
Performance-oriented Communication
Concepts for Networked Control Systems

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von
Ben William Carabelli, geb. Futter

aus Mössingen

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Mitberichter: Prof. Dr.-Ing. Frank Allgöwer

Tag der mündlichen Prüfung: 1. April 2021

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2022

Acknowledgements

Like any project of such scope, the completion of this dissertation would not have

been possible without support. I am deeply grateful to everyone who accompanied

me on this journey for their help and encouragement.

First and foremost, I would like to thank Prof. Dr. Kurt Rothermel for his

mentoring and doctoral supervision. By providing me with the opportunity to

work in his department, he not only made this thesis possible, but allowed me to

make valuable experiences in research and teaching. Our discussions invariably

provided me with helpful advice and encouraged me to challenge my assumptions.

I also want to express my gratitude to Prof. Dr. Frank Allgöwer for kindly

agreeing to act as co-advisor and taking the time to review my thesis, as well as

for the fruitful discussions throughout our DFG project.

Thanks also to Prof. Dr. Stefan Wagner and Prof. Dr. Marco Aiello for acting as

chair and co-examiner, respectively, for the defence of this thesis.

Further thanks go to Dr. Frank Dürr, who acted as my project supervisor

and would always make time in his busy schedule to discuss ideas, provide an

optimistic outlook, proofread drafts, and build stuff. His dedication to research is

a true inspiration. I also thank Prof. Dr. Boris Koldehofe, who provided additional

support.

During my time at IPVS, I had the privilege to work alongside many friendly and

talented colleagues. Besides Florian Berg and Johannes Kässinger, who deserve

extra thanks as outstanding office mates, I owe a debt of gratitude to Adnan,

Ahmad, Andreas, Christian, Christoph, Damian, David H., David S., Hannes,

Harald, Henriette, Jonathan, Matina, Michael, Mohammad, Naresh, Otto, Patrick,

Ruben, Stefan, Stephan, Sukanya, Thomas B., and Thomas K. for providing fun

and companionship. Special thanks go to Annemarie Roesler, Eva Strähle, and

Martin Brodbeck for their administrative support. I am also grateful to Dr. Viktor

Avrutin and Dr. Michael Schanz for giving me the confidence to pursue my PhD

in the first place.

Let me also take the opportunity here to acknowledge the financial support

from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)

through their grants, which helped fund the research presented in this thesis.

I am grateful to my friends and family, my parents Jill and Gerhard and my

sister Elena, for their love and perpetual confidence.

i

Finally, I would surely be lost without my fantastic wife Marina and my two

lovely boys Tom and Sam. You have gone above and beyond what anyone could

reasonably ask in supporting me, and give me the love and strength to tackle any

obstacle. Whatever life may hold, I can count myself truly lucky.

ii

Contents
List of Abbreviations vii

List of Figures ix

Abstract xi

Zusammenfassung xiii

1 Introduction 1
1.1 Research Statement . 4

1.2 Contribution . 5

1.3 Research Project Context . 7

1.4 Structure of the Thesis . 8

2 System Model and Background 11
2.1 Distributed System . 11

2.2 Deterministic–Opportunistic Transmission Model 12

2.3 Scheduling of Deterministic Transmissions 14

2.4 Control System . 16

3 State-dependent Scheduling 19
3.1 Introduction . 19

3.2 Related Work . 20

3.3 System Model . 21

3.3.1 Control System Model . 22

3.3.2 Virtual Link Model . 23

3.3.3 Priority Scheduler Model 23

3.4 Problem Statement . 24

3.5 State-dependent Scheduler for 𝑞 = 1 25

3.6 State-dependent Scheduler for 0 < 𝑞 < 𝑁 28

3.7 Evaluation . 30

3.7.1 Proof-of-concept Implementation 31

3.7.2 Runtime Evaluation . 34

3.7.3 Simulation Example . 36

3.8 Summary and Discussion . 37

iii

Contents

4 Opportunistic Scheduling 39
4.1 Introduction . 39

4.2 Related Work . 40

4.3 System Model . 41

4.3.1 Control System Model . 42

4.3.2 Transmission Model . 44

4.3.3 Packet Priority Scheduler Model 45

4.4 Problem Statement . 46

4.5 Opportunistic Packet Prioritization 47

4.5.1 Nominal Application Model 47

4.5.2 Opportunistic Performance Optimization 51

4.6 Numerical Evaluation . 55

4.7 Summary and Discussion . 57

5 Routing 61
5.1 Introduction . 61

5.2 Related Work . 63

5.3 System Model . 63

5.3.1 Control System Model . 64

5.4 Service Architecture . 65

5.5 NC Transport Service . 66

5.5.1 QoS Specification . 67

5.5.2 NCT Service Interface . 68

5.6 NC Routing Service . 69

5.6.1 Network Model . 69

5.6.2 Path Properties . 70

5.6.3 Load Metric . 71

5.6.4 Routing Objective . 72

5.6.5 Routing Algorithm . 73

5.7 Evaluation . 77

5.7.1 Simulation Environment 77

5.7.2 Effectiveness of NCT Service 79

5.7.3 Effectiveness of NC Routing 80

5.7.4 Runtime Performance of NC Routing 82

5.8 Discussion . 84

5.9 Summary . 85

6 Replication 87
6.1 Introduction . 87

6.2 Related Work . 89

6.3 Control System Model . 91

iv

Contents

6.4 Problem Statement . 92

6.5 Consistency Models . 93

6.6 Replication Algorithm . 96

6.6.1 Outline and Requirements 96

6.6.2 Distributed System Model 99

6.6.3 Algorithm . 99

6.6.4 Correctness . 108

6.6.5 Discussion of the Algorithm 109

6.7 QoC-aware Replication . 110

6.7.1 LQG Control System Model 110

6.7.2 Cost Model . 114

6.7.3 Increasing QoC with SCRaM 115

6.8 Evaluation . 117

6.8.1 Availability, Latency, Message Cost 117

6.8.2 NCS Performance . 121

6.8.3 QoC Optimization . 125

6.9 Summary and Outlook . 127

7 Summary 129

Bibliography 133

v

List of Abbreviations

CAN Controller Area Network. 41, 61

CDF cumulative distribution function. 70, 79, 125

CPS cyber-physical system. 1, 8, 11, 93, 121

DOTS deterministic–opportunistic transmission slot. 6, 7, 12, 15, 22, 39, 44, 57,

130

DP dynamic programming. 6, 74

DPDK Data Plane Development Kit. 31, 32, 46

EDF earliest deadline first. 41

FIFO first-in, first-out. 14, 32, 42, 46

GCL gate control list. 15

i.i.d. independent and identically distributed. 64, 70, 80, 93, 118

IIoT industrial Internet of things. 1

ILP integer linear programming. 15

IP Internet protocol. 2, 19, 20, 23, 63, 64, 66, 78, 82, 85

LAN local area network. 3, 61, 63

LMI linear matrix inequality. 19, 26, 27, 35, 37, 129

LQ linear quadratic. 16, 20, 22, 28, 30, 34, 36, 39, 42, 47–54, 56, 62, 63, 65, 115, 125,

126, 129

LQG linear quadratic Gaussian. 89, 111, 122, 127

LQR linear quadratic regulator. 17, 22, 31, 36, 37, 43, 50, 62, 111, 122, 123

LTI linear time-invariant. 16, 22, 42, 61, 89, 110, 123

vii

List of Abbreviations

MIMO multiple-input, multiple-output. 41

MTTR mean time to repair. 118, 121

NCS networked control system. 1–9, 11–13, 16, 19–27, 29–32, 34–49, 51–53, 55–57,

61–64, 66–68, 70–73, 77–80, 83–85, 87–89, 92–94, 116, 127, 129–131

NESTING Network Simulator for Time-sensitive Networking. 7

ODE ordinary differential equation. 16, 64, 77

PCP priority code point. 13, 15, 19, 44, 46

PDF probability density function. 70, 71

PTP Precision Time Protocol. 15, 69, 84

QoC Quality of Control. 3–9, 12, 16, 19, 22, 39, 42, 47, 61–63, 68, 87, 89, 110, 111,

116, 117, 121, 125, 126, 129–131

QoS Quality of Service. 2–4, 6, 7, 13, 19, 39, 57, 62, 66–69, 72, 73, 79, 81–83, 85,

129, 130

SCRAM State-Consistent Replication Management. 88, 89, 96, 99, 109, 117, 121,

125, 127, 130

SDN software-defined networking. 8, 38, 62–64, 66, 68, 84, 85

SDP semi-definite programming. 34, 39, 55, 56, 129, 130

SISO single-input, single-output. 41

SMR state machine replication. 87, 88

TDMA time-division multiple access. 3, 32, 45

TSN Time-Sensitive Networking. 3, 7, 8, 11, 14, 19, 23, 32, 39, 40, 45, 46, 61, 63

WFQ weighted fair queueing. 20, 38

viii

List of Figures

1.1 Block diagram of a simple NCS . 1

2.1 Example of DOTS model for three NCS 13

2.2 Port Architecture for IEEE 802.1Qbv Time-aware Shaper 14

3.1 System model for state-dependent scheduling 21

3.2 Testbed set-up for scheduler evaluation 31

3.3 Inverted pendulum model for scheduler evaluation 32

3.4 Time-series for scheduler evaluation 33

3.5 LQ cost comparison for scheduler evaluation 34

3.6 Runtime evaluation for state-dependent scheduling 35

3.7 LQ cost vs. utilization for state-dependent scheduling 36

4.1 System model for opportunistic scheduling 42

4.2 Actuator-colocated controller set-up 43

4.3 Sensor-colocated controller set-up 44

4.4 Runtime evaluation for opportunistic scheduling 57

4.5 LQ cost evaluation for opportunistic scheduling 58

5.1 System model for routing . 64

5.2 Service architecture for routing 65

5.3 Network model for routing . 69

5.4 Expected transit time . 72

5.5 Simple inverted pendulum for routing evaluation 77

5.6 Minimum arrival probability functions 78

5.7 Linear topology for evaluation . 79

5.8 QoC and network load for i.i.d. traffic 80

5.9 QoC and network load for bursty traffic 81

5.10 Ring topology for evaluation . 81

5.11 QoC and network load evaluation 82

5.12 Runtime evaluation for routing . 83

6.1 System model for replication . 91

6.2 Controller execution model for sampling period 𝑘 92

ix

List of Figures

6.3 State-consistent viewchange example with three replicas. Coor-

dinators are indicated by a shaded state node. 107

6.4 Parameter study for 𝑝 ∈ [10−4, 10−1] 119

6.5 Parameter study for 𝜃𝑐 ∈ [10−4, 10−1], 𝑝 = 10−2 120

6.6 Parameter study for 𝑇𝑠 ∈ [1ms, 20ms] 121

6.7 Physical inverted pendulum for replication evaluation 122

6.8 ECDF of maximum angle, cart range, and LQ cost 124

6.9 LQ cost comparison of protocol variants 125

6.10 LQ cost of optimizations relative to unmodified SCRaM 126

x

Abstract
Networked control systems (NCS) integrate sensors, actuators, and digital con-

trollers using a communication network in order to control physical processes.

They can be found in diverse application areas, including automotive and aircraft

systems, smart homes, and smart manufacturing systems in the context of In-

dustry 4.0. Because control systems have demanding Quality of Service (QoS)

requirements, the provisioning of appropriate communication services for NCS is

a challenge. Moreover, the trend of steadily increasing digitization in many fields

will likely lead to control applications with more complex system integration,

especially in large-scale systems such as smart grids and smart cities. The prolif-

eration of NCS in such an environment clearly depends on strong methods for

integrating communication and control. However, there currently remains a gap

between these two domains. On the one hand, the control-theoretic design and

analysis methods for NCS have been based on simplistic and abstract network

connection models. On the other hand, communication networks are optimized

for conventional performance metrics such as throughput and latency, which do

not readily translate into application specific Quality of Control (QoC) metrics.

The goal of this thesis is to provide performance-oriented concepts for the

design of communication services for NCS. In particular, methods for scheduling

and routing the traffic of NCS and increasing their reliability through replication

are developed on the basis of integrated models that capture the relationship

between control-relevant characteristics of communication services and the meth-

ods that are used to provide those communication services in the network. This

thesis makes the following contributions.

First, we address the problem of optimally arbitrating limited communication

bandwidth for a group of NCS in a shared network by designing a performance-

aware dynamic priority scheduler. The resulting first scheduling policy provides

asymptotic stability guarantees for each NCS and performance bounds on the

joint QoC. While it is efficient to implement on the data link layer with stateless

priority queueing, it requires a large optimization problem comprising all NCS to

be solved initially for determining scheduler parameters. To increase the scalabil-

ity, we therefore relax the scheduling problem by separating the NCS traffic into

deterministic transmissions with real-time guarantees and opportunistic traffic

used for QoC optimization. The resulting second scheduling policy imposes no

QoS constraints on opportunistic traffic, yields less conservative stability guaran-

xi

Abstract

tees, and allows scheduler parameters to be calculated for each NCS separately

and thus much more efficiently.

Second, we address the problem of optimally routing NCS traffic in networks

with random latency distributions by designing a cross-layer communication

service for stochastic NCS. The routing algorithm exploits trade-offs between

delay and in-time arrival probabilities to find a route that provides a predefined

level of QoC while minimizing network load.

Third, we address the problem of active replication for controllers in order to

increase the reliability of NCS subject to crash failures and message loss. While

existing replication schemes for real-time systems focus only on ensuring that

no conflicting values are sent to actuators, we develop stronger consistency

concepts that provide replication transparency for control systems. We present a

corresponding replication management protocol that achieves high availability

and low latency at low message cost, and evaluate it using physical experiments.

xii

Zusammenfassung
Vernetzte Regelungssysteme (engl. Networked Control Systems, NCS) verbinden

Sensoren, Aktoren und digitale Regler über ein Kommunikationsnetzwerk, um

physikalische Prozesse zu optimieren. Sie sind in verschiedenen Anwendungsbe-

reichen zu finden, wie z.B., im Automobil, in Luft- und Raumfahrtsystemen, Smart

Homes und vernetzte Fertigungssysteme im Rahmen der Industrie 4.0. Wegen

ihrer hohen Anforderungen an die Dienstgüte (engl. Quality of Service, QoS), ist

die Bereitstellung geeigneter Kommunikationsdienste für NCS eine Herausfor-

derung. Darüber hinaus wird der Trend der stetig zunehmenden Digitalisierung

in vielen Bereichen voraussichtlich zu integrierten Regelungsanwendungen von

steigender Systemkomplexität führen, insbesondere in weitläufigen Systemen

wie Smart Grids und Smart Cities. Die Verbreitung von NCS in einem solchen

Umfeld hängt entscheidend von der Verfügbarkeit leistungsfähiger Methoden

zur Integration von Kommunikation und Regelung ab. Derzeit besteht jedoch

noch eine Lücke zwischen diesen beiden Bereichen. Einerseits basieren gängige

regelungstechnische Entwurfs- und Analysemethoden für NCS auf vereinfachten

Netzwerkmodellen. Andererseits sind Kommunikationsnetze für konventionel-

le Leistungsmetriken wie Durchsatz und Latenz optimiert, die sich nicht ohne

weiteres in anwendungsspezifische Regelgütemetriken (engl. Quality of Control,

QoC) übersetzen lassen.

Das Ziel dieser Dissertation ist es, regelgüteorientierte Konzepte für den Ent-

wurf von Kommunikationsdiensten für NCS zu entwickeln. Insbesondere werden

Methoden zum Scheduling und Routing des Verkehrs von NCS und zur Erhöhung

ihrer Zuverlässigkeit durch Replikation entwickelt, die auf integrierten Modellen

basieren, welche den Zusammenhang zwischen regelungsrelevanten Eigenschaf-

ten von Kommunikationsdiensten und den Methoden für deren Bereitstellung

im Netz abbilden. Im Einzelnen dokumentiert diese Dissertation die folgenden

Beiträge.

Erstens widmen wir uns dem Problem der optimalen Zuteilung begrenzter Kom-

munikationsbandbreite für eine Gruppe von NCS in einem gemeinsamen Netz-

werk, indem wir einen regelgüteorientierten, dynamischen Prioritäts-Scheduler

entwerfen. Dieser bietet asymptotische Stabilitätsgarantien für jedes NCS und

Schranken für die gemeinsame Regelgüte. Während dieser erste Scheduler auf

der Sicherungsschicht (engl. Data Link Layer) durch eine Prioritätswarteschlange

effizient zu implementieren ist, erfordert sie zur Bestimmung der Scheduler-

xiii

Zusammenfassung

Parameter zunächst die Lösung eines großen Optimierungsproblems, das alle NCS

umfasst. Um die Skalierbarkeit zu erhöhen, relaxieren wir daher das Scheduling-

Problem, indem wir den NCS-Verkehr aufteilen in deterministische Übertragungen

mit Echtzeit-Garantien und opportunistischen Verkehr, der zur Regelgüteopti-

mierung verwendet wird. Der resultierende zweite Scheduler benötigt keine

QoS-Garantien für den opportunistischen Verkehr, gibt weniger konservative

Stabilitätsgarantien und ermöglicht es, Scheduler-Parameter für jedes NCS separat

und damit wesentlich effizienter zu berechnen.

Zweitens widmen wir uns dem Problem des optimalen Routings von NCS-

Verkehr in Netzwerken mit zufälligen Latenzverteilungen, indem wir einen schich-

tenübergreifenden Kommunikationsdienst für stochastische NCS entwerfen. Der

Routing-Algorithmus nutzt wechselseitige Abhängigkeiten zwischen Latenz und

Ankunftswahrscheinlichkeit, um Routen ermitteln, die ein vordefiniertes Regel-

güteniveau erreichen und gleichzeitig die Netzauslastung minimieren.

Drittens befassen wir uns mit dem Problem der aktiven Replikation von Reglern,

um die Zuverlässigkeit von NCS angesichts Absturzfehlern und Nachrichtenver-

lusten zu erhöhen. Während bestehende Replikationsverfahren für Echtzeitsys-

teme lediglich sicherstellen, dass keine widersprüchlichen Werte an Aktoren

gesendet werden, entwickeln wir stärkere Konsistenzkonzepte, die eine echte

Replikationstransparenz für Regelsysteme bieten. Wir entwickeln ein entspre-

chendes Replikationsprotokoll, das eine hohe Verfügbarkeit und geringe Latenz

bei niedrigen Nachrichtenkosten erreicht, und evaluieren es mit Hilfe physischer

Experimente.

xiv

1 Introduction
Networked Control Systems (NCS) [HNX07; BHJ10] comprise networked sensors,

actuators, and digital controllers for controlling physical processes. As such, they

are of central importance for the broader field of Cyber-physical Systems (CPS)

[KK12]. Depending on the application scope, NCS can be considered a special

case of CPS or an enabling technology for more complex, large scale systems.

They can be found in diverse application areas, ranging from automotive and

aircraft systems [WYB02] to the industrial Internet of things (IIoT) or Industry 4.0

[LWA16], smart grids [SSP15], smart cities, or smart homes, to name but a few.

Figure 1.1 shows a possible basic architecture of an NCS. The plant is the

physical process to be controlled, e.g., a car. The plant is equipped with sensors
that measure certain features of the plant, and actuators that impart some effect

on the plant. The controller is connected to the plant in a feedback loop, receiving

measurements from the sensors and sending commands to the actuators. It is

designed, through mathematical methods using a model of the plant, to achieve

a stable closed-loop behaviour of the overall system, whereas the (open-loop)

dynamical behaviour of the uncontrolled plant is usually unstable. In the example

of a car, the sensors could be gyroscopes and accelerometers for measuring the

yaw rate and lateral acceleration, and the actuators could be anti-lock brakes for

slowing down individual wheels. The controller would then detect any deviation

of the car from its desired trajectory, e.g., spinning due to loss of traction, and

apply a certain amount of braking to the proper wheels to stabilize the car’s

motion. What makes the system in Figure 1.1 a networked control system is the

Controller Plant SensorsActuators

Control System

Network

Figure 1.1: Block diagram of a simple NCS

1

1 Introduction

presence of a packet-switched network in the feedback loop, in this example

between sensor and controller. Therefore, the measurement signals from the

sensors are necessarily transmitted to the controller in a discrete-time stream of

packets. In general, of course, control signals from the controller to the actuators

may also be transmitted through the network, and the controller may actually be

composed of several distributed components, so NCS can come in many different

connection topologies.

In contemporary NCS, a general-purpose network is often used simply as a

cost-effective, flexible, and/or maintainable alternative for specialized field-bus

networks or extensive dedicated wiring to close the feedback loop. However,

the trend of steadily increasing digitization drives a rising demand for processes

with a higher level of system integration, especially in large-scale application

areas such as the aforementioned smart grids and smart cities, in which many

NCS—possibly in hierarchies of systems—with vast numbers of components are

distributed over a large geographical area and/or complex network topology.

This need for integration concerns both the vertical dimension, i.e., interfaces

between individual control systems and the communication service, in order to

match application-specific metrics to related network metrics, and the horizontal
dimension, i.e., coordination across control systems, in order to achieve more

efficient use of the communication resources shared by several applications. While

this higher level of integration offers the opportunity for widespread deployment

of novel applications, it also brings challenges, in particular due to the high Quality

of Service (QoS) requirements of control systems to the communication service,

most prominently with regard to limited and predictable delays and packet loss

rates. Ensuring this required level of QoS for multiple control systems in a flexible

and scalable manner is by no means trivial, especially in Internet protocol (IP)

networks.

From the control perspective, NCS have been studied intensively from various

angles over the last decades. In most of those studies, the communication system

is assumed to be given and modelled as random packet loss or delay. Such a given

stochastic network model allows, e.g., for designing optimal state estimation with

intermittent observations and determining bounds for the maximal allowed packet

loss probability [Sin+04], and optimal control over networks with random packet

loss [IYB06; Sch+07] and delay [Sch08] with corresponding probability bounds.

While early works mostly considered simple Bernoulli models for the packet loss,

progressively more sophisticated models have been employed over the years,

allowing, e.g., for modelling loss of acknowledgement packets [GSC08] or Markov

chain models for delay and loss [MGS13]. Unfortunately, however, stochastic

modelling of loss and delay only allows for stochastic stability guarantees to

be made. In a pragmatic context, such probabilistic reasoning can be sufficient,

e.g., in wireless settings where a non-negligible loss probability is unavoidable.

2

However, strict stability guarantees in a deterministic sense are of course more

useful, especially for the design of safety-critical systems. This issue is exacerbated

by the fact that communication networks are designed mainly for throughput

and latency, rather than providing connections with particular (and constant)

stochastic loss and delay characteristics.

We are faced with several problems when designing NCS on top of existing

general-purpose packet-switched networks. First, the best-effort service as pro-

vided by the current Internet, also in metropolitan and local area networks (LANs),

introduces unpredictable delay and packet loss. However, as already discussed,

control systems require at least a well-defined stochastic model of these network

properties. Moreover, in order to enable a strict (non-probabilistic) stability and

performance analysis, it is indispensable for the communication system to provide

a certain degree of real-time guarantees, e.g., by ensuring maximum allowable

delays and transmission intervals [Hee+10]. Second, as control systems may

have unforeseen or varying communication requirements due to external distur-

bances, special care must be taken to utilize the limited available communication

resources efficiently. In particular, optimal resource sharing should be based on

control-specific performance metrics, or Quality of Control (QoC), rather than

network-based metrics such as throughput. Third, the correspondence between

the QoS of the network and the QoC of the closed-loop NCS is not trivial. Com-

munication services should therefore have control-specific performance models

incorporated into their design objective and offer corresponding abstractions to

the control application. In summary, the integration of packet-switched networks

and control systems to implement NCS requires cross-cutting research at the

intersection of communications and control theory [SA11; KK12].

With respect to the problem of real-time guarantees, NCS can benefit from

recent technology developments in networking. In particular, Time-Sensitive

Networking (TSN), which has been recently standardized by the Institute of

Electrical and Electronics Engineers (IEEE), enables real-time communication

with deterministic delay bounds over standard IEEE 802.3 Ethernet through a time-

division multiple access (TDMA) scheme. Besides LANs, real-time communication

for larger, routed networks is also being addressed as the focus of the Deterministic

Networking (DetNet) Working Group of the Internet Engineering Task Force

(IETF) [Fin+18]. In this thesis, we propose to use such real-time communication

technologies as a foundation for implementing control-specific communication

services that allow to utilize network resources efficiently while guaranteeing

stability and optimizing QoC.

3

1 Introduction

1.1 Research Statement
On that basis, the problem of designing suitable communication concepts for

control systems will be approached by focusing on the following problem areas.

Network and Communication Models Network models for NCS characterize the

behaviour of communication services used for the transmission of measurement

and control signals with respect to packet loss and latency, and play a crucial role

in the system-theoretical analysis of the overall system. Many existing control

design methods are based on fairly simplistic and abstract network connection

models [Zha+19]. This is partly due to the fact that network models must be

amenable to the formal methods of control engineering, without rendering the

closed-loop model impracticably complex.

However, the systematic co-design of control and communication in NCS

demands that network models be more strongly oriented towards real commu-

nication services that can be realized with modern network technologies. This

implies that, rather than assuming network connections as given, integrated

models shall capture the relationship between control-relevant characteristics of

those connections and the decision variables and methods that are employed in

the network to provide those connections. As described in the introduction, the

ultimate goal is to model the relationship between the QoC and the parameters

of the communication service.

Scheduling Since real control systems are usually subject to external distur-

bances, the requirements of the NCS regarding the QoS provided by the commu-

nication system can change dynamically. In fact, event-based controllers that

sample (and transmit) based on the current state have been shown to be more

bandwidth efficient than periodically sampled controllers [ÅB02]. Therefore,

resource access should be carefully arbitrated with suitable scheduling policies,

especially in the case where several NCS share a capacity-limited communication

network. While static scheduling minimizes the mutual influence of different NCS

on each other, dynamic scheduling promises optimization potential with regard

to QoC, especially when taking into account the current states of the controllers

and plants involved. Within this design space, performance-aware scheduling

policies are to be developed.

Routing Particularly in the case of wide-area NCS, packet loss and latency of a

connection can depend sensitively on the path through the network over which

that connection is provided. Non-trivial trade-offs between QoC, throughput, and

delay [Hee+10] imply that shortest paths are not necessarily optimal in terms of

4

1.2 Contribution

application performance. Therefore, effective routing algorithms for NCS must

integrate control-specific performance models and network-specific cost models

in order to determine routes for optimal QoC.

Replication During the operation of an NCS, temporary or persistent node

failures and network partitioning may occur. Active replication of controllers

in the network is an obvious approach to increase the availability of the control

system and thus the robustness against such unpredictable errors. However,

existing replication methods are either unsuitable for real-time execution, e.g.,

[OL88], or provide limited consistency guarantees, e.g., [Saa+17]. Therefore,

suitable consistency concepts are to be investigated in order to define necessary

criteria for replication that is transparent from a control engineering point of

view. On this basis, efficient replication protocols that are optimal with respect to

availability and QoC are to be designed.

1.2 Contribution

In this thesis, we develop control-oriented scheduling, routing, and replication

mechanisms for efficiently providing reliable communication services for control

systems. These mechanisms are developed on the basis of integrated models of

control and communication, which allows design goals to be specified in terms of

QoC. In detail, the main contributions of this thesis are:

• We address the dynamic scheduling problem for a group of NCS sharing

a dedicated network slice by designing a state-based scheduler under the

assumption of a fixed network capacity. Thereby, the communication ser-

vice offered to the group of applications (as a whole) provides a constant

number of transmission slots each sampling period, the access to which is

arbitrated through dynamic priority scheduling. The resulting scheduling

policy provides asymptotic stability guarantees for each NCS and perfor-

mance bounds on the joint QoC. The scheduler uses dynamic state-based
packet priorities calculated at the sensors, which are then used for stateless

priority queuing in the network, making it both scalable and efficient to

implement at the data-link layer. The scheduler is designed under the as-

sumption that each NCS comes with a given controller, thus maintaining

a degree of separation of concerns between control and communication

design.

This work has been published in [Car+17]. The author of this thesis con-

tributed approximately 94% of the content to that paper. The student thesis

5

1 Introduction

[Zin16], which was co-supervised by the author of this thesis, contributed

to the evaluation results.

• We relax the state-based priority scheduling problem using the commu-

nication model in [Lin+19], by assigning additional periodic guaranteed

transmission slots to each NCS connection. Thereby, the communication

service offered to each NCS provides a mixture of deterministic transmis-

sions with reliable real-time QoS and opportunistic transmissions that are

scheduled according to state-based packet priorities. This allows us to

decouple the stability guarantees from the scheduling problem, which then

only consists of (opportunistic) QoC optimization. The resulting scheduler

requires no QoS guarantees for the opportunistic transmissions, provides

worst-case bounds on the joint QoC, and supports incremental addition and

removal of NCS from the group of scheduled applications. Moreover, a co-

design method for a time-varying controller is provided, which optimizes

the joint QoC under worst case assumptions.

Part of this contribution concerning the deterministic–opportunistic trans-

mission slot (DOTS) model has been published in [Lin+19]. The author of

this thesis contributed approximately 33% of the content to that paper.

• We develop a cross-layer communication service for NCS with a probabilis-

tic Bernoulli packet loss model, for achieving a predefined level of QoC with

minimal network resource utilization. A control application can specify its

required connection quality by providing a function that models the corre-

sponding admissible trade-offs between delay and in-time arrival probability
of transmissions for a given target QoC. At the network layer, the service is

implemented as a routing algorithm that, given the latency distributions of

links in the network topology, determines a route that can realize an admis-

sible delay/arrival-probability trade-off with minimal network cost, based

on its end-to-end latency distribution. The routing algorithm solves the

corresponding constrained graph optimization problem using a dynamic

programming (DP) approach. At the transport layer, the service determines

the transmission interval using the maximum admissible delay.

• We address the problem of active replication for controllers in order to

increase the reliability of NCS subject to crash failures and message loss.

While existing replication schemes for real-time systems focus on ensuring

that no conflicting values are sent to the actuators by different replicas, we

develop stronger consistency concepts that provide replication transparency
for control systems. This allows the design of the control law for a replicated

controller to be treated the same as for a non-replicated controller. We

present a corresponding replication management protocol that achieves

6

1.3 Research Project Context

high availability and low latency at low message cost. Moreover, we show

how application-specific performance metrics can be used to improve QoC

in active replication.

The results on consistency concepts and the replication algorithm have been

published in [CDR20]. The author of this thesis contributed approximately

85% of the content to that paper.

In the context of the research project [AR15] in which this work was carried

out, the author of this thesis also co-authored works on optimal placement of

operator graphs [Car+12] (with a contribution of approximately 42%) and made

minor contributions to other publications concerning the DOTS model [Fal+19a;

Lin+20] and the NeSTiNg simulator for TSN [Fal+19b], which are not included in

this thesis.

All contributions of this thesis were developed under the careful guidance of

Prof. Dr. Kurt Rothermel and Dr. Frank Dürr. They continuously supported the

work by offering suggestions on the conceptual contributions and by helping to

improve the presentation of results.

1.3 Research Project Context
The majority of research for this thesis was carried out in the context of the

interdisciplinary project “Integrated Controller Design Methods and Communica-

tion Services for Networked Control Systems (NCS)” [AR15], which receives a

Research Grant from the German Research Foundation (Deutsche Forschungs-

gemeinschaft, DFG) since late 2015 and is in its second period of funding at the

time of writing. As a concerted effort of the Institute of Parallel and Distributed

Systems (IPVS) and the Institute for Systems Theory and Automatic Control (IST)

at the University of Stuttgart, this project was born out of the realization that

there is a shortage of sufficiently sophisticated communication system models

that are suitable for control-theoretic analysis and synthesis of NCS based on real

networks. The project’s research programme is guided by the following research

objectives:

Network models and communication abstractions for providing suitable QoS

and traffic specifications and interaction concepts. In particular, models at

this level should enable cross-domain integration of methods and design ob-

jectives from control and communications, to facilitate cross-layer designs

and analyses. This thesis addresses this goal in part by considering system

models that integrate control systems dynamics and communication effects

for assessing the overall QoC for the developed scheduling, routing, and

replication methods.

7

1 Introduction

Corresponding communication services for NCS to realize the developed com-

munication abstractions, comprising methods for scheduling, routing, and

controller placement, with implementation methods on the basis of software-

defined networking (SDN) and TSN. This thesis addresses this goal through

development of control-specific scheduling and routing methods.

Corresponding control design methods considering the salient properties of the

developed network models, such as spatial and temporal correlations in

service quality, weakly hard real-time guarantees, and traffic specification

constraints.

Support for interdependent communication flows such as NCS with multiple

spatially distributed sensors with respect to control design and analysis, as

well as routing and scheduling methods.

Support for multiple interacting control loops through resource arbitration.

This thesis addresses this goal by considering the optimization of joint QoC

metrics for groups of (heterogeneous) control systems sharing one network

through dynamic scheduling.

Increasing robustness of NCS with respect to node failures through controller

replication. This thesis addresses this goal by developing a control-specific

consistency concept and replication management protocol.

In a concurrent development, the DFG also established the Priority Programme

“SPP 1914 – Cyber-physical Networking (CPN)” [HW16] in 2016, with the high-

level goal of understanding the fundamental trade-offs between communication

and control systems and developing design methods for the horizontal and vertical

coordination of CPS components. To this end, 13 participating projects research

a diverse range of topics including cooperative control of wireless multi-agent

systems, cross-layer protocols for control-specific data rate adaptation, event-

based control and resource allocation for wireless CPS, latency- and reliability-

aware transport protocols, CPS benchmarking and network measurement, model-

predictive control subject to communication constraints, and in-network process-

ing for low-latency control. These activities indicate an ongoing keen interest in

this research topic at the time of writing.

1.4 Structure of the Thesis
The remainder of this thesis is structured as follows. In Chapter 2, we consider the

basic system model for the approaches presented in this thesis, along with some

background information on communication and control. In Chapter 3, we present

8

1.4 Structure of the Thesis

state-based dynamic priority scheduler for a group of NCS sharing a fixed-capacity

network. In Chapter 4, we extend the priority scheduler by adding deterministic

transmissions and a controller co-design method, in order to separate stability

guarantees from QoC optimization. In Chapter 5, we present an optimal routing

algorithm for NCS with probabilistic network models. In Chapter 6, we present

consistency conditions and a replication management protocol for fault-tolerant

NCS. A summary of the contributions in Chapter 7 concludes this thesis.

9

2 System Model and Background

In this chapter, we present and motivate the basic system models used through-

out this thesis. Since the research presented here necessarily touches on both

communications and control systems, we must also discuss system models from

both domains, all the while aiming to point out a unifying view. We begin by

discussing the fundamental communication model from a distributed systems

point of view in Section 2.1. We then refine the communication model with respect

to basic reliability requirements of control systems in Section 2.2. In Section 2.3,

we explain how we propose to achieve the degree of reliable communication

required for this refined communication model in Ethernet using Time-Sensitive

Networking (TSN) methods. Finally, we outline the application-layer model used

in this thesis for discrete-time linear control systems and performance metrics

thereof in Section 2.4.

2.1 Distributed System
By virtue of their architecture, NCS are fundamentally distributed systems, com-

prising multiple components that communicate using messages. The salient

properties of distributed systems are that (a) there does not exist a global clock to

which all components have instantaneous access, and (b) there is the possibility

that individual components can suffer crash, omission, or timing failures [ST17]

(we do not consider Byzantine failures in this thesis).

While there are many different failure and interaction models for distributed

systems, the most basic classification is into synchronous and asynchronous sys-

tems. On the one hand, synchronous models make the very strong assumption

of reliable communication with bounded delay, which is unrealistic for all but

the most localized systems [BK14]. On the other hand, asynchronous models

are mostly defined in a manner that is disconnected from real-time, in the sense

that message delivery—and thereby progress and termination—is only specified

in terms of eventual occurrence, cf. [CT96]. However, such “time-free” models

are unsuitable for reasoning about CPS in general, which are inherently coupled

to real-time phenomena in the physical domain, and NCS in particular, whose

dynamical behaviour and key properties such as stability and performance depend

delicately on the timing of measurements and control actions.

11

2 System Model and Background

In this thesis, we therefore mainly adopt the timed asynchronous distributed
system model proposed by Cristian and Fetzer [CF99], which posits that

a) each process has access to a local clock with a globally bounded drift rate,

b) processes are timed in the sense that methods/services have specified expected

response times,

c) processes can suffer crash failures, and

d) messages can suffer omission failures.

This system model captures the properties of realistic networked systems with

components possessing hardware clocks, which is a reasonable assumption for

most NCS. A special case of this system model, where the clock drift rate is

negligible and there is a known probability 𝑝loss for omission failures, is the so-

called probabilistic synchronous model [Dzu+16]. For the most part, we make

the same assumptions here, while specifying the details of the particular system

models in the respective chapters.

2.2 Deterministic–Opportunistic Transmission Model
Unfortunately, a communication model with unrestricted omission failures is

unsuitable for providing control-theoretic stability and performance guaran-

tees, since the feedback loop may be broken sporadically—or in the worst case

indefinitely—, leaving the plant uncontrolled. Therefore, we recently proposed in

[Lin+19] a generic communication model providing a limited degree of reliable

communication suitable for NCS. We will call this the deterministic–opportunistic
transmission slot (DOTS) model in this thesis. This model distinguishes between de-

terministic and opportunistic transmissions. Because deterministic transmissions

are guaranteed with bounded delay, they offer a modelling tool for guaranteeing

stability of NCS. Opportunistic transmissions then offer the opportunity for in-

creasing QoC if possible. The DOTS model imposes a time-based classification

into these two types of transmissions.

Consider a set of 𝑁 different NCS sharing a network. We assume that there is

an underlying grid of time-slots for all transmissions, which is determined by the

common transmission period 𝑇𝑠 = 𝑡𝑘+1 − 𝑡𝑘 , 𝑘 ∈ ℕ. For each NCS 𝑖, we introduce

two parameters 𝑠𝑖 and 𝑑 𝑖
, where 0 ≤ 𝑠𝑖 < 𝑑 𝑖

, which denote the phase shift and

period of that system’s deterministic transmissions, respectively. Thereby, all

transmission times 𝑡𝑘 of the deterministic transmissions of NCS 𝑖 are defined by

𝑘 ≡ 𝑠𝑖 (mod 𝑑 𝑖), (2.1)

12

2.2 Deterministic–Opportunistic Transmission Model

𝑇𝑠 𝑑1 = 6

𝑑3 = 3𝑠3 = 1

NCS 1: 𝑡

NCS 2: 𝑡

NCS 3: 𝑡

Figure 2.1: Example of deterministic/opportunistic transmission slot model for

three NCS with black deterministic and grey opportunistic transmis-

sions.

or, equivalently, (𝑘 − 𝑠𝑖) mod 𝑑 𝑖 = 0. We assume that deterministic datagrams are

marked accordingly, for instance using the Ethernet PCP header field specified in

IEEE 802.1Q, and that the corresponding transmissions are reliable with a delay

of no more than 𝑇𝑠 . (Of course, the QoS offered to deterministic transmissions

can be adjusted to suit the application model.)

All other transmission slots, defined by (𝑘 − 𝑠𝑖) mod 𝑑 𝑖 ≠ 0, are opportunistic.

Individual opportunistic transmissions carry no a priori guarantees. However,

different levels of QoS may be provided for opportunistic traffic in general. E.g., in

[LA18], the opportunistic traffic of an individual NCS is considered admissible if

it conforms to a token bucket specification. In this thesis, rather than considering

the traffic characteristics of each control system individually, we assume that all

opportunistic transmissions are handled in an aggregated fashion. More specifi-

cally, each time slot offers a certain capacity for a limited number of opportunistic

transmissions. We consider scheduling mechanisms for determining how these

transmissions are shared among applications.

Deterministic transmissions are handled as isolated real-time traffic with bound-

ed queueing delay. We assume that the network provides a certain capacity 𝑞det

for the number of total deterministic transmissions in one time slot, and therefore

assume that
||{𝑖 ∣ 𝑘 ≡ 𝑠𝑖 (mod 𝑑 𝑖)}|| ≤ 𝑞det. This corresponds to a resource

reservation in the network subject to the constraint that the end-to-end transfer

delay for a burst of 𝑞det NCS datagrams does not exceed the sampling period

𝑇𝑠 . An illustration of a possible configuration with three NCS and 𝑞det = 1 is

shown in Figure 2.1, where (𝑑1, 𝑠1) = (6, 0), (𝑑2, 𝑠2) = (9, 2), and (𝑑3, 𝑠3) = (3, 1).

13

2 System Model and Background

Transmission Selection

PCP 0PCP 1PCP 5PCP 6PCP 7

⋯

⋯

(to host or next switch)

Gate Driver

𝑇1: 10000000

𝑇2: 01000000
𝑇3: 00111111

⋮

Figure 2.2: Gating and transmission selection architecture for one port of a switch

complying with IEEE 802.1Qbv. Packets traverse this queueing system

from top to bottom. The figure shows a situation at some time 𝑇2 ≤
𝑡 < 𝑇3, where only the gate for queue 6 is open.

Deterministic transmission slots are indicated by black bars, while opportunistic

slots are indicated by shortened grey bars. As can be seen in this example, there

may be time slots without any deterministic transmissions. If deterministic

transmissions are provisioned on a periodic basis at the common sampling period,

these “leftover” timeslots could be used for opportunistic transmissions, as we

propose in Chapter 4. Note that 𝑞det is not required to be constant, but can be

taken as time-varying without loss of generality.

2.3 Scheduling of Deterministic Transmissions
In this section, we discuss how time-triggered real-time transmission slots, in par-

ticular for deterministic transmissions, can be scheduled in IEEE 802.3 networks

using standard TSN mechanisms.

While the TSN standards define multiple scheduling mechanisms, the most

useful one for providing real-time transmission of time-triggered traffic is the

so-called Time-aware Shaper specified in IEEE 802.1Qbv “Enhancements for Sched-

uled Traffic” [IEE16]. This scheduler uses so-called gates to control when each of

the first-in, first-out (FIFO) queues associated with a particular egress port of a

switch can transmit buffered packets at any given time, as shown in Figure 2.2.

A switch can implement up to eight queues for egress traffic per port. During

14

2.3 Scheduling of Deterministic Transmissions

forwarding, each frame is assigned to a queue based on its three-bit priority code

point (PCP) value, which is part of the VLAN header. Buffered frames from a

queue can only be transmitted over the corresponding port if the associated gate

is open.

The schedule for opening and closing these gates is defined by the gate control

list (GCL). Since the real-time transmission of a frame relies on all gates along its

path through the network being open at the right time, the clocks of all switches

must be synchronized using, e.g., the Precision Time Protocol (PTP) defined in

IEEE 1588 [IEE04]. Each GCL entry comprises a time stamp and associated bit

vector indicating which gates are to be opened (1) or closed (0) at that time. The

schedule repeats cyclically after the last entry.

Since multiple gates might be open at the same time, the transmission selection

algorithm (TSA) decides in which order to transmit the frames of open queues.

