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Abstract

The growth in markets for recombinant proteins and a growing demand for biotechno-

logical alternatives to chemical synthesis is placing increased pressure on efficient high-

capacity production. Increased capacity is currently limited not only by insufficient scale-

up techniques but also by non-robust production hosts that place limits on the process

space-time yield. Heterogeneous reactor environments due to insufficient mixing and un-

satisfactory mass transfer lead to frequent genomic perturbations, resulting in a decline

in productivity. Recent studies have focused on computational fluid dynamics (CFD) to

investigate large-scale mixing issues, which are often related to nutrient gradient forma-

tion. As numerical methods and computational power have improved over time and

more complex and realistic models have been developed, experimental approaches have

evolved as well. The latest generation of sequencing techniques allows for in-depth anal-

ysis of microbial behavior in scale-down setups under various conditions that support

robust strain design. In the process, the attempt is made with scale-down reactors to

recreate the observed conditions on a large scale.

While many researchers focus on one of the two approaches, this thesis provides

methodologies to combine the microbial response derived from transcriptomic analysis

with the substrate concentration distribution observed in a large-scale scenario. A frame-

work is presented in which the results of transcriptomic analysis are used to create a better

picture of gene expression dynamics under fluctuating substrate conditions derived from

CFD simulations. The focus in this project is on Escherichia coli as the main production

host but the methods presented can be just as well applied to other organisms and pro-

cess parameters.

Additionally, to extend the single-phase representation of a large-scale environment to

an industrially relevant multiphase scenario, preliminary investigations were performed

for oil-in-water dispersions and the effect on the oxygen mass transfer coefficient (kLa).

Although both research approaches typically only consider no more than two limita-

tions simultaneously, the tools presented, for both the experimental and numerical ap-

proaches, allow for a rethinking of scale-up methods and the adaptation of techniques to
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newly acquired knowledge.

Three case studies were performed, using the methods described above. At first a case

study was conducted to determine whether a change in microbial behavior was due to en-

gineered chassis design, rather than stress-induced mutations. For this purpose, a DNA-

Seq analysis framework was established to identify mutations that could be harmful in

relation to the desired behavior. A strain named E. coli RM214 was constructed, for use as

a robust phenotype in heterogeneous fermentations. This performance of this strain was

evaluated via fermentation in continuous cultivations in an STR-PFR scale-down reac-

tor, with repeatedly induced glucose starvation stresses. E. coli RM214 showed beneficial

behavior in the face of fluctuating glucose conditions by producing a 43 % higher eGFP

yield after 28 h of cultivation. No modulation of cellular regulation in genes involved

in the stringent response or the general stress response at any growth rate were found,

which confirmed that the beneficial performance was due to engineered changes, rather

than stress.

Transcriptomic analysis was used to obtain more detailed information on microbial

behavioral changes and adaptation strategies in heterogeneous environments. In so do-

ing, a transcriptomic analysis workflow was initially used to analyze adaptation strate-

gies of a newly engineered E. coli strain with a modulated stringent response, named E.

coli SR, which was optimized for large-scale conditions. An STR-PFR (stirred tank reac-

tor - plug flow reactor) scale-down device was used to mirror fluctuating nitrogen con-

ditions on a large scale. The strain showed no ppGpp-mediated stress response, while

maintaining fully functional ammonium uptake and biomass formation. Additionally,

E. coli SR showed a substantially reduced short-term transcriptional response, compared

with E. coli MG1655, and adaptation was accomplished via negative regulation of tran-

scription, translation and cell division. These results show that locally induced stress

responses propagating through the bioreactor do result in reduced and coordinated re-

sponse of genes in E. coli SR, which validates the intention behind the engineering of the

chassis.

The transcriptomic data analysis workflow was subsequently extended via the use of

glucose starvation data in the same experimental setup, to identify gene expression dy-

namics and adaptation strategies over 28 h of repeated glucose starvation. Ordinary dif-

ferential equations (ODEs) in combination with stochastic elements were used to develop

an agent-based model covering transcription and translation processes. In combination

with a fluid-flow simulation of a 54 m3 bioreactor, it was found that cellular ATP demand

rises to 30 - 40 % of growth-decoupled maintenance (NGAM) demand, which may limit
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ATP-intensive production formation accordingly. Furthermore, spatial analysis of indi-

vidual transcriptional patterns reveals mRNA up-regulation with hot spots of 50 - 80 % in

the upper region of the bioreactor. After 4.2 h cells adapt to environmental changes but

still have to withstand an additional 6 % in NGAM demand.

The effect on bubble surface tension and size distribution, as well as oxygen mass

transfer, was investigated in experiments via the extension from a single-phase to a multi-

phase scenario including safflower oil. In addition, the impact of the medium (water, com-

plex glucose medium) and impeller setup on the aforementioned parameters was consid-

ered. While safflower oil reduces surface tension from 71 mN m−1 to around 61 mN m−1

in water, no additional effect was measured in the complex glucose medium. For all

setups and parameters investigated, reduced surface tension resulted in smaller bubble

sizes. However, kLa measurements showed the opposite of the anticipated effect. Re-

gardless of the medium or impeller setup used, kLa values never exceeded the values of

oil-free systems, and were diminished by up to 50 %.

In conclusion, the methods outlined above provide suitable tools for the incorporation

of both physical and biological performance tests into scale-up processes. The proposed

workflow offers a comprehensive approach, starting with the analysis of microbial re-

sponse, taking into account nutrient gradient formation, and arriving at the effect predic-

tion on a microorganism in terms of ATP in a large-scale process. Therefore, by delivering

numerical performance-test tools, this research is contributing to a better understanding

of the complex biological response toward insufficiently scaled up bioprocesses.
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Zusammenfassung

Wachsende Märkte für rekombinante Proteine und eine steigende Nachfrage nach biotech-

nologischen Alternativen zur chemischen Synthese erhöhen den Druck auf eine effiziente

Produktion mit hoher Kapazität. Die Steigerung der Kapazität wird dabei nicht nur durch

unzureichende Scale - up Techniken begrenzt, sondern auch durch nicht robuste biolo-

gische Produzenten, welche die Raum - Zeit Ausbeute des Prozesses begrenzen. Hetero-

gene Reaktorbedingungen aufgrund inhomogener Durchmischung und unzureichenden

Stofftransfers führen zu häufigen genomischen Störungen bei Mikroorganismen und damit

zu einer verschlechterten Produktivitätsleistung. Neueste Studien konzentrieren sich auf

die numerische Strömungsmechanik (CFD), um großräumige Vermischungsprobleme zu

untersuchen, die sich oft auf die Bildung von Nährstoffgradienten beziehen. Neben der

Verbesserung der numerischen Methoden und der Rechenleistung in den letzten Jahren

und der Entwicklung von komplexeren und realistischeren Modellen wurden auch die

experimentellen Ansätze verbessert. Sequenzierungstechniken der nächsten Generation

ermöglichen eine tiefgreifende Analyse des mikrobiellen Verhaltens in Scale - Down Reak-

toren unter verschiedenen Bedingungen. Dabei versuchen Scale - Down Reaktoren, die

beobachteten Bedingungen im großen Maßstab nachzubilden.

Während sich viele Forscher auf eines der beiden Themen konzentrieren, bietet diese

Arbeit Methoden, um die aus der Transkriptomanalyse abgeleitete mikrobielle Reaktion

mit einer Substratkonzentrationsverteilung eines Industriereaktors zu kombinieren. Es

werden Techniken vorgestellt, basierend auf transkripto- mischen Analysen, um ein besser-

es Bild der Genexpressionsdynamik unter fluktuierenden Substratbedingungen zu er-

stellen, welche aus CFD - Simulationen abgeleitet wurden. Der Fokus in diesem Projekt

liegt auf Escherichia coli als Hauptproduktionswirt, aber die vorgestellten Methoden kön-

nen ebenso auf andere Organismen und Prozessparameter angewendet werden.

Um die einphasige Darstellung einer großskaligen Umgebung auf ein industrie- rele-

vantes Mehrphasenszenario zu erweitern, wurden zusätzlich Voruntersuchung- en für Öl

- in - Wasser Dispersionen und den Einfluss auf den Sauerstoff Massentransferkoeffizien-

ten (kLa) durchgeführt.
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Obwohl in beiden Forschungsbereichen typischerweise nicht mehr als zwei Limita-

tionen parallel betrachtet werden, erlauben die vorgestellten Werkzeuge, sowohl exper-

imentell als auch numerisch, das Überdenken von Scale - up Methoden und die Anpas-

sung der Techniken an neu gewonnene Erkenntnisse.

Unter Verwendung der etablierten Methoden wurden drei Fallstudien durchgeführt.

Dabei wurde zuerst die Frage beantwortet, ob die mikrobielle Verhaltensänderung durch

die gezielte Veränderung des Genoms und nicht durch stressinduzierte Mutationen er-

folgt. Zu diesem Zweck wurde eine DNA-Sequenzierung verwendet, um potenziell schäd-

liche Mutationen in Bezug auf das gewünschte Verhalten zu identifizieren. Ein Stamm,

genannt E. coli RM214, wurde mit dem Ziel konstruiert, einen robusten Phänotyp unter

heterogenen Fermentationsbedingungen zu erhalten. Die Leistung dieses Stammes wurde

durch Fermentation in kontinuierlichen Kulturen in einem STR - PFR Scale - Down Reak-

tor bewertet, während wiederholter Glukose - Hunger Stress induziert wurde. E. coli

RM214 zeigte ein vorteilhaftes Verhalten gegenüber schwankenden Glukosebedingun-

gen, indem er nach 28 h Kultivierung eine 43 % höhere eGFP - Ausbeute produzierte. Es

wurde keine Modulation der zellulären Regulation in Genen gefunden, die an der strin-

genten Reaktion oder der allgemeinen Stressreaktion bei jeder Wachstumsrate beteiligt

sind, was die vorteilhafte Leistung in Bezug auf gezielte genomische Anpassungen und

nicht auf Stress bestätigt.

Um detailliertere Informationen zu der mikrobiellen Verhaltensänderungen und An-

passungsstrategien in heterogenen Umgebungen zu erhalten wurde die transkriptomische

Analyse verwendet. Hierbei wurde ein neu entwickelter E. coli Stamm mit veränderter

stringenter Reaktion, genannt E. coli SR untersucht, welcher für großtechnische Bedin-

gungen optimiert wurde. Ein STR - PFR (Stirred Tank Reactor - Plug Flow Reactor) Scale

- Down Apparat wurde verwendet, um schwankende Stickstoffbedingungen im Groß-

maßstab wieder zu spiegeln. Der Stamm zeigte keine ppGpp-vermittelte Stressreaktion,

während die Ammoniumaufnahme und Biomassebildung voll funktionsfähig blieben.

Zusätzlich zeigte E. coli SR eine wesentlich reduzierte kurzfristige transkriptionelle Reak-

tion im Vergleich zu E. coli MG1655 und die Anpassung erfolgte über eine negative Re-

gulation von Transkription, Translation und Zellteilung. Diese Ergebnisse zeigen, dass

lokal induzierte Stressreaktionen, die sich durch den Bioreaktor ausbreiten, zu einer re-

duzierten und koordinierten Expression von Genen in E. coli SR führen, was die Intention

der genomischen Modifikation validiert.

Die transkriptomische Datenanalyse wurde anschließend durch die Verwendung von
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Glukose - Hunger Daten im gleichen Versuchsaufbau erweitert, um Genexpressionsdy-

namiken und Anpassungsstrategien über 28 h wiederholten Glukose - Hungers zu iden-

tifizieren. Gewöhnliche Differentialgleichungen (ODEs) in Kombination mit stochasti-

schen Elementen wurden verwendet, um ein agentenbasiertes Modell zu entwickeln, das

Transkriptions- und Translationsprozesse umfasst. Gekoppelt mit einer Strömungssimu-

lation eines 54 m3 Bioreaktors wurde festgestellt, dass der zelluläre ATP-Bedarf zwischen

30 - 40 % des wachstumsentkoppelten Erhaltungsbedarfs (NGAM) ansteigt. Darüber hin-

aus zeigt die räumliche Analyse einzelner Transkriptionsmuster eine mRNA-Hochregula-

tion mit Hot Spots von 50 - 80 % im oberen Bereich des Bioreaktors. Nach 4.2 h passen

sich die Zellen an die Umweltveränderungen an, müssen aber immer noch zusätzliche

6 % NGAM Nachfrage stemmen, was zur Limitation ATP intensiver Produktbildungen

führen kann.

Durch die Erweiterung des einphasigen auf ein mehrphasiges Szenario mit Distelöl

wurde die Auswirkung auf die Oberflächenspannung und Größenverteilung der Blasen,

sowie auf den Sauerstoff Massentransfer experimentell untersucht. Zusätzlich wurde der

Einfluss des Mediums (Wasser, komplexes Glukosemedium) und des Rühreraufbaus auf

die genannten Parameter betrachtet. Während Distelöl in Wasser die Oberflächenspan-

nung von 71 mN m−1 auf etwa 61 mN m−1 reduziert, wurde in komplexem Glukosemedi-

um kein zusätzlicher Effekt gemessen. Für alle untersuchten Setups und Parameter führte

eine reduzierte Oberflächenspannung zu kleineren Blasengrößen. Die kLa Messungen

zeigten jedoch das Gegenteil des erwarteten Effekts. Unabhängig vom verwendeten Medi-

um oder Rührer Setup überstiegen die kLa Werte nie die Werte von ölfreien Systemen und

waren bis zu 50 % vermindert.

Zusammenfassend lässt sich sagen, dass die vorgestellten Methoden geeignete Werk-

zeuge für die Einbindung sowohl physikalischer als auch biologischer Leistungstests in

Scale-up-Prozesse bieten. Der vorgeschlagene Arbeitsablauf bietet einen umfassenden

Ansatz, der mit der Analyse der mikrobiellen Reaktion unter Berücksichtigung der Bil-

dung von Nährstoffgradienten beginnt und mit der Wirkungsvorhersage auf einen Mikro-

organismus in Bezug auf ATP in einem großtechnischen Prozess endet. Daher trägt diese

Arbeit durch die Bereitstellung numerischer Leistungstest Methoden zu einem besseren

Verständnis der komplexen biologischen Reaktionen in heterogenen Bioprozessen bei.
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Chapter 1

Introduction

Modern industrial biotechnology (IB) emerged as a field in the 1970s and since then, has

served as a sustainable alternative to the chemical industry. Detergent enzymes provide

an example of an early commercial product, and still account for 30 % of an industrial

enzyme market worth around $ 5.5 billion annually. Regarding the global market for in-

dustrial enzymes, a recent report published by BBC Research states that it should reach

$ 7.0 billion by 2023, at a compound annual growth rate of 4.9 % for the period 2018-2023

(Research, 2018). A major contributor to the consistent growth of the IB market is the di-

versity of its products. Biotechnology products range from household cleaning products

to food, pharmaceuticals and many other product types. Within this huge product spec-

trum, Escherichia coli is one of just a few main hosts used to produce recombinant proteins

(Ferrer-Miralles et al., 2009; Yim et al., 2011). Many molecular toolboxes are available

for E. coli, which facilitates the construction of expression systems suitable for high-yield

enzyme production.

Industrial biotechnology is promoted as a promising key technology in numerous

fields of business, research, and society with the aim to replace or at least complement

chemical production (Fröhling et al., 2020). However, since this technology only recently

emerged and due to the complex interplay between biology and process engineering,

there is much room for further optimization. It is imperative to improve existing biotech-

nology processes and develop new methods in order to maintain the growth and com-

petitiveness of this industry, in accordance with the goal of achieving a more sustainable

future (Heinzle et al., 2007).

1.1 Challenges of scale-up

Low-cost, high-quality products are usually produced using large-scale processes for max-

imum efficiency. However, these processes are typically developed on a laboratory scale,
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and the transfer to larger scales is often accompanied by a decrease in performance. In-

sufficient mixing and unsatisfactory mass transfer inside the reactor may lead to nutrient

gradients triggering frequent genomic perturbations in production hosts, which result in

reduced product yields. New scale-up strategies based on knowledge of local reactor

conditions and their impact on microorganisms must be developed. Therefore, it is es-

sential to bring to light the interplay between two interdisciplinary challenges: the scale-

up of fermentation processes requiring classical engineering skills, and the engineering

of microbial hosts for maximum product yields, based on comprehensive knowledge of

biology. The physiological state of microorganisms and its impact on growth and prod-

uct formation is the result of complex interactions between the cell and its environment.

Large-scale studies have shown that homogeneous culture conditions are difficult to es-

tablish (Delvigne, Destain, et al., 2006; Lara, Galindo, et al., 2006; Takors, 2012). In the

common correlation used for stirred tank reactors, mixing time τmix is proportional to
(

PV−1)− 1
3 , which indicates that mixing times increase as power-to-volume inputs are re-

duced. The latter situation is found typically in large-scale bioreactors, due to limits on

power supply. This deficiency ultimately translates into regimes with extreme local dif-

ferences in substrate availability, which in turn creates a demand for a high adaptation

capability at the transcription level of the microorganism (Lara, Leal, et al., 2006; Löf-

fler, Simen, Jäger, et al., 2016b; Löffler, Simen, Müller, et al., 2017; Buchholz et al., 2014;

Wulffen, Ulmer, et al., 2017; Ziegler et al., 2020).

With the advent of metabolic engineering in the 1990s, the field of process optimiza-

tion no longer focused solely on the extracellular environment (e.g. cultivation condi-

tions), but started to investigate intracellular mechanisms as well (Bailey, 1991; Vallino

et al., 1993). Since then, intracellular reaction rates have been quantified, and models of

regulatory processes have been derived, with the ultimate aim of identifying targets for

further improvements in strains and processes; these models are focus of interest (West-

erhoff et al., 2004; Lee, Park, et al., 2007; Park et al., 2008; Becker, Zelder, et al., 2011;

Wittmann and Lee, 2012). Many research projects have shown that cells react in a multi-

response, multi-layer fashion, comprising the on- and offset of transcriptional regulation

programs, as well as proteomic and metabolic changes (Teleki et al., 2015; Löffler, Simen,

Jäger, et al., 2016b; Löffler, Simen, Müller, et al., 2017; Wulffen, Ulmer, et al., 2017; Buch-

holz et al., 2014; Oosterhuis and Kossen, 1984; Neubauer, Åhman, et al., 1995). The latter

are the subject of state-of-the-art approaches that mirror the instantaneous metabolic re-

sponse on extracellular heterogeneities (Wang, Haringa, et al., 2020; Haringa, Deshmukh,

et al., 2017; Haringa, Tang, Wang, et al., 2018; Kuschel, Siebler, et al., 2017). To develop
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gene regulatory models, comprehensive data sets are necessary; they are generated to

answer the relevant biological question of interest. As noted in previous research, the

consideration of transcriptional and translational effects introduces different time scales

of cellular response (Löffler, Simen, Jäger, et al., 2016b; Löffler, Simen, Müller, et al., 2017;

Brown et al., 2014; Wulffen, Ulmer, et al., 2017; Liu et al., 2017). Consequently, initia-

tion and execution may be spatially disconnected, which presents a situation that differs

fundamentally from many instantaneous metabolic responses studied so far (Nieß et al.,

2017; Zieringer, Wild, et al., 2021). Since the quantity of gathered data is typically limited

to one omics data set due to high costs, molecular translational processes can be modeled

in a coarse agent-based framework solely based on transcriptomic, data which aligns very

well with data from experiments, as shown in Nieß et al. (2017).

The constant stress on the microorganisms is reflected in massive product-yield losses

and unwanted by-product formation (Lara, Palomares, et al., 2016; Delvigne, Destain, et

al., 2006; Bylund, Collet, et al., 1998). Unfortunately, up until the present day only little is

known about the bioreactor environment that the microorganisms encounter in industry-

scale bioreactors (up to 100 m3), due to the limits of current measurement techniques.

Only a few experiments have been performed within the context of academic research,

because of the enormous costs associated with using and maintaining large-scale equip-

ment (Bylund, Castan, et al., 2000; Bylund, Guillard, et al., 1999; Enfors et al., 2001). In

consequence, researchers have relied on the use of computational fluid dynamics (CFD)

to simulate reactor flow fields, and on scale-down reactors to perform experiments for the

investigation of selected scenarios (Kelly, 2008; Takors, 2012). With the use of scale-down

reactors, it is possible to gather huge amount of data in order to assess the impact of cell

history on the microbial and population behavior. Various designs for scale-down reac-

tors exist, and they have been extensively reviewed (Delvigne, Takors, et al., 2017; Delvi-

gne, Destain, et al., 2006; Neubauer and Junne, 2010; Papagianni, 2011; Lara, Palomares,

et al., 2016). These setups aim to mimic simplified heterogenic environments, enabling re-

searchers to study the consequences of insufficient mixing on microbial behavior (Löffler,

Simen, Jäger, et al., 2016b; Wulffen, Ulmer, et al., 2017; Löffler, Simen, Müller, et al., 2017;

Ziegler et al., 2020). However, the design of such scale-down reactors, with regard to cap-

turing a realistic frequency and the duration of certain fluctuation events, relies in turn

on particle tracking results from CFD simulations. Thus, the two disciplines are highly

interdependent.

In CFD, local conditions can be predicted by solving fundamental physical equations.

In the process, the fluid flow is simulated with the help of reactor-specific characteristics,



4 Chapter 1. Introduction

such as power input and feeding rates, which enables the prediction of mixing times and

local substrate concentrations (Werner et al., 2014; Montante et al., 2005; Coroneo et al.,

2011). It is only possible to biologically evaluate the identification of reactor-specific bot-

tlenecks in substrate distribution when the frequency and duration of such fluctuations

encountered by microorganisms are known. One of the tools used most often to capture

these parameters in CFD is the Euler-Lagrange approach. The liquid is treated as a contin-

uum (Eulerian representation), and the microorganisms are included as discrete massless

particles following the fluid flow (Lapin, Müller, et al., 2004; Lapin, Schmid, et al., 2006;

Haringa, Tang, Deshmukh, et al., 2016; Kuschel, Siebler, et al., 2017). By recording the

particle trajectories, it is possible to obtain the environmental history of cells. This ap-

proach is currently limited, however, by the availability of computing power, making it

necessary to use coarse simplifications.

The core engineering activities of scale-up and the analysis of bacterial behavior are

both involved in a process of steady development trying to optimize the productivity in

large-scale processes. That is why this thesis aims to combine both approaches for a more

comprehensive point of view. CFD enables the resolution of local flow pattern and con-

centration profiles in bioreactors making it possible to observe particle distributions and

the microbial environment over a distinct period of time (Haringa, Tang, Deshmukh, et

al., 2016; Haringa, Deshmukh, et al., 2017; Lapin, Müller, et al., 2004; Kuschel, Siebler,

et al., 2017). In combination with a transcriptional and translational model, based on data

derived from scale-down experiments, the consequences of such concentration fluctua-

tions (taking into account the respective duration of each individual fluctuation) can be

evaluated so as to optimize the design of both.

1.2 Motivation and scope of this thesis

This thesis provides a methodology for combining and analyzing transcriptomic data de-

rived from scale-down experiments with CFD simulation, and meets the need for know-

ledge-based process scale-up by elucidating the putative contributions of modeling. It

will be shown that a combination of interdisciplinary tools is able to predict changing in-

tracellular energy levels in silico, due to the constant adaptation of microbial producers in

heterogeneous environments.

The problems highlighted above comprise the base for the research scope of this thesis.

The goal was to develop methodologies to study the environment in large-scale bioreac-

tors, and its impact on the transcriptional and translational adaptation processes of E. coli.
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The first of these objectives was achieved by simulating a 54 m3 reactor to identify local

extracellular substrate conditions. The second objective was reached by identifying sig-

nificantly perturbed genes and dynamic regulatory patterns from transcriptomic data sets

of E. coli, to visualize ongoing adaptation processes and their impact on the demand for

energy.

Research by Löffler, Simen, Jäger, et al. (2016b); Ziegler et al. (2020) and Haringa, Tang,

Deshmukh, et al. (2016); Kuschel, Siebler, et al. (2017) provided the biological datasets

and the implementation strategy for the Euler-Lagrange CFD approach in Ansys Fluent,

respectively. The core steps required to fulfill this goal are:

• Development of a transcriptomic data analysis workflow

• Differential gene expression and gene expression dynamics analysis

• Implementation of a dynamic regulatory network of E. coli, including transcription

and translation

• Setup of the Euler-Lagrange method in Ansys Fluent, simulating an industry-rele-

vant case

• Combination of Lagrangian trajectory results with the gene regulatory model

• Evaluation of heterogeneity consequences, using ATP as a general biological energy

currency

To extend the acquired knowledge from single to multiphase conditions, oxygen mass

transfer coefficients in a 0.0015 m3 stirred tank reactor with a gas-oil-water dispersion

were investigated. In this context, the potential of safflower oil as an oxygen mass trans-

fer enhancer was monitored, along with its impact on bubble surface tension and size

distribution.

A detailed overview of the thesis outline is given in the next section.

1.3 Thesis outline

Chapter 2 includes theoretical knowledge on the biological background of E. coli and its

physiological properties, in addition to examples of applications using oil in bioprocesses,

as well as basic methods used in scale-down reactors, transcriptomic data analysis and the

computational fluid dynamics used in this study. The main part of this thesis consists of

peer-reviewed published papers that include the results of the studies conducted that are
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described in chapters 3–5, each of which stands as an individual research project, with a

description, results, discussion and conclusion. In this context, chapter 3 highlights the

potential of genome analysis, based on the example of E. coli, by answering the following

research question:

F1: How can a newly engineered strain be evaluated to trace behavioral changes back

to the engineered chassis?

Transcriptomic analysis was used in chapter 4 to obtain more detailed information on

microbial behavioral changes and adaptation strategies in heterogeneous environments,

by answering the following question:

F2: What information is gained from differential gene expression analysis?

An example in chapter 4 of an application of transcriptomic analysis of E. coli SR with a

modulated stringent response optimized for large-scale applications was used to identify

its behavior in fluctuating nitrogen conditions, in comparison with its parental strain E.

coli MG1655. This investigation answered the following research question:

F3: How does the engineered strain E. coli SR cope with repeated nitrogen starvation in

comparison with its parental strain?

Subsequently, chapter 5 illustrates the formation of a glucose gradient in a 54 m3 large-

scale reactor with a combined prediction of energy levels during the adaptation process

in E. coli MG1655, including both transcription and translation. Since transcriptomic anal-

ysis solely provides complex information about transcript levels, which are inherently

coupled to protein formation, the following three research questions arose:

F4: Is it possible to extend knowledge gained through transcriptomic analysis to trans-

lation?

F5: How can transcriptomic information be translated to gain information about the

overall condition of cells in relationship to production capacity?

F6: Which model is suitable for displaying these dynamic regulatory changes?

For a deeper understanding of substrate distribution in large-scale bioreactors, various

CFD methods were investigated, and a link to the biological model was implemented by

answering the following two research questions:
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F7: Which model is suitable for displaying substrate distribution in a large-scale sce-

nario?

F8: How can two computational intensive analysis methods be combined?

As the basis for a comprehensive, in silico scale-up analysis strategy, the overall goal of

the research topic investigated in chapter 4 is to investigate the impact of substrate fluctu-

ations on the non-growth-dependent ATP maintenance demand and adaptation duration

as expressed in the following question:

F9: How much ATP does E. coli MG1655 need for starvation adaptation in a large-scale

reactor and how long does it take until the adaptation process is complete?

Alongside the main topics of this thesis, summarized in research questions 1 to 9, an ad-

ditional project investigating oil in water dispersions and their ability to enhance oxygen

mass transfer was carried out. Preliminary investigations have lead to the following re-

search question:

F10: How does safflower oil influence bubble surface tension, size distribution and the

oxygen mass transfer coefficient?

The results of the experiments are included in Appendix E.

All of the individual research topics and questions which arose during this study are

discussed and embedded within the scientific context described in chapter 5. In conclu-

sion, this thesis presents valuable tools for use in predicting the impact of environmental

stress on microorganisms and their energy availability, with attention to aspects relating

to both process engineering and biology processes and characteristics.
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Chapter 2

Theory

This section provides the theoretical background of methods selected in the further course

of this dissertation. Starting with the biological background which introduces the effect of

heterogeneous culture conditions on microbiological behavior focusing on transcription

and translation processes, followed by the challenges of scale-up which promote the use

of scale-down reactors, the focus is subsequently shifted towards fluid dynamic consider-

ations to mimic realistic large-scale conditions.

2.1 Escherichia coli

There is no other organism so well studied and researched as E. coli. It is a facultative

anaerobe, one of the fastest growing (growth rate µ = 1.73 h−1 (Cox, 2004)), rod-shaped

and gram negative bacterium with a cell length of 1-5 µm. Since it was discovered in 1885

(Escherich, 1988) a large number of phenotypes in a variety of different habitats have been

found. Because of this broad spectrum of lifestyles, E. coli is a well suited model organism

to study bacterial evolution and adaptation to different growth conditions. Even if not all

phenotypes are non-pathogenic (Leimbach et al., 2013), E. coli K-12 for example received

the status as "Food and Drug Administration" (FDA) approved bacterium which paved

the way as one of the most important multi-purpose bacterial cell factories in biotechno-

logical processes today (Wittmann, Liao, et al., 2016). E. coli is predestined for large-scale

production processes and its value to industry has even more improved since metabolic

engineering was used to replace native production hosts like Clostridium species for pro-

duction of 1-butanol (Shen et al., 2011) or 1,3-propanediol (PDO) (Tang, Tan, et al., 2009).

However, the substantial value and concomitant problems of E. coli is best described by

the biotechnological production of insulin. E. coli was engineered to be one of the main

global producers of Insulin in the late 1970s. In 2018, it was estimated that 405.6 mil-

lion people suffered from Type 2 diabetes, and this number is projected to increase to
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approximately 510.8 million by the year 2030. Based on these estimates, the global usage

of insulin is estimated to rise from 516.1 million vials (1000 IU) to 633.7 million vials in

2030 (Basu et al., 2019). Concomitantly, the price of one type of insulin (insulin lispro)

increased 585 % (from $35 to $234 per vial) from 2001 to 2015. However, irrespective of

the market price the current producers of insulin would not be able to cope with the rapid

demand of affordable insulin as a result of high production costs and production capacity

limitations without further development (Baeshen, Baeshen, et al., 2014).

E. coli’s ability as a metabolic generalist enables the production of a large variety of

compounds (amino acids, organic acids, alcohols, diols and many more (Theisen et al.,

2017)). The production yield is thereby coupled to the availability of metabolites serving

as product precursors and following this line of thought from energy as fuel for reactions

to ensure precursor formation and transport (Zhou et al., 2009; Hara et al., 2015). Previ-

ous research suggested that, ATP pathway modifications through metabolic engineering

might be an alternative way to enhance the final product biosynthesis. For instance, Zhao

found that the increase of ATP supply would improve the production of terpenoid com-

pounds (Zhao, Li, et al., 2013).

However, the opportunity to adapt the genome still incorporates the optimization un-

der realistic process conditions and as microorganisms are developed in lab-scale the per-

formance might be drastically hindered under large-scale conditions. Methods to identify

potential sources of such deficiencies are discussed in the following chapters.

2.2 Biological Basics of Gene Expression and Protein Production

As introduced in chapter 1.1, large-scale fermentation processes struggle to provide ho-

mogeneous culture conditions for its microbial host. A heterogeneous cellular environ-

ment triggers microbial stimuli in a number of ways resulting in changes in gene expres-

sion and protein production. Such stimuli (e.g. lack of nutrient) are usually processed

via a signaling cascade resulting in a changed cellular behavior. A graphical overview

is given in figure 2.1. Due to its complexity, only the primary output was implemented

in an agent-based model as indicated in dark red box figure 2.1. The following chapters

provide the corresponding biological background and its constraints.

2.2.1 Transcription

Transcription describes the synthesis of RNA by an enzyme complex and is one of the ba-

sic processes responsible for gene expression (Watson et al., 2014). Plenty of RNA classes
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FIGURE 2.1: Workflow illustrating a signaling cascade within the cell in-
corporating gene expression. An extracellular signal molecule binds to a
receptor at the membrane of the cell which is translated over kinase cas-
cades into an intracellular response. Such cascades result in an activation
of a transcription factor initiating (or inhibiting) the transcription of a DNA
segment where the new target gene (black segment) is located. The result-
ing mRNA is translated into proteins which catalyze reactions and lead to
new functional pathways to deal with the new extracellular changes. Dur-
ing the gene expression analysis, mRNA is investigated representing the
expression levels of single genes. Only the primary output, as indicated in

dark red, is included in the model framework.
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exist in prokaryotes: rRNA, tRNA, sRNA, mRNA and many more. rRNA is part of the

ribosomal complex and therefore involved in the translation process as well as tRNA,

which transports amino acids to the translating ribosomal complex (Nordheim et al.,

2018). Both RNA types are non-coding RNAs, thus can not be translated into proteins

and do not take part in gene expression regulation (Nordheim et al., 2018). Interestingly,

in the case of sRNA, another non-coding RNA, which consists of 40 - 400 nucleotides (Nt)

(Storz et al., 2004), an interaction with RNA and various other regulatory processes can

be observed (Vanderpool et al., 2004) indicating an important role in the gene regulatory

process (Zieringer, Wild, et al., 2021). However, the regulatory function of sRNA was

excluded from transcriptomic data analysis and the scope of this thesis.

Out of all existing RNA classes, mRNA is in the focus of gene expression analysis.

As coding RNA, its sequence can be translated into a polypeptide strand. The transcrip-

tion process is composed of several steps, which are grouped in three phases: initiation,

elongation and termination (Watson et al., 2014).

Initiation

The initiation by RNA Polymerase (RNAP) takes place at a unique position upstream

of the coding sequence (Lodish, 2000), called promoter (figure 2.1). Several different σ-

factors exist in E. coli which direct the RNAP complex to different promoters (Helmann

et al., 1988; Watson et al., 2014). The rate by which a transcription process is initiated is

a measure for the strength of the corresponding promoter sequence and is not only influ-

enced by the binding of RNAP, but also by the speed of melting of the DNA double strand

and promoter escape (Rhodius et al., 2010). Additionally, there are regulatory proteins

called activator or inhibitor, that enable or suppress the binding of RNAP. Mostly, they

bind within or upstream of the promoter sequence and appear to act directly with RNAP

(Busby, 1994; figure 2.1). Activators and inhibitors are also called transcription factors

and control the transcription process. As they are encoded on the DNA and are subject to

regulation, a complex regulatory network is formed (Machado et al., 2011). After binding

to the promoter region, the RNAP complex needs to escape from this region to terminate

initiation and start the elongation process. This promoter escape could be a rate limiting

step for many promoters in the transition from initiation to the elongation phase (Reppas

et al., 2006). After promoter escaping and synthesis of a few nucleotides by RNAP, the σ-

factor dissociates from the core enzyme and terminates the initiation phase (Gross et al.,
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1998). In the context of the agent-based model, the initiation of transcription is inherently

included in the transcriptomic dynamics derived but no individual information can be

assessed about promoter strength or other preceding interactions.

Elongation

During the elongation phase, the RNA polymer is synthesized in a repetition of three

reaction steps, as described by Nordheim et al. (2018):

• Binding of a suitable nucleotide triphosphate (NTP) at the active center of the en-

zyme

• Release of a pyrophosphate molecule and generation of a phosphodiester bond be-

tween the nucleotide and the 3’-OH-cap of the RNA strand

• Movement of the RNAP relative to the DNA strand

It is likely, that these steps do not proceed with constant velocity, instead they are ac-

companied by delays or even stops of the RNAP movement, due to falsely attached nu-

cleotides or DNA bound proteins, that sterically hinder RNAPs (Nordheim et al., 2018).

This pausing is a regulatory effect by which the cell can synchronize transcription and

translation or by which a time window is created that allows the interaction of further

regulatory proteins (Artsimovitch et al., 2000). It is even possible, that the arrested RNAP

encountered by a protein dissociates from the DNA eventually and the elongation is ter-

minated (Watson et al., 2014). Different values are reported for the average elongation

speed. Bremer et al. (1996b) report values around 50 Nts−1, while Chen, Shiroguchi, et al.

(2015b) found a value of 25 Nts−1 for exponentially growing E. coli cells. Furthermore,

they found a reduction in the average elongation rate in the stationary phase with a de-

crease to 21 Nts−1. Tolić-Nørrelykke et al. (2004) reported varying constant elongation ve-

locities at different loci on the DNA, dependent on the transcription elongation complexes

that are formed by different RNAP which is potentially caused by post translational mod-

ifications of RNAP. Apparently, this rate is not uniform but the exact mechanisms remain

unknown. That is why an averaged constant elongation rate was considered for all mov-

ing RNAPs in the model framework (see chapter 5). The energy for synthesizing a mRNA

strand is delivered by the cleavage of two phosphate groups from one NTP. After degra-

dation of monophosphorylated nucleotides, recycling requires two ATP per molecule in
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return (Löffler, Simen, Jäger, et al., 2016a). De novo synthesis of nucleotides instead re-

quires more energy and differs for each nucleotide type as different precursors are needed

for production (see chapter 5).

Termination

After reaching a terminator codon, the RNAP separates from the template. This can either

happen rho-dependent or independent with a protein called rho factor or a stable loop

sequence in the DNA causing the polymerase to stall. After separation RNAP returns

to its pool or immediately initiates transcription again. The resulting mRNA is released

(Peters et al., 2011).

2.2.2 Translation

Translation describes the next step in protein synthesis and considers the proceeding from

a mRNA molecule to the final protein. As transcription, translation is divided in three

steps: initiation, elongation and termination (Watson et al., 2014).

Initiation

Initiation in general is considered to be the most relevant rate-limiting step in mRNA

translation with a variety of proteins involved (McCarthy et al., 1990). The translation

starts at a certain start codon which mostly (around 90%) consists of AUG, and with

around 8% less frequently of GUG (McCarthy et al., 1990). The translation initiation se-

quence which is located at the 5’-end of the start codon is called Shine-Dalgarno sequence

(SDS) and is complementary to a sequence of the 16S ribosomal subunit (Watson et al.,

2014). The extent of complementarity of the SDS and its anti-sequence as well as the

spacer between the SDS region and the start codon strongly influence the frequency of

initiation of a certain mRNA (Watson et al., 2014). However, the SDS is neither necessary

nor sufficient for initiation as there exist a variety of SDS-lacking mRNAs that are still

translated (Gualerzi et al., 2015).

Only a simplified mechanism is considered for initiation of translation in the model

incorporating a minimum distance between moving molecules on the mRNA strand as
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threshold. As soon as a minimum distance between RNAPs is reached, ribosomes are

able to bind and translate the mRNA sequence in a co-transcriptional manner.

Elongation

After the ribosome locates on the mRNA elongation starts ( Subramaniam et al., 2014).

In general, it consists of three steps, which are repeated until a stop codon is reached.

According to Wintermeyer et al. (2004), in the first step a aminoacyl tRNA (aa tRNA),

carrying an amino acid (AA), is transported to the ribosome. This step is facilitated by

a protein called elongation factor Tu and requires the energy of GTP dephosphorylation.

The structure of a tRNA consists of a certain anti-codon, which corresponds to a comple-

mentary codon on the mRNA (Watson et al., 2014). Consequently, a variety of differently

loaded tRNA coexist and the anti-codon sequence ensures, that the suiting one is bound

to the polypeptide. Next, the aa tRNA forms a peptide bond at the carboxyl end of the

peptidyl tRNA, carrying the peptide chain. The formation of a peptide bond does not

require hydrolysis of triphosphate molecules, instead the reaction is driven by breaking

the high-energy acyl bond between the tRNA and its amino acid. This reaction and there-

fore the loading of a tRNA requires two-fold hydrolysis of an ATP molecule to adenosine

monophosphate (AMP) (Watson et al., 2014). Afterwards, the peptide is extended by one

AA while a mere tRNA, without any loaded AA leaves the ribosomal complex. Finally,

the ribosomal complex steps one codon forward and a free position for a new cycle re-

mains. This step is facilitated by a protein called EF-G which requires the cleavage of a

guanosine triphoshate (GTP) molecule. The speed of elongation is about 20 AA s−1 with

an error rate of 0.5 - 0.1 ‰ (Nordheim et al., 2018).

Termination

Termination of translation is indicated by three possible stop codons: UAG, UAA and

UGA (Nordheim et al., 2018). As cells normally do not contain tRNA with a comple-

mentary sequence to one of these codons, the ribosomal complex stops when it reaches

a certain codon. As soon as a stop codon is reached the complex disrupts and releases

the mRNA strand as well as the peptide strand. The ribosomal units are then recycled to

initiate a new cycle of translation.
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2.2.3 Transcript Degradation

The active degradation of mRNA is a central function of the cell’s regulatory machinery

(Belasco et al., 1988). Thereby, life time varies between 30 s and several minutes. On av-

erage, life time of transcripts was estimated to be 2.5 min for exponentially growing E.

coli cells, while an increase in transcript stability is observed for cells in stationary phase.

Here, an average value of 4.5 min for the life time of transcripts is observed (Chen, Shi-

roguchi, et al., 2015b). The process of mRNA degradation involves several endo- and

exonucleases (Hui et al., 2014). Exonucleases use either hydrolysis or phosphorylation

to cleave a nucleotide from the mRNA strand. While hydrolysis irreversibly results in

a monophosphorylated nucleotide, the phosphorylation reaction is reversible and pro-

duces a nucleotide diphosphate (Hui et al., 2014). By starting degradation of a transcript

at its 5’-cap, a cell can ensure, that initiation of translation is inhibited by degrading the

SDS for ribosomal binding and already initiated translation can successfully be termi-

nated (Laalami et al., 2014). Contrary to degradation from the ends, endonucleases break

bonds within a mRNA molecule. Resulting fragments after cleavage are then degraded

by exonucleases. In contrast to initiation of transcription and translation, the initiation

event of endonucleolytic cleavage cannot be categorized by a specific interaction (Car-

pousis et al., 2009). mRNA decay in E. coli is typically initiated by endonucleolytic cleav-

age followed by an exonucleolytic degradation of the fragments (Viegas et al., 2011). The

rate of degradation is influenced by many parameters like the abundance of nucleases,

polyadenylation or the 5’-phosphorylation status (Silva et al., 2011). However, one of the

most important factors preventing mRNA strands from degradation is its loading with

ribosomes (Laalami et al., 2014), which was set as constraint in the biological model.

2.2.4 Protein Degradation

Protein degradation is an active and important process for cell viability (Maurizi, 1992a).

Due to the irreversible nature of proteolysis, cells have to take care of arbitrary degrada-

tion and therefore ensure tight regulation (Mahmoud et al., 2018). In general the turnover

rates of different proteins varies. The major fraction of the total protein pool shows life-

times that exceed, sometimes by far, the doubling time of cells. Short lived proteins ac-

count for up to 40 % of all synthesized proteins and due to the great number it is unlikely

that they are all accidentally or falsely synthesized proteins, but instead fulfill e.g. regula-

tory functions (Goldberg et al., 1976). Generally proteolysis is divided into housekeeping
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degradation and a regulated part (Maurizi, 1992a). Main issue of the housekeeping degra-

dation machinery is prevention from damage by non-functional proteins, that were falsely

transcribed or translated, experienced chemical or oxidative damage, improper folding or

thermally induced structural changes (Maurizi, 1992a). Concerning adaptation to envi-

ronmental changes, regulated protein degradation is a key step to ensure persistent rapid

protein activation (Gur et al., 2011). This degradation is carried out by energy-dependent

enzymes (Mahmoud et al., 2018).

Although proteolysis requires ATP, regulation at the protein level can exhibit advan-

tages that outweigh the energy cost, e.g. a regulator protein can be deactivated rapidly

which might be useful in response to heat shock or general stress response (Jenal et al.,

2003). Moreover it is observed, that protein turnover is altered during nutrient deple-

tion and proteolytic rate is increased (Pine, 1973). This might help to supply the cell with

amino acids for renewed protein synthesis (Maurizi, 1992a), which was considered as

recycling in the model.

2.3 Data Acquisition and Analysis Methods

Signals like environmental changes feed into the transcriptional regulatory systems, which

affect the physiological and morphological changes that enable organisms to adapt effec-

tively for survival (Kitano, 2000). For instance, Ishii et al. (2007) generated a dataset for

systematic analysis of E. coli cells under genetic and environmental perturbations, show-

ing that the metabolism responded highly flexible. Observations like this build the basis

of the following chapters, where experimental setup and computational methods are in-

troduced to unravel these kind of impairments and offer an inexpensive routine, rather

than requiring significant production-scale efforts.

Experimental Set-ups mimicking Large-scale Heterogeneities

Scale-up is the procedure that transfers lab-scale bioprocesses in production scale, often

covering 7 to 8 volume of magnitude, aiming to achieve larger product quantities, with

simultaneous increase or at least maintenance of yields and product quality. Unfortu-

nately, loss or even failure of large-scale performance may occur often caused by micro-

environmental inhomogeneities. Insufficient mixing leads to severe axial and horizontal

concentration gradients. Producer cells frequently cross these poorly mixed zones which

trigger metabolic and transcriptional responses accordingly (Takors, 2012) redirecting the
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precursor and energy supply from production to adaption (Zieringer, Wild, et al., 2021).

Thus, detailed knowhow is necessary to prevent non-wanted production losses.

While geometric properties of the reactor can be maintained over different scales, ac-

cordance of chemical and physical quantities are much harder to achieve. One of the

most deteriorated parameters throughout scale-up is power input (Oldshue, 1966; Takors,

2012). As in lab-scale (< 0.05 m3) ideally mixed systems are common it can be hardly

achieved in large-scale (> 10m3) (Garcia-Ochoa et al., 2009; Vrabel et al., 2000). If the volu-

metric power input is kept constant, as it is one of the rules for scale-up in classic process

engineering, high mixing times and large substrate gradients might occur.

Because of a lack of large-scale experimental data due to their immense costs and ca-

pacity needs, scale-down device experiments are a cost-reducing alternative and resemble

large-scale conditions very well (Delafosse et al., 2014; Takors, 2012). Accordingly, Oost-

erhuis and Kossen were the first who presented a scale-up simulator (1983) comprising

two stirred tank reactors (STRs) for investigating the impact of oxygen gradients on Glu-

conobacter oxydans (Oosterhuis, Groesbeek, et al., 1983). They further introduced biore-

actor compartment models to achieve coarse spatial resolution of local oxygen transfer

rates to identify micro- and anaerobic zones (Oosterhuis and Kossen, 1984). This line of

thinking was followed by a series of likewise studies (Neubauer, Häggström, et al., 1995;

Buchholz et al., 2014; Löffler, Simen, Jäger, et al., 2016b; Löffler, Simen, Müller, et al., 2017;

Wulffen, Ulmer, et al., 2017). Reviews have been given by Delvigne et al. and Neubauer

et al. (Delvigne, Takors, et al., 2017; Delvigne, Destain, et al., 2006; Neubauer and Junne,

2010). Within this variety of scale-down devices the STR-PFR cascade is highlighted in

many comparative studies (Delvigne, Takors, et al., 2017; Delvigne, Destain, et al., 2006;

Neubauer and Junne, 2010) and is successfully established as standard scale-down de-

vice for the simulation of large-scale conditions (Limberg et al., 2016). Thereby, the STR

is operated as a well-mixed compartment under standard limited growth conditions and

the plug flow reactor (PFR) simulates a feeding, starvation or anaerobic zone providing

the stimulus to be investigated (Lara, Leal, et al., 2006). The latest approaches used an

improved revision of a STR-PFR device, recently published by Löffler, Simen, Jäger, et al.

(2016b) and Wulffen, Ulmer, et al. (2017). In this setup a distinct reference state sample

port was established in the STR. Hence, they were able to detect short term adaptation of

the cells to fluctuating conditions and long term changes initiated after a longer time span

as well as the formation of a new steady-state in comparison to the reference state. Starva-

tion zones have attracted attention as relatively huge zones of poor substrate availability

were identified in large-scale reactors (Neubauer, Häggström, et al., 1995; Lapin, Müller,
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et al., 2004; Haringa, Tang, Deshmukh, et al., 2016). From CFD simulation and measured

data it is known that distant from the feeding point or close to the reactor walls poorly

mixed zones with very low nutrient concentrations exist. According to findings of Lapin,

Schmid, et al. (2006), who investigated the growth performance of E. coli in silico under

well and poorly mixed fed-batch conditions, the volume ratio PFR-to-STR was designed.

Since then, other researchers made use of CFD to further optimize or develop scale-down

reactors (Kuschel and Takors, 2020; Haringa, Deshmukh, et al., 2017). Successful scale-

down of heterogenic large-scale bioreactor environments by rules established by classic

process engineers is only the first step in unraveling the impairments on the microorgan-

ism. The next sections introduce the access to biological responses triggered by nutrient

starvation.

2.4 Access to Biological Response in Starvation Conditions

With a scale-down reactor, microbial behavior can be investigated under different large-

scale scenarios. Samples taken from the scale-up simulator need to be processed so that

the cellular state is frozen immediately. For genomic analysis biosuspension is usually

sampled, flash-frozen in liquid nitrogen and stored at -70 °C. On the day of extraction

samples are thawn and total DNA extracted with a corresponding commercial kit (e.g.

DNeasy Blood and Tissue Kit (Qiagen)). Blocking intracellular transcription is achieved

by sampling into RNA protect kits (e.g. RNeasy Protect Bacteria Kit (Qiagen)). After-

wards, samples can be treated to identify nucleotide and transcript levels by either apply-

ing microarrays or, more preferred, next generation sequencing (NGS) technologies an-

alyzing DNA or mRNAs like DNA- or RNA-Seq (Shendure et al., 2008; Wang, Gerstein,

et al., 2009). In preparation for sequencing almost all steps of the various protocols have

been reported to introduce bias, especially in the case of RNA-Seq, which is technically

more challenging than DNA-Seq.

Knowledge of the nature of these biases will be essential for a careful interpretation of

NGS data and methods to check for certain biases is given in the next chapters. A detailed

review on this topic is given by Van Dijk et al. (2014).

2.4.1 Genomic DNA Sequencing

Since the early 1990s, DNA sequence production has almost exclusively been carried

out with capillary-based, semi-automated implementations of the Sanger biochemistry

(Hunkapiller et al., 1991). The starting material for DNA-Seq is generally double-stranded
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DNA in the form of isolated genomic DNA. This DNA is fragmented, followed by end-

repair and adapter ligation, and usually a size selection step to remove free adapters and

to select molecules in the desired size range. Next, polymerase chain reaction (PCR) am-

plification is often performed to generate sufficient quantities of template DNA to allow

accurate fragment (also called read) quantification (Linnarsson, 2010). Sequence is deter-

mined by high-resolution electrophoretic separation of the single-stranded, end-labeled

extension products in a capillary-based polymer gel. Laser excitation of fluorescent labels

as fragments of discreet lengths exit the capillary and provides readout that is represented

in a Sanger sequencing ’trace’. Software translates these traces into DNA sequence, while

concomitantly generating error probabilities for each base-call (Ewing and Green, 1998;

Ewing, Hillier, et al., 1998). To reduce the risk of biases accompanying these prepara-

tion steps (Van Dijk et al., 2014), specific parameters can be checked for consistency and

thresholds: GC content, quality score Q, mappability of sequencing reads and regional bi-

ases that might be generated by local structure which is explained further in the following

sections.

Whole-genome sequencing can detect single nucleotide variants, insertions/ dele-

tions, copy number changes and large structural variants. It provides a high- resolu-

tion, base-by-base view of the genome, identifies potential causative variants for further

follow-up studies of gene expression and regulation mechanisms and delivers large vol-

umes of data in a short amount of time to support assembly of novel genomes (Shendure

et al., 2008; Costessi et al., 2018).

After three decades of technological development, the Sanger biochemistry can be ap-

plied to achieve read-lengths of up to around 1,000 bp, and per-base ’raw’ accuracies as

high as 99.999 %. In the context of high-throughput shotgun genomic sequencing, Sanger

sequencing costs are in the range of $23 USD per sample (https:// www.illumina.com;

Date: 22.01.21). Based on these values, sequencing represents a less expensive and conve-

nient analysis method and it is going to become an individualized, universally accessible

technique in the near future. This means, that every process can be preceded by a se-

quencing step to individually check for the microbiological needs and requirements and

possible engineering targets to improve space-time-yield. In this thesis, DNA sequencing

was used to determine the selective pressure on global regulatory programs (high pres-

sure: many variants) and to validate the biological behavior due to engineered changes

unlike random mutations triggered by stress.
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2.4.2 RNA-Seq

RNA-Seq is a high throughput experimental technique that allows sequencing of com-

plementary DNA (cDNA) at very high redundancy (also called depth) with up to 107

individual sequences (reads) per sample (Wang, Gerstein, et al., 2009). This technique can

be used to examine alternatively spliced transcripts, post-transcriptio- nal modifications,

changes in gene expression, and more. Unlike microarrays, RNA-Seq does not depend

on prior knowledge of the genome sequence. Therefore, any preconceived notions about

what to detect (via probes or primers) can be avoided, resulting in decreased overall bias.

Additionally, RNA-Seq results show single-base resolution to identify Single Nucleotide

Polymorphisms (SNPs) with high sensitivity. The sequencing process typically begins

with RNA purification and quality assessment. Depending on the target RNA of interest

(mRNA, tRNA, sRNA and many more) commercial kits for purification exists and need

to be chosen accordingly. Once the RNA is extracted the purity and integrity of the sam-

ples needs to be assessed. The assessment for contaminants is done via UV spectrometry.

The peak of absorbency for RNA molecules is at 260 nm, while the peak for contami-

nants is usually distinct (Cellerino et al., 2018). The RNA integrity is quantified in a score

called RNA Integrity number (RIN) whose major proportion is determined by the shape

of the peaks of the 16S and 23S rRNAs (85 % of the total RNA fraction (Bremer et al.,

1996a)). The RIN value comprises an interval of 1 to 10, where 10 implies perfectly intact

and 1 extremely degraded RNA due to the presence of active RNAses. To ensure high

quality samples the RIN should be higher than 7 (Schroeder et al., 2006). The next step

is library preparation and it usually begins with fragmentation followed by generation

of cDNA via reverse transcription. Unfortunately, assembling cDNA requires additional

steps leading to increased signal degradation and increased chances of sample contamina-

tion. Moreover, linker ligation for cDNA synthesis introduces bias because the linker does

not ligate to different RNA end sequences with the same efficiency. cDNA synthesis also

favors small and medium RNAs to the detriment of longer sequences. rRNA accounts

for more than 85 % of the prokaryotic cellular RNA content (Karpinets et al., 2006), which

can impede the analysis of mRNA transcripts, with library cDNAs mapping to rRNA in

the absence of selection procedures (Van Vliet, 2010). Since mRNA (which is usually the

RNA of interest) is the least represented in the total RNA pool (around 3 %), the most

abundant species need to be removed. Therefore, approaches to address this issue have

focused on removing the prokaryotic rRNAs prior to construction of cDNA libraries. All
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these steps are necessary prior to sequencing. Illumina sequencing incorporates fluores-

cent nucleotide analogues into the cDNA at each sequencing cycle and to scan them in

order to determine the sequence of the transcript (Cellerino et al., 2018). The choice be-

tween single- or paired- end sequencing depends on the experimental design and the

biological target. Paired-end sequencing is more cost and time intensive than single-end

sequencing (every fragment is sequenced twice), but reveals more structural information

(e.g for identification of SNPs or if no reference genome is available). Sequencing also

incorporates the information about the desirable read length. Usually it is in the range of

50-300 bp (Cellerino et al., 2018) with the rule: the longer the reads the higher the struc-

tural information. All these steps result in raw data requiring further processing. Various

methods for RNA-Seq analysis are available and have been reviewed by Conesa et al.

(2016). However, analysis results are highly platform-specific (Lam et al., 2012), which is

a common problem during sequencing. Results are dependent on a standard processing

and analysis workflow which does not exit yet. In the next chapters the methods and

algorithms used in this thesis are introduced.

2.4.3 Assessing Quality of Sequenced Data Sets

Typically, samples are transferred to commercial sequencing partners (either DNA or

RNA) resulting in fast and high quality reads (depending on the provided sample qual-

ity). Data is usually delivered as fastqc files with corresponding quality report. This

report includes several different properties ranging from basic statistics (e.g. GC-content

for E. coli around 51% (Lee, Barber, et al., 2020)) to per base sequencing quality of each

individual sample. Thus, the reliability of the data set can be evaluated with the use of a

quality score Q as it is described in the following and subsequent steps can be defined.

In high-throughput data analysis quality is a fundamental issue and needs to be as-

sessed over the entire analysis. Raw data from a sequencer come in the fasta or fastq

(extension of the fasta format) format and are associated to the Phred Quality score (Q).

Applied to the Sanger sequencing (currently adopted by Illumina after v1.8) it is defined

as:

Q = −10 log10(P) (2.1)

where P is the probability that base-calling for a given nucleotide sequence is inaccurate.

Reasonable base calls are considered to be above 28 for good quality bases, which equals

a confidence of at least 99.8 %. Poor quality bases are Q < 20 (confidence is less than
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99 %). However, this threshold highly depends on the application (e.g. lower Phred

scores are acceptable if expression values from RNA-Seq data are obtained) (Cellerino et

al., 2018). Additionally, as mentioned before, GC content and mappability of sequenced

reads are other quality parameters. There are certain methods to improve the quality of

the sequenced dataset. In the workflow established trimming was used to cut-off the low-

quality parts from the reads in order to achieve higher accuracy during the mapping step

to the reference genome. As soon as a sufficient phred score is achieved, quantification of

gene-level expression allow the insight in cellular processes behind a certain behavior of

the microbial organism.

2.4.4 Genomic Data Analysis

Before mapping, DNA reads need to be assembled by physically linking DNA fragments

together creating ’contigs’, a series of overlapping DNA sequences used to make a phys-

ical map that reconstructs the original DNA sequence of a chromosome or a region of a

chromosome. One often used DNA assembler tool specifically designed to assemble bac-

terial genomes combining the accuracy of short reads and the structural resolving power

of long reads is Unicycler (Wick et al., 2017). The obtained contigs need to be reordered

and mapped to a reference genome where the mappability is an indicator of sample qual-

ity. Mauve represents a powerful tool to describe a genome comparison method that iden-

tifies conserved genomic regions, rearrangements and inversions in conserved regions

and the exact sequence breakpoints of such rearrangements across multiple genomes.

Furthermore, this method performs traditional multiple alignment of conserved regions

to identify nucleotide substitutions and small insertions and deletions (indels) (Darling et

al., 2004). As this method provides exactly the amount of detail to evaluate the selective

pressure in form of indels or small nucleotide polymorphisms (SNPs) Mauve was inte-

grated in the analysis workflow used in this study. However, with an error rate of over 4

% during short read sequencing, most accurate biological evaluation of possible regional

biases and variants is still achieved by manual review of identified changes which con-

cludes DNA-Seq analysis in this study (Reumers et al., 2012).

2.4.5 Transcriptomic Data Analysis with DeSeq2

Organisms can adapt to changing environments due to a flexible gene expression pro-

gram controlled by the dynamic interactions of hundreds of transcriptional regulators.
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To unravel this regulatory complexity, multiple computational algorithms have been de-

veloped to analyze gene expression profiles and detect dependencies among genes over

different conditions. Figure 2.2 provides an overview of a typical workflow making use

of public R packages.

However, experimental validation of the precision of these methods at genome scale

has remained unsatisfied due to the lack of a model organism with both, a known reg-

ulatory structure and compatible experimental data. Recent development of Love et al.

(2014), lead to an improved DeSeq Algorithm to unravel transcriptomic events called De-

Seq2. In the next chapter the mathematical background of this algorithm and methods

used in the developed workflow are introduced. In this thesis the workflow established

starts from fastq files. These files were aligned to the reference genome and a count ma-

trix which tallies the number of RNA-Seq reads within each gene for each sample was

prepared. Differential gene expression analysis was performed with the Bioconductor

package DeSeq2 and the results were processed graphically. RNA-Seq is not only techni-

cally more challenging than DNA-Seq but also its analysis is more complex. The following

sections comprise the steps applied during RNA-Seq analysis, after quality assessment of

the sequenced data set.

Read Counting

Quantification of gene-level expression allows the insight in cellular processes behind a

certain behavior of the microbial organism. Currently, one of the most widely used ap-

proaches is to identify the genomic locations of a set of non-overlapping features (genes)

while using the number of aligned reads as a measure of its abundance. So far there are

two major feature counting tools: featureCounts (Liao et al., 2014) and HTSeq-count (An-

ders and Huber, 2010). Both are very well known, reliable and have their own advantages

(Liao et al., 2014). Due to the good compatibility of the results from HTSeq-count to dif-

ferential expression tools (e.g DeSeq2) it was integrated in the workflow of this thesis.

To keep the number of potential miscounted reads (artifacts) at a minimum, it is recom-

mended to filter data for low count genes.
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FIGURE 2.2: Workflow illustrating the general procedure when analyzing
gene expression data. RNA-Seq analysis creates fasta and fastq as raw data
formats compiled in gene expression repositories (GEO, EBI), followed by
SAM or BAM files for aligned reads. The analysis steps are, in general: (1)
Mapping the reference genome onto the transcriptomic data, (2) Counting
reads, (3) Filtering low read counts and normalizing counts, (4) Gene Ex-
pression Analysis, (5) Clustering, (6) Time Series Analysis and Enrichment
Analysis. DeSeq2, MaSigPro, limma and edgeR are often applied packages
programmed with the language R to analyze transcriptomic data, in case of
differential gene expression as well as gene pattern analysis. The resulting
dynamic expressions and parameters are stored in databases like BRENDA
(Scheer et al., 2010), Regulon DB (Salgado et al., 2004), EcoCyc (Keseler et
al., 2013), SABIO-RK (Wittig et al., 2011) and iTAP (Sundararaman et al.,

2015).
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Detection and Analysis of Differentially Expressed Genes with DeSeq2

With a quality-curated raw read count table the platform for further analysis has been

created. However, sound comparison of gene expression levels between different exper-

iments can only be accomplished when transcript abundance is normalized across sam-

ples. Transcripts have different lengths and libraries originating from different samples

with different sequencing depths (range of total numbers of reads). The most commonly

used procedures to correct for these technical biases are: Transcripts per Million (TPM)

(Li, Ruotti, et al., 2010), Trimmed mean of M-values (TMM) (used by edgeR (Robinson,

McCarthy, et al., 2010)) or relative log expression (RLE) (used by DeSeq2 (Love et al.,

2014)). In general, two different comparison approaches need to be distinguished, intra-

and intersample comparisons. Notably, TMM and RLE do not correct the observed read

counts for gene length. Therefore, both approaches do not allow for intrasample com-

parison, because longer genes will get more read counts compared to shorter genes when

expressed at equal levels. Thus, samples can seem correlated based on gene length in-

stead of the expression levels without additional correction. The most commonly used

normalization method that includes gene length correction (as well as sequencing read

length correction) is TPM (Li, Ruotti, et al., 2010) which proved to be inadequate and

biased (e.g. by sequencing depth) for intersample comparison of transcript levels when

used on its own (Abbas-Aghababazadeh et al., 2018; Conesa et al., 2016). These biases can

be addressed in conjunction with normalization techniques such as TMM. However, in

this project differential expression level analysis needs to be simple yet still appropriate

for intersample comparison. Since tools for differential expression analysis are compar-

ing the counts between sample groups for the same gene, gene length does not need to

be accounted for. However, sequencing depth and library composition (e.g. if a large

number of genes are unique to, or highly expressed in, one experimental condition, the

remaining genes in that sample occur diminished) do need to be taken into account. That

is why RLE was used to analyze the transcriptomic data in this study. RLE is a robust

normalization method, e.g. produces homogeneous sets of transcript abundance (Love

et al., 2014). To normalize for sequencing depth (library size) and library composition,

DESeq2 uses the median of ratios method. First, the logarithm is taken of each value and

all genes which are only transcribed in one sample will be removed (which accounts for

different library compositions). DESeq2 then creates a pseudo-reference sample for each

gene by calculating the geometric mean across all samples and divides each value by this

reference. Afterwards the median of the ratios for each sample is calculated and serves
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as a scaling factor to normalize the raw counts. Since the majority of genes are not differ-

entially expressed (DE), the majority of genes in each sample should have similar ratios

within the sample.

To decide whether a difference occurred randomly the underlying statistics of the

dataset need to be considered. The count data generated by RNA-Seq exhibits overdis-

persion (variance > mean) and the statistical distribution used to model the counts needs

to account for this overdispersion. Love et al. (2014) use a negative binomial model to de-

scribe the data distribution in their widely used DeSeq2 package. They start from two as-

sumptions: (i) the majority of genes are not differentially expressed (working hypothesis

H), (ii) the relationship between mean and variance is a smooth function (continuous rise

of variance with increasing mean). This function is derived by performing a local regres-

sion (e.g. Poisson regression) where mean and variance of count variables are assumed to

be equal or the negative binomial regression where mean and variance vary. In contrast,

EdgeR models the negative binomial by multiplying the variance with a constant, instead

of a local regression (Robinson, McCarthy, et al., 2010), which leads to overestimation

of the mean/variance dependence at high expression values and underestimation at low

expression values.

To determine if a gene is differentially expressed the probability of accepting the null

hypothesis (H0) needs to be calculated, which is the negation of the working hypothesis

(H). For instance, a statistical t-test is calculated for each gene that is associated with the

probability distribution of the null hypothesis. With DESeq2, the Wald test is commonly

used for hypothesis testing when comparing two groups (besides likelihood ratio). A

Wald test statistics is computed along with a probability that a test statistics at least as

extreme as the observed value was selected at random. This probability is called the p-

value of the test. If the p-value is small the null hypothesis is rejected (e.g. the gene is

differentially expressed).

If the p-value is used directly from the Wald test with a significance cut-off of p < 0.01

(usually a reliable p-value is p < 0.05), that means there is a 1 % chance it is a false pos-

itive. Each p-value is the result of a single test. The more genes are tested, the more the

false positive rate is inflated. This is called the multiple testing problem. For example, if

4,000 genes are available for differential expression, at p < 0.01 we would expect to find

40 genes by chance. If 400 genes are found to be differentially expressed in total, roughly

every tenth gene is false positive. To correct for multiple testing and reduce the number

of false positives one common approach is proposed by Benjamini and Hochberg (1995).
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They defined the concept of False Discovery Rate (FDR) and created an algorithm to con-

trol the expected FDR below a specified level given a list of independent p-values. An

interpretation of the Benjamini-Hochberg (BH) method for controlling the FDR is imple-

mented in DESeq2 in which the genes are ranked by p-value, then multiply each ranked

p-value by its rank divided by the total number of tests multiplied with a manually cho-

sen false discovery rate (usually below 0.05).

Many common statistical methods for exploratory analysis of multidimensional data,

especially methods for clustering and ordination (e.g., principal-component analysis),

work best for (at least approximately) homoscedastic data. This means that the variance

of an observed quantity (e.g. expression strength of a gene) does not depend on the mean

and is equal among several groups. In RNA-Seq data however, variance grows with the

mean. For instance, if principal components analysis (PCA) is performed directly on a ma-

trix of normalized read counts, the result typically depends only on the few most strongly

expressed genes because they show the largest absolute differences between samples. A

simple and often used strategy to avoid this is to take the regularized-logarithm (rlog) of

the normalized count values to form approximately homoscedastic data. For genes with

high counts, the rlog transformation differs not much from an ordinary log2 transforma-

tion. For genes with lower counts, however, the values are shrunken towards the genes’

averages across all samples.

Identifying Pattern in DEG Datasets

After finishing the DEG analysis it is important to extract the relevant information and

conclude biological sense from it. Clustering and PCA are two widely-used approaches

to reduce complexity and detect pattern within the data.

PCA is a technique for reducing the dimensionality of such datasets, increasing inter-

pretability but at the same time minimizing information loss. It does so by creating new

uncorrelated variables that successively maximize variance. Finding such new variables,

the principal components, reduces to solving an eigenvalue/eigenvector problem. The

new variables are defined by the dataset at hand, not a priori, what makes PCA an adap-

tive data analysis technique. Additionally, variants of the technique have been developed

that are tailored to various different data types and structures (Jolliffe et al., 2016). How-

ever, principal components are not always easy to interpret and even if most information

can be preserved, the principal components only allow a limited insight into the details

of the underlying data.
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For clustering a huge variety of different algorithms exits. Clustering in general de-

scribes the classification of data into groups with similar objects, where similarity in ex-

pression behavior (concerning genes) implies a relationship in biological function (Jain,

Murty, et al., 1999). The concrete definition of a cluster hereby is influenced by the op-

erator, his intentions and the operating field (Aghabozorgi et al., 2015). There is nei-

ther a standard algorithm, which generally delivers better results than another, nor is

there a uniform opinion which criteria are essential and significant for cluster quality

(D’haeseleer, 2005). In this thesis we will focus on partitioning and quality-based cluster-

ing and introduce the application options in the following. A general advantage of the

two used algorithms compared to hierarchical clustering is that clusters are generated in

an iterative process, in which the single members are swapped until an ideal composition

has been found (Backhaus et al., 2018; Theresa Scharl et al., 2006). Hierarchical algorithms

do not exhibit this property, instead they proceed either in a step-wise agglomerative

combination of smaller clusters to one larger clusters or, in a diversive approach, in which

a large group is further divided into smaller clusters (Halkidi et al., 2001). According to

Drăghici (2012) and Nagpal et al. (2013), one main disadvantage of hierarchical clustering

is that important division steps are executed at the beginning of the sorting process, at a

point in time where only little is known about the actual structure of the data. Also, one

challenging task is to decide when a new cluster is formed (Moreau et al., 2002) with no

biological reason that justifies the strict binary splitting of a cluster (van der Laan, Mark J.

et al., 2003) as e.g. multiple genes can be controlled by the same operator.

