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Abstract

The extraction and segmentation of references from scientific articles is a core task of modern
digital libraries. Once references are extracted and segmented, the bibliographic information can be
made publicly available and linked, enabling efficient literature study. However, references often
vary in their structure and content. This makes the extraction and segmentation of references a
challenging but valuable task.
The purpose of this thesis is to investigate whether Bidirectional Encoder Representations from
Transformers (BERT) is suitable for the extraction and segmentation of bibliographic references.
Therefore, we follow a deep learning approach for the extraction and segmentation of references
from PDF documents. We use a neural network architecture based on BERT, a deep language
representation model that has significantly increased performance on many natural language
processing tasks. Over the BERT output, we put a linear-chain Conditional Random Field. We
experiment with different BERT models and input formats and also examine two approaches for
reference extraction and segmentation. The experiments are evaluated on a challenging dataset that
contains both English and German social science publications with highly varying references.
Our results show that the best performing BERT models were pre-trained on similar data to the
data that we used for the fine-tuning of the BERT models on the task of reference extraction and
reference segmentation. Moreover, our findings show that long, context-based input sequences yield
the best results. The extraction model identifies and extracts references with an average F1-score of
81.9%. References are segmented with an average F1-score of 93.6%. We show that our models
compare well to one other previously published work. Our conclusion is that BERT is a suitable
choice for reference extraction and reference segmentation.
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Kurzfassung

Die Extraktion und Segmentierung von Referenzen aus wissenschaftlichen Artikeln ist eine
Kernaufgabe moderner digitaler Bibliotheken. Sobald Referenzen extrahiert und segmentiert sind,
können bibliografische Informationen öffentlich zugänglich gemacht und verlinkt werden. Dies
ermöglicht ein effizientes Literaturstudium. Allerdings unterscheiden sich Referenzen oft in ihrer
Struktur und ihrem Inhalt. Dies macht die Extraktion und Segmentierung von Referenzen zu einer
anspruchsvollen, aber wertvollen Aufgabe.
In dieser Arbeit soll untersucht werden, ob sich Bidirectional Encoder Representations from
Transformers (BERT) für die Extraktion und Segmentierung von bibliographischen Referenzen
eignet. Dazu wird ein Deep-Learning Ansatz für die Extraktion und Segmentierung von Referenzen
aus PDF-Dokumenten verfolgt. Es wird eine neuronale Netzwerkarchitektur verwendet, die auf
BERT basiert. BERT ist ein tiefes Sprachrepräsentationsmodell, das die Leistung bei vielen Aufgaben
zur Verarbeitung natürlicher Sprache deutlich erhöht hat. Über die Ausgabe von BERT wird eine
Linear-Chain Conditional Random Field gelegt. Es werden Experimente mit verschiedenen BERT-
Modellen und Eingabeformaten durchgeführt und es werden zwei Ansätze zur Referenzextraktion
und -segmentierung untersucht. Die Experimente werden anhand eines anspruchsvollen Datensatzes
ausgewertet, der sowohl englische als auch deutsche sozialwissenschaftliche Publikationen mit stark
variierenden Referenzen enthält.
Unsere Ergebnisse zeigen, dass die leistungsstärksten BERT-Modelle auf ähnlichen Daten vortrainiert
wurden wie die Daten, die wir für die Feinabstimmung der BERT-Modelle für die Aufgabe der
Referenzextraktion und -segmentierung verwendet haben. Zudem zeigen unsere Ergebnisse, dass
lange, kontextbasierte Eingabesequenzen die besten Ergebnisse liefern. Das Extraktionsmodell
identifiziert und extrahiert Referenzen mit einem durchschnittlichen F1-Score von 81,9%. Referenzen
werden mit einem durchschnittlichen F1-Score von 93,6% segmentiert. Es wird gezeigt, dass die
ausgewählten Modelle gut mit einer anderen zuvor veröffentlichten Arbeit vergleichbar sind. Die
Schlussfolgerung ist, dass BERT eine geeignete Wahl für die Extraktion und Segmentierung von
Referenzen ist.
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1 Introduction

Authors of scientific papers acknowledge scholarly works that contributed to their research field
by citing them. Through the common practice of citation, a network of scientific papers emerges,
consisting of the latest scientific achievements as well as findings from older publications. This
helps to study scientific literature as one can discover new publications of a research field over time.
Today’s digital libraries support this process of studying by providing intelligent search tools that,
for example, list the referenced works of documents or propose similar documents. The further
maintenance of such helpful services is only guaranteed when digital libraries can easily identify
metadata such as the author, title, publication year, and references of documents. It is unrealistic
that a task like reference extraction is continued by human labor as the number of publications of
scientific papers per year is high and keeps increasing1.
Furthermore, the metadata of documents are not always easily extractable. Metadata information
can lack good quality, sometimes be even missing, but more importantly, it is inconsistent in its
structure and content as citation practice can differ significantly from one community to another. For
example, at the end of scientific papers, there is often a section that brings together all referenced
works in the form of a reference list or bibliography. However, in disciplines like German social
sciences or humanities, references can be located in footnotes, endnotes, or sections other than
the reference section. Such highly varying references references make the automatic extraction of
references more difficult. Figure 1.1 illustrates the similarities and differences of high-variance
references that occur in different locations of a document. In the figure, the text denoted by (a) the
circle is a reference in a footnote, (b) the triangle is “non-reference” text in a footnote, and (c) the
square is a reference in a reference section.
Due to the aforementioned reasons, the automatic extraction and segmentation of references is a
challenging but valuable task. Many different approaches have been used to tackle the task [BAS19;
CGK08; Lop09; PKK18; TSF+15].

Figure 1.1: Example from an article showing highly varying references [BAS19]

1https://arxiv.org/help/stats/2018_by_area
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1 Introduction

We want to solve the task of reference extraction and segmentation with a deep learning approach
using Bidirectional Encoder Representations from Transformers (BERT). BERT is a deep language
representation model that learns embeddings for token representations in a neural-based way
[DCLT19]. It has significantly boosted performance on many Natural Language Processing (NLP)
tasks.
We hypothesize that BERT is a suitable choice for the task of reference extraction and segmentation.
There are several reasons for choosing BERT over other models. One decisive reason is that BERT
represents word embeddings based on contextual information. For example, a word in a sentence
can have different representations in BERT, depending on its position in the sentence. Through
contextual word embeddings, the words of a sentence can be represented very efficiently. This
improves the performance of models on downstream tasks. Another reason is that BERT is already
pre-trained on a large amount of data. For instance, the pre-trained model 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 was trained
on BooksCorpus [ZKZ+15] and English Wikipedia data, adding up to roughly 3,300 million words
[DCLT19]. Consequently, BERT can be fine-tuned with little data and still achieves good results on
downstream tasks. As there is little data available in the scope of this thesis, this is considered to be
a major advantage.

1.1 Problem Definition

Before we define the task of reference extraction and reference segmentation formally, it is important
to understand the difference between the terms “citation” and “reference” as they are often used
interchangeably.
“Citation” refers to parts of a writing where an outside information source is acknowledged whereas
a “reference” is the full bibliographic information of the corresponding citation. The citation style
defines how references are structured and what content they include. This thesis is about extracting
and segmenting references. The term “high-variance references” refers to references that strongly
vary in their content, length, and location within a document [BAS19].
Both reference extraction and reference segmentation are formulated as sequence labeling tasks
where each token in a given input sequence is assigned a class or label.

1.1.1 Reference Extraction

Reference extraction is the process of identifying and extracting individual reference strings.
We formally define the task of reference extraction as follows [CGK08]: Given a text 𝑇 , it is broken
down into a sequence of tokens {𝑡1, 𝑡2, ..., 𝑡𝑛}. Then, each of these tokens is to be classified with one
of the classes 𝐶 = {reference, no-reference}. Tokens should be assigned the class reference when
they are part of a reference string. Correspondingly, tokens should be assigned the class no-reference
when they belong to normal text and are not part of a reference string. For the classification of the
tokens, information from previous classifications can be used.
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1.2 Research Questions

1.1.2 Reference Segmentation

Reference segmentation describes the segmentation of a reference string. In other words, a reference
string is to be broken down into bibliographic components such as ‘author’, ‘title’, ‘publisher’,
etc. For instance, given the reference string in Figure 1.2, the result of reference segmentation
would yield the reference string broken into the colored bibliographic components.
Formally, reference segmentation can be defined as follows [CGK08]: Given a reference string
𝑅, it is broken down into a sequence of tokens {𝑟1, 𝑟2, ..., 𝑟𝑛}. Then, each of these tokens is to
be classified with the correct class from a pre-defined set of classes 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑚}. For the
classification of the tokens, it is allowed to use the information of the given reference string 𝑅, as
well as information from previously made classifications.

Figure 1.2: Visualization of reference segmentation

1.2 Research Questions

The main research question this thesis aims to investigate and answer is the following:

Is BERT a suitable choice for the task of reference extraction and reference
segmentation?

To answer this research question, we examine further sub research questions:

• Which BERT model and input format achieve the best performance on the task of reference
extraction and reference segmentation?

• What is the best approach for training a given BERT-based model on the task of reference
extraction and reference segmentation?

• Can BERT improve the obtained results of EXparser [BAS19] ?

3



1 Introduction

1.3 Contributions

This bachelor thesis aims to extract and segment references following a deep learning approach using
BERT. Furthermore, this thesis is intended to enhance the work done by Boukhers et al. [BAS19]
in the scope of EXCITE project [HGKM19] where the EXparser was developed for reference
extraction and segmentation. For this, we introduce neural-based embeddings (with BERT) instead
of a manual feature engineering approach. The goal is to obtain comparable or better results than
the EXParser [BAS19].
The main contributions of this bachelor thesis are as follows:

• Implementation of a neural network architecture based on BERT with a linear-chain Con-
ditional Random Field (CRF) as the output layer for the task of reference extraction and
segmentation.

• Conduct of experiments to find out the most suitable BERT model, input format, and the
most principled approach for reference extraction and segmentation. Evaluation is done
on a dataset that contains both German and English language articles with high-variance
references.

• Comparison between the performance of the implemented system and the performance of the
EXParser.

1.4 Thesis Outline

The thesis consists of eight chapters. After the introduction, Chapter 2 presents the related prior
work in the field of reference extraction and reference segmentation. Then, Chapter 3 introduces
the fundamental topics of this thesis. Subsequently, Chapter 4 presents our proposed method for
reference extraction and segmentation. In particular, the model architecture used for reference
extraction and segmentation is described. Furthermore, the choice of BERT models and input
formats are discussed and two different approaches for reference extraction and segmentation
are described. Chapter 5 shows the used datasets for the training and evaluation of our models.
Then, Chapter 6 presents the results we achieved in different experiments. Additionally, this
chapter compares our proposed models to a previously published work: the EXparser [BAS19]. In
succession to the results, Chapter 7 interprets the results and reflects on the limitations of this thesis.
Moreover, the possible future work in this research area is pointed out. Finally, Chapter 8 concludes
the thesis by summarizing the preceding chapters.
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2 Related Work

Several works on the extraction and segmentation of reference information from documents are
reported in the literature. Generally, the methods for reference extraction and segmentation can be
divided into two main categories: rule-based or machine learning approaches. Because we pursue
a machine learning approach with the use of BERT, only prior related works that follow machine
learning approaches are described in the following.

Seymore et al. [SMR99] use a Hidden Markov Model (HMM) [RJ86], a statistical machine
learning technique, to extract relevant metadata information (including reference components) from
the headers of computer science papers. Therefore, they search for information from the beginning
of the paper until the first section occurs or the first page ends. Hetzner [Het08] also uses a HMM
for reference segmentation and achieves high classification values on many reference components.
Furthermore, Support Vector Machines (SVMs) [CV95] and Conditional Random Fields (CRFs)
[LMP01] are often employed for the task of reference extraction and segmentation. Zou et al.
[ZLT10] implement a SVM classifier to find references in medical articles. Here, text and geometric
features are used from HTML medical articles. To segment references, Zou et al. [ZLT10] use
both CRF and SVM. They compare the two approaches on their performance on 500 articles from
medical journals and conclude that they are equally good.
Cermine [TSF+15] takes a scientific document in Portable Document Format (PDF) as input and
outputs both metadata information of the document as well as its bibliography. To produce the
outputs, a geometric hierarchical structure of the PDF is constructed beforehand where text content
along with geometric features of the displayed text is stored. For the extraction of references,
Cermine uses the machine learning algorithm of K-means clustering [Mac+67]. With this algorithm,
two groups are formed: the first lines of references and the remaining lines. Clustering is conducted
with the use of layout information from the PDFs. To parse the references, CRF are employed.
To extract reference strings, Lopez [Lop09] and Körner et al. [KGM+17] follow the approach of
using CRFs instead of SVM or K-means clustering.
The former state-of-the-art reference string extraction and segmentation tool ParsCit [CGK08]
uses a heuristic model to extract references from plain text and a CRF model to label the tokens of
reference strings. The heuristic model begins searching for labeled reference sections, considering
strings such as “References” or “Bibliography”. One of the used heuristics specifies that when such
a reference section is found too early in the text, subsequent matches are considered instead. By
making use of a whole set of heuristics, references are extracted. Before extracted references are
passed to CRF, regular expressions and heuristics are used to find out where individual reference
strings start and end.
In Neural-ParsCit [PKK18], a deep-learning approach is applied to parse references. Their model is
based on a Long Short-Term Memory (LSTM) [HS97] neural network architecture with a linear
CRF layer over the LSTM output. Through the usage of LSTM, long-range dependencies in
reference strings are captured by the model and utilized for segmentation. They experiment with
word embeddings and character-based word embeddings to represent words in their model. Their
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2 Related Work

results show a significant performance increase in reference segmentation compared to ParsCit
[CGK08].
In the scope of the Excite project [HGKM19], several tools were developed to process references
from PDFs. One of the implemented tools is the so-called EXparser [BAS19]. After text from
PDF documents is extracted by Cermine [TSF+15], EXparser extracts references from the text
and segments them into reference components. For the EXparser, Boukhers et al. [BAS19] use
Random Forest Model to extract references and Conditional Random Field to segment references.
Both models use a set of features that are extracted using each text line and token. The considered
features can be categorized into format-based (e.g. existence of year format), lexical-based (e.g.
existence of the keyword Vol.), semantic-based (e.g. existence of first or last name), and shape-based
features (e.g. ratio of digits in a line/token) [BAS19]. The Random Forest model classifies each
line into “non-, first, intermediate, or last reference line” [BAS19, p.5]. Chosen reference string
candidates are segmented with CRF into constituent fields such as ‘author’, ‘title’, ‘year’, etc. For
the training of the models, text from PDF documents of social science publications is extracted,
manually annotated and used. EXparser achieves good classification scores for both reference
extraction and segmentation model as the models outperform former state-of-the-art systems such
as Cermine [TSF+15] or ParsCit [CGK08].
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3 Fundamentals

This chapter gives an overview of the fundamental topics of this thesis. Two concepts of NLP, the
Transformer, BERT, CRF, and classification performance metrics are reviewed.

