

June 29, 2022

Abstract

In this thesis, a high-performance GPU-based simulation- and analysis-
environment for dynamical systems is designed, implemented, and tested.
Computation is optimized on the basis of the GPU hardware architecture.
Minimal task-specific simulation programs are created using runtime compi-
lation. Scan execution and analysis methods are designed and optimized
for massive parallelization and integrated into a modular, efficient, scalable,
and streamlined architecture. The new program is tested for performance
and result accuracy. The impact of floating-point inaccuracy is discussed
and shows how the current implementation of AnTGPU can mitigate this
problem.

3

4

Contents

1. Introduction 9

2. Dynamical systems 11
2.1. Analysis of dynamical systems 12

2.2. Numerical analysis . 12

3. The AnT Project 15
3.1. AnT scan architecture . 16

3.2. AnT dynamical system analysis 17

3.2.1. AnT analysis methods 18

3.2.2. Performing analysis in AnT 20

4. GPU Computing 23
4.1. GPU hardware architecture . 23

4.2. Strengths and weaknesses of GPUs computation 24

4.3. GPU computing frameworks 26

5. Goal and tasks of this thesis 29

6. Assessing GPU acceleration of AnT 31

7. AnTGPU: Architecture development 35
7.1. Computation flow . 36

7.2. Abstract architecture . 39

7.3. Dynamic kernel generation . 39

7.4. Method execution and cross-thread computation 41

7.4.1. Trajectory iteration architecture 41

7.4.2. Cross-thread computation 41

7.5. CPU postprocessing . 42

8. AntGPU: Method development 47
8.1. General trajectory evaluation 47

5

Contents

8.2. Period analysis . 50

8.3. Lyapunov exponents analysis 52

8.4. Density analysis . 54

8.5. Bandcounting . 56

8.6. Symbolic sequence analysis . 58

9. Testing and evaluation of AnTGPU 65
9.1. Performance comparison against AnT 66

9.2. Quality evaluation . 69

9.2.1. Comparison with AnT 69

9.2.2. Mitigating floating-point number inaccuracy 72

9.3. AnTGPU on nested closed invariant curves 73

10.Conclusion and Outlook 81

Bibliography 83

A. AnTGPU User documentation 89
A.1. Config file documentation . 89

A.1.1. Features . 89

A.1.2. Syntax example . 90

A.1.3. Option keys . 90

A.2. System function file documentation 92

A.2.1. Syntax . 93

A.2.2. Predefined variables . 94

A.2.3. Forbidden variable names 94

A.2.4. Example function . 95

A.3. Output file documentation . 95

A.4. Program execution documentation 96

B. Example scan configurations 97
B.1. Modified logistic function & General evaluation 97

B.2. Gingerbreadman map & Period analysis 98

B.3. Hénon map & Lyapunov exponents 99

B.4. Rössler system & Lyapunov exponents 99

B.5. Tent map & Density analysis 100

B.6. PWS map & Bandcounting . 101

B.7. PWS map & Period analysis . 102

B.8. PWS map & Symbolic analysis 102

6

Contents

C. Example system functions 105
C.1. PWS map & Symbolic analysis 105

C.2. Rössler system & Lyapunov exponents 105

7

Contents

8

1. Introduction

In a dynamical system, a function describes the time-dependent evolution of
a point, also referred to as a state, in space. In mathematics, physics, biology,
and economics dynamical systems are used to model evolving behavior.
Examples include the movement of celestial bodies or oscillating waveforms
in a circuit [BS02] [CIKE93]. Typical questions revolve around the long-term
evolution of a state or a set of states. This allows giving predictions on
the behavior of a given system. Does a state converge to a fixed point or a
periodic sequence of points? This question is investigated by period analysis.
Do two initially close states diverge over time? The rate of divergence can
be quantified by calculating Lyapunov exponents [WSSV85].

The above-mentioned and many more questions are answered by ana-
lyzing the system function. This includes the investigation of fixed points
and attractors. In many systems, equations can be solved analytically and
derivatives are easily calculated. In other cases, system functions are too
complex to be analyzed analytically. In those cases, the analysis of the system
is performed numerically. Many results in past and present work are based
on numerical analysis of the respective system [SH98]. Often, programs are
designed to perform a specific analysis on a predefined system. Apart from
system-specific analysis programs there exist general analysis packages. One
example is AnT, developed at the University of Stuttgart in 2001. AnT is still
used today and has an active international userbase. In AnT the user can
input a system function and select from a wide variety of analysis methods
to be performed on the given system [Sch04].

In the last 20 years, there has been enormous progress in hardware per-
formance. Parallel processing raised to industry standard. Gigabytes of
memory and teraflops of processing power became available to home users
in the form of high-performance GPUs [Nvib]. In recent years, researchers
started to harness GPU processing power to numerically analyze dynamical
systems [PMS21].

9

1. Introduction

This work reports the results of developing a tool for the analysis of dy-
namic systems on the GPU that builds on the flexible, user-friendly, and
function-rich AnT package. The user does not need to know the inner work-
ings of analysis methods and does not need to implement the methods with
respect to the specific hardware limitations of the GPU. At the same time,
the analysis is performed with specifically designed and optimized analysis
methods in a hardware-oriented architecture. This process is split into two
phases. In the first phase, the existing AnT project is assessed for GPU accel-
eration. It has been found that the scan execution architecture of the AnT
project can be modified to work efficiently on the GPU hardware. However,
the implementation of the architecture and methods as well as the method
execution architecture and the system function integration is not compatible
with efficient GPU computing. In the second phase, a new program, scan
architecture, method execution architecture, and system function integration
is developed and implemented with a focus on efficient execution on GPU
hardware.

First, an introduction to dynamical systems in the context of this work
is given in chapter 2. Additionally, the AnT project and fundamentals of
GPU computing are introduced in chapter 3 and chapter 4. A selection of
the most important system classes and analysis methods in AnT is made.
The selected system classes and analysis methods set the scope of this work.
Other features of the AnT project will not be assessed, modified, optimized,
or transferred to the GPU.
After that, the results of the assessment of GPU acceleration ability of the
existing AnT project are discussed in chapter 6. Next, the process of creating
a modified and GPU-oriented architecture is presented in detail in chapter
7. Following, in chapter 8 the selected analysis methods are modified to
integrate with the GPU architecture, optimized with regards to processing
and memory efficiency, and enhanced by new features. In some cases, the
way in which a method performs analysis is changed entirely to allow for a
more efficient implementation, while obtaining the same analysis result.
Finally, in chapter 9 the new program AnTGPU is compared in speed and
accuracy against the existing AnT project. Additionally, scans of nested
closed invariant curves are computed with AnTGPU.

10

2. Dynamical systems

A discrete-time dynamical System consists of a non-empty set X and a map

f : X → X

f is also referred to as system function. Given an initial state x0 ∈ X, any
higher order state can be calculated by iterating xn+1 = f (xn). This defines
the n-th iterate of f as f n(x) = f ◦ · · · ◦ f (x0) [BS02]. In practice X is often a
subset of Rm.

A continous-time dynamical system consists of a space X and a parame-
terized family of maps

f t : X → X, t ∈ R

with f 0 = Id and f a ◦ f b = f a+b, a → t1, b → t2. Many dynamical sys-
tems encountered in practice have a discrete-time and a continous-time
version. [BS02]. A system of ordinary differential equations that are only
dependant on the current state is called an autonomous system.

Often, a system has one or several control parameters. Parameters are
independent of the state space and remain constant over state transition.
State transition induces an order of states often referred to as time. The
sequence of states obtained by iterating or integrating an initial state x0 for a
given set of parameters is called orbit or trajectory. A numerical integration
step, performed by an arbitrary integration method is also named iteration
in this work. In the limit, an orbit may diverge or converge into a limit set.
Limit sets may take the form of fixed points, a period of points, a quasi-
periodic set, or a chaotic set [SH98]. Given a limit set and a set of system
parameters, the basin of attraction is the set of initial states that converge
to the limit set. Given a basin of attraction that includes one or multiple
states of the state-space, the corresponding limit set is often referred to as
the attractor.

11

2. Dynamical systems

2.1. Analysis of dynamical systems

A dynamical system is analyzed by mapping its behavior for a large number
of initial states and parameter values. A good initial strategy is given by
Stuart [SH98]:

A fairly complete picture of a dynamical system may be obtained
by determining all possible limit sets, determining how these
limit sets change with respect to control parameters in the system.
and then determining the basins of attraction of individual limit
sets.

In practice, many aspects of the above strategy are analyzed in greater
detail. There are multiple ways in which limit sets change with respect to
the system parameters. Investigating these changes is subject to bifurca-
tion theory. Common bifurcations include fold and flip bifurcations [Ste10].
Given a chaotic or quasi-periodic limit set, the limit distribution of states in
the set may be of interest. Determining the limit distribution is subject to
density analysis. A chaotic limit set can be composed of connected compo-
nents, typically referred to as bands. It may be of interest to determine the
number of disconnected subsets in the chaotic limit set. This is referred to
as Bandcounting [Eck06].

Not mentioned in the quoted analysis strategy is quantifying the rate of
divergence or convergence of two initially close states on an attractor over
time. The rate of exponential divergence or convergence can be measured by
calculating Lyapunov exponents. If one Lyapunov exponent in a dynamical
system is positive, the system is often chaotic [WSSV85]. This is intuitive.
Given a positive Lyapunov exponent, two initially close states diverge at
an exponential rate. This makes long-term predictions very difficult. Ad-
ditionally, the analysis of a dynamical system may involve basic statistics
of system orbits. This includes mean states, maximum and minimum state
values, and wave numbers. Wave numbers measure the relative amount of
local minima of an orbit in a given time duration [Sch04].

2.2. Numerical analysis

Many dynamical systems are too complex to perform the above-mentioned
analysis methods analytically. In this case, numerical analysis is performed.

12

2.2. Numerical analysis

Numerical analysis in the context of this work can be summarized as a
sequence of scans. In a scan, for each point in a set of scan points, an orbit
of a given length is calculated and analysis is performed on the orbit’s states.
A scan-point is a tuple containing an initial state and system parameters that
remain fixed while calculating the corresponding orbit. Often the limit or
asymptotic behavior of a dynamical system is to be analyzed. In numerical
analysis, the limit behavior of an orbit is approximated by discarding sev-
eral transient iterations. Transient iterations are the first n system function
iterations of the initial state.

If the scan-points of a scan cover the combined state and parameter space
of a dynamical system densely and the number of transient iterations is
sufficient, the limit sets of a dynamical system and their basins of attractions
can be approximated. Creating such a map of a dynamical system is usually
computationally expensive. Let the number of dimensions of the combined
state and parameter space be d. If every dimension of the state and pa-
rameter space is sampled by n orbits with m iterations, the total number
of calculations is lower bounded by nd · m. This illustrates the need for
high-performance computing and parallelization in the numerical analysis
of dynamical systems.

13

2. Dynamical systems

14

3. The AnT Project

AnT is a simulation and analysis package for dynamical systems [Sch04].
It has been developed at the IPVS to support researchers and teachers.
The current version, AnT 4.669, has been developed based on a set of
requirements listed below:

• Modern software concepts

• Reuse-ability

• Support of rapid development, maintenance, and advancement

• Open source

• Scientific computing

• Distributed computing

The requirements have been implemented using object-orientated C++, a
modular code structure connected by interfaces, separation of data record-
ing and processing, and a client-server architecture to enable distributed
computing. Additionally, CASE-Tools have been used. This includes a
computer-based build process with GNU Autotools [Cal19], a computer-
based documentation with Doxygen [Lar11] and computer-based versioning.

AnT supports a wide range of dynamical systems including discrete-time
and continuous-time systems. Many system types supported by AnT extend
the definition of dynamical systems that is used in the context of this work.
Discrete-time systems supported by AnT include:

• Ordinary maps

• Coupled map lattices

• Recurrent maps

Continous-time systems supported by AnT include:

15

3. The AnT Project

• Ordinary Differential Equations

• Coupled ordinary differential equation lattices

• Partial differential equations

• Delay differential equations

• Multi-delay differential equations

• Functional differential equations

• Stochastic dynamical systems

3.1. AnT scan architecture

AnT supports four types of scans: one-dimensional scans, two-dimensional
scans, user defied scans, and scan sequences. In AnT, a one-dimensional
scan samples a line in the state-parameter space. Given a start and step size
equation, the line is either sampled with uniform step size or logarithmically
increasing or decreasing step size. There is an option to only use integer-
valued step sizes. A real two-dimensional scan samples an axis-aligned plane
in the state parameter space. Each dimension is sampled with an individual
fixed step size. This is equivalent to a rectangular grid. Alternatively, an
elliptical scan can be performed. A two-dimensional elliptical scan samples
points on an ellipse in the plane. In a user-defined scan, a sequence of scan
points is provided by the user. This allows sampling arbitrary shapes in the
state parameter space at the expense of additional work for the user [Sch04].
Additionally, scan sequences can be defined. For example, a one-dimensional
scan iterates over a sequence of nested one-dimensional scans. Both scan
sequences and user-defined scans allow for scans of arbitrary dimensions.

Every scan results in a set of scan points, for which orbits have to be
calculated and evaluated. The basic execution pattern used in AnT is called
the machine concept. A machine works in three phases: Initialization of
the task, processing the task as long as necessary in a cyclic manner, and
finishing the task. The three phases are called pre, during, and post.
In AnT the scan of a dynamical system is performed by two instances of the
machine concept, a ScanMachine and an IterMachine. In the pre-phase, the
ScanMachine initializes the scan and loads data specific to analysis methods.

16

3.2. AnT dynamical system analysis

In the during-phase, an IterMachine is launched. Additionally, analysis
methods that operate on an inter-trajectory basis are executed. The during-
phase is repeated for every scan point. In the post-phase analysis methods
are processed, which aggregate data over the entire scan. In the pre-phase
of the IterMachine, the trajectory and analysis methods that operate inde-
pendently per trajectory are initialized. In the during-phase, the trajectory
is calculated and the selected analysis methods are computed. This boils
down to iterating the map or integrating the differential equation step by
step using numerical integration. The during phase is repeated until the
specified number of iterations has been reached [Sch04]. In the post-phase
of the IterMachine, the analysis results are saved and processed. The scan
architecture of AnT is illustrated in Figure 3.1.

Figure 3.1.: AnT scan architecture with a schematic of the computation flow
in the ScanMachine and the IterMachine.

3.2. AnT dynamical system analysis

Many important analysis methods and analysis concepts used in the analysis
of dynamical systems have been introduced in chapter 2. First, an overview
of the analysis methods implemented in AnT is given. Every method is

17

3. The AnT Project

briefly described. Second, it is explained how analysis concepts such as
bifurcation analysis are realized in AnT using the scan architecture and the
implemented analysis methods.

3.2.1. AnT analysis methods

The following analysis methods are implemented in AnT:

• General trajectory evaluations

• Period analysis

• Region analysis

• Lyapunov exponents analysis

• Dimension analysis

• Frequency analysis

• Singular value analysis

• Check for conditions

• Symbolic sequence analysis

• Symbolic image analysis

• Generalized Poincaré sections

• Bandcounting

General trajectory evaluations Generalized trajectory evaluations include
the saving of orbits or parts of orbits and calculating basic statistics of
orbits. In basic statistics mean, minimum states, maximum states, and wave
numbers are calculated.

Period analysis Period analysis investigates the asymptotical behavior of
an orbit. Given a predefined compare precision, it is determined if the limit
set of an orbit is a fixed point, a periodic set of points, or non-periodic.
Additionally, an orbit is tested for divergence to infinity or negative infinity.

18

3.2. AnT dynamical system analysis

Region analysis Region analysis is not an independent analysis method.
Before region analysis can be applied, period analysis has to be performed.
A region of the same limit set is detected by period analysis marked by
region analysis. Every region has a unique asymptotic behavior.

Lyapunov exponents analysis Lyapunov exponent analysis calculates one
or multiple Lyapunov exponents of a given system. This helps to determine
whether a system has chaotic behavior.

Dimension analysis Dimension analysis calculates characteristic quantities
of an attractor. The calculated quantities are Kolmogorov–Sinai metric,
capacity dimension, information dimension, and correlation dimension.
Each quantity can reveal information about the formation of an attractor.
The dimension analysis is based on a box-counting approach that calculates
the spatial density of an attractor. Therefore density analysis as described in
chapter 2 is a part of region analysis in AnT.

