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Abstract

These days, machine learning plays a key role in plenty of applications. Self-learning algorithms are
developed in not only industrial applications, e.g., production lines, or fleet management, but also
in the private sector, e.g. smart homes. The performance of these programs is significantly related
to the provided training data. A major challenge is preserving high quality of the data. Therefore,
the demand for good data cleaning methods has been increasing over the past few years. While
existing cleaning techniques can consider constraints and dependencies in data, they can not exploit
context information automatically. Thus, they usually fail to track shifts in the data distributions or
the associated error profiles. To overcome these limitations, this thesis introduces a novel pipeline
for automated tabular data cleaning powered by dynamic functional dependency rules extracted
from a context model. This context model is a live updating ontology, representing the current state
of the environment where the data originates from. The proposed concept divides the pipeline into
three main steps: (i) context modeling, (ii) dependency extraction, and (iii) data cleaning. As a
proof-of-concept and for evaluation purposes, a prototype has been implemented. This prototype
is evaluated on two different datasets, including an IoT dataset from a smart home use case and a
commonly used benchmark dataset with different metrics from hospitals in the US. The evaluation
shows that the proposed concept and pipeline for the data validation process performs better than
typical state-of-the-art error detection methods.
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Kurzfassung

Heutzutage spielt maschinelles Lernen in vielen Anwendungen eine Schlüsselrolle. Selbstlernende
Algorithmen werden nicht nur für industrielle Anwendungen, z. B. in der Produktion oder im
Flottenmanagement, sondern auch für den privaten Bereich, z. B. Smart Homes, entwickelt. Die
Leistung dieser Programme hängt wesentlich von den bereitgestellten Trainingsdaten ab. Eine
große Herausforderung besteht darin, Daten in hoher Qualität zu sammeln und diese zu erhalten.
Daher ist die Nachfrage nach guten Fehlererkennungsmethoden in den letzten Jahren gestiegen.
Bestehende Verfahren zu Fehlerbeseitigung können zwar Einschränkungen und Abhängigkeiten
in den Daten berücksichtigen, aber sie können diese Kontextinformationen nicht automatisch
nutzen. Daher sind sie in der Regel nicht in der Lage, Verschiebungen von Datenverteilungen oder
die damit verbundenen Fehler zu erfassen. Um diese Einschränkungen zu überwinden, wird in
dieser Arbeit eine neuartige Methode für die automatische Fehlererkennung und -verbesserung
von Datensätzen vorgestellt. Diese basiert auf dynamischen Abhängigkeitsregeln, die aus einem
Kontextmodell extrahiert werden. Das Kontextmodell ist eine sich ständig aktualisierende Ontologie,
die den aktuellen Zustand der Umgebung widerspiegelt. Das eingeführte Konzept unterteilt die
Datenvalidierung in drei Hauptschritte: (i) Kontextmodellierung, (ii) automatische Extraktion von
Abhängigkeiten und (iii) Datenbereinigung. Als Proof-of-Concept und zu Evaluierungszwecken
wurde ein Prototyp implementiert. Dieser Prototyp wurde an zwei verschiedenen Datensätzen
evaluiert, darunter ein IoT Datensatz aus einem Smart-Home-Anwendungsfall und ein häufig ver-
wendeter Benchmark-Datensatz mit verschiedenen Metriken über Krankenhäuser in den Vereinigten
Staaten von Amerika. Die Evaluierung zeigt, dass das vorgeschlagene Konzept und die Pipeline
für den Datenvalidierungsprozess besser abschneidet als dem Stand der Technik entsprechende
Fehlererkennungsmethoden.
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1 Introduction

In today’s digital world, the importance of data has heavily increased [BCC20]. Data has become
a valuable and powerful asset in the Industrial era. Massive amounts of data can be researched
to reveal hidden patterns or other secret correlations [SS13]. One of the core business tasks of
advanced data usage is the support of business decisions [Bec16]. While Big Data influences the
validity of data-driven decision-making, its usage has a big impact in these sectors. For example,
applications for predictive analysis in maintenance are leading to new business models, as the
manufacturers of machinery are in the best position to provide Big Data-based maintenance [Bec16].
With autonomous data-sensing technologies, like Wireless Sensor Networks (WSNs) or Radio
Frequency IDentification (RFID), Big Data analysis has gained success and potential [SS13].
The Internet of Things (IoT) is a collective term for those devices, which are highly interconnected
and produce, interchange and consume data. According to the International Data Corporation
(IDC), there will be even more data generated in the future1. The data volume produced by IoT
devices in 2015 will increase by more than five times in 2025 to 79 billion petabytes worldwide.
This number likely correlates with the increasing number of IoT devices itself (Figure 1.1). By
2025, approximately 75 billion devices will be interconnected worldwide [MF16]. According to
Forbes, this trend will continue to grow exponentially2.
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Figure 1.1: Connected devices worldwide from 2018 till 2025 [MF16]

1https://www.statista.com/statistics/1017863/worldwide-iot-connected-devices-data-size/
2https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-

marketestimates-2016/#6a558beb292d
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1 Introduction

Big Data can be characterized in three core components: (a) variety, (b) velocity and (c) volume
[SS13]. While the increasing size of data now outstrips traditional store and analysis techniques,
velocity is a key element and very important for time limited processes. Big Data becomes even
more challenging when adding variety [SS13]. With the huge amounts of data from various sources,
the probability that some of those sources contain dirty data is very high [RD00]. Especially
when combining multiple data sources, there are many opportunities for data to be duplicated or
mislabeled. If data is incorrect, outcomes and algorithms are unreliable, even though they may
look correct 3. Other impacts include customer dissatisfaction, increased operational cost, less
effective decision-making, and a reduced ability to make and execute a strategy [Red98]. In the
long-term, poor data quality breeds organizational mistrust and makes it more difficult to align the
enterprise [Red98]. The quality of data becomes one of the differentiating factors among businesses
and the first line of defense in producing value from raw input data. Ensuring the quality of the data
with respect to business and integrity constraints has become more important than ever [DEE+13].
Over the past few years, this has resulted in a surge of interest from both industry and academia
on data cleaning problems. New abstractions, interfaces, approaches for scalability, and statistical
techniques have been developed [CIKW16].

Due to the interconnection of IoT devices in large networks, the probability of a transmission
or data error is increased [SDSB19]. Especially, the use of low power microchips and wireless
communication leads to an increased number of errors or device failures in IoT environments. A
faulty sensor can have a big negative impact if the data is further used, e.g., in machine learning
pipelines.

Data Producer

Data Logging

Data Processing
Data Consumer

Machine Learning
Trained Model

Figure 1.2: Example of IoT pipeline with machine learning

3https://www.tableau.com/learn/articles/what-is-data-cleaning
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1.1 Motivation Scenario

Figure 1.2 depicts a general structure how such environment could look like. Data producing
devices, e.g., sensors, are builds the source of data flow pipelines. This data can then be processed
to extract a model with machine learning algorithms or do some other action, e.g., trigger other
actuators. False sensor values lead to faulty machine learning models, which will then impact the
capabilities of this model in e.g. prediction. Furthermore, such errors can propagate through the
whole data pipeline, which leads to wrong actions in a fully automated process. The task of error
detection is very cumbersome for humans and thus not suitable for real-time applications or large
datasets. Error detection algorithms can automate this process. While the state-of-the-art in these
tools is quite advanced, they do typically still require substantial manual effort or programming
[RD00]. Algorithms might mislabel correct values as false and vice versa because the overall
understanding of the environment and context is missing. Metadata, reflected in schemata, is often
insufficient to assess the data quality of a source [RD00]. Ontologies can provide a wide range of
expert knowledge about the context while still being easy to understand and extensible if needed.
The IoT Context Model, introduced by Del Gaudio et. al. is an example for such collection of
knowledge about an IoT environment [DABS22]. Information about the spatial distribution of
similar sensors can help in outlier detection, and technical details of a sensor can validate the
plausibility of recorded values. A concept to automate the extraction of useful information from
ontologies can improve error detection algorithms with less or none human involvement, which is
the goal of this thesis.

1.1 Motivation Scenario

The following example will help to motivate the necessity of a good error detection method in
machine learning pipelines.

Figure 1.3: Smart Home with smart heater and prediction on energy costs

Figure 1.3 depicts a smart home application with three wireless temperature sensors. Two of
them are mounted inside in different rooms and one sensor is placed outside. All temperature
measurements are collected and stored to a database on the smart heating system in the house.
Including current weather forecasts and the historical data about heating power and temperature

17



1 Introduction

measurements, a machine learning model should be learned. This model then should predict the
energy consumption for heating in the house for the next few days. Since all connections are
wireless, transmission errors are one of many possible reasons for faulty data in the database. When
learning a model, algorithms will always assume correct training data. The machine learning
process will not differentiate if the value is correct or false, when building the model. Prediction
with this model, based on wrong historical data, is likely to be wrong as well. To improve the
prediction, one need to make sure that the dataset is error-free. Thus, a good error detection method
is needed before the faulty data is inserted in to the machine learning pipeline.
In the scenario described above, a general application of the same error detection method for every
temperature sensor, e.g., outlier detection, is not optimal. The maximum possible change rate
of the temperature is drastically different, if taken inside or outside a house. Knowledge about
the environment, like the sensor placement, can eventually help to improve error detection even
further.

1.2 Goals of this Thesis

The main goal of this thesis is to improve existing error detection algorithms with the use of
knowledge about the data context. In order to reach this goal, sub-goals are defined as followed:

• Introduction to error detection methods and how they are limited if no context is used

• Explanation how expert knowledge about a specific domain or environment can be described in
ontologies, e.g., the IoT Context Model [DABS22]

• Extend the IoT context model with information about the context that is useful for error detection

• Development of a concept to extract dependencies from ontologies and to use them in the error
detection process

• Implementation of a prototype to show how such concept can be used with current state-of-the-art
frameworks for error detection

• Evaluation of the proposed concept using the implementation and real-world datasets

18



1.2 Goals of this Thesis

Structure

This thesis is structured as follows:

Chapter 2 - Fundamentals

Fundamentals which are necessary for this thesis are described in this chapter. A introduction
to the IoT and ontologies is given.

Chapter 3 - Related Work

Chapter 3 gives an overview of related scientific work.

Chapter 4 - Context-Aware Data Validation

This chapter is the main part of this thesis and described the developed concept to include
context-awareness in the data validation process. The context is gathered from ontologies
which represent the domain expert knowledge.

Chapter 5 - Implementation

As a proof-of-concept, a prototype has been implemented. Chapter 5 describes the imple-
mentation in Python4 using the error-detection framework HoloClean [RCIR17].

Chapter 6 - Evaluation

In this chapter, an evaluation of the prototypical implementation in Chapter 5 and the overall
concept in Chapter 4 is given.

Chapter 7 - Summary and Future Work

Chapter 7 concludes this thesis and gives a summary of potential future work.

4https://www.python.org/about/

19

https://www.python.org/about/




2 Fundamentals

The following chapter describes the fundamentals and basic terms, necessary for the comprehension
of the presented concepts in Chapter 4. Firstly, an introduction to the IoT and smart devices is given
(Section 2.1). Section 2.2 describes Big Data in general, and the challenge that arises when dealing
with such big amounts of data. Typical errors in IoT datasets are sub-categorized and introduced
in Section 2.3. The definition of ontologies (Section 2.4), particularly, the IoT Context Model
introduced by Del Gaudio et. al. [DABS22] is given in Section 4.3.1. Further, the terms Functional
Dependency (FD) (Section 2.5.1) and Ontology Functional Dependency (OFD) (Section 2.5.2) are
explained, which form the basis for the concepts of dependency extraction from an ontology, the
main contribution in this thesis (Section 4.4.3).

2.1 Internet of Things

The Internet of Things (IoT) is a collective term for technologies and describes the development and
increasing networking of intelligent objects, so-called smart devices. A variety of heterogeneous
devices are connected via standardized internet protocols to perform a wide range of tasks together,
such as automating everyday activities. The focus is on the machine-to-machine communication,
i.e. that devices communicate with each other without the need for human involvement [LN10].
Smart devices are often equipped with sensors or actors and are able to connect to the internet to
offer services for a wide variety of users. Sensors record physical data from their environment, like
temperature, humidity or their current location [DP11]. This data can be analyzed and processed
by other devices, e.g., to control corresponding actuators. IoT can not only be used in private
households, as described in Section 1.1, but also has many industrial applications.

The so-called Industry 4.0 is nowadays characterized by the use of IoT devices [Sin17]. The
advantages of IoT devices, like the small size, wireless operation and low energy consumption, is
useful for the application in existing production machinery. For example, through the acquisition of
measurement data, a real-time evaluation of measurements can take place. This allows operators to
precisely react to certain events or warnings, while still having an overview over all the relevant
data. In general, the interconnection of devices speeds up productivity and responses to faults in
production processes.
IoT applications in the private sector are mainly dominated by Smart Homes. Electronic devices
in a household, like lights, doors or the heater control system can, when connected to each other,
execute arbitrary automations. The connection to the internet, gives the user worldwide full control
of the devices. Current development in compactness and power efficiency of microprocessors, as
well as advances in wireless communication and battery technology, builds the foundation for a
variety of use cases for IoT devices. Thus, they can be deployed almost everywhere. This flexibility
is the reason why to expect this field of research and application to increase continuously in the next
years [MF16].
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2 Fundamentals

2.2 Big Data

Sagiroglu et. al. describe Big Data as the center of modern science and business [SS13]. Big Data
is initially just a term for huge data sets, not considering what the data is about. It can be generated
from online transactions, emails, videos, audios, images, logs, posts, science data or, introduced
in Section 2.1, the Internet of Things [SS13]. International Data Corporation (IDC) estimated a
data volume of 97 zetabytes in 2022 and a increase to 181 zetabytes by 2025 worldwide1. Such
large amount of data is not easy to handle and require special techniques for storing, processing
and analyzing. The economic value of data reveals itself by an intelligent analysis to generate
valuable insights [BCC20]. Secret correlations and hidden patterns need to be extracted from a
heterogeneous and complex structure to make use of it.

In general, data can be structured or unstructured. The latter is random and, thus, especially difficult
to analyze [SS13]. Companies resort to the cloud computing model for efficient management and
analysis of Big Data [BCC20]. Bansal et. al. describe 13 challenges for dealing with Big Data from
IoT environments. Among the volume, variety and velocity, already introduced in Chapter 1, they
address the veracity and validity of the data. Veracity is the issue of uncertainty about truthfulness
of captured data [BCC20] and validity about the cleanliness to carry out data analysis. Especially in
the IoT, this is a big challenge, since a decentralized network of low power devices is error prone.
Data errors and possible reasons for these are introduced in Section 2.3.

