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Abstract

In this thesis we extend the approach of Cordes to characterize the symbols .77 (R™ x R")
via their Kohn-Nirenberg operators 7" and the smoothness of the map py(—)T pr(—)* for
the Schrodinger representations py. For this purpose we introduce generalizations .7 ()
of the spaces of smooth vectors &(7) and analytic vectors o7 (m) of representations 7 and

discuss properties of associated algebras .7 (Ad,) for the representation
Ad;, T=n(—)oTon(—)"

on the continuous operators. In order to apply these concepts to the ultradifferentiable
case, we built on top of the existing theory of ultradifferentiable functions and create a
framework for vector valued ultradifferentiable functions defined by the action of analytic
frames.

We apply our results to the ultradifferentiable operators éa[[)M}(Adﬁ) and identify the
corresponding spaces of symbols for the Schrodinger representations m = p,, for the
left-regular representation m = Ly on compact Lie groups and for Schrodinger-type rep-
resentations m = ©, on the Dynin-Folland group Hs.

We create new Gelfand triples that work well with the Fourier transform and the
Kohn-Nirenberg quantizations on general homogeneous Lie groups. The new framework
enables us to rely more heavily on topological tensor products. We hope this will be
useful for the task of integrating the Kohn-Nirenberg quantization on homogenous Lie

groups into the approach of Cordes in future research.






Zusammenfassung

In dieser Arbeit erweitern wir den Ansatz von Cordes, in dem die Symbole .7()y (R™ x R")
mit Hilfe ihrer Kohn-Nirenberg-Operatoren 7' und der Differenzierbarkeit der Abbildung
pa(—)Tpa(—)"! charakterisiert werden. Hierbei bezeichnet p, die Schrodinger-Darstel-
lung. Dafiir fithren wir Verallgemeinerungen % (7w) der Rdume der glatten Vektoren
&(m) und analytischen Vektoren &7 (7) ein. Auflerdem diskutieren wir Eigenschaften

der zugehorigen Algebren .#(Ad,) zur Darstellung
Ad, T=n(—)oTon(—)"

auf den stetigen Operatoren. Um diese Konzepte im ultradifferenzierbaren Fall anwenden
zu konnen, kniipfen wir an die existierende Theorie der ultradifferenzierbaren Funktionen
an und konstruieren und diskutieren Raume von vektorwertigen ultradifferenzierbaren
Funktionen mit Hilfe von analytischen Rahmen.

Wir wenden diese Resultate auf die ultradifferenzierbaren Operatoren é‘%M](AdW) an
und identifizieren die zugehdrigen Symbolraume. Dabei betrachten wir die Schodinger-
Darstellungen m = p,, die linksregulare Darstellung m = Ly einer kompakten Lie Gruppe
und Darstellungen m = ©, der Dynin-Folland-Gruppe H,.

Wir haben neue Gelfand-Tripel konstruiert, die sich gut in die Arbeit mit der Gruppen-
Fouriertransformation und Kohn-Nirenberg-Quantisierung einfiigen. Diese neuen Gelfand-
Tripel ermoglichen es uns starker von der Theorie der topologischen Tensorprodukte zu
zehren. Wir hoffen, dass dies fiir zukiinftige Forschung bei der Integration der Kohn-
Nirenberg-Quantisierung auf homogenen Lie-Gruppen in den Ansatz von Cordes hilfreich

sein wird.
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Introduction

In the theory of pseudodifferential operators, one often uses spaces of operators, which
are defined via the Kohn-Nirenberg quantization Opg. of spaces of symbols ;75(]1%" x R™).
But the usual symbol classes S7'5(R™ x R") can also be characterized on the operator side
via the behaviour of their commutators with derivatives and multiplication operators.
In [67] an overview of these criteria can be found. There, these characterizations are
used to show that the algebras of operators on LP(R"™), which are induced by the symbol
spaces 8?75(11%” x R™), 0 < § < 1, via the Kohn-Nirenberg quantization, are spectrally
invariant in £(LP(R™)). As written in [67], in the L%-case there is more leeway and
for 0 < 0 < p <1, § < 1 the algebra Opga (8275(1[%" X R”)) is spectrally invariant
in L(L*(R")), see [5]. Cordes used a slightly different point of view in [I5], in which
Oppgn (Sg’U(R” x R™)) is characterized as the smooth vectors to time-frequency shifts on
the operator space £(L*(R"™)). This can be written in terms of the Heisenberg group
H, the Schrodinger representation p; of H on L?(R") and the corresponding adjoint
representation Ad,, T := pi(—)Tp1(—)* on L(L*(R™). Namely, the space of smooth
vectors &(Ad,, ) to Ad,, and the operator algebra Opg. (S§,(R™xR™)) coincide as locally

convex spaces.

Using this approach, one automatically gets a simple argument for the spectral in-
variance of Opgn (8870(R" X ]R”)), since the space of smooth functions with values in a
Banach algebra is closed under inversion. Moreover, various continuity properties of the
operators in Opgn (SSVO(R” X R”)) can be seen as a natural consequence of the continuous
multiplication between vector valued differentiable functions. Here one may use the fact

that various forms of Sobolev spaces can be seen as differentiable vectors to translations
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or time-frequency shifts on L*(R™).

This approach can be extended to different Lie groups, as the description of the space
of operators Opg (S(;;(G X @)) in [23] shows, where compact Lie groups G and the
Kohn-Nirenberg calculus developed in [59] were considered. Here, Opg (S0(G X @)) and
&(Adyg,) coincide for the left regular representation Ly on L*(G, i). In [9], the approach
of Cordes is modified to encompass analytic vectors o7 (Adg,) to Adg, on L(L*(T")) for
the n-dimensional torus T". Analogously to the other cases, this algebra of operators

corresponds to a space of analytic symbols via the Kohn-Nirenberg quantization.

These results are the motivations for our attempt to generalize Cordes’ approach.
Our goal is a generalization that encompasses the Kohn-Nirenberg quantization Opg on
a larger class of Lie groups G and more general constructions .# (Ad,) than smooth
vectors &(Ad,) or analytic vectors o/ (Ad,), but keeps the aforementioned benefits. For
this purpose, we use the theorems of Schwartz on bilinear maps on topological tensor
products of locally convex spaces [64]. We are especially interested in cases, where we
can identify spaces of symbols, which are homeomorphic to the operator algebra . (Ad,)

via the Kohn-Nirenberg quantization.

We were able to construct a general enough approach to use ultradifferentiable vectors
&MI(Ad,) together with the Kohn-Nirenberg quantization on R™ or arbitrary compact
Lie groups G. We generalize the concept of differentiable, smooth and analytic vectors
to general representations. This way, a definition of ultradifferentiable vectors appears
as a special case. The concept of ultradifferentiable vectors is not new [I3], though our
approach encompasses a wider variety of ultradifferentiable vectors. We built on top of
the theory of vector valued ultradifferentiable functions from [39, 40, 41] and prove a
description in terms of left invariant vector fields for general Lie groups as introduced in
[17, (18], 19] for compact Lie groups. We identify the preimage of the constructed operators
algebras under the Kohn-Nirenberg quantization, which are spaces of ultradifferentiable
symbols. As mentioned, the spectral invariance and various continuity properties of these
operator algebras follow immediately from our approach. Also, the statements from [9]

and the cited statements concerning S (R™ x R™) resp. Sg (G x G) appear as special
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cases in this regime.

We develop new spaces of test functions, which work well with the group Fourier
transform and the Kohn-Nirenberg quantization. Even for the Heisenberg group G = H
there seems to be no simple characterization for the Fourier image of the Schwartz space
of rapidly decreasing functions, .7 (G), see [2, BI]. By using a subspace .7, (G) of .7 (G)
instead of the whole space, we get a Fourier image that is easy to characterize and even
splits into a tensor product of a space of smooth functions and a space of operators.
This enables us to use the theory of bilinear maps on tensor products of locally con-
vex spaces due to Schwartz for the multiplication operators on the Fourier side. We
restrict our considerations to the case, where G is homogeneous and admits irreducible
unitary representations that are square integrable modulo the center Z(G) of G, and
where dim Z(G) = 1. This enables us to use an easy to handle characterization of the
irreducible unitary representations that are square integrable modulo Z(G) [53, 54 133].
Also, this setting combines very well with Pedersen’s machinery [57, [54]. Furthermore,
using these new spaces we are able to construct Gelfand triples around L?(G, i) and its
Fourier image. Associated to this we have fitting Gelfand triples of operators such that
the Kohn-Nirenberg quantization is a Gelfand triple isomorphism. We hope that these re-
sults will prove helpful in integrating the Kohn-Nirenberg quantization on homogeneous
Lie groups into the approach of Cordes in future research. In this regime we are also
able to recover the formula a(—,§) = &(—)* - (A ® I)(&) for the Kohn-Nirenberg symbol
a= Op@l(A), which is well known for compact Lie groups G or the case G = R" [5, [59].

This thesis is structured as follows.

In Chapter (1} we will introduce and revisit basic notations and concepts from func-
tional analysis. Our main focus lies on the topic of tensor products of bilinear maps, which
we will later need for the multiplication between vector valued functions. In preparation
for our later analysis we start by proving the first general statements and collecting resp.
adjusting theorems from the literature about topological tensor products. Another focus

of this chapter is the topic of Gelfand triples and real structures. Here we build a general
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foundation for using Gelfand triples in context with real structures, which we will use in
Chapter [3]

Chapter 2| is dedicated to the theory of vector valued function spaces. We focus
on spaces of ultradifferentiable vector valued functions and their application for the gen-
eralization of differentiable, smooth or analytic vectors of representations. Inspired by
[1°7, 18, [19], we show that we may use limits of Banach spaces of ultradifferentiable func-
tions defined by analytic frames in order to construct the usual Denjoy-Carleman classes
of Roumieu or Beurling type. We also discuss further properties of spaces of vector valued
ultradifferentiable functions. Afterwards, we show in what way the same holds for the
vector valued analogues of said spaces. Equipped with this structure, we introduce and
discuss ultradifferentiable vectors of representations. Here the definition via left invariant
frames on Lie groups comes into play.

Furthermore, we extend the topic of rapidly decreasing and slowly increasing functions,
polynomials and tempered distributions on polynomial manifolds [56]. This topic is of
importance for our later introduction of new Gelfand triples for the Kohn-Nirenberg
quantization on homogeneous Lie groups in Chapter [3| For this purpose, we pay special
attention to the polynomial manifold R*.

In Chapter (3| we give an introduction of the Kohn-Nirenberg quantization on Lie
groups of the Pedersen quantization in the context of Gelfand triples. Next, we use our
preliminary work on functions and distributions on polynomial manifolds to first define
and discuss new Gelfand triples for the group Fourier transform and afterwards define and
discuss new Gelfand triples for the Kohn-Nirenberg quantization. We close the chapter
by showing that the formula Opg'(A)(—,7) = 7(=)* - (A ® I)(r) for Kohn-Nirenberg

symbols holds in our regime. At the same time we discuss the usual integral formula

Opg(0)f = / Telr o(—, ) w(f)] d7([x])

for the action of Kohn-Nirenberg operators in this setting.
Finally, in Chapter [ we tie together Chapter [2] and Chapter [3] First we prove
general properties of algebras of operators T' defined by regularity requirements on the

maps Ad, T = m(—)Tw(—) " for representations 7. Our focus lies on operators T', which

14



induce ultradifferentiable maps Ad, 7. Here our discussion of general ultradifferentiable
functions and vectors from Chapter [2| comes into play. As an application, we discuss the
operator algebras defined as smooth or ultradifferentiable vectors to the representation
Ad,, in which 7 is a Schrodinger representation or the left regular representation on
a compact Lie group. Finally, we find corresponding spaces of symbols such that the

Kohn-Nirenberg quantization is a homeomorphism onto said algebras of operators.

15
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Chapter 1

Notation and basic concepts

For four sets Ay, By, A, and By and two maps f;: A; — B, we define

fi X fa: Ay X Ay — By X By: (2,y) = (f1(2), f2(y)) -

Furthermore, if A, B,C and D are sets, f: A — B is a function and C' C A, then the
restriction of f to C will be denoted by f [¢. If f(C) C D we will also write f |2,

f:c=»D or LD

for the restricted function = — f(z) with domain C' and codomain D. If A, B,C and D

are topological spaces, we will also write that f [¢ resp. f [Z,
f:C — D resp. cLp

is continuous (open, a homeomorphism) if it is so with respect to the topologies on C' and
B resp. the topologies on C' and D. The interior resp. closure of a set M in a topological
space A is denoted by Int M resp. M. We will reserve the notation M° for the polar of
a subset M of a locally convex space.

In general, we will denote by 14 the identity on a set A. If there is no risk of confusion,
we will also just write I instead of 14.

We will call a linear map

T E—F

17



between locally convex spaces E and F' a linear homeomorphism if 7" is bijective and
T and T~ are continuous. Even though such maps are often called isomorphisms (resp.
isomorphisms onto F'), we chose the above terminology in order to avoid confusions with
isomorphisms in the sense of groups, vector spaces or algebras. If T" is injective and the

map with restricted codomain

T: E— T(E)

is a linear homeomorphism with respect to the subspace topology of T'(FE) in F, then we

will call T a linear homeomorphism onto its image.

1.1 Some concepts from functional analysis

For any two locally convex spaces E, F' over K € {R,C} we denote by L(F;F) the
space of continuous linear maps from E to F. As usual we write L(F) := L(E; E) and
E' = L(F;K) for the dual of E. We equip L(E; F) (and L(FE), E') with the topology of
uniform convergence on bounded sets of E.

In general, we will reserve the symbol ||—|| for norms and by ||—||z we always mean
the chosen norm in a normed space E. The symbol (—, —) is reserved for inner products
and by (—, —) we always mean the chosen inner product in a Hilbert space E. The dual

pairing between a locally convex space E and its dual £’ will always be denoted by
(—,=): EXE": (e,e)— (e €.

If £ and F' are normed spaces, then the topology in L(F; F') is normable. In this case we
will equip £(£; F) with the operator norm ||—||z(g,r). If E, F are Hilbert spaces, then we
also consider the space of trace class operators N'(E; F') and Hilbert-Schmidt operators

HS(E; F) with norms
T\ w(e:r) = Te[(T*T)2] and | T||use.ry := Te[T*T]2

in which Tr is the trace functional on N (E) and T* is the adjoint of T'.
We will also use the following topologies and notations on the above spaces. For

L(E; F) equipped with the topology of pointwise convergence (resp. uniform convergence
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on absolutely convex compact sets, resp. uniform convergence on bounded sets), we will
write Ls(E; F) (resp. L.(E; F), resp. Ly(F; F)), with short-hands £,(F) and E!, for
a € {s,c, b} as before.

The canonical evaluation map
E— (E) e[~ (e€)] (1.1.1)

is well-defined and injective for each o € {s,¢,b}. For a € {s,c} it is also onto [66,
Theorem 36.1].

We denote by L.(E.;F), for a € {s,c,b}, the space L(E!;F) equipped with the
topology of uniform convergence on equicontinuous subsets of E’. Naturally, we will use
the short-hand (E'). as before. Note that with respect to the evaluation map , we
have E ~ (E! ). for any locally convex space E and a € {s,c} [66, Proposition 36.1]. If
we have £ ~ (E});, = E” by the same map, F is called reflexive.

If £ and F are locally convex spaces and T' € L(E; F'), then the transpose of T will
be denoted by 17" € Naesepny £(F); ), where

(e, T'f) := (Te, ) forallee E, f' € F'.

If T: E — F is a continuous antilinear operator, then we will also define a continuous
antilinear operator 7": F' — E’, by

(e,T'f"y == (Te,fy forallec E, f' € F.
Lemma 1.1.1. Suppose E and F are reflexive locally convex spaces. Then
(=): L(E;F) = L(F;E): T T
18 a linear homeomorphism.

Proof. The topology in L(F'; E') is defined by seminorms

S sup |(e,S[f)],

f'eB’.eeB

for bounded sets B’ C F’ and B C E. Since F is reflexive

p(f) = sup [{f, f)| for  feF

fleB’
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defines a continuous seminorm on F. For T' € L(E, F) we get

sup | (e, T" f') | = supp(T'e).
f'eB’.eeB ecB

Thus, T' — T' is continuous. Of course, E' and F' are reflexive as well. By identifying

E ~ (E') and F ~ (F')" the inverse of T'— T" is simply
L(F';E)— L(E;F): S— 5
and hence continuous by the above. O

Now we will introduce a bit of notation for the topic of integration. If X is a measurable
space equipped with a measure p we will write LP(X, ) (resp. LP(A, ) for a measurable
subset A C X) for usual LP-space with respect to the base space X (resp. to the base
space A) with respect to the measure p (resp. to the restriction of u to A). For a f
measurable, nonnegative function we will invoke the notation f(x) du(z)]if we mean the
measure defined by

A /Af(x) du(z) .
For R™ and its dual space R,, we will shorten the notation. If eq,..., e, is the standard
basis in R™ and e!, ..., e" is the corresponding dual basis, we will write dz for the unique
Lebesgue measure on R™ resp. on R,, that prescribes to [0, 1]* resp. {>_.t;¢/ | t € [0,1]"}
the volume 1. More generally, if A is a measurable subset of any Cartesian product of
spaces R¥, Ry, for k € N, we will use dz for the corresponding product measure on A.
We will also write LP(A) := LP(A, dz).

For a Banach space (E, ||—||g) and a o-finite measure space (X, v) we will also use the
Lebesgue-Bochner spaces. We equip F with its Borel algebra. A function f: X — E is
called p-measurable if there is a sequence of measurable functions s, : X — E such that
$n(X) is finite and lim,_, s,(x) = f(x) for v-almost all z € X. For any v-measurable

function we denote

1/p
I larcsey o= ([ 1@ av(e))  and 1 limsonm o= esssup o)l

We change the variable name = depending on the context.
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for p € [1,00). If N is the vector space of v-measurable functions that vanish v-almost

everywhere, then the Lebesgue-Bochner spaces are defined as
LP(X,v; E) = {f: X —>F ‘ [ is v-measurable and || f||zr(x,;p) < oo}//\f

equipped with the norms defined by || f + N||Lr(x ) := || fllzr(xv:p) for any p € [1,00].
We often need to integrate vector valued functions. For this purpose, we will use the

concept of weak integrals.

Definition 1.1.2. Suppose (X,v) is a measure space and E is a locally convex vector
space. We will call a function f: X — E integrable iff there is some e € E such that for
each ¢’ € E' we have ¢’ o f € LY(X,v) and

(e, e’ :/ e o f dv.
X

The element fX f dp = e s called integral over f. If f is integrable, we will also just say
that [ f du exists (or converges) in E.

From this definition, it automatically follows that

T/deV:/XTofdu.

for any continuous linear or antilinear operator 7': £ — F' into another locally convex

space I'. Here, the integrability of f implies the integrability of 7" o f.

Definition 1.1.3. Let (A, <) be a directed set and let (Ey)aca be a family of locally
CONVET SPACES.

For a collection of continuous maps jopg € L(Eg; E,) for a, 5 € A with o < 8 which
also fulfil jo g jg~r = Jary ONd joo = g, for a < B <, the projective limit with respect
to the By, jop s defined by

Va<pea €a = ja,ﬁeﬁ}

@(Eavja,ﬁ) = {(ea)aEA S H Ea
OéEA aGA
and equipped with the subspace topology in [[,c 4 Fa-
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Let jos € L(Es; E,), in which o, € A with o > B, be a collection of continuous
maps that fulfil jo.5 78,y = Jary AN joo = g, for o> 8 > 7. Let jg be the inclusion map
of Eg into @, 4 Lo and let H be the linear hull of

{jse — Jajase | 0, BEA, a> B, e € Bz} C (PE,.

acA

Then the inductive limit with respect to the E,, j.p is defined as the locally convex

space
lim (Ea, jo,8) = (EBE@) /H
acA acA

For applications, it is helpful to know that @ae A(EC“ Jas) carries the finest locally
convex topology such that for each  the canonical map

Jpt Eg = (B, jag): e = jo(e) + H

acA

is continuous. If F' is a locally convex space and 7' ligoéE A(EO“ Ja3) — F a linear map,

then T is continuous iff 7" o 3/5 is continuous for each § € A.

1.2 Topological tensor products

For two locally convex spaces E and F' over C, we denote by E ¢ F' the e-product of
L. Schwartz [63]. It is defined to be the set of bilinear maps u: E' x F' — C such
and (u(a,—))

that the collections of linear maps (u(—7 b)) are equicontinuous for

beB acA

all equicontinuous subsets A C F' and B C F’. We equip it with the topology of
uniform convergence on products of equicontinuous sets, i.e. with the topology induced
by seminorms

u > sup Ju(e, f)|
¢'cA,f'eB

for equicontinuous subsets A C E' and B C F’'. If E and F are complete, then so is
FeF. By FE® F we denote the algebraic tensor product between £ and F'. By

(e® f)(€, f) = (e, €) {f,.]) (1.2.2)

we identify £ ® F with a subspace E ¢ F. The injective topology on ¥ ® F' is the
subspace topology derived from E e F. The completion with respect said topology is the
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complete injective tensor product £ ®. F of E and F. We may always consider
E®. F and E¢ F to be a subspaces of the separately continuous bilinear forms on E’, x F!
equipped with the topology of uniform convergence on products of equicontinuous sets.
The space E is said to have the approximation property if £ ® F C E ¢ F' is dense
for all locally convex spaces F' [63, Proposition 11]. With we get

E®.F=FEcF

for complete locally convex spaces E, F', where E or I’ has the approximation property
[63, Proposition 3|. Any Hilbert space has the approximation property [36, Satz 10.16].
We will also equip £ ® F' with another topology. The projective topology is the finest

locally convex topology such that the canonical bilinear map
ExXF—S>EQF:(e,f)—»e®f

is continuous. Now the completion with respect to this topology is the complete pro-
jective tensor product E @, F of E and F. The projective topology on E ® F' is finer

then the injective topology, i.e. we have a continuous map
E®,F +E®,F,

that is just the identity on E® F. If E and F' are Hilbert spaces, then this map is injective,
i.e. it is a continuous dense embedding [44] §43.2 (8)]. Note, in [44] Grothendieck’s notion
of the approximation property [34, T §5] is used, whereas we use Schwartz’ notion of the
approximation property [63]. However, whenever E is quasi-complete, those two variants
coincide on E.

The above discussed products between locally convex spaces F, F' and G all have the

following associativity property. We have the linear homeomorphism
(ERF)RNG~EXR(FRG) for®e {e&., R}, (1.2.3)

in the sense that both sides are linearly homeomorphic to (a completion of) a correspond-
ing space of trilinear maps [34, I p. 51], [63, Proposition 7]. Hence, in the future we will

not distinguish between both sides. Instead we will just write E X F' X G.
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A locally convex space E is called nuclear if £ ®, F = F ®. F for each locally
convex space F. Hence we will merely write £ & F for the complete projective/injective
tensor product if F or F is nuclear. If both E and F are nuclear, then so is £ @ F [66)
Proposition 50.1]. A convenient property of a nuclear space E is that any bounded set
B C FE is relatively compact in the completion of E [66, Proposition 50.2]. Also, all
nuclear spaces have the approximation property [36, Satz 11.18]. For Fréchet spaces, the
situation is especially tame. The following Proposition lists several properties of nuclear

Fréchet spaces we will use throughout this thesis.

Proposition 1.2.1. Suppose E and F are Fréchet spaces. Then
(i) EcF, E®. F and E ®, F are Fréchet spaces.

If E is nuclear, then the following holds.

(ii) E is reflexive.

(iii) £’ is nuclear, barrelled and complete.

(iv) (EQF) ~E ®F'.

Proof. (i): This is [44, §41.2. (7) on p. 178], [44] §44.2. (5) on p. 267] and [44], §44.2. (7)
on p. 269].

(ii) and (iii): By [66, Corollary 3 to Proposition 50.2] E is Montel, i.e. E is barrelled
and any closed bounded set in F is compact. Hence F is reflexive and E’ is Montel due
to [61, IV 5.9 and the preceding paragraph] thus especially barrelled. The strong dual E’
is complete by [61, IV 6.1].

(iv): This can be found in [61), IV 9.9] O

If E and F are Hilbert spaces, we will also consider the inner product on F® F' defined
by
(e f,e®@f):=(e,€)p (f, [)p for e €FE, f f €F,
where (—,—) resp. (—, —)p is the inner product in £ resp. F. The Hilbert space we

get by completing £ ® F with respect to this inner product will be denoted by E &y F.
Note that the analogue of ((1.2.3)) holds for the Hilbert space product as well.
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If E;, F;, j = 1,2 are four locally convex spaces and S € L(Ey; Ey), T € L(Fy; Fa),
then the e-product of S and T is defined by

SeT e L(Eye Fi;Eye Fy) with  SeT (u) :==uo (S xT)

for all w € E; € Fy. The following property of the e-product of continuous linear maps

can be found in [44, §44.4. (5) and (6) on p. 277-278].

Lemma 1.2.2. Suppose E;, F;, j = 1,2 are four locally convex spaces and S € L(E; E,),
T € L(Fy; Fy) are injective (resp. homeomorphisms onto their images), then S e T is

injective (resp. a homeomorphism onto its image).

This implies especially that for (topological) subspaces Fy C E and Fy C F we can
identify Ey e Fy with a (topological) subspace of F e F' via the e-product of the inclusion
mappings.

The tensor product of S and T is the linear operator on E; ® F defined by
ST f)=(Se) (T f) for all ecFy, fel,

ie. TS =(SeT) |gor- We will denote the extension of S ® T to the different types

of completions of F; ® F; by the same symbol. These extensions are continuous operators
S®TE £(E1|EF1,E2®F2) for X < {®W,®5,®H},

in which we only consider Hilbert spaces E;, F; for the case X = ®u. We will also use
the following notation for the Lebesgue-Bochner spaces. If (X;,v;) are o-finite measure

spaces and £; Hilbert spaces for j = 1,2, then it is easy to see that
L*(X;,vj) ® Ej — L(Xj,v3 E): f@ew [v f(z)e]
extends to a unitary operator
Y L*(X;,v;) @u E; — L*(X;, v E;) . (1.2.4)
Also, the same approach leads to the identity
L*(X1 x Xo,v1 @ 1) = L*(X1, 11; L*(Xo, 1)) .
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Lemma 1.2.3. If S and T are linear homeomorphisms and E;, F;, j = 1,2 are locally

convex spaces, then SeT and
SRT: E\RF — E,RFy, for We{®,,®.}

are linear homeomorphisms. If the E;, F; are Hilbert spaces and S, T are linear home-
omorphisms (resp. unitary operators) then S ® T is a homeomorphism (resp. a unitary

operator) between E; @y Fy and By Qy F.
Proof. For any S1,Ss € L(Ey; Ey) and Ty, Ty € L(Fy; Fy) we have
(Sl 9 Tl)(Sg 19 TQ) = (5152) 19 (TlTQ) and (Sl & Tl)(SQ X Tg) = (8152) X (Tng) .

Furthermore, (57 ® T1)* = (S} ® T7) in the Hilbert space case. Also, the tensor or ¢
product of identities is undoubtedly the identity. Now we can simply choose in the above

S;, Ty as S, T, S~ or T~! in the necessary combinations and prove the statements. [J

Note that we may define products of continuous antilinear maps S and T. In this

case, we put
SeT(u)(e, f) =u(S"e, T f) forall weFE ek, ek, ffeF;,. (1.2.5)

The result is a continuous antilinear map Eie Fy — Fye Fy with SeT(e® f) = (Se)@(T'f)
for all e € Ey, f € F;. As before, this also leads to continuous antilinear operators
S®T: EyRF, — B, X F, for K € {®y, ®., ®n}, where S@T: ByRFy — T: By K F is
an antilinear homeomorphism for X = ®. (resp. antiunitary for ¥ = ®y) if S and T are

antilinear homeomorphisms (resp. antiunitary operators).
Lemma 1.2.4. Let E, F and G be locally convex spaces, then

LIE;G) = LE®R.F,G&.F): T—T®1
18 continuous.

Proof. The topology on L(E ®, F; G ®. F) is induced by seminorms of the form

T +— supp(T u)
ueB
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where B is a bounded set in £ ®,. F and p is a continuous seminorm on G ®. F. These

seminorms p have the form

p(v) := sup sup |v(d, [')]
g'eAy fleCy

where A; C G' and C; C F’ are equicontinuous sets. Note that the set B C F ®, F is
bounded iff

sup sup sup |u(€’, f")| < oo
ueB e’€ Ay feCy

for all equicontinuous sets A, C E’ and Cy C F’. In general, a subset B C F is bounded
iff supye 4, sUpacpl (e, €)| < oo for all equicontinuous sets A, C E’. Hence the set

Be, == Upee, (1 ® f/)(B) is a bounded subset of E. We arrive at

sup p((A ® 1)u) = sup sup sup [(g’A® f')(u)| = sup sup |(de,g')]|,
ueB ueB g’€A; fleCy g'€A1 e€Bc,
where the right hand side defines a continuous seminorm on L(FE;G). O
The following lemma lists further properties of F ¢ F', which we need later.
Lemma 1.2.5. Let E and F' be locally convex spaces, then

(i) The maps

LAELF) = EcF:Tw— [, f)—(T€, )]
LAFLE) = EeF: T, f)—(Tf )

are linear homeomorphisms.
(i) If £ = T&laeA(Ea,jaﬁ) is a projective limit, then E e F ~ @aeA(Ea eF japelr).

(iii) If E carries the initial topology with respect to linear maps T;: E — E;, j € J,
into locally convex spaces Ej;, then E ¢ I carries the initial topology with respect to

Tielp: FeF— E;eF,j€J.

Proof. (i): This is proven in [63, p. 35, Corollaire 2]
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(ii): This is shortly explained in [42], Proposition 1.5]. We will take a closer look at
the involved arguments. By [44] §44.5. (4)] (or again a very short exposition in [42]), we
can construct the linear homeomorphism

(H E,) e F — H(EaeF): v ((paglF)v)aeA, (1.2.6)
acA acA
in which pg: [[, Ea 2 (€a)a — eg € Eg for f € A. For o, € A, a < B denote
Jag = Jap€lp and P, :=pyelp. Then Jy o = Igep and Jo s, = Joy for a < 8 < 7.
Thus we may construct the projective limit @ae A(E e F,J,p). Since FE is a subspace
of [[, Eo we may identify FeF with a subspace of ([, E.) € F'. Hence, it is enough to
show that the above homeomorphism ((1.2.6)) maps E<F onto l'gla(Ea eF,Jug).

Using (i), we may identify each v € ([ [, Eu) € F with an operator T' € L(F/; ][, Ea)-

For these T', we have T' € L(F/; E) iff p, o T = jogopso T for all & < 3. Hence

veEFKeF e Va<p: JapPsv = Pyv.
For (va)a € [1,, Ea we have
(Ua)a € M(Ea e F, Jaﬂ) = VaSBI Ja,BU,B = Vq

by definition of the projective limit. Thus we get (ii).
(iii): This is stated and proven in [43, §44.5. (4)P] O

A major reason to use tensor products are kernel theorems, i.e. the description of

certain spaces of linear operators by tensor products.
Definition 1.2.6. Let E and F' be locally convex spaces. We define the linear map
J:FRFE — L(E;F)  where (T (f@d)e, [) = (e.¢) {[,[),

foralle e E, ¢ € B, f € F and f' € F'. Via J, the tensor product F' ® E' is mapped
bijectively onto the continuous finite rank operators F(E; F). The kernel map will be

denoted by K and is defined as the inverse K := J ! defined on F(E; F).

2 Alternatively, one could express E as a space linearly homeomorphic to a projective limit indexed

by the finite subsets of J and use (ii).
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Suppose K € {®., @y, ®u}, in which E and F are supposed to be Hilbert spaces for
X = ®@u. By equipping F(E; F) with a suitable topology, we may extend the domain of
J to FRE" such that M = J(F X E') is in the completion of F(E; F).

If the extended map J is injective and its image M is a subspace of L(E; F'), we will

still use the symbol IKC for the inverse
K=" M= FRE
and call it kernel map.

Of course, for us the cases where K and J are linear homeomorphisms are of interest.
Nuclear spaces are tailor-made for the usage of kernel maps. The following proposition

can be found in [66, Propositions 50.5].

Proposition 1.2.7. If E and F' are complete locally convex spaces such that E is barrelled

and E' is nuclear and complete, then the kernel map
K:LE;F) - F&FE
18 a linear homeomorphism.

If E is a nuclear Fréchet space, then the above theorem is applicable for E and its

dual. In this case the kernel maps
K:L(E;F) - F®E  and K:L(E;F)—>FQF (1.2.7)

are linear homeomorphisms where we used £ ~ E”. If I is a Fréchet space, then we use

the isomorphism of nuclear Fréchet spaces
L(E;F") ~L(E;F) (1.2.8)

via Proposition (iv) and (1.2.7).
The following well known statements can be found in [44, §43.2. (7)] and [37, 2.6.9

Proposition].

29



Proposition 1.2.8. If H and K are Hilbert spaces, then the kernel map
K:N(H;K)— K ®, H resp. K:HS(H;K) - K @y H’'
1S a linear homeomorphism resp. a unitary operator.

Often bilinear maps occurring in the theory of locally convex spaces fail to be contin-
uous. One example of this would be the composition map between spaces of continuous
operators

Lo(E) X Lo(E)— L,(E),

for a nonnormable locally convex space E, which is not continuous for a € {s, ¢, b} or any
other sensible topology due to an old result of B. Maissen [51]. Similarly the multiplica-
tion between spaces of smooth functions and spaces of distributions in the regime of L.

Schwartz [65] is discontinuous more often than not. For example, the multiplications
Z(R") x Oq(R™) — L (R™) and S'(R") x Oy(R™) — S'(R™) (1.2.9)

are discontinuous [49].

However, in many cases we may use hypocontinuity instead of continuity.

Definition 1.2.9. Let E, F and G be locally convex spaces. A bilinear map u: ExF — G
15 defined to be hypocontinuous if for all bounded sets Bp C E and Br C F' the two

sets of linear maps

{ule,=)le€ Bg} and {u(— f)|f€ Br}

are equicontinuous. We denote by E @z F the completion of E ® F with respect to the
finest locally convex topology that makes ®: E X F'— E ® F hypocontinuous.

Note that a bilinear map w: E x F' — G is hypocontinuous if and only if u [g«p, and
u [, xr is continuous for all bounded sets By C £/ and Br C F.

Furthermore, in the following theorem we will use the fact that for any continuous
bilinear map u from E x F' into another locally convex space there is a unique continuous
linear map u: £ ®, F — G such that v = 7o ®. Analogously, if u is hypocontinuous,

there is a unique continuous map u: F ®5 F — G such that u = o ® [64, p. 10-11].
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Now our first example of a bilinear map
L(E)x L(E) — L(E): (S,T)— ST,

which is separately continuous but not continuous, is indeed hypocontinuous for barrelled
spaces E. This is a standard implication of the Banach-Steinhaus Theorem [66, Theorem

33.1].

Lemma 1.2.10. Suppose E, F, G are locally convex space and suppose F' is barrelled then

the bilinear maps

FxL(F;G)—G: (f,T)—Tf and
L(E;F)x L(F;G) = L(E;G): (S,T)—ToS

are hypocontinuous.

Proof. Since L(F; F) is equipped with the topology of uniform convergence on bounded
sets, By C L(E; F) is bounded iff B.(Bg) is bounded in F' for every bounded By C E.
Hence

T+~ sup p(T'f) and T~ sup sup p(TSe)
fEBF S€B£ e€EBg

are continuous seminorms on L(F;G) for any continuous seminorm p on G and any
bounded sets Bp C F', By C E and By C L(E; F).

We complete the proof by using the Banach-Steinhaus Theorem [66, Theorem 33.1],
which states that any bounded set in L(F; G) is equicontinuous. O

Linear maps on tensor factors can easily be combined to construct a linear map on
the complete tensor product. The situation for bilinear maps is not as simple. However,
in the context of nuclear spaces, we may use the following theorems. The first one is very
similar to a corollary due to L. Schwartz [64, Corollaire on p. 38]. It was adjusted in
[3, Proposition 1’] to almost the exact form we are going to use. In that case, though,
the authors used quasi-complete spaces. We prefer to formulate the statement with
complete spaces, because almost all spaces we will encounter are complete and by using

this stricter requirement we do not need to require the strict approzimation property [63,
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p. 5]. L. Schwartz formulated his version of the statement for quasi-complete spaces, but
explained in [64, Remarques on p. 38] how it may easily be adjusted to the complete

setting. This argumentation can be applied to [3, Proposition 1] as well.

Theorem 1.2.11. Let €, %, L, E, F and G be complete locally convex spaces and let

FC be nuclear. Suppose that
u: Hx H % and b: ExXF —G

are bilinear maps with u continuous and b hypocontinuous. Then there is a hypocontinuous

bilinear map

P(HeE)x (K eF)— ZLed,

that fulfils the consistency property
W(S®eT®f)=u(S,T)®be,f).

If & or F has the approximation property, then ° is the unique separately continuous

bilinear map fulfilling the above consistency property.

Proof. Essentially, we merely need to exchange all quasi-completions with completions in
the proof to [3, Proposition 1]. Since ¢ is nuclear it has the approximation property,
which is sufficient in this case. For the convenience of the reader we will elaborate.

By the [64, Proposition 2] there exists a hypocontinuouﬂ bilinear map
I (E®. H)x (FeX) = (E&sF)e (M .7,

such that I'(e @ T, f@ S) = (e® )@ (T @ S) forallec E, f € F, T € 5 and S € X .
Since 7 is nuclear, we have F ®, 5 = E e A and ¢ ®. ¥ = H @, H# . Since the

e-product is symmetric, we can consider I' as a bilinear hypocontinuous map
D:(HeE)x (HeF)— (@ H)e(ExsF).

Now let
R H — L and 5:E®5F—>G

3Note that in [64] hypocontinuous maps are also called S-continuous.
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be the unique continuous linear maps fulfilling To ® = u and bo ® = b. Then

bi=(ueb)ol: (HeE)x (K eF)— LG

w -t

is a well-defined hypocontinuous map with ®(T'®e, S® f) = u(S, T)@b(e, f) for all e € E,
feF, Tes and S € X .

If either J# or F has the approximation property, then .2 ® F' is dense in J# ¢ F.
Since # is nuclear, # ® E is dense 5 ¢ E. Now the uniqueness of © follows, since any
separately continuous bilinear map v: H x H — K is already completely defined by its

action on Hy x Hy for dense subset Hy C H, Hy C H. O

The second theorem we will use is due to C. Bargetz and N. Ortner [4, Proposition 1].

Theorem 1.2.12. Let 7€, %, L, E, F and G be complete locally convex spaces and let

JC be nuclear. Suppose that
u: X H -2 and b: EXF —G

are two hypocontinuous bilinear maps. Suppose furthermore that either one of the two

properties
e 7 and E are Fréchet spaces
o 7 and E are duals to Fréchet spaces
18 fulfilled. Then there is a unique hypocontinuous bilinear map
P(HeE)x (K eF)— L,
that fulfils the consistency property
b(S®e,T® f)=u(S,T)® b, f).

If X has the approzimation property, then ® is the unique separately continuous bilinear

map fulfilling the above property.
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If both bilinear maps u and b are continuous, then one can also construct the tensor
product © of these bilinear maps on the projective tensor product. This construction is
much simpler than the approach due to Schwartz. Yet, since we mostly use e-products
of spaces, Theorem and Theorem [1.2.12| are more suitable even if both u and b are
continuous. Only if we deal with tensor products of locally m-convex algebras do we need

a corresponding theorem for the projective case.

Definition 1.2.13. An algebra A equipped with a locally convex topology is called locally
m-convex iff there is a set of continuous seminorms P on A defining the topology such
that

p(ab) < pla)p(b) forall a,be A, peP.

In this case the multiplication is a continuous bilinear map.

Equivalently, the algebra A is locally m-convex iff there is a basis of absolutely convex

and closed neighbourhoods of zero U such that
U-UcU forall Uel.

The corresponding proof can be found in [52, Chapter I, Theorem 3.1].

Candidates for & and P can be constructed from each other. If P is given, then U
can be constructed by using the subbasis {p~!([0,¢]) | p € P, 0 < e < 1}. Similarly, if &
is given, then P can be defined as the set of gauge functions for the neighbourhoods in

u.

Proposition 1.2.14. Suppose A and B are locally m-convex algebras. Then there is a

unique multiplication on A ®. B such that
(a1 ® b1)(ag ® by) = (a1a2) & (b1bs) , for all a;,as € A, bi,by € B.
Equipped with this topology A @, B is a locally m-convex algebra.

Proof. A ® B equipped with the subspaces topology in A ®, B is a locally m-convex
algebra [52, Chapter X, Proposition 3.1]. Of course, its completion, A @, B, is locally

m-convex as well [52] Chapter I, Lemma 4.1]. ]
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1.3 Real structures

Definition 1.3.1. Suppose E is a locally convex space over C. A real Structure on E
is an antilinear homeomorphism C: E — E with C* = 1g. We will call such a pair (E,C)

a locally convex space with a real structure.

