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Abstract

Smart buildings are buildings equipped with numerous sensors and actuators, allowing them to
evaluate the state of the environment in or around them and react to it or alter it. Accordingly, one
could use this available technology in order to optimize the operation of the buildings in terms of
sustainability. One option to approach this challenge is through Hierarchical Task Network (HTN)
planning, which allows us to analyze the current state of the environment and create a plan to be
automatically executed by the actuators, achieving a certain goal. In this study, we systematically
analyze the domain of smart buildings and identify strategies with which we can optimize the
energy efficiency. We put primary focus on load balancing and HVAC control techniques and
develop a domain model for HTN planning concentrating on them. Special attention is paid to
usability and ensuring that the model satisfies the requirements of the occupants. Furthermore, we
explore the question of how to represent the uncertain nature of the domain in its model. We choose
to realize an approach based on cost-variable operators. For this, we use operators whose cost is
non-deterministic. We implement our model and evaluate the implementation in terms of quality
and quantity. Our solution proves to lead to a significant decrease in electricity bills, making its
usage not only beneficial for the environment but also for its users.
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Kurzfassung

Smart Buildings sind Gebäude, die mit zahlreichen Sensoren und Aktuatoren ausgestattet sind,
die es ihnen ermöglichen, den Zustand ihrer Umgebung zu bewerten und darauf zu reagieren. De-
mentsprechend entsteht die Idee, mit Smart Buildings den Wohnungssektor in Sachen Nachhaltigkeit
zu optimieren. Eine Möglichkeit, dieser Herausforderung zu begegnen, ist das Hierarchical Task
Network (HTN) Planning. Es ermöglicht uns, den aktuellen Zustand der Umgebung zu analysieren
und einen Plan zu erstellen, der automatisch von den Aktuatoren ausgeführt wird, um ein bestimmtes
Ziel zu erreichen. In dieser Studie analysieren wir systematisch den Bereich Smart Buildings und
identifizieren Strategien, mit denen wir deren Energieeffizienz optimieren können. Wir legen den
Fokus auf Lastausgleichs-, Heiz- und Kühlsteuerungstechniken und entwickeln ein Domänenmodell,
das sich darauf konzentriert. Dabei wird besonderer Wert auf Benutzerfreundlichkeit gelegt und
darauf geachtet, dass das Modell den Andorderungen der Bewohner entspricht. Darüber hinaus
beschäftigen wir uns mit der Frage, wie die probabilistische Natur der Domäne im Modell abgebildet
werden kann. Wir entscheiden uns für einen Ansatz, der auf kostenvariablen Operatoren basiert.
Dazu verwenden wir Operatoren, deren Kosten nicht deterministisch sind. Wir setzen unser Modell
um und bewerten die Umsetzung qualitativ und quantitativ. Unsere Lösung führt nachweislich zu
einer erheblichen Senkung der Stromrechnung, wodurch ihre Nutzung nicht nur für die Umwelt,
sondern auch für die Benutzer von Vorteil ist.
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1 Introduction

1.1 Motivation

According to the European Statistical Office, the housing sector accounts for 28% of the energy
usage in the European Union for 2020, making it the second-largest consumer after the transportation
sector (with 28.4%) [Offb]. This percentage is expected to grow further in the years to come, as
Reyna et al. [RC17] even predict an electricity demand increase of 41 − 87% between 2020 and
2060. Additionally, taking into consideration the effects of the COVID-19 pandemic and how it
affected the industry, those estimates might even be too low. The reason for this is the adoption
of new workspace practices by many companies, shifting from using commercial buildings and
offices, towards allowing and even encouraging remote and hybrid working [FWR; MZH]. It is
expected that by 2025, 40.7 million USA citizens will be working remotely, accounting for an
increase of 87%, compared to the levels until 2019 [FWR]. Such a change would burden not only
the environment and the energy infrastructure, but also the residents. The reason for this is the
observed increase in the electricity bill by 167% on average in the cold months when switching from
going to work to working remotely in home-office [Che20]. Those projections imply the urgent
need to make the housing sector more sustainable in regard to energy management and usage.

Analysis of energy sources in housing shows that the second most used energy source in buildings
in the EU is electricity, which in Malta is even the main source, accounting for 70% of energy
[Com]. The current importance of electricity and the projected future decline in demand for natural
gas [Age], the main energy source in the EU, speak for the need for solutions specifically aimed at
optimizing household electricity consumption.

The smart grid is a concept for an improved electrical grid, allowing dynamic pricing from competing
providers as well as better integration of renewable energy sources. In this way, it also enables
the users to purchase electricity at lower prices. The dynamic pricing strategy would also lead to
shifting part of the demand from on-peak to off-peak hours due to the cheaper prices (load shifting).
As an effect, more renewable energy would be used and the load on the grid would be distributed
more evenly, leading to a more sustainable operation [Mat19]. However, optimal use of the smart
grid would require constant monitoring or day-ahead analysis of electricity prices, active planning
of the electricity purchases, and the working times of the household appliances. All of this has
to be done in accordance with the analysis results and has to be followed by the execution of the
created plans. The whole process demands very strong user involvement, and even then it can still
be infeasible for humans due to the large amounts of data. Therefore, utilizing the smart grid in the
explained way requires automation.

Automation at such level, including analysis and planning phases, as well as the automatic execution
of the computed plan, can be realized in smart buildings. A smart building is a building, which
is equipped with different sensors and actuators, which allow its management systems to make
informed decisions to control the environment, e.g., turning lighting on and off. If the system
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1 Introduction

incorporates automated planning functionality (incorporates a planner), it can also plan how to
control the environment so that it satisfies some predefined objectives, e.g., energy saving and
minimizing the electricity cost. In this case, the planner searches through the search space of
possible actions to undertake and constructs a plan, a sequence of actions, whose execution should
fulfill a predefined goal. The automated planning requires the usage of Artificial Intelligence (AI)
in order to be able to reason over the knowledge base [GNT04a].

Hierarchical Task Network planning (HTN planning) is a technique for AI planning, which is
exceptionally suitable for planning in the building domain due to its allowance for modularity.
The housing sector, as most fields from real life, is characterized by various levels of granularity
and constant changes. Since HTN planning supports both primitive and compound tasks, we can
realistically recreate those different granularity levels into the domain model. Furthermore, the
hierarchy ensures high flexibility of the model. We can alter isolated methods or operators without
drastically affecting the overall structure [GNN+17].

An additional characteristic of this domain, besides its granular structure, is its dependency on
uncertain factors, e.g., on the weather forecast. According to it, a smart home often decides whether
to cool/heat a house or not and estimates how much solar energy it will have at its disposal. As a
result, a wrong weather forecast may lead to the home having less energy than estimated. This could
lead to additional unplanned purchases from the smart grid and differing costs from the estimated
ones. Accordingly, every plan, constructed with dependence on such uncertain factors, for example,
on the weather forecast, is of probabilistic nature. A “probabilistic plan” can be defined in many
ways, e.g., a plan whose real execution cost differs from the estimated one, as in the weather forecast
example. Another definition could be a plan for which we are not completely sure whether it will
indeed be executable in the real situation. Therefore, factors of uncertainty in a domain can have
huge implications on the plans for it. Not identifying the possible implications and, consequently,
failing to adapt the domain model to counteract them, will often cause problems. For example, we
could assume that the cost of executing a created plan is always deterministic, but when we start
using the solution, we would find out that, because of factors of uncertainty, the cost is 10 times
higher.

However, HTN planning where the uncertainty is incorporated in the domain model is a concept
that has been theorized [AGA22; GA16], but not really implemented in reality. The more typical
approach for planning under uncertainty is the usage of probabilistic planning [CC07; Ric17].
Therefore, the representation of the probabilistic nature of the domain in its model is of particular
interest, and thus addressed later in this study. Additionally, most scientific works addressing
the problem of making smart buildings more sustainable through AI or HTN planning usually
focus either on global benefits or on local ones [AEA12; KJU+13]. “Global” means prioritizing
advantages on a larger scale, e.g., reducing electricity usage on a national level, by making some
“local” sacrifices [KJU+13], e.g., not using air conditioning in summer. “Local” regards the reversed
direction—big advantages for the occupants, which don’t make a big impact on the larger scale.
Accordingly, solutions combining both approaches are desirable. Consequently, this study aims at
developing a strategy ensuring both types of gains.
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1.2 Objective

The aim of this bachelor’s thesis is to develop an approach to optimizing energy consumption in
smart buildings that uses HTN planning. Firstly, we systematically acquire knowledge about the
housing sector and smart buildings in order to identify areas of the domain whose improvement
will lead to their more sustainable operation. As a next step, we model the smart home domain
for HTN planning by mapping the acquired knowledge to HTN planning constructs. Due to the
uncertain nature of the domain to be modeled, we also deal with the issue of determining different
sources of uncertainty and finding a way to represent their impact in the planning process. Finally,
we implement the model and evaluate the developed solution. For this, we test it on various problem
instances and evaluate its effectiveness against the defined objectives by creating and applying an
evaluation framework.

For this thesis, we are focusing on smart homes, as smart buildings from the residential buildings
sector. Even though office buildings account for a large proportion of the energy usage, they often
remain a territory of various interests, meaning that an additional strategy for energy management
would be necessary. Such strategy would address questions such as: “How is the storage space in a
BESS (Battery Energy Storage System) divided among the different owners and tenants? Can they
use the unused storage space of others? If yes, according to what rules?”, etc. The answers to those
questions may require different implementations of the domain model. Since the development of
such a strategy is not within the scope of this work, we have decided to focus only on residential
housing and not on the entire building sector. However, our domain model, the used algorithms,
and the example planning problems can be easily adapted for the commercial sector, to meet the
needs of office buildings, once the aforementioned strategy has been determined.

1.3 Outline

The remainder of this thesis is organized as follows. In Chapter 2 we introduce the background
information for the study while focusing on the core concepts of AI and HTN planning. We then
move on to describe our methodical approach for the research in Chapter 3. More specifically, firstly,
in Section 3.1, we explain both the conceptual framework based on which we perform knowledge
acquisition and the resulting findings. Then we address the more complex requirements of the
domain in Section 3.2. Finally, we present and discuss how we model the domain in Section 3.3.
Chapter 4 provides all details about the implementation of the developed model, while Chapter 5
offers an evaluation of the solution. Chapter 6 discusses related work. In Chapter 7, we provide a
summary of the conducted research and the derived conclusions, and finally point out fields, which
need further research.
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2 Background Information

In this chapter, we introduce the preliminaries necessary for understanding this thesis. Firstly, we
explain the concept of automated planning and afterwards present HTN planning as a specific
planning technique. Then we examine the smart buildings and the smart grid domain and define the
related terminology. Finally, we provide some insight into uncertainty in AI planning and HTN
planning to be able to address the probabilistic nature of the domain later.

2.1 Automated Planning

Automated planning, also called AI planning, is a branch of artificial intelligence, dealing with the
creation of plans which lead to the satisfaction of some pre-defined goal. In the planning context, a
plan is a series of actions whose execution in a specific initial state would lead to achieving the
chosen goal. The initial state is a description of the state of the environment from which the plan
should be executed. The goal is defined differently for the different planning techniques. However, it
usually gives the state of the environment (or a part of it) that should be observed after the execution
of the plan. We must point out that this is not valid for the goal in HTN planning, whose definition
is offered in Section 2.2. The plan (the series of actions) can be ordered or not, allowing for very
diverse use cases of AI planning.

Solving a problem with automated planning is a process associated with multiple phases, as depicted
in Figure 2.1. The first step is always domain knowledge acquisition, which can be followed by
a thorough review of all complex domain requirements. Next are the modeling of the domain,
its implementation, and evaluation. Finally, if the results of the evaluation are satisfactory, the
constructed model and its implementation can be used to create plans for specific domain problem
instances.

During the domain knowledge acquisition part, the developer follows a chosen conceptual framework
to get acquainted with the specifics of the domain and the way everything in it functions (the
domain “physics”). The second phase, addressing the problem requirements, is about identifying
and understanding the more complex requirements of the domain. It is important to review them
thoroughly since their satisfaction could complicate the model a lot or could require novel solutions.

Figure 2.1: Approach for solving a problem with automated planning
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The acquired knowledge is then used in the domain modeling part to build the domain model, which
includes the different domain elements, their states, and the actions which can change those states.
Of course, the model is created at a certain level of abstraction, omitting irrelevant details, which
would only increase the complexity. Both the “research” phase and the modeling are critical for the
whole process since every plan for every problem instance will be constructed entirely according to
the knowledge in the domain model. Therefore, any misrepresentations, inexactness, or errors in the
model can lead to wrong plans, whose execution would not only not bring the wanted results, but
might even be harmful. This is also the reason the evaluation part of the planning process should
never be skipped. A comprehensive evaluation covers various aspects of the testee, therefore we
differentiate between multiple types of evaluation. According to Georgievski et al. [GA16], we can
distinguish demonstrations, as well as quantitative, qualitative, and usability evaluation. For the
demonstrations we often use scenarios, meaning that we construct the problem instance to represent
a situation, for which we know what a good plan would be. This form of evaluation allows us to
examine the credibility and effectiveness of the constructed plans. With the quantitative evaluation,
we review the performance of the planner, e.g., we could analyze the scalability of our solution with
respect to the size of the initial state. The qualitative evaluation looks at the quality of the created
plans, for example, by comparing them to plans created with other planners/approaches. There is
also usability evaluation. It measures how easy a solution is to use and whether, and to what extent,
it covers the needs and expectations of the user. However, it is used relatively rarely, as pointed out
by Georgievski et al. [GA16]. We are not conducting a usability evaluation for this study either, as
depicted in Figure 2.1.

As it can be seen, solving problems with automated planning is a computation-intensive process.
Therefore, it is not recommended to be used for areas, which require very basic reasoning and can
be easily grasped by humans.

The creation of a plan to solve a specific problem in the domain is the task of a so-called planner.
A planner’s input consists of a planning domain model and a planning problem. For this input, it
outputs a plan which solves the problem instance according to the “physics” of the domain. Those
“physics” are described in the given domain model. In order for this to be possible, the problem
instance should contain an initial state and a goal. The planner searches in the search space for
actions whose performance is possible in the specific state and would also lead to achieving the
goal(s) or alter the state of the planning domain, enabling the performance of other actions which
facilitate reaching the goal(s). As already mentioned, the planner acts entirely according to the
information in the domain model and considers only the actions described there in the way described
there.

Since usually multiple plans can be constructed for the same initial state and goals, we can define
objectives, which guide the planning process to create an “optimal” plan, according to some
criteria. Such objectives can be to decrease the planning time as much as possible, to construct a
plan, consisting of a minimal number of actions, or to minimize the cost. This objective is then
incorporated into the search algorithm of the planner.
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2.2 HTN Planning

Hierarchical Task Network (HTN) planning is a technique for AI planning, and, accordingly, works
with the same elements we described in the previous section – domain model, containing the
obtained domain knowledge, and problem instances, consisting of an initial state and one or more
goals. The goals in HTN planning are given in a so-called initial task network [GA15]. However,
since the formal definitions for those constructs show some variations across different scientific
works, in this research study we define and use those constructs according to their meaning in
[GNT04b]. In the remainder of this section, we explain those constructs and their usage.

A task-network is a hierarchy of tasks, each of which can be primitive or compound, where the
compound tasks can be broken down in other primitive or compound tasks. The initial task network
includes the tasks which we want to accomplish (goal tasks). Every sequence of primitive tasks
which represent a decomposition of the initial task network, is called a plan for the given problem
instance. Respectively, by executing the created plan, we execute the tasks of which it comprises.

The decision whether a certain compound task can be decomposed in a specific way depends both
on the possible decompositions, described in the domain model, and on the current domain state.
The states in HTN planning are conjunctions of ground predicates. A predicate consists, as defined
by [GA15], of a name of the predicate and an ordered sequence of terms 𝜏1, ..., 𝜏𝑛, which can be
either variables or constants. The predicate can take only two values – true or false, however, the
value can vary in different states. For example, let ⟨𝑜𝑛, (𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒)⟩ be a predicate describing
whether the appliance the variable appliance will be bound to is on. Let the predicate ⟨𝑜𝑛, (𝑡𝑣)⟩ be
true in state 𝑆1, meaning that the TV is on. If we execute the task of switching tv off in 𝑆1, then in
𝑆2 ⟨𝑜𝑛, (𝑡𝑣)⟩ will hold the value false. Additionally, we distinguish between two types of predicates
regarding their terms – non-ground and ground. The latter has no variables, but only constants, e.g.,
⟨𝑜𝑛, (𝑡𝑣)⟩, but not ⟨𝑜𝑛, (𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒)⟩, given that we’ve defined appliance as a variable and tv as a
constant.

The domain model is a set of methods and operators. An operator is a primitive executable task
together with the preconditions for its execution and its effects on the domain state. A method,
on the other hand, refers to a compound task which can be decomposed with this method, and
also includes the preconditions that need to be satisfied for the method to be applicable, as well as
the task network representing the decomposition. The preconditions of an operator or method are
a conjunction of predicates, all of which have to evaluate to true in a certain state S, so that the
corresponding operator/method can be applied in this state S. An explanation when a predicate
evaluates to true or false in a given state is provided later in this section.

As mentioned in Section 2.1, the actual automated planning is a responsibility of a planner. There
exist multiple types of AI planners for the different planning techniques [GNN+17], meaning that
hierarchical planning requires the usage of an HTN planner. In this work, we use state-based
planning and, accordingly, state-based HTN planners. Such a planner takes the domain model,
initial domain state, and goals, here in the form of an initial task network (itn). Then, it starts
performing task decomposition on the itn until there are no more compound tasks [GA15]. The
planner chooses a task 𝑡 from the current task network 𝑡𝑛. If 𝑡 is primitive and its corresponding
operator is applicable in the current state of the domain, the operator is applied, and the state is
updated according to its effects. If 𝑡 is a compound task, the planner identifies methods that provide
decompositions for 𝑡. One strategy for the planner to decide which of those methods to use can be
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to do non-deterministically and then check whether the domain’s state satisfies its preconditions. If
so, the compound task is broken down into the task network offered by the method. If no complete
decomposition can be produced, this means that no plan exists to achieve the tasks from the initial
task network, when starting from the given initial state and acting according to the domain model.

