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0 Introduction

0.1 Complexes and injective resolutions

Suppose given an abelian category A with enough injective objects. Suppose given an
abelian category B and an additive functor

AL B

k
For k > 0, we get the k-th right derived functor .4 B F, B of F as follows.

In the category (Z,.A) of functors from the poset category Z to A, we have the full
subcategory C(A) of complexes, that is, diagrams of the form

1

y A"2 0%, g1 a7l 40 _d !

Al 45 A2 >

where a’a’t! = 0 for every i € Z. We also have the full subcategory C(P 2°) (A) of split
acyclic complexes, which are direct sums of complexes of the form

ATt 0 A2 A2 0 —
| U I/ { SN, DENINGL S N BN

s 0— AV At g at

The factor category C(A)/ CP29)(A) =: K(A) is the homotopy category of complexes.
We define the full subcategory C(')(A) C C(A) to consist of all complexes

-1

y Am2 0%, g1 a7l 40 _d !

Al % A2 >

with A’ injective for i € Z, with A* =2 04 for i < 0 and exact at position 4 for i > 1.

We have the functor
clires) (4) 2 4
(om0 10y THO = Ker(10 255 1Y)

Define K()(A4) := C)(4)/Ker(H). Then the induced functor

HO: KOs (A) — A



is an equivalence. So we may choose a functor
IRes: A — K@) (4)

such that TRes H? 14 and HO IRes 2 1K(ires)(A)-

IRes
ey
A ~ K(1res) ( .A)
K
HO
So for A € Ob(A), the complex AIRes € Ob(K)(A)) is an injective resolution of A.
The inclusion functor C1™%)(A) — C(A) induces a full and faithful additive functor

K (4) — K(A).

We now have

A B, glires)(4) —— K(A).

By applying F' pointwise to objects and differentials of complexes and to the entries of
K(F)

complex morphisms, we get an additive functor K(A) —= K(B).

A Bes, glires)(4) —— K(A)

We also have the functor K(B) LN B, where for B € Ob(K(B)) the homology object B H*
at position k can be constructed as follows: We have the induced monomorphism from an
image of a differential to the kernel of the following differential. Then BH” is a cokernel
of this monomorphism.

Then we get the right derived functor R* F' as composite:

For example,
RF (X, —) = Ext}(X,-)

for X € Ob(A), where B = Z-Mod.



0.2 Generalisation to n-complexes

Alternatively, we can write a complex as a commutative diagram

0 —— A4 N
,
0 A2 5 438 0
[ |
0 A0 @ gt 0
a_lT

on the underlying poset Af :

A

2/2 — 0%1/3 >
0 0 i
11— 2/1 — 0711 — 171/
T T T
0/0 — 1/o —— 2/o0 — 0*'/o
B T T

» 1/2=1 — 2/9-1

E.g. the element 2/1 € Af is to be read “2 mod 1”.

So we call a diagram on Af a 2-complex if the indices on the boundary

{...,000,1/1,2/2,. .. b U {...,2/2=1, 0 o, 171}

are mapped to zero objects in A. The category of 2-complexes is called c® (A).

So up to indexing, 2-complexes are complexes:
CH(A) = C(A),

cf. §0.1.



We generalize to n-complexes for n > 0. For example, a 3-complex looks as follows.

0 >
T AL
0— X0+1/3 — X1+1/3 >
I t t
0 —— X5, — X0+1/2 — X1+1/2 — 0
1 i t 1

0—— X2/1 e X3/1 — AXOJA/1 — 0

T 0 ) 1

0 —— Xyjg —> Xopg — X5y — 0

T 1 1 0
0 — Xop—1 — Xypp1 — Xpppr — 0
T T T
’ ‘XO/T1 — X1/271 — 0
H T
>0

It is a diagram on the underlying poset Af:

0t ot »
+ N
3/3 —— 0F/3 — 1%1/3 >
T 0 0 B
2/2 —— 3fa —— 0! /o — 1F1 /5 5 2% )y
T T T T
11 2/1 3/1 y 071 — 17
T T T T
0/0 > 1/o 2/0 3/0 > 071 /o

T T T T

371/3-1 — 0/3=1 — 1/3-1 — 2/3-1 — 3/3-1

B T T T
y 0/2-1 — 1/9-1 — 2/9-1
- T
» 1171

The poset Af is derived from the linearly ordered set
Az ={...,3710, 1,23 07,17 2 3+ o+2 1.

Here the upper indices are mere indices.



We will also denote by s + 1 the successor of s in Az. Soe.g.2+1=3,3+1=0" and
0t +1=1%"

More generally, we have the linearly ordered set A,,, yielding the poset A# .

Diagrams on A# with zero objects on the boundary are called n-complexes. They form
the category

() (A)
of n-complexes.

Note that a 1-complex looks as follows.

0 —— X0+1/1 — 0

[

00— Xijg —— 0

[

0 —— Xopo1 —— 0

A

The shift on A, is defined by (iT#)*! = i**1. A monotone map f: A, — A,, is called
quasiperiodic if it1f = (if)*! for every i € A,,.

The shift on Af is defined by (t/s)*1 = s™'/s. A monotone map g: Al — AZ, is called
quasiperiodic if (i/i)T1g = (i/ig)*! for every i/i € AY.

For n,m > 0, every quasiperiodic monotone map
A, = A,
defines a quasiperiodic monotone map
fEAE AR
ifi j/if# = Jl/if.

For every m-complex X and every quasiperiodic monotone map f: A, — A,,, we get an
n-complex X = f#X with

X = K

()i, 3 )X = (Gfif#, 5w f7)X.



We obtain a functor

CM(A) — ¢ (A)
X x0,

For example, for a 1-complex X and the quasiperiodic monotone map f: Ay — A; defined
by
f:Ay = Ay
21
1—=0
00,

we get the 2-complex X (), displayed as follows.

00— Xijg —— 0 —— 0

[

0 0 Xyjy — 0

[

0 —— Xo/—1 -1, Xojp-1 — 0

A A

Cf. the definition of split acyclic complexes in §0.1.
A quadrangle

Pk

" Q)
w3

in A is called a weak square and denoted

Q)
JaqL l&
w——

if the diagonal sequence

(ac) (%)

A BoC —=D

10



is exact in the middle. The composite of weak squares is a weak square.

Weak squares are called exact squares by Schubert [7, §13.4.1]. He shows that they are
closed under composition 7, §13.4.5].

Given m € [1,n], we let

cm(4) c ¢ (A)

)

denote the full subcategory consisting of finite direct sums of n-complexes Xi(f . where

X, is an m-complex and where A, —fz—> A,, is a quasiperiodic monotone map for i € I, for
some finite set I.

We obtain the homotopy category as factor category

KM (A) = c™(A)/Crm)(A).

E.g. the subcategory C(Q’l)(.A) corresponds to the subcategory C (P &) (A) of split acyclic
complexes; cf. §0.1. So, up to indexing, K®/V(A4) = K(A).

Let

C(n,ires) (.A) C C(n) (.A)

be the full subcategory of n-complexes I satisfying the following conditions (i), (ii), (iii).

(i) All objects I, in I with s < 0 are zero objects.
ii) For 0 < s <t < st we have
(i) ,
‘[t/s+1 — ‘[t+1/s+1

[

It/s E—— It+1/s .

(iii) All objects in I are injective.

11



A 3-complex I in C31)(A) consists of injective objects and looks as follows.

0 >
0 —— IO+1/3 —_— Il+1/3 r
+ L

0 Ig/2 IO+1/2 — Il+1/2 — 0

+ + + ]

0 I2/1 Ig/l Io+1/1 — 0

+ + +
0 Ly, Iy, I3, 0
0 0 0 0 0
>0 0 0

> 0

So up to indexing, C(>1**)(4) = Cres)(4); cf. §0.1.

12



Let (A,_1,A) be the category of functors from the poset A1 =[1,n—1 CZto A.
That is, an object of (A,_1,.4) is a diagram of the form

a a Qnp—2
Al ! A2 2 L An—1~

We define a functor Pb(™: C(mires)(4) — (An,l,A) by recursively adding pullbacks as
shown in the case n = 3 for a 3-complex I € Ob(C3T)(A)):

[1/1 e Ig/l > Ig/l IO+1/1 —_— I1+1/1
P+ 7T+ 1+1
IO/() > 11/0 > I2/0 > 13/0 IO+1/0
b&\ bg}\ bg%\
L L
X1 1 > X2 > 0

Here we have I Pb(™ = (X; =5 X,).
For morphisms we get unique induced morphisms between the resulting diagrams.

Note that in the case n = 2, we only have the pullback

Il/O E— IQ/O

ol ]

X1 —0

where X3 LN L, is a kernel of I/, — I2. So Pb® = HY; cf. §0.1.

Let
K (ires) (A) = ((nsires) (A)/ Ker(Pb).

We have Ker(Pb) = CD(A) N Cmires) (4).

The induced functor
ﬁ)(n) K(n,ires) (A) — (An—ly-A)

is an equivalence. So we may choose a functor
IRes™: (A,_1,A) = KM (4)
such that TRes(™ Pb(®) =~ 1(An,1,A) and Pb(™ [Res(™ = 1K(n,ires)(A)'

The functor IRes™ is called the injective resolution equivalence.

13



The inclusion functor C(7)(A) L, cm (A) induces a full and faithful additive functor

K(n,ires) (.A) i) K(n/l)(A>

We now have

() 7

(An1, A) B KM (A) — KOVD(A).

By applying F' pointwise to n-complexes and n-complex morphisms in c™ (A), we get
n-complexes and n-complex morphisms in C(”)(B). For m € [1,n], we get an induced

(n/m)
additive functor K("/™(A) KEE), g n/m) (B). For m = 1, this yields

(Ap, A) B K (4) Ly KOVD(4)
l}(('n/l) (F)
K®/D(B) .

There seem to be possibilities to generalise the homology functor as well. This might lead
to generalized right derived functors.

(A,_1,A) FLiw) K (mires) (A) _J KM/ (A)
? JVK(H/I)(F)
(7,B) < K™/ (B)

14



1 Conventions

We assume the reader to be familiar with elementary category theory. An introduction can
be found in [4] and [7]. Some basic definitions and notations are given below. Concerning
additive categories we essentially follow Mathias Ritter [6].

Suppose given categories A, BB, C.
e All categories are supposed to be small (with respect to a sufficiently big universe).

e The set of objects of A is denoted by Ob(.A), the set of morphisms by Mor(.A). Given
A, B € Ob(A), we write the set of morphisms from A to B as ,(A, B). The identity
morphism of A € Ob(A) is written as 14. We often write 1:=14 if unambiguous.

e For a finite set M, we denote its cardinality by |M].

e Given a set M and subsets My, My C M. If My N My = (), we sometimes write
M{UMy = M; U M> for their union.

e A partially ordered set is also called a poset for short. A poset P will also be
considered as a category, where Ob(P) = P and Mor(P) = {(z,y) € Px P: x < y}.
For details, see §3.1.

e Given a totally ordered set I and a,b € I, we let [a,b]; := {z€1: a<z<b}.
If I = Z we write [a,b] := [a, b]z.

e Given morphisms (A Sk Agi+1)kez in A and given i, j € Z with i < j, we write

H ar ‘= G;Q441 -aj,laj.
keli.j]

We set
H ap = 1141"
keliyi—1]

e By A, we denote the totally ordered set [0,n] C Z.

e Let A, B be sets and By C B. For a map A 7, B, the inverse image of By under f
is f~Y(By) := {a € A: af € Bi}. If By = {b}, we also write f~1(b) := f~1(By).

e An object A € Ob(A) is called zero object if it satisfies the condition
‘A(A’B)‘ =1= |A(B7A)|

for B € Ob(A).

15



e To indicate that a morphism X i> Y is a monomorphism, we sometimes write

x Loy,

We call a morphism that is a monomorphism monic.
To indicate that a morphism X —f—> Y is an epimorphism, we sometimes write

x 4.y,

The property of being an epimorphism is called being epic.
To indicate that a morphism X —f—> Y is an isomorphism, we sometimes write

x -1y,

e A morphism X —f—> Y in a category A is called a split monomorphism or split monic
if there exists a morphism ¥ -2 X in A with fg = 1x. To show that f is split
monic, we sometimes write X >—J-c—> Y .

A morphism X —f—> Y in A is called a split epimorphism or split epic if there exists
a morphism Y 25 X in A with gf = 1ly. To show that f is split epic, we sometimes

write X 15 vV .

e We write the composition of morphisms on the right. That is, the composite of
X L v % 7 is written X L% 2. Often, we write fg:=f - g.

The same applies to functors. The composite of (A ANy BN C) is written
(A5%c) = (450,

e A commutative rectangle

x .y

b

x Ly
in A is called a pullback if for all morphisms s,t with sf’ = ty there exists a unique
morphism v with uf =t and uz = s.




We sometimes indicate that a quadrangle is a pullback as follows.

x .y

-
b
x Ly

The dual concept to the pullback is called pushout. We sometimes indicate that a
quadrangle is a pushout as follows.

Suppose given a poset A and a subset B C A. An element b; € B is called initial in
B if by < b for every b € B. If B contains an initial element, we write it min B.

An element by € B is called terminal in B if b < by for every b € B. If B contains a
terminal element, we write it max B.

The idea of initial and terminal elements of a poset corresponds to initial and ter-
minal objects in the poset category; cf. Remark 67.

Let F,G: A — B be functors. Suppose given XF X9 XG for X € Ob(A). The
tuple (Xa)xeon(a) is called natural if the following diagram commutes for every

XL yina
fF
EELENS 'S

XF
Xo Ya
XlG BN YlG

Such a natural tuple is often called a transformation from F' to G.
We often write ax := Xa for X € Ob(A).
A isotransformation is a transformation (Xa)xeon(4) Where all morphisms are iso-

morphisms in B.

The functors between two categories A and B together with transformations between
these functors form the category (A, B) where Ob (A, B) is the set of functors from
A to B and Mor (A, B) is the set of transformations between these functors.

Knowing this we can define a transformation « as a functor from A to (Ay, B),

where (A1, B) is the category of diagrams on +« — « | that maps X ¥ to the
commutative diagram

xr 1 yp
Xa Yo
XlG LN YlG

17



in B.
F
Given functors A %) B we call F' left adjoint to G and G right adjoint to

F', sometimes denoted F' 4 G , if there exist transformations 14 L F G, called
unit, and GF — 1g, called counit, such that for every A € Ob(A) and for every
B € Ob(B) the following diagrams commute.

(AF 2 (A FGF (B)G 29 (BYGFG
layr l(A)FE Imya lBaG
(A)F (B)G

These commutative diagrams are called the triangle identities.

Then for A € Ob(A) and B € Ob(B) we get a bijection 4(A, BG) —— z(AF, B)
by f = (f)F-(B)e for f € 4(A, BG) with inverse g — (A)n-(g)G for g € z(AF, B);
of. [3, §2.2.6].

A preadditive category is a category A, together with the structure of an abelian
group on 4(A,B) for A,B € Ob(A), written additively, such that the following
property (1) holds.

(1) The composition of morphisms is bilinear. This means, for
g
A-1.B :1; c 15D
92

in A we have f(g1 + g2)h = fg1h + fg2h.

The zero of ,4(A,B) is denoted 0a.p := 0,(a,5)- If unambiguous we often write
0 := 04,5

Let A be a preadditive category. Suppose given a finite set I and a tuple (A;)er
with A; € Ob(A) for i € I. A direct sum of (A;)ier is a tuple (C, (7;)ier, (¢:)icr)
with C' € Ob(A) and ¢;: A; — C as well as m;: C — A; for i € I, that fulfil the
following properties (i, ii, iii).

(i) vmj = 04,4, for i,j € I with i # j

(11) LTy = 1Ai foriel

(111) Z Tl = 10

i€l
We sometimes just write C' for the direct sum (C, (7;)ier, (ti)ier)-

An object @ € Ob(A) is called injective if for every monomorphism z: X — Y and
morphism f: X — @ there exists a morphism f': Y — Q with zf’ = f.

The category A is said to have enough injective objects if for every object A € Ob(.A),
there exists a monomorphism a: A — B with B injective.

18



e A preadditive category A is called additive, if it fulfils the following conditions (1, 2).
(1) For every finite set I and every (A;);cr with A; € Ob(A) for i € I there exists
a direct sum in A.

(2) There exists a zero object in A.

e For an additive category A, we choose a zero object 04 € Ob(A).
For each (A;);cr with I finite and A; € Ob(A) for ¢ € I we choose a standard direct

sum
@Ai7 (Wl(Aj)ja) 7 (LZ(Aj)jEI>‘
el el i€l
in A.

. . (Aj)jer (Aj)jer .
If unambiguous, we often write m;:=m; and ¢;:=1; foriel.

In particular, we choose

@ A, (ﬂ-i)ie{x}v (Ll>z€{x} = (Aq, (114:12)7 (]‘Aa:))

ie{z}
and
<@ Ai, (Ti)ico, (Li)ie®> = (04, (), ).
€0
If I ={iy,...,i,} is a totally ordered set with i; < --- < i, we often write
Ail D @Ain :@Az
i€l

Given (A, B) without an index set I, we assume I to be [1,2] with 1 — A and 2 — B.
So we have the standard direct sum A @ B with morphisms

11: A—>A®B
1w: B— A3 B
m:A®&B— A
m: A® B — B.

We also expand this to direct sums with n components by assuming I = [1,n], if no
other index set is mentioned.

e Asevery morphism f: €@ A; — @ B, between direct sums <@ Ay (7)ier, (Lf‘)i€1>
i€l JjeJ i€l

of (A;)ier =: A and (@ B;, (WJB)]-EJ, (Lf)jgj> of (B;)icr =: B can be written as

jed
Ar B
f= E T figt

(i,5)elxJ

19



where fi’j::L‘ZAijB € 4(A;, By) for (i,5) € I x J, we often write
f=ig)ig = (fijlierjes.

If I ={i1,...,im} and J = {j1,...,jn} are totally ordered sets with i} < -+ < iy,
and j; < --- < jn, we often write

filJl fildn
fimajl f'i'majn

instead.

For (Al DDA, (Wi)ig[Ln], (Li)ie[l,n]) this yields

0
0
m=11 <+ i-th position
0
and
ti= (0 ... 01 0 ... 0).

+
i-th position
A functor F': A — B between two preadditive categories A and B is called additive,

if (p + )F = pF + ¢F for X # Y in A

Given a functor F': A — B, we denote its image by Im(F'):=AF C B. This is the
subcategory of B with

Ob(Im(F)) = {AF: A€ Ob(A)}
Mor(Im(F)) = {pF: ¢ € Mor(A)}

The full image Im(F) of F is the full subcategory of B with Ob(Im(F)) = Ob(Im(F)).
The kernel Ker(F') of an additive functor F': A — B is the full subcategory of A
with

Ob(Ker(A)) = {A € Ob(A): AF is a zero object in B}.

20



2 Preliminaries

2.1 General categories

Suppose given a category A.

Remark 1. Suppose given a morphisms f, g, h in A with f = gh.

e If f is monic, then g is monic.

e If f is split monic, then g is split monic.
e If f is epic, then h is epic.

e If f is split epic, then h is split epic.

Remark 2. Suppose given I —<— B in A with o monic and I injective. Then « is
split monic.

Suppose given X 4~ I in A withi split monic and I injective. Then X is injective.

Suppose given I %+ X in A with r split epic and I injective. Then X is injective.

2.2 Additive categories

We first state a few properties of the direct sum and further basic notions. Suppose given
a additive categories A and B. Suppose given an additive functor F': A — B.

Remark 3. Suppose given a finite set I and a tuple of objects (4;);er in A. Suppose
given a direct sum (C, (m;)icr, (ti)icr) of (A;)ier in A. Suppose given an isomorphism
0: C — C"in A. Then (C’, (¢~ 'm)icr, (tig)icr) is a direct sum of (4;)ier, too.

Remark 4. Suppose given a finite set I and a tuple of objecst (4;);er in A. Suppose
given a direct sum (C, (7;)ier, (¢:)ier) of (Aji)ier. The tuple (C, (1;)ier) is a coproduct and,
the tuple (C, (m;)ier) a product of (A;)ier.

C C
A= N 1
LZT \\\El,f ml 3
RN AN

Suppose given B € Ob(A) and (A; N B)ier, the morphism f with ¢;f = f; for every
i €1 is given as f = Y m; f; with
i€l

Lif =1; Z?Tz'fz‘ = Z (ejmi)fi = £

el el

21



Suppose given C' —f—> B with Lif = f; for every i € I. Then

f= Zﬂibif: Zm’fz‘ =f

i€l i€l
Therefore f is unique.

The same holds for given morphisms B iy A; and g =Y git;. We have
i€l

gmy = Zgibi Ty = Zgi(bﬂj) = 9j
i€l i€l
for j € I. Suppose given B -+ C with gm; = g; for i € I. Then
9= ZQWM = ZgiLi =9
iel iel

Remark 5. Suppose given two direct sums (C, (m;)ier, (¢i)ier) and (C', (7))ier, (¢h)ier)

of (4;)ics. Then an isomorphism C -2 €’ is given by ¢ = 3., with inverse
el
ol = 3 Al
el

Remark 6. Additive functors preserve direct sums as follows:

Suppose given preadditive categories C,D. Suppose given an additive functor G: C — D.
Suppose given I finite and a tuple of objects (A;)icr in Ob(C) and a direct sum

(C,(mi)ier, (ti)ier) of (Ai)ier-
e We have ;G - mG = (4;m;)G = 14,G = 14,¢ for i € I,
e We have ;G - ;G = (1;7j)G = 04, 4,G = 04,6,4,¢ for i,j € I with i # j,
o > mG -G => (mu)G = (Z 7TZ'L7;) G =1cq.
iel iel iel
Then (CG, (7;G)icr, (tiG)icr) is a direct sum of (A;G);er in D.

Remark 7. Suppose given additive categories A and 3. Suppose given an additive functor
F: A — B. Remember that 04 is a direct sum of () in A and Op is a the direct sum of ()
in B. Therefore 04 F = 0p.

Definition 8. A full subcategory U of A is called full additive subcategory if the following
conditions (1), (2) hold:

(1) Ob(U) contains a zero object of A.

(2) Given A, B € Ob(U) there exists a direct sum (C, (7;)ie[1,2]; (¢i)icp,2) of (A, B) in
A such that C € Ob(U).

22



Lemma 9. For a preadditive category C to be additive it is sufficient to fulfil the following
conditions:

e There exists a zero object Oc € Ob(C).
e For any A, B € Ob(C) there exists a direct sum (C, (7;)ic1,2), (ti)icp,2) of A and B
n C.

Proof. For any objects U,V € Ob(C) we choose a direct sum

oV, (Fz(U’V))iE[l,Q]v (L(U’V))ie[m])
of (U,V) in C. Given a finite set I and (4;);ecr, we choose @@ A; € Ob(C) as follows:

icl

e Let P A, := Oy if I =0.
icl

o Let @Al = Aj lfI:{]}
iel
o If || > 1 choose j € I and P A4; = ( D AZ-)GBAj.

i€l ieN\{s}

For j € I define I:=1\ {j}. Let

D A Fier ()i

iel

be a direct sum of (4;), ;. We consider the direct sum of (P 4;, A;) given as
iel

Pai=PA| o4, Drena @rena
i€l ief

Then <@ Ai, (7‘(‘7;)2'61, (M‘)ie]) with

el
25 e T o2
o m;:=m7; for ¢ € I and 7;:=m3,
72 = e 2
o 1;:=1l;7 fori € I and ¢;:=1
7 b1 J 2

is a direct sum of (A;)ier:
tim = 04,4, for 7,0 € I with 7 # [.

ymy = 1x, for i € 1.

2,2
D Tili =) TR + ma = mh > Wil B+ mdd=ri2 4 3d = lg, ;A O
icl icl iel
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Lemma 10. Suppose given a full additive subcategory U of A. Then U is an additive
category. The inclusion functor I: U — A is additive.

Proof. The category U is preadditive due to being full. It contains a zero object. Thus U
is additive according to Lemma 9.

The inclusion functor I fulfils (¢ + )] = ¢ + ¢ = @I + I and thus is additive. O

Lemma 11. Let G: A — C be an additive functor and C a preadditive category. Then the
subcategory Im(G) of C is additive.

Proof. The category Im(G) is preadditive due to being a full subcategory of C. It contains
the zero object 04G. For all A, B € Im(G) there exist A’, B’ € Ob(A) with A'G = A and
B'G = B. Then, following Remark 6, (4’ ® B’)G is a direct sum of (A, B). Thus for every
A, B € Ob(Im(G)) C Ob(C), there exists a direct sum in Im(G) and following Lemma 9,
Im(G) is additive. O
Remark 12. Given a category C, then (C,.A) is additive.
We sketch that (C,.A) is preadditive.
Suppose given F,G € Ob(C, A). For o, 8 € (C,A)(F7 G) we let
o+ B = (CO[ + C/B)CGOb(C) : F— G

We sketch that (C,.A) is additive. It contains the zero object defined by O 4)y: C' + 04
for C' € Ob(C).
Suppose given F,G € Ob(C,A).
We define a functor F' @ G as follows. Define

(C)FaeqG) = CFaCG
for C € Ob(C). Define

XWEF,G) L WgXF,XG)
Xﬁ;pyc) _ W;XF,XG)
ngF,G) _ LgXF,XG)
XLéF,G) _ LéXF,XG)

for X € Ob(C) and

go(F o G) — (so({'“ apOG) _ FgCF,CG)SOFbgDF,DG) i ﬂ_éC’F,CG)SOGLgDF,DG)

for ¢ € Mor(C) with ¢: C'— D. Then
FG) _(F.G FG) (FG
(F &G, (m",m" ), (47,5
is a direct sum of (F,G) in (C, A).
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Lemma 13. Suppose given morphisms f,g: A — B in A. Suppose given a full additive
subcategory U of A. Suppose given N € Ob(U) and morphisms A Iy N 2y B with
fifs = f. Suppose given N’ € Ob(U) and morphisms A 2 N’ L5 B with gigs = g.
Then there exists an U € Ob(U) and morphisms A D1 2 B owith hihe = f+g.

