6 Anionisch derivatisierte Oxotellurate(IV) der Seltenerdmetalle

6.1 Einführung

Bei den anionischen Derivaten der Seltenerdmetall(III)-Oxotellurate(IV) handelt sich meist um quaternäre Verbindungen, die durch den zusätzlichen Einbau von Halogenid-Anionen, das heißt Chlorid (Cl⁻), Bromid (Br⁻) und Iodid (I⁻), gekennzeichnet sind. Über Seltenerdmetall(III)-Fluorid-Oxotellurate(IV) ist bislang nichts bekannt. Analog zu den ternären und halogenidfreien Oxotelluraten(IV) (vgl. Kap. 3) existieren für die anionischen Derivate zwar auch einige vermeintliche Formeltypen mit nahezu allen Lanthanoid(III)-Kationen, jedoch gibt es auch hier bislang nur wenige anhand von Einkristalldaten strukturell charakterisierte und damit wirklich nachgewiesene Vertreter. Auf der Grundlage von Untersuchungen an mikrokristallinen Pulvern wurden in den 1990er Jahren folgende Formeltypen vorgeschlagen: $MXTeO_3$ (X = Cl und I: M = La, Nd, Sm, Gd, Er, Lu; X = Br: M = Nd, Sm, Er, Lu), MXTe₂O₅ (X = Cl und Br: M = La, Nd, Sm, Gd, Er, Lu; X = I: M = La, Er, Lu), MXTe₃O₇ (X = I: M = Lu), M_3XTeO_6 (X = Cl: M = La, Nd, Sm, Gd; X = Br: M = Sm), $M_3X_2TeO_4$ (X = Cl: M = La, Nd, Sm, Gd, Er; X = Br: M = Lu) und $M_3X_3Te_2O_7$ (X = I: M = La, Nd, Sm, Gd, Er, Lu) [187-193]. Die Charakterisierung der MXTeO3- und MXTe2O5-Phasen erfolgte mit Hilfe der RIETVELD-Methode [194-196] auf Grundlage eines schichtartigen Strukturmodells, das mit jenem in den Vertretern der Sillénit-Familie [197-199] verwandt ist. Spätere Untersuchungen an HoClTeO₃ (orthorhombisch, Pnma) [115] und HoClTe₂O₅ (triklin, $P\overline{1}$) [200], den ersten einkristallin erhaltenen Seltenerdmetall(III)-Halogenid-Oxotelluraten(IV) überhaupt, zeigten, dass tatsächlich ein schichtartiger Aufbau zumindest im Falle von HoClTe₂O₅ (mit $\frac{2}{\infty}$ {[Ho₂ClTe₄O₁₀]¹⁵⁻}-Schichten, die über ionische Te4+...Cl-Wechselwirkungen verknüpft sind) zu beobachten ist, während in HoClTeO3 eher eine dreidimensionale Vernetzung der Seltenerdmetall(III)–Sauerstoff–Chlor-Teilstruktur gemäß $_{\infty}^{3}$ {[HoO₃Cl]^{4–}} mit eingelagerten Te4+-Kationen vorliegt. Die letztgenannte Verbindung ist zudem eines der sehr wenigen Beispiele, bei der Isotypie mit Oxoselenaten(IV), also dem chemisch verwandten System des leichteren Homologen Selen, auftritt: HoCl[TeO₃] und die Vertreter der Seltenerdmetall(III)-Chlorid-Oxoselenate(IV) $MCl[SeO_3]$ (M = Sm - Lu) im B-Typ [111-114] kristallisieren isostrukturell und zwar orthorhombisch in der Raumgruppe *Pnma*. Ein weiteres Beispiel für die seltene Isotypie von Oxotelluraten(IV) mit Oxoselenaten(IV) ist das Seltenerdmetall(III)-Oxidchlorid-Oxotellurat(IV) $Nd_5O_4Cl_3[TeO_3]_2$ (monoklin, C2/m) [201], dessen Kristallstruktur Schichten aus ecken- und kantenverknüpften, sauerstoffzentrierten Neodym(III)-

Tetraedern gemäß $\frac{2}{\infty} \{ [O_4Nd_5]^{7+} \}$ enthält, die über Nd³⁺–Cl[–]–Nd³⁺-Brücken verbunden sind. Die Verbindung kristallisiert isostrukturell zu den Seltenerdmetall(III)-Oxidhalogenid-Oxoselenaten(IV) Tb₅O₄Cl₃[SeO₃]₂ und Gd₅O₄Br₃[SeO₃]₂ [202-207]. Bemerkenswert ist sowohl bei HoClTeO₃ als auch bei Nd₅O₄Cl₃[TeO₃]₂, dass in beiden Kristallstrukturen keine sekundären $Te^{4+} \cdots O^{2-}$ -Kontakte auftreten, wodurch die Isotvpie zu den entsprechenden Oxoselenaten(IV) wohl überhaupt erst möglich wird, da sekundäre Se⁴⁺...O²⁻-Wechselwirkungen in Folge der stets zu großen Distanzen zwischen einzelnen $[SeO_3]^{2-}$ -Einheiten bislang noch nie beobachtet wurden (vgl. Kap. 3.5.4). Neben diesen Verbindungen gibt es auf dem Gebiet der Seltenerdmetall(III)-Chlorid-Oxotellurate(IV) mit M_{11} ClTe₁₆O₄₈ (M = Dy, Ho; triklin, $P\bar{1}$) [45, 208] nur noch einen sehr chloridarmen Formeltyp, dessen Existenz anhand von Einkristalldaten bewiesen werden konnte (vgl. Kap. 6.2). Die Kristallstruktur der M₁₁ClTe₁₆O₄₈-Vertreter zeigt ebenfalls keinen schichtartigen Aufbau und damit auch keine Ähnlichkeit zu den Strukturen der Sillénite. In der Verbindungsklasse der Seltenerdmetall(III)-Bromid-Oxotellurate(IV) konnte keiner der oben angeführten Formeltypen bislang aufgefunden werden, jedoch wurden mit Yb₃BrTe₂O₈ (triklin, $P\overline{1}$) [45] und Y₆Br₄Te₁₁O₂₉ (monoklin, Cc; vgl. Kap. 6.3) [209] zwei bis dahin völlig unbekannte Verbindungstypen synthetisiert und strukturell charakterisiert. Beide können als Schichtstrukturen beschrieben werden, wobei es sich bei Yb₃BrTe₂O₈ genauer um ein Seltenerdmetall(III)-Oxidbromid-Oxotellurat(IV) gemäß Yb₃O₂Br[Te₂O₆] handelt. Die Schichten bestehen hier aus ecken- und kantenverknüpften, sauerstoffzentrierten Ytterbium(III)-Tetraedern gemäß $\frac{2}{\infty} \{ [O_2 Y b_3]^{5+} \}$, die über Te⁴⁺...Br⁻-Kontakte zwischen den Oxotellurat(IV)- und Bromid-Anionen verbunden sind. In Y₆Br₄Te₁₁O₂₉ werden die netzartigen Schichten aus kantenverknüpften [YO₈]¹³⁻-Polyedern aufgebaut, wobei sich ober- und unterhalb über gemeinsame Sauerstoffatome die Oxotellurat(IV)-Einheiten anschließen. Letztere verknüpfen die Seltenerdmetall(III)-Sauerstoff-Teilstruktur über Te⁴⁺...Br⁻...Te⁴⁺-Kontakte. Bei den guaternären Seltenerdmetall(III)-Iodid-Oxotelluraten(IV) wurde bislang ebenfalls keiner der oben genannten Formeltypen bestätigt. Mit der guinären Verbindung Na₂Lu₃I₃[TeO₃]₄ (monoklin, P2/c) [210] konnte dagegen erstmalig ein sowohl anionisch als auch kationisch derivatisiertes Seltenerdmetall(III)-Oxotellurat(IV) dargestellt werden. Die Kristallstruktur ähnelt in ihrem Aufbau derer von Y₆Br₄Te₁₁O₂₉, jedoch treten noch zusätzlich Na⁺-Kationen zwischen die Schichten, so dass die Verknüpfung hier über Na⁺–I[–]–Na⁺-Brücken erfolgt.

6.2 Seltenerdmetall(III)-Chlorid-Oxotellurate(IV) des Formeltyps M₁₁CITe₁₆O₄₈

6.2.1 Vorbemerkungen und Darstellung

Die bislang zwei bekannten Vertreter des Formeltyps $M_{11}CITe_{16}O_{48}$ mit M = Dy und Ho entstanden bisher lediglich als Nebenprodukte bei Versuchen zur Darstellung von halogenidfreien ternären Seltenerdmetall(III)-Oxotelluraten(IV) (vgl. Kap. 3) durch den Einbau von Chlorid-Anionen aus Alkalimetall-Chloriden ACl (A = Na, K, Rb und Cs), die bei betreffenden Experimenten als Flussmittel eingesetzt wurden [45, 208]. Im Rahmen der präparativen Arbeiten zur vorliegenden Abhandlung wurde daher versucht, einen Syntheseweg zur direkten und gezielten Darstellung weiterer Vertreter dieses Formeltyps zu finden sowie die mögliche Existenz einer isotypen Reihe innerhalb der Lanthanoidenserie von Dysprosium und Holmium ausgehend zu prüfen. Aus der chemischen Formel ergibt sich für die gezielte Darstellung ein Ansatzgemisch aus Seltenerdmetall(III)-Sesquioxid M_2O_3 , Seltenerdmetall(III)-Trichlorid MCl₃ und Tellurdioxid TeO₂ im molaren Verhältnis von 16 : 1 : 48. Entsprechende Mischungen wurden mit den Lanthanoiden von Europium bis Lutetium sowie dem Yttrium präpariert und in evakuierten Kieselglasampullen bei 800 °C (8 d) und anschließender Abkühlung auf 650 °C innerhalb von zwei Tagen zur Reaktion gebracht. Zu den Ansätzen wurde jeweils ein Überschuss an Caesiumchlorid CsCl als Flussmittel gegeben. Auf diesem Wege konnten neue Vertreter des Formeltyps M₁₁ClTe₁₆O₄₈ mit M = Y, Gd und Er – Yb als lattenförmige, luft- und hydrolysebeständige Einkristalle erhalten werden. Die Kristalle zeigen dabei stets die charakteristische Farbe des enthaltenen Seltenerdmetall(III)-Kations, also farblos mit M = Y, Gd, Yb, hellrosa für M = Er und blassgrün für M = Tm. Zusammen mit der bekannten Holmium- und Dysprosiumverbindung konnte damit eine isotype Reihe für die Zusammensetzung M₁₁ClTe₁₆O₄₈ von Gadolinium bis Ytterbium sowie Yttrium [211] etabliert werden, deren einzige Lücke das noch fehlende Tb11ClTe16O48 bildet. Die Syntheseversuche mit Terbium erfolgten unter leicht modifizierten Bedingungen. Zu dem Tb³⁺/Tb⁴⁺-Oxid Tb₄O₇ wurde zusätzlich das elementare Metall im entsprechenden Verhältnis zugegeben, um die angestrebte Oxidationsstufe +III in der Zielverbindung durch Synproportionierung zu erreichen. Diese Ansätze führten jedoch stets nur zur Bildung von Tb₂Te₄O₁₁ [56] und nicht näher identifizierbarer Nebenprodukte. Die übrigen Vertreter der M₁₁ClTe₁₆O₄₈-Reihe konnten dagegen mit dem oben beschriebenen Syntheseweg phasenrein erhalten werden.

6.2.2 Strukturbeschreibung der M₁₁CITe₁₆O₄₈-Vertreter

Die Seltenerdmetall(III)-Chlorid-Oxotellurate(IV) $M_{11}CITe_{16}O_{48}$ mit M = Y, Gd, Er – Tm kristallisieren allesamt isotyp im triklinen Kristallsystem in der Raumgruppe $P\overline{1}$ (Nr. 2) mit nur je einer Formeleinheit pro Elementarzelle. Gd₁₁ClTe₁₆O₄₈ weist dabei als Vertreter mit dem größten M^{3+} -Kation und Startpunkt der isotypen Reihe die Zelle mit dem größten Volumen (V = 118605 pm³) auf. Als Folge der Lanthanidenkontraktion verkleinert sich dieses sukzessive bei den nachfolgenden Vertretern und erreicht beim Endglied Yb₁₁ClTe₁₆O₄₈ nur noch V = 112574 pm³ (vgl. Tab. 6.2.3.a).

Die sechs kristallographisch unabhängigen Seltenerdmetall(III)-Kationen sind ausschließlich von Sauerstoff umgeben, das Chlorid-Anion zählt also nicht zu deren Koordinationssphären. Die Kationen $(M1)^{3+} - (M3)^{3+}$ sind achtfach in Form von verzerrten Trigondodekaedern koordiniert, während sich $(M4)^{3+}$ und $(M5)^{3+}$ siebenfach in der Gestalt von einfach überkappten trigonalen Prismen mit Sauerstoff umgeben. $(M6)^{3+}$ ist das einzige Seltenerdmetall(III)-Kation in spezieller Lage (1*a*, Lagesymmetrie: $\overline{1}$) und wird durch seine Position auf einem Inversionszentrum von drei kristallographisch unterschiedlichen, also insgesamt sechs O^{2–}-Anionen, oktaedrisch koordiniert (Abb. 6.2.2.a).

Die Seltenerdmetall(III)–Sauerstoff-Polyeder sind in der Kristallstruktur über gemeinsame Ecken und Kanten zu einem dreidimensionalen Netzwerk gemäß ${}_{\infty}^{3} \{ [M_{11}O_{47}]^{61-} \}$ kondensiert. Das Grundelement bilden dabei Schichten, die aus zwei jeweils kantenverknüpften Zickzack-Kettenarten aufgebaut sind. Beide Ketten verlaufen in Richtung [100], wobei sich die eine aus $[(M1)O_8]^{13-}$ und $[(M3)O_8]^{13-}$. Trigondodekaedern durch Verknüpfung über O6…O15- und O9…O18-Kanten zusammensetzt, während die andere aus den einfach überkappten trigonalen Prismen $[(M4)O_7]^{11-}$ und $[(M5)O_7]^{11-}$, verknüpft über O3…O13- und O21…O23-Kanten, besteht (Abb. 6.2.2.b). Über weitere Kantenverknüpfungen zwischen $[(M4)O_7]^{11-}$ eO14…O16) sowie zwischen $[(M3)O_8]^{13-}$ und $[(M4)O_7]^{11-}$ -Polyedern (O1…O5 und O2…O4) entsteht schließlich eine poröse Grundschicht parallel zur (001)-Ebene. Jeweils ein Paket aus den beiden Zickzack-Ketten ist dabei gegenüber der *ab*-Ebene gekippt, wodurch die einzelnen Pakete innerhalb einer Schicht dachziegelartig aufeinander zu liegen kommen und so ein leicht gewelltes Profil der Grundschichten verursachen (Abb. 6.2.2.c).

Die Verknüpfung der Grundschichten zu einem dreidimensionalen Netzwerk erfolgt abwechselnd durch die beiden verbleibenden Polyedersorten $[(M6)O_6]^{9-}$ und $[(M2)O_8]^{13-}$. Letztere sind wiederum über gemeinsame Kanten (O11…O11 und O20…O20) zu Zickzack-Ketten gemäß $\frac{1}{\infty} \{ [(M2)_2O_{4/2}O_{4/1}]^{6-} \}$ kondensiert, die auf Höhe $z/c = \frac{1}{2}$ ebenfalls in Richtung [100] verlaufen (Abb. 6.2.2.d).

Abb. 6.2.2.a: Koordinationspolyeder der M^{3+} -Kationen in den Vertretern des Formeltyps $M_{11}ClTe_{16}O_{48}$.

Abb. 6.2.2.b: Blick entlang [001] auf die stets über gemeinsame Polyederkanten kondensierte Grundschicht parallel zur *ab*-Ebene aus den Seltenerdmetall(III)–Sauerstoff-Polyedern mit M1 und M3 – M5 im Formeltyp M_{11} CITe₁₆O₄₈.

Abb. 6.2.2.c: Die Grundschichten des Seltenerdmetall(III)–Sauerstoff-Netzwerks sind in Richtung [001] gestapelt. Einzelne Pakete aus den beiden Zickzack-Kettenarten liegen dabei innerhalb einer Schicht dachziegelartig aufeinander.

Abb. 6.6.2.d:

Die dritte Kettenart aus kantenverknüpften $[(M2)O_8]^{13}$ -Polyedern entlang der [100]-Richtung in der Kristallstruktur des Formeltyps $M_{11}CITe_{16}O_{48}$.

Über seine O10····O12-Kante verknüpft jedes $[(M2)O_8]^{13-}$ -Trigondodekaeder mit den $[(M1)O_8]^{13-}$ -Polyedern, wodurch zwei der Grundschichten zu einer Doppelschicht verbunden werden. Die $[(M6)O_6]^{9-}$ -Oktaeder, die sich im Ursprung der Elementarzelle befinden, verbrücken die Doppelschichten weiter in Richtung [001] über die gemeinsamen O24-Ecken mit den $[(M5)O_7]^{11-}$ -Polyedern, wobei es sich um die einzige Eckenverknüpfung innerhalb der sonst nur über Kanten verknüpften M–O-Teilstruktur handelt. Dadurch entsteht letztlich die dreidimensionale Seltenerd-metall(III)–Sauerstoff-Gerüststruktur gemäß $^3_{\infty} \{[M_{11}O_{47}]^{61-}\}$, die zwei Arten von ausgedehnten Kanälen entlang der kristallographischen *a*-Achse enthält (Abb. 6.2.2.e).

Abb. 6.2.2.e: Die Grundschichten werden in Richtung [001] abwechselnd durch ${}_{\infty}^{1} \{ [(M2)_2O_{4/2}O_{4/1}]^{6-} \}$ -Ketten (blaue Polyeder) und $[(M6)O_6]^{9-}$ -Oktaeder (violette Polyeder) zum ${}_{\infty}^{3} \{ [M_{11}O_{47}]^{61-} \}$ -Netzwerk verknüpft.

Die acht kristallographisch unabhängigen Te⁴⁺-Kationen befinden sich alle auf allgemeinen Lagen 2*i*. Die Kationen (Te1)⁴⁺ sowie (Te3)⁴⁺ – (Te8)⁴⁺ sind in der primären Koordinationssphäre von jeweils drei O²⁻-Anionen umgeben, die zusammen mit den freien, *nicht*-bindenden Elektronenpaaren die typischen ψ^1 -tetraedrischen [TeO₃]²⁻-Einheiten ergeben. Das (Te2)⁴⁺-Kation wird als einziges primär von vier Sauerstoffatomen in Form einer trigonalen ψ^1 -Bipyramide [(Te2)O₄]⁴⁻ koordiniert. Letztere ist über das gemeinsame Sauerstoffatom (O7)²⁻ mit der ψ^1 -tetraedrischen [(Te7)O₃]²⁻-Einheit zu einem Oxoditellurat(IV)-Anion [Te₂O₆]⁴⁻ kondensiert. Das Chlorid-Anion auf der speziellen Lage 1*e* (Lagesymmetrie: $\overline{1}$) bindet an zwei (Te1)⁴⁺-Kationen (*d*(Te1-Cl) ≈ 285 pm, vgl. Tab. 6.2.3.g), wodurch insgesamt aus den zwei ψ^1 -Tetraedern [(Te1)O₃]²⁻ und dem Cl⁻-Anion eine inversionssymmetrische Mono-chlorohexaoxoditellurat(IV)-Einheit der Form [(Te1)₂ClO₆]⁵⁻ entsteht (Abb. 6.2.2.f).

Abb. 6.2.2.f: Koordinationsumgebungen der Te⁴⁺-Kationen. Zwei (Te1)⁴⁺-Kationen bilden mit sechs Sauerstoffatomen und dem Cl⁻-Anion eine Chlorohexaoxoditellurat(IV)-Einheit [Te₂ClO₆]⁵⁻, (Te2)⁴⁺ und (Te7)⁴⁺ sind mit ebenfalls sechs Sauerstoffatomen zu einem Oxoditellurat(IV)-Anion [Te₂O₆]⁴⁻ kondensiert, die restlichen fünf bilden typische ψ^1 -Tetraeder [TeO₃]²⁻. Zusätzlich treten sekundäre Te⁴⁺···O²⁻-Kontakte auf (gestrichelt dargestellt), (Te6)⁴⁺ und (Te8)⁴⁺ unterhalten auch Sekundärkontakte zu dem Chlorid-Anion.

Zwischen den einzelnen Oxotellurat(IV)-Einheiten treten auch im Formeltyp $M_{11}CITe_{16}O_{48}$ die typischen sekundären $Te^{4+}\cdots O^{2-}$ -Wechselwirkungen auf, die bereits in den halogenidfreien ternären Seltenerdmetall(III)-Oxotelluraten(IV) (vgl. Kap. 3) zu den charakteristischen Merkmalen der Kristallstrukturen zählen. Analog zu diesen betätigt zudem das primär vierfach von Sauerstoff koordinierte $(Te2)^{4+}$ -Kation der trigonalen ψ^1 -Bipyramide $[(Te2)O_4]^{4-}$ in den $M_{11}CITe_{16}O_{48}$ -Vertretern selbst *keine* Sekundärkontakte. Auffällig ist aber, dass die sekundären $Te^{4+}\cdots O^{2-}$ -Kontakte in drei

Gruppen aufgeteilt werden können. Neben einem relativ kurzen Sekundärkontakt $(d(\text{Te1}\cdots\text{O17}) \approx 247 \text{ pm})$ treten noch zwei in mittlerer $(d(\text{Te3}\cdots\text{O6}) \approx 263 \text{ pm} \text{ und} d(\text{Te4}\cdots\text{O14}) \approx 264 \text{ pm})$ sowie fünf in großer Entfernung auf $(d(\text{Te5}\cdots\text{O24}) \approx 283 \text{ pm}, d(\text{Te7}\cdots\text{O8}) \approx 284 \text{ pm}, d(\text{Te6}\cdots\text{O2}) \approx 285 \text{ pm}, d(\text{Te7}\cdots\text{O6}) \approx 285 \text{ pm} \text{ und} d(\text{Te7}\cdots\text{O11}) \approx 286 \text{ pm}; \text{ vgl. Tab. 6.2.3.g}).$ Für $(\text{Te7})^{4+}$ ergibt sich damit eine Koordinationszahl von insgesamt 3+3, während $(\text{Te3})^{4+} - (\text{Te6})^{4+}$ jeweils nur über einen Te⁴⁺ \cdots O²⁻-Sekundärkontakt verfügen (CN = 3+1). Das $(\text{Te8})^{4+}$ -Kation betätigt als einzige Tellur(IV)-Spezies eines ψ^1 -tetraedrischen $[\text{TeO}_3]^2$ -Anions keinen Kontakt zu einem Sauerstoffatom einer benachbarten Oxotellurat(IV)-Einheit, jedoch verfügt es neben $(\text{Te6})^{4+}$ $(d(\text{Te6-C1}) \approx 353 \text{ pm})$ ebenfalls über einen Sekundärkontakt zu dem Chlorid-Anion $(d(\text{Te8-C1}) \approx 359 \text{ pm})$. Über die sekundären Te⁴⁺ \cdots O²⁻-Wechselwirkungen treten die einzelnen Oxotellurat(IV)-Anionen zu zwei voneinander isolierten Gruppierungen zusammen, die sich in der Kristallstruktur in den Kanälen des $\frac{3}{\infty} \{[M_{11}O_{47}]^{61-}\}$ -Netzwerks befinden (Abb. 6.2.2.i).

