Institute of Visualization and Interactive Systems

University of Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Master’s Thesis

Attacking a Defended Optical Flow
Network

Alexander Lis

Course of Study: Informatik

Examiner: Prof. Dr. Andrés Bruhn
Supervisor: Jenny Schmalfuf3, M. Sc.
Commenced: 2021-10-20

Completed: 2022-04-20

Abstract

Deep Neural Networks for optical flow estimation achieve exceeding performances on published
datasets. However successful and practically applicable patch attacks in the past and the lack
of robustness guarantees for published networks demonstrate the importance to further study
their resilience against manipulated inputs. The recent desire to deploy optical flow networks
in security-critical applications like autonomous driving or robot navigation further amplifies
this problem. Recently, the suitability of localized pre-processing defenses against adversarial
patch attacks for optical flow networks was examined and a specialized defense was proposed.
However an extensive robustness assessment of the defended systems using adaptive attacks
was missing. Furthermore results about adaptive attacks on defended networks are currently
rather restricted to classification networks.

In this thesis we devise adaptive adversarial patch attacks against the optical flow network
FlowNetC when it is defended by the specialized defenses Inpainting with Laplacian Prior (ILP)
and Local Gradients Smoothing (LGS). We provide empirical evidence that our adaptive white-
box attacks increase the efficiency of injected patches significantly compared to the attacks
considered in their initial evaluation. Our attacks introduce serious distortions in the flow
field estimation of defended networks. Additional contributions are the implementation of
a flexible training pipeline and the reimplementation of the Inpainting with Laplacian Prior
defense according to its description in the original publication.

Kurzfassung

Neurale Netwerke zur Bestimmung des Optischen Flusses erreichen Bestleistungen bei Ex-
perimenten mit publizierten Datensitzen. Allerdings betonten erfolgreiche und praktische
Manipulationsangriffe auf die Eingabebilder in der Vergangenheit, sowie das Fehlen von Ro-
bustheitsabschiatzungen fiir publizierte Netzwerke, die Relevanz von weiteren Untersuchungen
zur Verlasslichkeit von diesen Netzwerken. Diese sind auRerdem eine wichtige Voraussetzung
fiir die Nutzung dieser Algorithmen in sicherheitskritischen Anwendungen. Die Eignung von
Local Pre-processing Verteidigungen zum Schutz dieser Netzwerke gegen Adversarial Patch
Angriffe wurde kiirzlich untersucht und eine speziell auf Netzwerke zur Bestimmung des
Optischen Flusses angepasste Verteidigung entwickelt. Allerdings wurde die Robustheit der
resultierenden Systeme nicht gegen adaptive Angriffe evaluiert, die Informationen iiber die
Verteidigungen ausnutzen. Aufderdem beschridnken sich bisherige Ergebnisse zu adaptiven
Angriffen vorwiegend auf Netzwerke zur Bildklassifikation.

Diese Arbeit entwickelt adaptive Adversarial Patch Angriffe gegen die Pre-processing Verteidi-
gungen Inpainting with Laplacian Prior (ILP) und Local Gradients Smoothing (LGS) im Kontext
der Bestimmung des Optischen Flusses mit dem Netzwerk FlowNetC. Unsere Experimente

deuten darauf hin, dass unsere adaptiven white-box Angriffe die bisherigen Robustheitsab-
schiatzungen der Verteidigungen signifikant korrigieren. Weitere Beitrage dieser Arbeit sind die
Implementierung einer flexiblen Pipeline zum Trainieren von Adversarial Patches sowie die
Reimplementierung der Inpainting with Laplacian Prior Verteidigung nach der Beschreibung in

der Veroffentlichung.

Contents

1

3

Introduction

1.1 Thesis StruCture v v e

Related Work

2.1 Optical Flow e e e e e e e
2.2 Performance Evaluation of Optical Flow Networks
2.3 Image Input Manipulation Attacks
2.3.1 Perturbation Representation
2.3.2 Perturbation Constraints e
2.3.3 PerturbationGoal
2.3.4 Perturbation Robustness
2.3.5 Practical Applicability
2.3.6 AdversaryKnowledge,
2.3.7 Optimization e
2.4 Robustness Estimation of Optical Flow Networks

2.5 Defenses

2.6 Guidelines for Adaptive Adversaries oo

Adversarial Patch Attacks on Defended Optical Flow Networks
3.1 Optical Flow Networks it
3.2 Defenses for Optical Flow Networks
3.2.1 Pre-processing Defenses
3.2.2 Local Gradients Smoothing (LGS)
3.2.3 Differentiability of Local Gradients Smoothing
3.2.4 Inpainting with Laplacian Prior (ILP)
Inpainting o 0 i e e e e e e e e e
3.2.5 Differentiability of ILP,
3.3 Perturbation Adversaries Lo oo e e e e e e
3.3.1 Perturbation Adversary for FlowNetC without Pre-processing
3.3.2 Adversarial Model for FlowNetC with LGS Pre-processing
3.3.3 Adversarial Model Designed for FlowNetC with ILP Pre-processing

Experiments
4.1 Software

10
12
13
14
15
16
16
17
17
18
19
21

23
23
24
24
25
28
30
34
35
37
37
39
39

41
41

4.2 Training and Evaluation Procedure
4.3 EvaluationResults
4.3.1 Attacks on the Undefended FlowNetC Network
4.3.2 Attacks on FlowNetC with LGS Pre-processing

4.3.3 Attacks on FlowNetC with ILP Preprocessing

4.4 DISCUSSION . . . v v v o e e e e e e e e e e e e e e e e

5 Outlook and Conclusion

5.1 Outlook

5.2 Conclusiont i e e e e e e e e

A Appendix

Bibliography

57
57
58

59

65

1 Introduction

Deep Neural Networks achieve outstanding performances in diverse visual tasks including im-
age and video classification [34,37], object detection [64] and face recognition [77]. Recently,
they also outperformed traditional approaches in the domain of optical flow estimation [78].
The increasing relevance of neural networks in optical flow estimation is reflected in their
growing number of top performing algorithms on the public scoreboards for the established
datasets Sintel [13] and KITTI15 [48]. As a result, optical flow networks are considered for
deployment in security-critical applications like autonomous driving [63], street sign classi-
fication [19] or robot navigation [89]. However prior work indicated that it is difficult to
approximate the robustness of neural networks [18].

Attacks are one way to approximate upper bounds on a network’s performance measure [18].
Input manipulation attacks intend to confuse a network by manipulating its input image
prior to processing [63]. These attacks were originally conceived for the image classification
problem, however recently they are also being considered in the context of optical flow
estimation [3,63]. Adversarial patch attacks are a particularly practical instance of input
manipulation attacks [10,63]. They introduce strong and static perturbations in a confined
region around the patch’s location and can thus be applied physically [63]. Ranjan et al. [63]
demonstrated that some optical flow networks were vulnerable to adversarial patches.

Pre-processing defenses were developed to protect neural networks against input transfor-
mation attacks. As a response to the attacks on optical flow networks by Ranjan et al. [63],
Anand et al. [3] examined the efficiency of two pre-processing defense mechanisms against
adversarial patch attacks in the context of optical flow networks. The first considered defense is
called Local Gradients Smoothing and was originally conceived by Naseer et al. [52] to protect
classification networks. The second algorithm evaluated is called Inpainting with Laplacian
Prior and is a pre-processing defense by Anand et al. [3] that is specifically developed for
optical flow networks. The adversarial model employed for the robustness assessment of the
defended systems was very similar to the original attack by Ranjan et al. [63]. Anand et al. [3]
determined that the defenses increase the network’s robustness significantly against their
attacker when an optical flow network is a component in an action recognition pipeline [3].

However previous research has already indicated that there seems to be no single adversary
that yields an effective attack without including additional information about the target
network [80]. Additionally, defenses can obfuscate gradient information and as a result only
appear to be robust against defenses even though there might exist very effective attacks

1 Introduction

that require a specific optimization approach [4]. For classification networks it is therefore
already a standard to test defenses against attacks that specifically employ knowledge about
them [80]. Consequently, the reuse of existing attacks as performed in the publication by
Anand et al. [3] is a strong indication that the applied attacks do not use the full adversarial
potential available [81]. Subsequently, the evaluation might not reflect the true worst case
performance under an adversarial patch attack. Tramer et al. [80] published guidelines that
identify recurrent principles which frequently lead to successful adversarial attacks. Similarly
Athalye et al. [4] provide guidelines to improve the convergence of white-box adversaries that
employ gradient based methods on networks that conceal information about the gradient.

In this work we propose adaptive attacks against the optical flow network FlowNetC when it is
defended by the local pre-processing defenses ILP or LGS. For the formulation of our adversaries,
we employed the methodology for the development of adaptive attacks published by Tramer
et al. [80]. Furthermore we considered approaches to recover obfuscated gradients during
patch optimization by Athalye et al. [4] and considered general guidelines about adaptive
attacks on classification networks [14]. Moreover our attacks take special consideration of
previous work on the robustness of optical flow networks [3,63,67,68]. Additionally our attacks
are built on and extend previously published attacks in the context of image classification by
Chiang et al. [18] on LGS [52] and Digital Watermarking [27].

1.1 Thesis Structure

The remainder of this work is structured as follows. The second chapter summarizes related
work. It focuses on delineating research that is connected to robustness estimation of optical
flow networks and introduces attacks, defenses and evaluation procedures. The third chapter
presents models that describe our attacks and the defenses. Furthermore detailed specifications
of the attacked pre-processing defenses are provided and adaptive adversaries are derived. The
fourth chapter then reports our experimental arrangement and presents our evaluation results.
Lastly the sixth chapter provides an outlook about potentially relevant future work and finally
summarizes essential insights.

2 Related Work

The following sections discuss publications which are related the development of adaptive
image input manipulation attacks on optical flow networks. Generally, robustness estimation
of neural networks via input manipulations is a field that was traditionally studied for image
classification networks [76]. Consequently, our summary regularly references concepts that
were initially designed for classification networks specifically. However, many ideas generalize
well to different network classes including optical flow networks [3,63, 67, 68].

The first subsection will introduce the optical flow problem and mention milestone neural net-
work architectures. Secondly, we introduce traditional approaches to estimate the performance
of optical flow networks. Thirdly, we summarize contributions to perturbation attacks, a term
that we use to describe a generalization of attacks like adversarial examples and patches. The
fourth section summarizes approaches to examine the robustness of optical flow networks
via input transformation attacks. In the fifth section we examine concepts to defend neural
networks. Lastly, we summarize published guidelines about the design of attacks against
defended networks and about the development of robust defenses.

2.1 Optical Flow

Horn and Schunck [28] canonically defined the optical flow of two sequential images to
be the movement of brightness patterns between them. Similarly to the interpretation by
Ranjan et al. [63] we consider the optical flow F' between two sequential images I; and I,
to be the displacement field F' that fullfills some photometric assumption. Considering as a
demonstration the brightness constancy assumption [28] then requires for a location (z,y)
and the respective displacement F'(z,y) = (u,v) at this location

Li(z,y) = L(z + u,y + v). 2.1)

Traditionally this problem has been formulated as an energy minimization problem [28]. Teed
et al. [78] concisely summarized existing approaches to solve the optical flow problem and
milestone network architectures that we want to mention here. Besides, the problem has
also been approached as a discrete optimization problem [17,49]. Dosovitskiy et al. [20]
demonstrated that this correspondence problem could also be approached as an optimization
problem for neural networks. Specifically, they proposed two types of convolutional neural

2 Related Work

network architectures that they termed FlowNetS and FlowNetC [20]. Especially the approach
of FlowNetC to introduce an explicit correlation layer was an important contribution that
influenced many later architectures [78]. Notable subsequently published optical flow net-
works aimed to improve the performance by combining FlowNetS and FlowNetC units and a
subsequent fusion operation with a related network [30] or to choose a network architecture
that is aware of spatial pyramids [62]. Additional improvements could be achieved by introduc-
ing warping and cost volumes into the network’s architecture [75]. Recently, inspired by the
traditional energy minimization approach, Teed et al. [78] published the Recurrent All-Pairs
Field Transforms network (RAFT). It is characterized by the combination of a feature encoder
with a 4D correlation volume and a recurrent iterative refinement of the flow estimate [78].

2.2 Performance Evaluation of Optical Flow Networks

Baker et al. [6] published a comprehensive summary about evaluation methodology for optical
flow estimators. They determined two approaches that are widely used in literature to estimate
the error between a ground truth flow field F; € R2*7*W with height H and width W and
an algorithmic prediction F € R>*#>*W TIntuitively, these measures provide an estimate for
the distance between optical flow fields within metric spaces [67].

The Endpoint Error (EE) [6] represents the euclidean distance between the endpoints of
two individual vectors. Typically one compares the ground truth flow vector (uy,v4) and a
predicted flow vector (u,v):

e (). (1)) = Vo o= @2)

To estimate the performance of an entire flow field prediction F' with respect to a ground truth
F, this measure is generalized to the average endpoint error (AEE) [6]. Let from now on
N,, = {k € N| k < n}. Then this yields

1

AEE(Fy. F) = o

> EE(Fu(y,x),F(y,=z)). (2.3)
(y,z)ENg xNyyr

Secondly, the Angular Error (AE) estimates the smaller angle between the ground truth and
the prediction vectors, however generalized in a three dimensional space for an increased

stability [6].
" (<u> | <u>) o 4 g + ooy |
Ugt v V14 u? 4021+ u + 02

10

2.2 Performance Evaluation of Optical Flow Networks

(a) Intuitive visualization of the CS distance mea-(b) Intuitive visualization of the EE distance mea-
sure. Assuming the blue arrow represents the ~ sure. Assuming the blue arrow represents
ground truth flow prediction the dashed gray ~ the ground truth flow prediction the dashed
lines indicate predictions that result in the gray lines indicate predictions that result in
same CS score compared to the red arrow the same EE score compared to the red arrow
prediction. prediction.

=
L

7 b &

=~

x %
Vg€ N~ t\ A
i
|4

_-—)<3 1A

(_—{'~s\n
A N
/(—’é"f\ NN

¥
A
y»
a
v
4

X ~

114?’

N
g

N
§?\g

A
\
R B AT AT B R gt

MWL N TR
Y

(c) Visualization of the generalization from single prediction to numerous predictions that is necessary
to compare flow fields.

Again, this notion is generalized to the Average Angular Error (AAE) [6] to compare flow
fields

AAE(th?F) - ﬁ Z AE(th(y,:):),F(y,x)) (2.4)

(y,2)eENg XNy

Ranjan et al. [63] additionally proposed the Average Cosine Similarity (ACS) performance
measure in the context of adversarial patch attacks on optical flow networks. They employed it
as a score to optimize for successful flow manipulations F' compared to an unattacked flow
F'. Similarly to the AAE distance it formalizes the intuition about how aligned the individual
prediction directions are. The actual PyTorch implementation that the authors included a small
offset to increase stability. It is defined as

- (2.5)
W oy max (| F (v, o) [E(y,2)]], 1078)

Schmalful$ et al. [67] mention the Mean Squared Error (MSE) as a potential alternative
to the AEE which is more robust with respect to differentiability. However as the authors
mentioned [67], the measure introduces a stronger sensitivity to outliers in exchange.
. 1 N
MSE(F,F)=——— > |F(y.2) - F(y,2)|3 (2.6)
H-W
(y,x)ENg XNy

11

2 Related Work

Public benchmarks use among other accuracy focused measures like F1,F3,F5 error the AEE as
a performance measure to evaluate and compare optical flow algorithms [13,48]. Schmalfuf$
et al. [67] determined that current optical flow evaluation focuses rather on accuracy and
largely neglects robustness.