In the remainder of this section, we provide formal definitions of different HTN planning constructs
and approaches, which are according to [GNT04b].

Definition 2.2.1 (Predicate)
A predicate is defined as: 𝑝 = ⟨𝑛𝑎𝑚𝑒(𝑝), 𝑡𝑒𝑟𝑚𝑠(𝑝)⟩, where:

• name(p) is the name of the predicate

• 𝑡𝑒𝑟𝑚𝑠(𝑝) = ⟨𝜏1, ..., 𝜏𝑛⟩ is an ordered sequence of terms, for which applies: ∀𝑖 ∈ {1, .., 𝑛} :
𝜏𝑖 ∈ 𝐶 ∪𝑉 . C represents the set of constants and V the set of variables.

A predicate can evaluate only to the values true and false.

Definition 2.2.2 (Ground Predicate)
A ground predicate is predicate 𝑝 = ⟨𝑛𝑎𝑚𝑒(𝑝), 𝑡𝑒𝑟𝑚𝑠(𝑝)⟩, where 𝑡𝑒𝑟𝑚𝑠(𝑝) = ⟨𝜏1, ..., 𝜏𝑛⟩ and
∀𝑖 ∈ {1, .., 𝑛} : 𝜏𝑖 ∈ 𝐶

Definition 2.2.3 (Primitive Task)
A primitive task is defined as: 𝑝𝑡 = ⟨𝑛𝑎𝑚𝑒(𝑝𝑡), 𝑡𝑒𝑟𝑚𝑠(𝑝𝑡)⟩, where:

• name(pt) is the name of the primitive task,

• 𝑡𝑒𝑟𝑚𝑠(𝑝𝑡) = ⟨𝜏1, ..., 𝜏𝑛⟩ is an ordered sequence of terms.

Definition 2.2.4 (Compound Task)
A compound task is defined as: 𝑐𝑡 = ⟨𝑛𝑎𝑚𝑒(𝑐𝑡), 𝑡𝑒𝑟𝑚𝑠(𝑐𝑡)⟩, where the different parts have the
same meaning as in primitive tasks.

Definition 2.2.5 (Task Network)
A task network is defined as: 𝑡𝑛 = ⟨𝑇, 𝐶𝑜⟩, where:

• 𝑇 = {𝑡1, ..., 𝑡𝑛}, where ∀𝑖 ∈ [1, 𝑛] : 𝑡𝑖 is a task, primitive or compound.

• 𝐶𝑜 is a set of constraints, which apply to the tasks in 𝑇 .

[GNT04b] describe different types of constraints, but we will only use the precedence constraint
𝑡𝑖 ≺ 𝑡 𝑗 , which defines the order of the tasks in the task network. The example given means that 𝑡𝑖
precedes 𝑡 𝑗 .

Definition 2.2.6 (State)
A state is defined as a set of ground predicates 𝑝𝑖: 𝑠 = {𝑝1, 𝑝2, .., 𝑝𝑛}. The order of the predicates
can be random, since it is of no importance.

Definition 2.2.7 (Predicate Evaluation)
We define the predicate evaluation function 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝, 𝑠) ∈ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} where 𝑝 is a predicate,
and 𝑠 a state. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝, 𝑠) = 𝑡𝑟𝑢𝑒,iff 𝑝 ∈ 𝑠, in this case we say that the predicate 𝑝 applies in
the state 𝑠.
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Definition 2.2.8 (Operator)
An operator is defined as: 𝑜 = ⟨𝑝𝑡 (𝑜), 𝑝𝑟𝑒(𝑜), 𝑒 𝑓 𝑓 (𝑜), 𝑐𝑜𝑠𝑡 (𝑜)⟩, where:

• 𝑝𝑡 (𝑜) is the primitive task the operator solves

• 𝑝𝑟𝑒(𝑜) are the preconditions - a set of predicates, all of which should evaluate to true in
the current state of the environment, in order to apply the operator 𝑜. Formally, we can
formulate this as ∀𝑝𝑖 ∈ 𝑝𝑟𝑒(𝑜) : 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑖 , 𝑠) = 𝑡𝑟𝑢𝑒, where 𝑠 is the current state of the
environment,

• 𝑒 𝑓 𝑓 (𝑜) = {𝑒 𝑓 𝑓 −(𝑜), 𝑒 𝑓 𝑓 +(𝑜)} are the effects of the operator. Let 𝑠 be the current state
of the environment, and 𝑠1 the state after the application of the operator. Then it applies:
𝑠1 = (𝑠 \ 𝑒 𝑓 𝑓 −(𝑜)) ∪ 𝑒 𝑓 𝑓 +(𝑜)

• 𝑐𝑜𝑠𝑡 (𝑜) is the cost of applying the operator

Definition 2.2.9 (Method)
We denote methods as 𝑚 = ⟨𝑐𝑡 (𝑚), 𝑝𝑟𝑒(𝑚), 𝑡𝑛(𝑚)⟩, where:

• 𝑐𝑡 (𝑚) is the compound task the method decomposes,

• 𝑝𝑟𝑒(𝑚) are the preconditions, as defined for operators,

• 𝑡𝑛(𝑚) is the task network resulting from the decomposition of the compound task 𝑐𝑡 (𝑚) by
the method m.

Definition 2.2.10 (Planning Domain)
A planning domain is defined as 𝑑 = ⟨𝑂, 𝑀⟩, where

• 𝑂 is a set of operators,

• 𝑀 is a set of methods.

Definition 2.2.11 (Planning Problem)
A planning problem is denoted as: 𝑃 = ⟨𝑠0, 𝑡𝑛0, 𝑑⟩, where:

• 𝑠0 is the initial state of the environment,

• 𝑡𝑛0 is the initial task network,

• 𝑑 is the domain model, according to which the solution is to be constructed.

Definition 2.2.12 (Solution)
A solution of a planning problem 𝑃 = ⟨𝑠0, 𝑡𝑛0, ⟨𝑂, 𝑀⟩⟩ is a plan 𝜋 = ⟨𝑜1, ..., 𝑜𝑛⟩, which satisfies
the following requirements:

• ∀𝑖 ∈ [1, 𝑛] : 𝑜𝑖 ∈ 𝑂

• If 𝑡𝑛0 is a primitive task network (includes only primitive tasks):

Let 𝑡𝑛0 = ⟨𝑇, 𝐶𝑜⟩, 𝑇 = {𝑡1, .., 𝑡𝑘}. Let ⟨𝑡1, .., 𝑡𝑘⟩ be the total ordering of the tasks in the initial
task network according to the the constraints in 𝐶𝑜. 𝜋 is the solution to 𝑃 = ⟨𝑠0, 𝑡𝑛0, ⟨𝑂, 𝑀⟩⟩
iff 𝜋′ = ⟨𝑜2, ..., 𝑜𝑛⟩ is the solution to 𝑃′ = ⟨𝑠0 [𝑜1], 𝑡𝑛0 \ {𝑡1}, ⟨𝑂, 𝑀⟩⟩, 𝑝𝑡 (𝑜1) = 𝑡1 and
𝑝𝑟𝑒(𝑜1) ⊆ 𝑠0.
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• If 𝑡𝑛0 is a compound task network (includes at least one compound task):

There is a sequence of task decompositions that can be applied to 𝑡𝑛0, transforming it into a
primitive task network 𝑡𝑛0, 𝑝 such that 𝜋 is a solution for 𝑃′ = ⟨𝑠0, 𝑡𝑛0, 𝑝, ⟨𝑂, 𝑀⟩⟩.

2.3 Smart Buildings and Smart Grid

2.3.1 Smart Buildings

Even though various research studies and industry projects concentrate on smart buildings, there is
no standardized definition of them [KFS+21]. However, the meaning in which smart building is
used in every study determines the scope for which its findings are applicable. Some authors explain
them as “automated buildings” [KFS+21], others as “intelligent” [MOG+10] and for some “smart”
is its own category [BMB14; Hoy16]. Here we will be using the definitions provided by Hoy and
Buckman et al. [BMB14; Hoy16]. They argue that smart buildings are developed from intelligent
buildings, which, on their side, enhanced the concept of automated buildings. The key differences
between a simple building, an automated one, and the smart one are shown in Figure 2.2 from
Buckman et al. [BMB14]. While a primitive building is just a living space without any adjustment
options, a simple building’s environment can be changed manually by a human. E.g., by pressing
the switch for the lights to turn them on or changing the temperature by adjusting a radiator valve
or opening a window. An automated building automates the activities that require to be executed
mechanically by humans. For example, an automated building would have sensors controlling the
lights and/or thermostats, which would turn the heating/cooling on and off according to a schedule
which is predefined by a human. The ability to change the environment automatically is also a
characteristic of intelligent buildings, however, they do not need exact directions about performing
those instructions. They can observe the state of the environment, recognize when changes are
necessary so that certain predefined goals remain satisfied, and then perform automatically the
needed adjustments. This feature is characterized as supporting real-time reactions. For example, if
a sensor for humidity estimates that the humidity in a room is above a certain threshold, it will turn
on a dehumidifier and then turn it off, once the humidity level is normalized. The given example
shows the reactive nature of the intelligent buildings – they can observe the state of the environment
and, only by need, react to it. The smart building, on the other hand, is of adaptive nature. For
example, the smart building can recognize that someone is taking a shower, which, according to
the reasoning logic in the building’s system, could mean that the humidity level would later be
increasing in the whole house. Even though no sensor has already detected too high humidity, the
building would turn on a dehumidifier near the bathroom, so that the humidity level never gets too
high. This adaptive nature also incorporates energy efficiency, as the building adapts its energy
usage to the electrical grid, e.g., by scheduling devices for off-peak hours or buying electricity in
advance and storing it.

HTN planning can be easily performed for the domain of smart buildings since they are equipped with
numerous sensors and actuators. The sensors provide detailed information about the environment,
which would allow the planner to receive a very realistic initial state of the domain, whereas the
actuators would ensure the execution of the plan. The corresponding domain could include the
different appliances and the grid as objects and the tasks would be, e.g., buying or selling electricity
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Figure 2.2: Different types of buildings and their evolution.
Adopted from [BMB14]
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from/to the grid, storing this electricity, turning a device on or off, adjusting the thermostat, etc.
Accordingly, we could plan the purchases and usages of electricity, and the operation of the devices
a day ahead, so that we save as much energy as possible and also benefit financially.

2.3.2 Smart Grid

The smart buildings are connected to the concept of a smart electrical grid, which will be powering
them. The current electric infrastructure is aging and needs modernization, in order to make it
more sustainable and answer today’s needs, e.g., in this highly electricity-dependent age outages
can be disastrous. Additionally, in order for it to be more sustainable, it should, for example,
provide the possibility to produce electricity mainly from renewable sources, but also should give
people more opportunities to act more eco-friendly[LCL16]. With the traditional grid, its users
can only decrease the amount of energy they use. However, they cannot demand to use energy
from renewable sources or even decide to support providers of such energy by, e.g., paying a
higher price for it. Additionally, currently, there is no way for the users to know in which hours
they should restrain themselves from consuming electricity from the grid. Such a feature is very
necessary since the demand in some hours is so high that it requires powering additional generators,
which are usually using non-renewable resources. The smart grid addresses this issue by ensuring
bidirectional communication between the grid and the users. The smart grid operates with dynamic
pricing, offering different prices for electricity for different hours. In this way, buying energy at
on-peak hours will cost more than buying at off-peak hours when the demand is low. Accordingly,
the users would be motivated to decrease their electricity load during the peaks and shift it towards
the off-peak hours (load shifting) [KJU+13].

Additionally, in the smart grid, we have multiple providers, meaning that the consumers can, e.g.,
choose to buy from a provider of electricity from renewable sources. It also allows the consumers
to be providers and sell their electricity to the grid, if, e.g., they have solar panels which supply
them with more energy than they need [KJU+13].

2.4 Uncertainty in AI Planning and HTN Planning

AI planning can be used for solving problems in various domains, however, in the real world, a
domain is rarely completely deterministic. This means that in order to be able to model domains
realistically, we have to be able to integrate uncertainty in them. During our research, we get
acquainted with different strategies addressing this issue, e.g., using Partially Observable Markov
Decision Processes [Ric17], variable probability of success or cost-variable operators [AGA22].

For our work, we decide to use the idea of cost-variable operators, as defined by Alnazer et al.
[AGA22]. The reason for this decision is the intuitiveness of their suggestion. Their research
suggests that the uncertainties in a domain affect the costs of actions, e.g., fuel or time, which
become non-deterministic. Since every action has a cost, not being sure whether and up to what
extent we would be able to execute an action, means we cannot be sure about the costs we will
have at the end. For example, if we want to automatize farming with HTN planning we could have
primitive tasks such as ⟨𝑝𝑙𝑎𝑛𝑡, (𝑝𝑙𝑎𝑛𝑡, ℎ)⟩, ⟨ℎ𝑎𝑟𝑣𝑒𝑠𝑡, (𝑝𝑙𝑎𝑛𝑡, ℎ)⟩, ⟨𝑤𝑎𝑡𝑒𝑟, (𝑝𝑙𝑎𝑛𝑡, ℎ)⟩. When we
define the corresponding operators, we would have to define their costs. However, the farming
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domain is highly dependent on the weather, which is inherently uncertain. Accordingly, if we were
to define the cost of an action as the financial expenses related to performing it, our actions would
have costs that would be very wide-ranging. For example, if we decide to water plants when no rain
is expected, the cost could be 𝑐𝑛𝑜𝑟𝑚𝑎𝑙 . However, if it starts raining after we have watered the plants,
the cost for us will be way higher, since we have lost money without gaining any advantage. Thus,
the question arises what cost should our operator for watering have, e.g., when the weather suggests
that rain is possible but not very likely. This decision is of utmost relevance since some planners
construct plans with the objective of cost-minimization. Accordingly, deterministic costs are likely
to lead to suboptimal plans.

The proposal of Alnazer et al. [AGA22] is to make the costs of the operators variable. Precisely, this
means modeling an operator cost as a probability distribution over all possible costs. Afterwards,
we can take the expected value over the probability distribution as the cost for the operator. Of
course, the construction of this probability distribution is far from trivial for most domains and
should be planned carefully.
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In Section 2.1 we described the different phases in the process of developing a solution to a problem
using automated planning. Those phases, as depicted in Figure 2.1, are also valid when using HTN
planning as a technique for automated planning. Accordingly, we are following the same steps in
our research study which addresses the issue of making smart buildings more sustainable.

The core of this work consists in identifying the areas of the domain which need optimization and
are susceptible to it, and in constructing an optimization strategy. It also includes mapping this
strategy to HTN constructs in order to create a domain model. Those tasks cover the first three
phases of our method from Figure 2.1 - structured knowledge acquisition, addressing complex
problem requirements, and the modelling of the domain. In the remainder of this chapter, we
explain our approach to each of those steps and present the results from performing them. The
implementation of the domain model, the fourth phase, is described in Chapter 4, and the evaluation
of it - in Chapter 5.

3.1 Performing Knowledge Acquisition

The knowledge acquisition phase in our approach is about obtaining knowledge about the domain
we want to model. As pointed out in Section 2.1, this step is of high importance for the quality of
the solution we will develop. Therefore, it is required to perform this phase in a structured way,
so as not to omit or misunderstand any relevant information [Lio92]. For our study, we chose to
follow the conceptual framework for knowledge acquisition described by Georgievski and Aiello
[GA16].

The used conceptual framework, as depicted in Figure 3.1, divides the knowledge about the domain
into four categories, each of which has some sub-categories. Those are defined as follows:

• Behavioural inputs include the expectations of the users from the environment. This is the
category which gives us the information about the states of the environment that should
be achieved through the execution of the plans created with our solution. The following
sub-categories are included here:

– Requests describe what could be wanted from the solution, what are the goals. There
are two types of goals - declarative goals which are the answers to the question “What
should apply?”, and procedural goals which describe how can we achieve the declarative
goals.

– Preferences are the wishes of the users about the way the environment operates. Fulfilling
them is nice, but not vital, it is considered optional.
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• Physical properties define the physics according to which our domain functions, accordingly,
the space and time dimensions. The space dimension is addressed by the spatial properties,
which describe static locations and location changes (movements). In the temporal properties
we explain how the time dimension looks in our domain. We answer questions such as
whether we work full hours or are we allowed to have, e.g., 1.5 hours.

• Behavioural outputs consider the actions that can be performed in the environment of our
domain, and which would result in a change of its state. The sub-categories of the behavioural
outputs define the different groups of actuators to take into consideration - information and
application services, humans, devices, robots.

• The knowledge in the category of the uncertainties is about different situations in which there
is something of unpredictable nature. The following sub-categories are included here:

– In unexpected events we include the information about what events occur in different
situations, which are atypical for those situations. An example could be a situation
in which someone is having a big party in the smart building, leading to a rapid and
unanticipated decline in the air quality.

– Action contingencies regard possible unsuccessful executions of actions, meaning that
the execution doesn’t proceed as expected. Here we have to think about all failures,
timeouts, etc., which can occur with our behavioural outputs.

– In the sub-category partial observability we include details about states in which we
work with information which is incomplete or unreliable. An example would be anything
weather-forecast-related.

For our work with the conceptual framework, we start with the identification of the declarative
goals from the behavioral inputs. However, we decide to leave the formulation of the procedural
goals and the preferences as the last step of our knowledge acquisition phase. The reason for this
is that those two aspects provide the core of the planning domain since they answer the question
“How do we achieve our goals?”. Accordingly, in order to be able to construct the best possible
solution, we need information about the sensors and actuators which we have at our disposal in a
smart building. The availability or the absence of a sensor or actuator can make a certain action
and, therefore, a solution possible or impossible. The preferences are also left as last because they
regard the question “What can be the preferences of the occupants regarding our solution?”.