Let us denote by Fg the locally convex space we get by restricting the scalar multipli-

cation from C x E to R x E. Connected to a real structure C on E is always a splitting

Er = Re(E) @ilm(FE), where Re(E)=Im(E), (1.3.10)

into a real and an imaginary subspace with respect to projections
1 . 1
Re = Q(IE—i-C) and ilm = §(IE —C).

In the other direction, each splitting ([1.3.10)) defines a real structure C(v + iw) := v — iw,
for v,w € Re(F), on E. We may also define a canonical real structure on the dual E!, for

a € {s,c,b} by

C':E — E', where (e,C'€¢)=(Ce,e), forecFE, ¢ €F. (1.3.11)
This real structure induces an isomorphism

Re(E)) = Re(E), where Re(€') — Re(e') [rer) - (1.3.12)

«

If we take a Hilbert space H, then a real structure on H is connected with a unitary map
between H and its dual H'. Namely, each unitary isomorphism H ~ H’ corresponds to an
antiunitary map on H. Note that for continuous antilinear maps T": H; — Hy the adjoint
is defined via (Thy, ha) y, = (T"he, h1) y, and T is called antiunitary if T is bijective with
T* = T~!. The Fréchet-Riesz map

R:H— H':he (= h)y,

is an example of an antiunitary map.
We use unitary maps Z: H — H’ between Hilbert spaces and their duals, because

on the one hand they are convenient in concert with Gelfand triples as described in the
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following section and on the other hand they simplify the kernel map K in Proposition

1.2.8, We will use unitary maps HS(H; K) 5K ®y H resp. linear homeomorphisms
NH:K) L K &, H defined via

Jk@h) h:=K(k@h)h:=(h,Th)k (1.3.13)

for h, he Hand k € K. The following lemma describes why it is natural to consider real

structure in order to get an identification H ~ H'.

Lemma 1.3.2. Let H be a Hilbert space. Each unitary map Z: H — H' with (hy, T hy) =
(h1,Z hs), for hy,hy € H, defines an antiunitary real structure C on H and vice versa.

Both maps are related by T = RC.

Proof. For hy, he € H and an antiunitary real structure C we have
(h1,RC hs) = (h1,C hy) = (C* hy,C hy) = (hy, RC hy).

Hence Z = RC: H — H' is unitary with the appropriate symmetry properties.
Suppose Z is some unitary map as described in the lemma. Then C = R7'Z is
antiunitary and

(hl,ChQ) - <h1,Ih2> - (hQ,Chl).

Hence C* = C and C is an antiunitary real structure. n

1.4 (elfand triples

Gelfand triples are a convenient setting for both distributions and the Fourier transform.

We start by defining the class of Gelfand triples we are going to use.

Definition 1.4.1. A Gelfand triple is a tuple of spaces G = (E, H, E') fulfilling the

ollowing properties:
9
(i) E is a nuclear Fréchet space and E' is its strong dual.

(ii) H is a Hilbert space, with dense and continuous embedding E — H.
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Because the embedding £ < H is continuous and dense, the dual map H' — FE’
is a continuous dense embedding as well. Classically in Gelfand triples an antilinear
embedding of £ and H into E’ [30] is used. Here the embedding is defined via the
Fréchet-Riesz isomorphism R: H = H' and the dual embedding H' < E’. However, for
us this approach would be unwieldy, because we will use Gelfand triples in concert with
tensor products. Since there is no canonical unitary map between H and H’, we are going

to use real structures to fix one.

Definition 1.4.2. A real structure on a Gelfand triple G = (E,H, E') over C is a

triple of real structures Cr, on E, Cy on H and Cgr on E' such that
(i) (e,Cw ) = (Cpe,€) foralle € E, ¢ € E'.
(ii) Cy s antiunitary,
(iii) if 12 E — H is the Gelfand triple embedding, then Cyt = 1Cg.
The map C = Cg will be called the real structure of G.

Each real structure on the Gelfand triple G = (F, H, E’) defines a unitary map Z in

the sense of Lemma [1.3.2] i.e.
I=RoCy:H — H' (1.4.14)

where R is the Fréchet-Riesz map H — H'. If v: £ < H is the embedding defined by

the Gelfand triple, this results in a continuous, dense embedding
Z: H— E' inwhich ZT=/RCy (1.4.15)

Using a real structure on the Gelfand triple in order to define such an isomorphism
is quite natural. Indeed any unitary isomorphism H = H’ that fulfils the symmetry
condition from Lemma [1.3.2] induces a real structure on H. If this real structure is
supposed to pull back to a homeomorphism on FE, then this already fixes a unique real
structure G.

Also, if || - || is the norm on H, it is clear that any real structure Cg on E such
that ||cCgellg = |[te]|lg for all e € E already fixes a unique real structure on the whole

Gelfand triple G = (E, H, E').
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Convention 1.4.3. From now on, we will only consider Gelfand triples G = (E, H, E")
over C if we do not say otherwise. We will think of any such Gelfand triple to be equipped
with a real structure. We consider E to be a subspace of H and H to be a subspace of E’
via the embeddings
ESHSE
in the sense of . Similarly, we will regard H and H' to be the same topological
vector space via . Furthermore, we will not distinguish between the real structures
on E, H and E' and denote them by the same letter, say C. In this sense we will just
write
e,y and (e, €)= (e,Ce)

for (e,e') in Ex E', E' x E or H x H, where (-,-) denotes (depending on the situation)
the dual pairing on E x E', E' x E or H x H induced by (L.4.14)). Note that for e,e’ € H

the pairing (e, €") is just the inner product on H.

The commutative diagrams below elucidate this notion. Using the real structure C
and the corresponding projection Re we may identify real subspaces which form a Gelfand

triple over R with the isomorphism Re(E’) = Re(E)" from (|1.3.12)).

E——s H——F E < > H « > F'
d Y
EFE——H—— F Re(E) —— Re(H) —— Re(E’)

The diagram on the right hand side justifies the choice of the term real structure on
a Gelfand triple. Also, using the dual pairings (-,-) and (-,-) not only with arguments
(e,€') € Ex E', but also with arguments (e, ¢’) € E' x E seems to clash with our previous
convention, where we used functionals in the second argument. In order to remedy this,

we use the canonical isomorphism F ~ E”.

Definition 1.4.4. Let G = (E, H, E') be a Gelfand triple with real structure C. Suppose

F'is a locally convex space equipped with continuous dense embeddings,

E < s [« s B

Cc
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that commute with the inclusion map as described in the commutative diagram above. If
in addition the restriction of C from E' to F is a homeomorphism from F to F', then we

will call F' a G-regular space.

If F'is G-regular and reflexive, then I is G-regular as well. In order to prove this, we

may consider the dense dual embeddings

FE s [V« s B

~_

where we used the canonical isomorphism E ~ E”. The real structure acts on E’ by

Y

(e,Cé'y=(Ce,e’) for e e€E,ekF.
Thus C also restricts to a homeomorphism from F), onto F), for each o € {s, ¢, b}, because
C restricts to a homeomorphism from F onto F. Hence F’ is G-regular.

If G; = (E;, Hj, E)) j = 1,2, are Gelfand triples with real structure Cy, Cp, F is
Gi-regular and G is Go-regular spaces, then F” resp. G’ are Gi- resp. Go-regular. By the
corresponding embeddings due to the G;-regularity, we may embed L£(F; G) continuously
into L(Ey; EY)) and L(G'; F') continuously into £(Esy; EY). Using these identifications we

formulate the following definition.

Definition 1.4.5. Let G;, C;, F and G be be above. We define the adjoint T* € L(G'; F")
of T € L(F;G) by

T :=C T Cy i.e. (T e,e') = (e, T€") forall e€Ey, € €E.

On continuous operators between H; and H, this definition coincides with the usual

adjoint, via the identification of H; with H.

Lemma 1.4.6. Suppose G; is a Gelfand triple with real structure C; for j = 1,2. If F'
15 Gr-reqular and G 1s Gy — regular and both are reflexive, then the adjoint defines an

antilinear homeomorphism
L(F;G)— LG F)): T — T
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Proof. Since G is reflexive, the map
L(F;G)— LG FY: T —T

is a homeomorphism by Lemma [I.1.1] The rest follows with the fact that C; restricts to

a homeomorphism from F’ to F’ and Cs restricts to a homeomorphism from G’ to G'. [

It is helpful to have a term for maps that behave well with the Gelfand triple structure.

Definition 1.4.7. Let G; = (Ej, H;, E}), j = 1,2, be Gelfand triples and let T': B} — Ej
be linear. We write

T: G — Go,
if T(Ey) C Ey and T(Hy) C Hy with respect to the above described embeddings. We
will call T a Gelfand triple isomorphism if T [%: E, - E,, T: £} — E} are
homeomorphisms and T [gz' H, — Hy 1is unitary.

1"

The above definition implies that writing T": G; — G5 is equivalent to saying that the

diagram
B < > Hy < > B
A
By < > Hoy < > B

is commutative. In order to identify a Gelfand triple isomorphism T: G; — G, it is
enough to examine its action on F;. To be more precise, if S: Fy — F5 is a linear
homeomorphism such that ||Se|lg, = |le||n, for all e € Ej, then there is exactly one

Gelfand triple isomorphism 7" with T' [%: S. This Gelfand triple is defined by
T=(ShH"=C (S,

where C; is the real structure to G; for j =1, 2.

In the following, we denote by H; @y Hs the Hilbert space sum of two Hilbert spaces
H, and H,. In other words H; &y H is the direct sum H; & Hy equipped with the norm
defined by [|h1 & hallt, ey, 1, = Ih2llf, + [hallF, for by € Hy and hy € Ho.

Now we will describe how we may construct new Gelfand triples by using tensor

products and direct sums.
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Definition 1.4.8. Let G; = (Ej;, H;, E) be Gelfand triples with structure maps C; for
j = 1,2. Using the identifications E} ® Ey ~ (B, ® Ey)' and B} ® Ey ~ (E; ® Ey)" due to
Proposition resp. L(Ey, By) ~ L(EY, Ey)' due to we may define the following
Gelfand triples.

The sum resp. tensor product of Gy and Gy s defined by

E, @ E, B ® E,
G ®G:= | H &y Hy resp. G1 ® Go = | Hy Qu Hs
E| ® E} B & By

with structure maps C1 @ Cy 1esp. C; @ Cy.
The operator Gelfand triple from Gy to Gy is defined as

'C(Ei7 EQ)
L(G1;Ga) == | HS(H,, H})
‘C(El’ Eé)

with structure map T+ Coy T C;.

Let us now discuss why G; ® Gy and L(G; G) are indeed Gelfand triples. Integral to

our argumentation are the real structures and kernel maps K = J~!. Here we use the

adjustment ((1.3.13]) for the kernel maps
N(Hy, Hy) ~ Hy @, Hy rvesp. HS(Hy, Hy) ~ Hy &y Hi,

from Proposition [1.2.8] To be precise, these unitary isomorphisms are defined by extend-

ing the linear map
J: Hy® Hy — F(Hy; Hy), where J(hy® hy)(hy) := (hy,hs) hs.

These isomorphisms, together with ([1.2.7)), can be used to construct the following chain

of injective continuous maps with dense ranges

E2®E1 — H2 ®7r H1 H2 ®H H1
ICT: ;Cfll: ]CT:
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We get additional continuous embeddings with dense ranges
E(Ei,Eg) ‘—>N(H1,H2) and H2 ®7r H1 %HQ ®H H1

by completing the commutative diagram horizontally. This both shows that L£(Gi;Gs)
and G, ® Gy are Gelfand triples, and proves the following Proposition.

Proposition 1.4.9. Suppose G1 and Gy are the Gelfand triples from above, then the
canonical kernel map

K: L(Ey;E) = E,&E,

is a Gelfand triple isomorphism KC: L(G1,G2) — Go ® Gj.
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Chapter 2

Spaces of vector valued smooth and

ultradifferentiable functions

Before we approach the topic of differentiable vector valued functions, we first need to fix
the notation for the standard spaces of scalar valued functions.

Suppose M is a locally compact second countable topological space, e.g. a smooth
manifold, then € (M) will denote the space of continuous functions on M with values in
C, equipped with the topology of uniform convergence on compact sets. I.e. the topology

of €(M) is defined by seminorms of the form

Fe=f Tk |loo = sup | f(z)] for compact KcM.
TeK

2.1 Spaces of continuous vector valued functions

For any quasi-complete locally convex space E we define the space of F valued continuous

functions

¢M; E) :={f: M — E| f is continuous}

equipped with the topology of uniform convergence on compact sets, i.e. the topology

induced by the set of seminorms

f = supp(f(x)) for compact K C M and continuous seminorms p: £ — R.
TeK

43



The space €' (M E) can be identified with (M) € E via the linear homeomorphism
[ [/ (M) X E' 3 (p,€') = (e’ o f, ) € C].

A proof of this fact can be found in [39, Theorem 1.10]. This homeomorphism also
motivates the following definition of more general spaces of vector valued continuous

functions [39, p. 235].

Definition 2.1.1. We call a locally convex space F (M) a € (M)-function space if it is
a linear subspace of € (M) equipped with a topology which is finer than or equal to the
subspace topology from € (M).

If E is a locally convex space over C and 4 (M) a € (M)-function space, we will denote
by 4 (M E) the space of functions f: Ml — E such that

dofedM) foralle € E' and [+ € o f] € LIE;9(M)),
and equip it with the topology induced by the seminorms

f = sup p(e’o f)
e'eW

for continuous seminorms p on 4 (M) and equicontinuous and W C E'.

From this definition follows with Lemma [[.2.5] that
Y(M;E) > S(M) e E: f > [(6,¢) > (¢ f,0)] (2.11)

is a linear homeomorphism for any locally convex space F. This homeomorphism also

motivates the following convention. If
ve4%(M)e---c9,M,) e E,

in which the ¢;(M;) are ¢’ (M)-function spaces, and if e, € ¢;(M;) with (f,e,,) = f(z;),
then we will write

v(zy, . Ty €)= 0(Eryy e Epy, €)
and also define
v(z1, ..., xn) €EE by (v(x1,...,2,),€) i=0(T1,. .. 2y, €) .
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Note that any v € % (M) ¢ --- £ 94,(M,,) € E is completely defined by its values v(z) for

!/
c*

z € [[j_; My, since the sets of functionals spanc{e,; | z; € M;} are dense in &;(M;)

The above approach to vector valued functions is inverse to the one usually used
for spaces of vector valued functions. More commonly, one defines a space of vector
valued functions f: M — E, say F(M; E), in which the corresponding space scalar valued
functions F'(M) are just the special case for £ = C. Afterwards, one checks whether
F(M) e E ~ F(M; E) holds. However, the homeomorphism F(M) e E ~ F(M;E) is
integral to our approach, so using it as a definition is more convenient. An immediate
benefit of this homeomorphism is that continuous operators on a % (M)-function space
Z (M) and on a locally convex space E automatically correspond to continuous operators
on 4(M; E).

Let the homeomorphism be denoted by ¢ and let T € L(F#;(M;); F#2(My)) and
S € L(Ey, Ey), in which the .%;(M;) are € (M;)-function spaces and the Ej; are locally
convex. Then 1) ~1o(T'eS) o1 defines an operator in £(.Z1(My; E}); F2(My; Ey)). If there
is no risk of confusion, we will denote this operator by T S as well. We will use such

operators especially often in the case where T = P € Diff(M) is a differential operator

and S =1 is an identity. Here, we will merely write Pf(z) := P, f(z) :== (Pel)f(x).

2.1.1 Limits of ¥(M)-function spaces

Often, we will encounter certain spaces of continuous functions that are isomorphic to
inductive or projective limits. We will make a few general observations and introduce
simplified notation.

If (A, <) is a directed set and (F,(M))aea is a family of € (M)-function spaces, such
FoM) D F3(M) and the inclusion maps i,5: F(M) — F#,(M) are continuous for
a < . We may then always identify the projective limit lim _ A(Fa(M), 1y 5) with the
linear subspace [, ¢4 Fo(M) C € (M) via (fo)a + f3 (this definition does not depend on
the choice 5 € A). Equipped with the topology transported from 1'&1104e A(ﬁa(M), Lg),
this is a € (M)-function space, which we will just denote by fm _, Fo(M). For a complete

locally convex space E we define lgnaE ) Fo(M; E) analogously as a space of E-valued
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continuous functions linearly homeomorphic to lim _ (FaM; E) Ly gelp).

Similarly, if (%,(M))aeca is a family of €' (M)-function spaces such that #z(M) is
contianed in .%,(M) and the inclusion maps i, 5: F#3(M) — #,(M) are continuous for
a > f3, then we can identify the inductive limit lim _ (Fa(M), o) = (Boep Fa(M))/H
with the linear subspace (J, .4 Za(M) C € (M) via

v Uz > (D7.00) /1, 0l =i+ 1 or ] € Fu(00),
acA acA
in which we used the H and j, from Definition . We denote by lim _ ., (M) the lin-
ear space | J,,c 4 #o(M) equipped with the topology transported from lim | A(fa(M), Log).
Analogously, lim Fo(M; E) is defined by exchanging .%,(M) with .%,(M; E) in the
above.

Suppose (K, C) is a directed set of compact subsets of M, ordered by the inclusion
relation such that M = (Jpe K E| Suppose .Z (K) is a € (K)-function space for each
K € K such that

IKQKIQ(K)%y(K/)Zf'—)f[K/, fOI"K/CK,

is well-defined and continuous. Then lim (F(K),Ig k) can be identified with a ¢(M)-
function space, denoted by @Ke . F(K), via

(fx)kex — f where f(2) = fx(zr) forzcK.

Analogously, we define I'LHKG . F(K; E) as a space of E valued continuous functions,
which is linearly homeomorphic to Jim (F (K E), g i eE).

2.1.2 Differentiable functions and differential operators on man-

ifolds and regular compact sets

Suppose M is an N-dimensional smooth manifold. We will always identify the tangent
space at x € M, denoted by T, M, with the space of derivations at x € M. By & (M) resp.

€*(M), k € Ny, we will denote the space of smooth function resp. k-times continuously

1Later, we will just use the family of regular compact sets from Definition m
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differentiable functions on M. The topology of these spaces is the initial topology with

respect to the maps
EM) = E(@(U))  resp.  E'M) = € (e(U)) : frr foo™

for smooth charts (¢, U), in which ¢: M D U — ¢(U) C RY. As usual 2(M) denotes
the space of smooth functions with compact support on M. If M is an analytic manifold,
then we denote the vector space of analytic functions by @7 (M). A differential operator
P on an open set V C RY is a linear operator on &(V) defined by
Pf:= Z Ao - 0% f
aeNY
for some smooth functions a, € &(V) such that on any compact K C V only finitely

many a, |k are non-zero. The ring of differential operators on V' will be denoted by

Diff(V'). The number
deg P = sup{Ja]: Frev au(z) # 0} € Ny U {oo}

is the degree of the differential operator P. The set of differential operators P with
deg P < k will be denoted by Diffk(V). Now the same concepts are defined on smooth
manifolds M by

for each smooth chart (¢, U) there exists

Diff (M) := { P € L(&(M))
P, € Diff(¢(U)) with P (=)o ¢! = Py (— 0 ¢71)

The sets of differentiable operators Diff*(M) are defined analogously, i.e. we just exchange
Diff (¢(U)) with Diff*(¢(U)). Note that Diff*(M) is a module over &(M) ~ Diff®(M). If
M is an analytic manifold, we will also need the space of real analytic sections Ml — TM,
i.e. analytic vector fields, denoted by V,(M). The action of some vector field X on
f € &M) is denoted by (X f)(x) := X (z)(f).

Naturally, each differential operator P € Diff(M) can not only be seen as a linear
operator on & (M), but also as a continuous linear operator on & (U) and between € (U)
and €™ (U) for open U C M and n —deg P > m. In general, we will also use the notation

Pf(z) := P,f(z) for any differential operator or vector field P and a function f.
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Differentiable functions and differential operators on regular compact sets

Let |c| be the length of a rectifiable curve ¢. We use the following property for subsets
A C RY from [69]:
There is C' > 0 such that any z,y € A are connected by a

(P)

rectifiable curve ¢ C A with |¢| < Clz — y.

This property plays a role in the extension of differentiable functions (resp. jets) [0} 69].
Obviously, convex sets have property (P) and if A has property (P) then so does the
closure A by [69, Lemma 2]. In [40], Komatsu defines his spaces of ultradifferentiable
functions on finite disjoint unions of compact sets with property (P). Since we need to
use spaces of functions on manifolds, we need to be able to define our compact sets via
charts.

Indeed we also have a certain invariance with respect to diffeomorphisms. Suppose
U,V are open in RY and suppose ©: U — V is a diffeomorphism. If ¢ is a rectifiable

curve in A and A C U, then
. —1-1
it 0 ke, Il < [0 < sup [ty el

So if we assume A is a compact subset of U, then A has property (P) iff ¢»(A) has property
(P). More generally, the same holds for any bijective Lipschitz function ¢: A — 1 (A)

with Lipschitz inverse. Hence the following definition will be helpful.

Definition 2.1.2. A subset A C R™ will be called bounded Lipschitz domain, iff A is
open, bounded, connected and for any x € OA there is an open set U > x, and a bijective

Lipschitz map 1. U — (—1,1)"™ with Lipschitz inverse, such that
P(UNOA) = (-1,1)"t x {0} and »(UNA) =(-1,1)""1x(0,1).
Lemma 2.1.3.

(i) Suppose A C RY is relatively compact and for each x € A there is an open neigh-
bourhood U > z in RY such that U N A has property (P). Then all connected

components of A fulfil (P). Also, A has finitely many connected components.
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(ii) Suppose A C RN is a bounded Lipschitz domain. If A C B C A, then B fulfils (P).

Proof. (i): Since A is compact, we find a finite open cover Uy, ..., U, such that AN U;
has property (P) for each j. Since each U; N A is connected, A has only finitely many
connected components.

We show that the connected components of A have property (P). Without loss of
generality we may assume that A is connected and that A \ U, 4 Ui # () for each j. We

define d := sup, 4 [z — y[ and

u::inf{]x—y] ‘je {1,...,n}, x € A\ U;, yEZ\UUZ} € (0,00) .
i#]
Let C4,...,C, > 0 be constants such that for each pair z,y € ANU; there is a rectifiable
curve ¢ C U; N A with endpoints z,y and |c| < Cj|lz — y|. We put C' := dT" max; C;.
Suppose z,y € ANUj, then z,y are of course linked by a rectifiable path ¢ with

lc] < Cjlz—y| < Clz —y).

If z,y € A and there is no j such that z,y € Uj;, then there is j with z € A\ U;
and y € A\ U#j U;. We find a selection of at most n rectifiable paths ¢, C U;, N A,
ir€{l,...,n}, k=1,2,... K <n, such that

o ¢, links 2,1 and 2, with 2, € U;, NU;,_, N A,
o |cr| <Oy |zk—1 — 2| and
e zp=x and zg = y.

The ¢ combine to a rectifiable curve ¢ linking x with y such that
K

el <> Cilanat — 2l < Cp < Cla—yl.
k=1

In conclusion, for any pair z,y € A there is a rectifiable curve ¢ C A connecting x
and y with |¢| < Clx — y].
(ii): For any x € 0A = 0B we choose U and 1 as in the last definition. Then

(-1, D" ' x (0,1) cp(UNB) C (—1,1)""* x[0,1)
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and thus ¢¥(U N B) has property (P). This also implies that U N B has property (P).
If x € Int B, then there is some open ball U with x € U C B. Obviously U = BNU
has property (P).
Hence B has property (P) by (i).
O

A closed set K C M of a topological space M such that K = Int K is called reqular

closed.

Definition 2.1.4. Let M be a smooth manifold. A subset K C M will be called regular
compact, in symbols K c M, iff K is compact and regular closed in M and for each
x € K there is a chart (¢,U) and a bounded Lipschitz domain A such that x € U and
ACy(KNU) CA.

By Lemma [2.1.3] our notion of regular compact subsets of R” is stronger than the
one from [40]. We require regular closedness in order to use functions instead of jets on
regular compact sets. Using bounded Lipschitz domains ensures that we have a nice local
description of regular compact sets.

It is clear that any regular compact set has finitely many connected components.

Moreover, for open U C Ml and K C U we have K CUiff K C M.
Lemma 2.1.5. Suppose M s a smooth manifold. Then the following holds.

(i) For any open U C M and compact K C U there is some K C M with

KcitKcKcU.

(ii) There is a sequence Ky C Ky C ... of subsets K C M with M = U; Int K.

(iii) If K C M then there is a finite collection of charts (¢;,U;); and corresponding
reqular closed and compact V; C U; such that K NV CMand K C U; IntVj. If

M is an analytic manifold, the charts (U, ¢;)jes can be chosen to be analytic.

Proof. (i): Without loss of generality we may assume U = M. There exists some real

valued function f € Z(M) with f(z) = 1 for z € K. By Sard’s Theorem [50, Theorem
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6.10] there exists a regular value w to f with 0 < w < 1. Since w is a regular value, f does
not take on any local maxima on f~'({w}). So any open set that intersects f~'({w})
must also intersect f~!((w,o0)). This means that f~!({w}) is the topological boundary
of the open set f~'((w,00)). Thus K := f~'([w,00)) D K is a compact and regular
closed subset of U. Furthermore, f~!({w}) is a smooth submanifold of M by the regular
value theorem. Thus for any x € K there is some chart (¢, V'), with € V, such that
e(VNEK)=¢o(V)NR"! x [0,00). We can just choose V such that ¢(V') is an open ball,
in which case A C ¢(V N K) C A for the Lipschitz domain A := {(y,t) € (V) | t > 0}.
Hence K is regular compact.

(ii): Since M is a manifold, it is especially second countable and locally compact.

Thus there exists a sequence of open sets (V;); with
VicW,cVyacCVsC...

such that each V; is compact and M = [ ; Vj. Now we just need to use (2) in order to
get K; C M with V; C K; C Vi1

(ii1): Suppose z € K and (¢,U) is any chart (smooth or analytic) around x. Since
K C M, there is some chart (f, B) around = € K and a bounded Lipschitz domain A
such that A C f(BNK) C A.

If f(z) € Int(A), then x € Int K. Hence we may choose a closed Ball V' C Int(K)NU
with z € Int V. In this case V=V N K C U.

If f(x) € OA, we proceed similarly as in the proof of Lemma (ii). We find
an open set W C f(BNU) with f(z) € W and a bijective Lipschitz function ¢: W —
(—2,2)" with Lipschitz inverse such that »(WNA) = (—2,2)""1x(0,2) and p(WNOA) =
(—2,2)" "t x {0}. Now define the regular closed and compact set V := f~Loy~!([-1,1]").
Then V. C UN B and Q:=4¢~'((—1,1)""" x (0,1)) is a bounded Lipschitz domain with

Qcy([-1,1"" % (0,1])) c f(VNEK)cy ' ([-1,1]"! x [0,1]) = Q.
Thus VN K C U.
Finally we can use any covering by sets of the form Int V' for corresponding (¢, U) and

V and choose a finite subcover. O

o1



Definition 2.1.6. Let M be a smooth manifold, k € Ny and K C M. We define the
spaces

CHE) = {f 1| fe €' M)} resp. E(K):={f x| f € EM)}

equipped with the topology defined by the seminorms

f g sup |Pf(z)], P eDifff (M) resp. P < Diff(M).

zeK

Similarly, we define
Vo(K) :=A{X [g| X € Vu(U) for some open U with K C U C M}
for an analytic manifold M.

Suppose U C M is open with K CU. T hen, the existence of a bump function
f € 2(U) with f(z) = 1 for z € K ensures that we get the same notion of €*(K) or
&(K) whether we use U or M for its definition. Of course, each P € Diff(M) can be
seen as a linear operator on & (K) or between ¢ (K) and €*(K) for appropriate integers
[, k. With the next lemma we ensure that €*(K) and & (K) behave analogously to their

counterparts on manifolds.

Lemma 2.1.7. Let Ml be a smooth manifold, let k € Ng and let K C M. Then the

following holds
(i) For a function f: K — C we have f € €*(K) iff

f € €*(Int K) and for all P € Diff*(M) the function

Pf ik extends continuously to K.
(ii) For a function f: K — C we have f € &(K) iff

f Tmx€ E(Int K) and for all P € Diff(M) the function

Pf Itk extends continuously to K.
(iii) €*(K) and &(K) are Fréchet.
(iv) &(K) is nuclear.
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Proof. (i) and (ii): For the case where K is the closure of a region in R™ (i) is proven
in [69]. Using [68, Theorem I] we also get (ii) in this case. As a direct conclusion we get
both (i) and (ii) if K is mapped onto a regular compact subset of R™ by a single chart.
Now for general K C M for some smooth manifold M we can just use a partition of unity.

We choose any finite family of charts (U;, ¢;); and regular closed compact subset
(V;); as in Lemma [2.1.5 (44). Then we choose a partition of unity (x;); C Z(M) with
supp x; C Vj and >, x;(x) = 1 for each z € K.

Let f: K — C fulfil (*) resp. (**). For each j the function f [y,nx extends to a
function F; in €*(M) resp. &(M). Then F := > X;Fj is an extension of f and F is in
€% (M) resp. &(M).

(iii): By definition &(K) is metrizable and ¢*(K) is normable. With the help of (i)
and (ii), it is easy to see that they are also complete and thus Fréchet.

(iv): The linear space /(M) := {f € &M) | f(x) =0 for x € K} is closed in &(M).
Hence the quotient space & (M)/ A% (M) is a nuclear Fréchet space [66, Proposition 50.1].
Since f 4+ Ak (M) — f i defines a linear continuous bijection from the Fréchet space
& M)/ AN (M) onto the Fréchet space &(K), the space &(K) is nuclear by the open

mapping theorem. O

Frames and compositions of vector fields

An analytic frame D = (D, ..., Dy) is an ordered family of analytic vector fields defined
on some open set U C M such that (D;(z),..., Dy(z)) is a basis in T, M for each z € U.
For regular closed compact K C M we will also call D = (Dy,...,Dy) C Va(K) a frame
if (Dy(z),...,Dyn(x)) is a basis of T,M for each x € K. The frame corresponding to
the standard derivative on RY (on any regular compact or any open set) will always be

denoted by 0 = (9,...,0n). If : M D U — R is any chart we will denote by
a¢: (80517'--76(1)1\7) (2'1'2)

the family of vector fields defined by dy, f := (@-( fo (b‘l)) o ¢. If ¢ is an analytic chart,

then 0, is an analytic frame.

23



We will use two distinct notations for compositions of analytic vector fields. Let
D = (Dy,...,Dy) be an ordered family of vector fields defined on some open subset of
M. Then we will define the D% := D{* o --- 0o DV for any multi-index o € Nj'.

In many cases it will be convenient to use a notation that can represent any possible

composition of the invariant differential operators D. For this purpose we define
Sy :={a:N—{0,1,...,N} |suppa := N\ a *({0}) is finite}
and together with the convention Dy := Ig) we denote
D®:=..-D,, 0D, 0D, for a € Sy.

On the new type of indices a € Sy we define the degree |a| = # supp a. Also, the following

sets of tuples of indices will be convenient when using Leibniz rule. For £ € N we define

k
a:Zaj and suppajﬂsuppai=®fori7£j},

j=1

Sni(a) = {(aj)le € (Sy)

where the sum of the function a’/ are taken to be the pointwise sum in Ny. Now, if

fis--- fr: U — C are smooth enough functions, we have

D*(fi-forfi) = D, (D" fi)-(D¥ fo) - (D™ fi).
(a7);€8nN,k(a)
Note that we have a lot of redundancies that do not appear in the formulation of the

Leibniz rule for multi indices o € NY

(£ = X () 0 - 08,

B h

For any analytic chart ¢, the corresponding frame 04 is composed of commuting vector
fields. Hence, it is sufficient to use multi-indices o € N}’ instead of a € Sy. To be precise,
for each a € Sy there is exactly one o € N{ such that 9% = 9% and |a| = |a/.

In general we will also use the notation Pf(x) := P, f(x) for any differential operator

or vector field P and a function f.
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Lie groups and invariant differential operators

We denote by G always a Lie group. Its unit will be denoted by 1g and its center by
Z(G). We write g for the (abstract) Lie algebra of G. The corresponding exponential
map will be denoted by expg: g — G and its center will be denoted by Z(g).

Let 0,(y) := zy and r,(y) ==y for z,y € G. A differential operator P € Diff(G) is

called left resp. right invariant iff

P(fot,)=(Pf)ol, resp. P(for,)=(Pf)or,

for all z € G and f € &(G). The left resp. right invariant subset of Diff(G) and Diff*(G)
will be denoted by Diff,(G) and Difff (G) resp. Diffg (G) and Difff(G).
We will denote the usual realizations of g as R-linear subspaces of Diff; (G) and

g ={Xp | X €g} and gr:={Xgr|X €g}, in which

Xpf(x) =0 f(x expG(tX))|t:0 and Xgf(x) = (9tf(expG(tX)x)|t:0

for f € &£(G), z € G and X € g. Now suppose D = (D1,...,Dy) is a basis of gy, resp.
in gr. For @ € NJ the differential operator D® := D' o --- o D" is a left resp. right
invariant differential operator. Depending on whether the basis D is left or right invariant,
(D) aeny is a basis of the R-vector space Diffy,(G) resp. Diff(G) and (D®)|q/<, is a basis
of the R-vector space Difff (G) resp. Difff(G). Furthermore by using the appropriate
charts, we may see that both the left and the right invariant differential operators span

the modules of differential operators of the corresponding degree, i.e.

spang g Diff,/r(G) = Diff(G) and  spangg, Difflﬁ/R(G) = Diff*(G).

2.1.3 Vector valued differentiable functions

Let U C RY be open and E be an arbitrary locally convex space. A function f: U — E

is said to be continuously differentiable if for each 7 = 1,...,n and each x € R" the limit

0, (x) = lim L(f(x + te;) — (x)

t—0
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exists in F, where (e;); is the standard basis in RY, and each partial derivative, 9, f, is a
continuous function. The function f is called k-times continuously differentiable if f and
0;f,for j=1,..., N, are k—1 times continuously differentiable. Also, f is called smooth
iff it is £ times continuously differentiable for all £ € N. Of course for a smooth manifold
M a function f: M — E is k times continuously differentiable resp. smooth iff fop=tis &k
times continuously differentiable resp. smooth for all smooth charts ¢. Suppose K C M.
As in the scalar case, we call a function f: K — E smooth resp. k times continuously
differentiable if f |1, x is smooth resp. k times continuously differentiable such that P f
can be continuously extended to K for all P € Diff(M) resp. P € Diff*(M).

Suppose U C R"™ is open, F is a locally convex space and f: U — E is smooth. Then

f is called analytic iff for each x € U there exists some ¢ > 0 such that for each |y —z| < ¢

fy)=> aai!(x) (y —z)
aeNp
converges in E. If Ml is an analytic manifold, then f: M — E is called analytic iff fo ¢!
is analytic for each analytic chart ¢.

Suppose E is a complete locally convex space and ¢ (M) is a € (M)-function space.
Then, by [36, Satz 10.5]E|, (M E) is precisely the set of functions f: Ml — E such that
dofe9M) for all ¢ € F' and such that {¢' o F' | ¢ € W} is relatively compact in
¢(M) for any equicontinuous W C E’. With this criterion one can easily recover the

usual characterization of the spaces €*(M; F) and & (M; E).

Lemma 2.1.8. Let E be a quasi-complete locally convex space, M a smooth manifold,
K CM and X € {K,M}. Then the spaces €*(X; E) resp. &(X; E) are precisely the
spaces of k times continuously differentiable functions resp. smooth functions from X to

E, equipped with the topologies defined by the seminorms

f = sup p(Pf(z)) (2.1.3)

zeK'’

for compact K’ C X, continuous seminorms p on E and P € Diff*(M) resp. P € Diff(M).

2See also [42, Theorem 1.12] for a more general statement involving quasi-complete spaces E.
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Proof. By [36, p. 236] the statement is true for an open subset X of R™. For the other
cases, it seems to be quicker to show the statements directly instead of adjusting the cited
proof.

Naturally, the topologies of €*(X; F) and &(X; E) are induced by as a conse-
quence of Lemma (iii).

By using charts, it is obvious that €*(M; E) resp. &(M; E) is a space of k times
continuously differentiable functions resp. smooth functions. Since, any differential op-
erator P € Diff*(M; E) maps €*(K; E) continuously to € (K; E), this also implies that
€*(K; E) resp. £(K; E) is a space of k times continuously differentiable functions resp.
smooth functions.

Now let f: X — E be k-times continuously differentiable and V' C E’ be equicontin-
uous. We define V; :={e'o f | ¢’ € V} C ¢*(X) and

T:6"X) > J[ ¢X):fe(Pfe.

PEDiff* (M)

The operator T" is a homeomorphism onto its range. Now, V} is relatively compact in
¢*(X) iff TV} is relatively compact in T¢*(X). Since T¢*(X) is closed in []p €(X),
this holds iff T'V} is relatively compact in [[, €' (X). By the Arzela-Ascoli theorem, V; is
relatively compact in ¢(X). By PV; = Vp; we know that PV} is relatively compact in
¢ (X) for each P, hence [[, PV} and thus also TVy C [, PV are relatively compact in
[T, % (X) by Tychonoff’s theorem. In conclusion V} is relatively compact in €*(X) for
any equicontinuous V', which implies f € €*(X; E).

The analogous argumentation ensures that any smooth function f: X — F is in

EX;E). O
Later we will also need the following Lemma.

Lemma 2.1.9. For any smooth manifolds M, M and reqular compact K C M, K' ¢ M/,

we have

EMxM)=EM;EM)) and E(K x K') =8 (K;8(K")).

o7



Proof. By [66], p.530 Corollary| and [66, Theorem 51.6] we have &(U x V) = &(U;&(V))
for open sets U C R™ and V' C R™. Using charts, we get the corresponding home-
omorphism for general manifolds. Let (¢;,U;) resp. (¢;,V;) be an atlas for M resp.
M. Now f = (f [u,xv;)i; defines a homeomorphism of & (M x M’) onto a subspace of
[[;; &Ui x Vj) resp. of &M : &(M')) onto a subspace of [[, ; &(Ui; £(V;)). We have
EU; x V;) = &U;; (6(V;)) and both homeomorphisms have the same range. Hence
EM x M) = &(M; &(M')) as topological vector spaces.

For the compact case we use € (K; ¢ (K')) = € (K x K') [44, §44.7. (3) and (4)].

By Lemma [2.1.8] it is clear that &(K;&(K')) is the set of functions f such that
[ Tmeg)xx € &(Int K5 &(K')) and Pel f € €(K;&(K')) for all P € Diff(M)). Inserting
the description of &(K’) gives us f € &(K;E(K')) iff f [mexxrxn€ & (Int K; E(Int K')) =
E(Int(K x K')) and Pe P'f € €(K;¢(K')) = ¢ (K x K'). And the other way around,
we can describe the action of Diff(M x M) on &(Int(K x K')) by

{Q Temmi(rxrry| @ € Diff (M x M)}
= spang {p(m) (P & P') [s@m(rxxry| P € Diff(M), P’ € Diff(M'), ¢ € &(K x K')},

in which p(m) denotes the multiplication operator f +— ¢ f. Hence
E(K;8(K') =8&(K x K')

as topological vector spaces. O

2.1.4 Multiplication of vector valued functions

Now we will discuss the possible multiplication maps between spaces of vector valued

functions. The foundation to this will be Theorem [L.2.111

Proposition 2.1.10. Let M be a locally compact topological space and let F (M), 4 (M)
and (M) be complete € (M)-function spaces such that the pointwise multiplication is
a hypocontinuous map m: F (M) x (M) — 5 (M). Furthermore let F, G and H be
complete locally convex spaces and let u: F' x G — H be hypocontinuous bilinear map.

Suppose ¢ (M) or G has the approximation property. If either
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(i) €M) = .7 (M) = ¢ (M) = 2 (M),
(ii) m is continuous and . (M) is nuclear,
(iii) 9(M) and G are Fréchet spaces and . (M) is nuclear or
(iv) Y(M) and G are strong duals of Fréchet spaces and % (M) is nuclear,
then the bilinear map
u: F(M; F) x G(M; G) — A(M; H) - where u(f,g) := [x = u(f(x),g(z))],
1s well-defined and hypocontinuous.

Proof. For f € €(M; F) and g € ¥ (M; G) we define the function

ug(f,9): M= H: z—u(f(z),g(x)).

The subsets By := {f(z) | v € K} C E and B, := {g(z) | * € K} C G are compact
and thus bounded for each compact K C M. Since u is hypocontinuous, this implies that
ug(f,g) Ik is continuous for each compact K C M. But M is locally compact, so ug(f, g)

is continuous. Hence
ug: C(M; F) x €(M;G) = €(M; H): (f,9) = ue(f, 9)
is well-defined. Also, let B C € (M : F') and B C € (M; G) be bounded, i.e.