Notable public datasets in Optical Flow estimation are KITTI15 [48] and Sintel [13]. KITTI15
intends to comprise sequential image pairs which are representative for the driving domain [48]
while Sintel focuses on synthetic images which contain difficult phenomenons like motion
blurring, large motions and occlusions [13]. Consequently computing the AEE over one of
those datasets D for an optical flow network N aims to approximate the true expectation
value of the networks performance in the respective domain D [13,48]. Assuming a dataset D
comprises image pairs /1, I and the associated ground truth flow fields F;. Let furthermore N
denote an optical flow algorithm that outputs a flow estimate derived from two input images.
Then this can be described as

1
Y ABE(Fyu,N(I1,) = E(1, 1) ry)~p [AEE(Fg, N(I1, I5))] (2.7)

D] ((I1,I2),Fgt)€D

We consider Optical Flow Networks that take the approach to learn the prediction of the
brightness movements between sequential images from annotated datasets in a supervised
learning fashion [20]. Public datasets are partitioned into a training set that is provided with
ground truth information and a separate test set to prevent an overfitting to the training
data [13,48].

2.3 Image Input Manipulation Attacks

Publications examining input manipulation attacks on image processing networks like ad-
versarial patches or examples regularly approach the task to find the strongest respective
image manipulation as a constrained optimization problem [67,76]. Similarly as in existing
works [40,67] we consider an unified notion of adversarial patches and adversarial examples
that we call adversarial perturbations.

Originally these attacks have been approached for image classification networks [5, 10,33, 76].
Szegedi et al. [76] were the first who noticed that classification networks could be confused
by small input transformations that did not affect human classification decisions, if they
were noticed by humans at all. This observation raised fundamental questions about the
robustness of classification networks [76]. Later this was observed by researchers in various
different domains including optical flow [63,67,68], stereo disparity estimation [84] or video
classification [32]. In the following years research has built upon this idea in various respects
that we want to delineate in the following.

At first we consider the perturbation representations proposed in literature. Next we summarize
important concepts to constraint the introduced perturbations and their implications. Thirdly;

12

2.3 Image Input Manipulation Attacks

we discuss differentiations with respect to the goal of a perturbation. We also consider research
with respect to a perturbations transferability, threat model, and optimization procedures. We
aim to present our personal view on adversarial perturbations with a focus on concepts that
are transferrable to optical flow networks.

2.3.1 Perturbation Representation

There are differences between attacks with respect to how the parametric representation of
a perturbation P is subsequently used to introduce changes to an image. Publications that
consider small brightness changes rather use additive changes [24, 76].

I=I1+P

Publications examining the effects of practically unlimited brightness changes in spatially
confined regions, restricted by a mask M, often model their noise such that it replaces the
original image content in the affected regions [10, 33, 63]

I=1-M)oI+MoP

Wortman [85] published an attack that additionally considers a patches transparency with the
intention to hide such perturbations from human observers. Assuming alpha blending using a
mask «, the patch perturbation P injection would then be modeled as

I=1-a)0l+aGP

Athalye et al [5] also consider to represent the perturbation in a different color model for
additional constraints about their visibility. Specifically they considered LAB as it provides a
perceptibly uniform color space [46]. Assuming the perturbation in another color space is P’
and the suitable transformation to the target color space is f then we would have to require
for the equations above

P = flab—)rgb(P/)

Conventionally the resulting images I are assumed to be scaled to a finite interval e.g. [0, 1] or
[0, 255] for neural networks. Thus to directly generate restricted image perturbations, Carlini
and Wagner [16] explicitly propose a suitable variable substitution P = f(P’) with a suitable
function f which has a global domain like R"** and a limited codomain e.g. [0, 1]. In this way
they incorporated the implicit constraint on the codomain of the patch into their perturbation
representation model [16]. As an specific example the authors propose a function that is based
on the tanh function

P= % (tanh(P’) + 1) 2.8

13

2 Related Work

2.3.2 Perturbation Constraints

There are constraints with respect to the shape and brightness of the perturbation distin-
guished [10,24]. For image sequences Ranjan et al. [63] also consider constraints about
perturbation changes over time between the images. The following paragraphs discuss these
constraints and related literature in more detail.

Limitations regarding possible brightness differences are often specified via an upper bound
e on the p-norm induced distance [16, 70] between the original image I and the perturbed
image /

1=l < wich |1, = (Z |I<z',j>|p) 2.9)

i?j
Very often the (optical flow) network requires its input to be located in a (possibly discrete)
range [a, b] for instance [0, 255]. This results in a codomain constraint [7, 16]

I€[0,255/7W" orevenI e {0,1,...,254,255} W
Common choices for p in perturbation constraints include 0,1,2 and co. The L, distance is

often used to introduce quantitative spatial constraints on the patch as it specifies the possible
number of pixel manipulations [58, 70]

Papernot et al. [57] published their Jacobian based Saliency Map Attack (JSMA) that derives
perturbations constrained under the L, distance. Additionally Papernot et al. [58] use this
metric in the robustness argumentation of a preprocessing defense which is called Distillation.

Biggio et al. [7] considered an L; metric to generate adversarial examples for handwritten
digit classification.

1Illy = 1,)] (2.10)
(4,9)

The L, norm was already present in early works on adversarial examples in image classification

works [29, 76]
121l = > /1G5 (2.11)
(4:9)

The L. constraint is present in literature on global attacks [4, 56, 67, 68]. It specifies the
maximally allowed perturbation between the original image I and the perturbed image I for
any pixel

[7lloo = mas |17, 7)] (2.12)
2v)

14

2.3 Image Input Manipulation Attacks

Spatial constraints specify additional assumptions about locations at which the inclusion of a
perturbation is allowed [10, 33,63]. In one possible interpretation this constraint adds to the
perturbation the notion of an origin location | = (y, z) and a patch radius r in an Ly norm to
generate round adversarial patches [10,63]. One possible formal formulation could require
image regions outside a p-sphere of radius r to remain static while regions within this square
are allowed to be perturbed. For an attacked image I and the unattacked version I this can be

stated as
J

There are generalized approaches to include colored objects with custom shapes into the
image [5, 73]. Sharif et al. [73] include colored eyeglasses into images to confuse face recogni-
tion systems and Athalye et al. [5] use 3D printed objects to manipulate image classification
networks.

<r=1I(i,§)=1(i,j) (2.13)

Vi,j:|
p

Ranjan et al. [63] consider temporal constraints for image sequence inputs I, I5 for optical
flow estimation. Specifically they assumed the perturbations to be static over time [63]. In
their case this assumption had at least two consequences. Firstly it resulted in a model that was
practically applicable [63]. Secondly it simplified the derivation of the adapted flow ground
truth th [63,67]. Schmalful} et al. [67] explicitly distinguish between three additional types of
perturbation constraints for optical flow networks. Firstly they consider joint perturbations that
are required to apply the same perturbation to both images of an image pair. Secondly disjoint
adversarial perturbations train two global perturbations P;, P> each applied to an individual
frame I, I» separately [67]. Thirdly, they distinguish universal adversarial perturbations as an
constraint that is orthogonal to the previously mentioned ones [67].

2.3.3 Perturbation Goal

There are already classifications of different adversarial goals published by Carlini et al. [14].
A distinction that is clearly reflected in published literature is that adversarial perturbations are
used to examine the robustness of neural networks for a wide range of problems. Originally
Szegedi et al. [76] considered classification networks. Recently their effect is being examined
in diversified problem areas including optical flow estimation [63, 67, 68], stereo disparity
estimation [84], monocular depth estimation [90] and video classification [3, 32].

Another distinction criterion provides the optimization goal that is specified via a loss function.
In optical flow estimation Ranjan et al. [63] proposed to use the ACS loss as specified in
Section 2.2. This optimization goal was also considered in subsequent works attacking optical
flow networks [67,68,85]. Schmalful? et al. [67] additionally proposed the AEE and MSE as
potential loss functions in the domain of optical flow estimation.

15

2 Related Work

Similarly to attacks on classification networks, one can distinguish between targeted and
untargeted attacks against optical flow networks [67]. Ranjan et al. [63] approximated using
their adversarial patch attack on neural networks the inverse flow of the unattacked prediction.
Schrodi et al. [68] trained their codomain constrained global perturbation attacks to result in
arbitrarily selected flow fields.

Ranjan et al. [63] also introduced the idea to optimize the difference between the unattacked
flow field prediction instead of the ground truth flow. According to them a practical benefit
of this approach is that it does not require to elaborately gather ground truth data [63].
Additionally, Schmalful? et al. [67] provided further intuitive reasoning to consider robustness
and prediction accuracy as different objectives which should be separated.

2.3.4 Perturbation Robustness

Robustness, universality or transferrability in the context of adversarial perturbations describe
how invariant a particular perturbation instance is with respect to changes of training param-
eters [5,63,68,84]. Possible considered parameters are the perturbation location, rotation
and scale for adversarial patches [10, 63]. Additionally illumination and perspective are
considered explicitly [5]. Also the image content [67,84] or the target neural network [63]
are considered.

Athalye et al. [5] published a method to increase an the robustness of a perturbation which is
called Expectation over Transformation (EoT). The method aims to increase a perturbations
robustness by randomizing specific training parameters during training and introduces updates
that approximate the expected loss [5]. They used their method to construct 3D printable
objects that were able to confuse an image classification network despite of different illumi-
nation conditions, noise and affine transformations. Ranjan et al. [63] optimized adversarial
patches against multiple optical flow networks jointly and compared their performance with
individually trained ones. Schrodi et al. [68] developed global codomain constrained attacks
on modern optical flow networks that were able to confuse these networks to output almost
arbitrary flow fields. Their attacks were however specialized to the image pair instance and thus
not universally applicable [68]. Similar results were published by Wong et al. [84] for stereo
depth estimation and by Schmalfuf3 et al. [67] for optical flow networks. Brown et. al. [10]
introduced an adversarial patch attack against classification networks that was universal with
respect to location and a range of rotational and scaling variations.

2.3.5 Practical Applicability

A notion that is closely connected to universality is the practical applicability in the physical
world. Attacks need to provide a sufficient degree of universality in order to be applied in the
physical world [5]. Kurakin et al. [39] demonstrated that image classification networks could

16

2.3 Image Input Manipulation Attacks

be confused by providing them with adversarial examples displayed on a phone display. Athalye
et al [5] demonstrated that 3D printed physical objects could be crafted that fooled image clas-
sification networks because of their robustness to lighting conditions and perspectives. Evtimov
et al. [22] published an attack algorithm that computes physically realizable perturbations
that confuse road sign classification networks. Sharif et al. [73] derived eyeglasses frames that
introduced perturbations that confused face recognition systems. Brown et al. [10] produced
adversarial patches that confused image classification networks and were practically applicable
because of their robustness to limited scaling and rotation operations. The patches produced
by Ranjan et al. [63] were based on the work by Brown et al. [10] and are also physically
realizable against few optical flow networks. Wortman [85] extended the work by Ranjan
et al. [63] and considered constraints on the patches alpha value to hide the local perturbations
from human observers.

2.3.6 Adversary Knowledge

Carlini et al. [14] provide an extensive discussion on adversarial threat models which encom-
passes the notions of perturbation goals and adversary knowledge specified for this work.
Adversarial knowledge describes the information an attacker model is provided with [14].
Carlini et al. [4,14] state that a widespread yet broad distinction is between white-box and
black-box attackers. They further argue based on Kerkhoffs’ principle [35] that implementa-
tions that are considered for deployment should assume that the specification of the algorithm
is available to the attacker [14]. Attackers that have access to the target network including its
weights and architecture are called white box adversaries [4,14]. A more special notion that
is considered are adversaries that have access to the image beforehand [68,84]. Adversaries
without such internal information are called black-box attacks [4,14]. With respect to black-box
adversaries there is also the notion considered in which an adversary may have access to neural
networks that are different to the target network but aim to solve the same problem [63].
Athalye et al. [4] summarize components that can additionally be specified by the threat model.
Their list includes architecture, model weights, training algorithm and training data, test time
randomness, query access [4].

2.3.7 Optimization

The idea of the optimization process is to find the perturbation parameters that yield the most
successful attack with respect to the adversarial goal [63]. For algorithmic computation this
goal is implemented as a differentiable training loss function that is minimized [63]. Assuming
white-box information about the network’s weights and architecture is provided to the attacker,
she is able to use optimization procedures based on backpropagation [66] to improve her
perturbation successively [14]. The employed optimization technique is another distinguishing

17

2 Related Work

aspect of attacks [24,63,76,84]. Szegedi et al. [76] use a constrained L-BFGS algorithm [42]
to compute efficient adversarial examples in their initial work.

Goodfellow et al. [24] proposed the Fast Gradient Sign Method to derive adversarial examples
for additive perturbations of image classification networks in a single update step. For a scalar
valued loss function £, an adversarial perturbation P that is applied to an input image / and a
target label y they compute their codomain constrained perturbation using

I=T+P=1I-esgn(V;L(N(I),y))

Kurakin et al. [39] published the I-FGSM optimization procedure that applies the FGSM
procedure iteratively

Ip=1, Inyi=1I,—asgn(ViJ(N(L),y)) (2.14)

The optimization algorithm is used by Schrodi et al. [68] for their global attack on optical flow
networks. Additionally Wong et al. [84] employ it for their global perturbation attack against
stereo disparity networks.

Carlini and Wagner [14] and Madry et al. [44] use projected gradient descent to optimize their
patches. Assuming for simplification that the projection is implemented as a clipping operation
to the interval [0, 1] the update states

I() = [, ITL+1 = Clip[[)ﬂ {In — V[ﬁ(N(In), y)} . (215)

As already mentioned in Section 2.3.1 Carlini and Wagner [16] proposed the use of
reparametrization of the perturbation in order to convert the constraint optimization prob-
lem into a global one to be able to use other optimization algorithms such as SGD [65] or
ADAM [36].

2.4 Robustness Estimation of Optical Flow Networks

Schmalfuld et al. [67] distinguish the prediction robustness from the prediction accuracy
and provide a ranking of optical flow networks that considers both measures. Specifically
Schmalfuld et al. [67] differntiate the robustness an optical flow network with respect to
adversarial perturbations from the prediction accuracy that we introduced in Section 2.2.
This section summarizes research focusing on the estimation of the robustness of optical flow
networks to adversarial perturbations.

Ranjan et al. [63] proposed the Zero-Flow test as a means to examine the behavior of an optical
flow network in the presence of local patch perturbations. The test can be subdivided into
three steps. At first, an image is sampled from random noise and amended with a replicate to
form an image pair (I;, [2) with I; = I5. Next, a second image pair (fl, fg) is derived from the

18

2.5 Defenses

first pair by injecting a static patch perturbation. Finally, Ranjan et al. [63] propose to compare
the feature maps resulting from the predictions level-wise.

