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1 Introduction

“Optimization is an innate human behavior“ is how Roman Garnett began his book [1] on
the topic of Bayesian Optimization (BO). It is true that optimization is a central human
activity. We strive to distribute limited resources on an individual and on a collective
level in such a way that we can facilitate the best possible progress. Optimization makes
a fundamental contribution to social and economic progress by accomplishing this task.

At an abstract level, optimization can be defined as a decision-making process that chooses
the best option from a range of options, taking a certain objective into account. And
certainly many such objectives can be formulated, which can be met with very advanced
optimization techniques: Researchers from Google Brain applied BO for perfecting a
chocolate chip cookies recipe [2], while scientists at Meta applied multi-task BO to
improve the recommender system of their social network [3].

Many other optimization problems emerge in disciplines such as natural sciences, engi-
neering, or economics. Consequently, there is an enormous interest in providing better
solutions to these problems and improving the underlying methods and algorithms. This
research work deals with the development and application of a multi-fidelity artificial
intelligence approach to optimize materials design and to accelerate the discovery of new
structures in a quicker and more cost-efficient way.

1.1 Global optimization structure search

This work addresses the usage of Multi-fidelity Bayesian Optimization (MFBO) to
accelerate the study of materials structures. Materials science deals with the study
of discovering and designing new materials. One important component of this field
is the study of arrangements of atoms that a material consists of. The atomic and
electronic structure is determining many characteristic functional properties, and to
discover and understand the structure, there are many experimental methods such as
spectroscopy, diffraction with X-ray, electrons or neutrons or chemical analysis. What all
these laboratory methods have in common is that they take a lot of time and can be
very expensive to conduct. As there is an enormous amount of possible patterns that
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1 Introduction

can appear in a molecule, pure laboratory research for the discovery of new materials
becomes rather unfeasible.

Alternatively, we can complement laboratory experiments by simulating materials. Quan-
tum mechanics theory enables us to simulate atomistic configurations to determine
accurate internal energies and properties at the microscopic and macroscopic level. The
state of a materials’ system is described using a set of atomic coordinates. The number of
states grows vast with the number of degrees of freedom, spanning the configuration space
of a system. By taking all the possible configurations for an atomistic system into account
and mapping them to their energy, we obtain the so-called Potential Energy Surface
(PES). The atomic structures of our interest need to be stable, and these structures
reside in low-energy regions on the PES. Thus, structure search is about identifying low
energy regions on the PES.

Energy calculations at the quantum mechanical level can be very time-consuming. In
many cases, we are not interested in knowing the complete PES, but rather in finding
and studying the stable structures that correspond to low-energy states on the PES.
BO is an established probabilistic machine learning technique that is suitable for the
task of finding the global minimum of a black-box function in a sample-efficient way.
The phrase black-box function indicates a function that is unknown, in our case this
corresponds to the ‘true‘ PES. By the way it is constructed, the BO algorithm finds
and learns low-energy regions with the objective of inferring the global minimum and is
therefore well suited for the task of finding stable structures.

One essential part of BO is the construction of a regression model, often by using a
distance-based measure. In systems with many degrees of freedom, it can be challenging
to apply BO successfully, as there would be many samples required for a reasonable
model fit. This is often not possible due to restrictions in the computational budget
for the optimization. A similar problem is when the black-box function itself is very
expensive to evaluate, e.g. for larger molecules. This leads to a limited number of
samples being available within a given computational budget, which can complicate the
successful application of BO. In order to deal with such problems, there are different
optimization approaches, but defining a general-purpose universal optimization strategy
is impossible [4].

This research work approaches the problem of a very expensive black-box function within
BO by using a multi-fidelity optimization strategy. Multi-fidelity strategies make use of
data from simulators with different accuracy levels and different evaluation costs. This
allows the incorporation of information from less expensive and less accurate calculations
to obtain accurate results with fewer more expensive data points. Before I introduce this
topic in detail (Chapter 2), I will briefly discuss the importance that machine learning
techniques have gained in materials science today.
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1.2 Multi-fidelity machine learning

1.2 Multi-fidelity machine learning

Machine learning is a field of computer science that uses data and algorithms to solve a
predefined task. The methods developed in this field are typically used to solve prediction
and decision-making tasks without having to explicitly program the underlying decision
mechanisms. Instead, the mechanisms are learned by using a training algorithm, which
has established machine learning as a very useful technique for the construction of models
for large amounts of data.

When applied in materials science, machine learning can accelerate the discovery and
design of new materials by using large available datasets, or alternatively, by guiding
a growing data collection in an active learning manner [5, 6]. Active learning plays
an essential role in computational materials research, as it provides a strategy for the
construction of compact datasets. Direct applications of such active learning strategies
inform of BO have shown to be an effective solution for tasks in materials science such
as the efficient scanning of surface adsorbates [7, 8], the inference of atomistic structures
in functional materials [9], the discovery of materials with multiple optimal properties
by determining points on a Pareto front [10], the detection of low-energy molecular
conformers of molecules [11], or for the accurate prediction of band gaps [12], to name a
few.

Multi-task learning deals with the problem of predicting different tasks simultaneously,
where it is assumed that the tasks are somehow related. Multi-fidelity learning is a variant
of multi-task learning where the tasks describe the same property but with different
levels of theory (chemical accuracy) and evaluation costs. The objective is to predict a
property at the highest fidelity level available, while incorporating data of lower fidelity.
Material models in computational material science are often high-dimensional, which can
result in very expensive or even unfeasible calculations for larger systems, if properties
such as the energies are to be determined with high accuracy. Multi-fidelity learning has
shown to that by incorporating information from low accuracy data, the calculations can
be significantly accelerated and thus more computationally intensive problems can be
solved [10, 12–23].

Setting up such a multi-fidelity system provides us a new challenge, as there are several
ways to incorporate multiple fidelities in BO [24]. In this work, I have researched a transfer
learning and a multi-task learning approach and compared them against single-fidelity
BO when applied on an alanine conformer search task. Conformers are molecules that
consist of the same types of atoms but have different arrangements and consequently
a different chemical structure. Understanding the conformation of small molecules is
a problem studied in cheminformatics and computational drug discovery. There exist
many methods to sample the low energy conformational space [11, 25], which aim to
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find the several stable conformer structures that are associated with different electrical
and chemical properties. Taking all types of degrees of freedom - bond lengths, angles
and torsion - into account, would make the configuration space of conformers infeasible.
As bond lengths and angles within molecules are very rigid, and can therefore can be
seen as fixed, most search methods rely on finding conformers by sampling configurations
with different torsion angles, so-called dihedrals [25].

The alanine system is simulated with different atomistic simulators, corresponding to
different level of accuracies. This allows not only to compare the different multi-fidelity
approaches, but also to test how many savings the approaches allow in solving a realistic
computational materials’ science problem.

1.3 Structure of this thesis

In chapter 2 I explain the mathematics behind BO, where I briefly introduce the regression
model and acquisition rules that I used for the sampling strategy. I then extend the BO
framework in section 2.2 to MFBO, where I explain the multi-fidelity model as well as
multi-fidelity acquisition rules. This leads us to the concepts of transfer and multi-task
learning in section 2.2.2 and section 2.2.3. After presenting the simulators used in this
thesis in section 2.3, I introduce the Bayesian Optimization Structure Search (BOSS)
library in section 2.4, which I used to implement and test my approaches.

Section 3.1 presents the overall architecture of BOSS, section 3.2 and section 3.3 highlight
the for the thesis relevant and added parts of the code library, which is complemented by
an explanation on how the implemented code is validated in section 3.4. The experimental
design of the alanine system and an explanation of how I measured the computational
savings for my calculations are found in section 3.5 and section 3.6.

The fidelity levels are compared in section 4.1. Results for single-fidelity BO baseline
experiments for all three investigated levels are listed in section 4.2. These results are used
to benchmark the transfer learning experiments in section 4.3 and the multi-task learning
experiments in section 4.4. The approaches are discussed and compared in section 4.5.
Chapter 5 rounds up this thesis by summarizing the results, a recommendation for the
use of multi-fidelity approaches, and an outlook for possible further work.
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2 Theory

In the previous chapter, I motivated the multi-fidelity optimization framework and its
use-case for global structure search. This chapter is going to explain the theory and
the relevant mathematics behind this approach, and is therefore crucial to understand
the results of this thesis. In the beginning, I am going to describe the basics of BO [1].
The BO algorithm uses Gaussian Process Regression (GPR) and Acquisition Functions
(AF), both will be briefly illustrated and discussed. The concepts are then extended to
MFBO. In the multi-fidelity approach, several strategies to combine fidelities exist, and
I will consider the ones that are implemented and tested in this thesis. To understand
the computational implementation work in the following chapter, I am also going to
introduce BOSS [9], a general-purpose Python package for BO, in which I implemented
the multi-fidelity framework.

2.1 Bayesian optimization

Optimization tasks are formulated by using three key ingredients: an objective function,
a set of variables to optimize for, and given constraints. In practice, it might not be
possible to formulate the objective function with a mathematical expression, we call such
optimization targets black-box functions. Such functions typically describe systems where
we lack knowledge of underlying mechanisms or where the internal structure does not
need to be considered for a specific purpose.

Black-box functions arise for instance in the design of aerospace systems [23]. Different
phases in the engineering process are characterized by different levels of analysis. In the
designing process, an engineer typically has to simulate or measure physical phenomena,
in aerospace engineering for example related to aero- or thermodynamics. Each simulation
or measurement can be done for a given design structure, where the goal is to choose
a design that optimizes some objective. This objective could be related for example
to the minimization of friction, resistance or the maximization of the durability of a
structural element. Each experiment for a given design could potentially lead to a long
measurement procedure.
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2 Theory

In some optimization tasks, setting up and measuring the outcome of an experiment
could take several days. Consequently, we desire to perform as few experiments as
possible to find the optimum. Often the measurements can only be evaluated up to a
(possibly unknown) level of noise, and in experimental data, we often do not have access
to gradient information, preventing us from using efficient gradient-based optimizers.
What simplifies many optimization procedures considerably is when the function to be
optimized is convex. For a convex function, a local minimum is automatically also a
global minimum. Nevertheless, no convexity property can be assumed for any black-box
function. Without the condition of convexity, we have a global optimization procedure
instead of a local one, for which efficient optimization routines would exist.

To overcome the many challenges associated with black-box optimization, the BO was
developed. To understand the meaning of the keyword “Bayesian“ in BO, I introduce
the Bayesian theorem [26], which is formulated for two random variables A and B as

p(A|B) = p(B|A)p(A)
p(B) . (2.1)

Here, p(A) is the probability distribution of a random event A happening and p(A|B) is
the conditional probability distribution of the event A happening, given that event B

has occurred. p(A) is the so-called prior distribution, the original belief that an event A

occurs and p(A|B) is called posterior distribution, the (updated) belief that A occurs
after incorporating information that B has been observed. For a fixed B and a variable
A, the term p(B|A) is called likelihood. This is a function that is often used to estimate
unknown parameters of a probability distribution.

In the context of machine learning, the theorem can be used to update a regression model
in the evidence of new samples. Machine learning is defined as the use of data to train
algorithms to make classifications or predictions. In supervised machine learning, labelled
samples are used to train a regression model, which is supposed to make predictions
about the labels of unseen data points. Probabilistic machine learning methods are based
on constructing a probabilistic regression model (Figure 2.1). Such a model corresponds
to probability distributions trained on samples which, in addition to a prediction function
(mean function µ(x)), also learns an uncertainty function (variance function σ(x)) that
describes the confidence of a prediction. This can be crucial in tasks like medical treatment
or autonomous driving, where the information about the correctness of a prediction is as
interesting as the prediction itself. Because probabilistic machine learning introduces
probability distributions for modelling, the Bayesian theorem can be applied. This is
what BO is based on, which is a sample-efficient strategy to optimize black-box functions
and nowadays, a well established branch of probabilistic machine learning. In BO, given
samples are used to construct a probabilistic model with the aim of finding the global
minimum of the black-box function from which the samples were obtained.
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f
(x

)

Predicted minimum

Black-box function

Samples {(xi, yi)}

Mean µ(x)
x

Variance σ(x)

Figure 2.1: Sketch of a one dimensional probabilistic machine learning model. The
variance, shown as a gray shaded area, tells us about regions in the search space where
the model has a low confidence in its predictions. The mean, corresponding to the blue
curve, can be used for predictions and for the inference of the minimum.

BO manifests the philosophy behind the Bayesian theorem, as the probabilistic model is
updated under the observation of new samples. In its application, we start with a prior
belief or distribution for the parameters of our regression model. This prior expresses
our beliefs about the black-box function, before we take any samples from the function
into account. The prior belief is improved using the Bayesian theorem after samples of
the black-box function are observed, resulting in the posterior model. This encompasses
the Bayesian approach of updating a hypothesis based on new evidence.

In the BO algorithm, new samples from the black-box function are evaluated sequentially.
The policy (rule) for sampling the configuration or search space, the space spanned
by the input variables of the objective function over which we want to optimize the
black-box function, is encoded in the so-called AF. Minimizing the AF provides us the
next sample location. The AF makes this decision based on the current state of the
probabilistic model, which also takes the uncertainty into account. This is supposed to
direct the search also in unknown search space regions, to make informative decisions and
achieve sample efficiency. Both, the probabilistic model and the AF, will be discussed in
section 2.1.1 and section 2.1.2. The typical workflow of BO is described in figure 2.2. BO
starts with some initial dataset, often picked randomly or according to another sampling
strategy. This data set is used to construct a regression model, which is used by the AF.
Minimizing the AF determines our next sample candidate x. We evaluate the black-box
function at that location and update our initial dataset with the new sample. This is
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2 Theory

Evaluate
acq. rule

Sample from
data source

Build GPR
model

Data

Update data

Model refinementEnergy landscapes

Figure 2.2: Bayesian optimization workflow. For given data, a surrogate model is fitted.
The acquisition function then uses this model to predict the next sampling location. The
black-box function is evaluated at this location, the data set is then updated with the
new obtained sample.

repeated for a fixed sequence length, or until our computational budget is exhausted.
The resulting model can then be used to make a prediction on the optimum location and
value.

2.1.1 Probabilistic modelling with Gaussian Process Regression

Before introducing GPR, I define stochastic processes [27], to which Gaussian Processes
(GP) belong. Let T be a subset of [0,∞). A set of random variables {Yt}t∈T , indexed
by t ∈ T , is called a stochastic process. If, e.g. T = 1, meaning the index set contains
only a single element, the process would correspond to a single random variable. For a
finite number of elements T = {t1, . . . , tn}, the stochastic process would be a random
vector. Stochastic processes are generalizations of random vectors which are often used to
model systems with random behavior. Without going further into mathematical details,
it is important to mention that in practical applications like in natural sciences, signal
processing, computer science or economics, stochastic processes usually correspond to
finite dimensional joint distributions of random vectors.

One stochastic process that most physicists are familiar with is the process that models
Brownian motion. This model describes the dynamics of a particle in a fluid, where it
collides randomly with other particles. Each time, where we would measure the dynamics
of a single colloidal particle over time, we would get a different trajectory. The statistics
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2.1 Bayesian optimization

of these different paths can be described as sampled functions from the so-called Wiener
process [27]. Mathematically, the Wiener process Wt is characterized by

1. Wt=0 = 0

2. Wt is continuous

3. Wt has independent increments

4. Wtn −Wtm ∼ N (0, n−m) for 0 ≤ m ≤ n ,

where N (µ, σ2) is the normal distribution around mean µ with width σ.

Stochastic processes, where the random variables follow a joint Gaussian distribution, are
the so-called GPs. Applied to statistical learning, where GPs are used to model functions,
we obtain so-called GPR models. These models are the most common choice in BO to fit
a surrogate model (the posterior distribution), that reflects properties of the black-box
function. Mathematically speaking, GPs are distributions over functions f(·) that are
defined by a mean µ(·) and a positive definite covariance function k(·, ·). When using
GPR in BO, the input domain X from which the x are selected, corresponds to the input
space of the black-box function, which is often spanned over space or time coordinates.
The mean function µ(x) describes the expectation value of the sampled functions f(x),
that is, the value we would obtain if we were to calculate the average of several samples
of the GP. In practice, the mean is often set to the average of the observed function
values, which will be 0 after the data is normalized. The covariance function k(x, x′)
describes properties related to the input space, such as the level of smoothness of our
black-box function, or a periodicity. A common choice for the kernel is the radial basis
function (RBF) kernel

kRBF(x1, x2) = exp
(
−1

2(x1 − x2)⊤Θ−2(x1 − x2)
)

,

where Θ is a vector containing length scales θd for each dimension d = 1, . . . , D. The
standard periodic (STDP) kernel function is defined as

kSTDP(x1, x2) = exp

−1
2

D∑
d=1

sin
(

π
Td

(x1,d − x2,d)
)

θd

2
where Td is the period of dimension d. This kernel can be used when the black-box
function is known to be periodic in the input domain.

In GPR, it is assumed that the function values are drawn from a multivariate Gaussian
distribution. The multivariate Gaussian distribution is a generalization of the one
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2 Theory

dimensional normal distribution to higher dimensions. For k dimensions, the distribution
is defined as

x ∼ N (µ,Σ) ,

for a k dimensional random vector x with the k-dimensional mean µ = (E[x1, . . . , xk])T

and the positive semi-definite k × k covariance matrix Σi,j = E[(xi − µi)(xj − µj)]. The
mean describes the location of the multivariate normal distribution. The elements of
the symmetric covariance matrix describe variances of the individual dimensions (main
diagonal) as well as covariances between the dimensions. The covariance [28] is a measure
of the joint variability of two random variables xi and xj. Normalizing the covariance
gives the linear correlation coefficient between two dimensions.

