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Abstract

Throughout the history of computer science, games have always been a major driving factor in the
development of the artificial intelligence field. The pioneers of computer science have identified
the importance of games like chess, checkers, and other similar games and have spent years
working on solving them. These games offered a great research framework with well-defined rules,
distinct objectives, and a means of measuring performance. However, it was also recognized that
perfect information games do not reflect the decision-making process in real life, where agents
must embrace uncertainty and often deal with misinformation and deception. The game of poker
successfully models these aspects of decision-making and can be used to study the behavior of
intelligent agents in real-life domains. Poker has recently regained the attention of researchers,
leading to significant breakthroughs elevating AI agents to the level of professional players. Several
approaches have been used to solve poker, such as knowledge-based agents, enhanced simulation
systems, theoretic equilibrium solutions, and exploitative counter-strategies. Nevertheless, to the
best of our knowledge, HTN planning techniques have never been used before. In this thesis, we
will explore the use of risk-aware HTN planning for playing no limit Texas Hold’em, the most
strategically demanding variation of poker, which will allow us to investigate the potential of this
approach.

3



Kurzfassung

In der Geschichte der Computerwissenschaft waren Spiele immer ein wesentlicher Faktor bei
der Weiterentwicklung des Bereichs der künstlichen Intelligenz. Die Pioniere der Informatik
haben die besondere Wichtigkeit von Spielen wie Schach, Dame und anderen ähnlichen Spielen
erkannt und jahrelang daran geforscht, sie zu verstehen. Diese Spiele boten einen hervorragen-
den Forschungsrahmen mit klar definierten Regeln, eindeutigen Zielen und einem geeigneten
Messinstrument für die Leistung. Es wurde jedoch auch erkannt, dass perfekte Informationsspiele
nicht den Entscheidungsprozess im wirklichen Leben widerspiegeln, wo Agenten Ungewissheit in
Kauf nehmen und oft mit Fehlinformationen und Täuschung umgehen müssen. Das Pokerspiel
modelliert erfolgreich diese Aspekte der Entscheidungsfindung und kann verwendet werden, um
das Verhalten intelligenter Agenten in realen Domänen zu untersuchen. Poker hat in letzter Zeit die
Aufmerksamkeit der Forscher zurückgewonnen, was zu bedeutenden Durchbrüchen geführt hat, die
KI-Agenten auf das Niveau von Profispielern gehoben haben. Zur Lösung des Pokerspiels wurden
verschiedene Ansätze verwendet, z. B. wissensbasierte Agenten, verbesserte Simulationssysteme,
theoretische Gleichgewichtslösungen und exploitative Gegenstrategien. Unseres Wissens nach
wurden jedoch noch nie HTN-Planungstechniken eingesetzt. In dieser Arbeit wird der Einsatz
von risikobewusster HTN-Planung für no limit Texas Hold’em, der strategisch anspruchsvollsten
Pokervariante, untersucht, um das Potenzial dieses Ansatzes zu erforschen.
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1 Introduction

The fascination with the idea of artificial intelligence and sentient robots dates back at least as far
as ancient Greek mythology, which tells the story of Hephaestus, the Greek god of smithing, and
his creation of Talos, a giant constructed of bronze to act as a guardian for the island of Crete.
This fascination could be observed throughout history, where the concept of thinking machines has
captured the imagination of mathematicians, philosophers, and scientists. These brilliant minds
pushed, throughout the years, the boundaries of what was possible, bringing artificial intelligence
into the modern day, where it can drive a vehicle, write code, compose symphonies, and create
astounding works of art.

Games and puzzles played an extremely significant part in this advancement, as the pioneers of the
field recognized them as a great platform on which to conduct research. Alan Turing, for example,
spent many years working on a chess program called Turochamp [Tur53]. To date, Turochamp stands
as the oldest known computer game to have begun development. However, its algorithm was too
complex for the primitive computers of the day, and the program was never completed. Turing also
considered other games, such as go and poker, but his research on these games was never published.
Claude Shannon, known as the father of information theory, also worked on chess and published
the first paper on the topic in 1949. Shannon opened his paper by stating how solving chess will
pave the way to solving more complicated problems and enable the development of machines
capable of translating different languages, making strategic decisions in military operations, and
orchestrating melodies [Sha50]. Shannon was able to estimate the computational complexity of
chess and understood that the game could not be solved using brute-force search approaches. In
1951 Christopher Strachey started working on a program that could play the game of checkers. By
the summer of 1952, Strachey ran the earliest successful AI program capable of playing a complete
game of checkers at a reasonable speed.

These games provided a fertile environment for the growth of the field of artificial intelligence, as
they have characteristics that make them suitable for acquiring experiences that can be transferred
to more valuable domains of the real world. However, not all games were treated in the same
way, as games such as chess and checkers received a lot of attention due to the ease of achieving
higher performance through brute-force search [BPSS98]. Games such as poker, on the other
hand, which are more complex and require more sophisticated approaches, had only attracted
limited attention [Bil06] until recently, when it was identified as a beneficial domain for AI research
[BPSS98]. Traditional strategies like heuristic search and evaluation methods are inadequate to
overcome the sheer complexity of the game [BDSS02]. Moreover, the properties of the game,
such as imperfect information, stochastic outcomes, risk management, deception, and unreliable
information, make it a very difficult computational problem to solve. Solving poker will provide
important insights into dealing with deliberate misinformation and making intelligent decisions
despite incomplete information [Bil06]. Several approaches have been used to solve poker, such
as knowledge-based agents, enhanced simulation systems, theoretic equilibrium solutions, and
exploitative counter-strategies [RW11].
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1 Introduction

More recently, the Counterfactual Regret Minimization (CFR) algorithm was utilized by bots such
as DeepStack [MSB+17] and Pluribus [BS19] to achieve significant breakthroughs, elevating AI
agents to the level of professional poker players.

Different strategies and methods have been utilized in these approaches, but to the best of our
knowledge, HTN planners have never been used. Hierarchical Task Network (HTN) are structures
utilized by AI planning systems that offer a high level of expressiveness [EHN94] and are widely
implemented in real-world applications. It was previously [AGA22] demonstrated that HTN planning
can become risk-aware. Poker is a game centered around making decisions under uncertainty, and
risk is an essential element in the game. HTN planning techniques provide a wide range of features,
such as the capability of encoding expert knowledge, risk awareness and utility, and the ability to
introduce abstraction levels, making it easy to break the problem into smaller segments. These
features make HTN planning a potentially great framework for developing a risk-aware agent that
can play poker competently. In this thesis, we will explore the use of HTN planning for playing no
limit Texas Hold’em as it is considered to be the most strategically demanding variation of poker,
which will allow us to investigate the potential of this approach.

The remainder of this thesis is organized as follows. In the first chapter, we introduce the background
information on the different topics related to this study, including poker, automated planning, and
risk awareness. In the following chapter, we discuss the specifics of our implementation, including
a review of HTN planners and the approaches we utilized to model the opponents. After that, we
break down the playing strategies of the bot. Finally, in the last chapter, we provide an evaluation of
the approach and a conclusion.
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2 Background

This thesis touches on a wide range of subjects, many of which have been the focus of several
publications and bodies of research. Given the scope of this work, it will not be possible for us to
go into considerable depth about any of the topics. However, to establish common ground, we have
devoted this chapter to provide a high-level overview of the most prominent ones.

2.1 Poker

Poker is an umbrella term used to describe a family of card games with a similar structure but
different rules and objectives. The origins of poker are shrouded in mystery; however, there is a
consensus [Roy21] that poker in its modern form evolved from the French game Poque in the early
18th century [Wil12]. The game was popularized by the World Series of Poker1, which was first
held in 1970. At the beginning of the 21st century, poker’s popularity soared mostly due to the
introduction of television coverage, which transformed poker into a spectator sport. Online poker
also played a significant role in making the game more popular because the game was suddenly
readily accessible. As a result, poker is now considered a staple of casinos and card rooms across
the globe.

Numerous factors make poker a fascinating game. It is a game that is easy to learn but hard to master.
The most complicated poker variations are difficult due to the strategies and playing dynamics
involved, not the rules. Good players must master a broad range of skills, including reading other
players, calculating odds and probabilities, and utilizing mathematics to make profitable decisions.
The element of luck and the randomness of outcomes make the game full of surprises and excitement.
A single card may completely alter the outcome of a hand. In contrast to other gambling games,
such as blackjack, baccarat, and roulette, that are designed to give the house an edge, poker is a
game where players compete against one another. Although luck plays a big role in poker, its effects
are only short-term, and better players will always beat weaker players over the long run.

2.1.1 The Game

A game of poker consists of a series of rounds (also called hands or deals). Depending on the
variant of the game, a round’s structure may vary significantly, but typically a round consists of
multiple stages. Generally, each stage begins with introducing new cards; after that, players have
the opportunity to place bets. Players bet when they believe that their hand is superior to the hands
of their opponents. The bettor must contribute their bet amount to the pot when a bet is placed. If
they wish to continue playing, the highest bet has to be matched (called) or raised by other players.

1https://en.wikipedia.org/wiki/World_Series_of_Poker
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2 Background

When a player is unwilling to match the highest bet, they can fold, but that will cost them all the
money they have already contributed to the pot. If all players except one have folded, the remaining
player wins the pot automatically. Otherwise, the round eventually reaches the showdown, where
players reveal their hands, and the best hand wins the pot. How player hands are constructed and
ranked is specific to each game variation.

2.1.2 Game Dynamics

Many elements of poker make it a suitable environment for a wide range of strategies and tactics.
In this section, we will explore some of these elements.

Forced bets

Winning the pot is the main incentive for players to accept the risks involved in the game. A larger
pot will motivate players to take higher risks and make them more likely to bet on weaker hands.
Without this incentive, the game would be too slow and boring, with players only betting when they
hold stronger hands. Poker utilizes forced bets to ensure players always have the incentive to act.
There are different types of forced bets, but we will discuss only two: the ante and the blinds. Ante
is a fixed amount that each player must contribute to the pot before the beginning of each round. In
contrast, Blinds are mandatory bets that only certain players must place. The player to the dealer’s
left must place the small blind, and the player to his left must post the big blind, typically double
the amount of the small blind. The size of the blinds can increase as the game progresses to account
for the fact that the number of participating players will decrease as the game approaches its final
rounds. The position of the dealer is rotated around the table to keep the game fair.

Raise, Call, or Fold

Usually, players fold when they deem it too risky or expensive to continue, so they try to cut their
losses by folding, as folding will only get more expensive in the later stages of the round. When
players are not confident with their cards but believe there is a potential for their hand to get better
later in the round, they call the last bet by contributing a matching amount to the pot. If there
were no previous bets, then the player can check, which is a free call. In games where blinds are
collected, no checks can be placed in the first round stage because blinds are considered bets. A
raise can happen when players believe their hand is strong enough to win the pot. After a raise, all
players who have not folded yet have to decide whether they want to fold and lose all the money
they have already contributed to the pot or continue by calling or re-raising, making the pot bigger.
If a player is already in the pot and does not have enough money to match the last bet, they can go
all-in, which means they will contribute all the money they have left to the pot.

These three actions offer players endless possibilities for employing tactics and strategies. In
poker, information is invaluable since it enables players to make better decisions. Players always
leak information about their hands to their opponents with every action they take, which creates
a dynamic where players must balance the risk of revealing too much information while trying
to maximize their potential win. It also allows players to bluff, which is a strategy that involves
deceiving opponents by making them believe that a player has a better hand than they actually do.
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When a player has a fairly strong hand but does not wish to be challenged by other players, they
may make a high raise to scare the opponents. Sometimes a player will check even though they
have a very strong hand because they do not want to discourage other players from entering the pot.
When holding a strong hand, a combination of calls and small raises could also entice opponents
into making high raises. Even folds can be used to deceive opponents. For example, a player may
often fold, even with stronger hands, to make opponents believe that he only participates when he
has a strong hand, making his raises more credible and scary to challenge.

Some game variations limit the minimum and maximum raising amounts or the number of raises
that can be made in a round. These restrictions prevent players from raising too much and help
maintain the game at a reasonable pace.

Position

Player position refers to the order in which players are prompted to act. A player has position over
opponents who act before him and is out of position to opponents who act after him. In most poker
variations, the player’s position is a crucial factor. Being in a late position allows players to observe
how the opponents have acted. Additionally, as players fold, the players in position will have fewer
players challenging their hands. Players will always fold a given set of cards in an early position,
but they will have no problem calling or raising the same cards from a late position. Early positions
also have advantages; for example, being out of position enables a player to raise the stakes for the
players after him. Each successive round rotates positions around the table to keep the game fair.

Optimality vs. Exploitability

The characteristics that make poker an interesting game also increase the game’s complexity. To
combat this complexity, good players utilize two strategies in their play. The first strategy is based on
Nash equilibrium, which is a concept in game theory that describes a situation where a player cannot
increase their potential gain by changing their strategy. Such a strategy, called optimal strategy,
will always consider the worst case and choose a course of action that minimizes loss. A player
following an optimal strategy cannot find a better strategy when playing against another optimal
player. The term “optimal” is quite misleading here, as an optimal strategy does not maximize
potential gain but minimizes potential loss. An optimal strategy does not seek to defeat other
players but to defend against their best possible course of action. This means an optimal strategy is
not necessarily the best strategy, especially in the context of poker, where players greatly deviate
from the optimal strategy. Another major downside is being quite predictable. The static nature of
optimal strategies allows opponents who are not constrained by optimality to explore weaknesses
without fear of being punished.

While optimal strategy is indifferent to the opponent’s actions, exploitative strategy focuses on
identifying and capitalizing on the opponent’s tendencies. Exploitative strategy is based on the
premise that if the opponent’s strategy is known or can be predicted, one should choose the action
that maximizes gain.

Let us consider the game of rock-paper-scissors to showcase the fundamental difference between the
two strategies. An optimal player would choose his actions randomly, disregarding the opponent’s
past actions. Even if the opponent had just played rock eight consecutive times, an optimal player
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would not prefer paper over the other two alternatives. A maximizer player, on the other hand,
will recognize the opponent’s tendency to play rock and choose paper as the next action. It is
important to note that deviating from the optimal strategy will always introduce risk and create
weaknesses that can be exploited. For example, the opponent may have been setting a trap with his
previous moves. Therefore the maximizing player is taking a risk by choosing paper. Predicting
the opponent’s next move is not easy, but analyzing the opponent’s playing style can give a good
indication of their preferences and risk tolerance.

