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Abstract

Computational Social Science (CSS) is an emerging research area at
the intersection of social science and computer science, where prob-
lems of societal relevance can be addressed by novel computational
methods. With the recent advances in machine learning and nat-
ural language processing as well as the availability of textual data,
CSS has opened up to new possibilities, but also methodological
challenges. In this thesis, we present a line of work on develop-
ing methods and addressing challenges in terms of data annotation
and modeling for computational political science and social media
analysis, two highly popular and active research areas within CSS.

In the first part of the thesis, we focus on a use case from computa-
tional political science, namely Discourse Network Analysis (DNA),
a framework that aims at analyzing the structures behind complex
societal discussions. We investigate how this style of analysis, which
is traditionally performed manually, can be automated. We start
by providing a requirement analysis outlining a roadmap to decom-
pose the complex DNA task into several conceptually simpler sub-
tasks. Then, we introduce NLP models with various configurations
to automate two of the sub-tasks given by the requirement anal-
ysis, namely claim detection and classification, based on different
neural network architectures ranging from unidirectional LSTMs to
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Transformer based architectures.
In the second part of the thesis, we shift our focus to fairness, a

central concern in CSS. Our goal in this part of the thesis is to an-
alyze and improve the performances of NLP models used in CSS in
terms of fairness and robustness while maintaining their overall per-
formance. With that in mind, we first analyze the above-mentioned
claim detection and classification models and propose techniques
to improve model fairness and overall performance. After that, we
broaden our focus to social media analysis, another highly active
subdomain of CSS. Here, we study text classification of the cor-
related attributes, which pose an important but often overlooked
challenge to model fairness. Our last contribution is to discuss the
limitations of the current statistical methods applied for bias identi-
fication; to propose a multivariate regression based approach; and to
show that, through experiments conducted on social media data, it
can be used as a complementary method for bias identification and
analysis tasks.

Overall, our work takes a step towards increasing the understand-
ing of challenges of computational social science. We hope that both
political scientists and NLP scholars can make use of the insights
from this thesis in their research.
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Zusammenfassung

Die computergestützte Sozialwissenschaft (CSS) ist ein aufstreben-
des Forschungsgebiet an der Schnittstelle zwischen Sozialwissenschaft
und Informatik, in dem Probleme von gesellschaftlicher Relevanz mit
neuartigen computergestützten Methoden angegangen werden kön-
nen. Mit den jüngsten Fortschritten im Bereich des maschinellen
Lernens und der Verarbeitung natürlicher Sprache sowie der Ver-
fügbarkeit grosser Datenmengen haben sich der CSS neue Möglich-
keiten, aber auch methodische Herausforderungen eröffnet. In dieser
Dissertation stellen wir eine Reihe von Arbeiten vor, die sich mit der
Entwicklung von Methoden und der Bewältigung von Herausforde-
rungen in Bezug auf die Datenannotation und -modellierung für die
computergestützte Politikwissenschaft und die Analyse sozialer Me-
dien befassen, zwei sehr aktive Forschungsbereiche innerhalb von
CSS.

Im ersten Teil der Arbeit konzentrieren wir uns auf einen Anwen-
dungsfall aus der computergestützten Politikwissenschaft, nämlich
der Diskursnetzwerkanalyse (DNA), deren Ziel ist, die Strukturen
hinter komplexen gesellschaftlichen Debatten herauszuarbeiten. Wir
untersuchen, wie Analysen dieser Art, die traditionell manuell durch-
geführt werden, automatisiert werden können. Wir beginnen mit ei-
ner Anforderungsanalyse und skizzieren eine Roadmap zur Zerle-
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gung der komplexen DNA-Aufgabe in mehrere konzeptionell einfa-
chere Teilaufgaben. Dann stellen wir NLP-Modelle mit verschiede-
nen Konfigurationen vor, um zwei der durch die Anforderungsanaly-
se vorgegebenen Teilaufgaben zu automatisieren, nämlich die Erken-
nung und Klassifizierung von Behauptungen, basierend auf verschie-
denen neuronalen Netzwerkarchitekturen, die von unidirektionalen
LSTMs bis zu transformer-basierten Architekturen reichen.

Im zweiten Teil der Arbeit konzentrieren wir uns auf Fairness, ein
zentrales Anliegen von CSS. Unser Ziel in diesem Teil der Arbeit ist
es, die Leistung von NLP-Modellen, die in CSS verwendet werden, im
Hinblick auf Fairness und Robustheit zu analysieren und zu verbes-
sern, ohne dabei ihre Gesamtleistung zu beeinträchtigen. Zu diesem
Zweck analysieren wir zunächst die oben erwähnten Modelle zur Er-
kennung und Klassifizierung von Behauptungen und schlagen Tech-
niken zur Verbesserung der Fairness und der Gesamtleistung der Mo-
delle vor. Danach weiten wir unseren Fokus auf die Analyse sozialer
Medien aus, einem weiteren sehr aktiven Teilbereich von CSS. Hier
untersuchen wir zunächst die Textklassifizierung der korrelierten At-
tribute, die eine wichtige, aber oft übersehene Herausforderung für
die Modellgerechtigkeit darstellen. Im letzten experimentellen Kapi-
tel erörtern wir dann die Grenzen der derzeitigen statistischen Me-
thoden zur Identifikation von bias (inhärenter Ungleichbehandlung),
schlagen einen auf multivariater Regression basierenden Ansatz vor
und zeigen anhand von Experimenten mit Social-Media-Daten, dass
dieser als ergänzende Methode zur Identifizierung von Verzerrungen
und für Analyseaufgaben eingesetzt werden kann.

Zusammengefaßt stellt unsere Arbeit einen Schritt in Richtung
eines besseren Verständnisses der Herausforderungen der computer-
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gestützten Sozialwissenschaften dar. Wir hoffen, dass wir es sowohl
Politikwissenschaftlern als auch NLP-Forschern ermöglichen, die Er-
kenntnisse dieser Arbeit für ihre eigene Forschung nutzbar zu ma-
chen.
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Part I

Introduction and

Background





1 Introduction

1.1 Locating Computational Political Text

Analysis

We begin by providing an overview of the main fields of research
that this thesis overlaps with, in order to localize it.

Political Science is a social science subject aiming to describe,
analyse and explain the workings of government and relationship
between political and non-political institutions and processes (Hey-
wood, 2015). It consists of three major subfields, which are compar-
ative politics, international relations, and political theory, as well as
several minor subfields such as political economy, political method-
ology and political communication. Research in political science
covers a wide range of topics including public opinion (Burstein,
2010), politics and the gender gap (Mendelberg et al., 2014), human
rights oppression (Milner et al., 1999), law enforcement and its ef-
fects (Møller and Skaaning, 2013; Oztig and Donduran, 2020), and
the political control of bureaucracy (Dahlström and Holmgren, 2019;
Bach et al., 2020).

Political Communication, as one of the main subfields of polit-
ical science, concerns with how information spreads and influences
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politics, policy makers, the news media, and citizens (Smelser et al.,
2001). Political science researchers have long recognized the value of
textual sources such as newspapers, social media, party manifestos
for political communication: They are one of the primary mediums
for political actors to interact with public (and vice versa), run polit-
ical campaigns, to achieve certain political goals and to shape public
opinion in their own way, and hence analysis of such political texts
can provide an understanding of the current political process and
events (Subramanian, 2020).

Political Text Analysis has traditionally been performed manu-
ally due to the lack of automated tools. However, recent advances
in Machine Learning (ML) and Natural Language Processing (NLP)
have opened up the possibility of being able to automate this analy-
sis, leading to the rise of Computational Social Science (CSS)
(Lazer et al., 2009). CSS is an emerging interdisciplinary field which
is driven by new sources of data from the Internet, sensor networks,
government databases, and aims to empirically study topics related
to the social sciences such as economics, sociology and political sci-
ence with the help of computational methods.

Early research in Computational Political Text Analysis has
focused on relatively less complicated document-level tasks such as
political text scaling (Slapin and Proksch, 2008), political orienta-
tion classification (Cohen and Ruths, 2013) and topic classification
(Hopkins and King, 2010; Karan et al., 2016) using conventional
statistical methods such as Naïve Bayes classifier, SVMs and static
word embeddings, which require relatively little annotated data and
expertise to train effectively. However, just like in many other do-
mains, the recent advances such as development of dedicated re-
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sources and significantly better performing NLP models based on
LSTMs- and Transformers-based architectures are changing the level
of analysis performed in political discourse, enabling researchers to
perform deeper semantic and structured analysis such as political
event extraction (Hürriyetoğlu et al., 2019, 2020), aspect-controlled
argument generation (Schiller et al., 2020), fact checking (Ostrowski
et al., 2021) and entity level sentiment analysis (Yang et al., 2021),
to name just a few applications.

Political debates with their complex structures, both semantically
and syntactically, are one of the main text types in political discourse
(Kersting, 2005). In democratic countries, most political decisions
which are bound to affect a substantial part of the community attract
public attention and thus accompanied by public debates (De Wilde,
2011; Zürn, 2014; Haunss et al., 2020). To better understand demo-
cratic decision-making, one needs a fine-grained representation of
such debates and their dynamics that captures specific aspects of
the debate topic and represents how the structure of agreement (or
disagreement) develops around such aspects. Hence, understanding
the structure and evolution of political debates has always been a
popular research topic in political science domain and various analy-
sis techniques have been developed over the years, such as advocacy
coalition framework (Sabatier and Jenkins-Smith, 1993) and Dis-
course Network Analysis (Leifeld, 2009).

Discourse Network Analysis (DNA) is a framework for the
structural representation and the analysis of policy debates where
a policy debate is a political discourse centered on a given policy
such as immigration or climate change. It builds on the assump-
tion that policy debates can be modeled as a affiliation network as
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Figure 1: Example of an affiliation network

the one depicted in Figure 1.1. The network contains two types
of nodes: actors(circles) and claim categories (squares). Edges be-
tween the claims and the actors encode the fact that the actor made
a statement regarding the specific claim categories, along with the
polarity of this statement. Use of DNA on affiliation networks allows
to empirically track the evolution of discourse coalitions, which are
groups of actors who are bound together according to shared ideas,
over time and to identify conditions for their success in terms of
dominating political debates and influencing policy-making (Leifeld
and Haunss, 2011; Haunss et al., 2013).

Traditionally, DNA studies heavily relies on expensive human ef-
fort both for coding of data and creation of the networks, limiting
their scope to the amount of data that can be considered. However,
as we are going to discuss in more detail in the upcoming chapters of
this thesis, this process can be (semi-)automated thanks to the re-
cent advances in natural language processing and machine learning.
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This automatization can substantially broaden the empirical basis
and applicability of discourse network studies, but at the same time
it introduces new challenges, as we discussed in Section 1.2.

1.2 Challenges of Computational Analysis

of Political Discourse

It is true that recent developments in machine learning enable politi-
cal scientists to work with corpus sizes that are infeasible for manual
analysis and let them to explore new research questions or to study
old research questions by new means, hence create remarkable new
possibilities. However, there are still challenges for the community.
We group these challenges into two main categories: Data Annota-
tion and Modeling.

Data Annotation. Data is essential for all researchers, regardless
of the domain of interest. A central challenge of working with data
of any sort is that it must be organized and classified so that the
researcher can use it for the task at hand. This process of labeling
and organizing data for further analysis is called data annotation
and it is considered as one of the first steps of conducting research
in many domains. In that regard, political science is not an excep-
tion. Regardless of the way the analysis performed, much of the
work on computational analysis of political texts has been enabled
by the development of dedicated datasets through annotation (cod-
ing in the political science terminology) using carefully prepared an-
notation guidelines (codebook in the political science terminology).
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While in a manual analysis the goal is to fully annotate the data,
in a computational analysis the annotations are often used to train
computational models to automatically recognize patterns that are
associated with the labels of task at hand (Cardie and Wilkerson,
2008). We observe two data annotation related issues as shown be-
low. Note that these issues are not specific to the political science
domain, on the contrary, they are well known issues in (computa-
tional) linguistics.

• Data annotation is extremely expensive in both annotator-
hours and financial cost (Snow et al., 2008). The process
often starts with creation of codebook which is a document
containing the coding instructions. Usually codebook genera-
tion requires several iterations, in which the instructions are
updated and examples are added. For example, political sci-
entists using deductive-inductive strategy, a popular codebook
generation method (Saldaña, 2009), start with a set of deduc-
tive coding rules without examining examples first. These are
then tested and adjusted based on a sample of the data. The
final annotations can be gathered by a group of experts, a
crowd-sourcing tool or a smaller number of well-trained anno-
tators. However, training is required in all cases. While human
annotators become more efficient with practice, the marginal
cost of coding each document does not substantially decline
and with more and more data coming online, and relying on
human annotators becomes prohibitively expensive. As a re-
sult, there is an increasing tendency between researchers to
question the value of such labor-intensive approaches (Hillard
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et al., 2008). With the introduction of well-performing com-
putational models (which can ideally be trained without need
for a large amount of annotated training data), this particular
challenge can be eased.

• Ensuring high annotation consistency is another data annota-
tion related challenge. If the quality of annotation is not good
enough, the computational model does not get trained well,
resulting in poor performance. This may arise as a result of
various reasons with different level of importance. For exam-
ple, one reason that can be solved relatively easily would be
that the annotators are not interested or focused about the
annotation task (Hovy and Prabhumoye, 2021). As another
example to this category, annotation reliability issues may also
arise when there is a mismatch between social and linguistic
norms of annotators and authors of the data (Sap et al., 2019).
While these issues related to annotation can easily be fixed by,
for example, hiring new annotators, some other reasons may
be harder to handle. For instance, Plank et al. (2014) report
that in some annotation tasks, such as part-of-speech tagging,
there might be more than one possible correct label1, which
can cause systematic differences in annotations between an-
notators. Unlike the previous cases, this problem can’t be
solved by hiring a new annotator team and requires more so-
phisticated solutions, such as having varying model training
dynamics based on the agreement level between annotators.

1Drawing an example from Plank et al. (2014): ‘social media’ can be treated
as a noun phrase with an adjective and a noun, as well as a compound noun
with two nouns.
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Modeling. Besides the data annotation challenges discussed above,
we also identify some modeling-related challenges associated with
computational analysis of political text:

• As a result of the gap between limited linguistic variations in
the training data and the diversity in real-world languages,
models trained on a specific dataset are likely to rely on statis-
tical irregularities or spurious correlations between target label
and an attribute grounding inside (i.e. language internal) or
outside of the language (i.e. language-external) to achieve bet-
ter overall performance (Hovy and Prabhumoye, 2021). Such
models are usually susceptible to poor generalization because
models learn to identify the correlations between given exam-
ples and their labels rather than true intrinsic factors of the
task. Besides poor generalization, such shortcuts also give rise
to biased predictions. For example, Sap et al. (2019) has re-
cently shown that there is high correlation between the exis-
tence of certain markers associated with a certain ethnic di-
alect of English and toxic labels in some of the widely used
hate speech detection datasets and that models trained on
these corpora propagate race bias such that tweets by self-
identified African Americans are two times more likely to be
labelled as offensive than others. Therefore, it is good practice
to assume that every statistical model will involve some form
of unintended bias and to perform additional evaluations in
this regard so that potential biases can be detected before the
models are released.

• The codebooks used in political science domain typically con-
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sist of fine-grained categories usually organized in a hierarchi-
cal structure, as a reflection of the complexity of the problems
addressed. Although such a setup is required for political sci-
entists to gain more insights and understanding on the subject,
for computational models, it presents a challenging situation
with increased number of classes (attested with widely differ-
ent frequencies), decreased number of samples per class, and
decreased semantic differences between classes, causing stan-
dard computational methods to perform badly. Ways to im-
prove performance in such cases involve incorporating implicit
or explicit sources of domain-knowledge into the models.

Labour has said it will support the amendment

Labor
party

Task 3: actor detection Task 1: claim detection

Category A13:
delay Brexit

Task 2: claim mappingTask 4: actor
 mapping

Task 5: claim attribution
support

Figure 2: Workflow for Computational Construction of Affiliation
Networks

1.3 Contributions

This work makes contributions in two directions:

1. System-wise. Our contributions on this aspect are three-
fold. We first outline the road towards using computational
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methods from natural language processing for the construction
of discourse networks as shown in Figure 2. After sketching
a workflow for semi-automatic analysis of public debates, we
continue with developing semantic NLP models using state-of-
the-art Neural Network based NLP techniques such as LSTMs
and Transformers for Political Claim Identification and Claim
Classification tasks. Finally, We perform a case study on a
manually annotated corpus of the German migration debate
and show that using NLP models for the aforementioned tasks,
it is possible to partially automate the annotation process as
well as improve annotation quality and consistency.

2. Fairness-wise. Our contributions on fairness aspect are also
threefold. First, we start with investigating presence of fre-
quency bias, a language internal attribute, in our claim identi-
fier and classifier models. By comparing models performances
on evaluation sets with varying frequencies, we find that our
models exhibit frequency bias and propose lightweight meth-
ods to improve fairness of models. Second, we continue with
investigating presence of language external bias types in the
CSS models. For this study, we pick gender as the bias at-
tribute and focus on the text classification task on the social
media analysis domain, another subfield of CSS. Our third and
last contribution is to propose a regression analysis based bias
evaluation framework which allows to, unlike current evalua-
tion methods, quantify the contribution of multiple attributes
(language internal or external) to the observed bias with mea-
sures of effect size. We demonstrate the practical application
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and usefulness of this workflow by reanalyzing the predictions
of a range of emotion intensity prediction models trained on
social media data.

1.4 Structure of Thesis & Previous

Publications

Structure of the thesis. This thesis is structured into four parts.
Chapter 1 of Part I (the current part) introduces the themes of this
thesis and Chapter 2 provides the background in Natural Language
Processing as well as Computational Social Science needed to under-
stand the thesis. Then, Chapter 3 introduces DebateNet which is a
dataset for German which covers the public debate on immigration
in 2015, and has been used through this thesis.

Part II presents our system-wise contributions. We first provide
a requirement analysis for computational construction of the dis-
course networks using methods from natural language processing
(Chapter 4). Next, in Chapter 5 we introduce our neural network
based models for detecting political claims in a text and present our
results on DebateNet corpus. Then, in Chapter 6, we move to claim
classification task, which is another step in our requirement analysis.
Similar to previous chapter, we present claim classification models
based on different neural network architectures ranging from uni-
directional LSTM to Transformer based architectures and evaluate
them on DebateNet.

In Part III, we shift our focus to fairness. Our aim is to analyze
and improve the performances of NLP models in terms of fairness
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and robustness while maintaining (or improving) their overall perfor-
mance. With that in mind, we first analyse the claim detection and
classification models introduced in Part II and propose lightweight
methods to improve fairness and overall performance in Chapter 7
and Chapter 8 respectively. In Chapter 9 we broaden our focus
to social media analysis and present a case study to focus on text
classification for social media analysis in the context of correlated
attributes. Finally, in Chapter 10 we introduce our multivariate
regression based bias analysis approach.

Lastly, Part IV presents the conclusions drawn from this research
work and the possible future work that is required to further answer
some open ended questions which are presently outside the scope of
this work (Chapter 11).

Previous Publications. A portion of the work presented here has
previously been published.

• Dayanık, E., Vu, T. & Padó, S. (2022). Analysis of Bias in NLP
Models With Regression and Effect Sizes. Northern European
Journal of Language Technology 8.1. (Chapter 10)

• Dayanık, E., Blessing, A., Blokker, N., Haunss, S., Kuhn, J.,
Lapesa, G., & Padó, S. (2022). Improving Neural Political
Statement Classification with Class Hierarchical Information.
In Findings of the Association for Computational Linguistics
(pp. 2367-2382). (Chapter 8)

• Dayanık, E., Blessing, A., Blokker, N., Haunss, S., Kuhn, J.,
Lapesa, G., & Padó, S. (2021). Using Hierarchical Class Struc-
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ture to Improve Fine-Grained Claim Classification. In Pro-
ceedings of the 5th Workshop on Structured Prediction for
NLP (SPNLP 2021) (pp. 53-60). (Chapter 6, 8)

• Dayanık, E., & Padó, S. (2021). Disentangling document topic
and author gender in multiple languages: Lessons for adver-
sarial debiasing. In Proceedings of the Eleventh Workshop
on Computational Approaches to Subjectivity, Sentiment and
Social Media Analysis (pp. 50-61). (Chapter 9)

• Dayanık, E., & Padó, S. (2020). Masking actor information
leads to fairer political claims detection. In Proceedings of the
58th Annual Meeting of the Association for Computational
Linguistics (pp. 4385-4391). (Chapter 7)

• Padó, S., Blessing, A., Blokker, N., Dayanık, E., Haunss, S.,
& Kuhn, J. (2019). Who sides with whom? towards computa-
tional construction of discourse networks for political debates.
In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics (pp. 2841-2847). (Chapter 4,
5)
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2 Background

2.1 Natural Language Processing

2.1.1 Fundamentals of Machine Learning

The work in this thesis concerns a family of machine learning algo-
rithms known as Supervised Learning, one of the main paradigms in
machine learning. In supervised learning, the goal is to create models
that can look at examples and produce generalizations (Goodfellow
et al., 2016). More precisely, for a given annotated dataset with
input-output pairs ((x1,y1),. . . ,(xn,yn)), and a function y = f(x; Θ)

where x is the input and Θ denotes the function parameters, the
goal is to search for well-behaved Θ values so that unseen inputs
(x

′

1, . . . , x
′

n) can be accurately mapped to (y
′

1, . . . , y
′

n). This is a
guided search operated by a function called loss function. Generally
speaking, a loss function, L(y, y′), can be any function (with a lower
bound not equal to negative infinity) that takes a predicted output
y’ and the corresponding gold output y as input and produces a
scalar value indicating the discrepancy between the prediction and
the ground truth. However, in most cases loss functions that do
not require complex gradient calculations are preferable for practi-
cal reasons. The general form of the corpus-wise loss function can
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be defined as follows:

1

n

n∑
i=1

L (f (xi; Θ) ,yi) (2.1)

where n denotes the number of training examples and L() is the
loss on ith instance. Depending on the type of the task (see below)
that the neural network is performing, the implementation of loss
function may vary. For example, while cross entropy loss is the
most common loss function for classification problems, for regression,
mean squared error is preferred1. The y = f(x; Θ) function’s Θ

parameters are then adjusted, as shown below in Eq. 2.2, to minimize
the loss over the training instances.

Θ̂ = argmin
Θ

1

n

n∑
i=1

L (f (xi; Θ) ,yi) (2.2)

One shortfall of Eq. 2.2 is the lack of a constraint that prevent
model from capturing the noise in the dataset which will help to
further reduce the loss, but at the same time, also make the model
fail to generalize on unseen data. One of the most common ways
to avoid this phenomenon – which is also called overfitting – is to
modify the equation Eq. 2.2 above by adding a second term called
regularization term, R(Θ):

Θ̂ = argmin
Θ

1

n

n∑
i=1

L (f (xi; Θ) ,yi) + λR(Θ) (2.3)

Over the years, many different regularization methods have been
1For more detailed discussion on individual loss functions in the context of

neural networks, see Goodfellow et al. (2016)
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developed, such as weight decay (Hanson and Pratt, 1988), Dropout
(Srivastava et al., 2014) or stochastic depth (Huang et al., 2016)
that are developed to constraint the optimization problem above.
The most apparent common feature of these methods is the fact
that they take the parameters θ as input and return a scalar that
reflect the complexity of the learned function which needs to remain
low to avoid overfitting. While constraining the effective capacity
of a given model is one of the most popular approaches to reduce
overfitting, there are also other ways, such as data augmentation
(Zhang et al., 2017) which is a data-driven regularization strategy
that fight against overfitting by artificially increasing the number
of training samples. For more details on individual regularization
methods, we refer the reader to Peng et al. (2015) and Moradi et al.
(2020).

There are two main types of supervised learning, namely regres-
sion and classification. Regression problems are concerned with
mapping inputs to outputs where the output is a continuous real
number, i.e. yi ∈ R. In classification problems, on the other hand,
the output is one of a finite set of discrete labels, i.e. yi ∈ (1, ..., C)

where C denotes the number of possible classes. Classification prob-
lems can be further categorized: Classification tasks with two class
labels (C=2) are referred as binary classification and more than two
classes are called multi-class classification. In the latter one, if an
instance is associated with multiple labels (i.e. classes are not mu-
tually exclusive), then it is called multi-label classification.
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2.1.2 Typology of NLP Classification Problems

Classification tasks account for a significant part of NLP research.
One way of grouping these tasks into categories, as shown in Gold-
berg (2017), is based on the properties of the subject being classified:

• Text Classification is a general classification problem type,
where the goal is, for given a single input text which can be a
phrase, sentence or even a document, to predict a label for it.2

The important thing to keep in mind is that in text classifica-
tion tasks, the label is assigned to the complete input, not the
parts of it. The tasks that fall under this category can further
be grouped into two. The first group deal with classification of
words in isolation. They involve addressing a number of issues,
such as identifying the language the word written in (Ham-
marström, 2007; Gottron and Lipka, 2010); checking whether
a given word is correctly spelled (Farra et al., 2014); deciding
whether the input word is a complex or a simple word (Malmasi
and Zampieri, 2016), and so on. Note that, as words seldom
appear in isolation in NLP (Goldberg, 2017), this group covers
only a small part of all text classification problems. The tasks
in the second subgroup of this category deal with classification
of text that is longer than a word. While there are many differ-
ent tasks in this subgroup, some of the most noticeable ones
are sarcasm detection (Zhang et al., 2016); sentiment classi-
fication (Liu, 2012); hate speech classification (Schmidt and
Wiegand, 2017), authorship attribution (Mekala et al., 2018),
and topic classification (Xia et al., 2019).

2In case of multi-label classification y might contain multiple labels.
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• Sequence Labeling covers, similar to text classification, a va-
riety of classification tasks. The main difference between this
and the first category is that here, for a given input sequence,
the goal is to assign a class or label to each token in a given
input sequence, instead of assigning a label to the complete se-
quence. These tasks include, but not limited to, part-of-speech
tagging (Kanakaraddi and Nandyal, 2018); morphological tag-
ging (Cotterell and Heigold, 2017); named-entity recognition
(Yadav and Bethard, 2018) and text chunking(Liu et al., 2018).

2.1.3 Neural Architectures for Classification in NLP

Over the years, a range of classification algorithms has been devel-
oped, including geometric models (e.g., nearest-neighbour classifiers,
SVMs), logical models (e.g., decision trees) and probabilistic models
(e.g., naive bayes classifiers, neural networks) (Flach, 2012). With
the recent advances in computational power, as well as greater avail-
ability of big data in the last couple of years, neural networks has led
to a revolution in our capabilities to process and analyze large sets
of complex data and yield new state-of-the-art results in a very wide
range of NLP tasks (Graves, 2013; Hinton et al., 2015; Jozefowicz
et al., 2016)

At the high level, most of the neural architectures that have been
used to tackle the classification tasks composed of three components:
a) an embedding module which maps words into their distributed
representations, b) a context encoder module which extracts contex-
tual features, and c) an inference module which predicts labels or
generate optimal label sequence as output of the model.
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Embedding module. In all models, tokens that together form the
textual input must be represented in a form that can be understood
by the model. One-Hot Encoding is one simple approach for encod-
ing textual data in a way which is amenable for use by classifiers.
In this approach, each word is represented by a sparse vector in the
size of the vocabulary, with 1 in the entry representing the word
and 0 in all other entries. While it is very simple to construct,
there are two main disadvantages of this approach : 1) It results in
high-dimensional, sparse (mostly zero) data which doesn’t work well
with neural models. 2) It does not convey any similarities between
words. The word “cat” is as dissimilar to word “lion” than it is to
word “plane”. That means the model cannot reuse information it
already learned about cats for the much rarer word lion. Word em-
beddings are an alternative to one-hot encoding by representing each
word (or token in general) with a real-valued vector. Unlike one-hot
encoding where all token vectors are equidistant, tokens that are
close in the embedding space are expected to be similar in meaning
(Mikolov et al., 2013b).

Word embedding models are quite closely intertwined with lan-
guage models which generally try to compute the probability of a
word wt given its n-1 previous words, p (wt | wt−1, · · ·wt−n+1). By
applying the chain rule together with the Markov assumption, we
can approximate the probability of a whole sentence or document
by the product of the probabilities of each word given its n previous
words:

p (w1, · · · , wT ) =
∏
i

p (wi | wi−1, · · · , wi−n+1) (2.4)
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The common types of language modeling techniques involve n-
gram and neural langauge models. Bengio et al. (2000) is the first to
propose learning word embeddings within a neural network language
model (NNLM). The goal of the NNLM model of Bengio et al. (2000)
is to predict the next word based on a sequence of preceding words
using a simple feedforward neural network.

In 2013, Tomas Mikolov released word2vec (Mikolov et al., 2013a),
which led to word embeddings becoming very popular in NLP. As op-
posed to the NNLM model of Bengio et al. (2000), in which word em-
beddings are produced as a by-product, the word2vec algorithms are
specifically designed to generate word embeddings. There are two
different training methods to obtain Word2Vec embeddings: Contin-
uous bag-of-words (CBOW) and Skip-gram. With CBOW, the goal
is to predict a middle word based on its surrounding words. The
skip-gram approach aims to do the exact opposite: It tries to predict
the surrounding words given a current word. Another highly popular
word embedding method is Glove (Pennington et al., 2014). The key
differences between Glove and Word2Vec are 1) while Word2Vec is a
predictive model, GloVe is a count-based model and 2) as opposed to
Word2Vec which only uses local information, GloVe does take into
account the global information (via a global co-occurance matrix)
besides the local information to obtain the embedding vectors.

One common problem that occurs with many word embedding,
including Glove and Word2Vec, is handling out-of-vocabulary words
(words that do not appear in training vocabulary or document). To
solve this issue, Bojanowski et al. (2017a) proposed a novel method
based on the skip-gram architecture. In this method, called Fast-
Text, Each word is represented as a bag of character n-gram and
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each word embedding of each word is obtained by a sum of vectors,
with each vector representing an n-gram.

The above word embedding methods are some of the most popular
static word embedding methods. Static word embeddings generate,
regardless of the context the word being used, only a single vector for
each word meaning that these methods do not model polysemy (phe-
nomenon where a word form can have multiple senses). Recently,
however, many approaches for learning contextual word representa-
tions have been proposed. As opposed to static word embeddings,
these contextualized embedding techniques can compute an embed-
ding vector for a word by taking the context of the word into account,
leading to a representation that better match the specific use of the
word in a sentence.

Peters et al. (2018) propose one of the first deep neural net-
work based contextualized embedding method, called ELMo. In this
model, contextualized embeddings are extracted from a bidirectional
language model. Two multi layer LSTMs are applied to the sentence
in both directions to encode the left and right context independently.
Then, at each layer, the hidden states of left-to-right and right-to-
left LSTMs are concatenated, obtaining N hidden representations
for a sequence of length N. The idea of ELMo was later extended
by GPT and BERT in which LSTMs are replaced by uni-directional
and bi-directional transformer-based (Vaswani et al., 2017) mod-
els respectively. BERT and GPT were just the starting point for
the development of many variations and many others followed this
approach (i.e. using transformers) to obtain contextualized embed-
dings, for which we refer the reader to Liu et al. (2020).
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Encoder module. Recurrent Neural Networks, Convolutional Neu-
ral Networks and Transformers are the three common architectures
used as encoder module in NLP tasks. Recurrent Neural Networks
(RNNs) have been one of the most widely used architectures as en-
coder module for classification tasks in NLP. The model takes the
current time step’s input and the previous time step’s hidden state
and creates a hidden state and optionally an output. Depending on
the nature of the classification task, the hidden state from the last
time-stamp or all of the hidden states from each step can be used as
the representation of the input sequence.

RNNs cannot capture long-term dependencies of very long se-
quences, which appear in many real applications, due to the gra-
dient vanishing and explosion issue. LSTM is a variation of RNNs
designed to better capture long-term dependencies. LSTM layer
consists of a memory cell, which remembers values over arbitrary
time intervals, and three gates (input gate, output gate, forget gate)
that regulate the flow of information in and out the cell.

There have been different attempts to improve RNN-based mod-
els for various classification tasks by capturing richer information.
Some of the prominent variants are: 1) Tree-LSTM model (Tai et al.,
2015), an extension of simple LSTM to tree-structured network ty-
pologies which leads to richer syntactic representations of the input;
2) TopicRNN proposed by Dieng et al. (2016) integrates the capabil-
ities of latent topic models so that it can capture long-range depen-
dencies more accurately; 3) The Disconnected Recurrent Neural Net-
work (DRNN) (Wang, 2018) which incorporates position-invariance
into RNN by limiting the maximal transmission step length in RNN
to a fixed value. The list above is not exhaustive and a reasonably
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detailed survey on RNN-based model variants can be found in the
works of Kowsari et al. (2019).

Convolutional Neural Networks(CNNs) are - although it is origi-
nally built for computer vision tasks - another popular neural deep
learning architecture in NLP, especially for document classification.
A standard CNN architecture is composed of three different layers:
1) Convolutional layers which are used to obtain local features; 2)
Pooling layers where local features are aggregated; and 3) Fully con-
nected layers which form the last few layers in the network and drive
the final classification decision.