Proof. Set U := N @& N’ € Ob(U) as U is additive. Set hy := (f1 91): A— N@® N’ as
well as hy = (g) N @& N’ — B. Then hihs = (f1 g1) - (Z) =fifo+qg2=f+g O
Lemma 14. Suppose given (Ai)icz., and (Bi)iczs, m A and direct sums

Li Ti
(Ai-1, (mi,7), (vi, i) of (Ai, Bi) for every i € Ly with Aj T/ = Aix T Bi .

Deﬁnefrk = my .. T: Ag = Ap and Ty = Lk'...'LliAk%A()fOT’kGZ;(). In
particular, To = 14, and iy = 14,.
Then

Tly + E M1 Ti Ky - bi—1 = 140
1€[1,k]
fork € Z>;.

Proof. For k =1 we have w111 + 7111 = 14,.

Now suppose the statement holds for k£ > 1. We show that it also holds for k + 1:

140 = 7l + § i1 " Ti K * bi—1
i€[1,k]
= T (Tht1tht1 + Th1Kk+1) ik + E Mie1 " Ti* Ki* Li—1
1€[1,k]
= MpTh41 * Lk 1lk + ThTha1 * Kkt1lk + E Tie1 " Ti * Ki* bi—1
1€[1,k]
= i1 " b1 + ThTht1 - Kht1lk + § i1~ Ti * Ki * Li—1
1€[1,k]

= Tpy1lp1 + E i1 - Ti * Ki - Li—1
ie[Lk+1]
O

Remark 15. Given morphisms W y X —2 Y —» Z in A Then (1) and (2)
are equivalent.

(1) The morphism f is a kernel of g.
(2) The morphism f is a kernel of gh.
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Remark 16. Given morphisms W X 25y "5 Z in A Then (1) and (2)

are equivalent.

(1) The morphism h is a cokernel of g.
(2) The morphism h is a cokernel of fg.

Definition 17. Suppose given a set I. Suppose given additive subcategories D; C A for
i € I. We define a full additive subcategory D C A by

Ob(D) := {C € Ob(A): there exists a finite subsetly C I and (D;)ier,

with D; € Ob(D;) such that C = @ D;}.
i€lp

This category is denoted by Y D; := D.
el

Remark 18. The category > D; C A is closed under isomorphism.
el

2.3 Abelian categories
2.3.1 Definition of abelian categories
Remark 19. Consider the following situation in an additive category A, where ¢ is a

kernel of f, where r is a cokernel of f, where ¢ is a cokernel of ¢ and where 7 is a kernel of
T.




Definition 20. An additive category A is called abelian if it fulfils the following conditions
(1) and (2).
(1) For every morphism in Mor(.A) there exists a kernel and a cokernel.

(2) For every morphism in Mor(.A), after adding kernels and cokernels as in Remark 19,
the unique morphism ¢ is an isomorphism.

2.3.2 Properties of abelian categories

Suppose given an abelian category .A.

Definition 21. A sequence X i> Y -%5 Z in A is called a short ezact sequence if f is a
kernel of g and g is a cokernel of f.

Remark 22. Let X 5 Y % Z be a sequence in A. Then (1), (2), and (3) are
equivalent:

(1) The sequence is a short exact sequence.
(2) The morphism g is epic and f a kernel of g.

(3) The morphism f is monic and g a cokernel of f.

Lemma 23. For every morphism X —f—> Y in A there exists a factorisation

x 414y
with f = ff. We call I an image of f.

Given two factorisations

X 4.7ty

and
X 4.7 Y.y

of X i> Y, there exists a unique isomorphism g such that f = agb'. That is, the diagram

commutes.
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Proof. In an abelian category we can choose kernels and cokernels like in Remark 19. Then
¢ being epic, ¢ being monic and g being an isomorphism yields the wanted factorisation
f = ¢yt with ¢y epic and ¢ monic.

Given two factorisations f = ab = a’b’ as above, we can choose a kernel K — X of f
and a cokernel Y — C of f. Following Remark 15, i is a kernel of a so, according to
Remark 22, a is a cokernel of 7. Similarly, following Remark 16, r is a cokernel of ¥’ and
thus ¥’ is a kernel of r.

Following Remark 19, there exists a unique isomorphism [ 25 T such that agh = f.
Because a is an epimorphism, agh’ = ab implies gb' = b. Because b’ is a monomorphism,
agbh’ = a't’ implies ag = a’. This means the diagram is commutative. O

Lemma 24. Given a morphism A L. Bin A. If N1 — A is a kernel of f and B — No
is a cokernel of f with N1, No = 04 being zero objects in A, then f is an isomorphism.

Proof. Adding the kernel 15 of B — Ns and the cokernel 14 of Ny — A, we get the
following commutative diagram.

A
1
S
N1 A ¥ B NQ
|
B
Thus f = f’ is an isomorphism. O

Remark 25. Suppose given a category C. The functor category (C,.A) is abelian;
cf. [5, §IL.11]

Definition 26. A sequence X —f—> Y %5 Z in A is called ezact in the middle if for

factorisations
I I
/a/ X }'/ XL
X f Y g 7z

the sequence I sy % I’ is short exact. Note that this is independent of the choice of
I and I'.

Definition 27. A sequence X Jo, | Inyy X, in A is called ezact if
fi— i
Xz‘—l ! Xi L Xi+1

is exact in the middle for every i € [1,n — 1].
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Remark 28. Suppose given a commutative quadrangle

x .y
N
P

X ———Y

in an abelian category. Suppose given a kernel K £y X of f and a kernel K’ KX of
f'. Suppose given a cokernel Y — C of f and a cokernel Y’ <= C" of f'.

K-—*yx T,y _<<,¢
b
K’ K b d f! y’ d Vo s

There exist morphisms ¢ and 1) uniquely defined by the universal property of &’ as kernel
and ¢ as cokernel, respectively, that make the diagram commutative.

f

K—t5x Yy ——C
O P
K xr Ly L

We call ¢ the induced morphism on these kernels. We call ¢ the induced morphism on
these cokernels.

Definition 29.

(i) A commutative quadrangle

x .y

[« b

x Ly
in A is called a pullback if for all morphisms s,t € Mor(A) with sf’ = ty, there
exists exactly one morphism u € Mor(A) with uf =t and ux = s.

U _ t

o )
s X oy

[ b
x Ly
To indicate that the quadrangle is a pullback, we often write

X —Y



(ii) A commutative quadrangle

x .y

LoD
x Ly

in A is called a pushout if for all morphisms p,q € Mor(A) with xp = fq, there
exists exactly one morphism r € Mor A with f'r = p and yr = q.

To indicate that the quadrangle is a pushout, we often write

x 1,y

b
|
x Loy
Lemma 30. For a commutative quadrangle

x .y

oL
x Ly

in A the following assertions (1), (2) are equivalent

(1) The quadrangle is a pullback.
()

(2) In the diagonal sequence X Yoy & X' —= Y/, the morphism (f x) is a kernel
of (f}/).

Proof. (1) = (2):

Suppose given a morphism M mma), @ X' with (mq mg) (_yf,) = 0. This is the case if
and only if m1y = mof’. As the quadrangle is a pullback, this means there exists exactly
one M 5 X with mf = m; and ma = my. That is, there exists exactly one M —= X
with m(f «) = (my meg). This means that (f x) is a kernel of (_1?,).

(2) = (1):

Suppose given M —5 Y and M 2 X’ with miy = maf’. That is, the following diagram
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is commutative.

M\Tnl
f
X —Y

m2
T
x Iy

Thus (mq mg)(f’f,) = 0. Hence there exists exactly one M —= X with m(f z) = (m1 ma),
that is, mf = m; and mx = mo.

Thus the quadrangle is a pullback. O

Lemma 31. For a commutative quadrangle

x 1y

b
x Ly
in A the following assertions (1), (2) are equivalent

(1) The quadrangle is a pushout.

Y
(2) In the diagonal sequence X M YoX' ﬂ Y’, the morphism (}f,) is a cokernel
of (f z).
Proof. The assertion is essentially dual to Lemma 30. O

Remark 32. Suppose given the following commutative diagram in A.

A g s B
> A
P/ B’ i1
2
i3 X f >y Y
Ve
A LA



Then there exists exactly one morphism A 4, X such that the resulting diagram

A g B
a
4 2 B’ i1
[
is X f Y
—
f/

X — Y
is commutative.

If the quadrangle (A, B, A’, B') is a pullback and 41, i9, i3 are isomorphisms, then i4 is an
isomorphism, too.

Lemma 33 ([7, §13.6.8]). In A, we suppose given a commutative triangle

Y
7N
x_f Sz

We add kernels and cokernels for every morphism and complete to the following commu-
tative diagram in o unique way.

MW\
XVngZ e D

~N 7 o

K

Then0) — K —L—M —C — D — E — 0 is an exact sequence.

We call this sequence the circumference sequence of the triangle.

Definition 34. A commutative quadrangle

x 1.y

b

X —Y'
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Y
in a category A is called a square if its diagonal sequence X M Y ¢ X' ﬂ Y'is a

short exact sequence. A square is often denoted

X*>Y

T Yy

X’

So a commutative quadrangle is a square if and only if it is a pullback and a pushout.

Definition 35. A commutative quadrangle

x .y

x ly
X — Y’
(f 2) , ),
in A is called weak square, if its diagonal sequence X —= Y & X —I7, ¥ is exact in
the middle. A weak square is often denoted

x J .y
— ly

In particular, each pullback and each pushout is a weak square.
Weak squares are called exact squares by Schubert [7, §13.4.1].
Lemma 36. In A, suppose given a weak square

—> B
b
C

—2 5 D.

<

Then there exists a pushout
A—— B
z P

.
c-2,5p

-

and a monomorphism P —2 5 D such that the following diagram commutes.

A Y B

‘/z P ‘/y
N

C D

A
N




Proof. We can choose a factorisation

P

As the diagonal sequence

Yy
(v z) (%)

A BaC —=D

is exact in the middle, ( f;z) is a cokernel of A M B @ C'. Therefore

A v

B
T | lpl
P

C p2

J

is a pushout, p is a monomorphism and the diagram commutes. ]
Lemma 37 ([2, §4.5.2 Lemma 134]). Given a commutative quadrangle

x .y

x Yy

X —Y
in A. Suppose given a kernel K LN e of f and a kernel K’ L' of f'. Suppose given
a cokernel Y — C of f and a cokernel Y —— C" of f'. Let ¢ be the induced morphism

on the kernels and v the induced morphism on the cokernels.

f

K %5 X Y —§=C
oD
K K x Ly o

Then the following assertions (1), (2), (3), (4) hold for the quadrangle (X,Y, X', Y").

(1) The quadrangle is a weak square if and only if ¢ is epic and ¥ is monic.
(2) The quadrangle is a pullback if and only if ¢ is an isomorphism and 1 is monic.
(8) The quadrangle is a pushout if and only if ¢ is epic and v is an isomorphism.

(4) The quadrangle is a square if and only if ¢ and v are both isomorphisms.

34



Proof. We prove the following claims:
Claim (a): If the quadrangle is a weak square, then ¢ is epic and ¥ is monic.

Suppose that the quadrangle is a weak square.

X

x

X/

J‘E‘F J\a
RR

That is in a commutative diagram

y
X (o) Y@X’—>Y’

RN

d S
the sequence W M Yo X' (Hi Z is short exact.

We prove that ¢ is epic:

We consider the commutative triangle

YoX
o N
X! =i Y

w g y Y
\(g d) (5)//
y Y @ X'
(01) ()
K’ K ¢ -7 24 > O
0 E
i is a kernel of g. We let j := kw and expand the diagram as follows.
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K—— X
\{J f
J
1174 g Y
\\(g d) (3)//
! Yo X'
(V \(yjj)
K’ K X/ -f y’ % Vol

Then jg = kf = 0, so there exists exactly one morphism p with pi = j.

K% X
w f
! YaoXx
V \
K’ —f

C/

This morphism also fulfils pk’(0 1) = pi(g d) = j(g d) and therefore

pk = pk'(01) (2) = j(g d) <(1)> = jd = kwd = kx.

Thus p = ¢.

The morphism ¢ is part of the circumference sequence of

as follows.
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/\

Thus ¢ is epic; cf. Lemma 33.
Dually, 1) is monic.
Claim (b): If the quadrangle is a pullback, then ¢ is an isomorphism and 1) is monic.

The quadrangle is a weak square as in

x — Y yex oy

1 (V \\ /
(f ) is a kernel of ( ,) and thus also a kernel of (_Z,).

Then in the situation of (a) both K *, X and K’ -5 X are kernels of X 5 ¥ and
thus ¢ is an isomorphism.

N S

Claim (c): If the quadrangle is a pushout, then ¢ is epic and v is an isomorphism.
The assertion is dual to the previous Claim (b).
Claim (d): If ¢ is epic and v is monic, then the quadrangle is a weak square.

The quadrangle can be written as follows
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X Y
P2
T Y
P
R
X! ! Y’

with (X, Y, X', P) being a pushout; cf. Lemma 36. It suffices to show that p is a monomor-
phism. From Claim (c) we know that the induced morphisms on kernels of f and p; is an
epimorphism and the induced morphism on cokernels of f and p; is an isomorphism.

f

K%, x Y —§$5C
4
_

K B, x "3 p_ 9,0

We form the following commutative diagram containing a circumference sequence

of (X', P,Y"):

! Y - c
D2 %
e 7=
c1 Wb
LA é
Yy
p1 X
I’ {// c Vo s
C’p/

In particular, we have @k’ = ok/, hence ¢k} = ¢. Moreover, we have ¢ibé = ci, hence
PYé = .

Since v is monic and 1& is an isomorphism, ¢ is monic, whence ¢ = 0. Since ¢ = @k} is an
epimorphism, k] is epic and k = 0. Then K, = 04 and p is monic.
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Thus (X,Y, X' Y’) is a weak square.
Claim (e): If ¢ is epic and v is an isomorphism, then the quadrangle is a pushout.

We keep the notation of Claim (d) and obtain the following commutative diagram.

Then ¢ is an isomorphism, thus C, = 04. Then p is an isomorphism, cf. Lemma 24, and
the quadrangle (X,Y, X’ Y") is a pushout.



k X f Y ¢ C

¥ %
(\J
z

0 0 C
/ N \///\? 2w
P Yy '\,é
p1 X‘
'\,
K’ b d ! vy’ C,’ Vo s
N o
K, 0
K, 0

Claim (f): If ¢ is an isomorphism and v is a monomorphism, then the quadrangle is a
pullback.

The assertion is dual to Claim (e).

Now the assertions (1), (2), (3) and (4) are deduced as follows:

(1) follows from Claims (a) and (d)
(2) ) )
(3) follows from Claims (c¢) and (e)
(4) follows from (2) and (3).

2) follows from Claims (b) and (f

Lemma 38. Suppose given N, N’ € Ob(A) with N, N' = 04. Then every quadrangle

N

OT OT
A—"— N

in A is a weak square.

Proof. In the diagram

1
A—25 A5 N 950,
we have inserted kernels and cokernels of the horizontal morphisms and the induced mor-

phisms on the kernels and cokernels. The induced morphism on the kernels is epic. The in-
duced morphism on the cokernels is monic. Therefore the quadrangle is a weak square. [
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Lemma 39. FEvery quadrangle

in A is a square. In particular, the quadrangle is a weak square.

Proof. In the diagram

04 B —t+sB 9504
(LI I I
04 A—25 A %504

we have inserted kernels and cokernels of the horizontal morphisms and the induced mor-
phisms on the kernels and cokernels. The induced morphisms are isomorphisms. Therefore
the quadrangle is a square and in particular a weak square. O

Lemma 40. Given two weak squares

x -ty y 9.7
x + ly and ly —+ lz
X/ fl Y/ Y/ g/ Z/

in A, their composite

s a weak square.

Proof. We choose kernels and cokernels of x, y, z like in Remark 28. We get the following
commutative diagram.
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K K K
x_t .y 9,7
x Y z

Then the induced morphism on the kernels K s K is an epimorphism and the induced

morphism on the cokernels C i> C is a monomorphism. Thus (X,Z,X',7') is a weak
square; cf. Lemma 37.

Another proof can be found in [7, §13.4.5]. O

Lemma 41. Given weak squares

c—5D D QR e
RN
A+ B U—"-V
in A, their direct sum
)

CeX ——— DY
@ 4@
A@UMB@V

s a weak square.

Proof. By Lemma 37, we get that the induced morphism between kernels is an epimor-
phism.

A
f\
" Q)
+
w3

K

K%



&
i
)~<

s +
N4
—

L—>U y V
For the direct sum, we get
k"0 d0
K’@L’MC@XMD@Y
aof 6] s o]
K@LMA@UMB@V

(k’ O) kO

or 01

with kernels K’ L ——— CHX and KDL Q A®U, where the induced morphism
is (“6’ g), which is an epimorphism.

Dually we get that the induced morphism on the cokernels is a monomorphism.

By Lemma 37, the quadrangle is a weak square. ]
Lemma 42. Suppose A to have enough injective objects. Then every diagram

Y

fo

X —— 7

in A can be completed to a weak square

i}%
— 5~

9
+ =z
I

>
N

with I injective.

Proof. We choose a pushout
Y

~

P

AN

X —— 7

and a monomorphism P 25T with[ injective. This exists, as we assumed A to have
enough injective objects. Then we get the following weak square, letting z := pop and

g:=p1p-
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Lemma 43. Suppose given a pullback

mn A.

Then f is a monomorphism if and only if f' is a monomorphism.

Proof. Consider the following diagram as in Lemma 37 (2).

Then
fmonic & K=0y4 & K =204 < f' monic.

Corollary 44. Suppose given a pullback

x .y

= | v

X — Y

in A with f" monic and Y =2 04. Then X = 04.

Proof. By Lemma 43, f: X — Y is monic. As Y =2 04, we have X = 04.
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Lemma 45. Suppose given a weak square in A with X i> Y monic.

£

X/

f

+ y
/ v

Then f' is monic, too. Moreover, (X,Y, X', Y") is a pullback.

Proof. As f is a monomorphism, 04 is a kernel of f.

o4 —sx L,y

IR

Kl K X/ f’ Y/ C%/

Due to ¢ being epic, K/ = 04 and thus f’ is monic. Moreover, ¢ is an isomorphism.
Hence, (X,Y, X', Y’) is a pullback. O

Lemma 46. Suppose given a weak square in A with X = 04.

x4
0 +

XL>

-

T

~

Then f' and y are both monic.

. 0 . . . . . 0 . . . .
Proof. Since X — Y is monic, f’ is monic. Since X — X’ is monic, y is monic;

cf. Lemma 43. O

Lemma 47. Suppose given a commutative diagram

U’ ! v’

.

Y
T g VvV
! Y

mn A where
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x Ly

| jc_yT

X —Y

is a weak square and V' is injective. Then there exists a morphism Y' =2 V' for which
the following diagram is commutative.

v’ R
>,
X/ I L,y v
y
x U I v
X ! 'Y

Proof. We can insert a pushout, cf. Lemma 36, and obtain the following commutative
diagram:

x Iy
\pl p//(

x P Yy
o\

f Y

X

Thus there exists a morphism P —25 V'’ such that the following diagram commutes

asv
x P2

As p is monic and V" is injective, there exists a morphism Y’ % V/ with pay = ¢.

Then a19’ = p1p = pipas = f'ay and yays = popas = pa = azv, so that the resulting
diagram is commutative.
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U’ 9 V!

L,
\

fl

g

>, V

T

O]

Definition 48. Recall that a morphism X —f—> Y in A is called a split monomorphism or

split monic if there exists a morphism ¥ -+ X in A with fg = 1x. To indicate that f is
f

split monic, we sometimes write X »+— Y .
A morphism X —f—> Y in A is called a split epimorphism or split epic if there exists a

morphism Y % X in A with gf = ly. To indicate that f is split epic, we sometimes

write X 15 v .

A morphism U — V in an abelian category A is called split if there exist U N W split
epic and W Ay split monic with u = fg. To indicate that u is split, we sometimes
write U "= V .

Remark 49. If U - V is split and v = fg with U i> W epic and W sy monic,
then f is split epic, g is split monic and W is an image of u; cf. Lemma 23.

Lemma 50. Given a short exact sequence A J—> B —% C inA. Then the following

assertions (1), (2), (3) are equivalent.
(1) The morphism g is split epic.
(2) The morphism f is split monic.

(3) There exists an isomorphism B % A®C such that the following diagram com-

mutes:
A—4t .p_—4 .0
1a Zlﬁﬁ . llc
PRUN PSS

Proof. (1) = (3):
The morphism g is split epic, thus there exists C 2 B with g'g = 1¢. By applying the
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universal property of the kernel to

AJ—>B>—?—>C'

A —g9’

B

we get B L5 A with p f =1 — gg'. Then the following diagram commutes

/G Y S C

b e |
()

1

A0 pgo s o
()

and (p ¢) is an isomorphism with inverse A & C —= B:

We have (pg)(;,) =pf+g99 =1p—g9 +99 = 1p and (gf,)(pg) = (;,1; J;‘(fg) with

f monic

fof=fAe—g99)=f"=" fp=1a

fg=0

df=9¢(s—gd) =g —g =05 gp=0
g'9=1c.

(2) = (3):

Dual to (1) = (3).

(3) = (1),(2):

Suppose given

0
A AL A C >—(1)—> C
commutative. Then f (<p ((1))) =14 and ((O 1)@‘1) g = 1¢, thus f is split monic and g is
split epic. ]
Lemma 51. Suppose given a split monomorphism A >—Jf—> B in A. Suppose given a
cokernel B -5 C of f and suppose given B —f—> A with ff' = 14.
NN g
A B »—+— C

—+
f/
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Then there exists a morphism C 9 B such that (B,(f",9),(f,d")) is a direct sum of

(4,0).

Proof. Like in the proof of Lemma 50 we get ¢’ by the universal property of the cokernel

A>—J-c—>B>—‘C+]—>C

1B—m lg
B

wd ()" 0) = (/1) = (39)

By definition ¢ fulfils 15 = g¢'+ f'f, thus (B, (f', 9), (f,¢")) is a direct sum of (4, C).

Lemma 52.

O]

(1) A morphism U —= V in A is split epic if and only if there exist K € Ob(A) and an

isomorphism U -2 K &V such that

v —~—

Vv
[y

KoV ——

18 commutative.

(2) A morphism U =V in A is split monic if and only if there exist C € Ob(A) and

an isomorphism U N U & C such that
Uu——V

o b

(10)

U—=UaC

1s commutative.

Proof. Ad (1): Suppose given U — V split epic. Choose a kernel K — U of u. Then

we get an isomorphism ¢ with the wanted property by Lemma 50.

Suppose given an isomorphism ¢ with

U——V

J/(p (0) \le

KoV 2V

commutative. Then (0 1)¢~'u = 1y and u is split epic.

Ad (2): This is dual to (1).
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Lemma 53. A morphism U —= V in A is split if and only if there exist X,Y, Z € Ob(A)

(10)

with U =% V isomorphic to X @Y ——Y @ Z in (Aq, A).

Proof. Suppose that U — V is split. We have U i W 245V with fg = u. As
f is split epic and g is split monic, we get K, C € Ob(A) and isomorphisms U KoV
and V -5 U @ C such that

U

T T

U4db w2 3Sv

2% Zilw 2|v

Kow s w29 weco

o
~—r

commutes; Lemma 52 (1), Remark 52 (2).

00
Suppose that U — V is isomorphic to X @Y M Y & Z. So we have the following
commutative quadrangle.
U———V

2|# o 2|v

XEBYHYEBZ

We can expand the quadrangle as follows

U M%,Yuw-
Zl“’ 0 zlly zlw
xov Wy, 00 v oy

Then (p((l)) is split epic, (1 0)1~! is split monic and (p((l))(l 0)1~! = u. Therefore u is
split. O

Remark 54. For any commutative quadrangle

in A we can choose an image I, of w and an image I,, of v as well as kernels of w and v
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as follows

We have 0 = kyvz = kyuw and, as wo is a monomorphism, k,uw; = 0. As v is a cokernel of
k., there exists exactly one I, —3 I, with v1i = uw;. It makes the diagram commutative
as v1iwg = uwiwe = uW = vz = v1U2Zz, whence, because vy is an epimorphism, it follows
that 1wy = v92.

Applying the same by choosing images of u, i and z yields

wa D

w
— I,

]
o .
A

v v
1, : s C

B
I

IS
$
~
S~ —
N
~
&

commutative with ujus = u, 4,4, = ¢ and z129 = z. The morphism i,, is epic as V1, = U1ty
with v14, epic. The morphism i, is monic as i, ws = 7,29 with i, ws monic; cf. Remark 1.

