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Abstract

Legged locomotion has evolved into the most common form of terrestrial lo-

comotion. When the leg makes contact with a solid surface, muscles absorb

some of the shock-wave accelerations (impacts) that propagate through the

body, causing the muscle material to wobble. To improve our understanding

of how the superposition of impact shock-waves affects the contractile ma-

chinery in the muscle fibre, a custom build C-shaped frame, with isolated

rat (Rattus norvegicus, Wistar) muscle (m. gastrocnemius medialis and lat-

eralis : GAS), was dropped from two different heights (Study 1: 4 cm and

Study 2: 1 cm). The frontal area of the muscle was patterned with high-

grade steel markers, and high-speed cameras recorded local muscle wobbling

to describe fibre internal kinematics by strain. Further, with Newton’s sec-

ond law (force = mass·acceleration), the dynamic force difference between the

muscle-tendon-complex ends in response to the impact was used to determine

stiffness, damping and energy dissipation in the whole muscle and the fibre

material during wobbling after impact.

Only equating the frame to leg bone kinematics, the impact duration of

ca. 10–15 ms is practically the same in the hindlimbs of running rats, com-

parably small mammals, and humans. Peak values of the centre of mass

accelerations are also similar for a running rat’s GAS ≈ 165 m s−2 and run-

ning human’s leg muscles (in shank≈ 270 m s−2 and thigh≈ 160 m s−2). Yet,

the phase relations of the leg’s wobbling masses in response to the impact

differ. In humans, the maximum vertical accelerations of the segmental mus-

cle masses occur ca. 5 ms (shank) and 20 ms (thigh) after maximum leg bone

acceleration. During impacts wobbling mass dynamics have higher functional

relevance in larger animals because there is an increasing temporal separa-

tion of bone and muscular movement. For a fully active and fresh muscle,

xv



the fibre strain in rat’s GAS running at 1 m s−1 (Study 1) is 0.2% in response

to impact. Accordingly, cross-bridges are bound down to 11.8 N (40% of the

maximum isometric muscle force). This is practically the same force bound-

ary value F = 12 N found in the stiffness analysis. That is, where the changes

in fibre material and the muscle-tendon-complex stiffness characteristics, as

a function of the isometric muscle force, saturates. Specifically, the found

fibre material stiffnesses decreased from 9050 N m−1 to 3700 N m−1, and in

the muscle-tendon-complex from 3450 N m−1 to 2400 N m−1, from 100% to

about 40% of the maximum isometric muscle force.

For an almost constant dynamic force change of 0.2 N across all trials,

the energy dissipated by the muscle-tendon-complex at maximum isometric

muscle force was 17µJ, which rose to 50µJ in the passive muscle-tendon-

complex in one work-loop after ground contact. In all trials, a work-loop

encompasses one oscillation period that spans between touch-down (TD)

and the instant closest to zero when the wobbling GAS‘s centre of mass

acceleration returns to zero for the second time. For the fibre material,

the dissipated energy changed from 3.5µJ to 23µJ from fully stimulated to

passive, respectively. Therefore, a half-sarcomere dissipates from 10.4 zJ to

68 zJ ranging from fresh and fully active to a passive muscle, respectively.

At the maximum activity, a single cross-bridge would, thus, dissipate 0.6%

of the mechanical work available per ATP split per impact, and up to 16%

energy in common, submaximal, activities.

Although the isometric force values in a whole muscle (23 N) scaled to

the half-sarcomere (445 pN) is in perfect agreement with similar estima-

tions in single fibre experiments in literature, the half-sarcomere stiffness

at maximum isometric muscle force is only 2.2 pN nm−1, which decreased

xvi



to 0.4 pN nm−1 in a passive half-sarcomere. These low stiffness values are

not consistent with simple half-sarcomere model used in single fibre exper-

iments. The discrepancy between the 2.2 pN nm−1 and single fibre experi-

ments is most likely because the single fibre experiments (perturbations at

4000 Hz) do not necessarily meet the working conditions of an in-vivo half-

sarcomere (superimposed oscillations in fibre material caused by the impact

are around 50 Hz). Fitting the data with a Coulomb-force model (named

model2 ) suggests that the Coulomb-actuating part in the cross-bridge domi-

nates cross-bridge stiffness. The influence of perturbation frequency between

experimental and in-vivo conditions has been hinted at in literature before.

Though never been put into the context of cross-bridge modelling.

Two model assumptions were used to asses titin’s contribution in pas-

sive fibre material: first, that titin is solely responsible for the passive half-

sarcomere stiffness with the sub-cases of being elastic or visco-elastic. If

being elastic, then titin accounts for 75% of the work-loop stiffness. In the

sub-case of visco-elasticity, titin accounts for 50% of the dissipated energy in

a half-sarcomere. The second model assumption is that titin makes up the

half-sarcomere stiffness partly in conjunction with myosin filament. For the

latter, the scaled titin stiffness equals the elongation slope in the fibre mate-

rial work-loop and 100% of the dissipated energy in a passive half-sarcomere

if titin is visco-elastic.

Scaling the fibre strain values from rat GAS to human GAS suggests

that the passive properties have a more dominant role in limiting the fibre

strain in human GAS when sprinting. The fibre strains in human GAS fibre

material is likely higher than in rat because the difference in the dynamic

force change between humans and rats is much higher than the difference in

the anatomical cross-sectional area between the two species.

xvii



Zusammenfassung

Der Gang auf Beinen hat sich zur häufigsten Form derterrestrischen Fortbe-

wegung entwickelt. Wenn ein Bein auf einer festen Oberfläche aufkommt, ab-

sorbieren die Muskeln einen Teil der Stoßwellenbeschleunigungen (Impacts),

die sich durch den Körper ausbreiten, wodurch das Muskelmaterial schwingt.

Um unser Verständnis davon zu verbessern, wie sich die Überlagerung von

Stoßwellen auf die kontraktile Maschinerie in der Muskelfaser auswirkt, wurde

ein speziell angefertigter C-förmiger Rahmen zusammen mit einem isolierten

Rattenmuskel (Rattus norvegicus, Wistar, M. gastrocnemius medialis und

lateralis : GAS) aus zwei verschiedenen Höhen (Studie 1: 4 cm und Studie 2:

1 cm) fallen gelassen. Am vorderen Bereich des Muskels wurde ein Muster

aus Edelstahlmarkern angebracht, und Hochgeschwindigkeitskameras nah-

men die lokalen Muskelschwingungen auf, um die interne Kinematik der

Fasern infolge des Impact zu beschreiben. Weiterhin wurde mit dem zweiten

Newtonschen Gesetz (Kraft = Masse ·Beschleunigung) die dynamische Kraft-

differenz zwischen den Muskel-Sehnen-Komplex-Enden als Reaktion auf den

Aufprall verwendet, um aus der Muskelschwingung nach dem Aufprall die

Steifigkeit, Dämpfung und Energiedissipation im gesamten Muskel, und im

Fasermaterial zu bestimmen.

Setzt man die Kinematik von Rahmen zu Beinknochen gleich, ist die Auf-

pralldauer von ca. 10-15 ms praktisch gleich derer in den Hinterbeinen von

laufenden Ratten, anderen kleinen Säugetieren und Menschen. Spitzenwerte

der Schwerpunktbeschleunigungen sind auch ähnlich zwischen dem GAS einer

laufenden Ratte ≈ 165 m s−2 und dem eines laufenden Menschen (im Unter-

schenkel≈ 270 m s−2 und Oberschenkel≈ 160 m s−2). Die Phasenrelationen

der Schwabbelmassen des Beins als Reaktion auf den Aufprall sind jedoch

unterschiedlich. Beim Menschen treten die maximalen vertikalen Beschleu-
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nigungen der segmentalen Muskelmasse ca. 5 ms (Unterschenkel) und 20 ms

(Oberschenkel) nach maximaler Beinbeschleunigung auf. Beim Aufprall hat

die schwingende Massendynamik bei größeren Tieren eine höhere funktionelle

Relevanz, da es zu einer zunehmenden zeitlichen Trennung von Knochen-

und Muskelbewegung kommt. Für einen vollständig aktivierten, frischen

Muskel beträgt die Faserdehnung beim Ratten GAS mit 1 m s−1 (Studie 1)

0,2% als Reaktion auf einen Aufprall. Dementsprechend werden Querbrücken

bis 11,8 N (40% der maximalen isometrischen Muskelkraft) gebunden. Dies

ist praktisch derselbe Kraftgrenzwert F = 12 N, der in der Steifigkeitsanalyse

gefunden wurde. Dieser beschreibt, wo die Änderungen des Fasermateri-

als und die Steifigkeitseigenschaften des Muskel-Sehnen-Komplexes als Funk-

tion der isometrischen Muskelkraft gesättigt sind. Konkret verringerten sich

bei einer Kraftabnahme von der maximalen isometrischen Muskelkraft bis

etwa 40% der maximalen isometrischen Muskelkraft, die gefundenen Faser-

materialsteifigkeiten von 9050 N m−1 auf 3700 N m−1, und im Muskel-Sehnen-

Komplex von 3450 N m−1 auf 2400 N m−1.

Bei einer nahezu konstanten dynamischen Kraftänderung von 0,2 N über

alle Versuche betrug die vom Muskel-Sehnen-Komplex dissipierte Energie bei

maximaler isometrischer Muskelkraft 17µJ, welche nach dem Aufprall im

passiven Muskel-Sehnen-Komplex in einem Arbeitszyklus auf 50µJ anstieg.

In allen Versuchen umfasst ein Arbeitszyklus eine Schwingungsperiode zwis-

chen dem Aufprall (TD) und dem Moment des nächsten Nullpunkts, wenn

die Massenschwerpunktbeschleunigung des GAS zum zweiten Mal auf Null

zurückkehrt. Für das Fasermaterial änderte sich die dissipierte Energie von

3,5µJ im voll stimulierten Muskel, auf 23µJ im passiven Zustand. Daher

dissipiert ein Halbsarkomer 10,4 zJ im frischen, voll aktiven Muskel und bis

zu 68 zJ im passiven Muskel. Bei maximaler Aktivität würde eine einzelne
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Querbrücke somit 0,6% der pro ATP-Spaltung pro Aufprall verfügbaren

mechanischen Arbeit abbauen, bei submaximaler Aktivität bis zu 16%.

Obwohl die isometrischen Kraftwerte in einem ganzen Muskel (23 N)

skaliert auf das halbe Sarkomer (445 pN) perfekt mit ähnlichen Schätzungen

in Einzelfaserexperimenten in der Literatur übereinstimmen, ist die Steifigkeit

eines Halb-Sarkomers bei maximaler isometrischer Muskelkraft nur 2,2 pN nm−1,

die bei einem passiven Halb-Sarkomer auf 0,4 pN nm−1 abnahm. Diese niedri-

gen Steifigkeitswerte stimmen nicht mit dem einfachen Halb-Sarkomer Modell

überein, welches in Einzelfaserexperimenten verwendet wird. Die Diskrepanz

zwischen 2,2 pN nm−1 und Einzelfaserexperimenten ist höchstwahrscheinlich

darauf zurückzuführen, dass die Einzelfaser-Experimente (induzierte 4000 Hz

Schwingungen) nicht unbedingt die Arbeitsbedingungen eines in-vivo Halb-

Sarkomers beim Aufprall erfüllen (überlagerte Schwingungen im Faserma-

terial, liegen bei ca. 50 Hz). Die Anpassung der Daten an ein Coulomb-

Kraftmodell (genannt model2 ) legt nahe, dass der Coulomb-Kraft getriebene

Teil in der Querbrücke die Querbrückensteifigkeit dominiert. Der Unterschied

in der Schwingungsfrequenz zwischen experimentellen und in-vivo Bedingun-

gen wurde bereits in der Literatur angedeutet, wurde jedoch nie im Kontext

der Cross-Bridge-Modellierung untersucht.

Um den Beitrag von Titin in passiven Fasermaterialien zu beurteilen,

wurden zwei Modellannahmen verwendet: Erstens ist Titin allein verant-

wortlich für die passive Steifigkeit eines Halb-Sarkomers, dabei ist Titin ent-

weder elastisch oder viskoelastisch. Wenn es elastisch ist, macht Titin 75%

der Steifigkeit des Arbeitszyklusses aus. Im Falle der Viskoelastizität macht

Titin 50% der dissipierten Energie in einem Halb-Sarkomer aus. Die zweite

Modellannahme ist, dass Titin die Steifigkeit des Halb-Sarkomers teilweise in

Verbindung mit Myosinfilamenten ausmacht. Für die zweite Modellannahme
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ist die skalierte Titinsteifigkeit gleich der Dehnungssteigung im Arbeitszyk-

lus. In einem passiven Halb-Sarkomer werden 100% Energie dissipiert, wenn

Titin viskoelastisch ist.

Die Skalierung der Faserdehnungswerte vom Ratten GAS auf menschliche

GAS legt nahe, dass die passiven Eigenschaften eine dominantere Rolle bei

der Limitierung der Faserdehnung des menschlichen GAS beim Sprinten spie-

len. Die Faserdehnungen im menschlichem GAS Fasermaterial sind wahrschein-

lich höher als in Ratten, da der Unterschied in der dynamischen Kraftänderung

zwischen Menschen und Ratten viel größer ist, als der Unterschied in der

anatomischen Querschnittsfläche zwischen den beiden Spezies.
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Overview

Chapter 1

The ’General introduction‘ presents the background for creating this work,

its necessity and the aims that must be achieved to reach the overall goal:

a better understanding of skeletal muscle’s wobbling response to impact in

legged locomotion. To convey this work, the general introduction contains a

short but detailed review of the relevant muscle physiology literature, includ-

ing the structures and spacing on the microscopic level of the half-sarcomere.

Subsequently, the chapter ends with a detailed description of the construc-

tion and functionality of the apparatus needed to study the muscle’s wobbling

mass in legged locomotion.

Chapter 2

The chapter that follows the ’general introduction‘ contains the methodolog-

ical part of the work: how to conduct the experimental trials, the muscle

preparation and the subsequent data processing.

Chapter 3 and Chapter 4

After Chapter 2, this work ”splits” into two chapters, each designed to an-

swer a specific aim presented in the introduction (Chapter 3: Study 1 and

Chapter 4: Study 2)

Chapter 5

Discussion and comparison of results (Study 1 and Study 2) in order to com-

pare muscle fibre responses to changes in impact amplitude (falling heights)

and the stretch rate’s influence on the critical fibre strain limit. This chapter

also includes an estimation of the fibre strain in human GAS based on the
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fibre strains determined in this work.

Chapter 6

Concludes Chapters 3-5 and delivers the prospects associated with this work.

The structure of this work, together with a general heading, is visualised in

Fig. 1.
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General introduction
 Introduction
 Aim of this work

Physiological 
background

Mechanical 
background

Methods
 The experimental setup
 Muscle preparation
 Processing of data

Study 1
• Muscle Stiffness
• Muscle strain
• Young‘s modulus 

Comparing studies
 Fibre strain and impact amplitude
 Quadruped to human locomotion

Study 2
• Energy dissipation
• Damping coefficient
• Half-sarcomere estimations

Conclusion
 Conclusion of this work
 Prospects 

Figure 1 | Overview of all chapters. Each grey square, along with a
small figure, illustrates a Chapter and a few keywords of what that Chapter
includes. The grey, thin lines indicate the common thread throughout this
work and which Chapters are directly related to the following Chapter. Both
oval boxes, connected to the ’General introduction‘ via dashed lines, are
subparts of the ’General introduction‘.
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Chapter 1

General introduction

1.1 Introduction

In more recent times, musculoskeletal models have become an increasingly

vital tool to emulate limb movements to analyse movement efficiency [3],

movement stability [4, 5] and movement performance [6]. Moreover, mus-

culoskeletal models are also used for analysing limb movement under more

specific circumstance such as injuries inflicted in car crash crashes [7] or the

outcome of medical interventions [7] . Despite the benefits and advantages of

musculoskeletal models, the output of a such a model is only as good as the

rules and boundary conditions used to create it. For this reason, describing

and understanding biological tissue relative to the environmental situation is

of the utmost importance when trying to emulate musculoskeletal behaviour

with computer modelling.

The two most popular approaches to understanding and emulating iso-

lated muscle properties, ignoring the finite element approach, are the Hill-

type and Huxley-type muscle models, named after Archibald Vivian Hill [8]

and Andrew Fielding Huxley [9], respectively. A. V. Hill was the first to show
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that the relationship between muscle force and velocity during concentric

contractions has a hyperbolic shape, which he then described mathemati-

cally [10]. Later, A. F. Huxley presented the first comprehensive theoretical

model [9] on muscle contraction, based on the sliding filament theory (see

Sect. 1.2.1.2). In more recent times, there have been several successful at-

tempts to combine or link Hill and Huxley muscle models with more micro-

mechanical models of the muscle [11, 12]. These micro-mechanical models

often contain in-parallel and in-series visco-elastic elements [13, 14]. More

hybrid formulations combine the mechanical and thermodynamic proper-

ties [15]. While others exclusively derive the relation between force and ve-

locity during contraction from assuming the muscle to fulfil thermodynamic

equilibrium [16]. Yet, these mentioned muscle model combinations describe

Hill- and Huxley-type muscle properties during contractions by first-order

equations, thus, excluding muscle mass.

Probably the most common method to include mass properties in muscle

modelling is visco-elastic coupling gross dynamics of accelerated soft tissue

with skeletal structures represented by rigid bodies. This way of mass inclu-

sion originated in 1985 [17, 18] when demonstrated that without an inclusion

of visco-elastic coupling between a rigid and soft tissue segment (wobbling

mass), estimated joint loads will be beyond tolerance during sports activi-

ties with high accelerations. Thus, such ”wobbling” models are often used

to examine legs impacting with the ground by either reproduction of direct

measurement of soft-tissue vibrations [19, 20, 21, 22], reproducing ground

reaction forces (GRF) in forward dynamics [23, 24, 25], or tissue vibration

responses [26, 27]. The existence of soft tissue wobbling has also been mea-

sured experimentally [28, 19], and the idea of the muscle being a wobbling
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mass was a keystone in conceiving the muscle tuning paradigm [29] (described

in further detail later in the introduction). After establishing the introduc-

tion of the muscle as a wobbling mass in literature, it is generally accepted

that when the leg makes contact with the solid surface (an impact), mus-

cles absorb some of the shock-wave accelerations that propagate through the

body. These shock-waves are transmitted to the limb muscle via their sus-

pensions and contact areas to the bones and adjacent muscles, causing the

soft-tissue masses of the body to undergo damped oscillations [30, 31, 32, 19].

However, the visco-elastic coupling between a rigid and soft segment does

not explain how high-frequency shock-waves caused by an impact interfere

with the contractile machinery within a muscle fibre that is the asynchronous

work of many myosin heads building cross-bridges [9] between myosin and

actin filaments within the sarcomeres. Until now, only a few studies have

demonstrated the importance of the muscle’s internal mass inertia influence

on the contractile machinery. Günther et al. (2012) [33] used their second-

order dynamic model to show that time-delays in force development were due

to the muscle’s internal mass inertia. They argued that direct measurement

of maximum concentric contraction velocity is not possible in whole mus-

cle preparations of large mammals without considering the muscle’s internal

mass inertia. Later, the model idea, introduced in Günther et al. (2012) [33],

was expanded upon to demonstrate that the muscle’s maximum shortening

velocity is slower for lower activations and larger muscle sizes and larger sized

muscles will have a higher inertial contraction cost.

Despite these recent findings, the interplay between muscle’s internal mass

and the contractile mechanism is still poorly understood. For example, in

the contractile machinery, the net strain of all fibre-internal serial elasticities
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in the actin and myosin filaments and the cross-bridges at maximum isomet-

ric force is approx. 0.4% [34, 1] in the non-fatigued case. Forces to disrupt

one myosin head from actin have been measured to scatter around 9 pN [35],

whereas estimations of the maximum isometric force of a cross-bridge is about

4-5 pN [36, 37, 38]. Additionally, force saturation in eccentric contractions,

as another possible measure for a disruptive force limit of myosin heads indi-

cating muscle ’giving’, has been quantified to be 1.4-2.0 times the isometric

force [39, 40, 41, 42]. It is unknown whether the contractile machinery will

near the strain limit or even forcibly disrupt cross-bridges due to excessive

fibre material strain caused by shock-waves during impacts in ordinary loco-

motion (see ’Aim of Study 1‘).

According to the muscle-tuning paradigm mentioned earlier, changes in

muscle activity alter the mechanical properties of the muscle during the im-

pact [24], therefore, affect both frequency and damping coefficient of its vibra-

tions after TD [28]. Following the theory, the muscle can adjust the damping

of its eigenfrequency vibrations after TD [29, 43]. Damping of oscillations su-

perposed to muscle contraction results in a dissipation of mechanical energy.

In whole muscles, Ettema et al. (1994) [44] calculated the energy dissipated

in small-amplitude sinusoidal work-loops (ranging from 5-180 Hz) of rat gas-

trocnemius medialis. In the 5-180 Hz frequency range, the corresponding en-

ergy dissipated decreased from 55µJ to 40µJ in fully activated muscle [44].

However, using this experimental approach, oscillations are imposed on the

distal tendon, which differs from in-vivo muscle wobbling responses induced

by impacts. There seem to be no experimental data of directly measured

damping strengths and energy dissipation associated with muscle wobbling

in response to an impact. However, to explain microscopic sarcomere prop-
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erties based on macroscopic wobbling measurements during impact requires

the application of muscle models.

Based on muscle fibre experiments, Fusi et al. (2014) [1] determined cross-

bridge stiffnesses and strains using a muscle model consisting of myofilament

stiffness in-series with the stiffness of the cross-bridge ensemble. In their

model, the force generated by a single cross-bridge is assumed a constant,

with an attributed constant deflection. Thus, the overall cross-bridge stiff-

ness scales linearly with the number of attached myosin heads. An alterna-

tive for determining cross-bridge stiffnesses is the model from Günther et al.

(2018) [2]. This model can reproduce the early half-sarcomere force recovery

phase (also known as the T2 curve [45, 46]) following rapid step-in-length

experiments. According to their model, the ensemble of cross-bridges is in-

series with a collective of passive stiffnesses, denoted there as a combined

myosin head and myofilament stiffness. The cross-bridge itself is divided into

a catalytic domain and a light chain domain that can rotate, actuated by a

Coulomb force drive, with respect to the catalytic domain. In contrast to

Fusi et al. (2014) [1], the force-length relation of this cross-bridge drive is

non-linear as it depends on the properties of the repulsing Coulomb force

generated within the catalytic domain. Thus, the second part of this work

will focus on explaining microscopic sarcomere properties by probing the two

mentioned muscle models with the experimental wobbling mass data (see

’Aim of Study 2‘).

1.1.1 Aim of Study 1

The first aim of this work (Study 1) will be to examine whether cross-bridges

in active skeletal muscle are disrupted when strained by shock-waves in the

physiological range in legged locomotion. To that end, Study 1 focuses on
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mechanical properties that are strain and stiffnesses in the fibre material, the

tendons and aponeurosis, and the whole muscle in response to an impact. The

key research questions that need answering are:

� What are the strain amplitudes in the fibre material in response to an

impact during ordinary locomotion?

� What are the muscle’s eigenfrequencies for responses to impacts, and

how is the size-dependency of this time scale of muscular wobbling mass

dynamics?

1.1.2 Aim of Study 2

The second part of this work (Study 2) is to better understand the damping

and energy dissipation of the whole muscle and the fibre material during

wobbling by calculating stiffnesses, damping coefficients, and the energy dis-

sipated during work-loops in the range from passive to fully activated muscle

tissue and then scaled these parameters to the half-sarcomere level. The aim

is to probe the predictions of cross-bridge stiffness values by half-sarcomere

models: the first by Fusi et al. (2014) [1] and the second by Günther et al.

(2018) [2]. These two models’ potentials are probed to explain, by essential

cross-bridge parameters, a muscle’s overall response to an impact. To this

end, the key research questions that need answering are:

� How much energy is dissipated in a half sarcomere during muscle wob-

bling from passive to active muscle?

� Which parameters are essential to model experimental cross-bridge stiff-

ness with a half-sarcomere model during an impact situation?
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1.2 Physiological background

1.2.1 Skeletal muscle

There are three types of muscle tissue in the body: cardiac muscle tissue,

smooth muscle tissue and skeletal muscle tissue. Of these three types, skeletal

muscle tissue is responsible for the movement of the body. Also, skeletal

muscles have many subtle and secondary functions in the body. Including

maintaining body temperature, protect other soft tissues, and store nutrition

reserves. This chapter will focus solely on the skeletal muscle because it is

the only type of muscle tissue used in this work.

In a skeletal muscle, the muscle tissue makes up approximately 80% of the

muscles physiological cross-sectional area (PCSA) that is the cross-section of

the muscle tissue determined perpendicular to the fibre direction. Accord-

ingly, around 20% of the PCSA is composed of nerves, blood vessels and

connective tissue. Of the latter, the connective tissue primarily exists in one

of three layers: epimysium, a perimysium, and an endomysium layer, which

either surrounds the muscle itself (epimysium), the fibre bundles (perimy-

sium), the single fibres (endomysium), respectively (Fig. 1.1). All three layers

are composed of collagen fibres [47] that have high Young’s modulus values

of 5-11.5 GPa [48] to support, protect, and structure skeletal muscle [47]. As

such, they span the entire muscle length to form either a bundle known as

tendon or a broadsheet called aponeurosis in the other end. In most cases,

tendons or aponeurosis usually attach to bones, and as the muscle contract,

it exerts a pull to the attached bone, which then initiates skeletal movement.
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1.2.1.1 The half-sarcomere

On a microscopic level, the functional unit within a muscle fibre responsi-

ble for contraction is named sarcomere, and a series of sarcomeres span the

entire length of the muscle fibre (Fig. 1.1). Sarcomeres usually have an op-

timal length (L0) of about 2.3µm for generating maximum isometric force,

which depends slightly on myofilament lengths and species (mean L0 value are

from [Table 1] [49]). Each sarcomere contains a thick filament called myosin

and thin filaments called actin that appears lighter in colour than myosins

when seen by electron microscopy (Fig. 1.2e). The sarcomere is a very com-

plex structure, where each region has its properties. Thus the sarcomere

can grossly be separated into either the actin region (I-band) or the region

that contain both actin and myosin (A-band). Because the A-band contains

both actin and myosin, this band can further be subdivided into the H-zone,

which include only myosin (Fig. 1.2a) and the overlapping zone that has both

actin and myosin. Myosin filaments arrangement is so that they, together

with five adjacent myosins, form a hexagonal lattice (Fig. 1.2d). A single

myosin contains 300 heads placed together in crowns of three pairs, spaced

periodically with 14.5 nm [50] (Fig. 1.3b). At each location, the three crowns

are separated azimuthally by 120 ◦ and adjacent crowns are rotated by 40 ◦.

Thus, at each 42.9 nm, crowns are aligned. The heads that project from each

myosin can bind to one of six surrounding actins (Fig. 1.2c), which do so in

a stochastic manner. Because of the before-mentioned hexagonal lattice, one

myosin filament can interact with six actin filaments. Thus, each elementary

cell of a sarcomere contains one myosin filament and two actin filaments [50]

(Fig. 1.2c).
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1.2.1.2 Sliding-filament theory

The most common and accepted theory for muscle contraction is the sliding

filament theory introduced in 1954 [51, 9, 52]. In brief, the sliding filament

theory states that muscle contraction itself happens because of the relative

sliding between the thick and thin filaments. The sliding occurs as actin

filaments move past myosin filaments while actively interacting with them

through the myosin cross-bridges. It is, in general, believed that approxi-

mately 90 of the possible 300 myosin heads are stochastically bound at all

time while the muscle in physiologic tetanus (tetanic contraction) [53].