Schrodi et al. [68] also studied the features of FlowNetC during an attacked prediction in
order to examine the reasons for its significant vulnerability to patch attacks. They identified
an insufficient network architecture with a visual field that is too small together with the
aperture problem as the root causes for its deficient robustness. Furthermore Schrodi et al. [68]
complemented their analysis with an additional examination of optical flow networks against
targeted global perturbation attacks. Their results indicated that given access to the weights
of a network and the considered input image pair, an adversary is able to find small global
perturbations that result in almost arbitrary predictions [68].

Schmalful3 et al. [67] concisely summarized early approaches to examine robustness of optical
flow algorithms that we also want to mention here for completeness. Schmalful? et al. [67]
mention the study of the influence of outliers [8], noise [11], illumination changes [82] and
changing the underlying dataset [1]. Furthermore they clearly distinguish the concept of
adversarial robustness [63, 67, 68] from them. Furthermore Schmalfuf3 et al. [67] propose a
definition for the robustness of optical flow networks that is based on an optimized constrained
perturbation attack.

Carlini and Wagner [16] distinguish two approaches to evaluate robustness of neural networks
generally. Adversarial attacks can be used to derive upper bounds on a networks true perfor-
mance while security proofs can be used to derive lower bounds [16,18]. As our listing above
indicates the approach to study the robustness of optical flow networks using attacks seems
more prevalent at the moment.

2.5 Defenses

In this work we develop attacks against the pre-processing defenses Inpainting with Laplacian
Prior [3] and Local Gradients Smoothing [52]. Therefore the following section provides
context about common approaches to defend optical flow networks against perturbation
attacks. Intuitively, a defense modifies a neural network with the intention to increase its
robustness with respect to an input domain and a performance measure [29]. Even though
we focus on optical flow estimation, much of this material refers to algorithms that are
originally designed for image classification. Nonetheless, they can be considered for optical
flow networks.

Anand et al. [3] distinguish two approaches to defend optical flow networks against pertur-
bation attacks. The first approach extends the optical flow networks with a pre-processing
component that aims to repair manipulated images using transformations before they are pro-
cessed. As these additions are independent of the remaining architecture, they can be applied

19

2 Related Work

flexibly without requiring to retrain the network [3]. Anand et al. [3] further distinguish pre-
processing defenses that apply their transformations on the entire images on the one hand. On
the other hand, local pre-processing defenses first estimate potentially manipulated regions and
then apply their transformations on these estimates [3]. They mention JPEG compression [21]
and Total Variance Minimization [25] as instances of global pre-processing defenses. However
these algorithms are traditionally rather used in classification networks [21,25] and seem to be
not thoroughly examined for optical flow estimation. On the other hand they introduce Local
Gradients Smoothing [52], and Digital Watermarking [27] as examples of local pre-processing
defenses [3]. In their work they also develop a local pre-processing defense that is called
Inpainting with Laplacian Prior (ILP) and defends optical flow networks from adversarial
patch attacks by inpainting potentially manipulated regions [3]. Additionally they analyse the
performance of ILP together with the pre-processing defense Local Gradients Smoothing [52]
against patches that were trained on undefended networks using the attack proposed by Ranjan
et al. [63]. LGS is again traditionally a technique applied to image classification networks to
defend them against adversarial patches [52]. Secondly Anand et al. [3] mention adversarial
training [24] as an approach to defend networks. Its idea is to incorporate images with
adversarial perturbations into the training set such that the networks learn weights that are
robust against attacks [24,29,39,44,51,53].

Schrodi et al. [68] reason specifically for optical flow networks that an increase of the size of
the effective receptive fields of a network improves its robustness to adversarial patch attacks.
Consequently these authors indicate that architectural adaptations should also be considered as
an approach to protect neural networks that generalizes the subclass of architectural changes
introduced by pre-processing [68]. There are already many defenses published for image
classification networks that introduce changes to their architecture.

Besides these distinctions there are several different approaches distinguished for image
classification networks that could be considered for a transfer to optical flow networks. One
potential approach introduced by Chiang et al. [18] is to devise defenses that yield provable
security bounds on the lower robustness. There are several works that extend on this idea [86,
87]. Furthermore there are defenses distinguished that only aim to detect an attack [41,
87] and defenses that shield the networks from the attacks while guaranteeing its output
response [3,52,86]. Carlini and Wagner noticed several underlying concepts that can be used
to further classify defenses. They identified the concept of concept ensemble defenses [4] and
mention the defenses EMPIR [71], Ensemble Diversity [55] and Error Correcting Codes [83] as
instances. They also distinguished defenses that aim to introduce undifferentiable components
with the intention to reduce the information usable for optimization [88].

Defenses against adversarial examples are still considered as an open problem [4, 5]. This
is reflected in the ongoing development of increasingly stronger attacks and defenses in this
research area [4, 14, 16]. Athalye et al. [5] identified an often occurring pattern that is
representative for the situation. Initially a new defense is published which claims to increase a
networks performance under known adversarial attacks significantly [52,58]. Subsequently, an

20

2.6 Guidelines for Adaptive Adversaries

attack is published that is specifically designed against this defense that indicates only negligible
benefit of the defense [4,15,18]. There are several publications comprising successful attacks
on various image classification defenses at once [4,16,18].

2.6 Guidelines for Adaptive Adversaries

There are several publications trying to formulate generalized heuristics for the successful
design of robust adaptive attacks and defense algorithms [4, 14, 16]. Their aim is to sidestep
the competition between attacks focused on a narrow range of defenses and defenses claiming
robustness despite only testing against naive attacks [4, 14, 16].

Athalye et. al [4] noticed recurring patterns used by various defenses that complicate the
perturbation optimization for an adversary in a white-box setting [4]. As a result these defenses
often evoked the impression to be robust even though subsequent research produced successful
attacks [4,16]. Athalye et al. [4] summarize these patterns as obfuscated gradients and further
distinguish three common subtypes. Firstly, shattered gradients completely corrupt the gradient
information as a result of non-differentiable operations or numerical instabilities. Secondly,
stochastic gradients introduce randomness that distorts the resulting gradient. Lastly, vanishing
and exploding gradients occur in very deep networks. They stress that these properties should
not be confused to actually increasing robustness and therefore propose three adapted attack
schemes for overcoming every type of gradient obfuscation [4]. Finally the authors applied
their new techniques successfully and devised adaptive attacks against 9 published defenses
for classification networks.

Athalye et al. [4] propose Backward Pass Differential Approximation (BPDA) as a solution to
shattered gradients. In BPDA one distinguishes between the forward and backward pass as
in deep learning frameworks like PyTorch [59]. The approach then dictates to compute the
forward pass normally but replace the backward pass with an approximated operation that
allows the gradient information to propagate. In their experiments replacing the backward
pass operation with the identity function was often sufficient [4].

We already introduced Expectation over Transformation (EoT) by Athalye et al. [5] in Sec-
tion 2.3.4. In the context of obfuscated gradients, Athalye et al. [4] suggested it as a scheme
to learn perturbations that are robust to randomness. More specifically, the authors proposed
to approximate the actual randomized gradient of the defended network by computing the
average gradient over a small batch of samples. Lastly, Athalye et al. [4] propose a suitable
reparameterization to increase the stability in the backward pass of repeated operations for
vanishing/exploding gradients.

Based on their experience from the successful development of attacks against various defenses
Athalye et al. [4] proposed best practice guidelines that ease its independent robustness
assessment by different researchers. The remainder of this paragraph summarizes their ideas

21

2 Related Work

that are most relevant for this work. Firstly, defenses should explicitly state a threat model.
This threat model should be realistic under the intended application domain. Secondly, the
robustness claim of the defense should be specific. This includes mentioning all restrictions
on the perturbations and the resulting lower bound on the performance measure. Thirdly,
to ease reproduction of the results, authors should release the source code and pre-trained
models. Furthermore the hyperparameters associated to the robustness claims should be stated
explicitly. Finally, the initial evaluation of the defense should employ an adaptive attack. Thus
the attack that is used for evaluation should make explicit and significant use of information
about the introduced defense [4].

However in their robustness audits against several defenses for classification networks Tramer
et al. [80] concluded that very often adaptive attacks used for defense evaluations are still
insufficient. As a result, they published a set of recurring heuristically motivated themes that
provide additional guidance for adaptive attack designers and documented their methodol-
ogy [81]. We briefly summarize relevant concepts of Tramer et al. [80] in the last paragraph,
because they are used in the construction of our attacks.

Generally, the authors emphasize the role of an attacks simplicity. Specifically they observe that
despite being tested against complex attacks there tend to exist simple attacks that significantly
compromise defenses. Furthermore there are four heuristics identified that provide some
guidance for the search of a suitable loss function. Firstly, the training loss should be as close to
the evaluation measure as possible. As a consequence the original defense should be included if
possible, modifications and additional error terms should be introduced sparsely. Secondly, the
attack should aim to identify weak components of the defense and focus on them. Thirdly, the
actual optimization target can have a significant impact on the success of the attack. Lastly, they
stress the importance of the consistency of a loss function. Assuming one optimizes against a
function that differs from the evaluation measure, then successfully optimizing for the training
function should still imply success during evaluation. Furthermore a range of optimization
algorithms and associated hyperparameters should be considered for the attack. Alternatives
to gradient-based attacks like score-based attacks and decision-based attacks should also be
considered.

22

3 Adversarial Patch Attacks on Defended Optical
Flow Networks

This chapter introduces formal descriptions of the objects that are interacting in an adversarial
patch perturbation attack on defended optical flow networks. Consequently, mathematical
notations of optical flow networks, local pre-processing defenses and patch perturbation
adversaries are introduced. Additionally, we provide precise algorithmic descriptions of the
defense instances LGS and ILP. Furthermore the defenses are analyzed with respect to end-
to-end differentiability. Subsequently, suitable modifications are presented that guarantee
end-to-end differentiability. Finally, perturbation adversaries are instantiated that employ our
differentiable pre-processing implementations in the construction of their loss functions.

3.1 Optical Flow Networks

We denote the set of all images by Z and the set of all image pairs by Z x Z. Within the scope
of this thesis we consider the images to be encoded in RGB format with normalized entries and
therefore set

7 = [0, 1)V (3.1)

A specific image instance is denoted as I € Z and a pair of sequential images as (3, I3) with
I, I, € T. The order of the dimensions reflects the convention in the deep learning framework
PyTorch [59]. We define an optical flow network to be a function NV that maps an input image
pair representing sequential frames to a flow field estimation

N:IxT—F. (3.2)
In this equation F denotes the set of all legitimate flow field estimations

F = RZXHEXW, (3.3)

23

3 Adversarial Patch Attacks on Defended Optical Flow Networks

3.2 Defenses for Optical Flow Networks

The next sections introduce the local pre-processing defenses Local Gradients Smoothing
published by Naseer et al. [52] and Inpainting with Laplacian Prior published by Anand et al. [3].
LGS was originally devised as a defense for image classification networks [52]. However Anand
et al. [3] evaluated its transferability to optical flow networks in experiments together with their
ILP pre-processing defense which was specifically designed to defend optical flow networks.
The authors examined their influence on the prediction accuracy of a video action recognition
system that employs an optical flow network as a critical component [3]. For the evaluation
Anand et al. [3] devised an unadapted adversarial patch attack. In this adversarial setting the
defenses and especially ILP yielded promising results for action recognition accuracy in the
datasets UCF11 [74], KTH [69] and HMDB [38]. However they did not consider adaptive
attacks in their evaluations that were optimized to overcome the respective defenses. The
following sections intend to provide sufficient descriptions and analysis of the algorithms such
that we are able to design our adapted attacks at the end of this chapter.

3.2.1 Pre-processing Defenses

This section introduces the model that we use to analyze the local pre-processing defenses LGS
and ILP. Generally, we define a defense for an optical flow network as a functional D, which
maps an optical flow network N to a modified optical flow network N:

D(N) =N. (3.4)

Intuitively, this intends to reflect that a defense modifies an optical flow network in some way.
The definition should be able to incorporate pre-processing and adversarial training defenses
as introduced in Section 2.5. Inspired by descriptions of Anand et al. [3], we introduce a
pre-processing defense as a special case that concatenates an independent pre-processing
procedure D with the original network N:

N=DoN, with D, L)=(,T;) and I,I5,1,,I,¢€T. (3.5)

Based on this definition, the following two sections describe the local pre-processing defenses
Local Gradients Smoothing [52] and Inpainting with Laplacian Prior [3] in more detail. Thus,
our descriptions focus on the defenses in the context of optical flow networks. Additionally,
we provide an analysis of the defenses which is aiming to detect defense components with a
critical impact on end-to-end-differentiability. Based on these insights we will finally construct
our adaptive patch perturbation adversaries in Section 3.3.

24

3.2 Defenses for Optical Flow Networks

3.2.2 Local Gradients Smoothing (LGS)

The following descriptions are based on information provided in the original paper of LGS by
Naseer et al. [52]. LGS protects optical flow networks against local perturbation attacks by
performing two subtasks. At first, the algorithm determines potentially manipulated image
regions. This is achieved by splitting the image into potentially overlapping squared blocks
and a subsequent filtering operation that marks blocks with high average gradient activity.
Secondly, a custom pre-processing operation that is called Gradient Smoothing is applied to
the estimated regions to render them harmless.

The algorithm is based on two assumptions. Firstly, it assumes that the normalized first order
gradient magnitude field of an image provides sufficient information to distinguish manipulated
image regions. Secondly, it assumes that the Gradient Smoothing operation is sufficient to
neutralize the malicious effect of the perturbations.

Anand et al. [3] transfer the defense to optical flow networks by applying its original formu-
lation for image classification Dy g on each input image separately. Because the algorithm
employs four parameters this results in a parameterized family of optical flow pre-processing
defenses considering our definition from Section 3.2.1:

DLGS,k:,O,t,S(Ila -[2) — (-DLGS(Ilv ka o, tv S)a DLGS(I25 k;, o, ta S)) (36)

The argument k describes the block size and o denotes the block overlap of the square block
decomposition. Figure 3.1 illustrates a simplified example of a block decomposition. A
block-wise filtering threshold ¢ specifies the gradient magnitude level above which a block
is considered manipulated. Lastly the smoothing parameter s determines how strong the
estimated image regions are darkened depending on the actual gradient magnitude. Figure 3.2
visualizes the effect of the parameters ¢ and s on the pre-processing result.