Lemma 55. For every weak square

B —"*- D
J o+
A" C
in A there ezists a commutative diagram
B-—*%51,—25D
u% . 4
I, — CENY

S
— =~ —

u%
A

v
s 1,

v2

N
Q——

~




For every such diagram we have

B I, D
fot. |
L
I, I I,
al

I "t o

A 1, C.
Proof. The diagram exists by Remark 54.
We choose kernels and cokernels of w,i := 4,7, and v. Note that these are kernels

of wi,iy,v1 and cokernels of we,i,,vs respectively; cf. Remarks 15,16. We obtain the

following commutative diagram.

kw

Ky B %~ 1, =5 D% C,

e
[ RN S TEIN L SN S JING AR
TR

Ky M sa %y %250 -%sq,

As k is epic and k = ki1 ko, it follows that ks is epic; cf. Remark 1. We also have k;us = kaoky,
monic, thus ks is also monic. Because A is abelian, it follows that ko is an isomorphism.
Then ki = kky is epic. The dual argument applies to the cokernels and yields ¢; isomor-

phism and c2 monic.

Ky

ZTkz
k1

K,

Thus by Lemma 37 we get

TN T (N SN I T
of
LN SIS
ko A vgl Iy V2 C c?,
B~ I, —*sD
A ol o
. [
I, —% T %17,
u% 1} n 24
A1, =5




Lemma 56. In A, suppose given

u

B—%>D
A
C.

Then v is split epic if and only if w is split epic.

A—F—

Proof. We choose a kernel K ks A of v, As the quadrangle is a pullback, K M Bis a
kernel of w.

Then k is split monic if and only if ku is split monic:

=: Suppose that k is split monic. Then ku is split monic.

<: Suppose that ku is split monic. Then there exists a morphism z with kux = 1.
Then k(uz) = 1k and k is split monic.

According to Lemma 50 v is split epic if and only if k is split monic, and w is split epic if
and only if ku is split monic. This proves the assertion. O

Lemma 57. In A, suppose given

B —%> D
A4 C.

Then v is split monic if and only if w is split monic.

Proof. This is dual to Lemma 56. O
Lemma 58. Given

B—*-5D

u + ZI

A2 C

in A with B injective. Suppose given a commutative diagram as provided by Lemma 55
and Remark 49.
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®
G
&
§
o

——b
D +
N

-

u ZQI
I, —4— T 551,
-
w1 iv$ D ZIE
Ay 1, 25 C
H67’6, U = UrUz, UV = V102, W = wWiwW2 and z = Z1%9.
Then all morphisms in this diagram are split.
B % I, —=25 D
ST
I, —4— T i I
1
SENCER
A% T 2.0

(2

Proof. Applying Lemma 56 and 57 to (I,, I, C, I,) yields i, split monic and i, split epic.

As i,29 = iy,wsy is split monic, 4y, is split monic. As vii, = uii, is split epic, i, is split
epic; cf. Remark 1.

B %51, —<5D

« ol A

Iu>—+—>I>—-—>IZ
1

ul E O =

I o oe

A — 1, C

<

Applying Lemma 56 and 57 to (I, B, I, I,,) yields w; split epic. Since B is injective, I,
is injective and thus wsy is split monic; cf. Remark 2.

O
2.4 Factor categories

Definition 59. Suppose given an full additive subcategory N that is closed under iso-
morphy. We define the factor category A/N as follows:

Ob(A/N) := Ob(A)
wn(AB) = 4(A,B)/ \ (4, B) for A,B € Ob(A/N)
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with

Aan(A,B) == {4 L. B: there exists N € Ob(N) and
AN Bin Awith f =gy ).

The equivalence class of a morphism (p: A = B) € Mor(A) in 4,5 (A, B) is denoted as
[plan or [¢] or even ¢ if unambiguous.

For A %> B -%5 C in A, the composite in A/N is defined by [¢][¢] = [¢v].
Remark 60. The factor category is in fact a category:

For A,B € Ob(A) the morphism set 4 ,(A4,B) is a subgroup of ,(A,B) because for
©,v € 4(A,B) and Ny, N2 € Ob(N) like in the following commutative diagrams

P
o o N,
A\N{//B A wllNQ ¢2/B
@

we have

Thus ¢ +1 € 4\ (4, B).

a B
The composition is well-defined: Given A ——= B —= C with [a] = [¢/] and [3] = [#'],
a/ B/

we have
(][] = [o'B] = [aB + (o/ —)B+ /(B = B)] = [af] = [][B].

Ean(A0)

The factor category A/N is preadditive.

The functor R 4/p: A — A/N with A — A for A € Ob(A) and ¢ — [p] for ¢ € Mor(A)
is additive. Thus by Lemma 11 the category A/N is additive.

Remark 61. Every object of Ob(N) is a zero object in A/N. In fact all morphisms
A2 N % Bin A factor like

©

/\\

AP N XN Y B
\_/



Lemma 62 (Universal property of the factor category). Suppose given an additive category
A and a full additive subcategory N C A. Suppose given an additive category B. Suppose
given an additive functor F: A — B with NF = 0 for all N € Ob(N). Then there exists
a unique additive functor ' A/N — B with RA/NF F.

/ T

AN

This functor F is given by A — AF for A € Ob(A/N) and [¢] — @F for [p] € Mor(A/N)
with representative ¢ € Mor(A).

Proof. The functor R4/, is surjective on morphisms and objects. This means if Fis
well-defined, it is unique.

For every morphism A = B in A with [p] = [04 p] in Mor(A/A) we have

F

A ¢ B T AF o BF
N NF = 0p

The functor ' maps N to a zero object in B, thus ¢F = 0ar pr. Because F is additive,
this is sufficient and we get

W] =[] = ¢F =4F.
Therefore F' is well-defined.
We have [14]F = 14F = 14F for every A € Ob(A/N) and

A

(0B F = (af)F = aF - BF = [a]F - [B]F

for A% B Y o /N,

The functor F is additive, as we have

[a+ B]F = (a+ B)F = aF + BF = [a]F + [B]F
forA%; Bin A/N.

We have RA/NF = F as we have XRA/NF’ = X = XF for X € Ob(A) and

@RA/NF = [p]F = @F for ¢ € Mor(A). O

Lemma 63. Suppose given additive categories A, B and full additive subcategories M C A
F

and N' C B. Suppose given additive functors A ? B and a transformation a: F' — G.
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Suppose that Ob(M)F C Ob(N) and Ob(N)G C Ob(M).
We get induced additive functors A/ M :; B/N, mapping A —— LNy

[aFn

(A 1M AN p = (AR A'F)

respective to

(A [a] m A/)G _ (AG [aG]n A/G)

Define
o' = ([Aa]n) acob(a/m)-

Then o is a transformation from F to G.

Proof. By the universal property of the factor category, cf. Lemma 62, applied to

FRB/N GRB/N
RA/M\L and RA/M\L

A/ M A/ M
we get the wanted functors F,G: A/M — B/N.

Suppose given A ﬂ A" in A/M. We have

AF M g AF N R
le/ lA’a’ — J[Aoz]/\/ l[A’a}N
~ [a]Mé 1 A [aG]N /
AG ———— A'G AG ——— A'G

with [aF|yx - [Aa|y = [aF - Aoy = [Aa - aG)y = [Ad)x - [aG

Therefore ' is a transformation. O
Lemma 64. Suppose given equivalent additive categories A and A’ with full additive
subcategories N C A and N’ C A'. The equivalence be given as A % A" with

a:lg— FG and B: GF — 14 isotransformations. If NF CN” and N'G C N, then we
get induced functors F': AIN = A'/N" and G': A'/N" — A/N.

A—— u

%
G

RA/NJ, \LRA//N/

F !/ !

AIN &0 AN

F/
Then AN ——= A'JN" is an equivalence of categories.
G/
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Proof. First note that every equivalence is additive; cf. [7, §16.5.10.(b)].

We get commutative triangles with the functors F’ and G’ by the universal property

A . Al
AN GR /N
R4 /Ni \ / lRA' JN?

A/N i A'JN? A/N e A IN'
with
F': A— AF G:A— AG
[Pl — [P Fnr [/ Ivr — [pGln

where [¢]n denotes the equivalence class of ¢’ € Mor(A’) in A'/N”.
For the composite this yields
F'G': A— AFG GF: A v+ AGF
[ely — [ FGly [ Inr — [ GF]n
We define new isotransformations by

o = ([Aa]n) acobia/n
8" = ([BBIn") Beobar /N

These are in fact isotransformations, as they are transformations by Lemma 63 and iso-
morphisms yield isomorphisms in the factor category. O

Lemma 65. Suppose given additive categories A, B and full additive subcategories M C A

F
and N' C B. Suppose given additive functors A ? B with F 4 G via unit 1 4 — FG

and via counit GF i> 15.
Suppose that Ob(M)F C Ob(N) and Ob(N)G C Ob(M).

F
We get induced additive functors A/M —= B/N .
G

Using Lemma 63, we define transformations

o = ([AOé]M)AeOb(A/M)

and

B = ([BBIn)Beobs/N)-

Then F - G via unit La/m LN FG and via counit GF N Ig/n-
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Proof. We have AF = AF for A € Ob(A/M) = Ob(A) and [a)mF = [aF]y for
a € Mor(A).

We have BG = BG for B € Ob(B/N) = Ob(B) and [b|y'G = [bG]p for b € Mor(B).
We need to show that the triangles

AF —AYE  ARGE BG —BGY , BGFG
AFpB’ BB'G
I9Y: l g IYe] l b
AF BG

commute for every A € Ob(A/M) and for every B € Ob(B/N).

We have
Ad'F - AFB = [AdJmF - [AFB)y
= [AaF]y - [AFB]y
= [AaF - AFfB|n
= [larlv
= lap
and
BGd' - BA'G = [BGa)um - [BRING
= [BGajm - [BBGIm
= [BGa - BAG|m
= [1Bclm
= lpg
Therefore F - G via o’ and /. O

Definition 66. A complex in A is a functor F': Z — A with (z,z 4+ 2)F = 0 for every
z € 7.

It can be given as a sequence (A%);cz of objects in A with corresponding morphisms
(d%)iez with d*: A" — A" and which fulfil d* - d**! = 0 for every i € Z. Then we get F
by iF = A®and (i,i+ 1)F = d'.

The category C(A) is defined as the full subcategory of (Z,.A) whose objects are the
complexes.

We consider the full subcategory C®P 29)(A4) C C(A), whose objects are complexes iso-
morphic to a complex of the form

(16) (Y0) (Y6) (15)
o — ATt A L A At S A AT LS A2 AP S A A —
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with A* € Ob(A) for i € Z. Objects of C(sp ac) (A) are called split acyclic complexes. Note
that these can be obtained as direct sums of complexes

AT 0 A2 A2
(N TN { NN RNG/E S IN/E N

0 AV At At Yy

which are split acyclic, too.

The factor category C(A)/ CP29)(A) =: K(A) is the homotopy category of complexes.
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3 Posets and adjoints

3.1 Posets as categories

Remark 67. Given a poset A = (A, <) we have the category C4 with ObCy = A and
MorCy = {(a,b) | a,b € A, a < b}. A morphism (a,b) € MorC,4 has source a and target
(a,b)
0

b,ie. a b.
For morphisms a () g &), ¢, the composite is defined as (a,b) - (b,c) = (a,c).

For every object a € ObCy4 we have the identity morphism 1, = (a,a).
We sometimes just write A for the category C4.

Given two posets A and B, a monotone map f: A — B defines a functor Cy: C4 — Cp
with aCy := af for a € A and (a,b)Cy := (af,bf) for (a,b) € Mor(C4).

Given a functor F: C4 — Cp we get a monotone map f: A — B by f = ObF;
cf. Notation 70.

As for every source and target there exists only one morphism, every diagram in C4
commutes.

The set of monotone maps A — B is denoted (A, B),. We define
f<g = (af <ag for every a € A)
for f,g € (A, B)m. Then ((4, B)m, <) is a poset.

Lemma 68. Given two posets A and B and functors Cy,Cq: C4 — Cp. There exists a
transformation a: Cy — Cq4 if and only if f < g in (A, B)m. In this case there exists
exactly one tranformation from Cy to Cg4, that is (a)eea with ac = (af,ag) for a € A.
This transformation is denoted C(f,g).

Proof. Suppose given a transformation a: Cy — Cg4, that is for every a € ObCy = A we
get a morphism (af,ag) in Cp. The existence of a morphism in Cp implies af < ag for
every a € A, therefore f < g in (A, B)py,.

Suppose given f,g € (A, B)y, with f < g. Then for every a € A there exists exactly one
morphism af 2% ag in Mor Cg, namely aa = (af, ag). The tuple (aa)qca is natural due
to Cp being a poset category. O

Cr
Lemma 69. Suppose given posets A and B and functors Cy T’ Cp . Then Cy is left
g

adjoint to Cy if and only if 14 < fg in (A, A)m and gf < 1p in (B, B)m.

Proof. There exist transformations 1¢, — CyCy and C4,Cy — 1¢, if and only if 14 < fg
and gf < 1p. The triangle identities automatically hold as A and B are posets. O
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Notation 70. From now on we will usually identify the concepts of a poset and its
category and write A := Ca, f := Cy as well as (f,g) = C(y4)-

Remark 71. Given posets A, B, we can translate any monotone map f to a functor Cy
and vice versa. Also every morphism (f,g) € Mor(C(4 p),,) implies f < g and thus defines

a unique transformation from Cy to C, in Mor(Ca,Cpg). Every transformation C; = Cy
in Mor (C4,Cp) implies f < g, which translates to a morphism (f, g) € Mor Cia,B)

Lemma 72. Suppose given posets A, B,C' and monotone maps

f f
A ﬁg B ﬁg

with f 4 ¢ and f - §. Then ff 4 gg.

Proof. We have 14 < fg, gf <1p, 1p < ~§ and §f< 1c.
We show that 14 < ffgg:

Suppose given i € A. Then i < ifg. Asif € B, we get if =iflp < (z'f)fg. As g is
monotone, we get i fg < if fgg. Together this yields ¢ < ifg < iffgg for every i € A.

We show that ggf f < 1c:

Suppose given j € C. Then j = jl¢ > jgf. For jge B we get jg > (jg)gf and as fis
monotone, we get jgf = jggff. Together this yields 5 > j9f = jggf f.

Therefore ff - gg. O

3.2 Adjoints of monotone maps

Lemma 73. Let A, B be posets.

(1) Suppose given a monotone map g: B — A such that for every i € A the set
{j € (B)g: j > i} contains an initial element and such that for every i,j € (B)g
with i < j the set g~1({i,j}) contains an initial element.

Let
e:A— A
i — min{j € (B)g: j > i}.
Let
f:A—>B
i +— min g~ (ie).
So if = ming~t(min{j € (B)g: j > i}) fori € A.
Then f is left adjoint to g, i.e. fg.
If g is injective, then gf = 1p. If g is surjective, then fg =14.
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(2) Suppose given a monotone map f: A — B such that for every i € B the set
{j € (A)f: 5 < i} contains a terminal element and for every i,j € (A)f with
i < j the set f~1({i,j}) contains a terminal element.

Let
l:B— B
i— max{j € (A)f: 75 <i}.
Let
g:B— A
i — max f1(il).
So ig = max f~Y(max{j € (A)f: j < i}) fori € B.
Then g is Tight adjoint to f, i.e. fg.
If f is injective, then fg = 14. If f is surjective, then gf = 1p.

Proof. (1): We show that f is monotone:

Let i,j € A with ¢ < j. Then {z € (B)g: > j} C {z € (B)g: x > i} and therefore
ie < je, that is, e is monotone.

We need to show that this implies ¢f < jf.

If ie = je, then ¢f = jf and we are done. So suppose that ie < je. Then the sets
g l(ie) = {b € B:bg = ie} and g~ !(je) = {b € B: bg = je} are disjoint. We know
ifg =ie < je = jfg. By requirement there exists an initial element

d := min{b € B: bg € {ie, je}} = min(g~'(ie) U g~ '(je)),
sod<if and d < jf. Either d € g~'(ie) or d € g~ '(je).

Assume d € g~'(je). Then d and jf are both initial elements in g~!(je), therefore
d = jf. This implies jf = d < if and as g is monotone, jfg < ifg, contradicting
ifg=1tie<je=jfg.

So d € g~'(ie) asif = d and if and d are both initial elements in g~1(ie). This implies
if =d < jf. Therefore f is monotone.

We show that 14 < fg:
Suppose given i € A. We have if € g~ !(ie) and thus ifg = ie.

Note that ie € {j € (B)g: j > i} and therefore ie > i. We have ily = i < ie = ifg.
Therefore 14 < fg.

If g is surjective, then
ie =min{j € (B)g: j > i}
=min{j € A: j > i}

=1
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and therefore i fg = (min g~'(i))g = i for every i € A. Therefore fg = 14.
We show that gf < 1p:
Suppose given ¢ € B.

igf = min g~ (ige)
= min g~ ' (min{j € (B)g: j > ig})
= min g~ (ig)
<.
So 14 < fgand gf < 1. By Lemma 69, f is left adjoint to g.

If g is injective, then g~'(ig) = {i} and therefore igf = ming~'(ige) = ming~'(ig) =i
for every i € B.

(2): This is dual to the previous case. O

f
Lemma 74. Suppose given posets A, B and monotone maps A F B with fdg.

(1) For every i € A the element ifg is initial in {j € (B)g: j > i}.
(2) For everyi,j € (B)g with i < j, the element if is initial in g=1({i,5}).
(8) For every i € B the element igf is terminal in {j € (A)f: j < i}.
(4) For everyi,j € (A)f with i < j, the element jg is terminal in f=1({i,j}).
In particular,
if =ifgf =ming™ (min{j € (B)g: j > i})
for every i € A. Moreover, if f is injective, we get fg = 1. If g is surjective, we get

gf =1p.
ig = igfg = max f~ ! (max{j € (A)f: j < i}

for every i € B. Moreover, if g is surjective, we get fg = 14. If g is injective, we get
9f =1p.
Proof. From f - g we know that 14 < fg and gf < 1p; cf. Lemma 69.

Suppose given i € A. Then i < ifg. As f is monotone, we get if <ifgf. From gf < 1p
we get if > (if)gf. Therefore f = fgf.

Suppose given ¢ € B. Then igf < i. As g is monotone, we get igfg < ig. From 14 < fg
we get ig < (ig)fg. Therefore g = gfg.

(1):

Suppose given i € A.
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By 14 < fg we know that i < ifg. Therefore ifg € {j € (B)g: j > i}. We need to show
that ifg < x for every z € {j € (B)g: j > i}. Let x € {j € (B)g: j > i}.

As z > 7 and fg is monotone, we get ifg < zfg.

As x € (B)g, there is a b € B with x = bg.

Then ifg < xfg=bgfg = bg = x yields the wanted result.

(2):

Suppose given i,j € A with ¢ < j.

We first need to show that if € g~ '({i,j}). As i € (B)g, there is a b € B with bg = i.
Thus (if)g =bgfg=bg =1 € {i,j}.

Suppose given x € g~!({i,j}. We need to show that if < x.

If xg = i, then due to f being monotone, if = zgf < .

If xg = j, thanks to i < j we get if < jf =zgf < z.

(3):

Suppose given i € B. We know that igf € (A)f and igf < i thanks to 1 > gf. Thus

igf €{j € (A)f:j<i}. Weneed to show that igf > z for every x € {j € (A)f: j < i}.
So suppose given x = af < i, where a € A. Then igf > xzgf = afgf =af = x.

(4):

Suppose given i,j € (A)f with i < j.

As j € (A)f, there is an a € A with af = j. Thus jgf = afgf = af = j. Therefore
jg € f71{i, 5}

Suppose given x € f~1({i,j}). We need to show that x < jg.

Ifxf =i, weget jg=ig=xfg>x.

Ifxf =74, weget jg=xfg> .

We show that if = ifgf = ming '(min{j € (B)g: j > i}) fori € A:
By (1), ifg is initial in {j € (B)g: j > i} for every i € A. That is
ifg=min{j € (B)g: j >i}.

By (2), for every j € (B)g we know that jf is initial in g'(j). As ifg € (B)g and
if =ifgf, we get

if =ifgf=ming '(ifg) = ming ' (min{j € (B)g: j > i})
We show that ig = igfg = max f~!(max{j € (A)f: j <i}) fori € B:
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As igf is terminal in {j € (A)f: j < i} for every i € B and because of igf € (A)f, igfg
is terminal in f~(igf), we get

ig =igfg = max f~(max{j € (A)f: j <i})

Corollary 75. Suppose given posets A, B.

(1) For a monotone map g: B — A, a monotone left adjoint f: A — B, i.e. f g,
exists if and only if conditions (i), (ii) hold.

(i) For everyi € A the set {j € (B)g: j =i} contains an initial element.
(i) For everyi,j € A with i < j the set g~ *({i,j}) contains an initial element.

In this case the left adjoint is unique.

(2) For a monotone map f: A — B, a monotone right adjoint g: B — A, i.e. f - g,
exists if and only if conditions (i),(ii) hold.

(i) For every i € B the set {j € (A)f: j < i} contains a terminal element.
(i) For everyi,j € B with i < j the set f~1({i,j}) contains a terminal element.

In this case, the right adjoint is unique.

Proof. This follows by Lemma 73 and Lemma 74. Note that the formulas in Lemma 74
determine the respective adjoint uniquely. O

3.3 Posets with shift

Definition 76. Suppose given a poset A. A shift operator on A is a bijective, monotone
map

A=A

arsatt
Its inverse is denoted A — A, a > a~ L.
Suppose given a € A. For k € Zg, we let at®+1) .= (aTF)*1 recursively.
For k € Zp, we let at? := g and ™1 := (at#)~1, recursively.

So a** is defined for Z, and we have (at*)* = at**! for k,1 € Z.
For k> 0 and a € A we sometimes write a™(—%) =: ¢k,

A poset A together with a shift operator on A is called a poset with shift.
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Lemma 77. Suppose given a poset A with shift. The following defines an equivalence
relation on A.
ar~sb = aF=bforakeZ

The equivalence class of a € A regarding (~s) is denoted [a]~..

Proof. Reflezive: We have a0 = a.

Symmetric: If a** = b, then a = b=F,

Transitive: For at® = b and b = ¢ with k,l € Z, we get ¢ = (aF)H = o+, O
Definition 78. Suppose given posets with shift A, B.

A monotone map f: A — B is called quasiperiodic, if it satisfies the condition

at'f = (af)*"!
for every a € A.

The set of quasiperiodic monotone maps A — B is denoted (A4, B)qp.. The subset
(A,B)qp. € (A, B)m inherits the structure of a poset. So for f,g € (A, B)qp. we have
f<gifaf <ag for every a € A. The poset category of (A, B)qp. is a full subcategory of
(A, B).

Lemma 79. Let A, B be posets with shift. Suppose that bt* # b for every b € B and
every k € Z with k # 0.

Suppose given f: A — B quasiperiodic monotone. Suppose given a € A and b € B. Then

1F7Y ) N[a]~.] < 1.

Proof. Suppose given z,y € A with x ~5 y and zf = yf = b. Then  ~¢ y means there is a
k € Z with 1% = y. As f is quasiperiodic monotone, this means zf = yf = 215 f = zftF
and therefore k = 0. Then y = 2% = . O

Lemma 80. Let A, B be posets with shift operators. Suppose given a quasiperiodic mono-
tone map f: A — B. Then for every a € A we have

[a]~. f = [af]~,
Proof. Ad C: Suppose given a’ € [a]~,. Then a’ = a** for a k € Z. Then
of =a*tf = (af)** € [af]n..
Ad D: Suppose given b € [af]~,. Then b= (af)™* for a k € Z. Therefore

b= (af)*" =a"*f € ld].f.
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4 Specific posets

Suppose given n,m € Zxg

4.1 The poset A, and quasiperiodic monotone maps

Definition 81. Let A,, be defined as
A, = {(k,2): k€0,n], z € Z}.
On A,, we define a total order by
(k,2) < (K,2) & 2<d V(=2 ANk<EK),

where (k, 2), (K',2') € A,,. This is sometimes called the colexicographical order.

e We usually write k*7:=(k, 2) for (k,z) € A,.

e Given z > 0 and k € [0,n], we often write k*(=2) =: k=2,
e.g. 4T3 = 43,

e Given k € [0,n], we often write k™0 =: k. Accordingly we get [0,n] C A,,.
Define a map B
by A, — [0,n], k77— k.
Define a shift operator as (k*#)*1:=ktHD for (k, 2) € A,,.
Remark 82. We can give a bijection A,, — Z that preserves the ordering:
on: Ny = Z, (ky2) = k+2z-(n+1).
Thus we can write k2 +1 = ((k™%)p, + 1oyt
E.g.if n =5, then we have 43 4+1=53and 53 +1 =072,
This will also be expanded to any i € Z by k™% +1i = ((k**)pn + 1), .

In particular, z +n + 1 =zt for x € A,,.

_ f _
Remark 83. Given quasiperiodic monotone maps A, F A, , f is left adjoint to ¢

if and only if 15 < fgand gf <13 in (Ap, Ap)q.p.; cf. Lemma 69.