1.2.1.3 Titin arrangement’s within the sarcomere

Until now, the structural description of the sarcomere mostly include actin

and myosin. Leaving out the protein titin: a 1µm long filament [54, 55],

which connects the Z-line and the M-line through a myosin filament [55]. The

titin filament has since discovered in 1977 [56] risen to prominence. Today

titin is believed to be responsible for force-enhancement[57, 58, 59], as well as

passive force contribution, mechano-sensing, and help maintain the structural

organisation within the sarcomere [59]. The number of titin filaments that

connects to one myosin filament is still debatable, and although the most

popular estimation is six titin’s per elementary cell [60, 55, 61] supported

by mass measurements [60]. However, there are also suggestions that only

four titin filaments connect to each myosin [62, 63]. The dispute between

which number is correct probably originates from the symmetry difference

between the arrangement of myosin found in the A-band [64] and actins in

the Z-line [65]. The thick and thin filaments in the A-band cross-section

have both hexagonal lattices shapes (Fig. 1.3c), which suggests that titin

filaments are highly likely to have a 3-fold symmetry to match that hexagonal
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symmetry. For a 3-fold symmetry,the mass per unit length of the end-filament

(17.1 kDa nm−1) is also consistent with six titin molecules [60]. In contrast,

the cross-section arrangement of the actin filaments in the Z-line has more

the shape of a parallelogram than a hexagon (Fig. 1.3b). This makes the

likelihood of a 2-fold symmetry more reasonable. One of the most popular

explanation for this 2-fold 3-fold mismatch is, that the actin filaments in the

A-band are systematically displaced from the Z-line positions [66, 67, 65].

Regarding the number of titin filaments per actin, one possible theory that

comply with the 2-fold/3-fold transformation [67], is that that each actin

filament is associated with two titin filaments in one sarcomere and a single

titin filament in the next sarcomere [66, 60]

1.2.1.4 Force generation in a half-sarcomere

The amount of force generated within a sarcomere depends on the number of

formed cross-bridges, which, in turn, depends on the thick and thin filaments

overlap withing these sarcomeres. A sarcomere generates the most force when

the filaments are within a small optimal range that depends slightly on the

animal size [49]. As an example, the muscle force relative to sarcomere length

is shown in Fig. 1.4, where the sarcomere within an optimal range (≈ 95-

105% of L0), the muscle can generate its maximum force. If the sarcomere

is lengthened or shortened to values outside the optimal range, then the

sarcomere can not generate the same muscle force. The drop in muscle force

is mainly because the amount of generated muscle force depends on the

number of cross-bridges that form (see Sect. 1.2.1.2). For the sarcomere to

generate muscle force, it must receive an action potential stimulus: a single

action potential stimulus produces a single contraction (a twitch) [50]. The

single twitch grossly consists of 3 phases: the latent phase, the contraction
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phase, and the relaxation phase. During the latent phase, the muscle fibre

produces no force, as there exists a time delay between the stimulus and

the various processes in the muscle needed to execute a contraction. In

the contraction phase, force rise is due to myosin heads binding to troponin

active sites on actin filaments. These attachment sites become visible as the

tropomyosin that covers them moves away as calcium is released. In the last

phase, the relaxation phase, calcium levels fall, which causes tropomyosin

to cover the actin attachment sites. The latter leaves the number of formed

cross-bridges to decline as they detach. The addition of one stimulus twitch to

another before the relaxation phase begins will eventually lead to a saturated

force level whereby achieving a tetanic contraction. In this state, each half-

sarcomere generates approximately 480 pN. A value inferred from step-in-

length [68] or step-in-force [53] fibre experiments. If each sarcomere contains

300 myosin heads of which 90 stays bound at all time at maximum isometric

force (Fmax) [53], then the force per attached head is ≈ 5 pN (480 pN÷90).
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Figure 1.1 |Structural hierarchy of skeletal muscle. The three layers
of connective tissue: epimysium, perimysium, and endomysium, encloses the
various structures within skeletal muscle and allow for blood vessels, capil-
laries and nerves to interweave deep into these compartments. Epimysium
surrounds the entire skeletal muscle, and perimysium surrounds bundles of
muscle fibres. Lastly, endomysium encloses single muscle fibres. Within a
single muscle fibre, the small myofibril contains sarcomeres in-series. Each
sarcomere reaches from Z-line to an adjacent Z-line. The sarcomere is most
commonly known for its contractile properties involving thin and thick fil-
ament interaction. The muscle in Figure 1.1, excluding the highlighted sar-
comere, is from Tsang et al. (2019) [69], reproduced with permission from
Elsevier.

38



a

b c d

e
I-band

A-band

Z-line

H-zone

sarcomere

M-line I-band

overlapping zone

Figure 1.2 |Spacing and dimensions in a sarcomere a, a single sarcom-
ere reaches from one Z-line to its adjacent Z-line. Within the sarcomere is a
part that contains no myosin, which is called the I-band. Next to this I-band
follows the A-band, which includes both myosin and actin filaments. The A-
band also have two subdivisions named the overlapping zone and the H-zone.
The overlapping zone contains both actin and myosin hence the overlap, and
the H-zone contains only myosin filament. b, the cross-section of the actin
arrangement in the Z-line. c, the cross-section of actin and myosin in the
overlapping zone (actin: small dots, myosin: big dots). c also includes the
crystallographic planes (1,0) and (1,1) used to define an elementary cell, i.e.
one myosin and two actin [50]. d, the cross-section of the myosin arrangement
in the A-band near the Z-disk, e is the electron micrograph of the sarcom-
ere from Wallig et al. (2017) [47] reproduced with permission from Elsevier,
and c is from Reconditti (2006) [50], reproduced with permission from IOP
Publishing.

39



b

a

Figure 1.3 |Schematic drawing of a sarcomere. a depicts a sarcomere
at optimal length (Lopt) of 2300 nm, where it is able to generate the most
force (see also Fig. 1.4). For a half-sarcomere, the actin filament is ≈1000 nm
depending on size and species [70, 71] and the myosin filament 800 nm [70, 72]
with an 85 nm bare-zone [73]. b depicts a half-sarcomere myosin and its 300
heads. In each crown, each pair of heads are separated azimuthally by 120 ◦

and the adjacent crowns are rotated by 40 ◦. Therefore, at each 42.9 nm,
crowns are aligned [50]. b is from Reconditti (2006) [50], reproduced with
permission from IOP Publishing.
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Figure 1.4 |Muscle tension relative to sarcomere length. Sarcomere
operating ranges for various species, superimposed upon a normalized sar-
comere force/length curve (thin, black line). When the sarcomere is within
the optimal range (force plateau), the sarcomere can generate the most force.
If the sarcomere length falls outside this region, the sarcomere can no longer
generate the same force. The mean optimal sarcomere length L0 = 2.3µm.
This figure is from Burkholder & Lieber (2001) [49], reproduced with permis-
sion from Journal of Experimental Biology.

1.2.2 Ischaemia and fatigue

By dissecting a skeletal muscle, regardless of which, removes the muscles

blood supply (also called ischaemia). Exposing the muscle tissue to severe

and prolonged ischaemia will inevitably lead to necrosis and permanently

damage the muscle tissue.

During ischaemia, studies have shown that the muscle force decline ranges

from 95 % of the isometric force in cat m. soleus and 90 % in m. gastrocnemius

medialis and lateralis both after ca. 23 minutes of ischaemia [74] to 58% iso-

metric force decline after 1 hour in rabbit m. anterior tibialis [75]. Despite
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these declines, reperfusion restored 100 % of isometric force in cat m. soleus

and m. gastrocnemius [74] (‘. . . the soleus fully recovers in about 5 min while

the recovery of the gastrocnemius takes 10-15 times longer.’), and 87 % in rab-

bit m. tibialis anterior [75]. Further studies stated full recovery (> 90%) after

1 hour of ischaemia, proving that rapid fatigue within 1 hour is a metabolic

adaptation to limited oxygen, nutrient, ion, and hormone availability, and

also impeded waste removal, rather than any cellular process permanently

being disabled by necrosis [76, 77] (see also Fig. 4.1). In a single case, the m.

gastrocnemius in Wistar rat was recovered 75% after 2 hours of ischaemia [78].

In general, the term muscle (or physical) fatigue is used to indicate a

transient decrease in the capacity to sustain physical actions. As such, the

term is broad and includes, among others, the following definitions:

� ”Performing a motor task for long periods of time induces motor fa-

tigue, which is generally defined as a decline in a person’s ability to

exert force.” [79]

� ”. . . a fatiguing task was performed with the muscles of the left hand

until the muscles were exhausted.” [80]

� ”Fatigue is known to be reflected in the EMG signal as an increase of its

amplitude and a decrease of its characteristic spectral frequencies.” [81]

� ”Intensive activity of muscles causes a decline in performance, known

as fatigue. . . ” [82]

Because it is ambiguous as to where and what the origin of muscle fatigue

is, and ischaemia studies indicate that reperfusion can restore muscles to

their in-vivo states before ischaemia, any decline in upholding the maximum

isometric muscle force is from this point onwards considered fatigue.
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1.2.3 Animals used

This work used the m. gastrocnemius medialis and lateralis from the male

Rattus norvegicus, Wistar in all experiments. The main reasoning behind

this choice was that the Wistar rats were compatible with the facilities and

equipment available for the experiments. Also beneficial of this choice was

that the literature is rich on data regarding physiological measurements and

mechanical properties on the isolated GAS muscle of the specimen Wistar to

better support and discuss some of the choices made and results throughout

this work. Compared to mouse, another widely used rodent used for experi-

mental animal designs, the mass of the rat GAS should, in theory, allow for

higher amplitudes of the vibrations due to the greater muscle mass (Eq. 1.42).

The GAS itself is one of the more accessible muscles to dissect in the rat,

and the muscle’s origin and insertion make it possible to cut off the bony

pieces of the femur and calcaneus still attached to the tendon. A dissected

muscle with the bone tissue pieces of the femur and calcaneus will allow for a

complete muscle-tendon-complex (MTC) without changing the properties of

both tendons or the muscle itself. The rat GAS is also very suitable for these

ex-vivo types of experiments done because the muscle can still produce a

stable isometric force after 400 ms [83]. When fully stimulated for 50-300 ms

every 1-2 second, the GAS muscle can still provide about 80% of its maximum

force [84, 85]. Further, the m. gastrocnemius has been examined with regards

to ischaemia in various small rodents and mammals (Sect. 1.2.2).
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1.3 Mechanical background

1.3.1 Criteria for the construction of the frame

An experimental frame had to be designed that could fixate the isolated

muscle tissue, to observe the wobbling behaviour of an isolated muscle during

impact scenarios. The basic idea was to fix the isolated muscle in a C-shaped

frame that could measure muscle force and drop this frame on the ground

from a certain height to simulate the impact.

In the initial thought-process of designing the C-shaped frame, it became

clear that the frame itself needed to meet a few guideline criteria (listed as

bullets below) because of the novelty of the experiments. For this reason,

the frame was built from available construction-store materials and not after

what is possible to manufacture externally. The overall idea was that if

anything were to break or need optimisation under the experiments, then

the parts in question should be easily replaceable. To further facilitate this

easy-to-replace idea, the frame consists of squares or rectangular parts as

squares or rectangular profiles are more convenient to remove and replace

than, for example, an ellipse profile. Being able to rebuild the frame was

especially important since all the experiments were at an external location,

with only a limited time was available for each set of experiments. Choosing

store materials and square profiles also enhanced the frame customizability

and costs in the early stages of a never-before tested experimental setup.

Besides the materials and shapes to build the frame, i.e. not including

material properties, an equally important consideration is the overall size

and functionality. The C-shaped frame should ideally perform various ex-

perimental trials with more than one muscle length. As such, the frame

backbone needs to be longer than actually necessary for the GAS muscle
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to be mounted. Thus, the possibility to change the length between both

clamps (needed for muscle fixation) via a build-in slider mechanism is vital.

A build-in slider facilitates both changes in muscle sized and variations in

GAS length.

The last considerations (in mentioned order) are frame deflection and

frame mass. The maximum deflection (compression) of the frame including

the force transducer, clamps and insulators (See Fig.2.3) should be lower than

5 · 10−4m, because a frame length change of 0.5 mm to a GAS of ≈ 45 mm,

leads to an internal fibre strain of 0.01≈ 0.5 mm
45 mm

. Therefore, assuming that

all deformation goes into the fibre material of the muscle, an internal fibre

material strain of 0.01 is low enough so that any length changes caused by

the frame have no influence on the maximum generated cross-bridge force

(Fig. 1.4), because the length at which the cross-bridge can generate its

most force is considered more of a plateau than a specific sarcomere length

(Sect. 1.2.1).

Although a frame with a low mass conflicts with the deflection criterion,

a lighter frame will extend the falling time of the frame to meet a targeted

impact. The reason for building a lightweight frame is that any potential per-

turbations caused by the release-mechanism (electromagnets) on the frame

will attenuate over time. Hence, extending the falling height attenuates any

release mechanism perturbations. Thus, overall the construction of the frame

has to fulfil the following criteria:

� Parts used to build the frame should be available in a general store.

� Individual frame parts should be square or rectangular profiles.
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� The frame should have a built-in slider to accommodate changes in

muscle size.

� Hook and clamps: the muscle must be easy to fixate (ischaemia) and

easily replaceable.

� The overall frame deflection must be under 0.5 mm.

� The frame must have a low frame mass to allow for a longer fall time.

1.3.2 Theory behind frame

In accordance with Hooks’ law:

σ = E · ε , (1.1)

stress (σ) is equal to strain (ε) multiplied with a material constant E being

Young’s modulus. Stress can then either be compressive or tensile, respec-

tively, depending on either a positive or negative strain prefix in Eq. 1.1. If

a force (F ) is applied to a fixed cantilever beam, as shown in a simple case

in Fig. 1.5a, then compression (−σ) and tension (+σ) rises with the distance

from the structure’s centerline (y).
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x
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Figure 1.5 |A cantilever beam. a shows a force F applied to the tip of a
fixated beam. The thick, horizontal arrows inside the beam either illustrates
increased compression or tension from the centerline (dashed line) due to the
applied force. The centerline is neither in compression or tension, i.e. the
centerline is a neutral axis in the construction. L is the beam length, and x
is the length from the end of the beam x = 0 towards the fixation L = xmax.
y is the length from the beam centerline in either direction, and M is the
bending moment. b: The solid grey rectangle is a drawing of a free-floating
beam with no force applied, whereas the black, solid rectangle in b is a free-
floating beam with identical bending moments in both ends. The dotted,
grey, vertical line in the middle of both rectangles is where both centerlines
(grey and black dashed lines, respectively) have no vertical deflection (δ=0).
The point, δ=0, could also illustrate the centerline at xmax in a (i.e. at the
fixation point). As the angle θ becomes smaller dθ, the centerline length of
the grey rectangle x approximates the centerline length of the black rectangle
dx.

Regardless of the bending, the centerline of a bend structure can be ap-
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proximated to follow the course of the unbent centerline. The latter is shown

in Fig. 1.5 b, where the black rectangle illustrates a beam with identical bend-

ing moments in both ends. At dθ, dx ≈ x of an unbent beam (grey rectangle).

Thus, the longitudinal strain (εx) is

εx = y κ (1.2)

because compression and tension rises with the increased distance from the

centerline (Fig. 1.5a). The latter equation is called the strain-curvature. By

substituting εx in Eq. 1.1 with Eq. 1.2, the curvature (κ) can be expressed as

κ =
σx
E y

. (1.3)

Although Eq. 1.3 technically allows one to determine the stress, as either ten-

sion or compression, at any given point in Fig. 1.5a, the curvature is often an

unknown quantity. Multiplying Eq. 1.3 with an additional y in the nominator

and denominator is equal to

κ =
σx y

E y2
(1.4)

=
F y

E Ay2
(1.5)

=
Mz

E Iz
, (1.6)

because the inertia (I) is
∫
dA · L2 (see Eq. 1.26). Both M and I is with

respect to the z-axis. In a general term, it is possible to calculate the stress

without the curvature by rearranging Eq. 1.3, and substituting κ with Eq. 1.6:

σ

E y
=

M

E I
(1.7)
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σ =
M y

I
. (1.8)

Looking at Eq. 1.4 and Eq. 1.8, the maximum compression or tensile stress

is found at x=xmax, and y= ymax in Fig. 1.5a. For the frame construction

itself, however, the stress is not considered an optimisation criterion, because

the forces that act in the frame will be so low, that potential plasticity plays

no role. It makes more sense to construct the fame optimised after a deflec-

tion criterion, for which Eq. 1.6 is more useful.

Unfortunately, the curvature is, in most cases, an unknown parameter.

However, if the curvature (dashed centerline) in the Fig. 1.5b black beam were

to continue uninterrupted, it would eventual form a complete circle with a

radius (as indicated in Fig. 1.6):
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X

y

Figure 1.6 |A deflected centerline in a beam. In the figure, there is no
deflection (δ= 0) where the vertical, grey dotted line intersects the centerline
(black, dashed line). This point on the centerline could, for example, be at
the fixation in Fig. 1.5a or the grey, vertical, dotted line in Fig. 1.5b. At
δ= 0, the centerline also has no angle, so also θ= 0. ds is the centerline
length (arc length) to a central angle dθ between dx1 and dx2. dx and dy are
the horizontal and vertical length parts of ds, respectively. θ, is the rotational
angle at tangent1, and tangent2 at dx2 marks the beginning of an adjacent
part of the arc. r is the length from the centerline to the centre of the arc.

As such, the curvature of a circle is the reciprocal of the radius of cur-

vature (κ= 1
r
) with r being the radius, is equal to the arc length divided by

the tangential angle (dθ
ds

). Therefore, the curvature in Fig. 1.6 is

κ =
1

r
=
dθ

ds
. (1.9)

As ds ≈ dx as lim
θ→0

, the angle θ in Fig. 1.6 can be estimated as

θ ≈ tan(θ) =
dy

dx
. (1.10)
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Therefore, integrating Eq. 1.6 and Eq. 1.10 in Eq. 1.9, the curvature is

d2y

dx2
=

M

E I
, (1.11)

which is also called the moment-curvature relationship. As
∫

d2y
dx2

dx = f ′′(x) dx

(Leibniz’s notation) and
∫
xn dx = xn+1

n+1
(power-rule), the anti-derivative of

Eq. 1.11 with respect to x is

EI

∫
d2y

dx2
= −F ·

∫
x (1.12)

EI
dy

dx
=
−F x2

2
+ C1 (1.13)

with C1 being an added integral constant, and the force F being negative

because the bending moment (M =−F ·x) is in the opposite direction of the

applied force. To solve C1, the boundaries y=0 and θ= 0 is assumed, which,

for example, would be good approximations at x= L in Fig. 1.5a or at x=L
2

in Fig. 1.5b. Because both beam examples fulfil both boundary conditions,

it is convenient to continue with x= L and θ= dy
dx

=0 (Eq. 1.10). Therefore,

C1 = E I 0− −F x
2

2
(1.14)

=
FL2

2
. (1.15)

By substituting Eq. 1.15 with C1 in Eq. 1.13, θ (note Eq. 1.10) can be found

at any given point with

θ =
1

EI
(
−F x2

2
+
F L2

2
) , (1.16)
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and at x= 0, Eq. 1.16 can be simplified to

θ =
F L2

2E I
. (1.17)

With a known value for C1 in Eq. 1.15, the derivative of Eq. 1.13 is

EI

∫
dy

dx
dx =

−F f(x)2

2
+
FL2

2
dx , (1.18)

EI

∫
dy

dx
dx =

−F (x
3

3
)

2
+
FL2

2
dx , (1.19)

EI
y

x
=
−F x3

6
+
FL2

2
+ C2 , (1.20)

and

E I y =
−F x3

6
+
F L2

2
+ C2 · x . (1.21)

At y = 0 and x = L, C2 is

C2 = −−F L
3

6
+
F L2 x

2
(1.22)

= −F L
3

3
. (1.23)

From this, the deflection at any given point in Fig 1.5a can be determined

with

y =
1

E I
(
−F x3

6
+
F L2x

2
− F L3

3
), (1.24)

which can be shortened to

δ = ymax =
−F L3

3E I
(1.25)
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for determining the maximum deflection at x=0 in Fig 1.5a.

For numerical calculations, both Eq. 1.17 and Eq. 1.25 have tree parame-

ters that are relatively easy to determine: force F , Young’s modulus E and

length L. However, inertia I is material and profile dependent, thus, to apply

Eq. 1.17 and Eq. 1.25 to conceptualise a suitable frame for all experiments, an

understanding of inertia in rectangular profiles is needed (For details regard-

ing design considerations, see Sect. 1.3.1). The parallel axis theorem applied

to the second moment of area for a plane with respect to a reference x-axis

not being the centroidal x-axis is

Iz′ = Iz + A · d2 (1.26)

with Iz′ being the objects inertia around a reference axis that is not the

objects centroidal axis. A is the area of the plane region, and d is the per-

pendicular distance between a reference axis and the centroidal axis. Iz is

the second moment of area relative to the shapes centroidal axis, which is

the integral of the shape height (h) and the elemental area (dA) were

Iz =

∫∫
h2 dA . (1.27)

Therefore, if the reference axis is the centroidal axis as in Fig. 1.7,
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Figure 1.7 |An example of calculating inertia in a square. The square
has the height h and the width w. The elemental area, in this example, has
the elemental height dh and the elemental width dw. The coordinate system,
about where the rotation takes place, is in the centroid of the square. y is
the vertical length between the x-axis (axis-of-rotation) and the nearest limit
of dh in either direction.

then the second term of Eq. 1.26 can be removed, and with I ′z = Iz the

inertia about the objects centroidal x-axis in Fig. 1.7 becomes

Iz =

∫
y2w dh (1.28)

with dA = w · dh, when removing one integration. In Eq. 1.28, w is the

width of the square and y being the length from the centroidal axis to the

limits of the square. Because the integral limits of y, in this case, is +h/2 to
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−h/2, since h is the height of the square, Eq. 1.28 can be written as

Iz = w

∫ +h/2

−h/2
y2 dh (1.29)

= w

[
h3

3

]+h/2

−h/2
(1.30)

= w

[
(h÷ 2)3

3
− (h÷ 2)3

3

]
(1.31)

=
wh3

12
(1.32)

For all structures in Fig. 2.3, with the exception of the force transducer and

upper clamp, the inertia can be found with either Eq. 1.32 or

Iz =
w3h

12
. (1.33)

For solid rectangular shapes. If a profile has a hollow centre, then

Iz =
w h3

12
− win h

3
in

12
(1.34)

Iz =
w3h

12
− w3

inhin
12

. (1.35)

The equations Eq. 1.32, 1.33, 1.34 and 1.35, shows that the lengths in the

direction of applied force are a factor of 3 compared to material lengths

perpendicular to an applied force. The last four equations also indicate

that an, e.g. elliptic frame profile or Taperwall, would sustain stiffness and

reduce weight compared to square a profile. For clarification, Taperwall

means exposing the frame to the same amount of stress in any arbitrary

point on the frame. Thus, in the cantilever beam example (Fig. 1.5a,), the

thickness (t) in the construction should decrease from the fixation towards
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the applied force. From Eq. 1.8 and Eq. 1.34 an optimization of the thickness

(Taperwall) in a rectangular structure is

I =
M y

σ
(1.36)

win hin
3

12
=
w h3

12
− M y

σ
(1.37)

winhin
3 = w h3 − 12M y

σ
(1.38)

(w − 2 t) (h− 2 t)3 = w h3 − 12F y

σ x
, (1.39)

if the outer cross-section dimensions w and h and stress σ are known pre-

determined values. Because Eq 1.36 - 1.39 are only for showing the idea be-

hind Taperwall, and because the frame itself does not use Taperwall, the

thickness in Eq. 1.39 is not inferred any further.

The equations Eq. 1.9,1.17, 1.25, and 1.32 - 1.35 are fairly straightforward

to implement, especially given some of the boundary criteria in Sect. 1.3.1.

Thus, these equations were used to calculate the deflection for any theorised

frame to apply with the strain limit criterion of 5·10−4 m (see Sect. 1.3.1). It

should be noted, that the profiles and properties of the mounted force trans-

ducer, clamps and isolation parts to some degree are predetermined and not

possible to customise, therefore, they were excluded from the frame deflec-

tion calculations (for the complete experimental setup, see Sect. 2.1.2). As

examples of the latter predeterminations, the force transducer is pre-made,

the clamps need to have somewhat specific shapes to fixate the bony piece
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of the calcaneus or the tibia, and the lower isolation parts need to be able

to slide. Although the initial calculated compressive deflection for the core

of the frame (backbone and extrusions) was only 0.01 mm with an applied

force to the frame of 30 N (the calculated frame deflection can be seen in Ap-

pendix 6.4). A more thorough calculated compressing deflection, including

the force-transducer, clamps, and isolators, found that the combined deflec-

tion at both clamps was 0.2 mm at 27 N (Fig. 1.8). That value was calculated

using the force-transducer and a high-speed camera before and after apply-

ing a compressive force of 27 N between both clamps. Because the distance

between the upper and lower clamp was 40 mm, the assumed overall strain

is 0.005 (0.2 mm
40 mm

) at 27 N.
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Figure 1.8 |The vertical displacement of the frame clamps in re-
sponse to static compression. The blue + signs are the captured (cam-
eras) maximum compressive deflection between the upper and lower clamp
for either 8 N, 27 N, and 47 N. These three states yielded a compressive de-
flection of either 0.04 mm, 0.2 mm, or 0.29 mm deflection, respectively. Black
x, the deflections between the clamps calculated with a finite element analy-
sis (FEA). The blue, solid line is a linear fit of the measured data (blue +).
The vertical, red line is the ∆F span in MTC force in response to impact
(falling height: 4 cm).
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1.3.3 Inferring kinematics of a running rat

A critical part of this work is to determine an adequate impact. It stands

to reason that forced cross-bridge detachment or muscle damage will happen

if the impact is high enough. However, the sarcomeres are evolutionarily

adapted to meet certain impact conditions, and studying them under their

normal working condition range requires adequate determination of the im-

pact force.

