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Abstract: In the present studies, the effects of Gurney flaps on aerodynamic characteristics of a static
airfoil and a rotating vertical axis wind turbine are investigated by means of numerical approaches.
First, mesh and time step studies are conducted and the results are validated with experimental data
in good agreement. The numerical solutions demonstrate that the usage of Gurney flap increases the
airfoil lift coefficient CL with a slight increase in drag coefficient CD. Furthermore, mounting a Gurney
flap at the trailing edge of the blade increases the power production of the turbine considerably.
Increasing the Gurney flap height further increases the power production. The best performance
found is obtained for the maximum height used in this study at 6% relative to the chord. This is
in contrast to the static airfoil case, which shows no further improvement for a flap height greater
than 0.5%c. Increasing the angle of the flap decreases the power production of the turbine slightly
but the load fluctuations could be reduced for the small value of the flap height. The present paper
demonstrates that the Gurney flap height for high solidity turbines is allowed to be larger than the
classical limit of around 2% for lower solidity turbines.

Keywords: aerodynamics; CFD; flow characteristics; gurney flap; wind energy

1. Introduction

Wind energy plays an important role in providing clean renewable energy for society.
It is sustainable and has a smaller impact on the environment when compared with the
energy from fossil fuels [1]. Many types of wind turbines have been invented as a result
of long-term research and development. According to the axis of rotation, wind turbines
can be mainly classified into horizontal axis wind turbines (HAWTs) and vertical axis
wind turbines (VAWTs). Due to the increased interest in employing wind turbines also
in built environments, the popularity of VAWTs has increased considerably. There are
several advantages to VAWT, such as its independence from wind direction and its ability
to withstand high turbulence.

VAWTs are currently always under development and investigation for their construc-
tion, structures, as well as aerodynamic property optimization. The fact that VAWTs
experience dynamic stall at its blades is challenging blade engineers to improve the per-
formance and its self-starting ability [2–5]. Dynamic stall is a common phenomenon that
appears mainly on the rotating rotor blades, and it becomes one of the most limiting factors
in aerodynamic performance [6]. It is also likely unpreventable during the operation of
VAWTs in low tip speed (λ ≤ 3) [5]. In order to verify this common event, many stud-
ies have been carried out through various experiments using computational simulations.
An experiments by McCroskey et al. [6] using a model rotor and an experiment by Mar-
tin et al. [7] using flow visualization techniques confirm the presence of dynamic stall as
the result of a vortex-dominated flow field. In order to predict dynamic stall development
especially on a VAWT, simulations using different turbulence models and different numeri-
cal techniques are executed by Ferreira et al. [4] and by Almohammadi et al. [8]. Regardless
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of the methods or the types of studies, it needs to be underlined that dynamic stall has a
strong influence on the loads and the forces at the rotor blades.

One possible way to control the low aerodynamic performance of VAWT is by using
flow control devices. Studies on flow control devices on wind turbine performance in terms
of loads and noise emission have been conducted in the past. One example of such flow
control technologies is a Gurney flap (GF). This device is located at the trailing edge of the
airfoil blade with the goal of enhancing its lift coefficient. As a result, this will increase
the positive camber and induce counterrotating vortices downstream of the airfoil, which
has a significant flow turning over in the vicinity of the flap region [9]. This decreases the
momentum deficit in the wake and generates an increased lift effect. GF has been commonly
applied for HAWTs and has proven to be beneficial for increasing power production [10,11].
This step has been followed by several investigations for VAWTs [12–14]. Zhu et al. [14],
for example, evaluated the effects of rotor solidity (0.175–0.5) on the turbine performance
employed with Gurney flaps. They found that the load fluctuations decrease when the
solidity of the turbine increases, followed by the performance reduction. However, this
study was performed by artificially increasing the blade number up to 5 to increase the
rotor solidity. The conclusions could be different for a two-/three-bladed rotor having the
same rotor solidity. Yan et al. [15] investigated the aerodynamic performance of a VAWT
employed with gurney flaps. The studies demonstrated that the performance of the rotor
increases in the low tip-speed regime while it decreases at a higher rotational speed. These
studies were limited to two values of Gurney flap heights. Syawitri et al. [12] also evaluated
Gurney flap effects on VAWTs, but the investigations were only focused on integrated loads.
Very recently, Zhu et al. [13] assessed the Gurney flap height on VAWT power production.
The results are consistent with that of other studies. They further demonstrated that severe
aerodynamic loss can occur when the Gurney flap heights were 1.5% and 1.75% of the
chord length. Despite this fact, their studies were based on a turbine operating at a large
rotational speed having a relatively low solidity. The results might not be generalizable
for a larger solidity turbine. In fact, high solidity turbines equipped with Gurney flaps are
rarely investigated in existing literature.