3.1 Relevant Concepts of Natural Language Processing

Natural language processing is a sub-field of computer science dealing with the question of how
computers can be used to understand the human language. The goal of NLP is to transform the
human language into a formal representation that makes it easy for computers to understand and
learn the human language. Well-known NLP tasks are Part-Of-Speech Tagging, Named Entity
Recognition (NER) and Language Models.
In the following, we review the concepts of NLP that are relevant for the understanding of this
thesis. Therefore, Section 3.1.1 explains tokenization and sentence segmentation, and Section 3.1.2
discusses neural-based word embeddings.

3.1.1 Tokenization and Sentence Segmentation

The field of NLP deals with text data. Without pre-processing, the text data cannot simply be used
as input for machine learning models. One of the most important steps in pre-processing the text
data is the so-called tokenization. It can be regarded as the initial phase in any kind of natural
language text preparation [WK92]. The goal of tokenization is to split a text into basic meaningful
units called tokens. There are different notions of what such tokens can be. The most popular levels
of tokenization include tokenization on the word, sub-word, and character level. At each of these
levels, the set of unique tokens extracted from the text corpus is referred to as the vocabulary.
In word tokenization, the text is split into words based on a particular delimiter. The space between
two words is frequently used as the delimiter. For instance, the Word2Vec technique [MCCD13]
uses this kind of tokenization.
In sub-word tokenization, the text is split into sub-words. This means that words are further divided
here. As an example we consider the words “car” and “cars”. “car” is not split but “cars” is split into
the sub-words “car” and “s”. This allows a model to capture the similar semantic meanings of the
two words because the root word “car” is identified in both words. Byte Pair Encoding [Gag94] and
WordPiece [WSC+16] use sub-word tokenization. Both word and sub-word tokenization suffer from
the Out-of-Vocabulary (OOV) problem, where tokens that do not belong to the learned vocabulary
are classified as ‘unknown’. This leads to a loss of information since a model will not learn anything
about the unknown tokens.
In character tokenization, the text is split into characters. The size of the vocabulary is limited here
since it consists of a unique set of characters. Hence, this tokenization method eliminates the OOV
problem. However, characters usually do not carry the information that a word does. Thus, this

7



3 Fundamentals

method suffers from a different information loss.
Apart from tokenizing text into minimal units like words or characters, it is also possible to tokenize
text into sentences. Sentence segmentation or sentence tokenization describes the process of
identifying sentences in text data and separating them from each other. Thus, here tokens represent
individual sentences. In this context, a sentence can refer to a linguistic sentence but can also be
defined as an arbitrary sequence of tokens.

3.1.2 Neural-based Word Embeddings

Word embeddings is a technique where words are converted into a numerical representation such as
vectors. In the last decade, word embeddings have established themselves as a core element of many
NLP systems. They are essential for learning algorithms like neural networks since an efficient text
representation helps such models to understand the meaning of words and the relationship between
words better. Word embedding algorithms are based on the assumption that words occurring in
similar contexts also have similar meanings [Har54]. Good word embeddings should (a) capture
both the syntactic as well as the semantic meaning of a word and (b) model the meaning of a word in
different contexts (polysemy) [PNI+18]. For instance, they help improve performance by identifying
and grouping similar words. In the following, we discuss word representations computed using
neural networks.
Neural-based word embeddings are learned through offline training on large unlabeled text corpora.
Interestingly, learned word vectors can represent actual relationships in the real world. For
instance, by using simple vector arithmetic, the following is true: “vec(“Madrid”) - vec(“Spain”)
+ vec(“France”) is closer to vec(“Paris”) than to any other word vector” [MSC+13, p.1]. Popular
techniques where word embeddings are learned are Word2Vec [MCCD13] and GloVe [PSM14],
which stands for “Global Vectors”. Both techniques map words into a vector space where the
distance between words is related to their semantic similarity. Word2Vec is a two-layer neural
network. There are two types of Word2Vec networks where one is based on Continuous Bag of
Words and the other on the Skip-gram model [MSC+13]. As input, Word2Vec takes a large corpus
of words. From this, it produces a vector space where every word is represented through a vector.
GloVe can be regarded as an extension to Word2Vec that also learns word embeddings efficiently.
Unlike Word2Vec, GloVe combines the so-called global matrix factorization methods and local
context window methods [PSM14].
One downside of both Word2Vec and GloVe is that their learned word embeddings are context-
independent. This means that after training on a corpus, words with multiple meanings are
represented as a single independent vector, no matter in which context of a sentence they appear.
For example, if there are the following two sentences: “Let us stick to this plan. The dog brings back
the stick.”. Then, the word “stick” would have different meanings in the two sentences but would be
represented by the same word embedding in both sentences when using Word2Vec or GloVe.
In more recent works, contextually-meaningful embeddings such as ELMo (Embeddings from
Language Models) [PNI+18] and BERT [DCLT19] have been developed. ELMo uses a LSTM
[HS97] neural network architecture and BERT uses a neural network architecture based on the
Transformer [VSP+17]. They both learn contextualized word-embeddings, where words are
represented by different embeddings depending on the semantics they have in the context of a
sentence. In general, this improves performance notably on downstream tasks. As both ELMo and
BERT are designed using whole sentences as context, Word2Vec or Glove still might use better
word representations in tasks where the word contexts are not easily available.
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3.2 Transformer

3.2 Transformer

In 2017, a new model architecture called Transformer [VSP+17] was introduced. It solely relies on
the so-called self-attention mechanism. The idea behind self-attention is to help the model shift its
attention to relevant parts of an input sequence. Furthermore, the self-attention mechanism enables
the Transformer to capture the relationships between words of an input sequence. Transformers
take a sequence of tokens as input and generate an output token sequence. Therefore, Transformers
are well-suited for sequence-to-sequence tasks such as translation tasks.
The major difference to former sequence transduction models is that the Transformers input and
output representations are computed without using recurrent neural networks or convolutional
neural networks. It only uses the attention mechanism. This comes with additional advantages.
By only using self-attention, the total computational complexity is reduced and significantly more
operations can be executed in parallel. In addition, long-range dependencies in the input sequence
are learned efficiently [VSP+17].
This section introduces the key components of the Transformer. In particular, Sections 3.2.3 and
3.2.4 explain the attention mechanism of the Transformer.

3.2.1 Encoder-Decoder Architecture

Most neural transduction models, including Transformers, are based on an encoder-decoder
architecture [VSP+17]. An encoder processes a variable-length input sequence (𝑥1, ..., 𝑥𝑛) (source
sentence) and compresses the information into a fixed-length vector representation 𝑧 = (𝑧1, ..., 𝑧𝑛)
[CMBB14]. Then, 𝑧 is used as input for the decoder. The decoder produces a variable-length output
sequence (𝑦1, ..., 𝑦𝑛) of symbols which is essentially the target sentence. At each step, previously
computed symbols are used as additional input for the computation of the next symbol [VSP+17].

3.2.2 Model Architecture

The general model architecture of the Transformer [VSP+17] can be seen in Figure 3.1. The
encoding component consists of six identical encoders and the decoding component consists of
six identical decoders. Each encoder is broken down into two sub-layers, where the first layer is a
multi-head self-attention mechanism and the second layer employs a fully connected feed-forward
neural network. Likewise, each decoder is composed of the same sub-layers as the encoder, with
an additional sub-layer. This additional sub-layer is located first in the decoding component and
performs masked multi-head attention over the output of the encoder component. Furthermore,
each layer in the decoder stack also has access to the output of the encoders. Sub-layers in both
encoders and decoders use residual connection along with layer normalization.
Before an input sequence of tokens is fed into a Transformer, the tokens are converted to real-valued
vectors through learned embeddings and combined with the positional information of the tokens.
For the positional encodings, Vaswani et al. [VSP+17] use sine and cosine functions of different
frequencies. Each input and output vector has a size of 512. All vectors of an input sequence
flow through the encoder block in parallel. The output of the final decoder goes through a linear
transformation and then through a softmax function. The softmax operation normalizes the output
scores such that they can be interpreted as probabilities. These probabilities are used to predict the
next token of the output sequence.

9
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Figure 3.1: The general model architecture of the Transformer [VSP+17]

3.2.3 Self-Attention

Self-attention is a special type of the attention mechanism [BCB15]. By relating different words
of an input sequence, the self-attention mechanism calculates a contextual representation for each
word in the input sequence.
We show the benefits of the self-attention functionality by providing an example. Assume a
translation task is to be conducted where the following sentence is to be translated: “John stayed at
home because he felt sick.”. To translate a sentence it is essential to know how words in the sentence
depend on each other. For humans it is easy to understand that the word “he” in the sentence refers
to “John”, but this is not that easy for computers to recognize. Self-attention allows a model to
capture such a dependency between words of a sentence. The mechanism looks for other positions
in the input sequence to find indications that can help lead to a better encoding for this word.
Formally, for every term in the input sequence, a query vector 𝑞, a key vector 𝑘 , and a value vector
𝑣 are created. The vectors are computed by multiplying an initial embedding of the term with
three learned weight matrices. All query vectors, key vectors, and value vectors are put into the
matrices 𝑄, 𝐾, and 𝑉 , respectively. Then, an attention function computes the following output
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) [VSP+17]:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉

where 𝑑𝑘 is the scaling factor.
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3.2.4 Multi-Head Attention

The self-attention layer is then further refined by adding the “multi-head” attention mechanism.
The idea of multi-head attention is to apply the attention function on the queries, keys and values
several times (ℎ times) in parallel instead of only once. The outputs of each attention head are then
concatenated and linearly transformed with a weight matrix [VSP+17]:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑-𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊𝑂

with ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 , 𝑉𝑊
𝑉
𝑖 )

where𝑊𝑂,𝑊
𝑄

𝑖
,𝑊𝐾

𝑖
and𝑊𝑉

𝑖
are all parameter matrices to be learned. Vaswani et al. [VSP+17] state

that this multi-head attention mechanism allows the Transformer to “jointly attend to information
from different representation subspaces at different positions.”[VSP+17, p.5].

3.3 BERT

BERT [DCLT19], which stands for Bidirectional Encoder Representations from Transformers, is
a deep contextual language representation model that was introduced by Google in 2018. It has
substantially increased performance on many NLP tasks. The distinctive feature of BERT is the way
how different contexts of words are captured and used for the representation of individual words.
Through the training on large unlabeled text corpora, BERT learns bidirectional text representations.
Unlike previous language models, it learns these text representations “by jointly conditioning on
both left and right context in all its layers” [DCLT19, p.1]. The pre-trained BERT can be fine-tuned
(with little data) to create competitive models on many downstream tasks.
This section introduces BERT and gives an overview of its implementation. Section 3.3.1 presents
the model architecture of BERT. Then, Section 3.3.2 describes BERTs input representations and
Section 3.3.3 describes the pre-training procedure. Finally, Section 3.3.4 discusses different
approaches for applying BERT to downstream tasks.

3.3.1 Model Architecture

BERTs model architecture is based on the deep learning architecture of Transformers [VSP+17]
that has been introduced in the previous section. It is composed of multiple Transformer encoder
layers that use the multi-head attention mechanism [DCLT19; VSP+17]. There are two versions
that BERT comes with:

• BERTBASE: L=12, H=768, A=12, Total Parameters: 110 Million (M) and

• BERTLARGE: L=24, H=1024, A=16, Total Parameters: 340M.

In the above notation, L refers to the number of Transformer blocks within the model, H represents
the hidden size, and A refers to the number of used self-attention heads.
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3.3.2 Input Representations

BERT takes a sequence of words as input which is limited to a maximum sequence length of 512.
These words are converted to a numerical input representation before being passed to the model.
This input representation is created through the sum of three different embeddings [DCLT19]: token,
segment, and position embeddings, as shown in Figure 3.2.

Figure 3.2: BERTs input representation [DCLT19]

Token embeddings are learned through the pre-trained WordPiece model [WSC+16], which generates
a vocabulary of fixed-size. Each token in the vocabulary has a unique ID. If a word is tokenized
under the WordPiece model, then it is checked first whether the word itself is already in the
vocabulary. If not, then it is broken down into the longestWordPieces (sub-tokens) that are in the
vocabulary. Furthermore, BERT uses special tokens such as [CLS] and [SEP] [DCLT19]. [CLS] is
always the first token of an input sequence and [SEP] is used to separate sentences within the input
sequence from each other. Ultimately, the token embedding is obtained by converting Wordpiece
tokens and special tokens of the input sequence to their corresponding IDs.
To distinguish two sentences of the input from each other, BERT also learns segment embeddings
for each sentence separately.
Lastly, BERT uses positional embeddings to store positional information of the distinct tokens of an
input sequence.