K-Means Clustering: The K-means algorithm is one of the most used techniques, be-

cause it is algorithmically simple, relatively robust and gives ‘good enough’ answers over

a wide variety of data sets (Lloyd, 1982; Drăghici, 2012). It belongs to the class of parti-

tioning methods often using euclidean distance as similarity measure. In the beginning,

a fixed number of clusters needs to be specified. According to Jain (2010), centers are ran-

domly chosen for all predefined clusters at the beginning and the data points are joined

with the center closest to them. Next, new cluster centers are calculated based on the

new members that were added and new data points are assigned to the center closest to

it. This is repeated until clusters’ compositions are fixed. K-means clustering has the ad-

vantage of an easy implementation and fast computing. One noteworthy disadvantage of

this procedure is the a priori specification of the total number of clusters, as they are often

unknown (Chandrasekhar et al., 2011). Furthermore, the algorithm is not deterministic

due to the randomly chosen start centers and the resulting convergence to local optima
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(Lu et al., 2004). This leads to different results for different cycles. Additionally, position-

ing of clusters can be misleading, as two points that are close to each other, can still be

sorted into different clusters and are a result of the position of the initial cluster centers. A

general problem, that inhibits K-means, is the estimation of the number of clusters (Zhao

and Karypis, 2005). Furthermore each gene is forced to be part of a cluster, regardless

of its relevance (Moreau et al., 2002). This makes the algorithms vulnerable to outliers

and noisy measurements. Addressing these intrinsic problems of the „traditional algo-

rithms“ (Oyelade et al., 2016), methods like quality-based clustering (Heyer, 1999) were

introduced, invented specifically for clustering gene expression data (Jiang et al., 2004;

Moreau et al., 2002).

Stochastic Quality-based clustering (SQBC) is an advancement of the quality-based

clustering, proposed by Heyer (1999). The algorithm relies on a quality criteria which is

defined in the beginning, and characterized by the minimum rmin and maximum distance

rmax of a gene from its cluster center and the minimum number of members nmin for a

cluster. A random center is formed within radius rmax, that contain nmin members without

adding data points that exceed rmin. If one data point exceeds rmax, a new cluster is formed

until all data points are assigned to a cluster with regards to nmin and rmax. (Theresa Scharl

et al., 2006). By the random initialization a non-deterministic approach is formed. Herein

lies the difference to the originally proposed algorithm by Heyer (1999), where an original

data point was used as start center. Nevertheless, no different local optima can be found

and the algorithm always converges into the same optimum (Theresa Scharl et al., 2006).

By the definition of rmax a certain cluster quality is ensured and profiles that do not fit

are discarded. A measure for the similarity of two expression profiles is e.g. the distance

of two objects (genes). Within the variety of distance metrics, the Euclidean one is used

most frequently (Drăghici, 2012). It describes the shortest distance between two points

(genes) x1 and x2 as a straight connection (Mimmack et al., 2001) in an extended form of

Pythagoras’ equation:

Dx1,x2 =

√

n

∑
i=1

(x1,i − x2,i)2. (2.2)

where the sum is formed over all available data points n in time for gene x1 and x2. One

disadvantage of absolute distance measure lies in the resulting large distance of two pro-

files which show the same relative behavior, but at different absolute niveaus. However,
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if the values were related to a standard, same relative changes result in same metric dis-

tances. If using an euclidean distance correlation the data should follow a normal distri-

bution. This means coming from RNA-Seq, any data derived from a transformed normal-

ized count metric is required, such as rlog as described in chapter 2.4.5.

To improve the overall clustering results (based on the cluster evaluation results de-

scribed in the next section and summed up in table A.1), the K-means algorithm will

be run afterwards, initiated with the resulting clusters and corresponding centers from

SQBC. The K-means algorithm is sensitive to its center initialization and if the initial ran-

dom selection of the pure K-means algorithm is poor, it might lead to a local optimum

that is not as good as the global optima (Laszlo et al., 2007).

If only interested in overall expression profiles (strength and direction of linear rela-

tionship), Pearson correlation would serve this goal best. The Pearson coefficient (ranging

from -1 to 1) only takes into account the shape of a profile, but not the absolute values

(Eisen et al., 1998). Thus, a clustering algorithm using this distance measure is invariant

with respect to shift and scaling of the time series. By preserving the absolute level of

differences, the Euclidean distance is the measure that obtains the best, balanced general

solutions Iglesias et al. (2013).For these reasons the euclidean distance measure in con-

junction with SQBC and K-means clustering is used in this work.

Cluster Evaluation

After the choice and use of an appropriate algorithm, the evaluation of the resulting clus-

ters is regarded as one of the most important steps (Halkidi et al., 2001). Algorithms

categorically find clusters, independent whether these clusters are really existing or the

data is just randomly composed (Jain and Dubes, 1988). In general, the target of clus-

ter analysis is to find clusters, whose members are close to each other, exhibit a certain

compactness (Halkidi et al., 2001) and have a certain extend of separation among them-

selves (D’haeseleer, 2005). To evaluate the cluster compactness, the intra-cluster variance

is tested, as proposed by Handl et al. (2005). For characterization of separation, the mean

silhouette coefficient S (Rousseeuw, 1987) is calculated. The silhouette coefficient of a data

point i is a ratio of (i) the difference of the data points average distance to all data points

of the other clusters Di,k and the mean distance between the data point and the members

of its own cluster Di,j and (ii) the maximum of the two means as given by

Si =
Di,k − Di,j

max(Di,k; Di,j)
. (2.3)
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The value of S ranges from -1 and 1, where a positive value close to one indicates high

similarity to its assigned cluster compared to adjacent clusters and a negative value marks

outliers. If a high number of points have a low or negative value, then cluster configu-

ration may have too many or too few clusters (Gupta et al., 2016). A further method for

evaluating the cluster quality, is testing its ability of prediction. Therefore, Yeung et al.

(2001) proposed the calculation of the figure of merit. The idea is based on the assump-

tion, that biologically related genes, should exhibit similar expression patterns (Jiang et

al., 2004). Therefore, the validation measure requires correlated data, which is provided

by gene expression profiles (Handl et al., 2005). The method proposed by Yeung et al.

(2001) removes one data point of the data set, clusters genes on the remaining data and

measures the within cluster similarity of expression values of the left out data point. The

root-mean square deviation of a profile at the left-out time point of each cluster member

is calculated relatively to the mean of its cluster. A small value indicates a high predictive

power and reliability of the chosen cluster method (Jiang et al., 2004).

Storage of Gene Expression Analysis Results

Even with scale-down systems on the rise, the majority of the fundamental knowledge

about regulatory effects caused by external stimuli has been acquired from shaking flask

experiments (Murray, Schneider, et al., 2003; Shimada et al., 2011; Traxler, Zacharia, et

al., 2011). Based on such and other experimental datasets, different databases have been

established to summarize the knowledge about transcriptional regulation of different mi-

croorganisms. For E. coli two databases are of major interest, RegulonDB (Salgado et

al., 2004) and EcoCyc database (Keseler et al., 2013). These databases integrate biolog-

ical knowledge of the mechanisms that regulate the transcription initiation, as well as

the organization of the genes and regulatory signals into operons in the chromosome.

The project of RegulonDB started 1998 with around 500 regulation mechanisms and due

to continuous gathering of information, version 9.3 with over 3000 experimentally con-

firmed regulatory interactions among around 1200 genes have been curated and released

in 2017 (Gama-Castro et al., 2016), which can be used for performance assessment. To

transfer and expand the knowledge gained by shaking flask experiments, scale-up stud-

ies have been used to investigate cellular performance under large-scale conditions which

unraveled impaired process performance. Application examples are given by transcript

time series and monitoring of metabolic changes reflecting the stimuli of glucose (Löffler,

Simen, Jäger, et al., 2016b; Löffler, Simen, Müller, et al., 2017; Simen et al., 2017a), nitrogen

(Brown et al., 2014), oxygen (Wulffen, Ulmer, et al., 2017; Liu et al., 2017) or temperature
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stress (Caspeta et al., 2009) of E. coli. Data like this, derived from transcriptome analy-

sis as it is described in figure 2.2, are the basis of proper validated mathematical models.

Transcript analysis even enabled the engineering of robust E. coli strains (Michalowski

et al., 2017) by attenuating the level of the alarmone ppGpp, the inducer of the stringent

response regulation program. The new host is able to maintain high glucose uptake rates

even under non or slow growing conditions. However, signal transduction is highly net-

worked in the cells which may cause the cross-interference of multiple stimuli. The coin-

cidence of multiple stimuli in large-scale fermentation is the rule rather than the exception

(Xu, Jahic, et al., 1999; Egli, 1991). Accordingly, multiple stimulus/response studies are

likely to gain importance in the future.

2.5 Modeling Microbial Growth with Different Granularity

Based on proper analyzed experimental data sets, mathematical models can be derived

to simulate the microbial behavior under different conditions with a varying level of de-

tail. Following the well-known classification of Bailey (1998) microbial models can be di-

vided into non-structured/structured and non-segregated/ segregated approaches. Non-

structured/ Non-segregated approaches represent the simplest growth models assuming

average cells without sub-cellular detail. Such models are typically applied for biopro-

cess design. For the sake of simplicity, they are also applied in agent-based modeling for

tracking individual cells. The consideration of subpopulations or individual cell prop-

erties leads to segregated approaches which, thanks to the improving availability of ex-

perimental data, is gaining more and more attraction. Structured, non-segregated models

are commonly used for implementing the sub-cellular details of metabolic and transcrip-

tional regulation, compartmentation or signal transduction (Nielsen et al., 1991; Tang,

Deshmukh, et al., 2017). They are computationally intensive but represent a powerful tool

for predicting detailed cellular responses to extracellular stimuli. A simplified version of

this classification was used as general modeling approach in this thesis. The most accu-

rate approach are structured/segregated models, which for example describe the whole

glycolysis process with reactions for each enzyme, depending on enzyme affinities and

turn over rates (Chassagnole et al., 2002). These parameters are more difficult to identify

but transferable to other conditions. However, models like this are limited in scale, due

to the complexity of the cellular mechanisms and the single cell consideration, which re-

sults in a quadratic scaling problem. Structured, non-segregated models typically consist
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of a rigid network structure and a set of rate expressions including sensitive parame-

ters. Knowledge of the network structure, the kinetic equations and the parameters is

key to identifying a proper model. Often, such structures are determined following the

bottom-up approach, i.e. the statistically profound identification of correlations between

the structuring elements based on experimental data. The bottom-up concept can be ap-

plied to merge already existing small-scale models into large models (Klipp, Nordlander,

et al., 2005; Guido et al., 2006; Brandon et al., 2015). Alternatively, top-down approaches

aim for the identification of model parameters for a given structure. Accordingly, the top-

down approach is a powerful tool for deciphering details of pathway interaction with the

network, provided that the given structure is correct (Chou et al., 2009; Erickson et al.,

2017). Since only limited computational power is available a structured, non-segregated

structure is used to describe the cell population in a agent-based modeling approach. The

cellular regulatory network based on experimental data can be derived with different

methods presented in the following section.

2.6 Dynamic Regulatory Networks

A regulatory network model is the collection of macromolecules and their interactions,

which together control the level of gene expression in a given genome. Numerous cel-

lular processes throughout different layers (metabolome, proteome, transcriptome and

genome) are affected by regulatory networks (Machado et al., 2011). Because of this enor-

mous complexity and multilayer communication it is a major challenge to adequately

display the regulatory system of microorganisms with computational tools. In the fol-

lowing different methods, which challenge gene regulatory approaches are introduced

shortly with focus on a standard deterministic approach, ordinary differential equation

(ODE) models, that follow the law of mass action.

Dynamic Network Set-ups

The main approaches which roughly embrace the computational possibilities are listed

below and can be divided into boolean approaches (Thomas, 1973; Kauffman et al., 2003;

Davidich et al., 2008), probabilistic models (Qian et al., 2002; Turner et al., 2004; Chan-

drasekaran et al., 2010) or ODE models (Chassagnole et al., 2002; Bolouri et al., 2002;

Kremling, Bettenbrock, et al., 2007; Lemuth et al., 2008; Hardiman, Lemuth, Siemann-

Herzberg, et al., 2009). An overview of the mentioned approaches is provided in figure

2.3. Furthermore different combinations of these methods have been applied to improve
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the accuracy of the dynamic regulatory modeling (Shmulevich et al., 2002; Schlitt et al.,

2007; Li, Li, et al., 2011).

Boolean Models

Regulatory networks are basically boolean networks with on/off conditions for all partic-

ipating transcription factors and genes. Orth et al. (2010) stated, that boolean regulatory

networks, besides ODE models, are the most used method to build regulatory regimes. If

a gene is switched off in the regulatory network its respective flux is constrained to zero.

If the gene is on the associated flux is unconstrained. Boolean networks were used to ana-

lyze the relationship between regulation functions and network stability in the yeast tran-

scriptional network, using only the network’s structure (Kauffman et al., 2003). It showed

that boolean models do not correctly model the dynamics of a transcription factor that

down-regulates its own expression, due to the model’s limited level of detail (figure 2.3).

In order to capture dynamic changes in the flux distribution of the metabolic network or-

dinary differential equations (ODE) are applied for different synthesis rates like mRNA

formation or protein synthesis (Orth et al., 2010; Wulffen, Buchholz, et al., 2015). An-

other problem is the highly complex interplay between transcription factors, therefore it

is hard to identify and model the contribution of individual factors satisfactorily (Wulffen,

RecogNice-Team, et al., 2016). Mochizuki (2005) showed that the predictions of Boolean

models can become unrealistic or too complex for larger networks when compared to

those of the corresponding ODE models. However, when the number of entities is small

and only qualitative knowledge is available, Boolean networks can provide important in-

sights, such as the existence and nature of steady states or network robustness (Karlebach

et al., 2008).

Probabilistic Models

The stochastic approach uses the inherent random nature of microscopic molecular colli-

sions to build a probabilistic model of the reaction kinetics (figure 2.3). In particular, Gille-

spie’s stochastic simulation algorithm (SSA) (Gillespie, 1976; Gillespie, 1977; Berry, 2002)

is used to derive the behavior of single molecules. SSA takes as input the initial number of

molecules of several species (for example, mRNAs and proteins) and reaction-probability

constants and simulates the dynamics of the system, one reaction after another. A re-

action probability is the probability that the necessary combination of specific molecules

will participate in that reaction in an infinitesimal time interval (Karlebach et al., 2008).
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The basic assumption of the algorithm is that the system is ’well stirred’ meaning that

each molecule always has an equal chance of being anywhere in the system’s volume.

This method was sufficiently described in Wilkinson (2011) and was successfully applied

of Nieß et al. (2017) to describe the transcription of the trp operon during repetitive nitro-

gen starvation. Besides the high level of detail the drawback of this method is the large

amount of data needed to describe every single molecule in the system and consequently

the high computational effort.

Ordinary Differential Equation Models

A more general but also detailed model of regulation can be described by ODEs, as long as

only one variable (e.g. space or time) change is considered (for changes in time and space,

partial differential equations are appropriate). These equations continuously describe the

change of entities over time (figure 2.3). In the context of transcriptomic networks, they

describe the rate of change of transcript concentrations. The dynamic models based on an

ODE system contain rate law equations for the reactions as well as their kinetic parameters

and initial transcript concentrations. Building this type of model requires insight into time

series dynamics to select appropriate rate laws, as well as experimental data for parameter

estimation (Gennemark et al., 2009; Wang, Wang, Zhang, et al., 2007). Therefore, their

application is more limited. Klipp, Herwig, et al. (2008) provides a good overview for

the use of ODEs in biological context and gives some examples. Basic models of dynamic

networks of well-studied organisms such as E. coli (Chassagnole et al., 2002, etc.) and

Saccharomyces cerevisiae (S. cerevisiae) (Rizzi et al., 1997; Chen, Calzone, et al., 2004) are

already publicly provided. The dynamic formulation needs significant information in

terms of rate constants and total transcript concentrations, as well as reaction mechanisms

to give rate laws and initial concentration levels, but generally rewards that effort with

unique and detailed solutions. Thus, ODE models can generate predictions that may

subsequently be compared to cellular phenotypes. Also Kremling, Heermann, et al. (2004)

and Turner et al. (2004) stated that between stochastic modeling approaches for a low

number of molecules (around 100) hardly any differences could be detected compared to

the deterministic approach. Therefore high accuracy coupled to a comparably average

computational effort is achieved.
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FIGURE 2.3: Summary of model approaches with relevant criteria. Models
are listed along an imaginary scale, in which the amount of detail increases,

from left to right. Several relevant criteria are indicated below the scale.

2.7 Computational Fluid Dynamic Simulations of Large - Scale

Conditions

To predict cellular responses in large scale bioreactors, two crucial prerequisites are needed:

(i) models simulating spatially resolved substrate availabilities, flows and mass transfer

and (ii) models translating micro-environmental heterogeneities into proper cellular re-

sponses. As the second point was already introduced in the previous chapters, this chap-

ter focuses on methods used in this thesis to simulate the environmental heterogeneities

under large-scale conditions using a CFD approach.

Large-scale bioreactor conditions need to be calculated, aiming at a spatial resolution

of mass, momentum and energy balances via numerical simulations. However, industrial

processes of stirred tanks are usually operated in turbulent flow regimes (Re = uρL
ηl

> 104)

and under moderate conditions (30°C < T < 37°C; 1 bar < p < 1.5 bar) with media com-

positions ranging from low to highly viscous. Thus, several assumptions can be made

to reduce the computational costs. In particular, for high Reynolds numbers (Re) friction

is negligible and the general Navier-Stokes equation (NSE) resolves to the Euler equa-

tions. Additionally, the compressibility of a flow is directly related to the Mach number

(Ma = u
c ). When Ma < 0.3, the change in density in a given flow is minor and can be

neglected. Hence, the flow can be considered incompressible ( Dρ
Dt = 0). Incompressibility

is also considered for the fluid simulated as the main components of media are water and

salts. Additionally, the process in this study is considered isotherm and therefore the en-

ergy equation can be neglected. Hence, the Navier-Stokes and continuity equation can be

written in Cartesian coordinates as:
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∂ui

∂t
unsteady term

+ uj
∂ui

∂xj
convective term

= −1
ρ

∂p
∂xi

pressure gradient term

+
η

ρ

∂2ui

∂xj∂xj
diffusive term

+ fi
external forcing term

(2.4)

∂ui

∂xi
= 0 (2.5)

with u as fluid velocity, p as pressure, η as dynamic viscosity and ρ as density. Here,

the external forcing term is considered as gravitational force (ρgi) with gi as gravitational

acceleration.

Basically, NSEs describe the motion of viscous fluid flows with the fluids considered

as a continuum rather than colliding particles. The formation of turbulent zones is pro-

voked by eddies as a consequence of mixing. They are integrated via additional transport

equations. Flows involving heat transfer (or compressibility) were not part of this thesis.

Furthermore, the balancing of individual species (particles or cells) that undergo mix-

ing and reactive changes require the implementation of proper conservation terms. De-

pending on the available computing power simulations can range from direct numerical

simulation (DNS) via large eddy simulation (LES) to Reynolds-averaged Navier-Stokes

(RANS) approaches. DNS yields to solve each individual turbulent structure, whereas

LES only directly solves the large energy containing scales while the effects of the more

universal small scales are modeled. RANS comprise time-averaged flow equations which

allow to simulate small and large scale eddies with a minimum – but still challenging

– computational effort (see figure 2.4; Ahlstedt et al., 1996; Zieringer and Takors, 2018).

Consequently, RANS simulations are often favored. They only require 1/10 to 1/100 com-

putational efforts compared to LES (Breuer et al., 1996) or DNS, respectively. Although

RANS models require several modeling assumptions and approximations, their predic-

tive power is sufficient for providing insight in reactor-scale substrate concentration gra-

dients (Larsson, Törnkvist, et al., 1996), which is why a RANS approach was used in this

study.

The RANS equations are time-averaged equations of motion for turbulent flows ap-

proximating different turbulent scales through fluctuating quantities, an idea first pro-

posed by Reynolds (Reynolds, 1895). RANS models offer the most economic approach

for simulating complex turbulent flows, because turbulences are considered with differ-

ent levels of complexity. The most common RANS turbulence models are classified with

respect to the number of additional transport equations that need to be solved along with
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FIGURE 2.4: Different approaches of turbulence models, regarding the
model scope and fields of application, as well as the corresponding compu-
tational capacity required. RANS: Reynolds-averaged Navier-Stokes equa-

tion, LES: Large Eddy Simulation, DNS: Direct Numerical Simulation.

the RANS flow equation. Besides, the often used two-equation models, such as the stan-

dard k-ǫ, k-ω or Renormalization group (RNG) k-ǫ models, one-equation models (low-

cost RANS models, e.g. the Spalart-Allmaras approach) or even zero-equation models

which estimate the turbulence viscosity via the mean velocity and the length scale using

an empirical formula are available (Rodi, 2017).

2.7.1 Reynolds-averaged Navier-Stokes Two Equation Turbulence Models

RANS models are usually employed to simulate turbulent industrial flows (Corson et

al., 2009). This method averages the equations of motion over time to reduce the com-

putational effort and complexity of the model. Using the approximation of the RANS

approach the NSE gives, as momentum equation for incompressible flows:

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj + ρu′

iu
′
j) =

∂p
∂xi

+
∂

∂xj

[

η

(

∂ui

∂xj
+

∂uj

∂xi

)]

(2.6)

where u is the velocity of the fluid with index i as directions in space, ρ is the fluid den-

sity, η is the fluid viscosity, p is the pressure and the turbulent fluctuations ui’. When

it comes to turbulence involved in the fluid flow additional non linear terms (Reynolds
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stress terms) appear, which can be computed in varying degrees of complexity. Deter-

mining the right choice of a turbulence model depends on the detail of results expected

and computational capability available. The most common RANS turbulence models are

classified on the basis of the number of additional transport equations that need to be

solved along with the RANS flow equation. The Reynolds stress terms can be closed via

the Boussinesq hypothesis as first order closure model, where the Reynolds stresses are

modeled using an eddy viscosity ηt or via transport equations for Reynolds stresses as

second order closure model (RSM). The RSM is more complex, computationally intensive

and more difficult to converge than linear eddy viscosity models. Therefore only the k-

ǫ two equation model was used to simulate turbulence in a industry scale stirred tank

reactor.

Standard and Realizable k-ǫ Model

The k-ǫ model is the most widely used engineering turbulence model for industrial appli-

cations, because of its robustness and accuracy (Fluent, 2009). The standard k-ǫ model is

essentially a high Reynolds number model and assumes the existence of isotropic turbu-

lence and spectral equilibrium. The model focuses on transport and dissipation of kinetic

energy with two additional transport equations (k and ǫ). The transport equations for

turbulent kinetic energy k and dissipation rate ǫ are solved so that turbulent viscosity can

be computed for RANS equations. First to be introduced is the turbulent kinetic energy

which is calculated as kinetic energy per unit mass of the turbulent fluctuations ui’:

k =
1
2

u′
iu

′
i =

1
2

(

u′2
x + u′2

y + u′2
z

)

(2.7)

The dissipation rate ǫ is the rate at which the turbulent kinetic energy k dissipates and is

converted into thermal internal energy. It can be described physically as:

ǫ = 2νe′ije
′
ij with e′ij =

∂u′
i

∂xj
+

∂u′
j

∂xi
(2.8)

The transport equation for k is defined as follows, without the generation terms caused

by buoyancy and compressible effects:

∂(ρk)
∂t

+∇(ρku) = ∇
[

(η +
ηt

σk
)∇k

]

+ Gk − ρǫ (2.9)
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where the generation of turbulent kinetic energy due to mean velocity gradients is indi-

cated as Gk, the turbulent Prandtl number as σk and the Nabla operator as ∇ (derivative

in all spacial directions). Gk can be expressed with the Boussinesq approach:

Gk = −ρu′
iu

′
j
∂ui

∂xj
where − ρu′

iu
′
j = −ρ

2
3

k∂ij + ηt

(

∂ui

∂xj
+

∂uj

∂xi

)

(2.10)

The Boussinesq hypothesis states, that the Reynolds stresses could be linked to the mean

rate of deformation (like it is done with viscous stresses), where δij is the Kronecker delta,

defined as:

δij =







1 if i = j

0 if i 6= j
(2.11)

The transport equation for ǫ otherwise is described as

∂(ρǫ)

∂t
+∇(ρǫu) = ∇

[

(η +
ηt

σǫ
)∇ǫ

]

+ C1ǫ
ǫ

k
Gk − C2ǫρ

ǫ2

k
(2.12)

with the empirical constants C1ǫ, C2ǫ (see table 2.1), the turbulent Schmidt number σǫ and

ηt as turbulent viscosity (eddy viscosity), which is determined from a single turbulence

length scale

ηt = ρCη
k2

ǫ
(2.13)

where Cη is another empirical constant (table 2.1). This artificial term is isotropic and

describes the phenomenon that a highly turbulent system behaves similarly to a more

viscous system. Isotropic in this case means that the ratio between Reynolds stress and

the mean rate of deformation is the same in all directions. This assumption fails in many

categories of flow where it leads to inaccurate flow predictions and can only be overcome

by deriving and solving transport equations for the Reynold stresses themselves (as it is

applied in the computationally more expensive RSM) (Versteeg et al., 2007).

TABLE 2.1: Empirical Constants based on Launder et al. (1972)

C1ǫ C2ǫ Cη Ck Cǫ

1.44 1.92 0.09 1.0 1.3

The realizable k-ǫ models differs from the standard model in formulation of the turbu-

lent viscosity ηt and the transport equation for ǫ derived from an exact equation for the
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transport of the mean square vorticity variations (Shih et al., 1994), which reads as:

∂(ρǫ)

∂t
+∇(ρǫu) = ∇

[

(η +
ηt

σǫ
)∇ǫ

]

+ ρC1Sǫ − ρC2ρ
ǫ2

kt +
√

vǫ
(2.14)

with C1 = max(0.43, η
5+η ), η = Skt

ǫ and S =
√

2SijSij. With an improved equation for ǫ and

therefore improved performance for flows with rotation, recirculation, strong streamline

curvature, boundary layers under strong adverse pressure gradients or separation, the

realizable k-ǫ model performs better, which makes it very well applicable for the studied

system (Shih et al., 1994).

The standard as well as the realizable k-ǫ model seems to be best for free shear layer

flows with small pressure gradients. Especially when the model is combined with addi-

tional wall functions, the greatest weakness of this model can be overcome (Patel et al.,

1985). It is also the most popular two-equation turbulence model in use today. When uti-

lized in conjunction with wall functions or multiple reference frame (MRF) for impeller

rotation (Coroneo et al., 2011), the k-ǫ model is reasonably well behaved and has been ap-

plied to the solution of a variety of engineering problems with a good amount of success

(Lapin, Klann, et al., 2010; Wutz et al., 2016; Haringa, Deshmukh, et al., 2017; Kuschel,

Siebler, et al., 2017).

2.7.2 Impeller turbulence

Turbulence in stirred tank reactors is mainly induced via the motion of impellers. Several

different methods exist to impose motion where the impeller is fixed (e.g. MRF (Luo and

Gosman, 1994)) or varies (e.g. Sliding mesh (SM) (Murphy, 1994)). Fixed impeller posi-

tion, where motion is imposed either at the impeller or in the surrounding zones yields a

steady state solution valid for only this explicit position whereas the SM method models

a transient behavior of the fluid motion, but inquires higher computational costs (Dewan

et al., 2006). Although the SM method captures complex 3D flow structures, the MRF

method is used most frequently due to its lower computational burden and good enough

agreement with experimental data (Naude et al., 1998; Tabib et al., 2017; Sommerfeld

et al., 2004). Haringa, Vandewijer, et al. (2018a) experimentally revealed the presence of

macro-instabilities in the region between the impellers, as well as a peak in the turbu-

lent kinetic energy in the region where the flow from the individual impellers converges.

The MRF-RANS method was found unable to capture both. To improve the mixing re-

sults a SM-RANS approach was used which captures the effect of macro-instabilities,

while only mildly underestimating the turbulent kinetic energy kt (Haringa, Vandewijer,
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et al., 2018b). The results show good accordance to experimental data of Laser-Doppler

Anemometry (LDA) (Ng et al., 1998). To counteract this deficiency in kt via ηt, the turbu-

lent Schmidt number can be tuned (Sct =
ηt

ρDt
= 0.1 - 0.2) (Montante et al., 2005; Gunyol

et al., 2009). Hence, the computational mesh was divided into stationary and rotating

blocks connected to each other with a sliding surface.

2.8 Modeling of Euler- Euler and Euler- Lagrange Flows in Stirred

Tank Reactors

To investigate the consequences and appearance of environmental heterogeneities, proper

modeling frameworks should link local variations with cellular kinetics and sufficiently

resolve droplet size distributions. Regarding multiphase modeling, three common ap-

proaches exist: Volume-of-fluid (VOF), mixture and Eulerian model. VOF simulates phase

boundary explicitly, that means when expecting a lot of small droplets (as it is true for oil)

an extremely fine mesh is necessary for sufficient resolution of the droplet surface. VOF

is therefore mostly applied for free-surface flows. Easier to simulate by only using an

averaged content of both phases in each grid element (quasi-continuous) is the mixture

model. It is less computationally costly and applicable if the dispersed phase is widely

distributed in the fluid phase. Regarding oil distribution in a stirred tank reactor, droplets

are often concentrated at the top of the liquid surface or around the impellers. Addition-

ally, interphase forces play an important role which makes the Eulerian model the tool

of choice for bi-phasic simulation (oil-in-water). Based on the grid-based Euler approach

mainly two different methods exist to display flow characteristics: (i) population balance

models (PBM) and (ii) Euler-Lagrange method (EL).

Euler-Euler Approach

Regarding the Euler-Euler approach, both phases are considered as a continuum and two

separate momentum equations are solved, with closure relations resembling interphase

momentum transfer. To be consistent with the governing equations of Navier-Stokes, an

averaged form of the Eulerian representation was derived. Applying phase averaging to

alleviate the complication of modeling individual phase entities, the following equation

for phase k can be formulated (Yeoh et al., 2014):



44 Chapter 2. Theory

∂αk

∂t
+

∂(αkui
k)

∂xi
=Γk (2.15a)

ρk

(

∂(αkui
k)

∂t
+ ρ

∂(αkui
kui

k)

∂xj

)

=− αk
∂p
∂xi

+
∂(αkτji

k + τji
Re,k)

∂xj
− αkρkgi + Mi,k (2.15b)

τRe,k
ji =− ρku

′k
i u

′k
j (2.15c)

with αk as volume fraction (αL + αg = 1), Γk as source/sink term to describe mass trans-

fer, τRe,k
ji as Reynolds stress term and Mi,k as interphase momentum exchange (drag, lift,

virtual mass, turbulent and wall lubrication forces). If a size distribution is simulated,

typically only the Sauter diameter d32 is considered for interfacial momentum exchange:

d32 =
∑i=1 nid3

i

∑i=1 nid2
i

(2.16)

meaning a monodisperse system with a droplet diameter of d32 has the same volume-

related interfacial area as a particle size distribution of the disperse phase in a real system

with di as particle diameter and ni as number.

A continuum is a continuous system in which adjacent elements do not perceptibly

differ from each other although the endpoints of the system may be drastically distinct

(Schmalzriedt et al., 2003). However, microorganisms are individual in their behavior,

and therefore the description as continuum is not completely correct. In fact, the contin-

uum approach leads to loss of the individual responses of the cells, for example when

considering starvation effects during fed-batch fermentations. The same accounts for

the dynamic change of droplet size distributions, where a constant diameter would only

poorly describe the droplet behavior in the reactor. In some instances, these can be tackled

by combining the Euler approach for the fluid phase with Population Balance Equations

(PBE) (Bezzo et al., 2003; Morchain et al., 2014; Heins et al., 2015; Wang, Wang, and Jin,

2005). Using this approach, particles (cells or droplets) are grouped in classes and a pre-

defined distribution range of particles is implemented via distribution density functions

including growth, coalescence and break-up terms. Thus, a complete particle size dis-

tribution can be represented by a limited number of parameters, which drastically limits

the computation effort. These equations are useful to determine relevant macroscopic

properties such as the interfacial area or the biomass-specific growth rate (Sajjadi et al.,

2013; Venneker et al., 2002; Haringa, Deshmukh, et al., 2017). For a multiphase system
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of nonreactive, isothermal, particle mixtures, it is customary to assume that all relevant

internal variables can be calculated from the consideration of the particle volume or di-

ameter (Yeoh et al., 2014). A simplified overview of the intersection of the two fluid model

and PBM is provided in figure 2.5.

Two fluid model 

(Eulerian)

Drop size distribu�on model 

(PBM - Coalescence; Breakage)

Interphase momentum 

exchange (drag, virtual 

mass, buoyancy force, ... )

Sauter diameter d32

Volume frac�on α

Dissipa�on energy ϵ

Velocity v (dispersed phase)

FIGURE 2.5: Interaction of continuous two-fluid Eulerian model with PBM
model.

Considering the special case, where there is no mass change of the particle (absence of

particle growth), the transport equation for the particle number density reduces to

∂

∂t
[n(V, t)] +

∂

∂xi
[uin(V, t)] =

1
2

∫ V

0
a(V − V ′, V ′)n(V − V ′, t)n(V ′, t)dV ′

Birth due to Coalescence

−
∫ inf

0
a(V, V ′)n(V, t)n(V ′, t)dV ′

Death due to Coalescence

+
∫

ωv

g(V ′)β(V|V ′)n(V ′, t)dV ′

Birth due to Breakage

− g(V)n(V, t)
Death due to Breakage

(2.17)

PBMs represent a powerful modeling framework for the description of fundamental prop-

erties that are characterized by distributions in a coarse time scale. However, cellular

adaptations may happen on different timescales than macroscopic fluctuations and may

show much more interactions than implemented in common PBMs. Another inherent

limitation of the PBE approach is that the incorporation of a detailed intracellular reaction

network leads to massive computational effort because a high dimensional distribution

function must be computed. Additionally, no information on the level of single parti-

cles can be provided within this approach. To overcome those limitations the Lagrangian

method is applied to receive single particle trajectories (Lapin, Müller, et al., 2004).
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Euler-Lagrange Approach

Besides the Euler-Euler approach, there is a second widely used method which treats only

the liquid phase motions in an Eulerian representation and computes the motion of the

dispersed phase fluid elements in a Lagrangian way by individually tracking them on

their way through the reactor. Individual properties are thereby assigned to each mov-

ing particle (e.g. biological cell). Noteworthy, these traits cause interactions with the

surrounding broth receiving equal environmental feedback. In essence, EL tracks a given

number of particles while fluctuating in the bioreactor thereby recording interactions with

the environment. The dispersed phase can exchange momentum, mass, and energy with

the fluid phase. The approach renders considerably simpler when particle-particle inter-

actions may be neglected. This requires a fully diluted (volume fraction < 10 %) dispersed

second phase. Considering the case of biological cells as moving particles, further simpli-

fications are often assumed: Since the observation window of fluctuating cells is smaller

than time constants of physical changes inside the grid, cellular impacts on physical states

are often neglected. Additionally, individually simulated particles account for cell ensem-

bles with identical trajectories as introduced by Lapin, Müller, et al. (2004).

Each particle has its own coordinates and properties whereas the fluid phase is further

regarded as continuum. The Eulerian phase is being solved through the Navier-Stokes

equation and the disperse phase is solved through tracking of the single bubbles or parti-

cles. To describe the transport processes across the particle membrane (in this case a mi-

croorganism cell membrane), intracellular balance equations are required, i.e. substrate

uptake rate and product excretion. The numerical solution of the resulting system is lim-

ited by the immense computing power required for three-dimensional discretization in

space and the necessity to populate each of the resulting finite volumes with a sufficient

number of cells to minimize the effect of statistical error on the accuracy of the solution

(Lapin, Müller, et al., 2004; Haringa, Tang, Deshmukh, et al., 2016). That is why particles

are often regarded as observers rather than creator of their environment. The particle his-

tory can be recorded and exported serving as a input for further analysis in a different

framework.

2.9 Oil in Bioprocesses

In microbial cultivation processes, productivity advances are frequently limited by the

transport of substrate or (by-) product into or out of the reactor. Oxygen is one exam-

ple of a sparingly soluble substrate whose transport is a critical factor in aerobic cultures.
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Due to this crucial impact on productivity, many different solutions have been proposed

to increase oxygen transfer rates. One way to alleviate this transport limitation is to add

a second, water-immiscible phase in which oxygen has a greater solubility and can act as

additional oxygen carriers releasing oxygen depending on its surrounding concentration.

For example, sunflower oil with a 5-times higher solubility of oxygen than water (wa-

ter: 8 ppm) (Cuvelier et al., 2017; Zlokarnik, 2013). Additionally, some bioprocesses use

additives to facilitate down-stream analysis like product purification or to prevent cell-

product interactions like product degradation or inhibition. In this context, oils (organic

phase) often serve as hydrophobic product carrier (Wubbolts et al., 1996; Becker, Puel,

et al., 2014; Schmid et al., 1998; Patil et al., 2020). According to McMillan et al. (1987) a

250 % increase in the amount of product produced per fermentation in a oxygen-limited

process at a oil volume fraction of 0.4 might be achievable, which shows the significant

potential for increasing productivities using oil-in-water dispersions.

This side-project specifically focuses on oxygen mass transfer in a oil in water system

and the oil droplet distribution in a stirred tank reactor. Opposite to the examples above,

not all oils have a positive effect on mass transfer and often reported kLa values are contra-

dictionary, preventing any definite conclusion being reached (Dumont et al., 2003; Kaur

et al., 2007). There have been three distinct approaches reported in literature to explain

the change in mass transfer in a gas–liquid–liquid system: interfacial blockage, shuttle

mechanism and permeability effect (Dumont et al., 2003).

Interfacial blockage: Interfacial properties (e.g. variation in the interfacial area and the

mass transfer coefficient) of the oil-in–water system can be expressed through the value

of the spreading coefficient (S) determining whether a (organic) liquid droplet will spread

initially on the gas interface (S > 0) or not (S < 0) (Yoshida et al., 1970). Liquids with

a positive spreading coefficient (S > 0) enhance the gas absorption rate, whereas liquids

having a negative spreading coefficient (S < 0) retard the gas absorption. The spreading

coefficient is relatively easy to calculate by only relying on surface tensions. S is defined

as:

S = σw/g − (σo/g + σo/w) (2.18)

However, it is not possible to explain the oil distribution near the gas–liquid interface

through this parameter only (Yoshida et al., 1970; Dumont et al., 2003).
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Shuttle mechanism: Oil droplets absorb oxygen in the gas-aqueous boundary layer and

transfer the oxygen to the aqueous phase when they have returned to the bulk liquid.

The major assumption of this mechanism is that oil droplets are smaller than the film

thickness (5-10 µm). The presence of very fine, gas-absorbing droplets within the mass

transfer zone near the gas-liquid interfaces may increase the specific gas absorption rate

(Brilman, 2000). There is no direct evidence to prove the shuttle mechanism: the theory

is based on experimental evidence that shows that the gas transfer rate is dependent on

oil droplet size. For more information on this mechanisms, see Dumont et al. (2003), Kaur

et al. (2007), and Van Ede et al. (1995).

Permeability effect: Dynamic interaction of the oil droplets with the concentration bound-

ary layer causing increased turbulence or mixing in this layer. Hence oxygen first diffuses

across the thin aqueous layer and then into either the oil dispersed phase or the continu-

ous aqueous phase (Dumont et al., 2003). Thus, oxygen permeability through an organic

layer can be significantly greater than through an aqueous layer of equivalent depth. Ac-

cording to Mcmillan et al. (1990), gas permeability, which takes into account both gas

solubility and gas diffusivity, is a more accurate index of the capacity to transport solute

than solubility alone. Indeed, in the case of high - viscosity oils, the outcome of high gas

solubility can be inadequate owing to low gas diffusivity. As shown in table 2.2 safflower

oil is a rather less viscous oil, thus diffusivity is not hindered and the remaining two ef-

fects might cover the mechanisms of mass transfer in oil in water systems sufficiently.

Additionally, the partitioning coefficient describes the ratio of concentrations of a com-

pound in a mixture of two immiscible solvents at equilibrium. Therefore, this ratio is a

comparison of the solubilities of the solute in these two liquids. Partitioning coefficient

was not determined in this study, but might be of interest for further investigations. To

determine oxygen mass transfer rate the dynamic method without organisms has been

chosen, which is explained in Appendix E.

2.10 Safflower Oil

Studies of Patil et al. (2020) brought safflower oil as product carrier and kLa enhancer

to the attention of this study. As only little is known about the effect of safflower oil

on bubble size distribution and oxygen mass transfer, some basic studies are performed
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as part of a side-project in this thesis. This chapter summarizes the main properties of

safflower oil.

Cheap in production and sustainable thus gained from regenerative natural source it

is a good alternative to often used silicon oils (energy intensive production from silica

sand). It is a stable and high-quality oil consisting of long chain, polyunsaturated fatty

acids. The main characteristics of safflower oil can be withdrawn from the following table:

TABLE 2.2: Physical properties of safflower oil at 25°C (Krist, 2013)

Property Value Unit
Density 0.922- 0.938 kg m−3

Viscosity 0.0299 (at 38 °C) Pas
Index of refraction 1.473- 1.475
Saponification value 186- 203 mgKOH goil

−1
Unsaponifiable share 0.5- 1.5 %
Melting point -5 °C
Solidification point -13 to -20 °C

Unfortunately, oxygen transport capacities (e.g. perfluorohydrocarbons (high affinity to-

wards oxygen): 0.17 goxygen (Lh)−1) and oxygen solubility in safflower oil (e.g. sunflower

oil: 40 ppm) is still unknown. So far, safflower oil is mainly known from pharmaceutical to

body care purposes, rather than biotechnological application which is only used recently

(Krist, 2013; Patil et al., 2020). However, the method of extracting fat-soluble products

with oils is already familiar (by mostly using silicon oils; Thirumangalathu et al., 2009).
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4.1 Abstract

In large-scale bioprocesses microbes are exposed to heterogeneous substrate availability

reducing the overall process performance. A series of deletion strains was constructed

from E. coli MG1655 aiming for a robust phenotype in heterogeneous fermentations with

transient starvation. Deletion targets were hand-picked based n a list of genes derived

from previous large-sclae simulation runs. Each gene deletion was conducted on the

premise of strict neutrality towards growth parameters in glucose minimal medium. The

final strain of the series, named E. coli RM214, was cultivated continuously in an STR-PFR
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(stirred tank reactor - plug flow reactor) scale-down reactor. The scale-down reactor sys-

tem simulated repeated passages through a glucose starvation zone. When exposed to

nutrient gradients, E. coli RM214 had a significantly lower maintenance coefficient than

E. coli MG1655 (∆ms = 0.038 Glucose g−1
CDW h−1, p< 0.05). In an exemplary protein produc-

tion scenario E. coli RM214 remained significantly more productive than E. coli MG1655

reaching 44 % higher eGFP yield after 28 h of STR-PFR cultivation. This study developed

E. coli RM214 as a robust chassis strain and demonstrated the feasibility of engineering

microbial hosts for large-scale applications.

4.2 Introduction

Large-scale fed-batch bioprocesses often suffer from reduced process performance com-

pared to lab-scale experiments conducted during process development (Bylund, Castan,

et al., 2000; Enfors et al., 2001). The physical and engineering constraints in large-scale

reactors inevitably lead to the formation of spatial heterogeneities in relevant process pa-

rameters such as nutrient availability, concentrations of dissolved oxygen, carbon diox-

ide and pH (Bylund, Collet, et al., 1998; Cortés et al., 2016). Heterogeneities of nutrient

availability are caused by long mixing times of large-scale reactors (Delvigne, Destain,

et al., 2006; Noorman, 2011). Studies employing computational fluid dynamics (CFD)

have revealed that in fed-batch processes this typically results in the formation of zones

with high nutrient concentrations close to the feeding point and zones depleted of nutri-

ents at the far end of the reactor (Haringa, Deshmukh, et al., 2017; Kuschel and Takors,

2020). Depending on the mixing time and their position in the reactor cells frequently

move through different zones on a timescale of seconds to minutes and cellular regula-

tory programs ranging from overflow metabolism to starvation responses are repeatedly

triggered and shut down (Kuschel, Siebler, et al., 2017). Due to the delay of transcrip-

tional responses, regulatory consequences of stress stimuli may be effective distant from

the spot of stress induction which finally creates a heterogeneous population status (Nieß

et al., 2017; Zieringer, Wild, et al., 2021). There is evidence from an increasing number of

studies that the performance of many industrial workhorse organisms such as Escherichia

coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae and Penicillium

chrysogenum is negatively affected when facing process heterogeneities (George et al.,

1993; Junne et al., 2011; Larsson and Enfors, 1988; Vasilakou et al., 2020; Jonge et al.,

2011; Olughu, Nienow, et al., 2020).
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Substantial effort has been made by the scientific community to understand micro-

bial responses to different zones occurring in large-scale reactors (Lara, Galindo, et al.,

2006; Lara, Leal, et al., 2006; Olughu, Deepika, et al., 2019). In academic laboratories,

the conditions of industrial reactors are commonly simulated using multi-compartment

scale-down reactors (Delvigne, Takors, et al., 2017; Neubauer and Junne, 2010; Takors,

2012).Typically, nutrient pulsing or secondary vessels are employed to deliver a stimu-

lus representative for the conditions under investigation (Bylund, Guillard, et al., 1999).

The design of a scale-down reactor also serves to control the circulation of the microbial

population and its residence time in stimulus zones. A commonly used design follows

a two-compartment approach and consists of a primary stirred tank reactor (STR) cou-

pled to a secondary plug-flow reactor (PFR). While the STR represents the bulk of the

fermentation broth, the plug-flow compartment represents a stimulus zone with a de-

fined residence time. Together, the STR-PFR two-compartment reactor enables the study

of cellular behavior in heterogeneous environments.

Zones with low nutrient concentration but high oxygen availability occur in reactor

segments far away from the feeding point. The effects of such transient starvation con-

ditions on the performance and intracellular regulation of microbial populations can be

studied in C limited scale down reactors. In the case of Escherichia coli K-12 repeated

passages of cells through starvation zones were found to negatively impact process per-

formance which could be observed as a reduced biomass yield (Neubauer, Häggström,

et al., 1995). In parallel, regulatory responses such as the stringent response and the gen-

eral stress response are rapidly initiated (Delvigne, Boxus, et al., 2009; Löffler, Simen,

Jäger, et al., 2016b; Neubauer, Åhman, et al., 1995; Simen et al., 2017a; Sunya et al., 2012).

Noteworthy, these cellular responses serve rather long term than short term needs and

appear to be futile if cells enter zones of nutrient access shortly after the induction of

the strategic precaution measure. Transcriptional investigations in a carbon limited STR

PFR system offered a potential link between futile regulation and reduced process perfor-

mance: Frequent transcriptional reprogramming was proposed to cause high secondary

metabolic costs from aberrant transcription and translation (Löffler, Simen, Jäger, et al.,

2016b). Earlier studies employing Escherichia coli K-12 strains in two-compartment scale-

down reactors have indicated that the repeated passage of cells through a starvation zone

impedes process performance (Neubauer, Häggström, et al., 1995). Refined experiments

suggested high secondary metabolic costs as cellular regulation frequently initiates tran-

scriptional reprogramming as the underlying cause (Löffler, Simen, Jäger, et al., 2016b). It
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was estimated that an increased maintenance of up to 30 – 40% was caused by the tran-

scriptional oscillations and a substantial fraction of this originated from the expression of

open reading frames whose products appeared to bestow no apparent benefit in a con-

trolled bioprocess employing standard glucose minimal medium.

The data collected by Löffler, Simen, Jäger, et al. (2016b) led us to propose a novel de-

sign approach for production strains: We reasoned that an intelligently engineered dele-

tion strain might have advantages in conditions that repeatedly induce wasteful expres-

sion of process irrelevant genes. A heterogeneous fermentation with repeated transient

starvation could then be a suitable testing environment. The choice of deletion targets

would have to be based on the estimated effect of the deletion and be restricted by the

requirements of neutrality towards growth and global regulation. The design process dif-

fers from previous considerations on the creation of lean proteome strains in the regard

that savings only become apparent due to fluctuating induction (Valgepea et al., 2015).

Secondary metabolic costs can traditionally be assessed through Pirt’s maintenance co-

efficient (Pirt, 1965). We hypothesized that the deletion of a suitable set of genes should

lead to a reduced maintenance coefficient under scale down conditions representing star-

vation zones. The resulting strain could then serve as a base strain for the construction of

robust production strains.

We identified deletion candidates matching the defined criteria and constructed a se-

ries of deletion strains from E. coli MG1655. The final strain of the series, named E. coli

RM214, was fermented in continuous cultivations in an STR-PFR system simulating star-

vation zones. E. coli RM214 had a significantly lower maintenance coefficient than E. coli

MG1655 under simulated large-scale conditions. We then characterized E. coli RM214 in

an exemplary protein production scenario using eGFP as a model product. Compared

to E. coli MG1655, the deletion strain showed an increased resilience towards the scale

down conditions as evidenced by reduced productivity losses and a higher fraction of

producing cells.

4.3 Materials and Methods

4.3.1 Bacterial Strains, Media, and Buffer Solutions

All strains used in this study are listed in table 4.1.

2xYT medium was prepared by autoclaving 16 gL−1 tryptone, 10 gL−1 yeast extract, 5

gL−1 NaCl dissolved in demineralized water. For agar plates 18 gL−1 agar-agar was

added prior to autoclavation. For ph indicator plates 0.03 gL−1 of neutral red and 10
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gL−1 Rhamnose were supplemented from sterile stock solutions directly before pouring.

SOC medium was prepared as described previously (Hanahan, 1983). Agar plates for

tetA-sacB counterselection were prepared as described previously (Li, Thomason, et al.,

2013). If strains with antibiotic resistance markers were cultivated, antibiotics were added

to media in the following concentrations: Chloramphenicol 20 µg mL−1, Tetracycline hy-

drochloride 10 µg mL−1, disodium Carbenicillin 100 µg mL−1.

Minimal media for shaking flask experiments and the precultures for bioreactor ex-

periments consisted of 4 gL−1 glucose, 3.2 gL−1 NaH2PO4·2H2O, 11.7 gL−1 K2HPO4, 8

gL−1 (NH4)2SO4, 0.01 gL−1 thiamine hydrochloride and 0.2% (V/V) trace elements stock

solution. Minimal media for batch cultivation in the bioreactor consisted of 13.4 gL−1

glucose, 1 gL−1 NaH2PO4·2H2O, 2.6 gL−1 K2HPO4, 9 g/l (NH4)2SO4 and 0.2% (V/V)

trace elements stock solution. In the experiments with strains carrying pJOE4056.2_tetA

for GFP production 10 µgmL−1 Tetracycline hydrochloride and 1 gL−1 Rhamnose were

supplemented. Towards the end of the batch phase about 100 µL of antifoaming agent

Struktol J647 was added to prevent foaming upon glucose depletion. Minimal media

for continuous chemostat cultivation in the bioreactor consisted of 13.14 gL−1 glucose, 1

gL−1 NaH2PO4·2H2O, 2.6 gL−1 K2HPO4, 9 gL−1 (NH4)2SO4 and 0.2% (V/V) trace ele-

ments stock solution. In the experiments with strains carrying pJOE4056.2_tetA for GFP

production 10 µgmL−1 Tetracycline hydrochloride and 1 gL−1 Rhamnose were supple-

mented. Throughout the chemostat phase 50 µLh−1 of antifoaming agent Struktol J647

were added continuously to the fermentation medium.

The composition of trace element stock solution was: 4.175 gL−1 FeCl3·6H2O, 0.045 gL−1

ZnSO4·7H2O, 0.025 gL−1 MnSO4·H2O, 0.4 gL−1 CuSO4·5H2O, 0.045 gL−1 CoCl2· 6H2O,

2.2 gL−1 CaCl2·2H2O, 50 gL−1 MgSO4·7H2O and 55 gL−1 sodium citrate. Stock solutions

of salts, trace elements and sugars were autoclaved separately, and stock solutions of thi-

amine hydrochloride and the antibiotics were filter sterilized and stored at 4◦C. All com-

pounds were combined just before the experiments to prevent potential aging of media.

PBS-MgCa for the measurement of eGFP fluorescence and flow cytometry analysis

contained 8 gL−1 NaCl, 0.2 gL−1 KCl, 1.44 gL−1 Na2HPO4, 0.24 gL−1 KH2PO4, 1 mM

MgSO4 and 0.1 mM CaCl2. Prior to use PBS-MgCa was filtered with a sterile filter (pore

size < 0.2 µm) to reduce particle load (Tomasek et al., 2018).
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TABLE 4.1: Bacterial Strains used in this study

Strain Genotype/Strain Information Reference/Source

E. coli K-12 MG1655 F−, λ−, ilvG−, rfb-50, rph-1

(‘wild type’ strain, abbrev. WT)

(Michalowski et al.,

2017)

E. coli DH5α λpir supE44, ∆lacU169 (Φ80lacZ∆M15),

recA1, endA1, hsdR17, thi-1,

gyrA96, relA1, λpir phage lysogen

(Michalowski et al.,

2017)

E. coli DH10B pSIM5 F− mcrA ∆(mrr-hsdRMS-mcrBC)

Φ80lacZ∆M15 ∆lacX74 recA1

endA1 araD139 ∆(ara-leu)7697 galU

galK λ− rpsL(StrR) nupG

(Datta et al., 2006)

T-SACK W3110 araD<>tetA-sacB-amp

fliC<>cat argG::Tn5

(Li, Thomason, et

al., 2013)

E. coli CD101 MG1655 ∆flk This study

E. coli CD201 MG1655 ∆flk ∆fliA This study

E. coli CD202 MG1655 ∆flk ∆fliA ∆fliC This study

E. coli CD203 MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

This study

E. coli CD204 MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

∆fliEFGHIJKLMNOPQR

This study

E. coli CD205 MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

∆fliEFGHIJKLMNOPQR

∆flhEABcheZYBRtaptarcheWAmotBA

This study

E. coli RM206 MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

∆fliEFGHIJKLMNOPQR

∆flhEABcheZYBRtaptarcheWAmotBA

∆cspD

This study
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E. coli RM207 MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

∆fliEFGHIJKLMNOPQR

∆flhEABcheZYBRtaptarcheWAmotBA

∆cspD ∆aldA

This study

E. coli RM208 MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

∆fliEFGHIJKLMNOPQR

∆flhEABcheZYBRtaptarcheWAmotBA

∆cspD ∆aldA ∆gatABCDR

This study

E. coli RM209 MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

∆fliEFGHIJKLMNOPQR

∆flhEABcheZYBRtaptarcheWAmotBA

∆cspD ∆aldA ∆gatABCDR

∆uhpTCBA

This study

E. coli RM210 MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

∆fliEFGHIJKLMNOPQR

∆flhEABcheZYBRtaptarcheWAmotBA

∆cspD ∆aldA ∆gatABCDR

∆uhpTCBA ∆yeeL

This study

E. coli RM214 MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

∆fliEFGHIJKLMNOPQR

∆flhEABcheZYBRtaptarcheWAmotBA

∆cspD ∆aldA ∆gatABCDR

∆uhpTCBA ∆yeeL ∆flxA

This study

E.coli BW3110

pJOE4056.2

W3110 rhaB− (Wegerer et al.,

2008)

E. coli DH5α λpir

pJOE4056.2_tetA

supE44, ∆lacU169 (Φ80lacZ∆M15),

recA1, endA1, hsdR17, thi-1,

gyrA96, relA1, λpir phage lysogen

This study
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E. coli K-12 MG1655

rhaB−
F−, λ−, ilvG−, rfb-50, rph-1, rhaB− This study

E. coli RM214 rhaB− MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

∆fliEFGHIJKLMNOPQR

∆flhEABcheZYBRtaptarcheWAmotBA

∆cspD ∆aldA ∆gatABCDR ∆uhpT

∆yeeL ∆flxA rhaB−

This study

E. coli K-12

MG1655 rhaB−

pJOE4056.2_tetA

F−, λ−, ilvG−, rfb-50, rph-1, rhaB− This study

E. coli RM214 rhaB−

pJOE4056.2_tetA

MG1655 ∆flk ∆fliA ∆fliC

∆flgNMABCDEFGHIJKL

∆fliEFGHIJKLMNOPQR

∆flhEABcheZYBRtaptarcheWAmotBA

∆cspD ∆aldA ∆gatABCDR ∆uhpT

∆yeeL ∆flxA rhaB−

This study

4.3.2 Construction of Deletion Strains

Chromosomal modifications were conducted using recombineering methods that have

been comprehensively described and reviewed previously (Murphy, 2016). The tetA-sacB

cassette and lambda recombineering functions provided by pSIM5 were used to perform

chromosomal modifications with base-pair precision (Datta et al., 2006; Li, Thomason, et

al., 2013). Deletions of single genes were designed to span the coding sequence only and

deletions of operons or larger genomic regions were designed to begin with the coding

sequence of the first gene and end with the coding sequence of the final gene. All deletions

were verified by sequencing. Table B.1 contains an annotated list of primers used in this

study and Supplementary information S2 in appendix B a more detailed description of

the recombineering method used.

4.3.3 Construction of GFP production strains

The protein expression system used for the bioreactor fermentations closely resembles

previously described systems based on pJOE4056.2 (Wegerer et al., 2008; Wilms et al.,
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2001). For additional stability, the bla resistance cassette from plasmid pJOE4056.2 was

exchanged for a tetA resistance cassette yielding pJOE4056.2_tetA to enable continuous

selective pressure under the conditions of a chemostat. Use of pJOE4056.2_tetA requires

induction with the rare sugar rhamnose at low glucose concentrations. Prior to plasmid

transformation, we thus inactivated the chromosomal copy of rhaB encoding rhamnulo-

kinase in E. coli MG1655 and E. coli RM214 to yield rhaB− strains incapable of utilizing

the rare sugar rhamnose. Supplementary information S2 in appendix B contains a more

detailed description of the procedure.

4.3.4 Shaking Flask Cultivations

For growth experiments glycerol stock cultures strains were streaked on 2xTY agar plates

and incubated overnight at 37 ◦C. For precultures, a single colony was picked to inoculate

15 ml minimal medium in a 50 ml baffled shaking flask and incubated at 37 ◦C on an

orbital shaker set to 130 rpm overnight. On the following morning, an inoculum of the

preculture was transferred into 50 ml minimal medium in a 500 ml baffled shaking flask

to reach a starting OD of 0.2 and the culture incubated at 37 ◦C on an orbital shaker set to

130 rpm. Samples were drawn hourly using a fixed needle reaching through the attached

cotton plug and a syringe. In all shaking flask experiments the wild type strain E. coli

MG1655 was cultivated in parallel as a reference and data collected from other strains

was normalized to this reference data.

4.3.5 Bioreactor Setup

Bioreactor fermentations were carried out in a two-compartment scale-down reactor. The

primary reactor was a stirred tank reactor, and a plug flow reactor was used as the sec-

ondary compartment mimicking a starvation zone. The plug flow reactor was connected

to the stirred tank reactor only after establishment and sampling of a steady state in the

chemostat phase. The technical setup has been characterized previously and includes

the modifications described by Ankenbauer et al. (2020). A schematic overview of the

two-compartment reactor is shown in figure 4.1 and Supplementary Information S2 in

appendix B contains a comprehensive description of the setup.

4.3.6 Preculture, Batch Cultivation and Continuous Cultivation

100 µL of glycerol stock seed culture were directly used to inoculate 300 mL of precul-

ture minimal media in a 3 L baffled shaking flasks and incubated at 37 ◦C on an orbital
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shaker set to 130 rpm overnight. In the next morning 160 mL of preculture were used

to inoculate the bioreactor. The total volume in the bioreactor was 1.6 L after inoculation.

Batch fermentation in the bioreactor ensued at 37 ◦C. Upon depletion of glucose, indicated

by a sharp increase in dissolved oxygen tension, feed and harvest lines were connected,

the reactor refilled with feed medium to 1.6 L broth and a constant feed/harvest rate es-

tablished. For the GFP production experiments with strains carrying pJOE4056.2_tetA

the feed rate was set to 5.33 mL min−1 corresponding to a dilution rate of 0.2 h−1. For

the bioreactor cultivations aimed at investigating genomic stability and determining the

maintenance coefficient of E. coli MG1655 und E. coli RM214 the batch phase was short-

ened and feed rates were set to 8.00 mL min−1, 5.33 mL min−1, 2.67 mL min−1 or 1.33

mL min−1 corresponding to dilution rates of 0.3 h−1, 0.2 h−1, 0.1 h−1 or 0.05 h−1. After

cultivation for at least five volumetric residence times a reference sample was taken. The

plug-flow reactor was then connected to the primary reactor via a diaphragm metering

pump effectively circulating about one-quarter (380 mL) of the total fermentation broth

from the primary reactor through the plug-flow reactor and back into the stirred tank

reactor. In the following five to six volumetric residence times samples were taken at pre-

defined time points from the STR and the five PFR ports. Afterwards the fermentation

was aborted, and the actual final broth volume measured. This value was used for all

volumetric calculations during data analysis.

4.3.7 Determination of Optical Density and Biomass dry weight

Optical density of fermentation broth appropriately diluted with 0.9 NaCl from the pri-

mary reactor was measured in triplicates at 600 nm on a spectrophotometer (Amersham

Biosciences/GE Healthcare, Amersham, United Kingdom). For the measurement of biomass

dry weight quadruplicates of 5 mL of broth were centrifuged in weighted glass tubes at

2500 g and 4 ◦C for 7.5 min. Supernatant was immediately decanted and the pellet washed

by resuspending in 5 ml of freshly prepared 150 mM NH4HCO3 held at 4◦C. The suspen-

sion was centrifuged again, and the washing repeated once. After a final centrifugation,

remaining liquid was decanted carefully, the pellet dried at 105 ◦C and glass tubes con-

taining dried pellets weighted again.
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4.3.8 Determination of Acetic acid, Ammonium and Glucose concentrations

in fermentation supernatant and feed

5 mL of biosuspension was directly sampled into a syringe connected to a single-use 0.45

µm sterile filter and immediately filtered. The clear supernatant was flash frozen in liquid

nitrogen and stored at -70 ◦C until analysis. Glucose concentration was determined by D-

Glucose UV-Test Kit (R-Biopharm, Darmstadt, Germany) and acetic acid concentration by

Acetic acid UV-Test Kit (R-Biopharm, Darmstadt, Germany). Ammonium concentration

was determined by Ammonium cuvette test LCK 303 or LCK 304 (Hach Lange, Düssel-

dorf, Germany). At the end of the cultivation feed samples were taken directly from the

feed line, flash frozen in liquid nitrogen and processed as described.

4.3.9 Analysis of Total Carbon, Inorganic Carbon and Biomass Composition

For total carbon and inorganic carbon analysis 0.5 mL biosuspension sample were mixed

with 50 µL of 5 M KOH to prevent loss of dissolved carbonate. The suspension was then

diluted 1:20 with demineralized water, flash frozen in liquid nitrogen and stored at -70 ◦C

until analysis. Analysis was performed with a multi N/C 2100 S composition analyzer

(Analytik Jena, Jena, Germany) to yield the total concentration of carbon and inorganic

carbon in the fermenter effluent stream.

To determine biomass composition 1.0 ml of biosuspension was centrifuged at 4 ◦C

and 14000 rpm (20817 g) for 3 min. The supernatant was discarded, the pellet resuspended

in 1.0 mL of 0.9% NaCl solution and centrifuged again. The pellet was resuspendend

in 5 ml 0.9% NaCl, flash frozen in liquid nitrogen and stored at -70 ◦C until analysis.

Analysis was performed with a multi N/C 2100 S composition analyzer (Analytik Jena,

Jena, Germany) and the carbon and nitrogen content of the biomass calculated from these

values.

4.3.10 Measurement of Nucleotides

2 mL of biosuspension was sampled directly into 0.5 mL of precooled (< -20◦C) quenching

solution and incubated at 6 ◦C on a shaker for 15 min. Quenching solution consisted of

80 µM EDTA dissolved in 35% (V/V) perchloric acid. 500 µL 1 M K2HPO4 was added

and the sample briefly vortexed. 550 µl 5 M KOH was added and the sample vortexed

again. To remove precipitating potassium perchlorate samples were then centrifuged at

4 ◦C and 7830 rpm (7197 g) for 5 min. 1.5 mL of supernatant was carefully transferred to

new tubes, flash frozen in liquid nitrogen and stored at -70 ◦C. Prior to analysis samples
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were thawed, centrifuged for 10 min at 4◦C and 7197 g, 1 mL of supernatant transferred

to new tubes and their pH adjusted to 6.95 - 7.05 with 5 M KOH or 35% (V/V) perchloric

acid. Samples were centrifuged again for 30 min at 4◦C at 18000 g to remove potassium

perchlorate precipitate from neutralization. 500 µL of supernatant were then transferred

into RotiSpin Mini 3 kDa MWCO tubes and centrifuged again for 30 min at 4◦C at 18000

g. HPLC analysis was carried out as described previously (Löffler, Simen, Jäger, et al.,

2016b).

4.3.11 Measurement of eGFP Fluorescence

Freshly sampled biosuspension was flash-frozen in liquid nitrogen and stored at -70◦C

until analysis. On the day of analysis all samples were thawed and diluted 1:100 with

ice-cold PBS-MgCa. 200 µL of diluted sample were transferred into a black 96 well-plate

with transparent bottom and lid and the fluorescence (excitation 485 nm, emission 535

nm) quantified in a SLT SpectraFluor plate-reader (Tecan, Switzerland). The measured

fluorescence values were then converted into absolute eGFP concentrations using a cali-

bration curve recorded with purified protein (Supplementary Information S2 in appendix

B).

4.3.12 Flow Cytometry Analysis

Freshly sampled biosuspension was diluted with PBS-MgCa to yield an OD of approx-

imately 0.04. Diluted biosuspension was passed through a 30 µM CellTrics® filter to

reduce particle content and analyzed in a BD AccuriTM C6 Plus Flow Cytometer. The

excitation laser had a wavelength of 488 nm and a 533/30 nm emission filter was used to

capture GFP fluorescence. Particle signals with a forward scatter height (FSC-H) signal

less than 2500 were ignored and 250000 events collected. Events with an eGFP area sig-

nal less than 10 were excluded from the analysis to remove dust and cell debris, usually

resulting in 235000 - 249000 remaining events. Cells from events with an eGFP area less

than 2000 were defined to form the non-producing population, while cells from events

with an eGFP area equal or greater than 2000 were defined to form the producing popu-

lation. Histograms of all samples can be found in Supplementary Figure B.3 and B.4 in

appendix B.
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4.3.13 Genomic DNA Sequencing

1 mL of biosuspension was sampled, flash-frozen in liquid nitrogen and stored at -70
◦C. On the day of extraction samples were thawn and total DNA extracted with DNeasy

Blood and Tissue Kit (Qiagen). Isolated DNA was shipped to and sequenced by the com-

mercial sequencing partner Eurofins Genomics resulting in approximately 5 to 6 million

paired end 150 bp reads per sample. Data was delivered as fastqc files and assembly of

the reads conducted with Unicycler 0.4.8 with the following settings: min contig length

300 bp, min contig coverage 5 (Wick et al., 2017). The obtained contigs were processed

with Mauve version 20150226 build 10 using the reference sequence NC_0000913.3 from

the NCBI database (Darling et al., 2004). Finally, small nucleotide polymorphisms were

detected using snippy (https://github.com/tseemann/snippy) and the output manually

examined using Geneious Prime 2020.2.3 (https://www.geneious.com). Supplementary

data S8 in appendix B contains lists of all SNPs found.

