial fibers to MUs, i.e. 22 %.

The number of fibers per MU varies between 41 and 244. As can be seen, fibers of the

same MU are separated by either a fiber of a different MU or by an unassigned fiber, i.e.,

a hole in the grid.

How To Reproduce

Run the script generate_fiber_distribution.py without arguments to get usage

information. The script contains the implementation for all three presented methods.

For example, to run method 1a to get the result of Fig. 4.9, use:

generate_fiber_distribution.py

,→ MU_fibre_distribution_combined_67x67_100 100 3 1 67 1.05 100 10

Then, existing fiber distribution files can be visualized by the following script:

$OPENDIHU_HOME/examples/electrophysiology/input/

,→ plot_fibre_distribution_2d.py

,→ MU_fibre_distribution_combined_67x67_100.txt 67

164 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

Figure 4.11: Assignment of motor units to fibers using method 2a and parameters n =
251, nMU = 100,σ = n/100= 2.51, b = 1.05.

4.6 Summary and Conclusion

In the beginning of this chapter, two methods 1 and 2 for associating MUs with fibers

in a given 2D grid were presented. The methods were constructed based on biophysical

properties of MU distribution. The fibers were located in intermingling MU territories that

were each centered at different MU center points. The density of fibers belonging to an

MU decreased with higher distance from the center and was described by a radial kernel

function. The number of fibers assigned to the motor units approximately followed an

exponential progression where the first MU contained the lowest number of fibers and the

last MU contained the largest amount. Whereas method 1 assigned MUs to all available

fibers, method 2 only assigned MUs to some fibers yielding a lower number of fibers in

the result. Evaluation of the literature showed that no comparable method with these

properties existed previously.

Next, the methods 1a and 2a were introduced that built upon methods 1 and 2. They

ensured that neighboring fibers were assigned to different MUs, another behavior that

4.6 SUMMARY AND CONCLUSION 165

was known from anatomical studies.

Steps of the algorithms and their final satisfaction of the design criteria were demon-

strated with various visualizations. Results were shown for different parameter values.

The influence of the kernel width on the “sharpness” or intermingledness of MU territories

was pointed out.

It was found that methods 2 and 2a typically produced results where only 20-50% of

the fibers get an MU assigned. This ratio highly depended on the problem size and the

kernel function width and no direct predictions about the number of resulting fibers was

possible. Since the kernel parameter at the same time also influenced the sharpness of

the MU territories, adjusting parameters to the desired outcome was an issue for these

methods. Reasonable results were only achieved for a higher number of initial fibers. In

contrast, methods 1 and 1a robustly produced exponentially distributed MU assignments

for all parameter values.

In method 2a for large grid sizes the fibers were dispersed over the grid and “holes”,

i.e., unassigned fibers, were present throughout the domain. The fiber density decreased

towards the boundaries of the domain. No experimental evidence exists that this behavior

occurs in reality. It might also be unfavorable when EMG simulations are performed where

the boundary layers contribute most to the measured EMG signal on the muscle surface.

In contrary, method 1a did not show this behavior.

The runtime for 4489 fibers and 100 MUs was over 45 min for method 1 and below

10 sec for method 2. The large difference could be explained with the optimization

problem that needed to be solved for method 1. To handle large runtimes for a high

number of MUs, an algorithm was presented that splits the optimization problem in

smaller chunks that could be solved faster.

With the use of the extended methods 1a and 1b, runtime decreased. For method 1a

the runtime was under 6 min. These runtimes are all considered acceptable since the task

occurs only once during preprocessing.

In conclusion, the developed method 1a proved to be robust for all tested parameter

combinations and fulfilled all considered biophysical properties of MU distributions. The

exponential distribution of MU sizes and the sharpness of MU territories are adjustable

through parameters. If the condition that neighboring fibers belong to different MUs is

not desired, method 1 can be used instead.

The presented methods are implemented and made available as Open Source software

within OpenDiHu. The program stores the resulting MU assignments in a plain text file

166 CHAPTER 4: MUSCLE FIBERS AND MOTOR UNITS

format that is compatible with both OpenCMISS Iron and OpenDiHu. Thus, it can and

will be used in simulations of the multi-scale chemo-electromechanical model.

167

Chapter 5

Models and Discretization

In this chapter, the mathematical description of the multi-scale model and its discretization

is presented. We use the multi-scale chemo-electro-mechanical model that was introduced

in literature [Röh12; Hei13; Hei15; Mor15]. Additional models known from literature

are incorporated that were previously only simulated in isolation: The multidomain

description for electrophysiology [Klo20], a model of neural stimulation [Cis08] and

sensory organ models such as the muscle spindle model of Mileusnic et al. [Mil06b].

Similarly, models of Golgi tendon organs can be added [Mil06a].

Figure 5.1 shows an overview of the components of the implemented multi-scale model.

A pool of motor neurons drives the stimulation of the muscular system in Fig. 5.1 (a).

The axons of each motor neuron innervate the muscle fibers corresponding to the same

MU and transmit rate-encoded stimulation signals.

In the muscle tissue, action potentials propagate starting at the neuromuscular junc-

tions and subsequently reach the whole length of the muscle. In our multi-scale model,

two different formulations are available to describe this phenomenon. The multidomain

Half-sarcomere (m × 0D)

Sub-cellular processes

Dynamic solid
Muscle contraction (3D)

mechanics

Neural stimulation (0D)

Motor and inter neurons

Tendons (3D)

Dynamic solid mechanics

Sensor organs (0D)

M. spindles, Golgi tendon o.

Fat layer (3D)

EMG signals

Muscle fibers

(n × 1D)

Multidomain

(3D)

Action potential rpropagation

or

(a)

(b1) (b2)
(c)(d)

(e) (f)

(g)

Figure 5.1: Interacting components of the multi-scale model.

168 CHAPTER 5: MODELS AND DISCRETIZATION

description (Fig. 5.1 (b1)) models the MUs from a homogenized 3D perspective. The de-

scription with muscle fibers (Fig. 5.1 (b2)) models action potential propagation explicitly

with n 1D muscle fibers.

Both of these descriptions of electrophysiology involve a subcellular model (Fig. 5.1

(c)). This model describes the ionic processes involving the fiber membranes and taking

place within one half of a sarcomere as the smallest unit to generate muscle forces. A

large number m of instances of this model has to be computed.

In addition to the physiology of the muscle, a layer of body fat and skin on top of the

muscle belly can be added to the model. This 3D fat layer (Fig. 5.1 (d)) is used to simulate

EMG recordings on the skin surface. The model for the fat layer is unidirectionally

coupled with the muscle fiber model (Fig. 5.1 (b2)) or bidirectionally coupled with the

multidomain model (Fig. 5.1 (b1)). Using the multidomain model, it is, thus, possible to

simulate external stimulation by electrodes on the skin, which is subject to research in

neuroprosthetics.

The activated muscle generates force by subcellular processes on a molecular scale.

They are computed on the cellular level by the half-sarcomere model (c). On the macro-

scopic scale, stresses lead to strains and contraction of the muscle. This effect is described

by the muscle contraction model on a 3D domain (Fig. 5.1 (e)). The description is coupled

with the electrophysiology models (b1),(b2) by the geometry of the contracting muscle

and fibers. It is coupled with the subcellular model by the generated active stresses of the

half-sarcomere. Displacements and stresses can be computed for the muscle belly itself,

but also for the connected body fat layer and for elastic tendons (Fig. 5.1 (f)). Depending

on the research questions, the contraction model is either formulated quasi-static or fully

dynamic taking into account inertia effects.

Sensory organs such as muscle spindles and Golgi tendon organs sense fiber stretch

and contraction velocity (Fig. 5.1 (g)). They are connected with the motor neuron pool

by layers of interneurons and modulate the stimulation in Fig. 5.1 (a).

In this chapter, Sec. 5.1 presents mathematical descriptions of the electrophysiology

model components in the multi-scale framework and Sec. 5.2 derives the solid mechanics

models. Then, Sections 5.3 and 5.4 address the spatial and temporal discretizations of

the electrophysiology and mechanics descriptions, respectively.

5.1 ELECTROPHYSIOLOGY MODEL EQUATIONS 169

5.1 Electrophysiology Model Equations

In the following, more details and mathematical descriptions are given for the outlined

models. The section begins with the 0D half-sarcomere model in Sec. 5.1.1, followed

by the bidomain and monodomain models in Sections 5.1.2 and 5.1.3, which constitute

the muscle fiber based model of electrophysiology. Section 5.1.4 continues with the

multidomain model. Electric conduction in the body fat layer is described in Sec. 5.1.5.

An overview of the continuum mechanics model used for muscle contraction is given in

Sec. 5.2.

5.1.1 Subcellular Model

Propagation of electric stimuli along muscle fibers involves activation and deactivation of

ion channels and ion pumps in the fiber membrane (the sarcolemma) and in the transverse

tubules. Functioning of these processes on the subcellular scale have first been suggested

in 1952 by Hodgkin and Huxley after their studies of the squid giant axons [Hod52a;

Hod52b]. To date, their mathematical model still serves as the basis for electrophysiology

models and some of their predictions, e.g., on gating currents that occur during opening

of channels, were experimentally confirmed later.

The fiber membrane separates intra- and extracellular space and can be locally de-

scribed by an electric circuit. The membrane voltage Vm = φi − φe is the difference

between the intra and extracellular potentials φi and φe. The membrane stores charges

Q, quantifiable by its electric capacitance Cm:

Q = Cm · Vm. (5.1)

A change in the transmembrane potential, e.g., induced by an action potential leads to

a change in Q, which is accounted for by an electric current I over the membrane. This

can be formally obtained by the derivative of Eq. (5.1) with respect to time:

dQ

dt
= Cm ·

dVm

dt
. (5.2)

The current I = dQ/dt is realized by ions passing through the membrane. Significant

ions in this process are sodium (Na+) and potassium ions (K+). Considering a particular

point on the fiber, these ions diffuse through ion-specific channels in the membrane. The

170 CHAPTER 5: MODELS AND DISCRETIZATION

diffusion is driven by an interplay of the ion concentration gradient and the electric field

that is caused by action potentials.

Without any electric field imposed by action potentials, the equilibrium state of the

diffusion process for sodium and potassium ions is given by their Nernst potentials ENa+

and EK+ . These voltage levels depend on logarithmic relations between extra- and intra-

cellular concentrations scaled by constants describing the thermal energy and the number

of electrons. In thermodynamic equilibrium, the membrane voltage is equal to the Nernst

potential Ei of the involved ions i. At a higher membrane voltage Vm, the remainder

(Vm − Ei) is the part of the electric field that drives the ion fluxes and electric currents

through the membrane. The currents depend on the conductivity gi of the membrane for

ion i.

Apart from sodium and potassium ions, the diffusion of less frequent ions and ionic

pumps can be lumped by a leakage current IL that is modeled by a channel with constant

conductivity ḡL. With this, the total ionic membrane current Iion is formulated as

Iion(Vm) = INa+ + IK+ + IL (5.3a)

= gNa+ (Vm − ENa+) + gK+ (Vm − EK+) + ḡL (Vm − EL). (5.3b)

The conductivities gNa+ and gK+ for the sodium and potassium channels depend on the

transmembrane voltage Vm and its history.

In addition to the ionic current Iion, an externally driven current Iext can be modeled

that occurs as a result of neural stimulation at the neuromuscular junctions. Substituting

the current I = dQ/dt in Eq. (5.2), we get the following differential equation for the

membrane voltage Vm:

Cm ·
dVm

dt
= −Iion(Vm) +

Iext

A
. (5.4)

The negative sign of the ionic current Iion is in accordance with the definition of the

membrane voltage as Vm = φi −φe. The external current Iext is divided by the surface

area A of the stimulating electrode or neuromuscular junction, as the description considers

an infinitesimal area on the membrane.

Hodgkin and Huxley suggested that ion channels can be activated and deactivated. This

molecular process requires independent “gating” particles to move to a new position in

order for a channel to be activated. For the potassium channel, four of these independent

events have to occur, each modeled by a probability n. The resulting probability for the

5.1 ELECTROPHYSIOLOGY MODEL EQUATIONS 171

channel to open is, thus, n4. For the sodium channel, three such events are assumed

for activation and another one for the deactivation of the channel, described by the

probabilities m and h, respectively. The values of the probabilities change over time and

modulate the conductivities of the ion channels:

gNa+ = ḡNa+ ·m(t)3 · h(t), gK+ = ḡK+ · n(t)4.

Here, ḡNa+ and ḡK+ are channel specific constants. The gating variables n, m and h can be

interpreted as probabilities for the events to occur or as the amount of occurred events

related to all available gating particles. The evolution of the activation probability n is

modeled by the following ordinary differential equation (ODE):

dn

dt
= αn(Vm) · (1− n) + βn(Vm) · n,

analogously for h and n. The transition rates between activation probability n and deac-

tivation probability (1− n) are nonlinearly dependent on the membrane voltage Vm.

For a constant Vm, this ODE has an analytical solution

n(t) = n∞
�

1− exp(1− 1

τn

t)
�

, (5.5)

which for t →∞ converges to the equilibrium value n∞ := αnτn as shown in Fig. 5.2.

The time constant τn := 1/(αn + βn) indicates how fast the solution approaches the

equilibrium, e.g., when starting from n(0) = 0, half of the value of the equilibrium is

reached after t1/2 = log(2)τn. The smaller τn, the stiffer is the ODE, which needs to be

considered in the choice of a suitable numerical solution scheme.

Because the transmembrane voltage Vm changes over time, the ODEs for n, m and h

have to be solved numerically. Then, the dependent ionic current Iion can be calculated.

Thus, the model is a system of differential-algebraic equations (DAE).

The internal states in this model can be combined into a state vector y= (n, m, h)⊤. The

combined right-hand side for all states is formulated as a vector-valued function G(Vm,y).

In summary, the system of DAEs for the subcellular model on a subcellular domain Ωs can

be written in the following form:

∂y

∂ t
= G(Vm,y), Iion = Iion(Vm,y) on Ωs. (5.6)

172 CHAPTER 5: MODELS AND DISCRETIZATION

τn

n∞

t

n(t)

Figure 5.2: Subcellular model: Graph of the analytic solution (red) of the ordinary differ-

ential equation that is part of the activation model of ion channels for constant

transmembrane voltage and initial condition n(0) = 0, given in Eq. (5.5). The

variables n∞ and τn can be interpreted as the equilibrium value and a char-

acteristic timescale, respectively.

For an exemplary solution that shows how the membrane potential changes over time,

see Fig. 1.2.

The system of equations in Eq. (5.6) together with Eq. (5.4) describe the subcellular

processes on a single pointΩs ⊂ Ω f on a muscle fiberΩ f . It does not model the interaction

between neighboring points that leads to propagation of action potentials. To account

for action potential propagation, ionic currents Iion on multiple points are coupled within

the multidomain or fiber models that are formulated in the multi-scale framework. This

is described in the following sections, Sections 5.1.2 to 5.1.4. Using these models, the

system of ODEs in Eq. (5.6) has to be solved for multiple subcellular points Ωi
s in the

muscle domain.

After Hodgkin and Huxley proposed this model in 1952, more detailed models were

formulated that take into account more ion channels, ion pumps and more advanced bio-

chemical processes within the cell. One particular model is the one proposed by Shorten

et al. [Sho07], which adds the full pathway from activation to excitation-contraction

coupling in the sarcomere. It has a state vector of y ∈ R56 and is used to compute active

stresses for simulations of muscle contraction. It can also be written in the form given

in Eq. (5.6). Apart from Iion, another value γ = H(y, λ̇ f) is computed by an additional

equation from the vector of states y and the fiber contraction velocity λ̇ f , which is given

to the model as a parameter. The value γ is a lumped activation parameter in the range

γ ∈ [0, 1] that describes the amount of active stress generated in the sarcomere and can

be linked to the continuum mechanics model of muscle contraction.

5.1 ELECTROPHYSIOLOGY MODEL EQUATIONS 173

5.1.2 Bidomain Model

A description of electrophysiology on a general 3D muscle tissue is given by the bidomain

model formulated by [Tun78; Pes79]. The bidomain model considers the intra (index i)

and extracellular spaces (index e) in a homogenized setting, such that the two domains

coexist at every spatial point x ∈ Ω ⊂ R3. Similar to the setting of the subcellular model,

the two domains in the bidomain model have locally varying electric potential fields

φi and φe that yield a locally varying transmembrane voltage Vm = φi − φe. Electric

conduction within the two domains is governed by conductivity tensors σi and σe.

Assuming static conditions, a spatially varying electric potential φ induces the electric

field E = −gradφ. According to Ohm’s law, the resulting current density j is given by

j = σ E = −σ gradφ in Ω. (5.7)

This holds for both intra and extracellular domain, yielding expressions for ji and je.

The intracellular and the extracellular domain are electrochemically coupled. Thus,

one assumption is that currents are preserved and a change in current density on one

domain corresponds to the opposite change in current density in the other domain. This

is expressed by the divergence of the current densities, which in one domain equals to

the negated value in the other domain:

div (ji) = −div (je) in Ω. (5.8)

This change in current density directly corresponds to a current flow over the mem-

brane:

div (ji) = Am Im in Ω.

Here, the factor Am describes the membrane area to domain volume relationship. It is

needed to convert the units between current per volume and current per area. The mem-

brane current Im is given by the subcellular model of Hodgkin and Huxley in Eq. (5.4).

Neglecting the external current Iext in Eq. (5.4) and using the formulation of the intracel-

lular current density ji in Eq. (5.7), we get:

div
�

σi grad (φi)
�

= Am

�

Cm

∂Vm

∂ t
+ Iion(Vm)

�

in Ω.

The ionic current Iion can be computed by Eq. (5.3b). By plugging Eq. (5.7) also into

174 CHAPTER 5: MODELS AND DISCRETIZATION

Eq. (5.8) and rewriting the equations in terms of the extracellular potential φe and the

transmembrane voltage Vm = φi −φe, we get the bidomain equations:

div
�

(σi +σe)grad (φe)
�

+ div (σi grad (Vm)
�

= 0, (5.9a)

div
�

σi grad (Vm)
�

+ div (σi grad (φe)
�

= Am

�

Cm

∂Vm

∂ t
+ Iion(Vm)

�

. (5.9b)

With appropriate boundary conditions, these equations are often used to model cardiac

electrophysiology. They also serve as a basis for the fiber models in our multi-scale setting,

which will be described in the next section.

5.1.3 Monodomain Model

One approach to modeling skeletal muscle electrophysiology is to explicitly resolve muscle

fibers and compute propagating action potentials on these spatial domains. Propagation of

action potentials can be described by the monodomain equation, which is a specialization

of the bidomain equations for a one-dimensional intracellular space.

We assume a muscle domain ΩM ⊂ R3 with a number of embedded 1D manifolds

Ω
j
f ⊂ R3 for j = 1, . . . , n that represent muscle fibers. The domain ΩM represents the

extracellular space and each fiber domain Ω
j
f represents a separate intracellular space. It

is further assumed that electric conduction in the extracellular space is directed equally

to the embedded fibers. This can be stated as

σi = k ·σe. (5.10)

The intracellular conductivity tensor σi (here prolonged from the scalar value σi on

a fiber with tangent a ∈ R3 to the 3D domain by σi = σi a ⊗ a) and the extracellular

conductivity σe are multiples of each other with a scaling factor k ∈ R.

Plugging Eq. (5.10) into the first bidomain equation, Eq. (5.9a), and restricting the

domain to a 1D fiber Ω
j
f allows to combine the terms related to φe:

div
�

σi grad (φe)
�

= − k

k+ 1
div

�

σi grad (Vm)
�

on Ω
j
f .

5.1 ELECTROPHYSIOLOGY MODEL EQUATIONS 175

Using the second bidomain equation, Eq. (5.9b), we get the expression

div
�

σeff grad (Vm)
�

= Am

�

Cm

∂Vm

∂ t
+ Iion(Vm,y)

�

on Ω
j
f .

The effective conductivity σeff combines the intra and extracellular conductivities, σi and

σe, analog to a parallel circuit:

σeff := σi ‖ σe =
σiσe

σi +σe

.

Rearranging the terms yields the classical form of the monodomain equation:

∂Vm

∂ t
=

1

Am Cm

�

σeff

∂2Vm

∂ x2
− Am Iion(Vm,y)

�

for x ∈ Ω j
f . (5.11)

The multi-scale framework uses multiple instances of the monodomain equation

Eq. (5.11) together with the first bidomain equation Eq. (5.9a) to model electrophysiology

in the fibers and the extracellular domain [Mor15]. In addition to the fiber domains Ω
j
f ,

two instances of the muscle domain ΩM are needed for the bidomain equation, one for

the intracellular and one for the extracellular space. The transmembrane potential Vm

is unidirectionally coupled from the fiber meshes to the intracellular space of the first

bidomain equation. The extracellular potential φe corresponds to the signals that are

measured during intramuscular EMG recording.

Within the multi-scale framework, it is also possible to couple a model for electric

conduction in an additional layer of body fat tissue. This is subsequently described in

Sec. 5.1.5. Then, electric current fluxes between the muscle and body fat domains have

to be modeled.

If no such additions should be made to the model, the following Neumann boundary

conditions are used to close the description:

∂Vm

∂ x
= 0 on ∂Ω

j
f , (5.12a)

�

σi grad (Vm)
�

· nm = −
�

σi grad (φe)
�

· nm on ∂ΩM , (5.12b)

�

σe grad (φe)
�

· nm = 0 on ∂ΩM , (5.12c)

with the outward normal vector nm. Equation (5.12a) defines homogeneous Neumann

boundary conditions for the monodomain equation Eq. (5.11) at the two ends of each 1D

176 CHAPTER 5: MODELS AND DISCRETIZATION

muscle fiber domain. The boundary conditions on ∂ΩM are related to the bidomain equa-

tions given in Eqs. (5.9a) and (5.9b). Equation (5.12b) is equivalent to a homogeneous

Neumann boundary condition on the intracellular current density ji (cf. Eq. (5.7)) and

is expressed in terms of the transmembrane voltage Vm and the extracellular potential

φe. Another homogeneous Neumann boundary condition on φe as given by Eq. (5.12c)

is required.

5.1.4 Multidomain Model

The multidomain model is an alternative approach to the description based on the mon-

odomain and bidomain equations described in Sections 5.1.2 and 5.1.3. It was proposed

in [Klo20] and describes the same physics. However, the muscle fibers are homogenized

and all equations are formulated using a single 3D muscle domain ΩM .

The multidomain equations generalize the two bidomain equations and allow tak-

ing into account multiple MUs by defining a separate intracellular space for each MU.

Thus, at every spatial point x ∈ ΩM one extracellular and NMU intracellular domains or

compartments coexist, where NMU is the number of MUs. As before, the extracellular

domain has the electric potential φe and conductivity tensor σe. For each compartment

k = 1, . . . , NMU, a separate electric potential φk
i , transmembrane voltage V k

m = φ
k
i −φe,

conductivity tensor σk
i , surface to volume ratio of the membrane Ak

m and membrane

capacitance C k
m are defined.

Analog to the fibers of a MU that exhibit different densities at different locations in the

muscle, each compartment occupies different locations within the domain to a different

extent. This is described by the relative occupancy factor f k
r : ΩM → [0, 1] for MU k. The

factors have different values in the domain according to the presence of the MU at the

respective location. At every point, their sum is one,
∑NMU

k=1
f k
r = 1, if all MUs should be

considered or less than one if the effect of remainder MUs that will not be activated in

the simulation scenario is neglected.

The first multidomain equation is similar to the first bidomain equation Eq. (5.9a) and

balances the current flow between the extracellular space and the weighted sum of all

intracellular spaces:

div
�

σe grad (φe)
�

+

NMU∑

k=1

f k
r div

�

σk
i grad (V k

m +φe)
�

= 0. (5.13)

5.1 ELECTROPHYSIOLOGY MODEL EQUATIONS 177

By defining a total intracellular conductivity tensor σi =
∑NMU

k=1
f k
r σ

k
i , Eq. (5.13) can be

restated as

div
�

(σe +σi)grad (φe)
�

+

NMU∑

k=1

f k
r div

�

σk
i grad (V k

m)
�

= 0. (5.14)

The second multidomain equation equals the second bidomain equation Eq. (5.9b). It

describes the current over the membrane and holds for every compartment:

div (σk
i grad (V k

m +φe)
�

= Ak
m

�

C k
m

∂V k
m

∂ t
+ Iion(V

k
m)
�

∀k ∈ {1, . . . , NMU}.

It is convenient to rearrange it for ∂V k
m/∂ t:

∂V k
m

∂ t
=

1

Ak
m C k

m

�

div
�

σk
i grad (V k

m +φe)
�

− Ak
mIion(V

k
m)
�

∀k ∈ {1, . . . , NMU}. (5.15)

The current Iion over the membrane is again computed by the subcellular model given by

Eq. (5.3b).

The resulting system of Eqs. (5.14) and (5.15) constitutes the first and second mul-

tidomain equations and can be used to compute muscle electrophysiology. The boundary

conditions are defined analogously to Eqs. (5.12b) and (5.12c):

�

σk
i grad (V k

m)
�

· nm = −
�

σk
i grad (φe)

�

· nm on ∂ΩM ∀k ∈ {1, . . . , NMU},
(5.16a)

�

σe grad (φe)
�

· nm = 0, on ∂ΩM (5.16b)

where nm is the outward normal vector on ∂ΩM .

5.1.5 Electric Conduction in the Body Domain

Surface EMG signals are the result of electric conduction in the electrically active muscle

tissue as well as in surrounding inactive tissue such as adipose tissue and skin or connec-

tive tissue such as tendons and ligaments. This surrounding tissue is summarized by the

body domain ΩB, which partly shares its boundary with the muscle domain ΩM .

178 CHAPTER 5: MODELS AND DISCRETIZATION

Figure 5.3: Computational domains for the simulation of surface EMG. The body domain

ΩB and the muscle domain ΩM share a part of their boundary, ΓM , which has

a normal vector nm. The outer boundary is composed of Γ out
B and Γ out

M and has

the outward normal vector nb.

Figure 5.3 visualizes these domains and defines their names: The domains ΩM and ΩB

have outward normals nm and nb, the outer boundary is composed of Γ out
B and Γ out

M and

the variables φe, Vm and φb are defined as shown within the domains ΩM and ΩB.

The work of [Mor15] proposes an isotropic conductivity σb and a harmonic electric

potential φb in the body domain ΩB:

div
�

σb grad (φb)
�

= 0 on ΩB. (5.17)

The electric potentials φe and φb of the neighboring domains ΩM and ΩB as well as

the current densities are continuous on the shared boundary ΓM . This is described by the

following two coupling conditions:

φe = φb on ΓM , (5.18a)

�

σe grad (φe)
�

· nm =
�

σb grad (φb)
�

· nm on ΓM . (5.18b)

On the outer boundary Γ out
B , homogeneous Neumann boundary conditions are assumed:

�

σb grad (φb)
�

· nb = 0 on Γ out
B . (5.19)

The description of the body domain has to be combined either with the fiber based

description in Sec. 5.1.3 or the multi-domain description in Sec. 5.1.4. In the literature,

this combination was mathematically described for the fiber based model in [Mor15] and

for the multidomain model in [Klo20]. Correspondingly, additional boundary conditions

either given by Eq. (5.12) or Eq. (5.16) are assumed: For the fiber based description,

5.2 MODEL OF MUSCLE CONTRACTION 179

which uses the bidomain equation for volume conduction, the boundary conditions are:

�

σi grad (Vm)
�

· nm = −
�

σi grad (φe)
�

· nm on ∂ΩM = ΓM ∪ Γ out
M , (5.20a)

�

σe grad (φe)
�

· nm = 0 on ∂Γ out
M . (5.20b)

For the multidomain description with fat layer, the boundary conditions are:

�

σk
i grad (V k

m)
�

· nm = −
�

σk
i grad (φe)

�

· nm on ∂ΩM = ΓM ∪ Γ out
M , (5.21a)

�

σe grad (φe)
�

· nm = 0 on ∂Γ out
M . (5.21b)

The first condition in Eq. (5.21a) is enforced for all compartments k = 1, . . . , NMU.

5.2 Model of Muscle Contraction

Muscle contraction is described on the organ level by a solid mechanics model. The

goal is to describe the deformation of the tissue caused by the internal forces that are

generated by sarcomeres and as a response to outer constraints such as applied forces,

the attachment to tendons and inertia effects.

Different modeling approaches exist to describe the mechanical muscle behavior. Dy-

namic finite elasticity methods for large strains exist that use hyperelastic materials, both

compressible and incompressible. Further, linear elasticity descriptions with linearizations

at various levels are used in appropriate applications where small strains can be assumed.

The whole range from simplifying linearized models to accurate nonlinear approaches

can be found in the literature, sometimes with varying conventions and symbols. In this

section, we introduce consistent notation and formulate the model equations for both

approaches. The discretization and solution is discussed later in Sec. 5.4.

The derivation largely follows the book of Holzapfel [Hol00] and the discretization

follows the work of Zienkiewicz, Taylor et al. [Zie77; Zie05]. Further details can be

found also in the book of Marsden and Hughes [Mar94].

180 CHAPTER 5: MODELS AND DISCRETIZATION

5.2.1 Geometric Description

We begin with the geometric description of the material body and define the basic quanti-

ties that are subsequently used to describe the physics. We consider the 3D muscle domain

Ω0 = ΩM ⊂ R3 in reference configuration at time t = 0 that deforms into a current config-

uration Ωt at time t. The material points are given by X ∈ Ω0. The corresponding points

x ∈ Ωt in the current configuration are defined by the function x= ϕ t(X).

In the following, capital letters refer to quantities in material or Lagrangian description,

i.e., defined in the reference configuration and small letters refer to quantities in spatial

or Eulerian description, i.e., defined in the current configuration.

The relation of point coordinates in the current configuration with respect to the refer-

ence configuration can also be described by the displacements field U:

x(X) = X+U(X).

The symbol u with u(x(X)) = U(X) denotes the displacements formulated in current

configuration. The current velocity v is the time derivative of the displacements, v := u̇.

The deformation gradient F is the second order tensor that is obtained by differentiating

the function ϕ t . It is given using the unit vectors ei and components FaA:

F= FaA ea ⊗ eA, FaA =
∂ xa

∂XA

.

Capital and small indices refer to reference and current configuration, respectively. The

deformation gradient can also be expressed using the displacement field U:

F= I+∇U. (5.22)

Here and in the following, the gradient symbol ∇ refers to differentiation with respect to

material coordinates X. We assume Cartesian coordinates.

The determinant of the deformation gradient is J := detF > 0. It is positive for any

physically valid transformation. The deformation gradient is used to map geometric

5.2 MODEL OF MUSCLE CONTRACTION 181

quantities from the reference to the current configuration:

t= FT, (tangent map) (5.23a)

a= cof (F)A, (normal map) (5.23b)

v = J V. (volume map) (5.23c)

As given in Eq. (5.23a) and visualized in Fig. 5.4, the tensor F maps material tangents T

in Ω0 to the corresponding spatial line elements t in Ωt . Accordingly, the spatial stretch

at a point x ∈ Ωt in a certain direction is given by λ =
p

λ⊤λ with λ = FM, where M is a

material line element with unit length pointing in the respective Lagrangian direction.

In Eq. (5.23b), the cofactor of F given by cof (F) = J F−⊤ maps normals A and surface

areas |A| from Ω0 to the corresponding values a and |a| in Ωt . Nanson’s formula, da =

cof (F)dA, is used to transform surface integrals from Eulerian to Lagrangian description.

Note that tangents at a point X live in the tangent space TXΩ0 and normals live in the

co-tangent space T ∗
X
Ω0.

Equation (5.23c) describes the volume map from Ω0 to Ωt , which simply scales the

reference volume V by the determinant J to obtain the volume v in the current configu-

ration.

Furthermore, the deformation gradient F is used to define the right Cauchy Green

tensor C= F⊤F, which maps from tangent to co-tangent space in reference configuration,

and subsequently the Green-Lagrange strain tensor:

E=
1

2
(C− I).

This strain measure can be interpreted as comparing the current Lagrangian metric C,

a measure for the symmetric part of the current deformation, with the reference metric

which is the identity. Using Eq. (5.22), the Green-Lagrange strain tensor can be formulated

in terms of derivatives of the displacements:

E=
1

2

�

(∇U)⊤ +∇U+∇U⊤∇U
�

. (5.24)

In case of small displacements, a simplification is to not distinguish between reference

and current configuration. The strain expression given in Eq. (5.24) can be linearized by

neglecting products of the derivatives and using the spatial displacements u instead of U.

182 CHAPTER 5: MODELS AND DISCRETIZATION

Ω0 Ωt

TXΩ0

T ∗
X
Ω0

reference configuration current configuration

tangent space

at point X

co-tangent space

at point X

TxΩt

T ∗
x
Ωt

C

M

1

X

TX t
x

A
X

a
x

ϕ t

F

F−⊤ g

x
λ= FM

λ

Figure 5.4: Vector spaces and variables used in the geometric description of the solid me-

chanics model. The left side shows the reference configuration with tangent

and co-tangent space of point X. The right side shows tangent and co-tangent

space for the current domain and a point x. The spatial stretch λ is defined

by mapping a material element M to the current configuration. The maps ϕ t ,

F and F−⊤ map tangents T, t and normals A,a between the configurations.

As a result, the linearized strain tensor ǫ is given by:

ǫ =
1

2

�

(∇u)⊤ +∇u
�

. (5.25)

It can be used together with linear material models to derive a completely linear model.

5.2.2 Stress Metrics

Continuum mechanical models establish equations for the unknown displacement func-

tion u and its evolution in time via relations between stresses and strains. In the following,

we introduce the required stress metrics.

The Cauchy stress tensor σ results from Euler’s cut principle: we consider the mechani-

cal action on an arbitrary, virtual cut out of the body in current configuration. The contact

forces on the cut surface at a point x are described by the traction force t. The traction

vector acts on the current configuration and is a function of the position x ∈ Ωt and the

5.2 MODEL OF MUSCLE CONTRACTION 183

local orientation of the cut given by the normal vector n. Cauchy’s theorem states that

this relation is linear and can be described by the second order Cauchy stress tensor σ:

t= σ · n. (5.26)

Thus, the Cauchy stress describes the “true stress” of contact forces per deformed surface

area. Both slots of the second order tensor are associated with the current configuration.

More specifically, σ is contravariant and maps from a normal n in co-tangent space T ∗
x
Ωt

to the traction t in tangent space TxΩt .

While the physical description is natural in this Eulerian setting, the numerical treat-

ment is more convenient in the Lagrangian setting, where we can integrate over a non-

deforming domain. Moreover, a two-point setting, where surface areas are measured in

the undeformed configuration and traction forces are measured in the deformed config-

uration, is often useful in engineering. This is the natural setting, e.g., in tension tests.

Therefore, other stress measures involving the reference configuration are defined.

Using the mappings presented in Eq. (5.23), all quantities can be transformed between

both configurations. The physical derivation can be carried out equivalently in a La-

grangian or Eulerian setting and switching between them is possible at any point in the

derivation. For this purpose, two operations are defined: the pull-back ϕ∗(a) = F⊤aF

and push-forward operations ϕ∗(A) = F−⊤AF−1, which bring tensors from Eulerian to

Lagrangian description and vice-versa.

The first Piola-Kirchhoff stress tensor P measures contact forces in the current config-

uration with regard to the area of the reference configuration and relates to the Cauchy

stress as P = σ cof (F). The second Piola-Kirchhoff tensor S is a fully Lagrangian field

given as the pull-back of the Cauchy stress scaled by J :

S= ϕ∗(J σ) = J F−1σ F−⊤.

Figure 5.5 summarizes the geometric maps by black arrows and the stress measures

by red arrows. The Lagrangian setting defines the right Cauchy-Green tensor C and the

second Piola-Kirchhoff stress tensor S. We use these quantities in the derivation of the

discretized equations, because the Lagrangian formulation is natural for this task and

allows integrating over the non-deforming domain Ω0.

The Cauchy stressσ is completely defined in the Eulerian setting. It is used to formulate

physical balance principles.

184 CHAPTER 5: MODELS AND DISCRETIZATION

TXΩ0

T ∗
X
Ω0

reference configuration current configuration

TxΩt

T ∗
x
Ωt

C

F

P

S g J σ

Figure 5.5: Stress tensors and geometric maps that can be used together in a solid me-

chanics formulation. The right Cauchy-Green tensor C and the second Piola-

Kirchhoff stress S are dual Eulerian tensors and map between tangent space

TXΩ0 and co-tangent space T ∗
X
Ω0 in the reference domain. The deformation

gradient F and the first Piola-Kirchhoff stress P are dual two-point tensors

mapping from the reference to the current configuration. The Cauchy stress

σ is defined entirely in the Eulerian setting.

5.2.3 Overview of the Physical Relations

The previously introduced quantities are linked together by various relations, which are

summarized in the diagram in Fig. 5.6. The goal is to find the relationship between given

forces (top left in Fig. 5.6) and the resulting deformation of the body described by the

displacements (top right in Fig. 5.6). Prescribed external traction forces T and external

or inertial body forces B act on the body and result in stresses S satisfying the equilibrium

relation. A material law connects stresses S and strains E. The kinematics of the body

determine the relationship between displacements u and strains E. Geometric Dirichlet

boundary conditions prescribe displacements and Neumann boundary conditions such as

traction forces contribute to the stress field.

Whereas the equilibrium relation is linear, the material and kinematic descriptions can

both be chosen to be linear or nonlinear. In cases of small strains, geometric and material

linearity can be assumed. We derive two such formulations: a linear formulation where

all relations are linear and a nonlinear formulation with nonlinear material and kinematic

relations.

5.2.4 Assumptions and Model Equations

The foundation of continuum mechanics usually builds on three balance principles: con-

servation of mass, of momentum and of angular momentum. In the following, these

principles are presented in their Eulerian forms.

5.2 MODEL OF MUSCLE CONTRACTION 185

displacements
u

strain

E

stress

S

forces

T,B

Neumann BC

Dirichlet BC

material

kinematics

(nonlinear)

equilibrium

(nonlinear)

(linear)

Figure 5.6: The three relations between various quantities that compose the solid me-

chanics model: Equilibrium links traction and body forces T and B to the

stresses S. A material model connects them to strains E. The kinematic rela-

tions yield the resulting displacement field u. Note that all quantities in this

diagram are given in Lagrangian formulation.

First, we assume conservation of mass in terms of the densities ρ0(X) and ρ(x) in

reference and current configurations:

ˆ

V0

ρ0 dV =

ˆ

Vt

ρ dv.

The equation holds for all corresponding subdomains V0 ⊂ Ω0 and Vt ⊂ Ωt . With the

intermediate step of deducing d/dt
´

Ωt
ρ dv = 0, we get the following differential equa-

tion:

ρ̇(v, t) +ρ(x, t)div
�

v(x, t)
�

= 0. (5.27)

As muscle tissue largely consists of water, it is typically assumed to be an incompressible

domain. This is equivalent to a constant density, ρ̇ = 0, and, thus, Eq. (5.27) reduces

to

div (v(x, t)) = 0. (5.28)

The second assumption is the balance of momentum, which is expressed as

d

dt

ˆ

Vt

ρ vdv =

ˆ

Vt

ρ bdv +

ˆ

∂Vt

tda. (5.29)

Here, b describes a body force and t describes a traction force that acts on the surface of the

domain Vt . Using the Cauchy theorem Eq. (5.26), it can be replaced by the Cauchy stress

186 CHAPTER 5: MODELS AND DISCRETIZATION

σ. The corresponding differential form is given by the following differential equation:

ρ v̇(x, t) = ρ b(x, t) + divσ(x, t). (5.30)

It relates external forces to the internal stress field and describes the equilibrium relation

in Fig. 5.6 in Eulerian form. For the discretization, a Lagrangian form is typically used.

For hyperelastic materials, which we consider in the muscle model, the equilibrium re-

lation can also be formulated in terms of the Hellinger-Reissner energy functional ΠL(u, p),

which describes the potential energy of the system depending on the displacement and

pressure functions u and p. Analog to the local form in Eq. (5.30), it contains terms for

the external loads and for the internal response of the body. The functional is additively

composed of external and internal potential energy:

ΠL(u, p) = Πext(u) +Πint(u, p). (5.31)

The external energy functional is formulated by

Πext(u) = −
ˆ

Ω0

BudV −
ˆ

∂Ωt
0

T̄ udS, (5.32)

with body force B in reference configuration and prescribed surface traction T̄ on the

traction boundary ∂Ωt
0
. The body force term B also includes the inertial forces of mass

density times acceleration, ρ v̇, in case of a dynamic model. The internal energy functional

Πint(u, p) describes the strain energy of the system depending on the displacement field

u and the hydrostatic pressure p. The term is defined in Sec. 5.4.2.

The principle of stationary potential energy demands that the potential energy functional

ΠL is stationary. Variational calculus and differentiation of Eq. (5.31) lead to the local

Eulerian description given in Eqs. (5.29) and (5.30).

The third assumption is the balance of angular momentum and can be formulated using

the 3D cross-product:

d

dt

ˆ

Vt

x× (ρ v)dv =

ˆ

Vt

x× (ρ b)dv +

ˆ

∂Vt

x× tda.

This can be shown to be equivalent to the symmetry of the Cauchy stress tensor,σ = σ⊤.

A further assumption in the multi-scale muscle framework is to only consider isothermal

conditions. An activated muscle performs work and energy is added to the system by

5.2 MODEL OF MUSCLE CONTRACTION 187

metabolism. Further, the muscle is not thermodynamically isolated. The system is not

closed regarding conversion and transfer of energy and, thus, the balance of energy

cannot be modeled easily.

Regarding the required relations to obtain the deformation of the body from external

loads given in Fig. 5.6, the equilibrium relation is given by Eq. (5.30) and the nonlinear

kinematic relation is given by Eq. (5.24). The material relation has yet to be defined. The

mathematical description is closed by defining a constitutive relation between stresses

and strains in the next sections.

Section 5.2.5 defines a linear material model that can be used together with linearized

kinematics to formulate a fully linear model. Section 5.2.7 presents the nonlinear material

model to proceed with the fully nonlinear description.

5.2.5 Linear Material Model

For a linear constitutive relation between strain and stress, the linearized strain tensor

ǫ, defined in Eq. (5.25) is used together with the Eulerian Cauchy stress σ. The generic

linear material model is Hooke’s law, given by

σ = C : ǫ (5.33)

with the fourth order material tensor

Cabcd = K δab δcd +µ (δac δbd +δad δbc −
2

3
δab δcd).

The bulk modulus K is a measure for the (in-)compressibility and the shear modulus µ

specifies the elastic shear stiffness. δab is the Kronecker delta. The material tensor C

exhibits the following major and minor symmetries:

Cabcd = Ccdab, (major symmetries) (5.34a)

Cabcd = Cbacd = Cabdc = Cbadc, (minor symmetries) (5.34b)

effectively reducing the number of independent entries from 81 to 21 for 3D domains.

To incorporate force generation in the muscle, the stress can be additively composed

188 CHAPTER 5: MODELS AND DISCRETIZATION

of the passive stress σ and an additional active stress term σactive:

σtotal = σ +σactive. (5.35)

5.2.6 Nonlinear Material Modeling

Next, we present the derivation of a nonlinear model that does not make any linearization

assumptions of small strains as in the previous section. We begin with the description of

the material law, which links strains and stresses.

The scalar strain energy function Ψ describes the elastic energy of the material de-

pending on the deformation. The definition of Ψ suffices to describe the behavior of a

hyperelastic material. The strain energy function links the right Cauchy Green tensor C

to the second Piola-Kirchhoff stress tensor S by the relation

S= 2
∂Ψ(C)

∂C
. (5.36)

The principle of material objectivity requires that material properties are invariant under

a change of observer. As a result, the representation theorem for isotropic materials states

that the stress tensor can be represented using three strain invariants I1, I2 and I3. For

a transversely isotropic material, two invariants I4 and I5 that depend on the anisotropy

direction a0 (corresponding to a fiber direction) are added. Consequently, we can for-

mulate the strain energy function Ψ = Ψ(I1, I2, I3, I4, I5) in terms of these invariants. The

principle strain invariants I1 to I3 of the right Cauchy-Green tensor C and the additional

anisotropic invariants I4 and I5 are defined as:

I1(C) = tr (C), I2(C) =
1

2

�

tr (C)2 − tr (C2)
�

, I3(C) = det (C) = J2,

I4(C,a0) = a0 ·Ca0, I5(C,a0) = a0 ·C2 a0.

The fiber stretch is related to the fourth invariant by λ f =
p

I4. Note that requiring

incompressibility is equivalent to enforcing J = 1, and, in this case, we get I3(C) = 1.

It is convenient to use a decoupled description, where the deformation gradient F and

the right Cauchy-Green tensor C are multiplicatively decomposed into volume-changing

5.2 MODEL OF MUSCLE CONTRACTION 189

(volumetric) and volume-preserving (isochoric) parts:

F= (J1/3I) F̄, C= (J2/3I) C̄.

Here, the volumetric parts are the identity tensors scaled by a power of the determinant

J of the deformation gradient. The isochoric or distortional parts F̄ and C̄ are given by

F̄= J−1/3 F, C̄= J−2/3 C. (5.37)

The reduced invariants Ī1 to Ī5 of the reduced right Cauchy-Green tensor C̄ are defined

accordingly. Similarly, the strain energy function has a decoupled representation with

volumetric part Ψvol and isochoric part Ψiso:

Ψ = Ψvol(J) +Ψiso(C̄) = Ψvol(J) +Ψiso(Ī1, Ī2, Ī4, Ī5). (5.38)

Using the decoupled form, any incompressible material can be modeled with the penalty

method as follows. The material behavior is given by the isochoric strain energy Ψiso(C̄),

e.g., by employing the Mooney-Rivlin model in Eq. (5.41). The volumetric part is defined

as

Ψvol(J) = κG(J) with G(J) =
1

2
(J − 1)2,

with the incompressibility parameter κ and the penalty function G(J). This function is

strictly convex and approaches zero as J approaches 1. For large values of κ, the behavior

is nearly incompressible. A disadvantage of this method is, that the resulting system

becomes singular for J → 1.

A better approach in this regard is to use a mixed formulation, where incompressibility

is enforced exactly using a Lagrange multiplier. This approach is also implemented in

OpenDiHu and is the preferred method for incompressible materials.

In OpenDiHu, the strain energy function of a new material can be given using the

following four terms:

Ψ = Ψvol(J) +Ψiso(Ī1, Ī2, Ī4, Ī5) +Ψ1(I1, I2, I3) +Ψ2(C,a0). (5.39)

The decoupled form is available withΨvol andΨiso, the coupled form for isotropic materials

can be used via Ψ1. The term Ψ2 gives the most flexibility, as the constitutive model can

be directly formulated using the right Cauchy-Green tensor C and the fiber direction

190 CHAPTER 5: MODELS AND DISCRETIZATION

a0. The unused terms among Ψvol,Ψiso,Ψ1 and Ψ2 can be defined as constant zero. The

incompressibility constraint using Lagrange multipliers can be switched on or off such

that both incompressible and compressible materials can be computed.

5.2.7 The Nonlinear Material Model for Muscle Contraction

In the muscle contraction model of [Hei13], the strain energy function is additively

composed of two passive terms, one isotropic, one anisotropic, and one additional active

term:

Ψ(C) = Ψisotropic(I1, I2) +Ψanisotropic(λ f) +Ψactive(γ). (5.40)

The isotropic term Ψisotropic is formulated in terms of the strain invariants I1 = tr (C) and

I2 =
�

tr (C)2 − tr (C2)
�

/2. The anisotropic term Ψanisotropic depends on the fiber stretch λ f .

The active term Ψactive yields the active stress that results from muscular activation, which

is described by the activation parameter γ.

The passive behavior of muscle tissue is modeled by a transversely isotropic Mooney-

Rivlin material. The isotropic part is given by the Mooney-Rivlin formulation:

Ψisotropic(I1, I2) = c1 (I1 − 3) + c2 (I2 − 3). (5.41)

The values of the two material parameters c1 and c2 can be determined by compression

tests and are summarized in the work of [Hei13].

The anisotropic behavior depends only on the fiber stretch λ f . The formulation in

[Hei13] uses two material parameters b and d and the following function:

Ψanisotropic(λ f) =
b

d
(λd

f − 1)− b log(λ f).

The active contribution is directly formulated in terms of the second Piola-Kirchhoff

stress S. The relation between the active stress Sactive and the active contribution Ψactive

of the strain energy function as well as the definition of Sactive is given as follows:

Sactive =
1

λ f

∂Ψactive

∂λ f

A⊗A=
1

λ f

· Smax,active · fℓ(λ f) · γ̄A⊗A. (5.42)

Here, the resulting active stress tensor Sactive is the second order tensor oriented according

to the material fiber direction A : Ω0 → R3 and given by the dyadic product A ⊗ A =

5.2 MODEL OF MUSCLE CONTRACTION 191

Ai A j ei ⊗ e j, scaled by the maximum active stress parameter Smax,active, a function fℓ that

models the force-length relation, and the 3D homogenized value γ̄ of the activation

parameter γ ∈ [0, 1] following from the half-sarcomere model.

In the deforming body fat layer, the active stress contribution is disregarded. For

simulating tendons, different material models can be used such as the model proposed

by Carniel et al. [Car17], which describes microstructural interactions between collagen

fibers and their matrix in addition to the elastic response of the fibers themselves. To alter

the material model, the definition of Ψ can simply be changed while all other equations

of the solid mechanics model remain intact.

5.2.8 Summary of the Solid Mechanics Model Equations

In summary, the model of solid mechanics for muscle contraction is solved for the un-

known displacements u and additionally the velocities v if a dynamic formulation is

considered.

The model equations follow from the following balance principles:

div (v) = 0, (incompressibility) (5.43a)

ρ v̇= ρ b+ divσ, (balance of linear momentum) (5.43b)

σ = σ⊤, (balance of angular momentum) (5.43c)

with the constant density ρ, external body forces b and the Cauchy stress tensor σ.

Additionally, geometric relations between displacements u and strains E or ǫ are as-

sumed, either fully nonlinear in Eq. (5.24) or with corresponding linearization assump-

tions in Eq. (5.25). Furthermore, a material model is given that relates strains and stresses.

A linear model is described in Sec. 5.2.5. The framework for nonlinear hyperelastic mod-

els uses a strain energy function Ψ as described in Sec. 5.2.6. A particular nonlinear

material model for muscle contraction from the literature is described in Sec. 5.2.7.

The description of the multi-scale model [Röh12; Hei13] assumes quasi-static condi-

tions, which means that the velocities are set to zero, v = 0, and inertial terms are ne-

glected. As a consequence, the incompressibility constraint in Eq. (5.43a) has to be formu-

lated differently and the balance of momentum in Eq. (5.43b) reduces to ρ b+divσ = 0.

192 CHAPTER 5: MODELS AND DISCRETIZATION

Our implementation extends the model to the fully dynamic formulation given in Equa-

tions (5.43a) to (5.43c).

Initial conditions for the displacements u and velocities v define the initial pose of the

muscle tissue:

u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ ΩM .

Dirichlet boundary conditions for u and v can fix certain parts of the muscle, e.g., at the

attachment points of the tendons:

u(x, t) = ū(t), v(x, t) = v̄(t) for x ∈ ∂ΩDirichlet.

Additionally, Neumann boundary conditions can be used to prescribe traction forces on

the surface.

The derivation of the finite element formulation and the resulting numerical scheme

to obtain the solution functions u and v are discussed in Sec. 5.4.

5.3 Discretization of the Electrophysiology Models

The partial and ordinary differential equations described in the last section contain spatial

and temporal derivatives that have to be discretized to be solved numerically. For temporal

derivatives, we use timestepping schemes, for spatial derivatives, we employ the finite

element method.

In this section, we describe the discretization of the subcellular and electrophysiology

models that were presented in the last section. A description of the discretization of the

solid mechanics model follows in Sec. 5.4.

We begin with the discretization in time in Sec. 5.3.1, followed by the spatial dis-

cretization for the monodomain (Sections 5.3.2 and 5.3.3) and multidomain models

(Sections 5.3.4 and 5.3.5).

5.3.1 Discretization of the Monodomain Model

Electrophysiology models typically consist of a reaction-diffusion equation. The diffusion

term describes the electric conduction in the tissue and the reaction term includes the

5.3 DISCRETIZATION OF THE ELECTROPHYSIOLOGY MODELS 193

subcellular model. In our model, the monodomain equation Eq. (5.11) used in the fiber

based description and the second multidomain equation Eq. (5.15) are equations of this

type.

This type of partial differential equation is often solved using operator splitting schemes.

A first order operator splitting scheme is Godunov splitting [Gui03]. It was used for the

solution of the chemo-electro-mechanical model in [Röh12]. In addition to Godunov

splitting, we also employ the second order accurate Strang splitting scheme [Str68].

In the following, the application of these two schemes is illustrated for the monodomain

equation Eq. (5.11). The right-hand sides of the diffusion and reaction terms are denoted

in short as L1 and L2:

L1(Vm) :=
1

Am Cm

σeff

∂2Vm

∂ x2
, L2(Vm) := − 1

Cm

Iion(Vm,y).

Then, the monodomain equation takes the form:

∂Vm

∂ t
= L1(Vm) +L2(Vm). (5.44)

A timestepping scheme is constructed that starts with a given initial value V (0)m and

computes solution values V (i)m at discrete points in time t(i) = i · dt with a fixed timestep

width dt. Godunov splitting proceeds by alternatingly performing steps in the two direc-

tions of the right-hand sides L1 and L2. In the first substep per iteration, an intermediate

value V ∗m is calculated, which is used as starting point for the second substep. Each of the

substeps are performed using independent timestepping scheme, e.g., the explicit Euler

scheme:

V ∗m = V (i)m + dtL1(V
(i)

m , t(i)), (5.45a)

V (i+1)
m = V ∗m + dtL2(V

∗
m, t(i)) (5.45b)

Strang splitting uses a similar approach with three substeps per timestep and two

194 CHAPTER 5: MODELS AND DISCRETIZATION

intermediate values V ∗m and V ∗∗m :

V ∗m = V (i)m +
dt

2
L1(V

(i)
m , t(i)), (5.46a)

V ∗∗m = V ∗m + dtL2(V
∗

m, t(i)), (5.46b)

V (i+1)
m = V ∗∗m +

dt

2
L1(V

∗∗
m , t(i) +

1

2
dt). (5.46c)

Note that each substep can either be executed as a single timestep of the chosen method

as in Eqs. (5.45) and (5.46) or divided into several steps with timestep widths dt0D (for the

0D subcellular model represented by L1) and dt1D (for the diffusion equation represented

by L2).

Figure 5.7 visualizes both splitting schemes applied to the monodomain equation. The

yellow arrows correspond to the solution of the 0D subcellular model. The red arrows

correspond to the solution of the 1D diffusion equation. The timestep width of one

splitting step is dtsplitting. Depending on how the timestep widths are chosen in relation

to each other, different numbers of subcycles are used in the solution of the 0D and 1D

problems.

Instead of the explicit Euler method in Eqs. (5.45) and (5.46), other timestepping

methods can be used for the substeps. We use the following schemes, which are listed as

single steps for the generic ODE ∂Vm/∂ t = L(Vm, t):

V (i+1)
m = V (i)m + dtL(V (i)m , t(i)), (5.47a)

V (i+1)
m = V (i)m +

dt

2

�

L(V (i)m , t(i)) +L
�

V (i)m + dtL(V (i)m , t(i)), t(i+1)
��

, (5.47b)

V (i+1)
m = V (i)m + dtL(V (i+1)

m , t(i+1)), (5.47c)

V (i+1)
m = V (i)m +

dt

2

�

θ L(V (i+1)
m , t(i+1)) + (1− θ)L(V (i)m , t(i))

�

. (5.47d)

Here, Eq. (5.47a) is the first-order accurate explicit Euler scheme, Eq. (5.47b) is the

second-order accurate Heun scheme, Eq. (5.47c) is the first order accurate implicit Euler

scheme, and Eq. (5.47d) is the Crank-Nicolson scheme [Cra47], which for θ = 0 equals

the explicit Euler and for θ = 1 equals the implicit Euler scheme. For θ = 1
2
, it is second

order accurate. An advantage of the implicit schemes in Eqs. (5.47c) and (5.47d) is, that,

5.3 DISCRETIZATION OF THE ELECTROPHYSIOLOGY MODELS 195

(a) The Godunov splitting uses two substeps:

0D, 1D.

(b) The Strang splitting uses three substeps:

0D, 1D, 0D.

Figure 5.7: Godunov and Strang splitting schemes that are used to solve the monodomain

equation. The equation is split into a reaction part (0D,yellow) and a diffusion

part (1D,red) and these parts are solved alternatingly. The visualizations show

one splitting timestep starting at the left circle and completing at the right

circle.

for our considered diffusion problems, they are unconditionally stable. A disadvantage

is, that a linear equation has to be solved in every timestep.

A second order accurate timestepping scheme yields a faster decrease of the numerical

error with decreasing step size and, thus, in many cases allows a larger step size than

a first order scheme. To obtain a second order scheme for the monodomain equation,

we use Strang splitting (Eq. (5.46)) with the Crank-Nicolson scheme (Eq. (5.47d)) for

the diffusion term L1 and Heun’s method (Eq. (5.47b)) for the reaction term L2. In the

subcellular model, the system of ODEs with state vector y given in Eq. (5.6) is solved with

Heun’s method along with the equation in terms of Vm.

Next, the spatial derivatives in the diffusion part L2 of the split equation have to be

discretized. Then, both the multidomain and the fiber based models can be solved using

the splitting scheme.

5.3.2 Discretization of the Diffusion and Laplace Equations

For the spatial discretization, we first derive the finite element formulation for a generic

parabolic diffusion equation in a domain Ω ⊂ Rd of arbitrary dimensionality d. Then,

196 CHAPTER 5: MODELS AND DISCRETIZATION

specialization to 1D yields the formulation for the monodomain equation. Considering a

3D domain, the formulation is an important building block for the discretization of the

multidomain model. This is shown in more detail in a later section, Sec. 5.3.4

We consider the following diffusion problem in the variable u : Ω× [0, tend]→ R with

Neumann boundary conditions on a part of the boundary Γ f ⊂ ∂Ω with normal vector

n:

∂u

∂ t
= div (σgrad u), (σ grad u) · n= f on Γ f , (σ grad u) · n= 0 on ∂Ω\Γ f .

We discretize the temporal derivative using the Crank-Nicolson scheme as in Eq. (5.47d).

Following the procedure of the Galerkin finite element formulation with the Hilbert space

H1
0
(Ω) of test functions φ that are zero on the boundary, we arrive at the following weak

form:

ˆ

Ω

�

θ ∇ · (σ∇u(i+1)) + (1− θ)∇ · (σ∇u(i))
�

φ dx

=
1

dt

ˆ

Ω

(u(i+1) − u(i))φ dx, ∀φ ∈ H1
0
(Ω).

For brevity, we express divergence and gradient using the nabla operator.

To discretize the weak form in space, we choose a function space Vh = span{ϕ j | j =

1, . . . , N} to represent the solution as u =
∑N

j=1
u jφ j. Applying the divergence theorem,

we obtain:

N
∑

j=1

�

θ u(i+1)

j + (1− θ)u(i)j

�

�

−
ˆ

Ω

σ∇ϕ j · ∇ϕk dx+

ˆ

∂Ω

�

σ∇ϕ j · n
�

ϕk dx

�

=
1

dt

N
∑

j=1

�

u(i+1)

j − u(i)j

�

ˆ

Ω

ϕ j ϕk dx, ∀k = 1, . . . , N .

(5.48)

This iteration step can be written in matrix notation in terms of the vectors of unknowns

u(i) = (u(i)0 , . . . , u(i)N)
⊤ at timestep i:

Au(i+1) = b(u(i)).

The system matrix A and the right-hand side b are given by:

A= θ (Kσ + Bσ)−
1

dt
M, b=

�

(θ − 1) (Kσ + Bσ)−
1

dt
M
�

u(i).

The formulation uses the standard stiffness matrix Kσ, the matrix Bσ of the boundary

5.3 DISCRETIZATION OF THE ELECTROPHYSIOLOGY MODELS 197

integral and the mass matrix M, whose components are defined as

Kσ,k j = −
ˆ

Ω

(σ∇ϕ j) · ∇ϕk dx, Bσ,k j =

ˆ

Γ f

�

(σ∇ϕ j) · n
�

ϕk dx, Mk j =

ˆ

Ω

ϕ j ϕk dx.

(5.49)

Note that, after applying the divergence theorem, the definition of the stiffness matrix

has a minus sign.

Next, we take into account the Neumann boundary condition σ∇u · n = f on the

boundary Γ f . The flux f over the boundary is discretized by M separate ansatz functions

ψ j on Γ f as f =
∑M

j=1
f jψ j. The flux values are summarized in a vector f= (f1, . . . , fM)

⊤.

Plugging this into Eq. (5.48) yields the following equation in matrix notation:

Ã u(i+1) = b̃(u(i)), (5.50)

with the system matrix Ã and right-hand side b̃:

Ã= θ Kσ −
1

dt
M, b̃=

�

(θ − 1)Kσ −
1

dt
M
�

u(i) − BΓ f

�

θ f(i+1) + (1− θ) f(i)
�

,

and the boundary matrix BΓ f
given by:

BΓ f ,k j =

ˆ

Γ f

ψ j ϕk dx. (5.51)

Note that incorporating the Neumann boundary conditions in the weak form corresponds

to the following exchange of the boundary matrices Bσ and BΓ f
:

Bσ u= BΓ f
f. (5.52)

Equation (5.50) is used to solve the diffusion part of the monodomain equation given

in Eq. (5.11) after inserting the corresponding constant prefactors.

When deriving or implementing new models or optimizing solver code, it is often

beneficial to study certain effects in isolation. It can help to use a toy problem such as the

simple Laplace problem ∆u= 0, possibly with Neumann boundary condition ∂u/∂n= f .

By specializing the formulation in Eq. (5.50) accordingly, we obtain the system

(KI + BI)u= 0

198 CHAPTER 5: MODELS AND DISCRETIZATION

for the case without boundary condition (set BI to zero to assume homogeneous Neumann

boundaries) or

KI u= −BΓ f
f (5.53)

to include the formulated Neumann boundary condition.

5.3.3 Using Mass Lumping for Implicit Timestepping

Implicit timestepping schemes such as implicit Euler or the Crank-Nicolson scheme for θ =
1
2

need to solve a linear equation in every timestep. Assuming homogeneous Neumann

boundary conditions for simplicity, the iteration step of the canonical Crank-Nicolson

scheme follows from Eq. (5.50):

�1

2
K− 1

dt
M
�

u(i+1) =
�

− 1

2
K− 1

dt
M
�

u(i) (5.54a)

⇔ (I− dt

2
M−1K)u(i+1) = (I+

dt

2
M−1K)u(i). (5.54b)

For the implicit Euler method, we obtain:

(K− M

dt
)u(i+1) = −M

dt
u(i) (5.55a)

⇔ (I− dt M−1K)u(i+1) = u(i). (5.55b)

Both iteration steps in Eqs. (5.54a) and (5.54b) and in Eqs. (5.55) and (5.55a) are

equivalent, as the second equation follows from the first one by left multiplication of

(−dtM−1). In the second equations, the matrices to be multiplied are created by a sum

of the unity matrix I and another matrix term that is scaled by the potentially small

timestep width dt. For the implicit Euler in Eq. (5.55b), the matrix on the right-hand

side even reduces to the identity matrix. This is preferred over the first iteration steps in

Eqs. (5.54a) and (5.55a) as it leads to better conditioned matrix-vector multiplications.

The required inversions of the mass matrix cannot be carried out explicitly as the

inversion would fill in numerous matrix entries and eliminate the sparse structure. This

is not feasible for highly resolved meshes with many degrees of freedom. Instead, mass

lumping is used, where the mass matrix M is approximated by a diagonal matrix with

diagonal entries equal to the row sums in M [Hin76]. Thus, multiplication with the

5.3 DISCRETIZATION OF THE ELECTROPHYSIOLOGY MODELS 199

inverse mass matrix corresponds to a rescaling of columns by the inverse lumped diagonal

entries.

5.3.4 Discretization of the Multidomain Model

With the prerequisites of temporal discretization in Sec. 5.3.1 and the finite element

formulation of a diffusion equation in Sec. 5.3.2, we can now discretize the multidomain

model. Since this has not been previously done in literature using the finite element

method, the subsequent derivation is more detailed.

The first multidomain equation given in Eq. (5.14) yields the following form after

applying the finite element derivation in Eq. (5.50):

�

Kσe+σi
+ Bσe+σi

�

φe +

NMU∑

k=1

f k
r

�

Kσk
i
+ Bσk

i

�

Vk
m = 0. (5.56)

Here, φe and Vk
m are the vectors of degrees of freedom for the extracellular potential φe

and membrane voltage V k
m of compartment k. The matrices are defined by Eq. (5.49)

and do not yet include the boundary conditions. The subscripts of the stiffness matrices

K and boundary integral matrices B refer to the anisotropy tensors that occur in their

definitions.

The diffusion part of the second multidomain equation, Eq. (5.15), discretized with

Crank-Nicolson, yields the system

A

�

Vk,(i+1)
m

φ(i+1)
e

�

= b, (5.57)

with the 1× 2 block system matrix A and right-hand side vector b given by:

A=

�

θ

Ak
m C k

m

(Kσk
i
+ Bσk

i
)− 1

dt
M

θ

Ak
m C k

m

(Kσk
i
+ Bσk

i
)

�

, (5.58a)

b=
� θ − 1

Ak
m C k

m

(Kσk
i
+ Bσk

i
)− 1

dt
M
�

Vk,(i)
m +

θ − 1

Ak
m C k

m

(Kσk
i
+ Bσk

i
)φ(i)e . (5.58b)

A separate instance of this equation holds for every compartment k. Again, the integrals

over the boundary are still present in the Bσk
i

matrices. To resolve this and to close the

200 CHAPTER 5: MODELS AND DISCRETIZATION

formulation, we have to consider the fluxes over the boundary of all involved unknowns

and to replace them using the boundary conditions.

One required boundary conditions to solve the multidomain model without body do-

main is given in Eq. (5.16a). The boundary condition for compartment k in terms of the

intracellular potential φk
i ,

(σk
i ∇φ

k
i) · nm = 0 on ∂ΩM , (5.59)

is expressed in terms of the unknowns V k
m and φe to yield the condition

(σk
i ∇V k

m) · nm = −(σk
i ∇φe) · nm =: pk on ∂ΩM . (5.60)

We define the value of this flux to be equal to a helper variable pk. A second flux is

formulated for the extracellular potential φe. We assign its value to the helper variable

q:

(σe∇φe) · nm =: q on ∂ΩM . (5.61)

We can now express the flux value
�

(σe + σi)∇φe

�

· nm, which occurs in the dis-

cretized first multidomain equation, Eq. (5.56), in terms of the variables pk and q. Using

Eqs. (5.59) and (5.60) and the relation φe = φ
k
i − V k

m, we derive:

�

(σe +σi)∇φe

�

· nm = (σe∇φe) · nm + (σi∇φe) · nm = q−
NMU∑

k=1

f k
r pk. (5.62)

We discretize the flux values pk and q analogously to the Neumann boundary condition

flux f in Sec. 5.3.2 and summarize the degrees of freedoms in vectors pk and q.

Next, we combine the flux values with the first and second multidomain equation.

Plugging the generic relation Eq. (5.52) for boundary integral terms into the discretiza-

tion of the first multidomain equation, Eq. (5.56), and using the derived flux values in

Eqs. (5.60) and (5.62) leads in a first step to the following equation:

Kσe+σi
φe + BΓM

�

q−
NMU∑

k=1

f k
r pk

�

+

NMU∑

k=1

f k
r

�

Kσk
i
Vk

m + BΓM pk
�

= 0.

5.3 DISCRETIZATION OF THE ELECTROPHYSIOLOGY MODELS 201

It can be seen that the terms involving pk cancel out, such that we get:

Kσe+σi
φe +

NMU∑

k=1

f k
r Kσk

i
Vk

m = −BΓM q. (5.63)

If the multidomain description is used without body fat domain, the boundary condition

in Eq. (5.16b) is used and the right-hand side in Eq. (5.63) vanishes. If a body domain is

considered, the right-hand side interacts with the body domain model, which is considered

in the next section.

Adding boundary conditions to the discretization of the second multidomain equation

proceeds using Eqs. (5.57) and (5.58). Carrying out the analog procedure to the first

multidomain equation, we plug in Eq. (5.52) to yield the matrix equation

A

�

Vk,(i+1)
m

φ(i+1)
e

�

= b (5.64)

with system matrix A and right-hand side vector b given by

A=

�

θ

Ak
m C k

m

Kσk
i
− 1

dt
M

θ

Ak
m C k

m

Kσk
i
,

�

, (5.65)

b=
� θ − 1

Ak
m C k

m

Kσk
i
− 1

dt
M
�

Vk,(i)
m +

θ − 1

Ak
m C k

m

Kσk
i
φ(i)e

+
θ − 1

Ak
m C k

m

BΓM pk,(i) − θ − 1

Ak
m C k

m

BΓM pk,(i) − θ

Ak
m C k

m

BΓM pk,(i+1) +
θ

Ak
m C k

m

BΓM pk,(i+1).

Again, the boundary terms involving pk vanish to yield the following expression for b:

b=
� θ − 1

Ak
m C k

m

Kσk
i
− 1

dt
M
�

Vk,(i)
m +

θ − 1

Ak
m C k

m

Kσk
i
φ(i)e . (5.66)

In summary, Eq. (5.63) with q = 0 coupled with NMU instances of Equations (5.64)

to (5.66) comprises the discretization for the multidomain model without body domain.

Definitions of the involved stiffness and mass matrices are given in Eq. (5.49).

202 CHAPTER 5: MODELS AND DISCRETIZATION

5.3.5 Discretization of the Multidomain Model for Surface EMG

To discretize the multidomain model with the electric potential φb in the body domain,

we extend the formulation without body domain in Sec. 5.3.4. The body domain adds

the electric potential φb to the vector of unknowns, for which the system has to be solved.

As before, we discretize the field using finite element ansatz functions and solve for the

vector φ b of degrees of freedom.

The model for φb is the Laplace equation given in Eq. (5.17) with homogeneous Neu-

mann boundary conditions given in Eq. (5.19). According to Eq. (5.53), the discretized

equation is given by

Kσb
φ b = 0. (5.67)

In addition, the value of the body potential φb is coupled to the extracellular potential

φe in the muscle domain ΩM via the coupling conditions on the boundary ΓM given in

Eq. (5.18).

We write the discretized and coupled multidomain equations as a linear system of

equations in generic block-matrix form:

Ak
Vm,Vm

Bk
Vm,φe

Bk
φe ,Vm

Bφe ,φe
BΓM

Cφb ,φb
−BΓM

IΓM ,φe
−IΓM ,φb

Vk,(i+1)
m

φ(i+1)
e

φ(i+1)

b

q(i+1)

=

bk,(i)
Vm

0

0

0

. (5.68)

The vector of unknowns consists of the degrees of freedom in the finite element formu-

lation at the next timestep (i+ 1) of the transmembrane voltage Vk,(i+1)
m , the extracellular

potential φ(i+1)
e , the body potential φ(i+1)

b , and additionally the flux q(i+1) over the shared

boundary ΓM of the muscle and the body domain, which was defined in Eq. (5.61). For

illustration purposes, only one compartment, k = 1, for one MU, NMU = 1, is considered.

We refer to parts of the matrix in Eq. (5.68) as block rows and block columns according

to the given block-structure.

The first block row in the matrix equation is given by the discretized second multido-

main equation. Following Eqs. (5.65) and (5.66), the matrices and the right-hand side

5.3 DISCRETIZATION OF THE ELECTROPHYSIOLOGY MODELS 203

are given by

Ak
Vm,Vm

=
θ

Ak
m C k

m

Kσk
i
− 1

dt
M, Bk

Vm,φe
=

θ

Ak
m C k

m

Kσk
i
,

bk,(i)
Vm
=
� θ − 1

Ak
m C k

m

Kσk
i
− 1

dt
M
�

Vk,(i)
m +

θ − 1

Ak
m C k

m

Kσk
i
φ(i)e .

The second block row describes the first multidomain equation that was derived in

Eq. (5.63). The flux term q has been brought to the left-hand side and is incorporated

by the boundary matrix BΓM defined in Eq. (5.51). The other matrices are formulated as

follows:

Bk
φe ,Vm

= f k
r Kσk

i
, Bφe ,φe

= Kσe+σi
.

The third block row is the formulation of the harmonic body potential φb and the

matrix Cφb ,φb
equals the system matrix Kσb

in Eq. (5.67). The coupling condition on the

flux q in Eq. (5.18b) is accounted for by including the boundary matrix BΓM in the last

column. The minus sign comes from the fact that the outward normal vector on ΓM as the

boundary of ΩB has the opposite direction to the normal vector on ΓM that is used for the

models in the muscle domain ΩM . Using the helper variable q(i+1), the second and third

row of Eq. (5.68) are coupled according to the prescribed condition in Eq. (5.18b).

The other coupling condition, Eq. (5.18a), is accounted for by the last block row in

Eq. (5.67). The degrees of freedom for the extracellular potential φ(i+1)
e and the body

potential φ(i+1)

b have equal values on the boundary ΓM . The matrices IΓM ,φe
and IΓM ,φb

are

identity matrices that only have nonzero entries on the diagonal for the boundary degrees

of freedom in the meshes of muscle domain and body domain, respectively.

Because the vector q(i+1) is not an unknown in the system, the respective values in

Eq. (5.68) have to be eliminated. As a result, we obtain the following system, which is

204 CHAPTER 5: MODELS AND DISCRETIZATION

formulated for a generic number NMU of MUs:

A1
Vm,Vm

B1
Vm,φe

. . .
...

A
NMU

φe ,Vm
B

NMU

Vm,φe

B1
φe ,Vm

. . . B
NMU

φe ,Vm
Bφe ,φe

D

E C̃φb ,φb

V1,(i+1)
m

...

VNMU,(i+1)
m

φ(i+1)
e

φ̃
(i+1)

b

=

b1,(i)
Vm

...

b
NMU,(i)
Vm

0

0

. (5.69)

Formally, the elimination step is carried out by adding the equations of the third block

row in Eq. (5.68), that correspond to the boundary degrees of freedom on ΓM , to the

corresponding equations of the same degrees of freedom in the second block row. This

eliminates the last block column, which corresponds to q(i+1). Next, the duplicate bound-

ary degrees of freedom, that appear in both the ΩM and ΩB meshes, get unified. The

corresponding matrix columns in the third block column are removed. To preserve the

entries in the third block row, they are added in the sub matrix of block row three and

block column two.

Now considering the updated matrix equation in Eq. (5.69), all sub blocks are equal

to Eq. (5.68), except for the former matrix Cφb ,φb
and the new matrices D and E. The

new matrix C̃φb ,φb
is obtained from Cφb ,φb

by removing all rows and columns of boundary

degrees of freedom. The removed entries are contained in the new matrices D and E.

The size of the system matrix in Eq. (5.69) equals a×a, where the number a is composed

of NMU + 1 times the number of degrees of freedom in the muscle mesh plus the number

of degrees of freedom in the fat layer mesh without the boundary degrees of freedom on

ΓM . Accordingly, the vector φ̃
(i+1)

b is the same as φ(i+1)

b except that it does not contain the

boundary degrees of freedom, which are already included in φ(i+1)
e .

Equation (5.69) describes one iteration of the Crank-Nicolson scheme that is used

to solve the multidomain model. This iteration is carried out alternatingly with the

subcellular model according to the chosen operator splitting scheme.

The first NMU block rows in Eq. (5.69) contain the second multidomain equation for

every MU. The second-to-last block row contains the first multidomain equation and the

last block row contains the body fat layer model.

Because of the implicit formulation, electric conduction in the intracellular and extra-

cellular space and the body domain are bidirectionally coupled. Therefore, the model

5.3 DISCRETIZATION OF THE ELECTROPHYSIOLOGY MODELS 205

can be used to simulate the effects of natural activation in the muscle on EMG signals on

the skin surface as well as the reverse effect of external stimulation on the surface on the

electrophysiology.

5.3.6 Discretization of the Fiber Based Electrophysiology Model

The fiber based electrophysiology model consists of multiple independent 1D fiber do-

mains, where the monodomain equation Eq. (5.11) is solved. The transmembrane voltage

Vm is then mapped to a 3D mesh of the muscle domain and unidirectionally coupled to

the first bidomain equation Eq. (5.9a). The first bidomain equation is solved for the

extracellular potential φe and possibly the electric potential φb in the body fat domain,

which corresponds to EMG signals on the skin surface.

The temporal discretization of the monodomain equation was described in Sec. 5.3.1.

The diffusion term within the operator splitting requires a spatial discretization for which

we use the finite element method. This 1D diffusion equation is given as

∂Vm

∂ t
=
σeff

Am Cm

∂2Vm

∂ x2
. (5.70)

It can be solved using a timestepping scheme such as the implicit Euler method to obtain

time-discrete values V (i)m , i = 1, 2, . . . for the transmembrane potential. The discretization

leads to the matrix equation given in Eq. (5.50) and to the variants presented in Sec. 5.3.3

if mass lumping is used. In the stiffness and mass matrices, the anisotropic conduction

tensor is replaced by the constant scalar prefactor c := σeff/(Am Cm) of the spatial second

derivative in Eq. (5.70).

The first bidomain equation Eq. (5.9a) is a 3D Poisson problem in terms of the unknown

extracellular potential φe. According to Eq. (5.53), the finite element discretization is

given by

Kσi+σe
φ(i+1)

e = −BΓ f
f+ rhs,

where the right-hand side rhs of the Poisson problem is the transmembrane flow and is

given by

rhs= −Kσi
V
(i+1)

m,3D. (5.71)

206 CHAPTER 5: MODELS AND DISCRETIZATION

Here, φ(i+1)
e and V

(i+1)

m,3D are the vectors of degrees of freedom on the 3D mesh for the

extracellular potential φe and the membrane potential Vm at timestep (i + 1). With the

homogeneous Neumann boundary conditions for Vm and φe given in Eq. (5.12), the

boundary term BΓ f
vanishes.

In summary, the following matrix equations are solved for the fiber based electrophys-

iology model with n fibers:

A
. . .

A

V1,(i+1)
m

...

Vn,(i+1)
m

 =

V1,(i)
m
...

Vn,(i)
m

 , (5.72a)

V
(i+1)

m,3D = P

V1,(i+1)
m

...

Vn,(i+1)
m

 , (5.72b)

Kσi+σe
φ(i+1)

e = −Kσi
V
(i+1)

m,3D (5.72c)

with the system matrix A for a single fiber given according to Eq. (5.55b) by

A= I− dt M−1
c Kc.

Equation (5.72a) solves the diffusion part of the operator splitting in Eq. (5.44). After

the values V j,(i+1)
m for the timestep (i + 1) are computed on the 1D fiber meshes, the

homogenized vector V
(i+1)

m,3D in the 3D mesh of the muscle domain ΩM is obtained by the

prolongation operation P in Eq. (5.72b). The homogenized vector is used in the right-hand

side of the bidomain model in Eq. (5.72c), which computes the discretized extracellular

potential φ(i+1)
e .

Equation (5.72c) can be extended by adding a body fat layer ΩB and the corresponding

model for the electric potential φ
(i+1)

b . Then, the vector of unknowns contains the degrees

of freedom for bothφ(i+1)
e andφ

(i+1)

b . The stiffness matrix Kσi+σe
is obtained by integrating

over both meshes in ΩM ∪ΩB. Only in the elements of the finite element mesh for ΩB, the

conduction tensors are redefined as σi = 0 and σe = σb. This sets the right-hand side

of Eq. (5.72c) to zero in ΩB and the solution φb in harmonic according to the model in

Eq. (5.17). The coupling conditions Eq. (5.18) betweenφe andφb and the outer Neumann

boundary conditions Eq. (5.19) for φb are satisfied automatically by this approach.

The comparison between the discretized multidomain model in Eq. (5.69) with the

5.3 DISCRETIZATION OF THE ELECTROPHYSIOLOGY MODELS 207

discretized fiber based model in Eq. (5.72) reveals several differences. Whereas the mul-

tidomain description consists of a single coupled linear system for electric conduction

in the intracellular, extracellular and body domains, the formulations are only unidirec-

tionally coupled in the fiber based description. While the multidomain model always

computes the EMG signals on the skin surface in every timestep, the corresponding model

in the fiber based description can be solved with larger timestep widths, using subcycling

for the action potential propagation model.

As can be seen in Eq. (5.72a), the system matrix is decoupled and contains indepen-

dent problems for every fiber. This is an advantage compared to the multidomain model,

where a system describing the whole muscle domain has to be solved. On the downside,

separate representations of the transmembrane voltage Vm exist in the fiber based descrip-

tion. The representation in the 3D mesh has to be computed by interpolation from the

representation on the fibers. The multidomain description has a single vector of degrees

of freedom for Vm with fewer entries than in the fiber-based description.

5.3.7 Summary of Domains and Meshes

Various finite element meshes occur in the formulation of the multi-scale model. If the

fiber based description is used, the description requires finite element meshes for the 1D

fiber domains Ω
j
f for j = 1, . . . , n. Further meshes are needed for the 3D muscle domain

ΩM and for the 3D body domain ΩB. The meshes for ΩM and ΩB share nodes on their

common boundary ΓM . The fiber meshes are embedded in the muscle domain. Their

nodes do not necessarily have to coincide with the nodes of the muscle mesh.

The subcellular model is solved at locations Ωi
s for i = 1, . . . , m. These locations are

the nodes of the fiber meshes for the fiber based description and the nodes of the muscle

mesh for the multidomain description. We therefore have the inclusion Ωi
s ⊂ Ω

j
f ⊂ ΩM .

For the solid mechanics model, the unified 3D domain Ω = ΩM ∪ ΩB is used. The

mesh for the continuum mechanics formulation can be different from the meshes used

for the electrophysiology model. In fact, the continuum mechanics mesh has special

requirements in order to yield a consistent formulation. Our implementation uses two

overlaid meshes of quadratic and linear hexahedral elements for displacements and the

hydrostatic pressure.

Often, the required accuracy of the electrophysiology model is higher than for the

continuum mechanics model, such that differently resolved meshes can be used. To

208 CHAPTER 5: MODELS AND DISCRETIZATION

facilitate data mapping, the nodes of the mechanics mesh should be chosen as subset of

the nodes of the electrophysiology meshes.

5.4 Discretization and Solution Approach for the

Solid Mechanics Model

After the formulation of linear and nonlinear models for solid mechanics in Sec. 5.2,

this section discusses their discretization and derives finite element formulations for the

linearized model and the nonlinear model, both static and dynamic. We also describe the

algorithms used to obtain a numerical solution.

The implementation of a solver for generic hyperelastic descriptions is an interdisci-

plinary endeavor, if parallel execution is exploited and the model is integrated in a multi-

scale biomechanics model. Therefore, we give a comprehensive derivation of the formulas

used to numerically solve the equations matching the implementation in OpenDiHu, such

that the implementation is also comprehensible for readers that are not specialized in

the field of continuum mechanics. More details on finite element discretizations for solid

mechanics models can be found in the literature [Zie77; Sus87; Zie05].

5.4.1 Discretization of the Linear Model

In this section, we discuss the linearized and static model. Besides the nonlinear model,

our software OpenDiHu also implements the linearized description. The linear model

exhibits better numerical properties and can be solved faster than the generic model.

Thus, it can serve as a toy problem or can be used for mechanical systems, where the

linearization assumptions are valid.

By assuming small strains, we can use the linearized kinematic relation in Eq. (5.25)

to express the linear strain tensor ǫ. The material model is Hooke’s law formulated in

Eq. (5.33). It relates the strain to the Cauchy stress by σ = C : ǫ.