3.3.3 Pre-training of BERT

BERT is pre-trained on two unsupervised tasks, namely Masked Language Model (MLM) and Next
Sentence Prediction (NSP). Devlin et al. [DCLT19] show in their ablation studies, pre-training on
both these tasks improves the performance of the model significantly on many NLP tasks.
Traditional language models are unidirectional, meaning that the text in such models is only
processed in one direction. This limits the information that is captured by the model to this one
processing direction. Through bidirectional processing of data which indicates that text is processed
from left to right as well as from right to left, BERT overcomes the shortcomings of previous
unidirectional language models.
BERT’s bidirectionality is trained on the MLM task. In the MLM task, 15% of all WordPiece
tokens in the input sequence are masked randomly using a special [𝑀𝐴𝑆𝐾]-token. Then, the task
of the model is to predict the original tokens that were replaced by the masked tokens.
In the task of NSP, the model receives pairs of two sentences and the model’s task is to predict
whether the second sentence of such a pair is the subsequent sentence to the first sentence in the
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original corpus or not. In 50% of the cases, the second sentence is chosen to be the next sentence.
In the other 50% of the cases, the second sentence is chosen randomly from the corpus. Training on
this task, BERT learns the relationship between sentences which is essential for downstream tasks
such as question-answering.

3.3.4 Application of BERT to Downstream Tasks

There exist two different approaches for applying the pre-trained BERT model to downstream tasks:
fine-tuning and feature-based [DCLT19]. In the following, we briefly discuss both strategies.
In the fine-tuning approach, the weights of a pre-trained BERT model are used as initial weights
and are optimized during the training of a downstream task. For fine-tuning, only the task-specific
inputs and outputs are needed. When models follow the fine-tuning approach, then an additional
task-specific output layer is needed on top of the BERT model. This additional layer converts BERTs
representations to the desired output. Moreover, fine-tuning is regarded to be computationally
inexpensive as it takes much less time compared to pre-training.
In the feature-based approach, fixed features of word representations are extracted from the pre-
trained model and are used as inputs to other task-specific architectures (e.g. LSTM, CRF). Here,
the weights of the pre-trained BERT model are kept frozen. This approach can have advantages
over the fine-tuning approach as some tasks cannot “be easily represented by a Transformer encoder
architecture, and therefore require a task-specific model architecture” [DCLT19, p.9].

3.4 Conditional Random Fields

Lafferty et al. [LMP01] introduced Conditional Random Fields (CRFs), a sequence modeling
framework to build probabilistic models for the labeling or segmentation of sequential data. Thus,
CRFs can be regarded as a classification algorithm. In general, CRFs are suitable for tasks where
contextual information or the states of neighbor labels are required for the current prediction.
Therefore, it finds its use in many different applications such as Named Entity Recognition (NER)
or Part-Of-Speech Tagging.
CRFs overcome the disadvantages of former models like Hidden Markov Models (HMMs) [RJ86]
and Maximum Entropy Markov Models (MEMMs) [MFP00]. HMMs make very strict independence
assumptions on the sequential data. As CRF is a conditional model, this is not necessary and
therefore CRFs relax strong independence assumptions of the observed data [LMP01]. The downside
of MEMMs is that they have the so-called label bias problem. This problem describes that MEMMs
tend to create a bias toward states that have few outgoing transitions [LMP01]. Consequently, such
states do not use the information of the observation to its full extent. CRFs solve the label bias
problem by calculating the joint probability of the whole sequence of labels given the observation
sequence [LMP01]. However, the limitation of CRF is that its training is computationally more
expensive due to the “slow convergence of the training algorithm” [LMP01, p.10] compared to
HMMs or MEMMs.
Formally, CRFs are introduced by defining two random variables X and Y [LMP01]. The random
variable X describes sequence data to be labeled. X is always given or observed and can thus be
regarded as “input data”. Y is a random variable over label sequences. Given a sequence, it can be
seen as “output data”. For instance, applied to the field of NLP, X might range over the words in a
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sentence while Y might range over the labels of the words such as person, location, organization.
Here, it should be noted that CRFs follow the Markov property [LMP01]. With both X and Y,
we can now state what is modeled with CRFs. We do this on the basis of the most popular form
of CRFs which are linear-chain CRFs. A simple visualization of its linear sequence structure is
shown in Figure 3.3. CRFs compute the conditional probability P(Y|X) of a possible output
𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛) given the observation 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛).

Figure 3.3: Graphical structure of linear-chain CRFs [LMP01]

For computing the conditional probability 𝑃(𝑌 |𝑋) in a linear-chain CRF there is a general formula
[SM12]:

𝑃_(𝑌 |𝑋) =
1

𝑍_(𝑋)
𝑒𝑥𝑝

©«
𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

_𝑖 𝑓𝑖 (𝑦 𝑗−1, 𝑦 𝑗 , 𝑋, 𝑗)
ª®¬ ,

where

• _𝑖 are weights to be trained. Each weight is assigned to a feature function 𝑓𝑖 .

• 𝑓𝑖 (𝑦 𝑗−1, 𝑦 𝑗 , 𝑋, 𝑗) is a feature function that takes the states 𝑦 𝑗−1, 𝑦 𝑗 , the observation 𝑋 , and
the position 𝑗 as input. The output of the feature function is a real-valued number where the
numbers are often just zero or one.

• 𝑍_(𝑋) is the normalization given by

𝑍_(𝑋) =
∑︁
𝑌 ∈Y

𝑒𝑥𝑝
©«
𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

_𝑖 𝑓𝑖 (𝑦 𝑗−1, 𝑦 𝑗 , 𝑋, 𝑗)ª®¬ ,
where Y denotes the set of all possible outputs 𝑌 . Its values range from zero to one.

To estimate the lambda-weights _𝑖, the maximum-likelihood estimation can be applied [LMP01].
When the (optimal) parameters _𝑖 are estimated, conditional probabilities can be computed and this
means it is possible to do inference. Given the observation 𝑋 , the most likely labeling sequence 𝑌 ∗

can be predicted by the equation

𝑌 ∗ = arg max
𝑌 ∈Y

𝑃(𝑌 |𝑋) .

For the computation of 𝑌 ∗, the Viterbi algorithm can be used [SM12].
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3.5 Classification Performance Metrics

There are various metrics that can be used to evaluate the quality of a model on a classification task.
This section discusses classification performance metrics relevant to this thesis.
We introduce the different metrics in the context of a binary classification problem. With no loss of
generality, the labels are + (positive) and - (negative) in such a setting. Then, a classification of a
model belongs to one of the following four combinations of true class and predicted class: True
Positives (TP) (correct positive predictions), True Negatives (TN) (correct negative predictions),
False Positives (FP) (incorrect positive predictions) and False Negatives (FN) (incorrect negative
prediction). The possible predictions can be summarized in a four-cell contingency table (also
known as confusion matrix) as shown in Figure 3.4. In the depicted table, the green cells represents
correct predictions and the red cells represents incorrect predictions. From this contingency table,
many of the common classification metrics can be derived:

Figure 3.4: Contingency table for a binary classification problem

Precision: The Precision (Pr) denotes the proportion of positive predictions that are correctly true
positives as in Equation 3.1.

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃(3.1)

Recall: The Recall (Re) denotes the proportion of real positives that are correctly predicted as true
positives as in Equation 3.2.

𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁(3.2)

F1-score: The F1-score (𝐹1) is also called F-measure and is calculated by taking the harmonic
mean of precision and recall as can be seen in Equation 3.3.

𝐹1 =
2 · 𝑃𝑟 · 𝑅𝑒
𝑃𝑟 + 𝑅𝑒(3.3)

The value of the F1-score is between zero and one inclusive. F1-scores near one indicate a high
classification performance while values near zero indicate low classification performance.

In what follows, we explain how to compute the presented measures for multiple classes.
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Computing TP, TN, FP, FN for a multi-class classification problem is done with the same approach
as for a binary classification problem. The multi-class classification problem is just evaluated as if
it was a binary classification problem for every class individually. The class for which the measures
are to be computed is considered as the positive class while all other classes are considered to be
the negative class. We define how the performance measures can be computed for each class.
Suppose we have 𝑛 classes, where each class is denoted by 𝐶𝑖 and the class space is defined by
{𝐶1, 𝐶2, ..., 𝐶𝑛}. Then, after classification, 𝑃𝑟𝑖, 𝑅𝑒𝑖, and 𝐹1𝑖 denote the precision, recall, and
F1-score of class 𝐶𝑖 , respectively. They can be calculated as shown in Equation 3.4.

𝑃𝑟𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
and 𝑅𝑒𝑖 =

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
(3.4)

𝐹1𝑖 = 2
𝑃𝑟𝑖 · 𝑅𝑒𝑖
𝑃𝑟𝑖 + 𝑅𝑒𝑖

(3.5)

In the above equations, 𝑇𝑃𝑖 , 𝐹𝑃𝑖 , 𝐹𝑁𝑖 refer to true positives, false positives, and false negatives of
the classification results for class 𝐶𝑖 .

We present two options to measure the overall precision and recall for the whole class space, namely
micro-averaging and macro-averaging. In Equations 3.6 and 3.7 it is shown how they are calculated
for overall precision and recall. Again, the averaged F1-score can be calculated by taking the
harmonic mean of precision and recall of the respective averaging method.

1. Micro-Average:

𝑃𝑟
`
=

∑𝑛
𝑖=1 𝑇𝑃𝑖∑𝑛

𝑖=1(𝑇𝑃𝑖 + 𝐹𝑃𝑖)
and 𝑅𝑒

`
=

∑𝑛
𝑖=1 𝑇𝑃𝑖∑𝑛

𝑖=1(𝑇𝑃𝑖 + 𝐹𝑁𝑖)
(3.6)

2. Macro-Average:

𝑃𝑟
𝑀

=

∑𝑛
𝑖=1 𝑃𝑟𝑖

𝑛
and 𝑅𝑒

𝑀
=

∑𝑛
𝑖=1 𝑅𝑒𝑖

𝑛
(3.7)

One can observe that micro-averaging gives equal importance to each classification instance (e.g.
documents or images) and macro-averaging gives equal importance to each class. This means, that
micro-averaging is preferable if there exists a class imbalance in the used dataset, i.e. one class
occurs significantly more often than another class. Conversely, it is reasonable to calculate the
macro-average when the classes in the used dataset occur with almost equal frequency. Macro- and
micro-averaging produce the same results, if the data used is perfectly balanced.
Moreover, micro-averaged precision is equal to micro-averaged recall when including all classes
for their computation. This is the case because when including all classes in a multi-class setting,
all false instances are counted for the computation of micro-averaged precision and recall and it
holds true that

𝑛∑︁
𝑖=1

𝐹𝑃𝑖 =

𝑛∑︁
𝑖=1

𝐹𝑁𝑖 .

Consequently, micro-averaged F1-score would also be equal to micro-averaged precision and
micro-averaged recall.
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and Segmentation

There are different approaches to fine-tune BERT models for reference extraction and segmentation.
In the scope of this thesis, we train1 models that are based on a BERT-CRF model architecture. The
model architecture is explained in Section 4.1. Furthermore, Sections 4.2 and 4.3 discuss the choice
of suitable BERT models and the choice of input formats for all models. We experiment with two
different approaches for reference extraction and segmentation. Section 4.4 explains the standard
two-models approach where one model is trained to extract references and the second model is
trained to segment references. Then, Section 4.5 explains how we use a one-model approach for the
task of reference extraction and segmentation.

4.1 Model Architecture

The model architecture is based on a BERT-CRF architecture as can be seen in Figure 4.1. It
is composed of a BERT model with a linear classifier on top followed by a linear-chain CRF.
Similar model architectures have also been used in other works ([HCWC19; LTWX20; ML19;
SNA19]). For the following formal definition of our model architecture, we orientate ourselves at
the explanations of Lample et al. [LBS+16] and Souza et al. [SNA19].
Given an input sequence 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) of 𝑛 tokens, BERT generates an output (ℎ1, ℎ2, ..., ℎ𝑛)
with hidden dimension 𝐻 for each output vector ℎ𝑖. The classification layer maps each of these
hidden vectors to the tag space, R𝐻 → R𝑇 , where 𝑇 is the number of used tags (dimension of the
tag space). Consequently, the produced output scores 𝑃 by the linear layer have the dimension
R𝑛×𝑇 . They are passed to the CRF layer. The parameters of the CRF layer are represented by a
matrix of tag transitions 𝐴 ∈ R(𝑇+2)×(𝑇+2) . The dimension of the matrix is (𝑇 + 2) × (𝑇 + 2) and not
𝑇 × 𝑇 because in CRFs two additional states are needed, namely the start and end of the sequence.
Otherwise, 𝑦0 and 𝑦𝑛+1 would not be defined for the later score computations. In the matrix 𝐴,
𝐴𝑖, 𝑗 denotes the score of the transition from the i-th tag to the j-th tag. Furthermore, 𝑃𝑖, 𝑗 is the
score of the j-th tag of the i-th word in a sequence. Then, the score for a sequence of predictions
𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛) is defined as:

𝑠𝑐𝑜𝑟𝑒(𝑋,𝑌 ) =
𝑛∑︁
𝑖=0

𝐴𝑦𝑖 ,𝑦𝑖+1 +
𝑛∑︁
𝑖=1

𝑃𝑖,𝑦𝑖

1Note that we do not train any BERT model from scratch (no pre-training) in the scope of this thesis. Thus, “training”
with respect to BERT always implies fine-tuning of already pre-trained BERT models.
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With the softmax function, one obtains the normalized probability of 𝑌 given 𝑋:

𝑃(𝑌 |𝑋) = 𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒(𝑋,𝑌 ))∑
𝑌 ′∈Y𝑋

𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒(𝑋,𝑌 ′))

, where Y𝑋 is the set of all possible tag sequences, given the input 𝑋 .
In the training phase of the model, the log-probability of the correct tag sequence is maximized:

𝑙𝑜𝑔(𝑃(𝑌 |𝑋)) = 𝑠𝑐𝑜𝑟𝑒(𝑋,𝑌 ) − 𝑙𝑜𝑔
( ∑︁
𝑌 ′∈Y𝑋

𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(𝑋,𝑌 ′))
)

Finally, we can make predictions by choosing the output sequence 𝑌 ∗ that achieves the maximum
score out of all other output sequences:

𝑌 ∗ = arg max
𝑌 ∈Y𝑋

𝑠𝑐𝑜𝑟𝑒(𝑌 |𝑋)

The Viterbi algorithm can be used for the computation of 𝑌 ∗.
Losses and predictions are computed for all WordPiece tokens. However, for every token only
the prediction of its first sub-token is taken into account and predictions of further sub-tokens are
ignored.

