
Quantization of Algebras Defined by

Ultradifferentiable Group Actions

Von der Fakultät Mathematik und Physik der Universität

Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

Jonas Brinker

aus Bremen

Hauptberichter: Apl. Prof. Jens Wirth

Mitberichter: Prof. Michael Ruzhansky

Prof. Nenad Teofanov

Tag der mündlichen Prüfung: 14.2.2022
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Abstract

In this thesis we extend the approach of Cordes to characterize the symbols S 0
0,0(Rn×Rn)

via their Kohn-Nirenberg operators T and the smoothness of the map ρλ(−)Tρλ(−)∗ for

the Schrödinger representations ρλ. For this purpose we introduce generalizations F (π)

of the spaces of smooth vectors E (π) and analytic vectors A (π) of representations π and

discuss properties of associated algebras F (Adπ) for the representation

Adπ T = π(−) ◦ T ◦ π(−)−1

on the continuous operators. In order to apply these concepts to the ultradifferentiable

case, we built on top of the existing theory of ultradifferentiable functions and create a

framework for vector valued ultradifferentiable functions defined by the action of analytic

frames.

We apply our results to the ultradifferentiable operators E [M ]
D (Adπ) and identify the

corresponding spaces of symbols for the Schrödinger representations π = ρλ, for the

left-regular representation π = L2 on compact Lie groups and for Schrödinger-type rep-

resentations π = Θλ on the Dynin-Folland group H2.

We create new Gelfand triples that work well with the Fourier transform and the

Kohn-Nirenberg quantizations on general homogeneous Lie groups. The new framework

enables us to rely more heavily on topological tensor products. We hope this will be

useful for the task of integrating the Kohn-Nirenberg quantization on homogenous Lie

groups into the approach of Cordes in future research.
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Zusammenfassung

In dieser Arbeit erweitern wir den Ansatz von Cordes, in dem die Symbole S 0
0,0(Rn×Rn)

mit Hilfe ihrer Kohn-Nirenberg-Operatoren T und der Differenzierbarkeit der Abbildung

ρλ(−)Tρλ(−)−1 charakterisiert werden. Hierbei bezeichnet ρλ die Schrödinger-Darstel-

lung. Dafür führen wir Verallgemeinerungen F (π) der Räume der glatten Vektoren

E (π) und analytischen Vektoren A (π) ein. Außerdem diskutieren wir Eigenschaften

der zugehörigen Algebren F (Adπ) zur Darstellung

Adπ T = π(−) ◦ T ◦ π(−)−1

auf den stetigen Operatoren. Um diese Konzepte im ultradifferenzierbaren Fall anwenden

zu können, knüpfen wir an die existierende Theorie der ultradifferenzierbaren Funktionen

an und konstruieren und diskutieren Räume von vektorwertigen ultradifferenzierbaren

Funktionen mit Hilfe von analytischen Rahmen.

Wir wenden diese Resultate auf die ultradifferenzierbaren Operatoren E [M ]
D (Adπ) an

und identifizieren die zugehörigen Symbolräume. Dabei betrachten wir die Schödinger-

Darstellungen π = ρλ, die linksreguläre Darstellung π = L2 einer kompakten Lie Gruppe

und Darstellungen π = Θλ der Dynin-Folland-Gruppe H2.

Wir haben neue Gelfand-Tripel konstruiert, die sich gut in die Arbeit mit der Gruppen-

Fouriertransformation und Kohn-Nirenberg-Quantisierung einfügen. Diese neuen Gelfand-

Tripel ermöglichen es uns stärker von der Theorie der topologischen Tensorprodukte zu

zehren. Wir hoffen, dass dies für zukünftige Forschung bei der Integration der Kohn-

Nirenberg-Quantisierung auf homogenen Lie-Gruppen in den Ansatz von Cordes hilfreich

sein wird.
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Introduction

In the theory of pseudodifferential operators, one often uses spaces of operators, which

are defined via the Kohn-Nirenberg quantization OpRn of spaces of symbols Smρ,δ(Rn×Rn).

But the usual symbol classes Smρ,δ(Rn×Rn) can also be characterized on the operator side

via the behaviour of their commutators with derivatives and multiplication operators.

In [67] an overview of these criteria can be found. There, these characterizations are

used to show that the algebras of operators on Lp(Rn), which are induced by the symbol

spaces S0
1,δ(Rn × Rn), 0 ≤ δ < 1, via the Kohn-Nirenberg quantization, are spectrally

invariant in L(Lp(Rn)). As written in [67], in the L2-case there is more leeway and

for 0 ≤ δ ≤ ρ ≤ 1, δ < 1 the algebra OpRn
(
S0
ρ,δ(Rn × Rn)

)
is spectrally invariant

in L(L2(Rn)), see [5]. Cordes used a slightly different point of view in [15], in which

OpRn
(
S0

0,0(Rn × Rn)
)

is characterized as the smooth vectors to time-frequency shifts on

the operator space L(L2(Rn)). This can be written in terms of the Heisenberg group

H, the Schrödinger representation ρ1 of H on L2(Rn) and the corresponding adjoint

representation Adρ1 T := ρ1(−)Tρ1(−)∗ on L(L2(Rn). Namely, the space of smooth

vectors E (Adρ1) to Adρ1 and the operator algebra OpRn
(
S0

0,0(Rn×Rn)
)

coincide as locally

convex spaces.

Using this approach, one automatically gets a simple argument for the spectral in-

variance of OpRn
(
S0

0,0(Rn × Rn)
)
, since the space of smooth functions with values in a

Banach algebra is closed under inversion. Moreover, various continuity properties of the

operators in OpRn
(
S0

0,0(Rn×Rn)
)

can be seen as a natural consequence of the continuous

multiplication between vector valued differentiable functions. Here one may use the fact

that various forms of Sobolev spaces can be seen as differentiable vectors to translations
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or time-frequency shifts on L2(Rn).

This approach can be extended to different Lie groups, as the description of the space

of operators OpG
(
Smδ,ρ(G × Ĝ)

)
in [23] shows, where compact Lie groups G and the

Kohn-Nirenberg calculus developed in [59] were considered. Here, OpG
(
S0

0,0(G× Ĝ)
)

and

E (AdL2) coincide for the left regular representation L2 on L2(G, µ). In [9], the approach

of Cordes is modified to encompass analytic vectors A (AdL2) to AdL2 on L(L2(Tn)) for

the n-dimensional torus Tn. Analogously to the other cases, this algebra of operators

corresponds to a space of analytic symbols via the Kohn-Nirenberg quantization.

These results are the motivations for our attempt to generalize Cordes’ approach.

Our goal is a generalization that encompasses the Kohn-Nirenberg quantization OpG on

a larger class of Lie groups G and more general constructions F (Adπ) than smooth

vectors E (Adπ) or analytic vectors A (Adπ), but keeps the aforementioned benefits. For

this purpose, we use the theorems of Schwartz on bilinear maps on topological tensor

products of locally convex spaces [64]. We are especially interested in cases, where we

can identify spaces of symbols, which are homeomorphic to the operator algebra F (Adπ)

via the Kohn-Nirenberg quantization.

We were able to construct a general enough approach to use ultradifferentiable vectors

E [M ](Adπ) together with the Kohn-Nirenberg quantization on Rn or arbitrary compact

Lie groups G. We generalize the concept of differentiable, smooth and analytic vectors

to general representations. This way, a definition of ultradifferentiable vectors appears

as a special case. The concept of ultradifferentiable vectors is not new [13], though our

approach encompasses a wider variety of ultradifferentiable vectors. We built on top of

the theory of vector valued ultradifferentiable functions from [39, 40, 41] and prove a

description in terms of left invariant vector fields for general Lie groups as introduced in

[17, 18, 19] for compact Lie groups. We identify the preimage of the constructed operators

algebras under the Kohn-Nirenberg quantization, which are spaces of ultradifferentiable

symbols. As mentioned, the spectral invariance and various continuity properties of these

operator algebras follow immediately from our approach. Also, the statements from [9]

and the cited statements concerning S0
0,0(Rn × Rn) resp. S0

0,0(G × Ĝ) appear as special
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cases in this regime.

We develop new spaces of test functions, which work well with the group Fourier

transform and the Kohn-Nirenberg quantization. Even for the Heisenberg group G = H

there seems to be no simple characterization for the Fourier image of the Schwartz space

of rapidly decreasing functions, S (G), see [2, 31]. By using a subspace S∗(G) of S (G)

instead of the whole space, we get a Fourier image that is easy to characterize and even

splits into a tensor product of a space of smooth functions and a space of operators.

This enables us to use the theory of bilinear maps on tensor products of locally con-

vex spaces due to Schwartz for the multiplication operators on the Fourier side. We

restrict our considerations to the case, where G is homogeneous and admits irreducible

unitary representations that are square integrable modulo the center Z(G) of G, and

where dimZ(G) = 1. This enables us to use an easy to handle characterization of the

irreducible unitary representations that are square integrable modulo Z(G) [53, 54, 33].

Also, this setting combines very well with Pedersen’s machinery [57, 54]. Furthermore,

using these new spaces we are able to construct Gelfand triples around L2(G, µ) and its

Fourier image. Associated to this we have fitting Gelfand triples of operators such that

the Kohn-Nirenberg quantization is a Gelfand triple isomorphism. We hope that these re-

sults will prove helpful in integrating the Kohn-Nirenberg quantization on homogeneous

Lie groups into the approach of Cordes in future research. In this regime we are also

able to recover the formula a(−, ξ) = ξ(−)∗ · (A ⊗ I)(ξ) for the Kohn-Nirenberg symbol

a = Op−1
G (A), which is well known for compact Lie groups G or the case G = Rn [5, 59].

This thesis is structured as follows.

In Chapter 1, we will introduce and revisit basic notations and concepts from func-

tional analysis. Our main focus lies on the topic of tensor products of bilinear maps, which

we will later need for the multiplication between vector valued functions. In preparation

for our later analysis we start by proving the first general statements and collecting resp.

adjusting theorems from the literature about topological tensor products. Another focus

of this chapter is the topic of Gelfand triples and real structures. Here we build a general
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foundation for using Gelfand triples in context with real structures, which we will use in

Chapter 3.

Chapter 2 is dedicated to the theory of vector valued function spaces. We focus

on spaces of ultradifferentiable vector valued functions and their application for the gen-

eralization of differentiable, smooth or analytic vectors of representations. Inspired by

[17, 18, 19], we show that we may use limits of Banach spaces of ultradifferentiable func-

tions defined by analytic frames in order to construct the usual Denjoy-Carleman classes

of Roumieu or Beurling type. We also discuss further properties of spaces of vector valued

ultradifferentiable functions. Afterwards, we show in what way the same holds for the

vector valued analogues of said spaces. Equipped with this structure, we introduce and

discuss ultradifferentiable vectors of representations. Here the definition via left invariant

frames on Lie groups comes into play.

Furthermore, we extend the topic of rapidly decreasing and slowly increasing functions,

polynomials and tempered distributions on polynomial manifolds [56]. This topic is of

importance for our later introduction of new Gelfand triples for the Kohn-Nirenberg

quantization on homogeneous Lie groups in Chapter 3. For this purpose, we pay special

attention to the polynomial manifold R×.

In Chapter 3 we give an introduction of the Kohn-Nirenberg quantization on Lie

groups of the Pedersen quantization in the context of Gelfand triples. Next, we use our

preliminary work on functions and distributions on polynomial manifolds to first define

and discuss new Gelfand triples for the group Fourier transform and afterwards define and

discuss new Gelfand triples for the Kohn-Nirenberg quantization. We close the chapter

by showing that the formula Op−1
G (A)(−, π) = π(−)∗ · (A ⊗ I)(π) for Kohn-Nirenberg

symbols holds in our regime. At the same time we discuss the usual integral formula

OpG(σ)f =

∫
Ĝ

Tr[π σ(−, π) π(f)] dµ̂([π])

for the action of Kohn-Nirenberg operators in this setting.

Finally, in Chapter 4, we tie together Chapter 2 and Chapter 3. First we prove

general properties of algebras of operators T defined by regularity requirements on the

maps Adπ T = π(−)Tπ(−)−1 for representations π. Our focus lies on operators T , which
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induce ultradifferentiable maps Adπ T . Here our discussion of general ultradifferentiable

functions and vectors from Chapter 2 comes into play. As an application, we discuss the

operator algebras defined as smooth or ultradifferentiable vectors to the representation

Adπ, in which π is a Schrödinger representation or the left regular representation on

a compact Lie group. Finally, we find corresponding spaces of symbols such that the

Kohn-Nirenberg quantization is a homeomorphism onto said algebras of operators.
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Chapter 1

Notation and basic concepts

For four sets A1, B1, A2 and B2 and two maps fj : Aj → Bj we define

f1 × f2 : A1 × A2 → B1 ×B2 : (x, y) 7→ (f1(x), f2(y)) .

Furthermore, if A,B,C and D are sets, f : A → B is a function and C ⊂ A, then the

restriction of f to C will be denoted by f �C . If f(C) ⊂ D we will also write f �DC ,

f : C → D or C
f−→ D

for the restricted function x 7→ f(x) with domain C and codomain D. If A,B,C and D

are topological spaces, we will also write that f �C resp. f �DC ,

f : C → D resp. C
f−→ D

is continuous (open, a homeomorphism) if it is so with respect to the topologies on C and

B resp. the topologies on C and D. The interior resp. closure of a set M in a topological

space A is denoted by IntM resp. M . We will reserve the notation M◦ for the polar of

a subset M of a locally convex space.

In general, we will denote by IA the identity on a set A. If there is no risk of confusion,

we will also just write I instead of IA.

We will call a linear map

T : E → F

17



between locally convex spaces E and F a linear homeomorphism if T is bijective and

T and T−1 are continuous. Even though such maps are often called isomorphisms (resp.

isomorphisms onto F ), we chose the above terminology in order to avoid confusions with

isomorphisms in the sense of groups, vector spaces or algebras. If T is injective and the

map with restricted codomain

T : E → T (E)

is a linear homeomorphism with respect to the subspace topology of T (E) in F , then we

will call T a linear homeomorphism onto its image.

1.1 Some concepts from functional analysis

For any two locally convex spaces E, F over K ∈ {R,C} we denote by L(E;F ) the

space of continuous linear maps from E to F . As usual we write L(E) := L(E;E) and

E ′ := L(E;K) for the dual of E. We equip L(E;F ) (and L(E), E ′) with the topology of

uniform convergence on bounded sets of E.

In general, we will reserve the symbol ‖−‖ for norms and by ‖−‖E we always mean

the chosen norm in a normed space E. The symbol (−,−) is reserved for inner products

and by (−,−)E we always mean the chosen inner product in a Hilbert space E. The dual

pairing between a locally convex space E and its dual E ′ will always be denoted by

〈−,−〉 : E × E ′ : (e, e′) 7→ 〈e, e′〉 .

If E and F are normed spaces, then the topology in L(E;F ) is normable. In this case we

will equip L(E;F ) with the operator norm ‖−‖L(E;F ). If E, F are Hilbert spaces, then we

also consider the space of trace class operators N (E;F ) and Hilbert-Schmidt operators

HS(E;F ) with norms

‖T‖N (E;F ) := Tr[(T ∗T )
1
2 ] and ‖T‖HS(E;F ) := Tr[T ∗T ]

1
2 ,

in which Tr is the trace functional on N (E) and T ∗ is the adjoint of T .

We will also use the following topologies and notations on the above spaces. For

L(E;F ) equipped with the topology of pointwise convergence (resp. uniform convergence
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on absolutely convex compact sets, resp. uniform convergence on bounded sets), we will

write Ls(E;F ) (resp. Lc(E;F ), resp. Lb(E;F )), with short-hands Lα(E) and E ′α for

α ∈ {s, c, b} as before.

The canonical evaluation map

E → (E ′α)′ : e 7→ [e′ 7→ 〈e, e′〉] (1.1.1)

is well-defined and injective for each α ∈ {s, c, b}. For α ∈ {s, c} it is also onto [66,

Theorem 36.1].

We denote by Lε(E ′α;F ), for α ∈ {s, c, b}, the space L(E ′α;F ) equipped with the

topology of uniform convergence on equicontinuous subsets of E ′. Naturally, we will use

the short-hand (E ′α)′ε as before. Note that with respect to the evaluation map (1.1.1), we

have E ' (E ′α)′ε for any locally convex space E and α ∈ {s, c} [66, Proposition 36.1]. If

we have E ' (E ′b)
′
b = E ′′ by the same map, E is called reflexive.

If E and F are locally convex spaces and T ∈ L(E;F ), then the transpose of T will

be denoted by T ′ ∈ ∩α∈{s,c,b}L(F ′α;E ′α), where

〈e, T ′f ′〉 := 〈Te, f ′〉 for all e ∈ E , f ′ ∈ F ′ .

If T : E → F is a continuous antilinear operator, then we will also define a continuous

antilinear operator T ′ : F ′ → E ′, by

〈e, T ′f ′〉 := 〈Te, f ′〉 for all e ∈ E , f ′ ∈ F ′ .

Lemma 1.1.1. Suppose E and F are reflexive locally convex spaces. Then

(−)′ : L(E;F )→ L(F ′;E ′) : T 7→ T ′

is a linear homeomorphism.

Proof. The topology in L(F ′;E ′) is defined by seminorms

S 7→ sup
f ′∈B′,e∈B

| 〈e, S f ′〉 |,

for bounded sets B′ ⊂ F ′ and B ⊂ E. Since F is reflexive

p(f) := sup
f ′∈B′

| 〈f, f ′〉 | for f ∈ F
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defines a continuous seminorm on F . For T ∈ L(E,F ) we get

sup
f ′∈B′,e∈B

| 〈e, T ′ f ′〉 | = sup
e∈B

p(T e).

Thus, T 7→ T ′ is continuous. Of course, E ′ and F ′ are reflexive as well. By identifying

E ' (E ′)′ and F ' (F ′)′ the inverse of T 7→ T ′ is simply

L(F ′;E ′)→ L(E;F ) : S 7→ S ′

and hence continuous by the above.

Now we will introduce a bit of notation for the topic of integration. IfX is a measurable

space equipped with a measure µ we will write Lp(X,µ) (resp. Lp(A, µ) for a measurable

subset A ⊂ X) for usual Lp-space with respect to the base space X (resp. to the base

space A) with respect to the measure µ (resp. to the restriction of µ to A). For a f

measurable, nonnegative function we will invoke the notation f(x) dµ(x)1 if we mean the

measure defined by

A 7→
∫
A

f(x) dµ(x) .

For Rn and its dual space Rn we will shorten the notation. If e1, . . . , en is the standard

basis in Rn and e1, . . . , en is the corresponding dual basis, we will write dx for the unique

Lebesgue measure on Rn resp. on Rn that prescribes to [0, 1]n resp. {
∑

j tje
j | t ∈ [0, 1]n}

the volume 1. More generally, if A is a measurable subset of any Cartesian product of

spaces Rk, Rk, for k ∈ N, we will use dx for the corresponding product measure on A.

We will also write Lp(A) := Lp(A, dx).

For a Banach space (E, ‖−‖E) and a σ-finite measure space (X, ν) we will also use the

Lebesgue-Bochner spaces. We equip E with its Borel algebra. A function f : X → E is

called µ-measurable if there is a sequence of measurable functions sn : X → E such that

sn(X) is finite and limn→∞ sn(x) = f(x) for ν-almost all x ∈ X. For any ν-measurable

function we denote

‖f‖Lp(X,ν;E) :=

(∫
X

‖f(x)‖pE dν(x)

)1/p

and ‖f‖L∞(X,ν;E) := ess sup
x∈X

‖f(x)‖E

1We change the variable name x depending on the context.
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for p ∈ [1,∞). If N is the vector space of ν-measurable functions that vanish ν-almost

everywhere, then the Lebesgue-Bochner spaces are defined as

Lp(X, ν;E) :=

{
f : X → E

∣∣∣∣ f is ν-measurable and ‖f‖Lp(X,ν;E) <∞
}/
N

equipped with the norms defined by ‖f +N‖Lp(X,ν;E) := ‖f‖Lp(X,ν;E) for any p ∈ [1,∞].

We often need to integrate vector valued functions. For this purpose, we will use the

concept of weak integrals.

Definition 1.1.2. Suppose (X, ν) is a measure space and E is a locally convex vector

space. We will call a function f : X → E integrable iff there is some e ∈ E such that for

each e′ ∈ E ′ we have e′ ◦ f ∈ L1(X, ν) and

〈e, e′〉 =

∫
X

e′ ◦ f dν.

The element
∫
X
f dµ := e is called integral over f . If f is integrable, we will also just say

that
∫
X
f dµ exists (or converges) in E.

From this definition, it automatically follows that

T

∫
X

f dν =

∫
X

T ◦ f dν.

for any continuous linear or antilinear operator T : E → F into another locally convex

space F . Here, the integrability of f implies the integrability of T ◦ f .

Definition 1.1.3. Let (A,≤) be a directed set and let (Eα)α∈A be a family of locally

convex spaces.

For a collection of continuous maps jα,β ∈ L(Eβ;Eα) for α, β ∈ A with α ≤ β which

also fulfil jα,β jβ,γ = jα,γ and jα,α = IEα for α ≤ β ≤ γ, the projective limit with respect

to the Eα, jα,β is defined by

lim←−
α∈A

(Eα, jα,β) :=

{
(eα)α∈A ∈

∏
α∈A

Eα

∣∣∣∣ ∀α≤β∈A eα = jα,βeβ

}

and equipped with the subspace topology in
∏

α∈AEα.
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Let jα,β ∈ L(Eβ;Eα), in which α, β ∈ A with α ≥ β, be a collection of continuous

maps that fulfil jα,β jβ,γ = jα,γ and jα,α = IEα for α ≥ β ≥ γ. Let jβ be the inclusion map

of Eβ into
⊕

α∈AEα and let H be the linear hull of

{jβe− jαjα,βe | α, β ∈ A , α ≥ β , e ∈ Eβ} ⊂
⊕
α∈A

Eα .

Then the inductive limit with respect to the Eα, jα,β is defined as the locally convex

space

lim−→
α∈A

(Eα, jα,β) :=

(⊕
α∈A

Eα

)/
H .

For applications, it is helpful to know that lim−→α∈A(Eα, jα,β) carries the finest locally

convex topology such that for each β the canonical map

j̃β : Eβ → lim−→
α∈A

(Eα, jα,β) : e 7→ jβ(e) +H

is continuous. If F is a locally convex space and T : lim−→α∈A(Eα, jα,β)→ F a linear map,

then T is continuous iff T ◦ j̃β is continuous for each β ∈ A.

1.2 Topological tensor products

For two locally convex spaces E and F over C, we denote by E ε F the ε-product of

L. Schwartz [63]. It is defined to be the set of bilinear maps u : E ′ × F ′ → C such

that the collections of linear maps
(
u(−, b)

)
b∈B and

(
u(a,−)

)
a∈A are equicontinuous for

all equicontinuous subsets A ⊂ E ′ and B ⊂ F ′. We equip it with the topology of

uniform convergence on products of equicontinuous sets, i.e. with the topology induced

by seminorms

u 7−→ sup
e′∈A,f ′∈B

|u(e′, f ′)|

for equicontinuous subsets A ⊂ E ′ and B ⊂ F ′. If E and F are complete, then so is

E ε F . By E ⊗ F we denote the algebraic tensor product between E and F . By

(e⊗ f)(e′, f ′) := 〈e, e′〉 〈f, f ′〉 (1.2.2)

we identify E ⊗ F with a subspace E ε F . The injective topology on E ⊗ F is the

subspace topology derived from E ε F . The completion with respect said topology is the
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complete injective tensor product E ⊗̂ε F of E and F . We may always consider

E ⊗̂εF and EεF to be a subspaces of the separately continuous bilinear forms on E ′s×F ′s
equipped with the topology of uniform convergence on products of equicontinuous sets.

The space E is said to have the approximation property if E ⊗ F ⊂ E ε F is dense

for all locally convex spaces F [63, Proposition 11]. With (1.2.2) we get

E ⊗̂ε F = E ε F

for complete locally convex spaces E, F , where E or F has the approximation property

[63, Proposition 3]. Any Hilbert space has the approximation property [36, Satz 10.16].

We will also equip E ⊗ F with another topology. The projective topology is the finest

locally convex topology such that the canonical bilinear map

E × F → E ⊗ F : (e, f) 7→ e⊗ f

is continuous. Now the completion with respect to this topology is the complete pro-

jective tensor product E ⊗̂π F of E and F . The projective topology on E ⊗F is finer

then the injective topology, i.e. we have a continuous map

E ⊗̂π F → E ⊗̂ε F,

that is just the identity on E⊗F . If E and F are Hilbert spaces, then this map is injective,

i.e. it is a continuous dense embedding [44, §43.2 (8)]. Note, in [44] Grothendieck’s notion

of the approximation property [34, I §5] is used, whereas we use Schwartz’ notion of the

approximation property [63]. However, whenever E is quasi-complete, those two variants

coincide on E.

The above discussed products between locally convex spaces E, F and G all have the

following associativity property. We have the linear homeomorphism

(E � F )�G ' E � (F �G) for � ∈ {ε, ⊗̂ε, ⊗̂π} , (1.2.3)

in the sense that both sides are linearly homeomorphic to (a completion of) a correspond-

ing space of trilinear maps [34, I p. 51], [63, Proposition 7]. Hence, in the future we will

not distinguish between both sides. Instead we will just write E � F �G.
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A locally convex space E is called nuclear if E ⊗̂π F = E ⊗̂ε F for each locally

convex space F . Hence we will merely write E ⊗̂ F for the complete projective/injective

tensor product if E or F is nuclear. If both E and F are nuclear, then so is E ⊗̂ F [66,

Proposition 50.1]. A convenient property of a nuclear space E is that any bounded set

B ⊂ E is relatively compact in the completion of E [66, Proposition 50.2]. Also, all

nuclear spaces have the approximation property [36, Satz 11.18]. For Fréchet spaces, the

situation is especially tame. The following Proposition lists several properties of nuclear

Fréchet spaces we will use throughout this thesis.

Proposition 1.2.1. Suppose E and F are Fréchet spaces. Then

(i) E ε F , E ⊗̂ε F and E ⊗̂π F are Fréchet spaces.

If E is nuclear, then the following holds.

(ii) E is reflexive.

(iii) E ′ is nuclear, barrelled and complete.

(iv) (E ⊗̂ F )′ ' E ′ ⊗̂ F ′.

Proof. (i): This is [44, §41.2. (7) on p. 178], [44, §44.2. (5) on p. 267] and [44, §44.2. (7)

on p. 269].

(ii) and (iii): By [66, Corollary 3 to Proposition 50.2] E is Montel, i.e. E is barrelled

and any closed bounded set in E is compact. Hence E is reflexive and E ′ is Montel due

to [61, IV 5.9 and the preceding paragraph] thus especially barrelled. The strong dual E ′

is complete by [61, IV 6.1].

(iv): This can be found in [61, IV 9.9]

If E and F are Hilbert spaces, we will also consider the inner product on E⊗F defined

by

(e⊗ f, e′ ⊗ f ′) := (e, e′)E (f, f ′)F , for e, e′ ∈ E , f, f ′ ∈ F,

where (−,−)E resp. (−,−)F is the inner product in E resp. F . The Hilbert space we

get by completing E ⊗ F with respect to this inner product will be denoted by E ⊗̂H F .

Note that the analogue of (1.2.3) holds for the Hilbert space product as well.
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If Ej, Fj, j = 1, 2 are four locally convex spaces and S ∈ L(E1;E2), T ∈ L(F1;F2),

then the ε-product of S and T is defined by

S ε T ∈ L(E1 ε F1;E2 ε F2) with S ε T (u) := u ◦ (S ′ × T ′)

for all u ∈ E1 ε F1. The following property of the ε-product of continuous linear maps

can be found in [44, §44.4. (5) and (6) on p. 277-278].

Lemma 1.2.2. Suppose Ej, Fj, j = 1, 2 are four locally convex spaces and S ∈ L(E1;E2),

T ∈ L(F1;F2) are injective (resp. homeomorphisms onto their images), then S ε T is

injective (resp. a homeomorphism onto its image).

This implies especially that for (topological) subspaces E0 ⊂ E and F0 ⊂ F we can

identify E0 ε F0 with a (topological) subspace of E ε F via the ε-product of the inclusion

mappings.

The tensor product of S and T is the linear operator on E1 ⊗ F1 defined by

S ⊗ T (e⊗ f) = (S e)⊗ (T f) for all e ∈ E1 , f ∈ F1 ,

i.e. T ⊗ S = (S ε T ) �E1⊗F1 . We will denote the extension of S ⊗ T to the different types

of completions of E1⊗F1 by the same symbol. These extensions are continuous operators

S ⊗ T ∈ L(E1 � F1;E2 � F2) for � ∈ {⊗̂π, ⊗̂ε, ⊗̂H},

in which we only consider Hilbert spaces Ej, Fj for the case � = ⊗̂H. We will also use

the following notation for the Lebesgue-Bochner spaces. If (Xj, νj) are σ-finite measure

spaces and Ej Hilbert spaces for j = 1, 2, then it is easy to see that

L2(Xj, νj)⊗ Ej → L2(Xj, νj;Ej) : f ⊗ e 7→ [x 7→ f(x) e]

extends to a unitary operator

ψ : L2(Xj, νj) ⊗̂H Ej → L2(Xj, νj;Ej) . (1.2.4)

Also, the same approach leads to the identity

L2(X1 ×X2, ν1 ⊗ ν2) = L2(X1, ν1;L2(X2, ν2)) .
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Lemma 1.2.3. If S and T are linear homeomorphisms and Ej, Fj, j = 1, 2 are locally

convex spaces, then S ε T and

S ⊗ T : E1 � F1 → E2 � F2 for � ∈ {⊗̂π, ⊗̂ε}

are linear homeomorphisms. If the Ej, Fj are Hilbert spaces and S, T are linear home-

omorphisms (resp. unitary operators) then S ⊗ T is a homeomorphism (resp. a unitary

operator) between E1 ⊗̂H F1 and E2 ⊗̂H F2.

Proof. For any S1, S2 ∈ L(E1;E2) and T1, T2 ∈ L(F1;F2) we have

(S1 ε T1)(S2 ε T2) = (S1S2) ε (T1T2) and (S1 ⊗ T1)(S2 ⊗ T2) = (S1S2)⊗ (T1T2) .

Furthermore, (S1 ⊗ T1)∗ = (S∗1 ⊗ T ∗1 ) in the Hilbert space case. Also, the tensor or ε

product of identities is undoubtedly the identity. Now we can simply choose in the above

Sj, Tj as S, T , S−1 or T−1 in the necessary combinations and prove the statements.

Note that we may define products of continuous antilinear maps S and T . In this

case, we put

S ε T (u)(e′, f ′) := u(S ′ e′, T ′ f ′) for all u ∈ E1 ε F1 , e
′ ∈ E ′2 , f ′ ∈ F ′2 . (1.2.5)

The result is a continuous antilinear map E1εF1 → E2εF2 with SεT (e⊗f) = (Se)⊗(Tf)

for all e ∈ E1, f ∈ F1. As before, this also leads to continuous antilinear operators

S ⊗ T : E1�F1 → E2�F2 for � ∈ {⊗̂π, ⊗̂ε, ⊗̂H}, where S ⊗ T : E1�F1 → T : E1�F1 is

an antilinear homeomorphism for � = ⊗̂ε (resp. antiunitary for � = ⊗̂H) if S and T are

antilinear homeomorphisms (resp. antiunitary operators).

Lemma 1.2.4. Let E,F and G be locally convex spaces, then

L(E;G)→ L(E ⊗̂ε F ;G ⊗̂ε F ) : T 7→ T ⊗ 1

is continuous.

Proof. The topology on L(E ⊗̂ε F ;G ⊗̂ε F ) is induced by seminorms of the form

T 7→ sup
u∈B

p(T u)
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where B is a bounded set in E ⊗̂ε F and p is a continuous seminorm on G ⊗̂ε F . These

seminorms p have the form

p(v) := sup
g′∈A1

sup
f ′∈C1

|v(g′, f ′)|

where A1 ⊂ G′ and C1 ⊂ F ′ are equicontinuous sets. Note that the set B ⊂ E ⊗̂ε F is

bounded iff

sup
u∈B

sup
e′∈A2

sup
f ′∈C2

|u(e′, f ′)| <∞

for all equicontinuous sets A2 ⊂ E ′ and C2 ⊂ F ′. In general, a subset B̃ ⊂ E is bounded

iff supe′∈A2
supe′∈B̃ | 〈e, e′〉 | < ∞ for all equicontinuous sets A2 ⊂ E ′. Hence the set

BC1 := ∪f ′∈C1(1⊗ f ′)(B) is a bounded subset of E. We arrive at

sup
u∈B

p((A⊗ 1)u) = sup
u∈B

sup
g′∈A1

sup
f ′∈C1

|(g′A⊗ f ′)(u)| = sup
g′∈A1

sup
e∈BC1

| 〈Ae, g′〉 | ,

where the right hand side defines a continuous seminorm on L(E;G).

The following lemma lists further properties of E ε F , which we need later.

Lemma 1.2.5. Let E and F be locally convex spaces, then

(i) The maps

Lε(E ′c;F )→ E ε F : T 7→ [(e′, f ′) 7→ 〈Te′, f ′〉]

Lε(F ′c;E)→ E ε F : T 7→ [(e′, f ′) 7→ 〈Tf ′, e′〉]

are linear homeomorphisms.

(ii) If E = lim←−α∈A(Eα, jα,β) is a projective limit, then E ε F ' lim←−α∈A(Eα ε F, jα,β ε IF ).

(iii) If E carries the initial topology with respect to linear maps Tj : E → Ej, j ∈ J ,

into locally convex spaces Ej, then E ε F carries the initial topology with respect to

Tj ε IF : E ε F → Ej ε F , j ∈ J .

Proof. (i): This is proven in [63, p. 35, Corollaire 2]
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(ii): This is shortly explained in [42, Proposition 1.5]. We will take a closer look at

the involved arguments. By [44, §44.5. (4)] (or again a very short exposition in [42]), we

can construct the linear homeomorphism

(
∏
α∈A

Eα) ε F →
∏
α∈A

(Eα ε F ) : v 7→
(
(pα ε IF )v

)
α∈A , (1.2.6)

in which pβ :
∏

αEα 3 (eα)α 7→ eβ ∈ Eβ for β ∈ A. For α, β ∈ A, α ≤ β denote

Jα,β := jα,β ε IF and Pα := pα ε IF . Then Jα,α = IEεF and Jα,βJβ,γ = Jα,γ for α ≤ β ≤ γ.

Thus we may construct the projective limit lim←−α∈A(E ε F, Jα,β). Since E is a subspace

of
∏

αEα we may identify EεF with a subspace of (
∏

αEα) ε F . Hence, it is enough to

show that the above homeomorphism (1.2.6) maps EεF onto lim←−α(Eα ε F, Jα,β).

Using (i), we may identify each v ∈ (
∏

αEα) ε F with an operator T ∈ L(F ′c;
∏

αEα).

For these T , we have T ∈ L(F ′c;E) iff pα ◦ T = jα,β ◦ pβ ◦ T for all α ≤ β. Hence

v ∈ E ε F ⇔ ∀α≤β : Jα,βPβv = Pαv .

For (vα)α ∈
∏

αEα we have

(vα)α ∈ lim←−
α

(Eα ε F, Jα,β) ⇔ ∀α≤β : Jα,βvβ = vα

by definition of the projective limit. Thus we get (ii).

(iii): This is stated and proven in [43, §44.5. (4)]2.

A major reason to use tensor products are kernel theorems, i.e. the description of

certain spaces of linear operators by tensor products.

Definition 1.2.6. Let E and F be locally convex spaces. We define the linear map

J : F ⊗ E ′ → L(E;F ) where 〈J (f ⊗ e′) e, f ′〉 := 〈e, e′〉 〈f, f ′〉 ,

for all e ∈ E, e′ ∈ E, f ∈ F and f ′ ∈ F ′. Via J , the tensor product F ⊗ E ′ is mapped

bijectively onto the continuous finite rank operators F(E;F ). The kernel map will be

denoted by K and is defined as the inverse K := J −1 defined on F(E;F ).

2Alternatively, one could express E as a space linearly homeomorphic to a projective limit indexed

by the finite subsets of J and use (ii).
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Suppose � ∈ {⊗̂ε, ⊗̂π, ⊗̂H}, in which E and F are supposed to be Hilbert spaces for

� = ⊗̂H. By equipping F(E;F ) with a suitable topology, we may extend the domain of

J to F � E ′ such that M := J (F � E ′) is in the completion of F(E;F ).

If the extended map J is injective and its image M is a subspace of L(E;F ), we will

still use the symbol K for the inverse

K = J −1 : M→ F � E ′

and call it kernel map.

Of course, for us the cases where K and J are linear homeomorphisms are of interest.

Nuclear spaces are tailor-made for the usage of kernel maps. The following proposition

can be found in [66, Propositions 50.5].

Proposition 1.2.7. If E and F are complete locally convex spaces such that E is barrelled

and E ′ is nuclear and complete, then the kernel map

K : L(E;F )→ F ⊗̂ E ′

is a linear homeomorphism.

If E is a nuclear Fréchet space, then the above theorem is applicable for E and its

dual. In this case the kernel maps

K : L(E;F )→ F ⊗̂ E ′ and K : L(E ′;F )→ F ⊗̂ E (1.2.7)

are linear homeomorphisms where we used E ' E ′′. If F is a Fréchet space, then we use

the isomorphism of nuclear Fréchet spaces

L(E;F ′)′ ' L(E ′;F ) (1.2.8)

via Proposition 1.2.1 (iv) and (1.2.7).

The following well known statements can be found in [44, §43.2. (7)] and [37, 2.6.9

Proposition].
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Proposition 1.2.8. If H and K are Hilbert spaces, then the kernel map

K : N (H;K)→ K ⊗̂π H ′ resp. K : HS(H;K)→ K ⊗̂H H
′

is a linear homeomorphism resp. a unitary operator.

Often bilinear maps occurring in the theory of locally convex spaces fail to be contin-

uous. One example of this would be the composition map between spaces of continuous

operators

Lα(E)× Lα(E)→ Lα(E),

for a nonnormable locally convex space E, which is not continuous for α ∈ {s, c, b} or any

other sensible topology due to an old result of B. Maissen [51]. Similarly the multiplica-

tion between spaces of smooth functions and spaces of distributions in the regime of L.

Schwartz [65] is discontinuous more often than not. For example, the multiplications

S (Rn)× OM(Rn)→ S (Rn) and S ′(Rn)× OM(Rn)→ S ′(Rn) (1.2.9)

are discontinuous [49].

However, in many cases we may use hypocontinuity instead of continuity.

Definition 1.2.9. Let E,F and G be locally convex spaces. A bilinear map u : E×F → G

is defined to be hypocontinuous if for all bounded sets BE ⊂ E and BF ⊂ F the two

sets of linear maps

{u(e,−) | e ∈ BE} and {u(−, f) | f ∈ BF}

are equicontinuous. We denote by E ⊗̂β F the completion of E ⊗ F with respect to the

finest locally convex topology that makes ⊗ : E × F → E ⊗ F hypocontinuous.

Note that a bilinear map u : E×F → G is hypocontinuous if and only if u �E×BF and

u �BE×F is continuous for all bounded sets BE ⊂ E and BF ⊂ F .

Furthermore, in the following theorem we will use the fact that for any continuous

bilinear map u from E×F into another locally convex space there is a unique continuous

linear map u : E ⊗̂π F → G such that u = u ◦ ⊗. Analogously, if u is hypocontinuous,

there is a unique continuous map u : E ⊗̂β F → G such that u = u ◦ ⊗ [64, p. 10-11].
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Now our first example of a bilinear map

L(E)× L(E)→ L(E) : (S, T ) 7→ S T ,

which is separately continuous but not continuous, is indeed hypocontinuous for barrelled

spaces E. This is a standard implication of the Banach-Steinhaus Theorem [66, Theorem

33.1].

Lemma 1.2.10. Suppose E,F,G are locally convex space and suppose F is barrelled then

the bilinear maps

F × L(F ;G)→ G : (f, T ) 7→ Tf and

L(E;F )× L(F ;G)→ L(E;G) : (S, T ) 7→ T ◦ S

are hypocontinuous.

Proof. Since L(E;F ) is equipped with the topology of uniform convergence on bounded

sets, BL ⊂ L(E;F ) is bounded iff BL(BE) is bounded in F for every bounded BE ⊂ E.

Hence

T 7→ sup
f∈BF

p(Tf) and T 7→ sup
S∈BL

sup
e∈BE

p(TSe)

are continuous seminorms on L(F ;G) for any continuous seminorm p on G and any

bounded sets BF ⊂ F , BE ⊂ E and BL ⊂ L(E;F ).

We complete the proof by using the Banach-Steinhaus Theorem [66, Theorem 33.1],

which states that any bounded set in L(F ;G) is equicontinuous.

Linear maps on tensor factors can easily be combined to construct a linear map on

the complete tensor product. The situation for bilinear maps is not as simple. However,

in the context of nuclear spaces, we may use the following theorems. The first one is very

similar to a corollary due to L. Schwartz [64, Corollaire on p. 38]. It was adjusted in

[3, Proposition 1’] to almost the exact form we are going to use. In that case, though,

the authors used quasi-complete spaces. We prefer to formulate the statement with

complete spaces, because almost all spaces we will encounter are complete and by using

this stricter requirement we do not need to require the strict approximation property [63,
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p. 5]. L. Schwartz formulated his version of the statement for quasi-complete spaces, but

explained in [64, Remarques on p. 38] how it may easily be adjusted to the complete

setting. This argumentation can be applied to [3, Proposition 1’] as well.

Theorem 1.2.11. Let H , K , L , E, F and G be complete locally convex spaces and let

H be nuclear. Suppose that

u : H ×K → L and b : E × F → G

are bilinear maps with u continuous and b hypocontinuous. Then there is a hypocontinuous

bilinear map

b
u : (H εE)× (K ε F )→ L εG,

that fulfils the consistency property

b
u(S ⊗ e, T ⊗ f) = u(S, T )⊗ b(e, f).

If K or F has the approximation property, then b
u is the unique separately continuous

bilinear map fulfilling the above consistency property.

Proof. Essentially, we merely need to exchange all quasi-completions with completions in

the proof to [3, Proposition 1]. Since H is nuclear it has the approximation property,

which is sufficient in this case. For the convenience of the reader we will elaborate.

By the [64, Proposition 2] there exists a hypocontinuous3 bilinear map

Γ: (E ⊗̂ε H )× (F εK )→ (E ⊗̂β F ) ε (H ⊗̂ε K ) ,

such that Γ(e⊗ T, f ⊗ S) = (e⊗ f)⊗ (T ⊗ S) for all e ∈ E, f ∈ F , T ∈H and S ∈ K .

Since H is nuclear, we have E ⊗̂ε H = E ε H and H ⊗̂ε K = H ⊗̂π K . Since the

ε-product is symmetric, we can consider Γ as a bilinear hypocontinuous map

Γ: (H ε E)× (K ε F )→ (H ⊗̂π K ) ε (E ⊗̂β F ) .

Now let

u : H ⊗̂π K → L and b : E ⊗̂β F → G

3Note that in [64] hypocontinuous maps are also called β-continuous.
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be the unique continuous linear maps fulfilling u ◦ ⊗ = u and b ◦ ⊗ = b. Then

b
u := (u ε b) ◦ Γ: (H εE)× (K ε F )→ L εG

is a well-defined hypocontinuous map with b
u(T⊗e, S⊗f) = u(S, T )⊗b(e, f) for all e ∈ E,

f ∈ F , T ∈H and S ∈ K .

If either K or F has the approximation property, then K ⊗ F is dense in K ε F .

Since H is nuclear, H ⊗E is dense H εE. Now the uniqueness of b
u follows, since any

separately continuous bilinear map v : H × H̃ → K is already completely defined by its

action on H0 × H̃0 for dense subset H0 ⊂ H, H̃0 ⊂ H̃.

The second theorem we will use is due to C. Bargetz and N. Ortner [4, Proposition 1].

Theorem 1.2.12. Let H , K , L , E, F and G be complete locally convex spaces and let

H be nuclear. Suppose that

u : H ×K → L and b : E × F → G

are two hypocontinuous bilinear maps. Suppose furthermore that either one of the two

properties

• H and E are Fréchet spaces

• H and E are duals to Fréchet spaces

is fulfilled. Then there is a unique hypocontinuous bilinear map

b
u : (H εE)× (K ε F )→ L εG,

that fulfils the consistency property

b
u(S ⊗ e, T ⊗ f) = u(S, T )⊗ b(e, f).

If K has the approximation property, then b
u is the unique separately continuous bilinear

map fulfilling the above property.
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If both bilinear maps u and b are continuous, then one can also construct the tensor

product b
u of these bilinear maps on the projective tensor product. This construction is

much simpler than the approach due to Schwartz. Yet, since we mostly use ε-products

of spaces, Theorem 1.2.11 and Theorem 1.2.12 are more suitable even if both u and b are

continuous. Only if we deal with tensor products of locally m-convex algebras do we need

a corresponding theorem for the projective case.

Definition 1.2.13. An algebra A equipped with a locally convex topology is called locally

m-convex iff there is a set of continuous seminorms P on A defining the topology such

that

p(ab) ≤ p(a) p(b) for all a, b ∈ A , p ∈ P .

In this case the multiplication is a continuous bilinear map.

Equivalently, the algebra A is locally m-convex iff there is a basis of absolutely convex

and closed neighbourhoods of zero U such that

U · U ⊂ U for all U ∈ U .

The corresponding proof can be found in [52, Chapter I, Theorem 3.1].

Candidates for U and P can be constructed from each other. If P is given, then U

can be constructed by using the subbasis {p−1([0, ε]) | p ∈ P , 0 < ε ≤ 1}. Similarly, if U

is given, then P can be defined as the set of gauge functions for the neighbourhoods in

U .

Proposition 1.2.14. Suppose A and B are locally m-convex algebras. Then there is a

unique multiplication on A ⊗̂π B such that

(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2)⊗ (b1b2) , for all a1, a2 ∈ A , b1, b2 ∈ B .

Equipped with this topology A ⊗̂π B is a locally m-convex algebra.

Proof. A ⊗ B equipped with the subspaces topology in A ⊗̂π B is a locally m-convex

algebra [52, Chapter X, Proposition 3.1]. Of course, its completion, A ⊗̂π B, is locally

m-convex as well [52, Chapter I, Lemma 4.1].
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1.3 Real structures

Definition 1.3.1. Suppose E is a locally convex space over C. A real Structure on E

is an antilinear homeomorphism C : E → E with C2 = IE. We will call such a pair (E, C)

a locally convex space with a real structure.

Let us denote by ER the locally convex space we get by restricting the scalar multipli-

cation from C× E to R× E. Connected to a real structure C on E is always a splitting

ER = Re(E)⊕ i Im(E), where Re(E) = Im(E), (1.3.10)

into a real and an imaginary subspace with respect to projections

Re =
1

2
(IE +C) and i Im =

1

2
(IE −C).

In the other direction, each splitting (1.3.10) defines a real structure C(v+ iw) := v− iw,

for v, w ∈ Re(E), on E. We may also define a canonical real structure on the dual E ′α for

α ∈ {s, c, b} by

C ′ : E ′ → E ′, where 〈e, C ′ e′〉 = 〈C e, e′〉, for e ∈ E, e′ ∈ E ′. (1.3.11)

This real structure induces an isomorphism

Re(E ′α) ∼= Re(E)′α where Re(e′) 7→ Re(e′) �Re(E) . (1.3.12)

If we take a Hilbert space H, then a real structure on H is connected with a unitary map

between H and its dual H ′. Namely, each unitary isomorphism H ' H ′ corresponds to an

antiunitary map on H. Note that for continuous antilinear maps T : H1 → H2 the adjoint

is defined via (Th1, h2)H2
= (T ∗h2, h1)H1

and T is called antiunitary if T is bijective with

T ∗ = T−1. The Fréchet-Riesz map

R : H → H ′ : h 7→ (−, h)H

is an example of an antiunitary map.

We use unitary maps I : H → H ′ between Hilbert spaces and their duals, because

on the one hand they are convenient in concert with Gelfand triples as described in the
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following section and on the other hand they simplify the kernel map K in Proposition

1.2.8. We will use unitary maps HS(H;K)
K−→ K ⊗̂H H resp. linear homeomorphisms

N (H;K)
K−→ K ⊗̂π H defined via

J (k ⊗ h) h̃ := K−1(k ⊗ h) h̃ := 〈h̃, I h〉 k (1.3.13)

for h, h̃ ∈ H and k ∈ K. The following lemma describes why it is natural to consider real

structure in order to get an identification H ' H ′.

Lemma 1.3.2. Let H be a Hilbert space. Each unitary map I : H → H ′ with 〈h2, I h1〉 =

〈h1, I h2〉, for h1, h2 ∈ H, defines an antiunitary real structure C on H and vice versa.

Both maps are related by I = RC.

Proof. For h1, h2 ∈ H and an antiunitary real structure C we have

〈h1,RC h2〉 = (h1, C h2) = (C2 h2, C h1) = 〈h2,RC h1〉 .