Abb. 6.2.2.g: Die Oxotellurat(IV)-Teilstruktur ist in der Kristallstruktur des Formeltyps $M_{11}CITe_{16}O_{48}$ in zwei isolierte Gruppierungen ${}^{0}_{\infty} \{ [Te_{4}ClO_{12}]^{9^{-}} \}$ und ${}^{0}_{\infty} \{ [Te_{12}O_{36}]^{24^{-}} \}$ aufgetrennt, wobei die einzelnen Komplexanionen jeweils über sekundäre Te⁴⁺···O²⁻- Kontakte (gestrichelt dargestellt) zusammentreten. Die kleinere ${}^{0}_{\infty} \{ [Te_{4}ClO_{12}]^{9^{-}} \}$ -Einheit enthält dabei auch das Chlorid-Anion.

Die größere Gruppierung besteht im Kern aus einem Vierring, der sich um das unbesetzte Inversionszentrum im Zentrum der Elementarzelle (*Wyckoff*-Lage 1*h*: ¹/₂, ¹/₂, ¹/₂) aufbaut und von zwei Oxditellurat(IV)-Anionen $[Te_2O_6]^{4-}$ (jene mit Te2 und Te7) und zwei $[(Te3)O_3]^{2-}$ -Einheiten gebildet wird. Über die Te7 \cdots O11-Sekundärkontakte schließen sich jeweils Ketten aus $[(Te4)O_3]^{2-}$, $[(Te5)O_3]^{2-}$ und $[(Te8)O_3]^{2-}$ -Anionen an, wodurch diese erste Gruppierung gemäß $^{0}_{\infty}$ { $[Te_{12}O_{36}]^{24-}$ } formuliert werden kann. Die sekundären Te⁴⁺ \cdots O²⁻-Kontakte durchstoßen zum Teil die Lücken des porösen $^{3}_{\infty}$ { $[M_{11}O_{47}]^{61-}$ }-Netzwerks, so dass sich die $[(Te5)O_3]^{2-}$ und $[(Te8)O_3]^{2-}$ -Einheiten dieser Gruppierung bereits in den darüber und darunter liegenden Kanälen befinden. In letzteren ist auch die andere, davon isolierte, kleinere Gruppierung enthalten, die sich ebenfalls um ein Inversionszentrum herum aufbaut, das von dem Chlorid-Anion (*Wyckoff*-Lage 1*e*: ¹/₂, ¹/₂, 0) besetzt ist. Das Kernstück bildet hier die Monochlorohexa-oxoditellurat(IV)-Einheit $[(Te1)_2CIO_6]^{5-}$, woran sich über zwei sekundäre Te⁴⁺ \cdots O²⁻-Kontakte (Te1 \cdots O17 und Te6 \cdots O2) jeweils zwei $[(Te6)O_3]^{2-}$ -Anionen anschließen und insgesamt eine Vierergruppe gemäß $^{0}_{\infty}$ { $[Te_4CIO_{12}]^{9-}$ } entsteht (Abb. 6.2.2.g).

Abb. 6.2.2.h:

Die verzerrt oktaedrische Koordinationsumgebung (CN = 2+4) des Chlorid-Anions aus Te⁴⁺-Kationen in der Kristallstruktur des Formeltyps M_{11} ClTe₁₆O₄₈.

Die stereochemisch aktiven, *nicht*-bindenden Elektronenpaare (*lone pairs*) der Te⁴⁺-Kationen sind jeweils in die Zentren der Kanäle des $_{\infty}^{3} \{ [M_{11}O_{47}]^{6^{1-}} \}$ -Netzwerks gerichtet. In einem dieser Kanäle (jener auf Höhe z/c = 0) befindet sich auch das Chlorid-Anion, das ausschließlich Kontakte zu sechs Te⁴⁺-Kationen aufweist und damit *nicht* zu den Koordinationssphären der Seltenerdmetall(III)-Kationen zählt. Dies ist insofern bemerkenswert, da es sich als Anion in einem Kanal befindet, der von den freien Elektronenpaaren der Te⁴⁺-Kationen ausgekleidet wird. Durch seine Lage auf einem Inversionszentrum wird es dabei primär von zwei (Te1)⁴⁺-Kationen mit $d(Cl-Te1) \approx 285$ pm linear umgeben. In deutlich größerem Abstand komplettieren jeweils zwei (Te6)⁴⁺- (d(Cl–Te6) \approx 285 pm) und (Te8)⁴⁺-Kationen (d(Te8–Cl) \approx 285 pm) die verzerrt oktaedrische Koordinationssphäre, wodurch sich insgesamt eine Koordinationszahl von 2+4 für das Cl⁻-Anion ergibt (Abb. 6.2.2.h).

Im gleichen Kanal befindet sich auch $(O17)^{2-}$, das analog dem Chlorid-Anion als einziges Sauerstoffteilchen ebenfalls nicht zu den Koordinationssphären der M³⁺-Kationen zählt, sondern neben einer direkten Anbindung als Teil der $[(Te6)O_3]^{2-}$ -Einheit ($d(\text{Te6-O17}) \approx 185 \text{ pm}$) nur noch über *einen* sekundären Kontakt zu (Te1)⁴⁺ $(d(\text{Te1}\cdots\text{O17}) \approx 247 \text{ pm})$ verfügt. Zwar handelt es sich hier um den kürzesten sekundären Te⁴⁺...O²⁻-Kontakt in der Gesamtstruktur überhaupt, jedoch erscheint $(O17)^{2-}$ mit einer Koordinationszahl von CN = 1+1 insgesamt nur sehr schwach an die Kationen gebunden. Ein solches koordinatives Verhalten konnte bislang auch nur bei den ternären Seltenerdmetall(III)-Oxotelluraten(IV) des Formeltyps M₂Te₃O₉ beobachtet werden, wo ebenfalls in allen drei Strukturtypen jeweils ein Sauerstoffatom einer ausgezeichneten [TeO₃]²⁻-Einheit nur durch sekundäre Te⁴⁺...O²⁻-Wechselwirkungen stabilisiert wird (vgl. Kap. 3.2). Dort wie hier weisen diese Sauerstoffatome aufgrund der schwachen Einbindung in die Kristallstrukturen deutlich höhere thermische Auslenkungsparameter auf. Im Gegensatz zu allen bekannten halogenidfreien ternären Formeltypen (M₂Te₃O₉, M₂Te₄O₁₁ und M₂Te₅O₁₅, vgl. Kap. 3) erreicht die Seltenerdmetall(III)-Sauerstoff-Teilstruktur für die Zusammensetzung $M_{11}CITe_{16}O_{48}$ durch das Auftreten des $\frac{3}{\infty} \{ [M_{11}O_{47}]^{61-} \}$ -Netzwerks bereits eine dreidimensionale Ausdehnung.

Der Oxotellurat(IV)-Teilstruktur kommt hier also nur eine Stabilisierungsfunktion und keine essentiell strukturtragende Aufgabe zu. Das Chlorid-Anion dient in seiner isolierten Position in den Kanälen sogar rein dem erforderlichen Ladungsausgleich. Da es aber direkt an zwei Te⁴⁺-Kationen gebunden ist, kann die Gesamtstruktur der $M_{11}CITe_{16}O_{48}$ -Vertreter auch als ein Seltenerdmetall(III)-Oxochlorotellurat(IV) gemäß $M_{11}[Cl(TeO_3)_2][Te_2O_6]_2[TeO_3]_{10}$ beschrieben werden.

Abb. 6.2.2.i: Gesamtstruktur des Formeltyps $M_{11}CITe_{16}O_{48}$ mit Blick entlang [100]. Die Chlorid-Anionen besetzen die Kanäle in Höhe z/c = 0 und werden nur von Oxotellurat(IV)-Einheiten umgeben. In diesen Kanälen befindet sich auch jenes O^{2–}-Anion, das *nicht* zu den Koordinationssphären der M³⁺-Kationen zählt.

6.2.3 Strukturdaten für die $M_{11}CITe_{16}O_{48}$ -Vertreter (M = Y, Gd, Er – Yb)

Formel		Gd ₁₁ ClTe ₁₆ O ₄₈	Y ₁₁ ClTe ₁₆ O ₄₈	Er ₁₁ ClTe ₁₆ O ₄₈		
Kristallsystem			triklin			
Raumgruppe			<i>P</i> 1 (Nr. 2)			
Zahl der Formelein	heiten (Z)		1			
Gitterparameter, a / pm		556,90(3)	551,73(3)	549,39(3)		
	<i>b</i> / pm	1203,96(6)	1194,18(6)	1189,60(6)		
	<i>c</i> / pm	1847,69(9)	1834,84(9)	1827,93(9)		
	α / grd	100,924(3)	100,846(3)	100,769(3)		
	β / grd	95,168(3)	95,477(3)	95,611(3)		
	γ/grd	100,392(3)	100,172(3)	100,117(3)		
Berechnete Dichte	$(D_x / g \cdot cm^{-3})$	6,405	5,481	6,794		
Molvolumen (V _m /	$cm^3 \cdot mol^{-1})$	714,23	697,51	689,61		
Diffraktometer, We	ellenlänge	κ-CCD (Fa. Nonius), Mo-Kα: $\lambda = 71,07$ pm				
Messbereich ($\pm h$ /=	$\pm k / \pm l$)	7 / 18 / 28	7 / 15 / 23	7 / 15 / 23		
Messgrenze (θ_{max} i	n grd)	32,9	27,5	27,7		
<i>F</i> (000)		1937	1662	1981		
Datenreduktion		Untergrund, Polarisations- und Lorentzfaktoren				
Absorptionskorrek	tur	numerisch mit X-SHAPE [25] bzw. HABITUS [26]				
Absorptionskoeffiz	zient (μ / mm ⁻¹)	24,96	23,66	30,08		
Zahl der gemessen	en Reflexe	17364	40732	37793		
Symmetrieunabhär	ngige Reflexe	7961	5310	5353		
Zahl der Reflexe m	nit $ F_o \ge 4\sigma(F_o)$	5300	4535	4917		
$R_{ m int}$ / R_{σ}		0,085/0,102	0,075/0,037	0,114/0,049		
Strukturlösung und	l-verfeinerung	Progra	mmpaket SHELX-9	97 [29]		
Streufaktoren		nach Inter	rnational Tables, V	ol. C [65]		
$R_1 / R_1 \operatorname{mit} F_o \ge 4c$	$\sigma(F_o)$	0,082/0,057	0,042/0,032	0,041/0,036		
wR_2		0,156	0,068	0,106		
Goodness of Fit (G	looF)	0,958	1,066	1,190		
Extinktionskoeffiz	ient (g)	0,0016(1)	0,00218(7)	0,00054(5)		
Restelektronendich	nte, <i>max</i> .	5,19	1,72	3,03		
$(\rho \text{ in } e^- \cdot 10^{-6} \text{ pm}^{-3})$) min.	-4,01	-1,58	-3,00		

Tabelle 6.2.3.a: Kristallographische Daten für $M_{11}CITe_{16}O_{48}$ (M = Y, Gd, Er – Yb) und deren Bestimmung

Formel		$Tm_{11}ClTe_{16}O_{48}$	Yb ₁₁ ClTe ₁₆ O ₄₈		
Kristallsystem		triklin			
Raumgruppe		$P\overline{1}$ (Nr. 2)		
Zahl der Formelein	heiten (Z)		1		
Gitterparameter,	<i>a</i> / pm	548,24(3)	546,70(3)		
	<i>b</i> / pm	1187,34(6)	1181,30(6)		
	<i>c</i> / pm	1825,14(9)	1819,50(9)		
	α / grd	100,786(3)	100,592(3)		
	eta / grd	95,640(3)	95,688(3)		
	γ/grd	100,150(3)	100,313(3)		
Berechnete Dichte	$(D_x / g \cdot cm^{-3})$	6,862	7,004		
Molvolumen (V _m /	$cm^3 \cdot mol^{-1})$	685,43	677,94		
Diffraktometer, Wellenlänge		κ-CCD (Fa. Nonius), Mo-Kα: λ = 71,07 pm			
Messbereich $(\pm h / \pm k / \pm l)$		7 / 15 / 23	7 / 15 / 23		
Messgrenze (θ_{max} i	n grd)	27,5	27,5		
<i>F</i> (000)		1992	2003		
Datenreduktion		Untergrund, Polarisations- und Lorentzfaktoren			
Absorptionskorrek	tur	numerisch mit X-SHAPE [25] bzw. HABITUS [26]			
Absorptionskoeffiz	tient (μ / mm ⁻¹)	31,43	32,95		
Zahl der gemessen	en Reflexe	37869	36214		
Symmetrieunabhär	ngige Reflexe	5208	5159		
Zahl der Reflexe m	it $ F_o \ge 4\sigma(F_o)$	4659	3283		
$R_{ m int}$ / R_{σ}		0,078/0,035	0,155/0,104		
Strukturlösung und	-verfeinerung	Programmpaket	SHELX-97 [29]		
Streufaktoren		nach International	Tables, Vol. C [65]		
$R_1 / R_1 \text{ mit } F_o \ge 4\alpha$	$\sigma(F_o)$	0,038/0,031	0,114/0,050		
wR_2		0,085	0,129		
Goodness of Fit (G	ooF)	1,184	1,024		
Extinktionskoeffizi	ient (g)	0,00094(4)	0,00081(4)		
Restelektronendich	ite, <i>max</i> .	2,12	3,28		
$(\rho \text{ in } e^- \cdot 10^{-6} \text{ pm}^{-3})$) min.	-2,28	-3,02		

Tabelle 6.2.3.a: Kristallographische Daten für $M_{11}CITe_{16}O_{48}$ (M = Y, Gd, Er – Yb) und deren Bestimmung (*Fortsetzung*)

Atom	Wyckoff-Lage	x / a	y / b	z / c	$U_{ m eq}$
Gd1	2 <i>i</i>	0,29154(14)	0,21640(5)	0,29201(4)	131(1)
Gd2	2i	0,28680(13)	0,10569(5)	0,47687(4)	128(2)
Gd3	2i	0,88393(14)	0,43438(5)	0,26669(4)	138(1)
Gd4	2 <i>i</i>	0,45025(14)	0,32125(5)	0,77660(4)	138(1)
Gd5	2i	0,09166(15)	0,88953(5)	0,18613(4)	179(2)
Gd6	1a	0	0	0	153(2)
Cl	1 <i>e</i>	$^{1}/_{2}$	$^{1}/_{2}$	0	519(23)
Te1	2i	0,07410(19)	0,44563(7)	0,89005(5)	142(2)
Te2	2i	0,48059(18)	0,44567(7)	0,60807(5)	136(2)
Te3	2i	0,83977(18)	0,31799(7)	0,43585(5)	134(2)
Te4	2i	0,20199(18)	0,00615(7)	0,66081(5)	136(2)
Te5	2 <i>i</i>	0,65972(18)	0,11470(7)	0,16320(5)	130(2)
Te6	2i	0,22840(19)	0,32269(7)	0,11395(5)	149(2)
Te7	2i	0,21235(19)	0,78979(7)	0,38278(5)	143(2)
Te8	2i	0,48278(19)	0,80342(7)	0,04837(5)	159(2)
01	2i	0,3082(20)	0,4965(8)	0,8304(5)	137(19)
O2	2i	0,1798(22)	0,5527(8)	0,1862(6)	176(21)
O3	2i	0,1398(22)	0,2947(7)	0,8541(7)	196(22)
O4	2i	0,2053(25)	0,5452(9)	0,3451(9)	320(29)
05	2i	0,2938(23)	0,3914(8)	0,6796(6)	184(22)
06	2 <i>i</i>	0,5593(19)	0,4010(7)	0,3431(6)	152(19)
07	2i	0,4721(23)	0,7329(8)	0,4308(6)	192(22)
08	2i	0,0165(24)	0,2319(9)	0,4844(7)	235(25)
09	2i	0,9975(21)	0,3088(8)	0,3519(6)	152(19)
O10	2i	0,5596(22)	0,2037(8)	0,4023(6)	194(22)
011	2i	0,1016(22)	0,0514(8)	0,5730(6)	179(21)
012	2i	0,1282(22)	0,0701(9)	0,3473(7)	215(23)
013	2i	0,1624(22)	0,1401(8)	0,7258(6)	181(21)
014	2i	0,9217(21)	0,0790(8)	0,2189(6)	154(18)
015	2i	0,6181(21)	0,2565(8)	0,2192(6)	171(20)
016	2 <i>i</i>	0,4135(22)	0,0417(8)	0,2119(6)	179(21)
017	2i	0,9284(25)	0,3429(9)	0,0711(7)	271(26)
018	2i	0,1353(21)	0,3161(8)	0,2077(5)	150(19)
019	2i	0,1872(24)	0,1602(9)	0,0801(7)	226(23)
O20	2i	0,3868(20)	0,9328(8)	0,4369(7)	178(20)
O21	2i	0,3281(23)	0,8025(9)	0,2914(6)	212(22)
O22	2i	0,2975(26)	0,9164(9)	0,0479(8)	319(31)
O23	2i	0,3772(22)	0,7741(9)	0,1357(5)	178(21)
O24	2i	0,2190(22)	0,0892(9)	0,9131(7)	207(22)

Tabelle 6.2.3.b: Atomlagen und Koeffizienten der isotropen äquivalenten Auslenkungsparameter^{a)} (U_{eq} in pm²) für Gd₁₁ClTe₁₆O₄₈

Atom	Wyckoff-Lage	x / a	y / b	z / c	$U_{ m eq}$
Y1	2 <i>i</i>	0,28523(11)	0,21617(5)	0,29322(4)	92(1)
Y2	2i	0,28568(11)	0,10503(5)	0,47725(4)	90(1)
Y3	2i	0,87591(11)	0,43260(5)	0,26856(4)	103(1)
Y4	2 <i>i</i>	0,44378(11)	0,31926(5)	0,77709(4)	94(1)
Y5	2 <i>i</i>	0,09154(12)	0,88883(6)	0,18537(4)	150(2)
Y6	1a	0	0	0	124(2)
Cl	1 <i>e</i>	$^{1}/_{2}$	$^{1}/_{2}$	0	427(9)
Te1	2i	0,06768(8)	0,44540(4)	0,89007(3)	110(1)
Te2	2i	0,48724(8)	0,44590(4)	0,60733(3)	105(1)
Te3	2i	0,83823(8)	0,31761(4)	0,43694(3)	101(1)
Te4	2i	0,20524(8)	0,00644(4)	0,66121(3)	101(1)
Te5	2i	0,65334(8)	0,11555(4)	0,16361(3)	99(1)
Te6	2i	0,22770(8)	0,32257(4)	0,11579(3)	112(1)
Te7	2i	0,21016(8)	0,79045(4)	0,38202(3)	105(1)
Te8	2i	0,48533(8)	0,80389(4)	0,04795(3)	144(1)
01	2i	0,2966(8)	0,4954(4)	0,8270(3)	143(10)
O2	2i	0,1932(9)	0,5532(4)	0,1836(3)	207(12)
O3	2i	0,1386(8)	0,2917(4)	0,8549(3)	142(10)
O4	2i	0,1958(9)	0,5460(4)	0,3476(3)	212(12)
05	2i	0,3040(8)	0,3925(4)	0,6791(3)	140(10)
06	2i	0,5552(8)	0,3987(4)	0,3441(3)	138(10)
O7	2i	0,4690(9)	0,7325(4)	0,4322(3)	172(11)
08	2i	0,0179(9)	0,2314(4)	0,4879(3)	171(11)
09	2i	0,9985(8)	0,3085(4)	0,3511(3)	151(10)
O10	2i	0,5552(8)	0,2001(4)	0,4012(3)	150(10)
011	2i	0,1044(8)	0,0505(4)	0,5719(3)	160(11)
012	2i	0,1270(8)	0,0724(4)	0,3496(3)	148(10)
013	2i	0,1564(8)	0,1399(4)	0,7271(3)	130(10)
O14	2i	0,9149(8)	0,0796(4)	0,2216(3)	149(10)
015	2i	0,6072(8)	0,2570(4)	0,2190(3)	130(10)
016	2i	0,4036(8)	0,0414(4)	0,2118(3)	150(10)
017	2i	0,9308(9)	0,3446(4)	0,0697(3)	233(12)
O18	2i	0,1203(9)	0,3144(4)	0,2098(3)	145(10)
019	2i	0,1861(9)	0,1597(4)	0,0803(3)	201(11)
O20	2i	0,3908(9)	0,9339(4)	0,4371(3)	151(10)
O21	2i	0,3368(9)	0,8023(4)	0,2911(3)	172(11)
O22	2i	0,2966(9)	0,9167(4)	0,0450(3)	319(15)
O23	2i	0,3811(9)	0,7780(4)	0,1385(3)	166(11)
O24	2i	0,2101(9)	0,0880(4)	0,9132(3)	168(11)

Tabelle 6.2.3.c: Atomlagen und Koeffizienten der isotropen äquivalenten Auslenkungsparameter^{a)} (U_{eq} in pm²) für Y₁₁ClTe₁₆O₄₈