For instance, the Strict Priority TSA as specified in IEEE 802.1Q serves queues

by the highest PCP, such that the next frame to be transmitted would always

be taken from the head of the highest-priority queue with open gate that is not

empty. In the scenario depicted in Figure 2.2, only frames with PCP 6 can be

transmitted in the time interval [𝑇2, 𝑇3), even if the higher-priority queue 7 still

had outstanding frames.

The Time-aware Shaper together with the Strict Priority TSA can be used to

provide real-time end-to-end service guarantees for periodic transmissions (or

transmission opportunities) with a certain PCP value under the following condi-

tions. First, the sending end-system, e.g., a sensor node, transmits at predefined

time instants, e.g., as defined by the DOTS grid. Second, the transmission is

forwarded along an appropriately configured path, such that only the gates of

the corresponding (or lower) PCP on all egress ports along that path are open

from the time when the packet arrives at the corresponding switch until it and all

frames ahead of it have been transmitted to the next switch.

These conditions imply that the host transmission schedules have to be accu-

rately synchronized to the switch schedules, and that the design of all switch

schedules has to be globally coordinated, considering all real-time flows in the

network in general. Different algorithms for calculating the schedules have been

proposed in the literature [DN16; Cra+16; Sch+17], typically resulting in com-

plex constraint satisfaction and optimization problems to meet delay and jitter

bounds, and optimize network utilization or similar metrics. For instance, [DN16]

describe an integer linear programming (ILP) formulation for calculating compact

schedules for a set of flows with periodic transmissions.

15

2 System Model and Background

2.4 Control System
The controller design for an NCS is always based on a mathematical model

of the plant dynamics. In this thesis we restrict our attention to plants that are

modelled as linear time-invariant (LTI) systems, whenever the study of a particular

model class is necessary. A continuous-time LTI plant is modelled as an ordinary

differential equation (ODE)

𝑥̇(𝑡) = 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑢(𝑡) (2.2)

where 𝑥 ∈ ℝ𝑛
is the state vector of the plant and 𝑢 ∈ ℝ𝑚

is the input vector of the

plant. If the state of the plant cannot be measured by sensors directly, there is

also an output equation

𝑦(𝑡) = 𝐶𝑥(𝑡). (2.3)

As a measure of the QoC, we consider throughout this thesis the standard

infinite-horizon linear quadratic (LQ) cost functional

𝐽 = ∫
∞

0
𝑥⊤(𝑡)𝑄𝑥(𝑡) + 𝑢⊤(𝑡)𝑅𝑢(𝑡) d𝑡. (2.4)

This cost metric captures the objective that the plant state 𝑥 should be kept close

to the origin while expending as little actuation energy as possible through 𝑢.

The positive definite matrices 𝑄 ≻ 0 and 𝑅 ≻ 0 are used to weigh individual state

and input components as well as the mutual importance of these two objectives

against each other.

Since networked systems necessarily exchange signals in discrete packets, our

main focus is on the discrete-time variety of LTI systems. As the signals 𝑥(𝑡),
𝑦(𝑡), and 𝑢(𝑡) must be packetized in order to be transmitted over the network, the

sensors are sampled periodically at time instants 𝑡𝑘 , where we denote 𝑇𝑠 = 𝑡𝑘+1 −𝑡𝑘
as the sampling period.

The discrete-time plant can be modelled in state-space representation as an

affine difference equation

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 , (2.5)

where 𝑥𝑘 ∈ ℝ𝑛
is the state at time 𝑡𝑘 and 𝑢𝑘 ∈ ℝ𝑚

is the input applied to the plant

during the interval (𝑡𝑘 , 𝑡𝑘+1]. For the discretization of the system and cost matrices,

in order to obtain the discrete-time model (2.5) from the continuous-time form

(2.2), we refer to [LSA71].

This also leads to an equivalent discrete-time expression for the LQ cost

𝐽 =
∞

∑
𝑘=1

𝑥⊤𝑘𝑄𝑥𝑘 + 2𝑥⊤𝑘𝐻𝑢𝑘 + 𝑢⊤𝑘𝑅𝑢𝑘 . (2.6)

16

2.4 Control System

When [
𝑄 𝐻
𝐻⊤ 𝑅] ≻ 0 (or, equivalently, 𝑅 ≻ 0 and 𝑄 − 𝐻𝑅−1𝐻⊤ ≻ 0), such that 𝐽

is always positive, and the pair (𝐴, 𝐵) is stabilizable, then there exists a unique

positive-definite solution 𝑃 to the algebraic Riccati equation

𝑃 = 𝐴⊤𝑃𝐴 − (𝐴⊤𝑃𝐵 + 𝐻) ⋅ (𝑅 + 𝐵⊤𝑃𝐵)−1 ⋅ (𝐵⊤𝑃𝐴 + 𝐻⊤) + 𝑄, (2.7)

and the optimal control input 𝑢∗𝑘 that minimizes the cost 𝐽 is given by

𝑢∗𝑘 = 𝐾𝑥𝑘 , (2.8)

𝐾 = −(𝑅 + 𝐵⊤𝑃𝐵)−1 ⋅ (𝐵⊤𝑃𝐴 + 𝐻⊤). (2.9)

This controller is called the linear quadratic regulator (LQR). Moreover, the optimal

cost depending on the initial state 𝑥0 is given by 𝐽 (𝑥0) = 𝑥⊤0𝑃𝑥0 [DL71].

While this summarizes the basic control framework considered in this thesis,

slightly refined (and therefore differing) control system models will be presented

in the respective chapters. Those modifications concern, e.g., the incorporation

of network models for loss and delay of transmissions, or the consideration of

stochastic disturbances.

17

3 State-dependent Scheduling

3.1 Introduction

In this chapter, we assume that a dedicated “network slice” with fixed resources

is available for a group of control systems. In particular, we assume that peri-

odic real-time transmission for a certain number of datagrams is ensured, e.g., by

deploying corresponding TSN schedules for a traffic class that comprises the trans-

missions of all participating control systems using a common PCP header value.

Alternatively, the integrated services (IntServ) architecture [SPG97; Bak+01] for

resource reservations in routed IP networks could be used to a similar effect.

Moreover, several network virtualization technologies have been proposed which

allow provisioning of such an isolated network slice with arbitrary topologies

[CB10].

In such a set-up, there immediately emerges the problem of how to optimally al-

locate the available resources among all control systems, especially if the available

bandwidth is limited compared to the totality of transmissions of all NCS consider-

ing their sampling frequency (which we assume to be uniform for simplicity). This

matter is determined by the scheduling discipline which is used to arbitrate the

control systems’ access to the network. On the one hand, static scheduling (e.g.,

in a round-robin fashion) would eliminate any mutual influence of different NCS

on each other. Thereby, the stability and performance of each NCS in the group

can be analysed individually. On the other hand, dynamic scheduling promises

optimization potential with regard to QoC, especially when taking into account

the current states of the controllers and plants involved. While this introduces

dynamic interdependencies between the QoS offered to each system, which pro-

hibits individual stability and performance analyses, we begin by approaching

the dynamic scheduling problem in this chapter.

We use linear matrix inequality (LMI) stability conditions for switched linear

systems from [GCB08] to design a scheduler that guarantees asymptotic stability

and provides performance bounds for all NCS, and show how these conditions

can be generalized to accommodate concurrent transmissions. Our scheduling

policy uses dynamic state-based priorities calculated at the sensors which are

then used for stateless priority queuing in the network, making it both scalable

and efficient to implement. Priority queuing can be found, e.g., as part of the

19

3 State-dependent Scheduling

weighted fair queueing (WFQ) algorithm [PG93] supported by many routers.

The remainder of this chapter is organized as follows. In Section 3.2, we discuss

related work. In Section 3.3, we present our system model, which comprises a set

of NCS and the shared communication channel. Based on this model, we formally

state our scheduling problem in Section 3.4. We then derive a scheduler under the

assumption that the communication channel admits only one transmission each

sampling period in Section 3.5, which we then go on to generalize for an arbitrary

number of transmissions per sampling period in Section 3.6. In Section 3.7, we

illustrate our approach with a proof-of-concept implementation and simulation

examples. A short discussion of our results and possible avenues for future work

in Section 3.8 concludes this chapter.

3.2 Related Work
An early example of a dynamic scheduler for control systems is the Maximum–

Error–First policy used for the Try–Once–Discard (TOD) protocol [WYB02; NT04].

It assumes that delay-free broadcast communication is used, which may be a

reasonable approximation for field-bus networks, but is an unrealistic assumption

for IP networks. In [DLG10], a static periodic scheduling policy is derived for a

set of different NCS, where the schedule is derived from average dwell times. In

[GFB11], a stochastic RTOS scheduler for anytime control on embedded systems

is studied. In [BA15], the suitability of weakly hard real-time schedulers [GQD15]

has been investigated by deriving sufficient stability conditions for a single NCS,

however, without directly taking network utilization and competing traffic into

account.

Dynamic state-based schedulers for NCS have also been investigated. In [MH09;

Ram+11], network schedulers are designed for a single delay-free control loop,

investigating under which conditions a separation principle holds for the scheduler

and certainty-equivalent controller design. This is extended in [RSJ13; MH14] to

multiple control loops, where each sensor uses a local scheduling policy to reduce

the number of transmissions, with probabilistic contention based medium access

among all NCS. However, these works do not strictly follow a fixed resource

constraint. In [MH14], for instance, a price for transmissions is added to the LQ

cost and adapted dynamically to maintain an upper bound on the total average

transmission rate. Therefore, while available bandwidth may be shared with other

applications, a significant amount of bandwidth has to be over-provisioned in

advance.

By contrast, we propose to use priority scheduling to utilize the reserved band-

width as well as possible to optimize control performance. A similar approach is

proposed in [Al-+13; AGL15], where a state-based dynamic priority scheduler for

20

3.3 System Model

Controller 1 Plant 1

Controller 2 Plant 2

Controller 𝑁 Plant 𝑁

Delay 𝐷 ⋯
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑞

B

Figure 3.1: System architecture: 𝑁 different NCS communicate over a shared

(virtual) link with bandwidth 𝐵, delay 𝐷, and input queue of capacity

𝑞.

physically coupled NCS is derived from a quadratically structured event-triggering

rule and designed together with a suboptimal controller. We, however, assume

that the controllers are already given, and design a scheduler accordingly. In

[AGL15], a tuning parameter is used to penalize transmissions, thereby reduc-

ing control traffic. Like the state-based scheduling strategies mentioned in the

previous paragraph, this approach assumes that only one NCS can transmit at

any time. We, on the other hand, provide formulations for an arbitrary fixed

transmission rate (i.e., number of concurrent transmissions). Also, while [AGL15]

assumes that the delays are given a priori, we use a channel abstraction conform-

ing with [SPG97] to model the relationship between available bandwidth, overall

transmission rate, and delay.

3.3 System Model

Consider a set of 𝑁 different NCS, each comprising a plant and controller, where

state samples are sent from sensor to controller over a (virtual) network, as shown

in Figure 3.1. The network is shared by these NCS, but no other applications (i.e.,

no cross-traffic), and is modelled as a virtual link with bandwidth 𝐵, delay𝐷, and an

input queue of capacity 𝑞. The queue is served by a priority scheduler. This can be

21

3 State-dependent Scheduling

considered as a special case of the DOTS model without deterministic transmission

slots, where the service for opportunistic transmissions is constrained by the

limited capacity in each sampling period. In the following, we describe the

components of the system model—control systems, virtual link, and scheduler—in

more detail.

3.3.1 Control System Model
We assume that all NCS are sampled synchronously at times 𝑡𝑘 with a common

sampling period 𝑡𝑘+1 − 𝑡𝑘 = 𝑇𝑠 . Each sample of a plant’s state is sent in a packet ad-

dressed to the corresponding controller, together which an attached priority value.

At the same time, each controller applies a control input to the corresponding

plant based on the packets that it has received so far.

In the following, the superscript index 𝑖 is used to distinguish between individ-

ual control loops. The plant of NCS 𝑖 ∈ {1, … , 𝑁} is modelled as a discrete-time

LTI system

𝑥 𝑖𝑘+1 = 𝐴𝑖𝑥 𝑖𝑘 + 𝐵𝑖𝑢𝑖𝑘 , (3.1)

where 𝑥 𝑖𝑘 ∈ ℝ𝑛𝑖
is the state and 𝑢𝑖𝑘 ∈ ℝ𝑚𝑖

is the input of plant 𝑖 at time 𝑡𝑘 . Upon

sampling, the sensor sends a tuple (𝑥 𝑖𝑘 , 𝑣
𝑖
𝑘) over the network, where 𝑣𝑖

𝑘 is the

packet priority used by the scheduler to dequeue packets for transmission. We will

derive a function for calculating these priorities in Section 3.5. As measurements

may be dropped by the scheduler due to bandwidth limitations, each controller

uses the following one-step predictive control law:

𝑥̂ 𝑖𝑘+1 = 𝜃(𝑖, 𝑘)𝐴𝑖𝑥 𝑖𝑘 + (1 − 𝜃(𝑖, 𝑘))𝐴𝑖 𝑥̂ 𝑖𝑘 + 𝐵𝑖𝑢𝑖𝑘 , (3.2)

𝑢𝑖𝑘 = −𝐾 𝑖 𝑥̂ 𝑖𝑘 (3.3)

Here, the binary arrival function 𝜃(𝑖, 𝑘) indicates whether the state measurement

𝑥 𝑖𝑘 has been successfully received at the controller by time 𝑡𝑘+1 (𝜃 = 1) or not

(𝜃 = 0). The controller uses the predictive state estimate 𝑥̂ 𝑖𝑘 ∈ ℝ𝑛𝑖
to compensate

for a constant transfer delay of 𝑇𝑠 and for dropped packets.

We assume that all plants (𝐴𝑖 , 𝐵𝑖) are controllable and that a stabilizing con-

troller 𝐾 𝑖
is given, i.e., the matrices 𝐴𝑖 − 𝐵𝑖𝐾 𝑖

are Schur. As a measure of the QoC

of system 𝑖, we use the standard infinite-horizon LQ cost

𝐽 𝑖 =
∞

∑
𝑘=1

𝑥 𝑖⊤𝑘 𝑄𝑖𝑥 𝑖𝑘 + 2𝑥 𝑖⊤𝑘 𝐻 𝑖𝑢𝑖𝑘 + 𝑢𝑖⊤𝑘 𝑅
𝑖𝑢𝑖𝑘 (3.4)

where [
𝑄𝑖 𝐻 𝑖

𝐻 𝑖⊤ 𝑅𝑖] ≻ 0. Therefore, a natural choice for 𝐾 𝑖
is the standard infinite-

horizon LQR controller, which we use in our evaluations.

22

3.3 System Model

However, the controller may be arbitrary, and we assume it to be designed

independently from the scheduler. Please note that we do not derive the optimal

controller for this set-up. Concerning the separation of optimal control and

scheduling, we refer, e.g., to [RSJ13; MH14].

3.3.2 Virtual Link Model
We assume that all NCS packets are of uniform size 𝐿, which accounts for the

memory required for both the state and the attached priority value. A certain

bandwidth 𝐵 is allocated to the shared link, with an input queue of capacity 𝑞
(in packets) to buffer packets for forwarding. Moreover, the link incurs a fixed

delay 𝐷, which results from the network delay of the underlying communication

service. The end-to-end delay experienced by a batch of 𝑞 NCS packets is therefore

𝑇 = 𝐿
𝐵𝑞 + 𝐷. This channel model corresponds to the end-to-end service offered,

for instance, by the Guaranteed Service class of the IntServ architecture [SPG97]

for IP networks. However, as mentioned in the introduction, we assume that the

fixed-capacity shared link can be implemented using TSN time-aware shaping as

described in Section 2.3.

Because the transfer delay of a packet must not exceed one sampling period 𝑇𝑠
in order to be useful to the controller, the queue must be dimensioned accordingly,

such that

𝑞 ≤ 𝐵
𝐿 (𝑇𝑠 − 𝐷). (3.5)

Naturally, this is equivalent to a channel with a one step delay and fixed capacity

𝑞. For a given (physical) network, we may trade capacity for sampling frequency

subject to (3.5).

As mentioned in the introduction, this shared link need not necessarily be

physically restricted, but could also be realized through a virtualized network

slice or an IP resource reservation, for instance. Therefore, the bandwidth 𝐵 may

also be regarded as a design parameter to adjust queue capacity and sampling

period.

3.3.3 Priority Scheduler Model
Following the assumption of synchronous sampling, we also assume that all

packets from one sampling period arrive at the queue simultaneously, as this

yields the worst-case transfer delay. The scheduler is then responsible for servicing

the 𝑞 highest-priority packets, the remainder being dropped. To this end, we

define the set of 𝑞-out-of-𝑁 -subsets as

𝑞 =
{
𝑆 ⊂ {1, … , 𝑁} ||| |𝑆| = 𝑞

}
= ⋃

𝑠

{
𝑆𝑠
}
, (3.6)

23

3 State-dependent Scheduling

with an arbitrary numbering 𝑠 = 1, … , (𝑁𝑞). (For the simplest case 𝑞 = 1, we choose

𝑆𝑠 = {𝑠}.)

Now, we can define the priority scheduling function

𝜎(𝑘) = argmin
𝑠

∑
𝑖∈𝑆𝑠

𝑣𝑖
𝑘 , (3.7)

such that each NCS 𝑖 ∈ 𝑆𝜎(𝑘) receives a successful transmission in the period

[𝑡𝑘 , 𝑡𝑘+1), whereas all others do not. Thereby, the scheduling function (3.7) imposes

a coupling on the individual arrival indicators 𝜃(𝑖, 𝑘) of all NCS:

𝜃(𝑖, 𝑘) = 𝛿(𝑖, 𝜎(𝑘)) with 𝛿(𝑖, 𝑠) =

{
1 if 𝑖 ∈ 𝑆𝑠
0 otherwise.

(3.8)

3.4 Problem Statement

In order to fully specify the scheduler, we need to define the priority values 𝑣𝑖
𝑘

for the packets generated by all NCS. The priorities must be designed such that

all participating NCS remain stable under limited-capacity priority scheduling.

Within these constraints, the scheduler should optimize the overall control per-

formance. In order to formalize the problem statement, we consider the overall

system using a lumped switching model that integrates all NCS models with the

scheduling behaviour.

First, we rewrite the model of each individual NCS in a simpler form. Plugging

(3.1)–(3.3) together, we get the following autonomous model for an individual

NCS with augmented state 𝐱𝑖𝑘 = [𝑥 𝑖⊤𝑘 𝑥̂ 𝑖⊤𝑘]⊤:

𝐱𝑖𝑘+1 = 𝐀𝑖
𝜃(𝑖,𝑘)𝐱

𝑖
𝑘 ,

with 𝐀𝑖
𝜃 = [

𝐴𝑖 −𝐵𝑖𝐾 𝑖

𝜃𝐴𝑖 (1−𝜃)𝐴𝑖 − 𝐵𝑖𝐾 𝑖] . (3.9)

Note that this is a switching system with two modes: 𝐀𝑖
0 for open-loop and 𝐀𝑖

1 for

closed-loop behaviour. The cost (3.4) of the individual NCS can be rewritten as

𝐽 𝑖 =
∞

∑
𝑘=1

𝐱𝑖⊤𝑘 𝐐
𝑖 𝐱𝑖𝑘 ,

with 𝐐𝑖 = [
𝑄 𝑖 −𝐻 𝑖𝐾 𝑖

−𝐾 𝑖⊤𝐻 𝑖⊤ 𝐾 𝑖⊤𝑅𝑖𝐾 𝑖] . (3.10)

24

3.5 State-dependent Scheduler for 𝑞 = 1

Next, we combine all the systems into one model for the lumped state 𝜂𝑘 of all

NCS:

𝜂𝑘 = [𝐱1⊤𝑘 , 𝐱2⊤𝑘 , … , 𝐱𝑁⊤
𝑘]

⊤
(3.11)

𝜂𝑘+1 = 𝜎(𝑘)𝜂𝑘 , (3.12)

with 𝑠 = diag(𝐀
1
𝛿(1,𝑠), 𝐀

2
𝛿(2,𝑠), … , 𝐀𝑁

𝛿(𝑁 ,𝑠))

This overall system switches between (𝑁𝑞) modes, one for every possible outcome

of the scheduler 𝜎(𝑘). The mode of each subsystem is determined by whether it

is a member of the set 𝑆𝜎(𝑘) of scheduled systems as determined by (3.8). The cost

of the overall system is the sum over all NCS

 =
𝑁

∑
𝑖=1

𝐽 𝑖 =
∞

∑
𝑘=1

𝜂⊤𝑘𝜂𝑘 , (3.13)

with  = diag(𝐐
1, 𝐐2, … , 𝐐𝑁

).

Our goal is to choose the priorities 𝑣𝑖
𝑘 which determine the scheduling function

𝜎(𝑘) in (3.7) such that the overall system (3.12) is asymptotically stable, while

aiming to minimize the overall cost  . Moreover, the priority 𝑣𝑖
𝑘 must depend

solely on state information of the individual NCS 𝑖 that is available at the sensor.

3.5 State-dependent Scheduler for 𝑞 = 1
For ease of presentation, we will begin our analysis for a link capacity of 𝑞 = 1, and

later generalize the problem setting for an arbitrary queue length in Section 3.6.

In this particular case, the scheduling function (3.7) simplifies to

𝜎(𝑘) = argmin
𝑖

𝑣𝑖
𝑘 .

We use the following sufficient condition from Geromel et al. [GCB08] to find a

state-dependent, stabilizing scheduling function and performance bound for the

system (3.12)–(3.13). (Other stabilizing switching designs can be found, e.g., in

[LA06; LA09] and references therein.)

Theorem 3.1 ([GCB08]). Let  ⪰ 0 be given. If there exist a set of positive definite
matrices 1,2 , … ,𝑁 and a matrix Π with entries 𝜋𝑖𝑗 ≥ 0 and ∑𝑁

𝑖=1 𝜋𝑖𝑗 = 1, 𝑗 =
1, … , 𝑁 satisfying the so-called Lyapunov–Metzler inequalities

⊤
𝑗(

𝑁

∑
𝑖=1

𝜋𝑖𝑗𝑖)𝑗 − 𝑗 + ≺ 0 (3.14)

25

3 State-dependent Scheduling

for all 𝑗 ∈ {1, … , 𝑁}, then the switching policy

𝜎(𝑘) = argmin
𝑖

𝜂⊤𝑘𝑖𝜂𝑘 (3.15)

makes the origin 𝜂 = 0 of the system (3.12) globally asymptotically stable and

 =
∞

∑
𝑘=1

𝜂⊤𝑘 𝜂𝑘 < 𝜂⊤0𝜎(0)𝜂0, (3.16)

i.e., the overall performance is bounded.

Note that the condition (3.14) can also be found in the context of Markov Jump

Linear Systems (MJLS). More precisely, if Π were the transition probability matrix

of a Markov chain, (3.14) would give mean square stability, see, e.g., [CMF05].

However, in the considered scenario, the jumps are not driven by a Markov chain

but selected deterministically by the scheduler (3.15). Thus, (3.14) together with

the scheduler (3.15) guarantees stability in the classical, non-stochastic sense.

Note further that finding a feasible solution to (3.14) is a non-convex problem

due to the products of 𝜋𝑖𝑗 and 𝑖 . However, if the matrix Π is fixed, it becomes an

LMI problem which can be solved efficiently using available numeric methods.

Therefore, we will later propose a heuristic for determining Π using necessary

stability conditions.

However, the scheduling function (3.15) depends on the full state of the lumped

system, i.e. without further knowledge the states of all NCS have to be aggregated

before a scheduling decision can be taken. However, our system architecture

requires that packet priorities only depend on the local state.

We can rectify this by imposing some constraints on the structure of the

matrices 𝑖 as follows. For each NCS, we introduce two positive definite 2𝑛𝑖 × 2𝑛𝑖
matrices 𝐏𝑖0 and 𝐏𝑖1 and add the restriction

𝑖 = diag(𝐏
1
𝛿(1,𝑖), 𝐏

2
𝛿(2,𝑖), … , 𝐏𝑁𝛿(𝑁 ,𝑖)) (3.17)

to the conditions in Theorem 3.1. This allows us to rewrite the scheduling function

(3.15) as follows:

𝜎(𝑘) = argmin
𝑖

𝜂⊤𝑘𝑖 𝜂𝑘 = argmin
𝑖

∑
𝑛
𝐱𝑛⊤𝑘 𝐏𝑛𝛿(𝑛,𝑖) 𝐱

𝑛
𝑘

= argmin
𝑖

𝐱𝑖⊤𝑘 𝐏
𝑖
1 𝐱

𝑖
𝑘 +∑

𝑛≠𝑖
𝐱𝑛⊤𝑘 𝐏𝑛0 𝐱

𝑛
𝑘

= argmin
𝑖

𝐱𝑖⊤𝑘 (𝐏
𝑖
1 − 𝐏𝑖0)𝐱

𝑖
𝑘 +

��
����

∑
𝑛
𝐱𝑛⊤𝑘 𝐏𝑛0 𝐱

𝑛
𝑘 .

26

3.5 State-dependent Scheduler for 𝑞 = 1

As the minimum in the expression above is independent of the last term, this is

equivalent to the priority scheduler (3.7) together with the priority functions

𝑣𝑖
𝑘 = 𝑣𝑖(𝐱𝑖𝑘) = 𝐱𝑖⊤𝑘 (𝐏

𝑖
1 − 𝐏𝑖0) 𝐱

𝑖
𝑘 , (3.18)

which depend only on the state of the corresponding NCS.

In order to use this scheduler, we must first determine whether a particular set

of NCS can be stabilized under this discipline, and calculate the corresponding

coefficient matrices of the priority functions. We will formulate this admission

phase as an optimization problem based on the conditions in Theorem 3.1. In the

following, we reformulate the Lyapunov–Metzler inequalities (3.14) and propose

a heuristic for choosing the matrix Π in order to make the problem convex. The

benefits of this formulation will become apparent in Section 3.6, where we show

how to generalize our approach to arbitrary queue lengths.

All 𝑖 as defined in (3.17) have the same block diagonal structure as 𝑖 and .

Furthermore, as 𝑞 = 1, the 𝑖th diagonal block of 𝑖/𝑖 is always given by 𝐀𝑖
1/𝐏𝑖1

(closed-loop), whereas the remaining blocks are 𝐀𝑗
0/𝐏

𝑗
0 (open-loop). This allows

us to replace the inequalities (3.14) by the following set of lower-dimensional

inequalities:

𝐀𝑖⊤
1 (𝜋𝑖𝑖𝐏𝑖1 + (1−𝜋𝑖𝑖)𝐏𝑖0)𝐀𝑖

1 − 𝐏𝑖1 + 𝐐𝑖 ≺ 0, ∀𝑖 (3.19)

𝐀𝑖⊤
0 (𝜋𝑖𝑗𝐏𝑖1 + (1−𝜋𝑖𝑗)𝐏𝑖0)𝐀𝑖

0 − 𝐏𝑖0 + 𝐐𝑖 ≺ 0, ∀𝑖≠𝑗 (3.20)

For each 𝑖 = 1, … , 𝑁 , we can replace all inequalities in (3.20) by a single inequality

by choosing 𝜋𝑖𝑗 = 𝑝𝑖 , ∀𝑗=1,…,𝑁 . For notational convenience we also define 𝑚𝑖 = 𝜋𝑖𝑖 ,
which gives us

Π =
⎡
⎢
⎢
⎢
⎣

𝑚1 𝑝1 ⋯ 𝑝1
𝑝2 𝑚2 ⋯ 𝑝2
⋮ ⋮ ⋱ ⋮
𝑝𝑁 𝑝𝑁 ⋯ 𝑚𝑁

⎤
⎥
⎥
⎥
⎦

.

If we fix all 𝑚𝑖 and 𝑝𝑖 , then (3.19)–(3.20) become LMIs in 𝐏𝑖0/1. In [GCB08], the

authors use an approach which is equivalent to choosing 𝑚𝑖 = 𝛼 ∈ [0, 1] and

performing a line search over 𝛼 to accomplish this simplification. However, since

(3.14) implies that all

√𝑚𝑖𝑖 , 𝑖 = 1, … , 𝑁 are Schur stable [DSG15], we propose

the heuristic

𝑚𝑖 = 𝜌(𝑖)−2 ⋅ 𝛼, (3.21)

where 𝜌(⋅) is the spectral radius, in order to exclude infeasible values a priori.
Because in Theorem 3.1 the matrix Π is required to be left-stochastic, i.e. with non-

negative entries and columns summing up to 1, we can determine the coefficients

27

3 State-dependent Scheduling

𝑝𝑖 entirely from 𝑚𝑖 :

𝑝 = (𝟏𝟏⊤− 𝐼)
−1(𝟏 − 𝑚), (3.22)

where 𝑝 and 𝑚 are the corresponding column vectors of 𝑝𝑖 and 𝑚𝑖 . This allows

us to formulate our first main result.

Theorem 3.2. Let 𝑞 = 1 and a set of 𝑁 control systems of the form (3.1)–(3.4)

be given with 𝜃(𝑖, 𝑘) as in (3.8). Let 𝐀𝑖
0, 𝐀𝑖

1, 𝐐𝑖 , 𝑖 ∈ {1, … , 𝑁}, be defined as in
(3.9)–(3.10). If there exist a scalar 𝛼 ∈ [0, 1] and matrices 𝐏𝑖0, 𝐏𝑖1 ≻ 0 solving the
semi-definite program

min 𝜌 (3.23)

s. t. 𝐏𝑖1 − 𝜌𝐼 ≺ 0, ∀𝑖 (3.24)

𝐏𝑖0 − 𝜌𝐼 ≺ 0, ∀𝑖 (3.25)

𝐀𝑖⊤
1 (𝑚𝑖𝐏𝑖1 + (1−𝑚𝑖)𝐏𝑖0)𝐀𝑖

1 − 𝐏𝑖1 + 𝐐𝑖 ≺ 0, ∀𝑖 (3.26)

𝐀𝑖⊤
0 (𝑝𝑖𝐏𝑖1 + (1−𝑝𝑖)𝐏𝑖0)𝐀𝑖

0 − 𝐏𝑖0 + 𝐐𝑖 ≺ 0, ∀𝑖 (3.27)

where 𝑚 and 𝑝 are defined as in (3.22) and (3.21), then the scheduler (3.7) with the
priority functions (3.18) makes the origin of each control system globally asymptoti-
cally stable. Moreover, the joint LQ cost is bounded by

 < 𝜌
𝑁

∑
𝑖=1

‖𝐱𝑖0‖
2.

Proof. This follows from Theorem 3.1 together with the definition of 𝑖 in (3.17),

as shown above. To confirm the upper bound on the control cost, we can verify

that

 < 𝜂⊤0𝜎(0)𝜂0 = ∑𝑁
𝑖=1 𝐱𝑖⊤0 𝐏𝑖𝜎(0)𝐱

𝑖
0 < ∑𝑁

𝑖=1 𝜌 ⋅ 𝐱𝑖⊤0 𝐱𝑖0,

due to (3.24) and (3.25). ■

Clearly, decomposing the scheduler to enable the use of priority scheduling

in the network comes at the cost of suboptimal performance compared to a

centralized scheduler (3.15), as can be seen by comparing the performance bounds

in Theorem 3.1 and Theorem 3.2.

3.6 State-dependent Scheduler for 0 < 𝑞 < 𝑁
In the previous section, we used the special block diagonal structure of 𝑖 , 𝑖 ,

and  and a heuristic for Π to simplify the matrix inequalities in Theorem 3.1,

28

3.6 State-dependent Scheduler for 0 < 𝑞 < 𝑁

and rewrite them as an optimization problem in Theorem 3.2. There, we made

the specific assumption that 𝑞 = 1. If we drop this assumption in favour of the

generalization 0 < 𝑞 < 𝑁 , then rewriting inequalities (3.14) in a similar fashion

yields the following two inequalities (3.28)–(3.29) instead.

𝐀𝑖⊤
1 (

𝑖∈𝑆𝑗

∑
𝑗
𝜋𝑗𝑘𝐏𝑖1 +

𝑖∉𝑆𝑗

∑
𝑗
𝜋𝑗𝑘𝐏𝑖0)𝐀𝑖

1 − 𝐏𝑖1 + 𝐐𝑖 ≺ 0, ∀(𝑖, 𝑘), 𝑖 ∈ 𝑆𝑘 (3.28)

𝐀𝑖⊤
0 (

𝑖∈𝑆𝑗

∑
𝑗
𝜋𝑗𝑘𝐏𝑖1 +

𝑖∉𝑆𝑗

∑
𝑗
𝜋𝑗𝑘𝐏𝑖0)𝐀𝑖

0 − 𝐏𝑖0 + 𝐐𝑖 ≺ 0, ∀(𝑖, 𝑘), 𝑖 ∉ 𝑆𝑘 (3.29)

It is easy to verify that (3.19)–(3.20) are a special case thereof.

As before, we can reduce this to a pair of inequalities for each NCS 𝑖 = 1, … , 𝑁 .

For this purpose, the coefficients 𝜋𝑗𝑘 of the matrix Π must satisfy the following

conditions:

∑{𝑗∣ 𝑖∈𝑆𝑗} 𝜋𝑗𝑘 = 𝑚𝑖 , ∀(𝑖, 𝑘), 𝑖 ∈ 𝑆𝑘 (3.30)

∑{𝑗∣ 𝑖∈𝑆𝑗} 𝜋𝑗𝑘 = 𝑝𝑖 , ∀(𝑖, 𝑘), 𝑖 ∉ 𝑆𝑘 (3.31)

We assume again that the vector 𝑚 is given, e.g., using (3.21). As Π now has

additional degrees of freedom and its entries are not directly determined by 𝑚
and 𝑝 as they were in the previous section, we need to use a different heuristic

to determine a feasible 𝑝. For instance, we can use the following optimization

problem:

min
Π,𝑝

tr(Π) (3.32)

s. t. 𝜋𝑖𝑗 ≥ 0, ∀𝑖,𝑗 (3.33)

∑𝑖 𝜋𝑖𝑗 = 1, ∀𝑗 (3.34)

𝜋𝑖𝑖 ≤ 𝜌(𝑖)−2, ∀𝑖 (3.35)

(3.30), (3.31), (3.36)

where the first two constraints are required by Theorem 3.1. The third constraint

is equivalent to the necessary condition that

√𝜋𝑖𝑖𝑖 must be Schur, which is also

our reasoning behind minimizing the trace of Π.

With (3.30)–(3.31) the inequalities (3.28)–(3.29) become equivalent to the linear

inequalities (3.26)–(3.27) in Theorem 3.2. This allows us to generalize the same

result to an arbitrary queue length.

Theorem 3.3. Let 0 < 𝑞 < 𝑁 and a set of 𝑁 control systems of the form (3.1)–(3.4)

be given with 𝜃(𝑖, 𝑘) as in (3.8). Let 𝐀𝑖
0, 𝐀𝑖

1, 𝐐𝑖 , 𝑖 ∈ {1, … , 𝑁}, be defined as in

29

3 State-dependent Scheduling

(3.9)–(3.10). If there exist a scalar 𝛼 ∈ [0, 1] and matrices 𝐏𝑖0, 𝐏𝑖1 ≻ 0 solving the
semi-definite program (3.23)–(3.27), where 𝑚 and 𝑝 are defined as in (3.21) and
(3.32)–(3.36), then the scheduler (3.7) with the priority functions (3.18) makes the
origin of each control system globally asymptotically stable. Moreover, the joint LQ
cost is bounded by  < 𝜌 ∑𝑁

𝑖=1 ‖𝐱𝑖0‖2.

Proof. Analogous to the previous section, it is straightforward to verify that

𝜎(𝑘) = argmin
𝑖

𝜂⊤𝑘𝑖 𝜂𝑘 = argmin
𝑠

∑
𝑖∈𝑆𝑠

𝐱𝑖⊤𝑘 (𝐏
𝑖
1 − 𝐏𝑖0)𝐱

𝑖
𝑘 .

From there, the same line of argument as for Theorem 3.2 holds. ■

Interestingly, this shows that the scheduling problem for any queue length

can be reduced to the same semi-definite programming problem, provided the

parameters 𝑝 are chosen appropriately according to the queue length.

Note that our previously defined scheduler requires both the plant state 𝑥 𝑖𝑘 and

the controller state 𝑥̂ 𝑖𝑘 to be known to calculate the priorities 𝑣𝑖(𝐱𝑖𝑘). This can be

accomplished by maintaining a copy of the controller state recurrence (3.2) at the

sensor, for which 𝜃(𝑖, 𝑘) must be known, e.g., by sending acknowledgements from

the controllers to the sensors, cf. [RSJ13]. However, acknowledgements would

have to be delivered reliably, e.g., by reserving an additional virtual link. Also,

sending an acknowledgement of size 𝐿ACK introduces an additional delay, which

must be modelled by modifying the propagation delay 𝐷, e.g., to 𝐷′ = 2𝐷 + 𝐿ACK

𝐵
under the assumption of a symmetric duplex channel.

Alternatively, we can impose an appropriate structure on the optimization

problem (3.23)–(3.27). If we add the following constraints

𝐏𝑖1 = [
𝑋 𝑖
1 𝑌 𝑖

𝑌 𝑖⊤ 𝑍 𝑖] , 𝐏𝑖0 = [
𝑋 𝑖
0 𝑌 𝑖

𝑌 𝑖⊤ 𝑍 𝑖] , (3.37)

then the priority functions become 𝑣𝑖(𝑥 𝑖𝑘) = 𝑥 𝑖⊤𝑘 (𝑋 𝑖
1 − 𝑋 𝑖

0) 𝑥 𝑖𝑘 , which depend only

on the plant state. A similar approach is proposed in [GCB08] in a different set-up

to design a switching output feedback controller. Of course, the corresponding

optimization problem is more conservative. However, it allows us to achieve a

higher bandwidth utilization than using acknowledgements.

3.7 Evaluation
To demonstrate the feasibility of our approach, we ran experiments using real

networking hardware with a set of simulated NCS and a proof-of-concept im-

plementation of the priority scheduler. We also show a set of pure simulation

30

3.7 Evaluation

Switch

c
r
o

s
s
-

t
r
a
ffi

c

NCS SimulationsMiddlebox

FIFO

PRIO
∗

WRR

NCS 1

NCS 6

⋮

Figure 3.2: Networking testbed set-up for scheduler evaluation.

∗
) Priority scheduling and deficit round robin scheduling were imple-

mented for comparison.

examples to illustrate the relationship between queue size, bandwidth utilization

and control cost.

3.7.1 Proof-of-concept Implementation
We ran a proof-of-concept evaluation in a networking test-bed consisting of

commodity machines (Intel Xeon E5-1650) with 4 × 10Gbps Ethernet network

interface cards, connected to a 10 Gbps Ethernet switch (Edge-Core AS5712-54X).

The set-up of our test-bed is shown in Figure 3.2.

A set of 𝑁 = 6 NCS were simulated on one of the machines, with outgoing

measurement packets from the simulated sensors of all NCS instances being sent

over one network interface, and incoming packets being received on a different

interface. In order to improve throughput and reduce unpredictable delays, we

used the Data Plane Development Kit (DPDK) [Lin] for sending and receiving

packets from the simulation instances, bypassing the operating system’s protocol

stack. We used the same plant model (3.1) for all 6 NCS simulation instances,

namely and inverted pendulum on a cart as shown in Figure 3.3, with a standard

LQR controller. The sampling period was chosen at 𝑇𝑠 = 50ms. The pendulum

for NCS 1 was started at an initial angle of 𝜙 = 35◦, while all others were started

at the origin 𝜙 = 0◦.
A second machine was dedicated to producing cross-traffic approximately at

line rate on a dedicated network interface. We use this cross-traffic to demonstrate

that our proof-of-concept implementation realizes a dedicated virtual link to

isolate NCS traffic from the effects of traffic from other applications, which is one

of our initial assumptions.

31

3 State-dependent Scheduling

𝑚

𝑔

𝜙

𝑐

𝑥 =
⎡
⎢
⎢
⎢
⎣

𝑐
𝑐̇
𝜙
𝜙̇

⎤
⎥
⎥
⎥
⎦

𝑢 = 𝑐̈

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 0.05 0 0
0 1 0 0
0 0 1.015 0.05
0 0 0.603 1.015

⎤
⎥
⎥
⎥
⎦

𝐵 =
⎡
⎢
⎢
⎢
⎣

0.001
0.05
0.002
0.062

⎤
⎥
⎥
⎥
⎦

𝑄 =
⎡
⎢
⎢
⎢
⎣

0.05 0.001 0 0
0.001 0 0 0
0 0 0.101 0.003
0 0 0.003 0

⎤
⎥
⎥
⎥
⎦

𝑅 = 0.05

𝐾 = [−0.811 −1.641 26.074 7.517]

Figure 3.3: Inverted pendulum model for scheduler evaluation. System parameters

for (3.1)–(3.4) are shown on the right.

A third machine was used to host a software middlebox implementation real-

izing both the virtual link provisioning and priority scheduling. The middlebox

was also implemented using DPDK in order to eliminate latencies introduced

by the operating system’s networking stack. Three of the middlebox’s network

interfaces were connected to the switch: one for incoming NCS traffic, one for

incoming cross-traffic, and one for outgoing traffic. The middlebox maintains

two input queues: a priority queue with capacity 𝑞 = 2 for NCS traffic, and a

FIFO queue for all other traffic. Packets received on the cross-traffic interface are

directly placed in the FIFO queue, while NCS packets are parsed to extract the

priority value from their payload, before being placed at the appropriate position

in the priority queue, with the lowest priority packet being dropped as necessary.

The two queues are served in a weighted round robin fashion, where the priority

queue is fully served every 𝑇𝑠 = 50ms and the FIFO queue is served during the

remaining time. This corresponds to the TDMA scheme offered by TSN. All out-

going traffic is transmitted on the same interface. The switch classifies all frames

received from the middlebox into NCS traffic and cross-traffic by address header

fields. NCS traffic is forwarded to the NCS simulation node, while cross-traffic is

discarded at the switch. In order to compare our state-based dynamic scheduler

to a fair static scheduler, we also implemented an alternative middlebox, with the

difference that the queue for NCS traffic is not served using packet priorities, but

using a deficit round robin (DRR) protocol. Thereby, each NCS can successfully

transmit a packet once every three sampling periods, and all achieve the same

bandwidth.

32

3.7 Evaluation

−90

−45

0

45

90

𝜙 [◦]

NCS 1

NCS 2–6

0 50 100 150 200 250 300
−90

−45

0

45

90

𝑡 [s]

𝜙 [◦]

NCS 1

NCS 2–6

Figure 3.4: Time series of pendulum angles from evaluation of proof-of-concept

implementation with 𝑁 = 6, 𝑞 = 2, and 𝑇𝑠 = 50ms; top: round robin

scheduling; bottom: state-based priority scheduling.