4.3.14 RT-qPCR

1.5 mL of freshly drawn biosuspension were immediately flash frozen in liquid nitrogen

and stored at – 70 °C. Frozen liquid cell suspensions were thawn on ice and 200 µL each

were transferred into bead bashing tubes prefilled with 700 µL Lysis buffer. Cells were dis-

rupted with a Precellys® homogenisator for 2 x 20 s.RNA was extracted using the Quick-

RNA Fungal/Bacterial Kit (Zymo Research) following the manufacturer➫s instructions.

The RNA concentrations were measured by Nanodrop. 10 µg RNA each was treated with

2 units TURBO DNase (Thermo Fisher Scientific) in 50 µL reactions for 60 min, with addi-

tional 2 units enzyme after 20 and 40 min, respectively. RNA from the DNase reactions

were purified with Zymo Clean & Concentrator™-5 (Zymo Research) according to the

manufacturer➫s protocol and were then measured by Nanodrop. cDNA synthesis with

SuperScript® IV reverse transcriptase (Invitrogen) was carried out according to the proto-

col for random hexamers as primers. 1 µg RNA was used as starting input for 20 µL reac-

tions, but no RNase inhibitor was added. A no reverse transcriptase control was included.

For the qPCR reactions, the cDNA reaction mixes were diluted with 100 µl nuclease free

water. 2 µL from all cDNA reactions were pooled together and a dilution series was pre-

pared (1, 1:10, 1:100, 1:1000) for determination of PCR efficiency for each primer pair dur-

ing each PCR run. For 15 µL reactions 7.5 µL ORA™ qPCR Green ROX L Mix (highQu),

0.4 µL forward primer, 0.4 µl reverse primer (f.c. 266 nM, each), 4.7 µL H2O and 2 µL of

diluted cDNA reactions were mixed. eGFP was amplified using primers eGFP2-forward
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and eGFP2-reverse (amplicon length: 248 bp), for cysG primers cysG_housekeeping_fwd

and cysG_housekeeping_reverse (amplicon length: 197 bp) were used. All reactions were

performed as triplicates. Reactions were carried out on a Biorad CFX96 in 96 well plates.

Program parameters were 95 °C, 3 min; 39x (95 °C, 5 sec; 59 °C, 15 sec; 72 °C, 15 sec); 65

°C to 95 °C (0,5 °C increment). Data was analyzed with Biorad CFX Manager 3.1. Relative

expression of eGFP to cysG was calculated from the cq numbers measured by the instru-

ment adjusted for amplification efficiency. Relative expressions from time points STR PFR

25 h and STR PFR 28 h were normalized to the corresponding STR sample.

4.4 Results

4.4.1 Engineering of E. coli deletion strains

Our primary goal was to engineer a series of deletion strains based on E. coli MG1655

with physiological advantages under heterogeneous conditions with nutrient depleted

zones. Strains would ultimately be assayed in a scale-down reactor consisting of a pri-

mary stirred tank reactor (STR) and a secondary plug-flow reactor (PFR) mimicking a

starvation zone (figure 4.1).

We began with defining criteria for the choice of handpicked deletion targets: First,

only genes that cause relevant metabolic burden in the context of a large-scale biopro-

cess should be chosen. We thus based our choice of targets primarily on the list of genes

with high add-on maintenance under repeated transient starvation published by Löffler,

Simen, Müller, et al. (2017) and selected genes with an estimated add-on maintenance >

0.05 %. Except for fliC none of the chosen genes had an estimated maintenance add on

> 1 %, so we expected very little contribution of most single deletions. It was thus clear

that multiple deletions would be necessary to achieve reasonably measurable effects. To

maximize potential savings, we removed the entire operon if a candidate gene was part

of a functionally connected operon. Second, any deletion must not be detrimental to basic

growth parameters in glucose minimal medium. In the past, E. coli deletion strain series

such as the MDS or the MGF series, had suffered from biological fitness losses (Karcagi

et al., 2016; Kurokawa et al., 2016). Learning from these studies, any genes involved in

primary carbon metabolism or basic cellular functions were outright excluded and we

aimed for a highly selective approach with a strictly limited scope. Third, global regula-

tory programs must be left intact to avoid potential side effects. This included the gen-

eral stress response, SOS responses and the stringent response. The stringent response

had previously been identified as the major repeatedly induced regulatory program but
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FIGURE 4.1: Reactor setup. The primary reactor was a standard laboratory
reactor operated as a fully aerobic glucose limited chemostat at 37 °C (left
scheme). For measurements of the well mixed STR reference state the entire
biosuspension was in the primary reactor (VSTR = 1.60 L). Scale down con-
ditions were installed by connecting a secondary plug flow reactor (PFR).
An active pump then constantly circulated VPFR = 0.38 L fermentation broth
between STR and PFR reducing the volume fraction in the STR to VSTR−PFR
= 1.22 L (right scheme). Labels STR and P1 to P5 designate sampling ports
with the respective average residence time of biosuspension after leaving
the STR. Fermentations were carried out in two phases each lasting for at
least five volumetric residence times: First, a homogeneous STR reference
state was established, followed by a subsequent heterogeneous STR-PFR

phase.

strains with modulated ppGpp availability already exist and have dampened regulatory

patterns in nutrient-limited conditions (Michalowski et al., 2017; Ziegler et al., 2020). In

this study, our goal was to work orthogonally to cellular regulation.

With these criteria in mind we developed a set of planned deletions containing most

parts of the flagellar apparatus, the chemotaxis systems, and multiple other handpicked

genes(with addon to maintenance > 0.05 %): cspD, aldA, flxA. CspD is a toxin of dispens-

able function, AldA is irrelevant in glucose-limited medium as its essential function is

complemented by PrpC and FlxA a protein from the Qin prophage. All of these genes are

non-essential (Baba et al., 2006). Using lambda recombineering with the tetA-sacB cassette

we sequentially engineered the strains starting from E. coli MG1655 until completion of

the final strain E. coli RM214 (table 4.1). We assayed any new deletion strain from the

series for its basic growth parameters in shaking flask fermentations cultivating E. coli

MG1655 as a benchmark in parallel. None of the deletion strains had major advantages

or deficits in maximum specific growth rate or biomass yield in glucose minimal medium

affirming our choice of deletion targets (figure 4.2).

Conducting the genomic deletions required a high number of total passages until E.

coli RM214 was completed. We sequenced both the genome of E. coli MG1655 and E.
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FIGURE 4.2: Basic growth parameters of deletion strains. Deletion strains
CD101 to RM214 were cultivated in minimal glucose medium in shaking
flask fermentations. The maximum specific growth rate (blue) and biomass
yield (yellow) were determined. The parent strain E. coli MG1655 was cul-
tivated in parallel, and all data collected normalized to its growth parame-
ters. Error bars indicate SEM (n = 3). The dashed line is a visual aid indi-

cating reference values of 1.

coli RM214 and identified no problematic mutations (Supplementary information S2 in

appendix B, Supplementary Data S9). As we expected little impact of single deletions, we

decided to focus our characterization only on the final strain of the series, E. coli RM214,

and compared it to its parent wild-type strain E. coli MG1655.

4.4.2 Maintenance coefficient and genomic stability in scale-down fermenta-

tions

To test the initial hypothesis of a reduced maintenance coefficient in heterogeneous con-

ditions and unravel potential benefits of E. coli RM214, we cultivated E. coli MG1655 and

E. coli RM214 in two-compartment scale-down fermentations. Continuous chemostat cul-

tivations with two phases were used to enable accurate assessment of fermentation pa-

rameters. In the first phase, strains were cultivated in standard well-mixed conditions

employing only a STR (figure 4.1, left scheme). After five volumetric residence times

this reference state was sampled and the secondary PFR compartment connected to the

STR. A diaphragm metering pump then continuously circulated about one-fourth of the

fermentation broth from the STR through the PFR and back into the STR. As feeding

occurred only in the STR, the PFR simulated repeated passages of fractions of the pop-

ulation through a starvation zone (figure 4.1, right scheme). After continued cultivation

for another five volumetric residence times the new STR-PFR steady state was sampled.

Therefore, the total process time always exceeded ten volumetric residence times.
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FIGURE 4.3: Determination of maintenance coefficients under heteroge-
neous STR-PFR conditions. E. coli MG1655 (grey squares, dashed line) and
E. coli RM214 (orange triangles, solid line) were cultivated in the STR-PFR
system (glucose limited chemostat, D = 0.05 h−1, 0.1 h−1, 0.2 h−1, 0.3 h−1).
Maintenance coefficients ms (slope) and true biomass yields Ytrue

XS (intersec-
tion) were determined from the linear regression of data points. The dif-
ference in maintenance coefficients is statistically significant (∆ms = - 0.038
gGlucose gCDW

−1 h−1, p < 0.05). Error bars indicate technical standard de-
viation.

We cultivated E. coli MG1655 and E. coli RM214 at four different dilution rates (0.05

h−1, 0.1 h−1, 0.2 h−1, 0.3 h−1) each. We measured biomass concentrations in the well

mixed STR reference state and during the heterogeneous STR-PFR phase. Biomass yield

on substrate was in general similar for both strains but E. coli RM214 had a slightly in-

creased biomass yield on substrate, especially under STR-PFR conditions and at D = 0.05

h−1. We estimated Pirt’s maintenance coefficient ms of both strains by linear regression

of Y−1
XS vs D−1 (figure 4.3). We found no statistically significant differences under well

mixed STR conditions but the maintenance coefficient of E. coli RM214 was significantly

lower than that of E. coli MG1655 under STR-PFR conditions (∆ms = - 0.038 gGlucose gCDW

−1 h−1, p < 0.05). Differences in the true biomass yield YXS
true were not significant under

any conditions (p > 0.05). The results confirm the effectiveness of our deletion strategy

specifically for the targeted environment.

We sequenced the strains’ genomes from the STR-PFR samples from all fermentations

to investigate potential genomic instability due to the long fermentation time (> 200 h at

D = 0.05 h−1). In E. coli MG1655, we found SNPs in insH5 in samples from all dilution rates

but no other mutations. We also found SNPs in insH5 in all samples from E. coli RM214

and additional mutations in ycfk and stfE of the inactive e14 prophage (Supplementary
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Data S9 in appendix B). Apart from these minor alterations, the strains were remarkably

stable. They showed no accumulation of mutations in any regulatory genes or genes

involved in central metabolism confirming that the engineered deletions bestowed the

reduced maintenance coefficient to E. coli RM214.

4.4.3 Construction of eGFP production strains

Based on these encouraging findings we hypothesized that E. coli RM214 should better

withstand the stressful conditions of an exemplary heterogeneous production scenario

than its ancestor strain E. coli MG1655. We chose to produce eGFP as an easily measur-

able proxy for industrially relevant intracellularly accumulated proteins such as insulin

varieties or other biopharmaceuticals commonly produced in E. coli (Baeshen, Al-Hejin,

et al., 2015; Baeshen, Baeshen, et al., 2014).

A suitable expression system to produce proteins in glucose-limited fermentations is

the rhamnose-inducible expression system from pJOE4056.2 (Wegerer et al., 2008). Ex-

pression from the rhamnose promoter occurs in the presence of non-toxic rhamnose and

is enhanced by low levels of glucose sensed by cAMP-CRP signaling. However, the use of

rhamnose as a stable inducer requires the absence of rhamnose catabolism (Wilms et al.,

2001). We therefore inactivated the chromosomal copy of rhaB by replacing the original

gene in E. coli MG1655 and E. coli RM214 with an inactive frameshift copy from E. coli

BW3110 by recombineering with the tetA-sacB cassette. The resulting strains were termed

E. coli MG1655 rhaB− and E. coli RM214 rhaB−. The absence of rhamnose catabolism was

additionally confirmed by streaking the strains on 2xTY ph indicator agar plates contain-

ing rhamnose. E. coli MG1655 rhaB− and E. coli RM214 rhaB− formed white colonies

meaning that no acidification of the medium caused by rhamnose degradation occurred.

We then exchanged the bla resistance gene from pJOE4056.2 for the tetA resistance

gene from E. coli T-SACK generating pJOE4056.2_tetA (Supplementary figure B.1). TetA

is a tetracycline exporter and thus enables continuous selective pressure in the presence

of tetracycline during prolonged cultivations. Transformation of the rhaB− strains with

pJOE4056.2_tetA yielded E. coli MG1655 rhaB− pJOE4056.2_tetA and E. coli RM214 rhaB−

pJOE4056.2_tetA (table 4.1).

4.4.4 Scale-down fermentations with eGFP production

E. coli MG1655 rhaB− pJOE4056.2_tetA and E. coli RM214 rhaB− pJOE4056.2_tetA were

then fermented in quadruplicates each in the STR-PFR scale-down reactor in continuous
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chemostat cultivations at a dilution rate of D = 0.2 h−1. Heterogeneities were introduced

by using the two-compartment STR-PFR reactor in the same setting as described above

(figure 4.1). Again, this included a well-mixed STR only chemostat phase, and a sub-

sequent STR-PFR chemostat phase to enable direct observation of the influence of the

nutrient-limited zone.

Under well-mixed STR conditions, we observed no substantial differences between

the fermentations of E. coli MG1655 rhaB− pJOE4056.2_tetA and E. coli RM214 rhaB−

pJOE4056.2_tetA. They reached comparable cell dry weight and eGFP yield on glucose

(figure 4.4). In fact, the strains had virtually identical fermentation and production pa-

rameters in any parameter measured (Table 4.2). The primary product eGFP formed a

considerable fraction of the total biomass and we detected only trace amounts of acetate

byproduct as expected for glucose-limited fermentations. We also determined the propor-

tion of cells with high eGFP content by flow cytometry and found these to be practically

identical for both strains in the STR reference steady-state (figure 4.4). As E. coli RM214

was specifically engineered to have advantageous traits in heterogenous fermentations

including starvation zones these findings were not surprising and instead proved that

our genomic deletions do not interfere with the basic fermentation traits of E. coli K-12

strains.

Upon connecting the PFR the process performance of both strains started to decline,

but this phenomenon occurred remarkably slower and much less pronounced in E. coli

RM214 rhaB− pJOE4056.2_tetA than in E. coli MG1655 rhaB− pJOE4056.2_tetA. Five hours

after connection of the PFR both strains still had similar fractions of producing cells and

reached comparable biomass concentration. However, first differences in cellular eGFP

content and product yield already became apparent. Over the remaining process time

production parameters increasingly diverged. After 28 h of STR-PFR continuous cultiva-

tion we observed a 43% higher product yield in E. coli RM214 rhaB− pJOE4056.2_tetA than

in E. coli MG1655 rhaB− pJOE4056.2_tetA (∆YPS = 13 mgeGFPgGlucose
−1, two-tailed t-test, p

< 0.05). Concomitantly, the proportion of actively producing cells shrank rapidly in E. coli

MG1655 rhaB− pJOE4056.2_tetA and more slowly in E. coli RM214 rhaB− pJOE4056.2_tetA.

Instead, biomass concentration increased in E. coli MG1655 rhaB− pJOE4056.2_tetA indi-

cating a shift from production to biomass formation (Supplementary Figure B.4 A). Note-

worthy, we found a linear correlation describing the tradeoff between eGFP production

and biomass formation using data from both E. coli MG1655 rhaB− pJOE4056.2_tetA and

E. coli RM214 rhaB− pJOE4056.2_tetA (Supplementary Figure B.4 C and B.4 D). We sus-

pected that the divergence may be caused by a reduced fraction of producing cells for E.
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FIGURE 4.4: eGFP yield on substrate and proportion of cells with high
eGFP content. E. coli MG1655 rhaB− pJOE4056.2_tetA (grey) and E. coli
RM214 rhaB− pJOE4056.2_tetA (orange) were cultivated in the STR-PFR
system (glucose limited chemostat, D = 0.2 h−1). Samples were collected
from the primary vessel. Error bars indicate SEM (n = 4), statistical indi-
cators: * p < 0.05, ** p < 0.01, *** p < 0.001. Left: eGFP yield on substrate
declines for both strains after PFR connection. Simultaneously, the differ-
ence between the strains gradually increases. Statistics: two tailed t tests
comparing means of a single strain at later time points to the STR mean of
the strain; and comparing the means of both strains at each time point to
each other. Right: The proportion of cells with high eGFP content declines
towards the end of the fermentation and is lower for E. coli MG1655 rhaB−

pJOE4056.2_tetA than for E. coli RM214 rhaB− pJOE4056.2_tetA. Statistics:
one tailed t tests comparing the presumably lower mean of E. coli MG1655
rhaB− pJOE4056.2_tetA to that of E. coli RM214 rhaB− pJOE4056.2_tetA at

each time point.

coli MG1655 rhaB− pJOE4056.2_tetA compared to E. coli RM214 rhaB− pJOE4056.2_tetA

and measured the fluorescence of individual cells by flow cytometry. Similar to the eGFP

yield, the proportion of actively producing cells shrank rapidly in E. coli MG1655 rhaB−

pJOE4056.2_tetA and more slowly in E. coli RM214 rhaB− pJOE4056.2_tetA. At the final

time point the fraction of producing cells was significantly higher for E. coli RM214 rhaB−

pJOE4056.2_tetA than for E. coli MG1655 rhaB− pJOE4056.2_tetA (one tailed t test, p >

0.05). To check whether differential expression of eGFP might be responsible for the re-

duction of eGFP yield in the heterogeneous conditions in general or for the differences

between the two strains, we conducted RT qPCR using the housekeeping gene cysG as

a reference. However, we found no clear indication for differential expression of eGFP

towards the end of the fermentation or between the two strains (figure B.9 in appendix B).

After connection of the PFR we observed alterations in the respiratory parameters

of both strains. Initially, cells reacted with a short spike of increased respiratory activ-

ity which then dropped rapidly in the following hour. The oxygen uptake rate QO2 and

the carbon dioxide formation rate QCO2 recovered over the next two volumetric residence

times and then slowly drifted towards new steady states but never reached the initial STR
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FIGURE 4.5: Carbon Balance. E. coli MG1655 rhaB− pJOE4056.2_tetA (grey)
and E. coli RM214 rhaB− pJOE4056.2_tetA (orange) were cultivated in the
STR-PFR system (glucose limited chemostat, D = 0.2 h−1). Columns show
efflux fractions of individual substances. Error bars indicate SEM (n = 4).

For raw data see Supplementary Tables B.3 and B.4.

only values (Supplementary Figure B.4 and B.4). We calculated total carbon balances but

the deviations in the respiratory rates caused only minor redistributions between the STR

reference status and the STR-PFR 28 h sample (figure 4.5, Table B.3 and B.4). Apart from

small gains in the biomass (CDW) fraction and small reductions in the carbon dioxide

formation no major differences occurred. Declining productivity was hence accompanied

by declining respiration and increased biomass formation. From all collected indications

we conclude that the primary factor for loss of productivity was a restructuring of the

biomass composition towards lower eGFP content (Figure B.4 B). This is supported by

our observations using flow cytometry. The proportion of cells with high eGFP content

dropped substantially in the late fermentation stages (figure 4.4). We presume that the re-

duced cellular eGFP content then led to lower metabolic burden and thus enabled slightly

higher biomass yields. In all parameters measured, E. coli RM214 rhaB− pJOE4056.2_tetA

proved to be more robust to the STR-PFR conditions and maintained productive for a

longer period than E. coli MG1655 rhaB− pJOE4056.2_tetA. Since the only clearly differ-

ent parameter between the two strains is the maintenance coefficient, we propose that E.

coli RM214 rhaB− pJOE4056.2_tetA benefits from a small surplus of substrate that can be

used to meet the high precursor and ATP demand of heterologous protein synthesis.

The energetic state of cells during cultivations, can be assessed by calculating the

Adenylate Energy Charge (AEC) from measured nucleotide concentrations (Chapman,

Fall, et al., 1971). Initially, in the well-mixed STR only phase, the concentration of all nu-

cleotides and the AEC was comparable for both strains (Supplementary figure B.5). After

connection of the PFR, we then simultaneously sampled cells from the STR and the five
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ports along the primary axis of the PFR yielding a time-resolved profile of the AEC during

PFR passage (figure 4.6). As expected during passage through a nutrient starvation zone,

the AEC of cells dropped rapidly after leaving the STR and continued to decline towards

a plateau. Shortly after PFR connection, pattern was highly similar for both strains (Fig-

ure 4.6, upper panel). After 25 h of cultivation under scale down conditions, the AEC of

both strains in the STR and at all sampling ports of the PFR was higher than before (figure

4.6, lower panel). Here, differences between the strains also became apparent as the AEC

of E. coli MG1655 rhaB− pJOE4056.2_tetA was higher than that of E. coli RM214 rhaB−

pJOE4056.2_tetA at all sampling points. We then compared the AEC of samples drawn

from the primary vessel at different time points to unravel long term effects of the hetero-

geneous conditions. Both strains individually showed statistically significant increases in

the AEC between time points STR and STR PFR 25 h (two tailed t tests, p < 0.05; see Sup-

plementary Table B.2). In fact, the AEC of E. coli MG1655 rhaB− pJOE4056.2_tetA sampled

from the primary fermentation vessel (figure 4.6, 0 s) at time point STR-PFR 25 h was the

highest recorded value from all samples indicating that the strain was possibly trying to

adapt to the unfavorable conditions. The coincidence with its reduced productivity and

slightly increased biomass yield at the late fermentation stages points towards the preser-

vation of cellular energy at the expense of heterologous protein productivity. The data

from E. coli RM214 rhaB− pJOE4056.2_tetA indicates a similar but less pronounced trend.

Comparing the two strains to each other reveals a marginally significant difference (p =

0.077; see Supplementary Table B.2) of the AEC values measured in samples from the STR

at STR PFR 25 h which is reflected by the generally slightly lower AEC values of the dele-

tion strain at this time point (figure 4.6, lower panel). It is noteworthy that the total AxP

levels of both strains were comparable for all samples and only the distribution among

ATP, ADP and AMP varied (Supplementary Figure B.5).
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FIGURE 4.6: Adenylate Energy Charge in the STR and during PFR pas-
sage. E. coli MG1655 rhaB− pJOE4056.2_tetA and E. coli RM214 rhaB−

pJOE4056.2_tetA were cultivated in the STR-PFR system (glucose limited
chemostat, D = 0.2 h−1). The adenylate energy charge of cultures was de-
termined shortly after PFR connection (STR-PFR 5 min, upper panel) and
after five volumetric residence times (STR-PFR 25 h, lower panel). Sam-
ples were drawn from the primary reactor (0 s) and the five sampling ports
along the axis of the PFR (35 s, 52 s, 77 s, 102 s, 128 s). Error bars indicate

SEM (n = 4).
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TABLE 4.2: Fermentation parameters of the eGFP production chemostat
processes

E. coli MG1655 rhaB−

pJOE4056.2_tetA

E. coli RM214 rhaB−

pJOE4056.2_tetA

Unit STR STR-PFR

28 h

STR STR-PFR

28 h

cx

[ gCDW
l

]

4.02 ±
0.066a

4.28 ± 0.024 4.02 ± 0.053 4.13 ± 0.024

cP

[mgeGFP
l

]

630 ± 20 370 ± 32 650 ± 11 540 ± 41

YXS

[

gCDW
gGlc

]

0.315 ±
0.0048

0.3360 ±
0.00075

0.314 ±
0.0032

0.322 ±
0.0034

YPS

[

mgeGFP
gGlc

]

50 ± 1.3 29 ± 2.4 50 ± 1.2 42 ± 3.0

cAc,STR

[ gAc
l

]

0.14 ± 0.040 0.017 ±
0.0072

0.010 ±
0.0061

0.07 ± 0.030

cNH+

4

[

g
NH+

4
l

]

1.64 ± 0.025 1.6 ± 0.12 1.57 ± 0.058 1.52 ± 0.033

qS

[

gGlc
gCDW h

]

0.64 ± 0.013 0.60 ± 0.012 0.62 ± 0.020 0.60 ± 0.018

qP

[

mgeGFP
gCDW h

]

32 ± 1.4 18 ± 1.8 31 ± 1.2 25 ± 2.0

QCO2

[

mmolCO2
h

]

73.5 ± 0.70 70.6 ± 0.54 72.6 ± 0.49 69.8 ± 0.64

QO2

[

mmolO2
h

]

69.9 ± 0.90 67 ± 1.2 69.8 ± 0.90 65.6 ± 0.44

RQ
[

molCO2
molO2

]

1.05 ± 0.019 1.06 ± 0.013 1.04 ± 0.011 1.06 ± 0.010

eGFP

content

[

w
w %
]

15.8 ± 0.65 8.7 ± 0.73 16.1 ± 0.46 13 ± 1.0

Prod.

popula-

tion

[%] 55.4 ± 0.43 15 ± 2.8 56 ± 1.2 28 ± 5.1

D
[

h−1] 0.201 ± 0.0026 0.194 ± 0.0028
aErrors indicate SEM (n = 4).

4.5 Discussion

In this study, we created a series of deletion strains lacking genes with high addon-to-

maintenance under heterogeneous conditions with repeated starvation. The final strain
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of the series, E. coli RM214 had a significantly lower maintenance coefficient than its par-

ent E. coli MG1655 in an STR-PFR scale-down reactor. Moreover, E. coli RM214 rhaB−

pJOE4056.2_tetA proved to be more robust to the influence of heterogeneities in an ex-

emplary protein production scenario reaching a significantly higher product yield in the

STR-PFR phase.

The core concept of our deletion approach was to remove genes that are wastefully

expressed under transient starvation conditions. The expected individual contribution of

each single gene was very low (Löffler, Simen, Jäger, et al., 2016b). The only remarkable

exception was fliC whose expression alone was estimated to cause add on maintenance

of 3.10%, by far exceeding the expected add on maintenance of 0.55% for the second in

line aldA (Löffler, Simen, Jäger, et al., 2016b). Multiple other flagellar and chemotaxis

genes were also candidates, so the removal of these systems formed a major fraction of

the deletions conducted in the creation of E. coli RM214. As the goal of this study was to

investigate the fundamental usefulness of the whole design approach and each individual

deletion had likely little effect, we did not attempt to experimentally assess the individ-

ual contributions or potential interactions. We measured a relative difference of around

38% between the maintenance coefficients of E. coli MG1655 and E. coli RM214 under

scale down conditions which exceeds the sum of all individual contributions from tran-

scriptional and translational metabolic costs as estimated by Löffler, Simen, Jäger, et al.

(2016b). The calculations by Löffler, Simen, Jäger, et al. (2016b) were thus either very con-

servative or the actual absence of the expressed proteins provided additional secondary

benefits. This appears particularly likely regarding the absence of the motility system

which could save proton motive force otherwise used for flagellar rotation. We can also

confidently exclude the possibility that the slightly reduced genome of E. coli RM214 had

a major impact due to reduced replication cost. The combined size of the deletions in E.

coli RM214 was only about 50 kb, just slightly more than 1% of the E. coli K-12 genome,

and the metabolic demand of DNA replication is per se very low (Stouthamer, 1973).

Key findings of our study are the reduced maintenance demand of E. coli RM214 com-

pared to its parent strain and the slower product yield decline of E. coli RM214 rhaB−

pJOE4056.2_tetA under STR-PFR conditions. Both differences must be caused by the

genotype of E. coli RM214 but do these findings relate to each other by a causative link

or did we observe correlated phenomena? The overall eGFP transcript levels in the pro-

duction scenario were fairly stable (Supplementary Information S10 in appendix B), so

it appears unlikely that differential expression of eGFP from pJOE4056.2_tetA causes the

different yields. The flow cytometry data indicate that microbial individuality may play
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a role, but without a plausible mechanism we must assume that this is a correlated ob-

servation. Instead, we opine that a connecting mechanism can be drawn from the overall

balances and the strains’ cultivation parameters. Substrate consumed for maintenance

demand is, by definition, not available for biomass formation. It is commonly assumed

that it is fully converted into terminal products and the energy available from this conver-

sion harnessed by the cells as ATP to meet their maintenance demand (Stouthamer and

Bettenhaussen, 1973). Thus, a logical link between maintenance coefficient and protein

yield exists: A reduced maintenance coefficient means that more substrate is available

for biomass or product formation including potential secondary ATP costs that may arise

from a high foreign protein content. A simple estimation allows us to test the quantitative

feasibility of a causative relation by comparing the magnitude of the reduced mainte-

nance coefficient to the difference in protein yield: Given that there were no significant

differences in YXS,true we can assume that ∆ms is entirely available for the additional pro-

duction of eGFP in E. coli RM214 rhaB− pJOE4056.2_tetA. Using YXS from STR-PFR 28 h

and an assumed protein content of roughly 65% (Taymaz-Nikerel, Borujeni, et al., 2010)

the difference in maintenance demand could sustain an additional eGFP production rate

of no more than ∆qp,ms = 9.3 mgeGFP/gCDW/h. The experimental difference of ∆qp,ms = 7

mgeGFP/gCDW/h falls well within that range. A causative relation between the two obser-

vations is thus quantitatively feasible, and in our opinion likely. In this case up to 82% of

the saved substrate due to lower ms could have been used for the formation of additional

eGFP in E. coli RM214 rhaB− pJOE4056.2_tetA.

The connection between maintenance demand, energy availability and eGFP produc-

tion is also supported by the AEC data collected. We found a declining AEC during

PFR passage for both E. coli RM214 rhaB− pJOE4056.2_tetA and E. coli MG1655 rhaB−

pJOE4056.2_tetA at all time points, which is similar to the pattern observed in a preceding

study with non producing E. coli K 12 (Löffler, Simen, Jäger, et al., 2016b). However, it is

important to note that we measured lower AEC values in the STR and a steeper decline in

the PFR, putatively due to heterologous protein production. In the heterogeneous fermen-

tation phase, when productivity declined, we measured increased AEC values, especially

in samples of the less productive E. coli MG1655 rhaB− pJOE4056.2_tetA (Supplementary

Information S4 in appendix B). The AEC is a measurement of the energetic state of cells

and usually tightly balanced in a range between 0.7 and 0.9 (Chapman, Fall, et al., 1971).

The activity of many cellular processes is connected to the AEC and a lower AEC is associ-

ated with the activation of catabolic enzymes to meet cellular energy demands (Atkinson,
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1968). Substrate depletion generally causes a reduction of the AEC (Chapman and Atkin-

son, 1977). Conversely, reduced AEC values have been reported in conditions when cells

experienced high anabolic demand or high secondary metabolic costs, for instance caused

by cultivation at their maximum specific growth rate, or induction of motility (Lieder et

al., 2015; Martinez-Garcia et al., 2014). Heterologous protein induction is known to cause

increased ATP maintenance demand (Weber et al., 2002). We thus propose that the AEC

values measured from samples drawn from the primary reactor at different time points

of the fermentations can be explained by the ATP demands associated with eGFP produc-

tivity. It appears likely that the generally lower AEC measured in this study compared to

data from non producing E. coli K 12 cultivated under similar conditions is caused by the

production of eGFP. The significant increases of the AEC values of both strains towards

the end of the fermentations are then a consequence of their diminishing eGFP produc-

tivity. This also explains the more pronounced AEC increase and concomitant eGFP yield

decrease of E. coli MG1655 rhaB− pJOE4056.2_tetA compared to the deletion strain. The

question then arises to what extent the lower maintenance coefficient of E. coli RM214

rhaB− pJOE4056.2_tetA under scale down conditions influences the AEC values. From

data collected in the maintenance study (figure 4.3) and the eGFP production fermenta-

tions we can roughly estimate the ATP demand for eGFP production of both strains at

time point STR PFR 25 h (Supplementary Data S8 in appendix B). About 13% of the total

ATP demand of E. coli MG1655 rhaB− pJOE4056.2_tetA and 22% of the total ATP demand

of E. coli RM214 rhaB− pJOE4056.2_tetA can be attributed to eGFP production. Despite

its lower maintenance coefficient the combined ATP demand for maintenance plus eGFP

production of the highly productive E. coli RM214 rhaB− pJOE4056.2_tetA then still ex-

ceeds the respective values of E. coli MG1655 rhaB− pJOE4056.2_tetA which is reflected

by its lower AEC at this time point.

A secondary observation made in this study was that loss of productivity in the STR-

PFR condition was accompanied by a decline in the proportion of highly productive cells

(figure 4.4). Microbial population heterogeneity is a subject of intense research (Binder

et al., 2017) and our data provides no clear explanation why this shift occurs. Two things

should be noted: First, the population heterogeneity for both E. coli MG1655 rhaB−

pJOE4056.2_tetA and E. coli RM214 rhaB− pJOE4056.2_tetA is of the bimodal kind (sup-

plementary information S3 in appendix B) and the fractions of producing cells in the ho-

mogeneous STR cultivation phase are practically identical for both strains. Second, once

the PFR is activated, we saw a decrease in the fraction of highly productive cells in all

fermentations (figure 4.4, supplementary figure B.3 and B.4) but the decrease was faster
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and more consistent for E. coli MG1655 rhaB− pJOE4056.2_tetA. The overall level of pop-

ulation heterogeneity is generally high since only slightly more than half of all cells are

strongly accumulating eGFP. We presume this is caused by the interplay of our expres-

sion system and the fermentation conditions. The regulation of rhamnose catabolism is

autocatalytic and thus bimodality might be caused by a similar mechanism as in the case

of expression from the arabinose promoter PBAD (Khlebnikov et al., 2000). However, tran-

script measurements by RT qPCR did not lead to a concise pattern that would explain

both the differences between the two strains and the declining eGFP yield of each indi-

vidual strain over the course of the heterogeneous fermentation phase. Given the fairly

stable expression of eGFP and the continuous selective advantage provided by tetA, it also

appears unlikely that plasmid loss or mutations were the underlying cause. Moreover, the

general stability of eGFP expression from pJOE4056.2 has been determined to be perfect

for over 50 generations in earlier studies (Wegerer et al., 2008).

The deletion approach in this study differs from previous works because target se-

lection was based on existing expression data and limited to candidates that imposed a

high metabolic burden but were irrelevant under the specified conditions (Valgepea et al.,

2015). Large scale genomic deletions, the contrary approach, have been conducted before

in E. coli K-12, for instance as part of the construction of the MDS strains (Posfai et al.,

2006). These strains had little benefits in standard protein production scenarios over their

wild-type parent and were even inferior in basic process parameters, potentially caused

by disrupted regulation (Karcagi et al., 2016; Sharma, Campbell, et al., 2007; Sharma, Blat-

tner, et al., 2007). It needs to be emphasized that our deletion strategy only provided

advantages in the specified conditions of a heterogeneous bioprocess with transient star-

vation as E. coli RM214 had no benefit compared to E. coli MG1655 under well-mixed con-

ditions. In this regard, it also appears clear that the deletion targets chosen by us cannot

be directly transferred to other hosts or conditions since the naturally evolved regulation

might be divergent. This is exemplified by an interesting comparison of our results to

existing data from Pseudomonas putida. The exposure of P. putida KT2440 to heterogeneous

STR-PFR conditions led to an increased and potentially wasteful expression of fliC simi-

larly as in the case of E. coli (Ankenbauer et al., 2020). However, the deletion of the flag-

ellar apparatus in P. putida EM329 led to significant improvements of basic fermentation

and protein production parameters already under well mixed conditions (Lieder et al.,

2015; Martinez-Garcia et al., 2014). This demonstrates not only the diverging regulation

of motility between different microbes, but also implies that a strain like P. putida EM329

might unintentionally display additional beneficial traits in heterogeneous fermentations
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with starvation zones.

A premise of our study was to work orthogonally to global cellular regulation. The

general stress response, stringent response and SOS responses were not modified as they

provide important functions for cellular adaptation and some expression systems depend

on intracellular signaling molecules of global regulatory circuits. Examples include not

only the CRP cAMP dependent system used in this study but also novel adaptive expres-

sion systems that autoregulates cellular stress (Lo et al., 2016). Interestingly, in a former

study, the rapid inactivation of rpoS in homogeneous chemostat cultivations was reported,

which pointed to a large selective advantage of mutants (Notley-McRobb et al., 2002). In

contrast, we did not find any mutations in genes involved in the stringent response or

the general stress response for neither E. coli MG1655 nor E. coli RM214 at any growth

rate. We conclude that under heterogeneous conditions the selective pressure on inac-

tivating global regulatory programs is either very low or their activation may even be

favorable for cellular viability which affirms our neutral approach to cellular regulation.

However, this does not mean that modulating cellular regulation could not be beneficial

for process or production parameters. Recently, several E. coli knock out strains lacking

hand-picked genes that are connected to post-induction stress responses were presented

(Sharma, Shukla, et al., 2020). These strains have advantageous traits for protein produc-

tion which could be integrated in E. coli RM214.

Our study design focused on the influence of starvation zones on microbial culture

performance. The carbon limited STR contained a substrate limited growth and produc-

tion zone representing the bulk of large scale fermentations. The PFR served to introduce

a transient starvation stimulus representative of repeated passages through a hunger zone

as predicted to occur in large scale reactors (Haringa, Deshmukh, et al., 2017; Kuschel and

Takors, 2020). Since our experimental setup was specifically chosen for the study of tran-

sient starvation, it does not capture the effects of other heterogeneities, in particular tran-

sient substrate excess. It is well known that close to the feeding point, substrate excess and

concomitant oxygen limitation dominate the environment in large-scale fed-batch pro-

cesses. E. coli typically reacts to such conditions with the production of solvents or small

organic acids caused by overflow metabolism or anaerobic fermentation (Lara, Taymaz-

Nikerel, et al., 2009). The formation of byproducts then results in process performance

losses even if reuptake in zones with lower nutrient concentration is possible (Enfors et

al., 2001; Neubauer, Åhman, et al., 1995). Since our deletion approach was only aimed

at reducing the additional metabolic costs of transient starvation, E. coli RM214 probably
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responds to glucose excess like other E. coli K 12 strains. In principle, copying the de-

sign approach to construct an E. coli strain with reduced additional maintenance in excess

zones appears to be feasible as the transcriptional response of E. coli MG1655 to glucose

excess is large and involves many potentially process irrelevant genes (Veit et al., 2007).

However, the resulting genetic modifications would not reduce process performance loss

from byproduct formation which is likely the dominating issue in substrate excess con-

ditions. Various strategies to alleviate byproduct metabolism have been developed by

other research groups, such as the use of alternative substrate transporters, knock-outs or

the expression of recombinant Vitreoscilla hemoglobin (Eiteman et al., 2006; Pablos et al.,

2014; De Anda et al., 2006). Given that our strain design approach avoids modifications to

global regulation or central carbon metabolism, we are confident that it is compatible with

these existing strategies and their combination could result in chassis strains for generally

robust scale up. A limitation of our study originates from the focus on the model protein

eGFP. However, recombinant protein production is frequently limited by the availability

of cellular precursors and ATP, so it is not far fetched to expect similar effects with other

protein products (Glick, 1995; Heyland et al., 2011). The reduced maintenance coefficient

of E. coli RM214 should also be helpful to produce molecules formed in ATP intensive

pathways such as terpenoids (Li and Wang, 2016; Ward et al., 2018). Potential advantages

could also occur when the accumulation of toxic products causes increased ATP demand

for product export, membrane maintenance or pH homeostasis (Sun, Zahir, et al., 2011;

Tsukagoshi et al., 2000). On the other hand, it may be less helpful when the formation of

a small molecule product is connected to net ATP synthesis. Glycolytic flux depends on

the ATP requirements of cells and in such cases enforced ATP wasting can even increase

the production rate (Koebmann et al., 2002; Boecker et al., 2019).

With the increasing knowledge about cellular metabolism and its interplay with the

heterogeneous conditions of large-scale processes new possibilities to improve process

performance arise. In a recent review of Wehrs et al. (2019) emphasized that strains should

be engineered specifically for the demands of large-scale production (Wehrs et al., 2019).

In this context, our series of deletion strains is the first step towards host strains robust

against the repeated exposure to starvation zones.
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4.6 Conclusion

Large-scale fermentations often suffer from process performance loss due to heteroge-

neous environments. E. coli RM214 was engineered to obtain a deletion strain with re-

duced maintenance and superior production properties in fermentations with starvation

zones. Our study is the first that aimed to improve a microbe by repeated genomic dele-

tions for enhanced robustness towards heterogeneous conditions. The exemplified ap-

plication of E. coli RM214 for eGFP production demonstrates the cellular capaciy to ex-

ploit the mainenance advantage for preventing non-wanted performance loss in hetero-

geneously mixed indutrial production scenarios. Although only showcased for eGFP, the

strain offers the capacity to serve as a platform for a variety of different products. No-

tably, this complements classical scale-up engineering and should be a highly valuable

tool to prevent non-wanted performance of essential Titer-Rate-Yield values under indus-

trial production conditions.
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5.1 Abstract

In large-scale fed-batch production processes microbes are exposed to heterogeneous sub-

strate availability caused by long mixing times. Escherichia coli, the most common indus-

trial host for recombinant protein production, reacts by recurring accumulation of the

alarmone ppGpp and energetically wasteful transcriptional strategies. Here, we compare

the regulatory responses of the stringent response mutant strain E. coli SR and its parent

strain E. coli MG1655 to repeated nutrient starvation in a two-compartment scale-down

reactor. Our data shows that E. coli SR can withstand these stress conditions without

a ppGpp mediated stress response maintaining fully functional ammonium uptake and
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biomass formation. Furthermore, E. coli SR exhibited a substantially reduced short-term

transcriptional response compared to E. coli MG1655 (less than half as many differentially

expressed genes). E. coli SR proceeded adaptation via more general SOS response path-

ways by initiating negative regulation of transcription, translation, and cell division. Our

results show that locally induced stress responses propagating through the bioreactor do

not result in cyclical induction and repression of genes in E. coli SR, but in a reduced

and coordinated response, which makes it potentially suitable for large-scale production

processes.

5.2 Introduction

Heterogeneities in large-scale fed-batch bioprocesses have long been recognized as a cause

for process performance loss at industrial scale compared to homogeneous processes at

lab scale (Bylund, Collet, et al., 1998). Due to physical, economical and engineering con-

straints the generation of gradients in large-scale reactors is inevitable. Hydrostatic pres-

sure influences the solubility and transfer of gasses and the mixing time of large reactors

can be orders of magnitude higher than that of laboratory reactors producing strong mea-

surable chemical gradients (Delvigne, Destain, et al., 2006; Enfors et al., 2001; Larsson,

Törnkvist, et al., 1996; Junker, 2004). Common consequences of spatial heterogeneities are

loss of productivity, reduced biomass yield, increased byproduct formation and genetic

or plasmid instability (Bylund, Castan, et al., 2000; Bylund, Collet, et al., 1998; George

et al., 1993; Neubauer, Häggström, et al., 1995; Hopkins et al., 1987; Jonge et al., 2011).

Reduced process performance is not limited to a single species but can be observed for

many industrial workhorse organisms like Escherichia coli, Saccharomyces cerevisiae, Peni-

cillium chrysogenum and Bacillus subtilis (George et al., 1993; Jonge et al., 2011; Junne et al.,

2011; Larsson and Enfors, 1988).

Due to the enormous costs associated with using and maintaining large-scale equip-

ment, few experiments in the context of academic research have been performed in indus-

trial scale bioreactors (Bylund, Castan, et al., 2000; Bylund, Guillard, et al., 1999; Enfors

et al., 2001). In consequence, researchers have relied on the use of computational fluid dy-

namics (CFD) to simulate reactor flow fields and on scale-down reactors to experimentally

investigate selected scenarios (Kelly, 2008; Takors, 2012). Various designs of scale-down

reactors exist and have been extensively reviewed elsewhere (Delvigne, Takors, et al.,

2017; Delvigne, Destain, et al., 2006; Neubauer and Junne, 2010). One of the commonly

used scale-down reactors follows a multi-compartment approach: A primary stirred tank
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reactor (STR) is coupled to a secondary plug flow reactor (PFR). The STR is operated as

a well-mixed compartment under standard limited growth conditions and the PFR sim-

ulates a feeding, starvation or anaerobic zone providing the stimulus to be investigated

(Lara, Galindo, et al., 2006).

Many studies have focused on experimentally simulating the zone close to the feeding

point which is usually characterized by substrate excess and potentially oxygen limitation

(Enfors et al., 2001; Junne et al., 2011; Lara, Taymaz-Nikerel, et al., 2009). For a variety of

hosts, common observations in this scenario include the formation of small organic acids

and solvents as overflow metabolites or as anaerobic fermentation products (George et al.,

1993; Neubauer, Häggström, et al., 1995). Ultimately, byproduct formation may lead to

process performance loss even if reuptake of byproducts occurs in the well-mixed limited

growth zone (Enfors et al., 2001).

Occasionally, starvation zones have attracted attention as well (Neubauer, Häggström,

et al., 1995; Neubauer, Åhman, et al., 1995). From CFD simulation and measured data it is

known that distant from the feeding point or close to the reactor walls poorly mixed zones

with very low nutrient concentrations exist. An early scale-down study with E. coli em-

ploying oscillatory feeding protocols revealed the involvement of the stringent response

in the cellular reaction to transient glucose starvation (Neubauer, Åhman, et al., 1995).

The stringent response is a global regulatory program usually preparing E. coli for

entry into the stationary phase (Magnusson et al., 2005; Gaca et al., 2015; Hauryliuk et

al., 2015). Its hallmark is the synthesis of the alarmone (p)ppGpp on short time-scales by

the ribosome-associated protein RelA or on longer time-scales by the bifunctional enzyme

SpoT (Atherly, 1979; Gallant et al., 1970; Murray and Bremer, 1996). ppGpp acts primarily

as a transcription factor by binding to RNA polymerase and modulating its affinity to

transcription initiation sites and alternative sigma factors. Additionally, ppGpp directly

modulates the activity of certain proteins (Dalebroux et al., 2012; Kanjee, Gutsche, et al.,

2011).

The fast and reversible initiation of the stringent response to oscillatory substrate sup-

ply was later confirmed by measurements of ppGpp in continuous glucose chemostat cul-

tivations in a two-compartment stirred tank-plug flow reactor (STR-PFR) setup (Löffler,

Simen, Jäger, et al., 2016b). The feeding point was placed in the STR creating a starvation

zone in the PFR, which allowed to resolve the timescale of cellular response. Moreover,

it was shown that extensive transcriptional responses take place as cells move transiently

through a nutrient poor zone. From theoretical calculations of ATP costs Löffler et al. es-

timated that an increase in maintenance energy demand of more than 30% was caused



88 Chapter 5. Transcriptional Profiling of a Stringent Response Mutant Strain

by the repeated exposure of cells to the nutrient gradient offering a new explanation for

performance losses in large-scale bioprocesses (Löffler, Simen, Jäger, et al., 2016b). Analo-

gous experiments with ammonium as the limiting nutrient revealed similar, yet less pro-

nounced, regulation patterns affirming the importance of the stringent response for global

regulation in E. coli in a scenario of oscillating starvation stimuli (Simen et al., 2017a).

Fed-batch processes limited by ammonium or other nitrogen sources are interesting fer-

mentation scenarios for the production of small molecules which mainly consist of carbon

such as fatty alcohols (Chubukov et al., 2017). Nitrogen limitation is commonly used to

enhance the accumulation of cellular carbon storage products such as polyhydroxyalka-

noates used for bioplastic synthesis (Oliveira-Filho et al., 2019; Wen et al., 2010), including

E. coli as a potential host (Wang, Yu, et al., 2009). As nitrogen forms a relatively large part

of cells, nitrogen limitation can be easily explored during process development. During

scale-up, such processes will likely suffer from similar issues as carbon-limited processes

(Simen et al., 2017a).

Recently, the strains E. coli SR and E. coli HGT with modulated stringent response

were constructed in our laboratory (Michalowski et al., 2017). The strains lack relA which

is primarily responsible for rapid ppGpp synthesis upon nutrient depletion and carry

modifications in the bifunctional enzyme SpoT. It was shown that they do not react to the

exhaustion of ammonium supply by ppGpp synthesis (Michalowski et al., 2017). Strain E.

coli SR displays no negative phenotypic differences in batch cultivations compared to its

parent strain E. coli K-12 MG1655. However, under conditions of ammonium limitation,

E. coli SR was found to have an elevated specific glucose consumption rate which is ben-

eficial for two-stage processes involving product formation in the nitrogen limited phase

(Jarmander et al., 2015; Perez-Zabaleta et al., 2016).

The combination of properties displayed by E. coli SR indicates that this strain can po-

tentially be developed as a platform strain for robust scale-up from lab to production. In

this work, we compared the phenotypic and transcriptional responses of E. coli SR and its

parent strain E. coli MG1655 in a two-compartment scale-down reactor. We focused our in-

vestigation on the regulatory differences between these strains in the response to repeated

short-term stimuli. The primary stirred tank reactor was operated as an ammonium-

limited chemostat while a plug flow reactor simulated a nitrogen starvation zone.
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5.3 Materials and Methods

5.3.1 Bacterial Strains and Media

Strains E. coli MG1655 or E. coli SR were used in all experiments (table 5.1).

2xYT agar plates were prepared by autoclaving 16 gL−1 tryptone, 10 gL−1 yeast ex-

tract, 5 gL−1 NaCl and 18 gL−1 agar-agar dissolved in demineralized water. Minimal

media for precultures consisted of 4 gL−1 glucose, 0.96 gL−1 NaH2PO4.2H2O, 3.51 gL−1

K2HPO4, 2.4 gL−1 (NH4)2SO4, 0.01 gL−1 thiamine hydrochloride and 0.2% (V/V) trace

elements stock solution. Minimal media for batch cultivation in the bioreactor consisted

of 19 gL−1 glucose, 1.50 gL−1 NaH2PO4.2H2O, 3.9 g/l K2HPO4, 5.7 gL−1 (NH4)2SO4 and

0.2% (V/V) trace elements stock solution. 200 µl of antifoaming agent Struktol J647 (Schill

+ Seilacher, Hamburg, Germany) was added to the batch medium prior to inoculation.

Minimal media for continuous chemostat cultivation in the bioreactor consisted of 11.4

gL−1 glucose, 1 gL−1 NaH2PO4.2H2O, 2.6 gL−1 K2HPO4, 2.28 gL−1 (NH4)2SO4 and 0.2%

(V/V) trace elements stock solution. Throughout the chemostat phase 50 µlh−1 of an-

tifoaming agent Struktol J647 were added continuously to the fermentation medium. The

composition of trace element stock solution was 4.175 FeCl3.6H2O, 0.045 gL−1 ZnSO4.7H2O,

0.025 gL−1 MnSO4.H2O, 0.4 gL−1 CuSO4.5H2O, 0.045 CoCl2.6H2O, 2.2 gL−1 CaCl2.2H2O,

50 gL−1 MgSO4.7H2O and 55 g/l sodium citrate dihydrate. Stock solutions of salts,

trace elements and glucose were autoclaved separately, and stock solutions thiamine hy-

drochloride were filter sterilized and stored at 4 ◦C. All compounds were combined just

before the experiments to prevent possible aging of media.

TABLE 5.1: Bacterial Strains used in this study.

Strain Genotype/Strain Information Reference

E. coli K-12
MG1655

F−, λ−, ilvG−, rfb-50, rph-1 (’wild type’ strain,
abbrev. WT)

Michalowski
et al., 2017

E. coli SR
MG1655

∆relA, spoT[R290E;K292D] Michalowski
et al., 2017

5.3.2 Bioreactor Setup

Cultivations were carried out in a two-compartment scale-down reactor. The primary

reactor was a stirred tank reactor (STR), and a plug flow reactor (PFR) was used as the

secondary compartment mimicking a starvation zone. The plug flow reactor was con-

nected to the stirred tank reactor after establishment and sampling of a steady state in
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the chemostat phase. The basic technical setup has been characterized previously (Löffler,

Simen, Jäger, et al., 2016b; Simen et al., 2017a). Minor modifications to the original setup

have been made and are described elsewhere (Ankenbauer et al., 2020).

The primary reactor was a 3 l bioreactor (Bioengineering, Wald, Switzerland) equipped

with flow baffles and two six-blade Rushton type impellers operated at 1000 rpm. A

constant aeration rate of 2.0 standard liters of ambient pressurized air per minute was

employed and the system operated at a total pressure of 1.5 bar. Temperature was moni-

tored by a platinum resistance thermometer and regulated by electrical heating or water

cooling. Temperature was set to 28 - 30 ◦C for the batch phase and to 37 ◦C for the con-

tinuous chemostat phase. The reactor was equipped with a pH sensor (Mettler Toledo,

Columbus, USA) to control pH and a pO2 sensor for monitoring dissolved oxygen ten-

sion (PreSens, Regensburg, Germany). During all fermentation stages pH was set to 7.0

and regulated by automated addition of 3 M NaOH or 2.5 M H3PO4. Dissolved oxygen

tension was not regulated but maintained values above 70% saturation to 1.5 bar ambi-

ent air throughout the entire cultivation. In the exhaust gas stream, the concentration of

oxygen and carbon dioxide was measured by gas sensors (BlueSens, Herten, Germany).

During the chemostat phase the feed was constantly added to the reactor by a peristaltic

pump (Watson-Marlow, Falmouth, United Kingdom). The feed flow was monitored by a

balance recording the weight of the stirred feed barrel and manually adjusted if necessary.

The harvesting pump operated as a slave pump set to maintain a constant weight of the

bioreactor. For this purpose, the stirred tank reactor was installed on a balance as well.

The secondary compartment was a plug-flow reactor with an inner tube diameter of

20 mm and a total volume of approximately 380 ml. Five ports along the primary axis

were used to take samples throughout the cultivation. Oxygen saturation in the PFR was

monitored close to ports P1, P2 and P5 and additional aeration of 0.15 standard liters per

minute was provided next to port P1 to ensure levels above 30 % saturation to ambient

air conditions throughout the entire PFR passage. Temperature in the PFR was main-

tained at 36 - 37 ◦C by water heating and isolation material. A diaphragm metering pump

(Sigma/1, ProMinent, Heidelberg, Germany) was used to transfer biosuspension from the

stirred tank reactor to the plug flow reactor after connection of the two reactors.

5.3.3 Preculture, Batch Cultivation and Continuous Cultivation

A small amount of glycerol stock seed culture was spread onto 2xYT agar plates and

incubated at 37 ◦C for 24 h. A single colony was picked to inoculate 500 ml baffled shaking

flasks with 50 ml of preculture minimal media. Flasks were then incubated at 37 ◦C on an
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orbital shaker set to 150 rpm for 16 hours. In the next morning 500 µl of biosuspension

were transferred to 1000 ml baffled shaking flasks containing 100 ml preculture minimal

media and incubated at 37 ◦C on an orbital shaker set to 150 rpm for 8 hours. 50 ml of

this culture were used to inoculate the bioreactor. Total volume in the bioreactor was 1.6

l after inoculation. Batch fermentation in the bioreactor ensued at 28-30 ◦C overnight. In

the next morning feed and harvest trains were connected and a constant feed/harvest

rate at 5.33 mLmin−1 corresponding to a dilution rate of 0.2 h−1 established. After 25 h

(five volumetric residence times) of STR cultivation a reference sample was taken. The

plug-flow reactor was then connected to the primary reactor via a diaphragm metering

pump effectively circulating about one-quarter of the total fermentation broth from the

STR through the PFR and back into the STR. In the following 28 h samples were taken

at predefined time points from the STR and the five PFR ports. After 28 h of STR-PFR

cultivation the fermentation was aborted, and the final broth volume measured. This

value was used for all volumetric calculations during data analysis.

5.3.4 Determination of Optical Density and Biomass

In preliminary experiments with identical setup correlation factors of optical density and

biomass as cell dry weight (CDW) were determined for E. coli MG1655 and E. coli SR

(supplementary information A, Table C.1). The resulting correlation factors for converting

OD600nm values to gL−1 cell dry weight were 0.324 for E. coli MG1655 and 0.321 for E. coli

SR. In the main cultivations optical density was measured from appropriately diluted

broth on a spectrophotometer at 600 nm and converted into biomass concentration.

5.3.5 Determination of Acetic acid, Ammonium and Glucose Concentrations

5 ml of biosuspension was directly sampled into a syringe connected to a single-use 0.45

µm sterile filter and immediately sterile filtered. The clear supernatant was flash frozen

in liquid nitrogen and stored at -70 ◦C until analysis. Glucose concentration was deter-

mined by D-Glucose UV-Test Kit (R-Biopharm, Darmstadt, Germany) and acetic acid con-

centration by Acetic acid UV-Test Kit (R-Biopharm, Darmstadt, Germany). Ammonium

concentration was determined by Ammonium cuvette test LCK 304 (Hach Lange, Düs-

seldorf, Germany). At the end of the cultivation feed samples were taken and processed

identically.
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5.3.6 Analysis of Total Carbon, Inorganic Carbon and Biomass Composition

For total carbon and inorganic carbon analysis 0.5 ml biosuspension sample were mixed

with 50 µl of 5 M KOH to prevent loss of dissolved carbonate. The suspension was then

diluted 1:20 with demineralized water and stored at 4 ◦C until analysis. Analysis was

performed with a multi N/C 2100 S composition analyzer (Analytik Jena, Jena, Germany)

to yield the total concentration of carbon and inorganic carbon in the fermenter effluent

stream. At the end of the cultivation feed samples were taken and processed identically.

To determine biomass composition 1.0 ml of biosuspension was centrifuged at 4 ◦C

and 14000 rpm (20817 g) for 3 min. The supernatant was discarded, the pellet resuspended

in 1.0 ml of freshly prepared 0.9 % NaCl solution and centrifuged again. The pellet was

resuspended in 5 ml 0.9 % NaCl, flash frozen in liquid nitrogen and stored at -70 ◦C

until analysis. Analysis was performed with a multi N/C 2100 S composition analyzer

(Analytik Jena, Jena, Germany) and the carbon content of the biomass calculated from

these values.

5.3.7 Measurement of ppGpp

2 ml of biosuspension was sampled directly into 0.5 ml of precooled (< -20◦C) quenching

solution and incubated at 6 ◦C on a shaker for 15 min. Quenching solution consisted of

80 µM EDTA dissolved in 35 % (V/V) perchloric acid. 500 µl 1M K2HPO4 was added and

the sample briefly vortexed. 550 µl 5 M KOH was added and the sample vortexed again.

To remove precipitating potassium perchlorate samples were then centrifuged at 4 ◦C and

7830 rpm (7197 g) for 5 min. 1.5 ml of supernatant was carefully transferred to new tubes,

flash frozen in liquid nitrogen and stored at -70 ◦C. Prior to analysis samples were thawed

and their pH adjusted to 6.95 - 7.05 with 5 M KOH or 35 % (V/V) perchloric acid. Samples

were centrifuged again to remove all potassium perchlorate precipitate. HPLC analysis

was carried out as described previously (Löffler, Simen, Jäger, et al., 2016b). If necessary,

quantification was conducted by ppGpp standard addition (TriLink, California, USA).

Samples from one time-point were analyzed directly in sequence and the data normalized

to the sample drawn from the STR to eliminate differences caused by column aging.

5.3.8 Transcriptome Analysis

0.5 ml broth was sampled from the bioreactor and directly flash-frozen in liquid nitro-

gen. Frozen broth was then stored at -70 ◦C until the day of RNA isolation. Total RNA

was isolated using RNeasy Mini Kit (Qiagen, Germany) according to the manufacturer’s



5.3. Materials and Methods 93

instructions. Isolated RNA was DNAse treated and shipped to commercial sequencing

partner GENEWIZ on dry ice. Samples were treated for rRNA depletion, sequencing li-

braries prepared and Illumina HiSeq 2x150 bp sequencing performed. Raw FASTQ files

were obtained for bioinformatic analysis. Trimmomatic v. 0.32 (Bolger et al., 2014) was

used to remove adapters and low-quality reads (<Q20) checked by fastqc reports. Genes

were aligned to the NCBI E. coli K-12 MG1655 reference genome (RefSeq: NC_000913.3)

using the RNA-sequencing aligner Bowtie2 v. 2.3.2.2 (Langmead et al., 2012). On aver-

age the mapping of the reads covered 96.2 %. Aligned reads were counted for each gene

based on the corresponding annotation available from the NCBI database for the chosen

reference sequence applying HTseq-count v. 0.6.1 in the union mode (Anders, Pyl, et al.,

2015). On average 86.4 % of the sequenced reads could be assigned uniquely to annotated

features. Sequencing depth was around 27 million reads per sample on average with a

mean quality phred score of 37.63.

Differential gene expression analysis was performed with the R-package DeSeq2 v.

1.26.0 (Love et al., 2014) available from Bioconductor (Gentleman et al., 2004). Prior to

statistical analysis, all residual non-protein encoding RNA molecules (tRNA, rRNA and

sRNA) were removed from the HTseq-derived raw count data and a non-specific filter

was applied to remove low coverage genes with fewer than two counts per million (54

reads on average). All filtering steps caused deviations from the raw data of less than

6 %. Samples were grouped by replicates and an experimental design was chosen that

used sample time and location (STR or PFR port 5) as a combined environmental factor.

To normalize read counts for the comparison of sequencing depth and RNA composition,

DESeq2 uses the median of ratios method to derive a scaling factor. Dividing the original

read counts by the scaling factor generated normalized count values. No outliers were

observed in the two biological replicates using pearson correlation. Resulting p-values

were adjusted for multiple testing according to control the false discovery rate (FDR)

(Benjamini et al., 1995). Genes were identified as significantly differentially expressed

by applying FDR adjusted p-values < 0.01 and a log2 fold change ≥ |1|.

A principal component analysis was used to display the sample to sample distances

calculated within the DESeq2 package (negative binomial distribution model). Princi-

pal component analysis was performed using plotPCA.san available on Github (https:

//gist.github.com/sansense/3399064897f1252d31b23ea5178c033c).

Gene set enrichment and overrepresentation analysis of up- and downregulated genes

were performed using the Bioconductors‘s R-package GAGE v. 2.36.0 (Luo, Friedman, et
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al., 2009). GAGE tests whether the mean fold-change of a gene subset is significantly dif-

ferent from the background using a two-tailed t-test. Genes were selected as significantly

different with an FDR adjusted p-value < 0.01 (Benjamini et al., 1995). Functional annota-

tion were derived from the Cluster of Orthologous Groups (COG) database (Tatusov et al.,

2003), the experimental sigma factor-gene interaction dataset from RegulonDB v. 10.6.3

(Santos-Zavaleta et al., 2019) and the Gene Onthology (GO) Groups database with the

function go.gsets from GAGE (Luo, Friedman, et al., 2009). Furthermore, Venn diagrams

were used to identify significant genes shared by both strains and differences in gene ex-

pression regulation (Chen and Boutros, 2011). The RNA sequencing data derived from

periodic ammonia starvation experiments have been deposited in NCBI’s Gene Expres-

sion Omnibus (GEO) and are accessible through GEO series accession number GSE158198

(Edgar et al., 2002). Raw counts and processed data can be found in the Supplementary

information. Data analysis was performed using the free statistical computing environ-

ment R v. 3.6.2.

5.4 Results

5.4.1 Continuous cultivation with periodic nutrient depletion

We cultivated E. coli SR and E. coli MG1655 in two independent continuous fermentations

each in a previously described scale-down reactor consisting of a primary stirred tank

reactor (STR) and a secondary plug-flow reactor (PFR), schematically shown in Fig. 5.1

(Löffler, Simen, Jäger, et al., 2016b; Simen et al., 2017a; Ankenbauer et al., 2020). E. coli

SR is a strain with modulated stringent response that was engineered to alleviate the in-

duction of the stringent response and the general stress response upon nutrient depletion

(Michalowski et al., 2017). The chemostat was operated at a dilution rate of D = 0.2 h−1

and ammonium was chosen as the limiting nutrient. After establishment of a steady state

in the STR alone, a reference sample (S0, t = 0 h) was taken and the PFR connected. Pe-

riodic passage from the STR (average residence time τSTR = 6.2 min) through the PFR

(average residence time τPFR = 2.6 min) then created a repeated short nitrogen starvation

stimulus. The average residence times represent worst-case scenarios that are still consis-

tent with mixing studies (Noorman, 2011; Vrabel et al., 2000) and the volume ratio STR to

PFR was approximately 3:1 to represent existing simulation results (Haringa, Deshmukh,

et al., 2017; Lapin, Schmid, et al., 2006). The long-term response of cells was investigated

from additional samples taken from the STR shortly after connection of the PFR (S5, t = 5

min) and after establishment of a new stady-state (S28, t = 28 h) in the two-compartment
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FIGURE 5.1: Experimental design of the two-compartment system. The
fermenter consists of a stirred tank reactor (STR) as the primary cultivation
vessel and a plug-flow reactor (PFR) connected by an active pump. The
ammonium-limited chemostat was operated at a dilution rate of D = 0.2 h−1

with the feeding point placed in the STR. The STR served as a limitation
zone and the PFR formed a starvation zone. The setup was designed to
resolve different timescales of cellular response. Oxygen saturation was
measured by 3 oxygen probes and recorded by the process control system
(01, 02, 03). VSTRref: Reference Volume without connection of PFR (constant

volume)

cultivation. The short-term response of cells to the PFR stimulus was monitored by sam-

pling from five ports along the primary axis of the PFR at identical timepoints. Transcript

samples for the PFR were taken from port 5 (P5 5 min and P5 28 h).

Basic growth and fermentation data confirmed earlier results that there are no detri-

mental differences in fundamental physiological parameters (Table 5.2) between E. coli

MG1655 and E. coli SR under nitrogen-limited conditions (Michalowski et al., 2017). There

were no statistically significant differences in any parameter (two-tailed t-test, p > 0.1).

Both strains reached practically identical biomass yields on ammonium and depleted am-

monium to equally low levels regardless of process time and PFR action (Fig. 5.2). The

most noteworthy difference between E. coli MG1655 and E. coli SR was a reduced con-

centration of excess glucose in the fermentation broth of E. coli SR. Consequently, we

calculated a lower biomass yield on glucose for E. coli SR (Table 5.2). Under conditions of

long-term nitrogen starvation in batch fermentations E. coli SR had previously displayed

a relaxation in glucose and nitrogen uptake coupling and we thus suspected an increased

specific glucose uptake rate (Michalowski et al., 2017). The calculated specific glucose

uptake rate was higher for E. coli SR, but the difference was not statistically significant

in our experiments (two-tailed t-test, p-value > 0.1). Data from the fermentation broth

supernatant showed that both strains converted comparable amounts of substrate into
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FIGURE 5.2: Physiological measurements. A: Cell dry weight. Concentra-
tion of cell dry weight after at least 25 h chemostat process before connect-
ing the plug-flow reactor (0 h) and after 28 h of chemostat process with con-
nected PFR (28 h). B: Ammonium. Concentration of residual ammonium in
the supernatant. C: Carbon Balance. Columns show efflux fractions of total
C-mol based on carbon influx. The final fraction represents undetermined
dissolved organic substances in the fermentation broth, as measured by the
difference of all efflux carbon detected by exhaust gas or total carbon anal-
ysis and the sum of the individually measured efflux components. Error

bars indicate SEM (n = 2) of individual components (A, B and C).

acetate as the primary byproduct. Carbon balancing revealed an increased fraction of un-

known substances among the fermentation products of E. coli SR which were identified

as dissolved organic substances in the fermentation supernatant by total dissolved car-

bon analysis. The elevated glucose uptake rate of E. coli SR likely leads to higher byprod-

uct formation of typical overflow metabolites such as lactate, pyruvate, formate and the

regulator 2-oxoglutarate, all of which are known to accumulate under nitrogen-limited

conditions with glucose excess (Hua et al., 2004). Apart from the primary byproduct ac-

etate, individual small carbon byproducts were not measured as the overall total carbon

efflux/influx balancing was in good agreement for both strains. Carbon recovery was 101

± 2% for E. coli MG1655 and 102 ± 1% for E. coli SR indicating that in sum all relevant

substances were detected.

In general, process time and the periodic PFR stimulus hardly affected global process

parameters which is in accordance with former observations made in this reactor setup

for nitrogen limitation and K-12 strains (Simen et al., 2017a). In sharp contrast, we found

substantial regulatory differences between the two strains both in the short-term and in

the long-term transcriptional responses to the periodic starvation stimulus.
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TABLE 5.2: Physiological measurements.

Parameter Unit E. coli MG1655 E. coli SR

YXN

[

gCDW
g

NH+
4

]

4.63 ± 0.12a 4.62 ± 0.27

YXS

[

gCDW
gGlucose

]

0.32 ± 0.01 0.28 ± 0.01
cGlucose,STR

[ gGlucose
l

]

2.07 ± 0.25 1.49 ± 0.06
cAcetate,STR

[ gAcetate
l

]

1.39 ± 0.11 1.29 ± 0.14

qNH+
4

[

g
NH+

4
gCDW ∗ h

]

0.04 ± 0.01 0.05 ± 0.01

qS

[

gGlucose
gCDW ∗ h

]

0.63 ± 0.05 0.77 ± 0.14

qAc

[

gAcetate
gCDW ∗ h

]

0.10 ± 0.01 0.10 ± 0.01

qCO2

[

mmolCO2
gCDW ∗ h

]

8.73 ± 1.06 9.98 ± 2.23

qO2

[

mmolO2
gCDW ∗ h

]

9.28 ± 0.47 10.9 ± 2.02

RQ
[

molCO2
molO2

]

0.95 ± 0.16 0.91 ± 0.04

qATP

[

mmolATP
gCDW ∗ h

]

29.23 ± 0.62b 34.73 ± 6.39
D [h−1] 0.20 ± 0.01 0.21 ± 0.03

aErrors indicate SEM (n = 2). All rates were calculated from
averaged values collected over the entire STR-PFR process
time. bEstimated values assuming a P/O-Ratio of 1.2.