During the initial literature review to ensure correct impact condition,

only one paper was found that measured the ground-reaction-force (GRF)

for a Rattus norvegicus, Wistar (trotting at 0.9 m s−1) [86]. Unfortunately,

that paper only included the relative stance times for hindlimbs and fore-

limbs and had no detectable impact peaks in either of the cases. However,

others [87] have done extensive work on rodents similar to the Wistar rat

by capturing kinematics with cine-radiography and measuring GRF with a

custom build runway. The animal in Witte et al. (2002)[87] that had the

most similarities with the Wistar rat, in terms of morphology and GRF ratio

between hindlimb and forelimb stance, was the Tupaia glis. Although the

Tupaia glis did have a clear and visible impact peak, Witte et al. (2002) [87]

also only included relative stand durations. Therefore, to calculate a realistic

impact (see Sect. 1.3.4), it was assumed that the Wistar rat and the Tupaia

glis have the same stride duration as the Rattus norvegicus, Berkenhout rat,

which is approximately 100 ms [88]. Table 1.1 lists the Tupaia glis and the

Berkenhout rat with their data used to estimate the impact force and time

to impact peak for a Wistar rat trotting at ≈1 ms−1.
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Paper Witte et al. [87] Schmidt and Biknevicius [88]

Mammal species Tupaia glis� Berkenhout

Average mass 150-210 g�� 420 g ��

Running speed N/A 1.0 m s−1

Stance (hindlimb) normaliesed(0-1) 100 m s

Impact peak (time) 10 % of stance phase not clearly detectable

GRF of impact peak not clearly detectable 70 (% of BW)

Table 1.1 |Comparison of data of similar size mammals to calculate
impact force. The data used to calculate the estimated impact force for a
Wistar rat trotting at 1.0ms−1 (rounded from 1.3 ms−1) are written in bold.
� The animal in Witte et al. 2002 with the most similar GRF ratio between
hind and forelimb stance compared to the Wistar rat [86].
�� An adolescent Wistar rat can have a mass up to 500 - 600 g [89, 90].

1.3.4 Determining the impact

Choosing a proper contact material is vital to emulate an impact in a rat

hindlimb when running. If the chosen contact material’s stiffness is too high,

the applied impulse (p=F · dt) to the GAS becomes too high as well. Vice

versa, if the contact material has low stiffness, then the applied impulse to

the GAS will be too low compared to what a rat experience in its natural

environments. Table 1.2 gives the values used for finding a proper impact

material to emulate the impact when the rat makes touch-down running at

1 m s−1.
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Data description Unit Source

0.045 mass kg 42 g + 3 g (≈frame+GAS mass)

9.81 gravity m s−2

0.04 falling height m emulating rat running at ≈ 1ms−1

0.01 impduration s see Table 1.1

0.00012 cube area m2 estimated in Eq. 1.47

0.01 cube height m estimated in Eq. 1.47

Table 1.2 | The data used to infer impulse and impact material. The
data used to estimate the impulse and what Young’s modulus the contact
material should have.

An impact can be mathematically described as the period (T ) assuming

a simple harmonic motion, where the time t of the period is equal to the

reciprocal of the frequency (f)

t =
1

f
= T . (1.40)

The frequency itself is equal to

f =
ω

2π
, (1.41)

with ω being the angular frequency. If the cause of oscillation is due to a force

and that force is a linear restoring force, then the lengthen and shortening

of the material is sinusoidal. Therefore, the angular frequency, in a simple
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harmonic motion, can mathematically be described as

ω = f 2 π =

√
k

m
. (1.42)

This is because hook’s law dictates that when applying a force to a mate-

rial, the elongation of that material can be determined by mass (m) and

stiffness (k). Knowing the frequency is the reciprocal of time (Eq. 1.40) and

substituting ω in Eq. 1.41 with Eq. 1.42 time t is

t =
2π√
k
m

(1.43)

With

k = m

(
2π

t

)2

. (1.44)

Thus, for these impact calculations, the contact material that decelerates the

frame must have a stiffness of 2.2·104 N m−1 as

k = 0.045 kg (
2π

0.01 s
)2 (1.45)

≈ 1.8 · 104 N m−1 (1.46)

with 0.045 kg being the combined frame and GAS mass (Table 1.2) and 0.01 s

being the time between TD and impact peak (see Table 1.1).

The dimensions of the contact material was somewhat predetermined by

the frame size and the surrounding hook parts. With this in mind, the di-

mensions were given beforehand and subsequently adjusted in Eq. 1.47 to

match Young’s modulus of a known material that was easily accessible (for

final polystyrene cube dimensions, see Table 1.2) . In this case, an esti-

mated 2.2 GPa (Eq. 1.47) corresponded well with the know pascal value in
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polystyrene (3 GPa for low polystyrene value1)

E =
k A

h
=

2 · 104 N m−1 · 0.00012 m2

0.01 m
= 2.4 · 106 Pa . (1.47)

With this material property and time between TD and impact peak (see Ta-

ble 1.1), the impact force will be 4.0 N (Eq. 1.48), which is in good agreement

with rat impact forces found in the literature 3.5 N [88] with the weight 500 g

of a older Wistar rat [89, 90].

F = m

√
2gh

t
= 0.045 kg

√
2 · 9.81 m s−2 · 0.04 m

0.01 s
≈ 4.0 N (1.48)

1https://www.bestech.com.au/wp-content/uploads/Modulus-of-Elasticity.pdf
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Chapter 2

Methods

2.1 Experimental setup and muscle prepara-

tion

2.1.1 Schematic diagram of the experimental setup

In all trials, except for the passive experiments, there was a time difference

between reaching isometric force and the falling time of the frame. The time

difference between isometric force and impact was also affected by the two

variations in falling heights (experiments from either Study 1 or Study 2).

Therefore, both the signal that triggered the simulator (red lines in Fig. 2.1)

and the output signal that triggered all else (blue lines in Fig. 2.1) were sep-

arated throughout all experiments. When the force-transducer and cameras

were triggered, they started to record, and the captured data were after each

experimental trial transferred back to the computer (black lines in Fig. 2.1).

Note that Fig. 2.1 is a simplified drawing, where the connection lines may

give the impression of a one-way signal transfer when actually, all signals

to each hardware component were looped to detect any possible undesired
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hardware delay.

DAQ

stimulater

computer

voltage

switch

frame

electromagnet (x2)

cameras

Figure 2.1 |Schematics of the experimental setup. Beyond the frame
with the mounted force transducer, the experimental setup also involved
cameras, electromagnets, a switch, a stimulator, a data acquisition device
(DAQ), external voltage, and a computer to connect all the single hard-
ware components mentioned. The red lines illustrate an outgoing signal. For
example, the computer initiates each trial via the DAQ, which includes send-
ing a trigger signal to the stimulator, which subsequently initiates the muscle
stimulation via a positive and negative electrode fixed on the frame The blue
lines are also outgoing signals, however, sent with a delay relative to the red
lines (see text). The black lines are ingoing signals illustrating the capturing
of data from either the cameras or the DAQ sent back to the computer after
each trial.

2.1.2 The experimental setup in detail

Besides the frame, detailed in Sect. 2.1.3, the experimental setup needs sev-

eral other separate hardware components that work together for the experi-

mental setup as a whole to function correctly. These are:
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� High-speed cameras

� 2 hub-magnets

� 1 power supply

� 1 stimulator

� 1 switch

� 1 data acquisition device (DAQ).

� 2 stroboscopes (manually operated, not included in Fig. 2.1).

2.1.2.1 High-speed cameras

The cameras used for these experiments are high-speed cameras, capturing

data at 1825 Hz (HCC-1000 BGE, VDS Vosskühler, 07646 Stadtroda, Ger-

many) and were equipped with C-mount 25 mm focal length lenses (Xenon

25/0.95, Schneider-Kreuznach, 55543 Bad Kreuznach, Germany). Depend-

ing on the experiments, the high-speed cameras had either an extra 1 mm

(Study 1) or 3 mm (Study 2) extension tube to increase the focal length. The

downside to increasing the focal length is that the light spreads more easily

around the object of interest, reducing the camera’s depth of field (Fig. 2.2).

Each high-speed camera had a pixel resolution of 1024x256 and was con-

trolled via the HCC-1000 software (v5.0.0), intended for a Windows XP

operation system. The latter was a minor issue because the software needed
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a different frame grabber and external driver from another software to work

on a Windows 7 or 10 operation systems (for installation information, see

Appendix 6.4).

DOF (grey)

DOF (black)

Focal length

Figure 2.2 |Depth of field. The figure shows how the distance (focal
length) from the sensor (black square) to the lens (black ellipse) determines
the depth of field (DOF). If the focal length is changed, the distance from the
sensor to the grey ellipse, the DOF changes. That is because a longer focal
length results in more widespread light arrays (dashed grey lines) around the
focal point (vertical, black, dashed line). Outside the DOF, the image of
interest is more sensitive to focus (smear) as the light spreads out more.

2.1.2.2 Stimulator

A bi-phase stimulator (701C, Aurora Scientific Inc., L4G 1X6 Aurora ON,

Canada) issued outgoing pulses to stimulate the muscle, as long as the exter-

nal trigger input maintained 2 Volts (gated trigger mode). Through testing

and recommendations from a previous work [91], it became clear that to en-

sure tetanic muscle contraction pulses must be issued as 500µs square wave

pulses of 10 V (three times the twitch threshold) at 100 Hz. The duration
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of stimulation was 265 ms for Study 1 (Chapter 3) and Study 2 (Chapter 4).

However the resting phase between stimulations was 428 s in Study 1 and

254 s in Study 2. This was because of the difference in falling height and a

slightly lower factor-of-safety margin between both experimental setups.

2.1.2.3 Stroboscopes

For the camera to capture at 1825 Hz, the exposure time is hard-coded to

0.548 ms, which meant that there was not enough time for the digital sensor

inside the high-speed camera to be sufficiently exposed to light. For the

latter reason, two stroboscopes (Multiled PxT, GS Vitec GmbH, D-63628

Bad Soden Salmünster, Germany) provided a sufficient light source in each

experimental trial. As the frequency of each stroboscope was 20 kHz, they

did not interfere with the cameras when manually controlled.

2.1.2.4 Switch, magnets and DAQ

The switch is a custom build device made up of three parts. A 3-pin screw

terminal block, a 2-pin screw terminal block and a 12 volt PCB relay (M4-

12H), all soldered on a small solder point grid plate. The magnets, which

released the frame were two 12 volt hub-magnets (TDS-10A) and the Data

Acquisition Device (DAQ) was from National Instruments (Multifunction

I/O Device USB-6363, National Instruments Corporation, 11500 N. Mopac

Expwy Austin, TX 78759-3504, United States). Because the DAQ can only

safely generate an output signal of no more than 5 volts, and the electro-

magnets needed 12 volts to release the frame properly, the DAQ and electro-

magnets was connected to each other via the switch. The switch increased

the voltage signal from 5 to 12 volts via a plug-in power supply (Voltcraft

SNG-600-OW, Conrad Electronic AG, 8832 Wollerau, Switzerland).
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When the trigger signal arrived from the DAQ (Multifunction I/O De-

vice USB-6363, National Instruments Corporation, 11500 N. Mopac Expwy

Austin, TX 78759-3504, United States), an adjusted 12 volts from the power

supply (Voltcraft SNG-600-OW, Conrad Electronic AG, 8832 Wollerau, Switzer-

land) connected directly with the two 12 volt hub-magnets (TDS-10A), which

subsequently released the frame. The switch was necessary because the DAQ

could not safely generate an analogue output of more than 5 volts, which re-

sulted in time irregularities for the hub-magnets to release the frame.

2.1.3 The aluminium frame in detail

The right-angled, C-shaped aluminium frame had an upper and a lower clamp

construction for MTC fixation between its cantilever arms (Fig. 2.3). The

backbone of the frame was 120 mm long, its two arms protruded by 40 mm.

The total mass of the frame including the force transducer was 42 g. This

transducer (KD24S 20N, ME-Meßsysteme GmbH, 16761 Henningsdorf, Ger-

many), amplified with an analogue measuring amplifier (GSV-1H 010/250/2,

ME-Mesßsysteme, 16761 Hennigsdorf, Germany), was positioned above the

upper clamp, insulated from the latter by a plastic cuboid (Fig. 2.3, all in-

sulators are shown in dark blue). The lower clamp was an aluminium hook

jig connected to the frame via two, shiftable, inverted-U-shaped plastic insu-

lators allowing MTC length adjustment. For MTC fixation, the femur piece

was placed between the two upper, U-shaped clamps which were then screwed

to their third, inverted-U-shaped counterpart. At the MTC’s opposite end,

the calcaneus bone piece was placed in the hook jig of the lower clamp.

A rectangular aluminium profile, serving as a rail for the frame, was fixed

on the base plate of the whole experimental device. After being released

with an electromagnet, the frame fell freely, but guided (white double arrow
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for indication) by the rail, and was eventually decelerated by compressing

a polystyrene cuboid with mass 0.041±0.0001 g and ≈ 1 cm2 surface area

(see Table 1.2). Both the electromagnet and the polystyrene were in vertical

alignment with the overall frame-muscle centre of mass. To ensure minimal

rebound and oscillation of the frame after TD, two hooks on the lower part of

the frame were locked in under the horizontal pin at maximum polystyrene

compression (mechanism indicated in Fig. 2.3 by red, dashed, curved and

straight arrows). For minimising jerk the hook tips were covered with a

rubber layer.

Y

XZ

rubber

lower clamp

polystyrene

upper clamp

frame

rail

force transducer
upper 
insulators

hooks

pin

lower 
insulators

Figure 2.3 |The C-shaped frame,which was freely movable (symbolised by
the white double arrow) in thedirection along the rail. Red dashed arrows
indicate hook movement initiated by the reaction force from the solid alu-
minium plate at TD. This figure is from Christensen et al. (2017)[92], repro-
duced with permission from Springer Nature.

69



2.1.4 Ethical approval

All extracted GAS specimens (N = 16) were from freshly killed rats (Rattus

norvegicus, Wistar) provided by another animal study approved according to

Section 8 of the German animal protection law (Tierschutzgesetz, BGBl. I

1972, 1277; Thüringer Landesamt für Verbraucherschutz, Abteilung Gesund-

heitlicher und Technischer Verbraucherschutz). In that study, the rats were

anaesthetised by intraperitoneally injecting sodium pentobarbital (100 mg

per 1 kg body mass). Any possible replenishment of the sodium pentobar-

bital injection (10 mg per 1 kg body mass) was regulated by checking the

in-between toe reflex, the corneal reflex, and the ear pinch reflex. Pentobar-

bital targets the brain and nervous system and is the most used medium-long

acting drug in most common in veterinary medicine. Pentobarbital belongs

to the anaesthetic class of barbiturates[93]. Furthermore, the approved study

performed experiments on other leg muscles, and the applicants had no ob-

jection against GAS extraction immediately after the rats’ death. The results

of their experiments were not impaired by GAS extraction.

All sixteen animals were raised in an institute for animal science (Institut

für Versuchstierkunde und Tierschutz, Dornburger Straße 23, 07743 Jena,

Germany). There, official veterinarians regularly ensured the welfare and

care of the animals. The subsequent death and animal experiments also

took place at the same institute for animal science. Of the sixteen rats, nine

animals were in the first set of experiments (Study 1) and five animals in

the second set of experiments (Study 2). The last two animals were for the

preliminary testing.
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2.1.5 Preparation of the muscle (GAS)

Here is the experimental procedure for dissecting the GAS in numbered list
form:

1: Shave the rat leg free
of hair from the hip and
down. 2: Cut the skin at
the hip joint with a circular
cut around the leg. Cut in a
straight line down to after the
ankle joint and make a circu-
lar cut there. Now, the skin
can be removed easily from
the hip and downwards.

3: Remove the fascia from
the hip and free the leg from
the torso (done with stretch-
ing fascia free from muscle).
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4: Stretching the leg, a dis-
tal cut in m. semitendinosus
without damaging m. gastroc-
nemius (arrow 1) is possible
and safe to perform. Continue
this cut to natural resistance
is met (star), cut to the to the
insertion of m. biceps femoris
(arrow 2) and along with the
insertion to the patella (ar-
row 3). Cut between m. bi-
ceps femoris and m. glu-
teus superficial (arrow), so the
femur becomes visible, and
the m. biceps femoris can
be flipped backwards (dashed,
white arrow).

femur

1

2

3

*

5: From the end of the previ-
ous distal cut (star here and
in the previous picture), cut
to the insertion of a. saphena,
where the blood vessels are
small. Make two knots on
a. saphena to restrict blood
flow and cut through. Con-
tinue the cut along with the
insertion to the patella (ar-
row 2). Flip m. gracilis cra-
nialis (dashed, white arrow).

a. saphena

femur

1

2

*
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6: Leave nerves and blood
supply (not visible here) until
step 10.

n. ischiadicus

n. fibularis

n. tibialis

n. sural

7: From the previous cut in
step 5 (arrow 1), cut close to
a. saphena (arrow 2). Snip
the tendon of m. flexor dig-
itorum longus from under the
paw. Stretch the tendon away
from the leg for the tendon
to be cut free (cut along ar-
row 3). Continue this stretch-
and-cut procedure until the
m. flexor digitorum longus
is free from the distal part
m. gastrocnemius. Now, free
the lower part of m. gas-
trocnemius in the direction of
both dashed, white arrows.
8: cut the calcaneus half-
way through (dashed line) to
avoid damage to the underly-
ing blood supply. The rest of
the calcaneus will break as a
result of the cut.

tendon, m. flexor digitorum longus

1
2

3
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9: Use the Achilles tendon
the bony calcaneus piece to
free the tendon of m. gastroc-
nemius from its surroundings.
Thereafter, use the tendon of
m. flexor digitorum longus
to free the m. flexor digito-
rum longus from m. gastroc-
nemius to the knee joint. At
the origin of m. soleus, be-
tween m. gastrocnemius me-
dialis and lateralis, remove m.
soleus from m. gastrocnemius
(dashed arrow).

m. gastrocnemius
m. flexor digitorum longus

piece of calcaneus

10: Make sure all fascia,
blood supply, and nerves cov-
ering the m. gastrocnemius
are removed. 11: cut the
tendon below the patella, and
free the knee joint by cutting
the m. biceps femoris along
the femur on both the me-
dial and lateral side (black ar-
row, lateral). When the knee
joint is free, completely re-
move m. gastrocnemius by
cutting the bone on either side
of the muscle origin (white,
dashed lines).

m. gastrocnemius
m. flexor digitorum longus

piece of calcaneus

2.1.6 Direct muscle stimulation

The MTC of the GAS was freed from its surrounding tissues with the ex-

ception of small bone tissue pieces of the calcaneus and femur for fixating

the MTC in the frame. With a positive electrode wired to the upper frame

clamp and a negative electrode around the lower clamp, dircet stimulation

of the muscle was ensured. Due to poor tendon conductance an extension
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of the negative electrode was bluntly put into contact the dorsal part of the

muscle belly between m. gastrocnemius medialis and lateralis at the distal

fibre-tendon junction, where the electrode was held in place by the muscle

tissue adhesiveness. The muscle was stimulated (Aurora Scientific 701C)

with 500µs square wave pulses of 10 V (three times the twitch threshold) at

100 Hz to ensure tetanic contraction during the trials, as recommended in a

previous paper [91]. Experiments were conducted with the GAS contracting

isometrically at optimal fibre length while falling. The series of falling ex-

periments with each specimen were finalised by a trial without stimulation,

i.e., with passive muscle fibres. To prevent desiccation, the GAS surface

was moisturised once between trials with Ringer’s solution of 38◦C temper-

ature from a small spray flask. The experiments were conducted at room

temperature (23-25◦C).

2.2 Methods (Study 1)

In Study 1, the falling height of the frame emulates a rat running at approx.

1 m s−1 (4 cm height falling height). For more information on both surface

stiffness and the falling height, see Sect. 1.3.4. All experiments were done

with fully active muscles, except for the last trial, which was performed with

the stimulation switched off (passive). The muscle force was measured by a

force transducer serving as a rigid connector between the suspending clamp

of the upper tendon and the frame.
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2.2.1 Data acquisition, marker tracking, and digital fil-

tering

To study the shock-wave-induced kinematics of rat GAS muscles ex vivo (see

Sect. 2.1.6), the frontal area of the GAS was patterned by pressing the mus-

cle belly on a prepared array of high-grade steel markers (spheres, nominal

diameter 0.4 mm, mensuration N0, IHSD-Klarmann, 96047 Bamberg, Ger-

many) as seen in Fig. 2.4c. The GAS was then fixed in an aluminium frame

(Fig. 2.4a), which was dropped on the ground. Local muscle kinematics was

recorded with two high-speed cameras, each recording 256x1024 pixels per

sample at 1825 Hz (Sect. 2.1.2.1). The cameras were placed along a semicircle

with radius of ca. 15 cm on the open side of the C-shaped frame, and all were

focused on the frontal surface of the belly located in the semicircle’s centre.

The imaging planes were aligned in parallel to the vertical (rail) axis. Two-

dimensional images from a particular camera were respectively calibrated,

including distortion correction in linear proportion to distance to the image

centre. After automatic marker tracking using ‘DigitizingTools’ (Hedrick

Lab, University of North Carolina, Chapel Hill, USA; coded in MATLAB,

The MathWorks, Natick, USA), the marker positions were digitally filtered

using a moving average with a symmetric window of five samples. Accel-

erations were calculated with a symmetrical, first order (two point) central

difference formula.

2.2.2 Detecting touch-down (TD) and calculating strain

Touch-down TD was the point in time when the frame made contact with the

polystyrene. It was determined in each trial as the point before the earliest in-

stant at which the second time derivative of the COM position (acceleration;
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aCOM) had raised above noise level. As no delay between the acceleration

signals of frame and COM was detectable in all experiments around TD,

either signal could be used in principle to determine TD. However, detecting

TD with the COM acceleration was favourable because this method proved

more reliable than using frame marker acceleration. Although an extended

template size (spatial noise of just 0.1 pixel) was possible for frame marker

tracking, a slightly better signal-to-noise ratio could be achieved using an ar-

ray (individual noise: 1 pixel) of belly markers (see also sub-pixel resolution

in Appendix 6.4).

To determine belly strain ε
CE

, an upper and lower range of each ∼ 10 %

of total muscle length was identified. The vertical placement of both marker

subarrays was nearly symmetrically positioned around the midpoint of the

belly (location of maximum cross-sectional areaACE,0,max), as seen in Fig. 2.4c.

The horizontal, white lines across the belly represent the subarray limits and

thereby confine the denotation ‘contractile element’ (CE) in this work. The

representative vertical position of each marker subarray (yu and yl with u

for ‘upper’ and l ‘lower’) was calculated as the arithmetic mean of the ver-

tical positions of all markers in this subarray. In Fig. 2.4c, the aponeuroses

extend on both lateral sides of GAS, i.e., the field of view. Thus, by solely

using markers from the centre of the yu and yl regions, care was taken to

analyse the kinematics of fibres alone rather than any aponeurosis material.

The calculated fibre material strain ε
CE

= ∆LCE/LCE,0 was calculated with

the length LCE spanning the fibre material in the centre of the muscle belly

and a corresponding reference length LCE,0: ∆LCE = LCE − LCE,0. The

reference length that defined zero percent strain LCE,0 = yu− yl was the dis-

tance between the mean vertical positions of an upper (yu) and a lower (yl)
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marker subarray measured at TD in each trial. Each subarray contained four

to eight markers. The reference length was the trial-specific LCE at frame

touch-down. The reference length of the COM (LCOM,0) was the COM’s

vertical distance to the frame marker at TD, and ∆LMTC =LCOM −LCOM,0

is the corresponding MTC displacement after TD.

2.2.3 Calculating ∆F , the CE stiffness (KCE), the MTC

stiffness (KMTC), and inferring the tendon-aponeurosis-

complex stiffness (KTAC)

Beyond describing CE-internal kinematics by strain ε, Newton’s second law

∆F = m · (a
COM

+ g) was used to calculate the dynamic force change ∆F

between MTC ends in response to the impact. The symbols are: muscle mass

m, COM acceleration a
COM

, and gravitational acceleration g. The COM

position is calculated as the arithmetic mean of all steel marker positions on

the muscle (detailed in Fig.2.4 legend).
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Figure 2.4 | Drawing of the experimental frame. a: the frame before
TD. GAS is fixed between the upper and lower clamp (solid dark-grey rectan-
gles). Above the upper clamp is an insulator (solid, black rectangle) and the
force transducer, respectively, which are both fixated to the frame backbone
(squared C-shape). The solid, black insulators prevent muscle stimulation
to interfere with the force transducer. The light-grey spots on the muscle
belly are illustrating the steel markers that pattern the muscle belly, which
we used to calculate the dynamic force change between MTC ends in re-

sponse to the impact (∆F = ¨BM · m= aCOM · m) after TD, with m being
the GAS mass, BM the arithmetic mean of all belly markers’ vertical (y)
positions and aCOM the correspondingly estimated acceleration of the centre
of mass. b: the frame after TD with the polystyrene (hatched rectangle)
being compressed. In b, the belly’s stretch response to the impact is drawn
exaggerated. c,: a video frame image of the muscle belly from one of the trial
cameras, where the white spots are the steel markers, and the dashed, black
lines are the upper and lower limits of the horizontally spread upper and
lower ranges of CE markers for which yupper and ylower, respectively, symbol-
ise the arithmetic means of the vertical marker positions in each the upper
and the lower range. d: an example of how ∆LCE changes over time, after
TD. A more detailed description of the functionality of the frame is given
in Sect. 2.1.3. This figure is from Christensen et al. (2021) [94], reproduced
with permission from Springer Nature.

Because CE mass is much higher than the tendon-aponeurosis-complex
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(TAC) mass, ∆F also approximates the dynamic force change between CE

ends well. Since the dynamic force change (∆F (t)) as well as MTC deflec-

tion relative to the frame ∆LMTC(t) =
(
y
COM

(t) − yframe(t)
)
− (y

COM
(t =

0) − yframe(t = 0)) and CE-internal elongation ∆LCE(t) are all known as

functions of time t in each single trial, the kMTC and kCE can be calcu-

lated based on all data points in the respective force-elongation relations

∆F (∆Li(t)) between TD and the instant of maximum centre of mass accel-

eration a
COM ,max (examples in Fig. 2.5). Accordingly, all presented kMTC and

kCE data are estimated with the 3-parameter fit

F (Li(t)) = k · Li(t) + b+ d · L̇i(t) (2.1)

using three parameters k, b, d to fit a linear function F (Li, L̇i) to measured

data with i being either i = CE or i = MTC and F = ∆F . This over-

determined linear equation system for k, b and d is solved by the Matlab

operator “\”. For comparison, the effect on estimating kMTC when neglecting

the damping parameter d is shown in Fig. 2.5 (slope of ‘2 parameter fit’).