Good poker players utilize the two strategies in tandem, switching between them seamlessly.

Texas Hold’em

In this work, we are mainly interested in “No-limit Texas Hold’em”, one of the most popular poker
variations. Texas Hold’em is regarded as one of the more advanced poker variations from a strategy
point of view, evidenced by the experts’ divergent opinions on how to play a specific hand [Skl03].
Professional poker players favor Texas Hold’em because it is the variant in which they can win
the highest amount of money with the lowest level of risk since luck has less of an impact on the
outcome of the game compared to other poker variants [Mal04].

Each round begins with the Preflop, during which the small and big blinds are collected. Next, each
participant is dealt two Pocket cards face down. In the next stage, the Flop, three face-up community
cards are dealt to the board. All players can use community cards to build a 5-card hand. The terms
“community cards” and “board” can be used interchangeably. In the following stages, Turn and
River, two additional face-up cards are added to the board one at a time. After betting on the River,
the Showdown begins, and the player with the best hand wins the pot. In the case of a tie, the pot is
split. Table 2.1 shows the hand ranking in No-limit Texas Hold’em.

Rank Description Example
Royal Flush Five high cards in sequence, all of the same suit A♦,K♦,Q♦,J♦,T♦

Straight Flush Five cards in sequence, all of the same suit 7♦,6♦,5♦,4♦,3♦

Four of a Kind Four cards of the same rank 8♠,8♥,8♦,8♣,2♠

Full House Three of a kind and one paire 3♥,3♦,3♣,2♥,2♦

Flush Five cards of the same suit A♦,T♦,6♦,4♦,2♦

Straight Five cards in sequence, not of the same suit 9♥,8♣,7♣,6♦,5♥

Three of a Kind Three cards of the same rank 8♣,8♠,8♦,4♦,2♣

Two Pair Two one pairs T♠,T♣,8♣,8♣,4♥

One Pair Two cards of the same rank T♠,T♣,9♦,6♠,2♥

High Card None of the above T♠,7♣,5♦,3♣,2♠

Table 2.1: Hand Ranking in No-limit Texas Hold’em
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2.2 Automated Planning

2.2 Automated Planning

The term Planning is commonly used to describe the act of scheduling. However, planning can
mean much more than just scheduling; for example, the Cambridge Dictionary defines it as the act
of deciding how to do something2, which is a better definition to use in the context of intelligent
agents that use planning to decide how to achieve their goals. The notion of intelligent agents
entails the ability to observe and interact with the environment in a deliberate manner to achieve
some objective. However, to act deliberately, the agent has to have a clear objective and be able to
predict the effect of its actions in a given state of the environment. Furthermore, some objectives are
inherently complex, and to accomplish them, the agent has to decide which actions to perform and
in which order to execute them. This reasoning process of choosing actions and organizing them is
called planning [GNT06]. Automated planning can be described as the study of computational
models and methods of creating, analyzing, managing, and executing plans [HLM+19].

2.2.1 Classical Planning

As a means of introduction, we will explore classical planning, which refers to the most basic form
of automated planning. In order to avoid the complexity of the real world, classical planning deals
with an abstract model of the environment, imposing a number of restrictive assumptions:

• Finite, observable, and static: The environment has only a finite number of states and
actions. The current state of the environment is known to the agent, and it can not be changed
without an action initiated by the agent.

• Deterministic, no uncertainty: The agent can predict with certainty the changes in the
current state if a given action is performed.

• Implicit time: No explicit model of time. There is only a linear sequence of instantaneous
states.

We can now introduce the formal definition of classical planning. The formal structures we use are
adapted from formal definitions described in [GNT06][GGA14][Aln19]:

Definition 2.2.1 (Predicate)
A predicate 𝑝 is defined as follows: 𝑝 = ⟨𝑠𝑦𝑚𝑏𝑜𝑙 (𝑝), 𝑡𝑒𝑟𝑚𝑠(𝑝)⟩, where:

• 𝑠𝑦𝑚𝑏𝑜𝑙 (𝑝) is the predicate symbol.
• 𝑡𝑒𝑟𝑚𝑠(𝑝) is a set of terms such that 𝑡𝑒𝑟𝑚𝑠(𝑝) = ⟨𝜏1, 𝜏2, . . . , 𝜏𝑛⟩.
• A term is either:

– A constant 𝑐𝑜 ∈ CO, where CO is a finite set of constants.
– A variable 𝑣 ∈ V, whereV is an infinite set of variables.

Predicates can be used to describe the objects of the environment and their relations.

Definition 2.2.2 (Ground Predicate)
A ground predicate is a predicate where all the terms are constants.

2https://dictionary.cambridge.org/dictionary/english/planning
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2 Background

Definition 2.2.3 (State)
A state 𝑠 is defined as a set of ground predicates: 𝑠 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} while describing a state, we
adopt the closed world assumption3.

Definition 2.2.4 (Action)
An Action 𝑎 is defined as follows: 𝑎 = ⟨𝑝𝑟𝑒(𝑎), 𝑒 𝑓 𝑓 (𝑎)⟩, where:

• 𝑝𝑟𝑒(𝑎) is the precondition that has to hold to perform the action.
• 𝑒 𝑓 𝑓 (𝑎) is the effect of the action on the state.

Definition 2.2.5 (Applicable Action)
Given a state 𝑠 and an action 𝑎, we say that 𝑎 is applicable in 𝑠 if and only if:

∀𝑝𝑖 ∈ 𝑝𝑟𝑒(𝑎) : 𝑝𝑖 ∈ 𝑠 and ∀𝑝𝑖 ∉ 𝑠

Applying action 𝑎 in state 𝑠 will result in a new state 𝑠 in which some predicates are deleted (i.e.,
are given the boolean value false) while others are added. The set of deleted and added predicates
are denoted by 𝑒 𝑓 𝑓 − (𝑎), 𝑒 𝑓 𝑓 +(𝑎), respectively. We denote the application of an action 𝑎 to a state
𝑠 as:

𝛾(𝑠, 𝑎) := (𝑠 ∪ 𝑒 𝑓 𝑓 (𝑎)+) \ 𝑒 𝑓 𝑓 (𝑎)− = 𝑠

For a sequence of actions A = ⟨𝑎1, . . . , 𝑎𝑛⟩ we recursively define the application of A to 𝑠 as :
• �̂�(𝑠, ⟨⟩) := 𝑠

• �̂�(𝑠, ⟨𝑎1, . . . , 𝑎𝑛⟩) := �̂�(𝛾(𝑠, 𝑎1), ⟨𝑎2, . . . , 𝑎𝑛⟩)

given that 𝛾 is well defined for each 𝑎𝑖 .

Planning domain

For an intelligent agent to be able to conduct a reasoning process, it should have a model of the
environment. This model does not have to reflect each element of the environment, but it should be
a good and accurate approximation.

Definition 2.2.6 (Planning Domain)
A planning domain is a tuple Σ = (P,A) where:

• P is a finite set of predicates.
• A is a finite set of actions.
• The finite set S, which contains all possible states, can be inferred from P and A.

In practice, planning domain definition languages (PDDL) are used to describe the domain
[AHK+98]. There are many different versions and variations of PDDL, each with a certain set
of capabilities and limitations. Listing 2.1 shows a simple example from [HLM+19], where a
description of a simple switch is provided with two actions:

3The state description only includes predicates that evaluate to true
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Listing 2.1 PDDL domain definition example adopted from [HLM+19].

(define (domain switch)

(:requirements :strips)

(:predicates (switch_is_on)(switch_is_off))

(:action switch_on

:precondition (switch_is_off)

:effect (and (switch_is_on) (not (switch_is_off))))

(:action switch_off

:precondition (switch_is_on)

:effect (and (switch_is_off) (not (switch_is_on)))))

Planning problem

A planning domain is not a description of the current state of the environment but rather a model
of all the possible states of the environment. Nevertheless, this is insufficient for the agent. The
agent must be aware of the current state of the environment and have a clear definition of what to
achieve.

Definition 2.2.7 (Planning Problem)
A planning problem is a triple 𝜋 = (Σ, 𝑠𝐼 , 𝑠𝐺), where :

• Σ is a problem domain.
• 𝑠𝐼 is the initial state.
• 𝑠𝐺 is the goal state.

Just like planning domains, planning problems are described in practice using PDDL. Listing 2.2
shows a problem definition for the previously defined domain:

Listing 2.2 PDDL problem definition example

(define (problem turn_it_off)

(:domain switch)

(:init (switch_is_on))

(:goal(switch_is_off)))

Appendix A contains a more complex example of a planning domain and problem.

Definition 2.2.8 (Valid Plan)
Given a planning domain Σ and a planning problem 𝜋, a plan P = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ is a valid plan
for 𝜋 if:

�̂�(𝑠𝐼 ,P) = 𝑠𝑛 ∈ 𝑠𝐺
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Planners

A planner takes a planning problem and formulates a sequence of actions to transform the current
state of the environment into a state that satisfies the objective. Various planners employ different
problem-solving strategies. For example, some planners use theorem proving [KS92] to generate
a plan, whereas others use state-space search. Planning is computationally hard [ENS95], and
sometimes it is not enough to find a plan that achieves the goal, but the planner has to consider also
a set of metrics that make plan a better/worse than plan b, which causes the planning process to be
more and more complicated.

2.3 Hierarchical Task Networks

Classical planning has many shortcomings; for example, it views plans as a linear sequence of
actions, but it was clear from the early stages of research [SE75] that planners can solve some
problems much better when plans are not constrained by the limitations of linearity. If a planner is
capable of reasoning about nonlinear plans, it can delay committing to a specific order of actions
until sufficient information is gathered. This can alleviate the need for an exhaustive search of all
possible plan orderings. Another big problem with classical planners is the fact that they are easily
overwhelmed by complex domains [Wil89]. The lack of abstraction levels makes it hard to consider
meta-level reasoning. While it is feasible to integrate expert knowledge into the search algorithms,
it is not easy, and steering the trajectory of execution is also not a simple task.

HTN planning tries to overcome some of those shortcomings by introducing more abstraction
layers and using expert knowledge to guide the planning process. HTN is based on the premise
that goal states as objectives are usually unnatural, and composing abstract actions from smaller
concrete sub-actions is much more intuitive. Furthermore, having the domain knowledge organized
hierarchically will allow the planner to create plans using action reduction, meaning the most
important conditions will be considered first, and the details will be considered later in the planning
process [Yan90].

The abstraction that HTN introduces is implemented using two types of constructs [HBBB21]:
primitive and compound tasks. These constructs are combined to form partially ordered sets called
task networks. The primitive tasks are comparable to actions in classical planning; they can be
executed if the current state of the environment adheres to some condition and they have some effect
on the environment. The compound tasks represent more complex actions that cannot be executed
in one step and must be decomposed using some decomposition method. The decomposition
methods are part of the planning domain, and each method can decompose a specific compound
task into a task network. Multiple methods can decompose one compound task; in contrast, there is
a one-to-one mapping between operators and primitive tasks.
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2.3.1 Formal Definitions

Throughout the years, numerous attempts have been made to establish a standard formalism for HTN
planning [BAH19]. Some of these approaches were actually unique, while others were essentially
comparable. The purpose of this section is not to provide a comprehensive formal framework
but rather to provide a formal background that will assist the reader in comprehending HTN’s
underlying structure. The following formal structures are derived from [GGA14] [Aln19].

Definition 2.3.1 (Primitive task)
A primitive task 𝑡𝑝 ∈ 𝑇𝑝 is a pair 𝑡𝑝 =< 𝑠𝑦𝑚𝑏𝑜𝑙 (𝑡𝑝), 𝑡𝑒𝑟𝑚𝑠(𝑡𝑝) >, where:

• 𝑇𝑝 is a finite set of primitive tasks.
• 𝑠𝑦𝑚𝑏𝑜𝑙 (𝑡𝑝) is a primitive task symbol.
• 𝑡𝑒𝑟𝑚𝑠(𝑡𝑝) is a set of terms, such that 𝑡𝑒𝑟𝑚𝑠(𝑡𝑝) = ⟨𝜏1, 𝜏2, . . . , 𝜏𝑛⟩.

Definition 2.3.2 (Operator)
An operator 𝑜 ∈ 𝑂 is a triple 𝑜 =< 𝑝(𝑜), 𝑝𝑟𝑒(𝑜), 𝑒 𝑓 𝑓 (𝑜) >, where:

• 𝑂 is a finite set of operators.
• 𝑝(𝑜) is a primitive task.
• 𝑝𝑟𝑒(𝑜) and 𝑒 𝑓 𝑓 (𝑜) are precondition and effect.

It is important to remember that each primitive task must have one and only one operator, but
multiple primitive tasks can utilize a single operator. An operator is quite comparable to an action
from classical planning. We say an operator 𝑜 is applicable in a state 𝑠 if and only if:

∀𝑝𝑖 ∈ 𝑝𝑟𝑒(𝑜) : 𝑝𝑖 ∈ 𝑠 and ∀𝑝𝑖 ∉ 𝑠

Definition 2.3.3 (Compound task)
A compound task 𝑡𝑐 ∈ 𝑇𝑐 is a pair 𝑡𝑐 =< 𝑠𝑦𝑚𝑏𝑜𝑙 (𝑡𝑐), 𝑡𝑒𝑟𝑚𝑠(𝑡𝑐) >, where:

• 𝑇𝑐 is a finite set of compound tasks.
• 𝑠𝑦𝑚𝑏𝑜𝑙 (𝑡𝑐) is a compound task symbol.
• 𝑡𝑒𝑟𝑚𝑠(𝑡𝑐) is a set of terms, such that 𝑡𝑒𝑟𝑚𝑠(𝑡𝑐) = ⟨𝜏1, 𝜏2, . . . , 𝜏𝑛⟩.

In practice, it is often beneficial to extend this definition to include a set of preconditions 𝑝𝑟𝑒(𝑡𝑐)
that must hold in the current world state for the planner to even consider this compound task for
decomposition. We have found this very useful for our implementation, especially for compound
tasks that can be decomposed by a large number of methods. Although it does not provide any
benefits semantically nor significant performance improvements, it allowed us to quickly adjust the
preconditions of many methods from one place.