The massive amounts of data and the ease of data collection nowadays leads to an increasing
interest in machine learning. Machine learning algorithms have never been more promising and
also challenged by Big Data in gaining new insights into various business applications and human
behaviors [ZPWV17]. Such algorithms rely on rich and large data to learn from it and to uncover
underlying structures or to make predictions [ZPWV17]. That in turn calls for even faster techniques
to acquire and collect data. Data augmentation is an approach to gather data from existing datasets.
With the help of augmentation technologies, data can be further enriched with existing entity
information [RHW21]. To be able to learn from data, supervised machine learning algorithms
require them to be labeled. Annotations can be made manually, which is very cumbersome and
labor intensive, as well as automated. Zhou et. al. describe several techniques to face this challenge:
(a) use existing labels, (b) crowd-based or (c) use weak labels. While the first two methods try to
estimate the label using machine learning or crowd-sourcing techniques, weak labels represent an
alternative approach. Weak labels are not perfect but compensate for the lower quality due to their
large quantities [ZPWV17].

In summary, Big Data can be the “new oil of the future” [RHW21], but there are still challenges
which need to be addressed to fully take advantage of such large data sets. The “cleanliness” of data
is one of them and is described in the next section.

2.3 Data Errors

In the federal standard 1037C [TD96] an error is defined as:

1https://www.statista.com/statistics/871513/worldwide-data-created/
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2.3 Data Errors

Definition 2.3.1
(a) an accidental condition that causes a functional unit to fail to perform its required function,
(b) a defect that causes a reproducible malfunction or (c) an unintentional or partial short circuit
between two energized conductors.

Errors in data, on the other hand are defined as a condition in which data has been altered erroneously
and is not equal to the ground truth anymore. Cardoso et. al. defines the ground truth as data that is
related to more consensus or reliable values/aspects, so that it can be used as references [CPIR14].
The ground truth can be considered as the true and unaltered value of a specific data cell. In the IoT,
data inaccuracy is introduced at the data provenance level due to several reasons such as, sensor
malfunctioning, lack of trust and reliability of data sources [BCC20]. Since IoT devices are mostly
interconnected in large complex networks, the probability of a failure or data error is increased
compared to traditional central computing [SDSB19]. Long multi-hop journeys of data across
heterogeneous networks affect data accuracy by the introduction of noisy, missing, or redundant
values [BCC20]. Not at least the use of wireless communication leads to another reduction of data
quality [FP05]. To accomplish the desired mobility, small size and low energy consumption for
such devices, errors must be accepted. It is up to the data processing units to validate data produced
by the IoT and filter erroneous cells or directly repair them. This process is called Data Validation
and will be introduced in Chapter 4.

This thesis distinguishes between data errors in numerical cells and in textual cells. Errors in
datasets with mainly text-based data are typically syntactically, but not necessarily semantically,
wrong in comparison to the true value [SPKN20]. Nonetheless, real data contains domain-specific
relationships beyond syntactic equivalence or similarity [ZZL+21]. Semantic errors proposes
another challenge to error detection mechanisms (Chapter Chapter 4). Faults in numerical datasets
are introduced in the following Section 2.3.1.

2.3.1 Numerical Value Errors

Measurements, taken from sensors in the IoT are typically numerical values. Thus, datasets recorded
in IoT environments contains lots of numbers, which have to be treated differently in error detection
than just comparing them syntactically. Numbers can deviate only in some low decimal places, so
almost the same, but when comparing their strings, more than half of the characters are different.
Chakraborty et. al. defined several types of numerical data error (Table 2.1).

Short A data point that significantly deviates from the expected value or time.

Spikes A rate of change over a shorter or longer period of time, that is significantly
greater than expected. The change does not have to return to normal.

Stuck-at A data series that no longer varies over a long period of time or varies
very little.

Noise Data that unexpectedly varies greatly over a certain period of time.
Calibration Sensor data have a constant shift with respect to the true value.

Table 2.1: Subdivision of numerical value errors according to Chakraborty et al. [CNC+18]
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Shorts, Spikes, as well as Noise can be grouped under the term outlier or anomaly. Hawkins defined
an outlier as follows [Haw80]: “An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different mechanism.” This thesis
mainly focuses on outlier detection for numerical values. Chapter 4 shows, how discovering and
using dependencies from IoT environments can help to improve the detection performance.

2.4 Ontologies

Ontologies are collections of expert knowledge and offer a unified semantic for the components
of a specific domain [DABS22]. Since knowledge-based systems are expensive to build, test and
maintain, a flexible, easy to use and expandable methodology is needed [Gru93]. In computer
science, ontologies are formal models of a domain which support the understanding between
humans and machines [HZA+06]. They provide a detailed insight about existing objects, structure
and relationships and are suited to represent context information. In such an ontology, definitions
associate the names of entities in the domain (e.g., classes, relations, functions, or other objects)
with human-readable text, describing what the names are meant to denote, and formal axioms that
constrain the interpretation and well-formed use of these terms [Gru93].

Ontologies are built of statements, also called triples. A triple consists of a subject, a descriptive
predicate and an object [MW14]. The basic structure can be extended to support more complex
models by using triples as objects or subjects of other triples. Given this format, knowledge can be
represented machine-readable. The structure of an ontology is flexible, easy to scale, and can thus be
generic and extendable, while allowing a good description of heterogeneous systems [DABS22].

Definition 2.4.1
Ontologies can be defined as a tuple $ = (�, ��, '�, �', �, '�, �), with concepts � that are
arranged in a hierarchy� [HZA+06]. Relationships ' between single concepts can be also arranged
hierarchically �'. An Instance � is interconnected by property instances '�. Furthermore, axioms
� can be defined which provide integrity constraints.

These integrity constraints will be useful for later feature extraction for data cleaning, which is
the main contribution of this thesis. In the IoT, ontologies are especially useful to represent their
complex and heterogeneous structure, while still being fine-grained. This thesis uses the IoT Context
Model introduced by Del Gaudio et. al. [DABS22] as an existing ontology to extend and use for
automatically extracting dependencies from it.

2.5 Data Dependencies

Most data is not completely unstructured, but contains some kind of relations between the data
points. Data is called dependent, if some tuples, fulfilling certain conditions, exist in the dataset.
Then either some other tuples must also exist therein, or some values in the given tuples must be
equal [BV81].
Two classes of dependencies, i.e. Functional Dependencies (Section 2.5.1) and its further develop-
ment Ontology Functional Dependencies (Section 2.5.2) are introduced in this section.
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2.5 Data Dependencies

2.5.1 Functional Dependencies

A Functional Dependency (FD) is a statement which uniquely determines the value of an attribute .
given a set of attributes - [ZGR20]. They mostly describe relationships based on syntactic equality
and can be used, e.g., for data cleaning [BKC+17]. Dependencies are used to specify data quality
requirements.

Definition 2.5.1
Considering data � with relation ' and the FD - → �, where - ⊆ ' denotes a set of attributes
and . ∈ � is a single attribute, an instance � of ' satisfies � if for every pair of tuples C1, C2 ∈ � if
C1 [-] = C2 [-], then C1 [�] = C2 [�]. [ZZL+21]

To derive FDs from data observations, identification of the attribute order which defines the direction,
is needed [ZGR20]. In order, to reduce the exponential computational cost, existing methods rely
on pruning to search over the lattice of attribute combinations [ZGR20]. Different Types of FDs
are (a) Inclusion Dependencies, (b) Conditional Functional Dependencies [CFG+07], (c) Denial
Dependencies [BKC+17], (d) Order Dependencies or (e) Matching Dependencies [ZZL+21]. This
thesis only focuses on denial dependencies and matching dependencies, to enhance data validation
by extracting them from the structure of the data, modeled in ontologies (Chapter 4). Additionally,
new types of dependencies are defined and used by the implemented concept.

The following dataset contains real data of clinical records from the Linked Clinical Trials database2.

CC CTRY SYMP DIAG MED
US United States joint pain osteoarthritis ibuprofen
IN India joint pain osteoarthritis NSAID
CA Canada joint pain osteoarthritis naproxen
IN Bharat nausea migrane analgesic
US America nausea migrane tylenol
US USA nausea migrane acetaminophen
IN India chest pain hypertension morphine

Table 2.2: Sample clinical trials data

From the data in Table 2.2, the following Functional Dependencies can be derived [AZC+18]:
�1 : [CC] → [CTRY] and �2 : [SYMP, DIAG] → [MED].
However, the FD �1 is violated by the tuple (C1, C5, C6), because they are not syntactically equal.
A human knows that ’United States’ is a synonym with ’America’ or ’USA’, thus C1, C5 and C6 all
referring to the same country. But this knowledge is not applicable for an automated process that
only validates the data based on the Functional Dependencies �1 and �2. For this reason, Zheng et.
al. introduce Ontology Functional Dependencies, which additionally consider domain knowledge
[ZZL+21].

2https://clinicaltrials.gov/
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2.5.2 Ontology Functional Dependencies

As seen in the previous section, Functional Dependencies are limited in their application for
evaluating datasets due to missing domain knowledge. Ontology Functional Dependencies (OFDs)
can solve those issues. They serve as contextual data quality rules that enforce the semantics modeled
in an ontology [AZC+18]. Zheng et. al. focus their work with OFDs on capturing synonyms and
is-a relationships, which are defined in ontologies. These relations go beyond syntactic equality
or similarity and consider the notion of sense. Considering a sense or interpretation for each
equivalence class G ∈ Π- (�) under which all the �-Values of tuples in G are synonyms, a relation
instance � satisfies a synonym OFD - →BH= � [ZZL+21].

Given example in Table 2.2 above, all designations representing the same countries can be summa-
rized in an equivalence class (e.g. US: C1, C5, C6), which gives Π�� = {{C1, C5, C6}, {C2, C4, C7}, {C3}}.
The information that links those individual names together as synonyms can be extracted, for example,
from a geographical ontology, like: =0<4B(*=8C43(C0C4B) ∩ =0<4B(�<4A820) ∩ =0<4B(*(�) =
United States of America [ZZL+21]. This thesis extends the use of OFDs and defines new types
of dependencies, which can be extracted from a ontology. Those newly defined dependencies are
closely related to the IoT and are described in the main chapter, Chapter 4.
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In “Data Cleaning: Overview and Emerging Challenges”, Chu et. al. [CIKW16] describe detecting
and repairing dirty data as one of the perennial challenges in data analytics. Qualitative error
detection is crucial when acquiring large amounts of data which has influence on the decision
making in businesses. Dirty data can lead to incorrect decisions and unreliable analysis [CIKW16].
Chu et. al. describe an overview over qualitative data cleaning and error repairing approaches.
They conclude challenges that still need to be solved, like the scalability of data cleaning techniques
or error detection applications for streaming data. This thesis introduces a concept to reduce user
engagement, another challenge mentioned in [CIKW16], by automatically extracting constraints in
datasets.

Zhang et. al. [ZGR20] describe the need for data constraints, like FDs, to improve data integrity
and optimize queries in large datasets, but also to clean and profile data [ZGR20]. In their work
“A Statistical Perspective on Discovering Functional Dependencies in Noisy Data”, they focus on
extracting FDs directly from the dataset. The main goal of Zhan et. al. is to automate the discovery
of those in a scalable way while the output is interpretable without any tedious fine tuning. Existing
methods rely on searching over the whole space of possible attribute combinations, which can lead
to poor scalability. Zhang et. al. propose that the noise in the dataset itself can be a challenge too.
Due to missing values and erroneous data, the discovery method needs to extract approximate FDs,
which are only applicable for a portion of the data. This problem leads to an even more expensive
error detection problem and probably to faulty error models. In [ZGR20], they propose a framework
that relies on structured learning. With the help of a probabilistic model, FDs can be discovered
from noisy data. The goal of this thesis is to overcome this problem by extracting the dependencies
not from the dataset itself, but from separate ontologies which will represent the expert knowledge
of this domain. In future work, the two concepts can be combined to fill missing knowledge in
ontologies, or on the other hand, to compensate the noise in the dataset (Section 7.1).

Cong et. al. introduce conditional functional dependencies, and a framework for data cleaning
in their work “Improving Data Quality: Consistency and Accuracy” [CFG+07]. The framework
is able to repair a dataset, so that it satisfies a given set of conditional functional dependencies
and incrementally find a repair in response to updates to a clean database. Their approach works
without incurring excessive user interaction, while still being accurate above a predefined rate. With
the use of a newly defined cost model, they choose the best action to resolve a violation, which
can be solved in more than one way. While Cong et. al. describe a framework for improving data
quality based on conditional constraints, these constraints still have to be defined manually for every
different dataset. In contrast to that, this thesis defines new constraints that can be found in datasets
and furthermore methods to extract them automatically from a given ontology.

Visengeriyeva and Abedjan propose two new holistic approaches for effectively combining error
detection systems in “Metadata-Driven Error Detection” [VA18]. They argue that, due to the
different sources of data, multiple error detection methods are crucial to get a satisfying data quality.
The structural heterogeneity of these sources is the origin of data quality problems, like missing
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values, duplicates, inconsistent data and outliers [VA18]. Research in the past resulted in several
data cleaning approaches but usually optimized on one specific error type. To find out which error
detection method is the best fitting, knowledge about metadata is needed. Visengeriyeva et. al.
consider following concepts of metadata: (a) Data Completeness, (b) Data Type Affiliation, (c)
Attribute Domain, (d) Frequent Values, (e) Multi-column Dependencies. While (a), (b), (c) and (d)
are usually considered in existing error detection frameworks, such as HoloClean [RCIR17] (see
Section 5.2.1), this thesis will concentrate on dependencies in the data structure. The thesis presents
concepts to extract these dependencies from ontologies which represent domain knowledge about
the dataset.

In “Discovery and Contextual Data Cleaning with Ontology Functional Dependencies” [ZZL+21],
Zheng et. al. explore dependency-based data cleaning with Ontology Functional Dependencies.
Additionally to traditional FDs, OFDs can express semantic attribute relationships, which helps to
significantly reduce the number of false positive errors in data cleaning techniques. Zheng et. al.
demonstrate that real data contains domain-specific relationships beyond syntactic equivalence or
similarity, for example synonyms [ZZL+21]. Such semantic models of datasets are often described
in ontologies. They define OFDs based on synonym relationships and present an algorithm to
discovery them from an ontology. The OFDClean algorithm then selects the best interpretation,
so called sense, for an equivalence class of tuples. In datasets recorded from IoT environments,
discovering semantic synonyms only plays a small role for error detection compared to text-based
datasets. Since numerical values do not have a sense or an equivalence class, the presented concepts
by Zheng et. al. are only limited for application on IoT datasets. To face this challenge, this thesis
proposes multiple concepts for integrating context from ontologies in datasets consisting mainly of
numerical values.