From the above discussion, one can see that the main effects of Gurney flaps on
azimuthal loads and flow characteristics are far from being fully understood and optimized.
This is especially true since VAWTs generally operate at a constant variation in the angle of
attack and often under harsh environment. Furthermore, the blade rotation complicates the
effects and the blade operates in the wake within half of its cycle in the downwind regime.
Thus, the conclusions obtained from one study are often not generalizable. Therefore,
the present studies intend to investigate the effect of Gurney flaps mounted on VAWTs
for improving the understanding towards this issue and to explore the physical flow
interactions and characteristics.

The main goal of the paper is to assess Gurney flap effects on loads acting on wind
turbine blades. To do so, the studies will be divided into two aspects: (1) non-rotating and
(2) rotating situations. The earlier and the latter approaches will be needed to differentiate
the effects. This will be important because VAWT usually works under harsh conditions
where the angle of attack changes continuously during operation from positive to negative
values. In this part of the studies, the evaluations are focused on the aerodynamic forces of
the airfoil by varying the Gurney flap parameters. Second, the studies are then extended
by applying the Gurney flap on a rotating two-bladed vertical axis wind turbine. In this
part of the studies, the assessments are focused on rotor performance in terms of the
integral and azimuthal loads. The flow field surrounding the blade and the source of power
improvement will be discussed and evaluated.

2. Flow Solver FLOWer

The present studies were conducted employing a computational fluid dynamics (CFD)
code FLOWer. The basic version of the CFD code FLOWer was developed by the German
Aerospace Center (DLR) within the MEGAFLOW project [16] in the late 1990s. It is a
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compressible code and solves the three-dimensional Navier–Stokes equations in an integral
form with several turbulence models available. The code has been extended significantly at
the Institute of Aerodynamics and Gas Dynamics (IAG) in the last decade. The numerical
scheme is based on a finite-volume formulation for block-structured grids. The spatial
discretization scheme used in the present study is a central cell-centered Jameson–Schmidt–
Turkel (JST) [17] finite volume formulation because it provides high robustness and is
well-suited for parallel applications. This numerical method provides a second-order
accuracy in space. This is done by utilizing a central space discretization with an artificial
viscosity. An explicit hybrid 5-stage Runge–Kutta time-stepping scheme was applied. For
complex cases, FLOWer supports an overlapping chimera (overset) approach [18–20]. This
allows each mesh component to be generated separately while maintaining its quality. For
solving the time-dependent case, dual time-stepping [21] and the multi-grid approach
with an implicit residual smoothing and variable coefficients [22] were applied. Using
the ROT module, one could simulate body motions in the rotating frame of reference
needed for unsteady wind turbine simulations. The code is fully optimized for parallel
computations using a Message-Passing Interface (MPI). For turbulence closure, and the
unsteady Reynolds-Averaged Navier–Stokes (URANS) approach employing the shear
stress transport (SST) k − ω model [23] was used in the present work because the model is
accurate for flows with a strong adverse pressure gradient. The mathematical formulations
of the model are as follows:
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3. Static Airfoil Case

In this section, the analyses carried out for a static airfoil employed with a Gurney
flap at various configurations are ddetailed. The studies were conducted for the NACA
4412 airfoil, having a relative thickness of about 12%. The Reynolds number was around
1.86 million. Indeed, this value is a little small for modern HAWTs, but VAWTs generally
operate at very small rotational speeds. Thus, their Reynolds numbers are also smaller. First,
the impacts of spatial and temporal discretizations on the resulting aerodynamic loading
under static conditions were investigated on the clean airfoil without the Gurney flap.
Having obtained a suitable numerical setup, quantitative and qualitative computational
data on the performance of the gurney flap on the airfoil were carried out. Computations
of the airfoil equipped with a gurney flap were compared with experimental data in order
to determine the effect of Gurney flap parameters on the lift and the drag coefficients.