Bri = J f(K) and  Bax:= | g(K)

are bounded in F' and G for each compact K C M. Suppose p is any continuous seminorm
on H. Then there are continuous seminorms pr x on F' and pg x on G such that pointwise
sup p(§, =) <prx(—)  and sup p(—,m) < pe,r(—)-
EEBF K neBa K

Hence for all f € €(M; F) and all g € €(M; G)

sup sup p(u(p(z),g(z))) < suppr(g(z)) and
zeK peBF rzeK

22 2, P #le) < sgppoulola).
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In conclusion ug is hypocontinuous. Note that the above also works for quasi-complete
spaces F, G and H.

Since . (M), ¢(M) and (M) are €' (M)-function spaces, we have the continuous
embeddings

FMF)—=FM;F), FMF)—=EMF) and F(M;F)—EMF).
Thus, we may restrict ug to a hypocontinuous bilinear map
Uy = ug |Four)xoone): F (M F) X G(M;G) — € (M; H) .
Of course the multiplication can also be seen as a continuous (resp. hypocontinuous) map
F(M) x ¥ M) —» FM).

Now by Theorem |1.2.11] (resp. Theorem [1.2.12)) @y is the unique hypocontinuous bilinear
map between .7 (M; F) x 4(M; G) and €' (M; H) that fulfils the consistency property

ug(f&,9n) = fgu(&n) forall feFM), ge¥YM), {€FandneG. (214)

But by Theorem [1.2.11] (resp. Theorem [1.2.12)) there is also a unique hypocontinuous

bilinear map
uw: FIM;F) x9(M;G) — 7 (M; H)
fulfilling the consistency property (2.1.4)). If we extend the codomain of @ from ¢ (M H)

to € (M; H) the map stays hypocontinuous. Thus, since Uy is unique, we have

w(f,9)(x) =u(f(x),g(x)) forall ze M.
[

Of course these bilinear maps can also be defined between spaces of continuous differ-
entiable functions. In the above proposition we used complete spaces F', G and H. Below
we extend this to quasi-complete spaces F', G and H and also prove the product rule for

differentiation.
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Lemma 2.1.11. Suppose k € N, M is a smooth manifold, K CMandu: FxG — E is

a hypcontinuous bilinear map between quasi-complete spaces E, F,G. The bilinear map
W CHX ) x G G) = GF X E) where a(f, g)(x) = u(f(x), 9(x))

is well-defined and hypocontinuous for X € {K,M}. Furthermore, if f € €*(X;F),
g € €%(X;G), then the product rule

Xu(f,g) =u(Xf,g)+u(f, Xg)
holds for any vector field X .

Proof. First suppose X is an open subset of RY. Let us denote by o(h), h € RY, any

terms that fulfil ﬁo(h) 2200 in E, ForG. Let x € X and U C R be open and

bounded such that © +U C X. If h € U, then

u(f,g)(x +h) —u(f,9)(x) = u(f(z+h) = f(z),g(z+ ) +u(f(z),9(x +h) — g(z))

At once, we get
u(f(z),9(z + h) = g(x)) = u(f(x),dsg(h) + o(h)) = u(f(x),dsg(h)) + o(h).
Since u is hypocontinuous, the sets of linear maps

{u(—,g(x ) | he U} and {fﬂu(dxf(h), 0 ‘ heU\ {0}}

are equicontinuous. Furthermore, g is continuous, i.e. g(x + h) — g(z) b0, 0, thus

u(def(h) +o(h), g(x + h)) = u(dsf(h), g(x)) + o(h) .

Any smooth vectorfield X on X is of the form X = Zjvzl a;0;, where a; € &(L), hence

Xa(f, g) = w(X f,g) +u(f. Xg). (2.1.5)

The same formula follows for X = M from the above by using charts. For X = K we
first write down (2.1.5]) for functions restricted to Int K. But clearly, for f € €*(K; F),
g € €}(K;G) formula (2.1.5) can also be applied for arguments in K.

61



Formula (2.1.5) also implies that Xu(f,g) is continuous by Proposition [2.1.10] and
that

CXF) x €U X G) = C(X E): (f,9) = Xilf, g)

is hypocontinuousﬂ By induction we can show that
u: CF(X; F) x €5(X;G) — 64X, E)
is well-defined and hypocontinuous. O]

Suppose A is a locally convex space that is also an algebra with hypocontinuous
multiplication and suppose ¢ (M) is a ¢ (M)-function space that is also an algebra with
continuous multiplication. Then Theorem [1.2.11] Proposition [2.1.10[ and Lemma [2.1.11
give us cases in which ¢ (M; A) is also an algebra. In these cases we can ask the ques-
tion, for which A and ¢ (M) a pointwise invertible function f is invertible in the algebra
(M A). This topic is connected with the invertibility criteria we will discuss for algebras

of operators in Chapter 4.1 For this we will use the following definitions.

Definition 2.1.12. For any Algebra A with unit element 14 € A we denote by A* the

set of invertible elements. The spectrum oa(a) of an element a € A is defined by
oala) ={z€Clzly—a¢g A*}.

Definition 2.1.13. Let .7 (M) be a € (M)-function space that is also a subalgebra of
€ (M) and contains all constant functions. If for each complete locally m-convex algebra
A the space F (M A) is an algebra with respect to the pointwise multiplication and if for
each function f: M — A

(IC) [ e FM;A) AN Voer f(x) € A & feF(MA)T,
then we will say % (M) has the property |(IC).

Even though, the above definition of |[(I1C)|uses locally m-convex algebras, it is actually

enough to test on Banach algebras for this property.

3We use the remark made in the proof that we may also choose quasi-complete spaces.
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Lemma 2.1.14. Suppose . (M) a € (M)-function space that is also a subalgebra of € (M)
and contains all constant functions. If for each Banach algebra A the space F (M A) is an

algebra with respect to the pointwise multiplication and if for each function f € € (M; A)
Veemf(z) € A & fe F(M; A

holds, then F (M) has property |(I1C),

Proof. Suppose A is a complete locally m-convex algebra. As in the proof to Lemma
we define for a continuous seminorm p the Banach space A, as the completion of
A/p~1(0) with respect the norm v+ p~1(0) ~ p(v). If p is a submultiplicative seminorm,
then p~1(0) is a closed ideal and A, is a Banach algebra. Since A is locally m-convex, there
is a basis of absolutely convex neighbourhoods of zero U with U-U C U. If p is the gauge
to such a neighbourhood U, then it is a submultiplicative continuous seminorm. Now,
combining the above with [61], Chapter I 5.4] we get the representation A ~ @p(Ap, Lpg)s

with respect to
A A S8 AL inwhich  1,(v) = v+ H0), tgp(v +p1(0)) = v+ ¢ H(0)

and A, are indexed by the submultiplicative continuous seminorms. Also, the above linear

homeomorphism between A and @p(Ap, Lpg) 1S given by
A— @(Ap, Lpg): @ (Lpa)p .
p

Furthermore, all the maps ¢, and ¢, are multiplicative and for any v € A we have v € A~
iff v 4 p~'(0) € AX for all continuous submultiplicative seminorms p on A.

Now let f,g: X — A* such that g(z) = f(z)™! for all z € X. Due to the linear

homeomorphism .# (M A) ~ T&np(ﬁ(x; A,),Iet,,) from Lemma [1.2.5] we have

feFM;A) (resp. g€ .F(M;A))
& Vo fe FM;A) (tesp. 1,09 € F(M;A,)).
So in order to prove that .7 (X) has the property [(IC)] it is enough to show that
feZM;A) implies ge F(M;A)
for any Banach algebra A. m
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Now let

—_——

Sni(a) :={(a") € Syp(a)|a" #0fori=1,...,k}

We will give the first example of a space having property |(I1C)| and introduce a version
of the iterated quotient rule from [38].

Lemma 2.1.15. Let M be a smooth manifold of dimension N, let K C M and let
X € {K,M}. Then &(X) and €*(X) have the propertyfor any k € Np.
If A is a locally m-conver algebra and if f € €*(X; A) such that f(x) € AX, then the

iterated quotient rule

Dg=>"(-DF > gD flg(D"f)g---(D"f)g.

(ai)ESMk (a)

holds for g(x) := f(x)~! and any smooth frame D.

Proof. Suppose f: X — A such that f(z) € A* for all z € X. Denote g(z) := f(x)~! for

x € X. First of all, if A is locally m-convex, then inv: A* — AX: @+ a~! is continuous

with respect to the subspace topology [35, Proposition V.1.6]. Hence g € € (X; A) iff

f € €(X;A). Suppose f € €1(X;A). Let (p,U) be a smooth chart with U C Int X and
h—0

let §:=go@™, f:=fop ' If we denote by o(h) terms, for which o(h)/h —= 0 in A,
then

e +h) = (f(z) + defoh + o(h)) ™

f
=g(x) = g(2) (L + (dof-R)g(x) + 0(h)) "' ((daf-h) §() + o(h))
g(w) = g(2) (dof-h) §(z) + o(h)

for all z € o(U). The above shows that g € €*(Int X; A) and that X¢ [x= —9 X ¢ [ x
extends uniquely to a function in % (X; A) for any vector field X defined on some neigh-
bourhood of X. By induction we get g € €%(X; A) (resp. g € &(X; A)), for f € €F(X; A)
(resp. f € &(X; A)), because the point-wise multiplication is a well-defined bilinear map

CH(X; A) x €F(X; A) = CF(X; A)
by Lemma [2.1.11]
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The iterated quotient rule is proven in [38, Lemma 17]. Although this lemma is written
for the situation of commutative derivations acting on a Banach algebra, the proof works
just as well in this context. Since this can be proven by a simple inductive argument, we
will quickly do this in our notation. Suppose

|al

Dg=> (1% Y g(D"Hg(D"fg---(D"f)g

k=1 (a*)eSN,k(a)

holds for |a| < n. For b € Sy with |b| = n the product rule implies

0=D"(fg)= >  (D"/)(D"9g)

(b*)eSN,2(b)

And thus

D'g=—g(D'f)g — > (D" f)(D"g)

(b*)eSn,2(b)
62|
=—g(D'flg = Y. D"HI (D D gD Hg(D"fg--- (D" f)g

— k=1 —

(b*)ESN,2(b) (a*)eSN 1 (b?)
[]

=—g(D'f)g +D (-DF > gD fg(D“f)g---(D"f)g.

—

(a')ESN k(D)

2.2 Ultradifferentiable functions

Definition 2.2.1. Suppose M is an analytic manifold of dimension N and M € RIJ\;O =
(0,00)N0 is a sequence. A function f € &(M) is called ultradifferentiable of class M

iff for each analytic chart (¢,U) and any compact set K C U there is h > 0 such that

- [(h0s)*f Tk Nl
1
NN

aelNy

=0. (2.2.6)

The definition implies especially that any f € &(M) is ultradifferentiable of class M
iff for any analytic chart (¢, U) the function fo¢~! is ultradifferentiable of class M. The

space of analytic functions can be defined as the space of ultradifferentiable functions
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of class 1 := (1,1,1,...). Indeed, a smooth function f: Ml — C is analytic iff for any

analytic chart (¢, U) and regular closed compact K C U

|| =00 |Oé|'

=0. (2.2.7)

In reality we need to test f for each x only with one analytic chart (¢, U), where x € U,
in order to know if f is analytic. This is also true for general ultradifferentiable functions
with minor assumptions on the sequence M. Although this is well known, it can be seen
as special case of Lemma Also, this lemma will show that we may use general
analytic frames to define ultradifferentiability and test for ultradifferentiability.

For open subsets Ml C RY these definitions coincide with the ones used in the classical
sequence of papers by Komatsu [40}, 4], 42] with the one slight difference. We follow the
convention of [45], 46], 47] and incorporate faculties in ([2.2.6]).

Later we will use spaces of ultradifferentiable vectors to Lie group representation.
But instead of using local charts as in [13], it is more convenient for use to use bases
of invariant vector fields to define and build our spaces of ultradifferentiable vectors and
functions. In [I7, I8 9] this global approach was developed for compact manifolds. In
particular it was shown that this leads to the same concept of ultradifferentiabilty as a

local approach like in Definition [2.2.1] We will prove the same with Proposition [2.2.10

2.2.1 Ultradifferentiable function spaces defined by frames

Now we begin by defining the core Banach spaces of ultradifferentiable functions from

which we build all other space of ultradifferentiable functions.

Definition 2.2.2. For an analytic manifold M, a regular compact subset K C M, a finite
family D = (Dy,...,Dy) C Va(K) and sequence M € RYY we define the Banach space

Da
EHHK) =S fe&K)| lim sup 1% flloe =0 with norm
|a|€zoo zeK |CL|' M|a|
a€Sy

D% f1loo
= Ssu _— .
£l .o Sup M,
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Usually such Banach spaces of ultradifferentiable functions are defined by requiring
boundedness of the sequences (|[(h0)* |« )/(M]q| ||!). We demand convergence to zero
instead of just boundedness in , since this ensures an easier description of the
vector valued spaces &3 (K; E). Also, this convention ensures that the left resp. right
translation acts continuously on &3(G) = m e EM(K) for a basis of left resp. right
invariant vector fields on a Lie group G. Of course using convergence to zero instead
of boundedness is just a minor difference, as a slight perturbation of D to hD for some
0 < h <1 is enough to move from boundedness to convergence. Hence, this change does
not affect the definition of the Carleman classes in Definition

We list a few basic relations between the defined spaces. For any regular closed,
compact set K C M, any frame D C V,(K) and any h > 1 the identity on &(K) restricts

to continuous embeddings
Eip(K) = 65 (K) = & p(K).
For two sequences M, N € ]Rli" we will write N C M if
Ne\*

sup (—) = h < oo (2.2.8)
holds. In this case the identity induces the continuous embedding

EN(K) = EY(K).
This is especially important for the sequence 1 := (1,1,1,...). Here we have

Ep(K) = &5 (K)
for any sequence M with liminf,_, . M, k% > 1. We will write N < M if

1
. Ni\*

In this case we even have

for any h,h' > 0.
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If M, M" are analytic manifolds and ¢: M — M’ is an analytic diffeomorphism, then
we can define the pullback frame ¢*D = (¢*Dy,...,¢*Dy) C Va(K) for any K C M and
any frame D C V,(¢(K)) by

(¢*Djf) o' == D;i(fop ), for f € &(K).
Trivially, this leads to the linear homeomorphism
END(K) = E(D(K)): frs fog. (2.2.10)

Together with Lemma [2.2.4] we will be able to see that the spaces &3/ (K) describe
the same notion of ultradifferentiability as Definition [2.2.1]

In the following, we list the properties that we will consider for M.

Definition 2.2.3. A weight sequence is a sequence M = (My)y € RI}’ which has the

following four properties.
(N) M is normalized :< M, = 1.

(I) M is increasing = My > M; for k> j.

==

(D) M is stable under differential operators = k — (MMLZl> is bounded.
(LC) M is log-convex < k — log(My) is conver.

i which we call a sequence a: Ny — R convex iff it can be extended to a convexr map

a: Rso = R. We will consider the following possible other properties of a sequence M.

(LC’) M is weakly log-convex < k +— log (M k!) is conver,

1
1 J

(AI) the sequence k — M is almost increasing :< sup — < oo.
gk k>j MF

#
MG) M has moderate growth < (k,j) — M 7 s bounded.
M; M,

oo Mn—l
n=1 n M,

(mQA) M is non quasi-analytic = ) < 00.

1

(AF) M allows analytic functions < limg_. M =00 & 1 < M.
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Let us give an overview about these properties. Although [45] 146, [47] deal with the
much more complicated topic of ultradifferentiable maps between infinite dimensional
spaces, the author found the summary given in these publications very helpful. So we
mainly reference [47, pp. 553-554] and also [45, 46] for the following. If holds,
then and are mostly a question of convenience and do not impact the properties
of the spaces of ultradifferentiable functions we create from the basic building blocks in

Definition [2.2.2] Namely, if M is not increasing but log-convex, then L := [k — Ch*M,]

fulfils [(N)] and [(LC)| for appropriate C,h > 0 and we have L C M and M C L.
Also, L fulfils either of the properties [(D)], [(AT)], [[MG)], [mQA)| or [[AF)|if M does so.

[(D)] ensure that for any frame D C V,(M) there exist & > 0 such that f — D;f is a

continuous operator from &)/ (K) to &M (K). Namely, we have

1 D;D° flloo 1D £l oo [(RD) fll o
sup ———— < sup <C sup —>
W Ty S R, Ga- D =S, e,

a€Sdim M a€Sqim M a€Sdim M

where h,C' > 0 are chosen such that (k+ 1)Mj4 < Ch¥*'EM,,. These constants exist,
since supyey(k + 1)Y5(Myy 1 /My)Y* < 0o

implies M M; < MyMj.; for any k,[ € Ny. ensures that the pointwise
multiplication is a continuous map &3 (K) x &M (K) — &M(K) for an appropriate
h > 0. Note that in [40] the factorials in are not used for the definition of
ultradifferentiable functions. This means that our notion of smoothness defined by some
chosen M with corresponds to the notion of smoothness from [40] defined by some

appropriate M with . But we prefer to require the slightly stronger property ,
since not only |(LC)| = [(LC?)| but also [(LC)|=|(AI)| Indeed, if L € R" fulfils [(LC)|

1 1 n-1 1 L ]
(N)|and if L=} < Ly, then L2 < L," L,y and thus Ly < L7*]. Now for M with|(LC)

put L, := M, /My, then n > L,% is increasing and thus n — Mn% is almost increasing.
is connected to the ultradifferentiability of the pointwise multiplicative inverse
of an ultradifferentiable function. In the context of Banach algebras, an analogous fact
was proven in [38]. Of course, this property will be important for the introduction of
spectrally invariant operator algebras defined by ultradifferentiable group actions.
ensures that in the context of ultradifferentiable spaces we have the analogous
fact to &(M; &(M')) = &(M x M'). In [40], 41], [42] the property is called stability
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under ultradifferential operators.

(nQA)| ensures that there are non-trivial compactly supported functions and espe-

cially a partition of unity of this class. For this see [40].
Finally, ensures that real analytic functions are contained in &5/ (K).

A common example is the weight sequence defined by My := (k!)*~! for s > 1, which
corresponds the Gevrey class of ultradifferentiable functions. This sequence fulfils all the

above properties.

Lemma 2.2.4. Suppose Ml is an analytic manifold, M € RTO 15 monotonously increasing,
i.e. fulfils (I), and K C M is reqular compact. Let D, E € V,(K)N be tuples of analytic
vector fields. If there is an analytic function A = (A;;)i;: M — RN with

E=AD:=()_Ai;D;),
J
then there exists some p > 0 such that the identity induces a continuous embedding
EN(K) — &5(K).

Proof. Step 1: We prove the lemma for the case A € &%, (K;RY*N) for some i/ > 0.

Suppose f € &H(K), ie. there exists C > 0 such that for all a € Sy and for
h = min{h’, 1}

max | D*Ayjlleo < CholMalt and  [Dflloo < Ifllpas A7 Migfalt. (2.2.11)

This implies that for any a € Sy where n := |a| and for any (a’); € Sy,(a) and any

a,Be{l,..., N} !

al a1 a™ n— n -n
(D Aay ) -+ (D Ay y) - (D Flloo < N1 fllpar €7 a1 - a™ |t M A7
(2.2.12)
where we also used that M is monotonously increasing. If g € &(K) we denote by g(m)

the corresponding multiplication operator from &(K) to itself. For a € Sy and n := |a|
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we rewrite £°f in terms of derivatives with respect to D

E“f =(AD)*f = Y Aqp,(m)Dy, -+ Ag, b, (m)Dy, f (2.2.13)

= > P Aas (DT (D7 A ) (DM Ay ),

(2.2.14)

where b = (by,...,bn—1,0,,0,0,...) and p; i), is a non-negative integer. The number

P, v), describes how often the corresponding summands occur when using the product

rule successively in (2.2.13)). For n € N we define

J
B, = {a eNy | V=1, "Zai <jand |a| = n} and By = Z Db, (bi); 5
i=1 (b"); €SN n (b)
Vi |bi|=k;
for k € Nj. Here By is the same for any possible index sequence b such that n = |b|.

With the B, Br and (2.2.14)) we may estimate E°f by

B flloo < Z > e

bi =1 (b1); ean(b)
< [[fllp.ar Z > KBy M, (ChTh)"
birn bn=1 kCBn

= fllpar > K By M, (Ch™" N)™. (2.2.15)

keBn

Fllpar (7] oMY My, (C B

We can calculate By by counting how many summands of derivatives of order k£ occur in
(2.2.13) when applying the product rule. Its value is
n . .]"—1 k‘
Bk:H(j Zk:l:l Z) for k€ B, and By=0for ke Nj\B,.
j=2 J

Thus we have

o (- Thk) f

k!Bk:H , = <j+1—Zki) for any k € B, .
=2 <j -3 ki>! j=1 i=1

Again, we introduce new sets of indices and connected integers by

Vjikigj} and Ck:—H<+1—Zk> for k € Cpp

=1 j=1

Con = {kENgL
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in which m € N. For any m € Nso, k € C,,_1 and [ € {0,...,m — |k|} we have (k,l) € Cy,

and we may use
C(k,l) = Ck (m—l— 1— ‘k‘ — l) .

Thus, by the hockey stick identity, we have for any p € Ny

m— |k m—|k|

m+1—|kl—=1+p I+1+p
C =C 1
2 (‘“’”( m+1— |k —1 DB G
=0 =0
m— |k|+p+2
=C 1 : 2.2.16
NVRE) (i PR CERT)
By iterating ([2.2.16)) we get
1 =Sk 1=k 1
n — = k?2+0
ST RB =Y - Z Y C(kl...,kn_l)( Z‘Ll )
keB, k1=0 kj=0 kn—1=0 n= 2o ki

=0k n—2-Y""3k;
k

S (n 1 2?51271@ + 2)

n—2
k1=0 =0 kn_2=0 n—1- Ziz:l kjl
i~ ks . i .
_i...j Efqu 22 <]+1— a k-+2(n—1—])>
- 100y i n—1—1j . s ' _
k1 =0 k=0 72t (n =1 - ) j+1 lk
- kl n— 2 o
= 2 2) 2 —ky
1
2—l+(n+2)
l:O
<r2"nl, (2.2.17)

for some r > 0 and all n > 2. Now, by using (2.2.15)) and (2.2.17)), we may bound |E“f|
by

VE*flloe < 1 | fllpr md My (2C B0 N

and thus for 0 < u < h (2N C)™ ' =: ji and f € &Y (K) we have

(L) fl oo (pE) floo
= sup ———-—— <r and lim —————— =10.
||fH#E,M aESI:])V |a|' M\a| = ||f||D,M L‘;‘eg;’: |CL|' M|a\

Thus we have proven the continuous embedding
EN(K) = &p(K).
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Step 2: We prove that for any tuple D € V,(K)" and any RY*N_valued, analytic
map A on M there is b’ > 0 such that A [ge€ &L, (K;RV*N).

Suppose (¢1,U1), ..., (¢n,Uy,) are analytic charts and Kj,..., K, regular compact
such that K = |JI_, K; and K; C U; for j = 1,...,n. Let us denote by D% € V,(K})
the frame induced by ¢, on K as described in . As in there exists 7 > 0
such that

Aij [k, € gfpm (Kk) for all i,j=1,...Nandk=1,...,n.
Hence, by Step 1, we also have
Aij I, € EEp(K)  forall  i,j=1,...N

for some A’ > 0, in which we denoted the restriction of D to the sets K by D as well.
This implies A [g€ &, (K;RV*Y). O

The above lemma can be applied to any pair of analytic frames D, E € V,(K), because
we always find an analytic matrix valued map A with £ = AD. Naturally, the situation

is better if the frames D and F are connected by a constant linear transformation.

Lemma 2.2.5. Suppose M is an analytic manifold, K c M, D C V,.(K) is a frame.
Let AD := (32, AijD;)i of an invertible matriz A = (A;;);; € RN*N. Then there exists

some h > 1 such that

EB(K) = EH(K) and E3(K) = &% 4p(K)
are well-defined and continuous.
Proof. Let f € &(K) and put g = max; ; |A; ;|. Then

max | (AD)"f o < (Nu)’“‘rglgggllD“flloo.

Hence &y),p(K) L &M (K) is continuous. Now consider D := (Ny)~'D Then

Ep (K) = &3, 5(K) = E45(K) = iy -1ap(K)

is well-defined and continuous. O
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We already mentioned that property @ﬂ ensures the continuity of differential opera-
tors between spaces of ultradifferentiable functions. But it also ensures that the following

lemma holds, which is equally important for our later discussion.

Lemma 2.2.6. Let M be a weight sequence, let M be an analytic manifold, let X CM
and let D C V,(K) be a frame. Then there exist h > 1 such that

EM(K) L &Y (K) and EM(K) S &M (K)

are nuclear embeddings.

Proof. We may use the corresponding proof from Komatsu [40, Proposition 2.4] if we
make minor changes. We exchange the partial derivatives 0 with the frame D and make
an adjustment for the noncommutativity of D.

We use the concept of quasi-nuclear maps. A linear operator T: E — F between

Banach spaces E, F' is called quasi-nuclear if there is a sequence (€}); C £’ with

Z||e;~||E/<oo and ||Te||F§Z|<e,e;»>|, foralle € E.

By Komatsu [40, Lemma 2.3] the identity ¥V+'(L) = %(L) is nuclear for L C RY. By

Lemma [2.1.5 we may use charts to get the nuclear embedding ¢~ (K) L ¢ (K) for

K C M and N := dimM. So there exist (v;); € €NTHK) with

Cy = Z vjllensigry < oo and || f]le < Z| fv) |, forall fe @VTHK).
We define the finite sets of differential operators
Pk::{D“|a€SdimM,|a|:k:}, for k € Ny.

For some chosen h, A > 0 we define the linear functionals up; € &Y (K) by

Mk <pf7vj>

il frPer fe &K,

(frupj) ==

This sequence of functionals fulfils

TIPRED 95 S LIIEED 55 5B ST AT IR A 115)

k=0 PePy k=0 PPy j
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Since M fulfils [(D)] there exist C, H > 1 with (k + 1) My.1/M, < CHF for each k € Ny,

Thus we get
k a
P PP
[ {fsups) | < llvjllgnagey max M, k]
aeSN
k
pto (4 k) Mgy,

= 0N N Rl M, osltsraey 1 Flla as

k
< WV D) S OV HE D EN e apa

e

= C, - gDk villgv+1cy || flIap,az -

)\k

So for A, 1 > 0 such that x := 4§ - H¥*! < 1 we have

o fe'e) k
D20 Munsllapy <D D Y O %H(NH)’“ v 1 ey

k=0 PEP, J k=0 PeP, J

SZ]{?NC()Cllik<OO.

k=0

So in this case &M (K) EN &5 (K) is quasi-nuclear. As cited in [40], the composition of

two quasi-nuclear maps is nuclear. Hence, we always find A > 1 such that

I

EMK) L &)Y (K) and EM(K) L &M, (K)

are nuclear.

2.2.2 Ultradifferentiable functions of Roumieu and Beurling type

Finally, we will define the main spaces of ultradifferentiable functions.

Definition 2.2.7. Suppose M is an analytic manifold and M € ]leo a sequence. If
K C M is reqular closed compact and D C V,(K) a frame, then we define € (K )-function

spaces

ES(K) =1 E(K)  and &5 = lm &Y (K),

h>0 h>0
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in which we use Ry = (0,00) with the standard ordering resp. in the second case the
inverted ordering.

Furthermore, if D C V,(M) is a global frame, we will also define the € (M)-function
spaces EXL(M), £éM) (M) and @@E,M}(M) by

FM) = lim F(K),  for F € (&3, &5, 650}

KCM
For X € {K,M} and for the frame D € V,(X) the space &M} (X) resp. &M (X) is
Carleman class of Roumieu type resp. of Beurling type on X associated to M

and D.

In cases where we can treat the Beurling and Roumieu classes at the same time, the

following convention has merit.

Convention 2.2.8. For a weight sequence M we will use the symbol [M] for an unde-
termined variable [M] € {(M),{M}}. Any statement involving [M] is meant to be true
for both the case [M] = (M) and the case [M] = {M}.

Note that by definition we have the continuous embeddings
E90®) L 680X), E0®) L EYX) and (X)L 650 (X)

for any monotonously increasing sequence M € Rﬁ”, any X € {K,M} for an analytic
manifold M and K C M and for any frame D C Vo.(X). If N C M then we have the

continuous embeddings
ENVX) L M) and &MNX) L &M (X).
If N < M then we have the continuous embedding
&3 (%) = 650(X).

This motivates the following definition, in order to effectively use the variable [M] for

embeddings.
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Definition 2.2.9. Let M and N be weight sequences. We will write (M) C (N), {M} C

{N} or (M) C{N} iff M C N i.e. sup;(M;/N;)i < oo. We will write {M} C (N) iff
M < N i.e. lim_o(M;/N;)7 = 0.

This way, the above can be shortened to
[M] C [N] = éal[)M] (X) & éa[[)N} (X) is continuous

Later it will be convenient to use this notation for the inclusion of analytic functions,
i.e. {1} C [N] implies the continuous inclusion é”lgl}(X) RN @%N] (X). Naturally, M fulfils
iff {1} C (M).

Now, we will discuss some general properties of the spaces of ultradifferentiable func-
tions. We will especially prove that we may describe the Denjoy-Carleman classes of
Roumieu type with the help of analytic charts. This also ensures that we could easily use
a lot of the statements proved for ultradifferentiable functions on open subsets M C R”
by H. Komatsu. But since this approach does not work for the Beurling case, we will use

the description via limits of the spaces &3/ (K) to prove e.g. nuclearity.

Proposition 2.2.10. Let M be an analytic manifold, let K C M and let M € RI_\&O be
a weight sequence. Suppose X € {K,M} and suppose D C V,(X) is a frame. Then the
following holds.

(i) The space 6’,5{,M}(X) does not depend on the choice of frame D. If there is some
invertible matriz A = (A; ;)i ; with E = (3_; Ai;jD;)i, then géM) (X) = @@l()M)(X) as

well.

(ii) Suppose (¢;,U;), j € J, is a family of analytic charts, with regular compact subsets
V; C Uj such that X C Uje; Int V; and XN'Vj C M. Then

feeMX) o Viefosle&M (B (XN

and the topology of (ggM} (X) carries the initial topology with respect to the above

maps /]
4We can always find such a family (¢;,U;) of charts and subsets V;, as Lemma shows.
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(iii) é}{)M}(K) is the strong dual of a nuclear Fréchet space. é}()M)(K) is a nuclear Fréchet

space.
(iv) é"l[)M}(X) is nuclear and complete and é"l()M) (X) is Fréchet.

Proof. (i): This is a direct result of Lemma and Lemma [2.2.5]
(ii): Let K; := XNV}, then Kj is regular compact. Note that D and 0y, always

restrict to frames in V,(K;). Now, by (2.2.10) and Lemma
ENMEG) = EMN 0 (K)): f = fogr?

is a linear homeomorphism for each j € J. Moreover, we have f € &(X) iff f [x,€ &(Kj)

for all j € J and

EXNX) = [T 5)): £ (f 1x))sea

jeJ
is a homeomorphism onto its image. Together, the two arguments prove the statement.

(iii): By Lemma there are a sequences h,, \,0, n — oo, and k, o0, n — o0
such that & (K) RN &Y p(K) and & (K) RN &M (K) are nuclear for each n € N.
Hence, &5 (K) = lim g,c(ﬁj)(K) and &MHK) = lim &(K) with nuclear and
injective linking maps. This means g[()M)(K ) is a nuclear Fréchet space and é"[{,M}(K ) is
a complete nuclear (DF) space as described in [40, p. 34]. Thus, by [61], Exercise 32(b)
on p. 199], éalgM}(K ) is Montel and hence reflexive by [61, p. 147]. The strong dual of a
complete (DF) space is a Fréchet space by [36, Satz 8.19], hence (E’lgM}(K ) is the dual of
a nuclear Fréchet space by [66, Proposition 50.6].

(iv): For X = K only the Roumieu-case is left. Since é%M}(K ) is the dual of a nuclear
Fréchet space, it is complete and nuclear as discussed in Proposition |1.2.1}]

The space @@l[)M] (M) is linearly homeomorphic to the projective limit of the complete
nuclear spaces éal[jM} (K", K' C M. Hence &M (M) is complete and nuclear by [61], Chapter
I1, 5.3] and [66], Proposition 50.1]. Of course, it is enough to consider a countable family of
regular compact subset of M for this limit. Thus @@l()M) (M) is Fréchet, since any countable

projective limit of Fréchet spaces is Fréchet. O
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Note that (ii) especially works with X = M and the family of all pairs ((¢,U),V) of
analytic charts (¢, U) of M and V/ C U. Le. we have

fe éﬁM}(M) & fople ég{M}(go(U)) for all analytic charts (o, U)
and cg"[{)M} (M) carries the initial topology with respect to the maps
65 M) = &M p(U): £ fow.

This also elucidates that o/ (M) = do@[{)ﬂ}(M) as linear spaces.

Often it is more convenient to represent £5M}(M) purely by a projective limit of
Banach spaces. One reason is that e-products play much more nicely with projective
limits than with inductive limits. Moreover in Proposition|2.2.15| we will later get a better

result concerning the continuity of the multiplication in éaéM} (M) using this approach.

Definition 2.2.11. We define the set
A= {(coc1 - Cu)nen, | for some monotone (c,), € RYY with nlggo Cp = +00}.
and equip it with the preorder

h' = h = sup h,/hl, < oo  for h,h' € A.
neNp

Furthermore, for an analytic manifold M, K c M, M e RIE% and a frame D C V,(X) we
define the € (X)-function space

EY i (X) = lim &5 (X).

D,proj
heA

In some cases it will also be convenient to use the notation @@%ﬁoj (X) := éng) (X).

Let us quickly make sure that the above is well-defined. For h,k € A there are
positive, monotone and diverging sequences b, ¢ with h, = ¢y---¢, and k, = by---b,
for all n € Nyg. Now put a = (ay)nen, With a, := min{b,,c,}. Then a is monotone,
positive and diverging and hence [ := (ag - - - an)nen, € A and b,k 2 1. Thus (A, 2) is a

directed set. Also, the preorder on A is defined in such a way that we have the continuous
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embedding &5 (X) & &5} (X) for k 2 h. Thus the projective limit im, _ &5**"(X)
is well-defined.
Note that for any weight sequence M and any h € A we have M < hM. If hg = 1

then the sequence hM is a weight sequence as well. Also @‘ﬁﬁmj (X) = gjj{){\gr}oj (X) for any

i > 0. Thus we especially have

&y (X) = lim Jim €751 (X) = lim 63" (X). (2.2.18)

>0 heA heA

So éagffjoj (X) is nuclear as a projective limit of nuclear spaces [66, Proposition 50.1]. Of

course this space is complete as well. Though in general we do not know if the space
Pt

D.proj (X) is barrelled. For application that need barrelled or bornological spaces we

instead need to use é‘z{)M}(K). If one can show é‘)éM}(I\\/JI) = éai{,f\gr}oj (M) the situation is

especially convenient. For this purpose Komatsu uses the following [42, Lemma 3.4].

Lemma 2.2.12. Let ¢ = (¢,), be a positive sequence. Then the following two statements

are equivalent.

(i) There is some h > 0 such that sup % < 0.

n

(ii) For all h € A we have sup ;—n < 00.

The following two complementary statements are equivalent as well.

(iii) For all h > 0 we have sup ¢, h" < c0.

n

(iv) There exists some h € A such that sup ¢, h,, < c0.

n

The above implies that for two weight sequences M, L we have M < L iff there is
some h € A, C' > 0 such that for all n € Ny

1 C
< )
L, — h, M,

Lemma 2.2.13. Suppose M is a weight sequence, Ml is an analytic manifold and K C M.
Suppose furthermore that X € {K,M} and D C V,(X) is a frame. Then

N X) = ) 65 (X)
heA
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as vector spaces and &M (X) RN cg"é{\gr}oj (X) resp. &IMH(X) RN EMM(X) is continuous for

any h € A. Moreover, if M fulfils|(nQA), then

&M ) = &M () (2.2.19)

D,proj
as locally convex vector spaces.

Proof. Tf X is an open subset of R™, then the statement is proven in [42, Proposition
3.5]. Note that in the corresponding chapter in [42] the property |((nQA)| is a global
assumption. However, in the proof of the continuity (from left to right) and bijectivity of

the identity (2.2.19) this property is not used.

For arbitrary analytic manifolds M we get & éM} (M) = & i{){‘gr}oj (M) in the sense of
locally convex spaces by using analytic charts and Lemma [2.2.10]

For general X we can use the same approach. First of all, <§’,§{)M} (X) and 51%%3@ (X)
coincide in the sense of vector spaces due to Lemma [2.2.12] Since M < hM for any
h € A, we have continuous embeddings &5 (X) & &M (X) for any h € A.

]

Note that in [47, Theorem 8.2] it is shown that for any weight sequence M, any open
subset M of R" and a set B C &(M) we have

B C éaa{M} (M) is bounded <« v B C ééL) (M) is bounded.
L fulé\lds

This fits (2.2.19)), since M < hM and hM fulfils (and even |(LC)p) for any weight

sequence M and any h € A. Naturally, this can also be generalized to arbitrary analytic
manifolds M in the same manner as above.
The following definition will be useful whenever we need to use projective limits for

our spaces of ultradifferentiable functions.

Definition 2.2.14. Suppose M is a weight sequence. We will introduce the property

for [M].
(PL) Either [M] ={M} and M has[(nQA)| or [M] = (M).

°h = (h,) € A itself is log-convex since h,, 11 = ¢, 1hy, with a monotonously increasing sequence (cy,).
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Now let us discuss the multiplication on g’][DM] (M).

Proposition 2.2.15. Let M be an analytic manifold, let K c M, let X € {K,M} and
let M € RT" be a weight sequence. Suppose D C V,(X) is a frame. Then the following

holds.

(1) Let h > 0 and let L be a weight sequence such that [M] C (L). Then the multipli-

cation

6p"(X) x Eip(X) = 5 (X)
18 well-defined and continuous.

(ii) (g)g\/ﬂ (X) and éalgf\gjoj (X) are algebras with continuous multiplication.

(iii) é"]_L)M} (X) is a locally m-convex algebra. If [M] has|(PL) and X = M, this specifi-

cally means that the algebra é”[[)M] (M) is a locally m-conver.

Proof. (i): For any L and any h > 0 let us define Ly, :== (h™" L, )nen,- We have &5,(X) =
&57(X). Furthermore, we have L C Ly, thus [M] C (L) implies [M] C (Ly). So it is
enough to prove the statement for h = 1.

First, we will discuss the case X = K. Suppose f,g € &(K). We define

1D f o

17102 := max o =
jal=k

Then

ID°(f ol < D ID" fllocl D gllec

(a',a2)eSN, 2(a)

1
< > W lhewn.zliglieo.e 1 a ' L [a®] Ly
(a',a?)eSN,2(a)
lal

= > IFleup.egllaf—r0rlalt™ LiLig— -
k=0

Due to the log-convexity and Lo = 1, we have LyLy—x < Liq, thus

n
1 gllno.r < N llups Y 1™ Iglln—kp.L 0
k=0
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for any p > 1 and any f € &5 (K) and g € &5(K). It follows that the multiplication
EL(K) x EF(K) — E5(K) (2.2.20)

is well-defined and continuous for any u > 1. Next we use [M] C (L). Since the identity

induces a continuous embedding éj[jM}(K ) = &5 (K), the multiplication
& (K) x E5(K) = E5(K)

is well-defined and continuous.
For the case X = M we can use the fact that the above is true for any K C X. Since
multiplication commutes with the restriction to regular compact subsets of X, we get a

continuous multiplication
EMX) x EE(X) = EEX) . (2.2.21)

(ii): First let us consider [M] = (M). We use ([2.2.20). For all ~ > 0, we have the

following chain of continuous maps
M M I :
Ep" (%) x 65" (%) = &lp (%) x §IH(X) = H(X).

which already implies the continuity of the multiplication on &®™)(X).
Now we consider [M] = {M}. We start with é"g\gr}oj(X). Here we can argue in the

same manner as above. For each h > 1 and A € A we have M < (h™"\,M,,),,. Thus

&M (X)) x &M (X)L (X)) x EAM(X) 5 EAM(X)

D ,proj D,proj

is continuous for all A € A which already implies the continuity of the multiplication on

M
gg,pr}oj (X)
Finally, we discuss (%gM}(X). For open Ml C R™ the continuity of the multiplication

is proven [40, Theorem 2.8], but the same proof also holds for general analytic manifolds
M.
For any h, > 0 there is a A > 0 such that the multiplication

ng(K) X & (K) = Ep(K)
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is well-defined and continuous. Hence each fixed f € &M} (K) induces a continuous
operator

EM(K) = &8N K) g fg

for any h > 0. By a standard property of inductive limits [61 II 6.1], the extended map
83" (1) = &5 (K) g f g

is continuous. Hence the multiplication on g’éM}(K ) is separately continuous. We com-
plete the proof by using [66, Theorem 41.1], which states that separately continuous
bilinear maps between strong duals of reflexive Fréchet spaces are continuous.