Directly after the declarative goals, we identify all behavioral outputs. For this, we first have to
determine all objects of interest in the environment, which will be our sensors and actuators. We
consider all objects, services or other sources which deliver information that we need for the initial
state as sensors. Among those are the weather forecast service, the service giving us the grid
electricity prices, the one estimating the amount of solar power we will generate locally, and even
the occupants stating wanted operation times or temperatures. The actuators, on the other hand,
are all factors (services, objects, people, etc.) which can change something in the environment.
Examples here are the system turning the air conditioning/heating on and off, and adjusting the
thermostat settings, or the services and objects with which we purchase electricity, store solar power
or use electricity from the battery. Having identified the sensors and actuators, we later pinpoint the
behavioral outputs, giving us information about the actions our actuators can perform. We also
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Figure 3.1: Conceptual framework for knowledge acquisition.
Adapted from [GA16]

establish the physical properties of our domain by determining the spatial and temporal rules. Next,
we analyze the various uncertainties in our domain, in order to understand their effect on our goals.
As already mentioned, we finish with research into the procedural goals and the preferences.

In Table 3.1 we present the results of the performed knowledge acquisition phase. The categories,
which are not considered relevant for our domain, are omitted. These include qualitative relations
because we use concrete time points (hours), all types of uncertainty except partial observability,
and robot actions.

In order to ensure more sustainable operation of the smart homes, we find three main goals to
achieve, our declarative goals. The first ones are reducing the overall electricity usage in the home,
and supporting the more sustainable operation of the smart grid. Additionally, in order to make the
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Category Acquired knowledge

Declarative goals Reduced electricity usage, lower electricity bills, more sustainable
operation of the grid

Procedural goals Load shifting, Heating, Ventilation and Air Conditioning (HVAC)
control

Preferences Different automation levels
Temporal Properties
(Metric Constraints)

Device scheduling and electricity purchases require specific time
points, hours

Spatial Properties Different cooling/heating settings possible for different rooms

Information Services Estimation of amount of locally produced solar data through
previously collected data

Application Services

Buying and selling electricity from/to the smart grid, calculating ex-
pected solar power (not taking into consideration locally stored data
for learning), weather-forecasts, estimating indoor temperatures
from weather-forecast

Human Actions Giving information about operation times of the different appli-
ances, choosing indoor temperatures

Device Operations Setting thermostats, charging battery (BESS), using electricity
from battery, scheduling devices

Uncertainties (Partial Ob-
servability) Amount of locally produced solar power

Table 3.1: Acquired knowledge for the domain of sustainable smart buildings.

solution more attractive to potential users, it needs to offer support for decreasing electricity bills.
The procedural goals for the identified declarative goals (load shifting and Heating, Ventilation and
Air Conditioning (HVAC) control) are explained later in this section, accordingly in Section 3.1.1
and Section 3.1.2. Special attention deserve the preferences. Our solution targets many types of
users, and, as we know, different groups allow different percentages of automation. Many people
endorse technology taking control of some rudimentary activities, while others prefer to keep as
much control as possible and are not very open to automation. Therefore, it is preferential for the
domain to support different automation levels. For example, a high automation level would be an
HVAC system, which determines completely alone the cooling and heating schedules. Accordingly,
low automation would mean that the occupants give the exact HVAC settings they want. Then the
smart home will only plan the electricity sources and make sure the occupants’ wishes are perfectly
met.

Since we work with electricity prices which vary through the day, and appliances’ schedules, the
time in our domain is measured in hours. The space, on the other hand, consists of rooms. The
motivation behind this inclusion of locations in the domain is to allow different heating/cooling
schedules in one home. For example, a baby’s room should be kept warm throughout the whole
winter period, the master bedroom might be okay with cooler temperatures, whereas an empty quest
room should be heated only occasionally. Accordingly, we need to differentiate between the HVAC
in the baby’s room, the one in the master bedroom, and the one in the guest room.
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As explained earlier in this section, the behavioral outputs contain the different sensors and actuators.
However, since we have already explained our definition of sensors and actuators, and given
examples, we just refer to Table 3.1, where they are grouped in the different categories.

Looking once again at the declarative goals, we remember that the solution should fulfill the goal
of decreasing the electricity bills for the smart home. Accordingly, we have to make sure that the
costs we estimate are close to the real ones. A factor of uncertainty, which complicates this, is the
uncertain amount of locally generated solar energy. The estimate for it is strongly dependent on the
correctness of the weather forecast, as well as on the service which will calculate it. The amount of
solar energy is one of the factors determining the purchases of electricity from the grid. Therefore,
not being sure about it, means that we cannot be sure about the real cost the plan (the price to pay
for electricity). Thus, the information about the amount of solar energy becomes an important
factor of uncertainty of the type of partial observability in our domain.

The remainder of this section gives more details about the procedural goals in the domain.

3.1.1 Load Shifting

The uneven demand for electricity in the traditional electricity grid is perhaps the factor the
most responsible for its unsustainable operation. When analyzing data representing this demand
throughout the day, we observe very strong amplitudes, accounting for the so-called on-peak and
off-peak periods, as shown in Figure 3.2 [Hod]. When looking at the diagram for the average
electricity load for Texas in Figure 3.2, we see that the curve for July has two very distinct extreme
values. The maximal average electricity load is reached around 4:00 pm, therefore the hours around
4:00 pm (12:00 pm - 9:00 pm), are called on-peak hours. During those hours, as can be seen
from the graph, more electricity is used than during the off-peak hours (2:00 am - 7:00 am). The
presence of such extremes is found in every graph in Figure 3.2, meaning that the electricity demand
throughout the day is indeed uneven by nature.

This uneven load distribution means that during the on-peak hours, the electric power generated
from renewable sources or from the base power plants is not sufficient to cover the demand. This
leads to the powering of peaking power plants, which, apart from being very unsustainable, produce
electricity that is more expensive [KJU+13]. Therefore, one of the focus points of our research
study is making the load shifting process, as described in Section 2.3.2 and shown in Figure 3.3, for
smart buildings easier and profitable for the occupants.

A characteristic of smart homes, which complicates the implementation of load shifting for them, is
the lack of large-scale patterns in the occupants’ activity and the “urgent” and spontaneous nature of
their usage of appliances. Unlike in commercial buildings, for which the electricity usage patterns
are well known and easily identifiable, this is not the case for residential buildings. In an office,
we would expect usage of n computers for the duration of the working day, operation of kitchen
appliances during the known time slot of the lunch break, etc. Accordingly, pre-purchasing and
storing electricity to use during peak hours becomes easy and activities such as scheduling when
to charge the notebooks in the buildings are possible. On the other hand, in a smart home, the
electricity-requiring processes can hardly be rescheduled, e.g., TV watching, cooking lunch/dinner,
heating water to take a shower. Accordingly, we cannot expect and require the occupants to postpone
their own or their children’s shower for 11:00 pm, in order to assist the load shifting, which as a
strategy gives more global than individual advantages [Mai18].
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Figure 3.2: Electricity demand through the day.
Adopted from [Hod]

Therefore, we implement load shifting using two different approaches. The first approach regards
devices, whose working time does not have a big effect on the occupants’ comfort, e.g., a dishwasher.
Those devices are scheduled for off-peak hours. The second approach concerns the appliances,
whose working times are fixed by the occupants and should not be rescheduled for a random time of
the day. For example, if we want to take an evening shower at 9:00 pm, we cannot set up the water
heater for 2:00 am in the morning. For such devices, we plan the electricity sources which will be
powering them during their working time. The inhabitants can give the system of the smart home
their plan for the next day. For example, “cooking dinner at 6:00 pm”, or, given that an occupant has
a sports training at 2:00 pm, “taking a shower at 4:00 pm”. Schedules of children are usually also
relatively constant as they have specific bedtimes, daily activities, eating times, etc. Such patterns
can often be recognized by the systems of smart homes, and, accordingly, the planned appliance
usage can be given to the planner as part of the initial state.

We have developed a strategy to determine the best possible electricity supply: Firstly, we try to
use energy from the local solar panel, which is being stored in the BESS. If this is not possible
or the stored energy covers only a part of the need, we plan an electricity purchase from the grid.
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Figure 3.3: The idea behind load shifting.
Adopted from [HT]

For the purchase, we first determine the cheapest provider for the interval between midnight and
the hour in which we will be using the electricity. Let the hour of this “cheapest offer” be ℎ. If ℎ
is the same as the hour of usage, we buy this electricity day-ahead. However, if it is earlier, we
have to check whether there will be enough capacity in the BESS to store the electricity from
ℎ to the hour of usage. If there is indeed enough space, we buy the wanted amount, store it in
the BESS, and at the hour of usage power the device. However, if the space is insufficient, the
process is more complicated. Firstly, we purchase as much electricity from this provider, as the
available space in the BESS allows. Then, immediately after booking it, we trigger a new search
for an electricity purchase from the grid. For this new search, the amount of necessary electricity
is 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦𝑛𝑒𝑤 = 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦𝑜𝑙𝑑 − 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑. We specify this strategy, which we created, in
pseudocode in Algorithm 3.1.

In this way, specifically by using locally produced electricity from renewable resources, or using
electricity that we have purchased at an off-peak hour and stored in the battery, we still follow the
concept of load shifting, while ensuring the comfort of the inhabitants.

3.1.2 Cooling and Heating Strategies

Even though load shifting reduces the bills of the homeowners to a certain point, the savings are not
very considerable and the discomfort level is pretty high. Load shifting is a strategy that brings big
advantages on a global scale, but causes multiple difficulties for the people individually. If a large
portion of the occupants would implement load shifting, the demand on the grid would indeed be
without the typical big amplitudes, which, as explained, would make it more sustainable. However,
for the individual, this would mean having to conform to certain schedules, which do not offer
optimal comfort levels. At the same time, the financial savings on the bill for electricity would
barely pay out the investments for having a smart home and not a simple one [Mai18]. This implies
that smart homes should support additional strategies, through which the occupants would profit
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Algorithm 3.1 Electricity Source Determination
1: procedure Plan_energy_source(amount 𝑎, hour of usage ℎ𝑢)
2: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ← expected free space in BESS at ℎ𝑢
3: if 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥ 𝑎 then
4: Use energy from BESS
5: else
6: ℎ𝑐ℎ𝑒𝑎𝑝 ← The hour between 00 and ℎ𝑢 with the cheapest offer for electricity
7: if ℎ𝑐ℎ𝑒𝑎𝑝 == ℎ𝑢 then
8: Buy 𝑎 from the cheapest provider at ℎ𝑢 and use it directly
9: else

10: Buy 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 from the cheapest provider at ℎ𝑢 and store it in the BESS.
11: Use 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 amount of electricity from the BESS at ℎ𝑢
12: call Plan_energy_source(𝑎 − 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦,ℎ𝑢)
13: end if
14: end if
15: end procedure

more. Accordingly, the need emerges to decrease the level of occupants’ discomfort or the amount
of energy used generally, not just shift the electricity usage. Since, according to various studies, e.g.
[Offa], the HVAC sector is the biggest consumer of energy in a home, our study also concentrates
on developing a strategy for a reduction of the energy demand associated with it.

Finding a strategy for optimization of this area proves extremely difficult. The trivial, and most
popular, approach appears to be letting the HVAC systems operate for shorter time intervals or for
temperatures, which are nearer to the outside ones. However, this idea means a negative impact
on both the comfort and satisfaction of the occupants. Furthermore, such strategies do not require
AI planning. They also neglect the wishes of the user, since we do not comply to the temperature
desired by them. To the best of our knowledge, this study is the first to address the problem of
making the operation of residential HVAC systems more sustainable using automated planning.
However, achieving sustainability using AI planning is beneficial due to multiple reasons. Firstly,
AI planning offers automation and so eases the whole process. Furthermore, the knowledge which
is collected and modeled can easily be reused, adapted, or expanded for a wide range of use cases
[Geo15].

Although other works also explore the question of addressing the temperature control in smart
buildings from an AI planning perspective, their attention is solely on improving the comfort of the
occupants and not optimizations in regard to sustainability [Hei20]. Stanullo [Sta21] provides a
study that develops an approach for HVAC control, which should also lead to more eco-friendly
operation of the building. He concentrates only on commercial buildings and further restricts
the domain to concern only HVAC control in one room, which has to be cooled/heated to the
wanted temperature as fast as possible. Respectively, he argues for achieving electricity savings
by shortening the working time. However, no data regarding the electricity usage by the baseline
and the new approach is provided to support this assumption. On the other hand, decreasing the
working time of an AC unit in which it achieves some temperature, implies the thermostat is set on a
lower temperature, and the AC uses more power. A result of such settings is an increased electricity
consumption of the AC, which might even be higher than the one of the baseline[JEG]. Additionally,
the research work does not observe the pattern in which the temperature increases/drops after the
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end of the cooling phase. For example, if the walls of the considered room are not cooled and the
temperature difference between the outdoor and the indoor spaces is high, the effect of the cooling
would be offset very fast and a new cooling phase would be initiated. The results of such scenario
imply an ineffective cooling strategy, which, though ensuring comfort for the occupants through
improved indoor temperature reached in a very short time, is likely to be very unsustainable.

The approach we adopt to ensure more eco-friendly HVAC operation is implementing a pre-cooling
technique for cooling and pre-floating for heating. As mentioned in the last paragraph, one problem
with rapid cooling strategies is that they ignore the influence of building thermal mass, which is the
capacity of the materials in buildings to absorb, store and release heat [Gre]. This means that if
a building has been heating throughout the day, during and after a cooling session, the building
materials (e.g., walls, floors, and carpets) will be releasing energy and respectively heating the living
space. However, this does not apply if the materials have also been cooled. The same observations
apply to the heating process. Pre-cooling and pre-heating utilize the effects of building thermal
mass, while also ensuring load-shifting [ZZS+21]. Accordingly, applying those techniques not only
relieves the on-peak demand on the grid, but also reduces the amount of used electricity and the
corresponding bills [AEA12].

In the following, we explain the techniques of pre-cooling and pre-floating and why they are
effective.

3.1.2.1 Pre-cooling and Pre-floating

According to Zeng et al. [ZZS+21], pre-cooling is “the method with the greatest potential of
on-peak electricity demand reduction”. Additionally, Avci et al. [AEA12] show that it leads to
decreased electricity usage and in this way to financial savings. The principle of this strategy is to
lower the temperature set point, the temperature point at which the thermostat is set, as much as
possible during the off-peak hours. This results in cooling for a very low price. It is preferable that
this setting is kept during the whole off-peak period, allowing for the walls, floors, etc. to cool too
[ZZS+21]. A factor that facilitates this process is that the off-peak hours are the night hours, when
the temperatures naturally drop.

When a peak period begins, the set point is raised, so that the AC unit is running at lower power
or is not running at all. At this point, the air inside the living space is warmer than the walls,
resulting in the building thermal mass starting to “absorb” some heat. This continues until the two
temperatures even out, keeping the indoor air temperature relatively low [ZZS+21]. The equivalent
of this technique for heating is pre-floating, where we heat during the night and lower the set points
during the day. In this case, the building thermal mass stores energy during the off-peak heating
process and “gives” energy to the air during the on-peak, and by doing so warms it. The efficiency
of these strategies, in terms of sustainability and financial savings, is confirmed in the study of Avci
et al. [AEA12]. Since the choice of algorithms implementing these ideas required lots of research
and comparison of different solutions, we consider the need for pre-cooling/pre-floating a “complex
problem requirement”. Therefore, this decision has been assigned to phase 2 of our approach for
solving a problem with HTN planning (see Section 3.2.3).
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3.2 Addressing Complex Problem Requirements

Most domains and problems have some key characteristics, whose representation with HTN planning
constructs is complex and often requires developing novel approaches. Usually, a domain would
include numerous such characteristics. This means that if we were to create a very exact model of
the domain, the whole process would become overly complicated and time-consuming, and the
result would be very computationally inefficient. Since such an outcome should be avoided, a step
that addresses those complex problem requirements is necessary. In this phase, we evaluate each of
those complex requirements to identify the ones that are vital for our domain and cannot be skipped.
We determine the best possible abstraction level for every requirement so that we have a trade-off
between complexity and realism. Afterwards, we look into strategies for their representation.

For our domain, we identify three areas, which cannot be omitted from the model, but the knowledge
acquisition for them requires a lot of research. The areas are:

• Electricity pricing strategy in the smart grid: The smart grid is promised to offer dynamic
pricing and the inclusion of multiple electricity providers. Since this is not valid for the grid
nowadays, the different pricing strategies are not common knowledge. Therefore, this topic
needs more attention and research.

• Uncertainty with respect to the amount of locally generated solar energy: According to the
effect the factors of uncertainty have on the plans in the domain, we may need to design
the domain model in different ways. For example, if we want to focus on the probability of
success, for the plans to execute successfully, we can make the tasks in the domain more
general. However, our solution is supposed to intrigue users by decreasing their electricity
bills. Accordingly, we have to focus on the effect the uncertain amount of locally generated
solar energy has on the cost of the generated plans. Since we have to work with the costs of
the actions in the domain, its model becomes more complex.

• Automated calculation of optimal temperature set points for pre-cooling and pre-floating:
Since there are a lot of studies on this topic, the choice of one algorithm is rather complicated.
Furthermore, many of the algorithms incorporate lots of physics and complex mathematical
operations, meaning a huge increase in the complexity of the domain model [LJ21; WTS20].
Therefore, finding an approach, which is efficient and can relatively easily be incorporated
into a domain model, is challenging.

In the remainder of this section, we will discuss each of those areas separately.