Definition 2.3.4 (Task network)
A task network 𝑡𝑛 is a pair < 𝑇, ≺> , where:

• 𝑇 is a finite set of tasks.
• ≺ is a partial order on 𝑇 .

Definition 2.3.5 (Method)
A method 𝑚 ∈ 𝑀 is a triple 𝑚 =< 𝑐(𝑚), 𝑝𝑟𝑒(𝑚), 𝑡𝑛(𝑚) >, where:

• 𝑀 is a set of methods.
• 𝑐(𝑚) is a compound task.
• 𝑝𝑟𝑒(𝑚) is a precondition.
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• 𝑡𝑛(𝑚) is a task network.

A method 𝑚 is applicable in a state 𝑠 if and only if:

∀𝑝𝑖 ∈ 𝑝𝑟𝑒(𝑚) : 𝑝𝑖 ∈ 𝑠 and ∀𝑝𝑖 ∉ 𝑠

Definition 2.3.6 (Decomposition)
Given a task network 𝑡𝑛 =< 𝑇, ≺>, and an applicable method 𝑚 for a compound task 𝑡 = 𝑐(𝑚), we
say that 𝑚 decomposes 𝑡𝑛 into ´𝑡𝑛 with:

• ´𝑡𝑛 = ((𝑇 \ {𝑡}) ∪ 𝑇𝑚, ≺ ∪ ≺𝑚 ∪ ≺𝐷) where
• ≺𝐷= {(𝑡1, 𝑡2) ∈ 𝑇 × 𝑇𝑚 | (𝑡1, 𝑡) ∈≺} ∪ {(𝑡1, 𝑡2) ∈ 𝑇𝑚 × 𝑇 | (𝑡, 𝑡2) ∈≺}

Definition 2.3.7 (HTN planning domain)
A HTN planning domain is a pair Σ = (𝑂, 𝑀) where:

• 𝑂 is a set of operators.
• 𝑀 is a set of methods.

Definition 2.3.8 (HTN planning problem)
A HTN planning problem is a triple 𝜋 = (Σ, 𝑠0, 𝑡𝑛0), where:

• Σ is the planning domain.
• 𝑠0 is the initial state.
• 𝑡𝑛0 is the initial task network.

Planners

There are numerous strategies implemented by different HTN planners to solve an HTN planning
problem. HTN planners can be classified based on the search space in which the planner operates.
This work is not intended to provide a full overview of HTN planners, as has been done in [BAH19]
and [GGA14]. Therefore, we will only provide an oversimplified overview of how HTN planners
function. HTN planners are fundamentally different from classical planners in that they do not
pursue some goal state but rather try to simplify a hierarchical network of tasks into a linear
sequence of “actions”. Some HTN planners perform a decomposition-based search, in which
applicable methods repeatedly decompose the task network until no more compound tasks are
left. The result would be a task network that consists of only primitive tasks. Others perform a
progression-based search, where the planner decomposes compound tasks and executes primitive
tasks when applicable until the task network is empty. It is important to know that decomposing
a compound task changes the structure of the task network but not the state. On the other hand,
executing a primitive task changes the state of the environment but not the structure of the task
network. When performing a progression-based search, the planner must keep track of the executed
primitive tasks; otherwise, it is necessary to retrace the path the planner took from the initial task
network to the empty one.
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Description Languages

Using a description language, HTN planning domains and problems can be described just as they
are in classical planning. Different planners use different description languages. Nevertheless,
there has been an effort to create a standard description language by extending PDDL to support
HTN constructs. Recently a new description language based on PDDL called Hierarchical Domain
Definition Language (HDDL) has been adopted as the standard input language for the track on
hierarchical planning at the International Planning Competition. Regardless, planners are typically
reluctant to adopt new formats; currently, most planners only support a custom input format. Table
2.2 shows the stack task from the block-world domain ( described in detail in appendix A) in
different description languages.

Planner Description Planner Description

HDDL

1 (:action stack

2 :parameters (?a ?b)

3 :task (stack ?a ?b)

4 :precondition (

5 and(clear ?b)

6 (holding ?a))

7 :effect (and (arm-empty)

8 (clear ?a) (on ?a ?b)

9 (not (clear ?b))

10 (not (holding ?a))))

SHOP

1 (:operator (!stack ?a ?b)

2 (

3 (holding ?a)

4 (clear ?b)

5 )

6 (

7 (on ?a ?b)

8 (clear ?a)

9 )

10 )

CHIMP

1 (:operator

2 (Head stack(?a,?b))

3 (Pre p0 holding(?a))

4 (Pre p1 clear(?b))

5 (Del p0)

6 (Del p1)

7 (Add e1 on(?a,?b))

8 (Add e1 clear(?a))

9 )

TF

1 actschema stack

2 pattern << put $*a on $*b>>

3 conditions

4 holds <<holding $*a >> at self

5 holds <<clear $*b >> at self

6 effects

7 + << on $*a $*b >>

8 + << clear $*a >>

9 - <<holding $*a >>

10 - <<clear $*b >>

11 end

Table 2.2: The stack task from the block-world domain in different formats.

There are also planners that use a programming language to describe the domain and problem rather
than a specialized description language. This approach has the advantage that the planner can be
directly integrated into the system without needing a translation layer between the system and the
planner. RAE4, GTPyhop5 and FluidHTN6 are all great examples of this approach. Listing 2.3
shows the stack task from the block-world domain defined as a python function for the GTPyhop
planner.

4https://github.com/patras91/rae_release
5https://github.com/dananau/GTPyhop
6https://github.com/ptrefall/fluid-hierarchical-task-network
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Listing 2.3 The stack task from the block-world domain in GTPyhop.

def stack(s,b1,b2):

if s.pos[b1] == 'hand' and s.clear[b2] == True:

s.pos[b1] = b2

s.clear[b1] = True

s.holding['hand'] = False

s.clear[b2] = False

return s

2.4 Utility and Risk Awareness

Classical HTN planners have several advantages over classical planners, but they lack any concept
of utility. Classical HTN planners are satisfied when a solution is found, but in the real world, this
is rarely sufficient. In the real world, we are typically interested in finding an optimal solution in
some sense. For instance, we may only be interested in solutions that are safe, fast, or inexpensive.
This section will begin with an overview of the concept of utility, followed by a discussion of how
utility can be used to guide the planning process. In subsection 2.4.3, we introduce expected utility,
and the section concludes with a discussion of risk attitudes.

2.4.1 Utility

The core concept of utility revolves around modeling the outcomes of an action or situation based
on a set of criteria or metrics, which allows us to rank actions or outcomes and choose the most
preferable option. Mathematically, utility can be represented via a set of binary relations over a set
of actions or situations 𝚫 [Fis68].

Definition 2.4.1 (Preference-indifference relation ⪯)
The preference-indifference relation ⪯ is a binary relation over a set of actions/situations 𝚫 that
satisfies the following:

∀𝛿1, 𝛿2 ∈ Δ : 𝛿1 ⪯ 𝛿2 ∨ 𝛿1 ⪯̸ 𝛿2

𝛿1 ⪯ 𝛿2 means that 𝛿1 is not preferred to 𝛿2.

Definition 2.4.2 (Strict preference relation ≺)
The strict preference relation ≺ is a binary relation over a set of actions/situations 𝚫 that satisfies
the following:

∀𝛿1, 𝛿2 ∈ Δ : 𝛿1 ≺ 𝛿2 ⇐⇒ 𝛿1 ⪯ 𝛿2 ∧ 𝛿2 ⪯̸ 𝛿1

𝛿1 ≺ 𝛿2 means that 𝛿2 is preferred to 𝛿1.

Definition 2.4.3 (Indifference relation ∼)
The indifference relation ∼ is a binary relation over a set of actions/situations 𝚫 that satisfies the
following:

∀𝛿1, 𝛿2 ∈ Δ : 𝛿1 ∼ 𝛿2 ⇐⇒ 𝛿1 ⪯ 𝛿2 ∧ 𝛿2 ⪯ 𝛿1

𝛿1 ∼ 𝛿2 means that 𝛿1 is indifferent to 𝛿2.
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The previous binary relations form an invaluable framework that enables us to rank solutions, given
that we have a model that can map any action/situation to a numeric value (utility). It is essential to
recognize that utility and value do not constitute the same concept. For example, in the context of
commuting to work, one can use the train or a taxi. The train would cost two dollars, whereas the
taxi would cost twenty. These values do not take into consideration factors such as comfort, speed,
or emissions. Concrete values such as cost and time are objective, whereas utility is quite subjective.
An agent with an emphasis on comfort would give the train a lower utility score. In comparison, an
agent with an emphasis on reducing emissions would give the train a higher utility score.

2.4.2 Utility-based HTN planning

One way of utilizing utility to guide an HTN planner is to assign each operator a utility score, but
this is insufficient. HTN structures are intrinsically hierarchical, and the utility of a task is not
necessarily identical to the utility of its subtasks. A significantly better approach is to assign a utility
score to each operator, method, and compound task. The utility of a task is then the sum of its own
utility and the utility of the subtask with the highest utility. In addition, it is essential to bear in
mind that utility is extremely dynamic. Therefore, the planner must be able to recalculate the utility
of each task as the planning process progresses or whenever the environment’s state changes.

𝑇𝑐(commute_to_work)

𝑀1(with_train)

𝑇𝑐(go_to_train_station)

𝑇𝑝(board_train)

𝑇𝑝(depart_the_train)

𝑇𝑐(walk_the_remaining_distance)

𝑀2(with_taxi)

𝑇𝑐(call_taxi)

𝑇𝑝(board_taxi)

𝑇𝑝(depart_taxi)

𝑇𝑐(walk_the_remaining_distance)

Figure 2.1: A simple HTN task network for commuting to work. With 𝑇𝑝 and 𝑇𝑐 representing
primitive and compound tasks, respectively, and 𝑀1 and 𝑀2 representing methods.

Figure 2.1 shows a simple HTN task network for commuting to work. This example will help us to
illustrate the necessity of having a utility score for each HTN construct. If we exclusively assign
utility values to the operators, there will be no way to express whether an agent prefers or dislikes
using the train, for example. The compound task “walk_the_remaining_distance” can be reached

31



2 Background

via two distinct paths, and it would be illogical to assign it the same utility in both scenarios. The
compound task “commute_to_work” itself could have an inherently low utility value if the agent
prefers to work from home.

We will refrain from providing a concrete algorithm for integrating utility into HTN planning since
it is highly dependent on the search strategies implemented by the planner and because it has already
been done in [Aln19] [GL14] [AGA22]. However, we will go over our own implementation in
detail later on.

2.4.3 Expected utility

Basic utility is an effective tool for comparing solutions and ensuring that the agent always chooses
the solution with the most preferable outcome. However, basic utility assumes that the world is
deterministic and that each action has only one outcome, which significantly impacts its applicability
in the real world, where uncertainty is a fundamental challenge. To illustrate the limitations of basic
utility, consider the scenario shown in Figure 2.2 in which an agent is offered the choice between
two actions, 𝛿1 and 𝛿2. There are two possible outcomes for action 𝛿1: the agent will receive three
dollars 40% of the time, and nothing the remaining 60% of the time. Action 𝛿2 also has two possible
outcomes: 10% of the time, the agent will receive seven dollars, and 90% of the time, it will receive
nothing.

𝛿1

3

0.4

0

0.6

𝛿2

7

0.1

0

0.9

Figure 2.2: A simple example of hypothetical game.

Introducing probability renders basic utility absolute. Looking at the problem, a rational agent will
virtually always choose action 𝛿1, because it has, on average, a better outcome, but how can we
capture this notion mathematically?

𝐸 (𝛿2) = 0.1 × 7 + 0.9 × 0 < 𝐸 (𝛿1) = 0.4 × 3 + 0.6 × 0

At first glance, the expected value might seem like a suitable tool to represent expected utility.
However, it was clear from the early stages of research that rational agents do not always act based on
expected value. As previously discussed, value is an objective concept, whereas utility is far more
subjective and can be influenced by an agent’s preferences, needs, and risk tolerance. Expected
value fails to capture the subjective nature of utility; thus, it is not a suitable tool for representing
expected utility.
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To further illustrate this point, we need to introduce the St. Petersburg paradox7, which demonstrates
how an agent whose only criteria for decision-making is expected value would propose a course of
action that no rational agent would ever consider:

A hypothetical casino in St. Petersburg offers the following game to a single player:
After paying a fixed entrance fee, a fair coin is tossed until the first head appears, which
ends the game. When the game ends, the player wins 2𝑛, where 𝑛 is the round where
the first head appeared.

Now the question is, how much would a rational agent be willing to pay as an entrance fee to play
this game?

An agent using the expected value would be willing to pay an entrance fee up to the game’s expected
value which is infinite:

𝐸 =
1
2
· 2 + 1

4
· 4 + 1

8
· 8 + 1

16
· 16 + · · · = ∞

which contradicts the fact that no rational agent would be willing to pay an arbitrarily large entrance
fee to play this game. A better approach would be to define a utility function 𝔲 that reflects the
agent’s preferences. We can use 𝔲 to define the expected utility of an action 𝛿 over the probability
distribution P of all its possible outcomes Ω.

Definition 2.4.4 (Expected Utility)
The expected utility of an action 𝛿 is the weighted sum of all possible outcomes of 𝛿:

E(𝛿) =
∑︁
𝜔

P(𝜔) · 𝔲(𝜔)

Using expected utility, we can extend our prefrence relations:

∀𝛿1, 𝛿2 ∈ Δ :
𝛿1 ⪯ 𝛿2 ⇐⇒ E(𝛿1) ≤ E(𝛿2)
𝛿1 ≺ 𝛿2 ⇐⇒ E(𝛿1) < E(𝛿2)
𝛿1 ∼ 𝛿2 ⇐⇒ E(𝛿1) = E(𝛿2)

2.4.4 Risk attitude

As mentioned earlier, the utility function is a highly subjective model of the world that reflects the
agent’s preferences, most notably its risk tolerance. In this section, we provide a short overview of
the standard risk attitude models and how the risk attitude can guide the behavior of an agent.