(iii): In this instance we can use a method from [52, Chapter I, Theorem 5.2]. It is
enough to consider X = K, since the rest follows from the description via the projective

limit over the regular compact subsets. Suppose L is any weight sequence. We define
Uh={f e 5 () | 1flpe <1} (2.2.22)
By (i) there is some ¢ > 0 with
f-U*Ccec-U*

for any f € éal()M)(K) and any L with (M) C (L). Next we define
Vi={feUl| f-U*cU*"}.

Then we have VI . VL ¢ VE and V¥ is a barrel, i.e. it is absolutely convex, absorbing

and closed. Since the space & l()M)(K ) =& I%EOJ.(K ) is barrelled, V¥ is a neighbourhood of

zero. The set

U:={e-U-|McCL,ec|01]}

is a basis of neighbourhoods of zero in é}:()M)(K ), 80
Vi={e-VE|McCL,ec0,1]}

is also a basis of neighbourhoods of zero, because VI C U* for any L. This implies that

cf’[()M)(K ) is locally m-convex.
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Next we use the description

E i (K) = lim 6" (K

D,proj
heA

discussed in (2.2.18]). Since any é“glM)(K) is locally m-convex, the algebra &M (K) is

D,proj

locally m-convex as well.

]

By Lemma we have 6"5M} (X) = é”éM} (X) for arbitrary frames D, E C V,(X).
Thus, we can adjust the definition of é"éM} (X) such that we are not dependent on the
existence of a global frame D C V,(X).

For any z € X we can find some K’ C M with z € K’ C X with a frame D’ C Va(K'),
by using analytic charts. Moreover, by Lemma[2.2.4] for a weight sequence M and any two
K’ K" C M with frames D' C V,(K’), D" C V,o(K") and with K” C K, the restriction

defines a continuous map
EMNEKY = ELK"Y: f s f i

This leads us to the following definition, which is consistent with the prior definition of

&M(X).

Definition 2.2.16. Suppose M is an analytic manifold, K C M, X € {K,M} and M is

a weight sequence. Let
Fu(X) = {(K',D) | K' CM, K' C X and D C Vo(K") is a frame} .
We define &M} (X) as the space
EMN(X) = {f € EX) | Vwrpyereen): [ 1€ E (K}
equipped with the initial topology with respect to the maps
EMX) = MK f o flw for (K',D) € Fu(X).

The spaces &M (X) are also called Denjoy-Carleman class of Roumieu type.
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According to the above definition we especially have

EM(M) = lim M (K) and  &UHEK) = £5(K)
KCM
for a frame D C V,(K).

By and Lemma , & (M) is exactly the space of analytic functions .7 (M)
on an analytic manifold M [J] (see also Proposition (iii) for more context).

We cannot do the same for the Beurling case. Here the defined spaces depend on the
choice of frame. This is not surprising, since the spaces d%(]l)(U ) for open U C R™ are
the functions that extend to entire functions on C". Certainly, the composition of entire
functions with arbitrary analytic functions might not be entire. Consider the analytic
manifold RT and the vector field D, defined by Df(z) = 2?0f(x). If we take g(z) := x
for x € R, then

su}g |DFg(z)] = k! - t* for K C RY and ¢ := max K
Te

and thus g € @@gl)(RJr) \ (E’él)(RJ“). Even a very well behaved change of frame might
not be sufficient to guarantee that the corresponding Carleman classes of Beurling type

coincide. Indeed, in the example above we have A € éaéﬂ)(R*) for D = A0.

2.2.3 Vector valued ultradifferentiable functions

Let us now turn our attention to the spaces of vector valued ultradifferentiable func-
tions. In order to characterize the spaces of ultradifferentiable vector valued functions of
Roumieu and Beurling type, we will first represent the spaces &3(M; E) resp. &M (K; E)

in a more convenient way.

Proposition 2.2.17. Let E be a complete locally convex space, let Ml be an analytic
manifold of dimension N with K c M, X € {K,M} and let D C V,(X) be a frame. Let
F(E) be the linear space of all f € &(X; E) such that

sy P @)

=0
|a|—o0 reK'’ M|a| |a|'
aESN

SNaturally we still use the definition 1 = (1,1,1,...).
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for all compact K' C X and all continuous seminorms p on E, equipped with the topology

defined by the seminorms

p(D*f(x))
> Sup sup ————=,
/ e Mg |al!

in which K' runs through the compact subsets of X and p runs through continuous semi-

norms on E. Then &Y(X; E) = F(E) as topological vector spaces.

Proof. By definition we have F(E) C &(X;E) and we have & (X; E) C &(X; E) since
EN(X) C £(X).

First, suppose F is a Banach space and let N := dim M.

Let f € &(X; E) and put

T E = &X): e eof.
Lemma (i) implies that f € &M(X; E) iff
(1) Tye' € &M(X) for all ¢ € ' and

(2) for all compact K’ C X there is some compact and absolutely convex C' C E with

D(Lf ’/
et e iz, T < s (e

Let us define ¢,(z) := 7 1‘|a“D“f(:c), for z € X and a € Sy, and let

M(K') :={ca(z) |z € K', a € Sy}

for each compact K’ C X. By identifying (E.). ~ E via the canonical map, we get

la]—o00

(1) & co(r) —— 0in (E)), uniformly in x € K’ for each compact K’ C X and
(2) & M(K') is a set of equicontinuous functionals on E’ for each compact K’ C X.

If M C (E.) is a set of equicontinuous functionals on E!, then the topologies inherited
from (E.). and (E.). coincide on M by [36, Satz 1.4]. However, for an equicontinuous M,
the set M — M = {e; — ey | e1,e5 € M} is equicontinuous as well. Consequently, even
the uniform structures inherited from (E’). and (E’). coincide on M. This enables us to

conclude that together (1) and (2) are equivalent to
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(3) co(x) =% ) in (E”)! uniformly in z € K’ for each compact K’ C X,

Since E is a Banach space, it carries the Mackey topology by [36, p. 176] and thus
(E!). ~ E via the canonical map E — (E.)! by [63, p. 17]. This means (3) is equivalent
to f € F(E) and thus F(F) = &(X; E) as vector spaces.
The topology on &M (X; E) is defined by the seminorms
[ supp(e o f)
e'eV
as p runs through the continuous seminorms in &A/(X) and V runs though the equicon-
tinuous subsets of E’. A seminorm p on &3/(X) is continuous iff compact K’ C X and
C > 0 exist such that p(f) < C||f [k ||pas for all f € &)(X). Hence,
sup p(€ o f) < C sup sup sup LD (@), € | :
e'ev z€K' a€Sy e’V M|a| |a|!
Since the topology on E' can be defined by the seminorms e +— sup..cy | (e,€’) | as V runs
through the equicontinuous subsets of E’, we get F(E) = &)(X; E) as topological vector
spaces.
Now let E be any complete locally convex space.
For any continuous seminorm p on E let E, be the Banach space defined as the
completion of E/p~!(0) equipped with the norm e + p~*(0) — p(e). For any continuous
seminorms p, q, such that pointwise p > ¢, we may extend the maps e — e + p~*(0) —

e+ ¢ 1(0) to continuous surjective maps
jp jq,p
E— E, — L.
We use [61], Ch. I, 5.4], which states that the map

E—>H ce (e+p1(0)),

is a linear homeomorphism onto the projective limit L ( s Jp.g) i which p and ¢ run

through the continuous seminorms on £. With Lemma |1.2.5] (ii) we get
& (XS E) =~ 1&“ (ED (X; Ep), 1efpq) = L( (Ep): Ledpa)
p
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in which the linear homeomorphism is given by f + (j, o f),. We complete the proof by
pointing out that by the definition of F'(E) we also have F(F) ~ l'&lp(F(Ep),Iejp,q) via
fe (Gpofy o

Now that we have a representation for &5/ (X; E), we will use various limits to represent

the vector valued Denjoy-Carleman classes of Beurling and Roumieu type.

Proposition 2.2.18. Let E be a complete locally convex space, let M be a weight se-
quence, let M be an analytic manifold with K C M, let X € {K,M} and let D C V,(X)

be a frame.
(i) A function f: X — E is in &&VX,E) iff ¢ o f € E2M(X) for all ¢ € E.
(ii) Let Wi :={L | L is a weight sequence, [M]| C (L)} equipped with the partial order

K,
LZ>K & sup — < 00.

keN L
The identities
&5 (% B) =lm GI(XG ) =Jm - lim & (K", E) (22.23)

h>0 h>0 grém, krex

Eoproi%: E) = Im S5M (K B) = hm  fim V(K" ) (2224
heA e prm, K7 cx

Epn (X E) = lim &5(XE) = lim lim  &5(K E) (2.2.25)
LEW[]M] LGW[]W] K’TCCM,K/CX

hold in the sense of topological vector spaces.

(iii) The identity
M (X E) = &M (X E), (2.2.26)

D,proj
1s valid in the sense of vector spaces. In (2.2.26|) the topology on the left-hand side
s finer than the topology on the right-hand side.

If M fulfils then the identity is valid in the sense of topological vector

Spaces.
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(iv) If E is a Banach space, then the equalities

glgM}(X; E) _ @ géM}(K’; E) = 1&11 ]ﬂ@ﬁ%([(', E) (2.2.27)

K'CM, K'CX K'eM, Krcx h>0

hold in the sense of vector spaces.

Proof. (i): Suppose K’ C X is compact. é’l[)M](K ') is Montel as a nuclear Fréchet space
(resp. dual of a nuclear Fréchet space). Furthermore, éa,[jM](K ') is a webbed space by [36]
pp.162-163], since it is a countable projective limit (resp. countable inductive limit) of
Banach spaces. Hence we may apply [36, Satz 10.5], which states that f € é"l[)M](K’; E)
iff o fe éa[[)M](K') for all ¢’ € E’. Thus we also have f € éol[)M](X; E)iffeof € éa[[)M](X)
for all ¢’ € E' by Lemma (ii) and by the isomorphism 6’[[,M] (X;F) ~ é%m (X)e E.

(ii): For each h > 0 we define a weight sequence M(h) by M(h); := Mih~*. With
this definition we have &M (X) = &5 ) (X) and

&5 (X) = 1im &5 (%)

h>0
Ehpy(X) = lim  EHM(X).
heA | hpo=1

Moreover, M (h) 2 M(h') € W for h,h' > 0 with A’ < h. For K 2 L the embedding

EE(X) 5 &K (X) is well-defined and continuous. This results in

M :
Eppre(X) = lim E5(X).
LEW(]M)
Similarly, we have hM 2 h'M € Wy for h,h' € A with b 2 1/ and hg = hy = 1.
If M < L, then L 2 hM for some h € A by Lemma [2.2.12 Thus the embedding
é“%{oj (X) RN &E(X) is well-defined and continuous for each L € Wy, This gives us

finally
ES oy (X) = lim E5(X).

D,proj
LEW{IW}

The rest follows directly from the definition of éal()M) (X) resp. 5135\;}0]- (X), Lemmal/|1.2.5((ii)

and the isomorphism .Z (X; F) ~ #(X) ¢ E for F € {é"[(,M), gjj{){\gr}oj}.
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(iii): By definition we have éaéM} (X;F) ~ @@i{,M}(X) e E. From Lemma [2.2.13 we know
that

T:=|&Mx) 5 @@W(X)} (2.2.28)
heA
is continuous and bijective. Hence

Telg: 5" (X E) = lm &5 (X; B)
heA
is continuous and injective. For any f € (,cn EAM (X E) and for any € € E’ the
scalar valued function € o f is in ()., &AM (X) and thus in é"éM} (X). As a consequence,
f e 5[{)M}(X; E) according to (i) and hence Te I is bijective.

If M fulfils and X = M, then Tisa homeomorphism by Lemma [2.2.13] hence

[ e 1g is a homeomorphism.

(iv): Since éaéM}(X; E) = I'&HK'EM,K'CX é‘%M}(K’;E) via Lemma [1.2.5] it is enough

to consider solely a single K’ C M. We proved in (iii) that éalgM}(K ': ) coincides with
Nher EHM(K'; E). For a smooth function f: K’ — E we define the sequence
f

fo_ _ ||D“f($)||E)
c’ = (c = sup sup ————— .
( k>k <x€K/ la|=k Mk k! keNg

a€SdimM
A function f: K’ — E is in (o, &4M(K'; E) iff both f € &(K';E) and for all h € A
the (pointwise) quotient ¢/ /h converges to zero. Similarly, a function f: K’ — E is in
Unso €51 (K'; E) iff both f € &(K'; E) and there is some h > 0 such that clhk 2% 0. By
Lemma[2.2.12|the two statements are equivalent. Hence é"éM}(K’; E)= lim, EM(K', E)

in the sense of vector spaces. O

In special cases, we can regard vector valued analytic functions as ultradifferentiable
functions. This way, the above proposition gives us tools to deal with vector valued

analytic functions as well.

Corollary 2.2.19. Suppose M is an analytic manifold and E is a Banach space. Then
UM, E) is exactly the space of analytic functions from M to E.

Proof. If f: Ml — F is analytic, then ¢’ o f is analytic for each ¢/ € E’. Thus f is an
element of & (M; E) by (i) of Proposition [2.2.18

"We apply the result for égj}(U ; E)) for each analytic chart (¢,U).
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Conversely, if f € &11(M; E), then for each analytic chart (¢, U) and for each compact
K C U there is some h > 0 such that

1h05 f (@) ||
sup sup ————————
S T Jal!
By using the inequality (}) < (ne/k)* we can see that there are constants C, x> 0 such

that |a|!/a! < Cpulel for all a € N$™M™, Hence, the Taylor expansion

O*(foop Y (x
T (foo)(x)

al

(y — )

«

converges for all analytic charts (¢,U) and all x,y € ¢(U) with |z — y| small enough. In

conclusion, f is analytic. O

Next, we will discuss in what way the identity &(M x M) = &(M; & (M')) can be

applied to the Carleman classes of Beurling or Roumieu type.

Proposition 2.2.20. Let Ml and M be analytic manifolds and let M be a weight sequence
with|(MG), Suppose D C V,o(X) and D' C V,(X') are frames. We denote by E the frame
in Vao(X x X') defined by

E=(Dyel,Dyel....1eD},1eDy), .. ).

If [M] has[(PL), then
sl (M x M) = &5 (M; 65" (M)

in the sense of topological vector spaces. If [M] does not have |(PL)| then this identity

still holds in the sense of vector spaces.

Proof. Let N = dimM and N’ = dimM’'. By Lemma [2.1.9] all involved function spaces
are continuously embedded into &(M x M') = &(M; &(M)). Furthermore, it is clear that

E indeed defines an analytic frame on M x M.

Due to [(LC)| and [(MG)| there are C, A > 0 such that

My K Ml < My (B + D! < CAMT M B M I
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for all k,1 € N.

First, we take a look at the Beurling case. Following standard procedure, we start by
considering spaces of functions on K C M and K’ C M and then use projective limits.
Due to Proposition (ii) and the closed graph theorem it is sufficient to show that
for any p > 0 there are h,h’ > 0 such that

EN K 6 (KT)) C (K x K') (2.2.29)
and for any h,h’ > 0 there is a p > 0 with
Ep(K x K') C &(K; &) (K")) . (2.2.30)

For a chosen p > 0 let h = b’ = pu. Due to|(LC)| we have

wp s LEES@yl o [RDEMD) ()l
€SN N (By)EK XK' MlC\ |C“ €SN bESy (2,y)EK XK' M\a| M|b| ‘CL|! |b|!
for any f € &(K x K'). By Proposition [2.2.17| this implies (2.2.29)). For a choice h,h’ > 0
we may use [(MG)|and put p = max{h,n’} - \. Then
hD a h/D ’'b LL‘, E c
sup sup sup (hD) (WD), f(@.9)l _ wp sup (LE)°f (2, )|

aeSx beSys (ey)ekxk Mo Mplal! [0]' 7 7 cesy v @wyerxrr Mg lef!

and consequently ([2.2.30) holds true.

Secondly, we move onto the Roumieu case. We can follow a similar procedure as

above. For any choice h = (hy), = (co- - cp)n, B = (h))n = (¢ -+ €),)n € A we may put

pi= (o Cn)p wWith & = min{c, ¢, }/A. Then p € A and

sup sup sup |D2D;bf(x’ y)l <C sup sup —|ch(x, y)|
a€Sy beSys (zy)K xK' Ml h1b| Mq) My, la|t]b[t — c€Snint (zy)EK XK' Hic| M| ]!

For a chosen p = (), € A we can put h = b’ = p. Then h,h! < u, for all n € Ny and
thus

sup sup M < sup sup  sup |D§D;bf(x,y)|
c€Sn N (2y)EK XK' Hic| M|c| |C|' - a€Sn beSy/ (z,y)EK XK' h|a| h1b| M|a| M|b| |(l|' |b|l

As before this implies

M (K x K') = &M (K601 (K')  and thus

E,proj D,proj D’ proj

M (M x M) = &M (v g5 ()

E,proj D,proj D’ proj
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as topological vector spaces. By Lemma [2.2.13| and Proposition [2.2.18] (iii) we have

EMM x M) = &M (M x M) = &M (v 8 vr)) = a5 v g5 ()

E,proj D,proj D’ ,proj

as vector spaces and, if M fulfils (nQA)|, also as topological vector spaces. O

We will also prove that &M} (X) has the property for a weight sequence M.
In [38] inverse closed subalgebras of Banach algebras of a ultradifferentiable type were
discussed. These algebras were constructed with the help of a family of commutating
derivations. However, the proof for [38, Theorem 16] does not rely on this commutativity,
which suits us very well. Nevertheless, we will reiterate and slightly adjust the proof of

[38, Theorem 16], since our situation is slightly different.

Proposition 2.2.21. Suppose M s a weight sequence, M is an analytic manifold, K
is reqular compact in M, X € {K,M} and D C V,(X) is a frame. Then éalgM}(X) and
&M (X) have the property |(IC),

D,proj

Proof. 1t is enough to test for [(IC)| by using a Banach algebra A with norm p. Both
é‘gM} (X;A) and gg?gjoj (X; A) are algebras with respect to the pointwise multiplication

due to Proposition [2.1.10] and Proposition [2.2.15] Due to Proposition [2.2.18| we have

65 06A) = S531,06.4) = i Iy S35 (2231
KcxX h>0
K'CM

in the sense of vector spaces.

Let us put

for f € &£(X;A).

Let now f € &(X; A) such that f(z) € A* and g(z) := f(z)~! for all z € X. Then by
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Lemma [2.1.15] we have g € &(X; A) and
|al

p(Dg(z)) < ) ZN pg(x))™ " p(D* f (@) -~ p(D" f(x))

M= (09) ;€SN m(a)

la

< plg@)™ ()™ D> jat |- a™ LRI Mg -+ - Mgy
m=1 (a9));€8x,m(a)
a|
=Y plg@)™ (@)™ > Jalt AN, - M,
m=1 (kj);EN™,
k1+...+km:|a\

for any x € X in which we used
, — , , |a|!
#<(a’); € Snm(a) | kj=|a’| forj=1,... mp =———
’ kyle k!
for k£ € N™ such that |k| = |a|. Since M fulfils |(LC)| it also fulfils [(AI)l Thus
1/j

My, - M, <Cll My, where C:= sup Jl/k‘ < 00.
j<k, jkeN M

for ky + -+ + k,, = |a|. Hence

|al

p(D%g(x)) <> plg(@)™pu(S)@)™ D B Mg al!

(kj)jGNm:
k1+...+k3m:‘a|
|al
al —1
= WOl Mg [a]! Y p(g(a)™ ™ pu(f)(2)™ (|m| - 1>

m=1

— p(g(2))> pu(f) () [RC (p(g(2)) + pr(F)(@)]"“ My |a]!.

Now suppose f [g€ &M (K'; A), then p(g(—)) and p,(f)(—) are bounded on K’. With
(2.2.31)) we get g [k € g’gM}(K’; A) in this case. Hence é’éM}(X) and &M (X) have the

D,proj

property |(IC)}

2.3 Function spaces on polynomial manifolds

We will need polynomial manifolds for the Pedersen quantization, a generalization of the

Weyl quantization, and for the generalizations of the spaces . (R"™; E) and O\ (R"™; E),
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see [65, B4]. Tt is convenient to have one notion of rapidly decreasing and slowly increasing
functions that can be applied to simply connected nilpotent Lie groups, Lie algebras and
coadjoint orbits in a consistent way. Furthermore, this will lead to a notion of rapidly
decreasing and slowly increasing function on R* = R\ {0}, which we will use frequently
in Chapter [3

The definition given below corresponds to the polynomial manifolds used by Pedersen

in [56], the only difference being that we also admit non connected manifolds.

Definition 2.3.1. Suppose M is an n-dimensional smooth manifold with finitely many
connected components. An atlas A of M will be called a polynomial atlas iff each two

charts (6, U), (¢, V) € A fulfil
(i) U, V are connected components of M and ¢(U) = (V) = R",
(ii) and if U =V, then ¢ oo™ is a polynomial function on R™.

Two polynomial atlases A, A’ are said to be equivalent iff AU A’ is a polynomial atlas. A
polynomial structure is an equivalence class of polynomaial atlases.
Together with a polynomial structure M will be called a polynomial manifold. A chart

of a polynomial structure of M will be called a polynomial chart on M.

2.3.1 Polynomials, rapidly decreasing and slowly increasing func-

tions

By using polynomial charts, we may generalize polynomials and definitions that depend
on the set of polynomials.

Suppose E is a vector space. We denote by Z(R"™) (resp. Z(R™; E)) the vector space
T anxo‘ ke Ny, ¢, € C (resp. ¢, € E) for a € Nj

of polynomial functions from R™ to C (resp. to F) and by Diff »(R") the set of differential

operators with polynomial coefficients on R™.
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Now suppose F is a locally convex space. The space of E-valued rapidly decreasing
functions, . (R"; F), is the space of functions ¢ € &(R"; E) such that Py is bounded in
E for each P € Diff »(R"). Its topology is defined by the seminorms

@ — sup p(Pp(z)) for P € Diff »(R") and continuous seminorms p on E.
TzeR™

Note that . (R") := . (R"; C) is a € (R™)-function space and the above is consistent with
Definition [2.1.1} .#(R") is a nuclear Fréchet space [66, Corollary on p.530], thus . (R")
is reflexive and its dual ./(R") := (R") = (R"™)’, is nuclear as well. Furthermore,
the reflexivity of .#(R") implies that the equicontinuous subsets of ./(R")! ~ . (R")
correspond to the bounded subsets of .7 (R").

The space of slowly increasing functions is the ' (R™)-function space Oy (R™), defined

as the set of smooth functions f such that
[o = [ ol e L(Z(RY))

equipped with the subspace topology in £(.(R")). Since L(.#(R")) is nuclear, &y(R™)

is nuclear as well by [66, Proposition 50.1]. We have the canonical linear homeomorphisms

LSRR E= SR e SR e B S (R) e S (RS E) = Lo (R S (R E))
~ L(S(R"); S (R E)),

for any locally convex space E. Hence, we may identify Oy\(R"; E) with a subspace of
L(Z(R"); Z(R™; E)) equipped with the corresponding subspace topology. Evaluating the
above homeomorphisms shows that &y (R"; E') is precisely the space of all f € &(R™; E)
such that

o= frpl € LI R); SR E)).

Definition 2.3.2. Suppose M, M are polynomial manifolds and E is a complete locally
CONVET Space.
A function f: M — N will be called polynomial resp. slowly increasing, iff f is con-

tinuous and o fo ¢~ is a polynomial resp. slowly increasing for any pair of polynomial
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charts (¢,U) on M and (¢, V') on M with f(U) C V. The function f will be called poly-
nomial resp. tempered diffeomorphism, iff f is bijective and both f and f=' are polynomial

resp. slowly increasing.
For F € {Z,., O\ } we define
FM):={f: M - E|fop ' € F(R") for all polynomial charts ¢} .
We equip . (M E) resp. Oy (M E) with the initial topology with respect to the maps
f = foo linto S(R™; E) resp. O(R™; E) for polynomial charts ¢ on M.
The set of polynomial differential operators on M is defined to be

— P(p o ¢)o ¢t € Diff »(R"
Dit (1) i= { P e ooy : 0 PP 9)e o] € Do (R
for all polynomial charts ¢
Identical to the euclidean case, .(M; E) is the space of all f € &(M; E) such that the

function Pf has bounded image in E for any P € Diff »(M) equipped with the seminorms
f = p(Pf) for continuous seminorms p on E and P € Diff »(M).
Similarly, Oy (M E) is the space of all f € & (M E) such that
o= [yl e L& (M); 7 (M E))

equipped with the subspace topology in £(.(M); . (M; E)).

We may construct new polynomial manifolds by disjoint unions MUM' of polynomial
manifolds M, M’ with the same dimension and products M x M of arbitrary polynomial
manifolds M, M’. The corresponding polynomial structure on MUM' is induced by the
polynomial charts on Ml and M’. On M x M we choose the canonical polynomial structure
defined by combining charts ¢ on M and ¢ on N to polynomial charts ¢ x ¢ on M x N.
Directly from our definition and well known facts from the euclidean case [66, Theorem

51.6] follows that
SM) @S (M)~ SMIM) and S (M)®.7 (M)~ .7 (M x M) (2.3.32)
via the linear homeomorphisms

f(z), xeM
f@®g— h:h(x) = and v [Mx M > (z,2") — v(z,2') € C].

g(x), zeM
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The identities also hold if we exchange .7 with Oy [62, p. 115[F|

We will call a Radon measure v on R" tempered, iff it is mutually absolutely continuous
to the Lebesgue measure dz and the Radon-Nikodym derivatives % and % are slowly
increasing almost everywhere. A Radon measure on a polynomial manifold will be called

tempered if each pushforward by a polynomial chart is tempered.

Definition 2.3.3. Suppose M is a polynomial manifold and v a tempered measure on M.

Then G(M, v) is defined to be the Gelfand triple
S (M) — L*(M,v) — .7'(M),
equipped with the real structure defined by the usual complex conjugation ¢ — .

If f: My — M is a tempered diffeomorphism, then for each ¢ € /(M) the pull back
0rd(p) := ¢(p o f71) is well-defined and induces a Gelfand triple isomorphism

G(M,v) — G(My,vo fh).

Indeed, we defined tempered measures and polynomial manifolds in such a way that
we have a very simple Gelfand-Triple isomorphism

k

G(M,v) ~ @ G(R", dx),

j=1

given by ([2.3.32)), pullbacks and multiplications with slowly increasing functions, provided
that Ml is an n-dimensional polynomial manifold with k& connected components. Moreover,
for any two polynomial manifolds M and M’ with tempered measures v and v/ we have a

canonical Gelfand triple isomorphism
GM,v)@GM', V) ~GM x M',v® ')

that is an extension of the linear homeomorphism in ([2.3.32)).

8In this reference the topology of @i(R™) is described by the seminorms f +— |gd®f| for a« € Np
and g € (R™). Both approaches result in the same topology, because any bounded set B C #(R") is
pointwise bounded by some g € Z(R™).
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The most basic examples are given by vector resp. affine spaces, whose polynomial
charts are given by the linear resp. affine charts. This means that we may and will consider
Lie algebras as polynomial manifolds with respect to the linear charts. The following two

examples are the reason for the introduction of polynomial manifolds in [56].

Definition 2.3.4. Suppose G is a Lie group and g is its Lie algebra. The adjoint repre-
sentation of G on g will be denoted by Adg and the adjoint representation of g on itself
by ad, y = [z,y], in which [—,—] is the Lie bracket on g.

G and g are called nilpotent iff there is some n € N such that
{ad,, ---ad,, , @, | 21,..., 2, € g} = {0}.

The coadjoint representation of G on the dual g’ will be denoted by Cag(x) := Ad(x™')'.
A coadjoint orbit of G is a set of the form Q = Cag(G)E for some € € g.

For a simply connected, connected Lie group G the exponential map expg is a diffeo-

morphism expg: g — G [16, Theorem 1.2.1]. Thus

gxg—g:(r,y) — expél(eXpG x)(expg y)

is polynomial.
In this case we will also consider G as a polynomial manifold with respect to the chart

expg. This automatically implies the following corollary.

Corollary 2.3.5. For any simply connected, connected nilpotent Lie group G the maps

GxG—G: (z,y)—~vy and G—>G:xra!

are polynomial.

Furthermore, by [56] each coadjoint orbit 2 = Cag(G)E of a simply connected, con-
nected nilpotent Lie group G can be equipped with a canonical polynomial structure. We

will introduce and use this structure in Chapter [3]
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2.3.2 Functions and distributions on the polynomial manifold R*

Next to nilpotent Lie groups and coadjoint orbits to nilpotent Lie groups, the two most
important examples of polynomial manifolds will be the half lines R, = (0,00) and

R_ = (—00,0). Here the polynomial structure is induced by the chart o: XA — |A| —1/|A|.
On R, the inverse reads o~ '(y) = (y + /v +4)/2.

Lemma 2.3.6. If we extend each function in . (Ry) by zero to the whole real line, then
L (Ry)={pe ZR)| =0 onRT}
and #(Ry) carries the subspace topology with respect to .7 (R).

Proof. We will prove the statement for the R, case, for R_ the proof is analogous. Since

o is a polynomial diffeomorphism from R, to R, the map
Yoo

is a linear homeomorphism between Z(R) and Z(R) resp. between .#(R) and .7(R,.).
Hence Z(R.) is dense in .’(R). Let us define

4 (R) ={¢ Ir, | ¢ € L(R) with p =0on R},

equipped with the subspace topology with respect to .#(R). Let f: R — [0, 1] be smooth
such that supp f C Ry and f =1 on [1,00). For each ¢ € ., (R) and o € Ny we have
0%p(x) = o(xN) for x — 0 of arbitrary high order N € N. Hence for each «, 3 € Ny there

are some C7,Cy > 0 and N > «a with

sup 2797 (f(n ) p(x) = p(@)| < C1 Y nTsup|d’f(y)| sup @]9 ()]

z€R L 0<~<a yeR 0<z<l/n
—_B—N n—o
<Gy E n AN 2% 0,
0<y<a

By employing the usual cut-off functions, we realize that Z(R,) is dense in ., (R) as
well. Therefore, it is sufficient to show that the topologies of .7 (R, ) and ., (R) coincide

on Z(R,). The .(R,)-topology is induced by seminorms of the form

P(Ry) = R: o= sup |[A*Blo(z)|, k,j €N,

>0
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where Ay := (O(p oo™ ') oo and By := (m(poo!)) oo =o-p. First of all, we have

132

Ap(w) = =7 0x0(x) = 0(2) - Oop(2), ¢ € D(Ry),w € Ry

The rational function 7 and all of its derivatives are bounded. Hence A can be extended
to an operator in L(.7;(R)).

We show that B has an extension in £(.%, (R)). For this purpose it is enough to prove
that = € £(7,(R)), where -p(z) = ¢(z)/z. First of all, for each ¢ € Z(R) and each

z>1

1 - n! . .
kEan/ — < k—j—1|, (n—j)
o] <30 e e )

n !

(=)

sup [yF o™ (y)],
)

for arbitrary k,n € Ny. Now we only need to bound the left-hand side for 0 < = < 1.
For k > n we can use roughly the same inequality as above. We assume now n > k. For

0<xz<1landeachmeN

@)z = [ ™0 dtl < s )L

Hence
n - n! —j— n—j
|2"0; (= (x))| < (n_j),wk T ()]
j=0 ’
~_nl )
<> Tk | ()] (2.3.33)
=0 '
. 1 (2n+1-7)
< sup | W),

ARSI

J
forall0 <z <1,n<kand ¢ € Z(R;). In conclusion, = € £L(.7;(R)) and subsequently
also B € L(.7(R)). Due to the continuity of A and B we arrive at

4 (R) = F(Ry),

i.e. the ., (R)-topology is finer than the .%(R )-topology.
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For the reverse embedding we will transport our situation to the whole real line by

prrpoat

which is an isomorphism Z(R,) — Z(R) and .Y (R,) — #(R). We denote the image of
< (R) by this map by .#4(R) and equip it with the transported .7, (R)-topology. Then

Z5(R) is a space of smooth functions on R with
P2(R) = 75(R) = L (R),

where both embeddings are dense. The topology in . (R) is induced by seminorms of
the form

Fs(R) = R: o = sup |[C*Elp(y)|, k,j € Ny,

yER

1

where C'p := (0(po0c))oo ™t and Ep := (m(poc))oo~t =o' p. The operator C can

be rewritten as

Co(y) (1 + ’
) =

(Y + 'y +4
Because 07,1 € O\(R), both C and E have extensions in £(.(R)). Thus .74(R) =
Z(R) and finally .7 (R) = .7(R,). O

)2)@'@) L U(y)- P, € TRy R

The most important property of .(R.) (apart from being a closed subspace of .7 (R))

is the continuity of the multiplication operator f — |—|" f.
Corollary 2.3.7. The map x — |x|” is in Om(Ry) for each v € R.

Proof. The continuity of % was already shown in the proof of the last lemma with in-
equalities (2.3.33)). Of course my(x) := xp(x) defines a continuous operator on . (Ry)
as well. The derivatives of x — |z|" are bounded by terms of the form z +— ¥ for k € Z,

which concludes the proof. n

We now find a characterisation for the functions in &y (R x M[; E'). This space will be
of importance later on, when we examine the Fourier image of . (G) in further detail, as

well as when we want to discuss the integral formula for the Kohn-Nirenberg quantization.
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Corollary 2.3.8. Let M be a polynomial manifold. A smooth function f: Ry x M — E
is in Op(Ry x M E), iff for each k € Ny, each P € Diff (M) and each continuous

seminorm p on E there exist an l € N and a ¢ € (M) such that
POYPLf(N @) < (14 A"+ [A)g(2).

Proof. We know that Oy (R, x M; E) is the space of all smooth functions f on R, such
that
[o = fro] € LIS (Ry x M), #(Ry x M; E)).

Once we prove the statement for R, , the other statement follows at once, since R_ is
isomorphic to Ry by z — —z. Furthermore, it is enough to consider M = R", as the
more general case follows by simply using polynomial coordinate charts.

Suppose f € Oy(Ry x R"; E). Since f induces a continuous multiplication operator
and since .7’ (R) is a subspace of .Z(R), for each k € Ny, a € N} and each continuous

seminorm p on E, there are some m € N and C' > 0 with

sup  p(AX05 (F (X, 2)p(A, 2)))

AeRy zEM

<Cmax  sup (14 [A™)(1+ |z[*)"030)0 (A, z),
IBlI<m AeR, zeM

for all ¢ € S (Ry x R"). We choose ¢ € (R, x R"), such that ¢ = 1 on some
neighbourhood around (A, z) = (1,0), and define ¢, ,(z) := p(za™',z —y) for a > 0,
y € R". Then

p<a(k’a)f(a7 y)) = P(alfa?(f()v x)@a,y()" 3:'))) ‘ (na)=(

<Cmax  sup (L4 AL+ [2]2)"]040%00, (0 )

IBl1<m AeR, ,zeR™

= C max sup a ‘(14 |a\™)(1+ |z + y|*)™0,07 (N, z)|
IBlI<m \eR, zeRn

a,y)

<C(1+a™+a™™)(L+ [y
where k, o, m and C' are as above. Naturally this implies that for each k£ € Ny, each

differential operator P € Diff »(R™) and each continuous seminorm p on E, there exists

an ! € N and a ¢ € Z(R") such that
PP F( ) < (14 A+ A Dgle). (2.3.34)
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For the converse implication let f: R, x R™ — C be any smooth function such that for

p, k and P we find m and ¢ for the inequality (2.3.34)). Then for arbitrary ¢ € . (R x M),

sup (14 [AF)(1+ [2[*)"p(0°(f ¢) (A, 7))

AER 4, zER™
<O sup  (LHN)(L+ )Y 107 (N @) 7N )
AER 4, zER™ b<a
< O sup (L4 ) (L4 A X Y 10700 ().
zeR B<ar
Since % is a continuous operator on .’(R, ), the last line defines a continuous seminorm
on .(Ry x R™). Thus the operator ¢ — f - ¢ is continuous. O

From the polynomial structures on R, and R_ we construct the polynomial manifold
R* =Ry UR_. Its Schwartz space . (R*) = . (Ry) @ . (R_) can be seen as the closed
subspace of . (R) of functions f, which vanish to infinite order in 0, i.e. 9*f(0) = 0 for
all k£ € Ny. The dual space and the Fourier image of .(R*) will play a significant role

in the coming discussion. The first statement requires no further proof.

Lemma 2.3.9. The image of . (R*) under the Fourier transform on R, Fg, is .7(R),
which is defined to be the subspace of Schwartz functions f with vanishing moments of
infinite order, i.e.

/Rf(x)p(x) dz =0, forall pe ZR).

The next lemma is less obvious. It is an extension of the well-known fact that .#/(R),
as a vector space, can be identified with the quotient .’ (R)/Z(R) e.g. [32, Proposition
1.1.3].

Lemma 2.3.10. Let E be a nuclear Fréchet space and &J(R) the space of distributions
on R with support in {0}. Then &(R) @ E' is a closed subspace of ' (R) ® E' and

(SR)®E) ~ (S (R)@ E)/(&(R) @ E) .

Proof. First, we will prove that Z := &(R)® E' is a closed subspace of X' ~.7"(R) ® E',
where X := . (R)® E. The family (0%6y)ren, is a basis for &](R) where dy is the delta
distribution [66, Theorem 24.6]. We use Lemma on the sequence Py of projections
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onto the subspaces spanned by {d,...,0"d} and conclude that Z is sequentially dense
in its closure Z. Furthermore, we realize that for any ¢ € Z there is a sequence (e},) C E’

such that N
o= fim ox = im 3 (0400,

Because X is a Fréchet space and Z C X', we can apply the Banach-Steinhaus Theorem.
Hence, there exist a continuous seminorm ¢ on £ and M € N such that
[on(f)] < %xg@%(aﬁﬂx»
for all functions f € X = .(R)® E and all N € N.
Next let us assume that there is one [ > M such that €] # 0. Let us define the
sequence of Schwartz functions f,,,(z) := e™®(z)e/m'™, where 1 is a rapidly decreasing

function equal to one near zero and e € E with ¢j(e) = 1. We arrive at

k

5 U

l
m—oo
k=0

Q.

|01(fm)] =

But also

M k
SUup max sup(x 8 m\ T < o0,
mGII:I k<M x€£< > q< x-f ( ))

which is a contradiction. Hence ¢ € Z, i.e. ¢ is in the finite span of the 9¥¢ and e}
Now let Y := Z° be the polar of Z. Because X is reflexive, we may identify ¥ C X.
Since Z is a closed subspace, we also have Y° = Z°° = Z. Since 0%, ® €/ € Z for all

k €Ny, ¢ € E' and
(%00 @ ¢)(p) = ((=1)*0"p(0),¢'), for ¢ e X =S (R;E),

it is apparent that Y = . (R*) ® E.

Since F is a nuclear Fréchet space, X is a nuclear Fréchet space. That also means that
X is an (FS) space, i.e. it is linearly homeomorphic to a projective limit lé'rllk_m (X, uk ;)
of a sequence of Banach spaces (X}); with compact maps wuy j: X; — X}, [61, Chapter 3,
Corollary 3 to Theorem 7.3]. Note that the maps wuy j4+1: X1 — X are weakly compact
as well. This enables us to use Theorem 13 of [39]. The theorem states that in our

situation — Y is closed and X is an (FS) space — we have Y’ ~ X'/Y™. O
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By using the euclidean Fourier transform in combination with the last lemma, we get

the following corollary.

Corollary 2.3.11. Let E be a nuclear Fréchet space, then
(Z(R)QE) ~ (S R)QE)/(P(R)® E')

and P(R) @ E' is closed in .7 (R) & E'.

Furthermore, this characterization of the dual spaces of .7 (R*)® E and .7.(R) ® E
by quotient spaces enables us to find subspaces of .#/(R) ® E’ which are embedded into
these dual spaces. Suppose F'is a Banach space such that there is a continuous embedding
E — F with dense range. Then we may see that the Lebesgue-Bochner spaces LP(R; F”)
are embedded both into .%/(R) ® E’ and into . (R*) & E’ for p € (1,00). Here we define
the distribution corresponding to f € LP(R; F') by

Ty(o) == / (f(@), p(x)) dz, ¢ € S(R; E),

where (-,-) denotes the dual pairing on F’ x F. Note that f +— T is indeed an injective
map into ./(R; E'), since f = 0 almost everywhere iff T4(¢ ® e) = 0 for all ¢ € ./(R)
and all e € E.

Nevertheless, we can make a much more general claim. For this purpose we define the

following subspaces of .%"(R) & E'.
7! / ! A ! |#|—o00
B R E) ={pec S R)SE |Yoeomeor ¢(o(—+1)) — 0}
BRE) ={p€ S R)OE |Yoermar olp(\" - (—))) 225 0}

Lemma 2.3.12. Let F' be a Banach space as described above. The Lebesgue-Bochner
space LP(R; F') is a subspace of B'(R; E') for p € [1,00) and a subspace of @’(R; E') for
p € [1, 00| with respect to the embedding f — T}.