33

3 State-dependent Scheduling

NCS 1 NCS 2 NCS 3 NCS 4 NCS 5 NCS 6

0

10

20

30

40

50

𝐽 𝑖

DRR sched. ( = 72.96)

priority sched. ( = 22.95)

Figure 3.5: LQ cost of individual NCS for evaluation of proof-of-concept imple-

mentation with 𝑁 = 6, 𝑞 = 2, and 𝑇𝑠 = 50ms, comparing deficit round

robin scheduling and state-based priority scheduling. Joint LQ cost 
shown in legend.

We ran evaluations for both configurations: once using naive deficit round

robin and once using our state-based priority scheduling for NCS traffic. Figure 3.4

shows time series for the angle 𝜙 of all six simulated pendulums. Using priority

scheduling instead of round robin scheduling reduces the peak angles of NCS 1 to

approximately 55%, and reduces the variance of angles significantly for all NCS.

Figure 3.5 shows the joint and individual LQ cost for comparison. Using state-

based priority scheduling reduces the joint cost  by 68% compared to round

robin. Moreover, the cost is more evenly distributed. While the stretch between

the worst and best performing NCS is
max𝑖 𝐽 𝑖
min𝑖 𝐽 𝑖 = 12.8 with round robin, it is only

8.8 with state-based priority scheduling.

3.7.2 Runtime Evaluation

To evaluate the complexity of solving the optimization problem (3.23)–(3.27)

required for calculating the priority function parameters, we used the Julia

[Bez+18] optimization toolbox JuMP [DHL15] together with the commercial semi-

34

3.7 Evaluation

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

𝑁

S
o

l
v
e
r

R
u

n
t
i
m

e
[s
]

Figure 3.6: Runtime evaluation for state-dependent scheduling

Table 3.1: Problem size of state-dependent scheduler compared to [AGL15]

Approach #LMIs size(LMI) #vars

ours 4𝑁 2𝑛 × 2𝑛 2𝑁 (2𝑛2+𝑛) + 1
[AGL15] > (𝑁 +1)2 4𝑁 (𝑛+𝑚) × 4𝑁 (𝑛+𝑚) > 𝑁 3(𝑛+𝑚)2

definite programming (SDP) solver Mosek [MOS18]. We solved the problem with

increasing size, for 𝑁 = 2,… , 20. In Figure 3.6, the average solver times are shown,

with standard deviations over 50 runs indicated by error bars. The results suggest

that the time required to solve the optimization problem scales benignly with an

increasing number of systems.

Also, in Table 3.1 we compare the size of the optimization problem in The-

orem 3.2 with that proposed in [AGL15] for a set of 𝑁 systems, all with state

dimensions 𝑛 and input dimensions 𝑚, in terms of the number of LMI constraints,

dimensions of LMI constraints, and number of scalar decision variables. While

[AGL15] jointly designs a suboptimal controller in the process, our approach

clearly remains more practical from a computational point of view as the number

of participating NCS grows.

35

3 State-dependent Scheduling

2 4 6 8 10
0.3

0.4

0.5

0.6

0

0.5

1

𝑞



u
t
i
l
i
z
a
t
i
o

n

Figure 3.7: Simulations for varying queue capacity 𝑞: joint cost  (thick) and

bandwidth utilization (dashed).

3.7.3 Simulation Example
To illustrate the effects of queue dimensioning, we show some simulation results

for a fixed set of NCS and network model with varying 𝑞. We simulate a link with

bandwidth 𝐵 = 10 000 bit
s and delay 𝐷 = 20ms, that is shared by 𝑁 = 10 NCS with

identical (continuous) plant dynamics

d
d 𝑡

𝑥 𝑖(𝑡) = [
0 1
−2 2] 𝑥

𝑖(𝑡) + [
0
1] 𝑢

𝑖(𝑡) + 𝑤 𝑖(𝑡),

initial conditions 𝑥 𝑖(𝑡0) = [1, 1]
⊤
, LQR controller for𝑄 = 𝐼 and 𝑅 = 0.1, and additive

white noise 𝑤 𝑖(𝑡) ∼  (0, 10−3𝐼). We assume the packet size to be 𝐿 = 192 bit,
which corresponds to two IEEE double-precision floating point values for the

state and one for the priority. The overall system with the state-based scheduler

is simulated for 𝑞 = 1, … , 𝑁 over a time period of 100 seconds. In each simulation,

the systems are discretized to the minimum possible sampling time according to

the link model, i.e. 𝑇𝑠 = 𝐿
𝐵𝑞 + 𝐷.

The results, averaged over 50 realizations of the simulation, can be seen in

Figure 3.7. The plot shows the joint LQ cost  , together with the bandwidth

utilization, which is given by the ratio of the transmission rate
𝑞𝐿
𝑇𝑠 to the available

bandwidth 𝐵. Note that the case 𝑞 = 10 corresponds to a static equal-bandwidth

schedule. We can see that the cost decreases with decreasing 𝑞, corresponding

to more dynamic scheduling, but increases again towards 𝑞 = 1. This can be

attributed to a lower bandwidth utilization, as the propagation delay 𝐷 dominates

the sampling period for small 𝑞.

36

3.8 Summary and Discussion

For 𝑞 = 1, the following cost coefficient matrix is found:

𝐏𝑖1 − 𝐏𝑖0 =
⎡
⎢
⎢
⎢
⎣

−8.9 6.6 8.9 −6.6
6.6 −8.1 −6.6 8.1
8.9 −6.6 −8.9 6.6

−6.6 8.1 6.6 −8.1

⎤
⎥
⎥
⎥
⎦

3.8 Summary and Discussion
In this chapter, we addressed the optimal scheduling problem for a set of NCS

sharing a dedicated network slice. We introduced a switched model of the overall

system with a limited-capacity queue model for the communication channel.

Based on LMI stability conditions for switched linear systems from [GCB08],

we first designed a state-based priority scheduler for a channel capacity of one

transmission per sampling period. We then generalized our scheduler design to

allow an arbitrary number of NCS to transmit concurrently within one sampling

period. The resulting scheduling policy guarantees performance and asymptotic

stability of all NCS, and only requires stateless priority queuing in the network,

making it both scalable and efficient to implement.

To conclude this work, we would like to discuss some aspects of our results.

We designed a scheduler under the assumption that all NCS come with a given

controller. Of course, even if we assume that the standard LQR controller is used,

which is optimal for periodic sampling, it is not necessarily the optimal controller

when subjected to our scheduling policy. The co-design of an optimal controller,

e.g. as attempted in [AGL15], for our scheduler is an interesting topic for future

work. Furthermore, it could be studied how to choose the queue length for a

given available bandwidth and network delay, such as to optimize the overall

control performance. Also, while we considered priority scheduling for full state

feedback here, the output feedback case can be studied by adding restrictions to

the LMI constraints, as proposed in [GCB08].

Our approach does not provide isolation between the traffic of individual

NCS. While this allows us to utilize the available bandwidth to improve overall

performance, it opens up the opportunity for one or more NCS to use more of their

“fair” share to the detriment of all others, possibly to the point of instability. Apart

from malicious priority inflation, modelling errors could also lead to this kind of

behaviour. One possible solution is to use traffic shaping to limit the bandwidth

available to each NCS. The consideration of additional shaping constraints is a

topic for future work.

In our system model, we make some assumptions that should also be discussed

briefly. First, sampling times and therefore packet arrival times of all NCS are

synchronized. If this assumption is violated, i.e., sampling times of different

37

3 State-dependent Scheduling

NCS are phase shifted or packets experience different delays between sensor and

scheduler, then any low-priority packet arriving early could impose an additional

queuing delay on the remaining NCS traffic and might ultimately cause a higher-

priority packet to be dropped. Moreover, we did not account for priorities from

different (overlapping) sampling periods to be compared at the scheduler.

Second, the communication channels of all NCS are modelled by one shared

link. However, in a realistic application scenario, it should be assumed that the

traffic of different NCS is routed over overlapping multi-hop paths. This means

that a scheduling decision may be required at every hop. In principle, the same

scheduler could be implemented at all network elements, since the priorities

are preserved under scheduling of different packet subsets in an arbitrary order.

However, even if the sampling times are synchronized, this is not necessarily

true for the arrival times at schedulers in the network, which has been discussed

above. Also, it may lead to suboptimal resource utilization, since unnecessary

constraints may be imposed on traffic flows with mutually disjoint network paths.

How our approach can be extended to address these issues is to be investigated

in future work.

Finally, there are some practicalities to consider concerning the implementation

of our proposed scheduler in the network. In Section 3.5 we made the case that

our approach requires only a priority queue at the data link layer. While this is

also a part of available scheduling disciplines such as WFQ [PG93], we would

have to be able to subvert the mechanism by which priorities are assigned to

packets. Furthermore, the priorities would have to be extracted from the packets’

payload using deep packet inspection, or be mapped to an available packet header

field, which would introduce rounding errors. However, the case for opening

up programming interfaces to customize scheduling has already been made by

others, e.g. [Siv+13]. Following a related development in the recent success of

SDN and the OpenFlow protocol [McK+08], which enables applications to define

flexible routing and forwarding policies, there is hope that such interfaces may

become available in the future.

38

4 Opportunistic Scheduling

4.1 Introduction

In Chapter 3, we presented a priority scheduling policy for NCS traffic, where

packet priorities for measurement packets are dynamically calculated at the

sensors as a function of the current state of each control system. By formulating

the scheduling problem using a switched system model, we were able to determine

parameters for the individual priority functions by solving a SDP that provides

sufficient conditions for the stability of all NCS and optimal bounds for the overall

control performance in terms of joint LQ cost.

However, this approach has some drawbacks. While it allows for sharing the

available bandwidth with a high degree of flexibility between a set of NCS, the fact

that transmissions are scheduled purely based on packet priorities implies that

no explicit bandwidth guarantees are given to any individual NCS. Therefore, the

stability conditions for a set of NCS depend implicitly on the priority scheduling

policy, and tend to be very conservative. Specifically, the corresponding SDP

optimization problem quickly becomes infeasible for larger numbers of involved

control systems, depending on their dynamics. Moreover, as also in [AGL15], it is

not possible to incrementally add/remove NCS to/from a network without solving

the global optimization problem again to find a new scheduling configuration. As

a result, pure priority scheduling does not scale well.

In this chapter, we therefore propose to leverage the DOTS model described in

Section 2.2 in order to decouple the stability guarantees from the QoC optimization.

While the deterministic traffic of an NCS is provided with real-time guarantees

and isolated using, e.g., TSN technologies, the opportunistic traffic of all NCS

can be multiplexed using priority scheduling in order to flexibly share resources

and increase the overall control performance. By separating stabilization and

performance optimization, and providing each NCS with only a minimal amount

of guaranteed real-time network resources, we can circumvent the scalability

issues of our previous approach.

With our approach, opportunistic NCS traffic can be treated at arbitrary service

levels, all the way down to best effort—at the cost of reduced control performance—

as our approach is designed specifically without making any assumptions about

the QoS for those transmissions. However, for the sake of simplicity, we assume in

39

4 Opportunistic Scheduling

most of our analysis that opportunistic NCS traffic up to a certain capacity is also

transported using TSN, where excess opportunistic transmissions are dropped

according to the priority scheduling policy. This assumption allows us to (a) derive

conditions for optimizing the control performance, and (b) draw a fair comparison

to previous work in our evaluation.

In summary, this chapter contains the following contributions:

• A mixed-criticality communication service for heterogeneous
1

NCS.

• A corresponding nominal NCS model that allows guaranteed stability anal-

ysis, worst-case performance analysis, and worst-case optimal controller

design using standard control theoretic methods, when using our commu-

nication service.

• A performance-optimizing packet priority scheduling policy for the oppor-

tunistic portion of the traffic.

• A pessimistic performance model and corresponding controller design

conditions that guarantee stability and preclude performance degradation

even if opportunistic traffic is treated arbitrarily (i.e., unscheduled).

The remainder of this chapter is organized as follows. First, we give a brief

review of related work in Section 4.2. In Section 4.3 we present our system model,

consisting of an application-layer control system model, a transmission model for

deterministic and opportunistic traffic, and a model for the packet scheduler. In

Section 4.4 we formalize our problem of packet prioritization subject to stability

guarantees and performance optimization. We then derive a suitable packet

prioritization scheme in Section 4.5 and conduct a numerical simulation study

in Section 4.6 to evaluate the effectiveness of our approach and compare it to

our previous work. Finally, we conclude this chapter with a short discussion and

outlook in Section 4.7.

4.2 Related Work
In [BA15] the suitability of weakly hard real-time scheduling for NCS has been

investigated by deriving sufficient stability conditions. In [Zha+08], an online

heuristic is developed for optimizing the 𝐻∞ performance of a set of control sys-

tems by adapting their task periods subject to rate monotonic processor scheduling.

In [Bar+17], the effect of skipped control jobs on the stabilizability of NCS is for-

malized using a weaker asymptotic condition and a stronger condition with a

1
Each NCS can have different system dynamics and architecture, i.e., location of the controller in

the network, as described in Section 4.3.1.

40

4.3 System Model

limited burst length, and appropriate task scheduling algorithms developed. The

performance-optimal scheduling of control tasks on multiprocessor platforms un-

der partitioned earliest deadline first (EDF) scheduling is investigated in [RAZ16],

which could also have implications for communication scheduling. State-based

sampling has been investigated, e.g., in [RSJ13; MH14; FK15; GRP16], where each

sensor uses local scheduling (i.e., periodic event triggering) policies to reduce the

number of transmissions, while the aggregate traffic of all NCS is managed using

probabilistic contention-based medium access, which introduces random packet

loss. In [Mam+18], the queueing delay in a network shared by a set of NCS is

controlled by designing appropriate event-triggering thresholds, which provide

almost sure mean-square stability. By contrast, our work proposes to leverage

packet scheduling in the network, rather than random dropping or source-based

policing, to improve performance.

A dynamic state-based scheduling approach has been studied in [AGL15],

where the scheduler switches between a set of event-based NCS for which a

suboptimal controller is co-designed. Our own state-based scheduler presented

in Chapter 3 determines a similar scheduling policy at lower computational cost

and generalizes the transmission model to allow more than one NCS to transmit

simultaneously at each sampling time.

A communication model similar to the one presented here has been devel-

oped in [Mar+10] for Controller Area Network (CAN) based NCS, where periodic

mandatory control jobs are augmented with non-periodic optional control jobs to

improve performance, and CAN-specific message encoding issues are discussed.

While that approach is designed for single-input, single-output (SISO) systems

and uses a control gain design based on so-called accelerable control tasks [BSS08]

to prevent performance degradation through optional control jobs, our approach

supports multiple-input, multiple-output (MIMO) systems with different architec-

tural set-ups and provides controller design methods to maximize the performance

benefit of each opportunistic transmission.

4.3 System Model

Consider a set of 𝑁 different NCS as shown in Figure 4.1. The sensor nodes send

datagrams to the actuator nodes over a shared communication medium, which is

modelled as a queueing system with two traffic classes. Depending on the location

of the controller, the payload of a datagram is either a measurement of the plant

state generated by the sensor for the controller, or a control input generated by

the controller for the actuator.
2

2
In Chapter 3, we only considered the former configuration.

41

4 Opportunistic Scheduling

Actuator 1 Plant 1 Sensor 1

Actuator 2 Plant 2 Sensor 2

Actuator 𝑁 Plant 𝑁 Sensor 𝑁

Delay C

⋯

⋯

𝑞det⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞opp

P

Figure 4.1: System architecture: 𝑁 distinct control systems communicating over

shared network.

Moreover, all datagrams are tagged at the source with a binary traffic classifica-

tion (opportunistic or deterministic) and with a scalar priority value, as detailed

in Section 4.3.2 and Section 4.3.3. The underlying network is modelled as a FIFO

queue with capacity 𝑞det for deterministic traffic and a separate priority queue

(served in the order of the datagrams’ associated scalar priority values) with

capacity 𝑞opp for opportunistic traffic.

4.3.1 Control System Model
As in Chapter 3, we assume that all NCS are sampled synchronously. The plant

of NCS 𝑖 ∈ {1, … , 𝑁} is modelled as a discrete-time LTI system

𝑥 𝑖𝑘+1 = 𝐴𝑖𝑥 𝑖𝑘 + 𝐵𝑖𝑢𝑖𝑘 , (4.1)

where 𝑥 𝑖𝑘 ∈ ℝ𝑛𝑖
is the state and 𝑢𝑖𝑘 ∈ ℝ𝑚𝑖

is the applied input of plant 𝑖 at time 𝑡𝑘 .

We assume that all (𝐴𝑖 , 𝐵𝑖) are controllable. Again, the QoC of system 𝑖 is defined

using the infinite-horizon LQ cost

𝐽 𝑖 =
∞

∑
𝑘=1

𝑥 𝑖⊤𝑘 𝑄 𝑖𝑥 𝑖𝑘 + 2𝑥 𝑖⊤𝑘 𝐻 𝑖𝑢𝑖𝑘 + 𝑢𝑖⊤𝑘 𝑅
𝑖𝑢𝑖𝑘 , (4.2)

42

4.3 System Model

𝑃
𝑥𝑘𝑢𝑘

𝐾

𝑇𝑠
𝑥𝑘−1

𝑃̂
𝑥̂𝑘

𝜃𝑘−1𝑇𝑠
𝑥̂𝑘−1

Figure 4.2: An individual NCS consisting of plant 𝑃 , state predictor 𝑃̂ , and actuator-
colocated controller 𝐾

where [
𝑄𝑖 𝐻 𝑖

𝐻 𝑖⊤ 𝑅𝑖] ≻ 0.

To model the control input 𝑢𝑖 , we distinguish between two cases based on

where the controller is located.

Actuator-colocated controller When located at the actuator node, as considered,

e.g., in [BA12] and shown in Figure 4.2, the controller calculates the input based on

a state estimate 𝑥̂ 𝑖𝑘 ∈ ℝ𝑛𝑖
that is updated based on the received state measurements

𝑥̂ 𝑖𝑘 = 𝜃 𝑖𝑘−1𝐴
𝑖𝑥 𝑖𝑘−1 + (1 − 𝜃 𝑖𝑘−1)𝐴

𝑖 𝑥̂ 𝑖𝑘−1 + 𝐵𝑖𝑢𝑖𝑘−1, (4.3)

𝑢𝑖𝑘 = −𝐾 𝑖 𝑥̂ 𝑖𝑘 , (4.4)

where 𝜃 𝑖𝑘 indicates whether the datagram transmitted at time 𝑡𝑘 , which contains

the state measurement 𝑥 𝑖𝑘 of NCS 𝑖, has been successfully received at the controller

by time 𝑡𝑘+1 (𝜃 = 1) or not (𝜃 = 0). The state estimate update (4.3) compensates

for a constant transfer delay of 𝑇𝑠 and for dropped packets. We assume that a

controller gain matrix 𝐾 𝑖
is given such that 𝐴𝑖 −𝐵𝑖𝐾 𝑖

is Schur. For our evaluations

we use a standard LQR optimal controller for 𝐾 𝑖
, which satisfies this condition

under the assumptions given above.

Sensor-colocated controller When located at the sensor node, as considered,

e.g., in [LA17] and shown in Figure 4.3, the controller transmits a predictive

control input

𝑢̂𝑖𝑘+1 = −𝐾 𝑖
𝑘(𝐴

𝑖𝑥 𝑖𝑘 + 𝐵𝑖𝑢𝑖𝑘) (4.5)

at time 𝑡𝑘 . Note that we allow for time-variant control matrices 𝐾 𝑖
𝑘 in this set-up.

Design conditions for these matrices will be discussed in Section 4.5. At time 𝑡𝑘+1,
the actuator applies a control input according to the policy

𝑢𝑖𝑘+1 = 𝜃 𝑖𝑘 𝑢̂
𝑖
𝑘+1 + (1 − 𝜃 𝑖𝑘)ℎ

𝑖𝑢𝑖𝑘 , (4.6)

43

4 Opportunistic Scheduling

𝑃
𝑥𝑘𝑢𝑘

𝐾𝑘𝑢̂𝑘+1
𝑇𝑠𝑢̂𝑘

𝑃̂
𝑥̂𝑘+1

𝜃𝑘−1 ℎ

Figure 4.3: An individual NCS consisting of plant 𝑃 , state predictor 𝑃̂ , and (time-

varying) sensor-colocated controller 𝐾𝑘

where the right hand term is used for loss compensation. Again, 𝜃 𝑖𝑘 indicates if the

datagram transmitted at time 𝑡𝑘 , which in this case contains 𝑢̂𝑖𝑘+1, was successfully

received at the actuator by 𝑡𝑘+1. The hold parameter ℎ𝑖 ∈ {0, 1} determines

whether to use the zero or the hold strategy for packet loss compensation, namely,

if the control input should be reset to zero or rather be maintained at the previous

value when no new datagram arrives. A discussion of these two strategies in the

context of random packet loss can be found in [Sch09].

4.3.2 Transmission Model
In this chapter, we adopt the DOTS model presented in Section 2.2 for decoupling

stability guarantees and performance optimization. Thereby, we distinguish

between deterministic (guaranteed) and opportunistic transmissions. For this, we

perform a time-based classification of datagrams into these two traffic classes for

each control loop.

We assume that there is an underlying grid of timeslots for all transmissions

which is determined by the sampling times 𝑡𝑘 . For each NCS 𝑖, we denote the

phase shift as 𝑠𝑖 and the deterministic transmission period as 𝑑 𝑖
. Thereby, the

transmission times 𝑡𝑘 of all deterministic transmissions of NCS 𝑖 are characterized

by

𝑘 ≡ 𝑠𝑖 (mod 𝑑 𝑖), (4.7)

and we denote the set of all NCS with a deterministic transmission at time 𝑡𝑘 as

𝐷𝑘 = {𝑖 ∣ 𝑘 ≡ 𝑠𝑖 (mod 𝑑 𝑖)} ⊆ {1, … , 𝑁}. We assume that deterministic datagrams

are marked accordingly, for instance using the Ethernet PCP header field specified

in IEEE 802.1Q, and

𝑖 ∈ 𝐷𝑘 ⟹ 𝜃 𝑖𝑘 = 1, (4.8)

as the corresponding transmissions are guaranteed. All other transmission slots

are opportunistic, and carry no a priori guarantees.

44

4.3 System Model

Deterministic transmissions are handled as (isolated) real-time traffic with

strictly bounded queueing delay. We therefore assume that
||𝐷𝑘 || ≤ 𝑞det, i.e., the

total number of deterministic transmissions in each timeslot is no greater than

the capacity for deterministic transmissions, which corresponds to the size of a

batch of datagrams that can be transferred with an overall end-to-end transfer

delay of at most one sampling period 𝑇𝑠 .
Note that the network model implied by these assumptions, as shown in Fig-

ure 4.1, need not be realized using a single switch, but can be considered as an

abstraction of a multi-hop network with features such as those provided by stan-

dard TSN, specifically IEEE 802.1Qbv. While these standards define the necessary

mechanisms for realizing highly synchronized TDMA schedules on switches,

a number of algorithms have been proposed in the literature [Cra+16; DN16;

NDR16] for calculating these schedules for a set of (periodic) time-triggered traffic

flows, such that deterministic end-to-end delay bounds are guaranteed. Note

also that transmission times 𝑡𝑘 need not be strictly synchronized among all NCS

(which simply implies worst-case queueing delay), but may also be shifted on time

scales smaller that 𝑇𝑠 , depending on the chosen TSN scheduling approach. Finally,

𝑞det is not required to be constant, but can be taken as time-varying without loss

of generality.

4.3.3 Packet Priority Scheduler Model

While we assume that—from the perspective of an individual application—no

assumptions can be made about the success of an opportunistic transmission

in isolation, we introduce a fixed-capacity priority queueing model in order to

reason about 𝜃 𝑖𝑘 , 𝑖 ∉ 𝐷𝑘 over the set of all NCS for the purpose of formulating a

joint performance optimization goal in Section 4.4.
3

As shown in Figure 4.1, we assume that all datagrams classified as opportunistic

traffic are added to a queue with capacity 𝑞opp. Furthermore, any opportunistic

datagram from NCS 𝑖 in slot 𝑘 is tagged with a scalar packet priority 𝑣𝑖
𝑘 at the

source, which we will specify in Section 4.5. The datagrams in the opportunistic

queue are served by descending priority, so that that the 𝑞opp highest-priority

datagrams are delivered within (at most) one sampling period 𝑇𝑠 , whereas the

lower-priority datagrams are considered to be dropped.

Therefore, if we sort all opportunistic datagrams in time slot 𝑘 according to

3
Note, however, that our core contributions are still valid even when no guarantees whatsoever

are made for opportunistic transmissions. Most importantly, stability guarantees are completely

independent from the service level for opportunistic slots.

45

4 Opportunistic Scheduling

their packet priorities

𝑣𝑖1
𝑘 ≥ 𝑣𝑖2

𝑘 ≥ ⋯ ≥ 𝑣𝑖𝑁−|𝐷𝑘 |

𝑘 , 𝑖𝑗 ∉ 𝐷𝑘 , (4.9)

then 𝜃 𝑖𝑘 =

{
1 𝑖 ∈ {𝑖1, 𝑖2, … , 𝑖𝑞opp

}
0 otherwise.

(4.10)

This is equivalent to choosing a subset of 𝑞opp datagrams for which the sum of

packet priority values is maximal, i.e.

∑
𝑖∉𝐷𝑘

𝜃 𝑖𝑘𝑣
𝑖
𝑘 = max

|𝑆|≤𝑞opp

𝑆∩𝐷𝑘=∅

∑
𝑖∈𝑆

𝑣𝑖
𝑘 . (4.11)

Note that, like for deterministic traffic, 𝑞opp is not required to be constant. For

instance, if a constant capacity for 𝑞 real-time datagrams is available in each

slot 𝑘 through a corresponding (static) TSN schedule, of which 𝑞 𝑘
det

deterministic

transmissions are allotted, the “leftover” capacity 𝑞 𝑘
opp

= 𝑞 − 𝑞 𝑘
det

could be made

available for opportunistic transmissions (e.g., using the same TSN schedule with

PCP 7 for deterministic and PCP 6 for opportunistic datagrams).

We stress that the (continuous) packet priority 𝑣𝑖
𝑘—which defines the order of

datagrams within the (abstract) priority queue—does not correspond to the the

3-bit PCP value in the IEEE 802.1Q header, which is used to assign datagrams

to FIFO ordered switch-internal queues with different priorities. While priority

queueing is not readily available in commodity hardware, it can be implemented,

e.g., as a virtual network function (VNF) [LC15] in software. In Section 3.7.1, we

have already shown a corresponding proof-of-concept middlebox implementation

of a high-performance priority queue scheduler using DPDK. Network function

virtualization (NFV) platforms such as NetVM [HRW15] or ClickOS [Mar+14]

allow easy deployment and high-throughput realization of VNFs. In [Siv+13], it

has even been suggested to directly control the fast-path scheduling and queueing

behaviour of high performance hardware switches in a “software-defined” manner.

Moreover, we point out that the conceptual priority queue in our model can

be realized by an equivalent cascade of (identical) priority queues in a multi-

hop network, since the priority order is transitive and queueing delays are only

incurred at bottleneck points.

4.4 Problem Statement

Our goal is to provide a communication service for a set of NCS based on the

system model presented in Section 4.3, which satisfies the following conditions:

46

4.5 Opportunistic Packet Prioritization

(C1) Stability and worst-case LQ cost analysis can be performed at the application

layer for each NCS 𝑖 individually, depending only on its deterministic slot

period 𝑑 𝑖
and not requiring any knowledge about opportunistic transmis-

sions.

(C2) A controller minimizing the worst-case LQ cost (i.e., minimum QoC) can be

determined at the application layer for each NCS 𝑖 individually, depending

only on its deterministic slot period 𝑑 𝑖
and not requiring any knowledge

about opportunistic transmissions.

(C3) The packet priorities for all opportunistic datagrams are chosen such that

the overall LQ cost

 =
𝑁

∑
𝑖=1

𝐽 𝑖 (4.12)

is minimal, subject to the constraint that at any time 𝑡𝑘 no assumptions are

made about any opportunistic transmissions at times 𝑡 > 𝑡𝑘 .

4.5 Opportunistic Packet Prioritization
In Section 4.5.1, we first derive a nominal model of each individual control system

that expresses the evolution of the plant state from one deterministic slot to the

next, under the assumption that no opportunistic transmissions are successful.

Based on this, we derive a pessimistic cost-to-go model and stability condition

for (C1) and develop surrogate models in the same form as (4.1)–(4.2) for the

controller design to satisfy (C2). In Section 4.5.2, we derive packet priorities and

additional constraints for satisfying condition (C3).

In the following, we perform most of our analysis on a single representative

NCS in isolation. Therefore, we will drop the superscript index 𝑖 identifying a

specific NCS wherever it is not technically necessary. Note that, nonetheless,

all NCS need not be identical but can have different dynamics and controller

configurations.

4.5.1 Nominal Application Model
Without loss of generality, we assume that the NCS under observation has phase

shift 𝑠 = 0 for deterministic transmissions, as we can simply apply the transfor-

mation 𝑘 ↦ 𝑘 + 𝑠 to get back to the reference transmission grid. Therefore, the

deterministic transmission slots are given by 𝑘𝑙 = 𝑙𝑑 , 𝑙 ∈ ℕ and the dynamics from

𝑘𝑙 to 𝑘𝑙+1 for an initial state 𝑥𝑘𝑙 are given by applying (4.1), together with (4.3)–

(4.4) for the actuator-colocated or (4.5)–(4.6) for the sensor-colocated controller,

recursively with 𝜃𝑘𝑙 = 1 and 𝜃𝑘𝑙+1 = ⋯ = 𝜃𝑘𝑙+𝑑−1 = 0.

47

4 Opportunistic Scheduling

Augmented state space To express this more conveniently, we first use the

familiar approach of rewriting the system equations in terms of an augmented

state variable 𝜒 , given by either

𝜒𝑘 = [
𝑥𝑘
𝑥̂𝑘]

or 𝜒𝑘 = [
𝑥𝑘
𝑢𝑘]

(4.13)

for the actuator-colocated or sensor-colocated controller, respectively. The system

equations and LQ cost in terms of the augmented state are

𝜒𝑘+1 =  𝜃𝑘
𝑘 ⋅ ⋅ 𝜒𝑘 (4.14)

𝐽 =
∞

∑
𝑘=1

𝜒⊤𝑘𝜒𝑘 , (4.15)

with

 = [
𝐴 −𝐵𝐾
0 𝐴 − 𝐵𝐾] , 𝑘 = [

𝐼 0
𝐼 0] ,  = [

𝑄 −𝐻𝐾
−𝐾⊤𝐻⊤ 𝐾⊤𝑅𝐾] (4.16)

for the actuator-colocated controller and

 = [
𝐴 𝐵
0 ℎ𝐼] , 𝑘 = [

𝐼 0
−𝐾𝑘 0] ,  = [

𝑄 𝐻
𝐻⊤ 𝑅] (4.17)

for the sensor-colocated controller. Note that  1
𝑘 = 𝑘 and  0

𝑘 = 𝐼 , meaning that

we describe each iteration step of the NCS model in the augmented state space as

an open-loop iteration, i.e., 𝜒𝑘 , possibly followed by a multiplication from the

left with 𝑘 which emulates the update of 𝑥̂𝑘+1 or 𝑢𝑘+1 as a result of a successful

transmission if 𝜃𝑘 = 1.

Nominal model The system model for the nominal execution, where only de-

terministic transmissions are successful, can now be written in the augmented

state space as

𝜒𝑘𝑙+1 = Φ𝑑 ⋅ 𝜒𝑘𝑙 ∶= 𝑑−1  ⋅ 𝜒𝑘𝑙 (4.18)

and the LQ cost incurred during each (𝑑-step) iteration of the nominal model is

𝑘𝑙+1−1

∑
𝑘=𝑘𝑙

𝜒⊤𝑘𝜒𝑘 = 𝜒⊤𝑘𝑙𝜒𝑘𝑙 +
𝑑−2

∑
𝑗=0

𝜒⊤𝑘𝑙
⊤ ⊤𝑗⊤𝑗 𝜒𝑘𝑙 (4.19)

= 𝜒⊤𝑘𝑙( +⊤ ⊤Ω𝑑−1 )𝜒𝑘𝑙 , (4.20)

where we define

Ω0 = 0, Ω𝑛+1 =  +⊤Ω𝑛 (4.21)

48

4.5 Opportunistic Packet Prioritization

for convenience of notation. Note that the nominal model is sampled only at

the deterministic slots, as the dynamics in the opportunistic slots is completely

predetermined in the nominal case. It allows us to determine the stability and

nominal (i.e., worst-case) LQ cost of the NCS, as shown in the following Theorem.

Theorem 4.1 (Nominal LQ Cost and Stability). The LQ cost (4.15) of the nominal
model (4.18) in terms of the augmented state space for an initial value 𝜒0 in the
initial deterministic slot 𝑘0 is given by

𝐽nom = 𝜒⊤0𝑃nom𝜒0, (4.22)

where 𝑃nom solves the discrete Lyapunov equation

𝑃nom = Φ⊤
𝑑 𝑃nom Φ𝑑 + 𝑄nom (4.23)

with 𝑄nom =  +⊤ ⊤Ω𝑑−1 . (4.24)

Moreover, if 𝑄nom and 𝑃nom are positive definite, the nominal system is globally
asymptotically stable.

Proof. Given the linear model (4.18) for the nominal system and associated stage

cost (4.19)–(4.20), we use the ansatz

𝐽nom(𝜒𝑘𝑙) = 𝜒⊤𝑘𝑙𝑃nom𝜒𝑘𝑙 (4.25)

for the nominal cost-to-go at any deterministic slot 𝜒𝑘𝑙 , which we can then write

recursively as

𝐽nom(𝜒𝑘𝑙) = 𝜒⊤𝑘𝑙( +⊤ ⊤Ω𝑑−1 )𝜒𝑘𝑙 + 𝐽nom(𝜒𝑘𝑙+1)
= 𝜒⊤𝑘𝑙( +⊤ ⊤Ω𝑑−1  + Φ⊤

𝑑𝑃nomΦ𝑑)𝜒𝑘𝑙 . (4.26)

The identity of (4.25) and (4.26) leads directly to (4.23)–(4.24). The stability result

follows by noting that under the given conditions 𝐽nom(𝜒) is also a Lyapunov

function for the nominal system (cf., e.g., [Kha02]). ■

Of course, standard numerical methods are available for solving the Lyapunov

equation (4.23), e.g., [Lau79]. Note that these results are derived under the as-

sumptions that all opportunistic transmissions are unsuccessful. However, we

will show in Section 4.5.2 that stability of the nominal system also implies stability

of realizations with opportunistic transmissions, and that the nominal LQ cost is

not exceeded, if certain constraints are imposed on opportunistic transmissions.

49

4 Opportunistic Scheduling

Controller design The previously described stability and cost analysis for the

nominal case does not depend on a certain controller gain 𝐾 , which may be

arbitrarily chosen. Note that the matrices in (4.16)–(4.17) depend on the chosen

(possibly time-varying) controller gain. Therefore, we cannot simply derive the

nominal optimal controller using a standard LQR design for the nominal system.

Rather, to satisfy (C2) we present Theorem 4.2 and Theorem 4.3 for designing

controllers that minimize the nominal LQ cost.

Designing an optimal controller for the nominal system is simplest in the

actuator-colocated setup. Due to the dynamic control law (4.3)–(4.4), the dynamics

of the open-loop system coincides with that of the closed-loop system after the

first deterministic slot, whereafter 𝑥̂𝑘 ≡ 𝑥𝑘 . This leads directly to the following

Theorem.

Theorem 4.2 (Optimal Actuator-colocated Controller). Let 𝐾̂ be the gain matrix
of the LQ optimal controller 𝑢𝑘 = −𝐾̂𝑥𝑘 for the original open-loop system (4.1), with
the LQ stage cost as in (4.2). Setting 𝐾 = 𝐾̂ in (4.4) also minimizes the LQ cost of
the nominal system.

For the sensor-colocated setup, on the other hand, the control value transmitted

in deterministic slot 𝑘′ is either held or set to zero after the following slot until

the next deterministic slot 𝑘′ + 𝑑 . Therefore, to design an optimal controller

for the nominal system, we must take into account both the state evolution and

the accumulated LQ stage cost over the complete interval between consecutive

deterministic slots. As the control gain 𝐾𝑘′ from deterministic slot 𝑘′ is applied

predictively to obtain 𝑢𝑘′+1 = −𝐾𝑘′𝑥𝑘′+1, cf. (4.5), we shift the frame of reference

for the nominal model to the dynamics from step 𝑘′ + 1 to 𝑘′ + 𝑑 + 1. (Note that

this does not impact the total LQ cost, as the stage cost up to and including the

first deterministic slot is unaffected by the choice of 𝐾𝑘′ .) By repeatedly applying

(4.14) we get

𝜒𝑘′+𝑑+1 = [
𝑥𝑘′+𝑑+1
𝑢𝑘′+𝑑+1]

= 𝑘′+𝑑𝑑
[
𝑥𝑘′+1
𝑢𝑘′+1]

. (4.27)

Furthermore, the accumulated LQ stage cost over this interval is

𝑘′+𝑑

∑
𝑘=𝑘′+1

𝜒⊤𝑘𝜒𝑘 =
𝑑−1

∑
𝑗=0

𝜒⊤𝑘′+1𝑗⊤𝑗𝜒𝑘′+1 = 𝜒⊤𝑘′+1Ω𝑑𝜒𝑘′+1. (4.28)

Theorem 4.3 (Optimal Sensor-colocated Controller). Let 𝐾̂ be the gain matrix of

50

4.5 Opportunistic Packet Prioritization

the LQ optimal controller 𝑢𝑘 = −𝐾̂𝑥𝑘 for the surrogate system

𝑥𝑘+1 = 𝐴𝑑 ⋅ 𝑥𝑘 + 𝐵𝑑 ⋅ 𝑢𝑘 , (4.29)

𝐽 =
∞

∑
𝑘=0

𝑥⊤𝑘𝑄𝑑𝑥𝑘 + 2𝑥⊤𝑘𝐻𝑑𝑢𝑘 + 𝑢⊤𝑘𝑅𝑑𝑢𝑘 , (4.30)

where [
𝐴𝑑 𝐵𝑑
∗ ∗] = 𝑑 and [

𝑄𝑑 𝐻𝑑
𝐻⊤
𝑑 𝑅𝑑]

= Ω𝑑 . (4.31)

Setting 𝐾𝑘𝑙 = 𝐾̂ in (4.5) for deterministic slots 𝑘𝑙 also minimizes the LQ cost of the
nominal system.

Proof. The surrogate model (4.29)–(4.30) with (4.31) is obtained directly by rewrit-

ing (4.27)–(4.28) in terms of 𝑥𝑘′+𝑑+1, 𝑥𝑘′+1, and 𝑢𝑘′+1 from the original state space,

and substituting the time index 𝑘 + 𝑗 for 𝑘′ + 𝑗𝑑 + 1. ■

Of course, the surrogate system models in Theorem 4.2 and Theorem 4.3 can

also be used to design non-optimal controllers with other desired characteristics.

4.5.2 Opportunistic Performance Optimization
Now that we have derived means to analyse the stability and performance of

each NCS individually, and to design controllers under nominal (worst-case)

assumptions about the communication service, we are ready to tackle condition

(C3), i.e., to leverage packet priority scheduling of the opportunistic traffic to

optimize the overall control performance of all NCS. As the priority scheduler

in the network maximizes in each time step 𝑘 the sum of packet priorities of

successful transmissions, cf. (4.11), the natural approach would be to assign to

each datagram the potential reduction in LQ cost-to-go if its transmission were

successful as a packet priority, i.e., in terms of the augmented state

𝑣𝑘 = 𝐽(𝜒𝑘) − 𝐽( 𝜒𝑘) (4.32)

Thereby, the total LQ cost-to-go of all NCS would be directly minimized.

Unfortunately, the cost-to-go function 𝐽 (𝜒) in (4.32) admits no known closed-

form expression as far as we know, because it depends on all future opportunistic

transmissions, which in turn would depend on the packet priorities 𝑣𝑘 defined

by (4.32). Therefore, we pessimistically approximate the cost-to-go for an oppor-

tunistic slot 𝑘′ by assuming that all future opportunistic transmissions would fail,

i.e., 𝜃 𝑖𝑘 ≡ 0, 𝑘 > 𝑘′, 𝑖 ∉ 𝐷𝑘 . This pessimistic cost-to-go is given by the accumulated

stage cost from slot 𝑘 up to the next deterministic slot, plus the nominal cost-to-go

𝐽nom at that time. For the sake of convenience, we consider only opportunistic slots

51

4 Opportunistic Scheduling

in the interval 𝑘 = 1, … , 𝑑 − 1 between the first two deterministic slots, noting as

in Section 4.5.1 that the results can be generalized to all time steps by appropriate

transformation of 𝑘.

We generalize the nominal cost-to-go to opportunistic slots by defining 𝐽 𝜃𝑘 (𝜒𝑘)
as the pessimistic cost-to-go as described above where 𝜃𝑘 = 𝜃 indicates the

(potential) success of the opportunistic transmission in slot 𝑘:

𝐽 𝜃𝑘 (𝜒𝑘) ∶= 𝜒⊤𝑘 𝑃
𝜃
𝑘 𝜒𝑘 (4.33)

=
𝑑−1

∑
𝑗=𝑘

𝜒⊤𝑗 𝜒𝑗 + 𝐽nom(𝜒𝑑) (4.34)

= 𝜒⊤𝑘( +
𝑑−𝑘−2

∑
𝑗=0

⊤ 𝜃⊤
𝑘 𝑗⊤𝑗 𝜃

𝑘 )𝜒𝑘

+𝐽nom(𝑑−𝑘−1 𝜃
𝑘 𝜒𝑘)

(4.35)

= 𝜒⊤𝑘( +⊤ 𝜃⊤
𝑘 (Ω𝑑-𝑘-1 +𝑑-𝑘-1⊤𝑃nom𝑑-𝑘-1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑀𝑘

)
𝜃
𝑘 )𝜒𝑘 (4.36)

Lemma 4.4 (LQ Cost With Opportunistic Transmissions). Given the following
priority metric

𝑣𝑘 ∶= 𝜒𝑘Δ𝑘𝜒𝑘 , (4.37)

where Δ𝑘 = ⊤(𝑀𝑘 −  ⊤
𝑘 𝑀𝑘𝑘) (4.38)

and 𝑀𝑘 = Ω𝑑−𝑘−1 +𝑑−𝑘−1⊤𝑃nom𝑑−𝑘−1
(4.39)

for any opportunistic slot 0 < 𝑘 < 𝑑 (w.l.o.g.), the actual LQ cost, i.e., the cost-to-go
from an (initial) deterministic slot 𝑘 = 0, of an NCS is

𝐽 = 𝐽 (𝜒0) = 𝐽nom(𝜒0) − 𝑣𝑘 (4.40)

if exactly one opportunistic transmission is successful in slot 𝑘 or more generally

𝐽 = 𝐽 (𝜒0) = 𝐽nom(𝜒0) −
𝑑−1

∑
𝑘=1

𝜃𝑘𝑣𝑘 (4.41)

if all 𝜃𝑘 were known for 0 < 𝑘 < 𝑑 . This result generalizes to all slots by substituting
(𝑘 mod 𝑑) for 𝑘 in (4.38)–(4.39) and ⌊ 𝑘

𝑑 ⌋ ⋅ 𝑑 for 0 in (4.40)–(4.41).