Atom	Wyckoff-Lage	x / a	y / b	z / c	$U_{ m eq}$
Er1	2i	0,28346(8)	0,21609(4)	0,29328(3)	110(1)
Er2	2 <i>i</i>	0,28574(7)	0,10483(4)	0,47721(2)	101(1)
Er3	2i	0,87352(8)	0,43244(4)	0,26898(3)	120(1)
Er4	2i	0,44274(8)	0,31859(4)	0,77703(3)	114(1)
Er5	2i	0,08964(9)	0,88903(4)	0,18520(3)	201(1)
Er6	1a	0	0	0	171(2)
Cl	1 <i>e</i>	$^{1}/_{2}$	$^{1}/_{2}$	0	431(13)
Te1	2i	0,06720(11)	0,44488(6)	0,89050(4)	123(2)
Te2	2i	0,48881(12)	0,44593(5)	0,60717(4)	115(2)
Te3	2 <i>i</i>	0,83745(12)	0,31783(6)	0,43695(4)	108(2)
Te4	2 <i>i</i>	0,20699(11)	0,00638(6)	0,66120(4)	113(2)
Te5	2i	0,65147(11)	0,11581(5)	0,16344(4)	108(2)
Te6	2i	0,22786(12)	0,32307(6)	0,11605(4)	122(2)
Te7	2i	0,20863(11)	0,79036(6)	0,38202(4)	112(2)
Te8	2i	0,48614(13)	0,80432(6)	0,04818(4)	179(2)
01	2i	0,2949(13)	0,4942(6)	0,8266(4)	137(14)
O2	2 <i>i</i>	0,1962(14)	0,5545(6)	0,1842(5)	228(17)
O3	2 <i>i</i>	0,1402(12)	0,2921(6)	0,8558(4)	140(14)
O4	2i	0,1887(14)	0,5461(7)	0,3476(5)	232(17)
05	2i	0,3061(13)	0,3935(6)	0,6797(4)	159(15)
O6	2i	0,5538(13)	0,3990(6)	0,3435(4)	142(14)
O7	2i	0,4692(13)	0,7319(6)	0,4332(4)	172(15)
08	2i	0,0187(14)	0,2314(7)	0,4876(4)	185(16)
09	2i	0,9989(13)	0,3094(7)	0,3520(4)	175(15)
O10	2 <i>i</i>	0,5537(12)	0,2004(6)	0,4014(4)	134(14)
011	2 <i>i</i>	0,1052(13)	0,0516(7)	0,5717(4)	158(15)
O12	2i	0,1273(13)	0,0742(6)	0,3498(4)	164(15)
013	2 <i>i</i>	0,1549(13)	0,1409(6)	0,7279(4)	149(15)
O14	2i	0,9139(13)	0,0789(6)	0,2221(4)	163(15)
015	2i	0,6049(13)	0,2576(6)	0,2192(4)	144(14)
016	2 <i>i</i>	0,4027(13)	0,0413(6)	0,2118(4)	153(15)
O17	2 <i>i</i>	0,9281(14)	0,3465(7)	0,0694(5)	242(18)
O18	2 <i>i</i>	0,1155(13)	0,3141(6)	0,2091(4)	152(15)
019	2 <i>i</i>	0,1847(15)	0,1595(7)	0,0800(5)	223(17)
O20	2i	0,3910(12)	0,9330(6)	0,4371(4)	139(14)
O21	2 <i>i</i>	0,3411(15)	0,8022(6)	0,2910(5)	208(17)
O22	2 <i>i</i>	0,2967(19)	0,9173(7)	0,0452(6)	459(30)
O23	2 <i>i</i>	0,3799(13)	0,7804(7)	0,1389(4)	183(16)
O24	2i	0,2082(15)	0,0887(6)	0,9127(4)	197(16)

Tabelle 6.2.3.d: Atomlagen und Koeffizienten der isotropen äquivalenten Auslenkungsparameter^{a)} (U_{eq} in pm²) für Er₁₁ClTe₁₆O₄₈

Atom	Wyckoff-Lage	x / a	y / b	z / c	$U_{ m eq}$
Tm1	2i	0,28207(9)	0,21600(4)	0,29375(3)	82(1)
Tm2	2i	0,28575(8)	0,10474(4)	0,47733(3)	74(1)
Tm3	2i	0,87146(9)	0,43162(4)	0,26954(3)	93(1)
Tm4	2i	0,43982(9)	0,31830(4)	0,77717(3)	83(1)
Tm5	2i	0,09053(9)	0,88864(4)	0,18463(3)	185(1)
Tm6	1a	0	0	0	147(2)
Cl	1 <i>e</i>	$^{1}/_{2}$	$^{1}/_{2}$	0	385(13)
Te1	2i	0,06427(13)	0,44493(6)	0,89059(4)	93(2)
Te2	2i	0,49074(13)	0,44611(6)	0,60714(4)	86(2)
Te3	2i	0,83746(13)	0,31768(6)	0,43744(4)	79(2)
Te4	2i	0,20831(13)	0,00682(6)	0,66143(4)	82(2)
Te5	2i	0,65079(13)	0,11569(6)	0,16342(4)	79(2)
Te6	2i	0,22875(13)	0,32309(6)	0,11657(4)	92(2)
Te7	2i	0,20809(13)	0,79025(6)	0,38170(4)	84(2)
Te8	2i	0,48643(14)	0,80405(6)	0,04792(4)	159(2)
01	2i	0,2899(15)	0,4938(7)	0,8266(4)	115(16)
O2	2i	0,2011(17)	0,5546(8)	0,1828(6)	228(20)
O3	2i	0,1405(14)	0,2919(7)	0,8559(5)	116(16)
O4	2i	0,1866(15)	0,5469(7)	0,3481(5)	183(18)
O5	2i	0,3066(15)	0,3934(7)	0,6795(5)	135(16)
06	2i	0,5517(15)	0,3991(6)	0,3432(5)	137(17)
07	2i	0,4676(15)	0,7318(7)	0,4339(5)	154(17)
08	2i	0,0198(16)	0,2319(8)	0,4883(5)	164(17)
09	2i	0,0005(15)	0,3095(7)	0,3515(4)	118(16)
O10	2i	0,5546(14)	0,1999(7)	0,4010(4)	113(16)
011	2i	0,1042(15)	0,0518(7)	0,5715(4)	125(16)
012	2i	0,1267(14)	0,0751(7)	0,3512(5)	128(16)
013	2i	0,1535(14)	0,1399(6)	0,7281(4)	100(15)
O14	2i	0,9151(14)	0,0795(7)	0,2222(5)	133(16)
015	2i	0,6019(15)	0,2579(7)	0,2202(5)	130(16)
016	2i	0,4017(14)	0,0412(7)	0,2115(5)	120(16)
O17	2i	0,9307(16)	0,3467(8)	0,0686(5)	204(19)
O18	2i	0,1136(15)	0,3143(7)	0,2101(4)	120(16)
019	2i	0,1839(17)	0,1594(7)	0,0805(5)	188(18)
O20	2i	0,3903(15)	0,9343(7)	0,4374(5)	124(16)
O21	2i	0,3437(17)	0,8020(8)	0,2909(5)	210(19)
O22	2i	0,2959(19)	0,9170(9)	0,0437(6)	438(33)
O23	2i	0,2822(15)	0,7807(7)	0,1388(5)	151(17)
O24	2 <i>i</i>	0,2061(18)	0,0875(7)	0,9136(5)	196(19)

Tabelle 6.2.3.e: Atomlagen und Koeffizienten der isotropen äquivalenten Auslenkungsparameter^{a)} (U_{eq} in pm²) für Tm₁₁ClTe₁₆O₄₈

Atom	Wyckoff-Lage	x / a	y / b	z / c	$U_{ m eq}$
Yb1	2i	0,28142(17)	0,21585(9)	0,29408(6)	172(3)
Yb2	2 <i>i</i>	0,28587(17)	0,10485(9)	0,47741(6)	165(3)
Yb3	2i	0,87084(18)	0,43137(9)	0,27028(6)	183(3)
Yb4	2i	0,43878(17)	0,31835(9)	0,77717(6)	169(3)
Yb5	2i	0,09003(19)	0,88820(9)	0,18397(7)	272(3)
Yb6	1a	0	0	0	217(4)
Cl	1 <i>e</i>	$^{1}/_{2}$	$^{1}/_{2}$	0	528(33)
Te1	2i	0,0633(3)	0,44502(14)	0,89076(9)	200(4)
Te2	2i	0,4918(3)	0,44578(14)	0,60685(9)	179(4)
Te3	2i	0,8377(3)	0,31776(13)	0,43788(9)	162(3)
Te4	2i	0,2095(3)	0,00692(13)	0,66147(9)	166(4)
Te5	2i	0,6494(3)	0,11556(13)	0,16349(9)	164(3)
Te6	2i	0,2289(3)	0,32299(13)	0,11675(9)	173(4)
Te7	2i	0,2060(3)	0,79018(14)	0,38158(9)	186(4)
Te8	2i	0,4862(3)	0,80356(14)	0,04777(10)	231(4)
01	2i	0,286(2)	0,4937(13)	0,8256(8)	149(33)
O2	2i	0,206(3)	0,5557(16)	0,1832(10)	298(42)
03	2i	0,141(3)	0,2912(14)	0,8567(9)	188(35)
O4	2i	0,187(3)	0,5464(15)	0,3508(10)	271(41)
05	2i	0,308(2)	0,3932(14)	0,6789(10)	227(39)
06	2i	0,551(2)	0,3979(13)	0,3447(9)	150(33)
O7	2i	0,461(3)	0,7312(13)	0,4348(10)	224(39)
08	2i	0,024(3)	0,2336(16)	0,4877(9)	271(41)
09	2i	0,997(3)	0,3116(14)	0,3526(9)	179(35)
O10	2i	0,557(3)	0,2002(14)	0,4027(10)	235(39)
011	2i	0,105(3)	0,0527(14)	0,5725(9)	209(37)
012	2i	0,123(3)	0,0761(14)	0,3532(9)	212(37)
013	2i	0,152(2)	0,1424(13)	0,7285(9)	168(35)
014	2i	0,914(2)	0,0811(12)	0,2234(9)	132(32)
015	2i	0,602(3)	0,2576(14)	0,2196(9)	207(37)
016	2i	0,397(3)	0,0400(14)	0,2105(10)	231(39)
O17	2i	0,930(3)	0,3464(14)	0,0678(9)	241(38)
O18	2i	0,108(3)	0,3132(14)	0,2096(9)	236(39)
019	2i	0,184(3)	0,1602(15)	0,0805(9)	255(40)
O20	2 <i>i</i>	0,391(2)	0,9364(13)	0,4378(9)	149(33)
O21	2 <i>i</i>	0,342(3)	0,8007(14)	0,2904(10)	245(40)
O22	2 <i>i</i>	0,291(4)	0,9132(18)	0,0436(11)	479(57)
O23	2 <i>i</i>	0,379(3)	0,7791(14)	0,1378(10)	260(41)
O24	2 <i>i</i>	0,212(3)	0,0885(17)	0,9131(10)	344(46)

Tabelle 6.2.3.f: Atomlagen und Koeffizienten der isotropen äquivalenten Auslenkungsparameter^{a)} (U_{eq} in pm²) für Yb₁₁ClTe₁₆O₄₈

M ₁₁ ClTe ₁₆ O ₄₈	Gd	Y	Er	Tm	Yb
M1 – O12	229,0	225,7	222,9	222,5	222,7
- 018	233,7	231,0	231,3	230,5	230,8
- 09	237,9	231,1	230,7	228,3	231,3
- O15	239,1	237,9	236,8	235,2	235,7
- O6	241,0	240,0	237,4	236,6	234,9
- O10	246,0	242,2	241,0	240,1	241,9
- O14	249,5	246,3	245,1	243,4	241,3
– O16	256,7	255,1	254,7	255,0	255,6
M2 – O20	225,8	222,8	223,4	221,2	218,6
- O11	227,4	223,4	221,2	220,4	220,7
- O8	231,8	228,6	227,6	227,3	226,5
– O12	240,6	235,6	234,4	231,9	228,5
– O7	242,4	240,6	239,4	238,5	238,4
– O10	243,8	241,8	240,4	240,8	238,3
– O20'	247,4	243,1	241,0	241,0	240,5
- 011'	257,0	254,5	254,5	253,5	253,3
M3 – O4	224,0	223,2	220,4	220,5	221,5
- 01	236,6	229,4	228,3	227,9	225,9
- O15	233,6	231,2	229,9	228,4	227,6
- 018	236,2	231,3	230,5	229,1	228,5
- O6	241,5	237,4	235,0	233,4	233,6
- 09	249,6	243,7	242,9	241,0	237,5
- O5	255,0	253,5	251,3	251,1	251,1
- O2	271,1	283,5	285,1	289,9	291,6
M4 – O2	228,9	225,5	223,4	222,3	218,9
- O5	229,0	227,0	225,6	225,3	224,6
- O21	235,7	231,6	228,9	228,4	227,8
- O3	235,7	232,7	232,1	230,4	230,3
– O23	238,6	234,0	234,3	233,9	233,9
- O13	242,9	239,3	237,0	236,5	233,4
- 01	245,2	243,7	242,5	242,5	242,2
M5 – O16	226,4	221,8	221,1	220,1	217,0
- 013	228,7	224,3	221,7	221,3	220,7
- O3	230,3	224,9	224,9	223,8	221,7
- 023	242,9	237,0	234,8	234,2	233,7
- 024	248,7	242,9	239,0	239,1	238,3
- 014	261,2	263,1	261,1	261,7	263,8
– O21	272,5	272,1	272,8	273,3	272,6
M6 – O19 (2×)	221,6	219,7	218,3	218,0	217,9
– O22 (2×)	228,4	222,9	221,6	220,1	219,9
– O24 (2×)	239,8	235,2	235,1	232,2	233,8

Tabelle 6.2.3.g: Ausgewählte interatomare Abstände (d/pm) in M₁₁ClTe₁₆O₄₈ (M = Y, Gd, Er – Yb), Sekundärkontakte sind kursiv hervorgehoben

	~ 1	~ ~			
$M_{11}ClTe_{16}O_{48}$	Gd	Y	Er	Tm	Yb
Te1 – Cl	287,2	286,7	285,0	285,4	284,6
- 01	187,5	188,7	188,6	187,6	187,0
- 02	191,0	188,4	189,2	188,0	189,3
- O3	192,4	194,9	193,5	194,1	194,3
- 017	251,5	247,5	244,9	244,1	243,3
Te2 – O4	185.5	184.0	185.9	185.5	182.5
- 05	189.3	187.3	187.2	187.2	185.8
- 06	195.6	196.7	196.1	195.5	196.1
- 07	220.5	218.1	216.7	216.5	215.8
- 01	187.5	188.7	188.6	187.6	187.0
- 02	191.0	188.4	189.2	188.0	189.3
- 03	192.4	194.9	193 5	194 1	194.3
- 017	251,5	247,5	244,9	244,1	243,3
Τ_23 Ο 9	1847	186 1	185 5	185.2	182.2
103 - 00	104,7	187 5	185,5	103,2	184.0
- 09	104,0	10/,J 107 6	103,0 107 1	10/,3	104,9 19 <i>1 6</i>
- 010	103,4	10/,0	10/,1	100,/	104,0
- 00	∠00,4	203,2	202,8	204,1	201,2
Te4 – O11	187,7	187,9	188,0	188,6	186,8
– O12	188,0	188,1	188,9	189,1	187,4
- 013	187,9	188,7	190,5	189,4	192,1
- 014	271,1	264,2	262,1	262,2	259,9
Te5 – O14	186,9	186,9	187,5	187,7	187,1
- O15	188,6	187,3	187,4	188,6	187,2
- 016	188,3	188,8	188,1	187,5	187,2
- 024	281,6	283,1	283,8	283,3	282,1
Te6 – O17	185 9	1854	186 9	187 2	187 1
- 018	186.5	189.0	188 1	189.2	188.9
- 019	190.3	189.6	189.9	189.6	187.8
- 02	290.2	284.8	284.5	282.5	282.2
-Cl	352,0	352,7	351,4	351,3	349,7
Te7 – O20	186.4	187 1	186 1	187.2	189.0
- 021	188 3	189.0	190.0	190.0	189 9
- 07	192.5	192.3	193.4	193 5	192.4
- 08	288.8	283.6	282.9	282 1	283 3
- 04	289.8	2854	283 7	281.8	281.2
- 011	287.2	285.9	283.8	282.8	280.6
T-9 022	105.0	104.0	104 4	1047	100.0
100 - 022	185,0	184,9	184,4	184,/	182,8
-023	184,0	18/,1	180,5	185,9	184,/
- 024	189,7	191,3	190,4	191,2	188,3
-Cl	361,3	338,7	358,0	336,8	354,7

Tabelle 6.2.3.g: Ausgewählte interatomare Abstände (d/pm) in M₁₁ClTe₁₆O₄₈ (M = Y, Gd, Er – Yb), Sekundärkontakte sind kursiv hervorgehoben (*Fortsetzung*)

M ₁₁ ClTe ₁₆ O ₄₈	Gd	Y	Er	Tm	Yb
O1 - Te1 - O2	88,9	88,9	88,6	89,0	88,7
O1 – Te1 – O3	85,3	85,2	84,8	84,5	84,4
O2 - Te1 - O3	99,5	100,8	100,8	101,5	101,6
<i>017</i> – Te1 – O1	83,8	84,3	84,3	84,6	85,0
<i>O17</i> – Te1 – O2	84,3	85,0	85,7	85,8	86,4
<i>017</i> – Te1 – O3	168,4	167,8	167,1	166,8	166,6
Cl – Tel – Ol	82,2	83,6	83,8	83,9	84,5
Cl – Tel – O2	165,8	166,4	166,4	166,7	167,1
Cl – Tel – O3	90,8	90,9	89,7	89,1	88,7
Cl – Tel – <i>O</i> 17	83,8	83,0	82,4	82,3	82,1
O4 - Te2 - O5	99,4	99,9	100,0	100,4	101,7
O4 - Te2 - O6	96,8	97,9	97,9	98,3	98,8
O4 - Te2 - O7	79,7	79,7	80,0	79,7	79,0
O5 - Te2 - O6	85,4	85,3	84,6	84,4	84,9
O5 - Te2 - O7	87,8	88,0	88,6	88,8	89,9
O6 - Te2 - O7	171,8	172,4	172,5	172,5	173,9
O8 - Te3 - O9	97,6	98,6	98,1	98,2	98,0
O8 - Te3 - O10	97,0	97,0	97,2	97,5	97,9
O9 - Te3 - O10	101,0	100,1	100,6	100,1	100,7
<i>O6</i> – Te3 – O8	167,7	168,0	167,8	168,0	168,0
<i>O6</i> – Te3 – O9	76,3	79,1	76,3	76,1	75,8
<i>O6</i> – Te3 – O10	74,0	73,7	73,7	73,4	73,5
O11 - Te4 - O12	84,9	84,2	84,5	83,6	82,7
O11 - Te4 - O13	95,9	96,8	96,4	96,6	95,8
O12 - Te4 - O13	95,0	94,7	94,7	94,9	95,6
<i>O14</i> – Te4 – O11	148,7	149,0	148,8	148,3	148,0
<i>O14</i> – Te4 – O12	65,2	66,0	65,6	66,0	66,8
<i>O14</i> – Te4 – O13	78,6	78,5	78,1	77,7	78,4
O15 - Te5 - O16	87,4	87,3	87,3	86,7	87,2
O14 - Te5 - O16	95,2	94,5	94,0	94,4	94,9
O14 - Te5 - O15	103,8	103,7	103,8	103,6	102,8
<i>O24</i> – Te5 – O14	70,3	70,2	69,6	69,9	70,8
<i>O24</i> – Te5 – O15	173,2	172,5	172,2	172,2	172,5
<i>O24</i> – Te5 – O16	96,3	97,4	97,2	97,8	97,2

Tabelle 6.2.3.h: Ausgewählte Winkel (\angle /grd) in M₁₁ClTe₁₆O₄₈ (M = Y, Gd, Er – Yb), Sekundärkontakte sind kursiv hervorgehoben

M ₁₁ ClTe ₁₆ O ₄₈	Gd	Y	Er	Tm	Yb
O17 - Te6 - O18	96,6	96,4	95,7	96,2	95,7
O17 - Te6 - O19	99,0	98,8	98,8	98,6	98,3
O18 - Te6 - O19	95,7	96,2	96,1	96,0	96,1
<i>O2</i> – Te6 – O17	74,5	75,2	75,2	75,4	76,1
<i>O2</i> – Te6 – <i>O18</i>	71,7	73,7	73,9	74,6	74,8
<i>O2</i> – Te6 – O19	164,7	167,3	167,5	168,0	168,5
Cl - Te6 - O17	86,1	84,2	83,9	83,0	82,8
<i>Cl</i> – Te6 – O18	146,1	147,3	147,7	147,8	148,2
<i>Cl</i> – Te6 – O19	117,3	116,1	115,9	116,0	115,6
<i>Cl</i> – Te6 – <i>O2</i>	76,6	74,8	74,8	74,1	74,0
O7 - Te7 - O20	83,4	82,6	82,1	82,3	82,5
O7 - Te7 - O21	101,3	100,5	99,9	100,0	100,6
O20 - Te7 - O21	96,8	96,1	95,8	95,8	96,2
O4 - Te7 - O7	62,0	62,1	62,7	62,8	61,8
<i>O</i> 4 – Te7 – O20	145,3	144,6	144,8	145,0	144,2
<i>O</i> 4 – Te7 – O21	88,4	89,2	89,2	89,5	89,6
<i>O</i> 4 – Te7 – <i>O</i> 8	92,0	90,6	90,3	89,9	89,0
<i>O</i> 4 – Te7 – <i>O</i> 11	150,0	139,7	138,9	138,7	138,7
<i>O</i> 8 – Te7 – O7	84,1	83,3	83,0	82,4	81,5
<i>O8</i> – Te7 – O20	86,3	86,7	86,6	86,5	86,8
<i>O8</i> – Te7 – O21	174,1	175,5	176,4	176,8	176,6
<i>O</i> 8 – Te7 – <i>O</i> 11	63,4	62,5	62,4	62,2	62,5
<i>011</i> – Te7 – O7	136,5	134,9	134,5	133,8	133,4
<i>O11</i> – Te7 – O20	67,2	67,8	68,2	67,7	67,8
<i>O11</i> – Te7 – O21	113,0	115,3	116,1	116,7	117,0
O22 - Te8 - O23	91,3	91,5	90,6	91,2	90,3
O22 - Te8 - O24	93,9	94,8	95,3	95,3	96,1
O23 - Te8 - O24	99,8	98,8	98,6	98,8	98,7
Cl - Te8 - O22	147,2	146,3	146,2	145,9	144,8
<i>Cl</i> – Te8 – O23	86,5	87,7	88,5	88,6	88,5
Cl - Te8 - O24	118,7	118,6	118,3	118,5	118,8
Te2 - O7 - Te7	120,5	119,6	120,0	118,5	118,7