In [AZC+18], Langouri et. al. motivate a need to consider the context of data for data cleaning.
They argue that the context of data can be modeled as an ontology to improve error detection steps
in the data cleaning pipeline. Langouri et. al. mention that integrity constraints, e.g. FDs, are not
enough to sufficiently represent relations in data and consequently will lead to an increased number
of false positives in error detection. In the recent work [BKC+17], they propose an algorithm that
discovers OFDs directly from data without a need to model the context. Additionally, two open
problems are summarized in [AZC+18]: (a) a concept on how to suggest possible modifications of
data that violate a given set of contextual dependencies and (b) holistic data cleaning algorithms
that consider data, dependency and ontology repairs. These problems are partly solved by a data
validation framework HoloClean [RCIR17], which will be introduced in the following. The goal of
this thesis is to present a concept for (b), mentioned as future work by Langouri et. al.. New types
of dependencies, augmented with ontological context and develop are defined (Section 4.4.3), and
through implementing a prototype, a concept on how to discover and use them for error detection,
is presented (Chapter 5).

HoloClean [RCIR17] is a framework for holistic data repairing driven by probabilistic inference. It
unifies existing qualitative data repairing approaches, which rely on integrity constraints or external
data sources, with quantitative data repairing methods, which leverage statistical properties of the
input data. The framework generates a probabilistic model to represent the input data. With the
use of statistical learning and probabilistic inference over the generated model, HoloClean repairs
errors in the input data. Rekatsinas et. al. show that their data cleaning method outperforms
state-of-the-art alternatives by the factor 2 in F1-score. HoloClean finds repairs with average
precision of 90% and an average recall of 76%. They limit their approach to Denial Constraints
and Matching Dependencies (Section 2.5.1). In this thesis, the methods of HoloClean are extended
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to extract these dependencies from an ontology and, at the same time, use newly introduced data
dependencies for error detection.

Mahdavi et. al. present a new configuration-free error detection system with Raha [MAF+19].
Detecting erroneous values currently require a user to provide configuration for various error
detection methods, e.g. outlier detection. They argue that this selection is not trivial and needs
individual adjustments for every new dataset. Error detection in general requires users to engage these
non-trivial steps: (a) algorithms selection, (b) algorithm configuration and (c) result verification.
With their implementation Raha, they try to solve all of this time-consuming steps in an automated
manner. The algorithm automatically generates different configuration sets for each error detection
method. With a novel sampling and classification scheme for generated feature vectors, Raha
chooses the most representative values for training. Although the goal of Raha and this thesis is the
same, namely to have as little user involvement in the data cleaning process as possible, this thesis
uses expert knowledge from ontologies and does not rely on structures which firstly needs to be
discovered in the dataset.

Del Gaudio et. al. evaluate different ontologies, which form the base of their work, and proposes
an expandable architecture for a context model using the IoT-Lite ontology [BEBT16] and the
Semantic Sensor Network (SSN) ontology [CBB+12]. The IoT-Lite ontology uses current standards
and is compatible to be extended with additions from different sources without any constraints
[DABS22]. Del Gaudio et. al integrate dynamic context data, such as measurements, timestamps
and monitoring components to the ontology. They use a so-called Context Model Store, which
represents a centralized database, that stores attributes and predicates, describing the context.
Additions to the ontology can be made during runtime via the Context API [DABS22]. The
IoT environment can be automatically parsed to an ontology through querying the Multi-purpose
Binding and Provisioning Platform [FHM19; FHPM18]. The MBP is introduced by Franco da
Silva et. al. as a management platform for IoT environments. Devices, sensors and actors can be
registered, controlled and redeployed from a central system. The acquired data can be processed
and visualized after the required operators are deployed and new data is collected [DABS22]. The
ability of the ontology, to be automatically generated from existing IoT platform tools, decreases
human involvement significantly. Therefore, the proposed IoT context model by Del Gaudio et. al.
forms the base of the context model presented in this thesis.
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The main concept of this thesis, the context-aware data validation, is introduced in this chapter. In
the beginning, general data validation and errors are introduced (Section 4.1). Afterwards, the
overall architectural structure and the data flow of the concept, is presented (Section 4.2). The
goal is to improve data validation through considering constraints and dependencies gathered from
ontologies about the same context as the dataset. Therefore, the environment where data is generated
needs to be modeled. For this concept, I use the IoT context model ontology by Del Gaudio et. al.
[DABS22]. The ontology is extended with additional classes and properties (Section 4.3). Ihe
extensions are illustrated with an example for such a context model in Section 4.3.4. New types of
OFDs are introduced (Section 4.4) that can be extract from a context model (Section 4.5). Lastly,
I conceptually describe how to use them for improving the data validation process automatically
(Section 4.6).

4.1 Definition and Overview of Data Validation

The UNECE glossary on statistical data editing1 defines data validation as follows: “An activity
aimed at verifying whether the value of a data item comes from the given (finite or infinite) set of
acceptables values.” So either the value is “acceptable” or can be interpreted as an error (Section 2.3).
A data error can formally be defined as follows [MAF+19]:

Definition 4.1.1
Let a dataset � consists of tuples C: . Let � be the schema of � with attributes 0;. Then � [8, 9]
is the data cell in the tuple C8 of dataset � and 0 9 the attribute of the schema �. One can denote
the ground truth of the same dataset as �∗. An data error is then every data cell � [8, 9] which is
different from the corresponding cell in �∗, �∗ [8, 9]. So if � [8, 9] ≠ �∗ [8, 9], � [8, 9] is considered
erroneous.

The definition of the UNECE glossary on statistical data editing only considers single data items,
without mentioning the verification of consistency among different data items [ZFG+16]. Therefore,
Di Zio et. al. propose a new definition for data validation: “Data Validation is an activity verifying
whether or not a combination of values is member of a set of acceptable combinations.” To validate
the combination of values, any type of context of the data is needed. Most current state-of-the-art
techniques uses rules or constraints to evaluate the correctness of data points [BKC+17; CFG+07;
VA18; ZFG+16]. Chu et. al. mention in their overview over data cleaning, how time-consuming it
is to design such constraints or patterns manually. Later, in the evaluation chapter of this thesis
(Section 6.1.1), one can see how crucial it is that the set of constraints needs to be the most complete

1https://unece.org/info/Statistics/pub/21882
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as possible. Automatic discovery techniques are essential, due to the requirement of great domain
expertise in this process [CIKW16]. As seen in previous works about challenges in data validation,
meta data, representing constraints and dependencies, is important to consider [CIKW16].

4.2 Concept Overview

The main objective of this thesis is to enrich existing data cleaning methods with features extracted
from an ontology-based context model. The generation of these features and the resulting data
validation should be done with least human involvement possible. Therefore, a data cleaning
pipeline is proposed which divides the process into three parts: (1) data generation and context
modeling, (2) OFD extraction and feature generation, and (3) data cleaning. These three steps are
also reflected in the architectural overview in Figure 4.1.

This section describes the concept superficially and should give an rough idea, while the following
sections describe the individual components more in detail.
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Figure 4.1: Architectural overview over the proposed data cleaning pipeline

The environment produces raw data that is stored in a database, for offline validation, or directly
streamed into the data validation framework. Del Gaudio et. al. offer various adapters in their
work to extract information about the environment [DABS22]. This information can be modeled
automatically in an ontology-based context model. Modern IoT platform tools, e.g., the MBP
presented by Franco da Silva et. al. [FHM19; FHPM18], can deliver such information via
application interfaces. Otherwise, the context model can be created manually, e.g., with a user
interface. In principle, the context model can be created in any way and inserted into the presented
pipeline. In the following section, this model is described more in detail, along with challenges
when creating such.
The context model is then parsed and available dependencies are extracted from it. These OFDs
(Section 2.5.2) can be categorized in different types, which will be presented in Section 4.4. When
validating the incoming data, the extracted dependencies are evaluated against it. If a dependency
holds on a given data tuple, this tuple is considered correct, while if a dependency is violated, the
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tuple is marked as erroneous. This boolean feature can then be further processed in an arbitrary
data validation pipeline, for example in ready-to-use frameworks like HoloClean [RCIR17] or
Raha [MAF+19]. With this addition, any already implemented error detection and repair mechanism
can still be used.
Therefore, the presented architecture in this thesis allows for the combination of already existing
techniques in data validation and the use of automatically extracted dependencies from context
models to improve the results. At the end of the presented pipeline, the cleaned data will be
outputted and can be used in other downstream applications, e.g., machine learning applications
and data visualization dashboards.

4.3 Step 1: Data Generation and Context Modeling

Data from the environment can either be processed directly as a stream or inputted as a static dataset.
Such data can, e.g., be generated by sensors, which measure some physical value, be the output of
some kind of data processing unit, or be a tabular collection of data about a specific topic. Since
data normally is not produced randomly, in the most datasets, constraints or correlations between
rows or cells exist [ZFG+16]. To automatically make use of such, the information, e.g., the structure
of an IoT environment, needs to be embedded in a model first.
Knowledge about the environment is not only important in IoT datasets, but also can be helpful in
datasets from other domains, yet, it is important to notice that this thesis mainly focuses on the
validation of IoT data. Due to the increasing complexity of data analysis and the increasing number
of data producing devices, more detailed context models are needed, which not only cover the static
information about the network, but also compose live information, for example the current state of
devices or live data from monitoring systems [DABS22].

As mentioned in the previous section, the goal of this thesis is to use this information to improve
data validation. For this concept, ontologies are used as a knowledge collection. Due to their
flexibility and extendability, ontologies are very applicable for this task, as mentioned in Section 2.4.
They are easy to understand, can be maintained automatically and easily extended whenever needed.
In the following, the context model is introduced, which builds on the work of Del Gaudio et. al.
[DABS22]. The ability to be generated from the Multi-purpose Binding and Provisioning Platform
(MBP)2, a platform tool to manage and monitor IoT devices [FHM19; FHPM18], gives the IoT
context model an advantage, due to the low involvement of humans.

4.3.1 IoT Context Model

The presented context model in this thesis builds on the IoT context model by Del Gaudio et. al.. In
the following, extensions to this ontology are described that enable modeling of new dependencies
in the environment. The context model is extended with components from the SSN ontology and
the IoT-lite ontology, introduced in the following. The ontologies use current standards and are
compatible to be extended with additions from different sources without any constraints [DABS22].
Del Gaudio et. al integrate dynamic context data, such as measurements, timestamps and monitoring

2https://github.com/IPVS-AS/MBP/blob/master/README.md

33

https://github.com/IPVS-AS/MBP/blob/master/README.md


4 Context-Aware Data Validation

components to an ontology. The context-aware data validation method of this thesis uses the context
model store as introduced by Del Gaudio et. al. [DABS22]. The context model store is a centralized
database, that stores attributes and predicates, describing the context and can be changed during
runtime. An IoT environment can automatically be parsed to an ontology through querying an IoT
platform, e.g., the Multi-purpose Binding and Provisioning Platform [FHM19; FHPM18]. The
MBP is introduced by Franco da Silva et. al. as a management platform for IoT environments.
Devices, sensors and actors can be registered, controlled and redeployed from a central system.
The acquired data can be processed and visualized after the required operators are deployed and
new data is collected [DABS22]. Information, like the name, IP address, or the type of the device
is represented in the context model as soon as a device is registered. Sensors and actuators can
be equipped with software components, called extraction or control operators [FHM19]. These
operators generate non-static data that further describes the context of the environment, but can
change constantly and needs to be represented dynamically in the resulting context model [DABS22].
When the whole system is initiated, changes in the environment are constantly registered using
different adapters. Thus, if a stream of data is originating from the environment, the process of data
cleaning can timely be adapted to the current context.

Figure 4.2 depicts an example for the IoT context model [DABS22]. The ontology does not only
include static information about the environment (grey), but also non-static information (blue), like
monitoring operators. The property iot-context:hasMonitoringComponent connects devices with
their corresponding monitoring component, which in turn links with iot-context:hasMeasurement

to a specific recorded value (iot-context:hasValue) at a timestamp (iot-context:hasTimeStamp)
[DABS22].
It is important to mention, that the context model can be generated by any platform, representing
the environment. This thesis uses the MBP due to the already implemented adapters and the
automated processes to construct an ontology from an environment, introduced by Del Gaudio
et.al.. Furthermore, it is even possible to manually create an ontology, which is then used in the
data cleaning pipeline, presented in this thesis. The concept is extendable to make use of other
methods, e.g. defining the context via a user interface, as well.

iot-lite:hasSubsystem

ssn:System 
iot-ins:mySystem

rdfs:label="our system"

iot-lite:exposedBy

iot-context:hasMonitoringComponent

ssn:hasSubsystem

ssn:Device 
iot-ins:myDevice

rdfs:label="myFirstDevice"

iot-lite:exposedBy

iot-context:hasMeasurement

iot-lite:hasCoverage

ssn:SensingDevice 
iot-ins:FirstSensingDevice

rdfs:label="SensingDevice For Sensor 1"

ssn:Service 
iot-ins:sensingOperator

iot-lite:hasUnit    qu:degree_celcius

iot-lite:hasSensingDevice

ssn:Sensor 
iot-ins:mySensor

rdfs:label="Sensor1 for temperature"

ssn:Service 
iot-ins:MonitoringService

rdfs:label="Telegraf"

iot-context:hasMeasurement

iot-context:MonitoringComponent 
iot-ins:CPUmonitor

rdfs:label="CPU Data"

iot-context:Measurement 
iot-ins:load1

iot-context:hasValue="50"

iot-context:hasTimeStamp="2021-10-28T14:00:00z"

iot-lite:hasQuantityKind     qu:load

iot-lite:Rectangle 
iot-ins:environment

rdfs:label="Area Room Uni"

rdfs:comment="Description: Env Model 1"

iot-context:Measurement 
iot-ins:tempearture1

iot-context:hasValue="18"

iot-context:hasTimeStamp="2021-10-28T14:00:00z"

iot-lite:hasQuantityKind     qu:temperature

Figure 4.2: Example of the IoT Context Model [DABS22]
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The IoT context model already includes useful relations for data validation purposes (Figure 4.2).
Still, an IoT environment contains much more information, which will be needed to further improve
error detection. Thus the existing context model is extended with additional classes and properties
from other, commonly used, ontologies, as described in the following. Either these extensions are
added manually to the context model in an offline phase or can be automated in future work.