Remark 84. To define a quasiperiodic monotone map f: A, — A,, it is sufficient to
give the values on [0,n]. These values have to satisfy if < jf for 0 < i < j < n and
nf < (0f)*! for the resulting quasiperiodic map to be monotone. This is also sufficient.
Equivalently it is sufficient to give the values on an interval [z,z +n] = [z, — 1] C A,
for some x € A,,.
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Example 85. An example for a quasiperiodic monotone map Ay — As:

0—3
1+—s 1t

2+— 111
Then 01! — 3+ 172 — 171 ete.

Lemma 86.

(1) Suppose given g: A,, — A, quasiperiodic monotone. Then there evists a unique
quasiperiodic monotone map f: A, — Ay, such that f is left adjoint to g, i.e. f 1 g.

(2) Suppose given f: A — A, quasiperiodic monotone. Then there exists a unique
quasiperiodic monotone map g: Ay, — Ay, such that f is left adjoint to g, i.e. f - g.

Proof. (1): The map g fulfils the requirements for Lemma 75 (1) as A,, is isomorphic
to Z as a poset and all mentioned sets are bounded from below. Therefore Lemma 75 (1)
gives a unique monotone map f that is left adjoint to g. We show that f is quasiperiodic:

As g is quasiperiodic and thus j € (An)g < it € (An)g for j € A, therefore
itle = (ie)™!. We also have j € g7 1(ie) < ;1 € g l((ie)™!) = g~ (itle) for j € A,
and therefore it1f = (if)™!. So f is quasiperiodic.

(2): As f is quasiperiodic, it fulfils the requirements of Lemma 75 (2) as all required sets
are bounded from above. Thus there exists a unique monotone map g: A,, — A,. Then
arguments dual to (1) apply and thus g is quasiperiodic. ]

Remark 87. For a quasiperiodic monotone map f: A, — A,, there exists a k < m and

quasiperiodic monotone maps A, 2y Ay and Ay BN A,, with g surjective, h injective
and gh = f.

Proof. Define I := [0,n]f by, and k := |I_|—1. Let fo < fi <+ < fi be the elements of
I. Define the bijective monotone map o: A, f — Ay by £,/ + itJ for f; € I and j € Z.
Define the injective monotone map h: Ay — A, by it7 — £ for i € [0,k] and j € Z.

Now define g:= f|Afo.
We show that g is quasiperiodic monotone:

Suppose given i € A,,. Let fJTH =if,wherel € Zand j € [0,k]. Thenig =ifo = fj+la =5t
and itlg =it fo = (if)tlo = fjHHa = jH+1 Thus ¢ is quasiperiodic monotone.

We show that h s quasiperiodic monotone:
We get it7t1h = fi+j+1 = (f;rj)Jrl =it h, thus h is quasiperiodic monotone.

The composite of g and h is f:
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Suppose given i € A,,. Let f;rl =if where | € Z and j € [0,k]. Then

igh=ifoh=floh=j"h=f"=if.

4.2 The poset with shift A%

Suppose given n,m € Z;.
Definition 88. We define a partially ordered set A# as
A¥ = {(t,s): t,s € A, s <t < s}

with
(t,s) < (t,s) & t <t As<s
for (t,s),(t',s') € AL

We also define a subset

AF© = {(ts): ts€ Ay, s<t<sT}CAF

We abbreviate t/s:=(t, s) for (t,s) € A¥, which reads “t mod s”.
Define a shift operator as (t/s)*! = s*'/.

Note that (t/s)~1 = s/t-1 and that (t/s)*? = t"'/s+1.

For k € Z, define t/s + k := t+k/s1k.

For t/s € A}, define

o] t= () — 1=y
(] i = () 1 = st

Define subsets B, C A#O and B,, C A# by

B, := {t/sc AT:0<s<t<n}
B = {t/se AT:0<s<t<n}
= B, N A¥°,
We also define the map
b A¥ - B,



Example 89. The poset A?:

0+1/0+1 N R
3/3 y 0F1/3 1+1/3 »
2/2 > 3/2 y 071 /o 1ty ——— 279
|
1//\1 2//\1 > 3//\1 > 0*/1\/1 1/
0/o 1/o 2/0 > 3/0 » 0710

371/3-1 » 0/3-1 1/3-1 2/3-1 3/3-1
A |
» 0fo~1 — 5 1/o-1 — 2/5-1

A A~

> 1/1-1

Here, we have only depicted morphisms of the form ¢/s — t+1/s and t/s — t/s+1, whenever
existent.

Remark 90. For k € Z, the map
A# - AF
t/s — t/s +k

1s bijective and quasiperiodic monotone.

Proof. We have the inverse map t/s — t/s + (—k).
For i/s € A# we get
(W) +k=5")i+k
= s+1+k/t+k
= (s+k) ™ Ji4k
= (t+k/8+k)+1
= (s + k)*.



Lemma 91. Suppose given elements t/s+k,t+1/s in A¥ with s,t € A, and k,1 > 0. Then
for every i, j € A, withs <i<s+kandt< Jj < t+1 the element i/i is contained in A#.

Proof. We have that s +k <t < (s+ k)" and s <t+1 < sl Using s <i < s+ k and
t<j<t+1 we get

s<i<s+h<t<j<tHI<sT <t < (s+ k)T
In particular, i < j <it!, ie. ifi € AL, O
Lemma 92. Suppose given ifi € A¥. Then
(i) 1[5/ = i
(i) [L/i]] = 9/i.

Proof. Ad (i): We have

A1) = L™ =1
= (O =17
2t
= Jfi.

Ad (ii): We have

Definition 93. For t/s € A# we define

W= (e A s <ifi <[4}
&l o= {fie A [tfs) <dfi < tfs)

For t/s € A7 \ A7 we have u)® = d:{s =
Remark 94. For t/s € A7 we have ui{s C A7° and d;{s C A#’o.
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g 31 — AF#.
Example 95. A depiction of uy C Al":

3/3 — 4/3 — 5/3 — 0F!/3 — 171/3 5 271 /3 — 3%1/3
T T T T T T
2/2 — 3fa — 4f2 — 5/0 — 0P /y 5 1T 5y 07/
T T T T T )
U1 —2/1 — 3/1 — 41 — 51 — 0F1/1 — 171/
T T T T T T

0/0 — /o — 2/0 — 3/0 — 4/0 — 5/0 — 07'/o

A A A A A A

(@

Lemma 96. Let t/s,!/s € A Then t/s € 4/ if and only if V'/s € wl’.

Proof. We have

s ) @ tfs U A (F)) T 1< Ys
= t/sgt/s A t/s < (t/5—1)+1
& Ys <y NV < (Vs T =1

= t’/s’ € un/s .
]

Lemma 97. For every quasiperiodic monotone map f: A, — A, we get the quasiperiodic
monotone map

fAF S AF
t/s — tf/sf.

Suppose given f,g: A, — A, quasiperiodic monotone. Then f < g implies f#* < g7. In
fact

(An,AM)qp - (A# A#)

(F L9y gy (gt 290, oty

s a functor.

For a transformation o = (f,g): f — g we write o := (f7#,g"): f7 = g7.
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Proof. Suppose given t/s € A, that is s <t < s*!. Then sf < tf < sT'f = (sf)*! and
thus tf/sf € A#L

The map f# is monotone as t/s < t'/s’ implies ¢t < ¢’ and s < &', whence tf < t'f and
sf < s'fandsotflsf <t'flsy.

It is quasiperiodic monotone as we have
()T = (T [ = T g = s g = (40)s5) T

For the identity transformation 1y = (f,f) we put the identity transformation
(1)# = (f#,[#) = 1p4.
Suppose given a quasiperiodic monotone map h: A, — A,, and the transformation

g M h. Then we get
((f.9) - (9. h)# = (f.h# = (f#, %) = (f#,g%) - (g%, 17).

# g#
Thus (f 9, g) — (f* Uneh), g”) defines a functor. O

Remark 98. Suppose given f, f: A, = A, g A, — Ap and h: A, = A, quasiperi-
odic monotone. Then

(i) (f9)* = f*g*,
(i) f injective if and only if f7 injective,
(iii) f < [ if and only if f# < f#,

(iv) f - h if and only if f#* - ¥,

Proof. (i) We have t/sf#g# = tf9/srg = t/s(fg)# for every t/s € AL

(ii) Suppose that f is injective. Suppose given t/s,t'/s' € A¥ with t/s #t/s, that is t £t/
or s #5s'. Thentf #t'f or sf # s'f and therefore t/sf# = tf/sf # t'f/s'f = t'[s' f7.
Suppose that f# is injective. Suppose given 4,5 € A, with i # j. We know that
i/if# # 3/jf# and therefore if # jf.

(i4i) By Lemma 97, we have f < f = f#<f#

Suppose f# < f# Then i/if# = if/if < iffif = Z/zf# and thus if < if for every i € A,,.
Therefore f < f.

(iv) By (iii) we have 15 < fh if and only if 134+ < (fh)* = f#h#. We also have
hf <1, if and only h# f# < 1x#. Therefore f -+ h if and only if f#* 4 n#,
cf. Lemma 69, Remark 83. O
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Definition 99. Every k € Z can be written in a unique way as k = an + b with a € Z
and b € [1,n]. We use this to define

pn: L — AF° ks (a+b)on Japy!
for k = an + b with a € Z and b € [1,n]. The map p,, is bijective.
The inverse map is given by
prts AT S 7 ts s s, - (n— 1) + to,

using the bijection ¢, : A,, — Z from Remark 82. It respects the partial order in the sense
that for 4, € Z, ip, < jp, implies i < j, i.e. p, ! is monotone.

If n is clear from context, we sometimes only write p := p, and p~! := p, ! for short.

Example 100. E.g. p3: Z — A?’O maps

—2 1+ 0/3-1
0 2/3-1
110
2 2/0
4—2/1

A depiction of A¥°.
1/ 2/1 3/1 ot/ 11
0/o 1/o 2/o 3/o 0t /o
371 /3 0/3—1 1/3=1 2/3-1 3/3~1

4.3 Quasiperiodic monotone maps on A,

Suppose given n € Z>.

Definition 101. Suppose given s,t € A, such that s <t < s*!, i.e. such that t/s € AY.
We define the quasiperiodic monotone map f:l/ A1 = A, by
f;L/SZ Al — An
0—s
1—t.
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If n is clear from context, we usually write f7¢ := fqi/ .
The map f7¢: Ay — A, is injective if and only if t/s € Afe.

Every f7¢: Ay — A, defines a quasiperiodic monotone map (f7*)#: A:’fé — A¥ ;
cf. Lemma 97. We usually write f75# = (f*)#.

We define ft/s: A, — A; to be the right adjoint of f7¢, cf. Lemma 86 and Lemma 74.
The map f7¢ is given by

z'ft/sz 0 fors<i<t
1 fort<i<sth

We define f7/¢: A,, — A to be the left adjoint of f7; c¢f. Lemma 86. The map f7* is
given by

. 0 fort7l<i<s
1 fors<i<t.

So for every t/s € A¥ we have s A fils o fis.

We denote the according transformations

il =

For i/i € Aff and t/s € A, we define

Lj/th/s P = j/ift/sv#ft/s,#
D/ﬂt/s D= j/ift/s,#ft/s,#.

Remark 102. Suppose given ifi € A°. Then
(1) /i) = 13/i]spi 11
(i) [3/i] = [3/ilsp 1

Cf. Definition 88, Definition 101.

76



Proof. Suppose given i/i € A¥*°. Then we have (i)

/il si 41 = (3fa) fLov1# ittt
(0/171)fj/¢+1,#
(o)1) frer#
(@fi+1)~"
(/) +1
19/i)

and (i)

(3l 1 = (3fs) - 1# pili 1
= (0+1/1)fj/i—1,#
(1/0)+1)fj/i—1,#

Lemma 103. Suppose given t/s € A%°. Then

ft/s - st1

Proof. Suppose given /s € A¥e. Suppose given i € A,,. We have

i1 = max (/) (max{j € (A0)f7: j <))

and thus X
il = if P =max{j € (A1) f7: j < i} e (Ay) 7.

Case il =t1* for k € Z:
Suppose that il = t1* for some k € Z.
Then

if 1" = max ((£7)7 (max{j € (A)f7": j <))
= max ()7} (¢5))
= max ({1*’“})

=1tk
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For il = tT* we have
I R DR S P atas

and thus
(s—D <@t -1 <i< (s =D)L < (¢ —1)TFFL
Therefore
min{j € (A1) 71 j =i} = (s — 1) TR+
We get

Case il = s for k € Z:

Suppose that il = st* for some k € Z. Then
i = max (/7)™ (max{j € (D)7 j <i}))
= max ((£7)7}(s%))

= max ({0+k}>

=0tk
We have

TRl < gth =l < < TR < g TR
and thus
- < (- <i< -1 < (s—1)TF!

Therefore

min{j € (A fI71: j> i}y = ¢ —1)*k
We get

Therefore ft/ s = flt/s],
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Lemma 104. Suppose given i,j € A, and ts, V)5 € A# with /s ~g U/s'. Then
@f" = jf) & Gf7 =47,
In particular, we get
GAft = IRy e (Ghf1H =g ),
for ifi,i'ly € Nf.

Proof. The fibers of f7* on A¥f are given by [s*,t7 — 1] and [tT, s+ — 1] for | € Z;
cf. Definition 101.

The fibers of f(/9)" = f*"'/t are [t st — 1] and [sTHL tHF for | € Z; cf. Defini-
tion 101.

So the fibers are the same.

Moreover, we have ifif /=# = j'/y f'/*# if and only if jf/* = j/f/* and if"/* = ' f=. O
Lemma 105. Suppose given i/i € A*°. Suppose given i'/i € AI*° with /i ~ 3'fi'. Then
wlt = (F1R) a1
& = (PIH) )

In particular, t/‘sfj//"/ﬁéé = j/ifj//"/’# for every t/s € u;/i and lt/‘sfj//i/ﬁéé = j/ifj//"/’# for every

t/s € d%z

Proof. We first show that w = (f1#Y ()i f7i#).

Recall that |[i/i]| = i/i and [|i/i]| = i/i for every i/i € A¥: Lemma 92.

We know that u)/’ = di/"1 = {t/s € A¥: i/i <t/s < [i/i]}; cf. Definition 93.

We have f//i# — fi/id# = fU/il# - fli/il.#; cf. Remark 98.

According to Lemma 74 (2), we get the initial element of (f/#)~1(i/if//"#) by

min( )L (§fs k) = ofs ik it Zajo ik — g,
and according to Lemma 74 (4) the terminal element of (f7/##)=1(i/if/o#) by
mmase ((f103) 71 o 1)) VA gl pIE <o pI# < [,
Therefore we know that (f7/i#)=1(i/i f//i#) C w/
For every element /s € u//* we have i/i < t/s < [i/i]. Therefore
IHFIE oI < 0PI = 1fo = i
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and thus )
t/s € (f J/z, )~ 1(j/ifj/i,#).
Thus u (f”/Z )~ 1(j/7;ff/i,#)_
Suppose that 7'/’ = (i/i)** for some k € Z. We get
wl' = (PP
= {Va € A#: b/af]/“ _ j/ifj/i,#}
LA sy € AR ba U # = i) f1H#
= (fj//i’,#)fl(j/ifj'/i’,#).

For d;/i we get
af =
= (fU#)- 1(LJ‘/iJfW"J”‘*E)
— (fﬂ/zJ#) (1/0)
(fUr#) (5 LI H#)

L20% A3/ Ry =1 FU/D T
= (FUOD DAY= UG DAy
(fWJ ) f LD
AR O M)

Remark 106. Suppose given ¢/s € A7 °. Then f'* is injective and therefore
t/s pt/s
F7fT =15,

and R
ft/sflt/sj =14,

Cf. Lemma 74.
Lemma 107. Suppose given i/i € Af Then the following assertions (1), (2), (3) are

equivalent.
(1) ifi € A¥°
(2) ifi = (1)o)** for some k € Z
(8) j=1i+1
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In particular, Af’o = [1/0]~..
Proof. (2) = (1) : We show that

|-
[Yo]~, = {t/s € AF : t/s = (1/0)F for some k € Z} C AT,

Then in particular i/i € Afk’o.

For every t/s € Af’o we have
s<t<s!

and therefore
t< st <ttt

as well as
tl<s<t.

Therefore for every t/s € AT, we also have (/s)™! € A¥° and (1/s)~ € AT,

Starting with 1/o € A¥°, we get (1/0)™* € A% for every k € Z via induction and thus
[1/o]~, € AF".

(1) = (3): Let ifi € AT°. This means, i < j < it!. As it = i+2, this implies j = i+1.
(3) = (2):Let j =i+ 1. Suppose that i = 07* for some k € Z. Then

j/z‘ — 1+k/0+k — (1/0)4-21:.

Suppose that i = 1% for some k € Z. Then

j/i = 0+k+1/1+k — (0+1/1)+2k _ (1/0)+2k+1,

[
Lemma 108. Suppose given t/s € A#. Then
ol = AT ST
In particular, Af’oft/s’# = Af’oft//sl’# if and only if t/s ~g t'/s.
Proof. As by Lemma 107 we have A#’O = [1/0]~, this follows from Lemma 80. O

Lemma 109. Suppose given t/s € A¥.

(1) Define quasiperiodic monotone maps

fk:A1—>A1
1— 1+ k
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for k € Z. Then

fils = f . @O
and X .

ff/s — f(t/s) e
for every k € 7.

(2) Suppose given t/s € A¥ and i/i € Af’o. Then

S f T # (( /i) £ ) *
for k € Z. Note that in general this doesn’t hold for ifi € A¥ \ AF°.

Proof. Ad (1):

The map f* is characterised by the values 0f”* = s and 1f* = t. It is sufficient to show
that f7* = f_1f¢)"". Then we get forf”" = fyrforf" = f97. The rest follows

via induction.

We have
0f 1 fO =171 T = 171
and
Lf fO = o™ — o
Therefore f7* = f_y f(¢=™

The map fiy is the inverse of f_j for every k € Z. In particular, f_j 4 fyi for every
k € Z. Together with (/)™ o f/97" for ts € A¥ | we get

f1 = Ff A FO

cf. Lemma 72. As the adjoint is unique, this yields f7* = f(t/s)+kfk for k € Z.

Ad (2):
We have
i) [ = dferfifer = +Virn = i/ = (ifi) !
and
@)y =iV = il = (i)
Then +1
ifef 1 LAy 1 = Gy = (i)

and

R AR S U C O
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Lemma 110. Suppose given t/s,t'/s € Al . The following assertions (1), (2), (3) are
equivalent.

(1) s ~s /s

(2) t/sbj, =t/s'bj,

(3) {tbn,sb,} = {t'by,s by}

In particular, t/s ~g t/sby,.

Proof. (1) = (3):
Suppose given t/s € A¥.

We have (t/s)™! = 5™/t and therefore {tb,,sb,} = {sT1b,,tb,}. We have (t/s)~1 = s/t-1
and {tb,,sb,} = {sb,,t7'b,}.

Via induction we get {tb,,sb,} = {s' by, t'b,} for every k € Z and t'/s' = (t/s)7*.
3) = (2):
Suppose given t/s, /s € Al with {tb,,sb,} = {t' by, s'b,}. Recall that

b : An# — B,

ivs {30/ i by < by
ibn/ib, else.

Therefore t/sb = t'/s' b} .
2) = (1):
It is sufficient to show /s ~g t/sb} , for then t/s ~g t/sb} =1t'/s' b} ~gt'/s.
Recall again that
b A¥ - B,

» Jbnfib, if iby < jbn

J/Z — { ibn/jbn else.
Case t = s or thy, # sby, and t/sb} = tbn/sb,:

We get t = (tb,) " for some [ € Z and s = (sb,) ¥ for some k € Z. If t = s, we get | = k.
If tb, # sb, we know that s <t < st! and sb,, < tb,, therefore

(sbp) ™ < (tby) ™ < (sby) T,
which implies £ = [. Then

(t/sb5,) *2% = (tPn/sb, ) F2F
= (tb7l)+k/(5bn)+k

— t/s.
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Case t # s and t/sb}, = sbn/tb,:
We get t = (tb,)™! for some | € Z and s = (sby,)™* for some k € Z. As s <t < sT! and
tb, < sb, and therefore

(sbp)™ < (tbn) ™ < (sby) T,

we get [ = k + 1. We now have

(o b4 = (sbujin, 241
= (¢ bn)+k+1/(5 by ) e

— t/s.

Corollary 111. The following equations (1) and (2) hold.

(1)

A= U e = | Aot
t/s€Bp, t/s€Bp
(2) _ '
Apr= U W= U Aferi#
t/s€Bg, Y/seBy,
Proof. Ad (1):

Suppose given ¥/ € Af. Let t/s = t/¢b% € By,. Then V/s € [t/s]., = Af&’oft/sv#;
cf. Lemma 110, Lemma 108.

The union is disjoint, as for t/s,t/s' € By, the relation /s ~g t'/s’ implies t/sb; = t'/s' b},
and therefore t/s = t/sb5 =1t/s b =1/s'.

Ad (2):

For t/s € B;,, we have Af’oft/sv# C AFF°,

n

For every ¥/s € A" we have s’ < ' < (s/)*!. Therefore we get s'b, # t'b, and thus
/s b} € By. O

Lemma 112. Suppose given t/s,t[s € A} with t/s ~g /5. Then

A;{.;Eft/s,# — A?éft,/sly#'

PTOOf. We show that A:{L#ft/s’# = A#ft/s by, . # holds for every t/s c A# Then
A#ft/s’# = A?ftl/sl’# by Lemma 110.
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By definition we have

(t/s) by _{ tbn/sb, if sby, <tby,

$bu/th, if thy < sby.
Note that

0 (obsg _ f [FPnfsbale, i 5Dy <ty

([o/0]~) f { [tba/eb,] . if th, < sby,

[8/s]~, if sb, <tby,
[t/t]., iftb, <sbp

and

1 (t/s n»# — [tbn/tb”]"’s lf Sbn < tbn
(Y1) f { [sbn/sba] . if tb, < sby,

[ [t/t~, ifsb, <tb,
o [S/S]NS if tb, < sb,,.

From Lemma 111, we have A?{ = [0/0]~, U [1/0]~, U [Y/1]~,. Therefore

AT f1# = ([0/o]~, U [Yo]~, U [V1]e,) £
20 /] o, U s]m, U /],
P05/ b3y U /s DS, U [te D3],

= ([%0]~y U [0l U [1/1],) f1P0#
_ AF U/ L#

o'

Lemma 113. Suppose given t/s € A¥e. Suppose given k € Z.. Then

(1)
f(t/s)+k7#f(t/5)+k7# — ft/s,#ft/s,#,

(2)
f:(t/s)+k7#f(t/s)+k7# — fvt/s,#ft/s,#.

Proof. Ad (1): Due to f75# o f/*# we know that for every i/i € A¥, the element
ifif*=# f/*# is terminal in {J'/i € Afft/s’#: i'fi < ifi}; cf. Lemma 74 (3). Due to
FETE# 4 FOTE#  we know that 3/if (/)T # f(9# is terminal in

{7'fv € AF pUTH Yy <ifi).
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As Lemma 112 gives Afft/&# = Aff(t/s)%’#, both are terminal in the same set and
therefore equal.

Ad (2): Due to f/=# + f/=# we know that for every i/i € A}, the element j/i is initial
in {i'/i € A¥ f"/=#: §'/y > j/i}; cf. Lemma 74 (1). Due to f(/9"# o f(/97"# we know
that i/if (/)" # f/9"# i initial in {5’/ € AT fU/D# 'y > §/i}. As Lemma 112 gives
Af&ft/sv# = Af&f(t/sﬁk’#, both are initial in the same set and therefore equal. O

Lemma 114. Suppose given t/s,[s € Al with t/s ~g t'/s'. Then

Wfilys = V/iley
and
[9/ilee = [3filv)

for every i/i € A¥.

Proof. For /s’ = (t/s)** for k € Z we get

. D. L Pt t/s L.113 (1) . e /g D. o
(g, PR afs et gt PER O g e g PO

and
. D01 ., ztfe s ptfest 113 (2) ., 2t/ 1 ptl /ot 42 D. .
p/ﬂt/s 101 J/ift/ ,#f/ # L113 ( )J/zf / ,#f /o' # D101 D/ZL’/S/-

O]

Lemma 115. Suppose given ifi,t/s € A¥. Then 19/i]y, € AF° if and only ififi € uTLLj/ijt/s.

Proof. «<: 1f i/i € ug/th/S, then u,,Lj/th/s # () and therefore |J/i]./, € A7°; of. Remark 94.

= Suppose that |J/i],, € AF°.

According to Lemma 105, we have

LJ/ZJ s £li/i — . £lifi
w1 = (FE ) (5l fE )

By Definition 101 and Lemma 108 we have [7/i]/, ~s t/s.
Then

j/ifAl_j/iJt/sy#RéOGj/ifl_j/th/sy#fI_j/th/Sy#fAl_j/th/sv#
Léliij/ift/s,#ft/&#Jﬂj/ijt/s,#
= [3fily fUl

and therefore Jj/i € u,Lj/th/ %
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Lemma 116. Suppose given i/i,t/s € A¥. Then

ATt ndl | <1

Proof. If /i ¢ Af*°, we have d/* = 0 and therefore ]Af ndY | = 0.