Tabelle 6.2.3.h: Ausgewählte Winkel (\angle /grd) in M₁₁ClTe₁₆O₄₈ (M = Y, Gd, Er – Yb), Sekundärkontakte sind kursiv hervorgehoben (*Fortsetzung*)

	M1	M2	M3	M4	M5	M6	CN
Cl	0/0	0/0	0/0	0/0	0/0	0/0	0
01	0/0	0/0	1/1	1/1	0/0	0/0	2
O2	0/0	0/0	1/1	1/1	0/0	0/0	2
03	0/0	0/0	0/0	1/1	1/1	0/0	2
O4	0/0	0/0	1/1	0/0	0/0	0/0	1
05	0/0	0/0	1/1	1/1	0/0	0/0	1
06	1/1	0/0	1/1	0/0	0/0	0/0	2
07	0/0	1/1	0/0	0/0	0/0	0/0	1
08	0/0	1/1	0/0	0/0	0/0	0/0	1
09	1/1	0/0	1/1	0/0	0/0	0/0	2
O10	1/1	1/1	0/0	0/0	0/0	0/0	2
011	0/0	2/2	0/0	0/0	0/0	0/0	2
012	1/1	1/1	0/0	0/0	0/0	0/0	2
013	0/0	0/0	0/0	1/1	1/1	0/0	2
O14	1/1	0/0	0/0	0/0	1/1	0/0	2
015	1/1	0/0	1/1	0/0	0/0	0/0	2
O16	1/1	0/0	0/0	0/0	1/1	0/0	2
017	0/0	0/0	0/0	0/0	0/0	0/0	0
O18	1/1	0/0	1/1	0/0	0/0	0/0	2
019	0/0	0/0	0/0	0/0	0/0	1/2	1
O20	0/0	2/2	0/0	0/0	0/0	0/0	2
O21	0/0	0/0	0/0	1/1	1/1	0/0	2
O22	0/0	0/0	0/0	0/0	0/0	1/2	1
O23	0/0	0/0	0/0	1/1	1/1	0/0	2
O24	0/0	0/0	0/0	0/0	1/1	1/2	2
CN	8	8	8	7	7	6	·

Tabelle 6.2.3.i: Motive der gegenseitigen Zuordnung für $M_{11}CITe_{16}O_{48}^{a)}$

	Te1	Te2	Te3	Te4	Te5	Te6	Te7	Te8	CN
Cl	2/1	0/0	0/0	0/0	0/0	0+2/0+1	0/0	0+2/0+1	2+4
O1	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1
O2	1/1	0/0	0/0	0/0	0/0	0+1/0+1	0/0	0/0	1+1
O3	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1
O4	0/0	1/1	0/0	0/0	0/0	0/0	0+1/0+1	0/0	1+1
05	0/0	1/1	0/0	0/0	0/0	0/0	0/0	0/0	1
O6	0/0	1/1	0+1/0+1	0/0	0/0	0/0	0/0	0/0	1+1
07	0/0	1/1	0/0	0/0	0/0	0/0	1/1	0/0	2
08	0/0	0/0	1/1	0/0	0/0	0/0	0+1/0+1	0/0	1+1
09	0/0	0/0	1/1	0/0	0/0	0/0	0/0	0/0	1
O10	0/0	0/0	1/1	0/0	0/0	0/0	0/0	0/0	1
011	0/0	0/0	0/0	1/1	0/0	0/0	0+1/0+1	0/0	1+1
O12	0/0	0/0	0/0	1/1	0/0	0/0	0/0	0/0	1
O13	0/0	0/0	0/0	1/1	0/0	0/0	0/0	0/0	1
O14	0/0	0/0	0/0	0+1/0+1	1/1	0/0	0/0	0/0	1+1
015	0/0	0/0	0/0	0/0	1/1	0/0	0/0	0/0	1
O16	0/0	0/0	0/0	0/0	1/1	0/0	0/0	0/0	1
O17	0+1/0+1	0/0	0/0	0/0	0/0	1/1	0/0	0/0	1+1
O18	0/0	0/0	0/0	0/0	0/0	1/1	0/0	0/0	1
O19	0/0	0/0	0/0	0/0	0/0	1/1	0/0	0/0	1
O20	0/0	0/0	0/0	0/0	0/0	0/0	1/1	0/0	1
O21	0/0	0/0	0/0	0/0	0/0	0/0	1/1	0/0	1
O22	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	1
O23	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	1
O24	0/0	0/0	0/0	0/0	0+1/0+1	0/0	0/0	1/1	1+1
CN	4+1	4	3+1	3+1	3+1	3+1+1	3+3	3+1	

Tabelle 6.2.3.i: Motive der gegenseitigen Zuordnung für M₁₁ClTe₁₆O₄₈^{a)} (*Fortsetzung*)

^{a)} Die Te⁴⁺····Cl⁻-Kontakte sind kursiv hervorgehoben.

6.3 Das Yttrium(III)-Bromid-Oxotellurat(IV) Y₆Br₄Te₁₁O₂₉

6.3.1 Vorbemerkungen und Darstellung

Bislang konnte mit Yb₃BrTe₂O₈ [45] im quaternären System Seltenerdmetall–Brom– Tellur-Sauerstoff erst ein Vertreter anhand von Einkristalldaten strukturell charakterisiert werden. Bei dieser Verbindung handelt es sich genauer um ein Ytterbium(III)-Oxidbromid-Oxotellurat(IV) gemäß Yb₃O₂Br[Te₂O₆], das heißt pro Formeleinheit sind zwei Sauerstoffatome in dessen Kristallstruktur nicht Teil der Oxotellurat(IV)-Anionen, sondern haben in Form von [OYb₄]¹⁰⁺-Tetraedern ausschließlich Kontakt mit den Yb³⁺-Kationen. Mit der Darstellung von Y₆Br₄Te₁₁O₂₉ ist es nun gelungen, Einkristalle eines weiteren, bislang unbekannten Formeltyps zu erhalten, bei dem es sich tatsächlich um das erste reine quaternäre Seltenerdmetall(III)-Bromid-Oxotellurat(IV) überhaupt handelt, dessen Kristallstruktur mit Hilfe der Röntgenstrukturanalyse vollständig aufgeklärt werden konnte. Die farblosen, plättchenförmigen, luft- und hydrolysebeständigen Kristalle von Y₆Br₄Te₁₁O₂₉ entstanden bei Versuchen zur Darstellung einer bislang hypothetischen Verbindung mit der nominellen Zusammensetzung YBrTe₂O₅, die sich in Anlehnung an die vermeintlichen und nur aus Pulveruntersuchungen bekannten Lanthanoid(III)-Bromid-Oxoditellurate(IV) MBrTe₂O₅ (M = La, Nd, Sm, Gd, Er, Lu) [187-193] sowie das einkristalline und strukturell aufgeklärte Holmium(III)-Chlorid-Oxoditellurat(IV) HoClTe₂O₅ [200] bilden sollte. Die Synthese in evakuierten Kieselglasampullen erfolgte durch die Umsetzung von Yttriumsesquioxid Y₂O₃, Yttriumtribromid YBr₃ und Tellurdioxid TeO₂ im molaren Verhältnis von 1 : 1 : 6 bei 800 °C (8 d) im CsBr-Flux und ergab neben Y₆Br₄Te₁₁O₂₉ nur noch das halogenidfreie, ternäre Yttrium(III)-Oxotellurat(IV) Y₂Te₄O₁₁ [84, 85] (vgl. Kap. 3.3). Versuche zur gezielten Darstellung von Y₆Br₄Te₁₁O₂₉ im entsprechenden molaren Verhältnis der Edukte von 7:4:33 erbrachten bislang leider keine positiven Ergebnisse, sondern führten ebenfalls stets zur Bildung der letztgenannten Verbindung und nicht identifizierbarer Nebenprodukte. Bei der Strukturlösung und -verfeinerung aus den Röntgenbeugungsdaten eines geeigneten Einkristalls von Y₆Br₄Te₁₁O₂₉ (vgl. Tab. 6.3.3.a) gelang die Bestimmung der monoklinen Kristallstruktur in der nicht-zentrosymmetrischen Raumgruppe Cc (Nr. 9). Die Verifizierung der häufig fälschlicherweise angegebenen Raumgruppe Cc erfolgte mit Hilfe des Programms PLATON [34, 35], was eine Übereinstimmung von 100 % erbrachte. Das Fehlen von Inversionszentren lässt sich aber auch schon am Aufbau der Kristallstruktur von Y₆Br₄Te₁₁O₂₉ gut nachvollziehen (vgl. Kap. 6.3.2).

6.3.2 Strukturbeschreibung von Y₆Br₄Te₁₁O₂₉

Das Yttrium(III)-Bromid-Oxotellurat(IV) $Y_6Br_4Te_{11}O_{29}$ kristallisiert monoklin in der *nicht*-zentrosymmetrischen Raumgruppe *Cc* (Nr. 9) mit den Gitterparametern a = 1736,64(9), b = 1791,57(9), c = 1106,14(7) und $\beta = 108,345(6)^{\circ}$ sowie vier Formeleinheiten pro Elementarzelle. Da in der Raumgruppe *Cc* nur die allgemeine Lage 4*a* existiert, besetzen sämtliche Atome in der azentrischen Kristallstruktur diese *Wyckoff*-Positionen. Die Anzahl der kristallographisch unabhängigen Teilchen entspricht damit exakt ihrer Anzahl in der chemischen Formel Y₆Br₄Te₁₁O₂₉, die Kristallstruktur enthält also insgesamt 4 × 50 Atome pro Elementarzelle (vgl. Tab. 6.3.3.b).

Die sechs Y^{3+} -Kationen werden von jeweils acht O^{2-} -Anionen (d(Y-O) = 222 - 265 pm, vgl. Tab. 6.3.3.c) in Gestalt von mehr oder weniger verzerrten quadratischen Antiprismen umgeben. Im Falle von $(Y1)^{3+}$ tritt zudem noch $(O4)^{2-}$ mit d(Y1-O4) = 295 pm als deutlich weiter entfernte Kappe über der $O1\cdots O5\cdots O7\cdots O8$ -Basisfläche des quadratischen $[(Y1)O_8]^{13-}$ -Antiprismas hinzu (Abb. 6.3.2.a), wodurch sich für dieses Yttrium(III)-Kation eine Koordinationszahl von insgesamt CN = 8+1 ergibt.

Abb. 6.3.2.a: Koordinationspolyeder der Y^{3+} -Kationen in der monoklinen Kristallstruktur von $Y_6Br_4Te_{11}O_{29}$.

Die $[YO_8]^{13}$ -Polyeder treten über jeweils vier gemeinsame Prismenkanten zu leicht gewellten, netzartigen Schichten gemäß $_{\infty}^2 \{[Y_6O_{24}]^{30^-}\}$ parallel zur (010)-Ebene zusammen. Als Grundelement dieser Schichten können dabei in Richtung [101]

verlaufende Endlosketten kantenverknüpfter $[YO_8]^{13}$ -Polyeder mit sich wiederholenden Y1–Y6-Fragmenten konstruiert werden, die mit dazu parallelen und versetzten Ketten des gleichen Typs über ebenfalls gemeinsame Kanten verbunden sind. Die so entstehenden ${}^2_{\infty} \{ [Y_6O_{24}]^{30-} \}$ -Schichten weisen einen schachbrettartigen Charakter auf, der sich mit den Polyedern als schwarze Felder und den dazwischen befindlichen Lücken als weiße Felder (Abb. 6.3.2b) ergibt. Das Verknüpfungsmuster und Erscheinungsbild dieser Schichten entspricht damit jenem der ${}^2_{\infty} \{ [LuO_4]^{9-} \}$ -Lagen in Na₂Lu₃I₃[TeO₃]₄ (monoklin, *P2/c*) [210].

Abb. 6.3.2.b: Schachbrettartige ${}_{\infty}^{2} \{ [Y_6O_{24}]^{30-} \}$ -Schicht aus kantenverknüpften $[YO_8]^{13-}$ -Polyedern parallel zur (010)-Ebene in der Kristallstruktur von $Y_6Br_4Te_{11}O_{29}$.

Während man in Na₂Lu₃I₃[TeO₃]₄ nur diskrete $[TeO_3]^{2^-}$ -Anionen vorfindet, die über keine der sonst so typischen starken sekundären Te⁴⁺...O²⁻-Wechselwirkungen verfügen, unterscheidet sich die Oxotellurat(IV)-Teilstruktur von Y₆Br₄Te₁₁O₂₉ gleich unter mehreren Gesichtspunkten erheblich davon. Die elf Tellur(IV)-Lagen können bereits über die Anzahl der kovalent angebunden Sauerstoffatome in ihren primären Koordinationssphären in zwei Gruppen unterteilt werden. Die Te⁴⁺-Kationen Te1 – Te3 werden von je vier O²⁻-Anionen (d(Te–O) = 186 – 223 pm) koordiniert, die zusammen mit den freien, *nicht*-bindenden Elektronenpaaren (*lone pairs*) trigonal- ψ^1 - bipyramidale $[\text{TeO}_4]^{4^-}$ -Einheiten ergeben. Die restlichen acht (Te4 – Te11) sind primär von jeweils nur drei Sauerstoffatomen (d(Te-O) = 185 - 199 pm) umgeben und bilden typische ψ^1 -Tetraeder der Form $[\text{TeO}_3]^{2^-}$. Zusätzlich betätigen (Te4)⁴⁺, (Te5)⁴⁺, (Te7)⁴⁺ und (Te8)⁴⁺ jeweils einen sekundären Te⁴⁺···O²⁻-Kontakt zu einem Sauerstoffatom einer benachbarten Oxotellurat(IV)-Einheit ($d(\text{Te4}\cdots\text{O23}) = 244 \text{ pm}$, $d(\text{Te5}\cdots\text{O26}) = 239 \text{ pm}$, $d(\text{Te7}\cdots\text{O13}) = 246 \text{ pm}$, $d(\text{Te8}\cdots\text{O28}) = 257 \text{ pm}$), so dass diese vier Tellur(IV)-Kationen insgesamt eine Koordinationszahl von CN = 3+1 aufweisen. Wie die Summenformel Y₆Br₄Te₁₁O₂₉ bereits andeutet, kann die Oxotellurat(IV)-Teilstruktur jedoch keineswegs nur über sekundäre Te⁴⁺···O²⁻-Wechselwirkungen ausgebildet werden. Während die ψ^1 -Tetraeder [(Te9)O₃]²⁻, [(Te10)O₃]²⁻ und [(Te11)O₃]²⁻ unter Nichtberücksichtigung sekundärer Te⁴⁺···O²⁻-Kontakte isoliert vorliegen, sind die restlichen Oxotellurat(IV)-Anionen über gemeinsame, kovalent gebundene Sauerstoffatome zu zwei größeren Einheiten kondensiert (Abb. 6.3.2.c).

Abb. 6.3.2.c: Koordinationsumgebungen der Te⁴⁺-Kationen in der Kristallstruktur von Y₆Br₄Te₁₁O₂₉. Die drei trigonalen ψ^1 -Bipyramiden und die drei ψ^1 -Tetraeder sind zu einem Oxohexatellurat(IV)-Anion $[Te_6O_{15}]^{6-}$ kondensiert, wobei die Verknüpfung zweier ψ^1 -Bipyramiden über eine gemeinsame Kante erfolgt (rot hervorgehoben) und $(O4)^{2-}$ gleichzeitig kovalent an Te1, Te2 und Te3 gebunden ist. $(Te7)^{4+}$ und $(Te8)^{4+}$ treten zu einer Oxoditellurat(IV)-Einheit $[Te_2O_6]^{4-}$ zusammen, die übrigen drei (Te9 – Te11) bilden die typischen ψ^1 -Tetraeder $[TeO_3]^{2-}$. Zum Teil treten auch wieder sekundäre Te⁴⁺···O²⁻-Kontakte (gestrichelt dargestellt) auf.

Die kleinere dieser Gruppierungen ist ein Oxoditellurat(IV)-Anion der Form $[Te_2O_5]^{2^-}$, das aus den über das gemeinsame Oxid-Anion (O18)²⁻ miteinander verbundenen ψ^1 -tetraedrischen $[(Te7)O_3]^{2^-}$ - und $[(Te8)O_3]^{2^-}$ -Einheiten besteht. Bei dem größeren Aggregat handelt es sich um ein Oxohexatellurat(IV)-Anion $[Te_6O_{15}]^{6^-}$, das aus den drei trigonalen ψ^1 -Bipyramiden $[TeO_4]^{4^-}$ (mit Te1 – Te3) und drei ψ^1 -Tetraedern $[TeO_3]^{2^-}$ (mit Te4 – Te6) aufgebaut ist. Das Kernstück dieses $[Te_6O_{15}]^{6^-}$ -Anions bilden allerdings die drei trigonalen ψ^1 -Bipyramiden. Die $[(Te1)O_4]^{4^-}$ - und $[(Te2)O_4]^{4^-}$ -Gruppen sind dabei über die gemeinsame O3…O4-Kante kondensiert, während sich die trigonale ψ^1 -Bipyramide $[(Te3)O_4]^{4^-}$ den beiden erstgenannten über (O4)²⁻ anschließt. Das Sauerstoffteilchen (O4)²⁻ ist daher mit d(Te1...O4) = 214 pm, d(Te2...O4) = 216 pm und d(Te3...O4) = 223 pm an diese drei Te⁴⁺-Kationen gleichzeitig kovalent gebunden und nimmt in allen drei $[TeO_4]^{4^-}$ -Subeinheiten jeweils eine apikale Position ein. Zusätzlich tritt (O4)²⁻ mit d(Y1-O4) = 295 pm auch noch als Kappe über dem $[(Y1)O_8]^{13^-}$ -Polyeder auf, wodurch sich insgesamt seine Koordinationszahl zu CN = 3+1 ergibt (Abb. 6.3.2.d).

Abb. 6.3.2.d:

Das Sauerstoffteilchen $(O4)^{2-}$ ist an drei Te⁴⁺-Kationen gleichzeitig kovalent gebunden $(d(Te\cdots O4) = 214 - 223 \text{ pm})$ und wird von diesen nahezu trigonal planar umgeben. Zusätzlich tritt es auch noch als Kappe über dem $[(Y1)O_8]^{13-}$ -Polyeder (d(Y1-O4) = 295 pm) auf, wodurch eine Koordinationszahl von 3+1 resultiert.

Abb. 6.3.2.e: Oxotellurat(IV)-Teilstruktur in der Kristallstruktur von Y₆Br₄Te₁₁O₂₉. Die $[Te_6O_{15}]^{6-}$, die $[Te_2O_6]^{4-}$ und die drei $[TeO_3]^{2-}$ -Einheiten treten über sekundäre Te⁴⁺···O²⁻-Kontakte (gestrichelt dargestellt) zu ausgedehnten ${}^0_{\infty} \{ [Te_{11}O_{29}]^{14-} \}$ -Gruppierungen zusammen, die voneinander isoliert vorliegen.

Das $[Te_6O_{15}]^{6^-}$ -Anion wird schließlich durch drei $[TeO_3]^{2^-}$ -Einheiten komplettiert, die sich über die jeweils anderen apikalen O²⁻-Anionen der trigonalen ψ^1 -Bipyramiden $([(Te4)O_4]^{2^-}$ über O2 an $[(Te1)O_4]^{4^-}$, $[(Te5)O_4]^{2^-}$ über O6 an $[(Te2)O_4]^{4^-}$ und $[(Te6)O_4]^{2^-}$ über O9 an $[(Te3)O_4]^{4^-}$) eckenverknüpft anlagern. Über die sekundären Te⁴⁺...O²⁻-Kontakte formieren sich diese einzelnen Oxotellurat(IV)-Einheiten letztendlich zu ${}^0_{\infty}$ { $[Te_{11}O_{29}]^{14^-}$ }-Gruppierungen (Abb. 6.3.2.e), die ihrerseits isoliert voneinander in der Kristallstruktur von Y₆Br₄Te₁₁O₂₉ vorliegen.

Abb. 6.3.2.f: ${}^{2}_{\infty} \{ [Y_{6}Te_{11}O_{29}]^{4+} \}$ -Schicht in der Kristallstruktur von $Y_{6}Br_{4}Te_{11}O_{29}$ mit Blick entlang [001] (*oben*) und [010] (*unten*). Die ${}^{0}_{\infty} \{ [Te_{11}O_{29}]^{14-} \}$ -Gruppierungen sind voneinander isoliert und befinden sich ober- und unterhalb der ${}^{2}_{\infty} \{ [Y_{6}O_{24}]^{30-} \}$ -Lagen. Im unteren Bild sind zur besseren Übersicht nur die Oxotellurat(IV)-Einheiten oberhalb der Yttrium–Sauerstoff-Polyederschicht abgebildet, die sekundären Te⁴⁺...O²⁻-Kontakte sind gestrichelt dargestellt.