4.3.2 Adding the Semantic Sensor Network Ontology

The Semantic Sensor Network (SSN) ontology [CBB+12] was introduced by the World Wide Web
Consortium (W3C) to only describe sensors, observations and related concepts3. Compton et. al.
designate the components to be the core of empirical science. Sensors are used in a variety of
applications and therefore the most important part to gather an increased volume of data, which
in turn is crucial for research [CBB+12]. Other information about the environment, e.g units of
measurements, locations, or sensor types, should be included from other ontologies and is not part
of the SSN ontology. Compton et. al. describes the SSN ontology as a system perspective, with a
focus on systems of sensors and deployments [CBB+12]. Nonetheless this basic information about
the sensors and their deployment is important for modeling the context of an IoT environment, which
mostly consists of devices like such and attached sensors and actuators. The classes and relations,
which are listed in Table 4.1, will be used by this work to extend the IoT context model. Some of
the classes are already used by the IoT context model, but are still listed below for completeness.

type name
class ssn:Device

class ssn:Sensor

class ssn:SensingDevice

class ssn:ActuatingDevice

relation ssn:hasDeployment

relation ssn:hasSubsystem

class ssn:Deployment

Table 4.1: Additionally used classes and relations from SSN ontology

The relation hasSubsystem between the classes Device and Sensor can model existing links between
sensors and devices. Thereby, it is clear if a sensor physically belongs to a device, i.e. the device
can directly read values from it. SensingDevice and ActuatingDevices describe a smart device
that implements some kind of sensing using a sensor or acting using an actor, respectively. The
Deployment of a SensingDevice models the process of the device being deployed for a particular
purpose. In this thesis, the relation hasDeployment referring to the class Deployment is mainly use to
specify the location of a device in the physical environment.

3https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

35

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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4.3.3 Adding the IoT-lite Ontology

To represent resources, entities and services in IoT environments, the W3C introduced the IoT-
lite ontology [BEBT16]4. IoT-lite is a instantiation of the SSN ontology (Section 4.3.2). The
ontology is built to be queried without consuming excessive processing time, which is advantageous
when using it in error detection in nearly real-time systems. Since IoT devices are mostly
connected wireless and rely on battery power, the topology of an IoT environment can change
often and rapidly [SDSB19]. Thus, IoT-lite considers the constrains and dynamicity of IoT
environments [BEBT15]. Measurements by IoT devices can be described, using common quantity
taxonomies, for example qu5. This ontology describes the conceptual model for quantities, units,
dimensions or values. With this, measured values can be annotated, e.g., with a unit. IoT-lite
focuses on the most used concepts for data analytics in IoT applications, such as sensory data,
location and type [BEBT16]. It avoids links to uncommonly used ontologies and shares vocabulary
with other data from different sources. All in all, IoT-lite is very suitable for the purposes of this
thesis, while still keeping standards and its extensibility for future work.

type name
property iot-lite:hasSensingDevice

individual iot-lite:Attribute

property iot-lite:isActed

property iot-lite:isAssociatedWith

individual iot-lite:Object

property iot-lite:hasMetadata

individual iot-lite:Metadata

data property iot-lite:metadataType

data property iot-lite:metadataValue

property geo:hasLocation1

individual qu:QuantityKind2

individual qu:Unit2

property qu:hasQuantityKind2

property qu:hasUnit2

1 geo namespace for location property of sensors
(https://www.w3.org/2003/01/geo/)

2 qu namespace for units and quantity kinds of
measurement
(https://www.w3.org/2005/Incubator/ssn/wiki/QU_
Ontology)

Table 4.2: Additionally used individuals, properties and data properties from IoT-lite ontology

Table 4.2 lists all individuals and properties needed for the dependencies used in data validation
(Section 4.4), introduced by this thesis. The property hasSensingDevice links sensors to their
corresponding ssn:SensingDevice, i.e. their directly connected device. A sensor is annotated with
a quantity kind, e.g. temperature or humidity, which corresponds to the physical measurement
the sensor can take. Additionally, the units that the sensor is capable to read are modeled via the
property qu:hasUnit and the individual qu:Unit. Capabilities of sensors, e.g. the resolution or the
minimum/maximum measurable value, can be modeled via the individual Metadata and its data

4https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/
5https://www.w3.org/2005/Incubator/ssn/wiki/QU_Ontology
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4.3 Step 1: Data Generation and Context Modeling

properties metadataType and metadataValue. The individual Attribute defines the name of a data
entry of some measurement and is associated with the property isAssociatedWith to a sensing
device. A link to an ActuatingDevice can be modeled with the property isActed, which means that
the actor does something, e.g. process or log a measurement, after it is transmitted from a sensor.
With this linkage temporal relations between devices can be modeled and expressed.
An example of the IoT context model with the additional classes and properties from the other
ontologies (SSN and IoT-lite) is presented in Figure 4.3 in the next section.

4.3.4 Example of the Context Model

In this section, an IoT dataset is introduced to illustrate the extension with the new classes and
relations from the IoT-lite and the SSN ontologies. Moreover, the example is useful for the following
definitions of the various OFDs in Section 4.4. Table 4.3 shows an excerpt of the data collected

Device SensingDevice Sensor name value timestamp location
device_out aqara_multisensor_2 aqara_temp_2 t4 7.08 2021-01-01 02:00:00 outside
device_in_1 esp8266_2 ds18b20_2 t2 23.69 2021-01-01 02:00:00 room1
device_in_1 esp8266_1 ds18b20_1 t1 22.69 2021-01-01 02:00:00 room1
device_in_2 aqara_multisensor_1 aqara_temp_1 t3 22.32 2021-01-01 02:00:00 room2
device_main raspberry processor 7.08 2021-01-01 02:00:05 outside
device_main raspberry processor 23.69 2021-01-01 02:00:05 room1
device_main raspberry processor 22.69 2021-01-01 02:00:05 room1
device_main raspberry processor 22.32 2021-01-01 02:00:05 room2
device_in_1 esp8266_1 ds18b20_1 t1 22.46 2021-01-01 03:00:00 room1
device_out aqara_multisensor_2 aqara_temp_2 t4 7.25 2021-01-01 03:00:00 outside
. . . . . . . . . . . . . . . . . . . . .

Table 4.3: Excerpt of the IoT dataset

in a smart-home IoT environment (Figure 5.2). Along with temperature read-outs from different
kinds of sensors, it contains data points, logged by a central processing unit, where all of the
measurements are collected. More details to this dataset can be found in the description of the
implemented prototype in Section 5.1.

hasSubsystem

hasSubsystem

ssn:System 
MA TestSystem 

hasSubsystem

ssn:Device 
device_main

ssn:ActuatingDevice 
raspberry 

hasSubsystem hasMonitoringComponent

ssn:Device 
device_in_1

hasDeployment
ssn:SensingDevice

esp8266_1 

hasSensingDevice

hasMetadata

hasQuantityKind

isAssociatedWith

hasAttribute

isActed

iot-lite:Attribute 
t1 

hasQuantityKind

qu:QuantityKind 
Temperature 

hasLocation

ssn:Deployment 
SensorInside 

iot-lite:Object 
Room1 

iot-lite:Metadata 
Resolution 

metadataType=resolution 
metadataValue=12

hasMeasurement

hasMeasurement
iot-context:MonitoringComponent 

NETWORK_Monitor 

hasValuehasTimestamp

iot-context:Measurement 
SignalStrength 

xsd:dateTime 
2022-01-12T12:00:00.000Z 

xsd:double 
-50 dBm 

... ...

hasMeasurement

hasMetadata

hasMetadata

ssn:Sensor 
ds18b20_1 

...

iot-lite:Metadata 
MinValue 

metadataType=minValue 
metadataValue=-55

iot-lite:Metadata 
MaxValue 

metadataType=maxValue 
metadataValue=125

ssn:Device 
device_in_1

ssn:Sensor 
ds18b20_1 

iot-context:MonitoringComponent 
NETWORK_Monitor 

iot-context:Measurement 
SignalStrength 

hasMeasurement

hasTimestamp

xsd:dateTime 
2022-01-12T12:00:00.000Z 

hasValue

Figure 4.3: Excerpt of IoT context model for a given environment (Section 5.1.3)
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In Figure 4.3, a part of the corresponding ontology is depicted. This instance of the IoT context
model represents the structure of the environment, in which the dataset of Table 4.3 was collected.
In the shown cutout, two devices, an ESP82666 and a Raspberry PI7, are part of the overall system.
One is an actor which is acted on behalf of the other device, a sensor. The sensor measures the
temperature in Room1 and is monitored via a monitoring component. It is annotated with several
capabilities, e.g., the maximum and minimum measurable value and its measuring resolution. This
IoT environment is used to exemplify the following definitions of the new types of OFDs.

4.4 Dependencies in the Ontology

This section defines new types of dependencies in ontologies, namely OFDs (Section 2.5.2), which
are used to enhance data validation. These types are categorized into three main categories: (a)
structure-based, (b) time-based, and (c) value-based. Structure-based OFDs represent the structural
relations of a dataset. They are especially useful in datasets consisting of mostly categorical values,
since the other types of OFDs are only restrictively applicable, e.g. value-based. The latter, and
time-based OFDs are mainly defined to represent the structure of an IoT environment. Examples for
every dependency are given in the evaluation chapter (Chapter 6), after the corresponding datasets
are introduced.

4.4.1 Structure-based Dependencies

In the following, only dependencies are defined, which take the structural relations of datasets into
account. The concept, presented in this thesis, will include denial dependencies and matching
dependencies. Such dependencies are applicable to many datasets since the actual cell values do
not matter. Thus, structure-based constraints can be found in datasets with mostly text, as well as
in datasets containing mostly numerical values. Nonetheless, in the latter, their usefulness can be
limited. This is the consequence of structural-based constraints using syntactical or semantical
equivalence to determine the correctness of a cell. Numbers can deviate only in some low decimal
places, so almost the same, but when comparing their strings, more than half of the characters are
different. Due to those restrictions and their capabilities only to cover general rules in the structure,
the use of such dependencies are limited in numerical datasets, like most of the data produced by
IoT. Denial dependencies and matching dependencies can be used in approaches for more general
datasets. For illustrating these structure-based OFDs, excerpts of a ontology are depicted, which
model a dataset that mainly consists of text-based cells with categorical values. The dataset and the
corresponding ontology is introduced in Section 5.1.1. To enhance data validation especially in IoT
datasets, this thesis introduces device link dependencies.

6https://www.espressif.com/en/products/socs/esp8266
7https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
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Denial Dependency

Denial dependencies subsume several types of integrity constraints, for example Functional
Dependencies (Section 2.5.1) or conditional functional dependencies [RCIR17]. They indicate if a
pair of cells in a dataset is faulty, i.e., if the constraint is satisfied. A denial dependency � over a
relation ' is defined as �→ �, where � and � are single attributes in ' and � ≠ �. An instance �
satisfies � if for every pair of tuple C1, C2 ∈ �, if C1 [�] = C2 [�], then C1 [�] ≠ C2 [�]. The elements
of the instance can then be marked as erroneous.
Denial dependencies are transitive but not symmetric.
Proof for transitivity:

Let �→ �, �→ � be a denial dependency, then � is a subclass of � and � is a subclass of
�. Furthermore � is also a subclass of �, which means �→ � is a valid denial dependency
(�→ � ∧ �→ � ⇒ �→ � ).

Proof for non-symmetry:

Let �→ � and �→ � be denial dependencies. Then � is a subclass of � and � a subclass
of �. This requires � = �, but contradicts the assumption � ≠ � of a denial dependency
(�→ � ; �→ �).

Subclass relations in ontologies have the same properties like denial dependencies, so they can be
discovered directly from the class hierarchy.

State

State: xsd:string

County

CountyName: xsd:string
hasState

Figure 4.4: Example for parent class and subclass relationship

Figure 4.4 depicts the class - subclass relation between County and State. County is represented as
a subclass of the class State in the hospital ontology (Section 5.1.2). This relation can be converted
to a denial dependency County→ State. Let C1 [�] = C2 [�] be the county Lassen County, C1 [�] the
state California, and C2 [�] the state Nevada. Then the tuple C1, C2 satisfies the denial dependency,
thus � = C1, C2 can be considered as errors.

Matching Dependency

A matching dependency " over a relation ' is represented as �→ �, where � and � are single
attributes in ' and � ≠ �. They indicate if a pair of cells in a dataset is correct, i.e., if the constraint
is satisfied. An instance � satisfies � if for every pair of tuple C1, C2 ∈ �, if C1 [�] ≈ C2 [�] and
C1 [�] ≈ C2 [�] [SPKN20]. ≈ denotes the similarity operator w.r.t some similarity metric [SPKN20].
Matching dependencies are transitive and symmetric.
In the following, mathematical proofs for matching dependencies in the structure of an ontology are
defined.
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Proof for transitivity:

Let Φ be a general function - → . , which maps an attribute in an ontology - to its
corresponding class . . Φ(-) then denotes the class of attribute - . Let �→ �, �→ � be
a matching dependency, then �, � and �,� are attributes of the same class, Φ(�) = Φ(�)
and Φ(�) = Φ(�). Since the assumption holds that every attribute is unique to one
class, the class of �, �, � must be the same, Φ(�) = Φ(�) = Φ(�) This means that
�→ � is also a valid matching dependency, because they are attributes of the same class
(�→ � ∧ �→ � ⇒ �→ �).

Proof for symmetry:

Consider Φ as a function defined above. Let � → � be a dependency, then � and � are
attributes of the same classΦ(�) = Φ(�). This proves that the matching dependency �→ �

is valid, thus symmetric (�→ �⇒ �→ �).

Every unique attribute of a class in a ontology is dependent to each other, regarding matching
dependencies.

Hospital

HospitalName: xsd:string

PhoneNumber: xsd:long

HospitalOwner: xsd:string

ProviderNumber: xsd:nonNegativeInteger

Figure 4.5: Example for a class and its attributes

Figure 4.4 depicts the class hospital with all its attributes. Since all of theses attributes are unique in
the hospital dataset, they relate with each other and fulfill the definition of a matching dependency.
Let C1 [�] = C2 [�] be the phone number +1 1234 456789, C1 [�] = C2 [�] the hospital name Callahan
Eye Foundation Hospital. Then the tuple C1, C2 satisfies the matching dependency, thus can be
considered as correct.