Consider a given data set with n samples {X, y}, where X = (x1, ..., xn) are the points
in the input domain X (often X = RD, with D the input dimension) and y as the
corresponding, possibly noisy, observed function values y = f(X) + ε, where the noise is
modelled as ε ∼ N (0, σ2

ε). The joint multivariate distribution over the observed values y
and a predicted value y at x ∈ X is[

y
y

]
∼ N

(
0,

(
K(X, X) K(X, x)
K(x, X) k(x, x)

))
. (2.2)

Here, K(X, X) is the kernel matrix, containing covariances between the samples X

K(X, X) =


k(x1, x1) . . . k(x1, xn)

... . . . ...
k(xn, x1) . . . k(xn, xn)

 ,

where K(X, x) contains the covariances between the samples X and the prediction
location x. We can now formulate the conditional distribution

p(y|x, {X, y}) ∼ N (µ(x|{X, y}), σ2(x|{X, y})

by conditioning the joint distribution equation (2.2) on the observed data set {X, y}.
With that, the results for the posterior mean and posterior variance become [29]

µ(x|{X, y}) = K(x, X)[K(X, X) + diag(σ2
ε )]−1y (2.3)

σ2(x|X) = k(x, x)−K(x, X)[K(X, X) + diag(σ2
ε)]−1K(X, x) (2.4)

(2.5)

Note that the posterior variance function does not depend on the function values y. The
hyperparameters Θ of the kernel function k(x, x′) are often inferred by maximizing the
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2.1 Bayesian optimization

log marginal likelihood log p(y|X), defined as

log p(y|X) = −1
2yT [K(X, X) + diag(σ2

ε )]−1y

− 1
2 log |K(X, X) + diag(σ2

ε )| −
n

2 log 2π .

For each Θ, a set of hyperparameters of the regression model, the likelihood p(X|θ) assigns
a probability to observe data X with a by Θ parameterized given model. Maximizing
the marginal likelihood term provides the hyperparameters that are most likely to have
generated the observed data, this is the so-called maximum likelihood estimation, a
common technique of choosing the kernel hyperparameters.

a) b)
Variance

Samples

ou
tp

ut
f

(x
)

ou
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ut
f

(x
)

1

-1

0

0 0.5 10 0.5 1

1

-1

0 Mean

x x

Figure 2.3: GP before and after conditioning on samples. a) Sampled functions from
the GP with constant variance (blue shaded area) and constant mean (set to zero, not
plotted here). This is called the prior distribution. b) Conditioning the GP on two
samples changes the mean function (here the blue solid line). The variance at the sample
location vanishes and gets largest in region where no samples are. This is called the
posterior distribution. Parts of the figure adapted from [29].

2.1.2 Acquisition strategies

The second ingredient in the BO algorithm, besides the probabilistic model, is the use of
a goal-directed sampling strategy, where the goal is to find the global minimum. This
strategy is determined by the so-called AF. The AF is a function that is often chosen
heuristically with little effort, i.e. a function that does not provide an optimal, but often
a useful solution to the underlying problem. By design, the AF should fulfill several
tasks:

15



2 Theory

• The function should be sample-efficient. This means that the BO algorithm should
need as few samples of the black-box function as possible to find the global minimum.

• The sampling strategy in search space, the space over which the black-box function
is minimized, should balance between exploration and exploitation. Exploration
refers to the sampling of environments in search space where the variance function
takes on large values, these are environments in which there are still few samples.
Exploitation refers to the sampling of regions in which the posterior mean approaches
low values. It is expected that the global minimum is located in these regions.

Apart from that, we would like to be able to have an AF that can be interpreted. The
AF is mathematically constructed in such a way that for a given GPR model, we obtain
our next sample candidate x by finding the global minimum of the acquisition function.
Therefore, our AF should be quick to evaluate and ideally also have a gradient available,
as this allows gradient-based methods to be used for efficient minimization (efficient
with respect to CPU time). The following chapters provide a small set of the in the BO
community established AFs, [24, 30] provide good summaries on this topic.

Exploration and Exploitation

Pure exploration (or respectively exploitation) sampling strategies can be achieved with
αexploration = µ(x) (2.6)
αexploitation = −σ(x) . (2.7)

(2.8)
Those functions are usually not considered for the standard BO algorithm. The pure
exploration AF would only sample regions in the search space that have a high variance.
This misses the actual goal of BO: the sample-efficient determination of the global
minimum. The exploitation function would sample regions where the mean function
of the GPR model has low values. This strategy would, as soon as a minimum region
was found, only “exploit“ this minimum. The problem here is that the BO algorithm
would get stuck in the first found minimum. We would then often have found only a
local minimum, but we would have missed our actual goal of finding the global minimum.
Ideally we would like to use a function that takes both, exploration and exploitation
phases, into account.

Exploratory lower confidence bound

The Lower Confidence Bound [31] (LCB) is a popular choice for the acquisition func-
tion. Empirical tests have shown that this heuristic provides a sample efficient search
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2.1 Bayesian optimization

strategy [32], while also being cheap to evaluate and easy to interpret. It is defined as
αLCB(x) = µ(x)− κσ(x) (2.9)

where κ is the so-called exploration weight. In LCB, the first term µ exploits regions with
low function values. The second term σ explores unknown regions in the search space.
The weight κ can be set to favor either exploitation or exploration. It can sometimes be
difficult to determine a good value for κ. Therefore, as an alternative, the weight can be
determined automatically. In previous work [33], κ was determined via

κ =
√

2 log10(n(D/2)+2 · π2/0.3) ,
depending on the number of samples n and the search space dimension d. This is a good
choice for the following reason: as the function is learned more and more precisely, the
variance vanishes and the exploration is neglected. As a result, the BO algorithm might
get stuck in a local minimum. With this choice of κ, exploration gets more favored at
later BO steps, this is the so-called Exploratoy Lower Confidence Bound (ELCB) AF.
ELCB is often easier to minimize than other acquisition functions, as it does not suffer
from having large flat surfaces like other acquisition functions often do, which can be
particularly challenging to minimize in high-dimensional search spaces.

Expected Improvement

The Expected Improvement (EI) function is another commonly used AF. As the name
suggests, the idea is to formulate an expected improvement mathematically: Suppose we
are able to draw one more sample from our black-box function. After evaluating this
sample, we need to provide a solution that corresponds to the sample with the smallest
observed function value from our data set. If y∗ denotes the current lowest observed
function value for a set of samples, EI describes, how much improvement we would expect
for y∗ (where improvement means a lower y value) if we would be able to include another
yet unknown sample at x. This unknown sample can be estimated using the posterior
model. We can formulate improvement as

I(x) = max(y∗ − Y, 0) (2.10)
where Y is a random variable with y(x) ∼ N (µ(x), σ(x)). We can calculate the expecta-
tion for the improvement by using the posterior statistics as

αEI(x) = Ey∼N (µ,σ) [I(x)] (2.11)
= ... (2.12)

αEI(x) = (y∗ − µ(x))Φ (γ∗(x)) + σ(x)ϕ (γ∗(x)) (2.13)

with γ∗(x) = y∗ − µ(x)
σ(x) (2.14)
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where ϕ is the probability density function (PDF) and Φ is the cumulative density function
(CDF) of the standard normal distribution. The EI is computationally inexpensive to
evaluate, however, it suffers from having large flat areas at later BO iteration steps [24],
making it difficult to minimize.

Entropy search based functions

The heuristic AFs presented so far have shown [24, 30] to provide sample-efficient
solutions for the inference of the global minimum. So-called entropy-based acquisition
functions [34–36], which originate from the field of information theory, are alternative
approaches that have also proven to be sample-efficient. In contrast to the AFs from the
previous chapters, entropy-based AFs are theoretically derived. The original version of the
AF, so-called Entropy Search (ES) was formulated in reference [34]. In ES, the approach
is to maximize the information gain about the global optimum location x∗. Maximizing
information in this context means to minimize uncertainty. The Entropy Search (ES) AF
is constructed using the mutual information I between the global optimum location x∗
and the next sample {x, y}. Mutual information between two random variables quantifies
how much information one would get about a random variable if the second variable
had been observed. Treating our global optimum location as a random variable with
an assumed distribution p(x∗|D) for it, the AF can be written as mutual information
between the next sample {x, y} and x∗:

αES(x) = I({x, y}; x∗|D) (2.15)
= H(p(x∗|D))− E[H(p(x∗|{x, y} ∪ D))] (2.16)

(2.17)

Here, the expectation is calculated with respect to p(y|x,D), where D is the current
observed data that builds our surrogate model. Note that p(x∗|D) is a D dimensional
distribution, where D is the search space dimension. Consequently, the calculation of the
entropy terms in equation (2.17), in which integrations must be performed, can become
intractable in high dimensional search spaces.

Since the mutual information is symmetric in the input variables, the random variables
can be swapped, which leads to the so-called Predictive Entropy Search (PES) [35] AF

αPES(x) = H(p(y|D, x))− E[H(p(y|D, x, x∗))] (2.18)

where the expectation is calculated with respect to p(x∗|D). The advantage of PES
over ES is that the left entropy term is now formulated with respect to the posterior
predictive distribution p(y|D, x). Since the posterior distribution is constructed using
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a GP, this entropy term can be solved in closed form, meaning that there is an exact
mathematical solution for the integration. The right term must still be approximated,
since p(x∗|D) occurs there again, making the acquisition function intractable for high
dimensional search spaces. Nevertheless, with the PES AF, we only have to approximate
one instead of two integrals, as it was the case with ES.

Empirical tests [36] have shown that using the function value y∗ at the optimum instead
of the location x∗ is as good as the ES or PES AF. With this knowledge, a trick can be
used to avoid the previously mentioned expensive integration. The integration still has to
be calculated, but is carried out with respect to a one-dimensional probability distribution
p(y∗|D). This is the so-called Max-value Entropy Search (MES) [36] acquisition function
(as it was originally formulated for a maximization problem), defined as

αMES(x) = H(p(y|D, x))− E[H(p(y|D, x, y∗))] (2.19)

≈ 1
N

∑
y∗∈Y ∗

[
γy∗(x)ϕ(γy∗(x))

2Φ(γy∗(x)) − log(Φ(γy∗(x)))
]

(2.20)

where the expectation is calculated with respect to the probability distribution of the
function value p(y∗|D). The probability in the first term in equation (2.19) is a Gaussian
distribution, so the entropy H[p(x)] =

∫
p(x) log p(x)dx can be once again calculated and

solved in a closed form. The probability in the second term is a truncated Gaussian
distribution. Truncated means that, given a y∗ as our lowest sample value, y needs
to satisfy y > y∗. In practice, p(y∗|D) is approximated using the posterior model or
a Gumbel distribution. Since this is a one dimensional distribution, the integral in
equation (2.19) can be approximated with a sum, using only a few samples.

2.2 Extension to multi-fidelity Bayesian optimization

In this section, I will formalize the concept of MFBO, which has already been motivated
in section 1.2. In MFBO [24], a Multi-task Gaussian Process Regression (MTGPR)
model is used to model multiple tasks simultaneously. It is assumed that the different
tasks are correlated, so the MTGPR model should be constructed in such a way to take
advantage of this correlation in the predictions. In our application, we want to simulate
a system using different levels of theory. This can be translated into a set of functions
that describe the same target or property, but have different fidelities. The different
tasks correspond to functions that describe the same objective, but have different levels
of accuracy and also different evaluation costs. Our aim is to optimize the task with the
highest fidelity, while using samples from lower fidelities which are less accurate, but can
be much cheaper to sample. This requires the construction of a multi-task model, that
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enables an information exchange between the fidelities, as well as an AF that takes also
the correlation between different fidelities into account.

The original BO workflow (Figure 2.2) is therefore extended to a MFBO workflow
(Figure 2.4): Now we have multiple data sources corresponding to simulators with
different fidelity levels, to which we fit a multi-fidelity GPR model, while a multi-fidelity
AF determines our sampling strategy.

Evaluate multi-
fid. acq. rule

Sample from
data source t

Data (from T

simulators)

Update data

KICM = B⊗KI

...

Build model 1

Build model T

1...T

Figure 2.4: Workflow of multi-fidelity BO. The multiple data sources get modelled with
a MTGPR model, introduced in section 2.2.1. In addition, a multi-fidelity acquisition
rule gets introduced to sample from multiple data sources.

2.2.1 Intrinsic Model of Coregionalization

A common approach to multi-fidelity modeling is the Linear Model of Coregionalization
(LMC) [3, 37]. The idea of LMC is to represent the fidelities as linear combinations of
independent latent functions uq

j(x), with q = 1, ..., Rq and j = 1, ..., RJ . These functions
uq

j are independent samples from a GP, and each index q corresponds to a different
spatial kernel kq

I(x, x′). The coefficients of this linear combination are related to the
covariance between the fidelities, as we shall soon see.

We are going to make two assumptions that give rise to a simplified LMC model for the
construction of our multi-fidelity approach. The first assumption is that our different
fidelities share the same search space. This is reasonable and also useful, as it allows
us to learn the spatial kernel hyperparameters using only samples from cheaper, lower
fidelity sources. This also means, that we are restricting the number of spatial kernels to
Rq = 1. With that, all fidelities use the same spatial kernel for the input space kI(x, x′).
Secondly, we assume that our MFBO kernel can be separated into a kernel that describes
properties of the input space (spatial kernel K) and a kernel that describes correlations
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and variances between the fidelities (task kernel B). With those assumptions, we can
write our multi-fidelity model kernel as

kICM((x, t), (x′, t′)) = Bt,t′kI(x, x′) . (2.21)

This kernel can be substituted with the kernel in equation (2.5) to extend GPR to
MTGPR and obtain the so-called Intrinsic Model of Coregionalization (ICM). The ICM
model can be interpreted in the following way [3, 37]: As with LMC, each fidelity is
implicitly modelled as a linear combination of independent latent functions, e.g. for two
fidelities (HF as high and LF as low fidelity)

fHF(x) = f1(x) = b11u1(x) + b12u2(x) (2.22)
fLF(x) = f2(x) = b21u1(x) + b22u2(x) (2.23)

where u1(x) and u2(x) are independent latent functions sampled from a GP that share
the same spatial covariance function kI(x, x′). Here, we can drop the superscript index
for the latent functions, as we restricted the number of spatial kernels to Rq = 1. The
weights are related to the cross-covariance between the fidelities via B12 = b11b21 + b12b22.
If there is a strong correlation between the fidelities, the cross-covariance B12 would also
be large. Therefore, the models would give a large weight to the same latent function ui.
Likewise, the case of no correlation between the models would correspond to b12 = b21 = 0.
This would be the same as modelling the fidelities independently with the same spatial
kernel. Since equation (2.22) and 2.23 form a system of linear equations, we can rewrite

fHF(x) = fLF(x) + u′(x) , with
u′(x) = (b21 − b11)u1(x) + (b22 − b12)u2(x) .

Consequently, we see that the ICM is able to capture any relationship u′(x) between
the fidelities with the same smoothness as that of the input space. The parameter of
the kernel matrix B can be treated like other hyperparameters, and is therefore also
inferred by maximizing the log marginal likelihood function. We can establish positive
semi-definiteness for B by using the Cholesky decomposition B = LLT . The rank of B
corresponds to the number of latent functions that are used to model the fidelities, in
our example rank(B) = 2. For rank(B) = 1, the higher fidelity model would be only a
rescaled version of the lower fidelity model.

2.2.2 Transfer learning strategy

Transfer learning [38] refers to the field of research in machine learning in which informa-
tion from an already solved problem is applied to a new problem. This technique is often
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used in deep learning. Deep learning is based on building parameterized models that
are optimized during training with labelled data to solve a regression or classification
problem. Without going into further detail, the use of transfer learning there can be
described as follows: An already trained model is trained on a new data set, with most of
the parameters remaining fixed in the model. In this way, the model is adapted to the new
related prediction task without having to train the model from scratch. If the datasets
from the original training and from the new prediction task are highly correlated, this
approach can reduce the training time by a very large duration. Despite the reduction in
training time, very good accuracies can still be achieved, even for small datasets.

GPs are parameter-free regression models since there are no weights to be learned,
contrary to, e.g., the models in deep learning. Nevertheless, we can make use of the idea
of transfer learning to accelerate the optimization and reach the same global minimum
prediction accuracy with less computational cost. Given a higher (target) and a lower
(support) fidelity source that are linearly correlated, we can start by performing single-
fidelity BO on the support fidelity. The samples resulting from the single-fidelity BO can
then be used to initialize the ICM model. This is the idea from transfer learning, the
reuse of a previously trained model, or, as in this case, a dataset obtained by applying
BO. Since our model is not parameterized, we use the ICM model to reuse previous
information by incorporating support fidelity samples in the model, obtained from the
previous task. This gives us useful information about the search space from the support
fidelity task before we even start BO on the target fidelity task. By continuing the
BO, but only sampling the target fidelity task, it is possible to maintain the target
fidelity accuracy for the global minimum inference, while requiring fewer target fidelity
samples.