52

4.5 Opportunistic Packet Prioritization

Proof. From (4.33)–(4.36) and (4.39), the nominal cost decrease for opportunistic

transmissions (4.32) follows as

𝐽 0𝑘 (𝜒𝑘) − 𝐽 1𝑘 (𝜒𝑘) = 𝜒⊤𝑘(𝑃
0
𝑘 − 𝑃1

𝑘)𝜒𝑘 , (4.42)

= 𝜒⊤𝑘(� +⊤𝑀𝑘 −� −⊤ ⊤
𝑘 𝑀𝑘𝑘)𝜒𝑘 (4.43)

= 𝜒⊤𝑘⊤(𝑀𝑘 −  ⊤
𝑘 𝑀𝑘𝑘)𝜒𝑘 = 𝑣𝑘 . (4.44)

The results (4.40)–(4.41) follow directly from the definition of 𝐽 𝜃𝑘 . ■

Note that the cost in (4.40) is no greater than the nominal cost 𝐽nom only if

the priority metric 𝑣𝑘 is non-negative. While this is satisfied for the actuator-

colocated controller if 𝐾 is chosen LQ optimal, it cannot be guaranteed for the

sensor-colocated controller due to the zero or hold compensation scheme, if no

special assumptions about the gain matrices 𝐾𝑘 are made. Therefore, we can only

guarantee that the cost is not increased by suppressing transmissions with 𝑣𝑘 < 0
similarly as in [Mar+10], which leads directly to the following Theorem.

Theorem 4.5 (Opportunistically LQ-optimal Packet Priorities). Let no assumptions
be available at time 𝑘 about 𝜃𝑘′ for any opportunistic slots 𝑘′ > 𝑘. Using the priority
scheduler (4.9)–(4.10) for the opportunistic traffic of a set of 𝑁 NCS, the total LQ
cost (4.12) is minimized by choosing the packet priorities in slot 𝑘 as in (4.37)

4 with
the additional constraint

𝑣𝑖
𝑘 < 0 ⟹ 𝜃 𝑖𝑘 = 0. (4.45)

Proof. The result follows directly from the priority scheduler definition (4.11)

and the joint LQ cost definition (4.12), taking the individual LQ costs 𝐽 𝑖 as in

(4.40). ■

Just as in Theorem 4.1, we can also infer the stability of each NCS from its

associated (pessimistic) cost-to-go function.

Theorem 4.6 (Stability With Opportunistic Transmissions). If the nominal system
(4.18) is globally asymptotically stable, then the NCS with (arbitrary) opportunistic
transmissions subject to the constraint (4.45) is also globally asymptotically stable.

Proof. We use the Lyapunov function 𝐽nom for the nominal system known from

the proof of Theorem 4.1 as a Lyapunov function candidate for arbitrary realiza-

tions with opportunistic transmissions. From (4.41) we can derive that for any

deterministic slot 𝑘′, the remaining nominal cost-to-go in the following step is

𝐽 (𝜒𝑘′+1) = 𝐽 (𝜒𝑘′) − 𝜒⊤𝑘′𝜒𝑘′ = 𝐽nom(𝜒𝑘′) − 𝜒⊤𝑘′𝜒𝑘′ −
𝑘′+𝑑−1

∑
𝑘=𝑘′+1

𝜃𝑘𝑣𝑘

4
Note that the matrices ,  , and 𝑀𝑘 are of course different for each NCS in general.

53

4 Opportunistic Scheduling

which is an upper bound for the value 𝐽nom(𝜒𝑘′+𝑑) in the next deterministic slot.

From (4.45), we know that the sum over 𝜃𝑘𝑣𝑘 is non-negative, which implies that

𝐽nom(𝜒𝑘′+𝑑) ≤ 𝐽 (𝜒𝑘′+1) < 𝐽nom(𝜒𝑘′). Therefore, 𝐽nom remains a Lyapunov function

for the nominal system—sampled at the deterministic slots—when opportunistic

transmissions are introduced. Because the term 𝜒⊤𝑘𝑃nom𝜒𝑘 for each opportunistic

slot 𝑘 = 𝑘′ + 1,… , 𝑘′ + 𝑑 − 1 is uniformly bounded by |𝜆max|2𝑑 𝐽nom(𝜒𝑘′), where

𝜆max is the maximum absolute eigenvalue of  𝜃
𝑘  over 𝑘 and 𝜃 , it follows that the

behaviour for the opportunistic slots is also asymptotically stable, cf. [Clo+06]. ■

To further optimize the performance of the sensor-colocated controller for

opportunistic transmissions, we can design 𝐾𝑘 such that the nominal cost decrease,

and thereby the packet priorities, 𝑣𝑘 become maximal. This is the result of our

final Theorem.

Theorem 4.7 (Optimal Opportunistic Controller). Under the assumptions of Theo-
rem 4.5, the time-varying gain matrix for the sensor-collocated controller in each
opportunistic slot minimizing the total LQ cost (4.12) is given by

𝐾𝑘 = (𝑀𝑢𝑢
𝑘)

−1𝑀𝑢𝑥
𝑘 (4.46)

where [
𝑀𝑥𝑥

𝑘 𝑀𝑢𝑥⊤
𝑘

𝑀𝑢𝑥
𝑘 𝑀𝑢𝑢

𝑘] = 𝑀𝑘 . (4.47)

Proof. Because 𝐽 0𝑘 (𝜒𝑘) is independent of 𝐾𝑘 , 𝑣𝑘 can be maximized by minimizing

𝐽 1𝑘 (𝜒𝑘) with respect to 𝐾𝑘 . First, we recall from (4.33)–(4.36) that

𝐽 1𝑘 (𝜒𝑘) = 𝜒⊤𝑘( +⊤ ⊤
𝑘 𝑀𝑘𝑘)𝜒𝑘 (4.48)

= [
𝑥𝑘
𝑢𝑘]

⊤

 [
𝑥𝑘
𝑢𝑘]

+ [
𝑥𝑘+1
𝑢𝑘+1]

⊤

𝑀𝑘 [
𝑥𝑘+1
𝑢𝑘+1]

. (4.49)

The first term is independent of 𝐾𝑘 . Therefore, the whole expression can be

minimized by determining the extremum of the second term with respect to 𝑢𝑘+1
(noting that 𝑢𝑘+1 = −𝐾𝑘𝑥𝑘+1, cf. eqs. (4.1), (4.5), (4.6) with 𝜃𝑘 = 1). Using the fact

that 𝑀𝑘 is symmetric (due to  ≻ 0 and 𝑃nom ≻ 0), and partitioning it as in (4.47),

the minimum of 𝐽 1𝑘 (𝜒𝑘) with respect to 𝑢𝑘+1 is determined by

𝜕
𝜕𝑢𝑘+1

𝜒⊤𝑘+1𝑀𝑘𝜒𝑘+1 = 2𝑀𝑢𝑥
𝑘 𝑥𝑘+1 + 2𝑀𝑢𝑢

𝑘 𝑢𝑘+1
!= 0 (4.50)

⟹ 𝑢𝑘+1 = −(𝑀𝑢𝑢
𝑘)

−1𝑀𝑢𝑥
𝑘 𝑥𝑘+1 (4.51)

which equals −𝐾𝑘𝑥𝑘+1 as in (4.46). ■

54

4.6 Numerical Evaluation

4.6 Numerical Evaluation
In order to demonstrate the effectiveness of our approach and compare it to our

previous work, we now present some simulation-based evaluation results. To

allow scaling the problem size in a meaningful way, we ran simulations of 𝑁
identical NCS with the plant model

𝑥 𝑖𝑘+1 = [
0 1
0.4 0.7] 𝑥

𝑖
𝑘 + [

0
1] 𝑢

𝑖
𝑘 , (4.52)

which has poles at −0.468115 and 1.06811. Each plant has a different initial state

defined by 𝑥 𝑖0 = 𝑖
𝑁 ⋅[1 1]

⊤
, 𝑖 = 1, … , 𝑁 . We assume that a total capacity of 𝑞 = 𝑞det+

𝑞opp = 2 is available. For evaluating our approach we divide this equally between

deterministic and opportunistic transmissions, i.e., 𝑞det = 𝑞opp = 1, and NCS 𝑖 has

deterministic phase shift 𝑠𝑖 = 𝑖 and period 𝑑 𝑖 = 𝑁 , such that deterministic slots are

allocated to all NCS in a round-robin fashion. Our simulation experiments begin

at 𝑘 = 1. Note that this leads to a pessimistic realization, since the magnitude

of each NCS’s initial value is proportional to the time it has to wait for its first

deterministic transmission.

In our evaluation, we compare the scalability and performance of the approach

presented in this chapter (denoted as opp-prio in the figures) by comparing it to

the following alternative approaches:

• Random scheduling of opportunistic transmissions, i.e., using random

packet priorities (denoted as opp-rand in the figures, using mean values

over 100 realizations).

• Round-robin scheduling, where we set 𝑞det = 2 and 𝑞opp = 0, and the

deterministic slot periods are changed to 𝑑 𝑖 = ⌈𝑁
2 ⌉ (denoted as RR in the

figures).

• State-dependent priority scheduling without deterministic slots, where we

set 𝑞det = 0 and 𝑞opp = 2, and all transmissions are scheduled by packet

priority determined as in Chapter 3 (denoted as prio in the figures).
5

Scalability First, we compare the number 𝑁 of NCS that can be accommodated

by the communication service in our approach and in our previous work. In

the introduction we already mentioned that the scalability of the scheduler in

Chapter 3 is limited by the feasibility of the associated SDP optimization problem.

5
For the sake of comparison, we extended the scheduler in Chapter 3 to also support the sensor-

colocated controller setup, by exchanging the augmented state models in (3.9)–(3.10) with corre-

sponding models using the expressions from (4.17).

55

4 Opportunistic Scheduling

Table 4.1: Maximum number 𝑁max of NCS depending on controller set-up (AC for

actuator-, SC for sensor-colocated), loss compensation strategy (zero or

hold) and approach used.

AC SC (zero) SC (hold)

𝑁max for opportunistic scheduler 1044 460 526

𝑁max for scheduler in Chapter 3 17 11 5

By contrast, in our current approach, the number of NCS is limited by the schedu-

lability of their deterministic slots. For our evaluation set-up described above, we

can accommodate 𝑁 ≤ 𝑞 ⋅ 𝑑max NCS, where 𝑑max is the maximum period for which

the nominal system is stable, assuming that we allocate all of the capacity 𝑞 = 𝑞det

to deterministic slots. The comparison chart in Table 4.1 shows that our current

approach vastly outperforms our previous work in terms of schedulability for all

considered controller configurations.

Next, we evaluate the time required for calculating the packet priority coeffi-

cient matrices Δ𝑖
𝑘 , 𝑖 = 1, … , 𝑁 , 𝑘 = 1, … , 𝑑 𝑖 − 1 for a set of 𝑁 heterogeneous NCS

with the same state dimensions as (4.52), where we consider only the actuator-

colocated set-up, since it provides the largest range of feasible solutions for the

scheduler in Chapter 3. Figure 4.4 shows the average runtimes using one core on

a PC with 2.7 GHz Intel Core i7-2620M CPU and 16GB RAM. In Chapter 3, the

coupling of stabilization and performance optimization requires solving an SDP

optimization problem, for which we used the commercial Mosek solver [MOS18].

As our current approach only requires the solution of the Lyapunov equation

(4.23) and evaluation of the matrix expressions (4.38)–(4.39), it can be seen to

be faster by a factor of about 300. Note also that incrementally adding an NCS

typically requires only the calculation of additional matrices Δ𝑖
𝑑+1, which based on

the previously calculated matrices takes on the order of one millisecond, whereas

in Chapter 3 we need to solve a complete SDP problem again.

Performance In Figure 4.5, we compare the control performance achieved for a

simulation of the set-up with NCS (4.52) over 1000 time steps using our approach

in comparison with the alternative approaches listed above. We plot the total LQ

cost 𝐽 relative to the nominal (i.e., worst-case) cost 𝐽nom = 𝐽 0𝑘 (𝜒1), over varying total

number 𝑁 of NCS. We can see that our approach always outperforms the random

and round-robin approaches. For the actuator-colocated set-up, the performance

of our approach is inferior to the performance achieved by the scheduler in

Chapter 3, which is offset however by the vastly improved scalability. For the

sensor-colocated set-up with zero loss compensation (ℎ = 0), the performance

56

4.7 Summary and Discussion

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

101

102

103

𝑁

R
u

n
t
i
m

e
[m

s]
opp-prio

prio

Figure 4.4: Runtime for calculating {Δ𝑖
𝑘} for a set of 𝑁 heterogeneous NCS with

the same dimensions as (4.52) using the opportunistic scheduler (opp-

prio), compared to the scheduler in Chapter 3 (prio).

of our approach is comparable to that of our previous work. Finally, for the

sensor-colocated set-up with hold loss compensation (ℎ = 1), our approach is

superior, which is also due to the overall bad performance of our previous work

in this set-up.

4.7 Summary and Discussion

In this chapter, we have introduced a mixed-criticality communication service

leveraging the DOTS model, which allows us to guarantee stability for individual

NCS and optimize the joint control performance for a set of heterogeneous NCS.

Our priority scheduler allows opportunistic traffic to be handled with arbitrary

QoS without impacting the stability or worst-case performance provided by

deterministic transmissions, provided that the appropriate conditions are met

(Theorem 4.6 and/or Theorem 4.7).

We have provided a nominal NCS model that allows guaranteed stability and

worst-case performance analysis (Theorem 4.1) and worst-case optimal controller

design (Theorems 4.2 and 4.3) using standard control theoretic methods. For

opportunistic transmissions, a performance-optimizing packet priority scheduling

policy (Theorem 4.5) and controller design method (Theorem 4.7) have been

derived.

An interesting consequence of our priority scheduler analysis is that the co-

efficient matrices Δ𝑘 for the calculation of packet priorities depend only on the

location of the corresponding opportunistic slot relative to the next/previous de-

terministic slot. This enables a static analysis of the maximum possible datagram

priority, e.g., by determining the spectral radii of  ⊤
𝑘 ⊤

𝑘Δ𝑘𝑘𝑘 for 𝑘 = 1, … , 𝑑 − 1

57

4 Opportunistic Scheduling

a)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

𝑁

𝐽
𝐽nom

opp-prio

opp-rand

RR

prio

b)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

𝑁

𝐽
𝐽nom

opp-prio

opp-rand

RR

prio

c)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

𝑁

𝐽
𝐽nom

opp-prio

opp-rand

RR

prio

Figure 4.5: LQ cost comparison of opportunistic priority scheduler (opp-prio) with

random (opp-rand), round-robin (RR), and priority scheduling as in

Chapter 3 (prio);

a) actuator-colocated setup,

b) sensor-colocated setup with zero strategy,

c) sensor-colocated setup with hold strategy.

58

4.7 Summary and Discussion

to get a profile of the expected packet priorities of the opportunistic transmissions

relative to the norm of the state in the previous deterministic slot. This would

open up avenues for future work, such as optimizing the scheduling of deter-

ministic slots (i.e., phase shifts 𝑠𝑖 and possibly periods 𝑑 𝑖
) in order to minimize

the overall expected priorities in each opportunistic slots, thereby minimizing

the number of collisions of high-priority—and therefore high-performance-gain—

datagrams. Similarly, the routing of flows for opportunistic transmissions could be

optimized by choosing disjoint paths to minimize high-priority collisions. Recent

results on so-called complemental flows [Fal+19a] address scheduling and routing

mechanisms for such types of traffic, and could benefit from application-specific

knowledge about the utility of individual transmission slots. Finally, our nomi-

nal model and associated results could be generalized to allow non-equidistant
deterministic slots in order to improve the schedulability of deterministic trans-

missions.

59

5 Routing

5.1 Introduction

In Chapters 3 and 4, we considered the scheduling problem for multiple control

systems under the assumption that real-time transmission can be guaranteed at

least for a certain limited bandwidth of NCS traffic, either for an entire traffic class

or even for some transmissions individual systems. Currently, this assumption

largely limits the applicability of those results to LANs. In fact, control systems

are conventionally implemented using field-bus networks with deterministic

real-time guarantees at the data link layer, such as the well-known CAN and

PROFIBUS and more specialized Ethernets such as EtherCAT and PROFINET

[GH13]. As already discussed in the previous chapters, TSN [IEE16] now offers

mechanisms for supporting real-time communication in standard IEEE 802.3 Ether-

net. In wide-area networks, however, implementing deterministic control models

based on a best-effort service as provided by the current Internet is unfeasible.

While communication services with guaranteed delay bounds, such as IntServ,

would be an appropriate base for building Internet-scale deterministic NCS, we

cannot expect them to be widely available due to lack of scalability [WM03]. Stan-

dardization efforts by the IETF for deterministic networking (DetNet) [Fin+18]

are still ongoing.

As a consequence, we focus our attention in this chapter on probabilistic control

models, which only require probabilistic delay guarantees. The control methods

for probabilistic communication proposed in the literature (e.g., [BA11; BA13;

BA14; Hee+10; QSG07]) incorporate mathematical stochastic network models

to enable the rigorous analysis of the (stochastic) QoC depending on network

parameters. However, they do not address the problem of mapping these models

to contemporary communication services. Of course, it is not straightforward

to determine which is better: an unreliable service with very short delays, or

a more reliable service with larger delays. In [BA13], the trade-off between

latency and in-time arrival probability for the optimal control of LTI systems has

been investigated in the context of increasing communication reliability using

retransmissions. We spin this idea further in order to explore this trade-off for

optimal routing.

In this chapter, we propose a novel communication service tailored to the spe-

61

5 Routing

cific needs of control systems based on simple probabilistic network models. This

transport-layer service, called NC-service, enables connections from the sensor to

the controller of an NCS. When requesting a connection, the control application

specifies an application-specific QoS model, which is based on the closed-loop LQ

cost. This model specifies the required in-time message arrival probability as a

function of the acceptable delay (given by the sampling period). Due to the range

of admissible combinations of sampling period and arrival probability, there are

possibly a multitude of network paths that fulfil the application’s performance

requirement. We can leverage this degree of freedom by selecting the path that in-

curs the minimal network load. This renders the NC-service a cross-layer service

by incorporating routing functionality.

Selecting the optimal path based on the performance metric described above

requires a customized routing mechanism. We can utilize state of the art SDN

technologies to implement this mechanism, making our approach applicable to

standard networking infrastructures. This approach is well suited to demonstrate

the core benefits of SDN, namely, the flexibility to add new network control logic,

ease of implementing a logically centralized network service, and integration of

the application and network into a holistic system.

In detail, this chapter contains the following contributions:

• An end-to-end transport abstraction for NCS connections based on a prob-

abilistic QoS model tailored to the stochastic control model that expresses

a lower bound on QoC.

• The formal specification of a constrained routing problem to optimally

utilize network bandwidth resources subject to QoC constraints.

• A logically centralized routing algorithm, which can be implemented using

an SDN-based architecture.

• An evaluation demonstrating the effectiveness and feasibility of our ap-

proach.

The rest of this chapter is organized as follows. In Section 5.2 we discuss

related work. We introduce our system model in Section 5.3 and propose an

SDN-based architecture for the NC-service in Section 5.4. After deriving the

QoC requirements for a class of LQR control systems, we describe the transport

layer functionality in Section 5.5. We then show an efficient implementation of

this service on the network layer by formulating and solving an optimal routing

problem in Section 5.6. Section 5.7 evaluating our approach with a simulation

study, and is followed by a discussion and concluding summary in Section 5.9.

62

5.2 Related Work

5.2 Related Work
The stabilizability of NCS depending on the network delay distribution has been

investigated in [BA14] employing a network model similar to ours. There, it is

shown that the minimum arrival probability can be determined analytically under

certain conditions, however, not regarding the LQ performance. In [Xu+14], a

method for designing controllers and sampling periods is presented, depending on

the delay distribution not of the network but of the task response times induced

by priority scheduling of multiple controllers on a shared processor.

In [NDR16], the provisioning of real-time (low-latency, low-jitter) communi-

cation for time-triggered traffic using so-called time-sensitive software-defined

networking (TSSDN) is considered as a routing and transmission scheduling

problem. The TSSDN approach is suitable for LANs with SDN capable commod-

ity switches that do not provide TSN mechanisms for time-aware scheduling

at the data link layer. However, the approach is restricted to networks that are

under the control of one management domain, since the routing algorithm re-

quires global knowledge of all time-sensitive flows in the network, for which

the highest-priority traffic class must be reserved exclusively. In contrast, our

approach considers the routing of individual flows and only requires knowledge

of the latency distributions in the network.

The shortest path problem with on-time arrival reliability is considered in

[NW09] in the context of travel times in transportation networks. However, it

addresses only the delay minimization with respect to a fixed on-time arrival

probability
1

and the dual, i.e., maximizing the on-time arrival probability with

respect to a fixed delay. In contrast, neither delay or arrival probability are fixed

in our approach, but are coupled through the QoC constraint, which allows

us to consider all paths that are admissible for achieving a fixed closed-loop

performance.

5.3 System Model
Our system model is shown in Figure 5.1. The sensor node is connected to the

controller over a network, which we assume to be a packet-switched IP network

with best-effort service semantics. State measurement vectors from the sensor

node may be dropped with variable loss probability and experience a variable

delay. For the sake of simplicity, we assume that the actuators are co-located with

the controller. Therefore, our focus in this chapter is on the connection between

the sensor node and the controller.

1
Specifically, “the latest possible departure time and the associated route to attain a given probability

of arriving at the destination at a specified arrival time or earlier” [NW09]

63

5 Routing

NCS-Controller Plant sensorsactuators

Control System

IP Network

Figure 5.1: System model with networked sensor–controller connection

For the packet-switched network, we assume the availability of standard multi-

layer switches that can forward flows based on IP addresses and higher layer

information such as port numbers. Moreover, we assume that these switches

support the OpenFlow standard [ONF15] for configuring forwarding tables and

enabling our SDN-based architecture described next. Thereby, we confine our

investigation to NCS within one autonomous system. Mechanisms for inter-

domain networking are beyond the scope of this thesis.

5.3.1 Control System Model

In this chapter, we use an NCS model from [BA13]. For the communication

between sensor and controller, this model assumes a constant delay 𝑇𝑠 and arrival
probability 𝑝𝑎 . Furthermore, losses are assumed to be independent and identically

distributed (i.i.d.). The continuous-time plant is modelled using the ODE

𝑥̇(𝑡) = 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑢(𝑡) + 𝑤(𝑡), (5.1)

where 𝑥 ∈ ℝ𝑛
is the state vector of the plant, which is measured by the sensor,

𝑢 ∈ ℝ𝑚
is the input vector of the plant, and 𝑤 ∼  (0,𝑊𝑐) is an external random

Gaussian disturbance.

The sensor is sampled periodically at time instants 𝑡𝑘 , where 𝑡𝑘+1 = 𝑡𝑘 + 𝑇𝑠 . The

sampling period 𝑇𝑠 is assumed to be equal to the constant network delay in the

network model. However, in this chapter we consider 𝑇𝑠 an adjustable parameter

which simultaneously determines the transmission rate of the sensor and specifies

the delay bound for determining the in-time arrival probability.

To compensate for the network delay and possible message loss, we employ

the same one-step predictive controller as in Section 3.3.1. This results in an

64

5.4 Service Architecture

NCS-Controller

Transport Entity

IP Entity

App
Layer

Transport
Layer

Network
Layer

DL Layer

PHY Layer

NCS-Sensors

Transport Entity

IP Entity

NC Socket

North-
bound

South-
bound

SDN Network Controller

NC Routing Service

Data Path

conn. req. conn. ack.
data

route setup
route delete signaling

link monitoring
OpenFlow

Figure 5.2: Service architecture: NC-service components with bold borders

equivalent discrete-time model for the closed-loop system

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 , (5.2)

𝑥̂𝑘+1 = 𝜃𝑘𝐴𝑥𝑘 + (1 − 𝜃𝑘)𝐴𝑥̂𝑘 + 𝐵𝑢𝑘 , (5.3)

𝑢𝑘 = −𝐾𝑥̂𝑘 , (5.4)

where 𝜃𝑘 is a binary indicator for the in-time arrival of measurements. It is now

important to note that the system matrices 𝐴 and 𝐵 as well as the noise covariance

matrix 𝑊 for 𝑤𝑘 ∼  (0,𝑊) and the controller gain matrix 𝐾 depend on the

sampling period 𝑇𝑠 . For the discretization of the continuous-time plant model

(5.1), we refer to [BA13, Sec. III], and for the design of the optimal controller to

[BA13, Sec. V]. Subject to the constraints imposed by the network model, the

controller 𝐾 is designed such as to minimize the LQ cost functional

𝐽 = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑥⊤(𝑡)𝑄𝑥(𝑡) + 𝑢⊤(𝑡)𝑅𝑢(𝑡) d𝑡. (5.5)

As both the external disturbances experienced by the plant and the packet

loss incurred by the network are stochastic, the LQ cost 𝐽 is also a random

variable. However, the expected value of 𝐽 under optimal control can be determined

numerically as a function of the sampling period 𝑇𝑠 and the arrival probability 𝑝𝑎 ,

as shown in [BA13, Theorem 2]. In the following, we denote this function for the

expected LQ cost as E[𝐽] = E𝐽(𝑇𝑠 , 𝑝𝑎).

5.4 Service Architecture
The service architecture of our NC-service is depicted in Figure 5.2, which shows

the relevant components in the five-layer Internet model. As previously men-

65

5 Routing

tioned, our proposed NC-service provides a transport layer interface to the control

application and utilizes a custom routing mechanism to implement the route of

the corresponding NC-connection at the network layer.

The transport functionality of the NC-service is implemented by protocol enti-

ties on the end-systems hosting the sensors and controller. We denote the interface

between application and NC-service as an NC-socket similar to classic sockets

for datagram and streaming services. The transport layer service is responsible

for setting up an NC-connection between sensor and controller, tearing down

connections, data transfer, QoS arbitration, and signalling changes in network

conditions to the application as detailed in the following sections.

In order to set up an NC-connection with a given QoS, a path with certain loss

and delay properties has to be established, which might be adapted during the

life-time of the connection due to changing network conditions. The set-up and

maintenance of routes implementing the required QoS with minimum network

resources is the task of the NC routing service. According to the SDN paradigm, we

implement this service using a logically centralized SDN network controller which

exposes the routing service to the transport layer through its northbound interface.

To calculate a route, the NC routing service obtains necessary QoS information

from the transport layer entity and gathers a global view onto the network through

monitoring of the link properties over the southbound SDN interface (e.g., using

counters to detect lost packets or active probing to determine delays). Based

on this global view, the NC routing service implements the optimal route in the

network by installing the necessary flow table entries in the OpenFlow-enabled

switches (based on the IP addresses and port numbers of NCS controller process

and sensor process and the protocol ID of the NC transport protocol). Whenever

the routing service adapts the route or identifies the need to adjust application

parameters in order to maintain QoS, these changes are signalled back to the

transport layer. Note that route adaptations can be performed in a non-disruptive

fashion without packet loss
2

using techniques for consistent network updates

[Rei+12]. Data packets follow the usual data path through the protocol stack.

5.5 NC Transport Service
We now proceed to design a suitable transport abstraction for NCS which will be

provided by the NC Transport Service (NCT-service for short). In particular, this

abstraction includes the QoS definition used to set up NC-connections. On the

one hand, this definition has to provide the network with the information needed

to efficiently implement NC-connections on the network layer, i.e., to determine

appropriate network paths. On the other hand, the QoS parameters must be in

2
although jitter will increase most likely

66

5.5 NC Transport Service

line with the performance metrics of the application itself. Before presenting the

QoS concept of the proposed NCT-service, we therefore revisit the underlying

NCS model.

5.5.1 QoS Specification

We can use the NCS model to map application performance parameters to network

QoS parameters. From an application perspective, the control engineer wishes the

NCS to maintain a certain performance. She therefore provides an upper bound

𝐽max for the application’s expected cost:

E𝐽(𝑇𝑠 , 𝑝𝑎) ≤ 𝐽max. (5.6)

Given this constraint, we can specify the QoS for the NCS as the required minimum

arrival probability given 𝑇𝑠 :

Definition 5.1 (Minimum Arrival Probability for NCS). The minimum arrival
probability function of an NCS with upper cost bound 𝐽max is given by

𝑝min(𝑇𝑠) = inf
{
𝑝𝑎 ∣ E𝐽(𝑇𝑠 , 𝑝𝑎) ≤ 𝐽max

}
. (5.7)

The function 𝑝min defines a meaningful relationship between delay and arrival

probability as parameters of the NCS model regarding the application’s perfor-

mance. However, to develop a QoS specification for NC-connections, we must

also consider the constraints imposed on these parameters by the network. In the

following, we describe how the arrival probability 𝑝𝑎 depends on the delay bound

𝑇𝑠 .
Recall that in the control model described above the packet delivery time of

state measurements from sensor to controller is assumed to be constant. From

the application’s perspective, this assumption is perfectly justified since sensing

and actuation only occur at predefined time instants. However, in the network

we must account for varying delays. State measurements experiencing a delay

of less than one sampling period 𝑇𝑠 can be buffered by the NCT-service until the

next sampling instant. Those experiencing a greater delay can be discarded as, at

their arrival time, the controller has already applied some input 𝑢 based on its

state estimate. Effectively, the application parameter 𝑝𝑎 describes the probability

of timely end-to-end delivery of NCS packets within the delay bound 𝑇𝑠 . We can

use this effective arrival probability to characterize an NC-connection:

Definition 5.2 (Effective Arrival Probability). Let 𝜎 denote an end-to-end NC-

connection from sensor to controller which imposes a random delay 𝜏𝜎 and

67

5 Routing

random packet loss with probability 𝑝𝜎
loss

. The effective arrival probability 𝑝𝜎 (𝑡)
of this connection is defined as

𝑝𝜎 (𝑡) = 𝑃(𝜏𝜎 ≤ 𝑡) ⋅ (1 − 𝑝𝜎
loss), (5.8)

with respect to the delay bound 𝑡 .

Thus, an NC-connection satisfies the quality of service requirements of the

NCS if we can find a finite positive sampling time 𝑇𝑠 such that the effective arrival

probability exceeds the required minimum arrival probability:

∃𝑇𝑠>𝑇min
𝑝𝜎 (𝑇𝑠) ≥ 𝑝min(𝑇𝑠) (5.9)

Here, we also consider a lower bound 𝑇min on the acceptable minimum sampling

period as a system parameter to limit the data rate of NCS traffic. Note that

expressing QoS as a function of the application-layer parameter 𝑇𝑠 is beneficial

since it allows the network to choose an optimal sampling period based on the

current network delay and loss such that the NCS requirements are fulfilled

with minimal induced network load as we will present in Section 5.6. By using

this lightweight but expressive interface, we retain all degrees of freedom (𝑇𝑠
and network path), while providing separation of concerns between the control

application and the network.

5.5.2 NCT Service Interface
As outlined in Section 5.4, we propose a slight extension of the classic data-

gram socket as an application interface for the NCT-service, which we denote as

NC-socket. Apart from opening and closing NC-connections and sending and

receiving sensor data, NC-sockets also support the passing of NCS-specific QoS

parameters to the NCT-service and signalling of events between network and

NCS, e.g., when the QoS cannot be fulfilled anymore. In the following, we briefly

describe the NC-socket interface as well as the transport service semantics.

To set up an NC-connection, the controller (which we assume initiates the

connection) must pass the QoS specification function 𝑝min(⋅) defined in (5.7) as an

additional parameter to the NC-socket connect primitive. The QoS specification

is passed on via the northbound interface of the SDN network controller to the

NC routing service (cf. below) which determines the optimal route and sampling

period 𝑇𝑠 . The transport entities return the chosen sampling period 𝑇𝑠 to the

controller and sensor nodes through the NC-socket connect/accept primitives,

respectively, and signal handlers are provided to notify the NCS application if the

sampling time has to be changed in order to maintain QoC.

Both connection end-points are also provided with a reference time 𝑡0. Once

the NC-connection is established, the sensor node starts sending measurements

68

5.6 NC Routing Service

𝜈𝑠
𝜈1

𝜈2

𝜈3𝜈4

𝜈5𝜈𝑐

𝜃

𝜏

𝑃(𝜃 =1)
= (𝜈1 , 𝜈3)

𝑃(𝜏 ≤𝑡)= ((𝜈1 , 𝜈3), 𝑡)

𝑡
0

1

𝜏̄ (𝜈1 , 𝜈3)

Figure 5.3: Network model for NC-flow implementation. Each link 𝑒 ∈ 𝐸 obeys

a distinct random packet loss process 𝜃 with arrival probability (𝑒),
and a distinct random delay process 𝜏 with latency distribution (𝑒, ⋅).

to the controller at sampling times 𝑡𝑘 = 𝑡0 + 𝑘 ⋅ 𝑇𝑠 . On each send call, the transport

entity includes a sample number 𝑘 = ⌊ 𝑡−𝑡0
𝑇𝑠 ⌋ corresponding to the current sampling

time 𝑡𝑘 when the measurement was taken. Violations of the delay bound 𝑇𝑠 can

be detected at the controller using the time of arrival, 𝑡0, and 𝑘. Thus, the clocks

of the controller and the corresponding sensor node need to be synchronized

using a standard clock synchronization technique, such as NTP, PTP, or GPS. If

no valid measurement is received within a sampling period, receive times out

and the controller performs a state prediction as shown in Section 5.3.1.

5.6 NC Routing Service

Based on the QoS definition of NC-connections, we can now focus on the problem

of finding optimal network paths for forwarding packets of an NC-connection (or

for short NC-flows) such that the requested QoS is fulfilled and the network load

is minimized. To this end, we define a formal routing problem for NC-flows in

this section after first introducing the prerequisites for this formulation, namely,

a formal network model and definitions of the latency and loss properties of

network paths as well as network load. Finally, we present an optimal routing

algorithm for NC-flows.

5.6.1 Network Model

We model the communication network as a directed graph 𝐺 = (𝑉 , 𝐸, ,) as

depicted in Figure 5.3. It comprises a set 𝑉 of vertices modelling network nodes

69

5 Routing

(multi-layer switches or hosts), and a set 𝐸 ⊆ 𝑉 × 𝑉 of directed edges modelling

network links between nodes. 𝐺 contains two special nodes: 𝜈𝑠 representing the

sensor node, and 𝜈𝑐 representing the host of the controller; all other nodes are

(multilayer) switches. The map  ∶ 𝐸 → [0, 1] describes the arrival probability of

each link 𝑒 ∈ 𝐸, and  ∶ 𝐸 ×ℝ+ → ℝ+
represents the cumulative distribution func-

tion (CDF) of each link’s latency. As notational shorthand for the corresponding

probability density function (PDF), we write 𝓁 (𝑒, 𝑡), i.e.,

(𝑒, 𝑡) = ∫ 𝑡
0 𝓁 (𝑒, 𝜏) d𝜏 .

The transmission of NCS packets is modelled by a stochastic process {𝜃𝑒𝑘 , 𝜏
𝑒
𝑘}𝑘∈ℕ

for each link 𝑒 ∈ 𝐸. Here, 𝜃𝑒𝑘 ∈ {0, 1} is a random binary variable representing

packet arrival, i.e., 𝜃𝑒𝑘 = 0 if and only if the measurement 𝑥(𝑡𝑘) is dropped on link

𝑒, and 𝜏 𝑒𝑘 ∈ ℝ+
denotes the random network delay of 𝑥(𝑡𝑘) on link 𝑒, assuming it

was not lost. As stated above, the stochastic properties of this process are defined

by 𝐺:

𝑃(𝜃𝑒𝑘 = 1) = (𝑒) (arrival probability) (5.10)

𝑃(𝜏 𝑒𝑘 ≤ 𝑡) = (𝑒, 𝑡), 𝑡 ∈ ℝ+
(latency distribution) (5.11)

In accordance with the control model, we assume that the process {𝜃𝑒𝑘 , 𝜏
𝑒
𝑘} is i.i.d.

between sampling instants 𝑡𝑘 and independent over all links. Further, let the mean

latency of link 𝑒 ∈ 𝐸 be denoted by 𝜏̄ (𝑒) = E[𝜏 𝑒𝑘].
In order to obtain the properties of NC-flow routes as link sequences, we define

a 𝑘-hop path as a tuple of the visited nodes 𝜎 = (𝜈1, 𝜈2, … , 𝜈𝑘+1) ∈ 𝑉 𝑘+1
. For 𝑘 ≥ 1,

a path must be connected in 𝐺 and thus satisfy (𝜈 𝑖 , 𝜈 𝑖+1) ∈ 𝐸 for all 𝑖 = 1, … , 𝑘.

For 𝑘 = 0 the path reduces to a single node, which we refer to a as a degenerate
path. We say that two paths 𝜎1 = (𝜈11 , 𝜈21 , … , 𝜈𝑚1) and 𝜎2 = (𝜈12 , 𝜈22 , … , 𝜈𝑛2) are

adjacent if the terminal node of the first coincides with the initial node of the

second, i.e., 𝜈𝑚1 = 𝜈12 . The concatenation of two adjacent paths is denoted as

𝜎1 ◦ 𝜎2 = (𝜈11 , 𝜈21 , … , 𝜈𝑚1 , 𝜈22 , … , 𝜈𝑛2). Finally, we say that two distinct paths are

parallel if the initial and terminal nodes of both paths coincide, i.e., 𝜈11 = 𝜈12 and

𝜈𝑚1 = 𝜈𝑛2 .

5.6.2 Path Properties
By regarding the stochastic properties of link concatenation with respect to delay

and loss,  and  can also be extended to paths. For the sake of consistency, we

consider any degenerate path 𝜎 ∈ 𝑉 as a perfectly reliable and instantaneous link,

i.e., (𝜎) = 1, (𝜎 , 𝑡) ≡ 1, and 𝜏̄ (𝜎) = 0.

70

5.6 NC Routing Service

Proposition 5.1. Given two adjacent paths 𝜎1 and 𝜎2, the overall arrival probability
and delay probability density of the composite path 𝜎1 ◦ 𝜎2 are given by

(𝜎1 ◦ 𝜎2) = (𝜎1) ⋅ (𝜎2) (5.12)

and 𝓁(𝜎1 ◦ 𝜎2, 𝑡) = 𝓁 (𝜎1, 𝑡) ∗ 𝓁 (𝜎2, 𝑡), (5.13)

where ∗ denotes convolution with respect to 𝑡 .

Proof. First, we assume that one of the paths, say 𝜎2 without loss of generality, is

degenerate. Then 𝜎1 must remain invariant under concatenation, i.e. 𝜎1 ◦ 𝜎2 = 𝜎1.
This is clearly fulfilled by (5.12) and (5.13), noting that (𝜎2) = 1 and 𝓁 (𝜎2, 𝑡) = 𝛿(𝑡)
is the Dirac delta distribution:

(𝜎1 ◦ 𝜎2) = (𝜎1) ⋅ 1 = (𝜎1)

𝓁(𝜎1 ◦ 𝜎2, 𝑡) = 𝓁 (𝜎1, 𝜏) ∗ 𝛿(𝑡) = 𝓁 (𝜎1, 𝑡)

Now assume that 𝜎1 and 𝜎2 are two adjacent links. The joint arrival probability

(𝜎1 ◦ 𝜎2) is then given by

𝑃(𝜃1=1 ∧ 𝜃2=1) = (𝜎1) ⋅ (𝜎2),

thus (5.12) holds. Moreover, the random latency 𝜏𝜎1◦𝜎2 of the composite path is the

sum of the latencies of the constituent paths 𝜏𝜎1 + 𝜏𝜎2 . Therefore, the probability

density function of the former is given by the convolution of the PDFs of the two

latter random delay variables, and (5.13) holds. The remaining proof for the case

when 𝜎1 and 𝜎2 are general adjacent paths follows by induction. ■

Note that we can express the effective arrival probability of NCS packets over

a path 𝜎 in 𝐺 as 𝑝𝜎 (𝑇𝑠) = (𝜎) ⋅ (𝜎 , 𝑇𝑠).
Obviously, the above proposition implies:

(𝜎1 ◦ 𝜎2) ≤ min
{
(𝜎1),(𝜎2)

}

and (𝜎1 ◦ 𝜎2, 𝑡) ≤ min
{
(𝜎1, 𝑡),(𝜎2, 𝑡)

}
, ∀𝑡 ∈ ℝ+.

That is, the effective arrival probability of a composite path cannot be larger than

those of its constituents.

5.6.3 Load Metric
Next, we introduce the network load metric used in our optimization criterion.

Due to the stochastic nature of our link model, we use as a load measure the

expected value 𝐿 = E[𝑏 ⋅ 𝜏𝜎] of the bandwidth–delay product, where 𝑏 is the

71

5 Routing

𝜈1
𝜈2

𝜈3
𝜈4

𝜏̄ = 1
 = 0.1

𝜏̄ = 1
 = 0.9

𝜏̄ = 1
 = 0.9

𝜏̄ = 1
 = 0.1

𝜎 𝜏̄(𝜎) (𝜎) E𝜏(𝜎)

(𝜈1, 𝜈2, 𝜈4) 2 0.09 1.1

(𝜈1, 𝜈3, 𝜈4) 2 0.09 1.9

Figure 5.4: Expected transit time E𝜏 : although both paths from 𝜈1 to 𝜈4 have the

same end-to-end arrival probability and mean delay, the path via 𝜈2
incurs a shorter expected transit time and thus lower expected network

load.

data rate of the traffic generated by the control application and 𝜏𝜎 is the random

latency of the path. To account for the fact that a packet lost somewhere along

a route still incurs a certain amount of “wasted” network bandwidth, e.g., by

occupying queue space, we use the following path metric to capture the expected

delay experienced by any packet along a given path.

Definition 5.3 (Expected transit time). The expected time that a packet spends

in transit on path 𝜎 = 𝑒1 ◦ 𝑒2 ◦ 𝑒3 ◦ ⋯ in 𝐺 is

E𝜏 (𝜎)
def=
(
𝜏̄(𝑒1) + (𝑒1) ⋅ (𝜏̄ (𝑒2) + (𝑒2) ⋅ (𝜏̄ (𝑒3) + …)))

.

Naturally, a path that is less reliable on the first hops incurs a shorter expected

transit time than one that is less reliable on the last hops, and is thus favourable

in terms of network load. Similar metrics have previously been investigated in

the context of energy-efficient routing in wireless sensor networks, cf. [Sau+06].

Note that the expected transit time of any link 𝑒 ∈ 𝐸 is simply its mean delay

E𝜏 (𝑒) = 𝜏̄ (𝑒) and that of a degenerate path 𝜎 ∈ 𝑉 is E𝜏 (𝜎) = 0. Also, given two

adjacent paths 𝜎1 and 𝜎2, the expected transit time of the composite path 𝜎1 ◦ 𝜎2 is

E𝜏(𝜎1 ◦ 𝜎2) = E𝜏 (𝜎1) + (𝜎1) E𝜏 (𝜎2), (5.14)

which follows directly from Definition 5.3.