Figure 4.1: The model architecture of BERT-CRF [DCLT19]

4.2 Choice of BERT Model

The choice of the BERT model is crucial. This is because the BERT model returns contextual word
representations. The more efficient words of a text can be represented, the better predictions can be
made on them.
As different pre-trained BERT models can be used within the model architecture, we list our
considered BERT models with their important characteristics:
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• BERTBASE cased [DCLT19]: L=12, H=768, A=12, Total Parameters: 110M. This model
was trained on cased English text from Wikipedia and BooksCorpus [ZKZ+15].

• BERTBASE multilingual cased2 [DCLT19]: L=12, H=768, A=12, Total Parameters: 110M.
This model was trained on cased text including the top 104 languages. For the text, the largest
Wikipedia articles were considered.

• BERTBASE german cased3: L=12, H=768, A=12, Total Parameters: 110M. This model was
trained on cased German text by Deepset.ai4.

• SciBERT cased [BLC19]: L=12, H=768, A=12, Total Parameters: 110M. This model was
trained on cased scientific data from Semantic Scholar5.

In the above provided list, L is the number of layers, H is the hidden size, and A is the number of
attention heads.
Every considered BERT model was pre-trained with data that is similar to our data used (later
described in Chapter 5) in some properties. For example, some BERT models were trained on a
language that matches the language in our text data. The BERT model SciBERT cased was trained
with the same type of text data as our used text data (text from scientific articles).
Moreover, all considered pre-trained BERT models have the ‘cased’ property. Each of these models
also have an analog ‘uncased’ version. The ‘uncased’ property of a BERT model indicates that
during pre-training of the BERT model,

• cased letters were always lowercased and

• accent markers on words were always removed

before the WordPiece tokenization step. The upper two pre-processing steps were not performed for
the training of cased BERT models. This means, choosing cased BERT models ensures that a word
in the same context of a sentence is represented differently depending on whether it is in lower case
or capitalized.
Devlin et al. [DCLT19] used a cased WordPiece model for NER tasks. As both reference extraction
and reference segmentation can be reformulated as NER tasks, it is reasonable to use cased BERT
models here, too. Using cased BERT model over uncased BERT models for token classification
tasks is also in line with prior work [HP19; SNA19]. We state reasons for preferring cased BERT
models over uncased BERT models for our task:

• In references, the first word of the title is always capitalized and depending on the reference
style used, other words might be capitalized as well. When certain words are always written
in lower case and there is a sentence where they are not, then the words are more likely to be
inside a reference. We argue that a cased BERT model is able to capture such information.

2https://github.com/google-research/bert
3https://www.deepset.ai/german-bert
4https://www.deepset.ai/
5https://www.semanticscholar.org/
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• The German language uses accent markers which can appear in the German data that is
used for the training of our models. Therefore, it is advantageous to use cased models. For
instance, the German word “schön” means “beautiful”. When using an uncased BERT model,
it will be converted to “schon” which means “already” in the English language. Thus, a cased
BERT model is necessary to preserve the semantics of a German sentence.

To find out the most suitable BERT model for the training on our dataset, we will conduct an
experiment including all the considered BERT models.

4.3 Choice of Input Format

Although the general model architecture is already defined and different pre-trained BERT models
are considered, there is still another important decision to be made about the models. The efficient
representation of tokens of input sequences depends on how input sequences that go into BERT are
created. Therefore, the input format can have a decisive impact on the training and the resulting
performance of the models. This section discusses three different input formats for our model.
Therefore, it is important to explain how we decided to create input sequences and on what tokens
of the input sequence classifications are made.
BERT takes a sequence of tokens as input. This token sequence is passed to a WordPiece model
which may tokenize the tokens into further sub-tokens (WordPiece tokens or WordPieces) [WSC+16].
For example, the token “flightless” is broken down into further sub-tokens “flight” and “##less”.
Based on WordPiece tokens, the numerical input representation that goes into BERT is computed.
Then, BERT outputs a hidden state for every WordPiece token. This means that for every WordPiece
token a prediction can be made. In our model, the CRF layer makes predictions on every WordPiece
token. However, some predictions are filtered out as we will explain later. In the further course of
this chapter, the words “token” and “WordPiece token” are used interchangeably.
For the input format to BERT, there are different options. Before passing an input sequence to
BERT, arbitrary pre-processing steps can be made. For example, available text data can be passed
line-wise, sentence-wise, as a randomly shuffled sequence of tokens, etc. Furthermore, the original
text of the used data can be manipulated beforehand as this sometimes can come with advantages.
Throughout this thesis, we use the terms “sentence” and “linguistic sentence” to refer to a sequence
of tokens that form a normal sentence in a language. We chose to construct input sequences based
on linguistic sentences due to the following reasons. In the pre-training of BERT [DCLT19],
long contiguous sequences are used for the input. Furthermore, BERT was pre-trained on next
sentence prediction tasks where sequences are always pairs of sentences. As this implies that BERT
was pre-trained with many linguistic sentences and learned the relationship between them, it is
meaningful to use linguistic sentences as basic units in the input sequences.
This means that we also split the text inside references into sentences. Although references are texts
that do not follow structural and grammatical rules of linguistic sentences, it is still possible to
identify positions in a reference, that can be assumed to mark the end of a sentence in a reference.
It was also possible to process a whole reference as one linguistic sentence. We decided not to
follow this approach because we believed that a model would perform poorly on new text data with
this approach. When there are references in the new text data, it is not possible to process every
reference as one linguistic sentence, since the new text data is unlabeled and we do not know where
references start and end. But some kind of sentence segmentation of the text is required. When a
model is always trained with whole references in the input sequences and is then applied to new text
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data where input sequences may contain only parts of whole references, this model will probably
perform poorly. This would not happen if the text data is always split into linguistic sentences using
the same tokenizer, no matter if it is reference text or not.
We construct input sequences using one or more linguistic sentences. For the input sequence,
linguistic sentences can be concatenated, overlapped, merged, etc. However, the input length to the
model is limited by BERT. The sequence length of a BERT model allows at most 512 WordPiece
tokens as input. This implies that when input sequences have more WordPiece tokens than the
specified sequence length of the BERT model, the token sequence is truncated to the sequence
length. If one linguistic sentence is tokenized by BERTs WordPiece model and is then already
composed of more WordPiece tokens than the sequence length 𝑠𝑒𝑞_𝑙𝑒𝑛, then the tokens that come
after the 𝑠𝑒𝑞_𝑙𝑒𝑛-th token do not go into computation and are consequently also not predicted.
However, this case only occurs very rarely as linguistic sentences are usually not that long.
Before input sequences are passed to BERT, they are converted into a numerical representation.
Therefore, they undergo necessary pre-processing steps. A detailed explanation of the different
steps can be found in Appendix A.
We want to find out the most principled input format to our model as we seek to achieve high
classification performance. Therefore, the upcoming sections discuss three different model input
formats based on linguistic sentences.

4.3.1 Single Input Format

This input format has the simplest characteristics. Here, we choose to pass the text sentence-wise to
the model. This means, from the available text data, sentences are extracted (e.g. by a pre-trained
sentence segmentation model). Each sentence goes as input to the model separately. In the further
course of this thesis, we refer to this input format as the single input format.
Passing text sentence-wise lets the BERT model receive no further context for the classification of
the tokens of a sentence. It only has the information of the sentence itself.
However, the input format benefits from the fast training of the model. The reason for this is that the
sequence length can be kept short and the shorter the sequence length, the faster the model trains.

4.3.2 Maximum Context Input Format

The drawback of the last input format can be overcome by providing the model with more context
around a sentence, instead of solely creating inputs sentence by sentence. Therefore, the following
input format implements this idea. The input format of one input instance is created as follows:
At first, sentences are extracted from the text data. Other than the previous model, sentences are
then concatenated until the maximum sequence length (512 WordPiece tokens) is reached. The
concatenation of sentences stops as soon as adding the next sentence would lead to a sequence
length greater than the maximum sequence length. The sentence that would have led to a sequence
length greater than the maximum sequence length is then used as the first sentence of the next input
sequence. We refer to this input format as the maximum context input format.
Using this input format, each sentence that goes into the model has context around it. The model
benefits from this input format, since it can utilize much more information for the prediction of
tokens.
A possible problem with this input format is that sentences that are right-most or left-most only
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have one-sided context. This can be problematic when, for example, the right-most sentence is the
beginning of a reference string and all sentences before are plain text. In this case, the additional
context for the sentence that is a reference can drag the model more towards the assumption that the
right-most sentence is also just plain text and not part of a reference string.
Beyond that, training of the model lasts considerably longer as the maximum sequence length is
used.

4.3.3 CMV-based Input Format

The third and most complex input format preserves the idea of having context for each sentence but
also counteracts the stated problem of the previous input format (section 4.3.2). The idea here is to
concatenate sentences again with the inclusion of overlapping sentences. This way, each sentence
is passed to the model multiple times, depending on how and how many sentences are overlapped.
We limit the number of sentences being concatenated to the number of three. In what follows, we
describe the resulting input format formally.
Assume a total of 𝑛 ≥ 3 sentences are extracted from the text data and S = {𝑠1, 𝑠2, 𝑠3, ..., 𝑠𝑛}
denotes the set of all extracted sentences where sentences are assigned a unique number 𝑖 ordered by
the order of their appearance in the text data. For an arbitrary sentence 𝑠𝑖 , we define the subsequent
sentence to be 𝑠𝑖+1 for 𝑖 ∈ 1, ..., 𝑛 − 1 and to be 𝑠1 if 𝑖 = 𝑛. Then our desired input format I is
obtained by concatenating three consecutive sentences together and by overlapping two consecutive
input samples. Overlapping is implemented using the following rule. Given an input sample, the
next input sample is obtained by removing the first sentence of the current input sample and adding
the sentence that would chronologically come after the last sentence of the current input sample.
Consequently, I is defined as follows:

I = {𝑐𝑜𝑛𝑐𝑎𝑡 (𝑠𝑖 , 𝑠𝑖+1, 𝑠𝑖+2) | 𝑖 ∈ {1, ..., 𝑛 − 2}} ∪
{𝑐𝑜𝑛𝑐𝑎𝑡 (𝑠𝑛−1, 𝑠𝑛, 𝑠1), 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑠𝑛, 𝑠1, 𝑠2)}

= {𝑐𝑜𝑛𝑐𝑎𝑡 (𝑠1, 𝑠2, 𝑠3), ...,
𝑐𝑜𝑛𝑐𝑎𝑡 (𝑠𝑛−2, 𝑠𝑛−1, 𝑠𝑛), 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑠𝑛−1, 𝑠𝑛, 𝑠1), 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑠𝑛, 𝑠1, 𝑠2)}

As one can see, in two consecutive input samples of I, the last two sentences of the first input
sample and the first two sentences of the second input sample overlap.
Because one individual token may be classified up to three times here, determining the prediction
for one individual token is more complex here. In a perfect scenario, every extracted sentence is
passed to the model three times at three different positions with different contexts. From this follows
that every token of a sentence is classified three times. The final prediction of a token is decided by
taking the majority vote of the token’s three predictions that are made at the three different positions
with different contexts.
However, the input sequence length of our model is limited to the maximum length of 512 WordPiece
tokens [DCLT19]. When the maximum sequence length is exceeded after WordPiece tokenization,
WordPiece tokens are truncated from the left of the input sample until the input length fits the
maximum sequence length. It is possible that two sentences (or even one) already reach the
maximum sequence length. In such edge cases, taking a majority vote is not possible as there would
be less than three predictions for one token. Therefore, we define the final classification of a token
as follows:
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• If there are three classifications for a token, the final classification of that token is computed by
taking the majority vote of the three classifications (cf. Figure 4.2). If the three classifications
are all different, then the classification of the token from the sentence that is located between
two sentences in an input sample is the final classification. We argue that taking this
classification is better than the other two classifications, because the classification was made
on the token that is located in a sentence that has prior and subsequent context.

• If there are only two classifications for a token, then the classification of the token from
the sentence that is located second in an input sample is the final classification. For the
classification of a token, we argue that the prior context of a token is more informative than
the following context to a token.

• If there is only one classification for a token, then this classification is also its final classification.