3.1. Mesh Configurations

In order to discretize the airfoil in space, the O-mesh topology was employed since
it offers a high resolution of the flow in the boundary layer and avoids unnecessary
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cells downstream of the profile. The two-dimensional (2D) mesh was created using an
automated script developed at the institute in a grid generator Pointwise. The farfield
was located at 150 times the chord length. A large farfield distance was set to prevent the
farfield domain from reflecting flow. The high-quality meshes for airfoil and Gurney flap
were created independently and combined using the chimera approach. The boundary
layer was fully resolved with a non-dimensional y+ near the wall less than unity. Thirty-
two-cell layers were located within the boundary layer regime with a growth rate of 1.1.
The boundary conditions were set in the mesh as well as around it as shown in Figure 1.

(a) (b)

(c) (d)

Figure 1. Computational mesh of the static airfoil and applied boundary conditions. (a) Overall
mesh, (b) enlarged views near the airfoil (c) near the leading edge and (d) near the trailing edge.

The farfield boundary condition was used for the outer side of the domain, and a
non-slip boundary condition was applied around the airfoil with the purpose of simulating
the viscous wall of the airfoil assuming a zero flow velocity. In the following sections, time
step studies as well as grid studies were performed to keep the computational costs low
while still retaining reasonable accuracy of the flow solutions.

3.2. Influence of the Grid Refinement

For the spatial discretization study, the grid along the baseline was refined from
71,680 cells to 97,280 cells. A coarser grid 51,200 cells of cells was also tested. According to
the grid convergence index introduced by Celik et al. [24], the grid refinement should be at
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least by a factor of 1.4. The simulations for the grid studies were performed using the time
step size ∆t = tc/75 (with tc being the convective time of the fluid flow over the airfoil, i.e.,
c/U∞) at a Reynolds number of 1.86 × 106. Detail is given in Table 1.

Table 1. Spatial discretization data for the clean static NACA 4412 airfoil.

Grid Name Circumferential y+ BL Layers Number of Cells

G1 290 <1.0 32 51,200
G2 416 <1.0 32 71,680
G3 576 <1.0 32 97,280

Figure 2a presents the variation in the lift coefficient CL versus the angle of attack α.
The computed lift coefficient CL of the NACA 4412 airfoil from the simulation for the three
different grid resolutions as well as the lift coefficient from the experimental data and CFD
reference data are compared. Figure 2b shows the variation in the lift coefficient versus
the drag coefficient for the simulated CFD data in comparison with the experimental data.
The refinement has a very small impact on the increase in the lift coefficient. Generally,
finer grid and time resolutions produce more accurate results than coarser ones, but it is
followed by an increase in the computational expenses as a consequence. Therefore, it is
reasonable to use a medium grid resolution (71,680 cells) and the time step size ∆t = tc/75
for subsequent simulations. It is noted that, in the present comparison, the predicted forces
are already independent from the number of cells from the coarsest grid resolution G1. In
fact, it has been documented in previous works [25–27] that this amount of grid cells was
sufficient for load predictions. The results from the present work further confirm these
past studies.

(a) (b)

Figure 2. Comparison of computational fluid dynamics (CFD) simulations executed for three different
grid resolutions (G1: 51.200 cells, G2: 71.680 cells, and G3: 97.280 cells) to an experimental [28] and a
reference CFD data [29] for the clean airfoil. (a) Lift and (b) drag.

3.3. Influence of the Gurney Flap Grid Refinement

Thus far, the computational setup for the baseline is validated, and the time step as
well as the grid resolution are chosen (G2: 71,680 cells and ∆t = tc/75). In this section,
the objective is to provide quantitative data on the performance of a Gurney flap. For the
spatial discretization study of the Gurney flap mesh, the grid along the Gurney flap was
refined from 17,920 cells to 32,000 cells. A coarser grid of 8960 cells was also tested for
comparison. Detail is given in Table 2.
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Table 2. Grid parameters of the Gurney flap applied on the NACA 4412 airfoil.