Using variational calculus, the system response of external forces and infinitesimal,

compatible, virtual displacements δu is studied. We start with the principle of virtual

work, which states that in equilibrium the virtual work δW performed by external forces

5.4 DISCRETIZATION AND SOLUTION APPROACH FOR THE SOLID MECHANICS

MODEL
209

along any virtual displacements δu is zero. Equivalently, the external virtual work δWext

is equal to the internal virtual work δWint:

δWint(u,δu) = δWext(δu) ∀δu ∈ H1
0
(Ω). (5.73)

Here, the external virtual work δWext is given by the product of external forces t and

the virtual displacements δu at the same location. The internal virtual work δWint is the

body’s response in terms of stresses σ and virtual strains ǫ. In summary, Eq. (5.73) is

equivalent to the following equilibrium equation:

ˆ

Ω

σ(u) : δǫ dx=

ˆ

∂Ω

t : δudx ∀δu ∈ H1
0
(Ω). (5.74)

The vectors contain the degrees of freedom of a finite element discretization. The operator

“:” denotes the component-wise product.

Often, it is easier to write the equations in component form. Indices a, b, c, . . . are used

to specify a dimension index in {1, . . . , d}. The letters L, M ∈ {1, . . . , N} denote indices

over degrees of freedom in a mesh with N nodes. The Einstein sum convention is used

where repeated indices implicitly indicate summation, except when the indices are in

parentheses. Thus, the right-hand side f of Eq. (5.74) with ansatz functions φ L and the

degrees of freedom δuL
a of δu can be written as:

fa =

ˆ

∂Ω

t(a)δuL
(a)φ

L dx. (5.75)

By combining the kinematic relation between displacements u and linearized strains

ǫ in Eq. (5.25), the material relation between ǫ and the stress σ in Eq. (5.33), the

equilibrium relation between σ and the right-hand side vector f in Eq. (5.74) and after

discretizing displacements and virtual displacements, we get the following linear matrix

equation:

Ku= f. (5.76)

The stiffness matrix K has rows and columns for every combination of degree of freedom

L, M ∈ {1, . . . , N} and dimension indices a, b ∈ {1, 2,3}. The entries are given by:

KLaM b =

ˆ

Ω

Cad bc

∂φ L(x)

∂ xd

∂φM(x)

∂ xc

dx.

The resulting model in Eq. (5.76) describes the passive behavior of a body under the

210 CHAPTER 5: MODELS AND DISCRETIZATION

linearization assumptions and can be used in an appropriate biomechanical application.

However, for contracting muscle tissue, we also need to incorporate active stresses that

are generated at the sarcomeres in the muscle. As described in Eq. (5.35), an active stress

term σactive can be considered. Because this active term is prescribed by the activation

dynamics and the subcellular model, it has to appear on the right-hand side of the linear

model. We add the active stress term σactive to the external virtual work in Eq. (5.73),

yielding the equation:

δWint(u,δu) = f+

ˆ

Ω

σactive : δǫ− dx ∀δu ∈ H1
0
(Ω). (5.77)

The active stress is associated with compression, i.e., negative virtual strains δǫ < 0.

Therefore, we use δǫ− which is defined equal to δǫ for δǫ < 0 and zero otherwise.

From Eq. (5.77), we get the same discretized linear system as in Eq. (5.76), but with

an additional term f active in the right-hand side that contains the discretized prescribed

active stress field σactive
ab (x):

f active

La =

ˆ

Ω

σactive
ab (x)

∂φ L(x)

∂ xb

dx. (5.78)

5.4.2 Discretization of the Nonlinear Static Hyperelastic Model

Next, we discuss the discretization of the nonlinear solid mechanics model, which uses

the model equations introduced in Sec. 5.2. We begin with the discretization of a static,

incompressible problem, where no velocities have to be considered. The discretization is

extended to the dynamic model in Sec. 5.4.6.

As described in Sec. 5.2.4, the equilibrium equation can be formulated in terms of the

Hellinger-Reissner energy functional ΠL(u, p) = Πint(u, p) +Πext(u) given in Eq. (5.31). It

consists of the external energy functional, given in Eq. (5.32) as

Πext(u) = −
ˆ

Ω0

BudV −
ˆ

∂Ωt
0

T̄ udS,

with body force B and surface traction T̄, and of the internal energy functional

Πint(u, p) =

ˆ

Ω0

Ψiso

�

C̄(u)
�

dV +

ˆ

Ω0

p
�

J(u)− 1
�

dV. (5.79)

5.4 DISCRETIZATION AND SOLUTION APPROACH FOR THE SOLID MECHANICS

MODEL
211

Here, Ψiso is the isochoric strain-energy density function introduced in Eq. (5.38) in terms

of the reduced right Cauchy-Green tensor C̄ defined in Eq. (5.37). The first term in

Eq. (5.79) describes the isochoric elastic response of the material, the second term adds

the incompressibility constraint J = 1 with the Lagrange multiplier p. The value of

p is computed as part of the model and can be identified as the hydrostatic pressure.

Therefore, the second term is interpreted as the elastic response to compression and is

included in the internal energy functional Πint.

According to the principle of stationary potential energy, the system is in equilibrium, if

the potential energy functional is stationary. This is the case, if the first variation δΠL is

zero. Using the additive structure of ΠL, we can express the principle of stationarity as

DδuΠL(u, p) = DδuΠint(u, p) + DδuΠext(u)
!
= 0, ∀δu (5.80a)

DδpΠL(u, p) = DδpΠint(u, p)
!
= 0 ∀δp. (5.80b)

The variations of the internal and external energy functionals are defined as

DδuΠ(u) =
d

dǫ
Π(u+ ǫδu)

�

�

ǫ=0
, DδpΠ(p) =

d

dǫ
Π(p+ ǫδp)

�

�

ǫ=0
. (5.81)

They can be identified as the internal and external virtual work,

DδuΠint(u, p) = δWint, DδuΠext(u) = −δWext.

Thus, Eq. (5.80a) can be expressed as

δWint −δWext = 0,

which is the form of the equilibrium equation that was used in Eq. (5.73) in the derivation

of the linearized model in Sec. 5.4.1 . The Euler-Lagrange equations corresponding to the

variational problem are the local incompressibility constraint and the partial differential

equation of balance of momentum presented in Eqs. (5.43a) and (5.43b).

Executing the derivative in the definitions of the variations in Eq. (5.81) yields the

212 CHAPTER 5: MODELS AND DISCRETIZATION

following terms:

DδuΠint(u, p) =

ˆ

Ω0

S(u, p) : δE(δu)dV, DδpΠint(u, p) =

ˆ

Ω0

�

J(u)− 1
�

δp dV,

DδuΠext(u) = −
ˆ

Ω0

B ·δudV −
ˆ

∂Ωt
0

T̄ ·δudS,

where the variational variables δp,δu and δE are the virtual pressure, virtual displace-

ments, and virtual strains.

We discretize the solutions of the functional for the displacements u(x) and pressure

p(x) and their variations using different ansatz functions φ L, L = 1, . . . , Nu and ψL,

L = 1, . . . , Np:

ua = ûL
aφ

L
(a), δua = δûL

aφ
L
(a), p = p̂LψL, δp = δp̂LψL.

Again, Einstein summation over repeated indices, in this case the index L, is used. The

displacements function is vector-valued and given by u(x) = (u1(x), u2(x), u3(x))
⊤. The

vectors containing the degrees of freedom are denoted by û = (ûL)L=1,...,Nu
and p̂ =

(p̂L)L=1,...,Np
.

The kinematics equation to compute virtual strains from virtual displacements follows

from Eq. (5.24) in Lagrangian description and is given by δE = sym (F⊤∇u). Its dis-

cretized form is given as follows, where the subscript comma �,A indicates the derivative

with respect to the indexed coordinate XA:

δEAB =
1

2

�

FaBφ
M
(a),A+ FaAφ

M
(a),B

�

δûM
a .

In summary, the resulting set of discretized nonlinear equations can be formulated as:

δWint(u, p)−δWext = 0 ∀δu, (5.82)

DδpΠL(u) = 0 ∀δp, (5.83)

5.4 DISCRETIZATION AND SOLUTION APPROACH FOR THE SOLID MECHANICS

MODEL
213

with the following discretized terms:

δWint(û, p̂) =

ˆ

Ω

1

2
SAB(û, p̂)

�

FaBφ
M
(a),A+ FaAφ

M
(a),B

�

δûM
a dV, (5.84a)

δWext =

ˆ

Ω

Baφ
M
(a)δûM

a dV +

ˆ

∂Ω

T̄ L
a φ

L
(a)φ

M
(a)δûM

a dS, (5.84b)

DδpΠL(û) =

ˆ

Ω

�

J(û)− 1
�

δp dV. (5.84c)

The nonlinear system of equations in Eqs. (5.82) and (5.84) can now be solved for the

unknown vectors û and p̂ of degrees of freedom using a Newton scheme.

5.4.3 Discretization of the Nonlinear Dynamic Hyperelastic

Model

We extend the discretization of the static model in the last section for the dynamic model.

The vector of unknowns is extended by a velocity function v : Ωt → R3. The additional

equation u̇= v relates the displacements and the velocity.

As noted in the derivation of the equilibrium equation in Sec. 5.2.4, the body force

term B in the external energy functional also includes the inertial forces Binertial = ρ0 v̇ to

describe the dynamic behavior.

The resulting nonlinear system of equations is given as follows:

δWint(u, p)−δWext(v) = 0 ∀δu, (5.85a)

v= u̇, (5.85b)

DδpΠL(u) = 0 ∀δp. (5.85c)

5.4.4 Computation of the Stress Tensor and the Elasticity Tensor

In the Newton solver, we need to compute the stress tensor S and its derivative C, called

the elasticity tensor, given the current displacement field u. The relations are defined

by the material model given by the strain energy function. This section presents the

algorithm how to obtain the values of S and C from the displacements u. While the

214 CHAPTER 5: MODELS AND DISCRETIZATION

derivation is formulated in terms of the displacement function u, it is also valid for the

finite element discretization, i.e., using the vector û of degrees of freedom instead.

Following Eq. (5.36), the second Piola-Kirchhoff stress S is given by the derivative of

the strain energy function Ψ with respect to C. For the representation using the invariants,

the chain rule has to be used:

S= 2
∂Ψ(C)

∂C
=
∂Ψ

∂ Ia

∂ Ia

∂C
.

Using the decoupled form, the resulting stresses are also decoupled as S= Svol+Siso. The

volumetric stress Svol describes the elastic response to compression, the isochoric stress

Siso describes the response to the deviatoric deformation. In the following, all steps to

compute these stresses are listed. The rationale is to give a condensed reference of the

implemented algorithm in OpenDiHu to facilitate further development. For the derivation

of all intermediate steps, we refer to the literature [Hol00].

At first, the reduced stress tensor S̄ that neglects the volumetric change is formulated

as:

S̄= 2
∂Ψiso(Ī1, Ī2, Ī4, Ī5)

∂ C̄
= γ̄1 I+ γ̄2 C̄+ γ̄4 a0 ⊗ a0 + γ̄5 (a0 ⊗ C̄ a0 + a0C̄⊗ a0).

In case of an isotropic material, the terms involving a0 are not needed. The prefactors are

given by derivatives of the strain energy function with respect to the reduced invariants:

γ̄1 = 2

�

∂Ψiso(Ī1, Ī2)

∂ Ī1

+ Ī1

∂Ψiso(Ī1, Ī2)

∂ Ī2

�

, γ̄2 = −2
∂Ψiso(Ī1, Ī2)

∂ Ī2

, γ̄4 = 2
∂Ψiso

∂ Ī4

γ̄5 = 2
∂Ψiso

∂ Ī5

Using the fourth order identity tensor I and the projection tensor P,

(I)abcd = δac δbd , P= I− 1

3
C−1 ⊗C,

the stress tensors can finally be computed as

Siso = J−2/3
P : S̄, Svol = J p C−1, S= Siso + Svol.

In the compressible case including the penalty method, the value of p, that is needed for

Svol, is given by the constitutive model as p = dΨvol(J)/dJ . In the incompressible case, p

5.4 DISCRETIZATION AND SOLUTION APPROACH FOR THE SOLID MECHANICS

MODEL
215

is the unknown Lagrange multiplier that gets computed as part of the numerical solution.

In that case, p has the physical meaning of the hydrostatic pressure.

Using the present algorithm, the stress tensor S can, thus, be computed from derivatives

of the strain energy function Ψ and the right Cauchy Green tensor C, which can be

calculated from the displacement field u.

Another important quantity for the numerical solution of the nonlinear system is the

fourth order elasticity tensor C, which is defined as

C = 2
∂S(C)

∂C
= 4

∂2
Ψ(C)

∂C∂C
.

It is the derivative of the stress tensor and is required in the Jacobian matrix of an iteration

of the nonlinear Newton solver. Like the material tensor in Eq. (5.34), it shows major

and minor symmetries and has 21 independent entries.

Like the stress tensor, the elasticity tensor is also additively composed into a volumetric

term Cvol and an isochoric term Ciso. The volumetric term can be computed by:

Cvol = J p̃ C−1 ⊗C−1 − 2 J p C−1 ⊙C−1,
�

C−1 ⊙C−1
�

abcd
=

1

2

�

C−1
ac C−1

bd + C−1
ad C−1

bc

�

.

The term includes two pressure variables p̃ and p. In the incompressible formulation,

both variables equals the Lagrange multiplier p. For the compressible formulation, p̃ is

derived as p̃ = p+ J dp/dJ and p is computed from the volumetric strain energy function

as stated above.

The isochoric term Ciso of the elasticity tensor follows from the following algorithm

listing the quantities to compute:

δ̄1 = 4

�

∂2
Ψiso

∂ Ī1 ∂ Ī1

+ 2 Ī1

∂2
Ψiso

∂ Ī1 ∂ Ī2

+
∂Ψiso

∂ Ī2

+ Ī2
1

∂2
Ψiso

∂ Ī2 ∂ Ī2

�

, δ̄2 = −4

�

∂2
Ψiso

∂ Ī1 ∂ Ī2

+ Ī1

∂2
Ψiso

∂ Ī2 ∂ Ī2

�

,

δ̄3 = 4
∂2
Ψiso

∂ Ī2 ∂ Ī2

, δ̄4 = −4
∂Ψiso

∂ Ī2

, δ̄5 = 4

�

∂2
Ψiso

∂ Ī1 ∂ Ī4

+ Ī1

∂2
Ψiso

∂ Ī2 ∂ Ī4

�

,

δ̄6 = −4
∂2
Ψiso

∂ Ī2 ∂ Ī4

, δ̄7 = 4
∂2
Ψiso

∂ Ī4 ∂ Ī4

, Iabcd = δac δbd , Īabcd = δad δbc, S= (I+ Ī)/2,

∂ Ī5

∂ C̄
= a0 ⊗ C̄ a0 + a0 C̄⊗ a0,

∂2 Ī5

∂ C̄∂ C̄
=
∂

∂ C̄
(a0 ⊗ C̄ a0 + a0 C̄⊗ a0),

216 CHAPTER 5: MODELS AND DISCRETIZATION

C̄ = J−4/3

�

δ̄1 I⊗ I+ δ̄2

�

I⊗ C̄+ C̄⊗ I
�

+ δ̄3C̄⊗ C̄+ δ̄4 S+ δ̄5 (I⊗ a0 ⊗ a0 + a0 ⊗ a0 ⊗ I)

+ δ̄6 (C̄⊗ a0 ⊗ a0 + a0 ⊗ a0 ⊗ C̄) + δ̄7 (a0 ⊗ a0 ⊗ a0 ⊗ a0)

+ δ̄8

�

I⊗ ∂ Ī5

∂ C̄
+
∂ Ī5

∂ C̄
⊗ I
�

+ δ̄9

�

C̄⊗ ∂ Ī5

∂ C̄
+
∂ Ī5

∂ C̄
⊗ C̄

�

+ δ̄10

�∂ Ī5

∂ C̄
⊗ ∂ Ī5

∂ C̄

�

+ δ̄11

�

a0 ⊗ a0 ⊗
∂ Ī5

∂ C̄
+
∂ Ī5

∂ C̄
⊗ a0 ⊗ a0

�

+ δ̄12

∂2 Ī5

∂ C̄∂ C̄

�

P̃= C−1 ⊙C−1 − 1

3
C−1 ⊗C−1

Ciso = P : C̄ : P⊤ +
2

3
J−2/3S̄ : C P̃− 2

3

�

C−1 ⊗ Siso + Siso ⊗C−1
�

Then, C = Cvol +Ciso can be calculated.

5.4.5 Nonlinear Solver for the Solid Mechanics Model

The governing nonlinear system of equations is solved by a Newton scheme. We define the

vector of the unknown degrees of freedom as (û, p̂) =: z. Then, the nonlinear equation

takes the general form W(z) = 0. By linearization around a value z, we get

W(z+∆z) =W(z) + J∆z+ o(z+∆z),

with the increment ∆z= (∆û,∆p̂) and the Jacobian matrix J= ∂W/∂z. Neglecting the

sublinear error term o(z+∆z), we can start from an initial guess z(0) and proceed to find

the root of W using the following iterative Newton scheme:

J∆z(n) = −W(z(n)), (5.86a)

z(n+1) = z(n) +∆z(n). (5.86b)

Equation (5.86a) is a linear system of equations with the system matrix given by J, which

has to be solved in every iteration step n. The linear system of equations can be expressed

5.4 DISCRETIZATION AND SOLUTION APPROACH FOR THE SOLID MECHANICS

MODEL
217

as follows:

kδu,∆u k⊤
δp,∆u

kδp,∆u 0

∆û

∆p̂

 =

−Rδu

−Rδp

 . (5.87)

The definition of the right-hand sides Rδu = δWint − δWext and Rδp = DδpΠL is given in

Eq. (5.82). The system matrix is composed as follows. The upper left part consists of 3

times 3 blocks of submatrices, each with size Nu × Nu and the entries given by:

kδu,∆u,(L,a),(M ,b) =

ˆ

Ω

φ L
(a),B k̃abBDφ

M
(b),D dV with k̃abBD = δab SBD + FaA FbC CABC D.

Here, SBD and CABC D are entries of the second Piola-Kirchhoff stress tensor S and the

elasticity tensor C. The computation of these terms uses the description in Sec. 5.4.4.

The lower left part of the system matrix in Eq. (5.87) is given by 1 times 3 blocks of

submatrices, each with size Np × Nu and entries given by:

kδp,∆u,L,(M ,a) =

ˆ

Ω

JψL (F−1)Baφ
M
(a),B dV.

The upper right part equals the transposed lower left block such that the system matrix

is symmetric. Solving the system in Eq. (5.87) in every iteration of the Newton scheme

in Eq. (5.86) converges to the solution of the static solid mechanics problem.

5.4.6 Discretization and Solution of the Dynamic Hyperelastic

Model

The dynamic model is given by the system of nonlinear equations in Eq. (5.88). In addition

to the spatial discretization with finite elements, we need to discretize the temporal

derivatives of the displacement field u and the velocity field v. The time derivatives are

discretized to timesteps t = i · dt with an implicit Euler scheme:

u̇
1

dt
(u(i+1) − u(i)), v̇

1

dt
(v(i+1) − v(i)).

Because of the added inertial body force, the external virtual work now depends on

the vector of unknowns. In consequence, we split the external virtual work δWext into a

218 CHAPTER 5: MODELS AND DISCRETIZATION

dead part δWext,dead that solely depends on external forces and an inertial part:

δWext = δWext,dead +

ˆ

Ω

ρ0

v(i+1),L
(a) − v(i),L

(a)

dt
φ L
(a)φ

M
(a)δûM

a dV = 0.

In summary, the system of equations to proceed from timestep i to (i + 1) is given as:

δWint(u
(i+1), p(i+1))−δWext(v

(i),v(i+1)) = 0 ∀δu, (5.88a)

1

dt
(u(i+1) − u(i))− v(i+1) = 0, (5.88b)

DδpΠL(u
(i+1)) = 0 ∀δp. (5.88c)

Here, Eq. (5.88a) is the principle of virtual work, Eq. (5.88b) relates displacements u and

velocities v and Eq. (5.88c) is the incompressibility constraint.

The system is again solved using the Newton scheme presented in Sec. 5.4.5. The linear

system for each Newton iteration takes the following form:

kδu,∆u lδu,∆v k⊤
δp,∆u

lδv,∆u lδv,∆v 0

kδp,∆u 0 0

∆û

∆v̂

∆p̂

=

−Rδu

−Rδv

−Rδp

.

The entries kδu,∆u and kδp,∆u are the same as in the static case in Eq. (5.87). The other

non-zero entries are given by

lδu,∆v,(L,a),(M ,b) =
1

dt
δab

ˆ

Ω

ρ0 φ
M
(b)φ

L
(a) dV, lδv,∆u,(L,a),(M ,b) =

1

dt
δab δ

LM ,

lδv,∆v,(L,a),(M ,b) = −δab δ
LM .

Note that in the dynamic problem, the system matrix is unsymmetric. It would be

symmetric if the entries lδu,∆v and l⊤
δv,∆u

were the same. This would be the case for a

density of one, ρ0 = 1, and if the term
´

Ω
φM

b φ
L
a dV would be replaced by δabδ

LM . The

second condition means that a lumped mass matrix would be used where the diagonal

entries are set to the row sums of the original matrix.

We discretize the finite element solution in space by Taylor-Hood elements. This type

of element uses quadratic ansatz functions φ for the displacements and velocities and

5.4 DISCRETIZATION AND SOLUTION APPROACH FOR THE SOLID MECHANICS

MODEL
219

linear ansatz functions ψ for the Lagrange multiplier or hydrostatic pressure p on a 3D

hexahedral mesh. This choice was proven to exhibit no locking [Zie05]. Locking is a

phenomenon of degraded convergence of the finite element method for solid mechanics

problems and occurs for improper discretization schemes.

For a compressible material, the incompressibility constraint which is the last equation

in the systems Eq. (5.82) or Eq. (5.88) is removed. Instead of solving for the pressure

p as a Lagrange multiplier, the value is given by the constitutive model as described in

Sec. 5.2.6. In consequence, the system matrix of the linear system of equations that is

solved in the Newton iterations has a smaller size for compressible materials.

Moreover, the size varies depending on whether the static or the dynamic problem

given in Sections 5.4.5 and 5.4.6 is solved. Assuming a linear mesh with Np degrees of

freedom and a quadratic mesh with Nu degrees of freedom, the square system matrix

has 3 Nu rows and columns for a static compressible formulation, 3 Nu + Np for a static

incompressible formulation, 6 Nu for a dynamic compressible model, and 6 Nu + Np for a

dynamic incompressible model.

In any case, the mechanics model can be linked to the subcellular model by defining the

active stress as given in Eq. (5.42). Since the active stress does not depend directly on the

passive behavior, the active stress term can be added as a constant to the passive stress

term. This constant also has no influence on the Jacobian matrix J. As the subcellular

model depends on the fiber stretch λ f =
p

I4, there is a feedback loop between the

subcellular and the solid mechanics model.

Details on the connection to the subcellular model as well as details on the numerical

solution schemes are given in Sec. 7.7.

221

Chapter 6

Usage of the Software OpenDiHu

OpenDiHu is an open source software framework for static and dynamic multi-physics

problems that can be solved with the finite element method. It was developed essentially

by the author as part of this work with some code contributions given by Aaron Krämer,

Nehzat Emamy and Felix Huber from the Institute for Parallel and Distributed Systems

and the Institute of Applied Analysis and Numerical Simulation. We use it to simulate

the multi-scale models presented in the last chapter: biophysical problems describing

biomechanics and neurophysiology of the musculoskeletal system.

In this chapter, we introduce basic concepts and present details on the usage of our

software. The next chapter Chap. 7 continues with a discussion of internal software

aspects and gives details on how the different algorithms and solvers are implemented.

We begin this chapter with an explanation of the design goals in Sec. 6.1. Next, Sec. 6.2

showcases how to set up simulation programs for various scenarios based on examples.

Some biochemical models are conveniently formulated and shared in the bioengineering

community using the CellML description language [Cue03]. Section 6.3 gives more details

on the usage of CellML models in our software. Finally, Sec. 6.4 discusses various output

formats and compatible tools for visualization.

6.1 Design Goals

Simulations of complex multi-scale models require the combination of tailored numerical

solution schemes. Spatial mesh resolutions and timestep widths should be chosen care-

fully to avoid instabilities and to allow the completion of useful simulation time spans in

feasible runtimes. Numerical solvers on 1D, 2D and 3D meshes have to be coupled and

the data should be mapped between these meshes.

222 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

The simulations should be parallelized to efficiently exploit today’s hardware and re-

duce the runtime to a minimum. Parallel runs should be performant on small worksta-

tions, on larger compute servers and on supercomputers.

Scenarios for different use cases should be possible, ranging from convenient debugging

with simple physics and small problem sizes to large runs with highly resolved meshes and

comprehensive models. Schemes for input and output of the data should be available for

all of these use cases. Established community standards for models, such as the CellML

description, and output file formats should be considered. The configuration of models

and solver parameters should be flexible, well organized and properly documented to

allow an efficient workflow.

In addition to this feature list from a user perspective, further requirements can be

formulated from a developer perspective. The program code should be modular, struc-

tured and well documented to allow discovery, reuse and extension in the future. The

implemented solvers should compute correct results, which should be testable to preserve

correctness during code changes.

OpenDiHu aims to fulfill these requirements. The name originates from the Digital

Human project that aimed to advance the field of biomechanics by “providing new pos-

sibilities to improve the understanding of the neuromuscular system by switching from

small-sized cluster model problems to realistic simulations on HPC clusters” [Röh17].

The software framework contributes to this goal.

In the following, we concretize the requirements and formulate design goals to guide

the software development. The design goals can be summarized under the keywords

usability, performance and extensibility. They span the field of requirements from user-

centric properties to developer centric properties.

6.1.1 Usability

Usability is defined in ISO 9241-11 [ISO18] as “the extent to which a product can be used

by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction

in a specified context of use.” We target at users with a basic understanding of biophysics,

numerics, programming and command line usage in Linux. The specified goals include—

in increasing complexity—to reproduce results of existing studies, analyze the simulation

results, adjust parameters of existing simulations to achieve different model behavior,

6.1 DESIGN GOALS 223

conduct studies over a set of different parameters, exchange numerical schemes to im-

prove stability or efficiency, combine implemented parts of models to a new multi-physics

model, and implement new solvers for completely new physics. The context of use lies

in scientific and educational studies.

We base the usage of the framework on command line programs and scripts and do

not include a graphical user interface (GUI). A GUI would need to present an abstract,

simplified layer of the simulation setup, that reduces the understanding of the actual

process. Furthermore, it would be difficult to keep a GUI up to date with all functionality

that gets implemented in the software over time. The advantage of a command-line-

only-program is, that it can be easily used in automated studies with different parameter

combinations. Furthermore, it simplifies usage on remote computers such as compute

clusters and supercomputers.

In this context, good usability is ensured by using the Python programming language

for the configuration of the simulation. The computational code of every simulation

is written in C++ and compiled to a hardware specific executable, which enables good

computational performance. The user can configure all parameters using Python scripting.

The Python3 interpreter is linked into the C++ program such that the configuration script

can be parsed at runtime when the simulation program is executed.

Thus, users can organize the simulation settings using their own variable names. Users

can compute derived parameter values within the settings script, they have the flexibility

to organize the settings in multiple files, and define own command line parameters for

every example. Input data and results of the simulation can be preprocessed and post-

processed directly in the Python settings script.

6.1.2 Perfomance

The second design goal is to achieve good performance. OpenDiHu satisfies this goal by

supporting parallel execution on the one hand and by providing efficient algorithms on

the other hand.

Simulations can be run on distributed and shared memory systems. The computational

domains are mainly discretized with structured meshes, that can easily be partitioned

into subdomains for multiple processes. For large scale simulations on multiple cores,

the input data such as node positions can be specified in a distributed way. Hence, every

224 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

process only needs to know its own portion of the whole simulation and the total amount

of data can exceed the storage capabilities of a single compute core.

Efficient algorithms involve efficient numerical solvers such as multigrid or conjugate

gradient schemes and optimized data handling within the software framework. We use

the external library PETSc [Bal97] for the parallel storage of vectors and matrices and

for linear algebra operations. PETSc provides a large collection of preconditioners, linear

and nonlinear solvers that can be chosen at runtime. At the same time, it offers low-level

access to the locally stored data, which, e.g., allows us to optimize data transfer between

different arrays.

For multi-scale models, good performance can only be achieved, when the data transfer

between different solvers is also efficient. Using profiling tools, runtime hotspots in vari-

ous simulation programs were regularly identified and evaluated. The portions of code,

that use most runtime should be the actual computations and not memory allocations or

data transfer operations. Using these insights, the framework was efficiently constructed,

e.g., by avoiding repeated memory initialization and expensive copy operations whenever

possible.

6.1.3 Extensibility

By extensibility, we refer to the possibility to add solvers for new physical processes to

the existing framework. This is facilitated when existing components of the framework

are documented and can be reused.

On the highest level, existing simulation programs using models in the CellML format

can be altered to solve different physics by exchanging the CellML model. For exam-

ple, model extensions of the active mechanical behavior of the half-sarcomeres can be

implemented in the corresponding CellML model and without changing the C++ code.

It is also possible to use the adapters in OpenDiHu for the numerical coupling library

preCICE [Bun16] to numerically couple software packages to OpenDiHu. The surface

coupling adapter allows coupling external mechanics solvers and exchange displacements

and traction forces. The volume coupling adapter allows, e.g., to use the electrophysiology

solver in OpenDiHu and couple it with external models of the muscle or other organs.

On the next level, which still does not require changing the C++ core, the modular

building blocks of model solvers such as timestepping schemes for the solution of ODEs,

operator splittings or coupling schemes can be newly combined for different behavior.

6.2 USAGE OF OPENDIHU 225

Solving other models, for which no solver has been designed, involves adding new code

to the software framework. The solvers in OpenDiHu use structures like function spaces

consisting of meshes and basis functions, linear system solvers and output writers for data

output, which are self-contained and get reused at different locations in the framework. A

completely new model, e.g., an electro-magnetic description of electrophysiology would

require a dedicated new solver class. Two template classes exist in OpenDiHu that can be

copied and adjusted to create such a new solver for either transient or static problems.

Polymorphism concepts of the C++ programming language such as object orientation

(OO) and template meta-programming (TMP) allow writing generic algorithmic code that

gets specialized for the particular use-cases at runtime (OO) or at compile time (TMP).

For example, most of the solvers are independent of the type of mesh they operate on.

Similarly, an explicit timestepping scheme has the same definition regardless whether it

solves a 0D subcellular model with a high-dimensional state vector or a 3D linear elasticity

formulation discretized by finite elements, where the solution is a vector field with three

components. These concepts help to reuse existing structures in OpenDiHu.

6.2 Usage of OpenDiHu

We begin with aspects of OpenDiHu that are relevant from a user’s perspective. This

section outlines the basic organization of the repository in Sec. 6.2.1, the installation

procedure in Sec. 6.2.2 and demonstrates the usage of given example scenarios in Sec-

tions 6.2.3, 6.2.4, and 6.2.6. Section 6.2.7 summarizes all available solver classes.

6.2.1 Organization of the Repository

The complete OpenDiHu is contained in a single git repository which is hosted on GitHub

at https://github.com/maierbn/opendihu. In addition, the documentation is hosted

on the “Read the Docs” website under https://opendihu.readthedocs.io [Mai21c].

This documentation is split into a user and a developer documentation. The user part

includes introductory information such as installation instructions, a description of most

of the existing simulation scenarios with images of the results, instructions how to build

and run them and a complete reference of the settings of all available solvers.

After cloning the git repository, the directory has the contents shown in Fig. 6.1, which

will be explained in the following. The software consists of a core library, that provides

https://github.com/maierbn/opendihu
https://opendihu.readthedocs.io

226 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

opendihu

core

src

examples

debug

laplace

poisson

diffusion

solid_mechanics

fiber_tracing

electrophysiology

cellml

monodomain

fibers

multidomain

neuromuscular

meshes

input

dependencies

petsc

python

scons

scons-config

...

doc

sphinx

sympy

...

scripts

...

testing

unit_testing

SConstructGeneral

user-variables.scons.py

Makefile

config.log

Figure 6.1: Contents of the main opendihu directory.

all functionality such as solvers and data handling. In addition, examples are created,

that set up specific simulation scenarios and import the required solvers by linking to the

core library.

The subdirectory core/src contains all C++ code that is compiled into the core library.

This source code consists of approximately 90 000 code lines, 24000 blank lines and

19 000 comment lines contained in approximately 700 files and structured in a directory

tree with approximately 70 total subdirectories.

The examples directory contains all simulation scenarios that are packaged with Open-

DiHu. Each of the approximately 65 examples demonstrates how to solve a different

model, often in several variations with different parameters and numerical schemes. The

examples are grouped by the subdirectories shown in Fig. 6.1 in different categories:

technical examples for debugging, scenarios for solving the Laplace, Poisson and dif-

fusion equations, various solid mechanics models, fiber tracing examples that can be

used to generate meshes as described in Chap. 3, and the electrophysiology models. The

electrophysiology examples are further structured as given in Fig. 6.1 with increasing

complexity: subcellular CellML model solvers (0D) in the subdirectory cellml, solvers for

the monodomain equation (1D), i.e., electrophysiology on a single fiber in monodomain,

models with multiple 1D fibers also coupled with the 3D EMG model or muscle contraction

6.2 USAGE OF OPENDIHU 227

model in fibers, the same but with the multidomain model in multidomain, and models

of motor neurons coupled with fibers and multidomain models in the neuromuscular

directory.

The directory meshes contains scripts and raw data to generate all meshes needed by

the simulations. The directory input collects all input files that are used in any example,

e.g., cellml models, meshes, and text files that specify MU assignments and firing times.

Because this directory contains large files, it is not included in the git repository but hosted

on a separate file server.

The dependencies directory contains the source files and installations of all external

packages, such as PETSc in petsc, the Python3 interpreter in python, and the SCons

related packages in scons and scons-config. This directory will be automatically filled

with more subdirectories during the installation procedure.

The doc directory collects various documents and mathematical derivations that help

to understand certain solvers. For example, the directory doc/sphinx contains the whole

online documentation, which is hosted on the “Read The Docs” website [Mai21c] and

built using the reStructuredText markup language and the Sphinx generation system.

The doc/sympy directory contains Python scripts with the derivation of various equations

using the symbolic math package SymPy.

Various utility Python scripts are stored in the directory scripts. Users should add this

directory to the $PATH environment variable in their system such that the scripts can be

invoked from the command prompt. For example, the catpy and plot scripts list and

visualize Python-based output files of simulations, other scripts can be used to inspect

and manipulate binary mesh files.

The directory testing/unit_testing contains the code for all unit tests. Furthermore,

the files that exist directly under the top level opendihu directory are relevant for the

build system, which will be explained in the next section.

6.2.2 Installation

The installation procedure involves three steps: First, the dependencies, i.e., all required

external packages have to be located. Second, the OpenDiHu core library is compiled

and linked. Third and optionally, unit tests are compiled, linked and executed.

228 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

The first step consists of finding the location of each dependency, determining the

corresponding header and library files that are needed for inclusion and linking, and

potentially determining special compiler or linker flags. The step can be configured

to fit the individual system setup and use case by taking into account already existing

dependencies and enabling or disabling optional packages.

The second step compiles the source code and links it to all dependencies that were

collected in the first step. The result is a static library, which contains the functionality

of OpenDiHu in executable form. To run a particular simulation, an additional program

with a small source code file has to be written, compiled and linked to this library.

For the compilation of unit tests in the third step, a similar action is performed. The

step builds and links three unit testing executables that are subsequently run with one,

two and six processes and conduct various functional tests of the implementation.

Currently, the following fifteen dependencies are used with OpenDiHu: the standard

for shared-memory parallelisation MPI [Gab04], the data handling and numerics library

PETSc [Bal97; Bal15; Bal16], the Python interpreter [Van09], a set of Python packages

including NumPy [Har20], SciPy [Vir20] and Matplotlib [Hun07] among others, a Base64

compression library [Kis20], the unit testing framework Googletest [Goo20], the compile-

time differentiation toolbox SEMT [Gut04; Gut12], the parallel file I/O library ADIOS2

[God20], the vectorization toolbox Vc [Kre12; Kre15] and its newer version std-simd

[Hob19], the library for parallel time integration with multigrid XBraid [XBr20], the solver

and converter for CellML models OpenCOR [Gar15], the XML parser libxml2 [Vei21], the

coupling library preCICE [Bun16] and the logging library Easylogging++ [Ser21]. The

build system has to install these dependencies and possibly cope with different sets of

available versions and prerequisites.

Popular build systems exist that facilitate the three mentioned installation step, e.g.,

CMake, GNU Autoconf and SCons. CMake uses a three-step process of configuration,

generation and building, which requires users to have the corresponding know-how.

Autoconf creates a configure script that relies on command line options instead of a

configuration file for all settings.

Considering the usability goal for OpenDiHu, we chose the build system SCons as it

requires little previous knowledge and can read its settings from a Python based con-

figuration file. SCons performs the three steps of the installation procedure by a single

command. Packages that are not yet installed are downloaded and installed automati-

cally, using transparent bash commands. Furthermore, the SCons build system itself is

packaged along with our software and, thus, no additional installation steps are required

6.2 USAGE OF OPENDIHU 229

to begin the build process (apart from checking that some essential packages such as a

compiler and an MPI implementation are available).

SCons allows to both specify the installation configuration and extend the functionality

by using the Python scripting language. Based on the scons-config package [Hod13],

we added functionality to detect and automatically download the dependencies that are

required for OpenDiHu. For some dependencies, multiple versions are tried if the first

attempt fails, e.g., for Python and PETSc. This adds robustness for different systems and

typically allows to set up OpenDiHu on a new Linux computer by only executing a single

“scons” command.

The top-level files listed in Fig. 6.1 are related to the build system. The file SConstruct

General contains Python code that defines various flags for the usual build targets: the

release targets creates optimized and hardware-specific binaries, the debug target dis-

ables optimization and adds debugging symbols to the executables, other debugging

targets produce intermediate outputs after the preprocessing, assembly or optimization

stages. All options are documented in the help text of the build system.

The user-variables.scons.py file contains the configuration and can be adjusted

by the user to enable or disable certain packages or features. The Makefile contains

convenient shortcuts for longer build command, e.g., the command “make” builds the

debug and release targets and runs the unit tests. During installation, all text output and

progress information is appended to the log file config.log. If the installation fails, this

file contains all information that is required to track down the respective issue.

After the installation and build step of the core library, individual simulation scenarios

can be developed and executed. The place for the code of these simulations is in the

examples subdirectory, where numerous predefined simulation scenarios are given. In

the following, we demonstrate how to use OpenDiHu and, more specifically, we present

the structure and configuration of a simulation program by considering three of these

examples in increasing complexity: a Laplace problem in Sec. 6.2.3, a simulation of muscle

contraction in Sec. 6.2.4 and a simulation of the neuromuscular system in Sec. 6.2.6.

6.2.3 Exemplary Usage: Laplace Problem

Every simulation consists of a single C++ source file that gets compiled to an executable

program and a Python file that defines all settings for the simulation. The example consid-

ered in the following solves a 2D Laplace problem and is located in the directory examples

230 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

/laplace/laplace2d. The considered C++ source file is src/laplace_structured.cpp

and the corresponding Python settings file is settings_lagrange_quadratic.py. The

contents of the two files are listed in Figures 6.2 and 6.3. The directory additionally

contains code for other scenarios that have different parameters and discretizations.

After compilation by the “scons” command, an executable is created in the build_release

subdirectory of the example. In this directory, the simulation can be run with the following

command:

./laplace_structured ../settings_lagrange_quadratic.py

Here, the first item is the program name. We pass the filename of the settings file as the

first command line argument.

Figure 6.2 lists the full C++ source code of this example. Line 2 includes the main

header file of opendihu, which makes all functionality available. The rest of the source file

contains the definition of the main function. Line 9 defines the context object settings,

which uses the command line arguments given by argc and argv. This line invokes the

Python interpreter on the Python settings file and stores all parameters in the settings

object.

Lines 12 to 17 define an object named equationDiscretized, which is of the Finite

ElementMethod class located in the SpatialDiscretization namespace. The new object

uses the settings object that was defined before.

The FiniteElementMethod class takes several class template arguments enclosed in

angle brackets. The first in line 13 specifies the mesh type, which, in this 2D example, is

a structured deformable mesh of dimension two. Furthermore, line 14 specifies quadratic

Lagrange basis functions and line 15 specifies Gauss quadrature with three Gauss points

per dimension. The argument in line 16 defines the equation that is discretized by this

finite element method class, which, in this case, is the static Laplace equation ∆u= 0.

In line 20, the solver is executed, performs the computation and writes the configured

output files. The program finally returns in line 22.

The problem to be solved is parametrized by the settings file settings_lagrange_

quadratic.py, which is listed in Fig. 6.3. The code in this file can use all features of

the Python scripting language. For example, in line 5, the NumPy numerics packages is

imported and its sine function is used in lines 11 and 14. The print statement in line 16

is executed in the for loop in line 7 and produces informational output about boundary

condition values during execution.

6.2 USAGE OF OPENDIHU 231

1 #include <cstdlib>

2 #include "opendihu.h"

3

4 int main(int argc, char *argv[])

5 {

6 // 2D Laplace equation 0 = du^2/dx^2 + du^2/dy^2

7

8 // initialize and parse settings from input file

9 DihuContext settings(argc, argv);

10

11 // define the tree of solvers (here only one FEM solver)

12 SpatialDiscretization::FiniteElementMethod<

13 Mesh::StructuredDeformableOfDimension<2>,

14 BasisFunction::LagrangeOfOrder<2>,

15 Quadrature::Gauss<3>,

16 Equation::Static::Laplace

17 > equationDiscretized(settings);

18

19 // run the simulation

20 equationDiscretized.run();

21

22 return EXIT_SUCCESS;

23 }

Figure 6.2: Example source file of an OpenDiHu solver for the 2D Laplace problem.

The settings file has to define the variable config to be a Python dictionary, i.e., an

associative container data structure. This dictionary contains the parameter names and

values that are required by the solver in the C++ program. In Fig. 6.3, the config

dictionary is defined in lines 18 to 52. It contains global options such as filenames of

log files in lines 19 to 22 followed by specific options for the finite element method

object in lines 24 to 50. The exact meaning of all parameters is documented in the online

documentation [Mai21c] and also sketched by the comments in the file. Some parameters

will be presented in the following.

The parameter set consists of mesh parameters in lines 25 to 28, problem parameters

in lines 31 to 34, solver parameters in lines 37 to 44 and output writers in lines 47 to 50.

The mesh in this scenario is a cartesian grid on the unit square. The number of elements

is specified by the parameter "nElements". The number of elements in x and y-directions

is given by the variables nx and ny, which are defined in line 1 of the settings file.

The parameter "inputMeshIsGlobal" is relevant for parallel execution. Its value spec-

232 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

ifies, whether all parameters apply to the global problem (True) or to a local subdomain

(False). If the given example is executed by four processes, the mesh will have 10× 10

elements, as specified by nx and ny. However, if "inputMeshIsGlobal" is set to False,

each of the 2× 2 subdomains would create a mesh of this size, yielding a total mesh of

20 × 20 elements. Instead of the Cartesian grid, it is also possible to define the node

positions of every element. Then, it is beneficial to only specify the data for the own sub-

domain on each process for meshes with large numbers of elements and large numbers

of processes.

This example problem uses Dirichlet boundary conditions. Values of a sine curve are

prescribed at the boundaries y = 0 and y = 1 of the unit square. Line 31 of the settings

file sets the boundary conditions to the variable bc. This variable is defined in the loop

before the config dictionary in lines 6 to 16. The bc variable itself is a dictionary that

specifies the prescribed values for every degree of freedom.

Lines 38 and 39 specify the employed preconditioner and solver by strings that are given

to the solver library PETSc. Thus, all linear solvers available in PETSc can be used. Error

tolerances on the residual norm and a maximum number of iterations can be specified. It

is also possible to dump the system matrix, right-hand side and solution vectors to a text

file or a MATLAB readable file using the options in lines 42 and 43.

Output of the simulation results is configured by specifying a list of output writers

in lines 47 to 50. The considered example has the two output writers with formats

"Paraview" and "PythonFile". The former writes files that can be visualized by the

software ParaView, the latter outputs files that can be easily parsed with a Python script.

Both output writers either generate binary or human-readable files, depending on the

"binary" option. Binary files have smaller file sizes and are used for large datasets. The

human-readable text files make it is easier to debug the output.

After the program has been run, the out subdirectory contains the two output files

created by the output writers. The Python based file can be visualized using the command

“plot”, which is also provided by OpenDiHu. Figure 6.4 shows the resulting Matplotlib

visualization. The figure shows that the Dirichlet boundary conditions for y = 0 and

y = 1 are met and the solution is a harmonic function.

6.2 USAGE OF OPENDIHU 233

1 nx = 10; ny = nx # number of elements

2 mx = 2*nx + 1; my = 2*ny + 1 # number of nodes

3

4 # specify boundary conditions

5 import numpy as np

6 bc = {}

7 for i in range(mx):

8 x = i/mx

9

10 # bottom line

11 bc[i] = np.sin(x*np.pi)

12

13 # top line

14 bc[(my-1)*mx + i] = np.sin(x*np.pi)

15

16 print("{}, bc: {}, {}".format(i, bc[i], bc[(my-1)*mx + i]))

17

18 config = {

19 "solverStructureDiagramFile": "solver_structure.txt", # diagram file

20 "logFormat": "csv", # "csv" or "json", format of log

21 "scenarioName": "laplace", # scenario name for log file

22 "mappingsBetweenMeshesLogFile": None, # a log file about mappings

23 "FiniteElementMethod": {

24 # mesh parameters

25 "nElements": [nx, ny], # number of elements in x and y

26 "inputMeshIsGlobal": True, # if nElements is a global number

27 "physicalExtent": [1.0, 1.0], # physical domain size

28 "physicalOffset": [0, 0], # physical location of origin

29

30 # problem parameters

31 "dirichletBoundaryConditions": bc, # Dirichlet BC as dict

32 "dirichletOutputFilename": None, # output file for Dirichlet BC

33 "neumannBoundaryConditions": [], # Neumann BC

34 "prefactor": 1, # constant prefactor c in c∆u
35

36 # linear solver parameters

37 "solverType": "gmres", # linear solver scheme

38 "preconditionerType": "none", # preconditioner scheme

39 "relativeTolerance": 1e-15, # stopping criterion, rel. tol.

40 "absoluteTolerance": 1e-10, # stopping criterion, abs. tol.

41 "maxIterations": 1e4, # maximum number of iterations

42 "dumpFormat": "default", # format for data dump

43 "dumpFilename": None, # filename for dump

44 "slotName": None, # connector of solver

45

46 # output writers

47 "OutputWriter" : [

48 {"format": "Paraview", "filename": "out/laplace", "binary": False},

49 {"format": "PythonFile", "filename": "out/laplace", "binary": False},

50]

51 }

52 }

Figure 6.3: Python settings file of the Laplace example corresponding to the source file

in Fig. 6.2.

234 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

X
0.0 0.2 0.4 0.6 0.8 1.0

Y
0.0

0.2
0.4

0.6
0.8

1.0

Z

0.0
0.2
0.4
0.6
0.8
1.0

t = 0.0

Figure 6.4: Visualization of the solution of the exemplary 2D Laplace problem. The plot

was created using the plot command on the output of the PythonFile output

writer.

6.2.4 Exemplary Usage: Multidomain Model With Solid

Mechanics

The next example to be studied is a simulation of electrophysiology and muscle contrac-

tion. It uses the multidomain model on the muscle and body fat domains and bidirection-

ally couples the nonlinear solid mechanics model. The example is located in the directory

examples/electrophysiology/multidomain/multidomain_contraction.

Figure 6.5 shows the source code of the C++ file. The overall structure of the code is

the same as in the previous Laplace example: Line 2 includes the OpenDiHu header, the

main function consists of the definition of a settings object in line 9, the definition of the

solver in lines 13 to 48 and its execution in line 50. The only difference is the definition

of the solver, which contains more nested class templates.

The problem is numerically solved by computing the multidomain model, transferring

the activation parameter γ from the multidomain mesh to the elasticity mesh, computing

the solid mechanics model, and then mapping the deformed geometry back to the mul-

tidomain mesh. This compute cycle repeats in every timestep. This coupling between two

models is performed by the Control::Coupling class defined as the outer-most solver

in line 13. It nests the two solvers of the model parts: The first is the class named

6.2 USAGE OF OPENDIHU 235

1 #include <cstdlib>

2 #include "opendihu.h"

3

4 int main(int argc, char *argv[])

5 {

6 // 3D multidomain coupled with contraction

7

8 // initialize everything, handle arguments and parse settings from input file

9 DihuContext settings(argc, argv);

10

11 typedef Mesh::StructuredDeformableOfDimension<3> MeshType;

12

13 Control::Coupling

14 <

15 OperatorSplitting::Strang<

16 Control::MultipleInstances< // subcellular model

17 TimeSteppingScheme::Heun<

18 CellmlAdapter<

19 57,71, // nStates,nAlgebraics: 57,71 = Shorten, 4,9 = Hodgkin Huxley

20 FunctionSpace::FunctionSpace<MeshType,BasisFunction::LagrangeOfOrder<1>>

21 >

22 >

23 >,

24 TimeSteppingScheme::MultidomainWithFatSolver< // multidomain

25 SpatialDiscretization::FiniteElementMethod< // FEM for initial potential flow

26 MeshType,

27 BasisFunction::LagrangeOfOrder<1>,

28 Quadrature::Gauss<3>,

29 Equation::Static::Laplace

30 >,

31 SpatialDiscretization::FiniteElementMethod< // anisotropic conduction

32 MeshType,

33 BasisFunction::LagrangeOfOrder<1>,

34 Quadrature::Gauss<5>,

35 Equation::Dynamic::DirectionalDiffusion

36 >,

37 SpatialDiscretization::FiniteElementMethod< // isotropic conduction in fat layer

38 MeshType,

39 BasisFunction::LagrangeOfOrder<1>,

40 Quadrature::Gauss<5>,

41 Equation::Dynamic::IsotropicDiffusion

42 >

43 >

44 >,

45 MuscleContractionSolver< // solid mechanics

46 Mesh::CompositeOfDimension<3>

47 >

48 > problem(settings);

49

50 problem.run();

51

52 return EXIT_SUCCESS;

53 }

Figure 6.5: Source code of the simulation program that computes the multidomain model

coupled with the solid mechanics model.

236 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

OperatorSplitting::Strang in line 15. It computes the multidomain electrophysiology

model. The second class is the MuscleContractionSolver in line 45. It calls the solid

mechanics solver and incorporates the activation and active stress term.

The multidomain model itself is computed using two coupled solvers. As formulated in

Sec. 5.3, a Strang operator splitting is used that alternates between solving the subcellular

model and the electric conduction part of the multidomain model. In the code, these

two parts are defined in line 16 and line 24. As can be seen, the first part that solves the

subcellular model consists of the three nested classes in lines 16 to 18. The inner-most

is the CellmlAdapter, which loads and executes a DAE model description from a CellML

file. Its template arguments are the number of states and number of algebraic variables

in line 19 and the type of the function space in line 20 used for spatial discretization.

The CellML model is solved by the enclosing Heun timestepping scheme in line 17.

Because we need to solve the subcellular model for every compartment k ∈ 1, . . . , NMU, a

MultipleInstances class is used in line 16, which encloses the timestepping scheme and

applies it on the domains for every compartment.

The second part of the multidomain model is the electric conduction in the intracellular,

extracellular and body fat domains. It corresponds to solving the linear system of equa-

tions given in Sec. 5.3.5. This is done in OpenDiHu by the MultidomainWithFatSolver

defined in lines 24 to 43. It can be seen, that it nests three classes of type FiniteElement

Method.

The first one in line 25 is used to initially solve a potential flow problem, from which the

fiber direction can be estimated. This approach [Cho13] is also used in the fiber generation

algorithms described in Sec. 3.4.6. As a result, we get the anisotropy direction in the 3D

domain, which is needed to define the anisotropic intracellular conduction tensors σk
i .

As the problem to be solved is a Laplace problem, the equation to be discretized by the

class is defined accordingly in line 29.

The second and third nested finite element classes are defined in lines 31 and 37. They

define the isotropic electric conduction in the muscle domain and the anisotropic electric

conduction in the fat domain and are used to set up the stiffness and mass matrices for

these subproblems.

Several meshes are involved in the definition of this example. As described in Sec. 5.1.5,

the computational domain consists of a muscle domain and a fat domain. Both domains

are discretized by a 3D structured mesh, which is given as MeshType in line 11. This type

is referenced for the subcellular model in line 20 and for the conduction parts in lines 26,

32, and 38. For the muscle contraction solver in line 46, we use a different, “composite”

6.2 USAGE OF OPENDIHU 237

1 config = {

2 "scenarioName": "multidomain_contraction",

3 "Solvers": {

4 "potentialFlowSolver": {...},

5 },

6 "Coupling": {

7 "timeStepWidth": 1e-3,

8 "Term1": { # multidomain

9 "StrangSplitting": {

10

11 "Term1": { # subcellular model

12 "MultipleInstances": {

13 "nInstances": variables.n_compartments,

14 "instances": [# settings for each motor unit

15 {

16 "ranks": list(range(n_ranks)),

17 "Heun": {

18 "CellML" : {

19 }

20 }

21 } for compartment_no in range(variables.n_compartments)]

22 },

23 },

24 "Term2": { # conduction term of multidomain

25 "MultidomainSolver": {

26

27 "PotentialFlow": {

28 "FiniteElementMethod": {

29 "solverName": "potentialFlowSolver",

30 },

31 },

32

33 "OutputWriter": [

34]

35 },

36 }

37 },

38 },

39 "Term2": { # solid mechanics

40 "MuscleContractionSolver": {

41

42 # the actual solid mechanics solver

43 "DynamicHyperelasticitySolver": {

44 }

45 }

46 }

47 }

48 }

Figure 6.6: Excerpt of the settings file for the multidomain and solid mechanics solver.

type of mesh. This type is a combination of the two structured meshes for the body and

for the fat domain, as the whole tissue should be considered in the computation of the

deformation.

The Python settings script, that corresponds to the C++ source file, is given in Fig. 6.6.

Only the main structure of the config dictionary is outlined and the details are left out.

It can be seen, that the definition in this file has a hierarchical structure. It is the same

238 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

tree-like structure as in the C++ source.

The settings for the top-level coupling scheme start in line 6. First, some settings

related to the timestepping scheme itself are specified of which one, the timestep width,

is shown. Then, the settings of the two nested solvers are listed under "Term1" in line 8

and "Term2" in line 39. Similarly, also the nested Strang splitting scheme in line 9 defines

its two nested solvers under "Term1" (line 11) and "Term2" (line 24).

Lines 12 to 22 define settings for the MultipleInstances class, which holds separate

instances of the subcellular solver for all motor units. The number of instances is speci-

fied by the "nInstances" parameter. A list containing the particular parameters for each

instance is given under the keyword "instances" in lines 14 to 21. This construct is a

Python list comprehension, an inline definition of list entries defined by the for loop in

line 21. The nested specifications of parameters of the Heun and the CellML methods,

not shown in Fig. 6.6, depend on the iteration index compartment_no of this loop. Each of

these instance gets computed by a defined set of processes, specified under the parameter

"ranks" in line 16. In this multidomain example, all processes take part in the compu-

tation of all multidomain compartments and, thus, all instances of the MultipleInstances

class are computed by all processes. The expression in line 16 expands to a list [0,1,2,...]

indicating all available processes.

Specifications of the parameters for a FiniteElementMethod class, similar to the Laplace

example considered in Sec. 6.2.3, also appear in the example of this section, once for each

of the three occurrences of this class. The excerpt of the settings file in Fig. 6.6 shows one

of these specifications, the PotentialFlow finite element method, in lines 27 to 31. This

FiniteElementMethod class shares its mesh and its linear solver with other classes. The

mesh and the linear solver both have specific parameters that were listed as blocks in the

settings file of the Laplace problem in Fig. 6.3. To avoid duplication of this information

and to share linear solvers and meshes, these parameters are not repeated for every class,

by which they are required. Instead, parameters for linear solvers and meshes can be

specified globally at the beginning of the settings file and referenced at the locations in

inner classes, when they are used. In the example settings in Fig. 6.6, this is indicated for

the linear solver. Its parameters are defined under the global "Solvers" keyword in the

beginning and the name "potentialFlowSolver" in line 4. These settings are referenced

in the finite element method in line 29 using the "solverName" keyword. Internally, only

one solver object with the related data structures of PETSc is created and reused where

ever the solver is referenced by its solver name.

The meshes use an analog approach, in which all meshes can be defined under a global

6.2 USAGE OF OPENDIHU 239

"Meshes" keyword (not shown in Fig. 6.6) and referenced in the solver objects by their

"meshName". This is helpful especially for meshes with many node positions that can be

specified once and reused throughout all solvers.

The output of the results is written to files by output writers that are defined as shown

in the previous Laplace example in Fig. 6.3. Almost all solver classes allow configuring as-

sociated output writers. In Fig. 6.6, such output writer settings are listed in line 33 within

the multidomain solver. Additional output writers can be defined in the Heun scheme

of the subcellular model and in the MuscleContractionSolver for the solid mechanics

models. Each output writer outputs files with the solution variables of the respective

solver. Different time intervals can be set for the writers to allow for different output

frequencies of large data such as all subcellular model states and of smaller data such as

the solid mechanics outputs.

The following exemplary command can be used to run the program for this example:

mpirun -n 2 ./multidomain_contraction ../settings_multidomain_contraction.

,→ py very_coarse.py --end_time=10

Similar to the Laplace example in Sec. 6.2.3, the program ./multidomain_contraction

is called with the settings file ../settings_multidomain_contraction.py as its first

argument. In addition, a second script, very_coarse.py, is given as second argument.

This script gets loaded from within the Python settings script and defines a number of

high-level parameters in a separate variables namespace. These parameters are then

used in the settings file. For example, line 13 of Fig. 6.6 uses the variable n_compartments,

which is defined in the so-called variables file very_coarse.py. The file name refers to

the coarse discretization that is chosen in the particular scenario.

The rationale of this second script is to summarize important parameter values in a

smaller and easier readable file. Whereas the full settings file corresponding to Fig. 6.6

contains approximately 500 lines and a complex nested structure, the variables script

only contains about 200 lines, mainly value assignments to parameters and descriptive

comments.

Several of these variables files exist in the variables subdirectory of the example. They

define different scenarios for the given simulation such as different mesh resolutions or

CellML model files. By exchanging the filename in the second argument of the command

line, these different scenarios can be easily executed.

The last argument in the command, “--end_time=10”, gets also parsed by the Python

script. It allows to set the end of the simulation time span to the specified value via the

240 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

command line. Other options are available to alter various parameters in this scenario.

These command line arguments take precedence over the parameter values that are

specified in the Python scripts. This type of command line argument makes it possible to

easily conduct parameter studies, e.g., from bash scripts, where the program can be called

with different parameter values. The architecture involving a main settings file with all

parameters in the hierarchical solver structure, a set of small variables files with dedicated

parameter choices and the possibility to override all parameters from the command line

is present in most of the advanced examples in OpenDiHu.

Another thing to note is that the given command begins with “mpirun -n 2”, which

instructs MPI to launch the program using two processes. Here, any other number is

possible and a corresponding domain decomposition is computed automatically. The

parallelism is only bounded by the number of available elements in the meshes.

6.2.5 Data Connections in the Example of a Multidomain Model

with Solid Mechanics

The control flow of a simulation program with nested solvers such as the coupled elec-

trophysiology and muscle contraction model studied in the previous section is defined

by the tree of solvers in the C++ source file. This structure is reflected in the Python

settings file. The corresponding data flow, which connects the solvers, is another impor-

tant property that has to be specified. To help with this step, the program generates a

diagram of its data connections whenever the program stops (either after completing or

when interrupted by the shell).

Figure 6.7 shows such a solver structure diagram for the current example. It is given

as a text file and visualizes data connections using only Unicode characters. This is

advantageous for computers that only provide remote access, such as compute clusters.

On the left side, the tree of nested solvers is given. On the right side, lines indicate the

corresponding data connections.

Each solver has a fixed number of data connector slots. A data connector slot is a scalar

field variable or one component of a vector-valued field variable on a certain mesh. In

coupling or operator splitting schemes, values can be transferred from a data connector

slot of the first solver to a data connector slot of the second solver. This data transfer

either reuses the internal data structure, if possible or it involves a copy operation. Either

way, after the transfer, the second solver knows the corresponding values of the first solver

and can use them in subsequent computations.

6.2 USAGE OF OPENDIHU 241

1 The following data slot connection were given by the setting "connectedSlots":

2 stress ¤ > ¤ g_mu

3 g_tot ¤ > ¤ g_in

4

5 The following data slots were connected because the names appeared in both terms:

6 lambda ¤ < > ¤ lambda

7

8 Solver structure:

9 Coupling

10 (...)

11 StrangSplitting ::::::::::::::

12 data slots: ::::::::::::::

13 [a] solution.wal_environment/vS ÷÷÷÷÷÷÷÷÷÷÷÷÷ vm ¤0 x

14 [a] razumova/stress : ÷÷÷÷÷÷÷÷÷÷÷÷stress ¤1 x

15 [a] (P)razumova/L_S :: ÷÷÷÷÷÷÷÷÷÷÷lambda ¤2<

16 [a] Vm^(i)_0 ::: ÷÷÷÷÷÷÷÷÷÷vm_old ¤3 x

17 [a] Vm^(i+1)_0 :::: ÷÷÷÷÷÷÷÷÷vm_new ¤4 x

18 [a] active_stress_0 ::::: ÷÷÷÷÷÷÷÷ g_mu ¤5 x

19 [a] activeStressTotal :::::: ÷÷÷÷÷÷÷ g_tot ¤6

20 ::::::::::::::

21 MultipleInstances ("Term1") ::::::::::::::

22 Heun ::::::::::::::

23 data slots: ::::::::::::::

24 [a] solution.wal_environment/vS ÷÷÷÷÷÷÷÷÷÷÷÷÷ vm ¤0<

25 [a] razumova/stress ÷÷÷÷÷÷÷÷÷÷÷÷stress ¤1

26 [a] (P)razumova/L_S ÷÷÷÷÷÷÷÷÷÷÷lambda ¤2 x

27 :::::::::::

28 CellmlAdapter :::::::::::

29 :::::::::::

30 :::::::::::

31 :::::::::::

32 MultidomainSolver ("Term2") :::::::::::

33 data slots: :::::::::::

34 [a] Vm^(i)_0 ÷÷÷÷÷÷÷÷÷÷vm_old ¤0<

35 [a] Vm^(i+1)_0 ÷÷÷÷÷÷÷÷÷vm_new ¤1 m

36 [a] active_stress_0 ÷÷÷÷÷÷÷÷ g_mu ¤2<

37 [a] activeStressTotal ÷÷÷÷÷÷÷ g_tot ¤3 x

38 (...) ::::::: m

39 :::::::

40 :::::::

41 :::::::

42 MuscleContractionSolver :::::::

43 ("Term2") :::::::

44 data slots: :::::::

45 [b] λ ÷÷÷÷÷÷lambda ¤0<

46 [b] λdot ÷÷÷÷÷ ldot ¤1 x

47 [b] γ ÷÷÷÷ g_in ¤2<

48 [b] T (material traction).x ÷÷÷ T ¤3 x

49 [b] u.x ÷÷ ¤4 x

50 [b] u.y ÷ ¤5 x

51 [b] u.z ¤6 x

52

53 DynamicHyperelasticitySolver

54 (...)

55

56

57

58 Connection Types:

59 +··+ Internal connection, no copy

60 Reuse variable, no copy

61 > Copy data in direction of arrow

62 m Mapping between different meshes

63

64 Referenced Meshes:

65 [a] "3Dmesh", 3D structured deformable, linear Lagrange basis

66 [b] "3Dmesh_elasticity_quadratic+3DFatMesh_elasticity_quadratic", 3D quadratic Lagrange basis

67 [c] "3DFatMesh", 3D structured deformable, linear Lagrange basis

Figure 6.7: Solver structure diagram that shows the data connections of the solvers.

242 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

Each field variable has a given, fixed name defined by the solver. The corresponding

data connector slot can have a custom name with a maximum length of six character,

which is assigned from the Python settings. The diagram shows the field variable names

on the left under the “data slots” lists of the solvers. The corresponding data connector

slots are marked by the “↕” symbol and a slot number on the right. The custom name of

the slot is written before the “↕” symbol.

For example, the MuscleContractionSolver listed in line 42 has field variables for

the fiber stretch λ, contraction velocity λdot, muscle activation γ, traction in material

description T and displacements in x , y and z-direction, u.x, u.y and u.z. As can be seen

in Fig. 6.7, the first four data slots correspondingly have the names lambda, ldot, g_in

and T. The fiber stretch λ is a quantity that is computed by the solver, and the activation

parameter γ is a field variable that is an input to the solver and used for the computation

of the active stress. However, data connector slots make no distinction between input

and output slots, they simply expose the corresponding field variable to be connected to

other slots.

The Heun solver in line 22 that solves the subcellular model has three slots: the slot vm

of the transmembrane voltage, the slot named stress of the active stress parameter γ and

the slot lambda, which is the input of the relative half-sarcomere length of the subcellular

model.

The multidomain solver in line 32 has four slots: the slot vm_old exposes the field

variable for V (i)m , the transmembrane voltage at the previous timestep. After solving the

linear system of equations, the field variable V (i+1)
m , which is connected to the slot vm_new,

holds the transmembrane voltage for the next timestep. Another slot used for data input

is g_mu, which retrieves the muscle activation parameter γ from each compartment. The

multidomain solver computes the resulting activation parameter at slot g_tot by the

weighted sum over the γ values at the intracellular compartments.

In case of the multidomain solver, separate field variables exist for every compartment

at the same data connector slot. The solver structure diagram in Fig. 6.7 shows the field

variables for slots 0 to 2 ending in “_0” for the compartment k = 0. Similar field variables

exist for k = 1, . . . , NMU, however, those are not shown in the diagram. Similarly, the Heun

scheme in line 22 is nested in the MultipleInstances scheme in line 21. Here, the field

variables that connect to the slots vm, stress and lambda also have different instances for

every compartment. To resolve the ambiguity of multiple field variables of the same kind

being associated with a single slot, every exposed field variable for data transfer has to

be identified by its slot and potentially an array index within this slot.

6.2 USAGE OF OPENDIHU 243

In case of nested solvers, the parent solver class always exposes data connector slots

of its children. For example, the StrangSplitting class in line 11 has no own slots,

but exposes the slots of its two children. The slots with indices 0 to 2 are the same

as the slots of its "Term1" in line 21, the slots 3 to 6 are identical to the "Term2", the

MultidomainSolver in line 32. These connections are indicated in the diagram by the

dotted vertical connection lines. Note that the outer-most solver always contains the slots

of all nested solvers. In the example in Fig. 6.7, this is the outer Coupling scheme. The

slot listing has been omitted in the visualization.

The actual connections between the data slots of different solvers are indicated by the

arrows on the right-hand side of the slots. Unconnected slots are marked by an “x”. The

data transfer behavior is as follows. Each coupling and operator splitting scheme has

two nested solvers. The coupling scheme executes the first solver, transfers the data over

the connected data slots from the first to the second solver, executes the second solver,

and then transfers the data according to the connected slots from the second to the first

solver. For the Strang splitting scheme, this data transfer happens twice per timestep, as

defined by the splitting algorithm (cf. Fig. 5.7b).

The interaction between the subcellular model and the multidomain model is given

by the arrows between the Heun scheme in line 22 and the MultidomainSolver in line

32. After the solution of the subcellular model, the transmembrane voltage is transferred

from slot 0 (vm) of the Heun scheme to slot 0 (vm_old) of the multidomain solver. At the

same time, the stress is transferred from slot 1 (stress) to slot 2 (g_mu). After the linear

system has been solved, the values for the new timestep are transferred back from slot 1

(vm_new) to slot 0 (vm).

At the outer Coupling scheme, after the electrophysiology model consisting of the sub-

cellular and multidomain model parts have been solved, the active total stress is trans-

ferred from slot 6 (g_tot) in line 19 to the slot 2 (g_in) of the MuscleContractionSolver.

Note that the starting slot g_tot is shared between StrangSplitting and Multidomain

Solver, shown by the dotted vertical lines. Then, the solid mechanics model uses the

activation value, computes new displacements and updates the slots lambda and ldot.

The value in lambda is transferred back to slot 2 of the StrangSplitting, where it is

shared with the subcellular model. The value of the slot ldot, which is the contraction

velocity, is not used here, however, some subcellular CellML models make use of this

value. In such a case, the corresponding connection line can be added.

In addition to the lambda slot, the MuscleContractionSolver updates the muscle ge-

ometry with the new deformed configuration. This occurs outside of data connector slots

244 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

using defined relationships or mappings between the elasticity and electrophysiology

meshes. Reasons for this exception are, first, that a mesh is not owned by a solver class

in the same way as other data, e.g., as a solution vector. And second, the geometry infor-

mation is different from normal field variables. Changing the geometry of a mesh, e.g,

invalidates finite element system matrices.

Each field variable is associated with a mesh, which is referenced by [a] and [b] in

front of the field variable names. The referenced meshes are listed at the bottom of the

diagram in line 64. The reference [a] corresponds to the mesh in the muscle domain

used for the subcellular and multidomain models. The reference [b] is the composite

mesh of both muscle and fat domain used for the solid mechanics problem.

If data connector slots of different meshes are connected, the values get mapped be-

tween the slots. This is indicated by an “m” on the connection line. In the presented

example, the activation value γ gets mapped from the multidomain mesh [a] to the

elasticity mesh [b] and the fiber stretch value λ gets mapped in the opposite direction.

The different connection types are also listed in the legend in line 58. The dotted

connection lines of shared slots between nested solvers refer to internal connections

where the slots are reused and no data copy operation is necessary. The solid arrows

indicate a copy operation. The legend shows also double connection lines, which indicate

that the field variable of two slots can be reused and no copy is required. This type of

connection is not present in the current example, but occurs for example in most of the

fiber based electrophysiology models. The last connection type is the mapping, indicated

by a line with an “m” character.

Which connection type to use is determined by OpenDiHu. In case of matching meshes,

the double line connection that reuses the field variable is preferred. However, it is not

always possible because changes in a reused field variable also influence the field variable

at its original point of use, which may not be desired. In the current example, the

reason why the “copy” connections are used between the subcellular and multidomain

solvers lies in the number of compartments. The subcellular models holds the data of

all compartments in an array-of-vectorized-struct memory layout, such that the order of

the compartments’ variables in memory is different than the required order for the slot.

Thus, the data have to be copied during transfer between connected slots.

The specification of which slots to connect with each other is given in the settings file.

Three possibilities how to define slot connections exist: First, the slot numbers of con-

nected slots can be given in the settings of coupling and operator splitting schemes.

6.2 USAGE OF OPENDIHU 245

Second, the names of connected slots can be specified under the global keyword "

connectedSlots". In the given example, this is the case for the slots listed in Fig. 6.7

in lines 1 to 3. Third, slots with the same name are connected automatically. In the

considered example, this is the case for the lambda slot, which is named identically in the

CellmlAdapter (line 26) and the MuscleContractionSolver (line 45). Slots connected

by the third possibility are also listed at the top of the diagram, here in lines 5 and 6.

6.2.6 Exemplary Usage: Neuromuscular System

In the example in the last sections Sections 6.2.4 and 6.2.5, the nested solver structure

was a binary tree. However, also scenarios with a more general tree structure exist.

The solver tree for a simulation of the neuromuscular system including sensory feedback

is shown in Fig. 6.8. The tree corresponds to the example in the directory examples/

electrophysiology/neuromuscular/spindles_multidomain.

The following solver classes are involved in this example. For executing multiple solvers

in series, the top-level MultipleCoupling class exists, which calls its nested solvers one

by one in every timestep. The PrescribedValues class (a) can be configured to set any of

its field variables to prescribed values. The values can be set by callback functions in the

Python settings that get frequently called by the solver to update the values over time.

A MuscleContractionSolver combines either a static or a dynamic hyperelasticity

model with the active stress term used in the muscle contraction model. The class in (b)

uses the static HyperelasticitySolver. The solvers in (a) and (b) compute the static

contraction of the muscle under a prescribed constant activation level. Then, another

HyperelasticitySolver (c) stretches the muscle tissue again by a prescribed external

force to yield a prestretched muscle. The actual transient simulation is then performed

under the subtree at (d). Again, a MultipleCoupling class is used to run all nested solvers

in every timestep.

In (e) and (f), two CellML models are solved using a Heun scheme, the first one for

the muscle spindles and the second one for the motor neurons. A filter step is applied on

the resulting signals and the values are copied to the destination field variables using the

MapDofs class in (e), (f) and (g). A MapDofs class is able to copy degrees of freedom be-

tween two field variables, apply custom Python functions on the values and communicate

values between processes in parallel execution.

246 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

Figure 6.8: Solver tree for a simulation of the neuromuscular system. Classes of type

DiscretizableInTime are shown as red boxes, TimeSteppingSchemes are

given by orange boxes.

The subtree under (h) is identical to the example presented in Sec. 6.2.4. It solves the

electrophysiology model using the multidomain equations in (j) and a subcellular model

in (k), coupled to the solid mechanics model in (l).

The tree in Fig. 6.8 consists of solver classes of different types. The orange boxes indi-

cate timestepping schemes. Internally, these classes derive from a TimeSteppingScheme

interface class. They have a common set of parameters such as the timestep width and end

time. The boxes with dark red background color are classes of type DiscretizableInTime

. They represent a term or equation that can be nested in a timestepping scheme. There

only exist two different classes of this type: The CellmlAdapter, which contains a system

of DAEs given by a CellML model and the FiniteElementMethod, which discretizes the

generalized Laplace operator div (σgrad u).

6.2 USAGE OF OPENDIHU 247

Besides the classes of the presented example shown in Fig. 6.8, further solver classes

are available in OpenDiHu. A comprehensive list of all available solver classes is given in

the following section.

6.2.7 Summary of Existing Solver Classes

All the timestepping schemes introduced in Eq. (5.47) are available to solve ODEs given

by DiscretizableInTime objects: The explicit schemes are the explicit Euler and Heun’s

method. The available implicit schemes are the implicit Euler and Crank-Nicolson method.

Implemented operator splitting schemes are the Godunov and Strang splittings. The

implementation of the Coupling class is identical to Godunov splitting. As mentioned in

Sec. 6.2.6, DiscretizableInTime objects are either given by the CellmlAdapter or the

FiniteElementMethod.

Some classes are special solvers for dedicated models: A StaticBidomainSolver is used

to solve the first bidomain equation Eq. (5.9a). The MultidomainSolver and Multidomain

WithFatSolver classes solve the multidomain models Eqs. (5.14) and (5.15) without and

with body fat domain. A class FastMonodomainSolver exists that improves the parallel

performance of the fiber based electrophysiology solver using the monodomain equation

Eq. (5.11).

Solid mechanics models can be computed by a series of specialized solvers. The

QuasiStaticLinearElasticitySolver class uses a FiniteElementMethod object to com-

pute 3D linear elasticity using Hooke’s Law with an additional active stress term, as de-

rived in Sec. 5.4.1. The HyperelasticitySolver class solves the static hyperelasticity for-

mulation for any material model, as presented in Sec. 5.4.2. The DynamicHyperelasticity

Solver class inherits from the HyperelasticitySolver class and adds functionality to

solve the dynamic hyperelasticity formulation shown in Sec. 5.4.6. Both the static and the

dynamic hyperelastic solvers do not incorporate the active stress term that is present in the

muscle contraction model. This is handled by another class, the MuscleContractionSolver

. It uses either a HyperelasticitySolver or a DynamicHyperelasticitySolver object and

adds the functionality accordingly.

Instead of solving a model numerically, also precalculated analytic solutions can be

used. This can be done using the PrescribedValues class, which uses a Python function

to set the solution values. Further auxiliary classes exist that are no numerical solver:

The MapDofs class gives flexibility to transfer certain degrees of freedom between field

variables. The Dummy class can be used as a placeholder. The OutputSurface class extracts

248 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

a 2D mesh at the surface of a 3D mesh and writes it to an output file using the normal

output writers. This can be used to reduce the amount of data output for finely resolved

EMG simulations, where only the values at the surface are of interest.

Moreover, adapters to external software tools are implemented. The class Nonlinear

ElasticitySolverFebio allows to use the solver FEBio [Maa12; Maa17] for solving a

continuum mechanics model and couple it to an electrophysiology model in OpenDiHu.

Two adapters to the numerical coupling library preCICE [Bun16], PreciceAdapter and

PreciceAdapterVolumeCoupling exist for surface and volume coupling. They can be

configured to implicitly or explicitly couple any field variables to external solvers or to

couple two separate instances of OpenDiHu. For more details on the solver classes and

their configuration, we refer to the online documentation [Mai21c].

6.2.8 Graphical Helper Program

For the creation of new examples from scratch, a helper program with a graphical user

interface exists. The program was created by Matthias Tompert in his Bachelor thesis and

is included in the OpenDiHu repository under scripts/gui/gui.py.

Graphical widgets allow selecting and nesting compatible solver classes for OpenDiHu.

The corresponding Python settings are automatically shown with their default values

and can be adjusted in the graphical user interface. For every option, explanatory com-

ments are displayed and buttons allows to open the corresponding page of the online

documentation in a web browser.

The program also features a horizontally split code editor, which shows both the C++

code and the corresponding Python code for the settings, either for a single node in

the solver tree or as a global view of the whole example. After the user completes the

adjustments of the solver structure and the settings, the C++ source file and the Python

settings can be exported and used with OpenDiHu.

The program is also capable of parsing existing C++ and Python files and, thus, loading

an existing example into the graphical representation to be extended by the user. The

program is able to parse a large portion of the solvers and options that are available in

OpenDiHu. However, some more advanced examples, e.g., where the Python settings

contain complex code constructs are not fully supported.

Figure 6.9 shows the user interface after the 2D diffusion example of OpenDiHu has

been loaded. The left pane in Fig. 6.9a represents the solver tree as it appears in the C++

6.3 USAGE OF CELLML MODELS 249

(a) User interface with the tree of nested solvers on the left and the

Python settings for the selected mesh on the right.

(b) Alternative view of the

right pane that shows

the Python settings ed-

itor.

Figure 6.9: Graphical helper program to create and adjust the C++ and Python codes of

OpenDiHu examples.

file. The right pane in Fig. 6.9a displays the settings for the selected item in the left pane,

which, in this case, is the mesh. Additional options that are not yet present in the Python

settings are grayed out and can be added by clicking the checkboxes. Figure 6.9b shows

an alternative view in the right pane, which displays the corresponding Python code. The

user can also directly edit the settings there.

6.3 Usage of CellML Models

The CellML description language can be used to describe mathematical models of a wide

range of physiological processes. Arbitrary systems of differential-algebraic equations

(DAE) can be represented. We use it for incorporating and exchanging subcellular models,

which describe the electrophysiology on a muscle fiber, and for models of motor neurons

or sensory organs. The CellML infrastructure is popular in the bioengineering community.

The CellML website of the Physiome project hosts over 600 curated CellML models from

different areas. Each model can be downloaded in CellML format or as source code

250 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

(a) CellML editor with the ODE for the

membrane voltage “V” in the Hodgkin-

Huxley cellular model, which corre-

sponds to Eq. (5.3a) inserted into

Eq. (5.4).

(b) Visualization of a simulated action po-

tential Vm over time.

Figure 6.10: The CellML modeling environment OpenCOR.

containing the expressions of the equations in various programming languages such as

MATLAB, Python and C.

6.3.1 Integration of CellML in OpenDiHu and Comparison with

Other Framework

Mathematically, a CellML model describes the functions G and H of the following DAE:

∂y(t)

∂ t
= G

�

t,y(t),h(t), ĉ, p̂(t)
�

, h(t) = H
�

y(t), ĉ, p̂(t)
�

. (6.1)

Here, y is the state vector and h is a vector with additional values that are derived from

the state vector. The vectors of constants ĉ and parameters p̂ are prescribed and fixed

over time for ĉ or varying over time for p̂.

Various open source tools exist to create or manipulate CellML models and to solve

them and visualize the results [Gar08]. A comprehensive list is given on the CellML

website [Cel21] and some of them, which are relevant to our work, are outlined in the

following.

There exist two application programming interfaces (APIs), the CellML API and the

newer libCellML, which allow direct access to the structures of the CellML model from,

e.g., C++ code [Mil10].

6.3 USAGE OF CELLML MODELS 251

OpenCOR [Gar15] provides a modeling environment in a graphical user interface, where

models can be edited. Figure 6.10a shows the interface with the editor on the right.

Mathematical equations are described in a declarative language and can be rendered to

mathematical notation, as seen in the upper part in Fig. 6.10a. OpenCOR automatically

transfers the equations to the XML-based MathML syntax and integrates them in the XML-

based CellML description. OpenCOR can also be used to solve the system of DAEs using

implicit solvers such as backward differentiation formulas. The solver parameters can be

adjusted and the solver can be started from the graphical user interface. Figure 6.10b

shows the interface that lists all variables with their current values on the left and a

visualization of the result, in this case an action potential, on the right.

OpenCOR also provides command line functionality to convert CellML files into C

code. This generated C code can evaluate all model equations but not solve the DAE

system. Because OpenCOR is robust and well established in the bioengineering modeling

community, we decide to use it in OpenDiHu. The installation procedure of OpenDiHu

downloads and installs OpenCOR automatically.

During execution of a simulation, our framework parses the C code of CellML models,

compiles a shared library and executes the functions, all at runtime. Thus, the CellML

model can be directly given as a C file. Otherwise, if the model file is in XML format, it is

assumed to be a CellML description and automatically converted to the required C code

using the OpenCOR command line interface.

If a CellML model is manually simulated in the OpenCOR graphical user interface

with time-varying input signals, these signals have to be hard-coded in the model, e.g.,

as a piecewise defined function. This is acceptable for getting insight into the models,

but counteracts the idea of modular models that can be shared and recombined. As

a remedy, we design our framework in a way that simulations of CellML models with

configurable time-varying input signals are possible without the need to change the CellML

description.

CellML models are limited to single-cell systems of DAEs and are not designed for

PDEs that, e.g., involve multiple instances of a DAE system on a given geometry. Thus,

the monodomain equation cannot be solved with OpenCOR and a multi-scale software

framework is needed for this task. Two such frameworks with CellML support, which

were described in the introduction in Sec. 1.3.2, are Chaste and OpenCMISS Iron. In the

following, we relate and compare the approaches of CellML integration in OpenDiHu and

these existing frameworks.

252 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

Symbol Name Computed Initial values

OpenCOR OpenCMISS OpenDiHu by model? can be set?

y state STATES state by timestepping yes

∂y/∂ t rate RATES rate yes no

ĉ constant CONSTANTS constant no in CellML

h algebraic WANTED algebraic yes no

p̂ - KNOWN parameter no yes

Table 6.1: The different CellML quantities and their properties and names in various tools.

The variables in the generic DAE in Eq. (6.1) have different names in the different

software packages. Table 6.1 compares the symbols and their names in OpenCOR,

OpenCMISS in OpenDiHu and summarized how their values are determined.

All three software packages have the concept of state and rate vectors, where the states

y are the input and the rates ∂y/∂ t are the output of the CellML formulas. Similarly, the

constants ĉ are always a set of predefined values that are fixed during the computations.

The algebraic formulas lead to the values in h, independently of the timestepping

scheme. These algebraic values can be considered as the resulting quantities of interest

of the model and are typically written to output files or transferred to coupled solvers.

Moreover, OpenCMISS and OpenDiHu define parameters p̂, which influence the be-

havior of the model. Their values can be changed by a coupled solver or prescribed from

the settings. In OpenDiHu, any constant or algebraic variable in a CellML model can be

converted into a parameter. All occurrences of the constant or algebraic variable in the

CellML description get replaced by the parameter variable. For former algebraic variables,

this replacement step overrides the equations that would have defined the algebraic value.