Figure 4.2: Idea of Contextual Majority Voting [LP20]

This described method is based on the idea of Contextual Majority Voting (CMV) that was proposed
by Luoma and Pyysalo [LP20]. Hence, we refer to the just described input format as the CMV-based
input format.
In this format, the model highly benefits from having almost always right context and left context
for each sentence. Nearly in all cases, a sentence is located once at the beginning, once in the
middle between the first and last sentence, and once at the end of an input sample. This means,
nearly every sentence is located once between two surrounding sentences. This can be helpful to the
model when, for example, the first and last sentence have indications of a reference string. Because
then, it is more likely that the sentence located between them is also part of a reference string. That
is one of the reasons why this method is expected to increase the model’s performance on reference
extraction and segmentation compared to other input formats.
The downside of this input format is that the amount of sentences (total data) that goes into the
model is doubled. In other words, redundancy is added. Additionally, the computation of the
prediction of a word is much more complex.

We briefly summarize the presented input formats with their different characteristics in
Table 4.1. Later in the results chapter, the presented input formats will be compared against each
other’s performance when applied to the model.
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Single Maximum context CMV-based
Creation of an input
sequence

single sentences filling sentences up
to the maximum se-
quence length of
BERT

concatenating
three consecutive
sentences with the
inclusion of over-
lapping sentences

Decision of the fi-
nal prediction of a
WordPiece token

as predicted by
model (CRF layer)

as predicted by
model (CRF layer)

applying Con-
textual Majority
Voting

Table 4.1: Summary of the input formats

4.4 Standard Two-Models Approach

Our first approach to the problem of reference extraction and segmentation is to train two separate
models: one model for reference extraction and one model for reference segmentation. Both models
are based on the same model architecture presented in section 4.1 but are trained with different
data as they pursue different tasks. The reference extraction model is trained with plain text and
annotated references. This serves the purpose that the model learns the difference between normal
text and text in references. Classifications are made on the tokens of a text. The reference extraction
model is used to classify each token into either: non-, first, or intermediate reference token. The
classified tokens are used afterward to compose reference strings. This is done by concatenating
a classified first reference token with subsequent classified intermediate reference tokens until a
non-reference token or a first reference token is reached.
To avoid the influence of former phases on the evaluation of the reference segmentation model, the
references are assumed to be correctly extracted. Consequently, the segmentation model is trained
with reference strings that are segmented into constituent reference components. Given a reference
string, the model learns to divide a reference into its different parts. The segmentation model is
used to classify each token of its input into components such as ‘author’, ‘title’, ‘year’, etc. The
classified tokens are used afterward to compose reference components. To do this, tokens that are
classified into the same component and appear in sequence in the input are concatenated. When
multiple reference strings are passed to the segmentation model at once, it is assumed that the first
and last token of every reference string is already known through the reference extraction model.
Thus, reference strings do not need to be reconstructed after classification.
The standard two-models approach benefits from having two models that are trained for two different
tasks. The reference extraction model can be optimized to extract references better whereas the
reference segmentation model can be optimized to segment references better into their bibliographic
components.
The disadvantage is that the training of two models generally takes more time.
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4.5 One-Model Approach

The task of reference extraction and reference segmentation is often tackled by training two models.
However, it is also possible to train only one model that combines the tasks of both reference
extraction and segmentation. To achieve this, the model is trained with plain text and already
segmented references. The idea of such a model is to directly classify tokens of references into
reference components such as ‘author’, ‘title’, ‘year’, etc. When the model classifies tokens into
bibliographic components, this indicates that these tokens are part of a reference string according
to the model. When tokens are not part of a reference string, they are classified as non-reference.
The classified tokens are used afterward to compose reference components. This is done by
concatenating tokens that are classified into the same component and appear in sequence in the
input.
This model has the advantage that the task of both reference extraction and segmentation is solved
with the training of only one model. This often saves time and memory. Moreover, when this
model is implemented in a real application, raw text data must only be passed to one model for
immediate feedback on what parts of the text data belong to references and of what components
these references are composed of.
The drawback of the described model is that it is harder to compose reference strings after
classification. This is because we do not segment into ‘first reference token’ or similar. When a set
of reference strings is passed to this model, the beginning and end of a reference are not clearly
evident. For this reason, a set of heuristics need to be defined which makes this model less practical.
It is difficult to compare the reference extraction performance of this approach to the reference
extraction performance of the previous approach (4.4). However, this approach can be compared to
the segmentation model of the two-models approach as they share all classification components
except for the additional non-reference component.
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4.6 Implementation

The implementation for this thesis is written in the Python programming language (with Python
version 3.9.7). The training of the models is implemented using the deep learning framework
PyTorch [PGM+19] as well as HuggingFace’s Transformers library [WDS+20]. The linear-chain
CRF is implemented with the use of the Pytorch-CRF6 module. For the sentence segmentation and
tokenization of the data, the spaCy7 module was used. In the spaCy module, there are pre-trained
models that provide both the functionality of sentence segmentation and tokenization, but often for
only one language. As a consequence, we used two of such spaCy models, one for the documents
in the German language and one for the documents in the English language of our data used. To
evaluate the performance of our models on different classification metrics (precision, recall, and
F1-score), we use the Python module Scikit-learn [PVG+11] as well as the Python seqeval package8.
Further implementation details of our method are in Appendix B.
The code of this thesis can be found at GitLab9.

6https://github.com/kmkurn/pytorch-crf
7https://github.com/explosion/spaCy
8https://github.com/chakki-works/seqeval
9https://gitlab-ac.informatik.uni-stuttgart.de/iurshiaa/bert-references
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5 Data

In this chapter, we describe the data used for training and evaluation of the models. Therefore, the
different annotations of the data are described in Section 5.1 and in Section 5.2 it is explained how
the data are prepared to be used for our models.

To train and evaluate the different models that were presented in Chapter 4, text data is needed.
For the training of our models, we use the provided data from the EXgoldstandard1. The dataset
contains altogether 350 articles in PDF format that were collected from Social Science Open Access
Repository (SSOAR)2. Boukhers et al. [BAS19] extracted the lines of the articles using Cermine
[TSF+15] and then annotated them for the task of reference extraction and reference segmentation.
The dataset contains high-variance references which is the main reason why it can be regarded as a
challenging dataset. In total, there are 9141 reference strings in the dataset. When the text data is
segmented into sentences and split into tokens, then about 137,400 sentences and 3,478,000 tokens
are counted. Depending on the language of the documents inside the dataset, they are divided
into two categories: documents in German language and documents in English language. In the
following, we describe these two categories in more detail.

• German articles:
This category consists of 251 annotated articles in the German language. They are about
social science and can be divided into three types of articles: 1) 219 articles have located their
references in a specific section at the end of the document and 2) 12 papers have references in
a section at the end of the document as well as in footnotes 3) the references in the remaining
20 articles are located somewhere in the document (e.g. footnotes) and not in a specific
reference section. After our own investigation, we identified that one document appears in
two of the three document categories. Thus, in total there are 250 annotated unique articles
in the German language.
The articles not only include academic literature, but also grey literature [BAS19]. This
implies that untypical references appear more often.

• English articles:
This second category consists of 100 annotated articles in the English language. Other than
in the German articles, references are from different languages in the English articles. In all
100 articles, the references are located only in a specific reference section at the end of the
document.

Different datasets are derived from this complete dataset for the training and evaluation of the differ-
ent models. That is why we introduce different abbreviations for each dataset. In the further course
of this thesis, we refer to the just described dataset with its 350 articles as the Complete Dataset (CD).

1https://github.com/exciteproject/EXgoldstandard/tree/master/Goldstandard_EXparser
2https://www.gesis.org/ssoar/home
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All our models (extraction models, segmentation models, combined extraction and segmen-
tation model) are trained and evaluated on 𝐶𝐷, except for the extraction and segmentation models
that are trained for the comparison to EXparser [BAS19]. For the training and evaluation of those
models, we use the Proposed Dataset in German language (PGS) [BAS19] and the Proposed Dataset
in English language (PES) [BAS19], the same datasets that were used for training and evaluation of
EXparser.

5.1 Data Annotations

In 𝐶𝐷, there are two different annotations of the documents, where one can be used for the training
of extraction models and the other for the training of segmentation models.
In the first annotation format of the documents, the text that does not belong to references remains
unchanged. Each reference is enclosed by a ref -tag. This annotation format is suitable for the
training of the extraction model because the model sees both normal text and reference lines during
training. Consequently, it learns to distinguish normal text from reference text. We denote the data
in this annotation format by 𝐶𝐷𝑒. In the following, we show an example of an annotated reference
in 𝐶𝐷𝑒:

<ref>Abbink, J. 2006: Discomfiture of democracy? The 2005 election crisis in
Ethiopia and its aftermath, African Affairs 105 (419): 173-199.</ref>

In the second annotation format, text that is not part of reference strings is removed. References are
already extracted and segmented into reference components. Each reference component is enclosed
by its corresponding label-tag. It is reasonable to use this annotation format for the training of a
segmentation model as plain text is removed and the model only learns segmentation of references.
We denote the data in this annotation format by 𝐶𝐷𝑠. We identified inconsistencies in the data
annotation of 𝐶𝐷𝑠 that we have manually corrected. Detailed information about the modified data
files can be found in Appendix C. In 𝐶𝐷𝑠, the example reference string from above looks like
follows:

<author><surname>Abbink</surname>,<given-names>J.</given-
names></author> <year>2006</year>: <title>Discomfiture of democracy?
The 2005 election crisis in Ethiopia and its aftermath</title>,<source>
African Affairs</source> <volume>105</volume> (<issue>419</issue>):
<fpage>173</fpage>-<lpage>199</lpage>.

A combination of 𝐶𝐷𝑒 and 𝐶𝐷𝑠 yields data that is useful for the training of the proposed combined
extraction and segmentation model from the one-model approach. In this annotation format, plain
text is present in the data and references are already segmented and not only enclosed by a ref -tag.
The data in this annotation format is annotated by 𝐶𝐷𝑐.

28



5.2 Data Preparation

5.2 Data Preparation

To prepare our data for input sequences to our model, we tokenized 𝐶𝐷𝑒, 𝐶𝐷𝑠, and 𝐶𝐷𝑐 and
assigned every token its corresponding label in the data. Tokens that were not annotated by any
label are tagged with self-introduced tags which we will explain. All sub-tokens of a token (when
tokenized by a WordPiece model) are assigned the same label as the original token in our data.
To structure the data and store additional information for every token, we considered the Comma-
separated Values (CSV) as a suitable file format. In the CSV file, each line consists of four values:
line number, sentence number of the token, the token itself, and the label of the token. In Figure 5.1,
it is demonstrated how an annotated reference from 𝐶𝐷𝑠 is represented in the CSV file. Linguistic
sentences are created by taking all tokens with the same sentence number in their order of appearance
in the file.

Figure 5.1: Visualization of how the annotated text data is converted to the CSV file format

In the following, we describe the labels used and tagging format for 𝐶𝐷𝑒, 𝐶𝐷𝑠, and 𝐶𝐷𝑐,
respectively. They are in line with our described method from Sections 4.4 and 4.5.

5.2.1 Data Preparation for Reference Extraction

For reference extraction we use 𝐶𝐷𝑒. Here, we distinguish between two types of tokens: Tokens
that belong to plain text (O-tag) and tokens that belong to references (ref -tag). The Beginning-
Inside-Outside (BIO) tagging format is a suitable format for the efficient tagging of the tokens of a
reference. When applying here, the set of labels consists of B-REF, I-REF, and O.
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B-REF is used for the first token of a reference string, I-REF is used for intermediate tokens of a
reference string, and O is used for all other tokens. Our used tagging method for reference extraction
is in line with prior related work [KGM+17].

5.2.2 Data Preparation for Reference Segmentation

The dataset 𝐶𝐷𝑠 is used for reference segmentation. In this annotation format, we distinguish
between tokens of different reference components, where the reference components are also the
used labels. Tokens are assigned the label that they are enclosed by in the data. However, there are
two edge cases:

• When a token is not enclosed by any tag, it is assigned the label ‘ref’. The label ‘ref’ stands
for “reference”. We decided to assign this label to tokens that have no specific segmentation
label, but are still part of a reference. This was often the case for punctuation characters, e.g.
‘. : ; - [ ] { }’.

• When a token is enclosed by an author tag, but inside of the enclosed author tags it is neither
enclosed by surname tags nor given-names tags, then it gets the label ‘author’. This was the
case for punctuation characters inside author tags, e.g. a comma that separates the surname
from the given name of an author.

The following reference components are used: publisher, first-page, last-page, title, Uniform
Resource Locator (URL), author, surname, given-name, volume, source, editor, identifier, year,
other, ref.

5.2.3 Data Preparation for the Combination of Reference Extraction and
Segmentation

Finally, 𝐶𝐷𝑐 is used for the one-model approach, where reference extraction and reference seg-
mentation are combined in one model. Here, the same labels are used as in the previous section
(5.2.2) with the additional O-tag. This is because the model is trained with plain text and already
segmented references. Tokens of the plain text are assigned the O-tag.

In Table 5.1, we summarize all labels that are used for the training of the different models.

Extraction model Segmentation model Combined extraction
and segmentation
model

Used
labels

B-ref, I-ref, O publisher, first-page,
last-page, title, URL,
author, surname, given-
name, volume, source,
editor, identifier, year,
other, ref

publisher, first-page,
last-page, title, URL,
author, surname, given-
name, volume, source,
editor, identifier, year,
other, ref, O

Table 5.1: Labels used for the training of the different models
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This chapter presents the results. First, Section 6.1 describes the conducted evaluation procedure
for the results. Subsequently, the results of the carried out experiments are shown in Section 6.2.
Section 6.3 compares our proposed models to EXparser [BAS19].

6.1 Evaluation Procedure

The evaluation procedure comprises the used evaluation metrics, the calculation of the results and
the model selection during training time.