Device Link Dependency

A device link dependency ! can be represented as a function Ψ : - → . , where - denotes the
set of sensors available in the IoT environment and . denotes devices. An dependency � → �

(Ψ(�) = �) is satisfied, if the sensor � is physically connected to the device �. This relation means
that the sensor itself belongs to this device and can only be read out from it specifically.
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hasSubsystemssn:SensingDevicehasSensingDevice ssn:Device ssn:Sensor 

Figure 4.6: Example for a device link in an IoT ontology

In Figure 4.6, an excerpt of an IoT context model is given. The physical sensor can be mapped to a
device via the link to the sensing device. Let � be a sensor, � its correspondingly connected device
and C1 a data tuple, where C1 [B4=B>A] = � and C1 [34E824] = �. Due to the dependency, Ψ(�) = �
must hold, but in the given example Ψ(�) = �. This contradicts the assumption that Ψ is a general
function. Therefore C1 can be considered as incorrect.
In the IoT environment, depicted in Figure 4.3, the sensor ds18b20_1 is linked to the device
device_in_1. Consequently, Ψ(ds18b20_1) = device_in_1 is defined by the device link dependency
that is present in the example ontology.

4.4.2 Time-based Dependencies

Time-based dependencies can be used to evaluate the plausibility, and detect errors in timestamps
or wrongly ordered data. They provide constraints typically in IoT environments and represents the
direction how the data is transmitted. These constraints can be discovered from the extended IoT
context model as well. In the following, the temporal dependency is defined.

Temporal Dependency

Temporal dependencies ) define a relation between two devices, � and �. If the dependency �→ �

holds, data, e.g., measurements, will only be send from device � to �. Let the timestamp C- denotes
the time where a message is processed on some device - . Let’s consider two devices, � and �.
Since transmission time is greater than 0, the timestamp C� of message < will then be smaller than
timestamp C� of that same message, C� < C�. � can then be called a temporal predecessor of �.
Temporal dependencies are transitive.
Proof for transitivity:

Let �→ �, �→ � be a temporal dependency, then data only flows from device � to � and
from device � to �. Since receiving and processing time of a message > 0, for messages
sent from � to � over � the following always holds: C� < C� < C� . This means �→ � is a
valid temporal dependency (�→ � ∧ �→ � ⇒ �→ � ).

Temporal dependencies are represented in the IoT context model as follows:
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hasSubsystem

ssn:Device 

ssn:ActuatingDevice 

hasSubsystem

ssn:SensingDeviceisAssociatedWithisActed iot-lite:Attribute 

ssn:Device 

Figure 4.7: Example for a temporal dependency in an IoT ontology

Figure 4.7 depicts a cutout of an ontology where a specific attribute, e.g. a measurement, created by
a device � is trigger for a action taken by device �. This means the temporal dependency �→ �

holds, since the measurement first needs to be taken before processing an action from it, C� < C�.
In the IoT environment, depicted in Figure 4.3, the actor device_main is acted on behalf of the
attribute t1. This attribute is measured by the sensing device of device_in_1. Therefore the
measurement of the sensor must be temporally taken before device_main can process this value to
do anything, e.g., log it to a database. Consequently, a temporal dependency exists between those
devices, namely device_in_1→ device_main.

4.4.3 Value-based Dependencies

Especially for datasets containing mostly numerical values, e.g., IoT datasets, structural constraints
are limited. They can not cover a relation between multiple measurements values and detect false
values reliably. Therefore, this thesis introduces value-based dependencies. Such dependencies are
linking between values of different measurements or measurements and the theoretical limits of
the devices, where they are measured. In the following, the locality dependency, the monitoring
dependency and the capability dependency are introduced and defined.

Locality Dependency

A locality dependency ! is defined as a function Γ : �4E824 → !>20;8CH. Let � be a sensing
device and � a locality, e.g. a room. If the device � is placed at the location of �, then the locality
dependency �→ � holds and Γ(�) = �. This means, that measurements taken from the sensing
device � will always capture the environment at the location �.

hasDeploymentssn:SensingDevice hasLocationssn:Deployment iot-lite:Object 

Figure 4.8: Example for a locality dependency in an IoT ontology

In Figure 4.8, a locality dependency is represented as a excerpt from an IoT ontology. This cutout
describes a sensing device deployed in a specific location, where the measurements are taken from.
With this information, the measurements from devices which are placed nearby each other, e.g., in
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the same room, can be used to improve outlier detection. Values recorded in a local area are likely
to correlate in their absolute values and changing rate. This helps especially in borderline situations,
where it is not clear whether a normal measurement should be considered as an outlier or vice versa.
Since this situation is still a common problem in outlier detection nowadays [WBH19], this thesis
is going to evaluate the usefulness of considering locality dependencies in the detection process
(Section 6.2.2).
The IoT environment, depicted in Figure 4.3, contains the sensing device esp8266_1. This
device is deployed into the Room1, therefore can only measure temperatures from this location.
Γ(esp8226_1) = Room1 is locality dependency that can be extracted from the excerpt in Figure 4.3.

Monitoring Dependency

A monitoring dependency " describes a device �, which is monitored by a monitoring component
�. Health indicators, like the CPU load or network connectivity, are stored as measurements in the
IoT Context Model [DABS22]. Since those measurements are being added live while operating,
monitoring dependencies can be used in real-time or on a existing dataset with timestamps.

ssn:Device 

iot-context:MonitoringComponent 

hasMonitoringComponent

iot-context:Measurement 

hasMeasurement hasTimestamp

xsd:dateTime 

hasValue

xsd:double 

Figure 4.9: Example for a monitoring dependency in an IoT ontology

Figure 4.9 depicts a device which is monitored by a monitoring component. This component
stores monitoring measurements, i.e., the measured value combined with the timestamp. A health
indicator, which will be useful to monitor for a wireless device, is ,for example, the signal strength.
If not using any lower level error detection protocol, e.g., Transmission Control Protocol (TCP),
low signal strength can lead to higher probability of false received values [BV98]. Therefore, the
information lying in monitoring measurements is useful to further improve error detection.
In the IoT environment, illustrated in Figure 4.3, device_1 has a monitoring component. Thus
the monitoring dependency holds between the device device_1 and its corresponding monitor
NETWORK_Monitor.

Capability Dependency

A capability dependency � describes a set of capabilities � assigned to a sensor �. One capability
is represented as a metadata object for a specific sensor. The metadata object consists of a type, e.g.,
resolution or minimal measurable value, and its value.
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hasMetadata

iot-lite:Metadata 

metadataType 
metadataValue

iot-lite:Metadata 

metadataType 
metadataValuessn:Sensor 

hasMetadata

Figure 4.10: Example for a capability dependency in an IoT ontology

Figure 4.10 represents a cutout from the IoT Context Model where a sensor is linked to two metadata
objects. Because metadata objects store the capabilities of a sensors, they can be used as filters
for the measured values. Values which are not plausible, regarding the sensors abilities, can then
directly be marked as false in error detection. For example, if a measurement is lower than the
minimal measurable value of a sensor, this is considered as erroneous. A capability can also define
borders of the measured units. Temperatures which are lower then the absolute zero are then
automatically labeled as an error.
The sensor ds18b20_1 in the IoT environment, depicted in Figure 4.3, has several meta datas linked
to it. For example, a MaxValue and MinValue, as well as a Resolution of the sensor is defined.
Therefore, these three capabilities are assigned to the sensor ds18b20_1 and are interpreted as
capability dependencies.

4.5 Step 2: OFD Extraction

The second step of the data validation pipeline, illustrated in Figure 4.1 is the OFD extraction.
The context model is now filled with information about the environment from which the data is
generated. Before the OFD evaluation and data validation step, the dependencies in the dataset, i.e.
the OFDs, need to be extracted. This thesis expresses the queries of the individual OFD with the
syntax of SPARQL-queries. SPARQL8 is a query language for Resource Description Framework
(RDF). It supports diverse data sources in RDF format and can query graph patterns along with their
conjunctions and disjunctions. RDF is a data format which represents a directed, labeled graph. It
is used mainly for representing information in the web and storing ontologies. W3C initiated a
RDF Data Access working group which has identified use cases and requirements9. They define a
standard way to query or access data in RDF format. The queries are designed to match entries in
the data store, i.e., in the ontology, which is a set of subject-predicate-object triples (Section 2.4).
The WHERE clause specifies conditions that have to apply on the queried triples. Therefore parameters
can be defined, which are marked with the prefix ?. They can be selected in the SELECT clause to
have their binding returned.

In the following, the queries of the OFDs are introduced, structured by their types.

8https://www.w3.org/TR/rdf-sparql-query/
9https://www.w3.org/TR/rdf-dawg-uc/
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Denial Dependencies

Listing 4.1 shows the SPARQL-query for extracting denial dependencies from the context model.

SELECT ?className ?subclassName

WHERE {{

?class a owl:Class .

?class rdfs:label ?className .

?class rdfs:subClassOf ?subclass .

?subclass owl:onClass ?name .

?name rdfs:label ?subclassName

}}

Listing 4.1: SPARQL-query for extracting denial dependencies

className returns the name of a class that directly inherits to a subclass, called subclassName. This
query results in pairs of classes and all their available sub classes, which then are used to build
denial dependencies accordingly to the description in Section 4.4.1.

Matching Dependencies

Listing 4.2 shows the SPARQL-query for extracting matching dependencies from the context
model.

SELECT ?className

WHERE {{

?class a owl:Class .

?class rdfs:label ?className .

?class {0}:{1} ?property

}}

Listing 4.2: SPARQL-query for extracting matching dependencies

className returns the class of a specified property. The namespace of the property and the property
itself is added as an argument to the query. For every found class that has more than one unique
property, matching dependencies are created between those attributes (see Section 4.4.1).

Device Link Dependencies

Listing 4.3 shows the SPARQL-query for extracting device link dependencies from the context
model.

SELECT *

WHERE {{

?device rdfs:label '{0}' .

?device ssn:hasSubsystem ?sensing .

?sensor ssn:hasSensingDevice ?sensing .

?sensor rdfs:label '{1}'

}}

Listing 4.3: SPARQL-query for extracting link dependencies
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This query returns a result row if a device link exists between the sensor and the device, which are
both passed by argument. If the result is not empty, a device link dependency (Section 4.4.1) is
created.

Temporal Dependencies

Listing 4.4 shows the SPARQL-query for extracting temporal dependencies from the context
model.

SELECT DISTINCT ?actorName

WHERE {{

?attribute iot-lite:isActed ?actuating .

?attribute iot-lite:isAssociatedWith ?sensing .

?device ssn:hasSubsystem ?sensing .

?device rdfs:label '{0}' .

?actor ssn:hasSubsystem ?actuating .

?actor rdfs:label ?actorName

}}

Listing 4.4: SPARQL-query for extracting temporal dependencies

actorName returns a device which is acted on behalf of a specific sensing device. This means, a
device, i.e., the actor, processes a measurement of a sensor, i.e., the sensing device. The sensing
device is given by the first argument in the query. Since an actor can have more than one acting
function on the same sensing device, the list is required to be distinct. The relation between the
actor and the sensing device can then be expressed as a temporal dependency (Section 4.4.2).

Locality Dependencies

Listing 4.5 shows the SPARQL-query for extracting locality dependencies from the context model.

SELECT ?deviceName

WHERE {{

?device ssn:hasDeployment ?deployment .

?device rdfs:label ?deviceName .

?deployment ssn:hasLocation ?location .

?location rdfs:label '{0}'

}}

Listing 4.5: SPARQL-query for extracting locality dependencies

The query above lists every device, which is deployed at a location that is passed as an argument,
to the function. For every location found in the dataset, such a query is created. Therefore,
devices that are deployed on the same location can be found and locality dependencies created (see
Section 4.4.3).
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Monitoring Dependencies

Listing 4.6 shows the SPARQL-query for extracting monitoring dependencies from the context
model.

SELECT ?measurementValue

WHERE {{

?monitor rdf:type ssn:Service .

?device iot-lite:exposedBy ?monitor .

?device rdfs:label '{0}' .

?monitor iot-context:hasMeasurement ?measurement .

?measurement iot-context:hasValue ?measurementValue .

?measurement iot-context:hasTimeStamp ?date .

FILTER( ?date <= xsd:dateTime('{1}') )

}}

LIMIT 1

Listing 4.6: SPARQL-query for extracting monitoring dependencies

The query for monitoring dependencies (Section 4.4.3), searches for existing monitoring measure-
ments of a given device at a given timestamp. If no result is found at that specific timestamp, the
last available measurement is outputted. measurementValue will then contain the current latest
monitoring measurement for the device. This query only succeeds if the context model is filled
with live monitoring data, e.g., from the MBP.

Capability Dependencies

Listing 4.7 shows the SPARQL-query for extracting capability dependencies from the context
model.

SELECT ?type ?value

WHERE {{

?sensor rdfs:label '{0}' .

?sensor ssn:hasMetadata ?meta .

?meta iot-lite:metadataType ?type .

?meta iot-lite:metadataValue ?value .

}}

Listing 4.7: SPARQL-query for extracting capability dependencies

For a given sensor, this query returns all available capabilities. This includes the type and the
corresponding value of the meta data. Therefore any sensor can be related with its capabilities (see
Section 4.4.3).
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4.6 Step 3: Data Cleaning

The last step of the presented concept (Figure 4.1) is the data cleaning process. To include the
above defined new types of OFDs in this procedure, they need to be evaluated on the dataset. The
extracted OFDs are now passed to an evaluation script which processes them. This step is done in
the beginning of data cleaning. For every row in the dataset, no matter if already present or coming
in as live data, every parsed dependency is checked whether it is fulfilled or not.