Before transfer learning can be applied, however, there are several issues that must
be considered. Since the ICM kernel captures covariances in the input and output
spaces, it has a higher computational complexity than the single-fidelity kernel. This
raises the question, for which kind of configurations, e.g. what kind of fidelity levels,
transfer learning is more efficient than single-fidelity BO. More expensive in this context
means that it would increase the time for the minimum inference. It is also not trivial
to understand, how many samples from the support fidelity task should be used for
the initialization of the ICM model, as well as if those samples should actually be
chosen according to a previous BO run. The number of support fidelity samples in the
initialization step of transfer learning can have a significant impact on computational
savings, as has been discussed in previous work [39]. Furthermore, the question can
be asked whether it would be more computationally efficient to choose the samples of
the support fidelity task randomly, instead of a preceding single-fidelity BO calculation.
These questions were also addressed in a previous study [39] and will be answered in
this research project. We can already anticipate that the most significant factors for
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High-Fi Model

Low-Fi ModelLow-Fi Data

High-Fi
Sample

Get nextsampling location

Optimization
loop

Initialization

Transfer learning

Figure 2.5: Transfer learning approach for MFBO. Support fidelity data, obtained from
a previous BO run or sampled randomly, is used to initialize the ICM model. We then
continue by only sampling the target fidelity source.

computational savings are the correlation and the simulator costs between the fidelity
levels (costs measured in CPU time, as well as the amount of support fidelity samples).
Using support fidelity samples enables us to incorporate more information about the
search space, and accelerate the exploration phases of BO (Figure 2.5).

2.2.3 Multi-task learning

In a second scenario, sketched in figure 2.6, we extend our model such that all available
fidelity levels are dynamically sampled throughout the BO. Even though we sample from
different simulators, we are still only interested in the global minimum inference of the
highest fidelity source. With the multi-fidelity learning strategy, the number of support
fidelity samples no longer has to be chosen during initialization, as was the case with
transfer learning. In this approach, what we refer to as multi-task learning, we let the
MFBO algorithm determine the amount of support fidelity samples and also, at which
iteration step which sources should be sampled.

A key challenge for MFBO is the design of acquisition rules. This heuristic rule should
take the correlation and simulator costs into account, while maintaining cost-efficiency for
the global minimum inference of the most accurate fidelity level. The multi-fidelity AF
should choose not only the next sample location x, but also the next fidelity t from which
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High-Fi Model

Low-Fi Model

Get next sampling
location and task

Optimization
loop

High-Fi
Sample

Multi-task learning

Low-FiSample

Figure 2.6: Multi-task learning approach for MFBO. We let the acquisition rule decide,
at each iteration, where in search space to sample and from which source to sample from.
Consequently, we can once again make use of support fidelity samples to incorporate
information about the search space and reduce the cost for global minimum inference of
the highest fidelity.

to calculate ft(x). As we have seen already in section 2.1.2, there are several ways to set
up an acquisition strategy, even when we only have one fidelity level available. Since the
acquisition rule is now supposed to determine both x and the task t, we can distinguish
between separable and inseparable approaches, explained in more detail below.

Before we introduce the approaches that have been implemented and tested in this work,
we are going to introduce a previously proposed acquisition rule based on information
gain per cost [15, 19] g(x, t, t′). The ICM model corresponds to a multivariate normal
distribution over the extended space of input variables with x ∈ X and fidelities with
t ∈ [1, 2, . . . , T ]. We can establish how informative the evaluation of a fidelity level at
a given location x∗ would be, by investigating the change in the posterior variance of
the target fidelity model, after conditioning on a new sample location and fidelity level
t. The normal distribution at x∗ for our target fidelity t′, after conditioning on (x∗, t),
has the posterior variance σ∗(t′, t′) − σ∗(t, t′)2/σ∗(t, t). The second term here reduces
the uncertainty of the target fidelity, given that we observed (x∗, t). In this context,
uncertainty reduction can be interpreted as information gain for the target fidelity. Of
course, we would get the most information about the target fidelity by always sampling
the target fidelity itself. However, sampling the highest fidelity, our actual target, would
also be more costly than sampling from lower fidelities. To take the trade-off between
cost and information gain into account, we divide the information gain by the simulator
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cost to obtain
g∗(t) = σ∗ (t, t′)2

σ∗(t, t)c(t) , (2.24)

where σ∗ is the variance at fixed location x∗, σ∗ (t, t′) is the covariance between fidelity
t and the target fidelity t′ and c(t) is the simulator cost for fidelity t. The cost can be
chosen, e.g. as the evaluation duration in CPU time. This heuristic is used to determine
which fidelity might be the most informative to sample next to learn about the highest
fidelity level, while also taking the cost into account.

2.2.4 Multi-fidelity acquisition strategies

Separable approaches

During this work, I developed, implemented and benchmarked the behavior of several
approaches. As the name suggests, separable acquisition rules make their choices for the
location and fidelity level in a sequential order in separate steps. Figure 2.7 provides
an overview of how these approaches are constructed and how they are different from
another.

Chose location x∗

(minimize αhf(x))

Separable

Chose task,
then location

Get local minima
of αhf(x)

Chose task by
maximizing g(xg)

Chose task t by
maximizing g(x∗)
Chose task t by
maximizing
(µhf

n (x)− E[µhf
n+1(x)])/c(t)

Chose task t by
maximizing g(x∗)
over all local minima
Chose location x by
minimizing α(x)
of task t
Chose location x by
minimizing αhf(x)

1

2

3

4

5

Chose location,
then task

Figure 2.7: Overview of the implemented and tested separable acquisition strategies.

A1: Location then task information gain: In this approach, the location gets chosen
by minimizing the acquisition function of the highest fidelity, which proposes a next
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sampling candidate x∗. For this x∗, we maximize the information gain per cost g∗(t)
with respect to t, providing us information about which fidelity can be expected to give
us the largest variance reduction per cost for the highest fidelity at the location x∗. This
approach has also been tested in ref. [19].

A2: Location then task posterior gain: Same as before, we receive the next sample
candidate x by minimizing the acquisition function of the highest fidelity. For the fidelity
choice, we introduce an approach based on the Knowledge Gradient (KG) [40] acquisition
rule. Knowledge gradient is related to the Expected Improvement acquisition function,
but it doesn’t depend on the best obtained sample. If µn(x) denotes the posterior mean
after n samples, µn+1(x) would correspond to the mean function after taking one more
sample into account. KG is then defined as

αKG(x) = En[max(µn+1)−max(µn)]

where the expectation is calculated using the posterior model after n samples. We
reformulate this approach and chose the fidelity t that maximizes the scaled gradient of
the target fidelity posterior mean

En[µhf
n+1(x)− µhf

n (x)]/c(t) ,

where c(t) corresponds to the cost of evaluating fidelity t. Adding a support fidelity
sample should not change the posterior mean of the target fidelity as much as adding
a target fidelity sample. Therefore, scaling by the cost takes into account a tradeoff
between information of a new sample and cost of evaluating that sample.

A3: Information gain at all local minima: This approach is very similar to approach
A1. Instead of only using the global minimum of the acquisition function, this approach
uses all found local minima {x1, ..., xK} of the acquisition function. For each of these K

sample candidates, we maximize the information gain per cost gk(t) with respect to t.
This gives us a proposal for the fidelity index t for each found local minimum xk. Out of
all these K candidate tuples (xk, tk), we return the one which has the largest information
gain per cost as our next sample candidate.

A4: Task then location: In this approach, we start by choosing the fidelity level and
then pick the next sample location x. For this, we make use of the posterior model of the
target fidelity. Minimizing that model gives us the currently predicted global minimum.
Once we have this prediction, we maximize the information gain per cost at this location
xg, which suggests us the next fidelity level t. To determine the next sample location, we
minimize the acquisition function αt of the fidelity t, which provides us the next sample
location x.

A5: Task then location using the highest fidelity: This approach starts by choosing
the fidelity level and then the sampling location. As in approach A4, we evaluate the
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information gain per cost at the current predicted global minimum. What distinguishes
this approach from the approach A4 is that, when choosing the location, we minimize
the acquisition function of the model of the highest fidelity αhf. In the previous approach
A4, instead, the acquisition function of the model of fidelity t was minimized. Therefore,
the step of choosing task and location are independent of each other: It does not matter
which task is selected in the first step, the acquisition function with the target fidelity is
always used for the determination of x. Consequently, this approach would be the same
as the approach A1, if we would maximize the information gain per cost there at the
predicted minimum location xg instead of the next sampling location x∗.

Inseparable approaches

Inseparable approaches decide the next sampling location and fidelity level by minimizing
over a joint acquisition rule. We introduce two approaches to optimize across all fidelity
levels simultaneously. The first approach makes use of single-fidelity acquisition functions
of all available fidelity levels t at the same time. In the second approach, we optimize
over the information gain per cost, but keep x as a free variable instead of fixing it as
we did in the separable approaches. The two inseparable approaches (Figure 2.8) are
discussed in detail below.

Inseparable

xn+1, tn+1 = arg minx,t α(x, t)

xn+1, tn+1 = arg maxx,t[g(x, t, t′)]

MUMBO

6

7

Figure 2.8: Overview of the implemented and tested inseparable acquisition strategies

A6: Inseparable For each available fidelity level t, the ICM model provides us a
posterior mean µt(x) and a posterior variance σt(x). We can use each of these posterior
statistics, and formulate separate acquisition functions αt(x) for all available fidelity
levels. After rescaling the means and variances functions with the corresponding sample
statistics, we can compare these acquisition functions αt(x) with each other. This is
important, as the units should be the same. For each fidelity level t, we can then optimize
the acquisition function αt, which provides us xt

∗. Our decision on which fidelity t to
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sample, will be made on
t = arg max αt(xt

∗) .

We compare the optimized values for each acquisition function t, and pick the fidelity
with the largest acquisition function value and the corresponding sampling location xt

∗
as our next candidate.

A7: Inseparable information gain: In the separable approaches, information gain
per cost g∗(t) has been conditioned on a fixed sample location x∗. Here, we keep the
sample location as a free variable to optimize over. It is important to note that using
only information gain per cost as an acquisition function is not recommended. The
reason is that information gain per cost, as introduced in equation (2.24), only uses
posterior variance functions. Therefore, this strategy would work very similarly to a pure
exploration strategy. To avoid pure exploration, we choose an idea as described in [16]:
If our maximal information gain per cost would return the task t with t being the target
fidelity, we also optimize over the target fidelity acquisition function, which provides us a
next sampling location x. By this construction, we favor exploration when we sample
support fidelities, while maintaining a balance between exploration and exploitation
when we sample the target fidelity.

MUlti-task Max-Value Bayesian Optimization (MUMBO): MUlti-task Max-
Value Bayesian Optimization (MUMBO) [17] extends the in section 2.1.2 introduced
Max-value entropy search rule for multi-output models. The multi-task acquisition rule
is defined as

αMUMBO(x, t) = H(p(y, t|D, x)− Eg∗ [H(p(y, t|g∗,D, x)] , (2.25)

which is an extension of the MES AF (equation (2.19)). In contrast to MES, MUMBO
calculates the entropies over the joint distribution p(y, t) for the sample value y and the
fidelity level t, instead of just the sample value p(y). The second term in equation (2.25)
is an expectation calculated over g∗, which is a random variable that corresponds to the
global minimum value of the target fidelity level. While the second term was analytically
tractable for MES, this term is intractable and gets approximated with Monte-Carlo
integration, described in detail in reference [17]. MUMBO takes the correlation between
the fidelities into account and is a computationally feasible multi-task AF, therefore well
suited for the task of multi-fidelity BO.

In addition, I tested hybrid acquisition function approaches: The BO algorithm can keep
track of the change of the global minimum prediction. If the prediction does not change
over a certain amount of iterations/time, the acquisition function is switched, e.g. from
ELCB to MES. Since these hybrid approaches did not turn out to be significantly better,
and would also increase the complexity of our already advanced approaches (making
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them more prone to errors) I decided to not continue to research these approaches any
further.

It is important to clarify that the acquisition strategies introduced were chosen heuristi-
cally. This means that some strategies can be very experimental, such as approach A2. It
is difficult or impossible to predict whether these approaches are useful as multi-fidelity
acquisition rules before we do actual MFBO experiments with these strategies. The
goal of this thesis work is to implement and test these approaches in the form of a
multi-fidelity framework. This should give us insight into which multi-fidelity approaches
can be more efficient than single-fidelity approaches, and how much more efficient the
approaches can be. We want to reduce the computation time as much as possible while
keeping the complexity of our approaches low to allow interpretability of the MFBO
sampling strategies.

2.3 Simulation of atomic structures and potential energy
surfaces

In this section, I introduce the three different fidelity levels used throughout the thesis.
Each of these fidelity levels can be used to construct potential energy surfaces for different
atomic configurations. The potential energy surface is the function that I previously
denoted as “black-box function“ in BO. I will start by explaining what I actually mean
by a fidelity level, which requires me to give a very brief introduction to the field of
modern simulation methods used in physics.

Force field (FF) [41, 42] simulations are based on classical physics and ignore quantum
mechanical phenomena for the calculation of energies and forces. In FF, molecules
are treated as spheres that are held together by springs. The potential energy can
then be parameterized as a field by writing the energy as a sum of the bonding energy
(stretching the springs), bending energy, dihedral energy and further non-bonding terms.
It is important to note that FFs are carefully parameterized against results from more
accurate quantum mechanical calculations, which I will introduce in the next paragraph.
This ensures that the results of the FF calculations are very accurate, providing good
approximations to the quantum mechanical calculations, while they can be calculated
very quickly. FFs often provide reasonable atomic configurations generated by relaxation,
where the atomic positions are optimized for minimum energy. This is also the idea
of transfer learning presented earlier: Incorporating samples from a fidelity with lower
accuracy, here force fields, for the initialization of a model to accelerate the finding of
the energy minimum at a higher fidelity. I will denote the force field based calculations
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used throughout this thesis as samples from a Low Fidelity (LF) simulator. For the
calculation of this fidelity, I used the AMBER18 [43] software package.

As my second level of fidelity, I use the density functional theory (DFT) [42] approach.
The DFT formalism is a well established approach for applications in materials science
and chemistry [44], providing an efficient way to study structures and reactions in atomic
systems. For many systems, some properties, such as the ground state (the stationary
state with the lowest energy of a quantum mechanical system) can be described using an
electron density distribution alone [45]. With this, we can avoid specifying the many-body
three dimensional wave function Ψ of the electron system. DFT calculations are built up
on the Hohenberg-Kohn theorems, stating that the ground-state properties of a molecule
are described by the electron density function and that a candidate density function
must be equal or greater than the ‘true energy‘. In the DFT approach, energies of a
system are formulated as an energy for a system with non-interacting electrons and a
deviation that is described by an exchange-correlation functional. This is the so-called
Kohn-Sham theorem [46]. The contribution of this functional can not be calculated
exactly, approximating this functional is a major problem approached in DFT. Various
approaches for this approximation exist, an overview can be found in references [44]
and [42]. For my application, I will use the FHI-AIMS [47] software for DFT energy
calculations with a PBE-exchange-correlation functional. Samples from this simulator
are going to be denoted as High Fidelity (HF).

The most accurate fidelity level is built upon ab initio quantum chemistry [42] theory, I
will denote this level as Ultra High Fidelity (UHF). This theory is, like DFT, built up on
solving the Schrödinger equation by using approximations. The type of approximation
determines the level of accuracy of the solution. The simplest approximation is the
so-called Hartree method, where the wave function Ψ is constructed as a product of
single particle orbitals. In an extension to this, the so-called Hartree-Fock method, the
wave function is formed as a Slater determinant [48], describing occupied spin orbitals.
These orbitals have a spatial contribution, often written as linear combinations of basis
functions for atomic orbitals, as well as spin contributions. With this approach, the wave
function is anti-symmetric, such that the Pauli-exclusion principle [49] is satisfied. The
Hartree-Fock method fails at treating electron correlations, since in this approach, the
electrons are treated as they would move in an electrostatic field that is created by the
other electrons. More accurate approaches, so-called post Hartree-Fock methods, fix this
by taking interaction contributions between the electrons into account.

For my applications, I employed a coupled cluster (CC) [42] simulator. In CC, the
wave function can be rewritten as a sum of the ground state wave function Ψ0 plus
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contributions from excited electron states

Ψ =
(

1 + T̂ + T̂ 2

2! + T̂ 3

3! + ...

)
Ψ0 = eT̂ Ψ0 ,

with T̂ = T̂1 + T̂2 + ..., where T̂i are excitation operators that describe excitations of
electrons into virtual unoccupied orbitals. Therefore, in contrast to the simpler Hartree-
Fock approach, contributions from unoccupied orbitals are taken into account for the
calculation of the energy. Depending on the highest excitation levels we include, we
receive different levels of accuracy: Coupled cluster doubles (CCD), coupled cluster
singles and doubles (CCSD) or coupled cluster singles, doubles and triples (CCDT),
corresponding to

T̂CCD = eT̂2Ψ0

T̂CCSD = e(T̂1+T̂2)Ψ0

T̂CCSDT = e(T̂1+T̂2+T̂3)Ψ0 .

I used CCSD(T) in my simulations: Instead of calculating the very expensive CCSDT
approach, contributions of the triple excitations are considered via a perturbation
approach. For my calculations, I used the Gaussian16 [50] simulation software, which
enables me to calculate energies with the CCSD(T) approach.

2.4 BOSS: Active machine learning framework for
structure search

To perform the BO experiments described in the previous chapters, I used the BOSS
library. This theory chapter describes which tasks BOSS was developed for, while
a following methodology chapter will describe how BOSS is implemented and what
functionalities it offers.