Hence I = RC : H → H ′ is unitary with the appropriate symmetry properties.

Suppose I is some unitary map as described in the lemma. Then C = R−1I is

antiunitary and

(h1, Ch2) = 〈h1, I h2〉 = (h2, Ch1).

Hence C∗ = C and C is an antiunitary real structure.

1.4 Gelfand triples

Gelfand triples are a convenient setting for both distributions and the Fourier transform.

We start by defining the class of Gelfand triples we are going to use.

Definition 1.4.1. A Gelfand triple is a tuple of spaces G = (E,H,E ′) fulfilling the

following properties:

(i) E is a nuclear Fréchet space and E ′ is its strong dual.

(ii) H is a Hilbert space, with dense and continuous embedding E ↪→ H.
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Because the embedding E ↪→ H is continuous and dense, the dual map H ′ ↪→ E ′

is a continuous dense embedding as well. Classically in Gelfand triples an antilinear

embedding of E and H into E ′ [30] is used. Here the embedding is defined via the

Fréchet-Riesz isomorphism R : H
'−→ H ′ and the dual embedding H ′ ↪→ E ′. However, for

us this approach would be unwieldy, because we will use Gelfand triples in concert with

tensor products. Since there is no canonical unitary map between H and H ′, we are going

to use real structures to fix one.

Definition 1.4.2. A real structure on a Gelfand triple G = (E,H,E ′) over C is a

triple of real structures CE on E, CH on H and CE′ on E ′ such that

(i) 〈e, CE′ e′〉 = 〈CE e, e′〉 for all e ∈ E, e′ ∈ E ′.

(ii) CH is antiunitary,

(iii) if ι : E ↪→ H is the Gelfand triple embedding, then CH ι = ι CE.

The map C = CE′ will be called the real structure of G.

Each real structure on the Gelfand triple G = (E,H,E ′) defines a unitary map I in

the sense of Lemma 1.3.2, i.e.

I = R ◦ CH : H → H ′, (1.4.14)

where R is the Fréchet-Riesz map H → H ′. If ι : E ↪→ H is the embedding defined by

the Gelfand triple, this results in a continuous, dense embedding

I : H ↪→ E ′ in which I = ι′RCH (1.4.15)

Using a real structure on the Gelfand triple in order to define such an isomorphism

is quite natural. Indeed any unitary isomorphism H ∼= H ′ that fulfils the symmetry

condition from Lemma 1.3.2 induces a real structure on H. If this real structure is

supposed to pull back to a homeomorphism on E, then this already fixes a unique real

structure G.

Also, if ‖ · ‖H is the norm on H, it is clear that any real structure CE on E such

that ‖ι CE e‖H = ‖ι e‖H for all e ∈ E already fixes a unique real structure on the whole

Gelfand triple G = (E,H,E ′).
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Convention 1.4.3. From now on, we will only consider Gelfand triples G = (E,H,E ′)

over C if we do not say otherwise. We will think of any such Gelfand triple to be equipped

with a real structure. We consider E to be a subspace of H and H to be a subspace of E ′

via the embeddings

E
ι
↪−→ H

I
↪−→ E ′

in the sense of (1.4.15). Similarly, we will regard H and H ′ to be the same topological

vector space via (1.4.14). Furthermore, we will not distinguish between the real structures

on E, H and E ′ and denote them by the same letter, say C. In this sense we will just

write

〈e, e′〉 and (e, e′) := 〈e, Ce′〉

for (e, e′) in E ×E ′, E ′ ×E or H ×H, where 〈·, ·〉 denotes (depending on the situation)

the dual pairing on E×E ′, E ′×E or H ×H induced by (1.4.14). Note that for e, e′ ∈ H

the pairing (e, e′) is just the inner product on H.

The commutative diagrams below elucidate this notion. Using the real structure C

and the corresponding projection Re we may identify real subspaces which form a Gelfand

triple over R with the isomorphism Re(E ′) ∼= Re(E)′ from (1.3.12).

E H E ′

E H E ′

C C C

E H E ′

Re(E) Re(H) Re(E ′)

Re Re Re

The diagram on the right hand side justifies the choice of the term real structure on

a Gelfand triple. Also, using the dual pairings 〈·, ·〉 and (·, ·) not only with arguments

(e, e′) ∈ E×E ′, but also with arguments (e, e′) ∈ E ′×E seems to clash with our previous

convention, where we used functionals in the second argument. In order to remedy this,

we use the canonical isomorphism E ' E ′′.

Definition 1.4.4. Let G = (E,H,E ′) be a Gelfand triple with real structure C. Suppose

F is a locally convex space equipped with continuous dense embeddings,

E F E ′

⊂

38



that commute with the inclusion map as described in the commutative diagram above. If

in addition the restriction of C from E ′ to F is a homeomorphism from F to F , then we

will call F a G-regular space.

If F is G-regular and reflexive, then F ′ is G-regular as well. In order to prove this, we

may consider the dense dual embeddings

E F ′ E ′,

where we used the canonical isomorphism E ' E ′′. The real structure acts on E ′ by

〈e, C e′〉 = 〈C e, e′〉 for e,∈ E, e′ ∈ E ′.

Thus C also restricts to a homeomorphism from F ′α onto F ′α for each α ∈ {s, c, b}, because

C restricts to a homeomorphism from F onto F . Hence F ′ is G-regular.

If Gj = (Ej, Hj, E
′
j) j = 1, 2, are Gelfand triples with real structure C1, C2, F is

G1-regular and G is G2-regular spaces, then F ′ resp. G′ are G1- resp. G2-regular. By the

corresponding embeddings due to the Gj-regularity, we may embed L(F ;G) continuously

into L(E1;E ′2) and L(G′;F ′) continuously into L(E2;E ′1). Using these identifications we

formulate the following definition.

Definition 1.4.5. Let Gj, Cj, F and G be be above. We define the adjoint T ∗ ∈ L(G′;F ′)

of T ∈ L(F ;G) by

T ∗ := C1 T
′ C2 i.e. (T ∗ e, e′) = (e, Te′) for all e ∈ E2 , e

′ ∈ E1.

On continuous operators between H1 and H2 this definition coincides with the usual

adjoint, via the identification of Hj with H ′j.

Lemma 1.4.6. Suppose Gj is a Gelfand triple with real structure Cj for j = 1, 2. If F

is G1-regular and G is G2 − regular and both are reflexive, then the adjoint defines an

antilinear homeomorphism

L(F ;G)→ L(G′;F ′) : T 7→ T ∗.
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Proof. Since G is reflexive, the map

L(F ;G)→ L(G′;F ′) : T → T ′

is a homeomorphism by Lemma 1.1.1. The rest follows with the fact that C1 restricts to

a homeomorphism from F ′ to F ′ and C2 restricts to a homeomorphism from G′ to G′.

It is helpful to have a term for maps that behave well with the Gelfand triple structure.

Definition 1.4.7. Let Gj = (Ej, Hj, E
′
j), j = 1, 2, be Gelfand triples and let T : E ′1 → E ′2

be linear. We write

T : G1 → G2,

if T (E1) ⊂ E2 and T (H1) ⊂ H2 with respect to the above described embeddings. We

will call T a Gelfand triple isomorphism if T �E2
E1

: E1 → E2, T : E ′1 → E ′2 are

homeomorphisms and T �H2
H1

: H1 → H2 is unitary.

The above definition implies that writing T : G1 → G2 is equivalent to saying that the

diagram

E1 H1 E ′1

E2 H2 E ′2

T T T

is commutative. In order to identify a Gelfand triple isomorphism T : G1 → G2, it is

enough to examine its action on E1. To be more precise, if S : E1 → E2 is a linear

homeomorphism such that ‖S e‖H2 = ‖e‖H1 for all e ∈ E1, then there is exactly one

Gelfand triple isomorphism T with T �E2
E1

= S. This Gelfand triple is defined by

T = (S−1)∗ = C2 (S−1)′ C1 ,

where Cj is the real structure to Gj for j = 1, 2.

In the following, we denote by H1⊕H H2 the Hilbert space sum of two Hilbert spaces

H1 and H2. In other words H1⊕H H2 is the direct sum H1⊕H2 equipped with the norm

defined by ‖h1 ⊕ h2‖2
H1⊕HH2

:= ‖h2‖2
H1

+ ‖h2‖2
H2

for h1 ∈ H1 and h2 ∈ H2.

Now we will describe how we may construct new Gelfand triples by using tensor

products and direct sums.
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Definition 1.4.8. Let Gj = (Ej, Hj, E
′
j) be Gelfand triples with structure maps Cj for

j = 1, 2. Using the identifications E ′1⊕E ′2 ' (E1⊕E2)′ and E ′1 ⊗̂E ′2 ' (E1 ⊗̂E2)′ due to

Proposition 1.2.1 resp. L(E1, E
′
2) ' L(E ′1, E2)′ due to (1.2.8) we may define the following

Gelfand triples.

The sum resp. tensor product of G1 and G2 is defined by

G1 ⊕ G2 :=


E1 ⊕ E2

H1 ⊕H H2

E ′1 ⊕ E ′2

 resp. G1 ⊗ G2 :=


E1 ⊗̂ E2

H1 ⊗̂H H2

E ′1 ⊗̂ E ′2


with structure maps C1 ⊕ C2 resp. C1 ⊗ C2.

The operator Gelfand triple from G1 to G2 is defined as

L(G1;G2) :=


L(E ′1, E2)

HS(H1, H
′
2)

L(E1, E
′
2)


with structure map T 7→ C2 T C1.

Let us now discuss why G1 ⊗ G2 and L(G1;G2) are indeed Gelfand triples. Integral to

our argumentation are the real structures and kernel maps K = J −1. Here we use the

adjustment (1.3.13) for the kernel maps

N (H1, H2) ' H2 ⊗̂π H1 resp. HS(H1, H2) ' H2 ⊗̂H H1,

from Proposition 1.2.8. To be precise, these unitary isomorphisms are defined by extend-

ing the linear map

J : H2 ⊗H1 → F(H1;H2), where J (h2 ⊗ h1)(h̃1) := 〈h1, h̃2〉 h2 .

These isomorphisms, together with (1.2.7), can be used to construct the following chain

of injective continuous maps with dense ranges

E2 ⊗̂ E1 H2 ⊗̂π H1 H2 ⊗̂H H1

L(E ′1;E2) N (H1;H2) HS(H1;H2)

K−1 'K ' K '
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We get additional continuous embeddings with dense ranges

L(E ′1;E2) ↪→ N (H1;H2) and H2 ⊗̂π H1 ↪→ H2 ⊗̂H H1

by completing the commutative diagram horizontally. This both shows that L(G1;G2)

and G2 ⊗ G1 are Gelfand triples, and proves the following Proposition.

Proposition 1.4.9. Suppose G1 and G2 are the Gelfand triples from above, then the

canonical kernel map

K : L(E1;E ′2)→ E ′2 ⊗̂ E ′1

is a Gelfand triple isomorphism K : L(G1,G2)→ G2 ⊗ G1.
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Chapter 2

Spaces of vector valued smooth and

ultradifferentiable functions

Before we approach the topic of differentiable vector valued functions, we first need to fix

the notation for the standard spaces of scalar valued functions.

Suppose M is a locally compact second countable topological space, e.g. a smooth

manifold, then C (M) will denote the space of continuous functions on M with values in

C, equipped with the topology of uniform convergence on compact sets. I.e. the topology

of C (M) is defined by seminorms of the form

f 7→ ‖f �K ‖∞ = sup
x∈K
|f(x)| for compact K ⊂M .

2.1 Spaces of continuous vector valued functions

For any quasi-complete locally convex space E we define the space of E valued continuous

functions

C (M;E) := {f : M→ E | f is continuous}

equipped with the topology of uniform convergence on compact sets, i.e. the topology

induced by the set of seminorms

f 7→ sup
x∈K

p(f(x)) for compact K ⊂M and continuous seminorms p : E → R .
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The space C (M;E) can be identified with C (M) ε E via the linear homeomorphism

f 7→ [C ′(M)× E ′ 3 (µ, e′) 7→ 〈e′ ◦ f, µ〉 ∈ C] .

A proof of this fact can be found in [39, Theorem 1.10]. This homeomorphism also

motivates the following definition of more general spaces of vector valued continuous

functions [39, p. 235].

Definition 2.1.1. We call a locally convex space F (M) a C (M)-function space if it is

a linear subspace of C (M) equipped with a topology which is finer than or equal to the

subspace topology from C (M).

If E is a locally convex space over C and G (M) a C (M)-function space, we will denote

by G (M;E) the space of functions f : M→ E such that

e′ ◦ f ∈ G (M) for all e′ ∈ E ′ and [e′ 7→ e′ ◦ f ] ∈ L(E ′c; G (M)) ,

and equip it with the topology induced by the seminorms

f 7→ sup
e′∈W

p(e′ ◦ f)

for continuous seminorms p on G (M) and equicontinuous and W ⊂ E ′.

From this definition follows with Lemma 1.2.5 that

G (M;E)→ G (M) ε E : f 7→ [(φ, e′) 7→ 〈e′ ◦ f, φ〉] (2.1.1)

is a linear homeomorphism for any locally convex space E. This homeomorphism also

motivates the following convention. If

v ∈ G1(M1) ε · · · ε Gn(Mn) ε E ,

in which the Gj(Mj) are C (Mj)-function spaces, and if εxj ∈ Gj(Mj)
′ with 〈f, εxj〉 = f(xj),

then we will write

v(x1, . . . , xn, e
′) := v(εx1 , . . . , εxn , e

′)

and also define

v(x1, . . . , xn) ∈ E by 〈v(x1, . . . , xn), e′〉 := v(x1, . . . , xn, e
′) .

44



Note that any v ∈ G1(M1) ε · · · ε Gn(Mn) ε E is completely defined by its values v(x) for

x ∈
∏n

j=1 Mj, since the sets of functionals spanC{εxj | xj ∈Mj} are dense in Gj(Mj)
′
c.

The above approach to vector valued functions is inverse to the one usually used

for spaces of vector valued functions. More commonly, one defines a space of vector

valued functions f : M→ E, say F (M;E), in which the corresponding space scalar valued

functions F (M) are just the special case for E = C. Afterwards, one checks whether

F (M) ε E ' F (M;E) holds. However, the homeomorphism F (M) ε E ' F (M;E) is

integral to our approach, so using it as a definition is more convenient. An immediate

benefit of this homeomorphism is that continuous operators on a C (M)-function space

F (M) and on a locally convex space E automatically correspond to continuous operators

on G (M;E).

Let the homeomorphism (2.1.1) be denoted by ψ and let T ∈ L(F1(M1); F2(M2)) and

S ∈ L(E1, E2), in which the Fj(Mj) are C (Mj)-function spaces and the Ej are locally

convex. Then ψ−1◦(T εS)◦ψ defines an operator in L(F1(M1;E1); F2(M2;E2)). If there

is no risk of confusion, we will denote this operator by T ε S as well. We will use such

operators especially often in the case where T = P ∈ Diff(M) is a differential operator

and S = I is an identity. Here, we will merely write Pf(x) := Pxf(x) := (P ε I)f(x).

2.1.1 Limits of C (M)-function spaces

Often, we will encounter certain spaces of continuous functions that are isomorphic to

inductive or projective limits. We will make a few general observations and introduce

simplified notation.

If (A,≤) is a directed set and (Fα(M))α∈A is a family of C (M)-function spaces, such

Fα(M) ⊃ Fβ(M) and the inclusion maps iα,β : Fβ(M) → Fα(M) are continuous for

α ≤ β. We may then always identify the projective limit lim←−α∈A(Fα(M), Iα,β) with the

linear subspace
⋂
α∈A Fα(M) ⊂ C (M) via (fα)α 7→ fβ (this definition does not depend on

the choice β ∈ A). Equipped with the topology transported from lim←−α∈A(Fα(M), Iα,β),

this is a C (M)-function space, which we will just denote by lim←−α∈A Fα(M). For a complete

locally convex space E we define lim←−α∈A Fα(M;E) analogously as a space of E-valued
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continuous functions linearly homeomorphic to lim←−α∈A(Fα(M;E), Iα,β ε IE).

Similarly, if (Fα(M))α∈A is a family of C (M)-function spaces such that Fβ(M) is

contianed in Fα(M) and the inclusion maps iα,β : Fβ(M) → Fα(M) are continuous for

α ≥ β, then we can identify the inductive limit lim−→α∈A(Fα(M), Iα,β) = (
⊕

α∈A Fα(M))/H

with the linear subspace
⋃
α∈A Fα(M) ⊂ C (M) via

ψ :
⋃
α∈A

Fα(M)→
(⊕

α∈A

Fα(M)

)/
H , ψ(f) = jα(f) +H for f ∈ Fα(M) ,

in which we used the H and jα from Definition 1.1.3. We denote by lim−→α∈A Fα(M) the lin-

ear space
⋃
α∈A Fα(M) equipped with the topology transported from lim−→α∈A(Fα(M), Iα,β).

Analogously, lim−→α∈A Fα(M;E) is defined by exchanging Fα(M) with Fα(M;E) in the

above.

Suppose (K,⊂) is a directed set of compact subsets of M, ordered by the inclusion

relation such that M =
⋃
K∈KK

1. Suppose F (K) is a C (K)-function space for each

K ∈ K such that

IK′,K : F (K)→ F (K ′) : f 7→ f �K′ , for K ′ ⊂ K ,

is well-defined and continuous. Then lim←−K∈K(F (K), IK,K′) can be identified with a C (M)-

function space, denoted by lim←−K∈KF (K), via

(fK)K∈K 7→ f where f(x) = fK(x) for x ∈ K .

Analogously, we define lim←−K∈KF (K;E) as a space of E valued continuous functions,

which is linearly homeomorphic to lim←−K∈K(F (K;E), IK,K′ εE).

2.1.2 Differentiable functions and differential operators on man-

ifolds and regular compact sets

Suppose M is an N -dimensional smooth manifold. We will always identify the tangent

space at x ∈M, denoted by TxM, with the space of derivations at x ∈M. By E (M) resp.

C k(M), k ∈ N0, we will denote the space of smooth function resp. k-times continuously

1Later, we will just use the family of regular compact sets from Definition 2.1.4
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differentiable functions on M. The topology of these spaces is the initial topology with

respect to the maps

E (M)→ E (φ(U)) resp. C k(M)→ C k(φ(U)) : f 7→ f ◦ φ−1

for smooth charts (φ, U), in which φ : M ⊃ U → φ(U) ⊂ RN . As usual D(M) denotes

the space of smooth functions with compact support on M. If M is an analytic manifold,

then we denote the vector space of analytic functions by A (M). A differential operator

P on an open set V ⊂ RN is a linear operator on E (V ) defined by

P f :=
∑
α∈NN0

aα · ∂αf

for some smooth functions aα ∈ E (V ) such that on any compact K ⊂ V only finitely

many aα �K are non-zero. The ring of differential operators on V will be denoted by

Diff(V ). The number

degP := sup{|α| : ∃x∈V aα(x) 6= 0} ∈ N0 ∪ {∞}

is the degree of the differential operator P . The set of differential operators P with

degP ≤ k will be denoted by Diffk(V ). Now the same concepts are defined on smooth

manifolds M by

Diff(M) :=

P ∈ L(E (M))

∣∣∣∣∣∣ for each smooth chart (φ, U) there exists

Pφ ∈ Diff(φ(U)) with P (−) ◦ φ−1 = Pφ (− ◦ φ−1)

 .

The sets of differentiable operators Diffk(M) are defined analogously, i.e. we just exchange

Diff(φ(U)) with Diffk(φ(U)). Note that Diffk(M) is a module over E (M) ' Diff0(M). If

M is an analytic manifold, we will also need the space of real analytic sections M→ TM,

i.e. analytic vector fields, denoted by Va(M). The action of some vector field X on

f ∈ E (M) is denoted by (Xf)(x) := X(x)(f).

Naturally, each differential operator P ∈ Diff(M) can not only be seen as a linear

operator on E (M), but also as a continuous linear operator on E (U) and between C n(U)

and Cm(U) for open U ⊂M and n−degP ≥ m. In general, we will also use the notation

Pf(x) := Pxf(x) for any differential operator or vector field P and a function f .
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Differentiable functions and differential operators on regular compact sets

Let |c| be the length of a rectifiable curve c. We use the following property for subsets

A ⊂ RN from [69]:

There is C > 0 such that any x, y ∈ A are connected by a

rectifiable curve c ⊂ A with |c| ≤ C|x− y|.
(P)

This property plays a role in the extension of differentiable functions (resp. jets) [6, 69].

Obviously, convex sets have property (P) and if A has property (P) then so does the

closure A by [69, Lemma 2]. In [40], Komatsu defines his spaces of ultradifferentiable

functions on finite disjoint unions of compact sets with property (P). Since we need to

use spaces of functions on manifolds, we need to be able to define our compact sets via

charts.

Indeed we also have a certain invariance with respect to diffeomorphisms. Suppose

U, V are open in RN and suppose ψ : U → V is a diffeomorphism. If c is a rectifiable

curve in A and A ⊂ U , then

inf
x∈A
‖dxψ−1‖−1

L(RN )
· |c| ≤ |ψ(c)| ≤ sup

x∈A
‖dxψ‖L(RN ) · |c| .

So if we assume A is a compact subset of U , then A has property (P) iff ψ(A) has property

(P). More generally, the same holds for any bijective Lipschitz function ψ : A → ψ(A)

with Lipschitz inverse. Hence the following definition will be helpful.

Definition 2.1.2. A subset A ⊂ Rn will be called bounded Lipschitz domain, iff A is

open, bounded, connected and for any x ∈ ∂A there is an open set U 3 x, and a bijective

Lipschitz map ψ : U → (−1, 1)n with Lipschitz inverse, such that

ψ(U ∩ ∂A) = (−1, 1)n−1 × {0} and ψ(U ∩ A) = (−1, 1)n−1 × (0, 1) .

Lemma 2.1.3.

(i) Suppose A ⊂ RN is relatively compact and for each x ∈ A there is an open neigh-

bourhood U 3 x in RN such that U ∩ A has property (P). Then all connected

components of A fulfil (P). Also, A has finitely many connected components.

48



(ii) Suppose A ⊂ RN is a bounded Lipschitz domain. If A ⊂ B ⊂ A, then B fulfils (P).

Proof. (i): Since A is compact, we find a finite open cover U1, . . . , Un such that A ∩ Uj
has property (P) for each j. Since each Uj ∩ A is connected, A has only finitely many

connected components.

We show that the connected components of A have property (P). Without loss of

generality we may assume that A is connected and that A \
⋃
i 6=j Ui 6= ∅ for each j. We

define d := supx,y∈A |x− y| and

µ := inf

{
|x− y|

∣∣∣∣ j ∈ {1, . . . , n} , x ∈ A \ Uj , y ∈ A \⋃
i 6=j

Ui

}
∈ (0,∞) .

Let C1, . . . , Cn > 0 be constants such that for each pair x, y ∈ A∩Uj there is a rectifiable

curve c ⊂ Uj ∩ A with endpoints x, y and |c| ≤ Cj|x− y|. We put C := dn
µ

maxj Cj.

Suppose x, y ∈ A ∩ Uj, then x, y are of course linked by a rectifiable path c with

|c| ≤ Cj|x− y| ≤ C|x− y| .

If x, y ∈ A and there is no j such that x, y ∈ Uj, then there is j with x ∈ A \ Uj
and y ∈ A \

⋃
i 6=j Ui. We find a selection of at most n rectifiable paths ck ⊂ Uik ∩ A,

ik ∈ {1, . . . , n}, k = 1, 2, . . . K ≤ n, such that

• ck links zk−1 and zk with zk ∈ Uik ∩ Uik−1
∩ A,

• |ck| ≤ Cik |zk−1 − zk| and

• z0 = x and zK = y.

The ck combine to a rectifiable curve c linking x with y such that

|c| ≤
K∑
k=1

Cik |zk−1 − zk| ≤ Cµ ≤ C|x− y| .

In conclusion, for any pair x, y ∈ A there is a rectifiable curve c ⊂ A connecting x

and y with |c| ≤ C|x− y|.

(ii): For any x ∈ ∂A = ∂B we choose U and ψ as in the last definition. Then

(−1, 1)n−1 × (0, 1) ⊂ ψ(U ∩B) ⊂ (−1, 1)n−1 × [0, 1)
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and thus ψ(U ∩B) has property (P). This also implies that U ∩B has property (P).

If x ∈ IntB, then there is some open ball U with x ∈ U ⊂ B. Obviously U = B ∩ U

has property (P).

Hence B has property (P) by (i).

A closed set K ⊂ M of a topological space M such that K = IntK is called regular

closed.

Definition 2.1.4. Let M be a smooth manifold. A subset K ⊂M will be called regular

compact, in symbols K
rc
⊂ M, iff K is compact and regular closed in M and for each

x ∈ K there is a chart (ψ,U) and a bounded Lipschitz domain A such that x ∈ U and

A ⊂ ψ(K ∩ U) ⊂ A.

By Lemma 2.1.3, our notion of regular compact subsets of Rn is stronger than the

one from [40]. We require regular closedness in order to use functions instead of jets on

regular compact sets. Using bounded Lipschitz domains ensures that we have a nice local

description of regular compact sets.

It is clear that any regular compact set has finitely many connected components.

Moreover, for open U ⊂M and K ⊂ U we have K
rc
⊂ U iff K

rc
⊂M.

Lemma 2.1.5. Suppose M is a smooth manifold. Then the following holds.

(i) For any open U ⊂M and compact K̃ ⊂ U there is some K
rc
⊂M with

K̃ ⊂ IntK ⊂ K ⊂ U .

(ii) There is a sequence K1 ⊂ K2 ⊂ . . . of subsets Kj

rc
⊂M with M =

⋃
j IntKj.

(iii) If K
rc
⊂ M then there is a finite collection of charts (φj, Uj)j and corresponding

regular closed and compact Vj ⊂ Uj such that K ∩ Vj
rc
⊂ M and K ⊂

⋃
j IntVj. If

M is an analytic manifold, the charts (Uj, φj)j∈J can be chosen to be analytic.

Proof. (i): Without loss of generality we may assume U = M. There exists some real

valued function f ∈ D(M) with f(x) = 1 for x ∈ K̃. By Sard’s Theorem [50, Theorem
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6.10] there exists a regular value w to f with 0 < w < 1. Since w is a regular value, f does

not take on any local maxima on f−1({w}). So any open set that intersects f−1({w})

must also intersect f−1((w,∞)). This means that f−1({w}) is the topological boundary

of the open set f−1((w,∞)). Thus K := f−1([w,∞)) ⊃ K̃ is a compact and regular

closed subset of U . Furthermore, f−1({w}) is a smooth submanifold of M by the regular

value theorem. Thus for any x ∈ K there is some chart (ϕ, V ), with x ∈ V , such that

ϕ(V ∩K) = ϕ(V )∩Rn−1× [0,∞). We can just choose V such that ϕ(V ) is an open ball,

in which case A ⊂ ϕ(V ∩K) ⊂ A for the Lipschitz domain A := {(y, t) ∈ ϕ(V ) | t > 0}.

Hence K is regular compact.

(ii): Since M is a manifold, it is especially second countable and locally compact.

Thus there exists a sequence of open sets (Vj)j with

V 1 ⊂ V2 ⊂ V 2 ⊂ V3 ⊂ . . .

such that each V j is compact and M =
⋃
j Vj. Now we just need to use (i) in order to

get Kj

rc
⊂M with V j ⊂ Kj ⊂ Vj+1.

(iii): Suppose x ∈ K and (φ, U) is any chart (smooth or analytic) around x. Since

K
rc
⊂ M, there is some chart (f,B) around x ∈ K and a bounded Lipschitz domain A

such that A ⊂ f(B ∩K) ⊂ A.

If f(x) ∈ Int(A), then x ∈ IntK. Hence we may choose a closed Ball V ⊂ Int(K)∩U

with x ∈ IntV . In this case V = V ∩K
rc
⊂ U .

If f(x) ∈ ∂A, we proceed similarly as in the proof of Lemma 2.1.3 (ii). We find

an open set W ⊂ f(B ∩ U) with f(x) ∈ W and a bijective Lipschitz function ψ : W →

(−2, 2)n with Lipschitz inverse such that ψ(W ∩A) = (−2, 2)n−1×(0, 2) and ψ(W ∩∂A) =

(−2, 2)n−1×{0}. Now define the regular closed and compact set V := f−1◦ψ−1
(
[−1, 1]n

)
.

Then V ⊂ U ∩B and Ω := ψ−1
(
(−1, 1)n−1 × (0, 1)

)
is a bounded Lipschitz domain with

Ω ⊂ ψ−1
(
[−1, 1]n−1 × (0, 1]

)
⊂ f(V ∩K) ⊂ ψ−1

(
[−1, 1]n−1 × [0, 1]

)
= Ω .

Thus V ∩K
rc
⊂ U .

Finally we can use any covering by sets of the form IntV for corresponding (φ, U) and

V and choose a finite subcover.
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Definition 2.1.6. Let M be a smooth manifold, k ∈ N0 and K
rc
⊂ M. We define the

spaces

C k(K) := {f �K | f ∈ C k(M)} resp. E (K) := {f �K | f ∈ E (M)}

equipped with the topology defined by the seminorms

f �K 7→ sup
x∈K
|Pf(x)| , P ∈ Diffk(M) resp. P ∈ Diff(M) .

Similarly, we define

Va(K) := {X �K | X ∈ Va(U) for some open U with K ⊂ U ⊂M}

for an analytic manifold M.

Suppose U ⊂ M is open with K
rc
⊂ U . Then, the existence of a bump function

f ∈ D(U) with f(x) = 1 for x ∈ K ensures that we get the same notion of C k(K) or

E (K) whether we use U or M for its definition. Of course, each P ∈ Diff(M) can be

seen as a linear operator on E (K) or between C l(K) and C k(K) for appropriate integers

l, k. With the next lemma we ensure that C k(K) and E (K) behave analogously to their

counterparts on manifolds.

Lemma 2.1.7. Let M be a smooth manifold, let k ∈ N0 and let K
rc
⊂ M. Then the

following holds

(i) For a function f : K → C we have f ∈ C k(K) iff

f �IntK∈ C k(IntK) and for all P ∈ Diffk(M) the function

Pf �IntK extends continuously to K.
(∗)

(ii) For a function f : K → C we have f ∈ E (K) iff

f �IntK∈ E (IntK) and for all P ∈ Diff(M) the function

Pf �IntK extends continuously to K.
(∗∗)

(iii) C k(K) and E (K) are Fréchet.

(iv) E (K) is nuclear.
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Proof. (i) and (ii): For the case where K is the closure of a region in Rn (i) is proven

in [69]. Using [68, Theorem I] we also get (ii) in this case. As a direct conclusion we get

both (i) and (ii) if K is mapped onto a regular compact subset of Rn by a single chart.

Now for general K
rc
⊂M for some smooth manifold M we can just use a partition of unity.

We choose any finite family of charts (Uj, φj)j and regular closed compact subset

(Vj)j as in Lemma 2.1.5 (iii). Then we choose a partition of unity (χj)j ⊂ D(M) with

suppχj ⊂ Vj and
∑

j χj(x) = 1 for each x ∈ K.

Let f : K → C fulfil (∗) resp. (∗∗). For each j the function f �Vj∩K extends to a

function Fj in C k(M) resp. E (M). Then F :=
∑

j χjFj is an extension of f and F is in

C k(M) resp. E (M).

(iii): By definition E (K) is metrizable and C k(K) is normable. With the help of (i)

and (ii), it is easy to see that they are also complete and thus Fréchet.

(iv): The linear space NK(M) := {f ∈ E (M) | f(x) = 0 for x ∈ K} is closed in E (M).

Hence the quotient space E (M)/NK(M) is a nuclear Fréchet space [66, Proposition 50.1].

Since f + NK(M) 7→ f �K defines a linear continuous bijection from the Fréchet space

E (M)/NK(M) onto the Fréchet space E (K), the space E (K) is nuclear by the open

mapping theorem.

Frames and compositions of vector fields

An analytic frame D = (D1, . . . , DN) is an ordered family of analytic vector fields defined

on some open set U ⊂M such that (D1(x), . . . , DN(x)) is a basis in TxM for each x ∈ U .

For regular closed compact K ⊂M we will also call D = (D1, . . . , DN) ⊂ Va(K) a frame

if (D1(x), . . . , DN(x)) is a basis of TxM for each x ∈ K. The frame corresponding to

the standard derivative on RN (on any regular compact or any open set) will always be

denoted by ∂ = (∂1, . . . , ∂N). If φ : M ⊃ U → RN is any chart we will denote by

∂φ = (∂φ1 , . . . , ∂φN ) (2.1.2)

the family of vector fields defined by ∂φjf :=
(
∂j(f ◦ φ−1)

)
◦ φ. If φ is an analytic chart,

then ∂φ is an analytic frame.
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We will use two distinct notations for compositions of analytic vector fields. Let

D = (D1, . . . , DN) be an ordered family of vector fields defined on some open subset of

M. Then we will define the Dα := Dα1
1 ◦ · · · ◦D

αN
N for any multi-index α ∈ NN

0 .

In many cases it will be convenient to use a notation that can represent any possible

composition of the invariant differential operators D. For this purpose we define

SN := {a : N→ {0, 1, . . . , N} | supp a := N \ a−1({0}) is finite}

and together with the convention D0 := IE (G) we denote

Da := · · ·Da3 ◦Da2 ◦Da1 for a ∈ SN .

On the new type of indices a ∈ SN we define the degree |a| = # supp a. Also, the following

sets of tuples of indices will be convenient when using Leibniz rule. For k ∈ N we define

SN,k(a) =

{
(aj)kj=1 ∈ (SN)k

∣∣∣∣∣ a =
k∑
j=1

aj and supp aj ∩ supp ai = ∅ for i 6= j

}
,

where the sum of the function aj are taken to be the pointwise sum in N0. Now, if

f1, . . . fk : U → C are smooth enough functions, we have

Da(f1 · f2 · · · fk) =
∑

(aj)j∈SN,k(a)

(Da1

f1) · (Da2

f2) · · · (Dakfk).

Note that we have a lot of redundancies that do not appear in the formulation of the

Leibniz rule for multi indices α ∈ NN
0

Dα(f1 · f2) =
∑
β≤α

(
α

β

)
(Dαf1) · (Dβf2) .

For any analytic chart φ, the corresponding frame ∂φ is composed of commuting vector

fields. Hence, it is sufficient to use multi-indices α ∈ NN
0 instead of a ∈ SN . To be precise,

for each a ∈ SN there is exactly one α ∈ NN
0 such that ∂aφ = ∂αφ and |a| = |α|.

In general we will also use the notation Pf(x) := Pxf(x) for any differential operator

or vector field P and a function f .
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Lie groups and invariant differential operators

We denote by G always a Lie group. Its unit will be denoted by 1G and its center by

Z(G). We write g for the (abstract) Lie algebra of G. The corresponding exponential

map will be denoted by expG : g→ G and its center will be denoted by Z(g).

Let `x(y) := x y and rx(y) := y x for x, y ∈ G. A differential operator P ∈ Diff(G) is

called left resp. right invariant iff

P (f ◦ `x) = (P f) ◦ `x resp. P (f ◦ rx) = (P f) ◦ rx

for all x ∈ G and f ∈ E (G). The left resp. right invariant subset of Diff(G) and Diffk(G)

will be denoted by DiffL(G) and DiffkL(G) resp. DiffR(G) and DiffkR(G).

We will denote the usual realizations of g as R-linear subspaces of DiffL(G) and

DiffR(G) by

gL := {XL | X ∈ g} and gR := {XR | X ∈ g}, in which

XLf(x) = ∂tf(x expG(tX))
∣∣
t=0

and XRf(x) = ∂tf(expG(tX)x)
∣∣
t=0

for f ∈ E (G), x ∈ G and X ∈ g. Now suppose D = (D1, . . . , DN) is a basis of gL resp.

in gR. For α ∈ NN
0 the differential operator Dα := Dα1

1 ◦ · · · ◦ D
αN
N is a left resp. right

invariant differential operator. Depending on whether the basis D is left or right invariant,

(Dα)α∈NN0 is a basis of the R-vector space DiffL(G) resp. DiffR(G) and (Dα)|α|≤k is a basis

of the R-vector space DiffkL(G) resp. DiffkR(G). Furthermore by using the appropriate

charts, we may see that both the left and the right invariant differential operators span

the modules of differential operators of the corresponding degree, i.e.

spanE (G) DiffL/R(G) = Diff(G) and spanE (G) DiffkL/R(G) = Diffk(G) .

2.1.3 Vector valued differentiable functions

Let U ⊂ RN be open and E be an arbitrary locally convex space. A function f : U → E

is said to be continuously differentiable if for each j = 1, . . . , n and each x ∈ Rn the limit

∂jf(x) = lim
t→0

1

t
(f(x+ tej)− f(x))
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exists in E, where (ej)j is the standard basis in RN , and each partial derivative, ∂jf , is a

continuous function. The function f is called k-times continuously differentiable if f and

∂jf , for j = 1, . . . , N , are k−1 times continuously differentiable. Also, f is called smooth

iff it is k times continuously differentiable for all k ∈ N. Of course for a smooth manifold

M a function f : M→ E is k times continuously differentiable resp. smooth iff f ◦φ−1 is k

times continuously differentiable resp. smooth for all smooth charts φ. Suppose K
rc
⊂M.

As in the scalar case, we call a function f : K → E smooth resp. k times continuously

differentiable if f �IntK is smooth resp. k times continuously differentiable such that Pf

can be continuously extended to K for all P ∈ Diff(M) resp. P ∈ Diffk(M).

Suppose U ⊂ Rn is open, E is a locally convex space and f : U → E is smooth. Then

f is called analytic iff for each x ∈ U there exists some ε > 0 such that for each |y−x| < ε

f(y) =
∑
α∈Nn0

∂αf(x)

α!
(y − x)α

converges in E. If M is an analytic manifold, then f : M→ E is called analytic iff f ◦φ−1

is analytic for each analytic chart φ.

Suppose E is a complete locally convex space and G (M) is a C (M)-function space.

Then, by [36, Satz 10.5]2, G (M;E) is precisely the set of functions f : M→ E such that

e′ ◦ f ∈ G (M) for all e′ ∈ E ′ and such that {e′ ◦ F | e′ ∈ W} is relatively compact in

G (M) for any equicontinuous W ⊂ E ′. With this criterion one can easily recover the

usual characterization of the spaces C k(M;E) and E (M;E).

Lemma 2.1.8. Let E be a quasi-complete locally convex space, M a smooth manifold,

K
rc
⊂ M and X ∈ {K,M}. Then the spaces C k(X;E) resp. E (X;E) are precisely the

spaces of k times continuously differentiable functions resp. smooth functions from X to

E, equipped with the topologies defined by the seminorms

f 7→ sup
x∈K′

p(Pf(x)) (2.1.3)

for compact K ′ ⊂ X, continuous seminorms p on E and P ∈ Diffk(M) resp. P ∈ Diff(M).

2See also [42, Theorem 1.12] for a more general statement involving quasi-complete spaces E.
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Proof. By [36, p. 236] the statement is true for an open subset X of Rn. For the other

cases, it seems to be quicker to show the statements directly instead of adjusting the cited

proof.

Naturally, the topologies of C k(X;E) and E (X;E) are induced by (2.1.3) as a conse-

quence of Lemma 1.2.5 (iii).

By using charts, it is obvious that C k(M;E) resp. E (M;E) is a space of k times

continuously differentiable functions resp. smooth functions. Since, any differential op-

erator P ∈ Diffk(M;E) maps C k(K;E) continuously to C (K;E), this also implies that

C k(K;E) resp. E (K;E) is a space of k times continuously differentiable functions resp.

smooth functions.

Now let f : X→ E be k-times continuously differentiable and V ⊂ E ′ be equicontin-

uous. We define Vf := {e′ ◦ f | e′ ∈ V } ⊂ C k(X) and

T : C k(X)→
∏

P∈Diffk(M)

C (X) : f 7→ (Pf)P .

The operator T is a homeomorphism onto its range. Now, Vf is relatively compact in

C k(X) iff TVf is relatively compact in TC k(X). Since TC k(X) is closed in
∏

P C (X),

this holds iff TVf is relatively compact in
∏

P C (X). By the Arzelà-Ascoli theorem, Vf is

relatively compact in C (X). By PVf = VPf we know that PVf is relatively compact in

C (X) for each P , hence
∏

P PVf and thus also TVf ⊂
∏

P PVf are relatively compact in∏
P C (X) by Tychonoff’s theorem. In conclusion Vf is relatively compact in C k(X) for

any equicontinuous V , which implies f ∈ C k(X;E).

The analogous argumentation ensures that any smooth function f : X → E is in

E (X;E).

Later we will also need the following Lemma.

Lemma 2.1.9. For any smooth manifolds M, M′ and regular compact K ⊂M, K ′ ⊂M′,

we have

E (M×M′) = E (M; E (M′)) and E (K ×K ′) = E (K; E (K ′)) .
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Proof. By [66, p.530 Corollary] and [66, Theorem 51.6] we have E (U ×V ) = E (U ; E (V ))

for open sets U ⊂ Rn and V ⊂ Rm. Using charts, we get the corresponding home-

omorphism for general manifolds. Let (ϕi, Ui) resp. (ψj, Vj) be an atlas for M resp.

M′. Now f 7→ (f �Ui×Vj)i,j defines a homeomorphism of E (M ×M′) onto a subspace of∏
i,j E (Ui × Vj) resp. of E (M : E (M′)) onto a subspace of

∏
i,j E (Ui; E (Vj)). We have

E (Ui × Vj) = E (Ui; (E (Vj)) and both homeomorphisms have the same range. Hence

E (M×M′) = E (M; E (M′)) as topological vector spaces.

For the compact case we use C (K; C (K ′)) = C (K ×K ′) [44, §44.7. (3) and (4)].

By Lemma 2.1.8, it is clear that E (K; E (K ′)) is the set of functions f such that

f �Int(K)×K′∈ E (IntK; E (K ′)) and P ε I f ∈ C (K; E (K ′)) for all P ∈ Diff(M)). Inserting

the description of E (K ′) gives us f ∈ E (K; E (K ′)) iff f �Int(K×K′)∈ E (IntK; E (IntK ′)) =

E (Int(K ×K ′)) and P ε P ′f ∈ C (K; C (K ′)) = C (K ×K ′). And the other way around,

we can describe the action of Diff(M×M′) on E (Int(K ×K ′)) by

{Q �E (Int(K×K′))| Q ∈ Diff(M×M′)}

= spanR{ϕ(m) (P ε P ′) �E (Int(K×K′))| P ∈ Diff(M) , P ′ ∈ Diff(M′) , ϕ ∈ E (K ×K ′)} ,

in which ϕ(m) denotes the multiplication operator f 7→ ϕf . Hence

E (K; E (K ′)) = E (K ×K ′)

as topological vector spaces.

2.1.4 Multiplication of vector valued functions

Now we will discuss the possible multiplication maps between spaces of vector valued

functions. The foundation to this will be Theorem 1.2.11.

Proposition 2.1.10. Let M be a locally compact topological space and let F (M), G (M)

and H (M) be complete C (M)-function spaces such that the pointwise multiplication is

a hypocontinuous map m : F (M) × G (M) → H (M). Furthermore let F , G and H be

complete locally convex spaces and let u : F × G → H be hypocontinuous bilinear map.

Suppose G (M) or G has the approximation property. If either
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(i) C (M) = F (M) = G (M) = H (M),

(ii) m is continuous and F (M) is nuclear,

(iii) G (M) and G are Fréchet spaces and F (M) is nuclear or

(iv) G (M) and G are strong duals of Fréchet spaces and F (M) is nuclear,

then the bilinear map

u̇ : F (M;F )× G (M;G)→H (M;H) where u̇(f, g) := [x 7→ u(f(x), g(x))],

is well-defined and hypocontinuous.

Proof. For f ∈ C (M;F ) and g ∈ C (M;G) we define the function

uC (f, g) : M→ H : x 7→ u(f(x), g(x)) .

The subsets Bf := {f(x) | x ∈ K} ⊂ E and Bg := {g(x) | x ∈ K} ⊂ G are compact

and thus bounded for each compact K ⊂M. Since u is hypocontinuous, this implies that

uC (f, g) �K is continuous for each compact K ⊂M. But M is locally compact, so uC (f, g)

is continuous. Hence

uC : C (M;F )× C (M;G)→ C (M;H) : (f, g) 7→ uC (f, g)

is well-defined. Also, let BF ⊂ C (M : F ) and BG ⊂ C (M;G) be bounded, i.e.

BF,K :=
⋃
f∈BF

f(K) and BG,K :=
⋃
g∈BG

g(K)

are bounded in F and G for each compact K ⊂M. Suppose p is any continuous seminorm

on H. Then there are continuous seminorms pF,K on F and pG,K on G such that pointwise

sup
ξ∈BF,K

p(ξ,−) ≤ pF,K(−) and sup
η∈BG,K

p(−, η) ≤ pG,K(−) .

Hence for all f ∈ C (M;F ) and all g ∈ C (M;G)

sup
x∈K

sup
ϕ∈BF

p
(
u(ϕ(x), g(x))

)
≤ sup

x∈K
pF,K(g(x)) and

sup
x∈K

sup
ϕ∈BG

p
(
u(f(x), ϕ(x))

)
≤ sup

x∈K
pG,K(g(x)) .
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In conclusion uC is hypocontinuous. Note that the above also works for quasi-complete

spaces F , G and H.

Since F (M), G (M) and H (M) are C (M)-function spaces, we have the continuous

embeddings

F (M;F ) ↪→ C (M;F ) , F (M;F ) ↪→ C (M;F ) and F (M;F ) ↪→ C (M;F ) .

Thus, we may restrict uC to a hypocontinuous bilinear map

ũC := uC �F (M;F )×G (M;G) : F (M;F )× G (M;G)→ C (M;H) .

Of course the multiplication can also be seen as a continuous (resp. hypocontinuous) map

F (M)× G (M)→ C (M) .

Now by Theorem 1.2.11 (resp. Theorem 1.2.12) ũC is the unique hypocontinuous bilinear

map between F (M;F )× G (M;G) and C (M;H) that fulfils the consistency property

ũC (f ξ, g η) = f g u(ξ, η) for all f ∈ F (M) , g ∈ G (M) , ξ ∈ F and η ∈ G . (2.1.4)

But by Theorem 1.2.11 (resp. Theorem 1.2.12) there is also a unique hypocontinuous

bilinear map

u̇ : F (M;F )× G (M;G)→H (M;H)

fulfilling the consistency property (2.1.4). If we extend the codomain of u̇ from H (M;H)

to C (M;H) the map stays hypocontinuous. Thus, since ũC is unique, we have

u̇(f, g)(x) = u(f(x), g(x)) for all x ∈M .

Of course these bilinear maps can also be defined between spaces of continuous differ-

entiable functions. In the above proposition we used complete spaces F , G and H. Below

we extend this to quasi-complete spaces F , G and H and also prove the product rule for

differentiation.
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Lemma 2.1.11. Suppose k ∈ N, M is a smooth manifold, K
rc
⊂M and u : F ×G→ E is

a hypcontinuous bilinear map between quasi-complete spaces E,F,G. The bilinear map

u̇ : C k(X;F )× C k(X;G)→ C k(X;E) where u̇(f, g)(x) := u(f(x), g(x))

is well-defined and hypocontinuous for X ∈ {K,M}. Furthermore, if f ∈ C k(X;F ),

g ∈ C k(X;G), then the product rule

Xu̇(f, g) = u̇(Xf, g) + u̇(f,Xg)

holds for any vector field X.

Proof. First suppose X is an open subset of RN . Let us denote by o(h), h ∈ RN , any

terms that fulfil 1
|h|o(h)

h→0−−→ 0 in E, F or G. Let x ∈ X and U ⊂ RN be open and

bounded such that x+ U ⊂ X. If h ∈ U , then

u̇(f, g)(x+ h)− u̇(f, g)(x) = u(f(x+ h)− f(x), g(x+ h)) + u(f(x), g(x+ h)− g(x))

At once, we get

u(f(x), g(x+ h)− g(x)) = u(f(x), dxg(h) + o(h)) = u(f(x), dxg(h)) + o(h) .

Since u is hypocontinuous, the sets of linear maps{
u(−, g(x+ h)) | h ∈ U

}
and

{
1

|h|
u(dxf(h),−)

∣∣∣∣ h ∈ U \ {0}}
are equicontinuous. Furthermore, g is continuous, i.e. g(x+ h)− g(x)

h→0−−→ 0, thus

u(dxf(h) + o(h), g(x+ h)) = u(dxf(h), g(x)) + o(h) .

Any smooth vectorfield X on X is of the form X =
∑N

j=1 aj∂j, where aj ∈ E (L), hence

Xu̇(f, g) = u̇(Xf, g) + u̇(f,Xg) . (2.1.5)

The same formula follows for X = M from the above by using charts. For X = K we

first write down (2.1.5) for functions restricted to IntK. But clearly, for f ∈ C 1(K;F ),

g ∈ C 1(K;G) formula (2.1.5) can also be applied for arguments in K.