Grid Name y+ Number of Cells

GF1 <1.0 8,960
GF2 <1.0 17,920
GF3 <1.0 32,000

Figure 3a presents the variation lift coefficient CL versus the angle of attack α. The
computed lift coefficient CL of the GF from the simulation for the three different grid
resolutions as well as the lift coefficient from the experimental data and CFD reference
data are compared. Figure 3b shows the variation in the lift coefficient versus the drag
coefficient for the simulated CFD data in comparison with the experimental data. One can
see that the grid independence state has been reached for this case. Increasing the number
of the grid cells will not improve the prediction accuracy; instead, it only increases the
computational cost. Lift and drag are able to be predicted fairly accurately, even better than
the reference CFD data from [29]. Therefore, the medium grid resolution (G2) can be used
for subsequent evaluations.

(a) (b)

Figure 3. Comparison of CFD simulations executed for three different grid resolutions to an exper-
imental [28] and a reference CFD data [29] for the static airfoil equipped with a Gurney flap with
height h = 1%c. (a) Lift and (b) drag.

3.4. Comparison with Experimental Data

Now that a suitable CFD setup has been found, CFD computations are then compared
to the experimental data and CFD reference data for different Gurney flap configurations.
Therefore, the NACA 4412 airfoil is equipped with a Gurney flap with a flap angle of 90°
for three different flap heights, namely, 0.5%c, 1.5%c, and 2%c.

Figure 4a presents the lift coefficient (CL) curve at different angles of attack in com-
parison with the measured data. The angle of attack varies between 0° and 12°. It can be
seen that the CFD computations for the GF height of 0.5% are able to model the behavior
of the lift coefficient fairly well, better than the reference CFD data. Figure 4b shows the lift
coefficient CL over the drag coefficient (CD). The CFD simulations deliver good prediction
of the lift-to-drag characteristics.
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(a) (b)

Figure 4. Comparison of CFD simulations executed on the static airfoil equipped with a Gurney
flap at the trailing edge for a Gurney flap height of 0.5%c and a Gurney flap (GF) angle of 90◦ to the
reference data [28,29]. (a) Lift and (b) drag.

By increasing the Gurney flap height from 0.5%c to 1.5%c and 2.0%c , one can see that
the prediction accuracy is not heavily affected. The main characteristics of the lift and drag
polar are still able to be reconstructed in the present CFD simulations, as shown in Figures
5 and 6 for the GF heights 1.5% and 2%, respectively, which further increase the confidence
about the accuracy of the employed CFD setup in the present work.

(a) (b)

Figure 5. Comparison of CFD simulations executed on the static airfoil equipped with a Gurney
flap at the trailing edge for a Gurney flap height of 1.5%c and a GF angle of 90◦ to the reference
data [28,29]. (a) Lift and (b) drag.
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(a) (b)

Figure 6. Comparison of CFD simulations executed on the static airfoil equipped with a Gurney
flap at the trailing edge for a Gurney flap height of 2.0%c and a GF angle of 90◦ to the reference
data [28,29]. (a) Lift and (b) drag.

3.5. Influence of the Gurney Flap Height

Figure 7a demonstrates how the lift force increases with increasing Gurney flap height.
As an example, a 2%c Gurney flap shifts the CL − α curve by more than 4◦ in comparison
with the clean airfoil case. The effect on CD using various Gurney flap heights can be
seen in Figure 7b. The addition of the Gurney flap increases CD considerably. However,
the flap height of 0.5%c results in va ery small increase in drag at low angles of attack.
Figure 7c presents the result of the lift-to-drag ratio vs. the angle of attack. Large drag
penalties due to the usage of a Gurney flap can be observed at low-to-moderate angles
of attack (0◦ < α < 8◦), which can be decreased by reducing the flap height. However,
at higher angles of attack (α > 8◦), lift and drag are both enhanced. As a consequence,
Gurney flap has a minimal effect on CL/CD. It is shown that a 0.5%c GF provides an
increased lift-to-drag ratio for the whole range of angles of attack considered in the studies.
Liebeck et al. [30] and Li et al. [31] suggested that CD could increase when the height of the
Gurney flap is greater than 2%c. Giguere et al. [29] inferred that the optimal Gurney flap
size depends on the flow field at the trailing edge of the airfoil.
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(a) (b)

(c)

Figure 7. Gurney flap height effect on the aerodynamic performance of the NACA 4412 airfoil for a
GF angle of 90◦. (a) Lift, (b) drag and (c) aerodynamic efficiency.