While many CNN-based NLP models have been proposed over
the years, TextCNN (Kim, 2014) is one of the first and most pop-
ular CNN-based classification approach in NLP. It is a relatively
small model which has one convolutional layer with kernels of dif-
ferent sizes, followed by max pooling, and a fully-connected layer.
Kim et al reported that TextCNN improves upon the state of the
art on sentiment classification. Later, due to its high performance,
small number of parameters, and fast training speed, it has also been
tested by other researchers on various classification tasks such dis-
ease detection (Yang et al., 2018), malicious user detection (Hong
et al., 2018) and fake news detection (Bsoul et al., 2022).

Compared to RNNs in which there is a dependency between sub-
sequent steps, CNN based methods are faster since the computations
in CNN can (mostly) happen in parallel. Though relatively high effi-
ciency, a major disadvantage of CNNs is that due to the convolutions
and pooling operations in the model, it has difficulties in capturing
word order information which makes pure CNN-based methods to
less suitable for sequence labeling tasks such as POS tagging. (He
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et al., 2020)
The Transformer is a novel encoder–decoder based architecture

introduced by Vaswani et al. (2017). As previously mentioned above,
one of the main disadvantages of RNNs is that they process the in-
put sequentially. While CNNs suffer less from this – compared to
RNNs – the computational cost of capturing relationships between
words still grows as the input sequence length increases, similar to
RNNs. Transformers overcome this limitation by processing the en-
tire input at the same time, without any notion of order. To capture
sequential information, these models add a special vector called posi-
tional encoding to each input embedding whose purpose is injecting
information about the relative positioning of words.

The layers in the Transformer model consist of two main com-
ponents; namely, a multi-head attention layer followed by a feed
forward neural network. The multi-head attention sub-layer is the
main component which lets the encoder look at other words in the
input sentence (without relying on recurrence), to capture inter-
dependencies between words, while encoding a specific word. As the
first step in multi-head attention sub-layer in the encoder side, the
embeddings of each input token are multiplied by three weight ma-
trices (which are learnt during the training process) to create three
word representation vectors called Query (Q), Key (K) and Value
(V), as shown in Eq. 2.5:

Q = X ·WQ K = X ·WK V = X ·WV (2.5)

where WQ, WK , WV ∈ Rd x k; X ∈ RN x d; N is the number of
tokens in the input; d and k are hyperparameters defining embedding
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lengths. After generating the Q, K and V representations, a self-
attention score for each input token is calculated by multiplying
the query vector of the current token with the key vectors from
other input tokens. These attention scores can be interpreted as the
alignment score between each token and the other tokens in the input
and indicates the relative importance between them. The scores are
then scaled (for stability reasons) and passed through a softmax
function, so that they are all positive and add to 1. Eventually, the
representation of each word is obtained by multiplying the scaled
term with the Value vector, as shown in Eq. 2.6.

Attention(Q,K, V ) = softmax

(
Q ·KT

√
k

)
· V (2.6)

Multi-head attention sub-layers at the decoder side operate simi-
larly. The key differences are 1) In the decoder, these sub-layers are
only allowed to attend to earlier positions in the output sequence.
2) There is an additional multi-head attention layer called “Encoder-
Decoder Attention” which works just like regular multi-head atten-
tion, except it takes the Keys (K) and Values (V) matrices from the
output of the encoder stack.

The fact that transformers can be trained on enormous amounts
of data in far less time than other sequential architectures such as
RNNs led to the development of large-scale Transformer-based Pre-
trained Language Models (PLMs), which operate under a pretrain-
finetune paradigm: First, models are pretrained over a large text cor-
pus to learn contextual text representations. As PLMs are very large
models, pretraining of PLMs are highly computationally expensive3.

3e.g., The training of a GPT-3 is estimated to cost $4m (Wang et al., 2021b)
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Therefore, this step is generally performed by large industry research
labs, many of which release their models in order to save others the
costs of retraining them. Second, pretrained models are fine-tuned
on labeled task-specific datasets, whose size are significantly smaller
than pre-training datasets, to optimize for task-specific accuracy on
a downstream task. This paradigm become the new state-of-the-art
in a variety of tasks in NLP. Consequently, many PLM variants have
been proposed over the years. Below, we mention only the most pop-
ular ones and refer the readers to work by Qiu et al. (2020) for a
more detailed survey on PLMs.

PLMs can be grouped into two categories, autoregressive and au-
toencoding PLMs. OpenGPT (Radford et al., 2018) is one of the ear-
liest autoregressive PLMs which is made up of unidirectional decoder
stacks from the Transformer architecture. Similarly, BERT (Devlin
et al., 2019) is the one of the first approaches on the autoencoding
PLMs side. Unlike OpenGPT which predicts words based on previ-
ous predictions, BERT is trained using the masked language mod-
eling task. There have been numerous works on improving BERT.
Some of the most notables are: RoBERTa (Liu et al., 2019) which
is more robust than BERT because it is trained with larger mini-
batches on significantly more training data; ALBERT (Lan et al.,
2019) reduces the memory usage and training time of BERT; Distill-
BERT (Sanh et al., 2019) a smaller, faster and cheaper BERT thanks
to the knowledge distillation technique used during pre-training; and
SpanBERT (Joshi et al., 2020) which extends BERT to better pre-
dict text spans.
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Inference module. The inference module is the outermost mod-
ule which takes the representations from encoder module as input,
and performs prediction. Sigmoid, Softmax and Conditional Ran-
dom Fields (CRF) are three most popular methods used in neural
classification models in NLP.

The sigmoid function4 is a continuous, monotonically increasing
function defined as:

σ(x) =
1

1 + e−x
(2.7)

It accepts any real value as input and produces values between 0 to 1.
The greater the input, the closer the output to 1, and the smaller the
input, the closer the output to 0. It is especially useful for binary
classification tasks (where the number of classes is equal to two)
or when the categories are not mutually exclusive (i.e. multi-label
classification tasks), as the sigmoid function predicts independent
probabilities for each class.

Softmax is a generalization of sigmoid function which turns a N-
dimensional vector with real values into another N-dimensional vec-
tor in which each element is between 0 and 1 and the sum of all
elements equals 1. As a result, output of softmax function can be
interpreted as a probability distribution over classes. It is defined
as:

σ(zi) =
ezi∑N
j=1 e

zj
(2.8)

and has been widely used in neural networks for multi-class clas-

4We acknowledge that the sigmoid function can also be used in the earlier layers
of the network to introduce nonlinearity. In this discussion we focus its role
as an output unit.
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sification tasks.
Conditional Random Fields (CRF) are, in general, Markov Ran-

dom Fields that are globally conditioned on observations. Over
the years, many versions of CRFs have been developed for use in
NLP and other branches of AI. Here, we focus on linear-chain CRFs
(Lafferty et al., 2001), but the generic idea described here can be
extended to CRFs of any structure. Unlike sigmoid and softmax,
which can be used for all the classification task categories discussed
in Section 2.1.2, CRFs are typically used in NLP models when the
output is a sequence of classifications (i.e. the sequence labelling cat-
egory). In sequence labeling tasks, such as POS Tagging or NER,
the correct label to each word often depends on the neighboring la-
bels. For instance, the correct POS tag of a word can sometimes
be deduced from the POS tag of the adjacent words. As opposed
to above methods in which predictions are made independently for
each position, CRF models have been proven to be powerful in learn-
ing the strong dependencies across output labels, thus most of the
neural network-based models for sequence labeling employ CRF as
the inference module. Specifically, let Z = [ẑ1, ẑ2, . . . , ẑn] be the
output of context encoder of the given sequence x̂), the probability
Pr(ŷ | x̂) of generating the whole label sequence

Pr(ŷ | x̂) =
∏n

j=1 ϕ (yj−1, yj , ẑj)∑
y′∈Y(Z)

∏n
j=1 ϕ

(
y′j−1, y

′
j , ẑj

) (2.9)

where Y (Z) is the set of possible label sequences for Z, and ϕ is s
a potential function defined as the summation of transition (scores
representing how likely is yj−1 followed by yj) and emission (scores
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representing how likely is yj given the input zj) features at each time
step.

2.1.4 Evaluation Metrics

Evaluation of NLP models can be classified into intrinsic and ex-
trinsic methods. While extrinsic evaluation is aimed at evaluating
models outputs based on their impact on the performance of other
NLP models, in an intrinsic evaluation, quality of outputs of NLP
models is evaluated against predefined ground truths (Clark et al.,
2012).

The evaluation metric to use depends on the type of NLP task.
However, for most of the classification, a matrix called the confusion
matrix can be constructed which shows each combination of the true
and predicted classes: A true positive (TP) is an outcome where
the model correctly predicts the positive class. Similarly, a true
negative (TN) is an outcome where the model correctly predicts
the negative class. A false positive (FP) is an outcome where the
model incorrectly predicts the positive class and a false negative
(FN) is an outcome where the model incorrectly predicts the negative
class. From the confusion matrix, different evaluation metrics can be
calculated. Some of the most common intrinsic metrics to evaluate
classification models in NLP are as follows:

• Accuracy: Accuracy is the simplest metric and can be defined
as the number of test cases correctly classified divided by the
total number of test cases:

Acc. = (TP+TN)/(TP+FN+TN+FP) (2.10)
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It can be applied to most generic problems but is not very
useful when it comes to unbalanced datasets.

• Precision: The ratio between the number of positive samples
correctly classified to the total number of samples classified as
positive:

Pre. = TP/(TP+FP) (2.11)

where a perfect score of 1 indicates that every sample the
model identified as belonging to a specific class did in fact
belong to that specific class.

• Recall: The ratio between the number of positive samples cor-
rectly classified as positive to the total number of positive sam-
ples:

Rec. = TP/(TP+FN) (2.12)

where a perfect score of 1 would indicate that the model cor-
rectly classified all the samples belonging to that class.

• F-Score: The harmonic mean of precision and recall. F-score
combines the precision and recall of a classifier into a single
metric:

Fα =
(
1 + α2

) Pre. ∗ Rec.
(α2 ∗ Pre.) + Rec.

(2.13)

By varying α in the equation, one can put more emphasis on
recall.
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2.1.5 Bias and Fairness in NLP

In this section, we provide a brief overview of research on bias in
NLP systems, where a system is defined as biased if it systemati-
cally discriminate against certain individuals or groups of individu-
als in favor of others (Mehrabi et al., 2021). We first provide a brief
overview of research on detecting various unintended bias types in
word embeddings. Next, we continue with an overview of bias anal-
ysis for downstream tasks. Finally, we discuss the main strategies
for mitigating bias. Note that there is an enormous body of litera-
ture on bias and fairness in NLP and we can only touch on the main
directions in this field. We refer readers to Mehrabi et al. (2021) and
Bansal (2022) for more detailed reviews.

Bias in embeddings. As pointed out above, almost all state-of-the-
art NLP systems use corpus-derived embeddings. These embeddings
were the starting point for a lot of work on bias in NLP. Bias in
embeddings is generally shown by comparing embeddings for two
sets of previously established, e.g., gendered (male and female) words
(e.g. man, woman).

Bolukbasi et al. (2016) propose an approach to investigate gender
bias present in word2vec embeddings by constructing a gender sub-
space using word embedding vectors of a set of binary gender pairs
(e.g. she/he, woman/man, etc.). Then, gender bias of a word em-
bedding is defined by the size of the component of the word embed-
dings that project onto the above-mentioned gender subspace. The
larger a word’s projection is on gender subspace, the more biased
it is. Others built on this approach later on, for example Manzini
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et al. (2019) extended it to find non-binary gender bias in pretrained
Word2Vec embeddings. Recently, however, this method was found
to be an imperfect metric of bias by Gonen and Goldberg (2019).
Specifically, they showed that word embeddings representing words
with similar biases still cluster together even after the projections of
word embeddings representing gender-neutral words onto the gender
subspace have been removed.

As an alternative, Caliskan et al. (2017) introduce the WEAT
benchmark, which is an adaptation of the Implicit Association Test
(IAT) in which response times were recorded when subjects were
asked to match two concepts to quantify societal bias in sociological
research (Greenwald et al., 1998). WEAT uses word similarities
between targets and attributes instead of the response times. It
computes the difference in relative cosine similarity between two
sets of attribute words A and B (e.g. male names and female names)
and two sets of target words A and B (e.g. science and art). Caliskan
et al. (2017) applied WEAT to the Glove and Word2Vec pre-trained
word embeddings and found that both exhibit gender bias. Later,
WEAT was extended by introducing a multilingual (Lauscher and
Glavaš, 2019) and cross-lingual (Lauscher et al., 2020) versions of it,
too.

While much of the attention has been dedicated to identify and
mitigate gender bias in word embeddings, there are also various
works which go beyond gender and investigate other bias types in
word embeddings. Some of the noticeable examples include Garg
et al. (2018) who analyzed ethnic biases in historical embeddings
covering 100 years of language use; Swinger et al. (2019) who showed
that word embeddings of names reflect broad societal biases that are
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associated with those names, including race, gender, and age biases;
and Rozado (2020) who showed that most of the famous pre-trained
word embeddings also display biases based on age and religion.

Bias in NLP systems. At the system level, bias has been inves-
tigated in applications including (but not limited to) named entity
recognition (NER), Machine Translation (MT), Sentiment Analysis,
and Coreference Resolution. Kiritchenko and Mohammad (2018)
examined 219 sentiment analysis systems and found that a majority
exhibits gender and race biases. Mehrabi et al. (2019) reported that
NER models recognize male names with higher recall compared to fe-
male names. Rudinger et al. (2018) and Zhao et al. (2018a) showed
that coreference resolution systems perform unequally across gen-
der groups by associating occupations (such as doctor and engineer)
more with men and others (like nurse) more with women. Similarly,
Stanovsky et al. (2019) found that both commercial and academic
MT models are at risk of generating translations based on gender
stereotypes rather than the actual source content.

Bias in systems is usually measured by using benchmarks datasets
for specific tasks with a one-factor design which are created to be
as balanced as possible while varying the levels of the bias vari-
able. Examples include WinoBias (Zhao et al., 2018a) and Wino-
Gender (Rudinger et al., 2018), two benchmarks for gender bias in
coreference resolution which contrast “pro-stereotype” cases (the cor-
rect antecedent of a pronoun is conventionally associated with the
pronoun’s gender) and “anti-stereotype” cases (opposite situation);
GAP (Webster et al., 2018), another dataset for coreference resolu-
tion task, which is larger than existing Winograd schema datasets,
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and consists of examples from naturally occurring Wikipedia text;
and the Equity Evaluation Corpus (EEC, Kiritchenko and Moham-
mad (2018)), developed to analyze gender and race bias in sentiment
analysis and consists of 11 sentence templates instantiated into 8,640
English sentences for four emotions: Anger, joy, fear and sadness .

Bias is then quantified by measuring the differences in perfor-
mance between these levels. Sometimes, but not always, the differ-
ences are subsequently tested for statistical significance, (e.g. t-test
is used in Kiritchenko and Mohammad (2018)). To our knowledge,
almost no studies on system-level bias have considered covariates,
nor computed effect sizes, which makes them vulnerable to the crit-
icisms outlined in Chapter 10.

Bias Mitigation. There are two main families of methods to miti-
gate bias at the representation level. Approaches from the first fam-
ily perform modifications on the training sets, on which embeddings
are obtained. One of the most common training set modification
way is to add examples that balance with respect to an attribute
(e.g., gender or race). Thus seeking to make the data represent that
given attribute in a less biased way (Zhao et al., 2019; Hall Maudslay
et al., 2019). Another popular modification technique is to remove
textual features which might be an indicator of a demographic fea-
ture of a person from the data, such as pronouns or named entities
so that the model cannot learn differences associated with them (De-
Arteaga et al., 2019; Heindorf et al., 2019).

Approaches from the second family mitigate bias by transform-
ing learned embeddings according to some balancing objective. One
of the first examples of this approach is Zhao et al. (2018b), who
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proposed to debias GloVe vectors by adding a constraint to its ob-
jective function such that the gender-related information is confined
to a sub-vector. During optimisation, the distance between sub-
vectors are maximised, while simultaneously minimising the GloVe
objective. This idea of extending the objective function with a
regularization term in order to mitigate bias in embeddings has
been later used by other researchers to reduce gender bias in differ-
ent static word embedding algorithms (Bordia and Bowman, 2019;
James and Alvarez-Melis, 2019) as well as contextualised word em-
beddings (Kaneko and Bollegala, 2021).

At the system level, Zhao et al. (2017) proposed to constrain model
predictions to follow a distribution from a training corpus. Rather
than constraining the output, some of the previous work such as
Elazar and Goldberg (2018) and Kumar et al. (2019) used a tech-
nique called adversarial debiasing (Zhang et al., 2018) to remove un-
intended bias from latent representations. In adverserial debiasing,
two models (main and adversary) with a common encoder compo-
nent are trained simultaneously. While the main and adversarial
classifiers are trained to predict the main target and bias attribute
respectively, the encoder is trained to make adversarial classifier fail.
Adjusting the loss function is another popular system level approach
for bias mitigation. For instance, Qian et al. (2019) introduces a new
term to the loss function to equalise the probabilities of male and
female words in the output, and Jin et al. (2021) introduce a reg-
ularization term which reduces the importance placed on surface
patterns.
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2.2 Computational Social Science

Computational Social Science (CSS) is a very active, rapidly grow-
ing inter-disciplinary field that aims to develop computational tools
to study long–standing questions in the social sciences. While CSS
covers a wide range of domains, including but not limited to political
science, public health, social media, economics, psychology, sociol-
ogy, sociolinguistics, we restrict ourselves in the upcoming sections
to discuss work directly adjacent to our own research.

2.2.1 Political Claims Analysis And Discourse
Network Analysis

Political discourses evolve through political claims made by various
actors within the public sphere, and by the specific interests, policy
ideas, and values they propagate (Münnich 2011). For this reason,
analysis of claims which describe the main patterns of public debates
has always been a central issue in the context of political and social
sciences. Previous work in political science has performed political
claims analysis on a wide range of topics related to politics such
as energy (Haunss et al., 2013), education (Fairclough, 2013) and
economy (Temple et al., 2016) using variety of data genres such as
manifestos (Helbling and Tresch, 2011), newspapers (Zamponi and
Bosi, 2016) and social media data (Bilbao-Jayo and Almeida, 2021).

There is a recent innovation called Discourse Network Analysis
(DNA) (Leifeld, 2009) which is an approach that combines political
claims analysis with network science, allowing to investigate claims
through a network perspective and visualize the structure of pol-
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icy debates. DNA has been used by numerous researchers, such as
Leifeld and Haunss (2012) to analyse discourse coalitions in the Eu-
ropean conflict over software patents; Rinscheid et al. (2020) to trace
political discourses around the 2011 Fukushima nuclear accident in
Canada, Germany, and Japan; and Blokker et al. (2021) to capture
the temporal dynamics of the political debate on immigration in
Germany in 2015.

The first step in DNA is the qualitative or semiautomatic coding
of statements in a text corpus. Then using these identified elements
various DNA network types such as affiliation network, actor con-
gruence network or concept congruence network can be generated.
Affiliation network is the main entry point for DNA. It is, as depicted
in Figure 3(b), a bipartite graph with two types of nodes: 1) Actor
nodes: A = [a1, a2, . . . am] and 2) Concept nodes: C = [c1, c2, . . . cn].
Actor and Concept nodes are connected via edges which indicate
some sort of relationship between the two entities, either in the form
of agreement or disagreement: R = [r1, r2]. Lastly, since affiliation
networks can be repeatedly observed, they also have temporal at-
tributes T = [t1, t2 . . . tk], where tk denotes the kth time step. Over-
all, an affiliation network can be formally defined as follows:(

Gaff
r,t

)
=

(
A,C,Eaff

r,t

)
{
a, a′} /∈ Eaff

r,t ∧
{
c, c′

}
/∈ Eaff

r,t

(2.14)

where a and a′ are two different actors; c and c′ are two different
concepts and Eaff

r,t refers to the set of edges in the affiliation graph
Gaff at time t and for relation r. Alternatively, an affiliation network
can also be represented by an mxn matrix Xr,t for each relation and
time point where actors are placed to rows and concepts are placed
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to columns.
An actor congruence network is a network that only consists of

actor nodes which can be created from the affiliation network by
multiplying the affiliation matrix by its transpose (i.e., Xr,t ∗XT

r,t).
Edges in the resulting network connect actors employing same con-
cepts. Thus, an actor congruence network can be useful for detect-
ing actor coalitions, groups with similar policy preferences. Concept
congruence network is another network type that is frequently used
in DNA, and it can be constructed from the affiliation network by
multiplying the transpose of affiliation network with the matrix itself
(i.e., XT

r,t ∗Xr,t). Similar to the actor congruence network, concept
congruence network also contains one type of node, which is the con-
cept node. The two nodes in this type of network are connected when
the concepts represented by those nodes are used by the same actor
in the same way, and the edge weight between two nodes is equal to
the number of actors that refer to the two concepts. Concept con-
gruence networks are useful for observing concepts clusters which
can be considered as coherent storylines (Leifeld, 2017). Actor and
concept congruence network examples are shown in Figure 3(a)-(c).

2.2.2 Social Media Analysis

Social media is a general term which describes internet services that
allow users to interconnect and share information with each other
(Kaplan and Haenlein, 2010). There are many different social me-
dia channels, such as Twitter for short messages, Facebook for social
connections, Instagram for primarily at sharing pictures and TikTok
for video sharing. With tens of millions people posting and sharing
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information about their lives, a huge quantity of knowledge is gener-
ated on social media platforms. Consecutively, social media analysis
has become a very active line of research in recent years with many
different applications related to various tasks in NLP and Computer
Vision. While we can’t acknowledge all here due to the large num-
ber of studies, and we refer readers to Natural Language Processing
for Social Media book by Farzindar and Inkpen (2017) and a survey
article on ML algorithms for social media analysis by Balaji et al.
(2021) for that, we provide an overview of some of the most well
known and widely used NLP tasks in social media analysis.

One of the most popular tasks in social media analysis is author
profiling, a task of predicting authors’ attributes based on the text
that they have written. The most prominent author profiling task
is gender classification (Kucukyilmaz et al., 2006; Li and Dickinson,
2017; Sezerer et al., 2018), other tasks include the prediction of age
(Morgan-Lopez et al., 2017), race and region of origin(Pennacchiotti
and Popescu, 2011; Chen et al., 2015). Besides demographic fea-
tures, there is also work on other attributes such as personality types
(Plank and Hovy, 2015) or mental health (Parapar et al., 2021) of the
author. Emotion analysis is another well-studied task in the social
media domain. It entails the process of identifying the underlying
emotions expressed in textual data. Previous studies proposed meth-
ods to determine who is feeling what emotion (Islam et al., 2019) and
towards whom (Mohammad et al., 2014; Campagnano et al., 2022)
on social media data. Apart from these, there has been also consid-
erable work on identifying abusive language that is specifically di-
rected towards a particular group or person (Schmidt and Wiegand,
2017; Garibo i Orts, 2019), and detecting and analysing disinforma-
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tion, hoaxes and fake news on social media (Majithia et al., 2019;
Atanasova et al., 2020).

A topic of general importance that we will return to later in this
thesis is demographic characteristics. It has been shown by previous
work that authors’ demographic factors such, such as age, gender
and nationality affects their language use significantly. Consecu-
tively, these factors have always been an important aspect in NLP
research, both in the context of social media analysis and in gen-
eral. There are two main stance towards demographic attributes.
The first group of work, as we have already discussed above in Sec-
tion 2.1.5, concerns removal of demographic attributes from text and
models in order to avoid unintended biases.

There is a second line of work, especially in social media domain
where authors’ attributes can be derived from publicly available in-
formation such as written profile bio, that studies how the demo-
graphic factors can be used to improve performance of the clas-
sifiers. For instance, Hovy (2015) reported that age and gender
information of authors can be used to improve performance of re-
view classification model. Similarly, Volkova et al. (2013) and Lynn
et al. (2017) showed that incorporating demographic factors into
the models yields better sentiment classification and POS tagging
results on Twitter data respectively. Machine translation is another
task where incorporating gender and age traits has been proven ben-
eficial (Rabinovich et al., 2017). Apart from improving performance
on fundamental NLP tasks as outlined above, recent research has
demonstrated that including demographic factors can also improve
performance of classifiers on more challenging tasks such as Suicide
Risk Assessment (Matero et al., 2019).
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In this chapter, we describe the DebateNet dataset (Lapesa et al.,
2020) a high-quality policy debate dataset on the topic of immigra-
tion in Germany in 2015. The year of 2015 was special as the topic
of immigration has increasingly moved into the center of public de-
bates in Germany as a result of dramatic increase in the number
of refugees attempting to enter Europe from Africa and the Mid-
dle East mostly due to the increase in internal conflicts in these
countries. Politicians and public figures responded to the growing
numbers of refugees with rapidly changing policy proposals, which
were reported and discussed in the media outlets. Among those out-
lets, newspapers are extremely valuable for political scientists who
are interested in studying dynamics of policy debates to understand
decision-making processes as they can provide a fine-grained repre-
sentation of debate, both at the level of content (extensive reports
of the positions of politicians and parties) and at the level of time
(multiple articles per day). DebateNet has been created exactly
for this purpose in mind: It provides a fine-grained picture of the
public discourse concerning the domestic debate on immigration in
Germany in 2015.

DebateNet is a large annotation project conducted under the scope
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of project MARDY1, a collaborative project between University of
Stuttgart and University of Bremen. The annotation studies took
place at the University of Bremen and took roughly three years,
involving six political science students and two domain experts as
annotators, and targets the German side of the debate on the refugee
crisis. The development of the annotated corpus can be seen in the
size of the different releases over time: The first version has been
released in Padó et al. (2019) and it contains 982 Claims in 764
different text spans. Second version of DebateNet (Lapesa et al.,
2020) includes 1815 textual spans corresponding to 2274 distinct
claims and the latest version, as of March 2022, released in Blokker
et al. (2021) contains 3442 text spans translating into 4417 individual
claims.

Many of the experiments in this thesis have been conducted on
DebateNet; therefore, we provide in depth description of the latest
version of DebateNet, i.e. (Blokker et al., 2021), in the rest of this
chapter. Details of the specific version of the dataset used in a
particular experiment is provided in the corresponding chapter.

3.1 Source Corpus & Article Selection

The source corpus consists of newspaper articles from the German
quality newspaper die Tageszeitung (taz) which is a major national
German daily newspaper, founded in 1978 as an alternative, self-
governing newspaper project2. It is perceived as the most left-
oriented major German newspaper, but can still be assumed to por-

1The work presented in this thesis is also developed as part of MARDY project.
2https://en.wikipedia.org/wiki/Die_Tageszeitung
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tray both sides of the relevant discussion. As there are around 38000
articles published in TAZ in 2015 (Blokker et al., 2021), and it was
infeasible for the annotators to read all of them, the articles related
to the migration topic needs to be selected. The selection process
has been done in three steps as follows:

• First, a keyword-based approach has been used to select arti-
cles relevant to the topic at hand.

• Next, in order to find the articles missed by the keyword-based
approach, a binary classifier has been trained on the articles
found in the first step. As the goal is to find as many migra-
tion related articles as possible, a binary classifier has been
optimized on recall during training.

• Finally, annotators flagged false positive articles for being off
topic.

After completion of article selection process, the annotators start
working on the selected articles.

3.2 Annotation

In this section, we describe annotation process of newspaper articles.
Note that although the dataset and codebook provided at the time
of annotated were in German, we use English translations provided
by domain experts for the examples and claim category names in
this thesis3.
3The original German codebook can be found at https://clarin09.ims.
uni-stuttgart.de/debatenet/MARDY_Codebook_Mig_german.pdf
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3 DebateNet

Annotation follows a procedure successfully used by Haunss et al.
(2013) in the analysis of the German nuclear phase-out debate: It
is carried out in double, independent annotation by trained student
research assistants, and it targets multiple levels, with different de-
grees of abstraction and complexity for the annotator. First, the an-
notators have to identify the textual spans containing claims which
are demands, proposals, or criticisms that are supported or rejected
by actors and can be categorized with regard to its contribution to
the debate at hand. Recall that not all statements concerning the
topic are to be considered a claim, but only those which refer to a
specific action to be taken (cf. Section 2). Textual spans containing
claims do not necessarily coincide with a sentence; they can be a
subpart of a sentence, or span beyond the sentence boundary. Af-
ter identifying relevant text spans, they are assigned to one or more
claim categories from the codebook. Note that the initial codebook
contains relevant categories found by domain experts on an initial
sample of articles from dataset. However, throughout the annotation
process, it has evolved, displaying the "hermeneutic cycle" which is
typical of Digital Humanities projects (Blokker et al., 2021). The
aptitude of individual claim-categories is constantly reviewed, new
categories are adopted, outdated categories revised, overlapping cat-
egories merged.

Categories in the codebook are arranged hierarchically, with fine-
grained subcategories being grouped together into supercategories
which represent the separation of policy fields. Hierarchical schemes
help researchers both with annotation as it is often easier when the
annotation decision is first based on a supercategory and then on
fine-grained subcategories. Table 1 lists the 8 high-level categories
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ID Label freq. number of subcats. percentage

1xx Controlling Migration 992 16 22
2xx Residency 630 18 14
3xx Integration 386 15 9
4xx Domestic Security 154 9 3
5xx Foreign Policy 711 9 16
6xx Economy 153 12 3
7xx Society 740 19 17
8xx Procedures 651 20 15

Overall 4417 118

Table 1: High-level categories: Code; Label; Frequency; number
of subcategories; the percentage over the total number of
claims in the dataset

(supercategories) along with their 3 digit codes4, frequencies and
number of subcategories exist within each supercategory, available
in the latest version of the dataset. The most frequent category is
‘controlling migration’, which contains demands and proposals con-
cerned with regulating immigration (border controls, upper limit,
asylum law, etc.). Related and also prominent is ‘foreign policy’
(e.g. EU-wide quota, international solutions). Other categories are
‘society’ that deals with humanitarian and cultural aspects (human
rights, Christian values) and ‘residency’, mostly concerned with the
accommodation of migrants. Least frequent are ‘domestic security’
and ‘economy + labour market’ which are further downstream of the
acute (perceived) crisis situation. A special, less topical category is
‘procedures’ that often appears in combination with other categories
(additional funding, transparency, etc.). Besides fine-grained cate-
4The first digit of the code denotes the supercateogry and the last two digits

denote the subcategory.
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gories, the codebook also contains descriptions and defining exam-
ples providing guidance to the annotators. Corresponding guidelines
as well as the English version of the full codebook can be found in
Appendix A.

Actors

name frequency

Angela Merkel 247
Thomas de Maizière 162
Bundesregierung 152
CSU 86
Horst Seehofer 79
SPD 78
EU 77
Sigmar Gabriel 68
Grüne 60
Jean-Claude Juncker 57

Table 2: The most frequent 10 actors

Along with assigning claim categories to the claims, annotators
also perform actor identification and mapping. This involves identi-
fication of the strings corresponding to actor mentions (e.g., ‘Angela
Merkel’, ‘Die Kanzlerin’, ‘Frau Merkel’) as well as mapping of the
actor mention to a canonical name which serves as a unique identifier
of the actor in the dataset (e.g., ‘Angela Merkel’ for ‘Die Kanzlerin’).
Note that a single claim can be attributed to more than one actor,
and actors can be mentioned inside or outside the textual span.
Table 2 displays the 10 most frequent actors in the entire year of
2015 after actor mapping. Unsurprisingly, the most prominent ac-
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tor of the migration crisis in Germany is chancellor Angela Merkel,
followed by minister of the interior Thomas de Maizière, and, as in-
stitutional actor, the federal government (‘Bundesregierung’). Other
relevant actors include Merkel’s political antagonist in the migration
debate Horst Seehofer and chairman of the Christian Democratic
Union (CSU), the Foreign Minister Sigmar Gabriel, and also the
President of the European Commission Jean-Claude Juncker.

Once the claims are linked to the relevant actor(s) and claim cat-
egories, the next step is to perform polarity assignment to the claim,
for which annotators need to figure out whether the actor attributed
to the claim support or reject the categorized claim. Table 3 lists
the most frequent positive and negative subcategories of 2015. EU-
Solution (501), such as a Europe-wide quota for refugees, is the
most often used claim with a positive polarity. Followed by calls for
more funding (805) and an upper limit (102). Oppositely, frequent
claim categories with negative polarity are calls to oppose xenopho-
bia (703), right wing radicalism (709), and the current immigration
policies (190). An EU solution is also high on the list, indicating
that this is a polarizing and contested claim category.