Considering the example depicted in Figure 4.11: I assume the denial dependency, depicted in
Figure 4.4, County→ State and the first entries of some dataset, containing the column County and
State. The definition of a denial dependency and its violation criteria can be found in Section 4.4.1.
Figure 4.11 illustrates the process of the general evaluation for an OFD. To exploit the OFDs
extracted from the context model, an OFD evaluator is added, which evaluates every tuple of rows
in the dataset against the OFD. The condition that a specific OFD is violated, is described in the
subsections of Section 4.4 individually. Specifically, in the OFD evaluation, a Boolean feature is
created for each OFD dependency, stating whether the dependency is fulfilled for each row in the data.
In the depicted example, firstly, the data tuple C1 [�>D=CH] = Lassen County, C1 [(C0C4] = Nevada
and C2 [�>D=CH] = Lassen County, C2 [(C0C4] = California is considered. Since C1 [�>D=CH] =
C2 [�>D=CH] holds, and the denial dependency �>D=CH → (C0C4 exists, the tuple is considered
erroneous, if C1 [(C0C4] ≠ C2 [(C0C4]. This is the case, therefore, the tuple is marked as faulty. In the
second iteration, the next data tuple is viewed: C1 [�>D=CH] = Lassen County = C2 [�>D=CH] and
C1 [(C0C4] = Nevada = C2 [(C0C4] and therefore not considered as false.
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Figure 4.11: Example for OFD evaluation

In the further data cleaning pipeline, the concept presented in this thesis, relies on a state-of-the-art
data cleaning framework, referred to as HoloClean [RCIR17]. However, it is important to mention
that this approach can be integrated with any other data cleaning method. Structure-based OFDs,
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i.e., the denial dependencies and matching dependencies, are evaluated with the existing techniques
from HoloClean [RCIR17]. If so, the corresponding cells are marked as potential erroneous and
further processed in the repairing pipeline of HoloClean.

Other OFDs are evaluated with the newly introduced OFD evaluation process. Since the device-link
dependency, the capability dependency and the monitoring dependency do not need any related
measurements or data entries, they are evaluated solely per row. If any dependency is violated, for
example, a sensor has a measurement which is outside the range of its specification and therefore
violates a capability dependency, the corresponding cell is marked as faulty.
For the last two dependencies, locality dependency and temporal dependency, other rows from the
past need to be considered for evaluation. Due to performance reasons, it does not make sense
to use every existing pair of row in the dataset. Therefore, a time-shift window is created. This
window can be adjusted manually via a parameter and denotes the starting time, where relating
entries in the dataset are used to evaluate the OFDs. The end of the interval is usually the timestamp
of the current database entry. In this window, it is reasonable to search for measurements of nearby
sensors or data points of temporal predecessors. If such an entry is found, the temporal dependency
can be evaluated. For the outlier detection, using locality dependencies, any function can be used
whether a measurement is an outlier or not, e.g., with a static threshold. This method can be tuned
manually or can be improved to support a more complex approach to detect outliers. In Section 7.1,
an idea is sketched to improve outlier detection further by measuring distances between sensors,
using locality dependencies.

State-of-the-Art Data Cleaning Framework

Data Cleaning

Error Detection
Module

Statistical 
Inference

Empirical Risk
Minimization

OFD
Evaluation

Features

...

3

... OFDs

Dirty 
Data... Clean 

Data

Figure 4.12: Overview of the components in Step 3: Data Cleaning

Figure 4.12 depicts the third step of the proposed pipeline, namely data cleaning. The binary
features, produced by the OFD evaluation, serve as an input for a state-of-the-art data cleaning
framework, e.g., HoloClean. The proposed pipeline will then use DeepDive10, a declarative
probabilistic inference framework to run statistical learning and inference. Inference rules are
constructed in Differential Datalog (DDlog), a declarative language for incremental computation
[RCIR17]. The output DDlog rules define a probabilistic program which is then evaluated using the
DeepDive framework. Finally, the process of data repairing can be done, using statistical learning

10http://deepdive.stanford.edu/
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and inference. Variables that correspond to clean cells are treated as labeled examples to learn the
parameters of the model [RCIR17]. Using empirical risk minimization, noisy cells are inferred and
therefore, the dataset repaired correspondingly.

Since the extraction and evaluation of OFDs is fully implemented in the prototype of this thesis, its
output can be easily converted as an input to any arbitrary error detection framework. It can even be
used stand-alone to only detect and mark errors in a dataset, given the context model. In the chapter
about the implementation (Section 5.2.1), more details about HoloClean and why it is used by the
presented concept, are explained.
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To evaluate the concept presented in Chapter 4, a prototype has been implemented which is described
in this chapter. In the beginning (Section 5.1), two datasets are introduced. Parts of them were
already used by examples in previous sections. The datasets are used to evaluate the implementation
about the newly proposed data validation pipeline. The goal of this prototype is to show two
different use cases of the presented concepts: (a) general application and (b) IoT application. While
for (a) a in the literature commonly used dataset, Hospital (Section 5.1.1), is considered, for the
IoT application, data is collected from a self-deployed IoT environment (Section 5.1.3). These two
different datasets are then used for evaluation and performance comparisons in the next chapter
(Chapter 6). Further, in Section 5.2, a more detailed description of the used state-of-the-art data
cleaning framework, HoloClean, is given. Along with this, used python packages and other tools,
which are needed for the prototype or later in the evaluation, are presented (Section 5.2.2).

5.1 Datasets and Ontologies

The evaluation of the presented concepts will be done on two different datasets. The Hospital dataset,
commonly used as a benchmark dataset for data cleaning algorithms [GR19; HMIR19; MAF+19;
VA18], and a dataset from an IoT environment, described in Section 5.1.3. The evaluation with the
hospital dataset should proof the applicability of the concepts on a generic dataset, containing mostly
categorical values. Since, especially in IoT environments, datasets consists mainly of numerical
values, the evaluation is done as well with an IoT dataset. Furthermore, in the latter, errors are
injected using a error generator tool. In this section, these two datasets are introduced. For both
datasets, ontologies are created which will then be used for the context-aware data validation done
by the prototype.

5.1.1 Hospital Dataset

Hospital is a real-world medicare dataset from the US health service [DEE+13]. Typos are
introduced artificially in approximately 5% of its 19,000 cells over 1000 rows and 19 columns.
Each row reports the performance of a particular hospital on a specific metric. Additionally, it
includes metadata such as hospital address and phone number. Since the same hospital appears
multiple times, duplication of values in a column exists, which can help in the data cleaning process.
Table 5.1 shows an excerpt of the dataset over only 5 from the 19 columns.
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HospitalName City Zip Code PhoneNumber MeasureCode . . .

helen keller memorial hospital sheffield 35660 2563864556 ami-1 . . .

southeast alabama medical center dothan 36302 3347938701 ami-1 . . .

marshall medical center south boaz x5957 2565938310 ami-1 . . .

eliza coffee memorial hospital florence 35631 2567688400 ami-3 . . .

mizell memorial hospital opp 36467 3344933541 ami-3 . . .

crenshaw community hospital luverne 36049 3343353374 ami-3 . . .

st vincents east birmingham 35235 2058383122 ami-7a . . .

. . . . . . . . . . . . . . . . . .

Table 5.1: Excerpt of the hospital dataset

5.1.2 Hospital Ontology

To represent the structure of the hospital dataset, an ontology is constructed. Therefore, the overall
structure is analyzed manually. Table 5.2 depicts new classes, attributes and relations that are used
for modeling the context in an ontology. A new namespace, namely hosp is introduced. From
real-world relations between the columns, e.g., a city can have several zip codes, the model is build
from the ground up.

type name
class hosp:Hospital

class hosp:Address

class hosp:ZipArea

class hosp:City

class hosp:County

class hosp:State

class hosp:EmergencyService

class hosp:HospitalType

class hosp:Condition

class hosp:MeasureCode

type name
attribute hosp:HospitalName

attribute hosp:PhoneNumber

attribute hosp:HospitalOwner

attribute hosp:ProviderNumber

attribute hosp:Address1

attribute hosp:ZipCode

attribute hosp:City

attribute hosp:EmergencyService

attribute hosp:CountyName

attribute hosp:State

attribute hosp:Condition

attribute hosp:MeasureCode

attribute hosp:MeasureName

attribute hosp:Stateavg

type name
relation hosp:hasAddress

relation hosp:hasZipArea

relation hosp:hasCity

relation hosp:hasCounty

relation hosp:hasState

relation hosp:hasEmergencyService

relation hosp:hasType

relation hosp:hasMeasure

Table 5.2: Additionally used classes, attributes and relations in the hospital ontology

Figure 5.1 represents the context model for the hospital dataset. The columns of the dataset are
matched with the names of the properties of the newly created classes. Therefore, the evaluation
of the extracted OFDs is easy, due to no naming difference between the dataset and the ontology.
The four columns, namely HositalName, PhoneNumber, HospitalOwner, ProviderNumber are
attributes describing a hospital instance, thus grouped into properties of the corresponding class in
the ontology. The address of an hospital is divided from more detailed to rough information in a
class hierarchy. An emergency service, accordingly to the dataset, is assigned to an zip area, where
as a hospital type is a refinement of the hospital class. The patients condition is classified based
on a measure, which is described by a name, the measure code and the average state. With this
information the presented ontology is created.
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Figure 5.1: Ontology to represent structure of hospital dataset

5.1.3 IoT Dataset

For implementing and evaluating the concept of using context to detect errors in IoT environments,
a real-world dataset is needed. Most datasets available online only contain the data itself but no
information about the context or the environment model, the data was created in. To overcome this
problem, this thesis uses a self-recorded dataset from a smart home application.
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Figure 5.2: Environment model of smart home

53



5 Prototype and Implementation

Figure 5.2 shows an overview about the locality and distribution of the smart devices. All four
sensors are temperature sensors which are mounted on the wall in the corresponding room. )1 and
)2 are DS18B20 1-wire digital thermometers, produced by maxim integrated1. They are connected
via 2.4 GHz WiFi2 to a central data collecting device. Sensors )3 and )4, with model number
,(���&11!" are made by �@0A03. These are wireless temperature and humidity sensors
which are connected via ZigBee, an IEEE 802.15.4 standard4. The IoT dataset contains temperature
read-outs every hour. If more than one value is recorded in this interval, the mean is calculated.
The data set is mostly free from errors, but it contains null values and the read-out value of -128 is
resulted when a sensor is faulty. These already existing errors are removed manually before the
evaluation to have cleaner results for comparison (Chapter 6).

Error injection

The IoT dataset is clean from errors, thus, errors needs to be injected artificially. To inject realistic
errors, a tool, error-generator5, is used. The errors comprise typos, value errors, and null values.
The injected typos are based on the python library butter-fingers6, which generates highly realistic
typos. To inject value errors, random values from the original value range of this column are used.
They are only injected on the numerical columns of the dataset. In summary, 5% errors of each
category is injected, resulting in 149 erroneous instances. Furthermore, outliers are injected into the
numerical values of the IoT dataset to compare the approach with a typical outlier detection method.
Two different datasets are created with numerical values and errors: (a) with random errors in the
original value range, and (b) with random errors in the doubled range of the original values (see
Section 6.2.2).

5.1.4 IoT Ontology

Figure 5.3 shows the IoT context model of the IoT dataset, mentioned above (Section 5.1.3). Though
this model can be partly generated automatically by the MBP, if the environment is defined, the
ontology is constructed manually for now. The reason for this is that the MBP does not support a
fictitious environment, thus, requiring the actual hardware to be there and reachable. Moreover,
the additionally introduced classes and properties in Section 4.3 are currently not supported to be
extracted into an IoT context model, introduced by Del Gaudio et.al.. This feature is mentioned as
future work (Section 7.1).

1https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
2https://www.wi-fi.org/
3https://www.aqara.com/us/temperature_humidity_sensor.html
4https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
5https://github.com/BigDaMa/error-generator
6https://github.com/alexyorke/butter-fingers

54

https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://www.wi-fi.org/
https://www.aqara.com/us/temperature_humidity_sensor.html
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
https://github.com/BigDaMa/error-generator
https://github.com/alexyorke/butter-fingers


5.2 Implementation

hasSubsystem

hasSubsystem

hasSubsystem

hasSubsystem

ssn:System 
MA TestSystem 

hasSubsystem

ssn:Device 
device_main

hasUnit

isActed

qu:Unit 
qu:degree Celcius

ssn:ActuatingDevice 
raspberry 

hasSubsystem hasMonitoringComponent

ssn:Device 
device_in_2

hasDeployment
ssn:SensingDevice 

aqara_mulitsensor_1 

hasSensingDevice

hasMetadata

hasQuantityKind

hasUnit

hasMetadata

ssn:Sensor 
aqara_temp_1 

isAssociatedWith

hasAttribute

isActed

iot-lite:Attribute 
t3 

hasQuantityKind

qu:QuantityKind 
Temperature 

hasLocation

ssn:Deployment 
SensorInside 

iot-lite:Object 
Room2 

iot-lite:Metadata 
Resolution 

metadataType=resolution 
metadataValue=8

hasMeasurement

hasMeasurement
iot-context:MonitoringComponent 

NETWORK_Monitor 

hasValuehasTimestamp

iot-context:Measurement 
SignalStrength 

xsd:dateTime 
2022-01-12T12:00:00.000Z 

xsd:double 
-90 dBm 

... ...

hasMeasurement

hasSubsystem hasMonitoringComponent

ssn:Device 
device_out 

hasDeployment
ssn:SensingDevice 

aqara_mulitsensor_1 

hasSensingDevice

hasUnit

hasMetadata

hasQuantityKind

hasMetadata

ssn:Sensor 
aqara_temp_2 

isAssociatedWith

hasAttribute

isActed

iot-lite:Attribute 
t4 

hasQuantityKind

qu:QuantityKind 
Temperature 

hasLocation

ssn:Deployment 
SensorOutside 

iot-lite:Object 
Outside 

iot-lite:Metadata 
Resolution 

metadataType=resolution 
metadataValue=8

hasMeasurement

hasMeasurement
iot-context:MonitoringComponent 

NETWORK_Monitor 

hasValuehasTimestamp

iot-context:Measurement 
SignalStrength 

xsd:dateTime 
2022-01-12T12:00:00.000Z 

xsd:double 
-90 dBm 

... ...

hasMeasurement

hasSubsystem hasMonitoringComponent

hasSubsystemssn:Device 
device_in_1

hasDeployment
ssn:SensingDevice

esp8266_1 

hasSensingDevice

hasMetadata

hasQuantityKind

isAssociatedWith

hasAttribute

isActed

iot-lite:Attribute 
t1 

hasQuantityKind

qu:QuantityKind 
Temperature 

hasLocation

ssn:Deployment 
SensorInside 

iot-lite:Object 
Room1 

iot-lite:Metadata 
Resolution 

metadataType=resolution 
metadataValue=12

hasMeasurement

hasMeasurement
iot-context:MonitoringComponent 

NETWORK_Monitor 

hasValuehasTimestamp

iot-context:Measurement 
SignalStrength 

xsd:dateTime 
2022-01-12T12:00:00.000Z 

xsd:double 
-50 dBm 

... ...