3.2.1 Electricity Pricing Strategy

As explained in Section 3.1.1, a part of our load shifting strategy, apart from scheduling appliances
with flexible work times for off-peak hours, is the planning of electricity sources for the household
devices. The planning of electricity sources includes an evaluation of the market prices, which
are of dynamic nature, and vary between the different providers. Since we aim at performing load
shifting, we should be able to analyze the market prices before the start of the day. This would
allow us to determine the peaks and the price differences for the next 24 hours. Those requirements
oblige us to use day ahead pricing (DAP). This means that the providers of electricity in the smart
grid announce the prices for their electricity and the available amount of it for the next 24 hours one
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day ahead. Accordingly, we have enough information about the pricing to be able to determine
when the prices will be highest/lowest and plan in advance of the day. Usually, the lowest prices are
given by the providers for the off-peak period and the highest - for the on-peak one. Therefore, we
can just aim to make cheap purchases and so automatically support load-shifting.

3.2.2 Uncertain Amount of Solar Energy

As mentioned in the knowledge acquisition phase, the domain of sustainable buildings connected to
a smart grid has to work with the factor of an uncertain amount of locally generated solar energy.
Usually, uncertainty is taken into consideration during the modeling phase by making plans more
general, so that they can be executed even under some unpredicted conditions. However, since our
domain requires making day-ahead purchases of exact electricity amounts at exact hours, we cannot
allow ourselves to be very general. Furthermore, the amount of locally generated electricity has a
direct influence on the cost of the plan that will be constructed. For example, if we overestimate the
amount, the cost will be higher than calculated by the planner, since this overestimation means that
we have not bought enough electricity to cover our needs and will need to buy electricity during the
on-peak hours.

As the amount of locally generated electricity is uncertain, the plan’s cost, representing the electricity
bill for a day, also becomes uncertain. Therefore, we have to, indeed, find a way to model uncertainty
by making the cost of the operator for storing solar power uncertain. Let us assume that we store
some amount and use this amount in our plans. But later we manage to store only half of the
assumed amount. Of course, this leads to a deficit that has to be compensated for through unplanned
purchases of electricity, resulting in a higher cost than the estimated one. Accordingly, the operator
for storing the solar power should have had a (higher) cost. However, using variable costs is a new
concept, which, to the best of our knowledge, has not been applied until now. Still, this requirement
of the domain cannot be omitted from the domain model, since it is tightly connected to the usability
of our solution. The quality of our plans is related to the money we can save when using them, and
those savings should act as a primary motivation for the users to adopt our solution.

3.2.3 Set Points Calculation

In this section, we describe the algorithm we use to determine the set-points of the thermostats for
the cooling and heating schedules, as well as how the comfort of the occupants is integrated into
it.

As explained in Section 3.1.2, we are employing pre-cooling and pre-floating strategies, in order
to ensure sustainable HVAC operation. Therefore, we needed an algorithm that estimates the
temperature set points for the thermostats of a smart building in accordance with the pre-cooling/pre-
floating requirements. The algorithm of our choice, which enables this, is the one developed by
Avci et al. [AEA12]. Our decision to use exactly this solution is because it does not only implement
the described concepts efficiently but it also incorporates the occupants’ comfort as a factor.
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The algorithm by Avci et al. [AEA12] is specified as the first part of their two-phase strategy for
cooling and heating. The phases of the strategy are as follows: calculation of the temperature set
points with the aforementioned algorithm, and the pre-cooling/floating itself. However, in our
solution, we integrate only the first phase, since we are only interested in the creation of a plan and
not in its execution.

The first phase is the calculation of a temperature set point for each hour of the day. The determined
set points are always within a pre-defined interval [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], in order to allow customization
of the temperature range to the occupants’ liking. The interval can be chosen according to the
specific need. For example, people who prefer cooler temperatures will give a lower [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥]
than the ones who like warmer conditions. The set points are determined in accordance with the
pre-cooling/floating techniques (Section 3.1.2.1), meaning that their values are dependent on the
day-ahead prices for electricity for the specific hours. The algorithm identifies a price range for
each of the 24 hours based on the day-ahead pricing. Then it assigns a value to every set point
according to the price range in which its hour falls. It should be noted that here we use aggregated
electricity prices instead of using all prices from all providers for all hours. We use the average
prices for every hour (over all providers), resulting in 24 values. This reduces the computational
complexity drastically, but also makes the algorithm susceptible to outliers.

There are three main factors which determine the value of a set point for a given hour ]:

• 𝜌 ]: averaged day ahead price for electricity for hour ]

• 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥: lower and upper bounds for the temperature set points to be calculated

• 𝛼 ∈ {−1, 0, 1}: tolerance level of the occupants of the smart home. It represents the willingness
of the inhabitants to reduce their comfort level respective to the indoor temperature, in order
to have bigger financial savings and a more sustainable operation. The tolerance level of −1
shows a preference for comfort, meaning lower temperatures in the summer and higher in
the winter, whereas 𝛼 = 1 represents acceptance of slight discomfort in order to have bigger
savings. 𝛼 = 0 is the neutral tolerance level, where the occupants want a comfort-savings
tradeoff.

The algorithm 3.2 calculates the set points 𝑇 𝑠𝑒𝑡
] for a cooling session as follows:

• In line 1 we determine the total number of different set points to calculate, 𝑛. We point out
that 𝑛 is not the total number of set points to calculate, as this number is always 24, one set
point for every hour of the day. 𝑛 is the number of different values one set point can get.

The value of 𝑛 is dependent on 𝑘 , which is the temperature set point interval. In our domain
model, we have set 𝑘 = 1, meaning that two different set points can have a minimal difference
of 1. This decision allows for smaller jumps in the temperature settings for the HVAC system,
promising no extreme temperature changes for short time intervals, which are both unhealthy
and more energy-demanding.

Accordingly, if we would take the temperature interval [75,79] and keep 𝑘 = 1, we would
have 79 − 75 + 1 = 5 different possible values for our set points: 75,76,77,78,79.

• In line 2 we set the difference between the highest and the lowest price. We will use this
difference to determine the upper bound of the price range 𝑟 𝑗 , 𝑗 ∈ [0, 𝑛] for each of the 𝑛

different set point values in lines 5-6 or 9-10. For the example with the temperature interval
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[75,79] and 𝑘 = 1, 𝑟1 gives the upper price bound for setting the thermostat to 75F. This
means that we can set the thermostat to the first set point value (j=1), 75F, at hour ], if the
price for electricity at this hour, 𝜌 ], is not higher than 𝑟1. This is also the meaning of line 14.

• As already mentioned, in lines 5-6 or 9-10 we determine the upper bound of the price range
𝑟 𝑗 , 𝑗 ∈ [0, 𝑛] for each of the 𝑛 different set point values. Here we have two options for this
calculation, the choice of which depends on the tolerance level chosen. For a neutral 𝛼, the
price range grows linearly, meaning that we favor neither lower, nor higher temperatures. On
the other hand, for 𝛼 = −1 we want overall cooler temperatures, meaning more often 75F and
rarely 79F. Therefore, the price bounds here cannot grow linearly, which leads to the choice
of the coefficient for 𝑅𝐴𝑁𝐺𝐸

2𝛼( 𝑗−1) (1−2𝛼)
(1−2𝛼𝑛) . The analog applies for 𝛼 = 1.

Algorithm 3.2 Set Point Calculation for Cooling [AEA12]

1: 𝑛← 𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑘
+ 1

2: 𝑅𝐴𝑁𝐺𝐸 ← 𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛 // 𝜌𝑚𝑎𝑥 , 𝜌𝑚𝑖𝑛 are the minimal and maximal 𝜌 ]

3: 𝑟0 ← 𝜌𝑚𝑖𝑛

4: if 𝛼 = 0 then
5: for 𝑗 = 1 to 𝑛 do
6: 𝑟 𝑗 ← 𝑟 𝑗−1 + 𝑅𝐴𝑁𝐺𝐸

𝑛

7: end for
8: else
9: for 𝑗 = 1 to 𝑛 do

10: 𝑟 𝑗 ← 𝑟 𝑗−1 + 𝑅𝐴𝑁𝐺𝐸 ∗ 2𝛼( 𝑗−1) (1−2𝛼)
(1−2𝛼𝑛)

11: end for
12: end if
13: for ] = 1 to 24 do
14: 𝑇 𝑠𝑒𝑡

] ← 𝑘 ∗ [𝑎𝑟𝑔𝑚𝑖𝑛{ 𝑗 : 𝜌 ] ≤ 𝑟 𝑗} − 1] + 𝑇𝑚𝑖𝑛

15: end for

It should be pointed out that Avci et al. [AEA12] provide the complete algorithm only for the cooling
process. However, for our research study, we adapted their version to also calculate temperature
set points for heating by altering line 14, Algorithm 3.3. The chosen modification ensures that the
set points are bound to high temperatures when the prices are low, since then we are subtracting a
very small value from 𝑇𝑚𝑎𝑥 . When the prices reach the on-peak values, we increase the subtrahend,
resulting in a smaller difference.

Table 3.2 shows example calculated temperature set points for the three different tolerance levels
and the set point interval [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] = [68, 74] for both pre-cooling and pre-floating.

After the computation of the set points, they are to be used for adjusting the thermostat temperature
settings during the next day.
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Algorithm 3.3 Set Point Calculation for Heating

1: 𝑛← 𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑘
+ 1

2: 𝑅𝐴𝑁𝐺𝐸 ← 𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛 // 𝜌𝑚𝑎𝑥 , 𝜌𝑚𝑖𝑛 are the minimal and maximal 𝜌 ]

3: 𝑟0 ← 𝜌𝑚𝑖𝑛

4: if 𝛼 = 0 then
5: for 𝑗 = 1 to 𝑛 do
6: 𝑟 𝑗 ← 𝑟 𝑗−1 + 𝑅𝐴𝑁𝐺𝐸

𝑛

7: end for
8: else
9: for 𝑗 = 1 to 𝑛 do

10: 𝑟 𝑗 ← 𝑟 𝑗−1 + 𝑅𝐴𝑁𝐺𝐸 ∗ 2𝛼( 𝑗−1) (1−2𝛼)
(1−2𝛼𝑛)

11: end for
12: end if
13: for ] = 1 to 24 do
14: 𝑇 𝑠𝑒𝑡

] ← 𝑇𝑚𝑎𝑥 − 𝑘 ∗ [𝑎𝑟𝑔𝑚𝑖𝑛{ 𝑗 : 𝜌 ] ≤ 𝑟 𝑗} − 1]
15: end for

3.3 Modelling the Domain

In this section, we explain how we map the concepts we acquire in phases 1 and 2, into HTN
planning constructs. Firstly, we present our general approach for the mappings, and then, in the
subsections, describe the details of the different areas of our domain model. In the end, we also
offer our solution for the incorporation of uncertainty.

Our domain is built upon algorithms. This is due to the fact that the algorithms describe how to
achieve the different declarative goals from the knowledge acquisition phase. The declarative goals,
according to their nature, are to be mapped to tasks, primitive and compound. Respectively, the
algorithms, the procedural goals, are to be realized through operators and methods. However, the
structure of the algorithms is complex, including the definition of local variables, loops, conditionals,
etc. Therefore, we will discuss our approach to representing this structure with planning constructs.
We also provide a schematic domain model in Appendix B, which includes the compound and
primitive tasks included in the model, as well as methods used to decompose the compound tasks,
together with their preconditions. We point out that the preconditions are formulated using natural
language and no exact predicates, in order to make the model easier to read and understand. A
detailed description of how we model the set points algorithms is offered in Section 3.3.4. However,
the size of the domain model does not allow us to explain the entire model, and, therefore, we focus
more on our approach for the mapping of the acquired knowledge.

3.3.1 Choice of Predicates

As explained in the background information, the automated planning process requires an initial
state, a domain model, and an initial task network. The initial task network contains the tasks to be
performed in the initial state. Those tasks are addressed by the methods and operators defined in the
domain model. Their application depends on the satisfaction of their preconditions, which are given
through lists of predicates. This means, that our domain model should use a set of predicates, which
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h 𝜌
cooling heating
𝛼 = 0 𝛼 = −1 𝛼 = 1 𝛼 = 0 𝛼 = −1 𝛼 = 1

1 0.0416 68.0 68.0 69.0 74.0 74.0 73.0
2 0.037 68.0 68.0 69.0 74.0 74.0 73.0
3 0.033 68.0 68.0 68.0 74.0 74.0 74.0
4 0.032 68.0 68.0 68.0 74.0 74.0 74.0
5 0.032 68.0 68.0 68.0 74.0 74.0 74.0
6 0.0336 68.0 68.0 68.0 74.0 74.0 74.0
7 0.0367 68.0 68.0 69.0 74.0 74.0 73.0
8 0.0496 68.0 68.0 70.0 74.0 74.0 72.0
9 0.0572 68.0 68.0 71.0 74.0 74.0 71.0
10 0.0709 68.0 68.0 71.0 74.0 74.0 71.0
11 0.092 69.0 68.0 72.0 73.0 74.0 70.0
12 0.1154 70.0 68.0 72.0 72.0 74.0 70.0
13 0.1518 70.0 68.0 73.0 72.0 74.0 69.0
14 0.25 73.0 69.0 74.0 69.0 73.0 68.0
15 0.2927 74.0 71.0 74.0 68.0 71.0 68.0
16 0.308 74.0 72.0 74.0 68.0 70.0 68.0
17 0.319 74.0 73.0 74.0 68.0 69.0 68.0
18 0.3038 74.0 71.0 74.0 68.0 71.0 68.0
19 0.221 72.0 69.0 73.0 70.0 73.0 69.0
20 0.13604 70.0 68.0 72.0 72.0 74.0 70.0
21 0.127 70.0 68.0 72.0 72.0 74.0 70.0
22 0.107 69.0 68.0 72.0 73.0 74.0 70.0
23 0.0756 69.0 68.0 71.0 73.0 74.0 71.0
24 0.0569 68.0 68.0 71.0 74.0 74.0 71.0

Table 3.2: Calculated temperature set points for the three different tolerance levels and the set
point interval [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] = [68, 74] for both pre-cooling and pre-floating using
Algorithm 3.2 for pre-cooling and Algorithm 3.3 for pre-floating.

enable us to represent the initial state of the environment very precisely, but also don’t increase the
complexity. Respectively, the majority of predicates we used are the ones delivering the input for
our various algorithms. The rest of them correspond to the local variables for our algorithms, e.g.,
all 𝑟 𝑗’s for the set point algorithm. Those predicates are being added to the state of the environment
with different operators upon their calculation, and then removed from it with a different operator
once the algorithm terminates. From the HTN domain model perspective, the termination of an
algorithm means a successful decomposition of the compound task representing the invocation
of the algorithm, with a matching method. The advantage of this approach is that it follows the
variable visibility concept from programming and is therefore intuitive for the modelers.

An exact example for such a local-variable-predicate with its “managing” operators is given bellow.
The predicate stores the value 𝑟 𝑗 , as defined in lines 6 and 10 of Algorithm 3.2, and Algorithm 3.3

• predicate: ⟨𝑟_ 𝑗 , ( 𝑗 , 𝑟_ 𝑗_𝑣𝑎𝑙𝑢𝑒)⟩
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• operator which adds it to the state of the environment:

𝑐𝑎𝑙𝑐_𝑟_ 𝑗 = ⟨⟨𝑐𝑎𝑙𝑐_𝑟_ 𝑗 , ( 𝑗 , 𝑙𝑎𝑠𝑡_𝑐𝑎𝑙𝑐_𝑟, 𝑟𝑎𝑛𝑔𝑒_𝑚𝑢𝑙𝑡_𝑐𝑜𝑒 𝑓 𝑓 )⟩,
𝑝𝑟𝑒(𝑐𝑎𝑙𝑐_𝑟_ 𝑗), (𝑒 𝑓 𝑓 −(𝑐𝑎𝑙𝑐_𝑟_ 𝑗), 𝑒 𝑓 𝑓 +(𝑐𝑎𝑙𝑐_𝑟_ 𝑗)), 0

, where:

– last_calc_r is the last r we calculated

– range_mult_coeff is the coefficient for 𝑅𝐴𝑁𝐺𝐸 from Algorithm 3.2 and Algorithm 3.3.
Accordingly, the coefficient is either 1

𝑛
, when the occupants have chosen the neutral

tolerance level, or 2𝛼( 𝑗−1) (1−2𝛼)
(1−2𝛼𝑛) , otherwise. More specific information about the

representation of the algorithms for set points’ calculations are offered in Section 3.3.4
and Figure 3.5.

– 𝑝𝑟𝑒(𝑐𝑎𝑙𝑐_𝑟_ 𝑗) = ()

– 𝑒 𝑓 𝑓 −(𝑐𝑎𝑙𝑐_𝑟_ 𝑗) = ()

– 𝑒 𝑓 𝑓 +(𝑐𝑎𝑙𝑐_𝑟_ 𝑗) = (⟨𝑟_ 𝑗 , ( 𝑗 , 𝑙𝑎𝑠𝑡_𝑐𝑎𝑙𝑐_𝑟 + 𝑟𝑎𝑛𝑔𝑒_𝑚𝑢𝑙𝑡_𝑐𝑜𝑒 𝑓 𝑓 )⟩), which is the
formula for the computation of 𝑟 𝑗 from Algorithm 3.2 and Algorithm 3.3.