From this, the stiffness

kTAC =
KCE ·KMTC

KCE −KMTC

(2.2)

of the ‘tendon-aponeurosis complex’ (TAC) was inferred based on the model

idea that the MTC consists of a mass that is suspended to the frame (or

bone) by two compliant elements arranged in series (CE and TAC) given the

overall MTC and the local CE stiffness values.
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Figure 2.5 |Force change ∆F versus displacement ∆LMTC of the
MTC’s COM in the initial phase (ca. 5 ms starting with TD) of
shock-wave-induced strain. Panels from top to bottom show examples for
three trials of the same muscle specimen ‘d4s1’: ‘d4s100’, ‘d4s108’, ‘d4s110’
(crosses). The dynamic force change ∆F is calculated as the corresponding
vertical acceleration a

COM
of the MTC’s COM (right y-axis in Fig. 3.3) plus

gravitational acceleration and multiplied by the muscle mass m. The red,
solid line is is the 3-parameter fit to data using Eq. 2.1 with the light-blue line
being the length part of this kMTC fit. The slope of ‘2 parameter fit’ is kMTC

when neglecting the damping parameter d. This figure is from Christensen
et al. (2017) [92], reproduced with permission from Springer Nature.
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2.2.4 Exclusion criteria

Not all data were suitable for use within these analyses; therefore, exclusion

criteria at different stages of the data processing were used. In particular,

excluding the following: (I) an entire trial if the force at TD was less than

95% of the trial-specific isometric force, where the latter was determined as

the force value to which the force transducer signal converged shortly before

or after the impact response (see also Fig. 2.6); (II) an entire trial if material

shortening (ε
CE

< 0) preceded material elongation as an initial response to

TD (e.g., Fig. 2.7,bottom); (III) a marker in a trial if it had obviously glided

across the muscle surface during the experiment; and (IV) a marker in a

trial if it showed phase and/or amplitude irregularities (either in coordinate

position or acceleration) when compared to all other markers. Note that all

data analysed and presented did not meet the exclusion criteria (I)-(IV). As

an exception, data regarding the initial force, which are shown in Fig. 3.1

and Fig. 4.1 only needed to pass criterion (I).
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Figure 2.6 |Example of experimental data: MTC force and MTC
length around touch-down. Light blue, thick line: force transducer signal
(left y-axis). Black, thick line: MTC length excursion ∆LMTC (right y-axis)
from MTC length LMTC,0 at TD. Vertical, dashed line: start of stimulation at
t= -87 ms. Vertical, grey line: touch-down (TD) at t= 0. The green, shaded
area indicates the time period in which the isometric force F was determined
as the maximum low-frequency value from the force transducer trace, that is,
with additionally excepting the (high-frequency) impact period from TD to
15 ms later. Usually, F was the value to which the force trace converged in the
10-15 ms after the impact period. The force decreased thereafter, which was a
reproducible characteristicphenomenon in these experiments, particularly in
the least fatigued muscles. In some experiments, the maximum in the force
trace, except for the impact peak, was reached before TD. If force at TD
and isometric force F differed by more than 5%, the trial was excluded from
analysis (see sect. 2.2.4). This figure is from Christensen et al. (2017) [92],
reproduced with permission from Springer Nature.
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Figure 2.7 |An example of CE strain inclusion or exclusion.Plots of
the local fibre material strain ε

CE
(black,thick, solid line: ε

CE
= 0 at TD), net

vertical MTCacceleration a
COM

(light blue, thin, solid line) – that is,the arith-
metic mean of all steel markers’ values approximating centreof mass (COM)
kinematics – and vertical acceleration of thesuspending frame aframe (dark
red, thin, solid line) for trials‘d4s100’ (A) and ‘d5s201’ (B). Vertical, grey
linesindicate time instants of TD (t= 0 s) and maximum dynamic strainam-
plitude ε

CE ,max during shock response t> 0 s.The bottom trial ‘d5s201’ was
excluded from the analysisbecause its earliest extreme in strain (at ca. 9 ms)
was aminimum rather than a maximum as in the top trial ‘d4s100’(at ca.
4.5 ms). This figure is from Christensen et al. (2017) [92], reproduced with
permission from Springer Nature.
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2.3 Methods (Study 2)

In Study 2, the falling height of the frame emulates a rat running at approx.

0.5 m s−1 (1 cm falling height). For more information on both surface stiff-

ness and the falling height, see Sect. 1.3.4 and Sect. 2.3.1. The basis of the

processing of data in this chapter are the same as described in Sect. 2.2 for

Study 1, with the exception that each camera is processed separately and

a new location for the frame marker was used due to the previous frame

marker’s potential erroneousness influence in estimating energy dissipation

and damping coefficients (Sect. 2.3.3). All experiments were done with fully

active muscles, except for the last trial, which was performed with the stim-

ulation switched off (passive). The muscle force was measured by a force

transducer serving as a rigid connector between the suspending clamp of the

upper tendon and the frame.

2.3.1 Lowering the falling height

The falling height for an impact corresponding to a rat running at 1 m s−1 was

inferred in Sect. 1.3.4. The relation between falling height (h) and the mean

(ground reaction) force on the frame during the impact (∆Fimp) arises from

combining the conservation of mechanical energy (Eq. 2.3) and the impulse-

momentum equation (Eq. 2.4),

mgh =
1

2
mv2 → v =

√
2gh (2.3)

and

p = mv = ∆p→ ∆Fimp =
∆p

∆t
=
m
√

2gh

∆t
, (2.4)
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respectively, with m being the frame mass (42 g, twenty-one times higher

than GAS mass: Table 4.1), v the frame’s TD velocity, p the frame’s linear

momentum at TD, ∆p its change (impulse) during the impact of duration

∆t and g the gravitational acceleration. Thus, lowering the falling height to

1 cm will reduce the impact with a factor of 0.5 (Eq. 2.4). An example of the

impact difference is shown in Fig. 2.8.

Figure 2.8 | The measured isometric force traces in two trials for
two different falling heights. The black solid lines and grey solid line are
the isometric muscle force measured by the force transducer in falling heights
of either 4 cm (a) or 1 cm (b), respectively. The black dashed line and the
grey dashed line are the measured isometric forces just before impact, in
falling heights of either 4 cm or 1 cm, respectively. The hatched areas in both
a and b are the increase in the measured isometric force due to an impact
in experiments of either 4 cm or 1 cm falling heights, respectively.

2.3.2 Determining work-loop

Similar to Sect. 2.2.3, with known values for length (L(t)) and length rates

(L̇(t)), stiffness kCE, kMTC and damping dCE and dMTC properties were

inferred from the 3-parameter function in Eq. 2.1.

Contrary to Study 1, the force-displacement data in Study 2 were analysed

86



using Eq. 2.1 in the period between TD and when aCOM returned to zero for

the second time (≈ 17 ms, Fig 2.9). The area enclosed by such a loop is

approximated, for both MTC and CE, using the Right Riemann summation

method.
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Figure 2.9 | Example of noise and delay in frame marker accelera-
tion before and after TD. The solid, black line is the acceleration of the
frame marker located at the left, lower insulator. Solid, grey line is the accel-
eration of the frame marker located on the lower clamp. The solid, grey line
leads solid, black line with 0.5 ms (1 frame) in d2L209p. This trailing ten-
dency was examined in 23 trials, and at no point was insulator earlier than
hook. In addition, the solid, grey line never led with more than 0.5 ms. In few
trials no delay was found. The dashed, black line is aCOM signal for this trial
and the dotted, vertical, black lines indicate the span between TD and when
aCOM returns to zero for the second time. This figure is from Christensen et
al. (2021) [94], reproduced with permission from Springer Nature.

2.3.3 Dealing with the non-synchronicity of cameras

and the critical choice of the marker on the frame

To calculate work-loops and damping coefficients in MTC and CE in response

to impacts, it was nessesary to remove two potential sources of systematic
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errors in the data analysis. Figure 2.9 shows the acceleration signals of two

different marker positions on the frame (hook and insulator). The hook

marker was on the aluminium part of the lower clamp, formed as a hook,

and the insulator marker was on the outside of the left, lower insulator (see

Fig. 2.3). In general, while the hook marker had a higher noise-to-signal ratio

than the insulator marker, the hook systematically led the insulator trajec-

tory by 0.5 ms. The latter finding is decisive for the calculation of reliable

work-loops. The influence of the frame marker position used to calculate

∆LMTC with and without a 0.5 ms frame marker delay are shown as exam-

ples in Fig. 2.10b and a, respectively. Accordingly, the MTC was found to

dissipate 45.6µJ during one full oscillation period after TD if hook was used

to calculate ∆LMTC (no marker delay), while only 2.7µJ would be calculated

if insulator was used to calculate ∆LMTC (marker delay).
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Figure 2.10 | An example of time delays effecting the work-loop in
trial d2L209p. a The hook marker, which had a systematic 0.5 ms lead on
the insulator maker (Fig. 2.9), was used to calculate ∆LMTC , based on one
camera view. b insulator used to calculate ∆LMTC , based on the same view.
c, d2L209p with the one frame shift between the two cameras as determined
by MinPos (Table 2.1). d d2L209p with a one frame enforced shift between
the two cameras, ignoring the time delay determined by MinPos. In a,b,c,d,
the solid, grey line is the measured ∆LMTC-∆F response (work-loop) to
the impact. The solid, thin, black line is the respective linear 2-parameter
(force (length)) fit to the data. The solid, black loops depict the respective 3-
parameter fits to the data, using the parameters ki, bi, di of each the function
Fi(Li, L̇i) (see Eq. 2.1), which linearly depends on length Li and time rate of
length change L̇i; the dashed, black line is the respective length-dependent
contribution. d2L209p work-loop encompasses one oscillation period that
spans between TD and the instant closest to zero when aCOM returns to
zero for the second time (Fig. 2.9).a is the same figure as Fig. 4.4b. This
figure is from Christensen et al. (2021) [94], reproduced with permission
from Springer Nature.

The frame marker used to calculate ∆LMTC should ideally not even be

on the lower clamp, rather, on the bony tissue of calcaneus or femur to guar-
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antee the elimination of any potential frame property interference. In these

experiments, however, both bony tissues proved unreliable for marker track-

ing.

The VDS Vosskühler cameras used in these experiments (see Sect. 2.1.2.1)

had an internal hardware buffer (ring buffer), thus, when the cameras were

ready to record, waiting for an external hardware trigger, images started to

fill the internal camera buffer memory (continuously removing the earliest

entry when full). The ring buffer then potentially may or may not add a

0.5 ms ( 1
1825

Hz) offset to one of the two cameras, when the hardware trig-

ger impulse enters. This potential recording discrepancy made the analysis

susceptible to a similar effect as the frame marker delay above. In Fig. 2.10c

(same trial as above), no camera offset (uncorrected data) yielded a negative

energy dissipation of -14.6µJ for the MTC as a mean of both cameras. On

the contrary, a manually enforced 1-frame delay (0.5 ms) to one of the two

cameras resulted in a mean MTC energy dissipation of 51.5µJ (Fig. 2.10d)

during one full oscillation period after TD.

Nonetheless, some calculated mechanical properties, such as strains and

stiffnesses of the MTC and CE are robust with regard to camera synchro-

nisation and marker position delay. In the four cases considered above, the

estimated MTC stiffness values, from a 3-parameter fit (Eq. 2.1), span be-

tween 1560 N m−1, 1630 N m−1, 1620 N m−1, and 1530 N m−1 for Fig. 2.10a,b,c

and d, respectively.

To systematically check for camera offsets, three different methods of de-

tection were used (Table 2.1). Common for all three methods was the attempt

to detect an equal number of steel markers in each of the two cameras. The
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first method subtracted the arithmetic mean of all individual tracked mus-

cle belly frame numbers, at which the markers reached their lowest vertical

positions, in each camera and subsequently subtracted and rounded the dif-

ference to the nearest integer (MinPos). In the second method, the TD

frames were found in each camera and then subtracted (ImpIdx ). The third

method compared the frame number that included the lowest aCOM value in

each camera (MinAcc), which was chosen due to its narrow and easily de-

tectable minimum. All three methods indicated a camera offset of either 1, 0,

or -1. As seen in Table 2.1, there were camera offset indications throughout

the experiments, but all indicators proved to be inconsistent. As a conse-

quence thereof, the work-loops were calculated separately and presented as

a mean for both cameras.
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max dev 0 dev 1 dev 2 dev 3 dev N

MinPos 1 20 20 - - 40

ImpIdx 3 18 16 4 2 40

MinAcc 1 24 20 - - 40

MinPos|ImpIdx* 3 18 17 4 1 40

MinPos|MinAcc * 1 26 14 - - 40

ImpIdx|MinAcc* 3 17 20 2 1 40

AllSame* - 12 - - -

Table 2.1 | Camera recording inconsistencies within each trial that
did not fulfil the exclusion criteria.The table lists the three methods
of detecting inconsistencies (MinPos, ImpIdx, MinAcc) and the consistency
between them (MinPos|ImpIdx, MinPos|MinAcc, ImpIdx|MinAcc).
AllSame is number of trials where all three methods of detecting (MinPos,
ImpIdx, MinAcc) are consistent. All three methods and comparisons of
methods, are listed with the maximal found frame deviation(max dev) and
how the found deviations, e.g. the number of frames, are distributed (0 dev,
1 dev, 2 dev, or 3 dev) across all trials (N). For the three methods, the
MinPos, is the difference between the lowest centre of mass COM position in
each of the two cameras. ImpIdx, is the frame difference between the touch-
down (TD) index value in each of the two cameras.MinAcc, is the frame
difference between the lowest acceleration of COM aCOM value in each of the
two cameras. This table is from Christensen et al. (2021)[94], reproduced
with permission from Springer Nature.
* The numbers given here compares the inconsistencies between thw methods
of detection, i.e. how often two methods has the same findings for a trial.

2.3.4 Scaling the MTC and CE findings

Under the assumption that the CE region is an isotropic and homogeneous

material, the stiffness of the contractile element kCE was scaled to the stiffness
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of a half-sarcomere khs with

khs(kCE) =
r · Ahs · E

Lhs
=
r · Ahs kCE ·LCE,0

ACE,max,0

Lhs
, (2.5)

where LCE,0 and the maximum cross-sectional area ACE,max,0 are anatomical

data from Table 4.1, and E is Young’s modulus. The half-sarcomere length

(Lhs) is set to 1150 nm [95], and the area of an elementary cell (1 myosin and

2 actin filaments) is Ahs = 1540 nm2 (Fig. 6.9).

Assuming that ACE,max,0 takes up 83% (r= 0.83) [96] of a macroscopic

muscle’s ACSA and that the remaining 17% does not carry any significant

loads at these lengths [97, 98] the corresponding isometric force per half-

sarcomere Fhs was calculated as

Fhs(F ) =
F · Ahs

r · ACE,max,0
. (2.6)

Of which the parameter ACE,max,0 was chosen because the examined fibre

area, with LCE,0 = 7.5 mm (Table 4.1), was located approximately at the mus-

cle belly centre at which ACE,max,0 applies rather than ACE,avr,0. F is the

isometric force generated by the GAS MTC just before TD, which is mea-

sured by the force transducer.

By correspondingly applying the above scaling rules for lengths and forces,

the work per half-sarcomere (whs, right y-axis Fig. 4.3c) is estimated as

whs(wCE) =
wCE · Lhs · Ahs

r · LCE,0 · ACE,max,0
, (2.7)

where the work of the contractile element (wCE) was calculated as the area

enclosed by a work-loop (see Sect. 2.3.2). The damping coefficient per half-
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sarcomere (dhs) was calculated with

dhs(dCE) =
dCE · Ahs · LCE,0
ACE,max,0 · Lhs

, (2.8)

and the damping coefficient of the contractile element (dCE) was inferred

from Eq. 2.1. Comparing Eq. 2.5 to Eq. 2.8 reminds us that linear stiffnesses

and damping coefficients scale the same with the dimensions of the finite

volumes of which they represent these mechanical properties.

2.3.5 Model ideas (short version)

In line with the aim of Study 2, the experimental data will be probed by

two different muscle models to explain which parameters that are essential

to model cross-bridge stiffness.

In model1 [1] (Fig. 2.11), the half-sarcomere consists of two compartments

in-series : the cross-bridges and the myofilaments. The force generated by a

single cross-bridge is assumed to be a constant, with an associated constant

deflection (∆LCB). The overall half-sarcomere force Fhs equals the sum of all

cross-bridge forces (FCB), which scales linearly with the number of attached

heads (nCB), like the overall stiffness (kCB = FCB

∆LCB
) of the cross-bridge part.

Knowing the constant parameters ∆LCB and myofilament compliance Cfil,

the half-sarcomere stiffness can be determined as

khs(FCB) =
1

Cfil + ∆LCB

FCB

. (2.9)

In a fully fresh muscle with FCB <FCB,max = 445 pN (see Sect. 4.1), leaving

both parameters in Eq. 2.9 open for a fit to the data in Fig. 4.2, ∆LCB = 85.7 nm
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and Cfil = 0.4 nm pN−1 (Table 4.2).

Figure 2.11 | Elements that, according to model1 and model2, con-
tribute to the half-sarcomere stiffness khs . In the elastic model1 , the
myofilament compliance (Cfil) is in series with stiffnes kCB the number of at-
tached in-parallel myosin heads (cross-bridges, CB). The force generated by
a single cross-bridge is assumed to be a constant, with an associated constant
deflection ∆LCB. Thus, the stiffness of the ensemble of cross-bridges only
(kCB = FCB

∆LCB
) scales linearly with the number of attached myosin heads. In

the non-linear, visco-elastic model2 , the half-sarcomere stiffness khs is like-
wise determined by the number of in-parallel attached myosin heads, with
each head’s driving non-linear force-length relation FCB(LCB) depicted in the
top right inset, and a collective of in-series passive stiffnesses denoted myofil-
ament stiffness (kfil = 1

Cfil
), see Eq. 2.11. kCB(FCB) (Eq. 2.10) is determined

under the assumption that LCB = LCB,opt = 7 nm, i.e., FCB = FCB,max. See
Fig. 6.8 for FCB(LCB) as determined with original model parameters. Note
that, to compare model1 and model2, the visco-elastic PDE from model2 is
excluded (accordingly, PDE is marked in red). This figure is from Chris-
tensen et al. (2021) [94], reproduced with permission from Springer Nature.
* The dashed line at the asterisk marks the end of the work-stroke.
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model2 [2] is more complex (Fig. 2.11): apart from the myofilaments, the

cross-bridge itself is divided into a catalytic domain and a light chain do-

main that can rotate, actuated by a Coulomb force drive, with respect to

the catalytic domain (both represent the S1 part). Combined, light chain,

S2 part and the myofilaments form the (serial) elastic part, which is col-

lectively referred to by the stiffness symbol kfil further below. The un-

derlying model idea consists of a repulsing Coulomb force generated within

the catalytic domain, which upon myosin head attachment causes a driving

force acting between the catalytic and the light chain domains. The driv-

ing force then levers the light chain such that the cross-bridge can generate

force between the actin and the myosin filaments ([Fig. 2] [2]). According

to model2, the force FCB(LCB) generated by the attached cross-bridges in a

half-sarcomere is a non-linear function of the model-internal lever arm coor-

dinate LCB ([Fig. 2] [2]), and the corresponding cross-bridge stiffness kCB is

kCB(FCB) = 2 · FCB,max ·

√√√√( FCB

FCB,max
− −c1

c23

)3

c1

, (2.10)

where FCB,max is the maximum force generated by the cross-bridge ensem-

ble in a half-sarcomere (their current number: nCB). The c1 is a constant

that depends on c3 and assumes the lever coordinate (LCB,opt) is at its op-

timal lever arm position corresponding to a cross-bridge generating about

FCB,1 = 4-5 pN (FCB,max =nCB,max ·FCB,1, with nCB,max ≈ 90; for more detail

regarding Eq. 2.10, see Appendix 6.4). At LCB =−c3 the assumed function

FCB(LCB) of the cross-bridge-internal force-length relation has a pole.

In line with model1, kCB in model2 acts in-series with myofilament (plus

S1) stiffness kfil =
1

Cfil
= 150 pN nm−1 [53] to make up overall khs. Further, it

was assumed that all cross-bridges in model2 are always at LCB,opt = 7 nm.
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With this, just like in model1, the isometric force FCB =u · FCB,max and the

cross-bridge stiffness kCB =u · kCB,max are assumed to scale linearly with

solely the number nCB of attached myosin heads (u= nCB

nCB,max
). Thus, the

overall khs for model2, when additionally using the latter assumption, can

then be expressed as

khs(u) =
u · kCB,max · kfil
u · kCB,max + kfil

, (2.11)

leaving only the c3 value open for fitting (see Table 4.2) in Eq. 2.10 because

kCB,max = kCB(FCB =FCB,max).
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Chapter 3

Study 1: strain in shock-loaded

skeletal muscle

3.1 Results

All experiments were conducted within the first hour of m. gastrocnemius

dissection to prevent permanent muscle tissue damage due to ischaemia (see

Sect. 1.2.2). The mean anatomical data of the GAS specimens (N = 9) used

in this chapter are in Table 3.1.
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Description Symbol Data Unit Source

Animal mass manimal 413±16 g measured

GAS mass m 2.0±0.3 g measured

MTC length at 90◦ LMTC,90◦ 43±0.3 mm measured

MTC length in frame LMTC,0 45 * mm LMTC,90◦−2

Belly length Lbelly,0 33� mm LMTC,0−LCE,0
Reference length LCE,0 18±0.8 mm measured

Proximal tendon length Lprox,0 2 * mm literature

Distal tendon length Ldist,0 10±0.35 mm measured

Total tendon length Ltendon,0 12 * mm Lprox,0+Ldist,0

Maximum belly ACSA ACE,0,max 109±4.5 mm2 measured

Minimum belly ACSA ACE,0,min 73±3.6 mm2 measured

Tendon ACSA Atendon,0 2.8±0.2 mm2 measured

Table 3.1 |Anatomical data in Study 1. The anatomical data given as
the mean value ± standard deviation of the nine specimens (N = 9), where
the anatomical cross-sectional area (ACSA) was calculated by approximating
the geometrical form of the area with a half-ellipse. One half-axis was mea-
sured as half the width of the muscle projection in the frontal view (Fig. 2.4c)
right before TD. The second half-axis was calculated as the width along the
frontal visual axis; this number was calculated from the shot of another cam-
era at the same instant, and this camera was positioned to view along an
axis rotated by 40◦ against the frontal view axis (partial side view). This
table is from Christensen et al. (2017)[92], reproduced with permission from
Springer Nature.
*The measured values of MTC length at 90◦ ankle and knee angles (LMTC,90◦)
and of distal tendon length (Ldist,0) as well as the very short proximal tendon
length (Lprox,0) are equal (within 1 mm) to those published elsewhere [83].
�Lbelly,0 = 32 mm measured by others [99].

The experimental conditions correspond to total ischaemia, a condition

in which force decline has been described as fatigue [74, 100, 101] (see also
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Sect. 1.2.2). Each muscle specimen fatigued with consecutive trials, which

can be seen from the trial-specific isometric force F decreasing almost lin-

early with time after muscle extraction (Fig. 3.1). Isometric force satura-

tion tendencies were seen after 30-45 min at levels between 2% and 13% of

maximum (non-fatigued) isometric force Fmax. By linear extrapolation from

60 min back to the instant of extraction (thick, solid line in Fig. 3.1), the esti-

mated mean maximum value of F =Fmax = 30 N, which can be expected from

GAS anatomy (Table 3.1) and literature (see Sect. 3.2.1). On average, max-

imum values of ∆F are 0.35 ± 0.07 N, and they are practically independent

of fatigue (see left y-axis in Fig. 3.3).
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Figure 3.1 |Initial isometric muscle force F at TD versus time after
muscle extraction. Only trials with a TD force of at least 95% of its
isometric value were included, where the latter was defined by the value to
which the force transducer signal converged shortly before or after TD (see
Fig. 2.6). Trials were named (see key top right) after consecutive days of
experiments (‘d#’), the first (‘s1’) or second (‘s2’) specimen extracted that
day, and the trial number (starting with first as ‘00’). The thick, solid line
is a linear fitting line to all data points below 60 min. The extrapolation to
the instant of extraction at 0 min was assumed to represent the maximum
isometric force F =Fmax = 30 N. In Figs. 3.2, 3.4, 3.6 and 3.3 the number of
trials included is lower due to further exclusion criteria (see Sect. 2.2.4). This
figure is from Christensen et al. (2017) [92], reproduced with permission from
Springer Nature.

100



The instants at which maximum accelerations occurred were 7.4±1.0 ms

and 7.7±0.9 ms for the frame and COM, respectively. While the COM sig-

nal lagged the frame signal by 0.3 ms, on average, a t-test showed that this

lag was insignificant at p> 0.05. The maximum COM acceleration values

a
COM ,max were 165±23 m s−2 (see right y-axis Fig. 3.3), which were reached,

on average, 2.7 ms earlier than maximum strain. However, strain kinematics

are much more variable (see standard deviation of 2.5 ms): in some trials,

maximum strain was even reached before maximum COM acceleration, par-

ticularly in non-fatigued muscle with low strain maxima (Fig. 3.2,top). The

impact duration measured as the time spent from TD to frame (or bone)

acceleration returning to zero was 10.7±0.9 ms. Zero COM acceleration oc-

curred at 11.3±0.7 ms, and the delay to zero frame acceleration was doubled

to 0.6 ms as compared to instants of their maxima, which was significant on

a level p< 0.05 using a t-test.
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Acceleration of COM (d4s100)

Strain (d4s100)
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C

A
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ε

Figure 3.2 |Time courses of CE strain, accelerations of COM and
frame. Plots of the local fibre material strain ε

CE
(black, thick, solid line:

ε
CE

= 0 at TD), net vertical MTC acceleration a
COM

(light blue, thin, solid
line: arithmetic mean of all steel markers’ values approximating the centre
of mass, i.e., COM kinematics), and vertical acceleration of the suspend-
ing frame aframe (dark red, thin, solid line) for three trials (from top to
down) of the same muscle specimen: ‘d4s100’, ‘d4s104’, and ‘d4s108’ (nam-
ing: Fig. 3.1). The vertical, grey lines indicate time instants of TD (t= 0 s)
and the maximum dynamic strain amplitude ε

CE ,max during shock response
(t> 0 s). This figure is from Christensen et al. (2017) [92], reproduced with
permission from Springer Nature.
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Figure 3.3 |Muscle force peak (dynamic force change ∆F ) dur-
ing shock-wave-induced (‘dynamic’) fibre material strain after TD
versus isometric force F at TD. The dynamic force change ∆F was cal-
culated as the corresponding vertical acceleration a

COM
of the MTC’s COM

(right y-axis) plus gravitational acceleration multiplied by muscle mass m
(see sect. 2.2.3). The COM position was calculated as the arithmetic mean
of all steel marker positions. The mean ∆F is 0.35 N± 0.03. This figure is
from Christensen et al. (2017) [92], reproduced with permission from Springer
Nature.

Across all trials, the muscle fibre strain increased from ≈ 0.2% to 1 % in

fully fresh and active muscle to non-stimulated fibre material, respectively

(Fig. 3.4). To examine fibre strain in muscle fibre, the strain is divided into

two contributions: ‘initial strain’ due to the initial, isometric force and ad-

ditional ‘dynamic strain’, due to the impact response, as plotted in Fig. 3.2.

For the initial strain, two limit cases of locating elasticity as a potential cause

are conceivable: strain is either (i) solely located in the myosin heads or (ii)

distributed across all sarcomere structures that act in series, that is, heads

and actin plus myosin filament backbones. By further assuming in the case

(i) that decreasing initial force was solely due to the reduced number of at-

tached cross-bridges, the initial strain of the fibre material would always be
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the same, regardless of the force – that is, any single cross-bridge generates

its maximum force (about 0.4% [34, 1, 102, 103, 104], see bottom, horizontal,

blue, dashed line in Fig. 3.4). In any other case, the most simple model relat-

ing initial fibre force to initial strain would be a linear stiffness (see bottom,

sloped, red, solid line in Fig. 3.4 with zero strain at zero force and -0.4% at

maximum isometric force), which is case (ii). For one trial, the initial and

dynamic strain contributions are visualised in Fig. 3.4 by vertical arrows –

a blue, dashed arrow (i) and a red, solid arrow (ii) for the two initial strain

cases as well as a black, solid arrow on top of them for the measured dynamic

strain.
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Figure 3.4 |Maximum shock-wave-induced (‘dynamic’) fibre mate-
rial strain ε

CE,max after TD versus isometric force F at TD. Data
for fully active muscles on the right side of F = 0 and non-stimulated (‘pas-
sive’) muscles on the left. The grey-shaded region indicates a range of values
from trials with passive muscle.Horizontal, blue, dashed as well as sloped,
red, solid baselines at ε

CE,max
< 0 symbolise initial strain hypothesised for

cases (i) and (ii), respectively (see Sect. 3.1). Dynamic strain values at which
cross-bridges may be forcibly detached in cases (i) and (ii) are symbolised by
corresponding lines at ε

CE,max
> 0, where both are placed at ∆ε

CE,max
= 0.8%

distances from their respective baselines. Red, solid and blue, dashed ar-
rows fromε

CE,max
< 0 to ε

CE,max
= 0 at F ≈ 15 N indicate initial strain values

for cases (i) and (ii), respectively. The black arrow from ε
CE,max

= 0 to the
first trial of specimen ‘d4s2’ is one example of measured dynamic strain. The
predicted force limits for forcible cross-bridge detachment are 20.1 N (blue,
dashed double arrow) and 11.8 N (red, solid double arrow) for cases (i) and
(ii), respectively. The black, thick, solid line represents the linear fitting line
for ε

CE ,max using all data points at F > 12 N – the thin extensions extrap-
olate to F = 0 and F =Fmax = 30 N. This figure is from Christensen et al.
(2017) [92], reproduced with permission from Springer Nature.