hasMeasurement

hasUnit

hasMetadata

hasMetadata
ssn:Sensor 
ds18b20_1 

hasDeployment ssn:SensingDevice
esp8266_2 

hasSensingDevice

hasMetadata

hasQuantityKindhasMetadata

ssn:Sensor 
ds18b20_2 

isAssociatedWith

hasAttribute

iot-lite:Attribute 
t2 

hasQuantityKind

qu:QuantityKind 
Temperature 

hasLocation

ssn:Deployment 
SensorInside 

iot-lite:Metadata 
Resolution 

metadataType=resolution 
metadataValue=12

...

iot-lite:Metadata 
MinValue 

metadataType=minValue 
metadataValue=-55

iot-lite:Metadata 
MaxValue 

metadataType=maxValue 
metadataValue=125

iot-lite:Metadata 
MinValue 

metadataType=minValue 
metadataValue=-55

iot-lite:Metadata 
MaxValue 

metadataType=maxValue 
metadataValue=125

hasMetadata

iot-lite:Metadata 
MinValue 

metadataType=minValue 
metadataValue=-20

iot-lite:Metadata 
MaxValue 

metadataType=maxValue 
metadataValue=50

iot-lite:Metadata 
MinValue 

metadataType=minValue 
metadataValue=-20

iot-lite:Metadata 
MaxValue 

metadataType=maxValue 
metadataValue=50

hasMetadata

hasMetadata

ssn:Device 
device_in_1

ssn:Sensor 
ds18b20_1 

iot-context:MonitoringComponent 
NETWORK_Monitor 

hasMonitoringComponent

iot-context:Measurement 
SignalStrength 

hasMeasurement

hasTimestamp

xsd:dateTime 
2022-01-12T12:00:00.000Z 

hasValue

Figure 5.3: IoT context model used for the evaluation

5.2 Implementation

The implementation is built on top of the state-of-the art data cleaning framework, introduced in
Section 5.2.1, referred to as HoloClean [RCIR17]. Currently, HoloClean only supports manually
written constraints. This is very cumbersome due to the high effort it takes for a human to extract
constraints from datasets. Especially in large datasets where every constraint can not be overlooked,
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this leads to faulty or incomplete sets of constraints. My implementation extends HoloClean to
discover the newly defined types of OFDs, described in Section 4.4, from context models and
exploit them subsequently. In a first step, the dependencies are automatically extracted from the
context model (Section 4.5). Then, the discovered dependencies are evaluated against the dataset
(Section 4.6). The following describes the data cleaning framework, HoloClean, and the evaluation
process of OFDs more in detail.

5.2.1 HoloClean

HoloClean [RCIR17] is a a state-of-the-art data cleaning framework by Ilyas et. al.. The workflow
of HoloClean can be divided into three main parts: (a) Error Detection, (b) Compilation and (c)
Data Repairing. These steps can also be found in Figure 5.4, where an overview is shown. A dataset
to be cleaned, and manually-crafted constraints can be inputted to the framework. Error Detection
is implemented as a black box, where the user can specify any method to detect erroneous cells.
While supporting different methods for error detection, e.g., null detector and violation detector
(for manually-crafted dependencies), the framework is still extensible to include new detectors
implemented by the user. This functionality comes in handy when adding the OFD detector, which
automatically generates and evaluates the newly defined OFDs. The proposed framework will
then use DeepDive7, a declarative probabilistic inference framework, to run statistical learning and
inference in the Compilation step. Finally, in the Data Repairing step, HoloClean uses statistical
learning and inference with empirical risk minimization to infer noisy cells and repair the dataset
correspondingly [RCIR17]. The cleaned dataset is then outputted back to the user.

Figure 5.4: Overview of HoloClean with example dataset and a set of constraints [RCIR17]

HoloClean currently only supports denial dependencies which makes it hard to include other
relations in the data for error detection methods. To be the most compatible, the implementation of
this thesis uses, at least where it is possible, the file-format used by HoloClean to express constraints.
This concept is applicable for matching dependencies (Section 4.4.1) and denial dependencies
(Section 4.4.1) extracted from the ontology. The two structure-based OFD types are also the ones
being evaluated by HoloClean itself via the ViolationDetector. An OFD can directly be formatted to

7http://deepdive.stanford.edu/
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a one line string, where EQ(X,Y) denotes the equality operator and IQ(X,Y) the inequality operator. If
every extracted OFD is added line by line, the file can be saved and declared as input for HoloClean.
The example for a denial dependency shown in Figure 4.4 can be expressed as the following, where
C1, C2 denotes an arbitrary pair of two rows in the dataset:

t1&t2&EQ(t1.CountyName,t2.CountyName)&IQ(t1.State,t2.State)

Listing 5.1: Example for representation of a denial dependency in HoloClean

The example for the matching dependency depicted in Figure 4.5 needs to be expressed in two lines
due to HoloClean fundamentally only supporting non symmetric dependencies. Since those are
symmetric (Section 4.4.1), the OFDs needs to be generated in both directions. For simplicity only,
the two first attributes are considered in this example:

t1&t2&EQ(t1.HospitalName,t2.HospitalName)&EQ(t1.PhoneNumber,t2.PhoneNumber)

t1&t2&EQ(t1.PhoneNumber,t2.PhoneNumber)&EQ(t1.HospitalName,t2.HospitalName)

Listing 5.2: Example for representation of a matching dependency in HoloClean

5.2.2 Used Tools and Libraries

In this section, tools and packages, used by the implemented prototype, are introduced and described
shortly. Additionally, two error detection frameworks, Raha [MAF+19] and dBoost [PMHM16],
are presented. They are used for the evaluation in Chapter 6. Figure 5.5 depicts an overview of the
implementation about the used components and external libraries. The context model can either
be inputted as a file or directly in a database. Several libraries are used to extract and query these
ontologies. They are described in the following.
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Figure 5.5: Overview of components of the prototype
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Raha

Raha is a configuration-free error detection system, presented by Mahdavi et. al.[MAF+19].
The error detection framework try to solve all time-consuming steps in an automated manner,
namely (a) algorithms selection, (b) algorithm configuration and (c) result verification. Different
configuration sets for each error detection method are generated automatically by the framework.
With a novel sampling and classification scheme for generated feature vectors, Raha chooses the
most representative values for training. The detection mechanism relies among other thins on
relations found in the data itself. In this thesis, Raha is used as a benchmark for modern error
detection systems. Its results are compared against the presented concept of automatically extracting
OFDs from context models in Section 6.2.1.

dBoost

dBoost is a tool for outlier detection in heterogeneous datasets by Pit-Claudel et. al. [PMHM16].
It uses automatic tuple expansion to characterize and locate outliers. Among other cell types,
such as strings or integers, it supports for outlier detection in data series, containing floating-point
numbers. The framework relies on inference and statistical modeling to flag suspicious fields in
the database tuples [PMHM16]. This thesis uses dBoost for comparison to the newly presented
approach, especially in outlier detection (Section 6.2.2).

SPARQL Protocol and RDF Query Language

SPARQL Protocol And RDF Query Language (SPARQL)8 is a query language for Resource
Description Framework (RDF). It supports diverse data sources in RDF format and can query graph
patterns along with their conjunctions and disjunctions. W3C initiated a RDF Data Access working
group which has identified use cases and requirements9. They define a standard way to query or
access data in RDF format. RDF is a data format which represents a directed, labeled graph. It is
used mainly for representing information in the web and storing ontologies. The implementation in
this thesis uses SPARQL-Queries to search in ontologies for dependencies between individuals
which can be used to derive OFDs from it. Those are then used for error detection and relations
between them.

rdflib

rdflib10 is a python package which can be used to parse and serialize ontologies, store implementations,
and query and update an ontology. In the implementation of this thesis, rdflib is used to parse
ontologies from a file and query them to extract information.

8https://www.w3.org/TR/rdf-sparql-query/
9https://www.w3.org/TR/rdf-dawg-uc/

10https://github.com/RDFLib/rdflib

58

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-dawg-uc/
https://github.com/RDFLib/rdflib


5.2 Implementation

Apache Jena Fuseki

Apache Jena Fuseki11 is a SPARQL server. It can store ontologies to a database and provides the
SPARQL 1.1 protocols for query and update functions. Since the IoT context model [DABS22] can
automatically be generated and stored into a Fuseki database, the prototype is able to extract this
information directly from there.

pyfuseki

pyfuseki12 can be used in python to connect to a Fuseki database. It is a python package with which
one can easily query stored ontologies. The package is used by the implementation to establish a
connection to a Fuseki database.

11https://jena.apache.org/documentation/fuseki2/
12https://github.com/yubinCloud/pyfuseki
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6 Evaluation

In this chapter, the concept of context-aware data validation, described in this thesis, is evaluated.
The evaluation is divided in two parts: (a) evaluation with the Hospital dataset (Section 6.1), and (b)
evaluation in an IoT application with the Smart Home dataset (Section 6.2). To be able to compare
every run, several metrics are being evaluated. These metrics are described in the following:

Evaluation metrics

Detected errors

The total amount of detected errors in the dataset.

Total repairs

The total amount of repairs performed to the dataset, no matter if correct or false.

Correct repairs

The total amount of cells, which were false and have been repaired to the correct value.

Total repairs on incorrect cells

The total repairs performed on cells which were faulty.

Total repairs on correct cells

The total repairs performed on cells which were correct and did not need to be repaired.

Precision

The fraction of correct repairs over the total number of repairs done to the dataset.

precision =
TP

TP + FP
see Table 6.1 for explanation of acronyms

Recall

The fraction of correct repairs over the total number of errors in the dataset.

recall =
TP

TP + FN
see Table 6.1 for explanation of acronyms

Repairing Recall

The fraction of correct repairs over the total number correctly erroneous cells identified by
error detection [RCIR17].
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�1-score

The harmonic mean of precision and recall calculated as follows:

�1 = 2 · precision · recall
precision + recall

=
2 · TP

2 · TP + FP + FN

see Table 6.1 for explanation of acronyms

Repairing �1-score

The harmonic mean of precision and repairing recall calculated analogue to the normal
�1-score [RCIR17], but using the repairing recall.

Detected Error
positive negative

Ground Truth positive True Positive (TP) False Negative (FN)
negative False Positive (FP) True Negative (TN)

Table 6.1: Confusion matrix

6.1 Hospital Dataset

To evaluate the involvement of the structure-based dependencies in datasets, represented in ontologies,
the hospital dataset, introduced in Section 5.1.1 is used. The dataset contains 1000 rows and 19
columns as depicted in Table 6.2.
For illustration purposes, Table 6.2, shows the total number of the OFDs that are automatically
extracted from the Hospital dataset and some examples, categorized by their types using the concepts
presented in this thesis. Manual dependencies were specifically and manually created by Rekatsinas
et. al. in their work [RCIR17].

Hospital dataset

number of
total entries (1000, 19)
manual dependencies 15
auto-extracted OFDs 25

OFDs Denial dependencies PhoneNumber→ Address1,
ZipCode→ City, . . .

Matching dependencies ProviderNumber→ PhoneNumber,
Stateavg→MeasureCode, . . .

Table 6.2: Examples of the extracted OFDs from the hospital dataset
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6.1 Hospital Dataset

6.1.1 Evaluation with HoloClean

For comparison, HoloClean is executed in three different ways: (a) without any dependencies (using
only the null detector that already exists in HoloClean, (b) with manually-crafted dependencies from
[RCIR17] and (c) with automatically extracted OFDs, as described in Chapter 4. To emphasize the
importance of a good and complete set of dependencies, another evaluation run is done with only
50% of the manually-crafted dependencies, concluding to four evaluations in total.

Table 6.3 and Figure 6.1 show the total amount of detected errors and repairs done by the data
cleaning pipeline. Furthermore, additional information about the amount of correct and false repairs
are visualized.

detected errors total repairs correct repairs false repairs
automatically extracted OFDs 431 322 304 18
manually-crafted dependencies (100%) 435 232 232 0
manually-crafted dependencies (50%) 213 62 62 0
no dependencies 36 36 36 0

Table 6.3: Total metrics of evaluation runs with HoloClean and the Hospital dataset

In Figure 6.1, one can see that the implementation of this thesis and the manually-crafted dependencies
detect a nearly equally amount of errors in the dataset. If the evaluation is done with only half or
even no dependencies, the number of detected errors decrease significantly. While the same patterns
apply to the repairs done on the dataset, one can see that the run with the automatically extracted
OFDs compares better to the manually-crafted ones. An increase from 232 to 304 correctly repaired
cells can be measured.

total errors detected errors total repairs correct repairs total repairs
on correct cells
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Figure 6.1: Total metrics of HoloClean evaluation with the Hospital dataset

The evaluation metrics, introduced at the beginning of the chapter, comprise the detection precision,
recall and F1-score. Additionally, the repair recall and the repair �1-score is employed. Table 6.4
and Figure 6.2 depict the evaluated metrics for the individual evaluation.
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precision recall �1 repairing recall repairing �1

automatically extracted OFDs 0.94 0.6 0.73 0.71 0.81
manually-crafted dependencies (100%) 1.0 0.46 0.63 0.53 0.7
manually-crafted dependencies (50%) 1.0 0.12 0.22 0.29 0.45
no dependencies 1.0 0.07 0.13 1.0 1.0

Table 6.4: Fraction metrics of evaluation runs with HoloClean and the Hospital dataset
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Figure 6.2: Fraction metrics of HoloClean evaluation with the Hospital dataset

Figure 6.2 depicts some minor differences, i.e., about 6%, in the precision of detected errors
throughout the different runs, but shows a significant decrease in recall and therefore also in the
�1-score. Considering less or even no dependencies for data validation is much worse and leads
to marking only about 7% of the faulty cells as errors. Since the run with the manually-crafted
dependencies performs only a little worse than the automatically generated ones, one can say, that
those dependencies describe the relations in the dataset, at least with the same quality than the
manual dependencies. Nonetheless, the concept, presented in this thesis, which is depicted as the
“ontology dependencies” data series, has a higher performance in recall and �1-score than any other
method.