In the following it is assumed that the image can be seamlessly split into the overlapping
blocks or otherwise they are suitably padded. Naseer et al. [52] did not mention a specific

AR EN N R

i X

& D,

NI MMM

Figure 3.1: Simplified block decomposition of an image grid with height 10 pixels and width
13 pixels. The implemented blocksize is k = 4 and the overlap o = 1

25

3 Adversarial Patch Attacks on Defended Optical Flow Networks

Figure 3.2: Visualization of the influence of the filtering threshold ¢ and the smoothing factor s
on a patch and its environment. The top row displays decreasing values of the
filtering threshold ¢t € {0.25,0.2,0.15,0.1} with a fixed smoothing factor s =
7.5. The bottom row illustrates increasing values of the smoothing factor s €
{2.3,5,10,20} with fixed filtering threshold ¢ = 0.15.

fl() f2('7k70) f3('>t) f4('7k70) f5('7'>8)
%} @ Tunfold Tfiltered Tfold Ismooth

Figure 3.3: Data Transformation Diagram of LGS [52]. Boxes represent intermediate results
and arrows visualize transformations. Visualization is inspired by a conceptually
similar illustration of ILP by Anand et al. [3].

padding mode but we think a reflection padding is suitable to approximate the average
gradient magnitude of the affected blocks. We model LGS as a procedure that applies five
transformations to an input image as illustrated in the data transformation diagram presented in
Figure 3.3. The next paragraphs give precise mathematical descriptions of these operations.

First, the input image I is transformed into its normalized gradient magnitude field 7" using
the transformation f;. In the first of three associated sub-steps, we compute the gradient
magnitude fields channelwise

o1 > (o1 2
|!VI<c,z',j>H=¢ (5i0) +(Gein) veefrabh G2

26

3.2 Defenses for Optical Flow Networks

Naseer et al. [52] do not specify how to generalize their approach from grayscale images to
color images. We decide to use the joint gradient as described in the lecture notes in Computer
Vision by Bruhn and Weickert [12] to generalize the following steps to color images:

VTG, = [> IVI(ei)] (3.8)
ce{r,g,b}

Lastly, we normalize the joint color gradient field to contain entries within the range from 0 to
1

176G, DIl = min |11, B)],

A =T with T(,j) = b . (3.9)
0 9 = S @ BT, — min 1.5,

Next, a block-wise decomposition f, is performed which yields N,, N}, vertical resp. horizontal
blocks of size k:

f (T k 0) unfolda with Funfold € RN XNthXk (310)

This yields the following intuitive mapping between T and T, f.,4 for a pixel at position
(y, x) of the i-th vertical and j-th horizontal block, when assuming the stride of the blocks is
s=k—o:

Tunfold(iajayvx) = T(S i+ Yy, s] + JJ) (311)

Next, we filter out blocks with an average normalized joint gradient magnitude smaller than a
threshold t using transformation f3 and receive T'jjereq. Evaluating T'yijereq at the location

(i,J,y,x) yields

o Tunfold(iajayJCC) ifk%ZTunfold(ivjv a, b) >1
Tfiltered(lv 1Y, CU) = ab (3.12)
0 else.

After this we recombine the blocks to get the filtered normalized joint gradient magnitude
map with transformation f;. Unfortunately, Naseer et al. [52] only stated to use the inverse
operation of the block-wise decomposition f, which is ambiguous for o > 0. Specifically, their
description is ambiguous for regions that are overlapped by multiple blocks when part of the
blocks are filtered out and others not. Because we assume it is the intended formulation of
the authors, we keep overlapping regions if at least one overlapping block is considered to be
manipulated and thus not filtered out. Our resulting recombination transformation fy is based
on an inofficial LGS implementation published on GitHub [50] and can be formulated as

Ja(Ttittereds k,0) = Troia (3.13)

27

3 Adversarial Patch Attacks on Defended Optical Flow Networks

with

T(i,7) if there is at least one unfiltered overlapping block in 7T'tijereq

0 else

Tora(i,j) = {
(3.149)

Lastly, we perform Gradients Smoothing. Intuitively, this operation darkens every pixel by
multiplying the original brightness with a number from the interval [0, 1]. This number tends
to be smaller for larger s. It also tends to be smaller for larger filtered gradient magnitude
values at the considered location. The Gradient Smoothing transformation f; is

f5(-[7 Tfolda 8) = Lsmooth with]smooth<c7 Z,j) = I(C, 7/7.7) © (1 - CIip[071]{3 ' Tfold(ivj)}) :
(3.15)

Naseer et al [52] mention that the parameters k = 15,0 = 5,¢t = 0.1 and s = 2.3 worked
best in their experiments, however as their source code is not provided we consider these
recommendations with caution. Figure 3.3 visualizes the intermediate results of the LGS
defense as well as its effect on one of our unadapted adversarial patches that we used in our
experiments later in Section 4.3.1.

3.2.3 Differentiability of Local Gradients Smoothing

This section discusses the differentiability of the LGS algorithm which is relevant for the
gradient-based optimization of our adversary as discussed in Section 2.3.7. Our analysis and
our subsequent attack are heavily based on the brief description of Chiang et al. [18] about
their successful attack on LGS for image classification networks. However our analysis seems
to extend on their attack description as we clearly identify an optimization obstacle in the
Gradient Smoothing step, that is not mentioned in their description and only occurs for strong
parameter configurations. The attack of Chiang et al. [18] focuses on the backpropagated
information of the Gradient Smoothing step described in Equation (3.15). The authors
stress that despite of the non-differentiability of the other components of LGS, the Gradient
Smoothing transformation provides sufficient information for a successful attack [18]. In
the following we will discuss each transformation of the defense in the context of gradient
obfuscation patterns by Athalye et al. [4] which were introduced in Section 2.6. Overall, we
identify three components of the defense that can cause gradient-shattering.

Firstly the computation of the normalized joint color gradient magnitude using f; yields an
undefined gradient at homogeneous image regions. This occurs because the derivative of the
square-root function evaluated at zero is undefined. To keep the complexity of our code small
we solved this issue by introducing a very small offset of size 107%. A more appropriate solution
for this case would be to apply BPDA [4] to manually inject suitable gradient information
at this location. Furthermore the gradient magnitude normalization could also complicate

28

3.2 Defenses for Optical Flow Networks

]

-

T

Figure 3.4: Visualization of the effect of LGS. The first column displays the first image of the
image pair that served as an input to FlowNetC. The second column depicts the
resulting optical flow prediction for four modalities. The modalities from top to
bottom are: unattacked flow estimation without pre-processing, attacked flow
without LGS pre-processing, attacked flow with LGS pre-processing, unattacked
flow with LGS pre-processing. The used parameterconfiguration is £ = 15,0 =
5t=0.1,s = 2.3.

Figure 3.5: Intermediate results T' (left) and T4 (right) of the LGS algorithm. The used
parameter configuration was k = 15,0 =5,t = 0.1,s = 2.3.

the parameter optimization and is additionally undefined for constant image inputs. We
could not determine any evident problems with the normalization in our experiments but it
could nonetheless have an undetected effect on the optimization. Additionally we neglected
the undefined normalization result for constant images because it will not occur during our
experiments and the issue is also not addressed in the original paper [52].

Secondly, we identify the blockwise filtering operations consisting of fo, f3 and f4 as compo-
nents that cause gradient shattering in our implementation as a result of the PyTorch operations
that we used for the block decomposition. We restore the propagation of gradient informa-

29

3 Adversarial Patch Attacks on Defended Optical Flow Networks

tion by applying BPDA twice and replacing the backward pass of these operations with the
identity function. Specifically, the affected transformations are a division and a conditional
replacement.

Finally, we identify the clipping operation during Gradient Smoothing as a critical component
that causes gradient-shattering in practice for strong smoothing factors. Specifically, a lower
clip in this step occurs when a pixel is darkened to a brightness value smaller than 0 and is
subsequently reset to 0. As a consequence the gradient of this pixel is also reset to 0 and the
previously aggregated gradient information is lost. We do not try to solve the problem of this
shattered gradient in our implementation of the backwards-pass of LGS. Instead we will choose
an additional error term during the construction of our Adversary against LGS in Section 4.3.2
that regularizes the perturbation again to an unclipped one. We choose this approach because
it provides us more flexibility to adapt our adversary, for instance by weighting the additional
error term.

3.2.4 Inpainting with Laplacian Prior (ILP)

Inpainting with Laplacian Prior is a local pre-processing defense published by Anand et al.
[3]. It is specifically designed to protect optical flow networks against adversarial patch
attacks [3]. Similarly to LGS, it performs its pre-processing separately on both input images
and is again defined as a parameterized family of defenses when considering our definition
from Section 3.2.1, however this time with five parameters

Dirpkotsdli,12) = (Drrp(Ii,k,0,t,8,d), Drp(I2, k,0,t,s,7). (3.16)

The defense is conceptually based on Local Gradients Smoothing [52] but introduces design
changes with two particular improvements in mind. Firstly, the authors propose to use a
second order gradient statistic as an indicator for manipulated image regions instead of first
order gradients [3]. Secondly they propose to use an inpainting algorithm to pre-process
manipulated image regions instead of applying Gradient Smoothing on them [3].

Intuitively, the algorithm first determines manipulated image regions very similarly as Local
Gradients Smoothing. Initially the second order gradient field is computed and again block-wise
filtered with blocksize k, overlap o and filtering threshold ¢. Secondly, it the estimation is refined
by filtering the currently marked regions again using the second order gradient magnitude field.
However, this time the filtering is performed pixel-wise. Furthermore the second order gradient
statistic is scaled by a factor s before filtering. Subsequently, a morphological operation
is applied to close gaps in the estimation. Finally, the potentially manipulated regions are
reconstructed using an inpainting algorithm. The following paragraphs describe the operations
formally. An overview of the transformations and intermediate results is provided in Figure 3.6.
The following paragraphs provide a formal description of the transformation operations in
ILP.

30

3.2 Defenses for Optical Flow Networks

@ Tfold Mmorph Iinp

%} 91(') ’—ﬂQ('7k707t) 93('78) @ 94(') 95('7'7T)

Figure 3.6: Data Transformation Diagram of the Inpainting with Laplacian Prior Defense
presented in a way to apply BPDA attacks.

Rather unconventionally but as introduced by Anand et al. [3], we define the second order
gradient magnitude ||V3I|| evaluated at (c, i, j) within this work as

VoI (c,i,7) = H(ayy[0)H (ByyI(c, i, J))? 4 (Bunl(c,i, 5))°. (3.17)
Oxal

Again the authors did not recommend an algorithm to generalize their method to color images.

We therefore again use the joint color gradient concept as described in the lecture notes of

Bruhn and Weickert [12]. As a result, the second order joint gradient magnitude computation

and the normalization are similar as in LGS

V21l 7 (3, 5) — min |[V21| (a,b)

G, 7) =T(i,) = b . (3.18)
PO =TT = s 911 (0,) — min [V (a.5)

Next the block-wise filtering g- is similarly defined as for LGS in Section 3.2.2. Specifically we
have

92(T) =Ttoiq with go = fao f3o fy. (3.19)

We want to stress that T,q in ILP contains the normalized second order joint gradient
magnitude and not its first order counterpart as in LGS. After recombining the blocks, the
resulting gradient field is rescaled and then filtered pixel-wise. The result is a raw inpainting
mask M that marks regions to inpaint with a 1 entry

1 ifs- TfOld(i,j) > 0.5

0 else

93(Tfold) = M with M(l,j) = { (3.20)

Then, g4 performs a morphological closing operation with a 3 x 3 stencil to close small gaps in
the mask. The result of this operation is M,,,p;. Lastly, an inpainting algorithm is applied to
recover marked regions. The parameter r specifies the radius of the environment around a
pixel that is considered for its inpainting

95(1, Myporph,) = Inpaint(Z, Mp,orph, 7). (3.21D)

The next section summarizes the Inpainting algorithm proposed by Anand et al. [3] in more
detail. Furthermore Figure 3.7 visualizes the influence of the parameters ¢ and s. Figure 3.8

31

3 Adversarial Patch Attacks on Defended Optical Flow Networks

illustrates the effect of ILP on an unadaptive patch that we will train in Section 4.3.1. Figure 3.9
shows the intermediate results of ILP.

Figure 3.7: Visualization of the influence of the filtering threshold ¢ and the scaling factor s on

32

a patch and its environment. The top row displays decreasing values of the filtering
threshold ¢ € {0.3,0.25,0.2,0.15} with a fixed smoothing factor s = 10. The bottom
row illustrates increasing values of the scaling factor s € {2.5,7.5, 20,40} with fixed
filtering threshold ¢ = 25.

3.2 Defenses for Optical Flow Networks

Figure 3.8: Visualization of the effect of ILP. The first column displays the first image of the
image pair that served as an input to FlowNetC. The second column depicts the
resulting optical flow prediction for four modalities. The modalities from top to
bottom are: unattacked flow estimation without ILP pre-processing, attacked flow
without ILP pre-processing, attacked flow with ILP pre-processing, unattacked flow
with ILP pre-processing. The used parameter configuration is k = 16,0 = 8,¢t =
0.25, s = 10.

Figure 3.9: Intermediate results of the ILP algorithm. T is located at the top left. T4 is
situated on the top right. M can be seen at the bottom left and M, at the
bottom right. The used parameters are k = 16,0 = 8,t = 0.25,s = 10

33

3 Adversarial Patch Attacks on Defended Optical Flow Networks

Inpainting

Anand et al. [3] propose the inpainting procedure by Telea [79] to process manipulated areas.
The following paragraphs present a summary of the material in the original paper [79]. The
algorithm receives a RGB color image I € R***W and a binary mask M ¢ {0,1}*" as an
input and outputs an image I;,,, € R¥>*#>W in which the marked locations are recolored using
color information from the unmarked environment with a distance of less than r:

Inpaint(Z, M,r) = Iiyyp. (3.22)

To maximize efficiency, the algorithm aims to solve two tasks jointly. Firstly it determines an
order of the marked pixels that is best suited to aid the transfer of neighborhood information
into the center of marked areas. Secondly, the algorithm unmarks and computes the color of
each pixel in the specified ordering sequentially.

The inpainting order is derived from the solution of the Eikonal equation that is specified by
Telea [79]. As a boundary condition the pixels at the boundary B of the marked regions are
set to distance 0. The remaining entries are then implied by the condition

IVT| =1, and T(B) = 0. (3.23)

Pixels with a smaller distance 7 to the boundary are inpainted first. The color of the pixel p is
computed as a weighted average of its unmarked neighbors N,.(p) [79]:

> w(p,q) [I(q) + VI(g)(p— q)]
_ qeN:(p)

I(p (3.24)
®) > w(p,q)
qEN(p)
The joint weight is a product of three separate weights.
w(p, q) = Wair (P, q) - Wast (P, q) - Wiew (P, q) (3.25)
The individual weights are defined as
p—q
wair(p,q) = ——— - VT(p) (3.26)
Ip —all2
1
Waist (P, 9) = 73 (3.27)
t Ip —all
1
Wiev (P, q) (3.28)

"1+ T(p) - T(q)|

The first weight wg;,(p, ¢) considers the angular similarity between the level-set distance map
gradient VT at location p and the normalized distance vector from g to p. The weight wg;s:(p, ¢)
increases the contribution of pixels ¢ that are closer to p measured in euclidean distance. Lastly,
wiew (P, q) increases the weight of pixels ¢ that have a similar distance to the initial boundary as

p.