Sometimes rational agents are inclined to change behavior when the stacks are too high. For
example, let us consider the following game, where a player has a 60% chance of winning 100
dollars and a 40% chance of losing 1 dollar. Conversely, some players would simply refuse to play

7https://en.wikipedia.org/wiki/St._Petersburg_paradox
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the game because losing one dollar is too much of a risk. Some players would be willing to play the
game, but they might also refuse to play if the stakes were higher. In other words, the risk attitude
can be defined as the change in utility based on the ratio of potential wins to potential losses.

It is difficult to quantitatively model risk, and different fields have attempted to do so using different
theories; since we cannot cover all of them here, we will explore the topic from the agent’s
viewpoint.

Maximizing gains or minimizing losses would be the primary goal of a naive agent. Such an agent
would have an indifferent attitude toward risk (Risk neutral). This type of agent will always choose
a course of action that maximizes/minimizes its gains/losses, regardless of the risk involved.

𝛿1

100

0.7

-40

0.3

𝛿2

40

0.1

-10

0.9

Gain maximizing agent

𝛿1

100

0.7

-40

0.3

𝛿2

40

0.1

-10

0.9

Loss minimizing agent

Figure 2.3: Risk-neutral agents’ decision-making

Figure 2.3 shows two agents that are risk neutral. The first agent is gain-maximizing, and the second
agent is loss-minimizing. The gain-maximizing agent will always choose 𝛿1 because it has a higher
potential gain of 100. Whereas the loss-minimizing agent will always choose 𝛿2 because it has a
lower potential loss, even though the probability of losing 10 is much higher than the probability
of losing 40, the agent will still choose 𝛿2. Risk-neutral agents will always have a linear utility
function. This means that the utility of an outcome is proportional to the outcome itself. More
rational agents tend to be more sensitive to risk, especially when dealing with high-stakes situations.
In general, rational agents show a tendency to avoid high risks when the payoff is insufficient to
compensate for them, and they usually prefer an action course with a lower payoff and a higher
probability of success. In addition, rational agents sometimes accept to bear small losses in order to
avoid situations where there is a low probability of suffering a very large loss. This type of agent is
called Risk-Averse.
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Figure 2.4: Risk-averse agents’ decision-making
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Two distinct situations are shown in Figure 2.4 to illustrate how an agent with a risk-averse attitude
will always choose the action that involves the lowest risk. The utility function of a risk-averse agent
is concave, with low risk outcomes having a bigger utility score.

Some agents are inherently more risk loving (Risk-Seeking). They will be more willing to take
risks in order to achieve a higher payoff, even if it involves a higher risk. The utility function of a
risk-seeking agent is convex, with high profitability outcomes having a bigger utility score. Figure
2.5 shows how a risk-seeking agent will behave in the same previously shown situations.
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Figure 2.5: Risk-seeking agents’ decision-making

Typically, an agent’s preferences and risk tolerance will be dynamic, changing based on a broad
range of factors such as current wealth, type of risk, and previous experiences. These factors make
it hard to model the agent’s preferences in one mathematical construct; however, [AGA22] proposes
some risk-based utility functions. Figure 2.6 shows how the utility function of an agent might look
based on their risk attitude.

Gain

Utility

risk neutral

Gain

Utility

risk averse

Gain

Utility

risk-seeking

Figure 2.6: Different risk-based utility functions

At the end of this section, we would like to point out that although it has been shown [KT13] that
the expected utility theory fails as a descriptive theory due to its inability to predict human behavior
in some situations successfully, it is a very suitable normative theory that can be used to guide the
decision-making process of rational agents, especially when combined with a good dynamic utility
function.

2.4.5 Risk attitude and HTN planning

Our model of utility-based HTN planning can be easily extended to enable agents to make decisions
based on their risk attitude by having a utility function that takes into account the risk involved
in the decision. One benefit that we have is that we are not bound to one mathematical construct;
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we can have multiple utility functions corresponding to different risk attitudes, and we can switch
between them, choosing the function that better suits the agent’s current situation. This allows our
agents to have a more flexible and dynamic attitude toward risk. We can also utilize the rule-based
nature of HTN to create a set of rules that can override the current risk attitude of an agent in some
situations where we believe the agent would be better off with a more or less risk-sensitive attitude.
It is important to note that these rules should not replace the risk attitude model of the agent but
rather complement it to handle exception cases.

To further illustrate this idea, let us consider the following scenario where we have a stock-trading
agent: The agent has a hand-crafted utility function with an overall risk-averse attitude that is based
on a plethora of financial and economic factors. Each decision the agent will consider involves
a certain amount of risk that will be weighted using its utility function. However, it would be
beneficial for the agent to have a set of rules in place that can override its risk tolerance in real
time to react to some edge cases. Such rules should not only be used to change the agent’s attitude
toward risk; they can also be used to directly interfere and change the evaluation of a given action
to be more or less risky. Returning to our previous example, shorting a stock, which is betting
that the value of a given stock will decrease, is generally regarded as a highly risky investment
strategy. However, if a reputable investor is shorting stock X with a large sum of money, the action
of shorting that stock should no longer be seen as risky.

Lastly, we would like to note that it is beneficial to utilize the concept of risk attitude in HTN agents
even when the concept of utility is not modeled since it enables us to group actions and guide the
decision-making process using one dynamic switch.

Listing 2.4 Example of using risk attitude without utility

(define (domain Little_Red_Riding_Hood)

...

(:task get-to :parameters (?l - location ?a - riskAttitude))

...

(:method stay-on-path

:parameters (?l - location ?a - riskAttitude)

:task (get-to ?l)

:precondition(isRiskAverse ?a)

...

)

(:method wander-into-the-woods

:parameters (?l - location ?a - riskAttitude)

:task (get-to ?l ?a - riskAttitude)

:precondition(isRiskSeeking ?a)

...

)

)
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Listing 2.4 shows how we can use risk attitude without utility. In this example, we have one
compound task get-to, that can be achieved using one of two methods stay-on-path or wander-into-
the-woods. The agent will choose between these methods based on its risk attitude. Integrating risk
based decision-making in this way is quite simple and it can greatly impact the behavior of an agent
in a dynamic environment.

Although it is a very static way to deal with risk, it is very useful, especially in domains where a
detailed study of the domain by domain experts has already produced rich and stable guidelines that
can be translated to HTN constructs. For example, we have utilized this in our implementation in the
preflop stage, which domain experts have exhaustively studied and constructed detailed guidelines
that can be grouped based on the risk attitude of the agent.

To summarise the ideas, we have covered in this section: The concept of utility can be incorporated
into HTN planning to evaluate the potential outcomes of different actions and to choose the action
that leads to the desired outcome. Furthermore, expected utility can be employed in probabilistic
domains to serve the same purpose. In both cases, the concept of risk attitude can be implemented
to adjust the utility of different actions based on the agent’s risk tolerance. Finally, we have proposed
grouping rules based on the risk attitude associated with their actions to control the behavior of the
agent even if utility is not modeled for each component of the planning domain.
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3 PokerShark

PokerShark is a Texas Hold’em bot built using HTN planning techniques. The bot utilizes the
knowledge of domain experts and concepts of utility and risk awareness in its decision-making
process. In the next sections, we will discuss the concept used by the bot and explore the specific
implementation choices we have made.

3.1 The Planner

The first big decision we faced during the development of PokerShark was choosing which planner
we wanted to use. We had several requirements that we wanted present in the planner. First, the
planner must be performant. We are not looking to find the most efficient planner because we
anticipate that the network size will be limited to a few hundred tasks. We prefer the planner to be
battle-tested. Many planners were conceived and developed in academic settings but have yet to
be tested in the real world. We wanted to avoid these planners. Poker is a complex domain, and a
game of poker has many elements and variables, making it more challenging to describe the game’s
state. That is why we need the planner to have an expressive description language that is easy to use
and not too difficult to learn. Furthermore, defining the bot strategy will be tedious and require a lot
of fine-tuning. Hence the planner needs to provide easy debugging tools.

Typically HTN planners do not support utility or expected utility, which is essential to our work. We
have to assume that we will have to extend the functionality of the planner, so we have to consider
the extensibility of the planner, which introduces an array of factors, such as the programming
language, the quality of the code, the architecture, the frameworks..., and a lot of other factors.
Most likely, we will also have to modify the description language, which makes the parser of the
planner a very important factor to consider. Lastly, we have to think about the integration between
the planner and the bot. We prefer a seamless integration where the bot can notify the planner about
the game’s state and receive the planner’s decision. We will explore next some of the planners that
we have considered:

JSHOP

JSHOP is part of the Simple Hierarchical Ordered Planner (SHOP) project1 developed by the
University of Maryland. The planner is a Java-based implementation of SHOP2. JSHOP was first
released in 2005, making it one of the older planners we have considered. It was part of numerous
studies and was used in many applications, which makes us more confident in its performance and
reliability. SHOP planners have a custom description format developed and extended throughout the

1http://www.cs.umd.edu/projects/shop/description.html
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3 PokerShark

years. JSHOP uses ANTLR32 to parse domain and problem definitions. Rather than interpreting
the definition files, JSHOP compiles them into Java code that the planner can call, which makes
JSHOP harder to integrate.

Figure 3.1: Multiple translation and read/write operations required.

JSHOP does not support utility nur expected utility. Although the code is well-documented and can
be considered clean, it will be challenging to extend due to the architecture. Since the description
format also needs to be extended, ANTLR rules and grammar files must be modified. ANTLR3 is
notoriously tedious, and we rather not deal with it. The planner has a GUI to run plans, which can
be helpful for debugging, but it is not ideal. Nevertheless, JSHOP is a great planner with some
advantages and disadvantages that must be considered for the final decision.

SHOP3

SHOP33 is the successor of SHOP2, which means it benefits from all the expertise that went into
SHOP2. Unfortunately, it is Lisp-based, which is personally a big downside. In addition, the planner
does not support expected utility and must be extended. On the other hand, the planner supports
PDDL and provides excellent debugging features.

PANDA

The PANDA framework4 is one of the most promising candidates. The planner is developed and
maintained by the Institute of Artificial Intelligence at Ulm University. The PANDA framework
consists of several c++ modules that provide various features, such as plan verification and repair.

2https://www.antlr3.org/
3https://shop-planner.github.io/
4https://panda-planner-dev.github.io/
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3.1 The Planner

However, the planner uses a custom parser that supports HDDL and the SHOP format. The high
complexity of the parser and the parsing pipeline, including the number of modules and transitionary
formats involved, can require a significant amount of time and effort to manage. Undoubtedly,
PANDA is a good planner but has yet to be battle-tested, and it does not have great potential for
extension.

InductorHtn

InductorHtn5 was not developed in an academic setting. It was originally intended to be part of
an ios-based game engine. The planner draws a lot of inspiration from SHOP2. It uses Prolog
as a description format, but it also provides the ability to use native C++ constructs to define the
planning domain and problem. This is a significant advantage as no compilation is required to
run the planner, which greatly facilitates the integration process. InductorHtn also provides good
debugging features. However, the planner’s code lacks documentation and does not look like a great
candidate for modification.

FluidHTN

FluidHTN6 is a feature-rich planner based around the Builder pattern’s principles. The planner
offers numerous features, including partial planning, domain splicing, and early rejection. FluidHTN
supports only native domain definition. However, it has a powerful and expressive domain builder,
which greatly simplifies domain and problem description. Moreover, it has great debugging tools
that are superior to almost all other planners.

FluidHTN is the first candidate that was built with extensibility in mind. As a result, all the planner’s
components and elements are easy to modify, extend or replace. In addition, the planner has
surprisingly a big active community, especially game developers, which suggests that the planner is
performant and battle-tested enough for us to consider a good candidate. Finally, having native
domain definition support makes the integration much easier.

Planner Maturity Expressivnise Extensibility Debugging Integration Overall
JSHOP 5 4 3 2 2 ⋆⋆⋆⋆⋆⋆⋆

SHOP3 5 4 1 3 1 ⋆⋆⋆⋆ ⋆⋆⋆⋆

PANDA 2 4 1 2 0 ⋆⋆⋆ ⋆⋆⋆⋆⋆⋆

InductorHtn 4 5 3 3 2 ⋆⋆⋆⋆⋆⋆⋆

FluidHTN 5 5 5 4 5 ⋆⋆⋆⋆⋆⋆

Table 3.1: Planner comparison.

Table 3.1 shows our final evaluation of the planners. We have used a 5-point scale to evaluate
the planners. Our evaluation is based on the following criteria: documentation, expressiveness,
extensibility, debugging, and integration and is heavily influenced by our preferences. Overall,
FluidHTN is the most complete planner for our use case.

5https://github.com/EricZinda/InductorHtn
6https://github.com/ptrefall/fluid-hierarchical-task-network
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3 PokerShark

FluidHTN Showcase

FluidHTN is clearly influenced by game development but is also designed to be adaptable for
any use case. The planner has a unique structure. Thus we would like to dedicate this section to
showcasing its underlying concepts. FluidHTN is built for an agent to be dynamic. Instead of
calling the planner and providing the problem definition, the planner can be integrated directly
with the world state enabling a more dynamic behavior where the planner can observe changes in
the environment, changing the plan during run-time. By default, FluidHTN does not require the
use of explicit goal states. Instead, it uses the results of task decomposition to determine whether
planning is complete, should continue, or has failed. This allows the planner to be more flexible
and adaptable, as it can handle a wider range of planning scenarios without the need for pre-defined
goals.

Figure 3.2: FluidHTN with shared state.

Using the planner in the configuration shown in figure 3.2, where FluidHTN uses a pre-defined
domain, has numerous advantages, but it forces the planning domain to be static. We would like
to have more control over the planning domain. Therefore we are not going to use the planner in
this configuration. Instead, we will use the planner as a standalone planner that is not aware of the
agent’s state. The planner will be used to generate plans that will be executed by the agent. The
agent is responsible for a number of tasks, including receiving game state information from the
game server, updating its internal world state model, generating the necessary domain and context
definitions, running the planner, and executing the resulting plans. This configuration is shown in
Figure 3.3.