• a basic operator for the deletion of this predicate could have the structure:

𝑑𝑒𝑙_𝑟_ 𝑗 = ⟨⟨𝑑𝑒𝑙_𝑟_ 𝑗 , ( 𝑗 , 𝑟_ 𝑗)⟩,
𝑝𝑟𝑒(𝑑𝑒𝑙_𝑟_ 𝑗), (𝑒 𝑓 𝑓 −(𝑑𝑒𝑙_𝑟_ 𝑗), 𝑒 𝑓 𝑓 +(𝑑𝑒𝑙_𝑟_ 𝑗)), 0⟩

with:

– 𝑝𝑟𝑒(𝑑𝑒𝑙_𝑟_ 𝑗) = (⟨𝑟_ 𝑗 , ( 𝑗 , 𝑟_ 𝑗_𝑣𝑎𝑙𝑢𝑒)⟩)

– 𝑒 𝑓 𝑓 −(𝑐𝑎𝑙𝑐_𝑟_ 𝑗) = (⟨𝑟_ 𝑗 , ( 𝑗 , 𝑟_ 𝑗_𝑣𝑎𝑙𝑢𝑒)⟩)

– 𝑒 𝑓 𝑓 +(𝑐𝑎𝑙𝑐_𝑟_ 𝑗) = ()

However, in our domain model, we do not use this exact definition of 𝑑𝑒𝑙_𝑟_ 𝑗 presented above.
This definition is given with the sole purpose of clarifying the concept. For 𝑑𝑒𝑙_𝑟_ 𝑗 we
perform an optimization, which alters its implementation. The explanation of the optimization
we use is not of relevance to our mapping strategy and is therefore omitted.

3.3.2 Iteration Loops, Conditionals, Recursion

Since the algorithms explaining the logic of our domain include loops, conditionals, and recursion,
we need to map those control flow statements to HTN planning constructs.

During the modeling phase, we wanted to ensure a cohesive style and an acceptable length of the
model. Due to the broad functionality and complex algorithms we include, it was our priority to
build the model with an understandable structure, supporting maintenance and further development.
Therefore, we decided upon modeling both iteration loops (for, while, do-while) and recursion
through compound-task-method-recursion. We are allowed to convert iteration to recursion, since
both are equally powerful. We define compound-task-method-recursion as follows:
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Definition 3.3.1 (Compound-task-Method-Recursion)
Let 𝑚 = ⟨𝑐𝑡, 𝑝𝑟𝑒(𝑚), 𝑡𝑛(𝑚)⟩ be the method decomposing the compound task 𝑐𝑡 with the task
network 𝑡𝑛(𝑚). Then 𝑚 uses Compound-task-Method-Recursion, iff 𝑐𝑡 is included in 𝑡𝑛(𝑚), or 𝑐𝑡
appears in any of the hierarchical levels resulting from multiple decompositions of 𝑡𝑛(𝑚).

The conditional statements are also realized using methods. Let us say we want to transform the
following part of an algorithm:

Algorithm 3.4 Part of an Algorithm with Conditional Statements
1: ...
2: procedure Conditional
3: if Conditions_1 then
4: Tasks_1
5: else if Conditions_2 then
6: Tasks_2
7: ...
8: else
9: Tasks_n

10: end if
11: end procedure
12: ...

As can be seen in line 2, we encapsulate the entire conditional part in the procedure 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙.
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 would be a compound task for us, for which we will offer 𝑛 possible decompositions
with 𝑛 different task networks 𝑡𝑛. Each task network 𝑡𝑛_𝑖 will correspond to Tasks_i. The task
networks will be used for methods as follows:

∀𝑖 ∈ [1, 𝑛] : define 𝑚 = ⟨𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠_𝑖, 𝑇𝑎𝑠𝑘𝑠_𝑖⟩

The compound task 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 is then included in the task network decomposing the whole
algorithm.

3.3.3 Realization of Good Programming Principles

In computer programming, there are various principles that are to be followed when creating a
program that is understandable, comprehensible, and easy to debug and maintain. In order to ensure
that our domain model satisfies these qualities, even though it is not a program, we followed some
of those principles when building it.

The first principle we paid attention to is SRP, or the single-responsibility principle. According to it,
every class, function, etc. should be responsible for only one function. The second principle we
chose is about the size of functions in programs. The functions should always be small in order to
allow for debugging and fast understanding.

Because of those principles, we split our algorithms into different cohesive sections (realization
of SRP), which are also small enough to be comprehensible (small size). The different parts are
transferred to compound or primitive tasks, depending on the granularity, which together build a
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Figure 3.4: Example for size reduction of task networks decomposing compound tasks

task network. This task network is is the result of the decomposition of the compound task we are
addressing with the algorithm. If a certain cohesive section is too big, it is mapped to a compound
task and is split further. We provide an example in Figure 3.4. As we can see, in order to keep the
decompositions of 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑_𝑡𝑎𝑠𝑘_1 and their preconditions simple and manageable, we map a
big part of the first decomposition to another compound task (𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑_𝑡𝑎𝑠𝑘_2).

3.3.4 Set Points Calculation

The computation of the set points is modeled as a part of the domain and not as an external function.
We provide the input for the algorithms (Algorithm 3.2 and Algorithm 3.3) with the following
predicates, which occur as ground predicates in the problem instance (initial state):

• ⟨𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑟𝑖𝑐𝑒_𝑎𝑡_ℎ, (ℎ, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑟𝑖𝑐𝑒)⟩

• ⟨𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑_𝑝𝑟𝑖𝑐𝑒_𝑚𝑖𝑛_𝑚𝑎𝑥, (𝑚𝑖𝑛_𝑝𝑟𝑖𝑐𝑒, 𝑚𝑎𝑥_𝑝𝑟𝑖𝑐𝑒)⟩

• ⟨𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒_𝑙𝑒𝑣𝑒𝑙, (𝛼)⟩

As it can be seen, we choose to include the information about the average prices in the initial
state. The reason for this decision is that even though they can be computed by the planner, this
would require calling external functions, and would considerably increase the complexity. At the
same time, determining the arithmetic mean should be of no difficulty for the external system,
constructing the initial state. Additionally, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑_𝑝𝑟𝑖𝑐𝑒_𝑚𝑖𝑛_𝑚𝑎𝑥 provides the minimal and
maximal average prices, which are used to compute 𝑅𝐴𝑁𝐺𝐸 .
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Figure 3.5: Part of the domain model which represents Algorithm 3.2 and Algorithm 3.3

The algorithm itself is to be realized with different methods and operators, following the approach
for algorithm transformation described in Section 3.3. We show those methods and operators, as
well as their connections, in Figure 3.5. We point out that the way min_price, max_price and other
terms are obtained, can vary with different implementation approaches. E.g., they can be given
through predicates, or found through sorted preconditions. As shown in the figure, compound
task run_temp_setpoints_alg represents the task to perform the algorithm. There are two methods
which can decompose the task, the first, here called method 1, is used when the neutral tolerance
level is chosen. The second, method 2, if for the other 𝛼 values. The reason behind this choice
for two possible decompositions is the if - else construct, as well as the two different formulas for
computing 𝑟_ 𝑗 (see lines 6 and 10 from Algorithm 3.2 and Algorithm 3.3). The formula in line 10
includes 𝑗 , which is different for every iteration, while 𝑅𝐴𝑁𝐺𝐸

𝑛
in line 6 stays always the same. This

requires fundamentally different approaches, and, therefore, we define two different compond tasks
- calc_all_r_neutral_alpha and calc_all_r_other_alpha. Compound task set_all_temp_setpoints
represents the need to execute lines 13-15 of the algorithms. The operator for the primitive task
add_setpoint follows exactly the strategy for local-variable-predicates described in Section 3.3.1.
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After the calculation of the set points, the domain requires the performance of the primitive task of
adjusting the thermostats according to the set points ⟨𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡, (ℎ, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑟𝑜𝑜𝑚)⟩.
For this, we provide the operator

𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡 = ⟨⟨𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡, (ℎ, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑟𝑜𝑜𝑚)⟩,
𝑝𝑟𝑒(𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡), (𝑒 𝑓 𝑓 −(𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡), 𝑒 𝑓 𝑓 +(𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡)), 0⟩

, where:

• 𝑝𝑟𝑒(𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡) = (⟨𝑤𝑎𝑛𝑡𝑒𝑑_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, (𝑟𝑜𝑜𝑚, ℎ, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)⟩)

• 𝑒 𝑓 𝑓 −(𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡) = (⟨𝑤𝑎𝑛𝑡𝑒𝑑_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, (𝑟𝑜𝑜𝑚, ℎ, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)⟩)

• 𝑒 𝑓 𝑓 +(𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡) = ()

We point out that the predicate ⟨𝑤𝑎𝑛𝑡𝑒𝑑_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑟𝑜𝑜𝑚, ℎ, 𝑡𝑒𝑚𝑝)⟩ means that a wish for
temperature 𝑡𝑒𝑚𝑝 at hour ℎ in room 𝑟𝑜𝑜𝑚 has been expressed. Therefore, it is included in
𝑝𝑟𝑒(𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡) and removed by 𝑒 𝑓 𝑓 −(𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡).

3.3.5 Flexibility and Occupants’ Comfort

One of the key qualities we wanted to ensure in the development of our approach was its usability.
The domain model is created according to two goals, which it should satisfy: Firstly, its usage should
optimize the operation of the smart building in terms of sustainability. Secondly, its functionality
has to meet the occupants’ expectations and wishes. We address the second goal by allowing the
domain model to work for different levels of wanted automation.

3.3.5.1 Appliance Scheduling and Load-Shifting

The domain model supports two options regarding planning for household appliances. The first
option is the determination of both the working hours for a device and the electricity sources to
power it during those hours. In this case, we perform classic load shifting. The second option is for
the inhabitants to give the hours in which they want to operate a specific appliance. In this case, we
only choose the electricity sources. Both variants are described below.

Since many people like their schedule a certain way and are less likely to compromise about it,
the basic functionality of our solution is just determining the cheapest electricity sources for an
appliance. In this case, the working hours of the appliance are given in the problem instance through
the predicate ⟨𝑡𝑜_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, (𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒, 𝑠𝑡𝑎𝑟𝑡_ℎ, 𝑠𝑡𝑜𝑝_ℎ)⟩, e.g., ⟨𝑡𝑜_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, ( 𝑓 𝑟𝑖𝑑𝑔𝑒, 0, 24)⟩.
The example for the fridge shows that this input could be determined by the user, or extracted as a
pattern by a separate system, if the system of the smart building allows this. Patterns such as fridge
usage are very easily recognized and thus fit perfectly the domain model. An appliance for which only
the electricity source is to be chosen, is given with the predicate ⟨general_appliance, (appliance)⟩,
e.g., ⟨𝑔𝑒𝑛𝑒𝑟𝑎𝑙_𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒, ( 𝑓 𝑟𝑖𝑑𝑔𝑒)⟩. In this case, we only calculate the cheapest way to cover
the electricity need of the specified appliances without scheduling them for off-peak hours. Here
we realize Algorithm 3.1, again according to the approach for algorithm transformation described
in Section 3.3.
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If the occupants are willing to have a specific appliance scheduled according to the load-shifting
strategy, they are still able to do that. Such devices receive the type dishwasher (predicate
⟨𝑑𝑖𝑠ℎ𝑤𝑎𝑠ℎ𝑒𝑟, (𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒)⟩, e.g., ⟨𝑑𝑖𝑠ℎ𝑤𝑎𝑠ℎ𝑒𝑟, (𝑟𝑜𝑏𝑜𝑡_𝑟𝑜𝑜𝑚𝑏𝑎_𝑘𝑖𝑡𝑐ℎ𝑒𝑛)⟩). Dishwasher is
used as a metaphor for a device whose scheduling does not have a drastic influence on the comfort
of the inhabitants. For example, for most families, it would not be a problem to have their Roomba
vacuum cleaner clean their kitchen during the late night or early morning off-peak hours. We want
to point out that even though type dishwasher exists, the dishwasher machine itself can still be
entered as a general_appliance in order to avoid scheduling.

Additionally, the domain uses the predicate ⟨𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒_𝑝𝑜𝑙𝑖𝑐𝑦, (𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔_ℎ𝑜𝑢𝑟𝑠, 𝑘𝑊ℎ)⟩
to acquire knowledge about the electricity consumption of the different appliances. For example,
⟨𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒_𝑝𝑜𝑙𝑖𝑐𝑦, (𝑟𝑜𝑏𝑜𝑡_𝑟𝑜𝑜𝑚𝑏𝑎_𝑘𝑖𝑡𝑐ℎ𝑒𝑛, 1, 0.583)⟩ means that the Roomba robot needs to
work for one hour and has an energy consumption of 0.583kWh.

3.3.5.2 Automation Levels for the Cooling/Heating Process

Our solution also provides multiple automation levels for the cooling/heating process in the smart
home:

1. Individual temperature set points and cooling/heating window: An occupant has specified that
they want the HVAC to operate in a specific time slot, with temperature settings also defined
by them. Our solution also allows the occupants to define different settings for different
rooms. In this case, the planer only plans the electricity supply for the HVAC system and the
wanted adjustments of the thermostats. The preferences of the inhabitants are represented in
the problem instance through the predicate ⟨𝑤𝑎𝑛𝑡𝑒𝑑_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑟𝑜𝑜𝑚, ℎ, 𝑡𝑒𝑚𝑝)⟩, where
the variable room should be bound to a constant of the type room (predicate ⟨𝑟𝑜𝑜𝑚(𝑟𝑜𝑜𝑚)⟩).

2. Pre-cooling/pre-floating with occupant-chosen set point interval: An occupant has specified
that they want specific room temperatures, but have not given working hours for the HVAC
system (predicate ⟨𝑢𝑠𝑒𝑟_𝑡𝑒𝑚𝑝_𝑠𝑒𝑡_𝑝𝑜𝑖𝑛𝑡𝑠(𝑙𝑜𝑤𝑒𝑟_𝑠𝑒𝑡_𝑝𝑜𝑖𝑛𝑡, , 𝑢𝑝𝑝𝑒𝑟_𝑠𝑒𝑡_𝑝𝑜𝑖𝑛𝑡, 𝑟𝑜𝑜𝑚)⟩.
This setting implies the execution of the pre-cooling/floating technique with user-defined
temperature set points interval. This case also allows the occupants to define different settings
for different rooms. Here the planer plans the electricity supply for the HVAC system and the
wanted adjustments of the thermostats as before, but also the temperature set points for the
whole day. For the latter, we use the algorithm described in Section 3.2.3.

3. Fully automated cooling/heating process: The user only specifies that the control of the
HVAC system is a responsibility of the smart home. This setting implies the execution of the
pre-cooling/floating technique with the set points interval of 72F-81F during summer [Sle]
and 66F-72F during winter [Ene]. The relevant interval is applied to all rooms. As in level 2,
the planer plans the electricity supply for the HVAC system and the wanted adjustments of
the thermostats as before, but also the temperature set points for the entire day. For the latter,
we use the algorithm described in Section 3.2.3.
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Levels 3 and 2 are chosen through the predicates ⟨𝑎𝑢𝑡𝑜_𝑐𝑜𝑜𝑙𝑖𝑛𝑔, ()⟩, ⟨𝑎𝑢𝑡𝑜_ℎ𝑒𝑎𝑡𝑖𝑛𝑔, ()⟩ in the
problem instance. In these cases, the domain will plan the cooling/heating process, only when
the weather forecast predicts temperatures above or below the ones wanted by the inhabitants.
According to the predicates in the initial state, a corresponding compound task decomposition is
selected, which ensures the wanted functionality.

In order to be able to plan the electricity sources for the cooling, the problem instance should include
ground predicates for the predicates ⟨𝑎𝑐, (𝑎𝑐)⟩, ⟨𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒_𝑝𝑜𝑙𝑖𝑐𝑦, (𝑎𝑐, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔_ℎ𝑜𝑢𝑟𝑠, 𝑘𝑊ℎ)⟩,
where the variable working_hours can be set to 0 or just “not_given”. Accordingly, if
the smart home has no air-conditioning, the cooling option will never be used. For the
heating, the situation is different. The thermostat settings can always be changed (opera-
tor 𝑠𝑒𝑡_𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡, which we described earlier) , but we plan the electricity sources only
when the building uses electric heating. This knowledge is given through the predicate
⟨𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐_ℎ𝑒𝑎𝑡𝑖𝑛𝑔, (𝑒ℎ)⟩, ⟨𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒_𝑝𝑜𝑙𝑖𝑐𝑦, (𝑒ℎ, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔_ℎ𝑜𝑢𝑟𝑠, 𝑘𝑊ℎ)⟩.

For levels 2, 3 our strategy for electricity source planning is to plan the sources for the off-peak hours,
when the HVAC system is working on high. If used properly by the occupants without deviating
too strongly from the recommended settings, the pre-cooling/floating should ensure that none or
minimal electricity is used during the on-peak period. We identify the peak periods according to
the data provided by the U.S. Energy Information Administration (EIA) as shown in Figure 3.2.
More specifically, we analyze the curves representing the demand in January and July, which are
considered representative of the winter and summer periods. The results are hard-coded in the
domain model.

3.3.6 Modelling the Uncertainty

As previously explained, we are modeling the uncertain amount of locally generated solar energy by
making the operator for storing solar energy cost-variable:

𝑠𝑡𝑜𝑟𝑒_𝑠𝑜𝑙𝑎𝑟_𝑜 = ⟨⟨𝑠𝑡𝑜𝑟𝑒_𝑠𝑜𝑙𝑎𝑟, (𝑎𝑚𝑜𝑢𝑛𝑡, ℎ)⟩,
𝑝𝑟𝑒(𝑠𝑡𝑜𝑟𝑒_𝑠𝑜𝑙𝑎𝑟_𝑜), 𝑒 𝑓 𝑓 (𝑠𝑡𝑜𝑟𝑒_𝑠𝑜𝑙𝑎𝑟_𝑜), 𝑐𝑜𝑠𝑡 (𝑠𝑡𝑜𝑟𝑒_𝑠𝑜𝑙𝑎𝑟_𝑜)⟩

,where 𝑐𝑜𝑠𝑡 (𝑠𝑡𝑜𝑟𝑒_𝑠𝑜𝑙𝑎𝑟_𝑜) represents the variable cost. The easiest way to achieve such costs is
to create a probability distribution of their different possible values and take the expected value over
it. The exact process is as follows:

1. Track the differences between the predicted amount of solar power and the real one at the end
of every day. The answer to the question for how many days we save a difference depends on
the system of the smart building, the available memory and computing power.