6.1.1 Evaluation Metrics

The performance of the Extraction and Segmentation models are evaluated based on the metrics of
precision, recall, and F1-score. The averaged F1-score is mainly used to evaluate the performance.
Models are mainly evaluated on the (micro-averaged) F1-score because it has been shown in the
literature that the metrics precision and recall alone are not very effective for measuring classification
performance [Seb02]. For this reason, the combination of precision and recall has been used to
measure the performance of classification tasks. The most popular combination is to take the
harmonic mean between precision and recall which is known as the F1-score.

6.1.2 Calculation of the Results

In what follows, we state how the results are calculated for both the reference extraction models and
the reference segmentation models.
Given an input sequence, it is tokenized by the underlying WordPiece model of a selected BERT
model. It is of high importance that each tokens prediction in the original input sequence is
determined by taking into account only the prediction of its first sub-token. Thus, for the prediction
of the word “flightless”, only the prediction of its first sub-token “flight” is taken into account. The
prediction of further sub-tokens of a word (here: “##less”) is ignored. This is almost in line with
Devlin et al.’s [DCLT19] approach when they fine-tuned BERT on NER tasks. The only difference
is that Devlin et al. [DCLT19] do not pass sub-tokens that are not the first sub-token of a word
as input to the classifier (early filter out). In our implementation, all sub-tokens are passed to the
classifier but their predictions are filtered out later, based on what sub-tokens are first sub-tokens of
words (late filter out).
Depending on the model, the results are calculated differently. In the following explanation, the
term “token” always refers to the first sub-token of a word (WordPiece token) after the word has
been tokenized by a WordPiece model:
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• In the data for reference extraction, we used the BIO tagging format which is a common
tagging scheme for the task of NER. For the evaluation of the reference extraction models,
we treat reference strings as named entities. Such a named entity is composed of a first B-ref
tag and subsequent I-ref tags. We evaluate on the entity-level which means that a reference
string is only considered to be classified correctly by the model if and only if all its tokens are
classified as reference. Therefore, the first token of a reference string needs to be predicted as
B-ref and all subsequent tokens as I-ref.
Furthermore, the tag O is not considered in the calculation of the results since it is not a
meaningful tag. This is because (a) it annotates plain text and (b) if the model was to predict
every token with the tag O, still high performance would be achieved for the tag O (because it
is by far the most dominant tag in the annotated data).

• The segmentation models are evaluated on the token-level and not on the entity-level. When,
for example, the ‘title’ component of a reference string consists of multiple tokens, then the
individual classification of every ‘title’ token goes into the calculation of the metrics. This
means we evaluate the segmentation models less strictly than the extraction models.

• The combined extraction and segmentation model is also evaluated on the token-level. Again,
the O-tag is not considered in the calculation of the results because of the aforementioned
reasons.

Lastly, the results presented are all average performance, using 10-fold cross-validation which we
describe in the upcoming section.

6.1.3 Model Selection

We have a limited amount of data that we use in the scope of this thesis. Therefore, the approach
of splitting the data into one training and one testing set and solely evaluating the model on its
performance on the testing set is not reasonable. Due to that, we conduct a 10-fold cross-validation
on all of our proposed models. Therefore, we split the data 𝐶𝐷 such that 80% are used for training,
10% for validation, and the remaining 10% for testing. The validation set is used for model selection
and the results are reported on the test set. Model selection describes the process of choosing the
model’s “best state” during the training time based on its performance on the validation set. A model
is applied to the validation set after every epoch where one epoch implies one pass of the entire
training set that the model has completed. After applying the test set on the 10 different models, the
results are averaged with different averaging methods such as micro-averaging or macro-averaging.
The averaged results are the reported final results for each shown model.
For the comparison to EXparser’s models, we perform 10-fold cross-validation using the same
datasets (PGS and PES) and folds as Boukhers et al. [BAS19].

6.2 Experiments

This section presents the results of our conducted experiments. First, we compare the performance
of the considered BERT models in a reference segmentation task. Then, for the next experiments, we
take the BERT model with the best performance in the first experiment and examine the performance
of different input formats applied to both reference extraction models and reference segmentation
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models. Furthermore, the results of the one-model approach are presented. For the experiments, the
extraction models, segmentation models, and the combined reference extraction and segmentation
model were trained and evaluated on the datasets 𝐶𝐷𝑒, 𝐶𝐷𝑠, and 𝐶𝐷𝑐, respectively.

6.2.1 BERT Model

Figure 6.1 compares the performance (macro- and micro-averaged F1-score) of segmentation
models with different pre-trained BERT models but the same input format single. What stands
out in the diagram is that the model with 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased achieved the highest
performance with a macro-averaged F1-score of 89.5% and a micro-averaged F1-score of 91,9%.
However, there is no significant performance difference between 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased
and SciBERT cased or BERT base cased. Only the model that used 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 german cased
performs relatively poorly.

Figure 6.1: Results of reference segmentation models with different BERT models

6.2.2 Input Format

The following models were all trained with 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased as this BERT model
achieved the best results in the previous experiment.

We start by comparing the extraction models of the two-models approach. Here, the results
indicate how well every model extracted reference strings. Table 6.1 presents the results of the
different extraction models in terms of the three micro-averaged evaluation metrics precision, recall
and F1-score. Here, precision measures the proportion of relevant reference strings among the
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retrieved ones. Recall measures the proportion of retrieved reference strings among the total amount
of reference strings in the dataset. We denote a model with its input format as input format model.
As demonstrated, the maximum context model achieves the best performance on precision, while
the CMV-based model achieves the best results for both recall and F1-score. However, there is no
significant difference between the performance of the maximum context model and the CMV-based
model. Compared to the results of both these models, the single model performs poorly.

Precision Recall F1-score
single 0.598 0.773 0.674
maximum context 0.800 0.832 0.816
CMV 0.789 0.851 0.819

Table 6.1: Results of the reference extraction models with different input formats (boldly printed
numbers indicate the best result in the respective column)

Next, we compare the segmentation models of the two-models approach. Table 6.2 demonstrates the
results of the different segmentation models on all components of a reference (labels used) as well
as their micro-averaged and macro-averaged metrics. The results point out how well every model
segmented given reference strings into their constituent components. For one particular reference
component 𝐶, precision measures the proportion of relevant reference components 𝐶 among the
retrieved ones. Recall measures the proportion of retrieved reference components 𝐶 among the total
amount of reference components 𝐶 in the dataset. In the table, the score of the ‘Author’ component
is computed by averaging the classification scores of the tags ‘surname’, ‘given-name’, and ‘author’.
Consequently, macro-average is calculated here by averaging the results of all reference components
except for ‘Author Surname’ and ‘Author Given-name’ as they are already included in the calculation
of the ‘Author’ component.
The results show that the segmentation model with the CMV-based input format achieves the best
results overall. Nearly all reference components are best classified by the model the CMV-based
input format and it has the highest macro- as well as micro-averaged scores. However, when
comparing the different micro-averages of the models, the results of the CMV-based model is only
ahead by 0.1 percentage points compared to the maximum context model. Even the segmentation
model with the single input format does not perform poorly here as there is only a difference of 1.7
percentage points between it and the CMV-based model. In terms of macro-averaged F1-score, the
CMV-based model is ahead by 0.5 percentage points than the maximum context model. All models
perform very well on the segmentation of the components ‘author’, ‘title’, and ‘URL’ but perform
relatively poorly on the segmentation of the components ‘volume’, ‘issue’, and ‘other’. Interestingly,
it can be observed that the single model classifies URLs best since its F1-score is the highest among
all models on this tag. The maximum context model achieves the best classification performance on
components such as ‘title’ or ‘source’ but only by a very small margin.
In summary, these results show that our best results on the dataset𝐶𝐷 are attained through the BERT
model 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased and with the input format CMV-based for both reference
extraction and reference segmentation. However, the results also indicate that applying themaximum
context input format can be regarded as equally good.
In the following, we discuss the obtained results for the combined extraction and segmentation
model in Table 6.3. The results are particularly interesting because only one model was trained
to simultaneously extract and segment references into their components. What stands out in the
table is that the ‘title’, ‘author’, and ‘editor’ components are classified very well while the ‘volume’,
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6 Results

‘issue’, and ‘other’ components were rather predicted imprecise. This observation also applied to
the obtained results of the segmentation models in the two-models approach (cf. Table 6.2). The
model achieves a macro-averaged F1-score of 87% and a micro-averaged F1-score of nearly 91%,
only about 3 percentage points lower than the same values in Table 6.2.
Overall, the results show that the segmentation models in the two-models approach segment
references substantially better than the combined reference extraction and segmentation model. On
the dataset 𝐶𝐷𝑒, our best reference extraction model reaches a micro-averaged F1-score of 81,9%.
And on the dataset 𝐶𝐷𝑠, our best reference segmentation model reaches a micro-averaged F1-score
of 93.6%.

Precision Recall F1-score
𝑃𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟 0.895 0.911 0.903
𝐹𝑖𝑟𝑠𝑡 𝑃𝑎𝑔𝑒 0.88 0.826 0.852
𝐿𝑎𝑠𝑡 𝑃𝑎𝑔𝑒 0.903 0.912 0.907
𝑇𝑖𝑡𝑙𝑒 0.925 0.948 0.936
𝑈𝑅𝐿 0.885 0.92 0.902
𝐴𝑢𝑡ℎ𝑜𝑟 0.923 0.945 0.934
𝐴𝑢𝑡ℎ𝑜𝑟 𝑆𝑢𝑟𝑛𝑎𝑚𝑒 0.914 0.922 0.918
𝐴𝑢𝑡ℎ𝑜𝑟 𝐺𝑖𝑣𝑒𝑛-𝑛𝑎𝑚𝑒 0.924 0.951 0.937
𝑉𝑜𝑙𝑢𝑚𝑒 0.748 0.788 0.767
𝑆𝑜𝑢𝑟𝑐𝑒 0.843 0.858 0.851
𝐸𝑑𝑖𝑡𝑜𝑟 0.874 0.929 0.901
𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 0.861 0.906 0.883
𝑌𝑒𝑎𝑟 0.88 0.882 0.881
𝐼𝑠𝑠𝑢𝑒 0.747 0.778 0.762
𝑂𝑡ℎ𝑒𝑟 0.819 0.781 0.8
𝑅𝑒 𝑓 0.901 0.925 0.913
𝑚𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 0.863 0.879 0.871
𝑚𝑖𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 0.896 0.916 0.906

Table 6.3: Results of the combined reference extraction and segmentation model

6.3 Comparison of proposed Models and EXparser

This section compares EXparsers models to our proposed reference extraction and reference
segmentation models. Our proposed models are trained with BERT models whose pre-training
data are similar to the PGS and PES datasets [BAS19] in some respects. PGS and PES are used
for training and testing of our models. Furthermore, the CMV-based input format is applied to the
proposed models since it achieved the best results in the conducted experiments (6.2).
We begin by comparing the extraction models first. Since the PGS dataset contains only German
text data, we initially assumed that the BERT model 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 german cased would fit best
here as the model learned word embeddings through German texts. This was not the case. In
our experiments, 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased achieved better results. Consequently, in this
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comparison, our proposed extraction model is composed of 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased with
the CMV-based input format.
Table 6.4 presents the micro-averaged results for both EXparsers extraction model and our proposed
extraction model (Proposed) on PGS [BAS19]. Here, it should be noted that EXparser evaluated
their extraction model on classified reference lines whereas we evaluated our extraction models on
classified full reference strings. EXparser outperforms our model in terms of the recall score. It has
a recall value of 84%, almost 5 percentage points more than our model. This means that EXparser
correctly retrieved more references in total. However, our model performs substantially better in
retrieving references that are relevant. With a precision value of 78%, we have an increase of more
than 11 percentage points compared to EXparser. Overall, our model has a higher F1-score which is
78.8%. That is 4.88 percentage points more than EXparsers micro-averaged F1-score. However, as
our model is not better in all metrics, it cannot be said that it performed better in reference extraction.