34

3.2 Defenses for Optical Flow Networks

\

Marked Region
Pixel to inpaint
Known Environment

Figure 3.10: Visualization of the inpainting process of a pixel. Illustration derived from the
illustration by Telea [79] for the continuous setting. The grid represents an open
environment of a grid of pixels. The orange square represents a pixel that is going
to be inpainted using Equation (3.24). For this inpainting operation the color
values of the pixels is considered with a euclidean distance smaller than the radius
r indicated by the circle. Marked pixels are not considered. As a consequence the
light gray squares contribute information to the resulting brightness value of the
orange pixel.

The original work of Telea specifies the algorithm with pseudocode that is structured in
three procedures. We provide revised pseudocode of the original publication of Telea [79]
in the appendix. In this pseudocode we corrected potential typos and added math operators
that were missing in the referenced document [79]. We derived our adaptations from the
textual descriptions of the original paper and from existing implementations [9, 26, 54].
Algorithm A.1 implements the backbone of the Fast Marching Method [72] that additionally
performs inpainting on-the-fly [79]. It relies on two sub-procedures. The first sub-procedure
Algorithm A.2 computes the resulting brightness of a pixel as the result of its inpainting as
described in Equation (3.24). The second sub-procedure Algorithm A.3 specifies the update of
the level-set distance map of a pixel using a computation that is described in the original work
of Telea [79].

3.2.5 Differentiability of ILP

This section is based on the same premise as the analysis of LGS in Section 3.2.3. Specifically, we
focus on the end-to-end-differentiablilty of the specification of the ILP pre-processing and the
resulting design decisions in our implementation. Our analysis of ILP and our adaptive attack
on it are based on the attacks of Chiang et al. [18] for LGS and Digital Watermarking [27].

35

3 Adversarial Patch Attacks on Defended Optical Flow Networks

Their brief attack description on LGS was summarized in Section 3.2.3. Their attack influenced
our work because of the similarities between ILP and LGS with respect to the estimation of
the manipulated regions. Generally, the block-wise filtering transformations of both defenses
are identical. Furthermore the first and second order gradient magnitude associated statistics
are very similar. Additionally, Chiang et al. [18] devised a successful attack against the Digital
Watermarking [27] defense for image classification networks. The Digital Watermarking
defense also employs the inpainting algorithm of Telea [79] to process pixels [27] and is
thus related to this work. In their attack Chiang et al. [18] applied BPDA to the inpainting
operation and approximated the backward-pass with an identity function. In the following,
we transfer this idea to the ILP defense. But we first discuss general issues with respect to the
differentiability of the specification.

The following backward-pass implementation of ILP aims to return gradient information only
to those pixels that are not filtered out. As a result unfiltered pixels update to optimize the
loss function term in which the ILP algorithm is included. Filtered pixels receive a gradient
of 0. The reason why we implement the backwards path this way is that we can penalize
filtered pixels with an additional error term in the loss function more flexibly as we will see
in Section 3.3.3. In the following we analyze the components of ILP with respect to their
differentiabilty.

Firstly, we determine the same issues with the normalized joint second order gradient magni-
tude transformation g; for ILP as for its first order counterpart f; in LGS which is described in
Section 3.2.3. Consequently, we also introduce slight offsets to prevent a gradient shattering
for homogeneous regions because of the undefined gradient of the root-function at location
0.

ILP employs the same block-wise filtering algorithm g, as LGS. We consequently also approx-
imate the backward-pass with an identity function in technical contexts that are associated
with the construction of an operation that is inverse to the Unfold function in PyTorch [59].
Our implementation uses PyTorch’s Unfold function to realize the block-wise decomposition of
the image

Thirdly, we identify the pixelwise filtering transformation g3 as an operation that shatters
gradient information. As defined in Equation (3.20) the derivative of its step function is zero
almost everywhere. As a consequence it nullifies the gradient information that was gathered
previously in the backward pass. However, our intended implementation does not rely on
backward-pass information of the backpropagation path that is associated with the mask
generation. Consequently we do not introduce any changes.

Finally, we apply BPDA [4] to the backward-pass of the inpainting procedure as proposed
by Chiang et al. [18]. We do this, because the computations of our custom PyTorch [59]
implementation are prohibitively time-consuming. As a consequence we use the optimized
Python-OpenCV [9] implementation of Telea’s algorithm [79]. Thus we apply BPDA to the
inpainting step because it is performed using a framework that does not use an automatic

36

3.3 Perturbation Adversaries

backward-pass generation. Specifically, we propagate only the gradients of unfiltered pixels
and set the gradients of the other pixels manually to zero. We again stress that we do this to
penalize pixels that are filtered out via an external regularizing error term in the loss function.
The error term intends to penalize the filtered perturbation parameters in such a way that
they recover from being filtered. We give a precise description of the additional error term in
Section 3.3.3

3.3 Perturbation Adversaries

In this section we instantiate three adversarial perturbation models from the building blocks
examined in previous literature and summarized in Section 2.3. Our adversaries are based on
the original adversarial patch attack for optical flow networks by Ranjan et al. [63].

Generally, we model an attack as a functional .A that maps an original optical flow network N
to a manipulated one

A(N) = N. (3.29)

This allows us, inspired by the modeling of pre-processing defenses provided by Anand et al. [3]
and the perturbation attack by Schmalful} et al. [67], to describe the adversarial patch attack
as a special case of an input perturbation attack. For a sequential image pair I1, I> and an input
perturbation adversary Ap, p, we thus have

N=AoN with A(l, L) =(I1,1;) and Iy, I, I, I, €. (3.30)

Because we develop adaptive adversaries, the following sections define three individual
perturbation adversary instances. Each one is designed to attack one operation mode of
FlowNetC. We consider the undefended FlowNetC network, FlowNetC with LGS pre-processing
and FlowNetC with ILP pre-processing. The next section gives a detailed derivation of an
adversary while the sections for the adaptive adversaries mention necessary adjustments to
this baseline attack.

3.3.1 Perturbation Adversary for FlowNetC without Pre-processing

In this section we instantiate our perturbation adversary Ap, p, = A that is designed to produce
adversarial patches for the undefended FlowNetC network. We parameterize our perturbations
as individual RGBA tensors as described in Section 2.3.1. We set the width and height of our
tensor representations equal to the image size. Thus we have P;, P, € R*>*#*W They are
applied to the original images using alpha blending

AL, I) = (I;,I,) with I; = P4, ®Pig+ (1—Po) oI foric{l,2} (3.31)

37

3 Adversarial Patch Attacks on Defended Optical Flow Networks

We define ® to be the element-wise multiplication. P; , denotes the alpha channel of P; and
Pi,rgb denotes the rgb channels of P;,. However, to make the generated adversarial patch
robust against limited rotation and scaling changes we first perform a random rotation and a
random scaling on P before including the perturbation via Equation (3.31). This technique
was first transferred to attacks on optical flow networks by Ranjan et al. [63]. The rotation
angle a is randomly sampled from the interval [-10, 10] and rotates P around an associated
location . Subsequently a random scaling factor b is uniformly sampled from [0.95, 1.05] and
the perturbation P is scaled by b originating at [.

Next, we introduce a temporal constraint as proposed by Ranjan et al. [63] to increase the
practical applicability of the attack

Pi=P,=P (3.32)

As a consequence we apply the same perturbation to both images which is easier to realize in
practice [63]. We now overload our notation with

AP(II,IQ) :Ap’p(fl,fz). (333)

Next we introduce a constraint with respect to the possible strength of the perturbation and
thus require

I € [0, 1]3*HxW (3.39)

Because we want a circular patch of radius we also add a spatial constraint on the perturbation
considering the location of the patch to be [. We require the perturbation to only introduce
changes within a radius of » = 50 pixels around location [. This is implemented by setting the
respective alpha values of the perturbation suitably.

Tramer et al. [80] recommend to use a loss function that is consistent with the evaluation goal.
In our case we consider for training the flow field estimation error between the unattacked
flow F and the attacked flow F as proposed by Ranjan et al. [63]. Additionally this yields
the benefit that we do not have to adapt the ground truth flows to correct for the introduced
patch [67]. Previous research about adversarial patch attacks by Ranjan et al. [63] yielded
promising results for the ACS loss measure that was introduced in Section 2.2. To base our
adversaries on firm results from the context of adversarial patches we therefore also use the
ACS as a similarity measure between the training flow fields

L(F,F)= ACS(F,F). (3.35)

Finally we optimize our perturbation P using Projected Gradient Descent on the allowed
perturbation interval [0, 1] with updates clipped to the range [-2/255,2/255] and a learning
rate of 1000.

38

3.3 Perturbation Adversaries

3.3.2 Adversarial Model for FlowNetC with LGS Pre-processing

In the following we state the adjustments to our baseline adversary from the previous chapter,
that are necessary to receive our adaptive adversarial patch attack on LGS. Overall we apply
two modifications to our initial adversary.

Firstly, we compute the ACS loss between the unattacked but LGS pre-processed flow estimation
Fi s and the attacked and defended flow estimation F';,gs. We stress that this implies the
inclusion of our LGS implementation into our training loss. Thus the implications summarized
in Section 3.2.3 take effect. However for very strong smoothing factors there occurs the
situation where the gradient information of the ACS is zero for parameters that are clipped
via gradient smoothing. This is a result of a large normalized joint gradient magnitude of
the affected perturbation parameter together with a strong filtering threshold. To respond to
this and to restore the gradient information of the ACS loss term, we add another error term
that penalizes the average joint gradient magnitude of the patch. Let ||V P||; denote the joint
gradient magnitude field of the patch P. Let furthermore n denote the total number of pixels
that are perturbed by P. Then we can formulate our loss function with a weighting coefficient
a as

2NV P,)

Lrcs(Fras, Fras, P) = ACS(Fras, Fras) + QWT. (3.36)
We optimize our LGS adversary generally using I-FGSM [39] updates because this allows us
to choose the coefficient « of the regularization term negligible small for pixels with existing
gradient information. Our perturbation parameters are additionally clipped to the range [0, 1]
after every update step. Generally, we choose the I-FGSM update size to be ¢ = 0.004 and set «
to 1078, We will see in Section 4.3.2 that there will be one adversary that we will adapt from
this schedule to increase the quality of its trained perturbation result.

3.3.3 Adversarial Model Designed for FlowNetC with ILP Pre-processing

This section summarizes the modifications to the baseline adversary from Section 3.3.1 that are
necessary to receive our attack on ILP. Overall, we introduce adjustments to the loss function
that are analogous to the changes for our LGS adversary in Section 3.3.2.

Firstly, our adaptive adversary trains its perturbation on an flow prediction error term that
incorporates the ILP defense. Specifically, our ILP adversary minimizes the ACS loss between
the unattacked but ILP-defended flow prediction F;zp and the attacked and ILP-defended flow
prediction F;; p. This adjustment is central, as it provides our adversary with the information
that is necessary to learn a perturbation with a strong impact on the prediction despite being
pre-processed by ILP.

39

3 Adversarial Patch Attacks on Defended Optical Flow Networks

To provide filtered pixels with gradient information we introduce an additional error term
that penalizes the patches average second order joint gradient magnitude statistic || V2 P|| s as
defined in Section 3.2.4. The resulting loss function that is weighting the regularization term
with weight « is

>V Pl s, 5)

L(Fi1p,Frrp, P) = ACS(Fi1p, Fip) + a2 - . (3.37)

Similarly to the previous attack the regularization term penalizes the second order joint gradient
magnitude of inpainted perturbation parameters in order to help them from being marked
during the inpainting mask generation of ILP. Because we again use the I-FGSM optimization
approach and a very small coefficient a = 10~%, our regularization term effectively penalizes
only the perturbation pixels that are detected during the mask generation. This is because we
implemented the backward-pass of ILP in such a way that these perturbation parameters receive
a zero gradient as gradient information from the ACS term. We however clip the resulting
parameters after every update to the range [0, 1] and select an update size of ¢ = 0.004.

40

4 Experiments

To evaluate the efficiency of our adversarial models, we conducted experiments consisting
of a training run and a subsequent evaluation. This chapter summarizes the results of our
attacks when they are applied to the FlowNetC network with resp. without pre-processing
defenses. Our experiments use the train/test split proposed by Ranjan et al. [63]. We train
our adversaries on the KITTI Raw dataset [23] and test on the training subset of the KITTI15
dataset [48]. The remainder of this chapter is structured as follows.

The next section provides information about our employed software. In the third section we
describe our training and evaluation procedures. The fourth section reports our experimental
results for the undefended, LGS-defended and ILP-defended FlowNetC. Finally, the fifth section
discusses our results.

4.1 Software

We implemented our experiments in PyTorch [59]. Furthermore, we employ the pretrained
FlowNetC model and class from the GitHub repository associated with the original adver-
sarial patch attack by Ranjan et al. [61,63]. From this repository we also use the image
loader functions for the KITTI Raw dataset [61]. We use the data loader functions from the
RAFT repository [2] to load the KITTI15 training dataset. Additionally we used the PyTorch
Correlation Module for FlowNetC by ClementPinard [60]. Our re-implementation of LGS is
strongly influenced by a LGS implementation for image classification networks published on
GitHub [50]. For the inpainting algorithm we used the Python-OpenCV implementation of
Telea’s algorithm [9] For the inpainting mask generation in ILP we again strongly considered
the LGS implementation mentioned previously [50]. Our Training and Evaluation procedures
are derived from the original adversarial patch attack repository by Ranjan et al. [63]. We
created diagrams with the graphing library Plotly [31] and flow field colorplots using the
flow_library GitHub repository by Mehl [47].

4.2 Training and Evaluation Procedure

Algorithm 4.1 summarizes our training procedure. Let Fp denote an unattacked flow field
estimation that applies the pre-processing function D. This pre-processing function can also be

41

4 Experiments

the identity function to include the undefended network in our statements. Let furthermore
Fp denote an attacked flow field prediction which applies the pre-processing D. Then, our
training procedure iteratively updates our perturbation parameters P from randomly sampled
image pairs by minimizing the adversarial loss function £ that depends on the unattacked and
attacked prediction Fp, Fp as well as the perturbation parameters P. In the computation of
our ACS loss we ignore the image region that is occluded by the circular patch.

Each sampled image pair is rescaled by independent horizontal and vertical factors from the
interval 1, 1.5] and subsequently cropped to a height of 320 and a width of 512 to increase the
computation speed. After computation of the adversarial loss function £ backpropagation is
used to generate gradient-information to update our perturbation parameters. At the end of an
iteration, our adversary updates its parameters using the respective optimization update and
learning rates. To improve reproducibility we initialize the pseudo-random number generator
with a fixed seed at the beginning of every training run.