2. Use the noted differences to create a probability distribution over the differences.

3. Calculate the expected value over the created probability distribution, 𝐸 (𝑋). This value
represents the difference we expect between our forecast value 𝐹 and the one we will have.

4. Use 𝐸 (𝑋), 𝐹 and the average price of electricity at the hour of the storage, 𝑝ℎ, to compute
the cost with Equation (3.1):

(3.1) 𝑐𝑜𝑠𝑡 (𝑠𝑡𝑜𝑟𝑒_𝑠𝑜𝑙𝑎𝑟_𝑜) = 𝑝ℎ ∗ 𝑚𝑖𝑛(𝐸 (𝑋), 𝐹)
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3.3 Modelling the Domain

The semantics of Equation (3.1) are the following: if we usually overestimate the generated amount,
𝐸 (𝑋) will be positive. By multiplying the positive value with the price, we get positive costs,
meaning a higher electricity bill. This corresponds to the implication of overestimating the generated
energy and having to buy during hour ℎ. Accordingly, the calculated cost is the price to pay to
cover the electricity deficit, that is expected to occur. However, if we typically underestimate the
produced amount, 𝐸 (𝑋) would be negative. Since in this scenario we will have more electricity
than supposed at the end, we will be able to sell the surplus, and this decrease the electricity bill.
We represent this through the resulting negative costs of multiplying the negative 𝐸 (𝑋) with a
positive price.

The reason for us to take the minimum of the expected value for the difference and the wanted
amount is that it could happen that we want to store a smaller amount than the difference. In this
case, it would be illogical to use the bigger value, 𝐸 (𝑋), which is why we use the minimum of the
two.

However, the tracking of differences, maintenance of the file, the creation of the probability
distribution, as well as the determination of the expected value cannot be incorporated into our
domain model. Especially step 1 is to be performed by another component of the smart building.
The rest of the steps can easily be exported to an external function. Since many planners support
the integration of external functions, which are not a direct part of the domain model, this option
can be easily achieved. However, the exact implementation and logistics are determined later, in
the implementation phase, since they do not affect the domain model. Important at this point is
our decision to use cost-variable operators and knowing the exact semantics behind those variable
costs.
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4 Implementation

4.1 Planner

Before we implement our domain model, we have to choose the planner with which we will be
working. The choice of the planner is an important step of the process since it defines the syntax to
use for the implementation, the search algorithm, and other specifics which we have to take into
consideration. The planner has to be a state-based HTN planner, since we use state-based HTN
planning. Another preference is that it uses a pretty standard syntax. Those two criteria are met
by Java Simple Hierarchical Ordered Planner 2 (JSHOP2), a Java implementation of the Simple
Hierarchical Ordered Planner 2 (SHOP2), which is one of the most popular HTN planners [Ilg06].

A significant characteristic of JSHOP2 is its large expressive power. For example, it offers the
usage of sorted preconditions, which allows for easy and efficient implementation of the 𝑚𝑖𝑛, 𝑚𝑎𝑥,
𝑎𝑟𝑔𝑚𝑖𝑛, 𝑎𝑟𝑔𝑚𝑎𝑥 functions that often appear in the algorithms for our domain. An additional feature
of JHSOP2 is its built-in support for calls of many basic arithmetic functions, e.g., multiplication,
division, etc., but also basic comparators. Again, this allows us to implement our algorithms,
especially the one for the calculation of the set points, more easily. The integrated comparators
facilitate, for example, finding the ground predicate representing the cheapest offer for electricity.
Furthermore, this planner supports the execution of external calls, which also enabled us to
implement the cost-variable operators. The reason for this is that the creation of the probability
distribution and the calculation of the expected value couldn’t be incorporated directly into our
domain model. Last but not least, JSHOP2’s syntax bears many similarities to PDDL, making it
easily understandable for everyone who uses AI planning.

4.2 Domain Model

For the implementation of the domain model we use the syntax for JSHOP2 as defined in JSHOP2’s
official documentation [Ilg06]. The exact implementation is not shown in this work due to its length
(670 lines of code). However, we include two example problem instances and the plans which were
produced for them in Appendix C. Since the problem instances are used for qualitative evaluation,
their construction is explained in detail in Section 5.2.2.

An important characteristic of JSHOP2 is that the preconditions are considered in the order, in
which they are included in the domain model. This means that a precondition that is appearing
later can be evaluated only if all the earlier preconditions cannot be satisfied. This allows us to
implement the conditional statements (if - else if - else) from our algorithms very easily, just
by ordering the preconditions correspondingly. However, we want to point out that many HTN
planners use a non-deterministic decomposition technique, as described in Section 2.2, [GA15].
Accordingly, if one is interested in using the created model but with a different planner, specifically

55



4 Implementation

Figure 4.1: Implementing variable operator costs

one implementing this non-deterministic choice, the preconditions of our methods would need
alterations to ensure correct functionality. The alterations consist in implementing all preconditions
in full. Let us assume that in our implementation we have method1 and method2 which decompose
the same compound task. Let us also assume that method1 precedes method2 in the file. This means
that the planner will always try to apply method1 before method2. It will evaluate the preconditions
of method2 only if the ones of method1 cannot be satisfied. Accordingly, in our implementation, we
do not include in the preconditions of method2 that those of method1 should not apply. However, in
the case of non-deterministic choice, this information should be included.

4.2.1 Incorporating Uncertainty

As explained before, we manage to incorporate the factor of weather uncertainty in our domain
model by applying the concept of cost-variable operators. More specifically, we make the cost of the
operator for storing locally generated solar energy variable. As already known, it is determined with
the help of the expected value over the probability distribution of differences between the predicted
and generated amount of solar power. However, the creation of this probability distribution, as
well as the computation of the expected value over it, cannot be incorporated into the domain
model itself. Luckily, JSHOP2 supports the calls of external functions, which enables us to easily
implement all calculations in a separate .java file and call this functionality whenever we need it.

Figure 4.1 depicts the structure behind our implementation of the cost-variable operators. Firstly, it
should be pointed out that we are delegating the collection and management of the data about the
differences between the forecasted and the generated amount of solar power. This data should be
easy to collect from the sensors of any smart building which has solar panels and has access to
the weather forecast. Accordingly, we assume the tracking and logging of this information to be a
responsibility of a separate system. The rest of the calculations and their invocations are realized in
the .java and domain model files we provide.

JSHOP2 allows defining our own external functions and calling them in our domain model, given
that the implementation fulfills the following criteria:

• The function should be implemented in a Java class, whose name should be the name of the
function. The class should also implement the Java interface Calculate.
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• In order to implement the Calculate interface, the developer should implement the call
function from the interface in the created class. The only parameter of call is of type List,
representing a list as defined in JSHOP2’s documentation. This list contains all parameters
which the function will need. E.g., the call (call CalcCostSolarUsage 20 0.14) would result in
calling the call function from CalcCostSolarUsage.java with the parameter [20, 0.14]. The
return value of the call function should be of type Term, a term, again, as defined by JSHOP2.

It is important to mention that JSHOP2 only creates one object per class, even when the corresponding
function is called more than once. During the planning, there can never exist two objects of the
same external-function-class. We utilize this design decision by defining the class attribute
expectedDifference, which is set in the constructor of the class CalcCostSolarUsage. In the
constructor, as shown in Listing 4.1, we load and read the file with the logged differences, use
it to create a probability distribution over the values for the differences, and finally calculate the
expected value over it and save it in expectedDifference. In this way, we don’t have to run all those
computations during every call of the CalcCostSolarUsage function, since the field value is shared
for all calls. Accordingly, this makes the calculation of the cost of the cost-variable operators way
faster.

The call function CalcCostSolarUsage takes one parameter, of type List, which includes two
Terms. The first one has to be the amount of solar power we expect to be generated and stored
for a specific hour, and the second - the average price for electricity during this hour. We then
calculate the expected cost for the application of the operator with the formula 𝑐𝑜𝑠𝑡 = 𝑝𝑟𝑖𝑐𝑒 ∗
𝑀𝑎𝑡ℎ.𝑚𝑖𝑛(𝑎𝑚𝑜𝑢𝑛𝑡, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒), representing Equation (3.1), whose interpretation is
offered in Section 3.3.6. We return the value by creating a TermNumber object representing it.

4.3 Input and Output

Since our domain model supports planning for different automation levels, each of which requires
different data, and is invoked through different logical atoms, the ground predicates for the problem
instances have to be constructed with precision. In Appendix A, we provide an overview of the
different logical atoms that are to be used when creating problem instances. However, all initial
states that we used in the evaluation phase are constructed automatically. For this, we create our
own Java generator program, which is also available in our Gitlab repository.

The program has different settings for the generation of different problem instances. The purpose
of the problem instance is chosen through args[0], whose value is to be set to “evaluation”,
“automated_hvac”, “hvac_user_chosen_sp”, “user_hvac_schedule”, “no_hvac_only_appliances”.
We want to point out that the “evaluation” setting generates the files for the quantitative evaluation,
the specifics of which are described in the next chapter. With “automated_hvac”, the program
creates a scenario, in which the highest automation level (fully automated HVAC control) is wanted.
Accordingly, “hvac_user_chosen_sp” is for the second level, where the occupants specify intervals
for the set points for the different rooms. The lowest level is covered by “user_hvac_schedule”,
which generates an instance containing exact settings for the HVAC. In case no HVAC control is
wanted, but only appliances, for example, a scenario during spring, when no heating or cooling
is necessary, “no_hvac_only_appliances” can be used. With args[1] the user can select a name
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Listing 4.1 CalcCostSolarUsage.java

import JSHOP2.*;

import java.io.*;

public class CalcCostSolarUsage implements Calculate{

private double expectedDifference;

public CalcCostSolarUsage(){

//differences.txt saves forecasted value - produced amount

String pathDoc = System.getProperty("user.dir")+"\\differences.txt";

try(BufferedReader br = new BufferedReader(new FileReader(pathDoc))) {

int numberDifferences=Integer.parseInt(br.readLine()); //should be saved in the

first row

double meanInProgress=0;

for(String line; (line = br.readLine()) != null ;) {

meanInProgress+=Double.parseDouble(line);

}

this.expectedDifference=meanInProgress/numberDifferences;

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

@Override

public Term call(List l){

double amount =((TermNumber)l.getHead()).getNumber();

l = l.getRest();

double price =((TermNumber)l.getHead()).getNumber();

return new TermNumber(price*Math.min(amount,expectedDifference));

}

}
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4.3 Input and Output

for the problem instance to be generated, however, this is optional. The files for the quantitative
evaluation are saved in the generated_evaluation folder, whereas the other problem instances - in
generated_problems.

The output of the planning process is a plan, constructed by JSHOP2. However, since the plan is
the linearization of all operators which were applied during the planning process, some of our plans
can be unnecessarily long. The reason for this is the algorithm for the set points calculation, which
requires the application of operators such as !calc_r_j. Accordingly, such operators can be removed
from the produced plan without any loss. This is the functionality of the Postprocessing.java file,
which is also part of our generator program. We alter the make.bat file for Windows for JSHOP2,
so that we can create a plan for any problem instance and have it post-processed directly after the
generation of the plan. The whole process is automated and is started with the command make plan
%problem, where %problem is the name of the problem instance. The post-processed plan is saved
in results/produced_plans.

59





5 Evaluation

5.1 Evaluation Framework

As explained before, after the implementation of our solution, we conduct an extensive evaluation
of it, in order to test its quality. We cover three different types of evaluation, as defined by
Georgievski et al. [GA16] - quantitative, qualitative, and evaluation through demonstrations. For
the demonstrations, we construct different scenarios, covering the entire functionality of the domain.
Additionally, we use the habitual patterns described by Abreu et al. [APF12] to construct our
problem instances to ensure their realism. The produced plans are studied in terms of credibility.
Since, upon multiple examinations, no logical errors have been identified, we assume that produced
plans are indeed credible.

For the quantitative evaluation, we review the performance of the planner in terms of the scalability
of our solution. For this, we look at the planning time for problem instances with increasing
complexity of the initial state. We construct two experiments for this. In the first, the size increases
because of the growth in the number of appliances to schedule. In the second, we keep widening
the list of electricity providers.

Finally, for the qualitative evaluation, we compare the cost of plans when using the highest
automation level (completely automated set-points determination), and the lowest one (the user
chooses the exact thermostat settings). Of course, we ensure that the temperature goals with both
strategies are comparable, in order to ensure very similar experimental conditions.

5.2 Results

5.2.1 Quantitative Evaluation

For the quantitative evaluation, we explore the connection between the time necessary to create a
plan for a given problem instance, and the complexity of this instance. In our case, an increasing
complexity can be defined both as an increasing number of appliances to schedule, and as having
more electricity offers from the smart grid, respectively, more providers. As those factors are
connected to the size (length) of the problem instance, this experiment also covers the question of
the relation between the planning time and the size of the initial state.

As our two definitions of complexity, number providers and number appliances, are not connected,
we explore their effects through separate experiments. The problem instances are generated with
our generator program, which has settings for creating the evaluation initial states.
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Figure 5.1: An overview of the planning time for an initial state with a varying number of providers
and varying types of appliances.

The set-up of the initial states with varying numbers of providers is the following: every instance
has 4 appliances to schedule, randomly generated, the instances are named 𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑖, where
𝑖 ∈ {1, .., 30} and represents the number of different providers included. The upper bound for this
number is 30, as above it JSHOP2 could not process the problem instances due to their length (they
include > 30 ∗ 24 offers, since every provider is registered with an offer for every hour of the day).
We want to point out that the type of the appliances, their electricity consumption, and working
times vary for the different problem instances. We make this construction decision because the
offers from the providers differ. This means that using only one configuration for the appliances
will benefit some instances and disadvantage others. The resulting planning times are shown in
Figure 5.1. As can be seen from the values, the planning time does not seem to be affected by the
number of providers systematically.

To disprove the hypothesis that the lack of a strong tendency is due to the variation in the types of
the appliances among the problem instances, we conduct a follow-up experiment. The experiment
is built as the original one, but here we fix the types of appliances to be the same in all problem
instances - one dishwasher and three general appliances. The planning times are shown in Figure 5.2.
The values, once again, do not reveal any clear dependency.

The set-up for the second experiment with the problem instances with varying numbers of appliances
is as follows: every instance has 1 provider, respectively 24 offers, one for each hour. The provider
offers are randomly generated. The instances are named 𝑝𝑟𝑜𝑏𝑙𝑒𝑚_ 𝑗 , where 𝑗 starts at 1 and goes
up to 101, using the increment of 5. We use 𝑗 to denote the number of appliances to schedule in
the constructed initial state. The working hours, as well as their energy consumption, are chosen
randomly. The resulting planning times are shown in Figure 5.3. The results show an extreme value

62



5.2 Results

Figure 5.2: An overview of the planning time for an initial state with a varying number of providers
and fixed types of appliances for every planning instance.

at 𝑗 = 96, the cause for which, upon closer examination, is identified to be problematic values for
the amount of electricity offered by the provider at specific hours. Since the amount was too low,
the planner has to take additional steps, which is not the regular case. However, we do not provide
additional information about that case, since it occurrs because of the completely random choice of
values to use in the problem instance, which in this case are very unrealistic.

Accordingly, we remove the extreme value from the data set with the results and use the altered one
for the evaluation. The plot of the new data set is depicted in Figure 5.4. We also use exponential
regression to recognize a tendency. Since the exponential regression delivers promising results, we
can conclude that the planning time grows exponentially with regard to the number of appliances.
However, even though exponential complexity would usually mean a restriction in the applications
of a program, this is not the case with our solution. The reason for this is that the domain of smart
homes is very unlikely to ever include a number of appliances to schedule, that comes anywhere
near 100. Since the results up to the border of 100 appliances show very short planning times, we
can conclude that our solution delivers satisfactory results.

5.2.2 Qualitative Evaluation

As mentioned, we create two different problem instances problem_highest, which requires fully
automated cooling, where the set points are automatically chosen, and problem_low. For the latter,
the occupants have given their specific cooling requirements throughout the day - 77F between
10:00 am and 6:00 pm, and 79 after 6:00 pm. This means that in the second case the air conditioner
will be cooling between 10:00 am and 6:00 pm, and in the first case - we will be performing a
pre-cooling strategy with a longer duration than the strategy in the second case.
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Figure 5.3: An overview of the planning time for an initial state with a varying number of appliances
to schedule.

Figure 5.4: An exponential regression over the data for planning time for an initial state with a
varying number of appliances to schedule. Extreme values have been removed.
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5.2 Results

In order to ensure that the plans for the two initial states will be comparable, we construct them
identically, with their only differences being the HVAC preferences. More specifically, this means
that we include exactly the same providers and electricity offers in both, remove all additional
appliances, in order to focus on the HVAC, set the BESS capacity, and produce solar power to 0.
The day-ahead prices we use, are constructed according to https://www.pjm.com/. The two problem
instances, as well as the produced (and post-processed) plans, can be found under Appendix C.

The created plan for the low automation level has a cost of 2.856. The cost with the highest
automation level is 1.0132499999999998. Those results show that without the usage of our solution,
the user would pay around 282% of the price they would pay otherwise. Accordingly, the difference
in the two values is high enough to show that the plans produced with our solution are of better
quality.
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6 Related Work

The topic of how to make buildings and especially smart buildings more sustainable is widely
researched. However, the majority of studies do not explore this question from the perspective of
AI planning. Additionally, to the best of our knowledge, none of the works which use AI planning,
incorporate the notion of uncertainty in the domain model using variable costs.