BOSS [9] is a general purpose implementation of BO in Python with special support for
applications in materials science. It is designed to learn surrogate models in a sample-
efficient way and can be used without the requirement of having profound knowledge
on GPR or BO. BOSS allows for easy combination of computational simulators and
state-of-the-art probabilistic machine learning approaches. A typical application of BOSS
is to use it for the optimization of an energy surface. Atomistic simulators map the
structure of a material to an intrinsic energy, where low energy configurations indicate
stable materials. BOSS applies a BO routine, by treating the atomistic simulator as the
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black-box function, to find stable structures that occupy such low energy states. The
process for that is summarized in algorithm 1. There are many other BO libraries such

Algorithm 1 Bayesian optimization structure search pseudo-code
Initial dataset D
repeat

x← arg minx α(x) ▷ Optimize acquisition function
y ← f(x) ▷ Evaluate simulator at x

D ← D ∪ (x, y) ▷ Update dataset with new sample
Refit surrogate model ▷ Maximize likelihood for updated data set

until Computational budget exhausted
return D, predicted minimum, (optional) post-processing results

as Emukit or BoTorch. BOSS provides extra support for materials science through the
following set of features:

• Restart capability, which is important for calculations on high-performance compu-
tation platforms (HPC), as they are often used for simulations in materials science.
In the present work, the restart capability was used for BOSS calculations with the
computationally expensive UHF simulations.

• BOSS provides well-tested default choices for the parameters of prior distributions,
which is often required to be manually chosen in BO workflows. In addition, it
supports to set parameter for the distributions manually.

• BOSS gives the user easy access to a variety of acquisition and kernel functions.

• Another useful feature is the post-processing routine that BOSS provides. Using
this routine is quite convenient to analyze obtained optimization results, or to detect
possible errors or bugs in the simulator setup. In addition, the post-processing
routine can also be used for the analysis of local minima of the black-box function.
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3 Multi-fidelity computational
implementation

In this chapter, I describe the implementation work that was required to incorporate and
test the multi-fidelity approaches in BOSS. In section 3.1, I introduce the architecture
and implementation of BOSS in more detail. Section 3.2 reviews the available multi-
fidelity functionalities in BOSS. I will discuss 1) an extension of the multi-fidelity
functionalities that I added in section 3.3, 2) code validation in section 3.4, 3) how I
measure computational savings and formulate my research objectives in section 3.5, and
finally 4) experimental design in section 3.6.

3.1 Computational implementation of BOSS

BOSS is a Python optimization library which can be used to efficiently minimize black-
box functions. In the following, I will discuss the implementation of BOSS, as a rough
understanding of the structure of the library is needed to understand coding work for
the multi-fidelity extensions. BOSS builds on top of the existing GPy library [51]. GPy
is a framework that provides functionalities to use GPR with Python. On an abstract
level, BOSS can be seen as a wrapper which combines the GP functionalities of GPy with
additional methods to enable the use of BO. While GPy is a versatile library that provides
a lot of functionalities and support for more advanced GPR methods such as noisy,
sparse or multi-task models, it can be difficult to use for non-domain experts due to this
flexibility and rather advanced documentation. BOSS solves this issue by constructing
GPy models with a user-defined settings file, making the usage of BO straight forward.

The BOSS library is flexibly designed so that it is possible to easily set up BO algorithms
with desired properties through a wide range of options. Alternatively, the BO setup can
also be determined automatically by BOSS depending on the dimension of the search
space or other expected properties of the black-box function. BOSS offers a wide range of
ready to use kernel functions with according prior distributions for the hyperparameters.
Functionalities regarding the BO algorithm are concluded by the availability of a choice
of different AFs that determine the sampling strategy. During the optimization, BOSS
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3 Multi-fidelity computational implementation

keeps track of metrics such as the global minimum prediction or kernel hyperparameters.
Further functions are available to automatically evaluate the results of the BO algorithm.
This includes post processing techniques that can be used to visualize the model at
every iteration step, sampling locations, hyperparameter changes and metrics which track
convergence behavior. If needed, a user can also make use of available local minima
analysis functionalities.

Figure 3.1 visualizes the internal structure of the BOSS framework. The filled boxes in
this figure correspond to Python classes. Unfilled boxes contain utility functions that are
used throughout the optimization pipeline.

Model

Settings

InitManager

Results MainOutput

PPMainRstManager

Keywords

Minimization

BOMain

Figure 3.1: BOSS’ internal structure visualized. BOSS consists of several classes, located
in different modules. Arrows in this figure indicate information flow, e.g. the Settings
class uses functions from the Keywords module and provides information to start the
BO routine, which is handled in the BOMain class.

In the following I am going to list the classes implemented in BOSS and their corresponding
purpose, for further information I refer to the official homepage of BOSS:

• BOMain: Initializes other objects and starts the main optimization loop

• Model: Creates, fits or optimizes a GP model

• Results: Stores optimization results

• Settings: Handles keywords and shares them between objects

• MainOutput: Writes main output files (.out)

• RstManager: Handles restart files (.rst)

• PPMain: Applies (optional) post-processing, such as plotting and local minima
search
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3.2 Multi-fidelity BOSS

• InitManager: Creates initial points for the model

The above listed classes access additional utility functions which are implemented in the
following modules:

• Keywords: Stores keywords that can be used within BOSS

• Minimization: Utilities to minimize surrogate models

BOSS is set up in a modular structure, in agreement with the “Pythonic approach“ of
utilizing features of the Python language to write clean, reusable and maintainable code.
The modular structure of the library makes it possible for multiple developers to work
and develop features independently. The post-processing module provides convergence
analysis by visualizing the global minimum prediction as well as the sample location at
each BO iteration. In addition, the module can be used to plot the posterior model and
the kernel hyperparameter over iteration.

3.2 Multi-fidelity BOSS

The basic multi-task functionality was integrated into BOSS during 2019-2021 by N.
Sten [39] and U. Remes. During that work, the ICM model as well as prior distributions
for the ICM model hyperparameters were implemented. In addition, they introduced
parameters with which the simulator costs can be handled, which is required for multi-
task learning approaches. Finally, a multi-fidelity sampling strategy was implemented,
referred to in this thesis as multi-fidelity approach A1, with which the ICM model can be
used in the MFBO algorithm. Figure 3.2 presents the application of multi-fidelity BOSS
to optimize the multi-fidelity Forrester function [52] via a transfer learning approach.
Note that this approach provides a very good prediction (blue curve) for the true function
(black curve) at the higher fidelity level, after acquiring only 2 − 4 data points of the
target fidelity function, by including support fidelity samples in the ICM model.

For the objectives of this thesis work, the functionalities for multi-fidelity approaches
are extended according to the research objectives (Section 3.5) and moved to a separate
module. This, and further implementation work done in BOSS, are discussed in the
following section 3.3.
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Figure 3.2: a) Single-fidelity BOSS applied to the Forrester function f(x), b) Transfer
learning approach applied to the multi-fidelity Forrester function f(x). Data from a
lower-fidelity version of the support fidelity function is used to initialize an ICM model,
with which the target fidelity Forrester function’s global minimum can be approximated
well after only 3 sample acquisitions.
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Model

Settings

InitManager

Results MainOutput

PPMainRstManager

Keywords

Minimization

BaseAcquisition

MultiTaskAcqfnManager

MaxValEntropySearch

MUMBO

Cost

BOMain

Figure 3.3: New features added (orange) throughout the work of this thesis. BOSS
now has a separate Python class that handles the AFs. This includes methods for
the initialization, evaluation (with or without gradient), minimization and testing of
AFs. In addition, I added two entropy search-based AFs. The MultiTaskAcqfnManager
module manages multi-fidelity approaches. Dashed box frames correspond to partial
contributions.

3.3 Extending the multi-fidelity framework of BOSS

Besides the actual research work, I did implementation work on BOSS (Figure 3.3). On
the one hand, this was needed to add multi-fidelity approaches to BOSS and on the other
hand, the maintainability of the BOSS library was improved. My implementation work
can be divided into the following steps:

• Unifying the existing AF modules into an AF package: BOSS had a
compact framework for AF, as only single-fidelity AF were needed at that time. I
rewrote the existing AF functionalities in the form of a new code package, which
was a logical step and crucial for maintainability purposes. With the new structure,
methods regarding the initialization and minimization of the AF are separated
from the BO main module, which makes it easier to work on these parts of the
package independently.

• Adding a base template to consolidate functionalities for the AFs: For
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more standardization, I created a base class template called BaseAcquisition which
specifies methods for the AF that are required during BO. With this, upcoming
AFs can be implemented following this template. This also ensures, that methods
for the evaluation (with and without gradient) and minimization are available for
new AFs. The added AF code package also makes it easier to add methods for
the multi-fidelity approaches, which was required at a later stage of this thesis
work. Moving the minimization part of the AF to BaseAcquisition helped to
implement and use gradient-free AFs, such as the entropy based approaches. The
BaseAcquisition template class also makes it easier to add new functionalities,
such as cost functions. Cost functions treat AFs as abstract objects and can be
used as function wrappers with the objective of favoring or avoiding certain regions
in search space. I added unit tests for this new framework, where all functionalities
of the acquisition classes are tested for different AF choices.

• Adding a class for multi-task acquisition strategies: The new base structure
will also simplify future implementation work, such as the incorporation of human
expert knowledge for the BO guidance of real experimental setups in multi-task
approaches, or adding new types of cost functions. Using the base template, I
implemented a new class, the MultiTaskAcqfnManager, to keep MFBO acquisition
strategies separate from single-task approaches. These functionalities can then be
enhanced and combined with new methods, to use all seven presented multi-fidelity
approaches from section 2.2.3.

These extensions to BOSS make it easier to add the new AFs. I also implemented a
method that accelerates the minimization time of AFs and is more reliable in finding the
correct global minimum:

• Adding entropy AFs: Using the BaseAcquisition class framework, I added
two new types of AFs to BOSS: the in section 2.1.2 introduced MES and MUMBO,
a multi-fidelity version of MES. Both AF make use of a gradient-free minimizer,
since they don’t have access to a closed-form gradient, meaning that there is no
exact mathematical solution for the gradient available.

• Improving the AF minimization algorithm: BOSS applies the in SciPy [53]
implemented L-BFGS [54] minimization algorithm to minimize the surrogate model
and the AFs. L-BFGS is a quasi-Newton optimization technique that requires a
starting point located in the search space. Starting from that point, the gradient
signal gets iteratively reduced during the search for the minimum. The minimization
routine is repeated multiple times from different starting points. The reason for this
is that the minimum prediction often ends up in a local minimum. By repeating the
minimization algorithm from different starting points in search space, the chance of
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finding the global minimum is increased. In higher dimensional search spaces, more
local minima are to be expected. To take this effect into account, in the original
implementation BOSS started the minimizer from n randomly chosen points. Here,
the number n is a function that depends on the search space dimensionality. In
all cases, the number of random points is chosen between 10 and 100. This large
range takes into account optimization problems with both low and high search
space dimensions.

Nevertheless, this approach can potentially fail to find the global minimum. AFs
tend to have flat regions at later BO iterations, making minimization more difficult:
Optimal solutions would be found in very narrow regions in phase space, and
random minimizer initializations might miss this region. This is because the black-
box function gets better approximated by the model at later stages. Some AFs,
such as EI, are based on sampling regions where we can expect improvement in
terms of lower function values. However, as the black-box function is learned better
and better, EI expects no further improvement over most regions in the search
space, resulting in a flat surface.

During my implementation work, I tested a new initialization strategy of the
minimizer, a technique that is also used in Emukit, a Python toolkit for decision-
making under uncertainty [55]. Instead of choosing the starting points randomly, the
AF is evaluated at around 103 random locations. For most AFs, the computation
time to evaluate the AF at 103 random locations can be neglected in comparison
to the time for a single L-BFGS minimization routine. These evaluations are then
assigned a score, according to their AF value. The L-BFGS minimizer is then
started using the 1− 3 points with the lowest score value. With that, the global
minimum is found more reliably than with the previous initialization. This is also
a better choice than choosing 10− 100 random starting points, as the minimization
routine is only called 1 − 3 times. Instead of using several starting points and
therefore repeating the minimization several times, the new initialization starts
only from the most promising (in terms of low function values) regions. The result
is that this new initialization strategy also drastically reduces the time to find the
global minimum.

3.4 Code validation

Code validation is used to check whether the implementation delivers the desired result,
so it can be described as the process of checking that the code is correct. Validation
methods are supposed to help to eliminate possible errors and programming bugs in the
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code. In previous work [39], the multi-fidelity implementation of BOSS has already been
successfully validated and tested with atomistic simulators. I’m going to build on top of
this work by adding another fidelity level that is more accurate and has a significantly
larger simulation cost, which will further validate the previous code implementation.

To further validate individual parts of the code, such as the added base acquisition
template, I added unit tests to BOSS. Unit tests are automated tests that test individual
part of the code together with control data to check whether parts of the code work as
intended. For instance, in BO, the different AFs can be set up using given data and
checked whether the evaluation and minimization of the AF would deliver the expected
result by comparison with provided control data. I added unit tests for the AF template
as well as for individual AFs.

To validate the code during the multi-fidelity implementation work, I had to run MFBO
calculations. Consider the case where multi-fidelity BOSS would use a simulator which
has a very long evaluation time. Checking whether all seven multi-fidelity approaches are
correctly implemented would take an unfeasible amount of time. To avoid this waiting
time, I created simulator models. These correspond to GPy GPR models that are trained
on real simulator data. I trained a separate GPR model for available data from each
fidelity level (the origin of this data is discussed in section 4.2), using 100 data points
that I obtained from 2D single-fidelity baseline experiments. By using these simulators
instead of the real simulators, the code can be checked for correctness more quickly,
as the time required to evaluate a simulator is negligible compared to the overall BO
iteration time.

3.5 Quantifying the advantage of multi-fidelity sampling
strategies

3.5.1 Measuring computational savings

The aim of this research work is to compare multi-fidelity approaches with single-fidelity
approaches. MFBO has, like single-fidelity BO, the objective to determine the global
minimum sample-efficient, or put differently, computationally efficient. We aim to learn
about both the accuracy and the efficiency of multi-fidelity approaches.
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Accuracy - reliability of finding the correct global minimum

Accuracy quantifies the ability of an approach to be able to find the global minimum
at all. All multi-fidelity approaches are directly benchmarked against single-fidelity
experiments. The single-fidelity experiments provide us information about how many
BO iterations and how much CPU time is required on average for the correct global
minimum prediction, and also where the global minimum is located. Since we know
how many computational resources were needed for the single-fidelity optimization, we
can provide the same computational resources plus additional resources as a safety
margin to the multi-fidelity approaches. If a multi-fidelity approach still can not find
the correct global minimum after using these provided resources, it will be assigned a
bad accuracy. Accuracy can thus be introduced as a binary label for experiments: Good
for a successfully found global minimum within a resource budget, bad when the global
minimum is not found. The results of BO depend on the initialization, by repeating
BO with a different initialization and averaging the results, the reliability of finding the
correct global minimum of a multi-fidelity approach can be quantified. Multi-fidelity
approaches that fail to find the global minimum despite the availability of a sufficient
amount of computational resources should be avoided.

Efficiency - required resources for global minimum detection

Efficiency refers to how fast an approach finds the global minimum, and is therefore
related to CPU time and the number of BO iterations it takes to predict the correct global
minimum. Given that the exact location of the global minimum and its corresponding
value are known from previous experiments, I can calculate the deviation of the current
global minimum prediction from the correct global minimum value at each iteration
step. This deviation, plotted over iteration, is also called regret in the BO literature (see
e.g. reference [36]). Ideally, the regret converges close to zero as the number of samples
increases. To quantify the convergence time or efficiency of a single BO experiment, I
consider the number of iterations required and how much CPU time is required for the
regret to subsequently stay within a given tolerance interval (Figure 3.4 a)).

BOSS experiments are initialized with two starting points before the actual BO routine
starts. These starting points are often randomly chosen points in the search space.
Randomly chosen informative starting points could help to find the global minimum
earlier, while for uninformative starting points, the time could be longer than on average.
To take such random effects into account, I repeat the BO experiments with a random set
of initial points, which results in different convergence times for each initialization. We
are interested in the expected computational savings, and therefore I calculated summary
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Figure 3.4: Measuring the success of the MFBO strategies in CPU time. a) Plot of
the regret (deviation of the global minimum prediction to the true global minimum)
over CPU time. Once the regret stays within a pre-defined tolerance, the BO run is
considered converged. b) By repeating the experiments from a) we obtain statistics for
the convergence times of the two setups. As indicated by the box plots, setup 2 has a
lower convergence time median and a smaller variance than setup 1, and would therefore
be considered a more efficient approach.

statistics for these convergence times. These statistics can then be used to determine the
efficiency of the approaches (Figure 3.4 b)).

In BOSS, the most significant contributions to the computation time of a single BO
iteration result from

• the minimization of the AF,

• refitting the hyperparameter of the model by maximizing the log marginal likelihood,
and

• the minimization of the posterior model to keep track of the global minimum
prediction.

Each of the listed items require the computation of an inverted n× n kernel matrix for n

given training samples. This provides a bottleneck, as the computational complexity of
matrix inversion grows as O(n3).

Using the ICM model in MFBO increases the computational cost even further, as
additional contributions to the computation time at each BO iteration arise from
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• the minimization of a multi-fidelity AF,

• the larger kernel matrix, for t fidelity levels and n training samples, the kernel
matrix has the size tn× tn, and

• additional hyperparameters for the covariance between the fidelities that have to
be fitted at each iteration, again by using the log marginal likelihood.