61



Formula (2.1.5) also implies that Xu̇(f, g) is continuous by Proposition 2.1.10 and

that

C 1(X;F )× C 1(X;G)→ C (X;E) : (f, g) 7→ Xu̇(f, g)

is hypocontinuous3. By induction we can show that

u̇ : C k(X;F )× C k(X;G)→ C k(X;E)

is well-defined and hypocontinuous.

Suppose A is a locally convex space that is also an algebra with hypocontinuous

multiplication and suppose G (M) is a C (M)-function space that is also an algebra with

continuous multiplication. Then Theorem 1.2.11, Proposition 2.1.10 and Lemma 2.1.11

give us cases in which G (M;A) is also an algebra. In these cases we can ask the ques-

tion, for which A and G (M) a pointwise invertible function f is invertible in the algebra

G (M;A). This topic is connected with the invertibility criteria we will discuss for algebras

of operators in Chapter 4.1. For this we will use the following definitions.

Definition 2.1.12. For any Algebra A with unit element 1A ∈ A we denote by A× the

set of invertible elements. The spectrum σA(a) of an element a ∈ A is defined by

σA(a) := {z ∈ C | z 1A − a /∈ A×} .

Definition 2.1.13. Let F (M) be a C (M)-function space that is also a subalgebra of

C (M) and contains all constant functions. If for each complete locally m-convex algebra

A the space F (M;A) is an algebra with respect to the pointwise multiplication and if for

each function f : M→ A

(IC) f ∈ F (M;A) ∧ ∀x∈M f(x) ∈ A× ⇔ f ∈ F (M;A)×,

then we will say F (M) has the property (IC).

Even though, the above definition of (IC) uses locally m-convex algebras, it is actually

enough to test on Banach algebras for this property.

3We use the remark made in the proof that we may also choose quasi-complete spaces.
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Lemma 2.1.14. Suppose F (M) a C (M)-function space that is also a subalgebra of C (M)

and contains all constant functions. If for each Banach algebra A the space F (M;A) is an

algebra with respect to the pointwise multiplication and if for each function f ∈ C (M;A)

∀x∈Mf(x) ∈ A× ⇔ f ∈ F (M;A)×

holds, then F (M) has property (IC).

Proof. Suppose A is a complete locally m-convex algebra. As in the proof to Lemma

2.2.17 we define for a continuous seminorm p the Banach space Ap as the completion of

A/p−1(0) with respect the norm v+ p−1(0) 7→ p(v). If p is a submultiplicative seminorm,

then p−1(0) is a closed ideal and Ap is a Banach algebra. Since A is locally m-convex, there

is a basis of absolutely convex neighbourhoods of zero U with U ·U ⊂ U . If p is the gauge

to such a neighbourhood U , then it is a submultiplicative continuous seminorm. Now,

combining the above with [61, Chapter II 5.4] we get the representation A ' lim←−p(Ap, ιp,q),

with respect to

A
ιp−→ Ap

ιq,p−−→ Aq , in which ιp(v) = v + p−1(0) , ιq,p(v + p−1(0)) = v + q−1(0)

and Ap are indexed by the submultiplicative continuous seminorms. Also, the above linear

homeomorphism between A and lim←−p(Ap, ιp,q) is given by

A→ lim←−
p

(Ap, ιp,q) : a 7→ (ιpa)p .

Furthermore, all the maps ιp and ιq,p are multiplicative and for any v ∈ A we have v ∈ A×

iff v + p−1(0) ∈ A×p for all continuous submultiplicative seminorms p on A.

Now let f, g : X → A× such that g(x) = f(x)−1 for all x ∈ X. Due to the linear

homeomorphism F (M;A) ' lim←−p(F (X;Ap), I ε ιq,p) from Lemma 1.2.5 we have

f ∈ F (M;A)
(
resp. g ∈ F (M;A)

)
⇔ ∀p : ιp ◦ f ∈ F (M;Ap)

(
resp. ιp ◦ g ∈ F (M;Ap)

)
.

So in order to prove that F (X) has the property (IC), it is enough to show that

f ∈ F (M;A) implies g ∈ F (M;A)

for any Banach algebra A.
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Now let

S̃N,k(a) := {(ai) ∈ SN,k(a) | ai 6= 0 for i = 1, . . . , k}

We will give the first example of a space having property (IC) and introduce a version

of the iterated quotient rule from [38].

Lemma 2.1.15. Let M be a smooth manifold of dimension N , let K
rc
⊂ M and let

X ∈ {K,M}. Then E (X) and C k(X) have the property (IC) for any k ∈ N0.

If A is a locally m-convex algebra and if f ∈ C k(X;A) such that f(x) ∈ A×, then the

iterated quotient rule

Dag =

|a|∑
k=1

(−1)k
∑

(ai)∈ ˜SN,k(a)

g (Da1

f) g (Da2

f) g · · · (Dakf) g.

holds for g(x) := f(x)−1 and any smooth frame D.

Proof. Suppose f : X→ A such that f(x) ∈ A× for all x ∈ X. Denote g(x) := f(x)−1 for

x ∈ X. First of all, if A is locally m-convex, then inv : A× → A× : a 7→ a−1 is continuous

with respect to the subspace topology [35, Proposition V.1.6]. Hence g ∈ C (X;A) iff

f ∈ C (X;A). Suppose f ∈ C 1(X;A). Let (ϕ,U) be a smooth chart with U ⊂ IntX and

let g̃ := g ◦ ϕ−1, f̃ := f ◦ ϕ−1. If we denote by o(h) terms, for which o(h)/h
h→0−−→ 0 in A,

then

g̃(x+ h) = (f̃(x) + dxf̃ .h+ o(h))−1

= g̃(x)− g̃(x) (1 + (dxf̃ .h)g̃(x) + o(h))−1((dxf̃ .h) g̃(x) + o(h))

= g̃(x)− g̃(x) (dxf̃ .h) g̃(x) + o(h)

for all x ∈ ϕ(U). The above shows that g ∈ C 1(IntX;A) and that Xg �IntX= −g X g �IntX

extends uniquely to a function in C (X;A) for any vector field X defined on some neigh-

bourhood of X. By induction we get g ∈ C k(X;A) (resp. g ∈ E (X;A)), for f ∈ C k(X;A)

(resp. f ∈ E (X;A)), because the point-wise multiplication is a well-defined bilinear map

C k(X;A)× C k(X;A)→ C k(X;A)

by Lemma 2.1.11.
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The iterated quotient rule is proven in [38, Lemma 17]. Although this lemma is written

for the situation of commutative derivations acting on a Banach algebra, the proof works

just as well in this context. Since this can be proven by a simple inductive argument, we

will quickly do this in our notation. Suppose

Dag =

|a|∑
k=1

(−1)k
∑

(ai)∈SN,k(a)

g (Da1

f) g (Da2

f) g · · · (Dakf) g

holds for |a| ≤ n. For b ∈ SN with |b| = n the product rule implies

0 = Db(f g) =
∑

(bi)∈SN,2(b)

(Db1f)(Db2g)

And thus

Dbg = −g (Dbf) g −
∑

(bi)∈ ˜SN,2(b)

(Db1f)(Db2g)

= −g (Dbf) g −
∑

(bi)∈ ˜SN,2(b)

(Db1f)

|b2|∑
k=1

(−1)k
∑

(ai)∈ ˜SN,k(b2)

g (Da1

f) g (Da2

f) g · · · (Dakf) g

= −g (Dbf) g +

|b|∑
k=2

(−1)k
∑

(ai)∈ ˜SN,k(b)

g (Da1

f) g (Da2

f) g · · · (Dakf) g .

2.2 Ultradifferentiable functions

Definition 2.2.1. Suppose M is an analytic manifold of dimension N and M ∈ RN0
+ =

(0,∞)N0 is a sequence. A function f ∈ E (M) is called ultradifferentiable of class M

iff for each analytic chart (φ, U) and any compact set K ⊂ U there is h > 0 such that

lim
|α|→∞
α∈NN0

‖(h∂φ)αf �K ‖∞
|α|!M|α|

= 0 . (2.2.6)

The definition implies especially that any f ∈ E (M) is ultradifferentiable of class M

iff for any analytic chart (φ, U) the function f ◦φ−1 is ultradifferentiable of class M . The

space of analytic functions can be defined as the space of ultradifferentiable functions
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of class 1 := (1, 1, 1, . . . ). Indeed, a smooth function f : M → C is analytic iff for any

analytic chart (φ, U) and regular closed compact K ⊂ U

∃h>0 : lim
|α|→∞

‖(h∂φ)αf �K ‖∞
|α|!

= 0 . (2.2.7)

In reality we need to test f for each x only with one analytic chart (φ, U), where x ∈ U ,

in order to know if f is analytic. This is also true for general ultradifferentiable functions

with minor assumptions on the sequence M . Although this is well known, it can be seen

as special case of Lemma 2.2.4. Also, this lemma will show that we may use general

analytic frames to define ultradifferentiability and test for ultradifferentiability.

For open subsets M ⊂ RN these definitions coincide with the ones used in the classical

sequence of papers by Komatsu [40, 41, 42] with the one slight difference. We follow the

convention of [45, 46, 47] and incorporate faculties in (2.2.6).

Later we will use spaces of ultradifferentiable vectors to Lie group representation.

But instead of using local charts as in [13], it is more convenient for use to use bases

of invariant vector fields to define and build our spaces of ultradifferentiable vectors and

functions. In [17, 18, 19] this global approach was developed for compact manifolds. In

particular it was shown that this leads to the same concept of ultradifferentiabilty as a

local approach like in Definition 2.2.1. We will prove the same with Proposition 2.2.10.

2.2.1 Ultradifferentiable function spaces defined by frames

Now we begin by defining the core Banach spaces of ultradifferentiable functions from

which we build all other space of ultradifferentiable functions.

Definition 2.2.2. For an analytic manifold M, a regular compact subset K ⊂M, a finite

family D = (D1, . . . , DN) ⊂ Va(K) and sequence M ∈ RN0
>0 we define the Banach space

EM
D (K) :=

f ∈ E (K)

∣∣∣∣∣∣ lim
|a|→∞
a∈SN

sup
x∈K

‖Daf‖∞
|a|!M|a|

= 0

 with norm

‖f‖D,M := sup
a∈SN

‖Daf‖∞
|a|!M|a|

.
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Usually such Banach spaces of ultradifferentiable functions are defined by requiring

boundedness of the sequences (‖(h∂)αf‖∞)/(M|α| |α|!). We demand convergence to zero

instead of just boundedness in (2.2.6), since this ensures an easier description of the

vector valued spaces EM
D (K;E). Also, this convention ensures that the left resp. right

translation acts continuously on EM
D (G) = lim←−Krc

⊂G
EM
D (K) for a basis of left resp. right

invariant vector fields on a Lie group G. Of course using convergence to zero instead

of boundedness is just a minor difference, as a slight perturbation of D to hD for some

0 < h < 1 is enough to move from boundedness to convergence. Hence, this change does

not affect the definition of the Carleman classes in Definition 2.2.7.

We list a few basic relations between the defined spaces. For any regular closed,

compact set K ⊂M, any frame D ⊂ Va(K) and any h > 1 the identity on E (K) restricts

to continuous embeddings

EM
hD(K) ↪→ EM

D (K) ↪→ EM
h−1D(K) .

For two sequences M,N ∈ RN0
+ we will write N ⊂M if

sup
k∈N0

(
Nk

Mk

) 1
k

=: h <∞ (2.2.8)

holds. In this case the identity induces the continuous embedding

E N
hD(K) ↪→ EM

D (K) .

This is especially important for the sequence 1 := (1, 1, 1, . . . ). Here we have

E 1

D(K) ↪→ EM
D (K)

for any sequence M with lim infk→∞M
1
k
k > 1. We will write N ≺M if

lim
k→∞

(
Nk

Mk

) 1
k

= 0 . (2.2.9)

In this case we even have

E N
hD(K) ↪→ EM

h′D(K) .

for any h, h′ > 0.
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If M, M′ are analytic manifolds and φ : M → M′ is an analytic diffeomorphism, then

we can define the pullback frame φ∗D = (φ∗D1, . . . , φ
∗DN) ⊂ Va(K) for any K

rc
⊂M and

any frame D ⊂ Va(φ(K)) by

(φ∗Djf) ◦ φ−1 := Dj(f ◦ φ−1) , for f ∈ E (K) .

Trivially, this leads to the linear homeomorphism

EM
φ∗D(K)→ EM

D (φ(K)) : f 7→ f ◦ φ−1 . (2.2.10)

Together with Lemma 2.2.4, we will be able to see that the spaces EM
D (K) describe

the same notion of ultradifferentiability as Definition 2.2.1.

In the following, we list the properties that we will consider for M .

Definition 2.2.3. A weight sequence is a sequence M = (Mk)k ∈ RN0
+ which has the

following four properties.

(N) M is normalized :⇔ M0 = 1.

(I) M is increasing :⇔ Mk ≥Mj for k ≥ j.

(D) M is stable under differential operators :⇔ k 7→
(
Mk+1

Mk

) 1
k

is bounded.

(LC) M is log-convex :⇔ k 7→ log(Mk) is convex.

in which we call a sequence a : N0 → R convex iff it can be extended to a convex map

â : R≥0 → R. We will consider the following possible other properties of a sequence M .

(LC’) M is weakly log-convex :⇔ k 7→ log (Mk k!) is convex,

(AI) the sequence k 7→M
1
k
k is almost increasing :⇔ sup

j,k : k≥j

M
1
j
j

M
1
k
k

<∞.

(MG) M has moderate growth :⇔ (k, j) 7→
(
Mj+k

MjMk

) 1
j+k

is bounded.

(nQA) M is non quasi-analytic :⇔
∑∞

n=1
Mn−1

nMn
<∞.

(AF) M allows analytic functions :⇔ limk→∞M
1
k
k =∞ ⇔ 1 ≺M .
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Let us give an overview about these properties. Although [45, 46, 47] deal with the

much more complicated topic of ultradifferentiable maps between infinite dimensional

spaces, the author found the summary given in these publications very helpful. So we

mainly reference [47, pp. 553–554] and also [45, 46] for the following. If (LC) holds,

then (N) and (I) are mostly a question of convenience and do not impact the properties

of the spaces of ultradifferentiable functions we create from the basic building blocks in

Definition 2.2.2. Namely, if M is not increasing but log-convex, then L := [k 7→ ChkMk]

fulfils (N), (I) and (LC) for appropriate C, h > 0 and we have L ⊂ M and M ⊂ L.

Also, L fulfils either of the properties (D), (AI), (MG), (nQA) or (AF) if M does so.

(D) ensure that for any frame D ⊂ Va(M) there exist h > 0 such that f 7→ Djf is a

continuous operator from EM
D (K) to EM

hD(K). Namely, we have

sup
|a|=n

a∈SdimM

‖DjD
af‖∞

|a|!M|a|
≤ sup

|a|=n+1

a∈SdimM

‖Daf‖∞
(|a| − 1)!M|a|−1

≤ C sup
|a|=n+1

a∈SdimM

‖(hD)af‖∞
|a|!M|a|

,

where h,C > 0 are chosen such that (k + 1)Mk+1 ≤ Chk+1kMk. These constants exist,

since supk∈N(k + 1)1/k(Mk+1/Mk)
1/k <∞.

(LC) implies MkMl ≤ M0Mk+l for any k, l ∈ N0. (LC’) ensures that the pointwise

multiplication is a continuous map EM
D (K) × EM

D (K) → EM
hD(K) for an appropriate

h > 0. Note that in [40] the factorials in (2.2.6) are not used for the definition of

ultradifferentiable functions. This means that our notion of smoothness defined by some

chosen M with (LC’) corresponds to the notion of smoothness from [40] defined by some

appropriate M̃ with (LC). But we prefer to require the slightly stronger property (LC),

since not only (LC) ⇒ (LC’) but also (LC) ⇒ (AI). Indeed, if L ∈ RN0
+ fulfils (LC),

(N) and if L
1

n−1

n−1 ≤ L
1
n
n , then L2

n ≤ L
n−1
n

n Ln+1 and thus L
1
n
n ≤ L

1
n+1

n+1. Now for M with (LC)

put Ln := Mn/M0, then n 7→ L
1
n
n is increasing and thus n 7→M

1
n
n is almost increasing.

(AI) is connected to the ultradifferentiability of the pointwise multiplicative inverse

of an ultradifferentiable function. In the context of Banach algebras, an analogous fact

was proven in [38]. Of course, this property will be important for the introduction of

spectrally invariant operator algebras defined by ultradifferentiable group actions.

(MG) ensures that in the context of ultradifferentiable spaces we have the analogous

fact to E (M; E (M′)) = E (M×M′). In [40, 41, 42] the property (MG) is called stability
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under ultradifferential operators.

(nQA) ensures that there are non-trivial compactly supported functions and espe-

cially a partition of unity of this class. For this see [40].

Finally, (AF) ensures that real analytic functions are contained in EM
D (K).

A common example is the weight sequence defined by Mk := (k!)s−1 for s > 1, which

corresponds the Gevrey class of ultradifferentiable functions. This sequence fulfils all the

above properties.

Lemma 2.2.4. Suppose M is an analytic manifold, M ∈ RN0
+ is monotonously increasing,

i.e. fulfils (I), and K
rc
⊂ M is regular compact. Let D,E ∈ Va(K)N be tuples of analytic

vector fields. If there is an analytic function A = (Ai,j)i,j : M→ RN×N with

E = AD := (
∑
j

Ai,jDj)i ,

then there exists some µ > 0 such that the identity induces a continuous embedding

EM
D (K) ↪→ EM

µE(K) .

Proof. Step 1: We prove the lemma for the case A ∈ E 1

h′D(K;RN×N) for some h′ > 0.

Suppose f ∈ EM
D (K), i.e. there exists C > 0 such that for all a ∈ SN and for

h = min{h′, 1}

max
i,j
‖DaAi,j‖∞ ≤ C h−|a| |a|! and ‖Daf‖∞ ≤ ‖f‖D,M h−|a|M|a| |a|! . (2.2.11)

This implies that for any a ∈ SN where n := |a| and for any (aj)j ∈ SN,n(a) and any

α, β ∈ {1, . . . , N}n−1

‖(Da1

Aα1,β1) · · · (Dan−1

Aαn−1,βn−1) · (Danf)‖∞ ≤ ‖f‖D,M Cn−1 |a1|! · · · |an|!Mn h
−n ,

(2.2.12)

where we also used that M is monotonously increasing. If g ∈ E (K) we denote by g(m)

the corresponding multiplication operator from E (K) to itself. For a ∈ SN and n := |a|
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we rewrite Eaf in terms of derivatives with respect to D

Eaf = (AD)af =
N∑

b1,...,bn=1

Aan,bn(m)Dbn · · ·Aa1,b1(m)Db1f (2.2.13)

=
N∑

b1,...,bn=1

∑
(bi)i∈SN,n(b)

pb,(bi)i Aan,bn (Dbnf) · (Dbn−1

Aan−1,bn−1) · · · (Db1Aa1,b1) ,

(2.2.14)

where b = (b1, . . . , bn−1, bn, 0, 0, . . . ) and pb,(bi)i is a non-negative integer. The number

pb,(bi)i describes how often the corresponding summands occur when using the product

rule successively in (2.2.13). For n ∈ N we define

Bn :=

{
α ∈ Nn

0

∣∣∣∣∣ ∀j=1,...,n

j∑
i=1

αi ≤ j and |α| = n

}
and Bk :=

∑
(bi)i∈SN,n(b)

∀i |bi|=ki

pb,(bi)i ,

for k ∈ Nn
0 . Here Bk is the same for any possible index sequence b such that n = |b|.

With the Bn, Bk and (2.2.14) we may estimate Eaf by

‖Eaf‖∞ ≤
N∑

b1,...,bn=1

∑
(bi)i∈SN,n(b)

pb,(bi)i ‖f‖D,M |b
n|! · · · |b1|!Mn (C h−1)n

≤ ‖f‖D,M
N∑

b1,...,bn=1

∑
k∈Bn

k!BkMn(C h−1)n

= ‖f‖D,M
∑
k∈Bn

k!BkMn (C h−1N)n . (2.2.15)

We can calculate Bk by counting how many summands of derivatives of order k occur in

(2.2.13) when applying the product rule. Its value is

Bk =
n∏
j=2

(
j −

∑j−1
i=1 ki

kj

)
for k ∈ Bn and Bk = 0 for k ∈ Nn

0 \ Bn .

Thus we have

k!Bk =
n∏
j=2

(
j −

∑j−1
i=1 ki

)
!(

j −
∑j

i=1 ki

)
!

=
n−1∏
j=1

(
j + 1−

j∑
i=1

ki

)
for any k ∈ Bn .

Again, we introduce new sets of indices and connected integers by

Cm :=

{
k ∈ Nm

0

∣∣∣∣∣ ∀j
j∑
i=1

ki ≤ j

}
and Ck :=

m∏
j=1

(
j + 1−

j∑
i=1

ki

)
for k ∈ Cm ,
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in which m ∈ N. For any m ∈ N≥2, k ∈ Cm−1 and l ∈ {0, . . . ,m−|k|} we have (k, l) ∈ Cm
and we may use

C(k,l) = Ck (m+ 1− |k| − l) .

Thus, by the hockey stick identity, we have for any p ∈ N0

m−|k|∑
l=0

C(k,l)

(
m+ 1− |k| − l + p

m+ 1− |k| − l

)
= Ck

m−|k|∑
l=0

(p+ 1)

(
l + 1 + p

l

)
= Ck (p+ 1)

(
m− |k|+ p+ 2

m− |k|

)
. (2.2.16)

By iterating (2.2.16) we get

∑
k∈Bn

k!Bk =
1∑

k1=0

· · ·
j−

∑j−1
i=1 ki∑

kj=0

· · ·
n−1−

∑n−2
i=1 ki∑

kn−1=0

C(k1...,kn−1)

(
n−

∑n−1
i=1 ki + 0

n−
∑n−1

i=1 ki

)

=
1∑

k1=0

· · ·
j−

∑j−1
i=1 ki∑

kj=0

· · ·
n−2−

∑n−3
i=1 ki∑

kn−2=0

C(k1...,kn−2) 1!

(
n− 1−

∑n−2
i=1 ki + 2

n− 1−
∑n−2

i=1 ki

)

=
1∑

k1=0

· · ·
j−

∑j−1
i=1 ki∑

kj=0

C(k1,...,kj)
(2n− 2− 2j)!

2n−1−j(n− 1− j)!

(
j + 1−

∑j
i=1 ki + 2(n− 1− j)

j + 1−
∑j

i=1 ki

)

=
1∑

k1=0

Ck1

(2n− 4)!

2n−2(n− 2)!

(
2− k1 + 2(n− 2)

2− k1

)

≤ (n− 2)!

2n−2

1∑
l=0

(2− l)
(

2− l + (n+ 2)

2− l

)
≤ r2nn! , (2.2.17)

for some r > 0 and all n ≥ 2. Now, by using (2.2.15) and (2.2.17), we may bound |Eaf |

by

‖Eaf‖∞ ≤ r ‖f‖D,M n!Mn (2C h−1N)n

and thus for 0 < µ < h (2N C)−1 =: µ̂ and f ∈ EM
D (K) we have

‖f‖µE,M := sup
a∈SN

‖(µE)af‖∞
|a|!M|a|

≤ r ‖f‖D,M and lim
|a|→∞
a∈SN

‖(µE)af‖∞
|a|!M|a|

= 0 .

Thus we have proven the continuous embedding

EM
D (K) ↪→ EM

µE(K) .
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Step 2: We prove that for any tuple D ∈ Va(K)N and any RN×N -valued, analytic

map A on M there is h′ > 0 such that A �K∈ E 1

h′D(K;RN×N).

Suppose (φ1, U1), . . . , (φn, Un) are analytic charts and K1, . . . , Kn regular compact

such that K =
⋃n
i=1 Ki and Kj ⊂ Uj for j = 1, . . . , n. Let us denote by D(k) ∈ Va(Kk)

the frame induced by φk on Kk as described in (2.1.2). As in (2.2.7) there exists τ > 0

such that

Ai,j �Kk∈ E 1

τ D(k)(Kk) for all i, j = 1, . . . N and k = 1, . . . , n .

Hence, by Step 1, we also have

Ai,j �Kk∈ E 1

h′D(Kk) for all i, j = 1, . . . N

for some h′ > 0, in which we denoted the restriction of D to the sets Kk by D as well.

This implies A �K∈ E 1

h′D(K;RN×N).

The above lemma can be applied to any pair of analytic frames D,E ∈ Va(K), because

we always find an analytic matrix valued map A with E = AD. Naturally, the situation

is better if the frames D and E are connected by a constant linear transformation.

Lemma 2.2.5. Suppose M is an analytic manifold, K
rc
⊂ M, D ⊂ Va(K) is a frame.

Let AD := (
∑

j Ai,jDj)i of an invertible matrix A = (Ai,j)i,j ∈ RN×N . Then there exists

some h > 1 such that

EM
hD(K)

I−→ EM
AD(K) and EM

D (K)
I−→ EM

h−1AD(K)

are well-defined and continuous.

Proof. Let f ∈ E (K) and put µ = maxi,j |Ai,j|. Then

max
|a|=k
‖(AD)af‖∞ ≤ (Nµ)k max

|a|=k
‖Daf‖∞ .

Hence EM
NµD(K)

I−→ EM
AD(K) is continuous. Now consider D̃ := (Nµ)−1D Then

EM
D (K) = EM

NµD̃
(K)

I−→ EM
AD̃

(K) = EM
(Nµ)−1AD(K)

is well-defined and continuous.
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We already mentioned that property (D) ensures the continuity of differential opera-

tors between spaces of ultradifferentiable functions. But it also ensures that the following

lemma holds, which is equally important for our later discussion.

Lemma 2.2.6. Let M be a weight sequence, let M be an analytic manifold, let X
rc
⊂ M

and let D ⊂ Va(K) be a frame. Then there exist h > 1 such that

EM
hD(K)

I−→ EM
D (K) and EM

D (K)
I−→ EM

h−1D(K)

are nuclear embeddings.

Proof. We may use the corresponding proof from Komatsu [40, Proposition 2.4] if we

make minor changes. We exchange the partial derivatives ∂ with the frame D and make

an adjustment for the noncommutativity of D.

We use the concept of quasi-nuclear maps. A linear operator T : E → F between

Banach spaces E, F is called quasi-nuclear if there is a sequence (e′j)j ⊂ E ′ with∑
j

‖e′j‖E′ <∞ and ‖Te‖F ≤
∑
j

| 〈e, e′j〉 | , for all e ∈ E .

By Komatsu [40, Lemma 2.3] the identity C N+1(L)
I−→ C (L) is nuclear for L

rc
⊂ RN . By

Lemma 2.1.5 we may use charts to get the nuclear embedding C N+1(K)
I−→ C (K) for

K
rc
⊂M and N := dimM. So there exist (vj)j ⊂ C N+1(K)′ with

C0 :=
∑
j

‖vj‖CN+1(K)′ <∞ and ‖f‖∞ ≤
∑
j

| 〈f, vj〉 | , for all f ∈ C N+1(K) .

We define the finite sets of differential operators

Pk := {Da | a ∈ SdimM , |a| = k} , for k ∈ N0 .

For some chosen h, λ > 0 we define the linear functionals uP,j ∈ EM
λD(K)′ by

〈f, uP,j〉 :=
µk 〈Pf, vj〉
Mk k!

, for P ∈ Pk , f ∈ EM
λD(K) ,

This sequence of functionals fulfils

‖f‖µD,M ≤
∞∑
k=0

∑
P∈Pk

µk‖Pf‖∞
Mk k!

≤
∞∑
k=0

∑
P∈Pk

∑
j

| 〈f, uP,j〉 | , for f ∈ EM
λD(K) .
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Since M fulfils (D) there exist C,H ≥ 1 with (k + 1)Mk+1/Mk ≤ CHk for each k ∈ N0.

Thus we get

| 〈f, uP,j〉 | ≤ ‖vj‖CN+1(K)′ max
|a|≤N+1

a∈SN

µk‖DaPf‖∞
Mk k!

≤ max
0≤l≤N+1

µk

λk+l
· (l + k)!Ml+k

k!Mk

‖vj‖CN+1(K)′‖f‖λD,M

≤ (λ−N−1 + 1)
µk

λk
CN+1H(N+1) (k+N) ‖vj‖CN+1(K)′‖f‖λD,M

=: C1 ·
µk

λk
H(N+1)k ‖vj‖CN+1(K)′‖f‖λD,M .

So for λ, µ > 0 such that κ := µ
λ
·HN+1 < 1 we have

∞∑
k=0

∑
P∈Pk

∑
j

‖uP,j‖EMλD(K)′ ≤
∞∑
k=0

∑
P∈Pk

∑
j

C1 ·
µk

λk
H(N+1)k ‖vj‖CN+1(K)′

≤
∞∑
k=0

kNC0C1 κ
k <∞ .

So in this case EM
λD(K)

I−→ EM
µD(K) is quasi-nuclear. As cited in [40], the composition of

two quasi-nuclear maps is nuclear. Hence, we always find h > 1 such that

EM
hD(K)

I−→ EM
D (K) and EM

D (K)
I−→ EM

h−1D(K)

are nuclear.

2.2.2 Ultradifferentiable functions of Roumieu and Beurling type

Finally, we will define the main spaces of ultradifferentiable functions.

Definition 2.2.7. Suppose M is an analytic manifold and M ∈ RN0
+ a sequence. If

K ⊂M is regular closed compact and D ⊂ Va(K) a frame, then we define C (K)-function

spaces

E {M}D (K) := lim−→
h>0

EM
hD(K) and E (M)

D := lim←−
h>0

EM
hD(K) ,
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in which we use R+ = (0,∞) with the standard ordering resp. in the second case the

inverted ordering.

Furthermore, if D ⊂ Va(M) is a global frame, we will also define the C (M)-function

spaces EM
D (M), E (M)

D (M) and E {M}D (M) by

F (M) = lim←−
K

rc
⊂M

F (K) , for F ∈ {EM
D ,E (M)

D ,E {M}D } .

For X ∈ {K,M} and for the frame D ∈ Va(X) the space E {M}(X) resp. E (M)(X) is

Carleman class of Roumieu type resp. of Beurling type on X associated to M

and D.

In cases where we can treat the Beurling and Roumieu classes at the same time, the

following convention has merit.

Convention 2.2.8. For a weight sequence M we will use the symbol [M ] for an unde-

termined variable [M ] ∈ {(M), {M}}. Any statement involving [M ] is meant to be true

for both the case [M ] = (M) and the case [M ] = {M}.

Note that by definition we have the continuous embeddings

E (M)
D (X)

I−→ E {M}D (X) , E (M)
D (X)

I−→ EM
D (X) and EM

D (X)
I−→ E {M}D (X)

for any monotonously increasing sequence M ∈ RN0
+ , any X ∈ {K,M} for an analytic

manifold M and K
rc
⊂ M and for any frame D ⊂ Va(X). If N ⊂ M then we have the

continuous embeddings

E (N)
D (X)

I−→ E (M)
D (X) and E {N}D (X)

I−→ E {M}D (X) .

If N ≺M then we have the continuous embedding

E {N}D (X)
I−→ E (M)

D (X) .

This motivates the following definition, in order to effectively use the variable [M ] for

embeddings.
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Definition 2.2.9. Let M and N be weight sequences. We will write (M) ⊂ (N), {M} ⊂

{N} or (M) ⊂ {N} iff M ⊂ N i.e. supj(Mj/Nj)
1
j < ∞. We will write {M} ⊂ (N) iff

M ≺ N i.e. limj→∞(Mj/Nj)
1
j = 0.

This way, the above can be shortened to

[M ] ⊂ [N ] ⇒ E [M ]
D (X)

I−→ E [N ]
D (X) is continuous

Later it will be convenient to use this notation for the inclusion of analytic functions,

i.e. {1} ⊂ [N ] implies the continuous inclusion E {1}D (X)
I−→ E [N ]

D (X). Naturally, M fulfils

(AF) iff {1} ⊂ (M).

Now, we will discuss some general properties of the spaces of ultradifferentiable func-

tions. We will especially prove that we may describe the Denjoy-Carleman classes of

Roumieu type with the help of analytic charts. This also ensures that we could easily use

a lot of the statements proved for ultradifferentiable functions on open subsets M ⊂ Rn

by H. Komatsu. But since this approach does not work for the Beurling case, we will use

the description via limits of the spaces EM
D (K) to prove e.g. nuclearity.

Proposition 2.2.10. Let M be an analytic manifold, let K
rc
⊂ M and let M ∈ RN0

+ be

a weight sequence. Suppose X ∈ {K,M} and suppose D ⊂ Va(X) is a frame. Then the

following holds.

(i) The space E {M}D (X) does not depend on the choice of frame D. If there is some

invertible matrix A = (Ai,j)i,j with E = (
∑

j Ai,jDj)i, then E (M)
E (X) = E (M)

D (X) as

well.

(ii) Suppose (φj, Uj), j ∈ J , is a family of analytic charts, with regular compact subsets

Vj ⊂ Uj such that X ⊂ ∪j∈J IntVj and X ∩ Vj
rc
⊂M. Then

f ∈ E {M}D (X) ⇔ ∀j∈Jf ◦ φ−1
j ∈ E {M}∂ (φj(X ∩ Vj))

and the topology of E {M}D (X) carries the initial topology with respect to the above

maps.4

4We can always find such a family (φj , Uj) of charts and subsets Vj , as Lemma 2.1.5 shows.
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(iii) E {M}D (K) is the strong dual of a nuclear Fréchet space. E (M)
D (K) is a nuclear Fréchet

space.

(iv) E [M ]
D (X) is nuclear and complete and E (M)

D (X) is Fréchet.

Proof. (i): This is a direct result of Lemma 2.2.4 and Lemma 2.2.5.

(ii): Let Kj := X ∩ Vj, then Kj is regular compact. Note that D and ∂φj always

restrict to frames in Va(Kj). Now, by (2.2.10) and Lemma 2.2.4

E {M}D (Kj)→ E {M}∂ (φj(Kj)) : f 7→ f ◦ φ−1
j

is a linear homeomorphism for each j ∈ J . Moreover, we have f ∈ E (X) iff f �Kj∈ E (Kj)

for all j ∈ J and

E {M}D (X)→
∏
j∈J

E {M}D (Kj) : f 7→ (f �Kj)j∈J

is a homeomorphism onto its image. Together, the two arguments prove the statement.

(iii): By Lemma 2.2.6 there are a sequences hn ↘ 0, n → ∞, and kn ↗ ∞, n → ∞

such that EM
hnD

(K)
I−→ EM

hn+1D
(K) and EM

kn+1D
(K)

I−→ EM
knD

(K) are nuclear for each n ∈ N.

Hence, E (M)
D (K) = lim←−n→∞ E (M)

knD
(K) and E {M}(K) = lim−→n→∞ EM

hn
(K) with nuclear and

injective linking maps. This means E (M)
D (K) is a nuclear Fréchet space and E {M}D (K) is

a complete nuclear (DF) space as described in [40, p. 34]. Thus, by [61, Exercise 32(b)

on p. 199], E {M}D (K) is Montel and hence reflexive by [61, p. 147]. The strong dual of a

complete (DF) space is a Fréchet space by [36, Satz 8.19], hence E {M}D (K) is the dual of

a nuclear Fréchet space by [66, Proposition 50.6].

(iv): For X = K only the Roumieu-case is left. Since E {M}D (K) is the dual of a nuclear

Fréchet space, it is complete and nuclear as discussed in Proposition 1.2.1.

The space E [M ]
D (M) is linearly homeomorphic to the projective limit of the complete

nuclear spaces E [M ]
D (K ′), K ′

rc
⊂M. Hence E [M ](M) is complete and nuclear by [61, Chapter

II, 5.3] and [66, Proposition 50.1]. Of course, it is enough to consider a countable family of

regular compact subset of M for this limit. Thus E (M)
D (M) is Fréchet, since any countable

projective limit of Fréchet spaces is Fréchet.
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Note that (ii) especially works with X = M and the family of all pairs ((ϕ,U), V ) of

analytic charts (ϕ,U) of M and V
rc
⊂ U . I.e. we have

f ∈ E {M}D (M) ⇔ f ◦ ϕ−1 ∈ E {M}∂ (ϕ(U)) for all analytic charts (ϕ,U)

and E {M}D (M) carries the initial topology with respect to the maps

E {M}D (M)→ E {M}∂ (ϕ(U)) : f 7→ f ◦ ϕ−1 .

This also elucidates that A (M) = E {1}D (M) as linear spaces.

Often it is more convenient to represent E {M}D (M) purely by a projective limit of

Banach spaces. One reason is that ε-products play much more nicely with projective

limits than with inductive limits. Moreover in Proposition 2.2.15, we will later get a better

result concerning the continuity of the multiplication in E {M}D (M) using this approach.

Definition 2.2.11. We define the set

Λ := {(c0 c1 · · · cn)n∈N0 | for some monotone (cn)n ∈ RN0
>0 with lim

n→∞
cn = +∞} .

and equip it with the preorder

h′ & h :⇔ sup
n∈N0

hn/h
′
n <∞ for h, h′ ∈ Λ .

Furthermore, for an analytic manifold M, K
rc
⊂M, M ∈ RN0

>0 and a frame D ⊂ Va(X) we

define the C (X)-function space

E {M}D,proj(X) := lim←−
h∈Λ

E hM
D (X) .

In some cases it will also be convenient to use the notation E (M)
D,proj(X) := E (M)

D (X).

Let us quickly make sure that the above is well-defined. For h, k ∈ Λ there are

positive, monotone and diverging sequences b, c with hn = c0 · · · cn and kn = b0 · · · bn
for all n ∈ N0. Now put a = (an)n∈N0 with an := min{bn, cn}. Then a is monotone,

positive and diverging and hence l := (a0 · · · an)n∈N0 ∈ Λ and h, k & l. Thus (Λ,&) is a

directed set. Also, the preorder on Λ is defined in such a way that we have the continuous
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embedding E {hM}D (X)
I−→ E {kM}D (X) for k & h. Thus the projective limit lim←−h∈Λ

E {hM}D (X)

is well-defined.

Note that for any weight sequence M and any h ∈ Λ we have M ≺ hM . If h0 = 1

then the sequence hM is a weight sequence as well. Also E {M}µD,proj(X) = E {M}D,proj(X) for any

µ > 0. Thus we especially have

E {M}D,proj(X) = lim←−
µ>0

lim←−
h∈Λ

E hM
µD (X) = lim←−

h∈Λ

E (hM)
D (X) . (2.2.18)

So E {M}D,proj(X) is nuclear as a projective limit of nuclear spaces [66, Proposition 50.1]. Of

course this space is complete as well. Though in general we do not know if the space

E {M}D,proj(X) is barrelled. For application that need barrelled or bornological spaces we

instead need to use E {M}D (K). If one can show E {M}D (M) = E {M}D,proj(M) the situation is

especially convenient. For this purpose Komatsu uses the following [42, Lemma 3.4].

Lemma 2.2.12. Let c = (cn)n be a positive sequence. Then the following two statements

are equivalent.

(i) There is some h > 0 such that sup
n

cn
hn

<∞.

(ii) For all h ∈ Λ we have sup
n

cn
hn

<∞.

The following two complementary statements are equivalent as well.

(iii) For all h > 0 we have sup
n
cn h

n <∞.

(iv) There exists some h ∈ Λ such that sup
n
cn hn <∞.

The above implies that for two weight sequences M , L we have M ≺ L iff there is

some h ∈ Λ, C > 0 such that for all n ∈ N0

1

Ln
≤ C

hnMn

.

Lemma 2.2.13. Suppose M is a weight sequence, M is an analytic manifold and K
rc
⊂M.

Suppose furthermore that X ∈ {K,M} and D ⊂ Va(X) is a frame. Then

E {M}D (X) =
⋂
h∈Λ

E hM
D (X)
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as vector spaces and E {M}(X)
I−→ E {M}D,proj(X) resp. E {M}(X)

I−→ E hM
D (X) is continuous for

any h ∈ Λ. Moreover, if M fulfils (nQA), then

E {M}D (M) = E {M}D,proj(M) (2.2.19)

as locally convex vector spaces.

Proof. If X is an open subset of Rn, then the statement is proven in [42, Proposition

3.5]. Note that in the corresponding chapter in [42] the property (nQA) is a global

assumption. However, in the proof of the continuity (from left to right) and bijectivity of

the identity (2.2.19) this property is not used.

For arbitrary analytic manifolds M we get E {M}D (M) = E {M}D,proj(M) in the sense of

locally convex spaces by using analytic charts and Lemma 2.2.10.

For general X we can use the same approach. First of all, E {M}D (X) and E {M}D,proj(X)

coincide in the sense of vector spaces due to Lemma 2.2.12. Since M ≺ hM for any

h ∈ Λ, we have continuous embeddings E {M}D (X)
I−→ E hM

D (X) for any h ∈ Λ.

Note that in [47, Theorem 8.2] it is shown that for any weight sequence M , any open

subset M of Rn and a set B ⊂ E (M) we have

B ⊂ E {M}∂ (M) is bounded ⇔ ∀
M≺L

L fulfils (LC’)

B ⊂ E (L)
∂ (M) is bounded.

This fits (2.2.19), since M ≺ hM and hM fulfils (LC’) (and even (LC)5) for any weight

sequence M and any h ∈ Λ. Naturally, this can also be generalized to arbitrary analytic

manifolds M in the same manner as above.

The following definition will be useful whenever we need to use projective limits for

our spaces of ultradifferentiable functions.

Definition 2.2.14. Suppose M is a weight sequence. We will introduce the property

(PL) for [M ].

(PL) Either [M ] = {M} and M has (nQA) or [M ] = (M).

5h = (hn) ∈ Λ itself is log-convex since hn+1 = cn+1hn with a monotonously increasing sequence (cn).
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Now let us discuss the multiplication on E [M ]
D (M).

Proposition 2.2.15. Let M be an analytic manifold, let K
rc
⊂ M, let X ∈ {K,M} and

let M ∈ RN0
+ be a weight sequence. Suppose D ⊂ Va(X) is a frame. Then the following

holds.

(i) Let h > 0 and let L be a weight sequence such that [M ] ⊂ (L). Then the multipli-

cation

E [M ]
D (X)× E L

hD(X)→ E L
hD(X)

is well-defined and continuous.

(ii) E [M ]
D (X) and E {M}D,proj(X) are algebras with continuous multiplication.

(iii) E [M ]
D,proj(X) is a locally m-convex algebra. If [M ] has (PL) and X = M, this specifi-

cally means that the algebra E [M ]
D (M) is a locally m-convex.

Proof. (i): For any L and any h > 0 let us define Lh := (h−nLn)n∈N0 . We have E L
hD(X) =

E Lh
D (X). Furthermore, we have L ⊂ Lh, thus [M ] ⊂ (L) implies [M ] ⊂ (Lh). So it is

enough to prove the statement for h = 1.

First, we will discuss the case X = K. Suppose f, g ∈ E (K). We define

‖f‖k,D,L := max
a∈SN
|a|=k

‖Daf‖∞
|a|!L|a|

.

Then

‖Da(f g)‖∞ ≤
∑

(a1,a2)∈SN,2(a)

‖Da1

f‖∞‖Da2

g‖∞

≤
∑

(a1,a2)∈SN,2(a)

‖f‖|a1|,µD,L‖g‖|a2|,D,L µ
−|a1||a1|!L|a1||a2|!L|a2|

=

|a|∑
k=0

‖f‖k,µD,L‖g‖|a|−k,D,L|a|!µ−kLkL|a|−k .

Due to the log-convexity and L0 = 1, we have LkL|a|−k ≤ L|a|, thus

‖f g‖n,D,L ≤ ‖f‖µD,L
n∑
k=0

µ−k ‖g‖n−k,D,L
n→∞−−−→ 0

82



for any µ > 1 and any f ∈ E L
µD(K) and g ∈ E L

D (K). It follows that the multiplication

E L
µD(K)× E L

D (K)→ E L
D (K) (2.2.20)

is well-defined and continuous for any µ > 1. Next we use [M ] ⊂ (L). Since the identity

induces a continuous embedding E [M ]
D (K) ↪→ E L

µD(K), the multiplication

E [M ]
D (K)× E L

D (K)→ E L
D (K)

is well-defined and continuous.

For the case X = M we can use the fact that the above is true for any K ⊂ X. Since

multiplication commutes with the restriction to regular compact subsets of X, we get a

continuous multiplication

E [M ]
D (X)× E L

D (X)→ E L
D (X) . (2.2.21)

(ii): First let us consider [M ] = (M). We use (2.2.20). For all h > 0, we have the

following chain of continuous maps

E (M)
D (X)× E (M)

D (X)
I−→ EM

2hD(X)× EM
hD(X)

·−→ EM
hD(X) ,

which already implies the continuity of the multiplication on E (M)(X).

Now we consider [M ] = {M}. We start with E {M}D,proj(X). Here we can argue in the

same manner as above. For each h > 1 and λ ∈ Λ we have M ≺ (h−nλnMn)n. Thus

E {M}D,proj(X)× E {M}D,proj(X)
I−→ E λM

hD (X)× E λM
D (X)

·−→ E λM
D (X)

is continuous for all λ ∈ Λ which already implies the continuity of the multiplication on

E {M}D,proj(X).

Finally, we discuss E {M}D (X). For open M ⊂ Rn the continuity of the multiplication

is proven [40, Theorem 2.8], but the same proof also holds for general analytic manifolds

M.

For any h, µ > 0 there is a λ > 0 such that the multiplication

E L
µD(K)× E L

hD(K)→ E L
λD(K)
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is well-defined and continuous. Hence each fixed f ∈ E {M}(K) induces a continuous

operator

EM
hD(K)→ E {M}D (K) : g 7→ f g

for any h > 0. By a standard property of inductive limits [61, II 6.1], the extended map

E {M}D (K)→ E {M}D (K) : g 7→ f g

is continuous. Hence the multiplication on E {M}D (K) is separately continuous. We com-

plete the proof by using [66, Theorem 41.1], which states that separately continuous

bilinear maps between strong duals of reflexive Fréchet spaces are continuous.

(iii): In this instance we can use a method from [52, Chapter I, Theorem 5.2]. It is

enough to consider X = K, since the rest follows from the description via the projective

limit over the regular compact subsets. Suppose L is any weight sequence. We define

UL := {f ∈ E (M)
D (K) | ‖f‖D,L ≤ 1} . (2.2.22)

By (i) there is some c > 0 with

f · UL ⊂ c · UL

for any f ∈ E (M)
D (K) and any L with (M) ⊂ (L). Next we define

V L := {f ∈ UL | f · UL ⊂ UL} .

Then we have V L · V L ⊂ V L and V L is a barrel, i.e. it is absolutely convex, absorbing

and closed. Since the space E (M)
D (K) = E (M)

D,proj(K) is barrelled, V L is a neighbourhood of

zero. The set

U := {ε · UL |M ⊂ L , ε ∈ [0, 1]}

is a basis of neighbourhoods of zero in E (M)
D (K), so

V := {ε · V L |M ⊂ L , ε ∈ [0, 1]}

is also a basis of neighbourhoods of zero, because V L ⊂ UL for any L. This implies that

E (M)
D (K) is locally m-convex.
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Next we use the description

E {M}D,proj(K) = lim←−
h∈Λ

E (hM)
D (K)

discussed in (2.2.18). Since any E (hM)
D (K) is locally m-convex, the algebra E {M}D,proj(K) is

locally m-convex as well.

By Lemma 2.2.4 we have E {M}D (X) = E {M}E (X) for arbitrary frames D,E ⊂ Va(X).

Thus, we can adjust the definition of E {M}D (X) such that we are not dependent on the

existence of a global frame D ⊂ Va(X).

For any x ∈ X we can find some K ′
rc
⊂M with x ∈ K ′ ⊂ X with a frame D′ ⊂ Va(K ′),

by using analytic charts. Moreover, by Lemma 2.2.4, for a weight sequence M and any two

K ′, K ′′
rc
⊂ M with frames D′ ⊂ Va(K ′), D′′ ⊂ Va(K ′′) and with K ′′ ⊂ K ′, the restriction

defines a continuous map

E {M}D′ (K ′)→ E {M}D′′ (K ′′) : f 7→ f �K′′ .

This leads us to the following definition, which is consistent with the prior definition of

E {M}D (X).

Definition 2.2.16. Suppose M is an analytic manifold, K
rc
⊂ M, X ∈ {K,M} and M is

a weight sequence. Let

FM(X) := {(K ′, D) | K ′
rc
⊂M , K ′ ⊂ X and D ⊂ Va(K ′) is a frame} .

We define E {M}(X) as the space

E {M}(X) := {f ∈ E (X) | ∀(K′,D)∈FM(X) : f �K′∈ E {M}D (K ′)}

equipped with the initial topology with respect to the maps

E {M}(X)→ E {M}D (K ′) : f 7→ f �K′ for (K ′, D) ∈ FM(X) .

The spaces E {M}(X) are also called Denjoy-Carleman class of Roumieu type.
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According to the above definition we especially have

E {M}(M) = lim←−
K

rc
⊂M

E {M}(K) and E {M}(K) = E {M}D (K) ,

for a frame D ⊂ Va(K).