Die ${}^{0}_{\infty}$ {[Te₁₁O₂₉]¹⁴⁻}-Gruppierungen sind wiederum über gemeinsame Sauerstoffatome mit der $\frac{2}{\infty} \{ [Y_6 O_{24}]^{30^-} \}$ -Teilstruktur verknüpft und befinden sich ober- und unterhalb dieser Lagen, woraus Schichten gemäß $\frac{2}{\infty} \{ [Y_6 Te_{11} O_{29}]^{4+} \}$ parallel zur *ac*-Ebene resultieren (Abb. 6.3.2.f). Die O²⁻-Anionen O2, O3, O4, O6 und O18, die zur Kondensation innerhalb der Oxotellurat(IV)-Teilstruktur beitragen, gehören dabei nicht zu den primären Koordinationssphären der Y³⁺-Kationen. Diese fünf Sauerstoffteilchen befinden sich jedoch jeweils genau über den Basisflächen von quadratischen $[YO_8]^{13-}$ -Antiprismen (Abb. 6.3.2.f, *unten*). Während $(O4)^{2-}$ mit d(Y1-O4) = 295 pm noch als koordinativ wirksam erscheint, sind die restlichen vier mit $d(Y \cdots O) = 312 - 351$ pm bereits zu weit entfernt. Das ebenfalls innerhalb der Oxotellurat(IV)-Teilstruktur verbrückende Teilchen (O9)²⁻ stellt in der Kristallstruktur eine Besonderheit dar, da es neben seiner direkten Anbindung an (Te3)⁴⁺ und (Te6)⁴⁺ auch zu den Koordinationssphären von (Y2)³⁺ und (Y6)³⁺ zählt, wodurch sich für $(O9)^{2^{-}}$ eine recht hohe Koordinationszahl von vier ergibt. Die $\frac{2}{\infty} \{ [Y_6 Te_{11}O_{29}]^{4^+} \}$ -Schichten sind in der Kristallstruktur von Y₆Br₄Te₁₁O₂₉ in Richtung der kristallographischen b-Achse gestapelt, wobei der Abstand zweier Schichten im Mittel etwa 380 pm beträgt, also ungefähr einem Fünftel des Basisvektors $b \approx 1792$ pm der Elementarzelle. Die vier Br-Anionen befinden sich in den Zwischenräumen und sind in ovalen Kanälen entlang [001] aufgereiht (Abb. 6.3.2.h und 6.3.2.i), die von Te⁴⁺-Kationen begrenzt werden und gleichzeitig deren freie, nicht-bindende Elektronenpaare (lone pairs) beherbergen.

Die Bromid-Anionen dienen einerseits dem Ladungsausgleich, andererseits übernehmen sie so als einzige Teilchen die Verknüpfung der ${}^{2}_{\infty} \{ [Y_6Te_{11}O_{29}]^{4+} \}$ -Schichten zu einer dreidimensionalen Kristallstruktur. Dies ist insofern verwunderlich, da die Bromid-Anionen dabei über *keine* direkten, primären Anbindungen als Liganden an die Kationen verfügen. Während zu den Y³⁺-Kationen überhaupt keine attraktiven Kontakte ($d_{min}(Br\cdots Y) = 451 \text{ pm}$) identifiziert werden können, bestehen zwischen den Br⁻-Anionen und jeweils acht Te⁴⁺-Kationen (Abb. 6.3.2.g) mit $d(Br\cdots Te) = 318 - 451 \text{ pm}$ (im Durchschnitt etwa 350 pm) nur schwache sekundäre und damit ausschließlich ionische Wechselwirkungen. Dies lässt sich auch anhand der *Bond-Valence*-Summen [99, 104] für die Br⁻-Anionen nur Werte von $\sum_{BV} \approx 0,5$ für ein einzelnes Bromid-Anion ergeben, womit diese Br⁻-···Te⁴⁺-Kontakte kaum mehr als primäre Anbindungen gewertet werden können.

Eine ähnliche Situation ist auch im pseudo-monoklinen Ba₂Cu₂Te₄O₁₁Br₂ (triklin, $C\overline{1}$) [212] anzutreffen, dessen Kristallstruktur aus $^{2}_{\infty}$ {[Ba₂Cu₂Te₄O₁₁]²⁺}-Schichten besteht, die ebenfalls nur durch die dazwischen befindlichen Bromid-Anionen über rein ionische Br⁻...Te⁴⁺-Wechselwirkungen untereinander verknüpft werden.

Abb. 6.3.2.g: Koordinationsumgebungen der Br⁻-Anionen aus jeweils acht Te⁴⁺-Kationen in der Kristallstruktur von Y₆Br₄Te₁₁O₂₉. Aufgrund der großen Abstände (d(Br···Te) = 318 – 451 pm) bestehen nur ionische Wechselwirkungen zwischen den Teilchen.

Abb. 6.3.2.h: Verteilungsmuster der Br⁻-Anionen zwischen den $_{\infty}^{2} \{ [Y_6Te_{11}O_{29}]^{4+} \}$ -Schichten in der Kristallstruktur von $Y_6Br_4Te_{11}O_{29}$.

Die Bromid-Anionen sind in Y₆Br₄Te₁₁O₂₉ sogar noch schwächer an die Kationen gebunden als die Chlorid-Anionen in den Vertretern des Formeltyps M₁₁ClTe₁₆O₄₈, die immerhin über direkte Anbindungen an zwei Te⁴⁺-Kationen verfügen, jedoch ebenfalls keinen Kontakt zu den Seltenerdmetall(III)-Kationen aufweisen (vgl. Kap. 6.2.2). In Yb₃BrTe₂O₈ [45] bestehen dagegen ebenfalls nur vier ionische Br⁻…Te⁴⁺-Kontakte ($d(Br \dots Te) = 340 - 354$ pm), das Br⁻-Anion ist dort allerdings auch noch direkt an ein Yb³⁺-Kation (d(Yb2-Br) = 305 pm) gebunden. Die rein über sekundäre Br⁻…-Te⁴⁺Kontakte erfolgende Einbindung der Bromid-Anionen in die Kristallstruktur von Y₆Br₄Te₁₁O₂₉ stellt somit ein Novum auf dem Gebiet der Seltenerdmetall(III)-Halogenid-Oxotellurat(IV)-Chemie dar.

Abb. 6.3.2.i: Gesamtstruktur von $Y_6Br_4Te_{11}O_{29}$ mit Blick entlang [001]. Die Br⁻-Anionen in den ovalen Kanälen zwischen den $_{\infty}^{2} \{ [Y_6Te_{11}O_{29}]^{4+} \}$ -Schichten verknüpfen diese entlang [010] über ionische Br⁻···Te⁴⁺-Wechselwirkungen. Der *nicht*-zentrosymmetrische Charakter der Kristallstruktur lässt sich an der relativen Anordnung der Oxotellurat(IV)-Einheiten zueinander gut nachvollziehen. Die Br⁻···Te⁴⁺- und die sekundären Te⁴⁺···O²⁻-Kontakte sind gestrichelt dargestellt.

Aufgrund dieser strukturellen Gegebenheiten ist es zudem umso erstaunlicher, dass diese Verbindung hydrolysebeständig bleibt. Auch bezüglich der Oxotellurat(IV)-Teilstruktur weist die Kristallstruktur von $Y_6Br_4Te_{11}O_{29}$ bemerkenswerte Eigentümlichkeiten auf. Sowohl die Kondensation zweier Oxotellurat(IV)-Anionen über eine gemeinsame Kante als auch die direkte kovalente Anbindung eines Sauerstoffatoms an drei Tellur(IV)-Kationen konnte bislang noch nie in ternären quaternären Seltenerdmetall(III)-Oxotelluraten(IV) oder Seltenerdmetall(III)-Halogenid-Oxotelluraten(IV) beobachtet werden. Die typischen sekundären $Te^{4+} \cdots O^{2-}$ -Kontakte treten zwar auch in $Y_6Br_4Te_{11}O_{29}$ auf, jedoch ohne eine wichtige strukturtragende Funktion zu erfüllen. Daher kann der strukturelle Aufbau unter Nichtberücksichtigung der sekundären Te⁴⁺...O²⁻-Wechselwirkungen auch recht vorteilhaft und einfach gemäß Y₆Br₄[Te₆O₁₅][Te₂O₅][TeO₃]₃ beschrieben werden.

6.3.3 Strukturdaten für Y₆Br₄Te₁₁O₂₉

Formel	$Y_6Br_4Te_{11}O_{29}$				
Kristallsystem	monoklin				
Raumgruppe	<i>Cc</i> (Nr. 9)				
Zahl der Formeleinheiten (Z)	4				
Gitterparameter, a / pm	1736,64(9)				
<i>b</i> / pm	1791,57(9)				
<i>c</i> / pm	1106,14(7)				
β / grd	108,345(6)				
Berechnete Dichte $(D_x / g \cdot cm^{-3})$	5,532				
Molvolumen ($V_m / cm^3 \cdot mol^{-1}$)	491,80				
Diffraktometer, Wellenlänge	IPDS-I (Fa. STOE & Cie), Mo-K α : $\lambda = 71,07$ pm				
Messbereich $(\pm h / \pm k / \pm l)$	26 / 27 / 16				
Messgrenze (θ_{max} in grd)	32,9				
<i>F</i> (000)	4712				
Datenreduktion	Untergrund, Polarisations- und Lorentzfaktoren				
Absorptionskorrektur	numerisch mit X-SHAPE [25] bzw. HABITUS [26]				
Absorptionskoeffizient (μ / mm^{-1})	25,16				
Zahl der gemessenen Reflexe	23567				
Symmetrieunabhängige Reflexe	11140				
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$	7362				
$R_{\rm int}$ / R_{σ}	0,082 / 0,093				
Strukturlösung und -verfeinerung	Programmpaket SHELX-97 [29]				
Streufaktoren	nach International Tables, Vol. C [65]				
$R_1 / R_1 \operatorname{mit} F_o \ge 4\sigma(F_o)$	0,098 / 0,070				
wR_2	0,191				
Flack-x-Parameter [66]	0,02(1)				
Goodness of Fit (GooF)	0,915				
Extinktionskoeffizient (g)	0,00041(3)				
Restelektronendichte, max.	3,66				
$(\rho \text{ in } e^- \cdot 10^{-6} \text{ pm}^{-3})$ min.	-3,99				

 Tabelle 6.3.3.a:
 Kristallographische Daten f
 ür Y6Br4Te11O29 und deren Bestimmung

Atom	Wyckoff-Lage	x / a	y / b	z / c	$U_{ m eq}$
Y1	4 <i>a</i>	0,08886(11)	0,24176(11)	0,0034(2)	197(4)
Y2	4a	0,25382(12)	0,25018(12)	0,3498(2)	202(4)
Y3	4a	0,42403(11)	0,26260(11)	0,6711(2)	194(4)
Y4	4a	0,08806(11)	0,22923(11)	0,5024(2)	196(4)
Y5	4a	0,25590(12)	0,24845(12)	0,8468(2)	193(4)
Y6	4a	0,42545(11)	0,25945(11)	0,1686(2)	201(4)
Br1	4a	0,08787(17)	0,00102(15)	0,5001(3)	326(5)
Br2	4a	0,26918(14)	0,00178(15)	0,8621(3)	303(5)
Br3	4a	0,22965(16)	0,49901(16)	0,3416(3)	345(5)
Br4	4a	0,41930(17)	0,49988(15)	0,6667(3)	333(5)
Te1	4a	0,02217(8)	0,41445(8)	0,81693(14)	220(3)
Te2	4a	0,01080(8)	0,41036(7)	0,10364(14)	225(3)
Te3	4a	0,21858(8)	0,38374(7)	0,09957(13)	198(3)
Te4	4a	0,30823(8)	0,11309(7)	0,14512(13)	209(3)
Te5	4a	0,30225(7)	0,11038(7)	0,63457(13)	202(3)
Te6	4a	0,40328(7)	0,38744(7)	0,38732(13)	192(2)
Te7	4a	0,47280(8)	0,12122(7)	0,92826(14)	207(3)
Te8	4a	0,19206(9)	0,38644(7)	0,58951(14)	213(3)
Te9	4a	0,10980(7)	0,10963(7)	0,23356(12)	194(3)
Te10	4a	0,11124(7)	0,10969(7)	0,74471(12)	193(3)
Te11	4a	0,39674(7)	0,38875(7)	0,88043(13)	193(2)
01	4a	0,0220(9)	0,3105(8)	0,8231(18)	232(31)
O2	4a	0,4209(8)	0,0849(7)	0,1718(14)	161(22)
O3	4a	0,4556(8)	0,0611(7)	0,4291(15)	187(24)
O4	4a	0,1016(8)	0,4060(9)	0,0082(16)	226(29)
05	4a	0,4948(10)	0,1914(8)	0,5672(17)	244(33)
06	4a	0,4112(8)	0,0757(8)	0,6493(20)	285(37)
O7	4a	0,2059(9)	0,3063(8)	0,9834(16)	235(30)
08	4a	0,1708(9)	0,3221(10)	0,1943(16)	265(35)
O9	4a	0,3325(9)	0,3398(9)	0,2389(16)	227(30)
O10	4a	0,3191(9)	0,1827(8)	0,0264(15)	187(26)
011	4a	0,3414(9)	0,1861(10)	0,2708(17)	275(34)
012	4a	0,3121(10)	0,1908(8)	0,5362(15)	230(30)
013	4a	0,3477(9)	0,1740(8)	0,7792(16)	211(29)
O14	4a	0,3612(9)	0,3207(9)	0,4790(16)	221(30)
O15	4a	0,4849(9)	0,3270(8)	0,3613(17)	225(29)
016	4a	0,0140(9)	0,3172(9)	0,3276(18)	259(32)
O17	4a	0,4868(9)	0,1999(8)	0,0442(16)	227(30)

Tabelle 6.3.3.b: Atomlagen und Koeffizienten der isotropen äquivalenten Auslenkungsparameter^{a)} (U_{eq} in pm²) für Y₆Br₄Te₁₁O₂₉

Atom	Wyckoff-Lage	x / a	y / b	z / c	$U_{ m eq}$
O18	4 <i>a</i>	0,0803(8)	0,4248(7)	0,5160(14)	172(25)
019	4a	0,1880(9)	0,3112(8)	0,4707(14)	192(27)
O20	4a	0,1608(10)	0,3161(10)	0,6928(17)	273(34)
O21	4a	0,1474(9)	0,1741(8)	0,3740(14)	197(28)
O22	4a	0,0264(8)	0,1715(8)	0,1313(17)	238(34)
O23	4a	0,1808(7)	0,1614(8)	0,1620(15)	185(28)
O24	4a	0,1499(8)	0,1778(9)	0,8791(16)	224(30)
O25	4a	0,0290(9)	0,1695(8)	0,6365(16)	249(33)
O26	4a	0,1823(8)	0,1589(9)	0,6684(16)	220(30)
O27	4a	0,4825(8)	0,3327(8)	0,8584(15)	192(26)
O28	4a	0,3280(8)	0,3373(8)	0,7388(15)	177(24)
O29	4 <i>a</i>	0,3624(9)	0,3216(9)	0,9845(17)	229(30)

Tabelle 6.3.3.b: Atomlagen und Koeffizienten der isotropen äquivalenten Auslenkungsparameter^{a)} (U_{eq} in pm²) für Y₆Br₄Te₁₁O₂₉ (*Fortsetzung*)

 $U_{\rm eq} = \frac{1}{3} [U_{22} + 1/\sin^2\beta (U_{11} + U_{33} + 2U_{13}\cos\beta)]$

Tabelle 6.3.3.c: Ausgewählte interatomare Abstände (d/pm) für Y₆Br₄Te₁₁O₂₉, Sekundär-
kontakte sind kursiv hervorgehoben

Y1	– O24	229,0	Y2	-012	225,7	Y3	– O22	228,9
	-05	230,7		- 08	226,6		-014	230,9
	-01	232,0		-011	228,7		-05	231,2
	-015	233,7		-019	229,2		– O27	236,1
	– O22	239,4		-014	233,2		-016	240,4
	-O7	240,9		- O21	237,8		-012	241,5
	– O23	243,6		– O23	260,7		- O28	243,4
	- 08	258,1		- 09	264,6		-013	259,0
	-O4	295,2						
Y4	– O21	223,1	Y5	-O7	222,1	Y6	-017	225,6
	-027	230,1		– O10	227,3		– O29	227,6
	– O25	231,4		– O20	230,7		– O25	231,9
	-O17	233,1		– O24	235,2		- O1	234,6
	-019	238,2		-013	237,3		-015	238,5
	– O26	239,7		– O29	238,4		- O10	243,9
	-016	251,2		– O28	254,3		- 09	246,5
	– O20	260,4		– O26	255,3		-011	248,4

Te1	-01	186,3	Te2	- 05	187,0	Te3	-07	185,8
	– O2	197,4		– O3	193,5		– O8	188,5
	– O3	199,2		- O6	196,5		– O4	200,3
	– O4	213,7		– O4	215,8		– 09	223,3
	-Br3	385,3		-Br3	419,5		-Br3	333,9
				– <i>Br3</i>	451,3		– Br3'	359,7
							-Br4	392,7
Te4	- O10	186,3	Te5	- O12	184,6	Te6	- O14	186,0
	- O11	186,3		– O13	192,4		- O15	187,6
	– O2	195,1		– O6	194,8		– 09	191,4
	<i>– O23</i>	243,8		<i>- 026</i>	239,2		-Br4	324,5
	-Br2	338,9		-Br2	337,1		-Br3	351,9
	-Br2'	359,1		-Br2'	351,6		-Br4'	362,6
	-Brl	418,7		-Br1	405,3		-Brl	366,8
Te7	– O16	186,4	Te8	– O19	186,8	Te9	- O21	188,0
	- O17	186,9		– O20	189,2		– O22	189,0
	- O18	199,1		- O18	197,7		– O23	190,3
	-013	246,6		-0.028	257,3		-Brl	318,2
	-Br2	399.8		-Br3	335.7		-Br2	334.5
		,		-Br3'	362,5		-Brl'	365,1
				-Br4	427.9		-Br4	371.5
					,			,
Te10	- 024	187,6	Te11	- O27	187,4			
	– O25	188,3		- O28	188,5			
	– O26	191,6		– O29	188.7			
	– Brl	325.4		-Br4	320.8			
	-Br2	327,1		– Br3	344,5			
	-Brl'	357.8		-Br4'	365.8			
	-Br4	373.1		-Brl	372.9			
					,-			

Tabelle 6.3.3.c: Ausgewählte interatomare Abstände (d/pm) für Y₆Br₄Te₁₁O₂₉, Sekundär-
kontakte sind kursiv hervorgehoben (*Fortsetzung*)

Rubiv nerver	Senooen		
O1 – Te1 – O2	91,3	O16 – Te7 – O17	88,4
O1 – Te1 – O3	100,9	O16 – Te7 – O18	93,3
O1 – Te1 – O4	84,4	O17 – Te7 – O18	94,5
O2 - Te1 - O3	87,9	<i>O13</i> – Te7 – O16	78,4
O2 – Te1 – O4	159,8	<i>O13</i> – Te7 – O17	93,7
O3 – Te1 – O4	73,7	<i>O13</i> – Te7 – O18	168,2
	,		
O3 - Te2 - O4	74,3	O18 - Te8 - O19	98,4
O3 – Te2 – O5	92,9	O18 - Te8 - O20	92,9
O3 – Te2 – O6	91,3	O19 - Te8 - O20	89,5
O4 – Te2 – O5	86,7	<i>O28</i> – Te8 – O18	165,2
O4 – Te2 – O6	165,6	<i>O28</i> – Te8 – O19	91,7
O5 - Te2 - O6	95,6	<i>O28</i> – Te8 – O20	76,4
	,		-
O4 – Te3 – O7	85,4	O21 – Te9 – O22	97,8
O4 – Te3 – O8	81,0	O21 – Te9 – O23	86,6
O4 – Te3 – O9	162,8	O22 – Te9 – O23	86,5
O7 – Te3 – O8	88,2		
O7 – Te3 – O9	95,8	O24 – Te10 – O25	98,3
O8 – Te3 – O9	81,9	O24 – Te10 – O26	86,1
	, ,	O25 – Te10 – O26	85,5
O2 – Te4 – O10	87,7		
O2 – Te4 – O11	90,4	O27 – Te11 – O28	87,2
O10 – Te4 – O11	88,8	O27 – Te11 – O29	98,8
<i>O23</i> – Te4 – O2	166,3	O28 – Te11 – O29	87,6
<i>O23</i> – Te4 – O10	96,5		
<i>O23</i> – Te4 – O11	76,6	Te1 – O4 – Te2	100,0
		Te1 – O4 – Te3	138,6
O6 – Te5 – O12	91,8	Te2 – O4 – Te3	122,8
O6 – Te5 – O13	89,2		
O12 – Te5 – O13	86,5	Te1 – O3 – Te2	111,2
<i>O26</i> – Te5 – O6	166,7	Te1 – O2 – Te4	135,8
<i>O26</i> – Te5 – O12	93,1	Te2 – O6 – Te5	147,9
<i>O26</i> – Te5 – O13	78,7	Te3 – O9 – Te6	128,7
		Te7 – O18 – Te8	134,9
O9 – Te6 – O14	85,6		
O9 – Te6 – O15	85,7		
O14 – Te6 – O15	99,1		

Tabelle 6.3.3.d: Ausgewählte Winkel (∠/grd) für Y₆Br₄Te₁₁O₂₉, Sekundärkontakte sind kursiv hervorgehoben

	Y1	Y2	Y3	Y4	Y5	Y6	Te1	Te2	Te3	CN
Rr1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0
Br^2	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0 0+1/0+1	0/0	1
Br^2	0/0	0/0	0/0	0/0	0/0	0/0	0/0 $0\pm 1/0\pm 1$	$0 \pm 1/0 \pm 1$	0/0 0+2/0+2	1
Br/	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0+2/0+2 0+1/0+1	4
O1	1/1	0/0	0/0	0/0	0/0	1/1	1/1	0/0	0/0	3
01	0/0	0/0	0/0	0/0	0/0	0/0	1/1	0/0	0/0	1
O_2	0/0	0/0	0/0	0/0	0/0	0/0	1/1	0/0	0/0	1 2
03	0/0	0/0	0/0	0/0	0/0	0/0	1/1	1/1	0/0	$\frac{2}{2\pm 1}$
04	0⊤1/0⊤1 1/1	0/0	0/0	0/0	0/0	0/0	1/1	1/1	1/1	2⊤1 2
05	1/1	0/0	1/1	0/0	0/0	0/0	0/0	1/1	0/0	5 1
00	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	0/0	1
07	1/1	0/0	0/0	0/0	1/1	0/0	0/0	0/0	1/1 1/1	2
08	1/1	1/1	0/0	0/0	0/0	0/0	0/0	0/0	1/1 1/1	3 2
09	0/0	1/1	0/0	0/0	0/0	1/1	0/0	0/0	1/1	3 2
010	0/0	0/0	0/0	0/0	1/1	1/1 1/1	0/0	0/0	0/0	2
011	0/0	1/1	0/0	0/0	0/0	1/1	0/0	0/0	0/0	2
012	0/0	1/1	1/1	0/0	0/0	0/0	0/0	0/0	0/0	2
013	0/0	0/0	1/1	0/0	1/1	0/0	0/0	0/0	0/0	2
014	0/0	1/1	1/1	0/0	0/0	0/0	0/0	0/0	0/0	2
015	1/1	0/0	0/0	0/0	0/0	1/1	0/0	0/0	0/0	2
016	0/0	0/0	1/1	1/1	0/0	0/0	0/0	0/0	0/0	2
017	0/0	0/0	0/0	1/1	0/0	1/1	0/0	0/0	0/0	2
018	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0
019	0/0	1/1	0/0	1/1	0/0	0/0	0/0	0/0	0/0	2
O20	0/0	0/0	0/0	1/1	1/1	0/0	0/0	0/0	0/0	2
O21	0/0	1/1	0/0	1/1	0/0	0/0	0/0	0/0	0/0	2
O22	1/1	0/0	1/1	0/0	0/0	0/0	0/0	0/0	0/0	2
O23	1/1	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	2
O24	1/1	0/0	0/0	0/0	1/1	0/0	0/0	0/0	0/0	2
O25	0/0	0/0	0/0	1/1	0/0	1/1	0/0	0/0	0/0	2
O26	0/0	0/0	0/0	1/1	1/1	0/0	0/0	0/0	0/0	2
O27	0/0	0/0	1/1	1/1	0/0	0/0	0/0	0/0	0/0	2
O28	0/0	0/0	1/1	0/0	1/1	0/0	0/0	0/0	0/0	2
O29	0/0	0/0	0/0	0/0	1/1	1/1	0/0	0/0	0/0	2
CN	8+1	8	8	8	8	8	3+1	3+2	3+3	