Figure 3.3: PokerShark architecture.
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FluidHTN adopts the concepts of compound and primitive tasks of HTN. Compound tasks can
be implemented using one of two structures. The first structure is called Sequence. In order to
decompose a Sequence, all of its sub-tasks must decompose successfully in contrast to the second
structure, the Select, which only requires the decomposition of one sub-task to be successfully
decomposed. It should be noted that preconditions can be applied to tasks regardless of type.

Select(commute to work)

Sequence(with train) Sequence(with taxi)

Figure 3.4: Selects can choose one path, Sequences need to decompose all subtasks.

The architecture of the planner makes it easy to introduce new representations of any component
in the planning process, such as tasks, conditions, and effects. For example, Listing 3.1 shows
RandomSelector, which randomly selects and decomposes one of its subtasks.

Listing 3.1 RandomSelector definition.

public class RandomSelector : Selector

{

protected DecompositionStatus OnDecompose(IContext c, int i, out Queue<ITask> result)

{

var taskIndex = new Random().Next(i, Subtasks.Count);

var task = Subtasks[taskIndex];

return OnDecomposeTask(c, task, taskIndex, null, out result);

}

}

Primitive tasks are defined as actions where each action could have a set of preconditions and a set
of effects. Lastly, FluidHTN enable us to produce highly readable domain definitions, making them
easier to modify or maintain. Listing 3.2 shows a snippet of PokerShark domain that showcases
how FluidHTN definition format is easier to understand compared to other description languages
such as PDDL.

Listing 3.2 Snippet of PokerShark domain builder.

Select("Raise Recommendation");

IfRaiseRecommendation();

Select("Too Risky Raise");

IfRaiseRecommendationTooRisky();

Action("Fold if call to risky");

IfCallTooRisky();

Do(Fold);

...

43



3 PokerShark

3.2 Opponent Modeling

As we have already established, information is a key factor in the game of Texas Hold’em. Depending
on the position, we might get some or no information about the strength of the opponent’s hand.
In the early stages of the round, especially the preflop, we often need to make a decision solely
based on the strength of our pocket. However, the strength of a hand is affected by many factors.
Unlike chess, where we can assign a concrete evaluation of a given position no matter who the
players are, the strength of a pocket or hand, in general, can only be estimated in correlation to the
current situation and opponents. For example, a player in an early position with a pocket of A♦Q♦

is contemplating whether he should raise, call or fold. The cards are suited, which makes the pocket
stronger. Raising would be the correct action if the player is convinced his raise will not scare the
opponents and make them fold. On the other hand, calling would be better if the opponents were
tight and easily scared by preflop raises. Even folding would make sense if a tight passive opponent
has just made a raise7. The terms tight and loose refer to a player’s calling/raising range, with tight
players only calling/raising with strong hands. Passive and aggressive refer to a player’s action
preferences, with passive players calling more often than raising and aggressive players raising
more often than calling.

Understanding the opponent’s playing style is essential for predicting future actions. PokerShark
captures this notion using opponent models. When a game starts, a model is created for each
opponent. This model gets refined with each action the opponent makes. We have to note here
that deducing the preferences of an opponent based solely on the observed behavior is very hard,
particularly if the available action history is limited. PokerShark does not keep track of the
opponent’s action history after the game is finished, primarily because that can be considered unfair,
and the effects of doing so are out of the scope of this work.

3.2.1 Opponent Statistics

In order to model the opponent’s playing style, we need to keep track of some statistics. The
following statistics are used in PokerShark and are adopted from [JS09]:

VPIP - Voluntarily Put Money In Pot

Shows how often a player has voluntarily entered the pot in the preflop, either by calling or raising.
VPIP is one of the most fundamental statistics used in player profiling, especially when combined
with other statistics. VPIP can be directly correlated with how loose or tight a player is. Higher
values mean the player tends to call or raise even with weaker hands. Lower values mean the player
is more selective and only plays strong hands.

7a full analysis of AQ can be found in [Skl03]
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PFR - Preflop Raise

PFR complements VPIP to create an accurate estimation of the player preflop strategy. Using PFR
alone can be quite misleading. For example, loss-aggressive and tight-aggressive players will have
higher PFR. The first is more likely to raise on weaker hands, whereas the other is much more
deliberate with his raises. The VPIP includes both player calls and raises. Consequently, it will
always have a bigger (or equal) value. If the PFR makes up the majority of VPIP, the player can be
considered aggressive. If the VPIP is much higher than the PFR, the player is more likely to be
passive.

WTSD - Went To Showdown

WTSD shows how often a player has made it to the showdown, which can indicate how likely the
player is to fold before the showdown. Aggressive players tend to refuse to fold, resulting in a higher
value. In contrast, passive players that get shy when challenged have lower WTSD. Combining
WTSD with other statistics can give us a good idea of the opponent’s playing style post-flop.

WSD - Won Money at Showdown

A percentage that shows how accurate the opponent’s bets are. A lower WSD means the player
usually bets on weaker hands or bluffs too much. However, this can be misleading since not all
wins/losses are equal. Sometimes players can hold weaker hands if the stakes are low, which can
happen a lot in games where the majority of players are tight-passive. In this case, the WSD will be
low, but the player is not necessarily a bad player.

WWSF - Won When Saw Flop

This statistic complements the last two. It shows how often the player won post-flop. A high WWSF
means the player’s bets tend to scare the opponents, which means the player is good at bluffing
or makes good bets. A low WWSF indicates the player is not bluffing much, which can signify a
tight-aggressive player.

Figure 3.5: Adjustment matrix example.
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3.2.2 Opponent Ranges

PokerShark uses the previous ratios to infer the opponent’s playing style. Additionally, an adjustment
matrix is created for each opponent. The adjustment matrix has an entry for each possible pocket.
Each entry represents the probability of the opponent holding that pocket. This matrix is updated
following each action the opponent performs based on its playing style.

The adjustment matrix begins with all possible pockets being considered equally likely to be chosen
by the opponent. After each decision made by the opponent, a set of adjustment factors is applied to
the matrix based on the observed playing style.

These factors reflect the preferences of players with similar states and help the matrix better predict
the opponent’s choices. As the game progresses, the accuracy of the matrix’s predictions for the
opponent’s calling and raising ranges will improve. Figure 3.6 shows how the adjustment matrix is
refined over time. After several rounds, PokerShark will have a basic estimate of the opponent’s
preferences and playing ranges.

Figure 3.6: Adjustment matrix progression.

The opponent’s decision-making process is complex and involves many factors, such as position, the
opponent’s perception of other players, pot size, stack size, and many other factors. Therefore, we
can not pretend that having an estimate of the preferred playing ranges is sufficient. However, it is
important to understand how PokerShark interprets and utilizes this model to make better decisions,
which we will explore in the next sections.

3.3 Preflop Strategy

Due to the dynamic of Texas Hold’em, how you play the preflop will greatly influence whether you
win or lose money over the long run. Good players can predict how their hand will fare against their
opponents and assess the potential of the hand improving over the following stages. The amount
and the quality of information available to the player can vary depending on the situation. However,
the two cards composing the pocket can be a great starting point for rational decision-making.

The number of starting hands is limited
(52

2
)

= 1326 possible combinations. The majority of these
hands are equal or share some similarities. Thus, they can be categorized into 169 unique types.
Because the number of combinations is relatively small, poker experts could set clear guidelines
on how the preflop should be played, considering different factors such as position, number of
opponents, playing style, and number of bets.

46



3.3 Preflop Strategy

PokerShark incorporates the guidelines from [Skl03] to construct a recommendation system,
enabling the planner to leverage expert knowledge while choosing an action in the preflop. The
guidelines suggest grouping the 169 different types into nine groups based on hand strength. The
groups are ordered from the strongest to the weakest. Table 3.2 shows a small example of the
defined groups and their corresponding hand types.

Group 1: AA, KK, QQ, JJ, AKs
Group 2: TT, AQs, AJs, KQs, AK
Group 3: 99, JTs, QJs, KJs, ATs, AQ
Group 4: ...

Table 3.2: Example of the hand groups based on potential strength defined by [Skl03]

The guidelines are grouped based on the position of the acting player: Early position, Middle
position, Late position, and for the Blinds. For each position, detailed rules are given based on
the state of the bot, the number of bets, and the state of the game. We have tried to the best of our
ability to translate the guidelines into rules. Of course, some ambiguity is unavoidable, but we
believe we have successfully captured the most important ideas and tactics.

In an unraised pot, you can play all hands
in Groups 1-5 when the game is typical or
tough. In a loose, passive game it is all right
to play the Group 6 hands as well.

IfFirstToPot();

Select("Loose Passive Game");

IfLoosePassiveGame();

Action("Always Raise on Groups 4,5,6");

IfPocketFromGroup(4, 5, 6);

Do(RecommendAlwaysRaise3Or4BB);

End();

End();

Figure 3.7: Example of converting a guideline into a recommendation.

We decided to introduce an intermediate step between the guidelines and the decision for several
reasons. First, following the guidelines strictly would result in the bot folding around 70% of the
time, which is correct when facing strong players. However, folding so often, particularly this early
in the round, means the bot forfeits many potential wins by being too tight. Another reason is that
the guidelines do not consider the calling/raising amounts. Thus a reasoning process needs to occur
before making the final decision.

Hand groups are great for categorizing hands, but they are too general and do not consider one
important factor: the number of opponents. The number of opponents is a crucial factor that
directly affects hand strength. For example, 99 and JTs are both in group 3. However, 99 has much
bigger win odds when facing one opponent, while JTs has bigger odds when facing seven or more
opponents.

Pocket odds are difficult to estimate in the preflop because of the size of the search tree, especially
when the number of opponents increases. However, Monte Carlo analysis can be used to run
simulations to approximate the results.
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For every opponent count from one to nine, a Monte Carlo simulation was used to approximate the
win odds for every possible starting hand. The results were cached in a hash table. PokerShark uses
the recommendation of the guidelines and the odds from the hash table to make a decision based on
the current risk attitude of the bot at that point in time.

Pocket 1 2 3 4 5 6 7 8 9
AA 85.3 73.4 63.9 55.9 49.2 43.6 38.8 34.7 31.1
AKs 67.0 50.7 41.4 35.4 31.1 27.7 25.0 22.7 20.7
AK 65.4 48.2 38.6 32.4 27.9 24.4 21.6 19.2 17.2
AQs 66.1 49.4 39.9 33.7 29.4 26.0 23.3 21.1 19.3
AQ 64.5 46.8 36.9 30.4 25.9 22.5 19.7 17.5 15.5
AJs 65.4 48.2 38.5 32.2 27.8 24.5 22.0 19.9 18.1
... ... ... ... ... ... ... ... ... ...

Table 3.3: Simulation results hash table.

3.3.1 Risk Attitude

PokerShark has a dynamic risk attitude directly derived from the ratio of its current stack compared
to its initial stack. The bot can have one of three attitudes toward risk: Risk-Averse, Risk-Neutral,
and Risk-Seeking. The risk attitude is used to guide the planner in the preflop stage and choose a
utility function in the later stages. We preferred this implementation over a dynamic utility function
because this implementation gives us the benefit of clear thresholds that we can easily modify
without crafting complex mathematical functions. However, we have built the bot in a flexible
and modular way, so replacing this behavior with a sound mathematical function should be doable
without much effort.

Algorithm 3.1 PokerShark Risk Attitude
procedure GetAttitude(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑐𝑘, 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑐𝑘)

𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒 ← 𝑅𝑖𝑠𝑘𝑁𝑒𝑢𝑡𝑟𝑎𝑙

if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑐𝑘 > 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑐𝑘 ∗ 1.5 then
𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒 ← 𝑅𝑖𝑠𝑘𝑆𝑒𝑒𝑘𝑖𝑛𝑔

else if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑐𝑘 < 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑐𝑘 ∗ 0.5 then
𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒 ← 𝑅𝑖𝑠𝑘𝐴𝑣𝑒𝑟𝑠𝑒

end if
return 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒

end procedure

3.3.2 From Recommendation to Decision

The guidelines that we have implemented as HTN tasks will determine a recommendation. Poker-
Shark tries to improve this recommendation based on the current situation. The recommendation can
suggest to fold, call, or raise. PokerShark deals with each recommendation differently. Converting
the recommendation into a decision required us to define different thresholds. We have tried to

48



3.3 Preflop Strategy

choose the thresholds and the different decisions that we had to make reasonably, relying on intuition
and our limited knowledge of the game, considering the different risk attitudes that the bot might
have.

We also want to clarify again how PokerShark utilizes the monte-carlo simulation mentioned in
the previous sections. The planner has access to the hash table, which contains the results of the
simulation shown in table 3.3. We implemented a precondition that checks if the current hand of
the bot is greater/less than a given probability, also called equity.

Fold Recommendation

As we have already discussed, strictly following the guidelines will result in the bot folding 70% of
the time. Therefore, we decided to follow a looser strategy in the preflop.

The authors of the guidelines did overlook some of the obvious situations. However, we believe
they did not mention them because the player should always act rationally and deviate from these
guidelines when the situation calls for it. For example, one situation where folding is obviously
wrong is when it does not cost us anything to call. By folding, we lose a free chance of potentially
getting to see the flop.

The fold recommendation is handled differently based on the bot’s risk attitude. If the bot’s current
attitude is risk-averse, we convert the fold recommendation into a call if the pocket has more than
60% win odds, with one exception if the call amount is too big and the pocket has less than 80%
odds, then we fold. Otherwise, we follow the recommendation. If the bot is risk-neutral, we follow
the previous process, but instead of calling, we do a min-raise if we are the first to the pot. In the
case that the bot is more risk-seeking, we only fold if the pocket odds are less than 50% or if the
calling amount is too big and the pocket has less than 70% win odds. If nobody has entered the pot
yet, we raise one or two big blinds. Else we do a min-raise.

Call Recommendation

A call recommendation usually indicates that the bot’s pocket and position are good. However,
the guidelines do not consider the calling amount. Therefore, we have defined thresholds for each
risk attitude. If the threshold is crossed, PokerShark converts the call recommendation into a fold
decision. Otherwise, we either follow the call recommendation or do a min-raise based on the bot’s
attitude.