5.4.2 Transcriptomic analysis: Overview

RNA-seq-based transcriptomic data to examine potentially important genes for the am-

monium stress response of E. coli WT and E. coli SR was analyzed. After filtering, 4037

predicted E. coli genes remained for further analysis (see supplementary data). The fast

tactical transcriptional response to ammonia shortage was determined by comparing PFR

port 5 samples to STR samples taken at the same process time points. Long-term re-

sponses were studied by comparing post-perturbation samples from the STR after 5 min

(S5) and 28 h (S28) to the reference sample (S0). The statistical threshold for significance

was set for adjusted p-value < 0.01 and log2FC > |1|. 54 differentially expressed genes

(DEGs) (UP: 14, DOWN: 40) formed the long-term response of E. coli MG1655. The short-

term response was more pronounced comprising 837 DEGs (UP: 242, DOWN: 595). E. coli

SR disclosed a similar number of 61 DEGs for the long term response (UP: 12, DOWN:

49), but substantially less DEGS as short term response (Total: 387, UP: 161, DOWN: 226)

(Fig. 5.3). Log2FC values range from -4.69 to 4.96 (WT) and -3.90 to 5.13 (SR). Fig. 5.3

depicts an overview of transcriptional dynamics outlining the halved response of E. coli

SR 5 min after repeated nitrogen limited perturbation compared to WT.

Fig. 5.4 shows that the multi-transcript response of each strain could be well described
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Long term response (log2FC >|1|; adj. p-value < 0.01): Short term response (log2FC >|1|; adj. p-value < 0.01):

FIGURE 5.3: Number of UP (black) and DOWN (gray) regulated genes
(DEGs). Long-term (left) and short-term (right) response to repeated ni-
trogen starvation for E. coli MG1655 (WT) and E. coli SR (SR) and given

process times.

by 2-dimensional PCA covering 96% and 87% of total variance for E. coli WT and E. coli SR,

respectively. Notably, biological duplicates were found in close proximity. PC1 accounts

for the sample port location, PC2 for the time course. Unique and clearly distinguishable

differences between STR and PFR transcript patterns were observed already after 5 min of

repeated nitrogen starvation for both strains (Figure 5.4, C.1). In particular, principal com-

ponent 1 (PC1) disclosed major differences between the samples of each strain accounting

for 88% and 67% regarding E. coli WT and E. coli SR, respectively. The PCA finding is in

agreement with the reduced number of DEGs observed for E. coli SR. The impact of PC2

is more pronounced for E. coli SR although almost identical numbers of DEGs were found

as long-term response in both strains. However, given the low impact of PC1 for E. coli

SR, similar DEG values affect the relative principal component analysis stronger.

As long-term responses of both strains were similar (see Appendix: supplementary in-

formation B) and weaker than short-term responses (Fig. 5.4) further analysis focused on

short-term transcript patterns. Notably, changes between long- and short-term responses

of both strains were dominated by counteracting transcript dynamics resetting perturba-

tions after PFR passages (MG1655: 5 min and 28 h). Observations are in line with similar

findings (Chang et al., 2002). Additional differences were found in the upregulation of

carbohydrate transport (SR: 5 min) and catabolic processes (SR: 28 h) (see Fig. C.5 and

C.6).

5.4.3 Regulatory response to short-term ammonium limitation

Preceding investigations of E. coli K-12 strains in STR-PFR scale-down reactors revealed

the rapid accumulation of the alarmone ppGpp upon entry into the nutrient limited zone

under both glucose and ammonium limitation (Löffler, Simen, Jäger, et al., 2016b; Simen et
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FIGURE 5.4: Principal component analysis of transcript data of E. coli
MG1655 (WT) (top) and E. coli SR (bottom) obtained from STR (S) and PFR
(port 5, P5) at three process time points (0 h, 5 min, and 28 h). Covered mea-
surement variance of each principal component (PC) is indicated. Ellipses
cluster samples of STR and PFR. PC1 accounts for ‘sample port location’,

PC2 for ‘process time’.
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FIGURE 5.5: Alarmone accumulation along the PFR. Concentration of
ppGpp measured from samples drawn along the plug flow reactor (P1 to
P5) relative to the concentration measured in the stirred tank reactor (S, all
values set to 1) for E. coli MG1655 (WT) and E. coli SR (SR). Error Bars rep-

resent SEM (n = 2).

al., 2017a). Concomitantly, an extensive transcriptional reprogramming of cells occurred.

In standard batch fermentations E. coli SR in turn did not react to ammonium depletion by

ppGpp synthesis (Michalowski et al., 2017). We therefore measured intracellular ppGpp

levels from samples taken from the five ports of the PFR along its primary axis (Fig. 5.5).

During the PFR passage E. coli MG1655 accumulated ppGpp to levels 2 - 3 fold higher

than measured in the STR, displaying the same behavior as previously observed for the

closely related K-12 strain E. coli W3110 (Simen et al., 2017a). In contrast, E. coli SR had

no elevated levels of ppGpp at any point during the PFR passage regardless of process

time. These results complement previous findings for the case of repeated short stimuli

and confirm the strain’s resilience to ammonium exhaustion.

Based on these encouraging findings, we focused our investigation on the short-term

transcriptional response of both strains along the PFR axis. We compared data from sam-

ples drawn from port 5 of the PFR to samples drawn from the STR at identical process

time points. Short-term changes revealed a significantly different response of E. coli SR

compared to E. coli MG1655 not only in the amount of DEGs (Fig. 5.3), but also in the func-

tion of these genes (Fig. 5.4, 5.6). To elucidate patterns in the transcriptional responses, we

searched for common DEGs, investigated the behaviour of gene clusters of orthologous
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FIGURE 5.6: Venn diagrams representing partially overlapping sets of
DEGs of E. coli MG1655 (WT) and E. coli SR. The number of significantly
up- (UP) and downregulated (DOWN) genes in each set is indicated by
numbers. Left: Short-term responses 5 min after PFR connection. Right:
Short-term responses 28 h after PFR connection. Complete gene lists of the

Venn diagrams are available in the supplementary data.

groups (COGs), and compared sigma factor (σ) activities. The gene expression patterns

of each strain individually were assigned to 21 functional categories based on the COG

database (Tatusov et al., 2003). In total 3532 of the 4037 genes (87.5%) could be annotated

to COG. For each COG category, the resulting t-values are represented in a lollipop plot

(Fig. 5.7). Significant changes were defined with a FDR-corrected p-value < 0.01. Fur-

thermore, the activation and deactivation of sigma factors over time were investigated

(Fig. 5.7). In this case, 3935 out of 4037 genes could be assigned to the sigma factor-gene

interaction database from RegulonDB (Santos-Zavaleta et al., 2019).

After the first 5 min of PFR action E. coli MG1655 and E. coli SR exhibited substan-

tially different transcriptional responses. The strains had only 64 DEGs in common, split

equally between up- and down regulation (Fig. 5.6 left). Hence, these genes mirror the

transcriptional response to short-term starvation irrespective of a functional stringent re-

sponse, in which 14 out of the 32 common upregulated genes are associated with the Ntr-

reponse (e.g. glnK, amtB, glnAHPQ, rutA). Downregulated genes consist of genes respon-

sible for amino acid biosynthesis (e.g. argCF, metABFINR) and other cellular functions

such as DNA cleavage, transporters, and oxidoreductases. The only oppositely regulated

gene was guaC coding for the GMP reductase GuaC. Transcriptional control of the guaC

promoter by the stringent response was proposed after its initial discovery and is clearly

supported by our data (Andrews et al., 1988). Individual, strain-specific short-term regu-

lation was observed for 398 (E. coli MG1655) and 32 (E. coli SR) specific DEGs after 5 min,

clearly demonstrating the effect of the stringent response on the E. coli transcriptome.

Gene expression along the PFR after 28 h of PFR action differs strongly from the early

response. 125 DEGs, mostly downregulated, are shared by both strains and the num-

ber of individually regulated genes is similar with 242 genes for E. coli MG1655 and 158



102 Chapter 5. Transcriptional Profiling of a Stringent Response Mutant Strain

FIGURE 5.7: Top: Transcriptional patterns grouped into COG categories of
E. coli MG1655 (WT) and E. coli SR (SR). Left: short-term patterns to the PFR
stimulus 5 min after PFR connection. Right: short-term patterns to the PFR
stimulus 28 h after PFR connection. Bottom: Sigma factor activities of E. coli
MG1655 (WT, grey) and E. coli SR (SR, black). Left: Short-term response to
the PFR stimulus 5 min after PFR connection. Right: Short-term response
to the PFR stimulus 28 h after PFR connection. Significant categories are

indicated with an asterix.



5.4. Results 103

genes for E. coli SR (Fig. 5.6 right). Additionally, seven genes are oppositely regulated.

Three of them (tolQ, guaC, purM) are upregulated in E. coli SR and downregulated in

E. coli MG1655. These genes correspond to cell envelope integrity during cell division

(Gerding et al., 2007), nucleotide metabolism (Kanjee, Ogata, et al., 2012) and purine de

novo biosynthesis (Mueller et al., 1999). While purine de novo biosynthesis is actively in-

hibited by ppGpp via inhibition of GuaB, GTP synthesis solely originates from purine

salvage pathways with xdhA significantly increased in E. coli MG1655 (Xi et al., 2000). The

residual four oppositely regulated DEGs (csiD, glnL, lhgO, yeaH) predominantly play a

role in the adaptation to nitrogen starvation and except for glnL are known to be induced

by ppGpp. NtrB encoded by glnL is an essential part of the Ntr response cascade to ni-

trogen starvation and yeaG positively impacts rpoS transcription and translation under

prolonged nitrogen starvation (Brown et al., 2014). Despite these differences in adaption

to nitrogen limitation, we observed no alterations in the uptake or utilization of ammo-

nium which indicates that the additional regulatory adaptions of E. coli MG1655 are ir-

relevant in the context of a bioprocess. Transcriptional patterns could be identified by

functional enrichments of groups based on COG categories and sigma factor activities.

COG groups J (Translation, ribosomal structure, and biogenesis) and F (nucleotide trans-

port and metabolism) were significantly down regulated as part of the stringent response

of E. coli MG1655 after both 5 min and 28 h (Fig. 5.7). For the 28 h sampling point group H

(coenzyme transport and metabolism) was also significantly downregulated. As already

indicated by the oppositely regulated genes (Fig. 5.7) σ54 mediated genes responsible for

the activation of the Ntr stress response including yeaG/H via NtrBC were induced in E.

coli MG1655, as well as the σ38 regulon as part of the general stress response (Brown et

al., 2014; Figueira et al., 2015) (Fig. 5.7). Due to the limited amount of RNA-Polymerase

(RNAP) core enzymes, σ70 competes with σ54, resulting in an antiproportional expres-

sion of their mediated genes (Jishage et al., 1996). In contrast, E. coli SR only increased

the expression of genes regulated by σ54 after 5 min and no significant COG category

was identified at this time-point. The absence of the stringent response in E. coli SR is

clearly visible in an overall dampened regulatory response. The only significantly regu-

lated group is E (amino acid transport and metabolism) after 28 h of PFR action, and the

significantly downregulated genes in this group are predominantly ABC-transporters.

To unravel more detailed patterns in the transcriptional responses we assigned genes

to the up-to-date gene ontology (GO) gene sets using GAGE (Luo, Friedman, et al., 2009).

3345 out of 4037 genes (83%) could be mapped to GO Terms. As shown in Fig. 5.3 the

majority of significant DEGs for E. coli MG1655 were downregulated. This is mirrored by
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the results of the identified top 20 GO categories which were uniformly down-regulated

(Fig. 5.8). E. coli MG1655 predominantely downregulated genes related to ribosomal

biosynthesis and translation after 5 min and 28 h as expected for a stringent phenotype

(Fig. 5.8). These transcriptional changes are counteracted in the long-term response ob-

served from the STR (Fig. C.3 - C.6) which indicates looping induction and repression

of the genes. Patterns from E. coli SR were less pronounced and grouped differently. Af-

ter 5 min we observed decreasing gene expression of ATP-demanding processes such as

ABC transporters and ATPase complexes (Fig 5.8). After 28 h the PFR passage mainly in-

duced an increased negative regulation of transcription and metabolic processes (Fig. 5.8).

Care must be taken in the interpretation of this group though. General categories affect-

ing transcription (GO:0006351, GO:0045892, GO:0097659, GO:1903507) or RNA processes

(GO:0032774, GO:1902679, GO:0051253, GO:0051252) are represented as simultaneously

negatively and positively regulated. Moreover, all negative regulators included in these

terms, such as members of the CRP family, are also capable of positive regulation. Other

negative regulation categories involve genes which actively inhibit translation and be-

long to SOS signals like DNA damage, prevention of cell division and programmed cell

death (PCD). E. coli SR thereby focuses on σ38 regulated genes, as well as toxin and an-

titoxin systems (mazEF and mqsRA) possibly resulting in arrested growth and a dormant

cell state or even PCD. As growth arrest is usually a primary outcome of the stringent

response, which is absent in E. coli SR, we hypothesize that this pattern might provide an

alternative way for E. coli SR to achieve cell cycle arrest.

In summary, the short-term response transcriptional patterns of E. coli MG1655 were

extensive and dominated by the stringent response and the Ntr regulon. The major acti-

vated sigma factors were σ54 and σ38. Overall, the transcription of ribosomal genes and

other genes necessary for growth was inhibited, while genes involved in the transport

and fixation of ammonia were induced. Our observations reflect well-known regulatory

patterns exerted by E. coli K-12 when facing nitrogen starvation (Chang et al., 2002; Simen

et al., 2017a; Traxler, Zacharia, et al., 2011; Traxler, Summers, et al., 2008; Wang and Levin,

2009). In contrast, the transcriptional short-term response of E. coli SR is dampened both

in the number of DEGs and the patterns observed, especially shortly after connection of

the PFR. The only significantly activated sigma factor is σ54 indicating a functional but

attenuated Ntr response in the absence of ppGpp accumulation. Adaptation to ongoing

starvation was possibly attempted via negative regulation of metabolic processes and SOS

pathways.
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FIGURE 5.8: Significant GO categories after 5 min and 28 h of both E. coli
SR (left) and E. coli MG1655 (right). Downregulated categories are arranged
at the top and upregulated GO terms at the bottom. 5min: Short-term re-
sponse of E. coli SR (left) and E. coli MG1655 (right) after 5 min of PFR
action. Only the Top 20 out of 102 significantly downregulated categories
are shown. Neither strain had significantly upregulated categories for this
time-point. 28h: Short-term response of E. coli SR (left, light grey) and E.
coli MG1655 (right, light grey) after 28 h of PFR action. For E. coli SR only
the Top 20 out of 24 significantly upregulated categories are shown. For
E. coli MG1655 only the Top 20 out of 95 significantly downregulated cate-
gories are shown. No significantly upregulated categories were found for

this time-point.
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5.5 Discussion

In the present study, we investigated the regulatory responses of the stringent response

mutant strain E. coli SR when exposed to repeated short starvation stimuli in a scale-down

reactor. The comparison with its wild-type parent E. coli MG1655 unraveled dampened

regulatory patterns which are potentially beneficial for the application of E. coli SR in

industrial large-scale reactors. The reduced regulatory patterns might be beneficial for

heterologous protein expression as well as the production of small molecules as less inter-

ference with engineered metabolic pathways may occur and energy otherwise spent for

adaptive responses is available for product formation.

An important finding of our study is that despite the regulatory differences E. coli SR

displayed no dysfunctionalities in handling the shortage of ammonium. E. coli SR reached

the same biomass yield on ammonium as E. coli MG1655 both with and without PFR ac-

tion. Moreover, both strains depleted ammonium to comparable levels of about 1.2 mgL−1

or 67 µmolL−1, well in line with previously reported values for E. coli K-12 strains in nitro-

gen limited chemostats (Hua et al., 2004). The low remaining ammonium concentration

indicates that uptake in both strains is mediated actively by AmtB with Km = 0.8 mM

(Williamson et al., 2020) and incorporation is accomplished by the GS-GOGAT System

with GS Km = 0.1 mM (Alibhai et al., 1994). This is supported by our transcriptional data

which revealed that amtB, gltB and gltD were significanty enriched for both strains over

all time-points. Transcripts of glnA were also always significantly enriched except for the

time point 28 h of E. coli SR. Concomittantly, we identified transcriptional patterns typical

for the σ54 and NtrBC mediated responses to nitrogen starvation (Reitzer, 2003). 13 out

of 21 known NtrC-regulated operons (Brown et al., 2014) were induced at PFR port 5 in

E. coli MG1655 at all time points (Table C.2). For E. coli SR, the Ntr response was slightly

reduced, with 9 out of 21 operons induced (Table C.3) and lower overexpression of σ54

transcribed genes. These findings lead to the conclusion of an active, but diminished Ntr

response of E. coli SR that still allowed fully functional ammonium assimilation. Addi-

tionally, the energy consumption as maintenance add-on for both strains was calculated

according to Löffler, Simen, Jäger, et al. (2016b) assuming de novo synthesis of all upreg-

ulated DEGs over the whole process time (28 h). The resulting energy savings of E. coli

SR due to weaker transcriptional response added up to around 46.5 %. In terms of micro-

bial productivity, the reduced maintenance demand potentially increases the amount of

available ATP for biomass-specific productivities and improves cell fitness.

In a previous study, a significantly elevated specific glucose consumption rate under
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ammonium limitation was observed in E. coli SR (Michalowski et al., 2017). Similarly, we

observed reduced excess glucose and the accompanying formation of dissolved byprod-

ucts in the fermentation supernatant. In E. coli K-12 strains, the consumption of glucose is

usually tightly coupled to the availability of nitrogen on the level of metabolite control by

the interaction of 2-oxoglutarate with PtsI (Doucette et al., 2011). The exact mechanism by

which coupling of nitrogen and glucose uptake rates are relaxed in E. coli SR is not clear

as the strain is isogenic to E. coli MG1655 except for the deletion of relA and the modifi-

cations in spoT. However, we found an increased transcription of ptsI, ptsH and ptsG in

E. coli SR compared to E. coli MG1655 (Table C.4). Artifically increased expression of ptsI

has been shown to increase specific glucose uptake rates in nitrogen limited conditions

(Chubukov et al., 2017). We presume that the increased glucose uptake rate in E. coli SR

might be caused by deregulated expression of ptsI, potentially connected to the absence of

the stringent response by the action of CRP whose transcription is negatively regulated by

ppGpp (Johansson et al., 2000). It remains to be clarified wether E. coli SR has altered cy-

toplasmic 2-oxoglutarate levels or the action of ppGpp influences the coupling of glucose

consumption to nitrogen availability, potentially by the proposed mechanism. Increased

specific glucose uptake rates in conjunction with higher respiratory activity have also

been observed in E. coli MG1655 subjected to repeated glucose feast-famine cycles (Vasi-

lakou et al., 2020). Future studies should thus examine how E. coli SR reacts to varying

availability of glucose or other carbon sources.

In view of these differences in carbon metabolism, we hypothesized that biological

energy availability might be unequal for E. coli MG1655 and E. coli SR. From oxygen and

glucose uptake rates the specific ATP production rate qATP was estimated (Table 5.2). qATP

greatly depends on the effective P/O ratio and current scientific consensus estimates re-

alistic P/O ratios between 1.0 and 1.5 for E. coli (Noguchi et al., 2004; Szenk et al., 2017).

For our estimations of qATP we assumed a conservative P/O ratio of 1.2 and 2 moles of

ATP per mol glucose from glycolysis. The result indicates that E. coli SR might have an

increased availability of ATP compared to its wild-type parent under the applied exper-

imental conditions. Given that the respiratory capability and thus the ATP production

capability of K-12 strains is not exhausted at a dilution rate of D = 0.2 h−1 it appears that

the increased glycolytic flux to byproducts displayed by E. coli SR was also not a result of

increased energy demand. Moreover, increased glucose uptake has been reported previ-

ously for E. coli SR under conditions of ammonia limitation despite high adenylate energy

charge (Michalowski et al., 2017). Carbon and redox homeostasis at elevated glycolytic
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flux would then be maintained by byproduct excretion and increased respiration, possi-

bly involving the dissipation of surplus energy by uncoupling of the electron transport

chain (Bekker et al., 2009).

Nitrogen limitation inducing the stringent response is a well-documented phenomenon

in E. coli. Multiple previous studies predominantly observed heavily increased gene ex-

pression corresponding to amino acid transport and metabolism (Barker, Gaal, et al., 2001;

Brown et al., 2014; Simen et al., 2017a; Traxler, Zacharia, et al., 2011; Traxler, Summers, et

al., 2008; Durfee et al., 2008). Conversely, we observed almost equally distributed up- and

downregulated genes for amino acid transport and metabolism (see supplementary data:

Transcriptomics), which was only reported by few research groups (Chang et al., 2002;

Traxler, Summers, et al., 2008). As a result, no overall significant statistical trend was de-

tectable for this category (Fig. 5.7). We suggest that the individual operons do not solely

respond to ppGpp, but rather depend on other signals and regulatory networks which

were not found to be significantly expressed in this study such as the Lrp regulon. Ad-

ditionally, caution is advised when comparing transcriptomic analyzes originating from

different studies as they greatly depend on the transcriptional reference state and thus the

details of the experimental design.

In general, the amount of DEGs of E. coli K-12 MG1655 was similar to the numbers

found in the analogous study of Simen et al., 2017b who employed the closely related E.

coli K-12 W3110 confirming the validity of our data. The amount of DEGs is also less than

observed during the related study of glucose starvation by Löffler, Simen, Jäger, et al.,

2016b which points towards significant potential of E. coli SR to preserve energy in glucose

starvation conditions. An interesting difference to the former studies in this scale-down

reactor setup is the absence of increased motility in the STR after PFR connection (Löf-

fler, Simen, Jäger, et al., 2016b; Simen et al., 2017a). Our dataset contains no upregulated

flagellar or sigma factor 28 mediated gene patterns from the STR at any time-point (Fig.

5.7). We first hypothesized that the cause might be genetic differences affecting motil-

ity which are well documented between MG1655 and W3110 and even between different

MG1655 isolates (Barker, Prüß, et al., 2004; Hayashi et al., 2006). However, sequencing

of our MG1655 isolate revealed the presence of the canonical IS-1 insertion upstream of

flhD which confers motility and our MG1655 isolate displayed vivid spreading in motil-

ity agar (Supplementary information D, Fig. C.7). An alternative explanation could be

derived by the interplay of quorum sensing and flagellar regulation through the action

of autoinducer-2 (AI-2) and the motility quorum sensing regulator MqsR. While tran-

script levels of luxS (LuxS synthesizes Al-2) remain unchanged, the expression of mqsR
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is significantly enriched at PFR port 5 and MqsR is known to induce the flagellar synthe-

sis cascade (Barrios et al., 2006). However, cell dry weight (CDW) was always below 3

gL−1 in our experiments whereas Simen et al. worked with around 10 gL−1 CDW. Higher

biomass should lead to increased AI-2 levels and may cause a preconditioned phenotype

that rapidly initiates flagellar biosynthesis when encountering nutrient stress. Thus, rapid

induction of motility genes might become more pronounced during high cell density pro-

cesses in large-scale reactors and remains to be examined in further studies. Additionally,

as introduced by Löffler, Simen, Jäger, et al. (2016b) during glucose fluctuation, genes

of the category cell motility were identified as one of the most prominent energy con-

sumers and might therefore be candidates for genome reduction (Löffler, Simen, Jäger,

et al., 2016b).

Analysis of gene expression patterns (Fig. 5.7 and 5.8) revealed that both strains in-

dividually adapted to repeated nitrogen starvation. E. coli MG1655 adjusted by utilizing

the ppGpp-mediated general stress response including activation of toxin/ antitoxin (TA)

systems like mqsRA and mazEF. This strategy intends to arrest the cell cycle and form

persister cells (Balaban et al., 2004). Persister cell formation is not yet fully understood

and usually only involves a small fraction of cells (Chowdhury et al., 2016; Korch et al.,

2015; Gerdes et al., 2012). Thus, it seems to be only of minor importance for industrial

processes but some persister genes affect persister level due to altered growth rates rather

than contributing to a mechanism of cell cycle arrest and might have a signgificant impact

on bioprocess performance (Allison et al., 2011). Nonetheless two common dependencies

affecting persister formation, ppGpp and TA systems, are known which is in line with our

findings (Barrios et al., 2006; Chowdhury et al., 2016; Wang and Levin, 2009; Aizenman

et al., 1996; Sun, Guo, et al., 2017). Persister formation benefits from increased ppGpp con-

centrations but is still possible at lower rates in the absence of ppGpp by proteins which

simply reduce growth (Chowdhury et al., 2016). The nucleotide pyrophosphohydrolase

MazG which is negatively regulated by the mazEF system is able to initiate cell cycle arrest

and was significantly upregulated in E. coli SR after 28 h (Lee, Kim, et al., 2008). Addition-

ally, E. coli SR initiated negative regulation of transcription, translation and cell division

processes as part of the SOS response (Fig. 5.8). Most likely, the SOS pathways were

activated due to ongoing DNA replication during starvation conditions which might ul-

timately result in DNA damage and inhibited cell division (Traxler, Summers, et al., 2008;

Bi et al., 1993; Joseleau-Petit et al., 1999). As part of the SOS response and as a key gene in-

volved in filamentation sulA was significantly upregulated in E. coli SR. SulA inhibits the

initiation of cellular divison by repressing the assembly of FtsZ into the Z ring (Fonville et
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al., 2010; Huisman et al., 1984). Simultaneously with the overexpression of sulA, lexA was

significantly increased which acts as a major repressor of SOS signals. LexA regulates the

response strength and is actively involved in the occurrence of persister cells in bacterial

populations (Butala et al., 2011). These results indicate a coordinated and rather complex

SOS response in E. coli SR to form persister cells which is not yet fully understood.

The natural regulation of E. coli has evolved towards optimality in its lifestyle as a

gut bacterium and is not honed for the demands of a large-scale bioprocess. The absence

of the stringent response and the conservation of the ability to grow efficiently in min-

imal medium suggest that E. coli SR has the potential to become a platform strain for

applications in large-scale reactors. Our transcriptional analysis shows that the short-

term response of E. coli SR to ammonium depletion is dampened but a functional Ntr/σ54

response remains. Regarding glucose-limited fermentations, we hypothesize that E. coli

SR has significant potential to preserve energy in such conditions since the regulatory re-

sponses are usually even more pronounced and centered around the stringent response

(Hardiman, Lemuth, Keller, et al., 2007; Löffler, Simen, Jäger, et al., 2016b). We there-

fore propose to confirm the suitability of E. coli SR for large-scale applications in multi-

compartment scale-down reactors employing exemplary small-molecule production sce-

narios. These should include standard glucose-limited fed-batches as well as ammonium

limited fed-batches with a prolonged nitrogen-limited production phase to exploit its el-

evated glucose consumption.
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6.1 Abstract:

Escherichia coli exposed to industrial scale heterogeneous mixing conditions respond on

external stress by initiating short-term metabolic and long-term strategic transcriptional

programs. In native habitats, long-term strategies allow to survive severe stress but are of

limited use in large bioreactors where micro environmental conditions may change right

after said programs are started. Related on/off switching of genes causes additional ATP

burden that may reduce the cellular capacity for producing the desired product. Here, we

present an agent based data driven model linked to computational fluid dynamics finally
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allowing to predict additional ATP needs of E. coli K12 W3110 exposed to realistic large-

scale bioreactor conditions. The complex model describes transcriptional up- and down-

regulation dynamics of about 600 genes starting from subminute range covering 28h. The

data-based approach was extracted from comprehensive scale-down experiments. Sim-

ulating mixing and mass transfer conditions in a 54 m³ stirred bioreactor, 120.000 E. coli

cells were tracked while fluctuating between different zones of glucose availability. It

was found that cellular ATP demands rise between 30 - 45% of growth decoupled main-

tenance needs which may limit the production of ATP-intensive product formation ac-

cordingly. Furthermore, spatial analysis of individual cell transcriptional patterns reveal

very heterogeneous gene amplifications with hot spots of 50-80 % mRNA upregulation in

the upper region of the bioreactor. The phenomenon reflects the time-delayed regulatory

response of the cells that propagates through the stirred tank. After 4.2 h cells adapt to

environmental changes but still have to bear additional 6 % ATP-demand.

6.2 Introduction:

To reduce the human CO2 footprint in atmosphere sustainable bioprocesses replacing fos-

sil resources by sugar may play a crucial role. Microbial production offers the potential

to provide products for agricultural, biopharmaceutical and chemical markets (Delvigne,

Takors, et al., 2017). As a prerequisite, such approaches need to be transferred successfully

from laboratory to large-scale without loss of economic attraction, i.e. without reduction

of the sensitive TRY values (titer, rates, yields) that served as constraints for economic

evaluation. However, performance losses may occur comprising increased by-product

formation, reduced substrate-to-product conversion, reduced productivities etc. (Lara,

Galindo, et al., 2006). They mirror cellular responses to large scale heterogeneities that

are induced by limited mass transfer and by insufficient mixing capacities (Noorman and

Heijnen, 2017). Accordingly, research activities aimed to mimic large-scale conditions al-

ready in early stage lab tests. One of the first examples is given by Oosterhuis, Groesbeek,

et al. (1983) who repeatedly exposed cells to oxygen saturated and limiting conditions in a

setting of two linked, stirred bioreactors. Multiple tests with alternate experimental scale-

up simulators followed (overviews provided in Garcia-Ochoa et al. (2009), Neubauer and

Junne (2010), Neubauer and Junne (2016), Noorman (2011), Takors (2012), and Zieringer

and Takors (2018)) mimicking not only fluctuations of dissolved oxygen (DO) levels, but

also nutrient availability and pH variations. Today, such approaches received key con-

sideration to design robust microbial processes (Noorman and Heijnen, 2017). Still, the
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valid a priori prediction of large scale heterogeneities’ impact on cellular performance is

of crucial importance for developing novel bioprocesses. Even further, findings of large

scale stress exposure may guide strain engineering to create particularly robust hosts. To

reach this goal, Löffler, Simen, Jäger, et al. (2016b) applied the so called STR/PFR setup

comprising a stirred tank reactor (STR) linked with a plug-flow reactor (PFR). Steady-

state nutrient-limited, continuous cultivations were performed in STR before PFR was

connected frequently exposing cells to glucose limiting conditions. Accordingly, cells re-

peatedly experienced temporal feast/famine conditions that were characterized by the

residence time in the PFR. Comprehensive sampling in STR and PFR created a highly

valuable dataset of short- and longterm metabolic and transcriptional responses on re-

peated starvation stimuli (Löffler, Simen, Jäger, et al., 2016b). The dataset revealed that E.

coli not only reacts on extracellular stress by instantaneous metabolic shifts. Observations

also revealed massive transcription of genes organized in operons and in fundamental

regulons of strategic importance (Nieß et al., 2017). For instance, stringent response was

repeatedly initiated by fast rising intracellular (p)ppGpp levels in PFR which were down-

regulated in STR. Löffler, Simen, Jäger, et al. (2016b) reported additional rise of growth-

decoupled maintenance of up to 50%. So far, these findings were not yet used to predict

the response of E. coli exposed to large-scale heterogeneities. First, a data driven model is

needed that describes the complex transcriptional response of E. coli to said stress condi-

tions. Next, such a transcriptional model should be coupled with computational fluid dy-

namics (CFD) of a large scale bioreactor to identify zones of different nutrient availability

and to predict the cellular response of cells passing through those zones (Zieringer and

Takors, 2018). Our study exactly tackles this two step problem: Mixing heterogeneities

and zones of different substrate availability of a 54m³ stirred bioreactor are predicted us-

ing CFD and assuming common operating conditions. The tracking of 120,000 E. coli

cells finally yielded the prediction of additional ATP demands. Furthermore, spatially

resolved transcriptional patterns of individual E. coli cells were predicted unraveling the

population heterogeneity in the industrial-scale bioreactor.

6.3 Materials and methods

6.3.1 Experimental setup

A glucose gradient was simulated in a stirred tank reactor (STR) coupled to a plug flow

reactor (PFR) as depicted in figure 6.1.
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FIGURE 6.1: Scheme of two compartment system as used in the experi-
mental setup (Löffler, Simen, Jäger, et al., 2016b). The two-compartment
device consists of a stirred tank reactor (STR) connected to a plug-flow reac-
tor (PFR). Derived from non-ideally mixed large-scale industrial fermenters
(Lapin, Schmid, et al., 2006), the setup mimics periodic substrate availabil-
ity experienced by cells in large-scale bioreactors. The well-mixed STR is
operated in glucose limited continuous mode (Dilution rate D = 0.2 h−1).
As soon as cells enter the PFR compartment the residual substrate is con-
sumed within seconds leading to starvation. The steady state prior to PFR
onset at time zero was used as the reference state (S0). Samples were tak-en
at eleven distinct time points over 28 h. The system is equipped with five
PFR sample ports (P1-5) at defined residence times (s), as well as an STR

sample port S. The total mean PFR residence time is PFR = 125 s.

The experimental setup consists of a stirred tank reactor operated in continuous mode

(Dilution rate D = 0.2 h−1) and connected to a plug flow reactor. Cells were grown un-

der glucose limited conditions in the STR (mean residence time of the cells in STR: 6.2

min) and experience starvation in the PFR (mean residence time of the cells in PFR: 125

s). The cells are circulating through the reactor system for 28h process time which equals

on average around 200 passages of the starvation zone for each cell. In this way, the setup

permits the analysis of transcriptional response for ongoing starvation passages through

the PFR. Thereby, the tactical response is monitored via the PFR sample ports (P1-P5),

while the strategic changes were tracked via the STR sample port (S). The cultivation

was performed as biological triplicates under identical experimental conditions. For tran-

scriptomic analysis the samples were grouped by replicates and sample time and location

(STR or PFR) was chosen as a combined experimental design. Significantly expressed

genes were determined using the described design and a generalized linear model within

the egdeR R-package (v.3.8.6) (Robinson and Oshlack, 2010). The detailed experimental

implementation and RNA sequencing results used in this publication were published in

the paper of Löffler, Simen, Jäger, et al. (2016b).
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TABLE 6.1: Parameters and omitted genes of the SQBC algorithm. Ntry:
number of trials per iteration; rmax: maximum radius as a proxy for corre-

lation; Min size: minimum number of observations per clusters

Time point 25 min 2 h 28 h
ntry 1000 1000 1000
rmax 0.5 0.5 0.9
nmin 3 3 5
Genes omitted 0 1 6

6.3.2 RNA-sequencing data cluster analysis

RNA-sequencing data contain time courses of mRNA abundance of 3908 genes. Thereof,

three measurement sets sampled after 25 min, 2 h and 28 h were chosen for further investi-

gations. Significantly up- and down-regulated genes of samples P1-P5 in PFR passing the

threshold of log2 fold change (log2FC) > |0.58| and false discovery rate (FDR)-corrected

p-value < 0.05 were identified. Cluster analysis was performed using the R-package flex-

clust v. 1.4-0 (Leisch, 2006) applying RStudio v. 1.2.1335 (RStudio, Inc.) to significantly

reduce simulation efforts while including basic features of gene dynamics. The function

qtclust (included in flexclust package) was used to perform stochastic quality based clus-

tering (SQBC) and k-means-clustering. Parameters of SQBC were set as follows:

Ntry indicates the number of trials per iteration whereas rmax is the maximum radius

as a proxy for correlation. Nmin defines the minimum number of observations per clusters.

Data points not clustered by the algorithm are omitted. The setting of parameters ensured

maximum comparability and five as the maximum number of clusters. Cluster properties

are listed in the appendix, tables D.3, D.4, D.5 and D.6 and resulting clusters are displayed

in supporting information D.4 in the appendix. The k-means algorithm was initialized

with the centroids of the SQCB method.

6.3.3 ATP calculation for single molecules

ATP requirements for the formation of amino acids and nucleotides were calculated using

the results of Kaleta et al. (2013). The translational costs for protein formation and poly-

merization add up to 4 ATP per amino acid including activation of the amino acid (1 ATP

to 1 AMP) and peptide bond formation at the ribosome (2 GTP) (Stouthamer, 1973). Since

there is a net production of 0.1 ATP per amino acid (for detailed calculation see Löffler,

Simen, Jäger, et al. (2016b), the overall cost of amino acid synthesis and polymerization

was estimated as 4 ATPs consumed per residue. The absolute numbers of synthesized

and degraded nucleotides (Nts) were estimated from experimental data. To recycle mono
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phosphorylated nucleotides (NMPs) to triphosphorylated nucleotides (NTPs) costs of 2

ATP were assumed. Assuming a P/O-ratio of 1.49 (ATP formation via NADH oxidation

in respiration), ATP requirements as shown in table 6.2 were assumed for the bases.

TABLE 6.2: ATP costs for de novo nucleotide synthesis, based on Löffler,
Simen, Jäger, et al. (2016b)

Base ATP NADH NADPH overall ATP
Guanine 11 -3 1 8.53
Cytosine 13 -3 0 9
Adenine 9 0 1 6.53
Uracil 7 0 1 7
Average 10 -1.5 0.75 7.7

The growth-independent maintenance was used as 0.0027 mol (gDWh)−1 according to

Taymaz-Nikerel, Borujeni, et al. (2010).

6.3.4 Calculation of mRNA abundance

Only additional ATP needs for transcription and translation were estimated considering

the basic demands under non-perturbed conditions. Accordingly, total mRNA content

was estimated following studies of Bremer et al. (2008) as 61.7 µg per 109 cells for growth

rate of 0.2 h−1. 20% of the total dry weight were assumed to be RNA (Neidhardt et al.,

1990) including 5 % mRNA, a value which is in line with conclusions from Stouthamer

(1973). This results in total mRNA content of 6.17g per 1016 mRNA per cell. The rel-

ative distribution of specific mRNAs is taken from the measured normalized counts as

transcripts per million. The relative fraction multiplied with the total mRNA content

gives the total mass of all mRNA encoded by a single gene. Dividing this number with

the corresponding molecular weight yields the absolute number of molecules. Molecular

weights of mRNAs (MWmRNA) were calculated with equation 6.1 (Kibbe, 2007). Results

are listed in Appendix Table D.1. As the phosphate groups of two nucleotides are bound

together, an OH-group is cleaved. This leads to reduced molecular weights of nucleotides

in the polymer chain. Accordingly, an additional term was added to account for the 5’-

triphosphat cleavage (159 gmol−1).

MWmRNA = nG ∗ 345.2 + nC ∗ 305.2 + nA ∗ 329.2 + nU ∗ 306.2 + 159 (6.1)

nnucleotide codes for the number of nucleotide monophosphates which is multiplied by

their corresponding molecular weight.
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6.3.5 The biological model

The model was implemented using Matlab v. 2019b considering the four processes: tran-

scription, translation, mRNA degradation and protein degradation. The first three are

implemented as agent-based approaches whereas the last considers protein degradation

as a decomposition in continuum. The governing variable that controls the expression is

the number of active RNA polymerases (RNAPs) per each cluster.

6.3.6 Estimating the number of active RNAP

We assumed that gene expression levels follow sigmoidal courses. Hence, an equilibrium

between synthesis and degradation may be achieved. Produced nts are given by

Ntprod = vRNAP·
∫ t

0
σRNAP (t)dt (6.2)

with σRNAP(t) coding for the number of active RNAPs at time t. The shape of the sigmoidal

function is defined as

σ (t) =
a

1 + e{b·(t+c)} + d (6.3)

The parameters a, b, c and d were fitted to the nucleotide synthesis which was derived

from experimental data by calculating the number of synthesized copies and by consider-

ing individual gene lengths. Consequently, steadily rising functions were obtained that al-

lowed to estimate the number of active RNAPs per cluster. For the latter, a constant RNAP

transcription velocity of 21 nucleotides per second was assumed (Chen, Shiroguchi, et al.,

2015a).

6.3.7 Transcription

After initiation, continuous one-stranded movement of RNAP creates the mRNA tran-

scripts measured. However, individual gene expression profiles were observed that could

be grouped in clusters of similar transcription dynamic. Accordingly, only expression dy-

namics of representative, average genes per cluster are described in the model (Appendix

table D.3-D.5). The minimum distance of 100 nts (∆xRNAP) was considered between two

subsequent RNAPs. Furthermore, all genes of one cluster were supposed to be randomly

initiated with the functional
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genei,on|off (t) =











1 if free RNAP is avaliable and genei is randomly chosen

0 else
(6.4)

Gene transcription is modeled as one dimensional nucleotide extension with the relative

movement of RNAP as

dxRNAP

dt
=











vRNAP if initiated

0 else
(6.5)

The constant transcriptional elongation rate, vRNAP, is set to 21 nts−1 which equals the

average value found in E. coli during starvation (Chen, Shiroguchi, et al., 2015a). The

variable xmathrmRNAP indicates the relative position of RNAP on the DNA grid. The length

of the resulting mRNA strand is equivalent as

xi,RNAP = Li,mRNA (6.6)

When the last nucleotide is reached, the mRNA is released. All fragments of mRNA are

summed to get total mRNA amounts. Whereas fractions of operons were found to be

fully transcribed after initiation (Nieß et al., 2017), other scenarios coincided, too. For in-

stance, only subsets of operons may be transcribed or even opposing transcription reads

in a single operon occurred (Mao et al., 2015). Accordingly, we assumed that only 10%

of the initiated operons are transcribed completely. In other words, 10% of experimen-

tally observed initiated operons were anticipated to finish full operon transcription even

outside of PFR. The majority (90 %) of other gene transcriptions was assumed to stop im-

mediately after RNAPs have reached individual gene ends. For the sake of comparability

only relative mRNA enrichments are depicted in figure 6.7 C referring to the mRNA level

of individual cells after they have fluctuated through the bioreactor for 180 s. This time

point was chosen to visualize the spatial distribution of already adapted cells and the ones

which are still influenced by regime changes (figure 6.7).

6.3.8 Translation

The translational process is modeled by describing the movement of ribosomes (RIB)

on the mRNA strand. The process is assumed to take place in co-transcriptional man-

ner (Proshkin et al., 2010): After synthesized mRNA reached minimum length of 80 nts
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(∆xRIB) (Bremer et al., 2008), the first ribosome attaches to the free 5’-cap end. Further

ribosomes may bind too, provided that minimum distance between two subsequent ribo-

somes and maximum number of translations per mRNA (maxTL) are fulfilled. Released

ribosomes may be reused following the same scenario. The initiation trigger TLi;jfor a

translation j on mRNA i can be described as

TLi,j,on|off (t) =











1 if position of RIBi,j−1is > 80 and j <maxTL

0 else
(6.7)

The movement of ribosomes is analogous to the movement of RNAP as

dxRIB

dt
=











vRIB if initiated

0 else
(6.8)

With the translational elongation rate vRIB= vRNAP(Nieß et al., 2017, Proshkin et al., 2010)

and the number of maximum translations maxTL = 11 (Bremer et al., 2008). Because one

cluster of genes revealed rapid degradation after 50 s in PFR at 28 h, only 1 translation per

transcript was assumed for this group of genes. As soon as the ribosomes passes the last

nucleotide, the protein is released and is assigned to the group of bulk proteins.

6.3.9 Degradation

Degradation of transcripts is initiated as soon as ribosomal protection of the 5’-cap van-

ishes which is a co-translational process. The velocity of the RNASE was adapted to the

gene length LmRNA,i, i.e. individual vRNASE,i were estimated considering the experimen-

tally observed mRNA median life time tdeg;med of 2.8 minutes in nutrient-rich and of 4.6

min in starvation zones (Chen, Shiroguchi, et al., 2015a). Degradation was initiated for

mRNA i as

Degi,j,on|off (t) =











1 if position of RIBi,TLmax is > 80

0 else
(6.9)

with the movement of RNASE.

dxRNASE

dt
=











vRNASE if initiated

0 else
(6.10)
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vRNASE,i =
LmRNA,i

tdeg,med − TLmax∗∆xRIB
vRIB

(6.11)

For transcripts longer than ≈ 1000 nts, degradation is initiated already when transcrip-

tion is not finished, yet. Chen, Shiroguchi, et al. (2015a) found that 88 of 263 mRNAs

showed lifetimes of the 5’-cap shorter than synthesis time of the transcript. Accordingly,

co-transcriptional degradation was considered for long transcripts. Protein degradation

is described using a constant rate degradation rate kdeg for the bulk proteins (Maurizi,

1992b). First order degradation kinetics were assumed depending on the nutrient condi-

tion, as

kdeg =











0.01 h−1 in nutrient rich zones

0.08 h−1 in starvation zones
(6.12)

Consequently, bulk protein protein of a subsequent time step t+1 equals

protein (t + 1) = protein (t) ∗ (1 − kdeg) (6.13)

6.3.10 Geometry and Reactor Setup

In order to consider a relevant industrial fed batch fermentation scenario a 54 m3 stirred

tank bioreactor was chosen. The main geometry was derived from Haringa, Tang, Desh-

mukh, et al. (2016) with precise dimensions and information about the inner geometry

from Kuschel, Siebler, et al. (2017). The reactor setup included four baffles and a stirrer

with two Rushton stirrers equipped with eight blades at the bottom and six blades at the

top. With a stirring rate of 100 rpm the tip speed of 6.75 m s−1 was reached. The im-

peller Reynolds number was 2.77 × 106 and the required power was 225.69 kW, equaling

a power number of 13.64. The feeding rate was set to 3.68 kg m−3 s−1 for an average

growth rate of 0.2 h−1. Aeration, gas transfer, and oxygen uptake were neglected in the

study. The simplifying focus on the mono-phase conditions mirrors the basic strategy to

showcase the propagation of transcript dynamics and the occurrence of additional large-

scale ATP demands. Noteworthy, experimental data of Löffler, Simen, Jäger, et al. (2016b)

were measured particularly excluding any impacts of oxygen limitation. Furthermore,

said power inputs and cultivation conditions were chosen such that oxygen limitation is

unlikely in the large scale scenario. Cell concentration of 31.8 kgCDW·m−3 was assumed

and a simple Monod-like kinetic was used to simulate the substrate uptake qs:
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qS = qS,max
cS

KS + cS
(6.14)

where qs,max is the maximum uptake rate, cs is the glucose concentration, and the approx-

imated substrate specific uptake constant Ks with 4 mg L−1. The maximum uptake rate

was calculated with the biomass substrate yield YXS = 0.25 gsg−1
CDW and the maximum

growth rate µ = 0.2 h−1 (Villadsen et al., 2011). Based on the experimental observations in

Löffler, Simen, Jäger, et al. (2016b) we concluded that stringent response is the predomi-

nant regulatory scheme initiated by repeated starvation. As a key characteristic stringent

response reduces ATP consuming procedures trying to keep carbon supply on the maxi-

mum level achievable under stress conditions. Accordingly, we consider glucose uptake

as a Monod-type function not being affected by the stringent response observed.

6.3.11 Simulation Setup

For the numerical simulation, the commercial calculation tool ANSYS Fluent version 19.1

was used. With 872,232 hexahedral numerical cells resulting in an aspect ratio of 12.6

and a minimal orthogonal quality of 0.34 high mesh quality was achieved. Schmidt num-

ber (Sc) tuning with Sc = 0.2 lead to the same circulation time as achieved by Haringa,

Tang, Deshmukh, et al. (2016). The flow field was approximated by solving the Reynolds-

averaged Navier-Stokes (RANS) equations in combination with the realizable k-ǫ model

for turbulence. All surfaces were set as no-slip boundaries except for the no-shear top

area which equaled the reactor filling height. Baffles and impellers were modeled as 0-

thickness walls. Both impeller units were set to sliding mesh motion to generate a more

realistic flow field. For glucose feed, a separate volume at the top of the reactor was

defined, and a constant mass flow was set. The flow field and uptake kinetics were calcu-

lated every 10 ms until the glucose concentration was constant and a pseudo stationary

gradient was reached showing constant metabolic activity. The conditions were ‘frozen’

for 180 s to track bacterial movements. These lifelines were simulated as massless La-

grangian particles with a discrete random walk (DRW) model passing through the flow

field. Every 30 ms, position and glucose concentration of each bacterium were recorded.

In total, 120,000 bacterial cells were tracked over around 180 s (residence time distribu-

tion: Appendix Figure D.6). According to the ergodic theorem, the same average values

are obtained by tracking 1,080,000 bacteria for 20 s (for more information see Appendix:

Supporting information F). However, due to limitation of simulation time and capacity
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the simulation results were extended by repeating the single lifelines (Figure 6.2, B) ev-

ery 180 s, while preserving the lifeline cluster groups. RNAP activities, mRNA levels,

ribosomal activities and protein formation were calculated as described in chapter 3.4

considering each lifeline cluster (RNAP and mRNA profile of one lifeline group: Figure

6.2, C; mRNA content of individual cells after 180s: Figure 6.7, C). Finally, additional ATP

demands were estimated (Figure 6.2, D).
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FIGURE 6.2: Impact of frequent exposure to feast and famine conditions in
a large scale bioreactor (A). White are-as reflect nutrient excess while gray
areas indicate starvation. The size of the areas reflect the corresponding res-
idence time indicated with tS for starvation and tE for excess residence time
(C: Bar plot for one cluster of particle trajectories). The starvation induced
regulatory responses are propagated into the glucose excess zone causing
a maximum growth independent ATP-maintenance in the glucose excess
regime (D) based on additional active RNAP for transcription (TC) (C) and

Ribosomes for translation (TL).
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6.4 Results

6.4.1 Simulation results biological model

To identify data driven parameters for the model of E. coli K12 W3110, clusters of mean

mRNA levels were identified (Appendix section C). Figures 6.3, 6.4, and 6.5 show the

simulations (blue lines) and mean experimental values (red dots) for mRNA levels, active

RNAPs, and the number of translated proteins per cell during PFR passage. The synthe-

sis rate accelerates over time as more RNAP molecules are involved in the transcriptional

response to the starvation stimulus. After a transcript is completely synthesized and the

RNAP is released the number of active RNAP shortly drops before it rises again. Syn-

thesized proteins appear with a delay that corresponds to the required translation time.

Activities for transcription and translation result in additional ATP demands which are

indicated as add-ons to non-growth dependent maintenance (NAM), shown in Appendix

figure D.1. For transcription, costs are derived from nucleotide balancing including the

release of nucleotides by mRNA degradation and the need for mRNA synthesis. Cost for

translation mirror the amino acid needs and integration according to ribosomal activity.

As indicated, translation costs are more than 2.5 fold higher than those of transcription.

At maximum, cells have to bear 36.8 % additional NAM, 10.4 % coding for transcription,

26.4 % for translation. This happens during the early phase of frequent starvation expo-

sure, i.e. after 3 starvation passages (25 min process time). After two hours process time,

the ATP demand still increase. More than 45 % NAM increase is observed illustrating the

remaining high number of active RNAP. Later, after 28 hours, NAM add-ons reduce more

than five-fold compared to maximum needs. Then, transcription accounts for about 1 %

NAM rise only. Total NAM increase only mirrors 9.5 %.

6.4.2 Linking cluster kinetics

Cellular adaptations to frequent environmental stimuli are mirrored in the cluster dynam-

ics of differentially expressed genes (DEGs) that were measured after 25 min, 2h, and 28

h. Only 81 of 521 DEGs are conserved over the entire process time. This reflects the re-

placement of the initial sigma factor 70 dominated response by σ38 mediated regulatory

programs (Löffler, Simen, Jäger, et al., 2016b). To simulate the transition so-called ‘damp-

ing’ and ‘amplification’ factors were identified using mean gene expressions as reference

based on the simulated log2FC mRNA dynamics in Figure 6.3, 6.4, 6.5. Clusters were

subdivided in ‘persisting’, ‘subsiding’ and ‘non-active’ fractions. The first collected genes
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FIGURE 6.3: Simulated, cell-specific number of additional mRNA-levels
(red dots: experiments; blue line: simulation), active RNAP and translated
proteins of clusters 1 to 4 (C1-C4) along starvation passage (t=0-110s, 6.1)
at 25 min. The logarithmic fold change (log2FC) relates to STR values at the

same process time.
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FIGURE 6.4: Simulated, cell-specific number of additional mRNA-levels
(red dots: experiments; blue line: simulation), active RNAP and translated
proteins of clusters 1 to 4 (C1-C4) along starvation passage (t=0-110s, figure
6.1) at 2 h. The logarithmic fold change (log2FC) relates to STR values at the

same process time.
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FIGURE 6.5: Simulated, cell-specific number of additional mRNA-levels
(red dots: experiments; blue line: simulation), active RNAP and translated
proteins of clusters 1 to 3 (C1-C3) along starvation passage (t=0-110s, figure
6.1) at 28 h. The logarithmic fold change (log2FC) relates to STR values at

the same process time.
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with continuing high expression levels whereas the second comprised genes with declin-

ing expression levels. The last summed those genes that were either not yet or no more

expressed between subsequent time points (Figure 6.6). The damping factor is the ratio

of the mean log2FC of subsiding and persisting genes for each cluster between two time

points. The amplification factor is the ratio of the mean log2FC of genes at 25 min which

are active at time point 2h divided by the mean log2FC ratio of genes activated after 2h

(see exemplary calculation figure 6.6). The factors are used to calculate the amount of

active RNAP:

xRNAP (s, t) = xRNAP (t) ∗ ( 1 − Damping f actor
(Scrit − Smin)

∗ (S(t)− Smin)) (6.15)

xRNAP (s, t) = xRNAP (t) ∗
Ampli f ication f actor

(Scrit − Smin)
∗ (S(t)− Smin) (6.16)

The entire transition process is guided by the number of starvation passages S(t) per time.

Smin encodes the minimum and Scrit the critical number of passages. Whereas the first

is a regression parameter, the later reflects experimental observations of Löffler, Simen,

Jäger, et al. (2016b) as follows: 25 min equal 3 PFR (starvation) passages, 2 h equal 14,

and 28 h equal 176. Noteworthy, the 28 h benchmark is chosen as a new steady state

was observed already then (Löffler, Simen, Jäger, et al., 2016b). The modeling approach

allows to transfer the STR-PFR observations to other conditions using the frequency of

feast/famine exposure S(t) as key criterion.

6.4.3 Numerical Simulation

Glucose gradient

Applying the criterion of converged turbulent dissipation rate/power input the pseu- do-

stationary glucose gradient of figure 6.7 was obtained (figure 6.7). Accordingly, no further

changes of glucose concentrations simulated at five locations occurred. The average con-

centration in the bioreactor was 23.74 mg L−1. For comparison, the average glucose level

observed by the Lagrangian particles (cells) was 22.79 mg L−1. Consequently, only 4 %

deviation was found which is qualified as a small difference indicating good homoge-

neous distribution and reflecting impacts of the turbulence model and of particle lifeline

filtering. The volumetric distribution between starvation and excess zone is 73 % to 27 %,

respectively. Again, similar percentages were calculated by integrating mean residence

times of all lifelines. The mean residence time of the cells in the starvation regime is 9.46 s
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FIGURE 6.7: Simulation results of the 54m³ stirred tank reactor. A, Left:
Log-contours of cs/Ks gradients. B, Middle: Assignment to regimes (limi-
tation, green: cs < Ks; saturation, red: cs>Ks); C, Right: normalized mRNA

content analyzed after cells fluctuated 180 s through the bioreactor

(Appendix Figure D.6) which is in the same range as published by Haringa, Tang, Desh-

mukh, et al. (2016).

Ideally, large-scale simulations should have been compared with real in situ mea-

surements to challenge the predictions. However, such data are missing, which repre-

sents a common problem often faced by academic groups. Nevertheless, applying CFD

simulations still offers best chances for getting highly accurate large-scale predictions as

complex hydrodynamics even including overlapping flow fields between stirrers are well

predictable. Notably, the latter may hamper the application of simplifying compartment-

based estimations which basically assume separated flow fields between stirrers (see Ap-

pendix D.11).

For simplicity, Eulerian simulations only considered the liquid phase thereby assum-

ing sufficient oxygen supply in the bioreactor without calculating dissolved oxygen con-

centrations explicitly. Furthermore, additional turbulence due to bubble interaction was

neglected, too. Substrate consumption followed Monod-type kinetics taking place in each

numerical cell. This implied that bacterial cells were homogeneously distributed at each

time step.
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Statistical Evaluation

Lifeline statistics reflect the imprint of changing micro-environmental conditions on cells

fluctuating through the bioreactor. To be precise, cellular residence times in different con-

centration zones and shifts between proximal regimes were studied. At start, cells were

‘inserted’ into the bioreactor along a straight line reaching from top to bottom. After a

few simulation steps, cells were distributed homogeneously before individual cell track-

ing started for 180 s. Lifeline records were cured by percolating only those with residence

times longer than 0.13 s. The latter represent unrealistically turbulent fluctuations. The

following threshold was defined for regime analysis: If cells experience lower or higher

glucose levels than KS for at least one second, the period is labelled as starvation or satu-

ration time, respectively. Noteworthy, the minimum residence time of one second equals

the average metabolite turnover time in E. coli (Taymaz-Nikerel, Van Gulik, et al., 2011;

Shamir et al., 2016). The implementation of the harsh regime boundary KS finally lead to

rapid and somewhat artificial regime shifts. They were excluded from analysis by ignor-

ing the upper and lower 1 % of regime changes. Alternately, the consideration of alar-

mones such as (p)ppGpp serving as intracellular triggers to initiate transcriptional reg-

ulation may yield at continuous models. Unfortunately, understanding of alarmone for-

mulation, degradation, and alarmone induced regulation is still too fragmented to build

dynamic transcriptional models. In total, measures for residence time percolation and

shift filtering only reduced the data set by 3 % (Appendix figure D.6).

At maximum, 41 regime shifts were observed during the 180 seconds observation pe-

riod. Most frequently, 20 regime changes occurred and cells rested in single zone no

longer than 30 seconds. As a key characteristic, cells once exposed to glucose starva-

tion reset their regulation signal. But RNAP and ribosomes remain active propagating

the starvation response into the glucose excess regime (Figure 6.2, C, D). According to

their starvation pattern the cell lifelines were assigned to 70 different clusters. Thereby

each cluster represents a specific fluctuation pattern reflecting the amount and duration

of changes between starvation and excess zone (Figure 6.2, B).

6.4.4 Coupling the biological model with lifelines

To minimize the computational efforts particle lifelines were exported from ANSYS Flu-

ent. Starvation patterns of lifelines (Figure 6.2, B) served as input for the biological model.

A workflow scheme is provided in figure D.8, appendix. It was assumed that each entry

of the starvation zone activated the expression of distinct gene clusters as experimentally
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FIGURE 6.8: Additional ATP demands of a population of 120,000 ‘new-
born’, not preconditioned cells in a 54 m3 re-actor over 4.5 hours process
time. Courses for mean transcription (blue: TC), translation (green: TL)
and the sum of both are depicted (red: TC+TL). The shaded areas display

the standard deviation.

observed. Accordingly, individual expression patterns were estimated for each cell mir-

roring their particular tracking history. As indicated in figure 6.7C, the basic expression

level of the cellular population is increased by 37.7 % compared to the reference. This re-

flects the additional cellular needs to adapt to the heterogeneous mixing conditions in the

reactor. Noteworthy, high mRNA levels, induced by preceding starvation, are propagated

into glucose rich zones (Figure 6.7, C). Expression patterns reflecting starving conditions

occur in saturating glucose zones and vice versa. The phenomenon mirrors the delayed

transcriptional response that is slower than convective movements of cells in the biore-

actor. Consequently, a high transcriptional heterogeneity occurred in the tank. A maybe

surprising pattern is disclosed: In the lower part of the reactor, cells envisage low glucose

concentrations but show reduced mRNA levels (norm. mean mRNA level: 0.33). On con-

trary, cells facing high glucose levels in the upper part reveal high mRNA levels (norm.

mean mRNA level: 0.42). About 25 % of the cells permanently stay in the starvation zone.

This fraction even adapts to the limiting conditions which reduces the transcriptional re-

sponse gradually. Cells located close to zones of glucose excess highly fluctuate between

starving and saturating conditions. Consequently, strong gene expression responses are

observed. The average ATP-demand of a newborn, not pre-conditioned population of

120,000 cells exposed to the 54 m3 bioreactor is shown in Figure 6.8. Basically, plot 8 il-

lustrates the cyclic passing of 180s lasting lifelines. To filter related peaks only average
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values are indicated using a moving median filter over 700 data points. Furthermore, a

moving standard deviation with a window size of 400 data points is added as shadow.

Synchronization-like patterns reflect clustering of particles in groups. 70 bins were used

with passable computational effort. The maximum of 45 % additional maintenance is

predicted shortly (0.03 h) after cells were exposed to the bioreactor condition. After about

0.5 h most of the population has adapted to the heterogeneous environment reducing the

additional ATP demand to 6.5%. After 4.22 hours the last cell fraction is in adaption state.

6.5 Discussion

To disclose spatial heterogeneities of regulation patterns and additional ATP demands of

E. coli K12 W3110 exposed to a 54m³ stirred tank reactor CFD based lifeline analysis was

coupled with agent-based modeling for transcription and translation. As a prerequisite,

a proper model describing stress induced dynamics of transcription and translation is

needed. Applying a clustering approach, it was possible to properly describe the experi-

mentally observed transcription dynamics (Löffler, Simen, Jäger, et al., 2016b) of 821 genes

using 16 parameters. Under steady-state conditions newly synthesized and recycled nts

equilibrate in cells before they enter PFR. However, ATP demands for transcription rise

inside PFR as mRNA synthesis exceeds the recycling rate. The introduction of ‘ampli-

fication’ and ‘damping’ factors managed to model the transition from fast response to

long-term adaptation, as visible in the experimental data. Accordingly, modelling suc-

ceeded to mirror the cellular efforts shifting control from σ70 to σ38, more and more (Löf-

fler, Simen, Jäger, et al., 2016b). Given that E. coli cells with doubling times of 3.3 hours

contain about 120 active RNAPs (Bremer et al., 2008), approximately one fifth of the avail-

able RNAPs at 25 min is used in the transcriptional response (Figure 6.3). The amount

of involved RNAPs slowed down after 28 h for two reasons. First, the absolute number

of initiated transcripts is reduced which mirrors cellular adaptation. Second, transcrip-

tion even stopped after 50 s for a large group of genes (Figure 6.5). Accordingly, reduced

synthesis costs occur. This is amplified by the prolonged life time of transcripts dur-

ing starvation which further reduces the amount of synthesis to obtain a certain level of

mRNA abundance as described in chapter 3.4.4. mRNA lifetime is proportional to their

distance from the 5′ end of the transcript according to (Chen, Shiroguchi, et al., 2015a),

what is in line with the observation that the 5′ end contains important determinants that

regulate RNA lifetime (Arnold et al., 1998). Appendix figure D.1 shows that protein syn-

thesis accounts for the major part of ATP consumption. Peak values reach about 45 %
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NAM at 2 h process time. Later on, the demand steadily reduces as less mRNA tran-

scripts are synthesized and less proteins are translated. At 25 min, the number of active

ribosomes involved in the stress response rises steadily during starvation reaching 10 % of

all available ribosomes (Reference: 103 ribosomes/cell, (Bremer et al., 2008). The fraction

decreases to 5 % after 28 h reflecting the adaptation process. Linking the transcription and

translation model to large-scale lifelines reveals the impact of delayed cellular response

to fast external changes. In essence, cellular responses of transcription and translation are

slower than convective zone shifts. Consequently, they are transported from one location

to another, basically decoupled from external changes. Spatial analysis of all cells after

180 s (Figure 6.7, C) reveals highest transcript levels close to or even inside the glucose

excess regime (50-80 % mRNA upregulation) whereas the lowest are found at the bottom.

Once initiated, the starvation response propagated into the glucose excess zone. There,

additional needs for transcription, translation, and ATP may limit the targeted formation

of industrial products in microbial cells. Noteworthy, it is exactly this feature that distin-

guishes the current model from previous lifeline studies (Haringa, Tang, Deshmukh, et

al., 2016; Haringa, Deshmukh, et al., 2017; Kuschel, Siebler, et al., 2017). There, metabolic

and cell cycle responses were considered as instantaneous cellular response. Fast external

changes are immediately translated in cellular replies. Later, Haringa, Tang, Wang, et

al. (2018) implemented metabolically buffered responses by considering variable enzyme

pools (Tang, Deshmukh, et al., 2017). In this context, the current study proceeds by ad-

ditionally integrating downstream transcriptional responses incorporating another level

of cellular control. Our approach introduces the non-instantaneous, delayed response by

considering intracellular programs of longer time scales than external changes. Accord-

ingly, responses may propagate in different zones of the reactor causing non-expected

transcriptional regulation programs, there.

The approach was exploited further by estimating the entire add-on ATP demand for

120,000 newborn cells monitoring 4.5 hours process time (Figure 6.8). As shown, the adap-

tation of the population is finished after 4.2 h disclosing a remaining ATP add-on of about

6 % NAM compared to the 45 % max NAM at the beginning. In terms of microbial produc-

tivity, these ATP needs simply reduce the amount of available ATP for product formation,

i.e. they limit biomass specific productivities. The phenomenon has often be described in

large scale fermentations (Lara, Galindo, et al., 2006). Noteworthy, it is likely to be pro-

nounced in hyper-producing cells with ATP intensive product formation. Often enough,

such production processes run in fed-batch mode installing reduced, limiting metabolic

activity to stay within the technical limits of aeration and cooling. Consequently, those
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additional ATP needs hit cells with limited ATP forming capacities.

To evaluate the impact of particle simulation time an additional simulation was con-

ducted using a high performance computation cluster studying 60,000 particles for about

460s. Similar results were obtained for the key readouts, e.g. time courses of ATP main-

tenance demands and residence time distributions remained. The simulated adaptation

time reduced from 4.2 h to 3.7 h mirroring the lowered amount of particles staying in the

starvation zone for the entire process time (around 5 %) (see supporting information J).

However, modelers need to consider that long simulation times are likely to violate the

intrinsic constraint of one-way coupling neglecting particle-environment interactions for

the sake of simplicity. In this dilemma, we decided for the analysis of 180s to capture key

dynamics while still fulfilling the one-way coupling constraint.

As pointed out by Löffler, Simen, Jäger, et al. (2016b), the majority of transcription

dynamics is caused by the frequent on/off switching of stringent response, mediated by

rising intracellular (p)ppGpp levels. Hence, creating stringent response deficient strains

(Michalowski et al., 2017) opens the door to prevent non-wanted NAM increase. Besides,

other cellular stress programs may be targeted as well (Appendix: Table D.4).

6.6 Conclusion

The current modeling approach marries computational lifeline analysis with cellular reg-

ulation models thereby introducing the non-instantaneous cellular response to changing

extracellular conditions. Consequently, the spot of stress induction and the location of

cellular phenotype do not need to be the same. Accordingly, heterogeneities in large-scale

bioreactors comprise the physical levels linking local conditions tightly with metabolic

responses and the cellular regulation level encompassing delayed responses such as tran-

scriptional or translational effects. To detect the latter and to describe them properly in

data driven models experimental scale-up simulators are necessary that mirror transcrip-

tional and translational cellular replies as performed by Kuschel and Takors (2020). The

setting of such devices may differ from ‘conventional’ scale-up simulators that typically

mimic circulation times. Because the entire transcriptional responses should be clearly

detectable rather long stress exposure periods should be installed and read.
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Chapter 7

Conclusion

An exponentially growing human world population with an increasing need for more and

cheaper sustainable products presents a huge challenge for industrial biotechnology. Eco-

nomically efficient processes and production capacities must be exploited and optimized

by tackling scale-up challenges, to enable efficient mass production. The complexity of

bioreactor scale-up is a consequence of the interplay of interdisciplinary challenges, such

as robust strain design and optimal process performance, as displayed in figure 7.1.

Understanding the function of cellular behavior under varying conditions requires

the development of computational approaches that incorporate gene regulatory models

as well as environmental perturbation simulations that rely on experimental evidence. In

this thesis a method is provided for achieving this goal, by combining the two approaches.

This chapter places the individual research topics into a scientific context by answering

the research questions listed in 1.

Answering the Research Questions

If a newly engineered strain optimized for large-scale bioprocesses is developed, the be-

havior of the altered microbe must be the result of consistently engineered changes, rather

than spontaneously introduced mutations that are due to stress. One way to check for in-

consistencies is presented in the answer to question 1.