Figure 4 illustrates an example of the annotation and the discourse
network that can be created from it. It is a real example from the
dataset and it is based on the annotated documents for October 3rd,
2015. In one article, Angela Merkel is reported to have replied to
those who criticised her immigration policy, and a direct quotation
from her speech is reported, stating the need for a welcoming atti-
tude towards refugees. The second set of claims are attributed to
a group of counter-demonstrators, who showed up during an official
ceremony in Saxony: claiming the right of residency for refugees, the
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Positive Claims

Code Claim Category Freq. Total (incl.
neg. Claims)

501 EU solution (quotas for refugees) 237 310
805 additional financing 147 155
102 ceiling/upper limit 129 152
812 fast / accelerated procedure 124 132
207 deportations 112 140
504 safe country of origin 112 153
105 border controls 103 126
705 refugees welcome 94 107
309 care (medical, financial, ...) 87 119
104 isolation/immigration stop 86 128

Negative Claims

Code Claim Category Freq. Total (incl.
pos. Claims)

703 xenophobia 129 161
709 right-wing radicalism 86 98
190 current migration policy 73 95
501 EU solution (quotas for refugees) 73 310
202 refugee accommodation 56 79
110 asylum law 49 98
711 islam 47 63
104 isolation/immigration stop 42 128
504 safe country of origin 41 153
401 violence against migrants 36 44

Table 3: The most frequent positive and negative sub-categories

demonstrators also made two claims against the isolation of Europe
and the construction of border installations as a solution to the im-
migration problem. The claims are highlighted in colors in the text,
and give rise to the corresponding parts of the network representa-
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On	Saturday,	Angela	Merkel replied	to	her	
critics,	defending	again	her	immigration	policy.	
During	an	interview	with	Deutschlandfunk she	
said:	“I	think	 	that	one	should	friendly	say	
’Welcome’	to	those	people	who,	in	their	
majority,	come	from	a	situation	of	emergency.”		

One	could	hear	slogans	from	the	counter-
demonstrators:	“No	walls	around	Europe.	Right	
to	stay	for	everyone	and	for	long!”.

Current	
immigration
policy

Refugees	
Welcome

Border	
installations

Walls-up	policy

COUNTER-DEMONSTRATORS

ANGELAMERKEL

Right	to	
residency

Figure 4: Annotation and corresponding network representation for
the immigration debate, October 3rd 2015

tion to the right. The actors are represented by red squares in the
discourse network. Blue edges indicate support towards a claim cat-
egory (Merkel supports the "Refugees Welcome" claim), red edges
indicate opposition to it (the demonstrators stand against the claim
"Controlling migration with border installations").

3.3 Conclusion

In this chapter, we described the DebateNet, an annotated dataset
for the analysis of political debates, targeting the public discourse
during the domestic debate on immigration in Germany in 2015. We
showed that corpus annotation for the purposes of political claims
analysis targets multiple levels with different degrees of abstraction
and complexity for the annotator. We should note that while De-
bateNet targets a specific topic, the structures annotated in the
dataset (e.g. actors, claims) are independent from the topic of discus-
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sion and applicable to any other political claims analysis datasets.

54



Part II

Towards Automatic

Construction of

Discourse Networks for

Political Science





4 Decomposing
Construction of Affiliation
Networks into Subtasks

As described in Section-2, (manual-)construction of Affiliation Net-
works(ANs) from raw text requires identification of different syn-
tactic and semantic properties as well as complex relations between
them in raw text. Given the complexity of this task and the fact
that today’s NLP systems fall short of human-level general under-
standing, even though language models trained on huge datasets of
raw text have pushed the limits of NLP (Rogers et al., 2020; Merrill
et al., 2021), we see that it is unrealistic to attempt to automate the
construction of ANs in an end-to-end fashion with a single model
at a quality that makes it useful for political scientists. For this
reason, in order to reduce the complexity of the task, we propose to
decompose it into several sub-tasks which are conceptually simpler
to learn and present a step-wise workflow for this purpose.
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4.1 Workflow

Seen as an end-to-end task, the computational construction of af-
filiation networks from raw text can be decomposed conceptually
as shown in Figure 5. Before going through the sub-tasks and de-
scribing their role in the pipeline, we should note that aside from
automatic construction of ANs, such a decomposition can also be
useful for the data annotation step. When the NLP tools designed
for the individual sub-tasks are available, they can be integrated into
the annotation environment as "pseudo-annotators" which can as-
sist human annotators on corresponding tasks and can thus shorten
the time and improve annotation reliability. We do not cover this
"semi-automatic annotation approach" in this thesis; however, we
refer interested readers to (Haunss et al., 2020) which compare po-
litical claim annotation quality and speed of annotators with and
without machine learning based annotation support.

1. Claim Detection: The task of claim detection is related to Ar-
gumentation Mining (AM) (Peldszus and Stede, 2013). AM
is a field encompassing varying tasks that deal with the au-
tomatic extraction of arguments in natural language texts.
This involves separation of argumentative text units from non-
argumentative units, parsing argument structures, and recog-
nizing argumentative discourse units(ADUs). Claim detection
can be defined as a task which is responsible for identification
of a specific ADU type called claim which is defined as any
kind of assertion that deserves our attention (Toulmin, 2003).
Although it is mostly considered as a sub-component of AM
as described above, we treat claim detection here as a stand-
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alone task that aims to detect special kind of claims called
"political claims" in running text which only covers a subset
of what is often considered a claim in argument mining (cf.
Section 3). Claim detection can computationally be framed as
a sentence-level classification (Does the input sentence contain
a claim?) or as token-level classification(Which tokens make
up the claim?), both of which are popular tasks in NLP.

2. Claim Classification: As described in Section 3, the second step
of annotation is to assign claim categories to claims. Under the
assumption that the codebook is static, we can consider claim
categories known a-priori, and hence model this step as a clas-
sification task. Specifically, we define claim classification as a
text classification task on relatively short texts that deals with
assigning claim categories from domain-specific codebooks to
the claim spans detected by claim identification models. De-
pending on the properties of the annotation, the task is either
single-label or multi-label text classification.

Labour has said it will support the amendment

Labor
party

Task 3: actor detection Task 1: claim detection

Category A13:
delay Brexit

Task 2: claim mappingTask 4: actor
 mapping

Task 5: claim attribution
support

Figure 5: Workflow for Computational Construction of Affiliation
Networks
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3. Actor Detection: This task can be seen as a special Named
Entity Recognition (NER) task1: The named entities such
as a person, location, or organization denoting potential ac-
tors in the text need to be identified. The resulting candi-
date list can be narrowed down even further by Coreference
Resolvers which can recognize textual spans referring to the
same entity. Both NER and Coreference Resolution are fun-
damental tasks in NLP; nonetheless, there are still challenges
in their use, especially with the data which is different from
the type of data they are trained on: 1) Unlike regular NLP
datasets, political texts often include definite descriptions re-
ferring to political actors that are challenging for both NER
and Coreference Resolution models, such as "The minister of
the interior". It is necessary for an NER model to recognize
such phrases as named entities (as PERSON in this particular
case), besides recognizing regular Person or Organization enti-
ties. For coreference resolvers the resolution of such references
(e.g., The prime minister says) are even more difficult as it
may require knowledge on various levels, from morphology up
to semantics and pragmatics (Zhang et al., 2019). 2) Another
major challenge with coreference resolvers is that state-of-the-
art coreference resolution models use span representations and
antecedent prediction mechanisms that are expensive in terms
of both memory requirements and compute time, and are not
particularly suitable for cases such as ours where input is gen-
erally a long newspaper article (Thirukovalluru et al., 2021).

1To some extent because there can be also actors that are not named entities
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4. Actor Mapping: In order for actors to be represented in dis-
course networks, different textual strings referring to the same
actor need to be mapped to the same canonical name which
serves as a unique identifier of the actor in the dataset. The
computational counterpart of this process is Entity Linking
(EL), the task of establishing a link between an entity men-
tion in the (unstructured) text and the corresponding entity in
the knowledge bases (KB) such as Wikidata or Freebase. Al-
though KBs contain rich and precise information about entities
of all kinds, such as persons, locations, organizations, movies,
and scientific theories; some entities, or entity relations which
are only important for a specific topic might not be available
in the KBs. This problem can be addressed by building a cus-
tom KB on the target corpus and using it in parallel with the
standard KBs.

5. Claim Attribution: Claim Attribution is a relation identifi-
cation task which deals with linking the previously identified
claims (Task-1) with relevant actor(s) chosen among the can-
didates proposed by actor detection and entity linking models
(Task-3,4). While pairing claims and corresponding actors,
the identification of relation type (i.e. support vs opposition)
also need to be determined. The arrow on the top of Fig-
ure 5 labeled with "support" pictures output of Claim At-
tribution model: It makes a supportive connection between
"Labor party" with a claim on delaying Brexit.
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Discussion. We acknowledge that the workflow proposed above is
not the only way, and perhaps for some, not even the best way
of decomposing the computational construction of affiliation net-
works into smaller steps. Differently from our proposal, one may
think that the various tasks are clearly not independent of one an-
other, and joint models could have been developed for a subset of
the tasks. For instance, claim detection (Task 1) and claim clas-
sification (Task 2) would be a good example for tasks that can be
modelled jointly. A joint model for these two tasks can recover from
the errors that propagate between stages of a pipeline solution. Nev-
ertheless, such a joint model also has some shortcomings: We believe
this design choice would reduce the applicability of the claim detec-
tion model to different policy debate topics as claim classification
is a substantially more domain-specific task than claim detection.
Claim detection and actor detection (Task 3) are another possible
combination for joint modelling. While on the one hand such a joint
model has the potential to perform better as it in theory allows in-
formation sharing between tasks (Chen et al., 2018), on the other
hand, using a single representation for the two tasks would some-
times also lead to feature confusion i.e., features extracted for one
task may conflict with those for the other, thus confusing the learn-
ing model (Wang and Lu, 2020). The latter problem circumvented
by, for example, using distinct encoders to capture such two different
types of information in the learning process, but this solution would
require working with even larger annotated datasets, which is not
preferable for CSS.

In the rest of this part (Part II), we discuss the two components
of the proposed workflow, namely claim detection (Chapter 5) and
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claim classification (Chapter 6), which are responsible for construc-
tion of the claim nodes that are one of the two node types in the
Affiliation Networks (cf. Chapter 2). This can be motivated by prac-
tical considerations: 1) As stated above, beyond the computational
construction of discourse networks, these methods can also be in-
tegrated into the annotation environment to speed up the manual
annotation process, in which case automating these two tasks (es-
pecially claim detection) would arguably lead to highest speed up
in the annotation as they prevent the annotators from reading the
entire newspaper articles. 2) Modeling and annotation works have
been carried out in parallel and some of the annotations were not
available at the beginning, which also influenced which task to focus
on initially.
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In the preceding chapters, we explained that claims are conceptual
building block of the DNA framework and form one of the two node
types in a bipartite affiliation network. Consequently, developing
reasonable models for claim detection is one of the main prerequisites
for automatic construction of affiliation networks from raw text. In
this chapter, we discuss exactly this issue, namely, automatic claim
detection task. We describe neural network based NLP methods
for claim detection task and evaluate on a policy debate on the
controversial topic of immigration.

5.1 Introduction

Claim detection has become a popular research area both in NLP
and Political Science. Among NLP scholars, claim detection is con-
sidered as a fundamental task in Argumentation Mining(AM) (Dax-
enberger et al., 2017). Although there is no argument model that
most researchers agree upon and the chosen argument model of-
ten depends on the tasks and the application domain, most of the
recent research agrees that the building block of the argument is
claim (Liebeck et al., 2016). Outside the realm of AM, the ability
to analyze claims is crucial for tasks such as fine-grained opinion
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analysis (Yang and Cardie, 2013) and stance classification (Anand
et al., 2011; Lai et al., 2019). The common point of these and many
other studies dealing with claim detection in NLP is to define claim
as "an assertion put forward publicly for general acceptance" which
is first proposed in Toulmin (2003).

Political Science scholars, on the other hand, mostly rely on an-
other definition of claim proposed by Koopmans and Statham (1999)
for their studies on manual claim detection. According to Koopmans
and Statham, the (political) claims should be understood as utter-
ances, actions or other statements made in public and can be defined
as "the strategic demands made by collective actors within a spe-
cific contested issue field". Koopmans and Statham (1999)’s claim
definition covers only a subset of what is often considered a claim
according to Toulmin (2003)’s definition.

In this chapter, we propose neural network based models for the
task of claim detection. Our contribution is to study the automatic
claim detection task using Koopmans and Statham’s claim defini-
tion. It is more challenging for computational models to detect
claims based on Koopmans and Statham’s definition than Toulmin’s
definition because the former definition requires, not only detecting
statements that are in dispute but also distinguishing the ones that
are relevant to the discussion. In the rest of this chapter, we review
the political claim detection task; compare the two different ways
the claim detection can be formulated as; describe the automatic
claim detection models; and discuss our results on DebateNet.
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5.2 Task

As described in Chapter 4, claim detection aims at identifying claims
in a given text. Following Koopmans and Statham (1999), we define
claim as statements concerning specific actions to be taken with
respect to a specific aspect of a domain of interest. Computationally,
claim detection can be framed in various ways:

Merkel supports establishing  a  quota scheme to distribute
migrants among European countries .

Does the input sentence contain claims? Yes.

Token-Level Classification:

Sentence-Level Classification:

Merkel supports establishing  a  quota scheme to  distribute

migrants among European countries .
O O B I I I I

I I I I O

I

Figure 6: Different formulations for claim detection.

Settings for Automatic Claim Detection. The task of auto-
matic claim detection can be framed either as a token-level or as a
sentence-level classification task. In the former case, the goal is to
answer to the question of "Which tokens make up the claim?" by
generating an output label for every token in an input sequence: For
a given text x1:N = [w1, w2, . . . wN ], a detection model is trained to
predict a sequence of labels y1:N = [y1, y2, . . . yN ], where yi indicates
whether wi is in a claim or not. Sentence-level classification setup on
the other hand addresses the question of whether or not the input
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sentence x1:N = [w1, w2, . . . wN ] overlaps, partially or completely,
with a claim span which requires a single binary decision per input.
Figure 6 shows the input/output pair for both formulations.

Both settings have their advantages and disadvantages. Sentence-
level classification setting is more coarse-grained and, therefore, more
likely to perform well than the token-level classification. A poten-
tial drawback of this setting is that it may lead to missing of the
exact starting and endpoints of claim spans if the claim boundaries
are not aligned with sentence boundaries in the dataset at hand,
which can be problematic depending on the use case. Token-level
classification, on the other hand, has the potential to output more
exactly which tokens belong to the claim. However, this setup has
its own disadvantages: Token-level classification is a structured pre-
diction task where systems need to assign the correct label to every
token in the input sequence. Due to the exponential size of the
output space, structured learning problems tend to be more chal-
lenging than the conventional sentence-level classification problems
(Nguyen and Guo, 2007; Papay et al., 2020a). Besides increasing
modeling complexity, this setup also incurs annotation complexity
as optimization of these models generally requires appropriate train-
ing data where annotation is performed on the token level. Hence, as
we mention above, both approaches offer advantages and disadvan-
tages, depending on the use case. In the next section, we investigate
NLP models from both setups.
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5.3 Models

For both configurations, we adopt the approach that has become
standard for semantic tasks in NLP, namely neural network models.

5.3.1 Claim Detection as Sentence-Level
Classification

Our sentence-level claim detection model is a fairly standard model
consisting of a pre-trained BERT as an embedding layer, and a lin-
ear classifier with sigmoid activation function as an output layer.
As described in Chapter 2, BERT is a stack of bidirectional Trans-
former encoder layers (Vaswani et al., 2017) that consist of multiple
self-attention heads and a feed-forward network. Compared to the
traditional FastText- or GloVe based embedding layer which only
provides a single context-independent representation for each token,
the BERT embedding layer takes the sentence as input and calcu-
lates the token-level representations using the information from the
entire sentence.

Figure 7 illustrates the architecture of our network in detail. First,
we use WordPiece (Wu et al., 2016) to split the input text into word
pieces and add a special token, [CLS], to the beginning of the tok-
enized sequence. After tokenization, we construct input representa-
tion ei for each token wi in the input sequence S by summing the
corresponding token, segment, and position embeddings:

ei = pi + ti + si (5.1)

where pi, ti, and si are the position, token, and segment embeddings
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for wi respectively. Such input representations are then fed into
L successive Transformer encoder layers to generate deep, context-
aware representations for the tokens in the input sequence:

hℓ
i = Transformer

(
hℓ−1
i

)
, ℓ = 1, 2, · · · , L (5.2)

where h0
i = ei. Following Devlin et al. (2019), we regard the final

hidden state corresponding to special token [CLS], HL
0 , as the aggre-

gate sequence representation and feed it into the output layer with
sigmoid activation function for binary classification.

… … … … … … … ……

[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 7: Visualization of the model tackling claim detection as
sentence-level classification task.
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5.3.2 Claim Detection as Token-Level Classification

For sequence labeling models, we adapt the IOB format (Ramshaw
and Marcus, 1999), a common tagging format for tagging tokens.
Specifically, we label each token in a sentence as B-Claim, I-Claim or
Outside. Using Bidirectional LSTM(BiLSTM), Convolutional Neu-
ral Network(CNN), BERT and Conditional Random Field(CRF),
we developed set of models where the input to the model consists of
an N word sentence S = [w1, · · · , wN ], wi denoting the ith word in
the sentence:

BiLSTM. We use FastText embeddings (Bojanowski et al., 2017b)
to represent words in the input. On separate experiments,
we try using both publicly available fastText embeddings and
in-domain FastText embeddings that we trained on our own
corpus. These word embeddings e1, · · · , eN are fed into the
BiLSTM which processes them in both directions and con-
structs a unique representation for each word in the input
sequence. For a word wi we define its corresponding repre-
sentation ci as the concatenation of the forward −→c i and the
backward ←−c i hidden states that are produced after the for-
ward and backward LSTMs process the embedding ei. This
token representation ci is then fed into the output layer with
softmax function whose dimension is the number of tag types.
It outputs the tag probability distribution of input word wi.

BiLSTM+CNN. In this model, each word is represented as a combi-
nation of the word-based and character-based representations.
We use in-domain FastText embeddings to obtain a word-level
representation. Character-based representations for each word
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wi = [wi1, · · · , wij ] where wij is the jth character in the ith

word, are obtained by applying a CNN with a max-pooling
layer to the character sequence in the word. A dropout layer
(Srivastava et al., 2014) is applied before character embeddings
are input to CNN. The rest of this model is exactly identical
to the BiLSTM model described above.

BiLSTM+CNN+CRF. Figure 8 illustrates BiLSTM+CNN+CRF
architecture in detail. The difference between this model and
BiLSTM+CNN is that we replace the softmax layer at the top
of BiLSTM+CNN model with CRF layer in order to jointly
model the label sequence. For a sequence with n words, we
parameterize the distribution over all possible label sequences,
Y, as

p(y|c;W) =

n∏
i=1

ϕi (yi−1, yi, c)∑
y′∈Y

n∏
i=1

ϕi

(
y′i−1, y

′
i, c

) (5.3)

where c = [c1, c2, . . . cn] is the set of representation produced
by BiLSTM for each input word and ϕi (yi−1, yi, c) is a func-
tion calculating emission and transition potentials between
the tags yi−1 and yi. During training, we maximize the log-
likelihood function over the training set, and during inference,
the sequence with highest conditional probability is predicted
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by a Viterbi decoder:

L(W) =
∑
i

log p(y|c;W) (5.4)

argmax
y∈Y

p(y|c;W) (5.5)

BERT Unlike previous token-level claim classification models, this
architecture doesn’t use FastText embeddings. Instead, we
use pre-trained BERT model to obtain context-aware repre-
sentations for the tokens in the input sequence. As described
in Chapter 2, BERT separates tokens into subtokens using
WordPiece tokenization(Wu et al., 2016), which means it may
generate multiple representations for a single word. When a
word consists of multiple tokens, we use the hidden state corre-
sponding to the first sub-token as input to the classifier. Since
the WordPiece tokenization boundaries are a known part of the
input, this is done for both training and test time. Following
Devlin et al. (2019), we do not use a CRF layer in the output.
We use the representation of the first sub-token as the input
to the token-level classifier which outputs the tag probability
distribution of the corresponding input word.

5.4 Experimental Setup

5.4.1 Dataset

We conduct our claim detection experiments on DebateNet dataset.
Specifically, we use the first release of DebateNet (Padó et al., 2019)
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Figure 8: Visualization of the model that tackles claim detection as
token-level classification problem

which comprises 423 annotated articles from the 2015 Tageszeitung,
among which 179 articles contain at least one claim. As described in
Chapter 3, the corpus contains 982 Claims in 764 different text pas-
sages. We discarded articles with no claims, and randomly sampled
90% of our dataset for training and evaluate on the other 10%.

5.4.2 Training Details

Token-Level Classification Models In the CNN which we use to
obtained character-level embeddings, we set the kernel size to 3 and
filter number to 30. The input characters of the CNN are repre-
sented as 25 dimensional vectors. Maximum word length is set to
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20 characters. This configuration yields 750 dimensional (= 30 ∗ 25)
character-level embeddings. We set word embedding size to 100
when we use in-domain embeddings; and 300 when we use pub-
licly available FastText embeddings. In the LSTM layer, we set the
number of hidden units in each direction to 100. We use standard
SGD as optimizer and set learning rate and decay rate to 0.01 and
0.05 respectively. We divide data-sets into batches of 10 sentences
and train the model for 50 epochs. For the BERT model, we use
the publicly available multilingual case-sensitive model that is pre-
trained on the top 104 languages with the largest Wikipedia. We use
the base model with default parameters: The number of attention
heads, hidden layers, and the number of hidden units are 12, 12, and
768, respectively. During fine-tuning, we set the maximum sequence
length to 75, batch size to 32 and norm of maximum gradient to
1.0. We use Adam optimizer with 0.003 learning rate. We did not
freeze any part of the model and fine-tuned it for 20 epochs with
this configuration.

Sentence-Level Classification Models For the sentence level claim
identification model, we use publicly available BERT model1 trained
solely on German corpora; including German Wikipedia dump, the
OpenLegalData dump, and news articles. We use the base model
with default parameters which are the same as multilingual model’s
hyperparameters. During fine-tuning, we set the maximum sequence
length to 128, batch size to 32 and norm of maximum gradient to
1.5. We use Adam optimizer with 3e-5 learning rate. We did not
freeze any part of the model and fine-tuned it for 20 epochs.

1https://www.deepset.ai/german-bert

75

https://www.deepset.ai/german-bert


5 Claim Detection

5.5 Results

Token-level Classification Results Table 4 shows the performance
of token-level claim detection models described in Section 5.3.2. Our
simplest model, BiLSTM only model with publicly available Fast-
Text word-level embeddings (1), achieves F1 scores of 31.3 and 37.5
for classes B-C and I-C, as well as a macro average F1 score of
54.1. When replacing the Wikipedia FastText embeddings with our
in-domain FastText embeddings trained on our complete TAZ news-
paper corpus, we observe that the resulting model, (2), achieves 58.7
macro F1, 4 points improvement over the first model. The next row
in the table shows results of model (3) which combines in-domain
word embeddings with character-based representations obtained by
a CNN component for input representation. This results in 1.5
points increase in F1 for the B-C class and 0.3 point improvement
in the macro F1 score. Replacing the softmax layer in the BiL-
STM+CNN with a CRF layer results in model (4) which yields F1

scores of 49.4, 53.8, 95.5 for B-C, I-C and O classes respectively, with
a major 7 points increase in averaged F1 over model (3). 11 points
drop in F1 score between model (4) and (5) shows that just like
the BiLSTM model (cf. (1) vs. (2)), CNN+BiLSTM+CRF model
also profits substantially from the in-domain embeddings. The last
row in Table 4 shows the result of our BERT based claim detection
model (6) which achieves a macro F1 score of 65.5, comparable to
model (4).

Performance differences among the models in Table 4 provide use-
ful insights regarding the different components tested above. For
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instance, we see that although the use of CNN to include character-
level information is useful, it improves the performance to some ex-
tent only. We suspect this is because FastText includes character in-
formation and probably already helps unseen and under-represented
words. Unlike CNN, we observe that the use of CRF has a huge
positive impact on the performance. Another component that we
recommend to use is in-domain embeddings which are very effective
regardless of the complexity of the model used: It leads to substan-
tial improvements for both simple methods such as BiLSTM ((1)
vs (2)) and composite models such as BiLSTM+CNN+CRF ((4) vs
(5)). Use of in-domain embeddings makes this model to outperform,
though slightly, the transformer based BERT model as well which
we, similar to Lai et al. (2021), think is due to the limited amount
of available training data.

ID Configuration Performance

Use of Use of Use of Use of B-C I-C O-C Macro
FastText CNN CRF BERT F1 F1 F1 F1

(1) global - - - 31.3 37.5 93.5 54.1
(2) in-domain - - - 38.5 43.9 93.6 58.7
(3) in-domain + - - 40.0 44.1 93.1 59.1
(4) in-domain + + - 49.4 53.8 95.5 66.3
(5) global + + - 35.1 39.1 90.6 55.0
(6) - - - + 49.5 52.4 94.7 65.5

Table 4: Claim identification scores of token-level models on the
evaluation set.
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Sentence-Level Classification Results Table 5 shows Precision,
Recall and F1 Score of our BERT based model which tackles claim
detection as a sentence-level binary classification task. Our model
achieves F1 score of 52.2 with 40.1 points Precision and 74.7 points
Recall. Besides sentence-level classification performance, we also
evaluate token-level classification performance of our model for com-
parison to models reported in Table 4. For this, we converted sen-
tence level labels to token level as follows: All tokens in a sentence
predicted as "claim-free" by the model are labeled "O". For the
other sentences, the first token is labeled "B-C" and the rest labeled
"I-C". We should remind that BERT uses WordPiece subword tok-
enization algorithm rather than whole-word tokenization which may
lead some words to be broken up into smaller subtokens. In such
cases, we followed the original study, Devlin et al. (2019), and use
the prediction on the first subtoken of the word. In this way, we keep
token-level classification results of BERT model comperable with the
other models. After converting sentence level labels to token level,
we measure the token-level Macro F1-Score using the same evalua-
tion on the same splits and report it at the right hand side of Table 5.
We make the surprising observation that sentence level claim detec-
tion model achieves macro F1 score of 67.6 when evaluated at token
level, a moderate improvement (+1.3 Points) over the best model
in Table 4. We believe this finding is the joint result of i) the fact
that, as explained in Section 5.2, modeling the task on the sentence-
level reduces complexity which generally makes learning easier and
ii) characteristics of claims in our dataset: We find that, although
claims can theoretically be a sub-part of a sentence, or span be-
yond the sentence boundary; their boundaries overlap with sentence
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boundaries very frequently in our case. Analysis on our dataset
shows that 90% of the claim spans begins before the third word of
the sentence, and 88.3% of the tokens in sentences that overlap with
claim spans are marked as part of claim (i.e. either "B-Claim" or
"I-Claim").

Sentence Level Token Level
Evaluation Evaluation

Precision Recall F1-Score F1-Score
BERT 31.4 74.4 44.2 67.6

Table 5: Claim identification scores of sentence-level model. Preci-
sion, Recall, F1 Scores are for sentence-level labels. The
right most column indicates macro average of F1 scores of
token level BIO labels.

5.6 Conclusion

In this chapter, we discussed the task of automatic claim detec-
tion. First, we have shown that the task can be framed either as
token-level or sentence-level classification task, and each configura-
tion has its own advantages and disadvantages. Namely, the text
classification setting is more coarse-grained with one less label than
token-level classification setting. The disadvantage this approach is
obvious; it might miss the exact starting and endpoints of a claim, if
the start and end points of claims and sentences are not aligned in the
dataset. Unlike sentence-level classification setting, the token-level
classification setting can potentially output exactly which tokens be-
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long to the claim. The problems with this setting, on the other hand,
are the fact that it is a more challenging setup and it requires more
fine-grained annotation dataset. Next, we described various claim
detection models from both settings and evaluated them quantita-
tively on the manually annotated German public debate on immi-
gration in 2015. We found that the best token-level classification
model (cf. Model (4) in Table 4) achieves 66.3 F1 score. On the
same dataset, our BERT based sentence-level claim detection model
achieves 44.2 F1 score on sentence level which corresponds to 67.6
F1 score on token level.

Our quantitative evaluation shows that we are able to detect au-
tomatically the claims in a debate that are relevant to the topic at
hand with a reasonable performance. However, it does not provide
insights into what kind of features does the model use while making
predictions. With this in mind, we also performed a qualitative anal-
ysis and found that our sentence-level claim detection model predicts
only the first of the following two statements as a claim, but both
statements are claims and are identical except for the actor’s name:

(1) S1:Angela Merkel meldet Zweifel an der Umverteilung von
Flüchtlingen an
S2:Pro Asyl meldet Zweifel an der Umverteilung von
Flüchtlingen an

"Angela Merkel/Pro Asyl expresses doubts about the redis-
tribution of refugees."

where S1 is a real example from DebateNet and we created S2 by
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replacing the actor name with a less frequent one. We interpret
these patterns as overfitting of the claim detection model: It relies
too much on actor mentions (i.e., either proper names or pronouns)
as indicators of claims. As described in Chapter 1, a central concern
in CSS is fairness and the quality of computational tools whose role
is to scale up text analysis to large corpora should be as independent
as possible of textual properties that are irrelevant to the target. We
will continue to discuss this topic in Chapter 7.
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In Chapter 4, we provided a step-wise description of a workflow that
allows us to break down the task of automatic generation of ANs
into several subtasks that are conceptually easier to learn, and in
the last chapter we discussed automatic claim detection, the first
step of the workflow. Through our experiments on DebateNet we
showed that we are able to automatically detect the claims with a
reasonable performance. In this chapter, we move to the next step
of workflow and discuss the task of claim classification.

6.1 Introduction

The categorization of unstructured text into categories has become
an increasingly important step in the Political Science, and in CSS
in general as it enables researchers to perform more detailed analysis
on the large amounts of unstructured data (Grimmer and Stewart,
2013).

In this chapter, we present various neural network based claim
classification methods ranging from a simple Bidirectional LSTM
model to more complex context-aware method, based on the BERT
for automatic claim classification. Our goal is to replicate the man-
ual coding task, but with a computational model. First human
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coders are used to classify a subset of claims into a predetermined
categorization scheme. For instance, the following claim in De-
bateNet (cf. Chapter 3):

(1) Eine weitere massive Verfahrensbeschleunigung ist bei vor-
übergehenden Grenzkontrollen vor der Einreise vorgesehen

"A further massive acceleration of procedures is envisaged for
temporary border controls prior to entry"

is assigned to Border Controls and Accelerated Procedure categories
from the codebook. Then, this training set is used to train the
automated methods, which then classify remaining claims. In the
rest of this chapter, we first define the automatic claim classification
task; then describe the neural models we develop; and finally discuss
the results obtained on DebateNet dataset.

6.2 Task

Even though claim classification is fundamentally a text classifica-
tion task, it has its own characteristics. As described in Chapter 2,
text classification is an important task, and it can be used in a
broad range of contexts including classifying very large documents
such as customer reviews(Liu et al., 2014), news articles (Büyüköz
et al., 2020) or legal contracts (Tuggener et al., 2020). Claim clas-
sification, on the other hand, specifically deals with classification of
claims, a special kind of political statements that are shorter than
paragraphs or documents, into categories based on a domain-specific
codebook. Regarding the type of the input to be classified, this task
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is also highly related to frame classification (Boydstun et al., 2014;
Naderi and Hirst, 2017; Heinisch and Cimiano, 2021) but they are
not the same. The latter one aims at classifying the frames which
are short statements that are used as justification of a claim, while
the former one aims at classification of the claim itself.

As mentioned in Section 6.1, it is a common practice in compu-
tational political science or in text-based CSS in general to classify
such short statements with the help of a codebook. Hemphill et al.
(2021) train a classifier to label tweets to examine the differential at-
tention that policy topics receive from Members of the US Congress
using the Comparative Agenda Project’s Policy (CAP) Codebook
(Baumgartner et al., 2006). The same CAP codebook has also been
used to label several other short text CSS corpora with more formal
language such as newspaper headlines and US Congressional bills, on
which Terechshenko et al. (2020) performed experiments with stan-
dard deep learning based classification methods. Party manifestos
are another widely used information source in CSS. These manifestos
include short statements declaring parties’ positions over a range of
topics (e.g., Foreign policies, Welfare, Economy) and political sci-
entists have been topically coding manifestos from countries around
the world within the Comparative Manifesto Project (CMP). The
resulting corpora has been used by previous work to train classifiers
that can categorize short statements in party manifestos based on
the labels available in the codebook.(Glavaš et al., 2017; Subrama-
nian et al., 2018).

In this chapter, we assume that claims have already been detected
in the first step of the workflow (cf. Chapter 4) and define claim clas-
sification as follows: Given a claim and a set of possible classes (e.g.,
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Safety, Economy, Security) to which the claim can belong, the goal is
to predict the correct claim category label(s) assigned to the input.
Depending on the characteristics of the policy debate dataset, the
claim can be a segment, a sentence or a set of sentences. Further-
more, again, depending on the dataset characteristics, claims can be
related to multiple policy issues (e.g., DebateNet), or single policy
issue, which determines whether the claim classification task is con-
figured as a multi-label classification (MLC) task, or as a single-label
classification, a simplified version of MLC. In the rest of this chap-
ter, we treat claim classification as a multi-label text classification
task over the claim statements that can theoretically be sub-part of
a sentence or span beyond the sentence boundary.