Precision Recall F1-score
EXparser 0.67 0.84 0.74
Proposed 0.783 0.793 0.788

Table 6.4: Result of reference extraction on PGS using Proposed and EXparser [BAS19] (boldly
printed values indicate the best result in the column)

We trained and evaluated two segmentation models, one model on the PGS dataset and the
other one on the PES dataset.
For our proposed segmentation model on PGS, we have tried out the 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 german cased
model again but it performed 1-2 percentage points worse in terms of micro-averaged F1-score.
Consequently, we do not include it here and used 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased.
The results of our proposed segmentation model (P) and EXparsers segmentation model (EXp) on
PGS are provided in Table 6.5. Just as it was done by Boukhers et al. [BAS19], we included three
additional macro-averaged values that are calculated by averaging only certain reference components.
Furthermore, our used ‘ref’-tag was excluded from the calculation for a fair comparison. As can
be seen from the table, EXparsers segmentation model has higher precision values for most of
the components and the proposed segmentation model has higher recall values for most of the
components. EXparser almost always classifies reference components such as ‘publisher’, ‘first
page’, ‘last page’, or ‘URL’ correctly which is indicated by the components’ very high precision
values. Our proposed segmentation model has high classification performance on essential reference
components such as ‘author’ or ‘title’. When comparing the two models with respect to their
F1-score on the different components, they can be regarded as equally good. This is illustrated
by the values in the different macro-averaged F1-scores. In overall macro-averaged F1-score, our
model achieves a higher value of 1.5 percentage points. EXparser did not provide micro-averaged
results here. That is why it is left out in the table.
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Precision Recall F1-score
P EXp P EXp P EXp

𝑃𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟1,2,3 0.911 0.964 0.899 0.811 0.905 0.875
𝐹𝑖𝑟𝑠𝑡 𝑃𝑎𝑔𝑒1,2,3 0.882 0.979 0.857 0.938 0.869 0.958
𝐿𝑎𝑠𝑡 𝑃𝑎𝑔𝑒2 0.859 0.991 0.935 0.962 0.895 0.976
𝑇𝑖𝑡𝑙𝑒1,2,3 0.953 0.894 0.931 0.961 0.942 0.925
𝑈𝑅𝐿3 0.937 0.996 0.986 0.8 0.961 0.881
𝐴𝑢𝑡ℎ𝑜𝑟1,3 0.941 0.926 0.945 0.793 0.943 0.854
𝐴𝑢𝑡ℎ𝑜𝑟 𝑆𝑢𝑟𝑛𝑎𝑚𝑒2 0.958 0.91 0.968 0.787 0.963 0.843
𝐴𝑢𝑡ℎ𝑜𝑟 𝐺𝑖𝑣𝑒𝑛-𝑛𝑎𝑚𝑒2 0.93 0.89 0.91 0.823 0.92 0.855
𝑉𝑜𝑙𝑢𝑚𝑒1,2,3 0.667 0.932 0.79 0.78 0.723 0.848
𝑆𝑜𝑢𝑟𝑐𝑒1,2,3 0.837 0.89 0.834 0.749 0.836 0.81
𝐸𝑑𝑖𝑡𝑜𝑟3 0.923 0.878 0.956 0.751 0.939 0.808
𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 0.904 0.902 0.915 0.706 0.91 0.754
𝑌𝑒𝑎𝑟1,2,3 0.844 0.904 0.867 0.901 0.856 0.903
𝐼𝑠𝑠𝑢𝑒2 0.812 0.964 0.789 0.703 0.8 0.799
𝑂𝑡ℎ𝑒𝑟3 0.840 0.848 0.767 0.735 0.801 0.785
𝑚𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒1 0.862 0.927 0.875 0.848 0.868 0.882
𝑚𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒2 0.865 0.927 0.878 0.841 0.871 0.879
𝑚𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒3 0.874 0.921 0.883 0.822 0.878 0.865
𝑚𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 0.87 0.928 0.882 0.815 0.875 0.86
𝑚𝑖𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 0.912 N/A 0.904 N/A 0.908 N/A

Table 6.5: Result of reference segmentation on PGS using Proposed and EXparser [BAS19] (boldly
printed values indicate the best result in the row per metric)

For our proposed segmentation model on PES, the 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 cased achieved substantially better
results than 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased. This is because PES contains solely English text
data. As the BERT model SciBERT cased was trained with English scientific articles, we found
it meaningful to apply it on PES, too. Hence, we included results of two proposed segmentation
models with different BERT models, denoted by 𝑃𝐵𝐴𝑆𝐸 and 𝑃𝑆𝑐𝑖𝐵𝐸𝑅𝑇 .
Table 6.6 presents the results of our two proposed segmentation models 𝑃𝐵𝐴𝑆𝐸 and 𝑃𝑆𝑐𝑖𝐵𝐸𝑅𝑇 ,
and EXparsers segmentation model (EXp) on the PES dataset. Our used ‘ref’-tag was excluded
from the calculation. A comparison of the results reveals that both proposed segmentation models
segment references significantly better than EXparsers segmentation model on the dataset PES.
This can be seen particularly by the macro-averaged F1-scores. Our proposed segmentation models
outperform EXparser by more than 5 percentage in terms of macro-averaged F1-score. In almost all
cases 𝑃𝑆𝑐𝑖𝐵𝐸𝑅𝑇 has the highest values for precision, recall, and F1-score. However, there is no
substantial performance difference between 𝑃𝑆𝑐𝑖𝐵𝐸𝑅𝑇 and 𝑃𝐵𝐴𝑆𝐸 . What stands out in the table
is that the ‘page’ reference components (‘first page’ and ‘last page’) are almost always classified
correctly by 𝑃𝑆𝑐𝑖𝐵𝐸𝑅𝑇 , as their precision values are very close to 100%. This also holds true for
the labels ‘title’, ‘URL’, ‘author’, and ‘year’. The components ‘volume’, ‘issue’, and ‘other’ that
had relatively poor results in Table 6.5 have high scores here, too. The component ‘identifier’ in
𝑃𝑆𝑐𝑖𝐵𝐸𝑅𝑇 has the lowest F1-score with 85%.
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6.3 Comparison of proposed Models and EXparser

In summary, we achieve comparable results to EXparser for reference extraction and segmentation.
The only significant performance increase can be seen at our segmentation models on PES. Overall,
we achieve a micro-averaged F1-score of 78.8% for reference extraction on PGS, 90.8% for reference
segmentation on PGS, and 96% for reference segmentation on PES.
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6 Results
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7 Discussion

In this chapter, the results are discussed in more detail. First, the obtained results in the experiments
(Section 6.2) and in the comparison (Section 6.3) are interpreted by relating them to the sub research
questions. After that, the main research question is answered. Finally, this section is concluded by
describing the limitations of this thesis and by pointing out potential future work.

7.1 Interpretation of the Results

We begin the interpretation of the results by focusing on the first sub research question of this thesis:

Which BERT model and input format achieve the best performance on the task
of reference extraction and reference segmentation?

In the experiment of Section 6.2.1, we saw that the performance of the segmentation models
varies on the same dataset, depending on what BERT model is used. Table 6.1 showed that the
model with 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased performed best on the dataset 𝐶𝐷. The reason for
this is that it learned word embeddings for both German and English texts in its pre-training
procedure. Consequently, it achieved better results than the BERT models 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 german
cased or 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 cased that only learned word embeddings for one of the two languages. From
this follows that it was important to always choose 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased in experiments
where 𝐶𝐷 was used for evaluation. As the English articles of 𝐶𝐷 also contain references from
languages other than English and German, it is advantageous to use 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased
here once again.
However, when models were trained on PES in Section 6.3, it was important to switch to a more
suitable BERT model that was pre-trained with data that are similar to PES. For instance, 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸
cased is more suitable than 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased when training on PES. This is due to
the fact that PES only contains English text and 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 cased was pre-trained only with large
amounts of English text data whereas 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased was trained with the same
magnitude of data on 104 different languages. Consequently, 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 cased represents English
words better in a sentence and therefore also processes English text data better.
Furthermore, Table 6.6 shows that the BERT model SciBERT cased had achieved the best results on
the PES dataset. The reason behind its remarkable results is that it was pre-trained solely on English
scientific articles. Thus, during its pre-training, it has also seen and processed many reference
strings. Since SciBERT cased was trained with data that matches both the language (English) and
the domain-specific text corpus of our data (scientific articles), it was able to segment references
most accurately with a micro-averaged F1-score of 96%.
Moreover, as each BERT model has a ‘cased’ property or not, it was important to choose the
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7 Discussion

cased variants. In references, the capitalization of words plays an important role. Choosing cased
BERT models ensures that contextualized word embeddings are learned for both the lower case
and capitalized version of a word in the same context of a sentence. This helps the model to make
more certain predictions because, for instance, there are much more words that are capitalized in
references than in normal text. We listed further reasons for this in section 4.2.
Our observations and interpretations show that BERT models have a noticeable impact on the
classification performance of references. We argue that the better a BERT model represents words
of a reference in their context, the more accurate predictions can be made. Furthermore, our findings
lead to the statement that the choice of the BERT model is highly dependent on what data is used for
training and testing of the corresponding reference extraction or segmentation model. Depending
on the data, a BERT model should be selected based on

• the language(s) it was trained on (e.g. English, German, etc.),

• the domain-specific text corpus it was trained on (e.g. Wikipedia articles, scientific articles,
etc.),

• whether a case-preserving WordPiece Model is used or not.

The more criteria match between the BERT model’s pre-training data and the BERT model’s
fine-tuning data, the better the BERT model captures both syntactic and semantic meanings of
references.
For the task of reference extraction and segmentation, it leads to a significant performance increase
when the used BERT model is pre-trained on large amounts of scientific articles that contain
reference strings. This statement is supported by the high-performance results of the proposed
segmentation model that used SciBERT cased (cf. Table 6.6). Furthermore, a BERT model with a
case-preserving WordPiece model should be preferred for reference extraction and segmentation.

Next, we discuss what input format achieves the best performance. The obtained results in-
dicate that the input format to a BERT model has a significant impact on the model’s overall
classification performance. Models with the single input format had relatively poor performance
compared to the two other input formats. The reason behind this is that the maximum context and
CMV-based input format both provide significantly more context around single sentences, allowing
the model to utilize more information and make predictions with higher certainty. Extracting a
reference solely using the information of its inner structure and content is harder than using further
contextual information. Thus, references can be identified better when the information around the
reference is used. The information around reference strings can provide many clues to the model.
Based on this observation, for high classification performance, rather long input sequences should
be preferred such that there is sufficient context around each token. This does not hold true always
as, for instance, the reference component ‘URL’ was best classified by the segmentation model that
used the single input format (cf. Table 6.2). To prevent far left and far right tokens to suffer from
one-sided context, the idea of CMV can be used. That CMV improves performance can also be
seen in Table 6.2 where the model with CMV-based input format achieves slightly better results
than the model with maximum context input format.
When comparing the results of the different input formats on the task of reference extraction and
reference segmentation (cf. Table 6.1 and 6.2), the results show that the input format has a larger
impact on the performance of reference extraction models. The model with single input format had
a significantly worse performance in extracting references than the models with maximum context
or CMV-based input format. Its micro-averaged F1-score was almost 15 percentage points lower
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7.1 Interpretation of the Results

than the other micro-averaged F1-scores. However, there was not such a substantial performance
difference between single segmentation model and the other segmentation models. This means
that a context-based input format is very important for the task of reference extraction but not that
important for reference segmentation. Intuitively this makes sense because additional text around a
reference can help a model to identify that reference better. For example, when there are references
around a reference string to be classified, chances are high that this reference string is identified
and extracted. However, additional text around a reference does not effectively help a model to
segment that reference better. No matter what kind of references are located to the left and right of
a reference string, the reference string is rather segmented with the information of its inner structure
and content.
We conclude that input formats that generally define long, context-based input sequences significantly
improve the performance of both reference extraction and reference segmentation models. We argue
that such input formats lead to better contextual word representations. Furthermore, we observe
that additional context in the input format is far more required for the extraction of references than
for the segmentation of references.

In the following, the second sub research question is discussed:

What is the best approach for training a given BERT-based model on the task of
reference extraction and reference segmentation?

We have seen the results of two approaches on the task of reference extraction and segmentation:
results of the standard two-models approach and results of the one-model approach. When
comparing the segmentation performance between the two approaches (cf. Table 6.2 and Table
6.3), it is evident that the segmentation model from the two-models approach segments references
better. It achieves a higher micro-averaged F1-score by 3 percentage points. This was expected
as the segmentation model is only trained with reference strings and consequently only learns to
divide a reference into its constituent components. We cannot effectively compare the reference
extraction performances as the reference extraction performance of the combined model cannot be
measured directly.
Another argument that speaks for the standard two-models approach is that it is more practical than
the one-model approach. It has a more simple and concrete online process. Text can be passed to the
extraction model to identify and extract references and then the extracted references can be passed to
the segmentation model to segment them. For the combined reference extraction and segmentation
model, the online process is more complex. To compose references from classification, either
heuristics need to be defined or complex training labels are needed that mark the beginning token of
a reference and annotate it with a reference component simultaneously.
The two aforementioned reasons lead us to the conclusion that the standard two-models approach is
the better approach to extract and segment references. Although the one-model approach may bring
advantages like a lower computational overhead, the results of the standard two-models approach
are more promising. Furthermore, the two-models approach is more practical.

In what follows, the last sub research question is discussed:

Can BERT improve the obtained results of EXparser [BAS19]?
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7 Discussion

When comparing our proposed models to EXparser [BAS19], it cannot be clearly said that our
proposed BERT models improved the performance on reference extraction and segmentation.
The reason for this is that our proposed models were not always better in all three metrics of
precision, recall, and F1-score. This can be seen in the Tables 6.4, 6.5, and 6.6. Our proposed
extraction model on PGS had a higher micro-averaged precision value and a higher micro-averaged
F1-score by almost 5 percentage points. But EXparser has a higher recall score by nearly 5
percentage points. On the dataset PGS, our proposed segmentation model on PGS achieved a
higher macro-averaged recall and a higher macro-averaged F1-score by 1.5 percentage points.
However, EXparser achieved a higher macro-averaged precision by more than 5 percentage points.
The only decisive performance increase could be seen on the dataset PES. There, our proposed
segmentation model performed better than EXparser as its macro-averaged precision, recall, and
F1-score were all higher. The macro-averaged F1-score was higher by more than 5 percentage
points. Based on these results, we conclude that our proposed models achieved comparable results
to EXparser. For a better comparison between our models and EXparser, more extensive ex-
periments between the two models need to be carried out, for instance, by evaluating on more datasets.

Finally, the main research question is discussed and answered in the following:

Is BERT a suitable choice for the task of reference extraction and reference
segmentation?