Exemplary use cases are to set the external stimulation current Iext in Eq. (5.4) or to set

the fiber stretch in a strain-dependent subcellular model.

OpenCMISS uses a similar concept, where some algebraics in the CellML description

can be declared as WANTED to be read by the framework. Some of the constants can be

declared as KNOWN such that OpenCMISS sets their values from other computations within

OpenCMISS. (Assigning new values to algebraics as in OpenDiHu is not possible.) Because

the terms WANTED and KNOWN can be ambiguous if either seen from within the CellML model

or from the framework, we decide to use the terms algebraics and parameters instead.

The last two columns of Tab. 6.1 summarize the purpose of the different quantities.

The CellML description defines formulas for the states, rates and algebraics. Rates and

6.3 USAGE OF CELLML MODELS 253

algebraics are directly calculated by the code that is generated from the CellML model,

the vector of states is then computed from the vector of rates by the timestepping scheme.

The initial values of the states are either explicitly specified in the OpenDiHu settings,

e.g., to allow different values for different instances of a model. Or, if this specification

is omitted, the initial values are set according to the specification in the CellML file. The

parameter values always have to be specified in the Python settings. By definition, the

constants cannot be set from OpenDiHu, but are given in the CellML model. If the value of

a constant should be specified from the settings, the variable should instead be configured

to be a parameter.

From a computational point of view, a CellML model computes the following function

in terms of the introduced variable names:

�

rates

algebraics

�

= cellml (states,constants) . (6.2)

In the fiber based electrophysiology model, CellML is needed to formulate the reaction

term in the monodomain equation Eq. (5.11), which is repeated here:

∂Vm

∂ t
=
σeff

Am Cm

∂2Vm

∂ x2
− 1

Cm

Iion(Vm,y). (6.3)

The states vector in Eq. (6.2) includes both Vm and y in Eq. (6.3). In consequence,

the computed rates contain ∂Vm/∂ t and ∂y/∂ t. The right-hand side of Eq. (6.2), i.e.,

the cellml function calculates the term (−1/Cm · Iion), which is the reaction part of the

monodomain equation in Eq. (6.3). Thus, the CellML computation can be directly used

in the operator splitting approach in Sec. 5.3.1.

For the solution of CellML models, OpenCMISS implements the explicit forward Euler

scheme or allows to use the backward differentiation formula (BDF) schemes with adap-

tive order of convergence of SUNDIALS. Recently, an implementation of the second order

explicit Heun scheme was added by Aaron Krämer. Accuracy and runtimes were investi-

gated for Euler, Heun and BDF solvers for the subcellular model within the monodomain

equation. Because of the operator splitting scheme, only very small timespans have to be

solved by those solvers, which does not redeem the overhead of advanced schemes such

as the BDF solver, ultimately yielding the best performance for the Heun solver. Based on

these investigations, we choose to implement the forward Euler and Heun schemes for

the solution of CellML models in OpenDiHu.

254 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

The following differences exist between the approaches to support CellML models in

Chaste, OpenCMISS Iron and OpenDiHu: Chaste tries to automatically determine the

CellML variable names of standard quantities such as the membrane voltage and the

stimulation current. This requires potentially less user intervention when CellML models

are exchanged. In OpenDiHu, the step of identifying the CellML variables to be connected

to the coupled solvers is done manually to give the user complete control over the setup.

It can be achieved in a clear way with the Python settings script. Another difference in

OpenDiHu is that all computational code is guaranteed to invoke vector instructions, i.e.,

following the single-instruction multiple data (SIMD) paradigm. Chaste only relies on

the optimization behavior of the Intel compiler, which is not guaranteed to be optimal,

e.g., for non-Intel hardware.

The computational core Iron from the OpenCMISS package employs the CellML API

and also requires manual connections of CellML variables to the solver code. These

variable mappings have to be hard-coded in the main Fortran program (if the Python

wrappers are not used) and are compiled into the program. Thus, a CellML model is a

fixed part of a compiled simulation program. In contrast, OpenDiHu allows to configure

the CellML model at runtime. Another difference in the implementation is that Iron uses

a non-optimal memory layout for the state vector, which prohibits vectorization and slows

down the solution compared to OpenDiHu.

6.3.2 Mapping of CellML Variables to Slots and Parameters

Preparing the OpenDiHu solver for use with a CellML model consists of the two steps

of adjusting the C++ template parameters and setting up the variable mappings in the

Python settings. The two C++ template parameters have to be set to the sizes of the

state vector y and the algebraics vector h. The code snipped in Fig. 6.11 belongs to

the example program in examples/electrophysiology/cellml/shorten, which solves a

single-cell CellML model:

1 TimeSteppingScheme::ExplicitEuler<

2 CellmlAdapter<56,71>

3 >

Figure 6.11: C++ code snipped that solves a CellML model with an explicit Euler scheme.

The two template parameters 56 and 71 correspond to the number of states

and algebraics, respectively.

6.3 USAGE OF CELLML MODELS 255

1 mappings = {

2 # function in OpenDiHu name in CellML model # comment

3

4 ("parameter", 0): "wal_environment/I_HH", # I_stim (constant)

5 ("parameter", 1): "razumova/L_S", # λ (constant)

6

7 ("connectorSlot", "vm"): "wal_environment/vS", # Vm (state)

8 ("connectorSlot", "stress"):"razumova/stress", # γ (algebraic)

9 ("connectorSlot", "lambda"):"razumova/L_S", # λ (constant)

10 }

11

12 parameters_initial_values = [0.0, 1.0] # I_stim=0, λ=1

Figure 6.12: Specification of parameters and connector slots in a CellML model. The

listed settings define two CellML variables to be parameters and specify

three connector slots to transfer values between coupled solvers.

In this case, the model contains 56 states and 71 algebraics. The reason that these

numbers have to be fixed at compile-time is that this allows the data structures in the

implementation to have a fixed layout and be allocated on the stack instead of the heap,

which improves the performance.

If the given numbers are not matching the variables in the CellML file, appropriate

warnings or errors are generated, containing the correct C++ code to be copied to the

C++ file. If the numbers are too high, the solver still works correctly, however, some

memory and computation time is wasted for the excess variables.

The other step is configuring the connections between the CellML computation and

input data or coupled solvers. This involves defining a mappings parameter. Figure 6.12

shows such a definition for the multidomain example with fat layer and a contraction

model, which was presented in Sec. 6.2.4.

The mappings define which CellML constants or algebraics are treated as parameters.

Lines 4 and 5 make the stimulation current and fiber stretch constants accessible from

outside the CellML model by making them parameters. The variables are identified by

their names and the model components they are defined in in the CellML model. In this

example, the first parameter is the stimulation current I_HH within the wal_environment

model component and the second parameter is the fiber stretch or half-sarcomere length

L_S in the razumova component. The initial values for these parameters are given in line

12, which sets the stimulation current to zero and the fiber stretch to one.

256 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

The second information in the mappings parameter is which variables from the CellML

model are exposed to coupled solvers in OpenDiHu. This happens by defining connector

slots that can be connected between the solvers as shown in Fig. 6.7. Three slots are

defined in lines 7 to 9 with slot names "vm", "stress" and "lambda". The corresponding

CellML variables are again specified by their model component name and their own

name.

CellML variables of all three different types are connected in the example. The mem-

brane voltage Vm in slot "vm" is part of the state vector y. In this example, it is used in a

bidirectional coupling with the diffusion solver. The second slot, "stress", connects to

the activation parameter γ, which is part of the algebraic vector h. It is an output of the

model. The slot "lambda" refers to a constant in the CellML description, which has been

transformed to a parameter in line 5. It is used as an input and the received values at

these slots are moved to the corresponding locations in the CellML formulation.

6.3.3 Consistent Physical Units in CellML Models and the

Multi-Scale Framework

The variables in a CellML model describe physical quantities. CellML handles their phys-

ical units and computes the appropriate conversions when combining model components

within a CellML description. For the integration of a CellML model in external solvers

such as OpenDiHu, we have to take care that the units are consistent.

The subcellular models that we use are formulated with the following units for length,

time, electric current and capacitance:

1 cm= 10−2 m, 1 ms= 10−3 s, 1µA= 10−6 A, 1µF= 10−6 F.

These basic units also fix derived units such as 1 kHz for frequencies and 1 mV for voltages.

For example, the membrane capacitance Cm has to be specified in units 1
µF

cm2 and the

stimulation current Istim in the units 1
µA

cm2 .

With this system of units, values are in a similar scale when computing subcellular

models. However, these units are less suitable for organ-scale computations, as the

derived mass and density units are 10−14 kg and 10−8 kg

m3 and the derived force and stress

units are 10−10 N and 10−6 Pa. For the dynamic solid mechanics model, where these

6.3 USAGE OF CELLML MODELS 257

quantities play a role, we use the following different system of units:

1 cm= 10−2 m, 1 ms= 10−3 s, 1N.

The length and time scales are identical to the subcellular model and allow for consistent

coupling. The coupling of active stresses from the subcellular model to the solid mechanics

model uses the unit-less activation parameter γ ∈ [0, 1], which is transferred to stress units

by multiplication with a maximum active stress value in the solid mechanics model.

Derived units in the solid mechanics system of units are 102 kg

m3 for the density, 104 m

s2

for the acceleration and 1 N

cm2 = 10 kPa for the stress. The values of material parameters

and boundary conditions have to be given with respect to these units. The units allow

for smaller values in the solid mechanics computation than in the unit system of the

subcellular model. Moreover, it is convenient to specify forces directly in terms of 1 N.

6.3.4 Specification of Stimulation Times Using Callback

Functions

A muscle fiber is activated by impulse trains that are generated from a motor neuron and

stimulate the fiber at its neuromuscular junction. At the synaptic terminal, neurotrans-

mitters are released and open certain ion channels, which results in depolarization of

the muscle fiber membrane. This process can either be modeled by adding an external

stimulation current Istim through the dedicated ion channels or by directly prescribing the

transmembrane voltage Vm to reflect the resulting depolarized state. The first approach

is more accurate as it also describes the depolarization process at the stimulated parts of

the fiber. The electric “far field” away from the stimulation point, however, is the same

for both approaches.

In OpenDiHu, it is possible to configure either approach. Setting the stimulation current

is more involved as the actual value of Istim has to be chosen depending on the mesh

width. Furthermore, multiple adjacent nodes have to be stimulated such that the electric

current that is added to the system balances with the amount that is carried away by the

diffusion term. The nonlinear subcellular model fails to compute a valid solution, if too

much current is present. With too little current, the membrane potential stays below the

activation threshold and no action potential is triggered.

Prescribing the transmembrane voltage to a value above the depolarization threshold

at multiple adjacent nodes leads to equivalent action potentials independent of the mesh

258 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

width. However, a suitable value for the prescribed voltage also has to be chosen in

accordance with the employed subcellular model.

The stimulation current Istim is a CellML parameter and the transmembrane voltage Vm

corresponds to a state in the CellML model. The values of both parameters and states

can be adjusted during the simulation. This feature is implemented by means of callback

functions in the Python settings. A callback is a user defined function that gets called in

regular intervals during the simulation, receives various information about the current

state of the simulation and can alter some values such as the states vector y(t) or the

parameters vector p̂(t).

Figure 6.13 defines two such callback functions used in the fiber based electrophysiology

model to add electric stimulation to the monodomain model. Either suffices to imple-

ment the stimulation. The function set_specific_parameters in line 3 and the function

set_specific_states in line 16 both receive similar information from the simulation

as their function arguments: the total number n_nodes_global of nodes in the current

fiber, the current integer timestep number time_step_no, the corresponding floating-

point number current_time of the current simulation time, and the number fiber_no

that identifies the current fiber.

The variables parameters and states are the output of the callback functions that

alter the parameter and state values, respectively. Both callbacks determine, whether

the current fiber should be stimulated at the current time, in lines 7 and 20. If yes, the

parameter or state at the center point of the fiber, computed in lines 12 and 21, gets

changed accordingly. In the real scenario, three adjacent points get stimulated instead of

a single point.

Because the conversion of transferred data between the Python code and the C++

code costs some runtime, the number of transferred values is reduced to a minimum.

Only the parameters and states that should be changed are indicated in the parameters

and states variables in lines 13 and 22. These variables are Python dictionaries, i.e.,

key-value pairs. The key is a tuple of three items: First, the global coordinates (x , y, z)

of the node where the parameter or state change is applied. In case of a 1D fiber mesh,

this is only a single coordinate. Second, the dof index on this node. This is different

from zero only for Hermite ansatz functions, which have multiple dofs per node. And

third, the index of the parameter or state that should be set. Parameter 0 corresponds to

the stimulation current as defined in line 4 of Fig. 6.12, and state 0 corresponds to the

transmembrane voltage Vm. The new value to set is the value of the key-value pair.

6.3 USAGE OF CELLML MODELS 259

1

2 # callback function that can set parameters, i.e. stimulation current

3 def set_specific_parameters(n_nodes_global, time_step_no, current_time,

4 parameters, fiber_no):

5

6 # determine if fiber gets stimulated at the current time

7 if fiber_gets_stimulated(fiber_no, current_time):

8 stimulation_current = 40.

9 else:

10 stimulation_current = 0.

11

12 innervation_node_global = int(n_nodes_global / 2)

13 parameters[(innervation_node_global),0,0] = stimulation_current

14

15 # callback function that can set states, e.g., prescribe Vm for stimulation

16 def set_specific_states(n_nodes_global, time_step_no, current_time,

17 states, fiber_no):

18

19 # determine if fiber gets stimulated at the current time

20 if fiber_gets_stimulated(fiber_no, current_time):

21 innervation_node_global = int(n_nodes_global / 2)

22 states[(innervation_node_global),0,0] = 40.0

23

24 config = {

25 (...)

26

27 # callback to adjust parameters

28 "setSpecificParametersFunction": set_specific_parameters,

29 "setSpecificParametersCallInterval": 1e3,

30 "setSpecificStatesFrequencyJitter": 0,

31

32 # callback to alter values of states

33 "setSpecificStatesFunction": set_specific_states,

34 "setSpecificStatesCallInterval": 2*int(1/stimulation_frequency/dt_0D),

35

36 "setSpecificStatesCallFrequency": stimulation_frequency,

37 "setSpecificStatesCallEnableBegin": 0,

38 "setSpecificStatesRepeatAfterFirstCall": 0.01,

39 "setSpecificStatesFrequencyJitter": [0.1,-0.2,0.0],

40

41 # callback to postprocess the result

42 "handleResultFunction": handle_result,

43 "handleResultCallInterval": 1e4,

44

45 "additionalArgument": fiber_no,

46 }

Figure 6.13: Settings that define neural spike trains activating muscle fibers. The

definition of the two callback functions set_specific_parameters and

set_specific_states is demonstrated.

260 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

The comparison of the two callbacks functions shows one difference: In the callback

for the parameters, the stimulation current is set to zero when there is no stimulation. In

the callback for the states, nothing is done during this time. The reason for this is that

the state values will be continuously updated from the rates by the timestepping scheme,

whereas the parameters keep their values until they are changed from the callback. This

has consequences on the times at which the callback functions have to be called from the

simulation, which are described in the following.

Invoking the Python interpreter on a callback requires some time. Calling the callback

after every small timestep of the simulation is, thus, not performant. We model the stim-

ulation of a fiber by a piecewise constant function with two possible values for on and off.

In the approach that sets the stimulation current, the callback set_specific_parameters

has to be called at the onset and at the end of every stimulation spike. If the approach

with the prescribed membrane voltage is used, the callback set_specific_states has to

be called after every stimulation onset in every subsequent timestep until the stimulation

is over.

The requirements for both approaches can be satisfied by defining a small constant

interval of timesteps after which the callback functions are invoked. This call interval can

be specified in the config dictionary of the Python file in Fig. 6.13 , which is shown in

excerpts from line 24 onwards. The config variable references the callback functions in

lines 28 and 33 and the parameters for the call interval in the next lines. Note that this

configuration is only shown for demonstration, a real configuration should either specify

the states callback or the parameters callback function, not both.

Line 34 in Fig. 6.13 shows how the call interval can be computed to correspond to

a given stimulation frequency stimulation_frequency, given the timestep width dt_0D.

The prefactor of two occurs because the callback would be called twice per timestep in

the Strang splitting scheme.

Real impulse trains from the motor neuron pool typically follow a base frequency

with some added jitter that offsets the exact firing times from the base frequency by

a small random time. Furthermore, studies are often designed to start with a com-

pletely inactive muscle and switch on certain MUs after specified times. To efficiently

account for these two demands, we add another way to specify the times when the

set_specific_states callback gets invoked. In this second way of specification, the

setSpecificStatesCallInterval parameter is disabled by setting it to zero. Then, the

three options CallFrequency, CallEnableBegin, RepeatAfterFirstCall and Frequency

Jitter (prefixed by setSpecificStates) given in lines 36 to 39 are significant.

6.3 USAGE OF CELLML MODELS 261

t

CallEnableBegin

⋅ (1+FrequencyJitter[i])

RepeatAfterFirstCall

...

1 / CallFrequency

Figure 6.14: Parametrization of stimulation times in electrophysiology simulations.

The neuronal impulse train is given by the black spikes. The pa-

rameters CallEnableBegin, RepeatAfterFirstCall, CallFrequency and

FrequencyJitter (in the settings all prefixed by setSpecificStates) specify

the shape of the spike train.

Their meaning is illustrated in Fig. 6.14. CallEnableBegin specifies the time when

the callback should be called for the first time. Then, it is called with a frequency that

is additively composed of the base frequency given by CallFrequency and one entry of

the parameter FrequencyJitter. This parameter is a ring buffer of relative factors by

which the regular time span between subsequent firing events is prolonged. For example,

if FrequencyJitter contains the list [0.1,-0.2,0.0], the time span T01 between the

first two firing events is 10 % longer than according to the base frequency f , the next

timespan T12 is 20 % shorter and the next time span T23 exactly equals the inverse base

frequency, T23 = 1/ f . Subsequently, the scheme repeats. Typically, this parameter is

set to a randomly generated list with a large number of entries. After each onset of a

stimulation, the setSpecificStatesCallInterval function is called repeatedly in every

subsequent timestep for a time span given by RepeatAfterFirstCall.

In the fiber based electrophysiology example, every fiber has its own instance of the

Python settings, and it is possible to specify different parameter values for different fibers

or motor units, e.g., to set a different beginning time of the stimulations. The fibers can

be distinguished by the last parameter of the callbacks, which receives the custom value

that is defined by the "additionalArgument" parameter in line 45. In the given example,

the current fiber number is used here, but any other Python variable is possible.

Figure 6.15 shows a scenario, where different parameters are set for different MUs. The

figure shows the firing times of fibers grouped to 20 MUs, which are activated in a ramp

in the first t = 19s. The base frequency decreases from 23.92 Hz to 7.66 Hz for MUs 1 to

20, which reproduces a scenario in literature [Klo20]. The frequency jitter parameter is

262 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

Figure 6.15: Firing times for a scenario with 20 motor units with ramp-like activation and

different stimulation frequencies.

a list of 100 randomly chosen values between −10 % and +10 %. The CallEnableBegin

parameter enables the stimulation of the next MU every second.

Similar to the two presented callbacks, which set parameters and states, a third callback

handle_result can be defined as given in line 42 of Fig. 6.13. This callback function

gets called in a fixed interval specified by "handleResultCallInterval". It receives the

complete vectors of states y and intermediates h and can be used to perform custom

post-processing or to output custom data files from the Python script.

In summary, variables of CellML models can be coupled to other solvers. Their param-

eters and values can be adjusted from the settings file. Callback functions are used to

alter values during the simulation. This flexibility comes at the runtime cost of invoking

the Python interpreter, therefore the times when to call the callback functions have to be

specified appropriately. Special methods exist to model steady stimulation with frequency

jitter, which occurs in typical neural stimulation of muscle fibers.

6.4 Output File Formats

After the simulation program completes, the computed results can be visualized using

external tools. As mentioned in the previous sections, output writers are used to generate

output files in various formats. The formats of the output writers and additional options

6.4 OUTPUT FILE FORMATS 263

are configured in the Python settings under the parameter OutputWriter. The follow-

ing formats are supported:"ParaView", "ExFile", "PythonFile", "PythonCallback" and

"MegaMol". The corresponding output can be visualized and post-processed using dif-

ferent tools, which will be presented in the following. We use simulation results of a

fiber-based electrophysiology scenario with 49 1D fibers and a 3D muscle mesh to show-

case the different output data formats.

6.4.1 Output of VTK Files for the Use with ParaView

The canonical way to visualize simulation results computed by OpenDiHu is to use the

software ParaView [Ahr05]. The required output file formats are defined by the Visual-

ization Toolkit (VTK) specification [Sch06]. Depending on the mesh type in OpenDiHu,

different file types are generated: RectilinearGrid files (with file ending .vtr) for the out-

put of “regular fixed” meshes that represent a cartesian grid, StructuredGrid files (.vts)

for the output of “structured deformable” meshes, i.e., structured meshes that can de-

form over time, UnstructuredGrid files (.vtu) for the output of unstructured meshes, and

PolyData files (.vtp) containing connected points are used to represent multiple muscle

fibers in a single file. ParaView can be used to load and visualize all of these file types.

All of these files are XML based and their payload data can be configured to be either

written in ASCII representation or in Base64 encoding. Base64 encoding also translates

the raw data into ASCII characters. The data stream is split into pieces of 6 bits, which are

each represented by an 8-bit-ASCII character. Thus, the required memory is 4/3 of the

raw data. Compared to a full ASCII representation containing the digits of all numerical

values, this leads to a significant reduction of file sizes.

The VTK file format specifies parallel file output, where each process writes its local

data to a separate file and one additional master file references the pieces in all files.

This parallel file output scheme is implemented in OpenDiHu. However, it can lead to an

impractically large number of small output files for high degrees of parallelism.

Therefore, we additionally implement a second approach, where non-parallel VTK files,

which contain the whole dataset, are written. The same type of output files is generated

during serial and parallel execution of the program. Writing the data to such a file is

done using the parallel output capabilities of MPI. The respective MPI functions allow

to collectively write data to the same file from different processes at different locations

in the file. For parallel execution, every process only writes its own local data and no

communication of the payload data to a master process is necessary.

264 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

Because the byte boundaries in a Base64 encoded data stream coincide with multiples

of 8 bits only every three bytes, the processes that write neighboring parts in the output

file have to coordinate the bit offsets of their data streams. For this, a small amount

of data has to be communicated between these processes. However, the cost of this

communication is negligible.

With this improved output scheme, one file is generated per mesh and output timestep

of the simulation. The frequency of output timesteps can be configured in the Python

settings. It is also possible and useful to combine all 1D fiber meshes into a single output

file per timestep to reduce the number of output files.

Different meshes can be written with different frequency. For example, for a simulation

of fiber based electrophysiology with EMG signals, it is reasonable to output the compre-

hensive dataset of all fibers less frequently than the smaller dataset of EMG signals on

the 2D skin surface. To associate the output files with the correct times, a timestamp of

the current simulation time is added to every file. Furthermore, partitioning information

is added, i.e., which part of the mesh is computed by which process.

To synchronize output files of different meshes with different output frequencies in

the visualization tool, additional series files (with file ending .series) are automatically

created for every mesh. Such a file references all available output files of a mesh with

their simulation times in JSON format. These files can be opened in ParaView to get a

time-series of the simulation result.

Using the series files is also convenient, if the simulation is run in a directory, where

old simulation results from previous runs exist. Because the series files are updated every

timestep and only reference the newly created files, opening these files in ParaView only

visualizes newly created simulation output, in contrast to opening a whole directory,

which would potentially also load old results.

6.4.2 Visualization With ParaView

ParaView allows various manipulations and types of visualization of the loaded data.

Figure 6.16 shows the ParaView window with simulation data of a fiber-based electro-

physiology scenario. The loaded data are organized in a tree of datasets with applied

filters, which can be seen in the “Pipeline Browser” in the top left. The center view shows

a visualization of the muscle fibers and the 3D mesh at simulation time t = 89.6 ms. An

6.4 OUTPUT FILE FORMATS 265

Figure 6.16: Visualization of simulation results with ParaView: ParaView window with a

visualization of muscle fibers and a 3D muscle mesh.

animation of the transient data can be shown by using the playback controls in the top

bar.

The visualization in the center top view displays the membrane voltage Vm at the fibers

and in the 3D mesh, colored by the scheme shown at the left in the view. The 3D mesh is

sliced on the right-hand side of the muscle to make the fiber dataset better visible.

The view on the bottom left depicts the extra-cellular potential φe on the 3D mesh.

The view on the bottom right shows a plot of the value of φe along a horizontal line on

the surface of the muscle.

It can be seen that three fibers near the surface are activated, and that the action

potentials effect the EMG value given by φe on the surface.

For larger datasets, a head-less render server of ParaView also can be run in parallel on

a remote server and the graphical user interface shown in Fig. 6.16 can be used as the

client to interactively control the visualization.

266 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

ParaView also supports ray tracing using the OSPRay ray tracing engine. With ray

tracing, more advanced lighting and the computation of shadows are possible.

6.4.3 ExFiles and Visualization with CMGUI

Another option in OpenDiHu is to output files in the “ExFile” format. This format orig-

inates from the software environment of OpenCMISS. Output of results in simulations

with OpenCMISS Iron relies on this type of files. The visualization toolbox of OpenCMISS

Zinc is able to create various visualizations of the data given in this format. The program

CMGUI provides a graphical user interface to visualize the data.

The output consists of corresponding .exelem and .exnode files containing information

at element and node level, respectively. The mesh is assumed to be unstructured and,

thus, the information which nodes correspond to a particular element has to be explicitly

stored. It is stored in the .exelem file. The payload data are contained in the .exnode file.

The file format supports parallel output to separate files. However, only serial output is

supported in OpenDiHu. ExFiles are ASCII-based and, thus, only usable up to a certain

problem size.

An advantage of the “ExFile” format is that also higher order elements can be repre-

sented. The visualization tools are capable of representing the geometric data accordingly,

e.g., it is possible to visualize the correct shape of cubic Hermite 3D hexahedral elements.

In contrast, ParaView only visualizes linear elements and linearly interpolates the data

between the nodes of an element.

The program CMGUI can be used to visualize the output files of OpenDiHu in ExFile

format. In the graphical user interface, the .exelem and .exnode files can be loaded. Rep-

resentations of loaded points, lines and elements can be added to the visualization in the

scene editor. Various options such as coordinate frames and parameters for shading and

tessellation can be set. The visualizations can be colored using predefined appearances

or according to the loaded solution values.

For larger datasets, these manual adjustments are tedious. For example, for a dataset

with 49 fibers, the user would have to load 49 .exelem and 49 .exnode files one by one.

Instead, the Perl scripting interface of CMGUI can be used. Every command in the GUI

corresponds to a Perl command and CMGUI can load and execute those commands from

a given Perl script.

6.4 OUTPUT FILE FORMATS 267

OpenDiHu automatically creates such Perl scripts. The generated script for a mesh loads

all generated output files into CMGUI, adds a corresponding visualization depending on

the mesh dimensionality and opens the required CMGUI windows such that the data are

immediately visible. This is an improvement to OpenCMISS Iron, where all steps have to

be done manually. By using the generated Perl script, less expert knowledge on the usage

of CMGUI is required, and it is also possible to visualize datasets with a large number of

fibers.

Figure 6.17 shows two windows of CMGUI. In Fig. 7.14d, the main graphics window

can be seen with a visualization of 49 muscle fibers. The membrane potential is visualized

by varying colors, and action potentials can be seen on three of the shown fibers. Similar

to ParaView, the transient data can be animated by using the controls at the bottom.

Figure 6.17b shows the spectrum editor, where the color scheme can be adjusted to the

range of the loaded data.

The other Perl script besides the one used in Fig. 6.17 to visualize the muscle fibers

addresses the 3D mesh of the muscle. Figure 6.18 shows the graphics windows with

the resulting visualizations of this dataset. In Fig. 6.18a, the extracellular potential φe is

visualized on the muscle surface. The visualization contains the colored 3D representation

for the mesh and a 1D representation of the mesh consisting of white tubes.

Figure 6.18b demonstrates the feature of visualizing nodal data using glyphs. The Vm

values at every node are represented by colored circles with a radius that corresponds to

the value. With this representation, it is possible to also show the data inside the muscle

volume.

6.4.4 Python Output Files

Another option in OpenDiHu is to output data in a Python-friendly format, which can

easily be parsed from within a python script. The data can then be used, e.g., for error

analysis or to convert them to other custom formats.

If the format PythonFile is specified in the output writer, the data get written to output

files. If the format PythonCallback is specified, the same data are passed to a callback

function and can directly be used in the Python settings script during the running simu-

lation.

For output, the data are organized in a Python dictionary. The output files either contain

the plain Python code of this dictionary or a binary representation obtained by the pickle

268 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

(a) The main graphics window that displays the visualization

and allows to control the current view and the current

timestep.

(b) The spectrum editor that can be

used to adjust the coloring ac-

cording to the loaded solution

values.

Figure 6.17: Visualization of the results of an electrophysiology simulation with CMGUI

involving 49 muscle fibers.

(a) Graphics window with the visualization of

a 3D mesh.

(b) Visualization of the same data as in (a), but

using sphere glyphs at every node.

Figure 6.18: Visualization of data on a 3D mesh with CMGUI.

6.4 OUTPUT FILE FORMATS 269

package of Python. In parallel execution, every process writes its own file containing

the data of the corresponding subdomain. OpenDiHu provides a Python module to parse

these output files. The data representation, whether the data are stored in binary or

in human-readable format and whether it is composed of multiple files resulting from

parallel execution is abstracted and transparent in the call to this module.

The utility program plot can be used to quickly visualize the simulation results in such

Python output files. It creates plots and animations of 1D and 2D structured meshes

and chooses different layouts for the type of data, e.g, a plot over time for single-cell

CellML models or an animation with multiple plots for subcellular models with multiple

ion channels. This script is useful mainly for 1D and 2D toy problems, such as the Laplace,

Poisson and Diffusion problems.

Figure 6.19 shows the output of the plot script for one muscle fiber. The top plot

visualizes the geometry in 3D space, colored by the membrane potential Vm. The plot

below shows the spatial progression of the Vm value along the x-axis. However, for the

visualization of 3D data, other options such as ParaView or CMGUI are better suited and

should be used instead.

6.4.5 ADIOS output files and MegaMol

Another output format is the binary-pack file format defined by the Adaptable Input

Output System library (ADIOS2). This type of output is selected by the OpenDiHu output

writers for the "MegaMol" format. ADIOS2 provides a framework for high-performance

computing data management [God20]. ADIOS2 manages self-describing data that allows

rapid metadata extraction also from large data sets.

Output files in this format can be loaded into the visualization software MegaMol by ex-

perts. MegaMol has been successfully used together with OpenDiHu to implement in-situ

visualization, where OpenDiHu shares the computed simulation data with MegaMol using

the ADIOS2 format and triggers updates of the visualization by sending asynchronous

messages to MegaMol during the runtime of the simulation. As both OpenDiHu and

MegaMol can run in parallel, the partitioned data needs to be merged from all processes

only at the stage of rendering the visualization image. For highly parallel runs on super-

computers, the local data that are generated by the OpenDiHu processes on the same

compute node can be shared in memory with one instance of MegaMol per compute

node. Then, all MegaMol instances collectively render the resulting visualization. This

270 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

Figure 6.19: Visualization of Python based simulation results using the plot utility.

approach bypasses the costly file output operation on the highly distributed file system

of a supercomputer.

The generated output files can be inspected using the bpls utility. Figure 6.20 shows a

description of the 3D dataset extracted from the binary-pack format that was written by a

simulation with four processes. Each line corresponds to one variable in the file. The first

column specifies the variable type and the second column is the name of the variable.

The third column contains structural information with minimum and maximum values

for numeric types.

The first three shown variables are of type string and contain metadata for the sim-

ulation run. The config variable contains the Python settings code of the scenario and,

thus, accurately describes the settings of the simulation run. The values of the meta and

version variables are fully listed in Fig. 6.20 and contain meta information about the

simulation program and the particular run.

6.4 OUTPUT FILE FORMATS 271

1 string config (...)

2 string meta "current time: 2021/3/30 19:48:05,←-
3 hostname: lapsgs05, n ranks: 4"

4 string version "opendihu 1.2, built ←-
5 Mar 27 2021, C++ 201402, GCC 7.5.0"

6 double localBoundingBox 10*{4, 6} = -56.3 / 19.7732

7 double globalBoundingBox 10*{6} = -56.3 / 19.7732

8 double global_radius 10*scalar = 0.1 / 0.1

9 int32_t nPointsPerCoordinateDirection 10*{3} = 4 / 31

10 int32_t nodeOffsetOnOwnComputeNode 10*{4} = 0 / 368

11 int32_t node_count 10*scalar = 496 / 496

12 int32_t rankNo 10*{496} = 0 / 3

13 double emg 10*{496} = -12.0536 / 4.89757

14 double transmembraneFlow 10*{496} = -125.014 / 226.428

15 double vm 10*{496} = -81.3198 / -27.4762

16 double xyz 10*{1488} = -56.3 / 19.7732

Figure 6.20: Contents of the output file created by ADIOS2.

For the numeric values, the third column specifies the dimension of the stored data.

The file contains the simulation output for 10 different timesteps, which can be seen

in the third column. For example, the localBoundingBox variable in line 6 stores 10

instances of a matrix with dimension 4× 6. The four rows of this matrix correspond to

the four processes and the columns store the six values of the geometric bounding box

of the subdomain on the respective process. This information is required by MegaMol

to constrain the volume that has to be rendered on each process. Further structural

information is contained in the variables in lines 7 to 12. The remaining variables contain

the payload data. The variables emg, transmembraneFlow and vm correspond to φe, the

right-hand side of the first bidomain equation in Eq. (5.71), and Vm, respectively. The

variable xyz holds the geometry information for all nodes.

272 CHAPTER 6: USAGE OF THE SOFTWARE OPENDIHU

How To Reproduce

The visualizations in this section are based on outputs of the following simulation:

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/fibers_emg/

,→ build_release

./fast_fibers_emg ../settings_fibers_emg.py output_demo.py

Output files for ADIOS2, CMGUI, ParaView and Python will be generated in corre-

sponding subdirectories under out/. The following commands invoke the respective

visualization tool in the corresponding output directory:

paraview fibers.vtp.series # ParaView

cmgui fibers.com # CMGUI

cmgui hd_emg.com # CMGUI

plot fibers_0000001_MeshFiber_*.py # Python

bpls hd_emg.bp -la # ADIOS2

In the graphical user interfaces of CMGUI and ParaView, more settings have to be

adjusted to obtain the results shown in Figures 6.16 to 6.18.

The listing shown in Fig. 6.20 was obtained by a simulation with 4 processes.

Because the ExFile output writer does not work for parallel execution, the corre-

sponding option has to be disabled in the output_demo.py variables file prior to

execution:

mpirun -n 4 ./fast_fibers_emg ../settings_fibers_emg.py output_demo.

,→ py

Afterwards, the shown listing can be obtained by bpls -la hd_emg.bp.

273

Chapter 7

Implementation of the Software

OpenDiHu

After the usage of OpenDiHu has been described in the last chapter, we now discuss the

implementation of the algorithms and solvers that are available in the framework. This

chapter begins with the basic data organization in Sec. 7.1 and generic algorithms to set

up finite element discretizations and parallel partitionings of a problem in Sections 7.2

and 7.3. Then, details are given on the implementation of particular solvers. Section 7.4

discusses the solvers for the fiber based electrophysiology model, Sec. 7.5 addresses the

multidomain solver and Sec. 7.6 presents optimizations for the solver of the subcellular

model. The chapter closes in Sec. 7.8 with a discussion of the data mapping required in

coupling schemes.

7.1 Data Handling with PETSc

OpenDiHu processes various types of data: geometry data, the discretized solution data,

system matrices and vectors in the specification of the mathematical model such as right-

hand sides and prescribed values in boundary conditions. All these data need to be

organized in accordance with the parallel partitioning. Linear system solvers need to be

applied on matrices and vectors to obtain the solution. The result of the simulation has

to be invariant under a change of the number of processes that execute the program.

For parallel data handling and solvers of linear and nonlinear systems, the Portable,

Extensible Toolkit for Scientific Computation (PETSc) [Bal16; Bal15; Bal97] is used. PETSc

provides a large collection of solvers and preconditioners that can be selected and config-

ured at runtime. More solvers are accessible through interfaces to external software, such

as the Multifrontal Massively Parallel Sparse Direct Solver (MUMPS) [Ame01; Ame19] and

274 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

the preconditioner library HYPRE [Fal02]. PETSc natively supports MPI parallelism and

provides parallel data structures for vectors and matrices. Numerous operations on the

data are provided including value communication and access, housekeeping, arithmetical

operations, and more advanced calculations in the field of linear algebra.

Since MPI is used, processes can be identified by their rank r within the used MPI

communicator. An MPI communicator is a subset of processes that can communicate with

each other. The rank of a process is its number in this communicator, i.e., a consecutive

number starting with zero.

7.1.1 Organization of Parallel Partitioned Data

Basic building blocks in the implementation of OpenDiHu are field variables that represent

scalar fields. A scalar field v : Ω → R defined on a domain Ω ⊂ R3 is represented in

the program by its finite element discretization. It comprises, on the one hand, the

specification of the mesh of Ω, i.e, the node positions, elements and ansatz functions and

on the other hand the values of the coefficients of the ansatz functions. The values of the

coefficients are called degrees of freedom (dof). Meshes with linear ansatz functions have

one dof on every node. In the following, regular Cartesian meshes with linear ansatz

functions are considered.

The partitioning of a regular, d-dimensional mesh is constructed as follows. A partition-

ing in terms of number of processes is given in the form nx ×ny ×nz = nproc, where nx , ny

and nz are the number of processes or subdomains in x , y and z direction, respectively.

For 2D meshes, nz is set to one, for 1D meshes, ny and nz are set to one. The given mesh

is partitioned on the level of elements. In every coordinate direction i ∈ {x , y, z}, the

number N el
i of elements is equally distributed to the specified number ni of processes.

Every process gets either ⌊N el
i /ni + 1⌋ or ⌊N el

i /ni⌋ elements, where the larger number

of elements is assigned to the processes with lower ranks. Thus, the subdomains with

smaller index in x , y and z direction potentially have one layer of elements more than

other subdomains.

For example, in Fig. 7.1, a 1D mesh with N el
x = 6 elements is partitioned into three

subdomains with two elements each. Figure 7.2 (a) shows a 2D mesh with N el
x ×N el

y = 5×4

elements, a partitioning to nx × ny = 2× 3 processes is given in Fig. 7.2 (b).

The nodes of the mesh are assigned to the same subdomains as their adjacent elements.

The assignment of the nodes that lie on the cutting planes between the subdomains

7.1 DATA HANDLING WITH PETSC 275

0 1 2 3 4 5 6(a) Global numbering

(b) Local numbering, rank 0 0 1 2

0 1 2

0 1 2

rank 1

rank 2

Figure 7.1: Partitioning and local and global numbering of a 1D mesh with N el
x = 6

elements partitioned to nx = 3 processes. Ghost nodes are marked in green

in (b)

remains to be specified. These nodes are assigned to the subdomain of the adjacent

element in positive x , y and z direction such that each of these nodes is also owned by

a single rank. On all other adjacent ranks, the node is stored as so called ghost node. In

contrast, the other local nodes are called non-ghost nodes in the following.

The assignment of nodes to processes leads to the situation, that subdomains with the

highest index in x , y and z direction (i.e., the subdomains at the “right”, “top”, or “back”

end of the domain) potentially have one layer of nodes more than other subdomains. This

effect is intentionally chosen to be balanced out by our strategy to assign a higher number

of elements to subdomains with lower index. Therefore, the total number of nodes and

dofs is approximately equally distributed. Moreover, in the limit for N el
x , N el

y , N el
z →∞,

the imbalance vanishes totally.

In the exemplary partitionings in Fig. 7.1 (b) and Fig. 7.2 (b), owned nodes are rep-

resented by black circles and numbers, ghost nodes are represented by green circles and

numbers. In the 1D example in Fig. 7.1, the three subdomains with two elements each

have three, two and two nodes. In the 2D example in Fig. 7.2, the six subdomains have

either three (ranks 2 and 3) or six (ranks 0,1,4 and 5) nodes while the number of ele-

ments varies between six (rank 0) and two (rank 5). This demonstrates the construction

of nearly equally sized subdomains in terms of the number of assigned nodes.

On the partitioned meshes, field variables can be defined to represent the scalar and

vector fields in the FEM computations. A field variable in OpenDiHu manages its values

using the basic PETSc data type for storing scalar fields: the Vec. It represents a vector

ṽ ∈ Rnglobal with nglobal values. The vector is distributed to nproc processes according to the

partitioning of the mesh, such that every value is owned by exactly one process.

In a PETSc Vec, every rank r locally stores a distinct portion of nlocal_without_ghosts ≤ nglobal

values of the global vector of dofs. Therefore, every dof is owned by exactly one rank.

276 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

rank 0

0 1 2 6

3

8

4 5 7

109 11

4 5

3

76

7

6

0 21

0

3 4 5

1 2

3 4 5

0 1
2

0 1
2

3 4
5

0 1 2

5

8

3 4

6
7

rank 1

rank 2 rank 3

rank 4

rank 5

Local

numbering

(b)

y

0 1 2 3 4 5

6 11

12

18

24 25 26 27 28 29

23

17

7 8 9 10

...

Global natural

numbering

Global PETSc

numbering

x

0 1 2 6 7 8

113

12

18

21 22 23 27 28 29

26

17

4 5 9 10

2019 24 25

13 14 15 16y

x

(a)

(c)

x x

y

Figure 7.2: Subdomains and numberings of a 2D mesh with N el
x × N el

y = 5× 4 elements

partitioned to nx×ny = 2×3 processes. (a)-(c) show the different numberings

needed for (a) boundary condition specification, (b) identification of local

non-ghost dofs (black) and local ghost dofs (green), and (c) identification of

global dofs.

These dofs correspond to the local nodes in the partitioning. Additionally, the process

maintains storage for nghosts ghost dofs that are owned by other ranks. PETSc is able to

communicate corresponding values between all ranks where the dof is present either as

ghost or non-ghost dof.

In total, the local buffer of a Vec stores nlocal_with_ghosts = nlocal_without_ghosts+ nghosts values.

The non-ghost dofs are located at array positions 0, . . . , nlocal_without_ghosts − 1, the ghost

dofs follow at positions nlocal_without_ghosts, . . . , nlocal_with_ghosts − 1. This array is consecutive

in memory. The latter part for the ghost dofs is called the ghost buffer.

The local dofs in every subdomain are numbered according to the layout of this buffer.

Figure 7.1 (b) shows the local dof numbering on the three ranks. It proceeds through

all non-ghost dofs followed by the ghost dofs. A global numbering of all dofs is given in

7.1 DATA HANDLING WITH PETSC 277

...
...

...
...

rank r0 rank r1

(a) startGhostManipulation(): Com-

munication of values at r1 to the ghost

buffer at r0.

...
...

...
...

+

+

rank r0 rank r1

(b) finishGhostManipulation(): Com-

munication and addition of ghost values

at r0 to the non-ghost dofs at r1.

Figure 7.3: Communication operations for ghost values in an example with two ranks r0

and r1. Depicted are the vectors of local storage for non-ghost (black) and

ghost values (green). The red arrows indicate the data transfer. The visualized

operations are needed, e.g., in the assembly of finite element stiffness and

mass matrices and their application on the vector of unknowns.

Figure 7.1 (a). It is needed, if global operations have to be performed with the Vec, e.g.,

computing matrix vector products.

In the following, we outline how the finite element stiffness and mass matrices are

assembled in parallel. The algorithm proceeds by iterating over the elements of the mesh.

The contributions to the matrix, i.e., the “element matrices”, are computed at the dofs

of every element. Additional material data, such as values of a diffusion tensor, may be

stored at the dofs and are used in these computations.

The step of assembling the global matrix entries adds up the contributions of all ele-

ments that are adjacent to every dof. This includes a parallel reduction operation for the

ghost dofs, which contribute to matrix entries that are owned by a different subdomain.

PETSc provides specific functionality for the two required communication operations:

(i) gathering data into the ghost buffers on every rank, i.e., communicating the values

from the owning rank to the ghost buffers at all other ranks, where the respective dofs

are ghosts, and (ii) the global reduction of values between ghost and non-ghost dofs, i.e.,

communicating the values from the ghost buffers back to the one rank, where they are

non-ghosts and adding their values to the values present at the respective rank.

278 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

The OpenDiHu code wraps the two operations in the methods startGhostManipulation

() and finishGhostManipulation(). After the call to startGhostManipulation(), the

vector can be accessed using the local dof numbering. Values of the local dofs including

ghosts can be retrieved, inserted or added as needed, e.g., during FEM matrix assembly.

After a concluding call to finishGhostManipulation(), the vector is in a valid global

state. Then, global operations such as adding or scaling the whole vector, computing a

norm or a matrix vector product can be performed by using the respective PETSc routines.

For these operations, the partitioning is transparent, i.e., the calls are the same for serial

and parallel execution. Individual entries of the vector can now be accessed using a global

numbering. However, every process can still only access the non-ghost dofs owned by its

subdomain. The two operations can be interpreted as switching between a local and a

global view on the vector object.

One thing to note is that calling startGhostManipulation() and finishGhostManipu-

lation() directly in sequence changes the values of the vector. The reason is that during

the call to startGhostManipulation(), the ghost buffers get filled with the ghost values

from other subdomains. Then, by finishGhostManipulation() the values in every ghost

buffer get summed up and added to the value at the corresponding non-ghost dof. Thus,

these dof values finally have a multiple of their initial value. This is usually not intended.

Thus, between the calls to the two methods either all ghost values have to be set, such

as during computation of the stiffness matrix. Or, if the ghost values were only needed

for reading instead of updating them, the ghost buffers have to be cleared to zero. For

the latter, a helper method zeroGhostBuffer() exists. A typical usage is therefore to call

startGhostManipulation(), then operate on the local dof values including ghosts, and

then finish with zeroGhostBuffer() and finishGhostManipulation().

7.1.2 Numbering Schemes for Nodes and Degrees of Freedom

PETSc’s definition of the local value buffer used by Vec objects dictates the local numbering

scheme of dofs on meshes of any dimensionality. While, for 1D meshes, the numbering

as given in Fig. 7.1 seems natural, for 2D and 3D meshes, a more complex ordering of

local dofs is needed.

Three different numbering schemes for nodes and dofs exist within OpenDiHu. They

are visualized in Fig. 7.2 for a 2D mesh. The first is the global natural numbering scheme,

which numbers all nglobal = Ndofs
x ×Ndofs

y ×Ndofs
z global dofs in the structured mesh. It starts

with zero and iterates through the mesh using the triple of coordinate indices (i, j, k)

7.1 DATA HANDLING WITH PETSC 279

for the x , y and z axis with the ranges i ∈ {0, . . . , Ndofs
x − 1}, j ∈ {0, . . . , Ndofs

y − 1} and

k ∈ {0, . . . , Ndofs
z − 1}. The numbering proceeds fastest in x or i direction, then in y or j

direction and then in z or k direction. Examples are shown in Fig. 7.2 (a) for a 2D mesh

and in Fig. 7.4 for a 3D mesh.

The intention of this first numbering is to facilitate the problem description by the user.

If values for a variable in the whole computational domain should be specified, the order of

the given value list will be interpreted according to this numbering. Boundary conditions

can be given for some dofs by simply specifying the corresponding dof numbers in global

natural numbering. The advantage is that this numbering scheme is easily understandable

from a users’ perspective and independent of the partitioning.

The second numbering scheme is the local numbering. An example is given in Fig. 7.2

(b). It specifies the order of dofs in the local PETSc Vec and is defined locally on every

subdomain for the non-ghost and ghost dofs. At first, all non-ghost dofs are numbered

with the order equal to the one in the global natural scheme. Then, all ghost dofs are

numbered, again in the order of the global natural scheme. This numbering has the

counter-intuitive property of jumps between some neighboring nodes.

The third numbering scheme is called global PETSc numbering and is defined by PETSc.

It is the numbering used to access global Vecs. It is also the ordering of the rows and

columns of matrices. The numbering starts with all local non-ghost numbers on rank

0, then proceeds over all non-ghost numbers of rank 1 and continues like this for all

remaining ranks. An example for this numbering is given in Fig. 7.2 (c). The portions of

local dofs for the different ranks are indicated by the grid of red and black colors. This

numbering depends on the partitioning and, thus, on the number of processes. For serial

execution it is identical to the global natural numbering.

7.1.3 Parallel Data Structures in OpenDiHu

All operations on scalar and vector fields in the simulation break down to manipulating

variables of the Vec type provided by PETSc. Because this involves low level operations

such as working with different numbering schemes and communicating ghost values,

an abstraction layer on a higher level is implemented in OpenDiHu. The data handling

classes are visualized in Fig. 7.5 with the data representation in raw memory at the top

and increasing abstraction towards the bottom of the figure.

280 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

10
5

15
20z y

0

x

1 2 3 4

14
9

19
24

25

50

75

100

49

74

99

124
123122121120

105
110
115

Global natural

numbering in 3D

Figure 7.4: Global natural numbering of nodes in a mesh with 4× 4× 4 linear elements.

raw memory

Petsc

Vec (local)

Petsc

Vec (global)

... ...

...

Partitioned-

PetscVec

<nComponents>

current-
Representation

∈ {local, global,

 contiguous}

vectorGlobal

vectorLocal

vectorContiguous

1

n

1

n

FieldVariable

ghostnon-ghost

1

1

Figure 7.5: Classes in OpenDiHu that represent vectors in parallel execution. The ab-

straction layer increases from raw memory at the top to the FieldVariable

at the bottom.

7.1 DATA HANDLING WITH PETSC 281

Depending on whether the local or the global PETSc numbering scheme describes the

data, two different objects of the Vec type are used: one local and one global Vec. In

Fig. 7.5, these two Vecs are represented by the PETSc Vec (local) and PETSc Vec (global)

boxes. At any time, only one of these is in a valid state and allows to manipulate the

data. Internally, both PETSc Vecs use the same memory to store their data. However,

as shown at the top of Fig. 7.5, the memory range of the local Vec’s buffer includes the

ghost buffer, which is never accessed by the global Vec. As mentioned, PETSc functions

are available to switch the valid state between the two Vec’s, involving communication

of ghost values.

The next abstracting class is PartitionedPetscVec<nComponents>. It represents a dis-

cretized vector field v : Ω→ Rc with a given number of components c. The number of

components c is a template parameter to the class, which has to be specified at compile

time. An example for such vector fields is the geometry field with c = 3, which is defined

for every mesh and specifies the node positions. Another example is the solution variable

of the considered problem. For scalar problems such as the Laplace equation, it has c = 1

component, for vector-valued problems, e.g., static elasticity, it has c = 3 components,

namely the displacements in x , y and z direction. For the subcellular model of Shorten

[Sho07], the solution variable, i.e., the vector of states has c = 57 components.

For each component, a separate pair of local and global Vecs is stored in the variables

vectorLocal and vectorGlobal. The global number of entries in each of the Vecs is given

by the number nglobal of dofs in the mesh that discretizes the domain Ω. Thus, the memory

layout of such a multi-component vector is struct-of-array (SoA).

Besides vectorLocal and vectorGlobal, a third variable vectorContiguous of type

Vec exists in the class PartitionedPetscVec. It contains the concatenated values of all

component vectors in vectorGlobal. Its size is therefore c · nglobal and the layout is again

SoA but stored in a single Vec.

This representation is chosen when a timestepping scheme operates on a state vector

with multiple components. An example is the solution of multiple instances of a subcel-

lular problem. Here, the dofs in the mesh correspond to the individual instances and the

components are the state variables of the system of ODEs. Thus, the contiguous vector

begins with the values of the first state for all instances, then stores the values of the

second state for all instances, etc. If the right-hand side of the system of ODEs is evaluated

together for all instances, this memory layout is very efficient as it leads to a cache aware

access pattern.

282 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Only one of the three vectors vectorLocal, vectorGlobal and vectorContiguous is

valid at any time and can be used to retrieve or update the vector values. A state

variable currentRepresentation in PartitionedPetscVec<nComponents> indicates which

one that is. The state and the Vec variables are encapsulated and hidden in the class, i.e.,

not directly accessible from outside. Instead, the class provides data access methods and

ways to change the internal representation. For example, calls to startGhostManipulation

() and finishGhostManipulation() change the representation from global to local and

from local to global, respectively. Thus, it is ensured that only the current valid represen-

tation gets accessed at any time.

As noted before, the change between local and global representation does not involve

data copying because of the shared physical data structures. When the representation is

changed from local to contiguous, the c sets of values of the vectorLocal variables have

to be copied into the buffer of vectorContiguous. This operation is performed by copying

memory blocks (memcpy) instead of the slower iteration over all values and the value-

wise copy. The reverse change from contiguous back to local representation happens

analogously. Thus, the change between all representations is fast. Despite occurring

often during transient simulations, profiling of simulations has shown negligible runtime

for the action of switching between these representations.

The top level class in the value storage hierarchy as shown in Fig. 7.5 is the Field

Variable, which contains a PartitionedPetscVec and adds numerous methods to facili-

tate access to the data container. Model formulations use this class to manipulate scalar

and vector fields. At the same time, the underlying global PETSc Vec can still be obtained

from a FieldVariable. Vector operations such as addition, norms and matrix-vector

products are performed using the low-level PETSc functions on the global Vec obtained

from the FieldVariables.

7.1.4 Discussion of Several Design Decisions

In the following, some of the design decisions in Sections 7.1.1 to 7.1.3 are discussed. In

the present code, PETSc functionality is used for value storage and organization of ghost

values transfer. The employed PETSc data model naturally corresponds to a 1D mesh.

The representation of arbitrary dimensional meshes is added by OpenDiHu and involves

the presented local and global PETSc numberings.

PETSc also provides the management of abstract 2D and 3D mesh objects in the DM

(data management) module. It allows to automatically create a partitioning with local

7.1 DATA HANDLING WITH PETSC 283

numberings and data vectors. However, the mesh always has a symmetric ghost node

layout, where ghost layers are present on all faces of a subdomain (box stencil) or also

at diagonal neighbors (star stencil). This partitioning layout is based on distributing the

nodes of the mesh to all processes. It is needed, e.g., for Finite Difference computations.

For the finite element method, however, we need an element based partitioning with

ghost layers only on one end of the mesh per coordinate direction. Therefore, we do not

use this functionality of PETSc and instead implemented the numberings for 2D and 3D

meshes on our own.

Another choice was made regarding the data layout in the PartitionedPetscVec class.

Instead of an interleaved storage of the component values in one long Vec in array-

of-struct (AoS) memory layout, one separate Vec for each component is stored, which

corresponds to SoA layout. Thereby, the implementation differs from OpenCMISS Iron,

which is also based on PETSc, but uses the AoS approach.

In Iron, not only the values of multiple components, but actually the values of multiple

field variable are combined into a single Vec. A local numbering is defined that enumerates

all components, all dofs, and all field variables. Differences to our code are, that Iron

uses unstructured meshes, which additionally are allowed to contain different types of

elements in a single mesh. Field variables can be defined with dofs either associated

with nodes or with elements. All these possible variations are accounted for by the

local numbering. The construction of the numbering is, thus, a complex process. Iron

implements it by a loop over all nglobal dofs of the domain. The same loop is executed

in parallel by all nproc processes. The runtime complexity of this approach is O(nglobal)

regardless of the partitioning. In contrast, OpenDiHu constructs its local numberings

separately on each process and only iterates over the nlocal_with_ghosts dofs, leading to a

runtime complexity of O(nlocal_with_ghosts) =O(nglobal/nproc). In a weak scaling experiment

with constant relation nglobal/nproc, the approach of Iron yields infinite runtime in the limit

for nglobal→∞, whereas the runtime in the approach of OpenDiHu stays constant.

For OpenDiHu, the AoS approach with separate Vecs was chosen for three reasons. First,

it is more cache efficient than the alternative during the computation of the subcellular

model, as explained in Sec. 7.1.3.

Second, the AoS structure is easier, and it allows to treat the components separately,

which makes modular code possible. Only a single local dof numbering has to be con-

structed per mesh, and it can be reused for all components of all field variables.

Third, it is possible to extract one component of a vector-valued field variable and place

it into another, scalar field variable without copying. This is used during the solution of

284 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

the monodomain equations given in Eq. (5.11). There, the subcellular models have a

vector-valued solution variable and the diffusion problem needs a scalar solution variable

that consists of the first component of the vector-valued variable of the subcellular model.

This first component is the transmembrane voltage Vm. The program needs to switch

between these two required vectors in every timestep of the splitting scheme. Only

with the chosen representation by multiple Vecs, the Vec for the particular component

can be efficiently exchanged between the two field variables without an expensive copy

operation.

Another design decision was to make the number c of components fixed at compile

time. Upon construction of a new FieldVariable, its number of components needs to be

known. Typically, this is the case and does not pose any restriction. The main advantage is

that local variables that hold all components for a given dof can be allocated on the stack

instead of a much slower dynamic allocation on the heap. For example, in a dynamic

solid mechanics problem, the solution FieldVariable contains three components each

for displacements and velocities plus one component for the pressure, in total c = 7 com-

ponents. The program can use static arrays with seven entries as temporary variables to

handle these values in various computations. If the number of components was not fixed

at compile time, a costly dynamic allocation of the seven components would be needed

wherever values of the FieldVariable are retrieved. In addition, with a compile-time

fixed c the compiler knows the size of the arrays and can perform automatic optimizations

such as vectorization and loop unrolling.

The C++ implementation of FieldVariables and all other constructs that depend on

the number of components is generic, as the c value is a template argument. Specializa-

tions for particular numbers of components such as for the scalar case c = 1 are possible

using template specialization. This flexibility while using object orientation is an advan-

tage over codes using procedural programming languages such as the Fortran standard

used by OpenCMISS Iron. It contributes to the extensibility design goal of OpenDiHu.

7.1.5 Implemented Basis Functions

In the FEM, the number of dofs and nodes per element depends on the chosen ansatz

functions or basis functions. OpenDiHu supports linear and quadratic Lagrange as well

as cubic Hermite basis functions. Table 7.1 shows these three sets of functions and the

resulting node configuration of an element in a 1D, 2D and 3D mesh. Profiling showed

that evaluation of the basis functions contributes most to the runtime during calculation

7.1 DATA HANDLING WITH PETSC 285

Ansatz functions Element shapes

1D 2D 3D

φ0(ξ) = 1− ξ,

φ1(ξ) = ξ

φ0(ξ) = (2ξ− 1) (ξ− 1),

φ1(ξ) = 4 (ξ− ξ2),

φ2(ξ) = 2ξ2 − ξ

φ0(ξ) = 2ξ3 − 3ξ2 + 1,

φ1(ξ) = ξ (ξ− 1)2,

φ2(ξ) = ξ
2 (3− 2ξ),

φ3(ξ) = ξ
2 (ξ− 1)

Table 7.1: Finite element ansatz functions and resulting element shapes of hexahedral

meshes in 1D, 2D and 3D. From top to bottom: Linear Lagrange, quadratic

Lagrange and cubic Hermite ansatz functions.

of the stiffness matrix. Therefore, care was taken to choose the formulations of the basis

functions among different factorizations that need the least operations. Those are listed

in Tab. 7.1.

In the program, every basis function is defined by a class that specifies the constant,

static numbers ndofs_per_basis of dofs per 1D element and ndofs_per_node of dofs per node. Fur-

thermore, the actual functions and their first derivatives are implemented. All algorithms

working with meshes or ansatz functions only use this information given in the basis

function class. Therefore, it is easily possible to introduce new nodal ansatz functions as

needed, e.g., a cubic Lagrange basis, by accordingly defining a new class.

If any Lagrange basis is used, every node has exactly one dof, i.e., ndofs_per_node = 1.

With the 1D Hermite basis, every node has ndofs_per_node = 2 dofs, one that describes the

function value and one that defines the derivative at the particular node. For higher

dimensional meshes, the bases are constructed by the tensor product approach. For 2D

meshes, this results in four and for 3D meshes in eight dofs per node for the Hermite

basis. For example, at a node at location x in a 2D mesh, the first dof describes the value

f (x) of a scalar field f : Ω→ R and the others relate to the derivatives ∂ x f (x), ∂ y f (x)

and ∂ x y f (x).

Note that the dof values for derivatives only match the real derivatives of f in meshes

286 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

with unity mesh widths. In a general, the derivatives are scaled by the element lengths.

In general meshes with varying element sizes, the represented FE solution f is not con-

tinuously differentiable at element boundaries, i.e., f ∈ C0(Ω,R).

For quadratic Lagrange and cubic Hermite basis functions, the numbering schemes pre-

sented in Sec. 7.1.2 have to be adjusted, such that, at every node, all dofs are enumerated

in sequence before the numbering continues at the next node.

7.1.6 Implemented Types of Meshes

Meshes of different types can be selected independently of the choice of basis functions.

Three types are supported. Figure 7.6 visualizes meshes of these types with linear and

quadratic elements.

The first type is Mesh::RegularFixedOfDimension<D> where D ∈ {1,2,3} is a compile-

time constant of the dimension. This type describes a rectilinear, regular structured mesh

that is defined by a fixed mesh width h in all coordinate directions. This mesh is “fixed”,

which means that the positions of the nodes cannot change after the mesh object was

created. Regular fixed meshes describe a line (1D), a rectangular (2D) or a cuboid domain

(3D). This mesh type exists, because such domains are often used in exemplary problems

to study certain effects independently of the shape of the domain. A regular fixed mesh

can be easily configured by specifying origin point coordinates, mesh widths and number

of elements. For this mesh type, matrix assembly in the FEM is simplified and more

efficient by using precomputed stencils.

The second mesh type is Mesh::StructuredDeformableOfDimension<D>. The struc-

tured deformable mesh is a generalization of the regular fixed mesh. The mesh again has

a structure of N el
x ×N el

y ×N el
z elements. Contrary to the regular fixed mesh, the nodes can

now have arbitrary positions. In the name of this mesh, “deformable” indicates that the

node locations can be changed over time. Thus, this mesh type is usable in dynamic solid

mechanics problems, where the domain deforms over time. If the user wants to config-

ure a mesh of this type, they either have to provide the same information as for regular

fixed meshes—then, a mesh with fixed mesh width will be created—or they provide the

positions of all nodes, yielding an arbitrarily shaped domain as shown in Fig. 7.6.

The third mesh type is Mesh::UnstructuredDeformableOfDimension<D>. In contrast

to the two other types, this mesh is unstructured implying that element adjacency is no

longer given implicitly. The example at the lower third of Fig. 7.6 shows capabilities of

7.1 DATA HANDLING WITH PETSC 287

Mesh::RegularFixedOfDimension<2>

Mesh::StructuredDeformableOfDimension<2>

Mesh::UnstructuredDeformableOfDimension<2>

Figure 7.6: The three implemented mesh types in OpenDiHu, each time for 2D linear

Lagrange or Hermite ansatz functions (left) and for 2D quadratic Lagrange

ansatz functions (right).

this mesh type: The overall shape of the domain is not restricted to resemble a rectangle.

Protruding parts like the element at the bottom left are possible. Furthermore, not every

node needs to be adjacent to exactly four elements in 2D. The example shows nodes with

three and five adjacent elements that allow to properly approximate the round shape of

the right side of the domain. The mesh is again “deformable”, which means that it can be

used for elasticity problems. In order to configure such a mesh, the node positions have

to be specified, similar to a structured deformable mesh. Additionally, the elements with

links to their corresponding nodes have to be given. OpenDiHu implements a second

possibility to specify these meshes. A pair of exelem and exnode files, which are common

in the OpenCMISS community, can be loaded.

A disadvantage of unstructured meshes is that the simple parallel partitioning scheme

of subdividing the domain according to element index ranges is not applicable. Instead,

the set of elements for every subdomain needs to be computed individually. Typically,

288 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

this is done using graph partitioning methods in order to minimize subdomain border

lengths while ensuring equal subdomain sizes. Another disadvantage is that information

about neighbor elements and neighbor subdomains has to be stored explicitly, while it

is given implicitly in structured meshes. For these reasons, unstructured meshes can be

used in OpenDiHu only for serial computation. The construction of parallel partitionings

is only possible with the other two, structured mesh types.

The choice, which mesh type to use in a simulation, has to be made at compile time.

A simulation program can be easily compiled for different meshes by substituting the

type in the main C++ source file. By proper abstraction in the code, all implemented

algorithms are independent of the used mesh type when run in serial. Some algorithms,

e.g., streamline tracing, are specialized for structured meshes to exploit the structure and

lead to more efficient code. Unit tests ensure the correct solution of a Laplace problem

with all combinations of mesh type, dimensionality and ansatz function.

7.1.7 Composite Meshes

To overcome the limitations of structured meshes regarding possible domain shapes and,

at the same time, preserving the advantage of efficient parallel partitioning, composite

meshes are introduced. These meshes of type Mesh::CompositeOfDimension<D> are built

using multiple meshes of type Mesh::StructuredDeformableOfDimension<D>, called sub-

meshes in this context. The structured submeshes are positioned next to each other to

form a combined single mesh on the union of the domains of all meshes. Figure 7.7a

shows a 2D example where three structured meshes are combined to a composite mesh.

As can be seen, the submeshes can have different numbers of elements. The nodes on the

borders between touching structured meshes are shared between the individual meshes.

Thus, these nodes contain only a single set of dofs like every other node in the mesh.

In the code, composite meshes reuse the implementation of structured meshes by

defining different numbering schemes for nodes and dofs over the whole composite

domain. The numbering of nodes starts with all nodes of the first submesh, then proceeds

over all remaining nodes of the second submesh and so on, until all nodes are numbered.

The numbering of dofs is analog. Figure 7.7b shows an example with two quadratic

submeshes with four and two elements. The resulting composite mesh has six elements.

The node numbers in the first structured mesh are identical to the corresponding nodes

in the composite mesh. The numbering continues in the set of remaining nodes of the

second structured mesh and the shared nodes on the border between the meshes are

7.1 DATA HANDLING WITH PETSC 289

skipped in the numbering, as they already have a number assigned. The shared nodes

have the numbers 14, 19 and 24.

In parallel execution, this scheme is executed first on the non-ghost and then on the

ghost nodes of the subdomains of all submeshes. Thus, the local numbering of the

composite scheme visits the non-ghost nodes of all subdomains first before iterating over

the ghost dofs on all subdomains. Thus, the ghost buffer is consecutive in memory as

required by the parallel PETSc Vecs.

For the construction of this numbering, the shared nodes of different submeshes, which

lie at the same position, have to be determined. The identification of shared nodes occurs

according to their position in the physical domain. The distance in every coordinate

direction has to be lower than the tolerance of 10−5 for a pair of nodes to be considered

identical and shared. The shared nodes are determined on every local subdomain of the

underlying structured meshes. To correctly number ghost nodes that are shared between

submeshes, communication between processes is necessary.

Using the set of shared nodes, mappings in both directions between the local num-

berings of the submeshes and the local and global PETSc numberings of the composite

mesh are constructed. These mappings are used to transfer operations on the composite

mesh to operations on the structured submeshes. Thus, every implemented algorithm

can transparently work also on composite meshes.

The creation of the numbering schemes requires that neighboring elements on different

submeshes are located on the same process. If this was not the case, submeshes would

potentially have ghost nodes at their outer border, which does not occur in normal struc-

tured meshes and would disallow reusing their implementation. Furthermore, the MPI

communicator of the submeshes has to be the same and no subdomain can be empty.

This means that a composite mesh has to be partitioned, such that every submesh is sub-

divided into the same number of partitions involving all processes. If these requirements

are fulfilled, the parallel implementation of any algorithm on structured meshes can be

reused for composite meshes. Figure 7.7a shows a valid partitioning of the exemplary

composite mesh to two subdomains.

To configure composite meshes in the settings, their submeshes have to be specified

as usual for structured meshes. Then, a list of all submeshes is given for the composite

mesh. In parallel execution, a proper partitioning that fulfills the requirements has to be

constructed in the Python script of the settings as well.

290 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Mesh::CompositeOfDimension<2>

(a) A composite mesh that is created from

three structured meshes (different col-

ors) and a possible subdivision for par-

allel partitioning (white vertical line).

x

y

0 1 2 3 4

5

10

15

20 21 22 23 24

19

14

6 7 8
9

25 26

31

24 35
36

27
28

30

33

(b) Numbering scheme of dofs for a com-

posite mesh, which is created from two

quadratic meshes.

Figure 7.7: Examples for composite meshes that combine the advantages of structured

and unstructured meshes.

An application of composite meshes is the biceps muscle with a fat and skin layer.

Figure 7.8 visualizes the composite mesh. It consists of two structured submeshes for the

muscle belly and the body layer on top, as visualized in the top image. The bottom image

shows a partitioning to four processes. As can be seen, the domain can be split along the

x and z coordinate axes to produce valid partitionings. Using this decomposition strategy,

any number of subdomains (limited by the number of elements, though) is possible.

7.2 Finite Element Matrices and Boundary Conditions

Another important mathematical object besides the vector, which has to be represented

in finite element simulation programs, is the matrix. Matrices are mainly needed to store

the linear system of equations that results from the discretized weak formulation within

the FEM. Dirichlet boundary conditions can be enforced by adjusting the system matrix.

In the following sections, the storage of matrices is discussed, an efficient, parallel

algorithm to assemble the FEM system matrix is presented and evaluated and a second

parallel algorithm for handling Dirichlet boundary conditions is given.

7.2 FINITE ELEMENT MATRICES AND BOUNDARY CONDITIONS 291

Figure 7.8: Composite mesh of the biceps muscle. Top: the two structured meshes from

which the composite mesh is created, bottom: partitioning to four processes.

7.2.1 Storage of Matrices

The storage of matrices is delegated to PETSc, like the storage of vectors. The default

sparse matrix format of PETSc, compressed row storage (CRS) or “AIJ” in PETSc notion, is

used. The representation stores the non-zero locations and their values for every row of

the matrix.

The system matrices in the FEM have as many rows and columns as there are global

dofs in the system. The typical linear system of equations can be expressed as:

Ku= f,

with system matrix K and the parallel vectors u and f of the solution and right-hand side,

respectively. The partitioning of the rows of the matrix corresponds to the partitioning of

292 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

the right-hand side vector f. Thus, every rank has the complete information of a subset

of lines in this matrix equation.

Every rank stores a submatrix of size nlocal_without_ghosts× nglobal. In PETSc, this submatrix

is composed of two blocks. The diagonal block is a square matrix of size (nlocal_without_ghosts)
2

and holds only the columns of the local dofs. The rest of the columns are stored in the

off-diagonal block which is a non-square matrix in general.

The memory of these two storage blocks needs to be preallocated prior to the assign-

ment of matrix entries. This allows PETSc to allocate the whole data storage in one chunk

instead of potential reallocations for every new matrix entry. According to the documen-

tation of PETSc, this can speed up the assembly runtime by a factor of 50 [Bal16]. For the

preallocation, the numbers of non-zero entries per row in the two storage blocks need

to be estimated. The estimated numbers need to be equal to or greater than the actual

number of non-zeros per row.

The stiffness and mass matrices in the FEM have a banded non-zero structure that im-

plies a maximum number of non-zero entries per matrix row. The value can be computed

as follows:

n1D_overlaps = (2 ndofs_per_basis − 1) · ndofs_per_node,

nnon-zeros =
�

n1D_overlaps

�d
.

(7.1)

Here, the number ndofs_per_basis of dofs per 1D element is 2 and 3 for linear and quadratic

Lagrange bases and 4 for cubic Hermite basis functions. The number ndofs_per_node of dofs

per node is 1 for Lagrange basis functions and 2 for Hermite basis functions. The value

n1D_overlaps describes the number of basis functions in a 1D mesh that have overlapping

support with a given basis function. By the tensor product approach, the resulting estimate

nnon-zeros of non-zero entries per row is computed by exponentiation of n1D_overlaps with the

dimensionality d.

Because no assumption can be made about how the bands of non-zero entries in the

matrix are distributed to the diagonal and off-diagonal storage parts, the same value of

nnon-zeros is used as estimate to preallocate both the diagonal and the off-diagonal part of

the local matrix storage.

In the following, the non-zero structure of an exemplary stiffness matrix is shown. A

3D regular fixed mesh of 4× 4× 4 elements with quadratic Lagrange basis functions is

considered. The Laplace equation is solved with Dirichlet boundary conditions at the

bottom and top planes of the volume. The prescribed values are 1 at the bottom and 2 at

7.2 FINITE ELEMENT MATRICES AND BOUNDARY CONDITIONS 293

Figure 7.9: Solution of the Laplace equation ∆u = f with prescribed values u|bottom = 1

and u|top = 2. The mesh consists of 4×4×4 quadratic elements and, thus, 93

nodes. Left: Solution, right: Partitioning to four processes.

the top. The solution is visualized in the left of Fig. 7.9. The computation is performed

with four processes. Figure 7.9 shows the partitioning on the right.

The non-zero estimates computed by Eq. (7.1) are n1D_overlaps = 5 and nnon-zeros = 125.

The mesh has 4 elements, thus, 9 nodes per coordinate direction, and, therefore, nglobal =

93 = 729 dofs. Figure 7.10 shows the resulting sparsity pattern of the stiffness matrix

K. The portions of the four processes are indicated by different colors. The maximum

number of non-zeros per row and column is indeed 125, as calculated. Some rows have

less non-zero entries. These correspond to dofs that lie on the boundary of the domain.

The rows with only one non-zero entry on the diagonal enforce the Dirichlet boundary

conditions. The total size of preallocated memory for the diagonal and off-diagonal blocks

on all processes is 2 nglobal nnon-zeros = 182 250. The actual number of non-zero entries is

35 937, which is approximately 20% of the preallocated values.

294 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

0 200 400 600

0

100

200

300

400

500

600

700

Figure 7.10: Sparsity pattern, i.e., locations of non-zero entries of the 729× 729 stiffness

matrix K for the example problem in Fig. 7.9. The rows for the four processes

are given by different colors matching the partitioning in Fig. 7.9. The

processes have 144, 180, 180 and 225 local dofs.

How To Reproduce

In any example, the system matrix can be written to a MATLAB compatible file by

specifying the settings 'dumpFormat': 'matlab', 'dumpFilename': 'out'. To get

the non-zero structure for the example in Fig. 7.10, compile the laplace3d example

and run the following:

cd $OPENDIHU_HOME/examples/laplace/laplace3d/build_release

mpirun -n 4 ./laplace_quadratic ../settings_quadratic_matrix_output.

,→ py -ksp_view

The flag -ksp_view is parsed by PETSc and outputs matrix statistics such as the

number of preallocated and actual non-zeros. A file out_matrix_000.m is created

that can be loaded in MATLAB. Use spy(stiffnessMatrix) to plot the non-zero

structure.

7.2 FINITE ELEMENT MATRICES AND BOUNDARY CONDITIONS 295

7.2.2 Assembly of Finite Element Matrices

Next, the algorithm to compute stiffness and mass matrices in parallel for the application

of the d-dimensional FEM is discussed. The matrix entries to be computed are given by

mi, j =

ˆ

Ω

I(x)dx, (7.2)

where the integrand I is derived from the respective FEM formulation in weak form.

A generic algorithm for the evaluation of this integral and parallel assembly to a global

matrix is presented in Alg. 4. Multiple variants of this algorithm, which only differ in

their achieved performance, have been implemented for evaluation purposes. They are

discussed in Sec. 7.2.3. The listed algorithm in Alg. 4 shows the fastest variant.

Algorithm 4 Finite element matrix assembly

1 procedure Assemble FE system matrix

2 for elements e = {e1, e2, e3, e4} in all elements do
3 for sampling point ξ do

4 Compute Jacobian Je(ξ)

5 Evaluate integrand Ie,i, j(ξ) = c · I(Je,ξ) for all elements e/dofs (i, j) at once

6 matrix_entries[i, j] = Quadrature(Ie,i, j(ξ)) for all el. e/dofs (i, j) at once
7 for dof i = 0, . . . , ndofs_per_element − 1 do

8 for dof j = 0, . . . , ndofs_per_element − 1 do

9 rows = dofs i of elements e1, e2, e3, e4

10 columns = dofs j of elements e1, e2, e3, e4

11 matrix[rows,columns] = matrix_entries[i, j]

12 Call PETSc final matrix assembly

The main loop in line 4.2 iterates over the local elements of the subdomain. The

shown implementation iterates over sets of four elements e1, e2, e3 and e4. A simpler

variation of the algorithm is to instead visit every single local element in its own iteration.

However, the more efficient variant is the presented one that always considers the set e

of four elements at once. Explicit vectorization is employed on all following operations

on these four elements, such that the four sequences of calculations for the elements are

performed by identical instructions. This adheres to the single-instruction-multiple-data

(SIMD) paradigm. The vectorization is explicit since the C++ library Vc [Kre12; Kre15]

is used. Vc provides zero-overhead C++ types for explicitly data-parallel programming

and directly employs the respective vector instructions where these types are used.

To compute the integral in Eq. (7.2), a node based quadrature rule is used. In our

code, the quadrature rule has to be chosen at compile time among Gauss, Newton-Cotes

296 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

and Clenshaw-Curtis quadrature rules. All three schemes are implemented for different

numbers nsampling_points of sampling points. The loop in lines 4.3—4.5 iterates over the

respective sampling points ξ ∈ [0, 1]d in the element coordinate system. In line 4.4, the

Jacobian matrix of the mapping from element to world coordinate frame is computed

at the given coordinate ξ for all elements in the set e. The Jacobian is needed in the

integrand for the transformation of the integration domain.

In line 4.5, the integrand I is evaluated for all elements in e and also for all pairs

(i, j) of local dofs in each of these elements. The indices i and j are in the range i, j ∈
{0,1, . . . , ndofs_per_element − 1} with the number ndofs_per_element of dofs per element. The set

of 4 (ndofs_per_element)
2 ·(nsampling_points)

d computed values is passed to the implementation of

the d-dimensional quadrature rule in line 4.6. The numerical values of the integrals get

computed for all considered elements in e and dof pairs (i, j), yielding 4 (ndofs_per_element)
2

quadrature problems to be solved at once. This means that the result of the quadrature

rule is a linear combination of quadrature weights and vector-valued function evaluations

instead of scalar function values.

Next, the two loops in lines 4.7—4.11 assign the computed values stored in the vari-

able matrix_entries to the actual matrix. The loops iterate over all dof pairs (i, j) per

element. The corresponding rows and columns are determined in lines 4.9 and 4.10

and the respective computed value is assigned in line 4.11. The values are added to the

matrix entry indicated by the row and column index. Since all dofs including ghosts

are considered on every local domain, the same matrix entry can get contributions on

multiple processes.

Thus, the last step in line 4.12 is a PETSc call that communicates and sums all matrix

entry contributions to the respective processes where the dof is non-ghost. Additionally,

the call frees the residual preallocated memory that was not needed for non-zero entries

and finalizes the internal data structure of the CRS storage format.

In the last iteration over local elements of the main loop in line 4.2, the remaining

number of elements is potentially less than four. Nevertheless, the computations proceed

as normal. The spare entries of the SIMD vectors get computed using dummy values and

are discarded at the end.

For the case of vector-valued finite element problems, e.g., linear elasticity with a

solution vector of vector-valued displacements, two more inner loops over the components

of the vector are inserted. As a result, the presented algorithm can be used to assemble any

FEM matrix on any mesh type and for any formulation given by the term I in Eq. (7.2).

Examples are stiffness and mass matrices for the Laplace operator with and without

7.2 FINITE ELEMENT MATRICES AND BOUNDARY CONDITIONS 297

diffusion tensor or stiffness and mass matrices for the linear equations that have to be

solved during the solution of nonlinear, dynamic elasticity problems.

Note that the algorithm operates in parallel execution entirely on data stored in the

local subdomain and does not need any global information. The loop iterates over local

elements. For every element, the indices in the local numbering of the nodes that are

adjacent to the element are needed. In structured meshes, this information is determined

from the numbers N el
x ×N el

y ×N el
z of local elements in the coordinate directions. In unstruc-

tured meshes, these indices are explicitly stored in the elements. To assemble the global

matrix, PETSc uses the mapping from local to global numbering, which it can maintain

by storing the constant offset in the global numbering on every subdomain. Mappings

from global dof or node numbers to local numbers are not needed in this algorithm. In

general, storing global information, which would require memory of O(nglobal), is avoided

in all algorithms to ensure good parallel weak scaling properties.

7.2.3 Performance of the Algorithm for Parallel Matrix Assembly

In the following, the performance of two variations of the algorithm in Alg. 4 will be

examined. The first variation is to not use explicit vectorization and, thus, iterate over

the elements one by one instead of the groups of four elements in line 4.2.

The second variation is to not accumulate multiple values for the application of the

quadrature scheme in line 4.6. Instead, the loop over the sampling points in line 4.3 is

made the inner-most loop and placed inside the loop in line 4.8. Then, the quadrature

scheme only computes a single value at once. In consequence, this value can directly be

stored in the resulting matrix, and the temporary variable matrix_entries is not needed.

This loop reordering requires the evaluations of the Jacobian and the integrand in lines

4.4 and 4.5 to also be located in the new inner-most loop over the sampling points.

The algorithm with these two variations corresponds to the naive way of implement-

ing matrix assembly because iterating first over elements, then over dof pairs and then

performing the quadrature directly mirrors the mathematical description.

Different combinations of these two variations result in four variants of the algorithm.

A study was conducted to measure their effects on the runtimes. A simulation with the

same settings as in Fig. 7.9 was run except for a larger number of 50× 50× 50 elements.

This setup lead to a total number of nglobal = 1030 301 dofs. Gauss quadrature with

three sampling points per coordinate direction and, thus, 33 = 27 sampling points in

298 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

0 250 500 750 1000 1250
Runtime [s]

Combined quadrature,
explicit vectorization

Combined quadrature,
no explicit vectorization

Single quadrature,
explicit vectorization

Single quadrature,
no explicit vectorization

5.2 s

7.9 s

352.5 s

1408.4 s

Figure 7.11: Runtimes of different optimizations for the algorithm to assemble the FEM

stiffness matrix.

total was used. The program was executed with four processes on an AMD EPYC 7742

processor with base frequency of 2.25 GHz, maximum boost frequency of 3.4 GHz, 2 TB of

memory and a memory bandwidth of 204.8 GB
s

per socket. The runtime for the assembly

of the stiffness matrix with dimensions nglobal × nglobal was measured for all four variants.

Figure 7.11 presents the resulting runtimes.

It can be seen that a large difference in runtime exists between the variants with

quadrature of single values compared to the combined quadrature. In the case of no

explicit vectorization (first and third bar from the top in Fig. 7.11), the runtime reduces

to less than 0.6 %. In the case of explicit vectorization (second and fourth bar from the top

in Fig. 7.11), the runtime reduces to less than 1.5 %. The reason for this enormous gain

in performance is three-fold. First, the values of the Jacobian can be reused for the same

element and sampling point. Second, the combined quadrature for multiple values yields

more cache-efficient memory access, because the vector of values is stored consecutively

in memory and can be fetched from the cache by less load operations. For the single

quadrature, the individual values are fetched at different times from different memory

locations. Third, the compiler is able to employ SIMD instructions for the combined

quadrature, a process called auto-vectorization.

The performance improvements from the second variation, the use of explicit vector-

ization by simultaneously computing the entries for four elements at once can be seen by

comparing the first and second bars and the third and forth bars in Fig. 7.11. The run-

7.2 FINITE ELEMENT MATRICES AND BOUNDARY CONDITIONS 299

time reduction of explicit vectorization with single quadrature from 1408.4 s to 352.5 s

is exactly by the expected factor of four. This shows that explicit vectorization works as

expected, and that no auto-vectorization could be performed by the compiler for the sin-

gle quadrature. The runtime reduction of explicit vectorization from 7.9 s to 5.2 s during

combined quadrature corresponds to a speedup of only approximately 1.5. This shows

that combined quadrature without explicit vectorization already allows the compiler to

employ some auto-vectorization. However, using the explicit vectorization approach on

the level of different elements instead of the level of quadrature values still has a positive

effect.