6.3 Models

Classification of short texts has been shown to be more challenging
than document level classification as they contain less words and it
might not be always obvious to find the corresponding category(Lee
and Dernoncourt, 2016). To overcome this difficulty, some previous
work, such as Yan and Guo (2019); Liu et al. (2022), take advantage
of the context information to help classify the current sequence. The
main idea of leveraging contextual information is to extend the in-
put into a sequence covering the preceding and successive sentences.
Although this might have helped to improve performance, to some
extent, on some specific cases, we do not consider the subsequent
sentences in our model because (1) claim spans often provide the
necessary topical information alone, we do not consider the subse-
quent sentences and (2) this would have restricted general applica-
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bility of our models as context information is not always available
(e.g. manifestos). Instead, we assume that the input to the model
consists of an N word claim S = [w1, . . . , wN ], where wi is the i’th
word and the model assigns a set of labels to the claim. We conduct
experiments with four neural network models ranging from unidirec-
tional LSTMs to state-of-the-art transformer based architectures:

LSTM. Our simplest model is a unidirectional LSTM. After embed-
ding the input word sequence using FastText embeddings, this
model passes the input through a single-layer LSTM. The final
hidden state is used as input to a fully connected layer.

BiLSTM. This model is identical to the first one, except that the
LSTM is replaced with Bidirectional LSTM (Graves et al.,
2013) which consists of two LSTM components traversing the
input sequence in opposite directions. The final hidden states
in both directions are concatenated and fed to a fully connected
layer.

BiLSTM+Attention Our third model combines BiLSTM with an
attention mechanism which aims to encourage the model to
focus on salient local information that is relevant for the clas-
sification decision. First, a bi-directional LSTM is applied for
both the right and left context:−→

h i = LSTMf (ei,
−→
h i−1) (6.1)

←−
h i = LSTMb(ei,

←−
h i+1) (6.2)

hi =
[−→
h i;
←−
h i

]
(6.3)

where ei is the word embedding for word wi and hi is the con-
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cetenation of
−→
h i−1 and

←−
h i+1 which are the hidden states that

are produced after the forward and backward LSTMs process
the word embedding ei. Next, for each hi, a scalar value ai is
computed using a feed forward neural network with the hidden
layer:

ai = exp (Wa ∗ tanh(We ∗ hi)) (6.4)

After normalizing the scalar ai values such that they sum to 1,
we compute the sum of the output layers of the bidirectional
LSTM, weighted by the attentions ai as the representation of
the input text, vc:

ãi = ai/

N∑
j=1

aj (6.5)

vc =

N∑
i=1

ãihi (6.6)

Finally, vc, weighted sum of the hidden states, is fed to a fully
connected layer.

BERT Our last model is a BERT-based model pretrained solely on
German corpora 1. Similar to sentence-level claim detection
model described in Chapter 5, input text is tokenized using
WordPiece; the [CLS] special token is added to the beginning
of the token sequence. The resulting input representations are
then fed into successive Transformer encoder layers to generate
latent context-aware representations. We treat the final hid-
den state of BERT model corresponding to [CLS] token as the

1https://deepset.ai/german-bert
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contextualized representation of the input sequence and feed
it to a fully connected layer.

In all of our models, we use sigmoid activation function in the
output layer as the output classes are not mutually exclusive and
many of them can be choosen at the same time. We provide hyper-
parameters for all models in Section 6.4.2

6.4 Experimental Setup

6.4.1 Dataset

We conduct our claim classification experiments on the DebateNet
dataset using the version released in Blokker et al. (2021). As de-
scribed in Chapter 3, the corpus is annotated manually according to
a two-level ontology for the migration domain, comprising 8 super-
categories with 118 subcategories(cf. Table 1 in Chapter 3). There
is a total of 3827 annotated textual spans. Similar to Chapter 5, we
randomly sample 90% of our dataset for training and evaluate on
the other 10%.

6.4.2 Training Details

As our preliminary experiments show that such extremely infrequent
categories hinder convergence during training, we, similar to Shard-
low et al. (2022), reduce the number of subcategories by combining
subcategories with less than 20 instances under the preexisting sub-
category x99, which exists for each supercategory as a ‘catch-all’
category for outlier cases. We acknowledge that that makes the
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catch-all subcategories are presumably challenging to learn but we
believe that this strategy is reasonable, since no instances are dis-
carded in this manner.

After filtering, there are 8 super- and 72 subcategories left in the
dataset. Table 6 shows the number of categories in each subcategory
after filtering operation. As described in Section 6.2, we model claim
classification as multi-label text classification task. In particular, our
models are designed for flat text classification where the goal is to
predict correct claim labels among 72 classes for a given input claim.

Code Supercategory Label Freq. Number of Reduced number
subcats. of subcats.

1xx Controlling Migration 998 16 12
2xx Residency 726 18 12
3xx Integration 475 15 6
4xx Domestic Security 230 9 6
5xx Foreign Policy 689 9 8
6xx Economy 194 12 5
7xx Society 749 19 12
8xx Procedures 676 20 11

Table 6: Claim distribution for each supercategory before and af-
ter removal of extremely infrequent subcategories. Freq.:
Frequency, number of textual spans in each super-category.
Total num. of sub-cats:118; Total reduced num. of sub-
cats:72.

In all models except BERT, we set the number of hidden units to
500 in each direction and use 300-dimensional FastText word em-
beddings trained on immigration-related German articles published
on TAZ. We use Adam(Kingma and Ba, 2015) with learning rate
of 0.003 as optimizer; set batch size to 16 and train models for 20
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epochs. For the BERT model, we use a cased BERT variant2 that
was trained specifically for German with default parameters for the
number of attention heads, hidden layers, and the number of hid-
den units are 12, 12, and 768, respectively. During fine-tuning, we
use the Adam optimizer with learning rates of 5e-5, β1 = 0.9, β2 =
0.999, and set the maximum sequence length to 200, batch size to
16 and norm of maximum gradient to 1.0 and trained for 20 epochs.
All models are trained using cross entropy loss with the sigmoid
activation function.

6.5 Results

Table 7 shows Precision, Recall and F1 scores from all four claim
classifiers. We observe that a unidirectional LSTM model achieves
an F1 score of 0.30 with 0.50 Precision and 0.24 Recall. Replac-
ing a unidirectional LSTM with a bidirectional one leads to a slight
improvement in performance, a 2 points increase in F1 score. We
find that there is a major effect of using an attention mechanism on
performance. The resulting BiLSTM+ATTN model yields F1 score
of 0.46 with a 16 points increase in Precision and 13 points increase
in Recall over the BiLSTM model. We believe this significant im-
provement is the result of the fact that attention mechanism helps
to build more effective semantic representations by focusing on the
words that are important for determining the categories the claim
is related to. To support our hypothesis, we present visualization
of attention weights for BiLSTM+ATTN model on two examples
which are only correctly classified by BiLSTM+ATTN between the
2https://deepset.ai/german-bert
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two models. Figure 9 shows that BiLSTM+ATTN model learns
to attend words such as Familiennachzug(Family reunification) or
Transitzonen(i.e. transit zones) that are relevant for the classifica-
tion.

Alle Parteigranden versammelten sich hinter der Idee den Familiennachzug für Flüchtlinge stärker zu 
begrenzen einen dazu passenden Präsidiumsbeschluss gab es inklusive
(All party grandees gathered behind the idea of limiting family reunification for refugees more, and a 
corresponding decision by the Presidium was included | Category:Integration (Family reunion))

Abermals drängte Seehofer auf die Einrichtung sogenannter Transitzonen an der deutschen Außengrenze
(Again Seehofer pushed for the establishment of so called transit zones at the German external border | 
Category:  Residency (Transit areas))

(1)

(2)

Figure 9: Attention weight visualization for BiLSTM+ATTN model
on two claims from DebateNet. Words are highlighted
according to attention scores.

In last row of the Table 7, we present results from BERT, another
model with an attention mechanism. Our BERT based claim classi-
fier achieves the best Recall (0.42) and F1 (0.47) scores with an im-
provement of 3 and 1 points respectively over the BiLSTM+ATTN
model. We attribute this improvement to two factors: Multiple
self-attention modules located at different layers where each mod-
ule learns features in different representation subspaces, leading to
multi-representation that further improve performance, and knowl-
edge gained during pre-training of BERT model where the orders
of magnitude larger data was available. Overall, we find that these
models, especially the BiLSTM+ATTN and BERT, do perform sur-
prisingly well considering the large number of categories and limited
amount of instances available in the data.

In addition to evaluating the overall performance of the models,
we also analyze the performance of four models on individual claim
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Precision Recall F1-Score

LSTM 0.50 0.24 0.30
BiLSTM 0.51 0.26 0.32
BiLSTM+ATTN 0.67 0.39 0.46
BERT 0.61 0.42 0.47

Table 7: Precision, Recall, F1 Scores for the four claim classification
models

LSTM BiLSTM BiLSTM+ATTN BERT

p 0.46 0.42 0.54 0.60

Table 8: Spearman’s rank correlation between F1 Scores of models
and per-category training data size

categories. Figure 10 shows the per-claim category F1-Score of each
model as well as the normalized number of claims available in train-
ing set for each category. First, we see that the LSTM and BiLSTM
models performs poorly with F1 scores less than 0.5 across categories
in general. These models perform worse than the BiLSTM+ATTN
and BERT models on 66 categories out of 72. Moreover, we observe
that the LSTM model completely fails on more abstract categories
such as Society (7xx), where it reports 0 F1 scores for 9 labels out
of 12 society related categories.

Second, we compare our two best performing models (BERT and
BiLSTM+ATTN) and find that despite similar overall F1 scores
achieved, these models behave differently on different categories. As
an example, BERT outperforms BiLSTM+ATTN with a high mar-
gin on eight "Controlling Migration" (1xx) related categories out of
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eleven. On the other hand, BiLSTM+ATTN model has a better
performance on the "Security"(4xx) related categories. Further, we
distinguish three regions in the Figure 10: We observe that on the
left-hand side of the Figure in which the least amount of training
data per category available, both models perform very bad with al-
most always 0 F1-Score. When we look at the middle region where
categories have relatively more instances compared to the previous
region, we realize BiLSTM+ATTN model outperforms BERT. Fi-
nally, when we move to the right side of the figure, we see the oppo-
site trend: BERT yields better F1 Scores than the BiLSTM+ATTN
model in general. We think these different patterns arise mainly
because of the fact that the amount of available data varies among
different categories in DebateNet and relatively small size of dataset
restricted better performance in BERT because, as reported by pre-
vious work(Masala et al., 2021; Lai et al., 2021), transformer-based
models such as BERT are more complicated and thus require larger
dataset to train on. To further investigate this claim, we also calcu-
late the Spearman’s correlation coefficient between per-category F1
Scores of models and number of instances available in each category.
As shown in Table 8, BERT model achieves the highest positive
correlation coefficient with 0.60 which indicates that there is a very
strong positive correlation between the amount of data exist for a
category and how well BERT performs on that particular category.
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6.6 Conclusion

In this chapter, we discussed the task of automatic claim classi-
fication, the second step of the proposed workflow for automatic
construction of Affiliation Networks. Through our experiments on
DebateNet, we evaluated various neural network based models from
simple LSTM based models to state-of-the art architectures such as
BERT and made following observations: 1) Our experiments showed
that attention mechanism is one of the key factors for model the to
produce reasonable predictions. It leads to better latent representa-
tions by focusing on the words that are important for determining
the task. 2) We found that different models with similar overall
F-measure can have significantly different performance on classify-
ing particular claims. (BiLSTM+ATTN vs BERT). Our detailed
analysis showed that there is no single winner model. Under the cir-
cumstances where there is enough data for finetuning, BERT model
can be preferable against other models. In other cases, however,
BERT might be overkill and BiLSTM+ATTN model can yield bet-
ter performance. One clear shortcoming of the model architectures
sketched in this chapter is that they make the standard assumption
of class independence even though we know that two subcategories
(e.g. 601:Labour market integration, 604:Guest workers) belong to
the same supercategory are more related to each other than cate-
gories that belong to other supercategories (e.g. 508:military inter-
vention). We will discuss this issue in detail in Chapter 8.

95



6 Claim Classification

C
laim

 C
ategory ID

F-Score

Percentage

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

602

706

214

505

213

807

811

406

499

605

802

814

201

209

708

502

801

199

508

701

603

707

408

204

307

303

405

111

509

215

402

808

804

503

106

715

601

803

702

711

107

401

109

212

301

211

712

302

699

799

299

202

203

709

101

507

110

108

705

190

104

899

105

812

399

309

805

504

102

703

207

501

N
orm

. trn. set size
B

E
R

T
B

iLS
TM

+A
TTN

B
iLS

TM
LS

TM

F
igure

10:P
er-label

F
1

score
of

four
claim

classification
m

odels.
N

orm
.

trn.
set:

N
orm

alized
num

ber
of

training
instances

per
category

obtained
by

dividing
the

training
set

size
of

each
category

by
the

largest
training

set
size.

96



Part III

Evaluating and

Improving Fairness of

NLP Models for CSS





7 Improving Claim
Detection by Addressing
Frequency Bias

As we pointed out in Chapter 1, one of the main challenges of com-
putational analysis of political text and statistical machine learn-
ing in general is to build fair and robust models since the models
are data-driven and usually built on statistical correlations that are
sometimes spurious. The spurious correlations are built in the model
because those features happen to correlate with a specific class in
the training data, and models are likely to rely on them to improve
the performance on a specific dataset but it is not desirable that
such features to carry predictive power in the model because that
will make the model fail on different domains and also make the
model biased towards specific groups.

In the upcoming chapters of this thesis, we focus on this challenge
and aim to analyze and improve the performances of various NLP
models used in CSS in terms of fairness and robustness while main-
taining their overall performance. We start with claim detection. In
Chapter 5, we described the task of claim detection and investigated
neural architectures for automating the task. Following the discus-
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sion on the overall performance of our models, we went through an
example and showed that providing the same sentence to the sys-
tem but only changing the actor name in the sentence, the output
of the claim detection model varies. We interpreted this as a sign of
overfitting of the model to the actor mentions. In this chapter, we
investigate this issue in a more systematic way.

7.1 Introduction

The general phenomenon of biased predictive models in NLP, as
we discussed in the Background Chapter, is not recent. While neu-
ral network based NLP models have shown remarkable results, these
achievements have been tempered by the observation that they often
produce biased predictions, where we define bias, similar to Fried-
man and Nissenbaum (1996), as a systematic difference in system
performance on one set of instances compared to another. Hovy and
Prabhumoye (2021) identify five sources of bias in NLP: the data,
the annotation process, the input representations, the models, and
the research design; among them the data is considered as the first
entry point for bias in the NLP pipeline.

There is a gap between limited variations in a training data and
the diversity in real-world languages (Tu et al., 2020). When choos-
ing a dataset to train a model for a particular task, we are also
making implicit decisions about which real-world features to include
and which features to exclude. Regardless of how the decision is
made, this choice leads to the formation of spurious correlations be-
tween the chosen features of the data points and their labels, which
statistical models will overfit rather than (or in addition to) actu-

100



7.2 Claim Detection

ally solving the task to maximize their performance. As a result,
the performance of the model will vary depending on whether such
correlations hold in the test data or not. For example, Gururangan
et al. (2018) shows that textual entailment models trained on one
of the most widely used textual entailment detection dataset learn
that particular keywords imply entailment, irrespective of context.
Such a model may perform poorly on the non-entailment examples
which include words from the above mentioned keyword as well as
entailment examples which do not include any of the keywords.

In this chapter, we perform a similar analysis for our claim de-
tection model introduced in Chapter 5 and find that our model de-
tects claims made by frequently occurring actors with a higher recall
than claims made by infrequently mentioned actors although actor
frequency is an irrelevant feature for claim detection task. This is
worrying, because it means that actors who repeat their claims often
will now receive "preferential treatment" and be perceived as even
more prominent than they are (Hovy and Spruit, 2016).

In the rest of this chapter, we first provide short description of
the claim detection task and the model as reminder. Then, we con-
tinue by introducing our analysis method and various computational
methods that we use to mitigate the frequency bias in the model.
Finally, we present our results and conclude the chapter with a dis-
cussion.

7.2 Claim Detection

Reminder of task. As described in Chapter 4, claim detection is
the identification of claim spans in running text where a claim is
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a statement about certain future actions on the subject of debate,
which the actor approves or denies. Note that identification and
attribution of actor(s) to the claims is not part of claim detection
task, this is taken care of by other sub-components. We frame claim
detection as sentence-level classification task in which given an in-
put sequence, the goal is to determine whether it contains a claim
(partial or complete) or not which requires a single binary decision
per input.

Reminder of model. We use our best performing sentence-level
claim detection model described in Chapter 5. It consists of a BERT
layer, pretrained solely on German corpora 1 and an output layer
with a sigmoid activation function. The final hidden state corre-
sponding to [CLS] token is used as the aggregate sequence represen-
tation and fed to the output layer to get the classification probabil-
ities.

Dataset. We perform our experiments on DebateNet using the ver-
sion released in Lapesa et al. (2020). As described in Chapter 3,
this version consists of 960 fully annotated articles from the 2015
Tageszeitung, with a total of 1815 textual claim spans. For about
half of the claims (879), the actor is local (i.e., inside the claim); for
the rest, it is non-local (i.e., somewhere in the document context).
Figure 11 shows example claims with local and non-local actors.

1https://deepset.ai/german-bert
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………………… Für Sigmar Gabriel steht fest, dass sich die für dieses Jahr erwartete 
Aufnahme von 800.000 Flüchtlingen in Deutschland  "sich nicht auf Dauer jedes Jahr 
wiederholen kann" …………..
(………………… For Sigmar Gabriel it is clear that the expected admission of 800,000 refugees in Germany 
this year "cannot be repeated every year in the long run".…………………)

........... Es blieb seinem Innenminister Joachim Herrmann vorbehalten, die Details darzulegen……….. 
Dazu sollten an den deutschen Grenzen  "Transitzonen"  geschaffen werden, wie es sie in 
Flughäfen bereits gibt ……
(........... It was left to his Minister of the Interior, Joachim Herrmann, to present the details……….. To this 
end, "transit zones" should be created at the German borders, as they already exist in airports..……)

(a)

(b)

Figure 11: Example claims from DebateNet with (a) local and (b)
non-local actor. The bold text in the passage indicates
the claim. Actors are underlined and highlighted with
purple color. Dots indicate the further parts of the news
article.

7.3 Frequency Bias in Claim Detection

In order to investigate whether there is a relationship between the
claim detection model’s performance and occurrence frequency of
actors, we first split the actors into three frequency bands using the
gold standard actor annotation as shown in Table 9: Actors that
appear once in the training data are placed in the Low band, actors
that appear 2 or 3 times are placed in the Mid band, and other
actors are placed in the High band. Such a configuration allows
us to make sure that bands do not contain actors with the same
frequency, while at the same time leads to have a good amount of
data in each band. Then, we evaluate the performance of our model
per actor frequency band which enable us to analyze claim detection
performance depending on frequency. During our evaluation, we
only analyze recall as there is no gold actor annotation for the false
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positive claim predictions of the classifier. We also restrict ourselves
to the 879 claims with local actors, considering that our classifiers
do not work on the document level.

As the last row of Table 9 shows, the prediction quality differs sub-
stantially across actor frequency bands: in particular claims made
by very infrequent actors show a worse recall (74.5%) than frequent
actors (78%). Its sensitivity to actor frequency indicates that the
presence of a previously seen actor name is a strong indicator for
the presence of a claim. This is surprising given that the claim
classifier does not use any explicit actor signal during training. We
believe that this is an undesirable situation, since it means that the
model extracts a systematically biased set of claims from the corpus:
claims made by frequently mentioned actors (such as office holders
or spokespersons as shown in cf. Table 2 in Chapter 3) are reinforced,
while claims made by infrequently mentioned actors are disregarded.
This type of bias can lead to "echo chambers" (Del Vicario et al.,
2016) and confers overly high visibility onto frequent actors (Hovy
and Spruit, 2016).

Actor frequency band All Low Mid High

Frequency range 1–48 1 2–3 >3
Number of unique actors 186 85 70 31
Number of claims 879 122 226 531

Model (Standard) recall 77.1 74.5 77.0 78.0

Table 9: Properties of claims with local actors in DebateNet (all and
by frequency band) as well as recall of the Standard claim
detector
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7.4 Debiasing Methods

Next, we present several computational methods based on different
techniques for debiasing our claim detection model. As described in
Chapter 2, there are two main families of methods to mitigate bias:
(1) debiasing methods using data manipulation, and (2) debiasing
by adjusting algorithms. In this section, we will describe methods
from both families.

7.4.1 Actor Masking

Actor Masking is a data modification method where we mask all
referential expressions referring to political actors by replacing the
referential expressions with placeholders. In this way we hope to
make the model to focus the training signal on the actual task in-
stead of relying on actor frequency which can’t be deduced form text
anymore. We consider two variants:

• MaskName This model masks the most frequent realization
option of political actors, namely proper names of persons us-
ing one of the UNUSED tokens of the BERT (BERT reserves ∼
100 tokens for future usages). We operationalize ’person name’
as all phrases marked as PER by the SpaCy German Named En-
tity Recognizer with F-Score of 83.0 on WikiNER.2 As person
names are detected automatically and the NER model used for
this purpose is not perfectly accurate, there might still be some
information about actors for some cases. However, we believe

2Source for model and evaluation figures: https://spacy.io/models/de#de_
core_news_sm.
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this is unproblematic given that the remaining information will
be too unsystematic for the model to learn to use.

• MaskNamePron This model masks persons names as above.
In addition, it masks all personal pronouns in DebateNet,
which can also provide actor information, even though in a
more indirect and thus less informative way. It uses the same
placeholder. We mask the nine German personal pronuns (ich,
du, er, sie, es, wir, ihr, sie and Sie) and all inflected forms of
them.

Figure 12 shows an example from DebateNet dataset as well as its
modified versions by the two actor masking methods. These mask-
ing procedures make it impossible for the claim detector to use infor-
mation about the actor identity. The motivation is similar to using
denoising autoencoders for text representation, which introduce per-
turbations in the input to encourage models to discover stable latent
rather than surface text properties (Glorot et al., 2011).

Wir müssen auch klarmachen , dass Menschen , die an unseren Grenzen ankommen , aber nicht 
internationalen Schutz suchen , kein Recht auf Zugang in die EU haben " , sagte Juncker dazu.

Wir müssen auch klarmachen , dass Menschen , die an unseren Grenzen ankommen , aber nicht 
internationalen Schutz suchen , kein Recht auf Zugang in die EU haben " , sagte [PHOLDER]  dazu.

[PHOLDER] müssen auch klarmachen , dass Menschen , die an unseren Grenzen ankommen , aber nicht 
internationalen Schutz suchen , kein Recht auf Zugang in die EU haben " , sagte [PHOLDER]  dazu.

(1)

(2)

(3)

Figure 12: Data manipulation example. (1): Original claim from
DebateNet (EN:We also have to make it clear that peo-
ple who arrive at our borders but are not seeking inter-
national protection have no right of access to the EU,"
Juncker said.) ; (2): Output of MaskName (3): output
of MaskNamePron
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Figure 13: Visualization of adversarial debiasing.

7.4.2 Adversarial Debiasing

Adversarial debiasing belongs to the second main debiasing method
family, namely algorithm adjustment methods family. As described
in Chapter 2, it is first introduced by Zhang et al. (2018) built upon
the work of Goodfellow et al. (2014) on Generative Adversarial Net-
works and aims to have the model learn representations of the input
that do not exhibit biases. The same idea has also used by McHardy
et al. (2019) to prevent satire detection model from learning publi-
cation source characteristics.

We use adversarial debiasing to mitigate frequency bias in our
claim detection model. Concretely, we train our model simultane-
ously to predict whether the given text contains any claim and to
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prevent the adversarial component from predicting how frequently
the claim actor occurs: The adversarial and main components share
the feature extractor whose parameters (θf ) are therefore updated by
the gradients coming through the objective functions of both model
parts. Formally, let Jc and Jfr be the cross-entropy loss functions
of the main (claim detector) and adversarial (frequency detector)
components, let λ be the meta-parameter for the trade-off between
the two losses, and let η be the learning rate. Then the updates are
defined as:

θc := θc − η
∂Jc
∂θc

(7.1)

θfr := θfr − η
∂Jfr
∂θfr

(7.2)

θf := θf − η

(
∂Jc
∂θf
− λ

∂Jfr
∂θf

)
(7.3)

Eq. 7.1 is used to update the weights of the claim detection model
head using the claim detection task labels, and Eq. 7.2 updates the
weights of the head of frequency detector. Eq. 7.3 causes the feature
extractor to receive the opposite gradients from the two model com-
ponents, maximizing the loss of the frequency detector. The dotted
arrows in Figure 13 indicate the gradient flows and the red color
indicates that the feature extractor receives the opposite gradients
from the frequency detector during backpropagation.

7.4.3 Sample Weighting

Sample Weighting is an another debiasing method belonging to algo-
rithm adjustment family. Unlike Adversarial debiasing which intro-
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duces an additional layer and a loss function to an existing training
process, the Sample Weighting approach modifies the model’s orig-
inal loss function: It aims to mitigate frequency bias by punishing
model more for false negative predictions on claims by infrequent
actors. Each training example is assigned to a weight which reflects
the importance of the instance when computing the loss function.
Concretely, we introduce three weights (γlow, γmid, γhigh) for the
three actor frequency bands from Table 9 and γneg for negative in-
stances. Parameter updates (i.e.,back-propagation) are performed
using scaled loss values:

J(x, y) =

N∑
i=1

g(xi) ∗ J(xi, yi)/N (7.4)

where N is the number of instances in the training set; g(xi) is set
to one of γlow, γmid, γhigh, γneg depending on xi.

7.5 Training Details

Similar to Chapter 5, we set the maximum sequence length to 128,
batch size to 32 and norm of maximum gradient to 1.5. We use the
Adam optimizer with a 3e-5 learning rate. The number of attention
heads, hidden layers, and the number of hidden units are set to 12,
12, and 768, respectively. We did not freeze any part of the model
and fine-tuned it for 20 epochs with this configuration. Following
hyperparameter search, we set the λ parameter of Adversarial

to 1.0. Similarly, we set γlow = 0.5, γmid = 0.3 and γhigh = 0.2,
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and assign γ = 0.1 to negative instances (i.e. non-claims) in the
SampleWeighting.

7.6 Results

In this section, we present our results for four debiasing methods
described in Section 7.4 as well as our standard model.

Overall Results. We first investigate the effect of frequency de-
basing in overall performance. The upper part of Table 10 shows
Precision, Recall and F1-Score for five models on the test set of De-
bateNet. Comparing the two actor masking models (i.e. MaskName

and MaskNamePron) with the Standard, we find that the two
actor masking models lead to approximately 1 point increase in re-
call and similar drop in precision. As a result, three models show
similar F-Scores without statistically significant differences, indicat-
ing that the debiased models perform as well as Standard despite
the loss of information in the dataset. Adversarial and Sam-

pleWeighting, the two methods belonging to the other family of
debiasing methods, have a completely different impact on the claim
detector: Both Adversarial and SampleWeighting improve the
precision significantly, but suffer a decrease in recall. Nevertheless,
we observe that these debiasing models do not lead to significant
decrease in terms of overall performance, on the contrary, they can
achieve improvements in F-Score, up to 2.7 points.

Frequency Band Analysis. Next, in order to investigate whether
these methods help to mitigate frequency bias by improving the
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Performance
Model Name for all claims

Precision Recall F1-Score
Standard 40.1 74.7 52.2
MaskName 39.3 75.6 51.7
MaskNamePron 39.8 75.6 52.1
Adversarial 45.5 69.1 54.9
SampleWeighting 42.3 73.5 53.7

Recall on claims
Model Name with local actors

Standard 74.5 77.0 78.0
MaskName 80.3 80.1 77.4
MaskNamePron 81.4 82.7 77.2
Adversarial 77.1 73.5 74.5
SampleWeighting 72.1 79.2 76.3

Table 10: Results for four debiasing methods and standard claim
detection model. Left: Precision, Recall and F-Score for
all claims. Right: Recall on claims with local actors break
down by actor frequency band.

model’s performance on the claims made by infrequent actors, we
analyze the results by frequency band on the set of local claims
for all five methods as we did in Section 7.3. The bottom part
of Table 10 shows the recall values. We observe that adversarial
debiasing, to some extent, leads to fairer claim detector: It yields
better Recall than Standard on low-frequency band. However, this
method also causes a significant decrease (around 3.5 points) in recall
on high-frequency band. For SampleWeighting, we see a different
pattern. This model leads to even worse performance on low band
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than Standard and increases the performance gap between low and
high bands. We think this outcome could be due to the sub-optimal
initialization of three γ parameters in the SampleWeighting.

When we look at the data manipulation methods, the improve-
ments in MaskNamePron surpass those of MaskName, which in-
dicates that a more consistent treatment of referring expressions by
replacing both proper names and pronouns is advantageous, maybe
due to the fact that there is often a relatively free choice between
pronouns and proper names (as in Figure 9). We find that both
actor masking methods lead to a slight decrease in recall (under
1 point) for actors from the High band. We believe that this is
unproblematic, given the redundancy of newspaper reporting: The
core claims of debates tend to be mentioned multiple times in an
article, and thus not every occurrence must be identified (Blokker
et al., 2020). Moreover, we observe that actor masking methods
bring about substantial improvements in recall on other two fre-
quency bands: MaskNamePron improves the mid-frequency band
Recall by approximately 5 points and the low-frequency band Recall
by around 7 points. This is particularly important because it gives
claims advanced by infrequent actors a substantially better chance
of being recognized by the system. For example, the following claim
was recognized by both data manipulation based debiased models
but not Standard:

(1) Der Dresdner Superintendent Christian Behr ruft zu
Nächstenliebe und Dialogbereitschaft auf.

"Dresden superintendent Christian Behr calls for char-
ity and readiness for dialog."
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We also see improvements for actors realized as general noun phrases
which are almost guaranteed to occur infrequently:

(2) Anwohner und NPD-Politiker protestierten gegen die ge-
plante Unterkunft.

"Local residents and NPD politicians protested against
the planned accommodation facilities."

Performance
Model Name for all claims

Precision Recall F1-Score
Standard 19.8 40.4 26.6
MaskName 21.3 43.2 28.5
MaskNamePron 20.5 42.2 27.6

Table 11: Cross-domain results for Standard model and data modi-
fication based debiasing methods.

Out-Of-Domain Generalization. As both quantitatively and qual-
itatively shown above, our debiasing methods, especially the data
modification based ones, can significantly decrease frequency bias
by improving performance on low-frequency band. We believe that
this is possibly because, as we stated in previous section, these mask-
ing procedures make it extremely difficult for the claim detector to
use information about the actor identity, forcing them to rely on
more general features of the task. If this is the case, then we expect
these methods to also improve, as a side benefit, out-of-domain gen-
eralization. To see this, we performed an additional evaluation of
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our models trained on DebateNet using Akw (Haunss et al., 2013)
as the out of domain dataset. Akw is another German corpus for
the task of political claims identification, which covers the debate
on the future of nuclear energy use in Germany in the four months
after the nuclear disaster of Fukushima, Japan in March 2011. The
dataset contains 828 articles and 934 claims. Table 11 shows cross-
domain results on Akw for our Standard model as well as two data-
manipulation based debiasing approaches. The significant decrease
in F-scores compared to Table 10 shows that similar to Standard,
debiased models also perform badly on the out-of-domain data. Nev-
ertheless, we observe that both MaskName and MaskNamePron

outperform Standard in terms of all the evaluation metrics (Pre-
cision, Recall, F1-Score). Considering these two results together,
we conclude that while the debiasing models used in this section
are not sufficient alone for lifting out-of-domain performance of the
claim detection models to usable level, they improve generalizability
by forcing the model to rely on more general features of the task.

7.7 Conclusion

In this chapter, we systematically analyzed sensitivity of our claim
detection model to actor frequency. To do so, we split the actors
into three frequency bands using the gold standard actor annotation
and evaluated the performance of our model per actor frequency
band. We found that our claim detector recognizes claims made by
infrequent actors with much worse recall. We then proposed various
methods based on data manipulation and algorithmic debiasing to
mitigate frequency bias. We compared approaches to mitigating
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frequency bias in political claims detection and found that a simple
data modification strategy does as good as or better than algorithmic
debiasing techniques in our case. We found that besides improving
recall for infrequent actors without affecting overall performance,
actor masking also improves out-of-domain generalization.