One can determine the high repairing recall and, thus, the resulting high �1-score in the evaluation
with no dependencies. This is caused by the high precision and low total number of detected
errors when running HoloClean without dependencies. Since the dependencies have been created
specifically for the errors in the dataset, HoloClean achieves high detection precision in the case
of using the manually-crafted dependencies. However, they achieve low detection recall, since
the available dependencies are not sufficient to describe the important relationships in the dataset.
Conversely, the implementation of this thesis yields a significant improvement in recall, F1-score,
repair recall, and repair �1-score thanks to the automatically-generated OFDs. For instance, the
implemented concept achieves higher detection �1-score, at least by 14%, relative to HoloClean
with 100% dependencies.
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6.2 IoT Dataset

6.2 IoT Dataset

To evaluate the presented concept of data cleaning in IoT environments, the IoT dataset, introduced
in Section 5.1.3 is used. The dataset contains 1000 rows and 7 columns.
For illustration purposes, Table 6.5 shows the total number of the OFDs that are automatically
extracted from the IoT dataset and some examples, categorized by their types using the concepts
presented in this thesis. In contrast to the static structural relations between the columns in the
Hospital dataset, the IoT dataset contains messages and measurements that are related to each other.
Therefore, in this evaluation time-based and value-based dependencies can be extracted from the
context model as well.

IoT dataset

number of
total entries (1000, 7)
auto-extracted OFDs 21

OFDs

Denial dependencies System→ Device,
Device→ SensingDevice, . . .

Device-Link dependencies ds18b20_1→ device_in_1, . . .

Capability dependencies ds18b20_1→MaxValue,
ds18b20_1→MinValue, . . .

Locality dependencies ds18b20_1→ Room1,
ds18b20_2→ Room2, . . .

Temporal dependencies device_in_1→ device_main, . . .

Table 6.5: Examples of the extracted OFDs from the hospital dataset

6.2.1 Evaluation with HoloClean and Raha

To evaluate the presented concepts, HoloClean is executed in two different ways: (a) without any
dependencies (using only the null detector already exists in HoloClean) and (b) with automatically
extracted OFDs. Since the previous evaluation already yields, that HoloClean does not perform well
without any constraints, another data validation framework, namely Raha [MAF+19] is used in an
additional evaluation run. Details about Raha can be found in the chapter about the implementation
and used tools in Section 5.2.2.
In contrast to the evaluation with the Hospital dataset, there are no manually-crafted dependencies
in the evaluation with the IoT dataset. This is due to the manual dependencies being part of the
research about HoloClean [RCIR17] and specifically created for the Hospital dataset by Rekatsinas
et. al. Therefore these dependencies are only used to compare against the automatically extracted
OFDs from this thesis about the Hospital dataset.

detected errors total repairs correct repairs false repairs
automatically extracted constraints 107 74 68 0
no constraints 50 50 44 0
Raha 41 - - -

Table 6.6: Total metrics of HoloClean and Raha evaluation with IoT dataset
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Table 6.6 and Figure 6.3 show the total amount of detected errors and repairs done by the data
cleaning pipeline. Furthermore, additional information about the amount of correct and false repairs
are visualized. Since Raha only detects errors and does not repair them, the repairing performance
does not get evaluated.

Figure 6.3 depicts that the approach presented in this thesis outperforms the other error detection
methods. Neither Raha or HoloClean without any dependencies are performing well on the IoT
dataset. The implemented concept doubles the amount of detected errors from 50 (41 with Raha)
to 107, compared to the other methods. Also, in repairing capabilities, it performs better than
HoloClean without the use of manually-crafted dependencies.
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Figure 6.3: Total metrics of HoloClean and Raha evaluation with IoT dataset

The evaluation metrics, introduced at the beginning of the chapter, comprise the detection precision,
recall and F1-score. The repair recall and the repair �1-score is not evaluated on the IoT dataset,
since the framework used for comparison, namely Raha, does not support repairing incorrect data
cells. Table 6.7 and Figure 6.4 depict the evaluated metrics for the individual evaluation.

precision recall �1 repairing recall repairing �1

automatically extracted constraints 0.92 0.46 0.61 0.64 0.75
no constraints 0.88 0.3 0.44 0.88 0.88
Raha 0.72 0.28 0.4 - -

Table 6.7: Fraction metrics of evaluation runs with HoloClean and IoT dataset

In Figure 6.4, one can see a continuously decrease in precision, recall and �1-score, when traversing
the evaluation results from “automatically extracted OFD”, over “HoloClean without dependencies”,
to the evaluation done with Raha. The concept, presented in this thesis, has higher performance
in all three metrics, precision, recall and �1-score. While the improvement in precision is only a
minor step, the performance in recall, and therefore in the �1-score, is relatively much higher and
stands out from the rest.
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Figure 6.4: Fraction metrics of HoloClean and Raha evaluation with IoT dataset

6.2.2 Evaluation of Outlier Detection with dBoost

To measure the ability of the implemented concept to detect numerical outliers with different
ranges, a comparison with dBoost1 is done. dBoost is a tool specifically made to detect outliers
(Section 5.2.2). Each method is executed with two IoT datasets, which differ in the values of the
injected errors. The dataset is also collected from the IoT environment, described in Section 5.1.3,
and only includes measurements from the sensor )1.

For the run “random”, the dataset is injected with errors only in the original range of values.
Whereas, the label “+100%” indicates the dataset with injected errors in the doubled range of the
original values. To concretize, the original dataset contains temperature values between 18.69 °C
and 31.67 °C, which is exactly the range used for errors in the “random” dataset. The “+100%
range” dataset is injected with errors in the range from 9.35 °C to 47.51 °C. This results in the
evaluation being run with two different difficulties: (a) an easy dataset, where outliers are easier
to identify, because they can lie outside the original range, and (b) a more difficult dataset, where
errors are only taken from the original value range. (a) contains 83 errors in a total number of 8580
data points and (b) is injected with 84 errors with the same total number of values. Table 6.8 and

TP FP TN FN
+100% range - ontology dependencies 68 31 8465 16
+100% range - dBoost 49 0 8496 35
random - ontology dependencies 29 32 8465 54
random - dBoost 0 4 8493 83

Table 6.8: Total metrics of HoloClean and dBoost evaluation with IoT outlier dataset

1https://github.com/cpitclaudel/dBoost
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Figure 6.5 show the total values of TP, FP, TN, and FN for the different evaluation runs. While for
TP a high values is desirable, for FP and FN a low value corresponds to a better performance. My
approach performs better compared to dBoost in the detecting faulty cells as an error, but does not
perform well in terms of the amount of detected errors, which were actually correct. This statement
reflects in the computed precision of both methods, where dBoost performs better. Nonetheless, the
concept, I implemented, produces less FNs, thus performs better in recall.
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Figure 6.5: Total metrics of outlier evaluation with dBoost and IoT dataset

The evaluation metrics, introduced at the beginning of the chapter, comprise the detection precision,
recall and F1-score. The repair recall and the repair �1-score is not evaluated on the IoT outlier
dataset, since dBoost, does not support repairing incorrect data cells.

Table 6.9 and Figure 6.6 depict the evaluated metrics for the individual evaluation.

precision recall �1-score
+100% range - ontology dependencies 0.69 0.81 0.74
+100% range - dBoost 1.0 0.58 0.73
random - ontology dependencies 0.48 0.35 0.4
random - dBoost 0.0 0.0 0.0

Table 6.9: Fraction metrics of HoloClean and dBoost evaluation with IoT outlier dataset
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As the Figure 6.6 and Table 6.9 depict, dBoost performs well in terms of the detection precision
on the “+100%”-data set. However, it fails to detect erroneous instances when they are in the
original range. Conversely, the approach, presented in this thesis, can effectively detect errors in
the different ranges and reaches a �1-score of 0.4. For instance, the implemented concept achieves
higher detection �1-score (at least by 1.3% and 40%) than dBoost in the “+100%” range and the
original range, respectively. On the evaluated dataset with injected errors from the doubled range,
both methods perform about the same for the �1-score. While dBoost has a higher precision on
error detection, the recall is better when using the method for automatically extracting OFDs that is
presented in this thesis.

6.3 Discussion of Results

The evaluation shows that the proposed concept and pipeline for the data validation process performs
better than typical state-of-the-art error detection methods, i.e., increasing the �1-score in the
evaluation with the IoT dataset by 0.17 to 0.61. Moreover, the evaluation in outlier detection shows
that errors inside the typical range of the data can be detected in cases, where other techniques fail.
dBoost does not detect any true error in the “random” evaluation, while the presented concept still
achieves a recall of 35%. The concept is capable to dynamically react to changes in the environment
where the data originates from, e.g., a change in the topology or a sensor failure. However, it requires
the context model to always be up-to-date and to represent the current state of the environment at
all time. This process currently still involves some manual changes, due to the automated context
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model generation being not fully implemented yet. Nonetheless, the extension to the work of Del
Gaudio et. al. [DABS22] can be automated in future work to have a fully-automated context-aware
data validation pipeline.

As mentioned in Section 6.1.1, the detection and repair accuracies are improved when increasing
the number of manual dependencies from 0% to 50% and from 50% to 100%. The total number
decreases from 435 by half to only 213 total detected errors. Such a result emphasizes the general
impact of using dependencies for data cleaning. As mentioned, the high precision of HoloClean is
caused by the manually-crafted dependencies being created specifically for the errors in the dataset.
Therefore, it can be said that well-tuned dependencies can have a big positive impact on the results
of the data cleaning pipeline. For example, the �1 score nearly doubles from 0.22 to 0.63 when
evaluating HoloClean with twice as many dependencies. By extracting OFDs automatically from a
model of the environment where the data originates from, it is ensured that the dependencies have a
good quality and therefore error detection performs better.

Although the errors are injected artificially in the datasets, they were added using a commonly used
tool based on highly realistic typos and values from the same domain. Therefore, it can be said
that the injected errors are similar to errors that would occur in the real world. Nonetheless, an
evaluation with a real world dataset containing several errors is considered as future work.

The IoT dataset, used for the evaluation in Section 6.2, does not contain any monitoring dependencies.
Monitoring dependencies can be used in various of ways to enhance error detection. For example in
wireless networks, the signal quality can be a valid indicator for the probability of a false transmitted
value. Additionally, the health of the participating devices and sensors can be monitored and used to
develop algorithms which output a confidence that a certain value is measured by a faulty device and
therefore erroneous. Due to the fact that almost every IoT dataset lacks of monitoring information
and the time limit of this thesis, monitoring dependencies are not evaluated. The assumption is made
that if those were considered, the performance of the presented prototype will not be degraded.

Nonetheless, it must be said that the presented approach only performs well if OFDs, e.g., for the
outlier detection especially the locality dependency, can be discovered in the environment. For
the evaluation with the Hospital dataset, 25 dependencies could be discovered, while there have
been discovered 21 OFDs in the IoT dataset. If there is no dependency that can be extracted and
used for the error detection process, the method can not improve error detection from already
existing techniques. This means that there should be at least any context in the environment, i.e., a
network of data generating devices, instead of only one device. Nonetheless, in the modern world,
technologies in various application fields are equipped with an increasing number of smart devices,
e.g., sensors for redundancy [BA18; MR17; YWS17], which leads to a higher chance of discovering
more dependencies in the environment.
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In this thesis, a concept for automated tabular data cleaning powered by dynamic functional
dependency rules extracted from a context model has been introduced. To achieve this, a data
validation pipeline is proposed which consists of the three steps: context modeling, OFD extraction,
and data cleaning. An ontology-based context model has been used which carries knowledge about
the environment the data originates from and therefore provides dependencies and constraints about
it. The dependencies are extracted automatically and evaluated on the dataset to improve current
approaches in data validation.

As motivated in the Smart Home scenario in Section 1.1 and in the introduction, nowadays, there
is a need for data with the least amount of erroneous data entries as possible. Machine learning
algorithms require lots of training data to build a model and use this for, e.g., prediction tasks.
The performance of the prediction algorithm is directly caused by the quality of the input data.
Therefore, there is a high interest in good data cleaning methods. As mentioned, this thesis has
shown, how existing methods can be enhanced and improved, when considering the context in form
of a context model about the environment.

The context model is based on an ontology, extended with classes and properties from other
commonly used namespaces to express dependencies. Live updates in the environment are reflected
using adapters or monitoring services of modern IoT platform tools. They are adding or modifying
content and relations in the context model to ensure it always represents the current state of the
environment.

Using the live context model, the proposed concept can automatically generate multiple OFDs.
Therefore, it broadly relieves the burden of creating reliable dependencies describing the relationships
in the data. New types of OFDs are defined, which not only describe structural relations in the dataset
(denial dependency and matching dependency), but also covers time-based relations (temporal
dependency), as well as, relations between the actual value of measurements in IoT environments
(locality dependency, monitoring dependency, and capability dependency). These OFDs are
extracted from the context model with SPARQL queries and evaluated on the dataset.

In the process of data cleaning, the OFD evaluation outputs Boolean features that represent the
validity of a certain cell. Modern state-of-the-art data cleaning frameworks, e.g., HoloClean, can
use those features for statistical learning inference. The proposed pipeline uses such a framework to
automatically analyze and repair the detected errors with probabilistic inference and empirical risk
minimization.

The evaluation shows that the structural-based OFDs can be applied to various types of datasets.
Since this thesis focuses on IoT datasets, the other newly introduced types of OFDs are primarily
applicable in datasets from the IoT. In comparison to other typical state-of-the-art error detection
methods, the proposed pipeline for the data validation process performs better. Moreover, the
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evaluation in outlier detection shows that errors inside the value range of the data can be detected in
cases, where other techniques fail. With the newly introduced types of OFDs, an improvement of
about 15% can be achieved in the IoT dataset from a smart home application.

7.1 Future Work

In future work, it is planned to evaluate the proposed data validation pipeline end-to-end. In the
evaluation of this thesis, only the performance of cleaning erroneous entries from datasets are
measured. Nonetheless, it is important to know how the improved data cleaning method impacts
on the downstream applications, e.g., machine learning algorithms. As depicted in the motivation
scenario (Section 1.1), prediction applications have a need for data of good quality to learn and
build their models from. Its prediction performance is highly related to the quality of data which is
inputted. Such an end-to-end machine learning pipeline can be evaluated in future work.

The error detection mechanism can further be improved by considering other types of features when
evaluating the proposed OFDs. For example, the locality dependency could be further improved if
considering not only the placement of the sensor but also the actual distance between them as a
feature. Therefore, the outlier detection can be improved, but it also requires the context model
and the automated generation of such to be extended. Moreover, the IoT platform tools need to
implement such measure.

In current research and tools, e.g. Raha [MAF+19], features for error detection are automatically
gathered and learned from the dataset. These features try to represent the structure of the data. In
possible future work, this approach can be combined with the proposed dependency extraction from
context models to validate and/or improve dependencies. Therefore, the quality of the dependencies
can be further improved, which might lead to higher performance in the overall error detection
task.

It is planned that this thesis will be published as a scientific paper.
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