Raise Recommendation

We do a similar process to interpret a raise recommendation. The bot usually follows the
recommendation. If the raise is too risky, we consider calling. If calling is also risky, we then fold.
A big raise in the preflop can scare the opponents and make them exit the hand without betting.
That is why the bot occasionally utilizes the tactic of check-raising, where the raise is replaced by a
call, and after the opponents enter the pot, a raise can be made.
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3.3.3 From Decision to Action

Human players are quick to notice tendencies in the opponent’s behavior. A rule-based system
means the bot will have clear patterns that rational players can pick up and exploit. We have decided
to introduce stochasticity into the decisions making process of PokerShark by implementing the
decision as a vector composed of three components, each corresponding with the probability of fold,
call, and raise. PokerShark will randomly choose an action based on the weights in the decision
vector. This produces the random behavior that we are looking for while providing the ability to
definitely choose an action by setting its weight to one and the other two vector components to zero.
A similar mechanism is used for the betting amount making the bot unpredictable and harder to
read.

We have to note here that each primitive task in the domain definition that is responsible for
producing a decision will also set the different weights in the decision vector. For example, let us
assume that somewhere in the domain definition of PokerShark, we have a sequence that causes the
bot to fold if it holds a hand made up of 2 and 3. Listing 3.3 shows such a sequence.

Listing 3.3 Fold if the pocket is 23.

Select("Fold on 23");

IfPocketIsOneOf(new Pocket(Rank.Two, Rank.Three));

Do(OftenFold);

End();

End();

The OftenFold action will create a decision object. Like the one shown in Listing 3.4.

Listing 3.4 Decision object that folds 90% of the time

function Decision OftenFold(){

return new Decision() { Fold = 0.9, Call = 0.1, Raise = 0 } ;

}

When converting the decision into an action, PokerShark will respect the weights defined in the
decision vector and randomly choose one of the actions using the defined probabilities. For example,
the OftenFold function will produce a decision that will get converted to a fold action 90% of
the time, which is the intended behavior of the sequence. However, there is a 10% chance that
PokerShark will call. This stochastic behavior is intended to deceive opponents and make predicting
the behavior of PokerShark harder to read.
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3.3.4 Fish Net

Players that do not have a great deal of experience in the game of poker are referred to as fish. In
contrast, more experienced players are called sharks, hence the name PokerShark. Fish players tend
to take more risks by calling or raising big amounts. Facing fish players in the preflop, especially
if they are loose-aggressive, could be challenging. Therefore, we have created a mechanism that
detects fish players by analyzing their behavior and identifying patterns that are characteristic of
fish players. The Fish Net also tries to exploit their playing style. Of course, this means PokerShark
will deviate from the optimal strategy and take big risks. For example, PokerShark will call big
amounts or go all-in more often when facing a fish.

3.4 Postflop Strategy

Reaching the flop means we have access to more information that enables us to conceptualize how
the hand will progress. Usually, as the round progress, the number of active opponents decreases,
making it easier to estimate the strength of our hand. In the next section, we will explore how
PokerShark estimates the strength of its pocket.

3.4.1 Hand Strength

We need to define a metric that enables us to assess how our pocket would perform against the hands
of the opponents. Numerous methods were proposed in the literature, such as Artificial Neural
Networks [BEW13], Monte Carlo analysis, and enumeration [BDSS02].

Before discussing hand strength, we need to solve the problem of comparing two hands. There are
three community cards on the flop, and each player has two pocket cards, which means a 5-card
hand can already be constructed. So if the opponents show their cards, how can we tell which hand
is the strongest?

Absolute Hand Rank

Comparing hands is not trivial, but it can be done efficiently using the absolute hand rank, which is
a numerical value assigned to each possible hand that allows us to compare hand strength. There
are many implementations of the absolute hand rank, but most implementations are based on Cactus
Kev’s Algorithm8. Although we do not want to go extensively into this topic, we will provide a
high-level outline. There are 2.598.960 unique possible hand combinations, but most hands are
not distinct. For example, A♥A♦A♣A♠K♥ and A♥A♦A♣A♠K♦ are unique hands but have the
same rank. If we only consider distinct hands, we have only 7462 different combinations, which is
manageable.

8https://suffe.cool/poker/evaluator.html
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Hand Value Unique Distinct
Straight Flush 40 10
Four of a Kind 624 156
Full Houses 3744 156

Flush 5108 1277
Straight 10200 10

Three of a Kind 54912 858
Two Pair 123552 858
One Pair 1098240 2860

High Card 1302540 1277
TOTAL 2598960 7462

Table 3.4: Number of unique and distinct hands

These combinations are ordered into a hash table with an index representing the hand’s value.
Finally, an encoding function is used to create a hand mask that can be used to look up the hand’s
value using the hash table. This algorithm enables us to compare hands efficiently, which is a
very important tool that we will utilize in estimating hand strength. We have to note here that the
following methods and algorithms are adopted from [BDSS02],[Pap98], and [DBSS00].

3.4.2 Facing one Opponent

when facing one opponent post-flop enumerating all his possible pockets is not computationally
hard. The deck of cards has 52 cards, we have two cards, and on the flop, we get to see three of the
board cards, leaving the opponent with

(47
2
)
= 1081 possible combinations that a modern CPU can

enumerate in a matter of milliseconds. The number of possible combinations only goes down as the
round progress.

Algorithm 3.2 Hand Strength estimation against one opponent
procedure HandStrength(𝑃𝑜𝑐𝑘𝑒𝑡, 𝐵𝑜𝑎𝑟𝑑)

𝑃𝑜𝑐𝑘𝑒𝑡𝑅𝑎𝑛𝑘 ← 𝐺𝑒𝑡𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐻𝑎𝑛𝑑𝑅𝑎𝑛𝑘 (𝑃𝑜𝑐𝑘𝑒𝑡 |𝐵𝑜𝑎𝑟𝑑)
for 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝐻𝑎𝑛𝑑 ∈ 𝐺𝑒𝑡𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐻𝑎𝑛𝑑𝑠(𝑃𝑜𝑐𝑘𝑒𝑡, 𝐵𝑜𝑎𝑟𝑑) do

𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝑅𝑎𝑛𝑘 ← 𝐺𝑒𝑡𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐻𝑎𝑛𝑑𝑅𝑎𝑛𝑘 (𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝐻𝑎𝑛𝑑)
if 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝑅𝑎𝑛𝑘 > 𝑃𝑜𝑐𝑘𝑒𝑡𝑅𝑎𝑛𝑘 then

𝑊𝑖𝑛𝑠← 𝑊𝑖𝑛𝑠 + 1
end if
if 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝑅𝑎𝑛𝑘 = 𝑃𝑜𝑐𝑘𝑒𝑡𝑅𝑎𝑛𝑘 then

𝑊𝑖𝑛𝑠← 𝑊𝑖𝑛𝑠 + 0.5
end if
𝐶𝑜𝑢𝑛𝑡 ← 𝐶𝑜𝑢𝑛𝑡 + 1

end for
return 𝑊𝑖𝑛𝑠/𝐶𝑜𝑢𝑛𝑡

end procedure
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Algorithm 3.2 is used to deliver the win odds of our hand by iterating throw all possible opponent
hands. We consider a draw as half as good as a win. Although the algorithm might seem very
reasonable at first glance, it does not consider opponent preferences, which is a significant weakness
because in the post-flop, almost all of the weak hands have already been folded. Many of the wins
we are counting toward hand strength have no value in practice. Let us consider the following
board: Q♣Q♠J♦7♥3♦ and the pocket A♣K♦. The previous algorithm will assume all opponent’s
hands are equally likely and will give a 0,51 win odds. If we are facing a tight opponent with a
range similar to the one shown in figure 3.8, the actual win odds are closer to 0,12 which is a big
difference.

Figure 3.8: Tight opponent range

Here is where adjustment matrices and opponent models prove valuable. We can adjust the algorithm
to weigh each win/draw, by simply adding the probability of the opponent holding that pocket in the
case of a win and half of that in the case of a draw, resulting in a much more accurate estimation.

3.4.3 Hand Potential

One very important factor that we need to take into consideration when assessing hand strength
is how future board cards are going to affect our pocket. For example, our pocket is 8♥7♥ and a
board of A♥T♥3♠ the direct hand strength of our hand is low 0,18 (assuming the opponent has no
preferred range). However, any heart card will give us a flush. With a seven or eight, we can get
one or two pairs. Nine and six or Jack and nine will make a straight. The hand has a significant
chance to improve with two board cards remaining.

Creating a mathematical notion for hand potential has to include the probability 𝑃𝑃, the probability
of the hand improving from a loss or draw to a win, and 𝑃𝑁 , the probability of the hand worsening
going from a win or draw to a loss.

There are three board cards on the flop, and as calculated earlier, the opponent has 1081 possible
pockets. The two remaining board cards can be chosen from 45 cards, meaning

(45
2
)

= 990 possible
combinations. In total, we have to enumerate 1081 * 990 = 1.070.190 different cases, which is not
challenging for a modern CPU.
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On the turn, there are significantly fewer cases to consider,
(46

2
)
= 1035 possible opponent’s pockets,

and one of 44 cards as a potential board card leaving us with 1035 * 44 = 45.540 cases to consider.

𝑃𝑃 and 𝑃𝑁 are calculated as follows (equations from [Pap98]):

𝑃𝑃 =

𝑃𝑙𝑜𝑠𝑠,𝑤𝑖𝑛 +
𝑃𝑙𝑜𝑠𝑠,𝑡𝑖𝑒

2
+
𝑃𝑡𝑖𝑒,𝑤𝑖𝑛

2
𝑃𝑙𝑜𝑠𝑠 + 𝑃𝑡𝑖𝑒

𝑃𝑁 =

𝑃𝑤𝑖𝑛,𝑙𝑜𝑠𝑠 +
𝑃𝑤𝑖𝑛,𝑡𝑖𝑒

2
+
𝑃𝑡𝑖𝑒,𝑙𝑜𝑠𝑠

2
𝑃𝑤𝑖𝑛 + 𝑃𝑡𝑖𝑒

The enumeration can also be weighted using the opponent model to get more accurate estimations.
PokerShark uses The HandPotential Algorithm, which calculates 𝑃𝑃 and 𝑃𝑁 . The Algorithm
is explained in detail in [Pap98], to give a brief overview, the algorithm enumerates all possible
combinations of the opponent’s pockets and the remaining board cards. For each combination, it
adds the probability of the opponent holding that pocket to the corresponding win/draw/loss case.
The algorithm then calculates 𝑃𝑃 and 𝑃𝑁 as explained above.

3.4.4 Facing n Opponents

Introducing another opponent to the game will dramatically increase the number of combinations
and cases we need to enumerate. Adding more opponents will increase the number of the needed
enumrations to the point that it is not feasible anymore. To solve this problem, we approximate the
odds by calculating the product of the odds facing each opponent separately.

𝑊 = 𝑊𝑜𝑝1 ∗𝑊𝑜𝑝2 ∗ · · · ∗𝑊𝑜𝑝𝑛

This approach does not consider the dynamic of the opponents interacting with each other. However,
it gives us a simple solution to a complex problem while utilizing the different preferences each
opponent has shown. A similar approach is used for the hand potential.

3.4.5 Monte Carlo Simulation

The accuracy of the two algorithms, HandStrength and HandPotential, directly depends on the
accuracy of the model. To adjust for any inaccuracy in the modeled preferences of the opponents,
we use the result of a Monte Carlo simulation. The simulation uses the same number of opponents
that the bot is facing, but it does not take into consideration any preferences. The results of the
simulation are then used to adjust our estimation as explained in the following section.
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3.4.6 Hand Strength Estimation

We combine the previously examined algorithms and methods to get an estimate of the strength
of the hand. Since inaccurately profiling the opponent has a significant impact on the algorithm’s
predictions, we must place a greater emphasis on the simulation result:

𝑆 = 𝑊𝑛 ∗ 0.35 + 𝑀𝐶𝑆 ∗ 0.65

Finally, we add the normalized sum of the hand potential:

𝐻𝑆𝑛 = 𝑆 + (1 − 𝑆)𝑃𝑃 − (𝑆 ∗ 𝑃𝑁)

3.4.7 Expected Utility Implementation

Although FluidHTN has a big community, we could not find any prebuilt solutions for expected
utility. Fortunately, FluidHTN is very flexible and easy to extend. We have extended Primitive tasks
to include a list of possible utilities with their probabilities and added a new type of Compound
tasks called ExpectedUtilitySelector, which decomposes the task with the highest expected utility
from the applicable tasks.

Construct Description
VariableUtility Pair of utility an probability.
VariableUtilityTask Extention of PrimitiveTask to include a list of VariableUtility.
ExpectedUtilitySelector Extention of Selector that can have only VariableUtilityTasks as subtasks.

Table 3.5: Expected Utility Constructs

VariableUtilityTask can calculate its expected utility based on the current risk attitude of the bot.
Each one of the attitudes corresponds to a utility function. Figure 3.9 shows the mathematical
functions used to adjust the expected return of each outcome.

𝑈 (𝑐) = −𝑒
−𝛼𝑐 − 1
𝛼

(a) Risk Averse

𝑈 (𝑐) = 𝑐

(b) Risk Neutral

𝑈 (𝑐) = 𝑒𝛼𝑐 − 1
𝛼

(c) Risk Seeking

Figure 3.9: Utility Functions, Where 𝛼 is the risk sensitivity

ExpectedUtilitySelector uses Algorithm 3.3 to find the task with the highest utility among the
applicable tasks.
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Algorithm 3.3 Find the task with the highest utility
procedure FindBestTask(𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑆𝑢𝑏𝑇𝑎𝑠𝑘𝑠)

for 𝑆𝑢𝑏𝑇𝑎𝑠𝑘 ∈ 𝑆𝑢𝑏𝑇𝑎𝑠𝑘𝑠 do
if 𝑆𝑢𝑏𝑇𝑎𝑠𝑘.𝐼𝑠𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒(𝐶𝑜𝑛𝑡𝑒𝑥𝑡) then

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 ← 𝑆𝑢𝑏𝑇𝑎𝑠𝑘.𝐺𝑒𝑡𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝐶𝑜𝑛𝑡𝑒𝑥𝑡)
if 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 > 𝐵𝑒𝑠𝑡𝑈𝑡𝑖𝑙𝑖𝑡𝑦 then

𝐵𝑒𝑠𝑡𝑈𝑡𝑖𝑙𝑖𝑡𝑦 ← 𝑈𝑡𝑖𝑙𝑖𝑡𝑦

𝐵𝑒𝑠𝑡𝑇𝑎𝑠𝑘 ← 𝑆𝑢𝑏𝑇𝑎𝑠𝑘

end if
end if

end for
return 𝐵𝑒𝑠𝑡𝑇𝑎𝑠𝑘

end procedure

3.4.8 Decision making

Although expected utility gives us a great deal of control to guide the decision-making process
of the bot, we need other mechanisms to achieve certain behaviors. For example, raising actions
involve inherently more risk than folding or calling. Thus the utility of raise actions should be
treated differently than the utility of folding or calling. Strictly following expected utility would
result in a bot that rarely bluffs, which is a very important tactic in Texas Hold’em. Additionally,
there is a wide range of tactics that we would like the bot to utilize. One example of such tactics is
Slow-Playing, where even when holding a strong hand, the player does not place a big raise but
rather performs a series of calls or small raises, setting up a trap for the opponents.