Algorithm 4.1 Training procedure for a perturbation model Ap = A on the optical flow network
FlowNetC denoted as N. The experiment uses the KITTI Raw dataset which is denoted as
DSk rrrrrew and considers a defense D € {Digs k=15,0=51,5s Dip,k=16,0=8.t,s,r=5, [d}. The
adversary instance applies its perturbation to the image as described in Section 3.3. The
update procedure U is dependent on the adversarial model. The learning rate is «. Gradient-
information is computed via PyTorch’s [59] autograd functionality.
function TRAIN(A, N, DSk 1rTI1R0w, D, U, @)
forie {1,...,n}do
Sample (11, I2) uniformly from Dataset DSk 771 Raw
Apply RandomRescalingThenCrop to I, I

I, Iy := D(Ap(I1, I)) // Attack and Pre-process
I, I, := D(I1, 1) // Pre-process
Fp,Fp:=N(I1,LI), N(I{, I) // Estimate Flow Fields
L:=L(Fp,Fp,P) // Compute Error
P=U(P, %, a) // Update Patch
end for
return A

end function

Our evaluation experiment is built upon the evaluation experiments of previous attacks on
neural networks [63,67,68]. We compute the AEE between the unattacked prediction Fp and
the attacked prediction F'j, on the one hand to estimate the network’s resulting robustness [67].
On the other hand, we compute the AEE between the ground truth flow and the attacked
flow Fp to estimate the networks resulting prediction accuracy [67]. In both cases we
ignore the regions that are occluded by the inclusion of the patch. Algorithm 4.2 summarizes
our evaluation procedure. In our evaluation we iteratively compute the AEE of the images
contained in the KITTI15 training split. In one iteration we first apply a center crop to the

42

4.3 Evaluation Results

image to guarantee that its height and width are the largest possible multiples of 64 which is
required by FlowNetC [61]. Then, we apply the pre-processing D on the unattacked image
pair and on an attacked version of it. After this we estimate the attacked and unattacked flows
Fp, Fp. In the end of an iteration, we compute AEE(Fy, Fp) and AEE(Fp, Fp). Finally
we return the average of the respective AEE computations. Again our code initially resets the
pseudo-random number generators to increase reproducibility.

Algorithm 4.2 Evaluation procedure for a perturbation model attacking an undefended network
N. The adversary Ap is tested against the optical flow network N on the KITTI 2015 training
dataset DSk rrr15 [481. We stress DSk rrrris N DSkirrirRaw = 0. The center crop reduces
the images’ size to H = 320 and W = 1216 as this seems to be the largest multiples of 64
that are contained in every frame of DSk r7r15. We assume L and L, are initialized to zero
tensors. We assume D € {Id, D1cs,155.t.5: DILp,16,8,t,s }-
function EVALUATE(Ap, N, D, DSk r7115)
for (Il, I, th) € DSkrrris do
Apply CenterCrop to Iy, I, Fy
(I{, Ié) = D(Il, IQ)
(I1,15) := D(Ap(I1, I5))
Fp,Fp:=N(I{,1,),N(I1, 1I2)
Ly += AEE(th,FD)
L += AEE(FD,FD)
end for
return %, L

end function

4.3 Evaluation Results

The following sections present the evaluation results for our adversaries against the FlowNetC
network without pre-processing and with LGS resp. ILP pre-processing. The attacks on the
undefended FlowNetC serve as a baseline to determine the network’s vulnerability. Additionally
we test the performance of selected patches against a range of parameter configurations of ¢
and s for LGS and ILP. Based on the performance of our baseline patches, we select challenging
parameter-configuration instances ¢, s for LGS and ILP to evaluate our adaptive attacks against
them.

4.3.1 Attacks on the Undefended FlowNetC Network

In the first experiment we train five different instances of the adversarial model defined in
Section 3.3.1. We summarize the most important adjustments. We train our randomly placed

43

4 Experiments

patches against the AC'S(F, F) loss function between the attacked and unattacked flow F, F’
without any pre-processing. Our adversary performs projected gradient descent updates that
are clipped to size 1/255 and use a learning rate of 1e3. We initialized our RGBA patch to have
a non trainable circular alpha layer with a diameter of 50 pixels and set all RGB values to 0
initially. We then train our patches for 10, 000 iterations.

Figure 4.1 shows the moving average of width 100 of the training loss. We notice that the
patches seem to be sufficiently converged after approximately 4000 iterations. Additionally we
see that the curves of run three and four converge to a different loss value than the remaining
runs. This can be an indicator that there might be several local minima that are dominating
the parameter space. The visual appearance of the trained patches is illustrated in Figure 4.2.
In these runs, there seem to be two patterns dominating, that can be distinguished by their
frequencies and color distributions. Run 3 and run 5 seem to be very pure representations of
these patterns. Further comparison with the training loss function indicates that the patches
with the higher frequency pattern are Run 3 and Run 4 that converged to a limit that is less
efficient as the other three patches. We included a visualization of the evolution of the patches
over the first 7000 iterations in the appendix Figure A.1.

For comparison we also trained five patches using the official repository of the adversarial patch
attack by Ranjan et al. [61] with standard parameters. Figure 4.3 visualizes the resulting patch

Mode

Run 1
Run 2
Run 3
Run 4
Run 5

Averaged Loss

0.1

Iteration

Figure 4.1: Moving average of kernel size 100 of the training losses over 10000 training
iterations for 5 similarly initialized runs.

44

4.3 Evaluation Results

= A 2 2
éw%ﬁ#

(@Runl @GB)Run2 ()Run3 (dRun4 (e)Runb5

Figure 4.2: Adversarial patches resulting from five instances of our adversary against the
undefended FlowNetC as described in Section 4.3.1. The adversary instances are
trained using our custom training procedure described in Algorithm 4.1.

(@Runl ®B)Run2 (¢)Run3 (@) Run4 (e)Run5

Figure 4.3: Adversarial patches resulting from five executions of the training procedure of the
adversarial patch attack repository by Ranjan et al. [61] with standard parameters.
The visualizations are derived by clipping the actual adversarial patch tensor to the
range [0, 1].

perturbations. We notice that these patches are dominated by noise like brightness fluctuations.
However we can also clearly see that the general appearance of the patches resembles the
appearance of our custom patch from run 5 that is shown in Figure 4.2e. This pattern appears
as horizontal stripes in the colors blue and red.

The code of the flowattack GitHub repository of Ranjan et al. [61] however seems to contain
some inconsistencies that we explain in the following. Initially, we observe that the original
tensor representation of a trained RGB perturbation contains entries exceeding the range
[—3, 3]. Further analysis of the update procedure indicates that the perturbation parameters
are not optimized as a constrained optimization problem. Instead the patch is optimized as
a global optimization problem and the rgb perturbation parameters are clipped every time
before they are injected into the images. Specifically, the patch is clipped to the interval [0, 1]
which is also the brightness range of the images. Furthermore the training procedure does not
update the perturbation parameters using the direct gradient g—ILD. Instead the update is derived
from the gradient of the attacked images % at the location of the patch. As a consequence, the
patches trained with the flowattack repository by Ranjan et al. [61] grow out of the range [0, 1]
even though the clipping operation would normally shatter the gradient for clipped pixels. We
assume that these inconsistencies are the reason for the visual difference between our custom

patches and the patches by Ranjan et al. [63].

45

4 Experiments

Custom Training Pipeline Unattacked Runl Run2 Run3 Run4 Runb5
AEE(F, F) 0.0 27.020 28.011 17.944 15.901 36.919
AEE(F, Fy) 12.997 37.283 38201 28.722 26.893 46.645
Ranjan et al. Repository Unattacked Runl Run2 Run3 Run4 Runb5
AEE(F,F) 0.0 10.123 7.147 6.337 9.563 5.121
AEE(F, Fy) 12.997 21.433 18801 18.113 20.906 17.076
AEE(F, F,) (test_patch.py) | 14.515 24.654 22.041 21.352 24.067 19.765

Table 4.1: Evaluation results of Algorithm 4.2 for the patches trained with our procedure in the
upper table and patches trained with the flowattack GitHub repository by Ranjan
et al. [61]. For the patches trained with the flowattack repository we also included
the AEE scores returned by the associated function test_patch.py [61].

Table 4.1 summarizes the performance of the patches generated with our training pipeline and
the patches trained using the repository of Ranjan et al. [63]. The table is separated in two
parts. The upper part shows the evaluation results of our patches and the lower table presents
the evaluation results for the patches trained with the flowattack repository [61]. Generally,
we used Algorithm 4.2 for the computation of AEE(E, F) and AEE(F, Fy). Because of the
minor performance of the patches trained by the Flowattack repository, we included the results
of the evaluation procedure that is provided with the Flowattack repository. We can reproduce
the reported evaluation results of an AEE of more than 40 pixels for a patch of diameter 50
pixels which was determined by Ranjan et al. [63]. Our Run 5 produced an AEE of more than
46 pixels between the prediction and ground truth flow in our tests.

Additionally we notice that our patches which consist mainly of the lower frequency pattern
(Run 1,2 and 5) result in a larger AEE compared to patches that consist of the higher frequency
pattern. Furthermore the patches that we trained using the repository of Ranjan et al. [61]
performed consistently worse than our custom patches. We assume the reasons for this
performance gap are the inconsistencies in their training procedure described above.

Figure 4.4 visualizes the effect of our patches that were trained using Algorithm A.1 on the
prediction result of FlowNetC. All patches have a dominating impact on large areas around
their location. This is consistent with our evaluation results that yield very large AEEs for the
error measures between the unattacked and attacked flows. Furthermore all introduced flow
field distortions appear very similar.

Finally we estimate the prediction accuracy of FlowNetC with LGS resp. ILP pre-processing
when attacked by the best of the patches that we trained in our training pipeline and the
best of the patches that we trained using the repository of Ranjan et al. [61]. Figure 4.5
summarizes their performances by computing the AEE between the flow field ground truth Fy,
and the attacked and pre-processed prediction F for a wide range of parameter configurations

46

4.3 Evaluation Results

of ¢t and s. Specifically, we tested the defenses with their recommended blocksize & and
overlap o and varied the parameters s and ¢ jointly within the ranges s € {0,3,...,27,30} and
t € {0,0.04,...,0.36,0.4} to generate the interpolated heatmaps displayed in Figure 4.5. At
this point we want to stress that the smoothing factor of LGS and the pixel-wise scaling factor
in ILP represent different concepts and should not be compared directly as suggested by the
plots. In the following paragraphs we first describe an intuitive interpretation of the heatmaps
and analyze the results subsequently.

Intuitively the heatmaps for LGS in Figure 4.5a and Figure 4.5c can be interpreted as follows.
For the following interpretation consider the heatmap presented in Figure 4.5a. Increasing
the filtering threshold ¢ decreases the defense’s sensitivity to gradient changes. Consequently,

Figure 4.4: Influence of our adversarial patches trained with Algorithm 4.1 on the FlowNetC
prediction result. The first row visualizes an unattacked input image together with
the flow field estimation. The following rows present the results for images that
are attacked by our patches of Run 1 to Run 5.

47

4 Experiments

30

25

20 | K3

15 30

10|

Smoothing Factor s
Scaling Factor s

5|

% 01 0.2 03 0.4 % 01 0.2 03 0.4

Filtering Threshold t Filtering Threshold t

(a) AEE(F,;, Fgs) for the patch from run 1 (b) AEE(F, Frp) for the patch from run 1
trained using our custom training pipeline. trained using our custom training pipeline.

1 = B

N
S

Factor s

ing

Smoothing Factor s
Scal

||
0.4

10|
5
of

0 01 0.2 03

Filtering Threshold t »

03 0.4

01

0.2
Filtering Threshold t

(¢c) AEE(Fy;, Fgs) for the patch from run 1 (d) AEE(Fy;, Fpp) for the patch from run 1
trained using the repository by trained using the repository by
Ranjan et al. [61] Ranjan et al. [61]

Figure 4.5: Heatmaps displaying AEE between the flow field ground truth Fj;; and the attacked
flow and pre-processed prediction F'p with defense D. over the parameter space of
the filtering threshold ¢ and the smoothing/scaling factor s for the defenses when
evaluated using Algorithm 4.2 on KITTI 2015 (Training).

the yellow region on the right side displays parameter configurations that apply smoothing
to almost no region. On the other side, decreasing the smoothing factor s reduces the effect
of the smoothing operation. As a result the yellow regions on the bottom show parameter
configurations in which the Gradient Smoothing operation has almost no effect. The lighter
area in the top left corner represents parameter conigurations that introduce a bias error
as a result of excessive Gradient Smoothing in almost all areas of the image. Lastly, there
is a vertical purple stripe representing efficient parameter configurations of ¢t and s. The
interpretation of the heatmap of ILP is similar.

Both algorithms are able to correct the attacked flow prediction such that the AEE to the
ground truth flow decreases below 15 pixels. We estimated the AEFE(Fy, F') of FlowNetC
to be approximately 13 pixel as displayed in Table 4.1. Consequently there are defense
parameterizations that reduce the AEE(F, F,;) from AEEs of more than 45 resp. 22 down to

48

4.3 Evaluation Results

below 15 resp. 14. The contour line indicating regions with an AEE of less than 15 pixel is less
restrictive for ILP than for LGS in the heatmaps Figures 4.5b and 4.5d. This supports the claims
of Anand et al. [3] that their second order gradient statistic is a better estimator of manipulated
image regions. Additionally we see that the recommended parameter configuration for ILP of
t = 0.25 and s = 10 by Anand et al. [3] performs well for the patch trained with the flowattack
repository in Figure 4.5d but not well for our patch in Figure 4.5b.

We conclude that both defenses indeed increase the network’s robustness against unadaptive
adversarial patch attacks. Our goal in subsequent experiments is to derive adversaries that
introduce significantly more robust perturbations by including information about the defense
into our training procedure. For this we train our adaptive adversaries against selected
parameter configurations that yielded promising results in Figure 4.5a for LGS and Figure 4.5b
for ILP.

4.3.2 Attacks on FlowNetC with LGS Pre-processing

To empirically evaluate the effectiveness of our adversaries against LGS we selected two
parameter configurations of the filtering threshold ¢ and the smoothing factor s that performed
well in our experiments on unadapted attacks summarized in Figure 4.5a. This resulted in the
parameters (¢, s) € {(0.175,27),(0.15,10) }. Furthermore we selected with (¢t = 0.1, s = 27) one
parameter configuration that is very restrictive to test the convergence behavior. Additionally
we tested the parameter configuration that performed best for the defense authors [52] and
thus also added (¢t = 0.1, s = 2.3).

Initially we want to stress that we adapted the optimization algorithm of our adversarial model
targeting the parameter configuration (¢ = 0.1, s = 2.3) because it converged to a suboptimal
patch for the baseline configuration against LGS. Specifically we changed the optimization
update to a clipped Projected Gradient Descent update and set the loss function coefficient
a = 0.001. We set the maximum update size of Clipped PGD to 0.008 and set the learning rate
to 10.

Figure 4.6a shows the moving average of size 100 of the training loss of the four runs over
20,000 iterations. We clearly see that the adversary that is training against the most restrictive
parameter configuration of ¢ = 0.1, s = 27 has problems to deflect the flow. The remaining
patches converge to more successful training values of the ACS. Especially the patch that is
trained against the parameters ¢t = 0.1, s = 2.3 achieves a promising training score. We stress
at this point that the patches train against different loss functions as each of them trains against
a different instantiation of the LGS defense. This has to be considered when one compares the
training losses.

Additionally Figure 4.6b presents the resulting patches. The patches have evident differences
compared to the patches trained in Section 4.3.1. We however notice that the pattern of blue
and red horizontal stripes is still visible in all our patches. Additionally the patches evolved

49

4 Experiments

1 Mode

. —— LGS 1=0.15=27
09 M —— LGS t=0.175 s=27
—— LGS t=0.15 5=10
08 v | —— LGS t=0.15=2.3

0.7

0.6

Averaged Loss

0.5 N
0.4
0.3

0.2

0 5k 10k 15k

Iteration

(a) Moving average of kernel of size 100 over the training losses of our attacks on FlowNetC with LGS

pre-processing.