Frequency is known to be strongly correlated with performance
in machine learning-based NLP, and while we only evaluated the
strategy on one task, we believe its benefits carry over to similar
tasks. For example, Wang et al. (2021a) show that a sentiment
classification model predicts “The film directed by Spielberg is in-
credibly interesting” as positive. While the prediction is correct,
their detailed analysis shows that the main reason for the positive
sentiment prediction is the existence of the word "Spielberg", which
is a spurious correlation since an annotator won’t label a review as
positive just because it mentions "Spielberg". We think that one can
adapt the actor masking strategy that we discussed in this chapter
easily to mitigate frequency bias in the above-mentioned sentiment
classifier model. Also, actor frequency is only one of a large number
of potential frequency-related biases. In the next chapters, we will
keep discussing frequency-related issues in other CSS tasks.
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8 Improving Political
Statement Classification
with Class Hierarchical
Information

In Chapter 6 we discussed the task of automatic claim classification.
Our evaluation of various classifiers revealed that claim classifica-
tion is a challenging task even for state-of-the-art transformer-based
classifiers due to the existence of the large number of fine-grained
subcategories most of which are infrequently attested and also be-
cause they make the standard assumption of class independence even
though we know that categories in the codebook are not completely
independent as they are arranged hierarchically, with fine-grained
subcategories being grouped together into supercategories. For ex-
ample, ‘border controls’ and ‘quota for refugees’ are subcategories of
the supercategory ‘migration control’. In this chapter, we define an
ontology of lightweight methods to exploit the hierarchical nature of
codebooks by jointly predicting supercategories and subcategories.
We use these relations available in the codebooks as prior knowl-
edge to establish additional constraints on the learned model, thus
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improving performance of the model.

8.1 Introduction

As described in Chapter 3, codebooks, i.e., guidelines that map ac-
tual statements or textual passages to the abstract concepts rele-
vant for the respective research, cover a broad variety of research
interests as well as text types and they are at the heart of political
text analysis. Yet, regardless of whether they have been created to
analyze political party manifestos (Volkens et al., 2020), political
statements in the European public sphere (Koopmans, 2002), legit-
imation discourses about political and economic regimes (Nullmeier
et al., 2015), or the migration debate in Germany (Padó et al., 2019),
they all group their categories of interest into a limited number of su-
percategories. For example, the codebook of the Comparative Mani-
festo Project (CMP), which analyzes party manifestos across several
countries, includes 7 supercategories (such as external relations or
economy) with 56 subcategories: for economy, among others, free
market, market regulation, etc. etc.

Fine-grained, hierarchical schemes help researchers both with data
annotation and with analysis. Annotation is often easier when the
annotation decision is first based on a supercategory and then on
fine-grained subcategories. For analysis, supercategories structure
the annotated material according to different levels of abstraction,
thereby supporting interpretation and modeling. However, the situ-
ation is different when we move to automatic analysis in NLP: due
to the large number of fine-grained subcategories, the available data
is distributed among many categories. In addition, most categories
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are infrequently attested, since categories typically show a skewed
distribution. As pointed out in Chapter 6, both the limited data
issue and skewed distribution of the labels make the task highly
challenging and hinder models at achieving strong performances on
the fine-grained setup. Hence, many of the existing prediction stud-
ies address the task only on the more coarse-grained supercategory
level (Glavaš et al., 2017; Subramanian et al., 2018).

In this chapter, we define an ontology of lightweight methods to
use the hierarchical structure of political science codebooks to our
advantage: knowing that two subcategories (as free market and mar-
ket regulation) belong to the same supercategory (economy) could
lead us to expect that the representations learned for these cate-
gories should be more similar to one another than to categories that
belong to other supercategories. In this manner, the representations
learned for smaller categories can be biased in the right direction by
their larger neighbor categories.

In the rest of this chapter, we first define the set of methods to
exploit the hierarchical nature of codebooks by jointly predicting
supercategories and subcategories (Section 8.2). Crucially, these
methods introduce almost no additional parameters, thereby ad-
dressing the issues related to the limited amounts of annotated data
typically available in CSS studies. Then, we evaluate the proposed
methods by carrying out experiments on two datasets with hierar-
chical codebooks covering single label as well as multi label classi-
fication. Our first experiment (Section 8.3) adopts a monolingual
multi-label statement classification task. For this, we integrate the
lightweight methods into the claim classification models presented
in Chapter 6 and evaluate them on DebateNet in terms of both
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fairness and overall performance. Next, in our second experiment
(Section 8.4), we extend our scope in multiple dimensions. At the
phenomenon level, we broaden the focus from forward-looking po-
litical claims to general political statements by investigating effec-
tiveness of above-mentioned hierarchy encoding methods for classi-
fication models on Manifesto dataset. At the experimental level, we
now work with single-label classification task involving five different
languages. Finally, we conclude this study in Section 8.5.

8.2 Methods for Encoding Hierarchical

Structure

As mentioned in Section 8.1, we focus on lightweight methods that
introduce a minimal number of additional parameters and are there-
fore compatible with almost any type of classification model. Hence,
through this section, we assume that the base classifier to which we
would like to incorporate these methods, uses standard cross entropy
loss as the objective function (Lmain ), and consists of two compo-
nents: An encoder e(x) which encodes the input, and a classifier
c(e(x)) which predicts a single label using softmax activation in the
single-label case and a set of labels using sigmoid activation in the
multi-label case. The suitable methods are summarized in the tax-
onomy in Figure 14. We distinguish, from top to bottom: (1) Meth-
ods that post-process the output of a statement classifier to enforce
hard constraints vs. methods that incorporate soft constraints into
the end-to-end learning process; (2) among the latter, methods that
decompose the parameters for the more specific classes vs. regular-
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ization methods; (3) among the regularization methods, we compare
those which target the representation of the class vs. of the encoded
instance. We now describe the application of these methods and
assess their characteristics which are shown in Table 12.

Methods for Encoding 
Hierarchical Structure

Post-Processing
(e.g., ILP)

End-to-End
Training

RegularizationParameter 
Decomposition

(e.g., HLE)
Instance Based

(e.g., IRR)
Class Based
(e.g., CRR)

Figure 14: Taxonomy of Hierarchical Class Structure Encoding
Methods

8.2.1 Post-processing: ILP

Linear Programming is a family of constrained optimization prob-
lems where the goal is to optimize a given linear function with respect
to a set of linear constraints where optimization means maximiza-
tion or minimization of linear equations (Schrijver, 1984). An LP
specification has two parts, an objective function and constraints.
The general form of the objective function is:
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ILP HLE CRR IRR

End-to-end training with the model - + + +
Imposing hard constrain on the output + - - -
Applicable to Multi-Label Classification + + + +
Applicable to Single-Label Classification - - + +

Table 12: Comparison of hierarchy encoding methods described in
Section 8.2.

max : f (X1, . . . , Xn) := y1X1 + . . .+ ynXn (8.1)

and the general form of the constraints is:

ai1X1 + ai2X2 + . . .+ ainXn

 ≤
=

≥

 bi (8.2)

with i = 1, 2, . . .m. Xi are variables, yi, bi and aij are constants.
The goal is to maximize (or minimize) a n-ary function f, which is
defined as the sum of yiXi. Integer Linear Programming (ILP) is
a sub-type of Linear Programming which introduces the additional
constraint that variables can take only integer values. ILP models
have already been used in a number of probabilistic models in NLP in
order to enforce global constraints. For instance, Punyakanok et al.
(2004) use ILP to incorporate global information across arguments
such as “arguments do not overlap” or “each verb takes at most one
argument of each type.” which is useful information to resolve any
inconsistencies of argument classification in Semantic Role Labeling.
Similarly, Riedel and Clarke (2006) use ILP to include linguistically
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motivated constraints into their non-projective dependency parser
for Dutch and they observe significant improvement over the state
of-the-art parser (McDonald et al., 2005) of that time.

In our application, where a classifier might predict a subcategory
with a mismatching supercategory, ILP can select the most likely
legal output from the classifier probabilities so that (1) for each pre-
dicted subcategory, the matching supercategory is predicted, and
(2) for each predicted supercategory, at least one matching subcate-
gory is predicted. For each category we introduce a binary variable
vi indicating if the category is predicted. The objective function
is the log likelihood of the model output (including predicted and
non-predicted classes), using the estimates of the neural classifiers
PNC:

ϕi = PNC(vi = 1) (8.3)

L =
∑
i

log ϕivi + log[1− ϕi](1− vi) (8.4)

Let sup(i) denote the supercategory for the subcategory i. Then we
formalize constraint (1) as:

for each subcat. vi : vi − vsup(i) ≤ 0 (8.5)

Correspondingly, let subs(i) denote the set of subcategories for su-
percategory i. Then the second constraint from above is formalized
as:

for each supercat. vi : vi −
∑

j∈subs(i)

vj ≤ 0 (8.6)
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Assessment: In contrast to the other methods introduced in this
Section, ILP imposes hard constraints on the output. It does not
introduce additional parameters. As our ILP formulation requires
probability estimates (i.e. ϕi) of the neural claim classifiers for both
super- and sub-categories, it is only applicable to multi-label classi-
fication. As a post processing step, it does not propagate the errors
back into the representations.

8.2.2 Parameter Decomposition: HLE

Hierarchical Label Encoding (HLE), introduced by Shimaoka et al.
(2017) for fine-grained named entity recognition, decomposes the
representation of each subcategory into a sum of vectors, one for the
subcategory itself and one for each of its supercategories. Formally,
it creates a binary square matrix, B ∈ {0, 1}l×l, where l is the total
number of sub- and supercategories. Each cell in the matrix is filled
with 1 either if the column class is a subclass of or the same as the
row class, and filled with 0 otherwise. The matrix B is not updated
during training and integrated into models by multiplying it by the
weight matrix Wc of the final fully connected layer of the Base model:

W
′

c = (W⊤
c B) (8.7)

where Wc ∈ Rl×hs, hs is the size of the hidden state of the encoder
and W ′

c is the modified parameters of the classifier. In this way,
we introduce label parameter sharing between labels in the same
hierarchy: The weight vector of each subcategory i in layer final
fully connected layer becomes the sum of the label parameter of
subcategory i and its parent category.
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Assessment: HLE imposes soft constraints and does not introduce
any parameters. Similar to ILP, HLE can only be used in multi-label
classification.

8.2.3 Class Representation Regularization

Class representation regularization (CRR) falls under the umbrella
of regularization methods. Regularization methods have been pre-
viously used for similar purposes in NLP such as enforcing SVM
based hierarchical medical image classification models to learn that
parent and children labels within the hierarchy are similar to each
other (Naik and Rangwala, 2015); integrating external knowledge
sources for enhancing embedding learning (Song et al., 2017); con-
necting neural networks based background subtraction methods to
knowledge bases (Bui et al., 2018; Stretcu et al., 2019) and insert-
ing prior knowledge such as sentiment lexicon and relative position
information in Emotion Cause Analysis (Fan et al., 2019).

In our case, the goal is to increase the similarity between the
weight vectors of the subcategories belonging to the same supercat-
egory while keeping the weight vectors of subcategories across su-
percategories dissimilar. Formally, the classification layer is a weight
matrix Wc ∈ Rl×hs, where l is the number of classes and hs is the
output size of the encoder. We use S for the set of supercategories
and Si to denote the i-th supercategory, the set of its subcategories,
and their weight vectors, depending on context. Then we define the
centroid µ(Si) of a supercategory, the average distance between two
supercategories, davg, and the global intra- and inter-supercategory
distances dinter/dintra as:
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µ(Si) =
1

|Si|
∑
w∈Si

w (8.8)

davg (Si, Sj) =
1

|Si||Sj |
∑

w∈Si,
w′∈Sj

dist(w,w′) (8.9)

dinter =
∑

0≤i<j≤|S|

davg (Si, Sj) (8.10)

dintra =

|S|∑
i=1

1

|Si|
∑
w∈Si

dist(µ(Si), w) (8.11)

Finally, we regularize the learning objective (Lmain , cf. Section 8.2)
as follows:

L = Lmain + αdintra − βdinter (8.12)

where the hyperparameters α, β ≥ 0 control regularization strength.
Obviously, this is not the only way to do regularize the loss func-

tion in order to make the weight representations of the subcategories
from the same supercategory more similar to each other and increase
their dissimilarity to the representations of other subcategories. As
a simplest variation, one can try to combine the components of the
loss, L, differently such as L = βLmain/d

inter + αdintra. Results
of preliminary experiments, however, showed worse results for this
variant, possibly because one part of the regularization, dinter is mul-
tiplied with the main loss, but the other part is not which makes
the regularization terms asymmetrical overall. A more pronounced
change would be to come up with logical rules that define the hier-
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archical structure of the target dataset, and integrate them in the
form of additional terms in the loss function, in place of or in addi-
tion to the distance-based regularization terms. Although this has
been demonstrated by Roychowdhury et al. (2021) as an effective
way to encode information into the weights of a neural network in
the context of image classification, an obvious drawback of this vari-
ation is that it requires developing logic rules that can describe the
hierarchy.
Assessment: CRR imposes soft constraints, adds two hyper param-
eters, and is applicable to both single and multi label classification.

8.2.4 Instance Representation Regularization

Instance representation regularization (IRR) applies the same in-
tuition as above, but at the level of the instance representations
produced e(x) by the encoder. The model is penalized whenever
the encoder generates more similar representations for input pairs
with different supercategories than for pairs with the same supercat-
egories. A similar idea has been explored by Choi and Rhee (2019)
for image classification and image reconstruction tasks in which au-
thors design a regularizer that target to reduce the covariance of
representations calculated from the same class samples for encour-
aging feature independence.

Formally, let X be the set of instances, and s(x) be the supercat-
egory of instance x. We consider the set of instance triplets where
the first and second member share a supercategory and the third has
a separate one, and measure the extent to which the distance across
supercategories exceeds the distance within the supercategory:
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ddiff =
∑

x,y,z∈X
s(x)=s(y)
s(x) ̸=s(z)

max(0,dist(e(x), e(y))

− dist(e(y), e(z)))

(8.13)

We then regularize the learning objective as:

L = Lmain + α · ddiff (8.14)

where α ≥ 0 controls the regularization strength. Since using
the complete set of triples is computationally demanding, it may be
necessary to sample instead. Therefore, we create triples from each
mini-batch by combining its instances, which is an approximation to
uniform sampling.

As in the case with other methods presented in this section, IRR
can also be implemented in more than one way. For example, one
may consider to punish absolute distances (as in Section 8.2.3.) as
opposed to us choosing to introduce a "contrastive" regularizer and
punish differences between distances by following Choi and Rhee
(2019). As another alternative, instead of using the final output
of encoder e(x), we could use representations from lower layers of
the encoder. However, we do not expect this to perform better
because as shown by previous work (Tenney et al., 2019), while the
basic syntactic information appears earlier in the network, semantic
features, which we need for our purpose, appear at the higher layers.
Assessment: IRR also imposes soft constraints, adding one hyper-
parameter. IRR requires each instance to belong to a single super-
category.
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Discussion. Before moving on to the experiments, we would like to
clarify a point regarding the hierarchy encoding methods presented
in this section: Although we formulate our hierarchy coding methods
based on a two-level hierarchy, these methods can be easily gener-
alized to datasets with hierarchies deeper than two levels with very
minor changes or none at all in the case of HLE method introduced
in Section 8.2.2. For the integer linear program and regularization
based methods, the main design choice that needs to be decided is
how to incorporate the relationship between a node and its parents
since, unlike the two-level hierarchy where each category can have
at most one super-category, in deeper hierarchies sub-categories can
have more than one super-category, exactly, each category has d
super-categories, where d is equal to its depth in the hierarchy. In
this scenario, one can decide to take into consideration only the
relationship between the sub-category and its most general super-
category and as a result use the same formulae, or alternatively, one
can try to also include intermediate relationships in the hierarchy
into the network, which may provide an extra regularization sig-
nal but at the same time too many regulators may also introduce
instability (Zhou et al., 2018; Han et al., 2021).

8.3 Experiment-1: Newspapers

We conduct our first experiment on DebateNet consisting of multi-
labeled political claims where the claim is defined as any form of
politically motivated demand or action (both verbal and non-verbal)
of deliberate actors (Koopmans and Statham, 1999).
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8.3.1 Experimental Setup

Dataset. As described in Chapter 3, DebateNet is annotated man-
ually according to a two-level ontology for the migration domain,
comprising 8 supercategories with 118 subcategories. There is a total
of 3827 annotated textual spans. Again, as described in Chapter 6,
we randomly sample 90% of our dataset for training and evaluate on
the other 10% and we reduce the number of subcategories by combin-
ing subcategories with less than 20 instances under the preexisting
subcategory x99, which exists for each supercategory as a ‘catch-
all’ category for outlier cases. We acknowledge that that makes the
catch-all subcategories are presumably challenging to learn, given
their inhomogeneous nature, but we believe that this strategy is
reasonable, since no instances are discarded in this manner, and
they still retain the supercategory signal that we are interested in.
Table 13 (duplicate of Table 6 in Chapter 6) shows the number of
categories in each subcategory before and after filtering operation.

Base Classifiers. As the Base classifier, we use the four models
described in Chapter 6, with no change: LSTM, BiLSTM, BiL-
STM+ATTN and BERT. The detailed model descriptions and train-
ing details including hyperparameter selection can be found in Sec-
tion 6.3 and Section 6.4.2 respectively.

Encoding Methods As IRR is not applicable to multi-label classi-
fication (cf. Section 8.2.4), we leave it out and experiment with eight
model variations: Base; ILP, HLE and CRR; and the combinations
HLE+ILP, HLE+CRR, CRR+ILP and HLE+CRR+ILP. We use
Euclidean distance as distance metric in CRR based on our prelimi-
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Code Supercategory Label Freq. Number of Reduced number
subcats. of subcats.

1xx Controlling Migration 998 16 12
2xx Residency 726 18 12
3xx Integration 475 15 6
4xx Domestic Security 230 9 6
5xx Foreign Policy 689 9 8
6xx Economy 194 12 5
7xx Society 749 19 12
8xx Procedures 676 20 11

Table 13: Claim distribution for each supercategory before and af-
ter removal of extremely infrequent subcategories. Freq.:
Frequency, number of textual spans in each supercategory.
Total number of subcategories:118; Total reduced number
of subcategories:72.

nary experiments. We perform hyper-parameter search in BERT to
optimize parameters of encoding methods with the following lower-
and upper-bounds αCRR: [0.005,0.6], β: [0.01,0.6] and set both αCRR

and β to 0.01.

8.3.2 Results

Main results. Table 14 summarizes the main results of our experi-
ments. As we discussed in detail in Chapter 6, LSTM and BiLSTM
perform significantly worse than BiLSTM+Attention and BERT in
the ’Base’ setting. The addition of ILP (2nd row) and CRR (3rd
row) to the Base classifier produces similar results. They lead to
inconsistent changes in precision but always yields better Recall and
F-Scores. LSTM and BiLSTM still perform significantly worse than
the other two models. When we switch to HLE, all metrics for all
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models are boosted significantly, showing that parameter sharing via
the super/sub-category co-occurrence matrix is a successful across
the board. We observe the largest improvement for BERT, where
HLE yields an improvement of 12 points in F1.

Rows 5-7 in Table 14 present results when the two of the encod-
ing methods are used in combination. HLE+ILP models consistently
improve over both the HLE only and ILP only setting. Specifically,
HLE+ILP models achieves better Recall scores than HLE models
(+7 points on average) and better Precision (+8 points on average)
scores than ILP models. HLE+ILP also leads to best performance in
terms of F1 Score for all models except BERT, for which slightly bet-
ter F1 Score is achieved with HLE+CRR. By comparing HLE+CRR
with HLE across models, we find that HLE+CRR improves only
slightly over HLE. This intuitively shows that having similar rep-
resentations for categories from the same supercategory, either via
parameter sharing or regularization, does most of the work, and ex-
plicitly pushing away weight vectors of subcategories with different
supercategory does not add too much on top of that. Also, we ob-
serve that unlike HLE, CRR leads to instability when it is combined
with ILP: Depending on the base classifier architecture, CRR+ILP
leads to better or worse performance than CRR only and ILP only.
Lastly, we see that HLE+CRR+ILP does not achieve the best over-
all F-score on any models indicating that there is a sweet spot in
the number of hierarchy encoding methods that can maximizes the
models’ performances.

In short, the main conclusions that can be drawn from Table 14
is that: 1) In the base setting, as we already discussed earlier in
detail in Chapter 6, LSTM and BiLSTM perform significantly worse
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than BiLSTM+Attention and BERT. 2) We find that besides sim-
plicity, these encoding methods are highly effective to improve the
model performance. Especially, combining HLE and ILP leads to
large performance improvements regardless of the Base classifier ar-
chitecture. 3) We previously pointed out that (cf. Section 6.6) one
of the main reasons BERT can’t outperform ATTN by large margin,
although its large model capacity, is the relatively small size of De-
bateNet. We see that with the help of these methods, Bert achieves
F1 scores close to 61, ∼13 points improvement over the Base Bert
and 10 points improvement over the ATTN model. This shows that
these encoding methods help big models to use their capacity under
limited data.

Frequency Band Analysis. As discussed in the introductory sec-
tion, fine-grained classification struggles in particular with infre-
quent classes. We therefore ask how hierarchical class structure af-
fects performance in relation to frequency. To do so, we split the
fine-grained categories, as we did in Chapter 7, into three equal-sized
frequency bands1, and analyze the performance of ATTN and BERT,
our two best performing models. The results in Table 15 show that
the prediction quality of the Base BERT and Base ATTN models
differ significantly across frequency bands, meaning that these mod-
els exhibit strong frequency bias: They fail badly in the low freq
band while doing a fair job in the mid and high bands.

The inclusion of hierarchical information leads to improvement

1Thresholds: high-frequency (265≥f≥ 67), mid-frequency (65≥f≥ 40) and low-
frequency (20≥f≥ 39). Subcategory - frequency band assignments can be
found in the Appendix B.
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Model Freq band Base ILP HLE CRR
P R F1 P R F1 P R F1 P R F1

Low 10.5 6.5 7.5 22.8 12.9 14.4 16.9 9.7 10.5 10.5 10.0 10.2
ATTN Mid 81.6 46.5 56.2 69.5 44.7 52.9 71.0 45.6 53.2 64.7 49.5 52.6

High 73.7 42.1 50.4 69.1 46.5 52.8 78.6 45.1 53.8 65.9 48.4 52.4

Low 10.2 9.7 9.6 18.3 14.5 14.8 58.3 30.6 37.4 31.2 16.1 18.7
BERT Mid 58.0 36.0 41.8 65.0 47.4 50.4 77.4 55.3 62.2 75.8 49.1 55.8

High 73.1 50.8 56.7 60.5 57.9 57.9 77.8 55.6 62.3 76.4 55.9 62.6

Model Freq band HLE+ILP HLE+CRR CRR+ILP HLE+CRR+ILP
P R F1 P R F1 P R F1 P R F1

Low 24.5 11.3 13.4 19.4 11.3 12.9 13.6 10.2 10.9 28.8 14.5 17.3
ATTN Mid 63.9 51.8 55.6 72.0 41.2 50.5 65.6 50.1 53.5 63.0 45.6 51.4

High 75.1 51.2 56.9 76.3 44.4 52.8 64.1 43.9 51.2 66.2 47.8 53.3

Low 48.1 30.6 34.8 54.8 29.0 35.8 35.5 19.4 21.9 52.2 33.9 38.3
BERT Mid 71.5 63.2 65.1 85.1 58.8 66.2 74.3 58.8 61.5 71.9 62.3 64.0

High 67.3 63.3 64.0 77.7 57.9 64.0 69.1 61.6 63.8 63.9 60.3 60.8

Table 15: Precision, Recall, F-Scores for the DebateNet Dataset bro-
ken down by category frequency bands.

for all bands in general while the most substantial improvement is
achieved for the low-frequency band. This is particularly important,
as it means that besides lifting the fine-grained claim classification
models to a usable level, these methods also reduce frequency bias
in the systems by diminishing the performance gap across frequency
bands. Adding HLE, CRR and ILP together to the model works
best for the low frequency band. This configuration improves low
frequency band F-Score by 10 and 28 points for the ATTN and
BERT models, respectively. For mid and high frequency bands, how-
ever, dual configurations yield better results than HLE+CRR+ILP:
HLE+ILP outperforms HLE+CRR+ILP in ATTN by 4 points on
average. Similarly, BERT with HLE+CRR achieves best results,
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outperforming HLE+CRR+ILP model with 3 F-Score points gain
on average. The modest improvements in results for higher fre-
quency bands indicate that the more data available, the less gain is
provided by external hierarchy encoding methods. Figure 15 shows
the subcategories with the highest improvement: four belong to the
mid- frequency and three to the low-frequency band. To investigate
this further, we also perform a correlation analysis between amount
of available data for each subcategory and change in model perfor-
mance which is measured as the difference between the model’s per-
formance in Base and the configuration in which it has the best over-
all performance. High negative Spearman’s correlation coefficients,
as shown in Table 16, confirm the negative relationship between the
frequency and the size of the improvement.

Figure 15: Subcategories with highest F1 increase. I.O:Integration
Offers, R.B:Reducing Bureaucracy

In sum, our frequency band analysis shows three things: 1) Base
models, both LSTM and ATTN perform significantly worse on less
frequent categories than on the rest of the corpus; 2) By using sim-
ple methods that encode the hierarchy available in the codebook,
it is possible to improve the classification quality and reduce the
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PAIR ATTN BERT

Base - (HLE+ILP) -0.19 -0.29
Base - (HLE+CRR) -0.18 -0.26

Table 16: Spearman’s correlation coefficients between subcategory
size and improvement in F1 score of best performing mod-
els

frequency bias by stabilizing models’ prediction quality across fre-
quency bands; 3) The best configuration for hierarchy encoding may
vary depending on the architecture of the Base model and the target
frequency band although we observe that combining HLE and ILP
works fairly well all the time. The parameter sharing introduced by
HLE particularly helps the lowest-frequency categories and increases
both Precision and Recall. ILP generally boosts Recall by enforcing
that both super- and a subcategories need to be predicted.

8.4 Experiment-2: Party Manifestos

Our second experiment targets political statements in party mani-
festos. Manifestos are official documents issued by parties to sum-
marize their political program and unlike statements in newspapers
that are issued only by the individual members of a party, they are
authoritative for the entire party. Sentences in manifestos and news-
papers are linguistically quite different. Manifestos are written in
direct speech and express a party’s position; on the contrary, state-
ments from public (newspaper) discussion contain indirect speech
attributable to an individual actor. Also, they make different lexi-
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cal choices to describe similar events, e.g. colloquial ("sent back")
vs. technical ("deport") terms in the case of a discussion about
immigration topic (Blokker et al., 2020).

8.4.1 Dataset

We build on the Comparative Manifesto Project (Volkens et al.,
2019), which manually coded manifestos from multiple countries and
languages to create a resource for the systematic content analysis.
Considering the availability of language specific transformer-based
models and large annotated data, we focus on 5 countries with one
language each: Finland (Fi), Germany (De), Hungary (Hu), Turkey
(Tr) and United Kingdom (En) and collected all available manually
topically-coded manifestos. Note that this is not a parallel corpus,
and the amount of annotated data available for each language varies
greatly. The codebook uses a two-level ontology of 7 policy areas as
supercategories “designed to be comparable between parties, coun-
tries, elections, and across time”, and 56 subcategories. Sentences
are split into segments if they discuss unrelated topics or different
aspects of a larger policy, so each segment is assigned a single sub-
category. The distribution of statements over the manifesto topics
in the dataset is shown in Table 17. We split the dataset into train
(65%), validation (15%), and test (20%) portions.

8.4.2 Experimental Setup

We model statement classification in the Manifesto corpus at the
segment level as a single-label classification task. Unlike in Section
4.1, we do not apply any pre-processing to merge very infrequent

138



8.4 Experiment-2: Party Manifestos
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8 Political Statement Classification with Class Hierarchical Information

subcategories, since almost all categories in the Manifesto corpus
have more instances than threshold value (i.e. 20). For example,
there is only one subcategory with less instances than the 20 in the
DE portion.

Varying Training Data Size. With several hundred thousand sen-
tences after years of annotation, the Manifesto corpus is one of the
largest CSS datasets available and its size is arguably larger than
typical for CSS projects. As an example, annotation of the 4k De-
bateNet instances took more than a year. For this reason, we intro-
duce an experimental variable, namely the amount of the training
data. Specifically, random draws of percentages (25%, 50% and
100%) of the full training set, keeping the test set constant. This
allows us to do two things: 1) we can demonstrate the efficacy of
hierarchy encoding models for a standard-size CSS dataset using
25% version, and 2) we can study the impact of varying amount of
training data on hierarchy encoding methods.

Encoding Methods. Since HLE and ILP are only useful for multi-
label classification, we experiment with the following model varia-
tions: Base; CRR, IRR; and CRR+IRR. As distance metric, we
use Manhattan distance in CRR and Cosine distance in IRR as other
choices led to worse results during our preliminary experiments.

Base Classifier. We continue with the best performing classifier
model from Section 8.3, which is a standard pre-trained and fine-
tuned BERT model. The only difference between the BERT model in
Section 8.3 and here is that since each segment in Manifesto dataset
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8.4 Experiment-2: Party Manifestos

Lang Train lr αCRR β αIRR dp

25% 3e-5 0.1 0.1 0.1 0.4
Fi 50% 2e-5 0.05 0.05 0.1 0.2

100% 2e-5 0.05 0.05 0.1 0.2

25% 2e-5 0.2 0.2 0.4 0.2
De 50% 2e-5 0.05 0.01 0.2 0.2

100% 2e-5 0.1 0.2 0.1 0.1

25% 2e-5 0.4 0.05 0.1 0.2
Hu 50% 2e-5 0.1 0.1 0.1 0.2

100% 2e-5 0.01 0.01 0.05 0.2

25% 2e-5 0.2 0.2 0.4 0.2
Tr 50% 2e-5 0.2 0.4 0.05 0.2

100% 2e-5 0.01 0.01 0.1 0.2

25% 3e-5 0.05 -0.05 0.1 0.4
En 50% 3e-5 0.2 0.2 0.4 0.4

100% 3e-5 0.05 0.05 0.4 0.4

Table 18: Hyperparameters of CRR+IRR models. αCRR/IRR: α pa-
rameter of CRR/IRR.

is assigned to a single subcategory, we replace the sigmoid activation
function with a softmax in the classifier, c(e(x)). For each language
(Fi2, De3, Hu4, Tr5 and En6), we use a cased BERT variant that was
trained specifically for the target language. Similar to Experiment-
1, we again use AdamW as the optimizer, cross-entropy as the loss
function. After performing a hyperparameter search on the develop-
2https://github.com/TurkuNLP/FinBERT
3https://deepset.ai/german-bert
4https://hlt.bme.hu/en/resources/hubert
5https://github.com/dbmdz/berts
6https://huggingface.co/bert-base-cased
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ment set, we set the parameters for each language and training set
as shown in Table 18.

8.4.3 Results

Tables 19, 22 and 23 show the overall results of the models with
varying training data sizes (25%, 50% and 100%) on the Manifesto
dataset. We discuss the effects of encoding methods based on our
results on 25% data (cf. Table 19) since as stated above, the complete
manifesto corpus is much larger corpus than many of the dataset
used in CSS. When we investigate the impact of varying amount of
training data on hierarchy encoding methods however, we consider
all three data configurations (25%, 50% and 100%) together.

Lang Base CRR IRR CRR + IRR
P R F1 P R F1 P R F1 P R F1

Fi 39.0 38.4 37.4 40.6 40.0 39.3 41.5 39.2 38.6 42.2 40.8 40.1
De 33.3 31.3 31.4 35.4 34.1 34.2 34.6 34.7 34.3 36.8 34.8 34.9
Hu 41.1 38.8 38.7 41.7 39.8 39.7 42.2 39.0 39.2 43.7 39.3 39.8
Tr 45.6 42.5 42.4 47.9 41.7 43.0 48.9 42.4 43.3 49.0 42.5 43.6
En 31.5 30.8 30.5 34.6 32.5 32.3 32.7 32.7 32.1 34.4 32.5 32.8

Table 19: Results for the Manifesto dataset trained on 25% of the
data.

Main Results. Similar to Section 8.3.2, we first analyze whether the
hierarchical information improves overall performance. As shown in
Table 19, the results are surprisingly similar across all languages,
despite the typological differences and varying amounts of training
data. The Base model consistently yields the worst results, in line
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8.4 Experiment-2: Party Manifestos

with the findings of Experiment 1. The use of hierarchical structure,
both through CRR and IRR, improves performance for all languages,
leading to an improvement of up to 3 points in F-score. We observe
that there is no clear winner between CRR and IRR methods: While
CRR improves performance more than IRR in Fi, Hu, and EN; IRR
slightly outperforms CRR in De and Tr the two languages with the
largest data size. This intuitively makes sense because IRR operates
on the level of instance representations and when the dataset size
drops below certain threshold IRR doesn’t encounter with enough
unique input pairs to penalize the model and use the same input
pairs repeatedly which can lead to sub-optimal performance. Next,
as was the case in Experiment 1 for CRR+HLE, we see that the
two methods can be beneficially combined: CRR+IRR yields the
highest F-Score for each language: the gains over Base are between
1.1 points (Hu) and 3.5 points (De). This shows that although both
CRR and IRR are regularization based methods, they affect the way
the model performs differently.