It must also be taken into account that the CPU time of a single-fidelity BO iteration
can not directly be compared to the CPU time of a MFBO iteration. A subset of the
iterations in MFBO evaluates the support fidelity level, and has therefore a much faster
acquisition time. Therefore, it is also useful to monitor the number of BO iterations of
the target fidelity level.

3.5.2 Research objectives of multi-fidelity Bayesian optimization

For both the transfer learning experiments and the multi-task learning experiments, we
are interested in answering the questions

1. If the global minimum is found and if so, how many BO iterations and CPU time
it required with respect to the single-fidelity baseline experiment.

2. If using the ICM model has the potential to reduce both the BO iterations and
the CPU time to reach convergence with respect to the single-fidelity baseline
experiment.

3. What kind of fidelity combinations are most efficient, and if this can be quantified
by the correlation and the cost difference between the simulators.

In transfer learning experiments, we also want to learn how the convergence statistics
change with the number of support fidelity initialization points. I will also directly
compare the transfer learning and multi-task learning performances. One of the objectives
of this research is to find out whether one of these two methods is superior in terms of
computational savings over the other. If this is not the case, it would be helpful to know
if conclusions can be drawn for which scenarios one of the two multi-task approaches
might be the better one.

I will not only use the CPU time as a convergence measure (Figure 3.4), but also the
number of BO iterations required to reach convergence. The number of BO iterations
refers to the number of the target fidelity samples, excluding the samples from the
support fidelity simulator. It would be interesting to see if some multi-fidelity approaches
applied to certain experiments reduce the number of required BO iterations while
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increasing the overall CPU time. To answer these questions, I will benchmark all multi-
fidelity approaches against the results of baseline runs. A baseline run corresponds to a
standard single-fidelity setup, where no lower fidelity is used as support. This will help
me to conclude how many computational savings can be expected from the different
approaches.

3.6 Experimental design

This chapter is introducing the structure search test system I used throughout this
thesis to establish benchmarks for the multi-fidelity approaches. I will also motivate and
describe the experimental designs I used for this system, after explaining in the previous
chapter how I measure the efficiency of an experiment.

A common structure search problem is the problem of finding conformers (Section 1.1).
Specifically, I applied conformer search to the amino acid alanine C3H7NO2. Alanine is
an ideal candidate for this, as it is a small and well studied molecule with 13 known local
minima on the potential energy surface [56]. In addition, it has been used in previous
BOSS applications [11, 15, 39]. This means that we know the global minimum of alanine,
so all the approaches in this thesis are to be tested to see if they predict the same global
minimum. The configuration space for this test system is spanned by four dihedral angles
(Figure 3.5). Fixing two out of the four dihedrals allows me to test both a 2D and a 4D
optimization problem. This allows me to test how the BO algorithm depends on the
configuration space dimension.

To perform the multi-fidelity experiments, I used the high performance computing
platform Puhti. Puhti is a supercomputer managed by Finland’s’ CSC – IT center for
science Ltd. that allows its users to perform sequential and parallel calculations. It
consists of 700 CPU nodes, each having two Intel Xeon Gold 6230 processors with 20
cores per processor. I use Puhti for all experiments with the in section 2.3 introduced
atomistic simulators.

3.6.1 General settings for the alanine system

Figure 3.5 a) shows a sketch of the alanine molecule and the degrees of freedom that we
optimize. In b), average acquisition times from all three fidelity levels (Section 2.3) are
shown. The acquisition timing data were obtained from a correlation study that is intro-
duced in section 4.1. Each simulator was calculating 100 different alanine configurations,
the figure contains the average and the standard deviation of the timings. Because there
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is such a big difference between the simulator costs, this is an ideal test system for our
multi-fidelity approaches.
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Figure 3.5: a) Alanine conformer search. In this optimization task, the amino (NH2),
methyl (CH3) and carbonyl (C––O) groups are fixed. The bond lengths and angles are
kept fixed to their average values, such that the search space is spanned by four dihedral
angles d1−d4. b) Acquisition times for the simulators. The mean and standard deviations
are shown above the bars. Note that the CPU time axis is in log scale.

In single-fidelity BOSS, a user has the option to choose parameters with which the hyper-
parameter prior distributions can be set. A common choice is the Gamma distribution

x ∼ Gamma(α, β) = βα

Γ(α)xα−1e−βx with x, α, β > 0 .

Here, the parameters α and β determine the shape of the distribution, Γ(α) is a constant. I
chose the same parameters for α and β throughout this thesis, using the recommendations
for the alanine system from previous work, where the parameters for multi-fidelity BOSS
have been chosen such that they reproduce results from single-fidelity BOSS [39]. There,
the Gamma prior distributions were parameterized with

σα = 2, σβ = 2
Â2

and

lα = 3.3678, lβ = 9.0204 .

li denotes the length scale prior parameters and σi denotes the variance prior parameters,
while Â is the expected amplitude of the output parameters. Â is determined using the
correlation study in section 4.1. I used the standard periodic kernel with a periodicity of
2π for dihedral d1 − d3 and a periodicity of 2π/3 for d4. The 2D system has fixed two
out of the four dihedrals to d3 = 60 and d4 = 180.
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Repeating a BO experiment with a different initialization results in a different regret
function and therefore a different convergence time. To take into account different
convergence paths (Figure 3.4), I performed 5 BOSS cycles with a different random
initialization for each single-fidelity experiment and each multi-fidelity experiment.

3.6.2 Multi-fidelity settings

The ICM model introduces additional hyperparameter that need to be considered. I
use the same recommendations from reference [39] and set the hyperparameter prior
distribution to

p(w) = N
(

0.9
√

2
β

,
1

2
√

β

)

where w is used to parameterize the hyperparameters in the matrix B from equation (2.21).
The parameter β in p(w) is chosen as β = 2/Â2, where Â is again the expected amplitude
of the target fidelity.

For both transfer learning and multi-task learning, I used HF as well as UHF as the
target fidelity level. When HF was the target fidelity, I used LF as support fidelity
simulator. For UHF as target fidelity, I tested both LF and HF as support fidelity. Since
there was a large gap between UHF and the other fidelities and a relatively small gap
between LF and HF, this allows me to test the impact of the simulator calculation times
on the performance of the multi-fidelity approaches.

An objective of the transfer learning experiments was to test what influence the number of
support fidelity samples has on the convergence time. In the 2D baseline calculations, all
experiments converged within 6−26 BO iterations, while for 4D all experiments converged
within 53− 148 iterations. For the number of support fidelity samples in the transfer
learning experiments, I choose twice the number of samples that were required to converge
the baseline experiments. Within this range, the global minimum was guaranteed to be
found for all baseline calculations. This translated to 50 initialization points for 2D and
200 initialization points for 4D transfer learning experiments. In addition, to check the
influence of the number of initialization points, I tested 100 initialization points for the
4D experiments.

For multi-task calculations, I designed 7 different approaches (Section 2.2.3). Some
of these approaches were highly experimental, such as approach A2. With the large
computational cost of the UHF simulator, testing all the in section 2.2.3 discussed
multi-fidelity acquisition strategies becomes unfeasible. To get around this limitation
and still have the possibility to test all strategies, I introduce so-called alanine simulator
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3.6 Experimental design

models. These models are used for prescreening experiments. I conducted experiments
to help us decide which approaches to keep and which approaches to reject, meaning
that they are not further investigated in further work. The accumulated simulator data
from the lengthy baseline experiments can be used to train regression models that mimic
the true potential energy surfaces. These models correspond to the alanine simulator
models.

The prescreening experiments are carried out only for the 2D system, since this should
already make it possible to reject the approaches that show little or no improvement over
single-fidelity runs. After the prescreening, the real simulators are applied to the 2D and
4D optimization again.

As the alanine simulator models are GP models, the evaluation time of the alanine
simulator is negligible compared to the evaluation time of the real simulators. This means
that when we use these simulator models for MFBO experiments, we only have to take
into account the computation time required for optimizing the acquisition function and
posterior model at each iteration for the computation time of a BOSS experiment. The
actual simulation time from the simulators is then added manually when the resulting
data is post-processed. By substituting the alanine simulator models with the real
simulators, the timing becomes feasible and consequently statistical tests can be carried
out for all seven multi-fidelity approaches. I used the results of these tests to decide
which approaches should then be tested with the real simulators.

For the 2D alanine simulator model tests, I repeated 10 multi-fidelity BOSS cycles, each
starting with 2 initial random points for each fidelity level and continuing with 100
MFBO iterations. I tested the ELCB, MES and the MUMBO acquisition functions.
Note that ELCB and MES can be used in the single-fidelity as well as in the multi-
fidelity experiments, therefore I tested these AFs with all seven multi-fidelity approaches.
MUMBO however, is a pure inseparable multi-fidelity AF, therefore it is only tested with
approach A6.

Multi-fidelity approaches use the simulator cost as a parameter in the decision-making
for the next sample location. The cost parameters were chosen according to rounded
values of the simulation durations obtained in section 4.1. With these values, I expect
the multi-fidelity runs with the alanine simulator model to be good approximations of
the convergence behavior of the real simulators. I used the same cost parameters for the
subsequent multi-fidelity experiments with the real simulators.

For the 2D transfer learning experiments, I set the maximum number of target fidelity
BO iterations to 20, for 4D experiments to 80. In multi-task learning, the maximum
number of BO iterations has to be increased, as this number includes samples from
the target fidelity as well as samples from the support fidelity. For the prescreening
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3 Multi-fidelity computational implementation

experiments, where I used the alanine simulator model, I set the maximum number of
BO iterations to 100, as most of the single-fidelity runs have converged at around 20
iterations. I considered the multi-fidelity approaches that have not found the global
minimum after the maximum of BO iterations is reached as not converged (bad accuracy).
For the 2D multi-fidelity experiments using the real simulators, I set the maximum to
150 BO iterations, for the 4D experiments, I set a maximum of 300 BO iterations. In
4D optimization, most of the single-fidelity experiments converged after around 120 BO
iterations.
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4 Computational experiments and
results

This chapter starts in section 4.1 with a correlation study between the different fidelity
levels. Next, I will discuss the established single-fidelity baseline results on the ala-
nine system in section 4.2, which are used to benchmark the multi-fidelity approaches.
Section 4.3 and section 4.4 describe the production experiments and illustrate the con-
vergence statistics of the transfer learning and multi-task learning approaches. The
approaches are compared and discussed in section 4.5, which also concludes this chapter
with recommendations for the use of MFBO.

4.1 Correlation between fidelity levels

Before conducting the BO experiments, I compared the LF, HF and UHF atomistic
simulators (Section 2.3) with each other. Properties that are of interest to us concern
the simulation duration as well as the correlation between the simulators. This allows
me to later formulate recommendations which simulator combinations (characterized by
simulator costs and correlation) are best suited for the greatest computational savings.
To determine these quantities, I performed calculations with all three simulators for a
number of 100 different samples for the 2D search space and 200 different samples for
the 4D search space. These samples were chosen according to the Sobol sequence, which
is a sequence following a quasi-random number generator [57]. Since the calculation
times of the simulators vary depending on the molecule configuration, I measured the
average times as well as the standard deviations of the 100 samples (Table 4.1) for all
three simulators.

There is a difference of three to four orders of magnitude (Table 4.1) in the computation
time between UHF and the remaining two fidelities. While our force field (LF) and
density functional theory (HF) simulations can be performed in a matter of seconds,
quantum chemistry (UHF) is much more expensive and has an average evaluation time
of about 3.5 h. This huge gap between the simulator times makes the combination of
these fidelities particularly interesting for the application of MFBO. Given that UHF is
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4 Computational experiments and results

Table 4.1: Timing statistics for the simulators. Average times and standard deviations
are calculated for 100 samples in the 2D search space.

Fidelity t̄± σt [min] Relative time to UHF
LF 0.03 ± 0.05 0.02%
HF 0.44 ± 0.04 0.22%

UHF 197.14 ± 82.4 100%

so much more expensive than the other fidelity levels, we want to minimize the need for
UHF samples while maintaining the accuracy of the UHF simulator.

Table 4.2 provides an overview of the energy value statistics from the list of Sobol points,
both for the 2D and the 4D alanine system. All three simulators were evaluated according
to the Sobol sequence, meaning that they were sampled at the same sample locations.
The energy values calculated with the simulators can be used to determine the Pearson
correlation coefficients, a measure of the linear correlation between two data sets. For
the 4D alanine system, the obtained data are observations from a UHF baseline run (see
section 4.2) instead of the Sobol sequence, 4D LF and HF were sampled at the same
sample locations as the UHF run. This enables the calculation of correlation coefficients
also in 4D but creates a bias towards low energy values in the statistics, since baseline
runs sample more often in low energy regions than the runs using the Sobol sequence.

Table 4.2: 2D (4D) observed value statistics for N = 100 (N = 200) samples. 2D
data are observations according to the Sobol sequence. 4D data are observations from a
sequence obtained from a UHF baseline experiment.

Dim. Fidelity Mean Std. Min Max Amplitude P25% P75%
2D LF 11.52 5.35 0.27 20.53 10.13 7.71 16.23
2D HF 14.74 6.55 0.09 23.66 11.78 8.47 20.45
2D UHF 13.00 6.17 0.08 21.61 10.76 7.09 18.66
4D LF 10.42 7.74 0.22 33.09 16.44 4.24 16.50
4D HF 10.84 8.16 1.14 29.85 14.35 4.15 16.65
4D UHF 9.47 7.79 0.00 27.78 13.89 3.10 15.59
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4.2 Single-fidelity baseline experiments

Table 4.3: Pearson correlation and covariance matrix for the simulators. Statistics for
2D simulator are evaluated for 100 points according to the Sobol sequence, while 200
points are used for the 4D simulator. UHF and HF share the highest correlation.

2D and 4D Correlation matrix

LF HF UHF
LF 1 0.945 0.948

2D HF 0.945 1 0.996
UHF 0.948 0.996 1
LF 1 0.963 0.968

4D HF 0.963 1 0.998
UHF 0.968 0.998 1

2D and 4D Covariance matrix

LF HF UHF
LF 28.862 33.383 31.584

2D HF 33.383 43.281 40.615
UHF 31.584 40.615 38.444
LF 60.226 61.102 58.645

4D HF 61.102 66.884 63.739
UHF 58.645 63.739 60.934

The correlation coefficients, as well as the covariances between the simulators, are listed
in table 4.3. Scatter plots, as shown in figure 4.1, also indicate a strong linear correlation
between the data sets.
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Figure 4.1: Samples from the Sobol sequence. As can be seen, there is a strong linear
correlation between UHF and HF, and a good linear correlation between LF and the
other two fidelity levels.

4.2 Single-fidelity baseline experiments

The next step was to establish baseline experiments for each fidelity level with single-
fidelity experiments against which the multi-fidelity approaches are tested. Baseline
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4 Computational experiments and results

calculations in this context are BO runs where only a single fidelity is used. I performed
5 BOSS cycles, as described in section 3.6, the average convergence time and standard
deviation of these runs are then used for the comparison with multi-fidelity experiments.
Each of the five cycles was started with two randomly selected samples. I used the
ELCB AF for the baseline experiments, since ELCB provides a good trade-off between
exploration and exploitation.

For the 2D optimization problem, the converged potential energy landscapes can be
compared visually (Figure 4.2). In figure 4.2, it can be seen that the global minimum for

Predicted minimum
GMP

Figure 4.2: Potential energy surfaces of the converged 2D models.

LF is in a different location than for HF and UHF, which makes alanine an interesting
test system for the introduced multi-fidelity approaches. All three surfaces are very
similar, as can be seen from the figure, which indicates that useful information about the
UHF search space can be obtained from the LF and HF simulators.

Table 4.4 contains estimations for the global minima of all three fidelity levels, for the
2D and 4D experiments.

Note that in 2D, the global minimum of HF and UHF are in the same search space
location, while the LF global minimum is at another location. Interestingly, in 4D,
the roles are reversed: The global minimum of LF is significantly closer to the UHF
global minimum than the HF minimum is to UHF. This also allows us to test whether
the difference in the location of the global minimum plays an important role in the
information exchange of the multi-fidelity approaches.

Table 4.5 contains summary statistics of the CPU convergence times in hours. These
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4.2 Single-fidelity baseline experiments

Table 4.4: Estimated global minima. The energy values E are simulator evaluations
at the global minima estimations dg. Dihedral values di in parentheses were kept fixed
during the optimization. The minima values E are used to set the convergence bounds
for BO runs.

Dim. Fidelity d1 d2 d3 d4 E [kcal/mol]
2D LF 59.87 180.07 (60) (180) 17.482
2D HF 237.17 0.72 (60) (180) -203012.374
2D UHF 238.95 0.98 (60) (180) -202861.338
4D LF 56.18 179.71 204.74 62.14 15.790
4D HF 235.91 0.15 61.51 54.94 -203012.440
4D UHF 56.72 178.79 237.40 60.70 -202861.657

Table 4.5: Summary table of the convergence times in hours for the baseline experiments.
The experiments are considered as converged once the global minimum prediction is
within an acceptance threshold of 0.23 kcal/mol from the true global minimum.

Dim. Fidelity Mean Std. Min Median Max
2D LF 0.02 0.01 0.01 0.02 0.02
2D HF 0.18 0.02 0.15 0.18 0.2
2D UHF 74.60 9.24 66.17 71.29 88.61
4D LF 0.17 0.04 0.13 0.15 0.21
4D HF 1.25 0.21 0.92 1.29 1.50
4D UHF 214.90 60.28 178.43 180.56 318.98
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4 Computational experiments and results

Table 4.6: Summary table of the BO iterations to reach convergence for the baseline
experiments. The experiments are considered as converged once the global minimum
prediction is within 0.23 kcal/mol of the true global minimum.