Fold

-40

Check

-40 80

Raise

min

-60 80

... 3BB

-120 80

... All-In

-500 80

Figure 3.10: Decision Tree without adjusment

We solved this problem by introducing an adjustment matrix used to increase or decrease the utility
of raises based on the raise amount and hand strength. Figure 3.11 shows how the raise amount and
hand strength affect the adjusment factors. These factors are choosen to give a higher utility to big
raises when the hand is strong and a lower utility for big raises when the hand is weak. Some rules
have also been added to deter the bot from calling when its hand is weak. In addition, some limits
on the raise amount have also been implemented in some cases. For example, the bot will not even
consider raising more than half of its stack when holding a very weak hand. Finally, we utilized the
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probabilistic nature of the decision object to prevent premature raises and to shape the bot’s behavior
to prefer slow playing, that was done by giving lower weights to the raise actions at the early stages
of the game and by giving higher weights to the raise actions at the later stages of the game.

Figure 3.11: Adjustment Factors

3.5 Domain Model

To build an agent that can play poker, the agent has to be able to choose one of the three legal
actions: Fold, Call, or Raise. For the raise action, the bot needs to choose also a raise amount,
which has to be greater than the highest current bet. While it is possible to treat all game stages
the same, we found it reasonable to split the domain into two main compound tasks. The first is
responsible for the preflop stage, and the second for the post-flop stages.

The Preflop Sequence represents the task responsible for the preflop stage. The sequence includes
three compound tasks. The first two tasks will produce a recommendation and convert it to a
decision, as described in section 3.3. The last task represents the Fish Net discussed in section
3.3.4. The tasks responsible for producing a recommendation are grouped into four compound tasks
based on the current position of PokerShark on the table, which is how the original guidelines were
grouped in the first place. Each one of these tasks includes a number of compound and primitive
tasks representing each guideline. The planner will choose which task to decompose based on a set
of preconditions defined for each task. Appendix B includes a listing of all preconditions used by
PokerShark. The Preflop Sequence does not use utility or expected utility in the decision-making
process. However, the current risk attitude of the agent plays an important role in converting the
recommendation into a decision, as described in section 3.3.2.

The Postflop Sequence is dynamically generated each time PokerShark is asked to make a decision.
The sequence includes one compound task of the custom type ExpectedUtilitySelector, meaning
this part of the domain is risk aware. For each possible action: Fold, Call and Raise with different
bet sizes ranging from the current highest bet to the amount of the current stack, a primitive task of
type VariableUtilityTask is created. Each one of these tasks gets a utility score assigned based on

57



3 PokerShark

Figure 3.12: Overview of PokerShark domain model.

the current calling amount, money paid, and hand strength. This score is adjusted using the utility
function corresponding with the current risk attitude of the agent. The utility score of raise actions
is also adjusted based on the amount of the raise and the strength of the hand to ensure that the
agent prefers a higher raise amount when it has a stronger hand.

The FindBestTask from section 3.4.7 is then used to choose the task with the highest utility. The
result of decomposing the best task will be a decision vector. To ensure that the agent will often
adopt a slow-playing strategy, the weights in the decision vectors of all raise actions are skewed to
prefer calls over raises in the early stages of the round and the other way around in the later stages.

3.6 World State

The world state of PokerShark is a hash map that contains different objects, such as game and
decision objects, in addition to different primitive variables and flags, such as the raise amount and
the check-raise flag. It also contains a list of the current legal actions.

The game object is a complex object that contains all the information related to the game, such
as the game rules, the number of players, the initial stack, the size of the ante and the blinds, and
other related information. It also includes all rounds and action history, including player-related
information such as name, stack size, position on the table, and the player model. Nevertheless,
the game object and PokerShark have no access to the opponent’s current hand; the game server
handles this information, and the agent has no access to it. With each new event, the game server
will send a notification to PokerShark, which will update the local game object with the new game
state. This allows PokerShark also to update the opponent model after each action performed by the
opponent.
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3.7 Goal State

The other objects in the world state are used to store information during the planning process. For
example, the check-raise flag is used while performing the check-raise tactic, which continues
throughout the duration of two stages.

3.7 Goal State

The way PokerShark is set up allows us to run the planner without the need to define a goal state.
Instead, we run the planner inside a loop until a flag is set in the world state, which informs us that
the planner has decided on an action. The planner requires theoretically only one iteration to reach a
decision in the post-flop stage and two iterations in the preflop stage, one to find a recommendation
and another to convert it into a decision. Running the planner inside a loop can be problematic, as it
can lead to an infinite loop if the agent is in a situation where it cannot make a decision. To solve
this problem, we have implemented a timeout mechanism that will stop the planner after a certain
number of iterations. If the planner has not found a solution by then, the agent will Fold.
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4 Evaluation

Evaluating the performance of a poker player is a challenging task. Unfortunately, the majority of
strong AI poker players are not publicly available. Furthermore, conducting a big-scale experiment
against human players is also not feasible, as the big online poker-playing sites prohibit the use of
bots. To get an idea of the performance of PokerShark, we conducted a number of experiments
where PokerShark played against dummy-AI player and human players. To study the effect of the
risk attitude on the agent’s behavior, we repeated the experiments where PokerShark played against
dummy-AI players using different risk attitudes.

In this section, the graphs are used to demonstrate how PokerShark’s winnings changed throughout
the games. For each opponent, the graphs display three lines: the red line represents the number of
chips won before the showdown (i.e., when one of the players has folded), the blue line shows the
winnings only at the showdown, and the green line is the cumulative total of PokerShark’s winnings.
The y-axis of each graph shows the number of chips, and the x-axis represents the round number.

Another important metric we use to evaluate the performance of PokerShark is WPH, which
represents the average amount a player wins in each game round measured in small blinds. It is
calculated by dividing the total winnings by the number of rounds played times the small blind
amount. For example, if the agent always folds, it would have a WPH of -1,5 small blinds per
round.

4.1 Dynamic Risk Attitude

For the experiments in this section, we used the dynamic attitude discussed in section 3.3.1 and the
corresponding utility functions discussed in section 3.4.7. To summarize the ideas discussed in
the previously mentioned sections, PokerShark adopts a risk-neutral attitude most of the time. The
agent changes its attitude toward risk as the number of chips in its stack changes. When the stack of
chips starts getting smaller, the agent changes its risk attitude to be more risk-averse. If the stack
becomes significantly bigger than the starting amount, then the agent adopts a more risk-seeking
attitude.

Playing against Dummy-AI players

Dummy-AI players are AI players that use a simple static strategy to play poker. We used four such
players: Bold, Fish, Honest and Random. The bold player always raises the maximum allowed
amount regardless of his pocket. Similarly, the fish player always calls, whereas the honest player
chooses the best action based on the estimated strength of his hand; finally, the random player
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chooses a random action. At first glance, one might overlook the challenges imposed by these
simple strategies. However, playing against these bots will provide a good chance to see how
PokerShark will identify and exploit the weaknesses of each bot.

Bold Player

The bold player imposes an interesting problem because the bot will start each round by betting the
entire stack; calling such a bet is very risky from the preflop. Looking at the graph shown in figure
4.1, we can see that most losses occur before the showdown because PokerShark is folding many
weak hands. Although it is a very difficult challenge, PokerShark lost only 0.71 small blinds per
hand. This is a very good result, considering that the bold player is a very loose and aggressive
player.

Number of games 100
Games won 38 38.0%
Games drew 0 00.0%
Games lost 62 62.0%
Number of rounds 3237
Rounds won 110 30.4%
Rounds drew 0 00.0%
Rounds lost 3127 96.6%
WPH -0.71

Figure 4.1: Results of playing 100 games against the Bold player.

Fish Player

Playing against the fish player is a good opportunity to showcase PokerShark’s ability to exploit
players’ tendencies. For example, we can see from the Non-showdown winnings in figure 4.2 that
PokerShark did not fold as much, meaning it has adjusted its folding range. We can also see that
although PokerShark is calling/raising a lot more, it manages the risk by using small raises.

62



4.1 Dynamic Risk Attitude

Number of games 100
Games won 68 68.0%
Games drew 0 00.0%
Games lost 32 32.0%
Number of rounds 3385
Rounds won 1511 44.6%
Rounds drew 21 00.6%
Rounds lost 1853 54.7%
WPH 1.10

Figure 4.2: Results of playing 100 games against the Fish player.

Honest Player

Playing against a player that does not bluff is quite difficult because it folds when his hand is weak,
and he only raises with a strong hand. Therefore, knowing when to challenge such a player is crucial
to winning the game. Looking at the figure 4.3, we can see the games were more dynamic, with
PokerShark successfully winning big bets but also lost many small bets with varying tolerance
to call the raises of the honest player. Overall, We think PokerShark performed well against this
player.

Number of games 100
Games won 17 17.0%
Games drew 0 00.0%
Games lost 83 83.0%
Number of rounds 9340
Rounds won 3670 39.3%
Rounds drew 3 00.6%
Rounds lost 5667 60.7%
WPH -0.16

Figure 4.3: Results of playing 100 games against the Honest player.

Random Player

Facing a random opponent is a great way to see how PokerShark handles contradictory information
while modeling its opponent. The graph in figure 4.4 shows how PokerShark used bigger betting
amounts while also folding more often.
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Number of games 100
Games won 48 48.0%
Games drew 0 00.0%
Games lost 52 52.0%
Number of rounds 4540
Rounds won 1276 28.1%
Rounds drew 0 00.6%
Rounds lost 3264 71.9%
WPH -0.03

Figure 4.4: Results of playing 100 games against the Random player.

4.1.1 Playing against human players

Unfortunately, we could not organize a big experiment to test PokerShark’s performance against
human players. However, we were able to organize a few games with novice poker players. In total,
PokerShark played a round thousand hands against human players.

Number of games 18
Games won 10 55.6%
Games drew 0 00.0%
Games lost 8 44.4%
Number of rounds 955
Rounds won 359 37.6%
Rounds drew 1 00.1%
Rounds lost 595 62.3%
WPH 0.19

Figure 4.5: Results of around 1000 hands against human players.

Observing the graph shown in figure 4.5, it is clear that PokerShark forfeited a significant portion of
its profits by folding. That is due to the majority of human players being able to quickly identify and
exploit PokerShark’s tendency to fold when calling is too risky. The big fluctuations in winnings
indicate that PokerShark did not always fold but was also able to call the opponent’s bluff and score
big wins.
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4.2 Static Risk Attitude

4.2 Static Risk Attitude

To investigate the impact of risk attitude on an agent’s behavior, we reconducted the previous
experiments in which PokerShark played against dummy AI players but this time using static risk
attitudes.

The first set of experiments was run with the risk attitude of PokerShark being set to risk-seeking.
Having a more risk-seeking attitude can change the behavior of a poker player in several ways. For
one, a player who is more willing to take risks will be more likely to bet or raise with weaker hands
since they are more willing to gamble in order to potentially win a larger pot. This can make them
more unpredictable and difficult for their opponents to read. Additionally, risk-seeking players may
also be more likely to bluff since they are more willing to risk betting with a weak hand to try and
scare their opponents. Overall, a risk-seeking attitude should make PokerShark more aggressive
and less predictable in its betting and playing style.

The second set of experiments was conducted with PokerShark having a risk-averse attitude. Having
a risk-averse attitude can change the behavior of the agent, causing it to be more conservative in
its betting and playing style. This should make PokerShark less likely to take risks, such as going
all-in on a hand or making large bets, in order to avoid the potential loss of chips.

The last set of experiments was conducted using a risk-neutral attitude, which should make
PokerShark play in a similar style to the Honest player. Only calling or raising when it thinks it has
the strongest hand. The detailed analysis of the games conducted is provided in appendix C. We
have also summarized the findings in table 4.1.

Win Drew Lost WPH

Bold Player

Dynamic risk 38.0% 0.0% 62.0% -0.71
Risk seeking 44.0% 0.0% 56.0% -0.47
Risk averse 49.0% 0.0% 51.0% -0.04
Risk neutral 40.0% 0.0% 60.0% -0.57

Fish Player

Dynamic risk 68.0% 0.0% 32.0% 1.10
Risk seeking 77.0% 0.0% 23.0% 1.70
Risk averse 74.0% 0.0% 26.0% 1.20
Risk neutral 76.0% 1.0% 23.0% 1.58

Honest Player

Dynamic risk 17.0% 0.0% 83.0% -0.16
Risk seeking 92.0% 1.0% 7.0% 0.40
Risk averse 13.0% 0.0% 87.0% -0.26
Risk neutral 16.0% 0.0% 84.0% -0.16

Random Player

Dynamic risk 48.0% 0.0% 52.0% -0.03
Risk seeking 55.0% 0.0% 45.0% 0.39
Risk averse 27.0% 0.0% 73.0% -0.67
Risk neutral 16.0% 0.0% 84.0% 0.36

Table 4.1: Results of playing 100 games using the different static risk attitudes.
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The different risk attitudes yielded varying results against different players. Overall, the dynamic
attitude performed the worst on average, with risk-seeking outperforming all other attitudes. This
could be due to the nature of the game, or perhaps the experiments we conducted favored this
attitude. Table 4.2 shows how each attitude performed on average.