Suppose that i/i € A7°. Then dil/i C A#’O; cf. Remark 94. For b/a € Afﬁ \ A#’O, we have
bfaf'# ¢ A¥°. Therefore

A flotndlfi = A flo# 0l

If t/s € A\ A7 we have A f7/=# C A¥ \ Af°. Therefore A7 f7/+# al =0.

So suppose that t/s € AZ*°. Then A#’ fo# = [t/s].. and & = (f/#) ()i fo#),
cf. Lemma 105. Then by Lemmas 79 and 108, \Af’ o9 N dil/z | < 1. O

Lemma 117. Suppose given t/s € BS and ifi € Al
The following assertions (1), (2), (3), (4), (5) are equivalent.

(1) There exists an element t'/s' € dy, I with /s g t/s.
(2) We have &' O[t/s]~, = {|3/i].}-

(3) We have |3/i)., € Af°.

(4) We have |ifi], € dI/'.

(5) We have |i/i]y, ~st/s.

Proof. 1f ifi € A} \ Af°, then 4/ = ¢ and 19/ily, € AF\ A¥°, so we are done;
cf. Definition 93. So suppose that Ji/i € A#’O

Ad (1) = (2): Suppose given t'/s € 4" with /s ~g t/s. Since t'/s € 47", we have
ifi e Wy with uh/” = {i'fir € AF: )y <3t < [V)5]); of. Lemma 96 (2). As ¢/s' € A¥°,
we get uy, o/ 105 (fil=# )~ L(t'/s f'=#) and thus i/if"/*# = ¢/ f/# By Lemma 74 (2),
the element |7/i]., = /if F=# fi/=# is initial in

(f1#) G f 1) = (FP#) ) f1#) = () € Aff v ) <Tfi < [H/7}
Therefore t'/s' = |/i]y..
By Lemma 116 it follows that d7/ N[t/s]~. = {|3/i]./.}.
Ad (2) = (1): We have |i/i]y, € d}f* with |3/i],), € [t/s]~., that is /i), ~s 1/s.
Ad (2) = (3): We have {|3/i],.} = &/ N[t/s]~, € AF®.
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Ad (3) = (5): We have
il D= i # f# € Ao AF fI# C A # PR )
and therefore |J/i]y, € [t/s]~,.
Ad (5) = (4): We get
3/il ey, € &' Y20 s € uﬁ/”t/s
LA it = i)

We have [4/i] t/sft/s’# DAL s /st pifsstt filsste 10 g/ f1/stt and therefore |d/i] i/ € ar
Ad (4) = (3): We have |i/i],, € il C AF°.
Ad (5) = (1): If |3/i]y, ~s Ys, then in particular [3/i],, € 47" as we already proved
(5) = (4). Therefore we have the element |J/i]./, € dy," with |4/i] tfs ~s 1/s. O
Lemma 118. Suppose given ifi € Af°. Define I := {t/s € BS: ifif /*# € A¥°Y. Then
d: I —df
ts = [3/ily,

s |1

s a bijection with inverse by, gl
n

Proof. The map d and its inverse are well-defined:
Suppose given t/s € BS with Ji/if /*# A%°. Then

iy, = i f € B o =[]
cf. Lemma 108. By Lemma 117 we get [J/i],, € ar

Suppose given /s € dJ/'. Then t/s = /s bS € [(/s/]-, = A#e Ul # C A, Therefore
t/s € Bfl

We also have t/s f/=# ¢ [t)s]| . f/=# = A f/=# f1/s# R.106 A#°. Therefore t/s € I.
We show that t/sd b}, =t/s fort/s € I:

By Lemma 117 and |J/i],, € di{i, we know that t/s ~g |3/i]y,.

Therefore |/i]./, by, = t/sbj, = t/s; cf. Lemma 110.

We show that ¥'/s' b} d =t/s for every t'/s € ar

Suppose given /s € A/ Let t/s := /¢ b}, in particular ¥'/s’ ~g t/s. Then

Vs L, L114 ., L117,,
o d = |3y, 2 iy, T v

88



5 Definition of n-complexes

5.1 Definition of C™(A)

Suppose given n € Z>o and an additive category .A.

Definition 119. An n-complex over the additive category A is a functor X: AF — A
with (t/t)X 204 and (*"'/t)X =204 for every t € A,,.

Suppose given n-complexes X and Y. A morphism of n-complexes from X to Y, also
called n-complex morphism, is a transformation from X to Y. The n-complexes together
with these morphisms form the category C(™ (A) of n-complexes over A. For readability,
given two n-complexes X, Y € Ob(C(™(A)) we sometimes abbreviate the set of morphisms
from X to Y by

cm) (X,Y) = X, Y)

c(A) (

or sometimes (X,Y) := c (4) (X,Y).
For a given n-complex X, we often write Xy, := (//s)X and z,, s, = (t/s,t'/s) X for

t/s,t'/s € Al or even x:=(/s,¥/s') X, if source and target are apparent from context.

Suppose given an n-complex morphism f: X — Y. We often write f,, = (¢/s)f.
Remark 120. As a diagram, an n-complex is commutative due to A# being a poset.

Example 121. A 3-complex X can be depicted as follows.

0 >

T A
0— X0+1/3 R )(1-5-1/3 >
T ot o

0—— X3/2 i) X0+1/2 i> )(1-5-1/2 — 0
T = T
0—— X2/1 2 Xg/l R AXO-H/1 — 0

1 ) t

0 —— Xl/O $ X2/0 i> Xg/o — 0

T o 0 1
0 — XO/3—1 i> X1/3—1 i> X2/3—1 — 0
ot o 1
b X0/271 i> Xl/zfl — 0
B T
> 0
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Of course there is also the e.g. the morphism X, = X3, in the diagram, which we
have not depicted. Likewise we omit the labelling of arrows that obviously describe the
respective zero morphism.

We sometimes denote positions containing a zero object by 0. Different positions with 0
can contain different zero objects.

Notation 122. Suppose given a diagram, e.g. an n-complex X € Ob(C™(A)). We
sometimes refer to a quadrangle in the diagram by specifying the vertices. E.g. for the
n-complex X we write (X, Xe+i/,, Xo/o i, Xeryyoyy,) for the quadrangle

X
Xyoor —5 Xerjons

| |

Xt/S x*) XtJrl/s .
Lemma 123. An n-complex is determined up to isomorphism by its values on A¥e.

Proof. Every n-complex X is isomorphic to the n-complex defined by

YsX' = t/sX fort/se Af*°
Sl 04 else

with X’ ‘Mor(A#"’) =X |MOT(A#,O) and zero else.

The isomorphism is ¢: X — X' with

Yup = Lyx for /s € AL
0 else.

It is a morphism of n-complexes, because the quadrangles

t/s,t'/s") X
/s,t/s")

t/sX ( tl/s’X

1t/sX lltl/S/X
o B0 g
for (t/s,V/s') € Mor(ﬂ#’o) as well as

t/sX L) t//s/X

llt/sx Zi()

t/s X — % 5 04
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for (t/s,t'/s') € Mor(A¥) \ Mor(A#°) with /s ¢ A#*° and

t/sX L) tl/s’X

Zlo \th//s/X

04 —2— /s X’
for (t/s,¥/s') € Mor(A#) \ Mor(A#*°) with t/s ¢ AZ° commute. O
Definition 124.

(1) We consider the subset

S i = {(s/t,s+Yr) | s/ e AF |t <s <tTHU{(s/t,s/t+1) | s/t € ATt < s <t}
C Mor(A¥).

Pictorially, the set S consists of the morphisms in A¥ going one step to the right or one
step upwards.

We choose maps

XOb: A# — Ob(.A)
XnMor: S — Mor(A)

with t/tXOb =04 and t/t‘HXOb 20y fort e An and (S/t, Sl/t/)XMor S A(s/tXOba Sl/t’XOb)
for (s/t,5'/t') € S and for which for every

8/t41 —— st1/e41

[ |

s/t _ S+1/t

in A¥, ie. s/t € AI"°, the quadrangle

(5/t+1,5+1/t+1) Xnor

s/t+1 X0 s+1/t+1 X oy
(S/tvs/t*’l)XMOrT T(S-’_I/tas-‘»l/t*’l)xl\/lor
S/tXOb (s/t,5+1/t) Xnor N S+1/tXOb

comimutes.

We call X := (Xob, XMor) a one-step n-compler. The morphisms on S are called
one-step morphisms.
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(2) Suppose given a one-step n-complex X = (Xop, Xnor). We can expand this defini-
tion to Mor(AZ) by defining

Xob = Xop
and

(s/ts3/) Xnor * = Lojixyy, forsfte A¥

(o/t, /) Xntor == (5/t, 5+1/1) Xtor - (5+1/t, 542/t) Xntor - - (=1/,5/t) Xntor
for (s/t,s'/t) € Mor(A¥)

(s/t, /) Xntor = = (5/t,8/t4+1) Xnor - (8/t+1, 8/t+2) Xntor - - - - - (5/¢' =1, 8/t') Xntor
for (s/t,s/t') € Mor(A¥).

Moreover, for (s/t,5'/1') € Mor(A#f), we let

(s/t,3/t) Xntor - (5/¢,5'/0) Xngor  if £/ < 8 < ()T, e, sfer € AF

else.

(s/t78//t,)XMOr = { 0
S/t,s//t/

Often we just write (s/t,5/t)X := (s/t,5/¢)XMmor and s/tX := s/tXop for
(s/t,5'/1") € Mor(A¥).

We note that

(5, /) X - (/e 7 [0) X = (/1,57 [v) X
for (s/t,'/¢) € Mor(A}) and

(e, /)X - (e, ") Xo= (5, ") X
for (s'ft,s'/r") € Mor(A¥).

Lemma 125. Let X be a one-step n-complex. Define (Xon, Xnor) as in Definition 124 (2).
Suppose given the quadrangle

sl — s+1/t4e

I I

s/t ——— st+1/t

in AT, where £ > 0. Then (5/t,5+1/0) X - (s+1/t,s+1/110) X = (s/t, 5+1/e10) X .

Proof. For £ = 0 this holds by Definition 124 (2).
Assume that [ > 1 and that this already holds for £ — 1, that is

(s/t,s+1/t) X - (s+1/t, s+ /1p0-1) X = (8/t, 5+ 1/t40-1) X.
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Then we have

(s/t, st t) X - (sH1/esH1 /e 0) X = (s/t,5H1/8) X - (541t s+ /t40-1) X - (sH1/epe—1, sH1/t40) X
= (s/t, st )it40-1) X - (sH1/t40—1, 541 /t40) X

L9 s/ty s/t40-1) X - (8/t44—1,5H1/t40-1) X - (541 /t40-1, 5+ /t40) X

D.124(1) o, sfrie1)X -

)
)
sft, s/t+e-1)X -
sft, st1/t40) X

8ft40—1, 8/t+£) X - (8/t4, sH1/t40) X
8ft40—1,5+1/t40) X

(
(

(
(
(
(

O

Lemma 126. Let X be a one-step n-complexr and (Xop, Xnor) be defined as in Defini-
tion 124 (2). For a quadrangle

8ft4l —— stM/4

I I

s/t ———— stm/y
n A#, where [, m = 0, it holds that

(5t 5#m )X - (e, s+mfe) X = (sfs,sm/r1) X

This means the quadrangle

(s/t_H) (s/tJrl,s+m/t+l)X(s+m/t+l)X
(s/t S/t-H XT T(5+m/t75+m/t+l)x
(s/)x LN (g X

commutes.

Proof. 1f the difference (s +m) — s = m = 0, the assumption holds by Definition 124 (2).
Assume that m > 1 and that the quadrangle

(S/t+l,s+m/t+l)X
—

(s/t+1) X (s+m/e+1) X
(s/t, s/t+l)XT T(s+m/t’s+nx/t+l)x

(sf)X IR (srm x
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commutes in which we have (s +m) — (s + 1) = m — 1. Then we have

(s/t, s+m/t)X . (s+m/t, SJFm/t—H) = S/t s+1/t X . SJFl/t, s+m/t)X . (s+m/t, s+m/t+l)X

( )X - (

(/t, s+1/8) X - (s+1/t, stm/e41) X

= (s/t,s+1/t) X - (sH/t, s+ /e01) X - (sH1/t1, sHm/e40) X
(
= (

||H

25 s/ty s/t41) X - (8/t41, sH1/t41) X - (51 /t41, stm/e11) X
s/t 5+m/t+l)

Lemma 127. Suppose given a one-step n-complex X. Define (Xob, XMor) as in Defini-
tion 124 (2). Then X :=(Xon, XMor) @8 an n-comple.

Proof We already have from the definition that #(s/t sSH)X C 4(s/tX,5/vX) and
S/t - 1S/tX

We still need to show that for given morphisms (s/t,'/¢'), (5'/¢,5"/t) € Mor(A¥) we have

(/0,5 1) X = (31, ') X - (/v " [v) X

Let (s/t,5'/t') and (s'/¢,"/#") be morphisms in A¥ .

If s < ¢/, then (s/t,s'/#) X = 0. Now ¢’ < ¢ implies s < t”. This implies that (s/¢,5"/¢") X = 0.

So (s/t, /) X - ('), " [r) X = 0 = (s/1, " /) X

If ' <" then (s'/,s"/t")X = 0. Now s < s’ implies s < " and thus (s/t,5"/t")X = 0. So

(oo 0)X - (40,2 X = 0 = (o, ) X.

For the following we suppose that s/¢,s'/t" € A¥.

Case t” < s < ("), so s/i" € Af. We have

(sfe, 1)) X - (1, Jer) X = (3fen )X - (sfer, o) X - (e fer) X - (3 e o) X
(5fe, )X - (52, )X - (s, ) X - (e, o) X
= (sfu, )X - (o), fer) X

(5fe,Jer) X

L.126
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Depiction for n = 4 with s/t = 3/1, s'/s' = 071 /2 and ¢"/y' = 11 /a:

A A A A A

X3/3 — X4/3 — X0+1/3 — X1+1/3 > X2+1/3 > ,X}_JA/3
X2/2 > X3/2 — X4/2 — )(0+1/2 > )(1+1/2 > Xyt

~ T/ ~ .

X1/1 > X2/1 > X3/1 > X4/1 > X0+1/1 > )(1+1/1

/2

Xo/o > Xl/[) > Xg/o > X3/0 > X4/0 > XU+1/0

So here, the composite results to be zero, since Xs/; = 04.

Case s < t”. In this case we have (s/t,s"/¢") X = 0, /ix," /i x- The quadrangle with diagonal
(t"/e,s'/) is in Aff and /"X 22 04. Thus (*"/¢, s/t X = 0015 o/ por -
This yields

(5,5 0) X - (e, ") X0 = (/e ) X ()0, S fe) X ('), S o) X- (), o7 fer) X
L-gﬁ(% X - (e S ) X (s s e X

= OS/tX,S”/t”X

Then X is a functor from A¥ to A with (4+)X = 04 and (t"'/)X = 04 for t € A,,. Le.
X is an n-complex. ]

Lemma 128. FEvery n-complex X in cm (A) can be obtained from an one-step n-complex
via Definition 124 (2).

Proof. Define an one-step n-complex X as the restriction of X to (A# ,S); cf. Defini-
tion 124 (1). Then the n-complex defined by X is X. O

Definition 129. An n-complex X in C(”)(A) is called split if aX is split for all
a € Mor(Af).

Definition 130. An n-complex X in C™(A) is called acyclic if for every quadrangle

t/s/ — tl/s’

[

t/s E— t//s
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in AY , the quadrangle
Xt/sl E— Xt//sl

[

)(t/5 —_— th//S
in X is a weak square.
Remark 131. Every 1-complex in C™M(A) is acyclic; cf. Lemma 38.

Lemma 132. Suppose given an n-complex X and Y/s,V/s € NI with t/s < ¥/s'. Then
s ¢ wl implies (t/s,t'/s')X = 0. Cf. Definition 93.

Proof. If t/s ¢ A#°, then X, =04 and (Y/s,t/s')X = 0. So suppose that t/s € A7 and
v/s ¢ w/*. This implies #/ > s +n=s—lors >t—1,ie s <t ort <.

Suppose that sT1 < #'. Then t/s < s™'/s < '/’ and we can write

(¢/s,0/s") X = (ts,57 [s) X - (7'/5,0/s') X = 0.

Suppose that ¢ < s’. Then t/s < t/t < ¥/s and we can write

(t/s, /)X = (s, t/) X - (1,¥/s') X = 0.

Lemma 133.

(1) The category C™(A) is additive.

(2) If A is abelian, the category C"™(A) is abelian.

Proof. Ad (1): The functor category (Aff, A) is additive; cf. Remark 12. The cate-
gory C™(A) is a full subcategory of (A}, A). We show that C("(A) is a full additive
subcategory of (AF, A); cf. Definition 8. It contains the zero object N € Ob(C(™(A))
with Ny, = 04 for every t/s € A¥. Given X,Y € Ob(CM™(A)), we get a direct sum
(Cy (mi)ien 2 (Li)iep,2) in (A#,A) with Cy, = Xy, @Yy, for t/s € A¥. We have
Ciy, = 04 for t/s € Aff \ Af°. Therefore C' € Ob(C™(A)) and (C, (m)ieq1 2+ (t4)icpn,2)) 15
a direct sum in C™(A). So C(™(A) is an additive category; cf. Lemma 10.

Ad (2): Let A be abelian. Then the functor category (A}, A) is abelian, where kernels
and cokernels can be formed pointwise; cf. Remark 25.

As ¢ (A) is a full subcategory therein, it is sufficient to show that c™ (A) is closed
under taking kernels and cokernels.
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Let X %5 Y be a morphism in C™(A) and let K %+, X be a kernel of a. Then

kt/s . X/s : AF AT\ AF°
Ky, — Xy, is a kernel of X,;, — Vi, in A for t/s € Afl. For t/s € Af \ A7 we
have Xy, = 04 and Yy, = 04, therefore Ky, = 04 for every t)s € Ay \ A¥°. Therefore
K € Ob(C™(A)).

Dually for cokernels.

Thus C™(A) is abelian. O

5.2 2-complexes are complexes in the classical sense

Suppose given an additive category A.

Remark 134. By Definition 99, we have a bijection

p2: 1 — A#’o
k+— (a+b)4P2_1/a<p;1

with k = 2a + b for a € Z and b € [1,2]; cf. Remark 82.

The inverse is given by
p2_1: A#’o — 7
t/s = (s)p2 + ()2

The map p2 is monotone:

For k € Z and kps =: j/i € A#’O, we either have (k + 1)py = i+1/i or (k4 1)pg = i/i+1. In
both cases we get kp2 < (k+ 1)pa2.

Depiction of A%°:

2/ sy 0Ty >
[
1/, 2/y 0*1/1 — 1Y
[
0/o 1o 2/p 0t /o

S 1/271 5 2/2—\
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Remark 135. Every complex A defines a 2-complex X 4:
Suppose given a complex A over A, i.e. a functor Z — A with (i,i+2)A =0 for all i € Z.
Consider the subset
S = {(s,t+1s): s € AF s <t < sTYU{(Ys,ts41): s € AT s <t < st}
C Mor(AY)

with § N Mor(AZ°) = {(ipy, (i + 1)pa): i € Z}.
We define a one-step 2-complex X4 by

t/spy 1A for t/s € Af’o
04 else

YoX s = {
and

(t,i +1)A if (¢/s,t'/s') = (ip2, (i + 1)p2) € SN Mor(Af’o) for some i € Z

(tfs, /) X a = { 0 if (¢/s, /) € S\ Mor(A]°).

Then X4 is an one-step 2-complex because all elements in A#’O are of the form s+1/s or
s+2/s for an s € Ay and

sH1/s41 —— 5+2/541 } 04— (2sp2+3)A
[ [ [
3+1/s E— 5+2/s (284)02 =+ 1)A E— (25(,02 + 2)A
and
42541 —— s sr1 (252 +3)A —— (282 +4)A
[ [ |
s+2/g —— sT/s (252 +2)A ——— Oy

commute for every s € AZ°.

This defines an 2-complex X 4 as in Definition 124 (2); cf. Lemma 127.

Lemma 136. The categories C(A) and C?(A) are equivalent.
In particular, they are equivalent via C(A) # CP(A) where
G: CH(A) — C(A)
X = pX  for X € Ob(CP(A))
T s por  for 7 € Mor(C®(A))
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and

F: C(A) — @A)
A = Xy for A € Ob(C(A))
T =T for 7 € Mor(C(A))

with X 4 defined as in Remark 135 and

s — t/spy i for t/s € Af’o
oF =
0 else.

Proof. We have FG = 1¢(4)-
For every X € Ob(C?)(A)), let X be the 2-complex with X |a#o= X [z#. and aX =0y
2 2

for a € Ob(A#\A#’O). Then XGF = X. Analogously for 7: X — Y we define 7: X — Y
as the transformation with 7 ‘A#,o =T ‘A#,o.
2 2

Define Xo: X — X by

WXo - — { lax foraEA#’O

0 else.

for X € Ob(C®(A)) and a € Af.

Then we get an isotransformation o: 1C<2)( A GF by
X -5Y) & lxg lY”

The quadrangle commutes, as for every a € A# either both morphisms aXo and aY o are
the identity morphism and ar = a7, or a € A# \ A#’O and every morphism is zero. O
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Example 137. A 2-complex X:

0 —— XO+1/2 >

|
0 — Xoyy —— Xot1, — 0

I 1

0 Xl/O z X2/0 — 0
|
» Xijp-1 — 0

A

A

The complex of X in usual notation:

>y Xyt — Xyyy —— Xopg —— Xy —— Xo+1/1 —_— X0+1/2
—— ~—~ ~—~ ~—~ —— ——
0A=A0 1A=A! 2A=A2 3A=A3 4A=A4 5A— A5
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6 Functors defined from quasiperiodic monotone maps

Suppose given m,n € Z=q. Suppose given an additive category .A.

Lemma 138. Suppose given a quasiperiodic monotone map f: A, — A,,. We define the
additive functor

CHA): cmM(A) — cM(A)

by
CHA): Ct™(A) — cM(A)
X = f#. X for X € Ob(C™(A))
T f¥ .7 for 7 € Mor(C™(A)).
When A is clear from context, we sometimes write C) = C(f) (A). We sometimes write

X = xcH

for X € Ob(C™(A)) and
7= (4

for T € Mor(C™ (A)).

Proof. The resulting X (¥ is indeed an n-complex:
The composite of the functors f# and X is a functor again.

For t/s € A} we have /sX) = (t/sf#)X = (t//sf)X = 04 due to the quasiperiodicity of
f,bothif t = st orif t = s.

Suppose given X -+ Y — Z in C™(A). Then
s ((U .7) C(f)) — (0 T)popt
= Oysp# Tysf#
=t/ ((, C(f)) s (T C(f)>
=t/s(o CY) .7 ¢
for t/s € Af. So (o-7)CY) =g W) .7,
For ¢, € Mor(C™(A)) we have

(o +%) CO(A) = (Yof* (o + )
= (#sr%0)

= CH(A) +yCH(A).
Thus CY)(A) is additive. O

t/sEAﬁ:

t/seA¥ + (t/sf#w) t/seAf
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Remark 139. Suppose given p € Z=1 as well as f € (Ap, Am)qp. and g € (Ap, Ap)qp.-

(i) We have C97)(A) = CH(A) . CW(A).

(ii) We have C1an)(A) = Lo (ay-

(iii) If f is an isomorphism, then CY)(A) is an isomorphism, too.

Proof. Ad (i):
For every X — Y in C(™(A) we have

(X S Y)CUNU) = (ghHtx 2= (gNH*Y

#)r

) =
E %g#f# x LI, (g# pyy

g (r#x) LU, g gty
(X I y)CcH(A) c9(A)

Ad (ii):
For X <Y in Ob(C(™(A)) we have

- (15 ) 1A#T
(X 5 Y)CUa) (A) = 134 X 25 14V
=X-5Y
Ad (iii): This follows from (i) and (ii). O

Example 140.

(1) If f is injective, then c) (A) is the operation that removes rows and columns in
the diagram containing indices not in the image of f, as can be seen in the following
example.

Consider the monotone quasiperiodic map f: Ay — As with

0—0
1—2
2+—3

and the 3-complex X from Example 121. Then X() is the complex, where all
columns and rows with index containing 1*# for some z € Z are removed as pictured
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in the following diagram. The resulting complex X (/) is displayed in black.

0 >
0 —— Xo+1/3. — X1+1/3 i

A

[ i

0 —— X5y — X0+1/2 — X]+1/ — 0

2

A AR

0 Xg/] X:g/| — “vl/l — 0
RV
0O——— X]/“ X2/0 Xg/o — 0

[T 1 1

00— X0/371 — Xl/ru — X2/371 — 0

T/T\T

» Xojg-1 — Xyt — 0

"~

> 0

(2) Consider the monotone quasiperiodic map g: Ay — Ay with

0 11!
111t

2+ 02
and the 1-complex Y

A A

0 —— Yy,

| I

9 — 1/-14»1/0_;'_1 _— 0

A

W —— 0

the resulting complex Y9 is
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O—>}/0+2/1+1 HOZO

0 ——10— Yprz s — 0

[

0—— )/1+1/0+1 S 3/1+1/0+1 — 0

A A

This is to be read as a diagram on

e 2 e i
[
0/0 1/0 2/0 0+1/0
[
271 fp-1 —— 0/2-1 1/9-1 2/9-1

For instance, Yz(/f) =Yy gn = Yoo, = Y0+2/1+1.
Moreover let ¢': Ay — Ay be the quasiperiodic monotone map defined by

0272
1—0"L

Then we have g- ¢’ = 15, and thus
(Y(9)> @) _ vy _yUa) _y

Definition 141. Suppose given two quasiperiodic monotone maps f,g: A, — A,, such
that f < g. Consider the transformation f — g.