Frequency Band Analysis. After analyzing the effect of hierarchy
encoding methods on the overall performance, we continue by dis-
cussing how hierarchical structure and category frequency interact.
As in Experiment 1, we analyze the impact of hierarchical struc-
ture on three equal-sized subcategory frequency bands7, shown in
Table 20, for the 25% condition. Similar to Experiment 1, the pre-
diction quality of Base model differs significantly across frequency
bands: It performs moderately on the mid and high frequency bands

7Threshold values for each frequency band and category-frequency band assig-
ments can be found in the Appendix B
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Lang Freq Base CRR IRR CRR + IRR
band P R F1 P R F1 P R F1 P R F1

Low 18.4 15.2 13.7 20.7 17.7 16.7 22.6 16.6 15.4 25.5 19.6 19.5
Fi Mid 42.1 42.2 41.5 42.5 42.6 41.9 44.4 42.7 42.7 43.9 43.9 43.0

High 56.6 57.8 57.0 58.7 59.8 59.2 57.4 58.4 57.7 57.3 58.9 57.9
Low 16.1 9.0 10.6 19.7 14.7 16.4 18.6 17.7 17.8 23.1 16.2 18.0

De Mid 36.9 38.3 37.4 38.3 40.3 38.7 37.3 40.8 38.5 38.7 40.5 38.9
High 48.7 48.9 48.5 49.9 49.4 49.3 49.6 47.6 48.4 50.1 49.7 49.7
Low 24.5 15.4 17.3 26.4 18.4 19.9 28.4 16.9 19.1 33.6 17.5 21.1

Hu Mid 41.5 43.7 41.7 41.5 43.8 42.1 41.0 43.5 41.6 40.1 42.7 40.9
High 57.3 57.2 57.0 57.2 57.2 57.0 57.3 56.7 56.7 57.3 57.7 57.4
Low 29.2 19.6 20.2 37.4 20.8 24.2 40.4 22.2 24.9 38.0 21.0 23.8

Tr Mid 46.4 47.3 46.6 45.8 43.2 44.1 46.0 44.1 44.8 48.8 44.9 46.4
High 61.1 60.6 60.7 60.4 61.0 60.6 60.1 60.8 60.1 60.3 61.5 60.7
Low 13.3 8.3 9.7 20.1 10.8 12.9 14.6 10.7 11.9 17.2 11.3 13.3

En Mid 30.5 31.7 30.6 32.1 34.7 32.5 32.0 34.9 32.8 33.7 33.1 32.9
High 50.7 52.4 51.3 51.7 52.0 51.6 51.6 52.3 51.6 52.3 53.2 52.2

Table 20: Precision, Recall, F1 scores for the Manifesto dataset
trained on 25% of the data and broken down by category
frequency bands.

while failing badly on the low frequency band with F1 between 9.7
(En) and 20.2 (Tr). The results also reveal that while the CRR only
and IRR only configurations can improve the prediction quality, the
highest improvement for this frequency band is obtained with the
combination CRR+IRR, leading to improvements between 3 and 7
points F1 for all languages except Turkish in which IRR leads to
slightly better F1 score (0.1 points). In the higher frequency bands,
on the other hand, we notice that there is a higher variance: De-
pending on the language and frequency band the best F1 score can
be achieved by CRR+ILP (7 cases) or CRR (2 cases). The gain
can be up to 2.3 points F1 for the mid-frequency and 1.2 points F1
for the high-frequency band. These results indicate that as in Ex-
periment 1, the gains are more modest on higher frequency bands.
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8.4 Experiment-2: Party Manifestos

This observation is supported by a correlation analysis that shows
a significant negative correlation between subcategory size and the
F1 improvement of CRR+IRR over Base, p = −0.21. Furthermore,
Figure 16 shows the 7 subcategories with the largest improvement
in F1: Three of them belong to the mid-frequency band, four to the
low-frequency band, and none to the high-frequency band.

Figure 16: Seven subcategories with highest F1 increase for best
model compared to base model. K.D.M: Keynesian De-
mand Management, E.C: European Community/Union.
Peace, E.C and Protectionism belong to mid frequency
class. The other four subcategory belong to low band.

We also look at some of the statements in the English part of man-
ifesto corpus which were classified incorrectly by the Base model and
correctly by the IRR+CRR model, as shown in Table 21: The fact
that all these example involve arguably related subcategories shows
that (1) the Base model is able to predict the correct supercategory
but fails to predict the subcategory as a result of its tendency to
choose the more frequent subcategory over the less frequent one;
(2) our encoding methods are useful to counteract this substitution
between more frequent and less frequent categories.
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Input Base Pred. (incorrect) CRR+IRR Pred. (correct)

Our long-term economic
plan is turning around
Britain’s economy.

Economic growth (Mid) Economic planning (Low)

Face coverings such as
these are barriers to inte-
gration.

National way of life (Mid) Multiculturalism (Low)

Fairer corporate gover-
nance, built on new rules
for takeovers executive pay
and worker representation
on company boards.

Market regulation (High) Corporatism (Low)

This sent out terrible sig-
nals: if you did the right
thing, you were penalised
— and if you did the wrong
thing, you were rewarded,
with the unfairness of it
all infuriating hardworking
people.

Equality (High) Welfare limitation (Low)

Table 21: Examples from Manifesto dataset correctly classified only
by CRR+IRR.

Corpus size and hierarchical structure. As stated above, we also
study the impact of varying amount of training data on hierarchy
encoding methods using our results on 25%; 50% and 100% condi-
tions. Figure 17 shows the mean improvement in F1 between Base
and IRR+CRR for each language and data condition. We see that
the improvement is largest for the 25% setting, which supports our
previous finding that incorporating hierarchical information into the
models is especially important in a low data regime.

That being said, we still obtain improvements for the 50% condi-
tion, as shown in Table 22: For most of the languages, using CRR
or IRR alone lead to increase in performance of the Base model.
Combining CRR and IRR further increases performance, as in 25%
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Figure 17: Change in F1 between the CRR+IRR and Base across
training data sizes

Lang Base CRR IRR CRR + IRR
P R F1 P R F1 P R F1 P R F1

Fi 43.8 43.4 42.5 44.3 42.7 42.5 43.7 42.5 42.2 45.8 43.8 43.9
De 37.7 37.8 37.1 39.4 37.9 38.1 38.6 37.7 37.7 40.0 38.0 38.5
Hu 42.1 40.0 40.1 43.4 40.8 41.1 43.0 39.4 39.9 44.9 40.7 41.2
Tr 50.9 46.5 47.1 49.9 46.9 47.2 52.9 48.6 49.2 51.8 47.7 48.0
En 33.4 31.9 32.0 34.9 33.8 33.8 33.0 32.6 32.1 35.4 34.9 34.2

Table 22: Results for the Manifesto trained on 50% of the data

condition. CRR+IRR always yields better F1-Scores than Base (up
to 2.2 F1 points) although the gap between performance of the Base
and CRR+IRR is less pronounced under 50% training data case.
These results show that both CRR and IRR are effective methods
and can improve political statement classification models’ perfor-
mance even on the fairly large datasets.

On 100% condition (cf. Table 23) we see a pattern that highly dif-
fers from 50% condition, with much larger cross-lingual differences.
While these methods lead to 1-2 points improvement in some lan-
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Lang Base CRR IRR CRR + IRR
P R F1 P R F1 P R F1 P R F1

Fi 47.0 48.1 46.7 48.1 48.7 47.8 47.1 48.3 46.9 47.6 51.2 48.1
De 40.4 40.9 40.2 41.3 41.2 40.9 41.8 40.0 40.2 42.4 40.8 41.2
Hu 47.8 43.9 44.6 45.0 41.4 42.3 47.1 42.8 43.8 43.4 45.0 43.6
Tr 56.7 55.7 55.5 56.4 54.2 54.3 55.6 53.9 53.6 55.9 54.6 54.5
En 38.5 35.7 35.9 40.2 36.3 37.2 37.8 36.1 36.5 38.4 38.2 37.8

Table 23: Results for the Manifesto trained on 100% of the data.

guages such as En, Fi and De, they yield worse F1 score than Base
in Tr and Hu. We believe these encoding methods are still useful, to
some extend, for En and Fi since they are the two languages with
the least amount of data in our experiments. What is surprising is to
see that De, the largest manifesto corpus among the five languages,
profits from CRR/IRR more than Tr and Hu. We believe this is
mainly due to the difference in proportion of high-frequency band
– where we see the least improvement – across De and other two
languages. Indeed, further analysis shows that in Tr and Hu, the
high-frequency band account for 76% and 79% of the data, respec-
tively, while it only makes up 73% of the German data.

8.5 Conclusion

In this chapter, we have demonstrated that the hierarchically struc-
tured codebooks developed by political science projects are a source
of domain knowledge that can be exploited to lift fine-grained claim
classification to a usable level. To do so, we extend the standard clas-
sification models introduced in Chapter 6 with lightweight modules
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that implement this intuition in different ways. We evaluate these
methods on two datasets, covering two codebooks, single-label and
multi-label classification, and five languages. Our main findings are
robust across the different setups: inclusion of hierarchical informa-
tion always improves classification, and the methods we consider are
sufficiently complementary that their benefits combine. We obtain
improvements even for fairly large datasets, with diminishing bene-
fits for very large datasets which is plausible, given that performance
improves particularly for low-frequency categories.

The fact that the encoding methods are particularly useful for low-
frequency categories is highly important with regard to two aspects:
First, political discourse unfolds over time, and every prominent is-
sue starts out as infrequent. Second, as discussed in Chapter 7, it
is also important for algorithmic fairness, since in the case of rare
categories, a small number of prediction errors is sufficient to sub-
stantially impact the reliability of downstream analyses. Indeed,
multiple causes of low frequency categories exist. As one example,
in analyses over time, statement frequencies co-vary naturally with
topic prominence, and analyses like the (semi-)automatic extraction
of network representations to assess dynamics of political debates
(Haunss et al., 2020) may misrepresent the contribution of infre-
quent categories. As another example, work on the framing of im-
migration discourse on Twitter (Mendelsohn et al., 2021) has shown
that employing issue-specific categories (e.g., "victim:war", "victim:
discrimination", "threat:jobs", "threat:public order") reveal ideolog-
ical and regional patterns which would be missed by the commonly
employed generic frames such "economy" or "morality" (Card et al.,
2015) – but at the cost of introducing many fine-grained categories
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which are sparse and attested with widely different frequencies. Our
work in this chapter demonstrates that a well designed hierarchical
codebook, combined with the right computational devices, can go
a long way towards redressing the challenges that arise from this
situation.

One aspect of this study that we have not considered yet is the
evaluation of the downstream effect of these methods on construction
of discourse networks (cf. Chapter 4). In order to evaluate how useful
these hierarchy encoding methods can be for automatic construction
of discourse networks, we can compare a discourse network whose
automatic construction involves a claim classifier with a hierarchy
encoding method, with a discourse network which is created using a
plain claim classifier. We leave this as a future work.
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9 Investigating Adversarial
Debiasing Under
Correlated Attributes

In Chapter 7, we discussed the well-known fact that statistical mod-
els tend to rely on spurious correlations between labels and input
features to maximize their performance and we showed that our
claim detector model is not an exception: It exploits the spurious
correlation between the actor frequency and the task label which
makes the model to recognize claims made by infrequent actors with
much worse recall.

In this chapter, we continue to look at those spurious correlations
build in NLP models. Now, however, we turn our attention to an-
other task and subdomain of CSS. Namely, we focus on a text clas-
sification task, a fundamental NLP task, on social media domain
because (1) it has become a very active line of research in recent
years and (2) it provides information about demographic attributes
of authors via their publicly available profiles.
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9.1 Introduction

As described in Chapter 2 in detail, NLP applications, including
text classification, recently received a significant deal of criticism
because of the frequent presence of bias in the predictions. In text
classification tasks, a principal source of such biases are demographic
attributes of authors, such as gender, age, or race1. The reason
is that these attributes shape speakers’ language use substantially
(Hovy, 2015). NLP models are not only able in principle to pick
up such cues, as studies on modeling demographic attributes show
(Koppel et al., 2004), but they actually have a motivation to do so
whenever some demographic attribute is strongly correlated with the
model’s classification target and therefore supports its recognition.
As an example, in social psychology, Gross et al. (1997) report that
elderly people experience and express their emotions less intensely
than younger people. Therefore, in a corpus of emotional expressions
across age groups, it is reasonable for a model that predicts emotion
intensity to look out for linguistic cues regarding author age, even if
these cues are not really related to emotion intensity, such as typical
markers of youth language such as “rad”, “fam”, “FTW”, etc.

This focus is arguably problematic, though, since it can give rise to
a form of age bias, overestimating emotion intensity for documents
exhibiting youth language. More generally, the bias-inducing role of
demographic attributes is dangerous for studies that use texts from
a multitude of authors – often gathered from social media – to draw
inferences about the authors (Sobkowicz et al., 2012; Cheng et al.,

1A subset of these has specific legal protection in many jurisdictions under the
name of sensitive or protected attributes.
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2015). In such studies, demographic biases can lead to erroneous
causal attributions.

As we pointed out previously, to counteract the presence of biases
in NLP, researchers have devised various debiasing methods and due
to its general applicability and high effectiveness, adversarial debi-
asing has become one of the most widely used methods for bias mit-
igation. Unfortunately, these advances are not accompanied by an
analysis of the prerequisites that need to be satisfied for adversarial
training to perform successfully. It has been empirically shown that
adversarial training works well for many cases in NLP (cf. Chap-
ter 2); nevertheless, we demonstrate that there are relatively simple
setups where it can fail. In this chapter, we analyze what factors
contribute to the failure. Concretely, we consider the correlated
attributes of document topic (scientific / non-scientific) and author
gender on a self-collected multilingual corpus of TED talk transcripts
in French, German, Spanish, and Turkish. We choose gender and
topic as the target attributes because gender bias in NLP has been
an issue of great importance and topic is a highly correlated attribute
with gender as shown by previous work (Newman et al., 2008; Hovy,
2015; Schwemmer and Jungkunz, 2019). This setup enables us to
observe the interplay between linguistic properties and adversarial
debiasing.

Our investigation proceeds in three steps. First, we train inde-
pendent classifiers for each attribute and evaluate them with regard
to overall performance and with regard to the bias they exhibit. In
the second step, we apply adversarial debiasing to the predicting of
each attribute with respect to the other, and re-evaluate the debi-
ased models. Finally, in the third step we discuss the differences
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observed in the previous step: (a), both document topic and author
gender can be classified reasonably well by independent classifiers,
but exhibit considerable bias; (b), author gender bias in topic clas-
sifiers can be reduced by adversarial training; however, adversarial
debiasing in the opposite direction fails completely; (c) this effect
is true for all languages except French. Our interpretation is that
the failure of adversarial debiasing is due to the fact that feature
space for author gender is subsumed the topic feature space for all
languages except French, where gender is expressed overtly by mor-
phological cues that can be picked up by the model.

9.2 Dataset

In order to conduct a study on the relationship between topic and
author gender in multiple languages, we require a multilingual com-
parable corpus for which topic and gender information are available.
The corpus should be as parallel as possible so that any differences
in outcome across languages are not simply due to differences in
the evaluation data. Among the available multilingual parallel data
sets, arguably the two most prominent ones are WIT3 and OPUS.
WIT3 (Cettolo et al., 2012) consists of lecture translations automat-
ically crawled from the TED talks in a variety of languages and was
used in the evaluation campaigns IWSLT 2013 and 2014. OPUS
(Tiedemann, 2012) is a collection of data from several sources which
provides sentence alignments as well as linguistic markup (for some
languages). Unfortunately, neither corpus provides topic or gender
labels.

For this reason, we create a new multilingual parallel dataset with
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these annotations, based on TED talks (http://ted.com/talks). A
TED talk is a presentation at the TED conference or one of its inter-
national partner events. TED talks are limited to a maximum length
of 18 minutes and may be on any topic. TED talks are rehearsed
talks and at least semi-formal, while still definitely belonging to the
category of spoken language. In this regard, they are comparable
to the widely used Europarl corpus (Koehn, 2005). The talks are
divided according to the languages, topics and posted dates. All
original talks are presented in English, but volunteers provide (and
double check) translations into other languages. Authors are identi-
fied by name.

Checking for which languages the TED webpage provided sub-
stantial numbers of transcripts (as of February 2020) led us to se-
lect German (DE), Spanish (ES), French (FR) and Turkish (TR) as
target languages. We crawled all 1518 TED talks for which tran-
scripts in all four target languages were available. We conducted
some preprocessing: we cleaned transcripts by removing extra line
breaks, extra spaces, and punctuation marks. Inspired by the work
in open-domain Question Answering (Yang et al., 2019), we then
segmented the transcripts into a sequence of segments. Rather than
using paragraphs or sentences as segments directly, we split arti-
cles into segments with the length of 60 words by sliding window
as Wang et al. (2019) demonstrated that splitting articles into non-
overlapping fixed-length segments leads to better results in Question
Answering.

Finally, we annotated the transcripts with topic and author gen-
der information. For topic, we grouped transcripts into two classes
according to the community-provided tags. The instances that have
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either Technology or Science tag were labeled as SciTech while the
rest was labeled as Other. This grouping strategy led to a balanced
dataset (53% Science, 47% Other). For author gender, we assume
a binary gender classification (male/female) to be compatible with
existing datasets (Verhoeven et al., 2016; Pardo et al., 2016). This
should not be understood as a rejection of non-binary gender. We
manually determine the author’s gender information on the basis of
gender indicating pronouns such as he, she, his, her that are used
to refer to the authors in their biographies published in the authors’
TED Talks profile or on other websites, keeping only clear cases.The
majority gender is male (69%). Table 24 describes the final dataset2.

The corpus has very similar properties across languages. The main
exception is the lower number of words in Turkish which is due to
the agglutinative nature of Turkish morphology. For instance, the
English sentence with four words "I am at your house." is translated
into a single word Turkish sentence "Evinizdeyim."

# TED Talks 1518
Author Gender 1042 (Male) / 476 (Female)
Talk Topic 704 (SciTech) / 814 (Other)

DE ES FR TR

# Tokens/doc 2093 2110 2280 1632
# Sentences/doc 115 110 111 114

Table 24: Statistics of TED multilingual corpora.

2The data can be found at https://github.com/wassa21/adv
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9.3 Experimental Design

Table 25 shows a correlation matrix for the two attributes of topic
and author gender in our TED corpus. Indeed, the corpus shows
a clear correlation between the two: while male authors are rep-
resented about equally in TED for scientific-technological topics
and other topics, female authors are underrepresented for scientific-
technological topics. As motivated in the Introduction, this situation
can lead to the model mistakenly picking up linguistic cues from one
attribute to predict the other, leading to systematic biases.

Document Topic SciTech Other

Author Gender Male 524 518
Female 180 296

Table 25: Topic–gender correlation: Number of documents in TED
corpus for each combination

We therefore believe that this corpus can serve as a reasonable
case study for correlated document attributes. We proceed in two
steps: First, we learn individual neural models for topic and gender
classification. We expect, for each attribute, that predictions are
biased regarding the other attribute (Experiment 1). Second, we
debias these models by adversarial training. We expect the models
to focus better on features that are predictive of the individual at-
tributes, and to show less bias (Experiment 2). In our experiments,
we follow Li et al. (2018) and Zhao et al. (2020) by measuring the
amount of bias in the models as the average difference in classifica-
tion performance between documents aggregated by author gender
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(Male vs Female) or aggregated by topic (SciTech vs Other).

9.4 Experiment 1: Simple Classification

and Bias Analysis

In our first experiment, we set up neural classification models for the
two tasks of topic and gender classification individually and evaluate
them for the presence of bias in their predictions.

Figure 18: Visualization of classification architecture for topic
and author gender
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9.4.1 Method

Both Topic and Gender classification tasks can be regarded as a spe-
cific type of text classification. Therefore, we use a similar model
to BERT based claim classification model used in Chapters 6 and
8, but with some adjustments. BERT and many transformer-based
model in general can only encode and generate representations for a
fixed length token sequence – e.g., BERT implementations are often
limited to 512 tokens per sequence. However, as presented in Ta-
ble 24, the average token number per TED talk is much larger. To
address this limitation, we perform a couple of changes on the BERT
based text classifier that we used in the previous chapters. Specif-
ically, we encode the input at the paragraph level (cf. Section 9.2)
using the final hidden state corresponding to a special classification
token, [CLS], as the representation for the corresponding paragraph.
We then obtain the global context vector for the input by summing
paragraph representations element-wise. Finally, the global repre-
sentation of the input is fed through a Multi-Layer Perceptron with
a Softmax layer. Note that an alternative, and also easier, approach
for using BERT on long input text would be text truncation (e.g.,
cutting the longer texts off and only using the first 512 Tokens only)
but we do not apply this alternative approach as it leads to the
loss of global information related to the task. Figure 18 depicts the
model architecture we use for both classification tasks.

Training details. We randomly sample 80% of our dataset for train-
ing and evaluate on the other 20%. Sampling is made at the talk
level and in parallel for all languages to ensure data splits remain
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the same across languages. Since not all languages created equal in
multilingual BERT (Wu and Dredze, 2020), for each language we
consider, we use a cased BERT variant that was trained specifically
for the target language.3 We use the Adam optimizer with learning
rate of 5e-5, β1 = 0.9, β2 = 0.999. We set gradient clip thresh-
old to 1.0, batch size to 48 and apply dropout with 0.5 probability
on all layers and train the model for 15 epochs. The Multi Layer
Perceptron consists of a single hidden layer with 300 hidden units.

9.4.2 Topic Classification

We first set up the model for topic classification. As stated in Sec-
tion 9.4.1, we approach it as a document-level binary classification
task. The input to the model is the full transcript, and the model
labels each transcript either as “SciTech” or “Other”. Table 26 shows
F1 scores for the topic classification models in four languages as well
as the majority baseline.

Language Overall By Gender

Male Female Bias
DE 81.2 80.0 84.0 4.0
ES 80.0 79.0 82.7 3.7
FR 81.5 80.2 83.7 3.5
TR 80.2 78.7 83.0 4.3
Majority BL 37.6 33.6 47.6 14.0

Table 26: F1 scores for topic classification (bottom line: majority
baseline, identical for all languages)

3DE: deepset.ai/german-bert, ES: github.com/dccuchile/beto,
FR: camembert-model.fr, TR: github.com/dbmdz/berts
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9.4 Experiment 1: Simple Classification and Bias Analysis

First, we compare the overall performance across languages. A
majority baseline performs at 37.6% for all languages, due to the
parallel design of the dataset. The neural topic classifiers do sub-
stantially better, all showing very similar results around 81% F-
Score. Their similar performance may be expected from the parallel
nature of the corpus, but it also provides support to our assumption
that the texts and transformer models perform comparably across
languages. When we break down these results by the other attribute
we are interested, namely author gender (Male vs Female), we find
that the prediction quality of the topic classifier is an average of 3.6
points lower for male than for female authors. In other words, the
topic classifiers show a consistent gender bias across languages, pre-
sumably due to the higher-entropy (more equal) topic distribution
for male authors, as shown in Table 25. While this bias is lower than
the bias of a majority baseline which directly reflects the correlation
between the two attributes, it is still substantial and arguably worth
mitigating.

9.4.3 Author Gender Classification

After training and analyzing the results of topic classification mod-
els, we continue with the opposite task, author gender classification.
Similar to previous section, we model the task as a document-level
binary classification task using the same BERT based model. The
input to the model is the full transcript, and the model tries to
predict the author gender.

Table 27 summarizes the results. We see a pattern that differs
substantially from topic classification, with much larger cross-lingual
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Language Overall By Topic

SciTech Other Bias
DE 70.8 69.0 75.0 6.0
ES 72.4 69.2 75.8 6.6
FR 82.4 82.0 83.0 1.0
TR 70.4 66.0 74.8 8.8
Majority BL 57.0 64.4 50.8 13.6

Table 27: F1 scores for gender classification (bottom line: majority
baseline, identical for all languages)

differences in performance. The results are again substantially above
the 57% baseline. We obtain the best result for French (82%), and
the worst for Turkish (70%), with a difference of 12% F-Score. This
indicates that gender classification builds much more on language-
specific information than topic classification. Arguably, for a word-
piece based neural model like BERT, a primary source of evidence
on author gender are linguistically marked expressions in the text
where the author refers to themselves. Thus, prediction of the au-
thor gender should be easiest if a language has a frequent and un-
ambiguous mechanism for gender marking (Corbett, 1991; Zmigrod
et al., 2019). Table 28 shows a multilingual example where French
marks gender inflectionally, while the other languages do not. This
is indicative of the general case: The languages that we consider in
our experiment provide gender marking to different degrees. At one
extreme, French marks most adjectives and many nouns consistently
for gender. In contrast, Spanish marks gender only for a subset of
the lexicon, and morphologically inconsistently (Harris, 1991); Ger-
man marks only (some) nouns, and marking is sometimes optional.
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DE Genau hier wurde ich geboren und verbrachte die ersten
sieben Jahre meines Lebens.

ES Esta es la tierra en la que nací y pasé los primeros siete
años de mi vida.

FR Je suis née ici même, et j’y ai passé les sept premières
années de ma vie.

TR Doğduğum yer burası ve hayatımın ilk yedi yılını burada
geçirdim.

Table 28: Example of inflectional gender marking in different lan-
guages (marking only present in French)

At the other extreme, Turkish does not mark gender at all.
On this basis, we would expect French to perform best, and lower

performance for the other three languages – exactly what we find.
However, the performances for TR, DE, and ES are surprisingly
close to one another, and substantially above the baseline: on the
basis of what information in the texts do these classifiers base their
predictions? A look at the size of the biases suggests an explanation:
The gender classifiers for DE, ES, and TR make substantial use of
topic cues, which enables them to proceed to some extent due to
the correlations between topic and gender, but also lead to biases of
6–9% (highest for Turkish, consistent with the analysis above). In
contrast, the French classifier is least biased, indicating that its text
contains enough cues for proper gender classification. We illustrate
this in Table 29, where we report results on SciTech documents with
female authors, that is, the smallest subcategory in our corpus. We
find that the gender classifier for FR significantly outperforms the
others, which provides additional evidence that the model relies less
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on the topic cues for gender classification.

DE ES FR TR

SciTech/Female 75.0 75.8 83.0 74.4

Table 29: F1 scores for gender classification on SciTech talks with a
female author.

Summary of Experiment 1: For both topic and author gender clas-
sification tasks, we find that the classification performance shows a
bias with respect to the other attribute. However, the two tasks dif-
fer with respect to the cross-lingual component: Topic classification
works about equally well in all languages. In contrast, author gender
classification only works properly in the one language that has con-
sistent linguistic marking of gender, while there is evidence that the
other languages fall back on topic features also for this task, which
directly leads to biased predictions. These observations motivate
experiments into how well these models respond to debiasing.

9.5 Experiment 2: Adversarial Debiasing

As previously discussed in Section 7.4.2, adversarial debiasing makes
a classifier to ignore some bias attribute P such as gender, race, age
etc. while learning to solves another task T (Zhang et al., 2018;
Elazar and Goldberg, 2018; McHardy et al., 2019). It seeks to
achieve this by constraining representations in a way so that rep-
resentations do not rely on P in any substantial way. To this end,
the model is trained to simultaneously predict the correct label for
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Figure 19: Debiasing by adversarial training. Top: Adversarial
training of topic classifier on author gender, Bottom: Ad-
versarial training of author gender classifier on topic.
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task T (“main component”) and to prevent a jointly trained adver-
sary (“adversarial component”) from predicting P . To do so, we use
the same training procedure as described in Section 7.4.2: Let JM

and JA be the loss functions of the main and adversarial components;
θA, θM are the parameters of adversarial and main components; λ
be the meta-parameter controlling the intensity of the adversarial
training; and η be the learning rate. Then the following equations
describe update rules for each component in the model:

θM := θM − η
∂JM
∂θM

(9.1)

θA := θA − η
∂JA
∂θA

(9.2)

θF := θF − η

(
∂JM
∂θF

− λ
∂JA
∂θF

)
(9.3)

Note that the adversarial and main components share the same
feature extractor (i.e., BERT) whose parameters (θF ) are therefore
updated by the gradients coming through the objective functions
of both model parts. Our application of this training method is
shown in Figure 19. We first debias the topic classifier by author
gender (left-hand box); then we proceed to debias author gender
classifier by topic (right-hand box). For example, to de-bias the
topic classification, JM is the topic loss and JA the author gender
loss.
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9.5.1 Gender-Debiased Topic Classification

First, we debias topic classification to reduce the gender bias. Fig-
ure 20 compares overall topic classification results across a range of
values of λ between 0 (no adversarial training) and 1 (equal weight
of main and adversarial loss).

We find that, similar to simple topic classification in Experiment 1,
the results are essentially identical across languages. Furthermore,
the choice of λ hardly matters in this interval: adversarial training
does not have a major impact on topic classification. We report de-
tailed results for λ=1 in Table 30. The small differences between the
Overall results of the Original and Debiased models show that topic
classification overall does not lose much by debiasing for gender. The
breakdown by gender shows that gender bias is substantially reduced
overall. However, there are noticeable differences among languages.

Original Debiased

Overall Bias Overall Male Female Bias
DE 81.2 4.0 81.2 80.8 81.2 0.4
ES 80.0 3.7 80.0 79.2 81.6 2.4
FR 81.5 3.5 80.2 79.4 81.4 2.0
TR 80.2 4.2 78.4 76.8 80.7 3.9

Table 30: Detailed topic classification results for λ=1. Original: Re-
sults from Experiment 1 (cf. Table 26). Lower bias for
each language bolded.

For Spanish and German, we see no overall loss of performance
in topic classification, and a substantial reduction in gender bias.
For French and Turkish, in contrast, we see a decrease of about 1.5
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Figure 20: F1 Scores for topic classification with adversarial author
gender training using a range of values of λ

points in topic classification. Gender bias is reduced for French but
hardly for Turkish. This is a somewhat surprising result, given the
typological differences between the two languages. Our explanation
is that in French, as discussed above, many words are morpholog-
ically marked for gender. Due to the correlation between the two
attributes, these can be re-used by the topic classifier, but when they
are penalized through adversarial training, we see a mild decrease
in topic classification accuracy. In Turkish, as we have argued in
Experiment 1, gender classification depends almost entirely on topic
features since there is no linguistic marking of referent gender. Con-
sequently, the adversarial training works against itself to an extent,
resulting in a mildly worse topic classification but hardly any de-
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crease in gender bias.

9.5.2 Topic-Debiased Gender Classification

After debiasing topic classification to reduce the gender bias, we
swap the main and adversarial tasks (cf. the bottom box in Fig-
ure 19) to debias author gender classification with regard to topic.

Figure 21: F1 Scores for author gender classification with adversar-
ial topic training (F1 scores). Left: Overall results for
different λ values.

Similar to above, Figure 21 compares overall results across a range
of values of λ between 0 (no adversarial training) and 1 (equal weight
of main and adversarial loss). We find that varying λ has a substan-
tial effect this time. If we set λ to a value close to 1 – a good choice
for gender-debiased topic classification, as we have established in the
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previous subsection – this leads to a breakdown of the gender classi-
fication model. Performance for all languages drops to a F-Score of
around 57, the level of the majority baseline (cf. Table 27). Appar-
ently, debiasing author gender classification by adversarial training
against topic breaks the author gender classifier for all but small
values of λ.

Original Debiased

Overall Bias Overall SciTech Other Bias
DE 70.8 6.0 68.0 63.8 72.2 8.4
ES 72.4 6.6 66.2 62.8 69.2 6.4
FR 82.4 1.0 82.6 82.6 82.6 0.0
TR 70.4 8.8 66.4 64.0 68.8 4.4

Table 31: Detailed author gender classification results for λ=0.2.
Original: results from Experiment 1 (cf. Table 27. Lower
bias for each language bolded.

As in the first experiment, we observe differences among lan-
guages: French stands out as the language for which the gender
classification ’holds out’ the longest for high values of λ. Its ulti-
mate failure indicates that even for French, gender marking on its
own is not strong enough to support the author gender identification
task – or at least our models are not powerful enough to pick up on
these cues. The other languages, which, as we have argued in Exper-
iment 1, make substantial use of topic cues for gender classification,
fail even earlier.

Table 31 reports detailed results for λ=0.2. In line with our anal-
yses above, debiasing works for French but not for the other lan-
guages: We find clear decreases in performance (up to 6.2 points,
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for Spanish), and inconclusive changes in bias (decrease for Turkish
by 4.4 points, increase for German by 1.6 points). Overall, these
results indicate that topic-debiasing author gender is a failure both
with regard to model performance and reduction of bias.

9.6 Discussion

The results of our two experiments show an intriguing asymmetry
between the two tasks of topic and author gender classification when
debiased for the respective other attribute. Reducing author gen-
der bias in topic classification with adversarial training proceeds
as expected, is relatively robust to the choice of λ in the interval
between 0 and 1, and shows a consistent pattern across languages
which can be explained by the properties of the languages involved.
In contrast, reducing topic bias in author gender classification relies
heavily on λ, quickly deteriorating to baseline level for large values
of λ, and does not consistently manage to reduce bias in any case.
This asymmetry cannot be an artifact of model architecture or data
alone, since we use exactly the same model architecture on the same
data. Furthermore, we think that this also cannot be just the re-
sult of the limitations of the encoder we use (i.e., the fact that we
didn’t use a document-level encoder such as Transformer-XL (Dai
et al., 2019) or Longformer(Beltagy et al., 2020) which can process
much longer text sequences by design) because we found that this
encoder at least works reasonably well for French (cf. Table 31, Row
3). If this was solely due to the encoder, then we would expect to
see that it fail for French too, due to the fact that experiments were
conducted on a parallel dataset.
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Instead, we believe that these patterns result from an interaction
between the representation learning of the model and the informa-
tion that the model can draw from the data. They can be understood
through the latent feature space of the final shared layer in our ar-
chitecture below the two heads (cf. Figure 19), where each class can
be characterized by a region of informative features.