As the data rate of the NCS traffic is inversely proportional to the sampling

period 𝑇𝑠 , the induced network load on path 𝜎 with non-zero sampling period 𝑇𝑠
can now be calculated as 𝐿(𝜎, 𝑇𝑠) = E𝜏 (𝜎) ⋅ 𝑇 −1

𝑠 .

5.6.4 Routing Objective
Based on the formulation of the network load 𝐿(𝜎, 𝑇𝑠), we can now define our

constrained optimization problem. Recall that our QoS specification requires that

72

5.6 NC Routing Service

for some 𝑇𝑠 ≥ 𝑇min, the minimum arrival probability function 𝑝min(𝑇𝑠) of the NCS

be no larger than 𝑝𝜎 (𝑇𝑠), which defines the probability of receiving a sample in

time considering the loss and delay distribution of the path 𝜎 . Let us denote the

set of sampling times where this condition is satisfied for a particular path 𝜎 as

its feasible sampling periods

feas(𝜎) =
{
𝑡 ≥ 𝑇min

|| 𝑝𝜎 (𝑡) ≥ 𝑝min(𝑡)
}
.

In order to incur as little network load as possible, our goal is to minimize

the number of transmissions, i.e., the sampling rate, within the prescribed QoS

constraints. This is achieved for any particular path by choosing the maximal
feasible sampling period given by

𝑇max(𝜎) = sup feas(𝜎)

Note that the expected transit time only depends on the choice of path, but not

on the sampling period. Therefore, the load on any given path is minimized

by choosing 𝑇𝑠 = 𝑇max(𝜎), and we denote this minimal path load as 𝐿̃(𝜎) =
𝐿(𝜎, 𝑇max(𝜎)).

A low-quality path would therefore necessitate a high sampling rate in order

to satisfy the QoS requirements. However, a path is unfeasible if its set of feasible

sampling periods is empty, due to too large of a loss probability or delay, for which

not even choosing the maximum sampling rate 𝑇 −1
min

can compensate. In this case,

the maximum feasible sampling period and consequently also the minimal path

load are undefined.

Now we are ready to formulate an optimization problem for NC-flow routing,

where we determine a path from the sensor node 𝜈𝑠 to the controller node 𝜈𝑐 with

minimal network load:

min
𝜎∈𝐺

𝐿̃(𝜎) =
E𝜏 (𝜎)
𝑇max(𝜎)

(5.15)

s. t. 𝜎1 = 𝜈𝑠 ,
𝜎𝑛 = 𝜈𝑐 ,
feas(𝜎) ≠ ∅.

5.6.5 Routing Algorithm
Being a constrained shortest path problem, the considered routing problem (5.15)

belongs to the class of NP-complete problems (cf. [Zie01]). Moreover, the QoS

constraint (5.9) is not expressed in terms of a scalar constraint metric; therefore,

traditional approximation methods for constrained shortest path problems are

73

5 Routing

not readily applicable. However, we employ a DP approach and show that its

application is practicable on realistic topologies in Section 5.7.

Algorithm 1: Routing Algorithm

Data: 𝐺 = (𝑉 , 𝐸, ,) – network graph

𝑝min(⋅) – minimum arrival probability function (QoC specification)

𝜈𝑠 , 𝜈𝑐 ∈ 𝑉 – sensor and controller node

Result: Optimal route 𝜎opt solving (5.15)

1 foreach 𝜈𝑛 ∈ 𝑉 do
2 𝑅(𝜈𝑛) ← ∅ ; // 𝑅(𝜈𝑛) tracks candidate paths from 𝜈𝑛 to 𝜈𝑐
3 end
4 𝑅(𝜈𝑐) ← {𝜈𝑐} ; // initialize terminal path set on 𝜈𝑐
5 𝑀 ← {𝜈𝑐} ; // mark 𝜈𝑐 for relaxation of ingoing edges

6 repeat
7 foreach 𝜈𝑛 ∈ 𝑀 do
8 foreach 𝜈𝑖 with (𝜈𝑖 , 𝜈𝑛) ∈ 𝐸 do
9 Relax(𝜈𝑖 , 𝜈𝑛)

10 end
11 𝑀 ← 𝑀 ⧵ {𝜈𝑛} ; // unmark node 𝜈𝑛
12 end
13 until 𝑀 = ∅;

14 𝜎opt ← argmin 𝜎∈𝑅(𝜈𝑠)(E𝜏 (𝜎)/𝑇max(𝜎));

Our algorithm is shown in Algorithms 1 and 2. We maintain for each node 𝜈𝑖
a set 𝑅(𝜈𝑖) of residual candidate paths to the target node 𝜈𝑐 , which is initialized

in Algorithm 1, lines 1–4 as empty for all nodes except the controller node,

where it contains the degenerate path (𝜈𝑐). We then successively generate simple

paths from each node towards 𝜈𝑐 by relaxation of each node’s incoming edges in

Algorithm 1, lines 5–13. Upon relaxing an edge (𝜈𝑖 , 𝜈𝑗) in Algorithm 2, we evaluate

for each path 𝜎 ∈ 𝑅(𝜈𝑗) the extended path 𝜎̂ = 𝜈𝑖𝜎 .

As the set of simple paths to any node in 𝐺 scales with (|𝑉 |!) in the worst case,

we would want to avoid generating all these paths. Due to the problem structure,

we can unfortunately not select the “best” path at every step as would be possible

in an unconstrained shortest path problem. We can, however, identify non-

optimal sub-paths using a necessary optimality condition given in the following

proposition.

Proposition 5.2. Consider two parallel paths 𝜎1 and 𝜎2 from any node 𝜈𝑖 to the

74

5.6 NC Routing Service

Algorithm 2: Edge Relaxation Function

1 Function Relax(𝜈𝑖 , 𝜈𝑗)
2 foreach 𝜎 ∈ 𝑅(𝜈𝑗) do
3 𝜎̂ ← 𝜈𝑖𝜎 ; // new candidate path

4 if 𝜈𝑖 ∈ 𝜎 or 𝜎̂ ∈ 𝑅(𝜈𝑖) then // loop/duplicate detection

5 continue
6 end
7 calculate E𝜏 (𝜎̂), (𝜎̂), and (𝜎̂ , 𝑡);
8 if (𝜎̂)(𝜎̂ , 𝑡) < 𝑝min(𝑡) ∀𝑡>𝑇min then // 𝜎̂ unfeasible

9 continue
10 end
11 if ∃ 𝜎 ∈ 𝑅(𝜈𝑖) ∶ 𝜎 ≫ 𝜎̂ then // 𝜎̂ dominated

12 continue
13 end
14 𝑅(𝜈𝑖) ← 𝑅(𝜈𝑖) ⧵ {𝜎 ∣ 𝜎̂ ≫ 𝜎} ; // purge paths dominated by 𝜎̂
15 𝑅(𝜈𝑖) ← 𝑅(𝜈𝑖) ∪ {𝜎̂} ; // add candidate path 𝜎̂ to 𝑅(𝜈𝑖)
16 𝑀 ← 𝑀 ∪ {𝜈𝑖} ; // mark 𝜈𝑖 for relaxation of ingoing edges

17 end
18 end

controller node 𝜈𝑐 . If these paths satisfy

(𝜎1)(𝜎1, 𝑡) < (𝜎2)(𝜎2, 𝑡), ∀𝑡, (5.16)

E𝜏 (𝜎1) > E𝜏 (𝜎2), (5.17)

then the solution 𝜎opt of the optimal routing problem (5.15) cannot contain 𝜎1 as a
sub-path.

Proof. Assume that Proposition 5.2 is false and 𝜎opt does in fact contain 𝜎1, that

is 𝜎opt = 𝜎 ◦ 𝜎1, and the optimal cost is given by 𝐿(𝜎opt). Now we consider the

alternative path 𝜎alt = 𝜎 ◦ 𝜎2. It follows from (5.17) that

E𝜏 (𝜎) + (𝜎)⋅E𝜏 (𝜎1)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
E𝜏 (𝜎opt)

> E𝜏 (𝜎) + (𝜎)⋅E𝜏 (𝜎2)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
E𝜏 (𝜎alt)

, (5.18)

i.e. the expected transit time of 𝜎alt is greater than that of 𝜎opt. Moreover, we can

express the difference of the effective arrival probability functions of 𝜎alt and 𝜎opt

75

5 Routing

as

𝑝𝜎alt
(𝑡) − 𝑝𝜎opt

(𝑡) = (𝜎alt)(𝜎alt, 𝑡) − (𝜎opt)(𝜎opt, 𝑡)

= ((𝜎)𝓁 (𝜎 , 𝑡)) ∗ ((𝜎2)(𝜎2, 𝑡) − (𝜎1)(𝜎1, 𝑡)),

where we use the fact that convolution is distributive and associative with scalar

multiplication. Due to (5.16), the above expression is non-negative for all 𝑡 ,
whereby

𝑝𝜎opt
(𝑡) ≤ 𝑝𝜎alt

(𝑡), ∀𝑡,
⟹ 𝑇max(𝜎opt) ≤ 𝑇max(𝜎alt). (5.19)

It now follows from (5.18) and (5.19) that

E𝜏 (𝜎opt)
𝑇max(𝜎opt)

>
E𝜏 (𝜎alt)
𝑇max(𝜎alt)

and therefore 𝐿(𝜎opt) > 𝐿(𝜎alt). However, this contradicts the assumption that 𝜎opt

is the optimal path. ■

Based on this result, we can safely discard paths which meet the following

condition as route candidates.

Definition 5.4. (Dominance) If two parallel paths 𝜎1 and 𝜎2 satisfy both (5.16)

and (5.17), then we say that 𝜎2 dominates 𝜎1. As notational shorthand for this

case, we write

𝜎2 ≫ 𝜎1.

Specifically, in Algorithm 2, lines 4–13, we discard the candidate 𝜎̂ if it contains

a loop, is unfeasible, or dominated by any existing path in 𝑅(𝜈𝑖). Otherwise, we

know that it is eligible as sub-path of the optimal solution, and we add it to 𝑅(𝜈𝑖).
In line 14, we also purge 𝑅(𝜈𝑖) of all paths which are dominated by the newly

added 𝜎̂ , in order to further minimize the required number of relaxation steps.

After a new candidate path was added to the set 𝑅(𝜈𝑖), we schedule in line 16 the

incoming edges of 𝜈𝑖 to be relaxed in the main loop. Thus, each 𝑅(𝜈𝑖) converges

to a set containing all feasible, non-dominated simple paths from 𝜈𝑖 to 𝜈𝑐 . Finally,

when no edges are left to be relaxed, we can choose in Algorithm 1, line 14 from

all candidate paths in 𝑅(𝜈𝑠) the one with the minimal cost 𝐿, which constitutes

the optimal solution.

76

5.7 Evaluation

𝑚

𝑔
𝜑

𝑢

Linearized ODE model:

[
𝜑̇(𝑡)
𝜑̈(𝑡)]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑥̇(𝑡)

= [
0 1
1 0]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝐴

[
𝜑(𝑡)
𝜑̇(𝑡)]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑥(𝑡)

+ [
0
1]
⏟⏞⏟⏞⏟
𝐵

𝑢(𝑡)

Figure 5.5: Simple inverted pendulum system with linear differential equation

model. The state comprises angle 𝜑 and angular speed 𝜑̇. The plant’s

input 𝑢 is the torque applied to the pendulum.

5.7 Evaluation
In this section, we evaluate the performance of our approach using network sim-

ulation. In detail, we evaluate the effectiveness of our NCT-service for networked

control, the efficiency of network optimization using our routing algorithm, and

the runtime performance of this routing algorithm. We begin by introducing our

evaluation set-up, before we present the results.

5.7.1 Simulation Environment
For the first two studies, we simulated the integrated NCS consisting of the net-

work, the control system, and the previously described network control logic

under different scenarios. We used the OMNeT++/INET simulation environ-

ment [VH08] for the event-based simulation of the communication network. The

controller synthesis and stepwise simulation of the control system were imple-

mented using the GNU Octave scientific computing language [EBH08], which

was integrated with the network simulator using Octave’s C++ API and runtime

library.

5.7.1.1 Simulation of the Control System

For our evaluation of the closed-loop system, we simulated a textbook example

of an unstable physical system, namely, the inverted pendulum system depicted

in Figure 5.5. The state of that plant is given by the angle 𝜑 of the pendulum

with respect to the upright position, and its angular speed 𝜑̇. The pendulum is

in equilibrium in the upright position 𝜑 = 𝜑̇ = 0, but will tip over if disturbed; it

is therefore an unstable system. In the context of our investigated NCS set-up

presented in Figure 5.1, one might assume, e.g., that we measure the angle and

77

5 Routing

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

𝑝 m
i
n

𝑇𝑠 [ms]

𝐽 = 0.9
𝐽 = 1.0
𝐽 = 1.1
𝐽 = 1.2

Figure 5.6: Numerically obtained minimum arrival probability function 𝑝min(𝑇𝑠)
for the inverted pendulum shown in Figure 5.5 at different performance

levels of 𝐽 .

speed of the pendulum using a remote camera, which sends its state measurement

to a controller connected to the actuator at the base of the pendulum. Our goal is

to efficiently apply a torque 𝑢 depending on the state such that it is kept in an

upright position despite disturbances, which are modelled as additive Gaussian

white noise.

The controller design method from [BA13] allows us to predict the expected

control cost 𝐽 for this system depending on the parameters 𝑝𝑎 and 𝑇𝑠 . For the

purpose of our simulation study, we prescribe a performance bound of 𝐽max = 1.

From this we derive the minimum arrival probability function, which for this

system is shown in Figure 5.6, as explained earlier in Section 5.5. The figure shows

that the sampling period should be no longer than approximately 57 ms if the

quality requirement is to be satisfied. We also added plots of 𝑝min for other values

of 𝐽max for comparison.

5.7.1.2 Simulation of the Network

In order to simulate our NCS, we implemented two applications for OMNeT++:

a PlantApp containing the sensor, and a ControllerApp implementing the con-

troller as described in Section 5.3.1. Both applications are executed on different

hosts in the IP network. The network configuration is performed by a separate

78

5.7 Evaluation

𝑅𝑏 𝑅𝑏 𝑅𝑏

𝜈𝑠 𝜈1 𝜈2 𝜈3 𝜈4 𝜈𝑐𝐶𝑙𝑖𝑛𝑘 𝐶𝑙𝑖𝑛𝑘 𝐶𝑙𝑖𝑛𝑘

Figure 5.7: Linear topology used to study the validity of our network abstraction

module (Config) which maintains a topology model, as well as loss probabili-

ties and latency distributions in the form of discrete empirical CDFs with 100

bins each. These distributions are calculated based on queue time statistics from

the network interfaces of the switches. To initially sample these distributions,

each experiment is preceded by a 5 s monitoring period during which the Config
module measures delay and loss. It then executes the optimal routing algorithm,

installs the appropriate routing table entries for the NC-flow, and initializes the

NCS simulation with the appropriate sampling time 𝑇𝑠 .

5.7.2 Effectiveness of NCT Service
In order to evaluate the effectiveness of our NCT-service, we simulated the inverted

pendulum NCS introduced above with a 5-hop linear topology shown in Figure 5.7.

Nodes 𝜈𝑠 and 𝜈𝑐 host the PlantApp and ControllerApp, respectively, and nodes

𝜈1–𝜈4 are intermediate switches. At each switch 𝜈1–𝜈3, we inject random UDP

traffic with uniformly distributed inter-arrival times and mean bit rate 𝑅𝑏 to

introduce varying queueing delays and packet losses due to tail drop queueing.

As the routing algorithm cannot switch to a lightly loaded path in this topology,

we can observe the effective application performance under different levels of

network congestion. To this end, we simulated the system for different values of

𝑅𝑏 , and measured the average control performance 𝐽 and load 𝐿 induced by the

NCS traffic.

Figure 5.8 shows these quantities in dependence on the cross-traffic bit rate

as a fraction of the link capacity 𝐶link. As we can see, the use of the sampling

rate determined by our QoS model is effective at satisfying the targeted quality

constraint 𝐽max = 1 for a large range of cross-traffic levels up to 𝑅𝑏 ≈ 0.6 ⋅ 𝐶link.

(Note that already a cross-traffic bit rate of 𝑅𝑏 ≥ 0.5 ⋅ 𝐶link leads to full average

utilization of the links from 𝜈2 to 𝜈4.) Moreover, performance degrades grace-

fully under increasing congestion beyond this value. In the case of the inverted

pendulum this means that the maximum angle and/or actuation energy increase,

cf. (5.5). However, as 𝐽 remains bounded, the stability of the pendulum is still

guaranteed. We can also observe how the NCS traffic load 𝐿 rises gradually due

to the adaptation of 𝑇𝑠 .
As the inference of end-to-end latencies is based on the assumption that the

79

5 Routing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8

𝑅𝑏/𝐶link

𝐽
𝐿

Figure 5.8: Sample mean of measured control cost 𝐽 and load 𝐿 of the NCS traffic

depending on the data rate of regular (i.e., approx. i.i.d.) cross-traffic

sources with 95% confidence interval.

link latencies are i.i.d., we also investigated the effects of this assumption being

violated, i.e., with strongly correlated traffic. We repeated the above experiment

with a mix of regular and bursty (on-off) cross-traffic in equal parts, with traffic

bursts lasting 1 s on average. Figure 5.9 shows that, also for bursty traffic, we could

reach the targeted NCS performance for cross-traffic levels up to 𝑅𝑏 ≈ 0.5 ⋅ 𝐶link,

i.e., when the segment from 𝜈2 onward is already fully utilized on average. Beyond

this value, the performance degradation of the NCS due to congestion becomes

more pronounced. This is to be expected given the higher sensitivity to varying

losses for lower sampling periods (as can be seen from Figure 5.6).

5.7.3 Effectiveness of NC Routing

In order to investigate the effectiveness of NC routing, we simulated the same NCS

with the topology shown in Figure 5.10, which offers two possible routes from 𝜈𝑠
to 𝜈𝑐 . From the beginning of each experiment, we injected at each switch random

UDP traffic with uniformly distributed inter-arrival times inducing approximately

80% link utilization on all links, except for the link from 𝜈1 to 𝜈4, which is fully

utilized on average. As a consequence, the NC-flow is initially routed over the

shorter and less heavily loaded path (𝜈𝑠 , 𝜈1, 𝜈2, 𝜈3, 𝜈𝑐).

At 𝑡 = 20 s after the initial connection set-up, an additional traffic source

was added from 𝜈2 to 𝜈3, effectively doubling the utilization of this link. As a

80

5.7 Evaluation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8

𝑅𝑏/𝐶link

𝐽
𝐿

Figure 5.9: Sample mean of measured control cost 𝐽 and load 𝐿 of the NCS traffic

depending on the data rate of bursty (i.e., non-i.i.d.) cross-traffic sources

with 95% confidence interval.

𝜈𝑠 𝜈1 𝜈2 𝜈3

𝜈4 𝜈5

𝜈𝑐

Figure 5.10: Network topology used to study the effectiveness of our routing

algorithm

consequence, the arrival probability of this link decreases and the QoS requirement

is violated, which is detected by estimating the effective arrival probability of the

established NC-connection at the transport layer using an exponential moving

average of the inter-loss times (where a loss is equivalent to a receive()-timeout).

When 𝑝𝜎 (𝑇𝑠) degrades by more than 10%, the system adapts the NC-connection by

calculating a new optimal route 𝜎 and sampling period 𝑇𝑠 . We compared this also

with the more naïve strategies of a) only performing transport-layer adaptation

of the sampling period 𝑇𝑠 = 𝑇max(𝜎) on the previous path 𝜎 according to the

current effective arrival probability function, i.e., assuming that we must rely on

shortest-path routing, and b) adapting neither the route nor the sampling period.

The results of these experiments are shown in Figure 5.11. Here, we show

the average application cost 𝐽 and network load 𝐿 of the NC-flow for the three

approaches described above. As we can see, the application requirement 𝐽max = 1

81

5 Routing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

𝐽 𝐿 [10]

no adaptation

adapt only 𝑇𝑠
adapt 𝜎 and 𝑇𝑠

Figure 5.11: Sample mean of measured control cost 𝐽 and load 𝐿 of the NCS traffic

depending on the use of transport-layer and network-layer adaptation

with 95% confidence interval

can be maintained by decreasing 𝑇𝑠 (and thus also increasing the load) according

to the current network conditions in this experiment. However, by also choosing

an optimal route, the load incurred by the NC-flow is reduced by 6%.

5.7.4 Runtime Performance of NC Routing
To show the practicability of our routing algorithm, we evaluated its execution

time on a standard PC server with 4×2.7 GHz CPU and 4 GB main memory. We

again used the 𝑝min function of the inverted pendulum to specify QoS, and three

different network models 𝐺 using topology and latency measurements of real

autonomous systems collected by Rocketfuel [Mah+02]. Specifically, we ran

our experiments on AS 1755 (Ebone EU, 87 routers), AS 3257 (Tiscali EU, 161

routers), and AS 1239 (Sprint US, 315 routers)
3
. As the dataset only contains

propagation delays with millisecond accuracy, we uniformly randomized the

propagation delays at the sub-millisecond range in each experiment. We also

added synthetic randomized queueing delays following a Weibull distribution with

shape parameter 𝑘 ∈ [0.6, 0.82] and mean delay between 1.4 𝜇s and 25 𝜇s (both

drawn uniformly). These values are based on the analysis of single-hop empirical

delay distributions measured on an IP backbone network in [Pap+03]. The location

of 𝜈𝑐 was randomly chosen from the set of leaf nodes in each experiment.

3
AS 1239 is the largest network in the Rocketfuel dataset [Mah+02].

82

5.7 Evaluation

1

8

64

512

87 161 315

R
u

n
t
i
m

e
[
m

s
]

Number of routers

max 𝜇, 𝜎 min

Figure 5.12: Runtime evaluation showing maximum, minimum, and mean (𝜇)

runtime and standard deviation (𝜎) for 100 000 realizations on three

different AS topologies.

We repeated the experiment 100 000 times on each topology. The resulting

runtime statistics are shown in Figure 5.12, plotted against the number of routers

in the underlying topologies. The 95% confidence intervals for all sample means

are narrower than 0.4 ms, and are therefore not visible in the figure. The results

indicate that the average and worst-case execution times grow exponentially

with the number of nodes in realistic topologies. Nevertheless, with an average

of 62 ms and maximum of 319 ms for finding the exact solution to the routing

problem on the largest AS topology, our algorithm is certainly practicable for

the targeted network size of one AS. For instance, taking our inverted pendulum

example and assuming a fairly high sampling frequency of 100 Hz (𝑇𝑠 = 10ms),
we can calculate a new optimal route within 32 samples in the worst case. Note

that, due to the required arrival probability of approximately 14% at this sampling

period (cf. Figure 5.6), no more than an average of five measurements even have

to arrive within this period of time to maintain the QoS requirement.

Moreover, scaling the number of NCS in the network is easily possible since our

algorithm lends itself to horizontal distribution to several machines. In this case,

the only data structure shared by parallel NCS instances is the global network

graph, which is updated only by network monitoring. Thus, the network graph

can be easily replicated for each NCS instance.

One critical remaining situation are network failures, e.g., link failures. Typi-

cally, the time from detecting a failure to installing a new route might be in the

83

5 Routing

order of seconds due to monitoring, processing, and route installation delays,

which is too slow for many NCS. Here, additional concepts like redundant paths

and also replicated controllers (e.g., in different data centers) should be explored.

5.8 Discussion
Finally, we would like to discuss the properties of our approach and possible

directions for extensions.

Incremental Deployment As the slow adoption of highly anticipated networking

technologies such as IPv6 shows, it is important to discuss the possibility to deploy

our approach in practice. As our network architecture in Section 5.4 shows, the

NC-service requires adaptions of the transport protocol implementation at the

hosts, which is not problematic since hosts are managed by the NCS user. Our

transport layer service could even be implemented over UDP on the application

layer using a library or middleware, similar to RTP.

On the network layer, we utilize SDN to directly manipulate forwarding tables,

which is readily supported by the OpenFlow standard. We think this is a good

example how the separation of control plane and data plane enables new protocols

and facilitates the implementation of custom, application-aware control logic.

Monitoring Our approach requires information about latencies and loss proba-

bilities, which are dynamic in a best-effort network due to dynamic queue lengths

in switches, and congestion due to (changing) cross traffic. While monitoring the

network is not a trivial task, a number of state-of-the-art technologies such as

PTP as well as existing (active and passive) monitoring systems [RDG14; ADK14;

Yu+13] can be applied to this end. However, the overhead and parameters of

monitoring (e.g., sampling frequency of latency measurements) should be taken

into account.

TCP Friendliness The NC-service adapts sampling rates to network conditions

according to the requirements of the NCS. In general, it tries to keep the sampling

rate and implied network load minimal such that the application requirements

are met. However, it does not consider the requirements of other flows, in partic-

ular, TCP connections competing for bandwidth along shared links. Therefore,

NC-connections might get less or more than their fair bandwidth share. TCP-

friendliness has not been a design goal of our approach so far. One might argue

that real-time critical NC-flows should have priority over elastic TCP flows. How-

ever, our evaluation shows that route selection is effective in reducing network

load and thus countering possible detrimental effects of sampling rate adaptation.

84

5.9 Summary

Nonetheless, congestion control mechanisms limiting the maximum sampling

rate could be incorporated.

5.9 Summary
In this chapter, we presented a novel approach for networked control systems

where sensors and controllers are communicating over best-effort IP networks

with varying latency and packet loss characteristics. We proposed a communica-

tion service for NCS, called NC-service, that provides an end-to-end transport

abstraction based on a novel probabilistic quality of service specification. On the

one hand, this specification is tailored to the requirements of the NCS, giving

control system engineers the possibility to readily incorporate it into their familiar

analytic frameworks. On the other hand, it links control system performance

to network relevant metrics (packet loss and delay). In more detail, this QoS

specification provides the network with application-specific knowledge about the

relation between application performance and packet loss and delay, and enables

the network to optimize routes of NCS flows such that the required application

performance is met with minimum network bandwidth resources. By reducing

this to a routing problem, we could apply state of the art software-defined net-

working concepts to implement our custom network control logic based on a

logically centralized SDN network controller. Our proposed network architecture

lends itself to an easy deployment in SDN-based networks, and is a good example

of how SDN eases the integration of network and application.

85

6 Replication

6.1 Introduction

While the previous chapters have been focused on the communication system

and its reliability and performance in terms of QoC, the reliability of an NCS

depends on all of its components, i.e., not only the network, but also sensors,

actuators, and the controller. The fault-tolerance of a control loop with regard to

sensor, actuator, and network failures can be addressed at the application layer,

by employing a control design that is inherently robust to a certain degree of

sensor and actuator message loss [HNX07; Sch+07; ZJ08]. Such design approaches

typically yield some (probabilistic) bounds for the necessary availability of the

involved components that ensures stability or a certain degree of performance.

In order to meet these availability requirements, the NCS may have to be

designed with redundant components. The availability of sensors can be increased

through fusion of redundant sensors [KPS02; LG04]. Similarly, the availability of

actuators can be increased by suitable redundant designs, e.g., [Ben+12]. In this

chapter, we focus on the availability of the controller function.

In order to avoid a single point of failure, the controller has to be replicated over

different nodes. In each control step, the controller replicas receive the sensor

input and apply the control function to generate the controller output, which

is then transmitted to the actuators. Obviously, an important requirement for

a replication scheme is to ensure output consistency [Ché+92], meaning that all

controller replicas send the same sequence of output messages. In this chapter,

we use a relaxed output consistency condition like in [Saa+17], where we allow

replicas to occasionally produce no output. This is motivated by the fact that

intermittent message loss in NCS—also from controller to actuator—is well-studied

[Sch09; ZY10; QN12].

In general, output consistency could also be achieved by following the state

machine replication (SMR) approach for implementing the controller function,

where each control step corresponds to calling an operation that takes the sen-

sor values as input and generates the controller output. In this case, a standard

SMR protocol such as Paxos [Lam98], Viewstamped Replication [OL88], or RAFT

[OO14] could be used to achieve consensus about the controller outputs. Unfortu-

nately, as pointed out in [Saa+17], SMR is unsuitable for controller replication due

87

6 Replication

to the time-constraints of NCS. Since each control step has to be finished within

a certain time bound, the replicas only have limited time to achieve consensus

on each output. If consensus cannot be achieved in time, no output can be sent.

While a fault-tolerant controller can accept missing outputs in some control steps,

the problem with SMR is that a replica cannot start processing a new control

step before having completed the previous one. Therefore, a delay violation of

consensus processing in one control step affects all the following steps.

In this chapter, we investigate how the problems of SMR subject to real-time

constraints can be avoided when consensus algorithms are used for controller

replication. To this end, we first discuss the necessary consistency concepts

for replicated control systems. While output consistency addresses the spatial
correctness concerning the set of messages delivered to the actuators in one

time step, it does not relate to any notion of temporal correctness regarding

the sequence of controller outputs. However, any stateful control law specifies

such temporal behaviour. Since the controller’s dynamics is part of the closed-

loop model, which is the basis for stability and performance analysis, it should

be reproduced faithfully by the replicated controller. In other words, output

consistency alone is not sufficient to ensure replication transparency for NCS.

Therefore, we argue that it should be complemented by an additional condition,

which we call state consistency, that requires any new output to be based on the

controller state that generated the most recent previous output. State consistency

ensures that the replicated controller produces a sequence of outputs that appears

to have been generated by a single controller that always executes uninterruptedly,

and that any intermittent unavailability of the controller is indistinguishable from

an omission of output messages. Consequently, the properties that have been

proven for a non-replicated controller also hold for a replicated version of the

same controller, with no need for modifying the controller design, assuming that

the non-replicated controller is designed to tolerate output omissions to a degree

that is equivalent to that achieved by the replicated controller for a given network.

While SMR offers equivalent properties in the failure-free case, state consistency

provides a well-defined correctness condition also for incomplete controller output

sequences, which facilitates the temporal decoupling of consensus processing for

consecutive control steps to avoid the problems of SMR.

We propose the State-Consistent Replication Management (SCRaM) proto-

col for NCS controllers. For each iteration of the replicated control function, a

single-value consensus algorithm based on a standard protocol [CT96; Dol+96]

is executed to ensure output consistency. However, SCRaM ensures that the

replicated controller is not blocked unnecessarily waiting for consensus instances

to terminate, and that the state of controller replicas producing new output is

based on the state of replicas that have produced output previously, thus ensuring

state consistency. Moreover, we show that SCRaM is competitive with—and in

88

6.2 Related Work

many cases outperforms—existing real-time replication protocols that only ensure

output consistency in terms of availability. While generic performance metrics

such as latency and availability of the replicated controller influence QoC to a

major extent, the application-specific quality of the data produced by the repli-

cated controller is also an important factor in determining QoC, especially when

comparing different replication protocols with similar availability characteristics.

In summary, this chapter contains the following contributions:

• A formal definition of state consistency for replicated controllers, providing

sufficient guarantees to make a replicated controller functionally indistin-

guishable from a non-replicated controller.

• SCRaM, a replication management protocol for NCS ensuring state and

output consistency with high availability.

• An experimental comparison of SCRaM with an existing protocol that

demonstrates the benefits of state consistency.

• A case study for replicated linear quadratic Gaussian (LQG) controllers for

LTI systems using SCRaM.

• An application-specific metric for evaluating different controller replica

executions with respect to the closed-loop QoC.

• Application-specific modifications of SCRaM based on this metric, for

increasing QoC.

The remainder of this chapter is organized as follows. In Section 6.2 we discuss

related work. In Section 6.3 we describe a generic model for time-triggered

control systems supporting replication. In Section 6.4 we formalize the replication

transparency problem for control systems. In Section 6.5 we extend the system

model to describe a group of replicated controllers and derive the output and state

consistency conditions. In Section 6.6 we derive requirements for a replication

protocol to satisfy these consistency conditions and present the SCRaM protocol.

Evaluation results are presented in Section 6.8. Section 6.9 concludes the chapter

with a short summary and outlook.

6.2 Related Work
It is well known that in synchronous systems with bounded network and process-

ing delay, consensus can be reached in bounded time, even for stronger failure

models than we assume in this chapter, such as Byzantine failures [LSP82]. There-

fore, some replicated systems rely on real-time communication networks such as

89

6 Replication

Table 6.1: Notation

Indexing is denoted by bracket notation, so 𝑥[𝑖] indicates the 𝑖th component of

a vector 𝑥 . In most cases, subscripts denote sampling periods, i.e., time, and

superscripts denote replicas, so 𝑥 𝑟
𝑘 indicates the value of (a vector) 𝑥 on (or

associated with) replica 𝑟 at time 𝑡𝑘 . Undefined values are denoted by ⊥. The

set ℝ⊥ = ℝ ∪ {⊥} is used to denote possibly missing scalars. In pseudocode, an

ampersand preceding arguments indicate call-by-reference semantics, i.e., &var
denotes a reference to the variable var.

Time-Triggered Ethernet in the case of the DFT4FTT project [Bal+18] or Token

Ring in the case of the Delta-4 project [Ché+92], adding sufficient redundancy

in the network to practically avoid delay failures, which would otherwise violate

the fundamental assumption of a synchronous system. The middleware Achal

[GAB19] is targeted specifically at CPS by providing a distributed timestamped

key–value store based on a Byzantine fault tolerance (BFT) algorithm for syn-

chronous networks. However, real-time networks with deterministically bounded

delay are mostly restricted to local or possibly metropolitan area. Therefore, we

cannot assume a synchronous system to be available for CPS distributed over a

larger geographic area, where one has to communicate over unreliable Internet

connections.

Considering that in asynchronous systems one cannot guarantee both, agree-

ment and termination within bounded delay, Saab et al. recently proposed the

Quarts protocol [Saa+17]. It guarantees that in each time step, replicated con-

trollers agree on a single output vector sent to actuators (output consistency)

through plurality voting. The delay of attempting agreement is bounded such that

non-agreement in one step cannot indefinitely block the next steps. The authors

show that Quarts is superior to the classic asynchronous consensus protocol

FastPaxos in terms of availability and latency. However, Quarts does not address

the issue that the agreed actuator values of one step should also be consistent with

the agreed values of another round. In contrast, in addition to output consistency,

we enforce state consistency to ensure that the state of a replica producing the

agreed output values of the current round is based on the state of the replica that

has produced the previously agreed values. This makes the functional behaviour

of the replicated controller indistinguishable from a non-replicated controller.

This fundamentally simplifies the design and analysis of the replicated controller

based on a functionally equivalent non-replicated controller.

90

6.3 Control System Model

Controller

𝐼𝑉 𝑐
𝑘 𝑂𝑉 𝑐

𝑘+1

𝑆1 𝑦𝑘 [1]

𝑆2
𝑦𝑘 [2]

𝑆𝑛𝑦
𝑦𝑘 [𝑛𝑦]

𝐴1
𝑢𝑘+1[1]

𝐴2
𝑢𝑘+1[2]

𝐴𝑛𝑢
𝑢𝑘+1[𝑛𝑢]

⋮ ⋮

Figure 6.1: Set-up showing sensors, controller, actuators and communication chan-

nels. The physically connected plant is omitted for clarity.

6.3 Control System Model

The basic controller set-up is shown in Figure 6.1. The controller receives the

measurements from multiple sensors (denoted as its input vector 𝐼𝑉), which it

uses to update its internal state and calculate values for all actuators (comprising

its output vector 𝑂𝑉). The controller communicates with the sensor and actuator

components over a packet-switched network. Therefore, the input and output

signals of the controller are discrete-time sequences of input and output vectors.

Accordingly, we assume that the plant is described by some dynamical system

model that is sampled periodically at times 𝑡𝑘 , which are determined by a sampling

interval 𝑇𝑠 = 𝑡𝑘+1 − 𝑡𝑘 . We denote the measurements from all sensors at sampling

time 𝑡𝑘 by 𝑦𝑘 , and the actuator values by 𝑢𝑘 .

The controller maintains its own internal state 𝑆𝑐𝑘 . As described above, the

controller periodically updates its state depending on the values received by the

sensors, and generates a corresponding vector of actuator values. Because the

sensor values are transmitted over a communication network, values may be

lost or arrive too late, i.e., the input vector 𝐼𝑉 𝑐
𝑘 ∈ ℝ𝑛𝑦

⊥ received by the controller

may contain only a subset of the sensor values 𝑦𝑘 ∈ ℝ𝑛𝑦
, such that 𝐼𝑉 𝑐

𝑘 [𝑖] = ⊥ if

𝑦𝑘[𝑖] was not received. The input vector is used to update the controller’s state

𝑆𝑐𝑘 → 𝑆𝑐𝑘+1, from which an output vector 𝑂𝑉 𝑐
𝑘+1 ∈ ℝ𝑛𝑢

is then generated and sent

to the actuator nodes. The actuator vector 𝑢𝑘+1 ∈ ℝ𝑛𝑢
⊥ may contain only a subset

of the output vector components, again, due to delay and loss. More specifically,

each actuator node is responsible (w.l.o.g.) for one component 𝑢[𝑖] of the actuator

vector. Due to the real-time behaviour of the control system, the actuator node

applies 𝑢𝑘+1[𝑖] = 𝑂𝑉 𝑐
𝑘+1[𝑖] if it receives the output vector by time 𝑡𝑘+1, otherwise

the corresponding component 𝑢𝑘+1[𝑖] = ⊥ is undefined. The execution model of

the controller is outlined in Figure 6.2.

Note that the methods for dealing with missing values in control systems

depend on the specific control design and are therefore beyond the scope of this

91

6 Replication

Sensors Actuators

Time

𝑡𝑘−1

𝑡𝑘

Update Output

𝑦𝑘−1 measured
𝑢𝑘−1 applied

𝑦𝑘 measured
𝑢𝑘 applied

𝑆𝑐𝑘𝑆𝑐𝑘−1

𝑘←𝑘+1

𝐼𝑉 𝑐
𝑘−1

𝑂𝑉 𝑐
𝑘

Figure 6.2: Controller execution model for sampling period 𝑘

thesis. We refer to the literature for a discussion of missing sensor [LG04] and

actuator [Sch09] values in NCS.

The state and output of the controller evolve according to

𝑆𝑐𝑘+1 = Update(𝑆𝑐𝑘 , 𝐼𝑉
𝑐
𝑘), (6.1)

𝑂𝑉 𝑐
𝑘+1 = Output(𝑆𝑐𝑘+1). (6.2)

We assume that both functions are deterministic. For convenience of notation,

we use the following shorthand for the repeated Update function:

Update𝑛+1(𝑆, 𝐼𝑉0, 𝐼𝑉1, … , 𝐼𝑉𝑛)

= Update𝑛(Update(𝑆, 𝐼𝑉0), 𝐼𝑉1, … , 𝐼𝑉𝑛),
(6.3)

where Update0(𝑆) = 𝑆. In the following, unless noted otherwise, we consider

period 𝑘 to be synonymous with the time interval (𝑡𝑘−1, 𝑡𝑘], i.e., the time interval

during which the controller updates its state to 𝑆𝑘 .

6.4 Problem Statement
Clearly, the behaviour of the NCS depends on the sequence of actuator values

𝑢𝑘 delivered to the actuators. As mentioned above, an output vector sent by a

controller may be lost due to faulty communication channels. Consequently, even

in the case of a perfectly reliable controller, communication failures may leave

actuators with undefined values. Since the possibility of missing actuator values

is inevitable, we introduce the following definition.

92

6.5 Consistency Models

Definition 6.1 (Faithful Controller). A controller is faithful if it maintains a state

that evolves according to (6.1) but may omit output vectors sporadically, i.e.,

𝑂𝑉 𝑐
𝑘 ∈

{
Output(𝑆𝑐𝑘), ⊥

}
. (6.4)

The notion of a faithful controller facilitates the definition of state consistency

in Section 6.5 by allowing us to account also for a controller (replica) being

unable to send an output (reach agreement) due to node failures or deadline

misses. Most importantly, subject to faulty communication channels, the values
of output vectors that are received by the actuators from a faithful controller are

indistinguishable from those of a perfectly reliable controller. In short, faithful

behaviour of the replicated controller ensures replication transparency [CDK01].

It is important to note that key properties of control systems—such as stability,

performance, and robustness w.r.t. disturbances—are sensitive to the end-to-end

loss and latency characteristics of the entire control loop, which should always be

taken into account, also when designing an NCS with replicated controller. For

instance, if the the non-replicated controller is designed under the assumption

of i.i.d. losses (including deadline violations) with a certain distribution, then

the closed-loop system with the replicated controller can only be guaranteed to

behave equivalently if it also exhibits i.i.d. losses with the same distribution. This

is sometimes referred to as performance transparency [Cro96]. However, these

characteristics are not determined by the (replicated) controller alone but by all

CPS components, i.e., sensors, actuators, and the network.

In this chapter, we focus on the replicated controller, making as few assumptions

as possible on the other components. From this perspective, we stress that faithful

behaviour of the replicated controller is a necessary condition for the replication-

agnostic NCS design, independent of the control design method being used.

While modelling end-to-end losses is an orthogonal but equally important design

prerequisite, it is beyond the scope of this chapter. Its treatment for special cases

(i.e., particular control system, component failure, and network models) should

be considered in future research.

6.5 Consistency Models

Now, we consider a group of 𝑁 replicated controllers, which we denote by the

set 𝐺. All controllers execute the same control functions, i.e., Update and Output.

However, each controller replica 𝑟 ∈ 𝐺 may experience different input vector

sequences due to different (partial) arrival patterns of measurement components.

Therefore, also the controller states 𝑆𝑟𝑘 and outputs 𝑂𝑉 𝑟
𝑘 may differ in general

among replicas. Moreover, replicas may be unavailable, e.g., due to crash failures,

93

6 Replication

in which case they do not generate an output. For each period, we denote the

subset of influential replicas that generate an output 𝑂𝑉 𝑟
𝑘 in period 𝑘 as 𝐺out

𝑘 , i.e.,

𝑟 ∈ 𝐺out

𝑘 ⟺ 𝑂𝑉 𝑟
𝑘 ≠ ⊥. (6.5)

Our goal is to design a replication scheme where the behaviour of a group of

replicated controllers is equivalent to that of a faithful controller. In the following,

we describe two consistency models which together provide this equivalence.

Definition 6.2 (Output Consistency). A controller group 𝐺 is called output
consistent if

∀𝑘>0∀𝑟 ,𝑠∈𝐺out

𝑘
𝑂𝑉 𝑟

𝑘 = 𝑂𝑉 𝑠
𝑘 , (6.6)

i.e., all influential replicas generate the same output.