(1) For every X € Ob(C™(A)) we define a morphism X C(®)(A): X() - X by
XC@(A) = o7 X;

cf. Lemma 97.
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(2) We have a transformation C(®(A) = (X C(o‘)(A))XeOb(C(m)) from C)(A) to C19)(A).
We often write C(®): C) — CW) instead of C(¥(A): CH(A) — CYO(A) if A is

clear from context.
We sometimes write X(®) := X C® for X € Ob(C™ (A)).
We also write C/9) := C(® for the unique transformation oo = (f,g): f — g.

Concerning (2), we show that (X C(O‘))X€Ob(c(m>) is natural.

Suppose given X —— Y in C™)(A).
For every a € A¥ , the quadrangle

aw C)
a(X ¢y 297, qy a)y
LLX Ccl) Jay cle)
eLC)
a(X ) p Y a(Y C19))

has to commute.

Using the definitions of Cf), C(¥) and C(®) this means
#
aftx 7% oty
(af#,ag#)Xl i(af#,ag#)Y
#
ag® X BEAR N ag?Y
has to commute. This holds because ¢ is a morphism of n-complexes.

Lemma 142. For every n,m € Zxy,
(An, A,) — (C )
(f = g) — (¢ £2 )
is a functor.
Proof. For f: A, — A, and the identity transformation 1; = (f, f), we get
aX CUD = (af# af )X = 1,5 o
for every X € Ob(C(m)) and every a € A¥. Therefore C(1f) = Lo
For f,g,h: A, — A, and transformations (f,g) and (g, h), we have

aX CF9) .o X C9M = (af#, ag?)X - (ag”,ah™) X = (af?,ah¥)X = aX CHN

for every X € Ob(C™) and every a € A¥. Therefore C/9) Cloh) = ¢(f:h), O
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_ f _
Lemma 143. Suppose given quasiperiodic monotone maps Ay ? A, with [ left

adjoint to g via unit o = (1x ,fg) and counit B := (gf,1x, ). Then CY9(A) is left
adjoint to CY)(A) via unit

C(*)(A)
Lom gy ——— C9(4) CU)(A)

and counit .
c(A) c@(4) LA, Lot (-

Proof. We need to show that for every X € Ob(C™(A)) and for every Y € Ob(C™(A))
the triangle identities

( )c(a)c(g) ( ( )C(f)c(a)

(X)C X)C (Y)C oo

\ l X)cwce \ lY c® )
(x)cly (Y)c(f)
y)c)

hold. Evaluated, they look as follows.

gFa# X a# f#Y

gt X L= g# fHgHEX f#*Yy f#g* fHY
1 lﬂ#g#X 1 lf#B#Y
g X F#Y
97X 7Y

We know that f# is left adjoint to ¢#; cf. Remark 98, necessarily via unit a# = (1x#; f#g%)
and counit g% = (¢7 f#,1 A#)- Therefore the following diagrams commute for every
1€ A# and every j € A#Z.

ot T
if# m—> if# gt f# jgtt 2 9 jgtt fHgt
\ lf#ﬁ# \ lﬂ##
if#

Now applymg X and Y, respectively, yields the wanted identities for every i € A¥ and
every j € A

iV FH
ifFY JdaTJTY, if#EgH Ry jg#X JgFar X, gt X
lirtary \ |is#arx
Lis#y Lig# x
if*Yy jg*X
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Corollary 144. Suppose given f: A, — A,, quasiperiodic monotone. Then there exist
quasiperiodic monotone maps g, h: Ay — A, such that

gif-h

cf. Lemma 86.
We have C9(A),CM(A): CM(A) — C™(A) with

cM(A) 4P (A) 4Cc9(A),
cf. Lemma 143.

Remark 145. Suppose given /s € A# . We abbreviate

f= ft/s: AL — A,
fo= A, = A
f :ft/s:An_)Ab
cf. Definition 101. So f 4 f f
Let
0= (a, ff7) = (a,, £1), 0= (1a, f7f7) = (1a,, £ 1),
g = (f7f15) = (ff.14), e = (flf15,) = (ff.1a,)

By Lemma 143, we have A
ch 4c! 4o,

where C) 4 € via unit ¢ loaw — P ¢ and counit CO: ¢ ch) - 1o and
where C) 4 CY) via unit C™: 1 — ¢ Y and counit C©: ¢ ),
Then for every X € Ob(CM(A)) and every Y € Ob(C™(A)) we get the following two
bijections,
e (XY W) — o (XD, Y)
o — (o) .y @
XC.(r)cW) «— 7
as well as
o (X, YD) — (o) (X))
r— (1) Cc .y ¢©
XCD (o) CW) o
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Lemma 146. Suppose given an injective quasiperiodic monotone map g: Ap — Ay, Let
f be left adjoint to g and f left adjoint to f that is f f - g. Note that gf =1z, ;
cf. Lemma 7/.

/
T
A, — A,

\gj

Lete == (ff,1x,): ff = 1a, andn' == (1a,,f9): 15, — fg.

Suppose given an m-complex V € Ob(C™(A)), an n-complex X € Ob(C™(A)) and an
m-complex morphism a: V — X,

Define

o = (e . (x)c®. v 4 x

and
a = (a)C() veh — v x©.

Then a = a - (X)C7) with 7 == (f,9): f — g.
Suppose given f: X9 — V with af = 1y. We define

B = (X)ct) (g x - v,
Then o/ 8" =1,
In particular, if & is split monic, then o is split monic, too.
Proof. Existence of 7: We have ff < I, < fgand thus f = fff < gff=g.
We have

a = a'9

_ D@ . xO@
— oH . xe
=a X,
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Suppose given /s € Af. We obtain

W, = ()@ B) = (o)a- ()8
(t/5)(e) C-(t/5)8
(tfsg)o - (15)8
= (fsg?) () D) - (o) ((X) CO) - (1/5)8
(t/s)g* Fa - (s)g## X - (/5)8
(¢f)g* o ((/a)g* F# 1%, (¢/)g%) X - (5)8
K

ts)a- (1) f7, (t/)g7) X - (t/)8.

For j/i € A, we get

(i)’ B) = (e - Gf)E
= @) (@ D) -6 ()€ - () (0 ) - ) ((8) CD)
= ) fta- Gt X - G EX - ) 4
= @) Fa- GAFFIF 30X - Gfiifif*g#)X - (/) f78
= @) fFa- (ff*1* )i f )X - (/) f7 8
see a:bove 1\/]-/”5#
L

Thus O[, . /8/ — ].V<f)
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7 The homotopy category K™/™(A)

Suppose given an additive category A.

7.1 Definition of K™ (A)

Suppose given n,m,n,m € Zxq.
Definition 147. We define the homotopy category K™™ (A) by
K™ (A) = cM™(A)/Cm™(A)

with
Cm(A) = > Im(CY(A4)) € cM(A).
fe(AnvAnL)q.p.
Cf. Lemma 11, Definition 17.

For a morphism ¢ in C™(A) we denote its equivalence class in K™/™ (A) by []y.m-

Lemma 148. Suppose given t/s € A#’O. Then

Tmn(CU")(A)) = Tm(CU ") ().

Ift/s € A\ AL°, then every object in Ob(H(C(ft/s)(.A))) is a zero object. In particular,

CrD(A) = 37 Tm(CV)(A).

t/s€ BS

Proof. Suppose given /s € A, Define quasiperiodic monotone maps

fri A= Ay
=1+ 1
and
f_Z Al — Al
11— 1.
We have
(t/s)ff = tf+)sfy = tHlfsq1 = 5T/ = (t/s)F]
and

()7 = 1ot = sfer = (1)

for every t/s € Af’o.
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We have f7° = f0/97 . £ and f¢/9)*" = fs. f_; ¢f. Lemma 109 (1).

We show that Ob(Tm(CY")(A))) € ObTm(CF ™) (4))):

Suppose given X € Ob(Tm(CY”*)(A))), that is X = AF”) for some A € Ob(CM(A).
Then X — AG7 — 4G9 p) (A(f+))(f(t/s)+l) c Ob(m(c(f“/s)ﬂ)(A))),

We show that Ob(Tm(CU")(A4))) 2 Ob(Im(CY " ) (A))):

Suppose given X € Ob(E(C(f(t/S)H)(A))), thatis X = AV™) for some A € Ob(CW(A)).
Then X = AGF™) = 4G 1) = (40)Y") ¢ ob(Tm(ct) (A))).

Suppose given ¢/s € Aff \ Af*°. Then t/s = s/s or /s = s'/s = (s/s)T1.

Case t/s = s/s: Suppose given X € Ob(H(C(fS/S)(A))), that is X = AU for some
A € Ob(CMW(A)). Suppose given i/i € A¥. We have Xj = A(j/i)fS/sy# = A1+k/1+1 >~ Oy
for some k,l € Z.

— pst g sl
Case /s = s™'/s: Suppose given X € Ob(Im(CU™ 7)), that is X = A" /) for some
A € Ob(CW(A)). Suppose given i/i € A¥. We have X =A
for some k,l € 7Z.

g = Aothiore = 04

Suppose given f CAY Afﬁ quasiperiodic monotone. Let f: Afﬁ — A¥ be the left adjoint
of f; cf. Lemma 86. Then f = f'/°/. The right adjoint of f is f'//°/. As adjoints are
unique, we get f = f7/of.

As for every quasiperiodic monotone map f, the image Im(C¥)(A4)) is closed under direct
sums, we get

D)= 3 Tm(cU ().

t/SGA#’O
O
Remark 149. To unambiguously define a quasiperiodic monotone map f: A, — A,, it
is sufficient to know its values on [0, 7] :

Suppose given
a<a<...<a,<a+m+1

in A,,, then there exists a unique quasiperiodic monotone map f: A, — A,, such that
if =a; for i € [0,n].

The condition 0f = 0 means [0,n]z f € [0,0T]5 .
There are (m+7?+1) options to choose the remaining values:

The number of monotone maps [1,n]z  — [0,0%!]5 is the same as the number of strictly
monotone maps [1,n]z, — [0,0T! + (n — 1)]z . A bijection is given by g — § for a
monotone map g: [1,n]5, — [0,07']5z = with kg:=kg+k—1. The strictly monotone maps
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correspond to the n-element subsets of [0,07' + (n — 1)z, as a map § gives the subset
Im(g) with n elements and any n-element subset defines exactly one strictly monotone
map by ordering it. The amount of n-element subsets of [0,0™! + (n — 1)]5 _is (mt’frl).

m+n+1

This means there exist ( n

) quasiperiodic monotone maps A,, — A,, with 0f = 0.

Remark 150. As we are only interested in the full images Im(C™™(A)), it is enough to
consider quasiperiodic monotone maps f: A, = A,, with 0f = 0. Any other quasiperiodic
monotone map g: A, — A, where 0g = 0 + 2z for some z € Z can be written as g = fs,
where

Sy Ay — Ay
t—t+ 2

is an isomorphism. In particular, f = gs_,.

Then C9W(A) = C6=)(A4)CY)(A) where C=)(A): C™(A) — C™(A) is an isomor-
phism. Therefore Tm(C(¥)) = Tm(C)).

The images Im(CY)(A) are closed under direct sums.
This means for C™™ (A) we have the finite sum

crmA)y = Y Im(CY(A)).

fe(An 7Am)q.p.
0f=0

Lemma 151. Suppose given f € (Aﬁ,An)q_p.. Suppose given 0 < m < m. Then we have
a unique functor KFmm) (A) that makes the following diagram commutative.

cH(A)

C(A) ———— (4
an,m lRﬁ,fn
R /m) 4y KT D e g

This functor is given by

Kmm) Ay KO (A) — KO/™)(A)

[o(h)

[@]n,m la,m Y(f)).

(X 22 Y) —s (X
We abbreviate K1Y =, KU,

Proof. Suppose given g € (An, Ap)qp.- We have to show that Tm(CW)CW) c ),
Choose hy € (Am, Am)q_p_ and hg € (Afn, Am)q.p. with hi1ho = 1Am'
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Suppose given X € Ob(C(m)). Then

(x @) et = o0

— X C(fghih2)
— (X C(hz)) C(fgh)

€ Ob (™)

since fgh1 € (An, Aji)qp.- Therefore (Ob(HC(Q))> c) C ob(cmm)y,
As C™™) ig closed under direct sums and CY) is additive, we get

Ob(C™™)) ) C Ob(C™™).

By the universal property of the factor category, we get a unique additive functor
Kmm) Ay K™ (A) — K™ (A)

(N5 -
(x vy (x ) R ()

_ f _
Corollary 152. Suppose given Ay F’ A, quasiperiodic monotone with f - g.

Suppose given 0 < m. Then
K@mm)(4) 4 KEmm)(4),

Proof. We know that C9)(A) 4 C)(A); cf. Lemma 143.

By Lemma 151, we get unique induced functors K™ (A) and K(9™™) (A). By Lemma 65
we get K@) (A) 4 KUmm)(4), 0

Corollary 153. Suppose given f: A, — A; quasiperiodic monotone. Then there exist
quasiperiodic monotone maps g, h: Ay — A, such that

gif-h

cf. Lemma 86.
Form > 0, we have KSm™m) (A), KOmm) (A): KO/ (A) — KO/ (A) with

Kmm) (4) 4 KEmm(A) 4 Komm)(4)

cf. Corollary 152.
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Lemma 154. Suppose given an additive category B and an additive functor A I B.
Then

()
cm(4) L8,

(X 5 Y) (XF

() (B)
ulF

> YF)
gives the induced additive functor

(n/m)
K /m) (4) K g n/m) ).

Proof. Let Ry: CM™(A) — K®™(A) and Rz: C™(B) — K™ (B) be the respective
residue class functors.

By the universal property of the factor category, we obtain an additive induced functor
as claimed if C™ (F)Rz maps every object of C™™)(A) to a zero object. It is sufficient
to show this for every X(f) € Ob(C™™(A)) with X € Ob(C™(A)) and f: A, = A, a

quasiperiodic monotone map.

In fact, we have
XD ctpy = f#FXF
= (XF)C(B) € Ob(C™™(B)),

which is a zero object in K"/™)(B). O

7.2 KV (A)

Suppose given an additive category A.

The category K?/V(A) is defined as
K®/D(A) = P (4)/CcBV(A)

with
COD) = 37 I "= 3T (A
(A2’A1)Q<P- (A27A1)q.p.
0f=0

The quasiperiodic monotone maps Ay — A that map 0 to 0 are given by

f1 fo f3
0—0 0—0 0—20 0—0 0—20 0—0
10 10 10 11 11 1+ 0tt
20 21 2 0t 21 2 0t! 2— 0"t
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The maps with Im(f) € {0** : k € Z} can be ignored, as their corresponding functors
map everything to zero.

For a 1-complex X

A~ ~

0 —— X0+1/] —0

[

0 Xl/n 0

[

0 —— Xojp-r —— 0

A~

this yields the following images:

0 Xi/o 0 0
X 0 I XT/U I
T

x (f2). 0 Xy Xi/o 0

X(f3):

ryo — o

Here the second position on the second row is position 1/o.

Note that every choice of objects X0+1/l, X0, Xojp-1, ... in Ob(A) yields a 1-complex, as
all the morphism in X are zero.
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3.
Thus CZD(A) = S Im(CY)(A) is the full subcategory of C®)(A) consisting, up to
=1

1=
isomorphism, of 2-complexes of the form

(10)

0 —— A3 Ay —> Ay As —— 0

00
T 00) Rlﬂ) T
0 —— A1 A ALZA Ay @ Az ——— 0

00
T 00) RlO) T
0— 5 A @A) 24 Ag@ A —— 50

A N

for A; € Ob(A).
By Lemma 136, we know that C(A) and C®)(A) are equivalent via C(A) # CA(A).

Recall that F maps a complex A to the 2-complex X4 with (X ), = i/ip~ ' A for i/i € A#’O
and (X4)j; = 04 else. Recall that G maps a 2-complex X to the complex X = pX.

For every complex B € Ob(C®P8)(A)) € Ob(C(A)), that is, B being isomorphic to a
complex of the form

(15) (16) (10) (10)
o AT A L A0 A L A AT L A2 A L A At —
we have BEF € Ob(CZY(A)).
For every 2-complex X € Ob(CZY(A)) we have XG € Ob(CEP 29)(4)).
By Lemma 64, we get that K(/1(A) is equivalent to K(A).
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8 The pullback functor

Suppose given an abelian category A that has enough injectives. Suppose given n € Z>;.

8.1 The category C™™)(A)

Definition 155. We define the subcategory C(™1)(A) of C(™)(A) as the full subcategory
whose objects are the n-complexes X fulfilling the conditions (i), (ii), (iii).
(i) Xy, =04 for s <0

(ii) For every 0 < s <t < s*lin A, we have

Xt/s+1 — Xt+1/s+1

[

Xt/s — X’H’l/s )

i.e. this quadrangle is a weak square.

(iii) For every t/s € A¥ | the object Xy, is injective.

An n-complex X € Ob(C™i*)(A)) is called injectively resolving.

Remark 156. Suppose given a one-step n-complex X fulfilling conditions (i),(ii) and
(i) of Definition 155. Then the n-complex X obtained from X is in C(™¥*)(A) as the
definition only contains conditions for objects and one-step morphisms; cf. Lemma 127.

Remark 157. For a 1-complex X € Ob(CM(A)) to be in Ob(CHT)(A4)), it is suf-
ficient to check conditions (i) and (iii) of Definition 155, as l-complexes are acyclic;
cf. Lemma 131.

Lemma 158. The category C™™)(A) is additive.

Proof. We show that the category C™*)(A4) is a full additive subcategory of C(™(A),
which is additive; cf. Lemma 133 (1).

The n-complex X with X, := 04 for every ¢/s € A¥ is a zero object in C(™ (A) and lies
in Cmires) (A),

Given two n-complexes X, Y € Ob(C™")(A4)), we need to check the three conditions from
Definition 155 for the n-complex X @Y € Ob(C™(A)) to be in C™)(A). Condition
(i) holds because the direct sum of two zero objects is a zero object. Condition (ii) holds

by Lemma 41. Condition (iii) holds as the direct sum of two injective objects is injective
again.

Therefore C(™)(A4) is additive by Lemma 10. O
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Lemma 159. Suppose given an n-complez X € Ob(C1"9)(A)).

Then for every t/s+k,t+l/s € A¥ with k,l >0 and s > 0 the quadrangle

Xt/s+k — Xt+l/s+k

I I

Xt/s e Xt+l/s

s a weak square.

Proof. Suppose given t/s+k, t+l/s € A# with k,7 > 0 and s > 0.
We show the case k£ = 1 by induction on (.
For | = 0, the quadrangle is a weak square by Lemma 39.

Suppose given [ > 1. We consider the diagram

Xt/.s+1 — Xt+l*1/.s+1 — Xt+l/.s+1

[ B

Xt/s e Xt+l—1/s e Xt+l/s .

Then we have

Xt/s+1 e Xt+l/s+1

[

Xt/s e XH-l/s

weak square by Lemma 40.
We show the general case by induction on k:
For k£ = 0, the quadrangle is a weak square by Lemma 39.

Suppose given k > 1. We consider the diagram

Xt/s+k — Xt+l/s+k

[

Xt/s«l»kfl — Xt+l/s+k:71

[

Xt/s EEE— Xt+l/s .

118



Then we get
Xt/s+k I Xt+l/s+k‘

I

Xt/s e Xt-H/s .
weak square by Lemma 40. ]

Lemma 160. Suppose given a sequence

al a2z an—1
A1 > A2 e An

in A with Ay, Ay, ..., A, injective. Then there exists an n-complex X € Ob(C1')(A4))
with Xy, = A; fori € [1,n] and zij i+, = a; fori € [1,n —1].
Proof. We prove the existence by constructing a one-step n-complex.

We set Xi/; = 04 for j < 0. We also set Xy, = A; for i € [1,n] and @iy i+1/y = a; for
ieln—1].

Claim: Let AF .= {t/s € Aff|s <k} ¢ Af for k € A,,. If all values are defined on

A#’k, we can expand the definition to A#’kﬂ.

We set Xii1/,4, = 04 and consider the following diagram.

04

! L

Xk+1/k L} Xk?+2/k > ... Xk+171/k —_— OA

For every i € [1,n] we complete

Xk+i/k+1

|

x
Xk+i/k E— Xk+i+1/k
to a weak square

x
Xk+i/]€+1 — Xk+i+1/k+1

4 + 4

Xk-‘ri/k — Xk+i+1/k

with Xitit1/,4, injective; cf. Lemma 42. Then we set X ;)41 = 04.

k41
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As the diagram on AFY s already defined, this yields a construction of a one-step n-
complex fulfilling the conditions of Definition 155. Thus it defines the wanted n-complex;
cf. Remark 156. O

Lemma 161. Suppose given X € Ob(CM™7) (A)) with (5'/0,/0)X split for 0 < s’ < s < 0t
Then X 1is split.

Proof. For s/t € Af let M., = {(s'/v,s/t): &) € AF, /v < s/i} C Mor(A¥) the set of
all morphisms in A} with target s/t. We show that for every s/t € Af all morphisms in
M./, X are split.

For s € {t,t*1} all morphisms in M., X are zero and thus split.

For ¢ < 0 all morphisms in M, X for s € A,, are split by assumption or zero and thus
split.

Let s/t € A¥° and t > 0. Suppose that for v/v < s/t all morphisms in M,,, X are split.
Suppose given (s'/¢/,5/t) € Mor(A}). We show that (s'/¢,s/{)X is split:

If s <tors>(#)"!, the morphism is zero and thus split.

Suppose that t < s’ and s < (#')*L.

Caset =1t

We get the following weak square in X with X/, = 04 a zero object.

Xt/t >L> Xs/t

ol + 1

Xt/t—l — XS/t—l

By Lemma 58, (s/¢t—1,5/t)X is split. Applying Lemma 58 to

Xs//t EE— Xs/t

[+ ]

Xsl/t71 — Xs/t71

yields that (s'/t,s/t) X is split.
Case s = §':
Applying Lemma 58 to
Xy =2 Xy

ol + 1

Xt/t/ — XS/t’
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yields that (s/¢,s/t)X is split.
Case s < s, t' < t:

We get
Xt/t NN Xs/t

ol + 1
Xt/t/ — Xs/t/
and by Lemma 58, (s/¢/,s/t)X is split. Applying Lemma 58 to
Xsl/t —_— Xs/t
I+ ]
XS//t/ — Xs/t/
yields that (s'/¢/,s/t) X is split. O
Corollary 162. Suppose given X € Ob(CM™)(A)). If (s/0,5/0)X is monic for every

0< s <s<0t, then X is split.

Proof. As X, is injective for every i/i € A}, the morphism (s'/0,5/0) X is split. Therefore
X is split by Lemma 161. 0

Lemma 163. Suppose given X € Ob(C1)(A)). Then XU ¢ Ob(C™r)(A)) for
every t/s € By.

Proof. We check the three conditions of Definition 155.
it/ _
Ad (i): Xj(/}z/ ) = 04 for every ifi € Af with i < 0:

Suppose given J/i € A# with i < 0. That is i < n~!'. Note that i < s — 1. We have
ft/s . .2 2 _ ..

Xj(/]: ) = Xy frat = Xjft/s/ift/s with if7 < (s — 1)f7* = 17! < 0; cf. Definition 101.

As X € Ob(CH9)(4)), we have Xy = 0y for 7)1 € Af with i < 0. Therefore

1/
XJ(/{ ) 04.

Ad (ii): For every ifi € AF with0<i < j < it! the quadrangle

) K7

J+1/i Jt+1/it1

[+ 1
PR NN L)

ifi J+1/;

s a weak square:
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The quadrangle

X(]’+1)ft/5/z'f”t/s - X(J‘+1)f”t/5/(z‘+1)fAt/‘S
[ [
X — X

if gt GOt

is a quadrangle in X and X is acyclic; cf. Lemma 131.
G e R R
Gk X5, 7 is injective forifie AT

)

Suppose given J/i € A¥. Then g =X,

/s is injective. O

Lemma 164. Let X,Y,Z € Ob(C™(A)) with (X, (Wl,W?), (¢1,42)) a direct sum of (Y, Z).
Then X € Ob(C™")(A)) if and only if Y, Z € Ob(C™)(4)).

Proof. <=: The category C(™®)(A) is additive; cf. Lemma 158.
—: Suppose that X € Ob(C™1")(A)). We show that ¥ € Ob(C™")(4)).

We have X/, =Y, ® Zy, in Afort/s € A¥. Therefore Y, . is injective. For t/s € A¥ with
s < 0 we have Yy, & Zi/, = 04. Therefore Y;/, = 0.4.