Tabelle 6.3.3.e: Motive der gegenseitigen Zuordnung für $Y_6Br_4Te_{11}O_{29}^{a)$

	Te4	Te5	Te6	Te7	Te8	Te9	Te10	Te11	CN
Br1	0+1/0+1	0+1/0+1	0+1/0+1	0/0	0/0	0+2/0+2	0+2/0+2	0+1/0+1	8
Br2	0+2/0+2	0+2/0+2	0/0	0+1/0+1	0/0	0+2/0+2 0+1/0+1	0+2/0+2 0+1/0+1	0/0	7
Br3	0/0	0/0	0+1/0+1	0/0	0+2/0+2	0/0	0/0	0+1/0+1	4
Br4	0/0	0/0	0+2/0+2	0/0	0+1/0+1	0+1/0+1	0+1/0+1	0+2/0+2	7
01	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0
02	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1
O3	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0
O4	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0
05	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0
O6	0/0	1/1	0/0	0/0	0/0	0/0	0/0	0/0	1
07	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0
08	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0
09	0/0	0/0	1/1	0/0	0/0	0/0	0/0	0/0	1
O10	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1
011	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1
O12	0/0	1/1	0/0	0/0	0/0	0/0	0/0	0/0	1
O13	0/0	1/1	0/0	0+1/0+1	0/0	0/0	0/0	0/0	1+1
O14	0/0	0/0	1/1	0/0	0/0	0/0	0/0	0/0	1
O15	0/0	0/0	1/1	0/0	0/0	0/0	0/0	0/0	1
O16	0/0	0/0	0/0	1/1	0/0	0/0	0/0	0/0	1
O17	0/0	0/0	0/0	1/1	0/0	0/0	0/0	0/0	1
O18	0/0	0/0	0/0	1/1	1/1	0/0	0/0	0/0	2
O19	0/0	0/0	0/0	0/0	1/1	0/0	0/0	0/0	1
O20	0/0	0/0	0/0	0/0	1/1	0/0	0/0	0/0	1
O21	0/0	0/0	0/0	0/0	0/0	1/1	0/0	0/0	1
O22	0/0	0/0	0/0	0/0	0/0	1/1	0/0	0/0	1
O23	0+1/0+1	0/0	0/0	0/0	0/0	1/1	0/0	0/0	1+1
O24	0/0	0/0	0/0	0/0	0/0	0/0	1/1	0/0	1
O25	0/0	0/0	0/0	0/0	0/0	0/0	1/1	0/0	1
O26	0/0	0+1/0+1	0/0	0/0	0/0	0/0	1/1	0/0	1+1
O27	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	1
O28	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	1
O29	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	1
CN	3+1+3	3+1+3	3+4	3+1+1	3+3	3+4	3+4	3+4	

Tabelle 6.3.3.e: Motive der gegenseitigen Zuordnung für Y₆Br₄Te₁₁O₂₉ ^{a)} (*Fortsetzung*)

^{a)} Die Te⁴⁺...Br⁻-Kontakte sind kursiv hervorgehoben.

7 Europium(III)-dotierte Yttrium-Oxotellurate(IV)

7.1 Einführung

Bei anorganischen Lumineszenzmaterialien handelt es sich für gewöhnlich um kristalline Verbindungen, die Energie absorbieren können und diese anschließend wieder in Form von sichtbarem Licht emittieren [213]. Diese finden unter Anderem Verwendung in Farbfernsehröhren- und Plasmabildschirmen, Leuchtstofflampen oder Leuchtdioden [214]. Eines der technisch wichtigsten Einsatzgebiete von kristallinen Verbindungen mit zwei- und dreiwertigen Lanthanoid-Kationen sind daher Leuchtstoffe. Mit Hilfe von UV-Strahlung können dabei die 4f-Elektronen der Lanthanoide angeregt werden, beim Zurückfallen in ihren Grundzustand werden Photonen emittiert, deren Energie einer Wellenlänge des sichtbaren Lichts entspricht. Die Farbe des Lichts ist dabei von der Art und Ladung des jeweiligen Lanthanoid-Kations sowie dessen lokaler Umgebung im Wirtsgitter abhängig. Eu²⁺-Kationen erzeugen beispielsweise auf diesem Wege in Sr₅Cl[PO₄]₃:Eu²⁺ [215, 216] auf den Strontiumpositionen in oxidischer Umgebung blaues Licht, während sie in sulfidischer Koordinationssphäre wie in SrGa₂S₄:Eu²⁺ [217] grünes Licht emittieren. Neben der Art und Anzahl hat auch die geometrische Anordnung der Liganden sowie die Lagesymmetrie der Position des Lanthanoid-Kations im Wirtsgitter einen Einfluss auf mögliche Übergänge und damit auch auf die Farbe sowie Intensität des emittierten Lichts [218]. Im Falle von Eu³⁺-Kationen, die unter Anregung typischerweise rotes Licht (Hauptübergang: ${}^{5}D_{0} - {}^{7}F_{2}$, $\lambda \approx 615$ nm) erzeugen, eignen sich vor allem Yttriumverbindungen aufgrund der ähnlichen Ionenradien ($r_i(Y^{3+}) = 102$ pm und $r_i(Eu^{3+}) = 106$ pm für jeweils CN = 8) [21] bei gleichzeitiger Abwesenheit von f-Elektronen in den Y³⁺-Kationen als Wirtsgitter. Dabei finden neben dem binären Yttriumsesquioxid Y₂O₃:Eu³⁺ [214, 219, 220] auch ternäre Verbindungen wie beispielsweise das Yttriumoxidsulfid Y₂O₂S:Eu³⁺ [214, 221] oder auch das komplexe $[VO_4]^{3-}$ -Anionen enthaltende Yttrium-Oxovanadat(V) Y $[VO_4]$:Eu³⁺ [214, 219] vielfältige Verwendungsmöglichkeiten in technischen Einsatzgebieten. Die ternären Yttrium-Oxotellurate(IV) Y₂Te₄O₁₁ [84, 85] und Y₂Te₅O₁₃ [85, 90] (vgl. Kap. 3) wurden daher im Rahmen der experimentellen Arbeiten zur vorliegenden Dissertation als Wirtsgitter zur Dotierung mit Eu³⁺-Kationen ausgewählt, um anschließend die Lumineszenzeigenschaften der dotierten Verbindungen $Y_2Te_4O_{11}$:Eu³⁺ und Y₂Te₅O₁₃:Eu³⁺ mit Hilfe der Photolumineszenzspektroskopie zu untersuchen.

7.2 Die europium(III)-dotierten Yttrium-Oxotellurate(IV) $Y_2Te_4O_{11}:Eu^{3+}$ und $Y_2Te_5O_{13}:Eu^{3+}$

7.2.1 Vorbemerkungen und Darstellung

Untersuchungen zu den Lumineszenzeigenschaften von Lanthanoid(III)-dotiertem Yttrium(III)-Oxotellurat(IV) Y₂Te₄O₁₁ (vgl. Kap. 3.3) wurden zum Teil bereits vor der vollständigen strukturellen Charakterisierung des ersten einkristallinen Vertreters Nd₂Te₄O₁₁ [53] des durchgängig isotypen Formeltyps M₂Te₄O₁₁ durchgeführt. ENDO et al. [77, 81] konnten mit Hilfe der Photolumineszenzspektroskopie für $Y_2Te_4O_{11}:Ln^{3+}$ (Ln = Pr, Eu und Tb) sowohl eine starke Absorption des Wirtsgitters als auch eine intensive Lumineszenz, hervorgerufen durch die jeweils enthaltenen Lanthanoid(III)-Kationen, aufzeigen. Diese dotierten Verbindungen stellen damit aufgrund dieser Eigenschaften interessante Kandidaten für potentielle LASER-Anwendungen dar. ENDO et al. beobachteten in den Spektren von Y₂Te₄O₁₁:Eu³⁺ ein sehr schwaches "Quenching", das auf den schichtartigen Aufbau der durch Oxotellurat(IV)-Einheiten getrennten Seltenerdmetall(III)-Sauerstoff-Teilstruktur [81] sowie einer angenommen Position der Y³⁺/Eu³⁺-Kationen auf einer gemeinsamen Lage mit zurückgeführt wurde. Das Verhältnis der integrierten Intensitäten der Übergänge ${}^{5}D_{0} - {}^{7}F_{2}$ zu ${}^{5}D_{0} - {}^{7}F_{1}$ in diesen Spektren steht zudem nicht im Einklang mit den nun verfügbaren Daten für eine eindeutig symmetriefreie Lage der Seltenerdmetall(III)-Kationen in der Kristallstruktur von Y₂Te₄O₁₁. Auch die von ENDO et al. berichtete hohe Intensität des ${}^{5}D_{0} - {}^{7}F_{1}$ -Übergangs als vermeintliche Folge einer Lage der Kationen auf einem Inversionszentrum muss daher neu bewertet werden. Im Falle von Y₂Te₅O₁₃:Eu³⁺ konnten dagegen im Rahmen dieser Arbeit erstmalig Untersuchungen zum Lumineszenzverhalten dieser Verbindung durchgeführt werden. Für beide Wirtsgitter liegen nun detaillierte Informationen über den strukturellen Aufbau vor, die eine Interpretation der nachfolgend vorgestellten Emissionsspektren (vgl. Kap. 7.2.2) erheblich erleichterten.

Die europium(III)-dotierten Yttrium(III)-Oxotellurate(IV) $Y_2Te_4O_{11}:Eu^{3+}$ und $Y_2Te_5O_{13}:Eu^{3+}$ wurden analog zu den in Kapitel 3 beschriebenen Synthesebedingungen aus den binären Oxiden Yttriumsesquioxid Y_2O_3 und Europiumsesquioxid Eu_2O_3 sowie Tellurdioxid TeO₂ dargestellt. Die Menge an Eu_2O_3 wurde dabei jeweils so gewählt, dass etwa 3 % der Positionen von Y^{3+} in den Wirtsgittern $Y_2Te_4O_{11}$ und $Y_2Te_5O_{13}$ durch Eu^{3+} -Kationen besetzt sind. Die Phasenreinheit der beiden untersuchten Produkte konnte mit Hilfe der Pulverdiffraktometrie sichergestellt werden.

7.2.2 Lumineszenzeigenschaften von $Y_2Te_4O_{11}$:Eu³⁺ und $Y_2Te_5O_{13}$:Eu³⁺

Das Tieftemperatur-Photolumineszenzspektrum (T = 17 K; Anregung: Ar-Ionenlaser mit λ = 365 nm) der Y₂Te₅O₁₃:Eu³⁺-Probe ist in Abbildung 7.2.2.a dargestellt. Die orangefarbene Emission enthält für Eu³⁺-Kationen charakteristische Banden im Spektrum. Die meisten Banden können dabei problemlos als typische 4*f*-4*f*-Übergänge von den angeregten ⁵D_J-Zuständen in die ⁷F_J-Grundzustände zugeordnet werden. Da sich die Eu³⁺-Kationen auf den symmetriefreien Positionen der Y³⁺-Kationen (*Wyckoff*-Lage: 2*i*) befinden, also nicht auf einem Inversionszentrum liegen, können sich 4*f*-Orbitale des Europiums mit solchen entgegengesetzten Vorzeichens mischen, wodurch die Übergänge ⁵D₀-⁷F₂ und ⁵D₀-⁷F₄ der elektrischen Dipole erst ermöglicht werden. Der Übergang ⁵D₀-⁷F₂ mit $\Delta J = 2$ dominiert das Spektrum und überragt bezogen auf die integrierte Intensität den Übergang ⁵D₀-⁷F₁ ($\Delta J = 1$) des magnetischen Dipols um den Faktor 2. Der durch Mischung der ⁷F_J-Zustände mögliche Übergang ⁵D₀-⁷F₃ kann ebenfalls beobachtet werden.

Abb. 7.2.2.a: Emissionsspektrum von $Y_2Te_5O_{13}$:Eu³⁺ bei 17 K unter Anregung mit einem Argon-Ionenlaser ($\lambda = 365$ nm).

Durch die Aufspaltung der *f*-Orbitale im Kristallfeld und die damit verbundene Auftrennung des ${}^{5}D_{0} - {}^{7}F_{1}$ -Übergangs in drei sowie des ${}^{5}D_{0} - {}^{7}F_{2}$ -Übergangs in maximal fünf Anteile wird die niedrige Symmetrie der Y³⁺-Positionen, welche auch durch Eu³⁺-Kationen besetzt werden, auf gut nachvollziehbare Weise wiedergegeben. Die scharfe Linie bei 580,4 nm dürfte den Übergang ${}^{5}D_{0} - {}^{7}F_{0}$ darstellen. Über den Mechanismus dieses verbotenen Übergangs in Oxotellurat(IV)-Verbindungen ist nichts bekannt, jedoch könnte die Mischung der Zustände J = 0, J = 2 und J = 4 ein Hinweis auf dessen Existenz sein.

Abb. 7.2.2.b: Emissionsspektrum von $Y_2Te_5O_{13}$:Eu³⁺ (*oben*) im Vergleich zum Emissionsspektrum von $Y_2Te_4O_{11}$:Eu³⁺ (*unten*). Die Messungen erfolgten jeweils bei 17 K unter Anregung mit einem Argon-Ionenlaser ($\lambda = 363$ nm).

Da zwei kristallographisch unabhängige Positionen für die Eu³⁺-Kationen in Frage kommen, sollten auch zwei ${}^{5}D_{0} - {}^{7}F_{0}$ -Übergänge im Emissionsspektrum vorhanden sein. Eine eindeutige Zuordnung gestaltet sich allerdings schwierig, da eine Vielzahl an Linien des Übergangs ${}^{5}D_{1} - {}^{7}F_{3}$ im selben Bereich des Spektrums liegen. Die bereits oben erwähnte Aufspaltung der ${}^{5}D_{0} - {}^{7}F_{1}$ -Übergänge in drei sowie der ${}^{5}D_{0} - {}^{7}F_{2}$ -Übergänge in fünf Anteile legt jedoch die Vermutung nahe, dass nur eine der beiden möglichen Lagen tatsächlich von Eu³⁺ besetzt wird oder ein Energietransfer zwischen den beiden Positionen stattfindet. Zusätzliche Messungen und die Auswertung von Anregungsspektren könnten zur Klärung dieser Problemstellung beitragen. Im kurzwelligen Bereich des Spektrums läst sich eine schwache Relaxation aus den angeregten ⁵D₁-, ⁵D₂- und ⁵D₃-Zuständen in den Grundzustand beobachten. Diese Übergänge haben eine sehr kurze Lebensdauer (< 5 ms, Abb. 7.2.2.c) und sind thermisch deutlich empfindlicher. Strahlungsfreie Rückkehr in den ⁵D₀-Zustand durch mehrere Phononen oder Energietransfer zwischen benachbarten Eu³⁺-Kationen (die Probe ist mit 3 % Eu³⁺ dotiert) sind dabei wohl der Grund für die schwache Intensität der Linien. Das Emissionsspektrum von Y₂Te₅O₁₃:Eu³⁺ ist dem der um ein Äquivalent Tellurdioxid ärmeren Phase $Y_2Te_4O_{11}$:Eu³⁺ sehr ähnlich (Abb. 7.2.2.b). In Letzterem ist das Verhältnis der integrierten Intensitäten der Übergänge ${}^{5}D_{0} - {}^{7}F_{2}$ zu ${}^{5}D_{0} - {}^{7}F_{1}$ mit 2,8 : 1 sogar noch höher als in der $Y_2Te_5O_{13}$:Eu³⁺-Probe (2 : 1). Dies könnte durch eine noch stärkere Mischung der Wellenfunktionen der 4f-Orbitale der $[EuO_8]^{13-}$ -Polyeder (vgl. Kap. 3.3.2) im Kristallfeld verursacht werden, wobei sich auch hier die Eu^{3+} -Kationen in allgemeiner und damit symmetriefreier Lage befinden. Dies steht im Gegensatz zu den Ergebnissen der Untersuchungen von ENDO et al. [77, 81], die noch vor der ersten vollständigen Strukturaufklärung des Wirtsgitters Y₂Te₄O₁₁ erfolgte, wobei für die Y³⁺- bzw. Eu³⁺-Position ein Lage auf einem Inversionszentrum postuliert wurde. Die spektroskopischen Untersuchungen von CASCALES et al. [79] an isotypem $Eu_2Te_4O_{11}$ und $Gd_2Te_4O_{11}$: Eu^{3+} (welche zu dieser Zeit ebenfalls nur aus Pulveruntersuchungen bekannt waren) wiesen hingegen bereits auf eine allgemeine und damit symmetriefreie Position der Seltenerdmetall(III)-Kationen in beiden Verbindungen hin. Messungen der Photolumineszenz der Y₂Te₄O₁₁:Eu³⁺- und Y₂Te₅O₁₃:Eu³⁺-Proben bei Raumtemperatur (nicht abgebildet) führten zu geringfügig breiteren Banden wobei die jeweiligen Intensitäten der Lumineszenz aufgrund von thermischem "Quenching" jedoch um etwa die Hälfte zurückgingen.

Der Verlauf des Abklingens der Photolumineszenz in beiden Proben bei verschiedenen Wellenlängen ist in Abbildung 7.2.2.c dargestellt. Die Anregung der Elektronen der Eu³⁺-Kationen in noch höhere angeregte Zustände (durch Laserstrahlung mit $\lambda = 308$ nm) führt zu einer sehr schnellen Relaxation in den ⁵D₃-Zustand. Die verhältnismäßig großen energetischen Unterschiede der ⁵D_I-Zustände ermöglichen die Beobachtung der Emission von sichtbarem Licht aus allen diesen angeregten Zuständen. Der 5D0-Zustand wird dabei, wie bereits erwähnt, durch strahlungsfreie Übergänge aus noch höher angeregten Zuständen oder durch Energieübertragung zwischen benachbarten Eu³⁺-Kationen populiert. Dies ist in Abbildung 7.2.2.c in den Kurven 3 und 4 durch einen Intensitätsanstieg erkennbar. Die Entvölkerung des angeregten Zustands ⁵D₀ erfolgt in beiden Verbindungen bei langer Anregung exponentiell, wobei für Y₂Te₄O₁₁:Eu³⁺ eine Lebensdauer von $\tau = 0.9$ ms und für $Y_2Te_5O_{13}$:Eu³⁺ der Wert $\tau = 1,3$ ms bestimmt werden konnte. Die kürzere Lebensdauer im Falle der Y2Te4O11:Eu3+-Probe und die damit verbundene schnellere Relaxation stimmen gut mit dem höheren Verhältnis der Intensitäten von ⁷F₂ zu ⁷F₁ in deren Emissionsspektrum überein. Dies weist außerdem darauf hin, dass diese Übergänge

verglichen mit denen in der Y₂Te₅O₁₃:Eu³⁺-Probe weniger verboten stark sind. Im Falle der Y₂Te₄O₁₁:Eu³⁺-Probe entspricht das schnelle Abklingen der Linie bei 536 nm mit einer Lebensdauer von 46 µs der Rückkehr aus dem ⁵D₁-Zustand (Abb. 7.2.2.c, Kurven 2 und 5), wobei die Linie bei 510 nm (Lebensdauer: 12 µs, Kurve 1) den Übergang von ⁵D₂ markiert. Der annähernd lineare Verlauf der Abklingkurven 1, 2 und 5 in Abbildung 7.2.2.c ist ein deutliches Anzeichen für den Energietransfer zwischen benachbarten Eu³⁺-Kationen. Dieser Energietransfer wird dabei in Y₂Te₄O₁₁:Eu³⁺ bevorzugt innerhalb der $\frac{2}{\infty}$ {[Y_{2-x}Eu_xO₁₀]¹⁴⁻}-Schichten stattfinden, da dort die minimale Distanz zwischen zwei möglicherweise benachbarten Eu³⁺-Kationen rund 380 pm beträgt, während zwischen Schichten mindestens 700 pm zu überwinden wären. Ein solch zweidimensional ausgerichterter Energieübertrag wurde auch bereits von ENDO *et al.* [81] in lanthanoid(III)-dotiertem Y₂Te₄O₁₁ vermutet.

Abb. 7.2.2.c: Abklingkurven der Photolumineszenz detektiert bei 510 nm (Kurve 1: Übergang von ⁵D₂), bei 536 nm (Kurven 2 und 5: Übergang von ⁵D₁) und bei 616 nm (Kurven 3 und 4: Übergang ⁵D₀-⁷F₂). Die Anregung erfolgte jeweils mit $\lambda = 308$ nm bei Raumtemperatur. Die Kurven 1, 2 und 4 gehören zur Y₂Te₄O₁₁:Eu³⁺-Probe, die Kurven 3 und 5 zur Y₂Te₅O₁₃:Eu³⁺-Probe.