A1: Less costly than RNA-Seq, DNA-Seq is suitable for the identification of struc-

tural variations at the end of a series of experiments, to evaluate the newly engi-

neered strain. Unicycler, Mauve and Snippy serve as the main assembly and analy-

sis algorithms.

As presented in chapter 3, the sequence comparison of both E. coli strains (mutant and

parental) revealed presence of sequence variations, but no problematic mutations were
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FIGURE 7.1: Summary of experimental and numerical simulation ap-
proaches leading to a hybrid approach which combines transcript dynam-

ics with large-scale CFD simulation

identified, and there was no influence on the favorable results that were observed. Con-

sequently, the genomic changes that lead to a significantly lower maintenance coefficient

and increased robustness with regard to the influence of heterogeneities can be traced

back to the engineered robust strain chassis, rather than to stress-induced mutations.

To determine the impact of heterogeneous process conditions and evaluate the per-

formance of an engineered strain (E. coli SR) optimized for large-scale fermentation pro-

cesses, in comparison with its parent strain (E. coli K-12 MG1655), both strains were cul-

tivated in a scale-down device in which nitrogen starvation was repeatedly induced (see

chapter 5). Transcriptomic analysis was used to derive the transcriptional landscape of

both strains and led to the answer to research question 2.

A2: The core algorithm used in the established workflow (DeSeq2) was suitable

for identifying up to 837 statistically significant up- and down-regulated genes, in

addition to regulation pathways for the identification of mechanisms for coping

with fluctuating substrate conditions, as well as loss- and gain-of-function mutants

associated with the mutant phenotype.
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Differential gene expression analysis yields information on the complete set of mRNA

transcripts that are produced under specific circumstances, due to their direct link to the

cell’s environment. Based on the workflow established, the regulatory response of mi-

croorganisms can be revealed, to optimize the production host by identifying strategies

and bottlenecks that arise during microbial adaptation.

Analysis of mRNA transcripts in chapter 5 following repeated nitrogen starvation in

a STR-PFR scale-down system, revealed clearly distinguishable transcriptomic responses

for the two E. coli strains, which led to the answer to question 3.

A3: Compared with E. coli MG1655, the mutant SR strain displayed better suitability

to large-scale bioprocesses, due to a diminished reaction towards repeated nitrogen

starvation.

Basically, E. coli SR only displays Ntr response to nitrogen starvation, and no ppGpp in-

duced response was shown. However, E. coli SR seems to counteract the missing ppGpp

response with partial cell death, negative regulation and induction of toxin/ antitoxin

systems to restrict transcription and translation processes. Although it was possible to

identify certain mechanisms in the SR response to repeated nitrogen starvation, the com-

plex response as a whole, and the various interactions that take place, are not yet fully

understood.

As already indicated by the answer to question 3, transcriptional regulation alone may

be insufficient to describe stress-induced transcription changes. Other cellular processes

such as signaling, metabolomics or proteomics must be monitored at the same time. Even

though no proteomic data were gathered in this study, translation is inherently coupled

to transcription, since energy preservation precludes the accumulation of unused tran-

scripts. Therefore, translational cost predictions regarding protein formation are essen-

tial, in order to complement the regulatory model. The answer to question 4 provides an

extension of the model predictions.

A4: The molecular translational process can be modeled in a co-transcriptional man-

ner substantiated by values from the literature. In the process, ribosomes are in-

cluded as a limited quantity with a translational elongation rate equal to the tran-

scriptional elongation rate. A maximum of 11 translations per mRNA strand in-

hibits the unlimited production of protein.
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Experimental evidence can thereby validate and complement or correct certain assump-

tions in the future. To make the analysis outputs accessible to a large group of researchers,

a comprehensive, yet simple expression is necessary, which sums up the transcriptional

and translational changes observed. This challenge led to the answer to research question

5:

A5: ATP requirements for the formation of amino acids and nucleotides were calcu-

lated. The overall costs of amino acid synthesis and polymerization were estimated

as 4 ATPs, whereas the absolute numbers of synthesized and degraded nucleotides

were derived from experimental data. For recycling, nucleotide costs of 2 ATP were

assumed. As a reference, growth independent maintenance (NGAM) was used, at

0.0027 mol (gDW h−1).

Based on the work of Kaleta et al. (2013), every cellular process was broken down into

either anabolic (ATP demanding) or catabolic (ATP recycling/ production) reactions, to

calculate the overall cost of a molecule in terms of ATP. Since cells have an upper limit

of ATP production capacity, as a higher level of stress usually results in slower growth

and limited productivity, this measure can be used to translate stress-induced transcrip-

tomic changes into add-on to NGAM demands, permitting the visualization of potential

limitations in cellular production capacity.

After certain regulation patterns in E. coli were identified, the question arose as to

which model would be suitable for displaying the observed dynamics. The examination

of simulation methodologies in section 2.6 led to the answer of research question 6.

A6: Continuous models, such as ODE models, are suitable for displaying the dy-

namic regulatory changes that were observed. They can quickly provide a detailed

representation of the quantitative changes, and do not require huge computational

capacity. When these models are combined with stochastic elements, it is possible

to represent the behavior of individual molecules in a more realistic way, than the

ODE approach alone.

Due to their reliance on a very few variables, Boolean models yield only a very abstract

view of qualitative dynamic behavior; their main advantage is the speed at which cal-

culations can be made. At the same time, single-molecule level models are not the only

suitable models for this purpose. While they take into account the full complexity of gene



Chapter 7. Conclusion 141

regulation, single-molecule level models are the hardest to study analytically, and the

most expensive when it comes to computational analysis. Also, stochastic experimental

data is currently very hard to find. For these reasons, an agent-based model combining

ODE and stochastic elements was used in this study. In an approach that picks up on the

work of Nieß et al. (2017), members (e.g. RNAP, ribosomes) are treated as autonomous

molecules that are characterized by certain properties, in accordance with an ODE for-

malism. That means that, all molecules are represented by discrete values in accordance

with observations made during experiments, and differentially expressed genes are ran-

domly chosen for expression. This implementation offers the potential for uncomplicated

adaptation to other conditions or organisms, as long as organism-specific parameters are

available. Additionally, a rather simple mathematical formulation makes it possible to

extend the model, including the metabolic response, to a multi-layer system.

To determine the biological response in an industrially relevant scenario, a realistic

method must be used to investigate the cellular environment inside an industrial-scale

bioreactor. A single-phase fluid flow simulation in CFD was used to simulate substrate

distribution in a 54 m−3 reactor. However, there is a large number of different approaches

to displaying this heterogenic environment, which provides the reason for answering

question 7.

A7: The Euler-Lagrange modeling approach based on the realizable k-ǫ turbulence

model, in combination with SM, was suitable for simulating a glucose gradient in a

stirred tank reactor.

After the simulation of a glucose gradient and particle lifelines via a Euler - Lagrange

approach, it was necessary to combine the CFD results with the biological model. Due

to computational limitations, it was not possible to establish a direct link between the

agent-based model and the Euler-Lagrange framework. That means that the continuous

resolution of the biological model and its impact on the reactor environment (which could

yield a more realistic representation than otherwise possible) could not be included in this

study. Consequently, assumptions have been made to simplify the modeling process, as

summed up in the answer to question 8.

A8: Two computationally intensive analysis methods were combined, by using La-

grangian trajectories to record particle location and glucose substrate concentration,

and employing agent-based modeling to predict the biological response to it in a
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Matlab environment. Starvation duration and frequency as identified via particle

tracks were used as input parameters in the biological model.

The key question in this study arose after both models were combined, and the conse-

quences of insufficient mixing for microbial energy levels were investigated. The answer

to this question follows:

A9: In order to achieve starvation adaptation in a large-scale reactor, E. coli needs

up to a maximum of 45 % in additional growth-decoupled maintenance shortly (0.03

h) after the cells have been exposed to the bioreactor condition. After about 0.5 h,

most of the population has adapted to the heterogeneous environment, reducing the

additional ATP demand to 6.5 %. After 4.2 h, the last cell fraction is in an adapta-

tion state. These results indicate delayed and reduced production of ATP-intensive

products, ultimately resulting in a reduced space-time-yield, and loss of economical

attractiveness.

The research questions answered so far conclude the main part of this thesis. The re-

maining research questions are concerned with the extension from single to multiphase

conditions, including the safflower oil experiments presented in Appendix E. Since the

exact distribution of safflower oil in a turbulent system and the interaction with bubbles

is unknown, preliminary studies were performed with a main focus on bubble surface

tension, size distribution and oxygen mass transfer coefficients in the absence and pres-

ence of safflower oil. The first question, therefore, refers to experiments performed to

investigate the mentioned parameters, and it is followed by the implementation strategy

for a simple oil-in-water system in a CFD environment, in order to examine oil droplet

distribution in a large-scale scenario.

A10: Safflower oil reduces surface tension of bubbles in water from 71 mN m−1 to

around 61 mN m−1 at thermodynamic equilibrium, but it showed no effect in a com-

plex glucose medium, as surface tension was already lowered to around 35 mN m−1,

mainly due to the presence of salts. Measurements of bubble size distribution show-

ed reduced bubble diameters when oil is present. However, kLa measurements in-

dicate the opposite of the anticipated effect.

Reduced bubble size lead to an increase of the interfacial area, potentially resulting in
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increased species mass transfer. However, kLa values in the presence of safflower oil,

regardless of the setup or medium used, were diminished by up to 50 %, compared with

oil-free systems. This shows that oil has a much more complex effect on mass transfer

than expected, which cannot solely be explained by an increase of the interfacial area. A

thorough analysis is needed to quantify these effects.

By elucidating the putative contributions of modeling, the discussion presented above

has highlighted the need for knowledge-based process scale-ups. In this thesis, a frame-

work has been presented that includes a transcriptional analysis workflow to gain in-

sight into the biological response of starvation-induced adaptation processes, which in

turn has been translated into an agent-based regulatory model. When the agent-based

model is combined with a glucose gradient simulation in a 54 m3 bioreactor, they serve

as a method for a facilitated a priori large-scale process performance test of robust strain

design as well as optimized process conditions. In detail, the presented methodology en-

ables the combination of scale-down experiments with numerical predictions of heteroge-

neous large-scale environments and their effect on microbial hosts in terms of additional

growth-decoupled maintenance demand. Complex transcriptomic analysis results can be

translated into an easy-to-interpret formulation with the use of ATP as a universal energy

currency. Additionally, through the use of this method it is possible to predict the extent

to which the overall process time in an industrial scale scenario will be increased due to

microbial adaptation. In addition to transcriptomic analysis, genome analysis has proved

to be a simple, cost-efficient and valuable tool for validating engineered strains in het-

erogeneous scenarios, and for supporting the design of other strains. Since the presented

methodology is versatile, it can be extended in accordance with the top-down approach,

by including results from further studies that display a range of granularity. Additionally,

it can be adapted to study other stress factors and organisms.
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Chapter 8

Outlook

This thesis provides numerical methods for the investigation of substrate distribution in-

side a large-scale bioreactor, as well as the biological response to it. However, the methods

presented are subject to limitations. As microorganisms face depletion of multiple nutri-

ents (e.g. nitrogen, phosphorus or oxygen) in a heterogenic bioreactor, a combination

of nutrient starvation conditions as presented by Kuschel and Takors (2020) should be

tested in STR-PFR experiments, and modeling approaches extended accordingly. Addi-

tionally, by-product formation might be an important factor to consider in accounting for

media composition changes as presented in a recent study published by Sarkizi Shams

Hajian et al. (2020). Since multi-component approaches are computationally intensive,

CFD simulation is currently limited by the computing power available for the respective

investigation, and often only snapshots over the range of a few minutes of the bioreactor

environment including the microbial producers can be represented. As the technology

develops further, simulations of more complex interactions over a longer period of time

may be feasible.

Despite the current limitations of numerical simulations, further investigation is war-

ranted into the contribution that they can make to in vivo experiments that incorporate

large-scale conditions and single-cell resolution. But due to a lack of large-scale experi-

mental data, many regulation theories are still based to some extent on empirical obser-

vations. The prediction accuracy of biological models can be improved by the further

development of single-cell resolution techniques, which are a promising tool for increas-

ing the understanding of differential gene expression in microorganisms (Brognaux et al.

(2013) and Taheri-Araghi et al. (2016)). Especially when combined with comprehensive

omic data analysis, including transcriptomic, proteomic and metabolomic data sets, bio-

logical models will help to identify complex regulatory networks. Further research should

focus on combined approaches within a short sampling time to fully understand micro-

bial behavior. Although work on this combined approach has just begun, it has significant
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potential for further developments with regard to the design of reactors and strains.

However, one inherent problem of transcriptomic data analysis is the enormous va-

riety of methods and algorithms, which makes possible subjective interpretations. This

diversity pushes the scientific research forward, but at the same time makes it difficult to

find an exact explanation for certain phenomena. Variations in the way experiments are

carried out, and in sequencing methodology add to the problem.

In conclusion, models resemble reality only to a given degree. Many process parame-

ters, such as temperature or pH, are not fully considered, and the complexity of an organ-

ism as a whole has yet to be represented. Each assumption that is made takes the model

further away from reality. As Almquist et al. (2014) have stated, the real value of a model

lies in using it to predict, evaluate, and explore different scenarios or assumptions involv-

ing the modeled system and its surrounding environment. An established model should

thus be seen first and foremost as a tool that can be used to answer questions about the

microbial host or process conditions, and it should be used as a complement or alternative

to performing actual experiments.
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Appendix A

Cluster evaluation results

TABLE A.1: Cluster indices at different time points for k-means clustering

Timepoint Silhouette S Figure of merit Intra cluster variance
25 min 0.682 0.097 0.030
2 h 0.724 0.781 0.015
28 h 0.562 0.068 0.077
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Appendix B

Engineering of robust Escherichia coli

chassis strains for large-scale

production processes: Supporting

Information

Supporting information S1:List of all primers used
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Supporting information S2: Experimental procedures (additional

information)

Construction of Deletion Strains

For each deletion locus, two cycles of recombination were used to first insert the dual-

selectable tetA-sacB cassette and second to replace it with a fused DNA construct of se-

quences adjacent to the deletion locus. Successful recombination with the construct effec-

tively resulted in the deletion of the target locus. Initially, the original strain was trans-

formed with pSIM5. pSIM5 contains the exo, bet, and gam genes of bacteriophage lambda

under transcriptional control of a temperature inducible system allowing induction at 42
◦C and normal growth at 30 ◦C. Moreover, pSIM5 has a temperature-sensitive origin of

replication that enables curing of the plasmid upon cultivation in non-selective media at

37 ◦C.

For the first recombineering cycle, the tetA-sacB cassette was amplified from the genome

of T-SACK and used as a template for amplifying DNA fragments carrying about 50 bp of

homologous arms for chromosomal recombination. If necessary, homologous arms were

added separately to tetA and sacB and the fragments joined by overlap PCR. A strain car-

rying pSIM5 was then cultivated in 10 ml 2xTY medium in a 50 ml baffled shaking flask

at 30 ◦C on a rotary shaker set to 130 rpm until an OD of 0.2 was reached. The culture

was transferred into a 42 ◦C water bath and agitated for 15 min to induce recombineering

proteins from pSIM5. Cells were then chilled on ice and electro-competent cells were pre-

pared following standard protocols. Cells were transformed with about 100 ng of the tetA-

sacB PCR product carrying homologous arms and regenerated in SOC medium at 37 ◦C

for 3 - 4 hours. Regenerated cells were plated on 2xTY agar plates containing tetracycline.

A single colony was picked and again transformed with pSIM5 to yield a recombineering

competent intermediate strain carrying a chromosomal copy of the tetA-sacB cassette in

the target locus.

For the second cycle of recombination, first the recombineering template was con-

structed by amplification of DNA sequences from the genome of E. coli MG1655 adjacent

to the deletion locus and joining of these sequences by overlap PCR to create a fused con-

struct of the neighboring regions. The homologous arms created in this step ranged from

about 200 to 500 bp. The intermediate strain was subjected to the same procedure as de-

scribed for the first recombination cycle. Cells were then transformed with about 100 ng

of the target DNA sequence, regenerated in SOC medium at 37 ◦C for 3 - 4 hours and
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plated on counterselection agar. After incubation for 2 days at 42 ◦C large colonies were

picked and tested for the absence of tetracycline resistance by streaking onto 2xTY agar

plates containing tetracycline. Colonies showing no growth on tetracycline agar plates

were cultivated in 2xTY at 37 ◦C, their DNA isolated and the presence of the deletion

locus verified by sequencing.

Construction of eGFP production strains

Recombineering of E. coli MG1655 and E. coli RM214 was conducted as described in the

previous section. For the first cycle of recombineering a tetA-sacB cassette with homology

to the rhaB gene was created by amplifying the tetA-sacB cassette from the genome of T-

SACK with primers 427 and 428. The resulting intermediate strain was then subjected to

a second cycle of recombineering with a copy of the inactive rhaB gene amplified from the

genome of E. coli BW3110 pJOE4056.2 with primers 425 and 426. After counter-selection

and testing for the absence of tetracycline resistance the presence of the frameshift mu-

tation was verified by sequencing and the inability of the strains to ferment rhamnose

confirmed by streaking on 2xTY indicator agar plates containing rhamnose.

The backbone of pJOE4056.2 was amplified with primers 432 and 433. The tetA cas-

sette was amplified from the genome of T-SACK with primers 107 and 431. The two frag-

ments were joined and circularized in a Gibson assembly reaction (Gibson et al., 2009) to

yield pJOE4056.2_tetA and E. coli DH5α λpir was transformed with the reaction product

by electroporation. After verification of the plasmid by partial sequencing, E. coli MG1655

rhaB− and E. coli RM214 rhaB− were transformed with pJOE4056.2_tetA. Finally, the re-

sulting strains were streaked on 2xTY indicator plates with rhamnose to confirm both the

absence of rhamnose catabolism as well as the induction of eGFP production in presence

of rhamnose and absence of glucose.

Purification and Quantification of eGFP

E. coli BW3110 pJOE4056.2 was cultivated in glucose-limited minimal medium in prelim-

inary experiments. Cells were harvested by centrifugation, resuspended in homogeniza-

tion buffer (14 mM magnesium acetate, 60 mM potassium acetate, 10 mM Tris pH 8.0, 2

mM dithiotreitol) using approximately 1 ml buffer per 1 g of cell mass and passed twice

through a high pressure homogenizer at 15 – 20 kPa. Homogenized cell suspension was



156 Appendix B. Engineering of robust E. coli: Supporting Information

FIGURE B.1: Plasmid map of pJOE4056.2_tetA.

cleared by centrifugation at 15.000 g for 15 min. Purification of his-tagged eGFP was con-

ducted using nickel affinity chromatography (running buffer: 50 mM Tris-HCl pH 7.0,

elution buffer: 50 mM tris-HCl pH 7.6, 15 mM Imidazol).

The concentration of purified eGFP stock solution was determined to be 3.236 g/l by

Bradford Assay. The stock solution was diluted with ice-cold PBS-MgCa to measure an

eGFP calibration curve. 200 µl of diluted stock were transferred into a black 96 well-plate

with transparent bottom and lid and the fluorescence (excitation 485 nm, emission 535

nm) quantified in a SLT SpectraFluor plate-reader (Tecan, Switzerland). The resulting

calibration curve was used to convert the fluorescent values of bioprocess samples to

eGFP concentrations [g/l]:

ceGFP = RLUsample ∗ 9.9135 ∗ 10−6 + 9.6462 ∗ 10−6 (B.1)

Bioreactor Setup

The primary reactor was a 3 L bioreactor (Bioengineering, Switzerland) equipped with

flow baffles and two six-blade Rushton type impellers operated at 1000 rpm. A constant

aeration rate of 2.0 standard liters of ambient pressurized air per minute was employed

and the system operated at a total pressure of 1.5 bar. Temperature was monitored by

a platinum resistance thermometer and regulated by electrical heating or water cooling.

Temperature was set to 37 ◦C. The reactor was equipped with a pH sensor (Mettler Toledo,
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FIGURE B.2: Calibration curve for the conversion of fluorescence units to
eGFP concentration.

Columbus, USA) to control pH and a pO2 sensor for monitoring dissolved oxygen ten-

sion (PreSens, Regensburg, Germany). During all fermentation stages pH was set to 7.0

and regulated by automated addition of 3 M NaOH or 2.5 M H3PO4. Dissolved oxygen

tension was not regulated but maintained values above 50% saturation to 1.5 bar ambi-

ent air at all times. In the exhaust gas stream, the concentration of oxygen and carbon

dioxide was measured by gas sensors (BlueSens, Herten, Germany). During the chemo-

stat phase the feed was constantly added to the reactor by a peristaltic pump (Watson-

Marlow, Falmouth, United Kingdom). The feed flow was monitored by a balance record-

ing the weight of the stirred feed barrel and manually adjusted if necessary. The harvest-

ing pump operated as a slave pump set to maintain a constant weight of the bioreactor.

For this purpose, the stirred tank reactor was installed on a balance as well.

The secondary compartment was a plug-flow reactor with an inner tube diameter of

20 mm and a total volume of approximately 380 ml. Five ports along the primary axis

were used to take samples throughout the cultivation. Next to the first port P1 additional

constant aeration was provided at 0.15 standard liters per minute. In the PFR, oxygen

saturation was monitored close to ports P1 and P5 and maintained levels above 30% satu-

ration of ambient air conditions throughout the cultivation. Temperature in the PFR was

maintained at 36 – 37 ◦C by water heating and isolation material. A diaphragm metering

pump (Sigma/1, ProMinent, Heidelberg, Germany) was used to transfer biosuspension

from the stirred tank reactor the plug flow reactor after connection of the two reactors.
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Sequence analysis of E. coli RM214

Conducting the genomic deletions required a high number of total passages until E. coli

RM214 was completed. We sequenced both the genome of E. coli MG1655 and E. coli

RM214 to ensure no detrimental mutations or rearrangements had occurred (see also Sup-

plementary Information S8). We first compared the sequence of our E. coli MG1655 iso-

late to the reference sequence NC_000913.3 which revealed the presence of two known

sequence variations in different isolates of E. coli MG1655 affecting gatC and glpR (Fred-

dolino et al., 2012). We found additional SNPs in gfcD, yciG, wbbI and an insertion in an

intergenic region, none of which appear to confer a detrimental phenotype in standard

cultivations. Sequence analysis of E. coli RM214 revealed additional SNPs in elfC, trmD,

dcuD, the reversion of the SNP in gfcD and multiple SNPs in insH5 in the rac prophage

region. All these mutations are irrelevant as elfC is only involved in pathogenicity, dcuD

encodes a weakly expressed C4-carboxylate transporter not beneficial in glucose minimal

medium and insH5 is known to be a mutational hotspot. TrmD is an essential tRNA-

methyltransferase and the mutation confers an amino acid exchange [H78N]. However,

inspection of the structure of TrmD revealed that the exchange had happened far away

from the catalytically active center thus presumably not affecting the biological func-

tion. Our considerations are supported by the normal growth phenotype exhibited by

all strains of the deletion series.
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Supporting information S3: Flow cytometry histograms

FIGURE B.3: Flow cytometry histograms of green fluorescence signals of
E. coli MG1655 rhaB− pJOE4056.2_tetA. The vertical red line (2000 RLU in
signal GFP-A) indicates the division line used to separate non-producer
cells (V1-L) from producer cells (V1-R). Each column of histograms was
recorded from a single fermentation (n = 4 for each strain). Rows indicate
the time-point of sampling (1st: STR reference sample, 2nd: STR-PFR 5 min,

3rd: STR-PFR 5 h, 4th: STR-PFR 25 h, 5th: STR-PFR 28 h).
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FIGURE B.4: Flow cytometry histograms of green fluorescence signals of
E. coli RM214 rhaB− pJOE4056.2_tetA. The vertical red line (2000 RLU in
signal GFP-A) indicates the division line used to separate non-producer
cells (V1-L) from producer cells (V1-R). Each column of histograms was
recorded from a single fermentation (n = 4 for each strain). Rows indicate
the time-point of sampling (1st: STR reference sample, 2nd: STR-PFR 5 min,

3rd: STR-PFR 5 h, 4th: STR-PFR 25 h, 5th: STR-PFR 28 h).
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Supporting information S4: AxP concentrations and statistical

evaluation.

FIGURE B.5: AxP concentrations. Individual cellular levels of AMP, ADP,
ATP and the total of all three substances along the PFR passage. The STR
sample is indicated at 0 s, the following five samples correspond to the
five ports along the primary axis of the PFR and are indicated at the re-
spective mean residence time. The figures show samples from different
time-points of the cultivations as given in the figure legend (STR, STR-PFR
5 min, STR-PFR 25 h). Left: E. coli MG1655 rhaB− pJOE4056.2_tetA. Right:
E. coli MG1655 rhaB− pJOE4056.2_tetA. Error bars represent SEM (n = 4).
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Supplementary information S5: Carbon Balance

TABLE B.3: Carbon Balance of E. coli MG1655 rhaB− pJOE4056.2_tetA.

Process

stage

CDW

[%]

Acetate

[%]

Rhamnose

[%]

CO2(g)

[%]

CO2(aq)

[%]

Total

[%]

STR 36.3 ±
0.8a

0.5 ±
0.1

7.9 ± 0.1 49.9 ±
0.8

3.1 ±
1.0

97.7 ±
2.4

STR-PFR 5

min

34.6 ±
0.6

0.4 ±
0.1

7.9 ± 0.1 53.2 ±
0.5

1.5 ±
0.6

97.7 ±
0.8

STR-PFR 5

h

35.8 ±
0.3

0.7 ±
0.1

7.9 ± 0.1 47.9 ±
0.8

1.7 ±
0.4

94.0 ±
0.9

STR-PFR

25 h

38.1 ±
0.7

0.2 ±
0.1

7.9 ± 0.1 48.1 ±
0.3

1.8 ±
0.5

96.0 ±
1.0

STR-PFR

28 h

38.7 ±
0.5

0.1 ±
0.1

7.9 ± 0.1 47.9 ±
0.4

1.8 ±
0.4

96.3 ±
0.6

a: Errors indicate SEM (n = 4).

TABLE B.4: Carbon balance of E. coli RM214 rhaB− pJOE4056.2_tetA

Process

stage

CDW

[%]

Acetate

[%]

Rhamnose

[%]

CO2(g)

[%]

CO2(aq)

[%]

Total

[%]

STR 37.3 ±
0.6

0.3 ±
0.1

7.9 ± 0.1 48.9 ±
0.3

3.5 ±
0.7

97.9 ±
1.1

STR-PFR 5

min

35.5 ±
0.7

0.3 ±
0.1

7.9 ± 0.1 52.5 ±
1.1

3.4 ±
0.7

99.6 ±
2.0

STR-PFR 5

h

36.2 ±
0.3

0.7 ±
0.2

7.9 ± 0.1 48.0 ±
1.0

3.3 ±
0.6

96.1 ±
1.4

STR-PFR

25 h

37.8 ±
0.7

0.3 ±
0.1

7.9 ± 0.1 47.3 ±
0.3

3.3 ±
0.7

96.7 ±
0.9

STR-PFR

28 h

38.3 ±
0.5

0.2 ±
0.1

7.9 ± 0.1 47.1 ±
0.2

3.6 ±
0.8

97.1 ±
0.7

a: Errors indicate SEM (n = 4).
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Supplementary information S6: Exhaust Gas Parameters

FIGURE B.6: Exhaust Gas Parameters. Oxygen uptake rate QO2. Values
represent means of four fermentations with data synchronized to t = 0 h.
Technical measurement artifacts were eliminated prior to data analysis.
Vertical lines indicate relevant process timepoints: PFR connection (STR-
PFR 0 min) and sampling points after 1 volumetric residence time (STR-
PFR 5 h), after 5 volumetric residence times (STR-PFR 25 h) and prior to

abortion of the fermentation (STR-PFR 28 h).

FIGURE B.7: Exhaust Gas Parameters. Carbon Dioxide formation rate
QCO2. Values represent means of four fermentations with data synchro-
nized to t = 0 h. Technical measurement artifacts were eliminated prior to
data analysis. Vertical lines indicate relevant process timepoints: PFR con-
nection (STR-PFR 0 min) and sampling points after 1 volumetric residence
time (STR-PFR 5 h), after 5 volumetric residence times (STR-PFR 25 h) and

prior to abortion of the fermentation (STR-PFR 28 h).
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Supplementary information S7: Cell Dry Weight and eGFP pro-

duction

FIGURE B.8: Cell Dry Weight and eGFP production. A: Biomass concen-
tration. B: Cellular eGFP content. C: Correlation of declining product yield
and increasing biomass yield. D: Correlation of declining cellular eGFP
content and increasing biomass yield. Correlations were calculated from

all data points. Error bars represent SEM (n = 4).
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Supplementary Data S8: Estimation of ATP demand for eGFP pro-

duction

The maintenance model by Pirt describes the partition of substrate uptake for growth or

maintenance demand (Pirt, 1965).

qs = qs,µ + mS (B.2)

In analogy, we can differentiate between ATP demand for growth and ATP demand for

maintenance.

qATP = qATP,X + mATP (B.3)

Assuming complete oxidation of substrate used for maintenance requirements and an

ATP formation of YATP,S = 16.4 mmolATP mmol−1
Glucose (2 mol ATP from glycolysis, P/O-

Ratio of 1.2 in the respiratory chain), we can estimate mATP from mS.

mATP = mS ∗ YATP,S (B.4)

Inserting data from the heterogeneous STR-PFR conditions yields:

E. coli MG1655: mATP = mS ∗ YATP,S = 0.14 gGlucose
gCDW∗h ∗ 16.4 molATP

molGlucose∗h = 12.74 mmolATP
gCDW∗h

E. coli RM214: mATP = mS ∗ YATP,S = 0.10 gGlucose
gCDW∗h ∗ 16.4 molATP

molGlucose∗h = 9.10 mmolATP
gCDW∗h

With the same assumptions as before (2 mol ATP from glycolysis, P/O-Ratio of 1.2 in

the respiratory chain), we can calculate the total ATP generation of E. coli MG1655 at µ =

0.2 h−1 from measured glucose and oxygen uptake rates during the maintenance process

at D = 0.2 h−1 at the STR-PFR 25 h time-point (data not shown). This yields an ATP

generation of qATP = 39.39 mmolATPg−1
CDWh−1. In balanced growth ATP generation equals

ATP consumption.

Using equation (B.3) we can now calculate the ATP demand of E. coli MG1655 for growth

at µ = 0.2 h−1:

qATP,X = qATP − mATP = 26.65
mmolATP

gCDWh
(B.5)

Since YXS,true is not significantly different, we know that the true biomass yield for both

strains is identical. Since the metabolic pathways are identical in both strains, the ATP

demand for growth qATP,X can then be assumed to be identical for both strains as well.

In order to calculate the ATP demand for eGFP production we need to introduce a

parameter describing ATP demand for eGFP synthesis into equation (B.3). This parame-

ter, qATP,eGFP, includes any additional cellular ATP expenses due to heterologous protein



Appendix B. Engineering of robust E. coli: Supporting Information 167

expression:

qATP = qATP,X + mATP + qATP,eGFP (B.6)

We can calculate the total ATP generation of both production strains at µ = 0.2 h−1 from

measured glucose and oxygen uptake rates during the eGFP production processes at time-

point STR-PFR 25 h (data not shown). This estimation yields an ATP generation of qATP

= 45.37 mmolATP*g−1
CDW*h−1 for E. coli MG1655 rhaB− pJOE4056.2_tetA and qATP = 45.95

mmolATP*gCDW−1*h−1 for E. coli RM214 rhaB− pJOE4056.2_tetA.

Using these values for total ATP generation and the estimated values of the base

strains for mATP and qATP,X at µ = 0.2 h−1 from the maintenance processes, we can fi-

nally estimate the ATP demand of eGFP formation by inserting all values into equation

(B.6):

qATP,eGFP = qATP − qATP,X − mATP (B.7)

The results are documented in table B.5, and the proportion of ATP used for eGFP pro-

duction is given.

TABLE B.5: Estimated ATP demand of eGFP synthesis at STR-PFR 25 h

Strain qATP,eGFP

[mmolATP/(gCDWh)]

qATP,eGFP/qATP

[%]

E. coli MG1655 rhaB−

pJOE4056.2_tetA

6.0 ± 0.59a 13 ± 1.3

E. coli RM214 rhaB−

pJOE4056.2_tetA

10.2 ± 0.58 22 ± 1.7

a: Errors indicate SEM (n = 4).
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Supporting information S9: SNPs found after continuous cultivation

Each table in this section contains the results of a genomic SNP analysis performed. Cryo

MG1655 VS NC_000913.3 compares our isolate (cryostock) of MG1655 to the refseq. Cryo

RM214 VS Cryo MG1655 shows SNPs accumulated during strain construction of RM214.

The remaining tables compare sequenced samples from the end of continuous chemo-

stat cultivations to the respective cryostock sample.The numbers indicate the dilution rate

used during the chemostat phases (D005 means D = 0.05 h−1 and so on).

TABLE B.6: Cryo MG1655 VS NC_000913.3

CHROM POS TYPE REF ALT EVID Gene Comment

NC_000913.3 1047882 snp C A A:336

C:0

gfcD Irrelevant, gfcD is not

transcribed in E. coli

K-12.

NC_000913.3 1315865 snp G T T:300

G:0

yciG Silent mutation

NC_000913.3 2105253 snp T A A:310

T:0

wbbI [I269F] of WbbI (beta-

1,6-galactofuranosyl-

transferase)

NC_000913.3 2173360 del ACC A A:225

ACC:0

gatC Sequence variation in

different MG1655 iso-

lates has been docu-

mented previously.

NC_000913.3 3560455 ins C CG CG:335

C:0

glpR Sequence variation in

different MG1655 iso-

lates has been docu-

mented previously.

NC_000913.3 4296380 ins A ACG ACG:169

A:0

Intergenic Repeat Re-

gion
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TABLE B.7: Cryo RM214 VS Cryo MG1655

CHROM POS TYPE REF ALT EVID Gene Comment

2:4504256-

4522705

290658 snp G C C:11

G:0

Low Coverage

2:4504256-

4522705

566050 snp N T T:30

N:0

Assembly Gap

2:4504256-

4522705

998716 snp T G G:325

T:0

elfC V -> G at amino

acid position 67

of ElfC. Cryp-

tic operon that

is involved in

pathogenicity.

2:4504256-

4522705

1047183 snp A C C:306

A:0

gfcD Identical to

NC_000913.3

MG1655 Refseq,

potentially a true

polymorphism or

reversion.

2:4504256-

4522705

1128700 snp G T T:51

G:0

Intergenic region

downstream of

murJ

2:4504256-

4522705

1392292 snp T C C:314

T:0

Intergenic region

between pgrR and

mppa

2:4504256-

4522705

1396700 mnp NNN ACA ACA:14

NNN:0

Assembly Gap

2:4504256-

4522705

1427166 snp A G G:118

A:0

ins-

H5

ins-H5, rac

Prophage

2:4504256-

4522705

1427200 snp T C C:55

T:0

2:4504256-

4522705

1427218 snp T C C:33

T:0

2:4504256-

4522705

1427749 snp G A A:55

G:1
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TABLE B.7: Cryo RM214 VS Cryo MG1655

2:4504256-

4522705

1427757 snp A G G:83

A:1

2:4504256-

4522705

1427776 snp C T T:115

C:1

2:4504256-

4522705

1427788 snp A G G:146

A:1

2:4504256-

4522705

1427812 snp A G G:189

A:0

2:4504256-

4522705

1427824 complex CGCG GGCAGGCA:210

CGCG:0

2:4504256-

4522705

1527658 complex NN AA AA:16

NN:0

Assembly Gap

2:4504256-

4522705

1978629 snp N T T:18

N:0

Assembly Gap

2:4504256-

4522705

2304179 mnp NNN AAC AAC:19

NNN:0

Assembly Gap

2:4504256-

4522705

2725454 complex NN AT AT:11

NN:0

Assembly Gap

2:4504256-

4522705

2744523 snp G T T:295

G:0

trmD [H78N] of

TrmD (tRNA-

methyltransferase),

TrmD is essen-

tial, the exchange

is located in an

alpha-helix on the

surface of the pro-

tein and likely does

not interfere with

the active center

[see: Elkins et al.

(2003)]
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TABLE B.7: Cryo RM214 VS Cryo MG1655

2:4504256-

4522705

3375243 snp T C C:277

T:0

dcuD [V321A] of DcuD

(C4-dicarboxylate

transporter), dcuD

is weakly tran-

scribed and may be

involved in glyc-

erol metabolism.

TABLE B.8: MG1655 D005 VS MG1655 Cryo

CHROM POS TYPE REF ALT EVID Gene Comment

2:4504256-

4522705

390972 snp N A A:32 N:0 Assembly

Gap

2:4504256-

4522705

566050 snp N T T:19 N:0 Assembly

Gap

2:4504256-

4522705

729093 snp N T T:11 N:0 Assembly

Gap

2:4504256-

4522705

1396700 mnp NNN ACA ACA:14

NNN:0

Assembly

Gap

2:4504256-

4522705

1427166 snp A G G:98 A:0 ins-H5 ins-

H5, rac

Prophage

2:4504256-

4522705

1427200 snp T C C:50 T:0

2:4504256-

4522705

1427218 snp T C C:25 T:0

2:4504256-

4522705

1427749 snp G A A:52 G:1

2:4504256-

4522705

1427757 snp A G G:65 A:1

2:4504256-

4522705

1427776 snp C T T:100 C:0

2:4504256-

4522705

1427788 snp A G G:121 A:0
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TABLE B.8: MG1655 D005 VS MG1655 Cryo

2:4504256-

4522705

1427812 snp A G G:155 A:0

2:4504256-

4522705

1427824 complex CGCG GGCAGGCA:176

CGCG:0

2:4504256-

4522705

1978629 snp N T T:23 N:0 Assembly

Gap

2:4504256-

4522705

2725454 complex NN AT AT:22 NN:0 Assembly

Gap

2:4504256-

4522705

3364958 snp N C C:26 N:0 Assembly

Gap

2:4504256-

4522705

3423073 mnp NN TA TA:14 NN:0 Assembly

Gap

2:4504256-

4522705

4497653 snp N T T:33 N:0 Assembly

Gap

2:4504256-

4522705

4661603 snp T C C:11 T:0 Assembly

Gap

TABLE B.9: MG1655 D01 VS MG1655 Cryo

CHROM POS TYPE REF ALT EVID Gene Comment

2:4504256-

4522705

390972 snp N A A:14 N:0 Assembly

Gap

2:4504256-

4522705

566050 snp N T T:12 N:0 Assembly

Gap

2:4504256-

4522705

1427166 snp A G G:32 A:0 ins-H5 ins-

H5, rac

Prophage

2:4504256-

4522705

1427776 snp C T T:30 C:0

2:4504256-

4522705

1427788 snp A G G:46 A:0

2:4504256-

4522705

1427812 snp A G G:68 A:0
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TABLE B.9: MG1655 D01 VS MG1655 Cryo

2:4504256-

4522705

1427824 complex CGCG GGCAGGCA:80

CGCG:0

2:4504256-

4522705

2725454 snp N A A:10 N:0 Assembly

Gap

2:4504256-

4522705

2725455 snp N T T:10 N:0 Assembly

Gap

2:4504256-

4522705

3364958 snp N C C:12 N:0 Assembly

Gap

2:4504256-

4522705

3423073 mnp NN TA TA:14 NN:0 Assembly

Gap

2:4504256-

4522705

4497653 snp N T T:16 N:0 Assembly

Gap

TABLE B.14: RM214 D02 VS RM214 Cryo

CHROM POS TYPE REF ALT EVID Gene Comment

2:4455130-

4470514

15384 del CA C C:18 CA:0 low coverage

2:4455130-

4470514

256558 snp N C C:17 N:0 Assembly

Gap

2:4455130-

4470514

269203 snp N A A:10 N:0 Assembly

Gap

2:4455130-

4470514

277833 snp N C C:11 N:0 Assembly

Gap

2:4455130-

4470514

290081 snp G C C:10 G:0 Assembly

Gap

2:4455130-

4470514

573286 complex NNN CTT CTT:14

NNN:0

Assembly

Gap

2:4455130-

4470514

728517 snp N T T:10 N:0 Assembly

Gap

2:4455130-

4470514

921089 snp N A A:16 N:0 Assembly

Gap

2:4455130-

4470514

1092976 snp N T T:20 N:0 Assembly

Gap
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TABLE B.14: RM214 D02 VS RM214 Cryo

CHROM POS TYPE REF ALT EVID Gene Comment

2:4455130-

4470514

1206538 ins G GT GT:173

G:0

ycfk (e14

prophage)

Identical to

NC_000913.3

MG1655

Refseq, po-

tentially true

polymor-

phism

2:4455130-

4470514

1394788 mnp NN GC GC:21

NN:0

Assembly

Gap

2:4455130-

4470514

1426598 snp A G G:81 A:1 ins-H5 ins-H5, rac

Prophage

2:4455130-

4470514

1426632 snp T C C:48 T:0

2:4455130-

4470514

1426650 snp T C C:27 T:0

2:4455130-

4470514

1427181 snp G A A:93 G:0

2:4455130-

4470514

1427189 snp A G G:111 A:0

2:4455130-

4470514

1427208 snp C T T:148 C:0

2:4455130-

4470514

1427220 snp A G G:166 A:0

2:4455130-

4470514

2022495 snp N C C:24 N:0 Assembly

Gap

2:4455130-

4470514

2051091 snp N T T:17 N:0 Assembly

Gap

2:4455130-

4470514

2065039 snp N T T:23 N:0 Assembly

Gap

2:4455130-

4470514

2173885 mnp NN TA TA:11

NN:0

Assembly

Gap
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TABLE B.14: RM214 D02 VS RM214 Cryo

CHROM POS TYPE REF ALT EVID Gene Comment

2:4455130-

4470514

2437787 snp N C C:13 N:0 Assembly

Gap

2:4455130-

4470514

2661199 snp N T T:14 N:0 Assembly

Gap

2:4455130-

4470514

3364418 mnp NN CA CA:17

NN:0

Assembly

Gap

2:4455130-

4470514

3650924 snp N A A:19 N:0 Assembly

Gap

2:4455130-

4470514

3665101 snp N G G:26 N:0 Assembly

Gap

2:4455130-

4470514

3766292 snp N C C:74 N:0 Assembly

Gap

2:4455130-

4470514

4497117 snp N T T:24 N:0 Assembly

Gap
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TABLE B.10: MG1655 D02 VS MG1655 Cryo

CHROM POS TYPE REF ALT EVID Gene Comment

2:4504256-
4522705

278410 snp N C C:10 N:0 Assembly
Gap

2:4504256-
4522705

390972 snp N A A:32 N:0 Assembly
Gap

2:4504256-
4522705

566050 snp N T T:24 N:0 Assembly
Gap

2:4504256-
4522705

729093 snp N T T:12 N:0 Assembly
Gap

2:4504256-
4522705

1396700 snp N A A:11 N:0 Assembly
Gap

2:4504256-
4522705

1396701 snp N C C:11 N:0 Assembly
Gap

2:4504256-
4522705

1396702 snp N A A:11 N:0 Assembly
Gap

2:4504256-
4522705

1427166 snp A G G:107 A:0 ins-H5 ins-
H5, rac
Prophage

2:4504256-
4522705

1427200 snp T C C:55 T:0

2:4504256-
4522705

1427218 snp T C C:25 T:0

2:4504256-
4522705

1427749 snp G A A:64 G:0

2:4504256-
4522705

1427757 snp A G G:78 A:0

2:4504256-
4522705

1427776 snp C T T:115 C:0

2:4504256-
4522705

1427788 snp A G G:131 A:0

2:4504256-
4522705

1427812 snp A G G:182 A:0

2:4504256-
4522705

1427824 complex CGCG GGCAGGCA:198
CGCG:0

2:4504256-
4522705

1978629 snp N T T:22 N:0 Assembly
Gap

2:4504256-
4522705

2304179 mnp NNN AAC AAC:12
NNN:0

Assembly
Gap

2:4504256-
4522705

2725454 mnp NN AT AT:15 NN:0 Assembly
Gap

2:4504256-
4522705

3364958 snp N C C:18 N:0 Assembly
Gap

2:4504256-
4522705

3423073 mnp NN TA TA:22 NN:0 Assembly
Gap

2:4504256-
4522705

4497653 snp N T T:30 N:0 Assembly
Gap
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TABLE B.11: MG1655 D03 VS MG1655 Cryo

CHROM POS TYPE REF ALT EVID Gene Comment

2:4504256-
4522705

390972 snp N A A:27 N:0 Assembly
Gap

2:4504256-
4522705

566050 snp N T T:13 N:0 Assembly
Gap

2:4504256-
4522705

1427166 snp A G G:80 A:0 ins-H5 ins-
H5, rac
Prophage

2:4504256-
4522705

1427200 snp T C C:38 T:0

2:4504256-
4522705

1427218 snp T C C:17 T:0

2:4504256-
4522705

1427749 snp G A A:46 G:0

2:4504256-
4522705

1427757 snp A G G:67 A:0

2:4504256-
4522705

1427776 snp C T T:95 C:0

2:4504256-
4522705

1427788 snp A G G:113 A:0

2:4504256-
4522705

1427812 snp A G G:158 A:0

2:4504256-
4522705

1427824 complex CGCG GGCAGGCA:174
CGCG:0

2:4504256-
4522705

1527658 snp N A A:10 N:0 Assembly
Gap

2:4504256-
4522705

1978629 snp N T T:18 N:0 Assembly
Gap

2:4504256-
4522705

2304179 mnp NNN AAC AAC:16
NNN:0

Assembly
Gap

2:4504256-
4522705

2725454 mnp NN AT AT:15 NN:0 Assembly
Gap

2:4504256-
4522705

3364958 snp N C C:12 N:0 Assembly
Gap

2:4504256-
4522705

3423073 mnp NN TA TA:18 NN:0 Assembly
Gap

2:4504256-
4522705

4497653 snp N T T:30 N:0 Assembly
Gap



178 Appendix B. Engineering of robust E. coli: Supporting Information

TABLE B.12: RM214 D005 VS RM214 Cryo

CHROM POS TYPE REF ALT EVID Gene Comment

2:4455130-
4470514

15384 del CA C C:14
CA:0

Low Coverage

2:4455130-
4470514

290081 snp G C C:10
G:0

Assembly Gap

2:4455130-
4470514

524561 complex NN GG GG:17
NN:0

Assembly Gap

2:4455130-
4470514

566734 snp G C C:14
G:0

Assembly Gap

2:4455130-
4470514

1206538 ins G GT GT:246
G:2

ycfk (e14
prophage)

Identical to
NC_000913.3
MG1655
Refseq, po-
tentially true
polymorphism

2:4455130-
4470514

1208356 complex AN A A:233
AN:0

stfE (e14
prophage)

Identical to
NC_000913.3
MG1655
Refseq, po-
tentially true
polymorphism

2:4455130-
4470514

1394788 mnp NN GC GC:14
NN:0

Assembly Gap

2:4455130-
4470514

1426598 snp A G G:116
A:0

ins-H5 ins-H5, rac
Prophage

2:4455130-
4470514

1426632 snp T C C:57
T:0

2:4455130-
4470514

1426650 snp T C C:27
T:0

2:4455130-
4470514

1427181 snp G A A:143
G:0

2:4455130-
4470514

1427189 snp A G G:163
A:0

2:4455130-
4470514

1427208 snp C T T:192
C:0

2:4455130-
4470514

1427220 snp A G G:219
A:0

2:4455130-
4470514

2022495 snp N C C:17
N:0

Assembly Gap

2:4455130-
4470514

2065039 snp N T T:21
N:0

Assembly Gap

2:4455130-
4470514

2173885 mnp NN TA TA:24
NN:0

Assembly Gap

2:4455130-
4470514

2437787 snp N C C:16
N:0

Assembly Gap

2:4455130-
4470514

3650924 snp N A A:20
N:0

Assembly Gap

2:4455130-
4470514

3665101 snp N G G:14
N:0

Assembly Gap
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TABLE B.13: RM214 D01 VS RM214 Cryo

CHROM POS TYPE REF ALT EVID Gene Comment

2:4455130-
4470514

15384 del CA C C:12 CA:0 Low Coverage

2:4455130-
4470514

269203 snp N A A:11 N:0 Assembly Gap

2:4455130-
4470514

278787 snp C A A:10 C:0 Assembly Gap

2:4455130-
4470514

290081 snp G C C:14 G:0 Assembly Gap

2:4455130-
4470514

524561 mnp NN GG GG:23
NN:0

Assembly Gap

2:4455130-
4470514

573286 mnp NNN CTT CTT:26
NNN:0

Assembly Gap

2:4455130-
4470514

921089 snp N A A:22 N:0 Assembly Gap

2:4455130-
4470514

1206538 ins G GT GT:201
G:1

ycfk (e14
prophage)

Identical to
NC_000913.3
MG1655
Refseq, po-
tentially true
polymorphism

2:4455130-
4470514

1208356 complex AN A A:214
AN:0

stfE (e14
prophage)

Identical to
NC_000913.3
MG1655
Refseq, po-
tentially true
polymorphism

2:4455130-
4470514

1426598 snp A G G:118 A:0 ins-H5 ins-H5, rac
Prophage

2:4455130-
4470514

1426632 snp T C C:66 T:0

2:4455130-
4470514

1426650 snp T C C:36 T:0

2:4455130-
4470514

1427181 snp G A A:132 G:1

2:4455130-
4470514

1427189 snp A G G:154 A:1

2:4455130-
4470514

1427208 snp C T T:194 C:1

2:4455130-
4470514

1427220 snp A G G:209 A:1

2:4455130-
4470514

2022495 snp N C C:21 N:0 Assembly Gap

2:4455130-
4470514

2173885 mnp NN TA TA:15
NN:0

Assembly Gap

2:4455130-
4470514

2437787 snp N C C:17 N:0 Assembly Gap

2:4455130-
4470514

3364418 mnp NN CA CA:26
NN:0

Assembly Gap

2:4455130-
4470514

3650924 snp N A A:18 N:0 Assembly Gap
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TABLE B.15: RM214 D03 VS RM214 Cryo

CHROM POS TYPE REF ALT EVID Gene Comment

2:4455130-
4470514

15384 del CA C C:12
CA:0

Assembly Gap

2:4455130-
4470514

269203 snp N A A:10
N:0

Assembly Gap

2:4455130-
4470514

1206538 ins G GT GT:124
G:0

ycfk (e14
prophage)

Identical to
NC_000913.3
MG1655
Refseq, po-
tentially true
polymorphism

2:4455130-
4470514

1208356 complexAN A A:146
AN:0

stfE (e14
prophage)

Identical to
NC_000913.3
MG1655
Refseq, po-
tentially true
polymorphism

2:4455130-
4470514

1426598 snp A G G:26
A:0

ins-H5 ins-H5, rac
Prophage

2:4455130-
4470514

1427181 snp G A A:28
G:0

2:4455130-
4470514

1427189 snp A G G:36
A:0

2:4455130-
4470514

1427208 snp C T T:58
C:0

2:4455130-
4470514

1427220 snp A G G:74
A:0

2:4455130-
4470514

2051091 snp N T T:12
N:0

Assembly Gap

2:4455130-
4470514

2065039 snp N T T:12
N:0

Assembly Gap

2:4455130-
4470514

2437787 snp N C C:16
N:0

Assembly Gap
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Supporting information S10: RT-qPCR measurements

FIGURE B.9: Expression of eGFP. RT qPCR was used to quantify the expres-
sion of egfp relative to the housekeeping gene cysG. The relative expression
at time points STR PFR 25 h and STR PFR 28 h was then normalized to the
STR sample to yield the fold change in expression compared to the well
mixed STR conditions. Mean values from four biological replicates for each

strain are shown. Error bars indicate SEM (n = 4).
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Appendix C

Transcriptional Profiling of the

Stringent Response Mutant Strain

E. coli SR Reveals Enhanced

Robustness to Large-Scale

Conditions: Supporting Information

A: Determination of conversion factors from OD 600 nm to cell

dry weight concentration

In preliminary experiments, optical density of appropriately diluted fermentation broth

from the primary reactor was measured in triplicates at 600 nm on a spectrophotome-

ter (Amersham Biosciences/GE Healthcare, United Kingdom). In parallel, quadruplicate

determination of biomass concentration was conducted. 5 ml of broth were centrifuged

in weighted glass tubes at 2500 g and 4 °C for 7.5 min. Supernatant was immediately

decanted and the pellet washed by resuspending in 5 ml of freshly prepared 150 mM

NH4HCO3. The suspension was centrifuged again and the washing repeated once. After

a final centrifugation the pellet was dried at 105 °C for at least two days and the new

weight of the glass tubes measured. The ratio CDW [gL−1] / OD 600 nm was calculated

and averaged over all samples to yield conversion factors for each strain. Conversion

factors were 0.324 for E. coli MG1655 and 0.321 for E. coli SR and used in all subsequent

experiments to convert OD 600 nm measurements to cell dry weight concentration [gL−1].
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TABLE C.1: OD and CDW data from preliminary experiments.

E. coli MG1655 E. coli SR

OD 600 nm CDW
[gL−1]

Ratio CDW
/ OD

OD 600 nm CDW
[gL−1]

Ratio CDW
/ OD

Experiment 1 Experiment 1

8.600 2.545 0.296 8.600 2.975 0.346
8.463 2.875 0.340 8.567 2.925 0.341
8.200 2.550 0.311 8.217 2.815 0.343
8.250 2.555 0.310 8.250 2.865 0.347

Experiment 2 Experiment 2

8.800 2.720 0.309 9.300 2.665 0.287
8.567 3.140 0.367 9.467 2.790 0.295
8.317 2.925 0.352 9.000 2.715 0.302
8.600 2.685 0.312 9.133 2.790 0.305

Conversion Factor 0.324 0.321
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B: Transcriptomic analysis of long term response STR vs STR 0 h
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FIGURE C.2: Venn diagrams representing (overlapping) sets of differen-
tially expressed genes derived from repeated ammonia shortage STR-PFR
experiments. Long-term response observed for the following comparisons
at PFR sample port long term changes (STR vs. STR 0h) conducted after 5
min of process time (left) and 28 h (right). The number of significantly up-
and downregulated genes in each set is indicated by numbers. DEGs were
defined as having an FDR < 0.01 and log2fold change > |1|. Complete gene
lists of the Venn diagrams are available in the supplementary data table S1

and S2.

FIGURE C.3: Left: COG categories long term response 5min STR vs STR 0h
WT vs SR; Right: COG categories long term response 28h STR vs STR 0h

WT vs SR. Sign. categories are indicated with an asterix.

FIGURE C.4: Left: Sigma factors long term response 5 min STR vs STR 0 h
WT vs SR. Right: Sigma factors long term response 28 h STR vs STR 0 h WT
vs SR. Sign. categories are indicated with an asterix. Sigma 70: Housekeep-
ing; Sigma 54: Nitrogen-limitation; Sigma 38: Starvation/Stationary phase;
Sigma 32: Heat shock; Sigma 28: Flagellar system; Sigma 24: Extracytoplas-

mic/Extreme heat stress
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FIGURE C.5: Left: GO categories long term response 28h STR vs STR0
SR. Top 20 significantly upregulated. No sign. down regulated categories.
Right: GO categories long term response 28h STR vs STR0 WT. Top 20 sig-

nificantly upregulated. No sign. down regulated categories.

FIGURE C.6: GO categories long term response 5min STR vs STR0 WT. Top
20 significantly upregulated. No sign. down regulated categories.
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C: NtrC-mediated operons

TABLE C.2: NtrC-mediated operons (Brown et al., 2014); E. coli MG1655

Operons Log2FCa Function/Pathway
5min short 28h long

glnK-amtB 3.81 4.09 GlnK - Nitrogen regulatory protein,
AmtB – ammonia transport

gltIJKL 1.14 0.94 Glutamate / aspartate ABC trans-
port

dicC DNA-binding transcriptional re-
pressor

glnHPQ 3.41 3.37 Glutamine ABC transport
yeaGH 2.98 2.69 YeaG is a serine protein kinase
ycdMLKJIHG 4.01 4.05 Pyrimidine degradation
flgMN 0.29 0.84 Regulation of flagellar synthesis

and flagellar biosynthesis protein
ddpXABCDF 4.25 4.49 D-ala-D-ala dipeptide transport

and dipeptidase
astCADBE 4.84 4.81 Arginine catabolic patway
fliC 0.46 0.41 Flagellar biosynthesis component
Nac-cbl 4.14 3.94 Nitrogen limitation response-

adpater for sigma 70 dependent
genes

hisJQMP 1.24 1.64 Histidine ABC transporter
argT 3.32 3.44 Lysine/arginine/ornithine ABC

transporter
relA 1.29 1.60 GDP pyrophosphokinase involved

in stringent reponse
ssrS - - 6S RNA involved stationary phase

regulation of transcription
ygjG 3.03 2.79 Putrescine degradative pathway
yhdWXYZ 2.75 2.36 Polar amino acid transport
glnALG 2.57 1.99 Glutamine biosynthesis pathway

(ammonia assimilation) and nitro-
gen regulation

soxR 0.30 0.27 SoxR transcriptional regulator
yjcZ-proP -0.39 -0.26 Hypothetical protein (YjcZ) + sym-

porter (proP)
potFGHI 0.92 0.82 Putrescine transport

a Underlining indicates significant differential expression. Logarithmic ratios are always
given for the first gene in the transcription unit.
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TABLE C.3: NtrC-mediated operons (Brown et al., 2014); E. coli SR

Operons Log2FCa Function/Pathway

5min short 28h long

glnK-amtB 4.05 2.67 GlnK - Nitrogen regulatory protein,
AmtB – ammonia transport

gltIJKL 0.25 -0.29 Glutamate / aspartate ABC trans-
port

dicC -0.09 -0.25 DNA-binding transcriptional re-
pressor

glnHPQ 2.82 2.45 Glutamine ABC transport
yeaGH 1.30 0.89 YeaG is a serine protein kinase
ycdMLKJIHG 3.18 2.83 Pyrimidine degradation
flgMN 0.63 0.73 Regulation of flagellar synthesis

and flagellar biosynthesis protein
ddpXABCDF 4.71 3.12 D-ala-D-ala dipeptide transport

and dipeptidase
astCADBE 4.11 3.93 Arginine catabolic patway
fliC 0.05 0.17 Flagellar biosynthesis component
Nac-cbl 3.13 1.42 Nitrogen limitation response-

adpater for sigma 70 dependent
genes

hisJQMP 0.77 0.59 Histidine ABC transporter
argT 2.51 2.01 Lysine/arginine/ornithine ABC

transporter
relA 1.35 1.79 GDP pyrophosphokinase involved

in stringent reponse
ssrS - - 6S RNA involved stationary phase

regulation of transcription
ygjG 2.06 2.16 Putrescine degradative pathway
yhdWXYZ 2.00 1.21 Polar amino acid transport
glnALG 2.64 -0.11 Glutamine biosynthesis pathway

(ammonia assimilation) and nitro-
gen regulation

soxR 0.34 1.12 SoxR transcriptional regualtor
yjcZ-proP -0.77 -0.39 Hypothetical protein (YjcZ) + sym-

porter (proP)
potFGHI 0.44 -1.91 Putrescine transport

a Underlining indicates significant differential expression. Logarithmic ratios are always
given for the first gene in the transcription unit.
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D: Motility Assay of E. coli MG1655

A 5 ml overnight preculture of E. coli MG1655 in 2xTY medium was incubated at 37 °C

and 130 rpm. On the next day, a tube containing motility agar (10 g/l tryptone, 3 g/l

yeast extract, 5 g/l NaCl, 0.5 g/l triphenyl-tetrazolium chloride and 0.4 % agar-agar)

was inoculated by dipping a thin sterile steel wire into the liquid preculture and stab-

bing the wire into the motility agar. The culture was incubated without shaking at 37 °C

overnight. The spreading of cells as indicated by the expanse of red color from reduction

of triphenyl-tetrazolium chloride to triphenylformazan was recorded on the next morn-

ing. The formation of a cloudy deep red colored zone indicates strong motility and cell

viability.

FIGURE C.7: Motility Assay of E. coli MG1655.

E: Glucose-specific phospho-transferase system components

TABLE C.4: Logarithmic expression ratio and percentage change of mean ex-
pression levels from three glucosespecific phosphotransferase system compo-

nents.

Gene Log2FCa of E. coli SR vs
MG1655 (S/S)

Relative Mean Expres-
sion Level E. coli SR to
MG1655

5min 28h 5min 28h

ptsG -0.35 0.67 + 21.58 % + 58.98 %
ptsH 0.57 0.68 + 48.01 % + 60.32 %
ptsI 0.31 0.23 + 23.82 % + 17.28 %

a Underlining indicates significant differential expression.
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Appendix D

Data-Driven In-silico Prediction of

Regulation Heterogeneity and ATP

Demands of Escherichia coli in

Large-scale Bioreactors: Supporting

Information

D.1 Supporting information A:

The relative distribution of specific mRNAs is taken from the measured normalized counts

in the form of transcripts per million. The molecular weight of different mRNAs was cal-

culated with equation 6.1 (Kibbe, 2007) and the results are listed in Appendix Table D.1.

As the phosphate groups of two nucleotides are bound together, an OH-group is cleaved.

This results in a lower molecular weight of Nucleotides in the polymer chain.

TABLE D.1: Molecular weight of nucleotides (Nt)

Base MW (gmol−1) MW of polymerized Nt
(gmol−1)

Guanine 363.2 345.2
Cytosine 323.2 305.2
Adenine 347.2 329.2
Uracil 324.2 306.2
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D.2 Supporting information B:

The activity in transcription and translation results in an additional ATP-demand, which

is related to the growth-independent ATP-maintenance shown in Appendix figure D.1.

For transcription, the cost is derived from a nucleotide balance that includes the nu-

cleotides set free by degradation and the nucleotides used in the mRNA synthesis pro-

cess. The cost for translation follows the course of the active ribosomes. The translation

cost exceeds the cost for transcription at least with a factor of 2.5.
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FIGURE D.1: Simulated additional ATP-demand of transcription (TC) and
translation (TL) at 25 min (A), 2h (B), 28 h (C)

D.3 Supporting information C:

In figure D.2, D.3 and D.4, the time courses of the clusters for the upregulated genes at

25 min, 2 hours and 28 hours are shown. The red line signals the mean value at the

corresponding time point. The values are interpolated linearly. In total, 254 genes were

significantly overexpressed with a threshold of a 1.5 fold change at 25 min.

At 25 min process time as it can be seen in Figure D.2 two main pattern occur in the

time courses. Cluster two and three show an immediate raise in mRNA levels. In contrast,

cluster one and four show a timely delay of 30 s in their expression. Although, it cannot

be excluded that the start of synthesis occurs later in reality due to linear interpolation
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FIGURE D.2: Expression level cluster 1 to 4 at 25 min (left top to bottom
right)

between two sampling points. However, assuming that the synthesis starts at 30s, the

two clusters show an acceleration in their synthesis rate over the time.

At 2 hours process time in the PFR, in total 276 genes are upregulated. Two genes

(aroF and ychH) are omitted by the algorithm. Exclusion occurs if a gene cannot be added

to any cluster without exceeding the maximum intra-cluster distance. In comparison to

25 min time point one cluster shows a decreasing rate of mRNA synthesis during the PFR

time. It can be observed, that an additional sigma-factor (σ-24) as well as its antagonist

anti-σ-24 rseA are activated in the PFR.

At 28 hours, 268 genes are activated of which 6 (aroF, ecnB, ydhC, ygcG, yedM, yqeC)

were excluded by the algorithm out of the same reason as mentioned above. The three re-

sulting clusters are depicted in Figure D.4. A pattern with delayed increase is still present

as can be seen in cluster 1. Furthermore, cluster two, containing almost half of all acti-

vated genes shows a steep raise in expression until 50 seconds. After that, the expression

level decreases rapidly to 0 or even below its reference value in the STR. The third cluster

shows a decreasing rate of synthesis over the PFR, already reaching a steady-state after

50 seconds. In general, it can be noted, that the number of activated genes remains nearly

constant while especially the occurring pattern change over time. Moreover only a small

group of 80 genes is conserved over the whole process time. To determine the nucleotide
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FIGURE D.3: Expression level cluster 1 to 4 at 2 h (left top to bottom right)

FIGURE D.4: Expression level cluster 1 to 4 at 28 h (left top to bottom right)
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FIGURE D.5: Down-regulated genes. Top left: 25 minutes; Top right: 2h
and Bottom left: 28h

balance the downregulated genes are considered (figure D.5). Down-regulated genes for

each time point were assigned to one cluster.

D.4 Supporting information D:

A general overview of the properties of the resulting clusters is given in Table D.3, Table

D.4, Table D.5. It can be seen, that on average, the reference copy number in the STR is

TABLE D.2: Genes involved in different stress types at three time points

Stimulus GO-Term 25 min 2 h 28 h
UV-radiation 0071478 2 2 0
Metal ions 0071248 4 4 0
Oxidative stress 0006979 12 16 4
Toxic substance 00097237 3 5 2
Osmotic stress 0006970 0 8 0
DNA-damage 006974 0 25 0
Thermal stress 0009266 0 12 0
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< 1. It is concluded that, assuming mRNA occurs only as a complete transcript and not

in fractions, that each cell contains a different mRNA pool. Especially Cluster two at 28

h exhibits a very small copy number of only 0.0056 copies per cell. The average copy

number increases from 0.22 at 25 min to 0.39 at 2 h. Then, the copy number drops to

0.18 per cell. In contrast, the mean log-fold change (log2-FC) at 110 s decreases over all

three time points from 0.85 to 0.8 and 0.37 at 28 h. It can be observed, that the average

gene length of the clusters changes over time, too. While after 25 min, the average gene

length of different clusters is close to each other, after 28 h the average length of cluster 2

is almost twice the average length of cluster 1 and more than twice the average length of

cluster three.

TABLE D.3: General properties of 25 min clusters

Cluster
number

Size Copy num-
ber in STR

Mean gene
length

Max. mean log2-FC
at 110 s

1 91 0.18 862 0.68
2 42 0.14 721 1.25
3 92 0.3 937 0.74
4 29 0.21 920 1.16

For comparing the generated clusters of the different time points, a set of indices is cal-

culated. The indices that refer to the compactness and separation of the shown clusters

are given in Table D6. The values of the silhouette coefficient, the figure of merit and the

intra cluster variance were calculated for each time point separately. Compared with the

results of the pure SQBC algorithm, the cluster indices show better values after the use of

SQBC-initialized k-means clustering.

TABLE D.4: General properties of 2 h clusters

Cluster
number

Size Copy num-
ber in STR

Mean gene
length

Max. mean log2-FC
at 110 s

1 122 0.38 980 0.69
2 47 0.16 848 1.18
3 62 0.71 984 0.80
4 43 0.22 657 0.74

TABLE D.5: General properties of 28 h clusters

Cluster
number

Size Copy num-
ber in STR

Mean gene
length

Max. mean log2-FC
at 110 s

1 98 0.22 717 0.73
2 123 0.0056 1347 0.80
3 41 0.63 635 0.68
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TABLE D.6: Cluster indices at different time points

Time point Silhouette index Figure of merit Intra cluster variance
25 min 0.77 0.097 0.017
2 h 0.79 0.078 0.013
28 h 0.61 0.068 0.037

D.5 Supporting information E:

FIGURE D.6: Nonnormalized starvation residence time distribution over
180s simulation time. The weighted mean residence time in the starvation

regime is 9.46 s.

D.6 Supporting information F:

As quality criterion for statistical relevance the ergodicity is used. Lagrange trajectories

are ergodic if the time average yields the same than the average over the probability space.

Therefore, the reactor was spatially discretized into ten cylindrical segments (z1-z10) and

the particles are superimposed at each time step (0-180s). The expected value (black line)

is compared to the result and should lie in the confidence level of 95%. As shown in

Figure D.7 the superimposed result lies within the confidence level. Additionally, the

average glucose concentration of the Lagrangian trajectories is 22.79 mg L−1 which is

fairly close to the average concentration in the bioreactor of 23.74 mg L−1. Summarizing,

only 4% deviation was found which is qualified as a small difference indicating good

homogeneous distribution.
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FIGURE D.7: Statistical relevance of Lagrange trajectories. Reactor volume
was divided into 10 cylindrical sub-volumes (bottom to top: z1-z10). Tem-
poral residence of the particles was normalized by corresponding volume
segment. For each spatial segment the probability with respect to the ex-
pected value (blackline) is shown as the frequency in percentage. Red lines

indicate the ±5 % deviation limit.

D.7 Supporting information G:

Rapid regime transitions occur at the Lagrangian timescale τlg and reflect subgrid vari-

ations of concentrations induced by small eddies. They represent artificial shifts which

are unlikely to have metabolic influence and may affect the statistics of large scale fluc-

tuations. Also they can not be address feasibly by conventional scale-down simulators.