Yes, BERT is a suitable choice for the task of reference extraction and reference segmentation. We
justify this answer with the following arguments:
We have fine-tuned BERT-based models with little data and still achieved high reference extraction
and segmentation performance. This indicates that little data is sufficient such that BERT models
can learn word representations efficiently on the downstream task of reference extraction and
segmentation by fine-tuning. Furthermore, this partly shows the great capability of neural-based
embeddings for reference extraction and segmentation. With a suitable pre-trained BERT model,
𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 multilingual cased, and a meaningful input format, CMV-based, we were able to extract
and segment references with high quality.
Although our dataset contains both English and German language articles with references that
strongly vary in their content, length, and location, our extraction model extracted references with
an average F1-score of 81,9%. This shows that BERT is capable of learning the differences and
similarities of high-variance references and is therefore suitable for the task of reference extraction.
Moreover, it is important to highlight that in our segmentation model, the essential reference
components ‘author’, ‘title’, ‘publisher’, and ‘year’ belong to the reference components with the
highest classification performance in all trained segmentation models. In addition, BERT was able
to capture differences between the given-name and surname of authors as both these reference
components have high classification performance. In contrast, the less relevant components
‘volume’, ‘source’, ‘issue’, and ‘other’ have a rather poor performance. This was expected since
these components are (a) not always part of a reference and thus appear less frequent in training
instances and (b) vary more in their structure and content than other components. This is especially
true for the ‘other’ component. Overall, our segmentation model segmented references with an
average F1-score of 93.6%. Because of this overall performance and the fact that the most essential
components of a reference were classified with the highest averaged F1-scores, this strongly suggests
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7.2 Limitations and Future Work

that BERT is suitable for reference segmentation.
Our statement is once again confirmed by the comparison to EXparser [BAS19]. EXparser
managed to achieve better results than the previous state-of-the-art methods Cermine [TSF+15],
Grobid [Lop09], and ParsCit [CGK08] on many datasets. With BERT being part of our model
architecture, it was possible to achieve comparable results to EXparser in both reference extraction
and segmentation. Thus, it can be argued that our proposed BERT models are suitable for both
reference extraction and segmentation.

7.2 Limitations and Future Work

Although satisfactory results were achieved, the trained extraction and segmentation models are far
from being perfect. There are some important limitations to consider when interpreting the results.
Devlin et al. [DCLT19] have published two different model sizes of BERT: 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 and
𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 . Whenever there was the choice between these two model sizes, 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 was
always selected. This is because training with 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 is significantly more computationally
expensive. Devlin et al. [DCLT19] show that the 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 model performed substantially
better at nearly all tasks. Considering that, we speculate that it would also improve the performance
on the task of reference extraction and segmentation.
Another limitation to be considered when interpreting the results is the amount of data that
the models were trained with. All models in this thesis were fine-tuned with data, consisting
of 350 documents (roughly 3,478,000 tokens) or less. Thus, all models are trained with little
data and are evaluated on little data. To set it in contrast, the published BERT models were
trained with about 3,300 million words. Future research in this field could fine-tune BERT
models with more data (with annotated references) and consequently evaluate on more data,
finding out how well BERT generalizes on reference extraction and segmentation. Datasets such
as the dblp dataset1 that contain a large amount of annotated bibliographic records can be considered.

For future work, we discuss potential improvements to the constructed models in this thesis.
Given a BERT model, we found out that using CMV enhances the model’s quality as more context
flows into the model for the classification of each token. Out of three possible classifications for
one token, the majority vote of the three classifications was chosen to be the final classification
for that token. To determine the final classification from three previous classifications of a token,
the decision can be made by taking the classification probabilities into account. For example, out
of three classifications, one possibility is to take the classification that was made with the highest
probability.
As evident in the results, the BERT model SciBERT cased achieved the highest results in reference
segmentation on PES as it was pre-trained on English scientific data. Unfortunately, there does
not exist a similar model to SciBERT that was pre-trained on solely German scientific articles.
Pre-training such a model would probably result in a similar performance on German data such as
PGS.
Furthermore, the performance of BERT ensembles should be investigated. In our implementation,
we always used the last checkpoint of pre-trained BERT models. However, the performance of
BERT models can be examined using different checkpoints that were made earlier than the last

1https://dblp.uni-trier.de/xml/
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7 Discussion

checkpoint during the pre-training phase.
Moreover, BERT could be combined with a feature engineering approach as Boukhers et al. [BAS19]
did. Including additional format information about a document such as the file format, font size,
font type, etc. in the input to the model could improve performance significantly. The additional
information in the input can give valuable hints whether or not a text line is part of a reference or
not. For instance, in many scientific articles, the references in a reference section are written in a
smaller font size or a different font type than the text in the body of the article. Including features
in the input that capture this information would most likely lead to a high reference extraction
performance. Furthermore, with the use of format-based features, obvious reference components
such as ‘year’ or ‘URL’ could be segmented almost always correctly. For example, by using a
feature that includes the information about the existence of a hyperlink format (e.g. ‘www’, ‘http’),
the reference component ‘URL’ could be segmented correctly in nearly all cases.
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8 Conclusion

This thesis aimed to extract references from PDF documents and to segment them into their
bibliographic elements with the use of BERT. It extends the work done by Boukhers et al. [BAS19].
To train the most principled reference extraction and segmentation models, different approaches,
BERT models, and input formats were examined. Our findings showed that the standard two-models
approach is more suitable for reference extraction and segmentation. Furthermore, we found out
that the more context is provided around the words of an input sequence, the more precisely do the
models extract and segment references. Also, the choice of the BERT model plays an important
role. Choosing a BERT model whose pre-training data fits the fine-tuning data leads to better
results since better word embeddings are used. Overall, our results confirm that BERT is a suitable
choice to extract and segment references. This is because references were extracted from text data
with a high classification performance and elementary reference components were categorized
correctly with high precision. We achieved comparable results to EXparser, partly illustrating that
neural-based embeddings are a strong alternative to manual feature engineering approaches.
As we pointed out earlier, there is still much potential to improve the obtained results in the research
field of reference extraction and segmentation. We believe that BERT combined with a feature
engineering approach would lead to a promising model, as additional valuable information would
be preserved and could be utilized by the model.
Ultimately, extracting and segmenting references automatically is the main factor to build and
maintain large bibliographic databases. It would be very interesting and practical to develop
a BERT-based service that goes from the text extraction of PDF documents to the automatic
identification and segmentation of references, finding its use in production. The insights gained
from this Bachelor thesis could help build reference extraction and segmentation models with good
performance. For example, such an application could find its usage in online servers like Arxiv1

or Semantic Scholar2 where documents are published daily and bibliographic information is an
essential part of their databases.

1https://arxiv.org/
2https://www.semanticscholar.org/
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A Pre-processing Steps for Input Sequences in
BERT

Within BERT, input sequences for classification tasks require some pre-processing steps.
First, the input sequence needs to be tokenized. To split an input sequence into tokens, BERT uses
a WordPiece model [DCLT19; WSC+16]. Words that can not be broken down into the tokens of
the WordPiece vocabulary are represented by a special [UNK] tag. In addition to the WordPiece
tokenization, the extra tokens [CLS] and [SEP] are added to the start and end of the tokenized
sequence, respectively. From this follows that the first and last token of the input sequence are
always reserved for the two special tokens. If there is more than one sentence in the input sequence,
the [SEP] token can optionally be inserted between them to separate the sentences from each other.
After adding these special tokens, it is necessary to pad the input sequence with special [PAD]
tokens such that the total length of the token sequence is equal to the specified sequence length of
the BERT model. The last step is to convert each WordPiece token to its corresponding unique
ID. For instance, the special tokens [UNK], [CLS], [SEP] and [PAD] have the unique IDs 100,
101, 102, and 0, respectively. In our implementation, classifications of the special tokens are not
considered for the evaluation of a model’s classification performance.
In Figure A.1, we provide an example where the mentioned pre-processing steps are applied to an
input sequence. For the example, the tokenizer of the pre-trained 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 cased model was
used.
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A Pre-processing Steps for Input Sequences in BERT

Figure A.1: Pre-processing steps for input sequences in BERT applied to an example sentence
[DCLT19]
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B Implementation Details

B.1 Hardware

All models were trained on one machine with an Intel Core i7-4770K CPU and one NVIDIA
GeForce RTX 3080 Ti GPU. CUDA1 was set up and run for GPU acceleration. To make our results
as reproducible as possible, we limited the number of sources with non-deterministic behavior by
using the same random seed of 999 for the training of all models.

B.2 Schedule

We fine-tuned all proposed models for 1 to 5 epochs. Training on more epochs than 5 led to
overfitting of the model as the training loss decreased further while the validation loss increased
at the same time. For all model approaches, we keep the same hyperparameters except for the
parameters of batch size and BERTs sequence length. This is because depending on how high
the sequence length is set, the batch size is limited up to a certain number. As pointed out in the
detailed description of BERTs official repository2, this memory issue occurs when using GPUS
with 12-16 GB of RAM. In the description, they provided a table where the maximum batch size is
specified, given a sequence length. As the GPU in this implementation has 12 GB of RAM, batch
size was restricted, given a certain sequence length. For instance, for the maximum sequence length
of 512 tokens, the maximum batch size was 8. With this configuration, the training of one model
takes very long compared to other configurations. The time available did not allow to train every
model with this configuration. Still, we chose meaningful values for the sequence length depending
on the model to be trained.
Table B.1 shows the different configurations of sequence length and batch size depending on what
model was trained. The models with the single input format were trained with a sequence length
of 64 as the sentences in our datasets rarely contain more than 64 WordPiece tokens when being
tokenized. Since we defined models with the maximum context input format to have the maximum
sequence length for maximum context, these models were trained with a sequence length of 512.
For the models with CMV-based input format, we set the sequence length to 128, higher than for
the single input format models because we concatenate three sentences here.
In the one-model approach, we trained one model with CMV-based input format with a sequence
length of 256 and a batch size of 16.
When we trained models for the comparison to the EXparser’s extraction and segmentation model,

1https://developer.nvidia.com/cuda-toolkit
2https://github.com/google-research/bert
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B Implementation Details

we trained both extraction and segmentation model with the maximum sequence length of 512, in
order to achieve high performance.

Model type, BERT model(s), in-
put format

Sequence
Length

Batch
Size

Two-models approach Extraction model, multilingual,
single

64 64

Extraction model, multilingual,
maximum context

512 8

Extraction model, multilingual,
CMV-based

128 32

Segmentation model, base / ger-
man / multilingual / SciBERT,
single

64 64

Segmentation model, multilin-
gual, maximum context

512 8

Segmentation model, multilin-
gual, CMV-based

128 32

One-model approach Combined Extraction model and
Segmentation model, multilin-
gual, CMV-based

256 16

Comparison to EXparser
[BAS19]

Proposed extraction model on
PGS, multilingual, CMV-based

512 8

Proposed segmentation model on
PGS, multilingual, CMV-based

512 8

Proposed segmentation model on
PES, base / SciBERT, CMV-
based

512 8

Table B.1: Overview of the trained models with their respective sequence lengths and batch sizes
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B.3 Optimizer

B.3 Optimizer

We use the AdamW optimizer [LH19], a modified version of the original Adam optimizer [KB15].
AdamW improves Adam’s implementation of weight decay, leading to less overfitting and better
generalization of a model. For AdamW, the following parameters were used:

• Constant learning rate of 𝑙𝑟𝑎𝑡𝑒 = 5 · 10−5 as recommended by Devlin et al. [DCLT19].

• Adam’s betas parameters with 𝛽1 = 0.9, 𝛽2 = 0.999.

• Adam’s epsilon parameter that is used for numerical stability with 𝜖 = 10−8.

• 𝐿2 weight decay (new parameter in AdamW) of 𝑤𝑑𝑒𝑐𝑎𝑦 = 0.01

Over the course of training, we did not apply a warm-up schedule to the given learning rate.

B.4 Regularization

In our implementation, we use dropout which is a regularization technique for deep neural networks
to counteract overfitting [HSK+12]. For all layers of BERT, we use a dropout probability of 0.1
[DCLT19]. Between BERT and the linear layer, we also regularize through dropout training with a
probability of 0.1.
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C Modified Data Files

We identified inconsistencies in the data annotation of 𝐶𝐷𝑠. Most of the inconsistencies occur in
connection with the author tag. For example, in the file 16563.xml1, there is a line where tags are
overlapping:

<author><surname>Weber <author><given-names>Max
</surname></author></given-names></author>

Such lines made parsing the file more challenging because usually the overlapping of tags is not
allowed in Extensible Markup Language (XML) or XML-similar documents. For this reason, we
manually corrected such inconsistencies in the files. Another more rare inconsistency that was
present in the data was that opening tags were not matching their closing tags.
In the following, we firstly provide a list of German documents with the lines where inconsistencies
were identified and manually corrected (“.xml” is omitted):

• 11721 (line 30), 16563 (line 14), 18508 (line 9), 20786 (line 30), 21690 (line 10), 21699
(line 45), 22006 (line 17), 24743 (line 39), 28254 (line 3), 32211 (line 34), 36025 (line 2, 9),
36493 (line 1, 3), 37466 (line 1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15), 38850 (line 8), 39204 (line
6), 39323, 39454 (line 10, 30), 41507 (line 21), 42302 (line 9), 44475 (line 5), 44553 (line
12), 46910 (line 9, 17), 47961 (line 17), 48259 (line 16), 5675 (line 2), 6041 (line 6), 6926
(line 4).

Next, we provide a list of English documents with the lines where inconsistencies were identified
and manually corrected (“.xml” is omitted):

• 12279 (line 4, 9, 12, 13, 15, 16), 12325 (line 2), 19468 (line 1), 19733 (line 1), 20291 (line 1,
12, 23, 24), 20324 (line 1), 20369 (line 8), 22355 (line 5, 46), 24572 (line 1, 3, 4), 24626 (line
1), 25465 (line 1), 25468 (line 1, 10), 26178 (line 10, 14), 26735 (line 1), 45661 (line 13),
51256 (line 5), 53780 (line 7), 53995 (line 8), 5473 (line 6), 55362 (line 5), 55386 (line 4).

1https://github.com/exciteproject/EXgoldstandard/blob/master/Goldstandard_EXparser/1-German_papers/1-
German_papers(with_reference_section_at_end_of_paper)/5-References_segmented_by_EXRefSegmentation/

16563.xml
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