To examine whether the calculated CE and MTC stiffness values may

depend monotonically on isometric force F the data was fitted with sim-

plest approach, that is, a linear function. The corresponding straight-line

fits through all data points above 12 N are plotted in Fig. 3.5. This force

boundary value at 12 N was extracted by separating the calculated kMTC(F )

and kCE(F ) data points into two ranges of approximately constant values
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(low forces) and assumed linear change with force F (high forces: straight

lines), and searching for the boundary value between them with the best

continuity of the inferred kTAC(F ) curve (see black, solid line in Fig. 3.6).
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Figure 3.5 |Measured stiffness values of MTC (top:kMTC) and CE
(bottom:kCE) versus isometric force Fat TD.For each single trial, these
values were determined by fitting the linear relation Eq. (2.1). Through each
of the two data clouds, a linear fit k = a · F + b to all data points was
calculated for F > 12 N. Additionally, the following are also plotted: (i) cir-
cles represent the median value for trials with active muscles in the region
F < 12 N, and (ii) a cross represent the median value for all trials with pas-
sive muscles. To illustrate the uncertainty of the linear approximations (light
blue, thick, dashed line in A and red, thick, dashed line in B), the linear fits
was re-calculated using two additional worst case data points that were hypo-
thetically placed at the maximum observed force ( blue and green squares).
The corresponding linear fits, each including the respective worst cast data
point, are plotted as dashed blue and green lines, respectively, in A and B.
Additionally, the 95% confidence intervals for the undisturbed linear fits in
A and B are plotted with red, thin, solid lines. Note that, although MTC
stiffness does only weakly depend on force, the slope of the linear fit remains
positive even in the worst case of the hypothetically low stiffness value at
maximum force. This figure is from Christensen et al. (2017) [92], repro-
duced with permission from Springer Nature.
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Figure 3.6 |Linear interpolations k = a · F + b versus isometric
force F at TD in the region F > 12 N for stiffness values of CE
(kCE), MTC (kMTC), and TAC (kTAC). kCE and kMTC were mea-
sured(Fig. 3.5), whereas kTAC was inferred from Eq. (3.2) and Eq. (2.2), re-
spectively.Horizontal lines represent the respective median values for trials
with active muscles in the region F < 12 N. Crosses represent the respec-
tive median values for all trials with passive muscles (for more details see
sect. 3.2.1 and Sect. 2.2.3). The dark blue and green lines illustrate the un-
certainty of TAC stiffness inferred on the basis of the linear fit k = a ·F + b
to MTC and CE stiffnesses (Fig. 3.5). The combined effects of MTC and CE
stiffness dependencies on force are assumed to both follow the lower slopes
in their worst case examination in Fig. 3.5 and result in the dark green line
for the TAC stiffness dependency. Vice versa, combining both MTC and CE
worst cases with upper slopes gives the dark blue line for the TAC stiffness
dependency. This figure is from Christensen et al. (2017) [92], reproduced
with permission from Springer Nature.

3.2 Discussion

3.2.1 The isometric force in isolated muscle

The maximum isometric muscle tension σmax is between 2.25·105 Nm−2 [105]

and 3·105 Nm−2 [50]. If the PCSA and both PCE,0, and the pennation angle α

are known [106, 107], then the maximum isometric muscle force Fmax can be

estimated. In case (a) [106], PCE,0 and α were measured for the gastrocnemius
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medialis and lateralis muscles separately. The lateralis muscle accounted for

56% of the GAS PCSA (PCE,0 = 111 mm2) and α= 14◦ was found in both

muscles. In case (b) [107], measurements were made for only m. gastroc-

nemius medialis (54 mm2, α= 21◦). Assuming a 44% contribution of this

muscle, which is in line with Eng et al. (2008) [106], the overall GAS PCSA

in the work of Kadhiresan et al. [107] would then have been PCE,0 = 123 mm2.

Due to the same boundary condition defining LMTC,90◦ in case (i) [106], it was

further assumed that α= 14◦. Thus, the mean PCSA (PCE,0 = 112 mm2) can

be calculated as

PCE,0 =
ACE,0,max

cosα
(3.1)

Based on the σmax range given above, maximum isometric force can be cal-

culated as Fmax = σmax · ACE,0 = σmax · PCE,0 · cosα, which would yield

values between 24.2 N and 32.3 N in case (i) and between 25.8 N and 34.5 N

in case (ii). Compared to these estimations, a Fmax = 30 N was found by

extrapolation (Fig. 3.1).

3.2.2 Fibre material strain in response to TD

Shock-waves induced dynamic strains of ca. 0.2% in the least fatigued case

(Fig. 3.4). The net strain of all fibre-internal serial elasticities in the actin

and myosin filaments and the cross-bridges at maximum isometric force is

ca. 0.4% [34, 108, 1] in the non-fatigued case. Forces to forcibly detach

one myosin head from actin have been measured to scatter around 9 pN [35],

while estimations of the maximum isometric force of a cross-bridge range from

2 pN [34] to more modern, higher values [53], and up to more than 10 pN [108].

Moderate values of ca. 4 pN come from energetic estimations [36, 37]. Me-

chanical, structural, and energetic approaches seem to converge at about
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5 pN [38]. Additionally, force saturation in eccentric contractions, as another

possible measure for a limit of forcibly detaching myosin heads, which indi-

cates muscle ‘giving’, has been quantified to be 1.4-2.0 times the isometric

force [39, 40, 41, 42].

Altogether, following three assumptions is used for the line of reasoning in

the remainder of this paragraph: (a) other possible sources of forces that act

in parallel to a cross-bridge and may resist stretching (e.g., titin [109, 110]) are

neglected, (b) also an initial strain of 0.4% in the serial elasticities is assumed

at maximum isometric force F =Fmax, and (c) roughly double this force

value is needed to forcibly detach a cross-bridge, corresponding to 0.8% limit

strain. If it is further assumed that in model case (i) fibre-internal stiffness

kCE is located solely in the myosin heads (horizontal, blue, dashed lines

in Fig. 3.4), the initial plus shock-wave-induced, dynamic strain according

to the experimental data would allow cross-bridges to stay bound down to

20.1 N (67% of Fmax: vertical, blue, dashed double arrow in Fig. 3.4). In

the upper limit model case (ii) of kCE distributed across heads, actin, and

myosin (vertical, red, solid lines in Fig. 3.4), cross-bridges are predicted to

stay bound down to 11.8 N (40% of Fmax: vertical, red, solid double arrow

in Fig. 3.4). This is practically the very same force boundary value F = 12 N

( 40% of Fmax) that was found in the stiffness analysis (Fig. 3.6), where the

changes of CE and MTC stiffness characteristics with force F saturate at

constant levels of the passive muscle. For a discussion of the local joint force

F see Sect. 3.2.4.1.

To support the argument given here of measuring strain as an indicator

of forcible cross-bridge detachment, a short review the basic idea behind

force generation by a tilting myosin head within a cross-bridge will follow.

Mechanically, during the force-generating process (i.e. the work stroke) the
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myosin head must be strongly bound to actin. The term ‘strongly bound’

implies limited adherence forces at the attachment site, and an analogue of

a myosin head would be a sucker adhering to an actin active site, where the

adherence force is limited by the material properties of both adherents. As

there are head-internal and filament-internal contributions to elasticity, this

elementary work stroke process and the functional existence of fibre-internal

stiffness are, mechanically, inseparably connected. Thus, more or less by

definition of the term ‘strongly bound’, any other potential binding state,

which may be suggested by observation and postulated by models of muscular

contraction, is ‘weakly bound’ in a mechanical sense. Weakly bound states

can thus not contribute to fibre-internal stiffness as an insignificant force

in the location of attachment would resist strain. However, while energy

dissipation will always be induced by forcible detachment of strongly bound

states, such dissipation may also occur for weakly bound states. Such energy

loss has also been termed ‘protein friction’ [111, 112, 113, 114, 115].

After an event of forcible detachment, it is expected that a previously

strongly bound cross-bridge undergoes ‘repriming’ [68, 116], which may be

the re-attachment at an active site on actin that would be located at one,

two, or more active sites further from the site of detachment. Such repriming

occurs within about 5-8 ms in response to shortening [68]. In response to

5 nm lengthening steps per cross-bridge [116], which corresponds to ca. 0.5%

dynamic strain, many cross-bridges seem to remain attached as can be seen

from the initial force response, which is a peak that is due to elastic distortion.

Repriming after lengthening seems to be slower than during shortening. It

will thus not occur during shock-wave-induced impacts lasting about 10 ms.

If cross-bridges are forcibly detached during shock-waves, then the following

is expected: (a) energy dissipation by protein friction, (b) rapid relaxation of
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all non-detached cross-bridges [116, 34] on the time scale of a few milliseconds

after a force peak ∆F , (c) repriming of cross-bridges on the time scale of

ca. 50 ms [116]), and (d) re-attachment dynamics of the assembly of cross-

bridges on an even longer time scale with reduced forces in response to the

intermittent phenomena of force increase ∆F and relaxation decrease.

3.2.2.1 Young’s moduli – a comparison to literature

Young’s modulus Ei = ki · Li,0

Ai,0
is defined as a local material property that can

be found from known macroscopic properties of a finite mass portion i, in-

cluding stiffness ki, reference length Li,0, and cross-sectional area Ai,0. With

the chosen reference length LCE,0 = 0.018 m (Table 3.1) in the centre of the

muscle belly, ACE,0 = 1.09·10−4 m2, the maximum estimate of the anatomical

cross-sectional area (ACSA) within LCE,0 (Table 3.1) and kCE ≈ 9050 N m−1,

the lower limit of CE’s Young’s modulus was calculated to be ECE ≈ 1.5 MP

in fully active, fresh muscle fibres. Due to low pennation angles α≈ 20 ◦ at

optimal fibre length [106, 107, 99], the ACSA values and physiological cross-

sectional area (PCSA) values found in literature [106, 107] are practically

identical. For fixed Ai,0 and Li,0, Young’s modulus scales linearly with ki.

Thus, in strongly fatigued and passive muscle fibres with kCE ≈ 3700 N m−1,

Young’s modulus ≈ 0.6 MPa as a minimum, which is ca. 40% of the stiffness

and modulus values for fresh, fully active fibres. Using ACE,0 = 0.73·10−4 m2

estimated at its upper (proximal) end, the minimum ACSA value within

LCE,0, the estimated upper limit of Young’s modulus is ECE ≈ 2.3 MPa for

fresh and ECE ≈ 0.9 MPa for fatigued/passive muscle fibres. Assuming vol-

ume constancy, homogeneity, and uniformity for fibres and the belly’s [117,

118, 119, 120, 121], Young’s modulus equals the shear modulus. With this,

these results match others’ data [122] well; this is demonstrated by the local
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shear values that were found at the Z-disc and M-line locations: 2.6 MPa and

1.3 MPa, respectively, in a fully active fibre as well as 1.7 MPa and 1.2 MPa,

respectively, in a passive fibre.

TAC stiffness kTAC according to Eq. (2.2) is calculated (inferred) from

kMTC = (kCE · kTAC)/(kCE + kTAC) . (3.2)

kTAC contains all compliances in series to the fibre material, and is equiv-

alent to what is often referred to as ‘serial elastic element’ (SEE) or ‘serial

elastic component’ (SEC) in muscle modelling. The basic notion is described

in three papers [123, 124, 125]. First, to check whether TAC stiffness was

dominated by tendon properties, the tendon stiffness

ktendon = Etendon ·
Atendon,0
Ltendon,0

(3.3)

was calculated from anatomical data Ltendon,0 = 0.012 m, Atendon,0 = 2.8·10−6 m2,

and a well-established literature value for Young’s modulus of mammalian

tendon material Etendon = 1.5 GPa [126, 127, 128, 129] as ktendon = 350 kN m−1.

This ktendon value would be about 50 times higher than the upper limit of

inferred TAC stiffness values kTAC = 6700 N m−1. Conversely, an upper limit

estimate of TAC’s Young’s modulus

ETAC = kTAC ·
LTAC,0
ATAC,0

(3.4)

can be calculated from assuming (a) the highest stiffness value kTAC = 6700 N m−1

inferred from this analysis, (b) the smallest cross-sectional area valueATAC,0 =

Atendon,0 = 2.8·10−6 m2 measured for rat GAS tendon, and (c) the length

LTAC,0 = LMTC,0 − LCE,0 = 0.027 m that bridges the distance between the
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fibre material (analysed within LCE,0) and the frame. The corresponding the-

oretical, upper limit ETAC = 64 MPa is 23 times lower than mammalian ten-

dons’ Young’s modulus. Alternatively, the lower limit ETAC = 2.1 MPa can be

calculated from using (a) the lowest TAC stiffness value kTAC = 5600 N m−1

occurring in this analysis and (b) the minimum fibre ACSA value ATAC,0 =

ACE,0 = 0.73·10−4 m2 at the boundary between fibre material (CE) and TAC.

As kCE results from the serial arrangement of all local elasticities within

the cross-sectional areas along the finite length LCE,0, the most likely value

of inferred ECE should be approximately the arithmetic mean value of the

upper and lower limits at each force, that is, ECE = 1.9 MPa for fresh and

ECE = 0.75 MPa for fatigued/passive muscle. The local net material property

ETAC in a belly’s aponeurosis region may well increase continuously – when

approaching the aponeurosis-tendon junction – from ETAC =ECE = 0.75 . . . 1.9 MPa

at the fibre-aponeurosis boundary to ETAC =Etendon = 1.5 GPa at the aponeurosis-

tendon junction. Besides the fibre activity, this continuous change will de-

pend on the geometrical arrangement of the aponeurosis and the fibres as

well as on the shifting fibre-to-aponeurosis ratios of material contributions

within the belly and on the belly surface. Average values of TAC’s Young’s

modulus in the range ETAC = 2.1-64 MPa supports this idea.

3.2.3 Regional stiffnesses in whole muscle

The measured strain increases with fatigue down to ca. F=10 N (Fig. 3.4),

however, the measured dynamic force ∆F is practically independent of fa-

tigue (Fig. 3.3). If the decrease in isometric force F , seen during fatigue, was

due to a decrease in force per cross-bridge with the number of cross-bridges

remaining the same, then the CE stiffness should remain constant with fa-

tigue. This is because the stiffness of a single cross-bridge is practically

114



constant down to ca. 10 % Fmax in initially isometric conditions [34, 108]

and down to ca. 50 % Fmax in isotonic contractions [53]. Alternatively, if

the force per cross-bridge remained constant with fatigue, but the number of

cross-bridges decreased, the CE stiffness should decrease along with fatigue.

According to Fig. 3.6, CE stiffness kCE decreases from 9050 Nm−1 in fresh

muscle to 3700 Nm−1 at F = 12 N. This is a strong indication that the CE

stiffness decrease is due to a decreasing number of cross-bridges at F > 12 N.

Except for the cases where either (i) the slopes of kMTC(F ) and kCE(F )

are zero or (ii) both stiffness values have their x-intersect at zero force, the

kTAC(F ) curve in Fig. 3.6 will be a non-linear function. The inferred curve

represents an almost constant value around kTAC(F )≈ 5600 N m−1 down to

ca. F ≈ 18 N, where the kCE(F ) curve starts to undergo the kTAC(F ) curve.

Non-linear deviation of inferred kTAC(F ) from near-constancy increases with

a further decrease in force down to the boundary F = 12 N. However, for

Fig. 3.6 three points should be noted: (i) kTAC(F ) curvature may be a tech-

nical artefact of the fact that kCE(F ) and kMTC(F ) themselves do not exactly

trend linearly with physiological reality; (ii) the independent inferences from

below and above F = 12 N are almost the same at the boundary itself, namely,

kTAC(F )≈ 6700 N m−1; (iii) the uncertainty of the values kTAC(F ) = 5600-

6700 N m−1 is the same as in other experiments on solely the m. gastrocnemius

medialis head [41], and the predicted absolute values are slightly lower than

found in two other analyses based on Hill-type models [83, 41]. Here, kTAC is

equivalent to kSEC = 9000±1400 N m−1 (pers. comm. to T. Siebert) [41] and

kSEC = 8000 N m−1 [83] there.
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3.2.4 Determining the MTC eigenfrequency

The maximum dynamic strain in response to frame impact was reached at

10.4±2.5 ms after TD, which was on average 2.7 ms delayed to the instant

of maximum aCOM and 0.9 ms before the aCOM returned to zero (Fig. 3.2).

The maximum dynamic strain (examples in Fig. 3.2) increased with muscle

fatigue (Fig. 3.4), that is, with initial force F decreasing down to ca. a third

of Fmax (F = 10 N) and saturation occurring at the level of passive muscle

for lower forces. The muscle including its tendon parts was stiff enough for

its COM to closely follow the frame kinematics with a delay that slightly

increased with time (see Sect. 2.2.2).

The circular eigenfrequency of a MTC exposed to a sudden stretch or a

change in force(as in the impact situation) can be predicted as

ω =

√
kMTC

m
(3.5)

directly from muscle mass m≈ 2 g and MTC stiffness kMTC (Fig. 3.6). Ac-

cordingly, the eigenfrequency values f = ω
2π

are 209 Hz (kMTC ≈ 3450 N m−1)

and 174 Hz (kMTC ≈ 2400 N m−1) for fully active and passive muscle, respec-

tively. These eigenfrequency values explain why MTC dynamics is strongly

bound to frame kinematics (COM acceleration delayed by 0.6 ms within im-

pact duration).

Equating the frame and leg bone kinematics, the impact duration of ca.

10-15 ms is practically the same in the hindlimbs of running rats [130], small

mammals [87] and humans [19]. Peak values of COM acceleration are also

similar for a running rat’s GAS (a
COM ,max = 165 m s−2 see Sect. 2.2.2) and run-

ning human’s leg muscles [19] (ashank,max≈ 270 m s−2, athigh,max≈ 160 m s−2).

Yet, the phase relations of the leg’s wobbling [131, 30] masses in response
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to the impact clearly differ. In humans, maximum vertical accelerations of

the segmental muscle masses occur ca. 5 ms (shank) and 20 ms (thigh), after

maximum leg bone acceleration [19, 21]. Furthermore, one can expect that

the MTC mass

m = α · ρ · L3 (3.6)

scales with a characteristic length L, with the proportionality factor α, and

the mass density ρ. Accordingly, muscle stiffness

kMTC = E · A
L

= β · E · L (3.7)

scales linearly with L due to the cross-sectional area scaling as

A = β · L2, (3.8)

with β being a second proportionality factor and E Young’s modulus. With

this, the circular eigenfrequency (Eq. (3.5)) scales as

ω = L−1 ·

√
E

ρ
· β
α

= m−
1
3 ·
√
E · β · (α · ρ)−

1
3 (3.9)

with length or mass [44], respectively, and using Eq. (3.9) and assuming that

MTC mass roughly scales with body mass, a characteristic value of muscular

wobbling mass eigenfrequency in humans of fhuman = (0.4 kg / 70 kg)
1
3 ·frat ≈

1
5.6
·200 Hz≈ 35 Hz can be predicted. Experimentally, the range 25-40 Hz has

been found for human shank and thigh muscles [19][figures 3,4,5,6].
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3.2.4.1 A reflection on muscle-internal mechanics during impact

In Sect. 2.2.3, it is explained how Newton’s second law was used to calculate

– from the kinematics of the centre of the distributed muscle masses (COM)

estimated by marker tracking – the dynamic force change ∆F between muscle

ends (origin and insertion) that must have acted to accelerate the COM.

If the muscle masses are suspended to a rigid construction (i.e., the

frame), one can calculate a finite distance between the COM and the suspen-

sion positions that approximates an anatomical length, namely, the muscle-

tendon complex (MTC) length. This mechanical analysis of a real muscle

implies at least two further prerequisites: (i) it is desirable to formulate a

mechanical model of the MTC to potentially subdivide it into further sub-

elements, and (ii) the MTC is suspended to a single rigid construction at

both ends. Both prerequisites are implied in the calculation of the MTC

length, and (ii) means that it does not matter whether MTC length changes

are calculated with respect to the upper or lower suspension point.

The initial idea was that the minimum mechanical model description

starts with just one net suspending structure for the COM: a spring acting

between COM and one suspension point; note that any length change calcu-

lated this way represents the length change of all MTC material. Consistent

with this, the calculated dynamic force change ∆F , which is proportional to

the COM acceleration, is interpreted as the net force change that acts on the

MTC spring while it changes its length by ∆LMTC . Likewise, a net MTC

stiffness can be calculated, because (iii) few percent of the MTC masses are

located in the tendons, which justifies estimating COM acceleration from

kinematic information of fibre material solely. The latter can then be used

to make a first MTC length subdivision within the model, namely, into the

length of mass distribution itself (termed CE) and the remaining material in
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series. With this, the COM of the masses in the CE, accelerated in space

as calculated above from ∆F , an additional length change ∆LCE of this CE

part superposed to the COM movement can be estimated. This CE length

change between the upper and lower ends of the CE region subtracted from

all MTC length change is the length change ∆LTAC of all MTC parts in

series to the CE region.

Using these arguments, model idea of two deforming (length changing)

structures in series that suspend the muscle mass to the skeleton or frame, re-

spectively, can now explain in more detail: while the CE can locally change

length in any instant due to finite fibre stiffness, which can easily induce,

e.g., double fibre stress (and thus mean force F in a cross-sectional area) by

doubling strain as compared to initial, isometric strain, the dynamic force

change ∆F between both ends of the MTC (and thus CE) provides its ac-

celeration in space. Note that the only measured reliable, static (isometric)

force values are before touch-down. ∆F should also be reflected by the sum

of both length changes in the upper and lower anatomical structures in series

to CE, that is, the upper and lower TAC parts, respectively.

In a nutshell, F and ∆F are, for the time being, two independent mechan-

ical variables that are probably locally and continuously distributed during

wave propagation. The variable F represents the concept of ‘joint force’ that

causes linear momentum transmission between two adjacent mass distribu-

tions (compare, e.g., the work of Lipfert et al. (2014) [132] [Appendix 2])

that can be calculated according to Newton’s third law (action=reaction) in

any conceived area of cutting through the muscle. The variable ∆F rep-

resents the difference in external forces that accelerates one selected mass

distribution localised between its spatial boundaries (‘joints’).

In a real muscle, the stress or force, respectively, and their gradients are
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expected to vary temporally and spatially during wave propagation. The

local force F is the integral of stress over a finite cross-sectional area, and

the dynamic force change ∆F is an integral of a force gradient distribution

over a finite distance along the gradient. Adding the idea of elastic cross-

bridges, changes in strain ε and force F are proportionally connected, which

applies to both temporal and spatial variations – that is, rates and gradients,

respectively – provided there is no forcible detachment. For example, a local

gradient in strain generates a local force gradient and thus finite force change

∆F for finite distances along the gradients. With the experimental setup used

here in this chapter (1 mm extension tube, Sect. 2.1.2.1), it was only possible

to spatially resolve the net (mean) strain in the whole fibre material region of

ca. 18 mm using this present pioneering methodological approach, the strain

signals (plotted in Figs. 3.2 and 3.4) represent the mean strain values along

this CE region. With higher spatial resolution, local strain and thus stress

or force F values, respectively, are probably distributed around their mean

values.
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Chapter 4

Study 2: dissipative responses

and cross-bridge mechanics

4.1 Results

All experiments were conducted within the first hour of m. gastrocnemius

dissection to prevent permanent muscle tissue damage due to ischaemia (see

Sect. 1.2.2). The mean anatomical data of the GAS specimens (N = 5) used

in this chapter are in Table 4.1.
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Description Symbol Data Unit Source

Animal mass 406±6.3 g measured

GAS mass 1.9±0.2 g measured

GAS length at 90◦ LGAS,90◦ 41±1.2 mm measured

GAS length in frame LGAS,0 43 mm LGAS,90◦+2�

Belly length 31 mm LGAS,0−Ltendon,0
Reference length LCE,0 7.5± 1.7 mm measured

Proximal tendon length Lprox,0 2� mm literature

Distal tendon length Ldist,0 10±0.5 mm measured

Total tendon length Ltendon,0 12 mm Lprox,0+Ldist,0

Maximum belly ACSA ACE,max,0 96±4.9 mm2 measured

Minimum belly ACSA ACE,min,0
� 81±16.2* mm2 measured

average belly ACSA ACE,avr,0 86 mm2 ACE,0,max+ACE,0,min

2

Tendon ACSA Atendon,0 1.9±0.66 mm2 measured

Table 4.1 | Anatomical data in Study 2. The anatomical data given as
the mean value ± standard deviation of the five specimens (N = 5), where the
calculated anatomical cross-sectional area (ACSA) was calculated by assum-
ing that the belly had the geometrical shape of a half-ellipse. This table is
from Christensen et al. (2021)[94], reproduced with permission from Springer
Nature.
� The 2 mm added to measured LGAS,90◦ ≈ Lopt were inferred from litera-
ture [83, 133].
� ACE,min,0 was measured ≈ 8 mm distal, along the muscle belly, to where
ACE,0,max was measured, both in passive muscle state.
* The relatively large SD in ACE,0,min is due to one outlier geometry.

In Study 2, the average time between each trial was 254 seconds, with the

first measurements conducted t≈ 10 minutes after dissection (t=0). Due to

the ex-vivo experimental setup, the GAS’ measured isometric force declined

trial by trial (Fig. 4.1).
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Figure 4.1 includes a linear regression of all isometric force data points,

which shows a linear trend (<40 minutes), and this trend slope (solid line:

2.9·10−4 Fmax s−1) is almost identical to experimental data in Study 1 (dashed

line: 2.6 · 10−4 Fmax s−1). A difference between the experiments conducted

in Study 1 and the experiments conducted in Study 2 is the average time

between each stimulation: here, GAS was stimulated once per 254 seconds,

as compared to every 428 seconds in the Study 1 experiments. By linear

extrapolation of the fatigue trend in the present data back to t=0, an es-

timated Fmax = 23 N was 7 N lower than the maximum isometric GAS force

Fmax = 30 N in Study 1 (Fig. 3.1). In the passive trials, i.e. the non-stimulated

muscles, the median of the passive muscle forces measured by the force trans-

ducer was 0.25 N.
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Figure 4.1 | Decline of isometric muscle force (F ) at TD versus
time after muscle extraction. Only trials with TD force of at least 95%
of its isometric value (converged force before or after TD) were included.
The solid line is a linear fit to all data points below 40 min, as data shows a
lineartrend. For comparison, the dashed, thick line is the linear fit (<60 min)
from Fig. 3.1. Both linear fits are extrapolated back to t = 0 when the mus-
cles were dissection from the animal. The dashed, thin lines between the
last measurement in a trial and its adjacent trial measurement indicates the
transition from the active to the passive experiment.
� The measured isometric force in cat m. soleus in response to induced
ischaemia from Mortimer et al. (1970) [74]. In the shown trial, they stim-
ulated the cat muscle with single twitches (∗) under ischaemic conditions,
whereafter blood flow was returned (grey, vertical line at 16.5 minute mark)
to recover muscle force (∗> 20 minutes). In a similar work, the isometric
force in rabbit m. anterior tibialis recovered 87 % of the measured maximal
isometric force after 1 hour of ischaemia [75]. This figure is from Christensen
et al. (2021) [94], reproduced with permission from Springer Nature.