Suppose given a quadrangle

K/s«l»i — K“'j/s«l»i

| I

Yt/s N Yt+j/s

in Y. We show that this quadrangle is a weak square:

We add kernels and the induced morphisms to the diagram; cf. Remark 28. By Lemma 37,
Kx % K is an epimorphism.
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K+j/s+i : Xt+j/5+i B K+j/5+i
b ml
K/.H»i Xt/eri }/;/s+i Y
Yy T
1 1
v Yiris - Nevjje — Yiiis
/ x / Y %
x
A ml ,
}/t/s Xi/s Yt s kY
ky ki
by K K, K,
V kX }\/ ky %
Ky Kx Ky

Because of kg,L}H/SxtH/S,tH/S“ = kg,ytﬂ/s’tﬂ/sﬁdﬂ/s“ = 0, there is exactly one morphism
K K v with VEy = kil /s Similarly, there is exactly one morphism Ky b K X
with bkx = k:thl/s, exactly one morphism Kx -3 Ky with cky = k thl/s and exactly one

morphism K’ =5 Ki{ with d'ky, = k&ﬂtlﬂ o Because k'y and kj, are monomorphisms, it
follows that ay b’ = bayx and axc = cay and the resulting diagram is commutative.

K+j/s+i - Xt+j/s+i s K+j/s+i
Y; AN ¢ LA 7
t/s+i t/s+i t/s4i Y
Yy T
1 1
Y K"’J/s - Xt"!‘j/s x }/H-J/s
Yy x Yy )
e 2 e
! mt ,
K/S Xt/s }/’;/.s kY
Ky kx
ky Kl d K\, —~¢ Kl
V kx }/ ky %
Ky b Kx c Ky

As there is also only one morphism K3, N K, with d'k}, = ki, it follows that d’ = 1 Kl = b
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and thus ¢’ is epic. Then axc = cay is epic and thus ay is epic too; cf. Remark 1.
Dually it follows that the induced morphism between the cokernels is monic.

Thus the quadrangle under consideration is a weak square. O
Lemma 165. Suppose given A € Ob(CM(A)) and t/s € BS.
If (A) U7 (4) € Ob(CM™ire) (4)), then A € Ob(CHires)(4)).

Proof. As ft/ ° is surjective, every object A;, for j/i € Af& can be found in the n-complex
(A) C(ft/s)(A) € Ob(C™es)(A)) and is therefore injective.

Suppose given J/i € A# with ¢ < 0. We show that A4;,, = 0.4.

As f*+ is surjective, we have (f7°)~1(i) # 0.

We show that there is an element i/ € (f7*)~'(i) with i/ < 0. Then ¢ f7* = i and
Ajji = X1/ = 04 for some i e A¥.

If i = 171, then (f79)"'(171) = [t',5 — 1] with t~! < 17! < 0; cf. Definition 101.
If i <171, then i/ < ¢! < 0 for every i’ € (f/*)71(i); cf. Definition 101.
Therefore A € Ob(C1¢)(A4)); ¢f. Remark 157. O

8.2 Definition of the pullback functor
Suppose that n > 2.

"oy e v in A we choose a pullback

Definition 166. For every diagram X’

Wl,y,f/
Py,f’ » Y

-
7r2,y,f’l Y

x Iy,
called the standard pullback.

Definition 167. For n > 2, we define a functor Pb(™: C™)(4) — (A,_;, A) as
follows:

First, we define the functor on objects.

Given an n-complex X € Ob(C(™*)(A)), its zeroth row is

al a2 An—1

0 Xl/()

X/,
with a; := (i/0,i+1/0)X for i € [0,n].
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We define
XPb(”) = X = (Xl o > % 2 mn,2> Xn—l)

recursively by defining

!
<
=

l

2
S~

and

Xi = PaiabX,iJrl
Ti = T2a;,bx 11

bei = T,a:,bx,i41

for i € [1,n — 1], using the standard pullbacks defined in Definition 166. As bx, is a
monomorphism and pullbacks preserve monomorphisms, cf. Lemma 43, bx ; is a monomor-

phism for every i € [1,n].

One step of the recursion:
.Xi/o L) Xi+1/0

ﬂl,a,i,bi+1}\ /{biﬁ»l
L

Xiq1

b, P a—
PalabH—l T2,a;,bi41

For illustration we show a diagram in the case n = 3:

A A A A

Xoso > X1/0 = X0 2 Xz — X0+1/0

bX.lT bx.zT bx,3
L L

) RN ') 0

So XPb(n) = (Xl i} XQ)

Suppose given two n-complexes X and Y with

XPb™ = X = (X 25 X, 22 . 2L %, ) and

YPb® =V = (1 v, B Dby )

and a morphism of n-complexes X — Y.
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In the following situation

0 — — Yy, > Y Yooy — — Yayy — — Yoy =2 0
O'O/O/ f AN /\ A /\ AN 7\ AN
91/0 On—2/0 On—1/9 an/g
/ / / /
0 — Xy b y Xn—2/g —— Xa-1/ Xnjo > 0
by, by,n—2 by,n—1 by.n
L L
}71 > >Yn_2—*>l7n_1—*>0
bx,1 bx n—2 bx,n—1 bx.n
L L on
X S s Xpg ———— Xpog ————— 0
there exists exactly one 6 = (d9,...,0p-1): X =Y with 6;: X; — Y; fori € [0,n — 1]

that makes the diagram commutative. This follows by iterated application of the universal
property of the pullbacks

K/O e K«Fl/o

I

Yz’ ;> Y/iﬂ
for i € [0,n — 1]. The morphism &; is already characterised by &;by,; = bx ;0 since by
is monic for i € [0,n]. Therefore & is unique. We define o Pb(™ = 4.
Suppose that 0 = 1x: X — X. Then 1y fulfils 1)A<l-bXﬂ' = bX,ilXi/O and thus we have
1x Pb™ =1, 5 ).
Suppose given n-complexes X,Y, Z with n-complex morphisms X Y — Z.

The morphism (o) Pb(™ is characterised by ((o7) Pb(”))ibm = bx o7 for i € [0,n —1].

0;Ty

Xi/o ? Z’L 0

bx,i/{ }\bZ,i

(Z(O'T) Pb(”))i ‘
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By definition this is fulfilled by ¢ Pb™ 7 Pb(™.

. .
Xi— Y, —— 7

bx,i/{ bY,i/{ bz,i/{

. oPb{™ v 7Pb{™ P

As bz ; is a monomorphism, (o7) Pb™ = ¢ Pb(™ 7+ Ph(™),

If n is clear from context, we often write Pb := Pb™.

8.3 The pullback functor and its kernel

Suppose that n > 2.

Lemma 168. The pullback functor Pb is additive, full and dense.

Proof. We show that Pb is additive:

Suppose given n-complex morphisms o,7: X — Y between n-complexes X and Y. The
image (0 + 7) Pb of o + 7 is characterised by fulfilling

((0 + 7)Pb)iby,; = bx,i(0; + T)

for i € [0,n — 1]. By definition of o Pb and 7 Pb, we have
bx,i(o; + ) = bx,i0; + bx ;7 = (0 Pb);by,; + (1 Pb);by; = ((0 Pb); + (7 Pb);)by,;

for i € [0,n — 1]. Therefore, (0 + 7) Pb = 0 Pb+7 Pb.
We show that Pb is dense:

/

Suppose given a sequence (X T Xy L X! |) € Ob((A,_1,A)). We
construct an n-complex as follows. Set X, := 04 and z],_; := 0. For X| we choose

an injective object X, € Ob(A) and a monomorphism X b Xi/, . Such a choice

exists as we assumed A to have enough injective objects.

For every i € [0,n — 1] we complete

Xifo

3

!
/ d /
X, — Xy
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to a weak square with X1, injective; cf. Lemma 42.

xi/o,i-kl/o
Xi/o _— Xi+1/0

S

!/ !/
Xi ——— Xin
K3

As b; is monic, b;11 is monic, too; cf. Lemma 45. The quadrangle is a pullback;
cf. Lemma 45.

T s
1/0’z+1/0
Xijg — Xty

q e
L

/ /
X; - Xin
T

Finally we set X +1 fo T 04. According to Lemma 160 the sequence

Xl/o E— XQ/O - Xn/o

n,ires))

can be completed to a n-complex X € Ob(C(
Applying the pullback functor to X yields

Xl/o X2/0 . Xn,1/0 Em— Xn/o
b b, bl _ /{
i .
X1 e XQ R Xn,1 & 0

Applying the pullback property we inductively get morphisms Xn_j RN X;Z_j for
j € [1,n — 1] that make the following diagram commutative.

X1/0 z X2/0 R Xn,1/0 _t Xn/o

b1 b, bo o bn—1
" x; 4 X} xS 1
X e . X1 0
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By Lemma 32, a; is an isomorphism for ¢ € [1,n — 1]. Thus the image of X under the

pullback functor is isomorphic to (X7 DXy — N X/ _1). Thus the pullback
functor is dense.

We show that Pb is full:

Suppose given n-complexes X,Y € Ob(C(”’ireS)) and a morphism X %, ¥V with X = X Ph
and Y =Y Pb.

Y1/0 }/2/0 o e Ynfl/() _—> Yn 0
Xl/O X2/0 e Xn—l/o _— Xn 0
v b, b1 4 v,
b1 . b2 . bn—2 N bn
Y1 Y, Yo-1 — 0
X1 X Xpog ———— 0

We construct a morphism X —— Y by inductively defining its components X/ BN Y.,
for s/t € AF.
For s/t € A¥ with t < 0 we set as;, == 0. We set ao/, := 0.

ai
As by is a monomorphism and Y1, is injective, there exists a morphism X/, 4 Y1/, with

a;
biai, = a1b}. Then for i € [1,n — 1] there exists a morphism X, BRARLN Yit1), with

di+1b§+1 = bit1aiv1)0 and Tijg i41/0@it1/0 = QifgYijo,i+1/0; cf. Lemma 47. We set Ao+l 1= 0.

y
Yo Yitis
IV ai-t,-y'
X
X’L/O Xi+ 1/0
b b
b; bit+1
A~ Ql A~
Y; Yip1
X = Xit1
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For j > 1 we inductively set a;;; = 0, we choose a;+/; following Lemma 47 for i € [1,n—1]
and we set A1y, 1= 0.

This defines an n-complex morphism X — Y.

Since a Pb is characterised by (a Pb);b; = b;aq, for i € [I,n — 1] we have a Pb = a.

Definition 169. We define the category K(™™)(A) as
K(n,ires) (.A) — C(n,ires) (A)/Ker(Pb)

Lemma 170. Suppose given X € Ob(C")(A)). S.g. k € Zsy such that X;, = 04
for all I < k. Suppose that (¥/0,3/0)X is monic for 0 < i < j < n. Let t/s = kp. Let
V1 e Ob(CW(A)) be the 1-complex with VI}O = Xy, and VJ}Z = 04 for ifi # Yo. Let

Vo= (VY C(ft/s)(.A). Then V € Ob(C™™)(A)) and there exist X' € Ob(C™1)(A))
and morphisms
ay Cx/
Vi—— X — X

cy Qaxr

such that (X, (ex:,cv), (axs,ay)) is a direct sum of (X', V) in C")(A). Furthermore,
X], =204 forl <k+1 and (i/0,3/0)X" is monic for 0 <i < j < n.

Proof. We show that there is a split monomorphism V >+ X in C"(A).

The n-complex V' looks as follows: We have Vj;, = X/, for all i/i € qu with the identity
morphism 1y, ” between them, and Vj;; = 0.4 otherwise; cf. Definitions 101, 93.

Example of V' for n =4 and t/s = 3/1:

0 0 0 0 0 0
[ I [
% X1 X1 Xs), % 0
0 0 Xs), Xs), Xs), 0
. I I
00— 0 —— 0 ——0——0

We define a morphism of 1-complexes V' O‘—1> X(ft/ 5) by
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(/i) = { lx,, fori/i=1/0

0 else.

Then we get an n-complex morphism V —% X via, C(ft/s) - C(ft/s) and é = &°: ft/s’# — fio#
cf. Corollary 145:
ay = al e .x c@

The morphism looks as follows

iy = (/i) (" CU") <a/z>Xc
= (/) f*at - (ifi)et
= (ifi) [ *at - (/i) t/Sv#ff/s /)X
= (/) P * ot (|3fi ., 30 X

for i/i € A, that is

0 else.

iy = { (t/s,3/) X for ifi € ul’

We also get a morphism a': V! — x U by a' = (ay) UMDy Ty Ly x T
and

V(Wﬂ) _ ((Vl)( t/s))“” D (Vl)(fft/ﬂft/s) L.92 (Vl)(fﬂ/s?fut/sﬂ) R.106 vl

Then a' looks as follows

1 (Ys,[ts])X  for ifi =1/o
(9fi)a” = { 0 for i/i € Nf with J/i # 1/o.

As V} = 04 for i/i # 1/o, the morphism (4/i)a' is split monic for every J/i # 1/o.

We show that (L/o)a' = (/s, [t/s])X is split monic. As Xy, is injective, it suffices to show
that (1/o)a' is monic; cf. Lemma 2.

The morphism can be written as
(Yo)at = (s, TYs])X = (s, stnfe=1) X = (tfs,sHn/5) X - (stn/s, stnjt-1) X

We show that (t/s,s+1/s) X is monic:
If s = 0, then the morphism is monic by assumption and we are done.

For s > 0 consider the following quadrangle in X. It is a weak square due to s > 0.
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Xt/s e Xs+n/s

[+ 1
Xt/s—l — X3+"/s—1
Then X/, , =04, so by Lemma 46, (!/s,s+7/s) X is monic.
We show that (s+n/s,s+n/t—1)X is monic:

The following quadrangle is a weak square and X,—1/, = 04. Thus (t/s,%/t-1) X is monic;
Lemma 45.

Xt—l/tfl — Xt/tfl

i +

thl/s e Xt/s

Then we get the following weak square

Xt/t71 — Xs+n/t71

bos

Xt/s e Xs+n/s

and by Lemma 45, (s+n/s, s+n/t—1) X is monic.
Then (Y/s,s+1/s) X - (s+1/s,s+n/t—1) X = (Y/s, [t/s]) X is monic.
Now we know that every morphism in

1 (Us,[Ys])X  for ifi =1/o
(fat = { 0 ifi € A¥ with i/i # 1/o.

is split monic. This means there exists a 1-complex morphism ¢!: X/ ") 5 v with
6[161 = 1vl.
Note that by Lemma 103 f7° - ft/s + fI*<1. Recall that

ol v X(ft/s),

that .
ay = ol CV ). x C©

and that .
a1 = aC(f”S]) .

Thus, according to Lemma 146 we get an n-complex morphism cy: X — V with aycy = 1y.
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As C™(A) is abelian, cf. Lemma 133 (2), we can choose a cokernel X X X of VY X
in (™) (A). By Lemma 51, we get X’ X' X such that (X, (ay, aX/),. (cy,cxr)) is a direct
sum of (X', V) in C™(A). By Lemma 164, it is a direct sum in C(7)(4).

As Vi, =2 04 and Xj, = 04 for [ < k as well as (ay )i, = lx,,, we get Xl’p >~ 04 for
| < k+1 for the cokernel X".

We show that (i/0,3/0) X" is monic for 0 <i < j < n:

We have (ax)i/y: (4/0,3/0) X = (¢/0,3/0) X"-(ax7);/0 With (ax)ise-(#/0,3/0) X monic. Therefore
(¢/0,3/0) X’ is monic; cf. Remark 1. O

Construction 171. Suppose given X € Ob(C™1")(A)) with (t/0,*/0) X monic for every
0 <t <t <n. Applying Lemma 170 to X with k = 1 gives an n-complex V!, obtained
from a l-complex, and an n-complex R! with R}/O = 04 with (X, (cy1,cp1), (ay1,ap))
direct sum of (V!, R'). As R! fulfils all necessary conditions, now with k = 2, we can
apply Lemma 170 and get (R!, (cy2,cp2), (a2, ap2)) as a direct sum of (V2 R?). By
repeatedly applying Lemma 170 to the remainders, we get sequences (Vi)i€Z>l, (Ri)i6221
and direct sums (R, (cyi+1, Crit1), (Qyit1, agiv1)) of (VL R for every i € Z>;.

For i > 1, we obtain R’ € Ob(C(™)(4)) and pr > 0y for I <.

cpl | L cp2 ) cp3 5 Cpa
X < > R < R < R <
OéRl aRQ aRg OAR4
avlucvl aVQHCVQ avsucvs aV4HcV4
I8 V2 V3 V4

Define a sequence (Vj,)iez., of objects in A by V;, = VM’D

Recall BS = {ifi € Af"°: 0 < i < j < n}. For every t/s € BS define a 1-complex
T+ € Ob(CM(A)) by

J

04 else.

T .

i/ = { V'/z‘ft/s*# for J/Z S AT’E’O with ¢ > 0
1/

Now define S7* := (T*) cU”) and

S = @ S/

t/sEB,?L

The objects Tjt//j are injective for i/i € A¥ and Tjt//j =04 for i < 0.

Therefore T* € Ob(CHT)(A)); cf. Remark 157.
By Lemma 163, 5/* € Ob(C(™")(A)).
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Lemma 172. Suppose given X € Ob(C"")(A)) and S as in Construction 171. Then
X =g,

Proof. We use the notation of Construction 171. We show that X is a direct sum of
(87 *)i/seBe by constructing the according morphisms.

Recall that we have f7° 4 fs o fI/*] with /s = 15, and fl"*1f = 15 for every
t/s € By; cf. Remark 106.
For every t/s € By, define a 1-complex morphism AT - X 2 by

Hs
’)/]./i = (Oévk cOpk—1 .. aRl)j/ift/sy#

for i/i € Af& and k = (ifif/>#)p~ 1.
For every t/s € By, define a 1-complex morphism 5= XU s by
St/s = (C 1- *Cpk—-1 " C k) t
ifi " Rt - R 14 ]/ifr /s1,#
for ifi € AT.
Note that ft/sft/s = 1z# = Jikal ft/s, cf. Remark 106, and therefore we have
1
Tt/s _ (S’t/s)(ft/s) _ (gt/s)(fﬁ/ﬂ)'
Suppose given i/i € Afﬁ \ A?&’O. Then T]t//f 2~ (04, thus every morphism Tj//j — T;//j is the

identity morphism 1Tt/s.
ifi

Suppose given i/i € A#’O. Let t'/s = i/if/*#. Let k := /s¢p~!. Let
T = (ft/57f|—t/3-‘): ft/s _>f|—t/5-|

Because ayk - Qgi-1 - ... api: VF — X is an n-complex morphism and because of
/s, [t/ VF = lyk , we have
t /3/

,AVZ: /(X)) O = (ayn - ageer o ag )y Gfif T F )T X
= (Oévk . aRk—l L aRl)t//S/ . (t//sl, ’Vt//s/-|)X
= ()5, [U/DVE - (aye - apeer - ap)
= (Oévk . aRk—l L. aRl)’—t//s/]
and therefore
’3/;?18 . (J/Z)(X) C(T) 84? = (Oévlc CORk—1 ..t O‘Rl)"t//s/" (CRl ‘oot CRE+1 ¢ CVk)j/ifft/SL#
== (Ozvk CORE—1 ..t OéRl)’—t//S/-‘ (CRl ‘et CRk+1 - CVk)[t’/s’]
= 1Vt,;s
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wﬁhVﬁy

Recall that

= ka

t/s
= Vip =V =T

ifi

ft/s 4 ft/s 4 st]

and that )
A s o x U,

Let

Vo= (37 e (x) € g = (1T o x
Recall that (77 - X C(M). 5 = Lptys.

Let
5 = (X) C(ﬁw“) .(5%) C(ft/s): X — (Tt/s)(ft/*“) — 5.

By Lemma 146, we now have v7°6"* = 1 gi/s for every t/s € Bp.

We need to show that v7/*6"¢ = 0 for t/s,7/q € BS with t/s # /5. We do this by showing
'yj?fd;//f = 0 for every i/i € A}, For all i/i € A} \ Af*°, the morphisms are already zero.
So suppose given J/i € AF°. Let /e = Gfiftls#flo# and vy = dfif lo# frla# If
V/s ¢ AX° then 'y;;: = 0 and we are done. If s’ < 0, then

0428/,

_ /s
= Loy s
_ /s
= et
_ &'/s
— il

and we are done. So suppose that t'/s' € A#’O with s’ > 0. The same holds for /¢
Let k := t/sp~Yand k' = /¢p~ L.

Case k > k'
We get
t/S 'r/ o ,\t/s 1 . e an ) A'r/

7]/15]/:2 - fyj/lft/S-’# : (t /S ’]/Z)X ’ (]/17 q + /T 71)X : 6j/jfr/(11#
= (Oévk *QRk-1 aRl)t’/S/ . (t//s’,j/i)X . (j/i,q/""n/r’—l)X . (CRl DR ch’—l . cvk’)r’/q/
= (avk . aRk?*l ..... aRl)]/1 . (CRl ..... CRk/fl . cvk/)]/l
= (ayw - age—1 - aRk/)j/i : (Cvk’ )j/i
=0

Case k < K’
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We get
(v )iyi - (Cpr -+ cpr—1 - Cyw )iy = 0.

We finally need to show that 6:~"s = 1x by showing this equation holds for every
t/sGBg

ifi € A} For ifi & A#*° or i <0 we know that Xj/; 20 and are done.
So suppose given J/i € A" with i > 0. For every t/s € Al let
o im P FE i

Let

l¢c = CRI""'CRl—l'CleX%Vl
and

la = Qyl - QRl—1 " QR Vl - X
for [ € Z)l.

Note that for every | € Z>; with ip ¢ dib/i, we have V]l/l = 04 and therefore (I¢-1d);;, = 0.

Define I := {t/s € BS: i/if/* € A¥°}. For t/s € B3\ I, we have ¢'/s' ¢ Al and therefore

=0,
Let k := ij/ip~!. By Lemma 14, we get
1Xj/i L1 (CRI """ CRR—1 " CRk * Rk * XRk—1 * *** * aRl)j/i + Z (lé . lOAé)7/Z
& le[1,k]
=0 because Rj/i%OA
= Z (lc la)]/z
le[1,k]
= X (e (pta),,
t//s’EdZ'L/i
L.118 . 1A . —1 A
LSS (Ufelydr™e), - (13l )oa),,
t/s€l
. —1A . . i /i -1 .. —1 ~
= > (Whly)e™'e),, - Gl [Ufily DV (/i) )0™1a)
/sel =1 with I=(|7/i]¢/,p~1
VLlj/th/s (L7tderer™)
= Ol g X (i)™ - (0078 o - (i) X
t/sEI
_ Yo tfs
- Z 5j/¢ .’yj/i
t/sEI
_ Yo | tfs
- Z 5]/1’ e
t/seBy
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Lemma 173. Suppose given an n-complez X € Ob(C1"9)(A)).
The following assertions (1), (2), (3), (4) are equivalent.

(1) X € Ob(Ker(Pb))
(2) The morphism (V/0,i/0)X is monic for 0 < i’ <i < 0*!
(3) The morphism (V'/0,i/0) X is monic for 0 < i’ <i < 0%l and X is split.

(4) There exist 1-complezes T € Ob(CHT)(A)) for t/s € BS such that

X= @ @i a).

e B
In particular, Ker(Pb) = C(”J)(A) A C(nires) (A).

Proof. We proceed as follows.

now Corollary 162
=
(1) now (2) a fortiori (3)

now Lemma 172

(4)
(1) = (2):
Suppose given X € Ob(Ker(Pb)). We have
Xo/o E— X1/0 N 7 An-—2/g — Xn_l/o E— Xn/o E— X0+1/0
f. [
Xl = = Xn_Q T> Xn_l T> O_A

with X; 2 04 for i € [0,n — 1]. Then X; = 04 is kernel of (i/o, +1/0)X for i € [1,n — 1]
and therefore (i/0,1+1/0)X is monic for ¢ € [1,n — 1]. Then (¢/0,/0)X is monic for every
0 < <i<0%! as a composite of monomorphisms.
(4) = (2):
Suppose given #/s € BS and T' € Ob(C(h"s)(A)).

-
If s > 0, we get Ti(fj ) = Tift/s/oft/s = ﬂft/s/l,l = 04 for i € [0,07!]; cf. Definition 101.
e
Then (#/0,i/0)T”*) is monic for 0 < ¢ < i < 071,

If s =0, we get
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N To,  forie[0,t—1]
U7 — Ty,  forie€ [t n]
Tyer), fori= (O

Then (i/o,i+1/0)T(ft/s) is monic for ¢ € [1,n — 1], and therefore (i’/o,i/o)T(ft/s) monic for
0<i' <i<O0tl

To/o = TO/O = .,., —= TO/O —— T1/0 =_,.,., —= Tl/O = Tl/o — T0+1/0

I Fo 1. P

Tlﬂ...%ﬁ_lﬂﬁﬂ...%f’n_lﬂofl

(2) = (1): As kernel of X, —— X,y , we have X; =0 for i € [1,n — 1].