By (2.2.7) and Lemma 2.2.4, E {1}(M) is exactly the space of analytic functions A (M)

on an analytic manifold M 6 (see also Proposition 2.2.10 (iii) for more context).

We cannot do the same for the Beurling case. Here the defined spaces depend on the

choice of frame. This is not surprising, since the spaces E (1)
∂ (U) for open U ⊂ Rn are

the functions that extend to entire functions on Cn. Certainly, the composition of entire

functions with arbitrary analytic functions might not be entire. Consider the analytic

manifold R+ and the vector field D, defined by Df(x) = x2∂f(x). If we take g(x) := x

for x ∈ R+, then

sup
x∈K
|Dkg(x)| = k! · tk for K

rc
⊂ R+ and t := maxK

and thus g ∈ E (1)
∂ (R+) \ E (1)

D (R+). Even a very well behaved change of frame might

not be sufficient to guarantee that the corresponding Carleman classes of Beurling type

coincide. Indeed, in the example above we have A ∈ E (1)
∂ (R+) for D = A∂.

2.2.3 Vector valued ultradifferentiable functions

Let us now turn our attention to the spaces of vector valued ultradifferentiable func-

tions. In order to characterize the spaces of ultradifferentiable vector valued functions of

Roumieu and Beurling type, we will first represent the spaces EM
D (M;E) resp. EM

D (K;E)

in a more convenient way.

Proposition 2.2.17. Let E be a complete locally convex space, let M be an analytic

manifold of dimension N with K
rc
⊂ M, X ∈ {K,M} and let D ⊂ Va(X) be a frame. Let

F (E) be the linear space of all f ∈ E (X;E) such that

lim
|a|→∞
a∈SN

sup
x∈K′

p(Daf(x))

M|a| |a|!
= 0

6Naturally we still use the definition 1 = (1, 1, 1, . . . ).
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for all compact K ′ ⊂ X and all continuous seminorms p on E, equipped with the topology

defined by the seminorms

f 7→ sup
x∈K′

sup
a∈SN

p(Daf(x))

M|a| |a|!
,

in which K ′ runs through the compact subsets of X and p runs through continuous semi-

norms on E. Then EM
D (X;E) = F (E) as topological vector spaces.

Proof. By definition we have F (E) ⊂ E (X;E) and we have EM
D (X;E) ⊂ E (X;E) since

EM
D (X) ⊂ E (X).

First, suppose E is a Banach space and let N := dimM.

Let f ∈ E (X;E) and put

Tf : E ′ → E (X) : e′ 7→ e′ ◦ f .

Lemma 1.2.5 (i) implies that f ∈ EM
D (X;E) iff

(1) Tfe
′ ∈ EM

D (X) for all e′ ∈ E ′ and

(2) for all compact K ′ ⊂ X there is some compact and absolutely convex C ⊂ E with

∀e′∈E′ supx∈K′ supa∈SN
|〈Daf(x),e′〉|
M|a| |a|!

≤ supe∈C | 〈e, e′〉 |.

Let us define ca(x) := 1
M|a| |a|!

Daf(x), for x ∈ X and a ∈ SN , and let

M(K ′) := {ca(x) | x ∈ K ′ , a ∈ SN}

for each compact K ′ ⊂ X. By identifying (E ′c)
′
ε ' E via the canonical map, we get

(1) ⇔ ca(x)
|a|→∞−−−−→ 0 in (E ′c)

′
s uniformly in x ∈ K ′ for each compact K ′ ⊂ X and

(2) ⇔ M(K ′) is a set of equicontinuous functionals on E ′c for each compact K ′ ⊂ X.

If M ⊂ (E ′c)
′ is a set of equicontinuous functionals on E ′c, then the topologies inherited

from (E ′c)
′
s and (E ′c)

′
c coincide on M by [36, Satz 1.4]. However, for an equicontinuous M ,

the set M −M = {e1 − e2 | e1, e2 ∈ M} is equicontinuous as well. Consequently, even

the uniform structures inherited from (E ′c)
′
s and (E ′c)

′
c coincide on M . This enables us to

conclude that together (1) and (2) are equivalent to
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(3) ca(x)
|a|→∞−−−−→ 0 in (E ′c)

′
c uniformly in x ∈ K ′ for each compact K ′ ⊂ X.

Since E is a Banach space, it carries the Mackey topology by [36, p. 176] and thus

(E ′c)
′
c ' E via the canonical map E → (E ′c)

′
c by [63, p. 17]. This means (3) is equivalent

to f ∈ F (E) and thus F (E) = EM
D (X;E) as vector spaces.

The topology on EM(X;E) is defined by the seminorms

f 7→ sup
e′∈V

p(e′ ◦ f)

as p runs through the continuous seminorms in EM
D (X) and V runs though the equicon-

tinuous subsets of E ′. A seminorm p on EM
D (X) is continuous iff compact K ′ ⊂ X and

C > 0 exist such that p(f) ≤ C ‖f �K′ ‖D,M for all f ∈ EM
D (X). Hence,

sup
e′∈V

p(e′ ◦ f) ≤ C sup
x∈K′

sup
a∈SN

sup
e′∈V

| 〈Daf(x), e′〉 |
M|a| |a|!

.

Since the topology on E can be defined by the seminorms e 7→ supe′∈V | 〈e, e′〉 | as V runs

through the equicontinuous subsets of E ′, we get F (E) = EM
D (X;E) as topological vector

spaces.

Now let E be any complete locally convex space.

For any continuous seminorm p on E let Ep be the Banach space defined as the

completion of E/p−1(0) equipped with the norm e + p−1(0) 7→ p(e). For any continuous

seminorms p, q, such that pointwise p ≥ q, we may extend the maps e 7→ e + p−1(0) 7→

e+ q−1(0) to continuous surjective maps

E
jp−→ Ep

jq,p−−→ Eq.

We use [61, Ch. II, 5.4], which states that the map

E →
∏
p

Ep : e 7→ (e+ p−1(0))p

is a linear homeomorphism onto the projective limit lim←−p(Ep, jp,q) in which p and q run

through the continuous seminorms on E. With Lemma 1.2.5 (ii) we get

EM
D (X;E) ' lim←−

p

(EM
D (X;Ep), I εjp,q) = lim←−

p

(F (Ep), I εjp,q) ,
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in which the linear homeomorphism is given by f 7→ (jp ◦ f)p. We complete the proof by

pointing out that by the definition of F (E) we also have F (E) ' lim←−p(F (Ep), I εjp,q) via

f 7→ (jp ◦ f)p.

Now that we have a representation for EM
D (X;E), we will use various limits to represent

the vector valued Denjoy-Carleman classes of Beurling and Roumieu type.

Proposition 2.2.18. Let E be a complete locally convex space, let M be a weight se-

quence, let M be an analytic manifold with K
rc
⊂ M, let X ∈ {K,M} and let D ⊂ Va(X)

be a frame.

(i) A function f : X→ E is in E [M ]
D (X;E) iff e′ ◦ f ∈ E [M ]

D (X) for all e′ ∈ E ′.

(ii) LetW[M ] := {L | L is a weight sequence, [M ] ⊂ (L)} equipped with the partial order

L & K : ⇔ sup
k∈N

Kk

Lk
<∞ .

The identities

E (M)
D (X;E) = lim←−

h>0

EM
hD(X;E) = lim←−

h>0

lim←−
K′

rc
⊂M ,K′⊂X

EM
hD(K ′;E) (2.2.23)

E {M}D,proj(X;E) = lim←−
h∈Λ

E hM
D (X;E) = lim←−

h∈Λ

lim←−
K′

rc
⊂M ,K′⊂X

E hM
D (K ′;E) (2.2.24)

E [M ]
D,proj(X;E) = lim←−

L∈W[M ]

E L
D (X;E) = lim←−

L∈W[M ]

lim←−
K′

rc
⊂M ,K′⊂X

E L
D (K ′;E) (2.2.25)

hold in the sense of topological vector spaces.

(iii) The identity

E {M}D (X;E) = E {M}D,proj(X;E) , (2.2.26)

is valid in the sense of vector spaces. In (2.2.26) the topology on the left-hand side

is finer than the topology on the right-hand side.

If M fulfils (nQA), then the identity is valid in the sense of topological vector

spaces.
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(iv) If E is a Banach space, then the equalities

E {M}D (X;E) = lim←−
K′

rc
⊂M ,K′⊂X

E {M}D (K ′;E) = lim←−
K′

rc
⊂M ,K′⊂X

lim−→
h>0

EM
hD(K ′;E) (2.2.27)

hold in the sense of vector spaces.

Proof. (i): Suppose K ′ ⊂ X is compact. E [M ]
D (K ′) is Montel as a nuclear Fréchet space

(resp. dual of a nuclear Fréchet space). Furthermore, E [M ]
D (K ′) is a webbed space by [36,

pp.162-163], since it is a countable projective limit (resp. countable inductive limit) of

Banach spaces. Hence we may apply [36, Satz 10.5], which states that f ∈ E [M ]
D (K ′;E)

iff e′ ◦ f ∈ E [M ]
D (K ′) for all e′ ∈ E ′. Thus we also have f ∈ E [M ]

D (X;E) iff e′ ◦ f ∈ E [M ]
D (X)

for all e′ ∈ E ′ by Lemma 1.2.5 (ii) and by the isomorphism E [M ]
D (X;E) ' E [M ]

D (X) ε E.

(ii): For each h > 0 we define a weight sequence M(h) by M(h)k := Mkh
−k. With

this definition we have EM
hD(X) = EM(h)

D (X) and

E (M)
D (X) = lim←−

h>0

EM(h)
D (X)

E {M}D,proj(X) = lim←−
h∈Λ , h0=1

E hM
D (X) .

Moreover, M(h) & M(h′) ∈ W(M) for h, h′ > 0 with h′ ≤ h. For K & L the embedding

E L
D (X)

I−→ E K
D (X) is well-defined and continuous. This results in

E (M)
D,proj(X) = lim←−

L∈W(M)

E L
D (X) .

Similarly, we have hM & h′M ∈ W{M} for h, h′ ∈ Λ with h & h′ and h0 = h′0 = 1.

If M ≺ L, then L & hM for some h ∈ Λ by Lemma 2.2.12. Thus the embedding

E [M ]
D,proj(X)

I−→ E L
D (X) is well-defined and continuous for each L ∈ W{M}. This gives us

finally

E {M}D,proj(X) = lim←−
L∈W{M}

E L
D (X) .

The rest follows directly from the definition of E (M)
D (X) resp. E {M}D,proj(X), Lemma 1.2.5 (ii)

and the isomorphism F (X;E) ' F (X) ε E for F ∈ {E (M)
D ,E {M}D,proj}.
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(iii): By definition we have E {M}D (X;E) ' E {M}D (X)εE. From Lemma 2.2.13 we know

that

Ĩ :=

[
E {M}D (X)

I−→ lim←−
h∈Λ

E hM
D (X)

]
(2.2.28)

is continuous and bijective. Hence

Ĩ ε IE : E {M}D (X;E)→ lim←−
h∈Λ

E hM
D (X;E)

is continuous and injective. For any f ∈
⋂
h∈Λ E hM

D (X;E) and for any e′ ∈ E ′ the

scalar valued function e′ ◦ f is in
⋂
h∈Λ E hM

D (X) and thus in E {M}D (X). As a consequence,

f ∈ E {M}D (X;E) according to (i) and hence Ĩ ε IE is bijective.

If M fulfils (nQA) and X = M, then Ĩ is a homeomorphism by Lemma 2.2.13, hence

Ĩ ε IE is a homeomorphism.

(iv): Since E {M}D (X;E) = lim←−K′rc⊂M,K′⊂X E {M}D (K ′;E) via Lemma 1.2.5, it is enough

to consider solely a single K ′
rc
⊂ M. We proved in (iii) that E {M}D (K ′;E) coincides with⋂

h∈Λ E hM
D (K ′;E). For a smooth function f : K ′ → E we define the sequence

cf := (cfk)k :=

(
sup
x∈K′

sup
|a|=k

a∈Sdim M

‖Daf(x)‖E
Mk k!

)
k∈N0

.

A function f : K ′ → E is in
⋂
h∈Λ E hM

D (K ′;E) iff both f ∈ E (K ′;E) and for all h ∈ Λ

the (pointwise) quotient cf/h converges to zero. Similarly, a function f : K ′ → E is in⋃
h>0 EM

D (K ′;E) iff both f ∈ E (K ′;E) and there is some h > 0 such that cfkh
k k→∞−−−→ 0. By

Lemma 2.2.12 the two statements are equivalent. Hence E {M}D (K ′;E) = lim−→h>0
EM
hD(K ′;E)

in the sense of vector spaces.

In special cases, we can regard vector valued analytic functions as ultradifferentiable

functions. This way, the above proposition gives us tools to deal with vector valued

analytic functions as well.

Corollary 2.2.19. Suppose M is an analytic manifold and E is a Banach space. Then

E {1}(M;E) is exactly the space of analytic functions from M to E.

Proof. If f : M → E is analytic, then e′ ◦ f is analytic for each e′ ∈ E ′. Thus f is an

element of E {1}(M;E) by (i) of Proposition 2.2.18 7.

7We apply the result for E
{1}
∂φ

(U ;E) for each analytic chart (φ,U).
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Conversely, if f ∈ E {1}(M;E), then for each analytic chart (φ, U) and for each compact

K ⊂ U there is some h > 0 such that

sup
x∈K

sup
α∈Ndim M

0

‖hα∂αφf(x)‖E
|α|!

<∞ .

By using the inequality
(
n
k

)
≤ (ne/k)k we can see that there are constants C, µ > 0 such

that |α|!/α! ≤ Cµ|α| for all α ∈ NdimM
0 . Hence, the Taylor expansion

∑
α

∂α(f ◦ φ−1)(x)

α!
(y − x)α

converges for all analytic charts (φ, U) and all x, y ∈ φ(U) with |x− y| small enough. In

conclusion, f is analytic.

Next, we will discuss in what way the identity E (M ×M′) = E (M; E (M′)) can be

applied to the Carleman classes of Beurling or Roumieu type.

Proposition 2.2.20. Let M and M′ be analytic manifolds and let M be a weight sequence

with (MG). Suppose D ⊂ Va(X) and D′ ⊂ Va(X′) are frames. We denote by E the frame

in Va(X× X′) defined by

E = (D1 ε I, D2 ε I . . . , I εD′1, I εD
′
2, . . . ) .

If [M ] has (PL), then

E [M ]
E (M×M′) = E [M ]

D (M; E [M ]
D′ (M′))

in the sense of topological vector spaces. If [M ] does not have (PL), then this identity

still holds in the sense of vector spaces.

Proof. Let N = dimM and N ′ = dimM′. By Lemma 2.1.9 all involved function spaces

are continuously embedded into E (M×M′) = E (M; E (M′)). Furthermore, it is clear that

E indeed defines an analytic frame on M×M′.

Due to (LC) and (MG) there are C, λ > 0 such that

Mk k!Ml l! ≤Mk+l (k + l)! ≤ Cλk+lMk k!Ml l!
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for all k, l ∈ N0.

First, we take a look at the Beurling case. Following standard procedure, we start by

considering spaces of functions on K
rc
⊂ M and K ′

rc
⊂ M′ and then use projective limits.

Due to Proposition 2.2.18 (ii) and the closed graph theorem it is sufficient to show that

for any µ > 0 there are h, h′ > 0 such that

EM
hD(K; EM

h′D′(K
′)) ⊂ EM

µE(K ×K ′) (2.2.29)

and for any h, h′ > 0 there is a µ > 0 with

EM
µE(K ×K ′) ⊂ EM

hD(K; EM
h′D′(K

′)) . (2.2.30)

For a chosen µ > 0 let h = h′ = µ. Due to (LC), we have

sup
c∈SN+N′

sup
(x,y)∈K×K′

|(µE)cf(x, y)|
M|c| |c|!

≤ sup
a∈SN

sup
b∈SN′

sup
(x,y)∈K×K′

|(hD)ax(h
′D)′y

bf(x, y)|
M|a|M|b| |a|! |b|!

for any f ∈ E (K×K ′). By Proposition 2.2.17 this implies (2.2.29). For a choice h, h′ > 0

we may use (MG) and put µ = max{h, h′} · λ. Then

sup
a∈SN

sup
b∈SN′

sup
(x,y)∈K×K′

|(hD)ax(h
′D)′y

bf(x, y)|
M|a|M|b| |a|! |b|!

≤ C sup
c∈SN+N′

sup
(x,y)∈K×K′

|(µE)cf(x, y)|
M|c| |c|!

and consequently (2.2.30) holds true.

Secondly, we move onto the Roumieu case. We can follow a similar procedure as

above. For any choice h = (hn)n = (c0 · · · cn)n, h
′ = (h′n)n = (c′0 · · · c′n)n ∈ Λ we may put

µ := (c̃0 · · · c̃n)n with c̃k = min{ck, c′k}/λ. Then µ ∈ Λ and

sup
a∈SN

sup
b∈SN′

sup
(x,y)∈K×K′

|Da
xD
′
y
bf(x, y)|

h|a| h
′
|b|M|a|M|b| |a|! |b|!

≤ C sup
c∈SN+N′

sup
(x,y)∈K×K′

|Ecf(x, y)|
µ|c|M|c| |c|!

.

For a chosen µ = (µn)n ∈ Λ we can put h = h′ = µ. Then hnh
′
n ≤ µn for all n ∈ N0 and

thus

sup
c∈SN+N′

sup
(x,y)∈K×K′

|Ecf(x, y)|
µ|c|M|c| |c|!

≤ sup
a∈SN

sup
b∈SN′

sup
(x,y)∈K×K′

|Da
xD
′
y
bf(x, y)|

h|a| h
′
|b|M|a|M|b| |a|! |b|!

.

As before this implies

E {M}E,proj(K ×K
′) = E {M}D,proj(K; E {M}D′,proj(K

′)) and thus

E {M}E,proj(M×M′) = E {M}D,proj(M; E {M}D′,proj(M
′))
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as topological vector spaces. By Lemma 2.2.13 and Proposition 2.2.18 (iii) we have

E {M}E (M×M′) = E {M}E,proj(M×M′) = E {M}D,proj(M; E {M}D′,proj(M
′)) = E {M}D (M; E {M}D′ (M′))

as vector spaces and, if M fulfils (nQA), also as topological vector spaces.

We will also prove that E {M}(X) has the property (IC) for a weight sequence M .

In [38] inverse closed subalgebras of Banach algebras of a ultradifferentiable type were

discussed. These algebras were constructed with the help of a family of commutating

derivations. However, the proof for [38, Theorem 16] does not rely on this commutativity,

which suits us very well. Nevertheless, we will reiterate and slightly adjust the proof of

[38, Theorem 16], since our situation is slightly different.

Proposition 2.2.21. Suppose M is a weight sequence, M is an analytic manifold, K

is regular compact in M, X ∈ {K,M} and D ⊂ Va(X) is a frame. Then E {M}D (X) and

E {M}D,proj(X) have the property (IC).

Proof. It is enough to test for (IC) by using a Banach algebra A with norm p. Both

E {M}D (X;A) and E {M}D,proj(X;A) are algebras with respect to the pointwise multiplication

due to Proposition 2.1.10 and Proposition 2.2.15. Due to Proposition 2.2.18 we have

E {M}D (X;A) = E {M}D,proj(X;A) = lim←−
K⊂X

K′
rc
⊂M

lim−→
h>0

EM
hD(K ′;A) (2.2.31)

in the sense of vector spaces.

Let us put

ph(f)(x) := sup
a∈SN

p
(
(hD)af(x)

)
M|a| |a|!

, for f ∈ E (X;A) .

Let now f ∈ E (X;A) such that f(x) ∈ A× and g(x) := f(x)−1 for all x ∈ X. Then by
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Lemma 2.1.15, we have g ∈ E (X;A) and

p(Dag(x)) ≤
|a|∑
m=1

∑
(a(j))j∈ ˜SN,m(a)

p(g(x))m+1 p(Da1

f(x)) · · · p(Damf(x))

≤
|a|∑
m=1

p(g(x))m+1ph(f)(x)m
∑

(a(j))j∈ ˜SN,m(a)

|a1|! · · · |an|!h|a|M|a1| · · ·M|a1|

=

|a|∑
m=1

p(g(x))m+1ph(f)(x)m
∑

(kj)j∈Nm,
k1+...+km=|a|

|a|!h|a|Mk1 · · ·Mkm .

for any x ∈ X, in which we used

#

{
(aj)j ∈ S̃N,m(a)

∣∣∣∣ kj = |aj| for j = 1, . . . ,m

}
=

|a|!
k1! · · · km!

for k ∈ Nm such that |k| = |a|. Since M fulfils (LC), it also fulfils (AI). Thus

Mk1 · · ·Mkm ≤ C |a|M|a|, where C := sup
j≤k, j,k∈N

M
1/j
j

M
1/k
k

<∞.

for k1 + · · ·+ km = |a|. Hence

p(Dag(x)) ≤
|a|∑
m=1

p(g(x))m+1ph(f)(x)m
∑

(kj)j∈Nm,
k1+...+km=|a|

h|a|C |a|M|a| |a|!

= h|a|C |a|M|a| |a|!
|a|∑
m=1

p(g(x))m+1 ph(f)(x)m
(
|a| − 1

m− 1

)
= p(g(x))2 ph(f)(x)

[
hC (p(g(x)) + ph(f)(x))

]|a|
M|a| |a|! .

Now suppose f �K′∈ EM
hD(K ′;A), then p(g(−)) and ph(f)(−) are bounded on K ′. With

(2.2.31) we get g �K′∈ E {M}D (K ′;A) in this case. Hence E {M}D (X) and E {M}D,proj(X) have the

property (IC).

2.3 Function spaces on polynomial manifolds

We will need polynomial manifolds for the Pedersen quantization, a generalization of the

Weyl quantization, and for the generalizations of the spaces S (Rn;E) and OM(Rn;E),
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see [65, 34]. It is convenient to have one notion of rapidly decreasing and slowly increasing

functions that can be applied to simply connected nilpotent Lie groups, Lie algebras and

coadjoint orbits in a consistent way. Furthermore, this will lead to a notion of rapidly

decreasing and slowly increasing function on R× = R \ {0}, which we will use frequently

in Chapter 3.

The definition given below corresponds to the polynomial manifolds used by Pedersen

in [56], the only difference being that we also admit non connected manifolds.

Definition 2.3.1. Suppose M is an n-dimensional smooth manifold with finitely many

connected components. An atlas A of M will be called a polynomial atlas iff each two

charts (φ, U), (ψ, V ) ∈ A fulfil

(i) U , V are connected components of M and φ(U) = ψ(V ) = Rn,

(ii) and if U = V , then φ ◦ ψ−1 is a polynomial function on Rn.

Two polynomial atlases A,A′ are said to be equivalent iff A∪A′ is a polynomial atlas. A

polynomial structure is an equivalence class of polynomial atlases.

Together with a polynomial structure M will be called a polynomial manifold. A chart

of a polynomial structure of M will be called a polynomial chart on M.

2.3.1 Polynomials, rapidly decreasing and slowly increasing func-

tions

By using polynomial charts, we may generalize polynomials and definitions that depend

on the set of polynomials.

Suppose E is a vector space. We denote by P(Rn) (resp. P(Rn;E)) the vector spacex 7→ ∑
|α|≤k

cαx
α

∣∣∣∣∣∣ k ∈ N0 , cα ∈ C (resp. cα ∈ E) for α ∈ Nn
0


of polynomial functions from Rn to C (resp. to E) and by DiffP(Rn) the set of differential

operators with polynomial coefficients on Rn.
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Now suppose E is a locally convex space. The space of E-valued rapidly decreasing

functions, S (Rn;E), is the space of functions ϕ ∈ E (Rn;E) such that Pϕ is bounded in

E for each P ∈ DiffP(Rn). Its topology is defined by the seminorms

ϕ 7→ sup
x∈Rn

p(Pϕ(x)) for P ∈ DiffP(Rn) and continuous seminorms p on E.

Note that S (Rn) := S (Rn;C) is a C (Rn)-function space and the above is consistent with

Definition 2.1.1. S (Rn) is a nuclear Fréchet space [66, Corollary on p.530], thus S (Rn)

is reflexive and its dual S ′(Rn) := S (Rn)′ = S (Rn)′c is nuclear as well. Furthermore,

the reflexivity of S (Rn) implies that the equicontinuous subsets of S ′(Rn)′c ' S (Rn)

correspond to the bounded subsets of S (Rn).

The space of slowly increasing functions is the C (Rn)-function space OM(Rn), defined

as the set of smooth functions f such that

[ϕ 7→ f · ϕ] ∈ L(S (Rn))

equipped with the subspace topology in L(S (Rn)). Since L(S (Rn)) is nuclear, OM(Rn)

is nuclear as well by [66, Proposition 50.1]. We have the canonical linear homeomorphisms

L(S (Rn)) ε E ' S ′(Rn) εS (Rn) ε E ' S ′(Rn) εS (Rn;E) ' Lε(S ′(Rn)′c; S (Rn;E))

' L(S (Rn); S (Rn;E)) ,

for any locally convex space E. Hence, we may identify OM(Rn;E) with a subspace of

L(S (Rn); S (Rn;E)) equipped with the corresponding subspace topology. Evaluating the

above homeomorphisms shows that OM(Rn;E) is precisely the space of all f ∈ E (Rn;E)

such that

[ϕ 7→ f · ϕ] ∈ L(S (Rn); S (Rn;E)) .

Definition 2.3.2. Suppose M,M′ are polynomial manifolds and E is a complete locally

convex space.

A function f : M → N will be called polynomial resp. slowly increasing, iff f is con-

tinuous and ψ ◦ f ◦ φ−1 is a polynomial resp. slowly increasing for any pair of polynomial
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charts (φ, U) on M and (ψ, V ) on M′ with f(U) ⊂ V . The function f will be called poly-

nomial resp. tempered diffeomorphism, iff f is bijective and both f and f−1 are polynomial

resp. slowly increasing.

For F ∈ {P,S ,OM} we define

F (M) := {f : M → E | f ◦ φ−1 ∈ F (Rn) for all polynomial charts φ} .

We equip S (M;E) resp. OM(M;E) with the initial topology with respect to the maps

f 7→ f ◦ φ−1 into S (Rn;E) resp. OM(Rn;E) for polynomial charts φ on M.

The set of polynomial differential operators on M is defined to be

DiffP(M) :=

P ∈ L(E (M)) :
[ϕ 7→ P (ϕ ◦ φ) ◦ φ−1] ∈ DiffP(Rn)

for all polynomial charts φ

 .

Identical to the euclidean case, S (M;E) is the space of all f ∈ E (M;E) such that the

function Pf has bounded image in E for any P ∈ DiffP(M) equipped with the seminorms

f 7→ p(Pf) for continuous seminorms p on E and P ∈ DiffP(M) .

Similarly, OM(M;E) is the space of all f ∈ E (M;E) such that

[ϕ 7→ f · ϕ] ∈ L(S (M); S (M;E))

equipped with the subspace topology in L(S (M); S (M;E)).

We may construct new polynomial manifolds by disjoint unions M∪̇M′ of polynomial

manifolds M, M′ with the same dimension and products M×M′ of arbitrary polynomial

manifolds M, M′. The corresponding polynomial structure on M∪̇M′ is induced by the

polynomial charts on M and M′. On M×M′ we choose the canonical polynomial structure

defined by combining charts φ on M and ψ on N to polynomial charts φ×ψ on M ×N .

Directly from our definition and well known facts from the euclidean case [66, Theorem

51.6] follows that

S (M)⊕S (M′) ' S (M∪̇M′) and S (M) ⊗̂S (M′) ' S (M×M′) (2.3.32)

via the linear homeomorphisms

f ⊕ g 7→ h : h(x) :=

f(x), x ∈M

g(x), x ∈M′
and v 7→ [M×M′ 3 (x, x′) 7→ v(x, x′) ∈ C] .
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The identities also hold if we exchange S with OM [62, p. 115]8.

We will call a Radon measure ν on Rn tempered, iff it is mutually absolutely continuous

to the Lebesgue measure dx and the Radon-Nikodym derivatives dx
dν

and dν
dx

are slowly

increasing almost everywhere. A Radon measure on a polynomial manifold will be called

tempered if each pushforward by a polynomial chart is tempered.

Definition 2.3.3. Suppose M is a polynomial manifold and ν a tempered measure on M.

Then G(M, ν) is defined to be the Gelfand triple

S (M) ↪→ L2(M, ν) ↪→ S ′(M),

equipped with the real structure defined by the usual complex conjugation ϕ 7→ ϕ.

If f : M1 →M is a tempered diffeomorphism, then for each φ ∈ S ′(M) the pull back

℘fφ(ϕ) := φ(ϕ ◦ f−1) is well-defined and induces a Gelfand triple isomorphism

G(M, ν)→ G(M1, ν ◦ f−1).

Indeed, we defined tempered measures and polynomial manifolds in such a way that

we have a very simple Gelfand-Triple isomorphism

G(M, ν) '
k⊕
j=1

G(Rn, dx),

given by (2.3.32), pullbacks and multiplications with slowly increasing functions, provided

that M is an n-dimensional polynomial manifold with k connected components. Moreover,

for any two polynomial manifolds M and M′ with tempered measures ν and ν ′ we have a

canonical Gelfand triple isomorphism

G(M, ν)⊗ G(M′, ν ′) ' G(M×M′, ν ⊗ ν ′)

that is an extension of the linear homeomorphism in (2.3.32).

8In this reference the topology of OM(Rn) is described by the seminorms f 7→ |g ∂αf | for α ∈ Nn0
and g ∈ S (Rn). Both approaches result in the same topology, because any bounded set B ⊂ S (Rn) is

pointwise bounded by some g ∈ S (Rn).
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The most basic examples are given by vector resp. affine spaces, whose polynomial

charts are given by the linear resp. affine charts. This means that we may and will consider

Lie algebras as polynomial manifolds with respect to the linear charts. The following two

examples are the reason for the introduction of polynomial manifolds in [56].

Definition 2.3.4. Suppose G is a Lie group and g is its Lie algebra. The adjoint repre-

sentation of G on g will be denoted by AdG and the adjoint representation of g on itself

by adx y = [x, y], in which [−,−] is the Lie bracket on g.

G and g are called nilpotent iff there is some n ∈ N such that

{adx1 · · · adxn−1 xn | x1, . . . , xn ∈ g} = {0} .

The coadjoint representation of G on the dual g′ will be denoted by CaG(x) := Ad(x−1)′.

A coadjoint orbit of G is a set of the form Ω = CaG(G)ξ for some ξ ∈ g.

For a simply connected, connected Lie group G the exponential map expG is a diffeo-

morphism expG : g→ G [16, Theorem 1.2.1]. Thus

g× g→ g : (x, y) 7→ exp−1
G (expG x)(expG y)

is polynomial.

In this case we will also consider G as a polynomial manifold with respect to the chart

expG. This automatically implies the following corollary.

Corollary 2.3.5. For any simply connected, connected nilpotent Lie group G the maps

G×G→ G : (x, y) 7→ xy and G→ G : x 7→ x−1

are polynomial.

Furthermore, by [56] each coadjoint orbit Ω = CaG(G)ξ of a simply connected, con-

nected nilpotent Lie group G can be equipped with a canonical polynomial structure. We

will introduce and use this structure in Chapter 3.
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2.3.2 Functions and distributions on the polynomial manifold R×

Next to nilpotent Lie groups and coadjoint orbits to nilpotent Lie groups, the two most

important examples of polynomial manifolds will be the half lines R+ = (0,∞) and

R− = (−∞, 0). Here the polynomial structure is induced by the chart σ : λ 7→ |λ|−1/|λ|.

On R+ the inverse reads σ−1(y) = (y +
√
y2 + 4)/2.

Lemma 2.3.6. If we extend each function in S (R±) by zero to the whole real line, then

S (R±) = {ϕ ∈ S (R) | ϕ ≡ 0 on R∓}

and S (R±) carries the subspace topology with respect to S (R).

Proof. We will prove the statement for the R+ case, for R− the proof is analogous. Since

σ is a polynomial diffeomorphism from R+ to R, the map

ϕ 7→ ϕ ◦ σ

is a linear homeomorphism between D(R) and D(R+) resp. between S (R) and S (R+).

Hence D(R+) is dense in S (R+). Let us define

S+(R) := {ϕ �R+ | ϕ ∈ S (R) with ϕ ≡ 0 on R−},

equipped with the subspace topology with respect to S (R). Let f : R→ [0, 1] be smooth

such that supp f ⊂ R+ and f ≡ 1 on [1,∞). For each ϕ ∈ S+(R) and α ∈ N0 we have

∂αϕ(x) = o(xN) for x→ 0 of arbitrary high order N ∈ N. Hence for each α, β ∈ N0 there

are some C1, C2 > 0 and N > α with

sup
x∈R+

|xβ∂αx (f(nx)ϕ(x)− ϕ(x))| ≤ C1

∑
0<γ≤α

nγ sup
y∈R
|∂γf(y)| sup

0<x≤1/n

xβ|∂α−γϕ(x)|

≤ C2

∑
0<γ≤α

nγ−β−N
n→∞−−−→ 0.

By employing the usual cut-off functions, we realize that D(R+) is dense in S+(R) as

well. Therefore, it is sufficient to show that the topologies of S (R+) and S+(R) coincide

on D(R+). The S (R+)-topology is induced by seminorms of the form

D(R+)→ R : ϕ 7→ sup
x>0
|AkBjϕ(x)|, k, j ∈ N0,
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where Aϕ := (∂(ϕ ◦ σ−1)) ◦ σ and Bϕ := (m(ϕ ◦ σ−1)) ◦ σ = σ · ϕ. First of all, we have

Aϕ(x) =
x2

x2 + 1
∂xϕ(x) =: η(x) · ∂xϕ(x), ϕ ∈ D(R+), x ∈ R+.

The rational function η and all of its derivatives are bounded. Hence A can be extended

to an operator in L(S+(R)).

We show that B has an extension in L(S+(R)). For this purpose it is enough to prove

that 1
m
∈ L(S+(R)), where 1

m
ϕ(x) = ϕ(x)/x. First of all, for each ϕ ∈ D(R+) and each

x > 1

|xk∂nx (
1

x
ϕ(x))| ≤

n∑
j=0

n!

(n− j)!
xk−j−1|ϕ(n−j)(x)|

≤
n∑
j=0

n!

(n− j)!
sup
y
|ykϕ(n−j)(y)|,

for arbitrary k, n ∈ N0. Now we only need to bound the left-hand side for 0 < x < 1.

For k > n we can use roughly the same inequality as above. We assume now n ≥ k. For

0 < x < 1 and each m ∈ N

|ϕ(x)/xm| = | 1

xm

∫ x

0

(x− t)m−1

(m− 1)!
ϕ(m)(t) dt| ≤ 1

m!
sup
y
|ϕ(m)(y)|.

Hence

|xk∂nx (
1

x
ϕ(x))| ≤

n∑
j=0

n!

(n− j)!
xk−j−1|ϕ(n−j)(x)|

≤
n∑
j=0

n!

(n− j)!
x−n−1|ϕ(n−j)(x)|

≤
n∑
j=0

1

(n− j)!(n+ 1)
sup
y
|ϕ(2n+1−j)(y)|,

(2.3.33)

for all 0 < x < 1, n ≤ k and ϕ ∈ D(R+). In conclusion, 1
m
∈ L(S+(R)) and subsequently

also B ∈ L(S+(R)). Due to the continuity of A and B we arrive at

S+(R) ↪→ S (R+),

i.e. the S+(R)-topology is finer than the S (R+)-topology.
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For the reverse embedding we will transport our situation to the whole real line by

ϕ 7→ ϕ ◦ σ−1,

which is an isomorphism D(R+)→ D(R) and S (R+)→ S (R). We denote the image of

S+(R) by this map by S⊕(R) and equip it with the transported S+(R)-topology. Then

S⊕(R) is a space of smooth functions on R with

D(R) ↪→ S⊕(R) ↪→ S (R),

where both embeddings are dense. The topology in S⊕(R) is induced by seminorms of

the form

S⊕(R)→ R : ϕ 7→ sup
y∈R
|CkEjϕ(y)|, k, j ∈ N0,

where Cϕ := (∂(ϕ ◦ σ)) ◦ σ−1 and Eϕ := (m(ϕ ◦ σ)) ◦ σ−1 = σ−1 ·ϕ. The operator C can

be rewritten as

Cϕ(y) =

(
1 +

2

(y +
√
y2 + 4)2

)
ϕ′(y) =: ψ(y) · ϕ′(y), ϕ ∈ S⊕(R), y ∈ R.

Because σ−1, ψ ∈ OM(R), both C and E have extensions in L(S (R)). Thus S⊕(R) =

S (R) and finally S+(R) = S (R+).

The most important property of S (R±) (apart from being a closed subspace of S (R))

is the continuity of the multiplication operator f 7→ |−|ν f .

Corollary 2.3.7. The map x 7→ |x|v is in OM(R±) for each v ∈ R.

Proof. The continuity of 1
m

was already shown in the proof of the last lemma with in-

equalities (2.3.33). Of course mϕ(x) := xϕ(x) defines a continuous operator on S (R±)

as well. The derivatives of x 7→ |x|v are bounded by terms of the form x 7→ xk for k ∈ Z,

which concludes the proof.

We now find a characterisation for the functions in OM(R±×M;E). This space will be

of importance later on, when we examine the Fourier image of S (G) in further detail, as

well as when we want to discuss the integral formula for the Kohn-Nirenberg quantization.
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Corollary 2.3.8. Let M be a polynomial manifold. A smooth function f : R± ×M→ E

is in OM(R± × M;E), iff for each k ∈ N0, each P ∈ DiffP(M) and each continuous

seminorm p on E there exist an l ∈ N and a q ∈P(M) such that

p(∂kλPxf(λ, x)) ≤ (1 + |λ|l + |λ|−l)q(x) .

Proof. We know that OM(R+ ×M;E) is the space of all smooth functions f on R+ such

that

[ϕ 7→ f · ϕ] ∈ L(S (R± ×M),S (R± ×M;E)).

Once we prove the statement for R+, the other statement follows at once, since R− is

isomorphic to R+ by x 7→ −x. Furthermore, it is enough to consider M = Rn, as the

more general case follows by simply using polynomial coordinate charts.

Suppose f ∈ OM(R+ × Rn;E). Since f induces a continuous multiplication operator

and since S (R+) is a subspace of S (R), for each k ∈ N0, α ∈ Nn
0 and each continuous

seminorm p on E, there are some m ∈ N and C > 0 with

sup
λ∈R+,x∈M

p(∂kλ∂
α
x (f(λ, x)ϕ(λ, x)))

≤ C max
|β|,l≤m

sup
λ∈R+,x∈M

(1 + |λ|m)(1 + |x|2)m|∂lλ∂βxϕ(λ, x)|,

for all ϕ ∈ S (R+ × Rn). We choose ϕ ∈ S (R+ × Rn), such that ϕ ≡ 1 on some

neighbourhood around (λ, x) = (1, 0), and define ϕa,y(x) := ϕ(xa−1, x − y) for a > 0,

y ∈ Rn. Then

p(∂(k,α)f(a, y)) = p(∂kλ∂
α
x (f(λ, x)ϕa,y(λ, x)))

∣∣
(λ,x)=(a,y)

≤ C max
|β|,l≤m

sup
λ∈R+,x∈Rn

(1 + |λ|m)(1 + |x|2)m|∂lλ∂βxϕa,y(λ, x)|

= C max
|β|,l≤m

sup
λ∈R+,x∈Rn

a−l(1 + |aλ|m)(1 + |x+ y|2)m|∂lλ∂βxϕ(λ, x)|

≤ C ′(1 + am + a−m)(1 + |y|2)m,

where k, α, m and C are as above. Naturally this implies that for each k ∈ N0, each

differential operator P ∈ DiffP(Rn) and each continuous seminorm p on E, there exists

an l ∈ N and a q ∈P(Rn) such that

p(∂kλPxf(λ, x)) ≤ (1 + |λ|l + |λ|−l)q(x). (2.3.34)
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For the converse implication let f : R+×Rn → C be any smooth function such that for

p, k and P we find m and q for the inequality (2.3.34). Then for arbitrary ϕ ∈ S (R+×M),

sup
λ∈R+,x∈Rn

(1 + |λ|k)(1 + |x|2)kp(∂α(f ϕ)(λ, x))

≤ C sup
λ∈R+,x∈Rn

(1 + λk)(1 + |x|2)k
∑
β≤α

|∂α−βf(λ, x) ∂βϕ(λ, x)|

≤ C ′ sup
x∈R+

(1 + |x|2)k+m(1 + λk+m + λk−m)
∑
β≤α

|∂βϕ(j)(x)|.

Since 1
m

is a continuous operator on S (R+), the last line defines a continuous seminorm

on S (R+ × Rn). Thus the operator ϕ 7→ f · ϕ is continuous.

From the polynomial structures on R+ and R− we construct the polynomial manifold

R× = R+ ∪̇R−. Its Schwartz space S (R×) = S (R+)⊕S (R−) can be seen as the closed

subspace of S (R) of functions f , which vanish to infinite order in 0, i.e. ∂kf(0) = 0 for

all k ∈ N0. The dual space and the Fourier image of S (R×) will play a significant role

in the coming discussion. The first statement requires no further proof.

Lemma 2.3.9. The image of S (R×) under the Fourier transform on R, FR, is S∗(R),

which is defined to be the subspace of Schwartz functions f with vanishing moments of

infinite order, i.e. ∫
R
f(x) p(x) dx = 0, for all p ∈P(R).

The next lemma is less obvious. It is an extension of the well-known fact that S ′
∗(R),

as a vector space, can be identified with the quotient S ′(R)/P(R) e.g. [32, Proposition

1.1.3].

Lemma 2.3.10. Let E be a nuclear Fréchet space and E ′0(R) the space of distributions

on R with support in {0}. Then E ′0(R)⊗ E ′ is a closed subspace of S ′(R) ⊗̂E ′ and

(S (R×) ⊗̂E)′ ' (S ′(R) ⊗̂E ′)/(E ′0(R)⊗ E ′) .

Proof. First, we will prove that Z := E ′0(R)⊗E ′ is a closed subspace of X ′ ' S ′(R) ⊗̂E ′,

where X := S (R) ⊗̂E. The family (∂kδ0)k∈N0 is a basis for E ′0(R) where δ0 is the delta

distribution [66, Theorem 24.6]. We use Lemma 1.2.4 on the sequence PN of projections
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onto the subspaces spanned by {δ0, . . . , ∂
Nδ0} and conclude that Z is sequentially dense

in its closure Z. Furthermore, we realize that for any φ ∈ Z there is a sequence (e′k) ⊂ E ′

such that

φ = lim
N→∞

φN := lim
N→∞

N∑
k=0

(∂kδ0)⊗ e′k.

Because X is a Fréchet space and Z ⊂ X ′, we can apply the Banach-Steinhaus Theorem.

Hence, there exist a continuous seminorm q on E and M ∈ N such that

|φN(f)| ≤ max
k≤M

sup
x∈R
〈x〉Mq(∂kxf(x))

for all functions f ∈ X = S (R) ⊗̂E and all N ∈ N.

Next let us assume that there is one l > M such that e′l 6= 0. Let us define the

sequence of Schwartz functions fm(x) := eimxψ(x)e/ml−1, where ψ is a rapidly decreasing

function equal to one near zero and e ∈ E with e′l(e) = 1. We arrive at

|φl(fm)| =
∣∣∣∣ l∑
k=0

(im)k

m(l−1)
e′k(e)

∣∣∣∣ m→∞−−−→∞.

But also

sup
m∈N

max
k≤M

sup
x∈R
〈x〉Mq(∂kxfm(x)) <∞,

which is a contradiction. Hence φ ∈ Z, i.e. φ is in the finite span of the ∂kδ and e′k.

Now let Y := Z◦ be the polar of Z. Because X is reflexive, we may identify Y ⊂ X.

Since Z is a closed subspace, we also have Y ◦ = Z◦◦ = Z. Since ∂kδ0 ⊗ e′ ∈ Z for all

k ∈ N0, e′ ∈ E ′ and

(∂kδ0 ⊗ e′)(ϕ) = 〈(−1)k∂kϕ(0), e′〉 , for ϕ ∈ X = S (R;E),

it is apparent that Y = S (R×) ⊗̂E.

Since E is a nuclear Fréchet space, X is a nuclear Fréchet space. That also means that

X is an (FS) space, i.e. it is linearly homeomorphic to a projective limit lim←−k→∞(Xk, uk,j)

of a sequence of Banach spaces (Xk)k with compact maps uk,j : Xj → Xk [61, Chapter 3,

Corollary 3 to Theorem 7.3]. Note that the maps uk,k+1 : Xk+1 → Xk are weakly compact

as well. This enables us to use Theorem 13 of [39]. The theorem states that in our

situation – Y is closed and X is an (FS) space – we have Y ′ ' X ′/Y ◦.
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By using the euclidean Fourier transform in combination with the last lemma, we get

the following corollary.

Corollary 2.3.11. Let E be a nuclear Fréchet space, then

(S∗(R) ⊗̂E)′ ' (S ′(R) ⊗̂E ′)/(P(R)⊗ E ′)

and P(R)⊗ E ′ is closed in S ′(R) ⊗̂E ′.

Furthermore, this characterization of the dual spaces of S (R×) ⊗̂E and S∗(R) ⊗̂E

by quotient spaces enables us to find subspaces of S ′(R) ⊗̂E ′ which are embedded into

these dual spaces. Suppose F is a Banach space such that there is a continuous embedding

E ↪→ F with dense range. Then we may see that the Lebesgue-Bochner spaces Lp(R;F ′)

are embedded both into S ′
∗(R) ⊗̂E ′ and into S (R×) ⊗̂E ′ for p ∈ (1,∞). Here we define

the distribution corresponding to f ∈ Lp(R;F ′) by

Tf (ϕ) :=

∫
R
〈f(x), ϕ(x)〉 dx, ϕ ∈ S (R;E),

where 〈·, ·〉 denotes the dual pairing on F ′ × F . Note that f 7→ Tf is indeed an injective

map into S ′(R;E ′), since f = 0 almost everywhere iff Tf (ϕ ⊗ e) = 0 for all ϕ ∈ S (R)

and all e ∈ E.

Nevertheless, we can make a much more general claim. For this purpose we define the

following subspaces of S ′(R) ⊗̂E ′.

Ḃ′(R;E ′) := {φ ∈ S ′(R) ⊗̂E ′ | ∀ϕ∈S (R) ⊗̂E φ
(
ϕ(−+ x)

) |x|→∞−−−−→ 0}

B̃′(R;E ′) := {φ ∈ S ′(R) ⊗̂E ′ | ∀ϕ∈S (R) ⊗̂E φ(ϕ(λ−1 · (−)))
λ→0−−→ 0}

Lemma 2.3.12. Let F be a Banach space as described above. The Lebesgue-Bochner

space Lp(R;F ′) is a subspace of Ḃ′(R;E ′) for p ∈ [1,∞) and a subspace of B̃′(R;E ′) for

p ∈ [1,∞] with respect to the embedding f 7→ Tf .

Proof. Let f ∈ Lp(R;F ′) and let ϕ ∈ S (R) ⊗̂E then

[x 7→ (1 + x2)ϕ(x)] ∈ Lq(R;F )
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also holds true for each q ∈ [1,∞] with 1 = 1/p + 1/q. First, let us suppose p ∈ [1,∞),

then for some C > 0 independent of x ∈ R

|Tf (ϕ(· − x))| ≤
∫
R
|〈f(y), ϕ(y − x)〉| dy ≤ C

(∫
R

‖f(y)‖pF
(1 + (x− y)2)p

dy

) 1
p

.

Now let ε > 0 be arbitrary and let R > 0 be big enough such that∫
{y∈R : |y|≥R}

‖f(y)‖pF ′ dy ≤ ε,

With this inequality we get

(∫
R

‖f(y)‖pF ′
(1 + (x− y)2)p

dy

) 1
p

≤

ε+

∫
{y∈R : |y|≤R}

‖f(y)‖pF ′
(1 + (x− y)2)p

dy


1
p

x→±∞−−−−→ ε
1
p .

Hence Tf ∈ Ḃ′(R;E ′), because ε > 0 can be arbitrarily small.

Suppose p = 1. Applying the same calculation as before, we get

|Tf (ϕ(·/λ))| ≤ C

ε+

∫
{y∈R : |y|≤R}

‖f(y)‖F ′
1 + (y/λ)2

dy

 λ→0−−→ Cε .

Thus Tf ∈ B̃′(R;E ′). Next, suppose p = (1,∞] and 1/p+ 1/q = 1. In that case we have

|Tf (ϕ(·/λ))| ≤ λ
1
q ‖f(x)‖Lp(R;F ′) ‖ϕ(y)‖Lq(R;F )

λ→0−−→ 0.

Hence also Tf ∈ B̃′(R;E ′) for this case.

Note that the distributions in Ḃ′(R;E ′) can have any form in a bounded region,

whereas distributions in B̃′(R;E ′) can have any form away from zero, as long as they are

tempered.