The closest study to ours is [GDP+12], which also focuses on AI planning for smart buildings
as a part of the smart grid. However, unlike ours, it does not use HTN planning, but describes a
general approach for AI planning, which could also be applied to HTN. Additionally, the objective
of the work is defined differently - the team does not focus on a more sustainable operation, but
on reducing the electricity bill. Accordingly, our approach for scheduling devices for off-peak
hours and choosing providers according to their prices for electricity can also be found there. What
makes the proposal exceptionally good is the usage of so-called “policies”, which describe the
“behavior type” of appliances regarding their electricity usage. In our work, we have a similar
notion recognizable in the types “dishwasher” and “general appliance”. However, the policies
by Georgievski et al. are more comprehensive. Though, no solutions targeting other areas (e.g.,
optimizing HVAC set points) are suggested. The work by Georgievski et al. discusses possible
architectures for the proposed solution. We believe that their architecture could easily be adapted to
our work.

Additional information on architecture, but also different solution approaches to common HTN
planning approaches, are offered by Georgievski [Geo15]. His work discusses solutions based on
HTN planning for coordinating different services or appliances. Even though our study also offers
some type of coordination of appliances, its focus is on scheduling them for load balancing and
determination of electricity sources, a day ahead. Georgievski’s work, on the hand, is about reacting
to changes as they occur, e.g., reacting to a lamp being turned on, or adjusting a desk. Additionally,
of very big importance is the provided proof of concept, since Georgievski deploys his proposed
solution in an actual environment and describes the results.

Regarding the modeling of uncertainty, numerous scientific works make suggestions on how to
approach the challenge. [GA16] gives a very comprehensive overview of the different possible
approaches. What makes their work so important, however, is that their proposals are split into
categories, each of which corresponds to a type of uncertainty. E.g., the team suggests using
nondeterministic outcomes and conditional effects of operators when working with, what they
call, unexpected events and action contingencies. For uncertainty due to partial observability, they
introduce the idea of utilizing a memory of previous actions. Very noteworthy is also their overview
of studies on the different uncertainty types, which can be used as a starting point when modeling
uncertainty.

Another research work in this field is by Alnazer et al. [AGA22]. Their study not only develops
the concept of variable-cost operators, which are used in our work, but also focuses on different
uncertainty types. We consider the study exceptionally relevant for domains that require risk-aware
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planning, since the paper provides extensive guidelines on this subject. [BK04] is of interest for
domains where uncertainty is not expressed through uncertain action costs, but through uncertain
success rate. In this case, we do not ask what will the cost of performing a specific action be,
but how likely is it that we will be able to perform the action. Accordingly, [BK04] describes an
approach to finding the plans with the highest probability of success.

Another option is to approach the challenge through probabilistic planning. For example, [Ric17]
models domains with the uncertainty feature as Partially Observable Markov Decision Processes
(POMDP). [CC07], on the other hand, choose Bayesian Networks as a basis for the modeling.

However, outside the planning area, there are also numerous research studies that address different
viewpoints on how to ensure sustainability in smart buildings. One very important aspect, which
complements this work, is occupant behavior.

Understanding occupant behavior, in order to be able to motivate them to adopt certain sustainable
habits, is vital if real advances are to be made. Furthermore, the process of learning how to adapt
the systems to the occupants maximally cannot be neglected either. It is what allows us to make
the usage of sustainable systems more popular, and also motivates the users to overlook some
discomforts because of the advantages being offered to them. In [MMA+22], Malik et al., give a
starting point in regard to thinking about occupant behavior and interests in the context of energy
efficiency. Heidari et al. [HMK22] use reinforcement learning methods to understand and predict
user behavior and accordingly optimize energy usage. Additionally, the habitual patterns described
by Abreu et al. [APF12] deliver good insight into the occupants’ needs and constraints. The patterns
can be used to develop concepts of comfort for the inhabitants, and classify which appliances in a
household are eligible for scheduling. Additionally, as mentioned in Section 4.3, we constructed
our problem instances in accordance with the patterns, to ensure their credibility.
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7 Conclusion and Future Work

HTN planning has been used to address problems in different domains. In our research study, we
examine the domain of smart homes in order to “improve” it, in terms of sustainable operation, via
HTN planning. For this, we perform a systematic analysis of the domain. With this knowledge
acquisition phase, we identify the smart buildings’ utilization of the smart grid as a field that can
be optimized. We pinpoint load shifting as a suitable strategy, which can also be realized with
automated planning. However, we also provide an argumentation that load shifting is a strategy
that is very beneficial on a large scale, but not on a smaller one. In some cases, it could even be
considered disadvantageous for the occupants. Accordingly, we identify a second strategy that
would allow for a more environmentally-friendly operation, while providing benefits for the users -
HVAC optimization. For this, we use pre-cooling and pre-heating strategies.

As a next step, we discuss and “polish” the more complex requirements of the domain, e.g., the
incorporation of uncertainty. We model the domain with a special focus on its quality and usability.
In order to ensure its applicability for different scenarios with different occupants personas, we
introduce different automation levels both regarding the load shifting, and the HVAC operation. We
also introduce our approach to reflecting the uncertain nature of the domain in its model through
the usage of cost-variable operators, as defined by Alnazer et al. [AGA22]. Since our cost-variable
operator is related to the amount of locally generated solar power, we also improve the estimations
of the amount of this energy, which can be vital for a smart building.

The evaluation of our implementation of the domain model shows very low planning times, meaning
that the plans can be computed efficiently. Furthermore, the qualitative evaluation reveals that we
can reduce electricity costs by almost 2/3 when using the proposed solution. Accordingly, the
developed approach seems to meet the primary criteria of the users - it facilitates considerable
savings, is fast, and still allows the user to increase or decrease its responsibility and involvement
with the environment of the building.

However, our solution shows that achieving a more sustainable operation of a smart building is not
only dependent on the technology in it. Our caution to use scheduling for all devices or to allow only
HVAC operation with the set points we calculate, illustrates the relevance of occupants’ behavior
and their willingness to decrease their comfort level. Additionally, our usage of pre-cooling and
pre-floating strategies implies also the importance of the architecture. Decisions such as the choice
of building materials, the thickness of walls, the floor type, etc., all have a huge effect on indoor
temperature, thermal mass, and respectively on the success of the pre-cooling and pre-floating
techniques.

The solution proposed in this study is easily extendable with different strategies for improving
sustainable operation. For example, future research could focus on the management of “energy
vampires”, devices that aren’t actively used but still consume electricity. Another good field would
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be the transport one, since electric personal vehicles are becoming increasingly popular. However,
powering them requires a lot of energy. Therefore, more insight into this topic would be of great
importance.

Another direction for future work could be the adaptation of our domain model implementation for
other planners. Because of JSHOP2’s characteristic to choose the decomposition to use according
to their order in the domain model file, our domain model has a special arrangement of the methods
which is not to be changed. Accordingly, by interest to use the created model but adapt it for a
different planner, specifically one implementing non-deterministic choice, the preconditions of our
methods would need alterations to ensure correct functionality.

Lastly, as we mentioned at the beginning of this work, here we are looking only at the residen-
tial sector, excluding the commercial buildings from the smart buildings’ domain. Therefore,
further development of the domain by extending it with knowledge about office buildings is
recommendable.

70



Bibliography

[AEA12] M. Avci, M. Erkoc, S. Asfour. “Residential HVAC load control strategy in real-time
electricity pricing environment”. In: May 2012, pp. 1–6. isbn: 978-1-4673-1836-5.
doi: 10.1109/EnergyTech.2012.6304636 (cit. on pp. 18, 39, 41–43).

[AGA22] E. Alnazer, I. Georgievski, M. Aiello. Risk Awareness in HTN Planning. Apr. 2022
(cit. on pp. 18, 28, 29, 67, 69).

[Age] I. E. Agency. Gas Market Report, Q2-2022. url: https://www.iea.org/reports/gas-
market-report-q2-2022/executive-summary. (accessed: 28.06.2022) (cit. on p. 17).

[APF12] J. Abreu, F. Pereira, P. Ferrão. “Using pattern recognition to identify habitual behavior
in residential electricity consumption”. In: Energy and Buildings 49 (June 2012),
pp. 479–487. doi: 10.1016/j.enbuild.2012.02.044 (cit. on pp. 61, 68).

[BK04] A. Bouguerra, L. Karlsson. “Hierarchical Task Planning under Uncertainty”. In: (Oct.
2004) (cit. on p. 68).

[BMB14] A. Buckman, M. Mayfield, S. Beck. “What is a Smart Building?” In: Smart and
Sustainable Built Environment 3 (Sept. 2014), pp. 92–109. doi: 10.1108/SASBE-01-
2014-0003 (cit. on pp. 26, 27).

[CC07] B. Carolis, G. Cozzolongo. “Planning the Behaviour of a Social Robot Acting as a
Majordomo in Public Environments”. In: Sept. 2007, pp. 805–812. isbn: 978-3-540-
74781-9. doi: 10.1007/978-3-540-74782-6_72 (cit. on pp. 18, 68).

[Che20] A. Cheshmehzangi. “COVID-19 and Household Energy Implications: What are the
main Impacts on energy use?” In: Heliyon 6 (Oct. 2020), pp. 1–18. doi: 10.1016/j.
heliyon.2020.e05202 (cit. on p. 17).

[Com] E. Commision. EU Buildings Factsheets. url: https://ec.europa.eu/energy/eu-
buildings-factsheets_en. (accessed: 28.06.2022) (cit. on p. 17).

[Ene] D. Energy. Recommended Thermostat Settings in the Winter. url: https://www.
directenergy.com/learning-center/recommended-thermostat-settings-winter.
(accessed: 03.07.2022) (cit. on p. 51).

[FWR] D. A. Ozimek. Future Workforce Report 2021: How Remote Work is Changing
Businesses Forever. url: https://www.upwork.com/research/future-workforce-
report. (accessed: 28.06.2022) (cit. on p. 17).

[GA15] I. Georgievski, M. Aiello. “HTN planning: Overview, comparison, and beyond”. In:
Artificial Intelligence 222 (Feb. 2015), pp. 124–156. doi: 10.1016/j.artint.2015.
02.002 (cit. on pp. 23, 55).

[GA16] I. Georgievski, M. Aiello. “Automated Planning for Ubiquitous Computing”. In:
ACM Comput. Surv. 49 (Dec. 2016). doi: 10.1145/3004294 (cit. on pp. 18, 22, 31, 33,
61, 67).

71

https://doi.org/10.1109/EnergyTech.2012.6304636
https://www.iea.org/reports/gas-market-report-q2-2022/executive-summary
https://www.iea.org/reports/gas-market-report-q2-2022/executive-summary
https://doi.org/10.1016/j.enbuild.2012.02.044
https://doi.org/10.1108/SASBE-01-2014-0003
https://doi.org/10.1108/SASBE-01-2014-0003
https://doi.org/10.1007/978-3-540-74782-6_72
https://doi.org/10.1016/j.heliyon.2020.e05202
https://doi.org/10.1016/j.heliyon.2020.e05202
https://ec.europa.eu/energy/eu-buildings-factsheets_en
https://ec.europa.eu/energy/eu-buildings-factsheets_en
https://www.directenergy.com/learning-center/recommended-thermostat-settings-winter
https://www.directenergy.com/learning-center/recommended-thermostat-settings-winter
https://www.upwork.com/research/future-workforce-report
https://www.upwork.com/research/future-workforce-report
https://doi.org/10.1016/j.artint.2015.02.002
https://doi.org/10.1016/j.artint.2015.02.002
https://doi.org/10.1145/3004294


Bibliography

[GDP+12] I. Georgievski, V. Degeler, G. A. Pagani, T. A. Nguyen, A. Lazovik, M. Aiello.
“Optimizing Energy Costs for Offices Connected to the Smart Grid”. In: Smart Grid,
IEEE Transactions on 3 (Dec. 2012), pp. 2273–2285. doi: 10.1109/TSG.2012.2218666
(cit. on p. 67).

[Geo15] I. Georgievski. “Coordinating services embedded everywhere via hierarchical plan-
ning”. In: 2015 (cit. on pp. 38, 67).

[GNN+17] I. Georgievski, T. A. Nguyen, F. Nizamic, B. Setz, A. Lazovik, M. Aiello. “Planning
meets activity recognition: Service coordination for intelligent buildings”. In: Per-
vasive and Mobile Computing 38 (Feb. 2017). doi: 10.1016/j.pmcj.2017.02.008
(cit. on pp. 18, 23).

[GNT04a] M. Ghallab, D. Nau, P. Traverso. In: Automated Planning. Ed. by M. Ghallab, D. Nau,
P. Traverso. The Morgan Kaufmann Series in Artificial Intelligence. Burlington:
Morgan Kaufmann, 2004. isbn: 978-1-55860-856-6. doi: https://doi.org/10.
1016/B978-155860856-6/50004-1. url: https://www.sciencedirect.com/science/
article/pii/B9781558608566500041 (cit. on p. 18).

[GNT04b] M. Ghallab, D. Nau, P. Traverso. “Chapter 11 - Hierarchical Task Network Planning”.
In: Automated Planning. Ed. by M. Ghallab, D. Nau, P. Traverso. The Morgan
Kaufmann Series in Artificial Intelligence. Burlington: Morgan Kaufmann, 2004,
pp. 229–261. isbn: 978-1-55860-856-6. doi: https://doi.org/10.1016/B978-
155860856-6/50017-X. url: https://www.sciencedirect.com/science/article/pii/
B978155860856650017X (cit. on pp. 23, 24).

[Gre] GreenSpec. Thermal Mass. url: https : / / www . greenspec . co . uk / building -

design/thermal-mass/. (accessed: 03.07.2022) (cit. on p. 39).

[Hei20] L. Heiland. Domain-independent AI planning for demand-side management in office
buildings. 2020 (cit. on p. 38).

[HMK22] A. Heidari, F. Maréchal, D. Khovalyg. “Reinforcement Learning for proactive
operation of residential energy systems by learning stochastic occupant behavior and
fluctuating solar energy: Balancing comfort, hygiene and energy use”. In: Applied
Energy 318 (May 2022). doi: 10.1016/j.apenergy.2022.119206 (cit. on p. 68).

[Hod] U. E. I. A. Hodge T. Hourly electricity consumption varies throughout the day and
across seasons. url: https://www.eia.gov/todayinenergy/detail.php?id=42915.
(accessed: 03.07.2022) (cit. on pp. 35, 36).

[Hoy16] M. Hoy. “Smart Buildings: An Introduction to the Library of the Future”. In: Medical
reference services quarterly 35 (July 2016), pp. 326–331. doi: 10.1080/02763869.
2016.1189787 (cit. on p. 26).

[HT] A. Hussain, M. Torres. Time to pick up pace of dynamic electricity pricing. url: https:
//www.frontier-economics.com/uk/en/news-and-articles/articles/article-

i6106-time-to-pick-up-pace-of-dynamic-electricity-pricing/#. (accessed:
02.07.2022)" (cit. on p. 37).

[Ilg06] O. Ilghami. “Documentation for JSHOP2”. In: (Apr. 2006) (cit. on p. 55).

[JEG] J. E. G. Inc. What Temperature Should I Set My Air Conditioner in Summer? url:
https://justenergy.com/blog/what- temperature- should- i- set- my- air-

conditioner-in-summer/. (accessed: 03.07.2022) (cit. on p. 38).

72

https://doi.org/10.1109/TSG.2012.2218666
https://doi.org/10.1016/j.pmcj.2017.02.008
https://doi.org/https://doi.org/10.1016/B978-155860856-6/50004-1
https://doi.org/https://doi.org/10.1016/B978-155860856-6/50004-1
https://www.sciencedirect.com/science/article/pii/B9781558608566500041
https://www.sciencedirect.com/science/article/pii/B9781558608566500041
https://doi.org/https://doi.org/10.1016/B978-155860856-6/50017-X
https://doi.org/https://doi.org/10.1016/B978-155860856-6/50017-X
https://www.sciencedirect.com/science/article/pii/B978155860856650017X
https://www.sciencedirect.com/science/article/pii/B978155860856650017X
https://www.greenspec.co.uk/building-design/thermal-mass/
https://www.greenspec.co.uk/building-design/thermal-mass/
https://doi.org/10.1016/j.apenergy.2022.119206
https://www.eia.gov/todayinenergy/detail.php?id=42915
https://doi.org/10.1080/02763869.2016.1189787
https://doi.org/10.1080/02763869.2016.1189787
https://www.frontier-economics.com/uk/en/news-and-articles/articles/article-i6106-time-to-pick-up-pace-of-dynamic-electricity-pricing/#
https://www.frontier-economics.com/uk/en/news-and-articles/articles/article-i6106-time-to-pick-up-pace-of-dynamic-electricity-pricing/#
https://www.frontier-economics.com/uk/en/news-and-articles/articles/article-i6106-time-to-pick-up-pace-of-dynamic-electricity-pricing/#
https://justenergy.com/blog/what-temperature-should-i-set-my-air-conditioner-in-summer/
https://justenergy.com/blog/what-temperature-should-i-set-my-air-conditioner-in-summer/


Bibliography

[KFS+21] R. Karimi, L. Farahzadi, S. Sepasgozar, S. Sargolzaei, S. Sepasgozar, M. Zareian,
A. Nasrolahi. “Smart Built Environment Including Smart Home, Smart Building
and Smart City: Definitions and Applied Technologies”. In: Dec. 2021. isbn: 978-1-
83881-141-9. doi: 10.5772/intechopen.95104 (cit. on p. 26).

[KJU+13] I. Khan, N. Javaid, M. Ullah, A. Mahmood, M. Farooq. “A Survey of Home Energy
Management Systems in Future Smart Grid Communications”. In: (July 2013). doi:
10.1109/BWCCA.2013.80 (cit. on pp. 18, 28, 35).

[LCL16] G. Lobaccaro, S. Carlucci, E. Löfström. “A Review of Systems and Technologies
for Smart Homes and Smart Grids”. In: Energies 9 (May 2016), pp. 1–33. doi:
10.3390/en9050348 (cit. on p. 28).