Proof. Let f € LP(R; F') and let ¢ € .(R) ® E then

[z (1 +2°%) ¢(2)] € LY(R; F)
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also holds true for each ¢ € [1,00| with 1 = 1/p + 1/q. First, let us suppose p € [1, 00),

then for some C' > 0 independent of z € R

et =0l < [ ety —oplay < o ([ AP0 q,)"

Now let € > 0 be arbitrary and let R > 0 be big enough such that

/ 1B dy <,

{yeR: |y|>R}

With this inequality we get

1 ()% z 1F )2, S
(/R(lJr(:c_y)a)pdy) <|e+ / (1+(x—y)2)pdy RN

{yeR: |y|<R}

B =

Hence Ty € #'(R; E'), because € > 0 can be arbitrarily small.

Suppose p = 1. Applying the same calculation as before, we get

To(p(-/N) < C | e+ / %dy 20 G

{yeR: |y|<R}
Thus Ty € @’(R;E’). Next, suppose p = (1,00] and 1/p+1/q = 1. In that case we have

1 A0
T3 (/) < Av (1 f (@) ooy 0l pas ) = 0.

Hence also T € P (R; E') for this case. O

Note that the distributions in %’ (R; E') can have any form in a bounded region,
whereas distributions in %’ (R; E’) can have any form away from zero, as long as they are
tempered.

Proposition 2.3.13. The quotient maps
S R)QE — L' (RS E,
S R)SE - L (R)QE,
restrict to embeddings
B (R, E) = S (R*)&F,
B R, E) — S (R)& E'
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Proof. A short calculation yields
BR,EVNEMR)@E ={0} =B R, E)NPR)® E.

Combined with the above lemma and corollary, this already concludes the proof. O]

2.4 Smooth and ultradifferentiable vectors of repre-
sentations

In the following section we always assume that G is a Lie group. Thus G is also an

analytic manifold.

Definition 2.4.1. A tuple (w, E) of a locally convex space E and a group homomorphism
7:G— L(E): z— 7(x)

will be called a locally convex representation.

A locally convex representation (w, E) is called
(i) strongly continuous iff 1: G — L (E) is continuous,

(i) locally equicontinuous iff for each compact K C G the set of operators mw(K) is

equicontinuous and
(iii) admissible iff it is locally equicontinuous and strongly continuous.

Furthermore, if m is a unitary representation, we will always denote the corresponding

representation Hilbert space by H..

Automatically, for an admissible representation (7, ), the map
7:G— L(E)

is continuous [36, Satz 1.4]. Moreover, if (7, F') is a locally convex representation, E is
barrelled and 7: G — L,(FE) is continuous, then (m, E) is locally equicontinuous by the

Banach-Steinhaus Theorem [66, Theorem 33.1].
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2.4.1 Vectors associated to ¢ (G)-function spaces

If (m, F) is a locally convex representation on a Lie group G, a vector e € F is called

differentiable (resp. smooth, resp. analytic) if the map
G— E:xzw— 7(x)e

is differentiable (resp. smooth, resp. analytic). Analogously, a vector e € F is called ultra-
differentiable if the above map is ultradifferentiable. The following definition introduces

a generalization of this concept and equips the vectors of a given type with a topology.

Definition 2.4.2. Suppose (7, E) is a locally convex representation and F(G) a €(G)-

function space. We will define the subspace
F(n) ={e€e FE|n(-)ee F(G;E)~F(G)e E}
and equip it with the initial topology with respect to the map
o7 F(n) = F(G)e E where (®7e)(x,€) = (n(zx)e,€) .

If F is a linear subspace of E equipped with any locally convexr topology such that
T(G)F ={n(x)f |2 € G, fe F} CF,ie F ism-invariant, then we will denote by

mlp: G = L(F): z— n(x) [
the subrepresentation of m on F.

By definition 7| is a locally convex representation for a m-invariant subspace F' C E
equipped with some locally convex topology.

The left translation resp. right translation on ¢’ (G) defined by

L(z)f(y) :== f(z7'y) resp. R(z)f(y) = f(yx) (2.4.35)

for all f € €(G) and =,y € G will be particularly important. If p is some biinvariant
Haar measure on G, we will also use the left resp. right regular representation on L?(G, )
defined by

Ly(x)f(y) == f(z7y) resp.  Ro(x)f(y) == flyx)
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for all f € L*(G, ), * € G and for p-almost all y € G.
We start by introducing a general theory for locally convex representations, we will

later need for the discussion of spaces of ultradifferentiable vectors 5’[[)M] ().

Lemma 2.4.3. Suppose (7, E) and (o, F) are locally convex representations and suppose

F(G), 9(G) and A (G) are €(G)-function spaces. Then the following holds true.

(1) If (m, E) is locally equicontinuous, then € () carries the subspace topology in E.
(7, E) is strongly continuous iff € (w) = E in the sense of vector spaces.

(m, E) is admissible iff € (w) = E in the sense of topological vector spaces.

(i) melp: o — w(x)elp defines a locally convex representation on Ee F. If 7 is locally

equicontinuous (resp. admissible), then so is we lp.

(iii) If #(G) is R-invariant, then 7} z ) is a well-defined locally convex representation.

If R 3 1s locally equicontinuous (resp. admissible), then so is T2 (x)-

(iv) IfT € L(E; F) such that Tw(x) = o(x)T forallx € G, thenT [;Ege L(F(n);.F(0))
1s well-defined.

(v) Suppose F(G), 9(G) and H(G) are L-invariant and T € L(F(G);9(G)) such
that T L(z) = L(z)T for all x € G. Then there is a unique operator w(T) €
L(F(7);9(n)) with ®/7(T) = (T e 1p)®7. If S € L(Y(G); #(G) is another

L-invariant operator, then w(S)n(T) = n(ST).

Proof. (1): For arbitrary locally convex representations (7, E') we have € (7) C E and

the topology on €'(m) is defined by the seminorms

pK: e — sup p(o(x)e) for compact K C G and continuous seminorms p on FE.
zeK

Hence %(m) is always equipped with a topology stricter than the subspace topology with
respect to E. If 7 is locally equicontinuous, then for each compact K the seminorm pg
is clearly continuous on E. So in this case €’(m) carries the subspace topology.

We have € (7) = E as linear spaces if and only if the map 7(—)e: G — FE is continuous

for each e € F.
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Suppose € (7) and E coincide as linear spaces. Then @ (7) = E as topological vector
spaces iff px is a continuous seminorm on E for each continuous seminorm p on F and
each compact ' C G. This is true by definition iff {w(x) | z € K} is equicontinuous on
E for each compact K C G.

(ii): Since (7(z)elr)(m(y)elr) = m(xy) elp, melp is a locally convex representation.
Let K C G be compact. We use the identification E e F' ~ L_(F!; E). This way 7(x) el
acts on L.(F/;E), by T — m(x) oT. Hence (7 e Ir)(K) is equicontinuous if m(K) is
equicontinuous. By using a suitable continuous embedding E — L.(F; E), we can see
that the converse is true as well. So 7 ¢ Ir is locally equicontinuous iff 7 is locally
equicontinuous.

Next we will move on to strong continuity. First of all, the map
LAE)—= LAE): T—T

is well-defined and injective. Since 7" maps equicontinuous sets to equicontinuous sets
we have T" € L((E!).) for any T' € L(E). For any equicontinuous V' C E’ there is some
continuous seminorm p on E such that for any absolutely convex compact set C' C F

sup sup | (e, T'¢’) | < supp(T'e) = sup sup| (e, T} |,
e'eV ecC ecC e'eW eeC

in which W = (p~%([0,1])) is equicontinuous. Thus the map L.(E) 3> T — T" € L.(E!)
is a linear homeomorphism onto its image. It is in fact a linear homeomorphism, since
for each S € L(E!) the dual operator fulfils S" € L.((E.).) ~ L.(E) and consequently 7"
is identified with 7" for T' € L(E).

If 7 is locally equicontinuous and strongly continuous, then 7(y) “=% 7(z) in Lo(E),
hence m(y) Y% 7(z) in L.(E.). Tt follows that for any equicontinuous sets A C E',
B C F' and any u € F e F, we get

oo |(m(x) —7(y)) e Lpule’, f)] = oo [u((w(x) = m(y)e', f)] =0,
since u(—, B) is equicontinuous on E’. In other words melp: G — L (E<F) is continuous.

(iii): We have ®%r(z)e = (R(z) e Ig)®%e for all e € E. If #(G) is R-invariant, then
PY(E)N.Z(G) e E (seen as a subspace of €(G) ¢ F) is Re Ig-invariant. Since ®7 is a
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linear homeomorphism onto its image in .% (G) e E and ®7 (F (7)) = ®(E)N.#(G) < E,
this also implies that | z(.) is a locally convex representation.

If additionally the restriction Rz ) is a locally equicontinuous (resp. admissible)
representation, then (R |z ) € Ig is a locally equicontinuous (resp. admissible) repre-
sentation on .7 (G) ¢ £ by (ii). Analogous to the argumentation above, 7 7 is locally
equicontinuous (resp. admissible), because ®7 7 (z)e = (R(z) € )@ e for all e € .F ()
and ®7 is a homeomorphism onto its image.

(iv): This follows directly with Iz eT € L(F(G) e E;.Z(G)e F) and &7 o T =
(Iz@)eT) o 7.

(v): For all e € #(7), ¢ € E' and x € G we have

(

= (T L(z™ ") elg)®7e(1g, ¢)
(Telg)(Iz@e) e m(2))®7 e(1g, €)
(

Ly e m(x))(T elp)®] e(lg, €) .

Hence T e 1p ®7 F (1) C Y9 (nr). Now 7(T) := (&)Y (T £ 15)®7 defines the unique
operator (T) € L(F(G);9(G)) with ®?7(T) = (T € 15)®7, because ®? and &7 are
linear homeomorphisms onto their respective images. In addition to that, 7(S)n(T) =
7(ST) follows from & 7(S)w(T) = (ST) e 1y &7 . O

The following statement is an extension of Lemma (iii).

Lemma 2.4.4. Suppose .7 (G) and 4(G) are € (G)-function spaces such that F(G) =

F(Rlyg)) Then F(m) = F(mlyy) for any locally convex representation .

Proof. Let us denote the representation space to m by E. Furthermore, let G := ¢(7) and
0 :=7lg F(0)is a continuously embedded subspace of .% (7), since G C E is continu-

ously embedded. We will show that this embedding is in fact a linear homeomorphism.

We define

H =T F(r), H =07 F(0) and

L ={ve F(G)e¥9(G)e E | JecpVasyec v(z,y) = m(yz)e}.
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We equip 4, # and £ with with the subspace topologies in .#(G) ¢ E, % (G) e G and
F(G)e¥9(G) e E, respectively. The space .Z is the image of 5 under @i’ig(@) elg, yet
& is also the image of %" under Lz(g) £®?. Since 7, &7, 15 e®? and ¢F, Lo elp are
all homeomorphisms onto their respective images, we get the following scheme of linear

homeomorphism

%ig(ﬁ:) ele

Z

/9(((@) @

and thus .#(7m) = .# (o) as topological vector spaces. O

o

In order to use Lemma and (ii) of Lemma for our spaces of ultradifferen-

tiable functions, we need the following statement.
Lemma 2.4.5. Let M be a weight sequence and k € Nj.

(i) R\ @) resp. Lz is an admissible representation for any basis D C gr resp.

D C g1, and any choice

F(G) € {€"(G),8(G), &5 (G), 85, 6511 (G)}

D,proj

(i) Z(G) = Z(Rlse) for Z(G) € {8(G),65"(G), 850 (G)}, in which we can

D,proj

choose any basis D C gy,.

Proof. (i): The proofs for the right invariant case and the left invariant case work exactly
the same. Hence, it is enough to only prove the right invariant case. Suppose Z(G) is
R-invariant and there exists a set of R-invariant maps P 5 P: #(G) — ¢(G) and a
grouping Q C 2% such that for each f € .Z(G), Q € Q theset {Pf | P € Q} is relatively
compact in €(G) (i.e. bounded and equicontinuous) and the topology of .7 (G) is induced
by the seminorms

f > supsup |Pf(zx)] for compact K C G and @) € Q.
PeQ zeK
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This structure implies at once that Rz is admissible.

Indeed most of the considered spaces are of this type. For €%(G) we use P = Difff: (G),
for £(G) we use P = Diffg(G). In both cases we may take Q@ = {{P} | P € P}.

For éal:()M)(G) we use

P = Uh>07)h = Uh>0{(hD)a/(M‘a|\a|!) ’ a &€ dem(g}

with Q := {P), | h > 0} and for &} (G) we use

D,proj
P = UheAPh = UheA{Da/<h|a|M|a|‘a“) ’ a € Sdim@}

with Q@ :={P, | h € A}

In the case of & (G) we may use P = {M‘ Tan | a € Sgimg} and Q = {P}.

(ii): The case #(G) = &(G) is simpler.

Naturally for f € &(G) the map [(x,y) — R(z)f(y) = f(yz)] is in &(G x G). By
Lemma 2.1.9|we have & (G x G) = &(G; &(G)) as topological vector spaces. This already
implies &(G) = &(R |4 g)) as vector spaces. We only need to show that the topologies
derived from &(G) and &(R |z g)) coincide. The topology on &(R|sg)) is the initial
topology with respect to &(G) > f — PR(P")f € €(G) for P,P’ € Diff;(G). But
R(P') = P, 50 &(G) = &(R|zg)) as topological vector spaces.

Now we we check the case .#(G) € {gg‘“( G), &M (G (G)}. For any P € Diffg(G)

D,proj
there is a unique P € Diff,(G) such that

P, f(yz) = P, f(yx) for all f € &(G).

Since P maps .#(G) continuously into itself and since &(G) = & (Rlg@e) we get
F(G) = F(Rlg)) due to the representation of #(G;&(G)) via the projective lim-

its from Proposition 8 (ii).
O

We have the following general denseness properties for spaces of ultradifferentiable

vectors.
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Lemma 2.4.6. Suppose M is a weight sequence, D C V,(G) is a frame and (7, E) is
an admissible representation of a Lie group G in a Banach space E. Then the following

holds.
(i) &MY (n) is dense in E.

(i) If M fulﬁls then cg’éM)(w) is dense in E.

(iii) Suppose Z (G) is any R-invariant € (G)-function space. If w is a unitary irreducible

representation, then F(w) is either dense in H, or % (mw) = {0}.

Proof. (i): Since M is a weight sequence, we have &11(G) c &M} (G), thus also
& (m) ¢ &M (7). By Corollary , &1H(G) is exactly the space of analytic vectors
to . Due to [55, Theorem 4], the space of analytic vectors &{"(r) is dense in E.

(ii): The property ensures that &1(G) C é"l()M) (G), thus &M (7)) C éa[()M)(ﬂ).
Hence é”[()M)(ﬂ) is dense in FE.

(iii): #(7) is a m-invariant subspace of E by Lemma [2.4.3, Now the rest follows

directly from the irreducibility of . O]

In the following we will also discuss the denseness of ultradifferentiable vectors in

different spaces of differentiable vectors.

Lemma 2.4.7. Suppose G is a Lie group, (w, E) is a locally convex representation of G
on a Banach space E and M is a weight sequence. Furthermore, suppose {1} C [M] and

let D C g1, be a frame. Then
(5"1[7M] (m) s dense in &(w), €"(n), k€ N.

Proof. First of all, with the requirements of the lemma, (E’I[DM](J) is dense in F' by Lemma
for any admissible representation (o, F') on a Banach space F. The space €*(r) is
Fréchet, since it can be identified with a closed subspace of €*(G; E). Take any compact
neighbourhood U of the unit 1g in G. Then for any compact K C G there is some n € G

and z1, ...z, € G with K C {J; z;U. If we put Ck := max; ||7(z;)| c(z), then

max sup ||7(z)m(D)e||p < Cx maxsup ||7(z)7(D)e|| g
lo|<k ze K la|<k zeU
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for any e € ¢*(m) any any frame D C gp,. Hence €*(x) is a Banach space. Thus
é{)gM}(ﬂ-\chk(ﬂ.)) is dense in €% () for any k € Ny, since mlgn(y is admissible by Lemma
2.4.3

Now we will show that éal[)M]<7T) =& I[DM] (mdegr () in the sense of linear spaces.

By Lemma,2.4.5(we have & (R) = @”’,%roj(R¢g(G)), thus &7 (7) = &) (Tdg(m))

D ,proj D,proj D ,proj

for any weight sequence M. Due to the continuous embeddings &(7) — €*(r) — E we
also have &} () =& [M] (Tdegn(m))-

D,proj D,proj

Hence, &), (7) = &5yl oj(Than(n)) is dense in €% (x) for any k € N. Thus &5 ()

D,proj D,proj D,proj

is dense in &(7) = lm, ¢*(m). We complete the proof by using é"[[)M] () = éa[[)M] ()

in the sense of vector spaces.

2.4.2 Examples of spaces of smooth and ultradifferentiable vec-

tors

We will now discuss a few examples of spaces of smooth resp. differentiable vectors. To
be precise, we will take a look at a few common function spaces and show that they may
be seen as certain spaces of differentiable vectors. This perspective will simplify proofs
in Chapter If (m, FE) is a locally equicontinuous and locally convex representation,
then the description of the topologies associated to differentiable and smooth vectors is
especially simple. By using Din(x)e = m(z)m7(D*)e for e € €19(7) and a € Syime, We get

that the topology on €*(7) resp. & () is induced by the seminorms

e — m(P)e, for continouous seminorms p on £ and P € Difff (G) resp. P € Diffy, .

Also, we have a rather easy characterization of ultradifferentiable vectors to admissible

representations.

Lemma 2.4.8. Suppose (E,m) is a complete locally equicontinuous representation on a

Lie group G with Lie algebra g. If D C gy is a frame, M a weight sequence and P the
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set of continuous seminorms on E, then

EM(n) = {e € &(n)

. p(r(D)e)
Vpep: lim ———"~ =0
peP \a\lilzo M|a| |a|‘

aESN

Da
with topology defined by f +— sup p_(ﬂ( )e) ’
aesy Mgl [a]!

i which p runs through all continuous seminorms in P.
Proof. By Proposition [2.2.17, we have

é"é”(G;E)z{feé”(G;E)‘V ep: lim supwzo}

rc
KcCG la| =00 pe K M‘a| ‘a"
aESN

Da
with topology defined by f + sup sup p—( f(z)) 7
acSy eck Mgl |a!

in which K runs through the compact subsets of G and p runs through all continuous
seminorms in P. Since (7, E) is locally equicontinuous, {7 (z) | € K} is equicontinuous.
Since e € &(7) and D°f(x) = w(z)w(D%)e for f =7n(—)e € &(G; E), we get
M L o p(ﬂ'(Da)e) o
éaD (’/T) = {6 € g(ﬂ') ‘ vpep. |<}|1—120W =0

aeSN

Da
with topology defined by e — sup p(r(D)e)
acsy Mg |al!

in which p runs through all p € P.
O

Before considering spaces of ultradifferentiable vectors of Roumieu or Beurling type,
we will show that projective limits of € (G)-function spaces play nicely with our construc-

tion of generalized differentiable vectors.

Lemma 2.4.9. Let (E,7) be a locally convex representation of a Lie group G and let

(A, <) be a directed set. If for each o € A the spaces F(G), Fo(G) are €(G)-function
spaces with F(G) = hm Fuo(G), then



and F () is equipped with the initial topology with respect to the maps F () EN Fol(m).
Since this implies that F (m) is linearly homeomorphic to T&laeA(ﬁa(w),I), we will also

write

Jm Fo(m) = F (7).

acA
Proof. Let us define the locally convex space lim _ .7, (1) = Npea Fa(m) equipped with
the initial topology with respect to the maps L A Fo(m) L Fs(m).
By Lemma [1.2.5| we have

cc F(m) & n(-)ec (| Fu(GiE) & c€ [ Falr) = lim Fu(r).

acA acA acA

Furthermore a net (e;); converges in .# (), iff there is some e € E such that the net
(m(—)e;); converges to m(—)e in every .#,(G; E). By definition, this is equivalent to the
existence of e € E with lim;e; = e in every .#,(m). Hence fm Fo(m) = F(m) as

topological vector spaces. O

The above Lemma also gives a concrete description of the spaces (ga‘l[)M] () via the

following limit description.

Lemma 2.4.10. Suppose M is a weight sequence, D C g1, a basis and (7, E) a locally

equicontinuous and locally convex representation on G. Then the following holds.

M ( &L(
(i) s Lh>0 Shp (T LLEWW) 5 (7)

(i) & ooy (1) = lim, G5 (m) =lim, - Eh(m).

(iii) (gg }( ) = & () in the sense of vector spaces. If M fulfils|(nQA), then this

D,proj

identity holds in the sense of topological vector spaces.
Proof. This is just a consequence of Proposition [2.2.18] [
Our first examples are the L?-Sobolev spaces.

Definition 2.4.11. Let G be an unimodular Lie group with biinvariant Haar measure f.

We define HF(G), for k € Ng U {oo}, to be the locally convex space of k-times weakly
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differentiable f € L*(G, 1) such that Pf € L*(G, ) for all P € Difff(G). The topology
on HF(G) is defined by the seminorms

f=1Pflizp for P € Difff(G).

The spaces HE(G), for k € Ny U {oo}, are defined analogously to the above. We just
exchange Difff (G) with Diffk(G).

It is clear that Hp7: (G) is a space of smooth functions due to the Sobolev embeddings.
For compact Lie groups G it is not necessary to distinguish between left- or right-
invariant Sobolev spaces. In fact, in this case any differential operator P on G can be

written as a linear combination

P=) c,D*=) dsL”
o B

for frames D C g1, L C gr and bounded smooth functions c,, dz. Hence
H{(G) = HE(G) =: H*(G).

Furthermore, by using Sobolev embeddings, we get H*(G) = &(G) as topological vector
spaces for all compact Lie groups G.
Of course, the identity H¥(G) = HE(G) =: H*(G) holds for abelian Lie groups as

well.

Lemma 2.4.12. Let G be an unimodular Lie group with biinvariant Haar measure pu and
let k € Ng. Then
€*(Ly) = HE(G) and €*(Ry) = HF(G),

in which Ry resp. Ly denotes the right resp. left reqular representation of G on L*(G, ).

We also have

&(Ly) = HX(G) and &(Ry) = HX(G).

Proof. Tt is clear that P +— Ly(P) defines a bijection between Difff (G) and Difff(G).

Thus €*(L,) is a closed subspace in HE(G). Since 2(G) C &(L,) is dense in H*(G), we

get €% (Ly) = HE(G). Since this holds for all k € Ny, we also have &(Ly) = HX(G).
The identities €*(Ry) = HF(G) and &(R,) = H{°(G) can be proven analogously. [
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Now we will work on a similar statement for ultradifferentiable vectors of Ly and R,.

Definition 2.4.13. Suppose G is a Lie group, (7, E) is a locally convex representation,
(A, ) is a directed set and F,(G) a collection of €(G)-function spaces with continuous
embeddings F,(G) L F53(G) for a < 5. Then we define the linear space

lim Zo (1) = | ZFalr)

a€A acEA

and equip it with the finest locally convex topology such that all the embeddings

Fs(7) = lim Fo(r)

are continuous.

Note that lim Fo(m) is continuously embedded into €' (7w) and is linearly home-
omorphic to the inductive limit hﬂaeA(‘g@(W)’D‘ In general, lim _ Fo(m) may be a
different space than .% () for #(G) = lim Fuo(G).

Definition 2.4.14. Suppose G is a Lie group with Haar measure p. For any frame
D C Vu(G) and any weight sequence M, we define the spaces

Dll
HY(G) := {f € &(G) | lim % = 0} with topology defined by
g Mo lal
1D fll 2@

— DM ‘= Sup
f ||f||2DM oS M|a\ |CL|'

Similarly, we will define the Sobolev spaces

HR'(G) =lm H)h(G),  HR'(G) :=lim Hy)(G),

h>0 h>0
Hphoi(G) = lim HE(G).
LEW[N[]

As in the differentiable resp. smooth case, we get the following characterization of

these Sobolev spaces.

Lemma 2.4.15. Let G be an unimodular Lie group with biinvariant Haar measure . and
Lie algebra g. Let M be a weight sequence and D C gy, be a frame. We define the frame
of right invariant vector fields D = L(D) and denote by Ry resp. Lo the right resp. left
reqular representation of G on L*(G, ). Then the following holds.
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(i) &5'(Re) = Hp'(G) and &p'(Ly) = H/(G).

(i) &M (Ry) = HYM (@) and &2 _(L,) = HM (G).

D,proj o D,proj D,proj b,proj

(iii) For any frame E C V,(G) we have HM (G) = HEM}(G) in the sense of vector

E,proj

spaces. Moreover, the bounded sets on both sides coincide.

Proof. (i): It is evident that H}(G) C Hp*(G) = &(Ry) and HY(G) C H(G) =
&(Ly). We also have D = Ry(D) and D = Ly(D). Combining the above with Lemma
2.4.8 results in

EN(Ry) = HY(G) and &/(Ly) = HY(G).

(ii): Here we just need to use Lemma [2.4.10
(iii): The space HEM}(G) is continuously embedded into HS") (G). So each set

FE,proj
that is bounded in HEM}(G) is bounded in Hg\ﬁr}oj (G). Conversely, each bounded set
B C Hé%goj(G) is bounded in H}M(G) for some h > 0 by Lemma [2.2.12, Thus B is
bounded in H,E,M}((G) as well. O

Note that either of the spaces é"l[)M] (7) or é"/_l,]f)]roj(ﬂ) are the same space for all frames
D C gp (resp. for all frames D C ggr). This is due to Lemma and the fact that
any pair of left resp. right invariant frames E, D are connected by a constant matrix A
such that £ = AD. Thus for each [M] there is exactly one right invariant and one left
invariant version of each of the Sobolev spaces H [D]\i1r0j<G) and H][:])m(((}).

We already saw that for compact Lie groups the Sobolev spaces HI?/L(G) are just the
space of smooth functions on G. We also have the analogous relation for the ultradiffer-

entiable Sobolev spaces.

Lemma 2.4.16. Suppose G is a compact Lie group, M is a weight sequence and D 1is a
frame in V,(G). Then
M M M M
51[) ](G> = Hl[) ](G) and éag,p]roj (G) = Hl[),;roj (G) .

Proof. 1t is clear that

MG L HY(G) and &M(G) B HEIN(G)



are injective and continuous, since || f||r2c,) < #(G)V?||f|lx for all f € &(G). Now by
the Sobolev embedding, there is some & € N such that || f||.c < Cmax y<v || D*f| 26,0

aE€Sdim G

for all f € &(G). Since all of the D* are continuous operators from Hl[ém (G) into itself,

we get, continuous injective maps
HYP(G) = &87(G) and HE(G) & 65(G).

The proof for &M (G) and H M} (G) works analogously. O

D,proj D,proj

Later, in Chapter , we will also see that these spaces are always dense in L?(G, ).
Irreducible representations are an integral ingredient for the quantization of both
compact Lie groups and connected, simply connected nilpotent Lie groups. In the latter

case the smooth vectors are of great importance as well.

Definition 2.4.17. For a Lie group G, we denote by Irr(G) the set of admissible, unitary
and irreducible representations of the group G. By Irt™(G) we denote the set of all pairs
(m,Cx) of representations m € Irr(G) and antiunitary maps Cr.: Hr — H, such that
C.&(m) = &(x). Usually we will just write m € Irt™(G) and mean that we chose some Cy

for m.

If G is a compact or a connected, simply connected nilpotent Lie group, we may find
a Gelfand triple for each m € Irr(G). For this purpose, we first formulate the following

lemma.

Lemma 2.4.18. If G is a compact Lie group or a connected, simply connected nilpo-
tent Lie group and © € Irr(G), then & () is a nuclear Fréchet space and we find some

antiunitary operator C, on H, such that (r,Cy) € Irr™(G).

Proof. First suppose G is connected, simply connected and nilpotent. By the discussion
on pages 124 and 125 in [16] and also [16, Corollary 4.1.2] each = € Irr(G) is unitary
equivalent to some representation 7’ such that either H,» = L?(R*) and &(7') = 7 (RF)
for some k € Nor H,,» = C. In this case we can just use the pointwise complex conjugation

on L*(R*) or C to define C,. Also, the unitary operators taking 7 to 7’ restricts to a
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linear homeomorphism from & () onto . (R¥). Since .7 (R¥) is a nuclear Fréchet space,
so is &(m).

Now suppose G is compact. Then for each 7 € Irr(G), H, is finite dimensional and
&(m) = H,. Hence we can choose any antiunitary operator on H, as C,. Obviously H,

is also a nuclear Fréchet space. O

Now we are finally able to define the Gelfand triple corresponding to a representation

T € Iir™(G).

Definition 2.4.19. Let G be a connected, simply connected nilpotent Lie group. For each
(m,Cr) € It™(G) we define the Gelfand triples

G(m) = (6(7), Hx, &(7)')  and  Gop(m) := L(G(7); G(m))
with respect to the real structure defined by C, on G(m).

For us, the Schrodinger representations of the Heisenberg group H on L?*(R™) is the

default environment for these constructions.

Definition 2.4.20. For any finite dimensional vector space V' with Haar measure i, we

will denote by My the representation

My(2') fy) =W f(y),  for f € L*(V,p),

of V' on L*(V, ).
For n € N the Heisenberg group H is defined as the smooth manifold

R xR, x R" equipped with the multiplication

(ot o0) = (1454 5() = ) 5oty
For X\ € R*, the Schrodinger representation py of H on L*(R") are defined by

pi(t, 2’ x) == ™ Ry(x/2)M(2') Ro(x/2) and pa(t,2',z) == pi (0} (t, 2/, 2))
in which Ry is the right regular representation of R™ and

SE(t, o' x) := (A, sgn(N)|A|22, |A|2z)
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and sgn(\) is the sign of .
We always equip H and L*(H) with the standard Haar measure d(t,x’',x). Further-

more, we always use the linear space R x R,, x R™ itself as the Lie algebra b of H.

The Heisenberg group is the unique connected, simply connected Lie group that arises
from the Lie algebra of operators spanned by all partial derivatives and multiplications by
coordinate functions on L?*(R™). The same construction can by done for the left invariant
differential operators and multiplications by coordinate functions on L?*(H). As remarked
n [58], the corresponding Lie group H, was first investigated by A. S. Dynin [21I] and
later by G. B. Folland [26]. As in the case of the Heisenberg group, the action of the
Lie algebra of H on L?(H) can be integrated to a Schrodinger-type representation of the
Dynin-Folland group H, on L?(H). Before we define these terms, we need to remark that
H in itself is also a vector space. Hence, we may define Mo (z') on L?(H) for 2/ € H'. For
any connected, simply connected nilpotent Lie group the exponential map is a polynomial
diffeomorphism. In this case, we even have expy = I. Using expy we define the adjoint

representation on H = § and put

ad, y == [x,y] = 8tas(t$)(3?/)(m)_l|5:t:0 ’

in which ¢, s € R, x,y € H and both scalar multiplication and group multiplication on H

are used. This induces the corresponding dual map
ca, := (ad_,)" € L(H) for x € H.
Note that ca, can equivalently be defined by
ca,y = 0, CaH(tx)y’}tZO, fory e, v € H,

in which we use t € R, the dual map expy; = I and the coadjoint representation Ca of H

on the dual H' = b’. For the next definition we follow mostly [58].

125



Definition 2.4.21. The Dynin-Folland group is defined as the smooth manifold

RxH xH equipped with the multiplication

() (s ) = (145 50o)) = ) = § o’ =),

1
o +y + Z(Cax Y —ca, '), xy) .

For A\ € R*, we define the representation ©y of Hy on L*(H) by
O1(t, 7', z) = ™™ Ry(x/2) Ms(2") Ra(x/2) and O,(t,2,x) == 01(6y* (¢, 2/, 7))
in which Ry is the right regular representation of H and
[Al2

N2 (L2 x) = ()\t,)\((Sﬁ%),x'ﬁH 1x) .

We always equip Hy and L?(Hs) with the standard Haar measure d(t,2', z). Furthermore,
we always use the linear space R x H' x H itself as the Lie algebra by of H.

We defined the Schrodinger-type representations ©) slightly differently than the rep-
resentations 7y used in [25, [68]. The reason for this is that we want to use O, as an

example in Sections [3.3] and 3.4 Though, we can quickly find the unitary operator Dy

n+1

on L*(H), defined by D, f(z) := |)\|_Tf(5ﬁ|%x) for x € H, f € L?(H), which fulfils
Di'T\(t, 2, 2)Dy = O,(t, 2/, 7) for (t,2',z) € Hy.

With an analogous calculation, we can show that our version of the Schrédinger rep-
resentation p, is equivalent to the one defined in [25, p. 22]. Because Diff »(R") =
paA(Diff,(R™)) and due to [58, 26] and [25, Proposition 1.43], we may use the following

statement.

Lemma 2.4.22. Both py and ©, are irreducible and we have
&(pr) =L (R") and &(0,) =7 (H)

for all X € R*.

We will remark now why the spaces €*(p,) and €*(0,) are polynomially weighted

Sobolev spaces.
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Definition 2.4.23. Suppose G € {R", H} with corresponding Lie algebra g. For k € Ny

and any bases ¢ C G’ and D C g1, we define

HY%(G) :={f € HY(G) | Vapesy,c: lal, b <k = ¢"D°f € L*(G)}

equipped with the topology induced by f +— ||¢"D’f| 12 ,

in which a,b run through the elements of Saime with |a|, |b| < k. In the above, we use the
notation q% := -+ Qay Gar 4oy, for ¢ = (q1,...,qn), qo :=1 and a € Sy.

Note that this definition does not depend on the chosen bases ¢ C G’ and D C gi..

Lemma 2.4.24. Suppose k € Ny and A € R*. Then
HE,(RY) = 6%(p) and  HY,(H) = €*(05).

Proof. Suppose (G, Gy, ) € {(R™, H, py), (H, Hy, ©,)} and let m = dim G.

There exists a frame (9,D,D’) C Diff (G,) such that m(0%)f = i*f, ©(D*)f =
Df and 7(D")f = illg" f. But this also means that for any P € Difff (G,) there are
coefficients ¢, € C, for a € S,,, such that

R(P)f = Y cd D' for f € (),

CLGSm

as a finite linear combination. Hence () is a closed subspace of H%(G). By the usual
convolution and cut-off arguments, .7 (G) is dense in H%(G). But also .7 (G) C &(w) C
%*(G), hence HY(G) = €*(n). O

The next group of spaces we will consider, are the Gelfand-Shilov spaces [29]. These
spaces are continuously embedded subspaces of the Schwartz space .(R"). We will use

an analogous concept to also construct Gelfand-Shilov spaces of functions on H.

Definition 2.4.25. Suppose G € {R™ H} with Lie algebra g and let N := dim G. For
weight sequences M, L € ]Rli%, a frame D C g1, and a basis ¢ C G', we define the Banach

spaces

lg" D fllz2e) _
Miay[al! Lyy [0[!

1@ = {re6©)|
a,beESN
sup 16" D f || 12
apesy Mg lal! L 0]

0} with norm

M,D ,__
1Al =
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in which of course q* is defined as in the last definition.

The Gelfand-Shilov spaces are defined by

F(G) = lim HYP (@) and  #0(G) = lim HGEP(G).
h,k>0 h,k>0

For convenience, we also define the mized Gelfand-Shilov spaces
[M] o : M',.D
%L},proj(G) = 1&1 Hp,, (G).
M'EW[M] ,LIEW[L]

With an analogous argument as in Proposition [2.2.18] we get

S (G) =M (G).

(L) (L),proj

Also, the Gelfand-Shilov space of Roumieu type, Y{{Ijl\f }(R”), coincides with Y{{Lj\ﬁroj (R™)
as a vector space. This can be seen with Lemma [2.2.12] which also implies that the
bounded sets in both topological vector spaces coincide. Moreover, the topology in
Y{{Lj‘f Y(R") is finer than in the space Y{{L]\f}l’)roj (R™).

The above definition is a generalization for the definition given in [29]. See for example
[14] for a definition more in line with the one given here. Still, our version of Gelfand-
Shilov spaces differs in some aspects from the Gelfand-Shilov spaces defined in [I4]. First
of all, we used factorials in addition to weight sequences for the definition. Of course, this
is motivated by the convention we follow for the spaces of ultradifferentiable functions
ga[M] (R™). Secondly, we used L*-Sobolev spaces for the limit description of the Gelfand-
Shilov spaces. But since the weight sequences M and L fulfil @ we may exchange the
space H]{}’f’D(G) by say

70 = {1 e @ | Ie. = sip AL e o
b L S Mig [all Ly 0]

equipped with the norm |]—||§47"1D7OO

without changing the Gelfand-Shilov spaces %[Lj\]ﬂ (G) due to the usual Sobolev embed-
dings.
Similar to the case of L2-Sobolev spaces, the Gelfand-Shilov spaces can be equivalently

defined as subspaces of the smooth vectors with respect to the representations p, resp.

O,.
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Also, the definition of eﬁﬂ[[LA}ﬂ (G) does not depend on the involved left invariant frame

D or basis gq. This can be seen as a direct implication of Lemma [2.2.10] and the following

Lemma 2.4.28

Definition 2.4.26. Let M be an analytic manifold, let M, L, K be weight sequences and
let T,E, D C V,(M) be families of vector fields composed of #T resp. #E resp. #D vector
fields such that (T, E, D) is a frame. Then we denote by éaTKEL[]y(M) the € (M)-function
space defined by

SIS (M) = {f e &(M)

! BT o)
im =
jal,Jol el =00 K|q| [a|! Ly [b]! M/ |c]!
equipped with the norm
|T*E° D f |
f — sup )
abe Kl lal! Ly [b]! M [c]!

in which a € Syr, b € Sy and c € Syp. As usual we define limit spaces

K]|,[L],|M . . . K,L,M
éb},E]',[D} [ }(M) = I&H 1&1 1&1 éaT,E7D,proj (M) .
K’EW[K] L/EW[L] MIEW[JM]

These spaces can not be dealt with Proposition [2.2.20, since the families T, F and

D might not commute with each other. But the situation is at least similar. If N is a

weight sequence that fulfils ((MG)] then there are constants C, H > 0 such that

Nivivm < O ghHm

Ny Ny N,
This implies the inequality
17 E° Dl o I(T, B, D) f s
< C H| | ) )
e Niaflall Ny [D]! Nig eft = = 73" N |d]!

Now if [N] C [K],[L],[M], then the continuous embedding
S0 & i

and the above inequality give us the continuous embedding
Eirm0) (M) = 615 ey (M)

Lemma 2.4.27. Let G € {R", H}, let M be a weight sequence, and let D be a basis of
left invariant vector fields on G'. Then éaéM}(M2> is Ro-invariant.
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Proof. Denote x,(z') := e*™®%) for x € G and 2/ € G'. Note that y, € 6’1:(,]1)(((}/). If
f € L*G), then f € &N (M) iff o' — My(2')f is in EM(G; L*(G)).

For G = R", we have F, (') := My(2') Ro(x)f = x—o(2") Ro(x)Mo(2)f. Since
Ry () is unitary on L*(G) and by the continuity of multiplication in Proposition [2.2.15]
F, is in &M(G LA(G)) iff 2/ s My(a!)f is in EM(G: L2(G)). Thus &1(M,) is Ry-
invariant.

Now let G = H and let f € é@[[)M](MQ). We have
Fo(2") = x_2(2") Ry(x) My (2" + ca, o' /2) f .

Note that A: 2/ +— 2’/ 4 ca, 2’/2 is a linear map, so @’ — My(Az') f is in é"l[)M] (G; LA(G))
by Proposition [2.2.10 [

Lemma 2.4.28. Let A € R* and let either (G, 7,M) = (R, p\,H) or (G,m,M) =
(H, ©,,Hsy). Furthermore, let M, L, K be weight sequences. If ¢ C G’ is a basis and
D C Diff,(G) a frame, then the following holds.

(i) There exist families of vector fields T, E,F C Diff, (M) such that (T,E,F) is a

frame on M with

M K],[L],[M
H"P(G) = &85 (m) and - 71 (G) = &b () .

[L],proj
(ii) There is a frame E C Diff,(G) such that

M (G) = &R, ¢£}EJL](M2))

[L],proj

in the sense of vector spaces. If [M| and [N] have then this equality holds in

the sense of locally convex spaces.