Proposition 2.3.13. The quotient maps

S ′(R) ⊗̂E ′ → S ′(R×) ⊗̂E ′,

S ′(R) ⊗̂E ′ → S ′
∗(R) ⊗̂E ′,

restrict to embeddings

B̃′(R;E ′) ↪→ S ′(R×) ⊗̂E ′,

Ḃ′(R;E ′) ↪→ S ′
∗(R) ⊗̂E ′.
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Proof. A short calculation yields

B̃′(R;E ′) ∩ E ′0(R)⊗ E ′ = {0} = Ḃ′(R;E ′) ∩P(R)⊗ E ′.

Combined with the above lemma and corollary, this already concludes the proof.

2.4 Smooth and ultradifferentiable vectors of repre-

sentations

In the following section we always assume that G is a Lie group. Thus G is also an

analytic manifold.

Definition 2.4.1. A tuple (π,E) of a locally convex space E and a group homomorphism

π : G→ L(E)× : x 7→ π(x)

will be called a locally convex representation.

A locally convex representation (π,E) is called

(i) strongly continuous iff π : G→ Ls(E) is continuous,

(ii) locally equicontinuous iff for each compact K ⊂ G the set of operators π(K) is

equicontinuous and

(iii) admissible iff it is locally equicontinuous and strongly continuous.

Furthermore, if π is a unitary representation, we will always denote the corresponding

representation Hilbert space by Hπ.

Automatically, for an admissible representation (π,E), the map

π : G→ Lc(E)

is continuous [36, Satz 1.4]. Moreover, if (π,E) is a locally convex representation, E is

barrelled and π : G → Ls(E) is continuous, then (π,E) is locally equicontinuous by the

Banach-Steinhaus Theorem [66, Theorem 33.1].
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2.4.1 Vectors associated to C (G)-function spaces

If (π,E) is a locally convex representation on a Lie group G, a vector e ∈ E is called

differentiable (resp. smooth, resp. analytic) if the map

G→ E : x 7→ π(x)e

is differentiable (resp. smooth, resp. analytic). Analogously, a vector e ∈ E is called ultra-

differentiable if the above map is ultradifferentiable. The following definition introduces

a generalization of this concept and equips the vectors of a given type with a topology.

Definition 2.4.2. Suppose (π,E) is a locally convex representation and F (G) a C (G)-

function space. We will define the subspace

F (π) := {e ∈ E | π(−)e ∈ F (G;E) ' F (G) ε E}

and equip it with the initial topology with respect to the map

ΦF
π : F (π)→ F (G) ε E where (ΦF

π e)(x, e
′) = 〈π(x)e, e′〉 .

If F is a linear subspace of E equipped with any locally convex topology such that

π(G)F = {π(x)f | x ∈ G , f ∈ F} ⊂ F , i.e. F is π-invariant, then we will denote by

π↓F : G→ L(F ) : x 7→ π(x) �FF

the subrepresentation of π on F .

By definition π↓F is a locally convex representation for a π-invariant subspace F ⊂ E

equipped with some locally convex topology.

The left translation resp. right translation on C (G) defined by

L(x)f(y) := f(x−1y) resp. R(x)f(y) := f(yx) (2.4.35)

for all f ∈ C (G) and x, y ∈ G will be particularly important. If µ is some biinvariant

Haar measure on G, we will also use the left resp. right regular representation on L2(G, µ)

defined by

L2(x)f(y) := f(x−1y) resp. R2(x)f(y) := f(yx)
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for all f ∈ L2(G, µ), x ∈ G and for µ-almost all y ∈ G.

We start by introducing a general theory for locally convex representations, we will

later need for the discussion of spaces of ultradifferentiable vectors E [M ]
D (π).

Lemma 2.4.3. Suppose (π,E) and (σ, F ) are locally convex representations and suppose

F (G), G (G) and H (G) are C (G)-function spaces. Then the following holds true.

(i) If (π,E) is locally equicontinuous, then C (π) carries the subspace topology in E.

(π,E) is strongly continuous iff C (π) = E in the sense of vector spaces.

(π,E) is admissible iff C (π) = E in the sense of topological vector spaces.

(ii) π ε IF : x 7→ π(x) ε IF defines a locally convex representation on E εF . If π is locally

equicontinuous (resp. admissible), then so is π ε IF .

(iii) If F (G) is R-invariant, then π↓F (π) is a well-defined locally convex representation.

If R ↓F (G) is locally equicontinuous (resp. admissible), then so is π↓F (π).

(iv) If T ∈ L(E;F ) such that Tπ(x) = σ(x)T for all x ∈ G, then T �F (σ)
F (π)∈ L(F (π); F (σ))

is well-defined.

(v) Suppose F (G), G (G) and H (G) are L-invariant and T ∈ L(F (G); G (G)) such

that T L(x) = L(x)T for all x ∈ G. Then there is a unique operator π(T ) ∈

L(F (π); G (π)) with ΦG
ππ(T ) = (T ε IE)ΦF

π . If S ∈ L(G (G); H (G) is another

L-invariant operator, then π(S)π(T ) = π(ST ).

Proof. (i): For arbitrary locally convex representations (π,E) we have C (π) ⊂ E and

the topology on C (π) is defined by the seminorms

pK : e 7→ sup
x∈K

p(σ(x)e) for compact K ⊂ G and continuous seminorms p on E.

Hence C (π) is always equipped with a topology stricter than the subspace topology with

respect to E. If π is locally equicontinuous, then for each compact K the seminorm pK

is clearly continuous on E. So in this case C (π) carries the subspace topology.

We have C (π) = E as linear spaces if and only if the map π(−)e : G→ E is continuous

for each e ∈ E.
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Suppose C (π) and E coincide as linear spaces. Then C (π) = E as topological vector

spaces iff pK is a continuous seminorm on E for each continuous seminorm p on E and

each compact K ⊂ G. This is true by definition iff {π(x) | x ∈ K} is equicontinuous on

E for each compact K ⊂ G.

(ii): Since (π(x) ε IF )(π(y) ε IF ) = π(xy) ε IF , π ε IF is a locally convex representation.

Let K ⊂ G be compact. We use the identification E εF ' Lε(F ′c;E). This way π(x) ε IF

acts on Lε(F ′c;E), by T 7→ π(x) ◦ T . Hence (π ε IF )(K) is equicontinuous if π(K) is

equicontinuous. By using a suitable continuous embedding E ↪→ Lε(F ′c;E), we can see

that the converse is true as well. So π ε IF is locally equicontinuous iff π is locally

equicontinuous.

Next we will move on to strong continuity. First of all, the map

Lc(E)→ Lε(E ′c) : T 7→ T ′

is well-defined and injective. Since T ′ maps equicontinuous sets to equicontinuous sets

we have T ′′ ∈ L((E ′c)
′
ε) for any T ∈ L(E). For any equicontinuous V ⊂ E ′ there is some

continuous seminorm p on E such that for any absolutely convex compact set C ⊂ E

sup
e′∈V

sup
e∈C
| 〈e, Te′〉 | ≤ sup

e∈C
p(Te) = sup

e′∈W
sup
e∈C
| 〈e, Te′〉 | ,

in which W =
(
p−1([0, 1])

)◦
is equicontinuous. Thus the map Lc(E) 3 T 7→ T ′ ∈ Lε(E ′c)

is a linear homeomorphism onto its image. It is in fact a linear homeomorphism, since

for each S ∈ L(E ′c) the dual operator fulfils S ′ ∈ Lc((E ′c)′ε) ' Lc(E) and consequently T ′′

is identified with T for T ∈ L(E).

If π is locally equicontinuous and strongly continuous, then π(y)
y→x−−→ π(x) in Lc(E),

hence π(y)′
y→x−−→ π(x)′ in Lε(E ′c). It follows that for any equicontinuous sets A ⊂ E ′,

B ⊂ F ′ and any u ∈ E ε F , we get

sup
(e′,f ′)∈A×B

|(π(x)− π(y)) ε IF u(e′, f ′)| = sup
(e′,f ′)∈A×B

|u((π(x)− π(y))e′, f ′)| x→y−−→ 0 ,

since u(−, B) is equicontinuous on E ′c. In other words πεIF : G→ Ls(EεF ) is continuous.

(iii): We have ΦC
π π(x)e = (R(x) ε IE)ΦC

π e for all e ∈ E. If F (G) is R-invariant, then

ΦC
π (E) ∩F (G) ε E (seen as a subspace of C (G) ε E) is R ε IE-invariant. Since ΦF

π is a
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linear homeomorphism onto its image in F (G) εE and ΦF
π (F (π)) = ΦC

π (E)∩F (G) εE,

this also implies that π↓F (π) is a locally convex representation.

If additionally the restriction R ↓F (G) is a locally equicontinuous (resp. admissible)

representation, then (R ↓F (G)) ε IE is a locally equicontinuous (resp. admissible) repre-

sentation on F (G) ε E by (ii). Analogous to the argumentation above, π↓F (π) is locally

equicontinuous (resp. admissible), because ΦF
π π(x)e = (R(x) ε IE)ΦF

π e for all e ∈ F (π)

and ΦF
π is a homeomorphism onto its image.

(iv): This follows directly with IF (G) εT ∈ L(F (G) ε E; F (G) ε F ) and ΦF
σ ◦ T =

(IF (G) εT ) ◦ ΦF
π .

(v): For all e ∈ F (π), e′ ∈ E ′ and x ∈ G we have

(T ε IE)ΦF
π e(x, e

′) = (L(x−1)T ε IE)ΦF
π e(1G, e

′)

= (T L(x−1) ε IE)ΦF
π e(1G, e

′)

= (T ε IE)(IF (G) ε π(x))ΦF
π e(1G, e

′)

= (IF (G) ε π(x))(T ε IE)ΦF
π e(1G, e

′) .

Hence T ε IE ΦF
π F (π) ⊂ ΦG

πG (π). Now π(T ) := (ΦG
π )−1(T ε IE)ΦF

π defines the unique

operator π(T ) ∈ L(F (G); G (G)) with ΦG
ππ(T ) = (T ε IE)ΦF

π , because ΦG
π and ΦF

π are

linear homeomorphisms onto their respective images. In addition to that, π(S)π(T ) =

π(ST ) follows from ΦH π(S)π(T ) = (ST ) ε IE ΦF
π .

The following statement is an extension of Lemma 2.4.3 (iii).

Lemma 2.4.4. Suppose F (G) and G (G) are C (G)-function spaces such that F (G) =

F (R ↓G (G)). Then F (π) = F (π↓G (π)) for any locally convex representation π.

Proof. Let us denote the representation space to π by E. Furthermore, let G := G (π) and

σ := π↓G. F (σ) is a continuously embedded subspace of F (π), since G ⊂ E is continu-

ously embedded. We will show that this embedding is in fact a linear homeomorphism.

We define

H := ΦF
π F (π) , K := ΦF

σ F (σ) and

L := {v ∈ F (G) ε G (G) ε E | ∃e∈E∀x,y∈G v(x, y) = π(yx)e} .
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We equip H , K and L with with the subspace topologies in F (G) ε E, F (G) ε G and

F (G) ε G (G) ε E, respectively. The space L is the image of H under ΦF
R ↓G (G)

ε IE, yet

L is also the image of K under IF (G) εΦ
G
π . Since ΦF

π , ΦF
σ , IF (G) εΦ

G
π and ΦF

R ↓G (G)
ε IE are

all homeomorphisms onto their respective images, we get the following scheme of linear

homeomorphism

F (π) H

L

F (σ) K

ΦF
π

ΦF
R ↓G (G)

εIE

ΦF
σ

IF(G) εΦ
G
π

and thus F (π) = F (σ) as topological vector spaces.

In order to use Lemma 2.4.4 and (ii) of Lemma 2.4.3 for our spaces of ultradifferen-

tiable functions, we need the following statement.

Lemma 2.4.5. Let M be a weight sequence and k ∈ N0.

(i) R ↓F (G) resp. L ↓F (G) is an admissible representation for any basis D ⊂ gR resp.

D ⊂ gL and any choice

F (G) ∈ {C k(G),E (G),EM
D (G),E (M)

D ,E {M}D,proj(G)} .

(ii) F (G) = F (R ↓E (G)) for F (G) ∈ {E (G),E (M)
D (G),E {M}D,proj(G)}, in which we can

choose any basis D ⊂ gL.

Proof. (i): The proofs for the right invariant case and the left invariant case work exactly

the same. Hence, it is enough to only prove the right invariant case. Suppose F (G) is

R-invariant and there exists a set of R-invariant maps P 3 P : F (G) → C (G) and a

grouping Q ⊂ 2P such that for each f ∈ F (G), Q ∈ Q the set {Pf | P ∈ Q} is relatively

compact in C (G) (i.e. bounded and equicontinuous) and the topology of F (G) is induced

by the seminorms

f 7→ sup
P∈Q

sup
x∈K
|Pf(x)| for compact K ⊂ G and Q ∈ Q .
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This structure implies at once that R ↓F (G) is admissible.

Indeed most of the considered spaces are of this type. For C k(G) we use P = DiffkR(G),

for E (G) we use P = DiffR(G). In both cases we may take Q = {{P} | P ∈ P}.

For E (M)
D (G) we use

P = ∪h>0Ph := ∪h>0{(hD)a/(M|a||a|!) | a ∈ SdimG}

with Q := {Ph | h > 0} and for E {M}D,proj(G) we use

P = ∪h∈ΛPh := ∪h∈Λ{Da/(h|a|M|a||a|!) | a ∈ SdimG}

with Q := {Ph | h ∈ Λ}.

In the case of EM
D (G) we may use P = { Da

M|a||a|!
| a ∈ SdimG} and Q = {P}.

(ii): The case F (G) = E (G) is simpler.

Naturally for f ∈ E (G) the map [(x, y) 7→ R(x)f(y) = f(yx)] is in E (G × G). By

Lemma 2.1.9 we have E (G×G) = E (G; E (G)) as topological vector spaces. This already

implies E (G) = E (R ↓E (G)) as vector spaces. We only need to show that the topologies

derived from E (G) and E (R ↓E (G)) coincide. The topology on E (R ↓E (G)) is the initial

topology with respect to E (G) 3 f 7→ P R(P ′)f ∈ C (G) for P, P ′ ∈ DiffL(G). But

R(P ′) = P ′, so E (G) = E (R ↓E (G)) as topological vector spaces.

Now we we check the case F (G) ∈ {E (M)
D (G),E {M}D,proj(G)}. For any P ∈ DiffR(G)

there is a unique P̃ ∈ DiffL(G) such that

Pxf(yx) = P̃yf(yx) for all f ∈ E (G) .

Since P̃ maps F (G) continuously into itself and since E (G) = E (R ↓E (G)), we get

F (G) = F (R ↓E (G)) due to the representation of F (G; E (G)) via the projective lim-

its from Proposition 2.2.18 (ii).

We have the following general denseness properties for spaces of ultradifferentiable

vectors.
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Lemma 2.4.6. Suppose M is a weight sequence, D ⊂ Va(G) is a frame and (π,E) is

an admissible representation of a Lie group G in a Banach space E. Then the following

holds.

(i) E {M}(π) is dense in E.

(ii) If M fulfils (AF), then E (M)
D (π) is dense in E.

(iii) Suppose F (G) is any R-invariant C (G)-function space. If π is a unitary irreducible

representation, then F (π) is either dense in Hπ or F (π) = {0}.

Proof. (i): Since M is a weight sequence, we have E {1}(G) ⊂ E {M}(G), thus also

E {1}(π) ⊂ E {M}(π). By Corollary 2.2.19, E {1}(G) is exactly the space of analytic vectors

to π. Due to [55, Theorem 4], the space of analytic vectors E {1}(π) is dense in E.

(ii): The property (AF) ensures that E {1}(G) ⊂ E (M)
D (G), thus E {1}(π) ⊂ E (M)

D (π).

Hence E (M)
D (π) is dense in E.

(iii): F (π) is a π-invariant subspace of E by Lemma 2.4.3. Now the rest follows

directly from the irreducibility of π.

In the following we will also discuss the denseness of ultradifferentiable vectors in

different spaces of differentiable vectors.

Lemma 2.4.7. Suppose G is a Lie group, (π,E) is a locally convex representation of G

on a Banach space E and M is a weight sequence. Furthermore, suppose {1} ⊂ [M ] and

let D ⊂ gL be a frame. Then

E [M ]
D (π) is dense in E (π) , C k(π) , k ∈ N .

Proof. First of all, with the requirements of the lemma, E [M ]
D (σ) is dense in F by Lemma

2.4.6 for any admissible representation (σ, F ) on a Banach space F . The space C k(π) is

Fréchet, since it can be identified with a closed subspace of C k(G;E). Take any compact

neighbourhood U of the unit 1G in G. Then for any compact K ⊂ G there is some n ∈ G

and x1, . . . , xn ∈ G with K ⊂
⋃
j xjU . If we put CK := maxj ‖π(xj)‖L(E), then

max
|α|≤k

sup
x∈K
‖π(x)π(Dα)e‖E ≤ Ck max

|α|≤k
sup
x∈U
‖π(x)π(Dα)e‖E
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for any e ∈ C k(π) any any frame D ⊂ gL. Hence C k(π) is a Banach space. Thus

E [M ]
D (π↓C k(π)) is dense in C k(π) for any k ∈ N0, since π↓C k(π) is admissible by Lemma

2.4.3.

Now we will show that E [M ]
D (π) = E [M ]

D (π↓C k(π)) in the sense of linear spaces.

By Lemma 2.4.5 we have E [M ]
D,proj(R) = E [M ]

D,proj(R ↓E (G)), thus E [M ]
D,proj(π) = E [M ]

D,proj(π↓E (π))

for any weight sequence M . Due to the continuous embeddings E (π) ↪→ C k(π) ↪→ E we

also have E [M ]
D,proj(π) = E [M ]

D,proj(π↓C k(π)).

Hence, E [M ]
D,proj(π) = E [M ]

D,proj(π↓C k(π)) is dense in C k(π) for any k ∈ N0. Thus E [M ]
D,proj(π)

is dense in E (π) = lim←−k→∞ C k(π). We complete the proof by using E [M ]
D,proj(π) = E [M ]

D (π)

in the sense of vector spaces.

2.4.2 Examples of spaces of smooth and ultradifferentiable vec-

tors

We will now discuss a few examples of spaces of smooth resp. differentiable vectors. To

be precise, we will take a look at a few common function spaces and show that they may

be seen as certain spaces of differentiable vectors. This perspective will simplify proofs

in Chapter 4. If (π,E) is a locally equicontinuous and locally convex representation,

then the description of the topologies associated to differentiable and smooth vectors is

especially simple. By using Da
xπ(x)e = π(x)π(Da)e for e ∈ C |a|(π) and a ∈ SdimG, we get

that the topology on C k(π) resp. E (π) is induced by the seminorms

e 7→ π(P )e , for continouous seminorms p on E and P ∈ DiffkL(G) resp. P ∈ DiffL .

Also, we have a rather easy characterization of ultradifferentiable vectors to admissible

representations.

Lemma 2.4.8. Suppose (E, π) is a complete locally equicontinuous representation on a

Lie group G with Lie algebra g. If D ⊂ gL is a frame, M a weight sequence and P the
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set of continuous seminorms on E, then

EM
D (π) =

{
e ∈ E (π)

∣∣∣∣ ∀p∈P : lim
|a|→∞
a∈SN

p(π(Da)e)

M|a| |a|!
= 0

}
with topology defined by f 7→ sup

a∈SN

p(π(Da)e)

M|a| |a|!
,

in which p runs through all continuous seminorms in P.

Proof. By Proposition 2.2.17, we have

EM
D (G;E) =

{
f ∈ E (G;E)

∣∣∣∣ ∀Krc
⊂G
∀p∈P : lim

|a|→∞
a∈SN

sup
x∈K

p(Daf(x))

M|a| |a|!
= 0

}
with topology defined by f 7→ sup

a∈SN
sup
x∈K

p(Daf(x))

M|a| |a|!
,

in which K runs through the compact subsets of G and p runs through all continuous

seminorms in P . Since (π,E) is locally equicontinuous, {π(x) | x ∈ K} is equicontinuous.

Since e ∈ E (π) and Daf(x) = π(x)π(Da)e for f = π(−)e ∈ E (G;E), we get

EM
D (π) :=

{
e ∈ E (π)

∣∣∣∣ ∀p∈P : lim
|a|→∞
a∈SN

p(π(Da)e)

M|a| |a|!
= 0

}
with topology defined by e 7→ sup

a∈SN

p(π(Da)e)

M|a| |a|!
,

in which p runs through all p ∈ P .

Before considering spaces of ultradifferentiable vectors of Roumieu or Beurling type,

we will show that projective limits of C (G)-function spaces play nicely with our construc-

tion of generalized differentiable vectors.

Lemma 2.4.9. Let (E, π) be a locally convex representation of a Lie group G and let

(A,≤) be a directed set. If for each α ∈ A the spaces F (G), Fα(G) are C (G)-function

spaces with F (G) = lim←−α∈A Fα(G), then

F (π) =
⋂
α∈A

Fα(π)
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and F (π) is equipped with the initial topology with respect to the maps F (π)
I−→ Fα(π).

Since this implies that F (π) is linearly homeomorphic to lim←−α∈A(Fα(π), I), we will also

write

lim←−
α∈A

Fα(π) := F (π) .

Proof. Let us define the locally convex space lim←−α∈A Fα(π) :=
⋂
α∈A Fα(π) equipped with

the initial topology with respect to the maps lim←−α∈A Fα(π)
I−→ Fβ(π).

By Lemma 1.2.5 we have

e ∈ F (π) ⇔ π(−)e ∈
⋂
α∈A

Fα(G;E) ⇔ e ∈
⋂
α∈A

Fα(π) = lim←−
α∈A

Fα(π) .

Furthermore a net (ej)j converges in F (π), iff there is some e ∈ E such that the net

(π(−)ej)j converges to π(−)e in every Fα(G;E). By definition, this is equivalent to the

existence of e ∈ E with limj ej = e in every Fα(π). Hence lim←−α∈A Fα(π) = F (π) as

topological vector spaces.

The above Lemma also gives a concrete description of the spaces E [M ]
D (π) via the

following limit description.

Lemma 2.4.10. Suppose M is a weight sequence, D ⊂ gL a basis and (π,E) a locally

equicontinuous and locally convex representation on G. Then the following holds.

(i) E (M)(π) = lim←−h>0
EM
hD(π) = lim←−L∈W(M)

E L
D (π)

(ii) E {M}D,proj(π) = lim←−h∈Λ
E hM
D (π) = lim←−L∈W{M} E L

D (π).

(iii) E {M}D (π) = E {M}D,proj(π) in the sense of vector spaces. If M fulfils (nQA), then this

identity holds in the sense of topological vector spaces.

Proof. This is just a consequence of Proposition 2.2.18.

Our first examples are the L2-Sobolev spaces.

Definition 2.4.11. Let G be an unimodular Lie group with biinvariant Haar measure µ.

We define Hk
L(G), for k ∈ N0 ∪ {∞}, to be the locally convex space of k-times weakly

119



differentiable f ∈ L2(G, µ) such that Pf ∈ L2(G, µ) for all P ∈ DiffkL(G). The topology

on Hk
L(G) is defined by the seminorms

f 7→ ‖Pf‖L2(G,µ) for P ∈ DiffkL(G) .

The spaces Hk
R(G), for k ∈ N0 ∪ {∞}, are defined analogously to the above. We just

exchange DiffkL(G) with DiffkR(G).

It is clear that H∞L/R(G) is a space of smooth functions due to the Sobolev embeddings.

For compact Lie groups G it is not necessary to distinguish between left- or right-

invariant Sobolev spaces. In fact, in this case any differential operator P on G can be

written as a linear combination

P =
∑
α

cαD
α =

∑
β

dβL
β

for frames D ⊂ gL, L ⊂ gR and bounded smooth functions cα, dβ. Hence

Hk
L(G) = Hk

R(G) =: Hk(G) .

Furthermore, by using Sobolev embeddings, we get H∞(G) = E (G) as topological vector

spaces for all compact Lie groups G.

Of course, the identity Hk
L(G) = Hk

R(G) =: Hk(G) holds for abelian Lie groups as

well.

Lemma 2.4.12. Let G be an unimodular Lie group with biinvariant Haar measure µ and

let k ∈ N0. Then

C k(L2) = Hk
R(G) and C k(R2) = Hk

L(G) ,

in which R2 resp. L2 denotes the right resp. left regular representation of G on L2(G, µ).

We also have

E (L2) = H∞R (G) and E (R2) = H∞L (G) .

Proof. It is clear that P 7→ L2(P ) defines a bijection between DiffkL(G) and DiffkR(G).

Thus C k(L2) is a closed subspace in Hk
R(G). Since D(G) ⊂ E (L2) is dense in Hk(G), we

get C k(L2) = Hk
R(G). Since this holds for all k ∈ N0, we also have E (L2) = H∞R (G).

The identities C k(R2) = Hk
L(G) and E (R2) = H∞L (G) can be proven analogously.
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Now we will work on a similar statement for ultradifferentiable vectors of L2 and R2.

Definition 2.4.13. Suppose G is a Lie group, (π,E) is a locally convex representation,

(A,α) is a directed set and Fα(G) a collection of C (G)-function spaces with continuous

embeddings Fα(G)
I−→ Fβ(G) for α ≤ β. Then we define the linear space

lim−→
α∈A

Fα(π) =
⋃
α∈A

Fα(π)

and equip it with the finest locally convex topology such that all the embeddings

Fβ(π)
I−→ lim−→

α∈A
Fα(π)

are continuous.

Note that lim−→α∈A Fα(π) is continuously embedded into C (π) and is linearly home-

omorphic to the inductive limit lim−→α∈A(Fα(π), I). In general, lim−→α∈A Fα(π) may be a

different space than F (π) for F (G) = lim−→α∈A Fα(G).

Definition 2.4.14. Suppose G is a Lie group with Haar measure µ. For any frame

D ⊂ Va(G) and any weight sequence M , we define the spaces

HM
D (G) :=

{
f ∈ E (G)

∣∣∣∣ lim
|a|→∞
a∈SN

‖Daf‖L2(G,µ)

M|a| |a|!
= 0

}
with topology defined by

f 7→ ‖f‖2,D,M := sup
a∈SN

‖Daf‖L2(G,µ)

M|a| |a|!
.

Similarly, we will define the Sobolev spaces

H
(M)
D (G) = lim←−

h>0

HM
hD(G) , H

{M}
D (G) := lim−→

h>0

HM
hD(G) ,

H
[M ]
D,proj(G) = lim←−

L∈W[M ]

HL
D(G) .

As in the differentiable resp. smooth case, we get the following characterization of

these Sobolev spaces.

Lemma 2.4.15. Let G be an unimodular Lie group with biinvariant Haar measure µ and

Lie algebra g. Let M be a weight sequence and D ⊂ gL be a frame. We define the frame

of right invariant vector fields D̃ = L(D) and denote by R2 resp. L2 the right resp. left

regular representation of G on L2(G, µ). Then the following holds.
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(i) EM
D (R2) = HM

D (G) and EM
D (L2) = HM

D̃
(G).

(ii) E [M ]
D,proj(R2) = H

[M ]
D,proj(G) and E [M ]

D,proj(L2) = H
[M ]

D̃,proj
(G).

(iii) For any frame E ⊂ Va(G) we have H
{M}
E,proj(G) = H

{M}
E (G) in the sense of vector

spaces. Moreover, the bounded sets on both sides coincide.

Proof. (i): It is evident that HM
D (G) ⊂ H∞L (G) = E (R2) and HM

D̃
(G) ⊂ H∞R (G) =

E (L2). We also have D = R2(D) and D̃ = L2(D). Combining the above with Lemma

2.4.8 results in

EM
D (R2) = HM

D (G) and EM
D (L2) = HM

D̃
(G) .

(ii): Here we just need to use Lemma 2.4.10.

(iii): The space H
{M}
E (G) is continuously embedded into H

{M}
E,proj(G). So each set

that is bounded in H
{M}
E (G) is bounded in H

{M}
E,proj(G). Conversely, each bounded set

B ⊂ H
{M}
E,proj(G) is bounded in HM

hE(G) for some h > 0 by Lemma 2.2.12. Thus B is

bounded in H
{M}
E (G) as well.

Note that either of the spaces E [M ]
D (π) or E [M ]

D,proj(π) are the same space for all frames

D ⊂ gL (resp. for all frames D ⊂ gR). This is due to Lemma 2.2.5 and the fact that

any pair of left resp. right invariant frames E,D are connected by a constant matrix A

such that E = AD. Thus for each [M ] there is exactly one right invariant and one left

invariant version of each of the Sobolev spaces H
[M ]
D,proj(G) and H

[M ]
D (G).

We already saw that for compact Lie groups the Sobolev spaces H∞R/L(G) are just the

space of smooth functions on G. We also have the analogous relation for the ultradiffer-

entiable Sobolev spaces.

Lemma 2.4.16. Suppose G is a compact Lie group, M is a weight sequence and D is a

frame in Va(G). Then

E [M ]
D (G) = H

[M ]
D (G) and E [M ]

D,proj(G) = H
[M ]
D,proj(G) .

Proof. It is clear that

E (M)
D (G)

I−→ H
(M)
D (G) and E {M}D (G)

I−→ H
{M}
D (G)

122



are injective and continuous, since ‖f‖L2(G,µ) ≤ µ(G)1/2‖f‖∞ for all f ∈ E (G). Now by

the Sobolev embedding, there is some k ∈ N such that ‖f‖∞ ≤ C max |a|≤k
a∈Sdim G

‖Daf‖L2(G,µ)

for all f ∈ E (G). Since all of the Da are continuous operators from H
[M ]
D (G) into itself,

we get continuous injective maps

H
(M)
D (G)

I−→ E (M)
D (G) and H

{M}
D (G)

I−→ E {M}D, (G) .

The proof for E {M}D,proj(G) and H
{M}
D,proj(G) works analogously.

Later, in Chapter 4, we will also see that these spaces are always dense in L2(G, µ).

Irreducible representations are an integral ingredient for the quantization of both

compact Lie groups and connected, simply connected nilpotent Lie groups. In the latter

case the smooth vectors are of great importance as well.

Definition 2.4.17. For a Lie group G, we denote by Irr(G) the set of admissible, unitary

and irreducible representations of the group G. By IrrR(G) we denote the set of all pairs

(π, Cπ) of representations π ∈ Irr(G) and antiunitary maps Cπ : Hπ → Hπ such that

CπE (π) = E (π). Usually we will just write π ∈ IrrR(G) and mean that we chose some Cπ
for π.

If G is a compact or a connected, simply connected nilpotent Lie group, we may find

a Gelfand triple for each π ∈ Irr(G). For this purpose, we first formulate the following

lemma.

Lemma 2.4.18. If G is a compact Lie group or a connected, simply connected nilpo-

tent Lie group and π ∈ Irr(G), then E (π) is a nuclear Fréchet space and we find some

antiunitary operator Cπ on Hπ such that (π, Cπ) ∈ IrrR(G).

Proof. First suppose G is connected, simply connected and nilpotent. By the discussion

on pages 124 and 125 in [16] and also [16, Corollary 4.1.2] each π ∈ Irr(G) is unitary

equivalent to some representation π′ such that either Hπ′ = L2(Rk) and E (π′) = S (Rk)

for some k ∈ N or Hπ′ = C. In this case we can just use the pointwise complex conjugation

on L2(Rk) or C to define Cπ. Also, the unitary operators taking π to π′ restricts to a
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linear homeomorphism from E (π) onto S (Rk). Since S (Rk) is a nuclear Fréchet space,

so is E (π).

Now suppose G is compact. Then for each π ∈ Irr(G), Hπ is finite dimensional and

E (π) = Hπ. Hence we can choose any antiunitary operator on Hπ as Cπ. Obviously Hπ

is also a nuclear Fréchet space.

Now we are finally able to define the Gelfand triple corresponding to a representation

π ∈ IrrR(G).

Definition 2.4.19. Let G be a connected, simply connected nilpotent Lie group. For each

(π, Cπ) ∈ IrrR(G) we define the Gelfand triples

G(π) := (E (π), Hπ,E (π)′) and Gop(π) := L(G(π);G(π))

with respect to the real structure defined by Cπ on G(π).

For us, the Schrödinger representations of the Heisenberg group H on L2(Rn) is the

default environment for these constructions.

Definition 2.4.20. For any finite dimensional vector space V with Haar measure µ, we

will denote by M 2 the representation

M 2(x′)f(y) := e2πi〈y,x′〉f(y) , for f ∈ L2(V, µ) ,

of V ′ on L2(V, µ).

For n ∈ N the Heisenberg group H is defined as the smooth manifold

R× Rn × Rn equipped with the multiplication

(t, x′, x)(s, y′, y) :=

(
t+ s+

1

2
(〈x, y′〉 − 〈y, x′〉), x′ + y′, x+ y

)
.

For λ ∈ R×, the Schrödinger representation ρλ of H on L2(Rn) are defined by

ρ1(t, x′, x) := e2πitR2(x/2)M 2(x′)R2(x/2) and ρλ(t, x
′, x) := ρ1

(
δHλ (t, x′, x)

)
in which R2 is the right regular representation of Rn and

δHλ (t, x′, x) := (λt, sgn(λ)|λ|
1
2x′, |λ|

1
2x)
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and sgn(λ) is the sign of λ.

We always equip H and L2(H) with the standard Haar measure d(t, x′, x). Further-

more, we always use the linear space R× Rn × Rn itself as the Lie algebra h of H.

The Heisenberg group is the unique connected, simply connected Lie group that arises

from the Lie algebra of operators spanned by all partial derivatives and multiplications by

coordinate functions on L2(Rn). The same construction can by done for the left invariant

differential operators and multiplications by coordinate functions on L2(H). As remarked

in [58], the corresponding Lie group H2 was first investigated by A. S. Dynin [21] and

later by G. B. Folland [26]. As in the case of the Heisenberg group, the action of the

Lie algebra of H2 on L2(H) can be integrated to a Schrödinger-type representation of the

Dynin-Folland group H2 on L2(H). Before we define these terms, we need to remark that

H in itself is also a vector space. Hence, we may define M 2(x′) on L2(H) for x′ ∈ H′. For

any connected, simply connected nilpotent Lie group the exponential map is a polynomial

diffeomorphism. In this case, we even have expH = I. Using expH we define the adjoint

representation on H = h and put

adx y := [x, y] = ∂t∂s(tx)(sy)(tx)−1
∣∣
s=t=0

,

in which t, s ∈ R, x, y ∈ H and both scalar multiplication and group multiplication on H

are used. This induces the corresponding dual map

cax := (ad−x)
′ ∈ L(H′) for x ∈ H .

Note that cax can equivalently be defined by

cax y
′ := ∂t CaH(tx)y′

∣∣
t=0

, for y′ ∈ H′ , x ∈ H ,

in which we use t ∈ R, the dual map exp′H = I and the coadjoint representation Ca of H

on the dual H′ = h′. For the next definition we follow mostly [58].
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Definition 2.4.21. The Dynin-Folland group is defined as the smooth manifold

R×H′ ×H equipped with the multiplication

(t, x′, x)(s, y′, y) :=

(
t+ s+

1

2
(〈x, y′〉 − 〈y, x′〉)− 1

8
〈adx y, x

′ − y′〉 ,

x′ + y′ +
1

4
(cax y

′ − cay x
′), xy

)
.

For λ ∈ R×, we define the representation Θλ of H2 on L2(H) by

Θ1(t, x′, x) := e2πitR2(x/2)M 2(x′)R2(x/2) and Θλ(t, x
′, x) := Θ1

(
δH2
λ (t, x′, x)

)
in which R2 is the right regular representation of H and

δH2
λ (t, x′, x) :=

(
λt, λ

(
δH
|λ|−

1
2

)′
x′, δH

|λ|
1
2
x

)
.

We always equip H2 and L2(H2) with the standard Haar measure d(t, x′, x). Furthermore,

we always use the linear space R×H′ ×H itself as the Lie algebra h2 of H2.

We defined the Schrödinger-type representations Θλ slightly differently than the rep-

resentations Tλ used in [25, 58]. The reason for this is that we want to use Θλ as an

example in Sections 3.3 and 3.4. Though, we can quickly find the unitary operator Dλ

on L2(H), defined by Dλf(x) := |λ|−n+1
4 f(δH

|λ|
1
2
x) for x ∈ H, f ∈ L2(H), which fulfils

D−1
λ Tλ(t, x

′, x)Dλ = Θλ(t, x
′, x) for (t, x′, x) ∈ H2 .

With an analogous calculation, we can show that our version of the Schrödinger rep-

resentation ρλ is equivalent to the one defined in [25, p. 22]. Because DiffP(Rn) =

ρλ(DiffL(Rn)) and due to [58, 26] and [25, Proposition 1.43], we may use the following

statement.

Lemma 2.4.22. Both ρλ and Θλ are irreducible and we have

E (ρλ) = S (Rn) and E (Θλ) = S (H)

for all λ ∈ R×.

We will remark now why the spaces C k(ρλ) and C k(Θλ) are polynomially weighted

Sobolev spaces.
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Definition 2.4.23. Suppose G ∈ {Rn,H} with corresponding Lie algebra g. For k ∈ N0

and any bases q ⊂ G′ and D ⊂ gL we define

Hk
P(G) := {f ∈ Hk

L(G) | ∀a,b∈Sdim G : |a|, |b| ≤ k ⇒ qaDbf ∈ L2(G)}

equipped with the topology induced by f 7→ ‖qaDbf‖L2(G) ,

in which a, b run through the elements of SdimG with |a|, |b| ≤ k. In the above, we use the

notation qa := · · · qa3 qa2 qa1 for q = (q1, . . . , qN), q0 := 1 and a ∈ SN .

Note that this definition does not depend on the chosen bases q ⊂ G′ and D ⊂ gL.

Lemma 2.4.24. Suppose k ∈ N0 and λ ∈ R×. Then

Hk
P(Rn) = C k(ρλ) and Hk

P(H) = C k(Θλ) .

Proof. Suppose (G,G2, π) ∈ {(Rn,H, ρλ), (H,H2,Θλ)} and let m = dimG2.

There exists a frame (∂̃, D̃, D̃′) ⊂ DiffL(G2) such that π(∂̃k)f = ikf , π(D̃a)f =

Daf and π(D̃′b)f = i|b|qbf . But this also means that for any P ∈ DiffkL(G2) there are

coefficients ca ∈ C, for a ∈ Sm, such that

π(P )f =
∑
a∈Sm

ca q
aDaf for f ∈ C k(π) ,

as a finite linear combination. Hence C k(π) is a closed subspace of Hk
P(G). By the usual

convolution and cut-off arguments, S (G) is dense in Hk
P(G). But also S (G) ⊂ E (π) ⊂

C k(G), hence Hk
P(G) = C k(π).

The next group of spaces we will consider, are the Gelfand-Shilov spaces [29]. These

spaces are continuously embedded subspaces of the Schwartz space S (Rn). We will use

an analogous concept to also construct Gelfand-Shilov spaces of functions on H.

Definition 2.4.25. Suppose G ∈ {Rn,H} with Lie algebra g and let N := dimG. For

weight sequences M,L ∈ RN0
>0, a frame D ⊂ gL and a basis q ⊂ G′, we define the Banach

spaces

HM,D
L,q (G) :=

{
f ∈ E (G)

∣∣∣∣ lim
|a|+|b|→∞
a,b∈SN

‖qbDaf‖L2(G)

M|a| |a|!L|b| |b|!
= 0

}
with norm

‖f‖M,D
L,q := sup

a,b∈SN

‖qbDaf‖L2(G)

M|a| |a|!L|b| |b|!
,
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in which of course qa is defined as in the last definition.

The Gelfand-Shilov spaces are defined by

S (M)
(L) (G) := lim←−

h,k>0

HM,kD
L,hq (G) and S {M}

{L} (G) := lim−→
h,k>0

HM,kD
L,hq (G) .

For convenience, we also define the mixed Gelfand-Shilov spaces

S [M ]
[L],proj(G) := lim←−

M ′∈W[M ] , L
′∈W[L]

HM ′,D
L′,q (G) .

With an analogous argument as in Proposition 2.2.18, we get

S (M)
(L) (G) = S (M)

(L),proj(G) .

Also, the Gelfand-Shilov space of Roumieu type, S {M}
{L} (Rn), coincides with S {M}

{L},proj(R
n)

as a vector space. This can be seen with Lemma 2.2.12, which also implies that the

bounded sets in both topological vector spaces coincide. Moreover, the topology in

S {M}
{L} (Rn) is finer than in the space S {M}

{L},proj(R
n).

The above definition is a generalization for the definition given in [29]. See for example

[14] for a definition more in line with the one given here. Still, our version of Gelfand-

Shilov spaces differs in some aspects from the Gelfand-Shilov spaces defined in [14]. First

of all, we used factorials in addition to weight sequences for the definition. Of course, this

is motivated by the convention we follow for the spaces of ultradifferentiable functions

E [M ]
∂ (Rn). Secondly, we used L2-Sobolev spaces for the limit description of the Gelfand-

Shilov spaces. But since the weight sequences M and L fulfil (D), we may exchange the

space HL,q
M,D(G) by say

SM,D
L,q (G) :=

{
f ∈ E (G)

∣∣∣∣ ‖f‖M,D
L,q,∞ := sup

a,b∈SN

‖qbDaf‖∞
M|a| |a|!L|b| |b|!

<∞
}

equipped with the norm ‖−‖L,qM,D,∞

without changing the Gelfand-Shilov spaces S [M ]
[L] (G) due to the usual Sobolev embed-

dings.

Similar to the case of L2-Sobolev spaces, the Gelfand-Shilov spaces can be equivalently

defined as subspaces of the smooth vectors with respect to the representations ρλ resp.

Θλ.
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Also, the definition of S [M ]
[L] (G) does not depend on the involved left invariant frame

D or basis q. This can be seen as a direct implication of Lemma 2.2.10 and the following

Lemma 2.4.28.

Definition 2.4.26. Let M be an analytic manifold, let M , L, K be weight sequences and

let T,E,D ⊂ Va(M) be families of vector fields composed of #T resp. #E resp. #D vector

fields such that (T,E,D) is a frame. Then we denote by E K,L,M
T,E,D (M) the C (M)-function

space defined by

E K,L,M
T,E,D (M) :=

{
f ∈ E (M)

∣∣∣∣ lim
|a|,|b|,|c|→∞

‖T aEbDcf‖∞
K|a| |a|!L|b| |b|!M|c| |c|!

= 0

}
equipped with the norm

f 7→ sup
a,b,c

‖T aEbDcf‖∞
K|a| |a|!L|b| |b|!M|c| |c|!

,

in which a ∈ S#T , b ∈ S#E and c ∈ S#D. As usual we define limit spaces

E [K],[L],[M ]
T,E,D (M) := lim←−

K′∈W[K]

lim←−
L′∈W[L]

lim←−
M ′∈W[M ]

E K,L,M
T,E,D,proj(M) .

These spaces can not be dealt with Proposition 2.2.20, since the families T , E and

D might not commute with each other. But the situation is at least similar. If N is a

weight sequence that fulfils (MG), then there are constants C,H > 0 such that

Nk+l+m

NkNlNm

≤ C Hk+l+m .

This implies the inequality

sup
a,b,c

‖T aEbDcf‖∞
N|a| |a|!N|b| |b|!N|c| |c|!

≤ C sup
d
H |d|
‖(T,E,D)df‖∞

N|d| |d|!
.

Now if [N ] ⊂ [K], [L], [M ], then the continuous embedding

E [N ],[N ],[N ]
T,E,D (M)

I−→ E [K],[L],[M ]
T,E,D,proj (M)

and the above inequality give us the continuous embedding

E [N ]
(T,E,D)(M)

I−→ E [K],[L],[M ]
T,E,D,proj (M) .

Lemma 2.4.27. Let G ∈ {Rn,H}, let M be a weight sequence, and let D be a basis of

left invariant vector fields on G′. Then E [M ]
D (M 2) is R2-invariant.
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Proof. Denote χx(x
′) := e2πi〈x,x′〉 for x ∈ G and x′ ∈ G′. Note that χx ∈ E (1)

D (G′). If

f ∈ L2(G), then f ∈ EM
D (M 2) iff x′ 7→M 2(x′)f is in EM

D (G′;L2(G)).

For G = Rn, we have Fx(x
′) := M 2(x′)R2(x)f = χ−x(x

′)R2(x)M 2(x′)f . Since

R2(x) is unitary on L2(G) and by the continuity of multiplication in Proposition 2.2.15,

Fx is in EM
D (G′;L2(G)) iff x′ 7→ M 2(x′)f is in EM

D (G′;L2(G)). Thus E [M ]
D (M 2) is R2-

invariant.

Now let G = H and let f ∈ E [M ]
D (M 2). We have

Fx(x
′) = χ−x(x

′)R2(x)M 2(x′ + cax x
′/2)f .

Note that A : x′ 7→ x′+ cax x
′/2 is a linear map, so x′ 7→M 2(Ax′)f is in E [M ]

D (G′;L2(G))

by Proposition 2.2.10

Lemma 2.4.28. Let λ ∈ R× and let either (G, π,M) = (Rn, ρλ,H) or (G, π,M) =

(H,Θλ,H2). Furthermore, let M , L, K be weight sequences. If q ⊂ G′ is a basis and

D ⊂ DiffL(G) a frame, then the following holds.

(i) There exist families of vector fields T,E, F ⊂ DiffL(M) such that (T,E, F ) is a

frame on M with

HM,D
L,q (G) = E K,L,M

T,E,F (π) and S [M ]
[L],proj(G) = E [K],[L],[M ]

T,E,F,proj (π) .

(ii) There is a frame E ⊂ DiffL(G′) such that

S [M ]
[L],proj(G) = E [M ]

D (R2 ↓E [L]
E (M2)

)

in the sense of vector spaces. If [M ] and [N ] have (PL), then this equality holds in

the sense of locally convex spaces.

Proof. (i): We may define T such that it is just composed of one vector field which acts

along the center of M. Furthermore, we may choose T such that π(T ) = i I. Similarly,

we find vector fields E = (E1, . . . , EN) such that π(Ej)f = i qj f and F = (F1, . . . , FN)

such that π(Fj)f = Djf for f ∈ H∞L (G) (see e.g. [26] for the Dynin-Folland group). The

argumentation from Lemma 2.4.8 can be slightly adjusted to show HM,D
L,q (G) = E K,L,M

T,E,F (π),

which already implies the rest.
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(ii): Obviously we have R2(Da)f = Daf for all a ∈ Sn and f ∈ E (R2). Also, we may

choose E such that M 2(Ea)f = ia qaf for all a ∈ Sn and f ∈ E (M 2).

LetH := L2(G). By Proposition 2.2.18 we may employ the following chain of identities

and bijections (resp. homeomorphisms)

E [M ]
D,proj(G; E [L]

E,proj(G
′;H)) = E [M ]

D (G; E [L]
E,proj(G

′;H))

' E [L]
E,proj(G

′; E [M ]
D (G;H))

= E [L]
E (G′; E [M ]

D (G;H)) ' E [M ]
D (G; E [L]

E (G′;H))

to get E [M ]
D,proj(G; E [L]

E,proj(G′;H)) = E [M ]
D (G; E [L]

E (G′;H)) in the sense of vector spaces. If

[M ] and [L] have (PL), then this holds in the sense of topological vector spaces. This

gives us

E [M ]
D (R2 ↓E [L]

E (M2)
) = E [M ]

D,proj(R2 ↓E [L]
E,proj(M2)

)

in the sense of vector spaces (resp. in the sense of topological vector space if [M ] and [L]

have (PL)). Now we only need to use

S [M ]
[L],proj(G) = lim←−

M ′∈W[M ]

lim←−
L′∈W[L]

HM,D
L,q (G) = lim←−

M ′∈W[M ]

EM ′

D (R2 ↓E [L]
E,proj(M2)

)

= E [M ]
D,proj(R2 ↓E [L]

E,proj(M2)
) .

From the above especially follows that for {1} ⊂ [M ], [L] we have

E {1}(π) ⊂ S [M ]
[L],proj(G) .

So in this case we know that S [M ]
[L],proj(G) is dense in L2(G), because the space of analytic

vectors is dense (see Lemma 2.4.6).
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Chapter 3

Quantization on Gelfand triples

The following chapter is largely based on a prior publication of the author [7]. Quan-

tization is a procedure, by which functions and distributions are mapped to operators.

Among the many types of quantizations, we will only use the Kohn-Nirenberg quan-

tization and the Pedersen quantization (resp. the Weyl quantization). Both are closely

connected to types of Fourier transformations. Historically, the Fourier transformation on

Rn was used for this purpose. Namely, for a function a ∈ S (Rn×Rn) the corresponding

Kohn-Nirenberg operator is defined by

OpRn(a)ϕ(x) = F−1
Rn (a(x,−)FRnϕ)(x) for ϕ ∈ S (Rn) , x ∈ Rn

and the Weyl operator is defined as the integral∫
Rn

∫
Rn

(FRn×Rna)(x′, x) ρ1(0, x′, x) dx dx′ ,

which exists in Ls(L2(Rn)). Both quantization procedures induce a Gelfand triple iso-

morphism

G(Rn × Rn, dx dx′)→ L(G(Rn, dx);G(Rn, dx)) .