The calculated peak value of the dynamic force change between proximal

and distal MTC ends in response to the impact had an almost constant mean

∆F = 0.2 N± 0.03 in all trials. This ∆F was expected due to a falling height

of only 1 cm (in Study 2), where the the mean ∆F peak was 0.35 N± 0.03

for a 4 cm fall height in the Study 1 experiments. Likewise is the present

elongations in the fibre material lower (strain at F = 0.23 N: 0.8%, 5 N: 0.5%,

23 N: 0.2%).
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Figure 4.2 shows that the median CE stiffness (median kCE) in passive

muscle (3200 N m−1; dotted, horizontal, black line), was lower than in almost

all active trials (cross (x) scatter > 1 N). In the active trials, kCE ranged from

≈ 4200 N m−1 at F = 1 N to ≈ 16000 N m−1 at F =Fmax = 23 N (for linear fits

of MTC and CE data > 1 N, see Fig. 4.6).

With the use of GAS dimensions from Table 4.1, the kCE values (Fig. 4.2)

and force values were scaled to half-sarcomere level: stiffness (khs, Eq. 2.5)

and isometric force (Fhs, Eq. 2.6), respectively. A Fmax of 23 N (Fig. 4.1), the

isometric maximum half-sarcomere force is predicted to be Fhs = 445 pN.
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Figure 4.2 | Contractile element stiffness (kCE). Trial specific kCE
values were inferred from a 3-parameter fit (Eq. 2.1), with information from
one oscillation period after TD (Fig. 2.9). kCE is also given as scaled to the
dimension of one representative half-sarcomere (khs, right axis, see Eq. 2.5).
The correspondingly scaled isometric force per half-sarcomere (Eq. 2.6) is
given on the upper axis. The solid and dashed grey lines represents the
model1 and model2 fits, respectively. The dotted, horizontal, black line
indicates the median of passive kCE values. The thin, black line underlying
the model2 fit, is the model1 fit with only the parameter ∆LCE open (fixed
Cfil = 0.0067 nm pN−1). This figure is from Christensen et al. (2021) [94],
reproduced with permission from Springer Nature.

Using the half-sarcomere values of Fhs and khs, it was possible to fit two

different model ideas (see Sect. 2.3.5) to the data for better understand the
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underlying half-sarcomere mechanics in response to an impact. The solid,

grey line in Fig. 4.2 is a least-square fit of model1 by Fusi et al. (2014) [1]

to scaled khs data with passive trials excluded, which predicts a stiffness

of 1.8 pN nm−1 at 23 N and approaches zero on a slightly curved course, as

the isometric force approaches zero. The latter is slightly different from the

fitted course of model2 by Günther et al. (2018) [2] (the dashed, grey line in

Fig. 4.2), which appears practically linear, with a slightly higher stiffness at

23 N (2.2 pN nm−1) than predicted by model1. The fitted parameter values

for both models are given in Table 4.2.

Model c3 (nm) ∆LCB (nm) Cfil (nm pN−1)

model1 – 85.7 0.4

model1 * – 198 0.0067*

model2 1.2 – –

Table 4.2 | Parameter estimations. In model2, the parameter c3 rep-
resents the pole (at LCB =−c3) in the non-linear cross-bridge force-length
relation FCB(LCB) (Coulomb drive in series to the serial elastic part repre-
senting S1, S2 and filaments), which is used to estimate kCB, and eventually
khs. In model1, the parameter ∆LCB (nm) represents the average elongation
at a fixed force of each cross-bridge acting in series to the filament part
with compliance Cfil. The parameter values of both model1 and model2
were determined with the Matlab curve fitting tool ‘cftool’. If the maxi-
mum isometric force of a half-sarcomere FCB,max is 445 pN, as estimated in
Sect. 4.1, then the original parameter values for model1 ([∆LCB = 1.56 nm
and Cfil = 1.77 nmT−1

0 ][1]) would translate to kCB = 285 pN nm−1 ( 445 pN
1.56 nm

)

and kfil = 251 pN nm−1 ( 445 pN
1.77 nm

) at FCB,max. This table is from Christensen
et al. (2021)[94], reproduced with permission from Springer Nature.
* ∆LCB (nm) in model1 estimated with a fixed kfil = 150 pN nm−1 value
(Cfil =

1
kfil

= 1
150 pN nm−1 = 0.0067 nm pN−1).

In Fig. 4.3, the energy dissipated is estimated as the area enclosed per

one work-loop (Examples in Fig. 4.4), and the respective damping coefficient
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(inferred from Eq. 2.1) of the muscle-tendon complex (MTC) and the con-

tractile element (CE). At Fmax, the MTC and CE dissipated on average

17µJ (Fig. 4.3a) and 3.5µJ (Fig. 4.3c), respectively. The latter values had

increased to 70µJ (Fig. 4.3a) and 23µJ (Fig. 4.3c), respectively, in the pas-

sive experiments (both passive median values). Across all trials, the energy

dissipated by the CE and MTC decreased with isometric force, which was

in contrast to the found damping coefficients that increased along with the

isometric force. In more detail, MTC damping coefficients increased from

around 2.2 N s m−1 in a passive muscle to about 5.1 N s m−1 in active muscle

above 10 N (Fig. 4.3b). With regard to the CE damping coefficient, the latter

trend was more unclear due to data scatter, though, the damping coefficient

seemed to increase from ≈ 9 N s m−1 in a passive muscle to ≈ 12.8 N s m−1 in

active muscle at Fmax (Fig. 4.3d).

As with the CE stiffness, the dissipated CE energy and the CE damping

coefficient were also scaled to a half-sarcomere. These scallations were done

using Eq. 2.7 and Eq. 2.8, respectively (right and upper axes in Fig. 4.3c,d).

Accordingly, the energy dissipated in the CE ranged from 68 zJ in the median

passive half-sarcomere to 10.4 zJ at Fmax, and the CE damping coefficient

was ≈ 1.1µN s m−1 in a passive half-sarcomere and ≈ 1.6µN s m−1 at Fmax.
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Figure 4.3 | Energy dissipated and viscous damping coefficient of
MTC and CE for all isometric and passive force states. a, b, c, d:
Data in each trial are calculated for one work-loop, i.e. one oscillation period
that spans between TD and the instant when aCOM returns closest to zero
for the second time. See Fig. 4.4 for an example of one work-loop in a specific
trial. For a, b, c, d, the dashed, black line is the mean value of all data points
> 16 N: 17µJ, 5.1 N s m−1, 3.5µJ | 10.4 zJ and 12.5 N s m−1 | 1.6µN s m−1,
respectively. a: the energy dissipated by the MTC due to internal material
friction. b: the viscous damping coefficient calculated for MTC. c: the energy
dissipated by the CE, with the right and upper axes giving the work (Eq. 2.7)
and isometric force (Eq. 2.6) values per half-sarcomere, respectively. d: the
viscous damping coefficient calculated for the CE, with the right and upper
axes giving the damping coefficient (Eq. 2.8) and isometric force (Eq. 2.6)
values per half-sarcomere, respectively. Due to the indistinct trend in d, a
linear fit was added. In d, the circles indicate data that were considered
outliers and excluded from the fit. This figure is from Christensen et al.
(2021) [94], reproduced with permission from Springer Nature.
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to zero for the second time (Fig. 2.9). This figure is from Christensen et al.
(2021) [94], reproduced with permission from Springer Nature.
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4.2 Discussion

4.2.1 The influence of muscle stimulation on ischaemia

The muscles in the experiments in Study 2 (chapter 4) were on average stim-

ulated once per 254 seconds for 265 ms, which is roughly half the stimu-

lation interval from the 4 cm falling experiments in Study 1 (once per 428

seconds for 265 ms). Ischaemia has a very strong, yet reversible effect on

muscle force generation within one hour of ischaemia [100, 101]. Further,

ischaemia seems so dominant for GAS isometric force production, that a re-

duction in stimulation duration had little to no influence on isometric force

decline over the course of the experiments. The Fmax difference between

the solid and dashed lines in Fig. 4.1 can be explained by the difference in

maximum belly anatomical cross-sectional area in both experiments (here,

ACE,max,0 = 96 mm2, Table 4.1). Since the maximum isometric tension in a

muscle is between 2.5 ·105 N m−2 [105] and 3 ·105 N m−2 [134], and GAS has a

pennation angle of 14◦ under similar isometric conditions [106], the expected

Fmax value is between 21 N and 28 N.

4.2.2 ∆F scaled to half-sarcomere level

In Study 2, the parameters characterising particularly two basic structural

properties were taken from literature: The PCSA of the muscle consists of

83 % myofibril material [96], and the elementary cell of the cross-sectional

filament lattice in sarcomeres has the shape of a parallelogram with an area

of 1540 nm2 (Fig. 6.9) at optimal half-sarcomere length (1150 nm [95]). With

the measured maximum muscle stress (240 kN m−2) value, the corresponding

Fhs,max = 445 pN value for a half-sarcomere can then be estimated by use of

the two parameter values just given above.
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To estimate the uncertainty of the predicted Fhs,max value, it may be as-

sumed that only 80 % [50, 135] of the PCSA is myofibril material, and that

the interplanar d(1,0) lattice distance is 40 nm2 [50] (the shape of the elemen-

tary cell is either calculated as a square or a parallelogram). In Table 4.3, a

summary of the parameter variations given above with data on maximum iso-

metric muscle stress likewise taken from literature, e.g. from two prominent

papers [53, 68]. Accordingly, since the measured muscle stress (240 kN m−2)

value is identical to Piazzesi et al. (2007), the percentage variance of Fhs,max is

about 25 % (554 pN−445 pN
445 pN

), depending on the parameters used for the Fhs,max

calculation (Table 4.4).

Data Symbol Unit Source

240 σ kN m−2 text [53]

206 σ kN m−2 [table 2] [68]

40 d(1,0) nm d(1,0) = 40 nm [50]

0.8 r a 80% of PCSA are myofibrils [50, 135]

0.83 r a 83% of PCSA are myofibrils [96]

1600 A nm2 d(1, 0)2

1848 A nm2 d(1, 0)2 · 2 · 1√
3

Table 4.3 | Literature data to infer Fhs. The two stress values from lit-
erature were used to infer force (F = σ ·A or F = σ ·A· 1

r
) for a representative

half-sarcomere. The length values of the elementary cell’s interplanar d(1,0)
lattice distance in a half-sarcomere and the myofibril density (see Fig. 6.9)
are from independent literature sources. The area of the elementary cell was
then either calculated as a square or a parallelogram. This table is from
Christensen et al. (2021)[94], reproduced with permission from Springer Na-
ture.
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Piazzesi et al. (2007) [53] Lombardi et al. (1992) [68]

240 kN
m2 · 1540 nm2 · 10−3 · 1

0.83
= 445 pN 206 kN

m2 · 1540 nm2 · 10−3 · 1
0.83

= 382 pN

240 kN
m2 · 1600 nm2 · 10−3 · 1

0.8
= 480 pN 206 kN

m2 · 1600 nm2 · 10−3 · 1
0.8

= 412 pN

240 kN
m2 · 1848 nm2 · 10−3 · 1

0.8
= 554 pN 206 kN

m2 · 1848 nm2 · 10−3 · 1
0.8

= 476 pN

Table 4.4 | Fhs,max estimations. The variations in estimated Fhs,max in
two papers using literature data from Table 4.3. This table is from Chris-
tensen et al. (2021)[94], reproduced with permission from Springer Nature.

4.2.2.1 Titin’s property in passive muscle fibre

For the low drop heights experiments, the mean initial GAS force in passive

muscle measured by the force transducer was 0.25 N, with an added ∆F peak

of 0.2 N as a response to the impact, which means that estimated initial pas-

sive force and the dynamic force change for a half-sarcomere as a response

to the impact were 4.8 pN and 3.9 pN (Eq. 2.6), respectively. The median

passive strain peak with ∆F was about 0.8%, which corresponds to an about

10 nm stretch peak per half-sarcomere (titin filament). Under the assump-

tion that six titin filaments are attached to one myosin rod [60, 61], and the

slope of the force-length relation of a single titin filament, measured during

fixed-rate stretches, is 0.05 pN nm−1 [54] between 0.8 pN and 1.5 pN, then the

overall six-titin slope in a passive half-sarcomere would be 0.3 pN nm−1. The

single-titin slope was estimated at 1000 nm s−1 stretch rate [54], which is prac-

tically the same as the rates measured for a half-sarcomere (≈1100nms−1),

as the median passive stiffness is 0.4 pN nm−1, the dynamic force change is
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3.9 pN, and the time that passed between TD and this dynamic force change

is 9 ms (Fig. 2.9).

Although some studies suggest that only four titin filaments are associ-

ated with one myosin, the most popular estimation is six titin filaments per

myosin. The mismatch is probably due to the difference in actin filament

arrangement in the Z-line and A-band (see Sect. 1.2.1.3). Here, six titin as-

sociated with one myosin is assumed because six titin filaments are consistent

with titin mass estimations in a sarcomere [60].

To understand how titin might influence the passive macro CE, the esti-

mated titin slope was scaled to one specific passive trial: the CE work-loop in

Fig. 4.4a. The scaled titin force-length relation was examined while hypoth-

esising two different, somehow extreme, conditions that may determine the

work-loop return path from maximum elongation (∆F > 0) back to ∆F = 0.

As ∆F returns to zero, the titin filament would, in the respective two ex-

treme cases, either shorten along the measured ∆LCE path (Fig. 4.4a, solid,

light-grey line), or along the same 0.3 pN nm−1 titin slope that applies to

the stretch path (Fig. 4.4a, dotted, light-grey line). If titin re-shortens along

the measured ∆LCE path, this would resemble a course of titin shortening

after stretches at least an order of magnitude [54] longer than estimated here.

In this case, titin accounts for half (1.8 zJ, hatched area in Fig. 4.4a) of the

3.5 zJ dissipated CE energy for ∆F > 0.

On the other hand, Ig and PEVK unfolding events has been shown to oc-

cur above 6 pN [54, 136], which is far greater than the estimated 3.9 pN
6

= 0.65 pN

for ∆F . Therefore, if the unfolding events are the cause for a titin’s viscosity,

then titin might respond as a nearly non-dissipative (conservative) material

within the low ∆F = 0.65 pN. For the latter extreme case, titin would ac-

count for 84% of the 2870 N m−1 passive CE stiffness value in the Fig. 4.4a
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example and 75% of the 3200 N m−1 median passive CE stiffness value, both

estimated from a 3-parameter fit (Eq. 2.1).

Figure 4.5 |An example of titin contribution in the passive CE. Both
the inferred titin stiffness contribution (grey, dotted line) and dissipated en-
ergy by titin (hatched area) in CE estimated from single-titin experiments
with a 1000 nm s−1 stretch rate [54].The Figure shows the titin stiffness con-
tribution and dissipated energy by titin, under the assumption that each
single titin filament from segment I105 to Mis-7 [137] is in-vivo coupled with
a ”rigid” myosin filament (150 pN nm−1 [53]). The solid, dark-grey loops
are the LCE,0 response to ∆F and the dashed, black line is the respective
length-dependent contribution. The LCE,0 response to ∆F is the same as in
Fig. 4.4a.

Another possibility is that the found 0.3 pN nm−1 is closer to double that

because titin runs through the myosin filament in the A-band [138, 54, 137].

The titin sequence from I105 to Mis-7 is inside the myosin filament [54, 137],

which is approximately 50% of the titin length [54, 139]. Thus, the alter-

native titin stiffness contribution in a half-sarcomere is 0.6 pN nm−1 when
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substituting 50% of the in-sereis titin stiffness with myofilament stiffness

(150 pN nm−1 [53]). This change in titin stiffness increases titin’s passive

stiffness contribution to 4940 N m−1 in the passive CE (visualised in Fig. 4.5),

which as above, have two limit conditions. The first is that titin is purely

elastic, and titin will shorten along the same titin slope that applies to the

stretch path (Fig. 4.5, dotted, light-grey line). If this is the case, then the

stretch of passive CE is determined by titin stiffness and the shortening of

passive CE by some other sarcomere property. The second limit condition

is that titin re-shortens along the measured ∆LCE path. If that is the case,

then titin accounts for 100% (3.7 zJ, hatched area in Fig. 4.5) of the dissi-

pated energy in passive CE (3.5 zJ). Note that the titin property estimations

in Fig. 4.5 do not consider any potential titin stiffness regions that might

dominate the overall pure titin stiffness as, for example, the PEVK region.

On a final note, titin is a visco-elastic material [54, 136], and titin’s ability

to dissipate energy does not only depend on velocity. Titin’s energy dissipa-

tion also depends on contractile history and time between each stretch/short-

ening contraction [54]. Furthermore, the resistance of passive muscle to move-

ment (and thus its stiffness) increases with time at rest and is reduced by

movement [140]. Thus, the large deviations in energy dissipated in the pas-

sive trials might relate to either the time between the last active trial and the

passive one, the time between dissection and the passive trial, or the total

number of trials for a specific muscle. However, unfortunately sample size

is too small, and the data too few to further explore any of these potential

correlations.
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4.2.3 Wobbling mass findings fitted to two half-sarcomere

model ideas

For better understanding cross-bridge mechanics, the parameters of two CE

models (see Sect. 2.3.5) were fitted (Table 4.2), model1 [1] and model2 [2], to

reproduce measured CE stiffness kCE (Fig. 4.2).

Regarding model1, the best fit of khs predicted 1.8 pN nm−1 at Fmax,

which yielded parameter values of cross-bride deflection ( ∆LCB = 85.7 nm)

and myofilament stiffness (kfil = 2.5 pN nm−1) that are factors of 55 and 1
34

,

respectively, from earlier model estimations [1].

As a consequence of the estimated 85.7 nm work-stroke for model1, the

stiffness of a single cross-bridge would be 0.05 pN nm−1 if the force for a

single cross-bridge is 4 pN [53, 36]. Vice versa, if a force for a single cross-

bridge were 100 pN, then the cross-bridge would have a realistic [141, 34, 108]

stiffness of 1.2 pN nm−1. Therefore, it seems unlikely that model1 in this

form can explain the low khs values found in these experiments, without

either compromising values for generally accepted work-stroke length [141,

142], force, or stiffness [53, 34, 108]. In accordance with the original model

formulation of model1, both the cross-bridge stiffness kCB and the filament

stiffness kfil are free parameters. However, if kfil = 150 pN nm−1 applies as in

model2, then the work-stroke would be higher than the estimated 85.7 nm. A

fixed kfil = 150 pN nm−1 would also make the khs fit of model1 appear more

linear as predicted by model2 in Fig. 4.2, due to the then forced change in

myofilament compliance (Cfil =
1
kfil

) and ∆LCB ratio (Table 4.2). The latter

is expected since both models assume a contractile compartment in-series

within a sarcomere.

Contrary to model1, model2 assumes a non-linear force-length relation-

ship of the Coulomb-actuating cross-bridge part in the CE, which depends
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on the pole value in the cross-bridge force-length relation (c3). A change in

c3 does neither affect the force nor the work-stroke length measured from the

cross-bridge’s optimal state. However, c3 does change dF
dL

with changing cross-

bridge position. With c3 = 1.2 nm (Table 4.2), khs would be 2.2 pN nm−1 at

Fmax (Fig. 4.2). Under the same kfil = 150 pN nm−1 assumption as above, the

overall stiffness value of the cross-bridge part kCB for model2 is 2.2 pN nm−1

(Eq. 2.11) at Fmax (nCB,max = 90), practically making kCB ≈ khs. The latter

stiffness is a factor 5 from an estimated kCB = 10 pN nm−1, which is the overall

stiffness of the cross-bridge part at Fmax when calculated with the parameters

given in the original paper [2] (Eq. 2.10). For a model2 FCB(LCB) comparison,

see Appendix Fig. 6.8. In addition, the 2.2 pN nm−1 does not seem compat-

ible with the originally suggested [2] parameter values of model2, since the

latter choice in Günther et al. (2018) [2] predicts the course of the Coulomb

force to be nearly linear in the length range of the work-stroke, and the corre-

sponding Coulomb force stiffness contribution for a single cross-bridge to be

approximately 0.11 pN nm−1 = 10 pN nm−1

90
(here, 0.024 pN nm−1 = 2.2 pN nm−1

90
).

The difference between originally estimated 10 pN nm−1 and the measured

2.2 pN nm−1 may be due to the dynamics inherent to the shock-waves that

propagated through the CE after the frame made contact with the ground,

which potentially caused some local sarcomere compression. If compression

were to occur, then the sarcomeres here could be dominated by the low

0.01-0.02 pN nm−1 bending stiffness of the myosin sub-fragment S2 [143, 144].

That local sarcomere compression can occur seems plausible, because, in

rare trials macroscopic CE shortening was observed to precede elongation

after TD (see Sect. 2.2.4). However, due to insufficient spatial resolution, an

adequate examination has not been possible so far.

Although model2 appears to better explain the findings in Fig 4.2, previ-
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ous applications of model1 have been proven very robust [1, 145, 146], with

khs either inferred from rapid step-in-length experiments [145] or 4 nm peak-

to-peak oscillations per half-sarcomere at 4000 Hz [1, 146]. However, accord-

ing to step-in-length, or -force simulations [2] to reproduce the half-sarcomere

force recovery phase following a rapid step in length (T2 curve [141, 34, 108])

with model2, the force-length relation of the Coulomb force that drives the

lever arm is nearly compensated by parallel friction within the first ≈ 0.1 ms

[Fig. 7] [2]. Diminishing displacements within the Coulomb drive strongly

suggests that the Coulomb contribution to khs is, likewise, practically friction-

neutralized at very high frequencies such as 4000 Hz. The latter seems to

be supported by experimental data, since a half-sarcomere needs to elon-

gate 4 nm to achieve a force enhancement of 180-200% at Fmax (≈ 3500 Hz),

whereas an 8 nm elongation accompanies the same force at 100 Hz [147]. In

fact, there have even been half-sarcomere stiffness estimations as low as

khs = 10 pN nm−1 for <50 Hz [148] and in slow ramp experiments [149].

Despite the MTC and CE stiffness fit courses shown in Fig.4.6, correlate

well with other findings [53, 150], the exact number of formed cross-bridges

is unknown. Piazzesi et al. (2007) [53] also estimated that the maximum

number of formed cross-bridges is ≈ 90 from single fibre experiments. If

nCB,max = 90, then the force of a single cross-bridge is ≈ 5 pN (445 pN
90

), a

value at which mechanical, structural, and energetic approaches seem to

converge about (4-5 pN) [38, 151]. The estimated khs values for both models

are robust towards the exact number (within limits) because for 90 formed

cross-bridges, the stiffness of a single cross-bridge is 0.06 pN nm−1 ( 5 pN
85.7 nm

,

model1 ) and 0.024 pN nm−1 (2.2 pN nm−1

90
, model2 ).

138



4.2.4 Work done in MTC, CE and half-sarcomere

The energy dissipated by the MTC at Fmax was calculated as 17.0µJ (Fig. 4.3a).

If GAS dissipates 17.0µJ, then the m. gastrocnemius medialis head would

(scaled by ACSA) roughly account for 8.5µJ, which is only 21% of the 40µJ

previously estimated for Wistar m. gastrocnemius medialis in one work-loop

at 50 Hz with 1 N peak-to-peak force [44] for one oscillation period. All exper-

iments here corresponds to only half of that peak ∆F , because the impact

only corresponds to half of an oscillation period. For the experiments in

Chapter 4 (Study 2), ∆F = 0.2 N was practically constant across all trials, of

which m. medialis would then roughly account for 0.1 N. This latter value is

about 20% of the comparable 0.5 N force change (half oscillation period) in

Ettema and Huijing (1994) [44], which is in perfect accordance with the 21%

ratio of 8.5µJ and 40µJ (or 17.0µJ and 80µJ).

At Fmax, the energy dissipated by the CE was 3.5µJ (Fig. 4.3c). Using

Eq. 2.7, and assuming that the maximum number of myosin heads in a half-

sarcomere bound at Fmax is nCB,max = 90 [53], the energy dissipated per cross-

bridge is 10.4 zJ
90

= 0.12 zJ (1.2 ·10−22 J) for a fresh and fully stimulated muscle

(Fig. 4.3c). To put 0.12 zJ into perspective, the free energy ∆GATP available

from ATP hydrolysis within a cell is 54 kJ mol−1 for rabbit psoas (fast-twitch)

and 66 kJ mol−1 for rabbit soleus (slow twitch) [152], which corresponds to

90 zJ and 110 zJ per ATP molecule, respectively [153]. Reported values for

cross-bridge thermodynamic efficiency, i.e. the fraction of ∆GATP converted

into work, is around 21% for mouse m. extensor digitorum longus (fast) and

45% for tortoise m. rectus femoris (slow) [153]. The ∆GATP value for mouse

m. extensor digitorum longus suggest that for a muscle dominated by fast-

twitch fibres like GAS, the mechanical work available per one ATP molecule
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split is around 0.21 · 90 zJ = 19 zJ. Therefore, one impact for the GAS would

lead to an 0.6% (0.12
19

) energy loss per cross-bridge at Fmax, because the myosin

is believed to be bound to actin for 450 ms under isometric conditions[36, 154],

and the wobbling impact response does not take more than 25 ms (Fig. 2.9).

On the other hand, if GAS was pre-activated by only 20% before an

impact as in humans [155] and the isometric force scales linearly with activa-

tion and the number of attached myosin heads [53] (see also Fig. 4.6), then the

energy loss per cross-bridge would be 7.9% for an impact, because the dissi-

pated energy per half-sarcomere at F = 5 N is about 27 zJ (Fig. 4.3c), and the

number of myosin heads bound in a half-sarcomere may be approximately

nCB = 0.2 · nCB,max = 18. In the latter more realistic case, one cross-bridge

may dissipate about 2 · 7.9%≈ 16% of the mechanical work available (19 zJ)

due to the impacts, since the stride cycle for a rat hindlimb is 300 ms [156],

which is 100 ms shorter than the myosin actin bound state.
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Figure 4.6 | TAC stiffness (kTAC) from linearly interpolated stiff-
nesses of CE (kCE) and MTC (kMTC) at TD. This figure shows MTC
subdivided into a tendon-aponeurosis-complex (TAC) and a CE compart-
ment. TAC was inferred with the assumption that kMTC consisted of an in
series kCE (see also Sect. 2.2.3). The dotted, black line is the linear fit of
all measured kCE values (Fig. 4.3). At 1 N, 23 N, and 30 N, Young’s modulus
was calculated for CE using Eq. 2.5 and data from Table 4.1. The dotted,
vertical, black lines mark 1 N and 23 N. The dashed, black line is the lin-
ear fit of all measured kMTC values, and the solid, black line is the inferred
kTAC . ‘Cross’ and ‘plus’ are median values for passive GAS kMTC and kCE,
respectively. ‘Asterisk’ is the passive muscles’ estimated kTAC inferred from
median kMTC and kCE. This figure is from Christensen et al. (2021) [94],
reproduced with permission from Springer Nature.