Frequency analysis Frequency analysis uses the external library FFTW to
calculate the fast Fourier transform of an orbit. This allows computing the
power spectrum and autocorrelation function of a given orbit.

Singular value analysis Singular value analysis computes a singular value
decomposition of an orbit and is used to perform a principal component
analysis. This allows the identification of the major spatial axis of a given
orbit. The calculation is performed using the external library CLAPACK.

Check for conditions Check for conditions is hardly an analysis method.
As soon as one of the implemented conditions is fulfilled the orbit length
of the respective orbit is saved. The implemented conditions are: The orbit
reaches a fixed point, the orbit reaches a given point, the orbit diverges from
a given area, and the orbit does not diverge from a given area.

Symbolic sequence analysis In symbolic sequence analysis, the user defines
a partition of the state space. A simple partition is a hyperplane, dividing the
state space into two subspaces. Each partition is associated with a symbol
from an alphabet. Given a simulated orbit, instead of saving individual
states as vectors, the symbol of the partition in which the state is contained

19

3. The AnT Project

is saved. This analysis represents an orbit as a symbolic string which is often
more accessible to a scientist interpreting the simulation data.

Symbolic image analysis In symbolic image analysis, a directed graph is
constructed which represents the structure of the state space. The main idea
is to divide the state space iteratively into subspaces that form the nodes of
the graph. This allows locating basins of attraction.

Generalized Poincaré sections Poincaré sections reduce the complexity of
the state space. In its simplest form, the intersections of continuous orbits
with a lower-dimensional hyperplane in the state space are computed. This
results in a lower-dimensional sectional image of the orbits in a dynamical
system [Sch04]. Often these are more accessible to humans.

Bandcounting Bandcounting has been added to AnT in later versions
[Eck06]. Bandcounting counts the clusters in the density distribution of an
orbit. A cluster is a connected region of non-zero density in the state space
that is enclosed by a region with zero density.

3.2.2. Performing analysis in AnT
A typical problem in the analysis of dynamical systems is bifurcation analysis.
A common first approach to this problem is drawing a bifurcation diagram.
In a bifurcation diagram, the limit sets of orbits with a fixed initial state are
plotted in dependence on the system parameters. Given a one-dimensional
system with one parameter, the bifurcation diagram is two-dimensional. The
system parameter is the independent variable and increased over the a-axis.
To every system parameter value, the limit set of the corresponding orbit is
associated. The logistical map is defined as:

xn+1 = a(1 − xn)xn

where a ∈ [0,4] is the system parameter, x ∈ [0,1] is the state in space.
Exemplary bifurcation analysis on the logistical map is performed using
a one-dimensional linear scan over a ∈ [1.5, 4] with 1000 scan-points and
x0 = 0.5. For each parameter value, the limit set of the corresponding orbit
is plotted in the state space. If no finite limit set is detected, the last 64 states
are plotted. This is illustrated in 3.2. Chaotic limit sets can be observed for
a > 3.6. From a = 3 onward, a cascade of period-doubling bifurcations is

20

3.2. AnT dynamical system analysis

Figure 3.2.: Bifurcation diagram of the logistic map. At a = 3 the first period
doubling bifurcation is located.

observed.

21

3. The AnT Project

22

4. GPU Computing

In the last 10 years, general-purpose GPU computing became widely spread
and used in the scientific community. Starting with parallel matrix multi-
plication and solvers for differential equations, scientific GPU computing
evolved into a rich domain including physics and weather simulations,
training for artificial intelligence and scientific visualization [Buc10] [Nvia].
Today, graphics cards have unprecedented parallel computing capabilities.
Modern high-end devices like the NVIDIA RTX 3090 Ti card feature over
10000 computation cores with a combined performance of 40 TFLOPs [tec].
Given recent high-end desktop CPUs like the Intel i9-9900K, a speedup
of up to 400x in floating-point operations per second can be achieved us-
ing the GPU for computing [set]. Nowadays, there are two major vendors
of GPU hardware, NVIDIA, and AMD. After years of fierce competition,
graphics cards from both vendors are mostly identical in terms of hardware
architecture and design specification [ZPL+

11]. In this chapter, the GPU
hardware architecture is explained with the state-of-the-art NVIDIA GA102

architecture [GA1] on which the NVIDIA RTX 3090 Ti card is based.

4.1. GPU hardware architecture

A good way to quickly understand the GPU architecture is to follow the
thread execution. If a GPU program is started, a user-defined number of
threads is launched. Each thread computes the same function and is identi-
fied by an id. Using the id, global memory can be accessed and the function
execution can be locally manipulated. Threads are grouped in blocks. Each
block is executed by a single stream multiprocessor (SM) on the GPU. An
SM can execute multiple blocks in parallel or series. The GA102 architecture
has 84 SMs. Every SM is subdivided into partitions. On each SM partition, a
warp is executed. A warp is the smallest computational unit that is executed.
A warp always consists of 32 threads. Threads in a warp share an instruction
counter. To ensure that all cores of an SM compute at any given time, the
block size should be equal to the number of SM partitions times 32. The

23

4. GPU Computing

whole picture of an SM is given in Figure 4.1.

The presented SM of the GA102 architecture has four partitions, 128KB
shared memory, Texture memory (TEX), and a ray-tracing core. The ray-
tracing core is a relatively new addition and not included in older cards.
Texture memory is read-only memory. Shared memory is a fast read/write
memory that is shared between all threads of the block executed on the SM.
Each SM partition has a small shared L0 instruction cache, a 64KB register
file, 16 FP32 cores, 16 FP32/INT32 cores, a tensor core, and four load-store
units (LD/ST) and four special function units (SFU). The register file can
be seen as the local memory of each warp. Data is stored in registers and
passed to the computation units. Given a warp size of 32 threads, each
thread has access to an average of 2KB of local memory. The arithmetic
capabilities of the FP32 and INT32 cores are discussed in depth in section
4.2. Tensor cores are relatively new and not included in older cards. Load
store units are used to access global memory from a thread. Global memory
is much larger than local or shared memory and is usually sized at 24 GB
per card. Each load store unit has a bandwidth of typically 384bit in the
GA102 architecture. Therefore one load store unit can serve multiple threads
in parallel. Special function units compute functions like 1

x , sin, cos, exp and
log.

4.2. Strengths and weaknesses of GPUs computation

Given the GA102 architecture, bottlenecks can be identified by analyzing a
warp execution. The following potential bottlenecks are investigated:

• Special functions

• Looping

• Branching

• Global memory access

In general, a GPU operates parallel on a single set of instructions with
independent data. A CPU operates on independent instructions on a stream
of data. Pipelining, caching, branch prediction, and out-of-order execution
has very limited support on a GPU. In the GA102 architecture, one SM parti-
tion can perform 32 FP32 operations per clock cycle, 16 INT32 operations

24

4.2. Strengths and weaknesses of GPUs computation

per clock cycle, and four special function operations per clock cycle. There-
fore extensive use of special functions can slow down program execution
significantly. Fixed length looping is generally not a problem. All threads in
a warp share an instruction counter and take the same data path through
the compute and storage units of an SM partition. If the loop length is
thread-dependant and varies in a warp, all different data paths have to be
processed in series by all threads, because the instruction counter is shared.
Threads that are not supposed to take a particular data path are masked
during the path execution. The same applies to branching. If a branch affects
all threads of a warp in the same way, no additional computation except
for the condition check is to be expected. If branches are thread-dependent,
divergent data paths cause additional computation effort. The efficiency of
global memory access depends mainly on the bus with of the load storage
units and the global memory response time. Memory access of multiple
threads in parallel can be combined in one load storage unit to maximize
bus width usage. This is called memory coalescing. It works best if the
access indices of each thread form a single connected memory block that
can be loaded in at once [mem].

A GPU program with minimal special function usage, fixed loop lengths,
and thread-independent branching can perform thousands of floating-point
operations in parallel and massively outperform any CPU. Finally, arith-
metic operation throughput is investigated in detail. The GA102 architecture
equals a CUDA compute capability of 8.6 in the NVIDIA RTX 3090 Ti
card [com]. Per clock cycle and SM (each with four partitions), the number
of operations that can be performed are given in table 4.1 [pro].

Brief Summary of good GPU computing Finally, a small guide on good
GPU programming can be given. Local memory should be used as often as
possible, thread dependent branching and thread dependant loop lengths
should be avoided. Global memory access should be used only when neces-
sary and coalesced to maximize bus width usage. Type conversions, special
functions, and especially FP64 operations should be avoided.

Functions in a GPU kernel code are generally inlined by the compiler.
Therefore, recursions and dynamical binding are not possible [oclc]. Current
frameworks do not support object-oriented programming. Even if supported,

25

4. GPU Computing

Operation Operations per clock cycle
FP32 mul, add 128

FP64 mul, add 2

FP32 reciprocal, special functions 16

InT32 add, sub, mul, shift 64

Compare, min, max 64

32-bit and, or, xor 64

32-bit Type conversions 16

Table 4.1.: Arithmetic throughput of a GPU SM for different datatypes and
operations.

object-oriented programming creates a huge control flow overhead which
massively increases both memory usage and execution time. Given small
instruction caches, shared instruction pointers, and small local memory,
even modern GPU hardware is likely unable to support object-oriented
programming effectively.

4.3. GPU computing frameworks

Currently, there are three GPU computing frameworks with a significant
spread in scientific application and industry, OpenACC, CUDA, and OpenCL.
CUDA and OpenCL are explicit frameworks. The developer creates a GPU
program that is compiled and then executed on the GPU. Memory usage,
thread management, looping and branching, datatypes, and register usage
are mostly managed by the developer [oclc]. OpenACC is an implicit frame-
work. Regions in the source code are annotated with compiler directives.
Acceleration is mostly limited to loops. The compiler then tries to auto-
matically generate a separate GPU program that accelerates the annotated
region using the GPU. The compiler directives are closely related to OpenMP
which parallelizes program code on multiple CPU cores. The acceleration
capabilities are limited by data locality and race conditions. These can be
countered by annotating atomic operations and optimizing data flow in the
host program [acc].

In both types of frameworks, two programs are created. A CPU program

26

4.3. GPU computing frameworks

that exchanges data with the GPU, starts GPU thread execution, and option-
ally performs additional pre or post-processing on the data that is sent to
the GPU [ocla]. During the execution of the CPU program, multiple GPU
programs can be executed on the GPU in series and many data transfers
can take place. CUDA is only supported by NVIDIA cards. OpenACC has
limited support for AMD cards and full support for NVIDIA cards. OpenCL
is compatible with most graphics cards and has good compatibility with old
cards [oclb].

OpenCL was chosen as the GPU computing framework for this project.
OpenCL has the highest compatibility with GPU hardware as it is not vendor-
specific and allows low-level programming of the GPU multiprocessors.
This enables higher performance and problem-specific optimization can be
performed by the developer.

27

4. GPU Computing

Figure 4.1.: A single SM multiprocessor of the GA102 architecture. The SM
is a composition of four partitions and shared memory. Every partition
has floating-point, integer, load-store, and special function units. Every SM
partition has a shared instruction counter, a local register file, and a small
shared instruction cache.

28

5. Goal and tasks of this thesis

The goal of this thesis is to accelerate and parallelize scans using the GPU.
Acceleration should at least cover multi-dimensional linear and logarithmic
scans of ordinary maps and ordinary differential equations. At least the
following important analysis methods are to be included in AnTGPU:

• General trajectory evaluations

• Period analysis

• Lyapunov exponents analysis

• Density analysis (part of Dimension analysis in AnT)

• Bandcounting

• Symbolic sequence analysis

The required analysis methods vaguely outline the core functionality of
AnTGPU. In preparation for a more detailed description of how the analysis
methods are realized and how the GPU is integrated, more requirements are
formulated. The following requirements are listed in descending order of
importance:

• Fast execution, high performance

• Compatible with common GPU hardware

• Long life cycle

• Modular, scalable, and easy to extend

• User friendly

• Platform independent

The goal of this thesis is satisfied in a three-step process:

29

5. Goal and tasks of this thesis

Step 1 First, the existing AnT project is surveyed. Scan execution, system
function integration, and method execution are investigated on both the
architecture and implementation levels. This includes the analysis of compu-
tation flow and data structures. The analysis results are used to determine if
the existing AnT source code can be reused or modified to efficiently support
GPU acceleration in the context of the above-stated requirements.

Step 2 Second, a new scan architecture, method execution architecture,
and system function integration are developed. The architecture is built with
hardware orientation and efficiency in mind. All analysis methods that are
to be included are modified, optimized, or developed newly from scratch.
Some methods are extended by new features, not previously present in AnT.

Step 3 Finally, the newly developed architecture and methods are imple-
mented and tested. For every analysis method, at least one example scan
is computed and the execution time is compared to AnT. The results are
checked for correctness and the quality of the results is determined with
data-specific error measures. The impact of 32Bit floating-point number
accuracy on the scan results is investigated in depth.

Additionally, AnTGPU is used to compute scans on a system that is subject
to recent research. Nested closed invariant curves [AZ19] are scanned with
AnTGPU and the results are briefly discussed.

30

6. Assessing GPU acceleration of AnT

The computation of trajectories from different scan points is fully paralleliz-
able as every trajectory is only dependent on the initial state and system
parameters. In theory, all required analysis methods can be implemented to
operate locally on a trajectory. Given hardware characteristics, this might
not be the optimal choice for density analysis and bandcounting and the
reasons will be discussed in chapter 7.

A scan is GPU accelerated by computing and analyzing multiple trajecto-
ries in parallel. First, a batch of scan points is distributed to the multiproces-
sors of the GPU. Second, for every scan-point, a given number of iterations is
performed together with analysis methods. Additionally, the limitations and
capabilities of the GPU hardware have to be addressed. The most important
limitations are a small instruction cache, shared instruction counters, and
small local memory for both program code and runtime variables. The most
important capabilities are a large number of parallel threads and a high
throughput of FP32 and INT32 operations.

To parallelize scanning in AnT, the scan execution of AnT is investigated.
AnT can execute scans on a single computer in standalone mode or dis-
tributed using a client-server architecture [Sch04]. It was chosen to start
the investigation with an analysis of the scan execution in the client-server
mode because it is remotely similar to thread execution on the GPU. In
GPU computing, computational tasks and data are distributed to the GPU
processing cores by the CPU. In this scenario, the CPU takes the role of the
Server, and the threads executed on the GPU serve as clients. At this point,
it is already clear, that the object-based source code of AnT is incompatible
with the OpenCL C specification [oclc]. Using OpenCL, the GPU has to be
programmed using a C-subset language. Additionally, object orientation
introduces an overhead that conflicts with the primary requirement of this
project: performance. Additionally, valuable local memory is consumed by
stacks. The main purpose of this investigation is to determine the effort of
modifying the source code. This analysis serves as a basis to decide whether

31

6. Assessing GPU acceleration of AnT

a new project is set up or AnT is modified to allow for GPU accelerated scans.

The GPU compatibility of the AnT architecture is first analyzed based
on an example. A small example from the client-side scan execution is
presented below. The functions included in the example are from “Scan-
Data.cpp” of the AnT project.

typedef l i s t <AbstractScanItem *> seq _ t ;
seq _ t sequence ;

void
ScanItemSequence : : netCl ientScanNext ()
{

ioStreamFactory −>commit () ;

/ / f e t c h next scanpoint from server
s t r i n g * scanPoint = anpClient −>getScanPoint () ;

s e t (* scanPoint) ;
}

ScanItemSequence : : s e t (s t r i n g& scanpoint)
{

s td : : i s t r i n g s t r e a m i s (scanpoint . c _ s t r ()) ;

for (seq _ t : : i t e r a t o r i = sequence . begin () ;
i ! = sequence . end () ; ++ i)

{
(* i)−> s e t (i s) ;

}
}

template <typename ITEM_TYPE>
void
BasicScanItem <ITEM_TYPE > : : s e t (void)
{

* o b j P t r = currentValue ;
}

template <typename ITEM_TYPE>
void
TwoDimensionalScanItem<ITEM_TYPE > : : s e t ()
{

* o b j P t r 1 = currentValue1 ;
* o b j P t r 2 = currentValue2 ;

32

}

The execution in this example starts with the client fetching a scan-
point from the server. After that the ScanItemSequence::set method is called.
In this method the double linked list sequence is traversed by the iter-
ator i. For each AbstractScanItem in sequence, the set method is called.
Depending on the instance i of AbstractScanItem, this results in a call of
BasicScanItem<ITEM_TYPE>::set or TwoDimensionalScanItem<ITEM_TYPE>::set.
Both BasicScanItem and TwoDimensionalScanItem are descendants of
AbstractScanItem.