Therefore an additional filtering step is applied to attain tractable variations in the timescale

of turbulent fluctuations: τlg=0.45 k
ǫ . The mean time scale τlg = 0.13 s, which is in the range

of the reaction timescale (0.14 s). To remove such artificial fluctuations a standard moving

median filter was used (low pass filter), which smooths high frequency components such

as fluctuations caused by the DRW model.
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D.8 Supporting information H:

FIGURE D.8: Schematic overview of workflow. The software used is indi-
cated in the upper right corner of each field. In red, reference to manuscript
sections is provided offering further details. DEG: Differentially expressed

gene.

D.9 Supporting information I:

Repetition of lifelines was used to link particle tracks thereby extending the observation

window to 4.5 h process time. Repetiting lifelines bears the intrinsic drawback that cells

are ‘trapped’ on the same trajectories. Alternately, lifelines may be linked randomly. We

checked the alternative identifying a high number of artificial shocks imposed on the

cells when randomly ‘transported’ from one end of a lifeline to the beginning of a new

trajectory. Randomization of starting points for 5 h process time lead to 48.4 % artificial

and unsteady changes in regimes. Applying a filter to limit the new starting conditions

within a radius of 1 m around the end-point (after 180 s), still 14.8 % of instantaneous

and artificial shifts occurred. Using repeating lifelines regime changes reduced to 10.3

%. Accordingly, we decided for the repetition of the lifelines to minimize the effects of

artifacts.
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FIGURE D.9: ATP demands of a population comprising 60,000 ‘newborn’,
not preconditioned cells in a 54 m3 reactor monitored over 4.5 hours process
time. Courses for mean transcription (blue: TC), translation (green: TL) and
the sum of both are depicted (red: TC+TL). Shaded areas display standard

deviation.

D.10 Supporting information J:

To evaluate the impact of simulation time additional studies simulating 460 s were per-

formed using the high performance computing cluster at the High Performance Com-

puting Center Stuttgart (HLRS, University of Stuttgart). It was found that cellular ATP

demands rise to a maximum of 47 % of growth decouple maintenance. After around 3.7

h cells adapt to environmental changes but still have to bear additional 7 % ATP-demand

limiting biomass-specific productivity (figure D.9). The weighted mean residence time is

48.86 s (figure D.10) leading to a broader ATP spectrum and faster adaptation compared

to 180 s simulation time.
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FIGURE D.10: Non-normalized starvation residence time distribution over
460 s simulation time for 60,000 particles. The weighted mean residence

time in the starvation regime is 48.86 s.

D.11 Supporting information K:

The characteristic time τS for consuming substrate (cS) may be used as a traditional engi-

neering approach for regime analysis in bioreactors. τS is estimated by dividing substrate

supply by consumption rates. The latter considers Monod growth kinetics as follows:

τS =
cS,ave

X ∗ YXS ∗ µmax ∗ cS,ave
KS + cS,ave

(D.1)

X is biomass concentration and cS,ave is the average substrate concentration in the reactor.

Applying eq. D.1 leads to a characteristic substrate consumption time of 63 s, which is

smaller than the mixing time (τmix = 4τcirc = 77 s ; τcirc : circulation time). Accordingly,

substrate gradients are likely to occur. Further analysis may even consider KS as a critical

threshold value deriving reaction volumes with cS > KS and cS < KS thereof. As such,

bioreactors may be divided into several compartments that may serve as basis for scale-

down studies. Noteworthy, such approaches assume average values, for instance of P/V,

which may differ severely from spatial distributions calculated by CFD studies.
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Appendix E

Bubble Size Distribution and Oxygen

Mass Transfer in Absence and

Presence of Safflower oil

The goal of this project was to determine the influence of safflower oil on bubble surface

tension, size distribution and oxygen mass transfer coefficient in a miniaturized indus-

try reactor. Additionally, single phase CFD simulations were extended to multiphase to

investigate the distribution of oil in a 3 m3 reactor.

E.1 Material and Methods

E.1.1 Instruments

A list of all instruments used in this work is provided in Appendix E table E.1.

TABLE E.1: Instruments

Instruments Manufacturer
Benchtop shaker AK85 Infors AG
Bioreactor KLF 2000 (3.7 L) Bioengineering
Centrifuge 5430 R; rotor F-35-6-30 Eppendorf
HAMEG®HMP 4040 Rohde&Schwarz
Mass flowmeter Model 3585 Analyt MTC Messtechnik

GmbH
Oxygen exchange cap OEC-PSt3-NAU-OIW PreSens
Oxygen Probe OxyBase WR-RS485-L5-OIW PreSens
Sony®Alpha 7 camera Sony
Temperature sensor PT-100 Bioengineering
Tensiometer BP100 Krüss
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E.1.2 Chemicals

A list of chemicals used in this work is provided in Appenidx E table E.2.

TABLE E.2: Chemicals

Chemical Manufacturer
Ammonium sulphate, (NH4)2SO4, ≥ 99% Carl Roth GmbH&Co. KG
Potassium dihydrogen phosphate, KH2PO4, ≥ 98% Carl Roth GmbH&Co. KG
Potassium hydrogen phosphate, di-, K2HPO4, ≥
98%

Carl Roth GmbH&Co. KG

Citric acid, C6H8O7 Carl Roth GmbH&Co. KG
Yeast extract BD
Glucose, α-D(+)-, monohydrate, ≥ 99.5% Carl Roth GmbH&Co. KG
Thiamine BD
Hydrochloric acid, HCl, ≥ 32% Sigma Aldrich Co. LLC.
Magnesium sulphate heptahydrate, MgSO4, ≥ 99% Carl Roth GmbH&Co. KG
Iron(II) sulfate heptahydrate, Fe(II)SO4· 7H2O, ≥
99.5%

Carl Roth GmbH&Co. KG

Manganese(II) chloride tetrahydrate, MnCl2·
4H2O≥ 99%

Carl Roth GmbH&Co. KG

Zinc sulphate septahydrate, ZnSO4· 7H2O≥ 99% Sigma Aldrich Co. LLC.
Copper(II) chloride dihydrate, CuCl2· 2H2O Merck Chemicals GmbH
Calcium chloride dihydrate, CaCl2· 2H2O Merck Chemicals GmbH
Boric acid, H3BO3· 2H2O Merck Chemicals GmbH
Sodium molybdate dihydrate, Na2MoO4· 2H2O, ≥
99.5%

Sigma Aldrich Co. LLC.

Sudanschwarz, C29H24N6 Carl Roth GmbH&Co. KG

E.1.3 Software

A list of software used in this work is provided in Appendix E table E.3.

TABLE E.3: Software

Software Manufacturer
LabVIEW National Instruments, USA
Matlab R2019b The MathWorks, Inc.

E.1.4 CGXII Complex Media

Stock solutions of MgSO4, FeSO4 and Thiamine HCl were made by dissolving 200 g

MgSO4 in 0.8 L dH2O, 72 g FeSO4 in 0.05 L dH2O and 6.5 g Thiamine HCl in 0.005 L

dH2O. Glucose stock solution contained 550g glucose-monohydrate in 1 L dH2O, which

was autoclaved at 121 °C and 2 bar for 20 min. Complex media composition for biore-

actor experiments are summarized in table E.4. Complex media for experiments in the
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TABLE E.4: Composition of complex medium

Component Stock concentration [g L−1] Final concentration [g L−1]
(NH4)2SO4) 7.2 216
KH2PO4 12 360
K2HPO4 4.58 137.4
C6H8O7 1 30
Yeast extract 10 300
Glucose 500 600
Thiamine HCl 0.13 4.03
MgSO4 2.49 3.43
Trace elements
stock solution
(1000x)

120

Trace elements stock solution composition (1000x)
Fe(II)SO4· 7H2O 16.4 1.44
MnCl2· 4H2O 10 0.01
ZnSO4· 7H2O 0.18 0.002
CuCl2· 2H2O 0.18 0.001
CaCl2· 2H2O 1.47 0.04
H3BO3· 2H2O 1 0.0005
Na2MoO4· 2H2O 0.08 0.002

glass bioreactor consisted of 30 g L−1 glucose, 360 g L−1 KH2PO4, 137.4 g L−1 K2HPO4,

216 g L−1 (NH4)2SO4 and 0.2% (V/V) trace elements stock solution. The composition of

trace element stock solution was 4.175 g L−1 Fe(II)SO4·7H2O, 0.002 g L−1 ZnSO4·7H2O,

0.01 g L−1 MnCl2·4H2O, 0.002 g L−1 ZnSO4·7H2O, 0.04 g L−1 CaCl2·2H2O and 3.43 g L−1

MgSO4·7H2O. Stock solutions of salts, trace elements, sugars and safflower oil were auto-

claved separately and stored at 4 °C. All compounds were combined just before the exper-

iments to prevent potential aging of media. According to Li, Han, et al. (2020), safflower

oil remains unaffected by autoclavation.

E.1.5 Oil Coloring

For coloring the organic phase the solely fat-soluble pigment Sudan black (Carl Roth

GmbH) was used. One spade tip of pigment was mixed with 30 mL of oil. This step

increases contrast to distinguish between bubbles, oil droplets and background in the

mixture.

E.1.6 Bioreactor Experiments

Experiments were conducted in a 3.7 L glass stirred tank (STR) (KLF 2000, Bioengineering,

Switzerland) with a working volume of 2.45 L and no overpressure applied. The tank was
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equipped with four baffles and three impellers (two A340 impellers + one 6-blade Rush-

ton (setup 1, see figure E.1); three A340 (setup 2, see figure E.2)) with identical spacing.

Gassing was enabled by a pipe sparger close to the reactor bottom. Spacing of stirrers,

other reactor components and liquid filling height were exactly as displayed in figure E.5

and table E.5. Aeration was set to 0.1 or 0.2 vvm and controlled by a mass flowmeter

(Model 3585, Analyt MTC Messtechnik GmbH, Germany).

FIGURE E.1: Schematic illus-
tration of three A340 impeller

represeting impeller setup 1.

FIGURE E.2: Schematic illus-
tration of two A340 and one
rushton impeller represeting

impeller setup 2.

Safflower oil was added up to 10 (V/V)% at the beginning of the process and was dis-

persed for 12 minutes before measurements to reach a stable droplet size distribution.

The dissolved oxygen (DO) was measured as percentage of air saturation by an oxygen

probe (OxyBase WR-RS485-L5-OIW, PreSens). Measurements were performed as tripli-

cates in oil-in-water and oil-in-medium dispersions. Sampling was enabled by a manual

valve. Temperature was kept constant at 37 °C and monitored by a PT-100 sensor (Bio-

engineering, Switzerland) and controlled through direct contact to an electrical heating

element and a water-cooled cooling stick. The LabView® 2009 SP1 software (National

Instruments, USA) was used for data recording and process control.
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E.1.7 Determination of the Volumetric Oxygen Mass Transfer Coefficient

In this study, the volumetric mass transfer coefficient kLa was determined with the dy-

namic gassing out method. The liquid was deoxygenated by replacing air with pure ni-

trogen. After deoxygenation, air was turned on again until the liquid was saturated. Con-

comitantly, the oxygen profile was monitored by an oxygen probe (OxyBase WR-RS485-

L5-OIW, Presens) with the oxygen exchange cap OEC-PSt3-NAU-OIW. Determination of

kLa was performed via integration of equation E.1 resulting in a linearized representation

displayed in equation E.2. In this representation kLa equals the slope of the line.

dcO2,L

dt
= kLa(c∗O2,L

− cO2,L) (E.1)

ln

(

c∗O2,L
− cO2,L,t2

c∗O2,L
− cO2,L,t1

)

= −kLa(t2 − t1) (E.2)

with cO2,L as oxygen concentration and c∗O2,L
as oxygen saturation concentration. Dynamic

oxygen mass transfer experiments were partially conducted by Faiß (2020) under super-

vision of this thesis author.

Measuring Oxygen Mass Transfer dynamically without Microorganisms

In aerobic fermentations oxygen supply to the organisms must be ensured. As a conse-

quence of very low solubility of oxygen in culture broth, oxygen limitation may occur

quickly. Therefore oxygen transfer rate, see equation E.1, is one of the most important pa-

rameters in biotechnology. This formula contains the volumetric mass transfer coefficient

kLa which comprises the volumetric interfacial gaseous-liquid surface area a and the mass

transfer coefficient kL. This coefficient only takes the liquid side of the phase boundary

into consideration. When the bubble diameter is known, mass-transfer coefficient can be

calculated using the penetration theory proposed by Higbie (1935):

kL =

√

DO2

π

(

ρǫ

µlam

)0.25

(E.3)

Equation E.3 is based on Kolmogorov’s Length scale of isotropic turbulence with ǫ as tur-

bulent dissipation rate, µlam as laminar dynamic viscosity and DO2 as diffusion coefficient.

The mass flux depends on the interfacial area a which is given by the following relation:

a = 6
α

db
(E.4)
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FIGURE E.3: Dynamic surface tension measurement principle. Pressure
characteristics depend on curvature radius (r1 - r5) and surface age. Capil-
lary radius is indicated as rc. Figure was kindly provided by KRÜSS, 2020.

where α is the gas hold-up and db the bubble diameter, which equals the Sauter diameter

d32 in CFD simulations.

Since it is difficult to measure each value individually, kLa is measured as a product. It

can be interpreted as the reciprocal of the oxygen transfer time (Garcia-Ochoa et al., 2009).

The kLa is dependent on geometry parameters (e.g: ratio of tank height to tank diameter

or impeller diameter to tank diameter, stirrer type), process parameters (agitation and

aeration rate, pressure and sparger type) and liquid properties (density, viscosity, surface

tension and coalescence properties) (Van’t Riet, 1979).

Probe response time

With a probe response time t63% = 3.67 s below the critical response time of t63%,crit =

6.99 s based on kLamax = 103.10 h−1, delay time can be neglected according to the criteria

established by Zlokarnik (2013).

E.1.8 Determination of Dynamic Surface Tension

The surface tension of different safflower oil volume fractions (0.2 % and 10 %) in complex

glucose medium and water was measured using a dynamic surface tension method. A

bubble pressure tensiometer (BP100, Krüss GmbH, Germany) was used and each sample

was measured as triplicate. The measurement setup is displayed in figure E.3.

At the beginning of the measurement, a capillary was immersed 2 mm in the disper-

sion, thereby a magnetic stirrer prevented accumulation of the surfactant at the liquid
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surface or capillary. The radius of the capillary was determined by a reference measure-

ment with water preceding every measurement series. Bubbles were formed by airflow

through the capillary with radius rc. The internal bubble pressure depends on the curva-

ture radius (r) and surface tension σ according to the Young-Laplace equation (p = 2σ
r ).

When a gas bubble is produced at the tip of the capillary, the radius initially decreases

until r equals rc and a pressure maximum pmax is reached (see figure E.3). At this point

the surface tension can be calculated according to:

σ =
(pmax − p0)r

2
(E.5)

with p0 as hydrostatic pressure. The measured values corresponds to the surface tension

at a certain surface age, the time from the start of the bubble formation to the occurrence

of the pressure maximum as indicated in figure E.3. The dependence of surface tension

on surface age can be measured by varying the speed at which bubbles are produced.

E.1.9 Power Input

Power input was measured via a stationary reed switch in combination with a magnet

attached to the agitator shaft. When the magnet passes the reed switch the electric circuit

is closed. Power input is thereby a function of torque T and can be calculated with the

corresponding rotational speed.

P = 2πN(TL − TE) (E.6)

with TL as measured torque value in liquid phase and N as agitation speed. As en-

ergy losses occur especially at the agitator shaft’s O-ring due to friction torque values

in an empty tank (TE) must be considered in the actual power consumption. Measure-

ments were carried out for different agitator speeds ranging from 100 rpm to 700 rpm and

gassing rates (0.1 and 0.2 vvm). The LabView® software (National Instrument, USA) was

used for data storage and monitoring and adjustment of impeller speed. The mean power

draw from the recorded signal was used for further analysis.

E.1.10 Determination of Oil Droplet and Bubble Size Distribution

To determine the oil droplet and bubble size distribution a Sony® Alpha 7 Camera and a

glass reactor equipped with A340 and rushton impellers were used as depicted in figure

E.4 with detailed reactor dimensions displayed in figure E.5 and table E.5. Two different
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FIGURE E.4: Schematic experimental setup with three A340 impeller. Di-
mensions are given in mm.

impeller settings (see figure E.1 and E.2) and liquid phases (deionized water; complex

glucose medium) and their impact on the oil droplet and bubble size distribution were

investigated.

FIGURE E.5: Detailed
schematic experimental
setup with two A340
and one 6-blade rusthon

impeller.

TABLE E.5: Geometric dimen-
sions according to figure E.5

Description Symbol Unit
Tank diameter D 0.125 m
Tank height (liq-
uid level)

H 0.215 m

A340 impeller di-
ameter

dA 0.061 m

Rushton impeller
diameter

dR 0.060 m

Impeller spacing ∆C 0.062 m
Off-Bottom im-
peller clearance

C 0.058 m

Off-Bottom
sparger clearance

SC 0.03 m

Volume V 0.0245 m3

Calibration and evaluation of size distributions were conducted as described in Heimann

(2017). The evaluation script in Matlab was extended to distinguish between oil droplets

and bubbles by integration of an additional size detection factor with which oil droplets

are recorded according to their size and color. However, no complete distinction between

oil and bubbles can be ensured leading to a potential underestimation of bubble size dis-

tribution in the presence of oil since bigger oil droplets may be falsely counted as air

bubbles. To reduce the potential overlap in size process parameters should be chosen

accordingly. To determine the best process parameters, both phases were first evaluated
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separately in corresponding media and impeller setup. Experiments and evaluation of

size distributions were performed as part of a bachelor thesis (Fichtel, 2019) supervised

by the author of this thesis.

E.2 Results and Discussion

Physical properties of oil-in-water and oil-in-broth dispersions and the impact of saf-

flower oil on bubble size distribution and kLa were conducted in a glass bioreactor. Nu-

merical simulations were used to investigate oil distribution in an industry size reactor of

same geometry as the lab-scale glass reactor.

E.2.1 Power Input

Power input was determined for two different aeration settings (0.1, 0.2 vvm), impeller

setups (Setup1: E.1, Setup 2: E.2) and liquids (water, complex glucose media) in the range

of 100 - 600 rpm. The results for 0.1 and 0.2 vvm of both impeller setups in water are

displayed in figure E.6 on the left hand side.

Same settings were used to monitor power input in complex glucose medium. Results

are shown in figure E.6 on the right hand side. Since a maximum volume fraction of 10 %

of non-viscous safflower oil was used as a secondary liquid phase, the power input is

assumed to remain the same in these mixtures.

The power input increases exponentially with agitation rate for both gassing condi-

tions in setup 2. A diminished increase was visible for setup 1. In comparison to setup

1, setup 2 shows an up to 3.5 times increased power consumption. The additional power

FIGURE E.6: Power input over agitation rate. The gassed power input for
different agitation rates (100-600 rpm) in water (left) and complex glucose

medium (right) is shown
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requirements are due to the increased resistance offered by the fluid to the rotation of

the rushton impeller. With an increase in aeration impeller resistance is reduced due to

changed fluid densities leading to a lower power consumption (Van’t Riet, 1979). Thereby,

double the amount of aeration leads to a maximum of 1.6 times reduced power input for

setup 2 and 3 times reduced power input in setup 1 in water and 1.2 times for setup 2 and

1.4 for setup 1 in glucose medium (see figure E.6). Although physical properties at 37 °C

of broth in terms of viscosity (0.94 · 10 −3Pas) and density (1026 kg m−3) are similar to

water at the same temperature (factor: 1.3 of increase in viscosity), power requirements in

complex glucose medium are elevated compared to water for high agitation rates. Since

the only difference is the liquid used between both experiments, increase in viscosity re-

sults in an increase in agitation rate with around the same factor (factor: 1.3).To better

compare the obtained values with literature dimensionless power numbers are derived

as explained in the next paragraph.

Power consumption values were used to calculate the relevant non-dimensional power

numbers (NP) values, defined as

NP =
P

ρLN3D5 (E.7)

where P is agitation power, ρL is liquid density, N is agitation speed and D is impeller

diameter. Power number as a function of Reynolds number (Re = NρD2
i

η ) is displayed in

figure E.7 for water (left) and broth (right). According to Junker et al. (1998) a NP of

around 5 can be expected for a 6 blade rushton impeller in a baffled reactor in turbulent

flow (Re > 104) and a NP of around 0.85 for an A315 impeller, which differ in an additional

blade towards the A340 impeller used in this study. For an A340 impeller a slightly lower

NP is expected accordingly. With NP around 5.1 to 7 for setup 2 and 1.9 to 4.8 for setup 1

this criteria is met in water. For an aeration rate of 0.1 and 0.2 vvm in water using setup 2

a typical rushton profile dominates A340 impellers in turbulent flow (Re > 10 4), whereas

the dynamic of setup 1 for equal process parameters resemble the profile of pitched blade

impellers (Dickey et al., 1976).

Interestingly, power profiles of impeller setup 2 at 0.1 vvm in medium are elevated

compared to water. Since Re number can be interpreted as the ratio between inertia forces

and viscous forces, an increase in viscosity leads to a reduction of Re (e.g. viscous forces

are dominant in laminar flow). Therefore, a fully turbulent system might not be reached

with complex glucose medium in the investigated setup. Laminar flow might still be
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FIGURE E.7: Power number as function of Reynolds number. The gassed
power number for different agitation rates (300-600 rpm) in water (left) and

complex glucose medium (right) is shown

prominent, where power is directly proportional to dynamic viscosity for a fixed agitator

speed (Holland et al., 1995). Additionally, at 0.2 vvm both setup 1 and 2 differ from the

anticipated profile as visible in water. With increasing aeration, turbulence is enhanced

and a transition from laminar to fully turbulent flow might be reached with reduced im-

pact of viscosity. Further experiments need to be performed to evaluate the investigated

profile.

Under turbulent conditions in a baffled tank, the impeller power number is essentially

constant and power is proportional to fluid density. Viscosity influences power only in

transitional and laminar conditions. In laminar flows where Reynolds number is low,

viscosity is dominant. In turbulent flows density is dominant.

E.2.2 Determination of surface tension

The dynamic surface tension of different concentrations of oil in water and broth were

measured as introduced in section E.1.8. The results of these measurements are depicted

in figure E.8. Measurement series with different volume fractions of oil were conducted in

either water (figure E.8 (left)) or complex glucose medium (figure E.8 (right)). Water and

glucose medium at 37 °C served as reference in the corresponding measurements. Water

with no additives resulted in a constant surface tension of around 70 N m−1 irrespective

of the surface age, whereas the surface tension of a gas bubble in broth shows a slow de-

cline from 60 to 40 mN m−1 in 42 s. As salts are present in glucose medium accumulating

at the bubble boundary surface over time, surface tension is continuously reduced until

equilibrium is reached (Xu, Nakajima, et al., 2009). Pure safflower oil has a surface tension

of 33 mN m−1 after 32 s, when thermodynamic equilibrium is reached. Irrespective of the

amount of safflower oil added to water (0.2 %, 1 %) the same dynamic of surface tension
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FIGURE E.8: Surface tension of different volume fractions of safflower oil
in water (left) and Glucose medium (right)

TABLE E.6: Corresponding sauter diameter to size distribution of bubbles
in figure E.9,E.10,E.11,E.12

100
rpm

200
rpm

300
rpm

400
rpm

500
rpm

600
rpm

Setup 1
Water 0.0042 0.0049 0.0031 0.0022 0.0019 0.0017
Media 0.0044 0.0048 0.0030 0.0022 0.0019 0.0017

Setup 2
Water 0.0038 0.0029 0.0020 0.0019 0.0016 0.0015
Media 0.0041 0.0027 0.0019 0.0019 0.0016 0.0015

reduction is visible. In broth however, salts seem to superimpose the effect of safflower

oil on surface tension resulting in the same dynamic as pure glucose medium and almost

the same surface tension as pure safflower oil.

E.2.3 Separate Size distribution of oil droplets and bubbles

In order to determine size distribution ranges of oil droplets and bubbles and to prepare

the evaluation script as described in section E.1.10, both phases were measured sepa-

rately. Aeration was set to 0.2 vvm during bubble size measurements and no aeration was

included when oil droplets were measured. To increase the contrast between oil droplets

and its background and to better distinguish between both phases, the oil was stained

black as described in section E.1.5. To compare size distributions over different settings

the Sauter diameter was calculated as displayed in equation 2.8. For a proper resolution

of single oil droplets the volume fraction was reduced from 10 % to 0.2 %. Nevertheless,

the effect on surface tension remains the same for both fraction as shown in figure E.8 and

thus the effect on oil droplet breakage was considered identical.

Bubble size distribution decreases with increasing rpm. Additionally, distribution be-

comes narrower for rpm > 300, while for rpm lower than 300rpm bubbles diameters are
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FIGURE E.9: Bubble size distribution in water for different agitation rates
(100 - 600 rpm) with 0.2 vvm aeration in setup 1

FIGURE E.10: Bubble size distribution in Glucose Medium for different ag-
itation rates (100 - 600 rpm) with 0.2 vvm aeration in setup 1
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FIGURE E.11: Bubble size distribution in water for different agitation rates
(100 - 600 rpm) with 0.2 vvm aeration in setup 2

FIGURE E.12: Bubble size distribution in Glucose Medium for different ag-
itation rates (100 - 600 rpm) with 0.2 vvm aeration in setup 2
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FIGURE E.13: Oil droplet size distribution in water for different agitation
rates (200 - 500 rpm) without aeration in setup 1

FIGURE E.14: Oil droplet size distribution in Glucose medium for different
agitation rates (200 - 500 rpm) without aeration in setup 1

distributed more widely. During all measurements, setup 1 shows smaller diameters com-

pared to setup 2 due to the increased shear stresses at the tip of the rushton impeller re-

sulting in a higher bubble/droplet break-up. Additionally, presence of ions in glucose

medium leads to smaller bubbles compared to water (see table E.6) due to zeta-potential

reduction of air bubbles leading to reduced surface tension, as shown in section E.2.2.

Evaluation of oil droplet size distribution was not possible for all power inputs mea-

sured. For low power inputs oil remained on the surface, whereas for higher turbulences

(agitation > 500 rpm) the oil droplets could not be detected due to an extremely fine ho-

mogenization. Minimum possible diameter detectable was around 0.0001 m.
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FIGURE E.15: Oil droplet size distribution in water for different agitation
rates (200 - 500 rpm) without aeration in setup 2

FIGURE E.16: Oil droplet size distribution in Glucose medium for different
agitation rates (200 - 400 rpm) without aeration in setup 2

TABLE E.7: Corresponding sauter diameter to size distribution of oil in
figure E.13,E.14,E.15,E.16

200
rpm

300
rpm

400
rpm

500
rpm

600
rpm

Setup 1
Water - 0.0018 0.0008 0.0005 0.0005
Media 0.0011 0.001 0.0006 0.0005 -

Setup 2
Water 0.0014 0.0006 0.0006 0.0005
Media 0.0008 0.0005 0.0005 - -
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As shown in figure E.14 and E.16 and summed up as Sauter diameter in table E.7, glucose

media supports the break-up of oil droplets as already predicted by reduction of surface

tension (figure E.8). The Sauter diameter of oil droplets in media is around half com-

pared to water. As stated earlier, surface tension of bubbles decreases during the presence

of salts and increases stability by enhancing the structures of the adsorption monolayer

and interfacial film (Xu, Nakajima, et al., 2009). Similar mechanisms might be true for oil

droplets as their Sauter diameter decreases in glucose media. Oil and bubble size distri-

butions could be best distinguished between 400 and 500 rpm which is why both agitation

rates were used for measuring bubble size distribution in the presence of oil.

Smaller droplets/ bubbles enhance species mass transfer by providing increased in-

terfacial area. To examine the effect of oil on volumetric oxygen mass transfer, kLa values

were measured in a lab-scale bioreactor as described in section E.1.6. The results are pre-

sented in the following.

E.2.4 Bubble Size distribution with and without oil

After determination of individual size distributions of bubbles and oil droplets, agitation

speeds of 400 and 500 rpm with aeration set to 0.2 vvm were used to measure bubble size

distribution in the presence of oil. Due to almost identical size distribution in glucose

medium, only detailed bubble size distributions in water are shown in the following.

For detailed information about bubble size distributions in complex glucose medium see

Fichtel, 2019.

TABLE E.8: Oxygen mass transfer coefficient for different oil-in-water vol-
ume fractions (0.2 % and 10 %) in setup 1 with 0.2 vvm at 300 rpm

Reference (w/o oil) 0.2 % oil 10 % oil
kLa [h−1] 13.1 9.98 5.9

In presence of oil, the number of smaller bubbles increases over all agitation rates in wa-

ter and broth. Interestingly, albeit bubbles do show a reduced surface tension in oil-in-

glucose medium dispersions ( 35 mN m−1) compared to oil-in-water mixtures (63 mN

m−1), the Sauter diameter only differs marginally (see table E.9). Since bubble size dis-

tribution is rather broad, slightly reduced bubble sizes are not very well reflected in the

Sauter diameter. Although oil does have an impact on bubble size distribution, interac-

tions of oil in broth with other components like yeast extract or salts might be possible.

Explanation of bubble size reduction via surface tension might be too simplified in this
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FIGURE E.17: Bubble size distribution in water for different agitation rates
(300 - 500 rpm) with 0.2 vvm aeration and 0.2 % oil in setup 1

FIGURE E.18: Bubble size distribution in gluocse medium for different agi-
tation rates (300 - 500 rpm) with 0.2 vvm aeration and 0.2 % oil in setup 1

FIGURE E.19: Bubble size distribution in water for different agitation rates
(300 - 500 rpm) with 0.2 vvm aeration and 0.2 % oil in setup2
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FIGURE E.20: Bubble size distribution in glucose medium for different agi-
tation rates (300 - 500 rpm) with 0.2 vvm aeration and 0.2 % oil in setup 2

TABLE E.9: Corresponding sauter diameter to size distribution in figure
E.17,E.18,E.19,E.20 with 0.2 vvm

Setup 1 Setup 2
Water Glc-Medium Water Glc-Medium

Oil ad-
dition

NO YES NO YES NO YES NO YES

400
rpm

0.0022 0.0021 0.0022 0.0020 0.0019 0.0018 0.0019 0.0018

500
rpm

0.0019 0.0018 0.0019 0.0018 0.0016 0.0015 0.0016 0.0015
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case. Interaction of other broth components with oil need to be examined in separate

studies.

However, addition of oil shows a positive effect on the Sauter diameter in water and

glucose medium for both setups by increasing the interfacial area of air bubbles. To vali-

date the anticipated effect of increase oxygen mass transfer, kLa measurements were per-

formed and corresponding results are shown in the following.

E.3 Mass transfer coefficients

Since positive tendencies in terms of reduced surface tension and reduced bubble size

distribution in the presence of safflower oil could be shown, oxygen mass transfer coeffi-

cients were measured next. Two different aeration settings were chosen (0.1 and 0.2 vvm)

in combination with various agitation rates (300 - 600 rpm) and 10 (V/V)% safflower oil to

determine the influence of oil on kLa. Oxygen probe Modell OEC-PST3-NAU-OIW from

Presens was used for all measurements. Probe cap (OEC-PSt3-NAU-OIW) was coated

with teflon to prevent accumulation of oil on the sensor surface. Results for impeller

setup 1 and setup 2 are displayed in figure E.22 and E.21, respectively. Contrary to the

expectations based on the results of previous results (surface tension, bubble size distri-

bution) kLa values are diminished up to 50 % when oil is added in setup 1 (figure E.22)

and up to 20 % in setup 2 for the same gassing rates (figure E.21). No increased values in

the presence of safflower oil were detected in neither of the setups and conditions used.

Overall, kLa values are almost twice as high in setup 2 compared to setup 1 due to the

improved break-up of bubbles at the rushton impeller located directly at the top of the

sparger (figure E.21). Additionally, kLa in complex glucose medium is slightly higher

compared to water in setup 2 due to bubble coalescence inhibition of ions (Henry et al.,

2007). Interestingly, glucose medium seem to have a negative effect on kLa in setup 1,

which needs to be investigated further. However, as there is not much opportunity for

bubbles to coalesce in this small and highly turbulent system, the effect of salts inhibit-

ing coalescence might be more prominent in larger tanks where different turbulent zones

occur.

While the addition of oil decreases surface tension facilitating break-up and resulting

in smaller bubbles, the kLa value does show the opposite effect in all presented studies.

Therefore the sole assumption of oil enhancing oxygen mass transfer might be to simple

in this scenario. Dumont et al. (2003) and Kaur et al. (2007) reported similar contradic-

tionary results for different studies. The opposing results leads to the assumption that
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FIGURE E.21: kLa in Setup 2 measured with different aeration rates with
and without oil. Water (left), glucose medium (right)

FIGURE E.22: kLa in Setup 1 measured with different aeration rates with
and without oil. Water (left), glucose medium (right)

beneath a positive influence on bubble break-up and reduced surface tension, surface

mobility is inhibited by oil leading in turn to a reduction of oxygen mass transfer rate.

Hydrodynamics change by suppression of surface mobility as well as interfacial blockage

by increasing mass transfer resistance. To further investigation potential of spreading of

oil on bubble surface, the spreading coefficient was determined as presented in the next

chapter. Studies of Patil et al. (2020) however indicate a positive effect of safflower oil

during fermentation processes on kLa. Since producing microorganisms are involved in

this study, oil might behave differently in the presence of (by-) products and microorgan-

isms. Additionally, antifoam was added to the fermentation broth over the time course

of this process which might also interact with oil. Further analysis is needed to quanti-

tatively describe oxygen mass transfer behavior in the presence of safflower oil. Because

of this ambivalent behavior no mechanism could be extracted to mathematically describe

the effect of oil on bubble break-up to simulate oxygen mass transfer in industry scale

reactors.
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Spreading coefficient

With the individual surface tensions (see section E.2.2) measured, the spreading coeffi-

cient as explained in chapter 2.9 results in -0.23 mN m−1. Yoshida et al. (1970) showed,

that negative spreading coefficients lead to a decrease in kLa with an increase in oil vol-

ume fraction, based on studies with kerosene and paraffin. For safflower oil a similar

trend can be observed as displayed in table E.8, where kLa decreases with increasing vol-

ume fraction matching the sense of a negative spreading coefficient. However, according

to Brilman et al. (1998) the initial spreading coefficient is irrelevant in well mixed stirred

tank fermenter and the actual spreading coefficient appears to be negative for all systems

due to oil and bubbles being forced to come together. Since no final conclusion can be

drawn from spreading coefficient value, further investigations need to be performed.

E.4 Conclusion

Bubble size distribution and oxygen mass transfer coefficients have been measured ex-

perimentally with and without safflower oil to investigate the effect of oil on kLa. Saf-

flower oil reduces surface tension from 71 mN m−1 to around 61 mN m−1 at thermody-

namic equilibrium in water but no additional effect in media was visible. The amount of

oil (0.2 or 10 %) volume fraction was thereby irrelevant. Measurements of bubble size dis-

tribution are in line with the effect of oil on surface tension. Reduced surface tension in the

presence of oil reduces bubble diameters enhancing interfacial area for increased species

mass transfer. However, kLa measurements showed the opposite of the anticipated effect.

kLa values in oil-in-liquid systems regardless of the setup or continuous liquid used never

exceeded kLa values in oil-free systems. This shows that oil has a much more complex

effect on mass transfer which can not be solely explained by surface tension reduction.

Thorough analysis is needed to quantify these effects. Comparison of impeller setups re-

sulted in improved bubble break-up with simultaneously increasing power input when a

A340 impeller is substituted by a rushton impeller above the sparger.
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A B S T R A C T   

In large-scale bioprocesses microbes are exposed to heterogeneous substrate availability reducing the overall 
process performance. A series of deletion strains was constructed from E. coli MG1655 aiming for a robust 
phenotype in heterogeneous fermentations with transient starvation. Deletion targets were hand-picked based on 
a list of genes derived from previous large-scale simulation runs. Each gene deletion was conducted on the 
premise of strict neutrality towards growth parameters in glucose minimal medium. The final strain of the series, 
named E. coli RM214, was cultivated continuously in an STR-PFR (stirred tank reactor – plug flow reactor) scale- 
down reactor. The scale-down reactor system simulated repeated passages through a glucose starvation zone. 
When exposed to nutrient gradients, E. coli RM214 had a significantly lower maintenance coefficient than E. coli 
MG1655 (Δms = 0.038 gGlucose/gCDW/h, p < 0.05). In an exemplary protein production scenario E. coli RM214 
remained significantly more productive than E. coli MG1655 reaching 44% higher eGFP yield after 28 h of STR- 
PFR cultivation. This study developed E. coli RM214 as a robust chassis strain and demonstrated the feasibility of 
engineering microbial hosts for large-scale applications.   

1. Introduction 

Large-scale fed-batch bioprocesses often suffer from reduced process 
performance compared to lab-scale experiments conducted during pro-
cess development (Bylund et al., 2000; Enfors et al., 2001). The physical 
and engineering constraints in large-scale reactors inevitably lead to the 
formation of spatial heterogeneities of relevant process parameters such 
as nutrient availability, concentrations of dissolved oxygen, carbon di-
oxide, and pH (Bylund et al., 1998; Cortés et al., 2016). Heterogeneities 
of nutrient availability are caused by long mixing times of large-scale 
reactors (Delvigne et al., 2006; Noorman, 2011). Studies employing 
computational fluid dynamics (CFD) have revealed that in fed-batch 
processes this typically results in the formation of zones with high 
nutrient concentrations close to the feeding point and zones depleted of 
nutrients at the far end of the reactor (Haringa et al., 2017; Kuschel and 
Takors, 2020). Depending on the mixing time and their position in the 
reactor cells frequently move through different zones on a timescale of 
seconds to minutes and cellular regulatory programs ranging from 
overflow metabolism to starvation responses are repeatedly triggered 

and shut down (Kuschel et al., 2017). Due to the delay of transcriptional 
responses, regulatory consequences of stress stimuli may be effective 
distant from the spot of stress induction which finally creates a hetero-
geneous population status (Nieβ et al., 2017; Zieringer et al., 2020). 
There is evidence from an increasing number of studies that the per-
formance of many industrial workhorse organisms such as Escherichia 
coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cer-
evisiae and Penicillium chrysogenum is negatively affected when facing 
process heterogeneities (George et al., 1993; Jonge et al., 2011; Junne 
et al., 2011; Larsson and Enfors, 1988; Olughu et al., 2020; Vasilakou 
et al., 2020). 

Substantial effort has been made by the scientific community to 
understand microbial responses to the different zones occurring in large- 
scale reactors (Lara et al., 2006a, 2006b; Löffler et al., 2016; Olughu 
et al., 2019). In academic laboratories, the conditions of industrial re-
actors are commonly simulated using multi-compartment scale-down 
reactors (Delvigne et al., 2017; Neubauer and Junne, 2010; Takors, 
2012). Typically, nutrient pulsing or secondary vessels are employed to 
deliver a stimulus representative for the conditions under investigation 
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(Bylund et al., 1999). The design of a scale-down reactor also serves to 
control the circulation of the microbial population and its residence time 
in stimulus zones. A commonly used design follows the 
two-compartment approach comprising a primary stirred tank reactor 
(STR) coupled to a secondary plug-flow reactor (PFR). While the STR 
represents the bulk of the fermentation broth, the plug-flow compart-
ment represents a stimulus zone with a defined residence time. 
Together, the STR-PFR two-compartment reactor enables the study of 
cellular behavior in heterogeneous environments. 

Zones with low nutrient concentration but high oxygen availability 
occur in reactor segments far away from the feeding point. The effects of 
such transient starvation conditions on the performance and intracel-
lular regulation of microbial populations can be studied in C-limited 
scale-down reactors. In the case of Escherichia coli K-12 repeated pas-
sages of cells through starvation zones were found to negatively impact 
process performance which could be observed as a reduced biomass 
yield (Neubauer et al., 1995b). In parallel, regulatory responses such as 
the stringent response and the general stress response are rapidly initi-
ated (Delvigne et al., 2009; Löffler et al., 2016; Neubauer et al., 1995a; 
Simen et al., 2017; Sunya et al., 2012). Noteworthy, these cellular re-
sponses serve rather long-term than short-term needs and appear to be 
futile if cells enter zones of nutrient access shortly after the induction of 
the strategic precaution measure. Transcriptional investigations in a 
carbon-limited STR-PFR system offered a potential link between futile 
regulation and reduced process performance: Frequent transcriptional 
reprogramming was proposed to cause high secondary metabolic costs 
from aberrant transcription and translation (Löffler et al., 2016). It was 
estimated that an increased maintenance of up to 30–40% was caused by 
the transcriptional oscillations and a substantial fraction of this origi-
nated from the expression of open reading frames whose products 
appeared to bestow no apparent benefit in a controlled bioprocess 
employing standard glucose minimal medium. 

The data collected by Löffler et al. (2016) led us to propose a novel 
design approach for production strains: We reasoned that an intelli-
gently engineered deletion strain might have advantages in conditions 
that repeatedly induce wasteful expression of process-irrelevant genes. 
A heterogeneous fermentation with repeated transient starvation could 
then be a suitable testing environment. The choice of deletion targets 
would have to be based on the estimated effect of the deletion and be 
restricted by the requirements of neutrality towards growth and global 
regulation. The design process differs from previous considerations on 
the creation of lean-proteome strains in the regard that savings only 
become apparent due to fluctuating induction (Valgepea et al., 2015). 
Secondary metabolic costs can traditionally be assessed through Pirt’s 
maintenance coefficient (Pirt, 1965). We hypothesized that the deletion 
of a suitable set of genes should lead to a reduced maintenance coeffi-
cient under scale-down conditions representing starvation zones. The 
resulting strain could then serve as a base strain for the construction of 
robust production strains. 

We identified deletion candidates matching the defined criteria and 
constructed a series of deletion strains from E. coli MG1655. The final 
strain of the series, named E. coli RM214, was fermented in continuous 
cultivations in an STR-PFR system simulating starvation zones. E. coli 
RM214 had a significantly lower maintenance coefficient than E. coli 
MG1655 under simulated large-scale conditions. We then characterized 
E. coli RM214 in an exemplary protein production scenario using eGFP 
as a model product. Compared to E. coli MG1655, the deletion strain 
showed an increased resilience towards the scale-down conditions as 
evidenced by reduced productivity losses and a higher fraction of pro-
ducing cells. 

2. Materials and methods 

2.1. Bacterial strains, media, and buffer solutions 

All strains used in this study are listed in Table 1. 

Table 1 
Bacterial Strains used in this study.  

Strain Genotype/Strain Information Reference/ 
Source 

Escherichia coli K-12 
MG1655 

F−, λ−, ilvG−, rfb-50, rph-1 
(“wild type” strain, abbrev. WT) 

Michalowski 
et al., (2017) 

Escherichia coli DH5α 

λpir 
supE44, ΔlacU169 (Φ80lacZΔM15), 
recA1, endA1, hsdR17, thi-1, gyrA96, 
relA1, λpir phage lysogen 

Michalowski 
et al., (2017) 

Escherichia coli 
DH10B pSIM5 

F− mcrA Δ(mrr-hsdRMS-mcrBC) 
ϕ80lacZΔM15 ΔlacX74 recA1 endA1 
araD139 Δ(ara-leu)7697 galU galK λ– rpsL 
(StrR) nupG 

Datta et al., 
(2006) 

T-SACK W3110 araD<>tetA-sacB-amp fliC<>cat 
argG::Tn5 

Li et al., 
(2013) 

Escherichia coli 
CD101 

MG1655 Δflk This study 

Escherichia coli 
CD201 

MG1655 Δflk ΔfliA This study 

Escherichia coli 
CD202 

MG1655 Δflk ΔfliA ΔfliC This study 

Escherichia coli 
CD203 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 

This study 

Escherichia coli 
CD204 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 
ΔfliEFGHIJKLMNOPQR 

This study 

Escherichia coli 
CD205 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 
ΔfliEFGHIJKLMNOPQR 
ΔflhEABcheZYBRtaptarcheWAmotBA 

This study 

Escherichia coli 
RM206 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 
ΔfliEFGHIJKLMNOPQR 
ΔflhEABcheZYBRtaptarcheWAmotBA 
ΔcspD 

This study 

Escherichia coli 
RM207 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 
ΔfliEFGHIJKLMNOPQR 
ΔflhEABcheZYBRtaptarcheWAmotBA 
ΔcspD ΔaldA 

This study 

Escherichia coli 
RM208 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 
ΔfliEFGHIJKLMNOPQR 
ΔflhEABcheZYBRtaptarcheWAmotBA 
ΔcspD ΔaldA ΔgatABCDR 

This study 

Escherichia coli 
RM209 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 
ΔfliEFGHIJKLMNOPQR 
ΔflhEABcheZYBRtaptarcheWAmotBA 
ΔcspD ΔaldA ΔgatABCDR ΔuhpTCBA 

This study 

Escherichia coli 
RM210 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 
ΔfliEFGHIJKLMNOPQR 
ΔflhEABcheZYBRtaptarcheWAmotBA 
ΔcspD ΔaldA ΔgatABCDR ΔuhpTCBA 
ΔyeeL 

This study 

Escherichia coli 
RM214 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 
ΔfliEFGHIJKLMNOPQR 
ΔflhEABcheZYBRtaptarcheWAmotBA 
ΔcspD ΔaldA ΔgatABCDR ΔuhpTCBA 
ΔyeeL ΔflxA 

This study 

Escherichia coli 
BW3110 
pJOE4056.2 

W3110 rhaB- Wegerer et al., 
(2008) 

Escherichia coli DH5α 

λpir 
pJOE4056.2_tetA 

supE44, ΔlacU169 (Φ80lacZΔM15), 
recA1, endA1, hsdR17, thi-1, gyrA96, 
relA1, λpir phage lysogen 

This study 

Escherichia coli K-12 
MG1655 rhaB- 

F−, λ−, ilvG−, rfb-50, rph-1, rhaB- This study 

Escherichia coli 
RM214 rhaB- 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 
ΔfliEFGHIJKLMNOPQR 
ΔflhEABcheZYBRtaptarcheWAmotBA 
ΔcspD ΔaldA ΔgatABCDR ΔuhpT ΔyeeL 
ΔflxA rhaB- 

This study 

(continued on next page) 
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2xYT medium was prepared by autoclaving 16 g/l tryptone, 10 g/l 
yeast extract, 5 g/l NaCl dissolved in demineralized water. For agar 
plates 18 g/l agar-agar was added prior to autoclavation. For pH indi-
cator plates 0.03 g/l of neutral red and 10 g/l Rhamnose were supple-
mented from sterile stock solutions directly before pouring. SOC 
medium was prepared as described previously (Hanahan, 1983). Agar 
plates for tetA-sacB counterselection were prepared as described previ-
ously (Li et al., 2013). If strains with antibiotic resistance markers were 
cultivated, antibiotics were added to media after autoclavation in the 
following concentrations: Chloramphenicol 20 μg/ml, Tetracycline hy-
drochloride 10 μg/ml, disodium Carbenicillin 100 μg/ml. 

Minimal media for shaking flask experiments and the precultures for 
bioreactor experiments consisted of 4 g/l glucose, 3.2 g/l NaH2-
PO4⋅2H2O, 11.7 g/l K2HPO4, 8 g/l (NH4)2SO4, 0.01 g/l thiamine hy-
drochloride and 0.2% (V/V) trace elements stock solution. Minimal 
media for batch cultivation in the bioreactor consisted of 13.4 g/l 
glucose, 1 g/l NaH2PO4⋅2H2O, 2.6 g/l K2HPO4, 9 g/l (NH4)2SO4 and 
0.2% (V/V) trace elements stock solution. In the experiments with 
strains carrying pJOE4056.2_tetA for GFP production 10 μg/ml Tetra-
cycline hydrochloride and 1 g/l Rhamnose were supplemented. Towards 
the end of the batch phase about 100 μl of antifoaming agent Struktol 
J647 was added to prevent foaming upon glucose depletion. Minimal 
media for continuous chemostat cultivation in the bioreactor consisted 
of 13.14 g/l glucose, 1 g/l NaH2PO4⋅2H2O, 2.6 g/l K2HPO4, 9 g/l 
(NH4)2SO4 and 0.2% (V/V) trace elements stock solution. In the ex-
periments with strains carrying pJOE4056.2_tetA for GFP production 10 
μg/ml Tetracycline hydrochloride and 1 g/l Rhamnose were supple-
mented. Throughout the chemostat phase 50 μl/h of antifoaming agent 
Struktol J647 were added continuously to the fermentation medium. 

The composition of trace element stock solution was 4.175 g/l 
FeCl3⋅6H2O, 0.045 g/l ZnSO4⋅7H2O, 0.025 g/l MnSO4⋅H2O, 0.4 g/l 
CuSO4⋅5H2O, 0.045 g/l CoCl2⋅6H2O, 2.2 g/l CaCl2⋅2H2O, 50 g/l 
MgSO4⋅7H2O and 55 g/l sodium citrate dihydrate. Stock solutions of 
salts, trace elements and sugars were autoclaved separately, and stock 
solutions of thiamine hydrochloride and the antibiotics were filter 
sterilized and stored at 4 ◦C. All compounds were combined just before 
the experiments to prevent potential aging of media. 

PBS-MgCa for the measurement of eGFP fluorescence and flow 
cytometry analysis contained 8 g/l NaCl, 0.2 g/l KCl, 1.44 g/l Na2HPO4, 
0.24 g/l KH2PO4, 1 mM MgSO4 and 0.1 mM CaCl2. Prior to use PBS- 
MgCa was filtered with a sterile filter (pore size < 0.2 μm) to reduce 
particle load (Tomasek et al., 2018). 

2.2. Construction of deletion strains 

Chromosomal modifications were conducted using recombineering 
methods that have been comprehensively described and reviewed pre-
viously (Murphy, 2016). The tetA-sacB cassette and lambda recombin-
eering functions provided by pSIM5 were used to perform chromosomal 
modifications with base-pair precision (Datta et al., 2006; Li et al., 
2013). Deletions of single genes were designed to span the coding 
sequence only and deletions of operons or larger genomic regions were 
designed to begin with the coding sequence of the first gene and end 

with the coding sequence of the final gene. All deletions were verified by 
sequencing. Table S1 contains an annotated list of primers used in this 
study and Supplementary Information S2 a more detailed description 
of the recombineering method used. 

2.3. Construction of GFP production strains 

The protein expression system used for the bioreactor fermentations 
closely resembles previously described systems based on pJOE4056.2 
(Wegerer et al., 2008; Wilms et al., 2001). For additional stability, the 
bla resistance cassette from plasmid pJOE4056.2 was exchanged for a 
tetA resistance cassette yielding pJOE4056.2_tetA to enable continuous 
selective pressure under the conditions of a chemostat. Use of 
pJOE4056.2_tetA requires induction with the rare sugar rhamnose at 
low glucose concentrations. Prior to plasmid transformation, we thus 
inactivated the chromosomal copy of rhaB encoding rhamnulokinase in 
E. coli MG1655 and E. coli RM214 to yield rhaB− strains incapable of 
utilizing the rare sugar rhamnose. Supplementary Information S2 
contains a more detailed description of the procedure. 

2.4. Shaking flask cultivations 

For growth experiments glycerol stock cultures strains were streaked 
on 2xTY agar plates and incubated overnight at 37 ◦C. For precultures, a 
single colony was picked to inoculate 15 ml minimal medium in a 50 ml 
baffled shaking flask and incubated at 37 ◦C on an orbital shaker set to 
130 rpm overnight. On the following morning, an inoculum of the 
preculture was transferred into 50 ml minimal medium in a 500 ml 
baffled shaking flask to reach a starting OD of 0.2 and the culture 
incubated at 37 ◦C on an orbital shaker set to 130 rpm. Samples were 
drawn hourly using a fixed needle reaching through the attached cotton 
plug and a syringe. In all shaking flask experiments the wild type strain 
E. coli MG1655 was cultivated in parallel as a reference and data 
collected from other strains was normalized to this reference data. 

2.5. Bioreactor setup 

Bioreactor fermentations were carried out in a two-compartment 
scale-down reactor. The primary reactor was a stirred tank reactor, 
and a plug flow reactor was used as the secondary compartment 
mimicking a starvation zone. The plug flow reactor was connected to the 
stirred tank reactor only after establishment and sampling of a steady 
state in the chemostat phase. The technical setup has been characterized 
previously and includes the modifications described by Ankenbauer 
et al. (Ankenbauer et al., 2020; Löffler et al., 2016). A schematic over-
view of the two-compartment reactor is shown in Fig. 1 and Supple-
mentary Information S2 contains a comprehensive description of the 
setup. 

2.6. Preculture, batch cultivation and continuous cultivation 

100 μl of glycerol stock seed culture were directly used to inoculate 
300 ml of preculture minimal medium in a 3 l baffled shaking flasks and 
incubated at 37 ◦C on an orbital shaker set to 130 rpm overnight. The 
next morning 160 ml of preculture were used to inoculate the bioreactor 
complementing the total volume in the bioreactor to 1.6 l fermentation 
broth. Batch fermentation in the bioreactor ensued at 37 ◦C. Upon 
depletion of glucose, indicated by a sharp increase in dissolved oxygen 
tension, feed and harvest lines were connected. The reactor was refilled 
with feed medium to 1.6 l broth and a constant feed/harvest rate was 
established. For GFP production experiments with strains carrying 
pJOE4056.2_tetA the feed rate was set to 5.33 ml/min corresponding to 
a dilution rate of 0.2 h−1. For bioreactor cultivations aimed at investi-
gating genomic stability and determining the maintenance coefficient of 
E. coli MG1655 and E. coli RM214 the batch phase was shortened, and 
feed rates were set to 8.00 ml/min, 5.33 ml/min, 2.67 ml/min or 1.33 

Table 1 (continued ) 
Strain Genotype/Strain Information Reference/ 

Source 
Escherichia coli K-12 

MG1655 rhaB−

pJOE4056.2_tetA 

F−, λ−, ilvG−, rfb-50, rph-1, rhaB- This study 

Escherichia coli 
RM214 rhaB−

pJOE4056.2_tetA 

MG1655 Δflk ΔfliA ΔfliC 
ΔflgNMABCDEFGHIJKL 
ΔfliEFGHIJKLMNOPQR 
ΔflhEABcheZYBRtaptarcheWAmotBA 
ΔcspD ΔaldA ΔgatABCDR ΔuhpT ΔyeeL 
ΔflxA rhaB- 

This study  
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ml/min corresponding to dilution rates of 0.3 h−1, 0.2 h−1, 0.1 h−1 or 
0.05 h−1. After cultivation for at least five volumetric residence times a 
reference sample was taken. Then, the plug-flow reactor was connected 
to the primary reactor via a diaphragm metering pump effectively 
circulating about one-quarter (380 ml) of the total fermentation broth 
from the primary reactor through the plug-flow reactor and back into 
the stirred tank reactor. In the following five to six volumetric residence 
times samples were taken at predefined time points from the STR and the 
five PFR ports. Afterwards the fermentation was aborted, and the actual 
final broth volume measured. This value was used for all volumetric 
calculations during data analysis. 

2.7. Determination of optical density and biomass dry weight 

Optical density of fermentation broth appropriately diluted with 
0.9% NaCl from the primary reactor was measured in triplicates at 600 
nm on a spectrophotometer (Amersham Biosciences/GE Healthcare, 
Amersham, United Kingdom). For measurement of biomass dry weight 
quadruplicates of 5 ml broth were centrifuged in weighted glass tubes at 
2500 g and 4 ◦C for 7.5 min. Supernatant was immediately decanted and 
the pellet washed by resuspending in 5 ml of freshly prepared 150 mM 
NH4HCO3 held at 4 ◦C. The suspension was centrifuged again, and the 
washing repeated once. After a final centrifugation, the remaining liquid 
was decanted carefully, the pellet dried at 105 ◦C and glass tubes con-
taining dried pellets were weighted again. 

2.8. Determination of acetic acid, ammonium and glucose concentrations 
in fermentation supernatant and feed 

5 ml of biosuspension was directly sampled into a syringe connected 
to a single-use 0.45 μm sterile filter and immediately filtered. The clear 
supernatant was flash frozen in liquid nitrogen and stored at −70 ◦C 
until analysis. Glucose concentration was determined by D-Glucose UV- 
Test Kit (R-Biopharm, Darmstadt, Germany) and acetic acid concentra-
tion by Acetic acid UV-Test Kit (R-Biopharm, Darmstadt, Germany). 
Ammonium concentration was determined by Ammonium cuvette test 
LCK 303 or LCK 304 (Hach Lange, Düsseldorf, Germany). At the end of 
the cultivation feed samples were taken directly from the feed line, flash 
frozen in liquid nitrogen and processed as described. 

2.9. Analysis of total carbon, inorganic carbon and biomass composition 

For total carbon and inorganic carbon analysis 0.5 ml biosuspension 

sample were mixed with 50 μl of 5 M KOH to prevent loss of dissolved 
carbonate. Then, the suspension was diluted 1:20 with demineralized 
water, flash frozen in liquid nitrogen, and stored at −70 ◦C until anal-
ysis. Analysis was performed with a multi N/C 2100 S composition 
analyzer (Analytik Jena, Jena, Germany) to yield the total concentration 
of carbon and inorganic carbon in the fermenter effluent stream. 

To determine biomass composition 1.0 ml of biosuspension was 
centrifuged at 4 ◦C and 14000 rpm (20817 g) for 3 min. The supernatant 
was discarded, the pellet resuspended in 1.0 ml of 0.9% NaCl solution 
and centrifuged again. The pellet was resuspendend in 5 ml 0.9% NaCl, 
flash frozen in liquid nitrogen and stored at −70 ◦C until analysis. 
Analysis was performed with a multi N/C 2100 S composition analyzer 
(Analytik Jena, Jena, Germany) and the carbon and nitrogen content of 
the biomass calculated from these values. 

2.10. Measurement of nucleotides 

2 ml of biosuspension was sampled directly into 0.5 ml of precooled 
(<−20 ◦C) quenching solution and incubated at 6 ◦C on a shaker for 15 
min. Quenching solution consisted of 80 μM EDTA dissolved in 35% (V/ 
V) perchloric acid. 500 μl 1 M K2HPO4 was added, and the sample was 
briefly vortexed. 550 μl 5 M KOH was added and the sample was vor-
texed again. To remove precipitating potassium perchlorate samples 
were then centrifuged at 4 ◦C and 7830 rpm (7197 g) for 5 min. 1.5 ml of 
supernatant was carefully transferred to new tubes, flash frozen in liquid 
nitrogen, and stored at −70 ◦C. Prior to analysis samples were thawed 
and centrifuged for 10 min at 4 ◦C and 7197 g. 1 ml of supernatant was 
transferred to new tubes and their pH adjusted to 6.95–7.05 with 5 M 
KOH or 35% (V/V) perchloric acid. Samples were centrifuged again for 
30 min at 4 ◦C at 18000 g to remove potassium perchlorate precipitate 
from neutralization. 500 μl of supernatant were then transferred into 
RotiSpin Mini 3 kDa MWCO tubes and centrifuged again for 30 min at 
4 ◦C at 18000 g. HPLC analysis was carried out as described previously 
(Löffler et al., 2016). 

2.11. Measurement of eGFP fluorescence 

Freshly sampled biosuspension was flash-frozen in liquid nitrogen 
and stored at −70 ◦C until analysis. On the day of analysis all samples 
were thawed and diluted 1:100 with ice-cold PBS-MgCa. 200 μl of 
diluted sample were transferred into a black 96 well-plate with trans-
parent bottom and lid and the fluorescence (excitation 485 nm, emission 
535 nm) was quantified in a SLT SpectraFluor plate-reader (Tecan, 

Fig. 1. Reactor Setup. The primary reactor was a 
standard laboratory reactor operated as a fully aer-
obic glucose limited chemostat at 37 ◦C (left 
scheme). For measurements of the well mixed STR 
reference state the entire biosuspension was in the 
primary reactor (VSTR = 1.60 l). Scale-down condi-
tions were installed by connecting a secondary plug- 
flow reactor (PFR). An active pump then constantly 
circulated VPFR = 0.38 l fermentation broth between 
STR and PFR reducing the volume fraction in the 
STR to VSTR-PFR = 1.22 l (right scheme). Labels STR 
and P1 to P5 designate sampling ports with the 
respective average residence time of biosuspension 
after leaving the STR. Fermentations were carried 
out in two phases each lasting for at least five 
volumetric residence times: First, a homogenous 
STR reference state was established, followed by a 
subsequent heterogeneous STR-PFR phase.   
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Switzerland). Then, the measured fluorescence values were converted 
into absolute eGFP concentrations using a calibration curve recorded 
with purified protein (see Supplementary Information S2). 

2.12. Flow cytometry analysis 

Freshly sampled biosuspension was diluted with PBS-MgCa to yield 
an OD of approximately 0.04. Diluted biosuspension was passed through 
a 30 μM CellTrics® filter to reduce particle content and analyzed in a BD 
Accuri™ C6 Plus Flow Cytometer. The excitation laser had a wavelength 
of 488 nm and a 533/30 nm emission filter was used to capture GFP 
fluorescence. Particle signals with a forward scatter height (FSC–H) 
signal less than 2500 were ignored and 250000 events collected. Events 
with an eGFP area signal less than 10 were excluded from the analysis to 
remove dust and cell debris, usually resulting in 235000–249000 
remaining events. Cells from events with an eGFP area less than 2000 
were defined to form the non-producing population, while cells from 
events with an eGFP area equal or greater than 2000 were defined to 
form the producing population. Histograms of all samples can be found 
in Supplementary Fig. S3. 

2.13. Genomic DNA sequencing 

1 ml of biosuspension was sampled, flash-frozen in liquid nitrogen 
and stored at −70 ◦C. On the day of extraction samples were thawn and 
total DNA extracted with DNeasy Blood and Tissue Kit (Qiagen). Isolated 
DNA was shipped to and sequenced by the commercial sequencing 
partner Eurofins Genomics resulting in approximately 5–6 million 
paired end reads (150 bp) per sample. Data was delivered as fastqc files 
and assembly of the reads conducted with Unicycler 0.4.8 with the 
following settings: min contig length 300 bp, min contig coverage 5 
(Wick et al., 2017). The obtained contigs were processed with Mauve 
version 20150226 build 10 using the reference sequence NC_0000913.3 
from the NCBI database (Darling et al., 2004). Finally, small nucleotide 
polymorphisms were detected using snippy (https://github.com/tseema 
nn/snippy) and the output manually examined using Geneious Prime 
2020.2.3 (https://www.geneious.com). Supplementary Data S9 con-
tains lists of all SNPs found. 

2.14. RT-qPCR 

1.5 ml of freshly drawn biosuspension were immediately flash frozen 
in liquid nitrogen and stored at – 70 ◦C. Frozen liquid cell suspensions 
were thawn on ice and 200 μl each were transferred into bead bashing 
tubes prefilled with 700 μl Lysis buffer. Cells were disrupted with a 
Precellys® homogenisator for 2 × 20 s. RNA was extracted using the 
Quick-RNA Fungal/Bacterial Kit (Zymo Research) following the manu-
facturer’s instructions. The RNA concentrations were measured by 
Nanodrop. 10 μg RNA each was treated with 2 units TURBO DNase 
(Thermo Fisher Scientific) in 50 μl reactions for 60 min, with additional 
2 units enzyme after 20 and 40 min, respectively. RNA from the DNase 
reactions were purified with Zymo Clean & Concentrator™-5 (Zymo 
Research) according to the manufacturer’s protocol and were then 
measured by Nanodrop. cDNA synthesis with SuperScript® IV reverse 
transcriptase (Invitrogen) was carried out according to the protocol for 
random hexamers as primers. 1 μg RNA was used as starting input for 20 
μl reactions, but no RNase inhibitor was added. A no reverse tran-
scriptase control was included. For the qPCR reactions, the cDNA re-
action mixes were diluted with 100 μl nuclease free water. 2 μl from all 
cDNA reactions were pooled together and a dilution series was prepared 
(1, 1:10, 1:100, 1:1000) for determination of PCR efficiency for each 
primer pair during each PCR run. For 15 μl reactions 7.5 μl ORA™ qPCR 
Green ROX L Mix (highQu), 0.4 μl forward primer, 0.4 μl reverse primer 
(f.c. 266 nM, each), 4.7 μl H2O and 2 μl of diluted cDNA reactions were 
mixed. eGFP was amplified using primers eGFP2-forward and eGFP2- 
reverse (amplicon length: 248 bp), for cysG primers 

cysG_housekeeping_fwd and cysG_housekeeping_reverse (amplicon 
length: 197 bp) were used. All reactions were performed as triplicates. 
Reactions were carried out on a Biorad CFX96 in 96 well plates. Program 
parameters were 95 ◦C, 3 min; 39x (95 ◦C, 5 s; 59 ◦C, 15 s; 72 ◦C, 15 s); 
65 ◦C–95 ◦C (0,5 ◦C increment). Data was analyzed with Biorad CFX 
Manager 3.1. Relative expression of eGFP to cysG was calculated from 
the cq numbers measured by the instrument adjusted for amplification 
efficiency. Relative expressions from time points STR-PFR 25 h and STR- 
PFR 28 h were normalized to the corresponding STR sample. 

3. Results 

3.1. Engineering of E. coli deletion strains 

Our primary goal was to engineer a series of deletion strains based on 
E. coli MG1655 with physiological advantages under heterogeneous 
conditions with nutrient depleted zones. Strains would ultimately be 
assayed in a scale-down reactor consisting of a primary stirred tank 
reactor (STR) and a secondary plug-flow reactor (PFR) mimicking a 
starvation zone (Fig. 1). 

We began with defining criteria for the choice of handpicked dele-
tion targets: First, only genes that cause relevant metabolic burden in the 
context of a large-scale bioprocess should be chosen. We thus based our 
choice of targets primarily on the list of genes with high add-on main-
tenance under repeated transient starvation published by Löffler et al. 
(2016) and selected genes with an estimated add-on maintenance >
0.05%. Except for fliC none of the chosen genes had an estimated 
maintenance add-on > 1%, so we expected very little contribution of 
most single deletions. It was thus clear that multiple deletions would be 
necessary to achieve reasonably measurable effects. To maximize po-
tential savings, we removed the entire operon if a candidate gene was 
part of a functionally connected operon. Second, any deletion must not 
be detrimental to basic growth parameters in glucose minimal medium. 
In the past, E. coli deletion strain series such as the MDS or the MGF 
series, had suffered from biological fitness losses (Karcagi et al., 2016; 
Kurokawa et al., 2016). Learning from these studies, any genes involved 
in primary carbon metabolism or basic cellular functions were outright 
excluded and we aimed for a highly selective approach with a strictly 
limited scope. Third, global regulatory programs must be left intact to 
avoid potential side effects. This included the general stress response, 
SOS responses and the stringent response. The stringent response had 
previously been identified as the major repeatedly induced regulatory 
program but strains with modulated ppGpp availability already exist 
and have dampened regulatory patterns in nutrient-limited conditions 
(Michalowski et al., 2017; Ziegler et al., 2020). In this study, one of our 
goals was to work orthogonally to cellular regulation. 

With these criteria in mind, we developed a set of planned deletions 
containing most parts of the flagellar apparatus, the chemotaxis systems, 
and multiple other handpicked genes (with addon to maintenance >
0.05%): cspD, aldA, flxA. CspD is a toxin of dispensable function, AldA is 
irrelevant in glucose-limited medium as its essential function is com-
plemented by PrpC and FlxA is a protein from the Qin prophage. All of 
these genes are non-essential (Baba et al., 2006). Using lambda recom-
bineering with the tetA-sacB cassette we sequentially engineered the 
strains starting from E. coli MG1655 until completion of the final strain 
E. coli RM214 (Table 1). We assayed any new deletion strain from the 
series for its basic growth parameters in shaking flask fermentations 
cultivating E. coli MG1655 as a benchmark in parallel. None of the 
deletion strains had major advantages or deficits in maximum specific 
growth rate or biomass yield in glucose minimal medium affirming our 
choice of deletion targets (Fig. 2). Conducting the genomic deletions 
required a high number of total passages until E. coli RM214 was 
completed. We sequenced both the genome of E. coli MG1655 and E. coli 
RM214 and identified no problematic mutations (Supplementary In-
formation S2, Supplementary Data S9). As we expected little impact 
of single deletions, we decided to focus our characterization only on the 
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final strain of the series, E. coli RM214, and compared it to its parent 
wild-type strain E. coli MG1655. 