Attitude WPH
Dynamic risk 0.05
Risk seeking 0.51
Risk averse 0.06
Risk neutral 0.30

Table 4.2: Average WPH for each risk attitude.

4.3 Self Play Experiments

Due to the findings of our earlier experiments, we have chosen to conduct additional self-play
experiments in order to further investigate the effect of risk attitude on the performance of the agent.
To evaluate the impact of different risk attitudes on performance more thoroughly, we set up a series
of head-to-head games between multiple copies of PokerShark, each with a different risk attitude.
We wanted to see how the different risk attitudes would affect the outcome of the games, so we
had each copy play 100 games against each of the other copies. This was important to verify the
findings of our previous experiments.

Dynamic Risk-Seeking Risk-Averse Risk-Neutral Average
Dynamic - -0.33 0.01 0.02 -0.10
Risk-Seeking 0.33 - 0.37 0.36 0.35
Risk-Averse -0.01 -0.37 - -0.01 -0.13
Risk-Neutral -0.02 -0.36 0.01 - -0.12

Table 4.3: Results of self play with different risk attitudes; WPH of player at start of row

Table 4.3 shows the results of WPH for the player at the start of the row against the player at the
start of the column. The results clearly show that the risk-seeking attitude outperforms all other
attitudes. The dynamic risk attitude performed better than all other attitudes, which contradicts our
previous experiments. However, it aligns with our initial intuition.

A larger experiment with human players would be required to make confident conclusions about the
impact of risk attitude on performance. However, for now, we are led to believe that the domain of
poker tends to favor risk-seeking players.
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5 Related work

HTN planning is a powerful tool for representing and solving complex problems in a hierarchical
and modular fashion that has been applied to a wide range of real-world domains. In the context
of poker, however, and to the best of our knowledge, HTN planning techniques have never been
used before. One of the key tools that were crucial to the development of PokerShark was the
extension of the HTN planning framework to incorporate risk awareness and guide the planner
using the agent’s risk attitude. This approach was studied in detail in previous research [Aln19]
[GL14] [AGA22] and provided a strong foundation for the development of PokerShark’s risk-aware
decision-making process.

Over the years, researchers and engineers have attempted to develop AI systems that can compete
with human players in the game of poker. One of the first successful AI poker players was Loki
and its successor Poki, which used a formula-based betting strategy and were the focus of several
research papers [BDSS02] [BPSS98] [Pap98] that laid the foundation for later work, including the
development of PokerShark. There were also other approaches that used different strategies, such
as simulations, game theory strategies, and neural networks, with varying degrees of success. An
extensive review of the different approaches is provided in [RW11]. One of the studies that are
somewhat comparable to ours is provided in [Fol03], where a rule-based expert system (SoarBot) is
analyzed, which has a similar structure to PokerShark, particularly in the way it relies on expert
knowledge. However, SoarBot does not consider the risk of different actions and has no notion of
utility or risk attitudes.

The topic of opponent modeling is closely related to the research presented in this thesis. Many
approaches have been developed to model and predict opponents’ behavior in poker, including the
use of machine learning and neural networks. A comprehensive review of these approaches can be
found in [Bou14]. Examples of successful approaches using machine learning and neural networks
are discussed in [FKP12] and [YXYZ20].

Estimating hand strength is an important topic for developing a strong AI player. In [XSH+21],
an algorithm for poker hand classification is provided that uses linear regression to calculate the
approximate effective hand strength. A similar approach was also presented in [BEW13].
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6 Conclusion and Future Work

Developing a strong AI poker player involves many challenges, including decision-making under
uncertainty, risk management, game theory, and understanding the behavior and psychology of the
opponents. PokerShark succeeded in overcoming some of these challenges resulting in a mediocre
poker player with great potential for improvement. We have successfully modeled the domain
using HTN planning constructs and integrated risk awareness into the planning process. Along
the way, we have implemented guidelines provided by the domain experts and tried to create an
agent that uses different metrics to estimate the cost of its actions. Despite our efforts to find a good
balance while integrating risk awareness into the agent decision-making process, we found that our
reliance on arbitrary thresholds based on intuition and limited knowledge of the game often led to
suboptimal solutions. This was evident in the experiments we conducted, which showed that our
dynamic risk attitude performed worse on average than other static attitudes. We have also resorted
to using approximation and interpolation to estimate values that are computationally too hard to
calculate. The opponent modeling mechanism that PokerShark uses relies on a small number of
states, and it only delivers information about the ranges that the opponents like to play. However,
it does not take into account important factors such as player position, pot size, and deception.
Furthermore, the overall strategy of PokerShark is centered around hand strength, which might not
be the best strategy for playing the game. Game theory is still unable to deliver an optimal strategy
for poker, but we believe the strategy we have implemented can be vastly improved by adopting
tactics that place a greater emphasis on deception and opponent psychology.

Despite the aforementioned shortcomings, the aim of this study was not to create the best poker
player but rather to explore the potential of HTN planning in a complex domain such as poker. While
PokerShark may not be the most skilled poker player, we believe it demonstrates the effectiveness
of using HTN planning with risk awareness as a foundation for building powerful AI agents capable
of playing poker efficiently.

There is much potential for PokerShark to improve by conducting more research and experiments.
This would allow the current playing strategies to be refined and new tactics to be introduced.
Additionally, incorporating other AI techniques would open the door to new exciting possibilities.
Furthermore, incorporating improved opponent modeling techniques could allow PokerShark to
better predict and adapt to the behavior of its opponents. This could give it a significant advantage
in games against other players or AI opponents. Overall, PokerShark has a great deal of room to
grow and improve through further research and development.
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A Blocks World Domain

Blocks World is a toy problem used in automated planning research1. The domain consists of a
table containing several blocks. Each block can be moved individually, and only the block on top of
a stack can be moved. Listing A.1 and A.2 shows the domain and problem defination of Blocks
World in PDDL from the second international planning contest2.

Listing A.1 Blocks world domain definiton.

(define (domain BLOCKS)

(:requirements :strips :typing) (:types block)

(:predicates (on ?x - block ?y - block) (ontable ?x - block)(clear ?x - block)

(handempty)(holding ?x - block))

(:action pick-up

:parameters (?x - block)

:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect (and (not (ontable ?x))(not (clear ?x)) (not (handempty))(holding ?x)))

(:action put-down

:parameters (?x - block) :precondition (holding ?x)

:effect (and (not (holding ?x))(clear ?x)(handempty)(ontable ?x)))

(:action stack

:parameters (?x - block ?y - block)

:precondition (and (holding ?x) (clear ?y))

:effect (and (not (holding ?x))

(not (clear ?y))(clear ?x)(handempty)(on ?x ?y)))

(:action unstack

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y) (clear ?x) (handempty))

:effect(and (holding ?x)(clear ?y)(not (clear ?x))

(not (handempty))(not (on ?x ?y)))))

Listing A.2 Blocks world problem definiton.

(define (problem BLOCKS-4-0)

(:domain BLOCKS) (:objects D B A C - block)

(:INIT (CLEAR C) (CLEAR A) (CLEAR B) (CLEAR D) (ONTABLE C) (ONTABLE A)(ONTABLE B)

(ONTABLE D) (HANDEMPTY))

(:goal (AND (ON D C) (ON C B) (ON B A))))

1https://en.wikipedia.org/wiki/Blocks_world
2https://ipc00.icaps-conference.org/
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B PokerShark Preconditions

B PokerShark Preconditions

IsAggressive Is the game dominated by aggrissive players
IsLoose Is the game dominated by loose players
IsPassive Is the game dominated by passive players
IsTight Is the game dominated by tight players
OneOpponent Is there only one active player left
PocketEquityGreaterThan Does the hand of the bot have more equity than the given number
PocketEquityLessThan Does the hand of the bot have less equity than the given number
PocketFromGroup Does the hand of the bot belongs to the given group
PocketIsOneOf Does the hand of the bot one of the hands given
InBigBlind Does the bot sit in the big blind seat on the table
InBlind Does the bot sit in a blind seat on the table
InEarly Does the bot have an early position
InLate Does the bot have a late position
InMiddle Does the bot have a middle position
InSmallBlind Does the bot sit in the small blind seat on the table
FirstToPot Nobody has called or raised yet.
FirstToRaise Nobady has raised yet.
OnlyCalls Somebody has already called, but no raises were made yet.
SecondToRaise One player has already raised.
ThreeBBCall It costs three times the bigblind to call
TwoOrMoreRaises There is at least more than one raise
ZeroCostCall It costs nothing to call
CallRecommendation The planner has produced a call recommendation
FoldRecommendation The planner has produced a fold recommendation
RaiseRecommendation The planner has produced a raise recommendation
NoRecommendation The planner has not produced any recommendation yet
NotTooRiskyMinRaise It is not risky to raise the minimum legal amount
RiskAverseAttitude The bot has a risk-averse attitude
RiskNeutralAttitude The bot has a risk-neutral attitude
RiskSeekingAttitude The bot has a risk-seeking attitude
TooRiskyCall It is to risky to call
TooRiskyRaiseRecommendation It is too risky to raise the recommended amount
InPreflop The game is in the preflop stage
NoDecision The planner has not produced a decision yet
Occasionally Randomly true less than 30% of the time
RaiseOrCallDecision Did the planner produce a raise or a call decision
TooFishy Is the opponent too loose
CallingFish Is the opponent aggrisve loose
LooseRaiser The raising player is too loose
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C Different Risk Attitudes Experiments

C.1 Static Risk Attitude - Risk Seeking

Bold Player

Number of games 100
Games won 44 44.0%
Games drew 0 00.0%
Games lost 56 56.0%
Number of rounds 2492
Rounds won 133 5.3%
Rounds drew 3 0.1%
Rounds lost 2356 94.5%
WPH -0.47

Figure C.1: Results of playing 100 games against the Bold player - With Risk Seeking attitude.

Fish Player

Number of games 100
Games won 77 77.0%
Games drew 0 00.0%
Games lost 23 23.0%
Number of rounds 3164
Rounds won 1522 48.1%
Rounds drew 21 0.7%
Rounds lost 1621 51.2%
WPH 1.7

Figure C.2: Results of playing 100 games against the Fish player - With Risk Seeking attitude.
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C Different Risk Attitudes Experiments

Honest Player

Number of games 100
Games won 92 92.0%
Games drew 1 1.0%
Games lost 7 7.0%
Number of rounds 9631
Rounds won 5483 56.9%
Rounds drew 9 0.1%
Rounds lost 4139 43.0%
WPH 0.4

Figure C.3: Results of playing 100 games against the Honest player - With Risk Seeking attitude.

Random Player

Number of games 100
Games won 55 55.0%
Games drew 0 0.0%
Games lost 45 45.0%
Number of rounds 2463
Rounds won 928 37.7%
Rounds drew 1 0.0%
Rounds lost 1534 62.3%
WPH 0.39

Figure C.4: Results of playing 100 games against the Random player - With Risk Seeking attitude.
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C.2 Static Risk Attitude - Risk Averse

C.2 Static Risk Attitude - Risk Averse

Bold Player

Number of games 100
Games won 49 49.0%
Games drew 0 00.0%
Games lost 51 51.0%
Number of rounds 3382
Rounds won 139 4.1%
Rounds drew 0 0.0%
Rounds lost 3243 95.9%
WPH -0.04

Figure C.5: Results of playing 100 games against the Bold player - With Risk Averse attitude.

Fish Player

Number of games 100
Games won 74 74.0%
Games drew 0 00.0%
Games lost 26 26.0%
Number of rounds 3764
Rounds won 1706 45.3%
Rounds drew 18 0.5%
Rounds lost 2040 54.2%
WPH 1.2

Figure C.6: Results of playing 100 games against the Fish player - With Risk Averse attitude.
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C Different Risk Attitudes Experiments

Honest Player

Number of games 100
Games won 13 13.0%
Games drew 0 00.0%
Games lost 87 87.0%
Number of rounds 9537
Rounds won 3741 39.2%
Rounds drew 3 0.0%
Rounds lost 5793 60.7%
WPH -0.26

Figure C.7: Results of playing 100 games against the Honest player - With Risk Averse attitude.

Random Player

Number of games 100
Games won 27 27.0%
Games drew 0 00.0%
Games lost 73 73.0%
Number of rounds 6385
Rounds won 1652 25.9%
Rounds drew 0 0.0%
Rounds lost 4733 74.1%
WPH -0.67

Figure C.8: Results of playing 100 games against the Random player - With Risk Averse attitude.
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C.3 Static Risk Attitude - Risk Neutral

C.3 Static Risk Attitude - Risk Neutral

Bold Player

Number of games 100
Games won 40 40.0%
Games drew 0 00.0%
Games lost 60 60.0%
Number of rounds 3162
Rounds won 119 3.7%
Rounds drew 2 0.1%
Rounds lost 3041 96.2%
WPH -0.57

Figure C.9: Results of playing 100 games against the Bold player - With Risk Neutral attitude.

Fish Player

Number of games 100
Games won 76 76.0%
Games drew 1 1.0%
Games lost 23 23.0%
Number of rounds 3372
Rounds won 1578 46.8%
Rounds drew 18 0.5%
Rounds lost 1776 52.7%
WPH 1.58

Figure C.10: Results of playing 100 games against the Fish player - With Risk Neutral attitude.

83



Honest Player

Number of games 100
Games won 16 16.0%
Games drew 0 0.0%
Games lost 84 84.0%
Number of rounds 9579
Rounds won 3866 40.4%
Rounds drew 4 0.0%
Rounds lost 5709 59.6%
WPH -0.16

Figure C.11: Results of playing 100 games against the Honest player - With Risk Neutral attitude.

Random Player

Results against: Random number of games: 100 number of games won: 58 58.0number of games
drew: 0 0.0number of games lost: 42 42.0number of rounds: 4648 number of rounds won: 1328
28.6number of rounds drew: 0 0.0number of rounds lost: 3320 71.4starting stack: 100000 end
stack: 116767.0 win/loss: 16767.0

Number of games 100
Games won 58 16.0%
Games drew 0 0.0%
Games lost 42 84.0%
Number of rounds 4648
Rounds won 1328 40.4%
Rounds drew 0 0.0%
Rounds lost 3320 59.6%
WPH 0.36

Figure C.12: Results of playing 100 games against the Random player - With Risk Neutral attitude.
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