In total, the performance gain from the most naive implementation (top bar in Fig. 7.11)

to the most optimized version (bottom bar in Fig. 7.11) equals a speedup of more than 270.

Together with the solution of the linear system using an algebraic multigrid preconditioner

and a GMRES solver with a residual norm tolerance of 10−10, the total runtime of the

program to solve the Laplace problem with over a million degrees of freedom using a

modest parallelism of four processes takes 28 s.

How To Reproduce

The results of Fig. 7.11 can be reproduced as follows. The explicit vectorization

can be turned on and off with the variable USE_VECTORIZED_FE_MATRIX_ASSEMBLY

in the configuration of the SCons build system in the file $OPENDIHU_HOME/user

-variables.scons.py (ca. line 75). Normally, only the variant with combined

quadrature is implemented. To test the single quadrature, checkout the git branch

fem_assembly_measurement. The single quadrature is on by default, to change back

to the combined quadrature, edit the following line:

vi $OPENDIHU_HOME/core/src/spatial_discretization/

,→ finite_element_method/01_stiffness_matrix_integrate.tpp +17

For all variants of the algorithm, compile and run the following example:

cd $OPENDIHU_HOME/examples/laplace/laplace3d/build_release

mpirun -n 4 ./laplace_quadratic ../settings_quadratic.py

The duration of the algorithm for stiffness matrix assembly will be printed.

300 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

7.2.4 Assembly of Finite Element Matrices for Regular Meshes

For equidistant meshes of type Mesh::StructuredRegularFixedOfDimension<D>, all ele-

ments are similar through the uniform grid resolution and, thus, all elements matrices

equal the same constant matrix. In consequence, the integral terms in Eq. (7.2) can be

precomputed analytically and no numerical quadrature at runtime is needed. This speeds

up the determination of the FEM matrices.

We implement matrix assembly using precomputed values for the stiffness and mass

matrices of the Laplace operator for linear Lagrange basis functions. For the stiffness

matrix of the Laplace operator, the integral term (−
´

Ωel∇φi · ∇φ j dξ) is calculated ana-

lytically. The result is a value for every combination of the dofs i and j in the element.

Thus, the contribution of one representative element in the mesh to the values at adjacent

dofs is known. To get the matrix entry for a particular dof, the element contributions of

all elements that are adjacent to the node need to be summed up. For this process, it is

convenient to represent the precomputed values in stencil notation.

Table 7.2 shows the stencils for element contributions in the left column and the re-

sulting stencils for the dofs in the right column. In the element contribution stencils,

dof i is chosen as the first dof in the local dof numbering. Values are calculated for all

choices of dof j in the element and the values are noted in the stencil. The location of

dof i is marked by the underlined number. Stencils for all other locations of dof i follow

by symmetry.

The node stencils describe the values of the term (−
´

Ω
∇φi · ∇φ j dξ) with the integra-

tion over the whole domain. The node i is fixed and marked in the stencil notation by

the underlined number. Values for all neighboring nodes j are computed and listed in

the stencils. For a given node i, the integral over the whole domain Ω is the sum of inte-

grals over all elements Ωel adjacent to node i. These have been computed in the element

contribution stencils. As can be seen in Tab. 7.2, the node stencils follow by adding up

mirrored variants of the element stencils centered around the underlined node.

The entries in the stiffness matrix are computed from the node stencils by a multipli-

cation with a mesh dependent prefactor. For 1D, 2D and 3D meshes with mesh width h,

these prefactors are 1/h, 1 and h, respectively. Thus, e.g., the 1D stiffness matrix has the

entries −2/h on the diagonal, 1/h on the secondary diagonals above and below the main

diagonal and zero everywhere else.

A similar computation is possible for the mass matrix, where the term
´

φiφ j dξ can be

precalculated. The element and node stencils for the mass matrix are given in Tab. 7.3.

7.2 FINITE ELEMENT MATRICES AND BOUNDARY CONDITIONS 301

Dim. Element contribution Node stencil

1D �

−1 1
� �

1 −2 1
�

2D 1

6

�

1 2

−4 1

�

1

3

1 1 1

1 −8 1

1 1 1

3D
center:

1

12

�

0 1

−4 0

�

bottom:
1

12

�

1 1

0 1

�

top:
1

12

1 2 1

2 0 2

1 2 1

center:
1

12

2 0 2

0 −32 0

2 0 2

bottom: same as top

Table 7.2: Stencils of the finite element stiffness matrix of ∆u for a regular mesh with

mesh width h= 1 and linear ansatz functions. The stiffness matrix entries can

be computed by multiplication with a mesh width dependent factor.

Dim. Element contribution Node stencil

1D 1

6

�

2 1
� 1

6

�

1 4 1
�

2D 1

36

�

2 1

4 2

�

1

36

1 4 1

4 16 4

1 4 1

3D
center:

1

216

�

4 2

8 4

�

bottom:
1

216

�

2 1

4 2

�

top:
1

216

1 4 1

4 16 4

1 4 1

center:
1

216

4 16 4

16 64 16

4 16 4

bottom: same as top

Table 7.3: Stencils of the finite element mass matrix for a regular mesh with mesh width

h = 1 and linear ansatz functions. The mass matrix entries can be computed

by multiplication with a mesh width dependent factor.

302 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

The precalculated values can only be used for meshes with uniform mesh width and

linear Lagrange basis functions. In OpenDiHu, the type of the mesh and basis function

is fixed at compile time. The stencil based approach to set the entries of stiffness and

mass matrix is implemented as partial template specialization of the template, which

otherwise uses the numerical algorithm presented in Sec. 7.2.2. Thus, the stencil based

implementation is instantiated automatically by the compiler for regular fixed meshes of

all dimensionalities with linear basis functions.

The conditions for the stencil based approach are fulfilled whenever regular fixed

meshes and linear bases are used, e.g., for toy problems or studies where the shape of the

domain is irrelevant and, e.g., a cuboid cutout of muscle tissue is sufficient. Mathematical

models involving a Laplace operator, such as Laplace, Poisson or diffusion problems can

benefit from the faster system matrix setup.

Another purpose of the stencil based approach in OpenDiHu besides runtime reduction

is to verify the implementation of the numerical integration method of Alg. 4. Because

of the regular mesh and linear ansatz functions, the numerical method computes the

exact result with proper quadrature schemes and, thus, can be compared to the stencil

based approach. Several unit tests ensure that the generated system matrices of the two

approaches are equal.

7.2.5 Algorithm for Dirichlet Boundary Conditions

The assembled system matrix needs to be adjusted when Dirichlet boundary conditions

are specified. Dirichlet boundary conditions are ensured by replacing equations involving

the prescribed dofs by the definition of the boundary conditions. This involves changes

in the system matrix and right-hand side of the finite element formulation.

Consider the following matrix equation resulting from a FE discretization with four

dofs u1 to u4:

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

u1

u2

u3

u4

=

f1

f2

f3

f4

.

7.2 FINITE ELEMENT MATRICES AND BOUNDARY CONDITIONS 303

We assume a Dirichlet boundary condition for the last dof, u4 = û4. Enforcing this

condition is accomplished by the following adjusted system of equations:

m11 m12 m13 0

m21 m22 m23 0

m31 m32 m33 0

0 0 0 1

u1

u2

u3

u4

=

f1 −m14 û4

f2 −m24 û4

f3 −m34 û4

û4

.

The last equation has been replaced by u4 = û4, all summands in the other equations

where u4 occurred have been brought to the right-hand side and u4 has been substituted

by the prescribed value û4.

Thus, setting a dof ui to a prescribed value û corresponds to subtracting the column

vector of column i of the system matrix multiplied with û from the right-hand side,

replacing the right-hand side entry at i by û and setting row i and column i in the matrix

to all zero and the diagonal entry mii to one.

This method also works for more prescribed values as demonstrated with the additional

Dirichlet boundary condition u2 = û2. Executing the scheme results in the following

system:

m11 0 m13 0

0 1 0 0

m31 0 m33 0

0 0 0 1

u1

u2

u3

u4

=

f1 −m12 û2 −m14 û4

û2

f3 −m32 û2 −m34 û4

û4

.

During parallel execution, only a distinct subset of rows of the matrix equation is

accessible on every rank. However, for the subtractions at the right-hand side, the full

vector of prescribed boundary conditions values is needed on every rank. Additionally, the

corresponding matrix entries are required. While the needed matrix entries are all stored

on the local rank, the vector of prescribed values is partitioned to all ranks and only the

local subdomain is accessible. Some of the non-accessible prescribed values correspond to

a non-zero matrix entry, though, and are not needed for the subtraction. In consequence,

some data transfer between processes is required. In the following, the identification of

the values that have to be communicated is illustrated with an example.

Figure 7.12 (a) shows a 2D quadratic mesh with 3×2 elements. The top layer of nodes

has prescribed Dirichlet boundary conditions, marked by the red circles. The elements

304 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

subdomain

rank 0

subdomain

rank 1

(a) global mesh

(b) (c)

Figure 7.12: Example to illustrate ghost element transfer that is needed for handling

Dirichlet boundary conditions in parallel. A mesh with Dirichlet boundary

conditions on the red nodes is given in (a). The subdomains for two processes

are given in (b) and (c). (c) shows a ghost element in orange that is sent

from rank 0 to rank 1.

are partitioned to two processes with subdomains containing four and two elements, as

shown in Fig. 7.12 (b) and Fig. 7.12 (c).

On rank 0, the right-most layer of nodes consists of ghost nodes. All other nodes are

non-ghost and correspond to the matrix rows and right-hand side entries that have to

be manipulated by this rank. In every of these matrix rows i, only entries in columns j

that correspond to nodes in the same element as i are non-zero. For these columns j,

the prescribed Dirichlet boundary condition values û j need to be known, such that the

product of matrix entry mi j and prescribed value û j can be subtracted from the right-hand

side at the corresponding row i. This is fulfilled for rank 0 since the required boundary

condition values are all part of the subdomain. The top right boundary condition node in

the top right element of rank 0’s subdomain is stored as ghost value, the other four are

non-ghosts.

As can be seen in Fig. 7.12 (c), the subdomain of rank 1 has no ghost nodes. The

rank owns three boundary condition nodes in the top layer. It has to perform right-

hand side subtractions for the twelve rows of the matrix equation that correspond to the

3× 4 other nodes, which have no prescribed boundary condition. For the bottom two

7.2 FINITE ELEMENT MATRICES AND BOUNDARY CONDITIONS 305

horizontal layers of nodes, the subtraction terms are zero, because the bottom element

of the subdomain has no boundary conditions and, thus, these matrix entries are all

zero. The upper three horizontal layers of nodes that all belong to the upper element,

however, lead to non-zero right-hand side subtraction terms because of the boundary

conditions at the top. The terms can be computed for all but the two orange nodes. At

the corresponding rows i, the prescribed values û j for all five yellow and red boundary

condition nodes j are needed. However, the left two yellow nodes are not stored on the

subdomain of rank 1. They have to be communicated from the subdomain of rank 0.

As rank 1 has no topology knowledge of rank 0’s subdomain, the information that the

missing boundary condition nodes are in the same element as the two orange nodes has

to be also transferred.

In total, the information indicated in Fig. 7.12 (c) by the orange element with the

two orange nodes and the three yellow boundary condition nodes and values have to be

communicated from rank 0 to rank 1. This element is called ghost element. Rank 0 knows

that rank 1 will need this information because it stores the right-most yellow node and

the orange nodes in subdomain 1 as ghost nodes in its own subdomain. Therefore, no

request from rank 1 is necessary.

In general, every rank constructs ghost elements from own elements that contain both

at least one boundary condition node and at least one ghost node without boundary

condition. The global indices of all nodes of these two kinds and the corresponding

boundary condition values are packaged as ghost element and sent to the rank of the

neighboring subdomain. Every process potentially sends multiple ghost elements to

multiple neighboring ranks.

Because a rank does not know the number of ghost elements it will receive a-priori,

one-sided communication is employed, which was introduced with the MPI 2.0 standard.

More specifically, passive target communication is used where only the sending rank is

explicitly involved in the transfer.

After the data are received, the proper matrix entries can be retrieved from the local

matrix storage and the subtraction operations on the right-hand side of the formulation

can be performed. The algorithm has to ensure that the same subtraction is not executed

multiple times, when the particular pair of nodes is obtained once from the local subdo-

main and once from a received ghost element. After solving the linear system with the

updated stiffness matrix and right-hand side, the dofs on nodes with Dirichlet boundary

conditions will have the prescribed values.

306 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Considering the overhead for ensuring Dirichlet boundary conditions, the question

may arise whether the partitioning scheme should be designed in a better way to simplify

the presented algorithm. However, applying Dirichlet boundary conditions is the only

process where the subdomains including ghost nodes, which were created by the parallel

partitioning of the mesh, do not provide all required local information. All other algo-

rithms such as matrix assembly successfully operate on the given partitioning. Therefore,

designing the ghost information of subdomains differently, e.g., by storing a full ghost

layer of elements or nodes around the local subdomains seems not beneficial. In fact, our

presented approach is minimal with respect to stored local mesh information. Further-

more, the communicated information for the Dirichlet boundary conditions only involves

a few elements depending on the number of boundary conditions. Of these elements,

only a subset of nodes is actually communicated.

Another alternative approach would be to store all Dirichlet boundary condition in-

formation globally on all processes, such as done in OpenCMISS Iron. This approach is

not chosen, because the required total storage would increase linearly with the number

of processes. Thus, the possible number of boundary conditions would be limited by

available memory.

In summary, the presented algorithm fits our design goals of good performance. It

is used in our implementation to enforce Dirichlet boundary conditions for static and

dynamic problems. The algorithm is executed after assembling the stiffness matrix. In

consequence, for static problems the linear system solver sets the prescribed values at

the respective dofs and the boundary conditions are fulfilled. For dynamic problems with

constant stiffness matrices, Dirichlet boundary conditions have to be ensured in every

timestep. After running the algorithm on the system matrix once, the operation on the

right-hand side vector needs to be repeated in every timestep on the updated right-hand

side.

7.2.6 Neumann Boundary Conditions

The other supported boundary conditions besides Dirichlet boundary conditions are the

Neumann type boundary conditions. In general, they are formulated on a subset Γ f ⊂ ∂Ω
of the boundary ∂Ω with outwards normal vector n as follows:

�

σ grad u(x)
�

· n= f (x) for x ∈ Γ f . (7.3)

7.2 FINITE ELEMENT MATRICES AND BOUNDARY CONDITIONS 307

Here, σ is a conductivity tensor, which describes the anisotropy of the problem. For

problems with a scalar solution function u : Ω→ R, the Neumann boundary condition is

interpreted as a flux f over the boundary of the quantity described by u. For elasticity

problems, the solution function u : Ω → Rd is vector-valued with d = 2 or d = 3 and

describes the displacement field. Then, the value f corresponds to a traction force f per

area that acts on the surface Γ f .

In a finite element formulation, we use Neumann boundary conditions to resolve the

boundary integrals that appear after applying the divergence theorem on the weak form.

In the derivation in Sec. 5.3.2, these boundary integrals were summarized by the matrix

Bσ. By using the definition of the Neumann boundary condition in Eq. (7.3), we can

derive the following equation for the boundary integral:

−
M
∑

j=1

u j

ˆ

Γ f

(σ gradϕ j · n)ϕk dx= −
M
∑

j=1

ˆ

Γ f

f jψ j ϕk dx (7.4a)

=: rhsk, (7.4b)

where the dofs u j and the ansatz functions ϕ j for j = 1, . . . , M discretize the solution

function u(x), the dofs f j and the ansatz functions ψ j discretize the flux f (x) and ϕk is

the test function, which is chosen from the same function space as the ansatz functions.

Equation (7.4a) is equivalent to the matrix equation Eq. (5.52), and Eq. (7.4b) defines

the final right-hand side vector rhs of the linear system of equations to be solved. Analo-

gously, the discretization of the Laplace problem in Eq. (5.53) contains a right-hand side

of rhs= −BΓ f
f with the vector f of dofs of the discretized flux function f .

For elasticity problems where the solution u(x) and the traction f(x) are vector-valued,

the definition of the right-hand side, which is equivalent to Eq. (7.4b), can be formulated

as

rhsaM := −
ˆ

∂Ω

T L
a ψ

L(x)δuM dx. (7.5)

Here, the right-hand side vector rhs consists of the given coefficients rhsaM , where

a = 1, . . . , d is the index over the dimension and M = 1, . . . , N iterates over the dofs

in the discrete function space. T L
a is the dof of the discretized traction force using ansatz

functions ψL and summation over the repeated index L. δuM is the virtual displacement,

which is equivalent to the test function in the Galerkin finite element formulation.

308 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

x

y

1-

1+

0- 0+ 1+

x

z

y

2+

2-
0+0- 1-

2D: 3D:

x

0- 0+

1D:

Figure 7.13: Notion of the faces of 1D, 2D and 3D elements, as used in the definition of

Neumann boundary conditions.

In OpenDiHu, a class exists that parses Neumann boundary conditions from the Python

settings and computes the negative right-hand side vector −rhs, either for the scalar case

in Eq. (7.4b) or the vector-valued case in Eq. (7.5).

If no Neumann boundary conditions are specified for parts of the boundary ∂Ω, the

right-hand side vector is set to zero for the corresponding dofs. This means that specifying

no Neumann boundary conditions is equivalent to specifying homogeneous Neumann

boundary conditions, i.e., setting f ≡ 0.

Neumann boundary conditions are specified in the Python settings as a list of elements

with associated flux or traction values. This is in contrast to the Dirichlet boundary

conditions, which are defined per dof or node. In every element with Neumann boundary

conditions, the boundary face that is part of Γ f has to be specified. The face is identified

by one of the strings "0-", "0+", "1-", "1+", "2-" or "2+", which describe the positive or

negative coordinate directions of the element coordinate system, as given in Fig. 7.13.

For elasticity problems, where the function f (x) is interpreted as traction force, two

more options can be set. The first option is "divideNeumannBoundaryConditionValues

ByTotalArea". If set to True, the traction force vector is interpreted as a total force on the

whole surface. The value of T in Eq. (7.5) is computed by scaling down the given value

by the total surface area. This allows to conveniently specify a total force, which, e.g.,

acts on the lower end of the muscle. Without this option, the traction force is interpreted

as force per area unit.

The second option "isInReferenceConfiguration" allows switching between refer-

ence and current configuration to specify the traction force. The mapping between the

traction T in reference configuration and the traction t in current configuration is given

7.2 FINITE ELEMENT MATRICES AND BOUNDARY CONDITIONS 309

by the inverse deformation gradient F:

T= F−1 t. (7.6)

Because the implemented model uses the Lagrangian formulation with the right-hand side

term defined in Eq. (7.5), the transformation in Eq. (7.6) and subsequently the right-hand

side have to be computed in every timestep of a dynamic problem.

Figure 7.14 illustrates the difference between Neumann boundary conditions that are

specified in the reference configuration and the current configuration. A horizontal,

cuboid rod is fixed at its right end and a traction force in positive x direction acts on the

surface on its other end. A dynamic hyperelasticity model with isotropic Mooney-Rivlin

material is solved.

Figures 7.14a to 7.14c show the simulation results, where the traction force is specified

in reference configuration, Figures 7.14d to 7.14f show results of the same simulation, but

with the traction force specified in the current configuration. It can be seen that the rod

bends more to the right, if the traction force is specified in reference configuration. In this

case, the force is always acting perpendicular to the rod, whereas, in the other version,

the direction of the applied force in the global coordinate system stays constant.

How To Reproduce

Use the following commands to create the results in Fig. 7.14.

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/

,→ fibers_contraction/with_tendons_precice/meshes
./create_cuboid_meshes.sh # create the cuboid mesh

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/

,→ fibers_contraction/with_tendons_precice/
,→ traction_current_or_reference_configuration
mkorn && srr # build

./muscle_precice settings_current_configuration.py ramp.py

./muscle_precice settings_reference_configuration.py ramp.py

310 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

(a) Boundary condition given

in reference configuration,

t = 1 ms

(b) Boundary condition given

in reference configuration,

t = 30 ms

(c) Boundary condition given

in reference configuration,

t = 60ms

(d) Boundary condition given

in current configuration,

t = 1 ms

(e) Boundary condition given

in current configuration,

t = 30 ms

(f) Boundary condition given

in current configuration,

t = 60ms

Figure 7.14: Influence of whether external traction forces are defined in the current or

in the reference configuration. Simulation of a dynamic solid mechanics

problem with a Mooney Rivlin material model and a constant traction force

in x direction.

7.3 PARALLEL PARTITIONING AND SUBSAMPLING OF MESHES 311

7.3 Parallel Partitioning and Subsampling of Meshes

The derivation of increasingly detailed models in the domain of biomechanics has to be

complemented by engineering of efficient software that is used to solve these models.

Using proper parallelization allows to increase the amount of computational load that

is possible to handle. In turn, this allows to simulate more complex models with higher

resolution and ultimately enables physiological and pathological insights on a new level.

For detailed multi-scale model solvers, parallelization is a complex task. The paradigm

has to be regarded during the whole setup process of the system. Different descriptions

for the same physical behavior have to be evaluated with respect to their solvability in

parallel. For a given model, suitably parallelizable numerical solution schemes have to

be selected. The implementation of individual solvers and their coupling have to take

into account the parallel environment. Discretization schemes enabling parallel domain

decomposition are required. Their representation on compute hardware with distributed

memory has to be taken into account as well as ensuring acceptable conditioning of large

scale problems. To ensure fast runtimes, load balancing between compute nodes and

parallel scalability are important.

All these fundamental considerations potentially depend on each other and require a

comprehensive solution. Thus, it is often difficult to port existing, isolated solver software

that was designed for serial or moderately parallel execution to efficiently fit into a highly-

parallel, multi-scale solution framework. To not (re-)create this kind of isolated solvers

for individual model components, we focus on their parallel design from the ground up

in the current and following sections.

In this section, we introduce algorithms for the generation of parallel partitioned

meshes, which are fundamental ingredients to all our solvers. The parallel organiza-

tion of the data and their indexing using various numbering schemes has already been

discussed in Sec. 7.1.1 and Sec. 7.1.2, respectively. In the following, we consider the

parallel partitioning problem on a higher level and provide algorithms to construct the

domain decomposition for various meshes in the multi-scale model discretization. Meshes

with different mesh widths are obtained by subsampling a finely resolved initial mesh,

which is the outcome of the algorithms described in Chap. 3, and, in practice, is given to

a particular simulation program by the respective mesh input file.

Sections 7.3.1 and 7.3.2 set the scene and define our requirements for well-behaved

parallelized meshes. Sections 7.3.3 and 7.3.4 give details on the implemented algo-

312 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

rithms and Sec. 7.3.5 addresses the configuration for the user. Section 7.3.6 concludes

by comparing the resulting partitionings for different parameters.

7.3.1 Specification of the Partitioning

Structured meshes of the types RegularFixedOfDimension<D> or StructuredDeformable

OfDimension<D> are partitioned for parallel execution by distributing the elements to all

processes. As mentioned in Sec. 7.1.1, planar cuts in the space of the element indices

separate the subdomains. For example, in computations on a structured 3D mesh with

N el
x ×N el

y ×N el
z global elements, the process with rank r owns a subdomain with N el,local,r

x ×
N el,local,r

y × N el,local,r
z local elements. The sizes of the local subdomains depend on the

specified total number of subdomains ni in each coordinate direction i ∈ {x , y, z}. Given

ni, the number of local elements in every subdomain along the coordinate axis i can be set

to either N el,local

i = ⌊N el
i /ni + 1⌋ or N el,local

i = ⌊N el
i /ni⌋ to allow for good load balancing.

A prerequisite to construct such a partitioning for nproc processes is to fix the numbers of

subdomains nx × ny × nz = nproc. In OpenDiHu, the Python settings file can either specify

the global numbers N el
i of elements or separate local numbers N el,local,r

i of elements for

every rank r. This step involves setting the option inputMeshIsGlobal to either True or

False as explained in Sec. 6.2.3.

Specifying the global numbers of elements is often useful for toy problems, when the

total element count is small and the actual partitioning is not important. In this case,

PETSc is used to determine optimal subdomain sizes for all processes and, subsequently,

constructing the partitioning. Because the partitioning is not yet known at the time of

parsing of the Python settings, spatial information such as node positions or boundary

conditions have to be specified on every rank for the whole domain.

Most of the electrophysiology examples, however, use the specification of local numbers

of elements. Thus, every rank only needs to specify the local data of its subdomain, such

as node positions and boundary conditions. This is a prerequisite for good parallel weak

scaling behavior, as the amount of data processing on each process stays constant when

simultaneously increasing problem size and total process counts.

In the electrophysiology examples, the partitioning into nx × ny × nz subdomains can

be specified by the command line parameter --n_subdomains n_x n_y n_z, where n_x,

n_y and n_z are replaced by the actual numbers. Their product has to match the process

count nproc that is given to MPI to start the program. If this option is not specified, the

7.3 PARALLEL PARTITIONING AND SUBSAMPLING OF MESHES 313

values are determined automatically by the following algorithm: For all partitions of the

number nproc into three integer factors, a performance value p is computed as follows:

p = (nx − nopt)
2 + (ny − nopt)

2 + (nz − nopt)
2.

The optimal value is given by nopt = n1/3
proc

, which, in general, is not an integer. The

partitioning with the lowest value of p is selected among all partitions, as it leads to

nearly cuboid subdomains with the best volume-to-surface ratio. An advantage of this

method is that it is independent of the mesh size.

7.3.2 Requirements for Partitioning and Sampling of the 3D

Mesh Based on 1D Fiber Meshes

Next, we specify desired properties of the parallel partitioned 3D meshes, which are

used together with 1D muscle fiber meshes in the discretization of fiber based multi-scale

models. Subsequently, we construct an algorithm to generate the accordingly partitioned

3D meshes in parallel by sampling a finer dataset based on 1D fiber meshes.

Simulation scenarios with fiber based electrophysiology use a 3D muscle mesh and em-

bedded 1D fiber meshes, which are generated from the same node positions as described

in Sec. 3.5.14. The binary input file contains a structured grid of points, which can be

either interpreted as 1D fibers by connecting the points in z-direction or as 3D mesh by

additionally connection points in x and y-directions.

Usually, all points in such a file are used to define the 1D fiber meshes and the 3D

mesh is constructed from only a subset of the available points. To obtain a 3D mesh with

approximately equal mesh widths in all coordinate directions, the point data are sampled

by constant strides in x , y and z direction. The stride in fiber direction (z direction) is

typically chosen larger than the strides in transverse directions as the distance between

the given points is smaller in this direction.

In the following, we discuss the sampling procedure that generates the partitioned 3D

mesh from the fiber data in more detail. Given a structured hexahedral fine 3D mesh,

numbers of subdomains ni and sampling stride parameters sampling_stride_i for the

three coordinate directions i ∈ {x , y, z}, we have to determine the nodes that should be

part of each subdomain in the resulting coarser hexahedral 3D mesh.

314 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Figure 7.15: Partitioning and subsampling of a fiber mesh to twelve processes. The fiber

data indicated by the spheres are sampled with a stride parameter of two to

obtain the partitioned quadratic coarse mesh given by the white elements.

The subdomains are indicated by different colors. The image shows a per-

spective view on the top 2D face of the 3D muscle mesh.

For illustration, Fig. 7.15 shows the initial fine mesh visualized by spheres that are

arranged in fibers, that run from the shown cross-section to the back. The resulting

sampled mesh is given by the white elements and uses a subset of the nodes in the fine

mesh. The sampled mesh is partitioned into the colored subdomains. Furthermore,

the coarse mesh consists of quadratic elements that are formed from two by two white

standard elements, in the cross-section each. Hence, every subdomain contains an even

number of the white elements in horizontal and vertical directions.

The requirements for the sampling and partitioning algorithm are as follows:

(i) The resulting coarser 3D mesh should use every kth node, where k is adjustable by the

7.3 PARALLEL PARTITIONING AND SUBSAMPLING OF MESHES 315

parameter sampling_stride_i in the settings.

(ii) The number of nodes in every subdomain should be approximately equal to allow for

a good load balancing in the computation.

(iii) There should be as little “remainder elements” that have a different mesh width than

the majority of the elements as possible.

(iv) If a quadratic shape functions are required, e.g., for solid mechanics models, the number

of (standard) elements in every subdomain in every coordinate direction has to be even

to allow for the generation of quadratic hexahedral elements.

Clearly, not all requirements can be fulfilled exactly for all given input meshes. For

combinations of given input mesh sizes and sampling strides that lead to an even number

of sampled nodes, requirement (iv) cannot be fulfilled. Exact fulfillment of requirement

(ii), i.e., an equal number of nodes in every subdomain is also only possible for suited

parameter choices. Therefore, we relax requirement (i) and also occasionally allow dif-

ferent step widths between the selected nodes on the fine grid. Having varying distances

between the nodes leads to elements with different mesh widths, which is unfavorable

in terms of the numerical conditioning of the problem. Therefore, the number of such

elements should be as low as possible, which is also stated by requirement (iii).

To avoid differently sized elements as far as possible, we work with a granularity

parameter. This parameter specifies the amount of nodes to summarize and treat as

an indivisible unit. For example, a value of granularity_x=2 specifies that pairs of two

neighboring points are in the same element. Then, subdomain boundaries and element

boundaries can only occur at every second node.

7.3.3 Algorithm for Partitioning and Sampling of the 3D Mesh

Based on 1D Fiber Meshes

Important steps in the algorithm for sampling the fine mesh and constructing the parti-

tioning are, first, to determine the locations of the new subdomains in the original fine

grid, second, to determine the number of sampled points in each subdomain and third,

to determine which points from the fine grid will be sampled in every subdomain of

the coarse grid. The steps have to be carried out independently for all three coordinate

directions. Thus, it suffices to only consider the algorithm for the partitioning along one

axis. In the following, we present the algorithms of the first two steps for the x-axis.

316 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.16: Visualization of the steps of the partitioning algorithms given by Algorithms 5

and 6 that yield the partitioning shown in Fig. 7.15.

The algorithm for the first step is given in Alg. 5. Input to the function n_fibers_in_

subdomain_x is a subdomain coordinate in the range [0, nx − 1] that identifies the sub-

domain. The output to be computed is the number of grid points in the fine grid or,

equivalently, the number of fibers that are contained in the subdomain. Calling this

function for all subdomains defines the partitioning of the fine grid.

Algorithm 5 Computation of subdomain sizes, needed for the construction of a parallel

partitioning.

1 procedure n_fibers_in_subdomain_x(subdomain_coordinate_x)

Input: Index of a subdomain in x-direction
Output: Number of fibers that are contained in this subdomain

2 α = ⌊ n_fibers_x / nx / granularity_x ⌋ * granularity_x

3 a1 = ⌊(n_fibers_x - nx * α) / granularity_x ⌋ subdomains with > α nodes
4 a2 = nx - a1 subdomains with α nodes

5 if subdomain_coordinate_x < a1 then first a1 subdomains
6 return α + granularity_x

7 else if subdomain_coordinate_x < nx - 1 then

8 return α

9 else last subdomain
10 return α + n_fibers_x % granularity_x

Figure 7.16 provides a visualization of the algorithmic steps, corresponding to the

partitioning in vertical direction of the mesh shown in Fig. 7.15. Figure 7.16 (a) shows

7.3 PARALLEL PARTITIONING AND SUBSAMPLING OF MESHES 317

a 1D mesh with n_fibers_x=23 nodes or fibers. The goal is to partition them to nx = 3

subdomains. According to requirement (ii), the nodes should be distributed equally to

the subdomains. Dividing 23 nodes by 3 subdomains yields an average number of 72
3

nodes per subdomain, which is indicated by the orange color in Fig. 7.16 (a).

For now, we neglect the granularity parameter and set granularity_x=1. Line 2 of the

algorithm computes the rounded down value α of the average number fraction. Every

subdomain should obtain either α or (α+1) nodes. We specify that the first a1 subdomains

obtain (α+1) nodes and the remaining subdomains obtain α nodes. The amount of nodes

that remain after we fill every subdomain with α nodes is the difference between all nodes

n_fibers_x and nx · α. This difference is equal to a1 and the formula in line 3 of the

algorithm computes the value of a1 accordingly. The remainder number of subdomains

a2 follows as given in line 4. The visualization in Fig. 7.16 (b) shows that, in the example,

a1=2 subdomains obtain α+ 1= 8 nodes and only the last subdomain, i.e., a2=1, obtains

α= 7 nodes.

The rest of Alg. 5 checks whether the given subdomain coordinate subdomain_coor

dinate_x refers to a subdomain with (α+1) or with α nodes by comparing the coordinate

with a1 in line 5. The first branch of the if statement returns the high number of nodes

(α+ 1), the other branches return the low number α, as far as the granularity parameter

is neglected.

Next, we discuss the algorithm with a granularity value that is different from 1. As-

suming a value of, e.g., granularity_x=2, always two neighboring nodes are grouped

and the algorithm acts on these groups instead of individual nodes. The visualization

in Fig. 7.16 (c) shows this grouping. Because the considered example has an odd total

number of 23 nodes, only a single nodes remains for the last group.

The number of nodes per subdomains should now be a multiple of the granularity. This

is ensured in line 2 of Alg. 5 by dividing by the granularity, rounding down and multiplying

again with the granularity. The subdomains obtain either α or (α + granularity_x)

nodes. The computation of the number a1 of subdomains with the higher number

of nodes in line 3 requires a division by granularity_x as every subdomain with the

higher number takes granularity_x extra nodes. The rounding down in line 3 is needed

to obtain an integer value even if the total number of nodes is not a multiple of the

granularity.

In the example in Fig. 7.16 (d), the subdomains obtain eitherα = 6 orα+ granularity_x

= 8 nodes. In fact, for the last subdomain, only seven nodes remain, as the total number

of 23 nodes is not divisible by the granularity of two. In the algorithm, this is accounted

318 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

for by the last branch of the if-else construct in line 10, where only the remaining nodes

are added to the last subdomain.

7.3.4 Algorithm for Sampling Points from a Fine Fiber Mesh

Next, we can sample points from the nodes that were assigned to each subdomain. The

sampling process is parametrized by the value of sampling_stride_x, which specifies the

step width of the nodes from the fine mesh to select for the coarse mesh. Algorithm 6

lists the function that determines the number of sampled points in a given subdomain.

Similar to Alg. 5, the input is a 1D subdomain coordinate. The output is the number of

sampled points in this subdomain.

Algorithm 6 Algorithm for sampling the fine mesh to obtain the coarser 3D mesh

1 procedure n_sampled_points_in_subdomain_x(subdomain_coordinate_x)

Input: Index of a subdomain in x-direction
Output: Number of points in the subdomain for the coarse 3D mesh

2 n = n_fibers_in_subdomain_x(subdomain_coordinate_x)

3 if subdomain_coordinate_x == nx - 1 then

4 n -= 1

5 if linear 3D elements then

6 result = ⌊ n / sampling_stride_x ⌋
7 else

8 result = ⌊ n / (sampling_stride_x * 2) ⌋ * 2

9 if subdomain_coordinate_x == nx - 1 then

10 result += 1

11 return result

First, line 2 of Alg. 6 calls Alg. 5 to obtain the number of fine grid points in the subdo-

main. The number of elements n is equal to the number of points for all except the last

1D subdomain, which has one element less. This can be seen, e.g., in Fig. 7.15, where

the first process with rank 0 (dark brown at the upper left) does not own the nodes on

its subdomain boundary, whereas the last process with rank 11 (light brown at the lower

right) owns all nodes on its subdomain boundary. Thus, lines 3 and 4 of Alg. 6 decrement

the value of n to yield the correct number of elements.

The corresponding visualization in Fig. 7.16 (e) assumes granularity_x=2 and shows

n = 8 elements for both the first and the second subdomain and n = 6 elements for the

last subdomain.

7.3 PARALLEL PARTITIONING AND SUBSAMPLING OF MESHES 319

The resulting number of sampled points is obtained from the number of elements by a

division by the sampling stride parameter and rounding down in lines 5 to 8. For the last

subdomain, line 10 increments the result by one to account for the additional node on

the boundary.

Depending on whether the sampled mesh should contain linear or quadratic elements,

the number of elements obtained from the algorithm has no restriction, or it has to be

even. This is checked in the if statement in line 5. In case of quadratic elements, an even

number of elements is enforced by the formula in line 8.

In the considered example, we require quadratic elements and set sampling_stride_x

=2. The visualization in Fig. 7.16 (f) shows the number of elements as long bars, which

equals the result variable before line 9 in the algorithm. The resulting number of nodes

is given in Fig. 7.16 (f) by the circles below.

The actual selection of the nodes from the fine grid according to the stride param-

eter and using the determined subdomains and their numbers of contained nodes is a

straight-forward task and not part of the algorithms listed here. For quadratic elements

in the last subdomain, the potentially different mesh widths are resolved by selecting

the second-last node in the middle between the third-last and the last node. In Fig. 7.16

(f), this case occurs in the last subdomain. The orange node is sampled at the middle

between the two neighboring dark red nodes. This behavior can also be observed in the

corresponding partitioning in Fig. 7.15 for the elements given by white lines in the lowest

row. These elements have a larger vertical mesh width of three sampled points than the

other elements, which have a vertical mesh width of two sampled points.

7.3.5 User Options for the Algorithms

By adjusting the sampling stride and granularity parameters, it is possible to tune the

outcome of the partitioning algorithms. The trade-off between the two requirements given

in Sec. 7.3.2 by the numbers (ii) and (iii), i.e., that each subdomain obtains the same

number of nodes, and that the least possible number of remainder elements is generated,

can also be managed in the settings by enforcing either of the two requirements.

Moreover, we set the granularity parameters to the same value as the sampling parame-

ters by default and additionally ensure for quadratic finite elements that the granularities

are a multiple of two. This setting typically yields partitionings with equally sized ele-

ments. However, the number of nodes per subdomain is not always optimal.

320 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

To allow users to enforce a partitioning, where every rank gets the exact same number of

nodes, except for the last subdomains in each coordinate direction, which potentially gets

one layer of nodes less, we provide the option distribute_nodes_equally, which can be

set in the variables files. If this option is set to True, the granularity values are internally

fixed to one for “linear” meshes and to two for “quadratic” meshes, i.e., discretizations

with quadratic finite element ansatz functions.

7.3.6 Results

The different results for the distribute_nodes_equally option are demonstrated in Fig-

ures 7.17 and 7.18. Figure 7.17 shows the automatic partitioning, where a simulation of

fiber based electrophysiology with a grid of 9× 9 fibers is executed with eight processes

and the stride values sampling_stride_x and sampling_stride_y are set to two. By de-

fault, a linear mesh of 4× 4 elements in x and y-directions is created with 2× 2× 2= 8

subdomains, as shown in Fig. 7.17a. Only the first four subdomains can be seen in the

visualization, the other four are located behind and hidden in the background.

The distribution of the fibers to the two 1D subdomains along both x and y directions

yields four fibers for the first and five fibers for the second 1D subdomain. Thus, the total

3D subdomains of the first four processes contain 16, 20,20 and 25 fibers.

Figure 7.17b shows the same scenario, except that the option distribute_nodes_equally

has been set. The resulting partitioning is different and the fiber distribution is reversed,

five and four fibers are assigned to the two 1D subdomains in both x and y directions.

As a result, we get 25,20,20 and 16 fibers for the first four 3D subdomains. Note that

this is the best balanced partitioning of a structured mesh that is possible for 9 × 9

fibers. The subdomain sizes are the same as in Fig. 7.17a, except for a different or-

der. However, for larger examples using more processes, the respective partitioning with

the distribute_nodes_equally option is always optimal, whereas the balance rapidly

degrades without this option.

While, in this example, there is no difference between Fig. 7.17a and Fig. 7.17b in

terms of load balancing, the 3D mesh quality of the generated partitioning is worse for

Fig. 7.17b. As can be seen in Fig. 7.17b, the first and the third subdomain have one layer

of elements more in both x and y direction, and these elements have half the mesh width

of the normal elements. Additionally, the second and fourth subdomain also contain

elements of different mesh widths.

7.3 PARALLEL PARTITIONING AND SUBSAMPLING OF MESHES 321

Similar effects can also be studied in the scenario of Fig. 7.18, where the same mesh is

partitioned to four processes in z-direction. The number of nodes in z-direction is 1481

and the sampling stride is chosen as sampling_stride_z=50. Figures 7.18a and 7.18b

show the resulting partitioning without and with the distribute_nodes_equally option.

Again, the second scenario shows “remainder” elements with smaller mesh widths at the

boundaries of every subdomain. The distribution of nodes is 400, 350, 350 and 381 nodes

per subdomain in Fig. 7.18a and 371,370,370 and 370 nodes per subdomain for the

scenario in Fig. 7.18b, where the distribute_nodes_equally option has been set. The

first case has the better 3D mesh quality, whereas only the second case yields the perfect

load balancing.

In summary, it is possible to tweak the created partitioning by adjusting the sampling

stride and deciding between mesh quality and perfect load balancing. For electrophysiol-

ogy simulations, which impose high computational load because of the subcellular model,

the load balancing aspect is more important and the option distribute_nodes_equally

should be set to True. In simulations with elasticity models, the quality of the 3D

meshes is more important and the partitioning for the corresponding meshes should be

parametrized with the distribute_nodes_equally option set to False.

How To Reproduce

The partitioning in Fig. 7.15 is obtained by the following simulation:

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/

,→ fibers_contraction/no_precice/build_release
mpirun -n 12 ./biceps_contraction ../settings_biceps_contraction.py

,→ partitioning_demo.py --n_subdomains 4 3 1

The partitionings in Figures 7.17 and 7.18 are created by the following simulations.

For Figures 7.17a and 7.18a, edit the variables file partitioning_demo.py and set

distribute_nodes_equally = False. For Figures 7.17b and 7.18b, set distribute_

nodes_equally = True.

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/fibers_emg/

,→ build_release
mpirun -n 8 ./fast_fibers_emg ../settings_fibers_emg.py

,→ partitioning_demo.py
mpirun -n 4 ./fast_fibers_emg ../settings_fibers_emg.py

,→ partitioning_demo.py --n_subdomains 1 1 4

322 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

(a) Resulting sampled mesh with the option

distribute_nodes_equally=False.

(b) Resulting sampled mesh with the option

distribute_nodes_equally=True.

Figure 7.17: Mesh partitions generated by the sampling algorithm with different settings.

A fine mesh with 49 fibers is sampled with a stride parameter of two and

partitioned to eight processes.

(a) Resulting sampled mesh with option

distribute_nodes_equally=False.

The mesh width is constant, but the

partitioning is not perfectly balanced.

(b) Resulting sampled mesh with option

distribute_nodes_equally=True. The

partitioning is perfectly balanced, but the

mesh width is not constant.

Figure 7.18: Sampling a mesh along the fiber direction. The original mesh has 1481

nodes and is sampled with a stride value of 50.

7.4 PARALLEL SOLVER FOR THE FIBER BASED ELECTROPHYSIOLOGY MODEL 323

Figure 7.19: Simulation result of the fiber based electrophysiology model with 1369 mus-

cle fibers and a 2D surface mesh on top of the muscle. The fibers are colored

according to the transmembrane potential Vm, the surface is colored accord-

ing to the EMG values given by the extracellular potential φe.

7.4 Parallel Solver for the Fiber Based

Electrophysiology Model

After discussing the general partitioning and sampling of 3D and 1D meshes in the last

section, we now focus on the concrete application for the fiber based electrophysiology

model. We describe our basic solver and algorithmic improvements that yield lower

runtimes.

The fiber based electrophysiology model consists of the action potential propagation

model given by the 1D monodomain equation Eq. (5.11) and a 0D subcellular model

as described in Sec. 5.1.1. The 0D and 1D problems are solved on the 1D fiber meshes.

They are coupled to the 3D bidomain problem given in Eq. (5.9a), which computes the

EMG values. In summary, the components (b2),(c) and (d) of the diagram in Fig. 5.1 are

involved in this computation. Figure 7.19 shows a simulation result of this model, where

the 1D fibers and the surface of the 3D mesh can be seen.

In the following, Sec. 7.4.1 begins with a description of the solver structure and the

parallelization. Subsequently, performance improvements considering the parallel execu-

324 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

tion of the solver are discussed. Section 7.4.2 presents a variant, where a faster solver is

employed for the 1D part of the computation. Section 7.4.3 shows how the computational

load can be reduced by only computing activated parts of the muscle.

7.4.1 Parallel Solver Structure

For better visualization, we consider the 2D setting of a mesh and embedded 1D fibers

partitioned to 2× 2 processes as shown in Fig. 7.20a by different colors. However, all

discussions are also valid for the real 3D setting shown in the last section and for arbitrary

partitionings to nx × ny × nz processes.

Figure 7.20b shows the program structure of the example that solves the fiber based

electrophysiology model. The outer class is a Coupling that alternates between computing

the monodomain equation Eq. (5.11) on the 1D fibers and computing the static bidomain

equation Eq. (5.9a) on the 3D domain. The second part, the bidomain solver, is given in

Fig. 7.20b by the class StaticBidomainSolver, which includes two FiniteElementMethod

classes. The first class solves the potential flow to obtain the fiber direction for the

anisotropic conduction tensor, the second class is used to discretize the spatial derivatives

in the bidomain equation.

The first part of the coupling scheme in Fig. 7.20b consists of a MultipleInstances

class, which encloses the Strang operator splitting. The splitting has two child solvers

for the subcellular model and the diffusion or conduction term. The first child consists

of another MultipleInstances class with a Heun scheme and the CellmlAdapter. The

second child of the Strang splitting also consists of a MultipleInstances class and a

combination of an ImplicitEuler scheme (alternatively a CrankNicolson scheme can be

used) and a FiniteElementMethod.

A MultipleInstances class can be used to apply a solver to more than one problem of

the same kind. The class allows to specify a number of instances of its nested solver. Each

instance can be given a subset of processes that will take part in the computation of the

instance. Each process then iterates over all instances, for which it is part of the subset.

Thus, the nested solver of a MultipleInstances class is called in series for all instances

that share a process/MPI rank, and it is called in parallel and independently for 1D model

instances that have disjoint subsets of ranks.

Furthermore, the class provides a common output writer, which collectively writes the

data of all instances. This allows, e.g., to create a single output file in every timestep

7.4 PARALLEL SOLVER FOR THE FIBER BASED ELECTROPHYSIOLOGY MODEL 325

rank 0 rank 1

rank 2 rank 3

(a) Visualization of the 3D

mesh with embedded 1D

fibers, partitioned to four

ranks.

CellmlAdapter

Heun

MultipleInstances (d)

Strang

FEM (potential flow)

FEM (Bidomain eq.)

StaticBidomainSolver

Coupling

MultipleInstances (c)

FEM

ImplicitEuler

MultipleInstances (d)

(b) Structure of the OpenDiHu example pro-

gram to solve the fiber based electro-

physiology model. The colors match the

scheme introduced in the overview chart

in Fig. 5.1.

on ranks {0,1,2,3}:

2 instances:

instance 0:

ranks {0,2}

instance 1:

ranks {1,3}

(c) Instances of the outer

MultipleInstances class in Fig. 7.20b.

on ranks {0,2}:

4 instances:

0 1 2 3

on ranks {1,3}:

5 instances:

0 1 2 3 4

(d) Instances of the inner

MultipleInstances classes in Fig. 7.20b.

Figure 7.20: Visualizations for the discussion of the program structure and partitioning

used for fiber based electrophysiology simulations. The circles and lines

represent the 1D meshes, their coloring indicates the MPI rank.

326 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

containing the data of all fibers. Especially for large scenarios, this is more practical than

having as many output files as fibers.

The settings that have to be specified in the Python file for a MultipleInstances class

comprise the number of instances and a list with the according number of entries, which

further configure the instances. Each list entry can be None if the rank does not take part

in the computation of the corresponding instance. Otherwise, the list entry consists of (i)

a specification of all ranks that should collectively compute the corresponding instance

and (ii) the settings of the corresponding nested solver.

The own MPI rank of a process is known in the Python settings file. This allows to

specify different settings for different ranks in the same file. By omitting the configuration

of irrelevant instances and setting their list entry to None, the amount of data is reduced

and parsing of the script is sped up, especially for large problem sizes.

The settings and corresponding subdomains of the MultipleInstances classes that are

indicated by (c) and (d) in Fig. 7.20b are shown in Figures 7.20c and 7.20d, respectively.

As can be seen in Fig. 7.20c, the outer MultipleInstances class separates the subdomains

that are not connected by any fibers, such that they can be computed in parallel and

independently of each other. In the example of Fig. 7.20a, the subdomains of ranks 0 and

2 can be computed independently of the subdomains of ranks 1 and 3. As a consequence,

all processes specify that their MultipleInstances class has two instances. At rank 0,

the list of instance settings contains the settings of the nested Strang solver with all

information of rank 0’s subdomain (in the first item) and the value None, as rank 0 has

no information about fibers outside its subdomain (in the second item). Ranks 1, 2 and

3 specify their subdomain accordingly, as shown in Fig. 7.20c.

During computation, ranks 0 and 2 as well as ranks 1 and 3 enter the Strang solver

class collectively with a shared MPI communicator. The inner MultipleInstances classes

employ the 0D subcellular and the 1D electric conduction solver on multiple fibers. As

shown in Fig. 7.20d, ranks 0 and 2 specify four instances with the settings of the four

shared fibers. At the same time and concurrently, ranks 1 and 3 specify five instances

with settings for their five shared fibers.

Note that the multiplicity of the 0D instances on a fiber is not achieved by another

MultipleInstances class, but the model is solved for all points on the mesh together,

using parallelism on the lower, instruction-based level.

These different splits of the geometry allow to compute the electrophysiology model on

the fibers in parallel. The partitioning of the domain has to be the same for the 3D mesh

7.4 PARALLEL SOLVER FOR THE FIBER BASED ELECTROPHYSIOLOGY MODEL 327

and the embedded fibers to allow value mapping from the fibers to the 3D mesh without

communication. The fibers are oriented along the z-direction in the 3D setting. This

explains, why the ranks for a particular fiber, e.g., {0, 2} or {1, 3} are not direct successors

of each other but increasing with a stride equal to the number of subdomains in x and y

directions, nx · ny .

7.4.2 Improved Parallel Solver Scheme using the Thomas

Algorithm

The monodomain model, which is solved on each fiber, consists of a reaction-diffusion

equation, which is solved using the Strang operator splitting. The diffusion part uses an

implicit timestepping scheme, which leads to a linear system of equations to be solved

in every timestep. As the finite element method with linear ansatz functions is used for

spatial discretization, this linear system has a tridiagonal system matrix.

In the solver tree structure in Fig. 7.20b, this solution step occurs in the solvers under

the second inner MultipleInstances class. As can be seen in Fig. 7.20d, the dofs of each

fiber that are part of this linear system are partitioned to multiple processes. Hence, this

linear system is solved using a parallel conjugate-gradient solver of PETSc.

However, there is the possibility to improve the performance by exploiting the tridiago-

nal matrix structure. The Thomas algorithm is the specialization of Gaussian elimination

for this matrix type and is known to efficiently solve such a system in linear time complex-

ity. More specifically, it only requires a first downwards sweep through the matrix entries

for forward substitution and a second upwards sweep for back substitution to compute

the solution. It is stable for diagonally dominant matrices and this condition is met for

the governing system matrix.

As the Thomas algorithm is not parallel, we have to gather the matrix data on a single

process in order to employ the algorithm. In OpenDiHu, the FastMonodomainSolver class

is tailored to the parallel solution of fiber based electrophysiology using the Thomas al-

gorithm. Figure 7.21 outlines the steps performed by the FastMonodomainSolver class.

During initialization, the FastMonodomainSolver class initializes its nested solver tree

as normal and the parallel partitioning of the fibers is carried out as described in Sec. 7.4.

This is visualized on the left in Fig. 7.21 for four fibers and two ranks. At the beginning

of the first timestep, the communication to gather complete fiber data on single processes

is carried out. The fiber data are communicated, such that every fiber is completely

328 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

accessible at a single processes. The assignment of the fibers to processes occurs in a

round-robin fashion, i.e., the first fiber is sent to rank 0, the second to the next rank, etc.

As a result, every process has approximately the same number of complete fibers. This is

shown in the middle image of Fig. 7.21, where the red colored rank has all values of the

first and third fiber and the orange colored rank has all values of the second and fourth

fiber.

The processes then each compute the full monodomain model consisting of the Strang

splitting with the subcellular model on the nodes of each fiber and the diffusion part

using the Thomas algorithm. This is done in a separate serial implementation for the

now locally owned fibers, i.e., not using the nested solvers. The solution is obtained for

as many subsequent timesteps as were specified in the settings. When the end time of

the enclosing coupling scheme is reached, the fiber data are communicated back to the

original partitioned fibers, as shown on the right in Fig. 7.21. Then, the coupling scheme

continues with the data mapping from the partitioned fibers to the 3D domain and with

the StaticBidomainSolver. Afterwards, the FastMonodomainSolver is called again and

performs its computation anew starting with the communication step.

In the C++ file, the FastMonodomainSolver class is inserted as a wrapper to the outer

MultipleInstances class that is indicated by (c) in the solver structure in Fig. 7.20a. In

the Python settings, the class does not add an additional nesting level such that the same

settings file can be used for programs with and without the FastMonodomainSolver class

and yields the same simulation results.

In summary, the efficient serial computation of the monodomain model in the Fast

MonodomainSolver is wrapped by communication steps of the partitioned fiber data. The

frequency of this communication step is determined by the timestep width of the coupling

scheme. The scenario solves the bidomain equation to simulate EMG signals. A typical

sampling frequency of EMG capture devices is f = 2kHz, which corresponds to a coupling

timestep width of dt3D = 0.5ms. The timestep widths dt0D of the subcellular model and

dt1D of the diffusion term have to be set at maximum to 10−3 ms, yielding 500 timesteps

of computations on the fiber between subsequent communication steps. As a result, the

communication cost is negligible.

7.4.3 Adaptive Computation of the Subcellular Model

During simulations of the fiber based electrophysiology model, often only a small fraction

of the given fibers is activated. The reason is, that, in physiological conditions, the smaller

7.4 PARALLEL SOLVER FOR THE FIBER BASED ELECTROPHYSIOLOGY MODEL 329

0D/1D

solvers
3D solver 3D solver

MPI MPI

Figure 7.21: Algorithmic steps of the FastMonodomainSolver to efficiently solve the

0D/1D problems. After a timestep of the 3D solver (left), the partitioned

fibers, visualized by different colors for the MPI ranks, are communicated

using MPI, such that every fiber is accessible on a single MPI rank (middle).

The 0D/1D solvers compute multiple subsequent timesteps until the next

3D coupling step. Then, the original partitioning is restored by a second

communication step and the 3D solver can continue with the next timestep

(right).

MUs are activated first and the larger MUs only get activated when the full force of the

muscle is required. As the majority of the fibers belongs to larger MUs, a high portion

of fibers is less frequently activated, also depending on the scenario. But even if the

scenario specifies a tetanic stimulation of all MUs, the larger MUs have lower stimulation

frequencies, which again leads to less action potentials on large MUs than on smaller

MUs in the same time span.

A naive solver of the monodomain models always computes all 1D electric conduction

problems on the fiber meshes and all 0D subcellular models on the nodes of the fiber

meshes, regardless of their activation state. In the following, we present a method in

OpenDiHu that exploits the infrequent activation events on most of the fibers while

obtaining the same solution as the naive solver.

We assume that the subcellular models are initialized in their equilibrium state, where

the temporal derivative of the state vector y vanishes, ∂y/∂ t = 0. The first algorithmic

improvement is to only consider those fibers in the solver that have yet been stimulated.

330 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

This improves the performance especially for “ramp like” motor recruitment, where more

and larger MUs are activated over time. However, after all MUs have been activated

at least once, all fibers are computed again and no more performance improvement is

obtained.

The second improvement is to only compute instances of the subcellular model at those

points, where it is not in equilibrium. To determine, whether an instance of the subcellular

model is in equilibrium, we compare the solution before and after one integration step

by the Heun method. Only if the relative change of any component of the state vector y

is larger than 10−5, we consider the model to be not in equilibrium.

This check requires to compute the solution of the subcellular model, the avoidance

of which is subject of the improved scheme. Therefore, we use the property of the 1D

diffusion problem discretized by linear finite elements that the value at one spatial point

can only influence its two neighbors in a single timestep. This allows us to avoid checking

the equilibrium condition at points that are surrounded by other points in equilibrium.

This means that the subcellular model does not have to be solved at most points in

equilibrium, which drastically reduces the runtime. The 1D electric conduction problem,

however, has to be solved for the whole fiber mesh if at least one point it is not in

equilibrium.

In our method, each subcellular point can be in one of the three states “active”, “inac-

tive” and “neighbor is active”. If the subcellular model is not in equilibrium, the point is

in the state “active” and has to be solved in the next timestep. If the subcellular model is

in equilibrium and does not have to be solved because the solution vector stays constant,

the point is in the state “inactive”. The state “neighbor is active” occurs for a previously

inactive point, of which at least one neighbor became active and, thus, the check if the

point is still in equilibrium has to be performed and the subcellular model has to be solved

in the next timestep. After each solution step, the state of a point changes according to

the transitions given in Fig. 7.22.

An active point stays active, if the solution has changed in the last numerical integration

step. It transitions to inactive, if the solution did not change. The same applies to points

in the state “neighbor is active”, which also change to “active” or “inactive” after one

timestep. An inactive state cannot be activated by a check on the point itself, as this state

implies that no computation and no subsequent equilibrium check are carried out. The

only transition for a point A from an inactive state occurs, when a neighbor point B reaches

the state “active” (or for external stimulation). Then, point A changes to “neighbor is

7.4 PARALLEL SOLVER FOR THE FIBER BASED ELECTROPHYSIOLOGY MODEL 331

neighbor

is active

inactive

active
solution changed

solution did not change

solution did

not change
set by

neighbor

solution changed

no external stimulus

external stimulus

Figure 7.22: Transition diagram for the adaptive computation of the subcellular model.

The diagram shows the transition between local states of points on the fibers.

Points in inactive state do not perform the computation of the 0D subcellular

model.

active”. For propagating action potentials along a fiber that is in the “inactive” state, this

leads to a propagating front of points in the “neighbor is active” state.

Initially, all states are set to “active”. If no stimulation occurs and the subcellular model

is in equilibrium, they momentarily change to “inactive”. Upon external stimulation, the

stimulated points are automatically set to “active” and their neighbors are set to “neighbor

is active” such that the effect of the stimulation can be considered in subcellular model

computations.

Figure 7.23 shows a simulation, where the effect of both improvements is visible. The

Hodgkin-Huxley subcellular model has been solved on a set of 49 fibers. At the displayed

time of t = 28 ms, two MUs have been activated. The value of the membrane potential

Vm is visualized by the radius of the fibers. The active or inactive state of the improved

scheme is indicated by the colors.

It can be seen that several fibers have gray color which indicates that they have not

yet been stimulated and, thus, are not part of the computation. The other fibers have

been stimulated either by the first or the second MU. Action potentials at two different

distances from the center corresponding to the two MUs can be identified by the bulbous

shapes. The red parts of the fibers contain the active points, where the subcellular model

332 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Figure 7.23: Simulation scenario that demonstrates the adaptive computation method

of fibers and subcellular points. A simulation of the monodomain equation

on a set of 49 fibers with the subcellular model of Hodgkin and Huxley is

shown. The transmembrane potential is visualized by the fiber radius. The

states of the points used in the algorithm are given by the different colors.

is not in equilibrium. At the yellow regions, the subcellular models are in equilibrium,

and no computational work is performed there. The yellow regions are at the outer ends

of the fibers that were not yet reached by the action potentials as well as around the

center for fibers of the first MU. This demonstrates the repolarisation effect, after which

the model reaches its equilibrium state again.

The purple colored points are in the state “neighbor is active” and can be found between

active and inactive points. As the algorithm iterates over all points of a fiber from left

to right, these purple points only occur at the left boundaries of active regions. At their

right boundaries, the initial “neighbor is active” points transition to “active” or “inactive”

directly after the computation step within this iteration.

Instead of individual nodes on the fiber mesh, our implementation treats SIMD vectors

of four or eight such adjacent nodes (depending on the hardware capabilities) as one

point in the algorithm. If one of these nodal instances is not in equilibrium, the whole

SIMD vector is considered not in equilibrium and transitions to the “active” state. This

coarser granularity of the model instances allows to solve the subcellular problem in

chunks according to the SIMD lane width using SIMD instructions.

7.5 PARALLEL SOLVER FOR THE MULTIDOMAIN ELECTROPHYSIOLOGY MODEL 333

How To Reproduce

The scenario of Fig. 7.23 can be run as follows:

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/fibers_emg/

,→ build_release
mpirun -n 4 ./fast_fibers_emg ../settings_fibers_emg.py

,→ compute_state_demo.py

Instead of four processors, you can use as many as you have to speed up the compu-

tation.

7.5 Parallel Solver for the Multidomain

Electrophysiology Model

After the details on the parallel partitioning and solvers for the fiber based electro-

physiology model have been discussed in Sections 7.3 and 7.4, we now consider the

multidomain based model of electrophysiology, which includes electric conduction in

the body fat layer. The class for the implicit solver within the operator splitting is the

MultidomainWithFatSolver class, which has been introduced in Sec. 6.2.4.

The multidomain based electrophysiology model contains the two multidomain equa-

tions, Eqs. (5.14) and (5.15), which are solved on the 3D domain. The model leads to a

large linear system of equations that is solved in every timestep, described in Sec. 5.3.5.

Figure 7.24 visualizes the body fat and muscle domains, on which the multidomain model

is solved. The coloring of the muscle domain also gives an example for the occupancy

factor f k
r , which specifies to which extend every point in the domain is occupied by a

particular MU.

7.5.1 Construction and Partitioning of the Mesh

The mesh used in this solver is a composite mesh of type Mesh::CompositeOfDimension<D

>, as introduced in Sec. 7.1.7. Figure 7.25 shows the layout, in particular how the mesh of

the body fat domain ΩB is connected with the mesh of the muscle domain ΩM . The muscle

and body fat meshes have N el
x ×N el

y ×N el
z and (N el

x +N el
y)×N el

fat
×N el

z elements, respectively.

Only the muscle mesh has been generated from medical imaging data by the pipline given

334 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Figure 7.24: Visualization of the domains for the multidomain electrophysiology model:

The body fat domain is shown in blue, the muscle domain is colored accord-

ing to the values of one occupancy factor f k
r , which specifies the territory of

a MU.

N el
x

N el
y

N el
z

N el
fat

ΩM

ΩB

x

y
z

Figure 7.25: Layout of the composite 3D mesh for the multidomain model with fat layer.

The orange elements belong to the mesh of the muscle domain ΩM , the

yellow elements are added on top to represent the body fat domain ΩB.

in Chap. 3. The fat mesh is created on top of the muscle mesh geometry and has to use the

same number of elements as the muscle mesh along the muscle surface for compatibility

in the composite mesh. Only the physical thickness of the adipose tissue layer and the

corresponding number N el
fat

of elements in radial direction have to be specified. (The mesh

generation step is implemented in the script create_fat_layer.py.)

Figure 7.27 shows such as composite mesh. The muscle mesh is based on a dataset

of 13× 13 fibers with 1481 nodes per fiber. This fine mesh is sampled as described in

Sec. 7.3.1 with stride values of 3, 3 and 20 in x , y and z directions and distribute_nodes

7.5 PARALLEL SOLVER FOR THE MULTIDOMAIN ELECTROPHYSIOLOGY MODEL 335

Figure 7.26: Composite mesh of the multidomain example, partitioned into four parallel

subdomains.

_equally=True. As a result, we get N el
x × N el

y × N el
z = 5× 4× 75 elements. The fat mesh

consists of a 1cm adipose tissue layer with N el
fat
= 4 elements. The muscle and fat meshes

have 2280 and 3800 dofs.

The partitioning of the composite mesh into nx ×ny ×nz subdomains cannot be chosen

arbitrarily. The reason is that both the muscle and the body fat mesh have to be partitioned

into the same number of subdomains. If, e.g., a partitioning of nx = ny = 2 is chosen,

the cube in Fig. 7.25 gets divided by one horizontal planar cut and one vertical planar

cut. This divides the orange muscle mesh into four subdomains as expected. The yellow

body fat mesh, however, is only partitioned to three of the four processes as there are no

yellow elements below the horizontal cut and left of the vertical cut.

Thus, a valid partitioning can only be created if either nx or ny is set to one. Because

there is no restriction on nz, the total mesh can still be partitioned in two dimensions to

a product of subdomains, either as 1× ny × nz or as nx × 1× nz. The example mesh in

Fig. 7.27 is partitioned to 2× 1× 2 subdomains as shown by the different colors.

7.5.2 Structure of the System Matrix

Figure 7.27 shows the solver structure of a simulation of the multidomain model. The

Strang operator splitting couples the Heun scheme of the 0D subcellular model with

the multidomain solver, which is given by the MultidomainWithFatSolver class. The

336 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

CellMLAdapter

Heun

FEM

Multidomain

Strang Splitting

Figure 7.27: Solver structure of the multidomain solver, consisting of the Strang operator

splitting, which contains the two nested solvers for the subcellular model

(Heun scheme with CellML adapter) and the solver for the diffusion part of

the multidomain problem. The colors match the scheme introduced in the

overview chart in Fig. 5.1.

MultidomainWithFatSolver class uses nested FiniteElementMethod classes to describe

the anisotropic electric conduction in the muscle domain and the isotropic electric con-

duction in the fat domain. The system matrix for the system of equations is given in

Eq. (5.69) in Sec. 5.3.5. The solver calculates the matrix block entries using the stiff-

ness and mass matrices computed by the nested FiniteElementMethod classes, i.e., the

unknowns are organized in blocks in the system matrix for each MU.

Figure 7.28a shows the location of non-zeros in the resulting sparse matrix for three

MUs. The matrix blocks are indicated by boxes and correspond to the symbolic formu-

lation given in Eq. (5.69). The first three blocks correspond to the electric conduction

problems of the 3 MUs given by the second multidomain equations in Eq. (5.15), the

fourth row and column of blocks corresponds to the first multidomain equation Eq. (5.14),

and the last block corresponds to the electric conduction problem in the fat domain. It

can be seen that the dimension of the last block is different, corresponding to the number

of dofs in the fat mesh.

In this visualization, it may seem that most of the blocks only have three non-zero

entries per row, however, the actual number is higher (the “lines” consist of multiple

diagonals of non-zero entries) with a maximum of 27 entries, as the finite element ansatz

function of a node in the 3D mesh has overlapping support with the ansatz functions of

other nodes in a 3× 3× 3 grid. The actual non-zero structure per block is close to the

example shown in Fig. 7.10.

The colors in Fig. 7.28a correspond to the four processes, as defined in the partitioned

mesh in Fig. 7.27. The entries in every block are all partitioned in the same way to the

7.5 PARALLEL SOLVER FOR THE MULTIDOMAIN ELECTROPHYSIOLOGY MODEL 337

(a) Original matrix layout. (b) Reordered matrix layout.

Figure 7.28: Nonzero structure of the system matrix of the multidomain problem for three

MUs. The five blocks in every row and column in (a) correspond to the dofs

of the three MUs, the extracellular potential in the muscle domain, and the

body potential.

four processes, as given by the partitioning of the nested FiniteElementMethod classes.

The data structure for this layout is the MATNEST type of PETSc.

However, to be able to apply the multitude of PETSc solvers to this linear system,

the matrix has to be transferred to the canonical parallel matrix layout of PETSc, which

groups all dofs of the subdomains together. As this conversion is not available in PETSc,

it is done in OpenDiHu by reordering the dofs and, as a consequence, the matrix entries.

The same permutation is applied to the rows and to the columns of the matrix. The result

of this operation is shown in Fig. 7.28b. It can be seen that the portions for each process

are now consecutive matrix rows. The non-zero structure within each process resembles

the global matrix structure of the original matrix.

7.5.3 Properties of a Diagonal Block-Matrix for the

Preconditioner

With the reordered matrix, the linear system can now be solved using almost any precon-

ditioner and linear solver of the PETSc framework. For the construction of the precondi-

tioner P with left preconditioning matrix P = P(A), we can either use the system matrix

A or provide a different matrix A′. The preconditioned linear system P−1A should have a

338 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Figure 7.29: Real parts of the eigenvalues sorted by magnitude and corresponding to the

example in Fig. 7.27. The non-zero eigenvalue with largest and smallest

absolute values are λmax = −161.2576 and λmin = −0.0116.

smaller condition number than A and, thus, solving the preconditioned system iteratively

should be significantly faster than the original A system.

To compute the condition number of the system matrix A, we determine its spectrum.

Figure 7.29 shows the real parts of all eigenvalues of A. The imaginary parts vanish for

almost all eigenvalues. The matrix is singular with one zero-eigenvalue. This property

corresponds to the fact that the membrane potential in the problem is abitrary with respect

to a constant offset. The singular problem can be solved using appropriate iterative

solvers.

The real parts of the eigenvalues are all negative, which is in line with the fact that

the model consists of a combination of several diffusion problems. The progression in

Fig. 7.29 shows a large difference between the largest and the smallest eigenvalues. The

condition number of A can be computed by cond(A) = |λmax|/|λmin| = 161.2576/0.0116≈
1.4 · 105. Thus, the problem is ill-conditioned and can benefit from for preconditioning.

The condition number is also dependent on the spatial mesh resolution and increases for

larger problem sizes.

We experiment with a preconditioning matrix that only uses the diagonal blocks of the

system matrix in reordered matrix layout, as shown in Fig. 7.28b. Figure 7.30b shows the

non-zero structure of the resulting matrix and compares it with the non-zero structure of

the diagonal blocks of the matrix in original ordering in Fig. 7.30a. As all diagonal blocks

are symmetric matrices on both orderings, the resulting block-diagonal matrices A′ are

also symmetric in contrast to the original matrix A.

Furthermore, it can be seen that the matrices in Fig. 7.30 are different. The reordered

layout depends on the parallel partitioning and contains only matrix entries within one

7.5 PARALLEL SOLVER FOR THE MULTIDOMAIN ELECTROPHYSIOLOGY MODEL 339

(a) Original matrix layout. (b) Reordered matrix layout.

Figure 7.30: Nonzero structure of the symmetric preconditioner matrix of the multido-

main problem. The symmetric matrices are obtained from the full matrices

in Fig. 7.28 by removing all blocks outside the main diagonal.

subdomain, i.e., decouples the problems for different subdomains. In contrast, the diag-

onal blocks of the original system matrix are independent of the partitioning and contain

dependencies between dof in different subdomains. We use the reordered diagonal ma-

trix for the preconditioner, as this approach is compatible with the parallel matrix storage

in PETSc and allows to use the preconditioners and solvers of PETSc. The decoupled

entries on every rank potentially allows for a faster computation in the application of the

preconditioner.

7.5.4 Mesh and Matrices for Higher Degrees of Parallelism

To show the effect of a higher degree of parallelism on the matrix structure, we also

partition the same mesh as in Fig. 7.27 to 16 processes. The resulting partitioning of the

mesh is given in Fig. 7.31. Figure 7.32 shows the non-zero structure of the system matrix

and the diagonal matrices for the preconditioner. Figure 7.32a contains the original

matrix structure that is permuted to the structure in Fig. 7.32b. The symmetric matrices

for the preconditioner are shown in Figures 7.32c and 7.32d. A comparison with Fig. 7.30

shows that the width of the non-zero band decreases for higher parallelizations.

340 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Figure 7.31: Partitioning of the mesh in the multidomain example into 16 subdomains.

How To Reproduce

The following commands run one timestep of the multidomain simulation with fat

layer:

cd $OPENDIHU_HOME/examples/electrophysiology/multidomain/

,→ multidomain_with_fat/build_release
mpirun -n 4 ./multidomain_with_fat ../settings_multidomain_with_fat.

,→ py matrix.py
mpirun -n 16 ./multidomain_with_fat ../settings_multidomain_with_fat

,→ .py matrix.py

To inspect the system matrix, define a directory where the matrix should be stored.

This can be done by setting the parameter config["Solvers"]["multidomainLinear

Solver"]["dumpFilename"], e.g., to "out/matrix/m". Then, the directory out/matrix

will contain MATLAB files with the system matrix. To create the plots, open MATLAB,

load the system matrix from the respective file and open the script display_matrix

_entries.m. Adjust the name of the matrix variable in the first code block, the run

the desired steps of the Live Script to produce various plots.

The saved file contains the system matrix already in the reordered layout shown

in Figures 7.28b and 7.32b. The MATLAB script reverses the permutation that was

applied in OpenDiHu to generate the plots of Figures 7.28a and 7.32a.

7.5 PARALLEL SOLVER FOR THE MULTIDOMAIN ELECTROPHYSIOLOGY MODEL 341

(a) Full matrix in original matrix layout. (b) Full matrix in reordered matrix layout.

(c) Block-diagonal submatrix in original matrix

layout.

(d) Block-diagonal submatrix in reordered ma-

trix layout.

Figure 7.32: Nonzero structure of the full system matrices in (a) and (b) and the sym-

metric preconditioner matrices in (c) and (d) of the multidomain problem,

partitioned into 16 subdomains. The comparison with Fig. 7.28 reveals

smaller relative diagonal band widths for the larger number of subdomains

in this example.

342 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

7.6 Computation of CellML Models

In the following, we consider the computation of models that are given in CellML de-

scription, such as the subcellular model in the multi-scale muscle model.

The subcellular model is a system of DAEs that is solved at every node of the meshes

in the discretized muscle. For the fiber based electrophysiology description, instances of

the 0D subcellular model are computed on every node of every 1D fiber mesh. The 0D

instances are coupled by the monodomain equation on every fiber. For the multidomain

description, 0D model instances are solved at every node of the 3D muscle mesh for every

compartment.

The subcellular model is provided as a CellML file and can be configured in the Python

settings as described in Sec. 6.3. The class in OpenDiHu that computes CellML model

instances for all nodes of a given mesh is the CellMLAdapter. It computes the expression

G of the right-hand side of the ODE system, to obtain the vector of rates ∂y/∂ t = G(y)

and the expression H for the algebraics h = H(y). The new state vector y is computed

from the previous vector by a timestepping scheme, which uses the computed rates ∂y/∂ t

as right-hand side. In the solver tree, the timestepping solver class has to be the parent

node of the CellMLAdapter.

CellML models can be obtained as C source files, which can be compiled to shared

libraries, loaded and accessed by the solver program. This approach is used in both

OpenCMISS and OpenDiHu. The operation of computing multiple instances of a CellML

model at once can be done more efficiently than in the naive way of repeatedly executing

the model function, as done in OpenCMISS. To exploit the structure of computing multiple

model instances together, dedicated C code has to be generated from the CellML model

at runtime for a given number of model instances. In the following, we describe our code

generation functionality for this purpose.

7.6.1 Data Flow for the Computation of CellML Models

Figure 7.33 shows the information flow for the CellML subsystem in OpenDiHu. On the

left, a subcellular model is specified in CellML format in a file model.cellml. OpenDiHu

uses the command line interface of OpenCOR to generate corresponding C code in the

file model.c. The C code computes the functions G(y) and H(y) for the right-hand side

and algebraics vector, respectively. A parser traverses the generated C source file and

stores all instructions in an internal syntax tree data structure. The parser also determines

7.6 COMPUTATION OF CELLML MODELS 343

OpenDiHu

model.cellml model.c model_vc_50.c
model_vc_51.c

model_vc_50.so
model_vc_51.so

OpenCOR

Code
Generator

Compiler,
Linker

FastMonodomainSolver

vector

of

initial

values

CellmlAdapter

load

use

Parser

Figure 7.33: Processing of the given CellML model prior to solution. The CellML descrip-

tion is converted to C code using OpenCOR. The parser loads the C source

code file and determines the contained initial values. Additionally, it parses

the compute instructions into an internal syntax tree. The code generator

produces optimized C code that can solve as many instances of the model as

needed on every process according to the global partitioning of the domain.

The generated C code is compiled, linked to a shared library and accessed

from the solver code.

the initial values for the state vector y from the code that initializes the variables. Next,

certain constants and algebraics in the compute instructions are replaced by parameter

variables, as configured in the settings.

Then, a code generator outputs new C code that is optimized for a given number of

CellML instances according to the number of nodes in the processes’ subdomain within

the global domain decomposition. This step is executed in parallel by different processes,

but only once for every required number of model instances.

For example, if two fibers with 100 elements each are computed by 2× 2 processes,

the 101 nodes on each fiber are equally distributed to two different processes. As a

result, each MPI rank has to compute either 51 or 50 CellML instances. Thus, the code

generators on two of the ranks produce source code files for 51 and 50 model instances,

named model_vc_51.c and model_vc_50.c in Fig. 7.33, respectively. After generation,

344 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

the source files are compiled and linked to a shared library, resulting in the shared object

files model_vc_51.so and model_vc_50.so in Fig. 7.33.

The generation, compilation and linking steps are performed only by one process per

source file. If a source file or shared library with the required name already exists from

a previous run, the respective code generation and compilation steps are omitted. In

the example, only two processes generate and compile the code. All four processes

synchronize after all shared libraries have been generated, before proceeding to execute

the computations.

The generated shared libraries contain machine-code to compute G(y) and H(y). They

are loaded into the simulation program and executed by the CellmlAdapter class with

the corresponding values, as indicated in Fig. 7.33. Furthermore, the CellmlAdapter

uses the previously inferred vector of initial values to initialize the state vector before

the first timestep. Also, the FastMonodomainSolver class presented in Sec. 7.4.2, which

efficiently solves the monodomain equation, makes use of the code generator and the

shared libraries to evaluate the operators G and H of the subcellular model.

7.6.2 Optimizations in the Generated Code

The code generator can be configured to employ various types of optimizations in the

generated code. These optimizations can be selected in the settings by the parameter

"optimizationType".

The naive way to solve multiple CellML model instances leads to storing the state vectors

in an Array-of-Struct (AoS) memory layout. The “struct” containing all components of the

state vector for a single CellML model is stored at consecutive locations in memory and

multiple structs for all computed instances are lined up next to each other. Figure 7.34a

shows the AoS layout in the top row for four model instances given by different colors.

Each instance contains the three state variables 0, 1 and 2.

The transposed memory layout is Struct-of-Array (SoA), where the same state com-

ponents for all model instances are close in memory. In the example in the second row

of Fig. 7.34a, always four states of the same kind are stored contiguously. Figure 7.34b

shows the construction schemes for the memory layouts. Comparing the scheme for SoA

with AoS, it can be seen that the traversal in the 2D field of values is now vertical instead

horizontal.

7.6 COMPUTATION OF CELLML MODELS 345

0

0 2 0 1 2 01 2 10 2

0 20 1 20 1 210 2

AoS

SoA

1

1

0 20 1 2 01 210 2AoVS 1

0SoVA 11 2 20 0 1 1 2 2

(a) Data in different memory layouts.

States

0 2

0 1 2

0

1

2

10 2

1

In
s
ta
n
c
e
s

AoS: SoA: AoVS: SoVA:

(b) Schemes how to construct the memory layouts. On the left, the

entries are organized in a 2D field according to the state index

and instance index. On the right, the traversal schemes for the

different layouts are shown.

Figure 7.34: Different memory layouts for the CellML model: Array-of-Struct (AoS),

Struct-of-Array (SoA), Array-of-Vectorized-Struct (AoVS), and Struct-of-

Vectorized-Array (SoVA). The entries for four instances of the CellML model

are shown by different colors, where each contains the three state variables

0,1 and 2.

Such a vertical layout is a prerequisite for employing single-instruction-multiple-data

(SIMD) parallelism. SIMD instructions perform the same calculations on multiple com-

ponents of SIMD vectors simultaneously. In the visualization of SoA in Fig. 7.34a, always

four operands could be loaded simultaneously from memory to the vector registers in

the CPU. Modern processors support the AVX2 instruction set with a SIMD lane width of

WT = 4 double values or the AVX-512 instruction set with WT = 8 double values.

Figure 7.35 demonstrates the code generation and presents different approaches to

efficiently evaluate the operators of a CellML model for multiple instances. Figure 7.35a

shows the original code for a single model instance, which can be obtained from the

CellML website or exported from a CellML model using OpenCOR. The listing shows

the computation of the algebraic variable with index one and the rate with index one.

The formulas typically use other states, algebraics and constant variables and consist of

basic arithmetic such as additions, multiplications, potentiations to integer exponents

346 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

1 ALGEBRAIC[1] = (- 0.100000*(STATES[0]+50.0000))/(exp(- (STATES[0]+50.0000)/10.0

2 RATES[1] = ALGEBRAIC[1]*(1.00000 - STATES[1]) - ALGEBRAIC[5]*STATES[1];

3 ...

(a) Original C code for one CellML model instance generated by OpenCOR.

1 #pragma omp for simd

2 for (int i = 0; i < 1481; i++)

3 algebraics[1481+i] = (- 0.100000*(states[0+i]+50.0000))/(exp(- (states[0+i]+5

4

5 #pragma omp for simd

6 for (int i = 0; i < 1481; i++)

7 rates[1481+i] = algebraics[1481+i]*(1.00000 - states[1481+i]) - algebraics[7

8 ...

(b) Generated code for optimization type "simd".

1 // fill input vectors of states and parameters

2 for (int stateNo = 0; stateNo < nStates; stateNo++)

3 for (int i = 0; i < nVcVectors; i++) // Vc vector no

4 for (int k = 0; k < WT; k++) // entry no in Vc vector

5 statesVc[i*nStates + stateNo][k] = states[stateNo*nInstances + i*WT+k];

6 // statesVc[stateNo*nVcVectors + i][k] = states[stateNo*nInstances + i*WT+k]

7

8 for (int i = 0; i < nVcVectors; i++)

9 {

10 algebraicsVc[i*nAlgebraics + 1] = (- 0.100000*(statesVc[i*nStates + 0]+50.000

11 //algebraicsVc[371+i] = (- 0.100000*(statesVc[0+i]+50.0000))/(exponential(- (st

12 ...

13 }

(c) Generated code for optimization type "vc".

1 #pragma omp parallel for

2 for (int i = 0; i < 1481; i++)

3 {

4 algebraics[1481+i] = (- 0.100000*(states[0+i]+50.0000))/(exp(- (states[0+i]+5

5 rates[1481+i] = algebraics[1481+i]*(1.00000 - states[1481+i]) - algebraics[7

6 ...

7 }

(d) Generated code for optimization type "openmp".

Figure 7.35: Output of the CellML code generator in OpenDiHu for 1481 model instances

and different optimization types. The model is the subcellular model of

Hodgkin and Huxley, and the code shows only two formulas of this model.

Furthermore, the lines are truncated.

7.6 COMPUTATION OF CELLML MODELS 347

and exponential functions. Some models such as the subcellular model of Shorten et al.

[Sho07] also involve piecewise definitions that include “inline if” branching operations.

Calling the code in Fig. 7.35a for multiple model instances is associated with the AoS

memory layout. An improvement is the generated code with optimization type "simd" in

Fig. 7.35b, which assumes the data to be organized in the SoA memory layout. The code

is generated specifically to solved 1481 instances of the model. The array indexing for

the algebraics and rates variables sums the constant offset according to the memory

layout and the number of the model instance. For example, for the second algebraic (with

former index 1), the offset is 1481 because so many memory locations are filled with

values of the first algebraic (with former index 0).

Furthermore, every formula is enclosed in a loop over all 1481 instances of the model.

The loops have OpenMP pragmas that instruct the compiler to use SIMD instructions

for the loop body, if possible. Because of the consecutive storage, WT loop iterations

can be combined into a single computation using vector instructions. For the remainder

iterations at the end of the loop, the compiler automatically adds different instructions

with corresponding smaller SIMD vector lengths.