Dim. Fidelity Mean Std. Min Median Max
2D LF 18.8 7.53 6 23 24
2D HF 19.8 1.92 17 20 22
2D UHF 21.6 2.70 19 21 26
4D LF 60.0 6.12 53 62 66
4D HF 124.4 19.00 95 125 148
4D UHF 68.4 18.68 56 59 101

statistics are later used to quantify the speed-up, if any, provided by the different multi-
fidelity approaches. In 2D, the convergence times range from about 1 minute (LF), over
10 minutes (HF) up to more than 3 days (UHF). For the 4D systems, times range from
about 10 minutes (LF), over 75 minutes (HF) up to almost 9 days (UHF).

The summary statistics for the number of BO iterations required to achieve convergence
are shown in table 4.6. These statistics are of interest for choosing a suitable number of
transfer learning initialization samples. I used about twice the number of BO iterations
that were required to reach convergence as the number of transfer learning initialization
points, as in section 3.6 explained. For the 2D experiments, the BO calculations
converged for all fidelities on average within about 20 iterations, ranging from 6 up to 26
BO iterations. In the case of 4D optimization, the LF and UHF experiments converged
on average after around 60− 70 iterations, while HF converged on average after about
120 iterations. The convergences ranged from 53 up to 148 iterations.

4.3 Transfer learning

2D transfer learning experiments

As a first test, I performed 2D MFBO experiments, in which I used HF as well as UHF
as the target fidelity level. For HF accuracy experiments I used LF samples (LF→HF)
for the initialization, for UHF I set up experiments using either LF (LF→UHF) or HF
data (HF→UHF) as support fidelity samples.

Figure 4.3 illustrates the convergence results, both measured in BO iterations (a) and c))
and in CPU time (b) and d)). The statistics for the five runs for each fidelity combination
are summarized in the form of a box plot, containing the 25%, 50% and 75% quartile.
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Figure 4.3: 2D Transfer learning results visualized as box plots with percentiles 25 %,
50 % and 75 %. The mean for each experiment is marked by a cross “x“, outliers are
marked as black diamonds. The number in the legend indicates the number of support
fidelity data used at the initialization.
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Table 4.7: Summary table of the convergence times in hours for the 2D transfer learning
experiments. Bold values indicate the experiments with the fastest convergence times
for the respective target fidelity level. TL Init. corresponds to the number of support
fidelity samples used for the initialization.

Dim. Fidelities TL Init. Mean Std. Min Median Max
2D HF 0 0.18 0.02 0.15 0.18 0.2
2D LF → HF 50 0.18 0.02 0.14 0.18 0.2
2D UHF 0 74.60 9.24 66.17 71.29 88.61
2D LF → UHF 50 49.47 13.38 37.78 49.00 71.22
2D HF → UHF 50 16.05 6.15 9.15 17.87 24.37

An important result is that all 2D experiments found the global minimum, meaning that
all the transfer learning experiments can be considered as maximally accurate.

When HF is the target fidelity (a) and b)), transfer learning improves the efficiency of
the number of required BO iterations but increases the CPU times to reach convergence
with respect to the baseline. For the scenario where UHF is the target fidelity (c) and
d)), the BO iteration and the CPU time show a similar trend of improving the efficiency
when transfer learning is applied. We can also note in d) that using the HF simulator for
the initialization results in much more savings than using the LF simulator.

Table 4.7 summarizes the statistics for these experiments. The table provides conver-
gence times of the transfer learning and the baseline experiments. For the case of 2D
optimization when HF is the target fidelity, baseline and transfer learning have almost
similar convergence times. When UHF is the target fidelity, transfer learning always
leads to computational savings. For LF as support fidelity, the CPU time decreases on
average from about 75 to 50 hours, while for HF as support, the time reduces from about
75 to 16 hours, the lowest observed average convergence time.

4D transfer learning experiments

In the 4D experiments, I used the same fidelity combinations as in 2D. The results
are again visualized as a box plot in figure 4.4, where a) and b) show again HF as the
target fidelity, while c) and d) contain results where UHF is the target fidelity level. By
comparing a) and b), we see the same effect as observed for the 2D experiments: Fewer
BO iterations are needed for convergence, but the CPU time shows no savings. In this
case, the difference is even more extreme, as the CPU time increases significantly in
comparison to the baseline.
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Figure 4.4: 4D Transfer learning results visualized as box plots with percentiles 25 %,
50 % and 75 %. The mean for each experiment is marked by a cross “x“, outliers are
marked as black diamonds. The number in the legend indicates the number of support
fidelity data used at the initialization.
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Table 4.8: Summary table of the convergence times in hours for the 4D transfer learning
experiments. Bold values indicate the experiments with the fastest convergence times
for the respective target fidelity level. TL Init. corresponds to the number of support
fidelity samples used for the initialization.

Dim. Fidelities TL Init. Mean Std. Min Median Max
4D HF 0 1.25 0.21 0.92 1.29 1.50
4D LF → HF 200 1.91 0.27 1.52 2.05 2.13
4D UHF 0 214.90 60.28 178.43 180.56 318.98
4D LF → UHF 100 130.49 62.60 55.61 138.12 205.30
4D LF → UHF 200 89.47 66.70 26.57 80.01 179.96
4D HF → UHF 100 25.44 48.33 3.02 3.11 111.85
4D HF → UHF 200 19.68 10.43 6.95 20.45 32.02

When UHF is the target fidelity level, the trend for the number of BO iterations and
the CPU time to reach convergence is again similar, both are improved when transfer
learning is applied. Using the HF simulator as support has again, as in 2D, provided
more computational savings than using LF as support. For 4D, I tested two different
initialization numbers with either 100 or 200 support fidelity samples for the initialization.
When LF was the support task, 200 initial points performed significantly better than
(on average about 30 BO iterations) using 100 initial points (50 BO iterations). For the
scenario where HF was the support, the difference between 100 and 200 initialization
points was rather negligible (both on average at around 10 BO iterations).

Table 4.8 contains summary statistics for the convergence times in hours. When HF was
the target fidelity, the average convergence time went up from about 75 min to almost
120 min when transfer learning was applied. For UHF as target fidelity, transfer learning
requires only a fraction of the computational resources to converge in comparison to the
baseline experiments. In the case of 100 initialization points, the time went from 215
hours over about 130 hours (LF support) down to 25 hours (HF support). For 200 points,
the timing went from 215 hours to 90 hours (LF support) and down to about 20 hours
(HF support), the lowest observed average convergence time.
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4.4 Multi-task learning

Table 4.9: Accuracy of the 2D alanine simulator model experiments. Column ’#’ refers
to the approach index. The table lists the number of not converged experiments (out
of 10 experiments). Bold values indicate experiments which tend to fail to find the
global minimum more often (more often than 20 % of all runs), these strategies can be
considered to have a poor accuracy and should therefore be not further used.

AF # HF→UHF LF→UHF AF # HF→UHF LF→UHF
ELCB A1 0/10 0/10 MES A1 1/10 2/10
ELCB A2 0/10 1/10 MES A2 0/10 1/10
ELCB A3 0/10 2/10 MES A3 0/10 0/10
ELCB A4 1/10 8/10 MES A4 0/10 9/10
ELCB A5 3/10 9/10 MES A5 3/10 10/10
ELCB A6 0/10 0/10 MES A6 0/10 0/10
ELCB A7 0/10 0/10 MES A7 0/10 0/10

MUMBO A6 0/10 0/10

4.4 Multi-task learning

4.4.1 Prescreening the multi-fidelity approaches

As explained in section 3.6, I introduced alanine simulator models as a prescreening
method for the multi-fidelity approaches. I will introduce the short-hand notation ’A1’,
indicating the multi-fidelity approach 1. To check which of the seven multi-fidelity
approaches to keep, I did 2D experiments with 100 BO iterations. All seven multi-fidelity
approaches are checked upon if they found the correct global minimum within these 100
iterations. If they did not find the correct global minimum, they are considered as to
have poor accuracy. The data shown in table 4.9 indicates that some approaches had
often troubles to find the correct global minimum. This was the case for approaches
A4 and A5, these approaches are to be considered to have a poor accuracy and should
therefore be rejected for further experiments.
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Figure 4.5: 2D multi-fidelity approaches with HF → UHF using the alanine simulator
models. CPU time on the y-axis is normalized with respect to the average acquisition
time of the UHF simulator (3.5 hours). BL indicates baseline single-fidelity experiments.

Figure 4.5 features the convergence times in CPU hours for the case where HF is used to
provide support fidelity data and UHF is used as target fidelity simulator. As the figure
illustrates, all multi-fidelity approaches for all AF choices are converging faster than the
baseline runs (blue box plot). The approach A2 was a highly experimental approach
based on the Knowledge Gradient AF [40] and appears to perform only slightly better
than the baseline experiments. Therefore, I decided to not use this approach for the real
simulators. A7 has a reasonable average convergence time but exhibits a large variation
in the convergence values, same as the A5 for the ELCB AF.

I repeated the experiments with LF as support fidelity, the results are shown in fig-
ure 4.6.
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Figure 4.6: 2D multi-fidelity approaches with LF → UHF using the alanine simulator
models. CPU time on the y-axis is normalized with respect to the average acquisition
time of the UHF simulator (3.5 hours). BL indicates baseline single-fidelity experiments.

In general, the multi-fidelity approaches took longer to converge, which was expected as
LF has a weaker linear correlation with UHF than HF has. Here, the A2 strategy, which
performed rather poorly before, exhibits a better performance.

In summary, taking all experiments into account, I concluded the following about the
acquisition strategies tested:

• A1: Very good efficiency for HF → UHF, good efficiency for LF → UHF.

• A2 : Bad efficiency for HF → UHF.

• A3 : Very good efficiency for both fidelities.

• A4 : Very poor accuracy for LF → UHF.

• A5 : Poor accuracy for HF → UHF, very poor accuracy for LF → UHF.

• A6 : Very good efficiency for HF → UHF, average efficiency for LF → UHF.

• A7 : Average accuracy and large variation of convergence times for both fidelities.

Consequently, I decided to continue the multi-fidelity experiments using only A1, A3 and
A6 as those showed to have consistently good convergence results in terms of efficiency
and accuracy.

The AF ELCB and MES show only minor differences, while MUMBO tends to perform
on average worse than other multi-fidelity strategies. Therefore, I decided to continue
the tests on the real simulators using only ELCB as AF.
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Figure 4.7: 2D multi-fidelity approaches with HF as the target fidelity level. BL indicates
the HF baseline experiments. BO iter. corresponds to the number of HF samples until
the global minimum prediction has converged.

4.4.2 Tests on real simulators

For the real simulators, I tested again both the optimization over the 2D and the 4D
search space. I used the same fidelity combinations as in the previous transfer learning
experiments, and also set again the number of repetitions for each experiment to 5,
as described in section 4.3. Taking the results from the alanine simulator models into
account, I investigated only the approaches A1, A3 and A6 with the ELCB AF.

Figure 4.7 contains the results for the 2D experiments where HF was set as the target
fidelity level. As in transfer learning, the number of BO iterations to reach convergence
is reduced, while the CPU time for MFBO is larger than for the baseline experiments.
There is no significant difference between the multi-fidelity sampling strategies A1, A3
and A6, however the variance of the multi-fidelity approaches is much larger than for the
baseline runs.

We obtain a similar result from the 4D experiments (Figure 4.8), when again HF is used
as the target fidelity. In comparison to the 2D experiments (Figure 4.7) the difference
between the BO iterations and the CPU time to reach convergence is even larger. This
indicates that, since the MFBO is again slower than the baseline experiments, the
multi-fidelity approaches do not work well for this kind of fidelity combination. Also, the
variance is very large again in comparison to the single-fidelity experiment variance.
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Figure 4.8: 4D multi-fidelity approaches with HF as the target fidelity level. BL indicates
the HF baseline experiments. BO iter. corresponds to the number of HF samples until
the global minimum prediction has converged.

When UHF is the target fidelity, the convergence results are very different. In 2D
(Figure 4.9), it can be seen that the BO iterations as well as the CPU time to reach
convergence exhibit a similar trend, as was the case for the transfer learning experiments.
The use of LF as support fidelity source reduces the cost again, but the effect is much
stronger when HF is used as support fidelity simulator. The correct global minimum
was found for all multi-fidelity approaches, except for 1 out of 5 experiments with LF as
support for approach A1. All three multi-fidelity approaches are very similar in efficiency,
for LF as support, the A1 performs slightly better than A3 and A6. The roles are reversed
for HF as support, there, approach A6 performs slightly better than the other two.

The best efficiency was reached for the 4D experiments, when UHF was the target fidelity
simulator (Figure 4.10). All fidelity combinations and all multi-fidelity approaches have
a much smaller variance than the baseline experiments, which indicates that they are
more stable in their convergence behavior. However, 2 out of 5 experiments with LF as
support for approach A3 and 3 out of 5 experiments with HF as support for approach A3
experiments have not found the correct global minimum. Interestingly, LF as support
fidelity as well as HF as support fidelity both converge quickly compared to the baseline.
The summary statistics for the convergence times in 2D and 4D can be found in table A.1
and table A.2.
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Figure 4.9: 2D multi-fidelity approaches with UHF as the target fidelity level. BL
indicates the UHF baseline experiments. BO iter. corresponds to the number of UHF
samples until the global minimum prediction has converged.
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Figure 4.10: 4D multi-fidelity approaches with UHF as the target fidelity level. BL
indicates the UHF baseline experiments. BO iter. corresponds to the number of UHF
samples until the global minimum prediction has converged.
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4.5 Discussion

In the discussion, I will use the obtained results for transfer learning and multi-task
learning to answer the formulated research objectives of this thesis (Section 3.5). The
first three objectives are answered separately for transfer learning and multi-task learning:
These questions related to 1) if a multi-fidelity approach can find the correct global
minimum and also how large are the required computational resources with respect to
single-fidelity baseline experiments, 2) if using the ICM model for a MFBO approach
reduces both, the BO iterations and the CPU time to reach convergence, and also 3) what
kind of fidelity combinations are efficient, and if this can be quantified by the correlation
and the cost difference between the simulators. For the transfer learning experiments, I
will also answer the question of 4) how the convergence statistics change in dependence of
the number of support fidelity initialization points. By answering the questions 1− 4, I
can conclude the research by directly comparing transfer learning and multi-task learning
to see if one of these two approaches is superior over the other in terms of computational
savings.

Correlation study between the fidelity levels

To determine the evaluation time of each fidelity and the linear correlation between the
simulators, I performed a correlation study before starting the actual single-fidelity and
multi-fidelity BO experiments. Table 4.1 provides information for the average timings
and standard deviations for a set of 100 simulator calculations for each fidelity level. The
timings ranged from about 2 seconds (LF), over half a minute (HF) up to about 3.5
hours (UHF). The standard deviation for the computationally expensive UHF simulator
is around 82 minutes, which indicates large fluctuations in the acquisition time depending
on the atomistic configuration. The large computation time of 3.5 hours emphasizes
the need for a MFBO approach to reduce the number of samples from this simulator as
much as possible. Note that the LF and HF simulator are evaluated using a single CPU
core, while UHF is evaluated with 40 CPU cores. I did not apply any rescaling to the
timings, as the simulation times from LF and HF are already negligible in comparison
to UHF within a standard MFBO routine. Also, the timing does not necessarily scale
linearly in dependence of the amount of CPU cores used, and in MFBO the samples are
taken from different fidelity sources at different steps, so the scaling can’t just be applied
to the overall time of a MFBO run. Scaling just the sampling times of the UHF and
then recalculating the overall times of a BOSS routine in the MFBO scenario would be
possible, but would not change the end conclusions.
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The ICM models each fidelity level as a linear combination of latent functions (Sec-
tion 2.2.1), so it can be used to learn fidelity levels that are highly linearly correlated.
To determine the linear correlation, I evaluated the three fidelity levels on a fixed set
of 100 samples in 2D and 200 samples in 4D. Figure 4.1 illustrates that there is a
strong linear correlation between all fidelity combinations, both in 2D and in 4D. The
correlation between HF and UHF is particularly strong, which indicates that there is a
huge potential to obtain computational savings for that fidelity combination. Table 4.3
provides the Pearson correlation coefficients and the covariances between the simulators.
The correlations range from 0.945 (LF and HF in 2D) up to 0.998 (HF and UHF in
4D). The tests to determine the linear correlation coefficients justify the use of the ICM
model, which by design is suitable for modelling linearly correlated functions. According
to these results, I also expect that the HF simulator as support fidelity will provide
better results than the LF simulators. The covariances between the simulators are larger
for 4D than for 2D. Also, the amplitude of the energy values obtained in 4D are larger
than in 2D (Table 4.2). This can be expected, as the 2D system is a subspace of the 4D
configurations space, so it has less possible configurations.

Single-fidelity baseline experiments

The single-fidelity baseline experiments are what would be the standard application of
BO on a black-box function. The results from these experiments provide us convergence
times, against which the multi-fidelity experiments can be benchmarked, to measure
the increase in efficiency of MFBO over BO. Figure 4.2 visualizes the converged energy
surfaces in 2D, here it can be seen that the surfaces share very similar structures. In 2D
experiments, the convergence times were on average 2 min (LF), to 11 min (HF) up to
around 3 days (UHF). For 4D experiments, the times ranged from around 10 min (LF)
over 75 min (HF) up to (UHF) almost 9 days (UHF). The fact that it takes even for
the rather small molecule alanine up to 9 days to find the global minimum supports the
need for a method to speed up the minimum inference at UHF inference. In addition,
the UHF convergence times were spread widely: while the fastest convergence time was
about 7.5 days, the longest convergence time took up to almost 14 days.