3.6. Influence of the Gurney Flap Angle

The characteristics of the lift coefficient as a function of the flap angle are presented
in Figure 8a. It can be seen that both studied flap angles (90° and 105°) increase the CL
levels compared with the baseline airfoil case, but the improvement is slightly greater for
the 90◦ angle. Figure 8b shows that there is a drag penalty by applying the Gurney flap
at the trailing edge of the airfoil. This effect can be reduced by increasing the flap angle.
Comparable results are also obtained by mounting the Gurney flap at the 90◦ and 105◦

angles for the 2%c height presented in Figure 9.
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(a) (b)

Figure 8. Effect of the Gurney flap angle on the aerodynamic performance of the NACA 4412 airfoil
for a GF height of 1%c. (a) Lift and (b) drag.

(a) (b)

Figure 9. Effect of the Gurney flap angle on the aerodynamic performance of the NACA 4412 airfoil
for a GF height of 2%c. (a) Lift and (b) drag.

4. Rotating VAWT Case

In this section, the employed vertical axis wind turbine is described, including its
coordinate system. Then, the scenario and strategy for mesh studies are described in detail.
Lastly, the simulation results is presented in the last section and discussed considering the
dynamic stall phenomena on the performance of the VAWT.

4.1. The Studied Turbine and Operating Conditions

Computational fluid dynamics (CFD) studies were performed on a straight-two-
bladed vertical axis wind turbine. The turbine operated at a wind speed of 8 m/s. Mea-
surements [32] of this turbine were conducted for tip speed ratios ranging from λ = 0.50
to λ = 3.0. The investigated turbine had a rotor radius of 1 m, a pitch angle of 6◦, and a
chord length of 0.265 m. This turbine employed a NACA 0021 airfoil having a rotor solidity
(σ = Nc/R) of 0.53. The characteristics of the investigated turbine are also listed in Table 3.
The coordinate system (CS) and the force acting on the turbine are defined in Figure 10.
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Table 3. Characteristics of the investigated vertical axis wind turbine.

Parameters

Type H-Darrieus
Airfoil NACA-0021

Solidity(σ) 0.53
Number of blades 2

Radius(R) 1.0 m
Pitch angle (αp) 6°
Chord length (c) 0.265 m
Operating range 0.5 < λ < 3.0

U∞ 8 m/s

Figure 10. The employed coordinate system in the study.

4.2. Mesh Configuration

The structured mesh technique was employed in the present work. The mesh struc-
tures consist of four components: background, wake refinement, rotor, and Gurney flap
meshes, as depicted in Figure 11. Similar to the static airfoil case, the overlapping grid
(chimera) technique was applied in the studies. This allows one to generate high-quality
meshes separately for each component of the grid. This is helpful for simplifying the mesh
generation process. In the present work, the background mesh has 329 × 193 grid points,
respectively, in the X and Y directions. The size of the domain is −25R × 120R in X and
50R in Y. The mesh is refined significantly near the rotor location. In this area, the mesh
has a cell size of ∆/D ≈ 0.12 ranging from X = −5R to 25R. This particular grid has
257 × 141 points, respectively, in the X and Y directions. Past studies have shown that the
employed mesh is already sufficient for accurately modelling the aerodynamic characteris-
tics of this turbine and that the solutions are grid independent [2]. This conclusion also
applies for the wake resolution; as such, the wake refinement mesh was increased up to
513 × 201 grid points (∆/D ≈ 0.06) [2].
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Figure 11. Mesh assembly for vertical axis wind turbine (VAWT) computations consisting of the
background mesh, wake refinement mesh, rotor mesh, and Gurney flap mesh.

4.3. Comparison with Experimental Data

In this section, the accuracy of the CFD computations is quantified by comparing the
results with experimental data [32] and IDMS (Improved Double-Multiple-Streamtube)
calculation in terms of the integrated and azimuthal loads for the baseline case without the
Gurney flap. The IDMS method is described in detail in [33]. The power generated by the
wind turbine and the tip speed ratio are defined as follows:

CPower =
PTurbine

1
2 ρU3

∞2R
(7)

λ =
ΩR
U∞

(8)

with PTurbine, ρ, Ω, U∞, and R being power, air density, rotational speed, wind speed, and
rotor radius, respectively. The azimuthal loads are defined as follows:

Cn =
Fn

1
2 ρU2

∞2R
(9)