(b) The resulting patches of our training procedure when training on FlowNetC with LGS and parameters
k = 15,0 =5 and from left to right (¢, s) € {(0.1,27), (0.175, 27), (0.15, 10), (0.1, 2.3) }.

t=0.1, t=0.175, t=0.15, ¢t=0.1
s =27 s =27 s=10 s=23
AEE(F,F') | 4.118 12.490 12.427 27.531
AEE(F,Fy) | 18231 23.504 22.952 35.625

Figure 4.6: Evaluation results when applying the evaluation procedure specified in Algo-
rithm 4.2 on the trained patches.

50

4.3 Evaluation Results

sharper edges and are dominated by an increased degree of homogeneity. Furthermore we see
that the patches of run 2 and run 3 appear visually similar.

Figure 4.6 displays the evaluation results of our patches using Algorithm 4.2. Generally, all
patches increase the AEE by at least some pixels. The patch trained with a strong filtering
threshold ¢t = 0.1 but a small smoothing factor s = 2.3 performed best. On the other hand
the patch trained with the same filtering threshold ¢ = 0.1 but a very strong smoothing factor
s = 27 performed worst. Our most successful run was able to induce an AEE between the
attacked and unattacked flow of more than 27 pixels. On the other hand, our worst performing
patch resulted in an equivalent AEE of more than 4 pixels. Consequently our patches seem to
have increasingly more difficulties to manipulate the flow prediction for increasingly restrictive
parameters.

Figure 4.7 visualizes the effect of the patches on the defended flow predictions. When
comparing the unattacked flow field prediction in row 1 with the attacked flow field predictions
in the remaining rows, we clearly see that the second, third and fourth run are able to
distort the defended flow estimations significantly. On the other hand the first run with very
restrictive parameters has only a smaller effect on the defended flow prediction. However

'......a!

-y

Foay
x

Figure 4.7: Comparison of the effect of the individual patches trained in experiment 2 on the
flow field prediction.

51

4 Experiments

when considering the pre-processing results in the first column of Figure 4.7 one also sees that
the LGS pre-processing with ¢ = 0.1, s = 27 darkened large areas of the image significantly.
Consequently, training for this configuration seems to be more difficult.

4.3.3 Attacks on FlowNetC with ILP Preprocessing

In this section we summarize the evaluation results of our attacks on FlowNetC with ILP
pre-processing. The adversarial model that generates and applies our adversarial patches was
introduced in Section 3.3.3. Overall we perform four experiments with different parameters s
and ¢ for ILP. The parameters ¢t = 0.25, s = 10 were recommended by the authors of the ILP
defense [3]. Additionally, we selected two parameters for our experiments that performed
well against our strongest adversarial patch that was trained in Section 4.3.1. Specifically
we considered the contour plot in Figure 4.5b and selected two parameters that are situated
central in promising regions of the parameter space. We selected the parameters ¢t = 0.15,s = 5
and ¢t = 0.15, s = 15 from this figure. Additionally we selected the very restrictive parameter
combination ¢ = 0.08, s = 30 to test the convergence behavior of the adversary.

Figure 4.8a shows an moving average of size 100 of the training losses over time. One can
clearly see that the patches converge towards different limits. The parameters t = 0.15,s = 5
and ¢t = 0.15,s = 15 seem to converge to related limits. Generally the curves indicate that
most patches successfully converged to minima. However especially the patch trained with
t = 0.08,s = 30 converged to a relatively weak training loss. Also the training loss of the
configurations t = 0.15,s = 5 and ¢t = 0.15, s = 15 seem less promising than the convergence
limit of the configuration ¢t = 0.25, s = 10.

Figure 4.8b displays the resulting patches. The patches clearly present the pattern of blue and
red stripes that we already encountered in previous experiments. Additionally we see that
training on smaller filtering threshold values ¢ increases the blur of a patch. Additionally we
notice increasingly dark regions at the border of the patches for decreasing ¢.

Figure 4.8 displays the evaluation results for our patches when tested on the KITTI15 Training
dataset. Overall the AEEs seem very promising. The patches trained with filtering thresholds
t > 0.15 even reach AEEs that are comparable with tests against the undefended network
in Section 4.3.1. Specifically, their AEEs to the grond truth are all larger than 40 pixels and
they introduce an AEE to the unattacked prediction of more than 35 pixels. The large AEE
to the ground truth estimation is an indicator that the large AEE to the ground truth flow
is considerably influenced by the patch and not solely a result of excessive pre-processing
activity.

The influence of the patches on the prediction result is visualized in Figure 4.9. We clearly
see that all trained patches have a significant impact on the prediction result in their environ-
ment. Furthermore we notice that the patches remain largely unaffected even tough the ILP

52

4.3 Evaluation Results

preprocessing has strong impact on the image. The patches thus seem to evade the detection
mechanism for adversarial patches that is employed by ILP.

Averaged Loss

Mode

— ILP t=0.08 s=30
——— ILP t=0.15 s=5
——— ILP t=0.15 s=15
——— ILP t=0.25 s=10

10k 15k

Iteration

(a) Moving average of the training losses of our patch adversaries against FlowNetC with ILP pre-
processing. The moving average was computed using a kernel of size 100.

Qo003

(b) Perturbation optimization results for our ILP adversary introduced in Section 3.3.3 when trained
against FlowNetC with ILP pre-processing using the training Algorithm 4.1. We set the blocksize
across all experiments to k£ = 16 and the overlap to o = 8 as recommende by the authors [3].We set
the inpainting radius to 5. Furthermore, and enumerated from left to right, we selected the additional
defense parameters (¢t = 0.08, s = 30), (¢t = 0.15,s = 5), (¢t = 0.15,s = 15), (t = 0.25,5 = 5).

t=008, t=015 t=0.15 t=025

s =30 s=25 s=15 s=10

AEE(Frp, Frpp) | 12541 36.583 39.119 35.613
AEE(Fipp, Fyt) 25.141 45.100 47.402 44.374

Figure 4.8: Evaluation results of our adversary applied to FlowNetC with ILP pre-processing.

53

4 Experiments

Figure 4.9: Comparison of the effect of the individual patches trained in experiment 3 on the
flow field prediction. The first row shows the prediction of FlowNetC without any
ILP pre-processing and attacks applied. The remaining rows show one attacked
and then ILP pre-processed input image together with the resulting flow prediction.

4.4 Discussion

Our first experimental row against the undefended FlowNetC clearly reproduced previous
results by Ranjan et al. [63]. Our results thus stress that adversarial patches of limited size
are definitely able to confuse FlowNetC severely. Furthermore our first experimental row
indicates that the patches trained by the official flowattack repository by Ranjan et al. [61] are
either suboptimal or else we did not adjust the parameters correctly. As a result our patches
performed consistently better than the ones trained with the Flowattack repository.

Additionally we examined the performance of various parameter ranges of ¢t and s for ILP
and LGS. For this we evaluated our best performing adversarial patch as well as the best
performing patch trained with the Flowattack repository on FlowNetC with various parameter
configurations. Our results are summarized in Figure 4.5b and Figure 4.5d. However in
our experiments the parameter configuration k = 15,0 = 5,¢t = 0.1, s = 2.3, recommended
for LGS by Naseer et al. [52] seems suboptimal. On the other hand, the reportedly best

54

4.4 Discussion

performing parameters of Naseer et al. [52] were derived from image classification networks.
Consequently our observation could indicate that the defense parameters are not transferable
between different domains. One potential reason for this could be the differences in the
network architecture.

The recommended parameters for ILP by Anand et al. [3] are however determined for optical
flow networks. Nonetheless our results in Figure 4.5b indicate that their filtering threshold ¢
might be too restrictive to filter unadaptively trained patches using our adversarial models.
On the other hand, the both parameters represent sensible choices when defending against
the patch trained using the Flowattack repository. One potential reason for this discrepancy is
that Anand et al. [3] have optimized their parameters to patches that are generated using the
Flowattack repository [61] specifically, because there seem to be only few alternatives.

The deflections that our attacks introduce into the predictions of the defense’s with rec-
ommended parameters are significant. They introduce an AEE between the attacked and
unattacked flow estimations of more than 25 pixels in our experiments. Furthermore our
attacks generalize to more aggressive defense instances, that introduce noticeable bias into the
images, to a large degree. As a consequence we consider the defenses considerably vulnerable
against our adversarial patch attacks.

Generally, we observed in our experiments that the optimization procedure can have an in-
fluence on the optimization result. Specifically we noticed that our adversary which uses
[-FGSM [39] updates consistently optimized towards a suboptimal patch when trained against
FlowNetC with the LGS instance ¢t = 0.1, s = 2.3. However because this parameter configura-
tion performed best in the initial defense evaluation of the authors of LGS [52], we decided to
change the adversary’s update method and learning rate.

55

5 Outlook and Conclusion

The following two sections conclude this work. The first section outlines potentially promising
research directions that are associated with or can build up on this work. The second section
finally summarizes the contributions of this work and stresses key insights.

5.1 Outlook

Because we did not optimize our attacks for efficiency one could further examine the influence
of more advanced optimization procedures on the efficiency of our generated patches. One
could for instance apply better optimization update strategies with momentum or gradient
descent [65] instead of the I-FGSM approach [39] that we used. Furthermore one could
consider the reparameterization of the perturbation parameters with the approach that was
originally published by Carlini and Wagner [16] and applied to perturbation attacks on optical
flow networks by Schmalfuf3 et al. [67]. Also one could consider improved loss functions.

There are several respects in which one could extend on this work. Firstly, one can examine the
transferability of our results to other optical flow networks that are vulnerable to the presented
type of attacks. Considering the original work by Ranjan et al. [63] FlowNet2 [30] would be
another interesting target. It however relies on a related architecture which might reduce the
generality of additional insights. Additionally it would be interesting to apply related attacks
on modern optical flow networks which are representing the state-of-the-art like RAFT [78].
This way one could further examine the robustness of advanced networks with respect to local
input perturbations. In this context, one could also examine the influence of multiple static
patches in a frame instead of one.

Additionally one could consider the transferability of defense concepts from image classification
networks against input perturbation attacks to optical flow networks. This might be interesting
because there seem to be no promising alternative pre-processing defenses established for
optical flow networks. One possible approach could be to examine the influence of adversarial
training on the network’s robustness against global and local perturbation attacks. Additionally,
one could optimize the ILP and LGS defenses to use information from image pairs jointly
instead of separately.

Furthermore one could train a neural network to generate an efficient patch and its location for
a given image pair. Such an adversary can be implemented as a convolutional neural network

57

5 Outlook and Conclusion

that receives an image sequence pair as an input and outputs suitably constrained perturbed
images. Moreover one could also try to train a neural network to perform the estimation of
manipulated image regions or to learn a suitable pre-processing operation.

5.2 Conclusion

In this work we examined the robustness of FlowNetC when it is equipped with the local
pre-processing defenses ILP or LGS. We devised adversarial patch perturbation attacks based
on the initial work of Ranjan et al. [63]. By consideration of the guidelines about adaptive
attacks of Carlini et al. [14, 16] our attacks optimized against the defended optical flow
networks. Additionally we applied concepts published by Athalye et al. [4] to restore obfuscated
gradients.

We developed successful adaptive adversarial patch attacks against FlowNetC with ILP and
LGS pre-processing. Our attacks introduce serious distortions for the recommended parameter
configurations of both defenses. Furthermore we have demonstrated that our attacks generalize
to stronger parameter configurations to some degree.

Consequently, our experiments indicate that the LGS and ILP pre-processing defenses are not
sufficient to protect vulnerable optical flow networks against adversarial patch attacks. Thus we
generally discourage the use of FlowNetC with any of both pre-processing defenses in security
critical applications. Because of the absence of alternative defenses for vulnerable networks,
one should instead employ optical flow networks which are robust against adversarial patch
attacks as a result of their architecture as discussed by Schrodi et al. [68].

58

A Appendix

59

A Appendix

SOV GY®

POVGW
SOVGW
GOV G W
GOV GE®
GOV E K

Figure A.1: Evolution of adversarial patches during training with our custom training procedure
described in Algorithm 4.1. Every row represents a training run and every column
represents a snapshot over time. The first row represents run 1. The first column
shows the initialized patches in iteration 0. Subsequent columns show the patches
after additional 1000 iterations.

60

Algorithm A.1 Revised version of the Fast Marching Method with included Inpainting Procedure
by Telea [79]. We introduced several modifications to the algorithm in the original. Firstly we
overloaded the function to compute the level-set distances for pixels in the close environment
of the marked regions automatically before executing the original algorithm. Additionally we
added explicit checks whether the indices are within the bounds of the image with valid. We
assume KNOWN = 0, BAND = 1 and INSIDE = 2. HEAP is a heap datastructure that sorts its
elements (t, (a, b)) for increasing ¢ values. Dilation(M,3) performs a morphological dilation
on M with a 3 x 3 stencil. Furthermore we assume M € {0,1}*W and I € [0,1]7*W. Telea
mentioned that the algorithm can be generalized to color images by performing the procedure
on each channel separately [79]. The formulation of this pseudocode is influenced by several
implementations of the inpainting method by Telea [9, 26, 54, 79].
function FMM(I, M, d, Thyqz)
if I! = None then
Tout := FMM(None, 1 — Dilation(M, 3),d,d)
end if
L := M + Dilation(M, 3)
T := Ty if I is not None else abs(L — 1) - INF
Initialize HEAP with pixels for which L == BAND
while HEAP not empty do
t,(i,j) = head(HEAP)
L[i,j] = KNOWN
for (k1) e {(i—1,7),(i,5—1),(:+1,7),(i,j+ 1)} do
if valid(k,!) and L[k,[] '= KNOWN then
if L[k,!] == INSIDE then

L[k,1] = BAND
I[k,l] = INPAINT(k,!) if I is not None
end if

tnew = min(SOLVE(k — 1,1, k,1 — 1), SOLVE(k + 1,1, k,1 — 1),
SOLVE(k — 1,1,k,l +1),SOLVE(k + 1,1, k,l + 1))
if Tk, 1] > thew and tpew < Thgs then
push(HEAP, (tyew, (k,1)))
T[k,1] = thew
end if
end if
end for
end while
end function

61

A Appendix

Algorithm A.2 Revised version of the Pixel Inpainting Procedure by Telea [79]. The function
inpaints the pixel at the location i, j in the image I with an neighbourhood radius d, a level-
set distances map 7" and labels L. Additionally the assumptions from the description of
Algorithm A.1 apply. The formulation of this version of the inpainting procedure is based on
the pseudo-code provided by Telea [79] and influenced by other published implementations [9,
26,54].
function INPAINT((,5), I, T, L, d)
Ia=0
s=0
for (k,1) € Ny(i,7) if L[k,] # INSIDE do
dT = 0 if not valid(k + 1,1) or not valid(k — 1,1) or
not valid(k,l + 1) or not valid(k,l — 1) else VT'[k,]
dI = 0 if not valid(k + 1,1) or not valid(k — 1,1) or
not valid(k,l + 1) or not valid(k,l — 1) or
L[k +1,1] == INSIDE or L[k — 1,I] == INSIDE
L[k,l+ 1] == INSIDE or L[k, [— 1] == INSIDE else VI[k,]
r=(k—il—j)7T

dir = H%II -dT
dst = L,
lIl L
lev = D=1

w = dir - dst - lev
Ia+=w-(I(k,1)+VI-r)
st+=w
end for
return £2
end function

62

Algorithm A.3 Revised version of the Solve Eikonal Equations Procedure by Telea [79]. The
assumptions mentioned in the descriptions of Algorithm A.1 and Algorithm A.2 also apply
here. The algorithm formulation presented here is based on the pseudo-code by Telea [79]
and influenced by other published implementations of the algorithm [9, 26, 54].
function SOWE(L, T, (i1, j1), (i2, j2))
return 10° if not valid(iy, j1) or not valid(iz, j2)
if L[il,jl] = KNOWN then
if L['iQ,jQ] = KNOWN then

r =2 = (Tlir, ja] — Tliz, ju))’
T[i1,51]+T [i2,j2]—r
2

S =

if s > T'i1,71] and s > Tig, j2| then
return s

else

s+=r
if s > T[il,jl] and s > T[ig,jg] then
return s
end if
end if
else
return 1 + Tiq, j1]
end if
else if L[ia, jo] == KNOWN then
return 1 + Tig, jo]
end if
return 10°
end function

63

Bibliography

[1]
[2]
[3]

[4]

[5]

(6]

[71

(8]

[9]
[10]

[11]

Robust vision challenge. http://www.robustvision.net/.
Raft. https://github.com/princeton-v1/RAFT, 2021.