Proof. (i): We may define T" such that it is just composed of one vector field which acts
along the center of M. Furthermore, we may choose T such that m(7") = il. Similarly,
we find vector fields £ = (Ey, ..., Ey) such that n(E;)f =iq; f and F = (F1,..., Fn)
such that 7(F;)f = D; f for f € H*(G) (see e.g. [26] for the Dynin-Folland group). The
argumentation from Lemma can be slightly adjusted to show H%;D (G) = 5TK :EL’},{W(W),

which already implies the rest.
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(ii): Obviously we have Ry(D®)f = D°f for alla € S,, and f € &(R;). Also, we may
choose F such that My(E®*)f =i%q°f for all a € S, and f € &(M>).
Let H := L*(G). By Proposition [2.2.18 we may employ the following chain of identities

and bijections (resp. homeomorphisms)

Epn (G &) (G H)) = 650G 64, ,(G H))
~ & (G ENNG )

= &G 606 H)) ~ )G (6 BY)

to get éa%}roj(«};ggﬂroj(@’; H)) = cg’[[)M](G; gEm(G’; H)) in the sense of vector spaces. If
[M] and [L] have |(PL)| then this holds in the sense of topological vector spaces. This
gives us

a)

in the sense of vector spaces (resp. in the sense of topological vector space if [M] and [L]

have |(PL)|). Now we only need to use

éa[[)M](Rg i’&éL](Mg)) = éa[M} (R2 l/(w[L]

D,proj G

[M] _ : : M,D o . M’
<yﬁL],proj (G) - @ 1£1 HL,q (G) - I&H (g()D (R2 \l/ggLLmi(MQQ
M'GW[]V[] L/EW[L] M’EW[M] R
_ plM]
= 6D,proj (12 ig};l)roj(Mg)) ‘

From the above especially follows that for {1} C [M], [L] we have

W (m) c M (G).

[L],proj

So in this case we know that CV[[LAﬂrOj

vectors is dense (see Lemma [2.4.6)).

(G) is dense in L?*(G), because the space of analytic
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Chapter 3

Quantization on Gelfand triples

The following chapter is largely based on a prior publication of the author [7]. Quan-
tization is a procedure, by which functions and distributions are mapped to operators.
Among the many types of quantizations, we will only use the Kohn-Nirenberg quan-
tization and the Pedersen quantization (resp. the Weyl quantization). Both are closely
connected to types of Fourier transformations. Historically, the Fourier transformation on
R™ was used for this purpose. Namely, for a function a € . (R" x R,,) the corresponding

Kohn-Nirenberg operator is defined by
Opgn (a)p(w) = Fga (a(z, =) Frnp)(x)  for p € (R"), z €R"
and the Weyl operator is defined as the integral

/ / (Frexr,a)(@’,x) p1(0,2', 2) de da’,

which exists in £,(L*(R")). Both quantization procedures induce a Gelfand triple iso-
morphism

G(R" x R, dzdz’) — L(G(R", dz); G(R", dx)).

The Pedersen quantization [57] is a generalization of the Weyl quantization. By swapping
Frn with the group Fourier transform on some Lie group G with biinvariant Haar measure
i, one can generalize the Kohn-Nirenberg quantization to map certain operator valued

distributions on G x G to operators defined on a subspace of L*(G, ). A calculus for
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compact and nilpotent Lie groups was developed in [59] 24]. We start with an exposition
on the Kohn-Nirenberg quantization, after which we will define and discuss the Pedersen
quantization. In the third section, we will use the Pedersen quantization in order to
define new Gelfand triples for homogeneous Lie group such that the Kohn-Nirenberg

quantization operates as a Gelfand triple isomorphism between them.

3.1 The Kohn-Nirenberg quantization

Let G be either a compact or a connected, simply connected nilpotent Lie group with
Haar measure p. For each separable Hilbert space H let Irry(G) be the set of irreducible
admissible unitary representations. We define on Irry(G) the smallest o-algebra such
that

Irrg(G) — C: 7 (w(x)h,h)

is measurable for all x € G and h,h' € H. We equip Irr(G) with the biggest o-algebra
such that all the inclusions Irry (G) < Irr(G) are measurable.

The dual of G, denoted by @, is the quotient of Irr(G) under the equivalence relation
of unitary equivalence. We equip G with the hull kernel topolog. The general definition
of the topology is not important to us, as for our special cases we have a better, more
concrete description of the hull-kernel topology. Here we use that for any compact Lie
group G the dual G is carrying the discrete topology [20, Corollary 18.4.3]. For nilpotent
Lie groups we will use Theorem and Proposition [3.3.7 The Mackey-Borel structure

on G is the largest o-algebra on G with respect to which the quotient map
Irr(G) = G: 7 — [7]

is measurable. Here [7] denotes the class of unitary equivalent representations to .
This o-algebra coincides with the Borel o-algebra defined by the hull-kernel topology [20,
18.5.3]. A prerequisite for this statement is that the group G is postliminal. Though in our

case, this is always fulfilled, since compact resp. connected, simply connected nilpotent

In [20, 3.1.2] this topology is introduced as the Jacobson topology. See for example [27, p. 225] or
[22] for the fact that it is just another name for the hull-kernel topology.
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Lie groups are type I as described in [28, p. 72]. For Lie groups, type I implies postliminal
[20, 13.9.4]. Note that the definition of a type I group is approached differently in [2§]
and [20], but both definitions are equivalent due to [28, Theorem 3.23].

Let G, := {[7] | dim H; =n, m € Irr(G)}. There exists a measurable map
n: (/G\r — II“I“(G), 77([7TD € [71'] and Hn([ﬂ]) = HW(W) = Hn (3.1.1)

for all n € NU{X,} and all ], [7] € G,, [20, Proposition 8.6.2].
Let v be a measure on G. Now we define E(@) as the set of operator valued maps

o: I11(G) = Uren(e) £(H) fulfilling
(i) o(m) € L(H,) for all 7 € Irr(G),

(ii) o(UrU™') = Uo(m)U™! for all (m, H,) € Irr(G) and unitary operators U with

domain H, and

(iii) the map G, > [7] — o(n([x]))h is v-measurable for all n € NU {Xo} and h € H,.
This automatically ensures that this holds for all n which fulfil (3.1.1)).

If H is a Hilbert space and T' € £(T'), then we use the convention ||T||ys) = oo (resp.
| T ||arcery = o0) iff T ¢ HS(H) (vesp. T ¢ N(H)). If v is a measure on G, then we define
B>(G,v), B(G,v) and BY(G,v) as the quotient spaces

B'(G,v) =30 € X(G) | ol @ = [ lomlnum dv(x]) <oop / N(G,v)
G

5.0) ={o € 2@ | Iollsey = ( [ o) s duw)f <o} [ M@

B(.) i={o € 5@) | Iollpmie. = V—esssgplla(ﬂ)llc(m)<00} / ¥@w
[7]eG

with respect to the subspace N(G,v) = {o € S(G) | loll 2@,y = 0} We equip the space
Bp(@, v) with the norm |o + N(@, W gs@ = lollgs@,, for p € {1,2,00}. As with
the Lebesgue-Bochner spaces we will write o € B?(G, v) for a function o iff o € £(G)

and its equivalence class is in BP(G,v). From our definitions follows that B2(G,n) is
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equivalent to the more commonly used approach using direct integralﬂ. To be precise,

for any measurable map 7: G — Irr(G) such that 5([x]) € [r] for all 7 € Irr(G) the map
N @
B*G,v) — [ HS(H,y(jp)) dv([]), defined by o= ocon
G

for functions o € B2(G,n), is unitary.
The group Fourier transform of f € L'(G,u) at 7 € Irr(G) with representation

space H is defined by
w(f) = Fof(n) = / F(£)m(z)* dpu(z)

where the integral exists in £;(H). The Fourier transform of f fulfils Fgf € Z(@) As
for R, there exists a Plancherel theorem for more general groups G. Since compact and
connected, simply connected nilpotent Lie groups are unimodular and of type I they fulfil

the requirements for [28, Theorem 3.31]. Thus we get the following.

Theorem 3.1.1. If G is compact or nilpotent with Haar measure i, there exists a unique

Borel measure i, the Plancherel measure, such that

J U@ dute) = [ 1wl a7
for all f € LG, u) N L*(G, p). The extension of

LNG.p) N LA (G, ) = B (G, 0): f = Ff
to L*(G, ) is a unitary operator onto B2(G,fi).

There is also an analogue for the Fourier inversion formula. We use the formulation

given in [28, Theorem 4.4].

Theorem 3.1.2. Let G and pu be as above. If Fof € BY(G,7) N BX(G, i), then

fa) = / Tefr(x) 7(f)] A ()

G

for p-almost all x € G and the right-hand side defines a continuous function.

2See for example [28] for a definition of the direct integral of Hilbert spaces and a formulation of the

Plancherel theorem involving direct integrals.
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As in the Euclidean case, the group Fourier transform becomes a Gelfand triple iso-

morphism. For any compact Lie group G with Haar measure p, we will write

and define the Gelfand triple
g(Ga ,u) = (Y(G), L2(G7#)7 yI(G)) )

equipped with the real structure defined by pointwise complex conjugation on . (G) resp.

LA(G, p).

Definition 3.1.3. For any compact or simply connected, connected nilpotent Lie group

G with Haar measure p we define

~

y(G) = f@y((@)

and equip it the topology transported from #(G) via Fg. Furthermore, its dual will be

~

denoted by ' (G) := 5/(@)’ and we define the Gelfand triple
GG, 1) = (#(6), B*(G. ), 7'(C))
equipped with the real structure defined by the pointwise conjugation
oo = [m— o(m)’]

on #(G) resp. BX(G, ).

If f*(z) := f(ax=1), then (Fgf)* = Fg(f*) for all f € LY(G,u) N L*(G, u). This
implies that o — ¢* defines an antilinear homeomorphism from . (@) to itself. Thus the
Gelfand triple ¢ (@, ) is well-defined.

The unitary operator from Theorem restricts to a linear homeomorphism from

~ ~

S (G) to #(G) by definition of .#(G). This enables us to define the group Fourier

transform as the following Gelfand triple isomorphism.

Definition 3.1.4. The group Fourier transform Fg is the unique Gelfand triple isomor-
phism
Fo: G(G, 1) = G(C, 1) (3.12)

~

that extends the map L' (G, pu) N L*(G, n) — B*(G,pn): f— Fef.
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With the help of the group Fourier transform we will define the Kohn-Nirenberg
quantization for a compact or connected, simply connected nilpotent group G. We will

use the symbol Kg specifically for the kernel map
Ke: L(G(G, 1);G(G, p) = G(G, 1) @ G(G, p)
from Proposition Now consider the map
Z(G)® S(G) = L (G)& S (G): frs Tof, inwhich Tef(z,y):= flz,zy™")

for all z,y € G. This map is a linear homeomorphism and extends to a unitary map
from L?(G, p) ®u L*(G, ) onto itself. Thus we may extend the above map f — Tgf to

a Gelfand triple isomorphism

Te: G(G, 1) @ G(G, p) = G(G, 1) @ G(G, p) -

Now we are able to define the Kohn-Nirenberg quantization as a Gelfand triple isomor-

phism.

Definition 3.1.5. The Kohn-Nirenberg quantization is the Gelfand triple isomorphism
Opg: G(G, 1) ® G(G, i) = L(G(G, 1); G(G, 1)) ,
defined by Opg == K5'Tg ' (1@Fg) L.

The object 0 € ./'(G) ® Y’(@) is called Kohn-Nirenberg symbol to the operator
Opg(0) and Opg(o) is called the Kohn-Nirenberg operator to o.

3.2 The Pedersen quantization

Let G be a connected, simply connected Lie group. We already introduced the notation
Adg for the adjoint action of G on g and Cag(z)¢ := £ o Adg(z™!) for the coadjoint
action of x € G on linear functionals £ € g’. We will now discuss how coadjoint orbits
relate to the Pedersen quantization and in which way the Pedersen quantization can be

understood as a Gelfand triple isomorphism.
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We start this endeavour, by revisiting the correspondence between coadjoint orbits and
unitary irreducible admissible representations. A subalgebra m C g is called polarizing
to & € ¢/, iff {([m,m]) = {0} and m is a maximal algebra fulfilling this condition. For
any £ € g’ we can find at least one polarizing algebra. There is a bijection between the
coadjoint Orbits and the irreducible unitary representations of G. It can be described
by [7] <> Q = Cag&, where 7 is unitarily equivalent to the induced representation of

2mig(m

x(m) = e ) for m € m C G for some maximal subordinate algebra m of ¢ [I6,

Theorems 2.2.1 - 2.2.4]. This correspondence only depends on the orbit {2 and not on
the choice of element £ spanning €2 or the choice of polarizing algebra m. We will write
m ~ & orm ~ Q if the equivalence class of m corresponds to the orbit Q = Cag(G)E.
For any ¢ the orbit Q@ = Cag(G)¢ is an even dimensional polynomial manifold [56, page
521] and [16, Lemma 1.3.2]. The following theorem from [8] shows that we may use the
correspondence between orbits and irreducible representations in order to describe the

topology on G.
Theorem 3.2.1. Let ~ be the equivalence relation on g’ defined by
{~n o et Cag(x)l=1.
Then the bijection from G to the quotient space ¢’/ ~ defined by
(1] = Q  for w~Q
1s a homeomorphism.

A Jordan-Holder basis of g is a basis (e;); such that the linear hull g;, = span{ey, ... e}
is an ideal in g for each &k < dimG. Let g, be the quotient map g’ — g¢'/gy. The set of
jump indices J is the set of j > 1 such that

dim ¢;(2) — dimgq;_;(2) =1 (3.2.3)

Let us denote g; := span{e; | j € J}. From Corollary 3.1.5 of [16] follows that a
polynomial chart of €2 is given by

oa: QY=g &= &y,

139



This correspondence between orbits and the spaces of functionals g; leads to the

definition of the orbital Fourier transform

Fopl(z) = / e 2D () dbo(€), 1€ gy, p € S,

where g o 05! is a Haar measure on g/;. The Pedersen quantization (see [57]) is the
equivalent of the Weyl quantization for general connected, simply connected nilpotent

Lie groups. It is defined by the integral

oy () = / (expg 7) / e W o) g (€) dup(n),  for p € F(9)

for some representation m ~ 2 and a fitting Haar measure v on g;. We can easily see
that the outermost integral converges in L4(H,). The following theorem fixes the choice

of vg.

Theorem 3.2.2. For each 0q as above, there is a unique v such that the Pedersen

quantization to ™ ~ ) extends to a Gelfand triple isomorphism
op,: G(£2,0q) = Gop(m).
Proof. This is essentially stated in [57, Theorem 4.1.4]. Here Pedersen proves that
L (Q) = B(Hy)o: a > op,(a)

is a homeomorphism, where B(H )« is the space of smooth operators with respect to 7.
The spaces of smooth operators is introduced as B(Hy)o = & (II), where II is the unitary
representation of G x G on HS(H,) defined by II(z,y)T = 7(z)oT om(y) . Furthermore

Pedersen shows that
/ abdfg = Trlop, (a) op,(b)*] for a,b e S(Q)
Q

and for a suitable vq. Note that Pedersen uses the convention & <+ x(-) = e’¢°°ec() for the
bijection between functionals and characters. Though adjusting the formulas just results
in additional constants, which may be hidden away inside the measures v and 6g.

In order to fit this result into our scheme, we will make sure that L(&(w), & (7))

and B(H;)x coincide as topological vector spaces. Using the embeddings &(7w) — H,
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and H, — &(n) defined by some real structure C,, we will consider B(H; ), L(H),
HS(H,) and L(&(m)',&(m)) as linear subspaces of L(&(7); &(w)"). With respect to these
embeddings L£(&(m)"; &(m)) is exactly the subspace of operators 7" such that

n(P)Tr(P) € L(H,) forall P, P € Diff(G)
equipped with the corresponding seminorms
T |7 (P)T7(P)|l £y -

Similarly, B(H) is identified with all operators T such that 7(P")T'n(P) € HS(H,) for
all P, P' € Diff,(G) equipped with the corresponding seminorms 7"+ || (P")T7(T') || us(t,)-
Thus we have the continuous embedding B(H ) < L(& (1) & (7)).

Due to [12, Théoreme 2.6] we know there is P € Diff,(G) such that 7(P) is invertible

on &(r) and 7(P)~! can be extended to a nuclear operator on H,. Thus
lx(P)T (P sy < Im(P) " Hlws 1w (P T (P P) | a1,y

for each T € L(&(m);&(m)) and as a result B(H,)s = L(&(1);& (1)) as topological

vector spaces.

3.3 Alternative Gelfand triples for the Fourier trans-
form on homogeneous Lie groups

In the following section G is always a connected, simply connected nilpotent Lie group
with Haar measure p and Lie algebra g and corresponding center 3 := Z(g). Note that
always expg 3 = Z(G).

If X is a compact group with Haar measure v, then X is discrete and for each 7 € Irr(X)
the space H, is finitely dimensional. This ensures that one can work with the Fourier
image G(X,D) of the Gelfand triple G(X, v) relatively casy (see [59]). Here the simple

characterization of . (X) and the simple identification of multiplication operators on
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&' (X) are very convenient. This also results in the equation
(Iy,(g) eGr)(a) == a(—,m) =7(=)" - Aclgm,(n), for 7 € Irr(X) (3.3.4)

in which A = Opg(a) € £L(#(X):.#'(X)) and we use the notation ¢, € £(.7(X); L(H,))
for (;: 0 — o(m). Here H, is finite dimensional, so 7 € .(X;L(H,)) and the multi-
plication of 7(—)* with the L£(H)-valued distribution A € Iy, y(7) can be understood
componentwise with respect to some basiﬂ.

For the nilpotent Lie group G the situation is much more complicated. Even for the
Heisenberg group G = H there seems to be no simple intrinsic characterization for the
Fourier image of the Schwartz space of rapidly decreasing smooth functions .7 (G), see
[31, 2]. But we may derive a simple characterization of the Fourier image for a cer-
tain subspace .7, (G) of #(G). This characterization not only induces a Gelfand triple
(Z(G), L*(G, ), ! (G)) but will also enable us to identify a large class of well behaved

multiplication operators on the Fourier image of .7, (G). Using these multiplication op-

erators, we can prove an analogue of ([3.3.4)) in Section [3.4]

3.3.1 Generic and flat orbits of homogeneous Lie groups

In order to get a better description of the group Fourier transform on homogeneous Lie
groups, we will use the Pedersen quantization. Though in our case, we can first simplify
the Pedersen quantization, since we are only interested in representations derived from a

special class of orbits, the generic orbits. We start by introducing and discussing a certain

subset of Irr(G).

Definition 3.3.1. A representation m € Irr(G) is square integrable modulo the center,
if © = |(m(x)v,w)y,| is square integrable on G/Z(G) with respect to the Haar measure
for all v,w € H;. Let us denote the set of irreducible representations, that are square
integrable modulo the center, by SI/Z(G) C Irr(G) and pairs of such representations

together with some matching real structure by SI/Zy(G).

3This is also consistent with our prior discussions of bilinear maps between tensor products in Theorem

or Theorem
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Suppose T ~ Q = Cag(G)¢, then m € SI/Z(G) if and only if Q = £+3° [53, Theorem 1].
Orbits of this type are called flat. Furthermore, if SI/Z(G) # (), then the orbits to repre-
sentations in SI/Z(G) are exactly those having the maximal possible dimension [16, Corol-
lary 4.5.6]. Also, for 7 € SI/Z(G) the equivalence class [7] € G is uniquely determined by
the central character 7 | z(gy= €2™¢°®Pc' () idy; , where € € Z(g)' [16, Proposition 4.5.7].
Now, if (e;); is a Jordan Holder-Basis with Z(g) = spang{es, es, ..., e, } and m € SI/Z(G),
then the corresponding jump indices are given by J = {k+ 1,k +2,...,dim G}.

Now we will describe, why the representations in SI/Z(G) are very convenient when
working with the Pedersen quantization. We use the notation from Theorem [3.2.2] For
all m € SI/Z(G) the Pedersen quantization is simpler, because we can just take one Haar
measure ¢ on 3° and translate it to a measure g on €2 ~ 7 for each m € SI/Z(G). The
subspace w := g; complements 3 in g and is the same for each representation in SI/Z(G).

We get a Gelfand triple isomorphism
Ta:G(3°,0) — G(,0q) defined by Tap:=poPe |q forpe L(5°),

where Pjo is the projection onto 3° along w°. Using this isomorphism, we adjust the

Pedersen quantization.

Definition 3.3.2. We will use the Pedersen quantization op,. on G(3°,0) with respect to
7 € SI/Z(G) defined by

op.: G(3°,0) = Gop(m), ¢ = op(Tag).
This version of the Pedersen quantization takes on the form

ov-(¢) = [ nlewsa) [ o0 drl)  torp e S5,

where v = v depends on 6. Naturally, op, is a Gelfand triple isomorphism as well.
Now we will discuss the concept of generic orbits and square integrable (modulo the

center) representation in context with homogeneous groups.

Definition 3.3.3. A connected, simply connected Lie group G is called a homogeneous

Lie group if its Lie algebra g is equipped with a group of dilations
(0,00) — Hom(g): A — 0y,
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oM Az s also a Lie algebra isomorphism and A is a diagonalizable map

where 0 x = €
with positive eigenvalues. The number () := Tr[A] is the homogeneous dimension of G.
We will equip G with a family of group automorphisms, also denoted by (5x)x>0, defined

by 0 0 expg 1= expg 00,.

We may always decompose g into eigenspaces &, of A to eigenvalues x > 0, i.e.
g=EP¢&.. where (£, 6] C Epin.
k>0
Thus, a homogeneous Lie group is always nilpotent. Note that the center 3 of g is always

invariant to both d, and A, since
(022, 2] = 0\[z,06-12] =0 forall A>0,z€3andx € g.

For every 1 > 0 the space @, , £, is an ideal in g. We may always choose a Jordan-Hélder

K>
basis (e;); through these ideals [16, Theorem 1.1.13], i.e. we can choose a Jordan-Holder
basis (e;); such that e; is an eigenvector to ) for any j. If 3 is an eigenspace, e.g. if

dim 3 = 1, we also have the unique decomposition
g=3Pw, wis A-invariant.

Definition 3.3.4. A coadjoint orbit Q) of a connected, simply connected nilpotent Lie
group is called generic with respect to a given Jordan-Hélder basis (e;); if for each k the
dimension of the manifold q,() is mazimal compared to all other orbits, in which qy. is
defined as in (3.2.3)).

Let G be a connected, simply connected homogeneous Lie group. If (e;); is a Jordan-
Hoélder basis of eigenvectors to A and the 6y, then we will denote the set of equivalence

classes derived from generic orbits by @gen c G.

The first convenient property of the generic orbits is that the Plancherel measure i is
concentrated on @gen by [16, Theorem 4.3.16].

Next, we will discuss the interaction between the concept of generic orbits and the
concept of square integrable representations (modulo the center). If [7] € @gen and

SI/Z(G) # 0, then 7 € SI/Z(G), since the representations in SI/Z(G) correspond to the
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orbits of maximal dimension. Also, if SI/Z(G) # () and dimj = 1, then situation is
especially easy. Here 3 = &, for p = max{x > 0 | &, # {0}} and for a Jordan-Holder
basis (e;); of eigenvectors, we always have 3 = g = R - ;. Thus the set @gen does not
depend on the concrete choice of Jordan-Holder basis of eigenvectors to A. If J is the set
of jump indices to any Jordan-Holder basis of eigenvectors, then we also have g; = w by
the above discussion, which is important for handling the Pedersen quantization.

Now for A < 0 denote
o = —dyz for x € 3, and )z := )\ for ¥ € w.

Furthermore, let 0, :== &0, for A € R* and £ € ¢'.
The question arises whether generic orbits are mapped to generic orbits by d,. The
dilation 0, on g¢'/g; is a well-defined vector space isomorphism by ) o ¢; := ¢; o 0y, since

g and thus also g; are dy-invariant. Furthermore,
dim ¢;(0,82) = dim d, o ¢;(©2) = dim ¢;(Q2). (3.3.5)
Thus 0, is generic for each A € R*.

Definition 3.3.5. For any connected, simply connected homogeneous Lie group G and
any m € Irrg(G) with real structure C, we put T := C,mwC, € Irrg(G) equipped with the

same real structure C,. We define the representations wy for A € R* by
m(x) :=m(0\x) for A >0 and my(x) =75 (x) :=T(0ng) for A <0
forall z € G.

All the representations 7, are admissible irreducible unitary representations acting on
H, with &(my) = & ().

We already used two sets of examples in Definition [2.4.20]and Definition [2.4.21] Indeed
o5 resp. (5%\]12 makes the Heisenberg group H resp. the Dynin-Folland group H into a

homogeneous Lie group. Moreover, the representations p, and ©, fulfil
pr=(p1)x and O, =(07), forall A e R*.
With these definitions and the discussion above we get the three equivalences
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e 7 € SI/Z(G) if and only if my € SI/Z(G),
o 1] € @gen if and only if [m,] € @gen,
o m ~ £ if and only if 7y ~ §,&.

Let SI/Z(G) # (0 and dimj = 1. As every equivalence class of representations in
SI/Z(G) only depends on its central character on 3 ~ R, we get a bijection between R*
and G ey resp. {[] | 7 € SI/Z(G)}. Thus 7 € SI/Z(G) if and only if [1] € Gyen.

We can even go one step further. The dilations d, help us to understand G as a
measure space. For this purpose we need the Pfaffian Ff(¢) to a coadjoint orbit Q =
Cag(G)E, which is defined by Pf(£)* = det B¢ up to a sign. Here we use the matrix
Be = (&([ej, €]))dm$ in which (e;)5™® is a Jordan-Holder basis of eigenvectors to A

and the (ej)?i:“é@’ span the complementary space w to 3.

Definition 3.3.6. Let k > 0 be the real number such that §\n := sgn(A)|A|"n forn € w°,
let w* > € ~ 7 € SI/Z(G) and let (¢;)™% be a Jordan-Hélder basis of eigenvectors
to the dilations 6y resp. A. Suppose furthermore that (e;,¢) = 6;1 and p(E) = 1 for

E={Y tje; | t € [0,1]"C}. Then we define the measure fix on R* by
dfi=(N) = KA EF(O)] A,
in which the Pfaffian |Ff(€)| is calculated with respect to (e;);.

The measure [i; depends on 7 and pu, but does not depend on the concrete choice of
Jordan-Holder basis (e;); as long as it fulfils the criteria for the definition above. This

statement is a direct conclusion of the following proposition.

Proposition 3.3.7. Suppose G is a homogeneous Lie group, m € SI/Z(G) and dimj =1
and let [i, be defined as above. Then

(R*, 7ix) = (Gen, 1) : A= [m],

where m ~ { € w°, is a homeomorphism and an isomorphism between the Borel measure
spaces. Furthermore, if ) is a fived generic orbit, then X — 0,82 defines a bijection

between R* and the generic orbits.
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Proof. Let U be the set of functionals £ € g’ such that Cag¢ is a generic orbit with
respect to our basis. For £ € U we have §,& € U for each A € R* by equation (3.3.5)).
Each orbit meets U N w® in exactly one point [16, Theorem 3.1.9 and Theorem 4.5.5].

Furthermore, for any £ € w* :=w° \ {0}, we have that
R* — w™: A= 0\&

is a homeomorphism. Thus also U Nw® = w* = {0,\¢ | A € R*}. But w* induces all
maximal flat orbits, so they coincide with the generic orbits. Since the correspondence
of g/~ with Gis a homeomorphism by Theorem we also have U/. ~ @gen with
respect to the subspace topologies. Let q: U — U/ be the quotient map. Now ¢ [,x is
a continuous bijection. We show that it is also open. By [16, Theorem 3.1.9], there is a

well-defined map ¢: w* x 3 — U such that
P(u,v) =w << w e Cag(G)u and Ppw = v,

where Pjo is the projection onto 3° along w®. The map 1 is a rational, non singular
bijection with rational non singular inverse. Hence 1 is a homeomorphism. If V C w* is

open in w*, then Cag(G)V is open in U, since
BV x 5°) = Cag V.

Now, since ¢ is open and ¢(Cag(G)V') = q(V), the restriction ¢ [,x is an open map and

thus a homeomorphism. If we now denote
o: R* — @gen: A =[O,

then o is a homeomorphism by the discussion above. Let ¢: G — [0,00) be Borel

measurable. Then, by [16] Theorem 4.3.10] and the subsequent discussion,

ot i) = | eAmIF©] dce),

where 1 is the Haar measure on w°such that {t/ | ¢ € [0, 1]} has measure equal to one and
me ~ Cag(G){. Let B := A [¥. Since our chosen Jordan-Holder basis is an eigenbasis to

A resp. d), we have

[BF(8:0)] = | det(6x0([ej, ei]))jal? = [ det(IN 5 E([eg, ei]))jal 2 = AT BIEF(0),
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where |A|" is the eigenvalue of e; to 0, for j € J. Both o and ¢~' are measurable and

we have d(ioo)(N\) = k|A|""! d)\. Hence

| emim@ ai©) = [ e(mIm@oldGo
UnNw©® RX
= [ elmben o) ay
and o is a strict isomorphism of measure spaces. L]

Since the homeomorphism between R* and @gen does not depend on the concrete
Jordan-Holder basis used in the construction in Definition the measure [i, is also
invariant with respect to this choice.

Again we have suitable examples in the Heisenberg group H and the Dynin-Folland
group H,. Here a Jordan-Holder basis of eigenvectors to the dilations is given by the

standard basis
er :=(0,...,0,1,0,...,0), in which the 1 is at the kth position.
Let (e*);, be the dual basis to this Jordan-Holder basis. Then

0 —F
(([ej, ex), €"))juz2 = 7
E 0

1

in which F is the identity matrix. Because e! ~ p; resp. e! ~ O, we have

dim H—1 dim Hop—1

“ 2 dA resp. die,(A) = AT 2 dA,

dﬁpl ()‘) = |)‘

in which of course p is the standard Haar measure with du(t,2’,z) = d(¢, 2, z).

3.3.2 The Fourier transform on .%,(G)

The discussion in the prior subsection and especially the last proposition motivate us to

make the following convention.

Convention 3.3.8. If not otherwise stated, we will assume for the rest of this chapter

that the following holds.
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(i) G is a connected, simply connected homogeneous Lie group G with Haar measure

w, Lie algebra g and corresponding center 3 = Z(g) such that dimz = 1.

(ii) We will restrict ourselves to the case G = g as sets E| Depending on which property

we want to emphasize, we will switch between the symbols G and g.
(iii) w is the A resp. dy invariant subspace of g such that g = 3dw. We put w* = w°\{0}.
(iv) We assume SI/Z(G) # 0.

We will denote the euclidean Fourier transform on g by
Fipl§) = [ @) duta). v S (a). €€
g
Naturally, there is exactly one Haar measure p/ on g’ such that the Fourier transform is
a Gelfand triple isomorphism G(g, u) — G(g', /). Suppose £ € w*. Together with the

euclidean Fourier transform and the Pedersen quantization, the map
pef(N &) = f(oa(l+¢§)) for (€3 A €R and f: ¢’ > C

will enable us to describe the group Fourier transform on G (see also [54] for a similar
statement).

Now we will use the isomorphism from Proposition [3.3.7] in order to find a new rep-
resentation of the group Fourier transform on L?(G, u). This will be the basis for the
definition of our new Gelfand triples and a Gelfand triple isomorphism in the form of an

equivalent Fourier transform.
Proposition 3.3.9. Suppose ¢ € .7 (G) and 7w € SI/Zx(G) with m ~ € € w*, then

Opﬂ(pffg¢<>‘7 _))7 A > 07

Opﬁ(péfgw(A, —)), A< 0.

4For connected, simply connected Lie groups expg is always a polynomial diffeomorphism, so g,

Fop(ma) =

equipped with the group multiplication transported via expg, is isomorphic to G. Hence G = g is not
a real restriction. Note that p is a biinvariant Haar measure for both the group multiplication and the

vector addition in G = g.
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Proof. First of all, for any ¢ € .#(G) we have

Fop(my) = /GA‘TrAw(5;1$)7T(x)* du(z) = A" A TG (g0 8,1 (),

for A > 0. Also
]:9(90 o 5;1) = >‘TrA<]:gS0) oy

for A > 0. Note that for € g and z € 3 we have z - z = x + z and thus
() = m(2)w(z) = 7(z - ) = w(z + ).

Let p; resp. v be Haar measures on 3 resp w such that y = pu; ® v, then by the above

calculation

Faplm) = [ wla) [ (s - a) diy(a) do()
= [ 7(a) [ &R () d6(6) dv(a).

Here 6 is the measure associated to v as described in Definition[3.3.21 This formula indeed

holds pointwise. Hence
Fop(m) = A" o (Fo(p 0y h)) = op((Fop) 0 0a)
= UPW(W}—M()M _)>

for all A > 0. For A < 0 we get

Fop(my) = Fo(Tox) = opz(p_eFoo(—=A, —)),

since T ~ —¢. Now we can complete the proof by using 0_,(—¢ + &) = 5, (¢ + &) for any
£es. O]

The above proposition (c.f. [54, Theorem 3.3]) shows that the group Fourier transform
splits into operators which are easy to handle in the L2-setting. If we use the isomorphismﬂ

(@, i) ~ (R*, 1i;), then we can see Fg as the composition of unitary operators
Fo: L*(G,p) — L*(g', 1),
oo L2 (g’ 1) — L*(R™, fix) ©n L2(5°,0),

Dpﬂ': LQ(RXJ/ZW) ®H L2(307 0) — L? (RX’ZZW) ®H /H’S(HW)’

SHere we mean a measurable map with measurable inverse that is defined between @\Nl and R™\ N,

for two null sets N; and Ns.
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in which 6 is an appropriate Haar measure on 3° and Op._ corresponds to the operator
P, ® op, + P_ ® op— for the projection Py of L*(R*) onto L*(R.). Moreover, we used
the canonical unitary map in order to reinterpret g, as a map from L%(g’, i') into
LA(R*, [ix) @u L*(3°,0).

It is very convenient that the operator component emerges as a tensor product factor,
which in turn enables us to understand multiplication operators on the Fourier side more
easily. Though we run into problems if we try the same for the Fourier transform on
Z(G). Here we are not able to describe . (@) as the tensor product of a space of
functions with a space of operators. This motivates us to define alternative spaces of test
functions.

In order to know which function space is a good choice, we will first take a look at the
pull back @,. Here our earlier discussion of polynomial manifolds comes into play again.
Remember that R* is equipped with a polynomial structure defined by R* = R, UR_,
i.e. defined by the polynomial structures on Ry. Similarly, for £ € w* we define g/, g,
g” by

gf ={tl+n|t>0nes’}, 9, =9/, 9°=9,Ug,

and equip g;t, g~ with the polynomial structure analogously to the one on R., R* i.e.

the polynomial structure induced by the map
g7 > Rx 3% (t+n)— (t—1/t,n).

Then ¢, induces a tempered diffeomorphism as written in the following lemma. Note that

we just have g* = ¢’ \ 3° as a set.

Lemma 3.3.10. Let £ € w*. The Map wy: Ry x3° — g7 : (N, &) = 05(0+&) is a tempered

diffeomorphism.

Proof. We prove that R x 3° ~ g/ via w,. The proof to the second statement is analo-
gous. Suppose (£7); is the dual basis to our Jordan-Holder basis (e;)3%, of eigenvectors,
in which ey € 3. Here ()", is a basis of 3°. Let r; be the positive number such that

j=1
5rEF = Mg for A > 0.
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We use the charts o resp. o1, defined by
2n 2n
(A, chfj) resp. (A + chfj) = (A =1/ c1, .0, o).
j=1 j=1

Then
(t+ VE T o) oo

growpoo Tt cr,. .., Con) = ( o — T
(t+ VB + 4y (t+ VA )
2n | >

Cly. .-
91 1, 9 Okian

which is a slowly increasing function. Similarly

1

) ((t+\/t2+4)“10 2%
.,Copn) = 1

270 (t+VE+ A
(t+VEF+ o)™ (t+ V) o )
C Con

oow, ooy (t ey,

—K1 1y--) —K2p

2 o 2 "o

is slowly increasing. O

By Lemma [2.3.6] we can see .#(g7) as the space

L) ={pec L (@) | ¢=0ong;}

equipped with the subspace topology in .7 (g’).
The tempered diffeomorphism from the last lemma induces a Gelfand triple isomor-

phism.

Lemma 3.3.11. Suppose w* 2 { ~ m € SI/Zx(G) and i, is defined as in Definition
3.3.0. The pullback pep(X, &) := @ owe(\ ) for ¢ € L(g°), £ € 3° and X € R* defines

a Gelfand triple isomorphism
oe: Gg", 1) = GR™ Jir) @ G(3°,0) .
Furthermore, o, restricts to Gelfand triple isomorphisms
pe: Gla7, 1) = G(R*, Jix) ® G(5°,0)
if we use the canonical Gelfand triple isomorphism G(g*, 1) ~ G(g}, 1) ® G(g, , V).
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Proof. We take an arbitrary continuous function f: gzt — C with compact support. We

define Pf(¢) as in Proposition resp. Definition and let w* := Ry - £. Then

/R SO+ AP O ardoe
-/ ) RLCORRSEL (OIRREe T
-/ / £ 01+ ) |FF(O) dyaae (n) dOE)
S RLCLAG!

For the last two equalities we used that the measure p on w® is defined by the Lebesgue
measure and ¢ and that 6 is defined by y' = |Bf(¢)| pwe ® 6. The rest follows with the
fact that p,f (X, &) = fowe(A ), where wy is the tempered diffeomorphism from Lemma

3.3.10| and the canonical Gelfand triple isomorphism
G(Ry, 1ir) ® G(3°,0) = G(Ry x 3°, fir ®0) .
]

We also proved that the restriction of the Haar measure p’ to gf is actually a tempered
measure with respect to our chosen polynomial structure.
Now we are ready to define Gelfand triples, with respect to which we get a convenient

theory for the group Fourier transform.
Definition 3.3.12. We define the following reduced Schwartz space
Z(G) ={p e L (G) | [Rxw>d(\z)— pAz+2)] € LR, S (w))}

for any choice z € 3\ {0}, equipped with the subspace topology in .#(G), and the corre-
sponding Gelfand triple

G.(G, ) = ((G), L*(G, n), 7/(G)),

equipped with the real structure given by the pointwise complex conjugation. Furthermore,
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we define the Gelfand triple

for each m € SI/Z5(G).

That G.(G, u) is indeed a Gelfand triple can be seen by using Proposition .
We use any linear isomorphism R ~ 3 to define B.(3;.'(w)). Then we may see, since
L*(G,p) C B.(3.7"(w)) by Lemma that the space L?(G,p) is embedded into
S!(G) = S!(3;S'(w)). This embedding is continuous, since L*(G, u) — '(G) is con-
tinuous. Of course, the canonical map of .%,(G) into L*(G, i) is a continuous embedding
as well. Now the Hahn-Banach theorem implies that both embeddings are also dense, for
they are dual to each other.

To be more precise, if 7 (G)° is the polar of .7, (G) in L*(G, u) ~ L*(G, u)’, then it

is also the kernel of the map

11 H(G) = UG): [ [7:40)3 ¢ [ Fodula).
But this map has a trivial kernel by Lemma [2.3.12] Hence .7.(G)° = {0} and .#,(G) is
dense in L*(G, ). Now denote by Y the image of L*(G,u) in #/(G). Since .7 (G) is
reflexive, Y° can be identified with the kernel of the embedding j: .Z(G) — L*(G, p),
which is trivial. Hence Y C .#/(G) is dense as well.
Note that G.(G, i) does not depend on the choice of 7 € SI/Zy(G) or z € 3. The
Gelfand triple G(R*; 7) does depend on 7 € SI/Z,(G) but each different choice of 7 leads

to an isomorphic Gelfand triple as the theorem below shows.

Theorem 3.3.13. Let SI/Zx(G) > 7 ~ ( € w* and let P, = 1-P_ € L(S(RX)) be
the projection of . (R*) onto .#(R,) along .#(R_). Let the Fourier transform in
w-picture, F, be defined by

Fri=90p_0gppoFy,

where Dy is the Gelfand triple isomorphism onto G(R*; ) defined by
Op.p =Py @opp+ P @oprp for e L (RY)&LE ) E(n)).
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Then F is a Gelfand triple isomorphism
Fr: GG, ) = GR™; ).

Proof. The proof essentially writes itself by now and is a summary of previous statements.

The euclidean Fourier transform Fj is a Gelfand triple isomorphism between G, (G, p)
and G(g*, i) ~ G(w™, | B (0)| o) ® G(3°,0) by Lemma[2.3.9) where we choose the Haar
measures i, and 6 such that p' = [Ff ()| pwe ® 0 and p,e is induced by the Lebesgue
measure d\ via the map R 3> A — M\ € w°.

By Lemma the pull back g, is a Gelfand triple isomorphism between G(g*, py)
and G(R*, [ir) ® G(3°,0).

For the last step we just need to use the canonical Gelfand triple isomorphism
Q(Rxaﬁw) = Q(RJH //Lr) D gGR*a ﬁﬂ')

and the fact that op. and op- are Gelfand triple isomorphisms by Theorem |3.2.2] and
Definition|3.3.2 Thus Op, is a Gelfand triple isomorphism between G(R*, 7i,) @G (3°, f45°)
and G(R*; ). O

Let us now discuss a few properties of .Z(G) and #(R*; 7). Their duals can be
identified with quotient spaces, in particular
Z(G) = 7(G)/(#(3) © 7 (w)) and
SR m) = S (R*) @ L(E(m); £(7)) /(& (R) @ L(E(w); & (),
by Lemma and Corollary 2.3.11] By employing Proposition [2.3.13] we can identify

a large space of distributions on G resp. R that are embedded into ./ (G) resp. %" (R*; 7).