We show that Ker(Pb) = C1(A) N Ces)(4)
Suppose given N € Ob(Ker(Pb)) C Ob(C(™)(A)). There exist 1-complexes (Tt/s)t/seB%

in C(Lires) ¢ ¢ (A) with N2 @ (T7%) C7)(A4). Therefore N € Ob(CD(A)).
t/sEB%

Suppose given X € Ob(C™D(A)NC)(A4)). Then there exist 1-complexes (A *)i/se B2
such that X ¢ & (At/S)C(ft/S)(.A); cf. Lemma 148. For every i/s € B;, we have

t/s€BS
(A7) C(ft/s)(A) € Ob(C™T)(A)); cf. Lemma 164. By Lemma 165, A7 € Ob(C1:)(4))
for every t/s € By. Then X € Ob(Ker(Pb)). O

8.4 Homotopies of n-complex morphisms
Suppose that n > 2.

Definition 174. Suppose given a morphism X —— Y in C™(A4). We say a allows a
homotopy, if there exist morphisms h*: X re/s] — Yy, in A for every t/s € A¥ such that

ay, = @i )X BT (s, )Y

t/sedzl/i
for every j/i € Aff. Note that h"/* = 0 for t/s € Aff \ AT

Remark 175. In the case n = 2 for a morphism X — Y in C®)(A), this corresponds
to a homotopy of complex morphisms:
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Illustration of a 2-complex, where A#’o is indexed via ip with i € Z:

0 — X5, >
0 X3p Xuap 0
0 le X2p 0

Suppose given ¢/s € Af°. Then t/s = (t + s)p and [t/s] = s+2/t-1 = (t + s + 1)p;
cf. Definition 99.

That is, for t/s = ip, we have
W Xisn = Y

with

ajp= Y (p.(i+1)p)X -1 (ip, jp)Y
ie{jfl’j}

= (jp,ip)X - KU=VP (G = 1)p, 3p)Y + (jp, (j + D)p)X - B - (jip, jp)Y
=hUTVP((j = Dp,jp)Y + (jp, (j +1)p) X - W7P.

So for complexes A := pX|z#.0 and B = pY|A§£’° in C(A) with d* := (i,i+ 1)A and
2

di = (i,94 1)B for i € Z and the complex morphism &: A — B with &; = «,, as well
as D' := hU=1r for i € Z, this yields

ééi — Dl i 6Zi—l +dl X Di+1
for i € Z, i.e. a homotopy in the classical sense.

Lemma 176. Suppose given X — Y in c (A) allowing a homotopy. Suppose given
n-complex morphisms U ﬂ X andY -5 V. Then Bary allows a homotopy.

Proof. Suppose given morphisms h7*: X re] — Yy, for every t/s € A¥ with

= Y (fi [YsDX BT (ts,3/)Y.

t/sEdZL/i
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Then

(ﬁa')’)j/i = Bj/iaj/i%'/i

=By | D Gl TYsDX BT (s, 3/)Y | -y,

t/sedi/i
= > By @i TYDX BT - (5, 3/)Y -y,
t/sEdzL/i
— Z (3/i, [t/s)U - Bresay s Vs - (15, 31V
t/sedi/i
= > Wi Ty DU (B - B ) - s,V
t/sedzl/i
We get morphisms h7s = Bres) - h'/s Y Uy — Vi, with the wanted property.
Therefore Say allows a homotopy. O

Lemma 177.

(1) Suppose given morphisms A = B and A 2. B in ™ (A) allowing a homotopy.

Then A ﬂ B allows a homotopy. In particular, { A -2 B: a allows a homotopy}
is a subgroup of ,(A,B).

(2) Suppose given a finite set I and morphisms (A; — By)icr in C™(A) allowing a

Z nla;
homotopy. Then @ A; LN P B; allows a homotopy.
1€l el

Proof. Ad (1): We have morphisms (gt/s)t/seﬁ# and (ht/s)t/seA# with

ay = > (fi [tfs))A- g7 - (ts,3/)B

t/scd’/!
and
Bio= > Gfi, [Y/s)A- 7" - (¢s,i/i) B
t/sed’?
for i/i € Af. Then
Q= Bip= > ((j/ia [t/s1)A- g7 - (t/s,3/) B = (3/i, [t)s]) A - 1" (t/svj/i)B>
t/sedl)?

= > Gfi[tsNA- (g7 = nP) - (Ys,i/)B

t/sGdZL/i
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for J/i € A¥.
Ad (2): By Lemma 176, we get that

' oy i
icl icl
allows a homotopy for every j € I. Then by (1), the morphism ) wf‘aiLZB allows a
el
homotopy. O

Lemma 178. Suppose given a morphism X ——='Y in C™(A).

(1) If « allows a homotopy, then there exist morphisms

X X, @ y (e rt) a2y
t/sEB,C.’L
such that o = o with Yy ¢ Ob(C™D(A)).

If X 5 Y is in CW)(A), then y U7 e Ob(C™D(A) N Cre)(4)) for
t/s S BSL

(2) The following assertions (i), (ii) are equivalent.

(i) The morphism « allows a homotopy.

(ii) There exist morphisms X % N 22 Y in C™(A) with N € Ob(C™(A))
such that cras = «.

Proof. Ad (1): Suppose given (X, — }G/i)j/ieﬁ# with

ay = Y (s X W (i)Y

t/s €
fOI“ every /S ATL .

For every t/s € By, define a 1-complex morphism Bt/ o0 XUTPD Ly (r79) by

Bt/s o W # oy ifi € Afﬁ’o
ifi - 0 else.

and an n-complex morphism
7 = (x)C D (37 U (v) ¢ x S Y
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We show that a = > A%+, It suffices to verify this at j/i € A7 with i > 0 as else both
t/s€ BS
sides are zero.

Suppose given i/i € A¥*° with i > 0.

Define I := {t/s € By: ifif "*# € AJ°}. We get (7/if"")3" = 0 for t/s € B} \ I. For
t/s € T we get (ifif7*)3" = nl/ s,

S 8= X (0T X G (L) )

t/s€B t/s€BY

= 3 X By - () Y

t/sEBO

= 7 i 31X - B ((31) i)Y
t/sel

FEEN T Gl DX BT (s )Y
sredl/t

= &y,
For every t/s € B;, we have
B = (X) C™ D (31 U () )
with

rt/s1) s

7] ~ At/s it/ ~ é
(x)ct X(ft/sf[t/sl) (B5)ct ) Y(ft/sft/s) (y)cte™) %

X

By Lemma 13, we get the wanted morphisms

o1, @ y (e fthe) 2y

t/s€ BS
. At/s t/s t/s (f /S) ( 1)
with @ YU = @ (Y< >) € Ob(C™V(4)).
t/s€ BS t/s€ BY
Suppose that X <= Y in C(™7)(4). In particular, X, Y € Ob(C™I"s)(A)).
Suppose given t/s € By. Suppose given Jj/i € A# with ¢ < 0, that is, i < 17'. Then

if ! <17Lf =171 < 0. As Y € Ob(CH)(A)), this yields Y§ V=Y = 04

As Y € Ob(CMies)(A)), we get Y}f Y injective for every jfi € Aff. Then XU") s in

CLies) (A); cf. Lemma 157. Then

YU = (v U7y U7 4) € Ob(CmD (A)) N Ob(Ce) (4));
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cf. Lemma 163.

Ad (2):

(1) = (ii):

This follows from (1).

(i) = (i):

Suppose given X — N 2 Y in C™(A) with N € Ob(C™V)(A)) such that ayas = a.

We have objects (At/s)t/seB% in CW(A) such that N = @ (A7) C(ft/s); cf. Lemma 148.
t/se By,
Let N 2 @ (47) cU”) =. N be an isomorphism.
t/s€BS
S.g. t/s € BS. Define N/° := (A"*) ).

Note that for /s € A¥ with V)5 ~g t/s we have ifif 1% =t s f1=# for t'/s < ifi < [V)s'];
cf. Lemma 105. Therefore

t/s o t/s o t/s o t/S
Ny = A grsr = Awpr s = Ny

. t'/g!
for every t'/s' ~g t/s and every i/i € w/".

For t/s € BS and ¢/ € A}, define h'e NF{/S/ " N:///SS, by

’
t'ys!

e[ g, i
‘ 0 else.

Suppose given i/i € A¥. We want to show that

Ly = 2 (i [OONT B (e gf)N.

J/i -
o t,/sledzl/l

If i/if''=# e A \ Af°, then NZ: = A;‘//jf‘t/s,# = 04. In this case the sum is zero and we

are done.

So suppose given J/i € A# with j/ift/s’# € Af&’o. In particular, j/i € A#’O. As ft/s’# is
injective, we get |/, = ififts# pa# e AR

143



We get

S G [N B (s N

t//s/edi/i

ML e Tl DN L (il 3N

/il
= GfifTH iy FTHV AT - (Lfi]y f1F fif %) AT
L105
1059,

Aj/ift/sx#
-

Therefore 1,4+, allows a homotopy. By Lemma 177 (2), 15 allows a homotopy. By
Lemma 176, we get that

allows a homotopy. O

Lemma 179. Suppose given the following commutative diagram in an abelian category
where Az, By, Ag, Bg are zero objects. Suppose that By is injective.

B7 > B4 > B5
/ 1\ V A V A
A7 Ay N As bs
AN b2 AN
b b
Bl ! > B2 2 > Bg
V as V A~ as yy ~
Ay - Ao %y A
bs
ae BG > Bg
V /
A6 4 Ag

Suppose that (A1, Az, A7, Ag), (A2, Az, Ay, As) and (Ag, Ag, A2, A3) are weak squares.
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a
A :

Ay —2— A;
as + as

Ay — 2 A4
ag + 0

AG#Ag

Then there exists a morphism h: As — Bs with v9 = azash = asagh.

Proof. We can add an image of a3 as

a6

0 AS

As (Ag, Ag, Ag, Az) is a weak square with Ag = 04, As %5 C'is a cokernel of ag. As

agy2 = 0-bg = 0, there exists a morphism C' — By with 79 = . As ¢ is a monomorphism
and Bs is injective, there further exists a morphism hy: A3 — By with ¢hy = ¢.

a6

As

RN

C
be
Bg
0

1
As

+ 0

\
as
é
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Then vy = é¢ = échy = agh;.
Symmetrically, we get a morphism hs: A4 — B with 9 = ashs.

By adding a pushout to
A4 L) A5

o 4 e

AQLA?,

we get

Ay a
~ X 7
P
a

P

As

p
a2 5

Az = As

as well as a morphism p: P — Bs such that the following diagram is commutative.

Ay 25 p h

o] ”IT

AQLAg

As p is monic and By is injective, we get a morphism As N By with ph = p.

Then v = aghy = agp1p = asp1ph = azash. O

Lemma 180. Suppose given a morphism X —— Y in C("’ires)(A) with «Pb = 0 and
k € Zxy such that ay, = 0 for every | € Zzy with l < k. Lett/s := kp. Then there exist

n-complex morphisms X Y and X L5 Y and a morphism h'/*: Xoinpyoy = Yy, in A
such that oz;p =0 for every | < k and such that

0 else.

/3, [t R (ts, )i or ifi € ul®
@F{wwmxw<m0Yf/en

and
a=ad +B.

Proof. Recall that t/s = kp. Let X := XPband Y := Y Pb.
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If s =0, then we get the following commutative diagram

Yy Yy
Yo,y Yo > Yoy
Ottfl/t,/ 1\ Ott/V ~ OCn/V' A~
x x
Xt 1/t—1 ” Xt/t—1 ” nft—1 4
y AN y AN
Y )
x Yioi Yiso > Yoo
Xt—l/o = Xt/o = ” Xn/o by n
AN bet AN
bx.t Vi Y 04
/ bx.n /
Xt z > O_A

with

o —
Note that X;—1, T, Yi-1/, is zero because of either t —1 =0 or a(_1), = -1/, = 0.

By Lemma 179, we get a morphism h7°: X rejo] = Yo wWith ayy = zh'l°.

If s > 0, then we get the following commutative diagram
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Yt—l/t4 thl ” s+nft—1
at_1V 1\ Olt/V A~ as+nV A
T . T
thl/t—l ’ Xt/tfl X5+”1/t71 Y
y AN y AN
Y Y
T }/t—l/s }/t/s ’ s+n/s
/ x V x O‘Sy
T T
Xt—l/s ” Xt/s XS-&-n/S Y
byt
Yy
x }/t s—1 YS“’”/S*l
At/s—1
T %
T
Xt/s—l ” Xern/S_l
with

thl/tfl — Xt/tfl — Xs+n/t71

ijLxTJFxT

X171/S *} Xt/s % Xs+n/s

7o+

Xt/571 L) Xs+n/871 .

at—1 S . .
Again, X; 1, RN Yi-1/, is zero because of either t — 1 = s or a(;_1), = -1/, = 0.

By Lemma 179, we get a morphism h®: X re/s] — Yy, with apy, = zh'/s.
Now define an n-complex morphism X —6—> Y as follows.
First we define a 1-complex morphism X (f [*/sT) L Yy by

4, :{ Wl for ifi = 1o

J 0 else.

With &7+ ft/sft/s — 1;# and 77“/4: La# — ft/sfws], we get an m-complex morphism
B
X — Y by

B = (X)CD(3) () ) X -y
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Then
B = (3fis G FIH TIVEY X @fef T - (i1 1 ) v
G )X R (s, 3/)Y for (30) fTH = 1o, de. )i € WL
B for i/i € Aff with (3/i) f/=# £ 1/o.
Therefore
Buye = (s, [Ys1)X - BT =y,

and
Bip = 0 for every | € Z>1 with [ < k.

We can define
o = a—p.

Then o is an n-complex morphism with o] ,=0 for every | € Z>y with [ < k. O

Lemma 181. Suppose given a morphism X —— Y in C(wires) (A). Then the following
assertions (1), (2), (3) are equivalent.

(1) We have aPb =0

(2) The morphism « allows a homotopy

(8) There exist morphisms X 2N 2y g gires) (A) with N € Ob(Ker(Pb)) such
that o = ata?.

Proof. (1) = (2): Suppose given X = Y in C"")(A) with a Pb = 0. Suppose given
t/s € AF° with s > 0 and t/s = kp. By repeatedly applying Lemma 180 at positions [p for
l € Zx1, we get (hlp)le@l, (61)16221 as well as (al)lez21 with

g {0 [1p])X - he - (Ip, /)Y for i/i € ulf
T 0 else.

for every | € Z>1 and with
for every k € Z>1, where afp =0forl <k.

Set h'/* =0 for t/s € AF with ts & A% or s < 0. Set B = 0 for every [ < 0. Note that
this yields

L U Tl X WP (1p,i/i)Y  for ifi € ulf
70 else.

for every [ € Z.
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Suppose given t/s € AFIf t/s € A \ A#’O, we have dZs = () and thus

ay, =0=>_ (s [fi)X - B/ (3/i,t)s)Y

J'/ied;/s

So suppose that t/s € Af. Set k := t/sp~t. If k > 1, we have af/s =0.

1

For j/i € A#, if i < 0 and therefore i/ip~! < 1, we have BUMPT = (.
Asifie u? if and only if Ip € dib/i, we get

Qfs = Z BE/S

le[1,k]

- > 4

- b,
le[1,k]
lped/*

_ /3(3'/0071
§ : t/s
j/iedi/s

= Y (Ys, [DX W (Y)Y

ijicd)®

Therefore « allows a homotopy.

(2) = (3): Recall that C(™)(A) is full. This follows by Lemma 178.

(3) = (1): Suppose given N € Ob(Ker(Pb)) and morphisms X -*+ Y and
X 0%1 N i Y in C(”’ires)(A) with @ = a'a®. As NPb = 04, we have ! = 0 and

a?=0.
Then aPb = ! Pb-a2Pb = 0.

J

Lemma 182. Let C™)(A) = CM(A) be the full inclusion functor. We have the

induced functor
K(n,ires) (.A) L> K(n/l)(A>

It is additive, full and faithful.

Proof. The induced functor J is well-defined:
Let R: CM™(A) — K™D (A) be the residue class functor.

By the universal property of the factor category, cf. Remark 62, we obtain an additive
induced functor if JR maps each object of Ker(Pb) to a zero object. This holds by

Ker(Pb) 4% ¢ (4) 0 Cn9) (4) € €D (4).
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The functor J is faithful:

Suppose given X —[Oi> Y in K(ires) (A). Suppose that [a]J = 0. We have

[@]J=0 = I (X 5N 2Y)in C™(A) with N € Ob(C™V(A)) and ayas = a

L.178 (2
:>( )a allows a homotopy

P 3 (X 2L N 25 ¥ in C0) (A) with N € Ob(Ker(Pb)) and ajas = o

= o] =0

The functor J is full:

A representative of a morphism in K/ (A) between objects of K™")(A) can be used
as a representative of an inverse image in K" (A). O

8.5 The resolution equivalence

Suppose that n > 2.

Lemma 183 ([1, §A, Lemma A.1]). Let B and C be additive categories, and let B NG
be a full and dense additive functor.

Suppose that for each morphism B 2, B in B such that boF' = 0, there exists
b/ b//
B =% No — B’ with bybj = by and Ny € Ob(Ker(F)). Then the induced functor

B/ Ker(F) N

[0]

(B— br

B')— (BF — B'F)
1 an equivalence.
Theorem 184. Forn > 2, the induced functor

K(n,ires) (.A) E} (An—laA)

(x % x7) s (x Pb 2% X' PD)

s an equivalence.

Proof. We check the conditions for Lemma 183 for B := C(™)(4) and C := (A, _1,A).
Both categories are additive, cf. Lemmas 158, 12.

The functor C(™)(A) b, (A,_1,A) is a full and dense additive functor; cf. Lemma 168.
We have M = Ker(Pb).
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For every morphism B o, B’ in Qlniires) (A) with by Pb = 0, there exists a factorisation

b/ bl/
B —% My — B’ with bjbjj = by and My € Ob(Ker(Pb)); cf. Lemma 181.
By Lemma 183, the induced functor K™ (A) b, (A,_1,A) is an equivalence. O
Corollary 185. We now may choose an equivalence of categories

(An—ly-A) M K(n,ires) (A)

such that TRes(™ Pb(") =~ LA, .4y ond Pb(™ [Res(™) = Licnires) 4y~ This functor is called
the injective resolution equivalence.
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9 Conclusion

Suppose given an abelian category A with enough injective objects, an abelian category
B and n > 2. Suppose given an additive functor F': A — B. We have an equivalence of

categories B
K(n,ires)(A) M} (An_le)

by Theorem 184 and an equivalence

(An—l,A) Res(™) K(n,ires)(A>

with TRes™ Pb("™ = (An_y,4) and Pb(™ IRes(™ = Licnires) 4y DY Corollary 185.
By Lemma 182, we get a full and faithful additive functor

K(n,ires) (A) _j_> K(n/l) (.A)
By Lemma 154, we get an additive functor

(n/1)
KO/ () 22E, o) gy,

Altogether, we now have

(Ao, A) 2B KO (4) L KO/ (4)

f\_/
l}((n/l)(p)

Pb(n)

K/ (B)
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10 Appendix: A diagonal complex

Lemma 186. Suppose given an additive category A. Suppose given n € Z1.
Let p=pn: 7 — AF° the bijection from Definition 99.

(1) Suppose given n-complezes (8%);cz with S* € Ob(C™ (A)) and n-complex morphisms

(SZ — S,z We can define an n-complex S® as follows. Let

Sts = Z/S
for t/s € AF° with ip = t/s and S, / = 04 else.

For morphisms (Y/s,t'/s') with both t/s,!/s € A and with ip =t/s and jp =t'[s we

define
(t/s’t//S,)SD — (t/s t/S H wt//
keli,j—1]
We set
(t/s,tl/s’)SD =0
else.

(2) Suppose given an n-complex X together with morphisms (S° LN X)iez that fulfil
o' =ittt fori € Z. Then p: SP — X with

oy = t(Zé) for t/s € A#’O
° 0 else.

is an n-complex morphism.
(3) If ¢': S* — X is an isomorphism for every i € Z, then ¢ is an isomorphism.
Proof. Ad (1): We prove that SP is an n-complex.
By definition, we have S/ =0y for t/s € AF \ AF°.

Suppose given ¢/s € Af*°. Let i := t/sp~!. We have

(5,48 = (fs, 5" T] @b, =1g =1gp.

ts s
kelii—1]

For t/s € A\ AF°, we have Stl? >~ 04 and therefore (t/s,t/s)SP =0 = 155 .

Suppose given (t/s,t'/s'), (V/s',"/s") € Mor(A#).
We show that (#/s,t/s')SP - (t'/s',t"/s7)SP = (t/s,t"/s)SP
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CCZSE t/s t’/s’ 74 e A#»O:
LetZ]aZGZWIth 1,p t/s ]p—t/s and lp_t”/s” Then

(tfs,[)SP - (1), V)Y SP = (1/s,0))S ( I v /,)~ [, s1) 59 - ( I v, )

= (fs,t))S - (s fsST T i || TT e

keli,j—1] kely,l—1]

(t/sv t///SII)Si ' H wt”/ ”

keli,l—1]

= (s ts7)S"

Case t/s ¢ AF° or /s & Al
We have (t/s,t'/s')SP - (t/s',t"/s")SP = 0 = (t/s,t"/s)SP
Case t/s,t" /s € AF° and V)¢ ¢ AF°:
Let 7,1 € Z with ip = t/s and lp =t"/s". We have
(s, #/)SP - (¢, /s1)SP =

and

(s, "/s)SP = (tfs,"/s)S" - [ =0

keli,l—1]

Ad (2):
We show that ¢ is a morphism of n-complexes. For this we need to show that

(ts, /)P o0 = 0y, (s, /) X
for every (¢/s,¢/s') € Mor(A¥).
Suppose given (/s,t/s) € Mor(A¥).
If t/s ¢ Af° or t'/s ¢ AZ°, then both sides are zero and we are done.
So suppose that t/s,t'/s' € Afe. Suppose given i, j € Z with t/s = ip and t'/s’ = jp. Then

(t/s t/S)S Pl = t/sat/s H wk/s Z//S/

keli,j—1]
= (15, 1)S" 6l
= @l (s, 1) X
= oy (s, ¢1)X
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Thus ¢ is a morphism of n-complexes.
Ad (3):
If ¢ is an isomorphism for every i € Z, then v/, is an isomorphism for every t/s € Afe.

For t/s € A#\A#’O, we have SE?S = 04 and X/, = 04. Thus ¢y, = 0is an isomorphism. [

Remark 187. Note that we do not have a canonical choice of morphisms S — SP for
i > 1.
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Zusammenfassung

Sei A eine abelsche Kategorie mit geniligend Injektiven. Sei n > 1.

Wir bilden das Poset A# . Zum Beispiel hat Af die Gestalt

0+1/0+1 s
A
3/3 0t!/3 11/3 >
2/2 3/ 0t/ 1t/ —— 27y

11 21 3 0T/ h

0/0 1/o 2/o 3/0 0+ /o
371/31 0/3-1 1/3-1 2/3-1 3/3-1

» 0/2-1 —— 1/o-1 — 2/p-1

A

> 1171

Fin n-Komplex ist ein Diagramm auf A¥ , welches an beiden Randern Nullobjekte aufweist.
Die Kategorie der n-Komplexe iber A wird als

() (A)

bezeichnet.
Sei nun n > 2.

Wir bilden die volle Teilkategorie C(™¢)(A) C C™(A) der n-Komplexe, die aus injektiven
Objekten bestehen, die unterhalb der Zeile 0 aus Nullobjekten bestehen und die oberhalb
der Zeile 0 eine Exaktheitsbedingung erfiillen.

Sei (An,l, A) die Kategorie der Diagramme der Form

al a2 An—2
A, Ay . A1
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Der Funktor

C(n,ires) (A) M (An—laA)

bilde wie folgt ab. Z.B. im Fall n = 3 bilden wir ausgehend von I € Ob(C(3™s)(A))
folgendes Diagramm

Il/1 — Ig/l > I3/1 Io+1/1 —_— I1+1/1
P+ T+ 1+ 1
IO/O > Il/o > IQ/O > _[3/0 IO+1/0
bl? 52/{ bs%\
L L
X 2 X, > 04

In diesem sind in der unteren Zeile Pullbacks eingefiigt worden. Wir setzen

IPb®) = (X7 5 Xo).

Analog fiir unser allgemeines n.
Sei _ _
K (ires) (A) = Cmires) (A)/ Ker(Pb(”)).

Wir bekommen eine induzierte Aquivalenz

ﬁ)(n) K(n,ires)(A) N (An—hA)-

Sei . _
IRes™ : (A, _1, A) — KMires)(4)

eine dazu bis auf [sotransformationen inverse Aquivalenz, genannt injektive Auflosungsdqui-
valenz.

Sei C™1(A) € C™(A) die volle Teilkategorie, die aus endlichen direkten Summen von
n-Komplexen besteht, die iiber kombinatorisch definierte Funktoren aus C(!) (A) stammen.

Wir haben |
Ker(Pb(n)) — C(n,l) (A) a C(n,lres) (.A)

Sei
K®/D(4) .= cW(A)/ctD Q).

Wir bekommen einen vollen, treuen und additiven Funktor
K(n,ires) (.A) i> K(n/l) (.A)
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Insgesamt haben wir
(Ap_, A) B guires) () L, gO/D(4)

erhalten.

Im Fall n = 2 spezialisiert dies zu in der klassischen homologischen Algebra bendtigten
Funktoren.
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Ich versichere hiermit, dass ich die Arbeit selbststdndig und nur mit den angegebenen
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gemacht worden sind. Die eingereichte Arbeit ist weder vollstéandig noch in wesentlichen
Teilen Gegenstand eines anderen Priifungsverfahrens gewesen. Das elektronische Exem-
plar stimmt mit den anderen Exemplaren tiberein.
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