This small example includes dynamic binding, a multi-layer class hierar-
chy, dynamic memory, and templates. None of the above-stated features
are supported by OpenCL C [oclc]. Even if dynamic memory in form of a
linked list is replicated on the GPU, the memory overhead for pointers and
the lack of random access render it highly inefficient in parallel processing
on the GPU. The extensive class hierarchy causes a snowball effect if mod-
ifications are made in a node class. If a for example a function has to be
removed from the class hierarchy, the function has to be removed from the
parent class as well, if present. Removal of a function in the parent class
affects other child classes, quickly propagating modifications. Additionally,
functionalities from the parent classes have to be stripped from the class
hierarchy to ensure the functionality of the node class function outside the
class hierarchy. The execution of scans, iteration of orbits, and execution
of analysis methods are all performed in classes of one big class tree. This
class tree is the biggest in AnT with more than 100 classes. It implements
the concept of machines and transitions which is fundamental to AnT. The
root class is AbstractTransition. Due to the high level of connectedness
in the AbstractTransition class tree of AnT, stripping a subset of methods
from the class hierarchy comes with an effort comparable to the creation of
an entirely new program.

Another problem is the integration of the system function into the scan.
In AnT the system function is programmed by the user in an external file
and compiled into a dynamically linked library. The library contains the
system function and is loaded before the scan starts. This grants AnT access
to a user-defined system function. Using dynamic linking to integrate the
system function into the scan and analysis process is incompatible with
GPU computing as there is no support for dynamic linking. Additionally,

33

6. Assessing GPU acceleration of AnT

in AnT methods write data to a file during scan execution [Sch04]. This
helps to limit memory usage but is not applicable to the GPU. File access
is only possible on the CPU and covers data transferred from the GPU. In
theory, it is possible to transfer data for every scan. However, this creates a
huge overhead and does not allow for any parallelization. It is much more
reasonable to transfer data in larger batches, given the fact that modern
GPUs have memory comparable to the RAM available to the CPU.

34

7. AnTGPU: Architecture development

Based on the previous analysis it was found that creating a new project and
architecture with limited scope as defined in chapter 5 is less effort than
modifying the entire architecture of AnT including the class and method
hierarchy, the memory management, the system function integration, and
the file management.

With OpenCL a low-level GPU computing framework has been chosen that
is compatible with most graphics cards produced in the last ten years [oclb].
Using OpenCL, the GPU is programmed in a C-style language [oclc]. To
ensure consistency between GPU and CPU code it has been decided to code
the CPU part of the project according to the C99 standard. This comes with
various advantages. First, C99 is an almost universally supported standard
that can be expected to be supported for many years to come. Additionally,
C code can be compiled on Windows and Linux with minimal effort. This
addresses the platform independence requirement of the project. The main
data types in scanning and analysis are FP32 for floating-point operations
and INT32 for integer operations. The precision is reduced compared to
AnT which used FP64 but has a much higher throughput on the GPU. It is
argued that a 64 times increase in arithmetic throughput outweighs double
precision. Precision is indeed important in the analysis of a dynamic system.
Therefore the effect of FP32 precision on analysis results is evaluated in a
comparison against double precision in chapter 9.2.1. One major feature
that makes OpenCL highly practical in the context of this project is the
runtime compiler. In OpenCL, GPU code can be compiled at runtime
with code stored in RAM. This turned out to be a nucleus around which
AnTGPU is developed. One major advantage is that the user no longer
has to compile the system function. If small changes to the function are
made, with a runtime compiler it is sufficient so simply save the text file
rather than run a compilation each time. Additionally dynamically linked
libraries compiled on different operating systems are not interchangeable.
This problem disappears when using a runtime compiler. Only the source
file is required which is identical on all platforms. Additionally, a runtime

35

7. AnTGPU: Architecture development

compiler allows for an enormous performance increase. AnT uses very
general analysis methods and interfaces that can be used for a wide variety
of scans and system functions. AnTGPU creates a specific and unique
analysis program for every scan based on the configuration. This allows for
scan-specific optimization which is impossible in a general analysis program.
The whole process of generating the entire analysis program at runtime is
described in the section 7.3.

7.1. Computation flow

The execution of AnTGPU is centered around the execution of a single scan
of a dynamical system. The system is given by a formatted source file and
the scan is customized by a configuration file. The source file allows the
user to define custom variables, a system function, and a symbolic function
used in the symbolic analysis. The configuration file specifies the states
or parameters over which a scan is performed and configures the analysis
methods. The configuration file is based on key-value pairs. This allows to
only include options that are needed in a particular scan, independent of
the order of options. A more detailed description of the system function file
and the configuration file is given in the user documentation of AnTGPU
in chapter A. Scans of arbitrary dimensions covering any axis-aligned sub-
space of the state-parameter space are possible. The abstract architecture of
AnTGPU is linear and performs the following tasks sequentially:

1. Scan for available GPU hardware

2. Check the user-selected device

3. Load and parse the configuration file

4. Calculate configuration data

5. Initialize memory

6. Load and parse system function file

7. Create and compile the GPU program

8. Execute the scan on the GPU

9. Transfer data from the GPU

36

7.1. Computation flow

10. Perform CPU postprocessing

11. Generate output files

Each of the above-listed tasks is associated with a method in the AnTGPU
source. Every method performs error detection on the computation per-
formed by it and returns a unique error code. Every error that is detected
comes with a printed error message. After all listed tasks are completed,
CPU and GPU memory is cleared.

Scan for available GPU hardware The system is scanned for available GPU
hardware and presents the user with a list of found hardware and hardware
specification.

Check the user selected device After the user chose the device on which the
scan is executed, the chosen device is checked for compatibility, availability,
and sufficient hardware resources.

Load and parse the configuration file The configuration file is loaded,
parsed, and checked. Some options have dependencies on other options.
It is checked that the dependencies are satisfied. The parsed configuration
data is stored in a global data structure of the program.

Calculate configuration data Additional data is computed from the con-
figuration data. This includes the size of the scan space, state space, and
parameter space, the indices of constant parameters which are to be replaced
in the system function, and the indices of constant initial values. The re-
placement of constant values and its effect is discussed in detail in section
7.3. Additionally, the order of analysis methods is computed. Different
analysis methods start their analysis at different times during orbit iteration.
Therefore not all methods have to be active at a given time.

Initialize memory Memory is initialized both on the GPU and the CPU.
This includes memory allocation and transfer of initial values. GPU memory
is allocated and filled in thread order. This allows threads with sequential
indices executed in a warp to coalesce memory operations. The strategy of
coalescing is explained in chapter 4.2. Initial data is computed on the CPU
in this method.

37

7. AnTGPU: Architecture development

Load and parse system function file The system function is loaded and
parsed. This includes resolving to define directives, extracting the system
and symbolic function, and creating separate system functions used to
compute side trajectories in the Lyapunov exponent analysis.

Create and compile the GPU program A GPU program is created that
executes the scan specified in the configuration file. Only methods that are
activated in the scan configuration are included in the GPU program. This
is described in detail in section 7.3.

Execute the scan on the GPU The GPU program is executed. Execution
is performed in batches of scan points. This serves two purposes. First,
on systems with a single GPU, the GPU is already used to render the
graphical user interface. If long computations are executed on the GPU
the display driver may interrupt the execution to ensure the functionality
of the user interface of the operating system. Driver configuration can
resolve this issue but on a single GPU system, this will result in a frozen
screen during the execution of the scan. Using batched execution, parallel
execution is performed in chunks with time in between to process the
display rendering. There are more sophisticated solutions to the display
driver problem including a second GPU for display purposes [Nvic]. Second,
batched execution allows for progress measurements. This helps to estimate
the execution time of very large scans. The progress is logged after each
batch.

Transfer data from the GPU The data computed in batches on the GPU is
transferred from the GPU global memory to the CPU memory.

Perform CPU postprocessing CPU post-processing is performed. Cur-
rently, only bandcounting and symbolic analysis require CPU postprocessing.
Some problems like clustering or sorting require extensive computation on
data that is distributed among many threads. Instead of creating a massive
synchronization bottleneck to compute those problems on the GPU in par-
allel, the respective analysis method is split. The easy parallelizable and
mostly on local data operating part is computed on the GPU, intermediate
data is transferred to the CPU and post-processed in series. This hybrid
approach uses the strengths of GPU and CPU optimally in the context of a
given system analysis method.

38

7.2. Abstract architecture

Generate output files Output files are generated to save the analysis results
to permanent storage. Currently, two formats are supported. The first format
is string-based and accessible to humans including metadata of the scan
and it is compatible with Gnuplot for visualization. The second format is
optimized for minimal storage usage and requires a special visualization
tool. This is useful on large multidimensional scans, where raw binary data
fills the memory close to its maximum capacity. If this data is written to a
file in string format, the resulting file is often useless, as it is too large to be
loaded into memory for visualization or manual analysis.

7.2. Abstract architecture

One of the main features of AnTGPU is parallel scan execution. Each
trajectory is calculated and analyzed by a single GPU thread running in
parallel on an SM of the GPU. The computation is performed in batches
of threads. Every batch ensures that the number of threads in the batch
is a multiple of the number of threads that can be executed in parallel
on the GPU. This ensures that no SMs are left idling at any given time.
The batch execution architecture is sequential and shares the pre, during,
and post-phase with AnT. In the pre-phase, GPU memory is allocated and
initialized with the trajectory initial states and system parameters. In the
during-phase, the next batch of threads is configured. This includes passing
memory addresses to write data on the GPU. Additionally, it is possible to
transfer analysis results after one or several batches. This feature is not used
yet and will be discussed in the outlook. Second, batches of trajectories are
scanned on the GPU, while simultaneously writing analysis results to the
GPU global memory. During a scan, as much computation as possible is
performed in local memory to increase performance. After the last batch
has been processed, the system enters the post-phase. In the post-phase, the
GPU analysis data is transferred to the CPU and post-processed. The scan
execution architecture is illustrated in figure 7.1.

7.3. Dynamic kernel generation

To increase performance, cross-platform capabilities, and user-friendliness,
AnTGPU creates and compiles the GPU scan and analysis program, called
GPU kernel during program execution. The GPU kernel is identical for
every thread started on the GPU. In the case of AnTGPU, every trajectory

39

7. AnTGPU: Architecture development

is computed and analyzed by the same GPU kernel. The benefits of run-
time compilation to cross-platform capabilities and user-friendliness have
already been addressed at the beginning of chapter 7. In this section, the
great benefits of dynamic kernel generation using runtime compilation to
computational performance are presented. A dynamical system with a two-
dimensional state-space and ten parameters is given. A 100000 iterations
long scan is performed over two system parameters, and the mean state and
period of each scan point are computed. This means that during the scan the
initial state and eight parameters remain constant. The initial state remains
constant for each scan point and the parameters remain constant in every
iteration. Using dynamic kernel generation, the constant values are inserted
into the source code as constants. No local memory has to be used to hold
constant variables during scan execution and no global memory has to be al-
located to provide constant values to the GPU threads at trajectory execution
startup. In the above examples, two analysis methods are performed during
the trajectory iteration. In this example, the computation of the mean state
starts at iteration 10000 and the computation of the period at iteration 99950.
Using dynamic kernel generation the iteration of the trajectory is split into
three parts in the GPU program. The first part iterates from 0 to 9999 with
no analysis methods active. The second part iterates from 10000 to 99949

with only the mean state analysis active. The third part iterates from 99950 to
99999 with both the mean state and period analysis active. This removes the
need to check at every iteration whether any implemented analysis method
is active. Additionally, the source code is usually smaller, as only a subset
of analysis methods is included in the program source. In the unlikely case
that all analysis methods are activated for a scan and all analysis methods
start at different iterations, the source code is longer than without dynamic
program generation but still removes the need for condition checking.

Dependent on the system state space dimension, certain analysis methods
work differently. One example is the calculation of all Lyapunov exponents
of a system that performs regular Gram-Schmidt orthonormalizations on a
set of vectors with dimensions equal to the state space of the analyzed system
[WSSV85]. In a general analysis program, multiple loops are necessary to
iterate over the dimensions of the state space vector. Using dynamical kernel
generation, the loops are unrolled and unnecessary calculations skipped.
This removes the need for additional loop variables and loop condition
checking. The entire GPU kernel generated by AnTGPU includes only one
loop variable which stores the index or time of the current iteration. It is
used to iterate the trajectory and start analysis methods.

40

7.4. Method execution and cross-thread computation

7.4. Method execution and cross-thread computation

During the iteration of a trajectory on a GPU, thread analysis methods are
computed. In AnTGPU, every analysis method that is activated by the user
starts computation in a user-defined iteration and runs until the iteration
of the trajectory has reached the user-defined end. An exception is mean
state, min state, max state, and wavenumber computation which share a
common start iteration. A method execution start point s[i] can be shared
by multiple analysis methods.

7.4.1. Trajectory iteration architecture

Similar to the IterMachine of AnT, AnTGPU has an architecture that struc-
tures the computation performed on a single trajectory of a scan. The
evaluation of a trajectory starts with a new thread that is executed on the
GPU. In the beginning, initial data is transferred from the global memory of
the GPU to the local memory of the thread. This limits the number of global
memory accesses during the thread lifetime which increases performance.
After that, for every method execution start point s[i] an iteration block
is inserted into the kernel. An iteration block iterates the system function
and computes all analysis methods that start at s[i] and before. After the
last iteration block is executed, the analysis results are transferred from the
thread-local memory to the global GPU memory. The architecture is given
in figure 7.2.

7.4.2. Cross-thread computation

Both density analysis and Bandcounting operate on multiple trajectories in
parallel. Given a one-dimensional example system, the state space density is
a one-dimensional function that is approximated using a box count method
on a one-dimensional array. All trajectories that share the same system
parameters and differ only in their initial states write to the same density
array in parallel. Without any additional measures, this causes race condi-
tions and leads to incorrect results. The problem is addressed in AnTGPU
using atomic operations. They provide a basic level of synchronization
that is sufficient in this application. In the case of density analysis, the
density counts are increased using the atomic increment function provided
by OpenCL [oclc]. In the case of atomic increment, one memory value is
incremented by a single thread. Until the increment is finished, other threads

41

7. AnTGPU: Architecture development

must wait and cannot access the memory value being incremented. Due
to the shared instruction counter in SM partitions a single waiting thread
causes a slowdown. How serious is this bottleneck? Not as serious as it
seems. The larger the array used to store the density counts and the higher
the dimension of the state-space, the less likely it is for two threads running
in parallel to both increment the same density count in the same iteration.
It is assumed that in the above presented one-dimensional example the
state-space is scanned with 500 scan-points and the density is estimated
using 500 boxes. In the case of all 500 scan-points of the state space being
iterated in parallel, the expected number of threads accessing a particular
box is 1

500 ∗ 500 = 1, assuming that the distribution of states is uniform. In
reality, this is most likely not the case, especially in the case of periodic orbits.
Despite this, the expected number of threads accessing a particular box is
usually small enough to not impact the performance more than computa-
tion in other computationally expensive analysis methods like Lyapunov
exponents. Asymptotically, for a periodic attractor with a period length of n
the expected number of threads accessing a single bucket is t

n , with t being
the number of threads. For a chaotic attractor, the expected value is usually
lower as infinitely many states are part of the attractor set which leads to
a more uniform distribution. All claims are made under the assumption
that the box array is properly fitted to the attractor. This means that the
box size and offset are chosen appropriately. As both density analysis and
bandcounting use a box-counting grid to derive information about attractors,
this evaluation applies to both methods equally. A detailed look into the
workings of both methods is given in chapter 8.4. In summary, simple cross-
thread computation and synchronization in the context of density analysis
and Bandcounting is not a major bottleneck. In the case of parallel compu-
tation of the density distribution of an attractor, the performance benefits
outweigh the costs significantly even though atomic operations are used.
This theoretical result is strengthened by the performance comparisons in
chapter 9.1.