3.2. Maintenance coefficient and genomic stability in scale-down 
fermentations 

To test the initial hypothesis of a reduced maintenance coefficient in 
heterogeneous conditions and unravel potential benefits of E. coli 
RM214, we cultivated E. coli MG1655 and E. coli RM214 in two- 
compartment scale-down fermentations. Continuous chemostat culti-
vations with two phases were used to enable accurate assessment of 
fermentation parameters. In the first phase, strains were cultivated in 
standard well-mixed conditions employing only a STR (Fig. 1, left 
scheme). After five volumetric residence times this reference state was 
sampled and the secondary PFR compartment connected to the STR. A 
diaphragm metering pump then continuously circulated about one- 
fourth of the fermentation broth from the STR through the PFR and 
back into the STR. As feeding occurred only in the STR, the PFR simu-
lated repeated passages of fractions of the population through a star-
vation zone (Fig. 1, right scheme). After continued cultivation for 
another five volumetric residence times the new STR-PFR steady state 
was sampled. Therefore, the total process time always exceeded ten 
volumetric residence times. 

We cultivated E. coli MG1655 and E. coli RM214 at four different 
dilution rates (0.05 h−1, 0.1 h−1, 0.2 h−1, 0.3 h−1) each. We measured 
biomass concentrations in the well mixed STR reference state and during 
the heterogeneous STR-PFR phase. E. coli RM214 had a slightly 
increased biomass yield on substrate, especially under STR-PFR condi-
tions and at D = 0.05 h−1. We estimated Pirt’s maintenance coefficient 
ms of both strains by linear regression of YXS−1 vs D−1 (Fig. 3). We found 
no statistically significant differences under well mixed STR conditions, 
but the maintenance coefficient of E. coli RM214 was significantly lower 
than that of E. coli MG1655 under STR-PFR conditions (Δms = - 0.038 
gGlucose * gCDW−1 * h−1, p < 0.05). Differences in the true biomass yield 
YXStrue were not significant under any conditions (p > 0.05). The results 
confirm the initial hypothesis and the effectiveness of our tailored 
deletion strategy for the targeted environment. 

We sequenced the strains’ genomes from the STR-PFR samples from 
all fermentations to investigate potential genomic instability that may 
have influenced the observations due to the long fermentation time 
(>200 h at D = 0.05 h−1). In E. coli MG1655, we found SNPs in insH5 in 
samples from all dilution rates but no other mutations. We also found 
SNPs in insH5 in all samples from E. coli RM214 and additional muta-
tions in ycfk and stfE of the inactive e14 prophage (Supplementary 
Data S9). Apart from these minor alterations, the strains were remark-
ably stable. They showed no accumulation of mutations in any 

regulatory genes or genes involved in central metabolism confirming 
that the engineered deletions bestowed the reduced maintenance coef-
ficient to E. coli RM214. 

3.3. Construction of eGFP production strains 

Based on these encouraging findings we hypothesized that E. coli 
RM214 should better withstand the stressful conditions of an exemplary 
heterogeneous production scenario including transient starvation than 
its ancestor strain E. coli MG1655. We chose to produce eGFP as an easily 
measurable proxy for industrially relevant intracellularly accumulated 
proteins such as insulin varieties or other biopharmaceuticals commonly 
produced in E. coli (Baeshen et al., 2014, 2015). 

A suitable expression system to produce proteins in glucose-limited 
fermentations is the rhamnose-inducible expression system from 
pJOE4056.2 (Wegerer et al., 2008). Expression from the rhamnose 
promoter occurs in the presence of non-toxic rhamnose and is enhanced 

Fig. 2. Basic growth parameters of deletion strains. Deletion strains CD101 to RM214 were cultivated in minimal glucose medium in shaking flask fermentations. The 
maximum specific growth rate (blue) and biomass yield (yellow) were determined. The parent strain E. coli MG1655 was cultivated in parallel, and all data collected 
normalized to its growth parameters. Error bars indicate SEM (n = 3). The dashed line is a visual aid indicating reference values of 1. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Determination of maintenance coefficients under heterogeneous STR- 
PFR conditions. E. coli MG1655 (grey squares, dashed line) and E. coli RM214 
(orange triangles, solid line) were cultivated in the STR-PFR system (glucose 
limited chemostats, D = 0.05 h−1, 0.1 h−1, 0.2 h−1, 0.3 h−1). Maintenance 
coefficients ms (slope) and true biomass yields YXStrue (intersection) were deter-
mined from the linear regression of data points. The difference of the mainte-
nance coefficients is statistically significant (Δms = - 0.038 gGlucose * gCDW−1 * 
h−1, p < 0.05). Error bars indicate technical standard deviation. (For inter-
pretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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by low levels of glucose sensed by cAMP-CRP signaling. However, the 
use of rhamnose as a stable inducer requires the absence of rhamnose 
catabolism (Wilms et al., 2001). We therefore inactivated the chromo-
somal copy of rhaB by replacing the original gene in E. coli MG1655 and 
E. coli RM214 with an inactive frameshift copy from E. coli BW3110 by 
recombineering with the tetA-sacB cassette. The resulting strains were 
termed E. coli MG1655 rhaB− and E. coli RM214 rhaB−. The absence of 
rhamnose catabolism was additionally confirmed by streaking the 
strains on 2xTY pH indicator agar plates containing Rhamnose. E. coli 
MG1655 rhaB− and E. coli RM214 rhaB− formed white colonies meaning 
that no acidification of the medium caused by rhamnose degradation 
occurred. 

We then exchanged the bla resistance gene from pJOE4056.2 for the 
tetA resistance gene from E. coli T-SACK generating pJOE4056.2_tetA 
(Supplementary Fig. S2A). TetA is a tetracycline exporter and thus 
enables continuous selective pressure in the presence of tetracycline 
during prolonged cultivations. Transformation of the rhaB- strains with 
pJOE4056.2_tetA yielded E. coli MG1655 rhaB- pJOE4056.2_tetA and E. 
coli RM214 rhaB- pJOE4056.2_tetA (Table 1). 

3.4. Scale-down fermentations with eGFP production 

E. coli MG1655 rhaB- pJOE4056.2_tetA and E. coli RM214 rhaB- 

pJOE4056.2_tetA were then fermented in quadruplicates each in the 
STR-PFR scale-down reactor in continuous chemostat cultivations at a 
dilution rate of D = 0.2 h-1. Heterogeneities were introduced by using 
the two-compartment STR-PFR reactor in the same setting as described 
above (Fig. 1). Again, this included a well-mixed STR only chemostat 
phase, and a subsequent STR-PFR chemostat phase to enable direct 
observation of the short-term and long-term influence of the nutrient- 
limited zone. 

Under well-mixed STR conditions, we observed no substantial dif-
ferences between the fermentations of E. coli MG1655 rhaB- 

pJOE4056.2_tetA and E. coli RM214 rhaB- pJOE4056.2_tetA. They 
reached comparable cell dry weight and eGFP yield on glucose (Fig. 4). 
In fact, the strains had virtually identical fermentation and production 
parameters in any parameter measured (Table 2). The primary product 
eGFP formed a considerable fraction of the total biomass and we 

detected only trace amounts of acetate byproduct as expected for 
glucose-limited fermentations. We also determined the proportion of 
cells with high eGFP content by flow cytometry and found these to be 
practically identical for both strains in the STR reference steady-state 
(Fig. 4). As E. coli RM214 was specifically engineered to have advanta-
geous traits in heterogenous fermentations including starvation zones 
these findings were not surprising and instead proved that our genomic 
deletions did not interfere with the basic fermentation traits of E. coli K- 
12 strains. 

Upon connecting the PFR the process performance of both strains 
started to decline, but this phenomenon occurred remarkably slower and 
much less pronounced in E. coli RM214 rhaB− pJOE4056.2_tetA than in 
E. coli MG1655 rhaB− pJOE4056.2_tetA. Five hours after connection of 
the PFR both strains still had similar fractions of producing cells and 
reached comparable biomass concentration. However, first differences 
in cellular eGFP content and product yield already became apparent. 
Over the remaining process time production parameters increasingly 
diverged. After 28 h of STR-PFR continuous cultivation we observed a 
43% higher product yield for E. coli RM214 rhaB− pJOE4056.2_tetA 
than for E. coli MG1655 rhaB− pJOE4056.2_tetA (ΔYPS = 13 mgeGFP/ 
gGlucose, two-tailed t-test, p < 0.05). Instead, biomass concentration 
increased in E. coli MG1655 rhaB− pJOE4056.2_tetA indicating a shift 
from production to biomass formation (Supplementary Fig. S7A). 
Noteworthy, we found a linear correlation describing the tradeoff be-
tween eGFP production and biomass formation using data from both 
E. coli MG1655 rhaB− pJOE4056.2_tetA and E. coli RM214 rhaB−

pJOE4056.2_tetA (Supplementary Fig. S7C and Supplementary 
Fig. S7D). We suspected that the divergence may be caused by a reduced 
fraction of producing cells for E. coli MG1655 rhaB− pJOE4056.2_tetA 
compared to E. coli RM214 rhaB− pJOE4056.2_tetA and measured the 
fluorescence of individual cells by flow cytometry. Similar to the eGFP 
yield, the proportion of actively producing cells shrank rapidly in E. coli 
MG1655 rhaB− pJOE4056.2_tetA and more slowly in E. coli RM214 
rhaB− pJOE4056.2_tetA. At the final time point the fraction of producing 
cells was significantly higher for E. coli RM214 rhaB− pJOE4056.2_tetA 
than for E. coli MG1655 rhaB− pJOE4056.2_tetA (one-tailed t-test, p >
0.05). To check whether differential expression of eGFP might be 
responsible for the reduction of eGFP yield in the heterogeneous 

Fig. 4. EGFP yield on substrate and proportion of cells with high eGFP content. E. coli MG1655 rhaB− pJOE4056.2_tetA (grey) and E. coli RM214 rhaB−

pJOE4056.2_tetA (orange) were cultivated in the STR-PFR system (glucose limited chemostat, D = 0.2 h−1). Samples were collected from the primary vessel. Error 
bars indicate SEM (n = 4), statistical indicators: *p < 0.05, **p < 0.01, ***p < 0.001. Left: eGFP yield on substrate declines for both strains after PFR connection. 
Simultaneously, the difference between the strains gradually increases. Statistics: two-tailed t-tests comparing means of a single strain at later time points to the STR 
mean of the strain; and comparing the means of both strains at each time point to each other. Right: The proportion of cells with high eGFP content declines towards 
the end of the fermentation and is lower for E. coli MG1655 rhaB− pJOE4056.2_tetA than for E. coli RM214 rhaB− pJOE4056.2_tetA. Statistics: one-tailed t-tests 
comparing the presumably lower mean of E. coli MG1655 rhaB− pJOE4056.2_tetA to that of E. coli RM214 rhaB− pJOE4056.2_tetA at each time point. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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conditions in general or for the differences between the two strains, we 
conducted RT-qPCR using the housekeeping gene cysG as a reference. 
However, we found no clear indication for differential expression of 
eGFP towards the end of the fermentation or between the two strains 
(Supplementary information S10). 

After connection of the PFR we observed alterations in the respira-
tory parameters of both strains. Initially, cells reacted with a short spike 
of increased respiratory activity which then dropped rapidly in the 
following hour. The oxygen uptake rate QO2 and the carbon dioxide 
formation rate QCO2 recovered over the next two volumetric residence 
times and then slowly drifted towards new steady states but never 
reached the initial STR only values (Supplementary Fig. S6). We calcu-
lated total carbon balances but the deviations in the respiratory rates 
caused only minor redistributions between the STR reference status and 
the STR-PFR 28 h sample (Fig. 5, Table S5A and Table S5B). Apart from 
small gains in the biomass (CDW) fraction and small reductions in the 
carbon dioxide formation no major differences occurred. Declining 

productivity was hence accompanied by slightly declining respiration 
and increased biomass formation. From all collected indications we 
conclude that the primary factor for loss of productivity of both strains 
was a restructuring of the biomass composition towards lower eGFP 
content (Fig. S7B). This is supported by our observations using flow 
cytometry. The proportion of cells with high eGFP content dropped 
substantially in the late fermentation stages (Fig. 4). We presume that 
the reduced cellular eGFP content then led to lower metabolic burden 
and thus enabled slightly higher biomass yields. In all parameters 
measured, E. coli RM214 rhaB− pJOE4056.2_tetA proved to be more 
robust to the STR-PFR conditions and maintained productive for a 
longer period than E. coli MG1655 rhaB− pJOE4056.2_tetA. Since the 
only clearly different parameter between the two strains is the mainte-
nance coefficient, we propose that E. coli RM214 rhaB− pJOE4056.2_-
tetA benefits from a small surplus of substrate that can be used to meet 
the high precursor and ATP demand of heterologous protein synthesis. 

The energetic state of cells during cultivations can be assessed by 
calculating the Adenylate Energy Charge (AEC) from measured nucle-
otide concentrations (Chapman et al., 1971). Initially, in the well-mixed 
STR only phase, the concentration of all nucleotides and the AEC was 
comparable for both strains (Supplementary Fig. S4A). After connection 
of the PFR, we then simultaneously sampled cells from the STR and the 
five ports along the primary axis of the PFR to obtain a time-resolved 
profile of the short-term AEC changes during PFR passage (Fig. 6). As 
expected during passage through a nutrient starvation zone, the AEC of 
cells dropped rapidly after leaving the STR and continued to decline 
towards a plateau. Shortly after PFR connection, the pattern was highly 
similar for both strains (Fig. 6, upper panel). After 25 h of cultivation 
under scale-down conditions, the AEC of both strains in the STR and at 
all sampling ports of the PFR was higher than before (Fig. 6, lower 
panel). Here, differences between the strains also became apparent as 
the AEC of E. coli MG1655 rhaB− pJOE4056.2_tetA was higher than that 
of E. coli RM214 rhaB− pJOE4056.2_tetA at all sampling points. We then 
compared the AEC of samples drawn from the primary vessel at different 
time points to unravel long-term effects of the heterogeneous conditions. 
Both strains individually showed statistically significant increases in the 
AEC between time points STR and STR-PFR 25 h (two-tailed t-tests, p <

Fig. 5. Carbon Balance. E. coli MG1655 rhaB− pJOE4056.2_tetA (grey) and 
E. coli RM214 rhaB− pJOE4056.2_tetA (orange) were cultivated in the STR-PFR 
system (glucose limited chemostat, D = 0.2 h−1). Columns show efflux fractions 
of individual substances. Error bars indicate SEM (n = 4). For raw data see 
Supplementary Tables S5A and S5.B. 

Table 2 
Fermentation parametersa of the eGFP production chemostat processes.   

E. coli MG1655 rhaB− pJOE4056.2_tetA E. coli RM214 rhaB− pJOE4056.2_tetA  
STR STR-PFR 28 h STR STR-PFR 28 h 

cx [
gCDW

l
] 4.02 ± 0.066 4.28 ± 0.024 4.02 ± 0.053 4.13 ± 0.024 

cP [
mgeGFP

l
] 630 ± 20 370 ± 32 650 ± 11 540 ± 41 

YXS [
gCDW

gGlucose

] 0.315 ± 0.0048 0.3360 ± 0.00075 0.314 ± 0.0032 0.322 ± 0.0034  

YPS [
mgeGFP

gGlucose

] 50 ± 1.3 29 ± 2.4 50 ± 1.2 42 ± 3.0 

cAcetate, STR [
gAcetate

l
] 0.14 ± 0.040 0.017 ± 0.0072 0.010 ± 0.0061 0.07 ± 0.030 

cNH+
4
[
gNH+

4
l

]
1.64 ± 0.025 1.6 ± 0.12 1.57 ± 0.058 1.52 ± 0.033  

qS [
gGlucose

gCDW * h
] 0.64 ± 0.013 0.60 ± 0.012 0.62 ± 0.020 0.60 ± 0.018  

qP [
mgeGFP

gCDW * h
] 32 ± 1.4 18 ± 1.7 31 ± 1.2 25 ± 2.0  

QCO2 [
mmolCO2

h
]

73.5 ± 0.70 70.6 ± 0.54 72.6 ± 0.49 69.8 ± 0.64 

QO2 [
mmolO2

h
]

69.9 ± 0.90 67 ± 1.2 69.8 ± 0.90 65.6 ± 0.44 

RQ [
molCO2
molO2

]
1.05 ± 0.019 1.06 ± 0.013 1.04 ± 0.011 1.06 ± 0.010  

eGFP content[
mgeGFP

gCDW

] 158 ± 6.5 87 ± 7.3 161 ± 4.6 130 ± 10  

Proportion of producing population [%] 55.4 ± 0.43 15 ± 2.8 56 ± 1.2 28 ± 5.1 
D [

1
h
]

0.201 ± 0.0026 0.194 ± 0.0028  

a Errors indicate SEM (n = 4).  
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0.05; see Supplementary Table S4B). In fact, the AEC of E. coli MG1655 
rhaB− pJOE4056.2_tetA sampled from the primary fermentation vessel 
(Fig. 6 and 0 s) at time point STR-PFR 25 h was the highest recorded 
value from all samples indicating that the strain was possibly trying to 
adapt to the unfavorable conditions. The coincidence with its reduced 
productivity and slightly increased biomass yield at the late fermenta-
tion stages points towards the preservation of cellular energy at the 
expense of heterologous protein productivity. The data from E. coli 
RM214 rhaB− pJOE4056.2_tetA indicates a similar but less pronounced 
trend. Comparing the two strains to each other reveals a marginally 
significant difference (p = 0.077; see Supplementary Table S4B) of the 
AEC values measured in samples from the STR at STR-PFR 25 h which is 
reflected by the generally slightly lower AEC values of the deletion strain 
at this time point (Fig. 6, lower panel). It is noteworthy that the total AxP 
levels of both strains were comparable for all samples and only the 
distribution among ATP, ADP and AMP varied (Supplementary 
Fig. S4A). 

4. Discussion 

In this study, we created a series of deletion strains lacking genes 
with high add-on maintenance under heterogeneous conditions with 
repeated starvation. The final strain of the series, E. coli RM214 had a 
significantly lower maintenance coefficient than its parent E. coli 

MG1655 in an STR-PFR scale-down reactor. Moreover, E. coli RM214 
rhaB− pJOE4056.2_tetA proved to be more robust to the influence of 
heterogeneities in an exemplary protein production scenario reaching a 
significantly higher product yield in the STR-PFR phase. 

The core concept of our deletion approach was to remove genes that 
are wastefully expressed under transient starvation conditions. The ex-
pected individual contribution of each single gene was very low (Löffler 
et al., 2016). The only remarkable exception was fliC whose expression 
alone was estimated to cause add-on maintenance of 3.10%, by far 
exceeding the expected add-on maintenance of 0.55% for the 
second-in-line aldA (Löffler et al., 2016). Multiple other flagellar and 
chemotaxis genes were also candidates, so the removal of these systems 
formed a major fraction of the deletions conducted in the creation of 
E. coli RM214. As the goal of this study was to investigate the funda-
mental usefulness of the whole design approach and each individual 
deletion had likely little effect, we did not attempt to experimentally 
assess the individual contributions or potential interactions. The data 
collected in this study thus serves to prove the general applicability of 
the approach but is insufficient to test the quantitative reliability of the 
individual metabolic cost predictions by Löffler et al. (2016). An 
in-depth study focusing on the effects of subsets or individual deletions 
would allow judging the predictions and the parallel investigation of 
fundamental effects and potential interactions. This is particularly 
interesting as the magnitude of effects observed by us exceeds the sum of 
all individual contributions from transcriptional and translational 
metabolic costs as estimated by Löffler et al. (2016). The calculations by 
Löffler et al. (2016) were thus either very conservative or other effects 
such as the actual absence of the expressed proteins provided additional 
secondary benefits. Investigating such secondary benefits could be 
helpful in refining the target selection among transiently expressed 
process-irrelevant genes. A potential secondary benefit enjoyed by E. coli 
RM214 could for example arise from the absence of the motility system 
which could save proton motive force otherwise used for flagellar 
rotation. On the other hand, we can confidently exclude the possibility 
that the slightly reduced genome of E. coli RM214 had a major impact 
due to reduced replication cost. The combined size of the deletions in 
E. coli RM214 was only about 50 kb, just slightly more than 1% of the 
E. coli K-12 genome, and the metabolic demand of DNA replication is per 
se very low (Stouthamer, 1973). 

Key findings of our study are the reduced maintenance demand of 
E. coli RM214 compared to its parent strain and the slower product yield 
decline of E. coli RM214 rhaB− pJOE4056.2_tetA under STR-PFR con-
ditions. Both differences must be caused by the genotype of E. coli 
RM214 but do these findings relate to each other by a causative link or 
did we observe correlated phenomena? The overall eGFP transcript 
levels in the production scenario were fairly stable (Supplementary In-
formation S10), so it appears unlikely that differential expression of 
eGFP from pJOE4056.2_tetA causes the different yields. The flow 
cytometry data indicate that microbial individuality may play a role, but 
without a plausible mechanism we must assume that this is a correlated 
observation. Instead, we opine that a connecting mechanism can be 
drawn from the overall balances and the strains’ cultivation parameters. 
Substrate consumed for maintenance demand is, by definition, not 
available for biomass formation. It is commonly assumed that it is fully 
converted into terminal products and the energy available from this 
conversion harnessed by the cells as ATP to meet their maintenance 
demand (Stouthamer and Bettenhaussen, 1973). Thus, a logical link 
between maintenance coefficient and protein yield exists: A reduced 
maintenance coefficient means that more substrate is available for 
biomass or product formation including potential secondary ATP costs 
that may arise from a high foreign protein content. A simple estimation 
allows us to test the quantitative feasibility of a causative relation by 
comparing the magnitude of the reduced maintenance coefficient to the 
difference in protein yield: Given that there were no significant differ-
ences in YXStrue we can assume that Δms is entirely available for the 
additional production of eGFP in E. coli RM214 rhaB− pJOE4056.2_tetA. 

Fig. 6. Adenylate Energy Charge in the STR and during PFR passage. E. coli 
MG1655 rhaB− pJOE4056.2_tetA and E. coli RM214 rhaB− pJOE4056.2_tetA 
were cultivated in the STR-PFR system (glucose limited chemostat, D = 0.2 
h−1). The adenylate energy charge of cultures was determined shortly after PFR 
connection (STR-PFR 5 min, upper panel) and after five volumetric residence 
times (STR-PFR 25 h, lower panel). Samples were drawn from the primary 
reactor (0 s) and the five sampling ports along the axis of the PFR (35 s, 52 s, 77 
s, 102 s, 128 s). Error bars indicate SEM (n = 4). 
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Using YXS from STR-PFR 28 h and an assumed protein content of roughly 
65% (Taymaz-Nikerel et al., 2010) the difference in maintenance de-
mand could sustain an additional eGFP production rate of no more than 
Δqp,ms = 9.3 mgeGFP/gCDW/h. The experimental difference of Δqp,ms = 7 
mgeGFP/gCDW/h falls well within that range. A causative relation be-
tween the two observations is thus quantitatively feasible, and in our 
opinion likely. In this case up to 82% of the saved substrate due to lower 
ms could have been used for the formation of additional eGFP in E. coli 
RM214 rhaB− pJOE4056.2_tetA. 

The connection between maintenance demand, energy availability 
and eGFP production is also supported by the AEC data collected. We 
found a declining AEC during PFR passage for both E. coli RM214 rhaB−

pJOE4056.2_tetA and E. coli MG1655 rhaB− pJOE4056.2_tetA at all time 
points, which is similar to the pattern observed in a preceding study with 
non-producing E. coli K-12 (Löffler et al., 2016). However, it is important 
to note that we measured lower AEC values in the STR and a steeper 
decline in the PFR, putatively due to heterologous protein production. In 
the heterogeneous fermentation phase, when productivity declined, we 
measured increased AEC values, especially in samples of the less pro-
ductive E. coli MG1655 rhaB− pJOE4056.2_tetA (Supplementary Infor-
mation S4). The AEC is a measurement of the energetic state of cells and 
usually tightly balanced in a range between 0.7 and 0.9 (Chapman et al., 
1971). The activity of many cellular processes is connected to the AEC 
and a lower AEC is associated with the activation of catabolic enzymes 
to meet cellular energy demands (Atkinson, 1968). Substrate depletion 
generally causes a reduction of the AEC (Chapman and Atkinson, 1977). 
Conversely, reduced AEC values have been reported in conditions when 
cells experienced high anabolic demand or high secondary metabolic 
costs, for instance caused by cultivation at their maximum specific 
growth rate, or induction of motility (Lieder et al., 2015; Marti-
nez-Garcia et al., 2014). Heterologous protein induction is known to 
cause increased ATP maintenance demand (Weber et al., 2002). We thus 
propose that the AEC values measured from samples drawn from the 
primary reactor at different time points of the fermentations can be 
explained by the ATP demands associated with eGFP productivity. It 
appears likely that the generally lower AEC measured in this study 
compared to data from non-producing E. coli K-12 cultivated under 
similar conditions is caused by the production of eGFP. The significant 
increases of the AEC values of both strains towards the end of the fer-
mentations are then a consequence of their diminishing eGFP produc-
tivity. This also explains the more pronounced AEC increase and 
concomitant eGFP yield decrease of E. coli MG1655 rhaB−

pJOE4056.2_tetA compared to the deletion strain. The question then 
arises to what extent the lower maintenance coefficient of E. coli RM214 
rhaB− pJOE4056.2_tetA under scale-down conditions influences the 
AEC values. From data collected in the maintenance study (Fig. 3) and 
the eGFP production fermentations we can roughly estimate the ATP 
demand for eGFP production of both strains at time point STR-PFR 25 h 
(Supplementary Data S8). About 13% of the total ATP demand of E. coli 
MG1655 rhaB− pJOE4056.2_tetA and 22% of the total ATP demand of 
E. coli RM214 rhaB− pJOE4056.2_tetA can be attributed to eGFP pro-
duction. Despite its lower maintenance coefficient the combined ATP 
demand for maintenance plus eGFP production of the highly productive 
E. coli RM214 rhaB− pJOE4056.2_tetA then still exceeds the respective 
values of E. coli MG1655 rhaB− pJOE4056.2_tetA which is reflected by 
its lower AEC at this time point. 

A secondary observation made in this study was that loss of pro-
ductivity in the STR-PFR condition was accompanied by a decline in the 
proportion of highly productive cells (Fig. 4). Microbial population 
heterogeneity is a subject of intense research (Binder et al., 2017) and 
our data provides no clear explanation why this shift occurs. Two things 
should be noted: First, the population heterogeneity for both E. coli 
MG1655 rhaB− pJOE4056.2_tetA and E. coli RM214 rhaB−

pJOE4056.2_tetA is of the bimodal kind (Supplementary Fig. S3) and the 
fractions of producing cells in the homogeneous STR cultivation phase 
are practically identical for both strains. Second, once the PFR is 

activated, we saw a decrease in the fraction of highly productive cells in 
all fermentations (Fig. 4, Supplementary Fig. S3) but the decrease was 
faster and more consistent for E. coli MG1655 rhaB− pJOE4056.2_tetA. 
The overall level of population heterogeneity is generally high since only 
slightly more than half of all cells are strongly accumulating eGFP. We 
presume this is caused by the interplay of our expression system and the 
fermentation conditions. The regulation of rhamnose catabolism is 
autocatalytic and thus bimodality might be caused by a similar mech-
anism as in the case of expression from the arabinose promoter PBAD 
(Khlebnikov et al., 2000). However, transcript measurements by 
RT-qPCR did not lead to a concise pattern that would explain both the 
differences between the two strains and the declining eGFP yield of each 
individual strain over the course of the heterogeneous fermentation 
phase. Given the fairly stable expression of eGFP and the continuous 
selective advantage provided by tetA, it also appears unlikely that 
plasmid loss or mutations were the underlying cause. Moreover, the 
general stability of eGFP expression from pJOE4056.2 has been deter-
mined to be perfect for over 50 generations in earlier studies (Wegerer 
et al., 2008). 

The deletion approach in this study differs from previous works 
because target selection was based on existing expression data and 
limited to candidates that imposed a high metabolic burden but were 
irrelevant under the specified conditions (Valgepea et al., 2015). 
Large-scale genomic deletions, the contrary approach, have been con-
ducted before in E. coli K-12, for instance as part of the construction of 
the MDS strains (Posfai et al., 2006). These strains had little benefits in 
standard protein production scenarios over their wild-type parent and 
were even inferior in basic process parameters, potentially caused by 
disrupted regulation (Karcagi et al., 2016; Sharma et al., 2007a, 2007b). 
It needs to be emphasized that our deletion strategy only provided ad-
vantages in the specified conditions of a heterogeneous bioprocess with 
transient starvation as E. coli RM214 had no benefit compared to E. coli 
MG1655 under well-mixed conditions. In this regard, it also appears 
clear that the deletion targets chosen by us cannot be directly transferred 
to other hosts or conditions since the naturally evolved regulation might 
be divergent. This is exemplified by an interesting comparison of our 
results to existing data from Pseudomonas putida. The exposure of 
P. putida KT2440 to heterogeneous STR-PFR conditions led to an 
increased and potentially wasteful expression of fliC similarly as in the 
case of E. coli (Ankenbauer et al., 2020). However, the deletion of the 
flagellar apparatus in P. putida EM329 led to significant improvements 
of basic fermentation and protein production parameters already under 
well mixed conditions (Lieder et al., 2015; Martinez-Garcia et al., 2014). 
This demonstrates not only the diverging regulation of motility between 
different microbes, but also implies that a strain like P. putida EM329 
might unintentionally display additional beneficial traits in heteroge-
neous fermentations with starvation zones. 

A premise of our study was to work orthogonally to global cellular 
regulation. The general stress response, stringent response and SOS re-
sponses were not modified as they might provide important functions for 
cellular adaptation and some expression systems depend on intracellular 
signaling molecules of global regulatory circuits. Examples include not 
only the CRP-cAMP dependent system used in this study but also novel 
adaptive expression systems that autoregulate cellular stress (Lo et al., 
2016). Interestingly, in a former study, the rapid inactivation of rpoS in 
homogeneous chemostat cultivations was reported, which pointed to a 
large selective advantage of mutants (Notley-McRobb et al., 2002). In 
contrast, we did not find any mutations in genes involved in the strin-
gent response or the general stress response for neither E. coli MG1655 
nor E. coli RM214 at any growth rate. We conclude that under hetero-
geneous conditions the selective pressure on inactivating global regu-
latory programs is either very low or their activation may even be 
favorable for cellular viability which affirms our neutral approach to 
cellular regulation. However, this does not mean that modulating 
cellular regulation could not be beneficial for process or production 
parameters. Recently, several E. coli knock out strains lacking 
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hand-picked genes that are connected to post-induction stress responses 
were presented (Sharma et al., 2020). These strains have advantageous 
traits for protein production which could be integrated into E. coli 
RM214. 

Our study design focused on the influence of starvation zones on 
microbial culture performance. The carbon limited STR contained a 
substrate-limited growth and production zone representing the bulk of 
large-scale fermentations. The PFR served to introduce a transient 
starvation stimulus representative of repeated passages through a hun-
ger zone as predicted to occur in large-scale reactors (Haringa et al., 
2017; Kuschel and Takors, 2020). Since our experimental setup was 
specifically chosen for the study of transient starvation, it does not 
capture the effects of other heterogeneities, in particular transient sub-
strate excess. It is well-known that close to the feeding point, substrate 
excess and concomitant oxygen limitation dominate the environment in 
large-scale fed-batch processes. E. coli typically reacts to such conditions 
with the production of solvents or small organic acids caused by over-
flow metabolism or anaerobic fermentation (Lara et al., 2009). The 
formation of byproducts then results in process performance losses even 
if reuptake in zones with lower nutrient concentration is possible (Enfors 
et al., 2001; Neubauer et al., 1995b). Since our deletion approach was 
only aimed at reducing the additional metabolic costs of transient 
starvation, E. coli RM214 probably responds to glucose excess like other 
E. coli K-12 strains. In principle, copying the design approach to 
construct an E. coli strain with reduced additional maintenance in excess 
zones appears to be feasible as the transcriptional response of E. coli 
MG1655 to glucose excess is large and involves many potentially 
process-irrelevant genes (Veit et al., 2007). However, the resulting ge-
netic modifications would not reduce process performance loss from 
byproduct formation which is likely the dominating issue in substrate 
excess conditions. Various strategies to alleviate byproduct metabolism 
have been developed by other research groups, such as the use of 
alternative substrate transporters, knock-outs or the expression of re-
combinant Vitreoscilla hemoglobin (Anda et al., 2006; Eiteman and 
Altman, 2006; Pablos et al., 2014). Given that our strain design 
approach avoids modifications to global regulation or central carbon 
metabolism, we are confident that it is compatible with these existing 
strategies and their combination could result in chassis strains for 
generally robust scale-up. A limitation of our study originates from the 
focus on the model protein eGFP. However, recombinant protein pro-
duction is frequently limited by the availability of cellular precursors 
and ATP, so it is not far-fetched to expect similar effects with other 
protein products (Glick, 1995; Heyland et al., 2011). The reduced 
maintenance coefficient of E. coli RM214 should also be helpful to 
produce molecules formed in ATP-intensive pathways such as terpe-
noids (Li and Wang, 2016; Ward et al., 2018). Potential advantages 
could also occur when the accumulation of toxic products causes 
increased ATP demand for product export, membrane maintenance or 
pH homeostasis (Sun et al., 2011; Tsukagoshi and Aono, 2000). On the 
other hand, it may be less helpful when the formation of a small mole-
cule product is connected to net ATP synthesis. Glycolytic flux depends 
on the ATP requirements of cells and in such cases enforced ATP wasting 
can even increase the production rate (Boecker et al., 2019; Koebmann 
et al., 2002). 

With the increasing knowledge about cellular metabolism and its 
interplay with the heterogeneous conditions of large-scale processes 
new possibilities to improve process performance arise. In a recent re-
view Wehrs et al. (2019) emphasized that strains should be engineered 
specifically for the demands of large-scale production (Wehrs et al., 
2019). In this context, our series of deletion strains is the first step to-
wards host strains robust against the repeated exposure to starvation 
zones. 

5. Conclusion 

Large-scale fermentations often suffer from process performance loss 

due to heterogeneous environments. E. coli RM214 was engineered to 
obtain a deletion strain with reduced maintenance and superior pro-
duction properties in fermentations with starvation zones. Our study is 
the first that aimed to improve a microbe by repeated genomic deletions 
for enhanced robustness towards heterogeneous conditions. The exem-
plified application of E. coli RM214 for eGFP production demonstrates 
the cellular capacity to exploit the maintenance advantage for pre-
venting non-wanted performance loss in heterogeneously mixed indus-
trial production scenarios. Although only showcased for eGFP, the strain 
offers the capacity to serve as a platform for a variety of different 
products. Notably, this complements classical scale-up engineering and 
should be a highly valuable tool to prevent non-wanted performance of 
essential Titer-Rate-Yield values under industrial production conditions. 
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Revstedt, J., Friberg, P.C., Hjertager, B., Blomsten, G., Skogman, H., Hjort, S., 
Hoeks, F., Lin, H.-Y., Neubauer, P., van der Lans, R., Luyben, K., Vrabel, P., 
Manelius, Å., 2001. Physiological responses to mixing in large scale bioreactors. 
J. Biotechnol. 85, 175–185. https://doi.org/10.1016/S0168-1656(00)00365-5. 

George, S., Larsson, G., Enfors, S.-O., 1993. A scale-down two-compartment reactor with 
controlled substrate oscillations: metabolic response of Saccharomyces cerevisiae. 
Bioprocess Eng. 9, 249–257. https://doi.org/10.1007/BF01061530. 

Glick, B.R., 1995. Metabolic load and heterologous gene expression. Biotechnol. Adv. 13, 
247–261. https://doi.org/10.1016/0734-9750(95)00004-A. 

Hanahan, D., 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. 
Biol. 166, 557–580. https://doi.org/10.1016/S0022-2836(83)80284-8. 

Haringa, C., Deshmukh, A.T., Mudde, R.F., Noorman, H.J., 2017. Euler-Lagrange analysis 
towards representative down-scaling of a 22 m 3 aerobic S. cerevisiae fermentation. 
Chem. Eng. Sci. 170, 653–669. https://doi.org/10.1016/j.ces.2017.01.014. 

Heyland, J., Blank, L.M., Schmid, A., 2011. Quantification of metabolic limitations 
during recombinant protein production in Escherichia coli. J. Biotechnol. 155, 
178–184. https://doi.org/10.1016/j.jbiotec.2011.06.016. 

Jonge, L.P. de, Buijs, N.A.A., Pierick, A. ten, Deshmukh, A., Zhao, Z., Kiel, J.A.K.W., 
Heijnen, J.J., van Gulik, W.M., 2011. Scale-down of penicillin production in 

Penicillium chrysogenum. Biotechnol. J. 6, 944–958. https://doi.org/10.1002/ 
biot.201000409. 

Junne, S., Klingner, A., Kabisch, J., Schweder, T., Neubauer, P., 2011. A two- 
compartment bioreactor system made of commercial parts for bioprocess scale-down 
studies: impact of oscillations on Bacillus subtilis fed-batch cultivations. Biotechnol. 
J. 6, 1009–1017. https://doi.org/10.1002/biot.201100293. 

Karcagi, I., Draskovits, G., Umenhoffer, K., Fekete, G., Kovács, K., Méhi, O., Balikó, G., 
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Summary

In large-scale fed-batch production processes,

microbes are exposed to heterogeneous substrate

availability caused by long mixing times. Escherichia

coli, the most common industrial host for recombi-

nant protein production, reacts by recurring accumu-

lation of the alarmone ppGpp and energetically

wasteful transcriptional strategies. Here, we compare

the regulatory responses of the stringent response

mutant strain E. coli SR and its parent strain E. coli

MG1655 to repeated nutrient starvation in a two-com-

partment scale-down reactor. Our data show that

E. coli SR can withstand these stress conditions

without a ppGpp-mediated stress response maintain-

ing fully functional ammonium uptake and biomass

formation. Furthermore, E. coli SR exhibited a sub-

stantially reduced short-term transcriptional

response compared to E. coli MG1655 (less than half

as many differentially expressed genes). E. coli SR

proceeded adaptation via more general SOS

response pathways by initiating negative regulation

of transcription, translation and cell division. Our

results show that locally induced stress responses

propagating through the bioreactor do not result in

cyclical induction and repression of genes in E. coli

SR, but in a reduced and coordinated response,

which makes it potentially suitable for large-scale

production processes.

Introduction

Heterogeneities in large-scale fed-batch bioprocesses

have long been recognized as a cause for process

performance loss at industrial scale compared to homo-

geneous processes at laboratory scale (Bylund et al.,

1998). Due to physical, economical and engineering con-

straints, the generation of gradients in large-scale reac-

tors is inevitable. Hydrostatic pressure influences the

solubility and transfer of gasses, and the mixing time of

large reactors can be orders of magnitude higher than

that of laboratory reactors producing strong measurable

chemical gradients (Larsson et al., 1996; Enfors et al.,

2001; Junker, 2004; Delvigne et al., 2006). Common

consequences of spatial heterogeneities are loss of pro-

ductivity, reduced biomass yield, increased byproduct

formation and genetic or plasmid instability (Hopkins

et al., 1987; George et al., 1993; Neubauer et al.,

1995b; Bylund et al., 1998; Bylund et al., 2000; Jonge

et al., 2011). Reduced process performance is not lim-

ited to a single species but can be observed for many

industrial workhorse organisms like Escherichia coli,

Saccharomyces cerevisiae, Penicillium chrysogenum

and Bacillus subtilis (George et al., 1993; Jonge et al.,

2011; Junne et al., 2011; Larsson and Enfors, 1988).

Due to the enormous costs associated with using and

maintaining large-scale equipment, few experiments in

the context of academic research have been performed

in industrial scale bioreactors (Bylund et al., 1999;

Bylund et al., 2000; Enfors et al., 2001). In conse-

quence, researchers have relied on the use of computa-

tional fluid dynamics (CFD) to simulate reactor flow

fields and on scale-down reactors to experimentally

investigate selected scenarios (Kelly, 2008; Takors,

2012). Various designs of scale-down reactors exist and

have been extensively reviewed elsewhere (Delvigne

et al., 2017; Delvigne et al., 2006; Neubauer and Junne,

2010). One of the commonly used scale-down reactors

follows a multi-compartment approach: A primary stirred

tank reactor (STR) is coupled to a secondary plug flow

reactor (PFR). The STR is operated as a well-mixed

compartment under standard limited growth conditions

and the PFR simulates a feeding, starvation or anaero-

bic zone providing the stimulus to be investigated (Lara

et al., 2006).

Many studies have focused on experimentally simulat-

ing the zone close to the feeding point which is usually

characterized by substrate excess and potentially oxy-

gen limitation (Enfors et al., 2001; Lara et al., 2009;
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Junne et al., 2011). For a variety of hosts, common

observations in this scenario include the formation of

small organic acids and solvents as overflow metabolites

or as anaerobic fermentation products (George et al.,

1993; Neubauer et al., 1995b). Ultimately, byproduct for-

mation may lead to process performance loss even if

reuptake of byproducts occurs in the well-mixed limited

growth zone (Enfors et al., 2001).

Occasionally, starvation zones have attracted attention

as well (Neubauer et al., 1995a; Neubauer et al.,

1995b). From CFD simulation and measured data, it is

known that distant from the feeding point or close to the

reactor walls poorly mixed zones with very low nutrient

concentrations exist. An early scale-down study with

E. coli employing oscillatory feeding protocols revealed

the involvement of the stringent response in the cellular

reaction to transient glucose starvation (Neubauer et al.,

1995a).

The stringent response is a global regulatory program

usually preparing E. coli for entry into the stationary

phase (Magnusson et al., 2005; Gaca et al., 2015; Hau-

ryliuk et al., 2015). Its hallmark is the synthesis of the

alarmone (p)ppGpp on short time-scales by the ribo-

some-associated protein RelA or on longer time-scales

by the bifunctional enzyme SpoT (Gallant et al., 1970;

Atherly, 1979; Murray and Bremer, 1996). ppGpp acts

primarily as a transcription factor by binding to RNA

polymerase and modulating its affinity to transcription ini-

tiation sites and alternative sigma factors. Additionally,

ppGpp directly modulates the activity of certain proteins

(Dalebroux and Swanson, 2012; Kanjee et al., 2011).

The fast and reversible initiation of the stringent

response to oscillatory substrate supply was later con-

firmed by measurements of ppGpp in continuous glu-

cose chemostat cultivations in a two-compartment stirred

tank-plug flow reactor (STR-PFR) setup (Löffler et al.,

2016). The feeding point was placed in the STR creating

a starvation zone in the PFR, which allowed to resolve

the timescale of cellular response. Moreover, it was

shown that extensive transcriptional responses take

place as cells move transiently through a nutrient poor

zone. From theoretical calculations of ATP costs Löffler

et al. estimated that an increase in maintenance energy

demand of more than 30% was caused by the repeated

exposure of cells to the nutrient gradient offering a new

explanation for performance losses in large-scale biopro-

cesses (Löffler et al., 2016). Analogous experiments with

ammonium as the limiting nutrient revealed similar, yet

less pronounced, regulation patterns affirming the impor-

tance of the stringent response for global regulation in

E. coli in a scenario of oscillating starvation stimuli

(Simen et al., 2017). Fed-batch processes limited by

ammonium or other nitrogen sources are interesting fer-

mentation scenarios for the production of small

molecules which mainly consist of carbon such as fatty

alcohols (Chubukov et al., 2017). Nitrogen limitation is

commonly used to enhance the accumulation of cellular

carbon storage products such as polyhydroxyalkanoates

used for bioplastic synthesis (Wen et al., 2010; Oliveira-

Filho et al., 2019), including E. coli as a potential host

(Wang et al., 2009). As nitrogen forms a relatively large

part of cells, nitrogen limitation can be easily explored

during process development. During scale-up, such pro-

cesses will likely suffer from similar issues as carbon-

limited processes (Simen et al., 2017).

Recently, the strains E. coli SR and E. coli HGT with

modulated stringent response were constructed in our

laboratory (Michalowski et al., 2017). The strains lack

relA which is primarily responsible for rapid ppGpp syn-

thesis upon nutrient depletion and carry modifications in

the bifunctional enzyme SpoT. It was shown that they do

not react to the exhaustion of ammonium supply by

ppGpp synthesis (Michalowski et al., 2017). Strain

E. coli SR displays no negative phenotypic differences in

batch cultivations compared to its parent strain E. coli K-

12 MG1655. However, under conditions of ammonium

limitation, E. coli SR was found to have an elevated

specific glucose consumption rate which is beneficial for

two-stage processes involving product formation in the

nitrogen limited phase (Jarmander et al., 2015; Perez-

Zabaleta et al., 2016).

The combination of properties displayed by E. coli SR

indicates that this strain can potentially be developed as

a platform strain for robust scale-up from lab to produc-

tion. In this work, we compared the phenotypic and tran-

scriptional responses of E. coli SR and its parent strain

E. coli MG1655 in a two-compartment scale-down reac-

tor. We focused our investigation on the regulatory differ-

ences between these strains in the response to repeated

short-term stimuli. The primary stirred tank reactor was

operated as an ammonium-limited chemostat while a

plug flow reactor simulated a nitrogen starvation zone.

Results

Continuous cultivation with periodic nutrient depletion

We cultivated E. coli SR and E. coli MG1655 in two

independent continuous fermentations each in a previ-

ously described scale-down reactor consisting of a pri-

mary stirred tank reactor (STR) and a secondary plug-

flow reactor (PFR), schematically shown in Fig. 1 (Löffler

et al., 2016; Simen et al., 2017; Ankenbauer et al.,

2020). E. coli SR is a strain with modulated stringent

response that was engineered to alleviate the induction

of the stringent response and the general stress

response upon nutrient depletion (Michalowski et al.,

2017). The chemostat was operated at a dilution rate of

D = 0.2 h-1 and ammonium was chosen as the limiting
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nutrient. After establishment of a steady state in the STR

alone, a reference sample (S0, t = 0 h) was taken and

the PFR connected. Periodic passage from the STR (av-

erage residence time �τSTR ¼6:2min) through the PFR

(average residence time �τPFR ¼2:6min) then created a

repeated short nitrogen starvation stimulus. The average

residence times represent worst-case scenarios that are

still consistent with mixing studies (Vrábel et al., 2000;

Noorman, 2011) and the volume ratio STR to PFR was

approximately 3:1 to represent existing simulation results

(Lapin et al., 2006; Haringa et al., 2017). The long-term

response of cells was investigated from additional sam-

ples taken from the STR shortly after connection of the

PFR (S5, t = 5 min) and after establishment of a new

steady-state (S28, t = 28 h) in the two-compartment cul-

tivation. The short-term response of cells to the PFR

stimulus was monitored by sampling from five ports

along the primary axis of the PFR at identical timepoints.

Transcript samples for the PFR were taken from port 5

(P5_5 and P5_28).

Basic growth and fermentation data confirmed earlier

results that there are no detrimental differences in

fundamental physiological parameters (Table 1) between

E. coli MG1655 and E. coli SR under nitrogen-limited

conditions (Michalowski et al., 2017). There were no sta-

tistically significant differences in any parameter (two-

tailed t-test, p > 0.1). Both strains reached practically

identical biomass yields on ammonium and depleted

ammonium to equally low levels regardless of process

time and PFR action (Fig. 2). The most noteworthy dif-

ference between E. coli MG1655 and E. coli SR was a

reduced concentration of excess glucose in the fermen-

tation broth of E. coli SR. Consequently, we calculated a

lower biomass yield on glucose for E. coli SR (Table 1).

Under conditions of long-term nitrogen starvation in

batch fermentations E. coli SR had previously displayed

a relaxation in glucose and nitrogen uptake coupling and

we thus suspected an increased specific glucose uptake

rate (Michalowski et al., 2017). The calculated specific

glucose uptake rate was higher for E. coli SR, but the

difference was not statistically significant in our experi-

ments (two-tailed t-test, P-value > 0.1). Data from the

fermentation broth supernatant showed that both strains

converted comparable amounts of substrate into acetate

as the primary byproduct. Carbon balancing revealed an

increased fraction of unknown substances among the

fermentation products of E. coli SR which were identified

as dissolved organic substances in the fermentation

supernatant by total dissolved carbon analysis. The ele-

vated glucose uptake rate of E. coli SR likely leads to

higher byproduct formation of typical overflow metabo-

lites such as lactate, pyruvate, formate and the regulator

2-oxoglutarate, all of which are known to accumulate

under nitrogen-limited conditions with glucose excess

(Hua et al., 2004). Apart from the primary byproduct

acetate, individual small carbon byproducts were not

measured as the overall total carbon efflux/influx balanc-

ing was in good agreement for both strains. Carbon

recovery was 101 � 2 % for E. coli MG1655 and 102 �

1 % for E. coli SR indicating that in sum all relevant sub-

stances were detected.

In general, process time and the periodic PFR stimu-

lus hardly affected global process parameters which is in

accordance with former observations made in this reac-

tor setup for nitrogen limitation and K-12 strains (Simen

et al., 2017). In sharp contrast, we found substantial reg-

ulatory differences between the two strains both in the

short-term and in the long-term transcriptional responses

to the periodic starvation stimulus.

Transcriptomic analysis: Overview

RNA-seq-based transcriptomic data to examine poten-

tially important genes for the ammonium stress response

of E. coli WT and E. coli SR was analysed. After filter-

ing, 4037 predicted E. coli genes remained for further

Fig. 1. Experimental design of the two-compartment system. The

fermenter consists of a stirred tank reactor (STR) as the primary cul-

tivation vessel and a plug-flow reactor (PFR) connected by an active

pump. The ammonium-limited chemostat was operated at a dilution

rate of D = 0.2 h-1 with the feeding point placed in the STR. The

STR served as a limitation zone and the PFR formed a starvation

zone. The setup was designed to resolve different timescales of cel-

lular response. Oxygen saturation was measured by three oxygen

probes and recorded by the process control system (01, 02, 03).

VSTRref: Reference Volume without connection of PFR (constant vol-

ume).

ª 2020 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

E. coliSR – A chassis for large-scale processes 3



analysis (see Supporting information). The fast tactical

transcriptional response to ammonia shortage was deter-

mined by comparing PFR port 5 samples to STR sam-

ples taken at the same process time points. Long-term

responses were studied by comparing post-perturbation

samples from the STR after 5 min (S5) and 28 h (S28)

to the reference sample (S0). The statistical threshold for

significance was set for adjusted p-value < 0.01 and

log2FC > |1|. 54 differentially expressed genes (DEGs)

(UP: 14, DOWN: 40) formed the long-term response of

E. coli MG1655. The short-term response was more pro-

nounced comprising 837 DEGs (UP: 242, DOWN: 595).

E. coli SR disclosed a similar number of 61 DEGs for

the long term response (UP: 12, DOWN: 49), but sub-

stantially less DEGS as short term response (Total: 387,

UP: 161, DOWN: 226) (Fig. 3). Log2FC values range

from −4.69 to 4.96 (WT) and −3.90 to 5.13 (SR). Fig. 3

depicts an overview of transcriptional dynamics outlining

the halved response of E. coli SR 5 min after repeated

nitrogen limited perturbation compared to WT.

Figure 4 shows that the multi-transcript response of

each strain could be well described by 2-dimensional

PCA covering 96% and 87% of total variance for E. coli

WT and E. coli SR, respectively. Notably, biological

duplicates were found in close proximity. PC1 accounts

for the sample port location, PC2 for the time course.

Unique and clearly distinguishable differences between

STR and PFR transcript patterns were observed already

after 5 min of repeated nitrogen starvation for both

strains (Figure 4, A1). In particular, principal component

1 (PC1) disclosed major differences between the sam-

ples of each strain accounting for 88% and 67% regard-

ing E. coli WT and E. coli SR, respectively. The PCA

finding is in agreement with the reduced number of

DEGs observed for E. coli SR. The impact of PC2 is

more pronounced for E. coli SR although almost

Table 1. Physiological measurements.

E. coli MG1655 E. coli SR

Y XN
gCDW

g
NHþ

4

� �

4.63 � 0.12a 4.62 � 0.27

Y XS
gCDW

gGlucose

h i

0.32 � 0.01 0.28 � 0.01

cGlucose,STR
gGlucose

l

� �

2.07 � 0.25 1.49 � 0.06

cAcetate,STR
gAcetate

l

� �

1.39 � 0.11 1.29 � 0.14

qNHþ

4

g
NHþ

4

gCDW∗h

� �

0.04 � 0.01 0.05 � 0.01

qS
gGlucose

gCDW∗h

h i

0.63 � 0.05 0.77 � 0.14

qAc
gAcetate

gCDW∗h

h i

0.10 � 0.01 0.10 � 0.01

qCO2

mmolCO2

gCDW∗h

h i

8.73 � 1.06 9.98 � 2.23

qO2

mmolO2

gCDW∗h

h i

9.28 � 0.47 10.9 � 2.02

RQ
molCO2

molO2

h i

0.95 � 0.16 0.91 � 0.04

qATP
mmolATP
gCDW∗h

h i

29.23 � 0.62b 34.73 � 6.39

D 1
h

� �

0.20 � 0.01 0.21 � 0.03

a. Errors indicate SEM (n = 2). All rates were calculated from aver-

aged values collected over the entire STR-PFR process time.

b. Estimated values assuming a P/O-Ratio of 1.2.

Fig. 2. Physiological measurements.A. Cell dry weight. Concentration of cell dry weight after at least 25 h chemostat process before connecting

the plug-flow reactor (0 h) and after 28 h of chemostat process with connected PFR (28 h).B. Ammonium. Concentration of residual ammonium

in the supernatant.C. Carbon Balance. Columns show efflux fractions of total C-mol based on carbon influx. The final fraction represents unde-

termined dissolved organic substances in the fermentation broth, as measured by the difference of all efflux carbon detected by exhaust gas or

total carbon analysis and the sum of the individually measured efflux components. Error bars indicate SEM (n = 2) of individual components (A,

B and C).
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identical numbers of DEGs were found as long-term

response in both strains. However, given the low impact

of PC1 for E. coli SR, similar DEG values affect the rela-

tive principal component analysis stronger.

As long-term responses of both strains were similar

(see Appendix: Supporting information) and weaker than

short-term responses (Fig. 4) further analysis focused on

short-term transcript patterns. Notably, changes between

long- and short-term responses of both strains were

dominated by counteracting transcript dynamics resetting

perturbations after PFR passages (MG1655: 5 min and

28 h). Observations are in line with similar findings

(Chang et al., 2002). Additional differences were found

in the upregulation of carbohydrate transport (SR: 5 min)

and catabolic processes (SR: 28 h) (see Fig. A5 and

A6).

Regulatory response to short-term ammonium limitation

Preceding investigations of E. coli K-12 strains in STR-

PFR scale-down reactors revealed the rapid accumula-

tion of the alarmone ppGpp upon entry into the nutrient

Long term response (log2FC >|1|; adj. p-value < 0.01): Short term response (log2FC >|1|; adj. p-value < 0.01):

Fig. 3. Number of UP (black) and DOWN (gray) regulated genes (DEGs). Long-term (left) and short-term (right) response to repeated nitrogen

starvation for E. coli MG1655 (WT) and E. coli SR (SR) and given process times.

Fig. 4. Principal component analysis of transcript data of E. coli MG1655 (WT) (top) and E. coli SR (bottom) obtained from STR (S) and PFR

(port 5, P5) at three process time points (0 h, 5 min, and 28 h). Covered measurement variance of each principal component (PC) is indicated.

Ellipses cluster samples of STR and PFR. PC1 accounts for ‘sample port location’, PC2 for ‘process time’.
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limited zone under both glucose and ammonium limita-

tion (Löffler et al., 2016; Simen et al., 2017). Concomi-

tantly, an extensive transcriptional reprogramming of

cells occurred. In standard batch fermentations E. coli

SR in turn did not react to ammonium depletion by

ppGpp synthesis (Michalowski et al., 2017). We there-

fore measured intracellular ppGpp levels from samples

taken from the five ports of the PFR along its primary

axis (Fig. 5). During the PFR passage E. coli MG1655

accumulated ppGpp to levels 2 – 3 fold higher than

measured in the STR, displaying the same behaviour as

previously observed for the closely related K-12 strain

E. coli W3110 (Simen et al., 2017). In contrast, E. coli

SR had no elevated levels of ppGpp at any point during

the PFR passage regardless of process time. These

results complement previous findings for the case of

repeated short stimuli and confirm the strain’s resilience

to ammonium exhaustion.

Based on these encouraging findings, we focused our

investigation on the short-term transcriptional response

of both strains along the PFR axis. We compared data

from samples drawn from port 5 of the PFR to samples

drawn from the STR at identical process time points.

Short-term changes revealed a significantly different

response of E. coli SR compared to E. coli MG1655 not

only in the amount of DEGs (Fig. 3), but also in the func-

tion of these genes (Fig. 4, 6). To elucidate patterns in

the transcriptional responses, we searched for common

DEGs, investigated the behaviour of gene clusters of

orthologous groups (COGs), and compared sigma factor

(σ) activities. The gene expression patterns of each

strain individually were assigned to 21 functional

categories based on the COG database (Tatusov et al.,

2003). In total 3532 of the 4037 genes (87.5%) could be

annotated to COG. For each COG category, the result-

ing t-values are represented in a lollipop plot (Fig. 7).

Significant changes were defined with a FDR-corrected

p-value < 0.01. Furthermore, the activation and deactiva-

tion of sigma factors over time were investigated (Fig. 7).

In this case, 3935 out of 4037 genes could be assigned

to the sigma factor-gene interaction database from Reg-

ulonDB (Santos-Zavaleta et al., 2019).

After the first 5 min of PFR action E. coli MG1655 and

E. coli SR exhibited substantially different transcriptional

responses. The strains had only 64 DEGs in common,

split equally between up- and down regulation (Fig. 6

left). Hence, these genes mirror the transcriptional

response to short-term starvation irrespective of a func-

tional stringent response, in which 14 out of the 32 com-

mon upregulated genes are associated with the Ntr-

reponse (e.g. glnK, amtB, glnAHPQ, rutA). Downregu-

lated genes consist of genes responsible for amino acid

biosynthesis (e.g. argCF, metABFINR) and other cellular

functions such as DNA cleavage, transporters and oxi-

doreductases. The only oppositely regulated gene was

guaC coding for the GMP reductase GuaC. Transcrip-

tional control of the guaC promoter by the stringent

response was proposed after its initial discovery and is

clearly supported by our data (Andrews and Guest,

1988). Individual, strain-specific short-term regulation

was observed for 398 (E. coli MG1655) and 32 (E. coli

SR) specific DEGs after 5 min, clearly demonstrating the

effect of the stringent response on the E. coli transcrip-

tome.

Fig. 5. Alarmone accumulation along the PFR. Concentration of ppGpp measured from samples drawn along the plug flow reactor (P1 to P5)

relative to the concentration measured in the stirred tank reactor (S, all values set to 1) for E. coli MG1655 (WT) and E. coli SR (SR). Error Bars

represent SEM (n = 2).
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Gene expression along the PFR after 28 h of PFR

action differs strongly from the early response. 125

DEGs, mostly downregulated, are shared by both strains

and the number of individually regulated genes is similar

with 242 genes for E. coli MG1655 and 158 genes for

E. coli SR (Fig. 6 right). Additionally, seven genes are

oppositely regulated. Three of them (tolQ, guaC, purM)

are upregulated in E. coli SR and downregulated in

Fig. 6. Venn diagrams representing partially overlapping sets of DEGs of E. coli MG1655 (WT) and E. coli SR. The number of significantly up-

(UP) and downregulated (DOWN) genes in each set is indicated by numbers. Left: Short-term responses 5 min after PFR connection. Right:

Short-term responses 28 h after PFR connection. Complete gene lists of the Venn diagrams are available in the supplementary data.

Information storage and processing:

K: Transcription

L: Replication, recombinaion and repair

J: Translation

Cellular processes and sginaling:

O: Posttranslational modification, protein turnover and     

chaperones

D: Cell cycle control, cell division and chromosome  

partitioning

T: Signal transduction mechanisms

M: Cell wall, membrane, envelope biogenesis

V: Defense mechanisms

U: Intracellular trafficking, secretion, vesicular transport

N: Cell motility

Metabolism:

G: Carbohydrate transport and metabolism

C: Energy production and conversion

E: Amino acid transport and metabolism

I: Lipids transport and metabolism

P: Inorganic ion transport and metabolism

Q: Secondray metabolites biosynthesis, transport and 

metabolism

F: Nucleotide transport and metabolism

H: Coenzyme transport and metabolism

Poorly characterized:

R: General function prediction only

S: Function unknown

Sigma70: Housekeeping sigma factor 

Sigma54: Nitrogen-limitation sigma factor

Sigma38: Starvation7Stationary phase sigma factor

Sigma32: Geat shoch sigma factor

Sigma28: Flagellar system sigma factor

Sigma24: Extracytoplasmic/Extreme heat stress sigma factor

Short term response after 5 min (sign. p-value < 0.01): Short term response after 28h (sign. p-value < 0.01):

Fig. 7. Top: Transcriptional patterns grouped into COG categories of E. coli MG1655 (WT) and E. coli SR (SR). Left: short-term patterns to the

PFR stimulus 5 min after PFR connection. Right: short-term patterns to the PFR stimulus 28 h after PFR connection. Bottom: Sigma factor

activities of E. coli MG1655 (WT, grey) and E. coli SR (SR, black). Left: Short-term response to the PFR stimulus 5 min after PFR connection.

Right: Short-term response to the PFR stimulus 28 h after PFR connection. Significant categories are indicated with an asterix.
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E. coli MG1655. These genes correspond to cell envel-

ope integrity during cell division (Gerding et al., 2007),

nucleotide metabolism (Kanjee et al., 2012) and purine

de novo biosynthesis (Mueller et al., 1999). While purine

de novo biosynthesis is actively inhibited by ppGpp via

inhibition of GuaB, GTP synthesis solely originates from

purine salvage pathways with xdhA significantly

increased in E. coli MG1655 (Xi et al., 2000). The resid-

ual four oppositely regulated DEGs (csiD, glnL, lhgO,

yeaH) predominantly play a role in the adaptation to

nitrogen starvation and except for glnL are known to be

induced by ppGpp. NtrB encoded by glnL is an essential

part of the Ntr response cascade to nitrogen starvation

and yeaG positively impacts rpoS transcription and

translation under prolonged nitrogen starvation (Brown

et al., 2014). Despite these differences in adaption to

nitrogen limitation, we observed no alterations in the

uptake or utilization of ammonium which indicates that

the additional regulatory adaptions of E. coli MG1655

are irrelevant in the context of a bioprocess.

Transcriptional patterns could be identified by func-

tional enrichments of groups based on COG categories

and sigma factor activities. COG groups J (Translation,

ribosomal structure, and biogenesis) and F (nucleotide

transport and metabolism) were significantly down regu-

lated as part of the stringent response of E. coli

MG1655 after both 5 min and 28 h (Fig. 7). For the

28 h sampling point group H (coenzyme transport and

metabolism) was also significantly downregulated. As

already indicated by the oppositely regulated genes

(Fig. 7), σ54-mediated genes responsible for the activa-

tion of the Ntr stress response including yeaG/H via

NtrBC were induced in E. coli MG1655, as well as the

σ38 regulon as part of the general stress response

(Brown et al., 2014; Figueira et al., 2015) (Fig. 7). Due

to the limited amount of RNA-Polymerase (RNAP) core

enzymes, σ70 competes with σ54, resulting in an

antiproportional expression of their mediated genes

(Jishage et al., 1996). In contrast, E. coli SR only

increased the expression of genes regulated by σ54

after 5 min and no significant COG category was identi-

fied at this time-point. The absence of the stringent

response in E. coli SR is clearly visible in an overall

dampened regulatory response. The only significantly

regulated group is E (amino acid transport and metabo-

lism) after 28 h of PFR action, and the significantly

downregulated genes in this group are predominantly

ABC-transporters.

To unravel more detailed patterns in the transcriptional

responses we assigned genes to the up-to-date gene

ontology (GO) gene sets using GAGE (Luo et al., 2009).

3345 out of 4037 genes (83%) could be mapped to GO

Terms. As shown in Fig. 3 the majority of significant

DEGs for E. coli MG1655 were downregulated. This is

mirrored by the results of the identified top 20 GO cate-

gories which were uniformly down-regulated (Fig. 8).

E. coli MG1655 predominantly downregulated genes

related to ribosomal biosynthesis and translation after

5 min and 28 h as expected for a stringent phenotype

(Fig. 8). These transcriptional changes are counteracted

in the long-term response observed from the STR

(Fig. A3 to A6) which indicates looping induction and

repression of the genes. Patterns from E. coli SR were

less pronounced and grouped differently. After 5 min we

observed decreasing gene expression of ATP-demand-

ing processes such as ABC transporters and ATPase

complexes (Fig 8). After 28 h the PFR passage mainly

induced an increased negative regulation of transcription

and metabolic processes (Fig. 8). Care must be taken in

the interpretation of this group though. General cate-

gories affecting transcription (GO:0006351, GO:0045892,

GO:0097659, GO:1903507) or RNA processes

(GO:0032774, GO:1902679, GO:0051253, GO:0051252)

are represented as simultaneously negatively and posi-

tively regulated. Moreover, all negative regulators

included in these terms, such as members of the CRP

family, are also capable of positive regulation. Other

negative regulation categories involve genes which

actively inhibit translation and belong to SOS signals like

DNA damage, prevention of cell division and pro-

grammed cell death (PCD). E. coli SR thereby focuses

on σ38 regulated genes, as well as toxin and antitoxin

systems (mazEF and mqsRA) possibly resulting in

arrested growth and a dormant cell state or even PCD.

As growth arrest is usually a primary outcome of the

stringent response, which is absent in E. coli SR, we

hypothesize that this pattern might provide an alternative

way for E. coli SR to achieve cell cycle arrest.

In summary, the short-term response transcriptional

patterns of E. coli MG1655 were extensive and domi-

nated by the stringent response and the Ntr regulon.

The major activated sigma factors were σ54 and σ38.

Overall, the transcription of ribosomal genes and other

genes necessary for growth was inhibited, while genes

involved in the transport and fixation of ammonia were

induced. Our observations reflect well-known regulatory

patterns exerted by E. coli K-12 when facing nitrogen

starvation (Chang et al., 2002; Traxler et al., 2008; Trax-

ler et al., 2011; Simen et al., 2017; Wang and Levin,

2009). In contrast, the transcriptional short-term

response of E. coli SR is dampened both in the number

of DEGs and the patterns observed, especially shortly

after connection of the PFR. The only significantly acti-

vated sigma factor is σ54 indicating a functional but

attenuated Ntr response in the absence of ppGpp accu-

mulation. Adaptation to ongoing starvation was possibly

attempted via negative regulation of metabolic processes

and SOS pathways.
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Discussion

In the present study, we investigated the regulatory

responses of the stringent response mutant strain E. coli

SR when exposed to repeated short starvation stimuli in

a scale-down reactor. The comparison with its wild-type

parent E. coli MG1655 unravelled dampened regulatory

patterns which are potentially beneficial for the applica-

tion of E. coli SR in industrial large-scale reactors. The

reduced regulatory patterns might be beneficial for

heterologous protein expression as well as the produc-

tion of small molecules as less interference with engi-

neered metabolic pathways may occur and energy

otherwise spent for adaptive responses is available for

product formation.

An important finding of our study is that despite the

regulatory differences E. coli SR displayed no dysfunc-

tionalities in handling the shortage of ammonium. E. coli

SR reached the same biomass yield on ammonium as

E. coli MG1655 both with and without PFR action. More-

over, both strains depleted ammonium to comparable

levels of about 1.2 mg l-1 or 67 µmol l-1, well in line with

previously reported values for E. coli K-12 strains in

nitrogen limited chemostats (Hua et al., 2004). The low

remaining ammonium concentration indicates that uptake

in both strains is mediated actively by AmtB with Km =

0.8 mM (Williamson et al., 2020) and incorporation is

accomplished by the GS-GOGAT System with GS Km =

0.1 mM (Alibhai and Villafranca, 1994). This is sup-

ported by our transcriptional data which revealed that

amtB, gltB and gltD were significantly enriched for both

strains over all time-points. Transcripts of glnA were also

always significantly enriched except for the time point

28 h of E. coli SR. Concomitantly, we identified tran-

scriptional patterns typical for the σ54- and NtrBC-medi-

ated responses to nitrogen starvation (Reitzer, 2003). 13

out of 21 known NtrC-regulated operons (Brown et al.,

2014) were induced at PFR port 5 in E. coli MG1655 at

all time points (Table S2). For E. coli SR, the Ntr

response was slightly reduced, with 9 out of 21 operons

induced (Table S3) and lower overexpression of σ54

transcribed genes. These findings lead to the conclusion

of an active, but diminished Ntr response of E. coli SR

that still allowed fully functional ammonium assimilation.

Additionally, the energy consumption as maintenance

add-on for both strains was calculated according to

Löffler et al. (2016) assuming de novo synthesis of all

upregulated DEGs over the whole process time (28 h).