Output consistency guarantees that the group does not send “conflicting” com-

mands to different actuators at any time (nor that any actuator receives several

different commands). To illustrate the importance of output consistency in the

context of NCS, let us consider tracking control for a milling machine as a simple

example. Each controller estimates the current position and speed of the milling

head and determines as its output a vector of forces [𝐹𝑥 , 𝐹𝑦] along the x and y

axes required to keep the tool moving along the desired trajectory. Assume that

the target trajectory is a line at 45◦ and two controller replicas estimate the same

position but slightly different speeds, leading to two different control outputs

that both represent a force tangent to the trajectory, say [0.9, 0.9] and [1.1, 1.1],
respectively. If the corresponding actuators should now receive outputs from

different replicas, e.g., 𝐹𝑥 = 0.9 and 𝐹𝑦 = 1.1, the resulting force (at approximately

50.7◦) is clearly not in alignment with the desired trajectory, at least in the current

time step, leading to a reduced quality.

Note, however, that Definition 6.2 does not make any statements about the

sequence𝑂𝑉𝑘 itself over time. Since a faithful controller updates its state according

to (6.1) in every period, any output vector is based on a state that can be obtained

through a series of Update steps from the state on which the previous output

vector was based, even if an arbitrary number of output vectors were omitted in

the interim. We say that the corresponding state is reachable from the state from

which the previous output was generated according to the following definition.
1

Definition 6.3 (Reachability). The set of states 𝑆𝑘+𝑛 in period 𝑘 + 𝑛 that are

reachable from a state 𝑆𝑘 in period 𝑘 is 𝑛(𝑆𝑘) =
{
Update𝑛(𝑆𝑘 , 𝐼𝑉𝑘 , … , 𝐼𝑉𝑘+𝑛−1) ||

𝐼𝑉𝜏 ∈(𝑦𝜏)
}
.

1
This definition differs from the usual reachability notion in control theory in that the input sequences

are constrained.

94

6.5 Consistency Models

Here, (𝑦) is the set of possible input vectors received for the measurement

vector 𝑦 ∈ ℝ𝑛𝑦
⊥ transmitted over the network, i.e., 𝐼𝑉 ∈ (𝑦) ⟺ ∀𝑖𝐼𝑉 [𝑖] =

𝑦[𝑖] ∨ 𝐼𝑉 [𝑖] = ⊥. We are now ready to introduce the stronger concept of state

consistency, which reflects the state interdependencies of a controller group that

behaves faithfully.

Definition 6.4 (State Consistency). A controller group 𝐺 is called state consistent
if

∀𝑘≥0∀𝑟 ,𝑠∈𝐺out

𝑘
𝑆𝑟𝑘 = 𝑆𝑠𝑘 (6.7)

∀𝑘>0∀𝑟∈𝐺out

𝑘
∀𝑠∈𝐺out

𝑘−𝑑(𝑘)
𝑆𝑟𝑘 ∈ 𝑑(𝑘)(𝑆𝑠𝑘−𝑑(𝑘)) (6.8)

where 𝑑(𝑘) = min
{
𝜏 || 𝜏 > 0, 𝐺out

𝑘−𝜏 ≠ ∅
}

, i.e., all influential replicas share

a controller state that is reachable from the controller state of the most recent
influential replicas.

State consistency implies output consistency, since the state 𝑆𝑟𝑘 determines the

output 𝑂𝑉 𝑟
𝑘 , cf. (6.2). To illustrate the importance of state consistency, let us again

consider the milling example from earlier. One important concern in machining

(or other mechanical systems such as aircraft [Lev+00]) is the suppression of

so-called chatter, which may impair quality or even lead to actuator damage, and

controllers are often designed accordingly [Doh+04]. In our example, we therefore

assume that each controller replica produces an output sequence where the rate

of change in actuator force is limited. However, without state consistency the

replicated controller could alternate in the worst case between outputs from both

replicas such that the magnitude of the output oscillates, leading to an undesirable

chattering motion of the actuator. In general, violation of state consistency may

introduce (high-frequency) dynamics that amount to an unmodelled disturbance

that was not considered during the controller design.

By contrast, the output sequence produced by a controller group that satisfies

Definition 6.4 is equivalent to that of a faithful controller. Since a faithful controller

can omit to send output vectors, we can show equivalence by considering output

vectors in periods where 𝐺out

𝑘 ≠ ∅.

Theorem 6.1. Consider a controller group 𝐺 with uniform initial controller state
∀𝑟∈𝐺 𝑆𝑟0 = 𝑆0 and a faithful controller 𝑐 with initial controller state 𝑆𝑐0 = 𝑆0. If 𝐺 is
state consistent, then there exists a sequence of input vectors 𝐼𝑉 𝑐

𝑘 ∈ (𝑦𝑘) for the
faithful controller such that

∀𝑘>0∀𝑟∈𝐺out
𝑘

𝑂𝑉 𝑟
𝑘 = 𝑂𝑉 𝑐

𝑘 , (6.9)

i.e., the outputs 𝑂𝑉𝑘 generated by the group 𝐺 are identical to the corresponding
outputs generated by a faithful controller.

95

6 Replication

Proof. We use inductive reasoning to show that there exists a sequence (𝐼𝑉 𝑐
𝑘)𝑘≥0

of input vectors for which (6.9) is satisfied. Since the output of 𝑐 obeys (6.4), we

can assume 𝐺out

𝑘 = ∅ ⟹ 𝑂𝑉 𝑐
𝑘 = ⊥ without loss of generality. Let the periods

when 𝐺 produces an output be denoted by (𝑘𝑖)𝑖≥0, where 𝑘𝑖+1 = min
{
𝜏 || 𝜏 >

𝑘𝑖 , 𝐺out

𝜏 ≠ ∅
}

, 𝑘0 ≜ 0.

Basis Since the initial state 𝑆0 is fixed, the only possible initial output is

∀𝑟∈𝐺out

0
𝑂𝑉 𝑟

0 = 𝑂𝑉 𝑐
0 = Output(𝑆0). Hence, (6.9) is satisfied for 𝑘 ≤ 𝑘0 = 0 with an

empty input vector sequence 𝜎0 = 𝜀.

Inductive Step Assume that (6.9) is satisfied for 𝑘 ≤ 𝑘𝑖 with some input sequence

𝜎𝑖 = (𝐼𝑉 𝑐
𝑘)

𝑘𝑖−1
𝑘=0 and that all replicas 𝑠 ∈ 𝐺out

𝑘𝑖 hold the same state 𝑆𝑠𝑘𝑖 ≡ 𝑆𝑐𝑘𝑖 ≜ 𝑆𝑘𝑖 as

𝑐.

Now consider a replica 𝑟 ∈ 𝐺out

𝑘𝑖+1 and note that 𝑘𝑖+1 = 𝑘𝑖 + 𝑑(𝑘𝑖+1). Because 𝐺
is state consistent, 𝑆𝑟𝑘𝑖+1 is reachable from 𝑆𝑘𝑖 , cf. (6.8). Therefore, there exists a

sequence of input vectors 𝜎 ′ = (𝐼𝑉 ′
𝑘)

𝑘𝑖+1−1
𝑘=𝑘𝑖

such that

𝑆𝑐𝑘𝑖+1 = 𝑆𝑟𝑘𝑖+1 = Update𝑑(𝑘𝑖+1)(𝑆𝑘𝑖 , 𝜎
′)

and, consequently, 𝑂𝑉 𝑐
𝑘𝑖+1 = 𝑂𝑉 𝑟

𝑘𝑖+1 . Because of (6.7), this is true with identical

values for all replicas 𝑟 ∈ 𝐺out

𝑘𝑖+1 . Therefore, (6.9) is satisfied for 𝑘 ≤ 𝑘𝑖+1 with the

input sequence 𝜎𝑖+1 = 𝜎𝑖 ◦ 𝜎 ′
. ■

6.6 Replication Algorithm
Our goal is to design a replication protocol for a group 𝐺 of replicated controllers

whose behaviour is equivalent to that of a faithful controller. As we have shown, a

sufficient condition for this is that the underlying replication protocol offers both

output and state consistency. Before describing the SCRaM protocol in detail, we

first present an outline of the algorithm and discuss the requirements it should

satisfy.

6.6.1 Outline and Requirements

First and foremost, replicas must implement the execution model of the generic

controller as described in Section 6.3. Hence, the basic algorithm executed by

each replica consists of a controller loop that repeats the following steps:

1. receive an input vector 𝐼𝑉𝑘 ,

96

6.6 Replication Algorithm

2. update the controller state,

3. calculate the output vector and send it to the actuators,

4. wait for the next sampling time 𝑡𝑘+1 and go to step 1.

However, since output consistency is required, we need to ensure that all replicas

agree on a unique output vector in step 3 of each period. For this reason, we also

execute one instance of a single-value consensus [FLP85; CT96] algorithm in each

iteration of the controller loop, which is the basic building block of our replication

scheme.

Let us denote the consensus instance for period 𝑘 (i.e., for output vector 𝑂𝑉𝑘) as

𝑘 . We consider 𝑘 to be the problem of agreeing on the state 𝑆𝑘 , from which the

unique output vector 𝑂𝑉𝑘 can be calculated deterministically. Any algorithm for

solving the single-value consensus problem must satisfy the following standard

properties [FLP85; CT96]:

Agreement All correct replicas decide the same value for 𝑘 .

Integrity If a correct replica decides the value 𝑆𝑘 for 𝑘 , 𝑆𝑘 must have been

proposed for 𝑘 by some replica.

Termination Every correct replica eventually decides a value for 𝑘 .

The agreement and integrity properties ensure output consistency, provided that

replicas may only send an output vector after the corresponding consensus in-

stance has been decided.

However, the termination property only requires that a decision is made even-

tually, and is therefore not sufficient for determining a unique output within one

sampling period. Indeed, it is impossible to guarantee upper bounds on the time

required to complete consensus in asynchronous distributed systems [FLP85]

or in synchronous systems subject to omission failures [SWK09]. Because any

component of an output vector 𝑂𝑉𝑘 produced from a state 𝑆𝑘 is discarded if it

does not arrive at the corresponding actuator by time 𝑡𝑘 , a consensus instance

that terminates any later will not provide any useful output. But since output

vectors may be omitted by a faithful controller, consensus instances can be aborted

at the end of their corresponding sampling period without jeopardizing output

consistency.

Conversely, state consistency requires that the controller states from which

consecutive outputs are generated satisfy the reachability condition expressed in

(6.8). Therefore, whenever a consensus instance does terminate within its period,

the decided state 𝑆𝑘 becomes influential in the sense of Definition 6.4 and all

future decided states must be reachable from 𝑆𝑘 . We denote such an instance as

successful.

97

6 Replication

Definition 6.5 (Successful Consensus Instance). Let the unique value decided

by consensus instance 𝑘 be denoted by Decision(𝑘), and the time at which

𝑘 yields its decision be defined as the earliest time at which any correct replica

decides this value. A consensus instance 𝑘 is successful if and only if it yields

Decision(𝑘) at some time 𝑡 ≤ 𝑡𝑘 .

While a replica that decides a value 𝑆𝑘 can infer that the consensus instance

𝑘 was successful, the opposite is not true, i.e., a replica not deciding by time 𝑡𝑘
cannot be sure whether 𝑘 was successful, nor whether its controller state 𝑆𝑘 is

reachable from the most recently decided state. Since proposing a state that does

not satisfy this reachability condition could threaten to violate state consistency,

we must suitably restrict the set of controller states that may be proposed for

subsequent consensus instances.

Based on these observations, we define the following requirements that the

controller loop should satisfy with respect to the consensus instance executed in

each period.

Requirement 1 (Output Constraint) The output vectors of each replica 𝑟 ∈ 𝐺
must satisfy

𝑂𝑉 𝑟
𝑘 ∈

{
Output(Decision(𝑘)), ⊥

}
, (6.10)

𝑂𝑉 𝑟
𝑘 ≠ ⊥ ⟹ 𝑘 successful. (6.11)

Requirement 2 (Proposal Constraint) Any replica 𝑟 ∈ 𝐺 may only propose values

𝑆𝑟𝑘 for 𝑘 that satisfy

𝑆𝑟𝑘 ∈ 𝑘−𝑘′(Decision(𝑘′)), (6.12)

where 𝑘′ = max
{
𝜏 || 𝜏 < 𝑘, 𝜏 successful

}
. (Assume that there exists a

successful consensus instance 0 with Decision(0) ≜ 𝑆0 for the initial

state.)

Clearly, Requirement 1 together with the agreement property ensures output

consistency since it guarantees that no conflicting output vectors may be generated

by different replicas for the same sampling period. Requirement 2 together with

the integrity property ensures state consistency since it guarantees that only

controller states that are reachable from previous influential controller states can

be proposed and hence decided.

Finally, it is worth noting that replicas should seek to start a new consensus

instance 𝑘+1 as soon as new input from the sensors is available since this max-

imizes the likelihood of the new instance being successful and producing an

output within the corresponding sampling period. This requires replicas to make

98

6.6 Replication Algorithm

a proposal at that point. Requirement 2 already ensures that any such proposal

must not contradict the possible outcome of the previous consensus instance 𝑘
(and, in fact, any earlier instance). Therefore, each replica can abort the previous

consensus instance at the beginning of the new sampling period.

6.6.2 Distributed System Model

For describing the algorithm, we consider an asynchronous distributed system

where replicas may suffer crash failures and the network may suffer omission

failures. For simplicity, we assume that processing latency is negligible.

Moreover, we assume that every replica is equipped with an unreliable failure

detector [CT96], and let Suspects𝑟 denote the set of replicas that 𝑟 currently

suspects to have failed. We assume that the failure detector satisfies strong

completeness and eventual weak accuracy [Dol+96], which facilitates the use of

an existing consensus algorithm as part of our protocol.
2

Finally, we assume that clocks are synchronized among sensors, actuators, and

controller replicas. Synchronization of sensors and actuators is an implicit as-

sumption of the control system model, while sufficiently accurate synchronization

of replicas is useful for obtaining tight bounds on the timeouts on listening for

input vectors and sending output vectors.

6.6.3 Algorithm

We now present the SCRaM protocol by explaining the controller loop and the

consensus instances executed by each replica in more detail. Algorithm 3 shows

the algorithm executed by each replica. Lines 1–7 show the initialization of the

necessary variables. As before, 𝑘 denotes the current sampling period, 𝑆 the

replica’s local controller state, and 𝐼𝑉 its current input vector. In addition, the

“base” period 𝑘𝑏 indicates the period of the most recent consensus instance 𝑘𝑏 on

whose (possible) decision the controller state 𝑆 is based.
3

This value is updated

whenever a replica modifies its state information through consensus and is used to

satisfy Requirement 2 as will be shown in the following. The remaining variables,

mode, 𝑣, and 𝑣𝑏 , are related to the consensus algorithm and will be explained in

the corresponding sections.

At this point we note that, although we defined a consensus instance 𝑘 as a

procedure for agreeing on a state 𝑆𝑘 for simplicity, our algorithm is designed to

2
Such failure detectors can be implemented using timeout mechanisms [CT96].

3
Note that 𝑘𝑏 need not have been successful. Rather, the base period expresses that 𝑆 is reachable

from the most recent influential state 𝑆𝑘≤𝑘𝑏 up to period 𝑘𝑏 , while there may have been a more

recent influential state 𝑆𝑘>𝑘𝑏 from which 𝑆 is not necessarily reachable.

99

6 Replication

agree on the tuple (𝑆𝑘−1, 𝐼𝑉𝑘−1). However, since the controller state 𝑆𝑘 can be cal-

culated deterministically as Update(𝑆𝑘−1, 𝐼𝑉𝑘−1), both descriptions are equivalent.

We advocate the latter form since it leaves open the possibility of exchanging

input vectors separately from controller states, either for the purpose of message

reduction in the failure-free case when replicas already possess 𝑆𝑘−1 from the

previous period (assuming 𝐼𝑉 requires less memory than 𝑆), or for combining

input vectors from multiple replicas in order to fill in missing components like in

[Saa+17].

Algorithm 3: SCRaM protocol executed on each replica 𝑟 ∈ 𝐺
1 𝑘 ← 0; // current period

2 𝑆 ← 𝑆0; // controller state

3 𝐼𝑉 ← [⊥,… , ⊥]; // input vector

4 𝑘𝑏 ← 0; // "base" period of estimate

5 mode ← normal; // operation mode

6 𝑣 ← 0; // current view number

7 𝑣𝑏 ← 0; // "base" view (most recent proposal)

/* ========================== MAIN LOOP ========================== */

8 while true do
9 wait until 𝑡 ≥ 𝑡𝑘 ; // await sampling period

10 𝐼𝑉 ← ReceiveAndConstructIV(𝑘);

11 𝑘 ← 𝑘 + 1; // advance period counter

12 decided ← false;

13 est ← (𝑆, 𝐼𝑉 , 𝑘𝑏); // prepare estimate

14 try // within current period

15 Consensus(𝑘, &est, &mode, &𝑣, &𝑣𝑏); // 𝑘

16 decided ← true;

17 catch timeout at 𝑡𝑘 // period expired

// Consensus 𝑘 aborted

18 end
/* Recover state from estimate and update: */

19 𝑆 ← Update(est.𝑆, est.𝐼𝑉);

20 𝐼𝑉 ← [⊥,… , ⊥];
21 𝑘𝑏 ← est.𝑘𝑏 ;

22 if decided then
23 send 𝑂𝑉𝑘 = ⟨Output(est.𝑆), 𝑘⟩ to actuators;

24 end
25 end

100

6.6 Replication Algorithm

6.6.3.1 Controller Loop

The remainder of Algorithm 3 shows the controller loop executed by each replica.

At the beginning of a sampling period, the input vector is received (l. 10), where

the function ReceiveAndConstructIV(𝑘) assembles the input vector 𝐼𝑉𝑘 from

all received components of the measurement 𝑦𝑘 . It returns after a suitably chosen

timeout period
4
, setting components not received so far to ⊥. The counter 𝑘 is

incremented (l. 11) after receiving the input vector in order to reflect the active

period, i.e., the period of the output vector 𝑂𝑉𝑘 to be generated.

At this point, the replica starts the consensus instance. To this end, the quanti-

ties that are the subject of consensus, namely 𝑆, 𝐼𝑉 , and 𝑘𝑏 are collected into a

data structure est. This data structure is passed as an argument to the consensus

procedure and is called estimate in [CT96] since it is a value that may be proposed

or decided by the consensus instance, and is therefore the replica’s “best guess”

of the outcome of the current consensus instance.
5

In Line 15 the Consensus function is called for period 𝑘, and a reference to est
is passed along with references to mode, 𝑣, and 𝑣𝑏 , which are parameters of the

consensus protocol described in Section 6.6.3.2. If Consensus returns within the

current sampling period, the consensus instance was successful and est contains

the agreed-upon values for 𝑆 and 𝐼𝑉 . However, if the current sampling period

expires before completion (l. 17), Consensus is aborted. While a timeout is used

for the sake of presentation, the abort could also be triggered by sensor messages

from the next period. (Of course, an abort does not imply that the corresponding

consensus instance was unsuccessful, merely that no decision was received by

the replica.)

Note that, even if Consensus is aborted, est may have been modified. This

is important for ensuring state consistency since aborted instances could have

received proposals which were potentially decided. In order to ensure that a

decided controller state is used as the basis for the controller state to be proposed

(and possibly decided) in the following period, even in the face of crash failures,

it must be guaranteed that a majority of replicas are aware of that decided state.

While it cannot be guaranteed that a successful decision is received by a majority

of replicas within the current sampling period, a decision implies that a majority

of replicas received and acknowledged the corresponding proposal, which is then

contained in those replicas’ estimate at the end of the sampling period.

Therefore, the new controller state 𝑆 at the end of the sampling period is

determined as the Update of the state and input vector contained in est (l. 19),

4
based on the network delay

5
Since we use a leader-based consensus protocol, cf. Section 6.6.3.2, only one replica makes a proposal

at a time. However, the estimates of different replicas may be proposed when new leaders are

chosen or a different consensus protocol is used.

101

6 Replication

𝐼𝑉 is cleared (l. 20), and the base period 𝑘𝑏 of the current state is set to that of the

estimate (l. 21). Note that this update is performed regardless of the success of the

consensus instance, so that 𝑆 contains a controller state that is reachable from

the decided state of any possibly successful consensus instance 𝑘𝑏 . (If a proposal

was received, then 𝑘𝑏 = 𝑘.) Finally, if a decision was received, i.e., Consensus was

not aborted, then the replica calculates the output vector 𝑂𝑉𝑘 and sends it to the

actuators (l. 23) before waiting for the next sampling period. Note that multiple

replicas might send the same output vector to the actuators, thereby increasing

the probability that each actuator receives its required value.

6.6.3.2 Consensus

For each instance 𝑘 , we use a modified version of the consensus algorithm

by Dolev et al. [Dol+96], which is an adaptation of the algorithm by Chandra

and Toueg [CT96, Section 6.2] for considering omission failures. It is shown in

Algorithm 4. We strive to keep the presentation close to the original algorithms,

with our core modifications—for distinguishing consensus instances of different

periods and for achieving state consistency—highlighted in grey. However, we

split the algorithm into two parts described separately in the following, in order

to better explain the (failure-free) normal operation of the algorithm as opposed

to the handling of node failures. Instances of the modified consensus algorithm

are aborted after the corresponding sampling period has ended, as described in

the previous section.

The protocol uses a dedicated coordinator replica that is responsible for deciding

on an estimate. In such leader-based protocols, we can distinguish between the

normal operation mode when there is a single persistent coordinator without

failures, and a special view change mode where a new coordinator has to take

over (e.g., due to a crash failure of the previous coordinator) before normal opera-

tion can resume. We will first describe normal operation before discussing the

mechanism for changing the coordinator.

Notation In Algorithms 4 and 5, received messages are expected to match a

certain format, which is indicated in the pseudocode. Fields marked prime are

placeholders for arbitrary values. E.g., the predicate received ⟨Propose, 𝑘, 𝑣, est′⟩
specifies that a Propose message with the specified values for 𝑘 and 𝑣 is expected,

while an arbitrary value est′ for field est is accepted. Messages not matching that

format are discarded or treated specially where indicated. In particular, messages

whose period number does not match the current period 𝑘 are discarded.

Normal Operation Mode For the moment, we ignore the first lines 3–6, as they do

not pertain to normal operation mode. At the beginning of the consensus instance

102

6.6 Replication Algorithm

Algorithm 4: Consensus algorithm executed by 𝑟 ∈ 𝐺 for period 𝑘.

Modifications w.r.t. [CT96; Dol+96] are shown in grey.

1 Function Consensus(𝑘, &est, &mode, &𝑣, &𝑣𝑏)
2 while true do
3 if mode = viewchange then
4 𝑣 ← 𝑣 + 1;

5 NextView(𝑘, &est, &mode, &𝑣, &𝑣𝑏);

6 end
7 𝑐 ← coord(𝑣); // 𝑐 = current coordinator

8 if 𝑟 = 𝑐 then
9 est.𝑘𝑏 ← 𝑘 ; // set base period of est

10 send ⟨Propose, 𝑘 , 𝑣, est⟩ to 𝐺;

11 end
12 wait until received Propose from 𝑐 or 𝑐 ∈ Suspects𝑟 ;
13 if received ⟨Propose, 𝑘 , 𝑣, est′⟩ then
14 est ← est′;
15 𝑣𝑏 ← 𝑣;

16 send ⟨ACK, 𝑘 , 𝑣⟩ to 𝑐;

17 else if received message with 𝑣′ > 𝑣 then
18 𝑣 ← 𝑣′

;

19 NextView(𝑘, &est, &mode, &𝑣, &𝑣𝑏);

20 continue;

21 end
22 if 𝑟 = 𝑐 then
23 wait until received ⌈𝑁+1

2 ⌉ ⟨ACK, 𝑘 , 𝑣⟩;

24 send ⟨Decide, 𝑘 , 𝑣, est⟩ to 𝐺;

25 end
26 wait until received Decide from 𝑐 or 𝑐 ∈ Suspects𝑟 ;
27 if received ⟨Decide, 𝑘 , 𝑣, est′⟩ then
28 est ← est′;
29 𝑣𝑏 ← 𝑣;

30 return ; // decided

31 else if received message with 𝑣′ > 𝑣 then
32 𝑣 ← 𝑣′

;

33 else // coordinator failure suspected

34 𝑣 ← 𝑣 + 1;

35 end
36 NextView(𝑘, &est, &mode, &𝑣, &𝑣𝑏);

37 end
38 end

103

6 Replication

𝑘 , the coordinator 𝑐 sets the base period est.𝑘𝑏 of its estimate to the period 𝑘 of the

current consensus instance (l. 9) since this estimate is to be proposed and may end

up being decided. (This value is used to maintain state consistency when electing

a new coordinator, which is described later.) It then multicasts a Propose message

containing its estimate to𝐺 (l. 10). Upon receiving a proposal for the current period

𝑘, all replicas (including 𝑐) accept it by logging the contained values and reply

to 𝑐 with an acknowledgement (ll. 14–16). After receiving acknowledgements

from a majority of replicas, the coordinator confirms the decision by multicasting

a Decide message (l. 24). Upon receiving a decision for the current period 𝑘,

all replicas (including 𝑐) accept it by logging the contained values (in case the

corresponding Propose had not yet been received) and return to the controller

loop, indicating successful termination (ll. 28–30).

In normal operation, state consistency is satisfied by design since the decided

state 𝑆𝑘 is always reachable from the coordinator’s previous state 𝑆𝑘−1. Incidentally,

this is also the previous decided state if the coordinator decided in the previous

period, or it is reachable from the last decided state since the coordinator always

performs the state update in Algorithm 3, ll. 19–20 otherwise. Output consistency

is satisfied since outputs are only generated upon deciding, and we assume that

actuators apply output vectors labelled for period 𝑘 only if received within the

time interval (𝑡𝑘−1, 𝑡𝑘].

View Change Mode Normal operation is interrupted if at least one replica sus-

pects the coordinator to have failed. Coordinator failures (real or suspected

likewise) are handled by electing a different replica to be the coordinator and

starting over in normal operation mode. As in [CT96; Dol+96], our algorithm

uses a rotating coordinator approach, such that coordinators are chosen determin-

istically. To this end, a monotonically increasing view
6

number 𝑣 is incremented

upon suspected coordinator failure and used to agree upon the next coordinator

coord(𝑣) = (𝑣 mod 𝑁) + 1. This “view change” is performed in the procedure

NextView shown in Algorithm 5, which is invoked either if no Decide message

was received due to suspected coordinator failure (Algorithm 4, ll. 34, 36) or if a

message with a higher view number was received (Algorithm 4, ll. 18–20, 32, 36).

Note that messages with outdated view number are always discarded.

In normal operation, the persistent coordinator decides a single state for each

period that is reachable from previously decided states. In contrast, when switch-

ing to a different coordinator, special care has to be taken that

(a) no two coordinators decide different states 𝑆𝑘 for the same sampling period 𝑘
(agreement), and

6
While the term round is used in [CT96; Dol+96], we use the term view introduced in [OL88] because

it is less likely to be confused with a period. The same concept is also referred to as term in [OO14].

104

6.6 Replication Algorithm

Algorithm 5: View change executed on 𝑟 ∈ 𝐺. Modifications w.r.t. [CT96;

Dol+96] are shown in grey.

1 Function NextView(𝑘, &est, &mode, &𝑣, &𝑣𝑏)
2 mode ← viewchange;

3 send ⟨Estimate, 𝑘 , 𝑣, 𝑣𝑏 , est⟩ to coord(𝑣);

4 if 𝑟 = coord(𝑣) then
5 wait until received

{
⟨Estimate, 𝑘 , 𝑣, 𝑣′

𝑏 , est′⟩
}

from
𝐺 ⧵ Suspects𝑟 ;

6 if received ⌈𝑁+1
2 ⌉ Estimate messages then

7 select message with max(𝑣′
𝑏 , est′.𝑘𝑏);

8 est ← est′;
9 𝑣𝑏 ← 𝑣′

𝑏 ;

10 else if received message with 𝑣′ > 𝑣 then
11 𝑣 ← 𝑣′

;

12 NextView(𝑘, &est, &mode, &𝑣, &𝑣𝑏);

13 else
14 𝑣 ← 𝑣 + 1;

15 NextView(𝑘, &est, &mode, &𝑣, &𝑣𝑏);

16 end
17 end
18 mode ← normal ;

19 return;

20 end

105

6 Replication

(b) no coordinator proposes a state 𝑆𝑘 that is not reachable from all states 𝑆𝑘′
decided in earlier periods 𝑘′ ≤ 𝑘.

The first concern is only relevant for view changes within the same consensus

instance. The second concern is also relevant when proceeding from one period
to the next, and therefore requires special treatment.

We first describe how conflicting decisions within the same sampling period

are avoided (case a). While this is treated in [CT96; Dol+96], we briefly explain the

mechanism here for the sake of completeness. Each replica only accepts messages

with its own current view number 𝑣, and stores the view number of the last

received Propose or Decide message as 𝑣𝑏 (cf. Algorithm 4, ll. 15, 29). Because

𝑣 is monotonically increasing on each replica, this is also the most recent view

for which such a message was received. Therefore, if any coordinator decided a

value in view 𝑣′
, then a majority of replicas must have received the corresponding

Propose message and therefore have 𝑣𝑏 ≥ 𝑣′
. Now, during view change all

replicas (that suspected the old coordinator to have failed) send 𝑣𝑏 together with

their current estimate to the new coordinator (l. 3). The new coordinator must

collect estimates for the new view from a majority of replicas (l. 6). This majority

necessarily contains at least one witness to the most recent (possibly decided)

proposal, which the new coordinator can identify by choosing a message with

the largest 𝑣𝑏 among those received (l. 7) and using the corresponding estimate

for its next proposal (l. 8). Thereby, if a value was decided in the previous view,

it is impossible for the new coordinator to decide a different value. If the new

coordinator cannot gather a majority of estimates for its view, the next coordinator

is chosen (ll. 14, 15).

While the agreement property is maintained by the consensus algorithm when

coordinators change within the same period (i.e., consensus instance), we must

also prevent newly elected coordinators from proposing any state that is not

reachable from the decided states of previous periods (case b), which is crucial

for maintaining state consistency. Since this introduces a dependency between

subsequent consensus instances, we modified the view change mechanism to

ensure that the new coordinator always selects an estimate containing a state

that is valid w.r.t. state consistency. For this reason, each estimate contains the

base period est.𝑘𝑏 of the corresponding state, which is equal to the last received

Propose or Decide message (cf. Algorithm 4, ll. 15, 29). Because the only way

to modify a replica’s state (𝑆 or est.𝑆) without touching est.𝑘𝑏 or 𝑣𝑏 is through

an Update in the main loop, and because 𝑘 is monotonically increasing on each

replica, we know that any controller’s state estimate est.𝑆 must be reachable from

a state 𝑆′ that was contained in an estimate proposed or decided in period est.𝑘𝑏
and view 𝑣𝑏 . Conversely, if any coordinator decided a state 𝑆′ in period 𝑘′ and

view 𝑣′
, then a majority of replicas must have received the corresponding Propose

106

6.6 Replication Algorithm

𝑘 = 2

𝑘 = 3

𝑘 = 4

𝑆12

𝑆13

𝑅1

𝑆22

𝑆23

𝑅2

𝑆32

𝑺𝟏𝟑

𝑅3

𝑺𝟏𝟑

𝑘𝑏 = 0 𝑘𝑏 = 0 𝑘𝑏 = 0

Decide

𝑆12 , 𝑘𝑏←2

NextView
𝑆13 , 𝑘𝑏←2

Figure 6.3: State-consistent viewchange example with three replicas. Coordinators

are indicated by a shaded state node.

message and therefore have est.𝑘𝑏 ≥ 𝑘′ and 𝑣𝑏 ≥ 𝑣′
. The majority of estimates

collected by the new coordinator in the NextView procedure necessarily contains

at least one “witness” to the most recent (possibly decided) proposal. Now, the new

coordinator can identify the most recent possibly successful consensus instance

𝑘′ by choosing the largest est.𝑘𝑏 = 𝑘′ among the received estimates with the

most recent view
7 𝑣𝑏 (l. 7). If 𝑘′ was successful, the corresponding controller

state est.𝑆 is necessarily reachable from 𝑆𝑘′ = Decision(𝑘′). Finally, note that

coordinators can only propose values as long as they are in normal operation

mode. If a new coordinator was still waiting for estimates when the previous

consensus instance was aborted (i.e., mode = viewchange at the beginning of the

new period), it performs another view change (cf. Algorithm 4, ll. 3–6). Figure 6.3

shows a small example of how view change maintains state consistency.

Example 6.1. Figure 6.3 shows a group consisting of three replicas going into

period 𝑘 = 2 with different states and equal base period 𝑘𝑏 = 0. Replica 𝑅1 (the

coordinator) proposes its controller state 𝑆12 , which is acknowledged by replica 𝑅3
and subsequently decided. Therefore, 𝑅1 updates its proposed state (𝑆12 → 𝑆13) and

generates an output vector. Although 𝑅1’s Decide message to both participants

is lost, replica 𝑅3 adopts the state (and base period) from the proposal for its

next update, but does not generate an output. (Replica 𝑅2, not having received

any message, simply performs a “local” update on its current state, also without

generating an output.)

7
Choosing an est with largest 𝑣𝑏 is necessary for agreement [CT96].

107

6 Replication

In the next period 𝑘 = 3, replica 𝑅1 becomes unavailable and replica 𝑅2 is

elected as the new coordinator. Because 𝑅2 did not receive the proposal from

𝑅1 in 𝑘 = 2, its current state 𝑆23 is not reachable from the state 𝑆12 decided in the

previous period, and would therefore lead to a violation of state consistency if

it were to be proposed for 𝑘 = 3. However, as part of the election procedure it

receives an estimate containing 𝑆13 (which is reachable from 𝑆12). Because this

estimate has a higher base period (𝑘𝑏 = 2) than its own (𝑘𝑏 = 0), replica 𝑅2 adopts

the state and proposes it for period 𝑘 = 3. (Had 𝑅2 not received an estimate from

either 𝑅1 or 𝑅3, it would not have procured the necessary majority to become

coordinator and the next viewchange would have ensued.)

Note that NextView is aborted whenever the calling consensus instance is

aborted, and that receiving a message with a higher view number within NextView
triggers another viewchange (ll. 11, 12). Note also that viewchange is part of the

single consensus loop in the original consensus algorithm, e.g., comprising Phase

1 and Phase 2 (except for the last line where the proposal is sent) in [CT96, Figure

6]. Our presentation of the algorithm is equivalent since every round of consensus

with a different coordinator must be preceded by a completed view change, except

for the initial round where the coordinator proposes its own estimate.

6.6.4 Correctness

Now we asses the presented algorithm with respect to the requirements laid

down in Section 6.6.1. The correctness of individual consensus instances using

Algorithms 4 and 5 with respect to agreement, integrity, and termination follows

from the correctness of the original consensus algorithm which is proved in

[CT96; Dol+96]. We note that we make only three essential modifications to the

algorithm, none of which affect the properties of individual consensus instances.

First, we add a period counter 𝑘 to all relevant messages for distinguishing between

different instances, which ensures that messages not belonging to the current

consensus instance are rejected but does not alter the message pattern within

the isolated instance. Second, we set the base period field est.𝑘𝑏 of proposed

estimates to 𝑘, which would be equivalent to setting the same part of all estimates

to a fixed value in an isolated consensus instance. Third, we refine the selection of

estimates during view change in Algorithm 5, l. 7 by adding a secondary criterion

based on est.𝑘𝑏 . However, the chosen estimate is still from the set of messages

with maximum 𝑣𝑏 , and in the original algorithm an arbitrary estimate from this

set would be selected.

The termination property may be violated because consensus instances are

aborted in Algorithm 3 when the next period begins. But as shown in Section 6.6.1,

we do not require the termination property to hold for individual consensus

108

6.6 Replication Algorithm

instances. Indeed, consensus termination within one period cannot be guaranteed

[FLP85; SWK09]. Moreover, eventual termination of each instance is not sufficient

to argue about the availability of the replicated controller. However, our evaluation

results in Section 6.8 show that our algorithm achieves a high availability in

practice.

Theorem 6.2. The protocol defined by Algorithms 3–5 satisfies Requirement 1, i.e.
(6.10) and (6.11).

Proof. Each consensus instance 𝑘 executes the consensus algorithm from [CT96;

Dol+96], which is possibly aborted prematurely (cf. Alg. 3, l. 17), and therefore

satisfies the agreement property of consensus. Due to Alg. 3, ll. 22–24, all repli-

cas that abort 𝑘 do not send an output vector, i.e. 𝑂𝑉 𝑟
𝑘 = ⊥. It follows that

¬𝑘 successful ⟹ ∀𝑟∈𝐺𝑂𝑉 𝑟
𝑘 = ⊥, which implies (6.11). Due to agreement, all

replicas that do not abort yield the same state 𝑆𝑟𝑘 = Decision(𝑘) and output

𝑂𝑉 𝑟
𝑘 = Output(S), which implies (6.10). ■

Theorem 6.3. The protocol defined by Algorithms 3–5 satisfies Requirement 2, i.e.
(6.12).

Proof. Assume 𝑘 is successful and the controller state 𝑆𝑘 = Update(𝑆𝑘−1, 𝐼𝑉𝑘−1)
is decided in view 𝑣. Therefore, a majority of replicas must have base period

𝑘𝑏 = 𝑘, base view 𝑣𝑏 ≥ 𝑣, and controller state 𝑆 = Decision(𝑘) at time 𝑡𝑘 (cf.

Alg. 3 after l. 21).

Now assume any replica 𝑟 proposes an estimate with (𝑆′𝑘 , 𝐼𝑉 ′
𝑘) in view 𝑣′ ≥ 𝑣

for 𝑘+1. If 𝑣′ = 𝑣, then 𝑟 = 𝑐 and 𝑆′𝑘 = 𝑆𝑘 . If 𝑣′ > 𝑣, then 𝑟 must have chosen an

estimate with 𝑆𝑘 or (𝑆𝑘−1, 𝐼𝑉𝑘−1) in Alg. 5, which was acknowledged by a majority

of replicas for 𝑘 . Therefore, only an estimate with state 𝑆𝑘 (and arbitrary 𝐼𝑉) can

be proposed for 𝑘+1, which is equivalent to the proposal of a state 𝑆′𝑘+1 ∈ (𝑆𝑘)
in terms of Property 2 and satisfies (6.12). By extension of the same argument,

this is true for all 𝑘′ , 𝑘′ > 𝑘. ■

6.6.5 Discussion of the Algorithm
While we presented the SCRaM protocol in a way that is focused on reasoning

about its correctness, it admits several optimizations for reducing the message

overhead:

• For instance, the coordinator can omit the estimate from Decide messages

to all replicas that acknowledged the corresponding Propose.

• Also, if the coordinator already decided for the previous period, it can omit

the controller state from its estimate in Propose messages for the current

period to replicas that acknowledged its Propose for the previous period.

109

6 Replication

• During viewchange, the Estimate messages can be reduced to contain

only 𝑘, 𝑣, 𝑣𝑏 , and 𝑘𝑏 . The new coordinator can then request missing state

information from only one replica.

While crash recovery was neither part of our system model nor considered in

our description of the algorithm, replicas may also recover from crash failures.

If a majority of replicas are always available, recovering replicas can listen for a

Propose or Decide message and adopt the state information from the estimates

contained therein, or they can receive Estimate messages from a majority of par-

ticipants as part of normal leader election. After obtaining a valid state in that fash-

ion, replicas can resume the algorithm as usual. However, if fewer than a majority

of replicas may be available, they are required to log their state information in

stable storage. Upon recovery, the controller state can be brought up to date (only

in terms of the sampling period) by repeatedly applying Update(𝑆, [⊥, ⊥, … , ⊥]),

with values for 𝑘𝑏 and 𝑣𝑏 remaining as prior to crash failure. Of course, the

protocol can only make progress while a majority of replicas are available.

6.7 QoC-aware Replication
So far, we discussed the controller replication problem mainly in terms of consis-

tency and availability. While increased availability can be expected to increase

the closed-loop performance of the overall system, we now consider the impact

of controller replication on QoC explicitly. Since QoC metrics are application-

specific, and depend both on the characteristics of the physical system to be

controlled and the controller itself, we perform a case study for a class of control

systems that is specified in the following section.

6.7.1 LQG Control System Model
In the following, we consider control systems with a discrete-time LTI plant model

and an observer-based output feedback controller.

The plant model is given by

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 , (6.13)

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 , (6.14)

where 𝑥𝑘 ∈ ℝ𝑛𝑥
is the state, 𝑢𝑘 ∈ ℝ𝑛𝑢

is the applied input, and 𝑦𝑘 ∈ ℝ𝑛𝑦
is the

measured output (which determines the controller’s 𝐼𝑉) of the plant at time 𝑡𝑘 .

The plant is affected by Gaussian disturbances through state noise 𝑤𝑘 ∼  (0,𝑊)
and measurement noise 𝑣𝑘 ∼  (0, 𝑉). We assume that (𝐴, 𝐵) is controllable and

(𝐴, 𝐶) is observable.

110

6.7 QoC-aware Replication

To characterize the part of the measurements 𝑦𝑘 that was successfully received

by a controller, we introduce a binary arrival indicator vector 𝛾𝑘 ∈ {0, 1}𝑛𝑦 , where

the sensor reading for components with 𝛾𝑘[𝑖] = 0 is not available to the controller.

Correspondingly, the input vector 𝐼𝑉𝑘 is given as

𝐼𝑉𝑘[𝑖] =

{
𝑦𝑘[𝑖] if 𝛾𝑘[𝑖] = 1
⊥ if 𝛾𝑘[𝑖] = 0.

(6.15)

The input applied to the plant is determined by the output vector (𝑂𝑉) of the

replicated controller. However, since that value is undefined in sampling periods

where the consensus instance is unsuccessful, cf. (6.11), we assume that the default

applied input is zero, i.e.

𝑢𝑘 =

{
𝑂𝑉 𝑟

𝑘 , 𝑟 ∈ 𝐺out

𝑘 if 𝑘 successful

0 otherwise,
(6.16)

where we make the simplifying assumption that output vectors are delivered

reliably to the actuators.

We consider an LQG optimal control set-up (cf. [Sin+05]) where the control

objective is to minimize the expected infinite horizon average cost

𝐽 = 𝔼[lim𝑇→∞

1
𝑇

𝑇

∑
𝑘=1

𝑥⊤𝑘𝑄𝑥𝑘 + 2𝑥⊤𝑘𝐻𝑢𝑘 + 𝑢⊤𝑘𝑅𝑢𝑘] (6.17)

with weighting matrices 𝑄, 𝑅, and 𝐻 , such that [
𝑄 𝐻
𝐻⊤ 𝑅] ≻ 0. Therefore, a low cost

𝐽 corresponds to a high QoC.