7.5. CPU postprocessing

Most analysis methods in AnTGPU run independently of other threads on
local data of a single GPU thread. In density analysis, a state distribution
is approximated from multiple trajectories in parallel. This can cause data
conflicts and the problem is solved using atomic operations which guarantee

42

7.5. CPU postprocessing

the correct execution of small arithmetic operations. In Bandcounting and
symbolic analysis, clustering of the density grid and sorting of symbolic
strings turned out to be too expensive to parallelize on the GPU. In the case
of clustering, the next cluster is dependent on the previous which makes this
problem much more suitable for serial computing. The sorting of symbolic
strings is parallelizable but requires many memory operations and unpre-
dictable branching which is caused by the varying number of comparisons to
complete the sorting. Different initial permutations take different data paths
to complete the sorting. If two threads of the same SM partition branch at
different times, clock cycles are wasted due to the shared instruction counter.
This problem has been described in detail in chapter 4.2.

An easy solution to the above-mentioned problems is hybrid computing.
Parallel computations are performed on the GPU, intermediate data is trans-
ferred to the CPU and post-processed. In this approach, the strengths of
both systems are combined to solve a difficult problem efficiently. Splitting a
method into a CPU and a GPU part requires serious reasoning. In this work,
hybrid computation is only used if necessary. During the development of
AnTGPU, it was planned to compute period analysis using hybrid computa-
tion. Later it turned out to be less efficient than a pure GPU computation. To
compute the period in AnTGPU, it is checked if a reference state repeats later
in the iteration of the trajectory. Following a repeating state, the number
of iterations since the reference state is computed and written to global
memory. Different trajectories can have different periods. It was assumed
that asynchronous branching in the threads of one warp would cause serious
delay. To solve this problem, hybrid computation is proposed. The trajectory
is iterated on the GPU until the reference state and the reference state of
each thread is transferred to the CPU. Then, for each thread, a few hundred
iterations are computed on the CPU and the period length is determined. It
turned out that the initial assumption of slow branching was false. Given
a trajectory of 100000 states, period analysis is usually active in the last
500 states. Branching delays in this small fraction of the total computation
are insignificant. Instead, the massive parallel computing power of the
GPU allows for faster period length calculation even with branching delays.
Additionally, performing iteration on the CPU requires knowledge of the
system function not only to the GPU but also to the CPU. This requires a
second runtime compilation for the CPU which causes additional overhead
and increases the program complexity.

43

7. AnTGPU: Architecture development

Figure 7.1.: Parallel scan execution architecture of AnTGPU. CPU operations
are colored blue, and GPU operations are colored green. After an initializa-
tion phase, multiple batches of threads are started in series. Before a new
batch is launched, data is transferred from and to the GPU and the batch is
configured. As soon as all batches are computed, the results are transferred
to the CPU.

44

7.5. CPU postprocessing

Figure 7.2.: Trajectory analysis architecture. Every trajectory is analyzed on a
GPU thread. At startup, local memory is initialized. The thread initialization
is followed by iteration blocks. Every iteration block iterates the system
function for a predefined number of iterations and performs a predefined
sequence of analysis methods. After the execution of the last iteration block,
the analysis results are copied to global GPU memory.

45

7. AnTGPU: Architecture development

46

8. AntGPU: Method development

The analysis methods implemented in AnTGPU are based on a selection
of important methods from the original AnT project. Every method from
AnT had to be adapted to the GPU hardware. This includes the usage of
local memory and the removal of loops and branches. Many methods are
optimized for higher performance or are extended by new useful features
which are not present in AnT. Some AnTGPU methods share only the
specification with their AnT counterpart. The same results are computed in
a new way that is adapted to the hardware of the GPU and more efficient
in terms of memory usage and instruction throughput. In the following
sections, the functionality of each method is described briefly. After the short
description, the implementation in AnT is presented and compared to the
implementation in AnTGPU. Improvements and changes are explained and
reasons for the changes are given. Key performance characteristics are data
locality to ensure optimal parallel performance, low global memory usage,
and instruction throughput. For many methods, the functionality has been
reduced to the core functionality. Additional options present in AnT may
be added later if they turn out to be important to the user. At this moment
this is not the case. Finally, every method is demonstrated in at least one
example. This includes introducing a dynamic system, formulating a scan,
and discussing the scan results. Usually, system behavior in dependence
on parameters or the structure of an attractor is investigated. Scans are
described in brief textual form in this chapter. The complete AnTGPU
configuration for each scan is added to the appendix of this work in chapter
B.

8.1. General trajectory evaluation

General evaluation of a trajectory consists of saving states, calculating basic
statistics such as the mean state, the component-wise minimum state, maxi-
mum state, and calculating wave numbers. Wave numbers count the number
of local minima across each dimension of the state space along a trajectory.

47

8. AntGPU: Method development

Each count is then normalized with the trajectory length [Sch04].

The computation of the general evaluation is almost identical in AnT
and AnTGPU, except for the actual implementation. In AnTGPU the last
n states are saved into global GPU memory to be transferred to the CPU
and saved. Independently, at the beginning of every trajectory evaluation, a
minimum and maximum state variable are initialized with a very large and
a very small value in the local memory of the thread. As soon as general
evaluations are active, in every iteration the component-wise minima and
maxima are updated. After the trajectory iteration is finished, both local
minimum and maximum states are transferred to global GPU memory. The
mean state is calculated identically. A local mean state is initialized with
zero. As long as general evaluations are active, the current state vector is
added to the mean state. After the trajectory iteration is finished, the mean
state is divided by the number of iterations the method was active and the
result is transferred to global memory.

The computational performance of all general evaluations is very good.
Local operations, fully parallelizable computations, only additions and
comparisons are computed. This allows for maximum throughput.

General trajectory evaluation is demonstrated on a modified logistic map,
defined by the following system function:

xn+1 = a sin(xn)(1 − x2
n)

A two-dimensional scan is computed in AnTGPU with x ∈ [−3, 3) and
a ∈ [−2.7, 1.52). The resolution of the scan is 1000 x 1000 scan points. For
every scan-point, a trajectory of 100000 states is computed, the first 10000

states of each orbit are transient. For every trajectory, the last state, maximum
state, and minimum state are saved. The complete scan configuration is
given in chapter B.1. In the visualization, the value range is set to [−4,3].
The results are shown in figure 8.1.

For a = −0.55 it can be seen that the last state value of the trajectory is
dependent on the initial state value. In pink regions, the last state value is
−1, in blue regions, it is smaller than −2. It is therefore assumed, that at
least two attractors are coexisting in the state space. This is confirmed by
looking at the minimum and maximum values of the trajectories fora = 0.55.
In the pink regions, the maximum and minimum values are equal to the
value −1. In the blue regions, the maximum value is approximately −2.3.

48

8.1. General trajectory evaluation

Figure 8.1.: In the top figure the last state of the scan is visualized. For
a = −0.55 coexisting attractors are assumed. This is confirmed by the
minimum and maximum states in the middle and bottom figures.

49

8. AntGPU: Method development

This result confirms that trajectories from the blue region do not intersect
trajectories in the pink regions. Therefore at least two attractors coexist in
the state space. Additionally, the minimum and maximum values in the
pink regions are equal. This means that for all pink regions the attractor is
the same fixpoint. In further work, the basin of attraction for the fixpoint
attractor can be computed from the scan results and the nature of the other
attractors can be investigated.

8.2. Period analysis

In period analysis it is determined if a trajectory converges to a periodic limit
set. Asymptotically, a trajectory can converge to a periodic set, an infinite
quasi-periodic set, or any other infinite set, often referred to as a chaotic
attractor. A trajectory can also diverge to positive or negative infinity or an
iteration can result in a non-resolvable calculation like a division by zero.

In AnT it is first checked if the last state of a trajectory is divergent. The
check is performed by comparing the maximum norm of the last state with a
threshold and additionally checking for NaN. Second, the last n states of the
trajectory are compared to the last state of the trajectory. If the maximum
norm of the difference between the last state and a previous state is smaller
than a threshold, a period is found and the length of the period is stored.
Although it is possible to store the last states in global memory in AnTGPU
and implement the method accordingly, for large scans and long periods a
lot of memory is occupied by the last states. Fortunately, this method can
be improved to be more efficient in terms of computational performance
and memory usage. If period checking up to a length n is performed in
AnTGPU, the n-last state is saved as a reference in local thread memory.
The reference state is then checked for divergence using the same approach
used in AnT. In every following iteration, the reference state is compared to
the current state using a threshold on the maximum norm of the difference
between the current state and the reference state. If a period is found, the
length is transferred to global memory and further comparison is stopped.
In AnTGPU, the period length can be used to split the last state save file that
is generated in general trajectory evaluations into two files. One file contains
only states of periodic trajectories while the other contains only states of
divergent or aperiodic trajectories.

50

8.2. Period analysis

This approach has two major advantages over the approach used in AnT.
Instead of n last states, only two states have to be stored to check for a period
length up to n. These two states are the current state of the trajectory which
is already used in the system iteration and the reference state. Additionally,
checks are performed alongside the trajectory iteration. No calculation is
performed after the iteration of the trajectory stops.

Period analysis is demonstrated on the Gingerbreadman map. The Ginger-
breadman map is a two-dimensional map, defined by the following system
function [Dev88]:{

xn+1 = 1 − yn + |xn|
yn+1 = xn

A two-dimensional scan is computed in AnTGPU with x ∈ [−10, 10) and
y ∈ [−10, 10). The resolution of the scan is 1000 x 1000 scan points. For every
scan-point, a trajectory of 100000 states is computed and period analysis
is performed on the last 512 states. This allows for detecting periods with
lengths up to 512 states. The complete scan configuration is given in chapter
B.2. The scan result is illustrated in figure 8.2.

Figure 8.2.: Period length plot of the Gingerbreadman map. Multiple peri-
odic attractors with different period lengths coexist in state space.

In the scan result, multiple polygons of different period lengths are visible.

51

8. AntGPU: Method development

They are mostly hexagonal and most likely are basins of attraction of peri-
odic attractors. This result is a basis for further analysis. Good follow-up
questions are: Are all periods in an area of equal period length equal? What
happens in areas where no period was detected? These questions can be
answered by computing more scans and using other analysis methods, like
the minimum and maximum values, mean states, or saving the last states
and comparing them. A clockwise rotation of 135 degrees of the image
shows the gingerbread man upright.

8.3. Lyapunov exponents analysis

Lyapunov exponents quantify the convergence or divergence of two initially
close trajectories. A system with at least one positive Lyapunov exponent
is often a chaotic system. In a multi-dimensional system, there exists a
Lyapunov exponent for every dimension.

In AnT the Lyapunov exponents of a system are computed according to
Wolf [WSSV85]. Given a main trajectory t, an orthogonal base is spanned
in the state space. Each vector of the orthogonal base has a small euclidean
length, initially set to a constant epsilon. This represents the initial small
deviations in state space. The sum of the current state tn and a vector from
the orthogonal base equals the initial state of a side trajectory s. There are as
many side trajectories as the state space has dimensions. For a given number
of iterations, the main trajectory and all side trajectories are iterated using
the system function. After some iterations, the side trajectories diverge from
or converge to the main trajectory which distorts the initially orthogonal
base. After the required number of iterations is performed, the vector base
spanned from the main trajectory to the side trajectories is orthogonalized,
normalized, and rescaled with epsilon. Sequentially, starting with the first
side trajectory, a Gram-Schmidt orthonormalization is performed. For each
side trajectory, the distance di to the main trajectory is computed and the
i-th Lyapunov exponent Li is updated [WSSV85].

Li += log2

(
di
ϵ

)
At the end of the trajectory iteration, the Lyapunov exponents are divided

by the number of iterations the Lyapunov calculation was active.

52

8.3. Lyapunov exponents analysis

The above-explained approach was transferred mostly unchanged to
AnTGPU. Equally to the main trajectory, the side trajectories are computed in
local memory. Additionally, the Lyapunov exponents and some helper vari-
ables are stored in local memory. After the trajectory iteration is completed,
the Lyapunov exponents are scaled and transferred to global GPU memory.
Using dynamic kernel generation, the Gram-Schmidt reorthonormalization
is implemented specifically for a given system. No loops iterating over the
system dimensions are included. This slightly increases the computational
performance. Gram-Schmidt reorthonormalization is computationally ex-
pensive as it has quadratic complexity in the state dimensionality and is
susceptible to numerical errors [For15]. Many special function operations
are needed to process multiple divisions and logarithms. Fortunately, the cal-
culation of Lyapunov exponents is fully parallelizable and all computations
can be performed in local memory. This gives a huge performance boost to
this expensive analysis method. If problems related to numerical stability
turn out to be significant during the program life-cycle, the modified Gram-
Schmidt process can be implemented, replacing the classical Gram-Schmidt
process used in the computation of Lyapunov exponents.

The calculation of the Lyapunov spectrum is demonstrated on the Hènon
map. The Hènon map is a two-dimensional map with two parameters, a > 0
and b ∈ [0,1] [Hén76]. The system function is defined as:{

xn+1 = 1 + yn − axn
2

yn+1 = bxn

A two-dimensional scan is computed in AnTGPU with a ∈ [0, 2) and
b ∈ [0, 1). The resolution of the scan is 1000 x 1000 scan points. The initial
state is fixed to (0.25, 0.25). For every scan-point, a trajectory of 100000

states is computed and both Lyapunov exponents are calculated after 10000

transient iterations. The complete scan configuration is given in chapter B.3.
The Lyapunov spectrum of the Hènon map is illustrated in figure 8.3.

In white areas the map is divergent and no Lyapunov exponents can be
calculated. Positive Lyapunov exponents are plotted with a yellow palette,
negative exponents with a green palette. Areas with a positive Lyapunov
exponent are easily spotted. Positive Lyapunov exponents are necessary
for chaotic behavior. The transition from non-chaotic to chaotic behavior is
visible. In regions of positive Lyapunov exponent values, areas of stability
with negative Lyapunov exponent values exist. These areas have the shape
of a swallow and are called Milnor’s swallows [Ber18].

53

8. AntGPU: Method development

8.4. Density analysis

Density analysis is used to map an attractor in state space. Once a trajectory
converged to an attractor, every iteration moves the current state through the
attractor. A hypergrid is spanned in the state space, covering the estimated
area of the attractor. For every grid cell, the number of states that are in the
grid cell is counted during the iteration of the trajectory. This results in an
unnormalized density distribution which approximates not only the shape
of the attractor but also gives insight into the most frequently visited areas
of the attractor.

In AnT, density analysis is performed with an individual density grid
for every scan point. To compute a good asymptotic approximation of
the attractor density, usual tenths to hundreds of billions of iterations are
necessary. This is extremely time-consuming. Therefore, in AnT usually,
only one scan point is evaluated in density analysis which converges to an
attractor and subsequently maps out the attractor structure in the state space.

In AnTGPU computing a single trajectory on its own is pointless as it
opposes the very idea of parallelization. Even if multiple trajectories are
computed in parallel, having one density grid per trajectory is not feasible. A
two-dimensional Grid can easily reach the size of four million grid cells. The
density is stored in a UINT32 array to maximize GPU instruction throughput.
Assuming that one thousand trajectories are computed in parallel, already
sixteen billion bytes of memory are needed. Average modern GPUs have
around six billion bytes of global memory, which means that this relatively
small two-dimensional example is already out of reach for common GPU
and CPU memory sizes. One- and two-dimensional density grids are very
common, as they are relatively easy to visualize. Additionally, iterating a
particular trajectory hundreds of billion times on a GPU core is as fast if
not slower than iterating the same trajectory on the CPU. In many cases,
the density of an attractor is mapped only for a small number of system
parameters which means that only a few trajectories have to be computed.
It is therefore essential to parallelize the density estimation of a single scan
point. Given fixed system parameters, multiple hundred or thousand tra-
jectories are started in the state space close to the initial scan point. This
creates a bunch of trajectories in which each trajectory reaches the attractor
of interest in a slightly different path. Once the trajectory bunch reached the
attractor and individual trajectories start to diverge, they rapidly map out

54

8.4. Density analysis

the attractor. In this case, every trajectory of a bunch writes to a common
density hypergrid. Only a fraction of the iterations per trajectory that is
necessary when mapping an attractor with a single trajectory is needed if a
trajectory bunch is used. Each trajectory of the bunch is iterated in parallel
and maps different parts of the attractor in the shared density grid. This
approach is much faster than density estimation with a single trajectory
and fully uses the parallelization of the GPU. To synchronize the threads
writing to a shared density grid atomic operations are used. Each grid cell
counts states using a UINT32. Overflow protection is added to prevent a full
cell from overflowing and invalidating the result. The above presented new
parallel approach assumes that trajectories of a bunch diverge sufficiently
in an attractor. Given chaotic attractors which are mostly analyzed this
is usually the case, especially if positive Lyapunov exponents are present
which are one of the characteristics of a chaotic system.