Le. if we define #'(3;.%'(w)) by using any isomorphism R ~ 3, then
B (3,7 (w)) = .Z(G) and @/(R; L(&(m),E(w))) = S (R*; 7).

We may, for example, identify LP(G, ), for p € [1,00), and also . (G) as a subspaces
of #'(3;.7"(w)) and the Bochner-Lebesgue spaces LP(R; £(H,)), for p € (1, 00], and also
L (R; L(&E(m)'; &(m))) as subspaces of P (R: L(E(m), & (1))).

The definition of .(R*;7) and ./(R*; 7) enables us to define a multiplication with

a large class of smooth functions via Theorem |1.2.11

155



Proposition 3.3.14. For any 7 € SI/Z(G), the multiplications

OMR* L(E(m))) X F(R*;m) = L (R 7): (f,0) = fo
OMm(R™; L(E(1))) x LS (R m) = L (R 7): (f,0) = @ f,

defined via
(fe)A) = FA) ep(A) and (o f)(A) = @(X)o f(N)

for any A € R*, are hypocontinuous bilinear maps.

Proof. We just need show that we may apply Proposition . The spaces &(m) and
&(m)" are barrelled, bornological and complete since & (7) ~ .(R"™). Thus the composi-
tions of operators

L(&E(m)) x L(E(m); E () = L(E(w);E(m)): (A,B) — AB

L(E(m)) x L(E(n);8 (7)) = L(E(n);8(n)): (A,B)— BA
are hypocontinuous by Lemma [1.2.10| and all involved spaces are complete. Also, the
multiplication of slowly increasing functions and rapidly decreasing functions is hypocon-
tinuous. This follows directly from the identification of &y (R*) with a closed (topological)
subspace of L(.#(R*)). Now we just need to remind ourselves that ./(R*; ) is a tensor

product of nuclear Fréchet spaces. Thus we may apply Proposition [2.1.10] O

Now, we will prove the analogous result for the multiplication with the operator valued
tempered distributions .’/ (R*; 7). As we used in the proof above, &() is reflexive for
any 7 € SI/Z(G). Thus, by using the adjoint in the sense of Definition with respect

to the Gelfand triple Go,(7), we get the two antilinear homeomorphisms
L(&(m)d> A A" € L(E(1)') and L(& (7)) 2 B B* € L(&()).

Denote for f in Oy(R*; L(&(m))) or in O (R*; L(&(m)")) the operator valued function
f*(A) :== f(A)*. Then we may define multiplications on .&/(R*; ) by

(0, f0) = (f"p,0) and (p,09):=(pg" ¢)

for all ¢ € ' (R*;7) and ¢ € L (R*;7), if we choose g € Oy(R*; L(&(7))) and if we
choose f € On(R*; L(&(m)")). We get the following corollary.
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Corollary 3.3.15. For any w € SI/Z(G), the multiplications
Ou(R* L(E(m))) x SR 7m) = L (R 7): (f,0) = [,
Ou(R* L(E(T))) x S (R 1) = L (R 7): (f,0) = ¢ f
are hypocontinuous.

Proof. This follows directly from the definition of the multiplication and the fact that

the dual pairing is hypocontinuous. Equivalently, we could also directly employ Theorem

211 O

Let us now relate the Fourier transform in 7 picture with the group Fourier transform.
Lemma 3.3.16. Suppose w® 3 ¢ ~ m € SI/Z(G), then
et BAG, 1) — L*(R*, Jin; HS(H,))  defined by o+ [A— o(my)],
1s unitary with j.Fg = Fr.

Proof. As noted before Op,_, o, and F, are unitary, so F, is unitary from L*(G, p) onto
L2(R*, [ix) @u HS(Hx)).
The map R* 3 A = 7 € Irrg, (G) is measurable, since A\ — (7ma(z)h, ') is

continuous from R* to C for all h,h' € H, and z € G. For any o € B%(G, i) define
Jao: R = HS(Hy): A o(my).

Then A+ (jro(A)h, h'), is measurable for all h, " € H,. Operators of the form

J

hes > hi(h By)y,  for by b € H,
J

are dense in the Hilbert space HS(H), thus j,o is weakly measurable, i.e. the map
Yo jro: R* — C is measurable for each ¢ € HS(H,)'. Since HS(H,) is separable, we
may use the Pettis Measurability Theorem [60), Proposition 2.15] on j,o, which ensures

that jro is Jiz-measurable.

By Proposition and 7i(G \ Gyen) = 0, we have

o/l 523, = 0l L2 aesps ey »
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and thus
jn: BXG, i) = L*(R*, fin; HS(H.,))

is a well-defined isometric operator. Now Proposition [3.3.9| ensures that j,.Fg = F, and

thus j, is surjective. O

~

Let us define .77 (Ggen) := j, . (R*; ) with the corresponding Fréchet topology trans-

ported via j-t. The space . (Gygey) is invariant under under taking pointwise adjoints,

because . (R*; ) is invariant under this operation. This way we get a Gelfand triple

~

G(Gyen: 1) = (7 (Gyen), BA(G, i), " (Gyen)

~

equipped with the real structure defined by Co(m) := o(m)* for 0 € .7 (Ggen). We denote

the inclusion of . (Gge) into .#(G) by jo and the inclusion of .7, (G) into .7 (G) by j..

Proposition 3.3.17. The Fourier transform Fg [’;*(%;’") extends into a Gelfand triple

1somorphism

Fou: GGy 1) = G(Gen, ) -

We have the commutative diagrams

Gy 2o BG.h)  F6) 2 Z(E) S(G) —=— S (6)
7, Z ~|jn ]*]\C ClJo gt l]é
LARY 1) A(G) 2 S (Cyen) SUC) T ' (Cgen)
3 A ST o
S (R*; ) S(R*; )

in which j, and j are surjective and open.

Proof. Lemma implies the L2-diagram. The commutative diagram for the L*-
spaces implies the commutative diagram for the spaces of rapidly decreasing functions.
Together, the two diagrams imply that F¢ . is a well-defined Gelfand triples isomorphism.
Also, by duality, we get the commutative diagram for the tempered distributions.

By Corollary the map j. can be seen as the quotient map
L(G) = Z(G) = 7(G)/[(Z(3) ® ' (w)),
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which is an open map. This also implies that j is surjective and open. O

Also of interest is the Fourier transform in w-picture defined on complex measures. If
we denote by M(G) the space of complex Borel measures on G, equipped with the norm

given by the total variation ||| s c) == |1|(G) for p € M(G), then

M(G) = .7(G): v [(pl—>/Gg0 du}

defines a continuous embedding. For any v € M(G), ¢ € (G) and € > 0 there is a
compact K C G with |[v|(G\ K) < ¢ and sup,cg\ i |¢(7)| < e. Now for any £ € 3 and for
h > 0 big enough, we have K + hé N K = () and hence

/ oz + 1)) dv(a)
G

< ellelloe + ellvllar) -
Thus M(G) C #'(3;.%"(w)) via the standard embedding
M(G) ¢ /' (G) ~ .7 (3) & . (w).

In this sense, we can see M (G) as a subspace of .7/(G).
As common, we may calculate the group Fourier transform for each element v € M(G)
by
Fov(m) =n(v) = /(;r(:c) dv(z) for m € Irr(G),

in which the integral exists in £,(H,). Furthermore, we can see that Fgv € BOO(@, ).

Corollary 3.3.18. The Fourier transform in w-picture restricts to a continuous map

Fr: M(G) = €(R*; L(Hy)) with inequality — sup || Frv(N)|lcimny < |Vl v
AER*

for allv € M(G).

Proof. The inequality follows at once by the integral defining Fgr(my) for A € R*. Ap-

plying the dominated convergence theorem to
| Frv(An)h — Frv(N)h| g, < / lmx, (x)h — 7mx(2)h|| g, dlv|(z), h,h € H,,
G

for a convergent sequence (\,) C R*, where lim, ,,, A, = A, results in the continuity

property. ]
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Since wy: R* X 3° = g%, we(A, &) = 0,(€ + &) is a tempered diffeomorphism, we can
also see g, as an isomorphism between Oy(g*) and Oy (R* x 3°) resp. between .7#(g*)
and . (R* x 3°). However, in order to examine the Fourier image on .7 (G), it is even
better to consider mixed spaces. We equip w* = R* - ¢ with the polynomial structure
transported from R*. The space Oy(w*) ® .7 (3°) can be seen as a subspace of Oy (g*).
Since for any polynomial manifold M with tempered measure v we have the continuous

inclusion
Or(M) = 7' (M): [ [+ /M fo dvl,

we can consider Oy(w*;.7(3°)) as a subspace of .7"(g*) ~ . (w*) ®.%"(3°) and we cam
consider Oy (R*) ® .7 (3°) as a subspace of .7/(R*) ® .7(3°).

Lemma 3.3.19. If we use the identifications above, the Gelfand-Triple isomorphism gy

restricts to a linear homeomorphism
P On(w*;.7(5%) = On(R*) ® 7 (5°).

Proof. We identify w* ~ R* and 3° ~ R?" and 3° ~ R?" via our basis of eigenvectors to
the dilations. It is enough to consider the R, -part, since Oy (R*) = Oy (R,) & Ou(R2).
With these adjustments, we need to exchange ¢, by the map @, where

og(\,z) = g(A™, (N9x;)3m,).

First of all, we realize that A — A" is a tempered diffeomorphism. Hence T' € L(Oy(R,))
defined by T¥ () := 1(A\") is a linear homeomorphism.

Now let us define linear isomorphisms fx(z) = (A%/%0z;)", on R*". Then it is easy to
see that both A — fy and A +— f, ! define functions in Oy (R, ; £(R?")) with values in the
invertible matrices. We denote by F) the corresponding operator Fy¢ := @ o f) and set
F: X Fyresp. F71: A FY !. A standard calculation shows that for any continuous

k+2

seminorm p on L£((R?")) and any k € Ny there is a polynomial ¢ on £(R?*")**2 such

that
POYFY) < q(f7 FuOafrs -5 O f).
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Of course, an analogous inequality is valid for F'~!. Hence, we may conclude
F,F~' € Ou(Ry; L(7(R™))).

Here F~! is indeed the inverse of F' in the algebra Oy (R, ; £(#(R?"))). Due to Theorem
1.2.11], we know that the multiplication

Ou(Ry; S (R™M)) 5 g Fg € Ou(Ry) @ S (R™),  (Fg)(A ) = Ha(g(\, —))(2),

is continuous and in fact a linear homeomorphism.

Because pg = (T'® 1)(F g), we can conclude that g is an isomorphism. O

Using the above lemma, we may now prove the following continuity property for the

Fourier transform in 7-picture on .7 (G).
Proposition 3.3.20. The Fourier transform in m-picture restricts to a continuous map
Fr: L(G) = Ou(R™) @ L(E(7), & ().
Proof. This statement follows from the continuity of the maps
S (6) T S (g) = Oulw*s 7 (5°)) 2 Ou(R) & .7(5°),

in which we use the continuous inclusion .#(w°) C Oy (w”™), and also from the continuity

of
Op, = P ®@op, + P- @ op: On(R*) & .7(3°) = Ou(R*) @ L(E (), E(m)),

in which Py f(x):=0 for £ < 0 and Py f(z) = f(x) for £z > 0. O

3.4 Alternative Gelfand triples for the Kohn-Nirenberg

quantization on homogeneous Lie groups

We will keep using Convention for this section.

161



We already introduced the Kohn-Nirenberg quantization as a Gelfand triple isomor-
phism
Opg: G(G. 1) = G(G. 7).
We will now introduce the Gelfand triples G.(G, 1) and G(R*; 7) into this context. This
approach will lend itself to prove the already mentioned formula for the symbol motivated
by the compact case.
In [24] the term symbolis used for a map

o:GxIm(G) - |J {T|T: &) — Hy}
welrr(G)

that fulfils the following two properties.
(i) There exist n,m € Z such that
G — B®(G,7i): z — [r — n(1+R)"o(z,0)r(1+R)"]
is Well—deﬁnedﬂ and continuous in x for a Rockland operatorﬁ R € Diff (G).
(ii) For each 7 € Irr(G) and each v € &(7) the map
G— Hy:x—o(x,m)v

is smooth and for any P € Diff(G) the corresponding derivatives (x,7) — Pyo(z, )

fulfil (i) for some m,n € Z.

Ruzhansky and Fischer use such symbols ¢ in [24] in order to define the Kohn-
Nirenberg quantization by the convergent integral

Opg(o)p(x) = /@TI[TF(ZL‘) a(x,m) ()] du([x]), for p € L(G),z €G. (3.4.6)

Note that an equation analogous to (3.4.6) can be recovered rather quickly from
Opg = Kg'Te '(1®@ Fg') for operators in HS(L*(G, i1)). For Opg(a) € HS(L*(G, 1)), we
have a € L*(G, 1) &y B2(G, 7i) and

(Op(a)f,9) 126 = /A / Trfa(z, 7) (1 ® Feinv)Teg ® f)(z, 7)) du(z) di([r))
GJG
6See Definition 1.8.13, Definition 5.1.21 and Definition 5.1.34 in [24]

"In the sense that each operator 7(I+R)™o(z,0)m(I+R)"™ extends to an operator in £(H,).
8See Definition 4.1.2, Definition 4.4.2 and Definition 5.1.12 in [24]
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for all f,g € L*(G, p), where inv f(z) := f(—z) and (-, ")12(G, 1S the inner product in
L*(G, p). Because

Trfa(z, 7) (1 ® Fg inv)Teg @ f)(z, ) ) (9(x) (Fe Ra(w) " inv f)(m)) ]
=g(x) T [a( ) (Feinv f) ()" 7(z)]

= g(x) Trla(z, 7) Fo f(r) n(z)]

|—|

for almost all (z,[n]) € G x @, we may write the operator Opg(a) as

Opg(a)p = / Tefr(—) a(—, m) Fef(x)] di((n)), for f € LG, ),

where the integral converges in L*(G, ).

For other spaces of operators we will approach this from a different direction. We
will first reinterpret the Kohn-Nirenberg quantization as a Gelfand-triple isomorphism
Op,, involving the Gelfand triples G.(G, ) and G(R*;7) for m € SI/Zy(G). Afterwards
we prove the formula Op,*(A)(x,7) = 7(x)*(A ® I)(x(—))(z) and show we also get a
representation corresponding to .

™

3.4.1 The Kohn-Nirenberg quantization for operators defined
on .7,(G)
We start by determining in what way 7g is a Gelfand triple isomorphism in this context.

Although 7 cannot be seen as a map from G,(G, u) ® G.(G, u) onto itself, it defined a
map from G(G, 1) ® G.(G, ) onto itself.

Lemma 3.4.1. The map Tg [ 82;5 3 extends to a Gelfand triple isomorphism

Proof. Suppose ¢ € .7 (G)®.%(G) and ¢ € Z(G), then for all z € G and y € w

/q(Z)so(I, (=2 —y))dp,(2) = /q((—fﬂ)(—z —y))e(r, 2)dpy(2) =0

g 3
Because [z — q((—2)(—2z —y)] € Z(3). Hence Tep € .7(G) ®.7.(G). Analogously we
may prove that 75 ' maps . (G) ® .7, (G) onto itself. Because .7 (G) @ .7, (G) carries the
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subspace topology in . (G) ® .%(G), the continuity of Tg and 75 ' on 7 (G) ® Z.(G) is

evident. Since also

wmdmw):/ o T (e ® ),

GxG GxG

for all p, 9 € (G x G), we may extend Tg [igg;gigg; to a Gelfand triple isomorphism.
O

Now a direct conclusion is the formulation of the Kohn-Nirenberg quantization as
a Gelfand triple isomorphism that incorporates the new Gelfand triples G,(G, ) and
G(R*;m).

Proposition 3.4.2. Let K¢, be the kernel map
Kex: L(G(G, 1), G(G, p)) = G(G, p) @ Gu(G, ) -
The Kohn-Nirenberg quantization in m-picture
Op, = K5\ Tol (1@ Fo1): GG, 1) @ GRS 7) — L(G.(G, 1), G(G, p)),
15 a Gelfand triple isomorphism.

As for the Fourier transformation in m-picture, we may relate Op, to the original

Kohn-Nirenberg quantization Opg via the diagrams on page [I58]

3.4.2 The integral formula

Representations in SI/Zy(7) can also be seen as slowly increasing functions. This is

integral to our approach and will be proven in the proposition following the next lemma.

Lemma 3.4.3. Suppose E is a complete locally convex space and f € Ou(G; E) and let
F(\z):= f(oxz). Then F € O(Ry x G; E).

Proof. We only consider the case R,. It is enough to show that for each continuous
seminorm p on F, each k € Ny each P € Diff »(G) there is a polynomial ¢ € Z(G) and
[ > 0, for which

POLPF(\ 7)) < (1+ A + N[ )q().
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We realize that there are polynomial differential operators P, such that

KPP\ x) =Y X(P,f)(0x),
veER

as a finite linear combination. Since each p(P,f) is bounded by a polynomial g,, we may

find polynomials ¢, such that

POXPF(N2)) <D NG (0aa) = ) [\ °gy ().

veER vER

This concludes the proof. O

Proposition 3.4.4. If 7 € SI/Zy(G), then the operator valued function (z,\) — m\(z)
is both in O\ (R* x G; L(& (1)) and in Oy(R* x G; L(&(7)'))

Proof. By Lemma it is enough to show that x +— 7(z) is slowly increasing. For this
purpose we choose an equivalent representation that is more easily understood. There is

a representation o ~ m on H, = L*(R") such that &(c) = (R") and

J(ﬂ?)f(t) _ e2ﬂ'if(a(x,t))f($—1 . t)

where £ is a linear functional on a subalgebra m of g, a: G x R® — m is polynomial and
G xR" > (z,t) — x -t € R" is a polynomial action of G on R" by [56] and [16], Corollary
4.1.2]. Because (z,t) — z~!' -t is polynomial, we may represent the action of G on R" by

a linear combination

:Zsk,j(m)ukvj(t) e, forz e G, te R",
jik

where (e;); is the standard basis on R™ and sy, j, u, ; are polynomials. Thus, we also have
ICLE)

For the same reason, there are polynomials ¢;, ¢;x on G, rj, 7, on R™ such that

(a7 t) = quk 2) T k(t) (O f) (@™ - 1)
—Z%k 2) (e 1) (Buf) (™" - ).
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Hence, for all a, f € Ny we find operators A;, € L(.(R™)) and polynomials v, € Z(G)
such that

P00 ka x)(Arf)(t)

as a finite linear combination.
The topology on L£(.#(R™)) is induced by the seminorms
p: A supsup [tPOPAf(t)], B C .#(R") bounded, a, 3 € Nj.
feB teRn
Now if L € Diff,(G) is any left invariant differential operator on G and p is a seminorm

as above, we get

)) <D ok(@)sup sup o () (Axo (L) f)(t)]

feB teRn

— Z v (z) sup sup |(Aro (L) f)(2)].

fEB teRn
The right-hand side of the above inequality is a sum of continuous seminorms times
polynomials, since o(L) € L(.#(R")). Thus = +— o(x) is slowly increasing, because
Diff »(G) = span g g DiffL(G) by [16, Lemma A.2.2]. Due to 7 ~ o the map = — ()
is slowly increasing, too. Now (z, \) — my(z) is slowly increasing with values in L£(&())
due to Lemma [3.4.3] We finish the proof by remarking that £(&(r)) and £(&()’) are
antilinearly homeomorphic by the adjoint map and my(z)* = m\(2~!). This implies that

1

7 is also slowly increasing with values in £(& (7)), since x + 2~ is polynomial. O

With the help of the above proposition, we want to write the inverse Fourier transform
as an integral, which converges in @y;(G). For this purpose, we need to explain a small
fact about the dual space &};(G). Denote by Dy, Do, ... the directional derivative to any
basis vy, v, ... of g. Each continuous linear functional on Oy (g) can be represented by

some element in

OL(G) = spanc{D*f | a € No™® and f € €(G) where f(z) = O(|z|~™), |z| — oo},
(3.4.7)
see [34, p. 130 of chapter 2|, if we use the dual pairing

(9. D“f) / [ (=D)%gdpu.



Here we say f(z) = O(|z|~>), |z| — oo, iff ¢f is a bounded function for any ¢ € Z(G).
The differential operators D%, a € Ngim(G) span the Z(G)-module Diffp(G). Since the
multiplication of rapidly decreasing functions with polynomials is continuous, we may
exchange D* with arbitrary P € Diff »(G) in the pairing above. I.e. each continuous

linear functional on Oy (G) has a representation in
spanc{Pf | P € Diff »(G) and f € €(G) where f(z) = O(|z|™>), || = oo},

with respect to the pairing
(9. Pf) = / fP'gdu,
G

where P! is the formal transpose of P defined by

/(Pt¢)¢du = / ePyYdu forall p,v € 2(G).
G G

Note that P — P* is a bijection from Diff »(G) resp. Diff,(G) onto itself.

By [16, Lemma A.2.2] the Z(G)-span of the left invariant differential operators
Diff;,(G) is equal to Diff »(G). Now let w',w? ... be the dual basis to vy, vy,... and
let X1, X5,... be the left invariant vector fields associated to vy, vs,.... A quick calcu-
lation shows that for all ¢ € #/(G) and all j, k there exists a polynomial ¢ € Z(G)
with

w Xy = q ¢ + Xi(w’ ¢).
Of course, the set of functions f with f(x) = O(|z|~*°), |z| — oo, is invariant under the

multiplication with polynomials. In conclusion, we may represent the dual to &y(G) by
044(G) = spanc{Pf | P € Diff ,(G) and f € €(G) with f(x) = O(Jz|™>), |z| = oo}
Lemma 3.4.5. If p € .#(g) and w* > { ~ 7 € SI/Z(G), then the integral
o= [ Tlm() Fe] a7 ()
exists in Oy (G).

Proof. Let f € €(G) with f(z) = O(|z|~>), |z| — oo, let P € Diff(G) and let
¢ € .#(G). Then, f and P'p are L? functions and we may apply Plancherel for F;.
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Hence
0.P D) = [TPodu= [ Tlm() FAPON] ().

Since f € LY(G, ), we know that the integral that evaluates my(f) converges in L (H).

That means for each pair u,v € H, we have

(ma(f)" . 0) = / F@) (ma (), v) . dp).

Because Py € . (G), we have F(Pp)(\) = m\(P)ma(p) € L(E(7)',&(m)), which is a

nuclear operator on H, for each A € R*. Hence for each orthonormal basis (ex)reny C Hy

/GZ‘f ) (ma(x) TA(P) ma(w)er, ex) g, | dp(z)

keN

< fllzr @y Ima(P) ma(o)l| e,y < oo,

where || - || ;(m,) is the trace-norm on the space of nuclear operators on H,. Using Fubini

with respect to the counting measure and p results in

Tefma ()" Fo(Po) (V)] = / F@) Trlma () ma(P) ma ()] du(),

since f € LY(G,u). Naturally, we have my(x)m\(P) = P,m\(z). By the embedding
of L(&(m)',&(w)) into the nuclear operators N(H,), we may see Tr as a continuous
functional on L(&(7),&(m)). Because the operator valued function my(—)ma(p) is a

slowly increasing map from G to L(& (7)), & (7)), we get

Tr[ma(x) ma(P) ()] = P Tr[ma(x) ma(e)],
Tr[ma(=) ma(w)] € Om(G).

Finally we get

(o, P'T) /R/f P, Tr[m (2) m ()] dps(z) s
- [ (D) me)l P,

which completes the proof. O
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Let us now define

p, p* € OM(G) & Oy (RS &(T))

by p(z, ) := m\(z) and p*(\, x) := my(a~!) for some fixed m € SI/Z,(G). With Lemma
1.2.4] we already proved the continuity of the map

L(OW(G)) = L(OM(G) @ On(R™; E(7))), A~ AR 1.
Of course, the evaluation map
L(Ou(G) ® On(R*;E(m))) = Om(G) © Ou(R*; 8 (), T = T(p)

is continuous as well. Finally, since the multiplication in Oy (G x R*) is continuous [65,
p. 248] and because of Proposition [2.1.10 we can construct a hypocontinuous multipli-
cation on O\ (G x R*; L(&(m))) given by the pointwise operator composition. Using the

canonical linear homeomorphism
Oum(G x R L(E(m))) = Ou(G) ® Ou(R*; (7))
we get a continuous multiplication map
On(G) @ O(R*; 8(1)) = On(G) @ O(R*: E(7)): F s p* - F,
where (p* - F)(z,\) = p*(x,\) o F(x,\).
Finally, we define the continuous map S by
S: L(OM(G)) = Oun(G x R*; L(E(m))), A p*- (AR 1)(p). (3.4.8)

Now this map looks exactly like the inverse Kohn-Nirenberg quantization on compact Lie
groups X from [59]. Namely, for any B € £(.(X)) the unique Kohn-Nirenberg symbol b
with B = Opy(b), evaluated at the irreducible unitary representation £ € Irr(X), is given

by b(—,&) = &(=)" - (BRI)(§) € S (X; L(He)).

Before proving that S coincides with Op, ', we need a bit of preparation.
Lemma 3.4.6. Suppose a € ./'(G)® .7 (R*;7), then
p-ra=(1®F, inv)%ji(l ® F. Ya,
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where inv is the Gelfand triple isomorphism from G.(G, p) onto itself, defined by inv f(x) =
f(z™) for f € S(G), v € G.

Proof. First, we take a € .7(G) ® .7 (R*; 7). Then we just have
(1@ F ) (p-a)(z,y) = (1® F a(z,yr) = (1®inv)Tg (1® Fg'a(z,y),

by the integral formula for the inverse Fourier transform from Lemma[3.4.5] Now the rest

simply follows due to the continuity of the involved maps. O

Lemma 3.4.7. Define x,(&) := ®™¢®) for v € g and £ € ¢'. Then

(D2 Xo) () = ma(2)
for any A € R* and SI/Z,x(G) > m ~ { € w*.

Proof. Let © € G and let €, be the functional on .%(G) defined by €,: ¢ — @(z). By
Corollary [3.3.18 we have

Freo € C(R%: Ly(H,)) with Fo(en)(\) = ma(2)

for any A € R*. Also we have fg’lsx = Xz. Thus

(Dpwpﬁ X:c) (/\) = (]:ng_lX:v) (A) - WA(I) :

Lemma 3.4.8. The embedding 7.(G) — Ou(G) is continuous and has dense range.

Proof. The multiplication on .#(G) is a continuous bilinear map. This implies the conti-
nuity of the canonical embedding 7: .7, (G) — On(G), since .7, (G) carries the subspace
topology in .(G). Now consider the dual map

" Oy(G) — Z(G), where (o, 7'¢) = (p,¢), forall ¢ € 7(G).

That this is indeed an embedding, can be seen from Proposition [2.3.13| and the represen-
tation (3.4.7) of the dual space 0};(G). By the Hahn-Banach theorem the operator 7 has

dense image. O]
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In the Lemma above we saw that .%.(G) < O\ (G) has dense range. Naturally, we
also have Ou(G) — ' (G), Y (G) — Y'(G) and Oy(R*) — ' (R*), thus we get
embeddings

L(O(G); Z(G)) — L(A(G),7(G)),
Z(G)® OuR* L(E(7))) — S(G)® S (R*;T))

for 7 (G) € {L(G), Om(G)}. Note that we can exchange £(&(m)) with £(&(m)") in the
paragraph above. We can even go one step further. For A € L(O\(G); #(G)) we can
still define the map S, since .(G) — Oum(G). However, we are lacking the tools to
check whether S(A) € .7 (G) ® Oy (R*; L(&£(7))) or not, since we cannot apply Theorem
1.2.11] or Theorem [[.2.12] We run into the same problem if we define S for operators
A€ L(Ou(G); 7(G)).

With the above embeddings, we finally prove that the map S does indeed reproduce
the Kohn-Nirenberg symbol.

Theorem 3.4.9. Let #(G) € {7 (G), Om(G)). The inverse of the Kohn-Nirenberg quan-

tization in mw-picture defines a continuous map
Op;': L(OW(G); ZF(G)) = Z(G) @ On(R*; L(E(7)).

For any A € L(On(G), Z(G)) the equality a = Op,;*(A) = p* - (A® 1)(p) is valid.

Furthermore,
Ap= [ Tim(-)al- N FpW] dB3) for o€ #(G)
RX
in which the integral ezists in F(G).

Proof. As in (3.4.8)), we define S(A) := p*- (A®1)(p), where the multiplication is defined

via the hypocontinuous multiplication
Z(G) @ O(R*; L(E(1)) x OM(G) @ O(R™; L(E (7)) = Om(G) @ O (R™; L(E (7)) .

Via the argumentation leading up to (3.4.8]), we get the continuity of S.
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Now we will prove the integral formula for A € £(O\(G); Z(G)). From Lemma [3.4.5]
we know that for ¢ € . (G)

Ap=A /(;Tr[m(—)m(w)] dfix(A) I/GA(TI"[M(—)M(SO)]) dix(A),

where the integral converges in .#(G). Due to Proposition [3.3.20] and Proposition m,

we know that
(=) mlp) € On(G) & L(E(n)', & ().

The trace operator Tr, restricted from the nuclear operators on H,, is a continuous
functional on L(&(m)’, &(m)), so we may use the tensor product structure of the above

expression to get
A(Trlma(=) ma(@)]) = (A Tr) (ma(=) map)) = (1@ Tr)(A ® 1) (m(=) ma())
for each A € R*. Furthermore,
(A@)(ma(=) malp) = ma - 75 - (A@ 1)(m) - malep),

in which the multiplication is defined pointwise by the multiplication in £(&(7)). Hence,

we can represent A ¢ by the integral

Ap= [ Tim(o a0 mle)] a7 )

with a := S(A).
Now it is left to check that indeed A = Op,(a). First of all, due to Lemma [3.4.6]

7?ij(1 RF Na=(1®invF H(p-a).

We define the function x(z, &) := ™€) for £ € g/, x € g, then x € Oy(g x g*). Because
(1®Op.p0)x(z,\) = m(x) = p(x, A), due to Lemma [3.4.7, and F = Op_ ppF,, we know
that

(leinv F ) (A®1)(p) = (Ao inv F, ) (x) = (A® Fy)(X).

We choose arbitrary ¢ € .#(g) and ¢ € .7, (G). The integral
o= [ X8 Fepl© wi(©)
g/
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converges in Oy (g). Hence,

(A Fy)x, v @¢) = (AD1)x, ¥ ® Fp)
— [ (AG(=19).0) Fepl€) di6)
= (4p,¥).

Combining the calculations above implies
Ko A =Tg (1@ F ),
for the kernel map

,C(Gn* : ‘C(g* (G’ M); Q(Gv M)) — Q(G, fj’) ® g*(G7 M) )
i.e. Op,'(A) = S(A). O

We can even go one step further in the description of the Kohn-Nirenberg symbol.
Namely, we can describe the symbol of operators in £L(0\(G);.7'(G)) in a similar manner

as above.

Corollary 3.4.10. Suppose A € L(O(G); 7' (G)), then the inverse to the Kohn-Nirenberg

in w-picture can be expressed by
Op;'(A) =p"- (A®T)(p),

i which the multiplication is defined via Theorem as the vector valued bilinear

multiplication
Om(G) @ O(R* L(E (7)) x L' (G) @ .S (R ;7) = S (G) @ ' (R*; 7).

Proof. The operator valued functions p, p* are in Oy(G) @ Oy (R*; L(&(7))). The op-
erator A ® I maps p into ' (G) @ O\(R*; L(&(r)'), which in turn is embedded into
S (G) ® .#'(R*; 7). This induces a continuous map

L(Ou(G); 7' (G)) - S (G) @ S (R 7): A= (A1) (p).

173



Moreover, the composition with the multiplication A — p* - (A ® I)(p) is continuous and
well-defined by Theorem [1.2.12]

Now we use the continuity of Op,' from L(Ou(G);.'(G)) — L(Z(G);.7'(G))
into /'(G) ® &'(R*; 7). The space .Z(0Onm(G)) is dense in L(Ou(G);.7'(G)) and for
all operators A € .Z(0y(G)) the expression Op,'(A) = p* - (A ® I)(p) holds with the
multiplication defined in Oy (G) ® Oy (R*; L(&(x))). Since the multiplication commutes
with the embedding of the left-hand side into .#’(G) ®@ .%'(R*; ), the formula for the
symbol Op; ' (A4) = p* - (A®1)(p) holds for all A € L(OW(G); 7' (G)). O
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Chapter 4

Operator spaces characterized by

ultradifferentiable group actions

For any locally convex representation (7, E') on a Lie group G we will define a correspond-

ing locally convex representation (Ad,, L(E)) by
Ad(2)T :==7w(x) o T om(z)”! for T € L(E),z€G.

Note that even for admissible 7 the representation Ad, might not be admissible. But
of course Ady ¢ (aq,) is admissible in any case. But if 7 is admissible, then Ad, is still
locally equicontinuous, i.e. €' (Ad,) carries the subspace topology with respect to L(FE).

The spaces of ultradifferentiable vectors é"g\/l](w), for frames D C Diff (G), are char-

acterized via the decay of the family of vectors
m(DYe = (Dyy)m(Dyy)m( Dy, )e, a € Sgime

in £. This implies that the ultradifferentiable vectors the representation Ad,, i.e. the
ultradifferentiable operators, are characterized by the decay and existence of the family

of higher order commutators

AdW(Da)T = AdW(DOB) AdW(DaQ) AdW(Dm)T
= ... [7(Day), [7(Da,), [7(Dga,), T)]] ..., a € Sama,

in L(E).
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4.1 Operator spaces defined by adjoint representa-
tions

The operator spaces .# (Ad,) often have very convenient properties. Most notably, con-
tinuous multiplications between .#(G) and other € (G)-function spaces imply mapping

properties of the operators in % (Ad,).

Lemma 4.1.1. Suppose Z (G), 9(G) and 7 (G) are complete € (G)-function spaces with
continuous multiplication F (G) x 4(G) — H(G) such that .Z (G) is nuclear. Suppose
furthermore (E,m) is a bornologic, complete locally convex representation and that either

E or 9(G) has the approximation property. Then the restriction map
. ()
F(Ad;) = LY (), (7)) T—T Lj(ﬂ)

18 well-defined and continuous. Moreover, if the right translation R acts as an admissible

representation on 4(G) and S (G), then for each T € F(Ad,) the vector valued map
G — LY (1), H(7)): x> o(x) Tw(x) ™,
in which o(z) = 7(x) [jggg and w(z) = 7(x) [gg:;, is continuous

Proof. Let us denote by ev: L(E) x E — E the evaluation map ev(T,e) = Te. Since E
is both bornologic and complete, it is barrelled by [36], Satz 7.14]. Hence ev is a hypocon-
tinuous bilinear map as described in Lemma [1.2.10[ Furthermore, £(E) is complete by
[44], §39.6 (4)]. Hence the bilinear map

ev: Z(M; Ly(F)) x Y (M E) — (M E): ev(T,e)(x) :=ev(T(x),e(x)) for x € G

is well-defined and hypocontinuous by Proposition [2.1.10, Of course this map pulls back

to a hypcontinuous bilinear map
ev: F(Ad,) x Y (m) = H(m),
which is also a restriction of ev, i.e.
ev(Ad, T,mv)=nTv=mnev(T,v) =7 ev(T,v) for T € #(Ad,), ve Y (m).
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Now the continuity of T +— T [‘ZS) follows immediately. Moreover, if Ry ) and
R | 7() are admissible representations, then o and w are admissible representations by
Lemma [2.4.3] (iii) and the families of operators (w(y))yex and (o(y))yex are equicontinu-
ous for each compact neighbourhood K of . Thus we have w(y) == w(z) in L.(4 (1)),
o(y) L5 o(x) in L (A (7)) and

Yy—x

o(z)Sw(x) = o(y)Sw(y) = o(2)S(w(z) —w(y)) + (o(z) —o(y))Swly) — 0

in L.(Y(m); 5 (m)). O

Note that without additional requirements, the map 7" +— T [;fo) might not be

injective or it could even be trivial. Of course, whenever ¢4(m) is dense in E, we get an
embedding.

If we want to prove continuity on Sobolev spaces defined by inductive sequences, the
above lemma is not directly applicable. In these cases the following lemma will bridge

that gap.

Lemma 4.1.2. Let G be a Lie group, let (m, E) be a locally convex representation on
Fréchet space E. Furthermore, let (A, <) and (B,<) be directed sets and let F,(G),
95(G) be €(G)-function spaces and Fréchet spaces for o € A and 5 € B. Suppose there
are continuous embeddings F.(G) RN 95(G), Z.(G) RN Fo(G) and 95(G) RN Fu(G)

foralla < o and B < B and
Jdoeca: B C Z, () is bounded <& Vgep: B C 9g(m) is bounded. (4.1.1)

Then
ﬁ(l@g@(ﬂ) RN E(@ %(w))

BeEB a€cA

1s a well-defined embedding. Furthermore, if

L= {T € c(%%(ﬂ))

equipped with the initial topology with respect to the restriction maps L— L(F(m)) then

L4 ﬁ(@%(ﬂ)

acA

Vaeca T [;ZEZ% 18 contmuous}

18 a continuous embedding.
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Proof. We define

F = liﬂﬁa(w) and G := l'&lﬁeB%fg(w).

acA
First of all, the assumptions of the lemma imply that F' = G in the sense of vector spaces.
Moreover, since F L Gis continuous, all subsets which are bounded on the left hand
side are also bounded on the right hand side. From follows that the bounded sets
on both sides coincide.

For each a € A the space .#,(7) can be identified with a closed subspace of the Fréchet
space .Z,(G) € E, so Z,(m) is Fréchet. Since F' is the inductive limit of Fréchet spaces,
it is bornological [61) II 8.2 Corollary 1]. A linear operator 7': F' — F'is called bounded
iff it maps bounded sets to bounded sets. Let us denote by B(F') the space of bounded
operators on F equipped with the topology of uniform convergence on bounded sets. Of
course any continuous operator is bounded. Since F' is bornological, the converse is true
[61), IT 8.3] and we have L£(F') = B(F) as locally convex spaces.

Finally, since the bounded sets in F' and G coincide, we have an embedding £(G) RN
B(F) = L(F).

Now we prove the continuity of the second embedding. If (7}); is a convergent net in
L, then (Tjx); converges in F uniformly in z € B for any bounded B C %, (7). Since
the bounded sets in F' and G coincide and due to (4.1.1]), a subset B C F' is bounded, iff

B C #,(r) is bounded for some a € A. Hence (7}); converges in L(F). O

Now, we will make a few general observations regarding the algebra structures of the

operator spaces defined by adjoint representations.

Definition 4.1.3. (i) Suppose A is an algebra with unit 14 and B C A is a subalgebra.
Then B is called spectrally invariant in A iff 14 € B and

Vrep: oa(T) = op(T).

(ii) If A is a Banach algebra with involution T +— T*, then B is called x-subalgebra

of A if it is a subalgebra of A invariant under the involution, i.e. B* = B.
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Note that B is spectrally invariant in A iff
B*=A"NB.

The following Lemma gives a criterion for the spectral invariance of 4(Ad,) in L(F)

for a €' (G)-function space ¢4(G).

Lemma 4.1.4. Let 9(G) be a €(G)-function space, let E be a Banach space and let

(E,7) be a locally convex representation.
(i) If 9(G) has property [(IC)] then
o1(m)(T) = 09 (a0 (T)
for all T € 9(Ad,).

(ii) If the pointwise complex conjugation defines a continuous map of 4(G) into itself,
if E is a Hilbert space and if n(x) is unitary for all x € G, then 9(Ad;) is a
x-subalgebra of L(E).

Proof. (i): Let T € 9(Ad,). Since FE is a Banach space, L(F) is locally m-convex.

First of all, we have 0,(g)(T) C 0g(ad,)(T), since ¥ (Ad,) is a subalgebra of L(F).

Now let A € C such that A\I =T is invertible in £(F). That means Ad,(z)(AI-T) =
Ad,(z)(AI—T) is invertible for each z € G and hence, due to[(IC)| AL =P 4q, (T') is invert-
ible in 4 (M; L(E)). The inverse (Al —=®aq (T))™' = Ppq, (A=T)7) is in $pq, L(E).
Hence (A\I—-T)"! € 4(Ad,). In conclusion oz(g)(T) = oy aa,)(T).

(ii): Let A: L(E) — L(E) with AT =T* for T € L(F) and put C € L(¥(G)) with

Cf(x):= f(z) for all x € G and f € ¥(G). Then C ¢ A defines a continuous antilinear
operator from ¢(G; L(E)) into itself as described in Section [L.1] Since

Ce A(Ad(—)T)(z) = (Adx(2)T)" = Ad.(x)(T")
for all T € 9 (Ad,) and x € G, the algebra ¥(Ad,) is a *-subalgebra of L(F). O

Closely related to spectral invariance of subalgebras B in a Banach algebra A is the

invariance under the holomorphic functional calculus [36, p. 330]. Let 14 be the unit
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element in A. Suppose T' € A and U C C is open with 04(T) C U. Since o4(T) is
compact, there is a bounded open set D with o4(T) C D C D C U and with smooth
boundary. If F': U — C is a holomorphic function, then the element F'(T') € A is defined
via the complex integral

F(T) = - /aD F(2) (214 —T)" dz,

= om

This integral does not depend on the choice of D.