Attr 1

Attr 2

Attr 1

Attr 2 Attr 2
Attr 1(a) (b) (c)

Figure 22: Three cases of latent feature space geometry for two at-
tributes: (a) independent, (b) correlated, (c) subsumed

Figure 22 shows Venn diagram-style depictions of the three possi-
ble cases for a pair of attributes. In the left-hand case, (a), there is
no overlap between the latent features of the two attributes. That is,
the two attributes are independent of one another, and so is learning.
However, this is by definition the case without correlations among
attributes that we do not consider. In the center case, (b), there
is an intersection between the latent features of the two attributes.
The classifiers’ use of this overlap potentially creates biases, but
adversarial training exactly punishes the use of this region of latent
feature space. Thus, debiased classifiers can learn either attribute to
the extent that the part of the feature space outside the intersection
is still sufficiently informative. The right-hand case, (c), is the limit
case when one of the two attributes does not have an independent
standing, that is, the informative latent features of attribute 1 are
completely contained in the informative feature space of attribute 2.
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This leads to biases in either classifier just as case (b), but also cre-
ates an asymmetry in the effect of adversarial debiasing: Attribute
2 can be debiased by simply ’cutting out’ the informative space of
attribute 1, but debiasing attribute 1 in the opposite manner results
in an empty feature space for attribute 1, and we would expect the
classifier to revert to baseline performance.

This set theoretic visualization is a major simplification of the
latent feature space in neural models, where the three cases can-
not apply categorially — they rather represent different points on a
continuum. Nevertheless, the predictions of the subsumption case,
(c), match our experimental results well: Assuming that author gen-
der features are included in topic features, we would expect to find
successful debiasing of the topic classifier, but breakdown of the de-
biased author gender classifier. This is exactly the pattern of results
that we have observed.

Note that this analysis builds on the behavior of the features of
the attributes in the training data, in particular in a representation
learning approach like the one we have pursued. In other words,
changes of the data – or differences within the data, such as between
languages – are expected to influence the outcome. Again, this is
what we see: French, due to its consistent morphological marking of
gender, is closer to case (b), while the other languages are closer to
case (c).

9.7 Conclusion

In this chapter, we conducted a case study to focus on text classifica-
tion for social media analysis in the context of correlated attributes.
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We specifically analyzed the relationship between document topic
and author gender using a novel multilingual parallel corpus of TED
talk transcripts. We first trained independent classifiers for each at-
tribute and evaluate them with regard to overall performance and
with regard to the bias they exhibit. In the second step, we ap-
plied adversarial debiasing to the predicting of each attribute with
respect to the other, and re-evaluate the debiased models and dis-
cussed the differences. Through our experiments, we established
that (1) topic classifiers exhibit gender bias and author gender clas-
sifiers show topic bias, and (2) adversarial debiasing corrects gender
bias in topic classification but breaks down in the opposite direction;
and that this effect varies by language.

Another contribution of our work presented in this chapter is to
draw attention to the general question of prerequisites for success-
ful adversarial debiasing, which, to our knowledge, has not received
much attention. As discussed in Section 9.6, our results indicate that
when the target attribute and the bias attribute are too strongly cor-
related – or, indeed, when the target attribute is subsumed by the
bias attribute – adversarial debiasing fails: with a small weight on
the bias component, no debiasing takes place; with a large weight,
target attribute classification deteriorates to baseline level. Further-
more, we find that the linguistic expression of the attributes matters
greatly: the only language for which we achieved satisfactory results
was French, due to the consistent morphological marking of gender
which can be captured independently of topic (Zmigrod et al., 2019).
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10 Bias Identification and
Attribution in NLP
Models With Regression
and Effect Sizes

As we discussed in the Background Chapter in detail and also in
Chapters 7-9, there is a quickly growing body of work that has found
that NLP systems exhibit unintended biases where biased systems
are defined as systems that "systematically and unfairly discriminate
against certain individuals or groups of individuals in favor of others"
(Friedman and Nissenbaum, 1996). While gender was one of the first
bias variables under consideration (Bolukbasi et al., 2016), attention
has since branched out to many other bias variables such as race
(Davidson et al., 2019) and age (Díaz et al., 2018). At the same
time, the techniques often used for the statistical analysis of biases
in NLP systems are still relatively basic. Typically, studies test for
the presence of a significant difference between two levels of a single
bias variable (e.g., gender: male vs. female) without attention to
potential confounders, and do not quantify the importance of the
bias variable.
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In this chapter, we make a general methodological contribution:
We argue for the use of regression modeling in order to overcome
the limitations of current bias analysis methods. Our multivariate
regression based method is a robust and more informative alterna-
tive which (a) generalizes to multiple bias variables, (b) can take
covariates into account, (c) can be combined with measures of effect
size to quantify the size of bias. We apply our method to analyze a
range of current models on both regression and classification tasks.

10.1 Introduction

The identification of bias in the output of NLP systems involves
the establishment of systematic differences in system performance
between two parallel stimuli sets for different levels of a bias vari-
able such as gender or race. For example, consider the following
question: Does, the gender of an author have a systematic influ-
ence on the output of an NLP system (e.g., are texts written by
women predicted to be less positive?), or on the quality of the NLP
system? (e.g., are text written by women analyzed less reliably?)
This question can be answered using statistical analysis techniques
of increasing complexity, shown in Table 32. To our knowledge, all
existing studies on bias fall into either the first or the second group.
Studies in the first group only quantify the performance differences.
For instance, studies investigating gender bias have generated pre-
dictions for sentence pairs which differ only in gendered expressions
(e.g. cf. Table 33) and reported the difference between these sets
(Zhao et al., 2018a; Stanovsky et al., 2019). Without considering
between-system and between-item variance, it is not clear that such
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differences are indeed systematic, as required by the definition of
bias. For this reason, studies from the second group additionally
carry out hypothesis tests, typically t-tests, to assess the statistical
significance of the differences (Kiritchenko and Mohammad, 2018).

Although this procedure is conceptually simple and straightfor-
ward, it is problematic for two reasons. First, the pairwise hypoth-
esis tests that are being employed in existing work assume that dif-
ferences between the two sets of stimuli are due to the selected bias
variable. They cannot ensure that the putative effect of bias is not
due to a covariate that acts as a confounding variable (McNamee,
2005). For instance, studies on gender bias often use sets of male and
female names as part of their stimulus sets (cf. Table 33). Across
genders, these names may differ in the average age of the bearer,
or simply in their frequency in texts, both of which may influence
the performance of NLP systems (Díaz et al., 2018; Gerz et al.,
2018). Similarly, as we showed in Chapter 9, author gender may be
correlated with topic which can also have an impact on analyses.
Therefore, even when an analysis of performance differences by gen-
der may yield a significant performance difference, it is advisable to
rule out that there are competing explanations of the difference in
performance in terms of other factors.

Second, bias studies in NLP currently generally test for statistical
significance, but very few consider model fit and effect sizes (with
the notable exception of Caliskan et al. (2017)). Significance ensures
that an identified effect is not a random fluke, but does not quan-
tify how much of the variance in the predictions is due to the bias.
Given a sufficiently large dataset, even very small differences that
are not practically relevant can reach significance. In contrast, the
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computation of effect sizes permits users to understand the practical
impact of biases (Sullivan and Feinn, 2012).

In this chapter, we propose that these two limitations can be al-
leviated by adopting multivariate regression models such as linear
and logistic regression for bias identification. This solution has al-
ready become standard in neighboring disciplines like linguistics and
psychology. In regression models, bias variables and their covariates
form the independent variables, and the predictions of NLP sys-
tems for corresponding instances constitute the dependent variable
of the equation. As the last column in Table 32 presents, multi-
variate regression models have many advantages over the other two
approaches for bias analysis: (a), they generalize to multiple bias
variables; (b), they offer a principled treatment of covariates; (c),
they come with measures of effect size that quantify the size of the
bias, and (d), they provide a rich diagnosis of system behavior and
can be mined easily to extract informative datapoints.

While regression models of various kinds have been used widely
as predictive models in NLP, we focus on their use as explanatory
models, where the focus is on building an interpretable model. Mod-
els of this type have been applied to analyze the influence of task
and data properties on the performance of sequence labeling models
(Papay et al., 2020a) or the influence of various textual properties of
author responses on the peer review process (Gao et al., 2019). As a
final note, we stress that the goal of this procedure is not to “explain
away” biases, but rather to propose a more stringent procedure to
identify them, in order to strengthen their empirical standing.

In the rest of this chapter, we first introduce our proposed work-
flow and a set of best practices for designing, computing and inter-
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preting multivariate regression models for this task (Section 10.2).
Then, we apply our workflow to two tasks: emotion intensity pre-
diction, a regression task (Section 10.3) and coreference resolution,
a classification task (Section 10.4). Finally, we conclude this chapter
in Section 10.5.

10.2 Bias Identification With Regression

Models: A Workflow

The task of bias identification is to establish that a bias variable – in
contrast to other covariates which act as confounders – is primarily
responsible for systematic variance in an observed variable, namely
the performance of some computer system. This is, of course, a very
general task that arises in many empirical fields. A prominent family
of techniques to address this task is matching (Rubin, 1973), which
aims at generating two datasets that differ in the bias variable, but
are as close as possible in their distribution over the covariates, so
that any difference between the two datasets can be attributed to the
bias variable. Matching is widely used in social sciences, economy,
and medicine and many specific methods exist; see Stuart (2010) for
an overview.1

Importantly, matching takes place a priori, before the experiment
is carried out. This poses two challenges for applications in natural
language processing: (a), dataset creation is dependent on the se-
lection of covariates, so that it is not possible to assess the impact

1Note that the term bias is used differently in the matching literature, namely
as the effect of confounders on the observed variable.
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of new covariates on existing datasets without loss of comparabil-
ity; (b), matching samples from the set of all datapoints, creating
controlled rather than natural datasets, which may conflict with the
desideratum of estimating model performance in broad-coverage sce-
narios.

The alternative is to carry out a post-hoc analysis that assesses the
effects of the various covariates. The intuition is to start from a sim-
ple pairwise comparison of two levels of a bias variable (cf. the first
and second column in Table 32) and add covariates to see whether
the effect of the bias variable remains unaffected. This procedure
has become standard in the last decade in neighboring fields like
linguistics and psychology which have moved from significance tests
(Student’s t-test, analysis of variance) to the family of multivariate
regression models (Bresnan et al., 2007; Baayen, 2008; Jaeger, 2008;
Snijders and Bosker, 2012). Regression models estimate the relation-
ships between the dependent (previously called observed) variable –
in this case, system performance – and one or more independent
variables – in this case, the putative bias variable and its covariates,
each of which is assigned a direction and a significance. Since dataset
creation is dependent from covariate analysis, regression models can
be used to test new candidates for confounders on existing datasets.

At this point, it can be whether the fundamentally linear regres-
sion models are the right tool for the job, in particular given the
broad success of non-linear deep learning models in NLP over the
last years. We believe that it makes sense to distinguish carefully
between the task of output prediction (given language input, predict
language output) on which non-linear models indeed excel and the
task of performance prediction (given [meta data for an] input and
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a model, predict how well the model does on the input). The latter
is a considerably simpler problem which permits the use of linear
models, as evidenced by a number of successful studies taking this
approach Beinborn et al. (2014); Papay et al. (2020b); Caucheteux
and King (2022).

This section provides a practical workflow to set up a regression
model for bias analysis, shown in Figure 23. Our starting point is
the presence of a dataset with system predictions. Step 1 is the se-
lection of an appropriate regression model. In Step 2, we choose a
set of predictors with the potential to systematically influence the
predictions of the systems, (i.e., the putative bias variable and plau-
sible confounders) and carry out a regression analysis. Next, Step 3,
model validation, ensures that the regression model is well specified
and interpretable. Finally, Step 4 utilizes effect size analysis meth-
ods to explore how much of the system predictions can be attributed
to the influence of the predictors.

Running example. We will illustrate the steps of the workflow on
an actual (non-NLP) example, namely the effect of smoking on mor-
tality, a topic of long-running interest in public health that has been
analyzed extensively with regression models. The most basic finding
is that smoking, overall, causes a strong increase in mortality (Doll
et al., 2004). Why it is still reasonable to carry out a regression
analysis in this case is that other lifestyle choices (alcohol consump-
tion, diet, etc.) also presumably influence mortality, but exhibit
correlations (Padrão et al., 2007). These are sometimes surprising –
e.g., Tjønneland et al. (1999) found a correlation between wine and
healthy diet. At the same time, approaches like matching are not
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Starting Point

Dataset

Step 4:
Model Analysis with
Fit and E!ect Sizes

Predictions

Step 1:
Linear/Logistic
Mode Choice

System

Step 3:
Model Validation

Step 2:
Predictor Selection

Other
Covariates

Figure 23: Workflow for regression-based bias analysis

applicable since the lifestyle properties of the participants cannot be
influenced retroactively.

10.2.1 Step 1: Choice of Regression Model

The most common two forms of regression analysis are linear re-
gression and logistic regression. When used to analyze the output
of computational models, linear regression is appropriate to analyze
the output of regression tasks, and logistic regression for the output
of classification tasks.
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Linear regression predicts the outcome of a continuous random
variable y as a linear combination of weighted predictors xi:

y ∼ α1x1 + · · ·+ αnxn (10.1)

where the coefficients αi can be interpreted as the change in y re-
sulting from a change in predictor xi, keeping the other predictors
constant.2

In contrast to linear regression, logistic regression does not model
the outcome of the binary random variable y directly. Instead, it
models the probability P (y = 1), assuming that P (y = 1) stands in a
linear relationship to the logistically transformed linear combination
of weighted predictors:

P (y = 1) ∼ σ(α1x1 + · · ·+ αnxn) (10.2)

where σ(x) = 1/(1 + e−x) is the logistic function. Here, the co-
efficients α can be interpreted as the change in the logit for a unit
change in the predictor.

Both types of regression support continuous, binary, and categor-
ical predictors; the latter type is generally represented as a set of
binary indicator predictors. As indicated above, these models as-
sume that the predictors have an additive effect on the dependent
variable (in the linear case) or its logit (in the logarithmic case).

2If the dependent variable is not (approximately) normally distributed, other
types such as Poisson or negative binomial regression may be more appro-
priate.
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Running example. In our mortality example, the outcome of the
regression model is (some variant of) a death rate. Depending on the
exact choice of measure, it might be appropriate to choose a linear
regression model, when the death rates are approximately normally
distributed (Gardner, 1973); or it might be appropriate to choose a
logistic regression model, when the death rates can be interpreted
as probabilities (Zhu et al., 2015b).

10.2.2 Step 2: Selection of Predictors

Maybe the most central step in the use of a regression model for
bias analysis is the selection of the set of predictors for the regres-
sion model – that is, the putative bias variable and a set of plausible
confounders to assess the respective roles of these variables is ex-
plaining the variance of the dependent variable. This task is the
responsibility of the user and typically involves domain knowledge.
Typically, a user carrying out a bias identification analysis will have
one or a small number of bias variables in mind, but need to select
plausible confounders.

The five primary sources of bias variables given by Hovy and Prab-
humoye (2021) can also serve as sources of confounders. The most
straightforward of these are data and input representations, that
is, properties of the text underlying the model, many of which are
known to impact model performance. For example, as we discussed
in Chapter 7 and 8, low-frequency words and classes are modeled
less reliably. Furthermore, Poliak et al. (2018) showed that longer
stretches of text are harder to analyze. Similarly, differences among
annotators (age, social and cultural background, task familiary) can
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impact model performance through labeling decisions (Sap et al.,
2019), and obviously design decisions of the system, such as the
choice of neural network architecture, contribute as well (Basta et al.,
2019). Hovy and Prabhumoye’s fifth category of research design is
least relevant for our purposes, since it is concerned with systematic
gaps in the field as such rather than analysis of individual studies.

Thus, for many problems, there will be a range of theoretically
motivated covariates. The actual analysis will proceed in an inter-
locking fashion between exploratory data analysis based on domain
knowledge – to identify interesting candidates for covariates – and
regression modeling – to obtain statistically sound assessments of
these covariates. In practical terms, the limiting factor is often that
covariates need to be available as annotation on the dataset under
consideration. While this is often relatively simple for the domains
of input representation and systems, and doable for the domain of
data, only recently has natural language processing started to record
and analyze annotator properties (Sap et al., 2019), and there is an
inherent tension between insights into annotation biases and anno-
tator privacy.

Running example. In our lifestyle example, the covariates ideally
include as many lifestyle factors as possible (such as alcohol con-
sumption, diet, exercise, occupational hazards) as well as environ-
mental factors (housing, climate) and personal factors such as family
history of certain diseases. In practice, again, only a limited range
of such factors is likely to be available.
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10.2.3 Step 3: Model Validation

While regression models technically support arbitrary covariates,
strong correlations among predictors, so-called multicollinearity, can
distort the estimation of coefficients to the point that predictors are
suggested to be significant when they are not, and vice versa (Mc-
Namee, 2005). Therefore, models should be checked for the presence
of multicollinearity. Following the previous work, we use we use vari-
ance inflation factor (VIF), one of the most widely used methods on
multicollinearity analysis (Yoo et al., 2014). VIF measures how much
the variance of a predictor’s coefficient is inflated due to correlations
with other predictors. The VIF is computed for each independent
variable Vi as

VIFi = 1/
(
1− R2

i

)
(10.3)

where R2
i is the correlation coefficient obtained when predicting αi

from all other predictors. Thus, the more collinearity is present, the
higher VIFi. VIF values of 4 or greater indicate severe multicol-
learity, and values above 2.5 call for further investigation (Salmerón
et al., 2018). In these case, a number of strategies are available,
including dropping covariates, dimensionality reduction, and regu-
larization methods.

Another possible component of model validation is predictor (fea-
ture) selection based on an analysis of feature contributions. In
many NLP tasks, irrelevant or unimportant features are removed
for reasons of efficiency or to avoid overfitting (Li et al., 2009). In
fields like psychology, where models serve explanatory purposes, pre-
dictor selection is discussed more controversially (Barr et al., 2013;
Bates et al., 2018). In bias analysis, the goal is to test whether the

187



10 Bias Identification in NLP Models With Regression and Effect Sizes

effect of the putative bias variable stands up to the addition of co-
variates – the more covariates added to the model while retaining
a significant contribution of the bias variable, the stronger the ev-
idence for a specific role of the bias variable. For this reason, we
believe that regression based bias analysis should be carried out on
a comprehensive set of predictors, without feature selection (Barr
et al., 2013).

Running example. In our lifestyle example, is it arguably impor-
tant to check for multicollinearity, since the various covariates may
be predictive of one another. For example, cramped housing con-
ditions and occupational hazards are strongly linked through the
shared cause of poverty (Hajat et al., 2015).

10.2.4 Step 4: Computing Model Fit and Effect
Sizes

The coefficients α computed by regression models (cf. Step 1) are
accompanied by indications of the confidence level at which they
are different from zero (i.e., whether the predictor has a significant
effect). Furthermore, the global quality of regression models can be
assessed by a number of statistics. Among them, we use goodness of
fit which describes the proportion of the variance in the data that is
explained by the independent variables of a regression model. The
goodness of fit of a linear regression model is measured by R2:

R2 =

∑n
i=1 (ŷi − ȳ)

2∑n
i=1 (yi − ȳ)

2 (10.4)
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where ŷi is the model’s prediction for data point i and ȳ is the mean
of the observations.

In logistic regression, there is no exact equivalent of R2. Among
the various proposed pseudo R2 measures, Aldrich-Nelson pseudo-R2

with Veall-Zimmermann correction (R2
VZ) most closely approximates

the R2 in linear regression (Smith and McKenna, 2013):

R2
VZ =

2[LL(Null)− LL(Full)]

2[LL(Null)− LL(Full)] +N

2LL(Null)−N

2LL(Full)
(10.5)

where LL(Full) and LL(Null) are the log-likelihood values for the
model with all predictors and for the empty model (without predic-
tors), respectively.

Goodness of fit measures the overall ability of the model to explain
the dependent variable. Relative importance, on the other hand,
refers to the contribution of individual predictors (Achen, 1982).
While assessment of relative importance in linear models with uncor-
related independent variables is simple (the impact of each predictor
is its R2 in univariate regression), in real-world datasets variables are
generally correlated, as a result of which their impacts are not ad-
ditive (Grömping, 2006). Lindeman-Merenda-Gold (LMG) scores
(Lindeman et al., 1980) and Dominance Analysis (Budescu, 1993)
are two popular techniques to figure out the individual contribu-
tions to the R2 of the model of the predictors in linear and logistic
regression, respectively.

The LMG method adds predictors to the regression model sequen-
tially, and considers the resulting increase in R2 as its contribution.
Since this method depends on the possible orders in which predictors
are added, the LMG score of a predictor xk when added to a model
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with a set of predictors P is defined as the average of the increase
in R2 when adding xk to all subsets of P (Grömping, 2006):

seqR2(M |S) = R2(M ∪ S)−R2(S) (10.6)

LMG(xk) =
1

n

p−1∑
j=0

∑
S⊆P

n(S)=j

seqR2({xk}|S)(
p−1
j

) (10.7)

where R2(S) corresponds to the goodness of fit measure of a model
with regressors in set S (cf. Eq 1) and seqR2(M |S) refers to the
increase in R2 when the regressors from M are added to the model
based on the regressors S.

For logistic regression, there is again no direct counterpart. We
propose Dominance Analysis (Budescu, 1993) as a measure of the
relative importance of each predictor. Dominance analysis consid-
ers one predictor (xi) to completely dominate another (xj) if xi’s
additional contribution to every possible model which does not in-
clude these two predictors is greater than contribution of xj . In
cases where complete dominance cannot be established, general dom-
inance can also be used. One predictor generally dominates another
if its average conditional contribution over all model sizes is greater
than that of the other predictors (Azen and Traxel, 2009).

We propose the following interpretations for the regression scores
outlined above: (a) At the system level, R2 and pseudo-R2 are indi-
cators of the amount of variance in the system predictions that can
be explained by the predictors and measure the systematic bias of a
system. (b) At the predictor level, the selection of a predictor indi-
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cates the presence of a specific bias, and its effect size measures its
practical impact ; (c) the sign of a coefficient indicates the direction
of a bias.

Regarding (b), an important difference between the application
of significance testing in bias analysis and the usual use in NLP to
compare competing models is that in our case, null results are ar-
guably informative: they indicate the absence of a particular bias,
according to the standards of significance. Naturally, the usual dis-
claimers regarding null results apply: care should be taken to ensure
that they are not the result of faults in the experimental setup.

Running example. In our lifestyle example, the outcome of this
step is a better understanding of individual risk factors, such as
smoking, as opposed to the cluster of ’smoking and associated fac-
tors’ that is obtained from a simple smoker-vs.-non-smoker analysis.
Such an understanding is crucial to better assess the risk of individ-
ual patients based on their individual risk profile which might include
compounding factors (high blood pressure, alcohol consumption) or
mitigating factors (exercise, healthy diet). Again, note that the goal
of this analysis is not to detract from the hazardous nature of smok-
ing, but to better estimate of the effects of the relevant predictors
on the outcome, namely mortality.
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10.3 Experiment 1: Emotion Intensity

Prediction

We now employ regression models to reanalyze model predictions on
two experiments on standard datasets from the bias literature using
the workflow defined in Section 10.2.

Our first experiment is concerned with emotion intensity predic-
tion. This task aims at combining discrete emotion classes with dif-
ferent levels of activation. Given a tweet and an emotion, the task
requires to determine a score between 0 and 1 which is the intensity
expressed regarding an emotion. Emotion intensity prediction was
among the first NLP tasks to receive attention from a bias angle,
when Kiritchenko and Mohammad (2018) found that among more
than 200 emotion intensity prediction systems, almost all were bi-
ased with regard to gender or race. In the remainder of this chapter,
we will use "system" to refer to models performing the task at hand,
and "model" to refer to the regression models we use for analyzing
the systems’ performance.

10.3.1 Dataset and Previous Analysis

We use EEC, the same dataset used for the large-scale bias analysis
of sentiment analysis mentioned above (Kiritchenko and Moham-
mad, 2018). EEC is a bias analysis benchmark created to evaluate
fairness in sentiment analysis systems. It consists of 11 sentence tem-
plates instantiated into 8,640 English sentences for four emotions:
Anger, joy, fear and sadness. Instantiated templates differ only in
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Template

1. [PER] feels [EMO].
2. The situation makes [person] feel [EMO].
3. I made [person] feel [EMO].
4. [PER] made me feel [EMO].
5. [PER] found herself in a [EMO] situation.
6. [PER] told us about the recent [EMO] events.
7. The conversation with [person] was [EMO].
8. I saw [person] in the market.
9. I talked to [person] yesterday.
10. [PER] goes to school in our neighborhood.
11. [PER] has two children.

(a) [EMO]: an emotion adjective

African American European American
Female Male Female Male

Ebony Alonzo Amanda Adam
Jasmine Alphonse Betsy Alan
Lakisha Darnell Courtney Andrew
Latisha Jamel Ellen Frank
Latoya Jerome Heather Harry
Nichelle Lamar Katie Jack
Shaniqua Leroy Kristin Josh
Shereen Malik Melanie Justin
Tanisha Terrence Nancy Roger
Tia Torrance Stephanie Ryan

Table 33: (a): Sentence templates in EEC dataset, (b): female and
male first names associated with being African American
and European American.

the name3. The dataset compares (a) male vs. female first names,
3The EEC templates can also be instantiated using gendered noun phrases,

but since these are unspecific with regard to the race variable, we focus on
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and (b) European American vs. African American first names, us-
ing ten names of each category. Table 33 shows examples of such
template sentences along with names that tend to belong to African
American or European American demographic groups. Kiritchenko
and Mohammad (2018) used the EEC as a secondary test set for
systems submitted to the SemEval 2018 Task 1 (Mohammad et al.,
2018). For each system, they compared the average emotion in-
tensities across different demographic groups using t-tests. They
found that almost all systems consistently scored sentences of one
gender and race higher than another, but bias directions were not
consistent: e.g., some systems assigned higher emotion intensities
to African Americans and lower ones to European Americans, while
others show the opposite behavior. This apparently random be-
havior of the systems has no clear explanation and arguably raises
concerns about a possible role of randomness in the analysis.

train dev test task

EI-reg 1701 388 1002 EIP
EEC - - 2100 EIP
GAP - 2000 2000 CR

Table 34: Number of examples in the datasets used in our emotion
intensity prediction (EIP) and coreference resolution (CR)
experiments.

the version with proper nouns. This corresponds to the race analysis of the
original study.
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10.3.2 Systems

Since the predictions of the systems that participated in SemEval
2018 Task 1 are not publicly available4, we instead implement and
analyze five systems ourselves. Four systems represent the main
architectures submitted to the shared task (Kiritchenko and Mo-
hammad, 2018): A SVM unigram baseline and three neural systems
based on word2vec word embeddings. To extend the model set to
the current state of the art (2021), we include a transformer-based
architecture as fifth system.

Support Vector Machine (SVM) We implement the unigram-based
SVM used as baseline system in Mohammad et al. (2018).

Convolutional Neural Network (CNN) Based on Aono and Hi-
meno (2018), this system predicts an intensity score by first perform-
ing convolutions of different sizes on input word embeddings, fol-
lowed by max-pooling and a shallow Multi-Layer Perceptron (MLP).

Recurrent Neural Network (RNN) Our RNN is comparable to
Wang and Zhou (2018). A two-layer BiLSTM traverses the input.
The final hidden states in both directions from the final layer are
concatenated and fed to a fully connected layer.

Attention Network (ATTN) This system is based on a CNN-
LSTM architecture with attention similar to Wu et al. (2018). The
input is fed to a single-layer BiLSTM. Next, an attention mechanism

4Personal communication with the authors of shared task.
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weights the hidden states, which are then passed through a CNN.
The outputs of the CNN feature maps are concatenated and passed
through a pooling layer and two fully connected layers.

Transformer-Based Neural Network (BERT) Our last model is
based on BERT. Similar to the BERT based claim classification
model that we used in Chapter 6, it consists of two modules: a
pretrained BERT and a dense output layer. Input text is tokenized
using WordPiece; the [CLS] special token is added to the beginning
of the token sequence. The resulting input representations are then
fed into BERT to generate latent context-aware representations. We
treat the final hidden state of BERT model corresponding to [CLS]
token as the contextualized representation of the input sequence and
feed it to the output layer with a sigmoid activation function.

We train all the systems on the Anger partition of the EI-reg cor-
pus (Mohammad and Bravo-Marquez, 2017) using the official train-
ing, development and test splits and evaluate them on EEC. EI-reg
was created by querying tweets in three languages (English, Arabic,
Spanish) and for four emotions (Anger, Fear, Joy, Sadness). For each
emotion, authors select 50 to 100 terms that are associated with that
emotion at different intensity levels (eg. angry, annoyed, irritated for
Anger) and identify tweets that contain at least one term from the
list. The tweets are then annotated via crowdsourcing. Table 34
shows data statistics for EI-reg and EEC datasets.
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Example Properties Intensity
Gender Race Age Freq

Frank feels angry Male EA. Old 0.05 0.55
Alonzo feels angry Male AA. Old 0.24 0.48

Justin feels angry Male EA. Young 0.27 0.46
Lamar feels angry Male AA. Young 0.42 0.49

Jasmine feels angry Female AA. Young 0.47 0.47
Ellen feels angry Female EA. Old 0.19 0.50

Table 35: Example sentences for the first template from Table 33
with their properties (EA.: European American, AA.:
African American). Intensity predicted by the the RNN
system.

10.3.3 Setup of the Regression Model

Bias Variable. In the EEC setup, the input sentences differ only
in the person names that are filled in. We use the same two bias
variables considered by the original study, namely Race and Gender.

Covariates. Due to the minimalist nature of the templates, coupled
with the fact that the only part of the templates that is manipulated
across conditions is the names, there is a limited range of linguistic
properties that can systematically covary with bias. We consider
two that we consider promising candidates. The first one is the
(perceived) Age of a name is computed as the mean age for each
name from US Social Security data.5 We discretize age, using 40
as the young/old boundary, following the assumption that "older"
5We use data from https://bit.ly/34cgjki and the methodology from https:
//bit.ly/30f8lps.

197

https://bit.ly/34cgjki
https://bit.ly/30f8lps
https://bit.ly/30f8lps


10 Bias Identification in NLP Models With Regression and Effect Sizes

names occur in different contexts than "younger" names. The sec-
ond covariate is the linguistic frequency of the name in the training
data, since as previously shown in Chapter 7, low-frequency names
can be a source of low performance in NLP models. Since no ex-
plicit frequencies are available for the Google News skipgram vectors
(Mikolov et al., 2013a), we approximate frequency by vector length,
which correlates highly with frequency (Roller and Erk, 2016). This
is different from the "real world" frequency of the name, which ar-
guably is less likely to reflect in the behavior of an NLP model.
Table 35 shows examples from the EEC with their properties.6

Model Shape We analyze the intensities predicted by our systems
as in the original study, performing linear regression analysis at the
level of each template with the following model:

Intensity ∼ Race + Gender + Age + Freq (10.8)

For Race, 1 means African American and 0 European American.
For Gender, 1 means male and 0 female. For Age, 1 means young
and 0 old. Recall that on this task, there is no right or wrong
answers. Instead, the focus of interest is whether the systems assign
different intensities to a template dependent on the properties of the
instantiating name. If they do not, none of the predictors will show
a significant effect; if they do, significant effects will emerge.

6We also performed experiments using a non-discretized version of age and
including real-world frequency. We observed a substantially similar outcome
(same levels of significance, coefficient signs for predictors, and almost the
same overall R2 values).

198



10.3 Experiment 1: Emotion Intensity Prediction

Model Validation. Table 36 shows the variance inflation factors for
the variables. As only a single VIF value is larger than 2.5, and only
marginally so, we conclude that multicollinearity is not a problem.

Race Gender Frequency Age

VIF 2.03 1.42 2.68 1.29

Table 36: VIF scores for the full set of variables.

10.3.4 Results

Table 37 shows the main results. We omit intercepts in the table.
The columns correspond to systems, and the rows describe the effects
of bias variables for each system. For each predictor, we show a
coefficient, a confidence level,7 and an LMG effect size score.

Overall results As discussed in Section 10.2, we treat R2 as a mea-
sure of systematic bias in a system. Inspection of the R2 scores
indicates that there is a certain amount of systematic bias in all
systems, but that the three static-embedding neural systems do a
very good job (R2 between 0.17 and 0.19) compared to the SVM
(R2=0.60). BERT, the only neural system using contextualized em-
beddings, does an even better job and contains the least amount of
systematic bias (R2=0.14).