The optimal controller consists of a Kalman filter to estimate the state 𝑥 from

the available measurements 𝑦 and an LQR controller which uses the state estimate

to calculate an optimal input 𝑢. The theoretically
8

optimal control 𝑢∗𝑘 minimizing

𝐽 is given by

𝑢∗𝑘 = 𝐾𝑥𝑘 (6.18)

𝐾 = −(𝑅 + 𝐵⊤𝑃𝐵)−1 ⋅ (𝐵⊤𝑃𝐴 + 𝐻⊤) (6.19)

𝑃 = 𝐴⊤𝑃𝐴 − (𝐴⊤𝑃𝐵 + 𝐻) ⋅ (𝑅 + 𝐵⊤𝑃𝐵)−1 ⋅ (𝐵⊤𝑃𝐴 + 𝐻⊤) + 𝑄, (6.20)

where, under the given assumptions, the algebraic Riccati equation (6.20) has

a unique positive-definite solution 𝑃 [DL71]. Note that both 𝑃 and 𝐾 are time-

invariant and can be calculated off-line in advance.

As described above, the optimal control input 𝑢∗𝑘 depends on the current state of

the plant. However, the controller (replicas) cannot determine 𝑥𝑘 exactly because

8
since not in general realizable in our system model as the applied control input (6.16)

111

6 Replication

(a) a single measurement 𝑦𝑘 is in general not sufficient to infer the plant state 𝑥𝑘
(since 𝐶 may not be invertible),

(b) measurements are affected by unknown noise 𝑣𝑘 , and

(c) the input vectors containing these measurements—as received by the con-

troller (replicas)—are affected by delay and loss.

Therefore, the controller can only approximate the optimal control signal based

on the available information.

To this end, the controller employs a Kalman filter that maintains an estimate 𝑥̂
of the plant’s state and an estimate of the error covariance Σ = 𝔼[(𝑥̂𝑘 − 𝑥𝑘) ⋅ (𝑥̂𝑘 −
𝑥𝑘)⊤]. Since measurements may be partially missing in each 𝐼𝑉 , we consider the

approach presented in [LG04] for Kalman filtering with partial observation losses

in this case study. The rationale of that approach is to assume a measurement

noise covariance approaching infinity for the missing components of 𝑦𝑘 in the

innovation step of the Kalman filter. In particular, let us assume that 𝑦𝑘 (or an

appropriate permutation of its components) is partitioned into [𝑦𝑎⊤
𝑘 𝑦𝑑⊤

𝑘]
⊤

such

that 𝑦𝑎
𝑘 ∈ ℝ|𝛾𝑘 |

contains all available components of 𝑦𝑘 and 𝑦𝑑
𝑘 ∈ ℝ𝑛𝑦−|𝛾𝑘 |

contains all

dropped measurement components (i.e., corresponding to 𝐼𝑉𝑘[𝑖] = ⊥) in sampling

period 𝑘. Considering the a priori measurement noise covariance matrix to be

partitioned correspondingly as 𝑉 = [𝑉 𝑎 𝑉 𝑎𝑑

𝑉 𝑑𝑎 𝑉 𝑑], the block 𝑉 𝑑
is replaced in the

innovation step for period 𝑘 with 𝜎𝐼 , taking the limit 𝜎 → ∞.

Here, for ease of notation, we make the simplifying assumption that 𝑉 is a

diagonal matrix. Consequently, the state estimate 𝑥̂ and error covariance Σ are

updated in each period as

𝑥̂𝑘|𝑘−1 = 𝐴𝑥̂𝑘−1|𝑘−1 + 𝐵𝑢𝑘 (6.21)

Σ𝑘|𝑘−1 = 𝐴Σ𝑘−1|𝑘−1𝐴⊤+ 𝑊 (6.22)

𝐿𝑘 = lim
𝜎→∞

Σ𝑘|𝑘−1𝐶⊤(𝐶Σ𝑘|𝑘−1𝐶⊤+ 𝑉 + 𝜎 ⋅ (𝐼 − diag(𝛾𝑘)))
−1

(6.23)

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐿𝑘(𝑦𝑘 − 𝐶𝑥̂𝑘|𝑘−1) (6.24)

Σ𝑘|𝑘 = (𝐼 − 𝐿𝑘𝐶)Σ𝑘+1|𝑘 , (6.25)

assuming that 𝑥0 ∼  (𝑥̂0|0, Σ0|0). As with the conventional Kalman filter, each

iteration consists of a prediction step (6.21)–(6.22), where the state estimate is

extrapolated using the plant model, followed by an innovation step (6.23)–(6.25),

where measurement values from the input vector are incorporated to improve

the accuracy of the state estimate.

Using the approach from [LG04] described earlier, the observer gain 𝐿𝑘 is

calculated in (6.23) with a term 𝜎 ⋅ (𝐼 − diag(𝛾𝑘)) added to the measurement noise

112

6.7 QoC-aware Replication

covariance 𝑉 to account for missing values in the input vector 𝐼𝑉𝑘 . By letting

𝜎 → ∞, the result of the innovation step (6.24)–(6.25) becomes independent of

the components of 𝑦𝑘 with 𝛾𝑘[𝑖] = 0, i.e., those components which are missing

in the received input vector 𝐼𝑉𝑘 . The limit of the matrix inverse in (6.23) can be

calculated, for instance, using the Woodbury matrix identity. (Note that 𝐿𝑘 → 0
if 𝛾𝑘 = 0, i.e., 𝑥̂ and Σ remain unmodified in the innovation step when the 𝐼𝑉
is empty. It is also interesting to note that the error covariance Σ𝑘|𝑘 does not

converge to a stationary value for 𝑘 → ∞ in general, since it depends on the

arrival sequence 𝛾 .)

Algorithm 6: LQG Update function

1 Function Update(𝑆, 𝐼𝑉)

2 𝐿 ← lim𝜎→∞ 𝑆.Σ ⋅ 𝐶⊤(𝐶 ⋅ 𝑆.Σ ⋅ 𝐶⊤+ 𝑉 + 𝜎 ⋅ diag([𝐼𝑉 = ⊥]))
−1

;

3 𝑥̂+ ← 𝐴(𝑆.𝑥̂ + 𝐿(𝐼𝑉 − 𝐶 ⋅ 𝑆.𝑥̂)) + 𝐵𝑢;

4 Σ+ ← 𝐴(𝐼 − 𝐿𝐶) ⋅ 𝑆.Σ ⋅ 𝐴⊤+ 𝑊 ;

5 return (𝑥̂+, Σ+);
6 end

Algorithm 7: LQG Output function

1 Function Output(𝑆)
2 return 𝐾 ⋅ 𝑆.𝑥̂ ;

3 end

Algorithm 8: LQG Cost function

1 Function Cost(est)

2 Σ+ ← Update(est.𝑆, est.𝐼𝑉).Σ;

3 return tr(𝐾⊤(𝐵⊤𝑃𝐵 + 𝑅)𝐾Σ+);

4 end

Since our system model contains a one-period delay in the controller execution

model, i.e., the controller calculates a predictive 𝑂𝑉 for the following period,

the controller performs the prediction step immediately after the innovation

step. In terms of the generic controller model introduced in Section 6.3, the state

𝑆𝑘 = (𝑥̂𝑘|𝑘−1, Σ𝑘|𝑘−1) of the controller therefore consists of the Kalman filter’s state

113

6 Replication

estimate and error covariance after the prediction step. The Update function

(shown in Algorithm 6) takes the previous state 𝑆𝑘−1 and last received input vector

𝐼𝑉𝑘−1 and applies equations (6.23) and (6.21) in line 3 for updating the state estimate

and equations (6.25) and (6.22) in line 4 for updating the error covariance estimate,

and returns the updated state 𝑆𝑘 . The Output function (shown in Algorithm 7)

takes the state 𝑆𝑘 and produces the output vector 𝑂𝑉𝑘 = 𝐾𝑥̂𝑘|𝑘−1.
Note that, for the sake of simplicity, we assume in Alg. 6, l. 3 that the update is

performed with knowledge of the input 𝑢𝑘−1 applied in the previous period, in

order to maintain the separation principle. This assumption is somewhat realistic

if 𝑂𝑉 messages are delivered with high reliability, which can also be increased

by introducing acknowledgements from the actuators. (Replicas could receive

these while waiting for 𝐼𝑉 and executing consensus, i.e., up to l. 19 in Alg. 3.)

However, if this assumption cannot be realized, the controller has to be modified

as in [Sin+08], for instance, which is often referred to as the “UDP-like case” in

the literature.

6.7.2 Cost Model

Since the control cost 𝐽 ultimately depends on the sequence of values produced

by the replicated controller, we now investigate the influence of the underlying

controller states.

Theorem 6.4. Given an input sequence (𝑢𝑘)∞𝑘=1, the expected cost is given by

𝐽 = tr(𝑊𝑃) + lim
𝑇→∞

1
𝑇

𝑇

∑
𝑘=1

𝔼[(𝑢𝑘 − 𝐾𝑥𝑘)⊤(𝐵⊤𝑃𝐵 + 𝑅)(𝑢𝑘 − 𝐾𝑥𝑘)] (6.26)

Proof. We can rewrite equation (6.17) for the cost 𝐽 by including a telescoping

term in the sum as

𝐽 = lim
𝑇→∞

1
𝑇

𝑇

∑
𝑘=1

𝔼[𝑥⊤𝑘𝑄𝑥𝑘 + 2𝑥⊤𝑘𝐻𝑢𝑘 + 𝑢⊤𝑘𝑅𝑢𝑘 + 𝑥⊤𝑘+1𝑃𝑥𝑘+1 − 𝑥⊤𝑘𝑃𝑥𝑘], (6.27)

where we exploited the fact that lim𝑇→∞
1
𝑇 (𝑥

⊤
1𝑃𝑥1 − 𝑥⊤𝑇+1𝑃𝑥𝑇+1) = 0. Note that

𝔼[𝑥⊤𝑘+1𝑃𝑥𝑘+1] = 𝔼[(𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘)⊤𝑃(𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘)]
= 𝔼[𝑥⊤𝑘𝐴

⊤𝑃𝐴𝑥𝑘 + 2𝑥⊤𝑘𝐴
⊤𝑃𝐵𝑢𝑘 + 𝑢⊤𝑘𝐵

⊤𝑃𝐵𝑢𝑘 + 𝑤⊤
𝑘𝑃𝑤𝑘],

where we used the independence of the zero-mean noise 𝑤𝑘 . Inserting into (6.27)

114

6.7 QoC-aware Replication

and using the fact that 𝔼[𝑤⊤
𝑘𝑃𝑤𝑘] = 𝔼[tr(𝑤𝑘𝑤⊤

𝑘𝑃)] = tr(𝑊𝑃) yields

𝐽 = tr(𝑊𝑃)

+ lim
𝑇→∞

1
𝑇

𝑇

∑
𝑘=1

𝔼[𝑥⊤𝑘(𝐴
⊤𝑃𝐴 + 𝑄 − 𝑃)𝑥𝑘 + 2𝑥⊤𝑘(𝐴

⊤𝑃𝐵 + 𝐻)𝑢𝑘 + 𝑢⊤𝑘(𝐵
⊤𝑃𝐵 + 𝑅)𝑢𝑘].

(6.28)

Finally, it follows from (6.19) and (6.20) that

𝐾⊤(𝐵⊤𝑃𝐵 + 𝑅) = −(𝐴⊤𝑃𝐵 + 𝐻) (6.29)

and 𝐾⊤(𝐵⊤𝑃𝐵 + 𝑅)𝐾 = 𝐴⊤𝑃𝐴 + 𝑄 − 𝑃, (6.30)

and therefore (6.28) can be rewritten as

𝐽 = tr(𝑊𝑃)

+ lim
𝑇→∞

1
𝑇

𝑇

∑
𝑘=1

𝔼[𝑥⊤𝑘𝐾
⊤(𝐵⊤𝑃𝐵 + 𝑅)𝐾𝑥𝑘 − 2𝑥⊤𝑘𝐾

⊤(𝐵⊤𝑃𝐵 + 𝑅)𝑢𝑘 + 𝑢⊤𝑘(𝐵
⊤𝑃𝐵 + 𝑅)𝑢𝑘],

which transforms directly into (6.26) through factorization. ■

From Theorem 6.4, it can be easily seen that 𝑢∗𝑘 = 𝐾𝑥𝑘 is indeed the optimal

control input. But moreover, it also shows the optimum achievable cost tr(𝑊𝑃)
and to what degree each applied input 𝑢𝑘 contributes to the total cost 𝐽 . Remember

that the applied input for the replicated controller depends on output vector 𝑂𝑉𝑘
and success of the corresponding consensus instance 𝑘 as specified in (6.16).

6.7.3 Increasing QoC with SCRAM
If a single controller (6.18), (6.21)–(6.25) is used to control the plant (6.13)–(6.14),

then the LQ cost 𝐽 is determined by the sequence of measurement vector arrivals

𝛾𝑘 . However, the replicated controller offers an additional degree of freedom, since

different replicas 𝑟 ∈ 𝐺 may receive different input vector sequences, i.e., with

different arrival patterns 𝛾 𝑟
𝑘 . In the nominal case (when the replicated controller

is available), this degree of freedom vanishes since the coordinator “enforces” its

own state on all influential replicas. But if consensus is unsuccessful for one or

more sampling periods, the Kalman filters’ state estimates of different replicas

may diverge, leaving several options for determining the next output.

Let us consider the case that a consensus instance 𝑘−1 terminates successfully

on all replicas, leaving all in the same state 𝑆𝑘−1 = Decision(𝑘−1). Now, if the

instance 𝑘 for the next sampling period fails with no replica receiving a Propose

115

6 Replication

message, and all replicas receive different input vectors 𝐼𝑉 𝑟
𝑘 ≠ 𝐼𝑉 𝑠

𝑘 ∀𝑟≠𝑠 , then in

Alg. 3, l. 19 all replicas potentially obtain different states 𝑆𝑟𝑘 ≠ 𝑆𝑠𝑘 ∀𝑟≠𝑠 , but have the

same view 𝑣, base view 𝑣𝑏 , and base period 𝑘𝑏 = 𝑘 − 1. All replicas then enter

the next consensus instance 𝑘+1 in viewchange mode. If the new coordinator

receives a majority of estimates in Alg. 5, l. 7, it chooses an arbitrary estimate, since

all satisfy the requirements for state consistency. However, since the estimates

contain different states, thus yielding different outputs 𝑢𝑘+1, the view change

offers an opportunity for selecting the value which leads to the smallest stage

cost, i.e., the smallest expected penalty on QoC.

Corollary. Let the cost (6.17) be given in the form

𝐽 = lim
𝑇→∞

1
𝑇

∞

∑
𝑘=1

𝑗𝑘 .

The expected stage cost 𝑗𝑘 incurred by a controller state 𝑆𝑘 = (𝑥̂𝑘 , Σ𝑘) is given by

tr(𝑊𝑃) + tr(𝐾⊤(𝐵⊤𝑃𝐵 + 𝑅)𝐾Σ𝑘) (6.31)

Proof. This follows from Theorem 6.4. Using (6.26), we can write the stage cost 𝑗𝑘
as

𝑗(𝑢𝑘 , 𝑥𝑘) = tr(𝑊𝑃) + 𝔼[(𝑢𝑘 − 𝐾𝑥𝑘)⊤(𝐵⊤𝑃𝐵 + 𝑅)(𝑢𝑘 − 𝐾𝑥𝑘)]
= tr(𝑊𝑃) + 𝔼[(𝑥̂𝑘 − 𝑥𝑘)⊤𝐾⊤(𝐵⊤𝑃𝐵 + 𝑅)𝐾(𝑥̂𝑘 − 𝑥𝑘)]

= tr(𝑊𝑃) + tr(𝐾
⊤(𝐵⊤𝑃𝐵 + 𝑅)𝐾 ⋅ 𝔼[(𝑥̂𝑘 − 𝑥𝑘)(𝑥̂𝑘 − 𝑥𝑘)⊤])

= tr(𝑊𝑃) + tr(𝐾⊤(𝐵⊤𝑃𝐵 + 𝑅)𝐾Σ)
■

Based on Section 6.7.3, we can define a Cost function for consensus estimates,

which is shown in Algorithm 8. Since the estimate for consensus instance 𝑘 as

defined in Algorithm 3 comprises 𝑆𝑘−1 and 𝐼𝑉𝑘−1, the method first calculates the

updated state
9

and then returns the stage cost as defined in (6.31), discarding the

constant term tr(𝑊𝑃).
Since the closed-loop cost 𝐽 of the NCS is the average of the (non-negative)

stage cost in each sampling period, we can improve QoC by minimizing the stage

cost in every sampling period. Therefore, we propose two possible modifications

of the viewchange mechanism that take the stage cost into account.

State-consistent QoC-based Selection Replacing line 7 in Algorithm 5 with

select message with max(𝑣′
𝑏 , est

′.𝑘𝑏 , −Cost(est′)); (6.32)

9
In fact, it would be sufficient to update only the error covariance Σ.

116

6.8 Evaluation

maintains state consistency, since the consensus instance continues with an

estimate with max(𝑣′
𝑏 , est′.𝑘𝑏) from a majority of replicas as in unmodified

SCRaM, but selects the state incurring the smallest stage cost if there are

multiple candidates.

Purely QoC-based Selection Replacing line 7 in Algorithm 5 with

select message with max(𝑣′
𝑏 , −Cost(est

′)); (6.33)

maintains the agreement property (and thereby output consistency), since

the consensus instance continues with an estimate with max 𝑣′
𝑏 from a

majority of replicas as in the consensus algorithm by [CT96; Dol+96], but

may violate state consistency, since a state which is not reachable from the

latest influential state may be selected. However, the stage cost incurred

by the selected state cannot be larger than in the state-consistent selection.

Hence, this modification variant sacrifices the state-consistency property

in favour of a potential further QoC improvement.

In Section 6.8.3, we will evaluate the QoC gains that can be achieved by these

modifications with respect to the unmodified SCRaM algorithm using a simulation

study of an inverted pendulum.

6.8 Evaluation
In this section, we evaluate the effectiveness and efficiency of SCRaM, comparing

it to the existing real-time replication management protocol Quarts for com-

parison. First, in Section 6.8.1 we evaluate the core performance metrics of the

replication protocol, i.e., availability, latency, and message cost, without directly

considering the effect on the closed-loop control system. To that end, we present

evaluation results for an experiment with a physical plant in Section 6.8.2 for a

control performance comparison. In Section 6.8.3, we then study the effect of the

performance-optimizing protocol modifications proposed above.

6.8.1 Availability, Latency, Message Cost
The scenarios and failure model for our evaluation are based on those used

in [Saa+17] for the evaluation of the Quarts replication protocol in order to

draw a fair comparison with that approach. We implemented both the Quarts

protocol and our own algorithm as discrete event simulations using the SimJulia
simulation framework [Lau18; Bez+18] and were able to reproduce the results

presented in [Saa+17] for the former.

117

6 Replication

Process failures obey the Gilbert-Elliot model which is often used to model

bursty behaviour and consists of a two-state Markov chain with state-dependent

failure probabilities. In any period, each replica may be either in a good (G) or bad

(B) state. In the good state, the replica may be unavailable for the current period

according to a Bernoulli process with probability 𝜃𝑑 to model sporadic failures

(which are attributed to erratic computation delay in [Saa+17]). In the bad state,

the replica remains unavailable until it returns to the good state in a future period,

to model crash failures. The stationary probability of being in the crashed (bad)

state is given by 𝜃𝑐 while the mean time to repair (MTTR) after which replicas

recover crash failures on average is given by 𝑅. This implies that the transition

probability for B→G (recover) equals
𝑇𝑠
𝑅 , while that for G→B (crash) equals

𝑇𝑠𝜃𝑐
𝑅(1−𝜃𝑐) .

Because the number of concurrently crashed replicas cannot be bounded in this

model, we simulated a recovery operation based on the assumption of stable

storage as outlined in Section 6.6.5.

Communication is modelled according to the so-called probabilistic synchronous
[Dzu+16], which is also used in [Saa+17]. Message loss follows a Bernoulli process

with probability 𝑝, while message delay is governed by an i.i.d. process with

uniform distribution on (0, 𝛿]. The failure detector used in the simulation of our

protocol is implemented as a message reception timeout based on the network

delay 𝛿 .

For all simulations, we take

• the number of sensor nodes 𝑛𝑦 = 10,

• the sampling interval 𝑇𝑠 = 20ms,

• the network delay 𝛿 = 0.5ms,

• the message loss probability 𝑝 = 1 × 10−3,

• the MTTR for crash failures 𝑅 = 1 s,

• the sporadic failure probability 𝜃𝑑 = 1 × 10−3, and

• the crash failure probability 𝜃𝑐 = 1 × 10−4,

as in [Saa+17] unless noted otherwise, with 𝑁 = 3 replicas.

We performed three parameter studies, varying the message loss rate 𝑝 ∈
[10−4, 10−1], the crash failure rate 𝜃𝑐 ∈ [10−4, 10−1], and the sampling interval

𝑇𝑠 ∈ [1ms, 20ms], respectively. For each parameter study, we ran simulation

experiments for 900 000 sampling periods, which corresponds to a simulated time

of five hours.

The results for varying message loss rate are shown in Figure 6.4. The top pane

shows the unavailability of both approaches. While our algorithm outperforms

118

6.8 Evaluation

10−5

10−4

10−3

u
n

r
e
l
i
a
b
i
l
i
t
y
1
−
𝜌

SCRaM

Quarts [Saa+17]

0
0.2
0.4
0.6
0.8
1

l
a
t
e
n

c
y
𝜆
[m

s]

10−4 10−3 10−2 10−1
0
5
10
15
20
25

message loss probability 𝑝

m
s
g

.
c
o

s
t
𝜇

Figure 6.4: Parameter study for 𝑝 ∈ [10−4, 10−1]

119

6 Replication

10−5

10−4

10−3

10−2

u
n

r
e
l
i
a
b
i
l
i
t
y
1
−
𝜌

SCRaM

Quarts [Saa+17]

0
0.2
0.4
0.6
0.8
1

l
a
t
e
n

c
y
𝜆
[m

s]

10−4 10−3 10−2 10−1
0

5

10

15

crash failure probability 𝜃𝑐

m
s
g

.
c
o

s
t
𝜇

Figure 6.5: Parameter study for 𝜃𝑐 ∈ [10−4, 10−1], 𝑝 = 10−2

Quarts throughout this parameter range, we can see that both approaches per-

form similarly at low message loss rates. However, our approach remains robust

to increasing 𝑝 while the unavailability of Quarts increases by approximately

three orders of magnitude as 𝑝 increases by the same order. The middle pane

shows the mean latency 𝜆. Here we can observe that Quarts outperforms our

algorithm by up to 55 %. However, the bottom pane shows that the lower latency

of Quarts comes at a cost of more than twice the message cost compared to our

algorithm. Latency and messaging cost increase for both algorithms in response

to inceased loss probability, although our algorithm can be seen to be less sensitive

to 𝑝 with respect to both metrics.

The results for varying crash failure rate are shown in Figure 6.5, where the

message loss rate is fixed at 𝑝 = 10−2. Again, the top pane shows the unavailability

of both approaches, which indicates that our algorithm outperforms Quarts

by approximately an order of magnitude for 𝜃𝑐 < 10−2, while the performance

of both approaches converges for larger crash failure rates. (We note that this

120

6.8 Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10−5
10−4
10−3
10−2
10−1

sampling interval 𝑇𝑠 [ms]

u
n

r
e
l
i
a
b
i
l
i
t
y
1
−
𝜌

SCRaM

Quarts [Saa+17]

Figure 6.6: Parameter study for 𝑇𝑠 ∈ [1ms, 20ms]

effect becomes more pronounced for larger 𝑝 and less pronounced for smaller

𝑝, and that we chose 𝑝 = 10−2 to make the qualitative properties visible. For

vanishing 𝑝 we observed that both algorithms have the same availability, which

indicates that our algorithm is more robust overall to message loss.) With respect

to latency (middle pane), we see a similar difference between both algorithms as

in the previous scenario, while 𝜆 remains almost constant with respect to 𝜃𝑐 . The

messaging cost (bottom pane) also shows a similar ratio, but decreases slightly

for Quarts at higher crash failure rates.

The higher average latency of our algorithm raises the expectation that its

advantages should diminish as the available timespan for successfully executing

consensus, i.e., the sampling interval 𝑇𝑠 , decreases. The unavailability of both

algorithms is compared for varying 𝑇𝑠 in Figure 6.6. Indeed, it shows that our

algorithm is outperformed by Quarts for 𝑇𝑠 < 5ms. Since the latency of Quarts

is bounded by 6𝛿 = 3ms (5𝛿 for the protocol [Saa+17] plus 𝛿 for receiving 𝐼𝑉), it

is only below this value that its availability significantly deteriorates. By contrast,

our algorithm makes better use of the available “slack time” at lower message cost

by proceeding in rounds (i.e., views) up to 𝑇𝑠 , but has higher mean and tail latency.

This indicates that the choice of replication algorithm (leaving state consistency

aside) must be informed by the sampling period in relation to the network delay.

6.8.2 NCS Performance

In order to assess SCRaM with respect to QoC, we also evaluated it using an ex-

perimental CPS set-up with a physical plant. For these experiments, we increased

the crash failure probability to 𝜃𝑐 = 0.1 and the MTTR to 𝑅 = 3 s.
The physical part of the experiment is an inverted pendulum (whose angle we

denote by 𝜃) balancing on a cart (whose position we denote as 𝑥). The cart is

121

6 Replication

driven by a stepper motor using a belt assembly. A microcontroller drives the

stepper, reads 𝜃 using an incremental rotary encoder, and communicates with

the PC running the event-based simulation of the replicated controller, which is

periodically suspended until receiving a new measurement, to keep in sync with

real time.

We used the LQG design shown in Section 6.7 for the 𝑁 = 3 controller replicas,

i.e., Update is one iteration of a Kalman filter recursion, while Output applies

an LQR gain to the filter’s state estimate, as shown in Algorithms 6 and 7. The

sampling period is 𝑇𝑠 = 50ms. The cart-driven inverted pendulum that we used

in our experiments is shown in Figure 6.7. A rod of 0.6m length is mounted on

the shaft of an incremental rotary encoder with 600 pulse

rev
. The track has a usable

range of 1.2m.

Figure 6.7: Physical inverted pendulum for replication evaluation

We denote the state of the system by 𝜉 = [𝑥, 𝑥̇ , 𝜃, 𝜃̇]⊤, where 𝑥 is the distance

of the cart from the origin (track center) in meters and 𝜃 is the angle of the pole

from upright in radians. Sensor measurements are 𝑦 = [𝑥, 𝜃]⊤ and the actuation

input is the cart acceleration 𝑢 = 𝑥̈ . For the design of the LQG controller, we use

the continuous-time cost metric

𝐽 = ∫
∞

𝑡=0
𝜉⊤𝑄𝑐 𝜉 + 𝑢⊤𝑅𝑐 𝑢 d𝑡

with 𝑄 = diag([1, 0.01, 1.5, 0.01]) and 𝑅 = 0.02. Linearization and discretization at

122

6.8 Evaluation

𝑇𝑠 = 50ms of the non-linear pendulum equation gives a discrete-time LTI system

𝜉𝑘+1 = 𝐴𝜉𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 (6.34)

𝑦𝑘 = 𝐶𝜉𝑘 + 𝑣𝑘 (6.35)

𝐽𝑇 =
1
𝑇

𝑇

∑
𝑘=0

𝜉⊤𝑘 𝑄𝜉𝑘 + 2𝜉⊤𝑘 𝐻𝑢𝑘 + 𝑅𝑢2𝑘 (6.36)

with

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 0.05 0 0
0 1 0 0
0 0 1.018 0.05
0 0 0.705 1.018

⎤
⎥
⎥
⎥
⎦

𝐵 =
⎡
⎢
⎢
⎢
⎣

0.125
5.0
0.179
7.185

⎤
⎥
⎥
⎥
⎦

⋅ 10−2 𝐶 = [
1 0 0 0
0 0 1 0] (6.37)

𝑄 =
⎡
⎢
⎢
⎢
⎣

5.0 0.125 0 0
0.125 0.054 0 0
0 0 7.596 0.207
0 0 0.207 0.057

⎤
⎥
⎥
⎥
⎦

⋅ 10−2 𝐻 =
⎡
⎢
⎢
⎢
⎣

2.083
1.328
5.359
1.975

⎤
⎥
⎥
⎥
⎦

⋅ 10−5 𝑅 = 1.001 × 10−3

(6.38)

The LQR optimal input is

𝑢𝑘 = [5.295 5.967 −42.519 −11.239] ⋅ 𝜉𝑘 . (6.39)

As noise covariance matrices for 𝑤𝑘 and 𝑣𝑘 we take

𝑊 =
⎡
⎢
⎢
⎢
⎣

5.042 × 10−5 1.25 × 10−5 0 0
1.25 × 10−5 5 × 10−4 0 0

0 0 5.143 × 10−3 0.004
0 0 4.301 × 10−3 0.102

⎤
⎥
⎥
⎥
⎦

(6.40)

and

𝑉 = [
1.5 × 10−4 0

0 2.5 × 10−3] (6.41)

Our experiment consisted of balancing the pendulum for 180 s, starting upright

with the cart at the origin. We repeated the experiment 25 times for each protocol,

always with the same realization (seed value) of the crash failure model. The

average availability—i.e., the proportion of periods with 𝑂𝑉 ≠ ⊥—was 99.2 %
for all experiments. In Figure 6.8, the diagrams in the top and middle show the

cumulative distribution of the maximum absolute pole angle and the position

range covered by the cart per experiment. Even though both replication protocols

execute the same controller function and achieve the same availability, the NCS

123

6 Replication

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

maximum angle [◦]

E
C

D
F

SCRaM

Quarts [Saa+17]

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

cart range [cm]

E
C

D
F

SCRaM

Quarts [Saa+17]

150 170 190 210 230 250 270 290 310 330 350 370
0

0.2

0.4

0.6

0.8

1

LQ cost 𝐽

E
C

D
F

SCRaM

Quarts [Saa+17]

Figure 6.8: Empirical CDFs over all experiments for both replication protocols:

maximum absolute pendulum angle max𝑘 |𝜃𝑘 | (top), cart position range

max𝑘 𝑥𝑘 − min𝑘 𝑥𝑘 (middle), LQ cost 𝐽 (bottom)

124

6.8 Evaluation

0 5 ⋅ 10−2 0.1 0.15 0.2 0.25
0.7

0.8

0.9

1

1.1

𝑝

𝐽

𝐽
ref

SCRaM

state-consistent optimization (6.32)

purely QoC-based optimization (6.33)

Figure 6.9: Comparison of LQ cost 𝐽 using the unmodified and modified SCRaM

protocol for 𝑝 ∈ [10−5, 2.5 ⋅ 10−2]

replicated using SCRaM keeps the angle 2.97◦ (or 35 %) smaller and the cart range

17.15 cm (or 36 %) smaller on average than with Quarts. This demonstrates that

providing state consistency with SCRaM can offer a clear performance advantage.

The bottom diagram shows the empirical CDF of the LQ cost 𝐽 for all experiments,

which on average is 14.8 % larger when using Quarts compared to SCRaM.

6.8.3 QoC Optimization
Finally, we assess the QoC optimizing protocol modifications proposed in Sec-

tion 6.7.3. To this end, we simulated the linearized pendulum model (6.34)–(6.41)

as the plant, using the same controller as in the experiments in Section 6.8.2. Our

experiments for this evaluation consisted of balancing the simulated pendulum

for 600 s. We kept the sampling period 𝑇𝑠 = 50ms as in the previous section, and

set the remaining parameters 𝛿 = 0.5ms, 𝑅 = 1 s, 𝜃𝑑 = 1 × 10−3, and 𝜃𝑐 = 1 × 10−4
as in Section 6.8.1. Each experiment was repeated ten times with different seed

values for the random failures and noise.

In Figure 6.9, the average LQ cost of the experiments is shown for the unmodi-

fied SCRaM protocol and the two proposed modifications over varying packet

loss probability 𝑝 ∈ [10−5, 2.5 ⋅ 10−2]. For reference, the horizontal dashed line

indicates the average cost 𝐽ref ≈ 0.755 for corresponding experiments with zero

125

6 Replication

0 5 ⋅ 10−2 0.1 0.15 0.2 0.25
0

5

10

15

20

𝑝

c
o

s
t

i
n

c
r
e
a
s
e

r
e
d

u
c
t
i
o

n
[%
]

state-consistent optimization (6.32)

purely QoC-based optimization (6.33)

Figure 6.10: Comparison of LQ cost increase 𝐽 − 𝐽ref using modified protocols

relative to cost increase of unmodified SCRaM protocol for 𝑝 ∈
[10−5, 2.5 ⋅ 10−2]

packet loss and crash probability 𝑝 = 𝜃𝑑 = 𝜃𝑐 = 0. This is the fundamental baseline

cost of the optimal failure-free centralized controller.

We can see that for a low packet loss probability, the cost 𝐽SCRaM of the unmodi-

fied protocol is already very close to the optimal cost 𝐽ref. Specifically, the average

cost 𝐽SCRaM for 𝑝 = 10−5 is within (1 + 6.4 ⋅ 10−8) ⋅ 𝐽ref, and therefore no significant

potential for performance optimization is given in this regime. Of course, when

the packet loss rate is increased, the closed-loop performance deteriorates corre-

spondingly, due to both intermittent unavailability of the replicated controller and

loss of sensor measurements. However, we can see that the protocol modification

with the state-consistent QoC-based selection (6.32) consistently yields a lower LQ

cost. Moreover, the purely QoC-based selection (6.33) offers only a marginal cost

improvement over the state-consistent method.

In order to better quantify this effect, we consider the packet–loss–induced cost

increase 𝐽 − 𝐽ref with respect to the optimum achievable cost. Figure 6.10 shows

the percentage by which the two proposed protocol modifications reduce the cost

increase beyond 𝐽ref compared to the unmodified protocol, which is given by

𝐽SCRaM − 𝐽
𝐽SCRaM − 𝐽ref

.

We can see that an application-specific, performance-aware selection of estimates

in the viewchange mode of the replication protocol can reduce the cost increase

induced by packet losses by up to 14.1 % while maintaining state consistency, by

using the first proposed protocol modification (6.32). Moreover, a cost increase

126

6.9 Summary and Outlook

reduction of up to 18.3 % is possible if state consistency is abandoned, by using

the second proposed protocol modification (6.33).

We note that the same experiments using the Quarts protocol yielded diverging

closed-loop behaviour (and cost) for packet loss probabilities beyond 𝑝 = 5 ⋅ 10−3,
and are therefore not shown in the plot. Therefore, our evaluation validates

state consistency as the most useful performance-maintaining mechanism for

controller replication. While packet–loss–induced performance degradation can

be mitigated to a certain degree by introducing application-specific modifications

into the replication management protocol, further optimizations that violate state

consistency only offer marginal performance gains, and are of interest mainly for

very high packet loss regimes.

6.9 Summary and Outlook
In this chapter, we defined two consistency concepts for controller replication in

NCS, namely output and state consistency, which together ensure that a replicated

controller can be used as a functionally indistinguishable drop-in replacement for

a non-replicated controller. With SCRaM, we presented a corresponding efficient

replication protocol. Our evaluations showed that it outperforms the state of the

art for NCS controller replication in terms of both reliability and message cost

over a wide range of parameters, and indicate in which cases our algorithm is the

most suitable.

While SCRaM can be used very generically for periodically sampled controllers

and is agnostic to the underlying control design methodology, we showed how

control-specific performance metrics can be used to inform the choice of states

to propose by modifying the view change algorithm for a special case of LQG

control.

One possible avenue for future work is the investigation of different consensus

protocols in SCRaM. For instance, using the family of protocols recently described

in [HM19] may allow us to investigate latency–reliability trade-offs.

127

7 Summary

NCS can be found in diverse application areas, including automotive and air-

craft systems, smart homes, and smart manufacturing systems in the context

of Industry 4.0. While contemporary NCS often use general-purpose networks

simply as a more cost-effective, flexible, and/or maintainable alternative for spe-

cialized field-bus networks or extensive dedicated wiring, the trend of steadily

increasing digitization will likely lead to applications with a higher level of sys-

tem integration, especially in large-scale systems such as smart grids and smart

cities. This leads to major challenges concerning the provisioning of appropriate

communication services, due to the high QoS requirements of control systems,

but also—and more fundamentally—due to the current shortage of compatibility

between control and communication with respect to models and methods. On the

one hand, while NCS have been studied intensively from the control perspective

over the last decades, the design and analysis methods in those studies have been

based on simplistic and abstract network connection models. On the other hand,

communication networks are optimized for conventional performance metrics

such as throughput and latency, which do not readily translate into application

specific control performance metrics. This division hinders the holistic co-design

of complex NCS that is required for the novel applications outlined above. In

this thesis, we have aimed to reduce that gap by providing performance-oriented

communication concepts for NCS. As such, the main contributions of this thesis

are:

• In Chapter 3, we have addressed the scheduling problem for a group of

NCS sharing a dedicated network slice by designing a performance-aware

dynamic priority scheduler. The scheduler uses state-based packet priorities

calculated at the sensors, which are then used for stateless priority queuing

in the network, making it both scalable and efficient to implement at the

data-link layer. The parameters for calculating the packet priorities are

determined by solving a global SDP optimization problem for the group. By

incorporating LMI stability constraints for switched systems, the resulting

scheduling policy provides asymptotic stability guarantees for each NCS

and performance bounds on the joint QoC. Evaluation with a proof-of-

concept implementation has shown a 68% LQ cost reduction compared to

round-robin scheduling for a group of 6 simulated inverted pendulums.

129

7 Summary

• In Chapter 4, we have designed a state-based priority scheduler for oppor-

tunistic traffic in the deterministic–opportunistic transmission slot (DOTS)

model. We have decoupled the stability guarantees for individual NCS,

which are provided by deterministic transmissions, from the opportunistic

joint QoC optimization for the group, which is implemented by the priority

scheduler. The resulting scheduler requires no QoS guarantees for the op-

portunistic transmissions and provides worst-case bounds on the joint QoC.

In contrast to the scheduler developed in Chapter 3, which requires a com-

paratively large-scale SDP to be solved, the opportunistic scheduler only

requires the solution of a comparatively small algebraic matrix equation

for each NCS, and supports incremental addition and removal of NCS from

the group of scheduled applications. Moreover, a co-design method for a

time-varying controller has been provided, which optimizes the joint QoC

under worst case assumptions. Numerical evaluation has shown that the

achieved QoC is comparable to that of the first scheduler, while calculation

of the priority parameters is much faster (by a factor of ≈300) and stability

analysis is far less conservative.

• In Chapter 5, we have developed a cross-layer communication service for

NCS with a probabilistic Bernoulli packet loss model and a correspond-

ing routing algorithm for finding QoC-optimal paths in a network with

stochastic link delays. The approach is based on a QoS specification that

expresses the minimal required in-time arrival probability as a function of

the sampling period. The routing algorithm solves the constrained graph

optimization problem of finding a feasible path that admits a maximum

sampling period through dynamic programming. Numerical evaluation has

shown that the cross-layer service is effective at maintaining target QoC.

For a simple test scenario, routing offered a 6% network load improvement

compared to mere sampling rate adaptation on a feasible path.

• In Chapter 6, we have addressed the problem of active replication for con-

trollers. To this end, we have developed the state consistency condition

that provides replication transparency for control systems. This abstraction

allows the design of the control law for a replicated controller to be treated

the same as for a non-replicated controller. We have also presented the

corresponding replication management protocol SCRaM, and have shown

in our evaluation that it achieves high availability and low latency at low

message cost compared to existing real-time replication protocols that only

provide output consistency. Moreover, we have studied how QoC degrada-

tion due to failures can be mitigated in active replication by incorporating

application-specific performance metrics into the replication management

protocol.

130

In conclusion, this thesis provides control-specific scheduling, routing, and

replication methods on the basis of integrated models of control and communi-

cation, which enables the provisioning of performance-oriented communication

services for NCS and allows their design goals to be specified in terms of closed-

loop QoC.

131

Bibliography

[ÅB02] K. J. Åström and B. M. Bernhardsson. “Comparison of Riemann and

Lebesgue sampling for first order stochastic systems”. In: Proceedings
of the 41st IEEE Conference on Decision and Control. CDC. Las Vegas,

Nevada, USA, Dec. 2002, pp. 2011–2016. doi: 10.1109/CDC.2002.
1184824.

[ADK14] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers. “OpenNetMon:

Network monitoring in OpenFlow Software-Defined Networks”. In:

IEEE Network Operations and Management Symposium (NOMS). May

2014, pp. 1–8. doi: 10.1109/NOMS.2014.6838228.

[AGL15] S. Al-Areqi, D. Görges, and S. Liu. “Event-based networked control

and scheduling codesign with guaranteed performance”. In: Auto-
matica 57 (July 2015), pp. 128–134. doi: 10.1016/j.automatica.
2015.04.003.

[Al-+13] S. Al-Areqi, D. Görges, S. Reimann, and S. Liu. “Event-based control

and scheduling codesign of networked embedded control systems”.

In: Proceedings of the American Control Conference (ACC). Washing-

ton, DC, USA, June 2013, pp. 5299–5304. doi: 10.1109/ACC.2013.
6580665.

[AR15] F. Allgöwer and K. Rothermel. Integrated Controller Design Methods
and Communication Services for Networked Control Systems (NCS).
Research Grant – Deutsche Forschungsgemeinschaft (DFG). 2015.

url: https://gepris.dfg.de/gepris/projekt/285825138.

[BA11] R. Blind and F. Allgöwer. “Analysis of Networked Event-Based Con-

trol with a Shared Communication Medium: Part I – Pure ALOHA”.

In: Proceedings of the 18th IFAC World Congress. Aug. 2011, pp. 10092–

10097. doi: 10.3182/20110828-6-IT-1002.01100.

[BA12] R. Blind and F. Allgöwer. “Is it worth to retransmit lost packets

in Networked Control Systems?” In: Proceedings of the 51st IEEE
Conference on Decision and Control. CDC. Maui, HI, USA, Dec. 2012,

pp. 1368–1373. doi: 10.1109/CDC.2012.6426881.

133

https://doi.org/10.1109/CDC.2002.1184824
https://doi.org/10.1109/CDC.2002.1184824
https://doi.org/10.1109/NOMS.2014.6838228
https://doi.org/10.1016/j.automatica.2015.04.003
https://doi.org/10.1016/j.automatica.2015.04.003
https://doi.org/10.1109/ACC.2013.6580665
https://doi.org/10.1109/ACC.2013.6580665
https://gepris.dfg.de/gepris/projekt/285825138
https://doi.org/10.3182/20110828-6-IT-1002.01100
https://doi.org/10.1109/CDC.2012.6426881

Bibliography

[BA13] R. Blind and F. Allgöwer. “On the Optimization of the Transport Layer

for Networked Control Systems”. In: at – Automatisierungstechnik
61.7 (July 2013), pp. 495–505. doi: 10.1524/auto.2013.1028.

[BA14] R. Blind and F. Allgöwer. “On the stabilizability of continuous-time

systems over a packet based communication system with loss and

delay”. In: IFAC Proceedings Volumes 47.3 (2014). 19th IFAC World

Congress, pp. 6466–6471. issn: 1474-6670. doi: 10.3182/20140824-
6-ZA-1003.01213.