The approach of using OpenMP pragmas has the advantage that it is independent of the

actual hardware capabilities and does not fix the SIMD vector size WT . If vectorization is

disabled at compile-time, sequential CPU code is generated and the same valid solution

is computed. A disadvantage is that the performance of the generated code depends

on the vectorization ability of the compiler and its detection that the variables have the

proper memory layout. For some constructs such as exponential functions or branching

instructions, no vectorization is employed and the particular loop falls back to serial code.

Such behavior is observed when inspecting the vectorization reports, which are emitted

by the compiler.

Thus, we implement another optimization type "vc" in the code generator that guar-

antees usage of vector instructions for all formulas. We use the C++ library Vc, which

provides a wrapper to hardware-specific vector instructions and abstracts the SIMD lane

width [Kre12; Kre15]. Using the data types of this library also allows writing hardware

independent code and to achieve performance portability, like with the "simd" optimiza-

tion type. As Vc only supports vectorization up to the AVX2 instruction set, we also use

the std::experimental::simd specification, which is currently considered by the Inter-

national Organization for Standardization (ISO) and the International Electrotechnical

Commission (IEC) for inclusion in the C++ standard library [Hob19]. Switching be-

348 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

tween these two libraries is transparent in the code and depends on whether the compiler

supports C++17.

Similar to the "simd" optimization type, the "vc" optimization type also uses a memory

layout where consecutive memory entries correspond to different instances of the model,

and the traversal direction in Fig. 7.34b is vertical for at least WT entries. Figure 7.34

shows two such memory layouts for a SIMD vector length of WT = 2: Array-of-Vectorized-

Struct (AoVS) and Struct-of-Vectorized-Array (SoVA). Both are implemented in the code

generator.

The SoVA memory layout is very similar to SoA, the only difference is, that, in SoVA,

entries are always accessed in multiples of the SIMD vector length WT . The advantage

of SoVA is that the array indices are given by the sum of a constant offset with the loop

index, whereas, with the AoVS layout, a multiplication is required for every access.

AoVS resembles more the AoS layout. Its advantage over SoVA is that the complete

state vector y for any model instance is located more locally in memory. As the total

computation iterates over model instances, the accessed memory is more coherent than

for the same iteration scheme with the AoVS layout. This possibly leads to more cache

hits, however, for set-associative caches, the effect is reduced. Due to the complexity of

today’s cache architectures, only measurements can decide which of the two memory

layouts leads to a faster execution. Our measurements show that the SoVA layout leads to

2 % shorter runtimes than the AoVS memory layout and, thus, is the preferred choice.

Figure 7.35c shows the resulting code using the AoVS memory layout. The commented

lines 6 and 11 show the corresponding code for the SoVA memory layout. At the beginning

of the generated program code, the given data in the states variable are copied to the

statesVc variable in the new memory layout. Nested loops over all states, over the SIMD

vectors and over the scalar values within the SIMD vector are used for this operation. For

comparison, lines 5 and 6 show the corresponding indexing of the statesVc variables for

the AoVS and SoVA memory layouts, respectively.

For the evaluation of the model operators, we iterate over the number nVcVectors of

SIMD vectors instead of the number of model instances as for "simd". In the example

with 1481 instances, we have nVcVectors=⌈1481/WT ⌉=371 SIMD vectors for WT = 4.

Accordingly, the offsets for indexing the variables in the SoVA layout are smaller, e.g.,

in line 11, the offset for indexing the algebraicsVc variables is 371 instead of 1481 for

the non-vectorized variable in the previously considered "simd" code. Comparing the

statements for AoVS and SoVA in lines 10 and 11, it can be seen that the AoVS memory

layout involves an additional multiplication during the indexing of the array.

7.6 COMPUTATION OF CELLML MODELS 349

In case of branching instructions in the CellML formulas, the Vc library provides an

implementation of the “inline if” statement for SIMD vectors, which checks the condition,

potentially executes both branches and merges the components from the active branches

into the resulting SIMD vector.

Profiling the execution of the "vc" code for different subcellular models shows that

about half of the runtime is spent in evaluating the exponential function. Therefore, we

use the following approximation:

exp(x)≈ exp∗(x) =
�

1+
x

n

�n

. (7.7)

The series converges to the exact value for n→∞. We choose n = 1024 and are able

to compute the approximate value by only one addition and 11 multiplications using the

following formula:

exp∗(x) =
�

1+
x

1024

�210

=

· · ·
�
�
�

1+
x

1024

�2
�2
�. .

.!2

.

In the subcellular models of Hodgkin and Huxley [Hod52a] and Shorten et al. [Sho07],

the values for x are bounded by |x | < xmax = 12, and we get a relative error of the ap-

proximation of |(exp∗−exp)(xmax)/exp(xmax)|< 0.07. This approximation can be enabled

or disabled in the code generation.

Another optimization is implemented for exponentiation ab. In the considered CellML

models, only integer exponents b ∈ Z occur. We add a recursive implementation of the

power function that requires a logarithmic number of multiplications.

The code generator with the "vc" optimization type is also used by the FastMonodomain

Solver class described in Sec. 7.4.2. The generated codes for the FastMonodomainSolver

class additionally contain the Heun scheme to solve the model, integrate code for the

stimulation of muscle fibers and export certain algebraic values that were declared as

parameters in the settings.

Another possiblity to improve the performance besides instruction-level parallelism

is thread-level parallelism. The "openmp" optimization type generates code containing

OpenMP pragmas that distribute the computations to multiple OpenMP threads with

shared memory. Figure 7.35d shows the generated code for this optimization type. A

loop iterates over all model instances and the variables are stored in SoA memory layout.

The loop iterations are independent of each other as they correspond to different instances

350 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

1 #pragma omp target parallel for \

2 map(to:states,t,parameters) map(from:rates,algebraics)

3 for (int i = 0; i < 1481; i++)

4 {

5 algebraics[1481+i] = (- 0.100000*(states[0+i]+50.0000))/(exp(- (states[0+i]+5

6 rates[1481+i] = algebraics[1481+i]*(1.00000 - states[1481+i]) - algebraics[7

7 ...

8 }

Figure 7.36: Generated code for optimization type "gpu" corresponding to the scenario

in Fig. 7.35.

of the CellML model. OpenMP distributes the workload to a predefined number of threads

that can be specified by environment variables.

7.6.3 Code Generation for GPUs

Besides instruction-level and thread-level parallelism, which were discussed in the last

section, accelerator hardware such as GPUs can be considered to reduce the runtime of

solving a CellML model. Our code generator features the "gpu" optimization type to

generate code that is called on the CPU and then offloads the main computations to a

GPU.

We use OpenMP 4.5 to instrument the generated code for device offloading. At the time

of writing, only an experimental version of GCC 11 is fully capable of compiling this code.

In our studies, the code is compiled for the nvptx target, which generates and compiles

device-specific CUDA code using the NVIDIA parallel thread execution (PTX) instruction

set architecture. We successfully run the computation on various NVIDIA GPUs, including

a GeForce RTX 3080. However, the approach is device-agnostic and other accelerator

hardware can also be used.

Figure 7.36 shows an excerpt of the generated code. It resembles the code of the

"openmp" optimization type, except that the OpenMP pragma in lines 1 and 2 is different.

The lines specify the variables to be mapped to and from the target device: The vectors

of states and parameters as well as the current simulation time t are sent to the GPU and,

after computation, the rates and algebraics are transferred back to the CPU.

Using the CellmlAdapter, it is, thus, possible to run any CellML model on the GPU.

However, for the fiber based electrophysiology model uploading and downloading the

7.6 COMPUTATION OF CELLML MODELS 351

data of all model instances between CPU to GPU in every timestep is clearly not the

most efficient way to utilize the GPU. Therefore, we add efficient GPU integration with

proper memory management to the FastMonodomainSolver class, which is specialized to

solve the monodomain equation for multiple fibers. The class allows computing multiple

timesteps in series on the GPU between subsequent points of synchronization with the

CPU. This synchronization is only required, e.g., for writing output files or coupling to a

solid mechanics solver.

The generated GPU source code for the FastMonodomainSolver contains the full algo-

rithm for solving multiple timesteps of the electrophysiology model for multiple fibers

with a given number of nodes each. The Strang splitting scheme is used, which solves

the 0D subcellular part and the 1D electric conduction part in the scheme 0D-1D-0D. The

0D part is solved by the Heun scheme. The 1D part is computed either with the implicit

Euler method or the Crank-Nicolson method. The linear system of equations is solved

using the linear complexity Thomas algorithm.

The parallelization on the GPU uses a fixed number of thread teams, where all threads in

a team execute the same code. For the 0D problem, the iterations of the two nested loops

over fibers and model instances per fiber are distributed to all thread teams, such that the

iterations are workshared. Thus, the 0D subcellular models are computed concurrently for

all instances. Between the computations of the 0D and 1D parts, synchronization occurs as

the data on all instances on a fiber are accessed in the solution of the 1D problem. The 1D

computations are distributed on the fiber level, before the second 0D computation in the

Strang splitting is again distributed on the model instance level. Another synchronization

occurs after each timestep of the whole Strang splitting.

The data transfer in both directions between CPU and GPU is reduced to a minimum.

Initially, all required parameters and initial values have to be transferred to GPU memory.

The initial state vector y is only sent once to the GPU and all model instances of all fibers

get initialized to these same values. Further data to be sent includes parameters that

describe the stimulation times as presented in Sec. 6.3.4, locations of the neuromuscular

junction and the distribution of fibers to motor units. Instead of the callback functions

described in Sec. 6.3.4, the stimulation times can be altered by an input file. For details,

we refer to the online documentation [Mai21c].

During computation, smaller amounts of data are transferred before and after each

set of consecutive timesteps on the GPU. The data to be sent to the GPU before the

computations consist of the CellML parameter values and the lengths of all elements in

the 1D mesh, which change, if muscle contraction is computed on the CPU. The data to

352 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

be transferred back to the CPU after the computations on the GPU consist of a subset of

the state vector for every model instance. This subset contains only those components

of y that should be written to an output file on the CPU or are required for coupling to

another solver. Thus, the majority of the data stay on the GPU.

7.7 Solid Mechanics Solver

Next, we discuss details on the solver of the solid mechanics models, which is needed for

the muscle contraction part of the multi-scale model, described in Sec. 5.2.

Section 7.7.1 gives details on the solver for the linear solid mechanics model. Sec-

tion 7.7.2 addresses the nonlinear model and describes how the material model is spec-

ified. Section 7.7.3 presents the timestepping method for the dynamic problem and

describes the implemented measures to improve the convergence.

7.7.1 Solver for the Linear Model

As noted in Sec. 6.2.7, the QuasiStaticLinearElasticitySolver class can be used to

solve the linearized solid mechanics model described in Sec. 5.2.5 and discretized in

Sec. 5.4.1. Within this solver class, the matrix equation Eq. (5.76) is assembled and

solved by an object of the FiniteElementMethod class, which is the same class that is used

to solve Laplace problems.

If the solver is explicitly coupled with an electrophysiology model, we obtain a quasi-

static formulation of muscle contraction. The activation parameter γ̄ on the 3D mesh is

transferred from the electrophysiology model to the elasticity model. Then, the linear

system of equations of the elasticity model is solved using the new muscle activation

values in the right-hand side. The system matrix stays constant in all timesteps. After

the new displacements have been computed, the geometries of the 3D mesh and the

embedded 1D fiber meshes are updated accordingly.

In this scenario, the active stress tensor σactive in Eq. (5.78) is computed as the product

of the activation parameter γ̄ with a scalar maximum active stress parameter σmax,active

and an anisotropy tensor a:

σactive = σmax,active γ̄a. (7.8)

7.7 SOLID MECHANICS SOLVER 353

The tensor a can be specified in the Python settings by a 3 × 3 matrix and allows to

specify the anisotropic active behavior of the muscle tissue. In this specification, the first

unit vector e1 = (1, 0, 0)⊤ designates the fiber direction, e2 and e3 specify the transverse

direction. Prior to the computation in Eq. (7.8), the basis of the given matrix is changed,

such that e1 in the old basis maps to the fiber direction in the new basis and the new basis

is orthonormal. This change of basis is performed at every point in the muscle with the

respective fiber direction. Thus, it is possible to specify transversely isotropic material

behavior with contraction in fiber direction.

7.7.2 Specification of Nonlinear Material Models

To compute the nonlinear model, the HyperelasticitySolver class is used for the static

formulation of a passive material, the DynamicHyperelasticitySolver class is used for

the dynamic passive behavior, and the MuscleContractionSolver is used for either the

static or the dynamic model with active stress contribution.

These solver classes can be coupled to the electrophysiology model in the same way

as described in Sec. 7.7.1. Similar to Sec. 7.7.1, the MuscleContractionSolver adds an

active stress term to the formulation according to the formula in Eq. (5.42). The force-

length relation fℓ(λ f) can either be added by the MuscleContractionSolver or specified

in the CellML description as part of the subcellular model for the activation parameter

γ.

To specify the passive material behavior, the strain energy function Ψ has to be defined.

This definition has to be available at compile-time and is specified in the C++ code.

Four different terms can be defined to describe the material model in different forms

such as the coupled or decoupled representation. The four terms are introduced in

Sec. 5.2.6 and given in Eq. (5.39) as follows:

Ψ = Ψvol(J) +Ψiso(Ī1, Ī2, Ī4, Ī5) +Ψ1(I1, I2, I3) +Ψ2(C,a0). (7.9)

Formulas for these terms can be specified using C++ expressions with a syntax specified

by the SEMT library [Gut12; Gut04] (and also described in the online documentation

of OpenDiHu [Mai21c]). Mathematical functions such as power and log functions are

available, intermediate variables can be defined and reused, and constants for material

parameters can be used, whose values can be specified in the Python settings.

354 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

The implementation uses the SEMT library to symbolically differentiate the given terms

with respect to their function arguments. Thus, all values used in the Newton solver

including the Jacobian matrix can be computed automatically. Using this technology,

OpenDiHu provides the flexibility to add new material models at compile-time without

the need for manual differentiation.

Additionally, three options, which alter the computation and efficiency, have to be

set in the C++ description: The first option specifies, whether the material is considered

incompressible. If this option is set to true, the solution approach with Lagrange multiplier

p is used, otherwise the unknowns only contain the displacements u and possibly the

velocities v. The second option specifies, if the active stress term Sactive should be added

to the material. This option is only relevant for the MuscleContractionSolver class,

disabling it allows computing passive tissue.

The third option determines, if the fiber direction a0 appears in the description of the

material model. Only if this option is enabled, the corresponding invariants I4 and I5

are available for the definition of the Ψiso term in Eq. (7.9). If disabled, all terms in the

formulas in Sec. 5.4.4 that involve a0 are left out of the computation, which speeds up

the computations in the solver.

7.7.3 Convergence Improvements for the Nonlinear Solver

The nonlinear equation is solved using the Scalable Nonlinear Equations Solvers (SNES)

component of PETSc, which provides Newton-type and quasi-Newton methods for solving

systems of nonlinear equations. The method to use and other parameters such as the

line-search type can be configured in the Python settings file.

Fast convergence of a Newton-based nonlinear solver is facilitated with a good initial

guess for the vector of unknowns. Therefore, we predict the solution functions u and v

for the next timestep in a dynamic problem using the following computations:

u(i+1),predicted = u(i) + dt v(i), a(i) =
1

dt
(v(i) − v(i−1)), v(i+1),predicted = v(i) + dt a(i).

The predicted displacements u(i+1),predicted for the next timestep (i + 1) are estimated

by a forward Euler scheme from the displacements u(i) and velocities v(i) of the cur-

rent timestep i. The current acceleration a(i) is estimated by finite differences from the

current and previous velocities, v(i) and v(i−1). The predicted velocities v(i+1),predicted for

the next timestep again use a forward Euler method with the estimated acceleration

7.8 DATA MAPPING BETWEEN MESHES 355

values a(i). Using the initial guess (u(i+1),predicted,v(i+1),predicted, p(i))⊤, the solution vec-

tor (u(i+1),v(i+1), p(i+1))⊤ for the next timestep can be obtained by the nonlinear system

solver.

Independently of the predictions of initial values from previous timesteps, the con-

vergence of the nonlinear solver within a timestep can be improved by employing load

stepping. This approach involves solving N > 1 sub problems with increasing load steps.

In each step i, the problem is solved with the right-hand side fi = αi f, scaled by the load

factor αi ∈ [0,1]. The obtained solution in iteration i is used as the initial guess for the

subsequent load step (i + 1). Increasing values of αi are used until the final solution is

found for αN = 1. Typical load factors are (αi)i=1,...,N = (b
−(N−1), b−(N−2), . . . , b0) for a

basis b > 0.

The list of load factors can be specified in the settings. If the nonlinear solver diverges

or fails because an unphysical negative determinant J of the deformation gradient occurs,

the current load factor is automatically reduced and the solution processes is started again,

using the last valid solution as initial guess. If the last successful solution was found for

load factor αi and the current load factor αi+1 fails, a new load factor α∗i+1
= (αi+αi+1)/2

is inserted in the list of load factors between αi and αi+1 and the solution of the nonlinear

problem with this new factor is attempted.

In case of a poorly conditioned problem, it can happen that no more solution can be

found, regardless of how far the load factor gets decreased. If the difference between

two load factors falls below a configurable threshold, the nonlinear solution process for

the current timestep is aborted.

Practical tests with the dynamic incompressible problem have shown that the conver-

gence sometimes degrades only for a single timestep and returns to normal in the next

timestep. Thus, we allow a single timestep i to diverge and, in this case, continue with

the next timestep (i+1) using the (diverged) solution with the lowest residual norm from

timestep i to predict the initial guess for timestep (i + 1).

7.8 Data Mapping Between Meshes

After the implementation of various solvers for specific parts of the multi-domain model

has been described in the previous sections, we now focus on the data mapping between

different meshes that occurs in the coupling schemes between the execution of the coupled

solvers.

356 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Data mapping between meshes is required in scenarios that involve both a finely re-

solved 3D mesh for the electrophysiology model and a coarse 3D mesh for the solid

mechanics model. Moreover, data are mapped between the 3D muscle mesh and the

embedded 1D fiber meshes in the fiber based electrophysiology model. In these two

cases, the mapping has to be carried out in both directions between the involved meshes.

The operation can be characterized as volume mapping.

We implement a generic mapping scheme between two meshes of any dimensionality

and with any relative orientation with respect to each other. Given is a finite element

interpolant on a source mesh, defined by the dof values at the nodes. The goal is to

set the dof values of the target mesh, such that the error between the finite element

representations on the common domain of source and target mesh is as low as possible.

By using the ansatz functions of the target mesh, the constructed mapping has the same

order of accuracy as the target mesh interpolant. For a linear target mesh, the mapping

operation is second order accurate, for a quadratic target mesh, the mapping operation

is third order accurate.

The considered source and target meshes are possibly partitioned. In order to perform

the data mapping directly between two such meshes without communication between

the processes, the partitioning of the volumes would have to be identical. However, this

is not practical for different meshes and would disallow different orientations of source

and target meshes. The only way to allow such a mapping is to consider either the source

or the target mesh as a point cloud and construct the mapping between individual points

and a mesh.

Considering the case of mapping the activation parameter value γ, which is stored on

multiple 1D fibers, to the value γ̄ on the 3D muscle mesh, it is natural to consider the

source mesh as a point cloud. Then, instead of multiple fibers, we have a set of points,

where γ is known. This set of source points is mapped to the enclosing 3D target mesh.

On every process, the source points have to be located inside the local subdomain of the

target mesh.

The reverse mapping in this example is also required: The geometry of the 3D muscle

mesh has to be mapped to the fibers points, such that a deformation of the muscle also

affects the embedded fibers. This reverse mapping from the target mesh to the source

fiber meshes or points is trivial: The source values can be interpolated in the target mesh

using the finite element discretization. We construct the mapping from source to target

mesh to be the transpose operation to this interpolation. In the following section, we

introduce the method with a graphical example.

7.8 DATA MAPPING BETWEEN MESHES 357

s0

t0 t1

t2

t3

s1

s2

s3

eT,0eT,1

eT,2 eT,3

Figure 7.37: Data mapping scheme from source points (orange) to a target mesh (black).

7.8.1 Construction of the Parallel Data Mapping

Figure 7.37 shows a scenario, where data mapping is performed from a source mesh to a

target mesh. The source mesh is given by the orange points s0 to s3. The target mesh is

visualized by the black and gray elements eT,0 to eT,3 and nodes t0 to t3.

The value at s0 contributes to all nodes t0 to t3 of the target element eT,0 as indicated by

the red arrows. The relations between the contributions to t0, t1, t2 and t3 are determined

by the values of the respective target element ansatz functions φ0 to φ3, evaluated at

the location of s0. Similarly, the source points s1 to s3 contribute to the nodes of their

enclosing target elements eT,1 and eT,2.

As a consequence, all shown source points s0 to s3 influence the value of the target

node t0, as indicated by the red arrows. The value t̂0 at point t0 is computed using the

values ŝi at the points si for i = 1, . . . , 4 as follows:

t̂0 =

4
∑

i=0

αi ŝi, with αi =
φt0
(ξsi
)

4
∑

i=0

φt0
(ξsi
)

. (7.10)

Here, φt0
is the finite element ansatz function for the node t0. It is evaluated at the

locations ξsi
of the source points si in the respective target elements. The factors αi specify

the fractions, with which the different contributions to t̂0 are scaled. Their construction

ensures the property
∑4

i=1
αi = 1. Note that the number of summands in the sum over

the source points can be different from 4 for other target points.

358 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

s0

t0 t1

t2

t3

s1

s2

s3

eT,0eT,1

eT,2 eT,3

(a) Mapping from target to source

points using the reverse scheme of

Fig. 7.37.

s0

s1

s2

s3

eS,0

t2

t3

t1t0

(b) Inverse mapping scheme where the

roles of source and target mesh are

swapped.

Figure 7.38: Data mapping from target mesh to source mesh.

The reverse mapping from target nodes to source points uses the same data depen-

dencies between dofs in the source and in the target meshes. Figure 7.38a shows the

scheme for the reverse mapping. It is the same as in Fig. 7.37, except that the direction of

the arrows has been flipped. As noted earlier, the mapping from the target to the source

mesh is simply an interpolation in the target mesh. The value ŝ0 is computed from t̂0 to

t̂3 using the finite element interpolation formula in element eT,0:

ŝ0 =

4
∑

i=0

t̂ iφt i
(ξs0
).

Again, the contribution factors sum up to one,
∑4

i=0
φt i
(ξs0
) = 1.

This mapping scheme has the advantage that it requires no communication between

the involved processes to determine the target dofs, to which a source dof contributes

to. Considering the example in Fig. 7.37 and assuming that the four target elements are

located on four different subdomains, it can be seen that each source point si only has

to access the target element, where it is contained, to determine the respective element

coordinates ξsi
.

For the computation of the factors αi in Eq. (7.10) and for the computation of the target

dofs, communication is required. This communication step is the same exchange of ghost

dof values, which is also needed for the assembly of finite element stiffness and mass

matrices. In the implementation, it is available by the respective functionality of PETSc

7.8 DATA MAPPING BETWEEN MESHES 359

as described in Sec. 7.1.1. The reverse mapping from target to source meshes, i.e., the

interpolation scheme, works without any communication as all required data are local to

the processes.

Instead of reversing the source to target mapping as described, it is often also possible

to change the roles of source and target mesh and construct a new mapping in this way.

This is only possible, if the two meshes have the same dimensionality, as in the considered

example visualizations with two 2D meshes. Figure 7.38b shows the presented mapping

scheme with the roles of source and target meshes reversed. By comparing with Fig. 7.38a,

it can be seen that, in this case, the node t0 contributes to the same nodes s0 to s3 in both

approaches. However, the contribution factors are different. In general, the dependent

nodes in both meshes are not necessarily the same in the two mapping directions. This

means that, in general, the reversed or transposed mapping is not equal to the inverse

mapping that is created by interchanging source and target meshes.

For mappings between different dimensionalities, only the approach of reversing the

mapping in one direction is possible. For example, mapping from a 1D mesh to a 3D

mesh allows no interpolation in the 1D mesh to get the 3D mesh data, as the 1D mesh

occupies only a subset of the domain of the 3D mesh. This is a reason for implementing

the presented mapping scheme, where the mapping direction can be reversed. Another

advantage is that, once the mapping is constructed, both mapping directions are available

and the expensive operation of locating the points of one mesh inside the elements of the

other mesh has only be performed once.

7.8.2 Special Treatment of Coarse Meshes

While the mapping error in the described scheme converges to zero, when the mesh

widths approach zero, an issue occurs, if one of the meshes is significantly coarser than

the other. Figure 7.39a depicts the case of a coarse source mesh in orange color that

is mapped to a finer target mesh in black and gray colors. According to the presented

scheme, the source points s0 and s3 contribute to target nodes as visualized by the red

arrows. The analog contributions for s1 and s2 are not shown in Fig. 7.39a. Some target

mesh nodes in this example have large distances to the source points and, as a result, do

not get contributions from any source point. For example, this is the case for the target

points t1 and t2.

To define the value at t2 depending on the source data, we add new contributions from

all nodes of the source element in which t2 is located. These contributions are visualized

360 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

s0 t0 t1

t2

t3

eS,0

s1

s3s2

(a) Mapping scheme from source to

target mesh.

s0 t0 t1

t2

t3

eS,0

s1

s3s2

(b) Reverse mapping scheme from tar-

get mesh to source points.

Figure 7.39: Data mapping scheme with additional data dependencies for a coarse source

mesh.

by the yellow arrows in Fig. 7.39a. The contributions use the ansatz functions of the

source element, and the operation is equivalent to interpolating the value for t2 in the

source mesh:

t̂2 =

4
∑

i=0

ŝiφsi
(ξt2
).

The location ξt2
of t2 in element coordinates of the source element is required for this

computation. Analogously, corresponding contributions are added for the other target

nodes that do not yet get any contribution from the source data.

These additional contributions are also present in the reversed mapping scheme from

the target to the source mesh. As can be seen in Fig. 7.39b, the value at t2 contributes

to the source nodes s0 to s3. At any source node, the number of contributions increases

accordingly. The visualization in Fig. 7.39b shows five incoming arrows with contributions

for s0 and s3. The actual number is higher, since not all target nodes with additional

contributions are visualized. At the target nodes, the contribution factors get rescaled,

such that they add up to 1 and their relations are preserved.

7.8 DATA MAPPING BETWEEN MESHES 361

7.8.3 Computation of Element Coordinates For Mapped Points

During the setup of the mapping between the source mesh and the target mesh, we need

to find, for every source point si, the target element eT, j that contains si. Furthermore,

we need to determine the local element coordinates xsi
= (ξ1,ξ2,ξ3)

⊤ of the point in this

element. To check, if the point is inside a particular element, we compute its coordinates

in the element coordinate system. If the coordinates ξ are inside the range of [0, 1]d , the

point is considered inside this element, and the coordinates are determined.

The source point is given by coordinates x= (x1, x2, x3)
⊤ ∈ R3 in the world coordinate

frame. The point is related to the d-dimensional element coordinate frame (ξ1, . . . ,ξd)

of its containing target element by the following map:

x(ξ) =

ndofs∑

i=1

φi(ξ)x
i. (7.11)

Here, φi for i = 1, . . . , ndofs, are the nodal ansatz functions of the target element. The

element has ndofs dofs and is given by its node positions xi.

The computation of the element coordinates ξ from the world coordinates x consists of

inverting the mapping in Eq. (7.11). In the following, several approaches are presented

to perform this inversion for different mesh types.

For meshes of type StructuredRegularFixedOfDimension<D>, the inversion can be per-

formed analytically. The mesh is a Cartesian grid with a fixed mesh width h. For quadratic

elements, h denotes the side length of an element, not the distance between adjacent

nodes. The computation of the element coordinates ξ for the point x uses the position x1

of the first node and is given by:

ξ= (x− x1)/h.

This formula is also used for 1D meshes of any type.

For non-Cartesian 2D meshes with linear ansatz functions, i.e., meshes of type Struc

turedDeformableOfDimension<2>, the inversion of the mapping from element to world

coordinate frame in Eq. (7.11) can also be done analytically. We consider this problem

in a generic way, where both the point x and the nodes x1 to x4 of the 2D element are

embedded in 3D space, x,x1, . . . ,x4 ∈ R3. The computation determines the element

coordinates (ξ1,ξ2) of the projection of x onto the plane of the triangle (x1,x2,x3).

362 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Figure 7.40: Simulation of surface EMG using the fiber based electrophysiology model

with body fat layer. Only the top surface of the fat layer mesh is shown.

The spheres correspond to the position of surface electrodes that are used

to sample the simulation result in a spatial grid.

This functionality is used for specifying electrodes on the skin surface. The electrode

positions are specified as a 2D grid in 3D space above the muscle. The mapping automat-

ically projects the points of this grid onto the surface of the 3D mesh. Figure 7.40 shows

such a use case. A simulation of surface EMG is shown, the coloring corresponds to the

potential φb in millivolts in the body domain. A grid of electrode points, visualized by

spheres, is mapped onto the surface of the muscle mesh and simulates electrode patches

that capture high density surface EMG.

After calculating the mentioned projection on the 2D plane, the computation has to

invert the map in Eq. (7.11). The ansatz functions φi are bilinear in the coordinates

ξ1 and ξ2. This quadratic equation has two solutions for the unknown coordinates ξ.

The formulas for those solutions have been determined using the symbolic mathematics

toolbox SymPy [Meu17] and the solution, where the point is inside the element or closer

to its center is chosen.

For generic hexahedral 3D meshes, Eq. (7.11) is a cubic equation in ξ, and the analytic

inversion is not feasible. However, for simplex elements, i.e., tetrahedra given by points

x1 to x4, it is possible. The ansatz in this case is given by:

x= (1− ξ1 − ξ2 − ξ3)x
1 + ξ1 x2 + ξ2 x3 + ξ3 x4.

7.8 DATA MAPPING BETWEEN MESHES 363

This can be reformulated as:

x− x1 = (x2 − x1)ξ1 + (x
3 − x1)ξ2 + (x

4 − x1)ξ3. (7.12)

This linear system of three equations can be solved for the three unknowns ξ1,ξ2 and

ξ3.

To invert the mapping for hexahedral elements, we proceed as follows. A hexahedral

element can be subdivided into five simplex elements. Four outer simplex elements share

their faces with parts of the hexahedral’s surface. One interior simplex element only

touches the hexahedron surface by its edges.

In each of the four outer simplex elements, we define a coordinate system (ξ1,ξ2,ξ3)

with the origin located at a corner of the hexahedron. In these elements, the coordinates

ξ for the point x can be computed using the ansatz in Eq. (7.12). The computed coor-

dinate values can be transformed to the hexahedral coordinate system by applying the

appropriate mirror operations ξ 7→ (1−ξ) on some coordinates. Using the average values

of the hexahedral coordinates resulting from all four outer simplex elements gives a good

approximation for the correct hexahedral element coordinates ξ of the point x.

To obtain the correct element coordinates, these approximate values are used as initial

guess in a Newton scheme, which subsequently tries to find the root of r = (ξ − x(ξ))

and, thus, invert the mapping in Eq. (7.11).

Runtime measurements have shown that the lower number of Newton iterations re-

sulting from the heuristic with the four simplex elements to compute an initial guess

outweighs the additional runtime for the heuristic and, in total, leads to a faster compu-

tation.

The Newton scheme uses the inverse Jacobian matrix of the mapping in Eq. (7.11). If

the residual norm ‖r‖2 cannot not be brought under the threshold of 10−8 in 16 iterations,

this indicates that the problem of inverting the Jacobian is badly conditioned and the

Jacobian has a large numerical error. In this case, the optimization is restarted using the

derivative-free Nelder-Mead algorithm.

Before applying the Newton and Nelder-Mead algorithms, our implementation per-

forms two basic checks that can directly terminate the computation of the coordinates:

First, the coordinates of the point x are compared with the bounding box of all nodes of

the element. If the point is outside the bounding box, the element coordinates do not

have to be computed, and a different element, which contains the point x, is searched.

364 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

Figure 7.41: Hexahedral element of the muscle mesh with an interior angle of nearly 180°.

Such elements lead to poor conditioning of the Jacobian matrix inversion

problem and, as a consequence, require numerous Newton iterations in the

setup of the data mapping between meshes.

Second, all node positions are checked for equality with the point x. If x is the same as one

of the node positions, the element coordinates are directly known. This case frequently

occurs, if one of source and target mesh is a subset of the other.

7.8.4 Conditioning of the Problem and Mapping Tolerances

As mentioned in the last section, the Newton scheme that solves the inverse problem

of mapping a point from elemental coordinates to world coordinates uses the inverse

Jacobian matrix of the mapping. The inversion of this matrix has a high numerical error,

if the condition number of the Jacobian matrix is large. A large condition number can be

found for 3D hexahedral elements, where the two element coordinate directions for ξ1

and ξ2 are almost linearly dependent. This is the case for elements with an interior angle

of nearly 180°. Figure 7.41 shows such an element, which occurs at the outer boundary

of the muscle mesh.

If the conditioning is too bad and the computed inverse Jacobian has a large numerical

error, the Newton scheme fails to find a solution in the given maximum number of itera-

tions and the Nelder-Mead algorithm is used instead. This algorithm usually succeeds.

However, it requires significantly more compute time than the Newton scheme. The case

where the Nelder-Mead algorithm is needed, however, only occurs for a small number of

elements and only in highly-resolved meshes.

Figure 7.42 shows the condition number of the Jacobian matrix of the mapping from

element to world coordinates per element. The condition number is numerically approx-

7.8 DATA MAPPING BETWEEN MESHES 365

(a) Scenario with 7× 7 fibers.

(b) Scenario with 9× 9 fibers

Figure 7.42: Fiber meshes and corresponding muscle mesh, obtained with a sampling

stride of two. The left and right view show both sides of the muscle mesh.

The 3D mesh is colored by the condition number of the Jacobian matrix.

imated using the von Mises power iteration algorithm to obtain the largest eigenvalue

of the Jacobian and its inverse. It can be seen in Fig. 7.42a that the elements with the

highest condition number are located along longitudinal lines on the outer surface of the

muscle mesh. Two such lines exist on both sides of the muscle. The cross-sectional mesh

at the top of the muscle shows that the elements along these lines have large interior

angles at the respective positions.

Figure 7.42b shows the same information for a different mesh with 9×9 fibers instead

of the subset of 7× 7 fibers in Fig. 7.42a. In Fig. 7.42b, the outer surface of the muscle

366 CHAPTER 7: IMPLEMENTATION OF THE SOFTWARE OPENDIHU

mesh is smoother and the interior angle of the elements along the respective longitudinal

lines is even closer to 180°. Thus, the resulting maximum condition number has a higher

value of 30.2 compared to 4.48 in the example of Fig. 7.42a.

Another effect can be seen in the visualization in Fig. 7.42a. The muscle mesh was

generated from the fiber data with sampling strides of two in the cross-sectional directions.

As a consequence, the nodes of the 3D mesh are part of every second fiber. This results

in some outer fibers being located outside the domain of the 3D mesh. Such a case can

be seen for the upper-most fiber in Fig. 7.42a.

To also involve such fibers in the computation, we enable data mapping between the 3D

mesh and fibers that are outside but close to the 3D mesh. We add a tolerance parameter

ξtolerance to the implementation that specifies, how far outside the mesh fibers can be

located to still be included in the mapping. On the element level, a point is considered to

be part of an element, if its element coordinates (ξ1,ξ2,ξ3) are no further than ξtolerance

off the element domain, i.e., for

−ξtolerance ≤ ξi ≤ 1+ ξtolerance ∀i ∈ {1,2, 3}.

This treats the outside fibers as if they were located inside the 3D mesh. For the fibers

in the interior, the threshold leads to potentially multiple neighboring elements claiming

ownership of a point. In this case, the element that contains the point without this

tolerance value is chosen. By default, the tolerance value is set to ξtolerance = 0.1, but it

can be adjusted to different values in the Python settings file if needed.

In summary, OpenDiHu can map data between any two overlapping meshes. The

inversion of the mapping from elemental to world coordinates is an important task of

this problem, which is non-trivial for 3D hexahedral elements and is solved numerically.

The combination of fiber meshes with a 3D muscle mesh leads to specific effects such as

degraded condition numbers or fibers outside the 3D mesh that have to be considered in

the mapping.

How To Reproduce

The visualizations in Fig. 7.42 were obtained using the electrophysiology/fibers

/fibers_emg example. The condition number of the Jacobian is computed by the

StaticBidomainSolver if the parameter "enableJacobianConditionNumber" is set

to True.

367

Chapter 8

Numerical Results and Discussion

After various numerical models and methods for biophysical simulations of the neuromus-

cular system were described in the previous chapters, the remainder of this work deals

with their application and discusses the newly obtained insights. The current chapter

presents numerical results and demonstrates the use of OpenDiHu for all major compo-

nents of the multi-scale models.

Section 8.1 begins with the simulation of toy problems such as Poisson and diffusion

equations, which are used as building blocks for the more advanced simulations. Subse-

quently, dedicated solvers for the solid mechanics problem, the CellML models, the fiber

based electrophysiology and the multidomain model are presented in Sections 8.2 to 8.5.

Finally, Sec. 8.6 combines the fiber based electrophysiology model and the multidomain

model with the solid mechanics solver to yield a comprehensive multi-physics simulation

of muscle contraction.

8.1 Solution of Poisson and Diffusion Problems

Setting up a composite multi-scale simulation, where multiple equations are coupled,

requires a profound understanding of the model components. Thus, it can help to first

simulate isolated models. We provide simple examples with our software, such as Laplace

and Diffusion problems, as prototypes for elliptic and parabolic partial differential equa-

tions. The examples with analytic solutions are also used to validate the basic finite

element solvers.

In this section, we showcase three of these simple problems. First, we consider the 1D

Poisson problem u′′(x) = f on Ω = [0, 1]with Dirichlet boundary conditions u(0) = 0 and

u(1) = 1 and right-hand side f (x) = 6 x . The analytic solution is y(x) = x3. Figure 8.1a

shows the analytic solution and the results of the finite element computation with linear

368 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0
Analytic solution

Quadratic discretization

Linear discretization

(a) Solution of a 1D Poisson problem

for linear and quadratic ansatz

functions.

(b) Finite element mesh and solution of a 2D electric

conduction problem .

Figure 8.1: Exemplary problems that can be solved with OpenDiHu and are part of the

multi-scale problem.

and quadratic ansatz functions for two elements. Both linear and quadratic finite element

solutions cannot exactly represent the cubic function, however, yield the best possible

approximation. The first bidomain equation given in Eq. (5.9a) is a 3D version of this

Poisson problem and is needed in the multi-domain model to simulate EMG signals on

the muscle surface.

The second example is a 2D Laplace problem c(x)∆u(x) = 0. The solution is given in

Fig. 8.1b and can be interpreted as a static electric potential field. The discretization uses

quadratic Lagrange ansatz functions and is composed of two joined rectangular parts,

each given by a structured mesh. The conductivity is set as c = 1 in the left part and

as c = 2 in the right part. Dirichlet boundary conditions prescribe the electric potential

at the five upper points in the right mesh to u = −1 and at the center of the right mesh

as u = 1. In addition, Neumann boundary conditions ∂u/∂n = −1 corresponding to an

outward electric current are set on the left boundary of the left mesh with the normal

vector n pointing to the left. Figure 8.1b visualizes the values of the degrees of freedom

of the right-hand side contribution of the Neumann boundary conditions by the arrows. A

3D Laplace problem is also part of the multi-scale model and describes volume conduction

in the adipose tissue domain as formulated in Eq. (5.17).

The third presented example solves the 2D diffusion equation ∂u/∂ t−div (σ grad u) = 0

with homogeneous Neumann boundary conditions. The equation can be interpreted

as a transient electric conduction problem. As shown in Fig. 8.2a, the initial charge

distribution is u= 1 in a rectangle in the inner of the domain and u= 0 everywhere else.

8.1 SOLUTION OF POISSON AND DIFFUSION PROBLEMS 369

X

0
1

2
3

4

Y

0

1

2

3

4

Z

0.0

0.2

0.4

0.6

0.8

1.0

(a) Initial charge distribution, t = 0.

X

0
1

2
3

4

Y

0

1

2

3

4

Z

0.0

0.2

0.4

0.6

0.8

1.0

(b) Solution at t = 5.

Figure 8.2: A 2D electric conduction problem as a demonstrator for the solution of tran-

sient problems in OpenDiHu.

The anisotropic diffusion or conductivity tensor σ is constant in the domain and set to

σ =
1

5

�

1 1

1 6

�

.

A regular mesh with 40× 40 elements and linear finite element ansatz functions is used.

Figure 8.2b shows the solution at time t = 5, where the initially discontinuous charge

distribution has smoothed out and has expanded mainly in y direction, which is the

preferential direction of electric conduction in this example. A 3D version of this equation

is part of the multidomain model and given by Eq. (5.14).

370 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

How To Reproduce

The three presented simulations can be executed and visualized as follows:

cd $OPENDIHU_HOME/examples/poisson/poisson1d_2/build_release

./linear ../settings_1d.py && plot out/*.py

./quadratic ../settings_1d.py && plot out/*.py

./hermite ../settings_1d.py && plot out/*.py

cd $OPENDIHU_HOME/examples/laplace/laplace_composite/build_release/

./laplace_composite_2d ../settings_2d_2.py && paraview

,→ paraview_state.pvsm

cd $OPENDIHU_HOME/examples/diffusion/anisotropic_diffusion/

,→ build_release
./anisotropic_diffusion2d ../settings2d.py && plot out/*.py

8.2 Simulation of Solid Mechanics Models

Next, we demonstrate the solid mechanics solvers, which can be used to compute muscle

contraction. In this section, we focus on the passive material behavior. As described

in Sections 5.2.5 and 5.2.6, the mechanics equations can be computed in linearized or

in nonlinear form within OpenDiHu. In the following, Sec. 8.2.1 applies both model

approaches in a simulation of an externally stretched muscle and compares the results.

Then, Sec. 8.2.2 validates the implementation of the nonlinear hyperelasticity solver in

OpenDiHu. Finally, Sec. 8.2.3 showcases, using the simulation of a tendon, how more

complex material models can be computed.

8.2.1 Comparison of Linear and Nonlinear Mechanics Models

We demonstrate the use of linear and nonlinear mechanics models in a simulation of

an externally stretched biceps muscle. The muscle belly is fixed at its lower end and an

upwards pulling force acts on the upper end, effectively stretching the muscle tissue in

vertical direction.

8.2 SIMULATION OF SOLID MECHANICS MODELS 371

We solve two scenarios with the same geometry and boundary conditions but differ-

ent material models. The first scenario uses the linearized mechanics model given in

Sec. 5.2.5. We use material parameters obtained from porcine in vitro indentor tests in

literature [Sch82] and set the bulk modulus to K = 39 kPa and the shear modulus to

µ= 48kPa.

The second scenario uses the incompressible transversely isotropic hyperelastic muscle

material based on the Mooney-Rivlin description without active stress, which is defined

in Sec. 5.2.7. The material parameters are set to the values given [Hei16].

Figure 8.3 shows the geometric setup of the model. We discretize the biceps geometry

by a 3D mesh with 252 elements, quadratic finite element ansatz functions, and a total

of 13× 13× 15= 2535 nodes. The linearized material model uses this mesh to construct

the stiffness matrix and to solve the linear system. For the nonlinear model, an additional

coarser linear mesh is constructed, and linear-quadratic Taylor-Hood elements are used

for the discretization.

A total force of (Fx , Fy , Fz) = (0,−0.4 N,−3N) is applied, which points in negative

z-direction, i.e., upwards in Fig. 8.3, and slightly in negative y-direction, i.e, to the left in

Fig. 8.3. Instead of a single force vector acting on a point, the equivalent constant surface

load is applied on the whole top face of the muscle geometry.

We consider a static problem where no timestepping is required. In the linear model, the

resulting displacements are obtained by a GMRES solver, which solves the linear system

of equations Eq. (5.76) corresponding to the finite element formulation. The nonlinear

model uses increasing load steps as described in Sec. 7.7.3, which are adaptively refined

in case the solver diverges at one load step. The scheme solves a system of nonlinear

equations for every load step, and the contained linear system is solved by a direct solver.

The results of the linear and nonlinear models are shown in Figures 8.3a and 8.3b. In

both images, the identical reference configuration is given by the yellow wireframe and

the deformed muscle is given by the solid body with colored mesh. The deformed body

in the linear model in Fig. 8.3a is colored according to the resulting vector of unknowns,

which contains the displacements. Arrows on the upper end of the geometry indicate the

negative right-hand side of the linear system as formulated in Eq. (5.75). The arrows

correspond to the applied Neumann boundary conditions in the weak form of the finite

element formulation and point in the direction of the applied surface load.

In the visualization of the nonlinear model in Fig. 8.3b, the deformed muscle body is

colored according to the second Piola-Kirchhoff (PK2) stress. It can be seen that the stress

372 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

(a) Solution of the linear model. The

arrows at the top visualize the

(negated) right-hand side of the fi-

nite element formulation, with the

absolute values indicated by the ar-

row lengths and color. The sur-

face of the muscle mesh is colored

according to the values of the dis-

placements.

(b) Solution of the nonlinear model.

The arrows specify the traction vec-

tors in current configuration. Their

absolute values are indicated by

the arrow sizes and the color. The

surface of the muscle mesh is col-

ored according to the second Piola-

Kirchhoff stress.

Figure 8.3: Solid mechanics solver example: Comparison of linear and nonlinear me-

chanics models. A biceps muscle is stretched by an applied force. The yellow

mesh specifies the identical reference configuration in both scenarios.

8.2 SIMULATION OF SOLID MECHANICS MODELS 373

is highest at the bottom bearing and at the top end, where the muscle cross-section is

smaller. The arrows visualize the traction forces t on virtual horizontal cuts. As a result,

the arrows that can be seen on top of the muscle geometry correspond to the applied

external force, and the arrows at the bottom indicate the forces on the bearing.

A comparison of the two obtained results from the linear and nonlinear models shows

a qualitatively different outcome. With the linear model, the muscle bends to the left,

whereas, with the nonlinear model, it bends to the right. This effect is a result of the

different material behavior. The linear model is isotropic and the deformation follows

the direction of the applied force, which points to the upper left. The nonlinear model

has an anisotropy and is stiffer in fiber direction. As a consequence, the muscle deforms

less in longitudinal direction and therefore moves to the right. Thus, the material models

influence the bending direction in this scenario.

In a second example, we compare the muscle stretches that results from different

external forces acting in z-direction. We use the same scenario as before and increase

the applied force from 0 to 15 N. We measure the displacement of one node in the top

face of the muscle, for both the linear model and the nonlinear model. While the stress-

strain relations in 1D extension tests can be derived analytically for linear and nonlinear

models, our examples considers a real 3D setting where this relation is influenced by the

geometry, e.g., by non-parallel fiber directions, as the force is not applied exactly in fiber

direction.

Figure 8.4 shows the resulting muscle extensions for different applied external forces for

the linear and nonlinear models. It can be seen that the stretch of the muscle increases

nonlinearly for the transversely isotropic hyperelastic model, in contrast to the linear

progression of the linear model. The slopes of the two curves are qualitatively different,

which is a result of the chosen material parameters from different experimental origins. It

would be possible to scale the linear model to better match the nonlinear model behavior

by simply reducing the value of the bulk modulus accordingly.

The two presented studies show that a linear isotropic material model can give sig-

nificantly different results than a more accurate nonlinear transversely isotropic model.

Therefore, simulations of muscle contraction that target high accuracy should use the

according nonlinear models. Nevertheless, both approaches are implemented and can be

used with OpenDiHu.

374 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Applied force [N]

0

1

2

3

4

Ex
te

ns
io

n
[c

m
]

Nonlinear model
Linear model

Figure 8.4: Solid mechanics example: Quantitative comparison of the relation between

applied force and extension of the muscle for a linear and a nonlinear solid

mechanics model.

How To Reproduce

The two simulations for Fig. 8.3 can be run as follows:

cd $OPENDIHU_HOME/examples/solid_mechanics/linear_elasticity/muscle/

,→ build_release
./linear_elasticity ../settings_linear_elasticity.py

cd $OPENDIHU_HOME/examples/solid_mechanics/mooney_rivlin_transiso/

,→ build_release
./3d_hyperelasticity ../settings_3d_muscle.py --njacobi=1

The study in Fig. 8.4 can be run and plotted using the scripts in the repository at

github.com/dihu-stuttgart/performance in the directory opendihu/

23_linear_nonlinear_mechanics.

8.2.2 Validation of the Nonlinear Solid Mechanics Solver

Next, we perform tests to validate our implementation of the nonlinear hyperelasticity

solvers. We simulate the same scenario with our software and with the nonlinear finite

element analysis tool FEBio [Maa12]. FEBio is developed at the University of Utah and the

Columbia University in the USA. FEBio contains solid mechanics solvers that can be run

https://github.com/dihu-stuttgart/performance

8.2 SIMULATION OF SOLID MECHANICS MODELS 375

from the command line or a graphical user interface model. An extensive model library

contains material models also from the domain of biomechanics. The mechanics solver

uses the PARDISO linear solver [Ala20], which exploits shared memory parallelism.

An adapter in OpenDiHu exists, which can output the required configuration file for

FEBio, run the solver, and parse the computed solution from the text files that are output

by FEBio. Thus, we can conduct our validation studies fully in OpenDiHu by using similar

Python settings files and the same meshes for the computation in OpenDiHu and the

reference solution computed by FEBio.

Apart from the present study, the FEBio adapter in OpenDiHu can also be used to

solve quasi-static coupled problems with the electrophysiology part solved in OpenDiHu

and the mechanics part solved in FEBio. However, test have shown that the interfacing

method of generating configuration files and parsing result files in every timestep leads

to higher runtimes than directly using the mechanics solver of OpenDiHu.

In our validation studies, we consider a unit cube that is discretized by 8×8×8 quadratic

elements and 4913 degrees of freedom. Figure 8.5 shows the discretized cube in yellow

color. Its orientation is given by the coordinate frame in the lower left of Fig. 8.5a. The

following Dirichlet boundary conditions are prescribed: All points of the lower face are

fixed at z = 0. The points of the two edges (y = 0 ∧ z = 0) and (x = 0 ∧ z = 0) are

additionally fixed in y and x directions, respectively. The corner at x = y = z = 0 is

fixed completely. Thus, the cube can freely deform in its bottom plane, but not move nor

rotate as a whole.

The first study is a tensile test, where a uniform surface load pointing in positive z

direction is applied on the top face of the cube. We increase the force from 1 to 50 N.

For the largest force, the cube deforms as shown by the orange geometry in Fig. 8.5.

Note that the volume is preserved due to the incompressibility constraint in the material

model.

We use an incompressible and isotropic Mooney-Rivlin material with parameters c1 =

c2 = 1. The material can be simulated in three different forms in OpenDiHu. In the

following, we list all model formulations in OpenDiHu and the reference formulation

in FEBio, expressed by the strain energy functions Ψ, Ψiso and Ψvol introduced in the

modeling chapter in Sec. 5.2.6:

(i) the “fully incompressible”, mixed u-p formulation, which ensures incompressibility

376 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

(a) Tensile test scenario used in the first val-

idation experiment.

(b) Shear test scenario used in the second

validation experiment.

Figure 8.5: Scenarios used for validation of the solid mechanics solver. The reference

and the current configuration are given by the yellow and orange meshes,

respectively.

using the Lagrange multipliers,

Ψiso(Ī1, Ī2) = c1 (Ī1 − 3) + c2 (Ī2 − 3), J = 1, (8.1)

(ii) the “nearly incompressible” formulation in terms of the invariants I1 to I3,

Ψ(I1, I2, I3) = c1 (I1 − 3) + c2 (I2 − 3) + κ (
p

I3 − 1)2 − d log(
p

I3), (8.2a)

d = 2 (c1 + 2 c2), (8.2b)

(iii) the nearly incompressible formulation given in decoupled form, in terms of the reduced

invariants Ī1 and Ī2,

Ψiso(Ī1, Ī2) = c1 (Ī1 − 3) + c2 (Ī2 − 3), (8.3a)

Ψvol(J) = κG(J) with G(J) =
1

4

�

J2 − 1− 2 log(J)
�

, (8.3b)

(iv) and the one used in FEBio, which also describes a nearly incompressible material in

8.2 SIMULATION OF SOLID MECHANICS MODELS 377

0.0 0.2 0.4 0.6 0.8
strain [-]

0

5

10

15

20

25

st
re

ss
 [N

/c
m

2]

Fully incompressible (OpenDiHu)
Nearly incompressible (OpenDiHu)
Nearly incompressible, decoupled (OpenDiHu)
Nearly incompressible (FEBio)

Figure 8.6: Solid mechanics solver validation: Results of the tensile test validation exper-

iment. The stress-strain curve for three different formulations in OpenDiHu

and the computation in FEBio match.

decoupled form, but with a different penalty function G(J),

Ψiso(Ī1, Ī2) = c1 (Ī1 − 3) + c2 (Ī2 − 3), (8.4a)

Ψvol(J) = κG(J) with G(J) =
1

2

�

log(J)
�2

. (8.4b)

For the three nearly incompressible descriptions in Equations (8.2) to (8.4), we set the

incompressibility parameter to κ= 103.

We compare the resulting normal stress value S33 in z-direction of the second Piola-

Kirchhoff stress tensor S for all formulations listed in Equations (8.1) to (8.4). For the

tensile test, this stress value is constant throughout the domain. Figure 8.6 shows the

computed stresses over the computed strain values. It can be seen that the three formu-

lations in OpenDiHu yield approximately the same results as the reference solution given

by FEBio over the whole range of applied forces.

As the previous tensile test only validates stress and strain in one direction, we addi-

tionally conduct a numerical shear experiment. A shear force F = (0.1α, 0.05α, 0)⊤ is

applied on the top face of the cube and α is again varied between 1 and 50N. Figure 8.5b

shows the deformed configuration for the highest force by the orange colored body.

In this second study, we consider one point in the interior of the domain, which is

378 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

0.00 0.05 0.10 0.15

strain [-]

0

2

4

6

8

s
tr

e
s
s
 [
N

/c
m

2
]

S11

S22

S33

S12

S23

S13

OpenDiHu

FEBio

Figure 8.7: Solid mechanics solver validation:Results of the shear test validation experi-

ment. The values of the second Piola-Kirchhoff tensor computed by OpenDiHu

(solid lines) and FEBio (dotted lines) closely match.

3 elements below the top face of the mesh. We compare all six distinct entries of the

symmetric second Piola-Kirchhoff tensor S between the fully incompressible model in

OpenDiHu and the nearly incompressible model in FEBio.

Figure 8.7 shows the computed values in a stress-strain diagram. The solutions of

OpenDiHu and FEBio are given by solid and dotted lines, respectively. It can be seen that

the curves coincide, which validates the implementation in OpenDiHu.

How To Reproduce

The tensile test validation experiment can be reproduced by the following commands:

cd $OPENDIHU_HOME/examples/solid_mechanics/tensile_test/

,→ build_release
../run_force.sh

cd $OPENDIHU_HOME/examples/solid_mechanics/tensile_test

./plot_validation.py

The shear test can be executed analogously by replacing tensile_test by shear_test

in the given paths.

8.2 SIMULATION OF SOLID MECHANICS MODELS 379

(a) Dynamic simulation of the lower tendon of a biceps brachii. The attachment to the ulna bone

is at the left end. The free right end bends due to the applied surface traction.

(b) Simulation of the two upper tendons of the two biceps heads.

Figure 8.8: Simulation of tendons as a showcase of dynamic simulations with complex

material models. The color coding indicates the velocity.

8.2.3 Simulation of a Hyperelastic Tendon Material

Next, we demonstrate the use of a more complex constitutive material model, which

represents tendon tissue. The material is formulated in [Car17]. The model describes

microstructural interactions between collagen fibers and their matrix. It consists of a

transversely isotropic model, which describes the high stiffness in fiber direction, and

a coupled model for the compressive response. The model is formulated in terms of a

logarithmic strain measure.

Figure 8.8 shows the geometries of the tendons of the biceps brachii and the results

of the simulations. The lower tendon in Fig. 8.8a is fixed at its left end and a constant

surface traction of 1 N in total pulls to the right. The image shows the initial configuration

by the wireframe mesh and the current configuration after t = 10 ms, colored according

to the resulting velocity. Similarly, the upper tendons in Fig. 8.8b are fixed at the right

ends and stretched to the left resulting from the applied force at the left end.

380 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

In summary, this section demonstrated the capabilities of the solid mechanics solvers in

OpenDiHu. Sections 8.2.1 and 8.2.3 simulated extension of the biceps muscle and tendons

due to external forces. The comparison of results from a linear and a nonlinear model

showed that a linear isotropic material cannot always accurately predict the behavior of

muscle tissue and, thus, a nonlinear model is required. The validation experiments in

Sec. 8.2.2 demonstrated that OpenDiHu correctly computes deformation and stresses of

incompressible materials.

The solid mechanics solvers can also be coupled to solvers of electrophysiology to sim-

ulate muscle contraction resulting from the spatially heterogeneous activation and con-

sidering the neuronal stimulation dynamics. Moreover, coupled simulations of the muscle

and tendons are possible. Such simulations are described in Sec. 8.6.1 and Sec. 8.6.5,

respectively.

8.3 Simulation of CellML Models

The subcellular models used in the multi-scale model are given in CellML description and

can be solved in OpenDiHu using the CellmlAdapter class. In the following, we show

simulation results of the most commonly used CellML models in this work.

8.3.1 Simulation of Subcellular Models

First, we consider a single instance of the subcellular model of Shorten et al. [Sho07]. We

solve the model with Heun’s method with a timestep width of dt0D = 10−5. A stimulation

current of Istim = 40
µA

cm2 is applied during the time range [5ms, 5.1ms]. Figure 8.9 shows

the resulting values of the membrane voltage Vm over time in the upper plot and the

temporal evolution of all other variables in the lower plot.

In the upper plot, the depolarization and repolarization of the membrane can be seen

upon the stimulation at t = 5ms, exhibiting the characteristic action potential shape.

The membrane voltage Vm reaches its equilibrium value approximately 5 ms after the

stimulation. The lower plot in Fig. 8.9 shows longer durations for several other variables

to return to the equilibrium state. As a consequence, the generated force or active stress

of the sarcomeres, indicated by the thick red line in Fig. 8.9, does not directly decrease

after the stimulation is over. For frequent stimulation patterns, the force level would show

a smooth progression over time.

8.3 SIMULATION OF CELLML MODELS 381

0 5 10 15 20 25 30 35

t

50

0

s
o
lu

ti
o
n

Vm

0 5 10 15 20 25 30 35

t

1.0

0.5

0.0

0.5

1.0

O
th

e
r

c
o
m

p
o
n
e
n
ts

active stress

Figure 8.9: Simulation of the Shorten subcellular model over time t in milliseconds. The

cell is stimulated at t = 5 ms. The upper plot shows the membrane voltage

Vm, the lower plot show all other variables, some of which are listed in the

legend on the right.

The propagation of the action potentials of the Shorten subcellular model can be simu-

lated with the monodomain equation (Eq. (5.11)). Figure 8.10 shows simulation results

on a 1D muscle fiber mesh with length 1 cm, discretized to 100 elements. The muscle fiber

is stimulated at its center at t = 0. The upper plot in Fig. 8.10 displays the membrane

voltage Vm at time t = 3.5ms. Two action potentials, which move towards both ends of

the fiber can be identified. The lower plot shows all other variables, normalized to the

value range [−1,1]. At the outer ends of the fiber, the variables are still in equilibrium,

whereas towards the center, their values change dynamically as the action potentials

propagate.

Figure 8.11 shows analog results for a simulation with the subcellular model of Hodgkin

and Huxley [Hod52a]. Two action potentials can be seen at time t = 4.25 ms on a fiber

mesh with 200 nodes and of 2 cm length. The system state is fully described by the values

of the four variables that are plotted in Fig. 8.11.

382 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

Figure 8.10: Simulation of action potential propagation on a 1D mesh with the Shorten

subcellular model. The upper plots shows the membrane voltage Vm at time

t = 3.5ms over the fiber along the x axis. The lower plot shows all other

variables of the model.

Figure 8.11: Simulation of action potential propagation on a 1D mesh with the Hodgkin-

Huxley subcellular model for time t = 4.25 ms, analog to Fig. 8.10.

8.3 SIMULATION OF CELLML MODELS 383

How To Reproduce

The simulation of a single instance of the Shorten model and the plot of Fig. 8.9 can

be obtained as follows:

cd $OPENDIHU_HOME/examples/electrophysiology/cellml/shorten/

,→ build_release
./cellml ../settings_cellml.py

cd out && plot

The simulation of the monodomain equation for the Shorten model shown in Fig. 8.10

can be executed and visualized as follows:

cd $OPENDIHU_HOME/examples/electrophysiology/monodomain/

,→ new_slow_TK_2014_12_08/build_release
./shorten_implicit ../settings_new_slow_TK_2014_12_08.py

cd out && plot

8.3.2 Simulation of Motor Neuron Models

If an activation model with a pool of motor neurons is considered in the neuromuscular

multi-scale model, the transient behavior of motor neurons has to be simulated as well.

In our simulations, we use the motor neuron model of Cisi and Kohn [Cis08]. The drive

parameter of the model is set to a constant value of 0.01 V
s
. As a consequence, the motor

neuron fires with a frequency that depends on the input drive, which in the presented

scenario is approximately 25 Hz.

Figure 8.12 shows the evolution of the different variables of the model over time. Six

firing times can be identified.

To connect the motor neuron with the fibers of the MU in the simulation, we stimulate

the muscle fibers whenever the Vs value of the motor neuron reaches a certain threshold.

It is possible to configure a pool of several motor neurons with different model parameters

and different input drive values. Each motor neuron can be connected to a different set of

fibers, according to the MU to fiber association. As a result, the MUs get physiologically

activated according to the different firing frequencies of the motor neurons.

In summary, we showed simulations of the 0D subcellular models of Shorten et al.

and Hodgkin and Huxley, simulations of these models together with the 1D conduction

384 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

0 25 50 75 100 125 150 175 200

t

0.0

2.5

5.0

7.5

s
o
lu

ti
o
n

motor_neuron/V_d

0 25 50 75 100 125 150 175 200

t

0.0

0.2

0.4

0.6

0.8

1.0

O
th

e
r

c
o
m

p
o
n
e
n
ts

motor_neuron/V_d

motor_neuron/V_s

sodium_channel/m

sodium_channel/h

fast_potassium_channel/n

slow_potassium_channel/q

Figure 8.12: Simulation of the motor neuron model of Cisi and Kohn [Cis08] for a constant

input drive of 0.01 V
s
. The evolution of all variables of the model is plotted

over time t in milliseconds.

model in the monodomain equation, and a simulation of motor neurons. All of these

models are given in CellML description and can be further combined with other parts of

the multi-scale model, e.g., to simulate surface EMG signals.

How To Reproduce

The simulation and visualization for Fig. 8.12 can be executed with the following

commands:

cd $OPENDIHU_HOME/examples/electrophysiology/monodomain/

,→ motoneuron_cisi_kohn/build_release
./motoneuron_cisi_kohn ../settings_motoneuron_cisi_kohn.py

cd out && plot motoneuron*

This simulation also computes the monodomain equation for one muscle fiber that

gets activated whenever the motor neuron fires.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 385

8.4 Simulation of Fiber Based Electrophysiology

In this section, we consider surface EMG signals on the upper arm by simulating the acti-

vation of the biceps brachii muscle. We use the fiber based multi-scale model consisting

of 1D action potential propagation on muscle fibers, potentially involving a 0D subcel-

lular model, and the 3D bidomain model. In Sec. 8.4.1, we introduce the setting of the

simulation and present an exemplary scenario to compute EMG signals. Subsequently,

we simulate various scenarios to investigate the effects of different model parameters

and numerical settings on the resulting EMG signal. Section 8.4.2 considers the effects

of single motor units, Sec. 8.4.3 the fat layer, and Sec. 8.4.4 shows effects of the mesh

width. Section 8.4.5 presents a way to simulate realistic EMG electrodes and Sec. 8.4.6

deals with the decomposition of EMG signals. In Sec. 8.4.7, we describe our simulations

with a phenomenological model for action potential propagation.

8.4.1 Overview of the EMG Simulation

Figure 8.13 shows the setting of the biceps muscle and the tendons, which attach to the

skeleton near the shoulder and to the ulna bone in the forearm. For the simulation of

EMG, we only consider the muscle belly of the biceps muscle. Figure 8.13 shows muscle

fibers inside the muscle, which run in longitudinal direction between the tendons at both

ends. The image also visualizes the results of an EMG simulation. The fibers are colored

according to the transmembrane potential Vm. On some fibers, action potentials can be

seen.

The surface of the muscle is colored by the extracellular electric potential φe. In a

reasonable approximation, the value of φe corresponds to the measured EMG signals on

the skin surface. Additionally, we consider volume conduction in a layer of adipose tissue

on top of the muscle in the following section.

For the EMG simulations, we solve the multi-scale model of fiber based electrophysi-

ology. We solve the monodomain equation Eq. (5.11) independently on all 1D muscle

fiber meshes. After a fixed number of timesteps, we map the membrane voltage Vm from

the 1D meshes to the 3D mesh. Subsequently, we solve the static bidomain equation

Eq. (5.9a) on the muscle domain and potentially the body fat domain to obtain the φe

values on the skin surface.

Figure 8.14 shows a close-up view of the active muscle fibers and the resulting EMG

signals on the upper surface, which are identical to Fig. 8.13. The scenario considers

386 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

Figure 8.13: Considered setting for simulations of surface EMG for the upper arm, consist-

ing of the biceps brachii muscle, tendons and bones. A simulation result of

the membrane voltage Vm on the muscle fibers and the extracellular potential

φe on the surface is shown.

961 muscle fibers, each described by a 1D mesh with 1481 nodes. It can be seen that

they are approximately equally spaced as a result of the meshing algorithms described in

Chap. 3.

Figure 8.14 also shows the mesh of the muscle surface, which is colored according to

the extracellular potential φe. It can be seen that the values correlate with the activation

state of the underlying fibers. At the two blue colored regions at the surface near the left

and right end of the muscle, the φe value is close to its minimum, while the majority of

fibers exhibits its maximum positive Vm value. Towards the center of the muscle, the value

of φe increases to its maximum, which reflects the hyperpolarization of the muscle fibers

behind the propagating action potentials, i.e., the overshoot of the membrane voltage

before it reapproaches the equilibrium level.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 387

Figure 8.14: Overview of some of the meshes in an electrophysiology simulation: 1369

muscle fibers are located in the muscle belly. A 2D surface mesh on top of

the muscle describes the computed EMG values. The visualized simulation

is the same as in Fig. 8.13.

The lower left corner in Fig. 8.14 shows the coordinate frame that is used in all sim-

ulations. The z axis is approximately oriented in fiber direction, the x and y axes are

oriented in transverse direction and describe cross-sectional planes of the muscle.

The scenario uses the subcellular model of Hodgkin and Huxley [Hod52a]. The shown

image corresponds to the simulation time of t = 200 ms. The simulation also considers a

body fat mesh layer on top of the muscle, which is not visualized in Fig. 8.14.

We run the simulation with 128 processes on a two-socket shared-memory node com-

prising two AMD EPYC 7742 64-core processors with 2.87 GHz clock frequency and

1.96 TiB RAM. The total runtime for a simulation end time of one second is 8 h 38 min.

8.4.2 Effects of Single Motor Units on the Electromyography

Signal

Next, we investigate how the surface EMG signals are influenced by several parameters of

the simulation. We begin by studying EMG of only a single activated MU in the muscle.

388 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

The first scenario contains 20 MUs that connect to an exponentially increasing number

of fibers as shown in Fig. 8.15a. The progression follows the function y = c 1.1x for

an appropriate constant c > 0. The MU assignment is created using method 1a of the

algorithm described in Chap. 4, where the MU territories are centered around given

points, and neighboring fibers are never part of the same MU.

Figure 8.15b shows the fibers that are assigned to the smallest and to the largest MU,

MU 1 and MU 20. For this visualization, the muscle cross-section is mapped to the large

gray square and every colored small square corresponds to one fiber. The purple and

red crosses indicate the center of the MU territories for MU 1 and 20, respectively. As a

consequence, the fibers of MU 1 are mostly located at the bottom left of the cross-section

and the fibers of MU 20 are mostly located in the upper right region of the muscle cross-

section. The visualization shows that the fibers of the same MU always have some spacing

between them, which is due to the construction of the MU assignment algorithm.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 389

2 4 6 8 10 12 14 16 18 20
Motor Unit Index

0

50

100

150

Co
un

t

1.1x

(a) Exponential distribution of motor unit sizes. The diagram shows the motor unit numbers with

the corresponding sizes or fibers counts of the MUs.

MU 1

MU 20

(b) Fibers that belong to motor units 1 and 20. The crosses are the center points around which

the MU territories are generated by our algorithm.

Figure 8.15: Fiber based upper arm EMG simulation: Assignment of the 1369 fibers to 20

motor units used in the simulation scenario for fiber based electrophysiology.

We begin with a simulation scenario, where only a single MU is stimulated, and study

the effect on the surface EMG. The fibers of the respective MU are stimulated with a

frequency f = 24Hz starting at time t = 0ms. Each of the 13×13= 1369 fibers consists

of a mesh with 1481 nodes, the 3D mesh of the muscle contains 19× 19× 38 = 13 718

nodes and the 3D mesh of the fat layer contains 37× 5× 38= 7030 nodes. The domains

are partitioned into 27 subdomains associated to 27 MPI ranks. The subcellular model

of Hodgkin and Huxley is used, yielding a total number of more than 8.1 · 106 degrees of

freedom. The timestep widths are dt0D = dtsplitting = 2.5 · 10−3 ms, dt1D = 6.25 · 10−4 ms

and dt3D = 5 · 10−1 ms, leading to 4 subcycles for the 1D model in each splitting step and

200 splitting steps per solution of the bidomain equation.

We compute the linear systems for the initial potential flow problem to estimate fiber

390 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

directions in the 3D domain, Eq. (3.8), and for the bidomain equation Eq. (5.9a), which

is solved in every timestep using a conjugate gradient solver. The program uses the

FastMonodomainSolver class for the electrophysiology model. The Thomas algorithm

solves the linear system of the diffusion problem. We use the "vc" optimization type and

employ the scheme to only compute active fibers and the subcellular problems that are

not in equilibrium.

The computation of a simulated time span with tend = 100ms on an AMD EPYC 7742

64-core processor with 2492 MHz base frequency and 1.96 TB RAM takes approximately

100 s in the scenario that activates only the smallest MU, and 126s in the scenario that

activates only the largest MU.

Figure 8.16 shows the result for the scenario of activating the smallest MU, MU 1.

In Fig. 8.16a, the surface is shown in the background and colored according to the

extracellular potential φe, which represents the EMG signal. The muscle volume is not

shown. Instead, the active parts of the respective fibers are displayed as tubes in the 3D

domain. Their color visualizes the value of the transmembrane voltage Vm. In every of

these small tube segments, the rising and declining shape of an action potential can be

observed by the color progression from blue over orange to red for the rising part and

back to blue for the declining part.

In this scenario, the fibers of MU 1 are stimulated three times within the first 100ms

at 0 ms, 41.6ms and 83.3 ms. The innervation zone contains the starting points for the

propagating stimulus on every fiber. The scenario positions the neuromuscular junctions

randomly with a uniform distribution within the central 10 % of every muscle fiber. The

activated parts of the fibers visible in Fig. 8.16a correspond to the propagated action

potentials of the last two stimulations in this scenario.

By comparing the results in Fig. 8.16a with the fiber distribution in Fig. 8.15b, it can

be seen that fibers of MU 1 are located opposite of the outer arm surface, which is at

the upper side of the cross-sectional square diagram in Fig. 8.15b. The left side of the

diagram in Fig. 8.15b corresponds to the lower part of the skin in Fig. 8.16a. This part of

the skin is closer to the activated fibers and, thus, the effect on the surface EMG is highest

for this region.

Figure 8.16b shows the skin surface as seen from the inside of the arm in Fig. 8.16a.

The active region is located on the right-hand side in this image. It can be seen that the

active region on the skin surface, which results from fibers of the activated MU 1, only

spans a small portion of the surface.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 391

(a) Membrane voltage Vm at active parts of the fibers (foreground)

and EMG signals φe on the skin surface (background).

(b) Resulting surface

EMG.

Figure 8.16: Fiber based EMG simulation for the upper arm (biceps) model: Simulation

result at t = 99.5ms where only MU 1 is activated.

392 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

(a) Membrane voltage Vm at active parts of the fibers (foreground)

and EMG signals φe on the skin surface (background).

(b) Resulting surface

EMG.

Figure 8.17: Fiber based EMG simulation for the upper arm (biceps) model: Simula-

tion result at t = 99.5ms where only motor unit 20 is activated, analog to

Fig. 8.16.

Figure 8.17 shows the analogous scenario that activates MU 20 instead of MU 1. Fig-

ure 8.17a shows that, now, more fibers are activated as MU 20 is larger than MU 1.

According to the MU layout in Fig. 8.15b, the active fibers are also located closer to

the skin surface. This layout results in a stronger EMG signal compared to the previous

scenario.

The color coding in the two scenarios in Figures 8.16 and 8.17 is identical, and it can

be seen that the absolute value of the extracellular potential φe is larger in the scenario

for MU 20. For the scenario with MU 1 in Fig. 8.16, the value range of the extracellular

potential φe is [−0.473 mV,0.204 mV]. For the scenario with MU 20 in Fig. 8.17, it is

[−0.834 mV, 0.579 mV], which is more than twice the range.

Figure 8.17b shows the overall EMG signal on the skin surface for MU 20. Compared

to the result of MU 1 in Fig. 8.16b, nearly the inverse region is activated. It can, thus, be

observed that the EMG signal is highly influenced by the location and size of the MUs.

MUs with territories closer to the skin surface have a larger effect on the EMG signals

than MUs that are located further away. As seen in Fig. 8.16b, the influence of fibers

completely vanishes if the distance is larger than a certain value. The effects of several

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 393

close fibers add up, such that large MUs located near the surface have the largest impact

on the resulting EMG signal.

8.4.3 Effects of the Fat Layer on the Electromyography Signal

(a) Muscle mesh without fat

layer.

(b) Muscle with thin fat layer. (c) Muscle with thick fat

layer.

Figure 8.18: Fiber based EMG simulation for the upper arm (biceps) model: Meshes for

the muscle domains (blue) and the layer of adipose tissue (red) used in the

study to compare different fat layer widths.

In the next study, we investigate the effect of the fat layer on the resulting EMG signals.

The same scenario as in the previous section is used, except that the size of the body fat

domain is varied and the activated MUs are chosen differently. We consider the domains

and meshes shown in Fig. 8.18: Scenario (a) only considers the muscle domain without

additional fat layer. Scenario (b) adds a thin fat layer with thickness of 2 mm, discretized

by two layers of finite elements. Scenario (c) considers a fat layer with thickness of 1 cm

and four layers of elements. The scenario in the previous section also used this thick fat

layer.

In this series of experiments, the first 10 MUs are activated with different stimulation

frequencies ranging from 7 Hz for the smallest MU to 15.15 Hz for MU 10. The runtime

of the simulation for one scenario on the same hardware as in the previous section is

approximately 9 min.

Figure 8.19 shows the simulation results at t = 100 ms for the three scenarios with

different fat layers. The figure uses the same color coding for the extracellular potential

φe in all three scenarios. It can be seen that the volume conduction in the fat layer

significantly smooths the resulting EMG signal, especially for the thick fat layer. The

394 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

scenarios with no fat layer and the thin fat layer also exhibit a small difference. This

effect has implications for experimental studies, where the EMG recordings capture the

less resolved spatial information, the more tissue is located between the muscle and the

surface electrodes.

(a) Simulation without fat layer. (b) Simulation with a

thin fat layer.

(c) Simulation with a thick

fat layer.

Figure 8.19: Fiber based EMG simulation for the upper arm (biceps) model: Simulated

surface EMG signals for the different fat layers shown in Fig. 8.18.

How To Reproduce

The simulations in this section use the examples examples/electrophysiology/

fibers/fibers_emg and examples/electrophysiology/fibers/fibers_fat_emgwith

the variables file 20mus_fat_comparison.py.

The scenario data that are necessary to run the simulations are given in the

repository at github.com/dihu-stuttgart/performance in the directory opendihu/18

_fibers_emg. The main scripts that runs the simulations for the two sections are the

following:

./run_single_MUs.sh

./run_compare_fat_layer.sh

https://github.com/dihu-stuttgart/performance

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 395

0 100 200 300 400 500
0

100

200

300

400

500

Figure 8.20: Fiber based EMG simulation for the upper arm (biceps) model; study of

different mesh widths, MU territory center points. The shown center points

of the 100 motor units are used in all different scenarios within the study of

different mesh widths.

8.4.4 Effects of the Mesh Width on the Electromyography Signal

One goal of our simulation studies is to evaluate the required mesh width and the nec-

essary number of fibers to obtain accurate simulation results of surface EMG signals.

Experimental studies reveal a large variation in the number of muscle fibers in a real

biceps brachii muscle. MacDougall et al. estimate in vivo numbers for elite and interme-

diate bodybuilders and untrained control subjects and find comparable numbers for these

groups [Mac84]. They determine 278.5±60.7×103 muscle fibers for the group untrained

subjects. Thus, we simulate scenarios with different 3D mesh resolutions and numbers

of fibers up to the realistic number of 273 529. By comparing the obtained simulation

results, we can determine if certain effects are only visible for high resolutions.

We consider a scenario with 100 MUs and increase the spatial resolution and the

number of processes that execute the computation on the supercomputer Hawk at the

High Performance Computing Center Stuttgart. Each compute node consists of two AMD

EPYC 7742 processors with 64 cores each, a clock frequency of 2.25 GHz and 256 GB

memory per node.

Our simulated scenarios consider between 1369 and 273 529 fibers. The specified

number of 100 MUs has to be assigned to these numbers of fibers for each scenario. We

use the method 1a of the algorithm described in Chap. 4. The MU territories are centered

396 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

10 20 30 40 50 60 70 80 90 100

Motor Unit Index

0

2

4

6

8
C

o
u
n
t

1.02x

(a) Size distribution for 13×13= 169 fibers.

10 20 30 40 50 60 70 80 90 100

Motor Unit Index

0

10

20

30

C
o
u
n
t

1.02x

(b) Size distribution for 37 × 37 = 1369

fibers.

10 20 30 40 50 60 70 80 90 100

Motor Unit Index

0

200

400

600

800

C
o
u
n
t

1.02x

(c) Size distribution for 187× 187= 34 969

fibers.

10 20 30 40 50 60 70 80 90 100

Motor Unit Index

0

2000

4000

6000

C
o
u
n
t

1.02x

(d) Size distribution for 523 × 523 =

273 529 fibers.

Figure 8.21: Fiber based EMG simulation for the upper arm (biceps) model; Distribution

of the sizes of the 100 MUs in the scenarios with different number of fibers.

around quasi-randomly generated center points, as shown in Fig. 8.20. It can be seen

that the MU territory center points are homogeneously distributed in space.

For every fiber, the algorithm assigns a MU with a close center point with higher prob-

ability than a MU whose center is located further away. The total number of fibers per

MU is progressing exponentially for the MUs from 1 to 100. The progression is described

by an exponential function with basis 1.02. Figure 8.21 shows the MU size distributions

for four scenarios with increasing numbers of fibers from 169 to 273529. For 169 fibers

in Fig. 8.21a, not all 100 MUs get associated with a fiber. Further, it can be seen that the

error of the actual size distribution to the exponential function decreases with increasing

number of fibers. For the largest scenario in Fig. 8.21d, the MU sizes range from 602 to

6097 fibers.

The number of approximately 3 · 106 fibers in the largest scenario matches the real-

istic number in a biceps muscle [Mac84]. The number of MUs can be higher in reality,

approximately by a factor of 5 [Fei55; Mac06]. Thus, the modeled MUs in this scenario

can be seen as a combination of multiple real MUs. Especially the smallest MUs, which in

reality can consist of only some dozens of fibers, are lumped by the first few MUs in our

scenario. We restrict the number of MUs to 100 to be able to simulate the same problem

also with smaller resolutions, e.g., with only 169 fibers.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 397

(a) Partial problem with a quarter of the

whole set of fibers and 25 MUs, which

occurs in the algorithm 1a described in

Chap. 4. Only three MUs are shown.

The MU territory centers are indicated by

crosses.

(b) The resulting assignments of MUs to fibers

after four parts similar to (a) have been

combined, here only shown for six MUs.

Figure 8.22: Fiber based EMG simulation for the upper arm (biceps) model; association

of MUs to the fibers. The square domain corresponds to a cross-section in

the muscle, every colored point is one fiber, and the color corresponds to the

MU.

As described in Chap. 4, the MU assignment algorithm ensures that neighboring fibers

are part of different MUs, by splitting the assignment problem for the given set of fibers

into four smaller problems and then interleaving the results of the four parts. Figure 8.22a

shows the first of these four parts, where 25 MUs are associated to a subset of the fibers

for the largest scenario with 273529 fibers. It can be seen that the three visualized MUs

are largely clustered around their MU territory centers.

The final association of fibers and MUs is given in Fig. 8.22b. Six selected MUs are

shown, of which the first, MU 1, corresponds to the first MU in Fig. 8.22a. The figure

shows that the fibers, especially the ones of the larger MUs, are distributed far across

the muscle. Comparing the smallest MU, MU 1, with the largest MU, MU 100, gives an

impression of the MU size differences in this scenario.

The numerical parameters of the simulations are the same as in the last section. The

398 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

#fibers 3D stride 2D surface 3D dofs 0D dofs #proc. #comp.

x , y z mesh (k=1000) nodes

372 = 1369 2 8 19× 186 67 k 8109 k 144 3

672 = 4489 2 4 34× 371 428 k 26592 k 448 7

1092 = 11 881 2 3 55× 495 1497 k 70383 k 1152 18

1872 = 34 969 2 2 94× 741 6547 k 207156 k 3600 57

2772 = 76 729 2 1 139× 1481 28614 k 454542 k 7744 121

5232 = 273529 2 1 262× 1481 101661 k 1620 M 26 912 421

Table 8.1: Fiber based EMG simulation for the upper arm (biceps) model; Parameters

of spatial discretization and parallel partitioning. The 3D stride refers to the

stride with which the 3D mesh is generated from the 0D points. The 2D surface

is the output of the EMG and corresponds to one face of the 3D mesh.

scenario is computed for a simulation time span of 1 s. The MUs are activated in a ramp

every 2ms such that all MUs are active after 200ms. The fiber radius and the stimulation

frequency for the MUs are exponentially distributed with basis 1.02, similar to the MU

size. The fiber radius increases from 40µm to 55µm, and the stimulation frequency

decreases from 24 Hz to 7 Hz for MUs 1 to 100. A random frequency jitter of 10 % is

assumed.

The surface to volume ratio Am of the membrane is determined by assuming a cylindrical

shape and can be computed from the fiber radius r as Am = 2/r [Klo20]. We model 70 %

slow twitch and 30 % fast twitch fibers. Accordingly, the membrane capacitance Cm is set

to Cm = 0.58
µF

cm2 for the 70 smallest MUs and to Cm = 1
µF

cm2 for the 30 largest MUs.

Table 8.1 lists the spatial discretization and parallel partitioning parameters. The first

column shows the number of fibers. Their number increases, however, the mesh resolution

of every 1D fiber mesh stays constant at 1480 elements per fiber. The stride that defines

the 3D mesh is given in the second and third columns. The stride in radial direction of

the muscle, i.e., in the x and y coordinate directions, stays constant. Because the fiber

density increases, the 3D mesh is refined accordingly. The stride along the fibers, i.e., in

z direction is reduced, such that the mesh widths of the 3D mesh in all three coordinate

directions remain balanced.