In 2D, the predicted global minimum of LF and UHF are very close to each other
(Table 4.4), while in 4D the global minima of LF and UHF are rather close. This helps
us to investigate in the multi-fidelity results whether the correlation or the location of
the global minimum of the support fidelity is critical to obtain as many computational
savings as possible.

Table 4.6 provides the number of BO iterations required to reach convergence. In 2D, the
number of BO iterations of all fidelity levels are around 20 and show a small variation
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(except for LF, having one BO experiment that converged after only 6 iterations). For
4D optimization, LF and UHF have an average iteration of around 60-70, while HF
has an average number of BO iterations of about 120. The variation is small for LF,
while it is rather large for HF and UHF. For that reason of large variations in the
number of BO iterations, I used twice the number of BO iterations to reach convergence
for the initialization of the transfer learning experiments. This should provide enough
information about the correct global minimum and also additional information about
other local minima of the support fidelity.

Transfer learning experiments

One objective of the transfer learning experiments was to figure out, if, and how fast, the
global minimum can be correctly predicted. In all conducted 2D and 4D experiments,
the global minimum has been found. Transfer learning decreased the number of required
BO iterations to reach convergence in all experiments, for all fidelity combinations and
for all investigated numbers of support fidelity samples (50 in 2D, 100 and 200 in 4D). I
also wanted to investigate if the ICM model reduces both, the BO iterations and the
CPU time to reach convergence. It turned out, that the ICM model only decreases the
CPU time as well in the scenario where UHF is the target fidelity. In the case where HF
was the target fidelity, the additional computing time caused by the ICM kernel is too
large to reduce the computation time. Even though the number of required BO iterations
is reduced, the savings get compensated by the additional cost produced by the ICM
kernel. Consequently, requiring less BO iterations did not generate any computational
savings when HF was the target fidelity. For UHF as target source, the computational
cost of the ICM model can be neglected in comparison to the cost of sampling the UHF
fidelity level.

In terms of efficiency, how fast the global minimum has been found, HF as a support was
better than LF as support. This has been expected, as HF shares a larger correlation
with UHF (0.996 in 2D and 0.998 in 4D) than LF does (0.945 in 2D and 0.963 in 4D). In
2D, the convergence time was reduced by up to almost 80 % with HF as support. In 4D,
with 200 initialization points, the timing was reduced by more than 90 %.

As discussed in detail in previous work [12, 39], it is not clear how many support fidelity
samples should ideally be used to initialize the MTGPR in transfer learning. Too many
support fidelity samples could “confuse“ or distract[39] the MTGPR model from sampling
regions that are of actual interest to infer the target fidelity global minimum. Confusion
here means that the sampling strategy after initialization of the model is influenced by
support fidelity samples in such a way that MFBO has a worse learning performance
than single-fidelity BO. This could occur especially in the case of a weaker correlation
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between the fidelities. On the other hand, using too few samples can mean that the
potential of transferring useful information with the support fidelity samples is not fully
exploited. With too few samples, the higher computational complexity of the ICM model
could also lead to no savings, although the samples would have useful information.

I tested this using either 100 or 200 initialization points in the 4D optimization task.
Figure 4.4 shows that in the case for LF as support fidelity, 200 initialization points
provides more savings. Here, the average convergence time was about 130 hours for 100
initialization points and about 90 hours for 200 initialization points. In the case of HF
as support fidelity, the difference between the savings reduced drastically. Here, the
average time was about 25 hours for 100 initialization points and about 20 hours for 200
initialization points. This suggests that in the case of a very high correlation, such as
between HF and UHF, the number of support fidelity points is relatively less important
compared to the correlation between the fidelities. For LF as support fidelity, having
more initialization points provided better results.

In the case of transfer learning, where the target fidelity is much more expensive than the
support fidelities, I would recommend to use about twice the number of samples for the
initialization that have been required to find the global minimum in the single-fidelity
experiment.

Multi-task learning experiments

Prescreening multi-task experiments

The prescreening experiments (Section 4.4.2) were conducted to reduce the number of
approaches and use only those that were effective in terms of accuracy (always finding the
global minimum) and efficiency (finding it fast). The results (Figure 4.5 and Figure 4.6)
indicate, that all multi-fidelity approaches perform better than the baseline results.
However, some of those approaches had a bad accuracy or general relatively worse
efficiency. In the following, I will restrict the discussions to the approaches that I rejected
from further analysis, as the successful approaches are discussed in more detail when
they are used with the real simulators.

The accuracies (Table 4.9) indicated that Approaches 4 and 5 often failed to find the global
minimum within the provided computational resources of 100 MFBO iterations. Both of
these approaches belong to the separable acquisition rules, where first the fidelity level
and then the sample location was chosen (Section 2.2.3). The fidelity level was determined
using the global minimum prediction at that iteration, while the sample location was
selected by optimizing a standard acquisition function. With this construction, the choice
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of fidelity and sample location are unrelated to each other, which might have caused the
poor accuracy that we observe with the prescreening experiments.

In terms of efficiency, most approaches seem to perform well. The only exceptions were
approaches A2 and A7, both performed worse than the other approaches when HF was
the support fidelity (Figure 4.5). A2 approach is based on the idea of the Knowledge
Gradient AF: Investigating which next sample location would maximize the difference
between the current posterior model and the posterior model where this sample would be
added. I investigated this posterior difference of the target fidelity and scaled it by the
cost of evaluating a certain fidelity level. The reason is that the posterior model of the
target fidelity typically changes less when a sample from a support fidelity level is added.
By scaling with the cost, we once again have a quantity for information gain, here ’target
fidelity posterior information per cost’. The alanine simulator models indicate that this
approach works reasonably well in the efficiency for LF as support, and rather poorly
when HF is used. This behavior, why the efficiency relatively decreases when the fidelity
combination’s correlation is actually increased, can not be well understood. Therefore, I
rejected this acquisition rule from further experiments.

Approach A7 had a comparably well efficiency for LF as support fidelity, but the
convergence times had a relatively large variation when HF was used as support. Similar
as for A2, the efficiency should actually increase when the correlation between the
investigated fidelities increases, so I rejected this approach from further analysis as
well.

Since the alanine simulator model calculations could be done rather fast, compared to
UHF calculations with the real simulator, I also conducted experiments where I used
MES and MUMBO as AF. I expected MUMBO to outperform MES and ELCB as it
is an AF that is particularly designed for MFBO. However, neither the LF nor the HF
as support fidelity resulted in MUMBO outperforming approaches with ELCB or MES.
Using MES directly also did not result in any major differences in comparison to ELCB.
One possible explanation could be that in the case where the output tasks are strongly
linearly correlated, a standard AF in combination with another heuristic for choosing
the fidelity level, is sufficient. It would be interesting to see the performance of MUMBO
for cases, where there is a much weaker correlation between the fidelities. According to
the prescreening experiment results, MES is also a reasonable choice as an AF to obtain
a decent performance in MFBO. However, since it did not provide significantly improved
results compared to ELCB, I limited myself to ELCB only for further investigations.

As a conclusion, I continued the multi-task experiments using only the approaches A1,
A3 and A6 with ELCB, as those have provided the highest efficiency and accuracy for
the alanine simulator experiments.
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Real simulator multi-task experiments

In the 2D experiments where HF was used as the target fidelity level (Figure 4.7), all
three approaches A1, A3 and A6 resulted in savings for the BO iterations but increased
the CPU convergence times. This is the same result that we have observed in the previous
transfer learning experiment for this fidelity combination. The reason for this is again
the usage of the ICM kernel, which comes at an additional computational cost. For HF
as primary fidelity, the evaluation time of the HF simulator is not large enough to justify
the additional costs of the ICM model. While the baseline converged at around 20 BO
iterations, the three approaches converged at around 12− 16 iterations. However, the
CPU time doubles relatively to the baseline, increasing from 10 minutes up to around
20 minutes for all three approaches. The same result is obtained when HF is used as
target fidelity for 4D optimization (Figure 4.8). While for all three approaches the BO
iterations reduces from about 120 to about 60-70 required samples for convergence, the
CPU time increases from about 1.5 hours up to 4− 5 hours.

When UHF is used as target fidelity, the BO iterations and CPU times exhibit a very
similar trend. For the 2D optimization (Figure 4.9), there is an obvious difference in the
savings, depending on which fidelity is used for the support data. When LF is used as
the support fidelity, the BO iterations reduce from around 20 iterations to around 12− 16
iterations for the approaches A1, A3 and A6. The CPU times reduce from around 75
hours down to around 45− 60 hours (Table A.1). In the scenario of LF as support, A1
performs slightly better than A3 and much better than A6. One possible explanation
why the A6 performs a bit worse for LF as support fidelity could be that this approach
does not take the correlation between the fidelities explicitly into account in the sample
strategy. This might provide useful information and could improve the efficiency in cases
when the fidelities are not strongly correlated.

For the scenario where HF is the support fidelity, the savings are larger again. The
number of BO iterations reduces from 20 (baseline) to around 10 iterations, the CPU
time decrease from around 75 hours to 20 hours. This implies that in 2D optimization,
a strong correlation between the fidelities plays a key role for the savings that can be
established. Also, approach A6 outperforms approaches A1 and A3. As HF and UHF
share a very strong correlation (0.996), it seems that the correlation between the fidelities
does not be taken into account explicitly to obtain a fast convergence.

In the 4D optimization with UHF as target fidelity (Figure 4.10), the BO iterations and
CPU time savings follow again a very similar trend. Unlike in the 2D optimization, there
is hardly any recognizable difference in the savings between the different support fidelities.
This indicates, that for the optimization over a larger search space, the correlation
between the fidelities plays a less important role. The average number of required BO
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iterations goes from about 60 iterations down to about 10 − 15 iterations to reach
convergence. The CPU timings decrease from around 215 hours to around 20− 30 hours.
For LF as support, approach A6 works slightly better than A1 and A3, while for HF
as support, A1 works slightly better than A3 and A6. Another reason why A6 might
have outperformed the other approaches for LF as support is the fact that the global
minimum of LF and UHF are closer to each other than the global minima between HF
and UHF. Approach A6 does not take the correlation strength into account and might
focus more on sampling the same global minimum region, which has been successful in
this case.

Comparing multi-fidelity sampling strategies

In this chapter I will directly compare the sampling strategies of the A1, A3 and A6
approaches. Sampling strategies in this context means, how the multi-fidelity AF chooses
the sample locations in the search space, as well as which fidelity level is chosen at which
BO iteration step.

A visualization of the sampling paths and global minimum predictions makes it possible
to interpret the approaches and to identify possible problems that should be worked on
to improve the respective multi-fidelity AF. I plotted the sample locations xi for each
dimension i in search space for one out of the five experiments of each multi-fidelity
strategy A1, A3 and A6. In addition to the sample locations xi, I plotted the global
minimum prediction x̂i (current prediction at the respective BO iteration) for each
dimension as well.

Figure 4.11 illustrates the sampling strategy for A1. It can be clearly seen that the
strategy has phases of exploration (samples that are further away from x̂i) and exploitation
(samples that are close to x̂i, e.g. between iteration 18-25 or 40-55). In the beginning of
the optimization, the support fidelity simulator is preferred, while occasional samples
are taken from the target fidelity simulator at (almost) equal intervals. After about
60 iterations, the sampling has an exploitation phase and then continues to sample LF
and UHF in almost alternating steps, before continuing with sampling LF more often
again. The long exploitation phase after the 60-th iteration can be interpreted as follows:
The MFBO keeps to sample the support fidelity in this region, until the first sample
from the target fidelity is taken in the same region. The reason for that is that during
the phase where only the support fidelity is sampled, the uncertainty about the target
fidelity in this region is not reduced as much as when the target fidelity itself is sampled.
Therefore, the algorithm continues sampling there, as the information gain per cost of
approach A1 is about reducing the uncertainty of the target fidelity. However, this can
be problematic in high dimensional search spaces, such that the BO algorithm is ’stuck’
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Figure 4.11: Sample locations xi and global minimum prediction for multi-fidelity
strategy A1 for 2D using LF as support fidelity level. Dark backgrounds indicate samples
at target fidelity, light backgrounds samples at support fidelities.

for a large amount of iterations. It could follow that in some scenarios, the budget of
BO iterations is exhausted, although the computational budget is not fully utilized by
sampling only the lower fidelity in such a long exploitation phase. To avoid this, a pure
exploration trigger could be used: As soon as the uncertainty of the support fidelity
is below a threshold, the exploitation phase could be interrupted and pure exploration
activated by evaluating the exploration AF (section 2.1.2).

In strategy 3 (Figure 4.12), similar exploitation and exploration phases can be identified.
The support fidelity level is also sampled more often than the target fidelity level, although
the target fidelity level is often sampled several times in succession. In this strategy,
exploration phases are more prevalent compared to strategy 1.

A bigger difference in the sampling policy can be seen with the strategy 6 (Figure 4.13).
Here, only the support fidelity source is sampled for about the first 35 BO iterations.
Following that, the strategy continues with only sampling the target fidelity level. This
is also what happens in the transfer learning experiments: First, a single-fidelity BO
experiment is carried out for the less accurate fidelity level. After this run has converged,
the data is used to initialize the ICM model and the MFBO algorithm continues to only
sample the target fidelity simulator. In contrast to the transfer learning experiment, here
in strategy 6 the number of support fidelity simulator samples does not have to be chosen
a priori. It can also be seen that this approach requires fewer overall BO iterations to
reach convergence (including the lower fidelity iterations), compared to the previous
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Figure 4.12: Sample locations xi and global minimum prediction for multi-fidelity
strategy A3 for 2D using LF as support fidelity level. Dark backgrounds indicate samples
at target fidelity, light backgrounds samples at support fidelities.
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Figure 4.13: Sample locations xi and global minimum prediction for multi-fidelity
strategy A6 for 2D using LF as support fidelity level. Dark backgrounds indicate samples
at target fidelity, light backgrounds samples at support fidelities.
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Figure 4.14: Average cost to reach convergence relative to baseline. Experiments for
different 2D multi-fidelity with UHF as target fidelity. The x-axis shows the tested
fidelity combinations. The blue color indicates transfer learning experiments, red and
orange colors indicate different multi-fidelity approaches.

strategies. This can be useful for systems with high-dimensional search spaces, for which
the ICM kernel matrix would become very expensive to calculate.

Computational savings comparison of multi-fidelity experiments

Now that I discussed the results of the transfer learning and multi-fidelity learning
approaches, I will compare the approaches directly to make recommendations for obtaining
the highest possible computational savings. Each of the previous experiments provided
statistics for the convergence times. To directly compare the approaches, I ordered all
the different experiments by their mean convergence times in descending order. This
enables us to identify if there is a trend that indicates that certain approaches work
better than others.

In figure 4.14, the results for the 2D multi-fidelity experiments are presented. A clear
trend indicates that for 2D experiments, HF as support fidelity source enables much more
savings than LF does. Using LF as less accurate source, we can recommend using the
multi-fidelity strategy A1, as this results in the greatest CPU time savings. For HF as
support fidelity source, transfer learning with 50 initial points provides the best savings
from all the conducted experiments. Alternatively, if a user wants to avoid choosing the
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Figure 4.15: Average cost relative to baseline for different 4D multi-fidelity experiments
with UHF as target fidelity. The x-axis shows the tested fidelity combinations. Blue
colors indicate transfer learning experiments, red and orange colors indicate different
multi-fidelity approaches.

number of samples used to initialize transfer learning experiments, strategy A6 can be
used, as it results in a comparable cost reduction.

In 4D experiments (Figure 4.15), the situation looks different. Here it is not as clear as
in 2D whether LF or HF is more useful for the cost reduction. If a multi-fidelity BOSS
user wants to apply a LF simulator as a support fidelity source, the most savings can be
expected by using either A6 or A1. For the case where one wants to use HF as support
fidelity source, transfer learning with either 200 or 100 initialization points is expected to
reduce the cost the most. When, once again, the user wants to avoid setting the amount
of initialization points, A6 is recommended.

All the average and median CPU times required to reach convergence are listed in
table A.3. In addition to the results in figure 4.14 and figure 4.15, the table also contains
the results where HF is used as the target fidelity level. For the scenario where HF is the
target fidelity level, single-fidelity experiments should be preferred, as CPU times for the
multi-fidelity experiments exceeded those of the baseline experiments.

The best multi-fidelity strategy A6 can be recommended for systems with very strong
correlation. For systems where the correlation is not as strong, it might be better
to use A1, as this approach takes also the Pearson correlation between the fidelities
automatically into account. For atomic systems larger than alanine, the correlation
between the fidelities can be weaker, here I would also recommend to use approach A1.
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If the amount of BO iterations to reach convergence is known for the support fidelity
simulator, transfer learning can be used by using approximately twice the number of
samples for the initialization of the ICM model. I would only recommend to use MFBO
in BOSS if

• the acquisition times of the fidelity levels are very different,

• if there is a large correlation to be expected between the fidelities, and

• if the average target fidelity acquisition time is significantly larger than the average
time that is required to evaluate the acquisition rule and fit the hyperparameter of
the ICM model (differently formulated: if the extra computational cost caused by
the ICM model can be neglected in comparison to the simulator evaluation cost).