The Pedersen quantization [57] is a generalization of the Weyl quantization. By swapping

FRn with the group Fourier transform on some Lie group G with biinvariant Haar measure

µ, one can generalize the Kohn-Nirenberg quantization to map certain operator valued

distributions on G × Ĝ to operators defined on a subspace of L2(G, µ). A calculus for
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compact and nilpotent Lie groups was developed in [59, 24]. We start with an exposition

on the Kohn-Nirenberg quantization, after which we will define and discuss the Pedersen

quantization. In the third section, we will use the Pedersen quantization in order to

define new Gelfand triples for homogeneous Lie group such that the Kohn-Nirenberg

quantization operates as a Gelfand triple isomorphism between them.

3.1 The Kohn-Nirenberg quantization

Let G be either a compact or a connected, simply connected nilpotent Lie group with

Haar measure µ. For each separable Hilbert space H let IrrH(G) be the set of irreducible

admissible unitary representations. We define on IrrH(G) the smallest σ-algebra such

that

IrrH(G)→ C : π 7→ (π(x)h, h′)H

is measurable for all x ∈ G and h, h′ ∈ H. We equip Irr(G) with the biggest σ-algebra

such that all the inclusions IrrH(G) ↪→ Irr(G) are measurable.

The dual of G, denoted by Ĝ, is the quotient of Irr(G) under the equivalence relation

of unitary equivalence. We equip Ĝ with the hull kernel topology1. The general definition

of the topology is not important to us, as for our special cases we have a better, more

concrete description of the hull-kernel topology. Here we use that for any compact Lie

group G the dual Ĝ is carrying the discrete topology [20, Corollary 18.4.3]. For nilpotent

Lie groups we will use Theorem 3.2.1 and Proposition 3.3.7. The Mackey-Borel structure

on Ĝ is the largest σ-algebra on Ĝ with respect to which the quotient map

Irr(G)→ Ĝ : π 7→ [π]

is measurable. Here [π] denotes the class of unitary equivalent representations to π.

This σ-algebra coincides with the Borel σ-algebra defined by the hull-kernel topology [20,

18.5.3]. A prerequisite for this statement is that the group G is postliminal. Though in our

case, this is always fulfilled, since compact resp. connected, simply connected nilpotent

1In [20, 3.1.2] this topology is introduced as the Jacobson topology. See for example [27, p. 225] or

[22] for the fact that it is just another name for the hull-kernel topology.

134



Lie groups are type I as described in [28, p. 72]. For Lie groups, type I implies postliminal

[20, 13.9.4]. Note that the definition of a type I group is approached differently in [28]

and [20], but both definitions are equivalent due to [28, Theorem 3.23].

Let Ĝn := {[π] | dimHπ = n , π ∈ Irr(G)}. There exists a measurable map

η : Ĝ→ Irr(G) , η([π]) ∈ [π] and Hη([π]) = Hη([π̃]) =: Hn (3.1.1)

for all n ∈ N ∪ {ℵ0} and all [π], [π̃] ∈ Ĝn [20, Proposition 8.6.2].

Let ν be a measure on Ĝ. Now we define Σ(Ĝ) as the set of operator valued maps

σ : Irr(G)→ ∪π∈Irr(G)L(Hπ) fulfilling

(i) σ(π) ∈ L(Hπ) for all π ∈ Irr(G),

(ii) σ(UπU−1) = Uσ(π)U−1 for all (π,Hπ) ∈ Irr(G) and unitary operators U with

domain Hπ and

(iii) the map Ĝn 3 [π] 7→ σ
(
η([π])

)
h is ν-measurable for all n ∈ N ∪ {ℵ0} and h ∈ Hn.

This automatically ensures that this holds for all η which fulfil (3.1.1).

If H is a Hilbert space and T ∈ L(T ), then we use the convention ‖T‖HS(H) = ∞ (resp.

‖T‖N (H) =∞) iff T /∈ HS(H) (resp. T /∈ N (H)). If ν is a measure on Ĝ, then we define

B∞(Ĝ, ν), B2(Ĝ, ν) and B1(Ĝ, ν) as the quotient spaces

B1(Ĝ, ν) :=

{
σ ∈ Σ(Ĝ)

∣∣∣∣ ‖σ‖B1(Ĝ,ν) :=

∫
Ĝ
‖σ(π)‖N (Hπ) dν([π]) <∞

} /
N(Ĝ, ν)

B2(Ĝ, ν) :=

{
σ ∈ Σ(Ĝ)

∣∣∣∣ ‖σ‖B2(Ĝ,ν) :=

(∫
Ĝ
‖σ(π)‖2

HS(Hπ) dν([π])

) 1
2

<∞
} /

N(Ĝ, ν)

B∞(Ĝ, ν) :=

{
σ ∈ Σ(Ĝ)

∣∣∣∣ ‖σ‖B∞(Ĝ,ν) := ν- ess sup
[π]∈Ĝ

‖σ(π)‖L(Hπ) <∞
} /

N(Ĝ, ν)

with respect to the subspaceN(Ĝ, ν) := {σ ∈ Σ(Ĝ) | ‖σ‖B2(Ĝ,ν) = 0}. We equip the space

Bp(Ĝ, ν) with the norm ‖σ + N(Ĝ, ν)‖Bp(Ĝ,µ) := ‖σ‖Bp(Ĝ,µ) for p ∈ {1, 2,∞}. As with

the Lebesgue-Bochner spaces we will write σ ∈ Bp(Ĝ, ν) for a function σ iff σ ∈ Σ(Ĝ)

and its equivalence class is in Bp(Ĝ, ν). From our definitions follows that B2(Ĝ, η) is
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equivalent to the more commonly used approach using direct integrals2. To be precise,

for any measurable map η : Ĝ→ Irr(G) such that η([π]) ∈ [π] for all π ∈ Irr(G) the map

B2(Ĝ, ν)→
∫ ⊕
Ĝ
HS(Hη([π])) dν([π]) , defined by σ 7→ σ ◦ η

for functions σ ∈ B2(Ĝ, η), is unitary.

The group Fourier transform of f ∈ L1(G, µ) at π ∈ Irr(G) with representation

space H is defined by

π(f) := FGf(π) :=

∫
G
f(x) π(x)∗ dµ(x) ,

where the integral exists in Ls(H). The Fourier transform of f fulfils FGf ∈ Σ(Ĝ). As

for R, there exists a Plancherel theorem for more general groups G. Since compact and

connected, simply connected nilpotent Lie groups are unimodular and of type I they fulfil

the requirements for [28, Theorem 3.31]. Thus we get the following.

Theorem 3.1.1. If G is compact or nilpotent with Haar measure µ, there exists a unique

Borel measure µ̂, the Plancherel measure, such that∫
G
|f(x)|2 dµ(x) =

∫
Ĝ
‖π(f)‖2

HS(Hπ) dµ̂([π])

for all f ∈ L1(G, µ) ∩ L2(G, µ). The extension of

L1(G, µ) ∩ L2(G, µ)→ B2(Ĝ, µ̂) : f 7→ FGf

to L2(G, µ) is a unitary operator onto B2(Ĝ, µ̂).

There is also an analogue for the Fourier inversion formula. We use the formulation

given in [28, Theorem 4.4].

Theorem 3.1.2. Let G and µ be as above. If FGf ∈ B1(Ĝ, µ̂) ∩B2(Ĝ, µ̂), then

f(x) =

∫
Ĝ

Tr[π(x) π(f)] dµ̂([π])

for µ-almost all x ∈ G and the right-hand side defines a continuous function.

2See for example [28] for a definition of the direct integral of Hilbert spaces and a formulation of the

Plancherel theorem involving direct integrals.
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As in the Euclidean case, the group Fourier transform becomes a Gelfand triple iso-

morphism. For any compact Lie group G with Haar measure µ, we will write

S (G) := E (G) = D(G)

and define the Gelfand triple

G(G, µ) := (S (G), L2(G, µ),S ′(G)) ,

equipped with the real structure defined by pointwise complex conjugation on S (G) resp.

L2(G, µ).

Definition 3.1.3. For any compact or simply connected, connected nilpotent Lie group

G with Haar measure µ we define

S (Ĝ) := FGS (G)

and equip it the topology transported from S (G) via FG. Furthermore, its dual will be

denoted by S ′(Ĝ) := S (Ĝ)′ and we define the Gelfand triple

G(Ĝ, µ̂) := (S (Ĝ), B2(Ĝ, µ̂),S ′(Ĝ))

equipped with the real structure defined by the pointwise conjugation

σ 7→ σ∗ := [π 7→ σ(π)∗]

on S (Ĝ) resp. B2(Ĝ, µ̂).

If f ∗(x) := f(x−1), then (FGf)∗ = FG(f ∗) for all f ∈ L1(G, µ) ∩ L2(G, µ). This

implies that σ 7→ σ∗ defines an antilinear homeomorphism from S (Ĝ) to itself. Thus the

Gelfand triple G (Ĝ, µ̂) is well-defined.

The unitary operator from Theorem 3.1.1 restricts to a linear homeomorphism from

S (G) to S (Ĝ) by definition of S (Ĝ). This enables us to define the group Fourier

transform as the following Gelfand triple isomorphism.

Definition 3.1.4. The group Fourier transform FG is the unique Gelfand triple isomor-

phism

FG : G(G, µ)→ G(Ĝ, µ̂) (3.1.2)

that extends the map L1(G, µ) ∩ L2(G, µ)→ B2(Ĝ, µ̂) : f 7→ FGf .
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With the help of the group Fourier transform we will define the Kohn-Nirenberg

quantization for a compact or connected, simply connected nilpotent group G. We will

use the symbol KG specifically for the kernel map

KG : L(G(G, µ);G(G, µ))→ G(G, µ)⊗ G(G, µ)

from Proposition 1.4.9. Now consider the map

S (G) ⊗̂S (G)→ S (G) ⊗̂S (G) : f 7→ TGf , in which TGf(x, y) := f(x, xy−1)

for all x, y ∈ G. This map is a linear homeomorphism and extends to a unitary map

from L2(G, µ) ⊗̂H L
2(G, µ) onto itself. Thus we may extend the above map f 7→ TGf to

a Gelfand triple isomorphism

TG : G(G, µ)⊗ G(G, µ)→ G(G, µ)⊗ G(G, µ) .

Now we are able to define the Kohn-Nirenberg quantization as a Gelfand triple isomor-

phism.

Definition 3.1.5. The Kohn-Nirenberg quantization is the Gelfand triple isomorphism

OpG : G(G, µ)⊗ G(Ĝ, µ̂)→ L(G(G, µ);G(G, µ)) ,

defined by OpG := K−1
G T

−1
G (I⊗FG)−1.

The object σ ∈ S ′(G) ⊗̂ S ′(Ĝ) is called Kohn-Nirenberg symbol to the operator

OpG(σ) and OpG(σ) is called the Kohn-Nirenberg operator to σ.

3.2 The Pedersen quantization

Let G be a connected, simply connected Lie group. We already introduced the notation

AdG for the adjoint action of G on g and CaG(x)ξ := ξ ◦ AdG(x−1) for the coadjoint

action of x ∈ G on linear functionals ξ ∈ g′. We will now discuss how coadjoint orbits

relate to the Pedersen quantization and in which way the Pedersen quantization can be

understood as a Gelfand triple isomorphism.
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We start this endeavour, by revisiting the correspondence between coadjoint orbits and

unitary irreducible admissible representations. A subalgebra m ⊂ g is called polarizing

to ξ ∈ g′, iff ξ([m,m]) = {0} and m is a maximal algebra fulfilling this condition. For

any ξ ∈ g′ we can find at least one polarizing algebra. There is a bijection between the

coadjoint Orbits and the irreducible unitary representations of G. It can be described

by [π] ↔ Ω = CaG ξ, where π is unitarily equivalent to the induced representation of

χ(m) = e2πiξ(m) for m ∈ m ⊂ G for some maximal subordinate algebra m of ξ [16,

Theorems 2.2.1 - 2.2.4]. This correspondence only depends on the orbit Ω and not on

the choice of element ξ spanning Ω or the choice of polarizing algebra m. We will write

π ∼ ξ or π ∼ Ω, if the equivalence class of π corresponds to the orbit Ω = CaG(G)ξ.

For any ξ the orbit Ω = CaG(G)ξ is an even dimensional polynomial manifold [56, page

521] and [16, Lemma 1.3.2]. The following theorem from [8] shows that we may use the

correspondence between orbits and irreducible representations in order to describe the

topology on Ĝ.

Theorem 3.2.1. Let ∼ be the equivalence relation on g′ defined by

ξ ∼ η :⇔ ∃x∈G : CaG(x)ξ = η .

Then the bijection from Ĝ to the quotient space g′/ ∼ defined by

[π] 7→ Ω for π ∼ Ω

is a homeomorphism.

A Jordan-Hölder basis of g is a basis (ej)j such that the linear hull gk = span{e1, . . . ek}

is an ideal in g for each k ≤ dimG. Let qk be the quotient map g′ → g′/g◦k. The set of

jump indices J is the set of j > 1 such that

dim qj(Ω)− dim qj−1(Ω) = 1 (3.2.3)

Let us denote gJ := span{ej | j ∈ J}. From Corollary 3.1.5 of [16] follows that a

polynomial chart of Ω is given by

σΩ : Ω→ g′J : ξ 7→ ξ �gJ .
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This correspondence between orbits and the spaces of functionals g′J leads to the

definition of the orbital Fourier transform

FΩϕ(x) :=

∫
Ω

e−2πiξ(x)ϕ(ξ) dθΩ(ξ), x ∈ gJ , ϕ ∈ S (Ω),

where θΩ ◦ σ−1
Ω is a Haar measure on g′J . The Pedersen quantization (see [57]) is the

equivalent of the Weyl quantization for general connected, simply connected nilpotent

Lie groups. It is defined by the integral

opπ(ϕ) :=

∫
gJ

π(expG x)

∫
Ω

e−2πiξ(x)ϕ(ξ) dθΩ(ξ) dνΩ(x) , for ϕ ∈ S (Ω)

for some representation π ∼ Ω and a fitting Haar measure νΩ on gJ . We can easily see

that the outermost integral converges in Ls(Hπ). The following theorem fixes the choice

of νΩ.

Theorem 3.2.2. For each θΩ as above, there is a unique νΩ such that the Pedersen

quantization to π ∼ Ω extends to a Gelfand triple isomorphism

opπ : G(Ω, θΩ)→ Gop(π).

Proof. This is essentially stated in [57, Theorem 4.1.4]. Here Pedersen proves that

S (Ω)→ B(Hπ)∞ : a 7→ opπ(a)

is a homeomorphism, where B(Hπ)∞ is the space of smooth operators with respect to π.

The spaces of smooth operators is introduced as B(Hπ)∞ = E (Π), where Π is the unitary

representation of G×G on HS(Hπ) defined by Π(x, y)T = π(x)◦T ◦π(y)−1. Furthermore

Pedersen shows that∫
Ω

a b dθΩ = Tr[opπ(a) opπ(b)∗] for a, b ∈ S(Ω)

and for a suitable νΩ. Note that Pedersen uses the convention ξ ↔ χ(·) = eiξ◦logG(·) for the

bijection between functionals and characters. Though adjusting the formulas just results

in additional constants, which may be hidden away inside the measures νΩ and θΩ.

In order to fit this result into our scheme, we will make sure that L(E (π)′,E (π))

and B(Hπ)∞ coincide as topological vector spaces. Using the embeddings E (π) ↪→ Hπ
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and Hπ ↪→ E (π)′ defined by some real structure Cπ, we will consider B(Hπ)∞, L(Hπ),

HS(Hπ) and L(E (π)′,E (π)) as linear subspaces of L(E (π); E (π)′). With respect to these

embeddings L(E (π)′; E (π)) is exactly the subspace of operators T such that

π(P ′)Tπ(P ) ∈ L(Hπ) for all P, P ′ ∈ DiffL(G)

equipped with the corresponding seminorms

T 7→ ‖π(P ′)Tπ(P )‖L(Hπ) .

Similarly, B(Hπ)∞ is identified with all operators T such that π(P ′)Tπ(P ) ∈ HS(Hπ) for

all P, P ′ ∈ DiffL(G) equipped with the corresponding seminorms T 7→ ‖π(P ′)Tπ(T )‖HS(Hπ).

Thus we have the continuous embedding B(Hπ)∞ ↪→ L(E (π)′; E (π)).

Due to [12, Théorème 2.6] we know there is P ∈ DiffL(G) such that π(P ) is invertible

on E (π) and π(P )−1 can be extended to a nuclear operator on Hπ. Thus

‖π(P ′′)Tπ(P ′)‖HS(Hπ) ≤ ‖π(P )−1‖HS(Hπ)‖π(P ′′)Tπ(P ′P )‖L(Hπ)

for each T ∈ L(E (π)′; E (π)) and as a result B(Hπ)∞ = L(E (π)′; E (π)) as topological

vector spaces.

3.3 Alternative Gelfand triples for the Fourier trans-

form on homogeneous Lie groups

In the following section G is always a connected, simply connected nilpotent Lie group

with Haar measure µ and Lie algebra g and corresponding center z := Z(g). Note that

always expG z = Z(G).

If X is a compact group with Haar measure ν, then X̂ is discrete and for each π ∈ Irr(X)

the space Hπ is finitely dimensional. This ensures that one can work with the Fourier

image G(X̂, ν̂) of the Gelfand triple G(X, ν) relatively easy (see [59]). Here the simple

characterization of S (X̂) and the simple identification of multiplication operators on
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S ′(X̂) are very convenient. This also results in the equation

(IS ′(X̂) εζπ)(a) := a(−, π) = π(−)∗ · A ε IL(Hπ)(π) , for π ∈ Irr(X) , (3.3.4)

in which A = OpX(a) ∈ L(S (X); S ′(X)) and we use the notation ζπ ∈ L(S ′(X̂);L(Hπ))

for ζπ : σ 7→ σ(π). Here Hπ is finite dimensional, so π ∈ S (X;L(Hπ)) and the multi-

plication of π(−)∗ with the L(Hπ)-valued distribution A ε IL(Hπ)(π) can be understood

componentwise with respect to some basis3.

For the nilpotent Lie group G the situation is much more complicated. Even for the

Heisenberg group G = H there seems to be no simple intrinsic characterization for the

Fourier image of the Schwartz space of rapidly decreasing smooth functions S (G), see

[31, 2]. But we may derive a simple characterization of the Fourier image for a cer-

tain subspace S∗(G) of S (G). This characterization not only induces a Gelfand triple

(S∗(G), L2(G, µ),S ′
∗(G)) but will also enable us to identify a large class of well behaved

multiplication operators on the Fourier image of S∗(G). Using these multiplication op-

erators, we can prove an analogue of (3.3.4) in Section 3.4.

3.3.1 Generic and flat orbits of homogeneous Lie groups

In order to get a better description of the group Fourier transform on homogeneous Lie

groups, we will use the Pedersen quantization. Though in our case, we can first simplify

the Pedersen quantization, since we are only interested in representations derived from a

special class of orbits, the generic orbits. We start by introducing and discussing a certain

subset of Irr(G).

Definition 3.3.1. A representation π ∈ Irr(G) is square integrable modulo the center,

if x 7→ |(π(x)v, w)Hπ | is square integrable on G/Z(G) with respect to the Haar measure

for all v, w ∈ Hπ. Let us denote the set of irreducible representations, that are square

integrable modulo the center, by SI/Z(G) ⊂ Irr(G) and pairs of such representations

together with some matching real structure by SI/ZR(G).

3This is also consistent with our prior discussions of bilinear maps between tensor products in Theorem

1.2.11 or Theorem 1.2.12.
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Suppose π ∼ Ω = CaG(G)ξ, then π ∈ SI/Z(G) if and only if Ω = ξ+z◦ [53, Theorem 1].

Orbits of this type are called flat. Furthermore, if SI/Z(G) 6= ∅, then the orbits to repre-

sentations in SI/Z(G) are exactly those having the maximal possible dimension [16, Corol-

lary 4.5.6]. Also, for π ∈ SI/Z(G) the equivalence class [π] ∈ Ĝ is uniquely determined by

the central character π �Z(G)= e2πiξ◦exp−1
G (−) idHπ , where ξ ∈ Z(g)′ [16, Proposition 4.5.7].

Now, if (ej)j is a Jordan Hölder-Basis with Z(g) = spanR{e1, e2, . . . , ek} and π ∈ SI/Z(G),

then the corresponding jump indices are given by J = {k + 1, k + 2, . . . , dimG}.

Now we will describe, why the representations in SI/Z(G) are very convenient when

working with the Pedersen quantization. We use the notation from Theorem 3.2.2. For

all π ∈ SI/Z(G) the Pedersen quantization is simpler, because we can just take one Haar

measure θ on z◦ and translate it to a measure θΩ on Ω ∼ π for each π ∈ SI/Z(G). The

subspace ω := gJ complements z in g and is the same for each representation in SI/Z(G).

We get a Gelfand triple isomorphism

TΩ : G(z◦, θ)→ G(Ω, θΩ) defined by TΩϕ := ϕ ◦ Pz◦ �Ω for ϕ ∈ S (z◦),

where Pz◦ is the projection onto z◦ along ω◦. Using this isomorphism, we adjust the

Pedersen quantization.

Definition 3.3.2. We will use the Pedersen quantization opπ on G(z◦, θ) with respect to

π ∈ SI/Z(G) defined by

opπ : G(z◦, θ)→ Gop(π), φ 7→ opπ(TΩφ).

This version of the Pedersen quantization takes on the form

opπ(ϕ) =

∫
ω

π(expG x)

∫
z◦

e−2πiξ(x)ϕ(ξ) dθ(ξ) dν(x) for ϕ ∈ S (z◦) ,

where ν = νΩ depends on θ. Naturally, opπ is a Gelfand triple isomorphism as well.

Now we will discuss the concept of generic orbits and square integrable (modulo the

center) representation in context with homogeneous groups.

Definition 3.3.3. A connected, simply connected Lie group G is called a homogeneous

Lie group if its Lie algebra g is equipped with a group of dilations

(0,∞)→ Hom(g) : λ 7→ δλ,
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where δλx = elog(λ)Ax is also a Lie algebra isomorphism and A is a diagonalizable map

with positive eigenvalues. The number Q := Tr[A] is the homogeneous dimension of G.

We will equip G with a family of group automorphisms, also denoted by (δλ)λ>0, defined

by δλ ◦ expG := expG ◦δλ.

We may always decompose g into eigenspaces Eκ of A to eigenvalues κ > 0, i.e.

g =
⊕
κ>0

Eκ, where [Eκ, Eκ′ ] ⊂ Eκ+κ′ .

Thus, a homogeneous Lie group is always nilpotent. Note that the center z of g is always

invariant to both δλ and A, since

[δλz, x] = δλ[z, δλ−1x] = 0 for all λ > 0, z ∈ z and x ∈ g.

For every µ > 0 the space
⊕

κ≥µ Eκ is an ideal in g. We may always choose a Jordan-Hölder

basis (ej)j through these ideals [16, Theorem 1.1.13], i.e. we can choose a Jordan-Hölder

basis (ej)j such that ej is an eigenvector to δλ for any j. If z is an eigenspace, e.g. if

dim z = 1, we also have the unique decomposition

g = z⊕ ω, ω is A-invariant.

Definition 3.3.4. A coadjoint orbit Ω of a connected, simply connected nilpotent Lie

group is called generic with respect to a given Jordan-Hölder basis (ej)j if for each k the

dimension of the manifold qk(Ω) is maximal compared to all other orbits, in which qk is

defined as in (3.2.3).

Let G be a connected, simply connected homogeneous Lie group. If (ej)j is a Jordan-

Hölder basis of eigenvectors to A and the δλ, then we will denote the set of equivalence

classes derived from generic orbits by Ĝgen ⊂ Ĝ.

The first convenient property of the generic orbits is that the Plancherel measure µ̂ is

concentrated on Ĝgen by [16, Theorem 4.3.16].

Next, we will discuss the interaction between the concept of generic orbits and the

concept of square integrable representations (modulo the center). If [π] ∈ Ĝgen and

SI/Z(G) 6= ∅, then π ∈ SI/Z(G), since the representations in SI/Z(G) correspond to the
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orbits of maximal dimension. Also, if SI/Z(G) 6= ∅ and dim z = 1, then situation is

especially easy. Here z = Eµ for µ = max{κ > 0 | Eκ 6= {0}} and for a Jordan-Hölder

basis (ej)j of eigenvectors, we always have z = g1 = R · e1. Thus the set Ĝgen does not

depend on the concrete choice of Jordan-Hölder basis of eigenvectors to A. If J is the set

of jump indices to any Jordan-Hölder basis of eigenvectors, then we also have gJ = ω by

the above discussion, which is important for handling the Pedersen quantization.

Now for λ < 0 denote

δλx := −δ|λ|x for x ∈ z, and δλx := δ|λ|x for x ∈ ω.

Furthermore, let δλξ := ξ ◦ δλ for λ ∈ R× and ξ ∈ g′.

The question arises whether generic orbits are mapped to generic orbits by δλ. The

dilation δλ on g′/g◦k is a well-defined vector space isomorphism by δλ ◦ qj := qj ◦ δλ, since

gk and thus also g◦k are δλ-invariant. Furthermore,

dim qj(δλΩ) = dim δλ ◦ qj(Ω) = dim qj(Ω). (3.3.5)

Thus δλΩ is generic for each λ ∈ R×.

Definition 3.3.5. For any connected, simply connected homogeneous Lie group G and

any π ∈ IrrR(G) with real structure Cπ we put π := CππCπ ∈ IrrR(G) equipped with the

same real structure Cπ. We define the representations πλ for λ ∈ R× by

πλ(x) := π(δλx) for λ > 0 and πλ(x) := π|λ|(x) := π(δ|λ|g) for λ < 0

for all x ∈ G.

All the representations πλ are admissible irreducible unitary representations acting on

Hπ with E (πλ) = E (π).

We already used two sets of examples in Definition 2.4.20 and Definition 2.4.21. Indeed

δHλ resp. δH2
λ makes the Heisenberg group H resp. the Dynin-Folland group H2 into a

homogeneous Lie group. Moreover, the representations ρλ and Θλ fulfil

ρλ = (ρ1)λ and Θλ = (Θ1)λ for all λ ∈ R× .

With these definitions and the discussion above we get the three equivalences
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• π ∈ SI/Z(G) if and only if πλ ∈ SI/Z(G),

• [π] ∈ Ĝgen if and only if [πλ] ∈ Ĝgen,

• π ∼ ξ if and only if πλ ∼ δλξ.

Let SI/Z(G) 6= ∅ and dim z = 1. As every equivalence class of representations in

SI/Z(G) only depends on its central character on z ' R, we get a bijection between R×

and Ĝgen resp. {[π] | π ∈ SI/Z(G)}. Thus π ∈ SI/Z(G) if and only if [π] ∈ Ĝgen.

We can even go one step further. The dilations δλ help us to understand Ĝ as a

measure space. For this purpose we need the Pfaffian Pf(ξ) to a coadjoint orbit Ω =

CaG(G)ξ, which is defined by Pf(ξ)2 = detBξ up to a sign. Here we use the matrix

Bξ := (ξ([ej, ei]))
dimG
i,j=2 , in which (ej)

dimG
j=1 is a Jordan-Hölder basis of eigenvectors to A

and the (ej)
dimG
j=2 span the complementary space ω to z.

Definition 3.3.6. Let κ > 0 be the real number such that δλη := sgn(λ)|λ|κη for η ∈ ω◦,

let ω× 3 ` ∼ π ∈ SI/Z(G) and let (ej)
dimG
j=1 be a Jordan-Hölder basis of eigenvectors

to the dilations δλ resp. A. Suppose furthermore that 〈ej, `〉 = δj,1 and µ(E) = 1 for

E = {
∑

j tjej | t ∈ [0, 1]dimG}. Then we define the measure µ̂π on R× by

dµ̂π(λ) := κ|λ|Q−1|Pf(`)| dλ ,

in which the Pfaffian |Pf(`)| is calculated with respect to (ej)j.

The measure µ̂π depends on π and µ, but does not depend on the concrete choice of

Jordan-Hölder basis (ej)j as long as it fulfils the criteria for the definition above. This

statement is a direct conclusion of the following proposition.

Proposition 3.3.7. Suppose G is a homogeneous Lie group, π ∈ SI/ZR(G) and dim z = 1

and let µ̂π be defined as above. Then

(R×, µ̂π)→ (Ĝgen, µ̂) : λ 7→ [πλ],

where π ∼ ` ∈ ω◦, is a homeomorphism and an isomorphism between the Borel measure

spaces. Furthermore, if Ω is a fixed generic orbit, then λ 7→ δλΩ defines a bijection

between R× and the generic orbits.

146



Proof. Let U be the set of functionals ξ ∈ g′ such that CaG ξ is a generic orbit with

respect to our basis. For ξ ∈ U we have δλξ ∈ U for each λ ∈ R× by equation (3.3.5).

Each orbit meets U ∩ ω◦ in exactly one point [16, Theorem 3.1.9 and Theorem 4.5.5].

Furthermore, for any ξ ∈ ω× := ω◦ \ {0}, we have that

R× → ω× : λ 7→ δλξ

is a homeomorphism. Thus also U ∩ ω◦ = ω× = {δλ` | λ ∈ R×}. But ω× induces all

maximal flat orbits, so they coincide with the generic orbits. Since the correspondence

of g′/∼ with Ĝ is a homeomorphism by Theorem 3.2.1, we also have U/∼ ' Ĝgen with

respect to the subspace topologies. Let q : U → U/∼ be the quotient map. Now q �ω× is

a continuous bijection. We show that it is also open. By [16, Theorem 3.1.9], there is a

well-defined map ψ : ω× × z◦ → U such that

ψ(u, v) = w ⇔ w ∈ CaG(G)u and Pz◦w = v,

where Pz◦ is the projection onto z◦ along ω◦. The map ψ is a rational, non singular

bijection with rational non singular inverse. Hence ψ is a homeomorphism. If V ⊂ ω× is

open in ω×, then CaG(G)V is open in U , since

ψ(V × z◦) = CaG V.

Now, since q is open and q(CaG(G)V ) = q(V ), the restriction q �ω× is an open map and

thus a homeomorphism. If we now denote

σ : R× → Ĝgen : λ 7→ [δλπ],

then σ is a homeomorphism by the discussion above. Let ϕ : Ĝ → [0,∞) be Borel

measurable. Then, by [16, Theorem 4.3.10] and the subsequent discussion,∫
Ĝ
ϕ([π]) dµ̂([π]) =

∫
U∩ω◦

ϕ([πξ])|Pf(ξ)| dµ̃(ξ),

where µ̃ is the Haar measure on ω◦such that {t` | t ∈ [0, 1]} has measure equal to one and

πξ ∼ CaG(G)ξ. Let B := A �ωω. Since our chosen Jordan-Hölder basis is an eigenbasis to

A resp. δλ, we have

|Pf(δλ`)| = | det(δλ`([ej, ei]))j,i|
1
2 = | det(|λ|ni+nj`([ej, ei]))j,i|

1
2 = |λ|TrB|Pf(`)|,
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where |λ|nj is the eigenvalue of ej to δλ for j ∈ J . Both σ and σ−1 are measurable and

we have d(µ̃ ◦ σ)(λ) = κ|λ|κ−1 dλ. Hence∫
U∩ω◦

ϕ([πξ])|Pf(ξ)| dµ̃(ξ) =

∫
R×
ϕ([πλ])|Pf(δλ`)| d(µ̃ ◦ σ)(λ)

=

∫
R×
ϕ([πλ])κ|λ|−1+TrA|Pf(`)| dλ

and σ is a strict isomorphism of measure spaces.

Since the homeomorphism between R× and Ĝgen does not depend on the concrete

Jordan-Hölder basis used in the construction in Definition 3.3.6, the measure µ̂π is also

invariant with respect to this choice.

Again we have suitable examples in the Heisenberg group H and the Dynin-Folland

group H2. Here a Jordan-Hölder basis of eigenvectors to the dilations is given by the

standard basis

ek := (0, . . . , 0, 1, 0, . . . , 0) , in which the 1 is at the kth position.

Let (ek)k be the dual basis to this Jordan-Hölder basis. Then

(〈[ej, ek], e1〉)j,k≥2 =

 0 −E

E 0

 ,

in which E is the identity matrix. Because e1 ∼ ρ1 resp. e1 ∼ Θ1, we have

dµ̂ρ1(λ) = |λ|
dim H−1

2 dλ resp. dµ̂Θ1(λ) = |λ|
dim H2−1

2 dλ ,

in which of course µ is the standard Haar measure with dµ(t, x′, x) = d(t, x′, x).

3.3.2 The Fourier transform on S∗(G)

The discussion in the prior subsection and especially the last proposition motivate us to

make the following convention.

Convention 3.3.8. If not otherwise stated, we will assume for the rest of this chapter

that the following holds.
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(i) G is a connected, simply connected homogeneous Lie group G with Haar measure

µ, Lie algebra g and corresponding center z = Z(g) such that dim z = 1.

(ii) We will restrict ourselves to the case G = g as sets 4. Depending on which property

we want to emphasize, we will switch between the symbols G and g.

(iii) ω is the A resp. δλ invariant subspace of g such that g = z⊕ω. We put ω× = ω◦\{0}.

(iv) We assume SI/Z(G) 6= ∅.

We will denote the euclidean Fourier transform on g by

Fgϕ(ξ) =

∫
g

e2πiξ(x)ϕ(x) dµ(x), ϕ ∈ S (g), ξ ∈ g′.

Naturally, there is exactly one Haar measure µ′ on g′ such that the Fourier transform is

a Gelfand triple isomorphism G(g, µ) → G(g′, µ′). Suppose ` ∈ ω×. Together with the

euclidean Fourier transform and the Pedersen quantization, the map

℘`f(λ, ξ) := f(δλ(`+ ξ)) for ξ ∈ z◦, λ ∈ R× and f : g′ → C

will enable us to describe the group Fourier transform on G (see also [54] for a similar

statement).

Now we will use the isomorphism from Proposition 3.3.7 in order to find a new rep-

resentation of the group Fourier transform on L2(G, µ). This will be the basis for the

definition of our new Gelfand triples and a Gelfand triple isomorphism in the form of an

equivalent Fourier transform.

Proposition 3.3.9. Suppose ϕ ∈ S (G) and π ∈ SI/ZR(G) with π ∼ ` ∈ ω×, then

FGϕ(πλ) =

opπ
(
℘`Fgϕ(λ,−)

)
, λ > 0,

opπ
(
℘`Fgϕ(λ,−)

)
, λ < 0.

4For connected, simply connected Lie groups expG is always a polynomial diffeomorphism, so g,

equipped with the group multiplication transported via expG, is isomorphic to G. Hence G = g is not

a real restriction. Note that µ is a biinvariant Haar measure for both the group multiplication and the

vector addition in G = g.
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Proof. First of all, for any ϕ ∈ S (G) we have

FGϕ(πλ) =

∫
G
λ−TrAϕ(δ−1

λ x)π(x)∗ dµ(x) = λ−TrAFG(ϕ ◦ δ−1
λ )(π),

for λ > 0. Also

Fg(ϕ ◦ δ−1
λ ) = λTrA(Fgϕ) ◦ δλ

for λ > 0. Note that for x ∈ g and z ∈ z we have x · z = x+ z and thus

e2πi`(z)π(x) = π(z)π(x) = π(z · x) = π(z + x).

Let µz resp. ν be Haar measures on z resp ω such that µ = µz ⊗ ν, then by the above

calculation

FGϕ(π) =

∫
ω

π(x)

∫
z

e−2πi`(z)ϕ(z − x) dµz(z) dν(x)

=

∫
ω

π(x)

∫
z◦

e−2πiξ(X)Fgϕ(ξ) dθ(ξ) dν(x).

Here θ is the measure associated to ν as described in Definition 3.3.2. This formula indeed

holds pointwise. Hence

FGϕ(πλ) = λ−TrAopπ(Fg(ϕ ◦ δ−1
λ )) = opπ((Fgϕ) ◦ δλ)

= opπ
(
℘`Fgϕ(λ,−)

)
for all λ > 0. For λ < 0 we get

FGϕ(πλ) = FG(π−λ) = opπ
(
℘−`Fgϕ(−λ,−)

)
,

since π ∼ −`. Now we can complete the proof by using δ−λ(−` + ξ) = δλ(` + ξ) for any

ξ ∈ z◦.

The above proposition (c.f. [54, Theorem 3.3]) shows that the group Fourier transform

splits into operators which are easy to handle in the L2-setting. If we use the isomorphism5

(Ĝ, µ̂) ' (R×, µ̂π), then we can see FG as the composition of unitary operators

Fg : L2(G, µ)→ L2(g′, µ′),

℘` : L
2(g′, µ′)→ L2(R×, µ̂π) ⊗̂H L

2(z◦, θ),

Opπ : L2(R×, µ̂π) ⊗̂H L
2(z◦, θ)→ L2

(
R×, µ̂π

)
⊗̂H HS(Hπ),

5Here we mean a measurable map with measurable inverse that is defined between Ĝ\N1 and R× \N2

for two null sets N1 and N2.
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in which θ is an appropriate Haar measure on z◦ and Opπ corresponds to the operator

P+ ⊗ opπ + P− ⊗ opπ for the projection P± of L2(R×) onto L2(R±). Moreover, we used

the canonical unitary map (1.2.4) in order to reinterpret ℘` as a map from L2(g′, µ′) into

L2(R×, µ̂π) ⊗̂H L
2(z◦, θ).

It is very convenient that the operator component emerges as a tensor product factor,

which in turn enables us to understand multiplication operators on the Fourier side more

easily. Though we run into problems if we try the same for the Fourier transform on

S (G). Here we are not able to describe S (Ĝ) as the tensor product of a space of

functions with a space of operators. This motivates us to define alternative spaces of test

functions.

In order to know which function space is a good choice, we will first take a look at the

pull back ℘`. Here our earlier discussion of polynomial manifolds comes into play again.

Remember that R× is equipped with a polynomial structure defined by R× = R+ ∪̇R−,

i.e. defined by the polynomial structures on R±. Similarly, for ` ∈ ω× we define g+
` , g−` ,

g× by

g+
` := {t`+ η | t > 0, η ∈ z◦} , g−` = −g+

` , g× = g+
` ∪̇ g

−
`

and equip g±` , g× with the polynomial structure analogously to the one on R±, R×, i.e.

the polynomial structure induced by the map

g±` → R× z◦ : (t`+ η) 7→ (t− 1/t, η).

Then δλ induces a tempered diffeomorphism as written in the following lemma. Note that

we just have g× = g′ \ z◦ as a set.

Lemma 3.3.10. Let ` ∈ ω×. The Map w` : R±×z◦ → g±` : (λ, ξ) 7→ δλ(`+ξ) is a tempered

diffeomorphism.

Proof. We prove that R>0 × z◦ ' g+
` via w`. The proof to the second statement is analo-

gous. Suppose (ξj)j is the dual basis to our Jordan–Hölder basis (ej)
2n
j=0 of eigenvectors,

in which e0 ∈ z. Here (ξj)
2n
j=1 is a basis of z◦. Let κj be the positive number such that

δλξ
j = λκjξj for λ > 0.
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We use the charts σ resp. σ1, defined by

(λ,
2n∑
j=1

cjξ
j) resp. (λ`+

2n∑
j=1

cjξ
j) 7→ (λ− 1/λ, c1, . . . , c2n).

Then

σ1 ◦ w` ◦ σ−1(t, c1, . . . , c2n) =

(
(t+
√
t2 + 4)κ0

2κ0
− 2κ0

(t+
√
t2 + 4)κ0

,

(t+
√
t2 + 4)κ1

2κ1
c1, . . . ,

(t+
√
t2 + 4)κ2n

2κ2n
c2n

)
,

which is a slowly increasing function. Similarly

σ ◦ w−1
` ◦ σ

−1
1 (t, c1, . . . , c2n) =

(
(t+
√
t2 + 4)

1
κ0

2
1
κ0

− 2
1
κ0

(t+
√
t2 + 4)

1
κ0

,

(t+
√
t2 + 4)

−κ1
κ0

2
−κ1
κ0

c1, . . . ,
(t+
√
t2 + 4)

−κ2n
κ0

2
−κ2n
κ0

c2n

)
is slowly increasing.

By Lemma 2.3.6, we can see S (g±` ) as the space

S (g±` ) = {ϕ ∈ S (g′) | ϕ ≡ 0 on g∓` }

equipped with the subspace topology in S (g′).

The tempered diffeomorphism from the last lemma induces a Gelfand triple isomor-

phism.

Lemma 3.3.11. Suppose ω× 3 ` ∼ π ∈ SI/ZR(G) and µ̂π is defined as in Definition

3.3.6. The pullback ℘`ϕ(λ, ξ) := ϕ ◦ w`(λ, ξ) for ϕ ∈ S (g×), ξ ∈ z◦ and λ ∈ R× defines

a Gelfand triple isomorphism

℘` : G(g×, µ′)→ G(R×, µ̂π)⊗ G(z◦, θ) .

Furthermore, ℘` restricts to Gelfand triple isomorphisms

℘` : G(g±` , µ
′)→ G(R±, µ̂π)⊗ G(z◦, θ)

if we use the canonical Gelfand triple isomorphism G(g×, µ′) ' G(g+
` , µ

′)⊕ G(g−` , µ
′).
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Proof. We take an arbitrary continuous function f : g±` → C with compact support. We

define Pf(`) as in Proposition 3.3.7 resp. Definition 3.3.6 and let ω± := R± · `. Then∫
R±

∫
z◦
f(δλ(`+ ξ))κ|Pf(`)| |λ|Q−1 dλ dθ(ξ)

=

∫
R±

∫
z◦
f((δλ`) + ξ)κ|Pf(`)| |λ|κ0−1 dλ dθ(ξ)

=

∫
ω±

∫
z◦
f(η + ξ)) |Pf(`)| dµω◦(η) dθ(ξ)

=

∫
g±`

f(ξ) dµ′(ξ).

For the last two equalities we used that the measure µω◦ on ω◦ is defined by the Lebesgue

measure and ` and that θ is defined by µ′ = |Pf(`)|µω◦ ⊗ θ. The rest follows with the

fact that ℘`f(λ, ξ) = f ◦w`(λ, ξ), where w` is the tempered diffeomorphism from Lemma

3.3.10 and the canonical Gelfand triple isomorphism

G(R±, µ̂π)⊗ G(z◦, θ) ' G(R± × z◦, µ̂π ⊗ θ) .

We also proved that the restriction of the Haar measure µ′ to g±` is actually a tempered

measure with respect to our chosen polynomial structure.

Now we are ready to define Gelfand triples, with respect to which we get a convenient

theory for the group Fourier transform.

Definition 3.3.12. We define the following reduced Schwartz space

S∗(G) := {ϕ ∈ S (G) | [R× ω 3 (λ, x) 7→ ϕ(λz + x)] ∈ S∗(R; S (ω))}

for any choice z ∈ z \ {0}, equipped with the subspace topology in S (G), and the corre-

sponding Gelfand triple

G∗(G, µ) := (S∗(G), L2(G, µ),S ′
∗(G)),

equipped with the real structure given by the pointwise complex conjugation. Furthermore,
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we define the Gelfand triple

G(R×; π) :=


S (R×; π)

L2(R×; π)

S ′(R×; π)

 := G(R×, µ̂π)⊗ Gop(π).

for each π ∈ SI/ZR(G).

That G∗(G, µ) is indeed a Gelfand triple can be seen by using Proposition 2.3.13.

We use any linear isomorphism R ' z to define Ḃ′∗(z; S ′(ω)). Then we may see, since

L2(G, µ) ⊂ Ḃ′∗(z; S ′(ω)) by Lemma 2.3.12 that the space L2(G, µ) is embedded into

S ′
∗(G) = S ′

∗(z;S ′(ω)). This embedding is continuous, since L2(G, µ) ↪→ S ′(G) is con-

tinuous. Of course, the canonical map of S∗(G) into L2(G, µ) is a continuous embedding

as well. Now the Hahn–Banach theorem implies that both embeddings are also dense, for

they are dual to each other.

To be more precise, if S∗(G)◦ is the polar of S∗(G) in L2(G, µ) ' L2(G, µ)′, then it

is also the kernel of the map

j′ : L2(G, µ)→ S ′
∗(G) : f 7→ [S∗(G) 3 ϕ 7→

∫
G
f ϕ dµ(x)] .

But this map has a trivial kernel by Lemma 2.3.12. Hence S∗(G)◦ = {0} and S∗(G) is

dense in L2(G, µ). Now denote by Y the image of L2(G, µ) in S ′
∗(G). Since S∗(G) is

reflexive, Y ◦ can be identified with the kernel of the embedding j : S∗(G) ↪→ L2(G, µ),

which is trivial. Hence Y ⊂ S ′
∗(G) is dense as well.

Note that G∗(G, µ) does not depend on the choice of π ∈ SI/ZR(G) or z ∈ z. The

Gelfand triple G(R×; π) does depend on π ∈ SI/ZR(G) but each different choice of π leads

to an isomorphic Gelfand triple as the theorem below shows.

Theorem 3.3.13. Let SI/ZR(G) 3 π ∼ ` ∈ ω× and let P+ = I−P− ∈ L(S (R×)) be

the projection of S (R×) onto S (R+) along S (R−). Let the Fourier transform in

π-picture, Fπ, be defined by

Fπ := Opπ ◦ ℘` ◦ Fg ,

where Opπ is the Gelfand triple isomorphism onto G(R×; π) defined by

Opπϕ = P+ ⊗ opπϕ+ P− ⊗ opπϕ for ϕ ∈ S (R×) ⊗̂ L(E (π)′; E (π)) .
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Then Fπ is a Gelfand triple isomorphism

Fπ : G∗(G, µ)→ G(R×; π).

Proof. The proof essentially writes itself by now and is a summary of previous statements.

The euclidean Fourier transform Fg is a Gelfand triple isomorphism between G∗(G, µ)

and G(g×, µ′) ' G(ω×, |Pf(`)|µω◦)⊗ G(z◦, θ) by Lemma 2.3.9, where we choose the Haar

measures µω◦ and θ such that µ′ = |Pf(`)|µω◦ ⊗ θ and µω◦ is induced by the Lebesgue

measure dλ via the map R 3 λ 7→ λ` ∈ ω◦.

By Lemma 3.3.11, the pull back ℘` is a Gelfand triple isomorphism between G(g×, µg′)

and G(R×, µ̂π)⊗ G(z◦, θ).

For the last step we just need to use the canonical Gelfand triple isomorphism

G(R×, µ̂π) ' G(R+, µ̂π)⊕ G(R−, µ̂π)

and the fact that opπ and opπ are Gelfand triple isomorphisms by Theorem 3.2.2 and

Definition 3.3.2. Thus Opπ is a Gelfand triple isomorphism between G(R×, µ̂π)⊗G(z◦, µz◦)

and G(R×; π).

Let us now discuss a few properties of S∗(G) and S (R×; π). Their duals can be

identified with quotient spaces, in particular

S ′
∗(G) ' S ′(G)/(P(z)⊗S ′(ω)) and

S ′(R×; π) ' S (R×) ⊗̂ L(E (π); E (π)′)/(E ′0(R)⊗ L(E (π); E (π)′),

by Lemma 2.3.10 and Corollary 2.3.11. By employing Proposition 2.3.13, we can identify

a large space of distributions on G resp. R that are embedded into S ′
∗(G) resp. S ′(R×; π).

I.e. if we define Ḃ′(z; S ′(ω)) by using any isomorphism R ' z, then

Ḃ′(z; S ′(ω)) ↪→ S ′
∗(G) and B̃′(R;L(E (π),E (π)′)) ↪→ S ′(R×; π).

We may, for example, identify Lp(G, µ), for p ∈ [1,∞), and also S (G) as a subspaces

of Ḃ′(z; S ′(ω)) and the Bochner-Lebesgue spaces Lp(R;L(Hπ)), for p ∈ (1,∞], and also

S (R;L(E (π)′; E (π))) as subspaces of B̃′(R;L(E (π),E (π)′)).

The definition of S (R×; π) and S ′(R×; π) enables us to define a multiplication with

a large class of smooth functions via Theorem 1.2.11.
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Proposition 3.3.14. For any π ∈ SI/Z(G), the multiplications

OM(R×;L(E (π)))×S (R×; π)→ S (R×; π) : (f, ϕ) 7→ f ϕ

OM(R×;L(E (π)′))×S (R×; π)→ S (R×; π) : (f, ϕ) 7→ ϕf,

defined via

(f ϕ)(λ) := f(λ) ◦ ϕ(λ) and (ϕf)(λ) := ϕ(λ) ◦ f(λ)

for any λ ∈ R×, are hypocontinuous bilinear maps.