The resulting EMG recordings of each simulation are described by 2D meshes, which

contain the values of the 3D muscle meshes without fat layer on the surface at one side of

the muscle. The fourth column in Tab. 8.1 lists the dimensions of these surface meshes.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 399

The next two columns list the number of dofs in the 3D mesh and the number of dofs

in all fibers. For these scenarios, it is not practical to output the 3D mesh or the 1D fiber

meshes in regular time intervals, because this would produce large amounts of data that

could hardly be processed. Instead, we only output the 2D surface mesh in the ParaView

format every 10 ms.

The last two columns in Tab. 8.1 show the numbers of processes and compute nodes

that are used on Hawk. One compute node contains 128 physical cores, four cores share a

16 MiB level three (L3) cache. However, we decide to use only 64 cores per compute node,

i.e., two cores per L3 cache, because measurements showed that this reduces the overall

computation times more than it increases the runtime due to the decreased parallelism.

The total computation time of this scenario with a timespan of 1 s is 2 h 20min for the

scenario with 76 729 fibers and 7744 processes.

Figures 8.23 and 8.24 show the resulting surface EMG signals for different resolutions.

The color visualizes the value of the extracellular potential φe according to the shown

color bar. Because of sign conventions in the definitions of the electric potentials, the

spikes in the EMG signals, which result from the action potentials, are negative.

The resulting electric potential in Fig. 8.23 exhibits different regions of higher activation

that move over time from the center of the muscle towards its ends. The size of these

regions at time t = 179.5 ms decreases from Fig. 8.23a to Fig. 8.23d as the mesh width

decreases. Dark-colored strong signals can be seen, which mainly correspond to fibers

that are located directly underneath the shown muscle surface. Apart from these strong

signals, also weaker artifacts occur, which are shown in yellow and orange colors. They

result from the superposition of several fibers of the same or different MUs. The number

of recognizable weak signals is higher for the simulations with higher numbers of fibers

and finer mesh resolution.

The four scenarios in Fig. 8.23 share the material parameters, territory centers and

relative size distributions of the 100 MU and the activation scheme. However, the location

of the neuromuscular junctions is determined randomly and varies between the scenarios.

Therefore, the resulting EMG signals are not refined images of each other. However, a

similarity of activated regions on a coarse scale can be observed in all scenarios.

Figure 8.24 shows two more scenarios with many fibers at times of t ≈ 1s and t ≈ 0.4 s.

The scenario in Fig. 8.24a simulates approximately 76 · 103 fibers, which is in the order

of a third of the realistic number of fibers in the biceps muscle. This scenario can also be

interpreted as only activating a third of the available fibers in the muscle, resulting in the

respective lower percentage of maximum voluntary contraction force.

400 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

(a) 1369 fibers. (b) 4489 fibers. (c) 11881 fibers. (d) 34969 fibers.

Figure 8.23: Fiber based EMG simulation for the upper arm (biceps) model; simulated

surface EMG signals for different numbers of fibers and different mesh widths

of the 3D mesh, see Tab. 8.1 for details. The same color coding of the EMG

signal φe is used in the four scenarios.

Figure 8.24b shows the scenario where a realistic number of 273 · 103 fibers was sim-

ulated. The computational effort for these two scenarios can only be tackled with High

Performance Computing. The last two rows of Tab. 8.1 show that 121 and 421, respec-

tively, compute nodes were used for the computations.

Figures 8.24c and 8.24d present details of the simulated surface EMG of the scenario

in Fig. 8.24b. The cut-outs are indicated by the red boxes in Figures 8.24b and 8.24c.

Figure 8.24d also visualizes the elements of the 2D and 3D meshes. In both scenarios of

Fig. 8.24, the 3D mesh is as finely resolved in z direction (vertical in Fig. 8.24d) as the

muscle fibers. In transversal direction (horizontal in Fig. 8.24d), the element sizes are

twice as large as the spacing between the fibers.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 401

The right side of Fig. 8.24d shows two almost aligned action potentials that propagate

towards the top of the image. The upper action potential originates from a fiber that is

located at the center between the element boundaries. Its electric potential is distributed

to two adjacent nodes on the surface mesh, having the same activated values. In contrast,

the lower action potential results from a fiber that is directly located on the element

boundaries. It can be seen that the activation on the surface decays rapidly in transverse

(horizontal) direction, as the neighbor elements already almost exhibit the same electric

potential as the background level. This underlines the importance to use finely resolved

meshes to accurately represent surface EMG signals.

How To Reproduce

Use the following commands to run the EMG simulation of the biceps muscle with

fat layer and electrodes:

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/fibers_fat_emg/

,→ build_release
mpirun -n 16 fibers_fat_emg ../settings_fibers_fat_emg.py 50mus.py

cd out/50mus

plot_emg.py ./electrodes.csv ./stimulation.log 25900 26000 # plot

,→ the result, here for time span 25.9s - 26s

402 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

(a) 76729 fibers. (b) 273 529 fibers. (c) Detail view. (d) Detail view.

Figure 8.24: Fiber based EMG simulation for the upper arm (biceps) model; simulated

surface EMG signals with realistic fiber counts, continued from Fig. 8.23.

Figure (a) shows a scenario with 76729 fibers, which is approximately a

third of the realistic number for the biceps muscle. Figures (b)-(d) show the

result with a realistic number of 273529 fibers. (c) shows a detail view of

(b) indicated by the outer red box. (d) shows another zoomed in view of

(b) and (c), also indicated by the red boxes.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 403

8.4.5 Simulation of EMG electrodes

While the surface EMG simulation results as presented in the last section in Fig. 8.23

are suited for insights into the temporal and spatial variation of the electric potential,

real experiments are constraint to capture values at the discrete locations of electrodes.

For some applications such as the evaluation of EMG decomposition algorithms, it is

beneficial to obtain simulated values at electrode locations.

One possibility would be to extract nodal values from the simulated surface meshes to

simulate electrodes. However, the distance between the nodes in the mesh is not constant

in the whole mesh, whereas EMG electrode arrays have a fixed inter-electrode spacing.

We, therefore, follow a different approach and allow to directly specify a grid of electrodes

close to the muscle surface. These points are then mapped onto the surface of the muscle

and the respective values are calculated by evaluating the finite element interpolant at

the respective locations.

In OpenDiHu, a 2D grid of surface electrodes can be defined in the Python settings file

by specifying the grid parameters and inter electrode distances. As a result, the simulation

distributes the electrodes to the processes according to the parallel partitioning of the 3D

mesh, evaluates the computed EMG values at the respective locations and outputs them

in a single text file of comma separated values.

Figure 8.25 shows simulation results of the fiber based electrophysiology model with

49 fibers, fat layer and an array of 12× 32 electrodes. The electrodes are visualized as

spheres. The muscle fibers below the fat layer are colored according to the transmembrane

voltage Vm. Only the upper surface of the fat layer is shown and colored according to the

extracellular potential φe. The EMG electrodes capture the values of the scalar field φe

at their locations. The color coding for the electrodes has a different EMG color scale to

make the resulting signals more distinguishable. Two activated bands across the muscle

surface can be seen, which are also present in the electrode values.

To visually evaluate the simulated EMG signals at the electrodes, OpenDiHu provides

utilities to create the visualizations shown in Fig. 8.26. Figure 8.26a shows a single frame

from an animation. On the upper right, the grid of electrodes is displayed. The EMG signal

at the electrodes is given by the colored tiles and changes over time. At the bottom of the

image, the activation times of the MUs are visualized. Every horizontal line corresponds

to one MU. The colored markers indicate when the respective MU fires. As the shown

example visualizes data for 40 s, the individual firing times are not distinguishable. In the

animation, a vertical bar moves over the time axis and indicates the current simulation

404 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

Figure 8.25: Fiber based EMG simulation for the upper arm (biceps) model; simulation

of surface EMG and capturing electrodes. The scenario contains 49 muscle

fibers, a fat layer, of which only the surface is shown, and a grid of 12× 32

equidistant electrodes.

time. The picture displays the EMG values at time t = 25.975 s. The upper left of the

image shows a text with static information about the dataset, containing the electrode

grid size, the inter electrode distance (IED), the end time, the sampling frequency of the

electrodes, i.e., the frequency with which the computed EMG signals values are stored to

the output file, and the number of MUs.

Figure 8.26b shows another, static visualization of simulated EMG data. The diagram

contains boxes for all electrodes in the 12×32 grid. The value of the EMG signal is plotted

over time in every box for the respective electrode. Figure 8.26b visualizes the data of

Fig. 8.26a for the time interval [25.9 s, 26 s]. The diagram enables experts to visually

identify propagating action potentials from the tile columns. The propagation velocity of

the action potentials can be estimated from the time shift of matching spikes in vertically

adjacent boxes.

8.4.6 Decomposition of Surface EMG Signals

Surface EMG recordings are a valuable tool to gain insights into the neuromuscular

system. They are used, e.g., for the diagnosis of muscular disorders and in clinical studies

that aim to advance biomedical understanding.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 405

(a) Snapshot of an animation of the simulation results that

can be generated with the utility of OpenDiHu. The top

part visualizes the current values of the EMG electrodes

at time t = 25.975s. The bottom part shows the MU

activation ramp, each colored line shows to the firing

time range of one MU.

cross-fiber direction

fi
b
e
r

d
ir

e
c
ti

o
n

(b) Surface EMG at 12×32 electrodes

in the time range [25.9 s, 26 s].

Figure 8.26: Fiber based EMG simulation for the upper arm (biceps) model; results of

surface EMG obtained at simulated electrodes.

406 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

Figure 8.27: Fiber based EMG simulation for the upper arm (biceps) model; a simulation

result that reveals the locations of the neuromuscular junctions. The figure

depicts 1369 fibers after 1 ms, which have initially been stimulated at the

neuromuscular junction. The color coding corresponds to the membrane

potential Vm, which has a positive value near the points of stimulation.

As described earlier, the EMG signals on the skin surface originate from the activated

muscle fibers. Effects from volume conduction of action potentials on all muscle fibers

are superpositioned and contribute to the EMG signal. The scaling of the contributions to

the overall signal depends on several factors such as the distance of the fibers to the skin

surface. As all fibers in the same MU get activated simultaneously, each MU‘s contribution

shows a characteristic “shape” in the resulting surface EMG signal. This shape is influenced

by the number and location of the muscle fibers relative to the electrodes and the location

of the neuromuscular junctions.

In our simulation, the location of the neuromuscular junctions is chosen pseudo-

randomly (but deterministic) during initialization in the central 10 % of every muscle

fiber. Figure 8.27 shows the state of a simulation with 1369 fibers at t = 1 ms, where

all fibers have been activated at t = 0ms. The color coding indicates the potential Vm of

the membrane, which at the shown time has only depolarized near the locations of the

neuromuscular junctions.

Methods exist that seek to decompose the surface EMG signal into the contributions of

the individual MUs. Given a surface EMG recording, such methods output a number of

recovered MUs and their firing times. In our simulation studies, all relevant information

is available that determines the EMG signal resulting from MU activity: the location of

the fibers and their association to MUs, the positions of the neuromuscular junctions and

the innervation pulses for each MU. Thus, our simulation can be used to validate and

evaluate EMG decomposition methods.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 407

One popular EMG decomposition method is Gradient Convolution Kernel Compensation

(gCKC) [Hol07a; Hol07b], which, in the following, will be outlined and then applied on

simulated data.

Most decomposition methods, including the gCKC algorithm, assume that the EMG

signal at an electrode is composed of the convolutional mixture of the activity of N MUs.

The activity of each MU k ∈ {1, . . . , N} is described by the innervation pulse trains, which

activate the fibers of MU k, given as a point process of neural inputs at stimulation times

ϕr . The source signal sk in the muscle, which represents the effect of MU k is described

as a spike sk(t) =
∑

r δ(t −ϕr), where δ is the dirac delta function.

The vector of observed EMG value x ∈ Rm at a time t is composed of the temporal

convolution over L time-shifted sources s and a term ω of additive Gaussian noise:

x(t) =
L−1
∑

ℓ=0

H(ℓ) s(t − ℓ) +ω(t).

Here, H is the m× n mixing matrix for m observations and n MU sources and s= (sk)1,...,n

is the vector of source signals. The sum over L previous values in this convolutive mix-

ture can be reformulated by moving the summation into the matrix-vector product. The

dimensions of the matrix H and the vector s are extended accordingly. An optimization

problem yields the separation vectors, with which the innervation pulse trains ϕr of the

MUs can be recovered from the recorded EMG signals x. The gCKC algorithm deter-

mines the inverse effect of applying the unknown mixing matrix by solving a derived

optimization problem using a gradient descent scheme.

The gCKC decomposition algorithm is implemented in the DEMUSE software, a com-

mercial, MATLAB based tool that allows automatic and semi-automatic EMG decomposi-

tion [Hol08]. In collaboration with Lena Lehmann from the Institute of Signal Processing

and System Theory and the Institute for Modelling and Simulation of Biomechanical Sys-

tems, we evaluated the performance of gCKC decomposition on simulated surface EMG

signals.

We simulate fiber based electrophysiology scenarios with fat layer and 1369 fibers using

the same model parameter as in Sec. 8.4.4. In the first scenario, a fat layer with thickness

of 1 cm is modelled. The simulated EMG signal is sampled in an electrode array with a

frequency of 2 kHz and a grid size of 12× 32 fibers, as shown in Fig. 8.26.

Figure 8.28 shows the firing times of the 20 MUs in the first 10 s. The different MUs are

initially activated every 100 ms to generate the shown “ramp” activation pattern, which

408 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

0 2 4 6 8 10

Time [s]

3

6

9

12

15

18

M
o
to

r
u
n
it

 n
o
 [

-]

Figure 8.28: Validation experiment for EMG decomposition based on fiber-based simu-

lations of the biceps brachii muscle: Match of EMG decomposition results

with simulated data. The true firing pattern over time for the 20 MUs in

the simulation is shown by black markers. The recovered firing times of the

gradient convolution kernel compensation algorithm are given by the red

markers. The algorithm detected the four MUs 16, 18, 19 and 20.

later helps to identify the recovered MUs from the decomposition. From t = 1.8 s on, all

MUs fire with their respective constant frequency, subject to jitter values of 10 %.

In this first scenario, the gCKC decomposition algorithm was applied on the first t = 40 s

of simulated EMG data. The preconfigured algorithm in DEMUSE was used without

manual intervention. While the simulated EMG recording consisted of an electrode grid

of 12× 32 fibers, only a rectangular subset of 5× 13 channels at the lower center of the

grid was used for the decomposition to mimic a realistic electrode array size.

In reality, some of the recorded channels may measure invalid data due to inappropriate

surface contact of the electrodes, noisy signals at the particular measurement location or

other experimental difficulties. The DEMUSE tool can automatically detect such channels

and discard the corresponding data from the decomposition scheme. Despite our simu-

lation does not contain invalid channels, the DEMUSE software discarded four of the 65

simulated channels.

Figure 8.28 shows the innervation pulses that were detected by DEMUSE as red vertical

markers. A time span of 50 s was simulated of which only the first 11 s are visualized

in Fig. 8.28. DEMUSE found four MUs in this scenario, i.e., 20 % of the 20 simulated

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 409

2 4 6 8 10 12 14 16 18 20

Motor Unit Index

0

100

200

C
o
u
n
t

1.217x

(a) Number of fibers of the 20 MUs in this

scenario, following an exponential pro-

gression with basis 1.217.

MU 16

MU 18

MU 19

MU 20

(b) Spatial location of the fibers of the four

MUs that were recovered by the EMG de-

composition algorithm, indicated by dif-

ferent colors. The territory center points

of the MUs used in the generation algo-

rithm are indicated by black dots. The

yellow background area corresponds to

other MUs, which were not detected.

Figure 8.29: Validation experiment for EMG decomposition based on fiber-based simula-

tions of the biceps muscle: Association of the fibers with motor units for the

first scenario with 20 MUs, given in Fig. 8.28.

MUs. The recovered MUs were identified in the set of simulated MUs by matching the

average firing frequency and the activation onset time in the ramp scheme. A first visual

comparison with the original stimulation times given by the black markers shows a good

agreement.

In this scenario, the association of fibers with MUs followed an exponential MU size

progression with a basis of approximately 1.2, as shown in Fig. 8.29a. The smallest MU

contained two fibers and the largest MU had 256 fibers. The method 1 described in

Sec. 4.2 was used to generate the association between fibers and MUs.

Figure 8.29b depicts the location of the four MUs that were detected by DEMUSE. The

detected MUs have the indices 16, 18, 19 and 20 and correspond to four of the five largest

MUs. It can be seen that MUs 18 to 20 are located mainly in the upper half of the muscle

cross-section, in proximity to the electrode array at the top of the diagram. The MU with

the most fibers, MU 20, was detected by the decomposition algorithm even though it is

located at the lower left of diagram at a large distance to the skin surface.

Two further scenarios were simulated with the same parameters as the first scenario

in Fig. 8.28, but instead with 50 and 100 MUs. In these datasets, DEMUSE was able to

410 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

2 4 6 8 10 12 14 16 18 20

Motor Unit Index

0

25

50

75

100

C
o
u
n
t

1.047x

(a) Progression of MU sizes. The number of

fibers per MU is more balanced in this

scenario than in Fig. 8.29a.

MU 1

MU 4

MU 8

MU 9

MU 13

MU 14

MU 15

MU 16

MU 17

MU 18

MU 19

MU 20

(b) Spatial fiber arrangement of the MUs

that were detected by the EMG decom-

position algorithm, with their center

points given by black dots.

Figure 8.30: Validation experiment for EMG decomposition based on fiber-based simula-

tions of the biceps brachii muscle: Association of the fibers with motor units

for the second scenario with 20 MUs, given in Fig. 8.31.

detect 8 and 12 MUs, which corresponds to 16 % and 12 %.

Moreover, another scenario with 20 MUs was computed, but the fat layer was varied

to have a thickness of only 2 mm instead of 1 cm. In addition, the association scheme

between MUs and fibers was changed to the one shown in Fig. 8.30. The exponential

distribution of MU sizes only varied between 42 and 102 fibers per MU, corresponding

to a basis in the exponential function of approximately 1.05 instead of 1.2.

Figure 8.31 shows the results of the EMG decomposition with the gCKC algorithm for

this second scenario with 20 MUs. DEMUSE successfully decomposed the signal into

13 MUs, corresponding to 65 % of the 20 simulated MUs. DEMUSE also determined

two additional MUs, which we do not consider part of the set of successfully recovered

MUs. The first dataset only consists of ten innervation pulses, and the second pulse

train contains high frequency oscillations. In this scenario, the software marked only one

EMG recording channel as invalid, which means that more data were considered by the

decomposition algorithm than in the first scenario with 20 MUs.

Similar to the previously presented scenario, the larger MUs were detected with a

higher probability than the smaller MUs. In this scenario, the eight largest MUs were

successfully found. Figure 8.30b shows the spatial arrangement of the detected MUs.

The area of the muscle cross-section that is occupied by undetected MUs is again located

more distantly to the skin surface at the upper boundary. However, the recovered MUs 1

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 411

Figure 8.31: Validation experiment for EMG decomposition based on fiber-based simula-

tions of the biceps muscle: Activation pattern for the second scenario with 20

MUs. The activation times used in the simulation are shown as black mark-

ers, the recovered activation pulses of the EMG decomposition algorithm are

shown as red markers.

and 14 are nevertheless located at the lower boundary, i.e., in the most distant area from

the EMG electrodes.

Next, we evaluate the quality of the innervation pulse trains that were recovered by

the gCKC algorithm in our scenarios. We compare the stimulation times calculated by

DEMUSE with the stimulation times of the simulation. Figure 8.32a shows an excerpt of

the detected pulse trains of the second scenario with 20 MUs in Fig. 8.31, where the gCKC

algorithm recovered 13 MUs. For same MUs, we observe that the recovered stimulation

times are consistently shifted in time. This effect is especially visible for MUs 16 and

18.

The reference times given by the black markers in Fig. 8.32a correspond to the times

when the fibers were stimulated in the simulation in OpenDiHu. The detected MU ac-

tivations in DEMUSE, however, correspond to the times when the MU action potential

shapes in the EMG recording reached their maximum. Moreover, the exact times when

particular MUs reach particular EMG electrodes depend on the distance of the electrodes

to the innervation points of the MUs. The further the electrodes are away from the neuro-

muscular junctions along the muscle, the higher is the delay of the recorded spikes to the

corresponding innervation pulses. Thus, the constant time shifts in the pulses detected

412 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

16 17 18

Time [s]

14

15

16

17

18

M
o
to

r
u
n
it

 n
o
 [

-]

(a) Original data, where a constant time shift

between the simulated (black) and recov-

ered (red) marks can be seen, especially

for MUs 16 and 18.

16 17 18

Time [s]

14

15

16

17

18

M
o
to

r
u
n
it

 n
o
 [

-]

(b) Same data as in (a) with applied time off-

set correction. The applied time shifts

for MUs 16 and 18 are −12.9 ms and

−24.9 ms, respectively.

Figure 8.32: Validation experiment for EMG decomposition based on fiber-based simu-

lations of the biceps muscle: Excerpts of the detected firing times of MUs

14 to 18 in the second scenario with 20MUs. The stimulation times of the

simulation are given by black markers, the recovered times are visualized

by red crosses.

by the gCKC algorithm are valid and have to be accounted for in the evaluation of the

decomposition performance.

We correct for these time shifts by adding constant time offsets ∆tk to the recovered

innervation pulse trains. For every MU k, the algorithm finds the matching pairs of simu-

lated and recovered pulses and optimizes the value of ∆tk such that the time differences

in these pairs after shift correction get minimal.

Figure 8.32b shows the same extract of MU activity as in Fig. 8.32a with applied time

offsets. The time offsets for MUs 14 to 18 in this example are given as

∆t14 = −2.4ms, ∆t15 = −1.1 ms, ∆t16 = −12.9ms,

∆t17 = −2.9ms, and ∆t18 = −24.9 ms.

Figure 8.32b shows that the recovered pulses now match the simulated data very well.

The non-matching pulses are clearly false positive detections.

To compare the recovered MU times between the scenarios, we evaluate metrics such as

the rate of agreement. The MU firing times in the simulation serve as the ground truth, to

which we compare the recovered MU times. We identify true positive (TP), false positive

(FP) and false negative (FN) recovered pulses, depending on whether a matching time

to a recovered pulse can or cannot be found in the simulation data within a tolerance

of ǫ = 5 ms. The rate of agreement (RoA) between the gCKC algorithm output and the

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 413

ground truth data is then computed by

RoA=
TP

TP+ FP+ FN
.

In the first scenario with 20 MUs in Fig. 8.28, the RoA for MUs 16,18 and 19 is above

99.7 % and slightly lower at 82.2% for MU 20. Here, only 296 of the 334 detected pulses

were true positives, corresponding to a precision of 88.6%.

In the second scenario with 20 MUS presented in Fig. 8.31, all valid MUs except one

have RoA values of above 94.5%. Five MUs are even detected perfectly with 100% rate of

agreement. MU 9 is the only detected MU with a degraded RoA of approximately 57.9 %.

However, the RoA improves to 98.1 %, if the tolerance ǫ for matching pulses is relaxed to

10 ms. This shows that the RoA metric also depends on a proper value for the tolerance

ǫ, and that innervation pulse trains detected by DEMUSE can have varying accuracy in a

range of less than 10 ms.

While the gCKC algorithm can be used for EMG decomposition of previously recorded

signals in a controlled environment, it is less suited for real-time applications. The sepa-

ration vectors that decompose the electrode signals and infer the MU innervation pulse

trains can be computed in a training phase. However, their application on new data

requires a certain history of previously captured signals to calculate the decomposed MU

pulses. As a consequence, the predictions are delayed, which is usually undesirable in

real-time applications. Furthermore, the system is sensitive to noisy data.

A fundamentally different approach to EMG decomposition is the use of sequence-

to-sequence learning methods provided by recurrent neural networks. The authors of

[Cla21] used a gated recurrent unit (GRU) network for this task. The network was trained

using the output of the gCKC algorithm and was subsequently able to decompose surface

EMG signals into innervation pulse trains. The approach was shown to be robust and to

outperform gCKC for low signal-to-noise ratios.

To assess, whether our simulations of surface EMG can be used for the supervised

learning of GRU networks for EMG decomposition, we tried in a first step to reproduce

the studies of [Cla21], where the GRU is trained with the output of the gCKC algorithm.

Additionally, we trained a GRU network directly on the simulated EMG data. These tasks

were carried out in the masters project of Srijay Kolvekar and were supervised by Lena

Lehmann and me. For details on the methods and results, we refer to the literature

[Cla21] and the project report [Kol21].

414 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

In this project, the EMG decomposition of a GRU network trained with raw innervation

pulse trains obtained from the gCKC algorithm, similar to the literature, showed many

false positive and false negative predictions. However, a different setup using MU la-

bels instead of raw pulse trains showed promising results. Every discrete point in time

(according to the EMG sampling frequency) was either associated with the class of the

currently active MU or with the background class, when no MU was activated at the

time. This classification problem had a large class imbalance, as the background class

was active for 86 % of the timesteps. The issue was mitigated by using class weights. The

GRU network was trained with simulation data and yielded per-class rates of agreement

of up to 72 % for the two scenarios with 20 MUs shown in Figures 8.28 and 8.31, i.e.,

with the test data set also generated by our simulation.

Figure 8.33 presents an excerpt of the resulting predictions of a GRU network that was

trained with simulation results. We used the simulation of the second scenario with 20

MUs, which is shown in Fig. 8.31. The black markers in Fig. 8.33 indicate the stimulation

times used in the simulation. The red markers correspond to the recovered times by the

gCKC algorithm. Out of the shown MUs, only MUS 9 and 10 were recovered by the gCKC

algorithm. The blue markers denote the GRU predictions. Correction of time offsets was

performed for both the gCKC and GRU outputs.

Figure 8.33 shows the best agreement between the two prediction methods for MU

10 with a RoA of 99.6 % for the gCKC algorithm and 72.2 % for the GRU network. In

contrast to the gCKC algorithm, the GRU network predicts firings for all MUs. However,

the quality is only acceptable for MUs that could also be detected by the gCKC algorithm.

For MUs 11 and 12, the RoA for the GRU network is around 30 %.

In future work, the decomposition performance of the GRU networks could be im-

proved by using different training data. For example, the ramp activation in the training

data could be replaced by constant tetanic stimulations. Moreover, different network

architectures, such as convolutional recurrent neural networks could be investigated.

In conclusion, the gCKC algorithm is able to decompose artificially generated surface

EMG signals. This means that our simulation can be used to evaluate the performance of

EMG decomposition algorithms.

The number of detected MUs depends on the relation between MU sizes and on the

distance of the MU territories to the electrodes. If the variance of the sizes of the activated

MUs is small, such as in Fig. 8.30a, also MUs that are far away from the electrodes are

detected. If, in the opposite case, the sizes of active MUs are distributed over a large

range such as in Fig. 8.29a, only the largest MUs are detectable.

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 415

30.5 31.0 31.5 32.0 32.5 33.0 33.5
Time [s]

9

10

11

12

M
ot

or
 u

ni
t n

o
[-]

Figure 8.33: Comparison of innervation pulse train predictions of the gCKC algorithm

(red), a GRU network (blue) and the ground truth data (black).

In addition, the amount of adipose tissue between the electrodes and the muscle influ-

ences the number of MUs that can be recovered. In our studies, the performance of EMG

decomposition was lower for all scenarios with thicker fat layer than for the scenario with

a thin fat layer.

The rate of agreement of the determined pulse trains of the DEMUSE software was

above 95 % in most of the cases. Correspondingly, the rate of false positives was low.

A time shift between the recovered times and the ground truth data was observed for

some pulse trains, which can be explained with the delay from first activation to the onset

of the EMG signal. As a result, the time shift was corrected for the rate of agreement

measurement.

A proof-of-concept implementation of GRU networks showed promising performance

for predicting MU firing times from artificial EMG recordings. The GRU network predicted

firing times also for MUs that were not detected by the gCKC algorithm, however the rate

of agreement was low for these MUs. In future work, the GRU decomposition method

has to be refined to be comparative to the gCKC algorithm.

8.4.7 Simulation of Electrophysiology with a Phenomenological

Fiber Model

Instead of the previously presented numerical model of action potential propagation

on the muscle fibers, the respective physiological process can also be described with a

phenomenological approach.

416 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

0 5 10 15 20
z [mm]

80

60

40

20

0

20

40

Vm
 [m

V]

Figure 8.34: Phenomenological muscle fiber model: analytic model by Rosenfalck of an

action potential shape on a 1D fiber.

The model formulated by Rosenfalck [Ros69] describes the action potential shape on a

1D domain by the following function:

G(z) =

96 z3 exp(−z)− 9 for z ≥ 0,

−90 for z < 0.

Figure 8.34 shows the graph of this function. The resulting value of G specifies the

membrane voltage in millivolts. The coordinate z = x + v t depends on the distance x to

the neuromuscular junction on the fiber, the conduction velocity v and the time t after the

last stimulation. In our simulation, we use the proposed propagation velocity of 4 m
s
.

The advantage of using an analytic model is its fast calculation compared with the

runtime of the numerical model. On the downside, such a model cannot accurately

describe fatigue effects in tetanic stimulations or the action potential shape changing

properties of more advanced subcellular models.

One use case of an analytic model is to study the effect of muscle fiber arrangements

in a muscle volume on the surface EMG signal. In this case, the exact, possibly time-

varying shapes of the motor unit action potentials are less important than the location

and orientation of the fibers. We provide an exemplary scenario in OpenDiHu, which uses

the Rosenfalck model on multiple 1D muscle fibers that are embedded in a 3D domain.

As in the previous sections, the 3D bidomain model given by Eq. (5.9a) is coupled to the

8.4 SIMULATION OF FIBER BASED ELECTROPHYSIOLOGY 417

Figure 8.35: Simulation of EMG signals on the upper arm; artificial muscle geometry

with a phenomenological model of action potential propagation. The upper

image shows the muscle fibers, colored according to the transmembrane

potential Vm. The lower image shows the extracellular potential φe on the

surface. This scenario can be computed very fast and can, e.g., be useful to

investigate the effects of different fiber orientations.

fibers and used to simulate EMG recordings on the surface.

In addition to the simplified model of action potential propagation, we use a simplified

description of the muscle geometry. Figure 8.35 shows the artificial geometry, which

is constructed by rotating a transformed sine curve around the z axis. Our program

embeds the fibers automatically inside the volume and orients them according to specified

spherical coordinates. The orientation angles, the number of fibers and the spacings

between the fibers can be adjusted in the Python settings script of the simulation.

Figure 8.35 shows the location of the fibers inside the artificial muscle belly in the

upper image and a simulation result of muscular activity at t = 15 ms in the lower

image. The resulting EMG signal can be seen on the surface. This simulation scenario

provides means to quickly study electrophysiology and generation of EMG for a generic

muscle. Solving the model only consists of evaluations of the Rosenfalck function and

repeated computation of the 3D model, but no further costly computations of numerical

electrophysiology models. Moreover, no mesh file has to be generated and loaded, which

simplifies the handling of the scenario.

418 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

How To Reproduce

The simulation in Fig. 8.35 can be started as follows.

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/

,→ analytical_fibers_emg/build_release
./analytical_fibers_emg ../

,→ settings_analytical_fibers_emg_custom_geometry.py geometry_round
,→ .py

The options can be set in the variables/geometry_round.py settings file. Other

artificial geometries are available by using other scripts under variables.

8.4.8 Conclusion

In the present section, surface EMG signals were computed using the fiber based elec-

trophysiology model. We showed, how the qualitative nature of the signals depends on

the spatial distribution of the MUs, and that the thickness of the body fat layer influences

the smoothness of the recorded EMG signals. Furthermore, we investigated the effect of

the mesh resolution and the number of fibers in the simulation. The results showed that

only a high mesh resolution can resolve the small features in the EMG signal on the skin

surface, which result from fiber action potentials. The number of these features in the

result increased with the mesh width and, thus, the two finest discretizations with 77 · 103

274 · 103 fibers yielded the most accurate results. As a consequence, High Performance

Computing simulations are required, if an accurate 2D surface EMG signal should be

computed.

Further studies with EMG decomposition algorithms showed another use case of our

fiber based surface EMG simulations: They can be used as a validation tool for existing

decomposition algorithms, and they can serve as a data generator to develop novel, data

based decomposition methods. The decomposition software DEMUSE was tested, and

we quantified the rate of agreement of its predictions with our simulation. Similarly,

we evaluated a neural network based approach and compared its performance on the

simulated data with the previous method.

8.5 SIMULATION OF THE MULTIDOMAIN MODEL 419

8.5 Simulation of the Multidomain Model

The multidomain model is an alternative to the fiber based electrophysiology model

discussed in the last section. As introduced in Sec. 5.1.4, it does not explicitly resolve

muscle fibers, but considers activity in the muscle domain in a homogenized view. On

every point in the 3D muscle mesh, separate values V k
m of the transmembrane potential

exist for every MU k ∈ {1, . . . , NMU}, in addition to the value φe for the extracellular

electric potential. The computational domain considers the muscle volume ΩM and the

body domain ΩB, which represents adipose tissue on top of the muscle. To solve the

multidomain model, a large linear system has to be solved in every timestep, as described

in Sec. 5.3.5.

In the following, Sec. 8.5.1 discusses the model setup for a scenario with four MUs.

Section 8.5.2 demonstrates a larger simulation scenario with 25 MUs, which can be

used to simulate surface EMG signals. We discuss differences between the multidomain

approach and the fiber based electrophysiology model in Sec. 8.5.3.

8.5.1 Components of the Computational Model

In the following, we consider a multidomain simulation with muscle and body fat domains

and four MUs. We use a muscle mesh with 16× 16× 74 = 18 944 elements and linear

finite element ansatz functions and a fat mesh with 32× 4× 74= 9472 elements, which

are partitioned to 128 subdomains for 128 processes.

The scenario uses the following electric conduction tensors σi and σe for the intra-

cellular domain and the extracellular domain, respectively:

σi =

8.93 0 0

0 0 0

0 0 0

mS

cm
, σe =

6.7 0 0

0 6.7 0

0 0 6.7

mS

cm
. (8.5)

In this scenario, we use the subcellular model of Hodgkin and Huxley [Hod52a] and

solve it using Heun’s method. We discretize the multidomain equations using the Crank-

Nicolson scheme with θ = 1
2
. We solve the resulting linear system of equations by a

GMRES solver with the parallel incomplete LU factorization preconditioner Euclid [Hys01]

from the HYPRE package [Fal02]. A tight residual norm tolerance of 10−15 is used in

the abortion criterion of the GMRES solver. Such a low tolerance is required, as, for

higher tolerances, spurious artificial stimulations can be observed. Timestep widths of

420 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

(a) f 1
r (b) f 2

r (c) f 3
r (d) f 4

r

Figure 8.36: Simulation of electrophysiology with the multidomain model: Value of the

occupancy factors f k
r for MUs 1 to 4. The color coding encodes the maximum

value by red color and the decreasing value along the radius by increased

transparency and the color transition to blue color. The locations where the

factor vanishes, f k
r = 0, correspond to full transparency.

dt0D = dtmultidomain = dtsplitting = 10−3 ms are used. The computation for a simulation end

time of tend = 20 ms in this scenario takes approximately 27 min.

In the multidomain model, we have to specify which point in the 3D mesh belongs

to which MU to which extent. This is achieved by the relative occupancy factors f k
r for

MU k. In our implementation, the occupancy factors are computed by Python code in

the settings file of the simulation. The location of a MU in the 3D domain is specified

by choosing a 1D muscle fiber, which is considered to be the center of the MU territory.

This is possible, as the nodes in the structured 3D mesh can also be interpreted as a set

of adjacent 1D fibers.

For every MU k, the occupancy factors f k
r (x , y, z) in every muscle cross-section with

fixed z coordinate are defined by a radial function f (|(x , y)⊤|/d(z)), which reaches a

configurable maximum value at the location of the specified fiber. The argument of the

radial function is scaled by the diameter d(z) of the muscle at the considered cross-section.

The factor f k
r (x , y, z) is constant in longitudinal direction of the muscle (z axis). Before

the simulation, all factors f k
r are scaled, such that the maximum of their sum is equal to

one:

max
(x ,y,z)∈ΩM

NMU∑

k=1

f k
r (x , y, z) = 1.

Figure 8.36 shows the MU occupancy factors for the four MUs in the considered example

scenario. It can be seen that the individual MU territories only occupy a small fraction

of the muscle domain and are centered around fibers in longitudinal direction of the

muscle.

8.5 SIMULATION OF THE MULTIDOMAIN MODEL 421

Results of the simulation at t = 14ms are given in Fig. 8.37. In the considered scenario,

the first and second MU are stimulated at t = 0ms and t = 10 ms, respectively. At the

time of the displayed images, MUs 3 and 4 have not yet been stimulated.

Upon stimulation, we prescribe the membrane voltage Vm for one timestep as 20mV at

the stimulated nodes in the mesh of the respective MU. In this scenario, the stimulated

nodes are located in the middle of the muscle in longitudinal direction in three adjacent

cross-sectional layers of mesh elements.

The upper two images in Fig. 8.37 show the locations of the propagated action potential

fronts at t = 14ms for MU 1 and MU 2, given by the values of V k
m. While the action

potentials span the entire cross-section of the muscle domain, they contribute to the EMG

value scaled by their locally varying occupancy factor f k
r .

As the V k
m values of all MUs k ∈ {1, . . . , NMU} are strongly coupled, the active MUs, MU

1 and MU 2, influence the V k
m scalar fields of the inactive MUs, MU 3 and MU 4. The

lower two images in Fig. 8.37 show the computational domain of the muscle with several

layers of 3D elements removed. It can be seen that, at some regions in the interior of the

domain, the values of V 3
m and V 4

m correspond to the negated value of V 2
m with a smaller

absolute value. Note the different color scales for V 1
m, V 3

m and V 4
m in these images.

Figure 8.38a shows the values of the extracellular potential φe on the muscle domain.

The contributions from the two active MUs can be seen. Figure 8.38b gives an impression

of the used mesh and shows the value of φe for all nodes. It can be seen that the φe

values span a larger value range in the interior of the domain than on the boundary, as

previously shown in Fig. 8.38a. Correspondingly, the color coding in Fig. 8.38b uses a

larger range than in Fig. 8.38a.

Figure 8.38c shows the EMG values φb on the surface of the body domain mesh. The

effect of the body domain is revealed by comparing the electric potential on the boundary

of the muscle mesh in Fig. 8.38a with the values in Fig. 8.38c. The signals get locally

smoothed by the fat layer.

8.5.2 Simulation of EMG Signals

In the second scenario, we simulate a higher number of 25 MUs. The MUs are activated at

random times within the first 20 ms. We use a mesh with 12×12×74= 10656 elements

in the muscle domain and 24× 4× 74= 7104 elements in the body domain. Compared

to the mesh in the previous scenario, the spatial resolution in radial direction is chosen

422 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

Figure 8.37: Simulation of electrophysiology with the multidomain model: Transmem-

brane potential V k
m of MUs 1 to 4 at t = 14ms.

8.5 SIMULATION OF THE MULTIDOMAIN MODEL 423

(a) Extracellular potential φe on the surface of the muscle domain.

(b) Extracellular potential φe at points of the 3D muscle mesh.

(c) EMG signal φb on the surface of the body fat domain. The comparison with (a) shows the

effect of the fat layer.

Figure 8.38: Simulation of electrophysiology with the multidomain model: Simulation

results at t = 14 ms for a scenario with 4 MUs.

424 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

slightly coarser, to speed up the computation. The other model parameters, discretization

schemes and solvers are chosen as before.

In this scenario, the stimulated nodes are no longer located in the middle of the muscle,

but randomly varied by up to 10 % of the muscle length using a uniform distribution. This

approach to model the neuromuscular junctions is analog to the approach in Sec. 8.4.2

for the fiber based electrophysiology. Figure 8.39a shows the membrane voltage V 1
m of

MU 1 shortly after the MU has been activated. Because of the different locations of the

stimulated points, no uniform action potential “front” as in Fig. 8.37 is seen. Instead, a

characteristic 2D MU action potential forms.

The spike of the depolarized membrane voltage at every stimulated point propagates

along the fiber direction and additionally diffuses in transverse direction. This yields the

cone-like structures of lower Vm values as seen in Fig. 8.39a. The origin of the transverse

propagation is the electric conduction in the extracellular space, which is governed by the

isotropic conduction tensor σe in Eq. (8.5). This isotropic conduction is strongly coupled

to the directed action potential propagation within every MU compartment.

The resulting EMG values φe on the muscle boundary and φb on the skin surface are

given in Fig. 8.39b and Fig. 8.39c, respectively. The fat layer again smooths out the signal,

as observed in the last section and in Sec. 8.4.3 for the fiber based electrophysiology

model.

The two blue vertical stripes in Fig. 8.39b with lower φe values correspond to the action

potentials of multiple MUs at the respective location. It can be seen that the resulting

EMG signal varies more in longitudinal direction than in transverse direction. This can

be explained by the wide MU territories in this scenario.

8.5.3 Comparison of the Fiber Based Electrophysiology Model

and the Multidomain Model

EMG signals on the upper arm can be simulated by both the fiber based electrophysiology

model, as demonstrated in Sec. 8.4 and by the multidomain model, as shown in the

previous sections. The two approaches have several similarities and differences.

Both model approaches have in common that they are based on biophysical principles.

They both involve a detailed subcellular model, which describes the biochemical processes

on the muscle fiber membranes. The subcellular model is solved at discrete points in the

3D domain and the model instances are coupled to a description of electric volume

8.5 SIMULATION OF THE MULTIDOMAIN MODEL 425

(a) Transmembrane voltage V 1
m of the first MU.

(b) Extracellular potential φe at the surface of the 3D muscle mesh.

(c) EMG signal φb at the surface of the body fat domain.

Figure 8.39: Simulation of electrophysiology with the multidomain model: Simulation

results at t = 20 ms for a scenario with 25 MUs.

426 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

conduction in the muscle domain and the body fat layer. Both the fiber based approach

and the multidomain model are, thus, multi-scale descriptions.

Both models also resolve the physiological structure of muscle activity given by mul-

tiple MUs. Action potential propagation is computed separately for different MUs. In a

comprehensive simulation of the neuromuscular system, motor neuron models can be

coupled to drive the activation of the MUs.

The two domains of the electrically active muscle tissue and the passive layer of skin

and adipose tissue are also considered in both modeling approaches. In the fiber based

approach, electric volume conduction is described by the 3D bidomain equation Eq. (5.9a)

for the muscle domain and a strongly coupled 3D Laplace equation Eq. (5.17) for the

body domain. The multidomain approach for electric volume conduction generalizes the

bidomain model and yields the bidomain equation as a special case, if only one MU is

considered. The Laplace equation for the body domain is coupled in the same way as in

the fiber based model. In summary, both approaches are very similar regarding the 3D

electric conduction part.

The major difference between the models is, that the multidomain approach considers

only 3D domains, whereas the fiber based approach resolves individual 1D muscle fibers.

Another difference lies in the coupling between the model components. For the fiber based

approach, action potential propagation on the 1D fibers is unidirectionally coupled to the

3D volume conduction part of the model. In the multidomain model, all components are

bidirectionally coupled. This allows, e.g., to simulate externally applied stimulations by

active electrodes on the skin surface. The effects of the external currents on the electric

potentials in the 3D muscle volume and down to the 0D subcellular behavior can only be

described accurately by the multidomain approach.

The difference in coupling between the action potential propagation model part and

the electric volume conduction in the extracellular space can also be seen in the com-

puted EMG signals. A comparison of EMG simulations using the fiber based model, e.g.,

Fig. 8.24b, and the multidomain model, e.g., Fig. 8.39b, shows that the multidomain

approach yields less sharp artifacts in the 2D EMG signal on the muscle surface than the

fiber based method. In the fiber based model, the action potentials of individual fibers

are visible in the signal. In the multidomain simulations, the regions of similar activity

are more clustered in the resulting EMG signals.

Other differences between the two model approaches exist in terms of the computa-

tional performance properties of their solvers. In the fiber based approach, action po-

tential propagation can be computed independently for all muscle fibers, which enables

8.5 SIMULATION OF THE MULTIDOMAIN MODEL 427

large speedups by parallelization and makes large problem sizes with realistic numbers of

muscle fibers feasible. For example, Sec. 8.4.4 presents the simulation of 270 000 muscle

fibers with 27000 compute cores. In the multidomain approach, on the other hand, a

large linear system of equations has to be solved in every timesteps. This can also be

parallelized, but requires communication between the involved processes, which limits

the parallel scalability for large problem sizes.

In the multidomain model, the computational effort increases, in good approximation,

linearly with both the number of MUs and the number of nodes in the mesh. In the fiber

based approach, the amount of computational work mainly corresponds to the number

of fibers, not to the number of MUs. The 3D problem and, thus, the mesh width of the

3D mesh, typically plays a minor role in the total runtime for the fiber based approach, as

the 3D problem is only solved according to the desired EMG sampling frequency. In the

multidomain approach, no separate timestep widths can be chosen for the computations

of the extracellular and body domain electric potentials, φe and φb, as they are computed

as a solution of the same linear system of equations.

For example, the computation of 24 ms of the multidomain scenario in Sec. 8.5.2 with

25 MUs and 126 processes has a runtime of approximately 106min. The fiber based

approach with the same 3D mesh and the same parallel partitioning with 126 processes

has a total runtime of 6 s for 169 fibers or 20 s for 1369 fibers. A scenario with 169

fibers leads to a fiber spacing that corresponds to the 3D mesh width in the compared

multidomain scenario. The speedup between the models in this case is approximately

1000. Note that only the computation of the fiber based approach is highly optimized

in this work, and a better performance of the multidomain solver could be achieved in

future work. However, the structural properties of the models facilitate highly parallel

simulations only for the fiber based approach.

As a result, if the simplifications of a unidirectional coupling of the extracellular poten-

tial φe from the muscle fibers to the 3D volume can be tolerated, the fiber based approach

should be used, as it exhibits significantly lower runtimes. The fiber based approach is

(considering the current implementation) the only possible choice for scenarios with at

least two of the three requirements (i) long simulation time spans in the range of seconds,

(ii) large number of MUs in the range of multiple dozens, and (iii) finely resolved 3D

meshes in the range of several 106 degrees of freedom.

The multidomain approach, on the other hand, can describe phenomena that are not

accurately captured by the fiber based model, as described earlier. Moreover, the multido-

main model is potentially easier to handle for more irregular geometries, where only a

428 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

structured 3D mesh and no physiologically oriented fibers are given. Another advantage

of the multidomain approach is its ability to fine tune the MU territories. The multidomain

model can also possibly simulate a given MU distribution with the same accuracy with

less 3D points than the fiber based approach. However, investigations in this direction are

subject of future research. If large runtimes are not an issue, the multidomain approach

can be used to yield more physically accurate results than the fiber based approach,

ultimately advancing the means to describe the neuromuscular system as detailed and

accurately as possible.

How To Reproduce

The two simulations in this section with 4 and 25 MUs, respectively, which are

visualized in Figures 8.37 to 8.39, can be executed by the following commands:

cd $OPENDIHU_HOME/examples/electrophysiology/multidomain/

,→ multidomain_with_fat/build_release
mpirun -n 128 multidomain_with_fat ../settings_multidomain_with_fat.

,→ py 4mus.py --n_subdomains 8 1 16
mpirun -n 126 ./multidomain_with_fat_emg ../

,→ settings_multidomain_with_fat.py all_active.py --n_subdomains 6
,→ 1 21

For other available numbers of processes, the subdomains at the end of the commands

have to be adjusted.

8.6 SIMULATION OF COUPLED ELECTROPHYSIOLOGY AND SOLID MECHANICS 429

8.6 Simulation of Coupled Electrophysiology and

Solid Mechanics

Simulating muscle contraction with a detailed model, which accurately describes motor

recruitment, yields the basis for new insights into the neuromuscular orchestration of

processes that lead to muscle force generation.

We couple the two model approaches for electrophysiology, the fiber based model

presented in Sec. 8.4 and the multidomain model presented in Sec. 8.5, with a solid

mechanics model. In Sec. 8.2, we demonstrated the solver for nonlinear hyperelasticity

models in simulations of the passive behavior of muscle tissue. The current section aims

at simulating active muscle contraction.

Section 8.6.1 couples the fiber based electrophysiology model with a model of muscle

contraction. Section 8.6.2 discusses an algorithm to add prestress to the description.

Section 8.6.3 demonstrates the coupling of the multidomain model with the model of

muscle contraction. Section 8.6.4 and Sec. 8.6.5 describe simulations using the numerical

coupling library preCICE.

8.6.1 Fiber Based Electrophysiology and Muscle Contraction

We begin with coupling the fiber based electrophysiology solver with the solid mechanics

model to simulate muscle contraction as a result of the activation of muscle fibers. We use

the subcellular model of Shorten et al. [Sho07]. It computes the microscopic activation

parameter γ ∈ [0, 1], which is related to the concentration of attached cross-bridges in the

sarcomeres. The parameter γ is mapped and homogenized from the 0D subcellular points

to γ̄ on the 3D mesh. In the macroscopic 3D mechanics description, the factor is multiplied

with a maximum active stress parameter Smax,active and a force-velocity characteristic

fℓ(λ f), as described in Sec. 5.2.7. The 3D mechanics model updates the geometry of the

3D domain and transfers the fiber stretch value λ f and the contraction velocity λ̇ f back

to the subcellular model.

In this scenario, we aim to simulate a rapid and strong contraction of the biceps muscle.

The scenario contains 169 fibers, which are associated with 15 MUs. This association is

generated by method 1 in Sec. 4.2. All MUs are subsequently activated in a ramp in the

first 1.4 s.

430 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

(a) (b) (c) (d)

Figure 8.40: Simulation of fiber based electrophysiology and muscle contraction: Activa-

tion of the muscle fibers and overall deformation at various timesteps.

The muscle geometry is fixed at its lower end and no external forces are considered in

this scenario. The dynamic formulation with the transversely isotropic Mooney-Rivlin ma-

terial is used, as described in Sec. 5.2.7. The 3D muscle mesh contains 2× 3× 18= 108

elements with quadratic finite element ansatz functions and 1295 nodes in total and

is partitioned into subdomains for four processes. Time step widths of dt0D = dt1D =

dtsplitting = 10−4 ms and dt3D = 1 ms are used. The used numerical solvers and other set-

tings of the electrophysiology and contraction models are equal to the described scenarios

in Sections 8.4.2 and 8.4.4 and Sec. 8.2.1.

Figure 8.40 shows the fibers of the contracting muscle at four different timesteps be-

tween t = 44 ms and t = 2.084 s. The fibers are colored according to the resulting

activation parameter γ, which is a measure for the generated force on the sarcomere

level. Between t = 44ms and t = 844 ms, shown in Figures 8.40a and 8.40b, the small-

est MUs are activated, which, in this example, are mainly located on the left-hand side.

As a consequence, the muscle domain initially bends slightly to the left. As more MUs

become active at t = 1684ms, depicted in Fig. 8.40c, the deformation increases and the

bending direction is reversed. However, the fibers on the left-hand side still exhibit the

highest γ value, as they have been stimulated most often at that time. At t = 1684 ms,

8.6 SIMULATION OF COUPLED ELECTROPHYSIOLOGY AND SOLID MECHANICS 431

(a) Action potentials given by

the membrane voltage Vm

(in millivolts) on the mus-

cle fibers.

(b) Stretch parameter λ of

the deformed 3D mus-

cle domain (red mesh) in

comparison to the refer-

ence configuration (yel-

low mesh).

(c) Value of the active second

Piola-Kirchhoff stress.

Figure 8.41: Simulation of fiber based electrophysiology and muscle contraction: Simu-

lation results at t = 2084ms.

visualized in Fig. 8.40d, almost all fibers have a γ value close to one, corresponding to

full activation.

Figure 8.41 shows several variables at the simulation end time of t = 2084ms. Fig-

ure 8.41a visualizes the transmembrane voltage Vm on the muscle fibers. Action potentials

can be seen on almost all fibers, as the whole muscle is activated at this time. Figure 8.41b

shows a comparison between the reference configuration given by the yellow mesh and

the current configuration given by the red mesh. The muscle domain is colored according

to the stretch λ, which has a nearly constant value of λ ≈ 85% at the end time of this

scenario. A similar visualization is given in Fig. 8.41c for the active stress in the muscle.

Because of the high level of activation and the corresponding active stress distribution

in the muscle, our mechanics solver only converges up to the shown simulation time of

2084 ms in this scenario. The aim of the scenario is to simulate the contraction of a fully

activated muscle. Other scenarios, where the activation is applied more slowly, allow for

a convergence of the mechanics solver during longer simulation time spans.

432 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

The presented scenario showed that a fully activated biceps muscle contracted to about

85 % of its original length. However, in reality, larger contractions are possible. In the

shown scenario, the muscle was initially in a stress-free configuration. More realistic sce-

narios can incorporate pretension forces, where the undeformed reference configuration

is subject to a constant stress level in the muscle’s direction of the line of action. This is

considered in the next scenario.

How To Reproduce

The simulation in this section can be run as follows:

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/

,→ fibers_contraction/no_precice/build_release
mpirun -n 4 ./biceps_contraction ../settings_biceps_contraction.py

,→ ramp.py

8.6 SIMULATION OF COUPLED ELECTROPHYSIOLOGY AND SOLID MECHANICS 433

8.6.2 Simulation of Prestress

To obtain more realistic ranges of muscle contraction, a nonzero, constant prestress can

be considered in the undeformed configuration of the muscle. In our solid mechanics for-

mulation, the reference configuration always has zero stress. Thus, we need to construct

a separate, first reference configuration of a shorter muscle geometry. We stretch it to the

original muscle length by applying external forces. The resulting, second configuration

resembles the original muscle geometry and has the desired prestress characteristics.

The detailed steps of this algorithm are visualized in Fig. 8.42 and are described in

the following. We begin with the given geometry of the muscle with body fat layer,

which is shown as black wireframe mesh in Fig. 8.42a. In a first static simulation step,

a constant active stress αpre Smax,active is prescribed in the entire muscle volume. The

resulting muscle deformation is computed, using the usual nonlinear hyperelastic muscle

material. Smax,active refers to the maximum active stress value as used in the mechanics

model description in Eq. (5.42). The result of this first step is a shortened muscle with

the same volume as the original geometry. Figure 8.42 shows the result by the yellow

volume for αpre = 0.3. It can be seen that the length of the muscle has shortened by

approximately 13 %.

In the second step, we reuse the computed deformed geometry of the first step as new

stress-free reference configuration and re-extend it by applying a constant surface load

Fpre pointing to the bottom on the lower face in the setting of Fig. 8.42. The value of Fpre

corresponding to αpre has to be estimated by numerical experiments.

This step is again solved as a static problem. The result is a similar muscle geometry

as the original one, and contains prestress according to the applied force. The muscle

volume is exactly preserved due to the incompressible material formulation. Figure 8.42b

shows the starting point for the second step by the black wireframe mesh and the resulting

geometry for a total applied force of Fpre = 30 N by the red volume. The comparison of the

original, black mesh in Fig. 8.42a with the red volume in Fig. 8.42b shows a good match

of the geometry. For the subsequent dynamic simulations of, e.g., muscle contraction, the

surface load has to be constantly applied. It corresponds to the tendon forces and the

loads of the musculoskeletal system acting on the muscle.

The active stress parameter αpre and the corresponding preload force Fpre can be chosen

according to the desired amount of prestress. However, the higher these values are

chosen, the more difficult is it for the nonlinear solid mechanics solvers to converge to

a solution. Especially for irregular or large mechanics meshes, a lower stress factor of,

434 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

(a) In the first step, the original mesh (black

wireframe) is contracted by an artificial ac-

tive stress αpre Smax,active to yield a short-

ened muscle (yellow mesh).

(b) In the second step, the mesh is extended

again by an external surface load. The

black wireframe corresponds to the yellow

volume in (a), the red volume is the result-

ing geometry.

Figure 8.42: Simulation of biceps muscle geometry with prestress: The two steps of the

algorithm to generate a reference geometry with prestress, shown with the

geometry of the tendons for reference.

e.g., αpre = 0.1 has to be chosen. To improve convergence, we apply the load in the

second step of the algorithm incrementally by several load steps. In addition, reducing

the number of unknowns and increasing the mesh width in the mechanics problem can

help, as this improves the conditioning of the problem.

8.6 SIMULATION OF COUPLED ELECTROPHYSIOLOGY AND SOLID MECHANICS 435

8.6.3 Coupling of the Multidomain Model and Solid Mechanics

Model with Prestress

In the following, we present a scenario that uses the prestress algorithm of the last section

and couples the multidomain and mechanics models to simulate surface EMG signals on

the skin surface over a contracting muscle.

We choose αpre = 0.1 and apply the prestretch force Fpre = 10N in three load steps.

The multidomain model considers 5 MUs with stimulation frequencies between 7 Hz and

24 Hz and a 3D mesh of 8× 8× 28 = 1792 elements. We execute the simulation with

four processes. All other parameters and settings of the multidomain model and the solid

mechanics model that are not explicitly mentioned in the following are chosen the same

as in Sec. 8.5.1 and Sec. 8.2.1.

For the discretization of the mechanics model, we use a coarser mesh than for the

multidomain model. Furthermore, we use quadratic elements instead of linear elements.

The Python implementation of the settings script of this example contains functionality to

create the mechanics mesh by subsampling the multidomain mesh with specified factors.

In the current scenario, we set these factors for the x , y and z directions to 0.7, 0.7, and

0.3, respectively. As a result, we get meshes with 5×7×9= 315 elements for the muscle

and 5× 1× 4= 20 elements for the body fat domain. Figure 8.43a visualizes all meshes

used in this scenario: The orange muscle mesh and the red body mesh are used for the

multidomain model, and the yellow mesh is used for the solid mechanics model.

Figures 8.43b and 8.43c depict results of the simulation at time t = 920 ms. Fig-

ure 8.43b shows the reference geometry by the yellow wireframe after applying the

prestress. The muscle is colored according to the value of the second Piola-Kirchhoff

stress. During this dynamic simulation, the muscle bends elastically slightly to the left

and right, as it is only fixed at its bottom in Fig. 8.43. This explains the stress distribution

at the snapshot for t = 920ms in Fig. 8.43b, where higher stresses occur on the right-hand

side.

Figure 8.43c shows the electric potential φb of the body domain by the green color

scale on the left of the image. The visible part of the fat layer shows two action potentials,

visualized by the two dark green stripes.

Moreover, Fig. 8.43c displays the total active stress Sactive in the interior of the muscle

by the color scale that ranges from blue to red color. In the multidomain model, Sactive

436 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

(a) Multidomain meshes

of the muscle domain

(orange), body fat do-

main (red) and the

coarser mesh used for the

solid mechanics model

(yellow).

(b) Reference configuration

(yellow mesh) and cur-

rent configuration of the

muscle colored according

to the distribution of the

second Piola-Kirchhoff

stress.

(c) Electric potential φb in the

body domain (green color

scale, in millivolts) and ac-

tive stress in the interior of

the muscle (blue-red color

scale, in N

cm2).

Figure 8.43: Simulation of muscle contraction based on the multidomain model with

prestressed muscle geometry: Used meshes and simulation results at t =
920 ms of a scenario of the multidomain electrophysiology model coupled

to the solid mechanics model.

8.6 SIMULATION OF COUPLED ELECTROPHYSIOLOGY AND SOLID MECHANICS 437

is calculated as a weighted sum over the contributions Sk
active

of the MU compartments,

scaled by the occupancy factors f k
r (cf. Sec. 5.1.4):

Sactive =

NMU∑

k=1

f k
r Sk

active
.

The muscle domain in Fig. 8.43c is cut open, such that interior distribution at the cut plane

can be seen. The image shows two regions of higher active stress, which run vertically

through the muscle, given by red color. They are a result on the location of the MUs in

this scenario. The legend shows that the active stress inside the muscle is below 0.4 N

cm2 ,

while the maximum active stress parameter is chosen as Smax,active = 7.3 N

cm2 . This low

activation level is a result of the chosen MU recruitment. As a result, the muscle only

slightly contracts, as can be seen in Fig. 8.43b.

In summary, both the fiber based electrophysiology model and the multidomain model

can be coupled with the nonlinear solid mechanics model to simulate muscle contraction,

as presented in Sec. 8.6.1 and in this section. The computational efficiency considerations

discussed in the comparison of the fiber based and multidomain approaches in Sec. 8.5.3

also apply to coupled simulations with muscle contraction. For longer simulation times,

the fiber based approach in Sec. 8.6.1 is, therefore, favored.

How To Reproduce

The simulation can be run with the following commands. Instead of four processes

also other numbers are possible. A lot of parameters can be fine-tuned in the ../

variables/multidomain.py settings file.

cd $OPENDIHU_HOME/examples/electrophysiology/multidomain/

,→ multidomain_prestretch/build_release
mpirun -n 4 ./multidomain_prestretch ../

,→ settings_multidomain_prestretch.py multidomain.py

438 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

8.6.4 Coupling of Solid Mechanics Models using the Software

preCICE

One problem of multi-scale simulations with solid mechanics models is the limited amount

of parallelism, if a coarse mechanics mesh with a low number of elements is chosen. The

domain can only be partitioned into as many subdomains as there are elements in the

3D mechanics mesh. While this is not an issue for small scale simulations like the ones

shown in the previous sections, it prohibits exploitation of High Performance Computing

resources, e.g., if numerous muscle fibers are considered as in Sec. 8.4.4.

The reason for the limited parallelism lies in the partitioning scheme, where every node

in the 3D domain corresponds to the subdomain of exactly one process, regardless of the

mesh. OpenDiHu does not allow to partition, e.g., the finely resolved 1D muscle fiber

meshes differently than the coarse 3D mechanics mesh. However, this restriction can be

circumvented by using multiple OpenDiHu programs with different partitioning schemes

and by performing the data transfer between the meshes using an external coupling

software.

We provide support for the black-box coupling library preCICE [Bun16]. This open

source library allows mapping data between different meshes, can communicate values

between subdomains that reside on different processors, and implements implicit numeri-

cal coupling schemes with quasi-Newton methods. The implementation is known to scale

well on small-scale clusters and supercomputers. The preCICE library targets a minimally-

invasive approach, where the user application implements a preCICE adapter. Multiple,

potentially different solver codes can be coupled numerically and compute individual

model parts of a joint multi-physics simulation. Moreover, preCICE has an active and

growing community where experiences and codes are shared, and open source adapters

are available for several popular solvers.

This makes the library suited for our use case. We provide two different types of

preCICE adapters in OpenDiHu, one for surface coupling of 2D meshes and one for

volume coupling of 3D meshes. These adapters integrate with the structure of nested

solvers and can be positioned anywhere in the solver tree (cf. Fig. 6.8). The meshes and

variables that are exposed to preCICE can be configured in the settings file.

In the current section, we show how to use the volume coupling adapter to resolve the

initially stated issue of limited scalability for coupled simulations with electrophysiology

and mechanics models. Subsequently, the next section presents a simulation that uses

surface coupling. Details can also be found in [Mai22].

8.6 SIMULATION OF COUPLED ELECTROPHYSIOLOGY AND SOLID MECHANICS 439

We simulate muscle contraction and surface EMG of the biceps muscle using the fiber

based electrophysiology model. To fully exploit the capabilities of an 18-core Intel Core i9-

10980XE processor, we compute the electrophysiology model using 16 processes and the

mechanics model using 2 processes. The data mapping between the differently partitioned

3D meshes is performed by preCICE.

Figure 8.45 shows the structure of the simulation components with the used meshes

and the exchanged variables in this simulation. Two different OpenDiHu programs are

executed at the same time, given by the gray boxes. The program corresponding to the

left box solves the electric conduction problem, given by the bidomain equation Eq. (5.9a)

on the 3D domain and the action potential propagation model, given by the monodomain

equation Eq. (5.11) on a large number of 1D muscle fiber meshes. The 3D and the 1D

mesh in this program are partitioned into 16 subdomains for the 16 processes.

Figure 8.45 visualizes the meshes and their partitioning to the different processes by

the colored inset images. It can be seen that the fibers meshes and the 3D mesh used in

the OpenDiHu program in the left box have corresponding subdomains.

The second OpenDiHu program visualized by the right box in Fig. 8.45 only solves the

solid mechanics problem using a coarse 3D mesh. The mesh of this problem is partitioned

to two processes, as shown by the image.

The three model parts are numerically coupled and need to exchange several variables.

The action potential propagation model, shown at the lower left of Fig. 8.45, computes the

transmembrane voltage Vm and the activation parameter γ and maps them from the 0D

points on the fibers to the 3D mesh using the mapping scheme described in Sec. 7.8. The

activation parameter γ is needed in the solid mechanics model. It is transferred between

the two OpenDiHu programs using the functionality of preCICE. After the solid mechanics

solver has computed a new deformation of the coarse solid mechanics mesh, preCICE

maps the node positions to the finer 3D mesh in the left program. The geometries of the

3D and 1D meshes in the left program are updated accordingly. The preCICE couplings in

this example use serial explicit coupling and radial basis functions for the data mapping.

The presented scheme in Fig. 8.44 allows us to simulate muscle contraction and surface

EMG signals. The volume coupling with preCICE is configured between the two 3D

meshes. Even for scenarios where EMG signals are not of interest and only the muscle

contraction resulting from the activated muscle fibers should be simulated, the presented

approach can be used.

440 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

1D Meshes

Action

Potential

Propagation

3D Mesh

Electric

Conduction
Geometry x

Activation γ

Voltage Vm

Activation γ

Geometry x

OpenDiHu

Solid

Mechanics

3D Mesh

OpenDiHu

Figure 8.44: Simulation of muscle contraction: Structure of a coupled simulation with the

coupling library preCICE on 18 processes, consisting of the two independent

OpenDiHu programs indicated by the gray boxes. The program in the left

box solves the electric conduction model using the shown 3D mesh and

the action potential propagation model using the shown 1D fiber meshes.

Both meshes are partitioned to 16 subdomains as shown by the colors. The

program in the right box solves the mechanics problem on a coarse 3D mesh,

which is partitioned into 2 subdomains. The arrows between the models

indicate the exchanged variables. The coupling within the left gray box is

implemented in OpenDiHu, the coupling between the gray boxes is realized

using preCICE.

8.6 SIMULATION OF COUPLED ELECTROPHYSIOLOGY AND SOLID MECHANICS 441

An alternative approach, where preCICE instead couples directly between the fiber

meshes and the solid mechanics 3D mesh is also implemented. This approach neither

includes the electric conduction model nor the fine 3D mesh for the left program. How-

ever, the mapping between the solid mechanics mesh and the set of 1D fiber meshes is

more costly than the mapping between the two 3D meshes, as the fibers contain more

data points in total than the 3D mesh of the electric conduction problem. A quantitative

analysis of this effect is subject to work in progress.

Apart from ensuring better parallel scalability, the OpenDiHu model setup using pre-

CICE also allows to exchange the solid mechanics solver by a different solver code, e.g., a

commercial solver. The black-box approach of preCICE allows to exchange the mechan-

ics solver without any changes to the electrophysiology simulation, contributing to the

extensibility goal of combining modular model components.

How To Reproduce

The two programs with preCICE coupling can be used as follows. Note that the com-

pilation of preCICE has to be enabled in the user-variables.scons.py configuration

file for the scons build system in the $OPENDIHU_HOME directory.

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/

,→ fibers_contraction/with_precice_volume_coupling/build_release
mpirun -n 2 ./muscle_contraction ../settings_muscle_contraction.py

,→ ramp.py
mpirun -n 16 ./fibers_with_3d ../settings_fibers_with_3d.py ramp.py

442 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

8.6.5 Simulation of a Muscle-Tendon Complex using Surface

Coupling with preCICE

In all previously presented simulations of muscle contraction, the biceps muscle was

considered in isolation. In the following, we present a physiologically more correct

scenario that includes a 3D description of the tendon mechanics. The simulation consists

of four individual solvers in OpenDiHu for the distal tendon, the two proximal tendons,

and the muscle belly. The coupling library preCICE is used to numerically couple the

parts.

An advantage of simulations of an entire muscle-tendon complex is their more realistic

line of action of the muscle force, compared with a model of the muscle belly without

tendons. The goal of the simulation described in this section is to predict the progression

of the total muscle force as result of MU recruitment.

For the simulation of the muscle contraction part, we couple the fiber based electro-

physiology model with the nonlinear solid mechanics model as described in Sec. 8.6.1.

The electrophysiology part of the muscle uses the subcellular model of Shorten et al.

[Sho07]. The solid mechanics description of the three tendons uses the hyperelastic

Saint-Venant Kirchhoff material, which is the extension of the linear elastic formulation

given in Sec. 5.2.5 to the geometrically nonlinear regime. The proximal tendons are

fixed at their insertion points to the skeletal system. We apply corresponding Dirichlet

boundary conditions. At the lower end of the distal tendon, a downwards pulling force

is applied. We gradually increase the value of this force in the corresponding Neumann

boundary conditions from zero up to the maximum value 100 N during the first 100 ms

of the simulation.

The muscle fibers are associated with 10 MUs and activated in a ramp during the first

1.8 s. After each MU has been activated for the first time, it fires with a MU specific

frequency between 7.66 Hz and 23.92 Hz plus a random jitter value of 10 %. This setup

replicates the progressive recruitment scenario in [Klo20].

The four simulation programs are connected using an implicit Neumann-Dirichlet multi-

coupling scheme in preCICE with a constant relaxation factor of 0.5. At the interfaces

between the muscle and the tendons, the implicit numerical coupling ensures continuity

for the displacements, velocities and stresses. The tendon solvers send their computed

displacement and velocity values to the muscle model, where the corresponding Dirichlet

8.6 SIMULATION OF COUPLED ELECTROPHYSIOLOGY AND SOLID MECHANICS 443

boundary conditions are applied. The muscle model computes traction forces by integrat-

ing the stress values over the surface and sends the values to the tendon models, where

corresponding Neumann boundary conditions are applied.

We configure preCICE to use Gaussian radial basis functions for the consistent mapping

of the variables between the surface meshes of the muscle and the tendons. An error

threshold of ǫ = 0.1 for the coupled displacement values is used to terminate the implicit

coupling scheme. As a consequence, the scheme requires approximately two iterations

per timestep on average to reach the error threshold. The coupling step is repeated with

a timestep width of dtcoupling = 1ms.

We simulate two scenarios of this model. The first scenario considers a high spatial

resolution of 1089 muscle fibers and a simulation time of approximately 1 s, while the

second scenario considers only 81 fibers but a longer simulation time span of 10 s.

In the first scenario, we use a 3D mesh with 9 × 9 × 21 = 1701 nodes, which are

partitioned into 160 subdomains. The meshes of the three tendons each consists of 125

nodes and are each partitioned to four subdomains. We run the computation using 172

processes on four compute nodes of the supercomputer Hawk at the High Performance

Computing Center Stuttgart. The hardware is described in more detail in Sec. 8.4.4. The

simulation time span of 1 s has a runtime of approximately 7h 20 min.

Figure 8.45 presents the simulation results of this scenario at the simulation time

t = 1.05 s. Figure 8.45a shows the muscle fibers, which are attached to the tendons at

both ends. Several action potentials can be seen on the fibers. Figure 8.45b displays the

distribution of active stresses in the 3D mesh at the same simulation time. One vertical

red line of higher active stress values can be seen at the foreside of the muscle belly,

which corresponds to a region of higher muscle activity. This muscle activity results from

a MU that is activated early on in the simulation scenario. A corresponding active fiber

at that location can also be identified in Fig. 8.45a. Figure 8.45c visualizes the parallel

partitioning of the 3D domains of muscle and tendons into 160 subdomains for the muscle

mesh and 4 subdomains for each of the three tendon meshes.

The second scenario uses a coarser 3D mesh with 525 nodes and a parallel partitioning

into eight subdomains. We simulate the resulting muscle force, measured at the top

insertion point of the proximal tendons, over a longer time period of 10 s. Figure 8.46

shows the resulting relative force progression over time. The plot shows the total force

as a moving average function over 0.1 s. It can be seen that the force initially increases,

as more and more MUs get activated. A short delay between the onset of the last MU

at 1.8 s and the maximum force at 2.39 s can be seen. The muscle force exhibits large

444 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

(a) Muscle fibers colored by the

value of the transmembrane

potential Vm.

(b) Active stress in the 3D

muscle mesh.

(c) Parallel partitioning

scheme.

Figure 8.45: Simulation of a muscle-tendon complex. Muscle and tendon geometries

of the scenario with 1089 muscle fibers, embedded in the skeletal system

comprising the ulna bone (lower end) and humerus bone (upper end), result

of the simulation at t = 1.05 s.

oscillations during the period of high muscle activation. They result from the lower firing

frequencies of the later activated, large MUs and their higher contribution to the overall

activity, compared to the smaller MUs.

Figure 8.46 also shows that the generated muscle force rapidly decreases after the

maximum is reached. This is a result from muscle fatigue, which is described by the

Shorten subcellular model. The observed decrease to below 60 % after 10 s can also be

found in experimental studies of healthy subjects, e.g., in [Eno08].

In conclusion, several biophysical simulation scenarios of MU activity induced muscle

contraction have been presented in the previous sections. OpenDiHu allowed us to couple

the computationally efficient fiber based electrophysiology description with the solid

mechanics model of muscle deformation, as well as the biophysically more accurate

multidomain model. An algorithm to include prestresses was presented and the coupling

software preCICE was used to numerically couple individual parts of the multi-scale

8.6 SIMULATION OF COUPLED ELECTROPHYSIOLOGY AND SOLID MECHANICS 445

0 2 4 6 8 10
time [s]

0

20

40

60

80

100

fo
rc

e
[%

]

Figure 8.46: Simulation of muscle force in a muscle-tendon complex. Resulting relative

muscle force of the biceps muscle with attached tendons using the second

scenario with 81 muscle fibers.

model.

The last presented scenario simulated the generated force of a muscle-tendon complex

for a simulation time span of 10 s. It can be used in the future to test hypotheses on

the influence of various processes along the pathway from MU recruitment over muscle

activation to force generation and macroscopic deformation. The simulated force pro-

gression related to the maximum voluntary contraction force is a macroscopic quantity,

which can be easily measured in in vivo studies. Thus, a connection between the sim-

ulation domain and the experimental domain is given, and the microscopic subcellular

processes in the muscle fibers are linked to a quantifiable outcome that can be compared

with experiments.

446 CHAPTER 8: NUMERICAL RESULTS AND DISCUSSION

How To Reproduce

The simulations in this section were carried out on the supercomputer Hawk in

Stuttgart. The job scripts can be found in the repository at

github.com/dihu-stuttgart/performance in the directory opendihu/15_precice_biceps

/with_electrophysiology. To run similar simulations on other computers, run com-

mands that are similar to the following (adjust the numbers of processes):

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/

,→ fibers_contraction/with_tendons_precice/
,→ multiple_tendons_with_electrophysiology
mpirun -n 1 muscle_electrophysiology_precice settings_muscle.py ramp

,→ .py
mpirun -n 1 tendon_linear_precice_dynamic settings_tendon_bottom.py

mpirun -n 1 tendon_linear_precice_dynamic settings_tendon_top_a.py

mpirun -n 1 tendon_linear_precice_dynamic settings_tendon_top_b.py

https://github.com/dihu-stuttgart/performance

447

Chapter 9

Performance Analysis

In this chapter, we measure the performance of all implemented solvers and evaluate the

different actions that were carried out to improve their runtimes and memory characteris-

tics. We consider the performance of instruction-level parallelism, evaluate parallelization

strategies for shared and distributed memory parallelism, offloading to a GPU, and hybrid

CPU-GPU approaches. We measure weak and strong parallel scaling from using small

distributed-memory systems up to the large supercomputers Hazel Hen and Hawk at the

High Performance Computing Center Stuttgart. Furthermore, we consider the numerical

scaling behavior of several solvers.

Section 9.1 presents numerical studies and improvements in the baseline software

OpenCMISS. The numerical properties found in this section are later also used in sim-

ulations with OpenDiHu. Section 9.2 evaluates the runtime performance and various

optimization options for the electrophysiology solver in OpenDiHu. The best found opti-

mizations are then compared to the OpenCMISS baseline solver in Sec. 9.3. Section 9.4

addresses the computation on the GPU and compares the performance with the CPU

computations. Section 9.5 conducts parallel weak scaling studies on supercomputers.

Section 9.6 evaluates options and corresponding speedups in the solver of the mechan-

ics model. Section 9.7 conducts numerical studies for the fiber based electrophysiology

model and evaluates different solvers for the multidomain model.

9.1 Performance Studies with OpenCMISS Iron

We begin with performance studies on OpenCMISS Iron as the baseline solver, which

also implements parts of the multi-scale model considered in this work. The work of

[Hei13] describes the implementation of the fiber based electrophysiology model coupled

to a quasi-static hyperelastic material model with OpenCMISS. The implementation is

448 CHAPTER 9: PERFORMANCE ANALYSIS

parallelized for a hard-coded number of four processes and serves as the baseline code

for the following studies.

We improved the performance of this solver for the multi-scale model by two actions:

First, we evaluated and optimized the employed numerical schemes. Second, we imple-

mented parallel partitioning for an arbitrary number of processes and evaluated different

parallelization strategies. These changes were directly implemented in the OpenCMISS

code. The improvements were also presented in a publication [Bra18]. In the following

sections, Sections 9.1.1 and 9.1.2, we describe the numerical improvements and the par-

allel partitioning strategies. In Sec. 9.1.3, we discuss parallel weak scaling and memory

consumption properties.

9.1.1 Numerical Improvements

The first numerical improvement is to replace the GMRES solver, which is used to solve

the 1D electric conduction problem on the muscle fibers, by a faster direct solver.

As observed in Sec. 7.4.2, the 1D electric conduction problem of the monodomain

equation yields a tridiagonal system that can be solved with linear time complexity. The

baseline solver code employs the restarted GMRES solver of PETSc, which is the default

linear system solver in OpenCMISS Iron, as it is a robust choice for arbitrary system

matrices. However, more efficient solvers for symmetric positive definite systems exist

such as the conjugate gradient solver. Furthermore, the MUMPS package [Ame01], which

can be interfaced in PETSc, provides a parallel implementation of a direct, multi-frontal

linear solver, which is able to exploit the banded structure of the system matrix.

We study the runtime of these three solvers for different problem sizes of the 1D

problem. The monodomain equation is solved on a single muscle fiber and the number

of 1D elements is varied from 15 to 2807. The used timestep widths are dt0D = 10−4 ms

and dt1D = 5 · 10−3 ms. The end time of the simulation is 3ms, yielding a total of 600

calls to the linear solver in the simulated time. The study is executed on an Intel Xeon

E7540 processor with 24 cores, clock frequency of 1064 MHz and 506 GiB RAM.

Figure 9.1 shows the runtimes of GMRES, the conjugate gradient solver and the direct

solver for this problem in a double-logarithmic plot. It can be seen, that, for coarse

discretizations with a low number of 1D elements per fiber, GMRES and the conjugate

gradient solver are faster than the direct solver. For finer discretizations, the conjugate

gradient solver and the direct solver outperform the GMRES solver. For fibers with more

9.1 PERFORMANCE STUDIES WITH OPENCMISS IRON 449

101 102 103

Number of 1D elements per fiber

10 1

100

101

Ru
nt

im
e

[s
]

GMRES solver
Conjugate gradient solver
Direct solver

Figure 9.1: Numerical improvements in OpenCMISS: Runtime evaluation of different

linear system solvers for a single muscle fiber with varying spatial resolution.

than approximately 500 elements, the direct solver has the lowest runtime. Moreover,

the direct solver exhibits an almost linear runtime complexity in terms of the problem

size. This indicates that the solver is able to exploit the tridiagonal structure of the system

matrix.

The second numerical improvement is the exchange of first-order accurate timestep-

ping schemes by second-order schemes. For this exchange, we implemented the Strang

operator splitting scheme and use it with the existing Crank-Nicolson implementation in

OpenCMISS Iron and a new implementation of the Heun method by Aaron Krämer.

Numerical studies by Aaron Krämer presented in [Bra18] show that the relation K =

dt1D/dt0D between the timestep width dt1D of the 1D electric conduction problem and the

timestep width dt0D of the 0D subcellular model has to be set to K = 2 and K = 5 for the

Godunov and Strang splitting schemes, respectively, such that the errors of the 0D and

1D subproblems are balanced. To achieve a total error for the membrane potential Vm

of approximately 8 · 10−2, we can increase the required splitting timestep width dtsplitting

from 5 · 10−4 ms for the Godunov splitting to 4 · 10−3 ms for the Strang splitting scheme.

This results in a runtime speedup of approximately 7.5.

To evaluate the total speedup of the described numerical improvements, we compare

the runtimes without and with the improvements for a complete simulation of the fiber

based electrophysiology model coupled with the elasticity model. A cuboid 3D domain

is discretized by 2 × 2 × 2 = 8 finite elements for the elasticity model, and we embed

6× 6= 36 1D fiber meshes. The number of 1D elements per fiber is varied between 576

450 CHAPTER 9: PERFORMANCE ANALYSIS

and 239 400 to study the scaling behavior of the solvers related to the problem size. The

problem is solved in serial to avoid runtime effects introduced by the parallelization.

The baseline implementation uses the Godunov splitting with forward and backward

Euler schemes for the 0D subcellular model and the electric conduction model, respec-

tively. The linear system in the 1D problem is solved by a GMRES solver with rel-

ative residuum tolerance of 10−5 and restart after 30 iterations. Timestep widths of

dt0D = 10−4 ms and dtsplitting = dt1D = 5 · 10−4 ms are used. The improved scheme uses

the Strang operator splitting with Heun and Crank-Nicolson schemes and timestep widths

of dt0D = 2 · 10−3 ms and dtsplitting = dt1D = 4 · 10−3 ms. The direct solver is used for the

linear system in the 1D problem. The solver for the 3D elasticity problem is the same

for both implementations: A Newton scheme with residual tolerance of 10−8 is used and

coupled to the 0D and the 1D solver with a coupling timestep width of dt3D = 1ms.

The present study and the studies in the next section are executed on the supercom-

puter Hazel Hen at the High Performance Computing Center Stuttgart. This Cray XC40

system contains compute nodes with two Intel Haswell E5-2680v3 processors with a base

frequency of 2.5 GHz, 12 cores per CPU, 24 cores per compute node and 128 GB RAM

per node.

Figure 9.2 shows the results of this study. In the upper part, the runtimes for different

components of the simulation are indicated by different colors in a plot with double

logarithmic scale. The runtimes for the baseline implementation are shown by solid lines

and the runtimes of the implementation where the improvements have been incorporated

are shown by dashed lines. In the lower plot, the speedups from the baseline to the

improved implementation are given.

The total runtime of the simulation is given by the black lines in the upper plot. It can

be seen that the total runtime results almost completely from the 0D model solver, which

is shown by the yellow lines. The 1D solver, given by the red lines, has the second highest

contribution. The effects of the data mapping operations between the 3D mesh and the

1D fibers on the runtime are negligible. These data mapping operations consists of the

homogenization step from the 1D fibers to the 3D mesh and the interpolation step from

the 3D mesh to the 1D fibers.

The runtimes for almost all problem parts increase linearly for increasing mesh resolu-

tion of the 1D fibers. Only the runtime of the 3D problem stays constant, as the 3D mesh

is unchanged for the different runs.

9.1 PERFORMANCE STUDIES WITH OPENCMISS IRON 451

103 104 105 106

10 3

10 2

10 1

100

101

102

103

104

R
u
n
ti

m
e
 [

s
]

Baseline implementation

Improvements

Total

Solver 0D model

Solver 1D model

Solver 3D model

Homogenization, 1D to 3D

Interpolation, 3D to 1D

103 104 105 106

Number of 1D elements per fiber

23

S
p
e
e
d
u
p
 [

-]

6.1

14.7

2.4 2.5

Figure 9.2: Numerical improvements in OpenCMISS: Study to evaluate the speedup of the

improved implementation of the fiber based electrophysiology and mechanics

model in OpenCMISS.