If possible, a user should always use simulators with a higher correlation as the support
fidelity, if the evaluation cost of that support fidelity is comparably small to the target
fidelity.

Reproducibility of the results

The raw data (BOSS output files) from the simulators of all conducted experiments can
be shared upon request. The cleaned and processed data in addition with a Python
package that can be used to reproduce the results in this thesis can also be shared upon
request. The repository also contains further information on the structure of the raw and
processed data and describes how to recreate the analysis. Parts of the data processing
scripts were adapted from reference [39]. The code of the multi-fidelity approaches will
also be incorporated in BOSS.
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5.1 Research conclusion

Motivation that lead to this work

The objective of this research was to test if transfer and multi-task learning techniques
can be used to accelerate BO when applied for the discovery of designs and structures in
computational material science. As with many research questions, half of the solution is
provided by formulating the research objectives as well as possible.

An important component of materials science is the study of structure in materials.
The structure is crucial for many properties, and to study structure there are many
experimental approaches. However, experiments in the laboratory can be slow and
expensive. As an alternative, we can simulate atomistic configurations in materials, using
quantum mechanics theory. This enables us to determine accurate internal energies and
properties at the microscopic and macroscopic level. Taking all possible configurations
for an atomistic system and the corresponding energies into account, we obtain the
so-called potential energy surface. Structures of our interest need to be stable, and
these structures reside in low-energy regions on that surface. Depending on the system,
energy calculations and therefore simulating the potential energy surface can be very
time-consuming. Since we are mostly interested in low-energy regions on that surface, we
don’t need to study the whole surface. BO is an established machine learning technique
that is suitable for the task of efficiently inferring the global minimum of a black-box
function. BO provides an algorithm that sample-efficiently learns low-energy regions,
and is therefore a well suited technique for this task.

Energy calculations at the quantum mechanical level are still very expensive to carry out.
BO provides us an efficient approach, but determining the global minimum at quantum
mechanical accuracy can still be unfeasible for many systems, e.g. larger molecules. To
keep calculations for such larger systems tractable, we can use energy calculations from
less accurate simulators, to which I refer as support fidelity calculations. The problem
I approached in this thesis was to use support calculations in the BO algorithm to
accelerate the inference of the lowest energy state of the target fidelity simulator. To do
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this, I compared a transfer learning and several cost-aware multi-task learning approaches
that I designed and implemented.

I tested if transfer and multi-task learning approaches can be used to accelerate the
already efficient BO approach even further, and if so, how these approaches should be
incorporated in BO. To apply these methods, I used a multi-task GPR model, the so-called
ICM model. The ICM architecture is enabling us to learn multiple machine learning
models simultaneously and exchange information between the models depending on their
linear correlation strength. In this work, the different components in the ICM model
correspond to potential energy surfaces for each simulator that I used. I benchmarked
the different approaches presented in this thesis on an alanine conformer search problem.
The simulator distinguished themselves greatly in their computation time, ranging from
1− 2 seconds up to 3− 4 hours, and exhibited a strong correlation since all simulators
combinations had a linear correlation greater than 0.9.

Transfer learning objectives and results

In transfer learning, the sampling of different simulators follows a sequential order. A
fixed number of samples acquired from a support fidelity BO experiment is used to
initialize the ICM model. If the simulators are correlated with each other, this method
can also construct a reasonably accurate model for the target fidelity by using support
fidelity data. By continuing to apply BO only to the target fidelity, we can expect to
require much fewer samples for the inference of the global minimum, while maintaining a
high accuracy for the energy.

However, it was not clear if this approach can enable computational savings at all.
The ICM model has a higher computational complexity than a standard GPR model,
which increases the evaluation time of the model, especially for many simulator samples.
For simulator combinations with a weaker correlation or a smaller difference in their
evaluation time, there might be no savings possible by using the ICM model. In some
cases, the computational cost could be even increased for finding the global minimum of
the target fidelity simulator.

The questions I addressed for transfer learning are 1) if transfer learning can enable
computational savings, 2) how much computational saving is possible, 3) which transfer
learning configurations enable the most savings and 4) what general recommendations
can be made for the use of transfer learning. I found out that transfer learning has
the potential of saving up to 90 % computational cost over conventional BO
when applied to alanine with the presented simulators. In all experiments I conducted,
transfer learning always decreased the number of required BO iterations to find the
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global minimum. However, when the LF simulator is used in combination with the HF
simulator, there were no computational savings with respect to the CPU time. In higher
dimensional optimization systems, the CPU time even increased significantly. This is
due to the fact that the simulator cost difference between these simulators is not large
enough, so that the additional computational cost created by the ICM model can not be
compensated.

For the quantum chemistry simulator, I found that computational savings resulted every
time when transfer learning has been applied. I tested different amounts of initialization
data and found that using a larger number resulted in more computational savings. In
addition, the transfer learning experiments always found the correct global minimum.

Based on my research results, I recommend the use of transfer learning if the difference
in the evaluation times of the simulators is significantly large and if the target fidelity
simulator cost significantly exceeds the additional computational costs caused by the
ICM model. When BO is applied to lower dimensional configuration spaces (d = 2), it is
important that the simulators share a very strong linear correlation to obtain significant
(up to 80 %) computational savings. For higher dimensional spaces, I found that the
correlation can be weaker and would still enable a large amount of savings, which is also
consistent with results from previous work [12]. I would recommend to use twice the
amount of samples that were required to find the global minimum of the support fidelity
simulator as the number of initialization points for transfer learning.

Multi-task learning objectives and results

In multi-task learning, the idea is again to use data from different simulator sources. The
key difference to transfer learning is that both fidelity levels are used throughout the BO
algorithm. At each BO iteration, the algorithm has to decide not only which location
to sample, but also what simulator to use for the next sample. This is the extension of
BO to MFBO. I implemented and tested seven different heuristic rules, to decide the
sampling source at each MFBO iteration. Similar to the transfer learning scenario, I used
the ICM model. In addition, I implemented and tested new acquisition functions, the
Max-value entropy search [36] and MUMBO [17] and applied them in the multi-fidelity
framework.

The questions to be answered for multi-task learning are about 1) if multi-task learning
can enable savings, 2) if so, how many savings are possible, 3) what configurations or
approaches for the acquisition function are more efficient, and 4) what recommendations
are reasonable for the successful use of multi-task learning. Like in transfer learning, I
found sampling strategies that save up to 90 % computational resources while reaching
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the same level of accuracy for the global minimum inference. This corresponded to a
reduction from on average 9 days down to about 20 hours on average. I found
that two strategies have a high efficiency and a high accuracy, meaning they result in
many computational savings and are consistently finding the correct global minimum.
The first approach (approach 1 in this thesis) chooses the next sampling location by a
standard acquisition function and decides on the simulator based on which simulator
reduces the uncertainty of the target fidelity model the most, scaled by the CPU time it
takes to evaluate that simulator. This establishes a trade-off between information of a
sample about the target fidelity and the cost of evaluating a simulator at that sample
location. The second approach (approach 6) minimizes the acquisition functions for each
fidelity level and chooses the sample location and corresponding fidelity, which has the
lowest acquisition function value (this approach requires the models to be on the same
scale). This approach was also very successful with computational savings, although the
simulator correlation is not explicitly taken into account in the acquisition rule. The
separable empirical approaches performed better than the theoretically derived multi-task
acquisition rule MUMBO. This could have been the case because the fidelities shared a
very strong correlation. The acquisition functions ELCB and MES showed a very similar
efficiency when applied to a prescreening experiments, where alanine simulators were
used.

For configuration spaces with d = 2 and highly correlated simulators, I recommend using
the approach 6, as this approach has generally enabled more computational savings than
the other tested approaches. In the case of d = 4, approaches 1 and 6 both provided
the most savings. However, approach 6 does not take the Pearson correlation between
the simulators into account, which would be important in case the simulators are not
as correlated as they were for the tested alanine system. If a user is not sure about the
strength of correlation between two simulators, I recommend to use approach 1.

In addition to testing the transfer and multi-task learning approaches individually, another
objective was to compare them directly. Whether transfer learning or multi-task learning
is more successful depends on the system and the used simulators. Neither method has
proven to be consistently dominant in terms of computation savings over the other.

My results demonstrated that for configuration spaces with dimension d = 4, multi-task
learning worked very well for both support fidelities, while in transfer learning the choice
of the support fidelity had a major impact on the savings. Despite this, transfer learning
had the most possible savings, both for the 2D and the 4D optimization, however the
savings depend very much on the support fidelity choice and the number of initialization
points.
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5.2 Outlook

The overall conclusion is that multi-fidelity approaches to BO have a very great potential.
The results of this work served as a proof of concept that transfer and multi-task learning
can enable many computational savings for the application of BO in materials science.
Nevertheless, the approaches should be tested more to better understand benefits and
potential limitations.

In this work, I used the alanine conformer search problem to benchmark the approaches.
Alanine is a rather small molecule, therefore the approaches should also be tested on more
complex structures, which have higher dimensional configuration spaces. It would also
be beneficial to see the approaches applied to other tasks, e.g. for a surface adsorption
task.

The simulators I used had a strong linear correlation, which is a prerequisite for the
success of the ICM model. When transfer and multi-task learning are applied to systems
with a weaker or not necessarily linear correlation, other multi-task models could be
more beneficial. Alternative candidates are to use the more general LMC instead of
the ICM model or an auto-regressive model [58], which establishes a hierarchy between
different tasks (in this case we could define the hierarchy by the accuracy level of each
simulator). In the current ICM approach, the Pearson correlation coefficients are treated
like other hyperparameters and get fitted by maximizing the log marignal likelihood. An
interesting alternative that might increase the performance is to calculate the coefficients
explicitly, this is called the PCM kernel [13].

Further research should also focus more on the entropy acquisition functions, which I
did not test with the real simulators. These AFs are theoretically derived instead of
heuristically motivated. This does not necessarily mean that these AFs work better,
but nevertheless it would still be interesting to see them used in BO. I added the MES
and MUMBO AF to BOSS, it would be useful to test these functions also for higher
dimensional systems, since I limited myself in this work to apply them to the 2D alanine
simulator model. Another promising multi-fidelity acquisition function approach is
Gibbon [59], which is implemented in BoTorch [60]. It would be interesting to investigate
the performance of this function applied to optimization problems in materials science
and to compare this approach directly with MUMBO.
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A Convergence statistics

A.1 Multi-fidelity experiments

Table A.1: Convergence times in hours for 2D multi-task learning approaches. The
statistics summarize five experiment repetitions of the respective approach. Out of all
experiments, only one of the five experiments for LF→ UHF A1 has not converged. Bold
values indicate the multi-task learning approaches with the most savings with respect to
the corresponding fidelity combination.

Fidelities Approach Mean Std. Min Median Max
HF BL - 0.18 0.02 0.15 0.18 0.20

LF → HF 1 0.29 0.05 0.25 0.28 0.37
LF → HF 3 0.39 0.13 0.29 0.34 0.61
LF → HF 6 0.27 0.06 0.20 0.24 0.36
UHF BL - 74.60 9.24 66.17 71.29 88.61

LF → UHF 1 43.31 7.20 37.94 40.98 53.34
LF → UHF 3 59.28 17.98 40.96 52.10 83.831
LF → UHF 6 53.67 12.47 34.50 53.38 68.75
HF → UHF 1 27.80 13.30 15.31 26.56 47.54
HF → UHF 3 31.92 6.57 22.05 35.12 37.81
HF → UHF 6 21.01 8.01 14.57 17.95 34.78
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A Convergence statistics

Table A.2: Convergence times in hours for 4D multi-task learning approaches. The
statistics summarize five experiment repetitions of the respective approach. Out of all
experiments, 2/5 experiments for LF → UHF A3 and 3/5 for HF → UHF A3 have not
converged. Bold values indicate the multi-task learning approaches with the most savings
with respect to the corresponding fidelity combination.

Fidelities Approach Mean Std. Min Median Max
HF BL - 1.25 0.21 0.92 1.29 1.50

LF → HF 1 4.37 0.65 3.67 4.48 5.04
LF → HF 3 5.03 0.48 4.49 5.24 5.37
LF → HF 6 3.90 0.27 3.45 4.03 4.10
UHF BL - 214.90 60.28 178.43 180.56 318.98

LF → UHF 1 30.17 7.79 20.21 34.60 36.99
LF → UHF 3 34.37 14.75 21.07 31.81 50.23
LF → UHF 6 26.19 16.47 16.92 19.56 55.49
HF → UHF 1 30.50 14.47 20.87 24.54 56.02
HF → UHF 3 33.42 17.93 20.64 33.42 46.09
HF → UHF 6 39.05 23.50 21.15 29.25 78.61
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A.2 Comparison of transfer learning and multi-task
learning

Table A.3: Summary of the convergence times for all multi-task approaches. The times
are normalized with respect to the corresponding baseline convergence times. The (*)
indicates that the computation time is not exactly 100 % but very close to the baseline
duration.

Dim. Fidelities TL Init. Approach Mean Median
2D LF → HF 50 - *100 % *100 %
2D LF → HF - 1 161.11 % 155.56 %
2D LF → HF - 3 216.67 % 188.89 %
2D LF → HF - 6 150.00 % 133.33 %
4D LF → HF 200 - 152.80 % 158.91 %
4D LF → HF - 1 349.60 % 347.28 %
4D LF → HF - 3 402.40 % 406.20 %
4D LF → HF - 6 312.00 % 312.40 %
2D LF → UHF 50 - 66.31 % 68.73 %
2D LF → UHF - 1 58.06 % 57.48 %
2D LF → UHF - 3 79.46 % 73.08 %
2D LF → UHF - 6 71.94 % 74.88 %
2D HF → UHF 50 - 21.51 % 25.07 %
2D HF → UHF - 1 37.27 % 37.26 %
2D HF → UHF - 3 42.79 % 49.26 %
2D HF → UHF - 6 28.16 % 25.18 %
4D LF → UHF 100 - 60.72 % 76.50 %
4D LF → UHF 200 - 41.63 % 44.31 %
4D LF → UHF - 1 14.04 % 19.16 %
4D LF → UHF - 3 16.00 % 17.62 %
4D LF → UHF - 6 12.19 % 10.83 %
4D HF → UHF 100 - 11.83 % 1.72 %
4D HF → UHF 200 - 9.16 % 10.83 %
4D HF → UHF - 1 14.19 % 13.59 %
4D HF → UHF - 3 15.55 % 18.51 %
4D HF → UHF - 6 18.17 % 16.20 %
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Glossary

BO

Bayesian optimization: Optimization algorithm used to determine the global
optimum of a black-box function for which no functional forms or properties are
assumed.

MFBO

Multi-fidelity Bayesian optimization: Extension of the standard Bayesian optimiza-
tion approach to utilize data from a lower fidelity model to further reduce the
optimization cost.

ICM

Intrinsic model of coregionalization: Multi-output Gaussian process regression
model in which observed data is represented as a linear combination of a set of
latent independent variables that share the same spatial kernel.

LMC

Linear model of coregionalization: Multi-output Gaussian process regression model
in which observed data is represented as a linear combination of a set of latent
independent variables.

GP

Gaussian process: Stochastic process (a set of random variables indexed by time or
space variables) in which every finite collection of random variables is distributed
according to a multivariate normal distribution.

GPR

Gaussian process regression: Using a Gaussian process for a regression task, often
used to obtain non-parametric machine learning models.
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Glossary

AF

Acquisition function: Heuristic function used in Bayesian optimization to evaluate
the usefulness or information of a next sampling candidate to achieve the objective
of optimizing a black-box function.

ELCB

Exploratory lower confidence bound: Acquisition function that is constructed using
the sum of posterior mean and variance, enables balance between exploitation and
exploration.

EI

Expected improvement: Acquisition function that quantifies how much improvement
we would expect (improvement means finding a a lower function value than the
current lowest observed function value) when sampling at a new location.

ES

Entropy search: Acquisition function that quantifies the information gain about
the global minimum location that is expected at a new sampling location.

PES

Predictive entropy search: Acquisition function that quantifies the information gain
about the global minimum location that is expected at a new sampling location.
Computationally lighter version of the entropy search acquisition function. In this
thesis, ’PES’ is also used to refer to the potential energy surface, ’PES AF’ refers
to the acquisition function.

MES

Max-value entropy search: Acquisition function that quantifies the information
gain about the global minimum value that is expected at a new sampling location.

MUMBO

MUlti-task max-Value Bayesian optimization: Multi-task version of the Max-value
entropy search acquisition function that takes the correlation between different
tasks into account.

MTGPR

Multi-task Gaussian process regression: Multi-output Gaussian process regression
where the outputs are related to each other.
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Glossary

BOSS

Bayesian optimization structure search: A Python library that uses Bayesian
optimization for global minimium inference in materials science minimization tasks.

UHF

Ultra high fidelity: Highest level of fidelity used throughout this thesis work,
accuracy based on quatum chemistry theory.

HF

High fidelity: Accuracy level based on density functional theory.

LF

Low fidelity: Lowest level of fidelity used throughout this thesis work, accuracy
based on force fields theory.

PES

Potential energy surface: The potential energy surface describes the energy of
a system such as a molecule in dependence of parameters, often the degrees of
freedom. The surface is often used in chemistry and physics to find structures with
minimum energy or to determine rates in chemical reactions.
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List of Algorithms

1 Bayesian optimization structure search pseudo-code . . . . . . . . . . . . 32
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