In Y₂Te₅O₁₃:Eu³⁺ besteht dagegen die Seltenerdmetall(III)–Sauerstoff-Teilstruktur nur noch aus eindimensionalen $_{\infty}^{1} \{ [Y_{4-x}Eu_{x}O_{20}]^{28-} \}$ -Doppelketten, wobei hier der durchschnittliche Abstand potentiell benachbarter Eu³⁺-Kationen rund 390 pm beträgt, während die kürzeste Entfernung zur nächsten Doppelkette bereits bei etwa 680 pm liegt. Der Energietransfer erfolgt in Y₂Te₅O₁₃:Eu³⁺ somit wohl ebenfalls bevorzugt innerhalb der $_{\infty}^{1} \{ [Y_{4-x}Eu_{x}O_{20}]^{28-} \}$ -Doppelketten und hat daher sogar nur eine eindimensionale Ausprägung.

8 Ausblick

Im Rahmen der experimentellen Arbeiten zur vorliegenden Abhandlung konnten durch Synthese und Strukturaufklärung von neuen Vertretern einige Lücken in den Formeltypen M₂Te₃O₉, M₂Te₄O₁₁ und M₂Te₅O₁₃ der ternären Seltenerdmetall(III)-Oxotellurate(IV) geschlossen werden. Für die Zusammensetzung M₂Te₃O₉ stehen dabei zukünftig die Suche nach weiteren Vertretern sowie die Prüfung der Existenzbereiche der inzwischen drei nachgewiesenen Strukturtypen im Vordergrund. Mit der kürzlich erfolgten Darstellung von Pr₂Te₃O₉ als erstem Isotypen von Nd₂Te₃O₉ im monoklinen A-Typ konnte bereits ein erster Erfolg verbucht werden. Von besonderem Interesse wäre hier auch die noch unbekannte Verbindung Y₂Te₃O₉. Einerseits ist deren Zugehörigkeit zu einem der drei Strukturtypen bislang ungeklärt, andererseits könnte sie analog zu Y₂Te₄O₁₁ und Y₂Te₅O₁₃ ebenfalls als Wirtsgitter zur Dotierung mit Lanthanoid(III)-Kationen und damit als potentieller Leuchtstoff genutzt werden. Im Formeltyp M₂Te₄O₁₁ ist Sc₂Te₄O₁₁ der einzige noch fehlende Vertreter. Dessen erfolgreiche Darstellung dürfte aufgrund der hohen Koordinationszahl von CN = 8 für die Sc³⁺-Kationen jedoch wohl nur über Hochdrucksynthesen zugänglich sein, oder die Natur hält eine andere strukturelle Lösung bereit. Für den Formeltyp M2Te5O13 könnte die Existenz von Vertretern mit größeren Lanthanoiden als Dysprosium geprüft werden und ob sich die Isotypie der Vertreter auch in dieser Richtung fortsetzt oder eventuell weitere Strukturtypen auftreten. Weiterhin sollte auch das Ziel verfolgt werden, neue und damit bislang noch unbekannte Vertreter anderer Formeltypen von Seltenerdmetall(III)-Oxotelluraten(IV) darzustellen. Dies könnte eventuell durch den Einsatz neuer Synthesemethoden gelingen. Vor allem ein gesicherter Existenzbeweis von früher postulierten Phasen wie etwa M2TeO5, M2Te2O7 oder M2Te6O15 durch die Gewinnung und strukturelle Charakterisierung zumindest eines Vertreters in Form von Einkristallen sollte hierbei im Mittelpunkt stehen. Bezüglich der strukturellen Eigenschaften wäre gerade bei tellurdioxidreichen Verbindungen interessant, inwiefern den starken sekundären Te⁴⁺...O²⁻-Wechselwirkungen eine essentielle strukturtragende Funktion, wie in den Kristallstrukturen der Zusammensetzung $M_2Te_5O_{13}$ zu beobachten ist, zukommt.

Versuche zur Synthese weiterer gemischtvalenter Seltenerdmetall(III)-Oxotellurate(IV,VI) neben Ho₄Te₁₁O₂₉ auf Grundlage der hier erstmals erfolgreich durchgeführten Umsetzung von Seltenerdmetall(III)-Sesquioxiden und Seltenerdmetalltrihalogeniden mit Tellurtrioxid und einer damit verbunden partiellen Reduktion von Te^{VI} zu Te^{IV} unter Bildung elementarer Halogene dürften erfolgversprechend sein. Insbesondere die Entwicklung einer Möglichkeit zur Steuerung des Te^{VI}:Te^{IV}-Verhältnisses in den Zielverbindungen sollte zur Darstellung neuer, bislang unbekannter Zusammensetzungen führen. Auf dem Gebiet der Seltenerdmetall(III)-Oxotellurate(VI) fehlen im Formeltyp M_2 TeO₆ mit M = Ce, Dy und Er nur noch drei Vertreter, die bislang nicht einkristallin erhalten werden konnten. Außer der Schließung dieser Lücken sollte zudem geprüft werden, ob neben Tm₂TeO₆ und Yb₂TeO₆ (dessen Existenz jedoch nur für den trigonalen B-Typ durch Einkristalluntersuchungen belegt ist) noch weitere dimorphe Vertreter existieren. Zukünftige thermische Analysen an diesen Verbindungen könnten dabei Aufschluss über die temperaturabhängigen Stabilitätsbereiche der beiden Phasen geben. In beiden Strukturtypen weisen die Kristallstrukturen keine Inversionszentren auf, wodurch sämtliche Vertreter des Formeltyps M2TeO6 für Anwendungen im Bereich der nicht-linearen Optik, wie beispielsweise dem SHG-Effekt (Second Harmonic Generation) zur potentiellen Frequenzverdopplung von LASER-Licht, eingesetzt werden könnten. Auch als mögliche Leuchtstoffe wäre eine Anwendung denkbar, denn selbst reines Eu₂TeO₆ zeigt die typische orangerote Lumineszenz der Eu³⁺-Kationen. Insbesondere die einfache und reproduzierbare Synthese von Y₂TeO₆ in phasenreiner Qualität eröffnet nun die Möglichkeit, die Verbindung als Wirtsgitter zur Dotierung mit Eu³⁺, Tb³⁺ oder anderen Lanthanoid(III)-Kationen zu nutzen und deren Lumineszenzeigenschaften zu untersuchen. Weiterhin fehlt bei den Seltenerdmetall(III)-Oxotelluraten(VI) für die vermeintliche Zusammensetzung M₆TeO₁₂ bislang jeder Beweis für deren Existenz, der durch die Synthese und Strukturaufklärung von einkristallinen Vertretern erbracht werden könnte.

Bei den quaternären Seltenerdmetall(III)-Halogenid-Oxotelluraten(IV) konnte nur für den Formeltyp $M_{11}CITe_{16}O_{48}$ mit M = Gd, Dy – Yb eine isotype Reihe nachgewiesen werden. Für die Zusammensetzungen MXTeO₃ und MXTe₂O₅ existiert mit HoClTeO₃ und HoClTe₂O₅ nur jeweils ein einziger einkristalliner Vertreter. Deren Kristallstrukturen ähneln zudem in keiner Weise den aus Pulveruntersuchungen postulierten. Auch Yb₃BrTe₂O₈ und Y₆Br₄Te₁₁O₂₉ sind auf dem Gebiet der Bromid-Oxotellurate(IV) die einzigen nachgewiesenen Verbindungen. Verifizierte quaternäre Iodid-Oxotellurate(IV) sind bislang gänzlich unbekannt. Hier besteht also noch erheblicher Forschungsbedarf.

Nach den ersten erfolgreichen Untersuchungen der Eu³⁺-Emission für Y₂Te₄O₁₁:Eu³⁺ und Y₂Te₅O₁₃:Eu³⁺ sollten Messungen zum Absorptionsverhalten der beiden Verbindungen zur Klärung der noch verbliebenen Fragen führen. Wichtig wäre hierbei zu wissen, ob mögliche *s–p*-Übergänge am *nicht*-bindenden Elektronenpaar des Te⁴⁺-Kations als Energiereservoir bei der Anregung der typischen Eu³⁺-Emissionen eine Rolle spielen. Solche Antenneneffekte wurden kürzlich im Übergangsmetall-Szenario auf der Basis einer *charge-transfer*-Anregung im [MoO₄]^{2–}-Anion für YF[MoO₄]:Eu³⁺ [222] nachgewiesen und ausgenutzt. Weitere Dotierungsversuche zur Optimierung des Eu³⁺-Gehalts in den Wirtsgittern sowie der Einsatz anderer Lanthanoid(III)-Kationen wie etwa Tb³⁺ oder Dotierungskombinationen mit mehreren Spezies wären ebenfalls interessante Forschungsvorhaben. Ein Vergleich des Lumineszenzverhaltens von lanthanoid(III)-dotierten Seltenerdmetall(III)-Oxotelluraten(VI) (wie zum Beispiel Y_2 TeO₆) mit entsprechend dotierten Seltenerdmetall(III)-Oxotelluraten(IV) könnte zudem ebenfalls Aufschluss über einen möglichen Einfluss der Valenz und/oder der freien Elektronenpaare (*lone pairs*) von Te⁴⁺-Kationen auf die bereits angesprochene Absorption des Wirtsgitters bzw. den Energietransfer und die Emission der als Aktivatoren und Emittern eingesetzten Lanthanoid(III)-Kationen geben.

Literatur

- [1] A. F. Holleman, E. Wiberg, N. Wiberg, *Lehrbuch der Anorganischen Chemie*, 102. Aufl., de Gruyter, Berlin, **2007**.
- [2] F. Szabadváry, res montanarum 1992, 5, 13.
- [3] E. Diemann, A. Müller, H. Babu, Chem. in unserer Zeit 2002, 36, 334.
- [4] E. H. Nickel, M. C. Nichols, *IMA/CNMNC List of Mineral Names*, 2007.
- [5] J. D. Grice, Can. Mineralog. 1989, 27, 133.
- [6] J. A. Mandarino, S. J. Williams, R. S. Mitchell, Can. Mineralog. 1963, 7, 443.
- [7] J. D. Grice, L. A. Groat, A. C. Roberts, Can. Mineralog. 1996, 34, 55.
- [8] S. A. Williams, R. V. Gaines, *Mineral. Mag.* 1975, 40, 127.
- [9] H. Effenberger, J. Zeman, H. Mayer, Am. Mineralog. 1978, 63, 847.
- [10] R. J. Gillespie, R. S. Nyholm, Quart. Rev. Chem. Soc. 1957, 11, 339.
- [11] R. J. Gillespie, I. Hargittai, *The VSEPR Model of Molecular Geometry*, 8 Aufl., Allyn & Bacon, Boston, **1991**.
- [12] H. Beyer, Z. Kristallogr. 1967, 124, 228.
- [13] G. Switzer, H. E. Swanson, Amer. Mineralog. 1960, 45, 1272.
- [14] M. Koçak, C. Platte, M. Trömel, Acta Crystallogr. 1979, B 35, 1439.
- [15] B. Gossner, O. Kraus, Z. Kristallogr. 1934, 88, 298.
- [16] O. Lindqvist, Acta Chem. Scand. 1970, 24, 3178.
- [17] C. Cohen-Addad, Bull. Soc. Fr. Minéral. Cristallogr. 1971, 94, 172.
- [18] O. Lindqvist, M. S. Lehmann, Acta Chem. Scand. 1973, 27, 85.
- [19] L. Falck, O. Lindqvist, Acta Crystallogr. 1978, B 34, 3145.
- [20] D. F. Mullica, J. D. Korp, W. O. Mulligan, G. W. Beall, I. Bernal, Acta Crystallogr. 1980, B 36, 2565.
- [21] R. D. Shannon, Acta Crystallogr. 1976, A 32, 751.
- [22] W. Massa, Kristallstrukturbestimmung, 3. Aufl., Teubner, Stuttgart, 2002.
- [23] W. Kleber, H.-J. Bautsch, J. Bohm, *Einführung in die Kristallographie*, 18. Aufl., Verlag Technik, Berlin, **1998**.
- [24] Fa. STOE & Cie GmbH, Programm $WinX^{POW}$, Darmstadt, 2001.
- [25] Fa. STOE & Cie GmbH, Programm X-SHAPE, Darmstadt, 1999.
- [26] W. Herrendorf, Programm HABITUS, Gießen, 1995.
- [27] G. M. Sheldrick, Programm SHELXL-93, Göttingen, 1993.
- [28] G. M. Sheldrick, Programm SHELXS-86, Göttingen, 1986.
- [29] G. M. Sheldrick, Programm SHELX-97, Göttingen, 1997.
- [30] Fa. STOE & Cie GmbH, Programm X-RED, Darmstadt, 1999.
- [31] Fa. STOE & Cie GmbH, Programm X-RED32, Darmstadt, 2005.

- [32] Fa. STOE & Cie GmbH, Programm X-STEP32, Darmstadt, 2000.
- [33] R. Hübenthal, R. Hoppe, Programm *MAPLE*, Gießen, 1995.
- [34] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
- [35] A. L. Spek, Programm *PLATON*, Universität Utrecht (NL), 2007.
- [36] K. Brandenburg, Fa. Crystal Impact GbR, Programm *DIAMOND*, Bonn, 2008.
- [37] R. A. Kent, H. A. Eick, Inorg. Chem. 1962, 1, 956.
- [38] R. Ballestracci, Compt. Rend. Hebd. Seanc. Acad. Sc., Serie B 1967, 264, 1736.
- [39] R. Benz, Acta Crystallogr. 1971, B 27, 853.
- [40] F. A. Weber, Th. Schleid, Z. Anorg. Allg. Chem. 1999, 625, 1833.
- [41] J. C. J. Bart, N. Giordano, Z. Anorg. Allg. Chem. 1981, 481, 153.
- [42] F. A. Weber, Th. Schleid, Z. Kristallogr. 1999, Suppl. 16, 67.
- [43] F. A. Weber, Th. Schleid, Z. Anorg. Allg. Chem. 2000, 626, 1285.
- [44] D. D. Hogarth, Am. Mineralog. 1977, 62, 403.
- [45] S. F. Meier, *Dissertation*, Universität Stuttgart, 2002.
- [46] S. F. Meier, Th. Schleid, Z. Kristallogr. 2002, Suppl. 19, 113.
- [47] S. F. Meier, P. Höss, Th. Schleid, Z. Anorg. Allg. Chem. 2009, 635, 768.
- [48] P. Höss, S. F. Meier, Th. Schleid, Z. Anorg. Allg. Chem. 2009, 635, in Vorbereitung.
- [49] G. G. Gospodinov, N. I. Ilieva, K. M. Gjurova, J. Solid State Chem. 1995, 118, 210.
- [50] G. G. Gospodinov, G. Baikusheva-Dimitrova, J. Therm. Anal. Cal. 2000, 61, 885.
- [51] G. G. Gospodinov, G. Baikusheva-Dimitrova, J. Therm. Anal. Cal. 2002, 68, 103.
- [52] M. J. Redman, W. P. Binnie, J. R. Carter, J. Less-Common Met. 1968, 16, 407.
- [53] A. Castro, R. Enjalbert, D. Lloyd, I. Rasines, J. Galy, J. Solid State Chem. 1990, 85, 100.
- [54] F. A. Weber, S. F. Meier, Th. Schleid, Z. Anorg. Allg. Chem. 2001, 627, 2225.
- [55] Y.-L. Shen, J.-G. Mao, J. Alloys Compds. 2004, 385, 86.
- [56] S. F. Meier, Th. Schleid, Z. Naturforsch. 2004, 59 b, 881.
- [57] S. F. Meier, Th. Schleid, Z. Naturforsch. 2005, 60 b, 720.
- [58] M. Trömel, W. Hützler, E. Münch, J. Less-Common Met. 1985, 110, 421.
- [59] M. Trömel, Z. Kristallogr. 1986, 174, 197.
- [60] M. Trömel, E. Münch, G. Blasse, G. J. Dirksen, J. Solid State Chem. 1988, 76, 345.
- [61] P. Niggli, Grundlagen der Stereochemie, 1. Aufl., Birkhäuser, Basel, 1945.
- [62] E. Parthé, Acta Crystallogr. 1980, B 36, 1.
- [63] J. Lima de Faria, E. Hellner, F. Liebau, E. Makovicky, E. Parthé, Acta Crystallogr. 1990, A 46, 1.
- [64] I. Krügermann, M. S. Wickleder, Z. Anorg. Allg. Chem. 2002, 628, 2197.
- [65] E. Prince (Hrsg.), *International Tables for Crystallography*, Vol. C, 3. Aufl., Springer, Dordrecht, **2004**.

- [66] H. D. Flack, Acta Crystallogr. 1983, A 39, 876.
- [67] W. T. A. Harrison, Acta Crystallogr. 2000, C 56, 627.
- [68] M. S. Wickleder, Z. Anorg. Allg. Chem. 2000, 626, 547.
- [69] I. Krügermann, M. S. Wickleder, J. Solid State Chem. 2002, 167, 113.
- [70] M. S. Wickleder, *Chem. Rev.* **2002**, *102*, 2011.
- [71] J. Wontcheu, Th. Schleid, Z. Anorg. Allg. Chem. 2003, 629, 1463.
- [72] M. S. Wickleder, in *Handbook on the Physics and Chemistry of Rare Earths*, 35 (Hrsg.: J.-C. G. Bünzli, K. A. Gschneidner jr., V. Pecharsky), Elsevier Science Publishers, Amsterdam, 2005, pp. 45.
- [73] I. Krügermann, M. S. Wickleder, J. Wontcheu, Th. Schleid, Z. Anorg. Allg. Chem. 2006, 632, 901.
- [74] J. Wontcheu, Th. Schleid, Z. Anorg. Allg. Chem. 2006, 632, 645.
- [75] P. Höss, Th. Schleid, Z. Anorg. Allg. Chem. 2008, 634, 2047.
- [76] C. Parada, J. A. Alonso, I. Rasines, Inorg. Chim. Acta 1986, 111, 197.
- [77] T. Endo, A. Shibuya, T. Sato, M. Shimada, J. Solid State Chem. 1989, 78, 237.
- [78] M. L. López, M. L. Veiga, F. Fernández, A. Jerez, C. Pico, J. Less-Common Met. 1990, 166, 367.
- [79] C. Cascales, E. Antic-Fidancev, M. Lemaitre-Blaise, P. Porcher, J. Alloys Compds. 1992, 180, 111.
- [80] C. Cascales, E. Antic-Fidancev, M. Lemaitre-Blaise, P. Porcher, J. Phys. Cond. Matter 1992, 4, 2721.
- [81] T. Endo, A. Shibuya, H. Takizawa, M. Shimada, J. Alloys Compds. 1993, 192, 50.
- [82] G. G. Gospodinov, K. M. Gjurova, Z. M. Dimitrova, J. Therm. Anal. Cal. 2001, 65, 983.
- [83] G. G. Gospodinov, N. I. Ilieva, Z. M. Dimitrova, J. Therm. Anal. Cal. 2002, 68, 179.
- [84] P. Höss, S. F. Meier, Th. Schleid, Z. Kristallogr. 2004, Suppl. 21, 162.
- [85] P. Höss, A. Osvet, F. Meister, M. Batentschuk, A. Winnacker, Th. Schleid, J. Solid State Chem. 2008, 181, 2783.
- [86] P. Höss, G. Starkulla, Th. Schleid, Acta Crystallogr. 2005, E 61, i113.
- [87] C. Cascales, P. Porcher, R. Sáez-Puche, J. Phys. Chem. Solids 1993, 54, 1471.
- [88] U. Müller, Anorganische Strukturchemie, 5. Aufl., Teubner, Wiesbaden, 2006.
- [89] P. Höss, Th. Schleid, Z. Anorg. Allg. Chem. 2007, 633, 1391.
- [90] P. Höss, S. F. Meier, Th. Schleid, Z. Kristallogr. 2005, Suppl. 22, 153.
- [91] R. Hoppe, Angew. Chem. 1970, 82, 7.
- [92] G. O. Brunner, D. Schwarzenbach, Z. Kristallogr. 1971, 133, 127.
- [93] R. Hoppe, Z. Kristallogr. 1979, 150, 23.
- [94] M. Weil, B. Stöger, Acta Crystallogr. 2008, E 64, i3.
- [95] N. J. Boukharrata, P. Thomas, J.-P. Laval, Acta Crystallogr. 2009, C 65, i23.

- [96] A. Byström, K. A. Wilhelmi, Acta Chem. Scand. 1951, 5, 1003.
- [97] W. H. Zachariasen, Acta Crystallogr. 1954, 7, 795.
- [98] I. D. Brown, A. D., Acta Crystallogr. 1985, B 41, 244.
- [99] N. E. Brese, M. O'Keeffe, Acta Crystallogr. 1991, B 47, 192.
- [100] M. O'Keeffe, N. E. Brese, J. Am. Chem. Soc. 1991, 113, 3226.
- [101] I. D. Brown, Acta Crystallogr. 1992, B 48, 381.
- [102] I. D. Brown, Acta Crystallogr. 1997, B 53, 381.
- [103] S. Adams, Acta Crystallogr. 2001, B 57, 278.
- [104] I. D. Brown, *The Chemical Bond in Inorganic Chemistry The Bond Valence Model.*, IUCr monographs on Crystallography, *12*, 4. Aufl., Oxford University Press, **2002**.
- [105] L. C. Pauling, J. Am. Chem. Soc. 1947, 69, 541.
- [106] L. C. Pauling, *The Nature of the Chemical Bond*, 3. Aufl., Cornell University Press, Ithaca, **1960**.
- [107] M. de Pedro, J. C. Trombe, A. Castro, J. Mat. Sci. Lett. 1995, 14, 994.
- [108] J. Wontcheu, Th. Schleid, Z. Anorg. Allg. Chem. 2002, 628, 1941.
- [109] M. de Pedro, I. Rasines, A. Castro, J. Mat. Sci. Lett. 1993, 12, 1637.
- [110] M. S. Wickleder, Z. Anorg. Allg. Chem. 2006, 632, 2377.
- [111] M. S. Wickleder, Z. Naturforsch. 2002, 57 b, 1414.
- [112] P. S. Berdonosov, D. G. Shabalin, A. V. Olenev, L. N. Demianets, V. A. Dolgikh, B. A. Popovkin, J. Solid State Chem. 2003, 174, 111.
- [113] M. S. Wickleder, Acta Crystallogr. 2003, E 59, i31.
- [114] C. Lipp, Th. Schleid, Z. Naturforsch. 2008, 63 b, 229.
- [115] S. F. Meier, Th. Schleid, Z. Anorg. Allg. Chem. 2002, 628, 526.
- [116] C. Delage, A. Carpy, A. H'Naifi, M. Goursolle, Acta Crystallogr. 1986, C 42, 1475.
- [117] M. L. López, M. L. Veiga, A. Jerez, C. Pico, J. Less-Common Met. 1991, 175, 235.
- [118] S. F. Meier, F. A. Weber, R. J. Gläser, Th. Schleid, Z. Anorg. Allg. Chem. 2001, 627, 2448.
- [119] R. Hoppe, Angew. Chem. 1966, 78, 52.
- [120] R. Hoppe, Angew. Chem. Int. Ed. 1966, 5, 95.
- [121] R. Hoppe, Angew. Chem. Int. Ed. 1970, 9, 25.
- [122] R. Hoppe, Izvj. Jugoslav. Centr. Krist. 1973, 8, 21.
- [123] R. Hoppe, in *Crystal Structure and Chemical Bonding in Inorganic Chemistry* (Hrsg.: C. J. M. Rooymans, A. Rabenau), North Holland Publ., Amsterdam, 1975.
- [124] R. Hoppe, Angew. Chem. 1980, 92, 106.
- [125] R. Hoppe, Angew. Chem. Int. Ed. 1980, 19, 110.
- [126] W. Bronger, C. Herudek, J. Huster, D. Schmitz, Z. Anorg. Allg. Chem. 1993, 619, 243.
- [127] W. Bronger, J. Eyck, K. Kruse, D. Schmitz, *Eur. J. Solid State Inorg. Chem.* **1996**, *33*, 213.