[Lio92] Y. I. Liou. “Knowledge Acquisition: Issues, Techniques and Methodology”. In:
SIGMIS Database 23.1 (Mar. 1992), pp. 59–64. issn: 0095-0033. doi: 10.1145/
134347.134364. url: https://doi.org/10.1145/134347.134364 (cit. on p. 31).

[LJ21] Z. Liu, G. Jiang. “Optimization of intelligent heating ventilation air conditioning
system in urban building based on BIM and artificial intelligence technology”.
In: Computer Science and Information Systems 18 (Jan. 2021), pp. 27–27. doi:
10.2298/CSIS200901027L (cit. on p. 40).

[Mai18] A. f. E. E. e. Maier M. “Metaanalyse: Die Digitalisierung der Energiewende”. In:
(Aug. 2018), p. 19 (cit. on pp. 35, 37).

[Mat19] C. L. Matt Harding Kyle Kettler. “Environmental and Social Benefits of Time of Use
Electricity Pricing”. In: (Jan. 2019) (cit. on p. 17).

[MMA+22] J. Malik, A. Mahdavi, E. Azar, H. chandra putra, C. Berger, C. Andrews, T. Hong.
“Ten questions concerning agent-based modeling of occupant behavior for energy
and environmental performance of buildings”. In: Building and Environment 217
(Mar. 2022). doi: 10.1016/j.buildenv.2022.109016 (cit. on p. 68).

[MOG+10] D. K. Mcglinn, E. Oneill, A. Gibney, D. O’Sullivan, D. Lewis. “SimCon: A Tool
to Support Rapid Evaluation of Smart Building Application Design using Context
Simulation and Virtual Reality”. In: J. UCS 16 (Jan. 2010), pp. 1992–2018 (cit. on
p. 26).

[MZH] D. Byers. Mark Zuckerberg: Half of Facebook may work remotely by 2030. url:
https://www.nbcnews.com/tech/tech-news/mark-zuckerberg-half-facebook-may-

work-remotely-2030-n1212081. (accessed: 28.06.2022) (cit. on p. 17).

[Offa] E. S. Office. Energy consumption in households. url: https://ec.europa.eu/

eurostat/statistics- explained/index.php?title=Energy_consumption_in_

households. (accessed: 31.08.2022) (cit. on p. 38).

[Offb] E. S. Office. Energy statistics - an overview. url: https://ec.europa.eu/eurostat/
statistics-explained/index.php?title=Energy_statistics_-_an_overview#

Final_energy_consumption. (accessed: 28.06.2022) (cit. on p. 17).

[RC17] J. Reyna, M. Chester. “Energy efficiency to reduce residential electricity and natural
gas use under climate change”. In: Nature Communications 8 (May 2017), p. 14916.
doi: 10.1038/ncomms14916 (cit. on p. 17).

73

https://doi.org/10.5772/intechopen.95104
https://doi.org/10.1109/BWCCA.2013.80
https://doi.org/10.3390/en9050348
https://doi.org/10.1145/134347.134364
https://doi.org/10.1145/134347.134364
https://doi.org/10.1145/134347.134364
https://doi.org/10.2298/CSIS200901027L
https://doi.org/10.1016/j.buildenv.2022.109016
https://www.nbcnews.com/tech/tech-news/mark-zuckerberg-half-facebook-may-work-remotely-2030-n1212081
https://www.nbcnews.com/tech/tech-news/mark-zuckerberg-half-facebook-may-work-remotely-2030-n1212081
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption
https://doi.org/10.1038/ncomms14916


Bibliography

[Ric17] F. Richter. “Hierarchical planning under uncertainty”. en. PhD thesis. Universität
Ulm, 2017. doi: 10.18725/OPARU-5243. url: https://oparu.uni-ulm.de/xmlui/
handle/123456789/5300 (cit. on pp. 18, 28, 68).

[Sle] SleepAdvisor.org. What’s The Best Temperature For Sleep? url: https://www.
sleepadvisor.org/best-temperature-for-sleep/. (accessed: 03.07.2022) (cit. on
p. 51).

[Sta21] C. Stanullo. AI planning for improved ventilation management in buildings. 2021
(cit. on p. 38).

[WTS20] J. Wang, C. Tang, L. Song. “Design and Analysis of Optimal Pre-Cooling in
Residential Buildings”. In: Energy and Buildings 216 (Mar. 2020), p. 109951. doi:
10.1016/j.enbuild.2020.109951 (cit. on p. 40).

[ZZS+21] Z. Zeng, W. Zhang, K. Sun, M. Wei, T. Hong. “Investigation of pre-cooling as a
recommended measure to improve residential buildings’ thermal resilience during
heat waves”. In: Building and Environment 210 (Dec. 2021). doi: 10.1016/j.

buildenv.2021.108694 (cit. on p. 39).

All links were last followed on September 26, 2022.

74

https://doi.org/10.18725/OPARU-5243
https://oparu.uni-ulm.de/xmlui/handle/123456789/5300
https://oparu.uni-ulm.de/xmlui/handle/123456789/5300
https://www.sleepadvisor.org/best-temperature-for-sleep/
https://www.sleepadvisor.org/best-temperature-for-sleep/
https://doi.org/10.1016/j.enbuild.2020.109951
https://doi.org/10.1016/j.buildenv.2021.108694
https://doi.org/10.1016/j.buildenv.2021.108694


A Predicates for Defining Problem Instances

Appliances

• (dishwasher ?dw)
• (general_appliance ?appl)
• (appliance_policy ?appl ?h_to_work ?kWh)
• (to_schedule ?appl ?start_h ?stop_h)
• (ac ?ac)
• (electric_heating ?eh)

DAP prices

• (price ?provider ?h ?price ?amount)
• (average_price_at_h ?h ?price)
• (averaged_price_min_max ?min ?max)

Weather forecast

• (weather_max_bounds ?higher_bound ?lower_bound)
• (forecast_tomorrow ?max ?min)

Storage

• (price_tolerance_to_avoid_storing ?t)

• (bess_capacity ?capacity)

• (bought_energy ?amount ?h)

• (stored_energy 0 ?h 0 0 0)

Locally generated solar power

• (hours_with_solar ?start_h ?end_h)

• (solar ?amount ?h)

Automated HVAC

• (auto_heating)
• (auto_cooling)
• (room ?room)
• (tolerance_level ?alpha)
• (user_temp_set_points ?low ?high ?room)
• (wanted_temperature ?room ?h ?temp) - not for automated HVAC, but for user-chosen

thermostat settings
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C Problem Instances for Qualitative Evaluation
and Produced Plans

C.1 Highest Automation Level

C.1.1 Problem Instance

Line 4 is marked, since it is the only line which is not included in the problem instance for the
lowest automation level, Appendix C.2.1.

(defproblem problem energy_plan_for_smart_home

(

(ac ac)

Line 4: (auto_cooling)

(weather_max_bounds 79 50)

(forecast_tomorrow 90 77)

(room bedroom1)

(appliance_policy ac not_given 1.5)

(tolerance_level 0)

(price_tolerance_to_avoid_storing 1.12)

(bess_capacity 0)

(bought_energy 0 0)

(bought_energy 0 1)

(bought_energy 0 2)

(bought_energy 0 3)

(bought_energy 0 4)

(bought_energy 0 5)

(bought_energy 0 6)

(bought_energy 0 7)

(bought_energy 0 8)
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(bought_energy 0 9)

(bought_energy 0 10)

(bought_energy 0 11)

(bought_energy 0 12)

(bought_energy 0 13)

(bought_energy 0 14)

(bought_energy 0 15)

(bought_energy 0 16)

(bought_energy 0 17)

(bought_energy 0 18)

(bought_energy 0 19)

(bought_energy 0 20)

(bought_energy 0 21)

(bought_energy 0 22)

(bought_energy 0 23)

(bought_energy 0 24)

(stored_energy 0 0 0 0 0)

(stored_energy 0 1 0 0 0)

(stored_energy 0 2 0 0 0)

(stored_energy 0 3 0 0 0)

(stored_energy 0 4 0 0 0)

(stored_energy 0 5 0 0 0)

(stored_energy 0 6 0 0 0)

(stored_energy 0 7 0 0 0)

(stored_energy 0 8 0 0 0)

(stored_energy 0 9 0 0 0)

(stored_energy 0 10 0 0 0)

(stored_energy 0 11 0 0 0)

(stored_energy 0 12 0 0 0)

(stored_energy 0 13 0 0 0)

(stored_energy 0 14 0 0 0)
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(stored_energy 0 15 0 0 0)

(stored_energy 0 16 0 0 0)

(stored_energy 0 17 0 0 0)

(stored_energy 0 18 0 0 0)

(stored_energy 0 19 0 0 0)

(stored_energy 0 20 0 0 0)

(stored_energy 0 21 0 0 0)

(stored_energy 0 22 0 0 0)

(stored_energy 0 23 0 0 0)

(stored_energy 0 24 0 0 0)

(hours_with_solar 0 1)

(solar 0 0)

(price provider1 0 0.0818 25.5)

(price provider2 0 0.0833 77.5)

(price provider3 0 0.039 65.5)

(average_price_at_h 0 0.05)

(price provider1 1 0.047 28.5)

(price provider2 1 0.0585 74.5)

(price provider3 1 0.047 65.5)

(average_price_at_h 1 0.0416)

(price provider1 2 0.033 25.5)

(price provider2 2 0.052 70.5)

(price provider3 2 0.056 85.5)

(average_price_at_h 2 0.037)

(price provider1 3 0.05 58.5)

(price provider2 3 0.042 47.5)

(price provider3 3 0.025 38.5)

(average_price_at_h 3 0.033)

(price provider1 4 0.048 41.5)

(price provider2 4 0.029 65.5)

(price provider3 4 0.035 61.5)
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(average_price_at_h 4 0.032)

(price provider1 5 0.0227 15.5)

(price provider2 5 0.045 23.5)

(price provider3 5 0.043 10.5)

(average_price_at_h 5 0.032)

(price provider1 6 0.0351 49.5)

(price provider2 6 0.0489 98.5)

(price provider3 6 0.0264 58.5)

(average_price_at_h 6 0.0336)

(price provider1 7 0.05174 20.5)

(price provider2 7 0.0494 28.5)

(price provider3 7 0.0416 74.5)

(average_price_at_h 7 0.0367)

(price provider1 8 0.0733 93.5)

(price provider2 8 0.0729 13.5)

(price provider3 8 0.0789 37.5)

(average_price_at_h 8 0.0496)

(price provider1 9 0.0592 1.5)

(price provider2 9 0.0696 19.5)

(price provider3 9 0.0703 77.5)

(average_price_at_h 9 0.0572)

(price provider1 10 0.0733 10.5)

(price provider2 10 0.1153 98.5)

(price provider3 10 0.068 65.5)

(average_price_at_h 10 0.0709)

(price provider1 11 0.1433 20.5)

(price provider2 11 0.15 34.5)

(price provider3 11 0.0744 40.5)

(average_price_at_h 11 0.092)

(price provider1 12 0.106 52.5)

(price provider2 12 0.178 15.5)
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(price provider3 12 0.0929 19.5)

(average_price_at_h 12 0.1154)

(price provider1 13 0.1743 95.5)

(price provider2 13 0.2128 65.5)

(price provider3 13 0.217 92.5)

(average_price_at_h 13 0.1518)

(price provider1 14 0.3403 26.5)

(price provider2 14 0.239 53.5)

(price provider3 14 0.278 84.5)

(average_price_at_h 14 0.25)

(price provider1 15 0.392 32.5)

(price provider2 15 0.294 33.5)

(price provider3 15 0.391 34.5)

(average_price_at_h 15 0.2927)

(price provider1 16 0.4552 84.5)

(price provider2 16 0.392 65.5)

(price provider3 16 0.4574 38.5)

(average_price_at_h 16 0.308)

(price provider1 17 0.2264 86.5)

(price provider2 17 0.3317 97.5)

(price provider3 17 0.2498 91.5)

(average_price_at_h 17 0.319)

(price provider1 18 0.4 23.5)

(price provider2 18 0.413 93.5)

(price provider3 18 0.343 91.5)

(average_price_at_h 18 0.3038)

(price provider1 19 0.254 69.5)

(price provider2 19 0.337 32.5)

(price provider3 19 0.199 53.5)

(average_price_at_h 19 0.221)

(price provider1 20 0.1791 13.5)
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(price provider2 20 0.1494 38.5)

(price provider3 20 0.1269 35.5)

(average_price_at_h 20 0.13604)

(price provider1 21 0.1534 21.5)

(price provider2 21 0.1656 3.5)

(price provider3 21 0.17 71.5)

(average_price_at_h 21 0.127)

(price provider1 22 0.102 81.5)

(price provider2 22 0.152 3.5)

(price provider3 22 0.136 69.5)

(average_price_at_h 22 0.107)

(price provider1 23 0.108 75.5)

(price provider2 23 0.0607 65.5)

(price provider3 23 0.11647 70.5)

(average_price_at_h 23 0.0756)

(price provider1 24 0.052 76.5)

(price provider2 24 0.049 84.5)

(price provider3 24 0.096 60.5)

(average_price_at_h 24 0.0569)

(averaged_price_min_max 0.03199 0.31993)

(renewable_provider provider2)

)

(:unordered

(plan_day_ahead)

) )
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C.1.2 Post-processed Plan

Plan cost: 1.0132499999999998

(!buy_renewable provider2 24.0 1.5 0.049)

(!use_from_grid 24.0 1.5 ac)

(!buy_renewable provider2 23.0 1.5 0.0607)

(!use_from_grid 23.0 1.5 ac)

(!buy_nonrenewable provider1 22.0 1.5 0.102)

(!use_from_grid 22.0 1.5 ac)

(!buy_nonrenewable provider3 10.0 1.5 0.068)

(!use_from_grid 10.0 1.5 ac)

(!buy_nonrenewable provider1 9.0 1.5 0.0592)

(!use_from_grid 9.0 1.5 ac)

(!buy_renewable provider2 8.0 1.5 0.0729)

(!use_from_grid 8.0 1.5 ac)

(!buy_nonrenewable provider3 7.0 1.5 0.0416)

(!use_from_grid 7.0 1.5 ac)

(!buy_nonrenewable provider3 6.0 1.5 0.0264)

(!use_from_grid 6.0 1.5 ac)

(!buy_nonrenewable provider1 5.0 1.5 0.0227)

(!use_from_grid 5.0 1.5 ac)

(!buy_renewable provider2 4.0 1.5 0.029)

(!use_from_grid 4.0 1.5 ac)

(!buy_nonrenewable provider3 3.0 1.5 0.025)

(!use_from_grid 3.0 1.5 ac)

(!buy_nonrenewable provider1 2.0 1.5 0.033)

(!use_from_grid 2.0 1.5 ac)

(!buy_nonrenewable provider1 1.0 1.5 0.047)

(!use_from_grid 1.0 1.5 ac)

(!buy_nonrenewable provider3 0.0 1.5 0.039)

(!use_from_grid 0.0 1.5 ac)

(!set_thermostat 1.0 72.0 bedroom1)
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(!set_thermostat 2.0 72.0 bedroom1)

(!set_thermostat 3.0 72.0 bedroom1)

(!set_thermostat 4.0 72.0 bedroom1)

(!set_thermostat 5.0 72.0 bedroom1)

(!set_thermostat 6.0 72.0 bedroom1)

(!set_thermostat 7.0 72.0 bedroom1)

(!set_thermostat 8.0 72.0 bedroom1)

(!set_thermostat 9.0 72.0 bedroom1)

(!set_thermostat 10.0 73.0 bedroom1)

(!set_thermostat 11.0 74.0 bedroom1)

(!set_thermostat 12.0 74.0 bedroom1)

(!set_thermostat 13.0 76.0 bedroom1)

(!set_thermostat 14.0 79.0 bedroom1)

(!set_thermostat 15.0 81.0 bedroom1)

(!set_thermostat 16.0 81.0 bedroom1)

(!set_thermostat 17.0 81.0 bedroom1)

(!set_thermostat 18.0 81.0 bedroom1)

(!set_thermostat 19.0 78.0 bedroom1)

(!set_thermostat 20.0 75.0 bedroom1)

(!set_thermostat 21.0 75.0 bedroom1)

(!set_thermostat 22.0 74.0 bedroom1)

(!set_thermostat 23.0 73.0 bedroom1)

(!set_thermostat 24.0 72.0 bedroom1)

Time Used = 0.047
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C.2 Lowest Automation Level

C.2.1 Problem Instance

Same as Appendix C.1.1 but instead of Line 4:

(wanted_temperature bedroom1 10 77)

(wanted_temperature bedroom1 18 79)

(appliance_policy ac not_given 1.5)

C.2.2 Post-processed Plan

Plan cost: 2.856

(!buy_nonrenewable provider3 18.0 1.5 0.343)

(!use_from_grid 18.0 1.5 ac)

(!buy_nonrenewable provider1 17.0 1.5 0.2264)

(!use_from_grid 17.0 1.5 ac)

(!buy_renewable provider2 16.0 1.5 0.392)

(!use_from_grid 16.0 1.5 ac)

(!buy_renewable provider2 15.0 1.5 0.294)

(!use_from_grid 15.0 1.5 ac)

(!buy_renewable provider2 14.0 1.5 0.239)

(!use_from_grid 14.0 1.5 ac)

(!buy_nonrenewable provider1 13.0 1.5 0.1743)

(!use_from_grid 13.0 1.5 ac)

(!buy_nonrenewable provider3 12.0 1.5 0.0929)

(!use_from_grid 12.0 1.5 ac)

(!buy_nonrenewable provider3 11.0 1.5 0.0744)

(!use_from_grid 11.0 1.5 ac)

(!buy_nonrenewable provider3 10.0 1.5 0.068)

(!use_from_grid 10.0 1.5 ac)

(!set_thermostat 10.0 77.0 bedroom1)

(!set_thermostat 18.0 79.0 bedroom1)

Time Used = 0.052
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