Significant runtime improvements of the new implementation compared to the baseline

implementation can be seen in the lower plot of Fig. 9.2 for the 0D solver and the 1D

solver. The speedup for the 0D solver is constant at approximately 2.5. The speedup

resulting from the improved linear system solver in the 1D problem is approximately 6.1

for coarse meshes and increases to 14.7 for the finest mesh. This increase for high mesh

resolutions results from the higher runtime of the GMRES solver for large problem sizes

in the baseline implementation. The overall speedup is similar to the speedup of the

0D problem, as the 0D solver exhibits the dominant runtime contribution to the overall

computation.

This study shows how numerical investigations can help to reduce the total runtime, in

this case by a factor of 2.5. Moreover, the solver of the 0D model has the highest potential

for improvements that further speed up the computation.

452 CHAPTER 9: PERFORMANCE ANALYSIS

9.1.2 Parallel Partitioning Strategies

To exploit parallelism and, thus, further reduce the computation times, we implemented

a generic domain decomposition for the studied problem in OpenCMISS Iron. Like in

OpenDiHu, the 3D mesh can be partitioned to an arbitrary number of nx × ny × nz sub-

domains. The embedded 1D fibers are aligned with the z axis and are partitioned by the

same cut planes as the 3D mesh.

nz = 1ny

nx

(a) “Pillar-like” domain decomposition with

nz = 1.

nzny

nx

(b) “Cube-like” domain decomposition.

Figure 9.3: Fiber-based electrophysiology and mechanics model in OpenCMISS: Differ-

ent partitioning strategies for parallelization that have been implemented in

OpenCMISS. This figure shows two approaches to partition the domain into

16 subdomains.

Figure 9.3 shows two exemplary partitioning approaches. If the domain is only parti-

tioned in x and y direction, the individual fibers are not split into multiple subdomains.

As a result, we get “pillar” subdomains as shown in Fig. 9.3a. An alternative approach is

to subdivide the domain in all three coordinate directions, such that the subdomains are

approximately cuboid, as shown in Fig. 9.3b.

OpenCMISS Iron already provides the functionality to create parallel partitioned, un-

structured meshes. However, every mesh has to be partitioned into non-empty subdo-

mains for all processes. Thus, it is not possible to use individual meshes for the 1D fibers.

In the baseline implementation of the model by [Hei13], all 1D fiber meshes are however

realized as a single mesh, whose node positions are set according to the positions of the

individual fibers. This facilitates the implementation of the 0D subcellular model solvers

and 1D model solvers, as the implementation has to deal with only a single mesh.

To allow for an arbitrary partitioning as in Fig. 9.3, we assigned the 1D elements of

the single fiber mesh to the same processes as the corresponding subdomains of the 3D

9.1 PERFORMANCE STUDIES WITH OPENCMISS IRON 453

mesh. Furthermore, we reimplemented the data mapping between the 1D mesh and the

3D mesh, which was hard-coded for four processes.

In the following, we investigate the effect of different partitioning strategies on the

overall runtime of the solver. The idea is that, for pillar-like partitionings as in Fig. 9.3a,

the 1D problems could potentially be solved faster, as the fibers, which are aligned in

z-direction, are not subdivided to multiple processes. On the other hand, the partitioning

to cubes in Fig. 9.3b requires less communication in the solution of the 3D problem as

the cubes minimize the surface of each subdomain and, in consequence, the amount

of data to be exchanged. We evaluate how these effects influence the runtimes for the

pillar-like partitioning, the cube partitioning and all other possible partitionings specified

by numbers of subdomains nx × ny × nz.

Our test case uses a 3D mesh with 12 × 12 × 144 elements. To reduce the runtime

contribution of the 0D/1D electrophysiology problem and the memory consumption of

the solver, only two 1D elements per 3D element are included. The numerical parameters

are the same as for the improved scenario presented in Fig. 9.2. The simulations are

executed on 12 compute nodes of the supercomputer Hazel Hen with 12 processes per

node.

We partition the 3D domain to 144 processes using different combinations of nx , ny and

nz such that nx ny nz = 144. For every partitioning, we compute the average surface area

of the boundary of every subdomain. Figure 9.4 shows the resulting runtime in relation

to this average boundary area. The pillar-like partitioning uses 12× 12× 1 subdomains

and exhibits the largest boundary surface area, corresponding to the last point in Fig. 9.4.

The cube partitioning consists of 6× 6× 4 subdomains and corresponds to the first data

point with the smallest boundary area.

The plot shows that the runtime of the 3D solver increases approximately linearly

with the amount of communication, which is expected. The partitioning with the largest

average surface area has a runtime that is approximately four times larger than the

runtime for the smallest surface area.

Moreover, the plot shows that the partitioning scheme has no significant influence on

the runtime of the 1D solver. The reason is that the implementation does not fully reflect

the decoupled nature of the individual problems of the fibers. As noted before, one big

linear system has to be solved that contains the degrees of freedom of all fibers. The

degrees of freedom are ordered by PETSc, such that the nodes within every subdomain

1This figure and the following figures have also been published in [Bra18] under a creative commons

license.

454 CHAPTER 9: PERFORMANCE ANALYSIS

Figure 9.4: Fiber-based electrophysiology and mechanics model in OpenCMISS: Runtime

of the solvers for different partition shapes, from cube partitions on the left

to pillar partitions on the right.1

are consecutive. If a subdomain contains (parts of) multiple fibers, the degrees of freedom

of a single fiber are not necessarily consecutive in the solution vector and communication

is required in the linear solver.

9.1.3 Weak Scaling Study and Memory Consumption

Next, we evaluate the parallel weak scaling properties of the overall solver. We increase

the number of elements in the 3D mesh from 1232 to 8640 and the total number of

1D elements in all fibers from 14 784 to 103 680. Correspondingly, the number of pro-

cesses increases from 24 to 192, such that the amount of work per process stays approxi-

mately constant. Each scenario is computed with two different partitioning schemes, once

with pillar-like partitioning and once with cuboid partitioning. For the exact problem

sizes, numbers of cores and numbers of elements in the partitions, we refer to the paper

[Bra18].

Figure 9.5 shows the resulting runtimes of the different components of the simulation.

It can be seen that the runtime stays approximately the same for all problem sizes. The

observable differences in runtime within the same solver, especially for the last two data

9.1 PERFORMANCE STUDIES WITH OPENCMISS IRON 455

Figure 9.5: Fiber-based electrophysiology and mechanics model in OpenCMISS: Parallel

weak scaling study of a scenario with the pillar and cube partitionings.

points, can be explained by slightly different ratios of element counts to process counts,

which result from the goal to use the pillars and cube partitioning schemes while not

exceeding the available main memory.

The runtimes of the pillar and cube partitioning schemes are depicted by dashed and

solid lines, respectively. The pillar partitioning exhibits shorter runtimes for the 1D solver

and longer runtimes for the 3D solver compared to the cube partitioning. In total, the

runtime is not significantly different for the different partitioning strategies.

A limiting factor for the construction of weak scaling studies with this implementation

is the high memory consumption. Figure 9.6 shows the total memory consumption per

process at the end of the runtime of the simulations in Fig. 9.5. The used memory is

visualized by purple lines. The dashed line again corresponds to the pillar partitioning

and the solid line corresponds to the cube partitioning.

A difference between the pillar partitions and the cube partitions is the size of the

subdomain surfaces and the corresponding size of the ghost layer. Fig. 9.6 shows the

number of 3D ghost elements for the scenarios with cubes and pillars by the black lines.

In OpenCMISS, a ghost element on a process is an element that contains ghost nodes,

which are owned by a different process. The ghost elements serve as data buffers for com-

munication during the assembly of the finite element matrices, similar to OpenDiHu.

456 CHAPTER 9: PERFORMANCE ANALYSIS

Figure 9.6: Fiber-based electrophysiology and mechanics model in OpenCMISS: Memory

consumption per process at the end of the simulation corresponding to the

weak scaling study of Fig. 9.5

The plot in Fig. 9.6 shows that the number of ghost elements is higher for the pillar

partitioning scheme than for the cubes scheme, as expected. As a consequence, the mem-

ory consumption per process is also slightly higher for the pillar partitioning. However,

this effect is negligible compared to the high absolute value of the required memory and

does not explain this effect.

As can be seen, the memory consumption per process monotonically increases with the

total number of 1D elements. At the same time, however, the number of elements per

process stays approximately constant in this weak scaling setting. The last data point is

close to the memory limit of 128 GB/24≈ 4.967 GiB, which is reached when 24 processes

are executed on a compute node of the supercomputer Hazel Hen.

The observed large increase in memory consumption results from the organization of

parallel partitioned data in OpenCMISS Iron. On every process, global mesh topology

information such as mappings between global indexing and local indexing is stored for

the element numbers, node numbers and degree of freedom numbers. While this over-

head in storage is negligible for moderately parallel scenarios, it counteracts the domain

decomposition approach for higher degrees of parallelism.

Numerous functions and algorithms in the OpenCMISS Iron code rely on this type of

global information. Thus, eliminating the parallelism constraint by reorganizing the data

structures is a highly involved task. Especially the initialization of the parallel partitioning

9.1 PERFORMANCE STUDIES WITH OPENCMISS IRON 457

heavily uses this global information. This initialization includes, e.g., the distribution of

elements and nodes to the subdomains on the processes, the determination of the ghost

layers and dofs to send to and receive from neighbor processes, and the setup of local

numbers for elements, nodes and degrees of freedom.

We addressed the elimination of this use of global topology information in the initializa-

tion steps and developed and implemented appropriate local algorithms in OpenCMISS

Iron. This resulted in major code changes that are difficult to oversee, also because of

the lacking object orientation in the code base and the difficulty to comprehensively test

the functionality. Creating the required set of unit tests for nearly all functionality of

OpenCMISS would be a large task that remains to be done. Thus, these code changes

could not be merged into the main trunk of OpenCMISS.

Even with these code changes, the memory problem is not yet solved. Another problem

prior to the initialization step is that the mesh has to be specified from the user code in a

global data structure. It is currently not possible to specify a mesh in a distributed way.

Thus, OpenCMISS Iron can only use meshes that initially fit into the main memory on

every single core.

Moreover, another issue is concerned with the data structures for matrices. Each process

stores its local row indices and additionally a map from global to local row indices for

all dofs of the global problem. This global-to-local map also contributes to the bad weak

memory scaling and has to be eliminated as well. One possible approach is to use hash

maps and only store the relevant portion of the mapping on every process. Work towards

resolving this issue has been started by Lorenzo Zanon at the former SimTech Research

Group on Continuum Biomechanics and Mechanobiology at the University of Stuttgart.

One reason for the generic mapping of matrix rows, which uses global information,

is that OpenCMISS Iron does not restrict discretization schemes to the finite element

method, where the system matrix can be assembled from local element matrices within

the subdomains. An example for a different supported scheme is the boundary element

method.

In addition, there exist more parts in the code that use a similar global-to-local mapping

and would also have to be changed to allow for a constant memory consumption per

process, e.g, the boundary condition handling and the data mapping between the 3D

mesh and the fibers.

In summary, fixing the issue of non-scaling memory consumption in OpenCMISS Iron,

which was revealed in Fig. 9.6, corresponds to redeveloping a significant portion of the

458 CHAPTER 9: PERFORMANCE ANALYSIS

code. To preserve the generic functionality of OpenCMISS, some changes would require

new algorithmic considerations and complex workarounds. This development effort

would have to be quick enough to keep up with the independent development of the

normal OpenCMISS branch. After completion, the merge back into the main software

trunk would only be possible if the branches had not diverged too far and after significant

efforts have been put into testing and preserving the feature set of OpenCMISS.

On the other hand, developing the missing functionality from scratch and making

sensible restrictions on the generality of the solved problems and used methods requires

possibly less effort and allows considering design goals such as performance, usability

and extensibility from the beginning. In this sense, the OpenDiHu software project can

be seen as a complement to OpenCMISS Iron with better performance characteristics.

The mentioned restrictions for OpenDiHu are, e.g., the exclusive use of the finite element

method and Cartesian coordinates and the use of parallel partitioned structured meshes

instead of the more complex parallelization of unstructured meshes.

9.2 Performance Studies of the Electrophysiology

Solver in OpenDiHu

After the previous studies with OpenCMISS, we now consider the performance of the

OpenDiHu software. In the following sections, we investigate the runtime performance

of the solvers for the electrophysiology part of the multi-scale model in OpenDiHu.

9.2.1 Evaluation of Compiler Optimizations

One difference in the data organization in OpenDiHu compared to OpenCMISS Iron lies in

the transposed memory layout for the storage of multiple instances of the 0D subcellular

model. If the simd optimization type in the CellmlAdapter class is used, the components

of the state vector y of all 0D model instances are stored consecutively. This storage order

is the SoA memory layout, which was described in Sec. 7.6.2. It enables the compiler to

automatically employ SIMD instructions and, thus, exploit instruction-level parallelism.

We study the auto-vectorization performance of the GNU, Intel and Cray compilers

to determine the effect of these SIMD instructions on the total runtimes of the solver.

The simulated scenario consists of one muscle fiber mesh with 2400 nodes, on which

9.2 PERFORMANCE STUDIES OF THE ELECTROPHYSIOLOGY SOLVER IN

OPENDIHU
459

O1 O2
 GNU

O3 Ofast O1 O2
 Intel

O3 Ofast O2
 Cray

O3
0

50

100

150

200

250

300

ru
nt

im
e

[s
]

294s

93s 94s

42s

108s

52s 52s 44s 34s 34s

0D solver
1D solver

Figure 9.7: Electrophysiology Solver in OpenDiHu: Comparison of auto-vectorization in

different compilers. Runtime of the 0D and 1D solvers in the fiber based

electrophysiology model with simd optimization type for different compilers

and optimization flags.

the monodomain equation Eq. (5.11) is solved. The subcellular model of Shorten et

al. [Sho07] is used. The used timestep widths are dt0D = 10−3 ms, dt1D = dtsplitting =

3 · 10−3 ms, and the model is computed up to a simulation end time of tend = 20ms.

We run the study on one compute node of the supercomputer Hazel Hen at the High

Performance Computing Center in Stuttgart. This Cray XC40 system contains two 12-

core Intel Haswell E-2680v3 CPUs with clock frequency of 2.5GHz per dual-socket node,

yielding 24 processors per compute node and contains 128 GB memory per compute

node.

Figure 9.7 shows the runtime of the 0D and 1D model solvers for the three different

compilers with varying optimization flags. As expected, the runtime of the 1D solver is

not affected by the choice of the compiler. The runtime of the 0D solver, however, varies

greatly, as the compilers with different optimization flags are able to vectorize the code

to a different extent.

For all compilers, the runtime decreases when a higher optimization level is chosen. A

significant drop to less than half of the runtime is observed when switching from the O1 to

the O2 optimization level for the GNU and for the Intel compiler. This is mainly the result

of the SIMD instructions, which are enabled starting from the O2 levels. The change to

460 CHAPTER 9: PERFORMANCE ANALYSIS

the aggressive optimization levels O3, which enables all available optimizations such as

inlining and code transformations does not improve the runtime any further, for all three

evaluated compilers. Thus, vectorization is the main driver for good subcellular solver

performance.

Another significant decrease in runtime can be observed for the Ofast optimization

flag. For the GNU compiler, the runtime decreases again to less than half of the previous

value. For the Intel compiler, the decrease is less prominent with approximately 15 %.

The Ofast level performs optimizations that potentially change the behavior of the

code. Especially floating-point arithmetic does no longer comply to the standardization

rules of IEEE and ISO. Only finite numbers can be represented and the compiler is allowed

to perform transformations in formulas that are mathematically correct, but not in terms

of propagating rounding errors. The calculated values are correct as long as no invalid

operations such as divisions by zero occur. The precision may decrease or even increase

compared to O3. This is usually not an issue for the given simulations, however, divergence

of the numerical solvers is not automatically detectable with Ofast in our code as no

infinity values can be represented.

The comparison between the compilers shows that the Intel compiler creates faster

assembly code than the GNU compiler, and the Cray compiler creates faster assembly

code than the Intel compiler for the same optimization levels. The performance of the

Ofast flag is comparable between the GNU and the Intel compiler. In total, the Cray

compiler yields the best performance on the Cray hardware used in this evaluation.

The Cray compiler has a “whole-program mode”, which collects static information about

all compilation units and allows, e.g., application-wide inlining during the linking step.

The faster runtime is traded for longer compilation times. In our example, the compilation

duration increases from approximately 10 min for the GNU and Intel compilers to over

2 h for the Cray compiler.

For all further simulations, we use the GNU compiler with the Ofast optimization

flag, as it is freely available on all systems, has fast compilation times and showed good

performance.

9.2.2 Evaluation of Code Generator Optimizations

Apart from the automatic optimizations by the compiler, the code can also be manually

optimized by using efficient data structures and algorithms. Section 7.6.2 presents various

9.2 PERFORMANCE STUDIES OF THE ELECTROPHYSIOLOGY SOLVER IN

OPENDIHU
461

0 100 200 300 400 500 600
Runtime [s]

openmp-6-3
openmp-6-6
openmp-9-2
openmp-9-4

openmp-18-1
openmp-18-2

simd
vc-sova
vc-aovs

vc-aovs-apx-e
fast-vc

fast-vc-apx-e
fast-gpu

Sc
en

ar
io

427.7 s
440.4 s
336.7 s
339.1 s
233.7 s
242.8 s
230.6 s
216.6 s
217.3 s
205.8 s

43.1 s
15.4 s

396.4 s

0D solver
1D solver
3D solver
total computation

Figure 9.8: Electrophysiology Solver in OpenDiHu: Evaluation of various code optimiza-

tions for the subcellular model solver. Comparison of runtimes for the 0D, 1D

and 3D model solvers with different optimization types in the code generator.

optimization options in our code generator, which potentially have an influence on the

runtime of the subcellular model solver. We compare all optimization options for a

scenario of a comprehensive surface EMG simulation.

The considered scenario solves the monodomain equation Eq. (5.11) on every 1D

muscle fiber domain and is coupled to a 3D mesh where the bidomain equation Eq. (5.9a)

is solved. No body fat domain is considered in this scenario. We simulate 625 muscle

fibers with 1481 nodes per fiber mesh and the subcellular model of Hodgkin and Huxley

[Hod52a]. This leads to a total number of 3702 500 degrees of freedom to be solved

for the 0D and 1D models. We run the code in parallel with 18 processes and a parallel

partitioning of the 3D domain into 3×2×3 subdomains. Thus, every muscle fiber domain

is distributed to three different processes. The 3D mesh contains 5239 nodes. Timestep

widths of dt1D = 10−3 ms, dt3D = dtsplitting = 3 · 10−3 ms and an end time of tend = 10ms

are used, and file output is disabled for this study.

We use an Intel Core i9-10980XE processor with 18 cores, base frequency of 3 GHz,

maximum boost frequency of 4.8GHz, cache sizes of 24.8MiB, 18MiB and 576 KiB and

31 GiB main memory. This processor is listed in the upper price segment of consumer

hardware and can be considered a typical hardware for individual workstations in scien-

tific research.

462 CHAPTER 9: PERFORMANCE ANALYSIS

Figure 9.8 presents the results of the study for all available optimization types in our

code generator. For every scenario, the bar chart shows the runtimes of the 0D subcellular

solver in yellow color, the runtime of the 1D electric conduction solver in red color, the

runtime for the 3D bidomain solver in blue color and the remaining runtime of the

coupled solver scheme, which involves, e.g., data transfer between data structures and

inter-process communication, in gray color. The presented runtimes are averaged over

several runs and over all processes per run.

The first six bars correspond to the openmp optimization type, which places OpenMP

pragmas in the code and employs thread-based, shared memory parallelism. The sce-

nario openmp-i- j refers to i MPI processes in total with j threads on every process. The

problem is partitioned into i subdomains and the j OpenMP threads per subdomain si-

multaneously operate on the shared data structures of the subdomain. As a result, in the

scenarios openmp-6-3, openmp-9-2 and openmp-18-1, 18 threads are executed in total on

the processor with 18 physical cores. The other scenarios, openmp-6-6, openmp-9-4 and

openmp-18-2, employ 36 threads.

It can be seen that each set of two scenarios with the same number i of processes and

varying number j of threads, i.e., openmp-6-3 and openmp-6-6, openmp-9-2 and openmp

-9-4, and openmp-18-1 and openmp-18-2 has similar total runtimes. This shows that the

runtime is reduced mainly as a result of MPI parallelization. The distribution of the

runtime to the solvers allows further insights. Between the two scenarios with the same

number of processes, the runtime of the 0D solver decreases. This is a result of the higher

number of OpenMP threads that is used to perform the same amount of work. At the

same time, the runtimes of the 1D solvers increase, which is due to the multi-threaded

solution of the 1D problem in the solver library PETSc, which we consider as a black

box.

The effect of OpenMP parallelism on the 1D solver is even higher than on the 0D solver

in this example. As the code generator using OpenMP parallelism is only responsible for

the 0D problem, the performance of the 1D problem depends only on the partition size

and workload defined by the parallel partitioning with i MPI processes. A reduction of the

MPI parallelism has more impact on the runtime than the resulting increased parallelism

of the 0D solver. Thus, the scenarios with high degrees of OpenMP parallelism, e.g.,

scenario openmp-6-6, show a worse performance than the scenarios with higher MPI

parallelism, e.g., scenario openmp-18-1.

The next bar in Fig. 9.8 presents the runtime of the simd optimization type. The code

uses the SoA memory layout and the program is run with 18 MPI processes. As in all

9.2 PERFORMANCE STUDIES OF THE ELECTROPHYSIOLOGY SOLVER IN

OPENDIHU
463

scenarios of this study, the GNU compiler with the Ofast flag is used and automatically

vectorizes the subcellular model equations. The simd scenario is very similar to the openmp

-18-1 scenario, except that the OpenMP pragmas are omitted in the generated code. As

a result, the runtimes are also similar to this scenario. A slight reduction in runtime is

seen that results from the missing OpenMP initializations before every loop.

While the simd scenario relies on the auto-vectorization capabilities of the compiler, the

vc scenarios, which are considered next, explicitly employ vector instructions, abstracted

by the Vc and std-simd libraries.

The vc-sova scenario uses the Struct-of-Vectorized-Array (SoVA) memory layout and

the bar chart shows a slightly lower runtime of the 0D solver compared to the Array-of-

Vectorized-Struct (AoVS) memory layout in the vc-aovs scenario.

The next considered scenario is vc-aovs-apx-e. It is the same as vc-aovs except that

the exponential function is approximated by exp∗(x) = (1+ x/n)n for n= 1024, as given

in Eq. (7.7). The results show that this reduces the runtime of the 0D solver from 74.24 s

to 58.02 s, which is a reduction by approximately 22%.

Instead of generating code only for the 0D subcellular model and solving the 1D sub-

cellular model using a direct solver of PETSc, as in all considered scenarios so far, we

can also directly generate combined solver code for the 0D and 1D models and use the

Thomas algorithm for the computation of the 1D model. This is done in the fast-vc sce-

nario and reduces the runtime by a factor of nearly 5. In this approach, the exponential

function can also be exchanged by the approximation in Eq. (7.7). This is done in the

fast-vc-apx-e scenario and further decreases the total runtime to now only 15.4 s.

The two fast-vc scenarios demonstrate the performance of the AVX-512 vector instruc-

tion set that is available on the used Intel processor. The study shows that its potential is

only fully exploited, if the explicit vector instructions are generated in the code, as done

in the vc scenarios.

The solution times for the last two mentioned scenarios can be further reduced if only

those subcellular model instances are computed that are not in equilibrium. If enabled,

this reduction depends on the activation pattern of the fibers. For the sake of the present

study, which aims to compare runtimes of the code generator, this option is not evaluated

and, thus, disabled.

The last considered optimization type in the code generator is presented in the scenario

fast-gpu. In this scenario, the program is only run with one MPI process. The total

computation of the 0D and 1D models is offloaded to a GPU using OpenMP 4.5 pragmas

464 CHAPTER 9: PERFORMANCE ANALYSIS

in the generated code. We use the same simulation scenario and CPU hardware for

this run as for the other scenarios. The used computer is equipped with an NVIDIA

GeForce RTX 3080 GPU with 8704 CUDA cores, 10 GB of memory and a Thermal Design

Power (TDP) of 320 W. The processing power is 29.77 TFLOPS for single precision and

465.1 GFLOPS for double precision operations. We use only double precision operations

for the computation of the models.

In this scenario, only the total runtime is measured. The bar chart shows a total solver

runtime of 396 s, which is slower than the optimized CPU computations. Possible reasons

are that the used GPU is targeted at single precision performance, and that the employed

GPU code by the OpenMP functionality of the GNU compiler is not optimal.

In the previously considered example, which uses the Hodgkin and Huxley subcellular

model with a state vector y ∈ R4, the amount of computational work in the 0D and

in the 1D solver was in the same range. Other 0D subcellular models exist that have

higher workloads. In the next study, we repeat the same measurements as before with the

subcellular model of Shorten et al. [Sho07], which has a state vector y ∈ R57. Whereas

the solver for the model of Hodgkin and Huxley needs to compute 4 ODEs and 9 algebraic

equations in every timestep, the solver for the Shorten model computes 57 ODEs and 71

algebraic equations in every timestep.

As the computational effort to solve one instance of the subcellular model increases, we

adjust the simulation scenario for the next study. We use 49 fibers with 1481 nodes each

and a 3D finite element mesh with linear ansatz functions and a total of 23696 degrees

of freedom. The total number of degrees of freedom in all meshes is 4087 560, which is

similar to the number 3 707739 in the previous study. The simulation end time is 3 ms. For

this subcellular model, smaller timestep widths of dtsplitting = dt1D = dt0D = 2.5 · 10−5 ms

and dt3D = 10−1 ms are used as required to ensure convergence of the solver for this

subcellular model.

Figure 9.9 shows the resulting runtimes for different scenarios in a bar chart analog

to Fig. 9.8. It can be seen that the solver time for the 0D model now dominates the

total runtime in all scenarios. In the openmp-i- j scenarios, the runtime for the 0D solver

decreases as before, if more threads are used in total. Contrary to the previous study,

the total runtime profits from this runtime reduction, as the 0D part is significant enough

for the total runtime. Another difference to the results of the previous study is that the

durations for the 0D model are nearly the same for every combination of number of MPI

processes i and number of OpenMP threads j. This shows that the overhead of starting

9.2 PERFORMANCE STUDIES OF THE ELECTROPHYSIOLOGY SOLVER IN

OPENDIHU
465

0 2000 4000 6000 8000 10000
Runtime [s]

openmp-6-3
openmp-6-6
openmp-9-2
openmp-9-4

openmp-18-1
openmp-18-2

simd
vc-sova
vc-aovs

vc-aovs-apx-e
fast-vc

fast-vc-apx-e

Sc
en

ar
io

5565.3 s
5444.9 s
5638.6 s
5289.3 s
5720.8 s
5713.9 s
4962.1 s
6873.6 s
7000.3 s
6739.7 s
1418.9 s

418.6 s

0D solver
1D solver
3D solver
total computation

Figure 9.9: Electrophysiology Solver in OpenDiHu: Comparison of runtimes for different

optimizations in the code generator, for the compute-intense Shorten subcel-

lular model.

the OpenMP threads, which in the previous study was responsible for larger compute

times of the 0D models, is now amortized by the larger overall workload.

The performance in the simd scenario is, again, comparable to the performance of the

openmp-18-1 scenario and shows a slightly smaller runtime due to the missing OpenMP

thread initializations.

A difference to the previous study can be seen for the vc scenarios. In the present study

with the subcellular model of Shorten et al., the runtimes for the vc-sova, vc-aovs, and

vc-aovs-apx-e are all higher than for the auto-vectorized scenarios. In contrast, the vc

scenarios showed a large reduction in runtime in the study with the Hodgkin and Huxley

subcellular model.

This effect originates from the operations required to evaluate the subcellular equations.

The Shorten model contains many log(x) function evaluations. These are especially

compute intense and, in addition, not supported in the abstraction layer of the AVX-512

instructions provided by the std-simd library. Instead, the library employs their non-

vectorized counterparts. The auto-vectorization of the compilers, however, is able to

employ the respective vectorized functions, which explains the better performance in the

openmp and simd scenarios.

466 CHAPTER 9: PERFORMANCE ANALYSIS

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

Figure 9.10: Electrophysiology Solver in OpenDiHu: Relative error of the piecewise Taylor

approximation of the log function as used in the vectorized simulation code.

We expect that, in the future, the respective functionality will become available in

the std-simd library, which would automatically increase the performance for these opti-

mization types. For processors without AVX-512 support, but with the AVX2 instruction

set, the library Vc is used, which supports the respective functions and, thus, yields the

expected performance in the vc scenarios. Whereas AVX-512 has a SIMD lane width of

eight double values, AVX2 only supports SIMD lanes with 4 double values.

To mitigate the effect of the missing log(x) vectorization, we replace the log function

by a numerical approximation, in addition to the approximated exp function. We define

the approximated logarithm function log∗(x) by its piecewise Taylor polynomials of sixth

order around the points x = 1, 3 and 9 with discontinuities at the points x = 2 and x = 6.

Figure 9.10 shows the absolute relative error for the range between 0.2 and 20 which,

in this range, is bounded by 0.105. However, better convergence of the 0D-1D problem

is achieved, if the approximated log function log∗ is the inverse of the approximated

exponential function exp∗. Therefore, we apply one Newton iteration of the problem

F(y) = exp∗(y)− x
!
= 0

to the log value y computed by the Taylor approximation. The Newton iteration consists

of subtracting (1− x/exp∗(x)) from the computed result y. Thus, it only involves one

evaluation of the approximated exponential function.

The scenario fast-vc in Fig. 9.9 generates unified solver code for both 0D and 1D

models, but does not include this approximation. The approximated exponential and

logarithm functions are included in the scenario fast-vc-apx-e. As a result, it can be

seen that the total runtime is largely reduced compared to the auto-vectorized scenarios.

9.3 PARALLEL STRONG SCALING AND COMPARISON WITH OPENCMISS IRON 467

How To Reproduce

The simulations in this section use the example examples/electrophysiology/fibers

/fibers_emg with the variables files optimization_type_study.py and shorten.py.

The commands for the individual runs are executed by the following scripts:

cd $OPENDIHU_HOME/examples/electrophysiology/fibers/fibers_emg/

,→ build_release
../old_scripts/run_optimization_type_study.sh

../old_scripts/run_optimization_type_study_shorten.sh

The utility to create the plots from the generated logs/log.csv files can be found in

the repository at github.com/dihu-stuttgart/performance in the directory opendihu

/18_fibers_emg:

./plot_optimization_type_study_shorten.py

./plot_optimization_type_study.py

9.3 Parallel Strong Scaling and Comparison with

OpenCMISS Iron

After the performance of different optimization types has been evaluated for a scenario

with a single number of MPI processes in the last section, we now conduct a strong

scaling study with the optimization type fast-vc-apx-e, which was found to be the most

performant, and compare the runtimes to the reference software OpenCMISS Iron.

9.3.1 Evaluation of Runtimes

For a fair comparison, we take care to exactly compute the same scenario with both

software packages. The simulated scenario uses the same model as in the previous

section: fiber based electrophysiology with the monodomain model given by Eq. (5.11)

on every muscle fiber, including the 1D electric conduction along the fibers and the 0D

subcellular model of Shorten et al. [Sho07]. The fibers are coupled with the bidomain

equation in Eq. (5.9a), which is solved on the 3D domain to yield the EMG signals. No

fat layer is considered in this study, as this feature is not available in our OpenCMISS

implementation.

https://github.com/dihu-stuttgart/performance

468 CHAPTER 9: PERFORMANCE ANALYSIS

The simulated scenario contains 81 fibers with 1480 elements each, a coarse 3D

mesh with 775 nodes and 6718 591 degrees of freedom in total. We use our improved

OpenCMISS setup, which is discussed in Sec. 9.1.1 and employs the second order nu-

merical timestepping schemes and the improved linear solvers: The monodomain model

is solved using a Strang operator splitting with Crank-Nicolson and Heun’s methods. A

conjugate-gradient solver is used for the linear system of the bidomain equation.

We use timestep widths of dt0D = 10−4 ms, dt1D = dtsplitting = 5 · 10−4 ms, dt3D = 10−1 ms

and a simulation end time of tend = 2 ms. During this time, the resulting values are written

to output files after every 0.1ms. The fibers are assigned to 10 MUs that are activated in

a ramp every 0.2 ms from t = 0ms to t = 1.8 ms.

Within the strong scaling study, the same scenario is computed with different numbers

of processes, ranging from one to 18 in this case. We use the cubes partitioning strategies

presented in Sec. 9.1.2 in both OpenCMISS and OpenDiHu. The study is executed on

the same Intel Core i9-10980XE processor as the studies in the previous section. We

measure the total user time of the simulation program, which includes the runtimes for

initialization, computation of system matrices and the duration of file output. However,

the majority of the runtime in this scenario is spent in the numerical solvers.

In OpenDiHu, we use the setup corresponding to the fast-vc-apx-e scenario in the last

section with enabled approximation of log and exp functions. We measure the runtime

of two variants. The first variant computes all subcellular models and performs the

same work as the OpenCMISS Iron implementation. In the second variant, the adaptive

computation described in Sec. 7.4.3 is enabled, which only computes fibers that have

been activated and the subcellular models that are not in equilibrium. For the chosen

ramp activation pattern of the MUs, the second variant computes approximately only half

of the subcellular model instances.

Figure 9.11a shows the resulting runtimes in this study. It can be seen that the runtime

decreases monotonically for higher numbers of processes for all three tested simulations.

The OpenDiHu implementation exhibits lower runtimes for all numbers of processes.

The reduction in runtime between OpenCMISS Iron and the first OpenDiHu variant is

given by a factor of approximately 100 with a maximum factor of 186 for 4 processes. In

addition, the second OpenDiHu variant approximately halves the runtimes as expected,

because only half of the subcellular models are computed.

In summary, the improvements to the EMG simulation software, which are described

in this work, include the numerical improvements in Sec. 9.1.1 with a speedup of 2.5, the

software improvements with a speedup of over 100 and a measured maximum of 186,

9.3 PARALLEL STRONG SCALING AND COMPARISON WITH OPENCMISS IRON 469

1 2 4 8 12 18

Number of processes

102

103

104

105

R
u
n
ti

m
e
 [

s
]

OpenCMISS

OpenDiHu (all fibers)

OpenDiHu (only active parts)

OpenDiHu 1 fiber on GPU, ×81

(a) Runtime of the simulation programs for

OpenCMISS (blue) and two variants of

OpenDiHu (orange and green), see the de-

scription in the text for details.

1 2 4 8 12 18

Number of processes

0

1

2

3

4

5

6

M
e
m

o
ry

 c
o
n
s
u
m

p
ti

o
n
 p

e
r

p
ro

c
e
s
s
 [

G
B

]

Memory OpenCMISS

Memory OpenDiHu

(b) Memory consumption per process at the

end of the program.

Figure 9.11: Electrophysiology Solver in OpenDiHu: Strong scaling study of fiber

based electrophysiology and comparison between the implementations of

OpenDiHu and OpenCMISS Iron. The same scenario is solved with both

software packages and for increasing numbers of processes from one to 18.

and the algorithmic improvement of adaptive 0D model computations, whose speedup

factor is scenario dependent. In the present study, the two latter factors, i.e., the speedup

between the improved OpenCMISS Iron software and the OpenDiHu scenario with adap-

tive computation, give a combined maximum speedup of 363 for the measurement with

two processes.

Moreover, the computation of this study was also carried out with the gpu optimization

type in OpenDiHu, using the same GPU as in the last section. One process was started

on the CPU, which offloaded the computational work of the 0D and 1D problems to the

GPU. However, the GPU memory was not sufficient for the computation of all 81 fibers.

Therefore, we only compute one fiber, but keep the rest of the simulation scenario equal

to the other measurements. The req square in Fig. 9.11a shows the measured runtime

multiplied by the factor 81 for compensation. As in the studies of the previous section,

the computation on the GPU has higher runtimes than the computation on the CPU.

As the memory consumption was a limiting factor for parallelism in OpenCMISS Iron

470 CHAPTER 9: PERFORMANCE ANALYSIS

as shown in Sec. 9.1.3, we also measure the memory consumption per process at the

end of the simulation in both software frameworks. Figure 9.11b shows the result for

OpenCMISS and OpenDiHu. The two variants of OpenDiHu have the same memory

consumption characteristics, as the only difference between the variants is that the com-

putation of certain subcellular models is switched on or off.

It can be seen that the increased parallelism leads to a reduction of the used memory per

process in both pieces of software. OpenDiHu approaches a saturation value of 200 MiB

for eight and more processes. For OpenCMISS, the memory consumption is higher, but

reduces more quickly also for higher numbers of processes. However, the relation between

the two curves increases from a value of 6.168 GiB : 1.078 GiB = 5.7 for one process to

2.054 GiB : 0.202 GiB= 10.2 for 18 processes.

As a result, this study shows a large memory efficiency improvement in OpenDiHu

compared with the OpenCMISS Iron software. For OpenCMISS, the memory scaling in

this parallel strong scaling scenario is not as bad as in the parallel weak scaling considered

in Fig. 9.6 in Sec. 9.1.3. However, the total memory for all processes still increases to

approximately 18 · 2.054 GiB ≈ 37 GiB, which is higher than the main memory capacity

of the used processor.

9.3 PARALLEL STRONG SCALING AND COMPARISON WITH OPENCMISS IRON 471

10 3 10 2 10 1 100 101 102 103

Computational intensity [FLOP/Byte]

100

101

102

103

P
e
rf

o
rm

a
n
c
e
 [

G
F
L
O

P
/s

]

Pmax: 715 GFLOP/s

L1
:
3
6
7
9
 G

B
/s

L2
:
2
4
4
2
 G

B
/s

L3
:
3
6
.1

 G
B
/s

D
R
A
M

:
9
4
 G

B
/s

1

2

4 8

12

18

1

2

4

8

12
18

1

2

4

8
12

18

OpenCMISS

OpenDiHu (all fibers)

OpenDiHu (only active parts)

Figure 9.12: Electrophysiology model in OpenDiHu: Roofline model of the strong scaling

study. The blue, green and orange data points correspond to the runs of the

OpenCMISS and OpenDiHu variants, as given in Fig. 9.11a.

9.3.2 Roofline Model

To further investigate the computational behavior, we also present the performance mea-

surements of the solvers in a roofline model. Figure 9.12 shows the resulting diagram

with the data points of all CPU runs in the strong scaling study of Fig. 9.11a. The x

axis shows the computational intensity of the simulation, which is measured in double-

precision floating-point operations (FLOP) per byte of data that are transferred between

the CPU and the main memory and caches. The y axis measures the performance in

GFLOP per second. The highest possible performance is given by the peak performance

of the processor, which is Pmax = 715 GFLOP
s

in this case. Furthermore, the performance

is limited by the amount of payload data that can be transferred to the CPU over the

memory bus. The memory bandwidths of the L1, L2 and L3 caches and the main memory

(DRAM) correspond to the shown diagonals in Fig. 9.12 and form the “roofline” of the

model.

472 CHAPTER 9: PERFORMANCE ANALYSIS

We measured the memory bandwidths of the Caches and the peak performance using

the Empirical Roofline Tool [Yan20]. The main memory bandwidth was retrieved from

the processors’ documentation.

To locate the simulation runs of the study in the roofline model, we used hardware

counters to count floating point instructions and memory access operations. For the runs

with OpenCMISS Iron and OpenDiHu, we started the hardware counters 90 s, respectively

15 s after the beginning of the simulation, such that the initialization phase was not

included in the measured data. The counters were kept active for 15, 30 and 60 seconds,

depending on the expected runtimes of the different runs. The counted numbers of events

were then divided by the acquisition time to yield the required rates of memory bandwidth

and floating-point performance.

Figure 9.12 shows the measured points in the roofline model corresponding to the

curves in Fig. 9.11a. All data points are located at the right-hand side of the memory

bandwidth limits, which indicates that the simulation is compute bound. The highest

computational intensity and performance are both achieved by the OpenDiHu variant

given in orange color, which computes all fibers and subcellular models regardless of

their activation state. The values for the adaptive variant given in green color are lower,

as fewer computations are performed and a higher portion of the runtime and compute

power is spent on determining which subcellular model has to be computed. The two

metrics are lowest for the OpenCMISS runs given in blue color.

The roofline diagram shows the data points for all parallel runs and the number of

processes is noted in the plot. The run with 18 processes is the most meaningful, as this

means that the whole processor is employed. The largest performance for the OpenDiHu

run in orange color has a value of 180.157 GFLOP
s

which corresponds to 25.2 % of the

peak performance and is a very good value. The rated 100 % of peak performance for

processors are practically unreachable. For example, the peak performance assumes only

fused multiply add operations and requires a power management that maximizes the

employment of the boost clock frequency in the processor. These conditions are not

fulfilled in our computations of realistic models and scenarios. The performance values

of the runs with 18 processes for the green and blue data points are 13.9 % and 6.0 %,

respectively.

Furthermore, the measurements with lower process counts can also be assessed with

a scaled down peak performance according to the fraction of used cores. However, this

assessment is slightly off, as, e.g., the CPU can use a higher clock frequency, if only the heat

dissipation of one active core has to be compensated. The performance for the OpenDiHu

9.3 PARALLEL STRONG SCALING AND COMPARISON WITH OPENCMISS IRON 473

run with one process given by the orange point is 11.966 GFLOP
s

, which corresponds to

30.1 % of the fractional peak performance of 715 GFLOP
s
/18= 39.7 GFLOP

s
.

How To Reproduce

The scripts to run the studies in this scenario and to create the plots are available in

the repository at github.com/dihu-stuttgart/performance in the directory opendihu

/20_fibers_emg_avx_opencmiss:

./0_run.sh

The directory also contains a script that performs all steps to install OpenCMISS, if

needed.

Note, the studies in the previous and the current sections were carried out on the

computer with hostname pcsgs05 in the institute network at the time of writing.

https://github.com/dihu-stuttgart/performance

474 CHAPTER 9: PERFORMANCE ANALYSIS

9.4 Performance Measurements on the GPU

In the previous two sections, measurements were made on a GPU, which produced worse

results than the CPU code. The used GPU was an NVIDIA GeForce RTX 3080, a high-

end consumer graphics card, which mainly targets graphics rendering performance using

single-precision operations. The ratio between double-precision and single-precision

performance is 1:64. However, single-precision calculations were found to not yield a

stable subcellular model solver, as the precision is too low.

In this section, we conduct two studies, where the first study uses the same GPU

hardware as before. The second study is executed on an NVIDIA Quadro GP100 GPU,

which has a double-precision to single-precision performance ratio of 1:2. The rated

double-precision performance of the Quadro card is 5.168 TFLOPS, which is ten times

higher than the value of 465.1 GFLOPS for the GeForce card.

The CPU hardware connected with the Quadro card contains a dual-socket CPU with

two 12-core Intel Xeon Silver 4116 processors with 2.1 GHz base frequency and 3 GHz

maximum turbo frequency, yielding a total core count of 24, and being equipped with

main memory of 188 GiB.

Computational hardware can be compared by its average thermal design power dissi-

pation (TDP). For the studies in the previous two sections, the TDP values for the used

CPU and GPU were 165 W and 320 W. For the second study in the current section, the

values for CPU and GPU are 2 · 85W = 170 W and 235 W. This indicates that the em-

ployed hardware is in a comparable electrical power range. However, the GPU is more

specialized for our double-precision needs.

9.4.1 Strong Scaling with the GPU for the Hodgkin-Huxley Model

While the studies in the last two sections only used one process on the CPU, which man-

aged the offloaded computations on the GPU, we now additionally consider parallelism

on the CPU.

The first study compares the strong scaling with and without GPU acceleration. The

runs with GPU acceleration partition the computational domain as usual to multiple

subdomains, which are handled by dedicated processes on the CPU. The solution of the

0D and 1D models is performed on the GPU, and every process independently transfers

its part of the computational work to the same GPU. The 3D model is fully solved using

9.4 PERFORMANCE MEASUREMENTS ON THE GPU 475

1 2 4 8 12 18
Number of processes

10 2

10 1

100

101

102

103

104

R
u
n
ti

m
e
 [

s
]

(a) Study, where every process on the CPU

offloads the 0D and 1D model computa-

tions to the GPU.

1 2 4 8 12 18
Number of processes

10 2

10 1

100

101

102

103

104

R
u
n
ti

m
e
 [

s
]

Total

0D model

1D model

3D model

Initialization

Write VTK files

(b) CPU-only study.

Figure 9.13: Electrophysiology model in OpenDiHu: Strong scaling study with and with-

out GPU usage. A scenario with 169 fibers and the subcellular model of

Hodgkin and Huxley is simulated. The vertical bars indicate the standard

deviation of the runtimes in the set of measurements, which consists of

multiple runs and the values of all processors in every run.

MPI parallelism on the CPU. We compare this setup with a pure CPU based strong scaling

study.

The scenario solves the fiber based electrophysiology model without fat layer with 169

fiber meshes of 1480 elements each and a 3D mesh with 1984 elements. The subcellular

model of Hodgkin and Huxley [Hod52a] is used. The computation uses the same numeri-

cal parameters as in the first study in Sec. 9.2.2, a 3D solver timestep of dt3D = 4 · 10−1 ms

and a simulation end time of 10ms. Moreover, the setup equals the settings of the fast-vc

and fast-gpu scenarios in Sec. 9.2.2.

Figure 9.13 presents the results for the two studies with and without GPU usage.

Figure 9.13b shows the runtimes of different parts in the simulation of the CPU-only

strong scaling study. It can be seen that the 0D computations account for most of the

runtime, followed by the 1D computations. The 0D computations involve the solution

of the Hodgkin-Huxley subcellular model. The 1D computations consists of solving 1D

problems in serial using the Thomas algorithm. The 3D solver time is negligible as the

3D problem is only solved every 13 333 timesteps. The 3D solution is only required right

before the VTK file output step for the EMG values. This step occurs every 0.4ms, which

corresponds to an EMG sampling frequency of 2.5 kHz. The runtimes for initialization and

the file output itself are also very low compared with the runtimes of the computations.

Figure 9.13b shows that the total runtime decreases with higher process counts in

476 CHAPTER 9: PERFORMANCE ANALYSIS

this strong scaling study. The parallel efficiency Ep = T1/(Tp p) reaches Ep = 65.2% for

p = 18 processes. We observe that the 0D and the 1D solver and the VTK file output

have good strong scaling properties, whereas the initialization and the solution of the 3D

model contain serial code portions that prohibit optimal scaling.

Figure 9.13a shows the analog study, where the 0D and 1D computations are offloaded

to the GPU. The runtimes of these individual model parts are not explicitly measured,

only the total runtime is known.

The plot shows an increasing total runtime for higher CPU parallelism. The runtimes

for initialization, file output and the 3D solver are equal to the CPU-only study. The

increasing total runtime shows that the GPU is better at solving the complete 0D and 1D

problems given by one CPU process than at the same computation, but split to several parts

and provided by different MPI processes. The benefit of using multiple CPU processes

to interface the GPU in this study is, thus, only that the VTK output functionality gets

parallelized. However, this effect is negligible.

An absolute comparison between the runtimes in Fig. 9.13a and Fig. 9.13b also reveals

that the scenarios for one to 18 processes using the GPU have 4.8 to 181 times longer

total runtimes. In this study, the memory transfer between the CPU and the GPU has a

low influence on the total runtime, as this transfer only happens before and after the 3D

model is solved. The measured runtimes, therefore, correspond to the computation on

the GPU.

9.4.2 Evaluation of Hybrid CPU and GPU Computation for the

Shorten Model

Whereas previously, the subcellular model of Hodgkin and Huxley was solved on the GPU,

we now switch to the more compute intense model of Shorten et al. [Sho07]. This model

has higher memory demands, such that it is not possible to solve it with OpenMP 4.5 for

a muscle fiber mesh with 1481 nodes on the GeForce RTX 3080 GPU. As noted before,

we use the NVIDIA Quadro GP100 GPU for the next study. This GPU is also not capable

of solving the whole set of 1481 models instances per fiber for 169 fibers at the same

time. For one instance of the subcellular model, 57 state and rate variables each, and 71

intermediate variables have to be stored, along with other data, such as element lengths

for every element.

9.4 PERFORMANCE MEASUREMENTS ON THE GPU 477

Figure 9.14: Electrophysiology solver in OpenDiHu: Partitioning of the 169 fibers to 27

processes used in the runtime study with hybrid CPU-GPU usage. The image

also shows the resulting EMG signals φe on the muscle surface.

Thus, we follow a hybrid approach. We parallelize the scenario to 27 processes on the

CPU. Only one process offloads its subdomain to the GPU. In this way, both the CPU and

the GPU take part in the computation and the available hardware capabilities are fully

exploited.

The scenario and the numerical parameters are the same as described for the study with

the Shorten model in Sec. 9.2.2. 49 muscle fibers are used and parallelized to 3×3×3= 27

subdomains. Figure 9.14 visualizes the partitioning of the fibers by different colors and

the EMG values φe on the muscle surface at the simulation end time of tend = 10ms.

Figure 9.15 visualizes the runtimes of two runs. The first bar only employs the CPU

and provides the reference for the measured runtimes. The second bar corresponds to the

hybrid run, where one process employs the GPU. The 0D and 1D solver runtimes in the

second bar are averaged over the CPU computations. The total runtime involves both the

478 CHAPTER 9: PERFORMANCE ANALYSIS

CPU Hybrid CPU-GPU0

500

1000

1500

2000

Ru
nt

im
e

[s
]

Total
3D solver
1D solver
0D solver

Figure 9.15: Electrophysiology model in OpenDiHu: Runtime study for a CPU-only com-

putation and a hybrid parallelization that employs both the CPU and the

GPU. For the hybrid approach, one of the 27 partitions was computed on the

GPU. The compute-intense subcellular model of Shorten et al. is simulated.

CPU and the GPU computations. It can be seen that the total runtime given by the total

bar heights is higher for the hybrid run. In the hybrid runs, the CPU processes have to

wait at the synchronization point in the solution of the 3D problem until the GPU process

has completed the 0D/1D computations.

9.4.3 Conclusion

Several scenarios with computations of the 0D subcellular and 1D electric conduction

models on the GPU have been evaluated. Section 9.2.2 compared the runtime for the

Hodgkin-Huxley subcellular model on 625 fibers on the GPU with implementations on

the CPU. In Sec. 9.3.1, the computation on the GPU with the Shorten subcellular model

was measured for one fiber. Section 9.4.1 conducted a strong scaling study with the

Hodgkin-Huxley model on 169 fibers and Sec. 9.4.2 evaluated a hybrid approach, where

the Shorten model on different fibers was computed on the GPU and the CPU at the same

time. This last study used a GPU with higher double-precision performance than the

previous studies.

In all of these studies, the GPU computations could not compete with their CPU coun-

terparts. The GPU implementation of the models relied on target-specific CUDA code,

which was automatically generated by the OpenMP 4.5 pragmas produced by the code

generator in OpenDiHu. The CPU computations used highly optimized CPU code with

9.4 PERFORMANCE MEASUREMENTS ON THE GPU 479

explicit vector instructions, an approach that is close to optimal as shown by the roofline

model in Sec. 9.3.2. Thus, the comparison considers different levels of optimization. We

cannot conclude in general that the GPU is less suited to solve the fiber based electrophys-

iology models than the CPU. However, the GPU support in OpenMP is not competitive

with our optimized CPU implementation.

The required GPU support of OpenMP in the GNU compiler is functional to the extent

needed in our studies only since GCC version 11, which, at the time of writing, is still

experimental and not yet released. Further performance gains can be expected in the

future as compiler development advances. One problem is also the high memory re-

quirement for the subcellular models, which only allows a certain number of subcellular

model instances to be computed on the given hardware. It is also not clear, whether the

high memory consumption is also an artifact of the compiler and will reduce with later

compiler versions.

Despite the lower performance, it was shown that OpenDiHu can be used to solve

the monodomain equation Eq. (5.11) with different subcellular models on the GPU.

Switching between the CPU and GPU variants can be accomplished by only changing the

optimizationType parameter between "vc" and "gpu". Hybrid strategies, where some

processes use "vc" and others "gpu", have been demonstrated.

In future work, the performance issue of the GPU computations can be addressed by us-

ing different technologies to access the compute power of GPUs. Examples are to directly

use the CUDA programming language or the C++ based abstraction layer for accelera-

tion hardware SYCL [Khr19]. OpenDiHu already provides a reference implementation

for such improvements by the code generator, which outputs model specific code with

OpenMP pragmas for GPU offloading. This code implements proper, economical data

transfer between the devices and contains hints how to distribute the workload on the

GPU by the respective pragma placements. It could be used as a starting point to integrate

further “optimization types” in the code generator.

How To Reproduce

The scripts to run the studies and to create the plots for Figures 9.13 and 9.15 are

available in the repository at github.com/dihu-stuttgart/performance in the directo-

ries opendihu/16_hodgkin_huxley_gpu and opendihu/17_shorten_gpu.

https://github.com/dihu-stuttgart/performance

480 CHAPTER 9: PERFORMANCE ANALYSIS

9.5 Parallel Scaling of the EMG Model Using High

Performance Computing

After the parallel scaling of the multi-scale model has been investigated in moderately

parallel scenarios with up to 27 processes in the previous sections, we now study the

parallel scalability in High Performance Computing scenarios with larger degrees of paral-

lelism. We simulate the fiber based electrophysiology model consisting of a 0D subcellular

model, the 1D electric conduction problem and the 3D bidomain equation, as described in

Sec. 5.1. We conduct these studies on the supercomputer Hawk at the High Performance

Computing Center Stuttgart (HLRS). The system contains a total of 5632 compute nodes.

Each compute node consists of two AMD EPYC 7742 processors with 64 cores each, a

clock frequency of 2.25 GHz and 256 GB memory per node.

In the following, Sec. 9.5.1 presents a weak scaling study, which scales the problem

size up to a realistic number of 270000 muscle fibers in a biceps muscle. Then, Sec. 9.5.2

shows measurements of the scaling behavior for the 1D model solver and gives details on

MPI rank placement policies.

9.5.1 Weak Scaling of the Fiber Based Electrophysiology Model

We simulate the fiber based electrophysiology model with EMG values on the muscle

surface and the subcellular model of Hodgkin and Huxley [Hod52a]. Corresponding

simulation results of this scenario, also for the highly parallel runs, are presented in

Sec. 8.4.4.

In this weak scaling study, the number of fibers and number of processes is varied

while their relation is kept approximately constant. The scenarios are constructed such

that there are approximately 10 fibers per process, while maintaining a cube partitioning

scheme in the 3D domain. The 0D subcellular and the 1D electric conduction problems

on the fibers are solved with the FastMonodomainSolver class and the "vc" optimization

type, which is the fastest available option in OpenDiHu. The Strang operator splitting

scheme with Heun’s method and the implicit Euler scheme are used. The 3D problem

is solved using the conjugate gradient solver of PETSc and a relative tolerance on the

residual norm of 10−5.

9.5 PARALLEL SCALING OF THE EMG MODEL USING HIGH PERFORMANCE

COMPUTING
481

The used timestep widths are dt0D = 10−3 ms, dt1D = dtsplitting = 2 · 10−3 ms and dt3D =

1 ms. Because only the scaling behavior is of interest in this study, the simulation end

time is set to tend = 2 ms.

10 2

10 1

100

101

102

103

104

105

Ru
nt

im
e

[s
]

18
169

64
625

144
1369

448
4489

1152
11881

3600
34969

7744
76729

18432
182329

26912
273529

Number of processes
Number of fibers

Total
3D model
0D model
1D model
Initialization
Communication 0D,1D

Figure 9.16: Weak scaling of the fiber based electrophysiology model on the supercom-

puter Hawk simulating up to more than 270000 muscle fibers.

Figure 9.16 presents the resulting runtimes for the different parts of the simulation

program: the solvers of the 0D, 1D and 3D models, the runtime for initialization and the

runtime for the communication in the FastMonodomainSolver, as explained in Sec. 7.4.2.

To relate the initialization runtime to the runtime of the solvers in a realistic scenario

with longer simulation times, all runtimes except for the initialization are scaled to a

simulation end time of 1 s.

The results show perfect weak scaling properties of the 0D and the 1D solver, given by

the yellow and red lines. This is expected due to the construction of the algorithm and

the parallel partitioning. The 0D problems are “embarrassingly parallel” and are solved

independently of each other. In the 1D problem solver, the values are transferred to a

482 CHAPTER 9: PERFORMANCE ANALYSIS

processes 18 64 144 448 1152 3600 7744 26912

iterations 72 115 176 339 561 1056 1636 2807

Table 9.1: Scaling study of the fiber based muscle model: Number of iterations of the

conjugate gradient solver for the 3D bidomain model in the weak scaling study

presented in Fig. 9.16.

dedicated process, where the serial Thomas algorithm is employed for each fiber as a

whole. Thus, the solution of all 1D problems is also performed independently of each

other, but an additional communication step is required, before and after running the

solver in each implicit time step of the 1D problem. The plot shows a very small runtime

for this communication even for higher parallelism, which is given by the orange dashed

line.

The initialization of the computation involves parsing the Python script, which for the

last data point requires 35.1 s, parallel file access and read operations of the mesh file,

assembly of the 3D stiffness matrix and solution of the potential flow problem to obtain

the fiber directions in the 3D mesh, which contains approximately 108 dofs for the last

data point, code generation, compilation, linking and loading of the shared library for

the subcellular problem, and initialization of all internal data structures.

Loading the mesh input file from the file system is the part of the initialization, which

requires the most runtime. The dotted light blue line in Fig. 9.16 shows that the initial-

ization time increases to a maximum value of 839 s for the largest problem size.

The runtime of the 3D model is shown by the blue line in Fig. 9.16. This part of the

model is responsible for the highest portion of the total runtime starting from the scenario

with 7744 fibers and 76729 processes. This increase is two-fold: first, the communication

cost increases for a larger number of processes. Second, the number of iterations in the

conjugate gradient solver increases for a larger number of unknowns.

In this weak scaling study, the number of conjugate gradient solver iterations increases

from 72 for the first data point to 2807 for the last data point, as listed in Tab. 9.1. The

3D problem of the last data point has 108 dofs. The exact numbers of dofs are also listed

in Tab. 8.1 in Sec. 8.4.4. Currently, the solution of the 3D problem uses no preconditioner.

In future work, a multigrid solver could be employed for preconditioning, which could

improve the weak scaling for large problem sizes.

In summary, the solution of the multi-scale model for fiber based electrophysiology

without fat layer exhibits a very good weak scalability for up to 35000 fibers. For larger

problem sizes, the solution of the 3D problem dominates and the weak scaling behavior

9.5 PARALLEL SCALING OF THE EMG MODEL USING HIGH PERFORMANCE

COMPUTING
483

deteriorates. However, the solution times are still feasible, as such large problems have

been successfully solved in Sec. 8.4.4 of this work.

9.5.2 Weak Scaling of the 1D Solver and MPI Rank Placement

Next, we compare the different approaches to solve the 1D electric conduction part

of the monodomain equation on the fibers in a High Performance Computing setting.

Figure 9.17 shows a similar weak scaling study to the one in the last section with slightly

different process counts. The study was carried out on the supercomputer Hazel Hen,

a Cray XC30 system, which was installed until 2020 as the predecessor to Hawk at the

High Performance Computing Center Stuttgart. The same problem as in the last section

is solved, and, again, the relation between fibers and processes is 10:1. The partitionings

were chosen in accordance with the compute nodes of Hazel Hen, which had 24 cores.

The detailed problem sizes and partitionings can be found in [Mai19].

Figure 9.17 shows the runtimes of the same 0D and 1D solvers as in the last section by

the solid yellow line for the 0D problem, the solid red line below for the 1D problem and

the solid orange line for the communication. The perfect weak scaling for these parts is

in line with the previous observations.

In addition, we compare the weak scaling of the 1D solution, if a parallel conjugate gra-

dient solver of PETSc is used for the problem on every fiber, instead of the serial Thomas

algorithm. This setup corresponds to the vc-aovs scenario presented in Sec. 9.2.2. As

already noted earlier, the performance of this approach is worse. The dashed and dot-

ted lines in Fig. 9.17 present the runtimes of this approach for two different MPI rank

placement strategies, but for the identical program. It can be seen that the runtimes

increase with higher numbers of processes in both curves. This effect is the result of the

1D fiber problems being distributed to more processes, as the total number of processes

increases.

For example, in the scenarios with 1200 and 3468 processes, all fibers are distributed

to 12 different processes. For the last three data points of the dashed curve, all fibers

are distributed to 24 processes. As a result, the runtime to solve the 1D problems in the

measurements with 1200 and 3468 processes is approximately equal, but lower than the

runtime for the last three data points, where twice the amount of processors takes part

in the solution of a single 1D problem.

484 CHAPTER 9: PERFORMANCE ANALYSIS

4 18 64 150 448 1200 3468
7776

17496
27744

Number of processes

10 2

10 1

100

101

102

Ru
nt

im
e

[s
]

1D model with
 round-robin placement
1D model with
 optimal placement
1D model with
 local computation
0D model
communication 0D,1D

Figure 9.17: Scaling study of the fiber based muscle model: Weak scaling behavior of

solvers for the 1D problem. Runtimes for the 1D solver with different rank

placement strategy (dotted and dashed red lines) and the optimized runtimes

of the FastMonodomainSolver, which combines the solution of the 0D and

1D problem (yellow and solid red lines, respectively).

The difference between the dotted and the dashed red curves is a different strategy

to place the processes on the compute nodes. The dashed curve with the lower runtime

corresponds to a placement of all fiber sharing processes on the same compute node. As

the subdomain indices in the nx ×ny×nz partitioning increase fastest in x-direction, then

in y-direction and then in z-direction, and the fibers are aligned with the z direction, the

set of processes on a compute node contains MPI ranks that are offset with a constant

stride of nx ny . This has to be ensured in the job scripts on the supercomputers by explicit

MPI rank pinning.

If no such measures are taken, the default placement of MPI ranks on the compute

nodes proceeds consecutively by filling the compute nodes in the order of the MPI ranks.

This corresponds to a round-robin placement of the fibers on the compute nodes, which

is the worst possible way of distributing MPI ranks to compute nodes. All processes that

compute a fiber are potentially located on different nodes and have to communicate over

compute node boundaries. Figure 9.17 shows the resulting runtimes by the upper, dotted

red curve. The difference in runtime increases to one order of magnitude for the highest

number of cores.

Thus, it is important to properly handle MPI rank placement on compute clusters with

9.6 PERFORMANCE STUDIES OF THE SOLID MECHANICS SOLVER 485

multiple compute nodes. As a consequence, we also configured rank placement on the

supercomputer Hawk accordingly in all our studies on this system.

9.6 Performance Studies of the Solid Mechanics

Solver

Next, we address the performance of the solid mechanics solver. Its runtime in OpenDiHu

is given by the call to the nonlinear solver of PETSc. PETSc, in turn, calls two functions

in OpenDiHu, which evaluate the nonlinear function to be solved and the Jacobian of the

nonlinear function for a given vector of unknowns. In the following, Sec. 9.6.1 compares

an analytic and a numerical computation scheme for the Jacobian, and Sec. 9.6.2 studies

the impact of vectorization in this computation.

9.6.1 Analytic and Numerical Computations of the Jacobian

The computation of the Jacobian can be done in two ways. The first possibility is done

by PETSc, which uses finite differences to numerically estimate the value of the Jacobian.

The second possibility is to evaluate the respective analytic formulation within OpenDiHu.

This analytic formulation is derived in Sec. 5.4 and uses the SEMT library [Gut12] to

differentiate the mechanics model given by a strain energy function at compile time.

To compare both approaches, we simulate a tension test, where a cuboid domain is

extended by an applied force. The box is shown in Fig. 9.18 and has physical dimensions

2 cm× 2cm× 5 cm. The left face of the box is fixed at z = 0 and the two edges of the

left face at x = 0 and y = 0 are also fixed to prevent rotation of the body. On the right

face, a constant surface load with a total force of 10 is applied. The material model is

the incompressible transversely isotropic Mooney-Rivlin description given in Eq. (5.40),

which is also used for the muscle tissue. However, no active stress is considered. The

material parameters are chosen as c1 = 2, c2 = 3, b = 4 and d = 5. The fiber direction

lies in the y − z plane and has an angle of 40° to the z axis. As a result, the box slightly

bends in negative y direction, as can be seen in Fig. 9.18. In this figure, the volume of

the deformed object is colored according to the displacement in y direction.

We solve the problem using the Newton solver of PETSc with a secant line search over

the L2 norm of the function. The absolute and relative residual tolerances are set to

486 CHAPTER 9: PERFORMANCE ANALYSIS

uy

Figure 9.18: Scaling study for solid mechanics: Visualization of the solid mechanics prob-

lem used in the weak scaling studies. The box is extended by a surface load

at the right end. The wireframe shows the reference configuration, the col-

ored mesh shows the current configuration where the color corresponds to

the displacements uy in vertical direction.

10−5 , which leads to approximately 5 Newton iterations. The parallel direct solver of the

MUMPS package [Ame17] is used to solve the linear system in every Newton iteration.

We compare the runtimes of numerically and analytically computing the Jacobian in

this problem. We vary the number of processes and the problem size in a weak scaling

setting, such that there are exactly 8 3D elements per process. A dual-socket AMD EPYC

7742 64-core processor with clock speed of 2.25 GHz, a total core count of 128 and

1.96 TB RAM is used. We vary the number of processes between one and 256 processes.

For more than 128 processes, hyperthreading is used.

Figure 9.19 shows the runtimes to solve the nonlinear system by the orange and purple

lines in a double logarithmic plot. An increasing runtime for higher process counts is

observed for both computation approaches. The curves have a higher slope for more

than 128 processes, when the computation uses more processes than physical cores in

the processor.

The computation of the Jacobian requires O(n) non-zero entries to be calculated as

the matrix has a banded sparsity structure, where n is the number of degrees of freedom

or elements in the 3D mesh. The number of non-zero Jacobian entries is, thus, constant

in the weak scaling setup. However, Fig. 9.19 shows a linearly increasing runtime for the

numerical computation of the Jacobian, which can be seen by the comparison with the

9.6 PERFORMANCE STUDIES OF THE SOLID MECHANICS SOLVER 487

1 2 3 4 6 12
16

24 36 54
72

96
128
144

 192
256

Number of processes

10 1

100

101

102

103
Ru

nt
im

e
[s

]
Linear reference
Numeric Jacobian
Analytic Jacobian

Figure 9.19: Weak scaling of the nonlinear mechanics solver. The runtime to solve the

nonlinear system equation is given for the numerical and for the analytic

computation approaches for the Jacobian matrix.

plotted linear function. The finite difference scheme of PETSc has no information about

the sparsity pattern and estimates all O(n2) matrix entries.

The runtimes for the analytic computation are only slightly increasing in the weak

scaling, which is as expected. This approach only computes the non-zero entries of the

Jacobian. Moreover, the values of the material elasticity tensor C can be computed once

and reused for every entry of the Jacobian.

The comparison between the approaches shows lower computation times for the an-

alytic approach by factors between 6.2 for one process and 450 for 192 processes. In

conclusion, the analytic formula for the Jacobian, which is implemented in OpenDiHu,

allows us to speed up the mechanics computations and to compute larger problem sizes

in feasible runtimes.

9.6.2 Vectorization of the Analytic Jacobian Computations

In the assembly of finite element system matrices of any kind, contributions are computed

on an element level and then combined to form a global system matrix. In OpenDiHu,

this algorithm can be vectorized by performing analog but independent computations for

multiple elements concurrently in multiple SIMD lanes. This vectorization uses the Vc

488 CHAPTER 9: PERFORMANCE ANALYSIS

1 2 3 4 6 12 16 24 36 54 96
128
144

 192
256

Number of processes

100

101

Ru
nt

im
e

[s
]

Normal computation
Vectorized computation

Figure 9.20: Scaling Study for the solid mechanics solver: Weak scaling study to evaluate

vectorization in the computation of the Jacobian.

library, similar to the optimizations of the subcellular model solver presented in Sec. 9.2.

As this vectorization significantly increases compilation times, the feature is turned off

by default and has to be enabled before compilation.

In this section, we evaluate the effect of vectorized system matrix computations for

the Jacobian matrix of the nonlinear solid mechanics solver. We conduct a similar weak

scaling study as before using the same scenario, but an eight times larger number of

elements for each measurement. We compare the runtime to solve the nonlinear problem

using analytic Jacobian computations with disabled and enabled vectorization.

Figure 9.20 presents the resulting runtimes for the entire nonlinear solver. The vector-

ized computation shows speedups from 1.6 for one process to 1.06 for 128 processes. The

theoretically possible speedup is four, as the processor supports the AVX2 instruction set

with a vector register length of four double-precision values. The measured speedups are

lower, because the computation of the Jacobian is only one portion of the computations

in the nonlinear solver.

In summary, the vectorized computation of Jacobian matrices can reduce runtimes

for the nonlinear solver. A runtime reduction of 38 % (corresponding to the speedup

of 1.6) was observed for the serial scenario. The performance gain is largest for small

9.7 NUMERICAL STUDIES 489

problem sizes and small numbers of processes, and gets less prominent for larger degrees

of parallelism.

How To Reproduce

The scripts to run the studies in this scenario and to create the plots of Figures 9.19

and 9.20 are available in the repository at github.com/dihu-stuttgart/performance

in the directory opendihu/22_solid_mechanics_vectorization.

9.7 Numerical Studies

Next, we perform numerical studies to evaluate mesh resolutions and linear solvers.

Section 9.7.1 addresses the mesh width of the 1D problem. Section 9.7.2 evaluates

different numerical solver choices for the multidomain model.

https://github.com/dihu-stuttgart/performance

490 CHAPTER 9: PERFORMANCE ANALYSIS

0 250 500 750 1000
Number of elements per cm [1/cm]

0.15

0.20

0.25
Pr

op
ag

at
io

n
ve

lo
cit

y
[c

m
/m

s]

Hodgkin Huxley
Shorten

(a) Propagation velocities over spatial reso-

lution of the 1D mesh.

0 250 500 750 1000
Number of elements per cm [1/cm]

0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e

er
ro

r [
-]

Hodgkin Huxley
Shorten

(b) Relative error of the propagation veloc-

ities over spatial resolution of the 1D

mesh.

Figure 9.21: Influence of the mesh width on the propagation velocity of the action po-

tential for the subcellular models of Shorten and Hodgkin-Huxley in the

fiber-based electrophysiology simulation. This study is used to determine

the 1D mesh width.

9.7.1 Effect of the Mesh Width on the Action Potential

Propagation Velocity

The numerical parameters of a simulation scenario such as mesh widths and timestep

widths should be chosen, such that the resulting numerical errors are balanced between all

model components. In the simulation of activated muscle fibers, the propagation velocity

of the action potentials is an important quantity, which also influences the macroscopic

outcome of the EMG recordings. Thus, we investigate the effect of numerical parameters

on the propagation velocity.

In the first study, we consider a single fiber given by a 1D mesh, where the monodomain

equation Eq. (5.11) is used. We measure the error of the propagation velocity depending

on the mesh width. A fiber with a physical length of 4 cm is used and discretized by

different numbers of 1D elements. We stimulate the fiber at its center at the beginning

of the simulation and run the simulation until an end time of 28 ms. An action potential

propagates along the fiber. We determine the location of the propagating peak at the end

and compute the propagation velocity.

Figure 9.21a shows the resulting values of the propagation velocity for the Hodgkin-

Huxley and Shorten subcellular models for varying mesh resolutions. It can be seen that

the velocities level out at a constant value for finer mesh discretizations. The absolute

9.7 NUMERICAL STUDIES 491

value of the propagation velocity is different for the two subcellular models and depends

on various model parameters.

For a quantitative evaluation, we examine the error of the propagation velocity, which

is estimated by comparing each run with the value from the finest simulation. One

issue with comparing propagation velocities on discretized meshes is that the measured

velocity can only be calculated as number of elements traversed per time interval. Thus,

the measurements for different mesh resolutions have different accuracies, not only due

to the usual discretization error in the finite element approach. This issue can be reduced

if a long enough time is simulated, such that the action potential propagates a large

enough distance in terms of multiples of the element width.

Figure 9.21b shows the resulting relative error of the propagation velocity. It can be

seen that, for the Hodgkin Huxley model, the error gets close to zero for 100 elements

per centimeter of fiber length. For the Shorten model, this mesh resolution also exhibits a

low relative error. However, the error increases again for higher mesh resolutions before

decreasing again starting at approximately 750 elements per centimeter.

As a result, we use a 1D mesh resolution of 100 elements per centimeter for all muscle

fibers in all our simulations. For a biceps muscle of 14.8 cm length, this leads to muscle

fiber discretizations with 1480 elements and 1481 nodes.

How To Reproduce

The scripts for this study are available in the repository at github.com/dihu-stuttgart/

performance in the directory opendihu/02_propagation_velocity:

./run.sh

./plot_propagation_velocity.py

https://github.com/dihu-stuttgart/performance
https://github.com/dihu-stuttgart/performance

492 CHAPTER 9: PERFORMANCE ANALYSIS

9.7.2 Linear Solvers for the Multidomain Problem

102

103

104

N
u
m

b
e
r

o
f

G
M

R
E
S
 i
te

ra
ti

o
n
s

No preconditioner

Block Jacobi, GMRES

Block Jacobi, GMRES (symmetric)

Block Jacobi, SOR

Block Jacobi, SOR (symmetric)

Parallel ILU

Parallel ILU (symmetric)

4
24

6
36

8
48

10
60

12
72

Number of motor units
Number of processes

103

104

T
o
ta

l
S
o
lv

e
r

R
u
n
ti

m
e
 [

s
]

Figure 9.22: Evaluation of preconditioners for the multidomain model. The system is

solved with a GMRES solver and different preconditioners. The upper plots

shows the remaining number of iterations in the GMRES solver, the lower

plot measures the total runtime of preconditioning and solution. Three

different preconditioners given by orange, green and red lines are compared

to the blue reference curve of using no preconditioner.

In the next study, we investigate the parallel weak scaling behavior for the multidomain

model with a particular focus on the total runtimes for different choices of the precon-

ditioner that is used in the solution of the linear system of equations. Our goal is to

select the fastest solver-preconditioner combination to speed up the computation of the

multidomain model.

In contrast to classical weak scaling, we increase the number of MUs with the number

of processes, i.e., the size of the blocks in the resulting block structured matrix remains

constant, whereas the number of blocks increases.

We simulate the multidomain model with a fat domain as given in Sec. 5.3.5 and with

the subcellular model of Shorten et al. [Sho07]. The model is discretized by a Strang

operator splitting with Heun’s method for the subcellular model and an implicit Euler

scheme for the multidomain equations. The timestep widths of all schemes are dt0D =

9.7 NUMERICAL STUDIES 493

dtmultidomain = dtsplitting = 5 · 10−4 ms, and an end time of 10−1 ms is used, corresponding

to 200 invocations of the linear solver.

We partition the 3D computational domain, consisting of the muscle mesh with 50 024

nodes and the fat layer mesh with 37000 nodes, to 24, 36, 48, 60 and 72 subdomains. In

a weak scaling setup, we correspondingly simulate 4,6,8,10 and 12 MUs. As the square-

shaped system matrix contains one row of blocks for every MU plus one row of blocks for

the fat mesh, the total number of rows does not scale exactly linearly with the number of

MUs. In consequence, the system matrices in the five scenarios contain 279720, 379 768,

479 816, 579 864 and 679 912 rows and columns. Thus, the problem size per process is

only approximately constant in this weak scaling study.

We solve the linear system of the multidomain equations by a GMRES solver, because

the system matrix is non-symmetric. The stopping threshold on the residual norm is set to

10−15 and the specified maximum number of iterations is 104. Different preconditioners

are applied and the resulting number of GMRES iterations and the total runtime for pre-

conditioner and solver are measured. Figure 9.22 shows the number of GMRES iterations

in the upper plot and the total runtimes in the lower plot.

For every preconditioner, the preconditioning is either performed based on the non-

symmetric system matrix (solid lines) or based on a symmetric matrix that is obtained by

taking all diagonal blocks of the system matrix (dashed lines), as described in Sec. 7.5.3.

The reference measurement is given by the GMRES solver without any preconditioner,

visualized by the blue lines in both plots. The upper plot of Fig. 9.22 indicates the

maximum number of 104 iterations for all measurements of the GMRES solver without

preconditioner. This means that the specified tolerance of 10−15 is not reached in the

given number of iterations. Thus, a preconditioner is required to obtain an accurate

solution.

The first examined preconditioner is the block Jacobi scheme. A block Jacobi precon-

ditioner divides the system matrix into blocks on the diagonal, yielding smaller problems

that can each be solved individually. The scheme is an iterative solver, which starts with

an initial solution x(0) and successively computes approximations x(i+1) = Φ(x(i)) of the

solution until the residual norm reaches the specified threshold.

For a model problem Ax= b, where the system matrix A= D+L+U is decomposed into

a matrix D with blocks on the diagonal and lower and upper triangular block matrices L

494 CHAPTER 9: PERFORMANCE ANALYSIS

and U , respectively, the preconditioning is based on the following iterative computation

scheme Φ : x(i) 7→ x(i+1):

D x(i+1) = b− (L + U)x(i). (9.1)

Because of the structure of the block diagonal matrix D, the system is decoupled and every

process can solve its own linear system of equations using the respective diagonal block as

system matrix. If the symmetric option for the system matrix used in the preconditioner

is chosen, the matrices L and U vanish and the solution of Eq. (9.1) is trivial.

The preconditioner is constructed using the reordered matrix layout described in

Sec. 7.5.2 and the symmetric matrix is obtained as discussed in Sec. 7.5.3. The remaining

blocks on the matrix diagonal belong to the subdomains of the parallel partitioning. Each

block corresponds to a part of the mesh for all MU compartments.

Two versions of block Jacobi preconditioners provided by the PETSc library are evalu-

ated. The first variant, shown by the orange lines in Fig. 9.22, employs a GMRES solver

for the resulting smaller linear systems of equations in Eq. (9.1). The second variant,

shown by the green lines in Fig. 9.22, uses a SOR (successive over-relaxation) solver with

over-relaxation parameter ω = 1, i.e., a Gauß-Seidel scheme.

The upper plot in Fig. 9.22 shows that the number of GMRES solver iterations is reduced

more for the GMRES solver than for the Gauß-Seidel solver, as the constant number of

GMRES iterations in the preconditioner yields a better approximation to the solution than

the same number of Gauß-Seidel iterations. The lower plot shows a smaller total runtime

for the block Jacobi scheme with Gauß-Seidel solver than for the block Jacobi scheme

with GMRES solver. This means that the lower runtime of the Gauß-Seidel solver in the

preconditioner outweighs the larger number of GMRES iterations in the solver, compared

to the GMRES preconditioning scheme. For both preconditioners, the total runtime for

the variant with the symmetric matrix is lower than for the variant with the full system

matrix.

Another solver is Euclid [Hys01] from the HYPRE package, shown by the red lines

in Fig. 9.22. It is a parallel implementation of incomplete LU factorization using graph

partitioning and a two-level ordering strategy.

The plots in Fig. 9.22 show a low number of remaining GMRES iterations after the

preconditioner has been applied, similar to the block Jacobi scheme with GMRES solver.

9.7 NUMERICAL STUDIES 495

However, the total runtime of Euclid is significantly lower than the runtime of the GMRES-

block Jacobi scheme. If the symmetric system matrix is used for preconditioning, the total

runtime is the lowest of all measured preconditioner combinations.

Regarding the parallel weak scaling, the lower plot in Fig. 9.22 shows overall good

scaling properties for all considered preconditioners. The runtimes slightly decrease from

the first to the second data points, as the system matrix size per process also slightly

decreases. Then, a trend of slightly increasing runtimes in the weak scaling setup can

be seen, which indicates that the preconditioners and the GMRES solver perform slightly

more computations and communication for larger problem sizes. The accuracy of the

preconditioning step is not affected by the overall problem size, as can be seen by the

constant numbers of GMRES iterations in the upper plot of Fig. 9.22.

As a result, we use the combination of Euclid preconditioner and GMRES solver in all

solutions of the multidomain model in this work, because this is the fastest of the tested

combinations. Apart from the three presented preconditioners, more available choices in

the software packages PETSc and HYPRE were tested, but yielded worse performance.

These include the Parallel Incomplete Factorization preconditioner (PILUT) from the HYPRE

package and the combinations of the block Jacobi scheme with an algebraic multigrid

method or the Euclid preconditioner for the subproblems. Tests with the parallel alge-

braic multigrid method BoomerAMG from the HYPRE package also showed promising

results with even lower total runtimes than the Euclid preconditioner, but suffered from

occasional long runtimes and divergence in a non-deterministic fashion. However, the full

set of possible parameters such as different coarsening and interpolation options and set-

tings for the smoother have not yet been evaluated and, after fine-tuning, corresponding

performance improvements could be possible in future work.

How To Reproduce

The script for this study is available in the repository at github.com/dihu-stuttgart/

performance in the directory opendihu/07_multidomain_solver:

./run_mu.sh

https://github.com/dihu-stuttgart/performance
https://github.com/dihu-stuttgart/performance

497

Chapter 10

Conclusion and Future Work

To conclude this work, we summarize the presented models, algorithms, implementa-

tions, studies and the main findings. Moreover, we give an outlook on future work and

additional research questions that can be approached building on our work.

10.1 Summary of this Work

The overarching goal of this work was to enable simulations of the neuromuscular system

using detailed, biophysical multi-scale models with high resolutions. The simulations

should compute numerically accurate results, run efficiently on various hardware and

allow parallel scaling to large problem sizes, which should be solved on supercomputers.

As a result, this work established a computational framework for multi-scale modeling

of skeletal muscles, their neural activation, muscle contraction and generation of EMG

signals on the skin surface. Our approach combined existing models for various parts of

the neuromuscular system into a comprehensive multi-scale model framework. Scalability

and parallel efficiency of our software were ensured by efficient algorithms, suitable,

parallelized numerical schemes and by our accompanying performance analyses.

We described the following topics in this work: After the introduction in Chap. 1,

we compared two modeling approaches to describe the movement of the upper arm in

Chap. 2. Based on data of experimental trials we conducted during a graduate school

workshop, we developed a first, data-driven model using Gaussian process regression

and a second model based on a biophysical simulation with two muscle models. The

parameters for the biophysical simulation were fitted to experimental training data using

numerical optimization. The comparison of the two approaches revealed a slightly better

fit for the biophysical simulation model. This approach had the additional benefit of

giving biophysical insights into the functioning of the system and provided estimates for

498 CHAPTER 10: CONCLUSION AND FUTURE WORK

subject-specific muscle parameters. While this study used Hill-type muscle models, which

describe muscle forces on a 1D line of action, we considered more accurate multi-scale

models in the remainder of this work.

Chapter 3 dealt with the generation of structured 3D meshes and embedded 1D meshes

for muscle fibers. The approach of only using structured meshes, which allowed for a

simple domain decomposition proved to be beneficial for the parallel performance of

our simulations. We described a workflow, how to obtain these meshes from biomedical

imaging data. We developed a serial algorithm and a parallel algorithm to construct the

required meshes and to ensure a good mesh quality, even for meshes with high resolutions.

The algorithms were based on our novel approach of using harmonic maps to transform

reference meshes to cross-sectional slices of the muscle mesh.

In Chap. 4, we described ways to associate muscle fibers with motor units (MUs) in

a physiological manner. We developed efficient algorithms for this task for different

premises, and employed the algorithms to associate up to 270 000 muscle fibers to 100

MUs for the subsequent use in our simulations.

In Chap. 5, we first described all equations of the state-of-the models that we used,

and how they can be combined into a multi-scale description. Then, we described their

discretization using the finite element method for the spatial derivative terms and various

timestepping and operator splitting schemes for the temporal derivatives. One origi-

nal contribution is the derivation of the finite element formulation for the multidomain

equation. Further, we gave a detailed description of the nonlinear solid mechanics dis-

cretization, which we used in our implementation.