Adithya Prem Anand, H Gokul, Harish Srinivasan, Pranav Vijay, and Vineeth Vijayaragha-
van. Adversarial patch defense for optical flow networks in video action recognition. In
2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA),
pages 1289-1296, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, July 2018.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust
adversarial examples. In International conference on machine learning, pages 284-293.
PMLR, 2018.

Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and Richard
Szeliski. A database and evaluation methodology for optical flow. International journal of
computer vision, 92(1):1-31, 2011.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndi¢, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time.
In Joint European conference on machine learning and knowledge discovery in databases,
pages 387-402. Springer, 2013.

Michael J Black and Padmanabhan Anandan. A framework for the robust estimation of
optical flow. In 1993 (4th) International Conference on Computer Vision, pages 231-236.
IEEE, 1993.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

Tom B Brown, Dandelion Mané, Aurko Roy, Martin Abadi, and Justin Gilmer. Adversarial
patch. arXiv preprint arXiv:1712.09665, 2017.

Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy
optical flow estimation based on a theory for warping. In European conference on computer
vision, pages 25-36. Springer, 2004.

65

https://github.com/princeton-vl/RAFT

Bibliography

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

66

Andrés Bruhn and Joachim Weickert. Lecture notes in computer vision, 2020.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for
optical flow evaluation. In A. Fitzgibbon et al. (Eds.), editor, European Conf. on Computer
Vision (ECCV), Part IV, LNCS 7577, pages 611-625. Springer-Verlag, October 2012.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dim-
itris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating
adversarial robustness. arXiv preprint arXiv:1902.06705, 2019.

Nicholas Carlini and David Wagner. Defensive distillation is not robust to adversarial
examples. arXiv preprint arXiv:1607.04311, 2016.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In 2017 ieee symposium on security and privacy (sp), pages 39-57. IEEE, 2017.

Qifeng Chen and Vladlen Koltun. Full flow: Optical flow estimation by global optimization
over regular grids. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4706-4714, 2016.

Ping-yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen Zhu, Christoph Studer, and Tom
Goldstein. Certified defenses for adversarial patches. In 8th International Conference
on Learning Representations (ICLR 2020) (virtual). International Conference on Learning
Representations, 2020.

Dan Ciregan, Ueli Meier, and Jiirgen Schmidhuber. Multi-column deep neural networks
for image classification. In 2012 IEEE conference on computer vision and pattern recognition,
pages 3642-3649. IEEE, 2012.

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. v.d. Smagt, D. Cre-
mers, and T. Brox. Flownet: Learning optical flow with convolutional networks. In IEEE
International Conference on Computer Vision (ICCV), 2015.

Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy. A study of the effect
of jpg compression on adversarial images. arXiv preprint arXiv:1608.00853, 2016.

Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash,
Amir Rahmati, and Dawn Song. Robust physical-world attacks on machine learning
models. arXiv preprint arXiv:1707.08945, 2(3):4, 2017.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics:
The kitti dataset. International Journal of Robotics Research (IJRR), 2013.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In International Conference on Learning Representations, 2015.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering
adversarial images using input transformations. arXiv preprint arXiv:1711.00117, 2017.

Bibliography

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Eric Haines. jgt-code. https://github.com/erich666/jgt-code/tree/master/Volume_
09/Number_1/Telea2004, 2020.

Jamie Hayes. On visible adversarial perturbations & digital watermarking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages
1597-1604, 2018.

Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial intelligence,
17(1-3):185-203, 1981.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvari. Learning with a
strong adversary. arXiv preprint arXiv:1511.03034, 2015.

E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0: Evolution
of optical flow estimation with deep networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

Plotly Technologies Inc. Collaborative data science, 2015.

Nathan Inkawhich, Matthew Inkawhich, Yiran Chen, and Hai Li. Adversarial attacks for
optical flow-based action recognition classifiers. arXiv preprint arXiv:1811.11875, 2018.

Danny Karmon, Daniel Zoran, and Yoav Goldberg. Lavan: Localized and visible adver-
sarial noise. In International Conference on Machine Learning, pages 2507-2515. PMLR,
2018.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and
Li Fei-Fei. Large-scale video classification with convolutional neural networks. In CVPR,
2014.

Auguste Kerckhoffs. La cryptographie militaire, ou, Des chiffres usités en temps de guerre:
avec un nouveau procédé de déchiffrement applicable aux systémes a double clef. Librairie
militaire de L. Baudoin, 1883.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc., 2012.

Hildegard Kuehne, Hueihan Jhuang, Estibaliz Garrote, Tomaso Poggio, and Thomas Serre.
Hmdb: a large video database for human motion recognition. In 2011 International
conference on computer vision, pages 2556-2563. IEEE, 2011.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236, 2016.

67

https://github.com/erich666/jgt-code/tree/master/Volume_09/Number_1/Telea2004
https://github.com/erich666/jgt-code/tree/master/Volume_09/Number_1/Telea2004

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

68

Alexander Levine and Soheil Feizi. (de) randomized smoothing for certifiable defense
against patch attacks. Advances in Neural Information Processing Systems, 33:6465-6475,
2020.

Yingzhen Li, John Bradshaw, and Yash Sharma. Are generative classifiers more robust to
adversarial attacks? In International Conference on Machine Learning, pages 3804-3814.
PMLR, 2019.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1):503-528, 1989.

Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about adversar-
ial examples in object detection in autonomous vehicles. arXiv preprint arXiv:1707.03501,
2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A
large dataset to train convolutional networks for disparity, optical flow, and scene flow
estimation. In IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. arXiv:1512.02134.

K McLaren. Xiii—the development of the cie 1976 (I* a* b*) uniform colour space and
colour-difference formula. Journal of the Society of Dyers and Colourists, 92(9):338-341,
1976.

Lukas Mehl. flow library. https://github.com/cv-stuttgart/flow_library, 2021.

Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Moritz Menze, Christian Heipke, and Andreas Geiger. Discrete optimization for optical
flow. In German Conference on Pattern Recognition, pages 16-28. Springer, 2015.

metallurk. local gradients smoothing. https://github.com/metallurk/local_
gradients_smoothing, 2020.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial
training: a regularization method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence, 41(8):1979-1993, 2018.

Muzammal Naseer, Salman Khan, and Fatih Porikli. Local gradients smoothing: Defense
against localized adversarial attacks. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1300-1307. IEEE, 2019.

https://github.com/cv-stuttgart/flow_library
https://github.com/metallurk/local_gradients_smoothing
https://github.com/metallurk/local_gradients_smoothing

Bibliography

[53]

[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

Arild Ngkland. Improving back-propagation by adding an adversarial gradient. arXiv
preprint arXiv:1510.04189, 2015.

Olivier. pyheal. https://github.com/olvb/pyheal, 2020.

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robust-
ness via promoting ensemble diversity. In International Conference on Machine Learning,
pages 4970-4979. PMLR, 2019.

Nicolas Papernot and Patrick McDaniel. On the effectiveness of defensive distillation.
arXiv preprint arXiv:1607.05113, 2016.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE
European symposium on security and privacy (EuroS&P), pages 372-387. IEEE, 2016.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distil-
lation as a defense to adversarial perturbations against deep neural networks. In 2016
IEEE symposium on security and privacy (SP), pages 582-597. IEEE, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024-8035. Curran Associates, Inc., 2019.

Clement Pinard. Pytorch correlation module. https://github.com/ClementPinard/
Pytorch-Correlation-extension, 2020.

Anurag Ranjan. flowattack. https://github.com/anuragranj/flowattack, 2020.

Anurag Ranjan and Michael Black. Optical flow estimation using a spatial pyramid
network. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 2017, pages 2720-2729, Piscataway, NJ, USA, July 2017. IEEE.

Anurag Ranjan, Joel Janai, Andreas Geiger, and Michael J. Black. Attacking optical flow.
In Proceedings International Conference on Computer Vision (ICCV), pages 2404-2413.
IEEE, November 2019. ISSN: 2380-7504.

Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7263-7271, 2017.

Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533-536, 1986.

69

https://github.com/olvb/pyheal
https://github.com/ClementPinard/Pytorch-Correlation-extension
https://github.com/ClementPinard/Pytorch-Correlation-extension
https://github.com/anuragranj/flowattack

Bibliography

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

70

Jenny Schmalfuss, Philipp Scholze, and Andrés Bruhn. A perturbation constrained adver-
sarial attack for evaluating the robustness of optical flow. arXiv preprint arXiv:2203.13214,
2022.

Simon Schrodi, Tonmoy Saikia, and Thomas Brox. What causes optical flow networks to
be vulnerable to physical adversarial attacks. arXiv preprint arXiv:2103.16255, 2021.

Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a local
svm approach. In Proceedings of the 17th International Conference on Pattern Recognition,
2004. ICPR 2004., volume 3, pages 32-36. IEEE, 2004.

Ayon Sen, Xiaojin Zhu, Liam Marshall, and Robert Nowak. Should adversarial attacks
use pixel p-norm? arXiv preprint arXiv:1906.02439, 2019.

Sanchari Sen, Balaraman Ravindran, and Anand Raghunathan. Empir: Ensembles of
mixed precision deep networks for increased robustness against adversarial attacks. arXiv
preprint arXiv:2004.10162, 2020.

James A Sethian. A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences, 93(4):1591-1595, 1996.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Accessorize to a
crime: Real and stealthy attacks on state-of-the-art face recognition. In Proceedings of the
2016 acm sigsac conference on computer and communications security, pages 1528-1540,
2016.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101
human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for optical
flow using pyramid, warping, and cost volume. 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the
gap to human-level performance in face verification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1701-1708, 2014.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In
European conference on computer vision, pages 402-419. Springer, 2020.

Alexandru Telea. An image inpainting technique based on the fast marching method.
Journal of graphics tools, 9(1):23-34, 2004.

Bibliography

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive
attacks to adversarial example defenses. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 1633-1645. Curran Associates, Inc., 2020.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017.

Joost van de Weijer and Th Gevers. Robust optical flow from photometric invariants.
In 2004 International Conference on Image Processing, 2004. ICIP’04., volume 3, pages
1835-1838. IEEE, 2004.

Gunjan Verma and Ananthram Swami. Error correcting output codes improve probability
estimation and adversarial robustness of deep neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

Alex Wong, Mukund Mundhra, and Stefano Soatto. Stereopagnosia: Fooling stereo
networks with adversarial perturbations. arXiv preprint arXiv:2009.10142, 2020.

Benjamin Wortman. Hidden patch attacks for optical flow. In ICML 2021 Workshop on
Adversarial Machine Learning, 2021.

Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and Prateek Mittal. {PatchGuard}:
A provably robust defense against adversarial patches via small receptive fields and
masking. In 30th USENIX Security Symposium (USENIX Security 21), pages 2237-2254,
2021.

Chong Xiang and Prateek Mittal. Patchguard+ +: Efficient provable attack detection
against adversarial patches. arXiv preprint arXiv:2104.12609, 2021.

Chang Xiao, Peilin Zhong, and Changxi Zheng. Enhancing adversarial defense by k-
winners-take-all. arXiv preprint arXiv:1905.10510, 2019.

Tianwei Zhang, Huayan Zhang, Yang Li, Yoshihiko Nakamura, and Lei Zhang. Flowfusion:
Dynamic dense rgb-d slam based on optical flow. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 7322-7328. IEEE, 2020.

Ziqi Zhang, Xinge Zhu, Yingwei Li, Xiangqun Chen, and Yao Guo. Adversarial attacks on
monocular depth estimation. arXiv preprint arXiv:2003.10315, 2020.

All links were last followed on April 10, 2022.

71

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Thesis Structure

	2 Related Work
	2.1 Optical Flow
	2.2 Performance Evaluation of Optical Flow Networks
	2.3 Image Input Manipulation Attacks
	2.3.1 Perturbation Representation
	2.3.2 Perturbation Constraints
	2.3.3 Perturbation Goal
	2.3.4 Perturbation Robustness
	2.3.5 Practical Applicability
	2.3.6 Adversary Knowledge
	2.3.7 Optimization

	2.4 Robustness Estimation of Optical Flow Networks
	2.5 Defenses
	2.6 Guidelines for Adaptive Adversaries

	3 Adversarial Patch Attacks on Defended Optical Flow Networks
	3.1 Optical Flow Networks
	3.2 Defenses for Optical Flow Networks
	3.2.1 Pre-processing Defenses
	3.2.2 Local Gradients Smoothing (LGS)
	3.2.3 Differentiability of Local Gradients Smoothing
	3.2.4 Inpainting with Laplacian Prior (ILP)
	Inpainting

	3.2.5 Differentiability of ILP

	3.3 Perturbation Adversaries
	3.3.1 Perturbation Adversary for FlowNetC without Pre-processing
	3.3.2 Adversarial Model for FlowNetC with LGS Pre-processing
	3.3.3 Adversarial Model Designed for FlowNetC with ILP Pre-processing

	4 Experiments
	4.1 Software
	4.2 Training and Evaluation Procedure
	4.3 Evaluation Results
	4.3.1 Attacks on the Undefended FlowNetC Network
	4.3.2 Attacks on FlowNetC with LGS Pre-processing
	4.3.3 Attacks on FlowNetC with ILP Preprocessing

	4.4 Discussion

	5 Outlook and Conclusion
	5.1 Outlook
	5.2 Conclusion

	A Appendix
	Bibliography