E. coli SR E. coli MG1655

No significantly 

upregulated GO-Terms 

found!

Fig. 8. Significant GO categories after 5 min and 28 h of both E. coli SR (left) and E. coli MG1655 (right). Downregulated categories are

arranged at the top and upregulated GO terms at the bottom. 5 min: Short-term response of E. coli SR (left) and E. coli MG1655 (right) after

5 min of PFR action. Only the Top 20 out of 102 significantly downregulated categories are shown. Neither strain had significantly upregulated

categories for this time-point. 28h : Short-term response of E. coli SR (left, light grey) and E. coli MG1655 (right, light grey) after 28 h of PFR

action. For E. coli SR only the Top 20 out of 24 significantly upregulated categories are shown. For E. coli MG1655 only the Top 20 out of 95

significantly downregulated categories are shown. No significantly upregulated categories were found for this time-point.
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The resulting energy savings of E. coli SR due to

weaker transcriptional response added up to around

46.5 %. In terms of microbial productivity, the reduced

maintenance demand potentially increases the amount

of available ATP for biomass-specific productivities and

improves cell fitness.

In a previous study, a significantly elevated specific

glucose consumption rate under ammonium limitation

was observed in E. coli SR (Michalowski et al., 2017).

Similarly, we observed reduced excess glucose and the

accompanying formation of dissolved byproducts in the

fermentation supernatant. In E. coli K-12 strains, the

consumption of glucose is usually tightly coupled to the

availability of nitrogen on the level of metabolite control

by the interaction of 2-oxoglutarate with PtsI (Doucette

et al., 2011). The exact mechanism by which coupling of

nitrogen and glucose uptake rates are relaxed in E. coli

SR is not clear as the strain is isogenic to E. coli

MG1655 except for the deletion of relA and the modifica-

tions in spoT. However, we found an increased tran-

scription of ptsI, ptsH and ptsG in E. coli SR compared

to E. coli MG1655 (Table S6). Artificially increased

expression of ptsI has been shown to increase specific

glucose uptake rates in nitrogen limited conditions (Chu-

bukov et al., 2017). We presume that the increased glu-

cose uptake rate in E. coli SR might be caused by

deregulated expression of ptsI, potentially connected to

the absence of the stringent response by the action of

CRP whose transcription is negatively regulated by

ppGpp (Johansson et al., 2000). It remains to be clarified

whether E. coli SR has altered cytoplasmic 2-oxoglu-

tarate levels or the action of ppGpp influences the cou-

pling of glucose consumption to nitrogen availability,

potentially by the proposed mechanism. Increased speci-

fic glucose uptake rates in conjunction with higher respi-

ratory activity have also been observed in E. coli

MG1655 subjected to repeated glucose feast-famine

cycles (Vasilakou et al., 2020). Future studies should

thus examine how E. coli SR reacts to varying availabil-

ity of glucose or other carbon sources.

In view of these differences in carbon metabolism, we

hypothesized that biological energy availability might be

unequal for E. coli MG1655 and E. coli SR. From oxy-

gen and glucose uptake rates the specific ATP produc-

tion rate qATP was estimated (Table 1). qATP greatly

depends on the effective P/O ratio and current scientific

consensus estimates realistic P/O ratios between 1.0

and 1.5 for E. coli (Noguchi et al., 2004; Szenk et al.,

2017). For our estimations of qATP we assumed a con-

servative P/O ratio of 1.2 and 2 moles of ATP per mol

glucose from glycolysis. The result indicates that E. coli

SR might have an increased availability of ATP com-

pared to its wild-type parent under the applied experi-

mental conditions. Given that the respiratory capability

and thus the ATP production capability of K-12 strains is

not exhausted at a dilution rate of D = 0.2 h-1 it appears

that the increased glycolytic flux to byproducts displayed

by E. coli SR was also not a result of increased energy

demand. Moreover, increased glucose uptake has been

reported previously for E. coli SR under conditions of

ammonia limitation despite high adenylate energy charge

(Michalowski et al., 2017). Carbon and redox homeosta-

sis at elevated glycolytic flux would then be maintained

by byproduct excretion and increased respiration, possi-

bly involving the dissipation of surplus energy by uncou-

pling of the electron transport chain (Bekker et al.,

2009).

Nitrogen limitation inducing the stringent response is a

well-documented phenomenon in E. coli. Multiple previ-

ous studies predominantly observed heavily increased

gene expression corresponding to amino acid transport

and metabolism (Barker et al., 2001; Durfee et al., 2008;

Traxler et al., 2008; Traxler et al., 2011; Brown et al.,

2014; Simen et al., 2017). Conversely, we observed

almost equally distributed up- and downregulated genes

for amino acid transport and metabolism (see Supporting

information: Transcriptomics), which was only reported

by few research groups (Chang et al., 2002; Traxler

et al., 2008). As a result, no overall significant statistical

trend was detectable for this category (Fig. 7). We sug-

gest that the individual operons do not solely respond to

ppGpp, but rather depend on other signals and regula-

tory networks which were not found to be significantly

expressed in this study such as the Lrp regulon. Addi-

tionally, caution is advised when comparing transcrip-

tomic analyses originating from different studies as they

greatly depend on the transcriptional reference state and

thus the details of the experimental design.

In general, the amount of DEGs of E. coli K-12

MG1655 was similar to the numbers found in the analo-

gous study of Simen et al. (2017) who employed the clo-

sely related E. coli K-12 W3110 confirming the validity of

our data. The amount of DEGs is also less than

observed during the related study of glucose starvation

by Löffler et al. (2016) which points towards significant

potential of E. coli SR to preserve energy in glucose

starvation conditions. An interesting difference to the for-

mer studies in this scale-down reactor setup is the

absence of increased motility in the STR after PFR con-

nection (Löffler et al., 2016; Simen et al., 2017). Our

dataset contains no upregulated flagellar or sigma factor

28 mediated gene patterns from the STR at any time-

point (Fig. 7). We first hypothesized that the cause might

be genetic differences affecting motility which are well

documented between MG1655 and W3110 and even

between different MG1655 isolates (Barker et al., 2004;

Hayashi et al., 2006). However, sequencing of our

MG1655 isolate revealed the presence of the canonical
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IS-1 insertion upstream of flhD which confers motility

and our MG1655 isolate displayed vivid spreading in

motility agar (Supporting information, Fig. A7). An alter-

native explanation could be derived by the interplay of

quorum sensing and flagellar regulation through the

action of autoinducer-2 (AI-2) and the motility quorum

sensing regulator MqsR. While transcript levels of luxS

(LuxS synthesizes Al-2) remain unchanged, the expres-

sion of mqsR is significantly enriched at PFR port 5 and

MqsR is known to induce the flagellar synthesis cascade

(González Barrios et al., 2006). However, cell dry weight

(CDW) was always below 3 g l-1 in our experiments

whereas Simen et al. worked with around 10 g l-1 CDW.

Higher biomass should lead to increased AI-2 levels and

may cause a preconditioned phenotype that rapidly initi-

ates flagellar biosynthesis when encountering nutrient

stress. Thus, rapid induction of motility genes might

become more pronounced during high cell density pro-

cesses in large-scale reactors and remains to be exam-

ined in further studies. Additionally, as introduced by

Löffler et al.(2016) during glucose fluctuation, genes of

the category cell motility were identified as one of the

most prominent energy consumers and might therefore

be candidates for genome reduction (Löffler et al.,

2016).

Analysis of gene expression patterns (Fig. 7 and 8)

revealed that both strains individually adapted to

repeated nitrogen starvation. E. coli MG1655 adjusted

by utilizing the ppGpp-mediated general stress response

including activation of toxin/antitoxin (TA) systems like

mqsRA and mazEF. This strategy intends to arrest the

cell cycle and form persister cells (Balaban et al., 2004).

Persister cell formation is not yet fully understood and

usually only involves a small fraction of cells (Chowdhury

et al., 2016; Gerdes and Maisonneuve, 2012; Korch

et al., 2015). Thus, it seems to be only of minor impor-

tance for industrial processes but some persister genes

affect persister level due to altered growth rates rather

than contributing to a mechanism of cell cycle arrest and

might have a significant impact on bioprocess perfor-

mance (Allison et al., 2011). Nonetheless two common

dependencies affecting persister formation, ppGpp and

TA systems, are known which is in line with our findings

(Aizenman et al., 1996; González Barrios et al., 2006;

Chowdhury et al., 2016; Sun et al., 2017; Wang and

Levin, 2009). Persister formation benefits from increased

ppGpp concentrations but is still possible at lower rates

in the absence of ppGpp by proteins which simply

reduce growth (Chowdhury et al., 2016). The nucleotide

pyrophosphohydrolase MazG which is negatively regu-

lated by the mazEF system is able to initiate cell cycle

arrest and was significantly upregulated in E. coli SR

after 28 h (Lee et al., 2008). Additionally, E. coli SR initi-

ated negative regulation of transcription, translation and

cell division processes as part of the SOS response

(Fig. 8). Most likely, the SOS pathways were activated

due to ongoing DNA replication during starvation condi-

tions which might ultimately result in DNA damage and

inhibited cell division (Bi and Lutkenhaus, 1993; Jose-

leau-Petit et al., 1999; Traxler et al., 2008). As part of

the SOS response and as a key gene involved in fila-

mentation sulA was significantly upregulated in E. coli

SR. SulA inhibits the initiation of cellular division by

repressing the assembly of FtsZ into the Z ring (Huisman

et al., 1984; Fonville et al., 2010). Simultaneously with

the overexpression of sulA, lexA was significantly

increased which acts as a major repressor of SOS sig-

nals. LexA regulates the response strength and is

actively involved in the occurrence of persister cells in

bacterial populations (Butala et al., 2011). These results

indicate a coordinated and rather complex SOS

response in E. coli SR to form persister cells which is

not yet fully understood.

The natural regulation of E. coli has evolved towards

optimality in its lifestyle as a gut bacterium and is not

honed for the demands of a large-scale bioprocess. The

absence of the stringent response and the conservation

of the ability to grow efficiently in minimal medium sug-

gest that E. coli SR has the potential to become a plat-

form strain for applications in large-scale reactors. Our

transcriptional analysis shows that the short-term

response of E. coli SR to ammonium depletion is damp-

ened but a functional Ntr/σ54 response remains. Regard-

ing glucose-limited fermentations, we hypothesize that

E. coli SR has significant potential to preserve energy in

such conditions since the regulatory responses are usu-

ally even more pronounced and centred around the strin-

gent response (Hardiman et al., 2007; Löffler et al.,

2016). We therefore propose to confirm the suitability of

E. coli SR for large-scale applications in multi-compart-

ment scale-down reactors employing exemplary small-

molecule production scenarios. These should include

standard glucose-limited fed-batches as well as ammo-

nium limited fed-batches with a prolonged nitrogen-lim-

ited production phase to exploit its elevated glucose

consumption.

Experimental procedures

Bacterial strains and media

Strains E. coli MG1655 or E. coli SR were used in all

experiments (Table 2).

2xYT agar plates were prepared by autoclaving 16 g l-

1 tryptone, 10 g l-1 yeast extract, 5 g l-1 NaCl and 18 g l-

1 agar-agar dissolved in demineralized water. Minimal

medium for precultures consisted of 4 g l-1 glucose,

0.96 g l-1 NaH2PO4⋅2H2O, 3.51 g l-1 K2HPO4, 2.4 g l-1

(NH4)2SO4, 0.01 g l-1 thiamine hydrochloride and 0.2%
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(V/V) trace elements stock solution. Minimal medium for

batch cultivation in the bioreactor consisted of 19 g l-1

glucose, 1.50 g l-1 NaH2PO4⋅2H2O, 3.9 g l-1 K2HPO4,

5.7 g l-1 (NH4)2SO4 and 0.2% (V/V) trace elements stock

solution. 200 µl of antifoaming agent Struktol J647

(Schill + Seilacher, Hamburg, Germany) was added to

the batch medium prior to inoculation. Minimal medium

for continuous chemostat cultivation in the bioreactor

consisted of 11.4 g l-1 glucose, 1 g l-1 NaH2PO4⋅2H2O,

2.6 g l-1 K2HPO4, 2.28 g l-1 (NH4)2SO4 and 0.2% (V/V)

trace elements stock solution. Throughout the chemostat

phase 50 µl/h of antifoaming agent Struktol J647 were

added continuously to the fermentation medium. The

composition of trace element stock solution was 4.175

FeCl3⋅6H2O, 0.045 g l-1 ZnSO4⋅7H2O, 0.025 g l-1

MnSO4⋅H2O, 0.4 g l-1 CuSO4⋅5H2O, 0.045 CoCl2⋅6H2O,

2.2 g l-1 CaCl2⋅2H2O, 50 g l-1 MgSO4⋅7H2O and 55 g l-1

sodium citrate dihydrate. Stock solutions of salts, trace

elements and glucose were autoclaved separately, and

stock solutions of thiamine hydrochloride were filter ster-

ilized and stored at 4°C. All compounds were combined

just before the experiments to prevent possible aging of

media.

Bioreactor setup

Cultivations were carried out in a two-compartment

scale-down reactor. The primary reactor was a stirred

tank reactor (STR), and a plug flow reactor (PFR) was

used as the secondary compartment mimicking a starva-

tion zone. The plug flow reactor was connected to the

stirred tank reactor after establishment and sampling of

a steady state in the chemostat phase. The basic techni-

cal setup has been characterized previously (Löffler

et al., 2016; Simen et al., 2017). Minor modifications to

the original setup have been made and are described

elsewhere (Ankenbauer et al., 2020).

The primary reactor was a 3 l bioreactor (Bioengineer-

ing, Wald, Switzerland) equipped with flow baffles and

two six-blade Rushton type impellers operated at

1000 rpm. A constant aeration rate of 2.0 standard litres

of ambient pressurized air per minute was employed and

the system operated at a total pressure of 1.5 bar.

Temperature was monitored by a platinum resistance

thermometer and regulated by electrical heating or water

cooling. Temperature was set to 28–30°C for the batch

phase and to 37°C for the continuous chemostat phase.

The reactor was equipped with a pH sensor (Mettler

Toledo, Columbus, USA) to control pH and a pO2 sen-

sor for monitoring dissolved oxygen tension (PreSens,

Regensburg, Germany). During all fermentation stages

pH was set to 7.0 and regulated by automated addition

of 3 M NaOH or 2.5 M H3PO4. Dissolved oxygen tension

was not regulated but maintained values above 70% sat-

uration to 1.5 bar ambient air throughout the entire culti-

vation. In the exhaust gas stream, the concentration of

oxygen and carbon dioxide was measured by gas sen-

sors (BlueSens, Herten, Germany). During the chemo-

stat phase the feed was constantly added to the reactor

by a peristaltic pump (Watson-Marlow, Falmouth, UK).

The feed flow was monitored by a balance recording the

weight of the stirred feed barrel and manually adjusted if

necessary. The harvesting pump operated as a slave

pump set to maintain a constant weight of the bioreactor.

For this purpose, the stirred tank reactor was installed

on a balance as well.

The secondary compartment was a plug-flow reactor

with an inner tube diameter of 20 mm and a total volume

of approximately 380 ml. Five ports along the primary

axis were used to take samples throughout the cultiva-

tion. Oxygen saturation in the PFR was monitored close

to ports P1, P2 and P5 and additional aeration of 0.15

standard litres per minute was provided next to port P1

to ensure levels above 30% saturation to ambient air

conditions throughout the entire PFR passage. Tempera-

ture in the PFR was maintained at 36–37°C by water

heating and isolation material. A diaphragm metering

pump (Sigma/1, ProMinent, Heidelberg, Germany) was

used to transfer biosuspension from the stirred tank

reactor to the plug flow reactor after connection of the

two reactors.

Preculture, batch cultivation and continuous cultivation

A small amount of glycerol stock seed culture was

spread onto 2xYT agar plates and incubated at 37°C for

24 h. A single colony was picked to inoculate 500 ml

baffled shaking flasks with 50 ml of preculture minimal

media. Flasks were then incubated at 37°C on an orbital

shaker set to 150 rpm for 16 h. In the next morning

500 µl of biosuspension were transferred to 1000 ml baf-

fled shaking flasks containing 100 ml preculture minimal

media and incubated at 37°C on an orbital shaker set to

150 rpm for 8 h. 50 ml of this culture were used to inoc-

ulate the bioreactor. Total volume in the bioreactor was

1.6 l after inoculation. Batch fermentation in the bioreac-

tor ensued at 28-30°C overnight. In the next morning

Table 2. Bacterial Strains used in this study.

Strain

Genotype/strain informa-

tion Reference

Escherichia coli K-12

MG1655

(“wild type” strain,

abbrev. WT)

F−, λ−, ilvG−, rfb-50, rph-

1

Michalowski

et al. (2017)

Escherichia coli SR MG1655 ∆relA, spoT

[R290E;K292D]

Michalowski

et al. (2017)
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feed and harvest trains were connected and a constant

feed/harvest rate at 5.33 ml min-1 corresponding to a

dilution rate of 0.2 h-1 established. After 25 h (five volu-

metric residence times) of STR cultivation a reference

sample was taken. The plug-flow reactor was then con-

nected to the primary reactor via a diaphragm metering

pump effectively circulating about one-quarter of the total

fermentation broth from the STR through the PFR and

back into the STR. In the following 28 h samples were

taken at predefined time points from the STR and the

five PFR ports. After 28 h of STR-PFR cultivation the fer-

mentation was aborted, and the final broth volume mea-

sured. This value was used for all volumetric

calculations during data analysis.

Determination of optical density and biomass

In preliminary experiments with identical setup correla-

tion factors of optical density and biomass as cell dry

weight (CDW) were determined for E. coli MG1655 and

E. coli SR (Supporting information, Table S1). The

resulting correlation factors for converting OD600nm val-

ues to g l-1 cell dry weight were 0.324 for E. coli

MG1655 and 0.321 for E. coli SR. In the main cultiva-

tions optical density was measured from appropriately

diluted broth on a spectrophotometer at 600 nm and

converted into biomass concentration.

Determination of acetic acid, ammonium and glucose

concentrations

Five millilitres of biosuspension was directly sampled into

a syringe connected to a single-use 0.45 µm sterile filter

and immediately sterile filtered. The clear supernatant

was flash frozen in liquid nitrogen and stored at −70°C

until analysis. Glucose concentration was determined by

D-Glucose UV-Test Kit (R-Biopharm, Darmstadt, Ger-

many) and acetic acid concentration by Acetic acid UV-

Test Kit (R-Biopharm, Darmstadt, Germany). Ammonium

concentration was determined by Ammonium cuvette

test LCK 304 (Hach Lange, Düsseldorf, Germany). At

the end of the cultivation feed samples were taken and

processed identically.

Analysis of total carbon, inorganic carbon and biomass

composition

For total carbon and inorganic carbon analysis 0.5 ml

biosuspension sample were mixed with 50 µl of 5 M

KOH to prevent loss of dissolved carbonate. The sus-

pension was then diluted 1:20 with demineralized water

and stored at 4°C until analysis. Analysis was performed

with a multi N/C 2100 S composition analyzer (Analytik

Jena, Jena, Germany) to yield the total concentration of

carbon and inorganic carbon in the fermenter effluent

stream. At the end of the cultivation feed samples were

taken and processed identically.

To determine biomass composition 1.0 ml of biosus-

pension was centrifuged at 4°C and 14 000 rpm

(20817 g) for 3 min. The supernatant was discarded, the

pellet resuspended in 1.0 ml of freshly prepared 0.9%

NaCl solution and centrifuged again. The pellet was

resuspended in 5 ml 0.9% NaCl, flash frozen in liquid

nitrogen and stored at −70°C until analysis. Analysis

was performed with a multi N/C 2100 S composition

analyzer (Analytik Jena, Jena, Germany) and the carbon

content of the biomass calculated from these values.

Measurement of ppGpp

Two millilitres of of biosuspension was sampled directly

into 0.5 ml of precooled (< −20°C) quenching solution

and incubated at 6°C on a shaker for 15 min. Quenching

solution consisted of 80 µM EDTA dissolved in 35% (V/

V) perchloric acid. 500 µl 1M K2HPO4 was added and

the sample briefly vortexed. 550 µl 5 M KOH was added

and the sample vortexed again. To remove precipitating

potassium perchlorate samples were then centrifuged at

4°C and 7830 rpm (7197 g) for 5 min. 1.5 ml of super-

natant was carefully transferred to new tubes, flash fro-

zen in liquid nitrogen and stored at −70°C. Prior to

analysis samples were thawed and their pH adjusted to

6.95 – 7.05 with 5 M KOH or 35% (V/V) perchloric acid.

Samples were centrifuged again to remove all potassium

perchlorate precipitate. HPLC analysis was carried out

as described previously (Löffler et al., 2016). If neces-

sary, quantification was conducted by ppGpp standard

addition (TriLink, San Diego, CA, USA). Samples from

one time-point were analysed directly in sequence and

the data normalized to the sample drawn from the STR

to eliminate differences caused by column aging.

Transcriptome analysis

0.5 ml broth was sampled from the bioreactor and

directly flash-frozen in liquid nitrogen. Frozen broth was

then stored at −70°C until the day of RNA isolation.

Total RNA was isolated using RNeasy Mini Kit (Qiagen,

Hilden, Germany) according to the manufacturer’s

instructions. Isolated RNA was DNAse treated and

shipped to commercial sequencing partner GENEWIZ®

on dry ice. Samples were treated for rRNA depletion,

sequencing libraries prepared and Illumina HiSeq 2x150

bp sequencing performed. Raw FASTQ files were

obtained for bioinformatic analysis. Trimmomatic v. 0.32

(Bolger et al., 2014) was used to remove adapters and

low-quality reads (<Q20) checked by fastqc reports.

Genes were aligned to the NCBI E. coli K-12 MG1655
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reference genome (RefSeq: NC_000913.3) using the

RNA-sequencing aligner Bowtie2 v. 2.3.2.2 (Langmead

and Salzberg, 2012). On average the mapping of the

reads covered 96.2%. Aligned reads were counted for

each gene based on the corresponding annotation avail-

able from the NCBI database for the chosen reference

sequence applying HTseq-count v. 0.6.1 in the union

mode (Anders et al., 2015). On average 86.4 % of the

sequenced reads could be assigned uniquely to anno-

tated features. Sequencing depth was around 27 million

reads per sample on average with a mean quality phred

score of 37.63.

Differential gene expression analysis was performed

with the R-package DeSeq2 v. 1.26.0 (Love et al., 2014)

available from Bioconductor (Gentleman et al., 2004).

Prior to statistical analysis, all residual non-protein

encoding RNA molecules (tRNA, rRNA and sRNA) were

removed from the HTseq-derived raw count data and a

non-specific filter was applied to remove low coverage

genes with fewer than two counts per million (54 reads

on average). All filtering steps caused deviations from

the raw data of less than 6 %. Samples were grouped

by replicates and an experimental design was chosen

that used sample time and location (STR or PFR port 5)

as a combined environmental factor. To normalize read

counts for the comparison of sequencing depth and

RNA composition, DESeq2 uses the median of ratios

method to derive a scaling factor. Dividing the original

read counts by the scaling factor generated normalized

count values. No outliers were observed in the two bio-

logical replicates using Pearson correlation. Resulting p-

values were adjusted for multiple testing according to

control the false discovery rate (FDR) (Benjamini and

Hochberg, 1995). Genes were identified as significantly

differentially expressed by applying FDR adjusted P-val-

ues < 0.01 and a log2 fold change ≥ |1|.

A principal component analysis was used to display

the sample to sample distances calculated within the

DESeq2 package (negative binomial distribution model).

Principal component analysis was performed using

plotPCA.san available on Github (https://gist.github.com/

sansense/3399064897f1252d31b23ea5178c033c).

Gene set enrichment and overrepresentation analysis

of up- and downregulated genes were performed using

the Bioconductors‘s R-package GAGE v. 2.36.0 (Luo

et al., 2009). GAGE tests whether the mean fold-

change of a gene subset is significantly different from

the background using a two-tailed t-test. Genes were

selected as significantly different with an FDR adjusted

P-value < 0.01 (Benjamini and Hochberg, 1995). Func-

tional annotation were derived from the Cluster of

Orthologous Groups (COG) database (Tatusov et al.,

2003), the experimental sigma factor-gene interaction

dataset from RegulonDB v. 10.6.3 (Santos-Zavaleta

et al., 2019) and the Gene Ontology (GO) Groups data-

base with the function go.gsets from GAGE (Luo et al.,

2009). Furthermore, Venn diagrams were used to iden-

tify significant genes shared by both strains and differ-

ences in gene expression regulation (Chen and

Boutros, 2011).

The RNA sequencing data derived from periodic

ammonia starvation experiments have been deposited in

NCBI’s Gene Expression Omnibus (GEO) and are

accessible through GEO series accession number

GSE158198 (Edgar et al., 2002). Raw counts and pro-

cessed data can be found in the Supporting information.

Data analysis was performed using the free statistical

computing environment R v. 3.6.2.
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Abstract

Escherichia coli exposed to industrial‐scale heterogeneous mixing conditions respond

to external stress by initiating short‐term metabolic and long‐term strategic tran-

scriptional programs. In native habitats, long‐term strategies allow survival in severe

stress but are of limited use in large bioreactors, where microenvironmental con-

ditions may change right after said programs are started. Related on/off switching of

genes causes additional ATP burden that may reduce the cellular capacity for pro-

ducing the desired product. Here, we present an agent‐based data‐driven model

linked to computational fluid dynamics, finally allowing to predict additional ATP

needs of Escherichia coli K12 W3110 exposed to realistic large‐scale bioreactor

conditions. The complex model describes transcriptional up‐ and downregulation

dynamics of about 600 genes starting from subminute range covering 28 h. The

data‐based approach was extracted from comprehensive scale‐down experiments.

Simulating mixing and mass transfer conditions in a 54m3 stirred bioreactor,

120,000 E. coli cells were tracked while fluctuating between different zones of

glucose availability. It was found that cellular ATP demands rise between 30% and

45% of growth decoupled maintenance needs, which may limit the production of

ATP‐intensive product formation accordingly. Furthermore, spatial analysis of in-

dividual cell transcriptional patterns reveal very heterogeneous gene amplifications

with hot spots of 50%–80% messenger RNA upregulation in the upper region of the

bioreactor. The phenomenon reflects the time‐delayed regulatory response of the
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NOMENCLATURE: a, b, c, d, regression paramete; C, cluster; cS, glucose concentration (mol L−1); D, dilution rate (h−1); Deg, degradation; f, fading genes; gene, gene; i, iteration index; kdeg, protein

degradation rate (h−1); KS, substrate‐specific uptake constant (g L−1); LmRNA i, , length of mRNA strand per gene i (nt); maxTL, maximum number of translations per mRNA; Min size, minimum

number of observations per clusters; MW, molecular weight (g mol−1); Ntry, number of trials per iteration; nnucleotide, number of nucleotide monophosphates; p, persisting genes; protein, bulk

protein; qs, max, maximum substrate uptake rate (g(gh)−1); rmax, maximum radius as a proxy for correlation; S, number of starvation passages; Sc, Schmidt number; Scrit, critical number of

starvation passages; Smin, minimum number of starvation passages; t, time (general) (s); tdeg; med, median lifetime of mRNA (s); TLi; j, initiation trigger for a translation j on mRNA i; vRIB, velocity

RIB (nts−1); vRNAP, velocity RNAP (nts−1); xRIB, location of RIB on mRNA (nt); xRNAP, location of RNAP on DNA (nt); ∆xRIB, distance between ribosomes (nt); ∆xRNAP, distance between RNAPs

(nt); YXS, substrate‐biomass Yield (gsg
−1

CDW); σRNAP(t), number of active RNAPs; τ, residence time (s); μ, growth rate (h−1).



cells that propagate through the stirred tank. After 4.2 h, cells adapt to environ-

mental changes but still have to bear an additional 6% ATP demand.

K E YWORD S

agent‐based modeling, ATP maintenance, computational fluid dynamics (CFD), Escherichia coli,

glucose gradient, heterogeneities

1 | INTRODUCTION

To reduce the human CO2 footprint in the atmosphere, sustainable

bioprocesses replacing fossil resources by sugar may play a crucial

role. Microbial production offers the potential to provide products

for agricultural, biopharmaceutical, and chemical markets (Delvigne

et al., 2017). As a prerequisite, such approaches need to be trans-

ferred successfully from laboratory to large‐scale without loss of

economic attraction, that is, without reduction of the sensitive TRY

values (titer, rates, and yields) that served as constraints for eco-

nomic evaluation. However, performance losses may occur, com-

prising increased by‐product formation, reduced substrate‐to‐

product conversion, reduced productivities, and so forth (Lara

et al., 2006). They mirror cellular responses to large‐scale hetero-

geneities that are induced by limited mass transfer and by insufficient

mixing capacities (Noorman & Heijnen, 2017). Accordingly, research

activities aimed to mimic large‐scale conditions already in early‐stage

lab tests. One of the first examples is given by Oosterhuis and Kossen

(1983), who repeatedly exposed cells to oxygen saturated and lim-

iting conditions in a setting of two linked, stirred bioreactors. Mul-

tiple tests with alternate experimental scale‐up simulators followed

(overviews provided in Garcia‐Ochoa & Gomez, 2009; Neubauer &

Junne, 2010, 2016; Noorman, 2011; Takors, 2012; Zieringer &

Takors, 2018) mimicking not only fluctuations of dissolved oxygen

(DO) levels, but also nutrient availability and pH variations. Today,

such approaches received key consideration to design robust mi-

crobial processes (Noorman & Heijnen, 2017). Still, the valid a priori

prediction of large‐scale heterogeneities' impact on cellular perfor-

mance is of crucial importance for developing novel bioprocesses.

Even further, findings of large‐scale stress exposure may guide strain

engineering to create particularly robust hosts. To reach this goal,

Löffler et al. (2016) applied the so‐called STR/PFR setup comprising a

stirred tank reactor (STR) linked with a plug‐flow reactor (PFR).

Steady‐state nutrient‐limited, continuous cultivations were per-

formed in STR before PFR was connected, frequently exposing cells

to glucose‐limiting conditions. Accordingly, cells repeatedly experi-

enced temporal feast/famine conditions that were characterized by

the residence time in the PFR. Comprehensive sampling in STR and

PFR created a highly valuable data set of short‐ and long‐term me-

tabolic and transcriptional responses on repeated starvation stimuli

(Löffler et al., 2016). The data set revealed that Escherichia coli not

only react on extracellular stress by instantaneous metabolic shifts.

Observations also revealed massive transcription of genes organized

in operons (Nieß et al., 2017) and in fundamental regulons of

strategic importance. For instance, the stringent response was re-

peatedly initiated by fast‐rising intracellular (p)ppGpp levels in PFR,

which were downregulated in STR. Löffler et al. (2016) reported an

additional rise of growth‐decoupled maintenance of up to 50%. So

far, these findings were not yet used to predict the response of E. coli

exposed to large‐scale heterogeneities. First, a data‐driven model is

needed that describes the complex transcriptional response of E. coli

to said stress conditions. Next, such a transcriptional model should be

coupled with computational fluid dynamics (CFD) of a large‐scale

bioreactor to identify zones of different nutrient availability and to

predict the cellular response of cells passing through those zones

(Zieringer & Takors, 2018). Our study exactly tackles this two‐step

problem: Mixing heterogeneities and zones of different substrate

availability of a 54m3 stirred bioreactor are predicted using CFD and

assuming common operating conditions. The tracking of 120,000 E.

coli cells finally yielded the prediction of additional ATP demands.

Furthermore, spatially resolved transcriptional patterns of individual

E. coli cells were predicted, unraveling the population heterogeneity

in the industrial‐scale bioreactor.

2 | MATERIALS AND METHODS

2.1 | Experimental setup

A glucose gradient was simulated in a stirred tank reactor (STR)

coupled to a plug flow reactor (PFR), as depicted in Figure 1.

The experimental setup consists of an STR operated in con-

tinuous mode (dilution rate, D = 0.2 h−1) and connected with a plug

flow reactor. Cells were grown under glucose‐limited conditions in

the STR (mean residence time of the cells in STR: 6.2 min) and ex-

perience starvation in the PFR (mean residence time of the cells in

PFR: 125 s). The cells are circulating through the reactor system for

28 h process time, which equals, on average, around 200 passages of

the starvation zone for each cell. In this way, the setup permits the

analysis of transcriptional response for ongoing starvation passages

through the PFR. Thereby, the tactical response is monitored via the

PFR sample ports (P1–P5), while the strategic changes were tracked

via the STR sample port (S). The cultivation was performed as bio-

logical triplicates under identical experimental conditions. For tran-

scriptomic analysis, the samples were grouped by replicates, and

sample time and location (STR or PFR) was chosen as a combined

experimental design. Significantly expressed genes were determined

using the described design and a generalized linear model within the
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egdeR R‐package (v.3.8.6) (Robinson et al., 2010). The detailed ex-

perimental implementation and RNA sequencing results used in this

publication were published in the paper of Löffler et al. (2016).

2.2 | RNA‐sequencing data cluster analysis

RNA‐sequencing data contain time courses of messenger RNA

(mRNA) abundance of 3908 genes. Thereof, three measurement sets

sampled after 25min, 2 h, and 28 h were chosen for further in-

vestigations. Significantly up‐ und downregulated genes of samples

P1–P5 in PFR passing the threshold of log2 fold change (log2FC) > |

0.58| and false discovery rate (FDR)‐corrected p value < .05 were

identified. Cluster analysis was performed using the R‐package flex-

clust v. 1.4‐0 (Leisch, 2006) applying RStudio v. 1.2.1335 (RStudio,

Inc.) RNA‐sequencing data contain time courses of mRNA abundance

of 3908 genes. Thereof, three measurement sets sampled after

25min, 2 h, and 28 h were chosen for further investigations. Sig-

nificantly up‐ und downregulated genes of samples P1–P5 in PFR

passing the threshold of log2 fold change (log2FC) > |0.58| and FDR‐

corrected p value < .05 were identified. Cluster analysis was per-

formed using the R‐package flexclust v. 1.4‐0 (Leisch, 2006), applying

RStudio v. 1.2.1335 to significantly reduce simulation efforts while

including basic features of gene dynamics. The function qtclust (in-

cluded in flexclust package) was used to perform stochastic quality‐

based clustering (SQBC) and k‐means‐clustering. Parameters of

SQBC were set as follows (Table 1).

Ntry indicates the number of trials per iteration, while rmax is the

maximum radius as a proxy for correlation. Min size defines the

minimum number of observations per cluster. Data points not clus-

tered by the algorithm are omitted. The setting of parameters en-

sured maximum comparability and five as the maximum number of

clusters. Cluster properties are listed in the Supporting Information

Appendix Tables D5–D8, and resulting clusters are displayed in

Supporting Information C in the Appendix. The k‐means algorithm

was initialized with the centroids of the SQCB method.

2.3 | ATP calculation for single molecules

ATP requirements for the formation of amino acids and nucleotides

were calculated using the results of Kaleta et al. (2013). The trans-

lational costs for protein formation and polymerization add up to 4

ATP per amino acid, including activation of the amino acid (1 ATP to

1 AMP) and peptide bond formation at the ribosome (2 GTP)

(Stouthamer, 1973). Since there is a net production of 0.1 ATP per

amino acid (for detailed calculation, see Löffler et al., 2016), the

overall cost of amino acid synthesis and polymerization was esti-

mated as four ATPs consumed per residue. The absolute numbers of

synthesized and degraded nucleotides (nts) were estimated from

experimental data. To recycle mono phosphorylated nucleotides

(NMPs) to triphosphorylated nucleotides (NTPs), costs of 2 ATP were

assumed. Assuming a P/O‐ratio of 1.49 (ATP formation via NADH

oxidation in respiration), the following ATP requirements were as-

sumed for the bases (Table 2).

The growth‐independent maintenance was used as 0.0027mol

(gDWh)−1, according to Taymaz‐Nikerel et al. (2010).

2.3.1 | Calculation of mRNA abundance

Only additional ATP needs for transcription and translation were

estimated considering the basic demands under nonperturbed con-

ditions. Accordingly, total mRNA content was estimated following

studies of Bremer and Dennis (2008) as 61.7 µg per 109 cells for a

growth rate of 0.2 h−1. 20% of the total dry weight was assumed to

be RNA (Neidhardt et al., 1990), including 5% mRNA, a value which is

F IGURE 1 Scheme of a two‐compartment system as used in the

experimental setup (Löffler et al., 2016). The two‐compartment

device consists of a stirred tank reactor (STR) connected to a plug‐

flow reactor (PFR). Derived from non‐ideally mixed large‐scale

industrial fermenters (Lapin et al., 2006), the setup mimics periodic

substrate availability experienced by cells in large‐scale bioreactors.

The well‐mixed STR is operated in glucose‐limited continuous mode

(dilution rate, D = 0.2 h−1). As soon as cells enter the PFR

compartment, the residual substrate is consumed within seconds

leading to starvation. The steady state before PFR onset at time zero

was used as the reference state (S0). Samples were taken at eleven

distinct time points over 28 h. The system is equipped with five PFR

sample ports (P1–P5) at defined residence times τ(s), as well as an

STR sample port S. The total mean PFR residence time is τPFR = 125 s
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in line with conclusions from Stouthamer (1973). This results in total

mRNA content of 6.17 g per 1016 mRNA per cell. The relative dis-

tribution of specific mRNAs is taken from the measured normalized

counts as transcripts per million. The relative fraction multiplied with

the total mRNA content gives the total mass of all mRNA encoded by

a single gene. Dividing this number with the corresponding molecular

weight yields the absolute number of molecules. Molecular weights

of mRNAs were calculated with Equation 1 (Kibbe, 2007). Results are

listed in Supporting Information Table A3. As the phosphate groups

of two nucleotides are bound together, an OH‐group is cleaved. This

leads to reduced molecular weights of nucleotides in the polymer

chain. Accordingly, an additional term was added to account for the

5'‐triphosphate cleavage (159 gmol−1).

= × + × + ×+ × + ( )−MW n n n

n

345.2 305.2 329.2

306.2 159 gmol .

mRNA Guanine Cytosine Adenine

Uracil
1 (1)

nnucleotide codes for the number of nucleotide monophosphates which

is multiplied by their corresponding molecular weight.

2.4 | The biological model

The model was implemented using MATLAB v. 2019b, considering

the four processes: transcription, translation, mRNA degradation, and

protein degradation. The first three are implemented as agent‐based

approaches, while the last considers protein degradation as a de-

composition in the continuum. The governing variable that controls

the expression is the number of active RNA polymerases (RNAPs) per

each cluster.

2.4.1 | Estimating the number of active RNAP

We assumed that gene expression levels follow sigmoidal courses.

Hence, an equilibrium between synthesis and degradation may be

achieved. Produced nts are given by

∫⋅ ( ) =v t dt NtRNAP

t

RNAP prod

0

σ (2)

with σRNAP(t) coding for the number of active RNAPs at time t.

The shape of the sigmoidal function is defined as

( ) = + +{ ⋅( + )}t
a

e
d

1
.

b t c
σ (3)

The parameters a, b, c, and d were fitted to the nucleotide

synthesis, which was derived from experimental data by calculating

the number of synthesized copies and by considering individual gene

lengths. Consequently, steadily rising functions were obtained that

allowed to estimate the number of active RNAPs per cluster. For the

latter, a constant RNAP transcription velocity of 21 nucleotides per

second was assumed (Chen et al., 2015).

2.4.2 | Transcription

After initiation, the continuous one‐stranded movement of RNAP

creates the mRNA transcripts measured. However, individual gene

expression profiles were observed that could be grouped in clusters

of similar transcription dynamics. Accordingly, only expression dy-

namics of representative, average genes per cluster are described in

the model (Supporting Information Appendix Tables D5–D7). The

minimum distance of 100 nts (∆xRNAP) was considered between two

subsequent RNAPs. Furthermore, all genes of one cluster were

supposed to be randomly initiated with the functional

( ) = ⎧⎨⎪⎩⎪|gene t

1 if free RNAP is avaliable and gene

is randomly chosen,

0 else.

i on off

i

,
(4)

Gene transcription is modeled as one‐dimensional nucleotide

extension with the relative movement of RNAP as

= ⎧⎨⎩  dx

dt

v if initiated,

0 else.

RNAP RNAP (5)

The constant transcriptional elongation rate, vRNAP, is set to

21 nts−1, which equals the average value found in E. coli during

starvation (Chen et al., 2015). The variable xRNAP indicates the re-

lative position of RNAP on the DNA grid. The length of the resulting

mRNA strand is equivalent as

=x L .i RNAP i mRNA, ,
(6)

When the last nucleotide is reached, the mRNA is released. All

fragments of mRNA are summed to get total mRNA amounts. While

fractions of operons were found to be fully transcribed after initia-

tion (Nieß et al., 2017), other scenarios coincided, too. For instance,

only subsets of operons may be transcribed, or even opposing tran-

scription reads in a single operon occurred (Mao et al., 2015). Ac-

cordingly, we assumed that only 10% of the initiated operons are

transcribed completely. In other words, 10% of experimentally ob-

served initiated operons were anticipated to finish full operon tran-

scription even outside of PFR. The majority (90%) of other gene

transcriptions was assumed to stop immediately after RNAPs have

reached individual gene ends. For the sake of comparability, only

relative mRNA enrichments are depicted in Figure 7c, referring to

the mRNA level of individual cells after they have fluctuated through

the bioreactor for 180 s. This time point was chosen to visualize the

spatial distribution of already adapted cells and the ones which are

still influenced by regime changes (Figure 7).

2.4.3 | Translation

The translational process is modeled by describing the movement of

ribosomes (RIB) on the mRNA strand. The process is assumed to take

place in cotranscriptional manner (Proshkin et al., 2010): After
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synthesized mRNA reached a minimum length of 80 nts (∆xRIB)

(Bremer & Dennis, 2008), the first ribosome attaches to the free

5'‐cap end. Further ribosomes may bind too, provided that minimum

distance between two subsequent ribosomes and the maximum

number of translations per mRNA (maxTL) are fulfilled. Released ri-

bosomes may be reused following the same scenario. The initiation

trigger TLi,j for a translation j on mRNA i can be described as

( ) = ⎧⎨⎩ > <| −
TL t

RIB j max1 if position of is 80 and ,

0 else.
i j on off

i j TL
, ,

, 1

(7)

The movement of ribosomes is analogous to the movement of

RNAP as

= ⎧⎨⎩  dx

dt

v if initiated,

0 else.

RIB RIB (8)

With the translational elongation rate vRIB = vRNAP (Nieß

et al., 2017; Proshkin et al., 2010) and the number of maximum

translations maxTL = 11 (Bremer & Dennis, 2008). Because one clus-

ter of genes revealed rapid degradation after 50 s in PFR at 28 h, only

one translation per transcript was assumed for this group of genes.

As soon as the ribosomes pass the last nucleotide, the protein is

released and is assigned to the group of bulk proteins.

2.4.4 | Degradation

Degradation of transcripts is initiated as soon as ribosomal protec-

tion of the 5'‐cap vanishes, which is a co‐translational process. The

velocity of the RNASE was adapted to the gene length LmRNA,i, that is,

individual vRNASE,i was estimated considering the experimentally ob-

served mRNA median lifetime tdeg;med of 2.8 min in nutrient‐rich and

of 4.6 min in starvation zones (Chen et al., 2015). Degradation was

initiated for mRNA i as

( ) = ⎧⎨⎩ >|Deg t
RIB1 if position of is 80,

0 else.
i j on off

i TL
, ,

, max (9)

with the movement of RNASE.

= ⎧⎨⎩  dx

dt

v if initiated,

0 else.

RNASE RNASE (10)

= − ⁎∆v
L

t
RNASE i

mRNA i

deg med
TL x

v

,
,

,
max RIB

RIB

(11)

For transcripts longer than ≈ 1000 nts, degradation is initiated

already when transcription is not finished yet. Chen et al. (2015)

found that 88 of 263 mRNAs showed lifetimes of the 5'‐cap shorter

than the synthesis time of the transcript. Accordingly, co‐

transcriptional degradation was considered for long transcripts.

Protein degradation is described using a constant rate de-

gradation rate kdeg for the bulk proteins (Maurizi, 1992). First‐order

degradation kinetics were assumed depending on the nutrient con-

dition, as

= ⎧⎨⎩ −−k
0.01h innutrientrichzones,

0.08h instarvationzones.
deg

1

1

(12)

Consequently, bulk protein of a subsequent time step t + 1 equals

( + ) = ( ) × ( − )protein t protein t k1 1 .deg
(13)

2.5 | Geometry and reactor setup

To consider a relevant industrial fed batch fermentation scenario, a

54‐m3 stirred tank bioreactor was chosen. The main geometry was

derived from Haringa et al. (2016) with precise dimensions and in-

formation about the inner geometry from Kuschel et al. (2017). The

reactor setup included four baffles and a stirrer with two Rushton

stirrers equipped with eight blades at the bottom and six blades at the

top. With a stirring rate of 100 rpm the tip speed of 6.75m s−1 was

reached. The impeller Reynolds number was 2.77 × 106 and the re-

quired power was 225.69 kW, equaling a power number of 13.64. The

feeding rate was set to 3.68 kgm−3 s−1 for an average growth rate of

0.2 h−1. Aeration, gas transfer, and oxygen uptake were neglected in

the study. The simplifying focus on the mono‐phase conditions mirrors

the basic strategy to showcase the propagation of transcript dynamics

and the occurrence of additional large‐scale ATP demands. Note-

worthy, experimental data of Löffler et al. (2016) were measured

particularly excluding any impacts of oxygen limitation. Furthermore,

said power inputs and cultivation conditions were chosen such that

oxygen limitation is unlikely in the large‐scale scenario. Cell con-

centration of 31.8 kgCDW·m−3 was assumed and a simple Monod‐like

kinetic was used to simulate the substrate uptake qs:

= ⋅ +q q
c

K c
,S S max

S

S S
,

(14)

where qs,max is the maximum uptake rate, cs is the glucose con-

centration, and the approximated substrate‐specific uptake constant

Ks with 4mg L−1. The maximum uptake rate was calculated with the

biomass substrate yield YXS = 0.25 gs·g
−1

CDW and the maximum

growth rate μ = 0.2 h−1 (Villadsen et al., 2011). Based on the experi-

mental observations in Löffler et al. (2016) we concluded that

stringent response is the predominant regulatory scheme initiated by

repeated starvation. As a key characteristic stringent response re-

duces ATP consuming procedures trying to keep carbon supply on

the maximum level achievable under stress conditions. Accordingly,

we consider glucose uptake as a Monod‐type function not being af-

fected by the stringent response observed.

2.6 | Simulation setup

For the numerical simulation, the commercial calculation tool ANSYS

Fluent version 19.1 was used. With 872,232 hexahedral numerical
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cells resulting in an aspect ratio of 12.6 and a minimal orthogonal

quality of 0.34, high mesh quality was achieved. Schmidt (Sc) number

tuning with Sc = 0.2 leads to the same circulation time as achieved by

Haringa et al. (2016). The flow field was approximated by solving the

Reynolds‐averaged Navier‐Stokes (RANS) equations in combination

with the realizable k‐ɛ model for turbulence. All surfaces were set as

no‐slip boundaries except for the no‐shear top area, which equaled

the reactor filling height. Baffles and impellers were modeled as 0‐

thickness walls. Both impeller units were set to sliding mesh motion

to generate a more realistic flow field. For glucose feed, a separate

volume at the top of the reactor was defined, and a constant mass

flow was set. The flow field and uptake kinetics were calculated every

10ms until the glucose concentration was constant and a pseudo

stationary gradient was reached, showing constant metabolic activ-

ity. The conditions were “frozen” for 180 s to track bacterial move-

ments. These lifelines were simulated as massless Lagrangian particles

with a discrete random walk (DRW) model passing through the flow

field. Every 30ms, the position and glucose concentration of each

bacterium were recorded. In total, 120,000 bacterial cells were

tracked over around 180 s (residence time distribution: Supporting

Information Appendix Figure E14). According to the ergodic theorem,

the same average values are obtained by tracking 1,080,000 bacteria

for 20 s (for more information, see Appendix: Supporting information F).

However, due to the limitation of simulation time and capacity, the

simulation results were extended by repeating the single lifelines

(Figure 2b) every 180 s while preserving the lifeline cluster groups.

RNAP activities, mRNA levels, ribosomal activities, and protein forma-

tion were calculated as described in Section 2.4 considering each lifeline

cluster (RNAP and mRNA profile of one lifeline group: Figure 2c; mRNA

content of individual cells after 180 s: Figure 7c). Finally, additional ATP

demands were estimated (Figure 2d).

3 | RESULTS

3.1 | Simulation results biological model

To identify data‐driven parameters for the model of E. coli K12 W3110,

clusters of mean mRNA levels were identified (Supporting information

Appendix Section C). Figures 3–5 show the simulations (blue lines) and

mean experimental values (red dots) for mRNA levels, active RNAPs,

and the number of translated proteins per cell during PFR passage. The

F IGURE 2 Impact of frequent exposure to feast and famine conditions in a large‐scale bioreactor (a). White areas reflect nutrient excess,

while gray areas indicate starvation. The size of the areas reflects the corresponding residence time indicated with tS for starvation and tE for

excess residence time (c: Bar plot for one cluster of particle trajectories). The starvation‐induced regulatory responses are propagated into the

glucose excess zone, causing a maximum growth‐independent ATP‐maintenance in the glucose excess regime (d) based on additional active RNA

polymerase(RNAP) for transcription (TC) (c) and ribosomes for translation (TL) [Color figure can be viewed at wileyonlinelibrary.com]
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synthesis rate accelerates over time as more RNAP molecules are in-

volved in the transcriptional response to the starvation stimulus. After a

transcript is completely synthesized and the RNAP is released the

number of active RNAP shortly drops before it rises again. Synthesized

proteins appear with a delay that corresponds to the required transla-

tion time. Activities for transcription and translation result in additional

ATP demands which are indicated as add‐ons to nongrowth‐dependent

maintenance (NAM), shown in Supporting information Appendix Figure

B9. For transcription, costs are derived from nucleotide balancing, in-

cluding the release of nucleotides by mRNA degradation and the need

for mRNA synthesis. Cost for translation mirrors the amino acid needs

and integration according to ribosomal activity. As indicated, translation

costs are more than 2.5‐fold higher than those of transcription. At

maximum, cells have to bear 36.8% additional NAM, 10.4% coding for

transcription, 26.4% for translation. This happens during the early phase

of frequent starvation exposure, that is, after three starvation passages

(25min process time). After 2 h process time, the ATP demand still

increases. More than 45% NAM increase is observed, illustrating the

remaining high number of active RNAP. Later, after 28 h, NAM add‐ons

reduce more than fivefold compared with maximum needs. Then,

transcription accounts for about 1% NAM rise only. The total NAM

increase only mirrors 9.5%.

3.2 | Linking cluster kinetics

Cellular adaptations to frequent environmental stimuli are mirrored

in the cluster dynamics of differentially expressed genes (DEGs) that

were measured after 25min, 2 h, and 28 h. Only 81 of 521 DEGs are

conserved over the entire process time. This reflects the replacement

of the initial sigma factor 70 dominated response by σ38 mediated

regulatory programs (Löffler et al., 2016). To simulate the transition,

so‐called “damping” and “amplification” factors were identified using

mean gene expressions as a reference based on the simulated log2FC

mRNA dynamics in Figures 3–5. Clusters were subdivided in “per-

sisting,” “subsiding,” and “non‐active” fractions. The first collected

genes with continuing high expression levels, while the second

comprised genes with declining expression levels. The last summed

those genes that were either not yet or no more expressed between

subsequent time points (Figure 6). The damping factor is the ratio of

the mean log2FC of subsiding and persisting genes for each cluster

between two time points. The amplification factor is the ratio of the

mean log2FC of genes at 25min, which are active at time point 2 h

divided by the mean log2FC ratio of genes activated after 2 h (see

exemplary calculation Figure 6). The factors are used to calculate the

amount of active RNAP:

F IGURE 3 Simulated, cell‐specific number of additional messenger RNA (mRNA) levels (red dots: experiments; blue line: simulation), active

RNA polymerase (RNAP) and translated proteins of clusters 1–4 (C1–C4) along starvation passage (t = 0–110 s, Figure 1) at 25min. The

logarithmic fold change (log2‐FC) relates to stirred tank reactor values at the same process time [Color figure can be viewed at

wileyonlinelibrary.com]
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⎜ ⎟( ) = ( )*⎛⎝ − ( − ) *( ( ) − )⎞⎠x s t x t
Damping factor

S S
S t S, 1RNAP RNAP

crit min
min

(15)

⎜ ⎟( ) = ( )*⎛⎝ ( − ) *( ( ) − )⎞⎠x s t x t
Amplification factor

S S
S t S,RNAP RNAP

crit min
min

(16)

The entire transition process is guided by the number of starvation

passages S(t) per time. Smin encodes the minimum and Scrit the critical

number of passages. Whereas the first is a regression parameter, the

later reflects experimental observations of Löffler et al. (2016) as follows:

25min equal 3 PFR (starvation) passages, 2 h equal 14, and 28 h equal

176. Noteworthy, the 28h benchmark is chosen as a new steady state

was observed already then (Löffler et al., 2016). The modeling approach

allows transferring of the STR/PFR observations to other conditions using

the frequency of feast/famine exposure S(t) as a key criterion.

3.3 | Numerical simulation

3.3.1 | Glucose gradient

Applying the criterion of converged turbulent dissipation rate/power

input, the pseudo‐stationary glucose gradient of Figure 7 was

obtained (Figure 7). Accordingly, no further changes in glucose con-

centrations simulated at five locations occurred. The average con-

centration in the bioreactor was 23.74mg L−1. For comparison, the

average glucose level observed by the Lagrangian particles (“cells”)

was 22.79mg L−1. Consequently, only 4% deviation was found, which

is qualified as a small difference indicating good homogeneous dis-

tribution and reflecting impacts of the turbulence model and of

particle lifeline filtering. The volumetric distribution between star-

vation and excess zone is 73%–27%, respectively. Again, similar

percentages were calculated by integrating mean residence times of

all lifelines. The mean residence time of the cells in the starvation

regime is 9.46 s (Supporting Information Appendix Figure E14), which

is in the same range as published by Haringa et al. (2016).

Ideally, large‐scale simulations should have been compared with

real in situ measurements to challenge the predictions. However,

such data are missing, which represents a common problem often

faced by academic groups. Nevertheless, applying CFD simulations

still offers the best chances for getting highly accurate large‐scale

predictions as complex hydrodynamics, even including overlapping

flow fields between stirrers, are well predictable. Notably, the latter

may hamper the application of simplifying compartment‐based esti-

mations, which basically assume separated flow fields between stir-

rers (see Supporting Information Appendix H).

F IGURE 4 Simulated, cell‐specific number of additional messenger RNA (mRNA) levels (red dots: experiments; blue line: simulation), active

RNA polymerase (RNAP) and translated proteins of clusters 1–4 (C1–C4) along starvation passage (t = 0–110 s, Figure 1) at 2 h. The logarithmic

fold change (log2‐FC) relates to stirred tank reactor values at the same process time [Color figure can be viewed at wileyonlinelibrary.com]
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For simplicity, Eulerian simulations only considered the liquid

phase, thereby assuming sufficient oxygen supply in the bioreactor

without calculating DO concentrations explicitly. Furthermore, ad-

ditional turbulence due to bubble interaction was neglected, too.

Substrate consumption followed Monod‐type kinetics taking place in

each numerical cell. This implied that bacterial cells were homo-

geneously distributed at each time step.

3.3.2 | Statistical evaluation

Lifeline statistics reflect the imprint of changing micro‐environmental

conditions on cells fluctuating through the bioreactor. To be precise,

cellular residence times in different concentration zones and shifts

between proximal regimes were studied. At the start, cells were

“inserted” into the bioreactor along a straight line reaching from top

to bottom. After a few simulation steps, cells were distributed

homogeneously before individual cell tracking started for 180 s.

Lifeline records were cured by percolating only those with residence

times longer than 0.13 s. The latter represent unrealistically turbu-

lent fluctuations. The following threshold was defined for regime

analysis: If cells experience lower or higher glucose levels than KS for

at least one second, the period is labeled as starvation or saturation

time, respectively. Noteworthy, the minimum residence time of 1 s

equals the average metabolite turnover time in E. coli (Shamir

et al., 2016; Taymaz‐Nikerel et al.,2011). The implementation of the

harsh regime boundary KS finally leads to rapid and somewhat arti-

ficial regime shifts. They were excluded from analysis by ignoring the

upper and lower 1% of regime changes. Alternately, the considera-

tion of alarmones such as (p)ppGpp serving as intracellular triggers to

initiate transcriptional regulation may yield continuous models. Un-

fortunately, understanding of alarmone formulation, degradation,

and alarmone induced regulation is still too fragmented to build dy-

namic transcriptional models. In total, measures for residence time

percolation and shift filtering only reduced the data set by 3%

(Supporting Information Appendix Figure E14).

At maximum, 41 regime shifts were observed during the

180 seconds observation period. Most frequently, 20 regime changes

occurred and cells rested in a single zone no longer than 30 seconds.

As a key characteristic, cells once exposed to glucose starvation reset

their regulation signal. But RNAP and ribosomes remain active,

propagating the starvation response into the glucose excess regime

(Figure 2c,d). According to their starvation pattern the cell lifelines

were assigned to 70 different clusters. Thereby each cluster re-

presents a specific fluctuation pattern, reflecting the amount and

duration of changes between starvation and excess zone (Figure 2b).

F IGURE 5 Simulated, cell‐specific number of additional messenger RNA (mRNA) levels (red dots: experiments; blue line: simulation), active

RNA polymerase (RNAP) and translated proteins of clusters 1–3 (C1–C3) along starvation passage (t = 0–110 s, Figure 1) at 28 h. The

logarithmic fold change (log2‐FC) relates to stirred tank reactor values at the same process time [Color figure can be viewed at

wileyonlinelibrary.com]
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F IGURE 6 Scheme illustrating how “damping” and “amplification” factors are derived from experimental cluster data (C1–C4) measured at

25min, 2 h, and 28 h after plug‐flow reactor passage. In general, active genes of individual clusters may continue amplification (persisting, p),

reduce expression (fading, f), or even be activated from the group of non‐active genes. To bridge the gene expression dynamics from 25min to

2 h and from 2 to 28 h, so‐called damping and amplification factors are calculated as illustrated in the example. They use mean logFC values of

the relevant time points. The damping factor correlates the ratios of fading‐to‐persisting genes of the two subsequent measurements. By

analogy, the amplification factor calculates ratios of mean numbers of gene expression versus “first time” amplified genes for each time point

and correlates the same for two subsequent events [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Simulation results of the 54m3 stirred tank reactor. (a, left) Log‐contours of cs/Ks gradients. (b, middle) Assignment to regimes

(limitation, green: cs < Ks; saturation, red: cs > Ks). (c, right) Normalized messenger RNA (mRNA) content analyzed after cells fluctuated 180 s

through the bioreactor [Color figure can be viewed at wileyonlinelibrary.com]
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3.3.3 | Coupling the biological model with lifelines

To minimize the computational efforts, particle lifelines were

exported from ANSYS Fluent. Starvation patterns of lifelines

(Figure 2b) served as input for the biological model. A workflow

scheme is provided in the Supporting Information Appendix Figure

H16. It was assumed that each entry of the starvation zone activated

the expression of distinct gene clusters as experimentally observed.

Accordingly, individual expression patterns were estimated for each

cell, mirroring their particular tracking history.

As indicated in Figure 7c, the basic expression level of the cel-

lular population is increased by 37.7% compared with the reference.

This reflects the additional cellular needs to adapt to the hetero-

geneous mixing conditions in the reactor. Noteworthy, high mRNA

levels, induced by preceding starvation, are propagated into glucose‐

rich zones (Figure 7c). Expression patterns reflecting starving con-

ditions occur in saturating glucose zones and vice versa. The phe-

nomenon mirrors the delayed transcriptional response that is slower

than convective movements of cells in the bioreactor. Consequently,

a high transcriptional heterogeneity occurred in the tank. A maybe

surprising pattern is disclosed: In the lower part of the reactor, cells

envisage low glucose concentrations but show reduced mRNA levels

(norm. mean mRNA level: 0.33). On the contrary, cells facing high

glucose levels in the upper part reveal high mRNA levels (norm. mean

mRNA level: 0.42).

About 25% of the cells permanently stay in the starvation zone.

This fraction even adapts to the limiting conditions, which reduce the

transcriptional response gradually. Cells located close to zones of

glucose excess highly fluctuate between starving and saturating

conditions. Consequently, strong gene expression responses are

observed.

The average ATP‐demand of a newborn, not preconditioned

population of 120,000 cells exposed to the 54m3 bioreactor is shown

in Figure 8. Basically, plot 8 illustrates the cyclic passing of 180 s

lasting lifelines. To filter related peaks, only average values are

indicated using a moving median filter over 700 data points. Fur-

thermore, a moving standard deviation with a window size of 400

data points is added as a shadow. Synchronization‐like patterns re-

flect the clustering of particles in groups. 70 bins were used with

passable computational effort. The maximum of 45% additional

maintenance is predicted shortly (0.03 h) after cells were exposed to

the bioreactor condition. After about 0.5 h most of the population

has adapted to the heterogeneous environment reducing the addi-

tional ATP demand to 6.5%. After 4.22 h the last cell fraction is in the

adaption state.

4 | DISCUSSION

To disclose spatial heterogeneities of regulation patterns and addi-

tional ATP demands of E. coli K12 W3110 exposed to a 54m3 STR

CFD based lifeline analysis was coupled with agent‐based modeling

for transcription and translation.

As a prerequisite, a proper model describing stress‐induced dy-

namics of transcription and translation is needed. Applying a clus-

tering approach, it was possible to properly describe the

experimentally observed transcription dynamics (Löffler et al., 2016)

of 821 genes using 16 parameters. Under steady‐state conditions,

newly synthesized and recycled nts equilibrate in cells before they

enter PFR. However, ATP demands transcription rise inside PFR as

mRNA synthesis exceeds the recycling rate. The introduction of

‘amplification' and ‘damping' factors managed to model the transition

from fast response to long‐term adaptation, as visible in the experi-

mental data. Accordingly, modeling succeeded to mirror the cellular

F IGURE 8 Additional ATP demands of a population of 120,000

“newborn,” not preconditioned cells in a 54m3 reactor over 4.5 h

process time. Courses for mean transcription (blue: TC), translation,

(green: TL) and the sum of both are depicted (red: TC + TL). The

shaded areas display the standard deviation [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE 1 Parameters and omitted genes of the SQBC algorithm

Time point 25min 2 h 28 h

ntry 1000 1000 1000

rmax 0.5 0.5 0.9

Min size 3 3 5

Genes omitted 0 1 6

Abbreviations: Ntry, number of trials per iteration; rmax, maximum radius

as a proxy for correlation; Min size, minimum number of observations per

clusters.

TABLE 2 ATP costs for de novo nucleotide synthesis, based on

Löffler et al. (2016)

Base ATP NADH NADPH Overall ATP

Guanin 11 −3 1 8.53

Cytosin 13 −3 0 9

Adenin 9 0 1 6.53

Uracil 7 0 1 7

Average 10 −1.5 0.75 7.7
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efforts shifting control from σ70 to σ38, more and more (Löffler et al.,

2016). Given that E. coli cells with doubling times of 3.3 h contain

about 120 active RNAPs (Bremer & Dennis, 2008), approximately

one‐fifth of the available RNAPs at 25min is used in the transcrip-

tional response (Figure 3).

The number of involved RNAPs slowed down after 28 h for two

reasons. First, the absolute number of initiated transcripts is reduced,

which mirrors cellular adaptation. Second, transcription even stopped

after 50 s for a large group of genes (Figure 5). Accordingly, reduced

synthesis costs occur. This is amplified by the prolonged lifetime of

transcripts during starvation, which further reduces the amount of

synthesis to obtain a certain level of mRNA abundance as described

in Section 2.4.4 mRNA lifetime is proportional to their distance from

the 5′ end of the transcript according to Chen et al. (2015), which is

in line with the observation that the 5′ end contains important de-

terminants that regulate RNA lifetime (Arnold et al., 1998).

Supporting Information Appendix Figure B9 shows that protein

synthesis accounts for the major part of ATP consumption. Peak

values reach about 45% NAM at 2 h process time. Later on, the

demand steadily reduces as less mRNA transcripts are synthesized

and less proteins are translated. At 25min, the number of active

ribosomes involved in the stress response rises steadily during

starvation, reaching 10% of all available ribosomes (Reference: 103

ribosomes/cell; Bremer & Dennis, 2008). The fraction decreases to

5% after 28 h reflecting the adaptation process.

Linking the transcription and translation model to large‐scale

lifelines reveals the impact of delayed cellular response to fast ex-

ternal changes. In essence, cellular responses of transcription and

translation are slower than convective zone shifts. Consequently,

they are transported from one location to another, basically de-

coupled from external changes. Spatial analysis of all cells after 180 s

(Figure 7c) reveals the highest transcript levels close to or even in-

side the glucose excess regime (50%–80% mRNA upregulation),

while the lowest are found at the bottom. Once initiated, the star-

vation response propagated into the glucose excess zone. There,

additional needs for transcription, translation, and ATP may limit the

targeted formation of industrial products in microbial cells.

Noteworthy, it is exactly this feature that distinguishes the

current model from previous lifeline studies (Haringa et al., 2016,

2017; Kuschel et al., 2017). There, metabolic and cell cycle responses

were considered as an instantaneous cellular responses. Fast external

changes are immediately translated into cellular replies. Later, Har-

inga et al. (2018) implemented metabolically buffered responses by

considering variable enzyme pools (Tang et al., 2017). In this context,

the current study proceeds by additionally integrating downstream

transcriptional responses incorporating another level of cellular

control. Our approach introduces the non‐instantaneous, delayed re-

sponse by considering intracellular programs of longer time scales

than external changes. Accordingly, responses may propagate in

different zones of the reactor, causing nonexpected transcriptional

regulation programs there.

The approach was exploited further by estimating the entire add‐

on ATP demand for 120,000 newborn cells monitoring 4.5 h process

time (Figure 8). As shown, the adaptation of the population is finished

after 4.2 h disclosing a remaining ATP add‐on of about 6% NAM

compared to the 45% max NAM at the beginning. In terms of mi-

crobial productivity, these ATP needs simply reduce the amount of

available ATP for product formation; that is, they limit biomass‐

specific productivities. The phenomenon has often be described in

large‐scale fermentation (Lara et al., 2006). Noteworthy, it is likely to

be pronounced in hyper‐producing cells with ATP intensive product

formation. Often enough, such production processes run in fed‐batch

mode, installing reduced, limiting metabolic activity to stay within the

technical limits of aeration and cooling. Consequently, those addi-

tional ATP needs hit cells with limited ATP forming capacities.

To evaluate the impact of particle simulation time, an additional

simulation was conducted using a high‐performance computation

cluster studying 60,000 particles for about 460 s. Similar results were

obtained for the key readouts, that is, time courses of ATP main-

tenance demands and residence time distributions remained. The

simulated adaptation time reduced from 4.2 to 3.7 h, mirroring the

lowered amount of particles staying in the starvation zone for the

entire process time (around 5%) (see Supporting Information J).

However, modelers need to consider that long simulation times are

likely to violate the intrinsic constraint of one‐way coupling, ne-

glecting particle‐environment interactions for the sake of simplicity.

In this dilemma, we decided for the analysis of 180 s to capture key

dynamics while still fulfilling the one‐way coupling constraint.

As pointed out by Löffler et al. (2016), the majority of tran-

scription dynamics are caused by the frequent on/off switching of

stringent response, mediated by rising intracellular (p)ppGpp levels.

Hence, creating stringent response deficient strains (Michalowski

et al., 2017) opens the door to prevent non‐wanted NAM increase.

Besides, other cellular stress programs may be targeted as well

(Supporting Information Appendix Table D4).

5 | CONCLUSION

The current modeling approach marries computational lifeline ana-

lysis with cellular regulation models, thereby introducing the non-

instantaneous cellular response to changing extracellular conditions.

Consequently, the spot of stress induction and the location of cellular

phenotype do not need to be the same. Accordingly, heterogeneities

in large‐scale bioreactors comprise the physical levels linking local

conditions tightly with metabolic responses and the cellular regula-

tion level encompassing delayed responses such as transcriptional or

translational effects.

To detect the latter and to describe them properly in data‐driven

models, experimental scale‐up simulators are necessary that mirror

transcriptional and translational cellular replies as performed by

Kuschel and Takors (2020). The setting of such devices may differ

from “conventional” scale‐up simulators that typically mimic circula-

tion times. Because the entire transcriptional responses should be

clearly detectable, rather long stress exposure periods should be

installed and read.
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