Sustainability 2021, 13, 4284 13 of 22

Ct =
Ft

1
2 ρU2

∞2R
(10)

where Fn and Ft are, respectively, the sectional normal and tangential forces.
Figure 12 shows the the predicted power curve using CFD for three different time

step sizes in comparison with the measurement data [32]. The time step size is defined
based on the period of the turbine rotation (T). One can see that refining the time step size
improves the prediction accuracy of the CFD solutions. The best prediction accuracy is
obtained for the finest time step size of T/1440, although the change between this time step
with the coarser one (T/720) is not significant. For all subsequent investigations, the time
step size of T/1440 will be used. To obtain a deeper insights into the prediction results
over the azimuth, the normal and tangential forces of the blade are presented in Figure 13.
Here, it can be observed that good agreement is also obtained for the azimuthal loads.
Some deviations are observed at the azimuth angles close to zero and larger than 270° for
the normal loads component. For the tangential component, the downwind part is very
difficult to be predicted because it is associated with separated flow and the tangential
force is highly influenced by the drag component.

Figure 12. Power curve of the clean turbine predicted using CFD for three different time step sizes in
comparison with the experimental data.

Figure 13. Azimuthal loads predicted using CFD in comparison with the experimental data.

4.4. Performance of VAWT Employed with Gurney Flap

In this section, the performance of the vertical axis wind turbine employed with a
Gurney flap is investigated. The integral values and the azimuthal variation of the loads
are investigated in detail to improve the understanding of VAWT aerodynamics equipped
with Gurney flaps. The cases considered are listed in Table 4.
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Table 4. Test cases for the height effect study for the two-bladed rotating vertical axis wind turbine
with NACA-0021 airfoil.

Case Nr. GF Angle GF Height

1 90◦ 0.5%c
2 90◦ 1%c
3 90◦ 2%c
4 90◦ 4%c
5 90◦ 6%c
6 105◦ 0.5%c
7 105◦ 1%c
8 105◦ 2%c

4.4.1. Gurney Flap Height and Angle Effects

In this section, unsteady loads over the azimuth angle in the normal and tangential
directions are analyzed. Two Gurney flap angles for three different flap heights are consid-
ered for the studies. In addition to that, for each case, the flow field at a selected azimuth
position is compared to illustrate the source of the load characteristics.

Figures 14a,b show the normal and tangential force coefficients acting on the turbine
blade for the Gurney flap configuration of 0.5%c at two flap angles 90° and 105°. The
considered tip speed ratio is λ = 2.13. This is where the turbine is near the optimal position
for the baseline case. It can be seen that the normal and tangential force coefficients increase
starting from the azimuth angle of θ = 0° until the azimuth angle of θ = 90◦. These forces
then decrease steadily, reaching zero at about θ = 180°. The normal force then becomes
negative as the angle of attack is also negative within the downwind region. A different
characteristic is observed for the tangential force. It is shown that, for an azimuth angle
larger than 180°, the tangential force in general remains constant around the zero level.
This shows that the (negative) lift generated within the downwind phase has only a small
contribution to the tangential force component.

Another thing to notice while looking at the azimuthal load curves is that a strong
unsteady behavior is shown near the maximum level of aerodynamic loads, which indicates
the starts of the stall phase. This effect is more prominent for normal loads than the
tangential loads. One can see clearly that the Gurney flap angle of 90° presents stronger
fluctuations than the angle of 105°, although at the same time, it generates greater normal
and tangential forces. This is consistent with the investigations carried out for the static
airfoil case in Section 3, where the Gurney flap angle of 90° has a higher lift improvement.
To better understand this phenomenon, the crosswise vorticity component is plotted in
Figure 15. This is defined as follows:

ωz =
∂v
∂x

− ∂u
∂y

(11)

with u and v being the axial and lateral velocity components. The plot was made for the
azimuth angle of 90°, where the fluctuations were already observed. It becomes clear that
the flow field in the proximity of the trailing edge for both cases are fairly different. The
case with the Gurney flap angle of 90° (Figure 15a,b) presents stronger Karman-street-like
vortex oscillations in the wake than for the higher flap angle. This becomes the main source
of load oscillations but also creates greater power improvement at the same time.
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Influence of the Gurney flap angle on the azimuthal normal force (Cn) and tangential force
(Ct) coefficients at a tip speed ratio of λ = 2.13. (Top): GF height of 0.5%c in (a,b), (middle): GF
height of 1%c in (c,d), (bottom): GF height of 2%c in (e,f).
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(a) (b)