[BA15] R. Blind and F. Allgöwer. “Towards Networked Control Systems

with guaranteed stability: Using weakly hard real-time constraints

to model the loss process”. In: Proceedings of the 54th IEEE Conference
on Decision and Control. CDC. Osaka, Japan, Dec. 2015, pp. 7510–7515.

doi: 10.1109/CDC.2015.7403405.

[Bak+01] F. Baker, C. Iturralde, F. L. Faucheur, and B. Davie. Aggregation of
RSVP for IPv4 and IPv6 Reservations. RFC 3175. IETF, Sept. 2001. url:

http://tools.ietf.org/rfc/rfc3175.txt.

[Bal+18] A. Ballesteros, J. Proenza, M. Barranco, and L. Almeida. “Reconfigura-

tion Strategies for Critical Adaptive Distributed Embedded Systems”.

In: Proceedings of the 48th IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshops. June 2018, pp. 57–58. doi:

10.1109/DSN-W.2018.00028.

[Bar+17] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and V. Verdugo. “A

Scheduling Model Inspired by Control Theory”. In: Proceedings of
the 25th International Conference on Real-Time Networks and Systems.
RTNS ’17. Grenoble, France: ACM, 2017, pp. 78–87. isbn: 978-1-4503-

5286-4. doi: 10.1145/3139258.3139272.

[Ben+12] J. W. Bennett, G. J. Atkinson, B. C. Mecrow, and D. J. Atkinson.

“Fault-Tolerant Design Considerations and Control Strategies for

Aerospace Drives”. In: IEEE Transactions on Industrial Electronics 59.5

(May 2012), pp. 2049–2058. doi: 10.1109/TIE.2011.2159356.

[Bez+18] J. Bezanson, J. Chen, B. Chung, S. Karpinski, V. B. Shah, J. Vitek,

and L. Zoubritzky. “Julia: Dynamism and Performance Reconciled

by Design”. In: Proceedings of the ACM on Programming Languages
2.OOPSLA (Oct. 2018). issn: 2475-1421. doi: 10.1145/3276490.

[BHJ10] A. Bemporad, W. P. M. H. M. Heemels, and M. Johansson, eds. Net-
worked Control Systems. Springer, 2010. doi: 10.1007/978-0-85729-
033-5.

134

https://doi.org/10.1524/auto.2013.1028
https://doi.org/10.3182/20140824-6-ZA-1003.01213
https://doi.org/10.3182/20140824-6-ZA-1003.01213
https://doi.org/10.1109/CDC.2015.7403405
http://tools.ietf.org/rfc/rfc3175.txt
https://doi.org/10.1109/DSN-W.2018.00028
https://doi.org/10.1145/3139258.3139272
https://doi.org/10.1109/TIE.2011.2159356
https://doi.org/10.1145/3276490
https://doi.org/10.1007/978-0-85729-033-5
https://doi.org/10.1007/978-0-85729-033-5

[BK14] P. Bailis and K. Kingsbury. “The Network is Reliable”. In: Communica-
tions of the ACM 57.9 (Sept. 2014), pp. 48–55. doi: 10.1145/2643130.

[BSS08] M. E. M. Ben Gaïd, D. Simon, and O. Sename. “A Design Methodology

for Weakly-Hard Real-Time Control”. In: Proceedings of the 17th IFAC
World Congress. IFAC WC ’08 inria-00269209. IFAC. Seoul, South Ko-

rea, July 2008, p. 7. url: https://hal.inria.fr/inria-00269209.

[Car+12] B. W. Carabelli, A. Benzing, G. Seyboth, R. Blind, M. Bürger, F. Dürr,

B. Koldehofe, K. Rothermel, and F. Allgöwer. “Exact Convex For-

mulations of Network-Oriented Optimal Operator Placement”. In:

Proceedings of the 51st IEEE Conference on Decision and Control (Maui,

HI, USA). CDC. IEEE, Dec. 2012, pp. 3777–3782. doi: 10.1109/CDC.
2012.6426790.

[Car+17] B. W. Carabelli, R. Blind, F. Dürr, and K. Rothermel. “State-Dependent

Priority Scheduling for Networked Control Systems”. In: Proceedings
of the 2017 American Control Conference (Seattle, WA, USA). ACC.

IEEE, May 2017, pp. 1003–1010. doi: 10.23919/ACC.2017.7963084.

[CB10] N. M. K. Chowdhury and R. Boutaba. “A survey of network virtual-

ization”. In: Computer Networks 54.5 (Apr. 2010), pp. 862–876. doi:

10.1016/j.comnet.2009.10.017.

[CDK01] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems:
Concepts and Design. 3rd ed. Addison-Wesley, 2001. isbn: 0201619180.

[CDR20] B. W. Carabelli, F. Dürr, and K. Rothermel. “SCRaM – State-Consistent

Replication Management for Networked Control Systems”. In: Pro-
ceedings of the 11th IEEE/ACM International Conference on Cyber-
Physical Systems (Sydney, NSW, Australia). ICCPS. IEEE, Apr. 2020.

doi: 10.1109/ICCPS48487.2020.00035.

[CF99] F. Cristian and C. Fetzer. “The Timed Asynchronous Distributed

System Model”. In: IEEE Transactions on Parallel and Distributed
Systems 10.6 (June 1999), pp. 642–657. doi: 10.1109/71.774912.

[Ché+92] M. Chérèque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron. “Ac-

tive replication in Delta-4”. In: Proceedings of the 22nd International
Symposium on Fault-Tolerant Computing. July 1992, pp. 28–37. doi:

10.1109/FTCS.1992.243618.

[Clo+06] M. Cloosterman, N. van de Wouw, M. Heemels, and H. Nijmeijer.

“Robust Stability of Networked Control Systems with Time-Varying

Network-Induced Delays”. In: Proceedings of the 45th IEEE Conference
Decision and Control. CDC. San Diego, CA, USA: IEEE, Dec. 2006,

pp. 4980–4985. doi: 10.1109/CDC.2006.376765.

135

https://doi.org/10.1145/2643130
https://hal.inria.fr/inria-00269209
https://doi.org/10.1109/CDC.2012.6426790
https://doi.org/10.1109/CDC.2012.6426790
https://doi.org/10.23919/ACC.2017.7963084
https://doi.org/10.1016/j.comnet.2009.10.017
https://doi.org/10.1109/ICCPS48487.2020.00035
https://doi.org/10.1109/71.774912
https://doi.org/10.1109/FTCS.1992.243618
https://doi.org/10.1109/CDC.2006.376765

Bibliography

[CMF05] O. L. V. do Costa, R. P. Marques, and M. D. Fragoso. Discrete-Time
Markov Jump Linear Systems. Springer, 2005. doi: 10.1007/b138575.

[Cra+16] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner. “Schedul-

ing Real-Time Communication in IEEE 802.1Qbv Time Sensitive

Networks”. In: Proceedings of the 24th International Conference on
Real-Time Networks and Systems. RTNS ’16. Brest, France: ACM,

2016, pp. 183–192. isbn: 978-1-4503-4787-7. doi: 10.1145/2997465.
2997470.

[Cro96] J. Crowcroft. Open Distributed Systems.
Artech House, 1996. isbn: 0890068399.

[CT96] T. D. Chandra and S. Toueg. “Unreliable Failure Detectors for Reliable

Distributed Systems”. In: Journal of the ACM 43.2 (Mar. 1996), pp. 225–

267. issn: 0004-5411. doi: 10.1145/226643.226647.

[DHL15] I. Dunning, J. Huchette, and M. Lubin. “JuMP: A modeling lan-

guage for mathematical optimization”. In: (2015). arXiv: 1508.01982
[math.OC].

[DL71] P. Dorato and A. H. Levis. “Optimal linear regulators: The discrete-

time case”. In: IEEE Transactions on Automatic Control 16.6 (Dec.

1971), pp. 613–620. doi: 10.1109/TAC.1971.1099832.

[DLG10] S.-L. Dai, H. Lin, and S. S. Ge. “Scheduling-and-Control Codesign for

a Collection of Networked Control Systems With Uncertain Delays”.

In: IEEE Transactions on Control Systems Technology 18.1 (Jan. 2010),

pp. 66–78. issn: 1063-6536. doi: 10.1109/TCST.2008.2010459.

[DN16] F. Dürr and N. G. Nayak. “No-Wait Packet Scheduling for IEEE Time-

Sensitive Networks (TSN)”. In: Proceedings of the 24th International
Conference on Real-Time Networks and Systems. RTNS ’16. Brest,

France: ACM, 2016, pp. 203–212. isbn: 978-1-4503-4787-7. doi: 10.
1145/2997465.2997494.

[Doh+04] J. L. Dohner, J. P. Lauffer, T. D. Hinnerichs, N. Shankar, M. Regel-

brugge, C.-M. Kwan, R. Xu, B. Winterbauer, and K. Bridger. “Mitiga-

tion of chatter instabilities in milling by active structural control”.

In: Journal of Sound and Vibration 269.1 (2004), pp. 197–211. issn:

0022-460X. doi: 10.1016/S0022-460X(03)00069-5.

[Dol+96] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure Detectors
in Omission Failure Environments. Tech. rep. 1813/7263. Ithaca, NY,

USA: Cornell University, Sept. 1996. doi: 1813/7263.

136

https://doi.org/10.1007/b138575
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1145/226643.226647
https://arxiv.org/abs/1508.01982
https://arxiv.org/abs/1508.01982
https://doi.org/10.1109/TAC.1971.1099832
https://doi.org/10.1109/TCST.2008.2010459
https://doi.org/10.1145/2997465.2997494
https://doi.org/10.1145/2997465.2997494
https://doi.org/10.1016/S0022-460X(03)00069-5
https://doi.org/1813/7263

[DSG15] G. S. Deaecto, M. Souza, and J. C. Geromel. “Discrete-Time Switched

Linear Systems State Feedback Design With Application to Net-

worked Control”. In: IEEE Transactions on Automatic Control 60.3

(Mar. 2015), pp. 877–881. doi: 10.1109/TAC.2014.2341131.

[Dzu+16] D. Dzung, R. Guerraoui, D. Kozhaya, and Y.-A. Pignolet. “Never

Say Never – Probabilistic and Temporal Failure Detectors”. In: Pro-
ceedings of the IEEE International Parallel and Distributed Processing
Symposium. May 2016, pp. 679–688. doi: 10.1109/IPDPS.2016.92.

[EBH08] J. W. Eaton, D. Bateman, and S. Hauberg. GNU Octave Manual. 3rd.

2008.

[Fal+19a] J. Falk, F. Dürr, S. Linsenmayer, S. Wildhagen, B. Carabelli, and

K. Rothermel. “Optimal Routing and Scheduling of Complemental

Flows in Converged Networks”. In: Proceedings of the 27th Inter-
national Conference on Real-Time Networks and Systems. RTNS ’19.

Toulouse, France: ACM, 2019, pp. 154–164. doi: 10.1145/3356401.
3356415.

[Fal+19b] J. Falk, D. Hellmanns, B. W. Carabelli, N. Nayak, F. Dürr, S. Kehrer,

and K. Rothermel. “NeSTiNg: Simulating IEEE Time-sensitive Net-

working (TSN) in OMNeT++”. In: Proceedings of the 2019 International
Conference on Networked Systems. NetSys. Mar. 2019, pp. 1–8. doi:

10.1109/NetSys.2019.8854500.

[Fin+18] N. Finn, P. Thubert, B. Varga, and J. Farkas. Deterministic Networking
Architecture. Internet-Draft draft-ietf-detnet-architecture-05. Work

in Progress. Internet Engineering Task Force (IETF), May 2018. 41 pp.

url: https://datatracker.ietf.org/doc/html/draft-ietf-
detnet-architecture-05.

[FK15] Y. P. Fallah and M. K. Khandani. “Analysis of the Coupling of Com-

munication Network and Safety Application in Cooperative Collision

Warning Systems”. In: Proceedings of the 6th ACM/IEEE International
Conference on Cyber-Physical Systems. ICCPS. Seattle, Washington:

ACM, 2015, pp. 228–237. doi: 10.1145/2735960.2735975.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. “Impossibility of

Distributed Consensus with One Faulty Process”. In: Journal of the
ACM 32.2 (Apr. 1985), pp. 374–382. issn: 0004-5411. doi: 10.1145/
3149.214121.

[GAB19] A. Gujarati, M. Appel, and B. B. Brandenburg. “Achal: Building

Highly Reliable Networked Control Systems”. In: Proceedings of the
International Conference on Embedded Software. EMSOFT. New York,

NY, USA: ACM, Oct. 2019. doi: 10.1145/3349568.3351545.

137

https://doi.org/10.1109/TAC.2014.2341131
https://doi.org/10.1109/IPDPS.2016.92
https://doi.org/10.1145/3356401.3356415
https://doi.org/10.1145/3356401.3356415
https://doi.org/10.1109/NetSys.2019.8854500
https://datatracker.ietf.org/doc/html/draft-ietf-detnet-architecture-05
https://datatracker.ietf.org/doc/html/draft-ietf-detnet-architecture-05
https://doi.org/10.1145/2735960.2735975
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3349568.3351545

Bibliography

[GCB08] J. C. Geromel, P. Colaneri, and P. Bolzern. “Dynamic Output Feed-

back Control of Switched Linear Systems”. In: IEEE Transactions on
Automatic Control 53.3 (Apr. 2008), pp. 720–733. doi: 10.1109/TAC.
2008.919860.

[GFB11] L. Greco, D. Fontanelli, and A. Bicchi. “Design and Stability Analysis

for Anytime Control via Stochastic Scheduling”. In: IEEE Transactions
on Automatic Control 56.3 (Mar. 2011), pp. 571–585. issn: 0018-9286.

doi: 10.1109/TAC.2010.2058497.

[GH13] B. Galloway and G. P. Hancke. “Introduction to Industrial Control

Networks”. In: IEEE Communication Surveys & Tutorials 15.2 (2013),

pp. 860–880. doi: 10.1109/SURV.2012.071812.00124.

[GQD15] O. Gettings, S. Quinton, and R. I. Davis. “Mixed Criticality Systems

with Weakly-hard Constraints”. In: Proceedings of the 23rd Interna-
tional Conference on Real Time and Networks Systems (RTNS’15). Lille,

France: ACM, Nov. 2015, pp. 237–246. isbn: 978-1-4503-3591-1. doi:

10.1145/2834848.2834850.

[GRP16] K. Gatsis, A. Ribeiro, and G. J. Pappas. “Control-Aware Random

Access Communication”. In: Proceedings of the 7th ACM / IEEE In-
ternational Conference on Cyber-Physical Systems. ICCPS. IEEE, Apr.

2016, pp. 1–9. doi: 10.1109/ICCPS.2016.7479071.

[GSC08] E. Garone, B. Sinopoli, and A. Casavola. “LQG control over lossy

TCP-like networks with probabilistic packet acknowledgements”. In:

Proceedings of the 47th IEEE Conference on Decision and Control. CDC.

Cancun, Mexico, Dec. 2008, pp. 2686–2691. doi: 10.1109/CDC.2008.
4739460.

[Hee+10] W. P. M. H. Heemels, A. R. Teel, N. van de Wouw, and D. Nešić. “Net-

worked control systems with communication constraints: Tradeoffs

between transmission intervals, delays and performance”. In: IEEE
Transactions on Automatic Control 55.8 (Feb. 2010), pp. 1781–1796.

doi: 10.1109/TAC.2010.2042352.

[HM19] H. Howard and R. Mortier. “A Generalised Solution to Distributed

Consensus”. In: (Feb. 2019). arXiv: 1902.06776 [cs.DC].

[HNX07] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. “A Survey of Recent

Results in Networked Control Systems”. In: Proceedings of the IEEE
95.1 (Jan. 2007), pp. 138–162. issn: 0018-9219. doi: 10.1109/JPROC.
2006.887288.

138

https://doi.org/10.1109/TAC.2008.919860
https://doi.org/10.1109/TAC.2008.919860
https://doi.org/10.1109/TAC.2010.2058497
https://doi.org/10.1109/SURV.2012.071812.00124
https://doi.org/10.1145/2834848.2834850
https://doi.org/10.1109/ICCPS.2016.7479071
https://doi.org/10.1109/CDC.2008.4739460
https://doi.org/10.1109/CDC.2008.4739460
https://doi.org/10.1109/TAC.2010.2042352
https://arxiv.org/abs/1902.06776
https://doi.org/10.1109/JPROC.2006.887288
https://doi.org/10.1109/JPROC.2006.887288

[HRW15] J. Hwang, K. K. Ramakrishnan, and T. Wood. “NetVM: High Perfor-

mance and Flexible Networking Using Virtualization on Commodity

Platforms”. In: IEEE Transactions on Network and Service Manage-
ment 12.1 (Mar. 2015), pp. 34–47. issn: 1932-4537. doi: 10.1109/
TNSM.2015.2401568.

[HW16] S. Hirche and K. Wehrle. SPP 1914: Cyber-Physical Networking (CPN).
Priority Programme – Deutsche Forschungsgemeinschaft (DFG).

2016. url: https://gepris.dfg.de/gepris/projekt/273882191.

[IEE04] IEEE. IEC/IEEE Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems (Adoption of IEEE Std 1588-2008).
Standard IEEE 1588 IEC 61588 First edition 2004-09. IEEE, Sept. 2004.

156 pp. doi: 10.1109/IEEESTD.2004.95751.

[IEE16] IEEE. IEEE Standard for Local and Metropolitan Area Networks –
Bridges and Bridged Networks – Amendment 25: Enhancements for
Scheduled Traffic. IEEE Std 802.1Qbv-2015. IEEE, Mar. 2016. 57 pp.

doi: 10.1109/IEEESTD.2016.7440741.

[IYB06] O. C. Imer, S. Yüksel, and T. Ba̧sar. “Optimal control of LTI systems

over unreliable communication links”. In: Automatica 42.9 (Sept.

2006), pp. 1429–1439. doi: 10.1016/j.automatica.2006.03.011.

[Kha02] H. K. Khalil. Nonlinear Systems. 3rd ed. Pearson Education. Prentice

Hall, 2002. isbn: 9780130673893.

[KK12] K.-D. Kim and P. R. Kumar. “Cyber-Physical Systems: A Perspective

at the Centennial”. In: Proceedings of the IEEE 100 (Mar. 2012). Special

Issue, pp. 1287–1308. doi: 10.1109/JPROC.2012.2189792.

[KPS02] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli. “Fault

tolerance techniques for wireless ad hoc sensor networks”. In: Pro-
ceedings of the IEEE International Conference on Sensors. Vol. 2. IEEE,

June 2002, pp. 1491–1496. doi: 10.1109/ICSENS.2002.1037343.

[LA06] H. Lin and P. J. Antsaklis. “Switching Stabilization and l2 Gain Per-

formance Controller Synthesis for Discrete-Time Switched Linear

Systems”. In: Proceedings of the 45th IEEE Conference on Decision and
Control. CDC. San Diego, CA, USA, Dec. 2006, pp. 2673–2678. doi:

10.1109/CDC.2006.377641.

[LA09] H. Lin and P. J. Antsaklis. “Stability and Stabilizability of Switched

Linear Systems: A Survey of Recent Results”. In: IEEE Transactions
on Automatic Control 54.2 (Feb. 2009), pp. 308–322. issn: 0018-9286.

doi: 10.1109/TAC.2008.2012009.

139

https://doi.org/10.1109/TNSM.2015.2401568
https://doi.org/10.1109/TNSM.2015.2401568
https://gepris.dfg.de/gepris/projekt/273882191
https://doi.org/10.1109/IEEESTD.2004.95751
https://doi.org/10.1109/IEEESTD.2016.7440741
https://doi.org/10.1016/j.automatica.2006.03.011
https://doi.org/10.1109/JPROC.2012.2189792
https://doi.org/10.1109/ICSENS.2002.1037343
https://doi.org/10.1109/CDC.2006.377641
https://doi.org/10.1109/TAC.2008.2012009

Bibliography

[LA17] S. Linsenmayer and F. Allgöwer. “Stabilization of Networked Control

Systems with Weakly Hard Real-Time Dropout Description”. In:

Proceedings of the 56th IEEE Conference on Decision and Control. CDC.

Melbourne, Australia: IEEE, Dec. 2017, pp. 4765–4770. doi: 10.1109/
CDC.2017.8264364.

[LA18] S. Linsenmayer and F. Allgöwer. “Performance oriented trigger-

ing mechanisms with guaranteed traffic characterization for linear

discrete-time systems”. In: Proceedings of the 2018 European Con-
trol Conference. ECC. Limassol, Cyprus, 2018, pp. 1474–1479. doi:

10.23919/ECC.2018.8550568.

[Lam98] L. Lamport. “The Part-time Parliament”. In: ACM Transactions on
Computer Systems 16.2 (May 1998), pp. 133–169. doi: 10 . 1145 /
279227.279229.

[Lau18] B. Lauwens. SimJulia.jl – A Discrete Event Process Oriented Simulation
Framework Written In Julia (v0.7). 2018. url: https://github.com/
BenLauwens/SimJulia.jl.

[Lau79] A. J. Laub. “A Schur Method for Solving Algebraic Riccati Equations”.

In: IEEE Transactions on Automatic Control 24.6 (Dec. 1979), pp. 913–

921. issn: 0018-9286. doi: 10.1109/TAC.1979.1102178.

[LC15] Y. Li and M. Chen. “Software-Defined Network Function Virtual-

ization: A Survey”. In: IEEE Access 3 (2015), pp. 2542–2553. issn:

2169-3536. doi: 10.1109/ACCESS.2015.2499271.

[Lev+00] A. Levant, A. Pridor, R. Gitizadeh, I. Yaesh, and J. Z. Ben-Asher.

“Aircraft Pitch Control via Second-Order Sliding Technique”. In:

Journal of Guidance, Control, and Dynamics 23.4 (2000), pp. 586–594.

doi: 10.2514/2.4591.

[LG04] X. Liu and A. Goldsmith. “Kalman Filtering with Partial Observation

Losses”. In: Proceedings of the 43rd IEEE Conference on Decision and
Control. CDC. Nassau, Bahamas: IEEE, Dec. 2004, pp. 4180–4186. doi:

10.1109/CDC.2004.1429408.

[Lin] Linux Foundation Project. Data Plane Development Kit (DPDK). url:

http://dpdk.org.

[Lin+19] S. Linsenmayer, B. W. Carabelli, F. Dürr, J. Falk, F. Allgöwer, and

K. Rothermel. “Integration of Communication Networks and Con-

trol Systems Using a Slotted Transmission Classification Model”. In:

Proceedings of the 16th IEEE Annual Consumer Communications &
Networking Conference. CCNC. Jan. 2019, pp. 1–6. doi: 10.1109/
CCNC.2019.8651811.

140

https://doi.org/10.1109/CDC.2017.8264364
https://doi.org/10.1109/CDC.2017.8264364
https://doi.org/10.23919/ECC.2018.8550568
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://github.com/BenLauwens/SimJulia.jl
https://github.com/BenLauwens/SimJulia.jl
https://doi.org/10.1109/TAC.1979.1102178
https://doi.org/10.1109/ACCESS.2015.2499271
https://doi.org/10.2514/2.4591
https://doi.org/10.1109/CDC.2004.1429408
http://dpdk.org
https://doi.org/10.1109/CCNC.2019.8651811
https://doi.org/10.1109/CCNC.2019.8651811

[Lin+20] S. Linsenmayer, B. W. Carabelli, S. Wildhagen, K. Rothermel, and F.

Allgöwer. “Controller and Triggering Mechanism Co-Design for Con-

trol over Time-Slotted Networks”. In: IEEE Transactions on Control
of Network Systems (Sept. 2020). doi: 10.1109/TCNS.2020.3024316.

[LSA71] A. H. Levis, R. A. Schlueter, and M. Athans. “On the behaviour of

optimal linear sampled-data regulators”. In: International Journal of
Control 13.2 (1971), pp. 343–361. doi: 10.1080/00207177108931949.

[LSP82] L. Lamport, R. Shostak, and M. Pease. “The Byzantine generals prob-

lem”. In: ACM Transactions on Programming Languages and Systems
4.3 (1982), pp. 382–401.

[LWA16] K. D. Listmann, P. Wenzelburger, and F. Allgöwer. “Industrie 4.0 –

(R)evolution ohne Regelungstechnik?” In: at - Automatisierungstech-
nik 64.7 (July 2016), pp. 507–520. doi: 10.1515/auto-2016-0039.

[Mah+02] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. “Inferring

Link Weights using End-to-End Measurements”. In: Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet Measurement. 2002,

pp. 231–236. doi: 10.1145/637201.637237.

[Mam+18] M. H. Mamduhi, J. S. Baras, K. H. Johansson, and S. Hirche. “State-

Dependent Data Queuing in Shared-Resource Networked Control

Systems”. In: Proceedings of the 57th Conference on Decision and
Control. CDC. Miami, FL, USA: IEEE, Dec. 2018, pp. 1731–1737. doi:

10.1109/CDC.2018.8619752.

[Mar+10] P. Martí, A. Camacho, M. Velasco, and M. E. M. B. Gaïd. “Runtime

Allocation of Optional Control Jobs to a Set of CAN-Based Networked

Control Systems”. In: IEEE Transactions on Industrial Informatics 6.4

(Nov. 2010), pp. 503–520. issn: 1551-3203. doi: 10.1109/TII.2010.
2072961.

[Mar+14] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,

and F. Huici. “ClickOS and the Art of Network Function Virtualiza-

tion”. In: Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation. NSDI’14. Seattle, WA: USENIX

Association, 2014, pp. 459–473. isbn: 978-1-931971-09-6.

[McK+08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. “OpenFlow: Enabling Innovation

in Campus Networks”. In: ACM SIGCOMM Computer Communication
Review 38.2 (Mar. 2008), pp. 69–74. issn: 0146-4833. doi: 10.1145/
1355734.1355746.

141

https://doi.org/10.1109/TCNS.2020.3024316
https://doi.org/10.1080/00207177108931949
https://doi.org/10.1515/auto-2016-0039
https://doi.org/10.1145/637201.637237
https://doi.org/10.1109/CDC.2018.8619752
https://doi.org/10.1109/TII.2010.2072961
https://doi.org/10.1109/TII.2010.2072961
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746

Bibliography

[MGS13] Y. Mo, E. Garone, and B. Sinopoli. “LQG Control with Markovian

Packet Loss”. In: Proceedings of the European Control Conference. ECC.

Zurich, Switzerland, July 2013, pp. 2380–2385.

[MH09] A. Molin and S. Hirche. “On LQG joint optimal scheduling and con-

trol under communication constraints”. In: Proceedings of the 48th
IEEE Conference on Decision and Control and 28th Chinese Control
Conference. CDC/CCC. Shanghai, P.R. China, Dec. 2009, pp. 5832–

5838. doi: 10.1109/CDC.2009.5400528.

[MH14] A. Molin and S. Hirche. “Price-Based Adaptive Scheduling in Multi-

Loop Control Systems With Resource Constraints”. In: IEEE Trans-
actions on Automatic Control 59.12 (Dec. 2014), pp. 3282–3295. doi:

10.1109/TAC.2014.2351892.

[MOS18] MOSEK ApS. MOSEK Optimization Suite Release 8.1.0.64. 2018. url:

https://docs.mosek.com/8.1/intro/index.html.

[NDR16] N. G. Nayak, F. Dürr, and K. Rothermel. “Time-Sensitive Software-

Defined Network (TSSDN) for Real-Time Applications”. In: Proceed-
ings of the 24th International Conference on Real-Time Networks and
Systems. RTNS ’16. Brest, France: ACM, 2016, pp. 193–202. isbn:

978-1-4503-4787-7. doi: 10.1145/2997465.2997487.

[NT04] D. Nešić and A. R. Teel. “Input-output stability properties of net-

worked control systems”. In: IEEE Transactions on Automatic Control
49.10 (Oct. 2004), pp. 1650–1667. issn: 0018-9286. doi: 10.1109/TAC.
2004.835360.

[NW09] Y. (Nie and X. Wu. “Shortest path problem considering on-time

arrival probability”. In: Transportation Research Part B: Methodological
43.6 (2009), pp. 597–613. issn: 0191-2615. doi: 10.1016/j.trb.2009.
01.008.

[OL88] B. M. Oki and B. H. Liskov. “Viewstamped Replication: A New Pri-

mary Copy Method to Support Highly-available Distributed Sys-

tems”. In: Proceedings of the 7th ACM Symposium on Principles of
Distributed Computing. 1988, pp. 8–17. doi: 10.1145/62546.62549.

[ONF15] ONF. OpenFlow Switch Specification Version 1.5.1. Tech. rep. ONF

TS-025. Open Networking Foundation, Mar. 2015.

[OO14] D. Ongaro and J. Ousterhout. “In Search of an Understandable Con-

sensus Algorithm”. In: USENIX Annual Technical Conference. Philadel-

phia, PA: USENIX Association, June 2014, pp. 305–319.

142

https://doi.org/10.1109/CDC.2009.5400528
https://doi.org/10.1109/TAC.2014.2351892
https://docs.mosek.com/8.1/intro/index.html
https://doi.org/10.1145/2997465.2997487
https://doi.org/10.1109/TAC.2004.835360
https://doi.org/10.1109/TAC.2004.835360
https://doi.org/10.1016/j.trb.2009.01.008
https://doi.org/10.1016/j.trb.2009.01.008
https://doi.org/10.1145/62546.62549

[Pap+03] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot. “Mea-

surement and Analysis of Single-hop Delay on an IP Backbone Net-

work”. In: IEEE Journal on Selected Areas in Communications 21.6

(2003), pp. 908–921. doi: 10.1109/JSAC.2003.814410.

[PG93] A. K. Parekh and R. G. Gallager. “A generalized processor sharing

approach to flow control in integrated services networks: the single-

node case”. In: IEEE/ACM Transactions on Networking 1.3 (June 1993),

pp. 344–357. doi: 10.1109/90.234856.

[QN12] D. E. Quevedo and D. Nešić. “Robust stability of packetized predic-

tive control of nonlinear systems with disturbances and Markovian

packet losses”. In: Automatica 48.8 (2012), pp. 1803–1811. issn: 0005-

1098. doi: 10.1016/j.automatica.2012.05.046.

[QSG07] D. E. Quevedo, E. I. Silva, and G. C. Goodwin. “Packetized Predictive

Control over Erasure Channels”. In: Proceedings of the American
Control Conference. ACC. 2007, pp. 1003–1008. doi: 10.1109/ACC.
2007.4282630.

[Ram+11] C. Ramesh, H. Sandberg, L. Bao, and K. H. Johansson. “On the dual ef-

fect in state-based scheduling of networked control systems”. In: Pro-
ceedings of the American Control Conference (ACC). San Francisco, CA,

USA, June 2011, pp. 2216–2221. doi: 10.1109/ACC.2011.5990925.

[RAZ16] A. Roy, H. Aydin, and D. Zhu. “On Task Period Assignment in Mul-

tiprocessor Real-Time Control Systems”. In: Proceedings of the 24th
International Conference on Real-Time Networks and Systems. RTNS

’16. Brest, France: ACM, 2016, pp. 151–160. isbn: 978-1-4503-4787-7.

doi: 10.1145/2997465.2997469.

[RDG14] K. Rajawat, E. Dall’Anese, and G. B. Giannakis. “Dynamic Network

Delay Cartography”. In: IEEE Transactions on Information Theory
60.5 (May 2014), pp. 2910–2920. issn: 0018-9448. doi: 10.1109/TIT.
2014.2311802.

[Rei+12] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.

“Abstractions for Network Update”. In: Proceedings of the ACM Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communication. SIGCOMM ’12. Helsinki, Finland, 2012,

pp. 323–334. doi: 10.1145/2342356.2342427.

[RSJ13] C. Ramesh, H. Sandberg, and K. H. Johansson. “Design of State-Based

Schedulers for a Network of Control Loops”. In: IEEE Transactions on
Automatic Control 58.8 (Aug. 2013), pp. 1962–1975. issn: 0018-9286.

doi: 10.1109/TAC.2013.2251791.

143

https://doi.org/10.1109/JSAC.2003.814410
https://doi.org/10.1109/90.234856
https://doi.org/10.1016/j.automatica.2012.05.046
https://doi.org/10.1109/ACC.2007.4282630
https://doi.org/10.1109/ACC.2007.4282630
https://doi.org/10.1109/ACC.2011.5990925
https://doi.org/10.1145/2997465.2997469
https://doi.org/10.1109/TIT.2014.2311802
https://doi.org/10.1109/TIT.2014.2311802
https://doi.org/10.1145/2342356.2342427
https://doi.org/10.1109/TAC.2013.2251791

Bibliography

[SA11] T. Samad and A. M. Annaswamy, eds. The Impact of Control Tech-
nology. IEEE Control Systems Society, Technical Report, 2011. url:

www.ieeecss.org.

[Saa+17] W. Saab, M. Mohiuddin, S. Bliudze, and J.-Y. Le Boudec. “Quarts:

Quick Agreement for Real-time Control Systems”. In: Proceedings
of the 22nd IEEE Conference on Emerging Technologies & Factory
Automation. ETFA. Sept. 2017, pp. 1–8. doi: 10.1109/ETFA.2017.
8247590.

[Sau+06] O. Saukh, P. J. Marrón, A. Lachenmann, M. Gauger, D. Minder, and

K. Rothermel. “Generic Routing Metric and Policies for WSNs”. In:

Proceedings of the 3rd European Workshop for WSNs (EWSN). Vol. 3868.

LNCS. Feb. 2006, pp. 99–114. doi: 10.1007/11669463_10.

[Sch+07] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry.

“Foundations of Control and Estimation Over Lossy Networks”. In:

Proceedings of the IEEE 95.1 (Jan. 2007), pp. 163–187. issn: 0018-9219.

doi: 10.1109/JPROC.2006.887306.

[Sch+17] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and G.

Mühl. “ILP-based Joint Routing and Scheduling for Time-Triggered

Networks”. In: Proceedings of the 25th International Conference on
Real-Time Networks and Systems. RTNS ’17. Grenoble, France, Oct.

2017. doi: 10.1145/3139258.3139289.

[Sch08] L. Schenato. “Optimal Estimation in Networked Control Systems

Subject to Random Delay and Packet Drop”. In: IEEE Transactions
on Automatic Control 53.5 (Aug. 2008), pp. 1311–1317. doi: 10.1109/
TAC.2008.921012.

[Sch09] L. Schenato. “To Zero or to Hold Control Inputs with Lossy Links?”

In: IEEE Transactions on Automatic Control 54.5 (2009), pp. 1093–1099.

doi: 10.1109/TAC.2008.2010999.

[Sin+04] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and

S. S. Sastry. “Kalman Filtering With Intermittent Observations”. In:

IEEE Transactions on Automatic Control 49.9 (Sept. 2004), pp. 1453–

1464. doi: 10.1109/TAC.2004.834121.

[Sin+05] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, and S. S. Sastry.

“Optimal control with unreliable communication: the TCP case”. In:

Proceedings of the American Control Conference. ACC. IEEE. 2005,

pp. 3354–3359. doi: 10.1109/ACC.2005.1470488.

144

www.ieeecss.org
https://doi.org/10.1109/ETFA.2017.8247590
https://doi.org/10.1109/ETFA.2017.8247590
https://doi.org/10.1007/11669463_10
https://doi.org/10.1109/JPROC.2006.887306
https://doi.org/10.1145/3139258.3139289
https://doi.org/10.1109/TAC.2008.921012
https://doi.org/10.1109/TAC.2008.921012
https://doi.org/10.1109/TAC.2008.2010999
https://doi.org/10.1109/TAC.2004.834121
https://doi.org/10.1109/ACC.2005.1470488

[Sin+08] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, and S. S. Sastry.

“Optimal linear LQG control over lossy networks without packet

acknowledgment”. In: Asian Journal of Control 10.1 (2008), pp. 3–13.

doi: 10.1002/asjc.1.

[Siv+13] A. Sivaraman, K. Winstein, S. Subramanian, and H. Balakrishnan.

“No Silver Bullet: Extending SDN to the Data Plane”. In: Proceedings of
the 12th ACM Workshop on Hot Topics in Networks (HotNets-XII). Col-

lege Park, Maryland, Nov. 2013, 19:1–19:7. doi: 10.1145/2535771.
2535796.

[SPG97] S. Shenker, C. Partridge, and R. Guerin. Specification of Guaranteed
Quality of Service. RFC 2212. IETF, Sept. 1997. url: http://tools.
ietf.org/rfc/rfc2212.txt.

[SSP15] S. K. Singh, R. Singh, and B. C. Pal. “Stability Analysis of Networked

Control in Smart Grids”. In: IEEE Transactions on Smart Grid 6.1

(2015), pp. 381–390. doi: 10.1109/tsg.2014.2314494.

[ST17] M. van Steen and A. S. Tanenbaum. Distributed Systems. 3rd. 2017.

isbn: 978-15-430573-8-6.

[SWK09] U. Schmid, B. Weiss, and I. Keidar. “Impossibility Results and Lower

Bounds for Consensus under Link Failures”. In: SIAM Journal of Com-
puting 38.5 (2009), pp. 1912–1951. doi: 10.1137/S009753970443999X.

[VH08] A. Varga and R. Hornig. “An overview of the OMNeT++ simulation

environment”. In: Proceedings of the 1st International Conference on
Simulation Tools and Techniques. SIMUTools. 2008, 60:1–60:10.

[WM03] M. Welzl and M. Mühlhäuser. “Scalability and quality of service:

a trade-off?” In: IEEE Communications Magazine 41.6 (June 2003),

pp. 32–36. doi: 10.1109/MCOM.2003.1204745.

[WYB02] G. C. Walsh, H. Ye, and L. G. Bushnell. “Stability analysis of net-

worked control systems”. In: IEEE Transactions on Control Systems
Technology 10.3 (May 2002), pp. 438–446. doi: 10.1109/87.998034.

[Xu+14] Y. Xu, K.-E. Årzén, E. Bini, and A. Cervin. “Response Time Driven

Design of Control Systems”. In: IFAC Proceedings Volumes 47.3 (2014).

19th IFAC World Congress, pp. 6098–6104. issn: 1474-6670. doi:

10.3182/20140824-6-ZA-1003.00289.

145

https://doi.org/10.1002/asjc.1
https://doi.org/10.1145/2535771.2535796
https://doi.org/10.1145/2535771.2535796
http://tools.ietf.org/rfc/rfc2212.txt
http://tools.ietf.org/rfc/rfc2212.txt
https://doi.org/10.1109/tsg.2014.2314494
https://doi.org/10.1137/S009753970443999X
https://doi.org/10.1109/MCOM.2003.1204745
https://doi.org/10.1109/87.998034
https://doi.org/10.3182/20140824-6-ZA-1003.00289

Bibliography

[Yu+13] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-

hyastha. “FlowSense: Monitoring Network Utilization with Zero

Measurement Cost”. In: Proceedings of the 14th International Con-
ference on Passive and Active Measurement. Ed. by M. Roughan and

R. Chang. Berlin, Heidelberg: Springer, Mar. 2013, pp. 31–41. doi:

10.1007/978-3-642-36516-4_4.

[Zha+08] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney. “Task Schedul-

ing for Control Oriented Requirements for Cyber-Physical Systems”.

In: Proceedings of the 2008 Real-Time Systems Symposium. RTSS. IEEE,

Nov. 2008, pp. 47–56. doi: 10.1109/RTSS.2008.52.

[Zha+19] X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng.

“Networked control systems: a survey of trends and techniques”. In:

IEEE/CAA Journal of Automatica Sinica 7.1 (July 2019), pp. 1–17. doi:

10.1109/JAS.2019.1911651.

[Zie01] M. Ziegelmann. “Constrained shortest paths and related problems”.

PhD thesis. Saarländische Universitäts- und Landesbibliothek, 2001.

[Zin16] S. Zinkler. “In-network Packet Priority Adaptation for Networked

Control Systems”. Code available at https://github.com/znsn/
masterthesis. Master’s thesis. University of Stuttgart, Aug. 2016.

[ZJ08] Y. Zhang and J. Jiang. “Bibliographical review on reconfigurable

fault-tolerant control systems”. In: Annual Reviews in Control 32.2

(2008), pp. 229–252. issn: 1367-5788. doi: 10.1016/j.arcontrol.
2008.03.008.

[ZY10] W.-A. Zhang and L. Yu. “Stabilization of Sampled-Data Control Sys-

tems With Control Inputs Missing”. In: IEEE Transactions on Auto-
matic Control 55.2 (Feb. 2010), pp. 447–452. doi: 10.1109/TAC.2009.
2036325.

146

https://doi.org/10.1007/978-3-642-36516-4_4
https://doi.org/10.1109/RTSS.2008.52
https://doi.org/10.1109/JAS.2019.1911651
https://github.com/znsn/masterthesis
https://github.com/znsn/masterthesis
https://doi.org/10.1016/j.arcontrol.2008.03.008
https://doi.org/10.1016/j.arcontrol.2008.03.008
https://doi.org/10.1109/TAC.2009.2036325
https://doi.org/10.1109/TAC.2009.2036325

Erklärung
Ich erkläre hiermit, dass ich, abgesehen von den ausdrücklich bezeichneten Hilfs-

mitteln und den Ratschlägen von jeweils namentlich aufgeführten Personen, die

Dissertation selbstständig verfasst habe.

(Ben William Carabelli)

147

	List of Abbreviations
	List of Figures
	Abstract
	Zusammenfassung
	Introduction
	Research Statement
	Contribution
	Research Project Context
	Structure of the Thesis

	System Model and Background
	Distributed System
	Deterministic–Opportunistic Transmission Model
	Scheduling of Deterministic Transmissions
	Control System

	State-dependent Scheduling
	Introduction
	Related Work
	System Model
	Control System Model
	Virtual Link Model
	Priority Scheduler Model

	Problem Statement
	State-dependent Scheduler for q=1
	State-dependent Scheduler for 0<q<N
	Evaluation
	Proof-of-concept Implementation
	Runtime Evaluation
	Simulation Example

	Summary and Discussion

	Opportunistic Scheduling
	Introduction
	Related Work
	System Model
	Control System Model
	Transmission Model
	Packet Priority Scheduler Model

	Problem Statement
	Opportunistic Packet Prioritization
	Nominal Application Model
	Opportunistic Performance Optimization

	Numerical Evaluation
	Summary and Discussion

	Routing
	Introduction
	Related Work
	System Model
	Control System Model

	Service Architecture
	NC Transport Service
	QoS Specification
	NCT Service Interface

	NC Routing Service
	Network Model
	Path Properties
	Load Metric
	Routing Objective
	Routing Algorithm

	Evaluation
	Simulation Environment
	Effectiveness of NCT Service
	Effectiveness of NC Routing
	Runtime Performance of NC Routing

	Discussion
	Summary

	Replication
	Introduction
	Related Work
	Control System Model
	Problem Statement
	Consistency Models
	Replication Algorithm
	Outline and Requirements
	Distributed System Model
	Algorithm
	Correctness
	Discussion of the Algorithm

	QoC-aware Replication
	LQG Control System Model
	Cost Model
	Increasing QoC with SCRaM

	Evaluation
	Availability, Latency, Message Cost
	NCS Performance
	QoC Optimization

	Summary and Outlook

	Summary
	Bibliography