Given different system parameters, an attractor might have different
shapes and asymptotical state distributions. In AnT, multiple bunches of
trajectories can be calculated in parallel and in series to map out attractors
at different locations in the state and parameter space. For high dimensional
state spaces the density distribution is no longer visualizable. Additionally,
high-dimensional and high-resolution grids require enormous amounts of
memory. To address this problem, AnTGPU allows projecting the states of
high dimensional state spaces to an arbitrary axis-aligned hyperplane in the
state space. This is equivalent to an aggregation of the full-dimensional den-
sity distribution across one or several dimensions. The density distribution
in this hyperplane is called a slice. A slice is much easier to visualize and
requires considerably less memory while still capturing important structures.
Multiple slices from different angles can help reconstruct and visualize the
structure of high-dimensional attractors in lower dimensions.

Density analysis is demonstrated on the tent map. The tent map is a one-
dimensional map with one parameter a ∈ [0,2] [HbL]. The system function
is defined as:

xn+1 =

{
axn xn < 1

2
a(1 − xn) otherwise

The tent map is bounded in the interval x ∈ [0,1] for all values of a
in the bounds given above. For every value of a there exists a global

55

8. AntGPU: Method development

attractor that is attractive to almost all initial conditions. Exceptions are
the fixpoints of the map and their preimages. To map out the density of
the attractor for a given parameter, a trajectory bundle of 350000 uniformly
spaced initial values was iterated 2000 times per trajectory. The first 1000

values were discarded. This procedure was repeated 1000 times to plot the
density development of the global attractor for a ∈ [1.1,2]. In total 1,000 ·
350,000 · 2,000 = 700,000,000,000 iterations are computed. The complete scan
configuration is given in chapter B.5. The resulting density distribution is
illustrated in figure 8.4.

The density distribution is scaled logarithmically to the basis e. The
merging of the two main bands of the global attractor at a =

√
2 is visible.

After the merging, a higher density is visibly in areas where the previously
separated bands overlap.

8.5. Bandcounting

The state set of a chaotic attractor can be a single connected region of the
state space or the union of multiple disjunct regions in state space. The
number of connected state-space regions that are part of an attractor is called
Bandcount. For arbitrary system functions, numerical Bandcounting is
very similar to density analysis. Given a density distribution, the number of
connected regions of grid cells with cell value greater than zero approximates
the Bandcount of the attractor. The Bandcount of an attractor is computed
using the density grid. Therefore, numerical Bandcounting is an aggregation
of the spatial density distribution. Finding and counting clusters of grid
cells with a value greater than zero is difficult to parallelize as for every
given grid cell information about its neighbors is necessary to determine
connectedness. Additionally, previously visited clusters have to be marked
as visited to avoid double counting. Therefore it was chosen to compute
the Bandcount on the CPU based on the density grid data computed on the
GPU. The approach chosen in AnTGPU is based on a flooding algorithm.
First, an empty floodmap is initialized which is used to mark visited cells.
After that, the following procedure repeats until no more unvisited cells
with a value greater than zero exist.

while unvis i ted c e l l s with value > 0 e x i s t :
/ / search c l u s t e r
Find unvis i ted c e l l with value > 0 and mark as v i s i t e d

56

8.5. Bandcounting

/ / f lood c l u s t e r , c e l l s to be v i s i t e d are s tored in a queue
Given above c e l l with value > 0 :

v i s i t a l l c u r r e n t l y unvis i ted neighbors with value > 0

mark those neighbors as v i s i t e d

/ / i n c r e a s e c l u s t e r c o u n t
bandcount++

While the above-presented approach works well, computing the Bancount
for millions of system parameter values requires millions of density matrices
to be stored and later processed which uses a gigantic amount of memory.
This problem is unique to Bancounting, where the density matrix of a trajec-
tory bunch is aggregated into a single number. This allows a serial processor
to use a single density matrix and aggregate the data after every trajectory
evaluation. In theory, it is possible to compute the density matrices for
multiple parameter sets in batches on the GPU and perform Bandcounting
on the batch data on the CPU to aggregate the data as soon as the GPU and
CPU memory is exhausted. This approach requires much tighter control of
thread execution order and batch sizes and is discussed in the outlook of
this work. To this point, a different solution to this problem is implemented.
Distinguishing between cells with a value greater than zero and cells with
the value zero is a binary decision. The actual value of a cell is not important
to Bandcounting. Therefore Bandcounting uses a different grid in which
each grid cell holds a binary value that indicates if this cell has been visited
at least once by a trajectory. This approach reduces the memory usage by
a factor of 32 compared to a regular grid cell with a UINT32 value storing
the count of states. In the AnTGPU implementation, INT32 datatypes are
still used to maximize instruction throughput. Binary operations such as
bit shift and or are used store 32 grid cells in a single unsigned integer.
This combines great performance with much lower memory consumption.

Bandcounting is demonstrated on the following one-dimensional piecewise-
linear discontinous map with two system parameters [AS08]:

xn+1 =

{
axn + u + 1 xn < 0
axn + u − 1 otherwise

A two-dimensional scan is computed in AnTGPU with a ∈ [1, 2) and
u ∈ [−1, 1). The resolution of the scan is 1000 x 1000 scan points. The initial
state is fixed to x0 = 0.25. For every scan-point, a trajectory of 1000000 states
is computed and Bandcounting is calculated after 20000 transient iterations.
The complete scan configuration is given in chapter B.6. For a ∈ [1, 2) the

57

8. AntGPU: Method development

map has chaotic attractors. The Bandcount of each attractor is illustrated in
figure 8.5.

Divergent trajectories are plotted in white. A fractal pattern of increasing
Bandcounts is visible. The close a is to one, the more attractors with a high
number of bands occur. For a ∈ [0,1) the map converges to periodic orbits.
Therefore a transition between periodic and chaotic behavior is observable
at a = 1. the periodic interval a ∈ [0,1) is illustrated in figure 8.6. The period
was computed with the same scan setting as above, only with a varied range
for a and using period analysis instead of Bandcounting. The number of
system function iterations has been reduced to 100000. The complete scan
configuration is given in chapter B.7. It can be observed that a low period
attractor transforms into a low bandcount chaotic attractor at a = 1.

8.6. Symbolic sequence analysis

Symbolic sequence analysis is well described in the words of Hao [Hao91].

One divided the phase space into a finite number of partitions
and labels each partition with a symbol (a letter from some
alphabet). Instead of representing the trajectories by infinite
sequences of numbers - iterates from a discrete map or sam-
pled points along the trajectories of a continuous flow - one
watches the alternation of symbols. In so doing, one loses a
great amount of detailed information, but some of the invariants,
robust properties of the dynamics may be kept...

The phase space is called state space in this work. In AnT, the user can
define an arbitrary symbolic function that converts a state to a symbol. In
AnTGPU this is equally possible. It is possible to store the n last symbols
of a trajectory in a character array. Symbols are restricted to the values of
the datatype char. Additionally, a new feature has been added to AnTGPU.
Multiple periodic symbolic sequences generated from the same periodic
attractor can differ in shift. A simple example is the sequence AB and BA.
Both symbolic sequences can arise from the same two-state periodic attractor,
depending on the state at the beginning of recording the symbolic sequence.
The shift is very confusing to the user, as equal periods are not visible at
the first glance. In AnTGPU, periods can be sorted by shift. This ensures,
that equal periods are represented by the same symbolic string with the
same shift. Shift sorting is performed on the CPU. The symbolic strings

58

8.6. Symbolic sequence analysis

calculated on the GPU serve as intermediate data and are shift-sorted in the
CPU post-processing function if requested by the user. Shift-sorting shifts a
symbolic string to the right until the most sorted shift in ascending order is
found. A simple example is the string “291”. The three possible shifts are
“129”, “291” and “912”. “129” is the most sorted shift in ascending order
starting from the left. This method always computes a specific shift amongst
all possible shifts of a symbolic string. This allows the user to spot equal
periods at the first glance.

Symbolic sequence analysis is demonstrated on the piecewise-linear sys-
tem introduced in section 8.5. A simple L/R symbolic separation of the state
space is chosen. In a one-dimensional L/R separation with a threshold, all
states below the threshold are mapped to the symbol L and all states above
the threshold are mapped to the symbol R. For the given piecewise-linear
system the following symbolic function is chosen:

sym(xn) =

{
L xn < 0
R otherwise

A system function file of the piecewise-linear map with the above-stated
symbolic function is given in chapter C.1. Symbolic strings are hard to visu-
alize in an image. Therefore rotation numbers are computed and visualized.
Given a trajectory with a periodic limit set and an L/R symbol separation,
the rotation number is the relative amount of the symbol L in one period
of the symbolic sequence. The piecewise-linear system is scanned in the
parameter space with a ∈ [0,1) and u ∈ [−1,1) and 1000x1000 scan-points
using symbolic analysis and period analysis and 256 last states. The initial
state is set to x0 = 0.25. The complete scan configuration is given in chapter
B.8. The rotation numbers of the piecewise-linear map are illustrated in
figure 8.7.

When varying u for a fixed a, a devil’s staircase, also known as the Cantor
function can be observed [Kee80].

59

8. AntGPU: Method development

Figure 8.3.: The Lyapunov spectrum of the Hènon map. The first Lyapunov
exponent is illustrated in the top figure, and the second Lyapunov exponent
is illustrated in the bottom figures. At a = 1.5, b = 0.2 in the top figure, a
non-chaotic region embedded in a chaotic region called Milnor’s swallow is
observed. Chaotic regions are colored yellow, divergent regions are colored
white.

60

8.6. Symbolic sequence analysis

Figure 8.4.: Attractor density estimation of the chaotic attractor in the tent
system. At a =

√
2 the two main bands of the attractor merge and overlap.

The density is plotted logarithmically.

61

8. AntGPU: Method development

Figure 8.5.: Chaotic attractor band counts of a piecewise-linear system in
parameter space. For a close to 1, a fractal pattern of increasing band counts
is observed. Divergent trajectories are plotted in white.

62

8.6. Symbolic sequence analysis

Figure 8.6.: Periodic attractor period lengths of a piecewise-linear system
in parameter space. For a close to 1, a fractal pattern of increasing period
lengths is observed.

63

8. AntGPU: Method development

Figure 8.7.: Rotation numbers of the periods in a piecewise-linear system. If
u is varied for a fixed a, a Cantor function is observed.

64

9. Testing and evaluation of AnTGPU

Archiving a significant performance increase over AnT was one of the main
motivations to create AnTGPU. In this chapter, the execution time of every
analysis method is measured. For every method, a sample system is ana-
lyzed with practical scan settings. An example of a practical scan setting
for a two-dimensional scan is 1000x1000 scan points as the resulting data
matrix can easily be visualized with good resolution. The example scans of
chapter 8 will be reused in this chapter. Additionally, the Rössler system is
introduced and scanned. First, for each scan, the execution time is measured
using both programs. Second, selected methods are tested for accuracy
using an appropriate metric. This quantifies the impact of the reduced
floating-point accuracy on the analysis result.

No continuous system has been introduced yet. The Rössler system is
a three-dimensional system of autonomous ordinary differential equations
with three parameters. Currently, only discrete systems in the form of or-
dinary maps have been presented. AnTGPU is designed to support both
ordinary maps and ordinary differential equations. The Rössler system is
defined by the following set of equations:

dx
dt = −y − z
dy
dt = −x + ay
dz
dt = b + z(x − c)

(x,y,z) form the three dimensional state-space, (a,b,c) form the three-
dimensional parameter space. At the parameter setting (a = 0.2,b = 0.2,c =
5.7) a chaotic attractor exists [Rös76]. The Rössler system is a continous
dynamical system. To compute a trajectory from a set of differential equa-
tions, numerical integration is used. Numerical intrgration is performed
with Runge-Kutta 4 and an appropriate stepsize [WH96].

A scan is computed with AnTGPU to calculate the Lyapunov spectrum of
the Rössler system. The initial state is fixed to (0,0,0) and the parameters

65

9. Testing and evaluation of AnTGPU

are chosen a = 0.15, b = 0.2, c ∈ [3,12). c is sampled with 1000 scan
points. For each scan point, a trajectory of 300000 states is computed using
Runge-Kutta 4 numerical integration with a stepsize of h = 0.01. All three
Lyapunov exponents are computed. The complete scan configuration is
given in chapter B.4. The system function is given in chapter C.2. The first
two Lyapunov exponents are illustrated in figure 9.1.

Figure 9.1.: The first two Lyapunov exponents of the Rössler system. The
first Lyapunov exponent is plotted in red, the second Lyapunov exponent is
plotted in green. At a ≈ 5.7 the first Lyapunov exponent becomes positive
and chaotic behavior appears.

The third Lyapunov exponent is plotted with a different value range in a
different figure. This preserves the details of the first two exponents. The
third Lyapunov exponent of the Rössler system is illustrated in figure 9.2.

9.1. Performance comparison against AnT

Performance testing is conducted on a Debian 10 system with an Intel(R)
Core(TM) i7-4770K CPU with 24GB RAM and an NVIDIA GTX 980 Ti
GPU. Additional testing on an NVIDIA RTX 3060 mobile GPU showed
similar results. For every combination of system and scan configuration,

66

9.1. Performance comparison against AnT

Figure 9.2.: Third Lyapunov exponent of the Rössler system.

the execution time in seconds of the scan is measured for both AnT and
AnTGPU. In the following test, only one analysis method is computed in
each scan. This allows measuring the performance impact of each method.
The performance measurements are given in table 9.1.

System name Analysis method Scan-points Iterations AnT AnTGPU Speedup
Rössler RK4 Lyapunov exponents 1,2,3 103 1.2 ∗ 109

439.6s 2.8s 157x
Gingerbread man Period analysis 106 1011

10192.1s* 3.9s 2613x
Hénon Lyapunov exponents 1,2 106 3 ∗ 1011

51631.8s* 29.3s 1762x
Tent Density analysis 3.5 ∗ 108 7 ∗ 1011

68158.4s* 115.5s 590x
Piecewise-linear Bandcounting 106 1012

190110.5s* 25.1s 7574x
Piecewise-linear Period analysis 106 1011

9689.1s* 3.9s 2484x
Modified logisitic Min/Max 106 1011

22424.3* 16.1s 1392x
Piecewise-linear Symbolic analysis 106 1011

26161.3* 23.1 1132x

Table 9.1.: Performance measures for the example scans presented in chapter
8 and chapter 9. Execution time is measure for both AnT and AnTGPU and
the speedup factor is calculated.

In table 9.1, scans have been configured equally for both AnTGPU and
AnT. A detailed configuration of the AnTGPU scans including precision and
epsilon values is given in chapter B. Many AnT scan execution times are
estimates. Estimates are annotated with an asterisk. In this case, the scan

67

9. Testing and evaluation of AnTGPU

was stopped after one percent of the scan points were processed. Completing
large scans in AnT can take from multiple hours to several days. This is
not feasible on a home computer. In AnT, the number of operations per
trajectory is almost identical. No multi-threading is used in AnT. There-
fore no thread synchronization affects the computation time of a trajectory.
Summarized, the execution time estimates of the AnT scans are relatively
accurate. This is easily confirmed empirically on smaller scans like the scan
of the Rössler system with Runge-Kutta 4 in AnT. One percent of the compu-
tation was completed after approximately 6.5s. This results in an estimated
execution time of 650s which is very close to the actual execution time of 633s.

Two major conclusions can be drawn from the comparison of the scan
execution time. First, AnTGPU is most efficient when large numbers of scan
points are analyzed. The closer the number of scan points comes to just a
single trajectory, the smaller the advantage of AnTGPU over AnT becomes.
Usually one-dimensional or two-dimensional scans are computed. Often 103

scan-points are analyzed in one-dimensional scans, resulting in a 1000 pixel
wide plot. In a two-dimensional scan usually 106 scan-points are analyzed,
resulting in a 1000x1000 pixel image. In the one-dimensional example scan
of the Rössler system, the scan execution time of AnTGPU was “only” 157

times faster than AnT, while in the two-dimensional Bandcount scan of the
piecewise-linear map the scan execution time was approximately 7574 times
faster.