Proof. We just need show that we may apply Proposition 2.1.10. The spaces E (π) and

E (π)′ are barrelled, bornological and complete since E (π) ' S (Rn). Thus the composi-

tions of operators

L(E (π))× L(E (π)′; E (π))→ L(E (π)′; E (π)) : (A,B) 7→ AB

L(E (π)′)× L(E (π)′; E (π))→ L(E (π)′; E (π)) : (A,B) 7→ BA

are hypocontinuous by Lemma 1.2.10 and all involved spaces are complete. Also, the

multiplication of slowly increasing functions and rapidly decreasing functions is hypocon-

tinuous. This follows directly from the identification of OM(R×) with a closed (topological)

subspace of L(S (R×)). Now we just need to remind ourselves that S (R×; π) is a tensor

product of nuclear Fréchet spaces. Thus we may apply Proposition 2.1.10.

Now, we will prove the analogous result for the multiplication with the operator valued

tempered distributions S ′(R×; π). As we used in the proof above, E (π) is reflexive for

any π ∈ SI/Z(G). Thus, by using the adjoint in the sense of Definition 1.4.5 with respect

to the Gelfand triple Gop(π), we get the two antilinear homeomorphisms

L(E (π)) 3 A 7→ A∗ ∈ L(E (π)′) and L(E (π)′) 3 B 7→ B∗ ∈ L(E (π)).

Denote for f in OM(R×;L(E (π))) or in OM(R×;L(E (π)′)) the operator valued function

f ∗(λ) := f(λ)∗. Then we may define multiplications on S ′(R×; π) by

(ϕ, f φ) := (f ∗ ϕ, φ) and (ϕ, φ g) := (ϕ g∗, φ)

for all φ ∈ S ′(R×; π) and ϕ ∈ S (R×; π), if we choose g ∈ OM(R×;L(E (π))) and if we

choose f ∈ OM(R×;L(E (π)′)). We get the following corollary.
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Corollary 3.3.15. For any π ∈ SI/Z(G), the multiplications

OM(R×;L(E (π)))×S ′(R×; π)→ S ′(R×; π) : (f, φ) 7→ f φ,

OM(R×;L(E (π)′))×S ′(R×; π)→ S ′(R×; π) : (f, φ) 7→ φ f

are hypocontinuous.

Proof. This follows directly from the definition of the multiplication and the fact that

the dual pairing is hypocontinuous. Equivalently, we could also directly employ Theorem

1.2.11.

Let us now relate the Fourier transform in π picture with the group Fourier transform.

Lemma 3.3.16. Suppose ω◦ 3 ` ∼ π ∈ SI/ZR(G), then

jπ : B2(Ĝ, µ̂)→ L2(R×, µ̂π;HS(Hπ)) defined by σ 7→ [λ 7→ σ(πλ)] ,

is unitary with jπFG = Fπ.

Proof. As noted before Opπ, ℘` and Fg are unitary, so Fπ is unitary from L2(G, µ) onto

L2
(
R×, µ̂π) ⊗̂H HS(Hπ)

)
.

The map R× 3 λ 7→ πλ ∈ IrrHπ(G) is measurable, since λ 7→ (πλ(x)h, h′)Hπ is

continuous from R× to C for all h, h′ ∈ Hπ and x ∈ G. For any σ ∈ B2(Ĝ, µ̂) define

jπσ : R× → HS(Hπ) : λ 7→ σ(πλ) .

Then λ 7→ (jπσ(λ)h, h′)Hπ is measurable for all h, h′ ∈ Hπ. Operators of the form

h 7→
∑
j

hj(h, h
′
j)Hπ for hj, h

′
j ∈ Hπ

are dense in the Hilbert space HS(Hπ), thus jπσ is weakly measurable, i.e. the map

ψ ◦ jπσ : R× → C is measurable for each ψ ∈ HS(Hπ)′. Since HS(Hπ) is separable, we

may use the Pettis Measurability Theorem [60, Proposition 2.15] on jπσ, which ensures

that jπσ is µ̂π-measurable.

By Proposition 3.3.7 and µ̂(Ĝ \ Ĝgen) = 0, we have

‖σ‖B2(Ĝ,µ̂) = ‖jπσ‖L2(R×,µ̂π ;HS(Hπ)) ,
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and thus

jπ : B2(Ĝ, µ̂)→ L2(R×, µ̂π;HS(Hπ))

is a well-defined isometric operator. Now Proposition 3.3.9 ensures that jπFG = Fπ and

thus jπ is surjective.

Let us define S (Ĝgen) := j−1
π S (R×; π) with the corresponding Fréchet topology trans-

ported via j−1
π . The space S (Ĝgen) is invariant under under taking pointwise adjoints,

because S (R×; π) is invariant under this operation. This way we get a Gelfand triple

G(Ĝgen, µ̂) = (S (Ĝgen), B2(Ĝ, µ̂),S ′(Ĝgen))

equipped with the real structure defined by Cσ(π) := σ(π)∗ for σ ∈ S (Ĝgen). We denote

the inclusion of S (Ĝgen) into S (Ĝ) by j0 and the inclusion of S∗(G) into S (G) by j∗.

Proposition 3.3.17. The Fourier transform FG �
S (Ĝgen)

S∗(G) extends into a Gelfand triple

isomorphism

FG,∗ : G∗(G, µ)→ G(Ĝgen, µ̂) .

We have the commutative diagrams

L2(G, µ) B2(Ĝ, µ̂) S (G) S (Ĝ) S ′(G) S ′(Ĝ)

L2(R×;π) S∗(G) S (Ĝgen) S ′
∗(G) S ′(Ĝgen)

S (R×;π) S ′(R×;π)

FG
'

Fπ
'

jπ'

FG
' '

FG

j′∗ j′0j∗ ⊂

FG,∗
'

j0⊂

'
FG,∗

'
Fπ

' (j′π)−1

F−1
π

'
j−1
π'

in which j′∗ and j′0 are surjective and open.

Proof. Lemma 3.3.16 implies the L2-diagram. The commutative diagram for the L2-

spaces implies the commutative diagram for the spaces of rapidly decreasing functions.

Together, the two diagrams imply that FG,∗ is a well-defined Gelfand triples isomorphism.

Also, by duality, we get the commutative diagram for the tempered distributions.

By Corollary 2.3.11 the map j′∗ can be seen as the quotient map

S ′(G)→ S ′
∗(G) ' S ′(G)/(P(z)⊗S ′(ω)),
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which is an open map. This also implies that j′0 is surjective and open.

Also of interest is the Fourier transform in π-picture defined on complex measures. If

we denote by M(G) the space of complex Borel measures on G, equipped with the norm

given by the total variation ‖µ‖M(G) := |µ|(G) for µ ∈M(G), then

M(G)→ S ′(G) : ν 7→
[
ϕ 7→

∫
G
ϕ dν

]
defines a continuous embedding. For any ν ∈ M(G), ϕ ∈ S (G) and ε > 0 there is a

compact K ⊂ G with |ν|(G \K) < ε and supx∈G\K |ϕ(x)| < ε. Now for any ξ ∈ z and for

h > 0 big enough, we have K + hξ ∩K = ∅ and hence∣∣∣∣∫
G
ϕ(x+ hξ)| dν(x)

∣∣∣∣ ≤ ε‖ϕ‖∞ + ε‖ν‖M(G) .

Thus M(G) ⊂ Ḃ′(z; S ′(ω)) via the standard embedding

M(G) ⊂ S ′(G) ' S ′(z) ⊗̂S ′(ω) .

In this sense, we can see M(G) as a subspace of S ′
∗(G).

As common, we may calculate the group Fourier transform for each element ν ∈M(G)

by

FGν(π) = π(ν) :=

∫
G
π(x) dν(x) for π ∈ Irr(G) ,

in which the integral exists in Ls(Hπ). Furthermore, we can see that FGν ∈ B∞(Ĝ, µ̂).

Corollary 3.3.18. The Fourier transform in π-picture restricts to a continuous map

Fπ : M(G)→ C (R×;Ls(Hπ)) with inequality sup
λ∈R×

‖Fπν(λ)‖L(Hπ) ≤ ‖ν‖M(G)

for all ν ∈M(G).

Proof. The inequality follows at once by the integral defining FGν(πλ) for λ ∈ R×. Ap-

plying the dominated convergence theorem to

‖Fπν(λn)h−Fπν(λ)h‖Hπ ≤
∫
G
‖πλn(x)h− πλ(x)h‖Hπ d|ν|(x) , h, h ∈ Hπ ,

for a convergent sequence (λn) ⊂ R×, where limn→∞ λn = λ, results in the continuity

property.
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Since w` : R× × z◦ → g×, w`(λ, ξ) = δλ(` + ξ) is a tempered diffeomorphism, we can

also see ℘` as an isomorphism between OM(g×) and OM(R× × z◦) resp. between S (g×)

and S (R× × z◦). However, in order to examine the Fourier image on S (G), it is even

better to consider mixed spaces. We equip ω× = R× · ` with the polynomial structure

transported from R×. The space OM(ω×) ⊗̂S (z◦) can be seen as a subspace of OM(g×).

Since for any polynomial manifold M with tempered measure ν we have the continuous

inclusion

OM(M) ↪→ S ′(M) : f 7→ [ϕ 7→
∫
M
fϕ dν] ,

we can consider OM(ω×; S (z◦)) as a subspace of S ′(g×) ' S ′(ω×) ⊗̂S ′(z◦) and we cam

consider OM(R×) ⊗̂S (z◦) as a subspace of S ′(R×) ⊗̂S ′(z◦).

Lemma 3.3.19. If we use the identifications above, the Gelfand-Triple isomorphism ℘`

restricts to a linear homeomorphism

℘` : OM(ω×; S (z◦))→ OM(R×) ⊗̂S (z◦).

Proof. We identify ω× ' R× and z◦ ' R2n and z◦ ' R2n via our basis of eigenvectors to

the dilations. It is enough to consider the R+-part, since OM(R×) = OM(R+)⊕OM(R−).

With these adjustments, we need to exchange ℘` by the map ℘, where

℘g(λ, x) = g(λκ0 , (λκjxj)
2n
j=1).

First of all, we realize that λ 7→ λκ0 is a tempered diffeomorphism. Hence T ∈ L(OM(R+))

defined by Tψ(λ) := ψ(λκ0) is a linear homeomorphism.

Now let us define linear isomorphisms fλ(x) = (λκj/κ0xj)
2n
j=1 on R2n. Then it is easy to

see that both λ 7→ fλ and λ 7→ f−1
λ define functions in OM(R+;L(R2n)) with values in the

invertible matrices. We denote by Fλ the corresponding operator Fλϕ := ϕ ◦ fλ and set

F : λ 7→ Fλ resp. F−1 : λ 7→ F−1
λ . A standard calculation shows that for any continuous

seminorm p on L(S (R2n)) and any k ∈ N0 there is a polynomial q on L(R2n)k+2 such

that

p(∂kλFλ) ≤ q(f−1
λ , fλ, ∂λfλ, . . . , ∂

k
λfλ).
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Of course, an analogous inequality is valid for F−1. Hence, we may conclude

F, F−1 ∈ OM(R+;L(S (R2n))).

Here F−1 is indeed the inverse of F in the algebra OM(R+;L(S (R2n))). Due to Theorem

1.2.11, we know that the multiplication

OM(R+; S (R2n)) 3 g 7→ F g ∈ OM(R+) ⊗̂S (R2n), (F g)(λ, x) = Hλ(g(λ,−))(x),

is continuous and in fact a linear homeomorphism.

Because ℘g = (T ⊗ 1)(F g), we can conclude that ℘ is an isomorphism.

Using the above lemma, we may now prove the following continuity property for the

Fourier transform in π-picture on S (G).

Proposition 3.3.20. The Fourier transform in π-picture restricts to a continuous map

Fπ : S (G)→ OM(R×) ⊗̂ L(E (π)′,E (π)).

Proof. This statement follows from the continuity of the maps

S (G)
Fg−→ S (g′) ↪→ OM(ω×; S (z◦))

℘`−→ OM(R×) ⊗̂S (z◦),

in which we use the continuous inclusion S (ω◦) ⊂ OM(ω×), and also from the continuity

of

Opπ = P+ ⊗ opπ + P− ⊗ opπ : OM(R×) ⊗̂S (z◦)→ OM(R×) ⊗̂ L(E (π)′,E (π)) ,

in which P±f(x) := 0 for ±x < 0 and P±f(x) = f(x) for ±x > 0.

3.4 Alternative Gelfand triples for the Kohn-Nirenberg

quantization on homogeneous Lie groups

We will keep using Convention 3.3.8 for this section.
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We already introduced the Kohn-Nirenberg quantization as a Gelfand triple isomor-

phism

OpG : G(G, µ)→ G(Ĝ, µ̂) .

We will now introduce the Gelfand triples G∗(G, µ) and G(R×; π) into this context. This

approach will lend itself to prove the already mentioned formula for the symbol motivated

by the compact case.

In [24] the term symbol6 is used for a map

σ : G× Irr(G)→
⋃

π∈Irr(G)

{T | T : E (π)→ Hπ}

that fulfils the following two properties.

(i) There exist n,m ∈ Z such that

G→ B∞(Ĝ, µ̂) : x 7→ [π 7→ π(I +R)mσ(x, σ)π(I +R)n]

is well-defined7 and continuous in x for a Rockland operator8 R ∈ DiffL(G).

(ii) For each π ∈ Irr(G) and each v ∈ E (π) the map

G→ Hπ : x 7→ σ(x, π)v

is smooth and for any P ∈ Diff(G) the corresponding derivatives (x, π) 7→ Pxσ(x, π)

fulfil (i) for some m,n ∈ Z.

Ruzhansky and Fischer use such symbols σ in [24] in order to define the Kohn-

Nirenberg quantization by the convergent integral

OpG(σ)ϕ(x) :=

∫
Ĝ

Tr[π(x) a(x, π) π(ϕ)] dµ̂([π]) , for ϕ ∈ S (G), x ∈ G . (3.4.6)

Note that an equation analogous to (3.4.6) can be recovered rather quickly from

OpG = K−1
G T

−1
G (1⊗F−1

G ) for operators in HS(L2(G, µ)). For OpG(a) ∈ HS(L2(G, µ)), we

have a ∈ L2(G, µ) ⊗̂H B
2(Ĝ, µ̂) and

( Op(a)f, g)L2(G,µ) =

∫
Ĝ

∫
G

Tr[a(x, π) ((1⊗FG inv)TGg ⊗ f)(x, π)∗] dµ(x) dµ̂([π])

6See Definition 1.8.13, Definition 5.1.21 and Definition 5.1.34 in [24]
7In the sense that each operator π(I +R)mσ(x, σ)π(I +R)n extends to an operator in L(Hπ).
8See Definition 4.1.2, Definition 4.4.2 and Definition 5.1.12 in [24]
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for all f, g ∈ L2(G, µ), where inv f(x) := f(−x) and (·, ·)L2(G,µ) is the inner product in

L2(G, µ). Because

Tr[a(x, π) ((1⊗FG inv)TGg ⊗ f)(x, π)∗] = Tr
[
a(x, π)

(
g(x) (FG R2(x)−1 inv f)(π)

)∗]
= g(x) Tr

[
a(x, π) (FG inv f)(π)∗ π(x)

]
= g(x) Tr[a(x, π)FGf(π) π(x)]

for almost all (x, [π]) ∈ G× Ĝ, we may write the operator OpG(a) as

OpG(a)ϕ =

∫
Ĝ

Tr[π(−) a(−, π)FGf(π)] dµ̂([π]), for f ∈ L2(G, µ),

where the integral converges in L2(G, µ).

For other spaces of operators we will approach this from a different direction. We

will first reinterpret the Kohn-Nirenberg quantization as a Gelfand-triple isomorphism

Opπ involving the Gelfand triples G∗(G, µ) and G(R×; π) for π ∈ SI/ZR(G). Afterwards

we prove the formula Op−1
π (A)(x, π) = π(x)∗(A ⊗ I)(π(−))(x) and show we also get a

representation corresponding to (3.4.6).

3.4.1 The Kohn-Nirenberg quantization for operators defined

on S∗(G)

We start by determining in what way TG is a Gelfand triple isomorphism in this context.

Although TG cannot be seen as a map from G∗(G, µ) ⊗ G∗(G, µ) onto itself, it defined a

map from G(G, µ)⊗ G∗(G, µ) onto itself.

Lemma 3.4.1. The map TG �S (G)⊗̂S (G)

S (G)⊗̂S (G)
extends to a Gelfand triple isomorphism

TG,∗ : G(G, µ)⊗ G∗(G, µ)→ G(G, µ)⊗ G∗(G, µ) .

Proof. Suppose ϕ ∈ S (G) ⊗̂S∗(G) and q ∈P(G), then for all x ∈ G and y ∈ ω∫
z

q(z)ϕ(x, x(−z − y)) dµz(Z) =

∫
z

q((−x)(−z − y))ϕ(x, z) dµz(z) = 0

Because [z 7→ q((−x)(−z − y)] ∈ P(z). Hence TGϕ ∈ S (G) ⊗̂S∗(G). Analogously we

may prove that T −1
G maps S (G) ⊗̂S∗(G) onto itself. Because S (G) ⊗̂S∗(G) carries the
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subspace topology in S (G) ⊗̂S (G), the continuity of TG and T −1
G on S (G) ⊗̂S∗(G) is

evident. Since also ∫
G×G

ψ TGϕ d(µ⊗ µ) =

∫
G×G

ϕ T −1
G ψ d(µ⊗ µ),

for all ϕ, ψ ∈ S (G×G), we may extend TG �S (G)⊗̂S (G)

S (G)⊗̂S (G)
to a Gelfand triple isomorphism.

Now a direct conclusion is the formulation of the Kohn-Nirenberg quantization as

a Gelfand triple isomorphism that incorporates the new Gelfand triples G∗(G, µ) and

G(R×; π).

Proposition 3.4.2. Let KG,∗ be the kernel map

KG,∗ : L(G∗(G, µ),G(G, µ))→ G(G, µ)⊗ G∗(G, µ) .

The Kohn-Nirenberg quantization in π-picture

Opπ := K−1
G,∗T

−1
G,∗ (1⊗F

−1
π ) : G(G, µ)⊗ G(R×; π)→ L(G∗(G, µ),G(G, µ)),

is a Gelfand triple isomorphism.

As for the Fourier transformation in π-picture, we may relate Opπ to the original

Kohn-Nirenberg quantization OpG via the diagrams on page 158.

3.4.2 The integral formula

Representations in SI/ZR(π) can also be seen as slowly increasing functions. This is

integral to our approach and will be proven in the proposition following the next lemma.

Lemma 3.4.3. Suppose E is a complete locally convex space and f ∈ OM(G;E) and let

F (λ, x) := f(δλx). Then F ∈ OM(R± ×G;E).

Proof. We only consider the case R+. It is enough to show that for each continuous

seminorm p on E, each k ∈ N0 each P ∈ DiffP(G) there is a polynomial q ∈P(G) and

l > 0, for which

p(∂kλPxF (λ, x)) ≤ (1 + |λ|l + |λ|−l)q(x).
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We realize that there are polynomial differential operators Pv such that

∂kλPxF (λ, x) =
∑
v∈R

λv(Pvf)(δλx),

as a finite linear combination. Since each p(Pvf) is bounded by a polynomial q̃v, we may

find polynomials qv such that

p(∂kλPxF (λ, x)) ≤
∑
v∈R

|λ|v q̃v(δλx) =
∑
v∈R

|λ|vqv(x).

This concludes the proof.

Proposition 3.4.4. If π ∈ SI/ZR(G), then the operator valued function (x, λ) 7→ πλ(x)

is both in OM(R× ×G;L(E (π))) and in OM(R× ×G;L(E (π)′))

Proof. By Lemma 3.4.3 it is enough to show that x 7→ π(x) is slowly increasing. For this

purpose we choose an equivalent representation that is more easily understood. There is

a representation σ ∼ π on Hσ = L2(Rn) such that E (σ) = S (Rn) and

σ(x)f(t) = e2πiξ(a(x,t))f(x−1 · t)

where ξ is a linear functional on a subalgebra m of g, a : G× Rn → m is polynomial and

G×Rn 3 (x, t) 7→ x · t ∈ Rn is a polynomial action of G on Rn by [56] and [16, Corollary

4.1.2]. Because (x, t) 7→ x−1 · t is polynomial, we may represent the action of G on Rn by

a linear combination

x · t =
∑
j,k

sk,j(x)uk,j(t) ej, for x ∈ G , t ∈ Rn ,

where (ej)j is the standard basis on Rn and sk,j, uk,j are polynomials. Thus, we also have

tj σ(x)f(t) =
∑
k

sk,j(x)σ(x)(uk,j f)(t).

For the same reason, there are polynomials qj,k, q̃j,k on G, rj,k, r̃j,k on Rn such that

∂tjf(x−1 · t) =
∑
k

q̃j,k(x) r̃j,k(t) (∂kf)(x−1 · t)

=
∑
k

qj,k(x) rj,k(x
−1 · t) (∂kf)(x−1 · t).
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Hence, for all α, β ∈ N0 we find operators Ak ∈ L(S (Rn)) and polynomials vk ∈ P(G)

such that

tβ∂αt σ(x)f(t) =
∑
k

vk(x)σ(x)(Akf)(t)

as a finite linear combination.

The topology on L(S (Rn)) is induced by the seminorms

p : A 7→ sup
f∈B

sup
t∈Rn
|tβ∂αt Af(t)|, B ⊂ S (Rn) bounded, α, β ∈ Nn

0 .

Now if L ∈ DiffL(G) is any left invariant differential operator on G and p is a seminorm

as above, we get

p(Lxσ(x)) ≤
∑
k

vk(x) sup
f∈B

sup
t∈Rn
|σ(x)(Akσ(L)f)(t)|

=
∑
k

vk(x) sup
f∈B

sup
t∈Rn
|(Akσ(L)f)(t)|.

The right-hand side of the above inequality is a sum of continuous seminorms times

polynomials, since σ(L) ∈ L(S (Rn)). Thus x 7→ σ(x) is slowly increasing, because

DiffP(G) = spanP(G) DiffL(G) by [16, Lemma A.2.2]. Due to π ∼ σ the map x 7→ π(x)

is slowly increasing, too. Now (x, λ) 7→ πλ(x) is slowly increasing with values in L(E (π))

due to Lemma 3.4.3. We finish the proof by remarking that L(E (π)) and L(E (π)′) are

antilinearly homeomorphic by the adjoint map and πλ(x)∗ = πλ(x
−1). This implies that

π is also slowly increasing with values in L(E (π)′), since x 7→ x−1 is polynomial.

With the help of the above proposition, we want to write the inverse Fourier transform

as an integral, which converges in OM(G). For this purpose, we need to explain a small

fact about the dual space O ′M(G). Denote by D1, D2, . . . the directional derivative to any

basis v1, v2, . . . of g. Each continuous linear functional on OM(g) can be represented by

some element in

O ′M(G) = spanC{Dαf | α ∈ Ndim(G)
0 and f ∈ C (G) where f(x) = O(|x|−∞) , |x| → ∞},

(3.4.7)

see [34, p. 130 of chapter 2], if we use the dual pairing

〈g,Dαf〉 :=

∫
G
f (−D)αg dµ.
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Here we say f(x) = O(|x|−∞) , |x| → ∞, iff qf is a bounded function for any q ∈P(G).

The differential operators Dα, α ∈ Ndim(G)
0 span the P(G)-module DiffP(G). Since the

multiplication of rapidly decreasing functions with polynomials is continuous, we may

exchange Dα with arbitrary P ∈ DiffP(G) in the pairing above. I.e. each continuous

linear functional on OM(G) has a representation in

spanC{Pf | P ∈ DiffP(G) and f ∈ C (G) where f(x) = O(|x|−∞) , |x| → ∞},

with respect to the pairing

〈g, Pf〉 :=

∫
G
f P tg dµ ,

where P t is the formal transpose of P defined by∫
G

(P tϕ)ψ dµ :=

∫
G
ϕPψ dµ for all ϕ, ψ ∈ D(G) .

Note that P 7→ P t is a bijection from DiffP(G) resp. DiffL(G) onto itself.

By [16, Lemma A.2.2] the P(G)-span of the left invariant differential operators

DiffL(G) is equal to DiffP(G). Now let w1, w2, . . . be the dual basis to v1, v2, . . . and

let X1, X2, . . . be the left invariant vector fields associated to v1, v2, . . . . A quick calcu-

lation shows that for all φ ∈ S ′(G) and all j, k there exists a polynomial q ∈ P(G)

with

wj Xkφ = q φ+Xk(w
j φ).

Of course, the set of functions f with f(x) = O(|x|−∞) , |x| → ∞, is invariant under the

multiplication with polynomials. In conclusion, we may represent the dual to OM(G) by

O ′M(G) = spanC{Pf | P ∈ DiffL(G) and f ∈ C (G) with f(x) = O(|x|−∞) , |x| → ∞}.

Lemma 3.4.5. If ϕ ∈ S (g) and ω× 3 ` ∼ π ∈ SI/Z(G), then the integral

ϕ =

∫
R×

Tr[πλ(−)Fπϕ(λ)] dµ̂π(λ)

exists in OM(G).

Proof. Let f ∈ C (G) with f(x) = O(|x|−∞) , |x| → ∞, let P ∈ DiffL(G) and let

ϕ ∈ S (G). Then, f and P tϕ are L2 functions and we may apply Plancherel for Fπ.
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Hence

〈ϕ, P tf〉 =

∫
G
f Pϕ dµ =

∫
R×

Tr[πλ(f)∗Fπ(Pϕ)(λ)] dµ̂π(λ) .

Since f ∈ L1(G, µ), we know that the integral that evaluates πλ(f) converges in Ls(Hπ).

That means for each pair u, v ∈ Hπ we have

(πλ(f)∗u, v)Hπ =

∫
G
f(x) (πλ(x)u, v)Hπ dµ(x).

Because Pϕ ∈ S (G), we have Fπ(Pϕ)(λ) = πλ(P ) πλ(ϕ) ∈ L(E (π)′,E (π)), which is a

nuclear operator on Hπ for each λ ∈ R×. Hence for each orthonormal basis (ek)k∈N ⊂ Hπ∫
G

∑
k∈N

|f(x) (πλ(x) πλ(P ) πλ(ϕ)ek, ek)Hπ | dµ(x)

≤ ‖f‖L1(G,µ) ‖πλ(P ) πλ(ϕ)‖N (Hπ) <∞,

where ‖ · ‖N (Hπ) is the trace-norm on the space of nuclear operators on Hπ. Using Fubini

with respect to the counting measure and µ results in

Tr[πλ(f)∗Fπ(Pϕ)(λ)] =

∫
G
f(x) Tr[πλ(x) πλ(P ) πλ(ϕ)] dµ(x),

since f ∈ L1(G, µ). Naturally, we have πλ(x) πλ(P ) = Pxπλ(x). By the embedding

of L(E (π)′,E (π)) into the nuclear operators N (Hπ), we may see Tr as a continuous

functional on L(E (π)′,E (π)). Because the operator valued function πλ(−) πλ(ϕ) is a

slowly increasing map from G to L(E (π)′,E (π)), we get

Tr[πλ(x) πλ(P ) πλ(ϕ)] = Px Tr[πλ(x) πλ(ϕ)],

Tr[πλ(−) πλ(ϕ)] ∈ OM(G).

Finally we get

〈ϕ, P tf〉 =

∫
R×

∫
G
f(x)Px Tr[πλ(x) πλ(ϕ)] dµ(x)dλπ

=

∫
R×
〈Tr[πλ(−) πλ(ϕ)], P tf〉 dλπ,

which completes the proof.
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Let us now define

ρ, ρ∗ ∈ OM(G) ⊗̂ OM(R×; E (π))

by ρ(x, λ) := πλ(x) and ρ∗(λ, x) := πλ(x
−1) for some fixed π ∈ SI/ZR(G). With Lemma

1.2.4, we already proved the continuity of the map

L(OM(G))→ L(OM(G) ⊗̂ OM(R×; E (π))), A 7→ A⊗ 1.

Of course, the evaluation map

L(OM(G) ⊗̂ OM(R×; E (π)))→ OM(G) ⊗̂ OM(R×; E (π)), T 7→ T (ρ)

is continuous as well. Finally, since the multiplication in OM(G× R×) is continuous [65,

p. 248] and because of Proposition 2.1.10, we can construct a hypocontinuous multipli-

cation on OM(G×R×;L(E (π))) given by the pointwise operator composition. Using the

canonical linear homeomorphism

OM(G× R×;L(E (π))) ' OM(G) ⊗̂ OM(R×; E (π))

we get a continuous multiplication map

OM(G) ⊗̂ OM(R×; E (π))→ OM(G) ⊗̂ OM(R×; E (π)) : F 7→ ρ∗ · F ,

where (ρ∗ · F )(x, λ) = ρ∗(x, λ) ◦ F (x, λ) .

Finally, we define the continuous map S by

S : L(OM(G))→ OM(G× R×;L(E (π))), A 7→ ρ∗ · (A⊗ 1)(ρ) . (3.4.8)

Now this map looks exactly like the inverse Kohn-Nirenberg quantization on compact Lie

groups X from [59]. Namely, for any B ∈ L(S (X)) the unique Kohn-Nirenberg symbol b

with B = OpX(b), evaluated at the irreducible unitary representation ξ ∈ Irr(X), is given

by b(−, ξ) = ξ(−)∗ · (B ⊗ I)(ξ) ∈ S (X;L(Hξ)).

Before proving that S coincides with Op−1
π , we need a bit of preparation.

Lemma 3.4.6. Suppose a ∈ S ′(G) ⊗̂S ′(R×; π), then

ρ · a = (1⊗Fπ inv)T −1
G,∗ (1⊗F

−1
π )a,
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where inv is the Gelfand triple isomorphism from G∗(G, µ) onto itself, defined by inv f(x) =

f(x−1) for f ∈ S (G), x ∈ G.

Proof. First, we take a ∈ S (G) ⊗̂S (R×; π). Then we just have

(1⊗F−1
π )(ρ · a)(x, y) = (1⊗F−1

π )a(x, yx) = (1⊗ inv)T −1
G,∗ (1⊗F

−1
G )a(x, y),

by the integral formula for the inverse Fourier transform from Lemma 3.4.5. Now the rest

simply follows due to the continuity of the involved maps.

Lemma 3.4.7. Define χx(ξ) := e2πiξ(x) for x ∈ g and ξ ∈ g′. Then

(
Opπ℘` χx

)
(λ) = πλ(x)

for any λ ∈ R× and SI/ZR(G) 3 π ∼ ` ∈ ω×.

Proof. Let x ∈ G and let εx be the functional on S∗(G) defined by εx : ϕ 7→ ϕ(x). By

Corollary 3.3.18 we have

Fπεx ∈ C (R×;Ls(Hπ)) with Fπ(εx)(λ) = πλ(x)

for any λ ∈ R×. Also we have F−1
g εx = χx. Thus

(
Opπ℘` χx

)
(λ) =

(
FπF−1

g χx
)
(λ) = πλ(x) .

Lemma 3.4.8. The embedding S∗(G) ↪→ OM(G) is continuous and has dense range.

Proof. The multiplication on S (G) is a continuous bilinear map. This implies the conti-

nuity of the canonical embedding τ : S∗(G) ↪→ OM(G), since S∗(G) carries the subspace

topology in S (G). Now consider the dual map

τ ′ : O ′M(G)→ S ′
∗(G), where 〈ϕ, τ ′φ〉 = 〈ϕ, φ〉, for all ϕ ∈ S∗(G).

That this is indeed an embedding, can be seen from Proposition 2.3.13 and the represen-

tation (3.4.7) of the dual space O ′M(G). By the Hahn-Banach theorem the operator τ has

dense image.
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In the Lemma above we saw that S∗(G) ↪→ OM(G) has dense range. Naturally, we

also have OM(G) ↪→ S ′(G), S (G) ↪→ S ′(G) and OM(R×) ↪→ S ′(R×), thus we get

embeddings

L(OM(G); F (G)) ↪→ L(S∗(G),S ′(G)),

F (G) ⊗̂ OM(R×;L(E (π))) ↪→ S ′(G) ⊗̂S ′(R×; π))

for F (G) ∈ {S (G),OM(G)}. Note that we can exchange L(E (π)) with L(E (π)′) in the

paragraph above. We can even go one step further. For A ∈ L(OM(G); S (G)) we can

still define the map S, since S (G) ↪→ OM(G). However, we are lacking the tools to

check whether S(A) ∈ S (G) ⊗̂OM(R×;L(E (π))) or not, since we cannot apply Theorem

1.2.11 or Theorem 1.2.12. We run into the same problem if we define S for operators

A ∈ L(OM(G); S ′(G)).

With the above embeddings, we finally prove that the map S does indeed reproduce

the Kohn-Nirenberg symbol.

Theorem 3.4.9. Let F (G) ∈ {S (G),OM(G)). The inverse of the Kohn-Nirenberg quan-

tization in π-picture defines a continuous map

Op−1
π : L(OM(G); F (G))→ F (G) ⊗̂ OM(R×;L(E (π)).

For any A ∈ L(OM(G),F (G)) the equality a := Op−1
π (A) = ρ∗ · (A ⊗ I)(ρ) is valid.

Furthermore,

Aϕ =

∫
R×

Tr[πλ(−) a(−, λ)Fπϕ(λ)] dµ̂π(λ) for ϕ ∈ S (G),

in which the integral exists in F (G).

Proof. As in (3.4.8), we define S(A) := ρ∗ · (A⊗ I)(ρ), where the multiplication is defined

via the hypocontinuous multiplication

F (G) ⊗̂ OM(R×;L(E (π))× OM(G) ⊗̂ OM(R×;L(E (π))→ OM(G) ⊗̂ OM(R×;L(E (π)) .

Via the argumentation leading up to (3.4.8), we get the continuity of S.
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Now we will prove the integral formula for A ∈ L(OM(G); F (G)). From Lemma 3.4.5

we know that for ϕ ∈ S (G)

Aϕ = A

∫
G

Tr[πλ(−) πλ(ϕ)] dµ̂π(λ) =

∫
G
A
(

Tr[πλ(−)πλ(ϕ)]
)

dµ̂π(λ) ,

where the integral converges in F (G). Due to Proposition 3.3.20 and Proposition 3.4.4,

we know that

πλ(−) πλ(ϕ) ∈ OM(G) ⊗̂ L(E (π)′,E (π)).

The trace operator Tr, restricted from the nuclear operators on Hπ, is a continuous

functional on L(E (π)′,E (π)), so we may use the tensor product structure of the above

expression to get

A
(

Tr[πλ(−) πλ(ϕ)]
)

= (A⊗ Tr)
(
πλ(−) πλ(ϕ)

)
= (1⊗ Tr)(A⊗ 1)

(
πλ(−) πλ(ϕ)

)
for each λ ∈ R×. Furthermore,

(A⊗ 1)(πλ(−)πλ(ϕ)) = πλ · π∗λ · (A⊗ 1)(πλ) · πλ(ϕ),

in which the multiplication is defined pointwise by the multiplication in L(E (π)). Hence,

we can represent Aϕ by the integral

Aϕ =

∫
R×

Tr[πλ(−) a(−, λ)πλ(ϕ)] dµ̂π(λ)

with a := S(A).

Now it is left to check that indeed A = Opπ(a). First of all, due to Lemma 3.4.6

T −1
G,∗ (1⊗F

−1
π )a = (1⊗ invF−1

π )(ρ · a).

We define the function χ(x, ξ) := e2πiξ(x) for ξ ∈ g′, x ∈ g, then χ ∈ OM(g× g×). Because

(1⊗Opπ℘`)χ(x, λ) = πλ(x) = ρ(x, λ), due to Lemma 3.4.7, and Fπ = Opπ℘`Fg, we know

that

(1⊗ invF−1
π )(A⊗ 1)(ρ) = (A⊗ invF−1

g )(χ) = (A⊗Fg′)(χ).

We choose arbitrary ϕ ∈ S (g) and ψ ∈ S∗(G). The integral

ϕ =

∫
g′
χ(−, ξ)Fgϕ(ξ) dµ′(ξ)
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converges in OM(g). Hence,

〈(A⊗Fg′)χ, ψ ⊗ ϕ〉 = 〈(A⊗ 1)χ, ψ ⊗Fgϕ〉

=

∫
g′
〈A(χ(−, ξ)), ψ〉 Fgϕ(ξ) dµ′(ξ)

= 〈Aϕ,ψ〉.

Combining the calculations above implies

KG,∗A = T −1
G,∗ (1⊗F

−1
π )a,

for the kernel map

KG,∗ : L(G∗(G, µ);G(G, µ))→ G(G, µ)⊗ G∗(G, µ) ,

i.e. Op−1
π (A) = S(A).

We can even go one step further in the description of the Kohn-Nirenberg symbol.

Namely, we can describe the symbol of operators in L(OM(G); S ′(G)) in a similar manner

as above.

Corollary 3.4.10. Suppose A ∈ L(OM(G); S ′(G)), then the inverse to the Kohn-Nirenberg

in π-picture can be expressed by

Op−1
π (A) = ρ∗ · (A⊗ I)(ρ) ,

in which the multiplication is defined via Theorem 1.2.12 as the vector valued bilinear

multiplication

OM(G) ⊗̂ OM(R×;L(E (π)′)×S ′(G) ⊗̂S ′(R×; π)→ S ′(G) ⊗̂S ′(R×; π) .

Proof. The operator valued functions ρ, ρ∗ are in OM(G) ⊗̂ OM(R×;L(E (π))). The op-

erator A ⊗ I maps ρ into S ′(G) ⊗̂ OM(R×;L(E (π)′), which in turn is embedded into

S ′(G) ⊗̂S ′(R×; π). This induces a continuous map

L(OM(G); S ′(G))→ S ′(G) ⊗̂S ′(R×; π) : A 7→ (A⊗ I)(ρ) .
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Moreover, the composition with the multiplication A 7→ ρ∗ · (A⊗ I)(ρ) is continuous and

well-defined by Theorem 1.2.12.

Now we use the continuity of Op−1
π from L(OM(G); S ′(G)) ↪→ L(S∗(G); S ′(G))

into S ′(G) ⊗̂ S ′(R×; π). The space L (OM(G)) is dense in L(OM(G); S ′(G)) and for

all operators A ∈ L (OM(G)) the expression Op−1
π (A) = ρ∗ · (A ⊗ I)(ρ) holds with the

multiplication defined in OM(G) ⊗̂OM(R×;L(E (π)′)). Since the multiplication commutes

with the embedding of the left-hand side into S ′(G) ⊗̂ S ′(R×; π), the formula for the

symbol Op−1
π (A) = ρ∗ · (A⊗ I)(ρ) holds for all A ∈ L(OM(G); S ′(G)).
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Chapter 4

Operator spaces characterized by

ultradifferentiable group actions

For any locally convex representation (π,E) on a Lie group G we will define a correspond-

ing locally convex representation (Adπ,L(E)) by

Adπ(x)T := π(x) ◦ T ◦ π(x)−1 for T ∈ L(E), x ∈ G .

Note that even for admissible π the representation Adπ might not be admissible. But

of course Adπ ↓C (Adπ) is admissible in any case. But if π is admissible, then Adπ is still

locally equicontinuous, i.e. C (Adπ) carries the subspace topology with respect to L(E).

The spaces of ultradifferentiable vectors E [M ]
D (π), for frames D ⊂ DiffL(G), are char-

acterized via the decay of the family of vectors

π(Da)e = · · · π(Da3)π(Da2)π(Da1)e , a ∈ SdimG

in E. This implies that the ultradifferentiable vectors the representation Adπ, i.e. the

ultradifferentiable operators, are characterized by the decay and existence of the family

of higher order commutators

Adπ(Da)T = · · ·Adπ(Da3) Adπ(Da2) Adπ(Da1)T

= . . . [π(Da3), [π(Da2), [π(Da1), T ]]] . . . , a ∈ SdimG ,

in L(E).
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4.1 Operator spaces defined by adjoint representa-

tions

The operator spaces F (Adπ) often have very convenient properties. Most notably, con-

tinuous multiplications between F (G) and other C (G)-function spaces imply mapping

properties of the operators in F (Adπ).

Lemma 4.1.1. Suppose F (G), G (G) and H (G) are complete C (G)-function spaces with

continuous multiplication F (G) × G (G) → H (G) such that F (G) is nuclear. Suppose

furthermore (E, π) is a bornologic, complete locally convex representation and that either

E or G (G) has the approximation property. Then the restriction map

F (Adπ)→ L(G (π),H (π)) : T 7→ T �H (π)
G (π)

is well-defined and continuous. Moreover, if the right translation R acts as an admissible

representation on G (G) and H (G), then for each T ∈ F (Adπ) the vector valued map

G→ Lc(G (π); H (π)) : x 7→ σ(x)T ω(x)−1 ,

in which σ(x) = π(x) �H (π)
H (π) and ω(x) = π(x) �G (π)

G (π), is continuous

Proof. Let us denote by ev : L(E)× E → E the evaluation map ev(T, e) = Te. Since E

is both bornologic and complete, it is barrelled by [36, Satz 7.14]. Hence ev is a hypocon-

tinuous bilinear map as described in Lemma 1.2.10. Furthermore, L(E) is complete by

[44, §39.6 (4)]. Hence the bilinear map

ėv : F (M;Lb(E))× G (M;E)→H (M;E) : ėv(T, e)(x) := ev(T (x), e(x)) for x ∈ G

is well-defined and hypocontinuous by Proposition 2.1.10. Of course this map pulls back

to a hypcontinuous bilinear map

ẽv : F (Adπ)× G (π)→H (π) ,

which is also a restriction of ev, i.e.

ėv(Adπ T, π v) = π Tv = π ẽv(T, v) = π ev(T, v) for T ∈ F (Adπ) , v ∈ G (π) .
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Now the continuity of T 7→ T �H (G)
G (π) follows immediately. Moreover, if R ↓G (G) and

R ↓F (G) are admissible representations, then σ and ω are admissible representations by

Lemma 2.4.3 (iii) and the families of operators (ω(y))y∈K and (σ(y))y∈K are equicontinu-

ous for each compact neighbourhood K of x. Thus we have ω(y)
y→x−−→ ω(x) in Lc(G (π)),

σ(y)
y→x−−→ σ(x) in Lc(H (π)) and

σ(x)Sω(x)− σ(y)Sω(y) = σ(x)S
(
ω(x)− ω(y)

)
+
(
σ(x)− σ(y)

)
Sω(y)

y→x−−→ 0

in Lc(G (π); H (π)).

Note that without additional requirements, the map T 7→ T �H (π)
G (π) might not be

injective or it could even be trivial. Of course, whenever G (π) is dense in E, we get an

embedding.

If we want to prove continuity on Sobolev spaces defined by inductive sequences, the

above lemma is not directly applicable. In these cases the following lemma will bridge

that gap.

Lemma 4.1.2. Let G be a Lie group, let (π,E) be a locally convex representation on

Fréchet space E. Furthermore, let (A,≤) and (B,≤) be directed sets and let Fα(G),

Gβ(G) be C (G)-function spaces and Fréchet spaces for α ∈ A and β ∈ B. Suppose there

are continuous embeddings Fα(G)
I−→ Gβ(G), Fα(G)

I−→ Fα′(G) and Gβ(G)
I−→ Fβ′(G)

for all α ≤ α′ and β′ ≤ β and

∃α∈A : B ⊂ Fα(π) is bounded ⇔ ∀β∈B : B ⊂ Gβ(π) is bounded . (4.1.1)

Then

L
(

lim←−
β∈B

Gβ(π)

)
I−→ L

(
lim−→
α∈A

Fα(π)

)
is a well-defined embedding. Furthermore, if

L̃ :=

{
T ∈ L

(
lim−→
α∈A

Fα(π)

) ∣∣∣∣ ∀α∈A T �Fα(π)
Fα(π) is continuous

}
equipped with the initial topology with respect to the restriction maps L̃ → L(Fα(π)) then

L̃ I−→ L
(

lim−→
α∈A

Fα(π)

)
is a continuous embedding.
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Proof. We define

F := lim−→
α∈A

Fα(π) and G := lim←−β∈BGβ(π) .

First of all, the assumptions of the lemma imply that F = G in the sense of vector spaces.

Moreover, since F
I−→ G is continuous, all subsets which are bounded on the left hand

side are also bounded on the right hand side. From (4.1.1) follows that the bounded sets

on both sides coincide.

For each α ∈ A the space Fα(π) can be identified with a closed subspace of the Fréchet

space Fα(G) ε E, so Fα(π) is Fréchet. Since F is the inductive limit of Fréchet spaces,

it is bornological [61, II 8.2 Corollary 1]. A linear operator T : F → F is called bounded

iff it maps bounded sets to bounded sets. Let us denote by B(F ) the space of bounded

operators on F equipped with the topology of uniform convergence on bounded sets. Of

course any continuous operator is bounded. Since F is bornological, the converse is true

[61, II 8.3] and we have L(F ) = B(F ) as locally convex spaces.

Finally, since the bounded sets in F and G coincide, we have an embedding L(G)
I−→

B(F ) = L(F ).

Now we prove the continuity of the second embedding. If (Tj)j is a convergent net in

L̃, then (Tjx)j converges in F uniformly in x ∈ B for any bounded B ⊂ Fα(π). Since

the bounded sets in F and G coincide and due to (4.1.1), a subset B ⊂ F is bounded, iff

B ⊂ Fα(π) is bounded for some α ∈ A. Hence (Tj)j converges in L(F ).

Now, we will make a few general observations regarding the algebra structures of the

operator spaces defined by adjoint representations.

Definition 4.1.3. (i) Suppose A is an algebra with unit 1A and B ⊂ A is a subalgebra.

Then B is called spectrally invariant in A iff 1A ∈ B and

∀T∈B : σA(T ) = σB(T ) .

(ii) If A is a Banach algebra with involution T 7→ T ∗, then B is called ∗-subalgebra

of A if it is a subalgebra of A invariant under the involution, i.e. B∗ = B.
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Note that B is spectrally invariant in A iff

B× = A× ∩B .

The following Lemma gives a criterion for the spectral invariance of G (Adπ) in L(E)

for a C (G)-function space G (G).

Lemma 4.1.4. Let G (G) be a C (G)-function space, let E be a Banach space and let

(E, π) be a locally convex representation.

(i) If G (G) has property (IC), then

σL(E)(T ) = σG (Adπ)(T )

for all T ∈ G (Adπ).

(ii) If the pointwise complex conjugation defines a continuous map of G (G) into itself,

if E is a Hilbert space and if π(x) is unitary for all x ∈ G, then G (Adπ) is a

∗-subalgebra of L(E).

Proof. (i): Let T ∈ G (Adπ). Since E is a Banach space, L(E) is locally m-convex.

First of all, we have σL(E)(T ) ⊂ σG (Adπ)(T ), since G (Adπ) is a subalgebra of L(E).

Now let λ ∈ C such that λ I−T is invertible in L(E). That means Adπ(x)(λ I−T ) =

Adπ(x)(λ I−T ) is invertible for each x ∈ G and hence, due to (IC), λ I−ΦAdπ(T ) is invert-

ible in G (M;L(E)). The inverse (λ I−ΦAdπ(T ))−1 = ΦAdπ((λ I−T )−1) is in ΦAdπL(E).

Hence (λ I−T )−1 ∈ G (Adπ). In conclusion σL(E)(T ) = σG (Adπ)(T ).

(ii): Let A : L(E) → L(E) with AT = T ∗ for T ∈ L(E) and put C ∈ L(G (G)) with

Cf(x) := f(x) for all x ∈ G and f ∈ G (G). Then C ε A defines a continuous antilinear

operator from G (G;L(E)) into itself as described in Section 1.1. Since

C ε A(Adπ(−)T )(x) = (Adπ(x)T )∗ = Adπ(x)(T ∗)

for all T ∈ G (Adπ) and x ∈ G, the algebra G (Adπ) is a ∗-subalgebra of L(E).

Closely related to spectral invariance of subalgebras B in a Banach algebra A is the

invariance under the holomorphic functional calculus [36, p. 330]. Let 1A be the unit
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element in A. Suppose T ∈ A and U ⊂ C is open with σA(T ) ⊂ U . Since σA(T ) is

compact, there is a bounded open set D with σA(T ) ⊂ D ⊂ D ⊂ U and with smooth

boundary. If F : U → C is a holomorphic function, then the element F (T ) ∈ A is defined

via the complex integral

F (T ) =
1

2πi

∫
∂D

F (z) (z 1A − T )−1 dz ,

This integral does not depend on the choice of D.

Definition 4.1.5. Suppose A is a unital Banach algebra with unit 1A and B ⊂ A is

a subalgebra. We call B invariant under the holomorphic functional calculus

iff for all T ∈ B, all open U ⊃ σA(T ) and all holomorphic F : U → C we also have

F (T ) ∈ B.

Clearly, if B is invariant under the holomorphic functional calculus, then

1A =
1

2πi

∫
∂D

(z 1A − T )−1 dz ∈ B resp. T−1 =
1

2πi

∫
∂D

1

z
(z 1A − T )−1 dz ∈ B ,

in which D is as above and T ∈ B resp. T ∈ A× ∩ B. So this implies that subalgebras

B which are invariant under the holomorphic functional calculus are also spectrally in-

variant. For complete locally m-convex subalgebras B for which the embedding B
I−→ A

is continuous, the converse is true as well.