(c) (d)

(e) (f)

Figure 15. Spanwise vorticity contour at a tip speed ratio of λ = 2.13. (Top): GF height of 0.5%c in
(a,b), (middle): GF height of 1%c in (c,d), (bottom): GF height of 2%c in (e,f).
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The results for the Gurney flap height of 1%c are presented in Figure 14c,d. Similar
to the observations made for the lower Gurney flap height, the azimuthal loads increase
starting from the azimuth angle of θ = 0◦ to the azimuth angle of θ = 90◦. The maximum
loads are obtained at an azimuthal angle of 90◦. A light unsteady behavior is also shown
near the maximum load position, which indicates the stall region up to an azimuthal angle
of θ = 110◦. However, it is clearly shown that, now, the fluctuations are much weaker than
the shorter flap height. This is also indicated clearly in the vorticity field in Figure 15c,d.

By increasing the flap height further to 2%c, one can see that the fluctuations are now
suppressed completely within the upwind part of the blade rotation, as demonstrated in
Figure 14e,f. No huge differences are noticed between the two flap angles (90◦ and 105◦),
but a slightly better result is shown for the flap angle of 90◦.

In Figure 16, the enlarged view of the total velocity in rotating frame of reference near
the trailing edge area is plotted. It can be seen that the velocity field on the pressure side of
the airfoil changes with increasing GF height for two different GF angles. In Figure 16a,b, it
can be seen that the 90° flap angle generates substantial velocity recovery just downstream
of the flap. This induces unsteadiness, which is represented by load fluctuations. This effect
becomes weaker as the flap angle is increased to 105°. With increasing flap height, the local
velocity recovery is no longer observed. Interestingly, now, the velocity deficit upstream
of the flap increases in size. This changes the direction of the blade wake centerline and
improves the rotor performance.

(a) (b)

Figure 16. Cont.
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(c) (d)

(e) (f)

Figure 16. Total velocity plot (in m/s) in the rotating frame of reference at a tip speed ratio of λ = 2.13.
(Top): GF height of 0.5%c in (a,b), (middle): GF height of 1%c in (c,d), (bottom): GF height of 2%c
in (e,f).

4.4.2. Rotor Power and Optimal Operation

Having investigated the Gurney flap height and angle effects in the previous section, it
can be inferred that the load fluctuations decrease with increasing flap angle at a small value
of the flap height. However, this is also followed by a reduction in maximum tangential
force. By increasing the flap height, the fluctuations are suppressed and, at the same time,
the difference between the flap angle of 90° and 105° becomes insignificant. To further
analyze the loads and to give a better suggestion for future development of VAWT designs,
two additional simulations were performed for the flap angle of 90° for the flap heights of
4%c and 6%c. The results are presented in Figure 17.

Now, it can be clearly seen that both the normal and tangential load components
increase with increasing flap height. Interestingly, the load fluctuations are suppressed as
well. Figure 17 shows that the fluctuations take place only for the flap heights of 0.5%c
and 1%c. This shows that it is beneficial to use longer flap than the shorter flap version
in contrast to the observations made for the static airfoil case in Section 3 especially for a
large solidity turbine such as the one considered in the present work.
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(a) (b)

Figure 17. Variation in the normal Cn and tangetial Ct force coefficients for five different GF heights:
0.5%c, 1%c, 2%c, 4%c, and 6%c in comparison with the clean turbine case. (a) Normal component
and (b) tangential component.