Next, we presented details on our simulation software OpenDiHu, which we used to

solve various combinations of the described multi-scale model framework to simulate the

neuromuscular system. Chapter 6 gave an introduction to the design and usage of the

software and demonstrated its application using various example problems.

Chapter 7 described the implementation of OpenDiHu in more detail, motivated various

design decisions, introduced the data handling and several algorithms, e.g., to construct

a parallel domain decomposition or to map data between meshes, and described the

implementation of various solvers for particular parts of the multi-scale model.

Chapter 8 presented numerical results, which were obtained using our simulation soft-

ware. We simulated the passive mechanical behavior of muscle tissue, subcellular models

given in CellML description, electrophysiology on muscle fibers, electric conduction in the

muscle and the adipose tissue to obtain surface EMG signals, electrophysiology using the

10.2 SUMMARY OF MAIN FINDINGS 499

3D homogenized multidomain description, and coupled scenarios of electrophysiology

and muscle contraction. We discussed effects of model and structural parameters and

interpreted the obtained simulation results.

In Chap. 9, we analyzed the computational performance of our software in general

and various solvers in particular. We conducted numerical studies of universal conver-

gence properties with the software OpenCMISS, which also helped to parameterize the

numerical solvers in OpenDiHu. Further studies on mesh widths and used linear solvers

were carried out directly using OpenDiHu. We evaluated various optimization options

in OpenDiHu and compared the most optimized settings in OpenDiHu with the base-

line solver OpenCMISS, yielding a high speedup of more than two orders of magnitude.

Moreover, we investigated the computational performance of our models on the GPU,

and conducted parallel strong scaling and parallel weak scaling tests on small clusters

and the supercomputers at the High Performance Computing Center Stuttgart.

10.2 Summary of Main Findings

The present work simulated numerous scenarios with various model combinations, which

provided different insights. In the following, we summarize the observed findings. We

address the biophysical observations in Sec. 10.2.1 and results of the performance mea-

surements in Sec. 10.3.

10.2.1 Observations from the Fields of Biophysics and

Biomechanics

The comparison of the linear and nonlinear mechanics models in Sec. 8.2 showed qualita-

tively different results and demonstrated that the accurate behavior of deforming muscle

tissue can only be described by a proper nonlinear anisotropic solid mechanics model.

Initially, an open question was also how to relate the accuracy of the simulated EMG sig-

nals to the number of fibers and the mesh resolution. Our numerical studies in Sec. 9.7.1,

which compared the resulting action propagation velocity for different mesh widths of

the 1D muscle fiber meshes showed that a mesh width of 100µm or 100 elements per

cm gives reasonably accurate results.

500 CHAPTER 10: CONCLUSION AND FUTURE WORK

To evaluate the 3D mesh width and the spacing between the muscle fibers, we con-

ducted simulations with different 3D mesh resolutions and numbers of fibers in Sec. 8.4.4.

The number of fibers was scaled up to the realistic number of 270000 fibers in a biceps

brachii muscle. We concluded that the most accurate solution is obtained for a mesh width

as fine as possible, as the EMG results were qualitatively different for every refinement

step. This emphasizes the need for highly resolved simulation scenarios (representing

the real number of fibers in a muscle accurately) for realistic EMG computations and, as

a result, the need for High Performance Computing techniques.

However, if the EMG is to be sampled by electrodes, i.e., if the EMG recording process

should also be part of the simulation, lower mesh widths might be possible, as the EMG

is only captured at the locations of the electrodes.

One possible approach to reduce the computational effort for EMG simulations would

be to only consider the muscle tissue down to a certain depth below the surface with

the EMG electrodes. We observed in Sec. 8.4.2, that the EMG signal is highly influenced

by MUs, whose territories are located close to the electrodes. However, our numerical

experiments with EMG decomposition algorithms in Sec. 8.4.6 showed that large MUs

located opposite to the EMG electrodes at the deepest muscle tissue layers are detectable

in the surface EMG signals. Thus, neglecting the deeper parts of the muscle would remove

relevant information from the system and is, therefore, not a valid approach to reduce

the computational load.

Furthermore, the layer of adipose tissue on top of the muscle showed a smoothing effect

on EMG recordings in our simulations, both with the fiber based approach in Sec. 8.4.3

and with the multidomain approach in Sections 8.5.1 and 8.5.2. One advantage of our

simulations compared to experimental studies is that the thickness of the fat layer is

known exactly and can also be adjusted.

Simulations of muscle contraction with coupled electrophysiology and solid mechanics

models showed a spatially inhomogeneous contraction for the biceps muscle while the

muscle activation is ramped up. The simulation in Sec. 8.6.1 of an isolated, contract-

ing muscle belly without tendons showed transverse bending, alternating between the

left and right-hand sides, as a result of the subsequently activated MUs at the different

sides of the muscle. We also simulated the biceps brachii muscle together with its ten-

dons and observed a ripple in the generated muscle force, which is caused by the same

inhomogeneous MU activity.

The simulations of muscle contraction also showed that, if the muscle is initially in a

stress-free state, the model can only achieve a maximum contraction of approximately

10.3 SUMMARY OF PERFORMANCE RESULTS 501

85 %. However, the muscles of the musculoskeletal system are known to exhibit pre-

stresses in their relaxed states. Accordingly, we added prestress to our simulations. The

amount of prestress is adjustable in the simulation settings, and the required amount can

be determined by a comparison with experimental studies.

10.3 Summary of Performance Results

A major part of the work was also concerned with improving the performance of the

simulation software, and, thus, enabling larger simulation scenarios in shorter runtimes.

Previously, literature on biophysical, multi-scale models of skeletal muscles was mainly

focused on modelling and interpretation of the results, rather than targeting efficient

computations. The work of Röhrle et al. [Röh12] introduced the multi-scale model,

which we based our work on, and simulated the tibialis anterior muscle using a 3D

mechanics mesh with 12 elements. The work of Heidlauf et al. [Hei13] considered

the same geometry and simulated 400 muscle fibers. The authors parallelized their

OpenCMISS based implementation for a fixed number of four processes. We built upon

this work with the goal to push the limits of feasible problem sizes, and, in Sec. 8.4.4,

executed our optimized simulation with 26 912 processes, 273529 muscle fibers and a

3D mesh for the electrophysiology model with approximately 108 degrees of freedom.

The performance analyzes in Chap. 9 showed that the subcellular model contributes

a large portion to the total runtime and, thus, is the most crucial part to optimize. By

using proper memory layouts, vectorization is possible. Our approach of using explicit

vector instructions outperformed the auto-vectorization capabilities of the compiler. The

approximation of the exponential function and an improved parallelization scheme for

the 1D electric conduction problem additionally contributed to a high speedup. The

comparison to the baseline solver OpenCMISS Iron in a strong scaling study in Sec. 9.3.1

revealed a maximum speedup of 363 for the purely implementation-specific improvements

and an additional speedup of 2.5, shown in Sec. 9.1.1, by using more efficient numerical

methods.

In addition, the memory characteristics of the solvers were investigated in Sec. 9.3.1.

The linear increase in memory consumption of the baseline solver in a weak scaling

setting was improved to a nearly constant scaling. Our analysis using a roofline perfor-

mance model showed that our solvers are compute bound and achieve a computational

performance of approximately 25 % peak performance, which is a very good value.

502 CHAPTER 10: CONCLUSION AND FUTURE WORK

Moreover, hybrid shared/distributed memory parallelism and computations on the GPU

were investigated, but both approaches were found to be not competitive with our highly

optimized distributed memory parallelization. For the GPU, potentially more efficient

approaches than our approach using OpenMP exist, such that a performance improvement

in the future could be possible.

The modularity of the CellML infrastructure, where computational models can be

shared among researchers and are interchangeable in multi-scale simulations was pre-

served during all optimization endeavors. Our approach was to implement a source-to-

source code generator, which transformed the given CellML code into optimized code for

the CPU or the GPU.

For the solution of the multidomain model, we evaluated various preconditioners and

selected the most performant preconditioner-solver combination for our computations.

One previously unforeseen result is the large discrepancy of required runtime between the

fiber based and the multidomain based electrophysiology models, presented in Sec. 8.5.

We measured by a factor of 1000 longer computation times for the multidomain model,

which result from the structure of the model. Despite the high computational effort, the

multidomain model is useful in practice as it can simulate effects that are not captured

by the fiber based model. We gave a detailed comparison between both approaches in

Sec. 8.5.3.

In summary, we provided a computationally efficient and scalable tool for applied

biophysics researchers to solve problems in the domains of EMG generation and muscle

contraction. For example, the effect of different muscle fiber organizations and MU

recruitment strategies can be tested with our software. We demonstrated its use with state-

of-the-art EMG decomposition algorithms, which provide the bridge to the experimental

domain. Thus, we hope to contribute one step on the pathway of complementing in vivo

with in silico experiments to increase the understanding of the neuromuscular system.

10.4 Outlook and Future Work

The presented work could be extended in multiple directions, spanning performance

improvements and model extensions.

First, some ideas for further performance improvements could be implemented and

evaluated. The monodomain equation could be solved with implicit-explicit (IMEX)

10.4 OUTLOOK AND FUTURE WORK 503

schemes, which could potentially achieve higher precision. The numerically stiff subcel-

lular model is currently solved explicitly. Implicit schemes could be developed, and the

implicit iteration equations could be solved symbolically in a preprocessing step using the

parsed CellML code.

To improve the performance of the multidomain model, the following algorithmic

improvements are promising options. The 3D problems of action potential propagation in

the muscle volume for every compartment could be restricted to the subset of nodes, where

the occupancy factors are above a certain threshold, effectively reducing the problem sizes,

and reducing the effect of higher MU counts on the runtime. However, this would bring

difficulties to ensure a balanced parallel domain decomposition. Instead of the current

parallel partitioning of the domain, the multidomain model could also be parallelized by

distributing the MUs to different processes or by a combination of both approaches.

On the numerical side, an extended error analysis could be carried out for all model

parts, and the timestep widths, which are currently chosen conservatively, could po-

tentially be increased, while keeping the numerical error below a given threshold. Error

estimators could be developed, which would allow an adaptive adjustment of the timestep

widths. The 3D model solvers for the 3D electrophysiology and multidomain problems

could be enhanced with geometric or algebraic multigrid preconditioners.

Since all subcellular points in a muscle are usually in similar states at any time, a hybrid

approach using analytic descriptions of action potential propagation, as in Sec. 8.4.7, and

a fully numerical treatment could be chosen, and surrogate models could be adaptively

added to the computational description.

On the technical side, computations on the GPU could be re-evaluated in the future

using the existing OpenMP approach with more mature compiler versions or different

accelerator targeting programming technologies.

Second, the range of simulated models could be extended. The simulations could be

applied to further muscle geometries such as the triceps brachii or the tibialis anterior

muscles. Muscles with more complex geometries and fiber arrangements could be inves-

tigated. A mechanically coupled problem of agonist-antagonist pair could be considered

such as a system of biceps and triceps brachii. Apart from the mechanical coupling,

a coupling of the neural recruitment involving sensory organs in the muscles could be

implemented and used to approach further biomechanical research questions. Such a

neuromuscular feedback loop could also be investigated first for a single muscle, e.g., by

extending the preliminary implementation in OpenDiHu for the biceps muscle.

504 CHAPTER 10: CONCLUSION AND FUTURE WORK

Pathological conditions could be simulated to understand muscular diseases and neu-

romuscular electrical stimulation of the muscle for stroke rehabilitation could be consid-

ered.

By using the preCICE adapters in OpenDiHu, more advanced mechanics solvers could

be coupled to an electrophysiology simulation in OpenDiHu, allowing to, e.g., study

mechanical effects of surrounding tissue.

On a larger scale, the interplay of more organs could be taken into account. Blood

perfusion and muscle metabolism could be added, and coupled by models of the lung and

general metabolism in the organism. Thus, a digital human model can be envisioned,

which allows to study the effects of anomalies and to develop new therapies, effectively

utilizing simulation technology for human wellbeing.

505

Bibliography

[80008] 80000-13:2008, I.: Quantities and Units—Part 13: Information Science and Technol-
ogy, Standard, Geneva, CH: International Organization for Standardization / Inter-

national Electrotechnical Commission, 2008

[Ahr05] Ahrens, J.; Geveci, B.; Law, C.: ParaView: an end-user tool for large data visualization,

Visualization Handbook, ed. by Hansen, C.; Johnson, C. R., Elsevier, 2005

[Ala20] Alappat, C. et al.: A recursive algebraic coloring technique for hardware-efficient sym-
metric sparse matrix-vector multiplication, ACM Trans. Parallel Comput. 7.3, 2020,

I S S N: 2329-4949, doi:10.1145/3399732, https://doi.org/10.1145/3399732

[All05] Alliez, P. et al.: Variational tetrahedral meshing, ACM SIGGRAPH 2005 Papers, SIG-

GRAPH ’05, Los Angeles, California: Association for Computing Machinery, 2005,

pp. 617–625, isbn:9781450378253, doi:10.1145/1186822.1073238, https://doi.org/10.1145/1186822.

1073238

[Aln15] Alnæs, M. et al.: The fenics project version 1.5, Archive of Numerical Software 3.100,

2015

[Alt20] Altair Engineering, Inc: High Fidelity Finite Element Modeling | Altair Hypermesh,

2020, https://www.altair.com/hypermesh/

[Ame01] Amestoy, P. R. et al.: A fully asynchronous multifrontal solver using distributed dynamic
scheduling, SIAM Journal on Matrix Analysis and Applications 23.1, 2001, pp. 15–41,

doi:10.1137/S0895479899358194

[Ame17] Amestoy, P. et al.: On the complexity of the block low-rank multifrontal factorization,

SIAM Journal on Scientific Computing 39.4, 2017, pp. 1710–1740, doi:16M1077192

[Ame19] Amestoy, P. R. et al.: Performance and scalability of the block low-rank multifrontal
factorization on multicore architectures, ACM Trans. Math. Softw. 45.1, 2019, I S S N:

0098-3500, doi:10.1145/3242094, https://doi.org/10.1145/3242094

[And05] Andreasen, D. S.; Alien, S. K.; Backus, D. A.: Exoskeleton with emg based active
assistance for rehabilitation, 9th International Conference on Rehabilitation Robotics,

2005. ICORR 2005. 2005, pp. 333–336, doi:10.1109/ICORR.2005.1501113

[Bal15] Balay, S. et al.: PETSc users manual, tech. rep. ANL-95/11 - Revision 3.6, Argonne

National Laboratory, 2015

[Bal16] Balay, S. et al.: PETSc Web page, http://www.mcs.anl.gov/petsc, 2016, http:

//www.mcs.anl.gov/petsc

[Bal97] Balay, S. et al.: Efficient management of parallelism in object oriented numerical soft-
ware libraries, Modern Software Tools in Scientific Computing, ed. by Arge, E.; Bru-

aset, A. M.; Langtangen, H. P., Birkhäuser Press, 1997, pp. 163–202

https://doi.org/10.1145/3399732
https://doi.org/10.1145/3399732
https://www.amazon.com/s/?field-keywords=9781450378253
https://doi.org/10.1145/1186822.1073238
https://doi.org/10.1145/1186822.1073238
https://doi.org/10.1145/1186822.1073238
https://www.altair.com/hypermesh/
https://doi.org/10.1137/S0895479899358194
https://doi.org/16M1077192
https://doi.org/10.1145/3242094
https://doi.org/10.1145/3242094
https://doi.org/10.1109/ICORR.2005.1501113
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

506 BIBLIOGRAPHY

[Bar03] Bar-Cohen, Y.; Breazeal, C.: Biologically inspired intelligent robots, Smart Structures

and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD), ed. by

Bar-Cohen, Y., vol. 5051, International Society for Optics and Photonics, SPIE, 2003,

pp. 14–20, doi:10.1117/12.484379, https://doi.org/10.1117/12.484379

[Bar04] Bar-Cohen, Y.; SPIE, eds.: Electroactive polymer (eap) actuators as artificial mus-
cles: reality, potential, and challenges, Englisch, Mode of access: World Wide Web,

Bellingham, Wash. <1000 20th St. Bellingham WA 98225-6705 USA>, 2004, http:

//dx.doi.org/10.1117/3.547465

[Bar96] Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H.: The quickhull algorithm for convex
hulls, ACM Trans. Math. Softw. 22.4, 1996, pp. 469–483, I S S N: 0098-3500, doi:

10.1145/235815.235821, https://doi.org/10.1145/235815.235821

[Bay17] Bayer, A. et al.: The influence of biophysical muscle properties on simulating fast human
arm movements, Computer Methods in Biomechanics and Biomedical Engineering

20.8, 2017, PMID: 28387534, pp. 803–821, doi:10.1080/10255842.2017.1293663

[Bes12] Bessmeltsev, M. et al.: Design-driven quadrangulation of closed 3d curves, ACM Trans.

Graph. 31.6, 2012, I S S N: 0730-0301, doi:10.1145/2366145.2366197, https://doi.org/10.

1145/2366145.2366197

[Bla93] Blacker, T. D.; Meyers, R. J.: Seams and wedges in plastering: a 3-d hexahedral mesh
generation algorithm, Engineering with computers 9.2, 1993, pp. 83–93

[Ble05a] Blemker, S. S.; Pinsky, P. M.; Delp, S. L.: A 3D model of muscle reveals the causes of
nonuniform strains in the biceps brachii, Journal of Biomechanics 38.4, 2005, pp. 657–

665, doi:10.1016/j.jbiomech.2004.04.009

[Ble05b] Blemker, S. S.; Delp, S. L.: Three-dimensional representation of complex muscle ar-
chitectures and geometries, Annals of biomedical engineering 33.5, 2005, pp. 661–

673

[Böl08] Böl, M.; Reese, S.: Micromechanical modelling of skeletal muscles based on the finite
element method, Computer methods in biomechanics and biomedical engineering

11.5, 2008, pp. 489–504

[Böl12] Böl, M. et al.: Compressive properties of passive skeletal muscle—the impact of precise
sample geometry on parameter identification in inverse finite element analysis, Journal of

Biomechanics 45.15, 2012, pp. 2673–2679, I S S N: 0021-9290, doi:https://doi.org/10.

1016/j.jbiomech.2012.08.023, https://www.sciencedirect.com/science/article/pii/S002192901200471X

[Bra11] Bradley, C. et al.: Opencmiss: a multi-physics & multi-scale computational infrastruc-
ture for the vph/physiome project, Progress in Biophysics and Molecular Biology 107.1,

2011, Experimental and Computational Model Interactions in Bio-Research: State of

the Art, pp. 32–47, I S S N: 0079-6107, doi:https://doi.org/10.1016/j.pbiomolbio.2011.06.

015, https://www.sciencedirect.com/science/article/pii/S0079610711000629

[Bra18] Bradley, C. P.; Emamy, N.; Ertl, T.; Göddeke, D.; Hessenthaler, A.; Klotz, T.;

Krämer, A.; Krone, M.; Maier, B.; Mehl, M.; Rau, T.; Röhrle, O.: Enabling de-
tailed, biophysics-based skeletal muscle models on HPC systems, Frontiers in Physiology

9.816, 2018, doi:10.3389/fphys.2018.00816

[Bra69] Brandstater, M.; Lambert, E.: A histochemical study of the spatial arrangement of
muscle fibers in single motor units within rat tibialis anterior muscle, Bull Am Assoc

Electromyogr Electrodiag 82, 1969, pp. 15–16

https://doi.org/10.1117/12.484379
https://doi.org/10.1117/12.484379
http://dx.doi.org/10.1117/3.547465
http://dx.doi.org/10.1117/3.547465
https://doi.org/10.1145/235815.235821
https://doi.org/10.1145/235815.235821
https://doi.org/10.1145/235815.235821
https://doi.org/10.1080/10255842.2017.1293663
https://doi.org/10.1145/2366145.2366197
https://doi.org/10.1145/2366145.2366197
https://doi.org/10.1145/2366145.2366197
https://doi.org/10.1016/j.jbiomech.2004.04.009
https://doi.org/https://doi.org/10.1016/j.jbiomech.2012.08.023
https://doi.org/https://doi.org/10.1016/j.jbiomech.2012.08.023
https://www.sciencedirect.com/science/article/pii/S002192901200471X
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2011.06.015
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2011.06.015
https://www.sciencedirect.com/science/article/pii/S0079610711000629
https://doi.org/10.3389/fphys.2018.00816

507

[Bun16] Bungartz, H.-J. et al.: Precice – a fully parallel library for multi-physics surface coupling,

Computers & Fluids 141, 2016, Advances in Fluid-Structure Interaction, pp. 250–

258, I S S N: 0045-7930, doi:https://doi.org/10.1016/j.compfluid.2016.04.003, https://www.

sciencedirect.com/science/article/pii/S0045793016300974

[Byr95] Byrd, R. H. et al.: A limited memory algorithm for bound constrained optimization,

SIAM Journal on scientific computing 16.5, 1995, pp. 1190–1208

[Car14] Cardiff, P. et al.: Nonlinear solid mechanics in openfoam, 9th OpenFOAM Workshop,

University of Zagreb, Croatia, 2014

[Car17] Carniel, T. A.; Fancello, E. A.: A transversely isotropic coupled hyperelastic model for the
mechanical behavior of tendons, Journal of Biomechanics 54, 2017, pp. 49–57, I S S N:

0021-9290, doi:https://doi.org/10.1016/j.jbiomech.2017.01.042, https://www.sciencedirect.

com/science/article/pii/S0021929017300726

[Cav05] Cavallaro, E. et al.: Hill-based model as a myoprocessor for a neural controlled powered
exoskeleton arm - parameters optimization, Proceedings of the 2005 IEEE International

Conference on Robotics and Automation, 2005, pp. 4514–4519

[Cav06] Cavallaro, E. E. et al.: Real-time myoprocessors for a neural controlled powered ex-
oskeleton arm, IEEE Transactions on Biomedical Engineering 53.11, 2006, pp. 2387–

2396

[Cel21] CellMLTeam: The CellML project, 2021, https://www.cellml.org/

[Che97] Chew, L. P.: Guaranteed-quality delaunay meshing in 3d (short version), Proceedings

of the thirteenth annual symposium on Computational geometry, 1997, pp. 391–393

[Chi04] Childers, M. K.: Targeting the neuromuscular junction in skeletal muscles, American

Journal of Physical Medicine & Rehabilitation 83.10, 2004, I S S N: 0894-9115, https://

journals.lww.com/ajpmr/Fulltext/2004/10001/Targeting_the_Neuromuscular_Junction_in_Skeletal.

6.aspx

[Cho13] Choi, H. F.; Blemker, S. S.: Skeletal muscle fascicle arrangements can be reconstructed
using a laplacian vector field simulation, PLOS ONE 8.10, 2013, pp. 1–7, doi:10.1371/

journal.pone.0077576

[Cis08] Cisi, R. R.; Kohn, A. F.: Simulation system of spinal cord motor nuclei and associated
nerves and muscles, in a web-based architecture, Journal of computational neuroscience

25.3, 2008, pp. 520–542

[Cla21] Clarke, A. K. et al.: Deep learning for robust decomposition of high-density surface
emg signals, IEEE Transactions on Biomedical Engineering 68.2, 2021, pp. 526–534,

doi:10.1109/TBME.2020.3006508

[Coh96] Cohen, S. D.; Hindmarsh, A. C.; Dubois, P. F.: Cvode, a stiff/nonstiff ode solver in c,
Computers in physics 10.2, 1996, pp. 138–143

[Coo06] Cooper, J.; McKeever, S.; Garny, A.: On the application of partial evaluation to
the optimisation of cardiac electrophysiological simulations, Proceedings of the 2006

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Ma-

nipulation, PEPM ’06, Charleston, South Carolina: Association for Computing Ma-

chinery, 2006, pp. 12–20, isbn:1595931961, doi:10.1145/1111542.1111546, https://doi.org/10.

1145/1111542.1111546

https://doi.org/https://doi.org/10.1016/j.compfluid.2016.04.003
https://www.sciencedirect.com/science/article/pii/S0045793016300974
https://www.sciencedirect.com/science/article/pii/S0045793016300974
https://doi.org/https://doi.org/10.1016/j.jbiomech.2017.01.042
https://www.sciencedirect.com/science/article/pii/S0021929017300726
https://www.sciencedirect.com/science/article/pii/S0021929017300726
https://www.cellml.org/
https://journals.lww.com/ajpmr/Fulltext/2004/10001/Targeting_the_Neuromuscular_Junction_in_Skeletal.6.aspx
https://journals.lww.com/ajpmr/Fulltext/2004/10001/Targeting_the_Neuromuscular_Junction_in_Skeletal.6.aspx
https://journals.lww.com/ajpmr/Fulltext/2004/10001/Targeting_the_Neuromuscular_Junction_in_Skeletal.6.aspx
https://doi.org/10.1371/journal.pone.0077576
https://doi.org/10.1371/journal.pone.0077576
https://doi.org/10.1109/TBME.2020.3006508
https://www.amazon.com/s/?field-keywords=1595931961
https://doi.org/10.1145/1111542.1111546
https://doi.org/10.1145/1111542.1111546
https://doi.org/10.1145/1111542.1111546

508 BIBLIOGRAPHY

[Coo15] Cooper, J.; Spiteri, R. J.; Mirams, G. R.: Cellular cardiac electrophysiology modeling
with Chaste and CellML, Frontiers in Physiology 5, 2015, p. 511, doi:10.3389/fphys.2014.

00511

[Cor92] Cordes, C.; Kinzelbach, W.: Continuous groundwater velocity fields and path lines in
linear, bilinear, and trilinear finite elements, Water resources research 28.11, 1992,

pp. 2903–2911

[Cra47] Crank, J.; Nicolson, P.: A practical method for numerical evaluation of solutions of par-
tial differential equations of the heat-conduction type, Mathematical Proceedings of the

Cambridge Philosophical Society 43.1, 1947, pp. 50–67, doi:10.1017/S0305004100023197

[Cue03] Cuellar, A. A. et al.: An overview of CellML 1.1, a biological model description language,

SIMULATION 79.12, 2003, pp. 740–747, doi:10.1177/0037549703040939

[Das20] Dassault Systèmes: Abaqus Unified FEA - SIMULIA™ by Dassault Systèmes®, 2020,

https://www.3ds.com/products-services/simulia/products/abaqus/

[De 06] De Luca, C. J. et al.: Decomposition of surface emg signals, Journal of Neurophysiol-

ogy 96.3, 2006, PMID: 16899649, pp. 1646–1657, doi:10.1152/jn.00009.2006, eprint:

https://doi.org/10.1152/jn.00009.2006, https://doi.org/10.1152/jn.00009.2006

[Del07] Delp, S. L. et al.: Opensim: open-source software to create and analyze dynamic sim-
ulations of movement, IEEE Transactions on Biomedical Engineering 54.11, 2007,

pp. 1940–1950

[Del34] Delaunay, B. et al.: Sur la sphere vide, Izv. Akad. Nauk SSSR, Otdelenie Matematich-

eskii i Estestvennyka Nauk 7.793-800, 1934, pp. 1–2

[Did10] Dideriksen, J. L. et al.: An integrative model of motor unit activity during sustained sub-
maximal contractions, Journal of Applied Physiology 108.6, 2010, PMID: 20360437,

pp. 1550–1562, doi:10.1152/japplphysiol.01017.2009

[Dim98] Dimitrov, G. V.; Dimitrova, N. A.: Precise and fast calculation of the motor unit poten-
tials detected by a point and rectangular plate electrode, Medical engineering & physics

20.5, 1998, pp. 374–381

[Don05] Dong, S. et al.: Quadrangulating a mesh using laplacian eigenvectors, tech. rep., 2005

[Eds68] Edström, L.; Kugelberg, E.: Histochemical composition, distribution of fibres and
fatiguability of single motor units. anterior tibial muscle of the rat, eng, Journal of

neurology, neurosurgery, and psychiatry 31.5, 1968, PMC496396[pmcid], pp. 424–

433, I S S N: 0022-3050, doi:10.1136/jnnp.31.5.424, https://doi.org/10.1136/jnnp.31.5.424

[Eme02] Emery, A. E.: The muscular dystrophies, The Lancet 359.9307, 2002, pp. 687–695,

I S S N: 0140-6736, doi:https://doi.org/10.1016/S0140-6736(02)07815-7

[Eme91] Emery, A. E.: Population frequencies of inherited neuromuscular diseases—a world
survey, Neuromuscular Disorders 1.1, 1991, pp. 19–29, I S S N: 0960-8966

[Eno01] Enoka, R. M.; Fuglevand, A. J.: Motor unit physiology: some unresolved issues, Muscle

& Nerve 24.1, 2001, pp. 4–17, doi:10.1002/1097-4598(200101)24:1<4::AID-MUS13>3.0.CO;2-F

[Eno08] Enoka, R. M.; Duchateau, J.: Muscle fatigue: what, why and how it influences muscle
function, The Journal of Physiology 586.1, 2008, pp. 11–23, doi:https://doi.org/10.

1113/jphysiol.2007.139477

[Epp99] Eppstein, D.: Linear complexity hexahedral mesh generation, Computational Geometry

12.1-2, 1999, pp. 3–16

https://doi.org/10.3389/fphys.2014.00511
https://doi.org/10.3389/fphys.2014.00511
https://doi.org/10.1017/S0305004100023197
https://doi.org/10.1177/0037549703040939
https://www.3ds.com/products-services/simulia/products/abaqus/
https://doi.org/10.1152/jn.00009.2006
https://doi.org/10.1152/jn.00009.2006
https://doi.org/10.1152/jn.00009.2006
https://doi.org/10.1152/japplphysiol.01017.2009
https://doi.org/10.1136/jnnp.31.5.424
https://doi.org/10.1136/jnnp.31.5.424
https://doi.org/https://doi.org/10.1016/S0140-6736(02)07815-7
https://doi.org/10.1002/1097-4598(200101)24:1<4::AID-MUS13>3.0.CO;2-F
https://doi.org/https://doi.org/10.1113/jphysiol.2007.139477
https://doi.org/https://doi.org/10.1113/jphysiol.2007.139477

509

[Fal02] Falgout, R. D.; Yang, U. M.: Hypre: a library of high performance preconditioners,
International Conference on Computational Science, Springer, 2002, pp. 632–641

[Fal16] Falisse, A. et al.: Emg-driven optimal estimation of subject-specific hill model muscle-
tendon parameters of the knee joint actuators, IEEE Transactions on Biomedical Engi-

neering PP, 2016, pp. 1–1, doi:10.1109/TBME.2016.2630009

[Far01] Farina, D.; Merletti, R.: A novel approach for precise simulation of the emg signal
detected by surface electrodes, IEEE Transactions on Biomedical Engineering 48.6,

2001, pp. 637–646

[Far10] Farina, D. et al.: Decoding the neural drive to muscles from the surface electromyogram,

Clinical Neurophysiology 121.10, 2010, pp. 1616–1623, I S S N: 1388-2457, doi:https:

//doi.org/10.1016/j.clinph.2009.10.040

[Fei55] Feinstein, B. et al.: Morphologic studies of motor units in normal human muscles, Cells

Tissues Organs 23.2, 1955, pp. 127–142

[Fer18] Fernandez, J. et al.: Musculoskeletal modelling and the physiome project, Multiscale

Mechanobiology of Bone Remodeling and Adaptation, ed. by Pivonka, P., Cham:

Springer International Publishing, 2018, pp. 123–174, isbn:978-3-319-58845-2, doi:10.

1007/978-3-319-58845-2_3, https://doi.org/10.1007/978-3-319-58845-2_3

[Fie88] Field, D. A.: Laplacian smoothing and delaunay triangulations, Communications in

applied numerical methods 4.6, 1988, pp. 709–712

[Gab04] Gabriel, E. et al.: Open MPI: goals, concept, and design of a next generation MPI imple-
mentation, Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest,

Hungary, 2004, pp. 97–104

[Gar03] Garner, B. A.; Pandy, M. G.: Estimation of musculotendon properties in the human
upper limb, Annals of Biomedical Engineering 31.2, 2003, pp. 207–220, I S S N: 1573-

9686, doi:10.1114/1.1540105, https://doi.org/10.1114/1.1540105

[Gar08] Garny, A. et al.: CellML and associated tools and techniques, Philos Trans A Math Phys

Eng Sci 366.1878, 2008, pp. 3017–3043

[Gar15] Garny, A.; Hunter, P. J.: OpenCOR: a modular and interoperable approach to compu-
tational biology, Frontiers in Physiology 6, 2015, p. 26, doi:10.3389/fphys.2015.00026

[Gha20] Ghadam Soltani, E.: Modelling Thermoregulation of the Human Body, PhD thesis, The

University of Auckland, 2020

[God20] Godoy, W. F. et al.: Adios 2: the adaptable input output system. a framework for high-
performance data management, SoftwareX 12, 2020, p. 100561, I S S N: 2352-7110,

doi:https://doi.org/10.1016/j.softx.2020.100561, https://www.sciencedirect.com/science/article/

pii/S2352711019302560

[Goo20] Google: Googletest user’s guide, https://google.github.io/googletest/, 2020

[Gre11] Gregson, J.; Sheffer, A.; Zhang, E.: All-hex mesh generation via volumetric polycube
deformation, Computer Graphics Forum 30.5, 2011, pp. 1407–1416, doi:https://doi.

org/10.1111/j.1467-8659.2011.02015.x

[Gro09] Grosland, N. M. et al.: IA-FEMesh: an open-source, interactive, multiblock approach
to anatomic finite element model development, Computer methods and programs in

biomedicine 94.1, 2009, pp. 96–107

https://doi.org/10.1109/TBME.2016.2630009
https://doi.org/https://doi.org/10.1016/j.clinph.2009.10.040
https://doi.org/https://doi.org/10.1016/j.clinph.2009.10.040
https://www.amazon.com/s/?field-keywords=978-3-319-58845-2
https://doi.org/10.1007/978-3-319-58845-2_3
https://doi.org/10.1007/978-3-319-58845-2_3
https://doi.org/10.1007/978-3-319-58845-2_3
https://doi.org/10.1114/1.1540105
https://doi.org/10.1114/1.1540105
https://doi.org/10.3389/fphys.2015.00026
https://doi.org/https://doi.org/10.1016/j.softx.2020.100561
https://www.sciencedirect.com/science/article/pii/S2352711019302560
https://www.sciencedirect.com/science/article/pii/S2352711019302560
https://google.github.io/googletest/
https://doi.org/https://doi.org/10.1111/j.1467-8659.2011.02015.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2011.02015.x

510 BIBLIOGRAPHY

[Gui03] Godunov-type Schemes, ed. by Guinot, V., Amsterdam: Elsevier, 2003, pp. 471–

480, isbn:978-0-444-51155-3, doi:https://doi.org/10.1016/B978-044451155-3/50015-3, https://

www.sciencedirect.com/science/article/pii/B9780444511553500153

[Gun07] Gunther, M.; Schmitt, S.; Wank, V.: High-frequency oscillations as a consequence
of neglected serial damping in hill-type muscle models, Biological Cybernetics 97.1,

2007, pp. 63–79, I S S N: 1432-0770, doi:10.1007/s00422-007-0160-6, https://doi.org/10.

1007/s00422-007-0160-6

[Gut04] Gutterman, Z.: Symbolic pre-computation for numerical applications, Technion-Israel

Institute of Technology, Faculty of Computer Science, 2004

[Gut12] Gutterman, Z.: Semt - compile-time symbolic differentiation via c++ templates, https:
//github.com/st-gille/semt, 2012

[Hae14] Haeufle, D. et al.: Hill-type muscle model with serial damping and eccentric force–velocity
relation, Journal of Biomechanics 47.6, 2014, pp. 1531–1536, I S S N: 0021-9290,

doi:https://doi.org/10.1016/j.jbiomech.2014.02.009

[Hæg07] Hægland, H. et al.: Improved streamlines and time-of-flight for streamline simulation
on irregular grids, Advances in Water Resources 30.4, 2007, pp. 1027–1045, I S S N:

0309-1708, doi:https://doi.org/10.1016/j.advwatres.2006.09.002, http://www.sciencedirect.

com/science/article/pii/S0309170806001709

[Han17] Handsfield, G. G. et al.: Determining skeletal muscle architecture with laplacian sim-
ulations: a comparison with diffusion tensor imaging, Biomechanics and Modeling in

Mechanobiology 16.6, 2017, pp. 1845–1855, I S S N: 1617-7940, doi:10.1007/s10237-017-0923-5

[Har20] Harris, C. R. et al.: Array programming with NumPy, Nature 585.7825, 2020, pp. 357–

362, doi:10.1038/s41586-020-2649-2, https://doi.org/10.1038/s41586-020-2649-2

[Hat77] Hatze, H.: A myocybernetic control model of skeletal muscle, Biological cybernetics

25.2, 1977, pp. 103–119

[Hei03] Heine, R.; Manal, K.; Buchanan, T. S.: Using hill-type muscle models and emg data
in a forward dynamic analysis of joint moment, Journal of Mechanics in Medicine and

Biology 03.02, 2003, pp. 169–186, doi:10.1142/S0219519403000727

[Hei13] Heidlauf, T.; Röhrle, O.: Modeling the Chemoelectromechanical Behavior of Skeletal
Muscle Using the Parallel Open-Source Software Library OpenCMISS, Computational

and Mathematical Methods in Medicine 2013, 2013, pp. 1–14, doi:10.1155/2013/517287,

http://dx.doi.org/10.1155/2013/517287

[Hei14] Heidlauf, T.; Röhrle, O.: A multiscale chemo-electro-mechanical skeletal muscle model
to analyze muscle contraction and force generation for different muscle fiber arrange-
ments, Frontiers in Physiology 5.498, 2014, pp. 1–14, doi:10.3389/fphys.2014.00498,

http://dx.doi.org/10.3389/fphys.2014.00498

[Hei15] Heidlauf, T., ed.: Chemo-electro-mechanical modelling of the neuromuscular system,

Englisch, Text (nur für elektronische Ressourcen), Online publiziert 2016, Stuttgart,

2015, http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-104496

[Hei16] Heidlauf, T. et al.: A multi-scale continuum model of skeletal muscle mechanics pre-
dicting force enhancement based on actin–titin interaction, Biomechanics and Mod-

eling in Mechanobiology 15.6, 2016, pp. 1423–1437, doi:10.1007/s10237-016-0772-7,

http://dx.doi.org/10.1007/s10237-016-0772-7

https://www.amazon.com/s/?field-keywords=978-0-444-51155-3
https://doi.org/https://doi.org/10.1016/B978-044451155-3/50015-3
https://www.sciencedirect.com/science/article/pii/B9780444511553500153
https://www.sciencedirect.com/science/article/pii/B9780444511553500153
https://doi.org/10.1007/s00422-007-0160-6
https://doi.org/10.1007/s00422-007-0160-6
https://doi.org/10.1007/s00422-007-0160-6
https://github.com/st-gille/semt
https://github.com/st-gille/semt
https://doi.org/https://doi.org/10.1016/j.jbiomech.2014.02.009
https://doi.org/https://doi.org/10.1016/j.advwatres.2006.09.002
http://www.sciencedirect.com/science/article/pii/S0309170806001709
http://www.sciencedirect.com/science/article/pii/S0309170806001709
https://doi.org/10.1007/s10237-017-0923-5
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1142/S0219519403000727
https://doi.org/10.1155/2013/517287
http://dx.doi.org/10.1155/2013/517287
https://doi.org/10.3389/fphys.2014.00498
http://dx.doi.org/10.3389/fphys.2014.00498
http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-104496
https://doi.org/10.1007/s10237-016-0772-7
http://dx.doi.org/10.1007/s10237-016-0772-7

511

[Her13] Hernández-Gascón, B. et al.: A 3D electro-mechanical continuum model for simulating
skeletal muscle contraction, Journal of Theoretical Biology 335, 2013, pp. 108–118

[Hil38] Hill, A. V.: The heat of shortening and the dynamic constants of muscle, Proceedings of

the Royal Society of London. Series B - Biological Sciences 126.843, 1938, pp. 136–

195, doi:10.1098/rspb.1938.0050

[Hin76] Hinton, E.; Rock, T.; Zienkiewicz, O. C.: A note on mass lumping and related processes
in the finite element method, Earthquake Engineering & Structural Dynamics 4.3, 1976,

pp. 245–249, doi:10.1002/eqe.4290040305

[Hob19] Hoberock, J.: Working Draft, C++ Extensions for Parallelism Version 2, tech. rep.

N4808, International Organization for Standardization (ISO), International Elec-

trotechnical Commission (IEC), 2019, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2019/n4808.pdf

[Hod13] Hodkinson, L.: Scons-config, https://github.com/furious-luke/scons-config,

2013

[Hod52a] Hodgkin, A. L.; Huxley, A. F.: A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of Physiology 117.4,

1952, pp. 500–544

[Hod52b] Hodgkin, A. L.; Huxley, A. F.: Propagation of electrical signals along giant nerve fibres,
Proceedings of the Royal Society of London. Series B, Biological Sciences, 1952,

pp. 177–183

[Hol00] Holzapfel, A. G.: Nonlinear solid mechanics, 2000

[Hol07a] Holobar, A.; Zazula, D.: Multichannel blind source separation using convolution kernel
compensation, IEEE Transactions on Signal Processing 55.9, 2007, pp. 4487–4496,

doi:10.1109/TSP.2007.896108

[Hol07b] Holobar, A.; Zazula, D.: Gradient convolution kernel compensation applied to surface
electromyograms, Independent Component Analysis and Signal Separation, ed. by

Davies, M. E. et al., Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 617–

624, isbn:978-3-540-74494-8

[Hol08] Holobar, A.; Zazula, D.; Merletti, R.: Demusetool-a tool for decomposition of multi-
channel surface electromyograms, 2008

[Hun04] Hunter, P.: The iups physiome project: a framework for computational physiology,

Progress in Biophysics and Molecular Biology 85.2, 2004, Modelling Cellular and Tis-

sue Function, pp. 551–569, I S S N: 0079-6107, doi:https://doi.org/10.1016/j.pbiomolbio.

2004.02.006, https://www.sciencedirect.com/science/article/pii/S0079610704000318

[Hun07] Hunter, J. D.: Matplotlib: a 2d graphics environment, Computing in Science & Engi-

neering 9.3, 2007, pp. 90–95, doi:10.1109/MCSE.2007.55

[Hys01] Hysom, D.; Pothen, A.: A scalable parallel algorithm for incomplete factor precon-
ditioning, SIAM Journal on Scientific Computing 22.6, 2001, pp. 2194–2215, doi:

10.1137/S1064827500376193, eprint: https://doi.org/10.1137/S1064827500376193,

https://doi.org/10.1137/S1064827500376193

[Ino15] Inouye, J.; Handsfield, G.; Blemker, S.: Fiber tractography for finite-element modeling
of transversely isotropic biological tissues of arbitrary shape using computational fluid
dynamics, 2015

https://doi.org/10.1098/rspb.1938.0050
https://doi.org/10.1002/eqe.4290040305
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4808.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4808.pdf
https://github.com/furious-luke/scons-config
https://doi.org/10.1109/TSP.2007.896108
https://www.amazon.com/s/?field-keywords=978-3-540-74494-8
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2004.02.006
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2004.02.006
https://www.sciencedirect.com/science/article/pii/S0079610704000318
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1137/S1064827500376193
https://doi.org/10.1137/S1064827500376193
https://doi.org/10.1137/S1064827500376193
https://doi.org/10.1137/S1064827500376193

512 BIBLIOGRAPHY

[ISO18] ISO-9241-11:2018(en): Ergonomics of human-system interaction – Part 11: Usabil-
ity: Definitions and concepts, Standard, Geneva, CH: International Organization for

Standardization, 2018

[Jam15] Jamin, C. et al.: Cgalmesh: a generic framework for delaunay mesh generation, ACM

Trans. Math. Softw. 41.4, 2015, I S S N: 0098-3500, doi:10.1145/2699463, https://doi.

org/10.1145/2699463

[Jas07] Jasak, H.; Jemcov, A.; Tukovic, Z., et al.: Openfoam: a c++ library for complex physics
simulations, International workshop on coupled methods in numerical dynamics,

vol. 1000, IUC Dubrovnik Croatia, 2007, pp. 1–20

[Joh00] Johansson, T.; Meier, P.; Blickhan, R.: A finite-element model for the mechanical
analysis of skeletal muscles, Journal of Theoretical Biology 206.1, 2000, pp. 131–49

[Jua06] Juanes, R.; Matringe, S. F.: Unified formulation of velocity fields for streamline tracing
on two-dimensional unstructured grids, Comput. Methods. Appl. Mech. Engrg.,

submitted, 2006

[Kaw08] Kawamura, Y.; Islam, M. S.; Sumi, Y.: A strategy of automatic hexahedral mesh gen-
eration by using an improved whisker-weaving method with a surface mesh modification
procedure, Engineering with Computers 24.3, 2008, pp. 215–229

[Khr19] KhronosGroup: SYCL Specification, SYCL integrates OpenCL devices with modern C++,

"Version 1.2.1", 2019

[Kis20] Kislan, T.: Base64 encoding and decoding for c++ projects, https://github.com/
tkislan/base64, 2020

[Klo20] Klotz, T. et al.: Modelling the electrical activity of skeletal muscle tissue using a multi-
domain approach, Biomechanics and Modeling in Mechanobiology 19.1, 2020, pp. 335–

349, I S S N: 1617-7940, doi:10.1007/s10237-019-01214-5

[Kol21] Kolvekar, S.: Gated Recurrent Unit Network for Decomposition of Synthetic High-
Density Surface Electromyography Signals, MA thesis, Pfaffenwaldring 47, 70569

Stuttgart, Germany: Institute for Signal Processing and System Theory, University of

Stuttgart, 2021

[Kov11] Kovacs, D.; Myles, A.; Zorin, D.: Anisotropic quadrangulation, Computer Aided Ge-

ometric Design 28.8, 2011, Solid and Physical Modeling 2010, pp. 449–462, I S S N:

0167-8396, doi:https://doi.org/10.1016/j.cagd.2011.06.003

[Krä21] Krämer, A.; Maier, B.; Rau, T.; Huber, F.; Klotz, T.; Ertl, T.; Göddeke, D.; Mehl, M.;

Reina, G.; Röhrle, O.: Multi-physics multi-scale HPC simulations of skeletal muscles
(accepted), High Performance Computing in Science and Engineering ’20, Transactions

of the High Performance Computing Center, Stuttgart (HLRS) 2020, ed. by Nagel, W.;

Kröner, D.; Resch, M., Springer International Publishing, 2021

[Kre02] Krebs, H. I. et al.: Robot-aided neurorehabilitation: from evidence-based to science-
based rehabilitation, Topics in Stroke Rehabilitation 8.4, 2002, PMID: 14523730,

pp. 54–70, doi:10.1310/6177-QDJJ-56DU-0NW0

[Kre12] Kretz, M.; Lindenstruth, V.: Vc: A C++ library for explicit vectorization, Software:

Practice and Experience 42.11, 2012, pp. 1409–1430, doi:https://doi.org/10.1002/spe.

1149

[Kre15] Kretz, M.: Extending C++ for explicit data-parallel programming via SIMD vector
types, PhD thesis, Frankfurt am Main: Johann Wolfgang Goethe-Universität Frankfurt

https://doi.org/10.1145/2699463
https://doi.org/10.1145/2699463
https://doi.org/10.1145/2699463
https://github.com/tkislan/base64
https://github.com/tkislan/base64
https://doi.org/10.1007/s10237-019-01214-5
https://doi.org/https://doi.org/10.1016/j.cagd.2011.06.003
https://doi.org/10.1310/6177-QDJJ-56DU-0NW0
https://doi.org/https://doi.org/10.1002/spe.1149
https://doi.org/https://doi.org/10.1002/spe.1149

513

am Main, 2015, p. 256, https://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/

docId/38415

[Kus06] Kuss, M.: Gaussian process models for robust regression, classification, and reinforce-
ment learning, PhD thesis, echnische Universität Darmstadt Darmstadt, Germany,

2006

[Kus19] Kusterer, J.: Extraktion anatomischer Strukturen und Darstellung durch NURBS, Deutsch,

Bachelorarbeit: Universität Stuttgart, Institut für Parallele und Verteilte Systeme, Sim-

ulation großer Systeme, Bachelorarbeit, 2019, http://www2.informatik.uni-stuttgart.de/

cgi-bin/NCSTRL/NCSTRL_view.pl?id=BCLR-2019-19&engl=0

[Lad16] Ladd, D.: An open-source vascular modelling framework: from imaging to multiscale
CFD, PhD thesis, The University of Auckland, 2016

[Led08] Ledoux, F.; Weill, J.-C.: An extension of the reliable whisker weaving algorithm, Pro-

ceedings of the 16th International Meshing Roundtable, Springer, 2008, pp. 215–

232

[Leo15] Leonardis, D. et al.: An emg-controlled robotic hand exoskeleton for bilateral rehabilita-
tion, IEEE Transactions on Haptics 8.2, 2015, pp. 140–151, doi:10.1109/TOH.2015.2417570

[Lin02] Lin Wang; Buchanan, T. S.: Prediction of joint moments using a neural network model
of muscle activations from emg signals, IEEE Transactions on Neural Systems and

Rehabilitation Engineering 10.1, 2002, pp. 30–37

[Llo03] Lloyd, D. G.; Besier, T. F.: An emg-driven musculoskeletal model to estimate muscle
forces and knee joint moments in vivo, Journal of Biomechanics 36.6, 2003, pp. 765–

776, I S S N: 0021-9290, doi:https://doi.org/10.1016/S0021-9290(03)00010-1

[Llo04] Lloyd, C. M.; Halstead, M. D.; Nielsen, P. F.: Cellml: its future, present and past,
Progress in biophysics and molecular biology 85.2, 2004, pp. 433–450

[Low02] Lowery, M. M. et al.: A multiple-layer finite-element model of the surface emg signal,
IEEE Transactions on Biomedical Engineering 49.5, 2002, pp. 446–454

[Maa12] Maas, S. A. et al.: Febio: finite elements for biomechanics, Journal of Biomechanical

Engineering 134.1, 2012, 011005, I S S N: 0148-0731, doi:10.1115/1.4005694, https://

doi.org/10.1115/1.4005694

[Maa17] Maas, S. A.; Ateshian, G. A.; Weiss, J. A.: Febio: history and advances, Annual review

of biomedical engineering 19, 2017, pp. 279–299

[Mac06] MacIntosh B., R.; Gardiner P., F.; McComas A., J.: Skeletal Muscle: Form and Func-
tion, Second, Human Kinetics, 2006

[Mac84] MacDougall, J. D. et al.: Muscle fiber number in biceps brachii in bodybuilders and
control subjects, Journal of Applied Physiology 57.5, 1984, PMID: 6520032, pp. 1399–

1403, doi:10.1152/jappl.1984.57.5.1399

[Mai19] Maier, B.; Emamy, N.; Krämer, A. S.; Mehl, M.: Highly parallel multi-physics simula-
tion of muscular activation and EMG, COUPLED PROBLEMS 2019, 2019, pp. 610–621,

isbn:978-84-949194-5-9, http://hdl.handle.net/2117/190149

[Mai21a] Maier, B.: Input data for OpenDiHu simulations, version 1.3, Zenodo, 2021, doi:

10.5281/zenodo.4705945, https://doi.org/10.5281/zenodo.4705945

[Mai21b] Maier, B.: OpenDiHu, version 1.3, Zenodo, 2021, doi:10.5281/zenodo.4706049, https:

//doi.org/10.5281/zenodo.4706049

https://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/38415
https://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/38415
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=BCLR-2019-19&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=BCLR-2019-19&engl=0
https://doi.org/10.1109/TOH.2015.2417570
https://doi.org/https://doi.org/10.1016/S0021-9290(03)00010-1
https://doi.org/10.1115/1.4005694
https://doi.org/10.1115/1.4005694
https://doi.org/10.1115/1.4005694
https://doi.org/10.1152/jappl.1984.57.5.1399
https://www.amazon.com/s/?field-keywords=978-84-949194-5-9
http://hdl.handle.net/2117/190149
https://doi.org/10.5281/zenodo.4705945
https://doi.org/10.5281/zenodo.4705945
https://doi.org/10.5281/zenodo.4705945
https://doi.org/10.5281/zenodo.4706049
https://doi.org/10.5281/zenodo.4706049
https://doi.org/10.5281/zenodo.4706049

514 BIBLIOGRAPHY

[Mai21c] Maier, B.: OpenDiHu Online Documentation, https://opendihu.readthedocs.

io/, 2021

[Mai21d] Maier, B.; Göddeke, D.; Huber, F.; Klotz, T.; Röhrle, O.; Schulte, M.: OpenDiHu -
Efficient and Scalable Software for Biophysical Simulations of the Neuromuscular System
(in preparation), Journal of Computational Physics, 2021

[Mai21e] Maier, B.; Mehl, M.: Mesh generation and multi-scale simulation of a contracting
muscle-tendon complex (under review), Journal of Computational Science, 2021

[Mai21f] Maier, B.; Stach, M.; Mehl, M.: Real-time, dynamic simulation of deformable linear
objects with friction on a 2d surface, Mechatronics and Machine Vision in Practice 4,

2021, doi:10.1007/978-3-030-43703-9

[Mai22] Maier, B.; Schneider, D.; Schulte, M.; Uekermann, B.: Bridging scales with volume
coupling – scalable simulations of muscle contraction and electromyography (under
review), High Performance Computing in Science and Engineering ’21, 2022

[Mak91] Maker, B. N.: Nike3d: a nonlinear, implicit, three-dimensional finite element code for
solid and structural mechanics, 1991

[Mar10] Marchandise, E. et al.: Quality meshing based on stl triangulations for biomedical
simulations, International Journal for Numerical Methods in Biomedical Engineering

26.7, 2010, pp. 876–889

[Mar11] Marchandise, E. et al.: High-quality surface remeshing using harmonic maps—part ii:
surfaces with high genus and of large aspect ratio, International Journal for Numerical

Methods in Engineering 86.11, 2011, pp. 1303–1321, doi:10.1002/nme.3099

[Mar94] Marsden, J. E.; Hughes, T. J.: Mathematical foundations of elasticity, Courier Corpo-

ration, 1994

[Men16] Meng, M.; He, Y.: Consistent quadrangulation for shape collections via feature line
co-extraction, Computer-Aided Design 70, 2016, SPM 2015, pp. 78–88, I S S N: 0010-

4485, doi:https://doi.org/10.1016/j.cad.2015.07.010, http://www.sciencedirect.com/science/

article/pii/S0010448515001104

[Mer04] Merletti, R.; Parker, P.: Electromyography - Physiology, Engineering, and Noninvasive
Applications, ed. by Akay, M., John Wiley & Sons, 2004, doi:10.1002/0471678384, http:

//dx.doi.org/10.1002/0471678384

[Mes06] Mesin, L.; Farina, D.: An analytical model for surface emg generation in volume conduc-
tors with smooth conductivity variations, IEEE transactions on biomedical engineering

53.5, 2006, pp. 773–779

[Mes13] Mesin, L.: Volume conductor models in surface electromyography: computational tech-
niques, Computers in Biology and Medicine 43.7, 2013, pp. 942–952, I S S N: 0010-

4825, doi:https://doi.org/10.1016/j.compbiomed.2013.02.002

[Meu17] Meurer, A. et al.: Sympy: symbolic computing in python, PeerJ Computer Science 3,

2017, e103, I S S N: 2376-5992, doi:10.7717/peerj-cs.103, https://doi.org/10.7717/peerj-cs.

103

[Mil06a] Mileusnic, M. P.; Loeb, G. E.: Mathematical models of proprioceptors. ii. structure
and function of the golgi tendon organ, Journal of Neurophysiology 96.4, 2006, PMID:

16672300, pp. 1789–1802, doi:10.1152/jn.00869.2005, eprint: https://doi.org/10.

1152/jn.00869.2005, https://doi.org/10.1152/jn.00869.2005

https://opendihu.readthedocs.io/
https://opendihu.readthedocs.io/
https://doi.org/10.1007/978-3-030-43703-9
https://doi.org/10.1002/nme.3099
https://doi.org/https://doi.org/10.1016/j.cad.2015.07.010
http://www.sciencedirect.com/science/article/pii/S0010448515001104
http://www.sciencedirect.com/science/article/pii/S0010448515001104
https://doi.org/10.1002/0471678384
http://dx.doi.org/10.1002/0471678384
http://dx.doi.org/10.1002/0471678384
https://doi.org/https://doi.org/10.1016/j.compbiomed.2013.02.002
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1152/jn.00869.2005
https://doi.org/10.1152/jn.00869.2005
https://doi.org/10.1152/jn.00869.2005
https://doi.org/10.1152/jn.00869.2005

515

[Mil06b] Mileusnic, M. P. et al.: Mathematical models of proprioceptors. i. control and transduc-
tion in the muscle spindle, Journal of Neurophysiology 96.4, 2006, PMID: 16672301,

pp. 1772–1788, doi:10.1152/jn.00868.2005, https://doi.org/10.1152/jn.00868.2005

[Mil10] Miller, A. K. et al.: An overview of the CellML API and its implementation, BMC Bioin-

formatics 11, 2010, p. 178

[Mil73] Milner-Brown, H. S.; Stein, R. B.; Yemm, R.: The orderly recruitment of human motor
units during voluntary isometric contractions, eng, The Journal of physiology 230.2,

1973, PMC1350367[pmcid], pp. 359–370, I S S N: 0022-3751, doi:10.1113/jphysiol.

1973.sp010192, https://doi.org/10.1113/jphysiol.1973.sp010192

[Mir13] Mirams, G. R. et al.: Chaste: an open source c++ library for computational physiology
and biology, PLOS Computational Biology 9.3, 2013, pp. 1–8, doi:10.1371/journal.pcbi.

1002970, https://doi.org/10.1371/journal.pcbi.1002970

[Mir18] Mirvakili, S. M.; Hunter, I. W.: Artificial muscles: mechanisms, applications, and chal-
lenges, Advanced Materials 30.6, 2018, p. 1704407, doi:https://doi.org/10.1002/adma.

201704407, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.

201704407, https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201704407

[Möl97] Möller, T.; Trumbore, B.: Fast, minimum storage ray-triangle intersection, Journal of

Graphics Tools 2.1, 1997, pp. 21–28, doi:10.1080/10867651.1997.10487468

[Mör12] Mörl, F. et al.: Electro-mechanical delay in hill-type muscle models, Journal of Mechanics

in Medicine and Biology 12.05, 2012, p. 1250085, doi:10.1142/S0219519412500856

[Mor15] Mordhorst, M.; Heidlauf, T.; Röhrle, O.: Predicting electromyographic signals under
realistic conditions using a multiscale chemo-electro-mechanical finite element model,
Interface Focus 5.2, 2015, pp. 1–11, doi:10.1098/rsfs.2014.0076, http://dx.doi.org/10.

1098/rsfs.2014.0076

[Mor17] Mordhorst, M. et al.: POD-DEIM reduction of computational EMG models, Journal

of Computational Science 19, 2017, pp. 86–96, doi:10.1016/j.jocs.2017.01.009, http:

//dx.doi.org/10.1016/j.jocs.2017.01.009

[Mul05] Mulas, M.; Folgheraiter, M.; Gini, G.: An emg-controlled exoskeleton for hand re-
habilitation, 9th International Conference on Rehabilitation Robotics, 2005. ICORR

2005. 2005, pp. 371–374, doi:10.1109/ICORR.2005.1501122

[Nat20] National Institute for Research in Computer Science and Automation (Inria),

France: Nuages Wegpage, 2020, https://www-sop.inria.fr/prisme/logiciel/nuages.html.en

[Naw10] Nawab, S. H.; Chang, S.-S.; De Luca, C. J.: High-yield decomposition of surface emg
signals, Clinical Neurophysiology 121.10, 2010, pp. 1602–1615, I S S N: 1388-2457,

doi:https://doi.org/10.1016/j.clinph.2009.11.092, https://www.sciencedirect.com/science/article/

pii/S138824571000338X

[Neg11] Negro, F.; Farina, D.: Decorrelation of cortical inputs and motoneuron output, Journal

of neurophysiology 106.5, 2011, pp. 2688–2697

[Nic14] Nickerson, D. P. et al.: Using CellML with OpenCMISS to simulate multi-scale physiol-
ogy, Frontiers in Bioengineering and Biotechnology 2, 2014

[Owe98] Owen, S. J.: A survey of unstructured mesh generation technology. IMR 239, 1998,

p. 267

[Per07] Perry, J. C.; Rosen, J.; Burns, S.: Upper-limb powered exoskeleton design, IEEE/ASME

Transactions on Mechatronics 12.4, 2007, pp. 408–417

https://doi.org/10.1152/jn.00868.2005
https://doi.org/10.1152/jn.00868.2005
https://doi.org/10.1113/jphysiol.1973.sp010192
https://doi.org/10.1113/jphysiol.1973.sp010192
https://doi.org/10.1113/jphysiol.1973.sp010192
https://doi.org/10.1371/journal.pcbi.1002970
https://doi.org/10.1371/journal.pcbi.1002970
https://doi.org/10.1371/journal.pcbi.1002970
https://doi.org/https://doi.org/10.1002/adma.201704407
https://doi.org/https://doi.org/10.1002/adma.201704407
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201704407
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201704407
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201704407
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1142/S0219519412500856
https://doi.org/10.1098/rsfs.2014.0076
http://dx.doi.org/10.1098/rsfs.2014.0076
http://dx.doi.org/10.1098/rsfs.2014.0076
https://doi.org/10.1016/j.jocs.2017.01.009
http://dx.doi.org/10.1016/j.jocs.2017.01.009
http://dx.doi.org/10.1016/j.jocs.2017.01.009
https://doi.org/10.1109/ICORR.2005.1501122
https://www-sop.inria.fr/prisme/logiciel/nuages.html.en
https://doi.org/https://doi.org/10.1016/j.clinph.2009.11.092
https://www.sciencedirect.com/science/article/pii/S138824571000338X
https://www.sciencedirect.com/science/article/pii/S138824571000338X

516 BIBLIOGRAPHY

[Pes79] Peskoff, A.: Electric potential in three-dimensional electrically syncytial tissues, Bulletin

of mathematical biology 41.2, 1979, pp. 163–181

[Pie12] Piegl, L.; Tiller, W.: The NURBS book, Springer Science & Business Media, 2012

[Pit09] Pitt-Francis, J. et al.: Chaste: a test-driven approach to software development for biolog-
ical modelling, Computer Physics Communications 180.12, 2009, 40 YEARS OF CPC:

A celebratory issue focused on quality software for high performance, grid and novel

computing architectures, pp. 2452–2471, I S S N: 0010-4655, doi:https://doi.org/10.

1016/j.cpc.2009.07.019, https://www.sciencedirect.com/science/article/pii/S0010465509002604

[Pol88] Pollock, D. W.: Semianalytical computation of path lines for finite-difference models,
Groundwater 26.6, 1988, pp. 743–750, doi:10.1111/j.1745-6584.1988.tb00425.x

[Pon09] Pontonnier, C.; Dumont, G.: Inverse dynamics method using optimization techniques
for the estimation of muscles forces involved in the elbow motion, International Journal

on Interactive Design and Manufacturing (IJIDeM) 3.4, 2009, p. 227, I S S N: 1955-

2505, doi:10.1007/s12008-009-0078-4, https://doi.org/10.1007/s12008-009-0078-4

[Pri95] Price, M.; Armstrong, C. G.; Sabin, M.: Hexahedral mesh generation by medial surface
subdivision: part i. solids with convex edges, International Journal for Numerical

Methods in Engineering 38.19, 1995, pp. 3335–3359

[Pri97] Price, M. A.; Armstrong, C. G.: Hexahedral mesh generation by medial surface subdi-
vision: part ii. solids with flat and concave edges, International Journal for Numerical

Methods in Engineering 40.1, 1997, pp. 111–136

[Ram18] Ramasamy, E. et al.: An efficient modelling-simulation-analysis workflow to inves-
tigate stump-socket interaction using patient-specific, three-dimensional, continuum-
mechanical, finite element residual limb models, Frontiers in Bioengineering and Biotech-

nology 6, 2018, p. 126, I S S N: 2296-4185, doi:10.3389/fbioe.2018.00126, https://www.

frontiersin.org/article/10.3389/fbioe.2018.00126

[Ras05] Rasmussen, C. E.; Williams, C. K. I.: Gaussian Processes for Machine Learning (Adap-
tive Computation and Machine Learning), The MIT Press, 2005, isbn:026218253X

[Rem10] Remacle, J.-F. et al.: High-quality surface remeshing using harmonic maps, Inter-

national Journal for Numerical Methods in Engineering 83.4, 2010, pp. 403–425,

doi:10.1002/nme.2824

[Röh07] Röhrle, O.; Pullan, A. J.: Three-dimensional finite element modelling of muscle forces
during mastication, Journal of Biomechanics 40.15, 2007, pp. 3363–3372

[Röh08] Röhrle, O.; Davidson, J. B.; Pullan, A. J.: Bridging scales: a three-dimensional
electromechanical finite element model of skeletal muscle, SIAM Journal on Scientific

Computing 30.6, 2008, pp. 2882–2904, doi:10.1137/070691504, http://dx.doi.org/10.1137/

070691504

[Röh12] Röhrle, O.; Davidson, J. B.; Pullan, A. J.: A physiologically based, multi-scale model
of skeletal muscle structure and function, Frontiers in Physiology 3, 2012

[Röh17] Röhrle, O.: DiHu - Towards a digital human, Project Website, 2017, https://ipvs.

informatik.uni-stuttgart.de/SGS/digital_human/index.php

[Röh19] Röhrle, O. et al.: Multiscale modeling of the neuromuscular system: coupling neuro-
physiology and skeletal muscle mechanics, WIREs Systems Biology and Medicine 11.6,

2019, e1457, doi:https://doi.org/10.1002/wsbm.1457, eprint: https://onlinelibrary.

https://doi.org/https://doi.org/10.1016/j.cpc.2009.07.019
https://doi.org/https://doi.org/10.1016/j.cpc.2009.07.019
https://www.sciencedirect.com/science/article/pii/S0010465509002604
https://doi.org/10.1111/j.1745-6584.1988.tb00425.x
https://doi.org/10.1007/s12008-009-0078-4
https://doi.org/10.1007/s12008-009-0078-4
https://doi.org/10.3389/fbioe.2018.00126
https://www.frontiersin.org/article/10.3389/fbioe.2018.00126
https://www.frontiersin.org/article/10.3389/fbioe.2018.00126
https://www.amazon.com/s/?field-keywords=026218253X
https://doi.org/10.1002/nme.2824
https://doi.org/10.1137/070691504
http://dx.doi.org/10.1137/070691504
http://dx.doi.org/10.1137/070691504
https://ipvs.informatik.uni-stuttgart.de/SGS/digital_human/index.php
https://ipvs.informatik.uni-stuttgart.de/SGS/digital_human/index.php
https://doi.org/https://doi.org/10.1002/wsbm.1457
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wsbm.1457
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wsbm.1457
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wsbm.1457

517

wiley.com/doi/pdf/10.1002/wsbm.1457, https://onlinelibrary.wiley.com/doi/abs/10.

1002/wsbm.1457

[Ros01] Rosen, J. et al.: A myosignal-based powered exoskeleton system, IEEE Transactions on

Systems, Man, and Cybernetics - Part A: Systems and Humans 31.3, 2001, pp. 210–

222

[Ros69] Rosenfalck, P.: Intra-and extracellular potential fields of active nerve and muscle fibres:
A physico-mathematical analysis of different models, Acta Physiologica Scandinavica.

Supplementum 321, 1969, pp. 1–168, I S S N: 0302-2994

[Ros99] Rosen, J.; Fuchs, M. B.; Arcan, M.: Performances of hill-type and neural network
muscle models—toward a myosignal-based exoskeleton, Computers and Biomedical

Research 32.5, 1999, pp. 415–439, I S S N: 0010-4809, doi:https://doi.org/10.1006/cbmr.

1999.1524, http://www.sciencedirect.com/science/article/pii/S0010480999915240

[Rup95] Ruppert, J.: A delaunay refinement algorithm for quality 2-dimensional mesh gener-
ation, Journal of Algorithms 18.3, 1995, pp. 548–585, I S S N: 0196-6774, doi:https:

//doi.org/10.1006/jagm.1995.1021

[Sai18] Saini, H. et al.: Predicting skeletal muscle force from motor-unit activity using a 3d fe
model, PAMM 18.1, 2018, e201800035, doi:10.1002/pamm.201800035, https://onlinelibrary.

wiley.com/doi/abs/10.1002/pamm.201800035

[Sar12] Sartori, M. et al.: Emg-driven forward-dynamic estimation of muscle force and joint
moment about multiple degrees of freedom in the human lower extremity, PLOS ONE

7.12, 2012, pp. 1–11, doi:10.1371/journal.pone.0052618, https://doi.org/10.1371/journal.

pone.0052618

[Sch06] Schroeder, W. J.; Martin, K.; Lorensen, B.: The Visualization Toolkit (4th ed.) Kit-

ware, 2006, isbn:978-1-930934-19-1

[Sch82] Schock, R.; Brunski, J.; Cochran, G.: In vivo experiments on pressure sore biomechan-
ics: stresses and strains in indented tissues, Advances in Bioengineering; Winter Annual

Meeting, 1982, pp. 88–91

[Sch96] Schneiders, R.: A grid-based algorithm for the generation of hexahedral element meshes,
Engineering with computers 12.3-4, 1996, pp. 168–177

[Sch97] Schneiders, R.: An algorithm for the generation of hexahedral element meshes based
on an octree technique, 6th International Meshing Roundtable, 1997, pp. 195–196

[Sed11] Sedgewick, R.; Wayne, K.: Algorithms, Addison-wesley professional, 2011

[Ser21] Services, A. W.: Easylogging++ - Single header C++ logging library, https://github.

com/amrayn/easyloggingpp, 2021

[She02] Shewchuk, J. R.: Delaunay refinement algorithms for triangular mesh generation,

Computational Geometry 22.1, 2002, 16th ACM Symposium on Computational Ge-

ometry, pp. 21–74, I S S N: 0925-7721, doi:https://doi.org/10.1016/S0925-7721(01)00047-5,

http://www.sciencedirect.com/science/article/pii/S0925772101000475

[She96] Shewchuk, J. R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator, Applied Computational Geometry: Towards Geometric Engineering,

ed. by Lin, M. C.; Manocha, D., vol. 1148, Lecture Notes in Computer Science, From

the First ACM Workshop on Applied Computational Geometry, Springer-Verlag, 1996,

pp. 203–222

https://onlinelibrary.wiley.com/doi/pdf/10.1002/wsbm.1457
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wsbm.1457
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wsbm.1457
https://onlinelibrary.wiley.com/doi/abs/10.1002/wsbm.1457
https://onlinelibrary.wiley.com/doi/abs/10.1002/wsbm.1457
https://doi.org/https://doi.org/10.1006/cbmr.1999.1524
https://doi.org/https://doi.org/10.1006/cbmr.1999.1524
http://www.sciencedirect.com/science/article/pii/S0010480999915240
https://doi.org/https://doi.org/10.1006/jagm.1995.1021
https://doi.org/https://doi.org/10.1006/jagm.1995.1021
https://doi.org/10.1002/pamm.201800035
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201800035
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201800035
https://doi.org/10.1371/journal.pone.0052618
https://doi.org/10.1371/journal.pone.0052618
https://doi.org/10.1371/journal.pone.0052618
https://www.amazon.com/s/?field-keywords=978-1-930934-19-1
https://github.com/amrayn/easyloggingpp
https://github.com/amrayn/easyloggingpp
https://doi.org/https://doi.org/10.1016/S0925-7721(01)00047-5
http://www.sciencedirect.com/science/article/pii/S0925772101000475

518 BIBLIOGRAPHY

[Sho07] Shorten, P. R. et al.: A mathematical model of fatigue in skeletal muscle force con-
traction, Journal of Muscle Research and Cell Motility 28.6, 2007, pp. 293–313,

doi:10.1007\%2Fs10974-007-9125-6, http://dx.doi.org/10.1007%5C%2Fs10974-007-9125-6

[Sie08] Siebert, T. et al.: Nonlinearities make a difference: comparison of two common hill-
type models with real muscle, Biological Cybernetics 98.2, 2008, pp. 133–143, I S S N:

1432-0770, doi:10.1007/s00422-007-0197-6, https://doi.org/10.1007/s00422-007-0197-6

[Smi04] Smith, N. et al.: Multiscale computational modelling of the heart, Acta Numerica 13,

2004, p. 371

[Son05] Song, R.; Tong, K. Y.: Using recurrent artificial neural network model to estimate
voluntary elbow torque in dynamic situations, Medical and Biological Engineering

and Computing 43.4, 2005, pp. 473–480, I S S N: 1741-0444, doi:10.1007/BF02344728,

https://doi.org/10.1007/BF02344728

[Spi96] Spitzer, V. et al.: The Visible Human Male: A Technical Report, Journal of the American

Medical Informatics Association 3.2, 1996, pp. 118–130, I S S N: 1067-5027, doi:

10.1136/jamia.1996.96236280, https://doi.org/10.1136/jamia.1996.96236280

[Sta06] Staten, M. L. et al.: Unconstrained paving and plastering: progress update, proceedings

of the 15th International Meshing Roundtable, Springer, 2006, pp. 469–486

[Sta10] Staten, M. L. et al.: Unconstrained plastering hexahedral mesh generation via ad-
vancing front geometry decomposition, International journal for numerical methods in

engineering 81.2, 2010, pp. 135–171

[Str68] Strang, G.: On the construction and comparison of difference schemes, SIAM Journal

on Numerical Analysis 5.3, 1968, pp. 506–517, doi:10.1137/0705041, eprint: https:

//doi.org/10.1137/0705041, https://doi.org/10.1137/0705041

[Sus87] Sussman, T.; Bathe, K.-J.: A finite element formulation for nonlinear incompressible
elastic and inelastic analysis, Computers & Structures 26.1, 1987, pp. 357–409, I S S N:

0045-7949, https://www.sciencedirect.com/science/article/pii/0045794987902653

[Tak13] Takaza, M. et al.: The anisotropic mechanical behaviour of passive skeletal muscle tissue
subjected to large tensile strain, Journal of the Mechanical Behavior of Biomedical

Materials 17, 2013, pp. 209–220, I S S N: 1751-6161, doi:https://doi.org/10.1016/j.

jmbbm.2012.09.001, https://www.sciencedirect.com/science/article/pii/S1751616112002457

[Tau96] Tautges, T.; Blacker, T.; Mitchell, S.: The whisker weaving algorithm a connectiv-
ity based method for constructing all hexahedral finite element meshes, International

Journal for Numerical Methods in Engineering 39.19, 1996, pp. 3327–3349

[Tho90] Thomas, C. K. et al.: Twitch properties of human thenar motor units measured in
response to intraneural motor-axon stimulation, Journal of Neurophysiology 64.4,

1990, PMID: 2258751, pp. 1339–1346, doi:10.1152/jn.1990.64.4.1339

[Til08] Till, O. et al.: Characterization of isovelocity extension of activated muscle: a hill-type
model for eccentric contractions and a method for parameter determination, Journal of

Theoretical Biology 255.2, 2008, pp. 176–187, I S S N: 0022-5193, doi:https://doi.org/

10.1016/j.jtbi.2008.08.009

[Tun78] Tung, L.: A bi-domain model for describing ischemic myocardial dc potentials. PhD

thesis, Massachusetts Institute of Technology, 1978

https://doi.org/10.1007\%2Fs10974-007-9125-6
http://dx.doi.org/10.1007%5C%2Fs10974-007-9125-6
https://doi.org/10.1007/s00422-007-0197-6
https://doi.org/10.1007/s00422-007-0197-6
https://doi.org/10.1007/BF02344728
https://doi.org/10.1007/BF02344728
https://doi.org/10.1136/jamia.1996.96236280
https://doi.org/10.1136/jamia.1996.96236280
https://doi.org/10.1136/jamia.1996.96236280
https://doi.org/10.1137/0705041
https://doi.org/10.1137/0705041
https://doi.org/10.1137/0705041
https://doi.org/10.1137/0705041
https://www.sciencedirect.com/science/article/pii/0045794987902653
https://doi.org/https://doi.org/10.1016/j.jmbbm.2012.09.001
https://doi.org/https://doi.org/10.1016/j.jmbbm.2012.09.001
https://www.sciencedirect.com/science/article/pii/S1751616112002457
https://doi.org/10.1152/jn.1990.64.4.1339
https://doi.org/https://doi.org/10.1016/j.jtbi.2008.08.009
https://doi.org/https://doi.org/10.1016/j.jtbi.2008.08.009

519

[Unt13] Untaroiu, C. D.; Yue, N.; Shin, J.: A finite element model of the lower limb for sim-
ulating automotive impacts, Annals of biomedical engineering 41.3, 2013, pp. 513–

526

[Val18] Valentin, J. et al.: Gradient-based optimization with b-splines on sparse grids for solv-
ing forward-dynamics simulations of three-dimensional, continuum-mechanical mus-
culoskeletal system models, Int J Numer Method Biomed Eng, 2018, e2965, doi:

10.1002/cnm.2965

[Van06] Van Loocke, M.; Lyons, C.; Simms, C.: A validated model of passive muscle in com-
pression, Journal of Biomechanics 39.16, 2006, pp. 2999–3009, I S S N: 0021-9290,

doi:https://doi.org/10.1016/j.jbiomech.2005.10.016

[Van08] Van Loocke, M.; Lyons, C.; Simms, C.: Viscoelastic properties of passive skeletal mus-
cle in compression: stress-relaxation behaviour and constitutive modelling, Journal of

Biomechanics 41.7, 2008, pp. 1555–1566, I S S N: 0021-9290, doi:https://doi.org/10.

1016/j.jbiomech.2008.02.007

[Van09] Van Rossum, G.; Drake, F. L.: Python 3 Reference Manual, Scotts Valley, CA: CreateS-

pace, 2009, isbn:1441412697

[Van14] Van Campen, A. et al.: A new method for estimating subject-specific muscle–tendon
parameters of the knee joint actuators: a simulation study, International Journal for

Numerical Methods in Biomedical Engineering 30.10, 2014, pp. 969–987, doi:10.1002/

cnm.2639, https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.2639

[Vei21] Veillard, D.: The XML C parser and toolkit of Gnome, http://xmlsoft.org/, 2021

[Ven05] Venture, G.; Yamane, K.; Nakamura, Y.: Identifying musculo-tendon parameters of
human body based on the musculo-skeletal dynamics computation and hill-stroeve muscle
model, 5th IEEE-RAS International Conference on Humanoid Robots, 2005. 2005,

pp. 351–356

[Vic12] Vichot, F. et al.: Cardiac interventional guidance using multimodal data processing and
visualisation: medinria as an interoperability platform, 2012

[Vir20] Virtanen, P. et al.: SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python, Nature Methods 17, 2020, pp. 261–272, doi:10.1038/s41592-019-0686-2

[Wag05] Wagner, H. et al.: Isofit: a model-based method to measure muscle–tendon properties
simultaneously, Biomechanics and Modeling in Mechanobiology 4.1, 2005, pp. 10–19,

I S S N: 1617-7940, doi:10.1007/s10237-005-0068-9

[Wal20] Walter, J. R.; Saini, H.; Maier, B.; Mostashiri, N.; Aguayo, J. L.; Zarshenas, H.;

Hinze, C.; Shuva, S.; Köhler, J.; Sahrmann, A. S.; Chang, C.-m.; Csiszar, A.; Gal-

liani, S.; Cheng, L. K.; Röhrle, O.: Comparative study of a biomechanical model-based
and black-box approach for subject-specific movement prediction*, 2020 42nd Annual In-

ternational Conference of the IEEE Engineering in Medicine Biology Society (EMBC),

2020, pp. 4775–4778, doi:10.1109/EMBC44109.2020.9176600

[Wey16] Weyl, H.: Über die gleichverteilung von zahlen mod. eins, Mathematische Annalen

77.3, 1916, pp. 313–352, I S S N: 1432-1807, doi:10.1007/BF01475864, https://doi.org/10.

1007/BF01475864

[Wey40] Weyl, H.: The method of orthogonal projection in potential theory, Duke Math. J. 7.1,

1940, pp. 411–444, doi:10.1215/S0012-7094-40-00725-6

https://doi.org/10.1002/cnm.2965
https://doi.org/10.1002/cnm.2965
https://doi.org/https://doi.org/10.1016/j.jbiomech.2005.10.016
https://doi.org/https://doi.org/10.1016/j.jbiomech.2008.02.007
https://doi.org/https://doi.org/10.1016/j.jbiomech.2008.02.007
https://www.amazon.com/s/?field-keywords=1441412697
https://doi.org/10.1002/cnm.2639
https://doi.org/10.1002/cnm.2639
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.2639
http://xmlsoft.org/
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s10237-005-0068-9
https://doi.org/10.1109/EMBC44109.2020.9176600
https://doi.org/10.1007/BF01475864
https://doi.org/10.1007/BF01475864
https://doi.org/10.1007/BF01475864
https://doi.org/10.1215/S0012-7094-40-00725-6

520 BIBLIOGRAPHY

[XBr20] XBraid, T.: XBraid: parallel multigrid in time, http://llnl.gov/casc/xbraid,

2020

[XYZ20] XYZ Scientific Applications, Inc: TrueGrid Homepage, 2020, http://truegrid.com/

[Yan20] Yang, C.: Empirical Roofline Tool (ERT), (online), 2020, https://crd.lbl.gov/departments/

computer-science/par/research/roofline/software/ert/

[Zaj89] Zajac, F. E.: Muscle and tendon properties models scaling and application to biome-
chanics and motor, Critical reviews in biomedical engineering 17.4, 1989, pp. 359–

411

[Zha03] Zhang, Y.; Bajaj, C.; Sohn, B.-S.: Adaptive and quality 3d meshing from imaging data,

Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, SM

’03, Seattle, Washington, USA: Association for Computing Machinery, 2003, pp. 286–

291, isbn:1581137060, doi:10.1145/781606.781653, https://doi.org/10.1145/781606.781653

[Zha05] Zhang, Y.; Bajaj, C.; Sohn, B.-S.: 3d finite element meshing from imaging data, Com-

puter Methods in Applied Mechanics and Engineering 194.48, 2005, Unstructured

Mesh Generation, pp. 5083–5106, I S S N: 0045-7825, doi:https://doi.org/10.1016/j.

cma.2004.11.026, http://www.sciencedirect.com/science/article/pii/S0045782505000800

[Zha14] Zhang, J. et al.: The map client: user-friendly musculoskeletal modelling workflows,
Biomedical Simulation, ed. by Bello, F.; Cotin, S., Cham: Springer International

Publishing, 2014, pp. 182–192, isbn:978-3-319-12057-7

[Zha18] Zhang, K. et al.: System framework of robotics in upper limb rehabilitation on poststroke
motor recovery, Behavioural Neurology 2018, 2018, p. 6737056, I S S N: 0953-4180,

doi:10.1155/2018/6737056, https://doi.org/10.1155/2018/6737056

[Zie05] Zienkiewicz, O. C.; Taylor, R. L.; Zhu, J. Z.: The finite element method: its basis and
fundamentals, Elsevier, 2005

[Zie77] Zienkiewicz, O. C.; Taylor, R. L.: The finite element method, vol. 3, McGraw-hill

London, 1977

http://llnl.gov/casc/xbraid
http://truegrid.com/
https://crd.lbl.gov/departments/computer-science/par/research/roofline/software/ert/
https://crd.lbl.gov/departments/computer-science/par/research/roofline/software/ert/
https://www.amazon.com/s/?field-keywords=1581137060
https://doi.org/10.1145/781606.781653
https://doi.org/10.1145/781606.781653
https://doi.org/https://doi.org/10.1016/j.cma.2004.11.026
https://doi.org/https://doi.org/10.1016/j.cma.2004.11.026
http://www.sciencedirect.com/science/article/pii/S0045782505000800
https://www.amazon.com/s/?field-keywords=978-3-319-12057-7
https://doi.org/10.1155/2018/6737056
https://doi.org/10.1155/2018/6737056