4.2.5 The damping coefficient in MTC, CE and half-

sarcomere

The determined damping coefficient d can be interpreted to represent, to-

gether with stiffness k and mass m, a GAS MTC that responds visco-

elastically to the impact by a damped harmonic oscillation around an operat-

ing point at the isometric force level F . From this, the damping strength can

be assessed by comparing d with the critical damping coefficient dcrit = 2
√
km,
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i.e., by calculating ζ = d
dcrit

. As can be seen in Fig. 4.3b, the inferred damp-

ing coefficients at 3 N, 5 N and 7 N are 3 N s m−1, 4 N s m−1 and 4.5 N s m−1,

respectively. The corresponding stiffnesses are 1930 N m−1, 2070 N m−1 and

2240 N m−1 (Fig. 4.6), and the GAS mass is on average 1.9 g (Table 4.1). From

this, the damping ratio for the MTC at F = 5 N is ζ = 1, as well as ζ = 0.8 and

ζ = 1.1 for 2.5 N and 7.5 N, respectively. As it is assumed that the 20% pre-

activation level of leg muscles [155] right before leg impacts in human running

also applies to a rat’s GAS, the MTC is critically damped at 20% of Fmax

(Fig. 4.1), under-damped for activity lower 20%, and slightly over-damped

for higher activity levels.

If the muscle force directly relates to muscle activity [53, 150] (see also

stiffness fits in Fig. 4.6), then the 20% of Fmax in Fig. 4.2 is the same as the

pre-activation in human GAS before TD (20%) [155]. Accordingly, the num-

ber of cross-bridges before an impact relates to soft tissue vibration control

in the first few milliseconds after TD. Several studies have experimentally

investigated the association between muscle activation and almost critical

damping of muscle vibration in response to an impact [28, 29, 24], which lead

to the muscle-tuning paradigm [29]. However, a limitation of conducting im-

pact experiments with human subjects is the inability to decouple any effect

of leg geometry, joint compliance and muscle activity. Conversely, a benefit

of this work’s ex-vivo setup is the direct control over GAS isometric force

generation and the impact situation: soft tissue MTC properties and condi-

tions affecting its vibration responses can be manipulated independently of

the impact strength (falling height).

In contrast, the CE part is always slightly over-damped across the whole

isometric force range, as ζ = 1.3 (d= 7.6 N s m−1, k= 4250N m−1) at F = 1 N

and likewise ζ = 1.2 (d= 12.8 N s m−1, k= 13800N m−1) at F =Fmax = 23 N.
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This suggests, that the CE system is to return both as smoothly and as

quickly at the same time to its equilibrium state, or it may be important for

the CE not to overshoot its equilibrium state. The latter may potentially

have higher importance as the force-length relationship of the work-stroke is

non-linear, with even decreasing stiffness of a cross-bridge if the sarcomere

is elongated (see inset at the right top in Fig 2.11).
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Chapter 5

Comparing studies: fibre

material responses to

changes in impact amplitude

5.1 Relationship between critical strain and

Coulomb force

The strain, and in particular critical strain, in CE for an 0.35 N impact has

been discussed extensively in Study 1 (Chapter 3), whereas Study 2 (Chap-

ter 4) centred around the energetic costs and the low stiffness estimated in the

half-sarcomere. Both experimental setups (4 cm experiments and 1 cm exper-

iments, respectively) are, thus, more or less discussed separately. This is pri-

marily due to being different studies, the data processing difference between

both studies (Sect. 2.3.3) and secondarily because the fundamental stiffnesses

in each experiment, whether it be kMTC or kCE, are calculated differently.

For the 4 cm experiments (Chapter 3), kMTC or kCE include only elongation
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information between TD and 1 sample after maximum material elongation

(e.g. Fig. 2.5). For the 1 cm experiments (Chapter 4), the stiffness, although

also using Eq. 2.1, is calculated with the information of an entire work-loop

(Fig. 4.4). For a comparison between the two methods of processing data,

Figure 5.1 shows, in one exemplary trial (the same trial as in Fig. 4.4), the dif-

ference between the two methods of calculating stiffness. Accordingly, if the

estimated fibre stiffness contained both fibre elongation and shortening in-

formation, then kCE = 2950 pN nm−1 (Fig. 5.1a) but 5360 pN nm−1 with only

elongation information (Fig. 5.1c). For kMTC , the estimated stiffens value

varies from 1560 pN nm−1 to 1490 pN nm−1 in Fig. 5.1d and d, respectively.

Therefore, if the information of a work-loop is reduced to only the lengthening

(initial) part, values of Young’s modulus may be significantly over-estimated.

However, the difference in data processing methods does not influence the

estimated maximum fibre strains, which also have robustness regarding the

camera non-synchronicity problem (see Sect. 2.3.3).
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Figure 5.1 | Comparison of stiffnesses calculated with either ”loop”
or elongation information. a and b are the same CE and MTC work-
loops figures as in Fig. 4.4. Thus, in a and b, the solid, dark-grey loops are
the LCE,0 or LMTC,0 responses, respectively, to ∆F . The solid, black loops
depict the respective 3-parameter fit to data, and the dashed, black lines are
the associated length parts (see also Eq. 2.1). For direct comparison, both
thick, light-grey lines in a and b are the transferred 3-parameter length parts
from c and d. However, c and d fits are only to the instant after the ∆F
peak. kCE = 2950 pN nm−1 in a, and kCE = 5360 pN nm−1 c. The variation
in kMTC is lower as kMTC = 1560 pN nm−1 in b, and 1490 pN nm−1 in d. a
and b are from Christensen et al. (2021) [94], reproduced with permission
from Springer Nature.

Sect. 3.2.2 discussed the critical strain in fibre material and visualised this

in Fig. 3.4. With two boundary assumptions, the text and figure explained or

showed how much strain the fibre material can endure before a cross-bridge

forcibly detaches (critical strain limit). In the most likely scenario (upper

boundary, red line in Fig. 3.4), the fibre material exceeds the critical strain

limit when GAS generates an isometric force lower than 11.8 N.

This critical strain limit is inferred from known rupture force between

actin and myosin bond [35] and cross-bridge property values estimated in
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rapid (above 3000 Hz) step-in-force [53, 108] or oscillation experiments [1].

However, contrary to these rapid step-in-force experiments, Sect. 4.2.3 in-

troduced the term Coulomb force to explain the low half-sarcomere stiffness

in dynamic impact situations that a rat would experience running at an inter-

mediate velocity (60 Hz, Fig. 2.9). Accordingly, the actuating Coulomb force-

length relation/characteristic that drives a cross-bridge is friction-inhibited at

very high frequencies (3000 - 4000 Hz). Thus, failing to take the Colomb force

characteristic and protein friction into account when estimating the critical

strain limit in a half-sarcomere can lead to erroneous estimations because the

Coulomb force-length relation/characteristic alters the half-sarcomere stiff-

ness khs at optimal length with a factor of 1
34

(see model1 and model2 com-

parisons in Table 4.2).

The literature is currently sparse with data that support the inclusion of

an actuating Coulomb force in a half-sarcomere or very low half-sarcomere

stiffnesses in general. Even in studies that estimate the critical force limit for

forcible detachment of cross-bridges, or vice versa, the critical strain limit in

muscle fibre experiments, induce rapid perturbations (>4000 Hz) [157, 146,

158]. Therefore, in an attempt to determine a physiological relevant critical

strain limit (60 Hz, Fig. 2.9), the fibre strains from the 4 cm falling height

experiments are here compared to Nishizaka et al. (1995) [35] rupture force

experiments (see Table 5.1). Nishizaka et al. (1995) [35] estimated the rup-

ture force between myosin and actin by slowly pulling them apart until cross-

bridge rupture occurred at 9 pN.
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4 cm experiments Data Formula Data source

temperature 23-25o — text in Sect. 2.1.6

Lhs 1150 nm — [text] [95]

stretch rate 86 nm s−1 0.6·1150 nm
8 ms

Fig. 3.2b

critical strain 0.68% — case (ii) in Fig. 3.4

Nishizaka [35] Data Formula Data source

temperature 28-30o C — [text] [35]

Lhs 1150 nm — [text] [95]

stretch rate 10 nm s−1 200 nm−190 nm
3 s−2 s

[Fig. 2a, Fig. 2b] [35]

khs 0.9 pN nm−1 9 pN−4 pN
29 nm−23.5 nm

[Fig. 2b] [35]

critical length 10 nm 9 pN÷ 0.9 pN nm−1 —

critical strain 0.87% 10 nm÷ 1150 mn−1 · 100 —

khs,alternative
�� 1.3 pN nm−1 9 pN−5 pN

29 nm−26 nm
[Fig. 2b] [35]

Table 5.1 | The Coulomb force’s influence on CE strain. An overview
of the data used to compare the CE strains in the 4 cm experiments and
inferred literature CE strain in physiologically relevant conditions. Data were
taken from either 4 cm falling height results or Nishizaka et al. (1995) [35]. If
the data source notes ”–” (no source), then the formulas contain values
from elsewhere in the table.
�� An alternative calculated khs starting from a cross-bridge that generates
5 pN.
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The inferred strain to generate a rupture force of 9 pN [35] is 0.86% (cal-

culations are in Table 5.1), which is almost identical to the upper limit case

in Fig. 3.4 (0.68%, black and red lines intersect in the figure) estimated from

fast oscillation experiments (above 3000 Hz[1, 53]). Using the alternative

cross-bridge stiffness Khs,alternative in Table 5.1, the inferred critical stain limit

is 0.6% instead of 0.86%. Thus, the upper limit case in Fig. 3.4 is within

the range of strain limits inferred from literature with lower stretch veloc-

ity (rate) as in these experiments, which means that the critical strain in

a half-sarcomere is independent of the Coulomb force contribution to half-

sarcomere stiffness. A possible explanation is that the cross-bridge stiffness

in model2, when stretched beyond the work-stroke range at LCB >11 nm

(see also Appendix Fig. 6.8) will increase rapidly because the cross-bridge

is nearing its mechanical limit. In model2, the stiffness of a single cross-

bridge kCB = 2.3 pN nm−1 (Eq. 6.44) at the end of the work-stroke (end of

solid line at LCB = 0 in Appendix Fig. 6.8) where the lever arm between the

two charges, which drives the myosin head (L1 in [Fig. 2][2]), becomes zero.

Stretching the cross-bridge in the opposite direction, beyond the attachment

site LCB >11 nm, might increase the cross-bridge stiffness to a similar high

stiffness value as in the LCB =0 nm region (up to 2.3 pN nm−1), making the

force-length curve in Appendix Fig. 6.8 mirrored at the isometric operating

point (7 nm,4 pN).

5.2 Fibre strain: a comparison between two

falling heights

Figure 5.2 shows the maximum fibre strains (CE part) in the 1 cm falling

height experiments. As with all 1 cm trials, the fibre strain is calculated sepa-
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rately for each camera and subsequently presented as mean values (Sect. 2.3.3).

In the figure, the strain values are almost entirely half the strain values given

in Fig. 3.4 for identical generated isometric forces. Furthermore, the dy-

namic force fluctuation ∆F is nearly 50% higher in the 4 cm experiments

when compared to the 1 cm experiments. A direct comparison across falling

heights of fibre material strain versus force fluctuation is in Fig. 5.3, which

separates the isometric force into intervals of 5 N: 0-5 N, 5-10 N, 10-15 N,

15-20 N, 20-25 N, 25-30 N, and passive trials. The figure conflates the data

from Fig. 3.4 and Fig. 5.2, and also includes linear fits linking the isometric-

force-ranked data points of each the respective 1 cm (∆F = 0.2 N) and the

4 cm trial (∆F = 0.35 N) within the same isometric force interval, e.g. 0-5 N.

Figure 5.2 | Maximum shock-wave-induced (‘dynamic’) fibre ma-
terial strain for 1 cm falling height Maximum CE strain data εCE,max
for fully active muscles on the right side of F = 0 and for non-stimulated
(‘passive’) muscles on the left. The grey-shaded region indicates the range of
values from trials with passive muscle with a 95% confidence interval (CI).
The two thin vertical, black lines indicates either F = 0 or F =Fmax = 23 N
(extrapolated Fmax for 1 cm data, Fig. 4.1).
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Figure 5.3 | A comparison of the fibre material strain in study 1
(0.35 N) and study 2 (0.2 N). Each marker point represents the arithmetic
mean maximum shock-wave-induced (‘dynamic’) fibre material strain in one
of the following ranges: passive, 0-5 N, 5-10 N, 10-15 N, 15-20 N, 20-25 N, or
25-30 N. The marker points are either distributed at 0.2 N or 0.35 N, which
are the respective peak ∆F at either 1 cm or 4 cm falling height. All CE
strains at 0.2 N are from Fig. 5.2, and CE strains at 0.35 N are from Fig. 3.4.
All lines (dashed, dotted etc.) are linear regressions fitted separately to the
two data points each regression line goes through.

Both model1 and model2 assume that the half-sarcomere stiffness con-

sists solely of cross-bridge and myofilament stiffness khs =
u·kCB,max·kfil
u·kCB,max+kfil

(Eq. 6.49), an assumption that is also common in literature [1, 53, 146]. Ac-

cording to the linear fits in Fig. 5.3 above an isometric force of 15 N (either

grey circles or black crosses or diamonds fitted to 0.2 N and 0.35 N), this sim-

ple model assumption holds up to at least ∆F = 0.35 N because all three fits

comply with the strain-force relation and intersect at 0,0. However, when the

isometric force in GAS starts to decline (either grey plus signs, black circles,

or grey triangles), the linear fits no longer intersect at 0,0 suggesting that

the fibre strain becomes more dominated by in-parallel, passive connective

tissue as stiffness seems to be added to the cross-bridge-only value that is
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effective at higher isometric force values. In the passive experimental trials,

the fibre strain is almost constant regardless of the height from which the

frame was dropped (horizontal, grey, dotted line). This trend can either be

due to a very scattered set of passive data, whereby the real physiological

trend remains unknown or because the passive stiffness that solely acts in

passive muscle is non-linear around 0.9% half sarcomere strain. Below an

isometric force of 15 N, the ∆F -strain relation must be non-linear because

no impact force adds if strain increases. Unfortunately, the number of ex-

periments with variation in the drop heights are too few to determine where

exactly the non-linearity exists and how it emerges.

5.3 From quadruped to human locomotion

5.3.1 The fibre strain in human GAS

As seen in Fig. 5.3, the higher the dynamic force change ∆F , the higher

the strain in the fibre material (CE part) becomes. A higher dynamic force

change must meet a larger ACSA to avoid increasing the fibre strain. If

not met, the fibre strain will either increase or decrease depending on the

dynamic force change ∆F . Therefore, estimating the fibre strain in human

GAS when running, requires known values for both ∆F and the ACSA in

humans. The ACSA is in an adult humans male ≈4700 mm2 [159], whereas

∆F , on the other hand, depends on the impact force that causes the muscle

to wobble ( ∆F = mass · acceleration). In skeletal muscle tissue, the fibre

material density is 1.06 g
ml

[160] and the mass of rat GAS is 0.002 kg (4 cm

experiments: Table 3.1), thus, the volume of rat GAS fibre material is

2 g

1.06 g (ml)−1
= 1.9 cm3 . (5.1)
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This is 215 times lower (410 cm3

1.9 cm3 ) than the volume in human m. gastrocnemius

medials and lateralis of 410 cm3 [161]. With a mass of 0.43 kg = 215 · 0.002 kg,

the volume ratio between the human GAS and the entire wobbling mass in the

posterior of human shank muscles 0.29 = 0.43 kg÷ [1.5 kg] [19], is practically

the same as determined elsewhere (0.33, excl.m. plantaris) [161]).

Further, the vertical acceleration of the human shank’s wobbling mass is

260 m s−2 [Fig. 2C] [21] in response to an impact when running at 4.8 m s−1 [21].

To estimate the kinematics of the shank’s wobbling mass, the authors drew

a grid on the posterior part of the lower leg and captured the wobbling

movement with high-speed cameras, an approach similar to how the COM

of the rat GAS wobbling mass is estimated here. The wobbling mass value

of 260 m s−2 reached was estimated using a symmetric windowed-sync filter

with a seven-point Blackman window, 0.01 s after TD.

If the wobbling mass value of 260 m s−2 is representative for the accelera-

tion in the human GAS, as it lies direct beneath the skin and takes up most

if the grid in [Fig. 1] [21], then ∆Fhum = 112 N = 260 m s−2 · 0.43 kg, which is

320 times higher than in rats. Of course, for the same CE reference length

of 18 mm (Table 3.1), the stiffness in human GAS is much higher due to the

larger ACSA (see also Eq. 2.5 or kCE,hum in Eq. 5.3). In the rat, the ACSA of

GAS is 91 mm2 (Table 3.1), whereas the human maximum ACSA of GAS is

4700 mm2 [159], which makes the GAS difference between humans and rats

a factor of 52 (4700 mm2

91 mm2 ). Therefore, the strain in human GAS seems much

higher than in rat, because a factor of 320 is much higher than the factor of

52 difference in the anatomical cross-section area. Even assuming that the

human GAS is fully activated at TD, which could be the case in sprinting,
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the GAS CE strain in humans (εGAS,hum) may reach 1.3% as

εGAS,hum = 1.3% =

(
∆Fhum
kCE,hum

÷ LCE,0
)
· 100 (5.2)

=

(
112 N

9050 N m−1 · 4700 mm2

91 mm2

÷ 0.018 m

)
· 100 . (5.3)

From Eq. 5.2 and Eq. 5.3 it seems simply mandatory for the passive properties

to effectively limit the strain in human GAS when sprinting to work properly

because the scaling factor between ∆F is higher than the ACSA scaling

factor. It is, however, most likely that the fibre strain converges when nearing

the critical strain limit (lower border of the grey shaded area in Fig. 3.4)

and has an upper limit at about 1% strain, i.e. the upper border of the

grey shaded area in Fig. 5.3. For that reason, the CE strain value of 1.3%

predicted by scaling is probably unrealistic high, as the passive connective

tissue in-parallel to the cross-bridges is supposed to constrain excessive fibre

strain. To put the estimated human GAS strain into perspective, εGAS,hum=

3.3% would hold if GAS were activated by only 20% at TD, as stated for

running at moderate speeds [155]. It is worth noting that the human GAS

strain estimations are likely upper estimations or ‘worst-case’ scenarios as

the wobbling mass of the shank of 260 m s−2 here is assumed to equal the

acceleration of GAS’s COM. Two of the most influential reasons for the

GAS acceleration being lower than the shank wobbling mass acceleration are

that, firstly, not all skin movement is due to muscle wobbling. Secondly,

there might well be some degree of interaction between the muscles within

the compartment of the posterior shank, and particularly the deeper parts

of the GAS may interact with the shank bone. Accordingly, specifying each

single calf muscle’s COM acceleration from the entire shank segment’s or

possibly just part’s accelerations requires detailed knowledge of each muscle’s
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properties (e.g. TAC and CE ratio) and anatomy.
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Chapter 6

Conclusion

6.1 Study 1

This present work provides the first experimental data of muscle wobbling

during physiological relevant impacts (initial contact phase during running).

The dynamic strain of rat GAS muscle fibres under physiological, shock-

wave-induced stretch conditions saturates below a stress of about 40% the

maximum isometric value. As the fibres were initially at their optimum

lengths, this saturation may be due to counteracting forces by passive, con-

nective tissue within or surrounding the sarcomeres: initial, passive forces

are ca. 0.1-0.2 N ( Fig. 3.4), which is comparable to the maximum dynamic

force change of 0.2-0.4 N (left y-axis of Fig. 3.3). In rat fully active and fresh

muscle, the fibre strain is 0.2% in response to impact. Accordingly, cross-

bridges are bound down to 11.8 N (40% of the maximum isometric muscle

force). Because submaximal muscle force represents the ordinary locomotor

condition, the results show that forcible, eccentric cross-bridge detachment is

a common, physiological process even during isometric muscle contractions.

Measured MTC stiffness kMTC (2400-3450 Nm−1), calculated CE’s Young’s
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modulus ECE (0.75-1.8 MPa), and inferred stiffness kTAC (5600-6700 Nm−1)

of the ‘tendon-aponeurosis complex’ (TAC: arranged in series to the CE)

matched well with values from literature (see Sect. 3.2.2.1). From this, it fol-

lows that kTAC is dominated by properties of the aponeurosis region rather

than the tendon because the values are about 50 times lower than would be

expected from mammalian tendons’ Young’s modulus Etendon≈ 1.5 GPa [162,

126] and the rats’ anatomical data (Table 3.1).

The calculated wobbling mass eigenfrequency is already predictive re-

garding the overall muscle and therefore body size. It is, however, descriptive

regarding an MTC’s physiological and anatomical design. A model that for-

mulates the eigenfrequency as a function of the corresponding design param-

eters would, thus allow, to gain further insight into how functional demands

under common shock wave conditions formed MTCs during evolution. How-

ever, a daring statement thus far is that the frequency spectrum in terrestrial

locomotion is broader in bigger animals. Although the found centre of mass

acceleration is similar for a running rat’s m. gastrocnemius medialis and

lateralis ≈ 165 m s−2 and running human’s leg muscles (in shank≈ 270 m s−2

and thigh≈ 160 m s−2), phase relations of the leg’s wobbling masses in re-

sponse to the impact differ. In humans, maximum vertical accelerations of

the segmental muscle masses in both thigh (20 ms) and shank (5 ms) have

a wider temporal separation of bone and muscular movement compared to

rat (0.6 ms). Thus, it seems that wobbling mass dynamics have higher func-

tional relevance during impacts in larger animals because of a larger temporal

separation of bone and muscular movement.
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6.2 Study 2

In the 1 cm falling height experiments, the estimated energy dissipated per

cross-bridge at maximum isometric muscle force Fmax is 0.6% due to an im-

pact. It is unlikely that the pre-activation required before touch-down gener-

ates Fmax for each stride; instead a lower pre-activation, as found in humans,

is more likely. Accordingly, it is very likely that the Wistar m. gastrocnemius,

in-vivo and at intermediate running speed, dissipates by impacts about 16%

of the mechanical work available throughout the period of hydrolysing one

ATP molecule, and that the GAS is such designed that the entire MTC is

critically damped at TD due to the pre-activation. In addition, it is very

likely that several structural —such as titin— contributions to passive visco-

elasticity act in parallel to the cross-bridges. However, the experiments were

not suited to resolve such potential single passive contributions across the

isometric force range of active muscles.

Despite the estimated maximum isometric force in a half-sarcomere be-

ing estimated at 445 pN and agreeing with estimations in single fibre ex-

periments, the half-sarcomere stiffness is low and declined from 2.2 pN nm−1

at maximum isometric muscle force down to 0.4 pN nm−1 in a passive half-

sarcomere. The scaled half-sarcomere stiffnesses are lower than compared to

what has been found in slow ramp experiments for single fibres, and much

lower than in rapid step-in-length and 4000 Hz oscillation fibre experiments.

The majority of the stiffness difference can be explained by the actuating

drive within a cross-bridge being caused by a Coulomb force that is friction-

inhibited at very high frequencies, and subsequently by the possibility of lo-

cal CE compression under an impact. The experiments tried to emulate the

impact that a rat would experience at an intermediate speed, which super-

imposed damped oscillation at roughly 50 Hz to the muscles. It is, therefore,
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unlikely that such high perturbations frequencies (≈ 4000 Hz), required to

inhibit the suggested Coulomb-originating cross-bridge stiffness, can occur

in legged locomotion. It seems there is no getting out of integrating repre-

sentations of frictional mechanisms, next to muscle inertia, into explanatory

models of highly dynamic muscle contraction.

In the passive trials, the measured stiffness scaled to a half-sarcomere

is 0.4 pN nm−1. This work probed titin’s contribution to passive stiffness

with two model assumptions, the first being that titin is solely responsible

for the passive half-sarcomere stiffness with the sub-cases being elastic or

visco-elastic. If being elastic, then titin accounts for 75% of the work-loop

stiffness. In the sub-case of visco-elasticity, titin accounts for 50% of the

dissipated energy in a half-sarcomere. The second model assumption is that

titin makes up the half-sarcomere stiffness partly in conjunction with myosin

filament. For the latter, titin stiffness is equal to the elongation slope in

the work-loop, and, if being visco-elastic, then titin makes up 100% of the

dissipated energy in passive half-sarcomere.

6.3 Comparing studies

By comparing strain findings here with fibre stiffness, stretch rates and cross-

bridge rupture force with literature data, it seems that the critical strain

limit for fibre material δcrit≈ 0.68% is the same regardless of stretch rates.

A possible explanation is that the Coulomb contribution to half-sarcomere

stiffness diminish outside the range of a cross-bridge work-stroke (stretching)

because the cross-bridge is nearing its mechanical limit. Further, in active

GAS, the fibre strain scales linearly with the dynamic force change ∆F when

generating an isometric force above ≈50% of Fmax. On the other hand, the
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strain data also suggests a non-linearity between fibre strain and ∆F if the

half-sarcomere generates an isometric force lower than ≈50% of Fmax be-

cause the linear fits to data do not intersect at 0,0. Unfortunately, having

only two drop heights are too few to precisely determine the location of that

non-linearity.

Scaling the experimental strain findings from rat GAS to human GAS

suggests that it it simply mandatory for the passive properties to effectively

limit the strain in human GAS when sprinting to work properly because the

scaling factor between ∆F is up to 515% (100 · 320−52
52

) higher than the ACSA

scaling factor.

6.4 Prospects

This work intended to design an experimental setup that allowed for em-

ulation and caption of single muscle response in bouncy gait. With such

an experimental setup, the aim of Study 1 (Chapter 3) was to, for the first

time, examine whether cross-bridges in active skeletal muscle are disrupted

when strained by shock-waves in the physiological range in legged locomo-

tion. Study 2 (Chapter 4) aimed to better understand the damping and en-

ergy dissipation of the whole muscle and the fibre material during wobbling

by calculating stiffnesses, damping coefficients, and the energy dissipated

during work-loops. From these work-loops, the Study 2 findings were scaled

to half-sarcomere level to probe predictions of cross-bridge stiffness values by

half-sarcomere models: the first by Fusi et al. (2014) [1] and the second by

Günther et al. (2018) [2].
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The results in Fig. 3.4 suggests, that forcible detachment of cross-bridges

is common in bouncy gait. However, the fibre strain will likely saturate at

higher impact forces (Fig. 5.3), which may be due to counteracting forces by

passive connective tissue within or surrounding the sarcomeres, at least at

optimal fibre length. Experiments at shorter initial fibre lengths will provide

further insight to whether this is an evolutionary well-adapted system design

or a result of chosen MTC length.

Inferring the MTC- and, in particular, the CE damping coefficient and

energy dissipated was not an easy task. It took quite a long time to properly

fine-tune the setup and data processing to estimate these values. However,

this tiresome process provided the first experimental data that show the

quantity of energy dissipated due to an impact (Fig. 4.3). Consequently,

this works findings show that ignoring wobbling in muscle models, especially

those emulating legged locomotion [163, 7], can lead to underestimating the

energetic costs associated with walking or running. In addition to this, the

ability to experimentally show that there is energy dissipated due to wob-

bling is a vital piece of information when verifying muscle models such as

model2 [2]. However, a particular issue in this model-experiment comparison

will be the further comparison to experimental literature data on responses

to steps in length and force. The crucial damping strength inconsistency

within the structure-based fibre model part, as inferred in Study 2, diverges

by more than an order of magnitude from the value inferred from literature

data on rapid step responses [141, 34].