Definition 4.1.5. Suppose A is a unital Banach algebra with unit 14 and B C A is
a subalgebra. We call B invariant under the holomorphic functional calculus
iff for all T € B, all open U D o4(T) and all holomorphic F: U — C we also have
F(T) € B.

Clearly, if B is invariant under the holomorphic functional calculus, then

1 1 1
1y= — (214 —T)'dz€B resp. T '=— —(z14—T)""dz € B,
27 oD 2m oD <

in which D is as above and T' € B resp. T' € A* N B. So this implies that subalgebras
B which are invariant under the holomorphic functional calculus are also spectrally in-
variant. For complete locally m-convex subalgebras B for which the embedding B LA

is continuous, the converse is true as well.

Lemma 4.1.6. Suppose F (G) is a complete nuclear € (G)-function space with|(IC)| and
(E,7) is a representation on a Banach space E. If #(G) is a locally m-convez algebra for
the pointwise multiplication, then F(Ad,) is invariant under the holomorphic functional

calculus in L(E).

Proof. Step 1: First we will reduce this situation to a more general context. Note that
F(G; L(E)) = F(G) ©x L(E),

since .#(G) is complete and nuclear. Hence .7 (G; L(F)) is a complete locally m-convex
algebra by Proposition The algebra .% (Ad,) can be seen as a closed subalgebra of
F(G; L(E)), so Z(Ad,) is a complete locally m-convex algebra. Furthermore, .#(Ad,)
is spectrally invariant in £(£) and the embedding .# (Ad,) — L(E) is continuous.
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Step 2: We will prove the following general statement: Suppose A is a unital Banach
algebra and B is a spectrally invariant, complete and locally m-convex subalgebra with
continuous embedding B L A. Then B is invariant under the holomorphic functional
calculus.

Since B is locally m-convex, there is a set of submultiplicative seminorms ©Q defines

the topology on B and which is directed via the preorder

a<qa < Yrepq(T) <q(T).

Suppose ||—|| is a submultiplicative continuous norm that defines the topology on A.

Then
P=Aq+Il-l1qe <}

defines a set of submultiplicative norms that defines the topology on B. Moreover, (P, <)
is a directed set. For each p € P denote by B, the completion of B in A with respect
to the norm p. Then for each p the embeddings B L B,, B, LA are continuous, B,
is a Banach algebra with unit 14 and B ~ T&npep B, by [61, Chapter II, 5.4]. This also
implies B = (1) .p By and we have 04(T) = op,(T) = o(T) for each T' € B. Now we
choose some T' € B. Let U D 04(T) be open, let F': U — C be holomorphic and let D

peEP

be bounded and open with 04(T") = op,(T) C D C D C U and with smooth boundary
0D. Then the integral
1

— F P B |
27 ) (2) (214 =T)"" dz

exists in all the Banach algebras B,, p € P, and A. Furthermore, in all cases this gives
us the same element F(T') € A, due to the continuous embeddings. Now we just use

F(T) € Nyep By = B. 0

Note that even if .#(G) does not have [(IC)] it is helpful to know that .#(G) is
locally m-convex. As noted in the proof above, if .%(G) is nuclear and locally m-convex
and if (7, F) is a representation on a Banach pace F, then .#(Ad,) is locally m-convex.
This implies that for any 7' € #(Ad,) and any entire function F': C — C we have
F(T) € #(Ad,). This follows from the convergence of the series

F(T):i@ﬁ“ in Z(Ad,).
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Now we will finally start to discuss operator spaces defined by ultradifferentiable
adjoint group actions. Note the proof below can be easily adapted to other €'(G)-function
spaces, due to the general nature of Lemma [4.1.1, Lemma and Lemma [£.1.6

Theorem 4.1.7. Suppose M, L and N are weight sequences, G is a Lie group and
(m, E) is a bornologic and complete locally convex representation with the approximation
property. Furthermore, let D C V,(G) be a frame, let [M] C [L] and let [M] C (N). Then
the map

RSy F(Ady) = L(F): T—T |} (4.1.2)

is well-defined and continuous for any choice from Table [{.1]

Z(G) F
&(G) @*(r), &()
EFNG) | €4 (n), &(x), EY (x), EY (), E i)

Table 4.1: Possible choices of locally convex spaces F' and .#(G) for Theorem

Proof. (i): Obviously, the multiplication &(G) x €*(G) — ¢*(G) and the multiplication
E(G) x &(G) — &(G) are continuous. Due to Proposition [2.2.15 and the continuous
embeddings

ENNG) = &G), ELG) = EJNG) and E5(G) = &Y

D,proj

(G),
the multiplication é"gM] (G) x9(G) — 4(G) is continuous for any choice of
9(G) € {£"(6), £(G), 65(G), 65 (G), 63, (G}

Moreover, all involved % (G)-function spaces are complete and &(G) and &, l[)M] (G) are

nuclear. Thus we may apply Lemma [4.1.1] and
F(Ady) 2T+ T [he L(F)

is well-defined and continuous for the choices described in the theorem.
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The above theorem holds especially if (7, E) is a representation on a Fréchet or Banach
space F with the approximation property. Since any Hilbert space has the approximation

property, this includes the canonical case, where (7, E) is a unitary representation.

4.2 Operator algebras defined by the left regular rep-
resentation on compact Lie groups

In this section we will apply our approach to compact Lie groups G with Haar measure p
and relate the outcome to known results. The following discussion will contain the results
from [9] and the characterization of Opg Sf,(G x G) in terms of commutators from [23]
as special cases. These results will also imply Opg 8870(((} X @) is a spectrally invariant
x-subalgebra of L(L*(G, u)).

First, we will prove a statement about the denseness of ultradifferentiable functions on
compact groups in the usual Hilbert space of L?-functions. For this purpose we will use
the following representation. On BQ(((A}, ) let ig resp. ﬁg be the unitary representation
such that Ly(z)o(n) := o(m)m(z7") resp. Ry(z)o(r) = 7(x)o(x) for 7 € Irr(G), z € G

and functions o € B%(G, ).

Lemma 4.2.1. Let M, L be weight sequences and let G be a compact Lie group with Haar
measure p and Lie algebra g. If [M] C [L], then the space é”gM](G) is dense in L*(G, i)
and in éa[[)m(((}) for any basis D C g, or D C gg.

Proof. Let D C gy, be a basis. We may describe the space éaj_l}”(iz) by

a

EM(Ly) = S(G) | i
no(L2) {UE (G)‘ e My Ja]!

a€S4im G

I o0y =0
equipped with the norm defined by
o> sup
a€Sdim G M\al ‘CL|!
Note that 7(D*) € L(H,), since dim H, < co. If we put
Ef(@) .= {0 € 3(G) | there is some finite U C G with [1] e G\ U = o(r) =0},
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then X(G) is dense in & (L,) and in B%(G,7i). Let us denote 7 := F5'S(G).

Fg is a linear homeomorphism from L?*(G, i) onto LQ(@, i), hence 1 ¢ Fg is a linear
homeomorphism from &M (G; LA(G, 1)) onto &Y (G: B*(G, 1)) by Lemma [1.2.3] Finally,
due to Fg Lo = igf@, we see that

Fo: EY(Ly) — &M(Ly)

defines a linear homeomorphism. Note that D — D := Ly(D) defines a bijection between
g and gr and that &5'(Ly) = HY(G). Hence, 7 is dense in H}(G) and thus also in
& gfjroj (G) = Hl[i;roj((@). For the other Roumieu case, & gM}(G), note that the embedding
HY(G) RN é”gM}(G) is continuous for each h > 0 and that J,., HY (G) = éagM}(G).
This implies that .7 is dense in @@})M}(G) as well.

For the left invariant spaces we exchange f/g and Ly with IA%Q and Ry. The analogous

argumentation as above proves the rest of the lemma.

]

As before, a lot of the following statements can be adapted to other € (G)-function
spaces, due to the general formulation of Lemma [£.1.1 Lemma and Lemma [4.1.6]
The next theorem and Theorem can be seen as a generalization of [9]. It is mainly
a summary of the preceding general lemmata applied to the left regular representation

on compact Lie groups.

Theorem 4.2.2. Suppose M, N and L are weight sequences, G is a compact Lie group
with Haar measure p and Lie algebra g and Lo is the left-reqular representation on

L*(G,p). Let D € gr, and D C gg be a frames. Then the following holds.

(i) For Z(G) e {cf[[)M](G), &(G)} the algebra F (Ady,) is a x-subalgebra of L(L*(G, p)),
i.e.

F(Adp,)" = #(Adg,) .
Moreover, if [M] has|(PL), then % (Adyg,) is locally m-convez.

(ii) For #(G) € {@%M}(G),éa((})} the algebra F(Ady,) is even invariant under the
holomorphic functional calculus in L(L*(G)).
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(iii) Let [M] C [L] and [M] C (N). Then we have embeddings
F(Adp,) = LE): T T %

if we choose F(G) and E from Table . These embeddings are continuous for
E#&8G) or [M] C (L)

Z(G) E
£(G), £"(G) HX(G), £(G)
&5"(G) | H(G), 6)'(G), &) (G)

Table 4.2: Possible choices of locally convex spaces E and .7 (G) for Theorem (iii)

Proof. (i): Since (Lo, L*(G, 1)) is a complete admissible unitary representation, we may
apply (E,7) = (L2, L*(G, 1)) to Lemma [4.1.4]

If [M] has[(PL)] then .# (Ady,) is locally m-convex, since .% (Ady,) can be identified
with a subalgebra of the locally m-convex algebra .% (G) ® L(L*(G, ).

(ii): @”’gﬂgjoj( ) and &(G) are nuclear, locally m-convex and have |(IC)| Hence, we
(Ad,) = éal[)M] (Ad,) as vector spaces.
(iii): We may choose D such that D = L(D) without changing (5"1[)M] (Adyg,) by Propo-

sition [2.2.10l 'We apply Theorem to (E,m) = (L, L*(G, u)). By Lemma [2.4.12]
Lemma 2.4.75 and Lemma 2.4.76 we have

may apply Lemma 4.1.6/and use that éaD proj

(L) =&Y (G).

D ,proj

¢*(Ly) = H*G), &(Ls) = &(G), EL(Ly) = H5(G), &)

D,proj

Furthermore, for the case £ = @‘%L}(G) we can use Lemma [4.1.2
Due to Lemma [4.2.1] we may use that E is dense in L*(G, ). Thus T+ T £ is an
embedding. O

The above theorem especially shows that the algebra of analytic vectors &{*}(Ady,)
to the representation Ady, is a spectrally invariant *-subalgebra of £(L?*(T™, u)) for the
n-dimensional torus T" = R™/(27Z"), which was proven in [9, Corollary 1].

Using Gelfand triples, we can also prove that many of the considered operators extend

to continuous operators between spaces of ultradistributions.
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Corollary 4.2.3. Let G be a compact Lie group with Haar measure p, D C gi a frame,
D := L(D) and let M be a weight sequence. Then

Go"(G, p) == (65(G), L*(G, ), 6, (GY))

15 a Gelfand triple with real structure defined by the pointwise complex conjugation. Sup-
pose E = é’g] (G) for a weight sequence L with M C L, then E and E' are QEM)(G, 1)-

reqular and each operator T € 5}}“ (Adyg,) extends uniquely to an operator in L(E').

Proof. QI%M)(G, w) is a Gelfand triple, since é”éM)(G) is a nuclear Fréchet space and dense
in L?(G, ) and the pointwise complex conjugation maps (a“’éM)(G) continuously to itself.

Naturally, we have continuous dense embeddings
(M) 2
EM(G) = B = L(G,p).

and the pointwise complex conjugation maps E continuously to itself. Furthermore, F is

reflexive as a nuclear Fréchet space (resp. dual to a nuclear Fréchet space) as written in

Proposition [2.2.10 Hence F is Q](jM)((G, p)-regular. This automatically implies that E’ is
Q})M) (G, p)-regular.
Now let T € cg’][DM}(AdLQ) C L(L*(G, p)), then S := T* £ is well-defined. We may
use the adjoint of the QE)M) (G, ) Gelfand triple and define R := S* € L(E'). It is easy
L*(Gop) _

to see that R is an extension of T, i.e. R [LQ(G = T. This extension is unique, since

L*(G, ) C E' is dense. O

For any compact Lie group G with Haar measure u, we define the representations
Ly := Llyg on (G), Ly on &'(G) where Ly (z) := Ly(z™") for all z € G
and Adg, ,, on L(/(G); #'(G)) where Ady »(2)T := Ly(2)T Ly(2)~" for z € G,
T e L(L(G); ' (G)). Then, using the density of

L(S(G); L(G)) C L(Z(G); S (G)) and (G xG)cC S'(GxG),
a quick calculation yields

ICG AdL(y“yl = (Ly/ €Ly1)KG and %(Ly/ €Ly/) = (Ly/ 515”’(@))% .
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Hence Opg intertwines the left translation on symbols with the representation Adg, _,,
i.e.

Adg,, ,,(z) o Opg = Opg o(Ly () el 5) forallz € G. (4.2.3)

Of course this equation fits to the perspective of Gelfand triples, since Ady, o () is a
Gelfand triple isomorphism from £(G(G, p); G(G, 1)) onto itself and Ly (z) ® 1.4 is a
Gelfand triple isomorphism from G(G, p) ® G(G, p) onto itself for each = € G.

Identity and a criterium for the boundedness of Opg (o) on L*(G, ) will help us
to characterize operators in ¢ (Ady,) by corresponding spaces of Kohn-Nirenberg symbols.

Obviously, Opg(c) is bounded on L3(G,p) for o € L*(G, p) @y L3(G, i) but also
boundedness of sufficiently many derivatives of ¢ is a viable criterium for this. Before
citing the corresponding facts, we need to relate bounded BOO((EA}, it)-valued functions with
clements in the Gelfand triple G(G, 1) @ G(G, 7).

For any compact Lie group G with Haar measure p the measure space (@, 1) is discrete,
i.e. each equivalence class [r] is an atom and any function f: G — C is measurable.
B"O(@,ﬁ) can be embedded into Y’(@) as described in [24, 2.1.3 and 2.1.4]. Thus any

bounded function
5: G — BXG,0): v [6(x): 7+ 5(x,7)],

such that for any 7 € Irr(G) the function &(—, 7) is p-measurable, can be identified with

a unique element o € .'(G) & .'(G) via
o S(G;.S(G)) = C:wrs /G (w(z),5(z)) du(z), (4.2.4)

in which we used the standard homeomorphism .#/(G) @ .7 (@) ~ S (G;.S (@))’ from
Proposition (iv). We may use the following boundedness result for the Kohn-
Nirenberg quantization found in [59, Theorem 10.5.5].

Proposition 4.2.4. Suppose G is a compact Lie group, k > dim G/2 is an integer and
D C gy, is a basis. There is a constant C > 0 such that for any o € €*(G; BOO(@; i) the

Kohn-Nirenberg operator Op(a) defines a bounded operator on L*(G, ) and

Op(o 2 < Cmaxsup || Do ()] geo(a 7 -
1 0p(0) et < € masesup [ D2o(e) g
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Complementing the above proposition, we can also bound the symbol ¢ by continuous
seminorms in &(Adyg,) evaluated on Opg(o). A proof for almost the exact statement
below can be found in [23, Proposition 8.11]. We use the cited proof with just minor

adjustments.

Proposition 4.2.5. Let G be a compact Lie group with Haar measure p, let k > dim G/2
be an integer and let D C g1, be a basis. Then there is some constant C' > 0 such that

for any T € €***(Ady,) the symbol o = Opg'(T) can be identified with a continuous
function o: G+ B=(G, i) via [#.2.4) with

sup lo@)lpe@p < C max 1 AdL, (D)T || £(22(Gop) - (4.2.5)

Proof. Note that the statement as we use it is not formulated in [23, Proposition 8.11].
However, in the proof to [23, Proposition 8.11] on page 3459 it is shown that the inequality
holds for T € ¥*(Adg,) and o := Opg'(T), where o can be identified with a
bounded map G — BOO(@, i). For the map =z — o(x) € BOO(((A}, i) we denote by o(z, )
the evaluation of o(z) at m € Irr(G). Now, if we choose T' € €**1(Ady,) and if we take any
X € g, then Adp,(X)A € €%(Adyg,). Due to (4.2.3)), we know that Op~'(Adg,(X)T) =
L(X)o is a bounded map and that x — (o (x, 7)v,w)y is differentiableﬂ with derivative
(L(X)o(—,m)v,w)y for each fixed 7 € Irr(G) and all pairs v, w € Hy. Thus

(o exp (=t X)z, ™) = (2, 7))y, | < sup [t L{X)e(o(, m)v, )y,

S sup |t ( L<X)w0(x7 7T>U7 w)HW|
zeG

< A ¢
< |t\C|a1|r£>+<1 | Adr, (D*)T|| (2 )

for all 7 € Irr(G), all t € R with |¢| small enough and all X € g;, with ||.X|| small enough
with respect to some norm ||—|| on gr. Thus o € € (G; B*(G, 1i)). O

Combining the last two propositions, we may realize that the Kohn-Nirenberg quan-
tization can be restricted to a linear homeomorphism between the smooth resp. ultrad-
ifferentiable vectors to Lel B @) and smooth resp. ultradifferentiable vectors to Adp,.

This results in the following theorem.

la = (a(m)v,w)y, is a continuous functional on 5”’(@)
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Theorem 4.2.6. Let G be a compact Lie group with Haar measure p and let F(G) be
a €(G)-function space such that 7 (G) = F(Rlzg)). If we define the € (G)-function
space F(G) := Z (L), then

Op: Z(G: B*(G,}i)) — Z(Ady,) (4.2.6)

18 a linear homeomorphism.
Let M be a weight sequence, let [M] have let D C g, and D C gg be bases.
Then the above holds for F(G) = é"j[jM}(G) and F(G) = éa[[)M](G).

Proof. Due to Proposition and Proposition |4.2.5, Opg and Opg' restrict to contin-

uous maps
Opg: &(G; B*(G, 7)) = L(L*(G, p)) and Opg': &(Adyg,) — €(G; B¥(G,11)).

By using identity (4.2.3) we see that Opg | £(G.B~(G.p)) intertwines the representation

LSIBoo(@@- Lemma [2.4.3| (iv) implies that Opg and Op([_}1 restrict to continuous maps

Opg: F(Lelpm@p ton=@m) = F (AdL),

Opél: Lgf(zAdL2 \Léz’(Asz)) — fg[(LgIBoo(@’ﬂ)) .

Moreover, we have

&(G; B> (G, ) = g(LdBoo(@,ﬁ)) :
Then, due to Lemma and 7 (G) = # (R4 q)),

Opg: F(Lelpegpn) = F(Adp,)
is a linear homeomorphism. Now we use the linear homeomorphism

Z(G)e B*(G,fi) = Z(L) e B*(G,[i) ~ F(Lelpugn)

imply F(Le g = 7 (G; BX(G, ).
We finish the proof by using é"éM] (G) = 51[)M](L) and Lemma [2.4.5 which gives us
éa[[)M] (G) = ggM](Rig(G)) : L
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We are left with one blemish in the theorem above. Since we used the description of
&M (Adg,) and &IMY(G; BOO(@, t)) as projective limits to prove the statements above,
we needed in this case. This especially excludes the spaces of analytic functions
resp. analytic vectors corresponding to {M} = {1}. But if we discard this assumption,

we still get the following.

Corollary 4.2.7. Suppose M 1is a weight sequence. Then
Opg: €N G; B*(G, 7i)) — &1 (Ady,)

18 a linear bijection.

Proof. We just use Theorem 4.2.6|with # (G) := &M (G) for some frame D C Diff,(G).

D,proj

With Proposition[2.2.18 and Lemma2.4.10{we get Z (G; B*(G, 1i)) = &MY (G; B*(G, 7))
and . (Adp,) = &M} (Ady,) in the sense of vector spaces. O

By setting M = 1 and G = T" the above corollary can be used to recover [9, The-
orem 3], which states that the algebra of analytic vectors &{"}(Ady,) are in one-to-one
correspondence with the analytic maps G — B“(T", ).

Let us now relate the statements of this section to some results concerning the space

of symbols S (G x G). First, we need the definition of S00(G x G).

Definition 4.2.8. Let G be a compact Lie group and V some finite dimensional vector

space. For any ¢ € &(G; L(V)) the difference operator A, is defined by
Ayt S(G) = (G @L(V): 0= (Fo @ L))o Fglo).

For a finite family 11 = (x',...,7") C Irr(G) put Hy :== Hp @ -+ ® Hyn and define
on € (G; L(Hn)) by

pu(r) = (e ) =7 (2)) ® - ® (Legar,n) —7"(2)) -

The space Sy(G x G) is defined to be the the set of symbols o € &(G: B*(G,f)) C
S(G) & ' (G) such that for any P € Diff(G) and any finite collection TI C Irr(G)

P® A, 0 € &(G;B¥G, 1)) ® L(Hy).
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8870((@ X @) s equipped with the topology defined by the seminorms

o sup sup [[(Pp @ Ayy)o(z, )| 4

H;®H,
melrr(G) zeG ®Hm)

for P € Diff(G) and finite families I1 C Irr(G).

Note that for finite families II C Irr(G) the difference operator A, is continuous on

~ ~ ~

"(G) and restricts to a continuous operator in £(.(G); . (G) ® L(Hn)).

In order to use our previous work, we will show that 88,0((@ X (/G\r) is just the space
of smooth vectors & (G; B*(G, 1)) to the representation L ¢ Ipe (g ). For the torus G =
T™ = R™/(2nZ™) this is especially easy.

Suppose # is the counting measure on Z" and p is the Haar measure on T" such that

1
w(E +27Z") = 2—/ dx  for Borel sets E C [0, 27]".
B

™

Then (Z",#) ~ (T", 7i) with respect to the bijection k 5 [ez], in which ey (z + 27Z") =
'@k for € R™ and the inner product (—, —) in R”. Using this identification, we get
B""(@7 ) ~ £>(Z") and the difference operators take on the form

A, ol)y=0c(l —k) for oel>Z"), L,keZ".

€k

Thus the difference operators A, act as continuous operators on £>°(Z") and we get
&(T™ B>(T", i) = 8o (T" x T7).
For general compact G, we can do something similar by using the homeomorphism

from Theorem [£.2.6] This yields the following proposition.

Proposition 4.2.9. For any compact Lie group G with Haar measure u the identity
&(G; B*(G, 1) = 83,(G x G)

holds in the sense of topological vector spaces.

Although the same can also be shown with [23] Lemma 8.7], the following proof needs

less additional resources.
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Proof. Tt is obvious that S (G x G) C &(G: B>=(G, 1)) is equipped with a finer topology.

For any 7 € Irr(G) we define the continuous maps
T, ' (G) = L(G)® LH,): frsTpf =m(=)"f
R,: Y'(G)® L(H,) - S (G)® L(H,): fr>Rpf:=f-m(—).
Both T, and R, stay well-defined and continuous if we exchange .%/(G) with L*(G, ) or
with .7 (G) = &(G). Now let a € #(G) & .7(G), A := Opg/(a) and K = Kg(A). First
of all
Ke®1[Rro(A®Igm,) o Trl(x,y) = K(z,y) - m(y~'z).

We use K(z,y) = 1 ®F; 'a(z,y~'z) in order to get

K(z,y)-n(y 'z) = (IeFg'a)(z,y 'x) 7y 'z)
= (IoFs' @1)(10Aa)(z,y 'z

= (K¢ Opg @ I)(I®Aza).
In summary, we have
Re(A® 1er,))Tr = (Opg @ Lei,)) (1©Aza) -

By the continuity of R, Ty, Opg and A, this can be extended to arbitrary a € .7/(G) ®

~

S'(G). Since 7 and 7(—)~! are smooth maps,
(g)(Ad[Q) SA— RN(A & I[Z(HTF)>T7r € g(AdLQ) & ,C(HW)

is a linear homeomorphism onto its range. By Theorem[4.2.6} this implies that Io/(q) ®Ax
restricts to a continuous map from &(G; B*(G, 7)) to &(G; B*(G,1i)) ® L(H,). Thus

1A, : &(G; BX(G, 7)) — £(G; B*(G, i) ® L(Hy)

is well-defined and continuous for any finite family II C Irr(G). This results in the identity
S00(G x G) = &(G; B=(G, 1)) as locally convex spaces. O

The above lemma shows that Theorem contains the statement from [23, Propo-

sition 8.11] resp. [23, Corollary 8.6] concerning g (G x G). Together with Theorem [4.2.2
and Theorem we get the following corollary.
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Corollary 4.2.10. Opg S)((G x G) is a *-subalgebra of L(L*(G, ) for any compact
Lie group G with Haar measure p. Furthermore, each operator in Opg SS’O(G X @) can

be identified with an operator in L(H*(G)) for k € Ny U {oo}.

By [9] the set of operators &1 (Ady,) is dense in Opyn 8§ (T™ X T") with respect to
the subspace topology in £(L*(T", 1)). We can even go one step further and prove the

denseness of &1 (Adyg,) in Opyn S5o(T" x ’T") with respect to its own Fréchet topology.
Here we can use that é"l[jM] (Adpg,) is dense in &(Adg,) by Lemma .

Corollary 4.2.11. Suppose G is a compact Lie group with Haar measure . Then
&N (Ady,) is dense in &(Adg,) = Opg S3o(G x G).

4.3 Operators defined by Schrodinger type represen-

tations

In this subsection we will consider the representations p) and ©,. For the most part, we
can prove statements for the operators in é(’[[)M](Adm) and éal[jM](Ad@A) that are analogous
to the operators in .% (Ady, ), where L, is the left regular representation for some compact
Lie group.

Lemma 4.3.1. If M and L are weight sequences then Z[L]\]ﬂ)mj (R") is dense in L*(R™).

Proof. Since 5”((1]1)) (R™) C %[L]\ﬁ)roj (R™), it is enough for Z(ﬂ]l)) (R™) to be dense in L*(R™).
In [48] it was proven that all Hermite functions are contained in 5”((1]1)) (R™). This implies

the denseness because they form an orthonormal basis of L*(R"). O

As for the case of the left regular representation, the following theorem is a summary

of preceding lemmata applied the Schrodinger representation on H.

Theorem 4.3.2. Let M, L and K be weight sequences, let A € R* and let D C Diffy,(H)
be a frame. Then the following holds.
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(1) If #(H) € {&(H), é%m (H)}, then the algebra F (Ad,,) is a x-subalgebra of L(L*(R™)),
i.e.

g(Adﬂx)* = g(Adm) :
Moreover, if [M] has[(PL)] then F(Ad,,) is locally m-convez.

(i) If #F(H) € {g(H),ggM}(H)}, then the algebra F(Ad,,) is invariant under the

holomorphic functional calculus.
(iii) If F' C Diffi,(R") is a frame and ¢ C R,, a basis, then we have embeddings
F(Ad,,) = LE): T—T |5

if we choose F(H) and E from Table . These embeddings are continuous for
E # N R or [M] C (K), (L).

{L}
Z (H) E
&(H), &8 (H) H%(R™) for k € Ny, (R
HEF (R, 5 (RY) for [M] C (L) and [M] C (K)
&5 (H) and M fulfils (MG) SR for [M] € {L} and [M] C {K}
T (B for [M] C [L] and [M] C [K]

Table 4.3: Possible choices of locally convex spaces E and .% (H) for Theorem (iii)

Proof. We omit the proof for (i) and (ii), since these statements can be proven exactly

as in Theorem [4.2.2
(iii): By Lemma [2.4.22| and Lemma [2.4.24] we have

©*(pr) = HL(R") and  &(py) =7 (R").

Thus, for the first row of Table[4.3| we may apply Theorem for (7, E) = (py, L*(R")).
Now we construct the proof for the second row of Table The space gl[,M] (Ad,,)
does not depend on the choice D by Proposition [2.2.10. So we may assume that D =

(D©, DV, D®) with py(DO)f = if, pa(DS))f = iq; f and pr(DY)f = Fif for all
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f e Z(R"). Let N be any weight sequence with [M] C (N). By a slight adjustment to
the proof of Proposition [2.2.15 (i)E|7 we get the continuous multiplication

[M],[M],[M] N,L,K N,L,K
Eno p1) p@proj ) X Epiey pay pey ) = €56y pay pe (H)

for all L, K with [M] C (L), (K) and thus also a continuous multiplication

MM gy pINLE] (H) — &NHEHE] (H)

D) D) D(2)proj D) D) D(2) proj D) D) D) proj

for all [L], [K] with [M] C [L],[K]. Since M fulfils (MG)| we have the continuous
embeddings
s m) 5 & () L gMIMEM] (H) .

D,proj D(0)7D(1)’D(2)proj
Now, combining the embedding with the continuous multiplications, Lemma and
Lemma gives us the continuous map

&p" (Ad,,) — L(E)

n K n : K n K n
for £ = Hg’qF(R ) or E = Z[L]}proj(R ). By using Z(L),)pmj(]R ) = fS”((L))(R ) and
Lemma {4.1.2] we get the continuity for all other choices for E.
Finally éa[[)M}(AdpA) — L(E): T — T £ is an embedding for all considered choices,

since 5’((11)) (R") C E is dense in L*(R") by Lemma 4.3.1 O

Let €,(R™ x R,,) be the space of all continuous bounded functions f: R* x R,, — C

equipped with the topology defined by the supremum norm

fellflle=sup [f(z)].

zER™ xR,

If we define the representation Ry, of H on %,(R™ x R,,) by
Ryt 2) f(y,y') == [y + VINz,y — sen(A\)v/[A]2)
forte R, z,y e R", 2/,y € R, and f € €,(R" x R,,), then we have

E(Rpy) ={f € &R" xR,,) | Pf is bounded for all P € Diff;,(R" x R,,)}.

ZEssentially we just need to exchange the seminorms ||—||x,p,;, with seminorms that are more suited

N,L,K
to the spaces £D<0>,D(1>,D<2> (H).
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Since this locally convex space does not depend on the choice A € R* we will also just
write &,(R™ x R,,) := &(R,,»). By identifying R,, with R”, the space &(R" x R,,) can be
identified with the usual space of symbols Sg,(R™ x R") [15,[67]. Note (R, €(R" xR,,))
is not an admissible representation, since €' (Ry, ) are the bounded uniformly continuous

functions on R™ x R,,. Now for any f € &(Rp ) we have
Opgn (Ry 1 (z) f) = Ad,, (z) Opgn(f) for all x € H.

Here we identify R,, with R" via 2/ — [z e2™@2)] This way we identify any function

f € &(Ry,) with a distribution in .%"(R") & &/ (R") ~ .7(R") & .7 (R,,) via

S (R") x (R, <P”¢H/n/nfxx Yb(2') da’ dz .

For any weight sequence M and any frame D C V,(R" x R,) we define
sup 1D fllo _ OO}

M n R
(g)b,D(R X Rn) = {f S (o@(Rb’)\) v M|a| |a|'

equipped with the norm

1D f oo
— sup -1
/ aGSIQ)n My |al!

and also
SR X R,) = lim &Y(R" x R,) and & R" x R,) := lim 63 (R" x R,) .
h>0 heA
Note that similar as in Proposition [2.2.18 we have

MR x R,) = lim &l (R x R,) = 67" (R, )

h>0

as vector spaces. Due to Lemma [2.4.8, we have (5"]‘|4| (R" x R,) = &M (Ry,\) and thus

also M (R xR,) = &M (R,,). If M fulfils (nQA),then &R <R,) = &M (Ry,))

0,proj

even holds in the sense of topological vector spaces.
In the following theorem, we built on top and expand the results of Cordes concerning

the description of smooth operators via their symbols.
Theorem 4.3.3. Suppose M is a weight sequence and A € R*. Then
Opgn: F (Ry ) = F(Ad,,) (4.3.7)
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is a linear homeomorphism for any € (H)-function space F (H) with F (H) = (R | ¢q))-
Let D C Diffy,(H) be a frame. For % (H) € {co@(H),é"j_l)M] (H)} this is especially true if
[M] has|(PL)|, in which case also

EMV(R,,) = MR xR,) and E(Ry)) = &R x R,,). (4.3.8)

If F = &M with [M] = {M} and M does not fulﬁl then (4.3.7)) is still a
bijection and (4.3.8)) holds in the sense of vector spaces.

Proof. The proof is closely related to the proofs of and Corollary

First of all, by the discussion immediately before this theorem we have

e (Ryy) = MR xR,) and also &(R,)) = &(R" x R,,) .

D,proj

And also & lgM}(RIL \) =& [[)Jﬂoj(R@ ») in the sense of vector spaces (resp. in the sense of

topological vector spaces if [M] has |(PL)|). Now let .#(H) € {g(H),ggi]mJ(H)} By

Lemma [2.4.5, we have
F (Roaler,,)) = F (Ryy) and  F(Ady, Lgaa, ) = F(Ad,,).
Now we discuss the general case in which is a homeomorphism. The map
Opgn: &(Rp ) = &(R" x R,) = &(Ad,,) (4.3.9)

is a well-defined linear homeomorphism by Theorem 4.2 and Theorem 4.3 of [I5, Chap-
ter 8]. Since Opgn Ry Lo(r, ) = Adyy be(aq,,) OPgn the restriction

Opgn: F(Rorler,,) = F(Adp, Leaa,,))

is a well-defined homeomorphism due to Lemma [2.4.3] Finally, due to Lemma [2.4.4] we
know that

9(Rb7)\) = y(Rb’)\ *Léz’(Rb,A)) and y(AdpA) = y(AdpA \l/é”(Adp)\)) .
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The above theorem especially implies that the operator algebras gl[)M} (Ad,,) consid-
ered in Theorem [4.3.2| are dense in the usual algebra of pseudodifferential operators with
symbols in &(R" x R,,) ~ S o(R™ x R") for the case {1} C [M]. For this statement we
only need to apply Lemma

We will now relate the above to other results. In [I0] pseudodifferential operators with
symbols a € I'?, fulfilling the boundedness requirements

anB
sup sup C\a|+|5\ |aﬁr af a(x,§)|

mi—|a] ey for some C >0
a,BENG (z,£)eR? xR, (a!)ll <ZE> (6])1, <€>

are considered, where (z) = (14 |z])2 and m = (my, my). In the case m = 0, we have
Opg. I, , C éa{Gm}(AdpA) for the Gevrey sequence G;CM) = (k!)'~* due to Theorem 4.3.3,
This way the continuity property Opgn F?W C E(Y{{A%} (R™)) from [10, Theorem 2.2] is
included in Theorem [4.3.2) But in later papers [I], 1], more general symbols have been

considered. The corresponding statements about the continuity on Gelfand-Shilov spaces
are no longer contained Theorem [£.3.2l However, there do not seem to be any results
concerning the spectral invariance of these algebras of pseudodifferential operators. Here
the characterization via regularity conditions on the adjoint representations has merit.
Next to the cases discussed before, we could also use the flexibility of our approach on
other representations (7, F/). For example, we could formulate an equivalent of Theorem
for (m, E) = (px, LP(R™)). Though, in this case we can not use for a charac-
terization via symbols. Another field of application would be to use other Lie groups that
are neither compact nor abelian. An example is given in the following theorem, which
uses the Schrodinger-type representations ©y on L?(H). Though, here we do not have a
homeomorphism of the type that intertwines Ade, Js(aq o)) with a corresponding

group action on bounded smooth symbols as well.

Theorem 4.3.4. Let M be a weight sequence, let A € R* and let D C Diff(Hy) be a
frame. Then the following holds.

(i) If #(H,) € {@”(Hg),ggM}(Hz)}, then the algebra F(Ade,) is a *-subalgebra of
L(L*(H)), i.e.
F(Ade, )" = 7 (Ade,) .
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Moreover, if [M] has[(PL)] then F(Ade,) is locally m-convex.

(i) If 7 (H,) € {&(Hy), féM}(Hg)}, then the algebra .F (Ade, ) is a spectrally invariant
in L(L*(H)), i.e.
L(L*(H)* N .Z(Ade,) = F(Ade,)*

Moreover, if M fulfils then Z (Ad,,) is invariant under the holomorphic

functional calculus.

(iii) If F C Diff,(H) is a frame and ¢ C H' a basis and if {1} C [M], then we have
embeddings
F(Ade,) — L(E): T — T |%

if we choose F (Hy) and E from Table /.4l These embeddings are continuous for
E # {3y (H) or [M] € (K),(L).

{L}
F (H,) E
&(Hy), &2 (H,) HY,(H) for k € Ny, .7 (H)
Hi S (H), .75 (H) for [M] C (L) and [M] C (K)
&5 (Hy) and M fulfils|(MG) SV H) for [M] € {L} and [M] C {K}
S o (H) for [M] C [L] and [M] C [K]

Table 4.4: Possible choices of locally convex spaces E and .% (Hs) for Theorem [4.2.2] (iii)

Proof. The proofs for (i), (ii) and (iii) work exactly as in Theorem [£.3.2] The only
difference for (iii) is that we can not cite sources for the denseness of E in L?(H). Here

we use {1} C [M], which ensures that &1'}(0,) ¢ E. Thus
F(Ade,) — L(E): T+ T %

is an embedding, since &1}(0,) is dense in L?(H). O
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List of symbols

Notations and basic concepts

E,, E', FE' 19
E®. F, 23
EcF,22

E &y F, 24
E®F, 22
E®, F,23
LP(X, 1), 20
LP(X, 1; E), 21
Sel, 25
S®T, 25

T, 19

T+, 18, 39
dzx, 20

Ia, 1,17

Int M, M, M°, 17

T[T], 18

=1, 1= le, 18

(= =) (= —)p, 18

(—,—), 18

F(E; F), 28

G1 ® Ga, G1 ® Ga, L(G1;0G2), 41
K, 29, 42

L(E;F), L(E), F', 18

L(E; F), (EL)L 19

Ly(E; F), L(E; F), Ly(E;F), 19
N(E;F), HS(E; F), 18

g (B o) 2

Wm _ (Eqjap), 21

Spaces of vector valued smooth and ultradifferentiable

functions

HY(G), Hp'(G)

(A,2), &5 (X)

» ©D,proj

(W[M]7 >)a 89

~

1A; AX, O'A(CL)7 62
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D®, 54 g1/r, Diff/r(G), Din’ﬁ/R(G), 55

H*(G), H®(G), 120 E (M), ¢(M; E), 43

HE 5 (G), H5(G), 120 P (M), 47

H(G), 127 &I(R), 105

HMP(G), 127 E(K), €"(K), 5

Hy, Irr(G), In™(G), 123 &(M), €*(M), 4

K C M, 50 EM(K), ||~ p.as, 66
NCM,N<M,1,67 XL (), SELEM () 199
[M], 76 &M (x), &M(X), E4(X), 76
[M] C [N], [M] C (N), {M} C [N], 77 F(n), 7, wlp, 110

Adg, Cag, 100

Diff (M), Dift"(M), 47
G7 g, 1@7 €XPg, Z(G)a Z(g)a 55

4(M), 9(M; E), 44
P (M), y(M), O (M), Diff (M), 98
PR, S (R"), Org(R"), Diff »(R?), 9

1 (D) () (M)

H,, ), 126 ) (©): L1y (G), Fp pros(G), 128
L, R, Ly, Ry, 110 4(R), 105

MUM, 98 9, 53

Sy, D, |al, 54 s, 53

Sni(a), 54 m(T), 111

M, 124 lim _ Fo(M), lim _ Fo(M; E), 46
B (R; E'), #'(R; E'), 107 lig _, Fa(m), 121

G(M, v), 99 l’mKerf(K),1mKerf(K,E),46
G(m), Gop(m), 124 lim _ Fo(7), 119

Vo (K), 52 hm _ Zo(M), lim _ F.(M; E), 45
Va(M), 47 Sni(a), 64

Quantization on Gelfand triples

BYG,v), BX(G,v), B*(G,v), 135 5y, 143
Opg, 138 Fe, 136, 137

202



Fq, 140

Fry, Op,., 154

Fon, 158

G(R*; ), 154

G(G, 1), 137

Ke.., 164

Te, Ko, 138

Te.., 163

9", 9/, 9, 151

op.., 143

SI/Z(G), S1/Zg(G), 142
S (R*; ), L2(R*;7), S'(R*;7), 154

~ ~

L (G), S (G), 137

Z4(G), ZUG), G.(G, ), 153
op,, 140

Op,, 164

w(f), 136

m~& m~ 2, 139

Operator spaces characterized by ultradifferentiable

group actions

F(T), 180
Ad,, 175

Aq, 190
GI(G, ), 186

834(G x G), 190

%(R" x R,)), Ry, 195

MR x R,), &M (R™ x R,,), 196
&(R" x R,,), 196
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