- [128] W. Hase, *Phys. Status Solidi* **1963**, *3*, 446.
- [129] W. Hase, Acta Crystallogr. 1984, B 40, 76.
- [130] O. Lindqvist, Acta Chem. Scand. 1968, 22, 977.
- [131] B. Wu, M. Zinkevich, F. Aldinger, D. Wen, L. Chen, J. Solid State Chem. 2007, 180, 3280.
- [132] P. Thomas, B. Jeansannetas, J. C. Champarnaud-Mesjard, B. Frit, *Eur. J. Solid State Inorg. Chem.* **1996**, *33*, 637.
- [133] N. Barrier, S. Malo, O. Hernandez, M. Hervieu, B. Raveau, J. Solid State Chem. 2006, 179, 3484.
- [134] M. Weil, B. Stöger, Acta Crystallogr. 2007, E 63, i116.
- [135] M. Weil, Z. Kristallogr. 2003, 218, 691.
- [136] M. Weil, Solid State Sci. 2004, 6, 29.
- [137] F. Daniel, J. Moret, M. Maurin, E. Philippot, Acta Crystallogr. 1978, B 34, 1782.
- [138] B. O. Loopstra, K. Goubitz, Acta Crystallogr. 1986, C 42, 520.
- [139] F. A. Weber, S. F. Meier, Th. Schleid, Z. Kristallogr. 2001, Suppl. 18, 149.
- [140] S. F. Meier, Th. Schleid, Z. Anorg. Allg. Chem. 2002, 628, 2198.
- [141] M. P. Minimol, K. Vidyasagar, Inorg. Chem. 2005, 44, 9369.
- [142] W. Klein, J. Curda, E. M. Peters, M. Jansen, Z. Anorg. Allg. Chem. 2005, 631, 2893.
- [143] M. Weil, Z. Anorg. Allg. Chem. 2007, 633, 1217.
- [144] R. de Pape, G. Ferey, Mat. Res. Bull. 1986, 21, 971.
- [145] M. T. Weller, M. J. Pack, N. Binsted, S. E. Dann, J. Alloys Compds. 1999, 282, 76.
- [146] M. T. Robinson, J. Phys. Chem. 1958, 62, 925.
- [147] M. Gaultier, G. Pannetier, Bull. Soc. Chim. Fr. 1968, 1968, 105.
- [148] J. A. McGinnety, Acta Crystallogr. 1972, B 28, 2845.
- [149] K. Ojima, Y. Nishihata, A. Sawada, Acta Crystallogr. 1995, B 51, 287.
- [150] F. Daniel, J. Moret, E. Philippot, M. Maurin, J. Solid State Chem. 1977, 22, 113.
- [151] F. Daniel, M. Maurin, J. Moret, E. Philippot, J. Solid State Chem. 1977, 22, 385.
- [152] W. Klein, J. Curda, E. M. Peters, M. Jansen, Z. Anorg. Allg. Chem. 2005, 631, 723.
- [153] D. Hottentot, B. O. Loopstra, Acta Crystallogr. 1979, B 35, 728.
- [154] J. Moret, F. Daniel, W. Loeksmanto, M. Maurin, E. Philippot, *Acta Crystallogr.* 1978, *B* 34, 3156.
- [155] H. Untenecker, R. Hoppe, J. Less-Common Met. 1987, 132, 79.
- [156] S. F. Meier, Th. Schleid, Z. Anorg. Allg. Chem. 2006, 632, 2151.
- [157] M. Weil, Z. Anorg. Allg. Chem. 2003, 629, 653.
- [158] L. Falck, O. Lindqvist, W. Mark, Acta Crystallogr. 1979, B 34, 1450.
- [159] J. Hauck, Z. Naturforsch. 1969, 24 b, 647.
- [160] B. Frit, G. Roult, J. Galy, J. Solid State Chem. 1983, 48, 246.

- [161] T. Wisser, R. Hoppe, Z. Anorg. Allg. Chem. 1989, 573, 133.
- [162] H. Schulz, G. Bayer, Naturwissenschaften 1970, 57, 393.
- [163] R. E. Newham, J. F. Dorrian, E. P. Meagher, Mat. Res. Bull. 1970, 5, 199.
- [164] H. Schulz, G. Bayer, Acta Crystallogr. 1971, B 27, 815.
- [165] D. Hottentot, B. O. Loopstra, Acta Crystallogr. 1981, B 37, 220.
- [166] H.-G. Burckhardt, C. Platte, M. Trömel, Acta Crystallogr. 1982, B 38, 2450.
- [167] N. Berand, K.-J. Range, J. Alloys Compds. 1994, 205, 3.
- [168] B. Frit, Compt. Rend. Hebd. Seanc. Acad. Sc., Serie C 1975, 281, 769.
- [169] B. Frit, R. Pressigout, D. Mercurion, Mat. Res. Bull. 1975, 10, 1305.
- [170] B. Frit, M. Jaymes, Bull. Soc. Chim. Fr. 1974, 1974, 402.
- [171] M. Trömel, F. W. Hützler, H.-G. Burckhardt, C. Platte, E. Münch, Z. Anorg. Allg. Chem. 1987, 551, 95.
- [172] S. F. Meier, Th. Schleid, J. Solid State Chem. 2003, 171, 408.
- [173] S. F. Meier, Th. Schleid, Z. Kristallogr. NCS 2004, 219, 359.
- [174] S. Nathanson, J. Inorg. Nucl. Chem. 1968, 30, 741.
- [175] V. A. Efremov, A. V. Tyulin, V. K. Trunov, *Kristallografiya* 1984, 29, 673.
- [176] A. Zalkin, J. D. Forrester, D. H. Templeton, Acta Crystallogr. 1964, 17, 1408.
- [177] L. L. Y. Chang, B. Phillips, *Inorg. Chem.* 1964, *3*, 1792.
- [178] G. Blasse, J. Inorg. Nucl. Chem. 1969, 31, 3335.
- [179] S. F. Bartram, *Inorg. Chem.* **1966**, *5*, 749.
- [180] N. C. Baenzinger, H. A. Eick, H. S. Schuldt, L. Eyring, J. Am. Chem. Soc. 1961, 83, 2219.
- [181] R. B. von Dreele, L. Eyring, A. L. Bowman, J. L. Yarnell, *Acta Crystallogr.* **1975**, *B* 31, 971.
- [182] P. Höss, K. Kojer, Th. Schleid, Z. Kristallogr. 2007, Suppl. 25, id203.
- [183] M. O'Keeffe, S. Andersson, Acta Crystallogr. 1977, A 33, 914.
- [184] J. C. Taylor, P. W. Wilson, Acta Crystallogr. 1974, B 30, 1216.
- [185] P. Höss, Th. Schleid, Z. Kristallogr. 2008, Suppl. 28, 153.
- [186] P. Höss, Th. Schleid, Acta Crystallogr. 2007, E 63, i133.
- [187] M. B. Novikova, V. A. Dolgikh, L. N. Kholodkovskaya, Vestn. Mosk. Univ., Serie 2 Khim. 1990, 31, 59.
- [188] M. B. Novikova, V. A. Dolgikh, L. N. Kholodkovskaya, B. A. Popovkin, S. Y. Stefanovich, V. M. Skorikov, *Izv. Akad. Nauk SSR, Neorg. Mater.* **1991**, *27*, 388.
- [189] I. A. Tarasov, V. A. Dolgikh, B. A. Popovkin, A. E. Baron, Russ. J. Inorg. Chem. 1995, 40, 139.
- [190] I. A. Tarasov, V. A. Dolgikh, L. G. Aksel'rud, P. S. Berdonosov, B. A. Popovkin, *Inorg. Chem.* 1996, 41, 1187.

- [191] G. B. Nikiforov, P. S. Berdonosov, V. A. Dolgikh, B. A. Popovkin, Russ. J. Inorg. Chem. 1997, 42, 1632.
- [192] G. B. Nikiforov, A. M. Kusainova, P. S. Berdonosov, V. A. Dolgikh, P. Lightfoot, J. Solid State Chem. 1999, 146, 473.
- [193] P. S. Berdonosov, D. O. Charkin, A. M. Kusainova, V. A. Hervoches, V. A. Dolgikh, P. Lightfoot, *Solid State Sci.* 2000, 2, 533.
- [194] H. M. Rietveld, Acta Crystallogr. 1967, 22, 151.
- [195] H. M. Rietveld, J. Appl. Crystallogr. 1969, 2, 65.
- [196] R. A. Young, *The Rietveld Method*, 1. Aufl., Oxford University Press, Oxford, 1993.
- [197] S. F. Radaev, L. A. Muradyan, V. I. Simonov, Acta Crystallogr. 1991, B 47, 1.
- [198] G. Gattow, D. Schütze, Z. Anorg. Allg. Chem. 1964, 328, 44.
- [199] L. G. Sillén, *Naturwissenschaften* **1942**, *30*, 318.
- [200] S. F. Meier, Th. Schleid, Z. Anorg. Allg. Chem. 2003, 629, 1575.
- [201] S. Zitzer, Th. Schleid, Z. Naturforsch. 2009, 64 b, 197.
- [202] J. Wontcheu, Th. Schleid, Z. Kristallogr. 2002, Suppl. 19, 138.
- [203] J. Wontcheu, Th. Schleid, Z. Anorg. Allg. Chem. 2002, 628, 2215.
- [204] J. Wontcheu, Dissertation, Universität Stuttgart, 2004.
- [205] J. Wontcheu, Th. Schleid, Z. Kristallogr. 2004, Suppl. 21, 188.
- [206] Th. Schleid, J. Wontcheu, Z. Anorg. Allg. Chem. 2005, 631, 309.
- [207] D.-H. Kang, J. Wontcheu, Th. Schleid, Solid State Sci. 2009, 11, 299.
- [208] S. F. Meier, Th. Schleid, Z. Anorg. Allg. Chem. 2006, 632, 1759.
- [209] P. Höss, M. Jegelka, Th. Schleid, Z. Anorg. Allg. Chem. 2006, 632, 2148.
- [210] S. Zitzer, Th. Schleid, Z. Kristallogr. 2009, Suppl. 29, 43.
- [211] P. Höss, Th. Schleid, Z. Kristallogr. 2006, Suppl. 24, 173.
- [212] R. F. Takagi, M. Johnsson, S. Lidin, Chem. Eur. J. 2008, 14, 3434.
- [213] O. A. Lopez, J. McKittrick, L. E. Shea, J. Lumin. 1997, 71, 1.
- [214] T. Jüstel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed. 1998, 37, 3084.
- [215] D. Nötzold, H. Wulff, Phys. Status Solidi 1997, A 160, 227.
- [216] D. Nötzold, H. Wulff, Phys. Status Solidi 1998, B 207, 271.
- [217] S. Yang, C. Stoffers, F. Zhang, S. M. Jacobsen, B. K. Wagner, C. Summers, N. Yocom, Appl. Phys. Lett. 1998, 72, 158.
- [218] G. Blasse, B. C. Grabmeier, *Luminescent Materials*, Springer, Berlin, 1994.
- [219] M. S. Elmanharawy, A. Abdel-Kader, Czech. J. Phys. 1978, B 29, 460.
- [220] Y.-P. Fu, S.-B. Wen, C.-S. Hsu, J. Alloys Compds. 2008, 458, 318.
- [221] Y.-H. Tseng, B.-S. Chiou, C.-C. Peng, L. Ozawa, Thin Solid Films 1998, 330, 173.
- [222] Th. Schleid, S. Strobel, P. K. Dorhout, P. Nockemann, K. Binnemans, I. Hartenbach, *Inorg. Chem.* **2008**, *47*, 3728.

Danksagung

Meinem Doktorvater Prof. Dr. Thomas Schleid danke ich herzlich für die Möglichkeit zur Bearbeitung des interessanten Themengebiets, für den dabei gewährten Freiraum und die stetige Diskussionsbereitschaft während der wissenschaftlichen Arbeit.

Herrn Prof. Dr. Paul Keller vom Institut für Mineralogie und Kristallchemie der Universität Stuttgart danke ich für die freundliche Übernahme des Korreferats.

Für die Durchführung von Einkristallmessungen danke ich Frau Dr. Sabine Strobel sowie den Herren Dr. Ingo Hartenbach, Dr. Falk Lissner und Dipl.-Chem. Thomas Schölkopf. Frau Dr. Sabine Strobel möchte ich auch besonders herzlich für ihre hilfreiche Unterstützung zu Beginn meiner Doktorarbeit danken.

Herrn Dr. Christian Lipp danke ich für die Messungen an der Elektronenstrahl-Mikrosonde und als Bearbeiter des chemisch verwandten Systems der Oxoselenate(IV) für die zahlreichen und fruchtbaren Diskussionen.

Den Herren Dr. Miroslaw Batentschuk, Dr. Andres Osvet und Frank Meister aus der Arbeitsgruppe von Prof. Dr. Albrecht Winnacker (Universität Erlangen) danke ich für die Messungen zum Lumineszenzverhalten der dotierten Yttrium-Verbindungen.

Bei allen aktuellen und ehemaligen Mitgliedern des Arbeitskreises Schleid möchte ich mich für die stets hervorragende Arbeitsatmosphäre herzlich bedanken. Von den oben noch nicht genannten sind dies in alphabetischer Reihenfolge: Jean-Marie Babo MSc., Dipl.-Chem. Jörg Bauchert, Dr. Björn Blaschkowski, Dr. Hagen Grossholz, Dipl.-Chem. Oliver Janka, Dong-Hee Kang MSc., Dr. Theresa Komm, Dipl.-Chem. Sebastian Lotter, Dipl.-Chem. Sebastian Metzger, Dipl.-Chem. Alexander Müller, Dr. Tanja Nikelski, Frau Sumati Panicker-Otto, Dipl.-Chem. Marion Schäfer, Christof Schneck (CTA), Dipl.-Chem. Christian Schurz, Dr. Herbert Thurn, Dr. Ioannis Tiritiris, Dr. Nguyen-Duc Van, cand. chem. Klaus Wolff, cand. chem. Lucas Zimmermann und Dipl.-Chem. Sabine Zitzer.

Meinen Forschungspraktikanten Dipl.-Chem. Johannes Dieterich, Dipl.-Chem. Christine Hofmann, Dipl.-Chem. Markus Jegelka, Dipl.-Chem. Tassilo Kaule, Dipl.-Chem. Kerstin Kojer und Dipl.-Chem. Gundula Starkulla danke ich für die Hilfe bei den präparativen Arbeiten.

Bei meiner Familie möchte ich mich herzlich für die stetige Unterstützung bedanken.

Eidesstattliche Erklärung

Die experimentellen Arbeiten zur vorliegenden Dissertation wurden im Zeitraum von September 2003 bis Dezember 2008 am Institut für Anorganische Chemie der Universität Stuttgart (Pfaffenwaldring 55, 70569 Stuttgart) unter der Leitung von Prof. Dr. Thomas Schleid durchgeführt.

Ich versichere hiermit an Eides statt, die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Hilfsmittel angefertigt zu haben.

Aus der vorliegenden Dissertation sind folgende Veröffentlichungen hervorgegangen:

P. Höss, S. F. Meier, Th. Schleid: " $Y_2Te_4O_{11}$: Ein Komplexanionisches Wirtsgitter für Dotierungen?" *Z. Kristallogr.* **2004**, *Suppl. 21*, 162.

P. Höss, S. F. Meier, Th. Schleid: "Y₂Te₅O₁₃: Ein mögliches Wirtsgitter für luminogene Eu³⁺-Dotierungen", *Z. Kristallogr.* **2005**, *Suppl. 22*, 153.

P. Höss, G. Starkulla, Th. Schleid: "Lutetium(III) oxotellurate(IV), Lu₂Te₄O₁₁", *Acta Crystallogr.* **2005**, *E* 61, i113.

P. Höss, M. Jegelka, Th. Schleid: "Y₆Br₄Te₁₁O₂₉: Ein *nicht*-zentrosymmetrisches Yttrium-Bromid-Oxotellurat(IV) mit Schichtstruktur", *Z. Anorg. Allg. Chem.* **2006**, *632*, 2148.

P. Höss, Th. Schleid: "Y₁₁ClTe₁₆O₄₈: Ein sehr chloridarmes Yttrium-Chlorid-Oxo-tellurat(IV)", *Z. Kristallogr.* **2006**, *Suppl.* 24, 173.

P. Höss, K. Kojer, Th. Schleid: "Lu₂TeO₆: Ein Lutetium(III)-Oxotellurat(IV) mit aufgefüllter WCl₆-Struktur", Z. Kristallogr. **2007**, Suppl. 25, id203.

P. Höss, Th. Schleid: $"Sc_2Te_5O_{13}$ und Sc_2TeO_6 : Die ersten Oxotellurate des Scandiums", Z. Anorg. Allg. Chem. 2007, 633, 1391.

P. Höss, Th. Schleid: "Yttrium(III) oxotellurate(VI) Y_2 TeO₆ with La₂TeO₆-type structure", *Acta Crystallogr.* **2007**, *E* 63, i133.

P. Höss, Th. Schleid: "Tm₂Te₃O₉: Ein Thulium(III)-Oxotellurat(IV) im triklinen Lu₂Te₃O₉-Typ", *Z. Anorg. Allg. Chem.* **2008**, *634*, 2047.

P. Höss, Th. Schleid: "Synthesis and Crystal Structure of the Europium(III) Oxotellurate(VI) Eu₂TeO₆", *Z. Kristallogr.* **2008**, *Suppl.* 28, 153.

P. Höss, A. Osvet, F. Meister, M. Batentschuk, A. Winnacker, Th. Schleid: "Synthesis, Crystal Structures and Luminescence Properties of the Eu^{3+} -doped Yttrium Oxotellurates(IV) $Y_2Te_4O_{11}$ and $Y_2Te_5O_{13}$ ", *J. Solid State Chem.* **2008**, *181*, 2783.

S. F. Meier, P. Höss, Th. Schleid: "Dy₂Te₃O₉: Der erste Vertreter von Lanthanoid(III)-Oxotelluraten(IV) der Zusammensetzung M₂Te₃O₉", *Z. Anorg. Allg. Chem.* **2009**, *635*, 768. Weitere Veröffentlichungen, die nicht in der vorliegenden Dissertation enthalten sind:

D.-H. Kang, P. Höss, Th. Schleid: "Xenotime-type Yb[AsO₄]", *Acta Crystallogr.* 2005, *E 61*, i270.

P. Höss, I. Hartenbach, Th. Schleid: "Hydrogenoxosilicates of the Lanthanides: I. The Crystal Structure of Gd[SiO₃(OH)]", *J. Alloys Compds.* **2008**, *451*, 654.

C. Schneck, P. Höss, Th. Schleid: "C-type Nd₂Se₃", Acta Crystallogr. 2009, E 65, i20.

Lebenslauf

DIPL.-GEOL. PATRICK HÖSS

MAXIMILIANSTRASSE 33 • 70327 STUTTGART

PERSÖNLICHE INFORMATIONEN

	Familienstand:		ledig					
	Staatsangehörigkeit	en:	deutsch und schweizerisch					
	Geburtsdatum:		13. Januar 1976					
	Geburtsort [.]		Stuttgart-Bad Cannstatt					
AUSBIL	DUNG							
	1982 – 1986	Grund	lschule: Luginslandschule in Stuttgart-Luginsland					
	1986 – 1995	Gymr Abscł	asium: Friedrich-Schiller-Gymnasium in Fellbach Iluss: Allgemeine Hochschulreife					
	WS 1995/96	Begin (Diplo	n des Studiums der Geologie und Paläontologie om) an der Universität Stuttgart					
	Okt. 1998	Abscl	lluss der Diplomvorprüfung					
	Juni 2002	Absch	hluss der Diplomhauptprüfung, Titel der Diplomarbeit:					
		U k (!	Untersuchungen an <i>Microcodium</i> aus dem Schratten- alk (Unterkreide) der helvetischen Doldenhorn-Decke Gemmipass, Schweiz).					
	Sept. 2003	Begin Anorg	n der Arbeiten für die Dissertation am Institut für ganische Chemie der Universität Stuttgart					
Tätigk	EITEN							
	Okt. 1997 – Feb. 2003	Wisse Paläo	enschaftliche Hilfskraft am Institut für Geologie und ntologie der Universität Stuttgart					
	März 2003 – Aug. 2003	Wissenschaftlicher Mitarbeiter am Institut für Bodenkun und Standortslehre der Universität Hohenheim						
	Sept. 2003 – April 2004	Wisse Chem	enschaftlicher Mitarbeiter am Institut für Anorganische ie der Universität Stuttgart					
	Seit Mai 2004	Wissenschaftlicher Angestellter auf Zeit am Institut Anorganische Chemie der Universität Stuttgart						