Comparison among systems None of the neural systems exhibits
a significant gender bias, as the LMG scores show. Unlike Gender,

7We use ∗ for α=0.05, ∗∗ for α=0.01, and ∗∗∗ for α=0.001.
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CNN RNN ATTN BERT SVM

Race
Coef. −0.010∗−0.010∗−0.002 −0.008 0.001

Abs. LMG 0.080 0.082 0.010 0.068 0.018
Per. LMG 0.42 0.47 0.06 0.48 0.03

Gender
Coef. 0.006 0.002 0.001 −0.001 −0.003∗∗∗

Abs. LMG 0.037 0.003 0.020 0.025 0.523
Per. LMG 0.20 0.02 0.12 0.18 0.86

Age
Coef. 0.005 0.001 0.001∗−0.003 0.001

Abs. LMG 0.049 0.060 0.070 0.027 0.014
Per. LMG 0.26 0.34 0.40 0.19 0.02

Frequency
Coef. 0.016 0.019 0.015 0.010 −0.001

Abs. LMG 0.023 0.029 0.073 0.021 0.048
Per. LMG 0.12 0.17 0.42 0.15 0.08

Model fitness (R2) 0.19 0.17 0.17 0.14 0.60

Table 37: Regression-based bias analysis on EEC (Abs:Absolute,
Per. Percentage)

the Race variable is responsible for the significant portion of the
amount of variance in the system predictions. The CNN and the
RNN systems both show a significant race bias which accounts of
about 42–47% (LMG score: ∼ 0.08) of the variance in the intensity
predictions. Note that Age, even though it misses significance, also
accounts for 25–35% of the variation in intensity in the CNN and
RNN. Interestingly, the ATTN architecture shows a different picture:
there is a considerable amount of Age bias (40% of variance), but
a much smaller race bias; instead, this system shows a frequency
bias, which accounts for another 40% of the variance. In the BERT
system, none of the bias variable achieve significance. In terms of
relative contribution of individual predictors, BERT is more similar
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10.3 Experiment 1: Emotion Intensity Prediction

to CNN and RNN than to ATTN: Race is still making the largest
contribution to the overall bias of the system, with 48%. The SVM
differs strikingly: there are hardly any Race and Age biases, but
an extremely strong effect of gender (86% of variance). Since this
system does not use embeddings, the most likely source of this bias
is the training corpus (EI-Reg), as also pointed out by the authors
of the original study (Kiritchenko and Mohammad, 2018).

Interpretation While we can confirm the overall race bias found
by Kiritchenko and Mohammad (2018), our picture differs substan-
tially: (a) the direction of the bias is consistent among systems:
all neural systems predict lower intensity scores for African Ameri-
cans; (b) we do not observe a significant gender bias among neural
systems; (c) we achieve a richer understanding of the systems’ pre-
dictions, by quantifying the role of these factors, and by adding age
and frequency into the picture.

Inspection of Examples Following up on (c), Table 35 presents
three pairs of examples from the EEC dataset with their associ-
ated intensity values, as predicted by the RNN system. We have
selected these instances to highlight the usefulness of the regression
model to identify interesting instances. They show that the effect of
Race variable (African Americans are assigned lower intensities) can
be nullified by age (third example) and frequency (first and second
examples). Such considerations remain hidden in an analysis that
simply compares means between different groups of predictions.
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10.4 Experiment 2: Coreference

Resolution

Our second experiment analyzes several coreference resolvers in or-
der to show how the logistic regression version of our approach can
perform bias analysis on classification models. We choose corefer-
ence resolution as our task because of its established status in bias
analysis; previous work has established that bias, in particular gen-
der bias, is present in numerous coreference systems (Webster et al.,
2018; Rudinger et al., 2018; Zhao et al., 2018a). At the same time,
coreference resolution, as a discourse level task, is faced with more
complex data than more local (i.e.,sentence-level) tasks, with a cor-
respondingly larger set of potential confounders. We re-analyze a
well-known coreference resolution dataset to verify the presence of
gender bias in a manner that is robust against possible covariates.

10.4.1 Dataset and Previous Analysis

We use GAP (Webster et al., 2018), a human-labeled corpus of am-
biguous pronoun-name pairs from English Wikipedia snippets. Each
instance in the corpus contains two person named entities of the same
gender and an ambiguous pronoun that may refer to either, or nei-
ther. System clusters were scored against GAP examples according
to whether the cluster containing the target pronoun also contained
the correct name (True Positive) or the incorrect name (False Pos-
itive). Figure 24 shows an example from the GAP development set
(more statistics in Table 34).

In line with previous work (Webster et al., 2018), we use the de-
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10.4 Experiment 2: Coreference Resolution

Figure 24: Example from the GAP dataset.

velopment set of GAP to carry out our analyses. Below, we report
overall system performance on the complete development set, in line
with previous work. However, we exclude ≈200 instances from the
development set, for which the pronoun does not refer to either of
the two candidate named entities, from the regression analysis, since
this makes it impossible to compute some of our covariates (cf. Sec-
tion 10.4.3).

10.4.2 Systems

We experiment with six diverse coreference resolvers and analyze
their predictions with our approach. As trained versions of all sys-
tems were publicly available, we did not need to train any systems
ourselves.

All systems except the BERT-based one were trained on the En-
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glish portion of the 2012 CoNLL Shared Task dataset (Pradhan
et al., 2012). It contains 2802 training, 343 development documents,
and 348 test documents. BERTlarge (Joshi et al., 2020) was pre-
trained on BooksCorpus (Zhu et al., 2015a) and English Wikipedia
using cased Wordpieces tokens (Schuster and Nakajima, 2012) and
fine-tuned on the 2012 CoNLL ST dataset.

Lee et al. (2013) This system is a collection of deterministic coref-
erence resolution modules that incorporate lexical, syntactic, seman-
tic, and discourse information, incorporating global document-level
information. The system won the CoNLL 2011 shared task.

Clark and Manning (2015) This system uses a feature-rich ma-
chine learning approach. It performs entity clustering using the
scores produced by two logistic classifier-based mention pair classi-
fiers features. Both mention pair classifiers use a variety of common
features such as syntactic, semantic and lexical features for mention
pair classification.

Wiseman et al. (2016) This was the first neural coreference resolu-
tion system which showed that the task could benefit from modeling
global features about entity clusters. It uses a neural mention ranker
which is augmented by entity-level information produced by a RNN
running over the cluster of candidate antecedents.

Lee et al. (2017) This was the first neural end-to-end coreference
resolution system that works without a syntactic parser or hand
engineered mention detector. It uses a combination of Glove and
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character level embeddings learnt by a CNN to represent the words
of annotated documents. Next, the vectorized sentences of the doc-
ument are fed into a BiLSTM to encode sentences and obtain span
representations. The system also uses an attention mechanism to
identify the head words in the span representations. Finally, the
scoring functions are implemented via two feed-forward layers.

Lee et al. (2018) This system is an extension of Lee et al. (2017),
which improves on two aspects. First, it uses gated attention mech-
anism which allows refinements in span representations; second, the
system applies antecedent pruning which alleviates the complexity
of running on long documents. It formed the state of the art for two
years.

Joshi et al. (2020) SpanBERT is a variant of the BERT trans-
former (Devlin et al., 2019) designed to better represent spans of
text. It works by (1) masking contiguous random spans, rather
than random tokens, and (2) introducing a new objective function
called span-boundary objective (SBO) which forces the model to
learn to predict the entire masked span from the observed tokens
at its boundary. BERTlarge trained with the SpanBERT method
improves the state of the art on many tasks including coreference
resolution.

10.4.3 Setup of the Regression Model

Bias Variable. As in the original study, we use Gender as desig-
nated bias variable.
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Covariates. In contrast to the first experiment, we do not use Age
and Race, since the GAP dataset contains numerous named entities
that are either not generally known or fictional (such as "the Hulk").
Therefore, these variables are either inapplicable or unknown to the
typical annotator. Instead, we use discourse-related properties of the
antecedents as covariates, since in the task of coreference resolution
the structural properties of the discourse arguably play a role in the
difficulty of the task:

• Diff is the number of tokens between the named entity and
target pronoun, normalized by the maximal distance in the
corpus;

• Single states whether the named entity is a single word or a
Multi-word Expression (MWE);

• Same indicates whether the pronoun and named entity are in
the same sentence;

• Freq defines the log-transformed corpus frequency of the entity,
computed on the English Wikipedia (en-wikipedia) released on
20th March 2019, normalized by the maximal frequency in the
corpus. The frequencies for MWEs are calculated based on the
syntactic head of the expression.

Since the correct and the incorrect antecedent can differ regard-
ing these properties, each property exists twice. We use the prefix
C_for the correct and I_for the incorrect one. For gender, both
antecedents have the same gender by design. The bottom part of
Figure 24 shows how these covariates are initialized for the given
example.
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Gender C_Freq C_Diff C_Single C_Same

VIF 1.03 1.03 1.88 1.02 1.53

Gender I_Freq I_Diff I_Single I_Same

VIF 1.03 1.04 1.58 1.04 1.24

Table 38: VIF scores for the predictors. C_: Correct, I_: Incorrect

Model Shape We analyze the performance of the coreference re-
solvers at the level of individual predictions using following logistic
regression model:

p(Correct) ∼ σ(Gender+

C_Freq + I_Freq+

C_Diff + I_Diff +

C_Single + I_Single+

C_Same + I_Same)

(10.9)

where σ is the logistic function. p(Correct): is 1 if the resolver
matches the pronoun with the correct named entity in correspond-
ing instance and 0 otherwise. For Gender, 1 means female and 0
male. For Single, 1 means the entity is a single word, 0 otherwise.
For Same, 1 means the entity is in the same sentence as the pronoun,
0 otherwise. We use Dominance Analysis to determine relative im-
portance of each predictor.

In this setup, the regression model predicts whether each of the
system predictions is correct or incorrect. To the extent the correct-
ness is affected by the properties of the discourse captured by our
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predictors, we will obtain significant effects; conversely, should the
correctness be fully random or dependent on properties independent
from our predictors, we will not see significant effects.

Model Validation Table 38 shows the results of multicollinearity
analysis on the set of predictors. All VIF values are smaller than 2,
which indicates the absence of problematic multicollinearity.

10.4.4 Results

Table 39 shows the performance of six resolvers on the complete
GAP development set (overall and separately for Male and Female).
It probably does not come as a surprise that performance increases
over time; it is positive to note, though, that the Bias decreases
correspondingly. Table 40 shows the main results of our regression
analysis on the subset of the GAP development set with a correct
solution (cf. Section 10.4.1), organized by columns (systems). Each
row provides a regression coefficient with its confidence level as well
as the relative importance score for the predictor, using Dominance
Analysis (DA). R2

VZ indicates the goodness of fit values at the level of
complete systems. Note that these numbers, computed for logistic
regression models, are not comparable to the numbers for linear
regression models from Experiment 1.

We also report accuracy values for the predictions of our logis-
tic regression model, averaged over 10-fold cross-validation (Acc).
Numbers in parentheses indicate the accuracy of corresponding ma-
jority baselines. The differences in baseline scores across systems are
due to the fact that gold labels (i.e., the p(Correct) variable in the
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equation) are dependent on system predictions.

Male Female All Bias

Lee et al. (2013) 55.4 45.5 50.5 0.82
Clark & Manning (2015) 58.5 51.3 55.0 0.88
Wiseman et al. (2016) 68.4 59.9 64.2 0.88
Lee et al. (2017) 67.2 62.2 64.7 0.92
Lee et al. (2018) 75.9 72.1 74.0 0.95
Joshi et al. (2020) 89.9 87.8 88.8 0.98

Table 39: F1-Scores of resolvers on the GAP development set
(Bias=F1 Female / F1 Male)

System level analysis We first discuss results at the system level.
The last row of Table 40 (Model Fit) shows the overall model fit
for all systems. The ability of our regression model to outperform
majority baselines for the first four systems (Lee et al., 2013; Clark
and Manning, 2015; Wiseman et al., 2016; Lee et al., 2017) shows
that our analysis can predict mistakes made by these coreference re-
solvers by only considering a small set of discourse-related features
plus Gender. In contrast, Lee et al. (2018) and Joshi et al. (2020)
both show an R2

VZ of almost zero, that is, the logistic regression mod-
els perform at the level of a majority class baseline – the remaining
errors that they systems make are idiosyncratic rather than system-
atic. These findings tie in well with the overall system performance
scores shown in Table 39.

It is striking that Joshi et al. (2020), the best model by a sub-
stantial margin, is also the one exhibiting the smallest bias. We see
two possible explanations: (a), the model was trained on a large cor-
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pus from several domains with different discourse style, which may
make it more robust to gender bias (Saunders and Byrne, 2020); (b)
in contrast to the older studies, this model is based on contextualized
embeddings, which also showed lower bias in Experiment 1. With-
out re-training the model, we cannot currently distinguish between
these two explanations.

Predictor level analysis We now move on to investigate the contri-
bution of each predictor to the systems’ predictability. At this level,
gender is a statistically significant predictor (p < 0.05) for all sys-
tems except Joshi et al. (2020). It has a negative sign throughout,
indicating worse performance for female entities. This is again in
line with the findings reported in Table 39. However, our approach
reveals other important patterns which cannot be observed by us-
ing traditional analysis methods. First, Clark and Manning (2015)
and Wiseman et al. (2016) have the same DA coefficient for gender
variable but different R2

VZ values. We interpret this to mean that
contribution of gender bias to overall bias in these two systems is not
the same, an observation that would not have been possible through
traditional bias analysis methods (cf. Table 39).

Second, we see that the coefficient signs of the predictors C_Single
and C_Same remain the same across systems: Systems perform
better for instances where the correct antecedent is a single word,
and it is not in the same sentence with the pronoun. Moreover,
dominance analysis shows that these two predictors are among the
main contributors to the biased predictions in four systems out of
six, the two exceptions being Lee et al. (2013) and Joshi et al. (2020).

Third, the small but consistent positive relative importance val-

211
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ues of the C_Diff and I_Diff predictors for half of the systems show
that these variables help explain the systems’ predictions. In con-
trast, the low relative importance values of the C_Frequency and
I_Frequency predictors indicate that these variables do not affect
coreference resolution much.

I_Same=0 I_Same=1

Lee et al. (2017) C_Same=0 0.80 1.10
C_Same=1 0.90 0.90

I_Same=0 I_Same=1

Lee et al. (2018) C_Same=0 0.90 1.00
C_Same=1 0.86 0.97

I_Same=0 I_Same=1

Joshi et al. (2020) C_Same=0 1.02 1.02
C_Same=1 0.99 0.94

Table 41: Bias values for the three best performing systems, with
data split into four groups according to C_Same and
I_Same (worst bias marked in boldface).

Interpretability These detailed findings indicate that, similar to
emotion intensity prediction, the analysis of coreference resolvers
can also benefit from not only the controlled bias variable but also
from other properties of the input even in datasets which are de-
signed carefully to isolate the effect of the target variable. As stated
in Exp. 1, these analyses can also be used to extract interesting
examples and subsets.

We illustrate this for the two attributes C_Same and I_Same,
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i.e., whether the correct and incorrect antecedent are in the same
sentence or not. We split the GAP dataset into four reasonably-sized
subsets based on the values of these attributes: the subset where
both are in the same sentence (C_Same=1 and I_Same=1) includes
∼ 900 examples and the other three subsets include ∼ 300 examples.
Table 41 shows the bias values (defined as above) for the three best
performing systems. We observe that these systems vary widely
regarding the subset where gender bias is most prominently visible
varies across systems: Lee et al. (2017, 2018) both show the worst
bias when the incorrect antecedent is not in the current sentence
(I_Same=0), but differ in the effect of the position of the correct
antecedent (C_Same). In contrast, Joshi et al. (2020) perform
almost perfectly when I_Same=0, but struggles most the case when
both correct and incorrect antecedent are in the current sentence.

10.5 Conclusion

In this chapter, we have argued that bias analysis, a task of major
importance concerning the societal implications of NLP, can bene-
fit from richer statistical methods to detect, quantify and attribute
bias. We have proposed to follow other scientific fields in adopting
regression analysis which (a) generalizes to multiple bias variables,
(b) can quantify the contribution of confounder variables to the ob-
served bias with measures of effect size, and (c) can be used to
diagnose system behavior and extract informative datapoints.

Clearly, regression analysis doesn’t solve all the problems involved
in bias analysis: it presupposes a set of plausible covariates of bias,
which can come from a wide variety of sources, including task-
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specific annotation, task-unspecific input representations, or model
architecture (Hovy and Prabhumoye, 2021). Such covariates are typ-
ically known through domain expertise or uncovered by exploratory
data analysis. Thus, regression analysis complements, but does not
replace, traditional methods of bias analysis.

We have demonstrated the usefulness of our approach by analyz-
ing a range of model architectures on a regression task and a clas-
sification task, obtaining model-level results that are in line with
the existing literature, e.g., BERT-based systems appear to exhibit
comparatively little bias (Basta et al., 2019). In addition, adding
predictor-level analysis offers a richer understanding of the impor-
tance of the bias variables and their interactions with other textual
properties. Note that we only considered datasets specifically de-
signed to exhibit the effects of a single bias variable. We believe
that the benefits of our analysis framework would be even clearer on
more naturalistic datasets such as MSP-Podcast (Gorrostieta et al.,
2019) , where pairwise hypothesis tests become even more problem-
atic however we leave this as future work.

Another methodological debate that we hope to contribute to is
what constitutes a substantial bias? We have argued that effect
sizes offer a statistically sound approach to measuring the amount
of variation in the output that can be attributes to a set of input
properties. Our study provides a starting point for the community
to establish a magnitude for what it considers a "substantial" bias,
similar to the often used thresholds for inter-annotator agreement
(Cohen, 1968) or general effect sizes in psychology (Cohen, 1988).

Lastly, we would like to acknowledge that we believe that the re-
gression based bias analysis approaches presented in this chapter can
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be applied to previous bias analysis studies we conducted through
Chapters 7-9 although we could not perform this due to time con-
straints. Such an analysis would be useful, for example, to extend
the scope of the correlation analysis study we performed in Chap-
ter 9 from two variables to many.
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11 Conclusion and Future
Work

This thesis is devoted to investigating challenges of computational
social science analysis with NLP methods. Our work makes contri-
butions on two directions, namely system-wise and fairness-wise:

Our first system-wise contribution was to show how analyses in
CSS that are complex by nature and traditionally performed manu-
ally, can be automated by first decomposing them into several sub-
tasks that are conceptually simpler and then developing NLP models
to automatically perform each of these sub-tasks. While the idea of
breaking down complex tasks into smaller pieces is not new and has
been applied in other contexts in CSS, such as social network ex-
traction from historical data (van de Camp, 2016), construction of
graphs capturing emotion interactions between fictional characters
(Kim and Klinger, 2019) or transformation of raw text to argument
graphs (Mirko et al., 2020), we are the first, to the best of our knowl-
edge, to demonstrate this in the context of discourse network analy-
sis, an aspiring analysis approach in political science to understand
the structure and temporal dynamics of political debates.

Our second contribution in this aspect was to create models for
the first two components of the workflow which are responsible for
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identification of concept nodes in affiliation networks. We developed
and evaluated a range of semantic NLP models comprising RNNs,
CNNs, LSTMs and Transformers for the tasks of Political Claim
Detection which is part of Argument Mining (Peldszus and Stede,
2013) in a domain specific setting, and Claim Classification, a special
type of text classification with shorter input text and hundreds of
categories.

Our third contribution was to perform a case study on a manu-
ally annotated corpus of the German migration debate, using the
workflow and NLP methods that we developed. Through our claim
detection experiments, we showed that claim detection can be mod-
eled as a text classification task as well as a sequence labeling task,
and in both cases it is possible to detect the political claims in
debates automatically with a reasonable performance using trans-
former based models. Similarly, our claim classification experiments
revealed two important insights. First, an attention mechanism is
one of the key factors for claim classification models to achieve good
performance. Second, there is no single winner model. While in
some circumstances, such as where there is enough data for model
fine-tuning, BERT-based claim classification model performs best,
in other cases it might be overkill and less complex models, such as
BiLSTM+ATTN model can yield better performance. This finding
is in line with previous research (e.g., Yan et al. (2019); Lai et al.
(2021, 2022)), which show that although transformer-based models
are able to set new standards and achieve state-of-the-art results
across many NLP tasks and datasets, it is sometimes possible that
a simpler model can be as effective as or even more effective than
them.
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Regarding the fairness aspect, our first contribution was to evalu-
ate frequency bias in our claim detection model, which is one of the
components of the automatic discourse network construction work-
flow. Through our analyses, we found that claim detection model
makes spurious correlation between actor frequency and positive la-
bel, causing the model to recognize claims made by infrequent actors
with much worse recall. This finding contributes to the literature
by extending the research on the relationships between frequency
and performance of the statistical models, which has previously
made similar discoveries (i.e. models perform worse on infrequent
instances) for different tasks such as Part-of-Speech tagging (Bhatia
et al., 2016) and sentiment analysis (Wang et al., 2021a). Following
our finding of frequency bias in the claim detection model, we pro-
posed various debiasing methods. Our empirical results reveal that
besides reducing bias, a simple masking of names and pronouns can
improve classification performance too.

Later, we extended our frequency related analysis to claim clas-
sification task. Through our experiments, we found that due to
the skewed distribution of fine-grained categories, most of which are
infrequently attested (which is not specific to the codebook that
we used in our case-study but arises typically in many CSS code-
books) standard claim classification models, even the ones based
on state-of-the-art architectures (e.g., transformers), can’t perform
well, in particular for infrequent categories. As a solution, we pro-
posed to include the domain knowledge into the models, which has
been shown to be effective for improving performance for different
tasks in CSS and NLP in general, such as crime association analysis
(Schroeder et al., 2003), social media analysis (Declerck, 2013), and
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biomedical data analysis (Wu et al., 2022). Specifically, we utilize
domain knowledge by integrating the is-a relations between super-
and sub-categories available in the codebooks into the models using
lightweight methods. Our evaluation on two datasets showed that
our proposed approach leads to better overall performance as well
as better algorithmic fairness. This was our second contribution.

Our third contribution was to draw attention to the general ques-
tion of prerequisites for successful adversarial debiasing, one of the
most popular debiasing approach utilized to unlearn the spurious
correlations models make between between target classes and other
textual attributes of the data. We argued that adversarial debiasing
fails when the target attribute is subsumed by the bias attribute,
as in that case debiasing the bias attribute would create an empty
feature space for target attribute.

Finally, our last contribution in this aspect was a methodological
one. After identifying limitations of the statistical methods that are
currently applied for bias identification, we proposed an approach
based on multivariate regression that can be used as a complemen-
tary method for bias identification and analysis. We showed that our
method leads to model-level results that are in line with the existing
literature (Kiritchenko and Mohammad, 2018; Webster et al., 2018).
On top of that, it offers richer understanding of the importance of
the bias variables (i.e. practical importance of biases (Sullivan and
Feinn, 2012) using effect size measurements) and their interactions
with other textual properties as a result of its ability to generalize
to multiple bias variables and to take covariates into account.
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Future work. Our work has opened a number of new possibilities
for future work that are worth exploring. As part of this thesis, we
developed machine learning based NLP models for claim detection
and classification tasks, enabling (semi-)automatic construction of
discourse networks. A natural extension to this work would be to
design and developed NLP models to automatize the remaining steps
of the workflow as described in Chapter 4. Such an extension would
allow researchers to build up the discourse networks in a fully auto-
matic way (thus reducing the human-effort), and work with massive
collections of data, but at the same time, this might also make the
overall system more vulnerable to issues such as fairness, and ro-
bustness that the statistical methods are faced frequently (Grimmer
and Stewart, 2013; Papakyriakopoulos, 2020).

One main limitation of the models presented through this the-
sis for computational construction of the discourse networks is that
they are trained in a fully supervised manner. It means that time-
consuming and expensive data annotation and codebook generation
steps are still required (to obtain labeled data sets for the purpose
of training the models), making the process sub-optimal especially
from the perspective of domain experts such as political scientists.
One way to reduce the cost of data annotation required for model
training would be to rely on some human-in-the-loop approaches
such as Active Learning in which only instances that would be most
helpful to the model are shown to the annotator by the machine (i.e
active learner) and the redundant instances are discarded (Druck
et al., 2009). Additionally, to tackle the labeled data problem, future
work may also consider developing semi-supervised or unsupervised
models for these tasks which require less or no labeled data at all.
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Such an extension would allow to perform computational analysis
on domains and languages, where no labeled data available. On the
negative side, however,they tend to suffer from relatively lower per-
formance especially when the number of target categories is in the
hundreds (Aggarwal and Zhai, 2012; Baker et al., 2016).

It is not always obvious how the differences in intrinsic evaluation
metrics for each part of a complicated program affect the perfor-
mance of the overall application that uses it (Kovár et al., 2016).
Considering this, another possibility for future work related to auto-
matic construction of discourse networks would be to perform model
evaluation based on the quality of resulting discourse network. As
a concrete example, it could be interesting to assess impact of the
lightweight hierarchy encoding methods that we proposed in Chap-
ter 8 to improve fine-grained claim classification on the quality of
resulting discourse network. This idea has also been exploited by
various NLP researchers in the past. For example, Yuret et al. (2010)
compared different parsers based on how much they contribute to
the performance of a textual entailment system, and Dzikovska et al.
(2012) developed a generic framework to evaluate the dialogue sys-
tems used in complex natural language understanding applications.

Furthermore, we also suggest future work to further develop our
regression analysis based bias identification system introduced in
Chapter 10. A possible improvement in this direction would be to
develop richer regression models that analyze interactions among
predictors. Such interactions, when properly motivated, can further
improve our understanding of the performance data.

Last but not least, we would like to mention that the computa-
tional models developed through this thesis would be also useful for
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other tasks/analysis in Political Science beyond the original purpose
of development. For instance, the models we introduced for iden-
tification and fine-grained classification of claims can also be used
for identifying socio-political events in raw text and classifying them
into fine-grained categories (Hürriyetoğlu et al., 2021), which is yet
another challenging CSS task that social and political scientists have
been working in order to create socio-political event databases.
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A DebateNet Dataset -
Codebook

In this chapter, we provide a shortened version of the DebateNet
dataset codebook in English that contains definitions, guidelines
and fine-grained categories. Besides these, the full codebook also
contains a commentary section providing examples to the annota-
tors. The full codebook can be found at https://clarin09.ims.

uni-stuttgart.de/debatenet/MARDY_Codebook_Mig_english.pdf
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2 ANNOTATION GUIDELINES

1 Definitions
1.1 Claim
A claim is an instance of strategic action in the public and consists of an expression of a political opinion by any form of
physical or verbal action (verbal expression, explanation, descision, demonstration, court decision, etc.), independently
of the role of the actor (governments, social movements, NGOs, individuals, anonymous actors, etc.).

1.2 Definition Frame
Sometimes claims are justified by a so-called frame: in our project, a frame is defined as any justification given for a
claim. Therefore, a frame cannot stand alone but is always to be annotated with a claim.

1.3 General Examples
Claim: Horst Seehofer demands an upper limit.

Frame: Horst Seehofer demands an upper limit, in order to reduce the numbers of refugees.

no claim (vague): Horst Seehofer could imagine an upper limit for refugees under certain conditions.

no claim (assessment): Human rights are important.

2 Annotation guidelines
A claim consists of 4 attributes:

• actor

• claim-category

• polarity (valence)

• date (default is the day before)

Unit of annotation is always the entire sentence.

Example 1: Angela Merkel argued last sunday against an upper limit.

A sentence can contain multiple claims and actors.

Example 2: Merkel reaffirmed her rejection of the upper limit demanded by Seehofer and pleaded instead for a
solution based on solidarity within the EU.

Also possible are combination of claim-categories to capture more complex demands:

Example 3: In a repatriation decree, Boris Pistorius has stipulated, among other things, that young people who are
one year away from completing their training will not be deported.

Albeit, individual claim-categories are to be preferred. The same applies to the priority of specific over general
claim-categories.

Special categories are 900 [irrelevant] and 999 [flag for re-evaluation].

Annotation manual MARDY migration 3
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Table 1: Claim Categories

100ControllingMigration 200Residency 300 Integration 400Domestic security

101 controlled migration 201Emergency accommodation/first admission 301 integration o�ers 401 violence against migrants
102 ceiling/upper limit 202 refugee accommodation 302 language courses 402 refugee protection
104 isolation/immigration stop 203 centralised accommodation 303 forced integration 403 civil protection
105 border controls 204 creation of living space 304mutual integration 404 refugee crime
106 border defence 205 forced occupancy 305 integration contracts 405 counterterrorism measures
107 fence 206 private accommodation 306Diversity through immigration 406 ban mile
108 immigration law 207 deportations 307 family reunion 407 human tra�cking
109Fight against people-smugglers 209 residence obligation 308 integration centers 408 deprivation of liberty
110 asylum law 210 subsidiary protection 309Care (medical, financial, ...)
111 sea rescue 211 right of abode 310Cost sharing for refugees
112 di�erentiation by group 212 contributions in kind 312 cultural awareness
113 visa liberalisation 213 church asylum 313 foreign fincancing of schools/curches
114 (Canadian) points system 214 naturalization 314 access to educational services
115 resettlement program 215 transit areas 315 access to social benefits
190Currentmigration policy 216 dual citizenship

217municipal voting rights
218 voluntary return

199General 299General 399General 499General

500ForeignPolicy 600Economy + LabourMarket 700Society 800Procedures
501EU solution (quotas for refugees) 601Labour market integration 701Populism + actionism 801Rule of law
502 international solution 602 combating shortage of skilled labour 702 human rights 802 federal responsibility
503 combating causes of flight 603 easier/faster access 703 xenophobia 803 equitable load distribution
504 safe country of origin 604 "guest workers" 704 society overstrained 804 sta� increase
505Asylum procedure in countries of origin 605Minimum wage for refugees 705 refugees welcome 805 additional financing
507Cooperation with transit countries 606Refugees as cheap labourers 706Recognition of fundamental rights 806 case-by-case assessment
508military intervention 607 refugee activation 707 Separation ofmigration/refugee term 807Reducing bureaucracy
509Dublin regulation 608Recording educational attainment 708 societalmobilization 808Process optimization (cooperation)

609Taxes 709 right-wing radicalism 809 enforceability of laws
610 cost-benefit analysis 710 left-wing radicalism 810 planning reliability
611migrant quota 711 Islam 811 criminal prosecution of xenophobia

712 public debate 812Fast / accelerated procedure
713Christian values 813Transparent procedures
714 "Leitkultur" 814Protection of minors
715 open society 815Protection of women
716 headscarf ban 816 taking concerns seriously
717 Islamism 817 priority check
790 scientific findings 818 protection from right-wing violence

819 privatize prosecution of xenophobia
599General 699General 799General 899General
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A DebateNet Dataset - Codebook
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B Dataset Details

In this chapter, we provide threshold values used for determining
frequency bands and subcategory-frequency band assignments in
Chapter 8. In the first experiment of Chapter 8, we split the fine-
grained categories in DebateNet into three equal-sized frequency
bands using following threshold values: high-frequency (265≥f≥ 67),
mid-frequency (65≥f≥ 40) and low-frequency (20≥f≥ 39). Table 42
shows category frequency band assignments.

In the second experiment which is performed in Manifesto cor-
pus, we again split the categories into three equal-sized frequency
bands. Table 43 shows threshold values for each language and fre-
quency band in the Manifesto dataset and we publish category-
frequency band assignments at https://github.com/repo4supp/

data_splits.
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B Dataset Details

Frequency Band Label

111 199 201 209 213 214
LOW 406 408 499 502 505 508

602 603 605 701 706 707
708 801 802 807 811 814

106 107 109 204 211 212
MID 215 301 302 303 307 401

402 405 503 509 601 699
702 711 715 803 804 808

101 102 104 105 108 110
HIGH 190 202 203 207 299 309

399 501 504 507 703 705
709 712 799 805 812 899

Table 42: Frequency band assigments for the subcategories in De-
bateNet.
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Lang Freq. 25% 50% 100%
Threshold Threshold Threshold

Low 1 ≥f≥ 12 1 ≥f≥ 23 2≥f≥ 52
Fi Mid 14≥f≥ 55 24≥f≥ 110 53≥f≥ 215

High 57≥f≥ 417 111≥f≥ 867 221≥f≥ 1666

Low 3 ≥f≥ 56 5 ≥f≥ 98 6≥f≥ 201
De Mid 59≥f≥ 196 99≥f≥ 391 202≥f≥ 764

High 204≥f≥ 951 401 ≥f≥ 1866 785 ≥f≥ 3655

Low 1 ≥f≥ 31 1 ≥f≥ 63 2≥f≥ 124
Hu Mid 37≥f≥ 147 69≥f≥ 276 133 ≥f≥ 560

High 168 ≥f≥ 772 357 ≥f≥ 1541 697 ≥f≥ 3046

Low 1 ≥f≥ 33 1 ≥f≥ 67 1≥f≥ 130
Tr Mid 34≥f≥ 166 68≥f≥ 316 137≥f≥ 628

High 187 ≥f≥ 937 380 ≥f≥ 1862 739 ≥f≥ 3720

Low 2 ≥f≥ 22 4 ≥f≥ 42 4≥f≥ 91
En Mid 23≥f≥ 84 49≥f≥ 180 97≥f≥ 356

High 101 ≥f≥ 536 188 ≥f≥ 1122 368≥f≥ 2315

Table 43: Frequency band threshold values used in Manifesto corpus.
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