This work also examined the scaled titin force-length relation while hy-

pothesising two different, somewhat extreme conditions that may determine

the work-loop return path from maximum elongation. This was done to un-
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derstand how titin might contribute to the passive fibre material. In the

first case (visco-elastic response), titin accounts for approximately half of

the dissipated energy in fibre material. In the second case (elastic respond),

titin would account for 80% of the passive fibre materials stiffness. However,

new experiments are needed to accurately map titin’s contribution to pas-

sive properties in legged locomotion depending on contraction history, falling

height, and muscle length.

Finally, the shock-waves that travel through the muscle tissue may cause

a mixture of local fibre compression and elongation, as suggested in some

experiments (see. Exclusion criteria in Sect. 2.2.4). Accordingly, there may

also exist a phase shift between local strains (within the CE region defined

in this work). To experimentally verify the existence of any opposing fibre

strains and phase shifts, a very local view of the fibre material is needed. An

improved camera resolution is a key to answering questions regarding wave

propagation. With such an experimental setup, it may be possible to pre-

dict longitudinal and transversal waves travel patterns and directions within

muscles during impacts. Data that will not increase only the robustness, i.e.

verification via stiffness, strains and time constants, but also pinpoint the pa-

rameters estimated in Table 4.1 because the CE range for the fibre material

might be a mixture of in-series local compression and elongation.
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for the care and anaesthesia of the Animals. Likewise, I would like to thank

Dr. O. Till for his help in carrying out the initial experiments.

A special thanks go to Prof. Dr. Tobias Siebert. As my doctoral supervi-

sor and as a muscle physiologist, he gave me the chance to do a doctorate in

biomechanics. He gave me the freedom to develop myself what encouraged

my independence. Other special thanks go to Dr. Michael Günther. He

sharpened my way of thinking through numerous conversations concerning

the methodology, results and conclusions drawn therefrom. His high stan-

dards in international science shaped my way of working and thinking. Even

on the weekend and in the late evening, he willingly answered my questions.

Finally, I will also like to thank the Deutsche Forschungsgemeinschaft for

financing me throughout the years it took to complete this work. I am also

thankful to all the people, including my family, colleagues, friends, and many

more, who gave me valuable input and supported me throughout this work.

163



Appendix

Pictures of experimental setup and muscle

Figure 6.1 | Frontal picture of the experimental setup.
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Figure 6.2 | Picture of m. gastrocnemius lateralis.
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Figure 6.3 | Picture of m. gastrocnemius medialis

Installation of HCC Control V5.0.0

The HCC Control software for the HCC-1000 BGE, high-speed VDS Vosskühler

cameras is developed for Windows XP operating system. Because VDS

Vosskühler has since been incorporated as a branch office of from Allied

Vision (Allied Vision Technologies GmbH, 07646 Stadtroda, Deutschland) ,

there exists no newer version of the software just as the cameras are now

legacy cameras with no newer operating system. Currently,the installation

steps to make the HCC Control software run on newer OS systems has only

been testet on: Windows 7 (x32) and Windows 10 (x32).

� Install HCC Control V5.0.0

166



– Activation code: B35245396-4AE97-75BE

� Install Acquire Control Setup V4 0 2

– Choose the Pleora Driver Package Installer (64 version)

� Transfer the content of the ’dll material’ folder to the directory (from

USB stick)

� Open HCC Control and click hardware → grabber options

– Right click on the IP Engine to set IP.

– Change IP Engine IP Address to 169.254.0.201 (note, for more

cameras, each need its own ip from .201 and upwards)

Note: Acquire Control driver:

https : //www.alliedvision.com/en/products/software/acquirecontrol.html
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Static hand-calculations of the frame deflec-

tion

For starters, Young’s modulus in the aluminium parts were all set to 6.9 ·

1010 Pa. This Young’s modulus value is a standard value for aluminium found

on the internet1. Further, although the dimensions and shapes of the frame

vary throughout its entirety, the aluminium frame itself can be separated

into seven parts, of which three parts are identical. Figure. 6.4a,b and 6.5a,b

shows the dimensions of each aluminium part. The latter figure also includes

two red dots used to calculate the total deflection of the aluminium frame

under an applied force of 25 N (20 N for GAS [83] + 5 N (Eq. 1.48) for the

GRF). Note that the separation of each piece is only visual, and it is not

physically possible to separate the shown parts.
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Figure 6.4 |Side view of the frame. Figure a shows the profile and
dimensions of the aluminium frame backbone and two extrusions. b is the
aluminium frame segmented into the seven parts used to calculate the de-
flection of the aluminium frame by hand. In the middle of part p1 is the
deflection of the backbone’s centerline δ= 0. The red dots in a and b are the
spots used for calculating the deflection the aluminium frame makes.
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Figure 6.5 |Frontal view of the frame. The frame is shown as a whole
in a and segmented into five parts in b, with the extrusions being further
segmented. The dimensions of the separated parts in the zoomed-in views of
both extrusions corresponds to p3 and p4, respectively, in Fig. 6.4b.

Of the seven parts, three of them are identical with their opposite. There-

fore, the parts p1, p2, p3, p4 can categorise all of the seven parts, where the

inertia of each is equal to

Ii =
wi · hi3

12
−
win,i · h3

in,i

12
, (6.1)

with w and h being outer dimensions of the parts, and win and hin being the

inner dimensions. An example of the inertia for p4 is

Ip4 =
0.01 m · 0.013 m

12
− 0.008 m · 0.0083 m

12
. (6.2)

The only exception to finding inertia with Eq. 6.1 is p2, which is

Ip2 = 2
wh3

12
= 2

0.001 m · 0.0153 m

12
(6.3)
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because p2 consists of two solid rectangles (Fig. 6.5b). The inertia of all four

parts is:

� Ip1 = 1.0 · 10−9 m4

� Ip2 = 5.6 · 10−10 m4

� Ip3 = 3.9 · 10−9 m4

� Ip4 = 4.9 · 10−10 m4

When applying a 30 N force at the tip of the frame extrusion, as seen in

Fig. 6.5, it creates a bending moment (M1) of

M1 = F1 · Lp4 ·
Lp3
2

= 30 N · 0.02 m · 0.015 m

2
= 0.83 N m (6.4)

between part p3 and p4. That bending moment will also exist if there is a

tangential force (F2) acting on the tip of the frame backbone being

F2 =
M1

L2

=
0.83 N m

0.005 m
= 166 N . (6.5)

If F2 acts perpendicular on the frame backbone, then the bending moment

at δ = 0 (M2, Fig. 6.6) is

M2 = 166 N · 0.06 m = 10 N m . (6.6)
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Figure 6.6 |Acting forces and bending moments in the frame. The
force F1 acting at the tip of the upper extrusion creates the bending moments
M1 and M2 in the centerline (dashed lines). Because the lower part of the
frame (beneath the δ= 0 line) is identical to the upper part, all of the 30 N
acts at the upper extrusion tip, and the δ= 0 line is fixated when calculating
the overall frame deflection. L1 is the length from the δ= 0 line to the
centerline of p4, while L2 is the length from p4’s centerline to the top of the
aluminium frame.

The angle of rotation in all the frame backbone parts (inferred from

Eq. 6.7) is:

θi =
F2 Li

2

2E Ii
+
F2 Li Ladd
E Ii

(6.7)

with Ladd being the lengt of the adjecent backpone part. As an example, the

angle of rotation at the tip of the part p1 is

θp1 =
166 N · (0.012 m)2

2

2 · 69 Pa · 1 m4
+

166 N · 0.012 m
2
· (0.06m− (0.012 m)2

2
)

69 Pa · 1 m4
= 8 · 10−4 .

(6.8)

The angle of rotation at the tip of each backbone part is:

� θp1 = 8.1 · 10−4
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� θp2 = 60 · 10−4

� θp3 = 3 · 10−5

Knowing the angle of rotation in part p1, p2 and p3 and that the bend

centerline arc length is equal to the unbent centerline (L1, Fig. 6.6), the

vertical deflection of the backbone due to rotation becomes

δθ,p1,p2,p3 = (L1 + L2)

(
cos

(∑
θi

)
· (L1 + L2)

)
(6.9)

= 0.06 m ·
(
cos

(
6.9 · 10−3 · π

180

)
· 0.06 m

)
(6.10)

= 4.3 · 10−10 m . (6.11)

In Eq. 6.9, the centerline length L1 is the same as the arc length ds in a

bent centerline because the centerline is not under stress (Eq. 1.9). Lastly,

the deflection in part p4 due to rotation is

δθ,p4 (6.12)

= tan(
∑

θi) · Lp4 (6.13)

= tan

(
6.9 · 10−3 · π

180

)
· 0.02 m (6.14)

= 2.4 · 10−6 m (6.15)

at the tip. The deflection of p4 (Eq. 1.25) is

δ4 =
F Lp4

3

3Ep4 Ip4
=

30 N · 0.023 m

3 · (6.9 · 1010 Pa) · (4.9 · 10−10 m4)
= 2.4 · 10−6 m . (6.16)

calculated with Euler–Bernoulli beam theory, however, as indirectly hinted

to in Fig. 1.5b (dθ, dx ≈ x) and Eq. 1.2, the Euler–Bernoulli beam theory

relies on the assumption that any plane perpendicular to the centerline will
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remain so after the beam is bend. I.e. the Euler–Bernoulli beam theory

assumes no transverse shear force in the infinite small sections. Although

this is not true, the shear force is negligible when considering slender beams

or small deflections. Conversely, if the length thickness ratio of p4 is under six

or there are large deflections, then the transverse shear forces might no longer

be negligible [164, 165]. For these situations, the Timoshenko beam theory

takes the shear force into account, which in the case of a cantilever beam,

lead to an addition [164] to the Eq. 1.25 expression. Thus the deflection in

p4 is equal to

δ =
F L3

3E I
+

F L

kGA
(6.17)

where G is the shear modulus, A is the cross-section area, and K is the

structures shear coefficient. The latter is very difficult to keep constant

because it is a function of frequency, and there is no definitive consensus of

the K value. Though, for a thin-walled square tube, the K is estimated [166]

to

K =
20 (I + v)

48 + 39 v
, (6.18)

where v is Poisson’s ratio, which is v= 0.34 in aluminium2. Even though

the parts p1 and p3 also have high length to thickness ratios, their potential

wrong estimated contribution to the vertical deflections are considered neg-

ligible, thus, integrating Eq. 6.18 in Eq. 6.17 and the corrected deflection of

p4 becomes

4.4·10−6 m =
30 N · 0.023 m

3 · (6.9 1010 Pa) · (4.9 · 10−10 m4)
+

30 N · 0.02 m

0.11 · (2.6 · 1010 Pa) · 0.0001 m2

(6.19)

with G=̇ 27 GPa in aluminium3. Adding 4.4 · 10−6 m to the vertical

3https : //www.engineeringtoolbox.com/poissons− ratio− d1224.html
3https : //www.engineeringtoolbox.com/modulus− rigidity − d946.html
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deflection contributions of parts p1, p2, p3, and the overall deflection of both

tips is 2.9· 10−5 m:

δmax = 2 · (δθ,p1,p2,p3 + δθ,p4 + δ4) = 1.4 · 10−5 m . (6.20)

To calculate the vertical deflection contribution from p1, p2 and p3 without

applying Timoshenko’s beam theory might be wrong considering the differ-

ence in Eq. 6.16 and Eq. 6.19. However, the difference in vertical deflection is

negligible compared to the added deflection from the force transducer, clamps

and insulators (Fig. 1.8). On a final note, even though the part p1 design is

so that it reduces any potential torsion in this critical location. The actual

frame torsion was not calculated because any force acting on the frame is

limited to the vertical direction.

Least-square fitting

As an example, the black, thick line in Fig. 3.4 is a 2-parameter (Eq.6.21)

least-square fit of all data F > 12 N

y = a+ b · x . (6.21)

That can be written in linear matrix form (y = A · x) as

y =


y1

y2

...

yn

 , A =


1 x1

1 x2

...
...

1 xn

 , x =

a
b

 , (6.22)
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with rank(A) = 1 with independent columns. a and b are the slope and

intersection, respectively. Because the system for A also fulfils m> n, i.e.

A has more rows than columns, the left-pseudo-inverse (or Moore-Penrose

inverse)

A+ = (AtA)−1At (6.23)

of A can be used to solve Eq. 6.22.In Eq. 6.23, At is the transpose of A. With

the Moore-Penrose inverse, x in the linear matrix form is equal to

x = A+y (6.24)

= (AtA)−1Aty , (6.25)

where the term AtA is equal to

AtA =

 1 1 . . . 1

x1 x1 . . . xn




1 x1

1 x2

...
...

1 xn

 =

 n
n∑
i=1

xi
n∑
i=1

xi
n∑
i=1

(xi)
2

 (6.26)

and At y to

At y =

 1 1 . . . 1

x1 x1 . . . xn



y1

y2

...

yn

 =


n∑
i=1

yi
n∑
i=1

xiyi

 . (6.27)
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Integrating Eq. 6.26 and 6.27 into 6.24 becomes

 n
n∑
i=1

xi
n∑
i=1

xi
n∑
i=1

(xi)
2


a
b

 =


n∑
i=1

yi
n∑
i=1

xiyi

 , (6.28)

which rewriten to x = A+ y for calculating a and b (Eq. 6.29) becomes

a
b

 =

 n
n∑
i=1

xi
n∑
i=1

xi
n∑
i=1

(xi)
2


−1 

n∑
i=1

yi
n∑
i=1

xiyi

 .(6.29)

With the inverse in Eq. 6.29 being

 n
n∑
i=1

xi
n∑
i=1

xi
n∑
i=1

(xi)
2


−1

=
1

n ·
n∑
i=1

(xi)2 +
n∑
i=1

xi ·
n∑
i=1

xi


n∑
i=1

(xi)
2 −

n∑
i=1

xi

−
n∑
i=1

xi n

 . (6.30)

Eq. 6.30 reveals, that the system can not be solved, if the determinant is 0.

Solving Eq.6.29 with the data values F > 12N extracted from Fig. 3.4, the

slope and intersect

−0.03

0.98

 =

 16 287.73

287.73 5178.70

−1  7.52

121.91

 (6.31)

is -0.03 and 0.98, respectively.
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Model ideas(extended)

model1 [1] According to model1 (Eq. 6.32), all cross-bridges act in parallel,

and they are assumed to be arranged in series with the myofilaments (actin

and myosin), to make up the half-sarcomere stiffness

khs(FCB) =
1

Cfil + ∆LCB

FCB

. (6.32)

Here, Cfil =
1
kfil

is the overall compliance of the myofilaments (kfil their stiff-

ness) and ∆LCB

FCB
= 1

kCB
the overall compliance of the ensemble of nCB cross-

bridges (kCB their stiffness) in a half-sarcomere.

The force generated by a single cross-bridge (FCB,1) is assumed to be a

constant, with an associated constant deflection (∆LCB). The overall stiff-

ness of the cross-bridge ensemble, which generates the half-sarcomere force

Fhs(nCB) = FCB(nCB) = nCB · FCB,1 , (6.33)

scales linearly, just like the force, with the number of cross-bridges:

kCB(nCB) =
FCB

∆LCB
= nCB · kCB,1 , (6.34)

where kCB,1 =
FCB,i

∆LCB
is the stiffness of a single cross-bridge. With known

values for kfil and nCB, the overall half-sarcomere stiffness (Eq. 6.32) can

also be written as

khs(nCB) =
kCB(nCB) · kfil
kCB(nCB) + kfil

. (6.35)

Since ∆LCB of each cross-bridge is fixed at ∆LCB = 1.5 nm [1], and cross-

bridges and filaments are arranged in series, the half-sarcomere elongation
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is

∆Lhs(nCB) = ∆LCB + ∆Lfil(nCB) , (6.36)

with the filament elongation being

∆Lfil(nCB) = ∆LCB ·
kCB(nCB)

kfil
. (6.37)

In accordance with model1, the cross-bridge force FCB is transmitted by the

filament (FCB = Fhs = Ffil); thus,

FCB(nCB) = khs(nCB) ·
(
∆LCB + ∆Lfil(nCB)

)
. (6.38)

To reproduce [Fig. 3 A,B,C] [1], khs can be calculated from Eq. 6.35—

and further using Eq. 6.34— with kfil values of either 150 pN nm−1 and

kCB,1 = 3 pN nm−1 (solid, black line in Fig. 6.7) or kfil = 90 pN nm−1 and

kCB,1 = 1 pN nm−1 (dashed, black line in Fig. 6.7); for this, both khs varia-

tions assume ∆LCB = 1.5 nm [1], thus, FCB,1 = 4.5 pN or 1.5 pN, respectively.

For all four graphs in Fig. 6.7 (including model2 and an alternative model2

version), it is assumed that the maximally possible number of cross-bridges

in a half-sarcomere sub-unit (i.e. one half-myosin and two actin filaments) is

nCB =nCB,max = 90 [53].
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Figure 6.7 | Model predicted stiffnesses as function of half-
sarcomere force. The solid, black line is the predicted half-sarcomere stiff-
ness khs for model1 if kCB,1 = 3 pN nm−1 (stiffness of a single cross-bridge),
kfil = 150 pN nm−1 (filament stiffness) and a constant ∆LCB = 1.5 nm. The
dashed, black line is the predicted khs for model1 with kCB,1 = 1 pN nm−1,
kfil = 90 pN nm−1 and ∆LCB = 1.5 nm. The solid, grey line is the predicted
model2 khs if parameter values are the same (except FCB,opt,1 = 4.5 pN, see
*) as in the original paper for the non-linear FCB(LCB) (kCB,1* = 3 pN nm−1,
kfil = 150 pN nm−1, LCB,opt = 7 nm, c3 = 4 nm), and force is proportional to
number of cross-bridges, with the latter all at their optimal lever coordinate
LCB,opt. The solid, thin, plus-sign, grey line is khs predicted from model2 if
the work-stroke changes the generated force with the (representative) lever
coordinate instead of the number of attached cross-bridges (nCB,max myosin
heads attached). For all calculations, it was assumed nCB,max = 90 [53] as
the maximum number of cross-bridges. This figure is from Christensen et al.
(2021) [94], reproduced with permission from Springer Nature.
* kCB,1 as in Eq. 6.34 and subsequently used to estimate FCB in Eq. 6.38,
which is equal to FCB in Eq. 6.48 that is used to calculate kCB for model2.

model2 [2]

The overall idea for model2 is that a half-sarcomere consists of an active

element (AE), a parallel damping element, a serial elastic element and a

serial damping element. In particular, the cross-bridge itself is divided into
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a catalytic domain and a light chain domain that can rotate, assumed to be

actuated by a Coulomb force drive (the AE) with respect to the catalytic

domain (together, they represent the S1 part of a myosin molecule). The

levered light chain, in turn, generates force (FAE) between the actin and the

myosin filaments, which is a non-linear function of the internal lever arm

coordinate (LAE) [2]. The serial elastic element in the model includes all

parts other than AE (like S1, S2, filaments) in series to the rotational degree

of freedom constituting the AE.

To compare model1 and model2, AE and the serial elastic element was the

only inclusions of model2 —leaving out the dampers. It was further assumed

that the AE is the same as the cross-bridge in model1 (AE =̂ CB) and that

the serial elastic element of model2 corresponds to the filament stiffness kfil

in model1. With this, the sum force

FCB(LCB) = FCB,max ·
(

c1

(LCB + c3)2
+ c2

)
(6.39)

of all cross-bridges in a model2 -like half-sarcomere is a non-linear function of

the LCB position of the representative cross-bridge. In Eq. 6.39, c1, c2, c3 are

parameters and FCB,max is the maximum force that the cross-bridge drive of

a half-sarcomere can generate at a corresponding optimal lever coordinate

(LCB =LCB,opt see Fig. 6.8); c1 can be written in terms of c3 and the optimal

cross-bridge lever coordinate:

c1 =
c3

2 · (LCB,opt + c3)2

c3
2 − (LCB,opt + c3)2

; (6.40)

c2 (> 1) can be written in terms of c1 (< 0) and c3 (> 0):

c2 =
−c1

c3
2

; (6.41)
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c3 fixes the pole coordinate for the model function FCB(LCB) where FCB

approaches infinity (LCB =−c3).

For Eq. 6.39, the length-derivative of FCB, i.e. kCB, can be expressed as

kCB = F ′CB =
d

dLCB
·
(
FCB,max ·

(
c1

(LCB + c3)2
+ c2

))
(6.42)

= FCB,max · c1 ·
d

dLCB
·
(
(LCB + c3)−2

)
. (6.43)

Eq. 6.43, can express the stiffness of the cross-bridges’ part as a function of

LCB:

kCB(LCB) = −2 · c1 · FCB,max
(LCB + c3)3

. (6.44)

To enable an immediate comparison with the half-sarcomere stiffness pre-

dicted by model1, it is necessary to replace—by solving Eq. 6.39 for (LCB +

c3)2 and inserting this into Eq. 6.44—the variable length LCB by the force

FCE in Eq. 6.44, and find

kCB(FCB) = − 2 · c1 · FCB,max(
c1

FCB
FCB,max

−c2

) 3
2

(6.45)

= −2 · c1 · FCB,max ·

(
FCB

FCB,max
− c2

c1

) 3
2

(6.46)

=
2 · c2 · FCB,max

c3

·
(

1− FCB
c2 · FCB,max

) 3
2

, (6.47)

with the last form (Eq. 6.47) resulting from substituting c1 = −c2 · c2
3 (ac-

cording to Eq. 6.41) into Eq. 6.46 and eventually extracting c3 and, as much

as possible, c2 from the (. . .)
3
2 -term. For the values LCB,opt = 7 nm and

c3 = 1.2 (Table 2) to 4 nm[2], which are characteristics for a cross-bridge, the

values of parameter c2 are close to unity: c2 = 1.02 to 1.15 [2].

182



Both model2 and model1 assume that the stiffnesses of the cross-bridge

and filament parts arranged in series make up the overall half-sarcomere

stiffness. Also in model2, just like in model1, the isometric force FCB (of a

half-sarcomere: FCB =Fhs) scales linearly with the number of cross-bridges

(in a half-sarcomere: nCB), which are all acting at the optimal lever coordi-

nate LCE,opt:

Fhs(nCB) = Fhs(u) = u · FCB,max , (6.48)

with u= nCB

nCB,max
being a normalised factor. Therefore, the stiffness of the

cross-bridge part scales likewise linearly with nCB = FCB

FCB,max
, and the stiffness

of the serial arrangement in the half-sarcomere becomes

khs(nCB) = khs(u) =
u · kCB,max · kfil
u · kCB,max + kfil

, (6.49)

with kCB,max = kCB(FCB,max) (Eq. 6.47). In Fig. 6.7, Eq. 6.49 was used to cal-

culate khs with nCB =nCB,max 90, LCB,opt = 7 nm and kfil = 150 pN nm−1. An

alternative version of model2 (all attached) is also plotted in Fig. 6.7, where

the term u · kCB,max in Eq. 6.49 is substituted with Eq. 6.44. Thus, the force

per half-sarcomere no longer scales with the number of cross-bridges but

with the lever arm coordinate of the representative cross-bridge: all myosin

heads are assumed to be always attached (u = 1 : nCB =nCB,max) and de-

flected in their work-stroke so as to generate exactly the force FCB ≤FCB,max
demanded.
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Figure 6.8 | Non-linear FCB (LCB) (model2 ). Solid line is the force
for a single cross-bridge FCB,1 as a function of its lever arm coordinate LCB
as originally estimated [2]. Dashed line is FCB,1(LCB) as predicted for the
measured impact responses (see also Table 2).Horizontal, thin, dotted line
and vertical, thin, dotted line indicate optimal force FCB,opt,1 and length
LCB,opt, respectively, for a single cross-bridge as originally given [2]. This
figure is from Christensen et al. (2021) [94], reproduced with permission
from Springer Nature.
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Sub-pixel resolution

The term pixel resolution describes the amount of detail each image holds,

and a higher resolution equals a higher level of detail. Thus, pixel resolution

refers to the total number of pixels in an image, while spatial resolution de-

fines the blurriness or sharpness of each captured image. This means that

the clarity of an image is not determined by the number of pixels, but the

spatial resolution that also sometimes is given by the unit length of an pixel.

The sharpness of an image is determined by shutter speed, focal point and

DOF. The shutter speed or exposure time is the time duration exposing the

camera sensor to light. The amount of light that reaches the film or image

sensor is proportional to the exposure time. The focal point is the point at

which light arrays converge, and the DOF is the depth wherein the object is

still in focus. The latter is directly related to the focal length, which is the

distance from the focal point to the sensor (Fig. 2.2).

In many applications, it is desirable to increase the accuracy of a pixel, i.e.

approximate more detail than the camera can allow. Mathematically [167],

the resolution can exceed the traditionally limited pixel resolution because

the upper limit of an expectable resolution factor r is

r <

√
M

2ε
ATS . (6.50)

where ATS is the mean amplitude-template-step, M is the size of the tem-

plate, and ε is a grey-noise factor [167]. Choosing 1 as an arbitrary value for

both ATS and ε with M = 100, the expected resolution is

0.1 pixel =

√
100

1 · 1
· 1
−1

. (6.51)
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Figure 6.9 | The radial areal density number of myosins in cross-sections

of the A-band. The dashed, light-grey line and the solid light-grey line are 1-

parameter (a · x) fits of frog semitendinosus and rabbit psoas data, respectively

(species unknown)[168]. The dashed, grey line is the 1-parameter fit of frog, Rana

temporaria, semitendinosus[169], and the dashed, black line is the 1-parameter fit

of frog semitendinosus (species unknown)[170]. The solid, black and grey lines are

1-parameter fits to data of normal mouse soleus (SOL) combined with extensor

digitorum longus (EDL)[171] and rat SOL[172], respectively (both species are un-

known). The dotted lines are 2-parameter fits (a · x+ b) to data of normal mouse

EDL combined with SOL [171] and to Sprague-Dawley SOL [172] data, respec-

tively. In this work, the radial areal density number of myosins for the combined

mouse SOL and EDL data to estimate Ahs. The choice of the 1-parameter fit

of combined mouse SOL and EDL was due to three criteria: I. The mouse is a

mammal. II. Of all animals considered here, the mouse has the most anatomical

similarities to the rat of the animals presented here. III. The 2-parameter fit to the

data of the mouse is in better agreement with fibril volume constancy (intercept

at 0,0) than the 2-parameter fit of the Sprague-Dawley SOL data. In addition,

the Sprague-Dawley data are measured with electron micrographs instead of x-

ray diffraction, which typically overestimates the radial areal density number of

myosins by 10-20 %[173]. The dotted, thin, vertical line marks the optimal sar-

comere length (2.3µm) [95, 174] for a Wistar rat gastrocnemius, and the dotted,

thin, horizontal line is the corresponding radial areal density number of myosins

based on the 1-parameter mouse SOL+EDL fit (1540 nm2 = 1
649µm2 ). This figure

is from Christensen et al. (2021) [94], reproduced with permission from Springer

Nature.
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