There are two main reasons for this difference in speedup factors. AnT
saves data to the file system after every processed scan-point. Therefore
scans with a low number of scan points and long trajectories dramatically
increase the performance of AnT if the number of system iterations per
second is measured. Using batched execution, very large numbers of it-
erations can be computed in AnTGPU without installing a second GPU
or modifying the display driver configuration. In some scans, especially
when calculating Lyapunov exponents in higher-dimensional systems like
Rössler, the computation of a single trajectory becomes very expensive. This
is a problem. Unlike large initial state spaces or large parameter spaces,
long trajectories cannot be broken up into multiple batches. In the case
of the computation of all Lyapunov exponents for the Rössler system, the
maximum trajectory length with a single GPU system and default display
driver configuration is about 300000 iterations. Simpler systems can exceed
this limit by several orders of magnitude. To reach 300000 iterations per

68

9.2. Quality evaluation

trajectory in the Rössler scan without interruption by the display driver, the
stream processors of the GPU were partially idling. In other words, one
batch of scan-points used only a subset of the computing resources of the
GPU. This ensures lower latency for special function computation which is
necessary for the calculation of Lyapunov exponents. The GPU architecture
has a lower throughput for special function operations. This is described in
chapter 4.2. This creates additional overhead. If very long or very expensive
trajectories are computed, it is recommended to install a second GPU and
separate display rendering and scientific computing or configure the display
driver to stop updating the user interface, effectively freezing the screen
during the scan execution. Additionally, batch overhead can be reduced
dramatically as the GPU used to compute the scan no longer updates the
display graphics between batches. This can further increase scan execution
time by a huge margin.

The second conclusion from the execution time comparison in table 9.1
is that given favorable conditions such as the absence of special functions
combined with proper configuration, AnTGPU outperforms AnT by more
than three orders of magnitude. This is an outstanding improvement and
allows to reconsider the usage of double-precision floating-point numbers, as
a performance reduction of 64 caused by double performance still results in
a performance increase of 50 times over AnT under favorable conditions. Ad-
ditionally, special double-precision GPUs exist that have a double-precision
throughput comparable to the single-precision throughput of the card used
in this test. This might be an option for researchers with a large budget [tes].

9.2. Quality evaluation

The example scans computed in chapter 8.2 show that the analysis methods
implemented in AnTGPU produce correct results. All output plots are in
accordance with literature and previous scans computed with AnT. In this
section, the difference between results computed with AnTGPU and AnT is
measured and investigated in detail.

9.2.1. Comparison with AnT

In the following test scenarios, the results computed by the well-tested AnT
program are used as reference values. The outputs of AnTGPU are grouped

69

9. Testing and evaluation of AnTGPU

in two categories: unordered outputs and ordered outputs. Examples of
unordered outputs are symbolic strings or period lengths. An unordered
output value is either identical to the reference value or incorrect. No mea-
sure of proximity to the reference value can be defined. Ordered outputs
can be floating-point numbers or integer numbers. For both categories of
output values, an error measure is defined. The error measure maps the
output values of a scan to a real number. The error measure for unordered
values calculates the fraction of output values that are unequal to the refer-
ence value. The error measure for ordered values is the average absolute
difference between the reference values and the AnTGPU output values. The
reference values are denoted as r, AnTGPU output values are denoted as v.
N is the number of values in a scan. For unordered output values the error
measure err(v, r) is defined as following:

err(v, r) =
1
N

N

∑
i=1

ϕ(vi,ri)

ϕ(vi, ri) =

{
0 vi = ri

1 otherwise

For ordered integer and floating-point values, the accuracy measure is
defined as follows:

err(v, r) =
1
N

N

∑
i=1

|vi − ri|

For each category of output values, an example scan is taken and the
error measure is computed with an identically configured scan from AnT.
First, an example for unordered outputs is presented. The period lengths of
a piecewise-linear system have been computed in a two-dimensional scan
in chapter 8.5. The previous scan is repeated two times with an identical
configuration in a one-dimensional setting. a is fixed to the value of 0.5
for the first scan and 0.3 for the second scan. A visual comparison of the
AnTGPU output and the reference values for the first scan is given in figure

70

9.2. Quality evaluation

System name Analysis method Error value
Piecewise-linear Period analysis a = 0.5 0.001

Piecewise-linear Period analysis a = 0.3 0

Table 9.2.: Error measures of the period analysis of a piecewise-linear system
from chapter 8.5. 1000 scan points were analyzed.

9.3. The average absolute differences between all outputs and references are
given in the table 9.2.

The outputs for a = 0.3 are identical. The outputs for a = 0.5 dif-
fer in one value for 1000 scan-points scanned. It turned out to be the
first scan point in which the outputs of AnT and AnTGPU differ. Given
x0 = 0.25, a = 0.5, Φ=− 1 the output for AnTGPU is 1 while the output for
AnT is 0. This means that AnTGPU detected a period of length one while
AnT detected no period. For the given parameter setting and initial value,
the system function reduces to

xn+1 =

{
0.5xn xn < 0
0.5xn − 2 otherwise

After one iteration the initial value x0 = 0.25 is mapped to x1 = −1.875.
From this point on, the trajectory converges from the negative half of the real
number line to zero exponentially. Period detection in this case depends on
the floating-point standard and method implementation. No further actions
are taken.

Second, an example for ordered outputs is presented. All three Lyapunov
exponents of the Rössler system have been presented in section 9. A visual
comparison of the AnTGPU output and the reference values for the first two
Lyapunov exponents is given in figure 9.4. The average absolute differences
between all outputs and references are given in the table 9.3.

The average absolute errors to the Lyapunov exponents are quite small.
However, most of the difference is caused by single values that differ sub-
stantially. This is can be observed in figure 9.4 at c ≈ 9.5. Some spikes in the
AnTGPU output are too short and one spike is missing entirely. Numerical
estimation of Lyapunov exponents in parameter ranges with chaotic behavior
such as c = 9 is extremely sensitive to state values. Even incredible small

71

9. Testing and evaluation of AnTGPU

System name Analysis method Error value
Rössler RK4 Lyapunov exponent 1 0.002888

Rössler RK4 Lyapunov exponent 2 0.000695

Rössler RK4 Lyapunov exponent 3 0.003597

Table 9.3.: Average absolute error measures of the Lyapunov exponent anal-
ysis of the Rössler system from chapter 9. 1000 scan points were analyzed.
The errors are small but larger than rounding errors caused by floating point
inaccuracy. This indicates that rounding errors of floating point inaccuracy
were magnified during the trajectory iteration. Visible errors are only present
in chaotic regions where error magnification is characteristic.

trajectory deviations caused by the lower floating-point accuracy used in
AnT can snowball into larger errors. This is not problematic. The Lyapunov
spectrum is, except for single values, approximated very accurately. The
problem is not solved by using double precision. If the results of AnT using
double precision are compared to quadruple precision results, the same
problem will appear again in regions with chaotic behavior.

9.2.2. Mitigating floating-point number inaccuracy

The errors witnessed in figure 9.4 are a general problem of numerical sim-
ulation of dynamical systems and are not limited to Lyapunov exponents
or single-precision floating-point numbers. In some cases, errors induced
by floating-point inaccuracy can be mitigated by more sophisticated anal-
ysis methods. This is the case for density analysis. In chapter 8.4, density
analysis was demonstrated on the tent map. In a large scan, the density
of the chaotic attractor in dependency of the parameter a was computed
using AnTGPU. In AnTGPU, density analysis is performed differently than
in AnT. Instead of computing a single very long trajectory that maps out the
spatial density of the attractor, a bundle of short trajectories is computed
that maps out the spatial density in parallel. A more detailed description of
parallel density estimation is given in chapter 8.4. This approach not only
allows to parallelize density analysis but also reduces floating-point errors.
Density analysis on the tent map is performed again with three different
scans. The first scan computes a single trajectory with 1000000 iterations
for every parameter value a using 32Bit floating-point numbers. The second
scan computes a single trajectory with 1000000 iterations for every parameter

72

9.3. AnTGPU on nested closed invariant curves

value a using 64Bit floating-point numbers. The second scan resembles a
typical density analysis in AnT. The third scan computes 350000 trajectories
with 2000 iterations for every parameter value a using 32Bit floating-point
numbers. The results are illustrated in figure 9.5 from top to bottom.

In the top density diagram, the vertical lines correspond to unstable
pseudo periods that formed due to floating-point inaccuracy. In the middle
density diagram double precision is used. This either prevents pseudo peri-
ods from forming or forces them into larger period lengths that look much
smoother and approximate the density of the chaotic attractor better. In the
bottom density diagram, single-precision floating-point numbers are used
but almost no pseudo periods are visible. This is a direct consequence of the
analysis method using trajectory bundles. The probability of every trajectory
from a bundle converging to the same pseudo period is small. Instead,
many trajectories do not converge to pseudo periods, and those that do
overlap each other and are averaged out by other trajectories. The final scan
computed many more function iterations in total but is fully parallelizable
and the trajectory bundle can be chosen smaller or with different spacing.
Measuring the effects of trajectory spacing and the influence of trajectory
size is left for future work.

9.3. AnTGPU on nested closed invariant curves

When creating a scientific analysis program evaluation mustn’t be solely
conducted on textbook examples. In the previous sections, AnTGPU showed
great performance on dynamic systems such as Rössler or Hénon. Most of
the previously covered systems are well known and investigated. In this
section, AnTGPU is used to investigate nested closed invariant curves in a
two-dimensional piecewise-linear system with five parameters. The system
function is a 2D border collision normal form [AZ19] and given below:

xn+1 =

{
τl xn + yn + µ xn ≤ 0
τrxn + yn + µ xn > 0

yn+1 =

{
−δl xn xn ≤ 0
−δrxn xn > 0

The above-introduced system is a state-of-the-art subject of research and a
good example of a system that is analyzed with AnTGPU. At the parameter
point τl = −0.39024, τr = 0.3, δl = 0.5, δr = 1.8094 and µ = 0.05 multiple

73

9. Testing and evaluation of AnTGPU

nested attractors coexist in the state space [AZ19]. The state space is scanned
to show the attractors and their basins of attraction. A low and a high
magnification scan is created to show the nesting of the basins of attractions.
In the low magnification scan, the state space is scanned with x ∈ [−8, − 7)
and y ∈ [−6, − 5). In the high magnification scan the state space is scanned
with x ∈ [−7.5,− 7.3) and y ∈ [−5.6,− 5.4). The state space is sampled with
1000x1000 scan points in both scans. For every scan-point, 100000 function
iterations are computed and period length analysis is performed on the last
512 states. The resulting basins of equal period length are illustrated in
figure 9.6.

In figure 9.6 it appears that five attractors are nested in the state space. To
show that the basins of equal period length equal basins of attraction for one
periodic attractor each, the system is additionally scanned for minimum and
maximum values. If in a region of equal period length different minimum
or maximum values are found, there are either multiple periods with the
same length or the period analysis precision is not sufficient. The minimum
and maximum state values are illustrated in figure 9.7. Maximum values are
shown in the left figures and minimum values in the right figures. Maximum
values are shown in the top features, minimum values in the bottom features.

It is difficult to spot in figure 9.7 but in the region, X ∈ [−5.1, 5) and
Y ∈ [−7.8,−7.7) different minimum and maximum values are in a region
of equal period length. This region is scanned again with 1000x1000 scan-
points, Only the minimum values of the first dimension and the period
length are investigated. The minimum values are plotted in the top figure
and the period lengths in the bottom figure. The result is illustrated in figure
9.8.

This clearly shows, that more attractors than previously assumed are
present in the state space in the region x ∈ [−5.1, 5) and y ∈ [−7.8,−7.7).
At X = −5.03 and Y ∈ (−7.755,−7.756) the minimum values range from
−8.74 to −8.84. This value range is well within floating point accuracy and
period analysis compare accuracy.

74

9.3. AnTGPU on nested closed invariant curves

Figure 9.3.: Comparision of the period analysis results on a piecewise-linear
map from chapter 8.5. Both plots are identical, a = 0.5.

75

9. Testing and evaluation of AnTGPU

Figure 9.4.: Comparision of the Lyapunov exponent analysis results of
the Rössler system from chapter 9. Both plots are very similar. A small
difference is observed at c ≈ 9.5 for both Lyapunov exponents. The first
Lyapunov exponent is illustrated in red, and the second Lyapunov exponent
is illustrated in green.

76

9.3. AnTGPU on nested closed invariant curves

Figure 9.5.: In the top figure the attractor density of the tent system is
computed with a scan over a single long trajectory using FP32 accuracy.
In the middle figure, the attractor density of the tent system is computed
with a scan over a single long trajectory using FP64 accuracy. In the bottom
figure, the attractor density of the tent system is computed with a scan
over a trajectory bundle with 350000 short trajectories in parallel using FP32

accuracy.

77

9. Testing and evaluation of AnTGPU

Figure 9.6.: In the top figure a low magnification period analysis scan
of the system introduced in chapter 9.3. In the bottom figure, a higher
magnification scan is computed. In the analysis five different period lengths
are present. It is assumed that five periodic attractors coexist in state space.
Later it is revealed that this is not the case.

78

9.3. AnTGPU on nested closed invariant curves

Figure 9.7.: Minimum and maximum values of the trajectories for the system
introduced in chapter 9.3. Maximum values are plotted on the left, minimum
values are plotted on the right. The X dimension is plotted on the top,
the Y dimension on the bottom. The scan area is the same as in the low
magnification period analysis scan. For X = 7.75 and Y = 5.1 different
minimum values in a region of equal period length are observed. This
confirms that at least multiple periodic attractors with equal period length
coexist.

79

9. Testing and evaluation of AnTGPU

Figure 9.8.: Minimum values of the trajectories for the system introduced
in chapter 9.3 in the top figure. This close-up scan is computed to visualize
the different minimum values in an area of equal period length. A period
length scan of the same area is given in the bottom figure.

80

10. Conclusion and Outlook

AnTGPU provides three orders of magnitude performance increase over
AnT and can process trillions of system function iterations in under a minute.
In mere seconds billions of bytes of simulation data are generated and aggre-
gated in parallel in the system analysis methods implemented in AnTGPU.
AnTGPU features period analysis, Lyapunov exponent analysis, attractor
density estimation, attractor band counting, symbolic sequence analysis, and
statistical analysis. These analysis methods are the most important methods
from the existing AnT project. The AnT project was analyzed in-depth to
develop a highly efficient, GPU-based scan execution and method execution
architecture. This manifested in the abandonment of object orientation,
dynamic binding, dynamic memory, dynamic linking, and iterator-based
data structures. In AnTGPU memory locality, registers and caches, parallel
memory access, high instruction throughput, minimal instruction count,
efficient multithread looping and branching, and runtime compilation were
used to archive maximum performance. This allows using the hardware of
the GPU as efficiently as possible. Hardware analysis was conducted on the
state-of-the-art NVIDIA GA102 architecture. Runtime compilation allows
creating of a scan and problem-specific analysis program that outperforms
any general analysis program. Additionally, no dynamically linked library
has to be compiled by the user to integrate the system function. AnTGPU
uses OpenCL as a computation framework that is compatible with hardware
from both NVIDIA and AMD and can be used on Microsoft Windows and
Linux. The source code adheres strictly to the C99 standard. This ensures a
long life cycle and good cross-platform compatibility.

Testing was performed on all analysis methods and great results were
achieved for both, performance and accuracy. Due to performance reasons,
32Bit floating-point numbers are used in AnTGPU, compared to 64Bit float-
ing point numbers used in AnT. The impact of the reduced floating-point
accuracy on the analysis result quality was investigated. It was found that
result inaccuracies do not magnify overproportionally in most methods. At-
tractor density estimation is affected more severely by the reduced accuracy.

81

10. Conclusion and Outlook

In AnTGPU, attractor density estimation uses a new approach to estimate
the density which mitigates the impact of the lower floating point accuracy
and allows for large-scale parallelization.

In the scope of this work, several key insights have been gathered regard-
ing the development and usage of AnTGPU:

• OpenCL is used because it has the best hardware compatibility. Almost
all GPUs of the last ten years are compatible.

• 32Bit floating-point numbers have a 64 times higher throughput on
commercial GPUs.

• Object-orientation and non-contiguous memory cause a huge overhead.
Using thread registers and thread-local memory in analysis methods
boosts performance significantly. This attributes to a performance
increase of at least factor ten.