Lemma 4.1.6. Suppose F (G) is a complete nuclear C (G)-function space with (IC) and

(E, π) is a representation on a Banach space E. If F (G) is a locally m-convex algebra for

the pointwise multiplication, then F (Adπ) is invariant under the holomorphic functional

calculus in L(E).

Proof. Step 1: First we will reduce this situation to a more general context. Note that

F (G;L(E)) ' F (G) ⊗̂π L(E) ,

since F (G) is complete and nuclear. Hence F (G;L(E)) is a complete locally m-convex

algebra by Proposition 1.2.14. The algebra F (Adπ) can be seen as a closed subalgebra of

F (G;L(E)), so F (Adπ) is a complete locally m-convex algebra. Furthermore, F (Adπ)

is spectrally invariant in L(E) and the embedding F (Adπ)→ L(E) is continuous.
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Step 2: We will prove the following general statement: Suppose A is a unital Banach

algebra and B is a spectrally invariant, complete and locally m-convex subalgebra with

continuous embedding B
I−→ A. Then B is invariant under the holomorphic functional

calculus.

Since B is locally m-convex, there is a set of submultiplicative seminorms Q defines

the topology on B and which is directed via the preorder

q1 ≤ q1 : ⇔ ∀T∈B q1(T ) ≤ q2(T ) .

Suppose ‖−‖ is a submultiplicative continuous norm that defines the topology on A.

Then

P := {q + ‖−‖ | q ∈ Q}

defines a set of submultiplicative norms that defines the topology on B. Moreover, (P ,≤)

is a directed set. For each p ∈ P denote by Bp the completion of B in A with respect

to the norm p. Then for each p the embeddings B
I−→ Bp, Bp

I−→ A are continuous, Bp

is a Banach algebra with unit 1A and B ' lim←−p∈P Bp by [61, Chapter II, 5.4]. This also

implies B =
⋂
p∈P Bp and we have σA(T ) = σBp(T ) = σB(T ) for each T ∈ B. Now we

choose some T ∈ B. Let U ⊃ σA(T ) be open, let F : U → C be holomorphic and let D

be bounded and open with σA(T ) = σBp(T ) ⊂ D ⊂ D ⊂ U and with smooth boundary

∂D. Then the integral
1

2πi

∫
∂D

F (z) (z 1A − T )−1 dz

exists in all the Banach algebras Bp, p ∈ P , and A. Furthermore, in all cases this gives

us the same element F (T ) ∈ A, due to the continuous embeddings. Now we just use

F (T ) ∈
⋂
p∈P Bp = B.

Note that even if F (G) does not have (IC), it is helpful to know that F (G) is

locally m-convex. As noted in the proof above, if F (G) is nuclear and locally m-convex

and if (π,E) is a representation on a Banach pace E, then F (Adπ) is locally m-convex.

This implies that for any T ∈ F (Adπ) and any entire function F : C → C we have

F (T ) ∈ F (Adπ). This follows from the convergence of the series

F (T ) =
∞∑
k=0

(∂kF )(0)

k!
T k in F (Adπ) .
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Now we will finally start to discuss operator spaces defined by ultradifferentiable

adjoint group actions. Note the proof below can be easily adapted to other C (G)-function

spaces, due to the general nature of Lemma 4.1.1, Lemma 4.1.4 and Lemma 4.1.6.

Theorem 4.1.7. Suppose M , L and N are weight sequences, G is a Lie group and

(π,E) is a bornologic and complete locally convex representation with the approximation

property. Furthermore, let D ⊂ Va(G) be a frame, let [M ] ⊂ [L] and let [M ] ⊂ (N). Then

the map

RF
F (G) : F (Adπ)→ L(F ) : T 7→ T �FF (4.1.2)

is well-defined and continuous for any choice from Table 4.1.

F (G) F

E (G) C k(π), E (π)

E [M ]
D (G) C k(π), E (π), E N

D (π), E [L]
D (π), E [L]

D,proj(π)

Table 4.1: Possible choices of locally convex spaces F and F (G) for Theorem 4.1.7

Proof. (i): Obviously, the multiplication E (G)×C k(G)→ C k(G) and the multiplication

E (G) × E (G) → E (G) are continuous. Due to Proposition 2.2.15 and the continuous

embeddings

E [M ]
D (G) ↪→ E (G) , E [M ]

D (G) ↪→ E [L]
D, (G) and E [M ]

D (G) ↪→ E [L]
D,proj(G) ,

the multiplication E [M ]
D (G)× G (G)→ G (G) is continuous for any choice of

G (G) ∈ {C k(G),E (G),E N
D (G),E [L]

D (G),E [L]
D,proj(G)} .

Moreover, all involved C (G)-function spaces are complete and E (G) and E [M ]
D (G) are

nuclear. Thus we may apply Lemma 4.1.1 and

F (Adπ) 3 T 7→ T �FF∈ L(F )

is well-defined and continuous for the choices described in the theorem.
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The above theorem holds especially if (π,E) is a representation on a Fréchet or Banach

space E with the approximation property. Since any Hilbert space has the approximation

property, this includes the canonical case, where (π,E) is a unitary representation.

4.2 Operator algebras defined by the left regular rep-

resentation on compact Lie groups

In this section we will apply our approach to compact Lie groups G with Haar measure µ

and relate the outcome to known results. The following discussion will contain the results

from [9] and the characterization of OpG S0
0,0(G× Ĝ) in terms of commutators from [23]

as special cases. These results will also imply OpG S0
0,0(G × Ĝ) is a spectrally invariant

∗-subalgebra of L(L2(G, µ)).

First, we will prove a statement about the denseness of ultradifferentiable functions on

compact groups in the usual Hilbert space of L2-functions. For this purpose we will use

the following representation. On B2(Ĝ, µ̂) let L̂2 resp. R̂2 be the unitary representation

such that L̂2(x)σ(π) := σ(π)π(x−1) resp. R̂2(x)σ(π) := π(x)σ(π) for π ∈ Irr(G), x ∈ G

and functions σ ∈ B2(Ĝ, µ̂).

Lemma 4.2.1. Let M , L be weight sequences and let G be a compact Lie group with Haar

measure µ and Lie algebra g. If [M ] ⊂ [L], then the space E [M ]
D (G) is dense in L2(G, µ)

and in E [L]
D (G) for any basis D ⊂ gL or D ⊂ gR.

Proof. Let D ⊂ gL be a basis. We may describe the space EM
D (L̂2) by

EM
hD(L̂2) =

{
σ ∈ Σ(Ĝ)

∣∣∣∣ lim
|a|→∞
a∈Sdim G

ha

M|a| |a|!
‖π 7→ σ(π)π(Da)‖B2(Ĝ,µ̂) = 0

}
equipped with the norm defined by

σ 7→ sup
a∈Sdim G

ha

M|a| |a|!
‖π 7→ σ(π)π(Da)‖B2(Ĝ,µ̂) .

Note that π(Da) ∈ L(Hπ), since dimHπ <∞. If we put

Σf (Ĝ) := {σ ∈ Σ(Ĝ) | there is some finite U ⊂ Ĝ with [π] ∈ Ĝ \ U ⇒ σ(π) = 0} ,
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then Σf (Ĝ) is dense in EM
hD(L̂2) and in B2(Ĝ, µ̂). Let us denote T := F−1

G Σf (Ĝ).

FG is a linear homeomorphism from L2(G, µ) onto L2(Ĝ, µ̂), hence 1 ε FG is a linear

homeomorphism from EM
D (G;L2(G, µ)) onto EM

D (G;B2(Ĝ, µ̂)) by Lemma 1.2.3. Finally,

due to FG L2 = L̂2FG, we see that

FG : EM
D (L2)→ EM

D (L̂2)

defines a linear homeomorphism. Note that D 7→ D̃ := L2(D) defines a bijection between

gL and gR and that EM
D (L2) = HM

D̃
(G). Hence, T is dense in HM

D̃
(G) and thus also in

E [M ]

D̃,proj
(G) = H

[M ]

D̃,proj
(G). For the other Roumieu case, E {M}

D̃
(G), note that the embedding

HM
D̃

(G)
I−→ E {M}

D̃
(G) is continuous for each h > 0 and that

⋃
h>0H

M
D̃

(G) = E {M}
D̃

(G).

This implies that T is dense in E {M}
D̃

(G) as well.

For the left invariant spaces we exchange L̂2 and L2 with R̂2 and R2. The analogous

argumentation as above proves the rest of the lemma.

As before, a lot of the following statements can be adapted to other C (G)-function

spaces, due to the general formulation of Lemma 4.1.1, Lemma 4.1.4 and Lemma 4.1.6.

The next theorem and Theorem 4.2.6 can be seen as a generalization of [9]. It is mainly

a summary of the preceding general lemmata applied to the left regular representation

on compact Lie groups.

Theorem 4.2.2. Suppose M , N and L are weight sequences, G is a compact Lie group

with Haar measure µ and Lie algebra g and L2 is the left-regular representation on

L2(G, µ). Let D ∈ gL and D̃ ⊂ gR be a frames. Then the following holds.

(i) For F (G) ∈ {E [M ]
D (G),E (G)} the algebra F (AdL2) is a ∗-subalgebra of L(L2(G, µ)),

i.e.

F (AdL2)∗ = F (AdL2) .

Moreover, if [M ] has (PL), then F (AdL2) is locally m-convex.

(ii) For F (G) ∈ {E {M}D (G),E (G)} the algebra F (AdL2) is even invariant under the

holomorphic functional calculus in L(L2(G)).
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(iii) Let [M ] ⊂ [L] and [M ] ⊂ (N). Then we have embeddings

F (AdL2) ↪→ L(E) : T 7→ T �EE

if we choose F (G) and E from Table 4.2. These embeddings are continuous for

E 6= E {L}
D̃

(G) or [M ] ⊂ (L).

F (G) E

E (G), E [M ]
D (G) Hk(G), E (G)

E [M ]
D (G) HN

D̃
(G), E [L]

D̃
(G), E [L]

D̃,proj
(G)

Table 4.2: Possible choices of locally convex spaces E and F (G) for Theorem 4.2.2 (iii)

Proof. (i): Since (L2, L
2(G, µ)) is a complete admissible unitary representation, we may

apply (E, π) = (L2, L
2(G, µ)) to Lemma 4.1.4.

If [M ] has (PL), then F (AdL2) is locally m-convex, since F (AdL2) can be identified

with a subalgebra of the locally m-convex algebra F (G) ⊗̂ L(L2(G, µ)).

(ii): E {M}D,proj(G) and E (G) are nuclear, locally m-convex and have (IC). Hence, we

may apply Lemma 4.1.6 and use that E [M ]
D,proj(Adπ) = E [M ]

D (Adπ) as vector spaces.

(iii): We may choose D such that D̃ = L(D) without changing E [M ]
D (AdL2) by Propo-

sition 2.2.10. We apply Theorem 4.1.7 to (E, π) = (L2, L
2(G, µ)). By Lemma 2.4.12,

Lemma 2.4.15 and Lemma 2.4.16 we have

C k(L2) = Hk(G) , E (L2) = E (G) , E L
D̃

(L2) = HL
D(G) , E [L]

D,proj(L2) = E [L]

D̃,proj
(G) .

Furthermore, for the case E = E {L}
D̃

(G) we can use Lemma 4.1.2.

Due to Lemma 4.2.1, we may use that E is dense in L2(G, µ). Thus T 7→ T �EE is an

embedding.

The above theorem especially shows that the algebra of analytic vectors E {1}(AdL2)

to the representation AdL2 is a spectrally invariant ∗-subalgebra of L(L2(Tn, µ)) for the

n-dimensional torus Tn = Rn/(2πZn), which was proven in [9, Corollary 1].

Using Gelfand triples, we can also prove that many of the considered operators extend

to continuous operators between spaces of ultradistributions.
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Corollary 4.2.3. Let G be a compact Lie group with Haar measure µ, D ⊂ gL a frame,

D̃ := L(D) and let M be a weight sequence. Then

G(M)

D̃
(G, µ) := (E (M)

D̃
(G), L2(G, µ),E (M)

D̃
(G)′)

is a Gelfand triple with real structure defined by the pointwise complex conjugation. Sup-

pose E = E [L]

D̃
(G) for a weight sequence L with M ⊂ L, then E and E ′ are G(M)

D̃
(G, µ)-

regular and each operator T ∈ E [M ]
D (AdL2) extends uniquely to an operator in L(E ′).

Proof. G(M)

D̃
(G, µ) is a Gelfand triple, since E (M)

D̃
(G) is a nuclear Fréchet space and dense

in L2(G, µ) and the pointwise complex conjugation maps E (M)

D̃
(G) continuously to itself.

Naturally, we have continuous dense embeddings

E (M)

D̃
(G) ↪→ E ↪→ L2(G, µ) ,

and the pointwise complex conjugation maps E continuously to itself. Furthermore, E is

reflexive as a nuclear Fréchet space (resp. dual to a nuclear Fréchet space) as written in

Proposition 2.2.10. Hence E is G(M)

D̃
(G, µ)-regular. This automatically implies that E ′ is

G(M)

D̃
(G, µ)-regular.

Now let T ∈ E [M ]
D (AdL2) ⊂ L(L2(G, µ)), then S := T ∗ �EE is well-defined. We may

use the adjoint of the G(M)
D (G, µ) Gelfand triple and define R := S∗ ∈ L(E ′). It is easy

to see that R is an extension of T , i.e. R �L
2(G,µ)

L2(G,µ)= T . This extension is unique, since

L2(G, µ) ⊂ E ′ is dense.

For any compact Lie group G with Haar measure µ, we define the representations

LS := L ↓S (G) on S (G), LS ′ on S ′(G) where LS ′(x) := LS (x−1)′ for all x ∈ G

and AdLS ,S ′
on L(S (G); S ′(G)) where AdS ,S ′(x)T := LS ′(x)T LS (x)−1 for x ∈ G,

T ∈ L(S (G); S ′(G)). Then, using the density of

L(S ′(G); S (G)) ⊂ L(S (G); S ′(G)) and S (G×G) ⊂ S ′(G×G) ,

a quick calculation yields

KG AdLS ,S ′
= (LS ′ εLS ′)KG and TG(LS ′ εLS ′) = (LS ′ ε IS ′(G))TG .
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Hence OpG intertwines the left translation on symbols with the representation AdLS ,S ′
,

i.e.

AdLS ,S ′
(x) ◦OpG = OpG ◦(LS ′(x) ε IS ′(Ĝ)) , for all x ∈ G . (4.2.3)

Of course this equation fits to the perspective of Gelfand triples, since AdLS ,S ′
(x) is a

Gelfand triple isomorphism from L(G(G, µ);G(G, µ)) onto itself and LS ′(x)⊗ IS ′(Ĝ) is a

Gelfand triple isomorphism from G(G, µ)⊗ G(G, µ) onto itself for each x ∈ G.

Identity (4.2.3) and a criterium for the boundedness of OpG(σ) on L2(G, µ) will help us

to characterize operators in G (AdL2) by corresponding spaces of Kohn-Nirenberg symbols.

Obviously, OpG(σ) is bounded on L2(G, µ) for σ ∈ L2(G, µ) ⊗̂H L2(Ĝ, µ̂) but also

boundedness of sufficiently many derivatives of σ is a viable criterium for this. Before

citing the corresponding facts, we need to relate bounded B∞(Ĝ, µ̂)-valued functions with

elements in the Gelfand triple G(G, µ)⊗ G(Ĝ, µ̂).

For any compact Lie group G with Haar measure µ the measure space (Ĝ, µ̂) is discrete,

i.e. each equivalence class [π] is an atom and any function f : Ĝ 7→ C is measurable.

B∞(Ĝ, µ̂) can be embedded into S ′(Ĝ) as described in [24, 2.1.3 and 2.1.4]. Thus any

bounded function

σ̃ : G→ B∞(Ĝ, µ̂) : x 7→ [σ̃(x) : π 7→ σ̃(x, π)] ,

such that for any π ∈ Irr(G) the function σ̃(−, π) is µ-measurable, can be identified with

a unique element σ ∈ S ′(G) ⊗̂S ′(Ĝ) via

σ : S (G; S (Ĝ))→ C : ω 7→
∫
G
〈ω(x), σ̃(x)〉 dµ(x) , (4.2.4)

in which we used the standard homeomorphism S ′(G) ⊗̂S ′(Ĝ) ' S (G; S (Ĝ))′ from

Proposition 1.2.1 (iv). We may use the following boundedness result for the Kohn-

Nirenberg quantization found in [59, Theorem 10.5.5].

Proposition 4.2.4. Suppose G is a compact Lie group, k > dimG/2 is an integer and

D ⊂ gL is a basis. There is a constant C > 0 such that for any σ ∈ C k(G;B∞(Ĝ; µ̂)) the

Kohn-Nirenberg operator Op(a) defines a bounded operator on L2(G, µ) and

‖Op(σ)‖L(L2(G,µ)) ≤ C max
|a|≤k

sup
x∈G
‖Da

xσ(x)‖B∞(Ĝ,µ̂) .
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Complementing the above proposition, we can also bound the symbol σ by continuous

seminorms in E (AdL2) evaluated on OpG(σ). A proof for almost the exact statement

below can be found in [23, Proposition 8.11]. We use the cited proof with just minor

adjustments.

Proposition 4.2.5. Let G be a compact Lie group with Haar measure µ, let k > dimG/2

be an integer and let D ⊂ gL be a basis. Then there is some constant C > 0 such that

for any T ∈ C k+1(AdL2) the symbol σ = Op−1
G (T ) can be identified with a continuous

function σ : G 7→ B∞(Ĝ, µ̂) via (4.2.4) with

sup
x∈G
‖σ(x)‖B∞(Ĝ,µ̂) ≤ C max

|a|≤k
‖AdL2(Da)T‖L(L2(G,µ) . (4.2.5)

Proof. Note that the statement as we use it is not formulated in [23, Proposition 8.11].

However, in the proof to [23, Proposition 8.11] on page 3459 it is shown that the inequality

(4.2.5) holds for T ∈ C k(AdL2) and σ := Op−1
G (T ), where σ can be identified with a

bounded map G 7→ B∞(Ĝ, µ̂). For the map x 7→ σ(x) ∈ B∞(Ĝ, µ̂) we denote by σ(x, π)

the evaluation of σ(x) at π ∈ Irr(G). Now, if we choose T ∈ C k+1(AdL2) and if we take any

X ∈ gL, then AdL2(X)A ∈ C k(AdL2). Due to (4.2.3), we know that Op−1(AdL2(X)T ) =

L(X)σ is a bounded map and that x 7→ (σ(x, π)v, w)Hπ is differentiable1 with derivative

(L(X)σ(−, π)v, w)Hπ for each fixed π ∈ Irr(G) and all pairs v, w ∈ Hπ. Thus

|(σ(expG(−tX)x, π)− σ(x, π))Hπ | ≤ sup
x∈G
|t L(X)x(σ(x, π)v, w)Hπ |

≤ sup
x∈G
|t (L(X)xσ(x, π)v, w)Hπ |

≤ |t|C max
|a|≤k+1

‖AdL2(Da)T‖L(L2(G,µ)

for all π ∈ Irr(G), all t ∈ R with |t| small enough and all X ∈ gL with ‖X‖ small enough

with respect to some norm ‖−‖ on gL. Thus σ ∈ C (G;B∞(Ĝ, µ̂)).

Combining the last two propositions, we may realize that the Kohn-Nirenberg quan-

tization can be restricted to a linear homeomorphism between the smooth resp. ultrad-

ifferentiable vectors to L ε IB∞(Ĝ,µ̂) and smooth resp. ultradifferentiable vectors to AdL2 .

This results in the following theorem.

1a 7→ (a(π)v, w)Hπ
is a continuous functional on S ′(Ĝ).
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Theorem 4.2.6. Let G be a compact Lie group with Haar measure µ and let F (G) be

a C (G)-function space such that F (G) = F (R ↓E (G)). If we define the C (G)-function

space F̆ (G) := F (L), then

Op: F̆ (G;B∞(Ĝ, µ̂))→ F (AdL2) (4.2.6)

is a linear homeomorphism.

Let M be a weight sequence, let [M ] have (PL), let D ⊂ gL and D̃ ⊂ gR be bases.

Then the above holds for F (G) = E [M ]
D (G) and F̆ (G) = E [M ]

D̃
(G).

Proof. Due to Proposition 4.2.4 and Proposition 4.2.5, OpG and Op−1
G restrict to contin-

uous maps

OpG : E (G;B∞(Ĝ, µ̂))→ L(L2(G, µ)) and Op−1
G : E (AdL2)→ C (G;B∞(Ĝ, µ̂)) .

By using identity (4.2.3) we see that OpG �E (G;B∞(Ĝ,µ̂)) intertwines the representation

(L ε IB∞(Ĝ,µ̂))↓E (G;B∞(Ĝ,µ̂)) with AdL2 and Op−1
G � E (AdL2) intertwines AdL2 ↓E (AdL2

) with

L ε IB∞(Ĝ,µ̂). Lemma 2.4.3 (iv) implies that OpG and Op−1
G restrict to continuous maps

OpG : F (L ε IB∞(Ĝ,µ̂) ↓E (G;B∞(Ĝ,µ̂)))→ F (AdL2) ,

Op−1
G : F (AdL2 ↓E (AdL2

))→ F (L ε IB∞(Ĝ,µ̂)) .

Moreover, we have

E (G;B∞(Ĝ, µ̂)) = E (L ε IB∞(Ĝ,µ̂)) .

Then, due to Lemma 2.4.4 and F (G) = F (R ↓E (G)),

OpG : F (L ε IB∞(Ĝ,µ̂))→ F (AdL2)

is a linear homeomorphism. Now we use the linear homeomorphism

F̆ (G) ε B∞(Ĝ, µ̂) = F (L) ε B∞(Ĝ, µ̂) ' F (L ε IB∞(Ĝ,µ̂))

and the canonical isomorphism F̆ (G) ε B∞(Ĝ, µ̂) ' F̆ (G;B∞(Ĝ, µ̂)). Together they

imply F̆ (L ε IB∞(Ĝ,µ̂)) = F̆ (G;B∞(Ĝ, µ̂)).

We finish the proof by using E [M ]

D̃
(G) = E [M ]

D (L) and Lemma 2.4.5, which gives us

E [M ]
D (G) = E [M ]

D (R ↓E (G)) .
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We are left with one blemish in the theorem above. Since we used the description of

E {M}(AdL2) and E {M}(G;B∞(Ĝ, µ̂)) as projective limits to prove the statements above,

we needed (nQA) in this case. This especially excludes the spaces of analytic functions

resp. analytic vectors corresponding to {M} = {1}. But if we discard this assumption,

we still get the following.

Corollary 4.2.7. Suppose M is a weight sequence. Then

OpG : E {M}(G;B∞(Ĝ, µ̂))→ E {M}(AdL2)

is a linear bijection.

Proof. We just use Theorem 4.2.6 with F (G) := E {M}D,proj(G) for some frame D ⊂ DiffL(G).

With Proposition 2.2.18 and Lemma 2.4.10 we get F̆ (G;B∞(Ĝ, µ̂)) = E {M}(G;B∞(Ĝ, µ̂))

and F (AdL2) = E {M}(AdL2) in the sense of vector spaces.

By setting M = 1 and G = Tn the above corollary can be used to recover [9, The-

orem 3], which states that the algebra of analytic vectors E {1}(AdL2) are in one-to-one

correspondence with the analytic maps G→ B∞(T̂n, µ̂).

Let us now relate the statements of this section to some results concerning the space

of symbols S0
0,0(G× Ĝ). First, we need the definition of S0

0,0(G× Ĝ).

Definition 4.2.8. Let G be a compact Lie group and V some finite dimensional vector

space. For any ϕ ∈ E (G;L(V )) the difference operator ∆ϕ is defined by

∆ϕ : S ′(Ĝ)→ S ′(Ĝ)⊗ L(V ) : σ 7→ (FG ⊗ IL(V ))(ϕ · F−1
G σ) .

For a finite family Π = (π1, . . . , πn) ⊂ Irr(G) put HΠ := Hπ1 ⊗ · · · ⊗ Hπn and define

ϕΠ ∈ E (G;L(HΠ)) by

ϕΠ(x) := (IL(Hπ1 )−π1(x))⊗ · · · ⊗ (IL(Hπn )−πn(x)) .

The space S0
0,0(G × Ĝ) is defined to be the the set of symbols σ ∈ E (G;B∞(Ĝ, µ̂)) ⊂

S ′(G) ⊗̂S ′(Ĝ) such that for any P ∈ Diff(G) and any finite collection Π ⊂ Irr(G)

P ⊗∆ϕΠ
σ ∈ E (G;B∞(Ĝ, µ̂))⊗ L(HΠ) .
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S0
0,0(G× Ĝ) is equipped with the topology defined by the seminorms

σ 7→ sup
π∈Irr(G)

sup
x∈G
‖(Px ⊗∆ϕΠ

)σ(x, π)‖L(Hπ⊗HΠ)

for P ∈ Diff(G) and finite families Π ⊂ Irr(G).

Note that for finite families Π ⊂ Irr(G) the difference operator ∆ϕΠ
is continuous on

S ′(Ĝ) and restricts to a continuous operator in L(S (Ĝ); S (Ĝ)⊗ L(HΠ)).

In order to use our previous work, we will show that S0
0,0(G × Ĝ) is just the space

of smooth vectors E (G;B∞(G, µ̂)) to the representation L ε IB∞(G,µ̂). For the torus G =

Tn = Rn/(2πZn) this is especially easy.

Suppose # is the counting measure on Zn and µ is the Haar measure on Tn such that

µ(E + 2πZn) =
1

2π

∫
E

dx for Borel sets E ⊂ [0, 2π]n .

Then (Zn,#) ' (T̂n, µ̂) with respect to the bijection k 7→ [ek], in which ek(x+ 2πZn) :=

ei(x,k) for x ∈ Rn and the inner product (−,−) in Rn. Using this identification, we get

B∞(Ĝ, µ̂) ' `∞(Zn) and the difference operators take on the form

∆ekσ(`) = σ(`− k) for σ ∈ `∞(Zn) , `, k ∈ Zn .

Thus the difference operators ∆ϕΠ
act as continuous operators on `∞(Zn) and we get

E (Tn;B∞(T̂n, µ̂)) = S0
0,0(Tn × T̂n).

For general compact G, we can do something similar by using the homeomorphism

from Theorem 4.2.6. This yields the following proposition.

Proposition 4.2.9. For any compact Lie group G with Haar measure µ the identity

E (G;B∞(Ĝ, µ̂)) = S0
0,0(G× Ĝ)

holds in the sense of topological vector spaces.

Although the same can also be shown with [23, Lemma 8.7], the following proof needs

less additional resources.
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Proof. It is obvious that S0
0,0(G×Ĝ) ⊂ E (G;B∞(Ĝ, µ̂)) is equipped with a finer topology.

For any π ∈ Irr(G) we define the continuous maps

Tπ : S ′(G)→ S ′(G)⊗ L(Hπ) : f 7→ Tπf := π(−)−1 · f

Rπ : S ′(G)⊗ L(Hπ)→ S ′(G)⊗ L(Hπ) : f 7→ Rπf := f · π(−) .

Both Tπ and Rπ stay well-defined and continuous if we exchange S ′(G) with L2(G, µ) or

with S (G) = E (G). Now let a ∈ S (G) ⊗̂S (Ĝ), A := OpG(a) and K := KG(A). First

of all

KG ⊗ I
[
Rπ ◦ (A⊗ IL(Hπ)) ◦ Tπ

]
(x, y) = K(x, y) · π(y−1x) .

We use K(x, y) = I⊗F−1
G a(x, y−1x) in order to get

K(x, y) · π(y−1x) =
(

I⊗F−1
G a
)
(x, y−1x) · π(y−1x)

=
(

I⊗F−1
G ⊗ I

)(
I⊗∆πa

)
(x, y−1x)

= (KG OpG⊗ I)(I⊗∆πa) .

In summary, we have

Rπ(A⊗ IL(Hπ))Tπ = (OpG⊗ IL(Hπ))(I⊗∆πa) .

By the continuity of Rπ, Tπ, OpG and ∆π, this can be extended to arbitrary a ∈ S ′(G) ⊗̂

S ′(Ĝ). Since π and π(−)−1 are smooth maps,

E (AdL2) 3 A 7→ Rπ(A⊗ IL(Hπ))Tπ ∈ E (AdL2)⊗ L(Hπ)

is a linear homeomorphism onto its range. By Theorem 4.2.6, this implies that IS ′(G)⊗∆π

restricts to a continuous map from E (G;B∞(Ĝ, µ̂)) to E (G;B∞(Ĝ, µ̂))⊗ L(Hπ). Thus

I ε∆ϕΠ
: E (G;B∞(Ĝ, µ̂))→ E (G;B∞(Ĝ, µ̂))⊗ L(HΠ)

is well-defined and continuous for any finite family Π ⊂ Irr(G). This results in the identity

S0
0,0(G× Ĝ) = E (G;B∞(Ĝ, µ̂)) as locally convex spaces.

The above lemma shows that Theorem 4.2.6 contains the statement from [23, Propo-

sition 8.11] resp. [23, Corollary 8.6] concerning S0
0,0(G× Ĝ). Together with Theorem 4.2.2

and Theorem 4.2.6 we get the following corollary.
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Corollary 4.2.10. OpG S0
0,0(G × Ĝ) is a ∗-subalgebra of L(L2(G, µ)) for any compact

Lie group G with Haar measure µ. Furthermore, each operator in OpG S0
0,0(G × Ĝ) can

be identified with an operator in L(Hk(G)) for k ∈ N0 ∪ {∞}.

By [9] the set of operators E {1}(AdL2) is dense in OpTn S0
0,0(Tn × T̂n) with respect to

the subspace topology in L(L2(Tn, µ)). We can even go one step further and prove the

denseness of E {1}(AdL2) in OpTn S0
0,0(Tn × T̂n) with respect to its own Fréchet topology.

Here we can use that E [M ]
D (AdL2) is dense in E (AdL2) by Lemma 2.4.7.

Corollary 4.2.11. Suppose G is a compact Lie group with Haar measure µ. Then

E {1}(AdL2) is dense in E (AdL2) = OpG S0
0,0(G× Ĝ).

4.3 Operators defined by Schrödinger type represen-

tations

In this subsection we will consider the representations ρλ and Θλ. For the most part, we

can prove statements for the operators in E [M ]
D (Adρλ) and E [M ]

D (AdΘλ) that are analogous

to the operators in F (AdL2), where L2 is the left regular representation for some compact

Lie group.

Lemma 4.3.1. If M and L are weight sequences then S [M ]
[L],proj(R

n) is dense in L2(Rn).

Proof. Since S (1)
(1) (Rn) ⊂ S [M ]

[L],proj(R
n), it is enough for S (1)

(1) (Rn) to be dense in L2(Rn).

In [48] it was proven that all Hermite functions are contained in S (1)
(1) (Rn). This implies

the denseness because they form an orthonormal basis of L2(Rn).

As for the case of the left regular representation, the following theorem is a summary

of preceding lemmata applied the Schrödinger representation on H.

Theorem 4.3.2. Let M , L and K be weight sequences, let λ ∈ R× and let D ⊂ DiffL(H)

be a frame. Then the following holds.
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(i) If F (H) ∈ {E (H),E [M ]
D (H)}, then the algebra F (Adρλ) is a ∗-subalgebra of L(L2(Rn)),

i.e.

F (Adρλ)∗ = F (Adρλ) .

Moreover, if [M ] has (PL), then F (Adρλ) is locally m-convex.

(ii) If F (H) ∈ {E (H),E {M}D (H)}, then the algebra F (Adρλ) is invariant under the

holomorphic functional calculus.

(iii) If F ⊂ DiffL(Rn) is a frame and q ⊂ Rn a basis, then we have embeddings

F (Adρλ) ↪→ L(E) : T 7→ T �EE

if we choose F (H) and E from Table 4.3. These embeddings are continuous for

E 6= S {K}
{L} (Rn) or [M ] ⊂ (K), (L).

F (H) E

E (H), E [M ]
D (H) Hk

P(Rn) for k ∈ N0, S (Rn)

E [M ]
D (H) and M fulfils (MG)

HK,F
L,q (Rn), S (K)

(L) (Rn) for [M ] ⊂ (L) and [M ] ⊂ (K)

S {K}
{L} (Rn) for [M ] ⊂ {L} and [M ] ⊂ {K}

S [K]
[L],proj(R

n) for [M ] ⊂ [L] and [M ] ⊂ [K]

Table 4.3: Possible choices of locally convex spaces E and F (H) for Theorem 4.2.2 (iii)

Proof. We omit the proof for (i) and (ii), since these statements can be proven exactly

as in Theorem 4.2.2.

(iii): By Lemma 2.4.22 and Lemma 2.4.24 we have

C k(ρλ) = Hk
P(Rn) and E (ρλ) = S (Rn) .

Thus, for the first row of Table 4.3, we may apply Theorem 4.1.7 for (π,E) = (ρλ, L
2(Rn)).

Now we construct the proof for the second row of Table 4.3. The space E [M ]
D (Adρλ)

does not depend on the choice D by Proposition 2.2.10. So we may assume that D =

(D(0), D(1), D(2)) with ρλ(D
(0))f = if , ρλ(D

(1)
j )f = i qj f and ρλ(D

(2)
j )f = Fjf for all
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f ∈ S (Rn). Let N be any weight sequence with [M ] ⊂ (N). By a slight adjustment to

the proof of Proposition 2.2.15 (i)2, we get the continuous multiplication

E [M ],[M ],[M ]

D(0),D(1),D(2)proj
(H)× E N,L,K

D(0),D(1),D(2)(H)→ E N,L,K

D(0),D(1),D(2)(H)

for all L,K with [M ] ⊂ (L), (K) and thus also a continuous multiplication

E [M ],[M ],[M ]

D(0),D(1),D(2)proj
(H)× E [N ],[L],[K]

D(0),D(1),D(2),proj
(H)→ E [N ],[L],[K]

D(0),D(1),D(2),proj
(H)

for all [L], [K] with [M ] ⊂ [L], [K]. Since M fulfils (MG), we have the continuous

embeddings

E [M ]
D (H)

I−→ E [M ]
D,proj(H)

I−→ E [M ],[M ],[M ]

D(0),D(1),D(2)proj
(H) .

Now, combining the embedding with the continuous multiplications, Lemma 2.4.28 and

Lemma 4.1.1 gives us the continuous map

E [M ]
D (Adρλ)→ L(E)

for E = HN,F
K,q (Rn) or E = S [K]

[L],proj(R
n). By using S (K)

(L),proj(R
n) = S (K)

(L) (Rn) and

Lemma 4.1.2 we get the continuity for all other choices for E.

Finally E [M ]
D (Adρλ) → L(E) : T 7→ T �EE is an embedding for all considered choices,

since S (1)
(1) (Rn) ⊂ E is dense in L2(Rn) by Lemma 4.3.1

Let Cb(Rn × Rn) be the space of all continuous bounded functions f : Rn × Rn → C

equipped with the topology defined by the supremum norm

f 7→ ‖f‖∞ = sup
x∈Rn×Rn

|f(x)| .

If we define the representation Rb,λ of H on Cb(Rn × Rn) by

Rb,λ(t, x
′, x)f(y, y′) := f

(
y +

√
|λ|x, y′ − sgn(λ)

√
|λ|x′

)
for t ∈ R, x, y ∈ Rn, x′, y′ ∈ Rn and f ∈ Cb(Rn × Rn), then we have

E (Rb,λ) = {f ∈ E (Rn × Rn) | Pf is bounded for all P ∈ DiffL(Rn × Rn)} .
2Essentially we just need to exchange the seminorms ‖−‖k,D,L with seminorms that are more suited

to the spaces EN,L,K
D(0),D(1),D(2)(H).
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Since this locally convex space does not depend on the choice λ ∈ R× we will also just

write Eb(Rn ×Rn) := E (Rb,λ). By identifying Rn with Rn, the space Eb(Rn ×Rn) can be

identified with the usual space of symbols S0
0,0(Rn×Rn) [15, 67]. Note (Rb,λ,Cb(Rn×Rn))

is not an admissible representation, since C (Rb,λ) are the bounded uniformly continuous

functions on Rn × Rn. Now for any f ∈ E (Rb,λ) we have

OpRn(Rb,λ(x)f) = Adρλ(x) OpRn(f) for all x ∈ H .

Here we identify Rn with R̂n via x′ 7→ [x 7→ e2πi〈x,x′〉]. This way we identify any function

f ∈ E (Rb,λ) with a distribution in S ′(Rn) ⊗̂S ′(R̂n) ' S ′(Rn) ⊗̂S ′(Rn) via

S (Rn)×S (Rn) 3 (ϕ, ψ) 7→
∫
Rn

∫
Rn
f(x, x′)ϕ(x)ψ(x′) dx′ dx .

For any weight sequence M and any frame D ⊂ Va(Rn × Rn) we define

EM
b,D(Rn × Rn) :=

{
f ∈ E (Rb,λ)

∣∣∣∣ sup
a∈S2n

‖Daf‖∞
M|a| |a|!

<∞
}

equipped with the norm

f 7→ sup
a∈S2n

‖Daf‖∞
M|a| |a|!

and also

E (M)
b (Rn × Rn) := lim←−

h>0

EM
b,h∂(Rn × Rn) and E {M}b (Rn × Rn) := lim←−

h∈Λ

E hM
b,∂ (Rn × Rn) .

Note that similar as in Proposition 2.2.18 we have

E {M}b (Rn × Rn) = lim−→
h>0

EM
b,h∂(Rn × Rn) = E {M}∂ (Rb,λ)

as vector spaces. Due to Lemma 2.4.8, we have EM

b,|λ|
1
2 h∂

(Rn × Rn) = EM
h∂ (Rb,λ) and thus

also E [M ]
b (Rn×Rn) = E [M ]

∂,proj(Rb,λ). If M fulfils (nQA), then E {M}b,∂ (Rn×Rn) = E {M}∂ (Rb,λ)

even holds in the sense of topological vector spaces.

In the following theorem, we built on top and expand the results of Cordes concerning

the description of smooth operators via their symbols.

Theorem 4.3.3. Suppose M is a weight sequence and λ ∈ R×. Then

OpRn : F (Rb,λ)→ F (Adρλ) (4.3.7)
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is a linear homeomorphism for any C (H)-function space F (H) with F (H) = F (R ↓E (H)).

Let D ⊂ DiffL(H) be a frame. For F (H) ∈ {E (H),E [M ]
D (H)} this is especially true if

[M ] has (PL), in which case also

E [M ]
D (Rb,λ) = E [M ]

b (Rn × Rn) and E (Rb,λ) = Eb(Rn × Rn) . (4.3.8)

If F = E [M ] with [M ] = {M} and M does not fulfil (nQA), then (4.3.7) is still a

bijection and (4.3.8) holds in the sense of vector spaces.

Proof. The proof is closely related to the proofs of 4.2.6 and Corollary 4.2.7.

First of all, by the discussion immediately before this theorem we have

E [M ]
D,proj(Rb,λ) = E [M ]

b (Rn × Rn) and also E (Rb,λ) = Eb(Rn × Rn) .

And also E [M ]
D (Rb,λ) = E [M ]

D,proj(Rb,λ) in the sense of vector spaces (resp. in the sense of

topological vector spaces if [M ] has (PL)). Now let F (H) ∈ {E (H),E [M ]
D,proj(H)}. By

Lemma 2.4.5, we have

F (Rb,λ ↓E (Rb,λ)) = F (Rb,λ) and F (Adρλ ↓E (Adρλ )) = F (Adρλ) .

Now we discuss the general case in which (4.3.7) is a homeomorphism. The map

OpRn : E (Rb,λ) = Eb(Rn × Rn)→ E (Adρλ) (4.3.9)

is a well-defined linear homeomorphism by Theorem 4.2 and Theorem 4.3 of [15, Chap-

ter 8]. Since OpRn Rb,λ ↓E (Rb,λ) = Adρλ ↓E (Adρλ ) OpRn the restriction

OpRn : F (Rb,λ ↓E (Rb,λ))→ F (Adρλ ↓E (Adρλ ))

is a well-defined homeomorphism due to Lemma 2.4.3. Finally, due to Lemma 2.4.4, we

know that

F (Rb,λ) = F (Rb,λ ↓E (Rb,λ)) and F (Adρλ) = F (Adρλ ↓E (Adρλ )) .
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The above theorem especially implies that the operator algebras E [M ]
D (Adρλ) consid-

ered in Theorem 4.3.2 are dense in the usual algebra of pseudodifferential operators with

symbols in Eb(Rn × Rn) ' S0
0,0(Rn × Rn) for the case {1} ⊂ [M ]. For this statement we

only need to apply Lemma 2.4.7.

We will now relate the above to other results. In [10] pseudodifferential operators with

symbols a ∈ Γmµ,ν fulfilling the boundedness requirements

sup
α,β∈Nn0

sup
(x,ξ)∈Rn×Rn

C |α|+|β|
|∂αx∂

β
ξ a(x, ξ)|

(α!)µ 〈x〉m1−|α| (β!)ν 〈ξ〉m2−|β|
<∞ for some C > 0

are considered, where 〈x〉 = (1 + |x|) 1
2 and m = (m1,m2). In the case m = 0, we have

OpRn Γ0
µ,µ ⊂ E {G

(µ)}(Adρλ) for the Gevrey sequence G
(µ)
k = (k!)1−µ due to Theorem 4.3.3.

This way the continuity property OpRn Γ0
µ,µ ⊂ L(S {M}

{M} (Rn)) from [10, Theorem 2.2] is

included in Theorem 4.3.2. But in later papers [1, 11], more general symbols have been

considered. The corresponding statements about the continuity on Gelfand-Shilov spaces

are no longer contained Theorem 4.3.2. However, there do not seem to be any results

concerning the spectral invariance of these algebras of pseudodifferential operators. Here

the characterization via regularity conditions on the adjoint representations has merit.

Next to the cases discussed before, we could also use the flexibility of our approach on

other representations (π,E). For example, we could formulate an equivalent of Theorem

4.3.3 for (π,E) = (ρλ, L
p(Rn)). Though, in this case we can not use (4.3.9) for a charac-

terization via symbols. Another field of application would be to use other Lie groups that

are neither compact nor abelian. An example is given in the following theorem, which

uses the Schrödinger-type representations Θλ on L2(H). Though, here we do not have a

homeomorphism of the type (4.3.9) that intertwines AdΘλ ↓E (AdΘλ
) with a corresponding

group action on bounded smooth symbols as well.

Theorem 4.3.4. Let M be a weight sequence, let λ ∈ R× and let D ⊂ DiffL(H2) be a

frame. Then the following holds.

(i) If F (H2) ∈ {E (H2),E [M ]
D (H2)}, then the algebra F (AdΘλ) is a ∗-subalgebra of

L(L2(H)), i.e.

F (AdΘλ)∗ = F (AdΘλ) .
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Moreover, if [M ] has (PL), then F (AdΘλ) is locally m-convex.

(ii) If F (H2) ∈ {E (H2),E {M}D (H2)}, then the algebra F (AdΘλ) is a spectrally invariant

in L(L2(H)), i.e.

L(L2(H))× ∩F (AdΘλ) = F (AdΘλ)× .

Moreover, if M fulfils (nQA), then F (Adρλ) is invariant under the holomorphic

functional calculus.

(iii) If F ⊂ DiffL(H) is a frame and q ⊂ H′ a basis and if {1} ⊂ [M ], then we have

embeddings

F (AdΘλ) ↪→ L(E) : T 7→ T �EE

if we choose F (H2) and E from Table 4.4. These embeddings are continuous for

E 6= S {K}
{L} (H) or [M ] ⊂ (K), (L).

F (H2) E

E (H2), E [M ]
D (H2) Hk

P(H) for k ∈ N0, S (H)

E [M ]
D (H2) and M fulfils (MG)

HK,F
L,q (H), S (K)

(L) (H) for [M ] ⊂ (L) and [M ] ⊂ (K)

S {K}
{L} (H) for [M ] ⊂ {L} and [M ] ⊂ {K}

S [K]
[L],proj(H) for [M ] ⊂ [L] and [M ] ⊂ [K]

Table 4.4: Possible choices of locally convex spaces E and F (H2) for Theorem 4.2.2 (iii)

Proof. The proofs for (i), (ii) and (iii) work exactly as in Theorem 4.3.2. The only

difference for (iii) is that we can not cite sources for the denseness of E in L2(H). Here

we use {1} ⊂ [M ], which ensures that E {1}(Θλ) ⊂ E. Thus

F (AdΘλ) ↪→ L(E) : T 7→ T �EE ,

is an embedding, since E {1}(Θλ) is dense in L2(H).
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List of symbols

Notations and basic concepts

E ′b, E
′
c, E

′
s, 19

E ⊗̂ε F , 23

E ε F , 22

E ⊗̂H F , 24

E ⊗ F , 22

E ⊗̂π F , 23

Lp(X,µ), 20

Lp(X,µ;E), 21

S ε T , 25

S ⊗ T , 25

T ′, 19

T ∗, 18, 39

dx, 20

IA, I, 17

IntM , M , M◦, 17

Tr[T ], 18

‖−‖, ‖−‖E, 18

(−,−), (−,−)E, 18

〈−,−〉, 18

F(E;F ), 28

G1 ⊕ G2, G1 ⊗ G2, L(G1;G2), 41

K, 29, 42

L(E;F ), L(E), E ′, 18

Lε(E ′α;F ), (E ′α)′ε, 19

Lb(E;F ), Lc(E;F ), Ls(E;F ), 19

N (E;F ), HS(E;F ), 18

lim−→α∈A(Eα, jα,β), 22

lim←−α∈A(Eα, jα,β), 21

Spaces of vector valued smooth and ultradifferentiable

functions

HM
D (G), H

[M ]
D (G), H

[M ]
D,proj(G), 121

(Λ,&), E {M}D,proj(X), E [M ]
D,proj(X), 79

(W[M ],&), 89

1A, A×, σA(a), 62
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Dα, 54

Hk(G), H∞(G), 120

Hk
L/R(G), H∞L/R(G), 120

Hk
P(G), 127

HM,D
L,q (G), 127

Hπ, Irr(G), IrrR(G), 123

K
rc
⊂M, 50

N ⊂M , N ≺M , 1, 67

[M ], 76

[M ] ⊂ [N ], [M ] ⊂ (N), {M} ⊂ [N ], 77

AdG, CaG, 100

Diff(M), Diffk(M), 47

G, g, 1G, expG, Z(G), Z(g), 55

H, ρλ, 125

H2, Θλ, 126

L, R, L2, R2, 110

M∪̇M′, 98

SN , Da, |a|, 54

SN,k(a), 54

M 2, 124

Ḃ′(R;E ′), B̃′(R;E ′), 107

G(M, ν), 99

G(π), Gop(π), 124

Va(K), 52

Va(M), 47

gL/R, DiffL/R(G), DiffkL/R(G), 55

C (M), C (M;E), 43

D(M), 47

E ′0(R), 105

E (K), C k(K), 52

E (M), C k(M), 46

EM
D (K), ‖−‖D,M , 66

E K,L,M
T,E,D (M), E [K],[L],[M ]

T,E,D (M), 129

E {M}D (X), E (M)
D (X), EM

D (X), 76

F (π), ΦF
π , π↓F , 110

G (M), G (M;E), 44

P(M), S (M), OM(M), DiffP(M), 98

P(Rn), S (Rn), OM(Rn), DiffP(Rn), 96

S (M)
(L) (G), S {M}

{L} (G), S [M ]
[L],proj(G), 128

S∗(R), 105

∂, 53

∂φ, 53

π(T ), 111

lim−→α∈A Fα(M), lim−→α∈A Fα(M;E), 46

lim−→α∈A Fα(π), 121

lim←−K∈KF (K), lim←−K∈KF (K;E), 46

lim←−α∈A Fα(π), 119

lim←−α∈A Fα(M), lim←−α∈A Fα(M;E), 45

S̃N,k(a), 64

Quantization on Gelfand triples

B1(Ĝ, ν), B2(Ĝ, ν), B∞(Ĝ, ν), 135

OpG, 138

δλ, 143

FG, 136, 137
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FΩ, 140

Fπ, Opπ, 154

FG,∗, 158

G(R×; π), 154

G(Ĝ, µ̂), 137

KG,∗, 164

TG, KG, 138

TG,∗, 163

g×, g+
` , g−` , 151

opπ, 143

SI/Z(G), SI/ZR(G), 142

S (R×; π), L2(R×; π), S ′(R×; π), 154

S (Ĝ), S ′(Ĝ), 137

S∗(G), S ′
∗(G), G∗(G, µ), 153

opπ, 140

Opπ, 164

π(f), 136

π ∼ ξ, π ∼ Ω, 139

πλ, 145

Ĝgen, 144

Ĝ, 134

µ̂, 136

µ̂π, 146

℘`, 152

Operator spaces characterized by ultradifferentiable

group actions

F (T ), 180

Adπ, 175

∆Π, 190

G(M)

D̃
(G, µ), 186

S0
0,0(G× Ĝ), 190

Cb(Rn × Rn), Rb,λ, 195

E {M}b (Rn × Rn), E (M)
b (Rn × Rn), 196

Eb(Rn × Rn), 196
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