Figure 18 presents the impact of the Gurney flap height on the power production of
the VAWT for different tip speed ratios. A larger power coefficient indicates larger output
torque. The tip speed ratio ranges from λ = 0.5 to λ = 3.0. Five different Gurney flaps
were investigated, namely 0.5%c, 1%c, 2%c, 4%c, and 6%c, and compared to the baseline
case. The first thing one notices is that mounting a Gurney flap at the trailing edge of
the blade increases the power production of the VAWT remarkably for tip speed ratios
between 0.5 < λ < 2.5. As it can be seen from Figure 18 that, for low tip speed ratios
(0.5 < λ < 1.5), the relative growth rate of the power coefficient while varying the Gurney
flap heights is relatively low, although the power is still much higher than the baseline case.
This aspect solves an important operation problem of self-starting. For (0.5 < λ < 1.0), the
best performance is obtained for a GF height of h = 1%c and the minimum is obtained at
a GF height h = 2%c. Near the optimal operating regime at λ = 2.13, further increasing
the GF height notably increases the power coefficient of the VAWT to more than 0.3. The
optimal value is obtained for tip speed ratio λ = 2.19 for Gurney flap height h = 6%c. At
high tip speed ratios, the discrepancy in the power production is again very small and the
lowest power coefficient CPower is obtained for a GF height of h = 6%c. At this location, the
minimum drag force will be dominant for obtaining higher power; thus, usage of a long
Gurney flap is not desirable.

Figure 18. Power curve for five different GF heights: 0.5%c, 1%c, 2%c, 4%c, and 6%c in comparison
with the clean turbine case.

As described for some selected cases in Section 4.4.1 and in Figure 17, the usage of
Gurney flaps changes the load characteristics of the blades and, consequently, the rotor
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performance shown in Figure 18. It becomes evident from Figure 16 that the Gurney flap
changes the direction of the wake centerline. This artificially creates an additional camber
effect in the fluid flow, which in turn enhances the lift force acting on the rotor blade. This
is identified as the main source of performance improvement. However, in contrast with
the low solidity rotors considered in past studies, the performance of high solidity rotor is
less affected by the drag increase due to Gurney flaps. This allows blade designers to use
longer Gurney flaps in their designs. Furthermore, this aspect also modifies the unsteady
characteristic of the flow field commonly denoted as dynamic stall. The effect seems to be
influenced by the flap and could potentially be controlled. Future studies in this direction
are strongly encouraged.

5. Conclusions

The present paper delivers a computational study on the flow characteristics of static
airfoil and rotating vertical axis wind turbine equipped with Gurney flaps in order to
provide quantitative and qualitative data on the aerodynamic performance of this device.
The following conclusions can be drawn:

• Increasing the Gurney flap height results in increased lift and drag coefficients for the
static airfoil case. However, a height of 0.5%c generates a very small increase in drag
and provides the highest lift-to-drag ratio compared to the clean airfoil.

• The lift improvement is greater for the 90° configuration than the 105° configuration.
• For the rotating VAWT case, the load fluctuations decrease with increasing flap angle

at a small value of the flap height. By increasing the flap height, the fluctuations are
suppressed and, at the same time, the difference between the flap angles 90° and 105°
becomes insignificant. This shows that it is beneficial to use the longer flap than the
shorter flap version in contrast to the observations made for the static airfoil case,
especially for large solidity turbines.

• Mounting a Gurney flap at the trailing edge of the blade increases the power produc-
tion of the VAWT remarkably for tip speed ratios between 0.5 < λ < 2.5.

• At very low tip speed ratios, the best performance is obtained for the Gurney flap
height of h = 1%c.

• Within the operating range of the turbine at 1 ≤ λ ≤ 2.5, further increasing the Gurney
flap height increases the power coefficient of the VAWT notably to more than 0.3. The
optimal value is obtained for tip speed ratio λ = 2.13 for Gurney flap height h = 6%c.

• At large tip speed ratios, the usage of a Gurney flap is not beneficial.
• The present work extends the existing literature on VAWTs with Gurney flaps espe-

cially for a two-bladed rotor having high solidity. The results show that, for this type
of turbine, the Gurney flap height can be increased to a larger value, extending the
limit of around 2% for the lower solidity turbine.
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Nomenclature

c blade chord, (m)
CL lift coefficient, (−)
CD drag coefficient, (−)
CPower power coefficient, (−)
Ft sectional tangential force, (N/m)
Fn sectional normal force, (N/m)
N number of blade, (−)
R radius of turbine, (m)
PTurbine rotor power, (Watt)
U∞ free stream wind velocity in axial direction, (m/s)
x, y Cartesian coordinate, (m)
u, v axial and lateral velocity components, (m/s)
α angle of attack, (°)
αp pitch angle, (°)
Ω rotational speed, (rad/s)]
ω vorticity, (1/s)
λ tip speed ratio, (−)
σ rotor solidity, (−)
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