• Methods that aggregate data of multiple trajectories use global memory
with atomic operations.

• Every trajectory is simulated and analyzed on one GPU thread. A
trajectory is atomic.

• On systems with a single GPU batch execution is eventually inter-
rupted by the display driver. On the Rössler system with RK4 calcu-
lating Lyapunov exponents this happened after 400000 iterations. A
second GPU with no display connected can compute uninterrupted.

• Computing the average of many short trajectories with varying initial
values instead of one long trajectory mitigates floating point inaccuracy.
100000 trajectories of length 1000 estimated the density of the tent map
attractor almost as accurate as one trajectory with 1000000 iterations
and double-precision.

• In most scans AnTGPU is more than 1000 times faster than AnT.

• Special functions such as log, sin, 1
x slow down computation by a factor

of four.

• Loop length in system function should not depend on the state of
the trajectory. Fixed length loops are preferred. In the worst-case
performance is reduced by a factor of 32.

82

AnTGPU was created to be a foundation. It was clear from the beginning,
that the timeframe of this work requires limitations to the scale of AnTGPU.
In future work, the batched thread execution of AnTGPU can be used
to transfer, process, and aggregate analysis data from the GPU as soon
as the GPU memory is exhausted. This removes the memory limitations
of the GPU and allows to compute scans of unprecedented size. Over a
trillion bytes of data and quadrillions of system function iterations become
feasible. The large performance increase archived in AnTGPU over AnT
allows introducing 64Bit floating point calculation to the GPU. Even with
reduced performance due to the higher precision, a huge performance boost
is achieved with the efficient architecture of AnTGPU. The visualization of
large multidimensional analysis results with CPU-based plot programs is
often slow and not interactive. AnTGPU was developed to be later integrated
into an interactive GPU accelerated analysis studio. Many additions to the
analysis methods in AnTGPU are planned. This includes new methods and
additional data aggregation. A new method that maps an attractor based on
hash functions is planned.

83

10. Conclusion and Outlook

84

Bibliography

[acc] The OpenACC Application Programming Interface. https:
//www.openacc.org/sites/default/files/inline-images/
Specification/OpenACC-3.1-final.pdf. Accessed: 2022-05-26.

[AS08] Viktor Avrutin and Michael Schanz. On the fully developed
bandcount adding scenario. Nonlinearity, 21(5):1077, 2008.

[AZ19] Viktor Avrutin and Zhanybai T Zhusubaliyev. Nested closed
invariant curves in piecewise smooth maps. International Journal
of Bifurcation and Chaos, 29(07):1930017, 2019.

[Ber18] Pierre Berger. Zoology in the h\’enon family: twin babies and
milnor’s swallows. arXiv preprint arXiv:1801.05628, 2018.

[BS02] Michael Brin and Garrett Stuck. Introduction to dynamical systems.
Cambridge university press, 2002.

[Buc10] Ian Buck. The evolution of gpus for general purpose computing.
In Proceedings of the GPU Technology Conference 2010, page 11, 2010.

[Cal19] John Calcote. Autotools: a practitioner’s guide to GNU autoconf,
automake, and libtool. No Starch Press, 2019.

[CIKE93] Leon O Chua, Makoto Itoh, Ljupco Kocarev, and Kevin Eck-
ert. Chaos synchronization in chua’s circuit. Journal of Circuits,
Systems, and Computers, 3(01):93–108, 1993.

[com] CUDA GPU Compute Capability. https://developer.nvidia.
com/cuda-gpus. Accessed: 2022-05-26.

[Dev88] Robert L Devaney. Fractal patterns arising in chaotic dynamical
systems. In The science of fractal images, pages 137–168. Springer,
1988.

[Eck06] Bernd Eckstein. Bandcounter: counting bands of multiband chaotic
attractors. Universitätsbibliothek der Universität Stuttgart, 2006.

85

https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus

Bibliography

[For15] William Ford. Chapter 14 - gram-schmidt orthonormalization. In
William Ford, editor, Numerical Linear Algebra with Applications,
pages 281–297. Academic Press, Boston, 2015.

[GA1] NVIDIA AMPERE GA102 GPU ARCHI-
TECTURE. https://images.nvidia.com/
aem-dam/en-zz/Solutions/geforce/ampere/pdf/
NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.
pdf. Accessed: 2022-05-26.

[Hao91] Bai-lin Hao. Symbolic dynamics and characterization of complex-
ity. Physica D: Nonlinear Phenomena, 51(1-3):161–176, 1991.

[HbL] Roberto Hasfura-b and Phillip Lynch. Periodic points of the
family of tent maps.

[Hén76] Michel Hénon. A two-dimensional mapping with a strange
attractor. In The theory of chaotic attractors, pages 94–102. Springer,
1976.

[Kee80] J. P. Keener. Chaotic behavior in piecewise continuous difference
equations. Trans. Am. Math. Soc., 261(2):589–604, 1980.

[Lar11] Robert S Laramee. Bob’s concise introduction to doxygen. Tech-
nical report, Technical report, The Visual and Interactive Com-
puting Group, Computer . . . , 2011.

[mem] Memory Coalescing. https://developer.nvidia.com/blog/
how-access-global-memory-efficiently-cuda-c-kernels/.
Accessed: 2022-05-26.

[Nvia] CUDA Zone. https://developer.nvidia.com/cuda-zone. Ac-
cessed: 2022-05-26.

[Nvib] NVIDIA TESLA V100-GPU. https://www.nvidia.com/de-de/
data-center/tesla-v100. Accessed: 2022-05-26.

[Nvic] Using CUDA and X. https://nvidia.custhelp.com/app/
answers/detail/a_id/3029/~/using-cuda-and-x. Accessed:
2022-05-26.

86

https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/cuda-zone
https://www.nvidia.com/de-de/data-center/tesla-v100
https://www.nvidia.com/de-de/data-center/tesla-v100
https://nvidia.custhelp.com/app/answers/detail/a_id/3029/~/using-cuda-and-x
https://nvidia.custhelp.com/app/answers/detail/a_id/3029/~/using-cuda-and-x

Bibliography

[ocla] OpenCL Overview. https://www.khronos.org/opencl/. Ac-
cessed: 2022-05-26.

[oclb] OpenCL supported devices. https://www.khronos.org/
conformance/adopters/conformant-products/opencl. Ac-
cessed: 2022-05-26.

[oclc] The OpenCL C Specification. https://www.khronos.org/
registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html.
Accessed: 2022-05-26.

[PMS21] Krishna Pusuluri, Hil GE Meijer, and Andrey L Shilnikov. Ho-
moclinic puzzles and chaos in a nonlinear laser model. Commu-
nications in Nonlinear Science and Numerical Simulation, 93:105503,
2021.

[pro] CUDA Programming guide. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html#
maximize-instruction-throughput. Accessed: 2022-05-26.

[Rös76] Otto E Rössler. An equation for continuous chaos. Physics Letters
A, 57(5):397–398, 1976.

[Sch04] M. Schanz. The AnT project: On the simulation and analysis of
dynamical systems. Habilitation. University of Stuttgart, 2004.

[set] CPU performance. https://setiathome.berkeley.edu/cpu_
list.php. Accessed: 2022-05-26.

[SH98] Andrew Stuart and Anthony R Humphries. Dynamical systems
and numerical analysis, volume 2. Cambridge University Press,
1998.

[Ste10] Shlomo Sternberg. Dynamical systems. Courier Corporation, 2010.

[tec] Nvidia RTX 3090 Ti. https://www.techpowerup.com/
gpu-specs/geforce-rtx-3090-ti.c3829. Accessed: 2022-05-
26.

[tes] NVIDIA Tesla A100. https://www.nvidia.com/de-de/
data-center/a100/. Accessed: 2022-05-26.

87

https://www.khronos.org/opencl/
https://www.khronos.org/conformance/adopters/conformant-products/opencl
https://www.khronos.org/conformance/adopters/conformant-products/opencl
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#maximize-instruction-throughput
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#maximize-instruction-throughput
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#maximize-instruction-throughput
https://setiathome.berkeley.edu/cpu_list.php
https://setiathome.berkeley.edu/cpu_list.php
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090-ti.c3829
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090-ti.c3829
https://www.nvidia.com/de-de/data-center/a100/
https://www.nvidia.com/de-de/data-center/a100/

Bibliography

[WH96] Gerhard Wanner and Ernst Hairer. Solving ordinary differential
equations II, volume 375. Springer Berlin Heidelberg New York,
1996.

[WSSV85] Alan Wolf, Jack B Swift, Harry L Swinney, and John A Vastano.
Determining lyapunov exponents from a time series. Physica D:
nonlinear phenomena, 16(3):285–317, 1985.

[ZPL+
11] Ying Zhang, Lu Peng, Bin Li, Jih-Kwon Peir, and Jianmin Chen.

Architecture comparisons between nvidia and ati gpus: Com-
putation parallelism and data communications. In 2011 IEEE
international symposium on workload characterization (IISWC), pages
205–215. IEEE, 2011.

88

A. AnTGPU User documentation

In the following sections, the most recent version of the AnTGPU user
documentation is included. The documentation was last edited on 19.05.2022

and describes the configuration file and system file syntax used in AnTGPU
1.7. Additionally, simple examples are given. All option keys are briefly
described and correspond to the methods introduced in chapter 8.

A.1. Config file documentation

The system configuration is saved in a file “system”.cfg. If the config file is in
a different folder than AnTGPU or named differently, a path with a file name
has to be specified during the program execution or as a command-line
option.

A.1.1. Features

• The config language is key-value pair based. Each option is specified
by a key, a delimiter ’=’, and a value

• Inline comments are denoted by ’’. The remaining line after this
character is ignored

• Empty lines don’t affect the data interpretation and can be used for
structuring

• The order of the key-value pairs can be arbitrary. Correct interpretation
does not rely on the order of the key-value pairs

• Invalid syntax of key-value pairs raises a warning. Invalid pairs are
not interpreted

• Specifying only a subset of the supported key-value pairs is allowed.
This can affect the program execution if missing pairs are dependent
on each other

89

A. AnTGPU User documentation

• Keys are unique. No key is allowed to be contained in another key

• The addition of unsupported key-value pairs does not affect the config
interpretation

• Keys can be indexed. This allows for a key to be specified multiple
times with different values of the same datatype

• Values can be tuples of simple datatypes. This allows a single key to
reference multiple values of possibly different data types.

A.1.2. Syntax example

An example of comments, a key-value pair, a key with tuple value, and an
indexed key:

#I am a comment
key = value
tuplekey = (0, 1, hallo)

key2 [0] = value0 #I am a comment
key2 [1] = value1

A.1.3. Option keys

In the following table, all supported option keys are listed with information
about the data type, the syntax of the value, and a description of the option.
Value syntax is sometimes given with quotation marks eg. "value". In the
config file, these quotation marks have to be omitted.

90

A.1. Config file documentation

Basic system options

Key Specifier Datatype Indexed Value Syntax Description Optional
num_batches int no > 0 Sets the number of batches in which the scan is executed on the GPU. no
type enum no "map" or "diff" Sets the system type. no
name string no Sets the system file name. Used to find the system function file. no
path string no Path of the system config file. yes
state_dim int no 1 to 30000 Sets system state dimension. no
initial_state[n] float (Tuple) yes "(float value)" or

"(float range_min,
float range_max, int
num_points, enum
spacing_method)"

Sets the n-th initial state dimension to a value or range. no

parameter_dim int no 0 to 30000 Sets system parameter space dimension. no
parameter_state[n] float (Tuple) yes "(float value)" or

"(float range_min,
*float range_max, int
num_points, enum
spacing_method)"

Sets the n-th parameter space dimension to a value or range. no

scan_iterations int no > 0 Sets the number of iterations per trajectory. yes
output_format enum no "gnu" or "antstudio" Sets the format of output files. This can also affect the number of files generated. yes
scan_points_file string no File name of the scan point file. Used in "antstudio" output only. yes

Basic saving

Key Specifier Datatype Indexed Value Syntax Description Optional
calc_last_states bool no "true" or "false" Sets if the last states are calculated. They are required for cyclic and acyclic files. yes
last_states_num int no > -1 Sets how many of the last states are saved. yes
save_last_states bool no "true" or "false" Sets if the last states are save to the disk. yes
last_states_file string no Filename of last states save. yes

General evaluation
Key Specifier Datatype Indexed Value Syntax Description Optional
calc_min_values bool no "true" or "false" Sets if min values are computed and saved to file. yes
calc_max_values bool no "true" or "false" Sets if max values are computed and saved to file. yes
calc_wave_numbers bool no "true" or "false" Sets if wavenumber values are computed and saved to file. yes
calc_mean_values bool no "true" or "false" Sets if mean values are computed and added to the general evaluation file.

If all options are false, this feature is deactivated.
yes

general_transient_iterations int no > -1 Sets how many transient iterations occur before the methds "mean",
"min_max" and "wavenumbers" are activated.

yes

min_value_file string no Filename of min value save. yes
max_value_file string no Filename of max value save. yes
mean_value_file string no Filename of mean value save. yes
wavenumber_file string no Filename of wavenumber save. yes

Period analysis

Key Specifier Datatype Indexed Value Syntax Description Optional
calc_period bool no "true" or "false" Sets if period is computed and the period length is saved to file. yes
max_period_length int no > -1 Sets the largest period that is tested. Setting 0 deactivates this feature

entirely.
yes

compare_precision float no > 0 Sets the compare precision for period testing. yes
divergence_bound float no > 0 Sets the divergence bound. If the max-norm of a state exceeds this bound,

the trajectory is marked as "divergent" or -1 in the period length file.
yes

period_length_file string no Filename of period length save. yes
save_periodic_trajectories bool no "true" or "false" Sets if the cyclic trajectories are saved to a separate file. Only availiable for

"gnu" output format. Requires calc_last_states equals "true".
yes

save_acyclic_trajectories bool no "true" or "false" Sets if the acyclic trajectories are saved to a separate file. Only availiable for
"gnu" output format. Requires calc_last_states equals "true".

yes

period_file string no Filename of cyclic trajectory file. yes
acyclic_file string no Filename of acyclic trajectory file. yes

91

A. AnTGPU User documentation

Density analysis
Key Specifier Datatype Indexed Value Syntax Description Optional
calc_density bool no "true" or "false" Sets if density is computed and saved to file. yes
density_grid_dimension int no > -1 Sets the dimension of the density grid. yes
density_grid_slice_dimensions int yes > 0 Sets the system state dimensions across which the grid is spanned.

This allows to use only a subset of the system state dimensions
in the density grid.

yes

density_grid_bounds float (Tuple) yes "(float min, float max)" Sets the bounds of the density grid across the indexed grid
dimension.

yes

density_grid_resolution int int > 0 Sets the density grid resolution across the indexed grid dimen-
sion.

yes

density_file string no Filename of density grid save. yes
density_transient_iterations int no > -1 Sets the number of transient iterations occuring before the density

is sampled.
yes

density_overflow_protection bool no "true" or "false" Sets if overflow protection is used on the unsigned ints of the
density grid. Uses more computation power.

yes

Bandcounting
Key Specifier Datatype Indexed Value Syntax Description Optional
calc_bandcount bool no "true" or "false" Sets if bandcount is computed and saved to file. yes
bandcount_grid_dimension int no > -1 Sets the dimension of the bandcount grid. yes
bandcount_grid_slice_dimensions int yes > 0 Sets the system state dimensions across which the grid is

spanned. This allows to use only a subset of the system state
dimensions in the bandcount grid.

yes

bandcount_grid_bounds float (Tuple) yes "(float min, float max)" Sets the bounds of the bandcount grid across the indexed
grid dimension.

yes

bandcount_grid_resolution int int > 0 Sets the bandcount grid resolution across the indexed grid
dimension.

yes

bandcount_file string no Filename of bandcount grid save. yes
bandcount_transient_iterations int no > -1 Sets the number of transient iterations occuring before the

bandcount is sampled.
yes

Lyapunov exponents
Key Specifier Datatype Indexed Value Syntax Description Optional
calc_lyapunov_exp bool no "true" or "false" Sets if lyapunov exponents are computed and saved to file. yes
num_lyapunov_exp int no state_dim >= value > 0 Sets how many lyapunov exponents are computed. yes
lyapunov_steps int no > 0 Sets how many iterations are computed until a gram-schmidt

reorthogonalization is performed.
yes

lyapunov_eps float no > 0 Sets the epsilon that displaces the side trajectories around the
main trajectory.

yes

lyapunov_transient_iterations int no > 0 Sets how many transient iterations are computed before the
lyapunov exponents are computed.

yes

lyapunov_file string no Filename of Lyapunov exponent save. yes

Symbolic analysis
Key Specifier Datatype Indexed Value Syntax Description Optional
calc_symbolics bool no "true" or "false" Sets if symbolics are computed and saved to file. yes
num_last_symbol_states int no > 0 Sets how many last states are appended to the symbol string. yes
sort_symbols bool no "true" or "false" Sets if symbolics are shifted such that equal periods have the

same phase shift.
yes

symbolic_file string no Filename of symbolic save. yes

A.2. System function file documentation

A system function is a single function that specifies a state transition. System
functions are saved as "systemfilename".c. The "systemfilename" is specified

92

A.2. System function file documentation

in the config file. If the file is in a different folder than the program, a path
to the directory has to be specified in the config file.

A.2.1. Syntax

The system function follows a simple syntax that is inspired by a C method
declaration. There is only one function evaluated in the file. Additional
functions are not supported.

C-style comments are fully supported. Four directives structure the sys-
tem function file. define, vardef, program and symbol.

C-style defines can be used to simplify variable names. Only define A B
is supported. This replaces A with B. A define statement may be followed
by a comment or a line break but not source code. Defines can be used to
abbreviate variable names. If parameters are constant it is recommended to
specify them as variables and set the value in the config file. The parser will
optimize constant values. Define dependencies are not supported. In the
following example, X will be replaced by Y but not further by Z. Y will be
replaced by Z.

define X Y
define Y Z

// example string
XXYY

// output of this define implementation
YYZZ

The directives vardef, program, and symbol indicate a region of code until
the next directive is found. After a directive code can be added according to
the OpenCL C Specification. This includes math functions and control flow.
No external libraries are allowed. vardef and symbol are optional. vardef
allows the user to define and initialize additional variables, not given by the
system. symbol allows specifying a symbol-function. The general structure
of the system function file is given below.

93

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html

A. AnTGPU User documentation

define X Y

vardef
//my variables
program
//my system function
symbol
//my symbol function

A.2.2. Predefined variables

The user has to use predefined variables for states and parameters in his
program or symbol section. n after a variable indicates, that there are mul-
tiple variables of the same name, starting at 0, specifying dimension. E.g.
staten can be state0, state1, ..., stateN. The state is always followed by a
numeric value. State and parameters are indexed as specified in the options
file. Predefined variables are described below:

Name Datatype Description
state{n} float Individual dimensions of the current state vector.
nstate{n} float Individual dimensions of the next state vector. Write the new values here.
param{n} float Parameters of the system function.
_symbol char Current symbol, associated to the current state.

A.2.3. Forbidden variable names

The internal functions use variables, that are not allowed to be declared by
the user. If the variables are not listed as predefined variables above, it is not
recommended to use forbidden variables at all. The names of the forbidden
variables are given below:

Name Name Name
state{n} _systemParameters _periodLength
nstate{n} _meanStates _densityMatrixStack
param{n} _minStates _bandCountMatrixStack
_symbol _maxStates _lyapunovExponents
threadOffset _waveNumbers _symbolStrings
_initialStates _lastStates threadIdx
paramspaceidx meanstate{n} minstate{n}
maxstate{n} wavenumber{n} pstate{n}
refstate{n} densityGridIdx{n} densityStackIndex
bandCountGridIdx{n} bandCountStackIndex lyapunov{n}expstate{m}
nlyapunov{n}expstate{m} lyapunovexp{n} lyapunovlength{n}
lyapunovcycle _i

Additionally, variables and macros defined in the OpenCL specification
should be used appropriately.

94

A.3. Output file documentation

A.2.4. Example function

A complete example function with all directives used is given below:

define X state0
define A param0

vardef
float a;
a = 3.2;

int put;

program
nstate0 = A*X*(1.0 -X); //I am a comment
put = 4;
a = put * 2;

symbol
if(X > X*X){

_ symbol = ’A’;
} else{

_ symbol = ’B’;
}

Not matching the above specification for correctly structuring the system
function may lead to errors or unpredictable outcomes.

A.3. Output file documentation

AnTGPU outputs analysis results for each group of methods specified in the
config file. Two formats affect all output files, "gnu" and "antstudio". "antstu-
dio" output requires custom plotting tools and is therefore not introduced
here. If AnTGPU is used independently from its plotting framework, it is
recommended to use the "gnu" output format alongside Gnuplot.

In the Gnuplot format, each data point is stored in a row. Columns are
separated by blanks. From left to right first initial states, then parameters,
and finally data points are stored in a row.

95

A. AnTGPU User documentation

A.4. Program execution documentation

Program execution is straightforward. The executable can be launched from
the command line or a GUI without arguments. Necessary data is provided
by the user during runtime.

If an automated execution is required, additional arguments can be passed.
Currently, these arguments are the platform_id, device_id, and config file
path. They are used to select the preferred OpenCL device and locate the
configuration file. The first two arguments are supplied as Integers in string
format greater than -1. The file path is supplied as a string with forward
slashes.

A Linux and Windows example is given below:

./ AntGPU 0 0 /a/b/ mysystem .cfg
AntGPU .exe 0 0 C:/ mysystem .cfg

This example selects platform 0 and device 0 automatically and sets a
path. Other values can be used for different devices, platforms, and paths.
No further user input is required.

96

B. Example scan configurations

In this chapter the AnTGPU configuration files for most scans computed are
appended. The following configuration files are to be used with AnTGPU
1.7.

B.1. Modified logistic function & General evaluation

Configuration file of the scan of the modified logistic function using general
trajectory evaluation.

dynamical system
num_ batches = 200
type = map
name = demomap
state _dim = 1
initial _ state [0] = (-3 ,3 ,1000 , lin)
parameter _dim = 1
parameter _ state [0] = (-2.7, 1.52 , 1000 , lin)
scan_ iterations = 100000
output _ format = gnu
scan_ points _file = scanPoints .csv

#last states
calc_last_ states = true
last_ states _num = 1
save_last_ states = true
last_ states _file = lastStates .csv

general evaluation
calc_min_ values = true
calc_max_ values = true
calc_wave_ numbers = false

97

B. Example scan configurations

calc_mean_value = false
general _ transient _ iterations = 10000
min_value _file = minvalues .csv
max_value _file = maxvalues .csv
mean_ value _file = meanvalues .csv
wavenumber _file = wavenumbers .csv

B.2. Gingerbreadman map & Period analysis

Configuration file of the scan of the Gingerbreadman map using Period
analysis.

dynamical system
num_ batches = 2
type = map
name = demomap
state_dim = 2
initial _ state [0] = (-10, 10, 1000 , lin)
initial _ state [1] = (-10, 10, 1000 , lin)
parameter _dim = 0
parameter _state [0] = (1.5 , 4, 1000 , lin)
scan_ iterations = 100000
output _ format = gnu
scan_ points _file = scanPoints .csv

period
calc_ period = true
max_ period _ length = 512
compare _ precision = 1e -03
divergence _bound = 1000
period _ length _file = periodLength .csv
save_ periodic _ trajectories = false # gnuplotter only
save_ acyclic _ trajectories = false # gnuplotter only
period _file = periods .csv # gnuplotter only
acyclic _file = acyclic .csv # gnuplotter only

98

B.3. Hénon map & Lyapunov exponents

B.3. Hénon map & Lyapunov exponents

Configuration file of the scan of the Hénon map using Lyapunov exponents.

dynamical system
num_ batches = 50
type = map
name = demomap
state _dim = 2
initial _ state [0] = (0.25)
initial _ state [1] = (0.25)
parameter _dim = 2
parameter _ state [0] = (0, 2, 1000 , lin)
parameter _ state [1] = (0, 1, 1000 , lin)
scan_ iterations = 100000
output _ format = gnu #gnu = gnuplotter output
scan_ points _file = scanPoints .csv

lyapunov
calc_ lyapunov _exp = true
num_ lyapunov _exp = 2
lyapunov _ steps = 3
lyapunov _eps = 1e -03
lyapunov _ transient _ iterations = 10000
lyapunov _file = lyapunovExpFile .csv

B.4. Rössler system & Lyapunov exponents

Configuration file of the scan of the Rössler system using Lyapunov expo-
nents.

dynamical system
num_ batches = 50
type = map
name = demomap
state _dim = 3
initial _ state [0] = (0)

99

B. Example scan configurations

initial _ state [1] = (0)
initial _ state [2] = (0)
parameter _dim = 3
parameter _state [0] = (0.15)
parameter _state [1] = (0.2)
parameter _ state [2] = (3, 12, 1000 , lin)
scan_ iterations = 200000
output _ format = gnu
scan_ points _file = scanPoints .csv

lyapunov
calc_ lyapunov _exp = true
num_ lyapunov _exp = 3
lyapunov _ steps = 10
lyapunov _eps = 1e -03
lyapunov _ transient _ iterations = 100000
lyapunov _file = lyapunovExpFile .csv

B.5. Tent map & Density analysis

Configuration file of the scan of the Tent map using density analysis.

dynamical system
num_ batches = 1000
type = map
name = demomap
state_dim = 1
initial _ state [0] = (0, 1, 350000 , lin)
parameter _dim = 1
parameter _state [0] = (1.1 , 2, 1000 , lin)
scan_ iterations = 2000
output _ format = gnu
scan_ points _file = scanPoints .csv

density
calc_ density = true
density _grid_ dimension = 1

100

B.6. PWS map & Bandcounting

density _grid_slice _ dimensions [0] = 0
density _grid_ bounds [0] = (0, 1)
density _grid_ resolution [0] = 1000
density _file = densityMatrixList .csv
density _ transient _ iterations = 1000
density _ overflow _ protection = false

B.6. PWS map & Bandcounting

Configuration file of the scan of the piecewise-linear map using Bandcount-
ing.

dynamical system
num_ batches = 50
type = map
name = demomap
state _dim = 1
initial _ state [0] = (0.25)
parameter _dim = 2
parameter _ state [0] = (1, 2, 1000 , lin)
parameter _ state [1] = (-1, 1, 1000 , lin)
scan_ iterations = 1000000
output _ format = gnu
scan_ points _file = scanPoints .csv

density
calc_ bandcount = false
bandcount _grid_ dimension = 1
bandcount _grid_ slice _ dimensions [0] = 0
bandcount _grid_ bounds [0] = (-2.0, 2.0)
bandcount _grid_ resolution [0] = 128
bandcount _ transient _ iterations = 10000
bandcount _file = bandCounts .csv

101

B. Example scan configurations

B.7. PWS map & Period analysis

Configuration file of the scan of the piecewise-linear map using Period anal-
ysis.

dynamical system
num_ batches = 50
type = map
name = demomap
state_dim = 1
initial _ state [0] = (0.25)
parameter _dim = 2
parameter _state [0] = (0, 1, 1000 , lin)
parameter _state [1] = (-1, 1, 1000 , lin)
scan_ iterations = 100000
output _ format = gnu
scan_ points _file = scanPoints .csv

period
calc_ period = true
max_ period _ length = 32
compare _ precision = 1e -04
divergence _bound = 1000
period _ length _file = periodLength .csv
save_ periodic _ trajectories = false
save_ acyclic _ trajectories = false
period _file = periods .csv
acyclic _file = acyclic .csv

B.8. PWS map & Symbolic analysis

Configuration file of the scan of the piecewise-linear map using Symbolic
analysis.

dynamical system
num_ batches = 50
type = map

102

B.8. PWS map & Symbolic analysis

name = demomap
state _dim = 1
initial _ state [0] = (0.25)
parameter _dim = 2
parameter _ state [0] = (0, 1, 1000 , lin)
parameter _ state [1] = (-1, 1, 1000 , lin)
scan_ iterations = 100000
output _ format = gnu
scan_ points _file = scanPoints .csv

period
calc_ period = true
max_ period _ length = 256
compare _ precision = 1e -04
divergence _ bound = 1000
period _ length _file = periodLength .csv
save_ periodic _ trajectories = false
save_ acyclic _ trajectories = false
period _file = periods .csv
acyclic _file = acyclic .csv

symbols
calc_ symbolics = true
num_last_ symbol _ states = 256
sort_ symbols = true
symbolic _file = symbolFile .csv

103

B. Example scan configurations

104

C. Example system functions

In this chapter the AnTGPU system function files for more complex scans
are appended. This includes a symbolic function and numerical integration
method. The following system function files are to be used with AnTGPU
1.7.

C.1. PWS map & Symbolic analysis

define X state0
define A param0
define U param1

program
if(X < 0){
nstate0 = A*X+U+1;
}else{
nstate0 = A*X+U -1;
}

symbol
if(X < 0){
_ symbol = ’L’;
}else{
_ symbol = ’R’;
}

C.2. Rössler system & Lyapunov exponents

define X state0
define Y state1

105

C. Example system functions

define Z state2

define A param0
define B param1
define C param2

define h 0.01
define h2 0.005

vardef
float k1;
float k2;
float k3;
float k4;

float l1;
float l2;
float l3;
float l4;

float m1;
float m2;
float m3;
float m4;

program
k1 = -(Y+Z);
l1 = X + A*Y;
m1 = B + (X-C)*Z;

k2 = -(Y + h2*l1 + Z + h2*m1);
l2 = (Y + h2*l1)*A + X + h2*k1;
m2 = B + (X +h2*k1 - C)*(Z+h2*m1);

k3 = -(Y + h2*l2 + Z + h2*m2);
l3 = (Y + h2*l2)*A + X + h2*k2;
m3 = B + (X +h2*k2 - C)*(Z+h2*m2);

k4 = -(Y + h*l3 + Z + h*m3);

106

C.2. Rössler system & Lyapunov exponents

l4 = (Y + h*l3)*A + X + h*k3;
m4 = B + (X +h*k3 - C)*(Z+h*m3);

nstate0 = X + h* 0.1666666 *(k1 + 2*k2 + 2*k3 + k4);
nstate1 = Y + h* 0.1666666 *(l1 + 2*l2 + 2*l3 + l4);
nstate2 = Z + h* 0.1666666 *(m1 + 2*m2 + 2*m3 + m4);

107

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die
angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Druck-Exemplaren überein.

Datum und Unterschrift:

Declaration

I hereby declare that the work presented in this thesis is entirely my own. I did not use any
other sources and references that the listed ones. I have marked all direct or indirect
statements from other sources contained therein as quotations. Neither this work nor
significant parts of it were part of another examination procedure. I have not published this
work in whole or in part before. The electronic copy is consistent with all submitted hard
copies.

Date and Signature:

	Introduction
	Dynamical systems
	Analysis of dynamical systems
	Numerical analysis

	The AnT Project
	AnT scan architecture
	AnT dynamical system analysis
	AnT analysis methods
	Performing analysis in AnT

	GPU Computing
	GPU hardware architecture
	Strengths and weaknesses of GPUs computation
	GPU computing frameworks

	Goal and tasks of this thesis
	Assessing GPU acceleration of AnT
	AnTGPU: Architecture development
	Computation flow
	Abstract architecture
	Dynamic kernel generation
	Method execution and cross-thread computation
	Trajectory iteration architecture
	Cross-thread computation

	CPU postprocessing

	AntGPU: Method development
	General trajectory evaluation
	Period analysis
	Lyapunov exponents analysis
	Density analysis
	Bandcounting
	Symbolic sequence analysis

	Testing and evaluation of AnTGPU
	Performance comparison against AnT
	Quality evaluation
	Comparison with AnT
	Mitigating floating-point number inaccuracy

	AnTGPU on nested closed invariant curves

	Conclusion and Outlook
	Bibliography
	AnTGPU User documentation
	Config file documentation
	Features
	Syntax example
	Option keys

	System function file documentation
	Syntax
	Predefined variables
	Forbidden variable names
	Example function

	Output file documentation
	Program execution documentation

	Example scan configurations
	Modified logistic function & General evaluation
	Gingerbreadman map & Period analysis
	Hénon map & Lyapunov exponents
	Rössler system & Lyapunov exponents
	Tent map & Density analysis
	PWS map & Bandcounting
	PWS map & Period analysis
	PWS map & Symbolic analysis

	Example system functions
	PWS map & Symbolic analysis
	Rössler system & Lyapunov exponents

